
ANSI/IEEE770X3.97-1983

American National Standard
Pascal

Computer Progranµning Language

Published by The Institute of Electrical and Electronics Engineers, Inc.

Distributed in cooperation with Wiley-Interscience,
a division of John Wiley & Sons, Inc.

An American National Standard

IEEE Standard Pascal
Computer Programming Language

~ Published by W The Institute of Electrical and Electronics Engineers, Inc

ffi Distributed in cooperation with
~ Wiley-Interscience, a division of John Wiley & Sons, Inc

ANSI/IEEE
770 X3.97 -1983

An American National Standard

IEEE Standard Pascal
Computer Programming Language

Joint Sponsors

IEEE Pascal Standards Committee
of the

IEEE Computer Society
and

ANSI/X3J9 of
American National Standards Committee X3

Approved September 17, 1981

IEEE Standards Board

Approved December 16, 1982

American National Standards Institute

ISBN 0-471-88944-X

Library of Congress Catalog Number 82-84259

© Copyright 1979
Institute of Electrical and Electronics Engineers, Inc

© Copyright 1983
American National Standards Institute, Inc

and
Institute of Electrical and Electronics Engineers, Inc

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise,

without the prior written permission of the publisher.

Published by

The Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street, New York, NY 10017

January 7, 1983 SH08912

Foreword

(This Foreword is not a part of ANSl/IEEE770X3.97-1983, IEEE Standard Pascal Com­
puter Programming Language.)

This standard provides an unambiguous and machine independent defini­
tion of the language Pascal. Its purpose is to facilitate portability of Pascal
programs for use on a wide variety of data processing systems.

Language History.
The computer programming language Pascal was designed by Professor

Niklaus Wirth to satisfy two principal aims:
(1) To make available a language suitable for teaching programming as a

systematic discipline based on certain fundamental concepts clearly and
naturally reflected by the language.

(2) To define a language whose implementations could be reliable and ef­
ficient on then available computers.

However, it has become apparent that Pascal has attributes that go far
beyond these original goals. It is now being increasingly· used commercially
in the writing of system and application software. This standard is primarily
a consequence of the growing commercial interest in Pascal and the need to
promote the portability of Pascal programs between data processing systems.

In drafting this standard the continued stability of Pascal has been a prime
objective. However, apart from changes to clarify the specification, one
major change has been introduced. The syntax used to specify procedural
and functional parameters has been changed to require the use of a proce­
dure or function heading, as appropriate (see 6.6.3.1); this change was intro­
duced to overcome a language insecurity.

Project History.
(Throughout, the term JPC refers to the Joint ANSI/X3J9-IEEE Pascal

Standards Committee.) In the fall of 1978 application was made to the IEEE
Standards Board by the IEEE Computer Society to authorize project P770.
After approval, the first meeting was held in January 1979.

In December of 1978, X3J9 convened as a result of a SPARC resolution
to form a US TAG (Technical Advisory Group) for the ISO Pascal stan­
dardization effort initiated by the UK.

In agreement with IEEE representatives, in February of 1979, an X3 resolu­
tion combined the X3J9 and P770 committees into a single committee called
the Joint ANSI/X3J9-IEEE Pascal Standards Committee. The first meeting
as JPC was held in April 1979.

At its 7th meeting .in April 1980, JPC reviewed the first draft of ISO
dp7185 and submitted its technical comments as JPC/80-111 together with
their recommendation to X3 that the US should vote "no, because" in light
of these comments.

For a summary of other important events in the project's history, see the
annual reports from 1979 through 1981. Two other significant events oc­
curred in February 1981:

(1) JPC reviewed the second draft of ISO dp7185 and submitted its tech­
nical comments as JPC/81-42 together with their recommendation to X3
that the US should vote "yes, but" in light of those comments.

(2) JPC passed a motion to submit to TC letter ballot the ISO dp7185
second draft together with JPC/81-42 and JPC/81-41 which describes how
the requirements for compliance with the dpANS and proposed IEEE Pascal
standard differ from compliance with the ISO draft proposed standard.

Project Charter.
As X3J9, it approved SD-3 described its program of work to be:
(1) Maintain a liaison with the ISO, BSI, and IEEE committees to work

toward a common working draft standard. This work should include review
of those bodies' documents and forwarding of comments based on that re­
view. The eventual draft proposed American National ·standard Pascal shall
be compatible with any ISO Pascal standard and identical in content with
the jointly developed proposed IEEE Pascal standard.

(2) Provide a means for review of all Pascal standardization activities.
(3) Carry out the development of a Pascal standard.
(4) Identify and evaluate common existing practices in the area of Pascal

extensions.
(5) Act as a liaison group with organizations interested in interpretation

of American National Standard Pascal.
The resolution to form JPC clarified the dual function of the single joint

committee to produce a dpANS and a proposed IEEE Pascal standard,
identical in content.

Technical Development.
(1) Technical Constraints by X3 or IEEE. None.
(2) Technical Alternatives Considered. In view of the charter to maintain

compatibility with "any ISO Pascal standard," technical alternatives, sug­
gestions, and recommendations were submitted with US letter ballots on
ISO draft proposals. These items were then resolved by Working Group 4
as part of the international standardization process.

(3) Significant Technical Issues on which JPC was Initially Divided. Diver­
gent opinions on the technical issues concerning conformant arrays were
forwarded as part of the US letter ballot comments (JPC/80-111, JPC/81-42).
To resolve the issue within the JPC, the conformant arrays definition was
removed from the proposed domestic standard. Therefore, extensions to
the language that solve the conformant array issue are permitted in the same
manner as any other extension.

(4) Information Collection Techniques Employed to Obtain Broader Input
Data.

Working Draft 3 published April 1979 in IEEE Computer magazine
Working Draft 3 published January 1979 in Pascal News No 14
dp7185 First Draft published April 1980 in SIGPLAN Notices
dp7185 First Draft published May 1980 in Pascal News No 18
dp7185 Second Draft published December 1980 in Pascal News No 20
Comments received from public review were distributed to all JPC mem-

bers and discussed as part of the technical review. These were also forwarded
directly to the appropriate international body responsible for an ISO dp.

(5) Related Domestic Effort. X3J9 (an X3 Technical Committee) and
IEEE P770 combined to form the Joint ANSl/X3J9-IEEE Pascal Standards
Committee in early 1979. The joint collaboration contributed in the inter­
national development of IS0/7185, from which this standard was developed.

International.
The British Standards Institution (BSI) Committee OIS/5 has been our

counterpart in the UK. They are the sponsoring body for the ISO dp for
Pascal. There are similar active groups in Australia, Canada, France, Germany,
Netherlands and Japan. The international liaisons on these committees have
been kept informed of the US activity by being on the JPC mailing list. Also,
these committees have assigned members to WG4, the international working
group for Pascal.
Other Standards and their Relationship to an American National Standard
and IEEE Pascal Standard.

ISO Pascal Standard. See the preceding section on Project Charter and
the following section on Differences.

Differences of Technical Substance Between this Standard and the Inter­
national Standard, as Represented by ISO/DIS 7185.

The differences of technical substance are:
(1) The domestic standard does not include the conformant array feature.
(2) The domestic standard specifies that extensions may alter the status of

implementation-dependent features or errors. The ISO document prohibits
extensions from altering the status of these items.

(3) The domestic standard specifies that the relationship, if any, between
end-of-line and values of the char-type shall be implementation-dependent.
The ISO document requires that end-of-line not be a value of the char-type.

(4) This standard specifies the ordering of evaluation, accessing, and bind­
ing of the parameters of read, readln, write, and writeln. The international
standard does not address this areas, leaving it neither specified, implementa­
tion-defined, nor implementation-dependent.

At the time of adoption of this standard, the text of the international
standard was observed to contain several errors of definition and several

points of apparent technical ambiguity or lack of clarity. This standard
embodies corrections to those errors, and embodies certain wording which
clarifies the apparent ambiguities. These differences in manner of definition
are not differences of technical substance.

The errors that are corrected in this standard are in the definition of:
(1) String-element alternatives
(2) Bata-transfer procedure parameters types
(3) Lexicographic ordering
(4) Control-variable usage restrictions
The international standard appears to permit or require the repeated eval­

uation of the file that is referenced by 1/0 procedures and of the arrays that
are referenced by the data-transfer procedures. A detailed analysis is required
to determine that the international standard does not in fact permit such re­
peated evaluation. This standard states that requirement more explicitly.

Except as noted in the list above of Differences of Technical Substance,
compliance with this standard is equivalent to compliance at level 0 with the
international standard in the following sense:

(1) Any program complying with this standard complies at level 0 with the
international standard

(2) Any program or processor complying at level 0 with the international
standard complies with this standard

(3) Any processor complying at level 1 with the international standard
complies with this standard if it is "able to process in a manner similar to
that specified for errors any use of [the conformant-array feature] "

(4) Any processor complying with this standard and not providing an
extension which covers part or all of the intent of the conformant-array
feature complies at level 0 with the international standard

(5) Any processor complying with this standard and providing an exten­
sion covering part or all of the intent of the conformant-array feature com­
plies at level 1 with the international standard if it also includes the con­
formant-array feature.

Additionally, a program which uses any extension does not comply with
either standard.

Future Work.
An SD3 for extended Pascal has been approved by X3 to authorize future

work.
Suggestions for the improvement of this standard are welcomed. These sug-

gestions should be sent to
Secretary
IEEE Standards Board
345 East 4 7th Street
New York, NY 10017

When the IEEE Standards Board approved this standard on September 17,
1981, it had the following membership:

I. N. Howell, Jr, Chairman Irving Kolodny, Vice Chairman

G. Y. R. Allen
J. J. Archambault
H. H. Beall
J. T. Boettger
Edward Chelotti
Edward J. Cohen
Len S. Corey

*Member emeritus

Sava I. Sherr, Secretary

Jay Forster
Kurt Greene
Loering M. Johnson
Joseph L. Koepfinger
J.E. May
Donald T. Michael
J. P. Riganati

F. Rosa
R. W. Seelbach
J. S. Stewart
W. E. Vannah
Virginius N. Vaughan, Jr
Art Wall
Robert E. Weiler

This standard was processed and approved for submittal to ANSI by the
American National Standards Committee on Information Systems, X3. Com­
mittee approval of this standard does not necessarily imply that all commit­
tee members voted for its approval.

At the time it approved this standard, the X3 committee had the following
members:

John F. Auwaerter, Chairman

J.A.N. Lee, Vice Chairman Catherine A. Kachurik, Secretary

Organization

AMP Incorporated

American Bankers Association .

American Express Co

American Library Association .
American Nuclear Society

Association for Computer Machinery

Association of American Railroads
Association of Computer Users

Burroughs Corporation

Control Data Corporation

Data General Corporation

Data Processing Management Association

Digital Equipment Computers Users Society

Name of Representative

Patrick E. Lannan
C. Brill (Alt)
Andrew Ernst
Chris Crawford (Alt)
R. S. Newman
R. G. Wilson (Alt)
Paul Peters
Geraldine C. Main
D.R. Vondy (Alt)
J. A. N. Lee
Pat Skelly (Alt)
R. A. Petrash
Hillel Segal
Thomas Kurihara (Alt)
Ira R. Purchis
Jerrold S. Foley (Alt)
Charles E. Cooper
Keith Lucke (Alt)
Steven W. Weingart
Anthony M. Goschalk (Alt)
Ardyn E. Dubnow
Joseph A. Federici (Alt)
James Hodges
John R. Barr (Alt)

Organization Name of Representative

Digital Equipment Corporation . Lois C. Frampton
Gary S. Robinson (Alt)

GUIDE International Frank Kirshenbaum
Leland Milligan (Alt)

General Services Administration. William C. Rinehuls
Donald J. Page (Alt)

Harris Corporation. Sam Mathan
David Abmayr (Alt)

Hewlett-Packard . Donald C. Loughry
Honeywell Information Systems Thomas J. McNamara

Alan Teubner (Alt)
IBM Corporation. Mary Anne Gray

J. S. Wilson (Alt)
IEEE Communications Society Thomas A. Varetoni
IEEE Computer Society . Robert Poston

Robert S. Stewart (Alt)
Lawrence Berkeley Laboratory . James A. Baker

Robert J. Harvey (Alt)
Life Office Management Association John I. Burke

James F. Foley, Jr (Alt)
3M Company . R. C. Smith
Moore Business Forms . D. H. Oddy
NCR Corporation . Thomas W. Kern

William E. Synder (Alt)
National Bureau of Standards . Robert E. Rountree

James H. Burrows (Alt)
National Communications System Marshall L. Cain

George W. White (Alt)
Perkin-Elmer Corporation . David Ellis

David Saunders (Alt)
Prime Computer Jeffrey C. Flowers

Winfried A. Burke (Alt)
Professional Secretaries International Jerome Heitman

P. E. Pesce (Alt)
Recognition Technology Users Association Herbert F. Schantz

G. W. Wetzel (Alt)
SHARE, Inc . Thomas B. Steel

Daniel Schuster (Alt)
Society of Certified Data Processors Thomas M. Kurihara

Ardyn E. Dubnow (Alt)
Sperry Univac Marvin W. Bass

Charles D. Card (Alt)
Telephone Group . Henry L. Marchese

J. A. Owen (Alt)
Stewart M. Garland (Alt)

Texas Instruments, Inc Presley Smith
Don Caraway (Alt)

Travelers Insurance Companies, Inc Joseph T. Brophy
US Department of Defense . William LaPlant

Harry Pontius (Alt)
Wang Laboratories, Inc. Carl W. Schwarcz

Marsha Hayek (Alt)
Xerox Corporation . John L. Wheeler

Arthur R. Machell (Alt)

The Joint ANSI/X3J9-IEEE Pascal Standards Committee, which developed this
standard had the following members:

Carol Sledge, Chairman

David L. Reese, Secretary

Michael P. Hagerty, Vice Chairman

Joe Cointment, International Representative

Michael Alexander
Jeffrey Allen
Ed Barkmeyer
W. Ashby Boaz
A. Windsor Brown
Jerry R. Brookshire
Tomas M. Burger
David S. Cargo
Richard J. Cichelli
Roger Cox
Jean Danver
Debra Deutsch
Bob Dietrich
Victor A. Falwarczny
G. G. Gustafson
Thomas Giventer
Hellmut Golde
David N. Gray
Paul Gregory
Charles E. Haynes
Christopher Henrich
Steven Hiebert
Ruth Higgins
Charles Hill

Steven Hobbs
Albert A. Hoffman
Robert Hutchins
Rosa C. Hwang
Scott Jameson
David Jones
Steen Jurs
Mel Kanner
John Kaufmann
Leslie Klein
Bruce Knobe
Dennis Kodimer
Ronald E. Kole
Alan A. Kortesoja
Edward Krall
Robert Lange
Rainer McCown
Jim Miner
Eugene N. Miya
Mark Molloy
Dennis Nicholson
Mark Overgaard
Ted C. Park
Donald D. Peckham
David Peercy

*Past Chairman IEEE Pascal Committee
**Past Chairman X3J9 Committee

Robert Poon
David L. Presberg
William C. Price
Bruce Ravenel*
David C. Robbins
Lynne Rosenthal
Tom Rudkin
Stephen C. Schwarm
Rick Shaw
Barry Smith
Rudeen S. Smith
Bill Stackhouse
Marius Troost**
Thomas N. Turba
Prescott K. Turner
Howard Turtle
Robert Tuttle
Richard C. Vile, Jr
Larry B. Weber
David Weil
Thomas R. Wilcox
Thomas Wolfe
Harvy Wohlwend
Kenneth M. Zemrowski

Others who contributed to the development of this standard are:
A. M. Addyman: Chairman BSI OIS/5 and Convener of ISO/TC 97 /SC 5/

Working Group 4 Pascal
Members of ISO/TC 97 /SC 5/Working Group 4 Pascal

Thomas N. Turba and Sperry Univac made major contributions to the
publication of this edition by editing the approved draft and supplying type­
set copy. Their assistance is acknowledged with gratitude.

IEEE Standards documents are developed within the Technical Com­
mittees of the IEEE Societies and the Standards Coordinating Commit­
tees of the IEEE Standards Board. Members of the committees serve
voluntarily and without compensation. They are not necessarily mem­
bers of the Institute. The standards developed within IEEE represent
a consensus of the broad expertise on the subject within the Institute
as well as those activities outside of IEEE which have expressed an in­
terest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an
IEEE Standard does not imply that there are no other ways to pro­
duce, test, measure, purchase, market, or provide other goods and ser­
vices related to the scope of the IEEE Standard. Furthermore, the view­
point expressed at the time a standard is approved and issued is subject
to change brought about through developments in the state of the art
and comments received from users of the standard. Every IEEE Stan­
dard is subjected to review at least once every five years for revision
or reaffirmation. When a document is more than five years old, and has
not been reaffirmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reflect the present state of
the art. Users are cautioned to check to determine that they have the
latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any
interested party, regardless of membership affiliation with IEEE. Sug­
gestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the mean­
ing of portions of standards as they relate to specific applications. When
the need for interpretations is brought to the attention of IEEE, the
Institute will initiate actic>n to prepare appropriate responses. Since
IEEE Standards represent a consensus of all concerned interests, it is

I

important to ensure that any interpretation has also received the con-
currence of a balance of interests. For this reason IEEE and the mem­
bers of its technical committees are not able to provide an instant re­
sponse to interpretation requests except in those cases where the matter
has previously received formal consideration.

Comments on standards and requests for interpretations should be ad­
dressed to:

Secretary, IEEE Standards Board
345 East 4 7th Street
New York, NY 10017
USA

This standard was derived from the second revision of ISO dp7185 and has been up­
dated to include changes to the third revision of ISO dp7185 and responses to public
comments on the first draft of ANSI/IEEE 770X3.97-1983.

EDITORIAL NOTE: It is the normal convention to use italic type for algebraic quan­
tities. Since the status of such quantities contained in this standard may or may not
directly represent true variable quantities, this convention has not been adopted in this
standard.

Contents

SECTION PAGE

1. Scope... 19

2. References . 19

3. Definitions . 20
3.1 Error . 20
3.2 Extension. 20
3.3 Implementation-Defined . 20
3.4 Implementation-Dependent . 20
3.5 Processor . 20

4. Definitional Conventions. 21

5. Compliance . 22
5.1 Processors . 22
5.2 Programs . 24

6. Requirements. 25
6.1 Lexical Tokens. 25

6.1.1 General . 25
6.1.2 Special-Symbols . 25
6.1.3 Identifiers. 25
6.1.4 Directives . 26
6.1.5 Numbers . 26
6.1.6 Labels . 27
6.1. 7 Character-Strings. 27
6.1.8 Token Separators . 28
6.1.9 Lexical Alternatives . 28

6.2 Blocks, Scope and Activations . 29
6.2.1 Block . 29
6.2.2 Scope . 30
6.2.3 Activations . 31

6.3 Constant-Definitions . 33
6.4 Type-Definitions . 33

6.4.1 General . 33
6.4.2 Simple-Types . 34

6.4.2.1 General . 34
6.4.2.2 Required Simple-Types................... 34
6.4.2.3 Enumerated-Types . 35
6.4.2.4 Subrange-Types.................. 36

6.4.3 Structured-Types . 36
6.4.3.1 General . 36

SECTION PAGE

6.4.3.2 Array-Types . 37
6.4.3.3 Record-Types . 39
6.4.3.4 Set-Types . 42
6.4.3.5 File-Types. 43

6.4.4 Pointer-Types . 46
6.4.5 Compatible Types.............................. 46
6.4.6 Assignment-Compatibility. 46
6.4.7 Example of a Type Definition-Part................. 47

6.5 Declarations and Denotations of Variables................. 48
6.5.1 Variable-Declarations . 48
6.5.2 Entire-Variables . 49
6.5.3 Component-Variables . 49

6.5.3.1 General . 49
6.5.3.2 Indexed-Variables....................... 50
6.5.3.3 Field-Designators . 51

6.5.4 Identified-Variables.... 52
6.5.5 Buffer-Variables . 52

6.6 Procedure and Function Declarations . 53
6.6.1 Procedure-Declarations.......................... 53
6.6.2 Function-Declarations. 56
6.6.3 Parameters . 59

6.6.3.1 General . 59
6.6.3.2 Value Parameters . 60
6.6.3.3 Variable Parameters . · 60
6.6.3.4 Procedural Parameters. 61
6.6.3.5 Functional Parameters 61
6.6.3.6 Parameter List Congruity 61

6.6.4 Required Procedures and Functions 62
6.6.4.1 General . 62

6.6.5 Required Procedures. 62
6.6.5.1 General . 62
6.6.5.2 File Handling Procedures 62
6.6.5.3 Dynamic Allocation Procedures 65
6.6.5.4 Transfer Procedures . 66

6.6.6 Required Functions . 67
6.6.6.1 General . 67
6.6.6.2 Arithmetic Functions . 67
6.6.6.3 Transfer Functions...................... 68
6.6.6.4 Ordinal Functions. 68
6.6.6.5 Boolean Functions . 69

6.7 Expressions . 69
6. 7 .1 General . 69

SECTION PAGE

6.7.2 Operators . 71
6.7.2.1 General............................... 71
6.7.2.2 Arithmetic Operators . 72
6.7.2.3 Boolean Operators . 74
6.7.2.4 Set Operators . 74
6.7.2.5 Relational Operators. 74

6.7.3 Function Designators . 75
6.8 Statements. 76

6.8.1 General . 76
6.8.2 Simple-Statements . 77

6.8.2.1 General . 77
6.8.2.2 Assignment-Statements. 77
6.8.2.3 Procedure-Statements.................... 78
6.8.2.4 Goto-Statements. 79

6.8.3 Structured-Statements . 79
6.8.3.l General . 79
6.8.3.2 Compound-Statements , 79
6.8.3.3 Conditional-Statements. 80
6.8.3.4 If-Statements . 80
6.8.3.5 Case-Statements . 80
6.8.3.6 Repetitive-Statements. 81
6.8.3.7 Repeat-Statements . 81
6.8.3.8 While-Statements . 82
6.8.3.9 For-Statements........................ 82
6.8.3.10 With-Statements....................... 85

6.9 Input and Output. 86
6.9.1 The Procedure Read . 86
6.9.2 The Procedure Readln. 88
6.9.3 The Procedure Write . 88

6.9.3.1 Write-Parameters. 89
6.9.3.2 Char-Type. 89
6.9.3.3 Integer-Type . 90
6.9.3.4 Real-Type . 90

6.9.3.4.1 Floating-Point Representation..... 90
6.9.3.4.2 Fixed-Point Representation 92

6.9.3.5 Boolean-Type . 93
6.9.3.6 String-Types . 93

6.9.4 The Procedure Writeln . 93
6.9.5 The Procedure Page............................. 94

6.10 Programs . 94

TABLES PAGE

Table 1 Metalanguage Symbols . 21
Table 2 Dyadic Arithmetic Operations . 72
Table 3 Monadic Arithmetic Operations... 72
Table 4 Set Operations . 7 4
Table 5 Relational Operations. 7 5

APPENDIXES

Appendix A Collected Syntax. 99
Appendix B Index , 109
Appendix C Required Identifiers 123
Appendix D Errors . 124

An American National Standard

IEEE Standard Pascal
Computer Programming Language

1. Scope

1.1. This standard specifies the semantics and syntax of the computer
programming language Pascal by specifying requirements for a processor
and for a conforming program.

