

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Confirm-display confirmation dialog box

Confirm [-t] [message ...]

Displays a confirmation dialog box with OK and Cancel buttons and the prompt
message. There is no output to this command-the result of the dialog is returned in
the {Status} variable.

Note: Because Confirm returns a nonzero status value to indicate that No or Cancel
was selected, a script should set the Shell variable {Exit} to zero before executing the
Confirm command. (This step is necessary because the Shell aborts script processing
when a nonzero status value is returned and {Exit} is nonzero.)

Built-in.

Reads standard input for the message if no parameters are specified.

None.

Errors are written to diagnostic output.

The Confirm command may return the following status values:

o The OK button was selected
1 Syntax error
4 The Cancel button was selected
5 The Cancel button was selected in a three-way dialog box-see the -t option

Note: In the context of a two-button dialog, Cancel means the same thing as No; OK
means Yes.

-t Display a three-way confirmation dialog box, which includes Yes,
No, and Cancel buttons. In this case, 4 means No and 5 means
Cancel.

11-44 Confirm

Examples

See also

Set Exit a
Confirm "Replace files with the same name? ..
If {Status} == a

Duplicate -y Source:- Destination:
End
Set Exit 1

The following confirmation dialog box will be displayed:

Replace flies with the same name?

[OK ~ Cancel

If you select the OK button, the Duplicate command will be executed.

The following script makes use of a three-way confirmation dialog box:

Set Exit a
Set list

For file In 'files -t TEXT'
Confirm -t "Print file {file}?"
Set SaveStatus {Status}
Continue If {SaveStatus} == 4 * No
Break If {SaveStatus} == 5 * Cancel
Set list "{list} '{file}'" * Yes

End If "{list}" ! = ""
Print {PrintOptions} {list}

End
Set Exit 1

This example prints selected TEXT files in the current directory. For each file, it
displays a dialog box with three choices (yes, No, and Cancel). Selecting Yes prints
the file. If you select No, the Continue command causes this file to be skipped, but
processing continues with the next file in the list If you select Cancel, the Break
command causes the For loop to be terminated, ending the question-and-answer
session. The filenames are saved in the variable {Hst}, and printed following the loop.

Alert and Request commands.

Confirm 11-45

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Continue-continue with next iteration of For or Loop

Continue [If expression]

If expression is nonzero, Continue terminates this iteration of the immediately
enclosing For or Loop command, and continues with the next iteration. (Null strings
evaluate to zero.) If the "If expression" clause is omitted, the Continue is
unconditional. If no further iterations are pOSSible, the For or Loop is terminated.
(For a definition of expression, see the Evaluate command.)

Built-in.

None.

None.

Errors are written to diagnostic output.

Continue may return the following status values:

o No errors
-3 Error in parameters, or Continue not within For ... End or Loop ... End
-5 Invalid expression

None.

Set Exit 0

Set list

For file In 'files -t TEXT'

Confirm -t "Print file {file}?"

Set SaveStatus {Status}

Continue If {SaveStatus} == 4

Break If {SaveStatus} == 5

Set list "{ list} '{ file} , "

Print {PrintOptions} {list}

Set Exit 1

* No * Cancel
IF YesEnd

In this example, the Continue command is executed if the user selects No (status
value 4). The Continue causes the current file to be skipped, but processing continues
with the next me in the list

(For a full explanation of this example, refer to the Confirm command.)

For, Loop, Break, and If commands.

Evaluate command, for a description of expressions.

"Structured Commands" in Chapter 5.

11-46 Continue

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

See also

Copy-copy selection to Clipboard

Copy [-c count] selection [wtndow]

Finds selection in the specified window and copies it to the Clipboard, replacing the
previous contents of the Clipboard. If no window is specified, the command operates
on the target window (the second window from the front). It's an error to specify a
window that doesn't exist

For a definition of selectton, see "Selections" in Chapter 6; a summary of the
selection syntax is contained in Appendix B.

Note: To copy flles, use the Duplicate command.

Built-in.

None.

None.

Errors are written to diagnostic output.

Copy may return the following status values:

o At least one instance of the selection was found
1 Syntax error
2 Any other error

-c count For a count of n, fmd and copy the nth instance of selection.

Copy §

Copies the current selection to the Clipboard. This command is like the Copy
command in the Edit menu, except that the action takes place in the target window.

Copy /BEGIN/:/END/

Selects "every thing from the next BEGIN through the following END, and copies this
selection to the Clipboard.

Cut and Paste commands.

"Selections" in Chapter 6 and Appendix B.

Copy 11-47

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Note

Count-count lines and characters

Count [-1] [-c] Cfile ...]

Counts the lines and characters in its input, and writes the results to standard output If
no files are specified, standard input is read. If more than one file is specified,
separate counts are printed for each file, one per line, preceded by the filename, and
a total is printed following the list

Tool.

Standard input is read if no files are specified on the command line.

tine and character counts are written to standard output.

Errors are written to diagnostic output

Count may return the following status values:

o No errors
1 Error in parameters
2 Unable to open input file

-1 Write only the line counts.

-c Write only the character counts.

Count MakeFile.c Count.c

Displays line counts and character counts in the form

MakeFile.c

Count.c

Total

43

153

196

Files I Count -1

981

3327

4303

Display the total number of files and directories in the current directory.

Count -1 §

Display the number of lines selected in the target window.

The source code for Count is included in the CExamples folder, in the file Count.c, as
part of MPW C.

11-48 Count

Syntax

Description

Type

Input

Output

Diagnostics

CreateMake-create a simple makefile

CreateMake [-Application I -Tool I -DA] program file ...

Create a simple makefile for building the specified program. The program parameter
is the name of the program. Makefile program. make is created. The list of files
includes both. source and library files. Source files may be written in any combination
of assembly-language (sufflx ".a"), C (".c"), Pascal (".p"), and/or Rez (".r").

Ubrary flIes (suffix" .0") may also be specified. The program will be linked with these
files. CreateMake automatically links with the library flIes listed below. It is not
necessary to specify these files as parameters to CreateMake.

Makeflles for building applications (the defaulO, tools, and desk accessories may be
created.

CreateMake generates commands that link the program with the following set of MPW
libraries:

o Inside Macintosh Interfaces
{Libraries} Interface. 0

o Runtime support-one of the following:
{Libraries}Runtime.o # no C object files
{CLibraries}CRuntime.o # any C object files

o C Ubraries-if any source is in C
{CLibraries}S tdCLib. 0

{CLibraries}CSANELib.o
{CLibraries}Math.o
{CLibraries}CInterface.o

o Pascal Libraries-if any source is in Pascal
{PLibraries} PasLib.o
{PLibraries}SANELib.o

o For tools:
{Libraries}TooILibs.o

o For desk accessories:
{Libraries}DRVRRuntime.o

CreateMake does not include dependencies on include files and USES files in the
makefile. Libraries other than those listed above are not included in the Link
command generated by CreateMake, unless specified as parameters. CreateMake is
used to implement the Create Build Commands item in the Build menu.

Script.

None.

None.

Errors are written to diagnostic output

CreateMake 11-49

Status

Options

Example

See also

The following status values may be returned:

o Successful completion
1 Parameter or option error

-appHcation

-tool

-da

Create build commands for building an application. This is the
default.

Create build commands for building a tool.

Create build commands for building a desk accessory.

CreateMake -Tool Count Count.c Stubs.a Count.r

Creates the makefile Count make containing commands for building tool Count from
~ource files Count.c, Stubs.a, and Count.r. The make file will be similiar to the
following:

t File:
t Target:
t Sources:
t Created:

Count.make
Count
Count.c Stubs.a Count.r
Monday, February 9, 1987 3:04:44 PM

Count.c.o f Count.make Count.c
C Count.c

Stubs.a.o f Count.make Stubs.a
Asm Stubs.a

Count ff Count.make Count.r
Rez -append Count.r -0 Count

Count ff Count.make Count.c.o Stubs.a.o
Link -w -t MPST -c 'MPS I a

Count.c.o a
Stubs.a.o a
"{Libraries}"Interface.o a
"{CLibraries}"CRuntime.o a
"{CLibraries}"StdCLib.o a
"{CLibraries}"CSANELib.o a
"{CLibraries}"Math.o a
"{CLibraries}"Clnterface.o a
"{Libraries}"ToolLibs.o a
-0 Count

BuildMenu and BuildProgram commands.

"Building a Program: An Introduction" in Chapter 2.

II-50 Create Make

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Cut-copy selection to Clipboard and delete it

Cut [-c count] selection [window]

Finds selection in the specified window, copies its contents to the Clipboard, and
then deletes the selection. If no window is specified, the command operates on the
target window (the second window from the front). It's an error to specify a window
that doesn't exist.

For a definition of selection, see "Selections" in Chapter 6; a summary of the
selection syntax is contained in Appendix B.

Built-in.

None.

None.

Errors are written to diagnostic output.

Cut may return the following status values:

o At least one instance of the selection was found
1 Syntax error
2 Any other error

-c count Find and cut count instances of selection.

Examples Cut §

See also

Cuts the current selection in the target window. (This is the same as the Cut menu
item, except that it operates on the target window rather than the active window.)

Cut /BEGIN/:/END/

Selects everything from the next BEGIN through the following END, copies the
contents of the selection to the Clipboard, and then deletes the selection.

Clear, Copy, and Paste commands.

"Selections" in Chapter 6 and in Appendix B.

Cut II-51

Syntax

Description

CvfObj-convert Lisa Workshop object files
to MPW object files

CvtObj [-n namesFile] [-0 outputFile] [-p] LisaObjFile

Converts a Lisa object file (.OBJ file) to the Macintosh object format (.0 file). This
command is for Lisa Workshop users who have old object files but no source fIles that
can be ported to the MPW system.

CvtObj supports object files produced by the Lisa Pascal Compiler, the Green Hills C
Compiler, and the TI..A Assembler that were targeted to the Macintosh runtime
environment. Object files produced by other compilers have not been tested, but
should work. The program should not be used to convert object files targeted for
execution on Lisa.

Object files produced by the Lisa Pascal Compiler must have been compiled with the
Macintosh code generation option, $M+. Object files produced by the Green Hills C
Compiler must have been compiled with the default code generation option, that is,
the -lIsa option must not have been specified. Assembler code produced by the TLA
Assembler should conform to the guidelines outlined in the Using Assembly Language
chapter of Inside Macintosh.

CvtObj detects and rejects a number of Lisa object record types. If this happens,
CvtObj generates a fatal error message ("Can't handle '" "), and terminates without
producing an output file. However, CvtObj cannot detect and reject all object files
targeted for execution on the Lisa, especially Pascal and TLA Assembler files.

The Lisa Workshop tools support only 8-character case-insensitive (shifted to
uppercase) external identifiers. The MPW Compilers support variable-length, case­
sensitive external identifiers. (The MPW Pascal Compiler still defaults to upshifting
Pascal identifiers, primarily for language compatibility, portability of sources, and
ease in providing both C and Pascal interfaces to the Macintosh ROM routines.)
CvtObj provides the -n option for substituting names, so that old object files can be
properly linked with new object files. The -n option specifies a "names" file, which
controls name substitution.

Data Initialization: In general, CvtObj automatically matches the Lisa object file
semantics with those of the Macintosh. However, data initialization records are more
difficult to handle. With the Lisa tools, data areas were often defined with differing
lengths, partial contents in different fIles, and so on. The underlying model was
Fortran-named common areas, with multiple initialization sources. On the
Macintosh, the default is to use only the fIrst definition of a data module. In order to
match the Macintosh default as closely as pOSSible, CvtObj does not emit a defining
instance of a data area unless initialization values are seen.

For C data areas that need to be initialized to zero, this behavior can result in Linker
error messages reporting that the data area names are "unresolved external
references." If the references come from a file produced by CvtObj, then the define
directive can be used in a "names" C-n) me to request CvtObj to emit a defining
instance-this should result in a proper size definition for the data area, unless the
data area was defmed elsewhere as larger.

Note: The DumpObj command can be useful in tracking down and fixing anomalies
in external names and data area definitions when using CvtObj.

II-52 CvtObj

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

Tool.

None.

If no -0 option is specified, output is written to the file CvtObj.out.o.

Errors and warnings are written to the diagnostic file. Progress information is also
written to the diagnostic file (with the -p option).

The following status values may be returned:

o No problem
2 Fatal error
3 User interrupt

-n namesFile Create name-conversion fIle. In this text file, lines that begin with a
space or tab are interpreted as name substitution lines; the first
name is the old name, the second name is the new name. (See
"Examples" below.) All occurrences of the old name are replaced
with the new name. Lines that begin with the word define, followed
by an entry name, create a global data module for that name.

-0 outputFile Direct output to outputFile. The default output filename is
CvtObj.out.o.

-p Write progress information to diagnostic output.

CvtObj -0 MyFile.o MyLisaFile.OBJ

Converts file MyUsaFile.OB], placing the output in MyFile.o.

CvtObj -n NewNames -0 MyFile2.0 MyLisaFile2.0BJ

Converts file MyUsaFile2.0B], placing the output in MyFile2.0, and applying the
name translations specified in NewNames. The NewNames file might contain the
following:

6CLOSEOUT CloseOut put
6DRAWROUN DrawRoundFigure
6F002 Fo02
define FOO

where Ll indicates a leading space or tab character.

TLACvt, Link, and DumpObj commands.

Appendix F.

CvtObj II-53

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Date-write the date and time

Date [-a I -s] [-d I -t]

Writes the current date and time to standard output.

Built-in.

None.

The date is written to standard output.

Errors are written to diagnostic output.

Date may return the following status values:

o No' error
1 Syntax error

-a

-d

-s

-t

Abbreviated date. Three-character abbreviations are used for the
month and day of the week. For example, Thu, Aug 29, 1987.

Write the date only.

Short date form. Numeric values are used for the date. The day of
the week is not given. For example, 8/29/87 (month/day/year).

Write the time only.

Examples Date

returns the date in the form

Friday, February 14, 1986 10:34:25 PM

Date -a

returns

Fri, Feb 14, 1986 10:34:25 PM

Date -s -d

returns

2/14/86

II-54 Date

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

Delete-delete files and directories

Delete [-y I -n I -c] [-i] [-p] name ...

Deletes file or directory name. If name is a directory, then name and its contents
(including all subdirectories) are deleted.

Before deleting directories, a dialog box will request confirmation for the deletion.
Use the -y, -n, or -c options in scripts to avoid this interaction. Be sure to see the
warning at the end of this section.

Built-in.

None.

None.

Errors and warnings are written to diagnostic output. Progress and summary
information is .also written to diagnostic output if the -p option is specified.

The following status values may be returned:

o All specified objects were deleted (except for any directories skipped with the -n

1
2
4

-1

-n

-p

-y

-c

option)
Syntax error
An error occurred during the delete
Cancel was selected or implied by the -c option

Ignore errors (that is, do not print messages, and return a status
value of 0).

Answer "no" to any confirmation dialog that may occur, skipping
the delete for any directories encountered.

List progress information as the delete takes place.

Answer "yes" to any confirmation dialog that may occur, causing
any directory encountered to be deleted.

Answer "cancel" to any confirmation dialog that may occur,
causing the delete to stop when a directory is encountered.

Delete HD:MPW:~.c

Deletes all items in the MPW folder that end in ".c". (Recall that the Shell first
replaces the parameter "==.c" with a list of filenames matching the pattern-the Delete
command then deletes each of these files.)

Delete II-55

Warning

See also

Beware of potentially disastrous typing mistakes such as the following:

Delete ... c

Note the space after "=:"-this space causes "=" and ".c" to be treated as two separate
parameters. In this case, Delete would delete allflles in the current directory, and
also attempt to delete a file named ".c".

AIso note that the following command deletes everything:

Delete .. :

That is, the filename pattern =:: expands to the names of all volumes online
(including the startup volumeD.

When deleting files en masse, it's a good practice to use the Echo command to verify
the action of the filename generation operators; for example,

Echo ".c

Clear command (for deleting selections).

"Filename Generation" in Chapter 5.

II-56 Delete

Syntax

Description

Caution:

Type

Input

Output

Diagnostics

Status

Options

Example

See also

DeleteMenu-delete user-defined menus and items

DeleteMenu [menuName [itemName]]

Deletes the user-defined item itemName, in the menu menuName. If itemName is
omitted, all user-defi?ed items for menuName are deleted.

If itemName and menuName are both omitted, all user-defined items are deleted.

Menu items that haven't been added with AddMenu can't be deleted with
DeleteMenu.

Built-in.

None.

None.

Errors are written to diagnostic output.

DeleteMenu may return the following status values:

o No errors
1 Syntax error
2 Other errors

None.

DeleteMenu File

Deletes all user-defined items from the File menu.

AddMenu command.

DeleteMenu II-57

Syntax

Description

Input

Output

Diagnostics

Status

DeRez-Resource Decompiler

DeRez [option ...] resourceFlle [resourceDescrlptionFlle...]

Creates a text representation (resource description) of the resource fork of
resourceFile, according to the resource type declarations in the resource description
flle(s). The resource description is written to standard output.

A resource description file is a file of type declarations in the same format as that
used by the Resource Compiler, Rez. The type declarations for standard Macintosh
resources are contained in the files Types.r and SysTypes.r, contained in the
{RIncludes} folder. If no resource description file is specified, the output consists of
da t a statements giving the resource data in hexadecimal form, without any
additional format information.

If the output of DeRez is used as input to Rez, with the same resource description flies,
it produces the same resource fork that was originally input to DeRez. DeRez is not
guaranteed to be able to run a declaration backwards-if it can't, it produces a data
statement instead of the appropriate resource statement.

DeRez ignores all include (but not #:include), read, data, and resource
statements found in the resourceDescrlpttonFtle. at still parses these statements for
correct syntax.)

For the format of resource type declarations, see Chapter 6 and Appendix D.

Tool.

Standard input is never read. DeRez requires a resource file as input You may give
optional formatting information by specifying one or more resource description
files.

For all input flies on the command line, the following search rules are applied:

1 . DeRez tries to open the file with the name specified "as is."

2. If rule 1 fails, and the ftlename contains no colons or begins with a
colon, DeRez appends the filename to each of the pathnames
specified by the {RIncludes} variable and tries to open the file.

A resource description is written to standard output The resource description
consists of resource and data statements that can be understood by Rez. (See
Chapter 8.)

If no errors or warnings are detected, DeRez runs silently. Errors and warnings are
written to diagnostic output.

DeRez may return the following status values:

o No errors
1 Error in parameters
2 Syntax error in file
3 I/O or program error

II-58 DeRez

Options -c[ompatible] Generate output that is backward compatible with Rez 1.0.

-d[efinel macro[=data 1

-e[scape]

-1

Denne the macro variable macro to have the value data. If data is
omitted, then macro is set to the null string-note that this still
means that macro is defined. Using the -d option is the same
as writing

tdefine macro [data J

at the beginning of the input The -d option may be repeated any
number of times.

r-Derez Dptlons-------------------.--.,
(File to decompile) [TypeS I

(Types Flies...) (#INCLUDE pothS ...) " I Oecom ile okl 1

Width of decomplled strings ~ I I
I 0 No warnings 10r redeclared types I II I
I 0 Progress informotion "\ ,Preprocessor I o Write Rez 1.0 compotible output I Define Undeflne!
10 Don't escape characters j ~O"
I output Error ! II . "i~",
II I II

r;;commond Line (tR.z :AExMnllIH :SMnllMi

When this option is specified, characters that are normally escaped
(such as: \OxfO are no longer escaped. Instead they are printed as
extended Macintosh characters. (Note: Not all fonts have all the
characters defined.) Normally characters with values between $20
and $08 are printed as Macintosh characters. With this option,
however, all characters (except null, newline, tab, backspace,
formfeed, vertical tab, and rubout) will be printed as characters,
not as escape sequences.

Lets you specify one or more pathnames to search for #include
flies. TIlls option may be specified more than once. The paths will
be searched in the order they appear on the command line.

derez -i {mpw}myStuff: -1 hd:tools ...

-m[axstringsize] n
Set the maximum string size to nj n must be in the range 2-120. This
setting controls how wide strings will be in the output

DeRez II-59

Examples

See also

-only typeExpr [(IDl [:ID2]) I resourceName]

-only type

-p

-rd

Read only resources of resource type typeExpr. If an ID, range of
IDs, or resource name is given, read only those resources for the
given type. This option may be repeated.

Note: typeExpr is an expression, so literal quotes (') might be
needed. If an ID, range of IDs, or name is given, the entire option
parameter must be quoted; for example,

DeRez -only "'MENU' (1: 128)" .•.

See also the "Examples" section below.

Note: The -only option cannot be specified together with the -skip
option.

A simpler version of the above option-no quotes are needed to
specify a literal type as long as it starts with a letter. No escape
characters or anything fancy is allowed. For example,

DeRez -only MENU ••.

Display progress and version information.

Suppress warning messages if a resource type is re de clare d.

-s[kip] typeExpr [(IDl [: ID2]) I resourceName]

-s[kip] type

Skip resources of type typeExpr in the resource file. For example,
it's very useful to be able to skip 'CODE' resources. typeExpr is an
expression-see the note under -only. The -s option may be
repeated any number of times.

A simpler version of the -s option-no quotes are needed to specify
a literal as long as it starts with a letter.

-u[ndef] macro Un define the macro variable macro. This is the same as writing

#undef macro

at the beginning of the input file. It is meaningful to undefme only
the preset macro variables. This option may be repeated.

DeRez "{ShellDirectory}MPW Shell" -only MENU Types.r

Displays all of the 'MENU' resources used by the MPW Shell. The type defmition for
'MENU' resources is found in the file Types.r.

DeRez HD:OS:System SysTypes.r d
-only ", DRVR I (d"\OxOOScrapbookd")"

Decompiles the Scrapbook desk accessory in the copy of the System file that's located
in directoIY HD:OS:. (The type definition for 'DRVR' resources is found in the file
SysTypes.r.)

Rez and RezDet commands.

Chapter 8.

Type declaration files in RIncludes folder:

o Types.r

o SysTypes.r

o MPWTypes.r
11-60 DeRez

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

See also

Directory-set or write the default directory

Directory [-q I directory]

If specified, directory becomes the new default directory. Otherwise the pathname of
the current default directory is written to standard output

Note: To display a directory's contents, use the Files command.

Built-in.

None.

If no directory is specified, the default directory pathname is written to standard
output.

Errors are written to diagnostic output

Directory may return the following status values:

o No error
1 Directory not found, command aborted

-q Don't quote the pathname that is written to standard output.
Normally, a directory name is quoted if it contains spaces or other
special characters.

Directory

Writes the pathname of the current directory to standard output

Directory HD:MPW:AExamples:

Sets the default directory to the folder AExamples in the folder MPW on the volume
HD. The final colon is optional.

Directory Reports:

Sets the default directory to the volume Reports. Note that volume names must end in
a colon.

Directory :Include:Pascal:

Sets the default directory to the folder Pascal in the folder Include in the current
default directory.

"File and Window Names" in Chapter 4.

Files, NewFolder, and SetDirectory commands.

Directory 11-61

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

DirectoryMenu-create the Directory menu

DirectoryMenu [directory ...]

Creates the Directory menu shown below. The optional directory ...
parameter specifies the initial list of directories that appears in the menu. The
menu items are described in Chapter 3.

Show Directory
Sat Dlractory •••

HO :MPW:REHGmplas:
HO :MPW:CEHGmplas:
HO :MPW:PEHGmplas:
HO :MPW:

The lower section of the Directory menu contains a list of directories. Initially
this list consists of the parameters to DirectoryMenu. As other directories
become the current directory (using the Set Directory menu item or the
SetDirectory command) they are added to the list.

Script.

None.

None.

Errors are written to diagnostic output.

Status value 0 is always returned

None.

DirectoryMenu " (Files -d -i "(MPW}"~Examples-) ~ Dev:Null" 'Directory'

Creates the Directory menu. Directories in directory n{MPW}" that match the
pattern =Examples= will be included in the Directory menu, along with the
current directory.

This DirectoryMenu command should be included in your UserStartup file to
install the Directory menu. You might replace the Examples directories and
the default directory with your favorite list of directories.

11-62 DirectoryMenu

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

DumpCode-write formatted resources

Dum pCode [option ... 1 resourceFile

Disassembles object code that is stored in resources such as 'CODE', 'DRVR', and.
'PI?EF'. DumpCode reads from the resource fork of the specified file, and writes the
formatted assembly code to standard output. The default formatting convention is to
disassemble the code, and to display the corresponding bytes in hexadecimal and
ASCll.

The default behavior of DumpCode is to dump all the 'CODE' resources from a
program file. The -rt option can be used to dump resources of other types, such as
drivers and desk accessories.

Some conventions about executable code resources are built into DumpCode, and
affect the formatted output in special ways:

o 'CODE' resources with ID 0 are formatted as a jump table (unloaded format).

o Other 'CODE' resources have information about jump table entries in the first four
bytes.

o 'DRVR' resources have a special format at the beginning of the resource.

In addition, you can direct DumpCode to give a symbolic dump of data initialization
descriptors and initial values.

