USOJUDBN

MACINTOSH USER EDUCATION

Macintosh Packages: A Programmer's Guide /PACKAGES/PACK

See Also: The Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
QuickDraw: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
Macintosh Control Manager Programmer's Guide
The Event Manager: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
TextEdit: A Programmer's Guide
Programming Macintosh Applications in Assembly Language
The Structure of a Macintosh Application

Modification History: First Draft (ROM 7) B. Hacker & C. Rose 2/29/84
Second Draft Caroline Rose 5/7/84

ABSTRACT

Packages are sets of data structures and routines that are stored as
resources and brought into memory only when needed. There's a package
for presenting the standard user interface when a file is to be saved or
opened, and others for doing more specialized operations such as
floating-point arithmetic. This manual describes packages and the
Package Manager, the part of the Macintosh User Interface Toolbox that
provides access to packages.

Summary of significant changes and additions since last draft:

= The documentation of the International Utilities Package and the
Binary-Decimal Conversion Package has been added.

- There's a new feature in the Standard File Package routine

SFGetFile, whereby the user can select a file name by pressing a
key.

2 Macintosh Packages Programmer's Guide

TABLE OF CONTENTS

3 About This Manual

4 The Package Manager

6 The International Utilities Package
6 International Resources

8 International Resource §

1¢ International Resource 1

12 International String Comparison

15 Using the International Utilities Package

16 International Utilities Package Routines

20 The Binary-Decimal Conversion Package

23 The Standard File Package

23 About the Standard File Package

24 Using the Standard File Package

25 + Standard File Package Routines

35 The Disk Initialization Package

35 Using the Disk Initialization Package

36 Disk Initialization Package Routines

41 Summary of the Package Manager

42 Summary of the International Utilities Package
47 Summary of the Binary-Decimal Conversion Package
48 Summary of the Standard File Package

51 Summary of the Disk Initialization Package

52 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes packages and the Package Manager. The Macintosh
packages include one for presenting the standard user interface when a
file is to be saved or opened, and others for doing more specialzed
operations such as floating-point arithmetic. The Package Manager is
the part of the Macintosh User Interface Toolbox that provides access
to packages. *** Eventually, this will become part of the
comprehensive Inside Macintosh manual. **%*

You should already be familiar with the Macintosh User Interface
Guidelines, Lisa Pascal, the Macintosh Operating System's Memory
Manager, and the Resource Manager. Using the various packages may
require that you be familiar with other parts of the Toolbox and
Operating System as well.

This manual is intended to serve the needs of both Pascal and assembly-
language programmers. Information of interest to assembly-language
programmers only is isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins with a discussion of the Package Manager and packages
in general. This is followed by a series of sections on the individual
packages. You'll only need to read the sections about the packages
that interest you. Each section describes the package briefly, tells
how its routines fit into the flow of your application program, and
then gives detailed descriptions of the package's routines.

Finally, there are summaries of the Package Manager and the individual

packages, for quick reference, followed by a glossary of terms used in
this manual.

5/7/84 Hacker-Rose /PACKAGES/PACK. 2

Macintosh Packages Programmer's Guide

THE PACKAGE MANAGER

The Package Manager is the part of the Macintosh User Interface Toolbox

that

enables you to access packages. Packages are sets of data

structures and routines that are stored as resources and brought into
memory only when needed. They serve as extensions to the Macintosh
Operating System and User Interface Toolbox, for the most part
performing less common operations.

The Macintosh packages, which are stored in the system resource file,
include the following:

The Standard File Package, for presenting the standard user
interface when a file is to be saved or opened.

The Disk Initialization Package, for initializing and naming new
disks. This package is called by the Standard File Package;
you'll only need to call it in nonstandard situations.

The International Utilities Package, for accessing country-
dependent information such as the formats for numbers, currency,
dates, and times.

The Binary-Decimal Conversion Package, for converting integers to
decimal strings and vice versa.

The Floating-Point Arithmetic and Transcendental Functions
Packages. *** These packages, which occupy a total of about 8.5K
bytes, will be documented in a future draft of this manual. #*%*¥*

Packages have the resource type 'PACK' and the following resource IDs:

CONST dskInit = 2; {Disk Initialization}
stdFile = 3; {Standard File}
flPoint = 4; {Floating-Point Arithmetic}
trFunc = 5; {Transcendental Functions}
intUtil = 6; {International Utilities}
bdConv = 7; {Binary-Decimal Conversion}

Assembly-language note: All macros for calling the routines in
a particular package expand to invoke one macro, _PackN, where N
is the resource ID of the package. The package determines which
routine to execute from the routine selector, an integer that's
passed to it on the stack. For example, the routine selector
for the Standard File Package procedure SFPutFile is 1, so
invoking the macro _SFPutFile pushes 1 onto the stack and
invokes _Pack3.

There are two Package Manager routines that you can call directly from
Pascal: one that lets you access a specified package and one that lets

5/7 /84 Hacker-Rose : /PACKAGES/PACK.2

THE PACKAGE MANAGER 5

you access all packages. The latter will already have been called when
your application starts up, so normally you won't ever have to call the
Package Manager yourself. Its procedures are described below for
advanced programmers who may want to use them in unusual situations.

PROCEDURE InitPack (packID: INTEGER);

InitPack enables you to use the package specified by packID, which is
the package's resource ID. (It gets a handle that will be used later
to read the package into memory.)

PROCEDURE InitAllPacks;

InitAllPacks enables you to use all Macintosh packages (as though
InitPack ‘were called for each one). It will already have been called
when your application starts up.

5/7/84 Hacker-Rose /PACKAGES/PACK.2

6 Macintosh Packages Programmer's Guide

THE INTERNATIONAL UTILITIES PACKAGE

The International Utilities Package contains routines and data types
that enable you to make your Macintosh application country-independent.
Routines are provided for formatting dates and times and comparing
strings in a way that's appropriate to the country where your
application is being used. There's also a routine for testing whether
to use the metric system of measurement. These routines access
country-dependent information (stored in a resource file) that also
tells how to format numbers and currency; you can access this
information yourself for your own routines that may require it.

*** In the Inside Macintosh manual, the documentation of this package
will be at the end of the volume that describes the User Interface
Toolbox. ***

You should already be familiar with the Resource Manager, the Package
Manager, and packages in general.

International Resources

Country-dependent information is kept in the system resource file in
two resources of type 'INTL', with the resource IDs @ and 1:

-~ International resource @ contains the format for numbers,
currency, and time, a short date format, and an indication of
whether to use the metric system.

~ International resource 1 contains a longer format for dates
(spelling out the month and possibly the day of the week, with or
without abbreviation) and a routine for localizing string
comparison.

The system resource file released in each country contains the standard
international resources for that country. Figure I-1 illustrates the
standard formats for the United States, Great Britain, Italy, Germany,
and France.

5/7/84 Rose /PACKAGES/PACKIU

THE INTERNATIONAL UTILITIES PACKAGE 7

United Great
States Britain italy Germany France
Numbers 1,234.56 1,234.56 1.234,56 1.234,56 1 234.56
List separator ; ’ H ; ;
Currency $0.23 £0.23 L. 0,23 0,23 DM 0,23 F
($0.45) (£0.45) L. -0,45 -0,45DM -0,45 F
$345.00 £345 L. 345 325,00 DM 35F
Time 05 AM 0%:05 805 8.05 Uhr 205
11:30 AM 11:30 11:30 11.30 Unhr 11:30
11:20 PM 2320 2320 23.20 Uhr 2320

11:20:09 PM 23:20:00 23:20:09 23.20.08 Uhr 23:20:09

Short dete. 12/22/84 22/12/1984 22-12-1984 22.12.1884 22.12.84
2/ 1/84 01/02/1984 1-02-1884 1.02.1984 1.02.84

Unsbbreviated Abbreviated

Long dste United States Wednesday, February 1, 1984 Wed, Feb 1, 1984
Grest Britain Y¥ednesday, February 1, 1984 Wed, Feb 1, 1984

Italy mercoledi 1 Febbraioc 1384 mer 1 Feb 1984
Germany Mittwoch, 1. Februar 1984 Mit, 1. Feb 1984
France Mercredi 1 fevrier 1984 Mer 1 fev 1984

Figure I-1. Standard International Formats

The routines in the International Utilities Package use the information
in these resources; for example, the routines for formatting dates and
times yield strings that look like those shown in Figure I-l. Routines
in other packages, in desk accessories, and in ROM also access the
international resources when necessary, as should your own routines if
they need such information.

In some cases it may be appropriate to store either or both of the
international resources in the application's or document's resource
file, to override those in the system resource file. For example,
suppose an application creates documents containing currency amounts
and gets the currency format from international resource @#. Documents
created by such an application should have their own copy of the
international resource @ that was used to create them, so that the unit
of currency will be the same if the document is displayed on a
Macintosh configured for another country.

Information about the exact components and structure of each
international resource follows here; you can skip this if you intend
only to call the formatting routines in the International Utilities
Package and won't access the resources directly yourself.

5/7/84 Rose /PACKAGES/PACKIU

8 Macintosh Packages Programmer's Guide

International Resource

The International Utilities Package contains the following data types
for accessing international resource @:

TYPE Intl@Hndl = “Intl@Ptr; *** Following "Int" is the letter "1'" ***

Intl@Ptr = “Intl@Rec;
Intl@Rec = PACKED RECORD
decimalPt: CHAR; {decimal point character}
thousSep: CHAR; {thousands separator}
listSep: CHAR; {list separator}
currSyml: CHAR; {currency symbol}
currSym2 : CHAR;
currSym3: CHAR;
currFmt: Byte; {currency format}
dateOrder: Byte; {order of short date elements}
shortDateFmt: Byte; {short date format}
dateSep: CHAR; {date separator}
timeCycle: Byte; {@ if 24-hour cycle, 255 if 12-hour}
timeFmt: Byte; {time format}
mornStr: PACKED ARRAY([l..4] OF CHAR;
{trailing string for first 12-hour cycle}
eveStr: PACKED ARRAY([1..4] OF CHAR;
{trailing string for last 12-hour cycle}
timeSep: CHAR; {time separator}
timelSuff: CHAR; {trailing string for 24-hout cycle}
time2Suff: CHAR;
time3Suff: CHAR;
time4Suff: CHAR;
timeS5Suff: CHAR;
time6Suff: CHAR;
time7 Suff: CHAR;
time8Suff: CHAR;
metricSys: Byte; {255 if metric, @ if not}
intl@Vers: INTEGER {version information}
END;
(note)

A NUL character (ASCII code @) in a field of type CHAR
means there's no such character. The currency symbol and
the trailing string for the 24-hour cycle are separated
into individual CHAR fields because of Pascal packing
conventions. All strings include any required spaces.

The decimalPt, thousSep, and listSep fields define the number format.
The thousands separator is the character that separates every three
digits to the left of the decimal point. The list separator is the
character that separates numbers, as when a list of numbers is entered
by the user; it must be different from the decimal point character. If
it's the same as the thousands separator, the user must not include the
latter in entered numbers. '

5/7/84 Rose /PACKAGES/PACKIU

THE INTERNATIONAL UTILITIES PACKAGE 9

CurrSyml through currSym3 define the currency symbol (only one
character for the United States and Great Britain, but two for France
and three for Italy and Germany). CurrFmt determines the rest of the
currency format, as shown in Figure I-2. The decimal point character
and thousands separator for currency are the same as in the number
format.

7 6 5 4 3 : 0
' | Example of effect
it 1: ito
‘ 1if anencysyn'bol leads, O if it trails $3.00 3F
l 1 if minus sign for negative, O if parentheses -0,45F ($0.45)
1 if treiling decimal zeroes, O if not $325.00 325F
1 it leading integer zero, O if not $0.23 $.23

Figure I-2. CurrFmt Field

The following predefined constants are masks that can be used to set or
test the bits in the currFmt field:

CONST currSymLead 16; {set if currency symbol leads}

currNegSym = 32; {set if minus sign for negative}
currTrailingZ = 64; {set if trailing decimal zeroes}
currleadingZ = 128; {set if leading integer zero}

(note)
You can also apply the currency format's leading— and
trailing-zero indicators to the number format if desired.

The dateOrder, shortDateFmt, and dateSep fields define the short date
format. DateOrder indicates the order of the day, month, and year,
with one of the following values: ~

CONST mdy = @#; {month day year}
dmy = 1; {day month year}
ymd = 2; {year month day}

ShortDateFmt determines whether to show leading zeroes in day and month
numbers and whether to show the century, as illustrated in Figure I-3.
DateSep is the character that separates the different parts of the
date.

7 6 5 4 0
not used Example of effect

it It o
I L——- 1 if leading zero for day, 0 if not 12/02/64 12/ 2/84

1 it leading zero for month, 0 if not 01/31/84 1/31/64
1 it century included, O if not 22121984 22.12.64
Figure I-3. ShortDateFmt Field

5/7/84 Rose /PACKAGES/PACKIU

10 Macintosh Packages Programmer's Guide

To set or test the bits in the shortDateFmt field, you can use the
following predefined constants as masks:

CONST dayLeadingZ = 32; {set if leading zero for day}
mntLeadingZ = 64; {set if leading zero for month}
century = 128; {set if century included}

The next several fields define the time format: the cycle (12 or 24
hours); whether to show leading zeroes (timeFmt, as shown in Figure
I-4); a string to follow the time (two for 12-hour cycle, one for
24-hour); and the time separator character.

7 6 5 4 0

not used Example of effect

f leading zero for minutes, 0 ifnot 10:05 10: 5
f leading zero for hours, O if not 0215 %15

Figure I-4. TimeFmt Field

if1: it 0
l L——ﬂf leading zero for seconds, O ifnot 1111B0S 11:16& 5
; 1i
1i

The following masks are available for setting or testing bits in the
timeFmt field:

CONST secLeadingZ = 32; ({set if leading zero for seconds}
minLeadingZ = 64; {set if leading zero for minutes}
hrLeadingZ = 128; {set if leading zero for hours}

MetricSys indicates whether to use the metric system. The last field,
intl@Vers, contains a version number in its low-order byte and one of
the following constants in its high-order byte:

CONST verUS =@;
verFrance = 1;
verBritain = 2;
verGermany = 3;
verItaly = 4;

International Resource 1

The International Utilities Package contains the following data types
for accessing international resource 1:

5/7/84 Rose /PACKAGES/PACKIU

THE INTERNATIONAL UTILITIES PACKAGE 11

TYPE IntllHndl = “IntllPtr; *** Following "Int" is the letter "1'" **%*
IntllPtr = “IntllRec; *** Following "Intl" is the number "1" #***
IntllRec = PACKED RECORD

days: ARRAY[1..7] OF STRING[15]; {day names}
months: ARRAY[1..12] OF STRING[15]; {month names}
suppressDay: Byte; {# for day name, 255 for none}
longDateFmt: Byte; {order of long date elements}

dayleading@: Byte; {255 for leading ¢ in day number}

abbrlen: Byte; {length for abbreviating names}
st@: PACKED ARRAY[l..4] OF CHAR; {strings }
stl: PACKED ARRAY([1l..4] OF CHAR; { for }
st2: PACKED ARRAY([l..4] OF CHAR; { long }
st3: PACKED ARRAY[1..4] OF CHAR; { date }
st4: PACKED ARRAY[1l..4} OF CHAR; { format}

intllVers: INTEGER; {version information}
localRtn: INTEGER {routine for localizing string }
{ comparison; actually may be }
{ longer than one integer}
END;

All fields except the last two determine the long date format. The day
names in the days array are ordered from Sunday to Saturday. (The
month names are of course ordered from January to December.) As shown
below, the longDateFmt field determines the order of the various parts
of the date. St@ through st4 are strings (usually punctuation) that
appear in the date.

longDateFmt Long date format
sty day name stl day st2 month st3 year sté
255 sty day name stl month st2 day st3 year sté

See Figure I-5 for examples of how the International Utilities Package
formats dates based on these fields. The examples assume that the
suppressDay and dayleading@ fields contain $. A suppressDay value of
255 causes the day name and stl to be omitted, and a dayLeading value
of 255 causes a § to appear before day numbers less than 10.

longDateFmt st0 st1 st2 st3 st Sample result
0 " toonr oo Mittwoch, 2. Februar 1984
255 Mo 4 1n L wednesday, February 1, 1964

Figure I-5. Long Date Formats

Abbrlen is the number of characters to which month and day names should
be abbreviated when abbreviation is desired.

The intllVers field contains version information with the same format
as the intl@Vers field of international resource @.

LocalRtn contains a routine that localizes the built-in character
ordering (as described below under "International String Comparison").

5/7/84 Rose /PACKAGES/PACKIU

12 Macintosh Packages Programmer's Guide

International String Comparison

The International Utilities Package lets you compare strings in a way
that accounts for diacritical marks and other special characters. The
sort order built into the package may be localized through a routine
stored in internatiomal resource 1.

The sort order is determined by a ranking of the entire Macintosh
character set. The ranking can be thought of as a two-dimensional
table. Each row of the table is a class of characters such as all A's
(uppercase and lowercase, with and without diacritical marks). The
characters are ordered within each row, but this ordering is secondary
to the order of the rows themselves. For example, given that the rows
for letters are ordered alphabetically, the following are all true
under this scheme:

'Al < 'a'
and 'Ab' < 'ab'
but 'Ac' > 'ab'

Even though 'A' < 'a' within the A row, 'Ac' > 'ab' because the order
'e' > 'b' takes precedence over the secondary ordering of the 'a' and
the 'A'. 1In effect, the secondary ordering is ignored unless the
comparison based on the primary ordering yields equality.

(note)
The Pascal relational operators are used here for
convenience only. String comparison in Pascal yields
very different results, since it simply follows the
ordering of the characters' ASCII codes.

When the strings being compared are of different lengths, each
character in the longer string that doesn't correspond to a character
in the shorter one compares "greater"; thus 'a' < 'ab'. This takes

precedence over secondary ordering, so 'a' < 'Ab' even though
'A' < 'a'.

Besides letting you compare strings as described above, the
International Utilities Package includes a routine that compares
strings for equality without regard for secondary ordering. The effect
on comparing letters, for example, is that diacritical marks are
ignored and uppercase and lowercase are not distinguished.

Figure I-6 on the following page shows the two-dimensional ordering of
the character set (from least to greatest as you read from top to
bottom or left to right). The numbers on the left are ASCII codes
corresponding to each row; ellipses (...) designate sequences of rows
of just one character. Some codes do not correspond to rows (such as
$61 through $7A, because lowercase letters are included in with their
uppercase equivalents). See the Toolbox Event Manager manual for a
table showing all the characters and their ASCII codes. '

5/7/84 Rose /PACKAGES/PACKIU

$00
$1F
$20
$21
$22
$23
$24
$25
$26
$27
$26
$40
$41
$42

$43

$45
$49
$4E
$4ar
$S5
$59
$56
$5C
$5D

$5E

$5F
$60
$7B
$7C
$7D
$7E
$7F
$A0

$AD
$60
$86D
sco
$C9
$DO
$D2

$D6
$D?

THE INTERNATIONAL UTILITIES PACKAGE 13

ASCII NUL

ASCII US

?pacemwbreokinoapoce

f; & » « »

$

%

l&l’

(

® . . .
AAAA A a & &8 & a &8
B b ~
C¢cg

EEecéeéce

R T I I | letters not shown
NNn# ere like "B b
0002 o666 6 388
UUudduadada

Y vy »
[

\

]

{

|

}

ASCII DEL

1

2

A & (E 02 (see remarks about ligatures)
oo

Q

é

o

Figure I-6. International Character Ordering

5/7/84 Rosek v /PACKAGES /PACKIU

14 Macintosh Packages Programmer's Guide

Characters combining two letters, as in the $AE row, are called
ligatures. As shown in Figure I-7, they're actually expanded to the
corresponding two letters, in the following sense:

- Primary ordering: The ligature is equal to the two-character
sequence.

- Secondary ordering: The ligature is greater than the
two—-character sequence.

Standerd:
AE A ae &

OE (E oe e

Germany:

AE A A ae & e
OE 0 & oe 6 o
ss B

UE U ue @

Figure I-7. Ordering for Special Characters

Ligatures are ordered somewhat differently in Germany to accommodate
umlauted characters (see Figure I-7). This is accomplished by means of
the routine in international resource 1 for localizing the built-in
character ordering. In the system resource file for Germany, this
routine expands umlauted characters to the corresponding two letters
(for example, "AE" for A-umlaut). The secondary ordering places the
umlauted character between the two-character sequence and the ligature,
if any. Likewise, the German double-s character expands to "ss".

In the system resource file for Great Britain, the localization routine
in international resource 1 orders the pound currency sign between
double quote and the pound weight sign (see Figure I-8). For the

United States, France, and Italy, the localization routine does
nothing.

$22 " ¢ » « n
$A3 £
$23 »

Figure I-8. Special Ordering for Great Britain

Assembly-language note: The null localization routine consists
of an RTS instruction.

5/7/84 Rose /PACKAGES/PACKIU

THE INTERNATIONAL UTILITIES PACKAGE 15

*%% Information on how to write your own localization routine is
forthcoming. **%*

Using the International Utilities Package

This section discusses how the routines in the International Utilities
package fit into the general flow of an application program, and gives
you an idea of which routines you'll need to use. The routines
themselves are described in detail in the next section.

The International Utilities Package is automatically read into memory
from the system resource file when one of its routines is called. When
a routine needs to access an international resource, it asks the
Resource Manager to read the resource into memory. Together, the
package and its resources occupy about 2K bytes.

As described in the *** not yet existing *** QOperating System Utilities
manual, you can get the date and time as a long integer from the
utility routine ReadDateTime. If you need a string corresponding to
the date or time, you can pass this long integer to the IUDateString or
IUTimeString procedure in the International Utilities Package. These
procedures determine the local format from the international resources
read into memory by the Resource Manager (that is, resource type 'INTL'
and resource ID @ or 1). In some situations, you may need the format
information to come instead from an international resource that you
specify by its handle; if so, you can use IUDatePString or
IUTimePString. This is useful, for example, if you want to use an
international resource in a document's resource file after you've
closed that file.

Applications that use measurements, such as on a ruler for setting
margins and tabs, can call IUMetric to find out whether to use the
metric system. - This function simply returns the value of the
corresponding field in international resource #. To access any other
fields in an international resource--say, the currency format in
international resource @--call IUGetIntl to get a handle to the
resource. If you change any of the fields and want to write the
changed resource to a resource file, the IUSetIntl procedure lets you -
do this.

To sort strings, you can use IUCompString or, if you're not dealing
with Pascal strings, the more general IUMagString. These routines
compare two strings and give their exact relationship, whether equal,
less than, or greater than. Subtleties like diacritical marks and case
differences are taken into consideration, as described above under
"International String Comparison". If you need to know only whether
two strings are equal, and want to ignore the subtleties, use
IUEqualString (or the more general IUMagIDString) instead.

(note)
The Operating System utility routine EqualString also
compares two Pascal strings for equality. It's less
sophisticated than IUEqualString in that it follows ASCII

5/7/84 Rose /PACKAGES/PACKIU

16 Macintosh Packages Programmer's Guide

order more strictly; for details, see the Operating
System Utilities manual *** eventually ***,

International Utilities Package Routines

Assembly-language note: The macros for calling the
International Utilities Package routines push one of the
following routine selectors onto the stack and then invoke

_Packb6:

Routine Selector
IUDatePString 14
IUDateString)
IUGetIntl 6
IUMagIDString 12
IUMagString 1¢
IUMetric 4
IUTimePString 16
IUTimeString 2

IUSetIntl 8

PROCEDURE IUDateString (dateTime: LonglInt; form: DateForm; VAR result:
Str255);

Given a date and time as returned by the Operating System Utility
routine ReadDateTime, IUDateString returns in the result parameter a
string that represents the corresponding date. The form parameter has
the following data type:

TYPE DateForm = (shortDate, longDate, abbrevDate);

ShortDate requests the short date format, longDate the long date, and
abbrevDate the abbreviated long date. IUDateString determines the
exact format from international resource @ for the short date or 1 for
the long date. See Figure I-1 above for examples of the standard
formats. Notice that the short date contains a space in place of a
leading zero when the format specifies '"no leading zero", so the length
of the result is always the same for short dates.

If the abbreviated long date is requested and the abbreviation length
in international resource 1 is greater than the actual length of the
name being abbreviated, IUDateString fills the abbreviation with NUL
characters; the abbreviation length should not be greater than 15, the
maximum name length.

5/7/84 Rose /PACKAGES/PACKIU

THE INTERNATIONAL UTILITIES PACKAGE 17

PROCEDURE IUDatePString (dateTime: LonglInt; form: DateForm; VAR result:
Str255; intlParam: Handle);

IUDatePString is the same as IUDateString except that it determines the
exact format of the date from the resource whose handle is passed in
intlParam, overriding the resource that would otherwise be used.

PROCEDURE IUTimeString (dateTime: LongInt; wantSeconds: BOOLEAN; VAR
result: Str255);

Given a date and time as returned by the Operating System Utility
routine ReadDateTime, IUTimeString returns in the result parameter a
string that represents the corresponding time of day. If wantSeconds
is TRUE, seconds are included in the time; otherwise, only the hour and
minute are included. IUTimeString determines the time format from
international resource $. See Figure I-1 above for examples of the
standard formats. Notice that the time contains a space in place of a
leading zero when the format specifies "no leading zero", so the length
of the result is always the same.

PROCEDURE IUTimePString (dateTime: LongInt; wantSeconds: BOOLEAN; VAR
result: Str255; intlParam: Handle);

IUTimePString is the same as IUTimeString except that it determines the
time format from the resource whose handle is passed in intlParam,
overriding the resource that would otherwise be used.

FUNCTION IUMetric : BOOLEAN;

If international resource @ specifies that the metric system is to be
used, IUMetric returns TRUE; otherwise, it returns FALSE.

FUNCTION IUGetIntl (theID: INTEGER) : Handle;

IUGetIntl returns a handle to the international resource numbered theID
(@ or 1) It calls the Resource Manager function
GetResource('INTL',theID). For example, if you want to access
individual fields of international resource @, you can do the
following:

VAR myHndl: Handle;
int@: Intl@Hndl;
myHndl := IUGetIntl(@);
int@ := POINTER(ORD(myHndl));

5/7/84 Rose /PACKAGES /PACKIU

18 Macintosh Packages Programmer's Guide

PROCEDURE IUSetIntl (refNum: INTEGER; thelD: INTEGER; intlParam:
Handle);

In the resource file having the reference number refNum, IUSetIntl sets
the international resource numbered theID (# or 1) to the data pointed
to by intlParam. The data may be either an existing resource or data
that hasn't yet been written to a resource file. IUSetlIntl adds the
resource to the specified file or replaces the resource if it's already
there.

FUNCTION IUCompString (aStr,bStr: Str255) : INTEGER; [Pascal only]

1UCompString compares aStr and bStr as described above under
"International String Comparison', taking both primary and secondary
ordering into consideration. It returns one of the values listed
below.

Result Meaning Example
asStr bStr
-1 aStr is less than bStr 'Ab' 'ab'
@ aStr equals bStr 'Ab' 'Ab'
1 aStr is greater than bStr 'Ac' 'ab'

Assembly-language note: IUCompString was created for the
convenience of Pascal programmers; there's no trap for it. It
eventually calls IUMagString, which is what you should use from
assembly language.

FUNCTION IUMagString (aPtr,bPtr: Ptr; alen,bLen: INTEGER) : INTEGER;

IUMagString is the same as IUCompString (above) except that instead of
comparing two Pascal strings, it compares the string defined by aPtr
and alen to the string defined by bPtr and bLen. The pointer points to
the first character of the string (any byte in memory, not necessarily
word-aligned), and the length specifies the number of characters in the
string.

FUNCTION IUEqualString (aStr,bStr: Str255) : INTEGER; " [Pascal only]

IUEqualString compares aStr and bStr for equality without regard for
secondary ordering, as described above under "International String
Comparison'. If the strings are equal, it returns @#; otherwise, it
returns l. For example, if the strings are 'Rose' and 'rose',
IUEqualString considers them equal and returns @.

5/7/84 Rose /PACKAGES/PACKIU

THE INTERNATIONAL UTILITIES PACKAGE 19

(note)
See also EqualString in the Operating System Utilities
manual *** doesn't yet exist ***,

Assembly-language note: IUEqualString was created for the
convenience of Pascal programmers; there's no trap for it. It
eventually calls IUMagIDString, which is what you should use
from assembly language.

FUNCTION IUMagIDString (aPtr,bPtr: Ptr; alen,bLen: INTEGER) : INTEGER;

IUMagIDString is the same as IUEqualString (above) except that instead

of comparing two Pascal strings, it compares the string defined by aPtr
and alen to the string defined by bPtr and bLen. The pointer points to
the first character of the string (any byte in memory, not necessarily

word-aligned), and the length specifies the number of characters in the
string.

5/7/84 Rose /PACKAGES/PACKIU

20 Macintosh Packages Programmer's Guide

THE BINARY-DECIMAL CONVERSION PACKAGE

The Binary-Decimal Conversion Package contains only two routines: one
converts an integer from its internal (binary) form to a string that
represents its decimal (base 1¢) value; the other converts a decimal
string to the corresponding integer.

*** In the Inside Macintosh manual, the'documentation of this package
will be at the end of the volume that describes the User Interface
Toolbox. ***

You should already be familiar with the Package Manager, and packages
in general.

The Binary-Decimal Conversion Package is automatically read into memory
when one .of its routines is called; it occupies a total of about 2¢¢
bytes. The routines are described below. They're register-based, so
the Pascal form of each is followed by a box containing information
needed to use the routine from assembly language. (For general
information on using assembly language, see Programming Macintosh
Applications in Assembly Language.)

Assembly-language note: The macros for calling the
Binary-Decimal Conversion Package routines push one of the
following routine selectors onto the stack and then invoke

_Pack7:

Routine Selector
NumToString @
StringToNum 1

PROCEDURE NumToString (theNum: LongInt; VAR theString: Str255);

Trap macro _NumToString
On entry A@: pointer to theString (length byte followed

by characters)
D@: theNum (long integer)

On exit Ap: pointer to theString

NumToString converts theNum to a string that represents its decimal
value, and returns the result in theString. If the value is negative,
the string begins with a minus sign; otherwise, the sign is omitted.
Leading zeroes are suppressed, except that the value @ produces '¢#'.

5/7/84 Rose /PACKAGES/PACKBD

THE BINARY-DECIMAL CONVERSION PACKAGE 21

For example:

theNum theString
12 '12°
-23 '-23"
@ '@’

PROCEDURE StringToNum (theString: Str255; VAR theNum: LongInt);

Trap macro _StringToNum
On entry A@: pointer to theString (length byte followed

by characters)

On exit D@: theNum (long integer)

Given a string representing a decimal integer, StringToNum converts it
to the corresponding integer and returns the result in theNum. The
string may begin with a plus or minus sign. For example:

theString theNum
'12° 12
'-23" -23
1_¢' G
'@55" 55

The magnitude of the integer is converted modulo 2732, and the 32-bit
result is negated if the string begins with a minus sign; integer
overflow occurs if the magnitude is greater than 2°31-1. (Negation is
done by taking the two's complement--reversing the state of each bit
and then adding l.) For example:

theString theNum
'2147483648' (magnitude is 2°31) -2147483648
'-2147483648" -2147483648
'4294967295' (magnitude is 2732-1) -1
'=4294967295"' 1

StringToNum doesn't actually check whether the characters in the string
are between '@’ and '9'; instead, since the ASCII codes for '@#' through
'9' are $3¢ through $39, it just masks off the last four bits and uses
them as a digit. For example, '2:' is converted to the number 3¢
because the ASCII code for ':' is $3A. Leading spaces before the first
digit are treated as zeroes, since the ASCII code for a space is $20.
Given that the ASCII codes for 'C', 'A', and 'T' are $43, $41, and $54,
respectively, consider the following examples:

5/7 /84 Rose /PACKAGES/PACKBD

22 Macintosh Packages Programmer's Guide

theString theNum
'CAT' 314
"+CAT' 314
'~CAT' =314

5/7/84 Rose

/PACKAGES/PACKBD

THE STANDARD FILE PACKAGE 23

THE STANDARD FILE PACKAGE

The Standard File Package provides the standard user interface for
specifying a file to be saved or opened. It allows the file to be on a
disk in any drive connected to the Macintosh, and lets a currently
inserted disk be ejected so that another one can be inserted.

*** Tn the Inside Macintosh manual, the documentation of this package
will be at the end of the volume that describes the Toolbox. **#*

You should already be familiar with the following:

the basic concepts and structures behind QuickDraw, particularly
points and rectangles

the Toolbox Event Manager

the Dialog Manager, especially the ModalDialog procedure

the Package Manager and packages in general

About the Standard File Package

Standard Macintosh applications should have a File menu from which the
user can save and open documents, via the Save, Save As, and Open
commands. In response to these commands, the application can call the
Standard File Package to find out the document name and let the user
switch disks if desired. As described below, a dialog box is presented
for this purpose. (More details and illustrations are given later in
the descriptions of the individual routines.)

When the user chooses Save As, or Save when the document is untitled,
the application needs a name for the document. The corresponding
dialog box lets the user enter the document name and click a button
labeled "Save" (or just click "Cancel" to abort the command). By
convention, the dialog box comes up displaying the current document
name, if any, so the user can edit it.

In response to an Open command, the application needs to know which
document to open. The corresponding dialog box displays the names of
all documents that might be opened, and the user chooses one by
clicking it and then clicking a button labeled "Open". A vertical
scroll bar allows scrolling through the names if there are more than
can be shown at once. '
Both of these dialog boxes let the user:

- insert a disk in an external drive connected to the Macintosh

- eject a disk from either drive and insert another

5/7 /84 Hacker-Rose : /PACKAGES/PACKSF

24 Macintosh Packages Programmer's Guide

- initialize and name an inserted disk that's uninitialized
- switch from one drive to another

On the right in the dialog box, separated from the rest of the box by a
gray line, there's a disk name with one or two buttons below it; Figure
S-1 shows what this looks like when an external drive is connected to
the Macintosh but currently has no disk in it. Notice that the Drive
button is inactive (dimmed). After the user inserts a disk in the
external drive (and, if necessary, initializes and names it), the Drive
button becomes active. If there's no external drive, the Drive button
isn't displayed at all.

|

disk name

i“

Figure S-l. Partial Dialog Box

The disk name displayed in the dialog box is the name of the current
disk, initially the disk you used to start up the Macintosh. The user
can click Eject to eject the current disk and insert another, which
then becomes the current disk. If there's an external drive, clicking
the Drive button changes the current disk from the one in the external
drive to the one in the internal drive or vice versa. The Drive button
is inactive whenever there's only one disk inserted.

If an uninitialized or otherwise unreadable disk is inserted, the

Standard File Package calls the Disk Initialization Package to provide
the standard user interface for initializing and naming a disk.

Using the Standard File Package

This section discusses how the routines in the Standard File Package
fit into the general flow of an application program, and gives you an
idea of which routines you'll need to use. The routines themselves are
described in detail in the next section.

The Standard File Package and the resources it uses are automatically
read into memory when one of its routines is called. It in turn reads
the Disk Initialization Package into memory if a disk is ejected;
together they occupy about 6.5K bytes.

Call SFPutFile when your application is to save to a file and needs to
get the name of the file from the user. Standard applications should

do this when the user chooses Save As from the File menu, or Save when
the document is untitled. SFPutFile displays a dialog box allowing the

5/7/84 Hacker-Rose /PACKAGES/PACKSF

THE STANDARD FILE PACKAGE 25

user to enter a file name.

Similarly, SFGetFile is useful whenever your application is to open a
file and needs to know which one, such as when the user chooses the
Open command from a standard application's File menu. SFGetFile
displays a dialog box with a list of file names to choose from.

You pass these routines a reply record, as shown below, and they fill
it with information about the user's reply.

TYPE SFReply = RECORD
good : BOOLEAN; {FALSE if ignore command}
copy: BOOLEAN; {not used}

fType: OSType; {file type or not used}
vRefNum: INTEGER; {volume reference number}
version: INTEGER; {file's version number}
f Name: STRING[63] {file name}

END;

The first field of this record determines whether the file operation
should take place or the command sheuld be ignored (because the user
clicked the Cancel button in the dialog box). The fType field is used
by SFGetFile to store the file's type. The vRefNum, version, and fName
fields identify the file chosen by the user; the application passes
their values on to the File Manager routine that does the actual file
operation. VRefNum contains the volume reference number of the volume
containing the file. Currently the version field always contains §;
the use of nonzero version numbers is not supported by this package.
For more information on files, volumes, and file operations, see the
File Manager manual *** doesn't yet exist ***,

Both SFPutFile and SFGetFile allow you to use a nonstandard dialog box;

two additional routines, SFPPutFile and SFPGetFile, provide an even
more convenient and powerful way of doing this.

Standard File Package Routines

Assembly-language note: The macros for calling the Standard
File Package routines push one of the following routine
selectors onto the stack and then invoke _Pack3:

Routine Selector
SFGetFile 2
SFPGetFile 4
SFPPutFile 3
SFPutFile 1

5/7 /84 Hacker-Rose /PACKAGES/PACKSF

26 Macintosh Packages Programmer's Guide

PROCEDURE SFPutFile (where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; VAR reply: SFReply);

SFPutFile displays a dialog box allowing the user to specify a file to
which data will be written (as during a Save or Save As command). It
then repeatedly gets and handles events until the user either confirms
the command after entering an appropriate file name or aborts the
command by clicking Cancel in the dialog. It reports the user's reply
by filling the fields of the reply record specified by the reply
parameter, as described above; the fType field of this record isn't
used.

The general appearance of the standard SFPutFile dialog box is shown in
Figure S-2. The where parameter specifies the location of the top left
corner of the dialog box in global coordinates. The prompt parameter
is a line of text to be displayed as a statText item in the dialog box,
where shown in Figure S-2. The origName parameter contains text that
appears as an enabled, selected editText item; for the standard
document~saving commands, it should be the current name of the
document, or the empty string (to display an insertion point) if the
document hasn't been named yet.

where
\ — ————— >
prompt > Save current document as: disk name
origheme Jititename | (st)

[_Eject |
(Csave) Concel] | [Drive]

ooyt —

Figure S-2. Standard SFPutFile Dialog

If you want to use the standard SFPutFile dialog box, pass NIL for
dlgHook; otherwise, see the information for advanced programmers below.

SFPutFile repeatedly calls the Dialog Manager procedure ModalDialog.
When an event involving an enabled dialog item occurs, ModalDialog
handles the event and returns the item number, and SFPutFile responds
as follows:

- If the Eject or Drive button is clicked, or a disk is inserted,
SFPutFile responds as described above under "About the Standard
File Package'.

- Text entered into the editText item is stored in the fName field
of the reply record. (SFPutFile keeps track of whether there's
currently any text in the item, and makes the Save button inactive
if nOto)

5/7/84 Hacker-Rose /PACKAGES/PACKSF

THE STANDARD FILE PACKAGE 27

- If the Save button is clicked, SFPutFile determines whether the
file name in the fName field of the reply record is appropriate.
If so, it returns control to the application with the first field
of the reply record set to TRUE; otherwise, it responds
accordingly, as described below.

- If the Cancel button in the dialog is clicked, SFPutFile returns
control to the application with the first field of the reply
record set to FALSE.

(note)
Notice that disk insertion is one of the user actions
listed above, even though ModalDialog normally ignores
disk-inserted events. The reason this works is that
SFPutFile calls ModalDialog with a filterProc function
that checks for a disk-inserted event and returns a
"fake'", very large item number if one occurs; SFPutFile
recognizes this item number as an indication that a disk
was inserted.

The situations that may cause an entered name to be inappropriate, and
SFPutFile's response to each, are as follows:

- If a file with the specified name already exists on the disk and
is different from what was passed in the origName parameter, the
alert in Figure S-3 is displayed. 1f the user clicks Yes, the
file name is appropriate.

]

p—
S

Replace eviting “

“file name" ?

{ ves)

Figure S-3. Alert for Existing File

= If the disk to which the file should be written is locked, the
alert in Figure S-4 is displayed. If a system error occurs, a
similar alert is displayed, with a corresponding message
explaining the problem.

5/7 /84 Hacker-Rose /PACKAGES/PACKSF

28 Macintosh Packages Programmer's Guide

li

Disk is locked.

Figure S-4. Alert for Locked Disk

(note)
The user may specify a disk name (preceding the file name
and separated from it by a colon). If the disk isn't
currently in a drive, an alert similar to the one in
Figure S-4 is displayed. The ability to specify a disk
name is supported for historical reasons only; users
should not be encouraged to do it.

After the user clicks No or Cancel in response to one of these alerts,
SFPutFile dismisses the alert box and continues handling events (so a
different name may be entered).

Advanced programmers: You can create your own dialog box rather than
use the standard SFPutFile dialog. To do this, you must provide your
own dialog template and store it in your application's resource file
with the same resource ID that the standard template has in the system
resource file:

CONST putDlglID = -3999; ({SFPutFile dialog template ID}

(note)
The SFPPutFile procedure, described below, lets you use
any resource ID for your nonstandard dialog box.

Your dialog template must specify that the dialog window be invisible,
and your dialog must contain all the standard items, as listed below.
The appearance and location of these items in your dialog may be
different. You can make an item "invisible" by giving it a display
rectangle that's off the screen. The display rectangle for each item
in the standard dialog box is given below. The rectangle for the
standard dialog box itself is (@, @, 3¢4, 1¢4).

5/7 /84 Hacker-Rose /PACKAGES/PACKSF

THE STANDARD FILE PACKAGE 29

Item number Item Standard display rectangle
1 Save button (12, 74, 82, 92)
2 Cancel button (114, 74, 184, 92)
3 Prompt string (statText) (12, 12, 184, 28)
4 UserItem for disk name (299, 16, 295, 34)
5 Eject button (217, 43, 287, 61)
6 Drive button (217, 74, 287, 92)
7 EditText item for file name (14, 34, 182, 5¢)
8 Userltem for gray line (208, 16, 2¢1, 88)
(note)

Remember that the display rectangle for any "invisible"
item must be at least about 2(§ pixels wide. *** This
will be discussed in a future draft of the Dialog Manager
manual. *%% '

If your dialog has additional items beyond the the standard ones, or if
you want to handle any of the standard items in a nonstandard manner,
you must write your own dlgHook function and point to it with dlgHook.
Your dlgHook function should have two parameters and return an integer
value. For example, this is how it would be declared if it were named
MyDlg: '

FUNCTION MyDlg (item: INTEGER; theDialog: DialogPtr) : INTEGER;

Immediately after calling ModalDialog, SFPutFile calls your dlgHook
function, passing it the item number returned by ModalDialog and a
pointer to the dialog record describing your dialog box. Using these
two parameters, your dlgHook function should determine how to handle
the event. There are predefined constants for the item numbers of
standard enabled items, as follows:

CONST putSave = 1l; {Save button}
putCancel = 2; {Cancel button}
putEject = 5; {Eject button}
putDrive = 6; {Drive button}
putName =7; {editText item for file name}

ModalDialog also returns the "fake" item number 1@ when a disk-
inserted event occurs, as detected by its filterProc function.