1.2. This standard does not specify:

(a) the size or complexity of a program and its data that will exceed the
capacity of any specific data processing system or the capacity of a
particular processor, nor the actions to be taken when the corresponding
limits are exceeded;

!bl the minimal requirements of a data processing system that is capable
of supporting an implementation of a processor for Pascal;

le) the method of activating the program-block or the set of commands used
to control the environment in which a Pascal program is transformed and
executed;

(dl the mechanism by which programs written in Pascal are transformed
fer use by a data processing system;

(el the method for reporting errors or warnings;

(f) the typographical representation of a program published for human
reading.

2. Reference

ISO 646 : The 7-bit coded character set for information processing
interchange.

19

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

3. Definitions

For the purposes of this standard, the following definitions apply.

NOTE: To draw attention to language concepts, some terms are printed in italics on their first
mention in this standard.

3.1. Error. A violation by a program of the requirements of this
standard that a processor is permitted to leave undetected.

NOTES:
(1) If it is possible to construct a program in which the violation or non-violation of this standard

requires knowledge of the data read by the program or the implementation definition of
implementation-defined features. then violation of that requirement is classified as an error.
Processors may report on such violations of the requirement without such knowledge, but there
always remain some cases that require execution or simulated execution, or proof procedures with
the required knowledge. Requirements that can be verified without such knowledge are not
classified as errors.

(2) Processors should attempt the detection of as many errors as possible. and to as complete
a degree as possible. Permission to omit detection is provided for implementations in which the
detection would be an excessive burden.

3.2. Extension. A modification to Section 6 of the requirements of
this standard that does not invalidate any program complying with this
standard, as defined by Section 5.2, except by prohibiting the use of one or
more particular spellings of identifiers.

3.3. Implementation-Defined. Possibly differing between
processors, but defined for any particular processor.

3.4. Implementation-Dependent. Possibly differing between
processors and not necessarily defined for any particular processor.

3.5. Processor. A system or mechanism that accepts a program as
input, prepares it for execution, and executes the process so defined with
data to produce results.

NOTE: A processor may consist of an interpreter, a compiler and run-time system, or other
mechanism, together with an associated host computing machine and operating system, or other
mechanism for achieving the same effect. A compiler in itself, for example, does not constitute
a processor.

20

COMPUTER PROGRAMMING LANGUAGE

4. Definitional Conventions

ANSI/IEEE
770X3.97-1983

The metalanguage used in this standard to specify the syntax of the
constructs is based on Backus-Naur Form. The notation has been modified
from the original to permit greater convenience of description and to allow
for iterative productions to replace recursive ones. Table 1 lists the
meanings of the various metasymbols. Further specification of the
constructs is given by prose and, in some cases, by equivalent program
fragments. Any identifier that is defined in Section 6 as a required
identifier shall denote the corresponding required entity by its occurrence
in such a program fragment. In all other respects, any such program
fragment is bound by any pertinent requirement of this standard.

Table 1.
Metalanguage Symbols

Metasymbol

=

[x]

I x I
< x I y J
"xyz"
meta-identifier

Meaning

shall be defined to be
alternatively
end of definition
0 or 1 instance of x
0 or more instances of x
grouping: either of x or y
the terminal symbol xyz
a non-terminal symbol

A meta-identifier shall be a sequence of letters and hyphens beginning
with a letter.

A sequence of terminal and non-terminal symbols in a production implies
the concatenation of the text that they ultimately represent. Within 6.1
this concatenation is direct; no characters shall intervene. In all other
parts of this standard the concatenation is in accordance with the rules set
out in 6.1.

The characters required to form Pascal programs shall be those implicitly
required to form the tokens and separators defined in 6.1.

21

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

Use of the words of, in, containing and closest-containing when
expressing a relationship between terminal or non-terminal symbols shall
have the following meanings.

the x of a y: refers to the x occurring directly in a production defining
y.

the x in a y: is synonymous with 'thP x of a y'.

a y containing an x: refers to any y from which an x is directly or
indirectly derived.

they closest-containing an x: that y which contains an x but does not
contain another y containing that x.

These syntactic conventions are used in Section 6 to specify certain
syntactic requirements and also the contexts within which certain semantic
specifications apply.

5.1. Processors.
standard shall:

5. Compliance

A processor complying with the requirements of this

(al accept all the features of the language specified in Section 6 with the
meanings defined in Section 6;

(bl (This section intentionally left blank to preserve numbering with ISO
dp7185.J

(c) not require the inclusion of substitute or additional language elements
in a program in order to accomplish a feature of the language that is
specified in Section 6:

(d) be accompanied by a document that provides a definition of all
implementation-defined features;

(e) be able to determine whether or not a program violates any
requirement of this standard, where such a violation is not designated

22

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

an error, and report the result of this determination to the user of the
processor; in the case where the processor does not examine the whole
program, the user shall be notified that the determination is incomplete
whenever no violations have been detected in the program text examined;

(f) treat each violation that is designated an error in at least one of the
following ways:

(1) there shall be a statement in an accompanying document that the
error is not reported;

(2) the processor shall report during preparation of the program for
execution that an occurrence of that error was possible;

(3) the processor shall report the error during preparation of the
program for execution;

(4) the processor shall report the error during execution of the
program, and terminate execution of the program;

and if any violations that are designated as errors are treated in the
manner described in 5. l(f)(l l, then a note referencing each such
treatment shall appear in a separate section of the accompanying
document;

(g) be accompanied by a document that separately describes any features
accepted by the processor that are prohibited or not specified in Section 6:
such extensions shall be described as being 'extensions to Pascal as specified
by ANSI/IEEE770X3.97-1983';

(hl be able to process in a manner similar to that specified for errors any
use of any such extension;

(i) be able to process in a manner similar to that specified for errors any
use of an implementation-dependent feature.

NOTES:
(1) The phrase ·be able to' is used in 5.1 to permit the implementation of a switch with which

the user may control the reporting.
(2) In cases where the compilation is aborted due to some limitation of tables. etc., an incomplete

determination of the kind · No violations were detected. but the examination is incomplete: will
satisfy the requirements of Section 5.1(e). In a similar manner, an interpretive or direct execution
processor may report an incomplete determination for a program of which all aspects have not
been examined.

23

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

A processor that purports to comply, wholly or partially, with the
requirements of this standard shall do so only in the following terms. A
compliance statement shall be produced by the processor as a consequence
of using the processor, or shall be included in accompanying documentation.
If the processor complies in all respects with the requirements of this
standard the compliance statement shall be:

<This processor> complies with the requirements of
ANSI!IEEE770X3.97-1983.

If the processor complies with some but not all of the requirements of this
standard then it shall not use the above statement, but shall instead use
the following compliance statement:

<This processor> complies with the requirements of
ANSI/IEEE770X3. 97-1983 with the following exceptions:

<followed by a reference to, or a complete list of, the requirements
of the standard with which the processor does not comply> .

In both cases the text <This processor> shall be replaced by an
unambiguous name identifying the processor.

NOTE: Processors that do not comply fully with the requirements of the standard are not required
to give full details of their failures to comply in the compliance statement; a brief reference to
acr.ompanying documentation that contains a complete list in sufficient detail to identify the
defects is sufficient.

5.2. Programs.
standard shall:

A program complying with the requirements of this

(a) use only those features of the language specified in Section 6,

(b) not rely on any particular interpretation of implementation-dependent
features.

NOTES:
(1) A program that complies with the requirements of this standard may rely on particular

implementation-defined values or features.
(2) The requirements for compliant programs and compliant processors do not require that the

results produced by a compliant program are always the same when processed by a compliant
processor. They may be, or they may differ, depending on the program. A simple program to
illustrate this is:

program x(output); begin writeln(maxint) end.

24

COMPUTER PROGRAMMING LANGUAGE

6. Requirements

6.1. Lexical Tokens.

ANSI/IEEE
770X3.97-1983

NOTE: The syntax given in this subsection (6. 1) describes the formation of lexical tokens from
characters and the separation of these tokens, and therefore does not adhere to the same rules
as the syntax in the rest of this standard.

6.1.1. General. The lexical tokens used to construct Pascal programs
shall be classified into special-symbols, identifiers, directives,
unsigned-numbers, labels and character-strings. The representation of
any letter (upper-case or lower-case, differences of font, etc.) occurring
anywhere outside of a character-string (see 6.1.7) shall be insignificant in
that occurrence to the meaning of the program.

letter = ·a· i "b" i ·c· I "d" I "e" I "f' I "g" I "h" I "i" I "j" I "k" I ·1· I "m" I
"n" I "o" I "p" I "q" I "r" i "s" I "t" I "u" I "v" I "w" I "x" I "y" I "z" .

digit = "O" ! "1" : ·2· ~ "3" I "4" I "5" I "6" I "7" I "8" I "9" .

6.1.2. Special-Symbols. The special-symbols are tokens having
special meanings and shall be used to delimit the syntactic units of the
language.

special-symbol = • + · ! ._ .. I "*" I "/" I "=" I "<" I "> · I "[" I
Tl "."l","l":"l";"l"l"l"("i"J"l"<>"i
· < =· I ''> =" I ":=" I " .. " I word-symbol .

word-symbol = "and" I "array" I "begin" I "case" I "const" I "div" I
"do" i "downto" I "else" I "end" I "file" I "for" I
"function" I "goto" I "if' I "in" I "label" I "mod" I
"nil" I "not" I "of' I "or" I "packed" I "procedure" I
"program" I "record" I "repeat" I "set" I "then" I
"to" I "type" I "until" I "var" I "while" I "with" .

6.1.3. Identifiers. Identifiers may be of any length. All characters
of an identifier shall be significant in distinguishing between identifiers.
No identifier shall have the same spelling as any word-symbol. Identifiers
that are specified to be required shall have special significance (see 6.2.2.10
and 6.10).

identifier = letter I letter I digit I .

25

ANSI/IEEE
770X3.97-1983

EXAMPLES:

IEEE STANDARD PASCAL

X time readinteger WG4 AlterHeatSetting
Inquire W orkstationTransformation
lnqui re W orkstationlden ti fication

6.f.4. Directives. A directive shall occur only in a
procedure-declaration or function-declaration. The directive forward
shall be the only required directive (see 6.6. l and 6.6.2). No directive shall
have the same spelling as any word-symbol.

directive = letter I letter I digit I .
NOTE: Many processors provide. as an extension. the directive external, which is used to specify
that the procedure-block or function-block corresponding to that procedure-heading or
function-heading is external to the program-block. Usually it is in a library in a form to be input
to. or that has been produced by. the processor.

6.1.5. Numbers. An unsigned-integer shall denote in decimal
notation a value of integer-type (see 6.4.2.2). An unsigned-real shall denote
in decimal notation a value of real-type (see 6.4.2.2). The letter 'e'
preceding a scale factor shall mean times ten to the power of. The value
denoted by an unsigned-integer shall be in the closed interval 0 to maxint
(see 6.4.2.2 and 6.7.2.2).

signed-number = signed-integer I signed-real

signed-real = [sign] unsigned-real .

signed-integer = [sign] unsigned-integer

unsigned-number = unsigned-integer J unsigned-real

sign = "+" I "-" •

unsigned-real =
unsigned-integer "." fractional-part ["e" scale-factor] I
unsigned-integer "e" scale-factor

unsigned-integer = digit-sequence .

fractional-part = digit-sequence .

26

COMPUTER PROGRAMMING LANGUAGE

scale-factor = signed-integer .

digit-sequence = digit I digit I

EXAMPLES:

lelO I +100 -0.l 5e-3 87.35E+8

ANSI/IEEE
770X3.97-1983

6.1.6. Labels. Labels shall be digit-sequences and shall be
distinguished by their apparent integral values and shall be in the closed
interval 0 to 9999.

label = digit-sequence

6.1.7. Character-Strings. A character-string containing a single
string-element shall denote a value of the required char-type (see 6.4.2.2).
A character-string containing more than one string-element shall denote
a value of a string-type (see 6.4.3.2) with the same number of components
as the character-string contains string-elements. There shall be an
implementation-defined one-to-one correspondence between the set of
alternatives from which string-elements are drawn and a subset of the
values of the required char-type. The occurrence of a string-element in
a character-string shall denote the occurrence of the corresponding value
of char-type.

character-string = "'" string-element I string-element I ··· .

string-element = apostrophe-image I string-character

apostrophe-image = """

string-character = one-of-a-set-of-implementation-defined-characters

NOTE: Conventionally, the apostrophe-image is regarded as a substitute for the apostrophe
character, which cannot be a string-character.

EXAMPLES:

'A'
'Pascal' 'THIS IS A STRING'

27

ANSI/IEEE
770X3.97-1983

6.1.8. Token Separators.

IEEE STANDARD PASCAL

The construct

• 1 • any-sequence-of-characters-and-separation-of-lines-not-containing-right-brace • 1 •

shall be a comment if the / does not occur within a character-string or
within a comment. The substitution of a space for a comment shall not
alter the meaning of a program.

Comments, spaces <except in character-strings!, and the separation of
consecutive lines shall be considered to be token separators. Zero or more
token separators may occur between any two consecutive tokens, or before
the first token of a program text. There shall be at least one separator
between any pair of consecutive tokens made up of identifiers,
word-symbols, labels or unsigned-numbers. No separators shall occur
within tokens.

6.1.9. Lexical Alternatives. The representation for lexical tokens
and separators given in 6.1.l to 6.1.8 shall constitute a reference
representation for these tokens and separators. The reference
representation shall be used for program interchange.

To facilitate the use of Pascal on processors that do not support the
reference representation, the following alternatives have been defined. All
processors that have the required characters in their character set shall
provide both the reference representations and the alternative
representations, and the corresponding tokens or separators shall not be
distinguished.

The alternative representations for the tokens shall be:

Reference token
I
[
]

Alternative token
@

(.

.)
NOTE: The character A that appears in some national variants of ISO 646 is regarded as identical
to the character T. In this standard. the character T has been used because of its greater visibility.

28

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

The alternative forms of comment shall be all forms of comment where
one or both of the following substitutions are made:

NOTES:

Delimiting
character

Alternative delimiting
pair of characters

(*
*)

(1) A comment may thus commence with / and end with *). or commence with (* and end
with /.

(21 If the sequence (*) occurs in a comment, it is equivalent to (/ and marks the end of the
comment. because the substitution is only for a delimiting character.

(31 See also 1.2(f).

6.2. Blocks, Scope and Activations.

6.2.l. Block.

A block closest-containing a label-declaration-part in which a label
occurs shall closest-contain exactly one statement in which that label
occurs. The occurrence of a label in the label-declaration-part of a block
shall be its defining-point as a label for the region that is the block.

block = label-declaration-part
constant-definition-part

type-definition-part
variable-declaration-part

procedure-and-function-declaration-part
statement-part .

label-declaration-part = ["label" label label I ";"] .

constant-definition-part =
["const" constant-definition ";" I constant-definition ";" I] .

type-definition-part =
["type" type-definition ";" I type-definition ";" I] .

variable-declaration-part =
["var" variable-declaration ";" I variable-declaration ";" I] .

procedure-and-function-declaration-part =
I (procedure-declaration I function-declaration) ";" I .

29

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

The statement-part shall specify the algorithmic actions to be executed
upon an activation of the block.

statement-part = compound-statement .

6.2.2. Scope.

6.2.2.1. Each identifier or label contained by the program-block shall have
a defining-point.

6.2.2.2. Each defining-point shall have a region that is a part of the
program text, and a scope that is a part or all of that region.

6.2.2.3. The region of each defining-point is defined elsewhere (see 6.2.1,
6.2.2.10, 6.3, 6.4.1, 6.4.2.3, 6.4.3.3, 6.5.1, 6.5.3.3, 6.6.1, 6.6.2, 6.6.3.1, 6.8.3.10,
6.10).

6.2.2.4. The scope of each defining-point shall be its region !including all
regions enclosed by that region) subject to 6.2.2.5 and 6.2.2.6.

6.2.2.5. When an identifier or label has a defining-point for region A and
another identifier or label having the same spelling has a defining-point
for some region B enclosed by A, then region B and all regions enclosed by
B shall be excluded from the scope of the defining-point for region A.

6.2.2.6. The region that is the field-specifier of a field-designator shall
be excluded from the enclosing scopes.

6.2.2.7. When an identifier or label has a defining-point for a region,
another identifier or label with the same spelling shall not have a
defining-point for that region.

6.2.2.8. Within the scope of a defining-point of an identifier or label, each
occurrence of an identifier or label having the same spelling as the
identifier or label of the defining-point shall be designated an applied
occurrence of the identifier or label of the defining-point, except for an
occurrence that constituted the defining-point of that identifier or label;
such an occurrence shall be designated a defining occurrence. No
occurrence outside that scope shall be an applied occurrence.

NOTE: Within the scope of a defining-point of an identifier or label, there are no applied
occurrences of an identifier or label that cannot be distinguished from it and have a defining-point
for a region enclosing that scope.

30

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

6.2.2.9. The defining-point of an identifier or label shall precede all applied
occurrences of that identifier or label contained by the program-block with
one exception, namely that an identifier may have an applied occurrence
in the type-identifier of the domain-type of any new-pointer-types
contained by the type-definition-part that contains the defining-point of
the type-identifier.

6.2.2.10. Identifiers that denote required constants, types, procedures and
functions shall be used as if their defining-points have a region enclosing
the program (see 6.1.3, 6.3, 6.4.1 and 6.6.4.1).

NOTE: The required identifiers input and output are not included, since these denote variables.

6.2.2.11. Whatever an identifier or label denotes at its defining-point shall
be denoted at all applied occurrences of that identifier or label.

NOTE: Within syntax definitions, an applied occurrence of an identifier is qualified, e.g.
type-identifier, whereas a use that constitutes a defining-point is not qualified.

6.2.3. Activations.

6.2.3.1. A procedure-identifier or function-identifier having a
defining-point for a region that is a block within the
procedure-and-function-declaration-part of that block shall be designated
local to that block.

6.2.3.2. The activation of a block shall contain:

(a) for the statement-part of the block, an algorithm, the completion of
which shall terminate the activation (see also 6.8.2.4);

(b) for each label in a statement having a defining-point in the
label-declaration-part of the block, a program-point in the algorithm of the
activation at that statement;

(cl for each variable-identifier having a defining-point for the region that
is the block, a variable possessing the type associated with the
variable-identifier;

ldl for each procedure-identifier local to the block, a procedure with the
procedure-block corresponding to the procedure-identifier, and the formal
parameters of that procedure-block;

31

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

le) for each function-identifier local to the block, a function with the
function-block corresponding to, and the result type associated with, the
function-identifier, and the formal parameters of that function-block;

!fl if the block is a function-block, a result possessing the associated result
type.

NOTE: Each activation contains its own algorithm, set of program-points, set of variables, set of
procedures, and set of functions. distinct from every other activation.

6.2.3.3. The activation of a procedure or function shall be the activation
of the block of its procedure-block or function-block, respectively, and shall
be designated as within :

(a) the activation containing the procedure or function; and

(bl all activations that that containing activation is within.