Tool.

None.

DumpCode writes formatted resources to standard output.

Errors and warnings are written to diagnostic output. Progress information can also
be written to diagnostic output (with the -p option). .

DumpCode may return the following status values:

o No problem
2 Fatal error
3 User interrupt

Note: Numeric values for options can be specified as decimal constants, or as hex
constants preceded by a "$".' .

-d

-di

Suppress the disassembly and dumping of code. (The default is to'
disassemble the code.)

This option is useful in producing a small output file, and looking at
just the resource names, sizes, and resource header information. It
is also useful when just some specialized information is desired,
such as the jump table or data aescriptors. .

Suppress display of data initialization code.

DumpCode 11-63

Example

See also

-h

-jt

-n

-p

-rt type[=ID]

Suppress the writing of header information, such as resource
relative locations, hexadecimal and ASCII equivalents, and so on.
The default is to produce this type of header information.

This option is useful in producing output that can be edited and
submitted to the Assembler for reassembly.

Suppress formatting of jump table. Only s~~ary information for
the jump table is given. (!be default is to format the jump
table unless one of the options -5, -rt, -n, or -jt is specified.)

Write only the resource names associated with resources. This
option is useful for finding segments or desk accessories by name.

Write progress information (filenames, resource names, IDs, and
. sizes) to diagnostic output.

Dump only the single resource with type type and ID number /D. If
ID is omitted, then all resources of the specified type are dumped.

-s resourceName
Dump only the single resource named resou rceNa me.

OumpCode Sample > SampleOump

Formats the 'CODE' resources in the file Sample, writing the output to the file
SampleDump .. The output has this format:

File: sample, Resource 3, Type: CODE, Name: _Oatalnit

Offset of first jump table entry: $00000018

Segment is $00000002 bytes long, and uses 1 jump table entry

000000: 48E7 FFFO 'H ..• ' MOVEM.L 00-07/AO-A3,7(A7)

000004: 4247 'BG' CLR.W 07
000006: 4EAD 0032 'N .. 2' JSR $0032 (AS)

OOOOOA: 2218
etc.

DumpObj command.

.n. I MOVE.L (AO)+,Ol

"Data Initialization" under the CvtObj command for a description of data
intialization calls.

"The Jump Table" in the Segment Loader chapter of Inside Macintosh, for a
description of the jump table.

Appendix F, "Object File Format."

11-64 DumpCode

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

DumpObj-write formaHed object file

DumpObj [option ...] objectFtle

Disassembles. object code that is stored in the data fork of an object me. By ,
convention, object files end in the suffIX ".0". In addition, the object file must have
type 'OBJ '.

Tool.

DumpObj does not read standard input.

DumpObj writes formatted object file records and disassembled code to standard
output

Errors and warnings are written to diagnostic output. Progress information is also
written to diagnostic output with the -p option.

DumpObj may return the following status values:

o No problem
2 Fatal error
3 User interrupt

-d

-i

Suppress disassembly of code and display of data. The default is to
disassemble code and to display data in hexadecimal and ASCII.

Su ppress substitution of names for IDs. The default is to pre read the
entire file, processing the Dictionary records, and then to show
names in place of 1D numbers.

This option is useful in examining an object file up to the point
where an object file format error has been reported by Link or Lib;
that is, it suppresses the preread, which is also likely to fail.

DumpObj 11-65

-h

-1

-m name

-n

-p

-r byte 1[, by teN]

11-66 DumpObj

Suppress printing of header information on code lines. Header
information includes the offset of the code and the code bytes in
hex and ASCII. The default is to print header information.

This option is useful in producing code that can be edited and
submitted to the Assembler for reassembly.

I""OumpObJ Options

(Object File) o Progress Info Modules: o No headers

Output o Use IDs

I I o file LocGtions
o Namas only

Error
I I o No disassembly

Byte Range

r=~.ndLin.

~

ro

f
HelP I [Cencel] Dwnpob J is usM to cHsp 1111 tM contlftU of r-PY ob jtc:t ft1ts #i!!iiii!;;;;;;;;;;;;;;;~

n . DurnpOb) H
~--------------------------------~

Print me locations of object records. The default is not to print
these locations.

This option is useful in debugging compilers and assemblers,
particularly when debugging code used to generate Pad records to
assure alignment. (See Appendix F.)

Dump a particular module. If name is an entry point, then the
module containing name is dumpeq. Other options that control
format still have an effect

Note: name is case sensitive, as are all object file identifiers.

Print names only. When this option is specified, only the -p option
has an effect.

This option is useful in determining which names are defined in an
object file, particularly when there appears .to be a discrepancy in
spelling, capitalization, or length of identifiers.

Write progress information (such as the name of the file being
dumped and the version of DumpObj) to diagnostic output.

Umit the disassembly of code to the range byte 1 ... by teN. The
default is to disassemble all bytes in a segment. If by teN is omitted,
then the rest of the segment is disassembled. .

Example

See also

DumpObj Sample.p.o >SampleDump

Formats the file Sample.p.o and writes its contents to the file SampleDump. This
output has the following format:

Dump of file sample.p.o

First: Kind a Version 1

Dictionary: FirstId 2

2: Main

Pad

Module:

Content:

Flags sao ModuleId 1 SegmentId Main

Flags sao
Contents offset 0000 size 006A

000000: 4E56 FFFE 'NV •. I LINK A6,ltSFFFE

000004: 2F07 '/. I MOVE.L D7,-(A7)

000006: 4iA7 'B. I CLR.L - (A7)

000008: 3F3C 0080 '?< •• I MOVE.W #$0080,-(A7)
etc.

For more information, see Appendix F.

DumpCode command.

Appendix F, "Object File Format."

DumpObj 11-67

Syntax

Description

Type

Input

Output

Diagnostics

Status

Duplicate-duplicate files and directories

Duplicate [-y I -n I -c) [-d I -r] [-p] name... targetName

Duplicates name to ta rgetNa me. (Name and targetName are file or directory
names.) If targetName is a file or doesn't exist, then the me or" directory name is
duplicated and namedtargetName. If targetName is a directory, then the objects
named are duplicated into that directory. Of more than one name is present,
targetName must be a directory,) Created objects are given the same creation and
modification dates as their source.

If a directory is duplicated, then its contents (including all su6directories) are also
duplicated. No directory duplicated can be a parent of targetName.

Name can also be a volume; if targetName is a directory, then name is copied into
. targetName.

A dialog box requests a confirmation if the duplication would overwrite an existing file
or folder. You can use the -y, -0, or -c option in command files to avoid this
interaction.

Built-in.

None.

None.

Errors are written to diagnostic output. Progress and summary information is written
to diagnostic output if the -p option is specified.

The following status values may be returned:

o All objects were duplicated
1 Missing or inaccessible parameters
2 An error occurred
4 Cancel was selected or implied from the -c option

11-68 Duplicate

Options

Examples

Limitation

See also

-y Answer "yes" to any confirmation dialog that occurs, causing
conflicting files or folders to be overwritten.

-0 Answer "no" to any confirmation dialog that occurs, skipping files
or folders that already exist.

-c Answer "cancel" to any confirmation dialog that occurs, causing
the duplication to stop when a name conflict is encountered.

-d Duplicate the data fork only. If targetName is an existing file, its
data fork is overwritten and its resource fork remains untouched.

-r Duplicate the resource fork only. If targetName is an existing me,
its resource fork is overwritten and its data fork remains untouched.

-p List progress information.

Duplicate Aug86 "Monthly Reports"

Assuming "Monthly Reports" is "an existing directory, duplicates the file Aug86 into
that directory.

Duplicate Filel Folderl "Backup Disk:"

Duplicates Filel and Folderl (including its contents) onto Backup Disk.

Duplicate -y Filel File2

Duplicates Filel to FileZJ- overwriting FileZ if it exists.

Duplicate Diskl:- HD:Files:

Duplicates all of the files on Diskl into the directory HD:Files.

Duplicate Diskl: HD:Files:

Duplicates all of Diskl (as a directory) into HD:Files.

Duplicate doesn't recognize folders on non-HFS disks.

Move and Rename commands.

"File and Window Names" in Chapter 4.

"Filename Generation" in Chapter 5.

Duplicate 11-69

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

Echo-echo parameters

Echo [-n] [paramete7s ...]

Writes its parameters, separated by spaces and terminated by a return, to standard
output If no parameters are specified, only a return is written.

Echo is especially useful for checking the results of variable substitution, command
substitution, and fllename generation.

Built-in.

None.

Parameters are written to standard output.

None.

Status value 0 is always returned

-n Don't write a return following Echo's parameters (that is, the
insertion point remains at the end of the output line). The -n isn't
echoed.

Echo "Use Echo to'write progress info from scripts."

Use Echo to write progress info from scripts.

The Echo command above writes the second line to standard output.

Echo {Status}

Writes the current value of the {Status} variable; that is, the status of. the last command
executed.

Echo -.a

Echoes the names of all mes in the current directory that end with ".a". (This might
. be useful as a precaution before executing another command with the argument
"==.a" .)

Echo -n > EmptyFile

If EmptyFile exists, this command deletes its contents; if the file doesn't exist; it is
created.

See also Parameters and Quote commands.

11-70 Echo

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

See also

Eject-eject volumes

Eject [-m] volume ...

Flushes the volume, unmounts it, and then ejects it, if it is a floppy disk. A volume
name must end with a colon (:). If volume is a number without a colon, it's
interpreted as a drive number.

Note: If you unmount the current volume (the volume containing the current
directory), the boot volume becomes the current volume. You can keep the volume
mounted with the -m option. (See the File Manager chapter of Inside Macintosh.)

Built-in.

None.

None.

Errors are written to diagnostic output.·

The following status values may be returned:

o The disk was successfully ejected
1 Syntax error
2 An error occurred

-m Leave the volume mounted.

Eject Memos:

Ejects (and unmounts) the disk titled Memos.

Eject 1

Ejects and unmounts the disk in drive 1 (the internal drive).

Eject .. :

Ejects and unmounts all volumes.

Mount, Unmount, and Volumes commands.

Eject 11-71

Syntax

Description

Type

Input

Output

Diagnostics

Status

11-72 Entab

Entab~convert runs of spaces to tabs

Entab [option. .. 1 [file. .. 1

Copies the specified text mes to standard output, replacing runs of spaces with tabs.
The default behavior of Entab is to do the following:

1 . Detab the input me~ using the me's tab setting (a resource saved ,with the me
by the Shell editor), or 4 if there is none. You can override this "detabn value with
the -d option.

2. Then entab the me, setting tab stops every 4 spaces. You can specify another tab
setting with the -t option. The entabbed output me looks the same as the original
file(s), but contains fewer characters.

Options are also provided for controlling the processing of blanks between quoted
strings.

Tool.

If no filenames are specified, standard input is processed.

All mes are written to standard output

Parameter errors and progress information (with the -p option) are written to
diagnostic output.

The following status codes may be returned to the Shell:

o Normal termination
1 Parameter or option error
2 Execution terminated

Options

Example

Warning

Limitations

See also

-d tabSetting

-1 quote ...

-0

-p

-q quote ...

-r quote ...

-t tabSetting

Override the input file's default tab setting with tabSetting. This
option is useful for detabbing non-MPW files.

Note: Entab always detabs the input file, using the me's tab setting,
or 4 if there is none. For MPW files, specifying a -d option would
override the file's own tab setting, leading to incorrect results if a
different value were used.

Specify a list of left quote characters. Quote ... is a string of one or
more nonblank characters. If -1 is specified, then -r must also be
specified. Single quotes (') and double quotes (") are assumed as
the default quoting characters.

Treat all quotes as "normal" characters--entab the file, replacing
runs of spaces embedded in quoted strings with tabs.

Caution: This option should not be used when entabbing program
source files. If this option is used, the -q, -1, and -r options are
ignored.

Write version and progress information to diagnostic output.

Specify a list of characters to be used as both left and right quotes.
Quote ... is a string of one or more nonblank characters. This is the
default option; single quotes C') and double quotes C") are assumed
as the quoting characters.

Specify a list of right quote characters. Quote ... is a string of one or
more nonblank characters. If -r is specified, then -1 must also be
specified.

Note: Entab does not check that a particular left quote character
matches a particular right quote character.

Set the output file's tab setting to tabSetting. If the -t option is
omitted, 4 is assumed for the tab setting. If you specify a tab setting
of 0, no tabs are placed in the output. Thus -t 0 may be used to
completely detab input files. .

Caution: If you specify the -q, -1, or -r option, then you should quote the entire string
parameter to these options (otherwise, the Shell may misinterpret special characters
in the parameter string).

Entab -t 2 Example.p > CleanExample.p

Detabs the file Example.p (using the file's default tab setting), re-entabs it with a tab
setting of 2, and writes the resulting output to CleanExample. p.

Beware of command formats such' as

Entab Foo > Foo

Entab does not take into account embedded formatting characters except for tab
characters. Thus backspace characters may cause incorrect results .

. The maximum width for an input line is 255 characters.

Tab command.
Entab 11-73

Syntax

Description

Equal-compare files and directories

Equal [~ption ...] name. . . targetName

Compares name to targetName. By default, Equal makes no comment if files are the
same; if they differ, it announces the byte at which the difference occurred When
comparing directories, the default condition is to report all differences, including
flIes not found-the -1 option ignores files in targetName that are not present in
name.

If targetName is a file, every name must also be a file. The specified files are
compared with targetName.

If targetName is a directory and name is a file, Equal checks in targetName for the
flIe na~e and compares the two files. That is, the command

Equal Filel Dirl

compares Filel with :Dirl:Filel.

If more than one name is specified, Equal compares each name with the
corresponding file or directory in targetName . All subdirectories are also
compared. The command

Equal Filel Dirl Dir2

compares Filei with :Dir2:Filel and then compares Dirl with :Dir2:Dirl.

If targetName is a directory, name is a directory, and only one name is specified,
then the Equal command directly compares the two directories. That is, the
command

Equ~l Dirl Dir2

compares Dirl (and all subdirectories) with Dir2.

Type Built-in.

Input . None.

Output Differences are written to standard output

Diagnostics Errors are written to diagnostic output

Status The following status values may be returned:

o Identical files
1 Syntax error
2 Inaccessible or missing parameter
3 Files not equal

11-74 Equal

Options

Examples

See also

-1

-d

-r

-p

-q

Ignore files missing from directory name; that is, if files in
targetName are not present in. name, Equal won't report the
missing files as differences.

Compare the data forks only.

Compare the resource forks only.

List progress information as files are compared.

Remain quiet about differences; return status codes only.

Equal Optlons----------------------,

Flies to compare •••

Target •••

Forks to Compare--,
@ Both forks !
a Data fork only I
a Resource fork only.

1 0 Ignore missing files I
i 0 Progress Information I
I 0 Quiet mode I

Output Error

~C_~_I_!_._m_ •• _~_dr_"_t_r_M_._1r_._~_Ht_~. ________ ~I ~[(___ C~a-n~c~el~~
_ ." [l1lml II

Equal Filel FilelBackup

Reports if the flles are different and at what point they differ, in a message such as

Filel FilelBackup differ in data fork, at byte 5

Equal -i HD:Dirl Diskl:Dirl

Compares all flles and directories in HD:Dirl with files and directories with the same
names found iri Diskl:Dirl, and rep'orts any differences. This command does not
report files in Diskl:Dirl that aren't found in HD:Dirl.

Equal -i -d Backup: HD:Source

Compares the data forks of all files on the volume Backup: with all those of the same
name in the directory HD:Source.

Equal -p Old:-.c HD:Source

Compares all· files on Old: ending in ".cn with their counterparts in HD:Source.
Prints progress information as the comparison proceeds.

Compare command.

Equal 11-75

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

11-76 'Erase

Erase-initialize volumes

Erase [-y] [-s] volume ...

Initializes the specified volumes- the previous contents are destroyed. A volume
name'must end with a colon (:). If volume is a number without a colon, it's
interpreted as a disk drive number.

A dialog box requests confirmation before proceeding with the command, unless the
-y option is specified. The -y option can be used in scripts to avoid this interaction.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status values may be returned:

o Successful initialization
1 Syntax error
2 No such volume, or boot volume
3 Errors during the initialization procedure

-y

-5

Erase Reports:

Answer "yes" to the confirmation dialog, causing initialization to
begin immediately.

Format the disk for single-sided use (that is, as a 400K, non-HFS
disk).

Initializes the volume titled Reports.

Erase 1

Initializes the volume in drive 1 (the internal drive). The disk will be formatted as a
400K disk if drive 1 is a 400K drive, or as an SOOK disk if drive 1 is an BOOK drive.

Syntax

Description

Evaluate-evaluate an expression

Evaluate [expression ...]

The list of words is taken as an expression. After evaluation, the result is written to
standard output. Missing or null parameters are taken as zero. You should quote string
operands that contain blanks or any of the characters listed in the table below.

The operators and precedence are mostly those of the C languagej they're described
below.

Expressions: An expression can include any of the following operators. an some
cases, two or three different symbols can be used for the same operation.) The
operators are listed in order of precedenc~-within each group, operators have the
same precedence.

Operator Operation

1. '(expr) Parentheses are used to group expressions
2. - Unary negation

Bitwise negation
NOT -, Logical NOT

3. * Multiplication
+ DIV Division
% MOD Modulus division

4. + Addition
Subtraction

S. « Shift left
» Shift right

6. < Less than
<= S Less than or equal to
> Greater than
>= ~ Greater than or equal to

7. Equal
!= <> :;1!: Not equal

Equal-regular expression
!- Not equal-regular expression

8. & Bitwise AND
9. 1\ Bitwise XOR

10. I Bitwise OR
11. && AND Logical AND
12. II OR Logical OR

All operators group from left to right Parentheses can be used to override the
operator precedence. Null or missing operands are interpreted as zero. The result of
an expression is always a string representing a decimal number.

The logical operators !, NOT, .." &&, AND, I I, and OR interpret null and zero
operands as false, and nonzero operands as true. Relational operators return the
value 1 when the relation is true, and the value 0 when the relation is false.

Evaluate 11-77

Type

Input

Output

Diagnostics

Status

Options

The string operators --, 1-, --, and 1- compare their operands as strings. All others
operate on numbers. Numbers may be either decimal or hexadecimal integers
representable by a 32-bit signed value. Hexadecimal numbers begin with either $ or
Ox. Every expression is computed as a 32-bit signed value. Overflows are ignored.

The pattern-matching operators =- and !- are like -- and !- except that the right­
hand side is a regular expression which is matched against the left-hand operand.
Regular expressions must be enclosed within the regular expression delimiters / .. .1.
Regular expressions ,are summarized in Appendix B.

Note: There is one difference between using regular expressions after =- and I-and .
using them in editing commands-when evaluating an expression that contains the
tagging operator, ®, the Shell creates variables of the form {®n}, containing the
matched sttbstrings for each ® operator. (See the examples below.)

Filename generation, conditional execution, pipe specifications, and input/output
specifications are disabled within expressions, to allow the use of many special
characters that would otherwise h~ve to be quoted.

Expressions are also uSed in the If, Else, Break, Continue, and Exit commands.

Built-in.

None.

The result of the expression is written to standard output. Logical operators return the
values 0 (false) and 1 (true).

Note: To redirect Evaluate'S output (or diagnostic output), you'll need to enclose the
Evaluate command in parentheses; otherwise, the > and 2: symbols will be
interpreted as expression operators, and an error will occur. (See the third example
below.)

Errors are written to diagnostic output.

The following status values may be returned:

o Valid expression
1 Invalid expression

None.

11-78 Evaluate

Examples

See also

Evaluate (1+2) * (3+4)

Does the computation and writes the result to standard output

Set lines 'Evaluate {lines} + l'

The Set command increments the value of the Shell variable {lines}-the Evaluate
command enclosed in command substitution characters (' ... ') is replaced by its
output.

(Evaluate .. {aPathname}" ~- / (([....,:] +:) *) ®1-/) > Dev:Null
Echo {®1}

These commands examine a pathname contained in the variable {aPathname} , and
return the directory preflX portion of the name. In this case, Evaluate is used for its
side effect of enabling regular expression processing of a filename pattern. The right­
hand side of the expression (/ (((...,:] + :) *) ® 1::s /) is a regular expression that
matches everything in a pathname up to the last colon, and remembers it as the Shell
variable {®1}. Evaluate's actual output is not of interest, so it's redirected to the bit
bucket, Dev:Null. (See "Pseudo-Filenames" in Chapter 5.) Note that the use of I/O
redirection means that the Evaluate command must be enclosed in parentheses so
that the output redirection symbol, >, is not taken as an expression operator.

This is a complex, but useful, example of implementing a "substring" function. For a
similar example, see the Rename command.

"Structured Commands" in Chapter S.

"Pattern Matching (Using Regular Expressions)" in Chapter 6, and Appendix B.

Evaluate 11-79

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

Execute-execute a script in the current scope

Execute commandFile

Executes the script as if its contents appeared in place of the Execute command. This
means that variable defInitions, exports, and aliases in the script will continue to exist
after it has fInished executing. (Normally these defInitions, exports, and aliases would
be local to the script) Any parameters following script are ignored. Any parameters
to the enclosing script are available within sCript.

Note: If script is not a command me (that is, if it's a built-in command, tool, or
application), the command is run as if the word Execute did not appear. Parameters
are passed to the command as usual.

Built-in.

None.

None.

None.

Execute returns the status returned by sCript.

None.

Execute "{ShellDirectory}"Startup

Executes the Startup (and UserStartup) scripts. This command is useful for testing any
changes you've made to the Startup-UserStartup script. Variable defInitions, exports,
and aliases set in Startup and UserStartup will be available after Startup is done
executing.

See also "Defining and Redefining Variables" in Chapter 5.

"The Startup and UserStartup Files" in Chapter 5.

11-80 Execute

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Exists-confirm the existence of a file or directory

Exists [-d I -f I -w] [-q] name ...

Determines the existence of the me or directory name. The options help you to
distinguish between directories and mes and different access permissions. The non­
existence of name is not considered an error (status remains zero).

Built-in.

None.

Files that exist and match the specifications have their names written to standard
output.

Errors are written to standard output

The following status codes may be returned:

o No error
1 Syntax error
2 Other error

-d Check if name is a directory.

-f Check if name is a file (as opposed to a directory).

-w Check if the user has write access to the me name. A file cannot be
written to if it is open or locked.

-q Do not quote pathnames that are written to standard output

If Not "'Exists -d HD:dir'"

NewFolder HD:dir
End
Duplicate ~.c HD:dir

This example creates a new directory and copies all files ending with ".c" in current
directory to this new directory.

Newer command.

Exists 11-81

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

11-82 Exit

Exit-exit from a script

Exit [status] [If expression]

If the expresston is nonzero (that is, true), Exit terminates exeOltion of the script in
which it appears. When used interactively, Exit terminates exeOltion of previously
entered commands. Status is a number; if present, it is returned as the status value of
the script. Otherwise, the status of the previous command is returned. If the "If
expresston" is omitted, the Exit is unconditional. (For a definition of expresston,
refer to the description of the Evaluate command.)

Built-in.

None.

None.

Errors are written to diagnostic output.

If status is present, it is returned as the status value of the script If the expression is
invalid, -5 is returned. OthelWise, the status of the last command exeOlted is
returned.

None.

Exit (ExitStatus}

As the last line of a script, this Exit command would return as a status value whatever
value had previously been assigned to {ExitStatus}.

Evaluate command (for information on expressions).

"Structured Commands" in Chapter 5.

{Exit} and {Status} variables, in "Variables," Chapter 5.

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Export-make variables available to programs

Export [-r I -s I name ... 1

Make the specified variables available to scripts and tools. The list of variables
exported within a script is local to that script. An enclosed script or tool inherits a
list of exported variables from the enclosing script. (See Figure 5-1 in Chapter 5 for
clarification.)

Note: You can make a variable available to all scripts and tools by setting and
exporting it in the Startup or UserStartup flies. (Startup acts as the enclosing script for
all Shell operations.)

If no names are specified, a list of exported variables is written to standard output
(Note that the default output of Export is in the form of Export commands.)

Built-in.

None.

If no names are given, Export writes a list of exported variables to standard output.

None.

Export may return the following status values:

o No errors
1 Syntax: error

-r Reverse the sense of the output, causingExport to generate
Unexport commands for all exported variables.

-s Suppress the printing of "Exportll before the exported variables.

Set AIncludes "{MPW}AIncludes:"

Export AIncludes

Defines the variable {AIncludes} as the pathname n{MPW}AIncludes: n, and makes it
available to scripts and programs.

Unexport, Set, and Execute commands.

"The Startup and UserStartup Files" in Chapter 5.

"Exporting Variables" in Chapter 5.

Export 11-83

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

FileDiv-divide a file into severol smaller files

FileDiv [-f] [-n splitpoint] [-p] file [preflX]

FileDiv is the inverse of the Catenate command. It is used to break a large me into
several smaller pieces. The input file is divided into smaller files, each containing an
equal number of lines determined by the splitpoint (default=2000). The last file
contains whatever is left over.

