

American Standard

Basic FORTRAN

Sponsor

Business Equipment Manufacturers Association

Approved March 7, 1966

AMERICAN STANDARDS ASSOCIATION
INCORPORATED

~
Reg. U.S. Pat. Off.

X3.10-1966

UDC 681 .3:686.84

American Standard

An American Standard implies a consensus of those substantially concerned with
its scope and provisions. An American Standard is intended as a guide to aid the
manufacturer, the consumer, and the general public. The existence of an American
Standard does not in any respect preclude anyone, whether he has approved the
standard or not, from manufacturing, marketing, purchasing, or using products,
processes, or procedures not conforming to the standard. American Standards are
subject to periodic review and users are cautioned to obtain the latest editions.
Producers of goods made in conformity with an American Standard are encouraged
to state on their own responsibility in advertising, promotion material, or on tags or
labels, that the goods are produced in conformity with particular American Standards.

Published by

AMERICAN STANDARDS ASSOCIATION
INCORPORATED

10 East 40th Street, New York, N. Y. 10016

Copyright 1966 by American Standards Association, Incorporated
Universal Decimal Classification 681.3:686.84

Printed In USA
A5M866/450

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1l

18

19

20

2 l

22

23

24

26

27

:rn
29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Foreword
(This Foreword is not a part of American Standard Basic FORTRAN, X3.10-

l 966.j

This American Standard presents the form for and the interpreta­
tion of programs written in the Basic FORTRAN common program­
ming language for use on computers and information processing
systems.

This standard is one of two related standards dealing with the
group of closely related languages which have been historically
known as FORTRAN.

American Standard Basic FORTRAN, X3.10-l 966, was developed
in parallel with American Standard FORTRAN, X3.9-l 966, to
ensure that Basic FORTRAN was a subset and so that the organiza­
tion of the two standards exemplify their relation clearly. Certain
paragraphs do not appear in this standard which do appear in
American Standard FORTRAN, X3.9-l 966. When this occurs, the
title of the section is shown with the following statement:

This subject is not covered in this standard, but does
appear in American Standard FORTRAN, X3.9-l 966

so that a direct correspondence can be maintained between the
provisions of FORTRAN and those of Basic FORTRAN.

Suggestions for improvement gained in the use of this standard
will be welcome. They should be sent to the American Standards
Association, Incorporated, 10 East 40th Street, New York, N.Y.
10016.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

l 7

18

19

20

25

26

27

28

29

30

31

:n
33

34

35

36

37

38

39

4{)

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

1

2

3

4

5

6

7

8

9

10

11

12

11

1 5

16

1 i

lfi

19

'.'0

2 l

25

27

28

79

3()

::11
'l?

33

3 I

35

36

37

38

39

40

41

4:1

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Ct)ntents

SECTION PAGE

1. Purpose and Scope 7
1.1 Purpose .. 7
1.2 Scope.. 7

2. Basic Terminology.. 7

3. Program Form.. 8
3.1 The FORTRAN Character Set .. 8
3.2 Lines ... 8
3.3 Statements 9
3.4 Statement Label.. 9
3.5 Symbolic Names.. 9
3.6 Ordering of Characters.. 9

4. Data Types 9
4.1 Data Type Association .. 9
4.2 Data Type Properties 9

5. Data and Procedure Identification
5.1 Data and Procedure Names

9
9

5.2
5.3
5.4

Function Reference.. 10
Type Rules for Data and Procedure Identifiers .. 10
Dummy Arguments...... 10

6. Expressions 11
6.1 Arithmetic Expressions 11
6.2 Relational Expressions (not used in Basic FORTRAN) .. 11
6.3 Logical Expressions (not used in Basic FORTRAN) 11
6.4 Evaluation of Expressions .. 11

7. Statements 11
7. l Executable Statements 11
7 .2 Nonexecutable Statements .. 15

8. Procedures and Subprograms ... 18
8.1 Statement Functions.... 18
8.2 Intrinsic Functions and Their Reference ... 19
8.3 External Functions........ 19
8.4 Subroutine. 20
8.5 Block Data Subprogram....... 21

9. Programs
9.1 Program Components
9.2 Normal Execution Sequence

. .. 21
21
21

10. Intra- and Inter-Program Relationships 21
10.1 Symbolic Names ... 21
10.2 Definition.............. 22
10.3 Definition Requirements for Use of Entities .. 24

Tables

Table l Rules for Assignment of e to v 12
Table 2 Value of a Subscript .. 15
Table 3 Intrinsic Functions .. 19
Table 4 Basic External Functions 20

2

3

4

5

6

7

8

9

10

11

12

1:3

15

l 6

ll

lfi

19

;,o

2 l

27

28

79

3()

'.ll

33

3 I

35

36

3"1

38

39

40

41

4:1

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

1

2

3

4

5

6

7

8

9

10

II

12

13

14

15

I b

I I

18

19

'21

n

'.li,

';'
28

30

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Appendix A Considerations Relating to Purpose of FORTRAN Standardization
Al. Introduction .. .
A2. FORTRAN Historical Development and Current Status .. ,
A3. General Purpose .. .
A4. Criteria Used in Developing FORTRAN Standards
A5. FORTRAN II and FORTRAN IV
A6. FORTRAN for a Wide Range of Equipment

Appendix B Notes by Section .. ,
Bl. Section I Notes
B2. Section 2 N·otes ... ,. .. , .. .
B3. Section 3 Notes
B4. Section 4 Notes·
B5. Section 6 Notes
B6. Section 7 Notes ... ,
B7. Section 8 Notes
B8. Section l 0 Notes ... ,

Appendix C Principal Differences Between American Standard FORTRAN
and Amerii:a.n Standard Basic FORTRAN .. .

Appendix D A Current Media Representation for the Graphics of the Basic FORTRAN Character Set

Committees

25 1

25
2

25
3

25
4

25
5

26
6

26
7

8

'l1 9

27 10

27 II

21 12

27 13

21 14

23 15

ZS I b

28 17

18

29 19

Jfl

30 '21

31 n
23

H

2';

'.ll,

'.I: I

28

n
30

'.ll

-~ '}

:;3

3~

35

3/i

n
38

39

40

41

42

43

44

45

46

47

48

49

so
51

52

53

54

55

56

57

2

3

4

5

6

7

8

'I

10

l 1

l" .~

14

! 5

16

I!