After handling the event (or, perhaps, after ignoring it) the dlgHook
function must return an item number to SFPutFile. 1If the item number
is one of those listed above, SFPutFile responds in the standard way;
otherwise, it does nothing.

(note) ,
For advanced programmers who want to change the
appearance of the alerts displayed when an inappropriate
file name is entered, the resource IDs of those alerts in
the system resource file are listed below.

5/7 /84 Hacker-Rose /PACKAGES/PACKSF

30 Macintosh Packages Programmer's Guide

Alert Resource 1D
Existing file -3996
Locked disk -3997
System error -3995
Disk not found -3994

PROCEDURE SFPPutFile (where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; VAR reply: SFReply; dlgID: INTEGER;
filterProc: ProcPtr);

SFPPutFile is an alternative to SFPutFile for advanced programmers who
want to use a nonstandard dialog box. It's the same as SFPutFile
except for the two additional parameters dlglID and filterProc.

D1gID is the resource ID of the dialog template to be used instead of
the standard one (so you can use whatever ID you wish rather than the
same one as the standard).

The filterProc parameter determines how ModalDialog will filter events
when called by SFPPutFile. 1If filterProc is NIL, ModalDialog does the
standard filtering that it does when called by SFPutFile; otherwise,
filterProc should point to a function for ModalDialog to execute after
doing the standard filtering. The function must be the same as one
you'd pass directly to ModalDialog in its filterProc parameter. (See
the Dialog Manager manual for more information.)

PROCEDURE SFGetFile (where: Point; prompt: Str255; fileFilter: ProcPtr;
numnTypes: INTEGER; typelist: SFTypeList; dlgHook: ProcPtr;
VAR reply: SFReply);

SFGetFile displays a dialog box listing the names of a specific group
of files from which the user can select one to be opened (as during an
Open command). It then repeatedly gets and handles events until the
user either confirms the command after choosing a file name or aborts
the command by clicking Cancel in the dialog. It reports the user's
reply by filling the fields of the reply record specified by the reply
parameter, as described above under "Using the Standard File Package'.

The general appearance of the standard SFGetFile dialog box is shown in
Figure S-5. File names are sorted in order of the ASCII codes of their
characters, ignoring diacritical marks and mapping lowercase characters
to their uppercase equivalents. 1If there are more file names than can
be displayed at one time, the scroll bar is active; otherwise, the
scroll bar is inactive.

5/7 /84 Hacker~Rose /PACKAGES/PACKSF

THE STANDARD FILE PACKAGE 31

filelname
file2name
file3name
filedname , ([Eject]
fileS name 3

file6name
file?name

' | [open]| disk name

Cancel) | [Drive |

eme—— ———
——— ——

Figure S-5. Standard SFGetFile Dialog

The where parameter specifies the location of the top left corner of
the dialog box in global coordinates. The prompt parameter is ignored;
it's there for historical purposes only.

The fileFilter, numTypes, and typelist parameters determine which files
appear in the dialog box. SFGetFile first looks at numTypes and
.typelist to determine what types of files to display, then it executes
the function pointed to by fileFilter (if any) to do additional
filtering on which files to display. File types are discussed in the
manual The Structure of a Macintosh Application. For example, if the
application is concerned only with pictures, you won't want to display
the names of any text files.

Pass -1 for numTypes to display all types of files; otherwise, pass the
number of file types you want to display, and pass the types themselves
in typelist. The SFTypelist data type is defined as follows:

TYPE SFTypelist = ARRAY [@..3] OF OSType;

(note)
This array is declared for a reasonable maximum number of
types (four). If you need to specify more than four
types, declare your own array type with the desired
number of entries (and use the @ operator to pass a
pointer to it).

If fileFilter isn't NIL, SFGetFile executes the function it points to
for each file, to determine whether the file should be displayed. The
fileFilter function has one parameter and returns a Boolean value. For
example:

FUNCTION MyFileFilter (paramBlock: ParmBlkPtr) : BOOLEAN;
SFGetFile passes this function the file information it gets by calling
the File Manager procedure PBGetFInfo (see the *** forthcoming *** File

Manager manual for details). The function selects which files should
appear in the dialog by returning FALSE for every file that should be

5/7/84 Hacker-Rose /PACKAGES/PACKSF

32 Macintosh Packages Programmer's Guide

shown and TRUE for every file that shouldn't be shown.

(note)
As described in the File Manager manual, a flag can be
set that tells the Finder not to display a particular
file's icon on the desktop; this has no effect on whether
SFGetFile will list the file name.

If you want to use the standard SFGetFile dialog box, pass NIL for
dlgHook; otherwise, see the information for advanced programmers below.

Like SFPutFile, SFGetFile repeatedly calls the Dialog Manager procedure
ModalDialog. When an event involving an enabled dialog item occurs,
ModalDialog handles the event and returns the item number, and
SFGetFile responds as follows:

- If the Eject or Drive button is clicked, or a disk is inserted,
SFGetFile responds as described above under "About the Standard
File Package".

- If clicking or dragging occurs in the scroll bar, the contents of
the dialog box are redrawn accordingly.

- If a file name is clicked, it's selected and stored in the fName
field of the reply record. (SFGetFile keeps track of whether a
file name is currently selected, and makes the Open button
inactive if not.)

~ If the Open button is clicked, SFGetFile returns control to the
application with the first field of the reply record set to TRUE.

- If a file name is double-clicked, SFGetFile responds as if the
user clicked the file name and then the Open button.

- If the Cancel button in the dialog is clicked, SFGetFile returns
control to the application with the first field of the reply
record set to FALSE.

If a key (other than a modifier key) is pressed, SFGetFile selects the
first file name starting with the character typed. If no file name
starts with that character, it selects the first file name starting
with a character whose ASCII code is greater than the character typed.

Advanced programmers: You can create your own dialog box rather than
use the standard SFGetFile dialog. To do this, you must provide your
own dialog template and store it in your application's resource file
with the same resource ID that the standard template has in the system
resource file:

CONST getDlglID = -4@@@; {SFGetFile dialbg template ID}
(note)

The SFPGetFile procedure, described below, lets you use
any resource ID for your nonstandard dialog box.

5/7 /84 Hacker—-Rose ' /PACKAGES/PACKSF

THE STANDARD FILE PACKAGE 33

Your dialog template must specify that the dialog window be invisible,
and your dialog must contain all the standard items, as listed below.
The appearance and location of these items in your dialog may be
different. You can make an item "invisible" by giving it a display
rectangle that's off the screen. The display rectangle for each in the
standard dialog box is given below. The rectangle for the standard
dialog box itself is (@, @, 348, 136).

Item number Item Standard display rectangle
» 1 Open button (152, 28, 232, 46)
2 Invisible button (1152, 59, 1232, 77)
3 Cancel button (152, 9¢, 232, 1¢8)
4 UserItem for disk name (248, 28, 344, 46)
5 Eject button (256, 59, 336, 77)
6 Drive button (256, 99, 336, 1¢8)
7 Userltem for file name list (12, 11, 125, 125)
8 UserItem for scroll bar (124, 11, 14¢, 125)
9 UserItem for gray line (244, 20, 245, 116)
19 Invisible text (statText) (1¢44, 2¢, 1145, 116)

If your dialog has additional items beyond the the standard ones, or if
you want to handle any of the standard items in a nonstandard manner,
you must write your own dlgHook function and point to it with dlgHook.
Your dlgHook function should have two parameters and return an integer
value. For example, this is how it would be declared if it were named
MyDlg:

FUNCTION MyDlg (item: INTEGER; theDialog: DialogPtr) : INTEGER;

Immediately after calling ModalDialog, SFGetFile calls your dlgHook
function, passing it the item number returned by ModalDialog and a
pointer to the dialog record describing your dialog box. Using these
two parameters, your dlgHook function should determine how to handle
the event. There are predefined constants for the item numbers of
standard enabled items, as follows:

CONST getOpen = 1; {Open button}
getCancel = 3; {Cancel button}
getEject = 5; {Eject button}
getDrive = 6; {Drive button}
getNmList = 7; {userltem for file name list}
getScroll = 8; {userItem for scroll bar}

ModalDialog also returns 'fake" item numbers in the following
situations, which are detected by its filterProc function:

- When a disk-inserted event occurs, it returns 1¢@.

- When a key-down event occurs, it returns 10@@ plus the ASCII code
of the character.

After handling the event (or, perhaps, after ignoring it) your dlgHook

function must return an item number to SFGetFile. If the item number
is one of those listed above, SFGetFile responds in the standard way;

5/7 /84 Hacker-Rose /PACKAGES/PACKSF

34 Macintosh Packages Programmer's Guide

otherwise, it does nothing.

PROCEDURE SFPGetFile (where: Point; prompt: Str255; fileFilter:
ProcPtr; numTypes: INTEGER; typelist: SFTypeList; dlgHook:
ProcPtr; VAR reply: SFReply; dlgID: INTEGER; filterProc:
ProcPtr);

SFPGetFile is an alternative to SFGetFile for advanced programmers who
want to use a nonstandard dialog box. It's the same as SFGetFile
except for the two additional parameters d1lgID and filterProc.

Dl1gID is the resource ID of the dialog template to be used instead of
"~ the standard one (so you can use whatever ID you wish rather than the
same one as the standard).

The filterProc parameter determines how ModalDialog will filter events
when called by SFPGetFile. If filterProc is NIL, ModalDialog does the
standard filtering that it does when called by SFGetFile; otherwise,
filterProc should point to a function for ModalDialog to execute after
doing the standard filtering. Note, however, that the standard
filtering will detect key—-down events only if the dialog template ID is
the standard one.

5/7 /84 Hacker-Rose /PACKAGES/PACKSF

THE DISK INITIALIZATION PACKAGE 35

THE DISK INITIALIZATION PACKAGE

The Disk Initialization Package provides routines for initializing
disks to be accessed with the Macintosh Operating System's File Manager
and Disk Driver. A single routine lets you easily present the standard
user interface for initializing and naming a disk; the Standard File
Package calls this routine when the user inserts an uninitialized disk.
You can also use the Disk Initialization Package to perform each of the
three steps of initializing a disk separately if desired.

*** In the Inside Macintosh manual, the documentation of this package

will be at the end of the volume that describes the Operating System.
sk

You should already be familiar with the following:

the basic concepts and structures behind QuickDraw, particularly
points

the Toolbox Event Manager

the File Manager *** the File Manager manual doesn't yet exist **%

the Package Manager and packages in general

Using the Disk Initialization Package

This section discusses how the routines in the Disk Initialization
package fit into the general flow of an application program, and gives
you an idea of which routines you'll need to use. The routines
themselves are described in detail in the next section.

The Disk Initialization Package and the resources it uses are
automatically read into memory from the system resource file when one
of the routines in the package is called. Together, the package and
its resources occupy about 2.5K bytes. If the disk containing the
system resource file isn't currently in a Macintosh disk drive, the
user will be asked to switch disks and so may have to remove the one to
be initialized. To avoid this, you can use the DILoad procedure, which
explicitly reads the necessary resources into memory and makes them
unpurgeable. You would need to call DILoad before explicitly ejecting
the system disk or before any situations where it may be switched with
another disk (except for situations handled by the Standard File
Package, which calls DILoad itself).

(note)
The resources used by the Disk Initialization Package
consist of a single dialog and its associated items, even
though the package may present what seem to be a number
of different dialogs. A special technique was used to
allow the single dialog to contain all possible dialog
items with only some of them visible at one time. *#*%*

5/7 /84 Hacker-Rose /PACKAGES/PACKDI

36 Macintosh Packages Programmer's Guide

This technique will be documented in the next draft of
the Dialog Manager manual. *%*

When you no longer need to have the Disk Initialization Package in
memory, call DIUnload. The Standard File Package calls DIUnload before
returning.

When a disk-inserted event occurs, the system attempts to mount the
volume (by calling the File Manager function PBMountVol) and returns
PBMountVol's result code in the high-order word of the event message.
In response to such an event, your application can examine the result
code in the event message and call DIBadMount if an error occurred
(that is, if the volume could not be mounted). If the error is one
that can be corrected by initializing the disk, DIBadMount presents the
standard user interface for initializing and naming the disk, and then
mounts the volume itself. For other errors, it justs ejects the disk;
these errors are rare, and may reflect a problem in your program.

(note)
Disk-inserted events during standard file saving and
opening are handled by the Standard File Package. You'll
call DIBadMount only in other, less common situations
(for example, if your program explicitly ejects disks, or
if you want to respond to the user's inserting an
uninitialized disk when not expected).

Disk initialization consists of three steps, each of which can be
performed separately by the functions DIFormat, DIVerify, and DIZero.
Normally you won't call these in a standard application, but they may
be useful in special utility programs that have a nonstandar
interface. :

Disk Initialization Package Routines

Assembly-language note: The macros for calling the Disk
Initialization Package routines push one of the following
routine selectors onto the stack and then invoke _Pack2:

Routine Selector
DIBadMount

DIFormat

DILoad

DIUnload

DIVerify

DIZero 1

L BR RN L B R~

5/7 /84 Hacker-Rose /PACKAGES/PACKDI

THE DISK INITIALIZATION PACKAGE 37

PROCEDURE DILoad;

DILoad reads the Disk Initialization Package, and its associated dialog
and dialog items, from the system resource file into memory and makes
them unpurgeable.

(note) .
DiFormat, DIVerify, and DIZero don't need the dialog, so
if you use only these routines you can call the Resource
Manager function GetResource to read just the package
resource into memory (and the Memory Manager procedure
HNoPurge to make it unpurgeable).

PROCEDURE DIUnload;

DIUnload makes the Disk Initialization Package (and its associated
dialog and dialog items) purgeable.

FUNCTION DIBadMount (where: Point; evtMessage: LongInt) : INTEGER;

Call DIBadMount when a disk-inserted event occurs if the result code in
the high-order word of the associated event message indicates an error
(that is, the result code is other than noErr). Given the event
message in evtMessage, DIBadMount evaluates the result code and either
ejects the disk or lets the user initialize and name it. The low-order
word of the event message contains the drive number. The where
parameter specifies the location (in global coordinates) of the top
left corner of the dialog box displayed by DIBadMount.

I1f the result code passed is extFSErr, mFulErr, nsDrvErr, paramErr, or
volOnLinErr, DIBadMount simply ejects the disk from the drive and
returns the result code. 1If the result code ioErr, badMDBErr, or
noMacDskErr is passed, the error can be corrected by initializing the
disk; DIBadMount displays a dialog box that describes the problem and
asks whether the user wants to initialize the disk. For the result
code ioErr, the dialog box shown in Figure D-1 is displayed. (This
happens if the disk is brand new.) For badMDBErr and noMacDskErr,
DIBadMount displays a similar dialog box in which the description of
the problem is "This disk is damaged" and "This is not a Macintosh
disk", respectively.

Lo This disk Is unreadable:
Do you want to initialize it?

(initiatize)

Figure D-1. Disk Initialization Dialog for IOErr

5/7 /84 Hacker-Rose /PACKAGES/PACKDI

38 Macintosh Packages Programmer's Guide

(note)
Before presenting the disk initialization dialog,
DIBadMount checks whether the drive contains an already
mounted volume; if so, it ejects the disk and returns 2
as its result. This will happen rarely and may reflect
an error in your program (for example, you forgot to call
DILoad and the user had to switch to the disk containing
the system resource file).

If the user responds to the disk initialization dialog by clicking the
Eject button, DIBadMount ejects the disk and returns 1 as its result.
If the Initialize button is clicked, a box displaying the message
"Initializing disk..." appears, and DIBadMount attempts to initialize
the disk. If initialization fails, the disk is ejected and the user is
informed as shown in Figure D-2; after the user clicks OK, DIBadMount
returns a negative result code ranging from firstDskErr to lastDskErr,
indicating that a low-level disk error occurred.

Initialization failed!

Figure D-2. Initialization Failure Dialog

If the disk is successfully initialized, the dialog box in Figure D-3
appears. After the user names the disk and clicks OK, DIBadMount
mounts the volume by calling the File Manager function PBMountVol and
returns PBMountVol's result code (noErr if no error occurs).

3 Please name this disk:

Unmled

Figure D-3. Dialog for Naming a Disk

5/7/84 Hacker-Rose /PACKAGES/PACKDI

THE DISK INITIALIZATION PACKAGE 39

Result codes noErr No error
extFSErr External file system
mFulErr Memory full
nsDrvErr No such drive
paramErr Bad drive number
volOnLinErr Volume already on-line
firstDskErr Low-level disk error

through lastDskErr

Other results 1 User clicked Eject
2 Mounted volume in drive

FUNCTION DIFormat (drvNum: INTEGER) : OSErr;

DIFormat formats the disk in the drive specified by the given drive
number and returns a result code indicating whether the formatting was
completed successfully or failed. Formatting a disk consists of
writing special information onto it so that the Disk Driver can read
from and write to the diske.

Result codes noErr No error
firstDskErr Low-level disk error
through lastDskErr

FUNCTION DIVerify (drvNum: INTEGER) : OSErr;

DIVerify verifies the format of the disk in the drive specified by the
given drive number; it reads each bit from the disk and returns a
result code indicating whether all bits were read successfully or not.

Result codes noErr No error
firstDskErr Low-level disk error
through lastDskErr

FUNCTION DIZero (drvNum: INTEGER; volName: Str255) : OSErr;

On the unmounted volume in the drive specified by the given drive
number, DIZero writes the volume information, a block map, and a file
directory as for a volume with no files; the volName parameter
specifies the volume name to be included in the volume information.
This is the last step in initialization (after formatting and
verifying) and makes any files that are already on the volume
permanently inaccessible. If the operation fails, DIZero returns a
result code indicating that a low-level disk error occurred; otherwise,
it mounts the volume by calling the File Manager function PBMountVol
and returns PBMountVol's result code (noErr if no error occurs).

5/7 /84 Hacker—Rose /PACKAGES/PACKDI

40 Macintosh Packages Programmer's Guide

Result codes noErr No error
badMDBErr Bad master directory block
extFSErr External file system
ioErr Disk I/0 error
mFulErr Memory full
noMacDskErr Not a Macintosh volume
nsDrvErr No such drive
paramErr Bad drive number
volOnLinErr Volume already on-line
firstDskErr Low—-level disk error

through lastDskErr

5/7 /84 Hacker-Rose /PACKAGES/PACKDI

SUMMARY OF THE PACKAGE MANAGER 41

SUMMARY OF THE PACKAGE MANAGER

Constants

CONST { Resource IDs for packages }

dskInit = 2; ({Disk Initialization}

stdFile = 3; {Standard File}

flPoint = 4; {Floating-Point Arithmetic}

trFunc = 5; {Transcendental Functions}

intUtil = 6; {International Utilities}

bdConv = 7; {Binary-Decimal Conversion}
Routines '

PROCEDURE InitPack (packID: INTEGER);
PROCEDURE InitAllPacks;

Assembly-Language Information

Constants

; Resource IDs for packages

dskInit «EQU 2 3Disk Initialization
stdFile «EQU 3 ;Standard File

f1Point +EQU 4 ;Floating-Point Arithmetic
trFunc +EQU 5 ;Transcendental Functions
intUtil «EQU 6 ;International Utilities
bdConv «EQU 7 ;Binary-Decimal Conversion

5/7/84 Hacker-Rose

/PACKAGES/PACK. S

42 Macintosh Packages Programmer's Guide

SUMMARY OF THE INTERNATIONAL UTILITIES PACKAGE

Constants

CONST { Masks for currency format }

currSymLead
currNegSym
currTrailing
currLeadingZ

Z

{ Order of short date elements }

mdy
dmy
ymd

{ Masks for
dayleadingZ
mntLeadingZ
century

{ Masks for
secLeadingZ

minLeadingZ
hrLeadingZ

{ High-order

@; {month day year}
1; {day month year}
2; {year month day}

short date format }

= 32; {set
= 64; {set
= 128; {set
time format
= 32; {set
= 64; {set
= 128; {set

if
if
if

}

if
if
if

leading
leading
century

leading
leading
leading

16; {set if currency symbol leads}
32; {set if minus sign for negative}
64; {set if trailing decimal zeroes}
128; {set if leading integer zero}

zero for day}
zero for month}
included}

zero for seconds}
zero for minutes}
zero for hours}

byte of version information }

verUsS =@;
verFrance = 1;
verBritain = 2;
verGermany = 3;
verltaly = 4;

Data Types

TYPE Intl@Hndl = “Intl@Ptr;
Intl@Ptr = “Intl@Rec;

5/7 /84 Hacker-Rose

/PACKAGES/PACK. S

SUMMARY OF THE INTERNATIONAL UTILITIES PACKAGE 43

Intl@Rec = PACKED RECORD
decimalPt:
thousSep:
listSep:
currSyml:
currSym2:
currSym3:
currFmt:
dateOrder:
shortDateFmt:
dateSep:
timeCycle:
timeFmt:
mornStr:

eveStr:

timeSep:

timelSuff:
time2Suff:
time3Suff:
time4Suff:
time5Suff:
time6Suff:
time7 Suff:
time8Suff:
metricSys:
intl@Vers:

END;

IntllHndl = “IntllPtr;
IntllPtr “IntllRec;
IntllRec PACKED RECORD
days:
months:
suppressDay:
longDateFmt:
dayleading@:
abbrlen:
st@:
stl:
st2:
st3:
st4:
intllVers:
localRtn:

[]

END;

CHAR;
CHAR;
CHAR;
CHAR;
CHAR;
CHAR;
Byte;
Byte;
Byte;
CHAR;
Byte;
Byte;

{decimal point character}
{thousands separator}
{list separator}
{currency symbol}

{currency format}

{order of short date elements}
{short date format}

{date separator}

{@ if 24-hour cycle, 255 if 12-hour}
{time format}

PACKED ARRAY[l..4] OF CHAR;

{trailing string for first 12-hour cycle}
PACKED ARRAY{l..4] OF CHAR;

{trailing string for last 12-hour cycle}

CHAR;
CHAR;
CHAR;
CHAR;
CHAR;
CHAR;
CHAR;
CHAR;
CHAR;
Byte;

{time separator}
{trailing string for 24-hour cycle}

{255 if metric, @ if not}

INTEGER {version information}

ARRAY[1..7) OF STRING[15]; {day names}
ARRAY[1..12] OF STRING[15]; {month names}

Byte;
Byte;
Byte;
Byte;

{@ for day name, 255 for none}
{order of long date elements}
{255 for leading @ in day number}
{length for abbreviating names}

PACKED ARRAY([1l..4] OF CHAR; {strings }
PACKED ARRAY[1l..4] OF CHAR; { for }
PACKED ARRAY([1l..4] OF CHAR; { long }
PACKED ARRAY[l..4] OF CHAR; { date }
PACKED ARRAY[1l..4] OF CHAR; { format}
INTEGER; {version information}

INTEGER {routine for localizing string }

{ comparison; actually may be }
{ longer than one integer}

DateForm = (shortDate, longDate, abbrevDate);

5/7 /84 Hacker-Rose

/PACKAGES/PACK.S

44 Macintosh Packages Programmer's Guide

Routines

PROCEDURE IUDateString (dateTime: LongInt; form: DateForm; VAR result:
Str255);

PROCEDURE IUDatePString (dateTime: LongInt; form: DateForm; VAR result:
Str255; intlParam: Handle);

PROCEDURE IUTimeString (dateTime: LongInt; wantSeconds: BOOLEAN; VAR
result: Str255);

PROCEDURE IUTimePString (dateTime: LongInt; wantSeconds: BOOLEAN; VAR
result: Str255; intlParam: Handle);

FUNCTION IUMetric : BOOLEAN;

FUNCTION IUGetIntl (theID: INTEGER) : Handle;

PROCEDURE IUSetIntl (refNum: INTEGER; theID: INTEGER; intlParam:
Handle);

FUNCTION IUCompString (aStr,bStr: Str255) : INTEGER; [Pascal only]

FUNCTION. IUMagString (aPtr,bPtr: Ptr; alen,bLen: INTEGER) : INTEGER;

FUNCTION IUEqualString (aStr,bStr: Str255) : INTEGER; [Pascal only]

FUNCTION 1IUMagIDString (aPtr,bPtr: Ptr; alen,bLen: INTEGER) : INTEGER;

Assembly-Language Information

Constants

s Currency

currSymLead .EQU

currNegSym

currTrailingZ .EQU
currLeadingZ «EQU

3 Order of

ndy
dmy
ymd

3y Short da
dayLeading

mntLeading
century

format

;set if currency symbol leads
;set 1f minus sign for negative
;set if trailing decimal zeroes
;set if leading integer zero

-EQU

N oo

short date elements

.EQU ¢ ;month day year
+EQU 1 ;day month year
-EQU 2 ;year month day

3y Time format

secLeading
minLeading
hrLeadingZ

5/7 /84 Hac

te format
Z «EQU 5 ;set if leading zero for day
z <EQU 6 ;set if leading zero for month
-EQU 7 s;set if century included
VA +EQU 5 ;set if leading zero for seconds
Z . EQU 6 s;set if leading zero for minutes
-EQU 7 ;set if leading zero for hours
ker-Rose /PACKAGES/PACK.S

SUMMARY OF THE INTERNATIONAL UTILITIES PACKAGE

; High-order byte of version information

verUS +EQU @
verFrance <EQU 1
verBritain +EQU 2
verGermany -EQU 3
verItaly +EQU 4

; Date form for IUDateString and IUDatePString

shortDate .EQU @ ;short form of date
longDate «EQU 1 slong form of date
abbrevDate -EQU 2 sabbreviated long form

International Resource @ Data Structure

decimalPt
thousSep
listSep
currSym
currFmt
dateOrder
shortDateFmt
dateSep
timeCycle
timeFmt
mornStr
eveStr
timeSep
timeSuff
metricSys
intl@Vers

Decimal point character
Thousands separator

List separator

Currency symbol

Currency format

Order of short date elements
Short date format
Date separator

@ if 24-hour cycle,
Time format
Trailing string for first 12-hour cycle
Trailing string for last 12-hour cycle
Time separator

Trailing string for 24-hour cycle

255 if metric, @ if not

Version information

255 if 12-hour

International Resource 1 Data Structure

days

months
suppressDay
longDateFmt
dayleading@
abbrLen

st@

stl

st2

st3

st4
intllVers
localRtn

5/7 /84 Hacker-Rose

' Day names

Month names

¢ for day name, 255 for nome
Order of long date elements

255 for leading ¢ in day number
Length for abbreviating names
Strings for long date format

Version information
Comparison localization routine

45

/PACKAGES/PACK.S

46 Macintosh Packages Progfammer's Guide

Routine Selectors

Routine Selector
IUDatePString 14
IUDateString @
1UGetIntl 6
IUMagIDString 12
IUMagString 1¢
IUMetric 4
IUSetIntl 8
IUTimePString 16
IUTimeString 2

5/7/84 Hacker-Rose /PACKAGES/PACK.S

SUMMARY OF THE BINARY-DECIMAL CONVERSION PACKAGE 47

SUMMARY OF THE BINARY-DECIMAL CONVERSION PACKAGE

Routines

PROCEDURE NumToString (theNum: LongInt; VAR theString: Str255);
PROCEDURE StringToNum (theString: Str255; VAR theNum: LongInt);

Assembly-Language Information

Routine Selectors

Routine Selector
NumToString ¢
StringToNum 1

5/7 /84 Hacker-Rose /PACKAGES/PACK. S

48 Macintosh Packages Programmer's Guide

SUMMARY OF THE STANDARD FILE PACKAGE

Constants

CONST = putDlgID = -3999; {SFPutFile dialog template ID}

{ Item numbers of enabled items in SFPutFile dialog }

putSave = 1; {Save button}

putCancel = 2; {Cancel button}

putEject = 5; {Eject button}

putDrive = 6; ({Drive button}

putName = 7; {editText item for file name}

getDlgID = -40@@; {SFGetFile dialog template ID}

{ Item numbers of enabled items in SFGetFile dialog }

getOpen = 1; {Open button}
getCancel = 3; {Cancel button}
getEject = 5; {Eject button}
getDrive = 6; {Drive button}
getNmList = 7; {userItem for file name list} .
getScroll = 8; {userltem for scroll bar}
Data Types
TYPE SFReply = RECORD
good: BOOLEAN; {FALSE if ignore command}
copy: BOOLEAN; {not used}
fType: OSType; {file type or not used}
vRefNum: INTEGER; {volume reference number}
version: INTEGER; {file's version number}
fName: STRING[63] {file name}
END;

SFTypeList = ARRAY [@..3] OF OSType;

Routines

PROCEDURE SFPutFile (where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; VAR reply: SFReply);

PROCEDURE SFPPutFile (where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; VAR reply: SFReply; dlgID:
INTEGER; filterProc: ProcPtr);

PROCEDURE SFGetFile (where: Point; prompt: Str255; fileFilter:
ProcPtr; numTypes: INTEGER; typeList: SFTypelist;
dlgHook: ProcPtr; VAR reply: SFReply);

5/7 /84 Hacker-Rose /PACKAGES/PACK. S

SUMMARY OF THE STANDARD FILE PACKAGE 49

PROCEDURE SFPGetFile (where: Point; prompt: Str255; fileFilter:
ProcPtr; numTypes: INTEGER; typelList: SFTypelist;
dlgHook: ProcPtr; VAR reply: SFReply; dlgID:
INTEGER; filterProc: ProcPtr);

DlgHook Function

FUNCTION MyDlg (item: INTEGER; theDialog: DialogPtr) : INTEGER;

FileFilter Function

FUNCTION MyFileFilter (paramBlock: ParmBlkPtr) : BOOLEAN;

Standard . SFPutFile Iltems

Item number Item

Save button

Cancel button

Prompt string (statText)
UserItem for disk name
Eject button

Drive button

EditText item for file name
Userltem for gray line

ONOVL S~ WN -

Resource IDs of SFPutFile Alerts

Standard display rectangle

(12, 74, 82, 92)

(114, 74, 184, 92)
(12, 12, 184, 28)
(209, 16, 295, 34)
(217, 43, 287, 61)
(217, 74, 287, 92)
(14, 34, 182, 5@)
(299, 16, 2¢1, 88)

Alert Resource ID
Existing file -3996
Locked disk -3997
System error -3995
Disk not found -3994

Standard SFGetFile Items

Item number Item

Open button

Invisible button

Cancel button

Userltem for disk name
Eject button

Drive button

UserItem for file name list
UserIltem for scroll bar
UserItem for gray line
Invisible text (statText)

RO 0NV S W

[

5/7 /84 Hacker-Rose

Standard display rectangle

(152, 28, 232, 46)
(1152, 59, 1232, 77)
(152, 94, 232, 1¢8)
(248, 28, 344, 46)
(256, 59, 336, 77)
(256, 94, 336, 1¢8)
(12, 11, 125, 125)
(124, 11, 14@, 125)
(244, 26, 245, 116)
(1944, 2¢, 1145, 116)

/PACKAGES/PACK. S

50 Macintosh Packages Programmer's Guide

Assembly-Language Information

Constants
putDlglD .EQU -3999 ;SFPutFile dialog template ID

3y Item numbers of enabled items in SFPutFile dialog

putSave .EQU 1 ;Save button

putCancel <EQU 2 ;Cancel button

putEject -EQU 5 ;Eject button

putDrive «EQU 6 ;Drive button

putName -EQU 7 seditText item for file name

getDlgID +EQU -40@@ ;SFGetFile dialog template ID

; Item numbers of enabled items in SFGetFile dialog

getOpen «EQU 1 ;Open button

getCancel «EQU 3 sCancel button

getEject <EQU 5 sEject button

getDrive -EQU 6 ;Drive button

getNmList «EQU 7 ;userItem for file name list
getScroll <EQU 8 ;userltem for scroll bar

Reply Record Data Structure

rGood FALSE if ignore command
rType File type

rVolume Volume reference number
rVersion File's version number
rName File name

Routine Selectors

Routine Selector
SFGetFile 2
SFPGetFile 4
SFPPutFile 3
SFPutFile 1

5/7/84 Hacker-Rose /PACKAGES/PACK.S

SUMMARY OF THE DISK INITIALIZATION PACKAGE 51

SUMMARY OF THE DISK INITIALIZATION PACKAGE

Routines

PROCEDURE DILoad;

PROCEDURE DIUnload;

FUNCTION DIBadMount (where: Point; evtMessage: LongInt) : INTEGER;
FUNCTION DIFormat (drvNum: INTEGER) : OsErr;

FUNCTION DIVerify (drvNum: INTEGER) : OsErr;

FUNCTION DIZero

(drvNum: INTEGER; volName: Str255) : OSErr;

Assembly-Language Information

Routine Selectors

Routine Selector

DIBadMount ¢

DIFormat 6

DILoad 2

DIUnload 4

DIVerify 8

DIZero 1¢

Result Codes

Name Value Meaning

badMDBErr -60 Bad master directory block

extFSErr -58 External file system

firstDskErr -84 First of the range of low-level disk errors
ioErr -36 Disk 1/0 error

lastDskErr -64 Last of the range of low-level disk errors
mFulErr -41 Memory full

noErr ¢ No error

noMacDskErr =57 Not a Macintosh disk

nsDrvErr -56 No such drive

paramErr -5¢ Bad drive number

volOnLinErr -55 Volume already on-line

5/7 /84 Hacker-Rose /PACKAGES/PACK. S

52 Macintosh Packages Programmer's Guide

GLOSSARY

ligature: A character that combines two letters.

list separator: The character that separates numbers, as when a list
of numbers is entered by the user.

package: A set of data structures and routines that's stored as a
resource and brought into memory only when needed.

routine selector: An integer that's pushed onto the stack before the
_PackN macro is invoked, to identify which routine to execute. (N is
the resource ID of a package; all macros for calling routines in the
package expand to invoke _PackN.)

thousands separator: The character that separates every three digits
to the left of the decimal point.

5/7 /84 Hacker-Rose /PACKAGES/PACK.G

COMMENTS?

Macintosh User Education encourages your comments on this manual,

- What do you like or dislike about it?

- Were you able to find the information you needed?
- Was it complete and accurate?
- Do you have any suggestions for improvement?

Please send your comments to the author (indicated on the cover
page) at 10460 Bandley Drive M/S 3-G, Cupertino CA 395014.
Mark up a copy of the manual or note your remarks separately.
(We’ll return your marked-up copy if you like.)

Thanks for your helpl

MACINTOSH USER EDUCATION

Printing From Macintosh Applications /PRINTING/PRINT

See Also: The Resource Manager: A Programmer's Guide
QuickDraw: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Structure of a Macintosh Application
Programming Macintosh Applications in Assembly Language

Modification History: First Draft S. Chernicoff & B. Hacker 6/11/84

ABSTRACT

Macintosh applications can print information on any variety of printer
the user has connected to the Macintosh by calling Printing Manager
routines. Advanced programmers can also call the Printer Driver to
implement alternate, low-level printing techniques. This manual
describes the Printing Manager and Printer Driver.

2

Printing From Macintosh Applications

TABLE OF CONTENTS

—
QLW NP>W

12
13
14
16
16
18
19
19
29
21
22
23
24
25
26
27
28
28
29
33
42

About This Manual
About the Printing Manager
Methods of Printing
Imaging During Spool Printing
Printing From the Finder
Print Records and Dialogs
The Printer Information Subrecord
The Style Subrecord
The Job Subrecord
The Band Information Subrecord
Background Processing
Using the Printing Manager
Printing Manager Routines
Initialization and Termination
Print Records and Dialogs
Draft Printing and Spooling
Spool Printing '
Handling Errors
Low-Level Driver Access
The Printer Driver
Bitmap Printing
Text Streaming
Screen Printing
Font Manager Support
Printing Resources
Summary of the Printing Manager
Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.
Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

Macintosh applications can print information on any variety of printer
the user has connected to the Macintosh by calling the Printing Manager
routines in the User Interface Toolbox. Advanced programmers can also
call the Printer Driver to implement alternate, low-level printing
techniques. This manual describes the Printing Manager and Printer
Driver. *%** It will eventually become part of the comprehensive Inside
Macintosh manual. *¥%*

Like all Toolbox documentation, this manual assumes you're familiar
with the Macintosh User Interface Guidelines, Lisa Pascal, and the
Macintosh Operating System's Memory Manager. You should also be
familiar with the following:

- resources, as described in the Resource Manager manual

- the use of QuickDraw, as described in the QuickDraw manual,
particularly bit images, rectangles, bitMaps, and pictures

- the use of fonts, as described in the Font Manager manual

- the basic concepts of dialogs, as described in the Dialog Manager
manual

- files and volumes, as described in the File Manager manual

- device drivers, as described in the Device Manager manual, ***
doesn't yet exist *** if you're interested in writing your own
Printer Driver '

This manual is intended to serve the needs of both Pascal and assembly-
language programmers. Information of interest to assembly-language
programmers only is isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins with an overview of the Printing Manager and what you
can do with it. It then discusses the basics about printing: the
various methods of printing available; the relationship between
printing and the Finder; and the Printing Manager's use of dialogs and
data structures, the most important of which is the print record.

Next, a section on using the Printing Manager introduces its routines
and tells how they fit into the flow of your application. This is -
followed by detailed descriptions of all Printing Manager procedures
and functions, their parameters, calling protocol, effects, side
effects, and so on.

Following these descriptions are sections that won't interest all
readers. Special information is given about the Printer Driver and the
format of resource files used when printing, for programmers interested
in writing their own Printer Driver.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1

4 Printing From Macintosh Applications

Finally, there's a summary of the Printing Manager for quick reference,
followed by a glossary of terms used in this manual.

ABOUT THE PRINTING MANAGER

The Printing Manager is the part of the Macintosh User Interface
Toolbox that's used to print text or graphics on a printer. It's not
contained in the Macintosh ROM; it must be read from a resource file
before it can be used. The Printing Manager provides your application
with:

- two standard printing methods, and the ability to define two more

- a standard dialog for the user to specify the paper size and page
orientation they're using, so you can easily implement a Page
Setup command in your File menu

~ a standard dialog for the user to specify the method of printing,
which pages to print, and so on, so you can easily implement a
Print command in your File menu

~ the ability to perform background processing while the Printing
Manager is printing

- a way to abort printing when the user types Command-period

The Printing Manager is designed such that an application need never be
concerned with what kind of printer the user has connected to the
Macintosh; an application uses the same routine calls to print with all
varieties of printers.

This printer independence is possible because the Printing Manager uses
separate, printer-specific code to implement its routines for each
different variety of printer. While the code for some Printing Manager
routines (such as those that begin and end printing sessions), is
contained wholly within the Printing Manager itself, the code for other
routines (such as those that do the actual printing) depends on the
printer being used and is contained in a separate printer resource file
on the user's disk. The Printing Manager dispatches calls to these
routines, first loading the code into memory if necessary.

Although the actual routines of the Printing Manager differ for each
variety of printer, your application uses the same Printing Manager
calls to print on all varieties of printers. The user "installs" a new
printer by giving the Printing Manager a new printer resource file to
work with (Figure 1). Printer installation is transparent to you
application, and you needn't be concerned with it.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1

ABOUT THE PRINTING MANAGER 5

(epotication) (application)

{ . e N 4 . ia N\
Printing Printing
L Manager) X Manager)
.) 4) “
printer ‘A’ printer 'B’
resource file J L resource file
(printer ‘A’) (printer 'B')
printer °A’ installed printer *B® installed

Figure 1. Printer Installation

Each printer resource file also contains a device driver that
communicates between the Printing Manager and the printer. Because the
actual routines of the device driver differ for each variety of
printer, there exists a different device driver for each printer. The
Printing Manager routines used to call a printer's device driver are
the same, regardless of printer variety; this manual will refer to the
device driver of the currently installed printer as the Printer Driver.

You define the image to be printed by using a printing port, a special
QuickDraw grafPort customized for printing:

TYPE TPPrPort = “TPrPort;
TPrPort = RECORD
gPort: GrafPort; {grafPort to draw in}
gProcs: QDProcs; {pointers to drawing routines}
{more fields for internal use only}
END;

The Printing Manager gives you a printing port when you prepare to
print a document. You print text and graphics by drawing

into this port with QuickDraw, just as if you were drawing on the
screen. The Printing Manager installs its own versions of QuickDraw's
low-level drawing routines in the printing port, causing your
higher—-level QuickDraw calls to drive the printer instead of drawing
on the screen. GProcs contains pointers to these low-level drawing
routines.

(note)
To convert a pointer to a printing port into an
equivalent grafPtr for use with QuickDraw, you can use
the following variant record type:

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1

6 Printing From Macintosh Applications

TYPE TPPort = PACKED RECORD
CASE INTEGER OF
@: (pGPort: GrafPtr);
1: (pPrPort: TPPrPort)
END;

METHODS OF PRINTING

The Printing Manager supports two different methods of printing
documents: draft and spool. In draft printing, your QuickDraw calls
are converted directly into command codes the printer understands,
which are then immediately used to drive the printer. Each element of
the image is printed as soon as you request it; as you move around to
various coordinates within the grafPort, the print head moves to the
corresponding positions on the printed page. Draft printing uses the
printer's native font and graphics capabilities and probably won't
produce an image matching the one on the screen. This method of
printing is more direct than spool printing, but it can also be
cumbersome, especially for graphics. Draft printing is most
appropriate for making quick copies of text documents, which are
printed straight down the page from top to bottom and left to right.
Depending on the printer and what you're printing, draft printing may
not even be possible; for instance, not all printers are capable of
moving the paper backwards (toward the top of the page).

Spooling and spool printing are complementary halves of a two-stage
process. First you cause the Printing Manager to write out (spool) a
representation of your document's printed image to a disk file. This
spool file is later read back in, each page is imaged (converted into
an array of dots at the appropriate resolution), and the result is sent
to the printer in a single pass from top to bottom. Spool printing
uses QuickDraw and the Font Manager's graphics and font capabilities to
produce an image closely matching the one on the screen.

(note)
The internal format of spool files is private to the
Printing Manager and may vary from one printer to
another. This means that spool files destined for omne
printer can't necessarily be printed on another. 1In
spool files for the Imagewriter printer, each page is
stored in the form of a QuickDraw picture. It's
envisioned that most other printers will use this same
approach, but there may be exceptions.