There is also an option (-t) for splitting a file only when a form feed character
(ASCn SOC) occurs as the first character of a line that is beyond the splitpoint. 1bis
option lets you split a me at points that are known to be the tops of pages.

Each group of splitpoint lines is written to a file with the name preflXNN, where NN is a
number starting at 01. If the prefix is omitted, the input file name is used as the prefix.

Tool.

An input file must be specified in the command line. Standard input is not used.

FileDiv creates files with names of the form prefixNN, where NN is a number. (If
prefix is omitted, the input mename is used as a preftx.) Standard output is not used.·

Parameter errors and progress information are written to diagnostic output

FileDiv may return the following status values:

o Normal termination
1 Parameter or option error
2 Execution terminated

-f Split the input me only when at least splitpoint lines have been
written to the current output file and there is a form feed character
(ASCII SOC) as the first character of a line. The line containing the
form. feed becomes the first line in the next output file.

-n splitpoint Split the input file into groups of splitpoint lines (or, if the -f option
was specifted, splitpoint or more lines). If the -n option is omitted,
2000 is assumed.

-p Write version information and progress information to diagnostic
output.

FileDiv -f -n 2500 Bigfile

Splits Bigfile into files of at least 2500 lines; splits the file at points where there are
form feed characters. The output files have tile names BigfileNN, where NN is 01, 02,
and so on.

Limitation The maximum length of an input line is 255 characters.

11-84 FileDlv

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Files-list files end directories

Files [option ...] [slug name ...]

For each disk or directory named, Files lists its contents; for each file named, Files
writes its name and any other information requested. Information is written to
standard output. When a directory is listed, all subdirectories are listed first in
alphabetical order, followed by all files in alphabetical order. If no name is given, the
current directory is listed.

Built-in.

None.

File information is written to standard output.

Errors and warnings are written to diagnostic output.

Files may return the following st~tus values:

o All names were processed successfully
1 Syntax error
2 An error occurred

-c creator

-d

-f

-1

-m count

-n

-q

-r

-s

List only those files with the given file creator.

List subdirectories only.

Give full pathnames for all files listed.

Treat directories on the command line as files (ignore differences).
That is, don't list the contents of directories, just list the directory
and any other information requested.

Multi-column output. This option is not valid if specified with
-lor -x.,

No header in the long or extended format. \Vithout the -lor -x
option, this option has no meaning.

Don't quote names in the output. Normally, the Files command
quotes names that contain spaces or special characters.

Recursively list subfolders encountered; that is, list every file in
every directory.

Suppress the printing of directory names. Useful when combined
with the -r option to get listing of all files (excluding directories).

Files 11-85

Examples

11-86 Files

-t type

-x format

List only those mes with the given file type.

Extended format. This option generates a listing similar to that
produced by the -1 option, except that the fields to be printed are
determined by format. Format is a string composed of the
following letters (in any order) where the order determines the fields
position in the output:

a Flag attributes
b Logical size in bytes of the data fork
c Creator of file ('FIdr' for folders)
d Creation date
g Group (applies only to folders on AppleShare)
k Physical size in kilobytes of both forks
m Modification date
o Owner (applies only to folders on AppleShare)
p Privileges (applies only to folders on AppleShare)
t Type of me
r Logical size in bytes of the resource fork

files -r -s -f

HD:source:defs.h
HD:source:main.c
HD:source:backup:main.c
HD:source:backup:defs.h
HD:source:junk:tmpfile

Recursively lists the contents of the current directory, giving full pathnames and
suppressing the printing of directory names.

files -d

:backup:
:junk:

Lists only the directories in the current directory.

Files -i -x kd "{Alncludes}"

Name Size Creation-Date

HD:MPW:Alncludes: 365K 8/25/87 5:32 AM

Lists the size and creation date of the "{AIncludes}" directory. Notice how the -i option
is used to avoid printing the contents of the directory.

files -m 2
:backup: deFs.h
:junk: main.c

This is the two-column format. Notice the order of the files.

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

See also

Find-find and select a text pattern

Find [-c count] selection [window]

Creates a selection in window. If no window is specified, the target window (the
second window from the front) is assumed It's an error to specify a window that
doesn't exist

Selection is a selection as defined in Chapter 6 and in Appendix B.

Note: Searches do not necessarily start at the beginning of a window-a forward
search begins at the end of the current selection and continues to the end of the
document A backward search begins at the start of the current selection and
continues to the beginning of the document

All searches are case insensitive by default You can specify case-sensitive searches by
first setting the Shell variable {CaseSensitive} to a nonzero value. (You can
automatically set {CaseSensitive} by checking Case Sensitive in the dialog boxes
displayed by the Find and Replace menu items.)

Built-in.

None.

None.

Errors are written to diagnostic output

The following status values may be returned:

o At least one instance of the selection was found
1 Syntax error
2 Any other error

-c count For a count of n, find the nth occurrence of the selection.

Find •

Positions the insertion point at the beginning of the target window.

Find -c 5 /procedure/ Sample.p

Selects the fifth occurrence of "procedure" in the window Sample.p.

Find 332

Selects line 332 in the target window.

"Selections" and "Pattern Matching" in Chapter 6.

"Find Menu" in Chapter 3.

Find 11-87

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

11-88 Font

Font-set font characteristics

Font jontname jontsize [window .. J

Change the font family and point size of all text in window to jontname and jontsize.
Both jontname and jontsize are required. It's an error to spedfy a window that
doesn't exist If no windows are spedfied, the command operates on the target
window (the second window from the front).

Built-in.

None.

None.

Errors are written to diagnostic output.

Font may return the following status values:

o Successful completion
1 Error in parameters
2 An illegal fontname or fontsize was spedfied

None.

Font Monaco 12

Changes the font of the target window to Monaco 12 point

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

For ... -repeot commands once per parameter

For name In word ...
command ...

End

Executes the list of commands once for each word from the "In word ... " list The
current word is assigned to variable name, and you can therefore reference it in the
list of commands by using the notation [name}. You must end each line with either a
return character (as shown above) or with a semicolon (;).

The Break command can be used to terminate the loop. The Continue command can
be used to terminate the current iteration of the loop.

The pipe specification (I), conditional command terminators (&& and I I), and
input/output specifications «, >, », ~, and ~) may appear follC?wing the End, and
apply to all of the commands in the list .

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status values ~ay be returned:

o The list of words or list of commands was empty
-3 There was an error in the parameters to For

Otherwise, the status of the last command executed is returned.

None.

For... 11-89

Examples For i In 1 2 3
Echo i = {i}

End

Returns the following:

i 1
i 2
i 3

For File In ".c
C "{File}" ; Echo "{File}" compiled.

End

TItis example compiles every me in the current directory whose name ends with the
suffIx ".c". The Shell first expands the fIlename pattern =. c, creating a list of the
menames after the "In" word. The enclosed commands are then executed once for
each name in the list. Each time that the loop is executed, the variable {File}
represents the current word in the list {File} is quoted because a fIlename could
contain spaces or other special characters.

For file in Startup UserStartup Suspend Resume Quit
Entab "{file}" > temp
Rename -y temp "{file}"
Print -h "{file}"
Echo "{file}"

End

This example entabs (replaces multiple spaces with tabs) the five fIles listed, prints
them with headings, and echoes the name of each fIle after printing is complete. You
might want to use this set of cominands before making copies of the flles to give to a
friend. Entabbing th~ files saves considerable disk space, and printing them gives you
some quick documentation to go with the meso

See also Loop, Break, and Continue commands.

"Structured Commands" in Chapter 5.

11-90 For. ..

Syntox

Description

Type

Input

Output

Diognostics

Stotus

GetErrorText-displcy text for system error numbers

GetErrorText [-f filename] [-s filename] [-n] [-p] errnbd,insert, .. .1 ...
GetErrorText -i idnbr ...

Displays the error messages corresponding to a set of specified error numbers or ID
numbers. By default, GetErrorText assumes the error numbers correspond to
Macintosh Operating System system error numbers. The file SysErrs.Err is a special
file used by MPW tools to determine the error messages corresponding to system
error numbers. Other system error message files may be specified by using the
-5 option.

In addition to system errors, some tools have their own error message files. For
example, in the case of the Assembler, it is in the data resource fork of Asm itself. For
such tools, you can display the error messages corresponding to tool error numbers
by specifying the -f option. In this case, you may specify sample inserts, along with
the error numbers, for error messages that take inserts, as shown above.

GetErrorText can also display the meanings of the ID numbers reported by the
System Error Handler in alert dialog boxes. The -1 option is used for this purpose.

Tool.

All input is specified through the parameters.

The error messages are written to the standard output

Errors are written to the diagnostic file.

GetErrorText may return the following status values:

o Normal termination
1 Parameter or option error
2 Execution terminated

GetErrorText 11-91

Options

Examples

-ffilename

-ifdnbr

-sftlename

-n

-p

A tool's error message filename. Either -f or -s, but not both, may
be specified.

Report the meaning of the specified System Error Handler ID
number.

The error message me name for a system error. Either -f or -5, but
not both, may be specified. The default is -s SysErrs.Err.

Do not generate error numbers as part of the error messages. This
option is ignored if system errors are displayed.

Writes GetErrorText's version information to the diagnostic file.

GetErrorText -43 -44 -45

Displays the error messages corresponding to system errors -43, -44, and -45.

GetErrorText -i 28 2

Displays the error messages corresponding to system ID numbers 28 and 2.

11-92 GetErrorText

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

GetFileName-display a standard file dialog box

GetFileName [-t lYPE1... I -p I -d) [-q] [-m message] [-b buttontitle] lpathname]

GetFileName displays a standard file dialog box. Either SFPutFile or SFGetFile is
called, and the returned filename or pathname is written to standard output. The
standard file starting directory is set to path name if specified. If path name
includes a local filename and if SFPutFile is called, the local filename is used as
the default fliename. See the examples.

Tool.

None.

The filename or pathname you select is written to standard output. The pathname
is always a full pathname starting at the selected volume's root

Parameter errors are written to diagnostic output.

The following status values may be returned:

o User specified a file and no errors occurred
1 Parameter or option error
2 System err'or
4 User canceled the standard file dialog box

-p Display an SFPutFile dialog box.

-d Display an SFGetFile dialog for selecting a directory.

-m msg Specify a prompt message.

-b buttontit/e Specify the title for the default button in the various dialog boxes.
If this option is not specified, Open is used in the standard SFGetFile
dialog box, Save is used in the standard SFPutFile dialog box, and
Directory is used in the directory SFGetFile dialog box.

-q Suppress quoting the filename written to standard output

-t type Specify a type to use in filtering the SFGetFile. Up to four types may
be specified.

GetFileName 11-93

Examples open 'GetFileName -t TEXT {pinterfaces}'

Opens the text file in directory {pinterfaces} chosen in SFGetFile by the user.

GetFileName -p HD:MPW:StartUp

An SFPutFile dialog box is displayed with the directory set to HD:MPW: and StartUp is
displayed in the textedit field of the dialog box.

Limitation The resulting filename cannot be longer than 255 characters.

See also "The Standard File Package," Inside Macintosh, Volume I.

11-94 GetFileName

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

GetListltem-display items for selection in a dialog box

GetListItem [option ...] [items ...]

Takes the items on the command line (or, if no items are present on command .
line, then from standard input) and lists them in a dialog box. Items in the list
can be selected with the mouse and modifier keys. Selected items are written to
standard output when the OK button is clicked.

Tool.

Reads standard input for the items if none are specified on the command line.

Selected items are written to standard output if the OK button is clicked.

Errors are written to diagnostic output.

GetUstItem may return the following status values:

o No errors
1 Syntax error (bad option)
2 Cancel button was clicked

-d item

-m message

-q

-r rows

-w width

Item is entered as an element in the list and comes up selected.
This option may be specified more than once.

Display message above the list of items.

Don't quote items in the output.

Make the list with this many rows.

Make the list this many pixels wide.

Note: GetListItem uses the -r and -w values only as a guideline. For
example, if the value given for rows is larger than the number of
rows on the screen, GetListItem will use a smaller number of rows
than requested. GetListItem does not give error messages when the
-r or -w arguments are out of range. Rather, it makes a reasonable
guess at a value.

GetUstltem 11-95

Examples print 'files -t TEXT I GetListltern -rn "Select files to print:"'

lists all text files in the current directory and prints those selected by the user, as
shown below.

Select files to print:

chorocters.h
mokefile
select.c
select.r

« OK n (Concel)

GetListli:ern red blue -d green -m "pick your favorite color:"

Display a list of three colors with green pre-selected, as shown below.

Pick your fouorite color.

I
red
blue
green·

« OK)) (Concel)

Limitation GetListItem cannot handle a list greater than 32K characters.

11-96 GetListltem

Syntox

Description

Help-display summary information

Help [-f helpFile] [command ...]

Help writes information about the specified commands to standard output. If no
command is specified, information about Help is written to standard output
Command can include any of the following:

commandName
commands
expressions
patterns
selections
characters
shortcuts

Information about commandName
A list of all MPW commands
A surrimary of expressions
A summary of pattern specifications (regular expressions)
A summary of selection operators
A summary of MPW Shell special characters
A summary of MPW shortcuts

By default, the Help command looks for information in the file MPW.Help. It looks
for this file first in {ShellDirectory}; if the file isn't found, Help looks in
{SystemFolder} .

The following syntax notation is used to describe Macintosh Programmer's Workshop
commands:

[optional]

repeated ...

alb

(grouping)

< input

> output

~ progress

Square brackets mean that the enclosed elements are optional.

Ellipses indicate that the preceding item can be repeated one or more
times.

A vertical bar indicates an either/or choice.

Parentheses indicate grouping (useful with" I " and" ... ").

If input is not specified, the command reads from standard
input.

The command writes to standard output.

Progress information is written to diagnostic output (with the
-p option).

A Help file is a set of entries, each separated by a blank line beginning with one
hyphen. Each entry may contain one or more lines. The first word of the first line in
each entry is the keyword that is looked up by the Help command. When the word is
located, the line in which it occurs, and all following lines until a separator is
encountered, are written to standard output. If no parameters are given to the Help
command, then the first entry is written to standard output. Here is an excerpt from
the MPW.Help file:

New [name ...]

Newer [-c) [-e) [-q] file ... target > newer
-c if compare creation dates
-e if report names that have the same (equal)

if date as target
-q if don't quote filenames with special characters

NewFolder name ...

Help 1/-97

Type

Input

Output

Diagnostics

Status

Option

Example

11-98 Help

Built-in.

None.

Command information is written to standard output.

Errors are written to diagnostic output.

The following status values may be returned:

o Information was found for the given command
1 Syntax error
2 A command could not be found, or error in parameters
3 The help file could not be opened

-f helpFile Specify help file to be searched. (A help file is an ordinary MPW
text file.) The default file is MPW.Help.

Help Rez

Writes information such as

Rez [option_l [file_l
-a [ppendl
-align word I longword
-c[reatorl creator
-d[efine] name [=value]
-i[nclude] pathname
-0 file
-ov

-p
-rd
-ro
-s[earch] pathname
-t[ype] type
-u[ndefl name

< file ~ progress * merge resource into output resource file * align resource to word or longword boundries * set output file creator * equivalent to: tdefine macro [value]
t path to search when looking for tinclude files
* write output to file (default Rez.Out)
ok to overwrite protected resources when

appending * write progress information to diagnostics
t suppress warnings for redeclared types * set the mapReadOnly flag in output
path to search when looking for INCLUDE resources
set output file type
* equivalent to #undef name

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

If ... -conditional command execution

If expression
command ..

[Else If expression
command ...] ...

[Else
command ...]

End

Executes the list of commands following the first expression whose value is nonzero.
(Null strings are considered zero.) At most one list of commands is executed. You
may specify any number of "Else If' clauses. The final Else clause is optional. The
return characters (as shown above) or semicolons must appear at the end of each
line.

The pipe specification (I), conditional command terminators (&& and I I), and
input/output specifications «, >, », ~, and ») may appear following the End, and
apply to all of the commands in the list

For a definition of expression, see the description of the Evaluate command.

Built-in.

None.

None.

Errors are written to diagnostic output.

o None of the lists of commands were executed
-1 Invalid expression

Otherwise, it returns the value returned by the last command executed.

None.

If... 11-99

Examples If {Status} == 0

Beep la,25,200
Else

Beep -3a,25,200
End

Produces an audible indication of the success or failure of the preceding command.

For window in 'Windows'

End

If "{window}" != "{Worksheet}" AND "{window}" != "{Active}"
Close "{window}"

End

Closes all of the open windows except the active window and the Worksheet window.
(Refer also to the Windows command.)

The following commands, as a script, would implement a trivial case of a general
"compile" command:

If "{I}" =- /a.c/
C {COptions} "{I}"

Else If "{I}" =- I=.pl
Pascal {POptions} "{I}"

End

If the above commands were saved in a file (say, as "Compile"), both C and Pascal
programs could be compiled with the command

Compile filename

See olso Evaluate command (for a description of expressions).

"Structured Commands" in Chapter S.

11-100 If...

Syntax

Description

Type

Input

Output

Diagnostics

Status

Lib-combine object files into a library file

Lib [option. ..] objectFile ...

Combines the specified object files into a single me. By convention, input files end
in the suffix" .0", which must be present. In addition, input files must have type 'OB] I

and creator 'MPS '.

Lib is used for the following:

D Combining object code from different languages into a single file.

D Combining several libraries into a single library, for use in building a particular
application or desk accessory. This can greatly improve the performance of the
Linker.

D Deleting unneeded modules (with the -dm option), changing segmentation (the
-sg and -so options), or changing the scope of a symbol from external to local
(the -dn option). (These options are useful when you construct a specialized library
for linking a particular program.)

Object files that have been processed with Lib result in significantly faster links when
compared with the "raw" object files produced by the Assembler or compilers.

The output of Lib is logically equivalent to the concatenation of the input files, except
for the optional renaming, resegmentation, and deletion operations, and the
possibility of overriding an external name. The resolution of external names in Lib is
identical to Link-in fact, the two programs share the same code for reading object
files. Although multiple symbols are reduced to a single symbol, no combining of
modules into larger modules is performed, and no cross-module references are
resolved. This behavior guarantees that the Linker's output will be the same size
whether or not the output of Lib was used

See "Library Construction" in Chapter 10 for a detailed discussion of the behavior
and use of Lib.

Tool.

Lib does not read standard input.

Lib does not write to standard output. The combined library output is placed in the
data fork of the output library file. The default output file is Lib.Out.o-you can
specify another name with the -0 option. The output me is given type 'OB] , and
creator 'MPS I.

Errors and warnings are written to diagnostic output. Progress information is also
written to the diagnostic me if you specify the -p option.

Lib may return the following status values:

o No problem
2 Fatal error
3 User interru pt

Lib 11-101

Options

11-102 Lib

-b

-bf

-bs nn

-d

-df deleteFile

Do a big execution of Lib, that is, -bf and -bs 4 options.

Allow a big number of flies; that is, keep only one input me open at
a time. If Lib fails with a "too many files open" message, use this
option.

Set the buffer size for input to nn blocks (512 bytes each). If Lib fails
with a "heap error" or "out of memory" message, try this option.
Values for nn must be between 2 and 64. (TIle default is 16.)

Note: Numeric values can be specified as decimal constants, or as
hex constants preceded by a "$".

Suppress warnings for duplicate symbol definitions (data and
code).

Delete the list of external modules found in deleteFile. DeleteFile is
a text file generated by the Linker option -uf. See the Link command
and "Library Construction" in Chapter 10 for information.

-dm. name [, name ...]
"Delete Module"-delete the specified external modules from the
output file. name may be either an external module or entry-point
name. For each entry-point name, the entire module containing
the entry point is deleted, together with all other entry names in the
module. The contents of the module and all entry points are
removed from the output file.

Note: References to names deleted in this way will persist as
references "by name." That is, if the references are from active
code, they'll need to be resolved by external modules or entry
points in another file.

The primary use of this operation is to make the library file smaller,
so subsequent links are faster. You can use the Linker option -uf,
which lists unreferenced ("dead") modules or entry points, to

generate a list of names that can be deleted in this way.

-dn name [, name ...]

-0 name.o

-p

"Delete Name"-delete the list of external names from the output
file, by reducing their scope to local. -dn is a "gentle" deletion, in
that it affects only the list of external module or entry-point names.
The contents of the module, other entry pOints, references, and so
on will still be present in the output file. References to names
"deleted" in this way will continue to refer to the same code, but
with local scope. This is a useful operation when a global name
conflict occurs between two pieces of code, one of which is library
code from which you don't need to call the name directly.

Place the output in file name.o. (The default name is Lib.Out.o).

Write progress and summary information to diagnostic output

Example

See also

-sg newSeg= oldSeg 1[, oldSeg2] ...
Change segment names. All code in the old segments named
oldSeg1,oldSeg2, ... is placed in the segment named newSeg.

-sn oldSeg= newSeg

-w

Change a segment name. All code in the segment named oldSeg is
placed in the segment named newSeg.

Note: The -sn and -sg options behave exactly as in link, except that
-sn is limited to identifiers on both sides of the equal sign. The
arbitrary string for a desk accessory name can be introduced only
with Unk, not with lib. The major difference between -sn and -sg is
that the order of the option parameters oldSeg and newSeg is
reversed (This is done for consistency with Link.)

Suppress warning messages.

Lib {CLibraries}- -0 {CLibraries}CLibrary.o

Combines all of the library object files from the {CLibraries} directory into a single
library named CLibrary.o. For applications that require most or all of the C library
files, using the new CLibrary file will reduce link time.

link, DumpObj, and DumpCode commands.

"Optimizing Your Links" and "library Construction" in Chapter 10.

Appendix F.

Lib 11- 103

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Line-find a line number

Unen

Line fInds line n in the target window. Parameter n is usually an integer, but may be
any selection expression. The target window becomes the active Cfrontmost) window.

Line is a script containing these two commands:

Find i. { 1 }" "{ target} "
Open "{ target} "

Script.

None.

None.

* Find line n in the target window
i Bring the target window to the top

Errors are written to diagnostic output

Status values can be returned by either the Find or the Open commands that make up
the Line script:

o No errors
1 Syntax error
2 No target window; parameter not a number; other error
3 System error

None.

Line 123

Finds line 123 in the target window and makes the target window the new active
window.

~** Undefined symbol: length
File "Count.e"; Line 75

The File and Line commands above are part of an error message produced by the C
Compiler. The Assembler and Pascal Compilers produce errors when using similar
formats. You can execute such error messages to find the line that contains the error.

The command File is defined as an alias for Target in the Startup file. Thus File opens
the specified file as the target window. Line then selects the offending line in the
window and brings the window to the front. Notice that the remainder of the error
message is a comment.

See also Find command.

11-104 Line

Syntax

Description

Type

Input

Output

Link-link an application, tool, or resource

Link [option ...] objectFile . ..

Links the specified object files into an application, tool, desk accessory, or driver.
The input object files must have type 'OB] , and creator 'MPS " and must end in the
suffix ".0". Linked segments from the input object files are placed in code resources
in the resource fork of the output me. The default output file name is link.Cut-you
can specify other names with the -0 option.

For detailed information about the Linker, and instructions for linking applications,
MPW tools, and desk accessories, see Chapters 9 and 10. The first dialog box of Link's
Commando dialog is reprinted here for convenience.

The Linker's default action is to link an application, placing the output segments into
'CODE' resources. When you link an application, all old 'CODE' resources are deleted
before the new 'CODE' resources are written. By default, resources created by the
Linker are given resource names that are the same as the corresponding segment
names. You can change a resource (segment) name with the -sn or -sg options; you
can create unnamed resources with the -rn option.

The Linker executes in three phases:

• Input phase: The Linker reads all input files, finds all symbolic references and
their corresponding definitions, and constructs a reference graph. Duplicate
references are found and warnings are issued.

• Analysis phase: The Linker allocates and relocates code and data, detects missing
references, and builds the jump table. If the -lor -x option is given, the Linker
produces a linker map or cross-reference listing. The Linker also eliminates unused
code.

• Output phase: The Linker copies linked code segments into code resources in the
resource fork of the output file. By default, these resources are given the same
names as the corresponding segment names. (The cursor spins backward during
this phase.)

Tool.

Link does not read standard input

By default, linked segments are placed in 'CODE' resources in the resource fork of the
output file. The default output file name is Link.Out-you can specify other names with
the -0 option. If the output file already exists, the Linker adds or replaces code
segments in the resource fork. If the output me doesn't exist, it is created with file type
APPL and creator'????'. The -t and -<: options can be used to set the output file type
and output file creator to other values.

Note: If a Linker error or user interrupt causes the output file to be invalid, then the
Linker sets the modification date on the file to "zero" Gan. 1, 1904, 12:00 a.m.). This
guarantees that Make will recognize that the file needs to be relinked.

Link 11-105

Diagnostics

Status

Options

11-106 Link

If you specify the -I option, the linker writes a location map to standard output The
map is produced in location ordering, that is, sorted by segNum, segOffset. The
format is divided into several fields:

name segName segNum, segOffset [@]T0ffset] [#] [E] [C) [fileNum, de/Offset]

See Chapter 10 for more information.