:-1
iiJ

ii

l'

L:

}9

H

l5

. rn
41

·i2

43

.t4

46

47

48

49

so
51

52

53

54

55
56

57

American Standard

Basic FORTRAN

I. Purpose and Scope

I.I Purpose. This standard establishes the form for
and the interpretation of programs expressed in the
FORTRAN language for the purpose of promoting a high
degree of interchangeability of such programs for use on
a variety of automatic data processing systems. A proc­
essor shall conform to this standard provided it accepts,
and interprets as specified, at least those forms and re­
lationships described herein.

Insofar as the interpretation of the FORTRAN form
and relationships described are not affected, any state­
ment of requirement could be replaced by a statement
expressing that the standard does not provide an in­
terpretation unless the requirement is met. Further, any
statement of prohibition could be replaced by a statement
expressing that the standard does not provide an inter­
pretation when the prohibition is violated.

1.2 Scope. This standard establishes:
(11 The form of a program written in the FORTRAN

language.
(21 The form of writing input data to be processed by

such a program operating on automatic data processing
systems.

(31 Rules for interpreting the meaning of such a
program.

(4 l The form of the output data resulting from the
use of such a program on automatic data processing
systems, provided that the rules of interpretation estab­
lish an interpretation .

I.2.I This standard does not prescribe:
(11 The mechanism by which programs are trans­

formed for use on a data processing system (the com­
bination of this mechanism and data processing system
is called a processor I.

(21 The method of transcription of such programs or
their input or output data to or from a data processing
medium.

(31 The manual operations required for set-up and
control of the use of such programs on data processing
equipment.

(41 The results when the rules for interpretation fail
to establish an interpretation of such a program.

(51 The size or complexity of a program that will
exceed the capacity of any specific data processing system
or the capability of a particular processor.

(61 The range or precision of numerical quantities.

7

2. Basic Terminology

This section introduces some basic terminology and
some concepts. A rigorous treatment of these is given in
later sections. Certain conventions concerning the mean­
ing of grammatical forms and particular words are
presented.

A program that can be used as a self-contained com­
puting procedure is called an executable program (9 .1.6 }.

An executable program consists of precisely one main
program and possibly one or more subprograms (9.1.61.

A main program is a set of statements and comments
not containing a FUNCTION or SUBROUTINE state­
ment (9.1.51.

A procedure subprogram is similar to a main program
but is headed by a FUNCTION or SUBROUTINE state­
ment. A procedure subprogram is sometimes referred
to as a subprogram (9.1.31.

The term program unit will refer to either a main
program or subprogram (9.1.71.

Any program unit may reference an external procedure
(Section 91.

An external procedure that is defined by FORTRAN
statements is called a procedure subprogram. External
procedures also may be defined by other means. An
external procedure may be an external function or an
external subroutine. An external function defined by
FORTRAN statements headed by a FUNCTION state­
ment is called a function subprogram. An external sub­
routine defined by FORTRAN statements headed by a
SUBROUTINE statement is called a subroutine sub­
program (Sections 8 and 9 }.

Any program unit consists of statements and com­
ments. A statement is divided into physical sections
called lines, the first of which is called an initial line and
the rest of which are called continuation lines (3.21.

There is a type of line called a comment that is not a
statement and merely provides information for docu­
mentary purposes (3.21.

The statements in FORTRAN fall into two broad classes
-executable and nonexecutable. The executable state­
ments specify the action of the program while the non­
executable statements describe the use of the program,
the characteristics of the operands, editing information,
statement functions, or data arrangement (7.1, 7.21.

The syntactic elements of a statement are names and
operators. Names are used to reference objects such as

2

3

4

5

6

7

8

'I

10

ll

l" .~

14

! 5

16

I!

:-1
iiJ

ii

l'

L:

}9

41

·i2

43

.t4

45

46

47

48

49

50

51

52

53

54

55
56

57

1

2

3

4

s
6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

26

21

28

29

30

31

17

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

so
51

S2

S3

54

S5
56

51

X3.10
8

data or procedures. Operators, including the imperative
verbs, specify action upon named objects.

One class of name, the array name, deserves special
mention. An array name must have the size of the identi­
fied array defined in an array declarator (7.2.1.11. An
array name qualified only by a subscript is used to iden­
tify a particular element of the array (5.1.31.

Data names and the arithmetic operations may he
connected into expressions. Evaluation of such an ex­
pression develops a value. This value is derived by
performing the specified operations on the named data.

The identifiers used in FORTRAN are names and num­
bers. Data are named. Procedures are named. State­
ments are labeled with numbers. Input/output units are
numbered (Sections 3, 6, 71.

At various places in this standard there are state­
ments with associated lists of entries. In ·all such cases
the list is assumed to contain at least one entry unless
an explicit exception is stated. As an example, in the
statement

SUBROUTINE s(a1, a2 , ••• , anl
it is assumed that at least one symbolic name is included
in the list within parentheses. A list is a set of identifiable
elements, each of which is separated from its successor by
a comma. Further, in a sentence a plural form of a noun
will he assumed to specify also the singular form of that
noun as a special case when the context of the sentence
does not prohibit this interpretation.

The term reference is used as a verb with special mean­
ing as defined in Section 5.

3. Program Form

Every program unit is constructed of characters
grouped into lines and statements.

3.1 The FORTRAN Character SeL A program unit is
written using the following characters: A, B, C, D, E, F,
G, H, I,J, K, L, M, N, 0, P, Q, R, S, T, U, V, W, X, Y, Z,
0, 1, 2, 3,4, 5,6,7,8,9,and:

Character Name of Character

Blank
= Equals
+ Plus

Minus

• Asterisk

I Slash

I Left Parenthesis

I Right Parenthesis
Comma
Decimal Point

The order in which the characters are listed does not
imply a collating sequence.