Spooling and spool printing are two separate stages because spool
printing a document takes a lot of space—-typically from 20K to 4@K for
the printing code, buffers, and fonts, but spooling a document takes
only about 3K. When spooling a document, large portions of your
application's code and data may be needed in memory; when spool
printing, most of your application's code and data are no longer

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1

METHODS OF PRINTING 7

needed. Normally you'll make your printing code a separate program
segment, 80 you can swap the rest of your code and data out of memory
during printing and swap it back in after you're finished.

1If your application can't afford the space required by spool printing,
it can just perform the spooling stage, and leave the spool file on the
disk for the user to print later from the Finder (see next section).
The maximum number of pages in a spool file is defined by the following
constant *** it may increase *** :

CONST iPFMaxPgs = 128; {maximum number of pages in a spool file}

(note)
Advanced programmers: In addition to draft printing and
spooling, you can define as many as two more of your own
methods of document printing for any given printer. (No
such additional printing methods are currently defined
for the Imagewriter.) There are also a number of low-
level printing methods available, such as bitmap
printing, text streaming, and screen printing. These
methods are discussed in the section "Using a Printer
Driver". :

Imaging During Spool Printing

The bit image for a typical page is too big to fit in memory all at
once. For instance, at the highest resolution of the Imagewriter
printer (16§ dots per inch horizontally by 144 vertically), an 8-by-10
1/2-inch page image contains approximately a quarter megabyte of
information, or twice the total memory capacity of the Macintosh. So
instead of imaging and printing the entire page at once, the page has
to be broken into bands small enough to fit in memory. During spool
printing the Printing Manager actually images each band individually,
adjusting the fields of the printing port to limit the actual drawing
to the boundaries of the band. It then prints the resulting bit image
before imaging the next band. A page can be broken into bands
("scanned") in any of four ways. Figure 2 shows the four possible scan
directions of a printing port.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1

8 Printing From Macintosh Applications

left to right

top to bottom

bottom to top

right to left

Figure 2. Scan Directions

The bands are always printed from top to bottom relative to the
physical sheet of paper; the scan direction determines the
correspondence between these printed bands and the dots of the image.
If the long dimension of the paper runs vertically with respect to the
image, the page is said to be in portrait orientation; if the long
dimension runs horizontally, the page is in landscape orientation. In
practice, portrait pages are normally scanned from top to bottom and
landscape pages from left to right.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1

PRINTING FROM THE FINDER 9

PRINTING FROM THE FINDER

The Macintosh user can choose to print from the Finder as well as from
an application. Your application should support both alternatives.

To print a document from the Finder, the user selects the document's
icon and chooses the Print command from the File menu. When the Print
command is chosen, the Finder starts up the document's application, and
passes information to the application indicating that the file is to be
printed rather than opened. The application is then expected to print
the document, preferably without doing its entire startup sequence. It
may choose to do any of the following:

- Draft-print the document.
- Spool the document to a file and then print it immediately.

= Spool the document to a file and leave it for the user to print
later via the Printer program (descibed below).

If your application writes spool files on a disk and then doesn't spool
print them, it's up to the user to print them. The user simply selects
the spool file's icon (Figure 3) and chooses the Print command from the
File menu. When the Print command is chosen, the Finder starts up a
special program called Printer, which spool prints spool files. 1It's
provided as a utility for use with programs that don't do their own
spool printing. Its main purpose is to read a spool file, image it,

and print it.

Printer Print File

Figure 3. 1Icons for the Printer Program and Spool Files
Spool files can be identified by their file type and creator:
CONST 1PfType = $5046484C; {spool file type 'PFIL'}
1PfSig = $58535953; {spool file creator 'PSYS'}

(note)
The details of the Finder interface are discussed in The
Structure of a Macintosh Application.

*** This method of spool printing may be temporary. Currently, the
easiest way for your application to do printing is to leave spool files
on the disk and rely on the user to print them via Printer. Eventually
Printer may be eliminated and one of the following solutions will be
employed: The process will remain the same, and the code of Printer
will be integrated into the Finder; or your application will be
required to do spool printing itself. ***

6/11/84 Chernicoff-Hacker , /PRINTING/PRINT.I.1

10 Printing From Macintosh Applications

PRINT RECORDS AND DIALOGS

For every printing operation, your application needs to determine the
following:

- the resolution and other characteristics of the printer being used

- the dimensions of the printed image and of the physical sheet of
paper :

- the printing method to be used (draft or spool)
- the name of the spool file, if applicable

- which pages of the document to print

- how many copies to print

~ an optional background procedure to be run during idle times in
the printing process (discussed later)

This information is contained in a data structure called a print
record. The Printing Manager fills in most of the print record for
you. Some values depend on the variety of printer installed in the
Printing Manager; others are set as a result of dialogs with the user.

(note)
Whenever you save a document, it's recommended that you
write an appropriate print record in the document's file
(see the "Printing Resources" section). This allows the
document to "remember" its own printing parameters for
use the next time it's printed.

(note)
If you try to use a print record that's invalid for the
current version of the Printing Manager or for the
printer installed in the Printing Manager, the Printing
Manager will correct the record by filling it with
default values.

The information in the print record that can vary from one printing job
to the next is obtained from the user by means of dialogs. The
Printing Manager uses two standard dialogs for this purpose. The style
dialog includes the paper size and page orientation (Figure 4). This
dialog is conventionally associated with a Page Setup command in the
application.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1

PRINT RECORDS AND DIALOGS 11

Paper: ® US Letter O R4 Letter

Q Us Legal QO International Fenfold

Orientation: ®Tall OTell Adjusted O Wide

Figure 4. The Standard Style Dialog

The job dialog, normally associated with the application's Print
command, requests information on how to print the document this time,
such as the method of printing (draft or spool), the print quality (for
printers that offer a choice of resolutions), the type of paper feed
(such as fanfold or cut-sheet), the range of pages to be printed, and
the number of copies (Figure 5).

Quality: Q High @® Steandard O Draft
Page Range: ® All QO From: ﬂ To:
Copies: 1
Paper Feed: @ Continuous O Cut Sheet

Figure 5. The Standard Job Dialog

Print records are referred to by handles. Their structure is as
follows:

TYPE THPrint = “TPPrint;
TPPrint = “TPrint;
TPrint = RECORD
iPrVersion: INTEGER; {Printing Manager version}

prinfo: TPrInfo; {printer information}
rPaper: Rect; {paper rectangle}
prStl: TPrStl; {style information}

prInfoPT: TPrinfo; {copy of prinfo}
prXInfo: - TPrXInfo; {band information}
prJob: TPrJob; {job information} .
printX: ARRAY [1..19] OF INTEGER
{used internally}
END;

IPrVersion identifies the version of the Printing Manager that
initialized this print record.

Most of the other fields of the print record are "subrecords"

containing various parts of the overall printing information; these are
discussed in separate sections below.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

12 Printing From Macintosh Applications

Assembly-language note: The global constant iPrintSize equals
the length .in bytes of a print record.

The Printer Information Subrecord

The printer information subrecord (field prInfo of the print record)
describes the characteristics of the particular printer you're using.
Its contents are set by the Printing Manager when it initializes the
print record. All applications will need to refer to the information
it contains. (The prinfoPT field of the print record is a copy of the
prinfo field and is used internally by the Printing Manager during
printing.)

The printer information subrecord is defined as follows:

TYPE TPrInfo = RECORD
iDev: INTEGER; {driver information}
iVRes: INTEGER; {printer vertical resolution}
iHRes: INTEGER; {printer horizontal resolution}
rPage: Rect {page rectangle}
END;

The iDev field contains information used by QuickDraw and the Font
Manager for selecting fonts for the printer. The high-order byte is
the reference number of the Printer Driver, -3. The low-order byte
contains device-specific information on how the printer is being used.
For example, for the Imagewriter printer, bit @ specifies high (1) or
low (@) resolution and bit 1 specifies portrait (1) or landscape (@)
orientation.

(note)
If you store this word into the device field of a
grafPort, you can use the QuickDraw routines CharWidth,
StringWidth, TextWidth, and GetFontInfo to ask for
information about a font drawn on that device.

IVRes and iHRes give the vertical and horizontal resolution of the
printer, in dots per inch.

RPage is the page rectangle, representing the boundaries of the
printable page. 1Its top left corner always has coordinates (#,8); the
coordinates of the bottom right corner give the maximum page height and
width attainable on the given printer, in dots. Typically these are
slightly less than the physical dimensions of the paper, because of the
printer's mechanical limitations.

The results of the style dialog conducted with the user determine the
values of the iVRes, iHRes, and rPage fields. For example, with the

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

PRINT RECORDS AND DIALOGS 13

~

Imagewriter printer, the style dialog's three orientation buttons yield
the following:

Button . Orientation IVRes IHRes
Tall Portrait 84 72
Tall adjusted Portrait 72 72
Wide Landscape 72 72

The physical paper size is given by the rPaper field of the print
record. This paper rectangle is outside of the page rectangle: it
defines the physical boundaries of the paper in the same coordinate
system as rPage (see Figure 6). Thus the top left coordinates of the
paper rectangle are typically negative and its bottom right coordinates
are greater than those of the page rectangle.

Paperrecianohs*’“’ffﬂf"v
Pagerecuunﬂef”#dffﬂ’ﬁ

Figure 6. Page and Paper Rectghgles

The Style Subrecord

The style subrecord (field prStl of the print record) describes the
type and size of paper used in the printer. The contents of the style
subrecord are normally set by the Printing Manager after dialogs with
the user, and only advanced programmers need be concerned with them.

The style subrecord is defined as follows:

6/11/84 Chernicoff-Hacker " /PRINTING/PRINT.I.2

14 Printing From Macintosh Applications

TYPE TPrStl .= RECORD
wDev: TWord; {used internally}
iPageV: INTEGER; {paper height}
iPageH: INTEGER; {paper width}
bPort: SignedByte; {printer or modem port}
feed: TFeed {paper type}
END;

IPageV and iPageH give the physical dimensions of the paper, in 12@ths
of an inch. The user can set them by choosing a standard paper size
(such as U.S. Letter, U.S. Legal, or European A4) from the style
dialog. The number of units per inch is defined by the following
constant:

CONST iPrPgFract = 12@; {units per inch of paper dimension}

BPort designates which port on the back of the Macintosh the printer is
connected to: @ for the printer port, 1 for the modem port. #**#
Currently the Printing Manager ignores this value, and instead uses the
global variable sPPrint. *%*

Feed identifies the type of paper feed being used:

TYPE TFeed = (feedCut, {hand-fed, individually cut sheets}
feedFanfold, {continuous-feed fanfold paper}
feedMechCut, {mechanically fed cut sheets}
feedOther); {other types of paper}

The user sets this field by choosing Continuous or Cut Sheet from the
job dialog. When Cut Sheet is chosen, the printer will pause at the
end of each page and a dialog box will prompt the user to insert the
next sheet.

The Job Subrecord

The job subrecord (field prJob of the print record) contains
information about a particular printing job. Its contents are normally
set by the Printing Manager as a result of a job dialog with the user.

The job subrecord is defined as follows:

TYPE TPrJob = RECORD

iFstPage: INTEGER; {first page to print}
iLstPage: INTEGER; {last page to print}

iCopies: . INTEGER; {number of copies}

bJDocLoop: SignedByte; {printing method}

fFromUsr: BOOLEAN; {TRUE if called from application}
pldleProc: ProcPtr; {background procedure}
pFileName: TPStr8{; {spool file name}

iFileVol: INTEGER; {volume reference number}
bFileVers: SignedByte; {version number of spool file}
bJobX: SignedByte {not used}
END;

6/11/84 Chernicoff-Hacker ; /PRINTING/PRINT.I.2

PRINT RECORDS AND DIALOGS 15

TPStr8@ = “TStr8d@;
TStr8¢ = STRING[80];

Most programmers need only be concerned with the bJDocLoop, pFileName,
and pldleProc fields. BJDocLoop represents the method of printing to
use. The user sets this field by choosing High, Standard, or Draft
from the job dialog. BJDocLoop should be one of the following
predefined constants:

CONST bDraftLoop = @; {draft printing}
bSpoolLoop = 1; {spooling}
bUserlLoop = 2; {printer—specific, method 1}
bUser2Loop = 3; {printer-specific, method 2}

If you're spool printing, it's a good idea to give each file you spool
to the disk a different name, in the pFileName field, so that it
doesn't overwrite any other spool files on the disk. PFileName is
initialized to NIL, denoting the default file name found in the printer
resource file. *** (Currently the default file name is 'Print

File 'e) *k%

IFstPage and ilLstPage designate the first and last pages to be printed.
The Printing Manager knows nothing about any page numbering placed by
an application within a document, and always considers the first
printable page to be page l. For example, if iFstPage is 2, the
Printing Manager will print the second page in the document, regardless
of how the page is actually numbered. If you're draft printing, you'll
need to use the value of iCopies to determine the number of copies to
print (the Printing Manager automatically handles multiple copies for
spooling).

FFromUsr is TRUE when the Printing Manager is called from an
application program, FALSE when it's called from the Printer program.
PldleProc is a pointer to the background procedure (explained below)
for this printing operation. In a newly initialized print record this
field is set to NIL, designating the default background procedure.
This procedure just polls the keyboard and cancels further printing if
the user types Command-period. You can install a background procedure
of your own by storing directly into the pIdleProc field.

For spooling operations, iFileVol and bFileVers are the volume
reference number and version number of the spool file. IFileVol and
bFileVers are both initialized to #. You can override the default
settings by storing directly into these fields. :

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

16 Printing From Macintosh Applications

The Band Information Subrecord

The band information subrecord (field prXInfo of the print record)
contains information about the way a page will be imaged during spool
printing. 1Its contents are set by the Printing Manager, and most
programmers needn’t be concerned with it.

The band information subrecord is defined as follows:

TYPE TPrXInfo = RECORD
iRowBytes: INTEGER; {bytes per row}
iBandV: INTEGER; {vertical dots}
iBandH: INTEGER; {horizontal dots}
iDevBytes: INTEGER; {size of bit image}
iBands: INTEGER; {bands per page}
bPatScale: SignedByte; {used by QuickDraw}
bUlThick: SignedByte; {underline thickness}
bUlOffset: SignedByte; {underline offset}
bUlShadow: SignedByte; {underline descender}

scan: TScan; {scan direction}
bXInfoX: SignedByte {not used}
END;

IRowBytes is the number of bytes in each row of the band's bit image,
iBandV and iVBandH are the dimensions of the band in dots, iDevBytes is
the number of bytes of memory needed to hold the bit image, and iBands
is the number of bands per page.

BPatScale is used by QuickDraw when it scales patterns to the
resolution of the printer. BUlThick, bUlOffset, and bUlShadow are used
for underlining text; they stand for the thickness of the underline,
its offset below the base line, and the width of the break around
descenders, all in dots. The scan field specifies the scan direction
for banding as a value of type TScan:

TYPE TScan = (scanTB, {scan top to bottom}
scanBT, {scan bottom to top}
scanLR, {scan bottom to top}
scanRL); {scan right to left}

BACKGROUND PROCESSING

As mentioned above, the job subrecord includes a pointer, pIdleProc, to
an optional background procedure to be run whenever the Printing
Manager has directed output to the printer and is waiting for the
printer to finish. The background procedure takes no parameters and
returns no result; the Printing Manager simply runs it at every
opportunity. There's no limit to the length of time that a background
procedure can execute, but beyond a certain length of time printing
will be slowed.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

BACKGROUND PROCESSING 17

If you don't designate a background procedure, the Printing Manager
will use one by default that just polls the keyboard and cancels
further printing if the user types Command-period. In this case you
should display an alert box to inform the user that the Command-period
option is available. It's suggested, however, that instead of relying
on this method, you supply your own background procedure to give the
user a more convenient way to cancel printing. For instance, you might
put up a dialog box with a Cancel button the user can click with the
mouse; or, in a background procedure that runs your application, you
might replace the Print command with Stop Print.

While printing from a spool file, the Printing Manager maintains a
printer status record in which it reports on the progress of the
printing operation:

TYPE TPrStatus = RECORD
iTotPages: INTEGER; {total number of pages}
iCurPage: INTEGER; {page being printed}
iTotCopies: INTEGER; {number of copies}
iCurCopy: INTEGER; {copy being printed}
iTotBands: INTEGER; {bands per page}
iCurBand: INTEGER; {band being printed}
fPgDirty: BOOLEAN; {TRUE if started printing page}
fImaging: BOOLEAN; ({TRUE if imaging}

hPrint: THPrint; {print record}
pPrPort: TPPrPort; {printing port}
hPic: PicHandle {used internally}
END;

FPgDirty is TRUE if anything has been printed yet on the current page,
FALSE if not; flmaging is TRUE while a band is being imaged, FALSE
while it's being printed. HPrint is a handle to the print record for
this printing operation; pPrPort is a pointer to the printing port.

Your background procedure can use this information-—-for example, to
display a progress report on the screen ("Now printing copy 3 of 5,
page 7 of 12").

(note) _
The Printing Manager only calls your background procedure
while it's printing. If you want your background
procedure to execute during spooling, you'll have to .call
it yourself.

Advanced programmers can use background processing in a variety of
useful ways. For example, with a background procedure that performs
one pass through your main program loop, you can achieve the effect of
concurrent printing. That is, your application can continue to run
while the printing is taking place, although there may be some
degradation in performance. The user is given the illusion that the
printing is going on "in the background" behind the application. (In
reality, of course, it's the application that's running in the
background behind the printing task.)

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

18 Printing From Macintosh Applications

(warning)
You have to be careful in the way you write your
background procedure, to avoid a number of subtle
concurrency problems that may arise. For instance, if
the background procedure uses QuickDraw, it must be sure
to restore the printing port as the current port before
returning. It's particularly important not to attempt
any printing from within the background procedure: the
Printing Manager is mot reentrant! If you use a
background procedure that runs your application
concurrently with printing, it should disable all menu
items having to do with printing, such as Page Setup and
Print.

USING THE PRINTING MANAGER

This section discusses how the Printing Manager routines fit into the
general flow of your program and gives you an idea of which routines
you'll need to use. The routines themselves are described in detail in
the next section.

To use the Printing Manager, you must have previously initialized
QuickDraw, the Font Manager, the Window Manager, the Menu Manager,
TextEdit, and the Dialog Manager. The first Printing Manager routine
to call is PrOpen, which opens the printer resource file. The last
routine to call is PrClose, which closes the Printer Driver and the
printer resource file.

(note)
PrOpen and PrClose are meant to be called once each, at
the beginning and end of your application. However, if
space is particularly critical, you may prefer to bracket
every Printing Manager call with a PrOpen and a PrClose.
This frees the space occupied by various Printing Manager
data structures when they're not in use.

Before printing a document, you need a properly filled out print
record. You can either use an existing print record (for instance,
from a document) or initialize one to the current default settings by
calling PrintDefault. If you use an existing print record, you should
call PrValidate to make sure it's valid for the current version of the
Printing Manager and for the currently installed printer.

When the user chooses the Page Setup commmand, call PrStlDialog to ask
about the paper size and page orlentation. From the printer
information subrecord you can then determine where each page break
occurse.

When the user chooses the Print commmand, call PrJobDialog to ask the
user for specific information about that printing job. To apply the
results of one job dialog to several documents (when printing from the
Finder, for example), call PrJobMerge.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

USING THE PRINTING MANAGER 19

To draft print or spool a document, begin by calling PrOpenloc, which
returns a printing port customized for draft printing or spooling
(depending on the bJDocLoop field of the job subrecord). You can then
print or spool your document by "drawing" into this printing port with
QuickDraw, using the values in the printer information subrecord to
adjust for the parameters of the printer. Call PrOpenPage and
PrClosePage at the beginning and end of each page, and PrCloseDoc at
the end of the entire document. Each page is either printed
immediately (draft printing) or written to the disk as part of a spool
file (spooling). '

To print a spool file, swap as much of your program out of memory as
you can, and then call PrPicFile.

Call PrError to check for errors caused by a Printing Manager routine.
To cancel a printing operation in progress, use PrSetError. Be sure to
call PrCloseDoc or PrClosePage after you cancel printing in progress.

PRINTING MANAGER ROUTINES

This section describes the procedures and functions that make up the
Printing Manager. They're presented in their Pascal form; for
information on using them from assembly language, see Programming
Macintosh Applications in Assembly Language.

Initialization and Termination

PROCEDURE ProOpen;

PrOpen prepares the Printing Manager for use. 1t opens the Printer
Driver and the printer resource file. If either of these items is
missing, or if the printer resource file is not properly formed, PrOpen
will do nothing, and PrError will return a Resource Manager result
code.

PROCEDURE PrClose;

PrClose releases the memory used by the Printing Manager. It closes
the printer resource file, allowing the file's resource map to be
removed from memory. It *** currently *** doesn't close the Printer
Driver, however, since the driver may have been opened before the
PrOpen call was issued.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

20 Printing From Macintosh Applications

Print Records and Dialogs

PROCEDURE PrintDefault (hPrint: THPrint);

PrintDefault fills the fields of a print record with the current
default values stored in the printer resource file. HPrint is a handle
to the record, which may be a new print record that you've just
allocated or an existing one (from a document, for example).

FUNCTION PrValidate (hPrint: THPrint) : BOOLEAN;

PrValidate checks the contents of a print record for compatibility with
the current version of the Printing Manager and with the installed
printer. If the record is valid, the function returns FALSE (no
change); if invalid, the record is adjusted to the current default
values, taken from the printer resource file, and the function returns
TRUE.

PrValidate also updates the print record to reflect the current
settings in the style and job subrecords. These changes have no effect
on the function's Boolean result.

FUNCTION PrStlDialog (hPrint: THPrint) : BOOLEAN;

PrStlDialog conducts a style dialog with the user to determine the
paper size and paper orientation being used. The initial settings
displayed in the dialog box are taken from the current values in the
print record. If the user confirms the dialog, the results of the
dialog are saved in the print record and the function returns TRUE;
otherwise the print record is left unchanged and the function returns
FALSE.

(note) .
If the print record was taken from a document, you should
update its contents in the document's file if PrStlDialog
returns TRUE. This makes the results of the style dialog
"stick" to the document. .

FUNCTION PrJobDialog (hPrint: THPrint) : BOOLEAN;

PrJobDialog conducts a job dialog with the user to determine the
printing quality, number of pages to print, and so on. The initial
settings displayed in the dialog box are taken from the current values
in the print record. If the user confirms the dialog, both the print
record and the printer resource file are updated (so that the user's
choices "stick" to the printer) and the function returns TRUE;
otherwise the print record and printer resource file are left unchanged
and the function returns FALSE.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

PRINTING MANAGER ROUTINES 21

(note) . ,
If the job dialog is associated with your application's
Print command, you should proceed with the requested
printing operation if PrJobDialog returns TRUE. 1If the
print record was taken from a document, you should update
its contents. in the document's file.

PROCEDURE PrJobMerge (hPrintSrc,hPrintDst: THPfint);

PrJobMerge copies the job subrecord from one print record (hPrintSrc)
to another (hPrintDst) and updates the destination record's printer
information, band information, and paper rectangle, based on
information in the job subrecord. This allows the information in the
job subrecord to be used for a group of related jobs.

Draft Printing and Spooling

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort: TPPrPort; plOBuf: Ptr)
: TPPrPort; : ,

PrOpenDoc initializes a printing port for use in printing a document,
makes it the current port, and returns a pointer to it. HPrint is a
handle to the print record for this printing operation. The printing
port is customized for draft printing or spooling, depending on the
setting of the bJDocLoop field in the job subrecord. For spooling, the
spool file's name, volume reference number, and version number are
taken from the job subrecord. '

PPrPort is a pointer to the storage to be used for the printing port.
If this parameter is NIL, PrOpenDoc will allocate a new printing port
for you. Similarly, pIOBuf points to an area of memory to be used as
an input/output buffer; if it's NIL, PrOpenDoc will use the volume
buffer for the spool file's volume.

(note)
The pPrPort and pIOBuf parameters are provided because
both the printing port and the input/output buffer are
nonrelocatable objects. To avoid cluttering the heap.
with such objects, you have the opportunity to allocate
them yourself and pass them to PrOpenDoc. Most of the
time you'll just set both of these parameters to NIL.

(note) .
Newly created printing ports use the system font (since
they're grafPorts), but newly created windows use the
application font. Be sure the font you use in the
printing port is the same as the font in your application
window if you want the text in both places to match.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

22 Printing From Macintosh Applications

PROCEDURE PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect);

PrOpenPage begins a new page in the document associated with the given
printing port. The page is printed only if it falls within the page
range designated in the job subrecord.

For spooling, the pPageFrame parameter points to a rectangle that will
be used as the QuickDraw picture frame for this page:

TYPE TPRect = “Rect;

When the spool file is later printed, this rectangle will be scaled
(via the QuickDraw DrawPicture procedure) to coincide with the page
rectangle in the printer information subrecord. Unless you want the
printout to be scaled, you should set pPageFrame to NIL--this uses the
current page rectangle as the picture frame, and the page will be
printed with no scaling.

PROCEDURE PrClosePage (pPrPort: TPPrPort);

PrClosePage finishes up the current page of the document associated
with the given printing port. For draft printing, it ejects the page
from the printer and, if necessary, alerts the user to insert another;
for spooling, it closes the picture representing the current page.

PROCEDURE PrCloseDoc (pPrPort: TPPrPort);

PrCloseDoc finishes up the printing of the document associated with the
given printing port. For draft printing, it issues a form feed and a
reset command to the printer; for spooling, it closes the file if the
spooling was successfully completed or deletes it the file if the
spooling was unsuccessful.

Spool Printing

PROCEDURE PrPicFile (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr;
pDevBuf: Ptr; VAR prStatus: TPrStatus);

PrPicFile images and prints a spool file. HPrint is a handle to the
print record for this printing operation. The name, volume reference
number, and version number of the spool file will be taken from the job
subrecord of this print record. After printing is successfully
completed, the Printing Manager deletes the spool file from the disk.

PPrPort is a pointer to the storage to be used for the printing port
for this operation. If this parameter is NIL, PrPicFile will allocate
its own printing port. Similarly, pIOBuf points to an area of memory
to be used as an input/output buffer for reading the spool file; if
it's NIL, PrPicFile will use the volume buffer for the spool file's

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

PRINTING MANAGER ROUTINES 23

volume. PDevBuf points to a similar buffer (the "band buffer") for
holding the bit image to be printed; if NIL, PrPicFile will allocate
its own buffer from the heap. As for PrOpenDoc, you'll normally want
to set all of these storage parameters to NIL.

(note)
If you provide your own storage for pDevBuf, it has to be
big enough to hold the number of bytes indicated by the
iDevBytes field of the TPrXInfo subrecord of the print -
record.

(warning) .
Be sure not to pass, in pPrPort, a pointer to the same
printing port you received from PrOpenDoc, the one you
originally used to spool the file. If that earlier port
was allocated by PrOpenDoc itself (that is, if the
pPrPort parameter to PrOpenDoc was NIL), then PrCloseDoc
will have disposed of the port, making your pointer to it
invalid. PrPicFile initializes a fresh printing port of
‘its own; you just provide the storage (or let PrPicFile
allocate it for itself). Of course, if you earlier
provided your own storage to PrOpenDoc, there's no reason
you can't use the same storage again for PrPicFile.

The prStatus parameter is a printer status record that PrPicFile will

use to report on its progress. Your background procedure (if any) can
use this record to monitor the state of the printing operation.

Handling Errors

FUNCTION PrError : INTEGER; [Pascal only]

PrError returns the result code returned by the last Printing Manager
routine. The possible result codes are:

CONST noErr = @; {no error}
iMemFullErr = -1¢8; {not enough heap space}

and any Resource Manager result code. A result code of iMemFullErr
means that the Memory Manager was unable to fulfill a memory allocation
request by the Printing Manager.

PROCEDURE PrSetError (iErr: INTEGER); [Pascal only]

PrSetError stores the specified value into the global variable where
the Printing Manager keeps its result code. The main *** (currently
the only) *** yse of this procedure is for canceling a printing
operation in progress. To do this, write

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

24 Printing From Macintosh Applications

PrSetError(iPrAbort)
where iPrAbort is the following predefined constant:

CONST iPrAbort = 128; {result code for halting printing}

Assembly-language note: You can achieve the same effect as
PrSetError by storing directly into the location specified by
printVars+iPrErr. *** Currently you shouldn't store into this
location if it already contains an nonzero value. ***

Low—-Level Driver Access

The routines in this section are used for communicating directly with
the Printer Driver; the Printer Driver itself is described in the next
section. You'll need to be familiar with the Device Manager to use the
information given in this section.

PROCEDURE PrDrvrOpen;

PrDrvrOpen opens the Printer Driver.

PROCEDURE PrDrvrClose;

PrDrvrClose closes the Printer Driver.

PROCEDURE PrCtlCall (iWhichCtl: INTEGER; lParaml,lParam2,lParam3:
LongInt);

PrCt1Call calls the Printer Driver's control routine. IWhichCtl

designates the operation to be performed; the rest of the parameters
depend on the operation.

FUNCTION PrDrvrDCE : Handle;

PrDrvrDCE returns a handle to the Printer Driver's device control
entry. '

FUNCTION PrDrvrVers : INTEGER;

PrDrvrVers returns the version number of the Printer Driver in the
system resource file.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

PRINTING MANAGER ROUTINES 25

The version number .of the Printing Manager is available as the
predefined constant iPrRelease. You may want to compare the result of
PrDrvrVers with iPrRelease to see if the Printer Driver in the resource
file is the most recent version.

PROCEDURE PrNoPurge;

PrNoPurge prevents the Printer Driver from being purged from the heap.

PROCEDURE PrPurge;

PrPurge allows the Printer Driver to be purged from the heap.

THE PRINTER DRIVER

This section describes the Printer Driver, the device driver that
communicates with a printer via the printer port or the modem port.
Only programmers interested in low-level printing or writing their own
device driver need read this. You'll need to be familiar with the
Device Manager manual to use most of this information and the low-level
routines described above.

The printer resource file for each variety of printer includes a device
driver for that printer. When a particular printer is installed in the
Printing Manager, the printer's device driver is copied from the
printer resource file into the system resource file, making it the
active Printer Driver.

The Printer Driver responds to the standard Device Manager calls
OpenDriver, CloseDriver, Control, and Status. You can also communicate
with it via the Printing Manager routines PrDrvrOpen, PrDrvrClose, and
PrCtlCall. (The Status call is normally used only by the Font
Manager.) 1Its driver name and driver reference number are available as
the following predefined constants: :

CONST sPrDrvr °~ = '.Print'; {Printer Driver resource name}
iPrDrvrRef = -3; {Printer Driver reference number}

To open the Printer Driver, call PrDrerpen; it'll remain open until
you call PrDrvrClose. Calling PrNoPurge will prevent the driver from
being purged from the heap until you call PrPurge.

You can call the PrDrvrVers function to determine whether the printing
resources stored in the system resource file are compatible with the
version of the Printing Manager you're using.

To get a handle to the driver's device control entry, call PrDrvrDCE.
By calling the driver's control routine with PrCtlCall, you can perform
a number of low-level printing operations such as bitmap printing,
screen printing, and direct streaming of text to the printer (described

6/11/84 Chernicoff-Hacker | /PRINTING/PRINT.D

26 Printing From Macintosh Applications

below). The first parameter to PrCtlCall, iWhichCtl, identifies the
operation you want. The following values are predefined:

CONST iPrBitsCtl = 4; {bitMap printing}
iPrIoCtl = 5; {text streaming}
iPrEvtCtl = 6; {screen printing}
iPrDevCtl = 7; {device control}
iFMgrCtl = 8; {used by the Font Manager}

The remaining parameters of PrCtlCall--1Paraml, 1Param2, and 1Param3—-—
are three long integers whose meaning depends on the operation, as
described below.

BitMap Printing

To send all or part of a bitMap directly to the printer, use PrCtlCall
with iWhichCtl = iPrBitsCtl. Parameter 1Paraml is a pointer to a
QuickDraw bitMap; lParam2 is a pointer to the rectangle to be printed,
in the coordinates of the printing port.

LParam3 is ‘a printer-dependent parameter. On the Imagewriter it's used
to control the printer's aspect ratio (the ratio of horizontal to
vertical resolution). In low resolution, the Imagewriter normally
prints 8@ dots per inch horizontally by 72 vertically. This produces
rectangular dots that are taller than they are wide. Since the
Macintosh screen has square pixels (72 per inch both horizontally and
vertically), images printed on the Imagewriter don't look exactly the
same as they do on the screen.

To address this problem, the Imagewriter has a special square-dot mode
that alters the speed of the print head to produce 72 dots per inch
horizontally instead of 8@. Printing in this mode is slower than in
the normal mode, but gives a more faithful reproduction of what the
user sees on the screen. The user can choose which of the two modes to
use by using the Printer program.

The value of the lParam3 parameter should be one of the following
predefined constants:

CONST 1ScreenBits = @; {configurable}
lPaintBits = 1; {72 by 72 dots}

LScreenBits tells the Printer Driver to honor the user's selection
between rectangular and square dots; lPaintBits overrides the user's
choice and forces square dots.

Putting all this together, you can print the entire screen at the
user's chosen aspect ratio with

PrCtlCall(iPrBitsCtl, ORD(@screenBits),
ORD(@screenBits.bounds), 1ScreenBits)

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

THE PRINTER DRIVER 27
To print the contents of a single window in square dots, use

PrCtlCall(iPrBitsCtl, ORD(@theWindow".portBits),
_ ORD(@theWindow™.portRect), lPaintBits)

Text Streaming

Text streaming is useful for fast printing of text when speed is more
important than fancy formatting or visual fidelity. It gives you full
access to the printer's native text facilities, such as control or
escape sequences for boldface, italic, underlining, or condensed or
expanded type, but makes no use of QuickDraw's elaborate formatting
capabilities.

(warning) _
Relying on specific printer capabilities and control
sequences will make your application printer-dependent.

You can send a stream of text characters directly to the printer with
iWhichCtl = iPrIOCtl. LParaml is a pointer to the beginning of the
text; 1lParam2 is the number of bytes to transfer (a long integer);
1Param3 is a pointer to an optional background procedure, or NIL for
none.

IPrDevCtl is used for various printer control operations. When
streaming text to the printer, you can use iPrDevCtl to perform these
general operations in a printer-independent way, letting the Printer
Driver take care of the details for a specific printer. The 1lParaml
parameter specifies the operation you want:

CONST 1PrReset = $00010008; {reset printer}
1PrPageEnd = $000200d@; {start new page}
1PrLineFeed = $¢¢@300@0@; {start new line}

Before starting to print a document with text streaming, use
PrCtlCall(iPrDevCtl, 1PrReset, @, @)

to reset the printer to its standard initial state. The parameters
1Param2 and 1Param3 are meaningless and should be set to @.

At the end of each printed line,
PrCtlCall(iPrDevCtl, 1PrLineFeed, @, @)

advances the paper one line and returns to the left margin. This
achieves the effect of the standard "CRLF" (carriage-return-line-feed)
sequence in a printer—independent way. It's strongly recommended that
you use this method instead of sending carriage returns and line feeds
directly to the printer. The 1Param2 parameter tells how far to
advance the paper; 1lParam3 is meaningless and should be set to @.

*%** The exact use of 1lParam2 in this call hasn't yet been determined.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

28 Printing From Macintosh Applications
A value of @ will probably denote the printer's standard line height,
which is usually what you'll want. ***
At the end of each page,

PrCt1Call(iPrDevCtl, 1PrPageEnd, @, @)
does whatever is appropriate for the'given printer, such as sending a
form feed character and advancing past the paper fold. 1It's

recommended that you use this call instead of just sending a form feed
yourself. LParam2 and 1Param3 are meaningless and should be set to @.

Screen Printing

IPrEvtCtl does an immediate dump of all or part of the screen directly
to the printer. LParaml is one of the following codes:

CONST iPrEvtAll = $@@@2FFFD; {print whole screen}
iPrEvtTop = $S@@@LFFFD; {print top (frontmost) window}

The other two parameters are meaningless and should be set to @#. So,
for example,

PrCt1Call(iPrEvtCtl, iPrEvtAll, @, @)
prints the entire screen at the user's chosen aspect ratio, and
PrCtlCall(iPrEvtCtl, iPrEvtTop, @, @)
prints just the frontmost window.
The Operating System Event Manager uses this call to do immediate
screen printing when the user types a special key combination

(Command-$ for the frontmost window, the same with Caps Lock for the
full screen). .

Font Manager Support

The Printer Driver provides one Status and one Control call for use by
the Font Manager in selecting fonts for a given printer. Both are
identified by the following csCode value

CONST iFMgrCtl = 8;

With the Status call, the Font Manager asks for the printer's font
characterization table. After using the information in this table to-
select a font, it issues the Control call to give the Printer Driver a
chance to modify the choice. This process is described further in the
Font Manager manual. : : :

6/11/84 Chernicoff-Hacker » ~ /PRINTING/PRINT.D

PRINTING RESOURCES 29

PRINTING RESOURCES

For programmers who want to write their own device drivers for
different printers or modify existing drivers, this section describes
the two files that contain the resources needed to run the Printing
Manager: the system resource file and the printer resource file (see
Figure 7). Most of the data described in this section is accessible
only to assembly-language programmers.

. System resource file . — Printer resource file
printer resource file name device driver {(original)
. . driver's private dats
driver's private data
storage {copy) printer-specific code
' ' default print record
last print record

default spool file name

dialogs and alerts

Figure 7. Printing Resources

The system resource file contains:

Resource Resource type Resource ID
Name of the current printer 'STR ' SE@@

resource file

A copy of the device driver for 'DRVR' 2
the currently installed printer

A copy of the driver's private '"PREC' 2
data storage

The printer resource file contains the following information:

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

30

Printing From Macintosh Applications

Resource

The device driver for this
printer

The driver;s private storage
Printer-specific code used to
implement Printing Manager

routines

Default print record for use
with this printer

Print record from the previous
printing operation

Default spooi file name
Style dialog

Job dialog

Installation dialog
Alerts

Dialog and alert item lists

Resource type Resource ID
*DRVR' SE@@J
'PREC' SE@@0
'PDEF’ @ through 6

'PREC'
'"PREC’

'STR '
'DLOG'
'DLOG'
'DLOG'
'ALRT'

'DITL’

(see below)

SE@@1
SE@@¢
$SEQQ1
SE@@2
(private)

(private)

Notice that the Printer Driver and its private storage are kept in both
the system and printer resource files.
resource file are the ones actually used; those in the printer resource
file are there just to be copied into the system resource file when a

new printer is installed.

The copies in the system

Installing a new printer is done by copying

the driver and its private storage from the printer resource file to
the system resource file and placing the name of the printer resource

file in the system resource file.

(You can use this method to install

a printer yourself, but normally it's done by the Printer program at
the user's request.)

You can use the following predefined constants to identify the various
resource types and IDs in the printer resource file (they'll be

different in the system resource file):

6/11/84 Chernicoff-Hacker

/PRINTING/PRINT.D

PRINTING RESOURCES 31

$5@524543; {type ('PREC') for print records and }

{ private storage}
iPrintDef = @; {ID for default print record}
iPrintLst = 1; {ID for previous print record}
iPrintDrvr = 2; {ID for Printer Driver and its private }
{ storage in system resource }

CONST 1PrintType

{ file}
iMyPrDrvr = $SE@G@(Q; {ID for Printer Driver and its private }
{ storage } ,
iPStrRFil = SE@0Q; {ID for printer resource file name}
iPStrPFil = SE@@1; {ID for default spool file name}
iPrStiDlg = SE@@d; {ID for style dialog}
iPrJobDlg = SE@J1; {ID for job dialog}

The most important items in a printer resource file are the Printer
Driver and the printer-specific code. The driver has the standard
structure for device drivers, as described in the Device Manager
manual, and implements the Control and Status calls as discussed above
under "The Printer Driver".

The printer-specific code is kept in a series of separate overlays.
They are all of resource type 'PDEF', and their resource IDs are
available to assembly-language programmers as the following predefined
constants:

iPrDraftID «EQU @ ;draft printing

iPrSpoollID +EQU 1 ;spooling

iPrUserlID <EQU 2 j;printer-specific printing, method 1
iPrUser2ID «EQU 3 ;printer-specific printing, method 2
iPrDlgsID +.EQU 4 ;print records and dialogs

iPrPicID <EQU 5 j;spool printing

Overlays @ and 1 do draft printing and spooling, respectively; overlays
2 and 3, if present, provide additional printing methods for a
particular printer. All four overlays include the same routines, but
implement them in different ways for the different printing methods.
When one of the routines is called, the Printing Manager uses the
bJDocLoop field in the job subrecord to decide which overlay to use.
Each overlay begins with a list of offsets to the locations of the
routines within that overlay.

10penDoc -EQU 11 T Tl 1) ; PrOpenDoc

1CloseDoc .EQU $00048004 ;PrCloseDoc
10penPage .EQU $00d30dg8 ;PrOpenPage
1ClosePage +EQU $P9@d40d9C ;PrClosePage

This list is followed by the code of the routines themselves.