Errors and warnings are written to diagnostic output Progress information is also
written to diagnostic output if the -p option is specified.

The following status values may be returned:

o No problem
2 Fatal error
3 User interrupt

Note: Numeric values for options can be specified as decimal constants, or as hex
constants preceded by the dollar sign character ($).

-b

-bf

-bs blocks

-c creator

-d

-<fa

-1

-la

-If

Do a big link; that is, do both -bf and -bs 4 options.

Allow a big number of files; that is, keep only one input me open at
a time. If a link fails with a "too many files open" message, use this
option.

Set the buffer size for the linker to blocks blocks (512 bytes each). If
a link fails with a "heap error" or "out of memory" message, try this
option. Values for blocks must be between 2 and 64. (The default
is 16.)

Set the output me creator to creator. The default creator is '??? ?'.

Suppress warnings for duplicate symbol definitions (for data and
code).

Convert segment names to desk accessory names on output Desk
accessory names begin with a leading null character ($00). This
option is used when linking assembly-language code into a final
desk accessory (resource type 'DRVR').

Write a location-ordered map to standard output. Usually, this
option will be used with output redirection in effect. For example,

Link ObjFi1e -1 > MyMapFi1e

List anonymous symbols in the location map (with the -I option).
The default is to omit anonymous symbols from the map.

In the location map data (-1 option), include the location where
symbols are defined in the input file, that is, the file number and
byte offset of the module or entry-point record. (These records are
discussed in detail in Appendix F.) The default is to omit the
symbol definition location.

-m mainEntry Set (or override) the main entry point specified in the object files.

-ma name = alias

-0 outputFile

-opt

-p

era [seg]=nn

ern

MainEntry is a module or entry-point name.

Note: For an application or MPW tool, the main entry point is
assigned the first jump-table entry, as required by the Segment
Loader. If a main entry point is specified for a desk accessory,
driver, or other type of link, for purposes of using the Linker's
active-code analysis feature, then the main entry point should be
the first byte of code in the first Linker input file. (A desk accessory
has no jump table.)

"Module alias"-give the module or entry-point name the new
name alias. This option lets you resolve undefined external
symbols at link time, when the problem is caused by differences in
spelling or capitalization. Note that you can't use an alias
specification to override an existing module or entry point.

Place the Linker output in output File. If no -0 option is specified, the
default output filename is LinkOut The -0 option uses the file in the
system folder (or next level) if:
1. the output fIle is not a full pathname, and
2. it is not in the preflX folder, and
3. it does not exist in the system folder or the volume root level.
For more information on the Macintosh search path conventions
see Inside Macintosh, Volume IV.

Optimizes object Pascal. This option eliminates the need for the
Optimize tool distributed with MacApp.

Write progress and summary information to diagnostic output.

Set the resource attributes of a segment or segments. If seg is
specified, the single segment named seg is given the attribute value
nn. If seg is omitted, then all segments except 0 and 1 are given the
attribute value nn. (If you intend to set the attributes of all segments,
then you must specify this option before any other options that
name segments, such as -sn and -sg.) The segment containing the
main entry point (the 'CODE' resource with ID=1) must be set
individually to override the default resource attributes (described in
Chapter 8).

Suppress the setting of resource names. (The default is to name each
resource with the name of the segment) Desk accessories must
always be named.

Link 11-107

11-'08 Link

-rt type=ID Set the output resource type to type and the ID to ID. This option
indicates the link of a desk accessory or driver-that is, only one
resource is modified. (The default is type 'CODE' and resource IDs
numbered from 0.)

Assembly-language note: When you link a desk accessory or driver,
the Linker uses PC-relative offsets, and attempts to edit]SR,]MP,
LEA, or PEA instructions from AS-relative to PC-relative addressing
mode. Other instructions will generate an error message.

-sg newSeg=oldSegl[,oldSeg2] ...
Change segment names. All code in the segments named oldSegl,
oldSeg2, ... is placed in the segment named newSeg. If no oldSeg
(and no =) is specified, the Linker will map all code to newSeg.

-sn oldSeg= newString

-ss size

-t type

-uf deleteFile

-w

Change a segment name. All code in the segment named oldSeg is
placed in the segment named newStrlng.

There are two major differences between -sn and -sg:

o -sn allows an arbitrary string for the new name, whereas -sg is
intended only for identifiers separated by commas.

o The order of the oldSeg and newSeg parameters is reversed.

For example,

Link ... a
-sg Main=SAConsol,StdIO,%ASlnit a
-sn Main=nMyDA n a

The first option combines the three specified segments into one
segment named Main; the second option renames Main to
"MyDA".

Change the maximum segment size to size. The default value is
32760 C32K less a few overhead bytes). The value size can be any
value greater than 32760.

64K ROM note: Caution! Applications with segments greater than
32K in size may not load correctly on Macintoshes with 64K ROMs.

Set the output file type to type. The default type is APPL.

List unreferenced modules in the text file deleteFile. (This option is
useful in identifying dead source code.) This me can be used as
input to Lib in building a specialized library that optimizes
subsequent links. See the Lib command's -df option and "Library
Construction" in Chapter 10 for more details.

Suppress warning messages.

Note: Warnings generally indicate potential errors at run time.

Examples

See also

-x crossRejFile Generate a cross-reference listing of active modules and entry
points. The listing is ordered by module within each segment For
each module, the following information is listed: each active entry
point in the module; other modules and entry points that are
referenced by the module; and other modules that reference this
module. For each entry point in a module, the modules that
reference the entry point are listed.

!'""L1nk Options
(Object Files ••• J Link output file

Typo ~ o Big link
IUnle.out I Creator 1771 o Single open file
Segment attributes o Molee DR I/O Block sizelWI

~ o Remoue RSRC name:

RSRC Type I I (Listing options •••)

R5 Main entry point

I I
[~Ommand line

Help----------------~ (Cancel 1
Link crut ••• lCK\lbllJ. cod. s~nts (rom OM or man ab;.ct rnoduJ.s &;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~

~-----------------~

Link Sample.p.o a
n{PLibraries}nPInterface.o a
"{PLibraries}npasLib.o a
"(Libraries}nRuntime.o a
-0 Sample a
-1 -la >Sample.map

[Link II

Links the main program file Sample.p.o with the libraries Plnterface.o, PasLib.o, and
Runtime. 0, placing the output in Sample, and placing the Linker map in the me
Sample.map. Sample will be an application, which can be launched from the Finder
or executed from MPW.

Link -rt MROM=8 -c 'MPS' -t ZROM -5S 140000 a
-1 > ROMLocListing -0 MyROMlmage (LinkList}

Links the files defIned in the Shell variable {LinkList} into a ROM image file, placing
the output in the file MyROMlmage. The segment size is set to 140,000 bytes, and the
ROM is created as a resource 'MROM' with ID=8. The file is typed as being created by
MPW (creator 'MPS '), with file type ZROM. The Linker location-ordered listing is
placed in the file ROMLocListing.

For additional examples, see "Linking" in Chapter 10 and the makefiles in the
Examples folders for the languages you are using.

Lib command and Appendix F, "Object File Format."

"Linking" and "More About Linking" in Chapters 9 and 10.

The Segment Loader and the Resource Manager cha pters in Inside MaCintosh.

Inside MaCintosh, Volume IV, for information on the 128K ROM, System Folder,
and Finder.

Link 11-109

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

loop ... End-repeat command list until Break

Loop
command ...

End

Executes the enclosed commands repeatedly. The Break command is used to
terminate the loop. The Continue command can be used to terminate the current
iteration of the loop. Return characters must appear as shown above, or be replaced
with semicolons (j).

The pipe specification (I), conditional command terminators (&& and I I), and
input/output specifications «, >, », 2:, and ») may appear following the End, and
apply to all of the commands in the list

Built-in.

None.

None.

None.

Loop returns the status of the last command executed.

None.

The command file below runs a command several times, once for each parameter.

1f#:# Repeat - Repeat a command for several parameters !f##-
#- Syntax:
#- Repeat command parameter ...
If
#- Execute command once for each parameter in the parameter
#- list. Options can be specified by including them with
If the command name in quotes.
If
Set cmd "(l}"
Loop

End

Shift
Break If "(l}"
(cmd} "{l}"

Notice that Shift is used to step through the parameters, and that Break ends the loop
when all the parameters have been used.

See also Break, For, and Continue commands.

"Structured Commands" in Chapter 5.

11-110 Loop ... End

Syntax

Description

Type

Input

Output

Diagnostics

Status

Make-build up-to-date version of a program

Make [option ...] [targetFile ...]

. Generates a set of Shell commands that you can execute to build up-to-date versions
of the specified target files. Of no target is specified then the nrst target on the left side
of a dependency rule in the makefIle ~ill be built) Make allows you to rebuild only
those components of a program that require rebuilding. Make determines which
components need rebuilding by reading a make file-this is a text fIle that describes
dependencies between the components of a program, and the Shell commands
needed to rebuild each component You can specify makeflles with the -f option.
After processing the makefiles, Make writes to standard output the appropriate set(s)
of commands needed to rebuild the target(s).

See "Using Make" in Chapter 10 for a description of the format of a makefile. The first
dialog box of Make's Commando dialog is reproduced here for convenience.

Make executes in two phases:

o In the first phase, Make reads the makefile(s) and creates a me (target) dependency
graph. (TIle "beachball" cursor spins counterclockwise during this phase.)

o In the second phase, Make generates the build commands for the target to be built
(the cursor spins clockwise)-if a target file doesn't exist or if it depends on files
that are out-of-date or newer than the target, Make writes out the appropriate
command lines for updating the target file. This process is recursive and "bottom
up" so that commands for lower-level dependencies that need to be rebuilt are
issued nrst.

You can execute the generated build commands after Make is done executing.

Tool.

Standard input is not read. If you don't specify a makeflle with the -f option, Make tries
to open a me called MakeFile. If no target file is specified on the command line, Make
uses the nrst target encountered in the makefile.

If any mes need to be updated, Make writes the appropriate Shell commands to
standard output.

Errors, warnings, and diagnostic information (if requested) are written to diagnostic
output If you specify the -p option, progress and summary information is also written
to diagnostic output

The following status values may be returned:

o Successful completion
1 Parameter or option error
2 Execution error

Make 11-'"

Options

11-112 Make

-d name[=value] Define a variable name with the given value. Variables defined
from the command line take precedence over definitions of the
same variable in the makefile. Thus defmitions in the makefiles act
as defaults that may be overridden from the command line.

-e

-f make file

-p

-r [ta~et]

-s

r-Moke Optlons----------------------,
-Malee Functlon­

@Bulld
o Show structure
o Find roots
o Touch dates

o Make euerything
o Display progress information
o Display uerbose output
o Display unreachable targets
o I gnore warnings

I

I Malee Targe Hs): ~ [~-M-8k-e-Fi-le-s-•• -. ---..

(Redirec1ion ...

(Defines ...
~--------------~~

r;command line
L~·
Help------------------, [Concel

H •• pro9F'~ (b,.~t) up-t~t. bIj nlxnlc1~ ,Y.,.,.th~ U\~t is ~;;~
out-o(-d~t. It M 8 Ie: e il
~-----------------~

Rebuild everything that is a part of the specified or default target,
regardless of whether targets are out of date. This option' causes
Make to output unconditionally all of the commands to rebuild the
specified targets.

Note: This option causes all components of the specified target to
be rebuilt. However, it does not necessarily rebuild all targets if
there are more than one top-level targets (roots) in the makefile.

Read dependency information from makefile. You can specify
more than one -f option-all dependency information is treated as
if it were in a single me. (If no -f option is specified, the default file is
a file named MakeFile in the current directory.)

Write progress information to diagnostic output. (Normally, Make
runs silently, unless errors are detected.) .

If no target is specified, the -r option will find all the roots (that is,
the top level targets) of the dependency graph. (See the -s option.)
If a target is specified, -r will fmd the root (or roots) for which it is a
prerequisite.

Note: This option overrides normal Make output

Show structure of target dependencies. This option writes a
dependency graph for the specified targets to standard output,
using indentation to indicate levels in the dependency tree.
Circular dependencies are noted, if present.

Note: This option overrides the normal Make output. It's useful in
debugging or verifying complicated makefiles.

Example

See 0150

-t

-u

-v

-w

"Touch" dates of targets and their prerequisites, that is, bring files
up to date by adjusting their modification dates, without outputting
build commands. This option is used to bring a set of files up to date
when they appear not to be, such as when you've only made
changes to comments. The -t option does the minimal adjustment
needed to satisfy the dependency relationships-files are touched
only if required, and are given the date of their newest dependency,
to minimize the repercussions of the date adjustments. This
minimal adjustment of dates is especially useful if the touched file is
also a prerequisite for other programs.

Note: This option overrides normal Make output

Write a list of unreachable targets to diagnostic output (for
debugging). Unreachable targets are those mentioned in the
make file that are not prerequisites (or prerequisites of prerequisites)
of the specified target to be rebuilt.

Write verbose output to the diagnostic output file. This option is
useful if you want to figure out what Make is doing and why. The
diagnostic output will indicate if targets do not exist, whether or not
they need to be rebuilt, and why they need to be rebuilt. It also
indicates targets in the make file that were not reached in the build.

Suppress warning messages. Warning messages are issued for things
such as fIles with dates in the future and circular dependency
relationshi ps.

Make -p -f MakeFile Sample

Makes the target file Sample, printing progress information. Sample's dependency
relations are described in the makefile :AExamples:MakeFile:,

Sample ff Sample.r
Rez Sample.r -0 Sample -a
Set File -a B Sample -c ASMP -t APPL ,set bundle bit

Sample ff Sample.r Sample.a.o
Link Sample.a.o -0 Sample

Sample.a.o f Sample.a
Asm Sample.a

The f (Option-F) character means "is a function of'-that is, the file on the left side
depends on the files on the right side. If the files on the right side are newer, the
subsequent Shell commands are written to standard output (See Chapter 10 for
details.)

"Using Make" in Chapter 10, for the format of a makefile, examples, and other
information about using Make.

Makefiles for building sample programs are contained in the Examples folders:

o :AExamples:Makefile

o :PExamples:Makefile

o :CExamples:Makefile

Make 11-113

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

MakeErrorFile-creafe error message fextfile

MakeErrorFile [option ...] [file ...]

MakeErrorFile creates error message files that are used to retrieve the error messages
associated with error numbers. The ErrMgr unit in the ToolLibs.o library is used by
programs to access the error files created by MakeErrorFile. SysErrs.Err is one such
error me, used by various MPW tools to get the textual messages assodated with
Macintosh system error codes. See the documentation on the ErrMgr unit for more
information on how error files are accessed.

TooL

Standard input is processed if no filenames are specified Otherwise each file in the
MakeErrorFile invocation is processed separately, with an error file created for each
input. MakeErrorFile input files follow a very simple format, consisting of lines
associating error messages with error numbers. Each line begins with an error
number (ill the range of 2-byte signed integers), followed by a space, followed by the
corresponding error message text on the same line.

If the-l listing option is specified, an ordered list of error numbers and messages will
be written to standard output The error file output is usually written to a file with the '
sa1l}e name as the input me but-with a ".Err" extension (unless the -0 option was used
to specify the output name). If no input file was specified, then by default the input
comes from standard input and the default ~rror O'-1tput file name is "Out. Err" .

Errors and warnings are written to diagnostic output.

The following status values may be returned:

o No errors
1 Syntax error
2 Error in processing

-1

-oobjname

-p

Write an ordered list of error numbers and messages to standard
output.

Pathname for the generated error file if objname is a full pathname.
- If objname is a directory, it specifies where to put the error output
file.

Write progress information to diagnostic output.

MakeErrorFile SysErrs -1 >SysErrsList

Writes an ordered list of system error numbers and messages to the file SysErrsList.

11-114 MakeErrorFile

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Mark-assign a marker to a selection

Mark [-y I -n 1 selection name [window 1

Mark assigns the marker name to the range of text specified by the selection in .
window. If no window is specified the command operates on the target window
(the second window from the front). The new marker name is included in the
Mark menu when window is the current active window. A marker is associated to a
logical, as opposed to absolute, range of text. The ranges of markers may
overlap, but each marker must have a unique name. Marker names are case
sensitive.

A dialog box requests confirmation if the marker name conflicts with an existing
marker name. The -y or -n option can be used in scripts to avoid this interaction.

Deletion and insertion operations affect markers according to these rules:

D Any editing outside the range of a marker will not affect the logical range of the
marker, where "outside" means that the range of editing changes does not
intersect the range of the marker.

D Any editing inside the range of a marker will change the logical range of the
marker by the amount of the editing change. For example, adding 10
characters to the inside of a marker's range will increase the range of the
marker by 10 characters. Another way to say this is: A marker has
responsibility for all the characters added to (or deleted from) its range.

D Any deletion that totally encloses a marker will delete the marker.

Built-in.

None.

None.

Errors are written to diagnostic output

The following status values may be returned:

o No errors
1 Syntax error
2 Error in processing
3 System error

-y Answer "yes" to any confirmation dialog that occurs, causing the
old marker to be replaced with the new marker.

-n Answer "no" to any confirmation dialog that occurs, so that the old
marker is left intact.

Mark 11-115

Example

Limifation

See also

11-116 Mark

Mark § 'Procedure l'

Assigns a marker with the name "Procedure 1 II to the current selection in the target
window. ,.,

It is currently not possible to "Undo" the effects of any editing operations on markers.

Unmark and Markers commands.

"Mark Menu" in Chapter 3.

"Markers" in Chapter 6.

Syntax

Description

Type

- Input

Output

Diagnostics

Status

Options

Example

See also

Markers-. list markers

Markers [-q] [window]

Markers prints the names of all markers associated with window. The names are
written one per line, and are ordered from the beginning to the end of the window.

Tool.

None.

The list of marker names is written to standard output.

Errors are written to diagnostic output

The following status values may be returned:

o No errors
1 Syntax error
2 Error in processing
3 System error

-q Do not quote marker names that contain special characters. (The default is to
quote names with spaces or other special characters.)

Markers "{Target}"

Lists all markers associated with the target window.

"Mark Menu" in Chapter 3.

"Markers" in Chapter 6.

Markers 11- 117

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

MDSCvt-convert MDS Assembler source

MDSCvt [option ...] [file ...]

Converts the specified Macintosh Mc68000 Development System (MDS) Assembler
source files to the syntax required by the MPW Assembler. The' following elements are
converted:

o tokens within statements

o special tokens within macros

o directives

For a description of these conversions, refer to "MDS Conversion" in Appendix E of
the MPW Assembler 2.0 Reference.

Tool.

Standard input is converted if no filenames are specified. If the -main, -g, or -!
option is used, only one filename should be specified.

If input is from the standard input me, the converted output is written to. standard
output If the input me name is Name, the converted output is written to Name.a.
The -0, ~preflx, and -SuffL~ options let you 'modify the naming conventions for the
output file.

Parameter errors and progress information are written to diagnostic output

The following status values may be returned:

o Normal termination
1 Parameter or option error
2 Execution aborted

-d

-e

Detab the input. All tabs are removed and replaced with spaces.
The default setting is 8 spaces; this value can be changed with
the -t option.

Detab the input (like the -d option), and entab the output as a
function of the tab setting (either 8, or the value specified with the
-t option).

-f directivesFile Set the case (upper!lower) of directives according to the entries in
directivesFile. The file MDSCvt.Directives is supplied for this
purpose; you can edit it to change the capit~lization. If you don't
use this option, then all directives are converted to uppercase.

11-118 MDSCvt

Example

-g globals

-1

-m

-main

-n

-p

Convert a main program source and reserve globals space below
A5. Globals may be specified in decimal or hexadecimal (by
preceding the value with a $). The value specified must be negative.
For example,

-g -512
-g $200

Convert include files. No PROC or MAIN or END will be generated
by MDSCvt.

Do not insert MDS-compatible mode-setting directives (BLAl'IT<S
ON and STRING ASIS) into the converted source.

Convert a main program source. The conversion is done to make
the file look like the main code and data modules. Only one file
should be converted when using this option.

Do not add the ".a n extension to the input filename to produce the
output filename. Of you use this option, you must also specify
either -prefL~ or -suffIx.)

Write MDSCvt's version information and conversion status to
diagnostic output.

-pre{flx] string. If the input filename is "Name", the output filename is produced by
preflxing the string to Name, that is, "stringN ame.a". (You can

. suppress the ".a" suffIx by using the -n option, or change it by using
the -suffix option.)

-sUf[flx] string If the input filenarI}e is "Name", the output filename is produced by
appending the string to the filename, that is, "Namestring". The
default suffix is ".a".

-t tabSetting Set the tab value for input and output files to tabSetting value (2 to
255). The default setting is assumed to be 8.

-u c When MDSCvt detects a name in the opcode field that is the same as
an MPW directive, it appends the character c to make the name
unique. (The default character is #.)

-! identifier Convert a main program source and define the main program's
entry point by the specified identifier. This option corresponds to
the MDS Linker's! command.

MDSCvt -t 8 MDSFilel.Asm MDSFile2.Asm

Convert MDS Assembler source files MDSFile1.Asm and MDSFile2.Asm to MPW
Assembler source files MDSFile1.Asm.a and MDSFile2.Asm.a. The -t option sets the
tab setting for both files to 8, and entabs the output flles based on that value. It is
assumed that neither file is a main program because the -main option has not been
specified. If either file is a main program, then the -main option should be specified
and only that file should be specified as input to MDSCvt.

MDSCvt 11-"'9

Limitations

See also

See Appendix E in the MPW Assembler 2.0 Reference for details of conversions that
can and cannot be done with MDSCvt.

Appendix E, "MDS Conversion/' in the MPW Assembler 2.0 Reference.

11-120 MDSCvt

Syntax

Description

Type

Input

Output

Diagnostics

Stotus

Options

Example

See also

Mount-mount volumes

Mount drive ...

Mounts the disks in the specified drives, making them accessible to the file system.
Drive is the drive number.

Mounting is normally automatic when a disk is inserted. The Mount command is
needed for mounting multiple hard disks, which cannot be "inserted," or if a volume
has been unmounted via the U nmount command.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status values may be returned:

o The disk was mounted
1 Syntax error
2 An error occurred

None.

Mount 1

Mounts the disk in drive 1 (the internal drive).

U nmount and Volumes commands.

Mount 11-121

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options·

~1I-122 Move

Move-move files end directories

Move [-y 1 -n I, -c] [-p] 'name... targetName

Moves name to ta rgetNa me. (Name and targetName are file or directory names.) If
targetName is a directory, then one or more objects (flles andlor directories) are
moved into that directory. If targetName is a file or doesn't exist, then file or
directory name replaces ta rgetNa me. In either case, the old objects are deleted.
Moved objects retain their current creation and modification dates.

If a directory is moved, then its contents, including all subdirectories, are also
moved. No directory moved can be a parent of targetName.
A dialog box requests a confirmation if the move would overwrite an existing file or
folder. The -y, -n, or -c option can be used to avoid this interaction.

Built-in.

None.

None.

Errors are written to diagnostic output Progress and summary information is also
written to diagnostic output if the -p option is specified

Move may return th~ following status values:

o All objects were moved
1 . Syntax error
2 An error occurred during the move
4 Cancel was selected or implied with the -c option

-y

-n

-c

-p

Answer "yes" to any confirmation dialog that may occur, causing
conflicting fil~s or folders to be overwritten.

Answer "no" to any confirmation dialog that may occur, skipping
the move for nIes or folders that already exist.

Answer "cancel" to any confirmation dialog that may appear,
causing the move to stop when a name conflict is encountered.

List progress information as the move takes place.

Examples

See also

Move Startup Suspend Resume Quit n{SystemFolder}n

Moves the four files from the current directory to the System Folder.

Move File ::

Moves File from the current directory to the enclosing (parent) directory.

Move -y Filel File2

Moves Filel to File2, overwriting File2 if it exists. (This is the same as renaming the
file.)

Duplicate and Rename commands.

"File and Window Names" in Chapter 4.

"Filename Generation" in Chapter 5. ,

Move 11-123

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

MoveWindow-move window to h,v location

MoveWindow h v [window]

Moves the upper-left corner of the specified window to the location (h, v) where h
and v are norizontal and vertical integers. (Use a blank line to separate the numbers h
and v on the command line.) The coordinates (0,0) are located at the left side of the
screen at the bottom of the menu bar. If the location specified would place the
window's title bar entirely off the visible screen, an error is returned. If no window is
specified, the target window (the second window from the front) is assumed.

Built-in.

None.

None.

Errors are written to diagnostic output

MoveWindow may return the following status values:

° No errors
1 Syntax error (error in parameters)
2 The specified window does not exist
3 The h v location specified is invalid

None.

MoveWindow 72 72

Moves the target window's upper-left corner to a point approximately one inch in
from the upper-left corner of the screen, and one inch below the bottom of the menu
bar. (There are about 72 pixels per inch on the Macintosh display.)

MoveWindow 0 0 "(Worksheet}"

Moves the \Vorksheet window to the upper-left corner of the screen (below the menu
bar).