NOTE: An activation of a block B can only be within activations of blocks containing B. Thus an
activation is not within another activation of the same block.

Within an activation, an applied occurrence of a label or
variable-identifier, or of a procedure-identifier or function-identifier local
to the block of the activation, shall denote the corresponding
program-point, variable, procedure, or function, respectively, of that
activation; except that the function-identifier of an assignment-statement
shall, within an activation of the function denoted by that
function-identifier, denote the result of that activation.

6.2.3.4. A procedure-statement or function-designator contained in the
algorithm of an activation and that specifies the activation of a block shall
be designated the activation-point of that activation of the block.

6.2.3.5. All variables contained by an activation, except for those listed as
program-parameters, and any result of an activation, shall be
totally-undefined at the commencement of that activation. The algorithm,
program-points. variables, procedures and functions, if any, shall exist
until the termination of the activation.

32

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

6.3. Constant-Definitions.
identifier to denote a value.

A constant-definition shall introduce an

constant-definition = identifier "=" constant

constant = [sign] (unsigned-number I constant-identifier) I
character-string .

constant-identifier = identifier

The occurrence of an identifier in a constant-definition of a
constant-definition-part of a block shall constitute its defining-point for
the region that is the block. The constant in a constant-definition shall
not contain an applied occurrence of the identifier in the
constant-definition. Each applied occurrence of that identifier shall be a
constant-identifier and shall denote the value denoted by the constant of
the constant-definition. A constant-identifier in a constant containing an

occurrence of a sign shall have been defined to denote a value of real-type
or of integer-type. The required constant-identifiers shall be as specified
in 6.4.2.2 and 6.7.2.2.

6.4. Type-Definitions.

6.4.1. General. A type-definition shall introduce an identifier to
denote a type. Type shall be an attribute that is possessed by every value
and every variable. Each occurrence of a new-type shall denote a type that
is distinct from any other new-type.

type-definition = identifier "=" type-denoter .

type-denoter = type-identifier I new-type

new-type = new-ordinal-type I
new-structured-type I
new-pointer-type .

The occurrence of an identifier in a type-definition of a
type-definition-part of a block shall constitute its defining-point for the
region that is the block. Each applied occurrence of that identifier shall
be a type-identifier and shall denote the same type as that which is denoted

33

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

by the type-denoter of the type-definition. Except for applied occurrences
in the domain-type of a new-pointer-type, the type-denoter shall not
contain an applied occurrence of the identifier in the type-definition.

Types shall be classified as simple, structured or pointer types. The
required type-identifiers and corresponding re4uired types shall be as
specified in 6.4.2.2 and 6.4.3.5.

simple-type-identifier = type-identifier

structured-type-identifier = type-identifier .

pointer-type-identifier = type-identifier

type-identifier = identifier .

A type-identifier shall be considered as a simple-type-identifier, a
structured-type-identifier, or a pointer-type-identifier, according to the
type that it denotes.

6.4.2. Simple-Types.

6.4.2.1. General. A simple-type shall determine an ordered set of
values. The values of each ordinal-typP. shall have integer ordinal
numbers. An ordinal-type-identifier shall denote an ordinal-type.

simple-type = ordinal-type I real-type-identifier .

ordinal-type = new-ordinal-type I ordinal-type-identifier

new-ordinal-type = enumerated-type I subrange-type

ordinal-type-identifier = type-identifier .

real-type-identifier = type-identifier .

6.4.2.?. Required Simple-Types. The following types shall exist:

!al integer-type. The required ordinal-type-identifier integer shall
denote the integer-type. The values shall be a subset of the whole numbers,
den0ted as specified in 6.1.5 by signed-integer (see also 6.7.2.2). The ordinal
11umber of a value of integer-type shall be the value itself.

34

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

lb) real-type. The required real-type-identifier real shall denote the
real-type. The values shall be an implementation-defined subset of the
real numbers denoted as specified in 6.1.5 by signed-real.

lc) Boolean-type. The required ordinal-type-identifier Boolean shall
denote the Boolean-type. The values shall be the enumeration of truth
values denoted by the required constant-identifiers false and true, such
that false is the predecessor of true. The ordinal numbers of the truth
values denoted by false and true shall be the integer values 0 and 1
respectively.

ldJ char-type. The required ordinal-type-identifier char shall denote the
char-type. The values shall be the enumeration of a set of
implementation-defined characters, some possibly without graphic
representations. The ordinal numbers of the character values shall be
values of integer-type, that are implementation-defined, and that are
determined by mapping the character values on to consecutive
non-negative integer values starting at zero. The mapping shall be order
preserving. The following relations shall hold.

(1) The subset of character values representing the digits 0 to 9 shall
be numerically ordered and contiguous.

(2) The subset of character values representing the upper-case letters
A to Z, if available, shall be alphabetically ordered but not necessarily
contiguous.

13) The subset of character values representing the lower-case letters
a to z, if available, shall be alphabetically ordered but not necessarily
contiguous.

14) The ordering relationship between any two character values shall
be the same as between their ordinal numbers.

NOTE: Operators applicable to the required simple-types are specified in 6.7.2.

6.4.2.3. Enumerated-Types. An enumerated-type shall determine
an ordered set of values by enumeration of the identifiers that denote those
values. The ordering of these values shall be determined by the sequence
in which their identifiers are enumerated, i.e. if x precedes y then x is less
than y. The ordinal number of a value that is of an enumerated-type shall
be determined by mapping all the values of the type on to consecutive

35

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

non-negative values of integer-type starting from zero. The mapping shall
be order preserving.

enumerated-type = "(" identifier-list "J" .

identifier-list = identifier I "," identifier l .
The occurrence of an identifier in the identifier-list of an

enumerated-type shall constitute its defining-point as a
constant-identifier for the region that is the block closest-containing the
enumerated-type.

EXAMPLES:

(red, yellow, green, blue, tartan)
(club, diamond, heart, spade)
(married, divorced, widowed, single)
(scanning, found, notpresent)
tBusy, InterruptEnable, ParityError, OutOfPaper, LineBreakl

6.4.2.4. Subrange-Types. A subrange-type shall include
identification of the smallest and the largest value in the subrange. The
first constant of a subrange-type shall specify the smallest value, and this
shall be less than or equal to the largest value which shall be specified by
the other constant of the subrange-type. Both constants shall be of the
same ordinal-type, and that ordinal-type shall be designated the host type
of the subrange-type.

subrange-type = constant " .. " constant

EXAMPLES:

1..100
-10 .. + 10
red .. green
·o·.:g·

6.4.3. Structured-Types.

6.4.3.1. General. A new-structured-type shall be classified as an
array-type, record-type, set-type or file-type according to the
unpacked-structured-type closest-contained by the new-structured-type.
A component of a value of a structured-type shall be a value.

36

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

structured-type = new-structured-type I structured-type-identifier

new-structured-type = ["packed"] unpacked-structured-type

unpacked-structured-type = array-type I record-type I
set-type I file-type .

The occurrence of the token packed in a new-structured-type shall
designate the type denoted thereby as packed. The designation of a
structured-type as packed shall indicate to the processor that data-storage
of values should be economized, even if this causes operations on, or
accesses to components of, variables possessing the type to be less efficient
in terms of space or time.

The designation of a structured-type as packed shall affect the
representation in data-storage of that structured-type only; i.e., if a
component is itself structured, the component's representation in
data-storage shall be packed only if the type of the component is designated
packed.

NOTE: The ways in which the treatment of entities of a type is affected by whether or not the type
is designated packed are specified in 6.4.3.2, 6.4.5. 6.6.3.3. 6.6.5.4 and 6.7.1.

6.4.3.2. Array-Types. An array-type shall be structured as a
mapping from each value specified by its index-type on to a distinct
component. Each component shall have the type denoted by the
type-denoter of the component-type of the array-type.

array-type =
"array" "[" index-type I

index-type = ordinal-type .

component-type = type-denoter

EXAMPLES:

array [l..100) of real
array [Boolean] of colour

index-type I "]" "of' component-type .

37

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

An array-type that specifies a sequence of two or more index-types shall
be an abbreviated notation for an array-type specified to have as its
index-type the first index-type in the sequence, and to have a
component-type that is an array-type specifying the sequence of
index-types without the first and specifying the same component-type as
the original specification. The component-type thus constructed shall be
designated packed if and only if the original array-type is designated
packed. The abbreviated form and the full form shall be equivalent.

NOTE: Each of the following two examples thus contains different ways of expressing its
array-type.

EXAMPLE 1.

array [Boolean] of array [l..10] of array [size] of real
array [Boolean] of array [l..10, size] of real
array [Boolean, 1..10, size] of real
array [Boolean, 1..10] of array [size] of real

EXAMPLE 2.

packed array [l..10, 1..8] of Boolean
packed array [l..10] of packed array [1..8] of Boolean

Let i denote a value of the index-type; let v[i] denote a value of that
corr.ponent of the array-type that corresponds to the value i by the
structure of the array-type; let the smallest and largest values specified by
the index-type be denoted by m and n; and let k = (ord(n)-ord(m)+ 1)
denote the number of values specified by the index-type; then the values
of the array-type shall be the distinct k-tuples of the form

(v[m], ... ,v[n]).

NOTE: A value of an array-type does not therefore exist unless all of its component values are
defined. If the component-type has c values. then it follows that the cardinality of the set of values
of the array-type is c raised to the power k.

Any type designated packed and denoted by an array-type having as its
index-type a denotation of a subrange-type specifying a smallest value of
1 and a largest value of greater than 1, and having as its component-type
a denotation of the char-type, shall be designated a string-type.

38

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

The correspondence of character-strings to values of string-types is
obtained by relating the individual string-elements of the character-string,
taken in textual order, to the components of the values of the string-type
in order of increasing index.

NOTE: The values of a string-type possess additional properties which allow writing them to
textfiles (see 6.9.3.6) and define their use with relational-operators (see 6.7.2.5).

6.4.3.3. Record-Types. The structure Rnd values of a record-type
shall be the structure and values of the field-list of the record-type.

record-type = "record" field-list "end" .

field-list = [(fixed-part [";" variant-part] I variant-part) [";"]]

fixed-part = record-section I ";" record-section

record-section = identifier-list ":" type-denoter

variant-part = "case" variant-selector "of' variant ";" variant I .

variant-selector = [tag-field ""'] tag-type .

tag-field = identifier .

variant = case-constant-list ":" "(" field-list ")"

tag-type = ordinal-type-identifier .

case-constant-list = case-constant case-constant I .

case-constant = constant .

A field-list that contains neither a fixed-part nor a variant-part shall
have no components, shall define a single null value, and shall be
designated empty.

The occurrence of an identifier in the identifier-list of a record-section
of a fixed-part of a field-list shall constitute its defining-point as a
field-identifier for the region that is the record-type closest-containing

39

ANSI/IEEE
770X3.97-1983 IEEE ST AND ARD PASCAL

the field-list, and shall associate the field-identifier with a distinct
component, which shall be designated a field, of the record-type and of the
field-list. That component shall have the type denoted by the type-denoter
of the record-section.

The field-list closest-containing a variant-part shall have a distinct
component that shall have the values and structure defined by the
variant-part.

Let Vi denote the value of the i-th component of a non-empty field-list
having m components; then the values of the field-list shall be distinct
m-tuples of the form

NOTE: If the type of the i-th component has F; values, then the cardinality of the set of values
of the field-list shall be (F 1 * F 2 * ... * F ml·

A tag-type shall denote the type denoted by the ordinal-type-identifier
of the tag-type. A case-constant shall denote the value denoted by the
constant of the case-constant.

The type of each case-constant in the case-constant-list of a variant of
a variant-part shall be compatible with the tag-type of the
variant-selector of the variant-part. The values denoted by all
casc::-constants of a type that is required to be compatible with a given
tag-type shall be distinct and the set thereof shall be equal to the set of
values specified by the tag-type. The values denoted by the case-constants
of the case-constant-list of a variant shall be designated as corresponding
to the variant.

With each variant-part shall be associated a type designated the
selector-type possessed by the variant-part. If the variant-selector of the
variant-part contains a tag-field, or if the case-constant-list of each
variant of the variant-part contains only one case-constant, then the
selector-type shall be denoted by the tag-type, and each variant of the
variant-part shall be associated with those values specified by the
selector-type denoted by the case-constants of the case-constant-list of
the variant. Otherwise, the selector-type possessed by the variant-part
shall be a new ordinal-type constructed such that there is exactly one

40

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

value of the type for each variant of the variant-part, and no others, and
each variant shall be associated with a distinct value of that type.

Each variant-part shall have a component that shall be designated the
selector of the variant-part, and which shall possess the selector-type of
the variant-part. If the variant-selector of the variant-part contains a
tag-field, then the occurrence of an identifier in the tag-field shall
constitute the defining-point of the identifier as a field-identifier for the
region that is the record-type closest-containing the variant-part, and
shall associate the field-identifier with the selector of the variant-part.
The selector shall be designated a field of the record-type if and only if it
is associated with a field-identifier.

Each variant of a variant-part shall denote a distinct component of the
variant-part; the component shall have the values and structure of the
field-list of the variant, and shall bt associated with those values specified
by the selector-type possessed by the variant-part associated with the
variant. The value of the selector of the variant-part shall cause the
associated variant and component of the variant-part to' be in a state that
shall be designated actfre.

The values of a variant-part shall be the distinct pairs

where k represents a value of the selector of the variant-part, and Xk is
a value of the field-list of the active variant of the variant-part.

NOTES:
(1) If there are n values specified by the selector-type, and if the field-list of the variant associated

with the i-th value has Ti values. then the cardinality of the set of values of the variant-part is (T 1
+ T 2 + ... + T nl· There is no component of a value of a variant-part corresponding to any
non-active variant of the variant-part.

(2) Restrictions placed on the use of fields of a record-variable pertaining to variant-parts are
specified in 6.5.3.3. 6.6.3.3 and 6.6.5.3.

EXAMPLES:

(1) record

end

year : 0 .. 2000;
month : 1..12;
day : 1..31

41

ANSI/IEEE
770X3.97-1983

(2) record

end

name, firstname : string;
age : 0 .. 99;
case married : Boolean of
true : ($pousesname : string);
false : ()

(3) record

end

x, y : real;
area : real;
case shape of
triangle :

(side : real;
inclination, anglel, angle2 : angle);

rectangle :
(sidel, side2 : real;
skew : angle);

circle :
(diameter : real):

IEEE STANDARD PASCAL

6.4.3.4. Set-Types. A set-type shall determine the set of values that
is structured as the powerset of the base-type of the set-type. Thus each
value of a set-type shall be a set whose members shall be unique values
of the base-type.

set-type = "set" ·or base-type .

base-type = ordinal-type .

NOTE: Operators applicable to values of set-types are specified in 6. 7.2.4.

EXAMPLES:

set of char
set of (club, diamond, heart, spade)

NOTE: If the base-type of a set-type has b values then the cardinality of the set of values is 2
raised to the power b.

42

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

For every ordinal-type S, there exists an unpacked set type designated
the unpacked canonical set-of-T type and there exists a packed set type
designated the packed canonical set-of-T type. If S is a subrange-type
then T is the host type of S; otherwise T is S. Each value of the type set
of S is also a value of the unpacked canonical set-of-T type, and each value
of the type packed set of S is also a value of the packed canonical set-of-T
type.

6.4.3.5. File-Types.

NOTE: A file-type describes sequences of values of the specified component-type, together with
a current position in each sequence and a mode that indicates whether the sequence is being
inspected or generated.

file-type = "file" "of' component-type

A type-denoter shall not be permissible as the component-type of a
file-type if it denotes either a file-type or a structured-type having any
component whose type-denoter 1s not permissible a~ the component-type
of a file-type.

EXAMPLES:

file of real
file of vector

A file-type shall define implicitly a type designated a sequence-type
having exactly those values, which shall be designated sequences, defined
by the following five rules in items !a) to (e).

NOTE: The notation x -y represents the concatenation of sequences x and y. The explicit
representation of sequences (e.g. S(c)). of concatenation of sequences. of the first. last and rest
selectors. and of sequence equality is not part of the Pascal language. These notations are used
to define file values. below. and the required file operations in 6.6.5.2 and 6.6.6.5.

(al SO shall be a value of the sequence-type S, and shall be designated the
empty sequence. The empty sequence shall have no components.

(b) Let c be a value of the specified component-type, and let x be a value
of the sequence-type S; then S(c) shall be a sequence of type S, consisting
of the single component value c, and both S!c)-x and x -S(c) shall be
sequences, distinct from SO, of type S.

43

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

(c) Let c, S, and x be as in (bJ; let y denote the sequence S(c)-x; and let
z denote the sequence x -S<cJ; then the notation y.first shall denote c (i.e.,
the first component value of yJ, y.rest shall denote x (i.e., the sequence
obtained from y by deleting the first component), and z.last shall denote
c (i.e., the last component value of z).

<dJ Let x and y each be a non-empty sequence of type S; then x = y shall
be true if and only if both (x.first = y.first) and (x.rest = y.rest) are true.
If x or y is the empty sequence, then x = y shall be true if and only if both
x and y are the empty sequence.

(e) Let x, y, and z be sequences of type S; then x-(y-zl = (x-yJ-z,
SO -x = x, and x ""'SO = x shall be true.

A file-type also shall define implicitly a type designated a mode-type
having exactly two values which are designated Inspection and
Generation.

NOTE: The explicit denotation of the values Inspection and Generation is not part of the Pascal
language.

A file-type shall be structured as three components. Two of these
components. designated f.L and f.R, shall be of the implicit sequence-type.
The third component, designated f..M, shall be of the implicit mode-type.

Let f.L and f.R each be a single value of the sequence-type; let f.M be a
single value of the mode-type; then each value of the file-type shall be a
distinct triple of the form

!f.L. f.R. f.MJ

where f.R shall be the empty sequence if f.M is the value Generation. The
value, f, of the file-type shall be designated empty if and only if f.L-f.R
is the empty sequence.

NOTE: The two components, f.l and f.R. of a value of the file-type may be considered to represent
the single sequence f.L-f.R together with a current position in that sequence. If f.R is non-empty,
then f.R.first may be considered the current component as determined by the current position;
otherwise. the current position is designated the end-of-file position.

44

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

There shall be a file-type that is denoted by the required
structured-type-identifier text. The structure of the type denoted by text
shall define an additional sequence-type whose values shall be designated
Jines. A line shall be a sequence cs -S(e), where cs is a sequence of
components having the char-type, and e represents a special component
value, which shall be designated an end-of-line, and which shall be
indistinguishable from the char value space except by the required function
eoln (see 6.6.6.5) and by the required procedures reset (see 6.6.5.2),
writeln (see 6.9.4), and page (see 6.9.5). If 1 is a line then no component
of 1 other than I.last shall be an end-of-line. These provisions describe the
functionality only, and shall not be construed to determine in any way the
underlying representation of textfiles; in particular, the relationship, if
any, between end-of-line and values of the char-type shall be
implementation-dependent.

A line-sequence, ls, shall be either the empty sequence or the sequence
I - ls' where 1 is a line and ls' is a line-sequence.

Every value t of the type denoted by text shall satisfy one of the following
two rules.

(a) If t.M = Inspection, then t.L-t.R shall be a line-sequence.

lbl If t.M = Generation, then t.L-t.R shall be ls-cs, where ls is a
line-sequence and cs is a sequence of components possessing the
char-type.

NOTE: In rule (b). cs may be considered, especially if it is non-empty, to be a partial line that
is being generated. Such a partial line cannot occur during inspection of a file. Also, cs does
not correspond to t.R since t.R is the empty sequence if t.M = Generation.

A variable that possesses the type denoted by the required
structured-type-identifier text shall be designated a textfile.

NOTE: All required procedures and functions applicable to a variable of type file of char are
applicable to textfiles. Additional required procedures and functions. applicable only to textfiles.
are defined in 6.6.6.5 and 6.9.

45

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

6.4.4. Pointer-Types. The values of a pointer-type shall consist of
a single nil-value, and a set of identifying-values each identifying a distinct
variable possessing the domain-type of the pointer-type. The set of
identifying-values shall be dynamic, in that the variables and the values
identifying them may be created and destroyed during the execution of the
program. Identifying-values and the variables identified by them shall be
created only by the required procedure new (see 6.6.5.3).

NOTE: Since the nil-value is not an identifying-value it does not identify a variable.

The token nil shall denote the nil-value in all pointer-types.

pointer-type = new-pointer-type I pointer-type-identifier .

new-pointer-type = ";" domain-type .

domain-type = type-identifier .

NOTE: The token nil does not have a single type. but assumes a suitable pointer-type to satisfy
the assignment-compatibility rules. or the compatibility rules for operators, if possible.

6.4.5. Compatible Types. Types Tl and T2 shall be designated
compatible if any of the following four statements is true.

lal Tl and T2 are the same type.

tbl Tl is a subrange of T2, or T2 is a subrange of Tl, or both Tl and T2
are subranges of the same host type.

tc) Tl and T2 are set-types of compatible base-types, and either both Tl
and T2 are designated packed or neither Tl nor T2 is designated packed.