Overlay 4 contains the Printing Manager's routines for manipulating
print records and dialogs:

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

32 Printing From Macintosh Applications

1Default - .EQU $UPP48000 ;PrintDefault
1StlDialog .EQU $00@48004 ;PrStlDialog
1JobDialog -EQU $@Pp48008 ;PrJobDialog
1StlInit . .EQU S@@gsddec ;PrStlInit
1JobInit .EQU $PP040010 ;PrJoblInit
1DlgMain +EQU $@Pd48014 ;PrDlgMain
1Validate .EQU $P@Pg48P18 ;PrValidate
1lJobMerge .EQU $@p@88g1C ;PrJobMerge

**% PrStlInit, PrJobInit, and PrDlgMain are used in customizing the
dialogs, and will be covered in a later draft of this manual. **%*

Overlays 5 contains just the spool-printing routine PrPicFile (it's
still preceded by an offset, however):

1PrPicFile +EQU S@@1480¢d ;PrPicFile

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S

SUMMARY OF THE PRINTING MANAGER 33

SUMMARY OF THE PRINTING MANAGER

Constants

CONST { Result codes }

iMemFullErr = -1¢8; {not enough heap space}
noErr = @$; {no error}

{ Printing methods }

bDraftLoop = @; {draft printing}

bSpoolLoop = 1; {spooling}

bUserlLoop = 2; {printer-specific, method 1}
bUser2Loop = 3; {printer-specific, method 2}

{ Printer Driver Control call parameters }

iPrBitsCtl = 4; {bitMap printing}

= 9
1ScreenBits = @; {configurable}
1PaintBits = 1; {72 by 72 dots}
iPriocCtl = 5; {text streaming}
iPrEvtCtl = 6 {screen printing}
iPrEvtAll = $S@@@2FFFD; {print whole screen}
iPrEvtTop = SQOPLFFFD; {print top (frontmost) window}
iPrDevCtl = 7; {device control}
1PrReset = $000100d¢; {reset printer}
1PrPageEnd = $00020000; {start new page}
1PrLineFeed = $00@3¢0¢0d; ({start new line}
iFMgrCtl = 8; {used by the Font Manager}

{ Miscellaneous }

iPFMaxPgs = 128; {maximum number of pages in a spool file}

iPrPgFract = 12¢; {units per inch of paper dimension}

iPrAbort = 128; "~ {result code for halting printing}

iPrRelease = 2; . {current version number of Printing }
- { Manager} ;

1PfType = $5046484C; {spool file type 'PFIL'}

1PfSig = $5@535953; {spool file creator 'PSYS'}

{ Printing resources }

sPrDrvr = ',Print'; {Printer Driver resource name}

iPrDrvrRef = -=3; . {Printer Driver reference number}

1PrintType = $5@¢524543; {type ('PREC') for print records }
{ and private storage}

iPrintDef = §; {ID for default print record}

iPrintlst = 1; {ID for previous print record}

iPrintDrvr = 2; {ID for Printer Driver and its }

{ private storage in system }

6/11/84 Chernicoff-Hacker . /PRINTING/PRINT.S

34 Printing From Macintosh Applications

‘ { resource file}
iMyPrDrvr = SE@@Q; {1ID for Printer Driver and its }
{ private storage in printer }
{ resource file}

iPStrRFil - SEQ0G]; {ID for printer resource file name}
iPStrPFil = SE@@1; {ID for default spool file name}
iPrStlDlg = SE@@@; {ID for style dialog}
iPrJobDlg = SE@@1; {ID for job dialog}

Data Types

TYPE TPStr8@ = “TStr8d;
TStr8@ = STRING[84]

-e

TPRect = “Rect;

TPPrPort = “TPrPort;
TPrPort = RECORD
gPort: GrafPort; {grafPort to draw in}
gProcs: QDProcs; {pointers to drawing routines}
{more fields for internal use only}
END;

TPPort = PACKED RECORD
CASE INTEGER OF
@: (pGPort: GrafPtr);
1: (pPrPort: TPPrPort)
END; '

THPrint = “TPPrint;
TPPrint = “TPrint;
TPrint = RECORD
iPrVersion: INTEGER; ({Printing Manager version}

prinfo: TPrInfo; {printer information}
rPaper: Rect; {paper rectangle}
prstl: TPrStl; {style information}

prinfoPT: TPrInfo; {copy of Prinfo}
prXiInfo: TPrXInfo; {band information}
prJob: TPrJob; {job information}
printX: ARRAY [1..19] OF INTEGER
{used internally}
END;

TPrInfo = RECORD _
iDev: INTEGER; {driver information}
iVRes: INTEGER; {printer vertical resolution}
iHRes: INTEGER; {printer horizontal resolution}
rPage: Rect {page rectangle}
END;

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S

TPrStl = RECORD
wDev:

bPort:
feed:
END;

TFeed = (feedCut,

TWord ;
iPageV: INTEGER;
iPageH: INTEGER;

SUMMARY OF THE PRINTING MANAGER 35

{used internally}
{paper height}
{paper width}

SignedByte; {printer or modem port}
TFeed

{paper type}

" {hand-fed, individually cut sheets}

feedFanfold, {continuous-feed fanfold paper}

feedMechCut, {mechanically fed cut sheets}

feedOther); {other types of paper}

TPrJob = RECORD

iFstPage: INTEGER; {first page to print}
iLstPage: INTEGER; {last page to print}
iCopies: INTEGER; {number of copies}
bJDocLoop: SignedByte; {printing method}
fFromUsr: BOOLEAN; {TRUE if called from application}
pldleProc: ProcPtr; {background procedure}
pFileName: TPStr8¢; {spool file name}
iFileVol: INTEGER; {volume reference number}
bFileVers: SignedByte; {version number of spool file}
bJobX: SignedByte {not used}

END;

TPrXInfo = RECORD

iRowBytes:

iBandV:
iBandH:

iDevBytes:

iBands:

bPatScale:
bUlThick:

bUlOffset:
bUlShadow:

scan:
bXInfoX:
END;

TScan = (scanTB,
scanBT,
scanlLR,

6/11/84 Chernicoff-Hacker

{scan
{scan
{scan
scanRL); {scan

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
TScan;

~ SignedByte

{bytes per row}
{vertical dots}
{horizontal dots}
{size of bit image}
{bands per page}
{used by QuickDraw}
{underline thickness}
{underline offset}
{underline descender}
{scan direction}

{not used} '

top to bottom}
bottom to top}
bottom to top}
right to left}

" /PRINTING/PRINT.S

36

TPrStatus = RECORD

iTotPages:
iCurPage:

. iTotCopies:

iCurCopy:
iTotBands:
iCurBand:
fPgDirty:
fImaging:
hPrint:
pPrPort:
hPic:

END;

Routines

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
BOOLEAN;
BOOLEAN;
THPrint;
TPPrPort;
PicHandle

Printing From Macintosh Applications

{total number of pages}
{page being printed}
{number of copiés}
{copy being printed}
{bands per page}

{band being printed}
{TRUE if started printing page}
{TRUE if imaging}
{print record}
{printing port}

{used internally}

Initialization and Termination

PROCEDURE PrOpen;

PROCEDURE PrClose;

Print Records and Dialogs

PROCEDURE PrintDefault
FUNCTION PrValidate
FUNCTION PrStlDialog
FUNCTION PrJobDialog
PROCEDURE PrJobMerge

Document Printing

FUNCTION PrOpenDoc

PROCEDURE PrCloseDoc
PROCEDURE PrOpenPage
PROCEDURE PrClosePage

Spool Printing

PROCEDURE PrPicFile (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf:

Handling Errors [Pascal only]

(hPrint: THPrint);

(hPrint: THPrint) : BOOLEAN;
(hPrint: THPrint) : BOOLEAN;
(hPrint: THPrint)
(hPrintSrc,hPrintDst: THPrint);

(hPrint: THPrint; pPrPort: TPPrPort;

TPPrPort;

: BOOLEAN;

pIOBuf: Ptr) :

(pPrPort: TPPrPort);
(pPrPort: TPPrPort; pPageFrame: TPRect);
(pPrPort: TPPrPort);

Ptr;

pDevBuf: Ptr; VAR prStatus: TPrStatus);

FUNCTION PrError

: INTEGER;

PROCEDURE PrSetError (iErr: INTEGER);

6/11/84 Chernicoff-Hacker

/PRINTING/PRINT.S

SUMMARY OF THE PRINTING MANAGER 37

Low-Level Driver Access

PROCEDURE PrDrvrOpen;

PROCEDURE PrDrvrClose;

PROCEDURE PrCtlCall (iwhichCtl: INTEGER; lParaml ,1Param2,l1Param3:
LongInt);

FUNCTION PrDrveDCE : Handle;

FUNCTION PrDrvrVers : INTEGER;

PROCEDURE PrNoPurge;

PROCEDURE PrPurge;

Resource File Contents

System Resource File

Resource Resource type Resource 1D
Name of the current printer 'STR ' -8192
resource file

A copy of the device driver for 'DRVR' 2
the currently installed printer

A copy of the driver's private 'PREC' 2
data storage

6/11/84 Chernicoff-Hacker " /PRINTING/PRINT.S

38 Printing From Macintosh Applications

Printer Resource File

Resource) Resource type Resource ID
Original copy of the device 'DRVR' -8192
driver for this printer

Original copy of the driver's ~ 'PREC' -8192
private storage

Printer-specific code used to 'PDEF' @ through 6
implement Printing Manager

routines

Default print record for use 'PREC')

with this printer

Print record from the previous 'PREC' 1
printing operation

Default spool file name 'STR ' -8191
Style dialog : 'DLOG' -8192
Job dialog , 'DLOG' -8191
Installation dialog 'DLOG' -819¢
Alert definitions 'ALRT' (private)
Dialog and alert item lists : 'DITL’ (private)

Assembly—Language Informétion

Constants
s Result codes

iMemFullErr .EQU -108 ;jnot enough heap space
noErr «EQU ¢ ;no error

; Printing methods

bDraftLoop +EQU
bSpoolLoop -EQU
bUserlLoop «-EQU
bUser2Loop «EQU

sdraft printing

;spooling
;printer—-specific, method 1
sprinter—specific, method 2

W -8

; Printer Driver Control call parameters

iPrBitsCtl «EQU 4 ;bitMap printing

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S

SUMMARY OF THE PRINTING MANAGER 39

1ScreenBits +EQU) ; configurable

1PaintBits -EQU 1 s 72 by 72 dots

iPrIoCtl «EQU 5 stext streaming

iPrEvtCtl +EQU 6 sscreen printing

iPrEvtAll .EQU SPPFFFFFD ;3 print whole screen

iPrEvtTop +EQU S@YGFEFFFD ; print top (frontmost) window

iPrDevCtl «EQU 7 s;device control

1PrReset .EQU 1 s reset printer

1PrPageEnd .EQU 2 3 start new page

1PrLineFeed +EQU 3 ;s start new line

iFMgrCtl .EQU 8 ;jused by the Font Manager

3+ Miscellaneous

iPrintSize <EQU 12¢ ;length of print record

iPrPortSize .EQU 178 - s3length of printing port

iPrStatSize .EQU 26 -3length of printer status record

iPrAbort - EQU 128 sresult code for halting printing

iPrRelease -EQU 2 jcurrent version number of Printing
s Manager

1PfType -EQU $5046484C ;file type ('PFIL') for spool files

1PfSig -EQU $5@535953 ;signature ('PSYS') of Printer program

s+ Printing resources

iPrDrvrRef +EQU -3 sPrinter Driver reference number

1PrintType .EQU $5@524543 ;type ('PREC') for print records
s and private storage

iPrintDef «EQU ¢ sID for default print record
iPrintLst «EQU 1 ;sID for previous print record
iPrDrvriID <EQU 2 31D for Printer Driver and its
; private storage in system ’
; resource file .
1PStrType -EQU $5354522¢ ;type 'STR ' for file name
; resources
iPStrRFil .EQU SE@@d ;sID for prlnter resource file
; name '
iPStrPFil .EQU SE@@1 ;ID for default spool file name
iPrStlDlg .EQU SE@QQ ;1D for style dialog
iPrJobDlg -EQU SE@J1 ;ID for job dialog.

; Resource IDs for code overlays

draft printing

iPrDraftID -EQU ¢

iPrSpoollID +EQU 1 ,spooling

iPrUserlID «EQU 2 sprinter-specific printing, method 1 .
iPrUser2ID +.EQU 3 ;printer—-specific printing, method 2
iPrDlgsID «EQU 4 sprint records and dialogs ,

iPrPicID <EQU 5

;spool printing

6/11/84 Chernicoff-Hacker ~ /PRINTING/PRINT.S

40 Printing From Macintosh Applications

; Offsets to document printing code overlays

10penDoc
1CloseDoc
10penPage
1ClosePage

<EQU $@09Caaoe ; PrOpenDoc

-EQU $@PP48004 ;PrCloseDoc
+EQU S@pdsdags ; PrOpenPage
-EQU $¢gasgdac ;PrClosePage

; Offsets to print record and dialog code overlays

1Default
1StlDialog
1JobDialog
1StlInit
1lJobInit
1DlgMain
1Validate
1JobMerge

-EQU $P0048000 ;PrintDefault
-EQU $00048004 ;PrStiDialog
+EQU SP@P48008 ;PrJobDialog
-EQU $00d4@d0C ;PrStlinit
«EQU $00040010 ;PrJoblnit
-EQU $00048014 ;PrDlgMain
+EQU $@P9P48018 ;PrValidate
-EQU $@@gssglc ;PrJobMerge

; Offset to spool printing code overlay

1PrPicFile

Printing Port

gPort
gProcs

Print Record

iPrVersion
prinfo
rPaper
prStl
prJob

.EQU $00148¢¢¢ ;PrPicFile

GrafPort to draw in
Pointers to drawing routines

Printing Manager version
Printer information
Paper rectangle

Style information

Job information

Printer Information Subrecord

iDev

iVRes
iHRes
rPage

Driver information

Printer vertical resolution
Printer horizontal resolution
Page rectangle

Style Subrecord

iPageV
iPageH
bPort
feed

Paper height

Paper width

Printer or modem port
Paper type

6/11/84 Chernicoff-Hacker

/PRINTING/PRINT.S

Job Subrecord

iFstPage
iLstPage
iCopies
bJDocLoop
fFromApp
pIdleProc
pFileName
iFileVol
bFileVers

SUMMARY OF THE PRINTING MANAGER

First page to print

Last page to print

Number of copies

Printing method

Nonzero if called from application
Pointer to background procedure
Spool file name

Volume reference number

Version number spool file

Band Information Subrecord

iRowBytes
iBandV
iBandH
iDevBytes
iBands
bPatScale
bUlThick
bUlOffset
bUlShadow
scan

Bytes per row
Vertical dots
Horizontal dots
Size of bit image
Bands per page

Used by QuickDraw
Underline thickness
Underline offset
Underline descender
Scan direction

Printer Status Record

6/11/84 Chernicoff-Hacker

iTotPages Total number of pages

iCurPage Page being printed

iTotCopies Number of copies

iCurCopy Copy being printed

iTotBands Bands per page

iCurBand Band being printed

fPgDirty Nonzero if started printing page
fImaging Nonzero if imaging

hPrint Print record

pPrPort Printing port

Variables

Name Size Contents
printVars+iPrErr 2 bytes Current result code

41

/PRINTING/PRINT.S

42 | Printing From Macintosh Applications

GLOSSARY

background procedure: A procedure passed to the Printing Manager to be
run during idle times in the printing process.

band: One of the sections into which a page is divided for imaging and
printing.

draft printing: Printing a document by using QuickDraw calls to drive
the printer's character generator directly.

imaging: The process of converting an application's description of an
image (such as a QuickDraw picture) into an actual array of bits to be
displayed or printed.

job dialog: A dialog pertaining to one particular printing job;
conventionally associated with the application's Print command.

landscape orientation: The positioning of a document in a printer with
the long dimension of the paper running horizontally.

‘page rectangle: The rectangle marking the boundaries of a printed page
imageo

paper rectangle: The rectangle marking the boundaries of the physical
sheet of paper on which a page is printed.

portrait orientation: The positioning of a document in a printer with
the long dimension of the paper running vertically.

Printer: A special application program for printing spool files from a
disk and configuring different printers.

Printer Driver: The device driver for the currently installed printer.

printer resource file: A file containing all the resources needed to
run the Printing Manager with a particular printer.

printer status record: A record used by the Printing Manager to report
on the progress of printing operations.

printing port: A special grafPort customized for printing instead of
drawing on the screen.

print record: A record containing all the information needed by the
Printing Manager to perform a particular printing job.

spool file: A disk file created as the result of spooling.

spooling: Writing a representation of a document's printed image to a
disk file, rather than directly to the printer.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.G

GLOSSARY 43

spool printing: Printing the image contained in a spool file.
style dialog: A dialog pertaining to the use of the printer for a

particular document; conventionally associated with the application’s
Page Setup command.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.G

MACINTOSH USER EDUCATION

The Memory Manager: A Programmer's Guide /MEM.MGR/MEMORY

See Also: The Resource Manager: A Programmer's Guide

Modification History: First Draft (ROM 7) S. Chernicoff 19/19/83

ABSTRACT

This manual describes the Memory Manager, the part of the Macintosh
Operating System that controls the dynamic allocation of memory space
on the heap.

2

Memory Manager Programmer's Guide

TABLE OF CONTENTS

~N W

13
15
15
18
2¢
21
22
24
25
29
3¢
35
38
42
44
47
48
48
5¢
53
54
54
55
55
56
56
58
59
62

About This Manual

About the Memory Manager

Pointers and Handles

How Heap Space Is Allocated

The Stack and the Heap

Utility Data Types

Memory Manager Data Structures
Structure of Heap Zones
Structure of Blocks
Structure of Master Pointers

Result Codes

Using the Memory Manager

Memory Manager Routines
Initialization and Allocation

" Heap Zone Access

Allocating and Releasing Relocatable Blocks
Allocating and Releasing Nonrelocatable Blocks

Freeing Space on the Heap

Properties of Relocatable Blocks

Grow Zone Functions

Utility Routines
Special Techniques

Dereferencing a Handle

Subdividing the Application Heap Zone
Creating a Heap Zone on the Stack
Notes for Assembly-Language Programmers

Constants

Global Variables

Trap Macros

Result Codes

Of fsets and Masks

Handy Tricks
Summary of the Memory Manager
Glossary

Copyright (c¢) 1983 Apple Computer, Inc.

Distribution of this draft in limited quantities does not constitute

publicatione.

All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Memory Manager, the part of the Macintosh
Operating System that controls the dynamic allocation of memory space
on the heap. #*** Eventually it will become part of a larger manual
describing the entire Operating System. **%*

(eye)
This manual describes version 7, the final, "frozen"
version of the Macintosh ROM. Earlier versions may not
work exactly as described here. *** There may someday be
one or more special, RAM-based versions of the Memory
Manager for software development purposes, doing more
extensive error checking or gathering statistics on a
program's memory usage. This manual describes the ROM-
based version only. *%*

Like all Operating System documentation, this manual is intended for
both Pascal and assembly-language programmers. All readers are assumed
to be familiar with Lisa Pascal; information of interest only to
assembly-language programmers is isolated and labeled so that Pascal
programmers can conveniently skip it. Whichever is your preferred
language, please bear with occasional remarks addressed solely to the
other group. ,

The manual begins with an introduction to the Memory Manager and what
it's used for. It then discusses some basic concepts behind the Memory
Manager's operation: how blocks of memory are allocated within the
heap and how the allocated blocks are referred to by programs that use
them. Following this is a discussion of the internal data structures
that the Memory Manager uses to find its way around in the heap.

A section on using the Memory Manager introduces its routines and tells
how they fit into the flow of your application program. This is
followed by detailed descriptions of all Memory Manager procedures and
functions, their parameters, calling protocol, effects, side effects,
and so on.

Following these descriptions are sections that will not be of interest
to all readers. Special information is given on unusual techniques
that you may find useful in working with the Memory Manager and on how
to use it from assembly-language programs. .

Finally, there is a quick-reference summary of the Memory Manager's

data structures and routines, along with a glossary of terms used in
this manual.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 2

4 Memory Manager Programmer's Guide

ABOUT THE MEMORY MANAGER

Using the Memory Manager, your program can maintain one or more
independent areas of heap memory (called heap zones) and use them to
allocate blocks of memory of any desired size. Unlike stack space,
which is always allocated and released in strict LIFO (last-in-first-
out) order, blocks on the heap can be allocated and released in any
order, according to your program's needs. So instead of growing and
shrinking in an orderly way like the stack, the heap tends to become
fragmented into a patchwork of allocated and free blocks, as shown in
Figure l. The Memory Manager does all the necessary "housekeeping" to
keep track of the blocks as it allocates and releases them.

Heap zone

E Relocatable blocks

. Nonrelocatable blocks

[] Free blocks

L 1

Figure l. A Fragmented Heap

All memory allocation is performed within a particular heap zone. The
Memory Manager always maintains at least two heap zones: a system heap
zone, reserved for the system's own use, and an application heap zone
for use by your program. The system heap zone is initialized to 16K
bytes when the system is started up. Objects in this zone remain
allocated even when one application terminates and another is launched.
The application heap zone is automatically reinitialized at the start
of each new application program, and the contents of any previous
application zone are lost. The initial size of the application zone is
6K bytes, but it can grow as needed to create more heap space while the
program is running. Your program can create additional heap zones if
it chooses, either by subdividing this original application zone or by
allocating space on the stack for more heap zones.

(hand)
In this manual, unless otherwise stated, the term
"application heap zone'" (or just "application zone")

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 2

ABOUT THE MEMORY MANAGER 5

always refers to the original application heap zone
provided by the system, before any subdivision.

Various parts of the Macintosh Operating System and Toolbox also use
space in the application heap zone. For instance, the actual machine-
language code of your program resides in the application zone, in space
reserved for it at the request of the Segment Loader. Similarly, the
Resource Manager requests space in the application zone to hold
resources it has read into memory from a resource file. Toolbox
routines that create new entities of various kinds, such as NewWindow,
NewControl, and NewMenu, implicitly call the Memory Manager to allocate
the space they need.

At any given time, there is exactly one current heap zone, to which
most Memory Manager operations implicitly apply. You can control which
heap zone is current by calling a Memory Manager procedure. Whenever
the system needs to access its own (system) heap zone, it saves the
setting of the current heap zone and restores it later, so that the
operation is transparent to your program.

Space within a heap zone is divided up into contiguous pieces called
blocks. The blocks in a zone fill it completely: every byte in the
zone is part of exactly one block, which may be either allocated
(reserved for use by your program or by the system) or free (available
for allocation). Each block has a block header containing information
for the Memory Manager's own use, followed by the block's contents, the
area available for use (see Figure 2). There may also be some unused
bytes at the end of the block, beyond the end of the contents.

Assembly—-language note: Blocks are always aligned on even word
boundaries, so you can access them with word (.W) and long-word
(.L) instructions.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 2

6 Memory Manager Programmer's Guide

Block header

Contents

Unused bytes \

Figure 2. A Block

A block can be of any size, limited only by the size of the heap zone
itself. What's inside the block is of no concern to the Memory
Manager: it may contain data being used by your program, executable
code forming part of the program itself, resource information read from
a resource file, or anything else that may be appropriate. To the
Memory Manager, it's just a block of a certain size.

(hand)
Don't confuse the blocks manipulated by the Memory
Manager with disk blocks, which are always 512 bytes
long.

An allocated block may be relocatable or nonrelocatable; if
relocatable, it may be locked or unlocked; if unlocked, it may be
purgeable or unpurgeable. Relocatable blocks can be moved around
within the heap zonme to create space for other blocks; nonrelocatable
blocks can never be moved. These are permanent properties of a block
that can never be changed once the block is allocated. The remaining
attributes (locked and unlocked, purgeable and unpurgeable) can be set
and changed as necessary. Locking a relocatable block prevents it from
being moved, but only temporarily: you can unlock the block at any
time, again allowing the Memory Manager to move it. Making a block
purgeable allows the Memory Manager to remove it from the heap zone, if
necessary, to make room for another block. (Purging of blocks is
discussed further below under "How Heap Space Is Allocated".) A newly
allocated block is initially unlocked and unpurgeable.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 2

POINTERS AND HANDLES 7

POINTERS AND HANDLES

Relocatable and nonrelocatable blocks are referred to in different
ways: nonrelocatable blocks by pointers, relocatable blocks by handles
(discussed below). When the Memory Manager allocates a new
nonrelocatable block, it returns a pointer to the block. Thereafter,
whenever you need to refer to the block, you use this pointer. Like
any other pointer, it's simply a memory address: that of the first
byte in the block's contents (see Figure 3). You can make as many
copies of this pointer as you like. Since the block they point to can
never be moved within its heap zone, you can rely on all copies of the
pointer to remain correct. They will continue to point to the block
for as long as the block remains allocated.

Heap zone

L |
Pointer /

Nonrelocatable block

Figure 3. A Pointer to a Nonrelocatable Block

Relocatable blocks don't share this property, however. If necessary to
make room for some other block, the Memory Manager can move a
relocatable block at any time to a new location in its heap zone. This
would leave any pointers you might have to the block pointing to the
wrong place in memory, or "dangling". Dangling pointers can be very
difficult to diagnose and correct, since their effects typically aren't
discovered until long after the pointer is left dangling.

To help avoid dangling pointers, the Memory Manager maintains a single
master pointer to each relocatable block, allocated from within the
same heap zone as the block itself. The master pointer is created at
the same time as the block and set to point to it. What you get back
from the Memory Manager when you allocate a relocatable block is a
pointer to the master pointer, called a handle to the block (see Figure
4). From then on, you always use this handle to refer to the block.

If the Memory Manager later has to move the block, it has only to

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY .2

8 Memory Manager Programmer's Guide

update the master pointer to point to the block's new location; the
master pointer itself is never moved. Since all copies of the handle
point to the block by double indirection through this same master
pointer, they can be relied on not to dangle, even after the block has
been moved.

Heap zone

/[]
Handle

r 4
Master pointer /
Relocatable block \

Figure 4. A Handle to a Relocatable Block

(eye)
To maintain the integrity of the memory allocation
system, always use the Memory Manager routines provided
(or other Operating System or Toolbox routines that call
them) to allocate and release space on the heap. Don't
use the Pascal standard procedures NEW and DISPOSE.
% Eventually the versions of these routines in the
Pascal Library will be changed to work through the Memory
Manager. ***

HOW HEAP SPACE IS ALLOCATED

The Memory Manager allocates space in a heap zone according to a "first
fit" strategy. When you ask to allocate a block of a certain size, the
Memory Manager scans the current heap zone looking for a place to put
the new block. For relocatable blocks, it looks for a free block of at
least the requested size, scanning forward from the end of the last
block allocated and "wrapping around" if necessary from the end of the
zone to the beginning. (Nonrelocatable blocks are handled a bit
differently, as described below.) As soon as it finds a free block big
enough, it allocates the requested number of bytes from that block.
That is, it uses the first free block it finds that's big enough to
satisfy the request, instead of continuing to search for a better fit.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 2

HOW HEAP SPACE IS ALLOCATED 9

If a single free block can't be found that's big enough, the Memory
Manager tries to create one by compacting the heap zone: moving
allocated blocks together in order to collect the free space into a
single larger free block (see Figure 5). Only relocatable, unlocked
blocks can be moved. The compaction continues until either a free
block of at least the requested size has been created or the entire
heap zone has been compacted.

Heap zone Heap 2one
Relocatable blocks

B torreiocatable blocks

[] Freebiocks

Before After

Figure 5. Heap Compaction

Notice that nonrelocatable blocks (and relocatable ones that are
temporarily locked) tend to interfere with the compaction process by
forming immovable "islands" in the heap. This can prevent free blocks
from being collected together and lead to fragmentation of the
available free space, as shown in Figure 6. To minimize this problem,
the Memory Manager tries to keep all the nonrelocatable blocks together
at the beginning of the heap zone. When you allocate a nonrelocatable
block, the Memory Manager will do everything in its power to make room
for the new block at the lowest available position in the zone,
including moving other blocks upward, expanding the zone, or purging
blocks from it (see below).

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 2

10 Memory Manager Programmer's Guide

Relocatsble blocks
B torreiocatabie biocks

[] Free blocks

After

Figure 6. Fragmentation of Free Space

If the Memory Manager still can't satisfy the allocation request after
compacting the entire heap zone, it next tries expanding the zone by
the requested number of bytes, rounded upward to the nearest 1K. Only
the original application zone can be expanded, and only up to a certain
limit (discussed more fully under "The Stack and the Heap", below). If
any other zone is current, or if the application zone has already
reached or exceeded its limit, this step is skipped.

Next the Memory Manager tries to free space by purging blocks from the
zone. Only relocatable blocks can be purged, and then only if they're
explicitly marked as unlocked and purgeable. Purging a block removes
it from its heap zone and frees the space it occuples. The block's
master pointer is set to NIL, but the space occupied by the master
pointer itself remains allocated. Any handles to the block now point
to a NIL master pointer, and are said to be empty. If your program
later needs to refer to the purged block, it can detect that the handle
has become empty and ask the Memory Manager to reallocate the block.
This operation updates the original master pointer, so that all handles
to the block are left referring correctly to its new location (see
Figure 7).

(eye)
Reallocating a block only recovers the space it occupies,
not its contents. Any information the block contains is
lost when the block is purged. It's up to your program
to reconstitute the block's contents after reallocating
it.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 2

HOW HEAP SPACE IS ALLOCATED 11

Hesp 2one

L4 NIL

Alter purging

Relocatable block —
|] F
Handte/ >

After reallocating

Figure 7. Purging and Reallocating a Block

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 2

12 Memory Manager Programmer's Guide

Finally, if all else fails, the Memory Manager calls the grow zone
function, if any, for the current heap zone. This is an optional
routine that you can provide to take any last-ditch measures your
program may have at its disposal to try to free some space in the zone.
The term "'grow zone function" is misleading, since the function doesn't
actually attempt to "grow" (expand) the zone. Rather, its purpose is
to try to create additional free space within the existing zone (such
as by purging blocks that were previously marked unpurgeable) or reduce
the fragmentation of existing free space (such as by unlocking
previously locked blocks). The Memory Manager will call the grow zone
function repeatedly, compacting the heap again after each call, until
either it finds the space it's looking for or the grow zone function
reports that it can offer no further help. In the latter case, the
Memory Manager will give up and report that it's unable to satisfy your
allocation request.

THE STACK AND THE HEAP

The application heap zone and the application stack share the same area
in memory, growing toward each other from opposite ends (see Figure 8).
Naturally it would be disastrous for either to grow so far that it
collides with and overwrites the other. To help prevent such
collisions, the Memory Manager enforces a limit on how far the
application heap zone can grow toward the stack. Your program can set
this application heap limit to control the allotment of available space
betwen the stack and the heap.

: Low memory

: High memory '

Figure 8. The Stack and the Heap

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY. 2

THE STACK AND THE HEAP 13

The application heap limit marks the boundary between the space
available for the application heap zone and that reserved exclusively
for the stack. At the start of each application program, the limit is
initialized to allow 8K bytes for the stack. Depending on your
program's needs, you can then adjust the limit to allow more heap space
at the expense of the stack or vice versa.

Notice, however, that the limit applies only to expansion of the heap;
it has no effect on how far the stack can expand. That is, although
the heap can never expand beyond the limit into space reserved for the
stack, there's nothing to prevent the stack from crossing the boundary
and encroaching on space allotted for heap expansion--or even from
overwriting part of the heap itself. 1It's up to you to set the limit
low enough to allow for the maximum stack depth your program will ever
need.

(hand) ,
Regardless of the limit setting, the application zone is
never allowed to grow to within 1K of the current end of
the stack. This gives a little extra protection in case
the stack is approaching the boundary or has crossed over
onto the heap's side, and allows some safety margin for
the stack to expand even further.

To help detect collisions between the stack and the heap, a "stack
sniffer" routine is run sixty times a second, during the Macintosh's
vertical retrace interrupt. This routine compares the current ends of
the stack and the heap and opens an alert box on the screen in case of
a collision. The stack sniffer can't prevent collisions, only detect
them after the fact: a lot of computation can take place in a sixtieth
of a second. In fact, the stack can easily expand into the heap,
overwrite it, and then shrink back again before the next activation of
the stack sniffer, escaping detection completely. The stack sniffer is
useful mainly during software development; the alert box it displays
can be confusing to your program's end user. Its purpose is to warn
you, the programmer, that your program's stack and heap are colliding,
so that you can adjust the heap limit to correct the problem before the
user ever encounters it.

UTILITY DATA TYPES

The Memory Manager includes a number of type definitions for general-
purpose use. For working with pointers and handles to allocated
blocks, there are the following definitions:

TYPE SignedByte = -128..127;

Byte = Q--ZSS;
Ptr = “SignedByte;
Handle = “Ptr;

SignedByte stands for an arbitrary byte in memory, just to give Ptr and
Handle something to point to. You can define a buffer of bufSize

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 2

14 Memory Manager Programmer's Guide

untyped memory bytes as a PACKED ARRAY [l..bufSize] OF SignedByte.
Byte is an alternative definition that treats byte-length data as
unsigned rather that signed quantities.

Because of Pascal's strong typing rules, you can't directly assign a
value of type Ptr to a variable of some other pointer type. Instead,
you have to use the Lisa Pascal functions ORD and POINTER to convert
the pointer to an integer address and then back to a pointer. For
example, after the declarations

VAR aPtr: Ptr;
somethingElse: “Thing;

you can make somethingElse point to the same object as aPtr with the
assignment

somethingElse := POINTER(ORD(aPtr))
This works because POINTER returns a generalized "pointer to anything"
(like the Pascal pointer constant NIL) that can be assigned to any
variable of pointer type or supplied as an argument value for any
routine parameter of pointer type.

Type ProcPtr, defined as
TYPE ProcPtr = Ptr;

is useful for treating procedures and functions as data objects. If
aProcPtr is a variable of type ProcPtr and myProc is a procedure (or
function) defined in your program, you can make aProcPtr point to
myProc by using Lisa Pascal's @ operator:

aProcPtr := @myProc

Like the POINTER function, the @ operator produces a "pointer to
anything". Using it, you can assign procedures and functions to
variables of type ProcPtr, embed them in data structures, and pass them
as arguments to other routines. Notice, however, that a ProcPtr
technically points to a SignedByte, not an actual routine. As a
result, there's no way in Pascal to access the underlying routine in
order to call it. Only routines written in assembly language (such as
those in the Operating System and the Toolbox) can actually call the
routine designated by a ProcPtr.

For specifying the sizes of blocks on the heap, the Memory Manager
defines a special type called Size:

TYPE Size = LonglInt;
All Memory Manager routines that deal with block sizes expect

parameters of type Size or return them as results. To specify a size
bigger than any existing block, you can use the constant maxSize:

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 2

UTILITY DATA TYPES 15

CONST maxSize = $80000¢;

This is an enormous value, equivalent to 8 megabytes or 8,388,608 bytes
--more than forty times the Macintosh's total memory capacity!

MEMORY MANAGER DATA STRUCTURES

This section contains detailed information on the Memory Manager's
internal data structures. You won't need this information if you're
just using the Memory Manager routinely to allocate and release blocks
of memory from the application heap zone. The details are included
here for programmers with unusual needs (or who are just curious about
how the Memory Manager works).

Structure of Heap Zomes

Each heap zone begins with a 52-byte zone header and ends with a 12~
byte zone trailer (see Figure 9). The header contains all the
information the Memory Manager needs about that heap zone; the trailer
is just a minimum—size free block (described in the next section)
placed at the end of the zone as a marker. All the remaining space
between the header and trailer is available for allocation.

Zone m/ 2

Available space —_—

Figure 9. Structure of a Heap Zone

In Pascal, a heap zone is defined as a zone record of type Zone,
reflecting the structure of the zone header. 1It's always referred to
with a zone pointer of type THz ('the heap zone"):

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY .3

16 Memory Manager Programmer's Guide

TYPE THz = “Zone;
Zone = RECORD
bkLim: Ptr;
purgePtr: Ptr;
hFstFree: Ptr;
zcbFree: LongInt;

gzProc: ProcPtr;
moreMast: INTEGER;
flags: INTEGER;
cntRel: INTEGER;
maxRel: INTEGER;

cntNRel: INTEGER;
maxNRel: INTEGER;
cntEmpty: INTEGER;
cntHandles: INTEGER;
minCBFree: LonglInt;
purgeProc: ProcPtr;
sparePtr: Ptr;

allocPtr: Ptr;

heapData: INTEGER

END;

(eye)
The fields of the zone header are for the Memory
Manager's own internal use. You can examine the contents
of the zone's fields, but in general it doesn't make
sense for your program to try to change them. The few
exceptions are noted below in the discussions of the
specific fields.

BkLim i{s a pointer to the zone's trailer block. Since the trailer is
the last block in the zone, this constitutes a limit pointer to the
memory byte following the last byte of usable space in the zoune.

PurgePtr and allocPtr are "roving pointers" into the heap zone that the
Memory Manager maintains for its own internal use. When scanning the
zone for a free block to satisfy an allocation request, the Memory
Manager begins at the block pointed to by allocPtr instead of always
starting from the beginning of the zone. When purging blocks from the
zone, it starts from the block pointed to by purgePtr.

HFstFree is a pointer to the first free master pointer in the zone.
Instead of just allocating space for one master pointer each time a
relocatable block is created, the Memory Manager 'preallocates" several
master pointers at a time, themselves forming a nonrelocatable block
within the zone. The moreMast field of the zone record tells the
Memory Manager how many master pointers at a time to preallocate for
this zone. Master pointers for the system heap zone are allocated 32
at a time; for the application zone, 64 at a time. For other heap
zones, you specify the value of moreMast when you create the zone.

All master pointers that are allocated but not currently in use are
linked together into a list beginning in the hFstFree field. When you

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 3

MEMORY MANAGER DATA STRUCTURES 17

allocate a new relocatable block, the Memory Manager removes the first
available master pointer from this list, sets it to point to the new
block, and returns its address to you as a handle to the block. (If
the list is empty, it allocates a fresh block of moreMast master
pointers, uses one of them for the new relocatable block, and adds the
rest to the list.) When you release a relocatable block, its master
pointer isn't released, but linked onto the beginning of the list to be
reused. Thus the amount of space devoted to master polnters can
increase, but can never decrease unless the zone is reinitialized (for
example, at the start of a new application program).

The zcbFree field always contains the number of free bytes remaining in
the zone ("zcb" stands for "zone count of bytes'"). As blocks are
allocated and released, the Memory Manager adjusts zcbFree accordingly.
This number represents an upper limit on the size of block you can
allocate from this heap zone.

(eye)
It may not actually be possible to allocate a block as
big as zcbFree bytes. As space in a heap zone becomes
fragmented, the free bytes typically don't remain
contiguous but become scattered throughout the zone.
Because nonrelocatable and locked blocks can't be moved,
it isn't always possible to collect all the free space
into a single block by compaction. (Even if the zone
contains only relocatable blocks, the master pointers to
these blocks are themselves nonrelocatable "islands" that
can interfere with the compaction process.) So the
maximum-size block you can actually allocate from the
zone may be appreciably smaller than zcbFree bytes.

The gzProc field is a pointer to the zone's grow zone function, or NIL
if there is none. You supply this pointer when you create a new heap

zone and can change it at any time with the SetGrowZone procedure. The
system and application heap zones initially have no grow zone function.

Flags contains a set of flag bits strictly for the Memory Manager's
internal use; your program should never need to access this field.

CntRel, maxRel, cntNRel, maxNRel, cntEmpty, cntHandles, and minCBFree
are not used by the ROM-based version of the Memory Manager. *** These
fields are reserved for eventual use by a special RAM-based version
that will gather statistics on a program's memory usage within each
heap zone. CntRel and cntNRel will be used to count, respectively, the
number of relocatable and nonrelocatable blocks currently allocated
within the zone. MaxRel and maxNRel will record the 'historical
maximum" values attained by cntRel and cntNRel since the program was
started. CntEmpty will count the current number of empty master
pointers, cntHandles the total number of master pointers currently
allocated. MinCBFree will record the historical minimum number of free
bytes in the zone. ***

PurgeProc is a pointer to the zone's purge warning procedure (sometimes
called a "purge hook"), or NIL if there is none. The Memory Manager

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY .3

18 Memory Manager Programmer's Guide

will call this procedure whenever it purges a block from the zone. You
can "install" a purge warning procedure in this field to do optional
housekeeping such as writing out a block's contents to a disk file
before it's purged. In fact, this is exactly the way the Resource
Manager keeps the contents of resources up to date if they're changed
by your program. If you want to install your own purge hook, you have
to be very careful not to interfere with the one the Resource Manager
may have installed; see "Special Techniques", later in this manual, for
further details.

SparePtr is an extra field included in the zone header for possible
future expansion.

The last field of a zone record, heapData, is a dummy field marking the
beginning of the zone's usable memory space. HeapData nominally
contains an integer, but this integer has no significance in itself--
it's just the first two bytes in the block header of the first block in
the zone. The purpose of the heapData field is to give you a way of
"locating the effective beginning of the zone. For example, if myZone
is a zone pointer, then

@(myZone“~.heapData)

is a pointer to .the first usable byte in the zone, just as
myZone "~ .bkLim

is a 1limit pointer to the byte following the last usable byte in the

zone.

Structure of Blocks

Every memory block in a heap zone, whether allocated or free, has a
block header that the Memory Manager uses to find its way around in the
zone. Block headers are completely transparent to your program. All
pointers and handles to allocated blocks point to the beginning of the
block's contents, following the end of the header. Similarly, all
block sizes seen by your program refer to the block's logical size (the
number of bytes in its contents) rather than its physical size (the
number of bytes it actually occupies in memory, including the header
and any unused bytes at the end of the block).

Since your program shouldn't normally have to deal with block headers
directly, there's no Pascal record type defining their structure.
(It's possible to access block headers in assembly language, but be
sure you know what you're doing!) A block header consists of 8 bytes,
as shown in Figure 10.

10/10/83 Chernicoff - CONFIDENTIAL /MEM.MGR/MEMORY .3

MEMORY MANAGER DATA STRUCTURES 19

Teg byte Physical block size

|

L Relocatable block: Relstive handle

{Nou'elocetable block: Pointer to heap zone
Free block: Unused

Figure 10. Block Header

The first byte of the block header is the tag byte, discussed in detail
below. Thé next 3 bytes contain the block's physical size in bytes.
Adding this number to the block's address gives the address of the next
block in the zone.

The contents of the second long word (4 bytes) in the block header
depend on the type of block. For relocatable blocks, it contains the
block's relative handle: a pointer to the block's master pointer,
expressed as an offset relative to the start of the heap zone rather
than as an absolute memory address. Adding the relative handle to the
zone pointer produces a true handle for this block. For nonrelocatable
blocks, the second long word of the header is just a pointer to the
block's zone. For free blocks, these 4 bytes are unused.

7 6 5 4 3 2 10

Sy et Nt

L-— Size correction

Unused

Teg
Figure 1l. Tag Byte

The tag byte consists of a 2-bit tag, 2 unused bits, and a 4-bit size
correction, as shown in Figure ll. The tag identifies the type of
"~ block:

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY. 3

20 Memory Manager Programmer's Guide

Tag Block type

P9 Free
g1 Nonrelocatable
19 Relocatable

(A tag value of 11 is invalid.)

The size correction is the number of unused bytes at the end of the
block, beyond the end of the block's contents. It's equal to the
difference between the block's logical and physical sizes, excluding
the 8 bytes of overhead for the block header:

sizeCorrection = physicalSize - logicalSize - 8

There are several reasons why a block may contain such unused bytes:

- The Memory Manager allocates space only in whole 16-bit words--
that is, in even numbers of bytes. If the block's logical size is
odd, an extra, unused byte is added at the end to keep the
physical size even.

-~ Earlier versions of the Memory Manager used a block header of 12
bytes instead of 8. Although the header is now only 8 bytes long,
the Memory Manager still enforces a minimum size of 12 bytes per
block for compatibility with these earlier versions. If the
logical size of a block is less than 4, enough extra bytes are
allocated at the end of the block to bring its physical size up to
12.