See also SizeWindow, Zoom\Vindow, StackWindows, and TileWindows commands.

11-124 MoveWlndow

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See olso

New-open a new window

New [ruzme ...]

Opens a new window as the active (frontmost) window. If name is not specified, the
Shell generates a unique name for the new window, of the form "Untitled- nil, where n
is a decimal number. If name already exists, an error results.

You can use New to open several new windows by specifying a list of names separated
by spaces. Note that New differs from Open -n by returning an error if the file already
exists, whereas Open -n either opens an existing file or creates a new file.

Built-in.

None.

None.

Errors are written to diagnostic output.

New may return the following status values:

o No errors
1 Syntax error (error in parameters)
2 Unable to complete operation; a file with the specified name already exists
3 System error

None.

New

Opens a new window with a Shell-generated name.

New Test.a Test.p Test.c

Creates three windows called Test.a, Test.p, and Test.c.

Open command.

New 11-125

Newer-compare modification dotes between files

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

11-126 Newer

Newer [eel [-d [-ql name ... target

Compares the modification dates of name and target. Files that have a more recent
modification date than target have their names written to standard output If the target
is a non-existent file or directory then all names that exist are considered newer than
the target.

Built-in.

None.

Newer files are written to standard output The names are written out one per line as
they appear on the command line. .

Errors are written to diagnostic output

The following status values may be returned:

o No error
1 Syntax error
2 File not found

-c

-e

-q

Compare creation dates instead of modification dates· or for
creation dates when used with the -c option.

Look for files with equal modification dates (or creation dates when
used with the c option.

Do not quote pathnames that are written to standard output

Examples

See also

Newer main.c main.c.bak

Writes out main.c if its modification date is more recent than its backup.

Newer HD:Source:-.c HD:TimeStamp

Writes to the screen all the source files in the Source directory that have been
modified since the modification date of TimeStamp.

If 'Newer main.c main.c.bak'

Duplicate main.c main.c.bak

End

Makes a backup copy of main.c only if it has been modified since the last backup was
made.

If "'Newer File.c File.h File.c.o'"

C File.c -0 file.c.o

End

Rebuilds the source file flle.c if either file.c or file.h has been modified since file.c.o
was last built

Exists command.

Newer 11-127

Syntox

Description

Type

Input

Output

Diognostics

Stotus

Options

Exomples

NewFolder-create c directory

NewFolder name ...

Creates new directories with the names specified. Any parent directories included in
the name specification must already exist.

Note: This command can be used only on hierarchical file system (HFS) disks.

Built-in.

None.

None.

Errors are written to diagnostic output

The following status values may be returned:

o Folders were created for each name listed
1 Syntax error
2 An error occurred
3 Attempt to use New Folder on non-HFS volume

None.

NewFolder Memos

Creates Memos as a subdirectory of the current directory.

NewFolder Parent :Parent:Kid

Creates Parent as a subdirectory of the current directory, and Kid as a subdirectory of
Parent.

11-128 New Folder

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Open-open c window

Open [-n I -r] [-t] [name ...]

Opens a file as the active (frontmost) window. If neither name nor the -n option is
specifed then StdFile's GetFile routine is called, allowing the user to use a dialog box
to choose a file. If 11tlme is already open as a window, that window becomes the active
(frontmost) window.

Built-in.

None.

None.

Errors are written to diagnostic output.

Open may return the following status values:

o No errors
1 Error in parameters
2 Unable to complete operation; specified file not found
3 System error

-n

-r

-t

Open a new window with the title name. If name is not
specified, a unique name is generated for the new window. If fIle
name already exists, that file is opened.

Open a read-only window associated with the file name. If file name
doesn't exist, an error occurs.

Open the window as the target window rather than as the active
window (that is, make it the second window from the front). This
option is identical to the Target command.

Examples Open

Displays StdFile from which to choose a file to open.

Open -r -t Test.a

Opens the file Test.a as the target window, read-only.

Open "'.a

Opens all of the files that end with ".a",

See olso Target, New, and Close commands.

Open 11-129

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Parameters-write parameters

Parameters [parameters ...]

The Parameters command writes its parameters, including its name, to standard
output The parameters are written one per line, and each is preceded by its
parameter number (in braces) and a blank. This command is useful for checking the
results of variable substitution, command substitution, quoting, blank interpretation,
and filename generation.

Built-in.

None.

Parameters are written to standard output.

None.

A status value of 0 is always returned.

None.

Parameters One Two "and Three"

Writes the following three lines to standard output:

{O} Parameters
{l} One
{2} Two
{3} and Three

Recall that " ... " and I ••• I quotes are removed before parameters are passed to
commands.

Echo and Quote commands.

"Parameters to Scripts" in Chapter 5.

11-130 Parameters

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Pascal-Pascal Compiler

Pascal [option ...] [file ...]

Compiles the specified Pascal source files (programs or units). You can specify zero
or more filenames. Each file is compiled separately-compiling file Name.p creates
object file Name.p.o. By convention, Pascal source filenames end in a ".p" suffix.

See the MPW Pascal 2.0 Reference for details of the language definition.

Tool.

If no fllenames are specified, standard input is compiled, with output directed to the
file p.o. You can terminate input by pressing Command-Enter.

Nothing is written to standard output. For each input file name, object code is sent to
the file name.o.

Errors are written to diagnostic output Progress and summary information is also
written to diagnostic output if the -p option is selected.

The following status values may be returned:

o Successful completion
1 Error in parameters
2 Compilation halted

-b

-c

Generate AS-relative references whenever the address of a
procedure or function is taken. (By default, PC-relative references
are generated for routines in the same segment.)

Syntax check only-no object file is generated.

-d name=TRUE 1 FALSE

-e errLogFile

Set the compile time variable name to TRUE or FALSE.

Write all errors to the error log file errLogFile. A copy of the error
report will still be sent to diagnostic output.

Pascal 11-131

-i pathname[,pathname] ...

-k preft.XfJath

-mc68020

-mc68881

-oobjName

-ov

-p

-r

-t

-u

-w

11-132 Pascal

Search for include or USES files in the specified directories.
Multiple -i options may be specified. At most 15 directories will be
searched. The search order is as follows:

1 . In the case of a USES filename, if no prior $U filename was
specified, the filename is assumed to be the same as the unit
name (with a ".p" appended).

2. The filename is used as specified. If a full path na me is given,
then no other searching is applied.

If the me wasn't found; and the pathname used to specify the file
was a partial pathname (no colons in the name or a leading
colon), then the following directories are searched.

3. The directory containing the current input file.

4. The directories specified in -i options, in the order listed.

5. The directories specified in the Shell variable {PInterfaces}.

The source filenames specified on the command line must include
any relevant prefixes.

Put the files specified in SLOAD commands in the directory
specified by preflXfJath.

Generate code to take advantage of the Mc68020 processor.

Generate code to take advantage of the Mc68881 coprocessor.

Specify the pathname for the generated object file. If objName
ends with a colon (:), it indicates a directory for the output file,
whose name is then formed by the normal rules (that is,
inputFilename.o). If the source filename contains a pathname, it is
stripped off before objName: is used as a prefix. If objName does
not end with a colon, the object file is written to the file objName.
(In this case, only one source file should be specified.)

Turn on overflow checking. (Warning: This may Significantly
increase code size.)

Supply progress and summary information to diagnostic output,
including Compiler header information (copyright notice and
version number), module names and code sizes in bytes, and
number of errors and compilation time.

Suppress range checking.

Report compilation time to diagnostic output. The -p option also
reports the compilation time.

Initialize local and global data to the value $7267.

Turn off peephole optimizer.

Examples

Note

Availability

See also

-y pathname

-z

Pascal Sarnple.p

Put the Compiler's temporary intermediate (".o.in
) files in the

directory specified by pathname.

Turn off the output of embedded procedure names in the object
code. This option is equivalent to specifying {$D-} in the source
code ..

Compiles the Sample program provided in the PExamples folder.

Pascal Filel.p File2.p -r

Compiles File1.p and File2.p, producing object files File1.p.o and File2.p.o, and
performing no range checking.

Listing files are not produced directly by the Compiler. Refer to the PasMat and
PasRef tools.

The Pascal Compiler is available as part of a separate Apple product, MPW Pascal.

PasMat and PasRef commands.

MPW Pascal 2.0 Reference.

Pascal 11- 133

Syntax

Description

Type

Input

Output

PasMat-Pascal program formatter

PasMat [option ...] [inputfile [outputftle]]

Reformats Pascal source code into a standard format, suitable for printouts or
compilation. PasMat accepts full programs, external procedures, blocks, and groups
of statements.

Note: A syntactically incorrect program causes PasMat to abort. If this happens, the
generated output will contain the formatted source up to the point of the error.

PasMat options let you do the following:

D Convert a program to uniform case conventions.

D Indent a program to show its logical structure, and adjust lines to fit into a specified
line length.

D Change the comment delimiters (* :Ie) to { } .

D Remove the underscore character (_) from identifiers, rename identifiers, or
change their case.

D Format include files named in MPW Pascal include directives.

PasMat specifications can be made through PasMat options or through special
formatter directives, which resemble Pascal Compiler directives, and are inserted
into the source file as Pascal comments. PasMat's default formatting is
straightforward, and does not require you to use any options. The best way .to fInd out
how PasMat formats something is to try out a small example and see.

See Appendix K of the manual iMPW Pascal 2.0 Reference for details of PasMat
directives and their functions. The first dialog box of the Pascal Commando dialog is
reproduced here for your convenience.

Tool.

If no input files are specifIed, standard input is formatted.

If no output file is specified, the formatted output is written to standard output. Refer
to "Limitations" below for more information about PasMat's treatment of errors in
the source.

11-134 PasMat

Diagnostics

Status

options

The following errors are detected and written to diagnostic output:

D In general, premature end-of-file conditions in the input are not reported as
errors, to accommodate formatting of individual include files, which may be only
program segments. There are cases, however, where the include file is a partial
program, which PasMat interprets and reports as a syntax error.

D There is a limit on the number of indentation levels that PasMat can handle. If this
limit is exceeded, processing will abort. This problem should be exceedingly rare.

D If a comment would require more than the maximum output length (50) to meet
the rules given, processing will abort This problem should be even rarer than
indentation level problems.

If a syntax error in the input code causes formatting to abort, an error message will
give the input line number on which the error was detected. The error checking is not
perfect-successful formatting is no guarantee that the program will compile.

PasMat may return the following status values:

o Normal termination
1 Parameter or option error
2 Execution terminated

Most of the following options modify the initial default settings of the directives
described in Appendix K of the MPW Pascal 2.0 Reference.

-a

-b

-body

-c

-d

Set a- to disable CASE label bunching.

Set b+ to enable IF bunching.

-Posmot Opt ons

(I/O SpeCifications •••
. -Spacing
J 0 None around ops

(Identifier Hondling ...) o None around :-
o None after commas

rBunching
o If's
~ FOR/WHILE/WITH's
~ CASE label's
o ELSE/ I F an new line
o BEGIN an same line
o THEN on new line

r;command Line
LUM~t

-Indenting
cg] Procedure bodies
o Between BEGIN/END
o Fields under Id

Tabbing ualue 1911

Mlscelloneous-
o No formatting
0(* *) changed to { }
o Align URR colons
o Progress

-Grouping
o Assignment/Calls
o Formal parameters
o · Smart· grouping
o Separate CASE tags

Help-------------------, [Cancel
R.form .. ts Pasc .. 1 sOl.ll"e. into .. shnd..,.d form .. t, suit4lb1. for printOl.lts or #.;;;~
cOITIpi14ltion. Acc~ts (ull pro9l"~s/l.l\its, procs, blocks, ~nd st.at.mtnts. [Posmat il

... M_os_t...;oP_ti_on_s _sh_ou_ld_b_' _ • .m_b._dd_.d_._in_s_OUI'_c_._~n_d_N_OT_s..;..p,_cl_·ft_.d_h_.r_.1_--,

Set body+ to align procedure bodies with their enclosing
BEGIN/END pair.

Set c+ for placement of BEGIN on same line as previous word.

Set d+ to enable the replacement of (* *) with { } comment
delimiters.

PasMat 11-135

11-136

-e

-entab

-f

-g

-h

Set e+ to capitalize identifiers.

Replace runs of blanks with tabs. The tab value is determined by the
-t option or current t-n directive (not by the file's tab setting).

Set f- to disable formatting.

Set g+ to group assignment and call statements.

Set h- to disable FOR, WHILE, and WITH bunching.

-1 pathname[,pathname 1. ..
Search for include mes in the specified directories. Multiple
-1 options may be specified. At most 15 directories will be searched.
The search order for includes is specified under the description of
the -1 option for the Pascal command. (Note, however, that Uses
are not processed by PasMat.)

-in Set In+ to process Pascal Compiler includes. This option is implied
if the -1 option is used.

-k Set k+ to indent statements between BEGINIEND pairs.

-1 Set 1+ for literal copy of reserved words and identifiers.

-list ZistingFile Generate a listing of the formatted source. The listing is written to
the specified file.

-n Set n+ to group formal parameters.

-0 width Set the output line width. The maximum value allowed is 150. The
default is 80.

-p Display version information and progress information to
diagnostic output.

-pattern -pattern- replacement-

PasMat

Process includes (-in) and generate a set of output files with exactly
the same include structure as the input, but with new names. The
new output filenames and include directives are generated by
editing the input (or include) filenames according to the pattern
and replacement strings. Pattern is a pathname to be looked for in
the input file and in each include file (the entire pathname is used,
and case is ignored). If the pattern is found, it is replaced by the
replacement string. The result is a new pathname, which becomes
the name for an output me. For example,

PasMat -pattern =OldFile=NewFile=

replaces each name containing the string "OldF ile" with the string
"NewFile".

Note: Any character not contained in the pattern or replacement
strings can be used in place of an equal sign. Special characters
must be quoted. (See "Example" below.) .

-q Set q+ not to treat the ELSE IF sequence specially.

-r Set r+ to make reserved words uppercase.

-rec Indent a RECORD's field list under the record identifier.

-s renameFile Rename identifiers. RenameFile is a file containing a list of
identifiers and their new names. Each line in this file contains two
identifiers of up to 63 characters each: The first name is the
identifier to be renamed; the second name will replace all
occurrences of the first identifier in the output. There must be at
least one space or tab between the two identifiers. Leading and
trailing spaces and tabs are optional. The case of the first identifier
doesn't matter, but the second identifier must be specified exactly
as it is to appear in the output The case of all identifiers not
specified in the renameFile is subject to the other case options
(-e, -I, -u, and -w) or their corresponding directives. Reserved
words cannot be renamed.

-t tab Set the tab amount for each indentation level. If the -entab option
is also specified, tab characters will actually be generated. The
default tab value is 2.

-u Rename all identifiers based on their fIrst occurrence in the source.
Specifications in the rename (-s) file always have precedence over
this option-that is, the identifier'S translation is based on the
rename file rather than on the fIrst occurrence.

-v Set v+ to put TI-IEN on a separate line.

-w Set w+ to make identifiers uppercase.

-x Set x+ to suppress space around operators.

-y Set y+ to suppress space around : =.

-z Set z+ to suppress space after commas.

-" Set :+ to align colons in V AR declarations (only if a j PasMat
directive in the source specifies a Width).

-@ Set @+ to force multiple CASE tags onto separate lines.

"-#" Set #+ for "smart" grouping of assignment and call statements.
Grouped assignment and call statements on an input line will
appear grouped on output

Note: Because # is the Shell's comment character, this option must
be quoted on the command line.

Set _ + for "portability" mode (underscores are deleted from
identifiers).

PasMat 11- 137

All options except for -list, -pattern, -s, and -entab have directive counterparts. It's
recommended that you specify the options as directives in the input source so that
you won't have to specify them each time you call PasMat

(PasMatOpts) variable: You can also specify a set of default options in the exported
Shell variable {PasMatOpts}-PasMat processes these options before it processes the
command line options. {PasMatOpts} should contain a string (maximum length 255)
specifying the options exactly as you would specify them on the command line. The
exception is command-line quoting, which should be omitted. Also note that the
options -pattern, -list, -s, and -i, which require a string parameter, can be specified
only on the command line. For example, you can define {PasMatOpts} to the Shell
(perhaps in the UserStartup file) as follows:

Set PasMatOpts "-n -u -r -d -entab -t -0 82 -t 2"
Export PasMatOpts

The entire definition string must be quoted to preserve the spaces.

As an alternative to specifying the options directly, you can indicate that the options
are stored in a file, by specifying the file's full pathname prefixed with the character ":

Set PasMatOpts ""pathname"
Export PasMatOpts

PasMat will now look for the default options in the specified fIle. The lines in this file
can contain any sequence of command-line options (except for -pattern, -list, -s,
and -1), grouped together on the same or separate lines. You can comment the lines
by placing the comment in braces ({. . .}). A typical options file might appear like this:

-n
-u
-r

-d
-entab
-4f
-0 82
-t 2

{group formal params on same line}
{auto translation of id's based on 1st occurrence}
{uppercase reserved words}
{leave comment braces alone}
{place real tabs in the output}
{smart grouping}
{output line width}
{indent tab value}

(Except for the tab value, this example shows the recommended set of options.)

If PasMat does fmd a default set of options, then those options will be echoed as part
of the status information given with the -p option.

11- 138 PasMat

Example

Limitations

A vailabilify

See also

Pasmat -n -u -r -d -pattern "==formatted/=" Sample.p a
"formatted/Sample.p"

Formats the file Sample.p with the -n, -u, -r, and -d options, and writes the output to
the file "formatted/Sample.p". Includes are processed (-pattern) and each Pascal
Compiler $1 include file causes additional output files to be generated. Each of these
files is created with the name "formatted/filename", where filename is the fliename
specified in the corresponding include. (The -pattern parameter contains a null
pattern (==) with "formatted/" as a replacement string-a null pattern always matches
the start of a string.)

Care must be taken when a command line contains quotes, slashes, or other special
characters that are processed by the Shell itself. In this example, we used the slash
character, so the strings containing it had to be quoted.

PasMat has the following limitations:

o The maximum length of an input line is 255 characters.

o The maximum output line length is 150 characters.

o The input flies and output flies must be different.

o Only syntactically correct programs, units, blocks, procedures, and statements are
formatted. This limitation must be taken into consideration when separate include
files and conditional compiler directives are to be formatted

o The Pascal include directive should be the last thing on the input line if includes are
to be processed. Includes are processed to a maximum nesting depth of five. All
includes not processed are summarized at the end of formatting. (This assumes, of
course, that the in directive/option is in effect.)

o The identifiers CYCLE and LEAVE are treated as reserved Pascal keywords by
PasMat They are treated as two loop control statements by Pascal unless explicitly
declared.

PasMat is available as part of a separate Apple product, MPW Pascal 2.0.

Pascal and PasRef commands.

Appendix K of the MPW Pascal 2.0 Reference.

PasMat 11-139

Syntax

Description

Type

Input

Output

Diagnostics

Status

PcsRef-Pcsccl cross-referencer

PasRef [option...] [sourceFile ...]

Reads Pascal source files, and writes a listing of the source followed by a cross­
reference listing of all identifiers. Each identifier is listed in alphabetical order,
followed by the number of the line on which it appears. line numbers can refer to the
entire source file, or can be relative to individual include files and units. Each
reference indicates whether the identifier is defined, assigned, or simply named (for
example, used in an expression).

See the MPW Pascal 2.0 Reference for details of the Pascal language. The first dialog
box of PasRers Commando dialog is reproduced here for your convenience.

Identifiers may be up to 63 characters long, and are displayed in their entirety unless
overridden with the -x directive. Identifiers may remain as they appear in the input,
or they can be converted to all lowercase (-1) or all uppercase (-u).

For include files, line numbers are relative to the start of the include file; an
additional key number indicates which include file is referred to. A list of each include
me processed and its associated key number is displayed prior to the cross-reference
listing.

Uses declarations can also be processed by PasRef (their associated $U filename
compiler directives are processed as in the Pascal Compiler). These declarations are
treated exactly like includes, and, as with the Compiler, only the outermost Uses
declaratiori is processed (that is, a used unit's Uses declaration is not processed).

As an alternative to processing Uses declarations, PasRef accepts multiple source
files. Thus yOu cross-reference a set of main programs together with the units they use.
All the sources are treated like include files for display purposes. In addition, PasRef
checks to see whether it has already processed a me (for example, if it appeared twice
on the input list, or if one of the files already used or included it). If it has already
been processed, then the file is skipped.

Tool.

If no filenames are specified, standard input is processed. Unless the -d option is
specified, multiple source files are cross-referenced as a whole, producing a single
source listing and a single cross-reference listing. Specifying the -d option is the same
as executing PasRef individually for each file.

All listings are written to standard output. Form feed characters are placed in the file
before each new source listing and its associated cross reference. Pascal $P (page
eject) compiler directives are also processed by PasRef, which may generate
additional form feeds in the standard output listing.

Parameter errors and progress information are written to diagnostic output.

PasRef may return the following status values:

o Normal termination
1 Parameter or option error
2 Execution terminated

11- 140 PasRef

Options -a

-c

-d

Process all files even if they are duplicates of ones already
processed. The default is to process each (include) file or used unit
only once.

Do not process a unit if the unit's filename is specified in the list of
files to be processed on the command line, or if the unit has already
been processed.

P f 0 tI -I osre p ons
i i

@ Flies to Href ••• o Redirect Stondord Input
(Click for list ...)

r-Other Inputs- -Processing- -Mlscelloneous-
~ Includes
~Uses

(seorch pothS •••)

rPcommond LIne
LUR'~

o All o Object Pascol o Distinct o Progress o Unique USES

r----: I
Output

I I
Error

I I
(Disploy OPtions .••)

Help-----------------., Cancel 1
Ruds Puc~l sOire. ftl" ~ .,.,rit.s Iistinq of SOlre. follo.,.,td b4i ~ ~_;;;;;;;;;;;;;;;;;;;;;~
cross-ref.rtne. l;stlnQ of ~llld's to stw.wd oYt~t. f f'(I~rt~ t 1
~---------------------------~

Treat each file specified on the command line as distinct. The
default is to treat the entire list of files as a whole, producing a single
source listing and a single cross-reference listing. This option is the
same as executing PasRef individually for each specified file.

-1 pathname [,path name] ...
Search for include or Uses files in the specified directories. Multiple
-1 options may be specified. At most 15 directories will be searched.
The search order is specified under the description of the -1 option
for the Pascal command.

-I Display all identifiers in the cross-reference table in lowercase. This
option should not be used if -u is specified, but if it is, the -u is
ignored.

-ru -noincludes

-nl I -noUsting

Do not process include files. (The default is to process the include
files.)

Do not display the input source as it is being processed. (The
default is to list the input.)

-nole..~ Do not display the lexical information on the source listing. See the
"Example" section for further details.

-nt I -nototal Do not display the total line count in the source listing. This option
is ignored if no listing is being generated (-nl).

Pas Ref /1- 141

-n[ul I -nouses

-0

-p

-5

-t

-u

-w width

-x width

Do not process USES declarations. (The default is to process USES
declarations.) If -nu is specified, then the -c option is ignored.

The source file is an Object Pascal program. The identifier OBJECT
is considered as a reserved word so that Object Pascal declarations
may be processed. The default is to assume the source is not an
Object Pascal program.

Write version and progress information to diagnostic output.

Do not display include and USES information in the listing or cross
reference, and cross-reference by total source line number count
rather than by include-file line number.

Cross-reference by total source line-number count rather than by
include-fIle line number. This option can be used if you are not
interested in knowing the positions in included files. However, the
include information is still displayed (unless -5, -ni, or -nu is
specified). This option is implied by the -5 option.

Display all identifiers in the cross-reference table in uppercase.
This option should not be used if -1 is specified.

Set the maximum output width of the cross-reference listing. 'This
setting determines how many line numbers are displayed on one
line of the cross-reference listing. It does not affect the source
listing. Width can be a value from 40 to 255; the default is 110.

Set the maximum display width for identifiers in the cross-reference
listing. (The default is to set the width to the size of the largest
identifier cross-referenced.) If an identifier is too long to fit in the
specified width, it is indicated by preceding the last four characters
with an ellipsis (. ..). Width can be a value from 8 to 63.

Normally, both include files and Uses declarations are processed. The -
noinclude5 option suppresses processing of includes. The -nouses option
suppresses processing of USES.

Omitting the -nouses option causes PasRef to process a USES declaration exactly as
does the Pascal Compiler. However, you may want to cross-reference an entire
system, including all of the units of that system. Processing the units through the USES
declaration would cause only the Interface section of each unit to be processed. If you
use the -nouses option, then USES will not be processed and each unit from the
parameter list can be cross-referenced, treating the entire list as a single source.

PasRef can also cross-reference all the units of a program while still expanding other
units not directly part of that program, such as the Toolbox units. If you wish to do
this, use the -c option. With the -c option, if the ($U interface) filename is the same as
one of the filenames specified on the parameter list, then the unit will not be
processed from the USES declaration, because its full source will be (or has been)
processed.