(d) Tl and T2 are string-types with the same number of components.

6.4.6. Assignment-Compatibility. A value of type T2 shall be
designated assignment-compatible with a type Tl if any of the following
five statements is true.

(a) Tl and T2 are the same type and that type 1s permissible as the
component-type of a file-type (see 6.4.3.5).

lb) Tl is the real-type and T2 is the integer-type.

(c) Tl and T2 are compatible ordinal-types and the value of type T2 is in
the closed interval specified by the type Tl.

46

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

(dl Tl and T2 are compatible set-types and all the members of the value
of type T2 are in the closed interval specified by the base-type of Tl.

(e) Tl and T2 are compatible string-types.

At any place where the rule of assignment-compatibility is used:

(1) it shall be an error if Tl and T2 are compatible ordinal-types and the
value of type T2 is not in the closed interval specified by the type Tl;

(2) it shall be an error if Tl and T2 are compatible set-types and any
member of the value of type T2 is not in the closed interval specified by
the base-type of the type Tl.

6.4. 7. Example of a type-definition-part.

type
natural = O .. maxint;
count = integer;
range = integer;
colour = (red, yellow, green, blue);
sex = (male, female);
year = 1900 .. 1999;
shape = (triangle, rectangle, circle);
punchedcard = array [l..80] of char;
charsequence = file of char;
polar = record

r : real;
theta : angle

end;
indextype = 1..limit;
vector = array [indextype] of real;
person = l persondetails;

47

ANSI/IEEE
770X3.97-1983

persondetails =
record

name, firstname : charsequence;
age : integer;
married : Boolean;
father, child, sibling : person;
case s : sex of

end;

male:
(enlisted, bearded : Boolean);

female :
(mother, programmer : Boolean)

FileOflnteger = file of integer;

IEEE STANDARD PASCAL

NOTE: In the above example count range and integer denote the same type. The types denoted
by year and natural are compatible with, but not the same as, the type denoted by range, count
and integer.

6.5. Declarations and Denotations of Variables.

6.5.1. Variable-Declarations. A variable shall be an entity to
which a value may be attributed (see 6.8.2.2). Each identifier in the
identifier-list of a variable-declaration shall denote a distinct variable
possessing the type denoted by the type-denoter of the
variable-declaration.

variable-declaration = identifier-list ":" type-denoter .

The occurrence of an identifier in the identifier-list of a
variable-declaration of the variable-declaration-part of a block shall
constitute its defining-point as a variable-identifier for the region that is
the block. The structure of a variable possessing a structured-type shall
be the structure of the structured-type. A use of a variable-access shall
be an access, at the time of the use, to the variable thereby denoted. A
variable-access, according to whether it is an entire-variable, a
component-variable, an identified-variable, or a buffer-variable, shall
denote a declared variable, a component of a variable, a variable which is
identified by a pointer value (see 6.4.4), or a buffer-variable, respectively.

variable-access = entire-variable I component-variable I
identified-variable I buffer-variable .

48

COMPUTER PROGRAMMING LANGUAGE

Example of a variable-declaration-part:

var
x, y, z, max : real;
1, J : integer;
k : 0 .. 9;
p, q, r : Boolean;
operator : (plus, minus, timesl;
a : array (0 .. 63] of real;
c : colour;
f : file of char;
huel, hue2 : set of colour;
pl, p2 : person;
m, ml, m2 : array [l..10, 1..10] of real;
coord : polar;
pooltape : array (1..4] of FileOflnteger;
date : record

month : 1..12;
year : integer

end;

ANSI/IEEE
770X3.97-1983

NOTE: Variables occurring in examples in the remainder of this standard should be assumed to
ha"c! been declared as specified in 6.5. 1.

6.5.2. Entire-Variables.

entire-variable = variable-identifier

variable-identifier = identifier

6.5.3. Component-Variables.

6.5.3.1. General. A component of a variable shall be a variable. A
component-variable shall denote a component of a variable. A reference,
or access to a component of a variable shall constitute a reference, or access,
respectively, to the variable. The value, if any, of the component of a
variable shall be the same component of the value, if any, of the variable.

component-variable = indexed-variable I field-designator .

49

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

6.5.3.2. Indexed-Variables. A component of a variable possessing
an array-type shall be denoted by an indexed-variable.

indexed-variable =
array-variable "[" index-expression I "," index-expression I "]" .

array-variable = variable-access .

index-expression = expression .

An array-variable shall be a variable-access that denotes a variable
possessing an array-type. For an indexed-variable closest-containing a
single index-expression, the value of the index-expression shall be
assignment-compatible with the index-type of the array-type. The
component denoted by the indexed-variable shall be the component that
corresponds to the value of the index-expression by the mapping of the type
possessed by the array-variable (see 6.4.3.2).

EXAMPLES:

a[12]
a[i + j]
m[k]

If the array-variable is itself an indexed-variable an abbreviation may
be used. In the abbreviated form, a single comma shall replace the sequence
] [that occurs in the full form. The abbreviated form and the full form
shall be equivalent.

The order of evaluation of the index-expressions of an indexed-variable
shall be implementation-dependent.

EXAMPLES:

m[k][l]
m[k, 1]

NOTE: These two examples denote the same component variable.

50

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

6.5.3.3. Field-Designators. A field-designator either shall denote
that component of the record-variable of the field-designator associated
with the field-identifier of the field-specifier of the field-designator, by
the record-type possessed by the record-variable; or shall denote the
variable denoted by the field-designator-identifier (see 6.8.3.10) of the
field-designator. A record-variable shall be a variable-access that denotes
a variable possessing a record-type.

The occurrence of a record-variable in a field-designator shall constitute
the defining-point of the field-identifiers associated with components of the
record-type possessed by the record-variable, for the region that is the
field-specifier of the field-designator.

field-designator = record-variable "." field-specifier I
field-designator-identifier .

record-variable = variable-access .

field-specifier = field-identifier .

field-identifier = identifier .

EXAMPLES:

p21.mother
coord.theta

An access to a component of a variant of a variant-part, where the
selector of the variant-part is not a field, shall attribute to the selector that
value specified by its type l}Ssociated with the variant.

It shall be an error unless a variant is active for the entirety of each
reference and access to each component of the variant.

When a variant becomes not active, all of its components shall become
totally-undefined.

NOTE: If the selector of a variant-part is undefined. then no variant of the variant-part is active.

51

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

6.5.4. Identified-Variables. An identified-variable shall denote the
variable (if any) identified by the value of the pointer-variable of the
identified-variable (see 6.4.4 and 6.6.5.3).

identified-variable = pointer-variable "1"

pointer-variable = variable-access .

A variable created by the required procedure new (see 6.6.5.3) shall be
accessible until the termination of the activation of the program-block or
until the variable is made inaccessible (see the required procedure dispose,
6.6.5.3).

NOTE: The accessibility of the variable also depends on the existence of a pointer-variable that
has attributed to it the corresponding identifying value.

A pointer-variable shall be a variable-access that denotes a variable
possessing a pointer-type. It shall be an error if the pointer-variable of
an identified-variable either denotes a nil-value or is undefined. It shall
be an error to remove from its pointer-type the identifying-value of an
identified-variable (see 6.6.5.3l when a reference to the identified variable
exists.

EXAMPLES:

pl 1
pl 1.father1
pl) .sibling! .father!

6.5.5. Buffer-Variables. A file-variable shall be a variable-access
that denotes a variable possessing a file-type. A buffer-variable shall
denote a variable associated with the variable denoted by the file-variable
of the buffer-variable. A buffer-variable associated with a textfile shall
possess the char-type; otherwise, a buffer-variable shall possess the
component-type of the file-type possessed by the file-variable of the
buffer-variable.

buffer-variable = file-variable "1"

file-variable = variable-access .

52

COMPUTER PROGRAMMING LANGUAGE

EXAMPLES:

input!
pooltape[2] I

ANSI/IEEE
770X3.97-1983

It shall be an error to alter the value of a file-variable f when a reference
to the buffer-variable fl exists. A reference or access to a buff er-variable
shall constitute a reference or access, rPspectively, to the associated
file-variable.

6.6. Procedure and Function Declarations.

6.6.1. Procedure-Declarations.

procedure-declaration = procedure-heading ";" directive I
procedure-identification ";" procedure-block I
procedure-heading ";" procedure-block .

procedure-heading = "procedure" identifier [formal-parameter-list] .

procedure-identification = "procedure" procedure-identifier .

procedure-identifier = identifier .

procedure-block = block .

The occurrence of a formal-parameter-list in a procedure-heading of a
procedure-declaration shall define the formal parameters of the
procedure-block, if any, associated with the identifier of the
procedure-heading to be those of the formal-parameter-list.

The occurrence of an identifier in the procedure-heading of a
procedure-declaration shall constitute its defining-point as a
procedure-identifier for the region that is the block closest-containing the
procedure-declaration.

Each identifier having a defining-·point as a procedure-identifier in a
procedure-heading of a procedure-declaration closest-containing the
directive forward shall have exactly one of its applied occurrences in a
procedure-identification of a procedure-declaration, and that shall be

53

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

closest-contained by the procedure-and-function-declaration-part
closest-containing the procedure-heading.

The occurrence of a procedure-block in a procedure-declaration shall
associate the procedure-block with the identifier in the
procedure-heading, or with the procedure-identifier in the
procedure-identification, of the procedure-declaration.

Example of a procedure-and-function-declaration-part:

procedure readinteger (var f: text; var x : integer);
var

i : natural;
begin

while fl = · · do get!fJ;
!The file buffer contains the first non-space char!
i := O;
while f' in ['0' . .'9"] do
begin

i := (10 * il + (ord(f" l - ord('0'));
get(fl

end;
I The file buffer contains a non-digit I
X :=I

I Of course if there are no digits, x is zero I
end;

procedure bisect (function f(x real) : real;
a, b : real;
var result : real);

I This procedure attempts to find a zero of f(x) in (a,b) by
the method of bisection. It is assumed that the procedure is
called with suitable values of a and b such that

(f(a) < 0) and (f(bJ > 0)
The estimate is returned in the last parameter. I

con st
Eps = le-10;

var
midpoint : real;

54

COMPUTER PROGRAMMING LANGUAGE

begin
I The invariant P is true by calling assumption I
midpoint := a;
while abs(a - bl > Eps * abs(a) do

begin
midpoint := (a + b) I 2;
if f(midpoint) < 0 then a := midpoint
else b := midpoint
I Which re-establishes the invariant:

end;

P = (f(a) < 0) and (f(b) > 0)
and reduces the interval (a,b) provided that the
value of midpoint is distinct from both a and b. j

ANSI/IEEE
770X3.97-1983

IP together with the loop exit condition assures that a zero
is contained in a small sub-interval. Return the midpoint as
the zero. j

result . - midpoint
end;

procedure PrepareForAppending (var f : FileOflnteger);
I This procedure takes a file in an arbitrary state and sets

it up in a condition for appending data to its end. Simpler
conditioning is only possible if assumptions are made about the
initial state of the file. I

var
Loca!Copy : FileOflnteger;

procedure CopyFiles (var from, into : FileOflnteger);
begin

reset(from); rewrite(into);
while not eof(from) do
begin

into;:= fromi;
put(into); get(froml

end
end I of Copy Fi Jes J;

begin I of body of PrepareForAppending
CopyFiles(f, LocalCopy);
CopyFiles(LocalCopy, f)

end I of PrepareForAppending I;

55

ANSI/IEEE
770X3.97-1983

6.6.2. Function-Declarations.

IEEE ST AND ARD PASCAL

function-declaration = function-heading ";" directive I
function-identification ";" function-block I
function-heading ";" function-block .

function-heading =
"function" identifier [formal-parameter-list] ":" result-type

function-identification = "function" function-identifier .

function-identifier = identifier .

result-type = simple-type-identifier I pointer-type-identifier .

function-block = block .

The occurrence of a formal-parameter-list in a function-heading of a
function-declaration shall define the formal parameters of the
function-block, if any, associated with the identifier of the
function-heading to be those of the formal-parameter-list. The
function-block shall contain at least one assignment-statement such that
the function-identifier of the assignment-statement is associated with the
block !see 6.8.2.2J.

The occurrence of an identifier in the function-heading of a
function-declaration shall constitute its defining-point as a
function-identifier associated with the result type denoted by the
result-type for the region that is the block closest-containing the
function-declaration.

Each identifier having a defining-point as a function-identifier in the
function-heading of a function-declaration closest-containing the
directive forward shall have exactly one of its applied occurrences in a
function-identification of a function-declaration, and that shall be
closest-contained by the procedure-and-function-declaration-part
closest-containing the function-heading.

The occurrence of a function-block in a function-declaration shall
associate the function-block with the identifier in the function-heading,
or with the function-identifier in the function-identification, of the

56

ANSI/IEEE
COMPUTER PROGRAMMING LANGUAGE 770X3.97-1983

function-declaration; the block of the function-block shall be associated
with the result type that is associated with the identifier or
function-identifier, respectively.

Example of a procedure-and-function-dechi.ration-part:

function Sqrt (x : real) : real;

!This function computes the square root of x (x > 0) using Newton's
method.}
var

old, estimate : real;
begin

estimate : = x;
repeat

old := estimate;
estimate := (old + x I oldl * 0.5;

until abstestimate - oldl < Eps * estimate;
I Eps being a global constant I
Sqrt := estimate

end ! of Sqrt I;

function max (a : vector) : real;
! This function finds the largest component of the value of a. j
var

largestsofar : real;
fence : indextype;

begin
largestsofar := a[l];
I Establishes largestsofar = max(a[l]Jl
for fence := 2 to limit do begin

if largestsofar < a[fence] then largestsofar := a[fence]
I Re-establishing largestsofar = max(a[l], ... ,a[fence]ll

end;
I So now largestsofar = max(a[l], ... ,a[limit]) I
max : = largestsofar

end I of max J;

function GCD (m, n : natural) : natural;
begin

if n=O then GCD := m else GCD := GCD(n, m mod n);
end;

57

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

I The following two functions analyze a parenthesized expression and
convert it to an internal form. They are declared forward since they are
mutually recursive, i.e. they call each other. j

function ReadExpression : formula;
forward;

function ReadOperand formula;
forward;

function Read Expression; I See forward declaration of heading. I
var

this : formula;
op : operation;

begin
this : = ReadOperand;
while IsOperatorfnextsyml do

begin
op := ReadOperator;
this := MakeFormulafthis, op, ReadOperandl;
end;

ReadExpression .- this
end;

function ReadOperand; I See forward declaration of heading. I
begin

if IsOpenParenthesisfnextsym) then
begin
SkipSymbol;
ReadOperand := ReadExpression;
I nextsym should be a close-parenthesis I
SkipSymbol
end

else ReadOperand . - ReadElement
end;

58

COMPUTER PROGRAMMING LANGUAGE

6.6.3. Parameters.

ANSI/IEEE
770X3.97-1983

6.6.3.1. General. The identifier-list in a value-parameter­
specification shall be a list of value parameters. The identifier-list in a
variable-parameter-specification shall be a list of variable parameters.

formal-parameter-list =
"(" formal-parameter-section I ";" formal-parameter-section I ")" .

formal-parameter-section = value-parameter-specification \
variable-parameter-specification
procedural-parameter-specification
functional-parameter-specification .

value-parameter-specification = identifier-list ":" type-identifier

variable-parameter-specification =
"var" identifier-list ":" type-identifier

procedural-parameter-specification = procedure-heading

functional-parameter-specification = function-heading .

An identifier defined to be a parameter-identifier for the regicn that is
the formal-parameter-list of a procedure-heading shall be designated a
formal parameter of the block of the procedure-block, if any, associated
with the identifier of the procedure-heading. An identifier defined to be
a parameter-identifier for the region that is the formal-parameter-list of
a function-heading shall be designated a formal parameter of the block of
the function-block, if any, associated with the identifier of the
function-heading.

The occurrence of an identifier in the identifier-list of a
value-parameter-specification or a variable-parameter-specification shall
constitute its defining-point as a parameter-identifier for the region that
is the formal-parameter-list closest-containing it and its defining-point
as the associated variable-identifier for the region that is the block, if any,
of which it is a formal parameter.

The occurrence of the identifier of a procedure-heading in a
procedural-parameter-specification shall constitute its defining-point as a

59

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

parameter-identifier for the region that is the formal-parameter-list
closest-containing it and its defining-point as the associated
procedure-identifier for the region that is the block, if any, of which it is
a formal parameter.

The occurrence of the identifier of a function-heading in a
functional-parameter-specification shall constitute its defining-point as a
parameter-identifier for the region that is the formal-parameter-list
closest-containing it and its defining-point as the associated
function-identifier for the region that is the block, if any, of which it is a
formal parameter.

NOTE: If the formal-parameter-list is contained in a procedural-parameter-specification or a
functional-parameter-specification. there is no corresponding procedure-block or function-block.

6.6.3.2. Value Parameters. The formal parameter and its
associated variable-identifier shall denote the same variable. The formal
parameter shall possess the type denoted by the type-identifier of the
value-parameter-specification. The type possessed by a formal parameter
shall be one that is permitted as the component-type of a file-type. The
actual-parameter (see 6.7.3 and 6.8.2.3l shall be an expression whose value
is assignment-compatible with the type possessed by the formal parameter.
The current value of the expression shall be attributed upon activation of
the block to the variable that is denoted by the formal parameter.

6.6.3.3. Variable Parameters. The actual-parameter shall be a
variable-access. The type possessed by the actual-parameters shall be the
same as that denoted by the type-identifier of' the
variable-parameter-specification, and the formal parameters shall also
possess that type. The actual-parameter shall be accessed before the
activation of the block, and this access shall establish a reference to the
variable thereby accessed during the entire activation of the block; the
corresponding formal parameter and its associated variable-identifier shall
denote the referenced variable during the activation.

An actual variable parameter shall not denote a field that is the selector
of a variant-part. An actual variable parameter shall not denote a
component of a variable where that variable possesses a type that is
designated packed.

60

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

6.6.3.4. Procedural Parameters. The actual-parameter (see 6.7.3
and 6.8.2.3) shall be a procedure-identifier that has a defining-point
contained by the program-block. The procedure denoted by the
actual-parameter and the procedure denoted by the formal parameter srall
have congruous formal-parameter-lists !see 6.6.3.6) if either has a
formal-parameter-list. The formal parameter and its associated
procedure-identifier shall denote the actual parameter during the entire
activation of the block.

6.6.3.5. Functional Parameters. The actual-parameter (see 6.7.3
and 6.8.2.3) shall be a function-identifier that has a defining-point
contained by the program-block. The function denoted by the
actual-parameter and the function denoted by the formal parameter shall
have the same result-type and shall have congruous
formal-parameter-lists !see 6.6.3.6) if either has a formal-parameter-list.
The formal parameter and its associated function-identifier shall denote
the actual parameter during the entire activation of the block.

NOTE: Since required procedures and functions are used as if their defining-points have a region
enclosing the program (see 6.2.2.10), these procedures and functions may not be used as actual
parameters in a program.

6.6.3.6. Parameter List Congruity. Two formal-parameter-lists
shall be congruous if they contain the same number of
formal-parameter-sections and if the formal-parameter-sections in
::orresponding positions match. Two formal-parameter-sections shall
match if any of the following statements is true.

<al They are both value-parameter-specifications containing the
number of parameters and the type-identifier in each
parameter-specification denotes the same type.

same
value-

lb) They are both variable-parameter-specifications containing the same
number of parameters and the type-identifier in each variable­
parameter-specificat ion denotes the same type.

(cl They are both procedural-parameter-specifications and the formal­
parameter-lists of the procedure-headings thereof are congruous.

Id) They are both functional-parameter-specifications, the formal­
parameter-lists of the function-headings thereof are congruous, and the
type-identifiers of the result-types of the function-headings thereof
denote the same type.

61

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

6.6.4. Required Procedures and Functions.

6.6.4.1. General. The
function-identifiers and the
functions shall be as specified

required procedure-identifiers
corresponding required procedures
in 6.6.5 and 6.6.6, respectively.

and
and

NOTE: Required procedures and functions do not necessarily follow the rules given elsewhere for
proceaures and functions.

6.6.5. Required Procedures.

6.6.5.1. General. The required procedures shall be file handling
procedures, dynamic allocation procedures and transfer procedures.

6.6.5.2. File Handling Procedures. Except for the application of
rewrite or reset to the program parameters denoted by input or output, the
effects of applying each of the file handling procedures rewrite, put,
reset and get to a file-variable f shall be defined by pre-assertions and
post-assertions about f, its components f.L, f.R, and f.M, and about the
associated buffer-variable fi. The use of the variable fO within an assertion
shall be considered to represent the state or value, as appropriate, off prior
to the operation, while f (within an assertion) shall denote the variable after
the operation, and similarly for f01 and fl.

It shall be an error if the stated pre-assertion does not hold immediately
prior to any use of the defined operation. It shall be an error if any variable
explicitly denoted in an assertion of equality is undefined. The
post-assertion shall hold prior to the next subsequent access to the file, its
components, or its associated buffer-variable. The post-assertions imply
corresponding activities on the external entities, if any, to which the
file-variables are bound. These activities, and the point at which they are
actually performed, shall be implementation-defined.

rewrite(f) pre-assertion:

post-assertion:

put(f) pre-assertion:

true.