- The 12-byte minimum applies to all blocks, free as well as
allocated. If allocating the required number of bytes from a free
block would leave a fragment of fewer than 12 free bytes, the
leftover bytes are included unused at the end of the newly
allocated block instead of being returned to free storage.

Putting all this together, the minimum overhead required for each
allocated block is 8 bytes for the block header, plus an additional 4
bytes for the master pointer if the block is relocatable. The maximum
possible overhead is 26 bytes, for a relocatable block with a logical
size of @ being allocated from a free block of 22 bytes: 8 bytes for
the header, 4 for the master pointer, 4 to satisfy the 12-byte minimum,
and a leftover fragment of 1@ free bytes that's too small to return to
free storage.

Structure of Master Pointers

The master pointer to a relocatable block has the structure shown in
Figure 12. The low-order 3 bytes of the long word contain the address
of the block's contents. The high-order byte contains some flag bits
that specify the block's current status. Bit 7 of this byte is the
lock bit (1 if the block is locked, @ if it's unlocked); bit 6 is the
purge bit (1 if the block is purgeable, @ if it's unpurgeable). Bit 5

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 3

MEMORY MANAGER DATA STRUCTURES 21

is used by the Resource Manager to identify blocks containing resource
information for special treatment; such resource blocks are marked by a
1 in this bit. :

(eye)
Before attempting to compare one master pointer with
another or perform any arithmetic operation on it, don't
forget to strip off the flag bits in the high-order byte.

> To block

A

7 65 4 32 10

Resource bit
Purge bit
Lock bit

. = " 4
I l

Figure 12. Structure of a Master Pointer

RESULT CODES

Like most other Operating System routines, Memory Manager routines
generally return a result code in addition to their normal results.
This is an integer code indicating whether the routine completed its
task successfully or was prevented by some error condition. The type
definition for result codes is

TYPE MemErr = INTEGER;

In the normal case that no error is detected, the result code is @; a
nonzero result code signals an error:

CONST noErr =0; {no error}
memFullErr = -108; {not enough room in zone}
nilHandleErr = -109; {NIL master pointer}
memWZErr = ~-111; {attempt to operate on a free block}
memPurErr = ~112; {attempt to purge a locked block}

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY .3

22 Memory Manager Programmer's Guide

To inspect a result code from Pascal, call the Memory Manager function
MemError. This function always returns the result code from the last
Memory Manager call.

Assembly-language note: When called from assembly language via
the trap mechanism, not all Memory Manager routines returm a
result code. Those that do always leave it as a word-length
quantity in the low-order half of register D@ on return from the
trap. However, some routines leave something else there
instead: see the descriptions of individual routines for
details. Just before returning, the trap dispatcher tests the
lower half of D@ with a TST.W instruction, so that on return
from the trap the condition codes reflect the status of the
result code, if any.

The stack-based interface routines called from Pascal always
produce a result code. If the underlying trap doesn't return
one, the interface routine "manufactures" a result code of noErr
and stores it where it can later be accessed with MemError.

The ROM-based version of the Memory Manager does only limited error
checking. This manual describes only the result codes reported by the
ROM version. *** There may eventually be a special RAM-based version
that will do more extensive error checking. If so, any additional
result codes reported by the RAM version will be documented at that
time. ***

USING THE MEMORY MANAGER

This section discusses how the Memory Manager routines fit into the
general flow of your program and gives you an idea of which routines
you'll need to use. The routines themselves are described in detail in
the next section.

Assembly-language note: If you're writing code that will be
executed via a hardware interrupt, you can't use the Memory
Manager. This is because an interrupt can occur unpredictably
at any time. 1In particular, it can occur while the Memory
Manager is in the middle of a heap compaction or in some other
inconsistent internal state. To prevent catastrophes, interrupt
routines are not allowed to allocate space from the heap.

There's ordinarily no need to initialize the Memory Manager before
using it. The system heap zone is automatically initialized each time

10/10/83 Chernicoff ~ CONFIDENTIAL /MEM.MGR/MEMORY . 3

USING THE MEMORY MANAGER 23

the system is started up, and the application heap zone each time an
application program is launched. 1In the unlikely event that you need
to reinitialize the application zone while your program is running, you
can use InitApplZone.

You can create additional heap zones for your program's own use, either
from within the original application zone or from the stack, with
InitZone. If you do maintain more than one heap zone, you can find out
which zone i1s current at any given time with GetZone and switch from
one to another with SetZone. Almost all Memory Manager operations
implicitly apply to the current heap zone. To refer to the system heap
zone or the (original) application heap zone, use the Memory Manager
function SystemZone or ApplicZone. To find out which zone a particular
block resides in, use HandleZone (if the block is relocatable) or
PtrZone (if it's nonrelocatable).

(hand) .
Most applications will just use the original application
heap zone and never have to worry about which zone is
current.

The main work of the Memory Manager is allocating and releasing blocks
of memory. To allocate a new relocatable block, use NewHandle; for a
nonrelocatable block, use NewPtr. These functions return a handle or a
pointer, as the case may be, to the newly allocated block. You then
use that handle or pointer whenever you need to refer to the block.

To release a block when you're finished with it, use DisposHandle or
DisposPtr. You can also change the size of an already allocated block
with SetHandleSize or SetPtrSize, and find out its current size with
GetHandleSize or GetPtrSize. Use HLock and HUnlock to lock and unlock
relocatable blocks.

(hand)
In general, you should use relocatable blocks whenever
possible, to avoid unnecessary fragmentation of free
space. Use nonrelocatable blocks only for things like
1/0 buffers, queues, and other objects that must have a
fixed location in memory. For most applications, the
only Memory Manager routines you'll ever need will be
NewHandle, DisposHandle, and SetHandleSize.

(hand)
If you must lock a relocatable block, try to unlock it
again at the earliest possible opportunity. Before
allocating a block that you know will be locked for long
periods of time, call ReservMem to make room for the
block as near as possible to the beginning of the zone.

To speed up your program, you may sometimes want to convert the handle

to a relocatable block into a copy of the master pointer it points to.

This is called dereferencing the handle, and allows you to refer to the
block by single instead of double indirection. Dereferencing a handle

can be dangerous if you aren't careful; see "Special Techniques" for

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 3

24 Memory Manager Programmer's Guide

further information. If you ever need to convert a dereferenced master
pointer back into the original handle, use RecoverHandle.

Ordinarily, you shouldn't have to worry about compacting the heap or
purging blocks from it; the Memory Manager automatically takes care of
these chores for you. You can control which blocks are purgeable with
HPurge and HNoPurge. If for some reason you want to compact or purge
the heap explicitly, you can do so with CompactMem or PurgeMem. To
explicitly purge a specific block, use EmptyHandle.

(eye)
If you're working with purgeable blocks, be careful!
Such blocks may be removed from the heap zone at any time
in order to satisfy a memory allocation request. So
before attempting to access any purgeable block, always
check its handle to make sure the block is still

allocated. If the handle is empty (that is, if h"™ = NIL,
where h is the handle), then the block has been purged:

before accessing it, you have to reallocate it and update
its master pointer by calling ReallocHandle. (If it's a
resource block, use the Resource Manager procedure
LoadResource instead.)

You can find out how much free space is left in a heap zone by calling
FreeMem (to get the total number of free bytes) or MaxMem (to get the
size of the largest single free block and the maximum amount by which
the zone can grow). Beware, however: MaxMem also compacts and purges
the entire zone before returning this information. To limit the growth
of the application zone, use SetApplLimit; to install a grow zone
function to help the Memory Manager allocate space in a zone, use
SetGrowZone.

After calling any Memory Manager routine, you can examine its result
code with MemError.

MEMORY MANAGER ROUTINES

This section describes all the Memory Manager procedures and functions.
Each routine is presented first in its Pascal form (if there is one).
For most routines, this is followed by a box containing information
needed to use the routine from assembly language. Most Pascal
programmers can just skip this box, although the list of result codes
may be of interest to some. For general information on using the
Memory Manager from assembly language, see "Using the Operating System
from Assembly Language" *** (to be written) *** and also '"Notes for
Assembly-Language Programmers" in this manual.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 4

MEMORY MANAGER ROUTINES 25

Initialization and Allocation

PROCEDURE InitApplZone;

Trap macro _InitApplZone
On exit D@: result code (integer)
Result codes @ $0098 noErr No error

InitApplZone initializes the application heap zone and makes it the
current zone. The contents of any previous application zone are
completely wiped out; all previously existing blocks in that zone are
discarded. InitApplZone is called by the Segment Loader when launching
an application program; you shouldn't normally need to call it from
within your own program.

(eye)
Reinitializing the application zone from within a running
program is tricky, since the program's code itself
resides in the application zone. To do it safely, you
have to move the code of the running program into the
system heap zone, jump to it there, reinitialize the
application zone, move the code back into the application
zone, and jump to it again. Don't attempt this operation
unless you're sure you know what you're doing.

The application zone has a standard initial size of 6K bytes,
immediately following the end of the system heap zone, and can be
expanded as needed in 1K increments. Space is initially allocated for
64 master pointers; should more be needed later, they will be added 64
at a time. The zone's grow zone function is set to NIL. After a call
to InitApplZone, MemError will always return noErr.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 4

26 Memory Manager Programmer's Guide

PROCEDURE SetApplBase (startPtr: Ptr);

Trap macro _SetApplBase

On entry A@: startPtr (pointer)

On exit DP: result code (integer)

Result codes @ $0000 noErr No error

SetApplBase changes the starting address of the application heap zone
to the address designated by startPtr, reinitializes the zone, and
makes it the current zone. The contents of any previous application
zone are completely wiped out; all previously existing blocks in that
zone are discarded. SetApplBase is normally called only by the system
itself; you should never need to call this procedure from within your
own program.

Since the application heap zone begins immediately following the end of
the system zone, changing its starting address has the effect of
changing the size of the system zone. The system zone can be made
larger, but never smaller; if startPtr points to an address lower than
the current end of the system zone, it's ignored and the application
zone's starting address is left unchanged.

In any case, SetApplBase reinitializes the application zone to its
standard initial size of 6K bytes, which can later be expanded as
needed in 1K increments. Space is initially allocated for 64 master
pointers; should more be needed later, they will be added 64 at a time.
The zone's grow zone function is set to NIL. After a call to
SetApplBase, MemError will always return noErr.

(eye)
Like InitApplZone, SetApplBase is a tricky operation,
because the code of the program itself resides in the
application heap zone. The recommended procedure for
doing it safely is the same as for InitApplZone (see
above); again, don't attempt it unless you know what
you're doing.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 4

MEMORY MANAGER ROUTINES 27

PROCEDURE InitZone (growProc: ProcPtr; masterCount: INTEGER; limitPtr,
startPtr: Ptr);

Trap macro _InitZone

On entry A@: pointer to parameter block
startPtr (4-byte pointer)
limitPtr (4-byte pointer)
masterCount (2-byte integer)
growProc (4-byte pointer)

On exit D@: result code (integer)

Result codes @ $0P0@ noErr No error

InitZone creates a new heap zone, initializes its header and trailer,
and makes it the current zone. The startPtr parameter is a pointer to
the first byte of the new zone; limitPtr points to the byte

following the end of the zone. That is, the new zone will occupy
memory addresses from ORD(startPtr) to ORD(limitPtr) - 1.

MasterCount tells how many master pointers should be allocated at a
time for the new zone. The specified number of master pointers are
created initially; should more be needed later, they will be added in
increments of this same number. For the system heap zone, masterCount
is 32; for the application heap zone, it's 64.

The growProc parameter is a pointer to the grow zone function for the
new zone, if any. If you're not defining a grow zone function for this
one, supply a NIL value for growProc.

The new zone includes a 52-byte header and a l2-byte trailer, so its
actual usable space runs from ORD(startPtr) + 52 through ORD(limitPtr)
- 13. 1In addition, each master pointer occupies 4 bytes within this
usable area. Thus the total available space in the zone, in bytes, is
initially

ORD(1imitPtr) - ORD(startPtr) - 64 - 4*masterCount

This number must not be less than @. Note that the amount of available
space in the zone may decrease as more master pointers are allocated.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY. 4

28 Memory Manager Programmer's Guide

After a call to InitZone, MemError will always return noErr.

PROCEDURE SetAppllimit (zoneLimit: Ptr);

Trap macro _SetApplLimit

On entry Ap: zoneLimit (pointer)

On exit D@: result code (integer)

Result codes @ $PPP@ noErr No error

SetApplLimit sets the application heap limit, beyond which the
application heap zone can't be expanded. The actual expansion isn't
under your program's control, but is done automatically by the Memory
Manager when necessary in order to satisfy an allocation request. Only
the original application zone can be expanded.

Zonelimit is a limit pointer to a byte in memory beyond which the zone
will not be allowed to grow. That is, the zone can grow to include the
byte preceding zoneLimit in memory, but no farther. If the zone
already extends beyond the specified limit it won't be cut back, but it
will be prevented from growing any more.

(eye)
Notice that zounelimit is not a byte count. To limit the
application zone to a particular size (say 8K bytes), you
have to write something like

SetApplLimit (POINTER(ORD(ApplicZone) + 8192))

After a call to SetApplLimit, MemError will always return noErr.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 4

MEMORY MANAGER ROUTINES 29

Heap Zone Access

FUNCTION GetZone : THz;

Trap macro _GetZone
On exit A@: function result (pointer)

@: result code (integer)

Result codes @ S$¢00P noErr No error

GetZone returns a pointer to the current heap zone. After the call,
MemError will always return noErr.

PROCEDURE SetZone (hz: THz);

Trap macro _SetZone

On entry A§: hz (pointer)

On exit DP: result code (integer)

Result codes @ $0P0@ noErr No error

SetZone sets the current heap zone to the zone pointed to by hz. After
the call, MemError will always return noErr. '

FUNCTION SystemZone : THz; [Pascal only]

Trap macro None
Result codes @ S$00PP noErr No error

SystemZone returns a pointer to the system heap zone. After the call,
MemError will always return noErr.

Assembly-language note: SystemZone is part of the Pascal
interface to the Memory Manager, not part of the Memory Manager

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 4

30 Memory Manager Programmer's Guide

itself. It doesn't reside in ROM and can't be called via a

trap. To get a pointer to the system heap zone from assembly
language, use the global variable sysZone.

FUNCTION ApplicZone : THz; [Pascal only]

Trap macro None
Result codes @ $0PPP noErr No error

ApplicZone returns a pointer to the original application heap zone.
After the call, MemError will always return noErr.

Assembly-language note: ApplicZone is part of the Pascal
interface to the Memory Manager, not part of the Memory Manager
itself. It doesn't reside in ROM and can't be called via a
trap. To get a pointer to the application heap zone from
assembly language, use the global variable applZone.

Allocating and Releasing Relocatable Blocks

FUNCTION NewHandle (logicalSize: Size) : Handle;

Trap macro _NewHandle
On entry DP: 1logicalSize (long integer)
On exit Ap: function result (handle)

@: result code (integer)

Result codes @ S$PPPP noErr No error
-1$8 SFF94 memFullErr Not enough room in zone

NewHandle allocates a new relocatable block from the current heap zone
and returns a handle to it (or NIL if a block of that size can't be
created). The new block will have a logical size of logicalSize bytes
and will initially be marked unlocked and unpurgeable.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 4

MEMORY MANAGER ROUTINES 31

NewHandle will pursue all avenues open to it in order to create a free
block of the requested size, including compacting the heap zone,
increasing its size, purging blocks from it, and calling its grow zone
function, if any. If all such attempts fail, or if the zone has run
out of free master pointers and there's no room to allocate more,
NewHandle returns NIL and MemError will return memFullErr after the
call. If a new block was successfully allocated, NewHandle returns a
handle to the new block and MemError will return noErr.

PROCEDURE DisposHandle (h: Handle);

Trap macro _DisposHandle
On entry A¢: h (handle)
On exit Ap: @
D@: result code (integer)
Result codes p $PPP@ noErr No error
‘ =111 $FF9]1 memWZErr Attempt to operate

on a free block

DisposHandle releases the space occupied by the relocatable block whose
handle is h. If the block is already free, MemError will return
menmWZErr after the call; otherwise it will return noErr.

(eye)

After a call to DisposHandle, all handles to the released
block become invalid and should not be used again.

FUNCTION GetHandleSize (h: Handle) : Size;

Trap macro _GetHandleSize
On entry AB: h (handle)
On exit DP: if >= @, function result (long integer)
if < @, result code (integer)
Result codes ® S$S000@ noErr No error [Pascal only]
-1¢9 S$FF92 nilHandleErr NIL master pointer
=111 S$FF91 memWZErr Attempt to operate

on a free block

GetHandleSize returns the logical size, in bytes, of the relocatable
block whose handle is h. After the call, MemError will return

10/10/83* Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 4

32 Memory Manager Programmer's Guide

nilHandleErr if h points to a NIL master pointer, memWZErr if h is the
handle of a free block, and noErr otherwise. In case of an error,
GetHandleSize returns a result of @.

Assembly-language note: Recall that the trap dispatcher sets
the condition codes before returning from a trap by testing the
low—~order half of register D@ with a TST.W instruction. Since
the block size returned in D@ by _GetHandleSize is a full 32-bit
long word, the word-length test sets the condition codes
incorrectly in this case. To branch on the contents of D@, use
your own TST.L instruction on return from the trap to test the
full 32 bits of the register.

PROCEDURE SetHandleSize (h: Handle; newSize: Size);

Trap macro _SetHandleSize
On entry Af: h (handle)
D@: newSize (long integer)
On exit D@: result code (integer)
Result codes @ $0PP3 noErr No error

-1¢8 SFF94 memFullErr Not enough room to grow
=199 $FF93 nilHandleErr NIL master pointer
=111 $FF91 memWZErr Attempt to operate

on a free block

SetHandleSize changes the logical size of the relocatable block whose
handle is h to newSize bytes. After the call, MemError will return
memFullErr if newSize is greater than the block's current size and
enough room can't be found for the block to grow, nilHandleErr if h
points to a NIL master pointer, memWZErr if h is the handle of a free
block, and noErr otherwise.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 4

MEMORY MANAGER ROUTINES 33

FUNCTION HandleZone (h: Handle) : THz;

Trap macro _HandleZone
On entry A: h (handle)
On exit A@: function result (pointer)
DP: result code (integer)
Result codes @ S$PP0F noErr No error
-111 $FF91 memWZErr Attempt to operate

on a free block

HandleZone returns a pointer to the heap zone containing the
relocatable block whose handle is h.

If handle h is empty (points to a NIL master pointer), HandleZone
returns a pointer to the current heap zone and doesn't report an error:
after the call, MemError will return noErr. If h is the handle of a
free block, MemError will return memWZErr; in this case, the result
returned by HandleZone is meaningless and should be ignored.

FUNCTION RecoverHandle (p: Ptr) : Handle;

Trap macro _RecoverHandle
On entry A9: p (pointer)
On exit Ap: function result (handle)

D@: unchanged (!)

Result codes @ $0008 noErr No error [Pascal only]

RecoverHandle returns a handle to the relocatable block pointed to by
ps If you've "dereferenced" a handle (converted it to a simple
pointer) for efficiency, you can use this function to get back the
original handle. After the call, MemError will always return noErr.

Assembly-language note: Through a minor oversight, the trap
_RecoverHandle neglects to return a result code in register D@;
the previous contents of DP are preserved unchanged. The stack-
based interface routine called from Pascal always produces a
result code of noErr.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 4

34 Memory Manager Programmer's Guide

PROCEDURE ReallocHandle (h: Handle; logicalSize: Size);

Trap macro _ReallocHandle
On entry A@: h (handle)

D@: logicalSize (long integer)
On exit Ap: original h or NIL

DP: result code (integer)

Result codes @ $0PPP noErr No error

-1¢8 SFF94 memFullErr Not enough room in zone

-111 $FF91 memWZErr Attempt to operate

on a free block
=112 S$FF9¢ memPurErr Block is locked

ReallocHandle allocates a new relocatable block with a logical size of
logicalSize bytes. 1t then updates handle h by setting its master
pointer to point to the new block. The main use of this procedure is
to reallocate space for a block that has been purged. Normally h is an
empty handle, but it need not be: if it points to an existing block,
that block is released before the new block is created.

After the call, MemError will return noErr if ReallocHandle succeeds in
allocating a block of the requested size; if room can't be made for the
requested block, it will return memFullErr. If h is the handle of an
existing block, MemError will return memPurErr if the block is locked
and memWZErr if it's already free. In case of an error, no new block
is allocated and handle h is left unchanged.

Assembly-language note: On return from _ReallocHandle, register
AP contains the original handle h, or @ (NIL) if no room could
be found for the requested block.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY. 5

MEMORY MANAGER ROUTINES 35

Allocating and Releasing Nonrelocatable Blocks

FUNCTION NewPtr (logicalSize: Size) : Ptr;

Trap macro _NewPtr
On entry DP: 1logicalSize (long integer)
On exit Af: function result (pointer)

D@: result code (integer)

Result codes @ $00P9 noErr No error
' -198 S$FF94 memFullErr Not enough room in zone

NewPtr alloéates a new nonrelocatable block from the current heap
zone and returns a pointer to it (or NIL if a block of that size can't

be created). The new block will have a logical size of logicalSize
bytes.

NewPtr will pursue all avenues open to it in order to create a free
block of the requested size, including compacting the heap zone,
increasing its size, purging blocks from it, and calling its grow zone
function, if any. If all such attempts fail, NewPtr returns NIL and
MemError will return memFullErr after the call. If a new block was

successfully allocated, NewPtr returns a pointer to the new block and
MemError will return noErr.

PROCEDURE DisposPtr (p: Ptr);

Trap macro _DisposPtr
On entry Ap: p (pointer)
On exit Ap: @
D@: result code (integer)
Result codes @ $PPPP noErr No error
-111 $FF91 memWZErr Attempt to operate

on a free block

DisposPtr releases the space occupied by the nonrelocatable block
pointed to by p. If the block is already free, MemError will return
memWZErr after the call; otherwise it will return noErr.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 5

36 Memory Manager Programmer's Guide

(eye)
After a call to DisposPtr, all pointers to the released
block become invalid and should not be used again.

FUNCTION GetPtrSize (p: Ptr) : Size;

Trap macro _GetPtrSize
On entry Ap: p (pointer)
On exit D@: if >= @, function result (long integer)
if < @, result code (integer)
Result codes @ $0P00 noErr No error [Pascal only]
=111 $FF91 memWZErr Attempt to operate

on a free block

GetPtrSize returns the logical size, in bytes, of the nonrelocatable
block pointed to by p. After the call, MemError will return memWZErr
if p points to a free block and noErr otherwise. 1In case of an error,
GetPtrSize returns a result of @.

Assembly-language note: Recall that the trap dispatcher sets
the condition codes before returning from a trap by testing the
low-order half of register D@ with a TST.W instruction. Since
the block size returned in D@ by _GetPtrSize is a full 32-bit
long word, the word-length test sets the condition codes
incorrectly in this case. To branch on the contents of D@, use

your own TST.L instruction on return from the trap to test the
full 32 bits of the register. :

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 5

MEMORY MANAGER ROUTINES 37

PROCEDURE SetPtrSize (p: Ptr; newSize: Size);

Trap macro _SetPtrSize

On entry Ap: p (pointer)
DP: newSize (long integer)

On exit DP: result code (integer)

Result codes ® $00P0 noErr No error
-108 §FF94 memFullErr Not enough room to grow
-111 $FF91 memWZErr Attempt to operate

on a free block

SetPtrSize changes the logical size of the nonrelocatable block pointed
to by p to newSize bytes. After the call, MemError will return
memFullErr if newSize is greater than the block's current size and
enough room can't be found for the block to grow, memWZErr if p points
to a free block, and noErr otherwise.

FUNCTION PtrZone (p: Ptr) : THz;

Trap macro _PtrZone
On entry A@: p (pointer)
On exit A@: function result (pointer)
D@: result code (integer)
Result codes @ $0000 noErr No error
-111 S$FF91 memWZErr Attempt to operate

on a free block

PtrZone returns a pointer to the heap zone containing the
nonrelocatable block pointed to by p. If p points to a free block,
MemError will return memWZErr after the call; in this case, the result
returned by PtrZone is meaningless and should be ignored.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 5

38 Memory Manager Programmer's Guide

Freeing Space on the Heap

FUNCTION FreeMem : Longlnt;

Trap macro _FreeMenm
On exit D@: function result (long integer)
Result codes @ $PPP@ noErr No error [Pascal only]

FreeMem returns the total amount of free space in the current heap
zone, in bytes. Notice that it may not actually be possible to
allocate a block of this size, because of fragmentation due to
nonrelocatable or locked blocks. After a call to FreeMem, MemError
will always return noErr.

FUNCTION MaxMem (VAR grow: Size) : Size;

Trap macro _MaxMem
On exit D@: function result (long integer)

AB: grow (long integer)

Result codes # $000@ noErr No error [Pascal only]

MaxMem compacts the current heap zone and purges all purgeable blocks
from the zone. It returns as its result the size in bytes of the
largest contiguous free block in the zone after the compaction. If the
current zone is the original application heap zone, the variable
parameter grow is set to the maximum number of bytes by which the zone
can grow. For any other heap zone, grow is set to @#. MaxMem doesn't
actually expand the zone or call its grow zone function. After the
call, MemError will always return noErr.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 5

MEMORY MANAGER ROUTINES 39

FUNCTION CompactMem (cbNeeded: Size) : Size;

Trap macro _CompactMem
On entry DP: cbNeeded (long integer)
On exit D@: function result (long integer)

AQ: pointer to desired block or NIL

Result codes @ $0000 noErr No error [Pascal only]

CompactMem compacts the current heap zone by moving relocatable blocks
forward and collecting free space together until a contiguous block of
at least cbNeeded free bytes is found or the entire zone is compacted.
For each block that's moved, the master pointer is updated so that all
handles to the block remain valid. CompactMem returns the size in
bytes of the largest contiguous free block it finds, but doesn't
actually allocate the block. After the call, MemError will always
return noErr.

(hand)
To force a compaction of the entire heap zone, set
cbNeeded equal to maxSize.

Assembly-language note: On return from _CompactMem, register AQ
contains a pointer to a free block of at least cbNeeded bytes,
or @ (NIL) if no such block could be found.

FUNCTION ResrvMem (cbNeeded: Size);

Trap macro _ResrvMem
On entry D@: cbNeeded (long integer)
On exit Ap: pointer to desired block or NIL

D@: result code (integer)

Result codes @ S$S@PPP noErr No error
-148 S$FF94 memFullErr Not enough room in zone

ResrvMem creates free space for a block of cbNeeded contiguous bytes at
the lowest possible position in the current heap zone. It will try
every available means to place the block as close as possible to the

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY. 5

40 Memory Manager Programmer's Guide

beginning of the zone, including moving other blocks upward, expanding
the zone, or purging blocks from it. If a free block of at least the
requested size can't be created, MemError will return memFullErr after

the call; otherwise it will return noErr. Notice that ResrvMem doesn't
actually allocate the block.

(hand)

When you allocate a relocatable block that you know will
be locked for long periods of time, call ResrvMem first.
This reserves space for the block near the beginning of
the heap zone, where it will interfere with compaction as
little as possible. It isn't necessary to call ResrvMem
for a nonrelocatable block; NewPtr calls it
automatically.

Assembly-language note: On return from _ResrvMem, register A@
contains a pointer to the desired free block of at least
cbNeeded bytes, or @ (NIL) if no such block could be created.

FUNCTION PurgeMem (cbNeeded: Size);

Trap macro _PurgeMem
On entry D@: cbNeeded (long integer)
On exit A@: pointer to desired block or NIL

DP: result code (integer)

Result codes @ S$0008 noErr No error :
-1¢8 $FF94 memFullErr Not enough room in zone

PurgeMem purges blocks from the current heap zone until a contiguous
block of at least cbNeeded free bytes is created or the entire zone is
purged. Only relocatable, unlocked, purgeable blocks can be purged.

If a free block of at least the requested size is found, MemError will
return noErr after the call; if not, it will return memFullErr. Notice
that PurgeMem doesn't actually allocate the block.

(hand)

To force a purge of the entire heap zone, set cbNeeded
equal to maxSize. .

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 5

MEMORY MANAGER ROUTINES 41

Assembly-language note: On return from _PurgeMem, register AP
contains a pointer to a free block of at least cbNeeded bytes,
or. (NIL) if no such block could be found.

PROCEDURE EmptyHandle (h: Handle);

Trap macro _EmptyHandle
On entry AB: h (handle)
On exit A@: h (handle)
D@: result code (integer)
Result codes @ S$90@@ noErr No error
-111 S$FF91 memWZErr Attempt to operate
on a free block
~112 S$FF99 memPurErr Block is locked

EmptyHandle empties handle h: that is, it purges the relocatable block
whose handle is h from its heap zone and sets its master pointer to
NIL. If h is already empty, EmptyHandle does nothing.

(hand)
The main use of this procedure is to release the space a
block occupies without having to update every existing
handle to the block. Since the space occupied by the
master pointer itself remains allocated, all handles
pointing to it remain valid but become empty. When you
later reallocate space for the block with ReallocHandle,
the master pointer will be updated, causing all existing
handles to point correctly to the new block.

The block whose handle is h must be unlocked, but need not be
purgeable: 1if you ask to purge an unpurgeable block, EmptyHandle
assumes you know what you're doing and purges the block as requested.
1If the block is locked, EmptyHandle doesn't purge it; after the call,
MemError will return memPurErr. If the block is already free, MemError
will return memWZErr.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 5

42 Memory Manager Programmer's Guide

Properties of Relocatable Blocks

PROCEDURE HLock (h: Handle);

Trap macro _HLock

On entry AP: h (handle)

On exit D@: result code (integer)

Result codes @ S0PP8 noErr No error
-1¢9 $FF93 nilHandleErr NIL master pointer
-111 S$FF91 memWZErr Attempt to operate

on a free block

HLock locks a relocatable block, preventing it from being moved within
its heap zone. After the call, MemError will return nilHandleErr if
handle h is empty or memWZErr if it points to a free block, otherwise
noErr. If the block is already locked, HLock does nothing.

PROCEDURE HUnlock (h: Handle);

Trap macro _HUnlock

On entry. A@: h (handle)

On exit D@: result code (integer)

Result codes @ SPPPP noErr No error
-109 S$FF93 nilHandleErr NIL master pointer
-111 S$FF9]1 memWZErr Attempt to operate

on a free block

HUnlock unlocks a relocatable block, allowing it to be moved within its
heap zone. After the call, MemError will return nilHandleErr if handle
h is empty or memWZErr if it points to a free block, otherwise noErr.
If the block is already unlocked, HUnlock does nothing.

.10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 5

PROCEDURE HPurge (h:

MEMORY MANAGER ROUTINES 43

Handle);
Trap macro _HPurge
On entry Ap: h (handle)
On exit DP: result code (integer)

Result codes

? $00¢8 noErr
-1¢9 S$FF93 nilHandleErr
-111 $FF91 memWZErr

No error

NIL master pointer
Attempt to operate
on a free block

HPurge marks a relocatable block as purgeable.
MemError will return nilHandleErr if handle h is empty or memWZErr if
it points to a free block, otherwise noErr. If
purgeable, HPurge does nothing.

PROCEDURE HNoPurge (h: Handle);

After the call,

the block is already

Trap macro

On entry

On exit

Result codes

_HNoPurge
A@: h (handle)

D@: result code (integer)

@ SP0PP noErr No error
~109 S$FF93 nilHandleErr NIL master pointer
-111 S$FF91 memWZErr Attempt to operate

on a free block

HNoPurge marks a relocatable block as unpurgeable. After the call,
MemError will return nilHandleErr if handle h is empty or memWZErr if

it points to a free block, otherwise noErr.

unpurgeable, HNoPurge does nothing.

10/10/83 Chernicoff

CONFIDENTIAL

If the block is already

/MEM.MGR/MEMORY. 5

44 Memory Manager Programmer's Guide

Grow Zone Functions

PROCEDURE SetGrowZone (growZone: ProcPtr);

Trap macro _SetGrowZone

On entry Ap: growZone (pointer)

On exit DP: result code (integer)

Result codes @ SPPPF noErr No error

SetGrowZone sets the current heap zone's grow zone function as
designated by the growZone parameter. A NIL parameter value removes
any grow zone function the zone may previously have had. After the
call, MemError will always return noErr.

(hand)
If your program presses the limits of the available heap
space, it's a good idea to have a grow zone function of
some sort. At the very least, the grow zone function
should detect when the Memory Manager is about to run out
of space at a critical time (see GZCritical, below) and
take some graceful action--such as displaying an alert
box with the message '"Out of memory"-—-instead of just
failing unpredictably. #*** There may eventually be a
default grow zone function that does this. ***

The Memory Manager calls the grow zone function as a last resort when
trying to allocate space, after failing to create a block of the needed
size by compacting the zone, increasing its size (in the case of the
original application zone), or purging blocks from it. Memory Manager
routines that may cause the grow zone function to be called are
NewHandle, NewPtr, SetHandleSize, SetPtrSize, ReallocHandle, and
ResrvMem.

The grow zone function should be of the form
FUNCTION GrowTheZone (cbNeeded: Size) : Size;

(0f course, the name GrowTheZone is only an example; you can give the
function any name you like.) The cbNeeded parameter gives the physical
size of the needed block in bytes, including the block header. The
grow zone function should attempt to create a free block of at least
this size. It should return as its result the number of additional
bytes it has freed within the zone, but this number need not .be
accurate.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY. 5

MEMORY MANAGER ROUTINES 45

1f the grow zone function returns @, the Memory Manager will give up
trying to allocate the needed block and will signal failure with the
result code memFullErr. Otherwise it will compact the heap zone and
try again to allocate the block. 1If still unsuccessful, it will
continue to call the grow zone function repeatedly, compacting the zome
again after each call, until it either succeeds in allocating the
needed block or receives a zero result and gives up.

The usual way for the grow zone function to free more space is to call
EmptyHandle to purge blocks that were previously marked unpurgeable.
Another possibility is to unlock blocks that were previously locked, in
order to eliminate immovable "islands" that may have been interfering
with the compaction process and fragmenting the existing free space.

(hand)
Although just unlocking blocks doesn't actually free any
additional space in the zone, the grow zone function
should still return a nonzero result in this case. This
signals the Memory Manager to compact the heap and try
again to allocate the needed block.

(eye)

Depending on the circumstances in which the grow zone
function is called, there may be particular blocks within
the heap zone that must not be purged or released. For
instance, if your program is attempting to increase the
size of a relocatable block with SetHandleSize, it would
be disastrous to release the block being expanded. To
deal with such cases safely, it's essential to understand
the use of the functions GZCritical and GZSaveHnd (see
below).

FUNCTION GZCritical : BOOLEAN; [Pascal only]

Trap macro None

Result codes None

GZCritical returns TRUE if the Memory Manager critically needs the
requested space: for example, to create a new relocatable or
nonrelocatable block or to reallocate a handle. It returns FALSE in
less critical cases, such as ResrvMem trying to move a block in order
to reserve space as low as possible in the heap zone or SetHandleSize
trying to increase the size of a relocatable block by moving the block
above it.

(eye)
If you're writing a grow zone function in Pascal, you
.should always call GZCritical and proceed only if the
result is TRUE. All the information you need to handle

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY . 5

46 Memory Manager Programmer's Guide

the critical cases safely is the value of GZSaveHnd (see
below). The noncritical cases require additional
information that isn't available from Pascal, so your
grow zone function should just return § and not attempt
to free any space.

Assembly-language note: GZCritical is part of the Pascal
interface to the Memory Manager, not part of the Memory Manager
itself. It doesn't reside in ROM and can't be called via a
trap. To find out whether a given grow zone call is critical,
use the following magical incantation:

MOVE.L gzMoveHnd,D@
BEQ.S Critical
CMP.L gzRootHnd,D9
BEQ.S Critical

CLR.L 4(SP) sIf noncritical, just return @
RTS
Critical . . . s;Handle critical case

To handle the critical cases safely (and the noncritical ones if
you choose to do more than just return @), see the note below
under GZSaveHnd.

FUNCTION GZSaveHnd : Handle; [Pascal only]

Trap macro None

Result codes None

GZSaveHnd returns a handle to a relocatable block that mustn't be
purged or released by the grow zone function, or NIL if there is no
such block. The grow zone function will be safe if it avoids purging
or releasing this block, provided that the grow zome call was
critical. To handle noncritical cases safely, further information is
needed that isn't available from Pascal.

Assembly-language note: GZSaveHnd is part of the Pascal
interface to the Memory Manager, not part of the Memory Manager
itself. It doesn't reside in ROM and can't be called via a
trap. You can find the handle it returns in the global variable
gzRootHnd. The "further information" that isn't available from

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY. 5

MEMORY MANAGER ROUTINES 47

Pascal is the contents of two other global variables, gzRootPtr
and gzMovelnd, which may be nonzero in noncritical cases. If
gzRootPtr is nonzero, it's a pointer to a nonrelocatable block
that must not be released; gzMoveHnd is a handle to a
relocatable block that must not be released but may be purged.

Utility Routines

PROCEDURE BlockMove (sourcePtr,destPtr: Ptr; byteCount: Size);

Trap macro _BlockMove
On entry A@: sourcePtr (pointer)

Al: destPtr (pointer)
D@: byteCount (long integer)

On exit D@: result code (integer)

S ———

Result codes ? SPPP3 noErr No error

BlockMove moves a block of byteCount consecutive bytes from the address
designated by sourcePtr to that designated by destPtr. No checking of
any kind is done on the addresses; no pointers are updated. After the
call, MemError will always return noErr.

FUNCTION TopMem : Ptr; [Pascal only]

Trap macro None
Result codes P $0000 noErr No error

TopMem returns a pointer to the address following the last byte of
physical memory. After the call, MemError will always return noErr.

Assembly-language note: TopMem is part of the Pascal interface

to the Memory Manager, not part of the Memory Manager itself.

It doesn't reside in ROM and can't be called via a trap. To get
a pointer to the end of physical memory from assembly language,

use the global variable memTop.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY. 5

48 Memory Manager Programmer's Guide

FUNCTION MemError : MemErr; [Pascal only]

Trap macro None

Result codes None

MemError returns the result code produced by the last Memory Manager
routine to be called.

Assembly-language note: MemError is part of the Pascal
interface to the Memory Manager, not part of the Memory Manager
itself. It doesn't reside in ROM and can't be called via a
trap. To get the a routine's result code from assembly
language, look in register D@ on return from the routine.

SPECIAL TECHNIQUES

This section describes some special or unusual techniques that you may
find useful.

Dereferencing a Handle

Accessing a block by double indirection, through a handle instead of a
simple pointer, requires an extra memory reference. For efficiency,
you may sometimes want to dereference the handle-—-that is, convert it
to a copy of the master pointer, then use that pointer to access the
block by single indirection. But be careful! Any operation that
allocates space from the heap may cause the underlying block to be
moved or purged. 1In that event, the master pointer itself will be
correctly updated, but your copy of it will be left dangling.

One way to avoid this common type of program bug is to lock the block
before dereferencing its handle: for example,

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY. 6

TABLE OF CONTENTS 49

VAR aPointer: Ptr;
aHandle: Handle;

.
. L L] ’

BEGIN

L L] L] ')

aHandle := NewHandle(. « .); {create a relocatable block}

L] L] L] ;
HLock{aHandle); {lock block before dereferencing}
aPointer := aHandle”; {convert handle to simple pointer}

WHILE . « « DO

BEGIN
.ssaPointer”... {use simple pointer inside loop}
END;
HUnlock(aHandle); {unlock block when finished}

L] L] .

END

Assembly-language note: To dereference a handle in assembly

language, just copy the master pointer into an address register
and use it to access the block by single indirection. Remember
that the master pointer points to the block's contents, not its

header!
MOVE.L #blockSize,DP ;set up block size for _NewHandle
_NewHandle ;jcreate relocatable block
MOVE.L A@,aHandle ;save handle for later use
MOVE.L aHandle,Al ;get back handle
MOVE.L Al,AQ slock block before dereferencing
_HLock
MOVE.L (Al),A2 ;jconvert handle to simple pointer
LOOP « o o
MOVE ese(A2)... suse simple pointer inside loop
Bec. S LOOP sloop back on some condition
MOVE.L Al,AQ sunlock block when finished
_HUnlock

- . L

Remember, however, that when you lock a block it becomes an "island" in
the heap that may interfere with compaction and cause free space to
become fragmented. It's recommended that you use this technique only
in parts of your program where efficiency is critical, such as inside
tight inner loops that are executed many times.

50 Memory Manager Programmer's Guide

(eye)
Don't forget to unlock the block again when you're
through with the dereferenced handle!

Instead of locking the block, you can update your copy of the master
pointer after any "dangerous" operation (one that can invalidate the
pointer by moving or purging the block it points to). Memory Manager
routines that can move or purge blocks in the heap are NewHandle,
NewPtr, SetHandleSize, SetPtrSize, ReallocHandle, ResrvMem, CompactMem,
PurgeMem, and MaxMem. Since these routines can be called indirectly
from other Operating System or Toolbox routines, you should assume that
any call to the 0S or Toolbox can potentially leave your dereferenced
pointer dangling. *** Eventually there will be a technical note
listing which 0S and Toolbox routines are dangerous and which

aren't., **%*

(hand)
If you aren't performing any dangerous operations, you
needn't worry about updating the pointer (or locking the
block either, for that matter).