AMERICAN STANDARD

3.1.1 Digits. A digit is one of the ten characters: 0, 1,
2, 3, 4, 5, 6, 7, 8, 9. Unless specified otherwise, a string
of digits will he interpreted in the decimal base number
system when a number system base interpretation is
appropriate.

An octal digit is one of the eight characters: 0, 1, 2, 3,
4, 5, 6, 7. These are only used in the STOP (7.l.2.7.11
and PAUSE (7.1.2.7.21 statements.

3.1.2 Letters.A letter is one of the twenty-six charac­
ters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S,
T, U, V, W,X, Y,Z

3.1.3 Alphanumeric Characters. An alphanumeric
character is a letter or a digit.

3.1.4 Special Characters. A special character is
one of the ten characters: blank, equals, plus, minus,
asterisk, slash, left parenthesis, right parenthesis, com­
ma, and decimal point.

3.1.4.1 Blank Character. With the exception of
the uses specified (3.2.2, 3.2.3, 3.2.4, 7 .2.3.6, and
7 .2.3.81, a blank character has no meaning and may
he used freely to improve the appearance of the pro­
gram subject to the restriction on continuation lines in
3.3.

3.2 Lines. A line is a string of 72 characters. All char­
acters must he from the FORTRAN character set except
as described in 7.2.3.8.

The character positions in a line are called columns
and are consecutively numbered 1, 2, 3, ... , 72. The
number indicates the sequential position of a character
in the line starting at the left and proceeding to the right.

3.2.1 Comment Line. The letter C in column l of a
line designates that line as a comment line. A comment
line must he immediately followed by an initial line,
another comment line, or an end line.

A comment line does not affect the program in any way
and is available as a convenience for the user.

3.2.2 End Line. An end line is a line with the charac­
ter blank in columns l through 6, the characters E, N,
and D, once each and in that order, in columns 7 through
72, preceded by, interspersed with, or followed by the
character blank. The end line indicates, to the processor,
the end of the written description of a program unit
{9. l.7). Every program unit must physically terminate
with an end line.

3.2.3 Initial Line. An initial line is a line that is
neither a comment line nor an end line and that contains
the digit 0 or the character blank in column 6. Columns
1 through 5 contain the statement label or each contains
the character blank.

3.2.4 Continuation Line. A continuation line is a
line that contains any character other than the digit 0 or
the character blank in column 6, and does not contain
the character C in column 1.

A continuation line may only follow an initial line or
another continuation line.

1

2

3

4

s
6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

26

u
28 '

29

30

31

33

Jt

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

so
51

52
S3

54

5S
56

57

1

2

3

4

5

6

7

8

9

0

2

3

4

'5

i6

8

9

w
11

12

13

14

15

16

17

18

19

lO

l l

l7

l3

u
l5

36

37

l6

39

40

41

42

43

44

45

46

47

48

49

50

51

52
53
54

55
56

.57

BASIC FORTRAN

3.3 Statements. A statement consists of an initial line
optionally followed by up to five ordered continuation
lines. The statement is written in columns 7 through
72 of the lines. The order of the characters in the state­
ment is columns 7 through 72 of the initial line followed,
as applicable, by columns 7 through 72 of the first con­
tinuation line, columns 7 through 72 of the next con­
tinuation line, etc.

3.4 Statement Label. Optionally, a statement may be
labeled so that it may be referred to in other statements.
A statement label consists of from one to four digits. The
value of the integer represented is not significant but
must be greater than zero. The statement label may be
placed anywhere in columns 1 through 5 of the initial
line of the statement. The same statement label may not
be given to more than one statement in a program unit.
Leading zeros are not significant in differentiating state­
ment labels.

3.5 Symbolic Names. A symbolic name consists of from
one to five alphanumeric characters, the first of which
must be alphabetic. See 10.1 thr~ugh 10.1.10 for a
discussion of classification of symbolic names and re­
strictions on their use.

3.6 Ordering of Characters. An ordering of characters
is assumed within a program unit. Thus, any meaningful
collection of characters that constitutes names, lines,
and statements exists as a totally ordered set. This
ordering is imposed by the character position rule of 3.2
(which orders characters within a line l and the order in
which lines are presented for processing.

4. Data Types

Two different types of data are defined. These are
integer and real. Each type has a different mathematical
significance and may have different internal representa­
tion. Thus the data type has a significance in the interpre­
tation of the associated operations with which a datum is
involved. The data type of a function defines the type of
the datum it supplies to the expression in which it
appears.

4.1 Data Type Association. The name employed to
identify a datum or function carries the data type as­
sociation. The form of the string representing a constant
defines both the value and the data type.

A symbolic name representing a function, variable, or
array must have only a single data type association for
each program unit. Once associated with a particular
data type, a specific name implies that type for any dif­
fering usage of that symbolic name that requires a data
type association throughout the program unit in which
it is defined.

Data type is established for a symbolic name by the
first character of that name (5.3 l.

X3.10
9

4.2 Data Type Properties. The mathematical and the
representation properties for each of the data types are
defined in the following sections. For both real and
integer data, the value zero is considered neither positive
nor negative.

4.2.1 Integer Type. An integer datum is always an
exact representation of an integer value. It may assume
positive, negative, and zero values. It may only assume
integral values.

4.2.2 Real Type. A real datum is a processor approx­
imation to the value of a real number. It may assume
positive, negative, and zero values.

4.2.3 Double Precision Type. This subject is not
covered in this standard, but does appear in American
Standard FORTRAN, X3.9-1966.

4.2.4 Complex Type. This subject is not covered in
this standard, but does appear in American Standard
FORTRAN, X3.9-1966.

4.2.5 Logical Type. This subject is not covered in
this standard, but does appear in American Standard
FORTRAN, X3.9-l 966.

4.2.6 Hollerith Type. This subject is not covered in
this standard, but does appear in American Standard
FORTRAN, X3. 9-1966.

5. Data and Procedure Identification

Names are employed to reference or otherwise identify
data and procedures.