(f.L = f.R = Sm and
(f.M = Generation) and
(fT is totally-undefined).

(fO.M = Generation) and
(fO.L is not undefined) and
(fO.R = S()) and
(fOJ is not undefined).

62

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

post-assertion:

reset(fl pre-assertion:

post-assertion:

get(fl pre-assertion:

post-assertion:

!f.M = Generation) and
<f.L = (f0.L-S<f01))) and
(f.R = S()) and
(fi is totally-undefined).

The components fO.L and fO.R are not
undefined.

(f.L = S()) and
<f.R = !fO.L-fO.R-X)) and
!f.M = Inspection) and
(if f.R = so then <fl IS

totally-undefined) else !fl = f.R.firstll,

where, if f possesses the type denoted by
the required structured-type-identifier
text and if fO.L -fO.R is not empty and
if (fO.L -fO.R).last is not designated an
end-of-line, then X shall be a sequence
having an end-of-line component as its
only component; otherwise X = SO.

(fO.M = Inspection) and
(neither fO.L nor fO.R are undefined) and
!fO.R < > SOJ.

(f.M = Inspection) and
(f.L = (fO.L-S!fO.R.first))) and
(f.R = fO.R.restl and
<if f.R =SO then <fi is totally-undefined)
else !fl = f.R.first)).

When the file-variable f possesses a type other than that denoted by text,
the required procedures read and write !'hall be defined as follows.

read Let f denote a file-variable and v1 ... vn denote variable-accesses;
then the procedure-statement readlf,v 1, ... , vn) shall access the
file variable and establish a reference to the file variable for the
remaining execution of the statement. The execution of the
statement shall be equivalent to

63

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

where ff denotes the referenced file variable. The read statement
containing v1 shall be executed before accessing the variables

V2·····vn.

Let f be a file-variable and v be a variable-access; then the
procedure statement read(f,vl shall access the file variable and
establish a reference to that file variable for the remaining
execution of the statement. The execution of the statement shall
be equivalent to

begin v := ffi; get(ffJ end

where ff denotes the referenced file variable.

NOTE: The variable-access is not a variable parameter. Consequently it may be a component of
a packed structure and the value of the buffer-variable need only be assignment-<:ompatible with
it.

write

NOTES:

Let f denote a file-variable and e1 ... en denote expressions; then
the procedure-statement write(f,e1, ... , en) shall access the file
variable and establish a reference to that file variable for the
remaining execution of the statement. The execution of the
statement shall be equivalent to

where ff denotes the referenced file variable. The write
statement containing e1 shall be executed before evaluating the
expressions e2·····en.

Let f be a file-variable and e be an expression: then the
procedure-statement write(f,el shall access the file variable and
establish a reference to that file variable for the remaining
execution of the statement. The execution of the write statement
shall be equivalent to

begin ff" : = e: put! m end

where ff denotes the referenced file variable.

(1) The required procedures read. write. read In. writeln and page. as applied to textfiles.
are described in 6.9.

(2) Since the definitions of read and write include the use of get and put. the
implementation-defined aspects of their post-assertions also apply.

64

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

6.6.5.3. Dynamic Allocation Procedures.

new1 pi

dispose<ql

shall create a new variable that is totally-undefined.
shall create a new identifying-value of the
pointer-type associated with p. that identifies the
new variable. and shail attribute this
identifying-value to the variable denoted by the
rnriable-access p. The created variable shall
possess the type that is the d0main-type of the
pointer-type possessed by p.

shall create a new variable that is totally-undefined.
shall create a new identifying-value of the
pointer-type associated with p. that identifies the
new variable. and shall attribute this
identifying-value to the variable denoted by the
variable-access p. The created variable shall
possess the record-type that is the domain-type of
the pointer-type possessed by p and shall have
nested variants that correspond to the
case-constants c1, ... ,c0 . The case-constants shall be
listed in order of increasing nesting of the
variant-parts. Any variant not specified shall he at
a deeper level of nesting than that specified by c0 •

It shall be an error if a variant of a variant-part
within the new variable becomes active and a
different variant of the variant-part is one of the
specified variants.

shall remove the identifying-value denoted by the
expression q from the pointer-type of q. It shall be
an error if the identifying-value had been created
using the form new(p,c1, ... ,c0).

shall remove the identifying-value denoted by the
expression q from the pointer-type of q. The
case-constants k1 , ... ,km shall be listed in order of
increasing nesting of the variant-parts. It shall be
an error if the variable had been created using the
form new(p,c 1,. .. ,c0) and m is not equal ton. It shall
be an error if the variants in the variable identified

65

ANSI/IEEE
770X3.97-1983 IEEE ST AND ARD PASCAL

by the pointer-value of q are different from those
specified by the case-constants k1, ... ,km.

NOTE: The removal of an identifying-value from the pointer-type to which it belongs renders the
identified variable inaccessible (see 6.5.4) and makes undefined all variables and functions that
have that value attributed (see 6.6.3.2 and 6.8.2.2).

It shall be an error if q has a nil-value or is undefined.

It shall be an error if a variable created using the second form of new is
accessed by the identified-variable of the variable-access of a factor, of
an assignment-statement, or of an actual-parameter.

6.6.5.4. Transfer Procedures. Let a be a variable possessing an
array-type, and let sl denote the index-type thereof, let z be a variable
possessing an array-type designated packed, let s2 denote the index-type
thereof, and let the array-types have the same component-type; let u and
v be the smallest and largest values of the type s2, let i be an expression
whose value is assignment-compatible with sl, and let j and k denote
auxiliary variables which the program does not otherwise contain. The
type possessed by j shall be s2; the type possessed by k shall be sl.

The statement pack(a,i,zl shall access the array variables a and z and
establish references to these variables for the remaining execution of the
statement. The execution of the statement shall be equivalent to

begin
k := i;
for j : = u to v do

begin
zz[j] : = aa[k];
if j <> v then k .- succ(k)
end

end

where aa denotes the referenced unpacked array variable and zz denotes
the referenced packed array variable.

The statement unpack!z,a,iJ shall access the array variables a and z and
establish references to these variables for the remaining execution of the
statement. The execution of the statement shall be equivalent to

66

COMPUTER PROGRAMMING LANGUAGE

begin
k := i;
for j : = u to v do

begin
aa[k] : = zz[j];
if j <> v then k .- succ(k)
end

end

ANSI/IEEE
770X3.97-1983

where aa denotes the referenced unpacked array variable and zz denotes
the referenced packed array variable.

6.6.6. Required Functions.

6.6.6.1. General. The required functions shall be arithmetic
functions, transfer functions, ordinal functions and Boolean functions.

6.6.6.2. Arithmetic Functions. For the following arithmetic
functions, the expression x shall be either of real-type or integer-type. For
the functions abs and sqr, the type of the result shall be the same as the
type of the parameter, x. For the remaining arithmetic functions, thr
result shall always be of real-type.

Function

abs(x)

sqr(x)

sin(xJ

cos(x)

exp(x)

Result

shall compute the absolute value of x.

shall compute the square of x. It shall be an error if such a
value does not exist.

shall compute the sine of x, where x is in radians.

shall compute the cosine of x, where x is in radians.

shall compute the value of the base of natural logarithms
raised to the power x.

ln(xl shall compute the natural logarithm of x, if x is greater than
zero. It shall be an error if x is not greater than zero.

sqrt(x) shall compute the non-negative square root of x, if x is not
negative. It shall be an error if x is negative.

arctan(xl shall compute the principal value, in radians, of the arctangent
of x.

67

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

6.6.6.3. Tran sf er Functions.

trunc(x)

round!x)

From the expression x that shall be of real-type, this function
shall return a result of integer-type. The value of trunc(x}
shall be such ·that if x is positive or zero then
O<=x-trunc(x)<l; otherwise -l<x-trunc(x)<=O. It shall be
an error if such a value does not exist.

EXAMPLES:

trunc(3.5J yields 3
trunc(-3.5) yields -3

From the expression x that shall be of real-type, this function
shall return a result of integer-type. If x is positive or zero,
round(x) shall be equivalent to trunc(x+0.5), otherwise
round!x) shall be equivalent to trunc(x-0.5). It shall be an
error if such a value does not exist.

EXAMPLES:

round(3.5J yields 4
round(-3.5) yields -4

6.6.6.4. Ordinal Functions.

ord!x)

chr!xl

SUCC(X)

From the expression x that shall be of an ordinal-type, this
function shall return a result of integer-type that shall be the
ordinal number (see 6.4.2.2 and 6.4.2.3) of the value of the
expression x.

From the expression x that shall be of integer-type, this
function shall return a result of char-type that shall be the
value whose ordinal number is equal to the value of the
expression x if such a character value exists. It shall be an
error if such a character value does not exist.

For any value, ch, of char-type, it shall be true that:
chr<ord(ch)J = ch

-
From the expression x that shall be of an ordinal-type, this
function shall return a result that shall be of the same type
as that of the expression tsee 6.7.lJ. The function shall yield
a value whose ordinal number is one greater than that of the

68

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

pred(xl

expression x, if such a value exists. It shall be an error if such
a value does not exist.

From the expression x that shall be of an ordinal-type, this
function shall return a result that shall be of the same type
as that of the expression (see 6.7.1). The function shall yield
a value whose ordinal number is one less than that of the
expression x, if such a value exists. It shall be an error if such
a value does not exist.

6.6.6.5. Boolean Functions.

oddlxJ

eof(f)

eoln(f)

From the expression x that shall be of integer-type, this
function shall be equivalent to the expression (abs(x) mod ~ =
1).

The parameter f shall be a file-variable; if the
actual-parameter-list is omitterl, the function shall be applied
to the required textfile input (see 6.10). When eof(f) is
activated, it shall be an error if f is undefined; otherwise the
function shall yield the value true if f.R is the empty sequence
(see 6.4.3.5), otherwise false.

The parameter f shall be a textfile; if the
actual-parameter-list is omitted, the function shall be applied
to the required textfile input (see 6.10). When eoln(f) is
activated, it shall be an error if f is undefined or if eof(f) is true;
otherwise the function shall yield the value true if f.R.first is
an end-of-line component (see 6.4.3.51, otherwise false.

6. 7. Expressions.

6.7.l. General. An expression shall denote a value unless a variable
denoted by a variable-access contained by the expression is undefined at
the time of its use, in which case that use shall be an error. The use of
a variable-access as a factor shall denote the value, if any, attributed to
the variable accessed thereby. Operator precedences shall be according to
four classes of operators as follows. The operator not shall have the
highest precedence, followed by the multiplying-operators, then the
adding-operators and signs, and finally, with the lowest precedence, the
relational-operators. Sequences of two or more operators of the same
precedence shall be left associative.

69

ANSI/IEEE
770X3.97-1983

expression =

IEEE STANDARD PASCAL

simple-expression [relational-operator simple-expression] .

simple-expression = [sign] term I adding-operator term I .

term = factor I multiplying-operator factor I .

factor = variable-access I unsigned-constant I function-designator I
set-constructor I "(" expression ")" I "not" factor .

unsigned-constant = unsigned-number I character-string I
constant-identifier I "nil" .

set-constructor =
T [member-designator I "," membP.r-designator I] "]" .

member-designator = expression [" . ." expression] .

Any factor whose type is S, where S is a subrange of T, shall be treated
as of type T. Similarly, any factor whose type is set of S shall be treated
as of the unpacked canonical set-of-T type, and any factor whose type is
packed set of S shall be treated as of the packed canonical set-of-T type.

NOTE: Consequently. an expression that consists of a single factor of type S is itself of type T. and
an expression that consists of a single factor of type set of S is itself of type set of T. and an
expression that consists of a single factor of type packed set of S is itself of type packed set of
T.

A set-constructor shall denote a value of a set-type. The set-constructor
[]shall denote that value in every set-type that contains no members. A
set-constructor containing one or more member-designators shall denote
either a value of the unpacked canonical set-of-T type or, if the context
so requires, the packed canonical set-of-T type, where Tis the type of every
expression of each member-designator of the set-constructor. The type
T shall be an ordinal-type. The value denoted by the set-constructor shall
contain zero or more members each of which shall be denoted by at least
one member-designator of the set-constructor.

The member-designator x, where x is an expression, shall denote the
member that shall have the value x. The member-designator x .. y, where
x and y are expressions, shall denote zero or more members that shall have
the values of the base-type in the closed interval from the value of x to
the value of y. The order of evaluation of the expressions of a

70

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

member-designator shall be implementation-dependent. The order of
evaluation of the member-designators of a set-constructor shall be
implementation-dependent.

NOTE: The member-designator x .. y denotes no members if the value of x is greater than the value
of y.

EXAMPLES:

(a) Factors:

(b) Terms:

x
15
(X + y + Z)

sin(x + y)
[red, c, green]
[1. 5, 10 .. 19, 23]
not p

x * y
i/(1-i)

(x < = y) and (y < zl

(cl Simple expressions: p or q

x + y
-x

(dl Expressions:

6. 7 .2. Operators.

6. 7 .2.1. General.

huel + hue2

i * j + 1

x = 1.5
p <= q
p = q and r
(i < j) = (j < kl
c in huel

multiplying-operator = "*" \ "/" I "div" \ "mod" \ "and"

adding-operator = "+" ! "-" \ "or" .

relational-operator= "=" \ "<>" \ "<" \ ">" \ "<=" i ">="\"in"

71

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

A factor, or a term, or a simple-expression shall be designated an operand.
The order of evaluation of the operands of a dyadic operator shall be
implementation-dependent.

NOTE: This means, for example, that the operands may be evaluated in textual order, or in reverse
order, or in parallel or they may not both be evaluated.

6.7.2.2. Arithmetic Operators. The types of operands and results
for dyadic and monadic operations shall be as shown in Tables 2 and 3
respectively.

Table 2.
Dyadic Arithmetic Operations

operator operation type of operands type of result

+ addition integer-type or real-type (1)

subtraction integer-type or real-type (1)

* multiplication integer-type or real-type (1)

I division integer-type or real-type real-type
div division with integer-type integer-type

truncation
mod modulo integer-type integer-type

(1) Integer-type if both operands are of integer-type otherwise
real-type.

Table 3.
Monadic Arithmetic Operations

operator operation type of operand type of result

+ identity integer-type integer-type
real-type real-type

sign-inversion integer-type integer-type
real-type real-type

NOTE: The symbols +. - and * are also used as set operators (see 6.7.2.4).

A term of the form x/y shall be an error if y is zero, otherwise the value
of x/y shall be the result of dividing x by y.

72

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

A term of the form i div j shall be an error if j is zero, otherwise the
value of i div j shall be such that

abs(i) - abs(j) < abs((i div j) * j) < = abs(i)

where the value shall be zero if abs(i) < abs(j), otherwise the sign of the
value shall be positive if i and j have the same sign and negative if i and
j have different signs.

A term of the form i mod j shall be an error if j is zero or negative,
otherwise the value of i mod j shall be that value of (i-(k*j)) for integral
k such that 0 < = i mod j < j.

NOTE: Only for i > = 0 and j > 0 does the relation (i div j) * j + i mod j = i hold.

The required constant-identifier maxint shall denote an
implementation-defined value of integer-type. This value shall satisfy the
following conditions.

(al All integral values in the closed interval from -maxint to +maxint
shall be values of the integer-type.

lb) Any monadic operation performed on an integer value in this interval
shall be correctly performed according to the mathematical rules for
integer arithmetic.

!cl Any dyadic integer operation on two integer values in this same interval
shall be correctly performed according to the mathematical rules for
integer arithmetic, provided that the result is also in this interval.

~dl Any relational operation on two integer values in this same interval
shall be correctly performed according to the mathematical rules for
integer arithmetic.

The results of the real arithmetic operators and functions shall be
approximations to the corresponding mathematical results. The accuracy
of this approximation shall be implementation-defined.

It shall be an error if an integer operation or function is not performed
according to the mathematical rules for integer arithmetic.

73

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

6.7.2.3. Boolean Operators. Operands and results for Boolean
operations shall be of Boolean-type. Boolean operators or, and and not
shall denote respectively the logical operations of disjunction, conjunction
and negation.

Boolean-expression = expression

A Boolean-expression shall be an expression that denotes a value of
Boolean-type.

6.7.2.4. Set Operators. The types of operands and results for set
operations shall be as shown in Table 4.

6.7.2.5. Relational-Operators. The types of operands and results
for relational operations shall be as shown in Table 5.

Table 4.
Set Operations

operator operation type of operands type of result

+ set union (1) same as the operands

set difference (1) same as the operands

* set intersection (1) same as the operands

(})a canonical set-of-T type (see 6.7.1)

The operands of=, < >, <, >, >=,and < = shall be either of compatible
types, the same canonical set-of-T type, or one operand shall be of
real-type and the other shall be of integer-type.

The operators =, < >, <, and > shall stand for equal to, not equal to,
less than and greater than respectively.

Except when applied to sets, the opera tore; < = and > = shall stand for
less than or equal to and greater than or equal to respectively.

74

COMPUTER PROGRAMMING LANGUAGE

Table 5.
Relational Operations

operator type of operands

=

<
<=

in

< > any simple, pointer or
string-type or canonical set-of-T
type

> any simple or string-type

> = any simple or string-type or
canonical set-of-T type

left operand: any ordinal type T
right operand: a canonical
set-of-T type

ANSI/IEEE
770X3.97-1983

type of result

Boolean-type

Boolean-type

Boolean-type

Boolean-type

Where u and v denote operands of a !'et-type, u < = v shall denote the
inclusion of u in v and u > = v shall denote the inclusion of v in u.

NOTE: Since the Boolean-type is an ordinal-type with false less than true, then if p and q are
operands of Boolean-type, p = q denotes their equivalence and p < = q means p implies q.

When the relational operators =, < >, <. >, < =, and > = are used to
compare operands of compatible string-types (see 6.4.3.2l, they denote
lexicographic relations defined below. Lexicographic ordering imposes a
total ordering on values of a string-type. If sl and s2 are two values of
compatible string-types, and n denotes the number of components of the
compatible string-types, then

sl = s2 iff for all i in [l..n]: sl[i] = s2[i]

sl < s2 iff there exists a p in [l..n]: (for all i in [l..p-1]: sl[i] = s2[i]l
and sl[p] < s2[p]

The operator in shall yield the value true if the value of the operand of
ordinal-type is a member of the value of the set-type, otherwise it shall
yield the value false.

6. 7 .3. Function-Designators. A function-designator shall specify
the activation of the block of the function-block associated with the
function-identifier of the function-designator, and shall yield the value of
the result of the activation upon completion of the algorithm of the

75

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

activation; it shall be an error if the result is undefined upon completion
of the algorithm. If the function has any formal parameters the
function-designator shall contain a list of actual-parameters that shall be
bound to their corresponding formal parameters defined in the
function-declaration. The correspondence shall be established by the
positions of the parameters in the lists of actual and formal parameters
respectively. The number of actual-parameters shall be equal to the
number of formal parameters. The types of the actual-parameters shall
correspond to the types of the formal parameters as specified by 6.6.3. The
order of evaluation, accessing and binding of the actual-parameters shall
be implementation-dependent.

function-designator = function-identifier [actual-parameter-list] .

actual-parameter-list =
"(" actual-parameter I "," actual-parameter I ")" .

actual-parameter = expression I variable-access I
procedure-identifier I function-identifier .

EXAMPLES:

Sum(a, 63)
GCD047, kl
sinCx + yl
eof!fl
ordlf: l

6.8. Statements.

6.8.1. General.
shall be executable.

Statements shall denote algorithmic actions, and

NOTE: Statements may be prefixed by a label.

A label, if any, of a statement S shall be designated as prefixing S, and
shall be allowed to occur in a goto-statement G (see 6.8.2.4) if and only
if any of the following three conditions is satisfied.

Cal S contains G.

76

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

(b) S is a statement of a statement-sequence containing G.

(c) S is a statement of the statement-sequence of the
compound-statement of the statement-part of a block containing G.

statement = [label ·:·] 1 simple-statement structured-statement I •

NOTE: A goto-statement within a block may refer to a label in an enclosing block, provided that
the label prefixes a simple-statement or structured-statement at the outermost level of nesting
of the block.

6.8.2. Simple-Statem~nts.

6.8.2.1. General. A simple-statement shall be a statement not
containing a statement. An empty-statement shall contain no symbol
and shall denote no action.

simple-statement = empty-statement assignment-statement
procedure-statement goto-statem~nt .

empty-statement =

6.8.2.2. Assignment-Statements.
attribute the value of the expression
to the \'ariable denoted by

An assignment-statement shall
of the assignment-statement either

the variable-access of the
assignment-statement. or to the activation result that is denoted by the
function-identifier of the assignment-statement: the value shall be
assignment-compatible with the type possessed. respecti\'ely. by the
rnriable or by the activation result. The function-block associated lsee
6.6.21 with the function-identifier of an assignment-statement shall
contain the assignment-statement.

assi~nment-statement =
1 variable-access function-identifier l ":=· expression .