Subdividing the Application Heap Zone

In some applications, you may want to subdivide the original
application heap zone into two or more independent zones to be used for
different purposes. In doing this, it's important not to destroy any
existing blocks in the original zone (such as those containing the code
of your program). The recommended procedure is to allocate space for
the subzones as nonrelocatable blocks within the original zone, then
use InitZone to initialize them as independent zones. For example, to
divide the available space in the application zone in half, you might
write something like the following:

TABLE OF CONTENTS 51

CONST minSize = 52 + 12 + 32*%(12 + 4); {zone header, zone trailer,}
{ and 32 minimum-size blocks}
{ with master pointers}
VAR myZonel, myZone2: THz;
start, limit: Ptr;
availSpace, zoneSize: Size;
e o o
BEGIN
SetZone(ApplicZone);
availSpace := CompactMem(maxSize); {size of largest free block}
zoneSize := 2 * (availSpace DIV 4); {force new zone size to an}
{ even number of bytes}

IF zoneSize < (minSize + 8) {need 8 bytes for}
{ block header}
THEN . . . {error--not enough room}
ELSE
BEGIN

zoneSize := zoneSize - 8; {adjust for block header}

start := NewPtr(zonmeSize); {allocate a nonrel. block}
limit := POINTER(ORD(start) + zoneSize);

InitZone(NIL, 32, limit, start);

myZonel := POINTER(ORD(start)); {convert Ptr to THz}

start := NewPtr(zoneSize); {allocate a nonrel. block}
1imit := POINTER(ORD(start) + zoneSize);
InitZone(NIL, 32, limit, start);

myZone2 := POINTER(ORD(start)) {convert Ptr to THz}
END;

END

52 Memory Manager Programmer's Guide

Assembly-language note:

minSize

.EQU

e« s o

MOVE.L applZone,Af

_SetZone

MOVE.L #maxSize,D@

_CompactMem

ASR.L #2,00
ASL.L #1,D¢
CMP.L #minSize+8,D@
BLO NoRoom
SUBQ.L #8,D@
MOVE.L D@,D1
_NewPtr

MOVE.L A@,myZonel
CLR.L -(SP)
MOVE.W #32,-(SP)
MOVE.L A@,-(SP)
ADD.L D1,(SP)
MOVE.L A@,-(SP)
MOVE.L SP,AQ
_InitZome

MOVE.L D1,D@
_NewPtr

MOVE.L A@,myZone2
MOVE.L A@,4(SP)
ADD.L D1,(SP)
MOVE.L A@,(SP)
MOVE.L SP,Ad
_InitZone

ADD.W #14,SP

The equivalent assembly code might be

52+12+<32*<12+4>> ;zone header and trailer, plus

: 32 minimum-size blocks
H with master pointers

;get original application zone
;make it current

;compact entire zone
;D@ has size of largest free block

;force new zone size to an

H even number of bytes

;need 8 bytes for block header
serror if < minimum size

sadjust for block header

;save zone size

s;allocate nonrelocatable block
sstore zone pointer

sNIL grow zone function
;allocate 32 master pointers
;AP has zone pointer
sconvert to limit pointer
;push as start pointer

;point to argument block
;create zone 1

;get back zone size ‘
sallocate nonrelocatable block
;jstore zone pointer '

;move zone pointer to stack
;jconvert to limit pointer
;move to stack as start pointer

spoint to argument block
;create zone 2
spop arguments off stack

TABLE OF CONTENTS 53

Creating a Heap Zone on the Stack

Another place you can get the space for a new heap zone is from the
stack. For example,

CONST zoneSize = 2048;

VAR zoneArea: PACKED ARRAY [l..zoneSize] OF SignedByte;
stackZone: THz;
limit: Ptr;

BEGIN
L] L] L] ;
stackZone := @zoneArea;
limit := POINTER(ORD(stackZone) + zoneSize);
InitZone(NIL, 16, limit, @zoneArea);

END

Assembly-language note: Here's how you might do the same thing
in assembly language:

zoneSize JEQU 2048

MOVE.L SP,A2 ;save stack pointer for limit
SUB.W #zoneSize,SP ;make room on stack
MOVE.L SP,Al ;save stack pointer for start

MOVE.L Al,stackZone ;store as zone pointer

CLR.L =(SP) ;NIL grow zone function
MOVE.W #16,-(SP) sallocate 16 master pointers
MOVE.L A2,-(SP) ;push limit pointer

MOVE.L Al,~(SP) ;push start pointer

MOVE.L SP,A(;point to argument block
_InitZone ;create new zone

ADD.W #14,SP ;pop arguments off stack

54 Memory Manager Programmer's Guide

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

General information about how to use the Macintosh Operating System
from assembly language is *** (will be) *** given elsewhere. This
section contains special notes of interest to programmers who will be
using the Memory Manager from assembly language.

The primary aids to assembly-language programmers are files named
SYSEQU.TEXT, SYSMACS.TEXT, SYSERR.TEXT, and HEAPDEFS.TEXT. If you use
+INCLUDE to include these files when you assemble your program, all the
Memory Manager constants, addresses of global variables, trap macros,
error codes, and masks and offsets into fields of structured types will
be available in symbolic form.

Constants.

The file HEAPDEFS.TEXT defines a number of useful constants that you
can use in your program as immediate data values. For example, to push
the default master—point count onto the stack as an argument for
_InitZone, you might write

MOVE.W #dfltMasters,-(SP)

(hand)
It's a good idea to refer to these constants in your
program by name instead of using the numeric value
directly, since some of the values shown may be subject
to change. Some of the constants are based on an

eventual 512K memory configuration; the present Macintosh
has 128K of RAM.

The following constants are defined in HEAPDEFS.TEXT:

minFree +EQU 12 ;minimum block size

maxSize .EQU $7FFFF ;ymaximum block size (512K - 1)

minAddr <EQU) ;minimum legal address

maxAddr «EQU $80000 ;maximum legal address (512K)
dfltMasters <EQU 32 sdefault master—pointer count
maxMasters .EQU $1000 ;maximum master-pointer count (4K)
sysZoneSize .EQU $4000 ;size of system heap zone (16K)
applZoneSize .EQU $1809 ;initial size of application zone (6K)
minZone .EQU heapData+<4*minFree>+<8*dfltMasters>

sminimum size of application zone
dfltStackSize .EQU $OPPP200@ ;initial space allotment for stack (8K)

tybkFree <EQU) stag value for free block
tybkNRel +EQU 1 ;tag value for nonrelocatable block
tybkRel -EQU 2 stag value for relocatable block

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 55
One global constant pertinent to the Memory Manager is defined in
SYSEQU.TEXT:

heapStart <EQU SOBOY start address of

’
; system heap zone (2816)

Global Variables

The Memory Manager's global variables are located in the system
communication area and defined in the file SYSEQU.TEXT. To access a
global variable, just refer to it by name as an absolute address. For
example, to load a pointer to the current heap zone into register A2,
write

MOVE.L theZone,A2

The following global variables are used by the Memory Manager:

Variable Contents

memTop Limit address (end plus one) of physical memory
bufPtr Base address of stack (grows downward from here)
minStack Minimum space allotment for stack (1K)
defltStack Default space allotment for stack (8K)

heapEnd Current limit address of application heap zone
applLimit Application heap limit

sysZone Address of system heap zone

applZone Address of application heap zone

theZone Address of current heap zone

Trap Macros

All assembly-language trap macros for the Memory Manager (as well as
the rest of the Operating System) are defined in the file SYSMACS.TEXT.
To call a Memory Manager routine from assembly language via the trap
mechanism, just use the name of the trap macro as the operation code of
an instruction. For example, to find out the number of free bytes in
the current heap zone, use the instruction

_FreeMem

As stated in the description of FreeMem above, the number of free bytes
will be in register D@ on return from the trap.

56 Memory Manager Programmer's Guide

Result Codes

The file SYSERR.TEXT contains constant definitions for all result codes
returned by Operating System routines. You can use them in your
program as immediate data values. For example, to test for the error
code memFullErr on return from a trap, you might write

CMP.W #memFullErr,D@
BEQ NoRoom

The Memory Manager uses the following error codes:

noErr .EQU @ ;N0 error

memFullErr -EQU -198 ;not enough room in zone
nilHandleErr JEQU -109 sNIL master pointer

menmWZErr -EQU -111 ;attempt to operate on a free block
memPurErr .EQU -112 sattempt to purge a locked block

Offsets and Masks

Offsets to the fields of zone and block headers are defined as
constants in the file HEAPDEFS.TEXT. To access a field, use the name
of the offset constant as a displacement relative to an address
register pointing to the first byte of the header. For example, if
register A2 contains a pointer to a zone header, you can load the
number of free bytes in the zone into D3 with the instruction

MOVE.L gzProc(A2),D3

(eye)
Generally speaking, the offset and mask constants
discussed here are intended for the Memory Manager's
internal use. You shouldn't ordinarily be prowling
around in a zone or block header unless you know what
you're doing.

The following offset constants represent the fields of a zone header:

bkLim .EQU @ ;address of zone trailer (long)
purgePtr <EQU 4 ;jroving purge pointer (long)
hFstFree -EQU 8 ;address of first free

; master pointer (long)
zcbFree .EQU 12 ;jnumber of free bytes (long)
gzProc : +EQU 16 ;address of grow zone

; function (long)
moreMasters «EQU 20 syincremental master-pointer

; count (word) ‘
flags .EQU 22 ;internal flags (word)

cntRel .EQU 24 srelocatable blocks (word)

The following offset

maxRel «EQU
cntNRel +EQU
maxNRel .EQU
cntEmpty <EQU
cntHandles «EQU
minCBFree +EQU
purgeProc «EQU
sparePtr «EQU
allocPtr «EQU
heapData «EQU

tagBC +EQU
handle .EQU

blkData +EQU

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 57

26
28
3¢
32
34
36
40

44

48
52

@
4

8

;max. cntRel so far (word)
snonrelocatable blocks {(word)
;max. cntNRel so far (word)
;empty master pointers (word)
;total master pointers (word)
;min. zcbFree so far (long)
;address of purge warning

; procedure (long)

;spare pointer (long)

;jroving allocation pointer (long)
;first usable byte in zome

constants represent the fields of a block header:

;tag, size correction, and

; physical byte count (long)
;reloc.: relative handle (long)
;nonreloc.: zone pointer (long)
;first byte of block contents

HEAPDEFS.TEXT also defines the following mask constants for
manipulating the fields of block headers and master pointers:

(eye)

tagMask +EQU
bcOffMask +EQU
bcMask «EQU
ptrMask +EQU
handleMask «EQU
freeTag -EQU
nRelTag «EQU
relTag «.EQU

$COP00009
SOFPP0000

SPPFFFFFF
SOPFFFFFF

SOP@FFFFFF
7]

$40000000
$80000000

stag field

;size correction

; ("byte count offset")
;physical byte count

;address part of master pointer
s or zone pointer

;relative handle

stag for free block

;tag for nonrelocatable block
;tag for relocatable block

Remember, the pointer or handle you get from the Memory
Manager when you allocate a block points to the block's

contents, not its header.

To get the address of the

header, subtract the offset constant blkData, defined
above. For example, if you have a handle to a block in
register A2, the following code will set A3 to point to

the block's header:

MOVE.L (A2),A3
SUBQ.L #blkData,A3

;get pointer to block contents
;offset back to header

58 Memory Manager Programmer's Guide

Finally, SYSEQU.TEXT defines the following constants for the bit
numbers of the various flag bits within the high-order byte of a master
pointer:

lock <EQU 7 slock bit
purge <EQU 6 ;purge bit
resource EQU 5 ;resource bit

You can use these constants to access the flag bits directly, using the
68009 instructions BSET, BCLR, and BTST. For instance, if you have a
handle to a relocatable block in register A2, you can mark the block as
purgeable with the instruction

BSET.B #purge,(A2) ;jset purge bit in master pointer
To branch on the current setting of the lock bit,

BTST.B #lock,(A2)
BNE ItsLocked

test lock bit in master pointer

H
H and branch on result

Handy Tricks

To save time in critical situations, here's a quick way to convert a
dereferenced pointer to a relocatable block back into a handle without
paying the overhead of a _RecoverHandle trap. Recall that the relative
handle stored in the block's header is the offset of the block's master
pointer relative to the start of its heap zone. So to convert a copy
of the master pointer back into the original handle, find the relative
handle and add it to the address of the zone. For example, if register
A2 contains the master pointer of a block in the current heap zone, the
following code will reconstruct the block's handle in A3:

MOVE.L -4(A2),A3 ;jrelative handle is 4 bytes back
H from start of contents
ADD.L theZone,A3 ;juse as offset from start of zone

Conversely, given a true (absolute) handle to a relocatable block, you
can find the zone the block belongs to by subtracting the relative
handle from the absolute handle. If the absolute handle is in register
A2, the following instructions will convert it into a pointer to the
block's heap zone:

MOVE.L (A2),A3 ;get pointer to block
SUB.L -4(A3),A2 ;subtract relative handle
H to get zone pointer

For nonrelocatable blocks, the header contains a pointer directly back
to the zone: :

MOVE.L -4(A2),A2 ;get zone pointer directly

SUMMARY OF THE MEMORY MANAGER 59

SUMMARY OF THE MEMORY MANAGER

G'

CONST noErr {no error}

memFullErr = -10@8; {not enough room in zone}
nilHandleErr = -1¢9; {NIL master pointer}

memWZErr = -111; {attempt to operate on a free block}
memPurErr = -112; {attempt to purge a locked block}

maxSize = $800000;

TYPE SignedByte = ~128..127;
Byte = 0..255;
Ptr = “SignedByte;
Handle = “Ptr;
ProcPtr = Ptr;

Size = LongInt;
MemErr = INTEGER;

THz = “Zone;

Zone = RECORD
bkLim: Ptr;
purgePtr: Ptr;
hFstFree: Ptr;
zcbFree: LongInt;

gzProc: ProcPtr;
moreMast: INTEGER;
flags: INTEGER;
cntRel: INTEGER;
maxRel: INTEGER;

cntNRel: INTEGER;
maxNRel : INTEGER;
cntEmpty: INTEGER;
cntHandles: INTEGER;
minCBFree: Longlnt;
purgeProc: ProcPtr;
sparePtr: Ptr;

allocPtr: Ptr;

heapData: INTEGER

END;

Initialization and Allocation

PROCEDURE InitApplZone;

PROCEDURE SetApplBase (startPtr: Ptr);

PROCEDURE InitZone (growProc: ProcPtr; masterCount: INTEGER;
limitPtr, startPtr: Ptr);

PROCEDURE SetApplLimit (zoneLimit: Ptr);

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY .7

60 Memory Manager Programmer's Guide

Heap Zone Access

FUNCTION GetZone : THz;

PROCEDURE SetZone (hz: THz);

FUNCTION SystemZone : THz; [Pascal only]
FUNCTION ApplicZone : THz; [Pascal only]

ee se

Allocating and Releasing Relocatable Blocks

FUNCTION NewHandle (logicalSize: Size) : Handle;
PROCEDURE DisposHandle (h: Handle);

FUNCTION GetHandleSize (h: Handle) : Size;

PROCEDURE SetHandleSize (h: Handle; newSize: Size);
FUNCTION HandleZone (h: Handle) : THz;

FUNCTION RecoverHandle (p: Ptr) : Handle;

PROCEDURE ReallocHandle (h: Handle; logicalSize: Size);

Allocating and Releasing Nonrelocatable Blocks

FUNCTION NewPtr (logicalSize: Size) : Ptr;
PROCEDURE DisposPtr (p: Ptr);

FUNCTION GetPtrSize (p: Ptr) : Size;

PROCEDURE SetPtrSize (p: Ptr; newSize: Size);
FUNCTION PtrZone (p: Ptr) : THz;

Freeing Space on the Heap

FUNCTION FreeMem : LongInt;

FUNCTION MaxMem (VAR grow: Size) : Siz
FUNCTION CompactMem (cbNeeded: Size) : Siz
PROCEDURE ResrvMem (cbNeeded: Size);
FUNCTION PurgeMem (cbNeeded: Size);
PROCEDURE EmptyHandle (h: Handle);

e
e

.
3
.
’

Properties of Relocatable Blocks

PROCEDURE HLock (h: Handle);
PROCEDURE HUnlock (h: Handle);
PROCEDURE HPurge (h: Handle);
PROCEDURE HNoPurge (h: Handle);

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY .7

SUMMARY OF THE MEMORY MANAGER 61

Grow Zone Functions

PROCEDURE SetGrowZone (growZone: ProcPtr);
FUNCTION GZCritical : BOOLEAN; [Pascal only]
FUNCTION GZSaveHnd : Handle; [Pascal only]

Utility Routines

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

FUNCTION TopMem : Ptr; [Pascal only]
FUNCTION MemError : MemErr; [Pascal only]

10/10/83 Chernicoff CONFIDENTIAL

/MEM.MGR/MEMORY .7

62 Memory Manager Programmer's Guide

GLOSSARY

allocate: To reserve a block for use.

application heap zone: The heap zone provided by the Memory Manager
for use by the application program.

block: An area of contiguous memory within a heap zone.
block contents: The area of a block available for use.

block header: The internal "housekeeping" information maintained by
the Memory Manager at the beginning of each block in a heap zone.

compaction: The process of moving allocated blocks within a heap zone
in order to collect the free space into a single block.

current heap zone: The heap zone currently under attention, to which
most Memory Manager operations implicitly apply.

dereference: To convert a pointer into whatever it points to;
specifically, to convert a handle into a copy of its corresponding
master pointer.

empty handle: A handle that points to a NIL master pointer, signifying
that the underlying relocatable block has been purged.

free block: A block containing space available for allocation.

grow zone function: A function supplied by the application program to
help the Memory Manager create free space within a heap zone.

handle: A pointer to a master pointer, which designates a relocatable
block by double indirection.

heap zone: An area of memory in which space can be allocated and
released on demand, using the Memory Manager.

limit pointer: A pointer to the byte following the last byte of an
area in memory, such as a block or a heap zone.

lock: To temporarily prevent a relocatable block from being moved
during heap compaction.

lock bit: A bit in the master pointer to a relocatable block that
indicates whether the block is currently locked.

logical size: The number of bytes in a block's contents; compare
physical size.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY .7

GLOSSARY 63

master pointer: A single pointer to a relocatable block, maintained by
the Memory Manager and updated whenever the block is moved, purged, or
reallocated. All handles to a relocatable block refer to it by double
indirection through the master pointer.

nonrelocatable block: A block whose location in its heap zome is fixed
and can't be moved during heap compaction.

physical size: The actual number of bytes a block occupies within its
heap zone.

purge: To remove a relocatable block from its heap zone, leaving its
master pointer allocated but set to NIL.

purgeable block: A relocatable block that can be purged from its heap
zone.

purge bit: A bit in the master pointer to a relocatable block that
indicates whether the block is currently purgeable.

purge warning procedure: A procedure associated with a particular heap
zone that is called whenever a block is purged from that zone.

reallocate: To allocate new space in a heap zone for a purged block,
updating its master pointer to point to its new location.

relative handle: A handle to a relocatable block expressed as the
offset of its master pointer within the heap zone, rather than as the
absolute memory address of the master pointer.

release: To destroy an allocated block, freeing the space it occupies.

relocatable block: A block that can be moved within its heap zone
during compaction.

result code: An integer code produced by a Memory Manager routine to
signal the success of an operation or the reason for its failure.

size correction: The number of unused bytes included at the end of an
allocated block; the difference between the block's logical and
physical sizes, excluding the block header.

.system heap zone: The heap zone provided by the Memory Manager for use
by the Macintosh system software.

tag: A 2-bit code in the header of a block identifying it as
relocatable, nonrelocatable, or free.

unlock: To allow a relocatable block to be moved during heap
compaction.

unpurgeable block: A relocatable block that can't be purged from its
heap zone.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY .7

64 Memory Manager Programmer's Guide

zone header: The internal "housekeeping" information maintained by the
Memory Manager at the beginning of each heap zone.

zone pointer: A pointer to a zone record.

zone record: A Pascal data structure representing the structure of a
zone header.

zone trailer: A minimum-size free block marking the end of a heap
zone.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.7

COMMENTS?

Macintosh User Education encourages your comments on this manual,

- What do you like or dislike about it?

- Were you able to find the information you needed?
- Was it compiete and accurate?
- Do you have any suggestions for improvement?

Please send your comments to the author (indicated on the cover
page) at 10460 Bandley Drive M/S 3-G, Cupertino CA 95014,
Mark up a copy of the manual or note your remarks separately.
(We’'ll return your marked-up copy if you like.)

Thanks for your help!

MACINTOSH USER EDUCATION

The Segment Loader: A Programmer”s Guide /SEGLOAD/SEGMENT

See Also: Macintosh Operating System Reference Manual

The Resource Manager: A Programmer”s Guide
The Macintosh Finder

Modification History: First Draft (ROM 4) C. Rose 6/24/83

ABSTRACT

This manual describes the Segment Loader of the Macintosh Operating
System, which lets you divide your application into several parts and
have only some of them in memory at a time.

2 Segment Loader Programmer”s Guide

TABLE OF CONTENTS

About This Manual
About the Segment Loader
Application Parameters
Using the Segment Loader
Segment Loader Routines
Advanced Routines
8 The Jump Table
19 Specifying Segments in Your Source File
13 Summary of the Segment Loader
14 Glossary

N S w

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Segment Loader, a new part of the Macintosh
Operating System in ROM version 4. *** Eventually it will become part
of a large manual describing the entire Operating System and Toolbox.
*** The Segment Loader lets you divide your application into several
parts and have only some of them in memory at a time.

You should already be familiar with Lisa Pascal, the Macintosh
Operating System”s Memory Manager, the Finder, and the basic concepts
behind the Resource Manager of the Macintosh User Interface Toolbox.

The manual begins with an introduction to the Segment Loader and a
description of the parameters that are stored in memory when an
application is started up. Next, a section on using the Segment Loader
introduces you to its routines and tells how they fit into the flow of
your application. This is followed by the detailed descriptions of all
Segment Loader routines, their parameters, calling protocol, effects,
side effects, and so on.

For advanced programmers, there”s a section that discusses the jump
table, explaining how the Segment Loader works internally.

Finally, there”s a summary of the Segment Loader routine calls, for
quick reference, and a glossary of terms defined in this manual.

ABOUT THE SEGMENT LOADER

The Segment Loader allows you to divide the code of an application into
several parts or segments. The Finder starts up an application by
calling a Segment Loader routine that loads in the main segment (the
one containing the main program). Other segments are loaded in
automatically when they“re needed. Your application can call the
Segment Loader to have these other segments removed from memory when
they“re no longer needed.

The Segment Loader enables you to have programs larger than 32K bytes,
the maximum size of a single segment. Also, any code that isn”t
executed often (such as code for printing hardcopy) need not occupy
memory when it isn”“t being used, but can instead be in a separate
segment that”s brought in when needed.

This mechanism may remind you of the resources of an application, which
the Resource Manager of the User Interface Toolbox reads into memory
when necessary. An application”s segments are in fact themselves
stored as resources; their resource type is “CODE”. You can use the
Resource Compiler to create these resources from your application code.
A "loaded” segment has been read into memory by the Resource Manager
and locked (so that it“s neither relocatable nor purgeable). When a
segment is unloaded, it”s made relocatable and purgeable.

6/24/83 Rose , CONFIDENTIAL /SEGLOAD/SEGMENT. 2

4 Segment Loader Programmer”s Guide

Every segment has a name. If you do nothing about dividing your
program into segments, it will consist of a single segment whose name
is blank. Dividing your program into segments means specifying in your
source file the beginning of each segment by name. The names are for
your use only; they're not kept around after linking.

(eye)
If you do specify segment names, note that normally the
main segment should have a blank name. The reason for
this is that the intrinsic Pascal routines must be in the
same segment as your main program, and the Linker puts
those routines in the blank—-named segment (so that the
right thing will happen if you don”t specify any segment
names at all).

APPLICATION PARAMETERS

When an application is started up, certain parameters are stored in 32
bytes of memory just above the application”s globals, as shown in
Figure 1; these are called the application parameters. A5 points to

the first of these parameters and may be used with positive offsets to
access the others.

hi
2 gh memory
-
reserved for future use
20 1 .
16 | Finder information handle spplication
- parameter

12 standard output ares

8 standerd input

4 reserved for future use

A5 — | reserved for QuickDraw

application globals

low memory

Figure 1. Application Parameters

(hand)

For brevity, we”ll say "A5" where we mean "the location
pointed to by A5".

The "standard input” and "standard output” parameters indicate the main
source of input and destination of output for the Macintosh. They are

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.2

APPLICATION PARAMETERS 5

usually P, meaning the keyboard and the screen, respectively.

The "Finder information handle” is a handle to information that the
Finder provides to the application upon starting it up. For example,
for a word processor it might be the name of the document to be worked
on. *** The exact information will be described here when available.
**%* Pascal programmers can call the Segment Loader routine GetAppParms
to get the Finder information handle.

The other locations in the application parameter area are reserved for
future use or for use by QuickDraw.

USING THE SEGMENT LOADER

This section introduces you to the Segment Loader routines and how they

fit into the flow of an application program. The routines themselves
are described in detail in the next section.

The routine that applications will most commonly use is UnloadSeg, for
unloading a particular segment when it”“s no longer needed. Another
useful routine, GetAppParms, lets you get information about your
application such as its name and the reference number for its
resources. For applications started up in the usual way by the Finder,
GetAppParms also gives the Finder information handle that”s stored 16
bytes above AS.

The main segment can unload other segments, but it can”t get rid of
itself; using the Chain routine, however, it can do something close to
this. Chain starts up another application without disturbing the
application heap. Thus the current application can let another
application take over while still keeping its data around in the heap.

The Segment Loader also provides a quick exit to the Finder that

doesn”t touch the stack, for applications needing it in emergency
situations: ExitToShell.

Finally, there are two advanced routines that most applications will
never use: Launch and LoadSeg. Launch is called by the Finder to
start up an application; it”s like Chain but doesn”t retain the
application heap. LoadSeg is called indirectly (via the jump table, as
described later) to load segments when necessary-—that is, whenever a
routine in an unloaded segment is invoked.

SEGMENT LOADER ROUTINES

This section describes all the Segment Loader routines. Some of the
routines are stack-based and so are shown in Pascal; for information on
using them from assembly language, see "Using the Toolbox from Assembly
Language” *** doesn”t exist, but see QuickDraw manual ***., Other
Segment Loader routines are register-based and are described similar to

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT .R

6 Segment Loader Programmer”s Guide

the way the Operating System routines are described in the current
Operating System manual.

PROCEDURE UnloadSeg (routineAddr: Ptr);

UnloadSeg unloads a segment, making it relocatable and purgeable;
routineAddr is the address of any routine in the segment. The Segment
Loader will reload the segment the next time one of the routines in it
is called. It doesn”t hurt to call UnloadSeg, because the segment
won”t actually be purged until the memory it occupies is needed. If
you need the unloaded segment again before it”s purged, the Segment
Loader won”t have to access the disk.

PROCEDURE GetAppParms (VAR apName: Str255; VAR apRefNum: INTEGER; VAR
apParam: Handle);

GetAppParms returns information about the current application. It
returns the application name in apName and the reference number for the
application”s resources in apRefNum. For applications started up in
the usual way by the Finder, it returns the Finder information handle
in apParam (as described earlier under "Application Parameters”).

(hand)
For applications started up with the Chain routine
(below), the apParam parameter isn”t useful.

Chain {register-based}

This routine starts an application up without doing anything to the
application heap, so the current application can let another
application take over while still keeping its data around in the heap.
It configures memory for the sound and video buffers. A@ points to the
following: '

AG -—=> ¢ | where FILENAME is a pointer to the
| FILENAME | application”s file name
| (POINTER) |
| | and MODE tells which sound buffer
4| | and video buffer to use (@ for
I MODE | standard).
| |
6

The sound and video buffers are constantly scanned by the Macintosh
hardware to determine what sounds to emit from its speakers and what to
display on its screen. (The video buffer is the bit image

corresponding to the display screen.) Two of each type of buffer are
available; Figure 2 shows where they re located. If you specify a MODE

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.R

SEGMENT LOADER ROUTINES 7

value of @, you get the standard or "primary” buffers; in this case,
the application space begins where shown in Figure 2. Any positive
MODE value causes the secondary sound buffer and primary video buffer
to be used (which costs 1.5K of memory). Any negative MODE value
causes the secondary sound buffer and secondary video buffer to be used
(which costs 32K of memory).

$20000
primary sound
primary video The application
$1A700 ¢— space normally
ends here.

$1a100 | secondary sound

secondary video
$12700

Figure 2. Sound and Video Buffers

Chain closes the resource file for any previous application and opens
the resource file for the application being started. It also stores in
memory the application parameters designating standard input and
standard output. The application is started at its entry point, which
causes the main segment to be loaded.

PROCEDURE ExitToShell;

ExitToShell provides an emergency exit for the application, without
touching the stack. It simply launches the Finder (starts it up after

freeing the storage occupied by the application heap; see Launch
below).

Advanced Routines

Launch {register-based}

This routine 1is called by the Finder to start up an application and
will rarely need to be called by an application itself. 1It“s the same
as the Chain routine (described above) except that it frees the storage
occupied by the application heap and restores the heap to its original
size. Also, the Finder provides startup information needed by the
application; a handle to the information is located in the system heap

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.R

8 Segment Loader Programmer”s Guide

and is copied (as the "Finder information handle”) into the application
parameter area in memory.

(hand)
Launch preserves a special handle in the application heap
which is used for accessing the scrap between
applications.

PROCEDURE LoadSeg (seglD: INTEGER);

LoadSeg is called indirectly via the jump table (as described in the
following section) when the application calls a routine in an unloaded
segment. It loads the segment having the given ID number, which was
assigned by the Linker. If the segment isn“t in memory, LoadSeg calls
the Resource Manager to read it in. It changes the jump table entries
for all the routines in the segment from the "unloaded™ to the "loaded”
state and then invokes the routine that was called.

THE JUMP TABLE

This section describes how the Segment Loader works internally, and is
included here for advanced programmers; you don”t have to know about
this to be able to use the common Segment Loader routines.

The loading and unloading of segments is implemented through the
application”s jump table. Figure 3 shows the location of the jump
table in memory for a typical application.

high memory
(normally) $1A700 -
jump table
AS —> application parameters
application globals the
L application
¢k grows downward l stack space
towsrd heap
eap grows upward .
towsrd stack Ib spplication heap
system heap
low memory

Figure 3. The Application”s Space in Memory

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.J

THE JUMP TABLE 9

When the Linker encounters a call to a routine in another segment, it
creates a jump table entry for the routine and addresses the entry with
a positive offset from A5. As described below, the jump table entry
makes the connections necessary to invoke the routine.

The jump table contains one 8-byte entry for every externally
referenced routine in every segment; all the entries for a particular
segment are stored contiguously. It refers to segments by ID numbers
assigned by the Linker. When an application is started up, its jump
table is read in from segment @, a special segment created by the
Linker for every executable file. Segment $ contains the following:

Number of bytes Contents

4 bytes "Above AS5" size; size in bytes from A5
to upper end of application space

4 bytes "Below AS5" size; size in bytes of
application globals

4 bytes Offset of jump table from A5

4 bytes Length of jump table in bytes

n bytes Jump table

For most applications, the offset of the jump table from A5 is 32, and
the "above A5" size is 32 plus the length of the jump table.

All the jump table entries for a particular segment indicate whether
that segment is currently loaded or not, as illustrated in Figure 4.

"unioaded” state “loaded" state
routine offset segment ID
(2 bytes) (2 bytes)

move of segment .
ID onto stack jump to address
(4 bytes) of routine
(6 bytes)
LoadSeqg call
(2 bytes)

Figure 4. Format of a Jump Table Entry

Initially, of course, the jump table entries are all in the "unloaded”
state, which means they contain the following:

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT .J

10 Segment Loader Programmer”s Guide

Number of bytes Contents
2 bytes Offset of this routine from beginning of
segment
4 bytes Instruction that moves the segment ID onto
the stack for LoadSeg
2 bytes Trap that executes LoadSeg

When a call to a routine in an unloaded segment is made, the code in
the last six bytes of its jump table entry is executed. This code
calls LoadSeg, which loads the segment into memory, transforms all of
its jump table entries to the "loaded"” state (shown below), and invokes
the routine.

Number of bytes Contents
2 bytes Segment ID
6 bytes Instruction that jumps to the address of the

routine for which this is an entry

LoadSeg invokes the routine by executing the instruction in the last
six bytes of the jump table entry. Subsequent calls to the routine
also execute this instruction. If UnloadSeg is called to unload the
segment, it restores the jump table entries to their "unloaded” state.
Notice that whether the segment is loaded or unloaded, the last six
bytes of the jump table entry are executed; the effect depends on the
state of the entry at the time.

To be able to set all the jump table entries for a segment to a
particular state, LoadSeg and UnloadSeg need to know exactly where all
the entries are located. They get this information from the segment
header, four bytes at the beginning of the segment which contain the
following:

Number of bytes Contents
2 bytes Offset of the first routine”s entry from
the beginning of the jump table
2 bytes Number of entries for this segment

As described above, segment @ tells where the beginning of the jump
table is located. ’

SPECIFYING SEGMENTS IN YOUR SOURCE FILE

*%% This section will be moved into the next version of the manual
entitled "Putting Together a Macintosh Application"”. ***

You specify the beginning of a segment in your application”s source
file as follows:

{$S segname}

where segname is the segment name, a sequence of up to eight
characters. Normally you should give the main segment a blank name.

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT .P

SPECIFYING SEGMENTS IN YOUR SOURCE FILE 11

For example, you might structure your program as follows:
PROGRAM Shell;

{ The USES statement and your LABEL, CONST, and VAR declarations
will be here. }

{$S Segl}

{ The procedures and functions in Segl will be here. }
{$S Seg2}

{ The procedures and functions in Seg2 will be here. }
{ss }

BEGIN

{ The main program will be here. }

END.

You can specify the same segment name more than once; the routines will
just be accumulated into that segment. To avoid problems when moving
routines around in the source file, some programmers follow the
practice of putting a segment name specification before every routine.

(eye)
Uppercase and lowercase letters ARE distinguished in
segment names. For example, “"Segl" and "SEGL" are not
equivalent names.

If you don"t specify a segment name before the first routine in your
file, the blank segment name will be assumed there.

In assembly language, you specify the beginning of a segment with the
following directive:

.SEG “segname”

(eye)
This requires version 12.2 of the Lisa Monitor.

You can also specify what segment the routines in a particular file
should be in by using the ChangeSeg program. For example, suppose you
want to give your main segment a nonblank name (say, "SegMain"); you
can“t do this without using ChangeSeg, because the Linker puts the
intrinsic Pascal routines in the blank-named segment, and they must be
in the same segment as your main program. You can use ChangeSeg as
shown below to tell the Linker to put the intrinsic Pascal routines,
which are in Obj:MacPasLib, in the segment named SegMain.

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.P

12 Segment Loader Programmer”s Guide

Prompt Response

Monitor command line X (for X(ecute}
What file ? ChangeSeg <ret>
File to change: Obj:MacPasLib <ret>
Map all Names ? (Y/N) Y {for Yes}

New Seg name ? SegMain <ret>

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.P

SUMMARY OF THE SEGMENT LOADER 13

SUMMARY OF THE SEGMENT LOADER

PROCEDURE UnloadSeg (routineAddr: Ptr);

PROCEDURE GetAppParms (VAR apName: Str255; VAR apRefNum: INTEGER;
VAR apParam: Handle);

Chain {register-based}

Input: AP points to application”s file name pointer followed by
a word telling which sound and video buffers to use.

Output: The application parameters for standard input and output.

PROCEDURE ExitToShell;

Advanced Routines

Launch {register-based}

Input: AP points to application”s file name pointer followed by
a word telling which sound and video buffers to use.

Output: The application parameters—--standard input and output
and the Finder information handle.

PROCEDURE LoadSeg (segID: INTEGER);

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT. S

14 Segment Loader Programmer”s Guide

GLOSSARY

application parameters: Information stored in 32 bytes of memory just
above the application globals when an application is started up.

jump table: A table that contains one entry for every routine in an

application and is the means by which the loading and unloading of
segments is implemented.

main segment: The segment containing the main program.
segment: One of several parts into which the code of an application

may be divided. Not all segments need to be in memory at the same
time.

6/24/83 Rose CONFIDENTIAL /SEGMENT/SEGMENT .G

9-March=-83
LAK

The 0S Event Manager

The Event Manager core routines manipulate events on the system
event queue. These consist of functions such as adding and retrieving events
from the system event queue, polling for available events, and removing
events from the queue. The system queue 1is initialized to contain 30 22-byte
elements.

(ToolEvents contain the higher-level ToolBox event handling calls EventAvail
and GetNextEvent: these will be documented separately with other ToolBox
documentation, although some ToolEvents-defined events are briefly covered
here. ToolEvents makes calls to OSEventAvail and GetOSEvent, adding Activate
and Update events, and supports journaling. Most application programs will
just make calls to ToolEvents.)

Four routines are associated with the event manager: PostEvent, OSEventAvail,
GetOSEvent, and FlushEvents. PostEvent may be called from an interrupt

or completion routine; all other routines in the event manager must be called
from the main thread of execution. Additionally, the system event mask may
be read and set via the 0S routines GetSysParam and SetSysParam.

The Event Manager manages its own private buffer to get storage for the event
queueing elements. It does this because PostEvent runs at interrupt level and
thus cannot call the standard storage allocater.

Events

The Macintosh operating system uses the metaphor of an "event™ to report

to user programs the occurance of keyboard keypresses, mouse button state
changes, and other relatively slow and irregular things which the system

detects and the user program is interested in. Faster input/output, such
as receipt of a character on one of the serial port , is handled via the

"1/0 driver” model in the I/0 and File subsystems.

Event Mask, Event Number

Events are posted and selected subject to event masks; an event mask is a word-
long bitmap of all possible events: a 1 in the bit position of an event enables
that event. Possible events by event number, bit position in event mask,

and name are:

0 $0001 Null Event

1 $0002 Mouse button dowm
2 $0004 Mouse button up

3 $0008 Key dowmn

4 $0010 Key up

5 $0020 Auto=key

6 $0040 Update event

7 $0080 Disk Inserted

8 $0100 Activate/Deactivate event

9 $0200 Abort event

10 $0400 Network event

11 $0800 I0 Driver event

12 $1000 application defined
13 $2000 application defined
14 $4000 application defined
15 $8000 application defined

Event Queue Element, Event Record

The basic data structure for events is a 22-byte buffer called an EVENT QUEUE
ELEMENT, in which events are buffered by the Event Manager. Events are
communicated to users via EVENT RECORDS, which are structured like event queue
elements, minus the six~-byte queue link and type fields. The SYSTEM EVENT
BUFFER has room enough for 30 event queue elements.

Event Queue Element:

(0) Queue link to next element, zero for last element (32-bit)
(4) Queue type field, set to $0004 (16-bit)
(6) Event Record (l6-byte)
Event Record:
(0) Event Number (16-bit)
(2) Event~defined message (32-bit)
(6) TICKS value when event occurred (32-bit) (TICKS is a 32-bit
variable which is incremented every 1/60 second)
(10) Mouse position when event occurred (32-bit)
(14) Meta-key flags (8-bit) as follows (bit=1 when key is down):

bit 7=4: undefined
3: option key
- 23 alpha=lock key
® 1: shift key
2% 0: command
(15) Mouse button state (8-bit):
bit 7: down=0,up=l
6-0: undefined (toolevents uses bits 0-1 to distinguish
activate from deactivate, and sys-appl change).

Event-defined messages are as follows (including ToolEvents-defined events):

Null Event none (0)

Mouse button down none (0)

Mouse button up none (0)

Key down byteO=bytel=0,byte2=raw keycode,byte3d=ASCII code
Key up byteO=bytel=0,byte2=raw keycode,byte3=ASCII code
Auto=key byteO=bytel=0,byte2=raw keycode,byte3=ASCII code
Disk Inserted drive number: 1 internal, 2 external

Update event: 32-bit windowPtr of window to be updated
Activate/Deactivate 32-bit windowPtr

Events are generally posted as they occur and are self-explanatory;

MACINTOSH USER EDUCATION

The File Manager: A Programmer's Guide /0S/FS

See Also: The Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
Inside Macintosh: A Road Map
Macintosh Packages: A Programmer's Guide
The Structure of a Macintosh Application
Programming Macintosh Applications in Assembly Language

Modification History: First Draft (ROM 7) Bradley Hacker 5/21/84

ABSTRACT

This manual describes the File Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and files.

2 File Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual

3 About the File Manager

4 Volumes

5 Accessing Volumes

6 Files

9 Accessing Files

19 File Information Used by the Finder
11 Using the File Manager

15 High-Level File Manager Routines’
16 Accessing Volumes

18 Changing File Contents

22 Changing Information About Files
24 Low-Level File Manager Routines

25 Routine Parameters

27 I1/0 Parameters

29 File Information Parameters

29 Volume Information Parameters
39 Routine Descriptions

31 Initializing the File I/0 Queue
31 Accessing Volumes

37 Changing File Contents

46 Changing Information About Files
52 Data Organization on Volumes

53 Volume Information

55 Volume Allocation Block Map

55 File Directory

56 File Tags on Volumes

57 Data Structures in Memory

58 The File 1/0 Queue

58 Volume Control Blocks

60 File Control Blocks

62 File Tags in Memory

62 The Drive Queue

63 Using an External File System

65 Appendix

67 Summary of the File Manager

78 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the File Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and files. *%** Eventually it will become part of
the comprehensive Inside Macintosh manual. #*** The File Manager allows
you to create and access any number of files containing whatever
information you choose.

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal. You should also be familiar with the
following:

- the basic concepts behind the Macintosh Operating System's Memory
Manager

- devices and device drivers, as described in the Inside Macintosh
Road Map

- This manual is intended to serve the needs of both Pascal and assembly-
language programmers. Information of interest to assembly-language
programmers only is isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins with an introduction to the File Manager and what you
can do with it. It then discusses some basic concepts behind the File
Manager: what files and volumes are and how they're accessed.

A section on using the File Manager introduces its routines and tells
how they fit into the flow of your application. This is followed by
sections explaining the File Manager's simplest, "high-level" Pascal
routines and then its more complex, "low-level' Pascal and assembly-
language routines. Both sections give detailed descriptions of all the
procedures and functions, their parameters, calling protocol, effects,
side effects, and so on.

Following these descriptions are sections that won't interest all
readers. The data structures that the File Manager uses to store
information in memory and on disks are described, and special
information is provided for programmers who want to write their own
file system.

Finally, there's a summary of the File Manager, for quick reference,
followed by a glossary of terms used in this manual.

ABOUT THE FILE MANAGER

The File Manager is the part of the Operating System that handles
communication between an application and files on block devices such as
disk drives. Files are a principal means by which data is stored and
transmitted on the Macintosh. A file is a named, ordered sequence of

5/21/84 Hacker /OS/FS.1

4 File Manager Programmer's Guide

bytes. The File Manager contains routines used to read and write to
files.

Volumes

A volume is a piece of storage medium, such as a disk, formatted to
contain files. A volume can be an entire disk or only part of a disk.
Currently, the 3 1/2-inch Macintosh disks are one volume.

(note)
Specialized memory devices other than disks can also
contain volumes, but the information in this manual
applies only to volumes on diskse.

You identify a volume by its volume name, which consists of any
sequence of 1 to 27 printing characters. Volume names must always be
followed by a colon (:) to distinguish them from other names. You can
use uppercase and lowercase letters when naming volumes, but the File
Manager ignores case when comparing names (it doesn't ignore
diacritical marks).

(note)
The colon (:) after a volume name should only be used
when calling File Manager routines; it should never be
seen by the user.