11- 142 Pas Ref

To summarize, you have the following choices:

o Don't process the USES declarations, and specify a list of all files you want to
process, by using the -nouses option.

o Process only the Interfaces through the USES declarations (like the Compiler), by
omitting the -nouses option.

o Process some of the units through the USES declarations and other units as full
sources, by specifying the -c option.

In all cases where a list of mes is specified, no unit will ever be processed more than
once (unless the -a option is given).

Example PasRef -nu -w 80 Memory.p > Memory.p.Xref

Cross-references the sample desk accesSory Memory. p and write the output to the file
Memory.p.Xref. No USES declarations are processed (-nu). The following source
and cross-reference listings are generated:

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
16

1
1
1
1
1
1
1
1
1

1
2
3
4
5
6
7

8
9

1 10
1 11
1 12
1 13
1 14
1 15
1 16

17 1 17
18 1 18
19
20
21
22
23

1 19
1 20
1 21
1 22
1 23

24 1 24
25 1 25
26 1 26

1 63

File Memory.p

Copyright Apple Computer, Inc. 1985-1987
All rights reserved.

}

{$D+}
{$R-}

MacsBug symbols on
No range checking

UNIT Memory;

INTERFACE

USES
MemTypes, QuickDraw, OSIntf, ToolIntf, PackIncf;

FUNCTION DRVROpen
FUNCTION DRVRControl
FUNCTION DRVRStatus
,FUNCTION DRVRPrime
FUNCTION DRVRClose

IMPLEMENTATION

(ctlPB: ParmBlkPtri dCtl: DCtlPtr): OSErri
(ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErri
(ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErri
(ctlPB: ParmBlkPtri dCtl: DCtlPtr): OSErri
(ctlPB: ParmBlkPtri dCtl: DCtlPtr): OSErri

A FUNCTION DRVRClose(ctlPB: ParmBlkPtri dCtl: DCtlPtr): OSErri
etc.

63
64
65
66
67
68
69
70
71

1 64 0- A BEGIN
1 65 IF dCtl~.dCtlwindow <> NIL THEN

BEGIN 1 66 1-
1 67
1 68
1 69-1
1 70

ENDi

DisposeWindow (WindowPtr(dCtl~.dCtlWindow));

dCtl~.dCtlWindow := NIL;

DRVRClose := NOErr;
1 71 -0 A END;

etc.
178 1 178
179 1 17 9 END. {of memory UNIT}
180 1 180 --

Pas Ref 11-143

1. Memory.p

-A-
accEvent
accRun
ApplicZone
Away

-B­
BeginUpdate
BNOT
Bold
Boolean
BOR
BSL

-C­
csCode
CSParam
ctlPB

-0-
dCtl

OCtlPtr

dCtlRefNum
.dCtlWindow

etc.
-v-

VolName

-W-
what
WindowKind
windowpeek

. WindowPtr
wRect

Each line 'of the source listing is preceded by five columns of information:

1. The total line count.

2. The include key assigned by PasRef for an include or USES me. (See below.)

3. The line number within the include or main file.

4. Two indicators Oeft and right) that reflect the static block nesting level. The left
indicator is incremented (mod 10) and displayed whenever a BEGIN, R~PEA T, or
CASE is encountered. On termination of these structures with an END or UNTIL, the
right indicator is displayed, then decremented. It is thus easy to match BEGIN,
REPEAT, and CASE statements with their matching terminations.

S. A letter that reflects the static level of procedures. The character is updated for each
procedure nest level ("A" for level 1, "B" for level 2, and 'so on), and displayed on
the line containing the heading, and on the BEGIN and END associated with the
procedure body. Using this column you can easily find the procedure body for a
procedure heading when there are nested procedures declared between the, heading
and its body.

The cross-reference listing follows:

144 1)
158 1)
121 1)

33* 1) 146 (1)

151 1)
39 1)
90 1) 117 (1)
31* 1)
39 1)
39 1)

143 1)

146 1)
19* 1) 20* (1) 21"'(1) 22*(1) 23* (1) 43*(1)

63* 1) 74*(1) 143 (1) 146 (1) 168* (1) 173*(1)

19* 1) 20*(1) 21*(1) 22*(1) 23* (1) 37*(1)
39 1) 43*(1) 50 (1) 53 (1) 54 (1) 55 (1)

63* 1) 6S (1) 67 (1) 68 (1) 74*(1) 115 1)
142 1) 168* (1) 173*(1)

19 (1) 20 (1) 21 (1) 22 1) 23 1) 37 1)

43 (1) 63 (1) 74 1) 168 1) 173 1)

39 (1) 54 (1)

50 1) 55=(1) 67 1) 68=(1) 142 (1)

79* (1) 100 (1) 135 (1)

149 1)

54= 1)

54 1)
48 1) 67 (1) 151 (1) 153 (1)

47* 1)

*** End PasRef: 105 id's 249 references

11-144 Pas Ref

/'

Limitations

Availability

See also

The numbers in parentheses following the line numbers are the include keys of the
associated include files (shown in column 2 of the source listing). The include
filenames are shown following the source listing. Thus you can see what line number
was in which include me. An asterisk (*) following a line number indicates a
definition of the variable. An equal sign (=) indicates an assignment. A line number
with nothing following it means a reference to the identifier.

PasRef does not process conditional compilation directives! Thus, given the "right"
combination of $IFC's and $ELSEC's, PasRefs lexical (nesting) information can be
thrown off. If this happens, or if you just don't want the lexical information, you may
specify the -nole..~ option.

PasRef stores all its information on the Pascal heap. Up to 5000 identifiers can be
handled, but more identifiers will mean less cross-reference space. A message is
given if PasRef runs out of heap space.

Note: Although PasRef never misses a reference, it can infrequently be fooled into
thinking that a variable is defined when it actually isn't One case where this happens
is in record structure variants. The record variant's case tag is always flagged as a
defmition (even when there is no tag type) and the variant's case label constants (if
they are identifiers) are also. sometimes incorrectly flagged depending. on the
context. (This occurs only in the declaration parts of the program.)

The identifiers CYCLE and LEAVE are treated as reserved Pascal keywords by PasRef.
These are treated as two loop control statements by Pascal,unless explicitly declared.

PasRef is available as part of a separate Apple product, MPW Pascal 2.0.

Pascal command.

MPW Pascal 2.0 Reference.

PasRef 11- 145

Syntax

Description

Type

Input

Output

Diagnostics

Stotus

Option

Examples

See also

11-146 Paste

Paste-replace sele_ction with CU-pboard contents

Paste [-c count] selection [window]

Finds selection in the specified window and replaces its contents with the contents of
the Clipboard. If no window is specified, the command operates on ~e target window
(the second window from the front). It's an error to specify a window that doesn't
exist

For a definition of selection, see "Selections" in Chapter 6; a summary of the
selection syntax is contained in Appendix B.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status values may be returned:

o At least one instance of the selection was found
1 Syntax error
2 Any other error

-c count

Paste §

Fdr a count of n, replace the next n instances of the selection with
°the contents of the Clipboard.

Replaces the current selection with the contents of the Clipboard. This command is -
like the Paste item in the Edit menu, except that the action occurs in the target
window.

Paste /BEGIN/:/END/

Selects everything from the next BEGIN to the following END, and replaces the
selection with the contents of the Clipboard. 0

Copy, Cut, and Replace commands.

"Edit Menu" in Chapter 3.

"Selections" in Chapter 6.

Syntax

Description

,Type

Input

Output

Diagnostics

, Status

Options

Example

See also

Perform Report-generate a performance report

PerformReport [option .. .l

PerformReport reads a link map file and a performance data file and produces a
report that relates the performance data to procedure names. The input files are both
text flies and are distinguished as separate options. For a full discussion of MPW's
performance measurement tools, see Chapter 12.

Tool.

Standard input is not processed.

The report file is written to standard output

If no errors are detected, PerformReport runs silently. Errors and warnings are written
to the diagnostic output file. Progress and summary information is also written to the
diagnostic output if the -p option is specified.

The following status values may be returned:

o No errors
1 Warning issued
2 Error encountered
3 Heap error, usually insufficient memory

-a

-1 fileName

-m fileName

-n NN

-p

Produce a listing of all procedures (in segment order). (The default
is to produce only a partial listing sorted by the number of possible
hits.)

Read the link map of the file named fileName.

Read the performance data file named fileName. The default name
is Perform. out.

Show the top NN procedures. The default is 50.

Write progress and summary information to the diagnostic output
file.

Catenate "{MPW}ROM.Maps:MacIIROM.map » myFileName

PerformReport -m myFileName > myReport

Adds the ROM map me to the end of the link map file, myFileName. Reads the files
myFileName and Perform. out and writes the output to myReport.

Chapter 12, "Performance Measurement Tools."

MPW Pascal 2.0 Reference.

MPW C 2.0 Reference.

PerformReport 11-147

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

11-148 Print

Print-print text files

Print [option ...] [file . . ,]

Prints text mes on the currently selected printer. (printers are selected with the
Chooser desk accessory.) One or more files may be printed.

Note: Print does not support automatic font substitution. To print in a font other than
that indicated in the resource fork of the me where the MPW editor stores font
information, use the -font option.

Important: Print requires the printer drivers available on version 1.0 (or later) of the
Printer Installation disk.

Tool.

If no files are specified and if input has been redirected to standard input, Print reads
from standard input. You can terminate" input by pressing Command-Enter.

All output goes to the currently selected printer. Print sends no output to standard
output

Errors and warnings are written to diagnostic output. If the -p option is specified,
progress and summary information is also written to diagnostic output

The following status values may be returned:

o . Successful completion
1 Parameter or option error
2 Execution error

Note: You can also apply the Print options to the Print Window/Print Selection menu
item by including them in the exported Shell variable {PrintOptions}. {PrintOptions}
is originally set to '-h' in the Startup file.

-b

-b2

-clopiesl n

Print a round-rect border around the printable area of the page.
Headers, if specified with the -h option, are separated from the
body te...'{t by an extra line.

Print an alternate" form of the above border, in which the header
appears above and outside the border.

Print n copies of the me or selection.

-front] name Print using the font identified by name (for example, Courier). The
default is the font indicated in information in the resource fork of
the file, if present, and othervvise Monaco 9. (See also the -size
option.)

Note: Printing with a font that is not directly supported by the
printer is significantly slower than printing with a built-in font.

-Print Optlons---------------------,
-Header:-F'ormat. Border-----------.
10 Print Header II Tob ·settlng § !1·I@NoneOSlngleODOUble l
lOuse ~(Jd. Date Ilunes/page .--__ --.1 I (Files to Print...)

I
· nOe I . 'Ilune Spacing I r-In...;,p_u_t ___ -..,

ront 1 ... 1 il Font I---, .. _ " ,-I _____ ...

I Font Slzp. ~~I ront Si2e L; l~.J r-Er_r_or ___ ----,I
o Show Progress PostScript ...
o Reuerse Pages I Mare Options...)

r;commond line

Lrnt

r ~_~_~_~_xt_ffiH __ ~_tM_~_~_t~_S._lK_t_~_~_._tw ______ ~1 ~J~~C~:~~~.:~:~I~~il

-ff string Spedfies a string that will be treated like a form feed character if it is
encountered at the beginning of a line. If the string is the only item
on the line, that line will be omitted. If the string is followed by
additional characters on the line, the additional characters will be
printed on the first line of the new page.

-from n Print pages starting from page number n. The default is to start with
the first page of the file.

-h Print page headers at the top of each page. The header indicates the
time of printing, the name of the file, and the page number.

-hf[ont] name Specify the font to be used in headers (-h option). The default is the
font used in the me.

-hs[ize] n Specify the font size to be used in headers. The default is 10.

-Hines] n Print (at most) n lines per page. Line spacing is adjusted so that the
full page is used. If both -1 and -Is are specified, the -1 option takes
precedence.

-Is n Set line spadng. A value of 1 indicates normal (single) spacing (the
default), 2 indicates double-spacing, and so on. Fractional values
are permitted.

-md Print the file's last modified date, rather than the ~ate and time of
printing, in the header (if headers are specified).

-n Turn on line numbering; numbers appear to the left of the printed
text.

Print 11-149

Examples

See also

11-150 Print

-nwn

-p

-page n

-q quality

-r

-s[ize] n

-dabs] n

-tide name

-to n

Specify the width of the line number (-n) field in characters .. (The
default is value is 5.) Negative values for n cause the field to be zero­
padded. The valid range of values is -10 to 10.

Write progress information to diagnostic output, indicating which
mes are printing and the number of lines and pages printed.

Number the pages of the file, beginning with n. (By default, page
numbers start with 1.)

Set print quality on the ImageWriter. quality is one of the 'following'
strings:

high standard draft

Note: This option is ignored when printing on the LaserWriter.

Output pages to the printer in reverse order. This option eliminates
the need to reorder pages on the LaserWriter.

Print using the font size identified by n. The default is to use the font
size indicated in the resource fork of the file, if present; otherwise,
the default size is 9.

Expand tabs, using the indicated tab setting. If this option isn't
specified, the tab setting is taken from the resource fork of the me, if
present; otherwise, me tab setting is taken from the {Tab} variable.

If printing page headers (with -h), use name as the title. (1be default
is to use the .filename.)

Print pages up td page n. (The default is to print to the last page of
the file.)

The following options control the page margins. n is the margin width in inches.

-tm n Top margin. (Default = 0 inches)

-bm n Bottom margin. (Default = 0 inches)

-1m n Left margin. (Default = 0.2778 inch, for 3-hole punched pages)

-rm n Right margin. (Default = 0 inches)

Print -h -size 8 -ls 0.85 Startup UserStartup

Prints the files Startup and UserStartup with page headers, using Monaco 8 and
compressing the line spacing.

Print -b -hf helvetica -hs 12 -r print.p

Prints the "print.p" source file with borders, with headers in Helvetica 12, and with
pages in reverse order.

Print menu item in "File Menu," Chapter 3.

Syntax

Description

Type

Input

Output

Diagnostics

Status

ProcNames -display Pascal procedure
and function names

procnames [option ...] [file ...]

ProcNames is a Pascal utility that accepts a Pascal program or unit as input and
produces a listing of all its procedure and function names. The names are shown
indented as a function of their nesting level. The nesting level and line number
information is also displayed.

ProeNames can be used in conjunction with the Pascal "pretty-printer" PasMat when
that utility is used to format separate include files. For that case, PasMat requires that
the initial indenting level be specified. This level is exactly the information provided
by ProeN ames.

The line number information displayed by ProcNames exactly matches that
produced by the Pascal cross-reference utility PasRef (with or without USES
declarations being processed), so ProeNames may be used in conjunction with the
listing produced by PasRef to show just the line numbers of every procedure or
function header.

Another possible use for the ProeNames output is to use the line number and file
information to find procedures and functions quickly with Shell editing commands.

Tool.

The file parameters specify a list of Pascal source file names to be processed.
Standard input is processed if no filenames are specified. Unless the -d option is
specified, the entire list of files is treated as a single group of files to be processed as a
whole, producing a single procedure/function summary. Specifying the -d option is
equivalent to executing ·Proc..Names individually for each specified file.

The procedure/function name listing is written t6 the standard output file. Form feed
characters are placed in the file, before each new list (unless the -e option· is
specified).

Errors are written to diagnostic output.

Proc..Names may return the following status values:

o Normal termination
1 Parameter or option error
2 Execution terminated

ProcNames 11- 1 51

Options -c

-d

-e

-f

Do not process a used unit if the unit's $U interface filename is
specified inthe list of files to be processed. This option has the same
effect on the line numbering as does the -c option in the PasRef
u~ility.

Reset total line-number count to 1 on each new me. If a list of files is
specified, then the total line number count may either start at 1 or
continue from where it left off in the previous me. The default is to
agree with the listing produced by PasRef when it processes a list of
flies,that is, to continue the count However, if you want Proci'J'ames
to treat each file independently, you may specify the -d option so
that the total line number count is reset to 1 before each me is
processed.

Suppress page eject (form feed) between each procedure/function
listing.

PasMat format compatibility mode. The default lists the procedure
and function names as a function of their Pascal Compiler
indenting level. However, for indenting purposes only, a special
case is made of level 1 procedures in the Implementation section of
a unit.PasMat formats these procedures indented under the word
Implementation. Thus they are indented as if they were level 2
procedures. If you intend to use the level information for PasMat,
then you should specify the -f option.

-i pathname [,pathname 1. ..

-n

-0

-p

-u

11-' S2 ProcNames

Search for include or USES files in the specified directories.
Multiple -i options may be specified. At most 15 directories will be
searched. The search order is specified under the description of the
-i option for the. Pascal command.

Suppress all line number and level information in the output
display. Only the procedure and function names will be shown
appropriately indented .

. The source file is an Object Pascal program.The identifier OBJECT
is considered as a reserved word so that Object Pascal declarations
may be processed. The default assumes that the source is an Object
Pascal' program.

Display version information and progress information in the
diagnostic file.

Process USES declarations. The only reason you would need to
process USES declarations with Proc..1\James would be to make the
line number information agree with a PasRef listing that also
contains processed USES declarations. The default does not
process the USES declarations because they have no effect on the
procedure name listing, only. the associated line numbers. Thus, if
you specify the -n option to suppress the line number information,
it makes no sense to process USES declarations, so the -u option will
be ignored when the -n option is specified.

Examples

Limitations

procnames Memory.p >names

Lists all the procedures and functions for the Pascal program Memory. p and writes
the output to the file "names". The listiOg below is the output generated in the
"names" file.

Procedure/Function names for Memory.p

11 11 0 Memory [Main] Memory.p
37 37 1 RsrcID
43 43 1 DRVROpen
63 63 1 DRVRClose
74 74 1 DRVRControl
76 76 2 DrawWindow
83 83 3 PrintNum
93 93 3 GetVolStuff

108 108 3 PrtRsrcStr
168 168 1 DRVRPrime
173 173 1 DRVRStatus

*** End ProcNames: 11 Procedures and. Functions

The first two columns on each line are line number information. The third column is
the level number. The first column shows the line number of a routine within the total
source .. The second.column ShdwS the line number within an include file (include
files are always processed). As each include file changes, the name of the file from
which input is being processed is shown along with the routine name on the first line
after the change in source. Segment names (from Pascal Compiler $5 directives) are
similarly processed. These are show·n enclosed in square brackets (the blank segment
name is shown as "[Main]").

Only syntactically correct programs are accepted by ProcNames. Conditional
compilation compiler directives are not processed.

ProcNames 11-153

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Quit-quit MPW

Quit [-y I -n I -cl

TIlls command is equivalent to the menu item Quit Quit executes the standard quit
procedures, asking confirmation to save modified files, close all windows, and so on.

Miscellaneous.

None.

None.

Errors are written to diagnostic output.

The following status values may be returned:

1 Syntax error
2 Command aborted

Note: Quit cannot return a status of 0, because if there are no errors the command
never returns.

-y

-n

-c

Quit -y

Answer "yes" to any confirmation dialog that occurs, causing all
modified windows to be saved before closing them.

Answer "no" to any confirmation dialog that occurs, causing all
modified windows to be closed without saving any changes.-

Answer "cancel" to any confirmation dialog that occurs. This
effectively aborts the command if any windows need to be saved.

Quits MPW answering "yes" to any dialogs such as those prompting to save files.

Quit -c

Quits MPW unless any confirmation dialogs occur and dialog boxes are displayed.

See also Shutdown command.

11-154 Quit

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Quote-quote parameters

Quote [-n] [parameters ...]

Quote writes its parameters, separated by spaces and terminated by a return, to
standard output Parameters containing characters that have special meariing to the
Shell's command interpreter are quoted with single quotes. If no parameters are
specified, only a return is wrirten.

Quote is identical to Echo except that Quote quotes parameters that contain special
characters. Quote is especially useful when using Shell commands to write a
command script.

The following special characters are quoted:

Space Tab Return Null

; & I () a I " / \ { } ... ? == [] + • " It ® < > ~ ...

Miscellaneous.

None.

Parameters are written to standard output and are enclosed in single quotes if they
contain special characters.

None.

Status value 0 is always returned.

-n Don't write a return following the last parameter. The insertion
point remains at the end of the output The -n isn't written to
standard output.

Quote 11-155

Examples Echo "".a
Quote =.a

Sample.a Count.a My Program.a
Sample.a Count.a 'My Program.a'

Echo and Quote behave slightly differently for parameters that contain special
characters. TIie fust line above was produced by Echo; the second by Quote.

Quote Notice what happens to single quotes: "--'--"
Notice what happens to single quotes: '--'0' '--'

Because single quotes can;t appear within single quotes, they are replaced with 'a"
which doses the original single quote, adds a literal quote, and reopens the single
quotes.

For file In =.a
Quote Print "(file}"

End

Print Sample.a
Print Count.a
Print 'My Program.a'

The For loop shown above'writes a Print command for each file that matches the
pattern ==.a. These commands can then be selected and executed. Notice the quotes
in the last Print command.

See also Echo and Parameters commands.

11-1 S6 Quote

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Rename-rename files and directories

Rename [-y 1 -n 1 -c] name newName

The file, folder, or disk specified by name is renamed newName. A dialog box
. requests a confirmation if the rename would overwrite an existing me or folder. The

-y, -n, or -c options can be used to avoid this interaction.

Note: You can't use the Rename command to change the directory a file is in. To do
this, use the Move command

Note also: Wildcard renames in the following form will not work:

Rename o.text -.p

This is because the Shell expands the filename patterns "==.text" and "==.p" before
invoking the Rename command. In order to gain the desired effect, you would need
to execute a command such as the one shown in the fifth example below.

Built-in.

None.

None.

Errors are written to diagnostic output

The following status values may be returned:.

o Successful rename
1 Syntax error
2 Name does not exist
3 An error occurred
4 Cancel was selected or implied by the -c option

-y

-n

-c

Answer "yes" to any confirmation dialog that may occur, causing
conflicting file .or folder to be deleted.

Answer "no" to any confirmation dialog that may occur, stopping
the rename if newName already exists.

Answer "cancel" to any confirmation dialogs, aborting the rename
if newName already exists.

Rename 11-157

Examples Rename Filel File2

Changes the name of File 1 to FileZ.

Rename HD:Programs:Prog.c Prog.Backup.c

Changes "the name of Prog.c in the directory HD:Programs to Prog.Backup.c in the
same directory.

Rename Untitled: Backup:

Changes the name of the disk Untitled to Backup.

Rename -c Filel File2

Changes the name of Filel to that of FileZ, but if a conflict occurs, cancels the
operation and returns a status of 4.

To perform a wildcard rename, you could execute the following set of commands:

For Name In =.text

End

(Evaluate "'{Name}" =- / (...) ~l. text/) > Dev: Null
Rename "{Name}" "{~l}.pl1

The· Evaluate command is executed only for its side effect or permitting regular
expression processing. (The expression operator =- indicates that the right-hand
side of the expression is a regular expression.) Thus, you can use the regular
expression capture mechanism, (regularExpr)®n. Evaluate'S output is tossed in the
bit bucket (Dev:Null). .

See olso Move command.

11- 158 Rename

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Replace-replace the selection

Replace [-c count] selection replacement [window]

Finds selection in the specified window and replaces it with replacement. If no window
is specified, the command operates on the target window (the second window from
the front). It's an error to specify a window that doesn't exist. If a count is specified,
the Replace command will be repeated count times.

For a definition of selection, see "Selections" in Chapter 6. A summary of the
selection syntax is contained in Appendix B.

You can include references to parts of the selection in the replacement by using the ®
operator. The expression ®n, where n is a digit, is replaced with the string of
characters 'that matches the regular expression tagged by ® n in the selection. (See
"Tagging Regular Expressions With the ® Operator" in Chapter 6.)

All searches are by default case insensitive. To specify case-sensitive matching, set
the {CaseSensitive} variable before executing the command. (You can do this by
checking the Case Sensitive box in the dialogs displayed by the Find and Replace
menu items.)

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status values may be returned:

o At least one instance of the selection was found
1 Syntax error
2 Any other error

-c count Repeat the command count times. As a convenience, 00 (Option-5)
can be specified in place of a number. -c 00 replaces all instances
of the selection from the current selection to the end of the
document (or to the start of the document, for a backward search).

Replace 11- 159

Examples

See also

11-160

Replace -c ~ ImyVarl 'myVariable' Prog.p

Replaces every subsequent instance of the selection with the string in single quotes.

Replace -c 5 Ie [at]+1 ,~

Strips off all the spaces and tabs at the front of the next five lines in the file (and
replaces them with the null string). This action takes place in the target window.

Set HexNum "[O-9A-F]+"
Set Spaces "[at]+"
Replace -c coo I ({ HexNum}) ~1 { Spaces} ({HexNum}) ~2 I ~lan~2

Defines two variables for use in the subsequent Replace command, and converts a file
that contains two columns of hex digits (such as the icon list from ResEdit) into a
single column of hex digits.

Find and Clear commands.

Chapter 6.
Appendix B.

Replace

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See olso

Request-request text from a dialog box

Request [-d default 1 [message ...]

Displays an editable text dialog box with OK and Cancel buttons and the prompt
message. If the OK button is selected, then all text that the user typed into the dialog
box is written to standard output The -d option lets you set a default response to the
request.