The decision as to the order of accessing the \'ariable and e\·aluating the
expression shall be implementation-dependent: the access shall establish
a reference to the variable during the remaining execution of the
assignment-statement.

The state of a variable or activation result when the variable or
activation result does not have attributed to it a value specified by its type
shall be designated undefined. If a variable possesses a structured-type.

77

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

the state of the variable when every component of the variable is
totally-undefined shall be designated totally-undefined. Totally­
undefined shall be synonymous with undefined for an activation result or
a variable that does not possess a structured-type.

EXAMPLES:

x := y + z
p := (1 <= i) and (i < 100)
i := sqrCk) - (i * j)
huel := [blue, succ(c)]
pl T .mother : = true

6.8.2.3. Procedure-Statements. A procedure-statement shall
specify the activation of the block of the procedure-block associated with
the procedure-identifier of the procedure-statement. If the procedure has
any formal parameters the procedure-statement shall contain an
actual-parameter-list, which is the list of actual-parameters that shall be
bound to their corresponding formal parameters defined in the
procedure-declaration. The correspondence shall be established by the
positions of the parameters in the lists of actual and formal parameters
respectively. The number of actual-parameters shall be equal to the
number of formal parameters. The types of the actual-parameters shall
correspond to the types of the formal parameters as specified by 6.6.3. The
order of evaluation, accessing and binding of the actual-parameters shall
be implementation-dependent.

The procedure-identifier in a procedure-statement containing a
read-parameter-list shall denote the required procedure read; the
procedure-identifier in a procedure-statement containing a readln­
parameter-list shall denote the required procedure readln; the
procedure-identifier in a procedure-statement containing a
write-parameter-list shall denote the required procedure write; the
procedure-identifier in a procedure-statement containing a writeln­
parameter-list shall denote the required procedure writeln.

procedure-statement =
procedure-identifier ([actual-parameter-list] I

read-parameter-list I
readln-parameter-list I
write-parameter-list I
writeln-parameter-list) .

78

COMPUTER PROGRAMMING LANGUAGE

EXAMPLES:

printheading
transpose(a, n, m)
bisect(fct, -1.0, + 1.0, x)

ANSI/IEEE
770X3.97-1983

6.8.2.4. Goto-Statements. A goto-statement shall indicate that
further processing is to continue at the program-point denoted by the label
in the goto-statement and shall cause the termination of all activations
except:

(a) the activation containing the program-point; and

!b) any activation containing the activation-point of an activation required
by exceptions !al or (bl not to be terminated.

goto-statement = "goto" label .

6.8.3. Structured-Statements.

6.8.3.l. General.

structured-statement = compound-statement ! conditional-statement j
repetitive-statement : with-statement

statement-sequence = statement I ";" statement I .

The execution of a statement-sequence shall specify the execution of the
statements of the statement-sequence in textuai order, except as modified
by execution of a goto-statement.

6.8.3.2. Compound-Statements. A compound-statement shall
specify execution of the statement-sequence of the compound-statement.

compound-statement = "begin" statement-sequence "end" .

EXAMPLE:

begin z .- x x y y .- z end

79

ANSI/IEEE
770X3.97·1983

6.8.3.3. Conditional-Statements.

IEEE STANDARD PASCAL

conditional-statement = if-statement I case-statement .

6.8.3.4. If-Statements.
I

if-statement = "ir Boolean-expression "then" statement [else-part] .

else-part = "else" statement .

If the Boolean-expression of the if-statement yields the value true, the
statement of the if-statement shall be executed. If the Boolean-expression
yields the value false, the statement of the if-statement shall not be
executed and the statement of the else-part (if any) shall be executed.

An if-statement without an else-part shall not be immediately followed
by the token else.
NOTE: An else-pan is thus paired with the nearest preceding otherwise unpaired then.

EXAMPLES:

(1) if x < 1.5 then z := x + y else z := 1.5

121 if pl < > nil then pl ·- pl; .father

131 if j = 0 then
if i = 0 then writeln('indefinite')
else writeln('infinite')

else writeln(i I j)

6.8.3.5. Case--Statements. The values denoted by the case-constants
of the case-constant-lists of the case-list-elements of a case-statement
shall be distinct and of the same ordinal-type as the expression of the
case-index of the case-statement. On execution of the case-statement the
case-index shall be evaluated. That value shall then specify execution of
the statement of the case-list-element closest-containing the
case-constant denoting that value. One of the case-constants shall be equal
to the value of the case-index upon entry to the case-statement, otherwise
it shall be an error.

NOTE: Case-constants are not the same as statement labels.

80

COMPUTER PROGRAMMING LANGUAGE

case-statement = "case" case-index "of'

ANSI/IEEE
770X3.97-1983

case-list-element I ";" case-list-element I [";"] "end"

case-list-element = case-constant-list ":" statement .

case-index = expression .

EXAMPLE:

case operator of
plus: x : = x + y;
minus: x := x - y;
times: x : = x * y

end

6.8.3.6. Repetitive-Statements. Repetitive-statements shall
specify that certain statements are to be executed repeatedly.

repetitive-statement = repeat-statement I
while-statement I
for-statement

6.8.3.7. Repeat-Statements.

repeat-statement = "repeat" statement-sequence
"until" Boolean-expression

The statement-sequence of the repeat-statement shall be repeatedly
executed (except as modified by the execution of a goto-statement) until the
Boolean-expression of the repeat-statement yields the value true on
completion of the statement-sequence. The statement-sequence shall be
executed at least once, because the Boolean-expression is evaluated after
execution of the statement-sequence.

EXAMPLE:

repeat k := mod j;
i := j;
j := k

until j = 0

81

ANSI/IEEE
770X3.97-1983

6.8.3.8. While-Statements.

IEEE STANDARD PASCAL

while-statement = "while" Boolean-expression "do" statement .

The while-statement

while b do body

shall be equivalent to

begin
if b then

repeat
body
until not (b)

end

EXAMPLES:

(}l while i > 0 do
begin

if odd(il then z .- z * x;
i := i div 2;
x ·- sqr(xl

end

t2J while not eof(f) do
begin

process(f'.);
get(fl

end

6.8.3.9. For-Statements. The for-statement shall specify that the
statement of the for-statement is to be repeatedly executed while a
progression of values is attributed to a variable that is designated the
control-variable of the for-statement.

for-statement = "for" control-variable ":=" initial-value
("to" I "downto") final-value "do" statement .

82

COMPUTER PROGRAMMING LANGUAGE

control-variable = entire-variable

initial-value = expression

final-value = expression .

ANSI/IEEE
770X3.97-1983

The control-variable shall be an entire-variable whose identifier is
declared in the variable-declaration-part of the block closest-containing
the for-statement. The control-variable shall possess an ordinal-type, and
the initial-value and final-value shall be of a type compatible with this
type. The initial-value and the final-,·alue shall be
assignment-compatible with the type possessed by the control-variable if
the statement of the for-statement is executed. After a for-statement is
executed !other than being left by a goto-statement leading out of itl the
control-variable shall be undefined. Neither a for-statement nor any
procedure-and-function-declaration-part of the block that
closest-contains a for-statement shall contain a statement threatening
the rnriable denoted by the control-variable of the for-statement.

A statement S shall be designated as threatening a variable V if one or
more of the following statements is true.

1a1 Sis an as~ignment-statement and V is denoted by the variable-access
of S.

1b1 S contains an actual variable parameter that denotes V.

1c1 Sis a procedure-statement that specifies the acti,·ation of the required
procedure read or the required procedure readln, and V is denoted by
a variable-access of a read-parameter-list or readln-parameter-list of S.

1d1 S is a for-statement and the control-variable of S denotes V.

Apart from the restrictions imposed by these requirements. the
for-statement

for v := el to e2 do body

shall be equivalent to

83

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

begin
templ := el;
temp2 := e2;
if tern pl < = temp2 then

begin
v := templ;
body;
while v < > temp2 do

begin
v := succ(vl;
body
end

end
end

and the for-statement

for v := el downto e2 do body

shall be equivalent to

begin
templ := el;
temp2 := e2:
if tern pl > = temp2 then

begin
v := templ;
body;
while v < > temp2 do

begin
v : = pred(v);
body
end

end
end

where templ and temp2 denote auxiliary variables that the program does
not otherwise contain, and that possess the type possessed by the variable
v if that type is not a subrange-type; otherwise the host type of the type
possessed by the variable v.

84

COMPUTER PROGRAMMING LANGUAGE

EXAMPLES:

(1) for i : = 2 to 63 do
if a[i] > max then max . - a[i]

(2) for i : = 1 to 10 do
for j : = 1 to 10 do

begin
x := O;.
for k : = 1 to 10 do

x := x + ml[i,k] * m2[k,j];
m[i,j] := x
end

(3) for i := 1 to 10 do
for j : = 1 to i - 1 do

m[i][j] : = 0.0

(41 for c := blue downto red do q(cl

6.8.3.10. With-Statements.

ANSI/IEEE
770X3.97-1983

with-statement = "with" record-variable-list "do" statement .

record-variable-list = record-variable I "," record-variable I .

field-designator-identifier = identifier .

A with-statement shall specify the execution of the statement of the
with-statement. The occurrence of a record-variable as the only
record-variable in the record-variable-list of a with-statement shall
constitute a defining-point of each of the field-identifiers associated with
components of the record-type possessed by the record-variable as a
field-designator-identifier for the region that is the statement of the
with-statement; each applied occurrence of a field-designator-identifier
shall denote that component of the record-variable that is associated with
the field-identifier by the record-type. The record-variable shall be
accessed before the statement of the with-statement is executed, and that
access shall establish a reference to the variable during the entire
execution of the statement of the with-statement.

85

ANSI/IEEE
770X3.97-1983

The statement

shall be equivalent to

- with v1 do
with v2 do

with vn do s

EXAMPLE:

with date do
if month = 12 then

begin month := 1; year := year + 1
end

else month : = month+ 1

has the same effect on the variable date as

if date.month = 12 then

IEEE STANDARD PASCAL

begin date.month : = 1; date.year . - date.year+ 1
end

else date.month := date.month+ 1

6.9. Input and Output.

6.9.1. The Procedure Read. The syntax of the parameter list of
read when applied to a textfile shall be:

read-parameter-list =
"(" [file-variable ","] variable-access l "," variable-access I ")" .

If the file-variable is omitted, the procedure shall be applied to the
required textfile input.

The following requirements shall apply for the procedure read (where f
denotes a textfile and v1 ... vn denote variable-accesses possessing the
char-type (or a subrange of char-type), the integer-type (or a subrange of
integer-type), or the real-type).

86

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

(aJ readlf,v 1, ... ,v0) shall access the textfile variable and establish a reference
to that textfile variable for the remaining execution of the statement. The
execution of the statement shall be equivalent to

where ff denotes the referenced textfile variable. The read statement
containing v1 shall be executed before accPssing the variables v2, ... ,v 0 .

(bJ If v is a variable-access possessing the char-type (or subrange thereof),
read(f,vJ shall access the textfile variable and establish a reference to that
textfile variable for the remaining execution of the statement. The
execution of the statement shall be equivalent to

begin v := ffi; get(ffl end

where ff denotes the referenced textfile variable.

NOTE: The variable-access is not a variable parameter. Consequently it may be a component of
a packed structure and the value of the buffer-variable need only be assignment-compatible with
it.

!c) If v is a variable-access possessing the integer-type (or subrange
thereon, read(f,vl shall access the textfile variable and establish a reference
to that text file variable for the remaining execution of the statement. The
remaining execution of the statement shall cause the reading from the
referenced textfile variable of a sequence of characters. Preceding spaces
and end-of-lines shall be skipped. It shall be an error if the rest of the
sequence does not form a signed-integer according to the syntax of 6.1.5.
Reading shall cease as soon as the buffer-variable of the referenced textfile
does not have attributed to it a character contained by the signed-integer.
The value of the signed-integer thus read shall be assignment-compatible
with the type possessed by v, and shall be attributed to v.

(d) If v is a variable-access possessing the real-type, read(f,v) shall access
the textfile variable and establish a reference to that textfile variable for
the remaining execution of the statement. The remaining execution of the
statement shall cause the reading from the referenced textfile variable of
a sequence of characters. Preceding spaces and end-of-lines shall be
skipped. It shall be an error if the rest of the sequence does not form a
signed-number according to the syntax of 6.1.5. Reading shall cease as soon
as the buffer-variable of the referenced textfile does not have attributed

87

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

to it a character contained by the signed-number. The value denoted by
the number thus read shall be attributed to the variable v.

<eJ When read is applied to f, it shall be an error if the buffer-variable
f I is undefined or the pre-assertions for get do not hold (see 6.4.3.5).

6.9.2. The Procedure Readln.
readln shall be:

readln-parameter-list =

The syntax of the parameter list of

["(" (file-variable I variable-access) I "," variable-access I ")"] .

Readln shall only be applied to textfiles. If the file-variable or the
entire readln-parameter-list is omitted, the procedure shall be applied to
the required textfile input.

Readln!f,v1, ... ,vnl shall access the textfile variable and establish a reference
to that textfile variable for the remaining execution of the statement. The
execution of the statement shall be equivalent to

begin readlff.v1, vnl; readln!ffl end

where ff denotes the referenced textfile variable.

readln!fl shall access the textfile variable and establish a reference to that
textfile variable for the remaining execution of the statement. The
execution of the statement shall be equivalent to

begin while not eoln!ffJ do get<ffJ; get(ffJ end

where ff denotes the referenced text file variable.

NOTE: The effect of readln is to place the current file position just past the end of the current line
in the textfile. Unless this is the end-of-file position. the current file position is therefore at the
start of the next line.

6.9.3. The Procedure Write. The syntax of the parameter list of
write when applied to a textfile shall be:

write-parameter-list =
"(" [file-variable ","] write-parameter I "," write-parameter I ")" .

write-parameter = expression [":" expression [":" expression]] .

88

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

If the file-variable is omitted, the procedure shall be applied to the
required textfile output. When write is applied to a textfile f, it shall
be an error if f is undefined or f.M = Inspection (see 6.4.3.5). An application
of write to a textfile f shall cause the buffer-variable fl to become
undefined.

Write(f,p1,. .. ,pn) shall access the textfile variable and establish a
reference to that textfile variable for the remaining execution of the
statement. The execution of the statement shall be equivalent to

where ff denotes the referenced textfile variable. The write statement
containing p1 shall be executed before evaluating the write-parameters

P2· .. ··Pn·

6.9.3.1. Write-Parameters.
following forms:

e : TotalWidth : FracDigits

The write-parameters P. shall have the

e : TotalWidth e

where e is an expression whose value is to be written on the file f and may
be of integer-type, real-type, char-type, Boolean-type or a string-type, and
where Tota/Width and FracDigits are expressions of integer-type whose
values are the field-width parameters. The values of Tota/Width and
FracDigits shall be greater than or equal to one; it shall be an error if
either value is less than one.

Write(f,e) shall be equivalent to the form write(f,e : TotalWidth), using a
default value for Tota/Width that depends on the type of e; for
integer-type, real-type and Boolean-type the default values shall be
implementation-defined.

Write(f,e : TotalWidth FracDigits) shall be applicable only if e is of
real-type (see 6.9.3.4.2).

6.9.3.2. Char-Type. If e is of char-type, the default value of
Tota/Width shall be one. The representation written on the file f shall be:

(Total Width - 1) spaces, the character value of e.

89

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

6.9.3.3. Integer-Type. If e is of integer-type, the decimal
representation of e shall be written on the file f. Assume a function

function IntegerSize (x : integer) : integer ;
I returns the number of digits, z, such that

10 to the power (z-1) < = abs(x) < 10 to the power z

and let IntDigits be the positive integer defined by:

if e = 0
then IntDigits := 1
else IntDigits := lntegerSize(e);

then the representation shall consist of:

(a) if TotalWidth > = IntDigits + 1:
(TotalWidth - lntDigits - 1) spaces,
the sign character: ·-· if e < 0, otherwise a space,
IntDigits digit-characters of the decimal representation of abs(e).

!bl If Total\Vidth < lntDigits + 1:
if e < 0 the sign character ·-·,
IntDigits digit-characters of the decimal representation of abs(e).

6.9.3.4. Real-Type. If e is of real-type, a decimal representation of
the number e, rounded to the specified number of significant figures or
decimal places, shall be written on the file f.

6.9.3.4.1. The Floating-Point Representation.
Write(f,e : TotalWidth) shall cause a floating-point representation of e to
be written. Assume functions

function TenPower (Int : integer) : real ;
I Returns 10.0 raised to the power Int I

function RealSize (y : real) : integer ;
I Returns the value, z, such that

TenPower(z-1) < = abs<y) < TenPower(z)

function Truncate (y : real ; DecPlaces : integer) : real
I Returns the value of y after truncation

to DecPlaces decimal places I

90

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

let ExpDigits be an implementation-defined value representing the
number of digit-characters written in an exponent;

let Act Width be the positive integer defined by:

if Total Width > = ExpDigits + 6
then ActWidth := TotalWidth
else ActWidth := ExpDigits + 6;

and let the non-negative number eWritten, the positive integer DecPlaces
and the integer Exp Fa Jue be defined by:

DecPlaces := ActWidth - ExpDigits - 5;
if e = 0.0

then begin eWritten := 0.0; ExpValue := 0 end
else
begin
eWritten := abs(el;
ExpValue := RealSize (eWritten) - 1;
eWritten := eWritten I TenPower (ExpValue);
eWritten := eWritten + 0.5 * TenPower (-DecPlaces l;

if eWritten > = 10.0
then
begin
eWritten := eWritten I 10.0;
ExpValue := ExpValue + 1
end;

eWritten .- Truncate (eWritten, DecPlaces)
end;

then the floating-point representation of the value of e shall consist of:

the sign character
(·-· if (e < 0) and (eWritten > OJ, otherwise a space),

the leading digit-character of the decimal representation of eWritten,
the character '.' ,
the next DecPlaces digit-characters of the decimal representation of

eWritten,
an implementation-defined exponent character

(either 'e' or 'E'J,

91

ANSI/IEEE
770X3.97-1983

the sign of ExpValue
(·-· if ExpValue < 0, otherwise·+·),

IEEE STANDARD PASCAL

the ExpDigits digit-characters of the decimal representation of
ExpValue (with leading zeros if the value requires them).

6.9:3.4.2. The Fixed-Point Representation.
Write!f,e : TotalWidth : FracDigits) shall cause a fixed-point representation
of e to be written. Assume the functions TenPower and Truncate described
in 6.9.3.4.1;

let eWritten be the non-negative number defined by:

if e = 0.0
then eWritten .- 0.0
else
begin

eWritten := abs(el;
eWritten := eWritten + 0.5 * TenPower (- FracDigits);
eWritten .- Truncate (eWritten, FracDigits)

end;

let IntDigits be the positive integer defined by:

if RealSize (eWritten) < 1
then IntDigits : = 1
else IntDigits := Rea!Size (eWritten);

and let l\'finNumChars be the positive integer defined by:

MinNumChars := IntDigits + FracDigits + l;
if (e < 0.0) and (eWritten > 0)

then MinNumChars := MinNumChars + l; I'-' required!

92

COMPUTER PROGRAMMING LANGUAGE
ANSl/IBEE

770X3.97-1983

then the fixed-point representation of the value of e shall consist of:

if Tota!Width > = MinNumChars,
(TotalWidth - MinNumChars) spaces,

the character ·-· if (e < Ol and (eWritten > 0),
the first IntDigits digit-characters of the decimal representation of

the value of eWritten,
the character '.',
the next FracDigits digit-characters of the decimal representation of

the value of eWritten.

NOTE: At least MinNumChars characters are written. If Tota/Width is less than this value, no initial
spaces are written.

6.9.3.5. Boolean-Type. If e is of Boolean-type, a representation of
the word true or the word false (as appropriate to the value of e) shall be
written on the file f. This shall be equivalent to writing the appropriate
character-strings 'True' or 'False' (see 6.9.3.6l, where the case of each letter
is implementation-defined, with a field-width parameter of Tota/Width.

6.9.3.6. String-Types. If the type of e is a string-type with n
components, the default value of Tota/Width shall be n. The
representation shall consist of:

if Tota!Width > n,
!TotalWidth - n) spaces,
the first through n-th characters of the value of e in that order.

if 1 < = Total Width < = n,
the first through TotalWidth-th characters in that order.

6.9.4. The Procedure Writeln.
writeln shall be:

The syntax of the parameter list of

writeln-parameter-list = ["(" (file-variable I write-parameter
I "," write-parameter I ")"] .

Writeln shall only be applied to textfiles. If the file-variable or the
writeln-parameter-list is omitted, the procedure shall be applied to the
required textfile output.

93

ANSI/IEEE
770X3.97-1983 IEEE ST AND ARD PASCAL

Writeln(f,p1,. .. ,pn) shall access the textfile variable and establish a
reference to that textfile variable for the remaining execution of the
statement. The execution of the statement shall be equivalent to

begin write(ff,p1,. . .,pn); writeln(ffJ end

where ff denotes the referenced textfile variable.