A volume contains descriptive information about itself, including its
name and a file directory listing information about files contained on
the volume; it also contains files. The files are contained in
allocation blocks, which are areas of volume space occupying multiples
of 512 bytes.

A volume can be mounted or unmounted. A volume becomes mounted when
it's in a disk drive and the File Manager reads descriptive information
about the volume into memory. Once mounted, a volume may remain in a
drive or be ejected. Only mounted volumes are known to the File
Manager, and an application can access information on mounted volumes
only. A volume becomes unmounted when the File Manager releases the
memory used to store the descriptive information. Your application
should unmount a volume when it's finished with the volume, or when it
needs the memory occupied by the volume.

The File Manager assigns each mounted volume a volume reference number
that you can use instead of its volume name to refer to it. Every
mounted volume is also assigned a volume buffer, which is temporary
storage space on the heap used when reading and writing information on
the volume. The number of volumes that may be mounted at any time is
limited only by the number of drives attached and available memory.

A mounted volume can be on-line or off-line. A mounted volume is
on-line as long as the volume buffer and all the descriptive
information read from the volume when it was mounted remain in memory
(about 1K to 1.5K bytes); it becomes off-line when all but 94 bytes of

5/21/84 Hacker /OS/FS.1

ABOUT THE FILE MANAGER 5

descriptive information are released. You can access information on
on-line volumes immediately, but off-line volumes must be placed
on-line before their information can be accessed. An application
should place a volume off-line whenever it needs most of the memory the
volume occupies. When an application ejects a volume from a drive, the
File Manager automatically places the volume off-line.

To prevent unauthorized writing to a volume, volumes can be locked.
Locking a volume involves either setting a software flag on the volume
or changing some part of the volume physically (for example, sliding a
tab from one position to another on a disk). Locking a volume ensures
that none of the data on the volume can be changed.

Accessing Volumes

You can access a mounted volume via its volume name or volume reference
number. On-line volumes in disk drives can also be accessed via the
drive number of the drive on which the volume is mounted (the internal
drive is number 1, the external drive is number 2, and any additional
drives connected via a serial port will have larger numbers). When
accessing a mounted volume, you should always use the volume name or
volume reference number, rather than a drive number, because the volume
may have been ejected or placed off-line. Whenever possible, use the
volume reference number (to avoid confusion between volumes with the
same name).

One volume is always the default volume. Whenever you call a routine

to access a volume but don't specify which volume, the default volume

is accessed. Initially, the volume used to start up the system is the
default volume, but an application can designate any mounted volume as
the default volume.

Whenever the File Manager needs to access a mounted volume that's been
ejected from its drive, the dialog box shown in Figure 1 is displayed,
and the File Manager waits until the user inserts the volume named
volName into a drive.

,‘.5.4 Please insert the disk:

voiName

T
|
!
|

Figure 1. Disk-Switch Dialog

5/21/84 Hacker /0S/FS.1

6 File Manager Programmer's Guide

Files

A file is a finite sequence of numbered bytes. Any byte or group of
bytes in the sequence can be accessed individually. A file is
identified by its file name and version number. A file name consists
of any sequence of 1 to 255 printing characters, excluding colons (:).
You can use uppercase and lowercase letters when naming volumes, but
the File Manager ignores case when comparing names (it doesn't ignore
diacritical marks). The version number is any number from ¢ to 255,
and is used by the File Manager to distinguish between different files
with the same name. A byte within a file is identified by its position
within the ordered sequence.

(warning)
Your application should constrain file names to fewer
than 64 characters, because the Finder will generate an
error if given a longer name. You should always assign
files a version number of @, because the Resource Manager
and Segment Loader won't operate on files with nonzero
file numbers, the Finder ignores version numbers, and the
Standard File Package clears version numbers.

There are two parts or forks to a file: the data fork and the resource
fork. Normally the resource fork of an application file contains the
resources used by the application such as menus, fonts, and icons, and
also the application code itself. The data fork can contain anything
an application wants to store there. Information stored in resource
forks should always be accessed via the Resource Manager. Information
in data forks can only be accessed via the File Manager. For
simplicity, "file" will be used instead of "data fork'" in this manual.

A file can contain anywhere from @ to 16,777,216 bytes (16 megabytes).
Each byte is numbered: the first byte is byte @#. You can read bytes
from and write bytes to a file either singly or in sequences of
unlimited length. Each read or write operation can start anywhere in
the file, regardless of where the last operation began or ended.
Figure 2 shows the structure of a file.

current byte

. l
ie LI] lTx ITI ENE

previous byte next byte

Figure 2. A File

A file's maximum size is defined by its physical end-of-file, which is
1 greater than the number of the last byte in its last allocation block
(Figure 3). The physical end-of-file is equivalent to the maximum

5/21/84 Hacker /0S/FS.1

ABOUT THE FILE MANAGER 7

number of bytes the file can contain. A file's actual size is defined
by its logical end-of-file, which is 1 greater than the number of the
last byte in the file. The logical end-of-file is equivalent to the
actual number of bytes in the file, since the first byte is byte number
@. The physical end-of-file is always greater than the logical
end-of~-file. For example, an empty file (one with @ bytes) in a
1K-byte allocation block has a logical end-of-file of @ and a physical
end-of-file of 1@24. A file with 5@ bytes has a logical end-of-file of
5@ and a physical end-of-file of 1¢24.

logical physical
mark end-of-file end-of-file

- L L

IENEBBRENBRCENEN

byte 1024
Figure 3. End-of-File and Mark

The current position marker, or mark, is the number of the next byte
that will be read or written. The value of the mark can't exceed the
value of the logical end~of-file. The mark automatically moves forward
one byte for every byte read from or written to the file. If, during a
write operation, the mark meets the logical end-of-file, both are moved
forward one position for every additional byte written to the file.
Figure 4 shows the movement of the mark and logical end-of-file.

5/21/84 Hacker /0S/FS.1

8 File Manager Programmer's Guide

end-of-file

HEEEEE

)

mark

Beginning position

end-cof-file

HEREEE

mark

After reading two bytes

end-of-file

mark

3

ENEEEEN

After writing two bytes

Figure 4. Movement of Logical End-of-File and Mark

If, during a write operation, the mark must move past the physical
end-of-file, another allocation block is added to the file--the
physical end-of-file is placed one byte beyond the end of the new
allocation block, and the mark and logical end-of-file are placed at
the first byte of the new allocation block.

An application can move the logical end-of-file to anywhere- from the
beginning of the file to the physical end-of-file (the mark is adjusted
accordingly). If the logical end-of-file is moved to a position more
than one allocation block short of the current physical end-of-file,
the unneeded allocation block will be deleted from the file. The mark
can be placed anywhere from the first byte in the file to the logical
end-of-file. '

5/21/84 Hacker /0S/FS.1I

ABOUT THE FILE MANAGER 9

Accessing Files

A file can be open or closed. An application can only perform certain
operations, such as reading and writing, on open files; other
operations, such as deleting, can only be performed on closed files.

To open a file, you must identify the file and the volume containing
it. When a file is opened, the File Manager creates an access path, a
description of the route to be followed when accessing the file. The
access path specifies the volume on which the file is located (by
volume reference number, drive number, or volume name) and the location
of the file on the volume. Every access path is assigned a unique path
reference number used to refer to it. You should always refer to a
file via its path reference number, so that files with the same name
aren't confused with one another.

A file can have one access path open for writing or for both reading
and writing, and one or more access paths for reading only; there

* cannot be more than one access path that writes to a file. Each access
path is separate from all other access paths to the file. A maximum of
12 access paths can be open at one time. Each access path can move its
own mark and read at the position it indicates. All access paths to
the same file share common logical and physical end-of-file markers.

The File Manager reads descriptive information about a newly opened
file from its volume and stores it in memory. For example, each file
has open permission information, which indicates whether data can only
be read from it, or both read from and written to it. Each access path
contains read/write permission information that specifies whether data
is allowed to be read from the file, written to the file, both read and
written, or whatever the file's open permission allows. If an
application wants to write data to a file, both types of permission
information must allow writing; if either type allows reading only,
then no data can be written.

When an application requests that data be read from a file, the File
Manager reads the data from the file and transfers it to the
application's data buffer. Any part of the data that can be
transferred in entire 512-byte blocks is transferred directly. Any
part of the data composed of fewer than 512 bytes is also read from the
file in one 512-byte block, but placed in temporary storage space in
memory. Then, only the bytes containing the requested data-.are
transferred to the application.

When an application writes data to a file, the File Manager transfers
the data from the application's data buffer and writes it to the file.
Any part of the data that can be transferred in entire 512-byte blocks
is written directly. Any part of the data composed of fewer than 512
bytes is placed in temporary storage space in memory until 512 bytes
have accumulated; then the entire block is written all at once.

5/21/84 Hacker /OS/FS.I

10 File Manager Programmer's Guide

Normally the temporary space in memory used for all reading and writing
is the volume buffer, but an application can specify that an access
path buffer be used instead for a particular access path (Figure 5).

- TN
H access path buffer)(————)
tile "A"
application's
volume buffer —_——
deta buffer J

file "B"

(__-7‘(access path butter)Q———QK___/
\. 7

Figure 5. Buffers For Transferring Data

(warning)
You must lock every access path buffer you use, so its
location doesn't change while the file is open.

Your application can lock a file to prevent unauthorized writing to it.
Locking a file ensures that none of the data in it can be changed ***
Currently, the Finder won't let you rename or delete a locked file, but
it will let you change the data the file contains ***,

(note)
Advanced programmers: The File Manager can also read a
continuous stream of characters or a line of characters.
In the first case, you ask the File Manager to read a
specific number of bytes: when that many have been read
or when the mark has reached the logical end-of-file, the
read operation terminates. In the second case, called
newline mode, the read will terminate when either of the
above conditions is fulfilled or when a specified
character, the newline character, is read. The newline
character is usually Return (ASCII code $@D), but can be
any character whose ASCII code is between $@@ and SFF,
inclusive. Information about newline mode is associated
with each access path to a file, and can differ from one
access path to another.

FILE INFORMATION USED BY THE FINDER

A file directory on a volume lists information about all the files on
the volume. The information used by the Finder is contained in a data
structure of type Flnfo:

5/21/84 Hacker /OS/FS.I

FILE INFORMATION USED BY THE FINDER 11

TYPE FInfo = RECORD
fdType: 0SType; {type of file}
fdCreator: OSType; {file's creator}
fdFlags: INTEGER; {flags}
fdLocation: Point; {file's location}
fdFldr: INTEGER {file's window}
END;

Normally an application need only set the file type and creator when a
file is created, and the Finder will manipulate the other fields.
(File type and creator are discussed in The Structure of a Macintosh
Application.) Advanced programmers may be interested in changing the
contents of the other fields as well.

FdFlags indicates whether the file's icon is invisible, whether the
file has a bundle, and other characteristics used internally by the
Finder:

Bit Meaning if set
5 File has a bundle
6 File's icon is invisible

Masks for these two bits are available as predefined constants:

CONST fHasBundle = 32; {set if file has a bundle}
flnvisible 64; {set if file's icon is invisible}

When you first install an application, you'll need to set its '"bundle
bit", as described in The Structure of a Macintosh Applicatiom.
Whenever you create a file with a bundle, you'll need to set its bundle
bit.

The next two fields indicate where the file's icon will appear if the
icon is visible. FdLocation contains the location of the file's icon
in its window, given in the local coordinate system of the window.
FdFldr indicates the window in which the file's icon will appear, and
may contain one of the following predefined constants:

CONST fTrash = =3; {file is in trash window}
fDesktop = -2; {file is on desktop}
fDisk @; {file is in disk window}

If fdFldr contains a positive number, the file's icon will appear in a
folder; the numbers that identify folders are assigned by the Finder.
Advanced programmers can get the folder number of an existing file, and
place additional files in that same folder.

USING THE FILE MANAGER

This section discusses how the File Manager routines fit into the
general flow of an application program and gives an idea of what
routines you'll need to use. The routines themselives are deocribed in

5/21/84 Hacker /0S/FS.U

12 File Manager Programmer's Guide

detail in the next two sections.

You can call File Manager routines via three different methods:
high-level Pascal calls, low-level Pascal calls, and assembly language.
The high-level Pascal calls are designed for Pascal programmers
interested in using the File Manager in a simple manner; they provide
adequate file 1/0 and don't require much special knowledge to use. The
low-level Pascal and assembly-language calls are designed for advanced
Pascal programmers and assembly-language programmers interested in
using the File Manager to its fullest capacity; they require some
special knowledge to be used most effectively.

Information for all programmers follows here. The next two sections
contain special information for high-level Pascal programmers and for
low~level Pascal and assembly-language programmers.

(note)
The names used to refer to routines here are actually the
assembly-language macro names for the low-level routines,
but the Pascal routine names are very similar.

The File Manager is automatically initialized each time the system is
started up.

To create a new, empty file, call Create. Create allows you to set
some of the information stored on the volume about the file.

To open a file, call Open. The File Manager creates an access path and
returns a path reference number that you'll use every time you want to
refer to it. Before you open a file, you may want to call the Standard
File Package, which presents the standard interface through which the
user can specify the file to be opened. The Standard File Package will
return the name of the file, the volume reference number of the volume
containing the file, and additional information. (If the user inserts
an unmounted volume into a drive, the Standard File Package will
automatically call the Disk Initialization Package to attempt to mount
it.)

After opening a file, you can transfer data from it to an application's
data buffer with Read, and send data from an application's data buffer
to the file with Write. Read and Write allow you to specify a byte
position within the data buffer, a number of bytes to transfer, and the
location within the file. You can't use Write on a file whose open
permission only allows reading, or on a file on a locked volume.

Once you've completed whatever reading and writing you want to do, call
Close to close the file. Close writes the contents of the file's
access path buffer to the volume and deletes the access path. You can
remove a closed file (both forks) from a volume by calling Delete.

To protect against power loss or unexpected disk ejection, you should
periodically call FlushVol (probably after each time you close a file),
which writes the contents of the volume buffer and all access path
buffers (if any) to the volume and updates the descriptive information

5/21/84 Hacker /O0S/FS.U

USING THE FILE MANAGER 13

contained on the volume.

Whenever your application is finished with a disk, or the user chooses
Eject from a menu, call Eject. Eject calls FlushVol, places the volume
off~-line, and then physically ejects the volume from its drive.

The preceding paragraphs covered the simplest File Manager routines:
Open, Read, Write, Close, FlushVol, Eject, and Create. The remainder
of this section describes the less commonly used routines, some of
which are available only to advanced programmers. Skip the remainder
of this section if the preceding paragraphs have provided you with all
the information you want to know about using the File Manager.

When the Toolbox Event Manager function GetNextEvent receives a disk-
inserted event, it calls the Desk Manager function SystemEvent.
SystemEvent calls the File Manager function MountVol, which attempts to
mount the volume on the disk. GetNextEvent then returns the disk-
inserted event: the low-order word of the event message contains the
number of the drive, and the high-order word contains the result code
of the attempted mounting. If the result code indicates that an error
occurred, you'll need to call the Disk Initialization Package to allow
the user to initialize or eject the volume.

(note)
Applications that rely on the Operating System Event
Manager function GetOSEvent to learn about events (and
don't call GetNextEvent) must explicitly call MountVol to
mount volumes.

After a volume has been mounted, your application can call GetVolinfo,
which will return the name of the volume, the amount of unused space on
the volume, and a volume reference number that you can use every time
you refer to that volume.

To minimize the amount of memory used by mounted volumes, an
application can unmount or place off-line any volumes that aren't
currently being used. To unmount a volume, call UnmountVol, which
flushes a volume (by calling FlushVol) and releases all of the memory
used for it (releasing about 1 to 1.5K bytes). To place a volume
off-line, call OffLine, which flushes a volume (by calling FlushVol)
and releases all of the memory used for it except for 94 bytes of
descriptive information about the volume. Off-line volumes are placed
on-line by the File Manager as needed, but your application must
remount any unmounted volumes it wants to access. The File Manager
itself may place volumes off-line during its normal operation.

If you would like all File Manager calls to apply to one volume, you
can specify that volume as the default. You can use SetVol to set the
default volume to any mounted volume, and GetVol to learn the name and
volume reference number of the default volume.

Normally, volume initialization and naming is handled by the Standard

File Package, which calls the Disk Initialization Package. If you want
to initialize a volume explicitly or erase all files from a volume, you

5/21/84 Hacker /0S/FS.D

14 File Manager Programmer's Guide

can call the Disk Initialization Package directly. When you want to
change the name of a volume, call the File Manager function Rename.

Applications normally will use the Resource Manager to open resource
forks and change the information contained within, but programmers
writing unusual applications (such as a disk-copying utility) might
want to use the File Manager to open resource forks. This is done by
calling OpenRF. As with Open, the File Manager creates an access path
and returns a path reference number that you'll use every time you want
to refer to this resource fork.

As an alternative to specifying byte positions within a file with Read
and Write, you can specify the byte position of the mark by calling
SetFPos. GetFPos returns the byte position of the mark.

Whenever a disk has been reconstructed in an attempt to salvage lost
files (because its directory or other file-access information has been
destroyed), the logical end-of-file of each file will probably be equal
to each physical end-of-file, regardless of where the actual logical
end-of-file is. The first time an application attempts to read from a
file on a reconstructed volume, it will blindly pass the correct
logical end-of-file and read misinformation until it reaches the new,
incorrect logical end-of-file. To prevent this from occurring, an
application should always maintain an independent record of the logical
end-of-file of each file it uses. To determine the File Manager's
conception of the length of a file, or find out how many bytes have yet
to be read from it, call GetEOF, which returns the logical end-of-file.
You can change the length of a file by calling SetEOQF.

Allocation blocks are automatically added to and deleted from a file as
necessary. I1f this happens to a number of files alternately, each of
the files will be contained in allocation blocks scattered throughout
the volume, which increases the time required to access those files.

To prevent such fragmentation of files, you can allocate a number of
contiguous allocation blocks to an open file by calling Allocate.

Instead of calling FlushVol, an unusual application might call
FlushFile. FlushFile forces the contents of a file's volume buffer and
access path buffer (if any) to be written to its volume. FlushFile
doesn't update the descriptive information contained on the volume, so
the volume information won't be correct until you call FlushVol.

To get information about a file (such as its name and creation date)
stored on a volume, call GetFileInfo. You can change this information
by calling SetFileInfo. Changing the name or version number of a file
is accomplished by calling Rename or SetFilType, respectively; they
will have a similar effect, since both the file name and version number
are needed to identify a file. You can lock or unlock a file by
calling SetFillock or RstFilLock, respectively.

You can't use Write, Allocate, or SetEOF on a locked file, a file whose

open permission only allows reading, or a file on a locked volume. You
can't use Rename or SetFilType on a file on a locked volume.

5/21/84 Hacker /0S/FS.P

HIGH-LEVEL FILE MANAGER ROUTINES 15

HIGH-LEVEL FILE MANAGER ROUTINES

This section describes all the high-level Pascal routines of the File
Manager. Assembly-language programmers cannot call these routines.
For information on calling the low-level Pascal and assembly-language
routines, see the next section.

When accessing a volume, you must identify it by its volume name, its
volume reference number, or the drive number of its drive--or allow the
default volume to be accessed. The parameter names used in identifying
a volume are volName, vRefNum, and drvNum. VRefNum and drvNum are both
integers. VolName is a pointer, of type StringPtr, to a volume name.

The File Manager determines which volume to access by using one of the
following:

1. VolName. (If volName points to a zero-length name, an error is
returned.)

2. 1f volName is NIL or points to an improper volume name, then
vRefNum or drvNum (only one is given per routine).

3. 1If vRefNum or drvNum is zero, the default volume. (If there isn't
a default volume, an error is returned.)

(warning)
Before you pass a parameter of type StringPtr to a File
Manager routine such as GetVol, be sure that memory has
been allocated for the variable. For example, the

following statements will ensure that memory is allocated
for the variable myStr:

VAR myStr: Str255;

BEGIN
result := GetVol(@myStr, myRefNum);

END;

When accessing a closed file on a volume, you must identify the volume
by the method given above, and identify the file by its name in the
fileName parameter. (The high-level File Manager routines will work
only with files having a version number of @#.) FileName can contain
either the file name alone or the file name prefixed by a volume name.

(note)
Although fileName can include both the volume name and

the file name, applications shouldn't encourage users to
prefix a file name with a volume name.

You cannot specify an access path buffer when calling high-level Pascal

routines. All access paths open on a volume will share the volume
buffer, causing a slight increase in the amount of time required to

5/21/84 Hacker /0S/FS.P

16 File Manager Programmer's Guide

access files.

All File Manager routines return a result code of type OSErr as their
function result. Each routine description lists all of the applicable
result codes, along with a short description of what the result code
means. Lengthier explanations of all the result codes can be found in
the summary at the end of this manual.

Accessing Volumes

FUNCTION GetVInfo (drvNum: INTEGER; volName: StringPtr; VAR vRefNum:
INTEGER; VAR freeBytes: LongInt) : OSErr;

GetVInfo returns the name, reference number, and available space (in
bytes), in volName, vRefNum, and freeBytes, for the volume in the
specified drive.

Result codes noErr No error
nsvErr No default volume
paramErr Bad drive number

FUNCTION GetVol (volName: StringPtr; VAR vRefNum: INTEGER) : OSErr;

GetVol returns the name of the default volume in volName and its volume
reference number in vRefNum.

Result codes noErr No error
nsvErr No default volume

FUNCTION SetVol (volName: StringPtr; vRefNum: INTEGER) : OSErr;

SetVol sets the default volume to the mounted volume specified by
volName or vRefNum.

Result codes noErr No error
bdNamErr Bad volume name
nsvErr No such volume
paramErr No default volume

5/21/84 Hacker /0S/FS.P

HIGH~-LEVEL FILE MANAGER ROUTINES 17

FUNCTION FlushVol (volName: StringPtr; vRefNum: INTEGER) : OSErr;

On the volume specified by volName or vRefNum, FlushVol writes the
contents of the associated volume buffer and descriptive information
about the volume (if they've changed since the last time FlushVol was
called).

Result codes noErr No error
bdNamErr Bad volume name
extFSErr External file system
ioErr Disk I/0 error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

FUNCTION UnmountVol (volName: StringPtr; vRefNum: INTEGER) : OSErr;

UnmountVol unmounts the volume specified by volName or vRefNum, by
calling FlushVol to flush the volume buffer, closing all open files on
the volume, and releasing the memory used for the volume.

(warning)
Don't unmount the startup volume.

Result codes noErr No error
bdNamErr Bad volume name
extFSErr External file system
ioErr Disk I/0 error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

FUNCTION Eject (volName: StringPtr; vRefNum: INTEGER) : OSErr;

Eject calls FlushVol to flush the volume specified by volName or
vRefNum, places the volume offline, and then ejects the volume.

Result codes noErr No error
bdNamErr Bad volume name
extFSErr External file system
ioErr Disk 1/0 error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

5/21/84 Hacker /0S/FS.P

18 File Manager Programmer's Guide

Changing File Contents

FUNCTION Create (fileName: Str255; vRefNum: INTEGER; creator: OSType;
fileType: OSType) : OSErr;

Create creates a new file with the specified name, file type, and

creator, on the specified volume. (File type and creator are discussed
in The Structure of a Macintosh Application.) The new file is unlocked
and empty. Its modification and creation dates are set to the time of

the system clock.

Result codes noErr No error

bdNamErr Bad file name
dupFNErr Duplicate file name
dirFulErr Directory full
extFSErr External file system
ioErr Disk I/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION FSOpen (fileName: Str255; vRefNum: INTEGER; VAR refNum:

INTEGER) : OSErr;

FSOpen creates an access path to the file having the name fileName on
the specified volume. A path reference number is returned in refNum.
The access path's read/write permission is set to whatever the file's

open permission allows.

Result codes noErr No error
bdNamErr Bad file name
extFSErr. External file system
fnfErr File not found
ioErr Disk I/0 error
mFulErr Memory full
nsvErr No such volume
opWrErr File already open for writing
tmfoErr Too many files open

5/21/84 Hacker

/0S/FS.P

HIGH-LEVEL FILE MANAGER ROUTINES 19

FUNCTION FSRead (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr) :
OSErr;

FSRead attempts to read the number of bytes specified by the count
parameter from the open file whose access path is specified by refNum,
and transfer them to the data buffer pointed to by buffPtr. The read
operation begins at the mark, so you might want to precede this with a
call to SetFPos. If you try to read past the logical end-of-file,
FSRead moves the mark to the end-of-file and returns eofErr as its
function result. After the read is completed, the number of bytes
actually read is returned in the count parameter.

Result codes noErr No error
eofErr End-of-file
extFSErr External file system
fnOpnErr File not open
ioErr Disk I1/0 error
paramErr Negative count
rfNumErr Bad reference number

FUNCTION FSWrite (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr) :
OSErr;

FSWrite takes the number of bytes specified by the count parameter from
the buffer pointed to by buffPtr and attempts to write them to the open
file whose access path is specified by refNum. The write operation
begins at the mark, so you might want to precede this with a call to
SetFPos. After the write is completed, the number of bytes actually
written is returned in the count parameter.

Result codes noErr No error
dskFulErr Disk full
fLckdErr File locked
fnOpnErr File not open
ioErr Disk I/0 error
paramErr Negative count
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write or open permission

doesn't allow writing

5/21/84 Hacker /0S/FS.P

20 File Manager Programmer's Guide

FUNCTION GetFPos (refNum: INTEGER; VAR filePos: LongInt) : OSErr;

GetFPos returns, in filePos, the mark of the open file whose access
path is specified by refNum.

Result codes noErr No error
extFSErr External file system
fnOpnErr File not open
ioErr Disk 1/0 error
rfNumErr Bad reference number

FUNCTION SetFPos (refNum: INTEGER; posMode: INTEGER; posOff: LonglInt) :
OSErr;

SetFPos sets the mark of the open file whose access path is specified
by refNum, to the position specified by posMode and posOff. PosMode
indicates whether the mark should be set relative to the beginning of
the file, the logical end-of-file, or the mark; it must contain one of
the following predefined constants:

CONST fsAtMark

@; {at current position of mark }
{ (posOff ignored)}

fsFromStart = 1; {offset relative to beginning of file}
fsFromLEOF = 2; {offset relative to logical end-of-file}
fsFromMark = 3; {offset relative to current mark}

PosOff specifies the byte offset (either positive or negative) relative
to posMode where the mark should actually be set. If you try to set
the mark past the logical end-of-file, SetFPos moves the mark to the
end-of-file and returns eofErr as its function result.

Result codes noErr No error
eofErr End-of-file
extFSErr External file system
fnOpnErr File not open
ioErr Disk I/0 error
posErr Tried to position before start
of file
rfNumErr Bad reference number

FUNCTION GetEOF (refNum: INTEGER; VAR logEOF: LongInt) : OSErr;

GetEOF returns, in logEOF, the logical end-of-file of the open file
whose access path is specified by refNum. .

Result codes noErr No error
extFSErr External file system
fnOpnErr File not open
ioErr Disk I/0 error
rfNumErr Bad reference number

5/21/84 Hacker /OS/FS.P

HIGH-LEVEL FILE MANAGER ROUTINES 21

FUNCTION SetEOF (refNum: INTEGER; logEOF: LongInt) : OSErr;

SetEQF sets the logical end-of-file of the open file whose access path
is specified by refNum, to the position specified by logEOF. If you
attempt to set the logical end-of-~file beyond the physical end-of-file,
the physical end-of-file is set to one byte beyond the end of the next
free allocation block; if there isn't enough space on the volume, no
change is made, and SetEOF returns dskFulErr as its function result.

If 1logEOF is @, all space on the volume occupied by the file is
released.

Result codes noErr No error
dskFulErr Disk full
extFSErr External file system
flckdErr File locked ’
fnOpnErr File not open
ioErr Disk 1/0 error
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write or open permission

doesn't allow writin
g

FUNCTION Allocate (refNum: INTEGER; VAR count: LongInt) : OSErr;

Allocate adds the number of bytes specified by the count parameter to
the open file whose access path is specified by refNum, and sets the
physical end-of-file to one byte beyond the last block allocated. The
number of bytes allocated is always rounded up to the nearest multiple
of the allocation block size, and returned in the count parameter. If
there isn't enough empty space on the volume to satisfy the allocation
request, the rest of the space on the volume is allocated, and Allocate
returns dskFulErr as its function result.

Result codes noErr No error
dskFulErr Disk full
flckdErr File locked
fnOpnErr File not open
ioErr Disk I/0 error
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write or open permission

doesn't allow writing

5/21/84 Hacker /0S/FS.P

22 File Manager Programmer's Guide

FUNCTION FSClose (refNum: INTEGER) : OSErr;

FSClose removes the access path specified by refNum, writes the
contents of the volume buffer to the volume, and updates the file's
entry in the file directory.

(note) : ;
Some information stored on the volume won't be correct
until FlushVol is called.

Result codes noErr No error
extFSErr External file system
fnfErr File not found
fnOpnErr File not open
ioErr Disk I/0 error
nsvErr No such volume
rfNumErr Bad reference number

Changing Information About Files

All of the routines describéd in this section affect both forks of the
file, and don't require the file to be open.

FUNCTION GetFInfo (fileName: Str255; vRefNum: INTEGER; VAR fndriInfo:
FInfo) : OSErr;

For the file having the name fileName on the specified volume, GetFInfo
returns information used by the Finder in fndrInfo (see the section
"File Information Used by the Finder").

Result codes noErr No error
bdNamErr Bad file name
extFSErr " External file system
fnfErr File not found
ioErr Disk I/0 error
nsvErr No such volume
paramErr No default volume

FUNCTION SetFInfo (fileName: Str255; vRefNum: INTEGER; fndrlnfo: FInfo)
: OSErr;

For the file having the name fileName on the specified volume, SetFInfo
sets information needed by the Finder to fndrInfo (see the section
"File Information Used by the Finder").

Result codes noErr No error
extFSErr External file system
fLckdErr File locked
fnfErr , File not found
ioErr Disk I/0 error
nsvErr No such volume

5/21/84 Hacker | /O0S/FS.P

vLckdErr
wPrErr

HIGH-LEVEL FILE MANAGER ROUTINES

23

Software volume lock
Hardware volume lock

FUNCTION SetFLock (fileName: Str255; vRefNum: INTEGER) : OSErr;

SetFLock locks the file having the name fileName on the specified
volume. Access paths currently in use aren't affected.

Result codes noErr
extFSErr
fnfErr
ioErr
nsvErr
vLckdErr
wPrErr

No error

External file system
File not found

Disk 1/0 error

No such volume
Software volume lock
Hardware volume lock

FUNCTION RstFLock (fileName: Str255; vRefNum: INTEGER) : OSErr;

RstFLock unlocks the file having the name fileName on the specified
volume. Access paths currently in use aren't affected.

Result codes noErr
extFSErr
fnfErr
io0Err
nsvErr
vLckdErr
wPrErr

No error

External file system
File not found

Disk I/0 error

No such volume
Software volume lock
Hardware volume lock

FUNCTION Rename (oldName: Str255; vRefNum: INTEGER; newName: Str255) :

OSErr;

Given a file name in oldName, Rename changes the name of the file to
newName. Access paths currently in use aren't affected. Given a
volume name in oldName or a volume reference number in vRefNum, Rename
changes the name of the specified volume to newName.

Result codes noErr
bdNamErr
dirFulErr
dupFNErr
extFSErr
fLckdErr
fnfErr
fsRnErr
ioErr
nsvErr
paramErr
vLckdErr
wPrErr

5/21/84 Hacker

No error

Bad file name
Directory full
Duplicate file name
External file system
File locked

File not found
Renaming difficulty
Disk I/0 error

No such volume

No default volume
Software volume lock
Hardware volume lock

/0S/FS.P

24 File Manager Programmer's Guide

FUNCTION FSDelete (fileName: Str255; vRefNum: INTEGER) : OSErr;

FSDelete removes the closed file having the name fileName from the
specified volume.

(note)
This function will delete both forks of the file.

Result codes nokrr No error
bdNamErr Bad file name
extFSErr External file system
fBsyErr File busy
fLckdErr File locked
fnfErr File not found
ioErr Disk I/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

- LOW-LEVEL FILE MANAGER ROUTINES

This section contains special information for programmers using the

low~level Pascal or assembly-language routines of the File Manager, and

describes them in detail. For more information on using assembly
language, see Programming Macintosh Applications in Assembly Language.

You can execute most File Manager routines either synchronously
(meaning that the application must wait until the routine is completed)
or asynchronously (meaning that the application is free to perform
other tasks while the routine is executing). MountVol, UnmountVol,
Eject, and OffLline cannot be executed asynchronously, because they use
the Memory Manager to allocate and deallocate memory.

When an application calls a File Manager routine asynchronously, an 1/0
request is placed in the file 1/0 queue, and control returns to the
calling application--even before the actual 1/0 is completed. Requests
are taken from the queue one at a time (in the same order that they
were entered), and processed. Only one request may be processed at any
given time.

The calling application may specify a completion routine to be executed
as soon as the I/0 operation has been completed.

At any time, you can use the InitQueue procedure to clear all queued
File Manager calls except the current one. InitQueue is especially
useful when an error occurs and you no longer wish queued calls to be
executed.

Routine parameters passed by an application to the File Manager and
returned by the File Manager to an application are contained in a
parameter block, which is memory space in the heap or stack. Most

5/21/84 Hacker /0S/FS.A.1

LOW-LEVEL FILE MANAGER ROUTINES 25

low-level Pascal calls to the File Manager are of the form
PBCallName (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

PBCallName is the name of the routine. ParamBlock points to the
parameter block containing the parameters for the routine. If async is
TRUE, the call will be executed asynchronously; if FALSE, it will be
executed synchronously. Each call returns an integer result code of
type OSErr. Each routine description lists all of the applicable
result codes, along with a short description of what the result code
means. Lengthier explanations of all the result codes can be found in
the summary at the end of this manual.

Assembly-language note: When you call a File Manager routine,
A¥ must point to a parameter block containing the parameters for
the routine. 1If you want the routine to be executed
asynchronously, set bit 1¢ of the routine trap word. You can do
this by supplying the word ASYNC as the second argument to the
routine macro. For example:

_Read paramBlock,ASYNC

You can set or test bit 1§ of a trap word by using the global
constant asynTrpBit.

1f you want a routine to be executed immediately (bypassing the
file I/0 queue), set bit 9 of the routine trap word. This can
be accomplished by supplying the word IMMED as the second
argument to the routine macro. For example:

_Write paramBlock,IMMED
You can set or test bit 9 of a trap word by using the global
constant noQueueBit. You can specify either ASYNC or IMMED, but

not both.

All routines except InitQueue return a result code in D@.

Routine Parameters

There are three different kinds of parameter blocks you'll pass to File
Manager routines. Each kind is used with a particular set of routine
calls: 1I/0 routines, file information routines, and volume information
routines.

The lengthy, variable-length data structure of a parameter block is

given below. The Device Manager and File Manager use this same data
structure, but only the parts relevant to the File Manager are shown

5/21/84 Hacker /OS/FS.A.1

26 File Manager Programmer's Guide

here. Each kind of parameter block contains eight fields of standard
information and nine to 16 fields of additional information:

TYPE ParamBlkType = (ioParam, fileParam, volumeParam, cntrlParam);

ParamBlockRec = RECORD

qlink: QElemPtr; {next queue entry}
qType: INTEGER; {queue type}

ioTrap: INTEGER; {routine trap}
ioCmdAddr: Ptr; {routine address}
ioCompletion: ProcPtr; {completion routine}
ioResult: OSErr; {result code}
ioNamePtr: StringPtr; {volume or file name}
ioVRefNum: INTEGER; {volume reference or }

{ drive number}
CASE ParamBlkType OF

ioParam:

« « « {I/0 routine parameters}
fileParam:

« « « ({file information routine parameters}
volumeParam:

e« +» o {volume information routine parameters}
cntrlParam:

« » o« {Control and Status call parameters}

END;

ParmBlkPtr = “ParamBlockRec;

The first four fields in each parameter block are handled entirely by
the File Manager, and most programmers needn't be concerned with them;
programmers who are interested in them should see the section "Data
Structures in Memory".

IOCompletion contains the address of a completion routine to be
executed at the end of an asynchronous call; it should be NIL for
asynchronous calls with no completion routine, and is automatically set
to NIL for all synchronous calls. For asynchronous calls, ioResult is
positive while the routine is executing, and returns the result code.
Your application can poll ioResult during the asynchronous execution of
a routine to determine when the routine has completed. Completion
routines are executed after ioResult is returned.

IONamePtr points to either a volume name or a file name (which can be
prefixed by a volume name).

(note)
Although ioNamePtr can include both the volume name and
the file name, applications shouldn't encourage users to
prefix a file name with a volume name.

IOVRefNum contains either the reference number of a volume or the drive
number of a drive containing a volume.

5/21/84 Hacker /0S/FS.A.1

LOW-LEVEL FILE MANAGER ROUTINES 27

For routines that access volumes, the File Manager determines which
volume to access by using one of the following:

1. 1IONamePtr, a pointer to the volume name.

2. 1f ioNamePtr is NIL, or points to an improper volume name, then
ioVRefNum. (If ioVRefNum is negative, it's a volume reference
number; if positive, it's a drive number.)

3., If ioVRefNum is @, the default volume. (If there isn't a default
volume, an error is returned.)

For routines that access closed files, the File Manager determines
which file to access by using ioNamePtr, a pointer to the name of the
file (and possibly also of the volume).

- If the string pointed to by ioNamePtr doesn't include the volume
name, the File Manager uses steps 2 and 3 above to determine the
volume.

~ If ioNamePtr is NIL or points to an improper file name, an error
is returned.

The first eight fields are adequate for a few calls, but most of the
File Manager routines require more fields, as described below. The
parameters used with Control and Status calls are described in the
Device Manager manual *** doesn't yet exist **%,

1/0 Parameters

When you call one of the I/0 routines, you'll use these nine additional
fields after the standard 8-field parameter block:

ioParam:
(ioRefNum: INTEGER; {path reference number}
ioVersNum: SignedByte; {version number}
ioPermssn: SignedByte; {read/write permission}

ioMisc: Ptr; {miscellaneous}

ioBuffer: Ptr; {data buffer}

ioReqCount: Longlnt; {requested number of bytes}
ioActCount: LonglInt; {actual number of bytes}

ioPosMode: INTEGER; {newline character and type of }
{ positioning operation} -
ioPosOffset: LongInt); {size of positioning offset}

For routines that access open files, the File Manager determines which
file to access by using the path reference number in ioRefNum. ‘
IOPermssn requests permission to read or write via an access path, and
must contain one of the following predefined constants:

5/21/84 Hacker /OS/FS.A.1

28 File Manager Programmer's Guide

CONST fsCurPerm = @; {whatever is currently allowed}
fsRdPerm = 1; {request to read only
fsWrPerm = 2; {request to write only}
fsRdWrPerm = 3; {request to read and write}

This request is compared with the open permission of the file. If the
open permission doesn't allow I/0 as requested, an error will be
returned.

The content of ioMisc depends on the routine called; it contains either
a pointer to an access path buffer, a new logical end-of-file, a new
version number, or a pointer to a new volume or file name. Since
ioMisc is of type Ptr, while end-of-file is LongInt and version number
is SignedByte, you'll need to perform type conversions to correctly
interpret the value of ioMisc.

IOBuffer points to a data buffer into which data is written by Read
calls and from which data is read by Write calls. IOReqCount specifies
the requested number of bytes to be read, written, or allocated.
I0ActCount contains the number of bytes actually read, written, or
allocated.

10PosMode and ioPosOffset contain positioning information used for
Read, Write, and SetFPos calls. Bits @ and 1| of ioPosMode indicate how
to position the mark, and you can use the following predefined
constants to set or test their value:

CONST fsAtMark

@; {at current position of mark }
{ (ioPosOffset ignored)}

fsFromStart = 1; {offset relative to beginning of file}
fsFromLEOF = 2; {offset relative to logical end-of-file}
fsFromMark = 3; {offset relative to current mark}

IOPosOffset specifies the byte offset (either positive or negative)
relative to ioPosMode where the operation will be performed.

Assembly-language note: 1If bit 6 of ioPosMode is set, the File
Manager will verify that all data read into memory by a Read
call exactly matches the data on the volume (ioErr will be
returned if any of the data doesn't match).

(note)
Advanced programmers: Bit 7 of ioPosMode is the newline
flag--set if read operations should terminate at newline
characters, and clear if reading should terminate at the
end of the access path buffer or volume buffer. The
high-order byte of ioPosMode contains the ASCII code of
the newline character.

5/21/84 Hacker , /O0S/FS.A.1

LOW-LEVEL FILE MANAGER ROUTINES 29

File Information Parameters

When you call the PBGetFileInfo and PBSetFileInfo functions, you'll use
the following 16 additional fields after the standard 8-field parameter
block:

fileParam:
(ioFRefNum: INTEGER; {path reference number}
ioFVersNum: SignedByte; {version number}
fillerl: SignedByte; {not used}

ioFDirIndex: INTEGER; {file number}
ioFlAttrib: SignedByte; {file attributes}
ioFlVersNum: SignedByte; {version number}

ioF1Fndrinfo: FInfo; {information used by the Finder}
ioFlNum: LongInt; {file number}

ioF1StBlk: INTEGER; {first allocation block of data fork}
ioFlLgLen: LongInt; {logical end-of-file of data fork}

ioFlPyLen: LongInt; {physical end-of-file of data fork}
ioF1RStBlk: INTEGER; {first allocation block of resource fork}
ioF1RLgLen: LongInt; {logical end-of-file of resource fork}

ioF1RPyLen: LongInt; {physical end-of-file of resource fork}
ioFlCrDat: LongInt; {date and time of creation}
ioF1MdDat: LongInt); {date and time of last modification}

IOFDirIndex contains the file number, another method of referring to a
file; most programmers needn't be concerned with file numbers, but
those interested can read the section '"Data Organization on Volumes".

Assembly—languégg note: IOFlAttrib contains eight bits of file
attributes: if bit 7 is set, the file is open; if bit @ is set,
the file is locked.

IOF1StBlk and ioF1RStBlk contain @ if the file's data or resource fork
is empty, respectively. The date and time in the ioFlCrDat and
ioF1lMdDat fields are specified in seconds since 12:¢¢ AM, January 1,
19¢4.