Built-in.

Reads standard input for the message if no parameters are specified.

Text from the dialog box is written to standard output.

None.

Request may return the following status values:

o The OK button was selected
1 Syntax errors
2 The Cancel button was selected

-d default The editable text field of the dialog box is initialized to default. The
default text appears in the dialog box-if the OK button is selected
without changing the response, the default is written to standard
output.

Set Exit 0

Set FileName "'Request 'File to compile' -d "{Act:ive}"'"

If {FileName} .= ""
Pascal "{FileName}" » "{WorkSheet}"

End
Set Exit 1

Displays a dialog box that lets the user enter the name of a file to be compiled. Sets
the default to be the name of the active window, as follows:

File to compile

((OK ~ Cancel

Alert and Confirm commands.

Request 11-161

Syntax

Description

Type

Input

Output

Diagnostics

Status

ResEqucl-compcre resources in files

ResEqual [option] filel fi/e2

Res Equal compares the resources in two files and writes their differences to standard
output

ResEqual checks that each file contains resources of the same type and identifier as the
other file; that the size of the resources with the same type and identifier are the same;
and that their contents are the same.

Tool.

The file 1 andfile2 parameters specify the two files whose resources are to be
compared.

Descriptions of the differences in the resources of the two flies are written to standard
output.

The following messages appear when reporting differences:

o In 1 but not in 2
-the resource type and ID are disp/ayed-

o In 2 but not in 1
-the resource type and ID are disp/ayed-

o Resources are different sizes
-the resource type and ID are disp/ayed-
-the size of the resource in each file is disp/ayed-

o Resources have different contents
- the resource type and ID are displayed­
Contents of resource in me 1 at offset
-offset to the differing bytes from the start of the resource is displayed-
-16 bytes at the offset are displayed-
Contents of resource in file 2 at offset
-offset to the differing bytes from the start of the resource is disp/ayed-
-16 bytes at the offset are displayed-

Parameter errors are written to diagnostic output.

The following status values may be returned

o Resources rna tch
1 Parameter or option error
2 Files don't match
3 Execution terminated

1/- 162 ResEqual

Option

Example

Limitations

See also

-p Write progress information to diagnostic output.

-ResEqual Optlons--------------------.

rFlles to Compare--,

I (Resource File 1) I
I (n<i~olm:(J nil' 2) I

o progress

fcommand Line
r.s~~1

rRedlreCtion ~
! Output !
II II
I Error I I I

RtsE~l COmj)VH tM ",S_CtS in t o flltS ~ rtports tk. di(('''MCtS. ;;;;;;;;;;;;;;;;;;;;;;;;;;;~. f
~HeiP I [Cancel)

L...-_________________ ---I [n(!~.~l1lJnl]

Resequal Sample Sample.rsrc

Compares the resources in Sample and Sample.rsrc, writing the results to standard
output.

When the contents of resources are compared and a mismatch is found, the
mismatch and the subsequent 15 bytes are written. ResEqual then continues the
comparison, starting with the byte following the last displayed.

If more than 10 differences are detected in the same resource, the rest of the resource
i~ skipped and processing continues with the next resource.

Equal command. (The -r option of Equal compares the resource forks of fIles on a
byte by byte basis, including the resource map.)

ResEqual· 11-163

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

Revert-revert to saved files

Revert [-y] [window .. J

Reverts the specified windows to their previously saved states. If no window is
specified, Revert works on the target window. Revert causes a confirmation dialog box
to appear, but you can avoid this dialog box by using the -y option to revert
unconditionally to the last saved version of the document.

Built-in.

None.

None.

Errors are written to diagnostic output

The following status values may be returned:

o No errors
1 Parameter or option error
2 The specified window does not exist
3 A system error occurred

-y

Revert

Unconditionally revert all named windows to their previously saved
states.

Displays a conftrmation dialog box for reverting the target window to its last saved
state.

Revert -y "{Worksheet}"

Reverts unconditionally to last saved worksheet

See also Close and Save commands.

11-164 Revert

Syntax

Description

Type

Input

Output

Diagnostics

Status

Rez-Resource Compiler

Rez [option...] [resourceDescriptionFile...]

Creates the resource fork of a file according to a textual description. The resource
description file is a text me that has the same format as the output produced by the
Resource Decompiler, DeRez. The data used to build the resource file can come
directly from the resource description me(s) as well as from other text files (via
itinclude and read directives in the resource description file), and from other
resource files (via the include directive).

Rez includes macro processing, full expression evaluation, and built-in functions and
system variables. For details of Rez, and the format of a resource description file, see
Chapter 8. For a summary of the format of a resource description file, see
Appendix D.

Tool.

Standard input is processed if no filenames are specified.

For all input files on the command line, the following search rules are applied:

1. Try to open the file with the name specified 'las is."

2. If the preceding rule fails, and the filename contains no colons or begins with a
colon, append the filename to each of the pathnames specified by the {Rlncludes}
variable and try to open the file.

No output is sent to the standard output file. By default, the resource fork is written to
the me Rez.Out You can specify an output me with the -0 option.

If no errors or warnings are detected, Rez runs silently. Errors and warnings are
written to diagnostic output.

Rez may return the following status values:

o No errors
1 Error in parameters
2 Syntax error in file
3 I/O or program error

Rez 11-165

Options

11-166 Rez

-align word [longword]

-a[ppend]

Aligns resources along word or longword boundaries. This may
allow the Resource Manager to load these resources faster. The
-align option is ignored when the -a option is in effect

Appends Rez's output to the output file rather than replacing the
output file.

Warning: Rez will overwrite any existing resource of the same type
and ID without any warning message. Rez cannot append resources
to a resource me that has its Read Only bit set. Also, Rez cannot
replace a resource file that has a protected bit set, unless the -ov
option is specified. Although it is possible to append a resource
directly into a running system file, it is not recommended. See also
the -ov option below.

r-Rez Optlons---------------------,

r
Resource output Flle----

1

-
r

-lQ"=g='=I"-'-'11 0 Redeclared types ole
Type ~ I IRez.out I ~ 0 Progress Information

" Creator 1111 I . [@ Rewrite resource file i (Description files ...)
! 0 Make resource file read-only I #Include Poths ...)
I rResource Allgnment-----., II! Include P-ths,..)

I @ Byte 0 Word 0 longWord u"

o Merge resources into resource file I Preprocessor ,..)
o OK 10 nipJ<1(l.~ D(oh~c1ed l'e~ou(es I) Redirection ...

fcommand line
Ru

f ~_~e_!_~_tO_O_I~_N_tO_c~_'_.1._rt_S_~_c_.s_. ________ ~IJ ~~sc~:~:~:~el~~~

-c[reator] creatorExpr
Set the output file creator. (The default value is '7???'.)

-d[efine] macro[- data]
Define the macro variable macro to have the value data. If data is
omitted, then macro is set to the null string-note that this still
means that macro is defined. USing the -d option is the same as
writing

#define macro [data 1

at the beginning of the input.

-1 pathname(s) Search the following pathnames for #:include files. This option
may be specified more than once. The paths will be searched in the
order they appear on the command line.

-0 outputFile

-ov

rez -i {mpw}myStuff: -i hd:tools ...

Place the output in outputFile. The default output file is Rez.Out.

Overrides the protected bit when replacing resources with the -a
option.

Example

See also

-p[rogress] Write version and progress information to diagnostic output.

-rd Suppress warning messages if a resource type is redeclared.

-ro Set the mapReadOnly flag in the resource map.

-s pathname(s) Search the following pathnames for resource include files.

-t[ype] typeExpr
Set the type of the output file. The default value is 'APPL'.

-ufndefl macro Undefine the macro variable macro. This is the same as writing

ltundef macro

at the beginning of the input It is meaningful to undefine only the
preset macro variables.

Rez Types.r Sample r -0 Sample

Generates a resource fork for the file Sample, based on the descriptions in Types.r
and Sample.r.

DeRez and RezDet commands.

Chapters 5 and 8.

Standard resource type declarations in the {RIndudesl directory:

o Types.r

o SysTypes.r

o MPWTypes.r

Rez 11-167

Syntax

Description

RezDet-detect inconsistencies in resources

RezDet [-b] [-q I -s I -d I -r I -1] resourceFile ...

If no options are specified, RezDet investigates the resource fork of each flie for
damage or inconsistencies. The specified flies are read and checked one by one.
Output is generated according to the options specified.

RezDet checks for the following conditions:

o The resource fork is at least the minimum size. (There must be enough bytes to read
a resource header.)

o There is no overlap or space between the header, the resource data list, and the
resource map. There should be no bytes between the EOF and the end of the
resource map.

o Each record in the resource data list is used once and only once. The last data item
ends exactly where the data list ends.

o Each item in the resource type list contains at least one reference; each sequence of
referenced items starts where the previous resource type item's reference list
ended; and each item in the reference list is pointed to by one and only one
resource type list item.

o There are no duplicates in the resource type list

o Each name in the name list has one and only one reference, and the last name
doesn't point outside the name list.

o There are no duplicate names in the name list Duplicate names cause an advisory
warning rather than a true error. This warning is given only if the -s, -d, or -r option
is selecte d.

o Each reference list item points to a valid data item and either has a name list offset
of -1 or points to a valid name list offset.

oBits 7 (Unused), 1 (Changed), or 0 (Unused) should not be set in the resource
attributes.

o All names have a nonzero length.

Fields are displayed as hex or decimal for numeric values, or as a hex dump with
associated printable Macintosh characters. The characters return ($00), tab ($09),
and null ($00) are displayed as "-,", "Ll", and" ." respectively. The same is true for a
resourc(! name shown as a text string.

Note: RezDet does not use the Resource Manager and should not crash, no matter
how corrupt the resource fork of the me.

Type Tool.

Input RezDet does not read from standard input.

Output Information describing the resource fork is written to standard output (together with
any other information generated by the -s, -d, -1, or -r option).

11-168 RezOet

Diagnostics

Status

Options

Examples

Limitations

Error messages go to diagnostic output.

The following status values may be returned:

o No errors detected
1 Invalid options or no files spedfied
2 Resource format error detected
3 Fatal error-an I/O or program error was detected

Only one of the following options can be used at one time:

-q[uiet]

-s[how]

-d[ump]

Don't write any information to standard output. This option
suppresses all resource file format errors normally generated.

Write information about each resource to standard output.

Same as -show but also generates detailed information about
headers, name lists, data lists, and so on.

-r{awdump] Same as -dump but also dumps contents of data blocks, and so on.

Note: This option can generate huge amounts of output

-Uist] List resource types, IDs, names, attributes, and resource sizes to
standard output in the following format:

'type' (lD,name,attributes) [size]

The following option can be used by itself or with other options:

-hUg] Read the data for each resource into memory one resource at a
time, instead of all at once (used for huge resource files). If RezDet
tells you that it ran out of memory, try using this option.

RezDet "{SystemFolder}System"

Checks the System file for damage.

RezDet -q Foo I I Delete Foo

Removes the file Foo if the resource fork is damaged.

Duplicate resource name warnings are generated even if the names belong to
resources of different types.

The file attributes field in the resource map header is not validated.

The Finder-spedfic fields in the header and resource map header are ignored.

RezDet 11-169

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

Save-save windows

Save [-a I windows ...]

Saves the contents of window or a list of windows to disk, without closing them. The
-a option saves all open windows. Save without any parameters saves the target

window (the second window from the front).

Built-in.

None.

None.

Errors are written to diagnostic output.

Save may return the following status values:

o No errors
1 Syntax error
2 Specified window does not exist

-a

Save -a

Save all open windows. This option cannot be used when any
windows are specified.

Saves all open windows.

Save II {Active} II II {Worksheet} II

Saves the Worksheet window and the contents of the active window.

See also Close and Revert commands.

11-170 Save

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Search-search files for a pattern

Search [-s I -i] [-rl [-q] [-f file] /patternl (file .. .l

Searches the input files for lines that contain a pattern, and writes those lines to
standard output. If no file is given, standard input is searched. When reading from
fIles, the fIlenames and line numbers of matching lines are prepended to each line of
output

Pattern (defined in "Pattern Matching" in Chapter 6 and in Appendix B) is a regular
expression, optionally enclosed in forward slashes (/).

Tool.

Standard input is read if no files are specified.

Each matching line is written to standard output.

Error messages are written to diagnostic output.

The following status values may be returned:

o No error
1 Syntax error
2 Pattern not found

-r

-q

-5

-1

-f file

Write the lines not matching the pattern to standard output.

Write only the matching lines to standard output. Do not prepend
filename and line number.

Case-sensitive search, overriding {CaseSensitive} variable.

Case-insensitive search, overriding {CaseSensitive} variable.

All lines that do not get written to standard output are written into
this file.

Search 11- 1 71

Examples Search /procedure/ Sample.p

Searches the file Sample.p for the pattern "procedure". All lines containing this
pattern are written to standard output.

Search /Export/ "{MPW}"StartUp "{MPW}"UserStartUp

Lists the Export commands in the StartUp and UserStartup files.

Search /PROCEDURE [a-zA-ZO-9_]*;/ "{Plnterfaces}"-

Searches for the procedures with no parameters in the Pascal interface files su pplied
with MPW Pascal. Because more than one input file is specified, a ftlename will
precede each line in the output.

Search -f file.nonmatch /pattern/ file

All lines of "file" that contain "pattern" are written to standard output All other lines
will be placed in file.nonmatch. This, in effect, splits the file in two pieces, using
"pattern" as the key.

Search -r -f file.nonmatch /pattern/ file

This does the opposite of the first example. All lines that do not contain "pattern" are
echoed to standard output, and all other lines (that is, those containing "pattern")
are written to file.nonmatch.

See also Find command.
"Pattern Matching (Using Regular Expressions)" in Chapter 6.

11- 172 Search

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Set-define or write Shell variable

Set (name [value]]

Assigns the string value to the variable name. If value is omitted, Set writes the name
and its current value to standard output. If both name and value are omitted, Set
writes a list of all variables and their values to standard output. (This output is in the
form of Set commands.)

Note: To make variable definitions available to enclosed scripts and programs, you
must use the Export command.

Built-in.

None.

If value or both name and value are omitted, variable names and their values are
written to standard output.

Error messages are written to diagnostic output.

The following status values may be returned:

o No error
1 Syntax error
2 Variable "name" does not exist

None.

Set 11-173

Exomples

See olso

11-174 Set

Set Clncludes "{MPW}CFiles:Clncludes:"

Redefines the variable Clncludes.

Set Clncludes

Displays the new definition of Clncludes.

Set Commands a
":, {MPW}Tools:, {MPW}Applications:, {MPW}ShellScripts:"

Redefines the variable {Commands} to include the directory "{MPW}ShellScripts:".
(See Chapter 5 for a complete list of predefined variables.)

Set > SavedVariables
* ... other commands

Execute SavedVariables

Writes the values of all variables to file S ave dVariables. Because the output of Set is
actually Set commands, the file can be executed later to restore the saved variable
definitions. This technique is used in the Suspend and Resume scripts to save and
restore variable definitions, as well as exports, aliases, and menus.

Export, Unexport, and Unset commands.

"Defining and Redefining Variables" in Chapter S.

"The Startup and UserStartup Files" in Chapter S.

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

SetDirectory-set the default directory

SetDirectory directory

Set the default directory and add the new default directory to the Directory menu if it
is not already present. The directory parameter must be specified.

Note: Directory names should not contain any of the special characters shown below.
These characters all have special meaning when they appear in menu items:

1\ < / (

The SetDirectory script is used to implement the Set Directory menu item in the
Directory menu.

Script.

None.

None.

Errors are written to diagnostic output

The following status values may be returned:

o Successful completion
1 Parameter error or unable to set directory

None.

SetOirectory "{MPW}"CExamples:

S~ts the default directory to the CExamples: folder in the {MPW} directory, and adds
"{MPW} "CExamples: to the Directory menu if it's not already there.

SetOirectory ...

Uses the Commando dialog box to select the default directory interactively_

Directory, DirectoryMenu, and Files commands.

SetDirectory 11-175

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

SetFile-set file attributes

SetFile [option ...] file ...

Sets attributes for one or more files. The options apply to all f.tles listed.

Tool.

None.

None.

Error messages are written to diagnostic output.

The following status values may be returned:

o The attributes for all files were set
1 Syntax error
2 An error occurred

-c creator

-t type

-d date

-m date

-1 h,v

Set the file creator. Creator must be 4 characters; for example,

-c 'MPS '

Set the file type. TYPe must be 4 characters; for example,

-t 'TEXT'

Set the creation date. Date is a string in the form

"mm/ddlyy [hh:mm [:ssl [AM I PM 11"

representing month, day, year (0-99), hour (0-23), minute, and
second. The string must be quoted if it contains a space. A period
(.) indicates the current date and time.

Set the modification date: same format as above. A period (.)
indicates the current date and time.

Set the icon location. h and v are positive integer values and
represent the horizontal and vertical pixel offsets from the upper­
left corner of the enclosing window.

11-176 SetFile

Examples

See also

-a attributes Set the file attributes. Attributes is a string composed of the
characters listed below. Attributes that aren't listed remain
unchanged.

L Locked
V Invisible
B Bundle
S System
I Inited
D On Desktop
M Shared (can run multiple times)
A Always switch launch (if possible)

Uppercase letters set me attribute to I, lowercase to O. For example,

Setfile -a vB Filename

clears the invisible bit and sets the bundle bit.

Note: These attributes are described in the File Manager chapter of
Inside Macintosh. Note that setting the locked bit doesn't prevent
the file from being changed.

SetFile -c "MPS " -t MPST ResEqual

Sets the creator and type for the MPW Pascal tool ResEqual.

SetFile Faa -m "2/15/86 2:25"

Sets file Faa's modification date.

SetFile Faa Bar -m

Sets the modification date to the current date and time (the period is a parameter
to -m, indicating current date and time). Setting the date is useful, for instance,
before running Make.

Files command. (The -1 and -x options display file information.)

SetFile 11-177

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

SetPrivilege-set access privileges for folders
on file server

SetPrivilege [-f prltlJ [-d Prlv] [-c prltlJ [-0 ownen [-g group] [-rJ [-il folder ...

SetPrivilege is equivalent to using the access privileges desk accessory. Prlv is a
character string (1, 2, or 3 characters long) that specifies privileges for the owner, the
group, and everyone (0, g, and e, respectively). An uppercase letter enables the
privilege, lowercase disables the privilege. If a specific character is not in the string
then the respective privileges are not changed.

Built-in.

None.

When the -1 option is used, folder information is written to standard output.

Errors are written to diagnostic output.

The following status values may be returned:

o No error
1 Syntax error
2 Folder not found, or folder not an AppleShare folder
3 Use is not owner; could not modify privileges

-0 new owner

-g new group

-r

-f prlv

-dPrlv

-cpriv

-1

Change owner of the folder to new owner.

Change grou p of the folder to new group.

Recursively apply changes to enclosed folders.

See files. Set the privileges with respect to seeing files within
folders (equivalent to read access).

See folders. Set the privileges with respect to seeing folders and
dierectories and listing their contents.

Make changes. Set privileges allowing users to make changes to
files and directories.

Write folder information (owner, group, and access privileges) to
standard output. The output is in the form of a SetPrivilege
command. The -r option is the only option that may be used in
conjunction with the -1 option.

11-178 SetPrivilege

Examples SetPrivilege -r -f OGe -d OGe -c Oge a
"Server:personal:peter"

This gives everyone in your group the ability to see files within Server: personal: peter
without being able to change them. Anyone outside the group cannot see the files or
folders or make changes. The owner can do everything.

Here is the easiest way to use the SetPrivilege command: Use the -1 option to get
information on folders and edit the privileges as desired. Then execute the resulting
command. For example, to change the privileges for Server:Private, follow these
steps:

1. Execute this command to obtain the current privileges:

SetPrivilege -i Server:Private
Set Privilege Server:Private -0 Joe -g Team -d OGE -f OGE -m OGE

Note: These privileges show that Joe, the group Team, and everyone else has all
privileges to the folder Private.

2. Now edit the output, adjusting the privileges as desired. For example,

SetPrivilege Server:Private -0 Joe -g Team -d Oge -f Oge -m Oge

Note: Now only Joe, the owner, can see directories and files; only Joe can make
changes. All other users have no privileges.

3. Execute the resulting command.

SetPrivilege 11-179

Syntax

Description

SetVersion-maintain version and revision number

Setversion [option ...] file

Version and revision numbers for an application or MPW tool specified by file are
assumed to be maintained in the form "ver.reV', where ver is considered a version
number and rev a revision number. These values may be displayed by an
application's "about box" or when an MP\V tool's -p option is used. Use SetVersion to
independently maintain the version and revision numbers as a resource in the
application or tool. Optionally, SetVersion can update a version and revision string
in a source file. Pascal, C, and Rez source files are supported.

The current version and revision values are always assumed to be in the specified file's
resource fork as a string resource with the resource type 'MPST' and a resource ID of 0
(you can use the -t and -i options to specify another resource type and ID number if
desired). The resource will be created by SetVersion if it is not already there. The
string always contains the characters "Version ver.re1l', where verand rev are digits.
The version may optionally be prefixed with an arbitrary string (-pref'lX), and the
revision may be similarly sufflXed with an arbitrary string (-sufflX) for more complex
version numbering (such as "Version x1.23B2").

SetVersion can perform the following functions on the version and revision values:

o Increment the version number by 1 (-v).

o Set the version number to a specific value (-sv).

o Increment the revision number by 1 (-r).

o Set the revision number to a specific value (-sr).

The 'MPST' resource attached to the application or tool is considered the location of
the version and revision. If you attach the 'MPST' resource to the actual application or
tool, it will "go" wherever the application or tool goes! Thus the application or tool
fliename is a required parameter to SetVersion. However, the values contained in the
'MPST' resource can be used to set a corresponding string constant in a source file
used to generate the application or tool. This feature is optional, but it should be used
for two reasons. First, it explicitly allows the source to reflect the version and revision
numbers in the 'MPST' resource. Second, if, for any reason, the 'MPST' resource
cannot be accessed, the constant can be used.

11-180 SetVersion

Type

Input

Output

Diagnostics

Status

The following Pascal code fragment illustrates how the 'MPST' resource and its
corresponding source string constant can be used to access the version and revision
of an MPW tool. First, in the case of Pascal, the source constant is assumed to be
declared as follows (all the formats are discussed under "Options" below):

caNST
Version = '1.2'; (ver.rev string canst.}

The following procedure can now be used to get the current version and revision numbers:

PROCEDURE GetVerRev(VAR VerRev: Str2SS);

VAR
H: StringHandle;
i: Integer;

BEGIN {GetVerRev - get current liver. rev"}
H := StringHandle(GetResource('MPST', 0»;
IF H = NIL THEN

VerRev .- Version
ELSE

BEGIN

{Get 'MPST' rsrc
(Use string canst.}
{if not found }

i := Pas ('Version', H"") + 8; (Start of ver. rev}
VerRev := Copy(H"", i, Length(H"")-i+l); {Extract from rsrc}
END;

END; (GetVerRev}

Normally, SetVersion is used with its -r option as part of a makefile to automatically
increment the revision number each time the application or tool is rebuilt For each
(major) release the version number should be incremented and the revision reset to
O. Note that when SetVersion modifies the application or tool, or updates a source
me, the modification date is not changed. Therefore, make files will not be affected by
the use of SetVersion.

Tool.

The ji"le parameter specifies the filename of an application or tool containing the
'MPST' string resource.

None.

Errors are written to the diagnostic file.

The following status values may be returned:

o Normal termination
1 Parameter or option error
2 Execution terminated

SetVersion 11-181

Options -csource file

-d

-fmt nf.mf

11-182 SetVersion

Update the string constant in the C source specified by the file. The
constant is set to be the same as that specified by the 'MPST
resource string in the application or tool. It is assumed that the
constant is defined as a string constant in a #define, somewhere in
the first 12800 characters (25 512-byte blocks) of the file, as follows:

#definetlVersion liver. rev"AAAAAA~/*some comment*/

The 6's indicate required spaces. There may be any number of
spaces before the required comment. However, because
SetVersion edits the line in-place, there must be enough room to
allow for changes in the size of the version and revision
values--otherwise an error will be reported to the diagnostic file.
Case is ignored, and C comments are skipped, when searching for
the characters "#define6 Version" in the source. The -verld may be
used to search for a different #define identifier if desired.

Write the (updated) version and revision values contained in the
'MPST' resource string to the diagnostic output file.

Format the version and revision values according to the speofied
format. The format of the resource is changed only if the version
and/or revision is actually changed (-sv, -v, -sr, -r). The format is
specified as nf. mf, where f is either of the letters D or Z, and n and
m are integer values from 1 to 10, which specify the field widths of
the version and revision numbers respectively. If the version or
revision value is larger than the specified field width,. the width is
enlarged to contain the entire value .. Each field is independently
padded up to the specified width with leading zeros or blanks
according to the setting of f. "D" indicates leading blanks, and "Z"
indicates leading zeros. For example, a format of 1Z.3Z for a
version/revision value of 10.2 would be formatted as dl0.002. The
default format is lZ.1Z. Only the version format (n!) or revision
format (. mf, the period is required) need be specified, allowing the
other value to format according to the default.