Writeln shall be defined by a pre-assertion and a post-assertion using
the notation of 6.6.5.2.

pre-assertion: <fO is not undefined) and (fO.M = Generation) and (fO.R
= sm.

post-assertion: <f.L = (fO.L-S<el)) and
(fl is totally-undefined) and
<f.R = Sm and (f.M = Generation),
where S<el is the sequence consisting solely of the
end-of-line component defined in 6.4.3.5.

NOTE: Writeln(f) terminates the partial line. if any, which is being generated. By the conventions
of 6.6.5.2 it is an error if the pre-assertion is not true prior to writeln(f).

6.9.5. The Procedure Page. It shall be an error if the pre-assertion
required for writelnlfl !see 6.9.4) does not hold prior to the activation of
pagelfl. If the actual-parameter-list is omitted the procedure shall be
applied to the required textfile output. Pagelf) shall cause an
implementation-defined effect on the textfile f, such that subsequent text
written to f will be on a new page if the textfile is printed on a suitable
device, shall perform an implicit writeln(f) if f.L is not empty and if f.L.last
is not the end-of-line component (see 6.4.3.5), and shall cause the
buffer-variable fl to become totally-undefined. The effect of inspecting a
textfile to which the page procedure was applied during generation shall
be implementation-dependent.

6.10. Programs.

program = program-heading ";" program-block

program-heading =
"program" identifier ["(" program-parameters ")"] .

program-parameters = identifier-list .

program-block = block .

The identifier of the program-heading shall be the program name that
shall have no significance within the program. The identifiers contained

94

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

77 OX3. 97-1983

by the program-parameters shall be distinct and shall be designated
program parameters. Each program parameter shall have a defining-point
as a variable-identifier for the region that is the program-block. The
binding of the variables denoted by the program parameters to entities
external to the program shall be implementation-dependent, except if the
variable possesses a file-type in which case the binding shall be
implementation-defined.

NOTE: The external representation of such external entities is not defined by this standard, nor
is any property of a Pascal program dependent on such representation.

The occurrence of the required identifier input or the required identifier
output as a program parameter shall constitute its defining-point for the
region that is the program-block as a variable-identifier of the required
type denoted by the required type-identifier text. Such occurrence of the
identifier input shall cause the post-assertions of reset to hold. and of
output, the post-assertions of rewrite to hold, prior to the first access
to the textfile or its associated buffer-variable. The effect of the application
of the required procedure reset or the required procedure rewrite to
either of these textfiles shall be implementation-defined.

EXAMPLES:

(1 l program copy (f, gl;
var f, g : file of real;
begin reset(fJ; rewrite(gJ;

while not eof(f) do
begin g'. := fi; get(f); put(g)
end

end.

(2) program copytext (input, output);
I This program copies the charactt:rs and line structure of the
textfile input to the textfile output. I

var ch : char;
begin

while not eof do
begin

while not eoln do
begin read(ch); write(ch)
end;

readln; writeln
end

end.

95

ANSI/IEEE
770X3.97-1983

(3) prcgram t6p6p3p4 (output);
var globalone, globaltwo : integer;

procedure dummy;
begin
writeln!'fail4'l
end I of dummy I;

IEEE STANDARD PASCAL

procedure p !procedure [(procedure ff; procedure ggl; procedure gl;
var localtop : integer;
procedure r;

begin
if globalone = 1 then

begin
if lglobaltwo < > 2J or Oocaltop < > 1) then

writeln('faill ')
end

else if globalone = 2 then
begin
if (global two < > 2) or Oocaltop < > 2) then

writeln('fail2')
else writeln('pass')
end

else writeln('fail3');
global one : = globalone + 1
end I of r I;

begin I of p I
globaltwo := globaltwo + l;
localtop := globaltwo;
if globaltwo = 1 then

p(f, r)

else
f(g, r)

end I of pj;

procedure q (procedure f; procedure g);
begin
f;
g
end I of qj;

96

COMPUTER PROGRAMMING LANGUAGE

begin
globalone := l;
globaltwo := O;
p(q, dummy)

end.

97

.ANSI/IEEE
770X3.97-1983

--------- ------------------ -- ---- - -------

Appendixes

ANSI/IEEE
770X3.97-1983

(These Appendixes are not a part of ANSI/IEEE770X3.97-1983, IEEE
Standard Pascal Computer Programming Language.)

Appendix A

Collected Syntax

The non-terminal symbols pointer-type, program, signed-number,
simple-type, special-symbol and structured-type are only referenced by the
semantics and are not used in the right-hand-side of any production. The
non-terminal symbol program is the start symbol of the grammar.

actual-parameter = expression l variable-access !
procedure-identifier I function-identifier

actual-parameter-list =
"1" actual-parameter I "," actual-parameter l ")" .

adding-operator = "+ · i .. _ .. ; "or"

apostrophe-image =

array-type =
"array" "[" index-type I "," index-type j ")" "of' component-type .

array-variable = variable-access

assignment-statement =
(variable-access l function-identifier) ": =" expression .

base-type = ordinal-type .

99

ANSI/IEEE
770X3.97-1983

block = label-declaration-part
constant-definition-part

type-definition-part

IEEE STANDARD PASCAL

variable-declaration-part
procedure-and-function-declaration-part

statement-part .

Boolean-expression = expression .

buffer-variable = file-variable "1" .

case-constant = constant .

case-constant-list = case-constant I "," case-constant I .

case-index = expression .

case-list-element = case-constant-list ":" statement .

case-statement =
"case" case-index "of'
case-list-element I ";" case-list-element I [";"] "end" .

character-string = ""' string-element I string-element I '"" .

component-type = type-denoter .

component-variable = indexed-variable I field-designator .

compound-statement = "begin" statement-sequence "end" .

conditional-statement = if-statement I case-statement .

constant = [sign] (unsigned-number I constant-identifier) I
character-string .

constant-definition = identifier "=" constant .

constant-definition-part =
["const" constant-definition ";" I constant-definition ";" I] .

100

COMPUTER PROGRAMMING LANGUAGE

constant-identifier = identifier .

control-variable = entire-variable

digit = "O" I "1" I ·2· I "3" I "4" I ·s· I "6" I "7" I "8" I "9"

digit-sequence = digit I digit I .

directive = letter I letter I digit

domain-type = type-identifier

else-part = "else" statement .

empty-statement = .

entire-variable = variable-identifier .

enumerated-type = "(" identifier-I ist ")"

expression =

ANSI/IEEE
770X3.97-1983

simple-expression [relational-operator simple-expression] .

factor = variable-access i unsigned-constant i
function-designator I set-constructor I
"(" expression "J" i "not" factor .

field-designator = record-variable "." field-specifier I
field-designator-identifier .

field-designator-identifier = identifier .

field-identifier = identifier .

field-list = [(fix~d-part [";" variant-part] I variant-part) [";"]] .

field-specifier = field-identifier .

file-type = "file" "of' component-type

101

ANSI/IEEE
770X3.97-1983

file-variable = variable-access .

final-value = expression .

IEEE STANDARD PASCAL

fixed-part = record-section I ";" record-section I .

for-statement = "for" control-variable ":=" initial-value
("to" I "downto") final-value "do" statement .

formal-parameter-list =
"(" formal-parameter-section I ";" formal-parameter-section I ")" .

formal-parameter-section = value-parameter-specification I
variable-parameter-specification I
procedural-parameter-specification I
functional-parameter-specification

fractional-part = digit-sequence .

function-block = block .

function-declaration = function-heading ";" directive I
function-identification ";" function-block I
function-heading ";" function-block .

function-designator = function-identifier [actual-parameter-list] .

function-heading =
"function" identifier [formal-parameter-list] ":" result-type .

function-identification = "function" function-identifier .

function-identifier = identifier .

functional-parameter-specification = function-heading .

goto-statement = "goto" label .

identified-variable = pointer-variable "l"

102

COMPUTER PROGRAMMING LANGUAGE

identifier = letter I letter I digit I .

identifier-list = identifier I "," identifier I .

ANSI/IEEE
770X3.97-1983

if-statement = "if' Boolean-expression "then" statement [else-part] .

index-expression = expression

index-type = ordinal-type

indexed-variable =
array-variable "[" index-expression index-expression I "]" .

initial-value = expression

label = digit-sequence .

label-declaration-part = ["label" label I ''," label I ";"] .

letter = "a" I "b" I "c" ! "d" i "e" I ·r· : "g" i "h" I "i" I "j" I "k" I "l" I "m" I
"n" i "o" I "p" i "q" I "r'" I "s" l "t" I "u" I "v" I "w" l "x" I "y" I "z"

member-designator = expression [" . ." expression] .

multiplying-operator = "*" ! "/" i "div" I "mod" I "and"

new-ordinal-type = enumerated-type \ subrange-type

new-pointer-type = "i" domain-type .

new-structured-type = ["packed"] unpacked-structured-type .

new-type = new-ordinal-type I new-structured-type I new-pointer-type .

ordinal-type = new-ordinal-type I ordinal-type-identifier .

ordinal-type-identifier = type-identifier .

pointer-type = new-pointer-type I pointer-type-identifier

103

ANSI/IEEE
770X3.97-1983

pointer-type-identifier = type-identifier .

pointer-variable = variable-access .

IEEE ST AND ARD PASCAL

procedural-parameter-specification = procedure-heading .

precedure-and-function-declaration-part =
I (procedure-declaration I function-declaration) ";" I .

procedure-block = block .

procedure-declaration = procedure-heading ";" directive I
procedure-identification ";" procedure-block I
procedure-heading ";" procedure-block .

procedure-heading = "procedure" identifier [formal-parameter.,..Jist]

procedure-identification = "procedure" procedure-identifier .

procedure-identifier = identifier .

procedure-statement = procedure-identifier ([actual-parameter-list] I
read-parameter-list I
readln-parameter-list I
write-parameter-list I
writeln-parameter-list)

program = program-heading ";" program-block "." .

program-block = block .

program-heading = "program" identifier ["(" program-parameters ")"] .

program-parameters = identifier-list .

read-parameter-list =
"(" [file-variable ","] variable-access variable-access I ")" .

readln-parameter-list =
["(" (file-variable I variable-access) I "," variable-access J ")"] .

104

COMPUTER PROGRAMMING LANGUAGE

real-type-identifier = type-identifier .

record-section = identifier-list ":" type-denoter .

record-type = "record" field-list "end"

record-variable = variable-access .

ANSI/IEEE
770X3.97-1983

record-variable-list = record-variable I "," record-variable I .

relational-operator = "=" I "< >" I "<" I ">" I "< =" I "> =" I "in"

repeat-statement = "repeat" statement-sequence
"until" Boolean-expression

repetitive-statement = repeat-statement I
while-statement I
for-statement .

result-type = simple-type-identifier I pointer-type-identifier .

scale-factor = signed-integer .

set-constructor =
"[" [member-designator I "," member-designator I] "]" .

set-type = "set" "of' base-type

sign="+" I"-".

signed-integer = [sign] unsigned-integer .

signed-number = signed-integer I signed-real

signed-real = [sign] unsigned-real .

simple-expression = [sign] term I adding-operator term I .

simple-statement = empty-statement I assignment-statement I
procedure-statement I goto-statement .

105

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

simple-type = ordinal-type I real-type-identifier .

simple-type-identifier = type-identifier .

special-symbol = "+"I._ .. I"*" I"!" I"=" I"<" I">" IT I
"]''I"." J ","I":" I";" I"!" I"(" J "r" I"<>" I
"< - " I "> - " I .. · - " I " " I d- b I - - . - .. wor sym o .

statement = [label ":"] (simple-statement I structured-statement) .

statement-part = compound-statement .

statement-sequence = statement I ";" statement l .

string-character = one-of-a-set-of-implementation-defined-characters .

string-element = apostrophe-image I string-character .

structured-statement = compound-statement I conditional-statement I
repetitive-statement I with-statement .

structured-type = new-structured-type I structured-type-identifier .

structured-type-identifier = type-identifier .

subrange-type = constant " .. " constant .

tag-field = identifier .

tag-type = ordinal-type-identifier .

term = factor I multiplying-operator factor l .

type-definition = identifier "=" type-denoter .

type-definition-part =
["type" type-definition ";" I type-definition ";" l] .

type-denoter = type-identifier I new-type .

106

COMPUTER PROGRAMMING LANGUAGE

type-identifier = identifier .

unpacked-structured-type = array-type I record-type I
set-type I file-'.n,e .

unsigned-constant = unsigned-number I character-string I
constant-identifier I "nil"

unsigned-integer = digit-sequence .

unsigned-number = unsigned-integer I unsigned-real

I

ANSI/IEEE
770X3.97-1983

unsigned-real = unsigned-integer "," fractional-part ["e" scale-factor] I
unsigned-integer "e" scale-factor .

value-parameter-specification = identifier-list ":" type-identifier

variable-access = entire-variable I component-variable I
identified-variable I buffer-variable

variable-declaration = identifier-list ":" type-denoter .

variable-declaration-part =
["var" variable-declaration ";" I variable-declaration

variable-identifier = identifier .

variable-parameter-specification =
"var" identifier-list ":" type-identifier

variant = case-constant-list ":" "(" field-list ")"

variant-part = "case" variant-selector "of'
variant I ";" variant I .

variant-selector = [tag-field ":"] tag-type

"·'' I 1

while-statement = "while" Boolean-expression "do" statement .

107

.

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

with-statement = "with" record-variable-list "do" statement .

word-symbol = "and" I "array" I "begin" I "case" I "const" I "div" I
"do" I "downto" I "else" I "end" I "file" I "for" I
"function" I "goto" I "if' I "in" I "label" I "mod" I
"nil" I "not" I "of' I "or" I "packed" I "procedure" I
"program· I "record" I "repeat" I "set" I "then" I
"to" I "type" I "until" I "var" I "while" I "with" .

write-parameter = expression [":" expression [":" expression]] .

write-parameter-list = "(" [file-variable ","] write-parameter
I ·; write-parameter I ")" .

writeln-parameter-list = ["(" (file-variable I write-parameter)
I "," write-parameter I ")"] .

108

ANSI/IEEE
COMPUTER PROGRAMMING LANGUAGE 770X3.97-1983

Appendix B

Index

Term Reference Page Term Reference Page

A
Array-type 6.4.3.l 34

6.4.3.2 35
6.5.3.2 48

Access 6.5.1 46
6.5.3.1 47 Assignment-compatible
6.5.3.3 49 6.4.6 44
6.5.5 51 6.5.3.2 48
6.6.3.3 58 6.6.3.2 58
6.6.5.2 60 6.6.5.2 62
6.8.2.2 76 6.6.5.4 65
6.8.3.10 84 6.8.2.2 76
6.10 94 6.8.3.9 82

6.9.l 86
Actual 6.6.3.3 58

6.6.3.4 59 Assignment-statement
6.6.3.5 59 6.2.3.3 30
6.7.3 75 6.6.2 54
6.8.2.3 77 6.6.5.3 64
6.8.3.9 82 6.8.2.l 76

6.8.2.2 76
Actual-parameter 6.6.3.2 58 6.8.3.9 82

6.6.3.3 58
6.6.3.4 59

B 6.6.3.5 59
6.6.5.3 64
6.7.3 75 Base-type 6.4.3.4 40

6.4.5 44
Actual-parameter-list 6.4.6 45

6.6.6.5 68 6.7.l 69
6.7.3 75
6.8.2.3 77 Block 6.2.1 26
6.9.5 93 6.2.3.1 29

109

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

Term Reference Page Term Reference Page

6.2.3.2 29 6.9.l 86
6.2.3.3 29 6.9.3 88
6.2.3.4 30 6.9.5 93
6.3 30 6.10 94
6.4.1 31
6.4.2.3 34 c 6.5.l 46
6.6.l 51
6.6.2 54 Case-constants 6.4.3.3 38
6.6.3.l 57 6.6.5.3 64
6.6.3.2 58 6.8.3.5 79
6.6.3.3 58
6.6.3.4 59 Character 6.1.7 24
6.6.3.5 59 6.1.9 25
6.7.3 74 6.4.2.2 33
6.8.1 75 6.6.6.4 67
6.8.2.3 77 6.9.l 86
6.8.3.9 82 6.9.3.2 89
6.10 94 6.9.3.3 89

6.9.3.4.l 91
Body 6.6.1 53 6.9.3.4.2 92

6.8.3.8 81
6.8.3.9 82 Character-string 6.1.1 22

6.1.7 24
Boolean-expression 6.7.2.3 73 6.1.8 25

6.8.3.4 79 6.3 30
6.8.3.7 80 6.4.3.2 37
6.8.3.8 81 6.7.l 69

Boolean-type 6.4.2.2 32 Char-type 6.1.7 24
6.7.2.3 72 6.4.2.2 33
6.7.2.5 73 6.4.3.2 36
6.9.3.1 88 6.4.3.5 43
6.9.3.5 92 6.5.5 50

6.6.6.4 67
Buffer-variable 6.5.1 46 6.9.l 85

6.5.5 50 6.9.3.l 88
6.6.5.2 60 6.9.3.2 89

110

ANSI/IEEE
COMPUTER PROGRAMMING LANGUAGE 770X3.97-l 983

Term Ref ere nee Page Term Reference Page

6.5.3.3 49
Closed 6.1.5 23 6.6.5.2 60

6.1.6 24 6.8.3.10 84
6.4.6 45 6.9.3.6 92
6.7.1 69
6.7.2.2 72 Component-type 6.4.3.2 35

6.4.3.5 41
Compatible 6.4.3.3 38 6.4.6 44

6.4.5 44 6.5.5 50
6.4.6 45 6.6.3.2 58
6.4.7 46
6.7.2.5 74 Compound-statement
6.8.3.9 82 6.2.l 27

6.8.1 75
Component 6.4.3. l 34 6.8.3.1 78

6.4.3.2 35 6.8.3.2 78
6.4.3.3 38
6.4.3.5 41 Congruous 6.6.3.4 59
6.5.1 46 6.6.3.5 59

. 6.5.3.1 47 6.6.3.6 59
6.5.3.2 48
6.5.3.3 49 Constant 6.3 30
6.6.2 55 6.4.2.4 34
6.6.3.3 58 6.4.3.3 37
6.6.5.2 61 6.6.2 55
6.6.6.5 68
6.8.2.2 76 Corresponding 1.2 16
6.8.3.10 84 4 19
6.9.l 86 6.1.4 23
6.9.4 93 6.1.9 25
6.9.5 93 6.2.3.2 29

6.4.1 31
Components 6.1.7 24 6.4.3.3 38

6.4.3.l 35 6.5.4 50
6.4.3.2 37 6.6.3.1 58
6.4.3.3 37 6.6.3.3 58
6.4.3.5 41 6.6.3.6 59
6.4.5 44 6.6.4.1 60

111

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

Term Reference Page Term Reference Page

6.6.5.2 60
6.7.2.2 72 Directive 6.1.4 23
6.7.3 74 6.6.l 51
6.8.2.3 77 6.6.2 54

D E
Defining-point 6.2.1 26 Entire-variable 6.5.l 46

6.2.2.l 27 6.5.2 47
6.2.2.2 27 6.8.3.9 82
6.2.2.3 27
6.2.2.4 27 Enumerated-type 6.4.2.l 32
6.2.2.5 27 6.4.2.3 33
6.2.2.7 28
6.2.2.8 28 Error 3.1 17
6.2.2.9 28 5.1 20
6.2.2.11 28 6.4.6 45
6.2.3.l 29 6.5.3.3 49
6.2.3.2 29 6.5.4 50
6.3 30 6.5.5 51
6.4.l 31 6.6.5.2 60
6.4.2.3 34 6.6.5.3 64
6.4.3.3 37 6.6.6.2 66
6.5.l 46 6.6.6.3 66
6.5.3.3 49 6.6.6.4 67
6.6.l 51 6.6.6.5 68
6.6.2 54 6.7.l 68
6.6.3.1 57 6.7.2.2 71
6.6.3.4 59 6.7.3 74
6.6.3.5 59 6.8.3.5 79
6.8.3.10 84 6.9.l 86
6.10 94 6.9.3 88

6.9.3.1 88
Definition 3 17 6.9.4 93

4 18 6.9.5 93
5.1 19
6.4.3.5 41 Expression 6.5.3.2 48

112

ANSI/IEEE
COMPUTER PROGRAMMING LANGUAGE 770X3.97-1983

Term Reference Page Term Reference Page

6.6.3.2 58
6.6.5.2 62 File-type 6.4.3.1 34
6.6.5.3 64 6.4.3.5 41
6.6.5.4 64 6.4.6 44
6.6.6.2 66 6.5.5 50
6.6.6.3 66 6.6.3.2 58
6.6.6.4 67 6.10 94
6.6.6.5 68
6.7.l 68 File-variable 6.5.5 50
6.7.2.3 73 6.6.5.2 60
6.7.3 75 6.6.6.5 68
6.8.2.2 76 6.9.l 85
6.8.3.5 79 6.9.2 87
6.8.3.9 82 6.9.3 88
6.9.3 88 6.9.4 92
6.9.3.l 88

Formal 6.2.3.2 29
Extension 3.2 17 6.6.l 51

6.6.2 54

F
6.6.3.l 57
6.6.3.2 58
6.6.3.3 58

Factor 6.1.5 23 6.6.3.4 59
6.6.5.3 64 6.6.3.5 59
6.7.l 68 6.7.3 74
6.7.2.l 70 6.8.2.3 77