The term reference is used to indicate an identification
of a datum implying that the current value of the datum
will be made available during the execution of the state­
ment containing the reference. If the datum is identified
but not necessarily made available, the datum is said to
be named. One case of special interest in which the datum
is named is that of assigning a value to a datum, thus
defining or redefining the datum.

The term reference is used to indicate an identifica­
tion of a procedure implying that the actions specified by
the procedure will be made available.

A complete and rigorous discussion of reference and
definition, including redefinition, is contained in Sec­
tion 10.

5.1 Data and Procedure Names. A data name identi­
fies a constant, ·a variable, an array, or an array element.
A procedure name identifies a function or a subrou­
tine.

5.1.1 Constants. A constant is a datum that is always
defined during execution and may not be redefined.
Rules for writing constants are given for each data type.

An integer or real constant is said to be signed when
it is written immediately following a plus or minus. Also,
for these types, an optionally signed constant is either
a constant or a signed constant.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

11

l 8

19

:w
21

22

23

24

25

26

27

28

29

30

31

33

Jt

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

so
51

52
53
54

55
56

57

1

2

3

4

5

6

7

8

9

10

11

1~

13

14

15

16

17

18

19

'20

21

22

23

24

25

26

n
28

29

'..10

'.Jl

34

3.5

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

SS
56

57

X3.10
10

5.1.1.1 Integer Constant. An integer constant is
written as a nonempty string of digits. The constant is
the digit string interpreted as a decimal numeral.

5.1.1.2 Real Constant. A basic real constant is
written as an integer part, a decimal point, and a decimal
fraction part in that order. Both the integer part and the
decimal part are strings of digits; either one of these
strings may be empty but not both. The constant is an
approximation to the digit string interpreted as a decimal
numeral.

A decimal exponent is written as the letter, E, followed
by an optionally signed integer constant. A decimal ex­
ponent is a multiplier (applied to the constant written
immediately preceding it) that is an approximation to
the exponential form ten raised to the power indicated
by the integer written following the E.

A real constant is indicated by writing a basic real
constant or a basic real constant followed by a decimal
exponent.

5.1.1.3 Double Precision Constant. This subject is
not covered in this standard, but does appear in
American Standard FORTRAN, X3. 9-1966.

5.1.1.4 Complex Constant. This subject is not
covered in this standard, but does appear in American
Standard FORTRAN, X3.9-l 966.

5.1.1.5 Logical Constant. This subject is not
covered in this standard, but does appear in American
Standard FORTRAN, X3.9-l 966.

5.1.1.6 Hollerith Constant. This subject is not
covered in this standard, but does appear in American
Standard FORTRAN, X3.9-l 966.

5.1.2 Variable. A variable is a datum that is identi­
fied by a symbolic name (3.51. Such a datum may be
referenced and defined.

5.1.3 Array. An array is an ordered set of data of one
or two dimensions. An array is identified by a symbolic
name. Identification of the entire ordered set is achieved
via use of the array name.

5.1.3.1 Array Element. An array element is one of
the members of the set of data of an array. An array
element is identified by immediately following the array
name with a qualifier, called a subscript, which points to
the particular element of the array.

An array element may be referenced and defined.
5.1.3.2 Subscript. A subscript is written as a paren­

thesized list of subscript expressions. The subscript
expressions are separated by a comma if two are present.
The number of subscript expressions must correspond
to the declared dimensionality (7 .2.1.1), except in an
EQUIVALENCE statement (7.2.1.4). Following evalua­
tion of all of the subscript expressions, the array element
successor function (7.2.1.1.1) determines the identified
array element.

AMERICAN STANDARD

5.1.3.3 Subscript Expressions. A subscript expres-
sion is written as one of the following constructs:

c•v+k
c•v-k
c•v
v+k
v-k
v
k

where c and k are integer constants and v is an integer
variable reference. See Section 6 for a discussion of
evaluation of expressions and 10.2.8 and l 0.3 for re­
quirements that apply to the use of a variable in a sub­
script.

5.1.4 Procedures. A procedure (Section 81 is identi­
fied by a symbolic name. A procedure is a statement
function, an intrinsic function, a basic external function,
an external function, or an external subroutine. State­
ment functions, intrinsic functions, basic external func­
tions, and external functions are referred to as functions
or function procedures; external subroutines as sub­
routines or subroutine procedures.

A function supplies a result to be used at the point of
reference; a subroutine does not. Functions are refer­
enced in a manner different from subroutines.
5.2 Function Reference. A function reference consists
of the function name followed by an actual argument list
enclosed in parentheses. If the list contains more than
one argument, the arguments are separated by commas.
The allowable forms of function arguments are given in
Section 8.

See 10.2.1 for a discussion of requirements that apply
to function references.
5.3 Type Rules for Data And Procedure Identi­
fiers. The type of a constant is implicit in its name.

There is no type associated with a symbolic name
that identifies a subroutine.

A symbolic name that identifies a variable, an ar­
ray, or a statement function has a type implied by
the first character of the name: I, J, K, L, M, and N
imply type integer; any other letter implies type real.

A symbolic name that identifies an intrinsic function
or a basic external function when it is used to identify
this designated procedure, has a type associated with
it as specified in Tables 3 and 4.

In the program unit in which an external function is
referenced or defined, its type definition is defined in the
same manner as for a variable and an array.

The same type is associated with an array element as
is associated with the array name.
5.4 Dummy Arguments. A dummy argument of an
external procedure identifies a variable or an array.

Unless specified otherwise, when the use of a variable,
array, or array element name is specified, the use of a
dummy argument is permissible provided that a proper
association with an actual argument is made.

The process of argument association is discussed in
Sections 8 and 10.

1

2

3

4

5

6

7

8

9

10

11

Vi

13

14

15

16

17

18

19

'20

21

22

23

24

25

26

n
28

29

'..10

31

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

SS
56

57

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

l 1

18

19

iO

:11

B

24

25

26

27

28

29

30

:ll

:n
33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

BASIC FORTRAN

6. Expressions

This section gives the formation and evaluation rules
for arithmetic expressions. An expression is formed from
elements and operators. See 10.3 for a discussion of
requirements that apply to the use of certain entities
in expressions.