Volume Information Parameters

When you call GetVolInfo, you'll use the following 14 additional
fields: o

5/21/84 Hacker /OS/FS.A.1

30 File Manager Programmer's Guide

volumeParam:
(filler2: LongInt; {not used}
ioVolIndex: INTEGER; {volume index}
ioVCrDate: LongInt; {date and time of initialization}
ioVLsBkUp: LongInt; {date and time of last volume backup}
ioVAtrb: INTEGER; {bit 15=1 if volume locked}
ioVNmFls: INTEGER; {number of files in file directory}
ioVDirSt: INTEGER; {first block of file directory}
ioVB1Ln: INTEGER; {number of blocks in file directory}

ioVNmA1Blks: INTEGER; {number of allocation blocks on volume}
ioVA1BlkSiz: LongInt; {number of bytes per allocation block}
ioVClpSiz: LongInt; {number of bytes to allocate}

ioAlBlSt: INTEGER; {first block in volume block map}
ioVNxtFNum: LongInt; {next free file number}
ioVFrBlk: INTEGER); {number of free allocation blocks}

I0VolIndex contains the volume index, another method of referring to a
volume; the first volume mounted has an index of 1, and so on. Most
programmers needn't be concerned with the parameters providing
information about file directories and block maps (such as ioVNmFls),
but interested programmers can read the section '"Data Organization on
Volumes".

Routine Descriptions

This section describes the procedures and functions. Each routine
description includes the low-level Pascal form of the call and the
routine's assembly-language macro. A list of the fields in the
parameter block affected by the call is also given.

Assembly-language note: The field names given in these
descriptions are those of the ParamBlockRec data type; see the
"Summary of the. File Manager" for the equivalent assembly-—
language equates.

The number next to each parameter name indicates the byte offset of the
parameter from the start of the parameter block pointed to by A@; only
assembly-language programmers need be concerned with it. An arrow
drawn next to each parameter name indicates whether it's an input,
output, or input/output parameter:

Arrow Meaning

--> Parameter must be passed to the routine

€— Parameter will be returned by the routine

€©~> Parameter must be passed to and will be returned

by the routine

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 31

Initializing the File 1/0 Queue

PROCEDURE InitQueue;
Trap macro _InitQueue
InitQueue clears all queued File Manager calls except the current one.

There are no parameters or result codes associated with InitQueue.

Accessing Volumes

FUNCTION PBMountVol (paramBlock: ParmBlkPtr) : OSErr;

Trap macro _MountVol
Parameter block
€— 16 ioResult word
€&-> 22 ioVRefNum word
Result codes noErr No error
badMDBErr Master directory block is bad
extFSErr External file system
ioErr Disk 1/0 error ’
mFulErr - Memory full
noMacDskErr Not a Macintosh volume
nsDrvErr No such drive
paramErr Bad drive number
volOnLinErr Volume already on-line

PBMountVol mounts the volume in the drive whose number is ioVRefNum,
and returns a volume reference number in ioVRefNum. If there are no
volumes already mounted, this volume becomes the default volume.
PBMountVol is always executed synchronously.

5/21/84 Hacker /OS/FS.A.2

32

File Manager Programmer's Guide

FUNCTION PBGetVollnfo (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

PBGetVolInfo returns information about the specified volume.

Trag macro

Parameter block

Result codes

_GetVollInfo

12 ioCompletion
16 ioResult

18 ioNamePtr

22 ioVRefNum

28 ioVollndex
39 ioVCrDate

34 ioVLsBkUp

38 ioVAtrb

4¢ ioVNmFls
42 ioVDirSt

44 ioVBlLn

46 ioVNmAlBlks
48 ioVAl1BlkSiz
52 ioVClpSiz
56 i0Al1B1St
58 ioVNxtFNum
62 ioVFrBlk

noErr
nsvErr
paramErr

pointer

word

pointer

word
word
long
long
word
word
word
word
word
long
long
word
long
word

No error
No such volume
No default volume

word
word

word
word

word

If

ioVolIndex is positive, the File Manager attempts to use it to find the
If ioVolIndex is negative, the File Manager uses ioNamePtr and

volume.
ioVRefNum in the standard way to determine which volume.

If ioVolIndex

is @, the File Manager attempts to access the volume by using ioVRefNum
The volume reference number is returned in ioVRefNum, and the
volume name is returned in ioNamePtr (unless ioNamePtr is NIL).

only.

5/21/84 Hacker

/0S/FS.A.2

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: BOOLEAN)

LOW-LEVEL FILE MANAGER ROUTINES 33

Trap macro _GetVol

Parameter block

Result codes

12 ioCompletion pointer

16 ioResult
18 ioNamePtr
22 ioVRe fNum

noErr
nsvErr

word
pointer
word

No error
No default volume

OSErr;

PBGetVol returns the name of the default volume in ioNamePtr and its
volume reference number in ioVRefNum (unless ioNamePtr is NIL).

FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro _

Parameter block
-—>
e__
-—>
-—>

Result codes

SetVol

12 ioCompletion pointer

16 ioResult
18 ioNamePtr
22 ioVRefNum

noErr
bdNamErr
nsvErr
paramErr

word
pointer
word

No error

Bad volume name
No such volume

No default volume

OSErr;

PBSetVol sets the default volume to the mounted volume specified by

ioNamePtr or ioVRefNum.

5/21/84 Hacker

/0S/FS.A.2

34 File Manager Programmer's Guide

FUNCTION PBFlshVol (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trag macro _FlushVol

Parameter block
-—> 12 ioCompletion pointer

€~ 16 ioResult word

-—> 18 ioNamePtr pointer

-—> 22 ioVRefNum word

Result codes noErr No error

bdNamErr Bad volume name
extFSErr External file system
ioErr Disk 1/0 error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

PBFlshVol writes descriptive information, the contents of the
associated volume buffer, and all access path buffers to the volume
specified by ioNamePtr or ioVRefNum, to the volume (if they've changed
since the last time PBFlshVol was called). The volume modification
date is set to the current time.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 35

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr) : OSErr;

Trap macro _UnmountVol

Parameter block

€ 16 ioResult word

--> 18 ioNamePtr pointer

-=> 22 ioVRefNum word

Result codes noErr No error

bdNamErr Bad volume name
extFSErr External file system
ioErr Disk 1/0 error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

PBUnmountVol unmounts the volume specified by ioNamePtr or ioVRefNum,
by calling PBFlshVol to flush the volume, closing all open files on the
volume, and releasing all the memory used for the volume. PBUnmountVol
is always executed synchronously.

(warning)
Don't unmount the startup volume.

FUNCTION PBOfflLine (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _OffLine

Parameter block
-—-> 12 ioCompletion pointer

€ 16 ioResult word

-—-> 18 ioNamePtr pointer

-—-> 22 ioVRefNum word

Result codes noErr No error

bdNamErr Bad volume name
extFSErr External file system
ioErr Disk I/0 error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

PBOffLine places off-line the volume specified by ioNamePtr or
ioVRefNum, by calling PBFlshVol to flush the volume, and releasing all
the memory used for the volume except for 94 bytes of descriptive
information.

5/21/84 Hacker : /OS/FS.A.2

36 File Manager Programmer's Guide

FUNCTION PBEject (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Eject

Parameter block
—--> 12 ioCompletion pointer

€= 16 ioResult word

-2 18 ioNamePtr pointer

_——> 22 ioVRefNum word

Result codes noErr No error

bdNamErr Bad volume name
extFSErr External file system
ioErr Disk I/0 error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

PBEject calls PBOffLine to place the volume specified by ioNamePtr or
ioVRefNum off-line, and then ejects the volume.

You may call PBEject asynchronously; the first part of the call is

executed synchronously, and the actual ejection is executed
asynchronously.

5/21/84 Hacker /0S/FS.A.2

Changing File Contents

LOW-LEVEL FILE MANAGER ROUTINES 37

FUNCTION PBCreate (paramBlock: ParmBlkPtr; async: BOOLEAN)
Trap macro _Create
Parameter block
-—> 12 ioCompletion pointer
€ 16 ioResult word
-->» 18 ioNamePtr pointer
-—» 22 ioVRefNum word
-=> 26 ioVersNum byte
Result codes noErr No error
bdNamErr Bad file name
dupFNErr Duplicate file name
dirFulErr Directory full
extFSErr External file system
ioErr Disk I/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

¢ OSErr;

PBCreate creates a new file having the name ioNamePtr and the version
cified volume. The new file is unlocked
and empty. Its modification and creation dates are set to the time of
the system clock. The application should call PBSetFInfo to £ill in
the information needed by the Finder.

number ioVersNum, on the spe

5/21/84 Hacker

/0S/FS.A.2

38 File Manager Programmer's Guide

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Open

Parameter block
--> 12 ioCompletion pointer

€ 16 ioResult word

-=> 18 ioNamePtr pointer

-—>» 22 ioVRefNum word

€= 24 ioRefNum word

-=> 26 1ioVersNum byte

-—> 27 ioPermssn byte

--> 28 ioMisc pointer

Result codes noErr No error

bdNamErr Bad file name
extFSErr External file system
fnfErr File not found
ioErr Disk 1/0 error
mFulErr Memory full
nsvErr No such volume
OpWrErr File already open for writing
tmfoErr Too many files open

PBOpen creates an access path to the file having the name ioNamePtr and
the version number ioVersNum, on the specified volume. A path
reference number is returned in ioRefNum.

IOMisc either points to a 522-byte portion of memory to be used as the
access path's buffer, or is NIL if you want the volume buffer to be
used instead.

(warning)
All access paths to a single file that's opened multiple
times should share the same buffer so that they will read
and write the same data.

IOPermssn specifies the path's read/write permission. A path can be
opened for writing even if it accesses a file on a locked volume, and
an error won't be returned until a PBWrite, PBSetEOF, or PBAllocate
call is made.

If you attempt to open a locked file for writing, PBOpen will return
opWrErr as its function result. If you attempt to open a file for
writing and it already has an access path that allows writing, PBOpen
will return the reference number of the existing access path in
ioRefNum and opWrErr as its function result.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 39

FUNCTION PBOpenRF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro

Parameter block

Result codes

_OpenRF

12 ioCompletion pointer

16 ioResult word

18 ioNamePtr pointer

22 ioVRefNum word

24 ioRefNum word

26 ioVersNum byte

27 ioPermssn byte

28 ioMisc pointer

noErr No error

bdNamErr Bad file name

extFSErr External file system

fnfErr File not found

ioErr Disk 1/0 error

mFulErr Memory full

nsvErr No such volume

OpWrErr File already open for writing

permErr Open permission doesn't
allow reading

tmfoErr Too many files open

PBOpenRF is identical to PBOpen, except that it opens the file's
resource fork instead of its data forke.

5/21/84 Hacker

/0S/FS.A.2

40 File Manager Programmer's Guide

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Read

Parameter block
--> 12 ioCompletion pointer

€ 16 ioResult word
-—> 24 ioRefNum word
-—> 32 ioBuffer pointer

--> 36 ioReqCount long word
€~ 4@ ioActCount long word
-=> 44 ioPosMode word

€-> 46 ioPosOffset long word

Result codes noErr No error
eofErr End-of-file
extFSErr External file system
fnOpnErr File not open
ioErr Disk I/0 error
paramErr Negative ioReqCount
rfNumErr Bad reference number

PBRead attempts to read ioReqCount bytes from the open file whose
access path is specified by ioRefNum, and transfer them to the data
buffer pointed to by ioBuffer. 1If you try to read past the logical
end-of-file, PBRead moves the mark to the end—of-file and returns
eofErr as its function result. After the read operation is completed,
the mark is returned in ioPosOffset and the number of bytes actually
read is returned in ioActCount.

(note)
Advanced programmers: IOPosMode contains the newline
character (if any), and indicates whether the read should
begin relative to the beginning of the file, the mark, or
the end-of-file. The byte offset from the position
indicated by ioPosMode, where the read should actually
begin, is given by ioPosOffset. If a newline character
is not specified, the data will be read one byte at a
time until ioReqCount bytes have been read or the
end-of-file is reached. If a newline character is
specified, the data will be read one byte at a time until
the newline character is encountered, the end-of-file is
reached, or ioReqCount bytes have been read.

5/21/84 Hacker /O0S/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 41

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Write

Parameter block
--> 12 ioCompletion pointer

€—- 16 ioResult word

--> 24 ioRefNum word

-->» 32 ioBuffer pointer
-—> 36 ioReqCount long word
€é-- 40 ioActCount long word
-—> 44 ioPosMode word

-->» 46 ioPosOffset long word

Result codes noErr No error
dskFulErr Disk full
fLckdErr File locked
fnOpnErr File not open
ioErr Disk I/0 error
paramErr Negative ioReqCount
posErr Position is beyond end-of-file
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write or open permission

doesn't allow writing

PBWrite takes ioReqCount bytes from the buffer pointed to by ioBuffer
and attempts to write them to the open file whose access path is
specified by ioRefNum. After the write operation is completed, the
mark is returned in ioPosOffset, and the number of bytes actually
written is returned in ioActCount.

I0PosMode indicates whether the write should begin relative to the
beginning of the file, the mark, or the end-of-file. The byte offset
from the position indicated by ioPosMode, where the write should
actually begin, is given by ioPosOffset.

5/21/84 Hacker /OS/FS.A.2

42 File Manager Programmer's Guide
FUNCTION PBGetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
Trap macro _GetFPos

Parameter block
--> 12 ioCompletion pointer

€-— 16 ioResult word

- 22 ioRefNum word

€-- 36 ioReqCount long word

'€== 4@ ioActCount long word

€——- 44 ioPosMode word

€~- 46 ioPosOffset long word

Result codes noErr No error

extFSErr External file system
fnOpnErr File not open
ioErr Disk I/0 error
rfNumErr Bad reference number

PBGetFPos returns, in ioPosOffset, the mark of the open file whose
access path is specified by ioRefNum. PBGetFPos sets ioReqCount,
ioActCount, and ioPosMode to @.

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
Trap macro _SetFPos

Parameter block
--> 12 ioCompletion pointer

€— 16 ioResult word
-—> 22 ioRefNum word
—-—> 44 ioPosMode word

-=> 46 ioPosOffset long word

Result codes noErr No error
eofErr . End-of-file
extFSErr External file system
fnOpnErr File not open
ioErr Disk I/0 error
posErr Tried to position before start
of file :
rfNumErr Bad reference number

PBSetFPos sets the mark of the open file whose access path is specified
by ioRefNum, to the position specified by ioPosMode and ioPosOffset.
IoPosMode indicates whether the mark should be set relative to the
beginning of the file, the mark, or the logical end-of-file. The byte
offset from the position given by ioPosMode, where the mark should
actually be set, is given by ioPosOffset. 1If you try to set the mark
past the logical end-of-file, PBSetFPos moves the mark to the
end-of-file and returns eofErr as its function result.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 43

FUNCTION PBGetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Ttap macro _GetEQF

Parameter block
-—-> 12 ioCompletion pointer

€ 16 ioResult word

--> 22 ioRefNum word

€—- 28 ioMisc long word

Result codes noErr No error

extFSErr External file system
fnOpnErr File not open
ioErr Disk I/0 error
rfNumErr Bad reference number

PBGetEOF returns, in ioMisc, the logical end-of-file of the open file
whose access path is specified by ioRefNum.

FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _SetEQF

Parameter block
--> 12 ioCompletion pointer

€—- 16 ioResult word

-> 22 ioRefNum word

-->» 28 ioMisc long word

Result codes noErr No error

dskFulErr Disk full
extFSErr External file system
fLckdErr File locked
fnOpnErr File not open
ioErr Disk I/0 error
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write or open permission

doesn't allow writing

PBSetEOF sets the logical end-of-file of the open file whose access
path is specified by ioRefNum, to ioMisc. 1If the logical end-of-file
is set beyond the physical end-of-file, the physical end-of-file is set
to one byte beyond the end of the next free allocation block; if there
isn't enough space on the volume, no change is made, and PBSetEOF
returns dskFulErr as its function result. If ioMisc is @, all space on
the volume occupied by the file is released.

5/21/84 Hacker JOS/FS.A.2

44 File Manager Programmer's Guide
FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Allocate

Parameter block
--> 12 ioCompletion pointer
€ 16 ioResult word
-=> 22 ioRefNum word
--> 36 ioReqCount long word
€-—- 40 ioActCount long word

Result codes noErr No error
dskFulErr Disk full
fLckdErr File locked
fnOpnErr File not open
ioErr Disk I/O error
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write or open permission

doesn't allow writing

PBAllocate adds ioReqCount bytes to the open file whose access path is
specified by ioRefNum, and sets the physical end-of-file to one byte
beyond the last block allocated. The number of bytes allocated is
always rounded up to the nearest multiple of the allocation block size,
and returned in ioActCount. If there isn't enough empty space on the
volume to satisfy the allocation request, PBAllocate allocates the rest
of the space on the volume and returns dskFulErr as its function
result.

5/21/84 Hacker , /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 45

FUNCTION PBFlshFile (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _FlushFile

Parameter block
-—> 12 ioCompletion pointer

€ 16 ioResult word
--> 22 ioRefNum word
Result codes noErr No error
extFSErr External file system
fnfErr File not found
fnOpnErr File not open
ioErr Disk I/0 error
nsvErr No such volume
rfNumErr Bad reference number

PBFlshFile writes the contents of the access path buffer indicated by
ioRefNum to the volume, and updates the file's entry in the file
- directory.

(warning)

Some information stored on the volume won't be correct
until PBFlshVol is called.

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
Trap macro _Close

Parameter block
-—> 12 ioCompletion pointer

€ 16 ioResult word
--> 24 ioRefNum word
Result codes noErr No error
extFSErr External file system
fnfErr File not found
fnOpnErr File not open
ioErr Disk I/0 error
nsvErr No such volume
rfNumErr Bad reference number

PBClose writes the contents of the access path buffer specified by
ioRefNum to the volume and removes the access path.

(warning)

Some information stored on the volume won't be correct
until PBFlshVol is called.

5/21/84 Hacker JOS/FS.A.2

46 File Manager Programmer's Guide

Changing Information About Files

All of the routines described in this section affect both forks of a
file.

FUNCTION PBGetFInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
Trap macro _GetFilelInfo

Parameter block
-=> 12 ioCompletion pointer

€— 16 ioResult word

-=>» 18 1ioNamePtr pointer

-=> 22 ioVRefNum word

€—- 24 ioRefNum word

-->» 26 ioVersNum byte

--» 28 ioFDirIndex word

€—- 30 ioFlAttrib byte

€- 31 ioFlVersNum byte

€— 32 ioFndrinfo 16 bytes

€-- 48 ioFlNum long word

€—- 52 1oF1StBlk word

€-- 54 ioFlLglen long word

€— 58 ioFlPylLen long word

€&- 62 ioF1RStBlk word

€—— 64 ioFlRLglLen long word

€-- 68 ioFlRPyLen long word

€——- 72 ioFlCrDat long word

€- 76 1ioFlMdDat long word

Result codes noErr No error

bdNamErr Bad file name
extFSErr External file system
fnfErr File not found
ioErr Disk I/0 error
nsvErr No such volume
paramErr No default volume

PBGetFInfo returns information about the specified file. If
ioFDirIndex is positive, the File Manager returns information about the
file whose file number is ioFDirIndex on the specified volume (see the
section '"Data Organization on Volumes" if you're interested in using
this method). If ioFDirIndex is negative or @, the File Manager
returns information about the file having the name ioNamePtr and the
version number ioVersNum, on the specified volume. Unless ioNamePtr is
NIL, ioNamePtr returns a pointer to the name of the file. If the file
is open, the reference number of the first access path found is
returned in ioRefNum.

5/21/84 Hacker _ /O0S/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 47
FUNCTION PBSetFInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
Trap macro _SetFilelInfo

Parameter block
-->» 12 ioCompletion pointer

€ 16 ioResult word

-—> 18 ioNamePtr pointer

-—> 22 ioVRefNum word

-=>» 26 ioVersNum byte

-=>» 32 ioFndrinfo 16 bytes

--> 72 ioFlCrDat long word

--> 76 ioFlMdDat long word

Result codes noErr No error

bdNamErr Bad file name
extFSErr External file system
fLckdErr File locked
fnfErr File not found
ioErr Disk I/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

PBSetFInfo sets information (including creation and modification dates,
and information needed by the Finder) about the file having the name
ioNamePtr and the version number ioVersNum on the specified volume.

You should call PBGetFInfo just before PBSetFInfo, so the current
information is present in the parameter block.

5/21/84 Hacker /OS/FS.A.2

48 File Manager Programmer's Guide
FUNCTION PBSetFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _SetFilLock

Parameter block
-> 12 ioCompletion pointer

€—- 16 ioResult word

-=> 18 ioNamePtr pointer

—-—> 22 ioVRefNum word

-->» 26 ioVersNum byte

Result codes noErr No error

extFSErr External file system
fnfErr File not found
ioErr Disk I/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

PBSetFLock locks the file having the name ioNamePtr and the version
number ioVersNum on the specified volume. Access paths currently in
use aren't affected.

FUNCTION PBRstFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro RstFilLock

Parameter block
-=> 12 ioCompletion pointer

€— 16 ioResult word

-->» 18 1ioNamePtr pointer

-—-> 22 ioVRefNum word

-=> 26 ioVersNum byte

Result codes noErr No error

extFSErr External file system
fnfErr File not found
ioErr Disk 1/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

PBRstFLock unlocks the file having the name ioNamePtr and the version
number ioVersNum on the specified volume. Access paths currently in
use aren't affected.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 49

FUNCTION PBSetFVers (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trag macro

Parameter block

_SetFilType

-—-> 12 ioCompletion pointer

€— 16 ioResult
--> 18 ioNamePtr
-—> 22 ioVRefNum
-—> 26 ioVersNum
-->» 28 < ioMisc

Result codes noErr
bdNamErr
dupFNErr
extFSErr
fLckdErr
fnfErr
nsvErr
ioErr
paramErr
vLckdErr
wPrErr

word
pointer
word
byte
byte

No error

Bad file name
Duplicate file name and version
External file system
File locked

File not found

No such volume

Disk I/0 error

No default volume
Software volume lock
Hardware volume lock

PBSetFVers changes the version number of the file having the name
ioNamePtr and version number ioVersNum on the specified volume, to
ioMisc. Access paths currently in use aren't affected.

(warning)

The Resource Manager and Segment Loader operate only on
files with version number @#; changing the version number
of a file to a nonzero number will prevent them from

operating on it.

5/21/84 Hacker

/OS/FS.A.2

50 File Manager Programmer's Guide

FUNCTION PBRename (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Rename

Parameter block
-—> 12
€ 16
-—> 18
-—> 22
-—> 26

Result codes noErr
bdNamErr
dirFulErr
dupFNErr
extFSErr
fLckdErr
fnfErr
fsRnErr
ioErr
nsvErr
paramErr
vLckdErr
wPrErr

ioCompletion pointer
ioResult
ioNamePtr
ioVRefNum
ioVersNum
--> 28 ioMisc

word
pointer
word
byte
pointer

No error

Bad file name
Directory full
Duplicate file name and version
External file system
File locked

File not found
Renaming difficulty
Disk I/0 error

No such volume

No default volume
Software volume lock
Hardware volume lock

Given a file name in ioNamePtr and a version number in ioVersNum,

Rename changes the name of the specified file to ioMisc; given a volume
name in ioNamePtr or a volume reference number in ioVRefNum, it changes
the name of the specified volume to ioMisc. Access paths currently in

use aren't affected.

5/21/84 Hacker

/0S/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 51

FUNCTION PBDelete (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro

Parameter block

Result codes

_Delete

12 ioCompletion pointer

16 ioResult

18 ioNamePtr
22 ioVRe fNum
26 ioVersNum

noErr
bdNamErr
extFSErr
fBsyErr
fLckdErr
fnfErr
nsvErr
ioErr
vLckdErr
wPrErr

word
pointer
word
byte

No error

Bad file name
External file system
File busy

File locked

File not found

No such volume

Disk I/0 error
Software volume lock
Hardware volume lock

OSErr;

PBDelete removes the closed file having the name ioNamePtr and the
version number ioVersNum, from the specified volume.

(note)

This function will delete both forks of the file.

5/21/84 Hacker

/0S/FS.A.2

52 File Manager Programmer's Guide

DATA ORGANIZATION ON VOLUMES :

This section explains how information is organized on volumes. Most of
the information is accessible only through assembly language, but some
advanced Pascal programmers may be interested.

The File Manager communicates with device drivers that read and write
data via block-level requests to devices containing Macintosh-
initialized volumes. (Macintosh~initialized volumes are volumes
initialized by the Disk Initialization Package.) The actual type of
volume and device is unimportant to the File Manager; the only
requirements are that the volume was initialized by the Disk
Initialization Package and that the device driver is able to
communicate via block-level requests.

The 3 1/2-inch built-in and optional external drives are accessed via
the Disk Driver. If you want to use the File Manager to access files
on Macintosh-initialized volumes on other types of devices, you must
write a device driver that can read and write data via block-level
requests to the device on which the volume will be mounted. If you
want to access files on nonMacintosh-initialized volumes, you must
write your own external file system (see the section "Using an External
File System").

The information on all block-formatted volumes is organized in logical
blocks and allocation blocks. Logical blocks contain a number of bytes
of standard information (512 bytes on Macintosh-initialized volumes),
and an additional number of bytes of information specific to the disk
driver (12 bytes on Macintosh-initialized volumes). Allocation blocks
are composed of any integral number of logical blocks, and are simply a
means of grouping logical blocks together in more convenient parcels.

The remainder of this section applies only to Macintosh-initialized
volumes. NonMacintosh-initialized volumes must be accessed via an
external file system, and the information on them must be organized by
an external initializing program.

A Macintosh-initialized volume contains information needed to start up-
the system in logical blocks @ and 1 (Figure 6). Logical block 2 of
the volume begins the master directory block. The master directory
block contains volume information and the volume allocation block map,
which records whether each block on the volume is unused or what part
of a file it contains data from.

5/21/84 Hacker /OS/FS.D

DATA ORGANIZATION ON VOLUMES 53

logical block O
....................... s;fstem st?rtup ieveeeol b ozero if not a startup disk
information

volume informstion

logicsl block 2
....................... block map ceeveeee-ol b master directory block
logicel block 3
............ unused i
logical block 4
........... [L, tile directory Z
i n
logical block““ o
logical block n+1 sllocstion block 2
Z file contents %
logical biock 799 allocation block m

Figure 6. A 4Q@¢K-Byte Volume With 1K-Byte Allocation Blocks

The master directory "block" always occupies two blocks--the Disk
Initialization Package varies the allocation block size as necessary to
achieve this constraint.

In the next logical block following the block map begins the file
directory, which contains descriptions and locations of all the files
on the volume. The rest of the logical blocks on the volume contain
files or garbage (such as parts of deleted files). The exact format
of the volume information, volume allocation block map, file directory,
and files is explained in the following sections.

Volume Information

The volume information is contained in the first 64 bytes of the master
directory block (Figure 7). This information is written on the volume
when it's initialized, and modified thereafter by the File Manager.

5/21/84 Hacker /OS/FS.D

54 File Manager Programmer's Guide

byte O drSigWord (word) always $D2D7

2 | drCrDate (long word) date and time of intialization

6 | drLsBkUp {long word) date and time of last backup

10 drAtrb (word) volume attributes

12 drNmiFls (word) nurnber of files in file directory

14 drDirSt (word) tirst logical block of file directory

16 arBlLen (word) number of logical blocks in file directory
18 drNmAIBIks {(word) number of allocation blocks on volume

20 drAlBlkSiz (long 'word) size of allocation blocks

24 | drCipSiz (long word) nuraber of bytes to allocate

28 drAlBISt (word) logical block number of first allocation block

30 | drNxtFNum (long word) next unused file number

34 drFreeBks (word) nurber of unuzed allocation blocks
% drvM (byte) length ot volume narme
drvN + 1 (bytes) characters of volume name

Figure 7. Volume Information

DrAtrb contains the volume attributes. 1Its bits, if set, indicate the
following:

Bit Meaning
7 Volume is locked by hardware
15 Volume is locked by software

DrClpSiz contains the minimum number of bytes to allocate each time the
Allocate function is called, to minimize fragmentation of files; it's
always a multiple of the allocation block size. DrNxtFNum contains the
next unused file number (see the "File Directory" section below for an
explanation of file numbers).

5/21/84 Hacker /OS/FS.D

DATA ORGANIZATION ON VOLUMES 55

Volume Allocation Block Map

The volume allocation block map represents every allocation block on
the volume with a 12-bit entry indicating whether the block is unused
or allocated to a file. It begins in the master directory block at the
byte following the volume information, and continues for as many
logical blocks as needed. For example, a 4@@K-byte volume with a
1¢-block file directory and 1K-byte allocation blocks would have a
591-byte block map.

The first entry in the block map is for block number 2; the block map
doesn't contain entries for the startup blocks. Each entry specifies
whether the block is unused, whether it's the last block in the file,
or which allocation block is next in the file:

Entry Meaning

@ Block is unused
1 Block is the last block of the file
2..4095 Number of next block in the file

For instance, assume that there's one file on the volume, stored in
allocation blocks 8, 11, 12, and 17; the first 16 entries of the block
map would read

600000 1106061217 000801

The first allocation block on a volume typically follows the file
directory. The first allocation block is number 2 because of the
special meaning of numbers @ and 1.

(note)
As explained below, it's possible to begin the allocation
blocks immediately following the master directory block
and place the file directory somewhere within the
allocation blocks. In this case, the allocation blocks
occupied by the file directory must be marked with S$FFF's
in the allocation block map.

File Directory

The file directory contains an entry for each file. Each entry lists
information about one file on the volume, including its name and
location. Each file is listed by its own unique file number, which the
File Manager uses to distinguish it from other files on the volume.

A file directory entry contains 51 bytes plus one byte for each
character in the file name (Figure 8); if the file names average 2¢
characters, a directory can hold seven file entries per logical block.
Entries are always an integral number of words and don't cross logical
block boundaries. The length of a file directory depends on the
maximum number of files the volume can contain; for example, on a
4@PK-byte volume the file directory occupies 12 logical blocks.

5/21/84 Hacker /0S/FS.D

56 File Manager Programmer's Guide

The file directory conventionally follows the block map and precedes
the allocation blocks, but a volume-initializing program could actually
place the file directory anywhere within the allocation blocks as long

as the blocks occupied by the file directory are marked with $FFF's in
the block map.

fIFlags (byte) bit 7=1 it entry used; bit 0=1 if tile locked
tiTyp (byte) version rumber
filsrwds (16 bytes) information used by the Finder
fIFINum (long word) tile number
fistBlk {(word) first sllocetion block of data fork

fiLgLen {long word) data fork’s logical end-of-file

i tiPyLen {long word) data fork’s physical end-of-file

: fIRStBIk (word) first allocation block of resource fork

b | fIRLgLen (long word) resource fork’s logical end-of-file

} | tIRPylLen {long word) resource fork’s physical end-of-file

? fiCrDat (long word) date and time file was created

) fiMdDat (long waord) date and time file was last modified
) tIName (byte) length of tile name

! tINam + 1 (bytes) characters of file name

Figure 8. A File Directory Entry

F1StBlk and f1RStBlk are @ if the data or resource fork doesn't exist.
F1CrDat and flMdDat are given in seconds since 12:0¢ AM, January 1,
19¢4.

Each time a new file is created, an entry for the new file is placed in
the file directory. Each time a file is deleted, its entry in the file
directory is cleared, and all blocks used by that file on the volume
are released.

File Tags on Volumes

As mentioned previously, logical blocks contain 512 bytes of standard
information preceded by 12 bytes of file tags (Figure 9). The file
tags are designed to allow easy reconstruction of files from a volume
whose directory or other file-access information has been destroyed.

5/21/84 Hacker /0S/FS.D

DATA ORGANIZATION ON VOLUMES 57

byte 0 | file number (long word)| file rumber
4 fork type (byte) bit 1=1 if resource fork
5 file sttributes (byte) bit 7=1 if open; bit 0=1 it locked
6 | file sequence (word) logical block sequence number
8 | mod date (long word) dete and time last modified

Figure 9. File Tags on Volumes

The file sequence indicates which relative portion of a file the block
contains--the first logical block of a file has a sequence number of @,
the second a sequence number of 1, and so on.

DATA STRUCTURES IN MEMORY

This section describes the memory data structures used by the File
Manager and any external file system that accesses files omn
Macintosh-initialized volumes. Most of this data is accessible only
through assembly language, but some advanced Pascal programmers may be
interested.

The data structures in memory used by the File Manager and all external
file systems include:

- the file 1/0 queue, listing the currently executing routine (if
any), and any asynchronous routines awaiting execution

- the volume-control-block queue, listing information about each
mounted volume

- copies of volume allocation block maps; one for each on-line
volume

- the file-control-block buffer, listing information about each
access path

- volume buffers; one for each on-line volume
- optional access path buffers; one for each access path

- the drive queue, listing information about each drive connected to
the Macintosh

5/21/84 Hacker /0S/FS.D

58 File Manager Programmer's Guide

The File 1I/0 Queue

The file I/0 queue is a standard Operating System queue (described in
the appendix) that contains a list of all asynchronous routines
awaiting execution. Each time a routine is called, an entry is placed
in the queue; each time a routine is completed, its entry is removed
from the queue.

The file I/0 queue uses entries of type ioQType, each of which consists
of a parameter block for the routine that was called. The structure of
this block is shown in part below:

TYPE ParamBlockRec = RECORD

qLink: QElemPtr; {next queue entry}
qType: INTEGER; {queue type}
ioTrap: INTEGER; {routine trap}
ioCmdAddr: Ptr; {routine address}
e o o {rest of block}
END;

QLink points to the next entry in the queue, and qType indicates the
queue type, which must always be ORD(ioQType). IOTrap and ioCmdAddr
contain the trap word and address of the File Manager routine that was
called. You can get a pointer to the file I/0 queue by calling the
File Manager function GetFSQHdr.

FUNCTION GetFSQHdr : QHdrPtr; [Pascal only]

GetFSQHAr returns a pointer to the file I/0 queue.

Assembly~language note: To access the contents of the file 1/0
queue from assembly language, you can use offsets from the
address of the global variable fsQHdr. Bit 7 of the queue flags
is set if there are any entries in the queue; you can use the
global constant qInUse to test the value of bit 7.

Volume Control Blocks

Each time a volume is mounted, its volume information is read from the
volume and used to build a new volume control block in the
volume-control-block queue (unless an ejected or off-line volume 1s
being remounted). A copy of the volume block map is also read from the
volume and placed in the system heap, and a volume. buffer is created on
the system heap.

5/21/84 Hacker /0S/FS.D

DATA STRUCTURES IN MEMORY 59

The volume-control-block queue is a list of the volume control blocks
for all mounted volumes, maintained on the system heap. It's a
standard Operating System queue (described in the appendix), and each
entry in the volume-control-block queue is a volume control block. A
volume control block is a 94-byte nonrelocatable block that contains
volume-specific information, including the first 64 bytes of the master
directory block (bytes 8 to 72 of the volume control block match bytes
@ to 64 of the volume information). It has the following structure:

TYPE VCB = RECORD

qLlink: QElemPtr; {next queue entry}

qType: INTEGER; {not used}

vebFlags: INTEGER; {bit 15=1 if dirty}
vebSigWord: INTEGER; {always $D2D7}

vcbCrDate: LongInt; {date volume was initialized}
vebLsBkUp: LonglInt; {date of last backup}
vcbAtrb: INTEGER; {volume attributes}

vcbNmFls: INTEGER; {number of files in directory}
vebDirSt: INTEGER; {directory's first block}
vebBlLn: INTEGER; {length of file directory}
vcbNmBlks: INTEGER; {number of allocation blocks}
vcbAlBlkSiz: LongInt; {size of allocation blocks}
vebClpSiz: LonglInt; {number of bytes to allocate}
vcbA1B1St: INTEGER; {first block in block map}
vebNxtFNum: LonglInt; {next unused file number}
vcbFreeBks: INTEGER; {number of unused blocks}
vebVN: STRING[27]; {volume name}

vebDrvNum: INTEGER; {drive number}
vcbDRefNum: INTEGER; {driver reference number}

vebFSID: INTEGER; {file system identifier}
vcbVRefNum: INTEGER; {volume reference number}
vcbMAdr: Ptr; {location of block map}
vebBufAdr: Ptr; {location of volume buffer}
vcbMLen: INTEGER; {number of bytes in block map}
vebDirIndex: INTEGER; {used internally}
vebDirBlk: INTEGER {used internally}

END;

Bit 15 of vcbFlags is set if the volume information has been changed by
a routine call since the volume was last affected by a FlushVol call.
VCBAtr contains the volume attributes. Each bit, if set, indicates the
following:

Bit Meaning

@-2 Inconsistencies were found between the volume information
and the file directory when the volume was mounted
6 Volume is busy (one or more files are open)
7 Volume is locked by hardware
15 Volume is locked by software

VCBDirSt contains the number of the first logical block of the file
directory; vcbNmBlks, the number of allocation blocks on the volume;
vcbAl1B1St, the number of the first logical block in the block map; and
vcbFreeBks, the number of unused allocation blocks un tihe Joluilee

5/21/84 Hacker . /0S/FS.D

60 File Manager Programmer's Guide

VCBDrvNum contains the drive number of the drive on which the volume is
mounted; vcbDRefNum contains the driver reference number of the driver
used to access on volume is mounted. When a mounted volume is placed
off-line, vcbDrvNum is cleared. When ejected, vebDrvNum is cleared and
vcbDRefNum is set to the negative of vcbDrvNum (becoming a positive
number). VCBFSID identifies the file system handling the volume; it's
@ for volumes handled by the File Manager, and nonzero for volumes
handled by other file systems.

When a volume is placed off-line, its buffer and block map are
deallocated. When a volume is unmounted, its volume control block is
removed from the volume-control-block queue.

You can get a pointer to the volume-control-block queue by calling the
File Manager function GetVCBQHdr.

FUNCTION GetVCBQHdr : QHdrPtr; [Pascal only]

GetVCBQHdAr returns a pointer to the volume-control-block queue.

Assembly-language note: To access the contents of the volume-
control-block queue from assembly language, you can use offsets
from the address of the global variable vcbQHdr. Bit 7 of the
queue flags is set if there are any entries in the queue; you
can use the global constant qlnUse to test the value of bit 7.
The default volume's volume control block is pointed to by the
global variable defVCBPtr.

File Control Blocks

Each time a file is opened, the file's directory entry is used to build
a 3@-byte file control block in the file-control-block buffer, which
contains information about all access paths. The file-control-block
buffer can contain up to 12 file control blocks (since up to 12 paths
can be open at once), and is a 362-byte (2 + 3@ bytes*12 paths)
nonrelocatable block on the system heap (see Figure 14¢).

5/21/84 Hacker /0S/FS.D

DATA STRUCTURES IN MEMORY 61

byte O

length (word)

control block

tirst tile

32

control block

second file

62

332

control block

twelfth file

Figure 1¢. The File-Control-Block Buffer

You can refer to the file-control-block buffer by using the global
variable fcbSPtr, which points to the length word. Each file control
block contains 3@ bytes of information about an access path (Figure

11).

byte 0

12
16
20
24
28

fcbFINum {(long word)

file number

{fcbMdFByt (byte)

flags

fcbTypByt (byte)

version number

fcbSElk (word)

tirst sliocation block of tile

fcbEOF (long word)

logical end-of-tile

fcbPLen (long word)

physical end-of-file

tcbCrPs (long word)

rnark

fcbVPtr (pointer)

location of volurne control block

fcbBfAdr (pointer)

location of access path butfer

fcbFIFas {word)

for internal use of File Manager

Figure 1l.

A File Control Block

Bit 7 of fcbMdRByt is set if the file has been changed since it was
last flushed; bit 1 is set if the entry describes a resource fork; bit
@ is set if data can be written to the file.

5/21/84 Hacker

/0S/FS.D

62 File Manager Programmer's Guide

Files Tags in Memory

As mentioned previously, logical blocks on Macintosh-initialized
volumes contain 12 bytes of file tags. Normally, you'll never need to
know about file tags, and the File Manager will let you read and write
only the 512 bytes of standard information in each logical block. The
File Manager automatically removes the file tags from each logical
block it reads into memory (Figure 12) and places them at the location
referred to by the global variable tagData + 2. It replaces the last
four bytes of the file tags with the number of the logical block from
which the file was read (leaving a total of ten bytes).

byte 0 tile number (long word) file number
4 fork type (byte) bit 1=1 if resource fork
5 file sttributes (byte) bit 0=1 if locked
6 file sequence (word) logicsl block sequence number
8 |logical block number (word)] logical black
Figure 12. File Tags in Memory
(note)

Access path buffers and volume buffers are 522 bytes long
in order to contain the ten bytes of file tags and 512
bytes of standard information.

The Drive Queue

Disk drives connected to the Macintosh are opened when the system
starts up, and information describing each is placed in the drive
queue. It's a standard Operating System queue (described in the
appendix), and each entry in the drive queue has the following
structure:

TYPE DrvQEl = RECORD

{ flags: LongInt; }
qlink: QElemPtr; {next queue entry}
qType: INTEGER; {not used}

dQDrive: INTEGER; {drive number}

dQRefNum: INTEGER; {driver reference number}

dQFSID: INTEGER; {file-system identifier}

dQDrvSize: INTEGER {optional: number of blocks}
END;

QDrvNum contains the drive number of the drive on which the volume is
mounted; GqDRefNum contains the driver reference number of the driver

5/21/84 Hacker /0S/FS.D

DATA STRUCTURES IN MEMORY 63

controlling the device on which the volume is mounted. QFSID
identifies the file system handling the volume in the drive; it's @ for
volumes handled by the File Manager, and nonzero for volumes handled by
other file systems. If the volume isn't a 3-1/2 inch disk, dQDrvSize
contains the number of 512-byte blocks on the volume mounted in this
drive; if the volume is a 3-1/2 inch disk, this field isn't used.

Assembly-language note: The first four bytes in a drive queue
entry are accessible only from assembly language, and contain
the following:

Byte Contents
) Bit 7=1 if volume is locked
1 $ if no disk in drive; 1 or 2 if disk in drive;

8 if nonejectable disk in drive; SFC-$FF if disk
was ejected within last 1.5 seconds

used internally during system startup,

Bit 7= if disk is single-sided

w N

You can get a pointer to the drive queue by calling the File Manager
function GetDrvQHdr:

FUNCTION GetDrvQHdr : QHdrPtr; [Pascal only]

GetDrvQHdr returns a pointer to the gqFlags field.

Assembly-language note: To access the contents of the drive
queue from assembly language, you can use offsets from the
address of the global variable drvQHdr.

The drive queue can support any number of drives, limited only by
Memory spacee.

USING AN EXTERNAL FILE SYSTEM

The File Manager is used to access files on Macintosh-initialized
volumes. If you want to access files on nonMacintosh-initialized
volumes, you must