Field 6.4.3.3 38 Formal-parameter-list
6.5.3.3 49 6.6.l 51
6.6.3.3 58 6.6.2 54

6.6.3.1 57
Field-designator 6.2.2.6 28 6.6.3.4 59

6.5.3.l 48 6.6.3.5 59
6.5.3.3 49

Function 6.1.2 22
Fie ld-iden ti fier 6.4.3.3 37 6.2.3.2 29

6.5.3.3 49 6.2.3.3 29
6.8.3.10 84 6.4.3.5 43

113

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

Term Reference Page Term Reference Page

6.6 51
6.6.l 52
6.6.2 54 G
6.6.3.5 59
6.6.6.3 66 Goto-statement 6.8.l 75
6.6.6.4 67 6.8.2.l 76
6.6.6.5 68 6.8.2.4 78
6.7.2.2 72 6.8.3.l 78
6.7.3 74 6.8.3.7 80
6.9.3.3 89 6.8.3.9 82
6.9.3.4.l 89
6.9.3.4.2 91

I
Function-block 6.1.4 23

6.2.3.2 29 Identifier 4 18
6.2.3.3 29 6.1.3 23
6.6.2 54 6.2.2.l 27
6.6.3.1 57 6.2.2.5 27
6.8.2.2 76 6.2.2.7 28

6.2.2.8 28
Fu net ion-dee la rat ion 6.2.2.9 28

6.1.4 23 6.2.2.11 28
6.2.1 27 6.3 30
6.6.2 54 6.4.l 31
6.7.3 75 6.4.2.3 33

6.4.3.3 37
Function-designator 6.2.3.4 30 6.5.1 46

6.7.l 69 6.5.2 47
6.7.3 74 6.5.3.3 49

6.6.l 51
Function-identifier 6.2.3.l 29 6.6.2 54

6.2.3.2 29 6.6.3.1 57
6.2.3.3 30 6.8.3.9 82
6.6.2 54 6.8.3.10 84
6.6.3.1 58 6.10 93
6.6.3.5 59
6.7.3 74 Identifier-list 6.4.2.3 33
6.8.2.2 76 6.4.3.3 37

114

ANSI/IEEE
COMPUTER PROGRAMMING LANGUAGE 770X3.97-1983

Term Reference Page Term Reference Page

6.5.1 46
6.6.3.1 57 Integer-type 6.1.5 23
6.10 94 6.3 31

6.4.2.2 32
Implementation-defined 6.4.2.3 33

3.1 17 6.4.6 45
3.3 17 6.6.6.2 66
5.1 19 6.6.6.3 66
5.2 21 6.6.6.4 67
6.1.7 24 6.6.6.5 68
6.4.2.2 32 6.7.2.2 71
6.6.5.2 63 6.7.2.5 74
6.7.2.2 72 6.9.1 85
6.9.3.1 88 6.9.3.1 88
6.9.3.4.1 90 6.9.3.3 89
6.9.3.5 92
6.9.5 93

L 6.10 94

Implementation-dependent Label 6.1.2 22
3.4 17 6.1.6 24
5.1 20 6.2.l 27
5.2 21 6.2.2.l 27
6.5.3.2 48 6.2.2.5 27
6.7.1 69 6.2.2.7 28
6.7.2.1 70 6.2.2.8 28
6.7.3 75 6.2.2.9 28
6.8.2.2 76 6.2.2.11 28
6.8.2.3 77 6.2.3.2 29
6.9.5 93 6.8.l 75
6.10 94 6.8.2.4 78

Indexed-variable 6.5.3.l 48
6.5.3.2 48 M

Index-type 6.4.3.2 35 Member 6.4.6 45
6.5.3.2 48 6.7.l 69

6.7.2.5 74

115

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

Term Reference Page Term Reference Page

6.5.l 47

N
6.5.3.2 48
6.5.3.3 49
6.5.4 50

NOTE 3 17 6.6.3.l 58
3.1 17 6.6.3.5 59
3.5 17 6.6.4.1 60
5.1 20 6.6.5.2 62
5.1 21 6.6.5.2 63
5.2 21 6.6.5.3 64
6.1 22 6.7.1 69
6.1.4 23 6.7.1 69
6.1.7 25 6.7.2.l 70
6.1.9 26 6.7.2.2 71
6.1.9 26 6.7.2.2 72
6.2.2.8 28 6.7.2.5 74
6.2.2.10 28 6.8.1 75
6.2.2.11 28 6.8.l 76
6.2.3.2 29 6.8.3.4 79
6.2.3.3 30 6.8.3.5 80
6.4.2.2 33 6.9.1 86
6.4.3.l 35 6.9.2 87
6.4.3.2 36 6.9.3.4.2 92
6.4.3.2 36 6.9.4 93
6.4.3.2 37 6.10 94
6.4.3.3 38
6.4.3.3 39 Number 6.1.7 24
6.4.3.4 40 6.4.2.2 32
6.4.3.4 40 6.4.2.3 33
6.4.3.5 41 6.4.3.2 36
6.4.3.5 41 6.4.5 44
6.4.3.5 42 6.6.3.6 59
6.4.3.5 42 6.6.6.4 67
6.4.3.5 43 6.7.3 75
6.4.3.5 43 6.8.2.3 77
6.4.4 44 6.9.1 87
6.4.4 44 6.9.3.3 89
6.4.7 46 6.9.3.4 89

116

ANSI/IEEE
COMPUTER PROGRAMMING LANGUAGE 770X3.97-1983

Term Reference Page Term Reference Page

6.9.3.4.1 90
6.9.3.4.2 91 p

0 Parameter 6.6.l 52
6.6.3.l 57

Operand 6.7.2.l 70 6.6.3.2 58
6.7.2.2 71 6.6.3.3 58
6.7.2.5 73 6.6.3.4 59

6.6.3.5 59
Operator 6.5.l 47 6.6.3.6 59

6.7.l 68 6.6.5.2 60
6.7.2.1 70 6.6.6.2 66
6.7.2.2 72 6.6.6.5 68
6.7.2.4 73 6.8.3.9 82
6.7.2.5 73 6.9.1 85
6.8.3.5 80 6.9.2 87

6.9.3 87
Ordinal 6.4.2.l 32 6.9.3.5 92

6.4.2.2 32 6.9.4 92
6.4.2.3 33 6.10 94
6.6.6.l 65
6.6.6.4 67 Pointer 6.4.1 31
6.7.2.5 73 6.5.1 46

6.7.2.5 73
Ordinal-type 6.4.2.l 32

6.4.2.4 34 Pointer-type 6.4.4 44
6.4.3.2 35 6.5.4 50
6.4.3.3 38 6.6.5.3 63
6.4.3.4 40
6.6.6.4 67 Procedure 6.1.2 22
6.7.l 69 6.2.3.2 29
6.7.2.5 74 6.2.3.3 29
6.8.3.5 79 6.4.4 44
6.8.3.9 82 6.5.4 50

6.6 51
6.6.1 51
6.6.3.4 59

117

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

Term Reference Page Term Reference Page

6.8.2.3 77 6.2.3.5 30
6.8.3.9 82 6.10 93
6.9.l 85
6.9.2 87

R 6.9.3 88
6.9.4 92
6.9.5 93 Real-type 6.1.5 23
6.10 94 6.3 31

6.4.2.2 32
Procedure-block 6.1.4 23 6.4.6 45

6.2.3.2 29 6.6.6.2 66
6.2.3.3 29 6.6.6.3 66
6.6.1 51 6.7.2.2 71
6.6.3.l 57 6.7.2.5 74
6.8.2.3 77 6.9.l 85

6.9.3.l 88
Procedure-dee la ration 6.9.3.4 89

6.1.4 23
6.2.l 27 Record-type 6.4.3.1 34
6.6.1 51 6.4.3.3 37
6.8.2.3 77 6.5.3.3 49

6.6.5.3 63
Procedure-identifier 6.2.3.l 29 6.8.3.10 84

6.2.3.2 29
6.2.3.3 30 Record-variable 6.4.3.3 39
6.6.1 51 6.5.3.3 49
6.6.3.l 58 6.8.3.10 84
6.6.3.4 59
6.7.3 75 Reference 6.5.3.1 47
6.8.2.3 77 6.5.3.3 49

6.5.4 50
Procedure-statement 6.5.5 51

6.2.3.4 30 6.6.3.3 58
6.8.2.l 76 6.8.2.2 76
6.8.2.3 77 6.8.3.10 84
6.8.3.9 82

Region 6.2.1 26
Program-parameters 6.2.2.2 27

118

ANSI/IEEE
COMPUTER PROGRAMMING LANGUAGE 770X3.97-1983

Term Reference Page Term Reference Page

6.2.2.3 27 5.2 21
6.2.2.4 27 6.1 22
6.2.2.5 27 6.1.3 23
6.2.2.6 28 6.1.4 23
6.2.2.7 28 6.1.7 24
6.2.2.10 28 6.2.3.3 30
6.2.3.1 29 6.4.l 31
6.2.3.2 29 6.4.2.2 33
6.3 30 6.4.2.4 34
6.4.1 31 6.4.3.2 36
6.4.2.3 34 6.4.5 44
6.4.3.3 37 6.4.6 44
6.5.l 46 6.4.7 46
6.5.3.3 49 6.5.3.l 47
6.6.l 51 6.5.3.2 48
6.6.2 54 6.6.3.2 58
6.6.3.l 57 6.6.3.3 58
6.8.3.10 84 6.6.3.5 59
6.10 94 6.6.3.6 59

6.6.6.2 66
Result 6.2.3.2 29 6.6.6.4 67

6.2.3.3 30 6.7.1 68
6.2.3.5 30 6.7.2.2 72
6.6.1 52 6. 7 .2.4 73
6.6.2 54 6.7.2.5 74
6.6.6.2 66 6.8.3.5 79
6.6.6.3 66 6.8.3.10 85
6.6.6.4 67
6.7.2.2 71 Scope 6.2 26
6.7.2.4 73 6.2.2 27
6.7.2.5 73 6.2.2.2 27
6.7.3 74 6.2.2.4 27
6.8.2.2 76 6.2.2.5 27

6.2.2.8 28

s Set-type 6.4.3.l 34
6.4.3.4 40

Same 3.5 17 6.7.1 69

119

ANSI/IEEE
770X3.97-1983 IEEE ST AND ARD PASCAL

Term Ref ere nee Page Term Ref ere nee Page

6.7.2.5 74 6.9.l 85
6.9.2 87

Statement 6.2.1 27 6.9.3 87
6.2.3.2 29 6.9.4 92
6.6.5.4 65 6.9.5 93
6.8.1 75 6.10 94
6.8.2.l 76
6.8.3.1 78 Token 4 18
6.8.3.4 79 6.1 22
6.8.3.5 79 6.1.1 22
6.8.3.8 81 6.1.2 22
6.8.3.9 81 6.1.8 25
6.8.3.10 84 6.1.9 25

String-type 6.1.7 24 Total ly-u ndef i ned 6.2.3.5 30
6.4.3.2 36 6.5.3.3 49
6.4.5 44 6.6.5.2 61
6.4.6 45 6.6.5.3 63
6.7.2.5 73 6.8.2.2 76
6.9.3.1 88 6.9.4 93
6.9.3.6 92 6.9.5 93

Structured-type 6.4.3.1 34 Type-identifier 6.2.2.9 28
6.4.3.5 41 6.2.2·.ll 28
6.5.l 46 6.4.1 31
6.8.2.2 76 6.4.2.l 32

6.4.4 44
Subrange 6.4.2.4 34 6.6.3.l 57

6.4.5 44 6.6.3.2 58
6.7.1 69 6.6.3.3 58
6.9.l 85 6.6.3.6 59

6.10 94

T u
Text file 6.4.3.5 43

6.5.5 50 Undefined 6.5.3.3 49
6.6.6.5 68 6.5.4 50

120

ANSI/IEEE
COMPUTER PROGRAMMING LANGUAGE 770X3.97-1983

Term Reference Page Term Reference Page

6.6.5.2 60 Variable-access 6.5.l 46
6.6.5.3 64 6.5.3.2 48
6.6.6.5 68 6.5.3.3 49
6.7.l 68 6.5.4 50
6.7.3 74 6.5.5 50
6.8.2.2 76 6.6.3.3 58
6.8.3.9 82 6.6.5.2 62
6.9.1 87 6.6.5.3 63
6.9.3 88 6.7.1 68
6.9.4 93 6.7.3 75

6.8.2.2 76

v 6.8.3.9 82
6.9.1 85
6.9.2 87

Variable 6.2.3.2 29
6.2.3.3 30 Variant 6.4.3.3 37
6.4.l 31 6.5.3.3 49
6.4.3.5 43 6.6.5.3 64
6.4.4 44
6.5.1 46
6.5.3.l 47 w
6.5.3.2 48
6.5.3.3 49 Word-symbol 6.1.2 22
6.5.4 50 6.1.3 23
6.5.5 50 6.1.4 23
6.6.3.l 57
6.6.3.2 58
6.6.3.3 58
6.6.5.2 60
6.6.5.3 63
6.6.5.4 64
6.7.1 68
6.8.2.2 76
6.8.3.9 81
6.8.3.10 84
6.9.1 86
6.10 94

121

Identifier

abs
arctan
Boolean
char
chr
cos
dispose
eof
eoln
exp
false
get
input
integer
In
max int
new
odd
ord
output

Appendix C

Required Identifiers

Reference(s) Identifier

6.6.6.2 pack
6.6.6.2 page
6.4.2.2 pred
6.4.2.2 put
6.6.6.4 read
6.6.6.2 read In
6.6.5.3 real
6.6.6.5 reset
6.6.6.5 rewrite
6.6.6.2 round
6.4.2.2 Sin

6.6.5.2 sqr
6.10 sqrt
6.4.2.2 succ
6.6.6.2 text
6.7.2.2 true
6.6.5.3 trunc
6.6.6.5 unpack
6.6.6.4 write
6.10 write In

123

ANSI/IEEE
770X3.97-1983

Ref erence(s)

6.6.5.4
6.9.5
6.6.6.4
6.6.5.2
6.6.5.2, 6.9.1
6.9.2
6.4.2.2
6.6.5.2
6.6.5.2
6.6.6.3
6.6.6.2
6.6.6.2
6.6.6.2
6.6.6.4
6.4.3.5
6.4.2.2
6.6.6.3
6.6.5.4
6.6.5.2, 6.9.3
6.9.4

ANSI/IEEE
770X3.97-1983

Appendix D

Errors

IEEE ST AND ARD PASCAL

A complying processor is required to provide documentation concerning its
treatment of errors. To facilitate the production of such documentation,
all the errors specified in Section 6 are described again in this appendix.

1. For an indexed-variable closest-containing a single index-expression,
the value of the index-expression is assignment-compatible with the
index-type of the array-type.

2. It is an error unless a variant is active for the entirety of each
reference and access to each component of the variant.

3. It is an error if the pointer-variable of an identified-variable denotes
a nil-value.

4. It is an error if the pointer-variable of an identified-variable is
undefined.

5. It is an error to remove from its pointer-type the identifying-value of
an identified variable when a reference to the identified variable
exists.

6. It is an error to alter the value of a file-variable f when a reference
to the buffer-variable fi exists.

7. For a value parameter, the actual-parameter is an expression of an
ordinal-type whose value is assignment-compatible with the type
possessed by the formal parameter.

8. For a value parameter, the actual-parameter is an expression of a
set-type whose value is assignment-compatible with the type
possessed by the formal parameter.

9. It is an error if the file mode is not Generation immediately prior to
any use of put, write, writeln or page.

124

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

10. It is an error if the file is undefined immediately prior to any use of
put, write, writeln or page.

11. It is an error if end of file is not true immediately prior to any use
of put, write (or writeln or pageJ.

12. It is an error if the buffer-variable is undefined immediately prior to
any use of put.

13. It is an error if the file is undefined immediately prior to any use of
reset.

14. It is an error if the file mode is not Inspection immediately prior to
any use of get or read.

15. It is an error if the file is undefined immediately prior to any use of
get or read.

16. It is an error if end of file is true immediately prior to any use of get
or read.

17. For read, the value possessed by the buffer-variable is
assignment-compatible with the variable-access.

18. For write, the value possessed by the expression 1s
assignment-compatible with the buffer-variable.

19. For neW(p,c1, ... ,c 0 l, it is an error if a variant of a variant-part within
the new variable becomes active and a different variant of the
variant-part is one of the specified variants.

20. For dispose(pl, it is an error if the identifying-value had been created
using the form new(p,c1, ... ,c 0 J.

21. For dispose(p,k 1, ... ,km), it is an error if the variable had been created
using the form new(p,c 1, ... ,c0) and m is not equal to n.

22. For dispose(p,k 1,. .. ,km), it is an error if the variants in the variable
identified by the pointer value of p are different from those specified
by the case-constants. k1, ... ,km.

125

ANSI/IEEE
770X3.97-1983 IEEE STANDARD PASCAL

23. For dispose, it is an error if the parameter of a pointer-type has a
nil-value.

24. For dispose, it is an error if the parameter of a pointer-type is
undefined.

25. It is an error if a variable created using the second form of new is
accessed by the identified-variable of the variable-access of a factor,
of an assignment-statement, or of an actual-parameter.

26. For pack, the parameter of ordinal-type is assignment-compatible
with the index-type of the unpacked array p::irameter.

27. For pack, it is an error if any of th~ components of the unpacked
array are both undefined and accessed.

28. For pack. it is an error if the index-type of the unpacked array is
exceeded.

29. For unpack. the parameter of ordinal-type is assignment-compatible
with the index-type of the unpacked array parameter.

30. For unpack, it is an error if any of the components of the packed
array are undefined.

31. For unpack. it is an error if the index-type of the unpacked array
is exceeded.

32. SqnxJ computes the square of x. It is an error if such a value does
not exist.

33. For lrnxJ, it is an error if x is not greater than zero.

34. For sqrt(x), it is an error if x is negative.

35. For trunc(x), the value of trunc(x) is such that if x is positive or zero
then 0< =x-trunc(xl< 1; otherwise -1 <x-trunc(x)< =0. It is an
error if such a value does not exist.

126

COMPUTER PROGRAMMING LANGUAGE
ANSI/IEEE

770X3.97-1983

36. For round(x), if x is positive or zero then round(x) is equivalent to
trunc(x+0.5J, otherwise round(x) is equivalent to trunc(x-0.5). It
is an error if such a value does not exist.

37. For chr(xJ, the function returns a result of char-type which is the
value whose ordinal number is equal to the value of the expression x
if such a character value exists. It is an error if such a character value
does not exist.

38. For SUCC(xJ, the function yields a value whose ordinal number is one
greater than that of x, if such a value exists. It is an error if such
a value does not exist.

39. For pred!x), the function yields a value whose ordinal number is one
less than that of x, if such a value exists. It is an error if such a value
does not exist.

40. When eof(fl is activated, it 1s an error if f is undefined.

41. When eoln(f) is activated, it 1s an error if f is undefined.

42. When eolrnf) is activated, it is an error if eof(f) is true.

43. An expression denotes a value unless a variable denoted by a
variable-access contained by the expression is undefined at the time
of its use, in which case that use is an error.

44. A term of the form x/y is an error if y is zero.

45. A term of the form div j is an error if j is zero.

46. A term of the form mod j is an error if j is zero or negative.

47. It is an error if an integer operation or function is not performed
according to the mathematical rules for integer arithmetic.

48. It is an error if the result of an activation of a function is undefined
upon completion of the algorithm of the activation.

127

ANSI/IEEE
770X3.97-1983 IEEE ST AND ARD PASCAL

49. For an assignment-statement, the expression is of an ordinal-type
whose value is assignment-compatible with the type possessed by the
variable or function-identifier.

50. For an assignment-statement, the expression is of a set-type whose
value is assignment-compatible with the type possessed by the
variable.

51. For a case-statement, it is an error if none of the case-constants is
equal to the value of the case-index upon entry to the case-statement.

52. For a for-statement, the value of the initial-value is
assignment-compatible with the type possessed by the
control-variable if the statement of the for-statement is executed.

53. For a for-statement, the value of the final-value is
assignment-compatible with the type possessed by the
control-variable if the statement of the for-statement is executed.

54. On reading an integer from a textfile, after skipping preceding spaces
and end-of-lines, it is an error if the rest of the sequence does not form
a signed-integer.

55. On reading an integer from a textfile, the value of the signed-integer
read 1s assignment-compatible with the type possessed by
variable-access.

56. On reading a number from a textfile, after skipping preceding spaces
and end-of-lines, it is an error if the rest of the sequence does not form
a signed-number.

57. It is an error if the buffer-variable is undefined immediately prior to
any use of read.

58. On writing to a textfile, the values of Tota/Width and FracDigits are
greater than or equal to one; it is an error if either value is less than
one.

128

ISBN 0-471-88944-X

	Foreword
	Contents
	1. Scope
	2. References
	3. Definitions
	4. Definitional Conventions
	5. Compliance
	6. Requirements
	Appendixes
	Appendix A Collected Syntax
	Appendix B Index
	Appendix C Required Identifiers
	Appendix D Errors