6.1 Arithmetic Expressions. An arithmetic expression
is formed with arithmetic operators and arithmetic ele­
ments. Both the expression and its constituent elements
identify values of one of the types integer or real. The
arithmetic operators are:

Operator

+

•
I
••

Representing

Addition, positive value (zero +element l
Subtraction, negative value (zero - element I
Multiplication
Division
Exponentiation

The arithmetic elements are primary, factor, term,
signed term, simple arithmetic expression, and arith­
metic expression.

A primary is an arithmetic expression enclosed in
parentheses, a constant, a variable reference, an array
element reference, or a function reference.

A factor is a primary or a construct of the form:
primary•• primary

A term is a factor or a construct of one of the forms:
term/factor

or:
term•term

A signed term is a term immediately preceded by +or -.
A simple arithmetic expression is a term or two simple

arithmetic expressions separated by a + or -.
An arithmetic expression is a simple arithmetic expres­

sion or a signed term or either of the preceding forms
immediately followed by a + or - immediately followed
by a simple arithmetic expression.

A primary of any type may be exponentiated by an
integer primary and the resultant factor is of the same
type as that of the element being exponentiated. A real
primary may be exponentiated by a real primary, and
the resultant factor is of type real. These are the only
cases for which use of the exponentiation operator is
defined.

By use of the arithmetic operators other than exponen­
tiation, any admissible element may be combined with
another admissible element of the same type, and the
resultant element is of the same type.

6.2 Relational Expressions. This subject is not cov­
ered in this standard, but does appear in American
Standard FORTRAN, X3. 9-1966.

6.3 Logical Expressions. This subject is not covered
in this standard, but does appear in American Standard
FORTRAN, X3.9-l 966.

X3.10
11

6.4 Evaluation of Expressions. A part of an expression
need be evaluated only if such action is necessary to
establish the value of the expression. The rules for forma­
tion of e'Xpressions imply the binding strength of oper­
ators. It should be noted that the range of the subtraction
operator is the term that immediately succeeds it. The
evaluation may proceed according to any valid formation
sequence (except as modified in the following paragraph j.

When two elements are combined by an operator, the
order of evaluation of the elements is optional. If mathe­
matical use of operators is associative, commutative, or
both, full use of these facts may be made to revise orders
of combination, provided only that integrity of paren­
thesized expressions is not violated. The value of an
integer factor or term is the nearest integer whose mag­
nitude does not exceed the magnitude of the mathemat­
ical value represented by that factor or term. The as­
sociative and commutative laws do not apply in the
evaluation of integer terms containing division, hence
the evaluation of such terms must effectively proceed
from left to right.

Any use of an array element name requires the evalua­
tion of its subscript. The evaluation of functions appear­
ing in an expression may not validly alter the value of
any other element within the expressions, assignment
statement, or CALL statement in which the function
reference appears. The type of the expression in which
a function reference or subscript appears does not affect,
nor is it affected by, the evaluation of the actual argu­
ments or subscript.

No factor may be evaluated that requires a negative
valued primary to be raised to a real exponent. No factor
may be evaluated that requires raising a zero valued
primary to a zero valued exponent.

No element may be evaluated whose value is not
mathematically defined.

7. Statements

A statement may be classified as executable or non­
executable. Executable statements specify actions; non­
executable statements describe the characteristics and
an:angement of data, editing information, statement
functions, and classification of program units.

7.1 Executable Statements. There are three types of
executable statements:

(I l Assignment statements
(21 Control statements
(31 Input/output statements

7.1.1 Assignment Statements. There is a single as­
signment statement, the arithmetic assignment statement.

7.I.1.1 Arithmetic Assignment Statement. An arith­
metic assignment statement is of the form:

v=e
where v is a variable name or array element name and
e is an arithmetic expression. Execution of this statement

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

l 6

I I

18

19

:10

21

24

iii

16

21

28

29

30

31

:J2

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

1

2

3

4

5

6

7

8

9

10

Jl

12

13

14

1 s
II·

l /

, '

.ll

31

3{;

1!

.jQ

41

-1'.l

43

44

45

46

47

48

49

so
51

52

53

54

55

56

57

X3.10
12

causes the evaluation of the expression e and the altering
of v according to Table 1.

Table 1
Rules for Assignment of e to v

If v Type Is And e Type Is The Assignment Rule Is*

Integer Integer Assign
Integer Real Fix & Assign

Real Integer Float & Assign
Real Real Assign

*NOTES:
(11 Assign means transmit the resulting value, without change,

to the entity.
(21 Fix means truncate any fractional part of the result and

transform that value to the form of an integer datum.
(31 Float means transform the value to the form of a real datum.

7.1.1.2 Logical Assignment Statement. This subject
is not covered in this standard, but does appear in
American Standard FORTRAN, X3. 9-1966.

7.1.1.3 GO TO Assignment Statement. This subject
is not covered in this standard, but does appear in
American Standard FORTRAN, X3.9-l 966.

7.1.2 Control Statements. There are seven types of
control statements:

(l) GO TO statements
(2) Arithmetic IF statement
(3) CALL statement
(4) RETURN statement
(5) CONTINUE statement
(6) Program control statements
(7) DO statement
The statement labels used in a control statement

must be associated with executable statements within
the same program unit in which the control statement
appears.

7.1.2.1 GO TO Statements. There are two types of
GO TO statements.

(1) Unconditional GO TO statement
(2) Computed GO TO statement

7.1.2.1.1 Unconditional GO TO Statement. An
unconditional GO TO statement is of the form:

GO TO k
where k is a statement label.

Execution of this statement causes the statement
identified by the statement label to be executed next.

7.1.2.1.2 Assigned GO TO Statement. This sub­
ject is not covered in this standard, but does appear in
American Standard FORTRAN, X3.9-l 966.

7.1.2.l.3 Computed GO TO Statement. A com­
puted GO TO statement is of the form:

GO TO (k., k2 , ••• ,kn), i
where the k's are statement labels and i is an integer
variable reference. See 10.2.8 and 10.3 for a discussion
of requirements that apply to the use of a variable in a
computed GO TO statement.