-SetUerslon Optlons------------------.....,
,-------------..... -Optlons-----------,
(Application or MPW Tool Nome) 0 m~()1I11j 0 (n(r~m~nt IJNsion

rSource Files 0 ProBn~~s 0 In(rllnH~llt rlltJisieJrl
PI1S(ul Smu'(e i :=J Set llenioll,-l SHt FJ(!lIi~i()nr--:

!! !:

[SOUl'(~ i I -layout-----~===:"I
B~l:SouJ'(.~ ~i =====I=~I r----1 J11'(~l1Ul_,--1
L-____:======~ FOITTIC11112.12! j----.
rAesource Attributes- Sut tiu l I
n~sou)'(~ ·rIJIH~ r~flST I -,---------r=; IlJllrsiof1 1<1 En'or 1

Bl~SCllII'(~ 10 i 0, 1 Illh~rsi(ln --.J ! Ii
,:commend Line
L·tVwsion

Help----------------....., (Cancel]
Tool Of" ~ppll~tlon v.,.sion/r'.vision numb.,. ("v.,..,..v") m~int~iMr',· .

L-.G_..,_.,._~t_ts_l_m~_in_t~_ins_~ _str_in_9_I"t_s_0I.I_"c_, _in_~_to_OI_Of"_~_pp_h_'O ~_ti_on_, __ ---' [S.~ WNsi (HI n

-1 resid The 'MPST' resource ID is the specified resid The default is to use a
resource ID of o. (TIle -t option may be used to specify the resource
type.)

-p Write SetVersion's version number and the contents of the 'MPST'
resource to the diagnostic output file. (You can use the -d option just
to output the 'MPST' information to the diagnostic output file.)

-prefix prefix Set the prefIx string on the version. The preflX may be any sequence
of characters that does not end with a digit (0-9) or a blank.(A blank
could be inserted by choosing an appropriate -fmt format with
leading blanks for the version number.) Once the prefIx is set, you
can change.it only by specifying another -prefix string.
Alternatively, you can remove the prefIx by specifying the preflX as
a period (.).

-(p]source file Update the string constant in the Pascal source specified by the file.

-r

The constant is set to be the same as that specifIed by the 'MPST'
resource string in the application or tool. It is assumed that the
constant is defined in a CONST section somewhere in the fIrst 12800
characters (25 512-byte blocks) of the file as follows:

Version = 'ver.rev'i6666AAAAAAAAAAAAA{some comment}

The ~'s indicate required spaces (Spaces or tabs may surround the
"="). There may be any number of spaces before the required
comment. However, because SetVersion edits the line in-place,
there must be enough room to allow for changes in the size of the
version and revision values-otherwise an error will be reported to
the diagnostic file. Case is ignored, and Pascal comments are
skipped, when searching for the "Version" identifier in the source.
The -verid may be used to search for a different identifier if desired.

Increment the revision by 1.

SetVersion 1I-18~

Example

-rezsource file Update the 'MPST' resource definition in the Resource Compiler
source specified by the file. The definition is set to be the same as
that specified by the 'MPST' resource string in the application or
tool. It is assumed that the definition is somewhere in the first 12800
characters (25 512-byte blocks) of the file and is specified as follows:

type 'MPST' as 'STR6';

resource6'MPST' (0) (

"Version ver.rev"M,1AAAAAAAAAAA/*some comrnent*/

}i

The ~'s indicate required spaces. There may be any number of
spaces before the required comment. However, because
SetVersion edits the line in-place, there must be enough room to
allow for changes in the size of the version and revision
values--otherwise an error will be reported to the diagnostic file.
Case is ignored, and Rez comments are skipped, when searching for
the characters "resource~'MPST'" in the source. Note that, because
this is a resource definition and destined to be placed in the
application's or tool's resource fork, this option defines the actual
string resource that SetVersion will seek in the application or tool.
The "Version" in the string here is fixed, and not controlled by the
-verid option.

-sr revision Set the revision to the specified revision integer value.

-suffIx suffiX Set the suffix string on the revision. The suffix may be any sequence
of characters that does not begin with a digit (0-9). Once the suffIx is
set, it can be changed only by specifying another -suff1.~ string, or
removed by specifying the suffix as a period C.).

-sv version Set the version to the specified version integer value.

-t type Use the specified resource type instead of 'MPST'. (The -i option can
be used to specify the resource ID.)

-v Increment the version by 1.

-verid identifier
Use the specified constant identifer when searching for the
-[p]source CaNST identifier or -csource #define identifier.

setversion -d -sv 1 -r Asm -psburce GlobalDcls -rezsource Asm.r

Increments the revision for the MPW Assembler C-r) in the resource fork of the me
Asm. The version is fIxed at 1 (-sv) , so that Asm will display the version and revision
as "1.rev" The Pascal include file, GlobalDcls, contains the Assembler'S global
declarations, including the Version string. This include file is updated to match the
'MPST' resource C-psource). The resource definitions for the Assembler, in Asm.r,
will be similarily updated (-rezsource). Finally, this command displays the new
version of the diagnostic output file (-d).

11-184 SetVersion

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

Shift-renumber script parameters

Shift [number]

Renames the command script positional parameters {number+-l}, {number+-2} ... to
{I}, {2}, and so on. If number is not spedfied, the default value is 1. Parameter 0 (the
command name) is not affected. The variables {Parameters} I {"Parameters"} I and
{#} variables are also modified to reflect the new parameters.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status values may be returned:

o Success
1 Syntax error

None.

The following script repeats a command once for each parameter:

Repeat - Repeat a command for several parameters ###

jf

Repeat command parameter_

Execute command once for each parameter in the

parameter list. You can specify options by

including them in quotes with the command name.

it
Set cmd "(l}"

Loop

End

Shift

Break If "(l}"

(cmd} "(l}"

Here the Shift command is used to step through the parameters. The Break command
tells the loop when all the parameters have been used. You might, for example, use
this Repeat script to compile several C programs with progress information:

Repeat 'c _p' Sample.c Count.c ~emory.c

"Parameters" in Chapter 5.

Shift 11-185

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

Shutdown-shutdown or software reboot

Shutdown [-y I -n I -c] [-r]

Quits MPW and then either shuts down or reboots the Macintosh. The default is
shutdown. Before rebooting the computer, the system executes standard quit
procedures, asking for confIrmation to save modified files, close all windows, and so
on.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status values may be returned:

1 Syntax error
2 Command aborted

Note: Shutdown cannot return a status of 0 because if there are no errors the
command never returns.

-y Answer "yes" to any confirmation dialog that occurs.

-0 Answer "no" to any confirmation dialog that occurs.

-c Answer "cancel" to any confirmation dialog that occurs.

-r Restart the machine.

Shutdown -y

Reboots the machine, answering "yes" to any dialogs such as those prompting to
save files.

See also Quit command.

11-186 Shutdown

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

SizeWindow-set a window's size

Size Window h v [window]

Sets the size of the specified window to be h by v pixels, where h and v are
nonnegative integers referring to the horizontal and vertical dimensions
respectively. (Use a blank space to separate the numbers h and v on the command
line.) The default window is the target (second from the front) window; a specific
window can optionally be specified. If the size specified would cause the window to
be too big or small, an error is returned.

Built-in.

None.

None.

Errors are written to diagnostic output.

SizeWindow may return the following status values:

o No errors
1 Syncax error (error in parameters)
2 The specified window does not exist
3 The h, v size specified is invalid, that is, too big or too small

None.

SizeWindow 200 200

Makes the target window 200 pixels square in size.

SizeWindow 500 100 "{Worksheet}"

Makes the Worksheet window 500 x 100 pixels in size.

Move\Vindow, Zoom\Vindow, Stack\Vindows, and Tile\Vindows commands.

SizeWindow 11-187

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

StackWindows-arrange windows diagonally

StackWindows

Automatically sizes and moves all of the open Shell windows so that they are
staggered diagonally across the screen. Use StackWindows when selecting windows
from the Window menu; this makes dealing with many open windows easier.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status values may be returned:

o No errors
1 Syntax error (in parameters)

None.

Stackwindows

Stacks all of the Shell windows in a neat and orderly fashion.

See also TileWindows, SizeWindow, ZoomWindow, and MoveWindow commands.

11-188 StackWindows

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Tab-set a window's tab value

Tab number [windows ...]

Sets the tab setting of the files in window to number spaces. If no windows are
specified, the command operates on the target window (the second window from the
front). Itls an error to specify a window that doesn't exist

Note: The Tab command (and the Tabs menu item) modify the tab setting of an
existing window. The {Tab} variable is used to initialize the tab setting of a new
window, or as the default for flies with no tab setting.

Built-in.

None.

None.

Errors are written to diagnostic output.

Tab may return the following status values:

o No errors
1 Syntax'· error
2 An illegal tab count was specified

None.

Tab 4

Sets the tab value of the target window to represent 4 spaces.

Entab command.

Tab /1-189

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Target-make a window the target window

Target name

Makes window name the target window for editing commands (that is, the second
window from the front). If window name isn't already open, then file name is opened
as the target window. If name doesn't exist, an error is returned.

Built-in.

None.

None.

Error messages are written to diagnostic output.

The following status values may be returned:

o No errors
1 Error in parameters
2 The specified me does not exist
3 System error

None.

Target Sample.a

Makes the window Sample. a the target window.

Open command.

"Editing With the Command Languagen in Chapter S.

11-190 Target

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

TileWindows-orronge windows in tile poffern

Tile Windows

Automatically sizes and moves all open Shell windows' so that they are all visible on
the screen at once. Arranging your open windows like tiles, and then zooming a
selected window to full size, makes dealing with many open windows much easier.

Built-in.

None.

None.

Errors are written to diagnostic output

Tile Windows returns the following status values:

o No errors
1 Syntax error (error in parameters)

None.

TileWindows

Arranges all of the Shell windows in a tile pattern, so that all are visible.

SizeWindow, ZoomWindow, StackWindows, and MoveWindow commands.

TileWindows 11- 191

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

TLACvt-convert Lisa TLA Assembler source

TI.ACvt [option ...] [sourceFile ...]

Converts the specified Lisa Workshop TIA Assembler source files to the syntax
required by the MPW Assembler. If the input file name is name, the converted output
is written to name.a. The following elements are converted:

o tokens within statements

o special tokens within macros

o directives

For the details of these conversions, see unA Conversion" in Appendix E of the
companion volume MPW Assembler 2.0 Reference.

The case (upper!lower) of directive names in the output may be controlled by editing
the me TIAevt.Directives. TIlis file contains a list of all the MPW Assembler
directives needed for conversion. The pathname to this file must be spedfied with
the -f option.

Tool.

If no filenames are specified, standard input is converted.

If input is from the standard input me, the converted output is written to standard
output If the input me name is name, the converted output is written to name.a. You
can use the -n, -prefIx:, and -suffL"" options to modify the output file naming
conventions.

Parameter errors and progress information are written to diagnostic output.

The following status values may be returned:

o Normal termination
1 Parameter or option error
2 Execution terminated

-d

-e

Detab the input All tabs are removed and replaced with spaces.
The number of spaces is determined by the tab setting. (See the
-t option below.)

Detab the input (as done by the -d option) and entab the output as a
function of the tab setting. (See the -t option below.)

-f directivesFile The casing of directives is controlled by the file of directives
specified by directivesFile. The file TIACvt.Directives is supplied
for this purpose; you can edit it to change the capitalization. By
default, all directives are converted to uppercase.

-m Do not insert TLA-compatible mode-setting directives (BIAi"JKS
ON and STRING ASIS) into converted source.

11- 1 92 TLA Cvt

Example

Limitations

See also

-Q Do not add the ".a" extension to the input filename to produce the
output filename. If you specify this option, you must also specify
-preIlX or -SufiL"C.

-p Writes TI.ACvt's version information and conversion status to
diagnostic output.

-pre[ilX] string If the input filename is Name, the output filename is produced by
prefIxing string to the name, that is, "stringName.a". (The ".a"
sufflX may be suppressed by using the -n option or changed by using
the -sufilX option.)

-suf[flx] string If the input filename is Name, the output filename is produced by
appending string to the filename, that is, "N arne string' . The default
sufflX is ".a".

-t tabSetting Set the output file's tab value to tabSefflng (2 to 255). The default is
to use the input me's tab setting if there is one; otherwise a value

-u c

of 8 is assumed (8 is the default used by the Usa Workshop's
MacCom utility when transferring text files-it's assumed that
MacCom was used to transfer the TLA. files from the Lisa to the
Macintosh.)

When TIACvt detects a name in the opcode field that is the same as
an MPW directive, it appends the character c to make the name
unique. (The default character is #.)

TLACvt -t 8 TLAFilel.Text TLAFile2.Text

Converts the Usa TIA Assembler source files TUFile1.Text and TLAFile2.Text to the
MPW Assembler source files TLAFilel.Text.a and TI.AFile2.Text.a. The -t option sets
the tab setting for both input flies to 8, and entabs the output files based on a tab
setting of 8.

Limitations are noted in the detailed description of TIA conversions in the iWP\V 2.0
Assembler Reference.

CvtObj command.

Appendix E, "TLA Conversion," in the MPW Assembler 2.0 Reference.

TLA Cvt 11- 193

Syntax

Description

Type

Input

Output

Diagnostics

Status

Translate-convert selected characters

Translate [options] src [cist]

Standard input is copied to standard output, with input characters specified in the src
(source) parameter string mapped into the corresponding characters specified by the
cist (destination) parameter string; all other characters are copied as is. If cist is
omitted, all characters represented by the src are deleted. If the cist string is shorter
than the src, all characters in the src that would map to or beyond the last character in
the cist are mapped into the last character in cist, and adjacent instances of such
characters in the input are represented by a single instance of the last character in cist.

Both src and cist are specified as a standard Shell character list but not enclosed in
square brackets. Thus the src and cist are a sequence of one or more characters (that
is, an abcde) or a range of characters separated by a minus sign (that is, a-z, 0-9).
Standard escape characters (such as at, an, an are processed by the Shell command
interpreter. In order to specify a minus sign, place it last in the character list. Finally,
the src character list may be preceded by a -, to negate the list; that is, all characters
except those in the src are taken as the src string. Thus they are all deleted if rist is
absent, or collapsed if the last character in cist is present.

Note: Case sensitivity of letters specified in the src list are governed by the
{CaseSensitive} Shell variable. If CaseSensitive is set to 1, then only letters specified in
the src are mapped or deleted. If CaseSensitive is 0, then uppercase and lowercase
letters not explicitly mapped into cist characters are mapped identically.

Tool.

All input is read from the standard input file.

The translated input file is written to standard output.

Errors are written to diagnostic output.

Translate may return the following status values:

° Normal termination
1 Parameter or option error
2 Execution terminated

11-194 Translate

Options

Examples

-p

s

Write Translate's version information to the diagnostic file.

Set the output file's tab, font, and font size to the same as those of
the input file's.

r-Tronsillte Optlons----------------------,

Input characters to translate COl'rc~ponliinlJ output l:h<Jr<l(tNS

I 1,----- I

o Progress o Set output font/tab

Input Output Error

translate a-z A-Z <origFile >ucFile

Converts all lowercase letters in origFile to uppercase and writes the translated file to
ucFile.

translate 0-9 9 <origFile >outFile

Converts each string of digits in origFile to the single digit 9 in outFile.

translate " atan" an <origFile >outFile

Converts each run of blanks, tabs, or newline (return) characters in origFile to a single
newline character in outFile. This effectively produces an output with just one word on
each line. Note that the src string had to be quoted to specify the blank.

translate -,a-zA-Zc3n " " <origFile >outFile

Removes all punctuation and isolates words by spaces on each line. Here we negated
the src character list. Thus all characters except letters and newline characters are
replaced with spaces.

Translate 11-195

Syntox

Description

Type

Input

Output

Diognostics

Status

Options

Example

See also

Unalias-remove aliases

Unalias [name ...]

Removes any alias definition associated with the alias name. at is not an error if no
definition exists for name.)

Caution: If no names are specified, all aliases are removed.

The scope of the Unalias command is limited to the current script; that is, aliases in
enclosing scripts are not affected. If you are writing a script that is to be completely
portable across various users' configurations of MPW, you should place the
command

Unalias

at the beginning of your script to make sure no unwanted substitutions occur.

Built-in.

None.

None.

None.

A status value of 0 is always returned.

None.

Onalias File

Remove the alias "File". (This alias is defmed in the Startup me.)

Alias command.

"Command Aliases" in Chapter 5.

11- 196 Una lias

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

Undo-undo last edit

Undo [window]

Undo is the scriptable equivalent of choosing Undo from the Edit menu to reverse the
last editing operation. Undo without any parameters acts on the target (that is, the
second from the front) window. Optionally a named window may be specified.

Note: Remember that Undo is maintained on a window-by-window basis. Therefore
using this command will undo the last edit operation that was performed in the
specified window, which mayor may not be the last operation actually performed.

Built-in.

None.

None.

Errors are written to diagnostic output

Undo may return the following status values:

o No errors
1 Syntax error (error in parameters)
2 Any other error

None.

Undo

Reverses the last edit operation in the target window.

Undo "{Worksheet}"

Reverses the last edit operation in the Worksheet window.

Cut, Copy, and Paste commands.

Undo 11-197

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Unexport-remove a variable definition from export

Unexport [-r I -s I name .. .]

Removes the specified variables from the list of exported variables. The list of
exported variables is local to a script, so unexported variables are removed only
from the local list.

If no names are specified, a list of unexported variables is written to standard output.
The default output of Unexport is in the form of Unexport commands. (A variable
that is not exported is considered unexported.)

Built-in.

None.

If no names are given, U nexport writes a list of unexported variables to standard
output

Errors <J.{e written to diagnostic output.

Unexport may return the following status values:

o No error
1 Syntax error

-r

-s

Reverse the sense of the output, causing Unexport to generate
Export commands for all unexported variables.

Suppress the printing of "Unexport" before the unexported
variables.

11-198 Unexport

Examples

See also

Set SrcDir uHD:source: u

Export SrcDir ~ SrcDir is available to scripts and tools

Unexport SrcDir

Now the variable SrcDir is no longer available to scripts and tools.

Unexport -r
Export varl
Export var2

This example lists all the variables that are not exported. To export them, simply
select and execute all the export commands.

To get a list of all the variables that have not been exported, execute this command:

Unexport -s
varl
var2

varx

Set and Export commands.

Unexport 11-199

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Unmark-remove a marker from a file

Unmark name ... window

Unmark removes the marker(s) name ... ,from the list of markers available for
window. When a window is the current active window, the Mark menu item(s) will be
adjusted.

Built-in.

None.

None.

Errors and warnings are written to the diagnostic output.

The following status values may be returned

o No errors
1 Syntax error
2 Error in processing
3 System error

None.

Unmark 'Markers' "(Target)"

Removes all markers associated with the target window.

Unmark Procl "{Active}"

Removes the "Procl" marker from the active window's marker list. Because {Active}
is, by definition, the current active window, the Mark menu will also be adjusted to
reflect the deletion of the "Procl" marker.

Limitation Unmark does not support Undo.

See also "Markers" in Chapter 6.

11-200 Unmark

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See olso

Unmount-unmount volumes

Unmount volume ...

Unmounts the specified volumes. A volume name must end with a colon (:). If
volume is a number without a colon, it's interpreted as a disk drive number. The
unmounted volumes cannot be referenced again until remounted. If you unmount the
current volume (the volume containing the current directory), then the boot volume
becomes the current volume.

Built-in.

None.

None.

Error messages are written to diagnostic output.

The following status values may be returned:

o
1
2

The volume was successfully unmounted
Syntax error
An error occurred

None.

Unmount Memos:

Unmounts the volume titled Memos.

Unmount 1 2

Unmounts the volumes in drives 1 (the internal drive) and 2 (the external drive). (The
command Eject 1 2 would unmount and eject the volumes.)

Eject and Mount commands.

Unmount 11-201

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

Unset-remove Shell variables

Unset [name ...]

Removes any variable definition associated with name. at's not an error if no
definition exists for name.)

Caution: If no names are specified, all variable definitions are removed. This can
have serious consequences. For example, the Shell uses the variable {Commands} to
locate utilities and applications, and uses several other variables to set defaults. The
Assembler and Compilers use variables to help locate include files. (For details, see
"Variables Defined in the Startup File" in Chapter 5.)

The scope of the Unset command is limited to the current script; that is, variables in
enclosing scripts are not affected.

Built-in.

None.

None.

None.

A status value of 0 is always returned.

None.

Unset CaseSensitive

Removes the variable definition for {CaseSensitive}. This turns off case-sensitive
searching for the editing commands.

See also Set, Export, and Unexport commands.

"Defining and Redefining Variables" in Chapter 5.

11-202 Unset

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Volumes-list mounted volumes

Volumes [-1] [-q] [volume ...]

For each volume named, Volumes writes its name and any other information
requested to standard output The output is sorted alphabetically. A volume name
must end with a colon (:)-if volume is a number without a colon, it's interpreted as a
disk drive number. If volume is not given, all mounted volumes are listed.

Built-in.

None.

Information about the specified volumes is written to standard output

Error messages are written to diagnostic output.

The following status values may be returned:

o No errors
1 Syntax error
2 No such volume

-1 List volumes in long format, giving volume name, drive (0 if
offline), capacity, free space, number of files, and number of
directories.

-q

Volumes -1

Don't quote volume names that contain special characters. (The
default is to quote names that contain spaces or other special
characters.)

will write information such as

Name Drive Size Free Files Dirs

HD: 3 19171K 14242K 290 33

Files 'Volumes l'

Lists the files on the disk in drive 1 (the built-in 3.5-disk drive).

Volumes 11-203

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Which-determine which file the Shell wilr execute

Which [-a] [-p] [command]

Determines which command the Shell will execute when command is entered. Which
looks for commands defined by aliases, Shell built-in commands, and commands
accessible through the Shell variable {Commands} (the same order the Shell uses). If
command is not specified then all paths in the {Commands} variable will be written
to standard output, one directory per line. The directories are listed in the order in
which the Shell would search for commands. In this case the -a and -p options have no
meaning.

Built-in.

None.

In the case of a tool, application, or script, the full path of the command is written to
standard output If command is an alias its definition is written to standard output. If
command is a built-in command then it is simply echoed back to standard output.

Errors are written to diagnostic output.

The following status values may be returned:

o No error
1 Syntax error
2 Command not found
3 Other error

-a

-p

All paths to command are written to standard output. This option
allows the user to determine if there are multiple commands with
the same name.

Prints progress information as each directory in the variable
commands is searched.

11-204 Which

Examples Which asm

This command outputs something like - HD:MPW:Tools:asm. The Shell then
executes hd:MPW:Tools:asm when given asm.

Which -a make it
Alias makeit 'make > tmpi tmp'
HD:MPW:Tools:makeit
HD:MPW:Scripts:makeit

In this case, there are three different "makeit" commands that the Shell could
execute, as determined by current aliases and the {Commands} variable. The Shell
executes the fIrst one found (the alias).

Which newfolder
newfolder

In this case, newfolder is a Shell built-in command.

Which 11-205

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

Windows-list windows

Windows [-q]

Writes the full pathname of each file currently in a window. The names are written to
standard output, one per line, from backmost to frontmost.

Built-in.

None.

The list of open windows is written to standard output.

None.

Status value 0 is always returned.

-q

Windows

Don't quote window names that contain special characters. (The
default is to quote names that contain spaces or other special
characters.)

Lists the pathnames of all open windows.

Print {PrintOptions} . Windows'

Prints all of the open windows, using the options specified by the {PrintOptions}
variable. This example uses command substitution: Because the Windows command
appears in backquotes (' ... '), its output supplies the parameters to the Print
command.

Echo "Open . Windows' I I Set Status 0" > SavedWindows

Writes a command script in the file SavedWindows that will reopen the current set of
open windows. Notice how Echo is used to create the script. The conditional I I
execution operator restores the status to zero should an error occur while opening the
remembered windows. This technique is used in the Suspend script to save the list of
open windows.

11-206 Windows

Syntax

Description

Type

Output

Diagnostics

Status

Option

Examples

See also

Zoom Window-enlarge or reduce a window

ZoomWindow [-s 1 [window 1

Zooms the specified window to full size on the screen. The default window is the
target (second from the front) window; a specific window can optionally be
specified. The -5 option forces the window to zoom back to its small size. This
capability is especially valuable when used in conjunction with StackWindows or
Tile Windows.

Built-in.

None.

Errors are written to diagnostic output

ZoomWindow may return the following status values:

o No errors
1 Syntax error (error in parameters)
2 The specified window does not exist

-5 Zoom the specified window back to its original, smaller size.

ZoomWindow

Zooms the target window to full size.

ZoomWindow -s "{Worksheet}"

Zooms the Worksheet window back to its small size.

SizeWindow, Move\Vindow, StackWindows, and TileWindows commands.

ZoomWindow 11-207