AMERICAN STANDARD

Execution of this statement causes the statement
identified by the statement label k; to be executed next,
where j is the value of i at the time of the execution. This
statement is defined only for values such that 1 ~ j ~ n.

7.1.2.2 Arithmetic IF Statement. An arithmetic IF
statement is of the form:

IF (e) k 1, k2 , k3

where e is any arithmetic expression of type integer or
real, and the k's are statement labels.

The arithmetic IF is a three-way branch. Execution of
this statement causes evaluation of the expression e fol­
lowing which the statement identified by the statement
label k 1, k2 , or k3 is executed next as the value of e is less
than zero, zero, or greater than zero respectively.

7.1.2.3 Logical IF Statement. This subject is not
covered in this standard, but does appear in American
Standard FORTRAN, X3.9-1966.

7.1.2.4 CALL Statement. A CALL statement is of
one of the forms:

CALL s(ap lli• ... , an)

or
CALL s

wheres is the name of a subroutine and the a's are actual
arguments (8.4.2).

The inception of execution of a CALL statement ref­
erences the designated subroutine. Return of control
from the designated subroutine completes execution of
the CALL statement.

7.1.2.5 RETURN Statement. A RETURN statement
is of the form:

RETURN
A RETURN statement marks the logical end of a pro­

cedure subprogram and, thus. may only appear in a
procedure subprogram.

Execution of this statement when it appears in a sub­
routine subprogram causes return of control to the
current calling program unit.

Execution of this statement when it appears in a func­
tion subprogram causes return of control to the current
calling program unit. At this time the value of the function
(8.3.1) is made available.

7.1.2.6 CONTINUE Statement. A CONTINUE
statement is of the form:

CONTINUE

Execution of this statement causes continuation of the
normal execution sequence.

7.1.2.7 Program Control Statements. There are two
types of program control statements:

(l) STOP statement
(2) PAUSE statement

7.1.2.7.1 STOP Statement. A STOP statement is
of one of the forms:

STOP n
or

STOP
where n is an octal digit string of length from one to four.

2

3

4

5

6

7

8

9

10

11

12

13

14

1 ~

11·

l !

j'I

40

41

-1'.l

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

1

2

3

4

5

6

7

8

9

10

11

1'2

13

i4

1 !

'l

28

29

'j)

'.ll

31.

l/

39

40

41

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

BASIC FORTRAN

Execution of this statement causes termination of
execution of the executable program.

7.1.2.7.2 PAUSE Statement. A PAUSE statement
is of one of the forms:

PAUSE n
or

PAUSE
where n is an octal digit string of length from one to four.

The inception of execution of this statement causes a
cessation of execution of the executable program. Execu­
tion must be resumable. At the time of cessation of exe­
cution the octal digit string is accessible. The decision
to resume execution is not under control of the program.
If execution is resumed without otherwise changing the
state of the processor, then, after the completion of execu­
tion of the PAUSE statement, the normal execution
sequence is continued.

7.1.2.8 DO Statement. A DO statement is of one of
the forms:

DO n i = m 1 , m2 , m3

or

where:
(I) n is the statement label of an executable state­

ment. This statement, called the terminal statement of
the associated DO, must physically follow and be in the
same program unit as that DO statement. The terminal
statement may not be a GO TO of any form, arithmetic
IF, RETURN, STOP, PAUSE, or DO statement.

(2 l i is an integer variable name; this variable is called
the control variable.

(3) m1 , called the initial parameter; m2 , called the
terminal parameter; and m3 , called the incremantation
parameter, are each either an integer constant or integer
variable reference. If the second form of the DO state­
ment is used so that m3 is not explicitly stated, a value of
one is implied for the incrementation parameter. At time
of execution of the DO statement, mp m2 , and m3 must
be greater than zero.

Associated with each DO statement is a range that is
defined to be those executable statements from and in­
cluding the first executable statement following the DO,
to and including the terminal statement associated with
the DO. A special situation occurs when the range of a
DO contains another DO statement. In this case, the
range of the contained DO must be a subset of the range
of the containing DO.

7.1.2.8.1 A DO statement is used to define a loop.
The action succeeding execution of a DO statement is
described by the following six steps:

(1) The control variable is assigned the value repre­
sented by the initial parameter. This value must be less
than or equal to the value represented by the terminal
parameter.

(2 l The range of the DO is executed.
(3) If control reaches the terminal statement, then,

X3.10
13

after execution of the terminal statement, the control
variable of the most recently executed DO statement
associated with the terminal statement is incremented by
the value represented by the associated incrementation
parameter.

(4) If the value of the control variable after incremen­
tation is less than or equal to the value represented by
the associated terminal parameter, then the action de­
scribed starting at step 2 is repeated, with the under­
standing that the range in question is that of the DO,
whose control variable has been most recently incre­
mented. If the value of the control variable is greater
than the value represented by its associated terminal
parameter, then the DO is said to have been satisfied
and the control variable becomes undefined.

(5) At this point, if there were one or more other DO
statements referring to the terminal statement in ques­
tion, the control variable of the next most recently exe­
cuted DO statement is incremented by the value repre­
sented by its associated incrementation parameter and
the action described in step 4 is repeated until all DO
statements referring to the particular termination state­
ment are satisfied, at which time the first executable
statement following the terminal statement is executed.

(6) Upon exiting from the range of a DO by the execu­
tion of a GO TO statement or an arithmetic IF statement,_
that is, other than by satisfying the DO, the control vari­
able of the DO is defined and is equal to the most recent
value attained as defined in the preceding paragraphs.

A GO TO statement or an arithmetic IF statement may
not cause control to pass into the range of a DO from
outside its range. When a procedure reference occurs
in the range of a DO, the actions of that procedure are
considered to be temporarily within that range, i.e.,
during the execution of that reference.

The control variable, initial parameter, terminal
parameter, and incrementation parameter of a DO may
not be redefined during the execution of the range of
that DO.

If a statement is the terminal statement of more than
one DO statement, the statement label of that terminal
statement may not he used in any GO TO or arithmetic
IF statement that occurs anywhere hut in the range of
the most deeply contained DO with that terminal state­
ment.

7.1.3 Input/Output Statements. There are two types
of input/output statements:

(1) READ and WRITE statements

(2) Auxiliary Input/Output statements
The first type consists of the statements that cause

transfer of records of sequential files to and from internal
storage, respectively. The second type consists of the
BACKSPACE and REWIND statements that provide for
positioning of such an external file, and ENDFILE,
which provides for demarcation of such an external file.

In the following descriptions, u and f identify input/
output units and format specifications, respectively. An

2

3

4

5

6

7

8

9

10

11

12

;4

b

It.

l f

)ft

38

39

40

41

l'•

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

rJ

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

:./6

27

28

29

30

3!

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

X3.l0
14

input/output unit is identified by an integer value and
u may be either an integer constant or an integer variable
reference whose value then identifies the unit. The format
specification is described in 7 .2.3. The statement label
of a FORMAT statement is represented by/. The identi­
fied statement must appear in the same program unit
as the input/output statement.

7.1.3.1 A particular unit has a single sequential file
associated with it. The most general case of such a unit
has the following properties:

11 l If the unit contains one or more records, those
records exist as a totally ordered set.

12 l There exists a unique position of the unit called
its initial point. If a unit contains no records, that unit
is positioned at its initial point. If the unit is at its initial
point and contains records, the first record of the unit is
defined as the next record.

13 l If a unit is not positioned at its initial point, there
exists a unique preceding record associated with that
position. The least of any records in the ordering de­
scribed by 11 l following this preceding record is defined
as the next record of that position.

(4 l Upon completion of execution of a WRITE or
ENDFILE statement, there exist no records following the
records created by that statement.

15 l When the next record is transmitted, the position
of the unit is changed so that this next record becomes
the preceding record.

If a unit does not provide for some of the properties
given in the preceding paragraphs, then certain state­
ments that will be defined may not refer to that unit. The
use of such a statement is not defined for that unit.

7.1.3.2 READ and WRITE Statements. The READ
and WRITE statements specify transfer of information.
Each such statement may include a list of the names of
variables, arrays, and array elements. The named ele­
ments are assigned values on input and have their
values transferred on output.

Records may be formatted or unformatted. A formatted
record consists of a string of characters. The transfer of
such a record requires that a format specification be
referenced to supply the necessary positioning and con­
version specifications 17 .2.3 l. The number of records
transferred by the execution of a formatted READ or
WRITE is dependent upon the list and referenced for­
mat specification (7.2.3.41. An unformatted record con­
sists of a string of values. When an unformatted or for­
matted READ statement is executed, the required records
on the identified unit must be, respectively, unformatted
or formatted records.

7.1.3.2.1 Input/Output Lists. The input list
specifies the names of the variables and array elements
to which values are assigned on input. The output list
specifies the references to variables and array elements
whose values are transmitted. The input and output lists
are of the same form.

AMERICAN STANDARD

A list is a simple list, a simple list enclosed in paren­
theses, a DO-implied list, or two lists separated by a
comma.

Lists are formed in the following manner. A simple list
is a variable name, an array element name, or an array
name, or two simple lists separated by a comma.

A DO-implied list is a list followed by a comma and
a DO-implied specification, all enclosed in parentheses.

A DO-implied specification is of one of the forms:
i = m 1, m2 , m3

or
i = m 1 , m 2

The elements i, m 1 , m2 , and m3 are as defined for the
DO statement (7. l.2.81. The range of DO-implied speci­
fication is the list of the DO-implied list and, for input
lists, i, m 1 , m2 , and m3 may appear, within that range,
only in subscripts.

A variable name or array element name specifies itself.
An array name specifies all of the array element names
defined by the array declarator, and they are speeified
in the order given by the array element successor function
(7.2.l.1.11.

The elements of a list are specified in the order of
their occurrence from left to right. The elements of a list
in a DO-implied list are specified for each cycle of the
implied DO.

7.1.3.2.2 Formatted READ. A formatted HEAD
statement is of one of the forms:

READ (u,fl k
or

READ lu,fl
w'1ere k is a list.

Execution of this statement causes the input of the
next records from the unit identified by u. The informa­
tion is scanned and converted as specified by the format
specification identified by f. The resulting values are
assigned to the elements specified by the list. See however
7.2.3.4.

7.1.3.2.3 Formatted WRITE. A formatted WRITE
statement is of one of the forms:

WRITE (u, fl k
or

WRITE (u,fl
where k is a list.

Execution of this statement creates the next records
on the unit identified by u. The list specifies a sequence
of values, and these are converted and positioned as
specified by the format specification identified by f.
See however 7.2.3.4.

7.1.3.2.4 Unformatted READ. An unformatted
REAl1 statement is of one of the forms:

READ (ul k
or

READ (ul

where k is a list.
Execution of this statement causes the input of the

next record from the unit identified by u, and, if there is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

:./6

27

28

29

30

3!

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

1

2

3

4

5
6

7

8

9

10

11

12

l 3

14

15

l 6

11

18

19

:w
21

22

23

24

25

n
27

28

29

30

31

17

33

H

J5

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55
56

57

BASIC FORTRAN

a list, these values are assigned to the sequence of ele­
ments specified by the list. The sequence of values re­
quired by the list may not exceed the sequence of values
from the unformatted record.

7.1.3.2.5 Unformatted WRITE. An unformatted
WRITE statement is of the form:

WRITE (ul k
where k is a list.

Execution of this statement creates the next record on
the unit identified by u of the sequence of values specified
by the list.

7.1.3.3 Auxiliary Jnput/Output Statements. There
are three types of auxiliary input/output statements:

(11 REWIND statement
f 21 BA\.KSPACE statement
f :~I END FILE statement

7.1.3.3.1 REWIND Statement. A REWIND state­
ment is of the form:

REWIND u

Execution of this statement causes the unit identified
hy u to be positioned at its initial point.

7.1.3.3.2 BACKSl'A\.E Statement. A BA\.K­
Sl'ACE statement is of the form:

BACKSPA\.E u

If the unit identified by u is positioned at its initial
point. execution of this statement has no effect. Other­
wise. the execution of this statement results in the posi­
tioning of the unit identified by u so that what had been
the preceding record prior to that exetution becomes the
next record.

7.1.3.3.3 ENDFILE Statement. An ENDFILE
statement is of the form:

ENDFlLE u

Execution of this statement causes the recording of an
endfile record on the unit identified by u. The endfile
record is an unique record signifying a demarcation of a
sequential file. Action is undefined when an endfile record
is encountered during execution of a READ statement.

7.1.3.4 Printing of Formatted Records. When for­
matted records are prepared for printing, the first charac­
ter of such a record is not printed.

7.2 Nonexecutable Statements. There are four types
of nonexecutable statements:

(I) Specification statements
(2) FORMAT statement
(3) Function defining statements
(4) Subprogram statements
See I 0.1.2 for a discussion of restrictions on appear­

ances of symbolic names in such statements.
The function defining statements and subprogram

statements are discussed in Section 8.
7.2.1 Specification Statements. There are three

types of specification statements:
(I) DIMENSION statement
(2) COMMON statement
(3) EQUIVALENCE statement

7.2.1.1 Array Declarator. An array declarator

specifies an array used in a program unit.

X3.10
15

The array declarator indicates the symbolic name,
the number of dimensions (one or two), and the size of
each of the dimensions. The array declarator form is the
DIMENSION statement.

An array declarator has the form:
v (il

where:
(1) v, called the declarator name, is a symbolic name.
(2) (i), called the declarator subscript, is composed

of an integer constant or two integer constants separated
by a comma.

The appearance of a declarator subscript in a declara­
tor statement serves to inform the processor that the
declarator name is an array name. The number of sub­
script expressions specified for the array indicates its
dimensionality. The magnitude of the values given for the
subscript expressions indicates the maximum value that
the subscript may l'lttain in any array element name.

No array elemc'i;, name may contain a subscript that,
during execution of the executable program, assumes a
value less than one or larger than the maximum length
specified in the array declarator.

7.2.1.1.1 Array Element Successor Function and
Value of a Subscript. For a given dimensionality, sub­
script declarator, and subscript, the value of a subscript
pointing to an array element and the maximum value a
subscript may attain are indicated in Table 2. A subscript

expression must be greater than zero.
The value of the array element successor function is

obtained by adding one to the entry in the subscript
value column. Any array element whose subscript has
this value is the successor to the original element. The
last element of the array is the one whose subscript value
is the maximum subscript value and has no successor
element.

Table 2
Value of a Subscript

Dim en- Subscript Subscript
sionality Declarator Subscript Value

I (Al (al a
2 (A,81 (a, bl a +A· fb-11

NOTES:
(I I a and b are subscript expressions.
(21 A and B are dimensions.

Maximum Sub-
script Value

A
A•B

7.2.1.1.2 Adjustable Dimension. This subject is
not covered in this standard, but does appear in Ameri­
can Standard FORTRAN, X3.9-I 966.

7.2.1.2 DIMENSION Statement. A DIMENSION
statement is of the form:

DIMENSION v 1(i1 l, v2(i':! I, ... , vn(in)
where each v(il is an array declarator.

7.2.1.3 COMMON Statement. A COMMON state­
ment is of the form:

COMMON a" ~, ... , an
where each a is a variable name or an array name.

1

2

3

4

5

6

7

8

9

10

11

12

l 3

14

15

16

1 l

18

19

:w
21

22

23

'24

25

26

27

28

29

30

31

33

H

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

SS
56

57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

I b

l l

18

19

20

21

U:

27

28
}~

30

35

36

37

39

40

41

42

·!3

44

45

46

47

48

49

50

51

52
53

54

55

56

57

X3.IO
16

In any given COMMON statement; the entities oc­
curring in the list of variable names are declared to be
in common.

More than one COMMON statement may appear in a
program unit. The processor will stnng together in
common all entities so assigned in the order of their
appearance. The first element of an array will follow
the immediately preceding entity, if one exists, and
the last element of an array will imm~diately precede
the next entity if one exists.

The size of common in a program unit is the sum of
the storage required for the elements introduced through
COMMON and EQUIVALENCE statements. The size of
common in the various program units that are to be
executed together need not be the same. Size is measured
in terms of storage units (7.2.1.3.1).

7.2.I.3.I Correspondence of Common Blocks. If
all of the program units of an executable program that
contain any definition of common define common such
that there is identity in type for all entities defined in
the corresponding position from the beginning of com­
mon; then the values in the corresponding positions are
the same quantity in the executable program.

Each real or integer entity counts as one storage unit.

For common:
(1) In all program units that have defined the iden­

tical type to a given position (counted by the number of
preceding storage units I references to that position refer
to the same quantity.

(21 A correct reference is made to a particular position
assuming a given type if the most recent value assign­
ment to that position was of the same type.

7.2.l.4 EQUIVALENCE Statement. An EQUIVA­
LENCE statement is of the form:

EQUIVALENCE (ktl, (/ci), ... , (kn)
in which each k is a list of the form:

ap a2 , ... , am
Each a is either a variable name or an array element

name (not a dummy argument), the subscript of which
contains only constants, and m is greater than or equal
to two. The number of subscript expressions of an array
element name must correspond in number to -the dimen­
sionality of the array declarator or must be one (the
array element successor function defines a relation by
which an array can be made equivalent to a one dimen­
sional array of the same length I.

The EQUIV ALEN CE statement is used to permit the
sharing of storage by two or more entities. Each element
in a given list is assigned the same storage (or part of the
same storage) by the processor. The EQUIVALENCE
statement should not be used to equate mathematically
two or more entities.

The assignment of storage to variables and arrays
declared directly in a COMMON statement is determined
solely by consideration of their type and the COMMON
and array declarator statements. Entities so declared are

AMERICAN STANDARD

always assigned unique storage, contiguous in the order
declared in the COMMON statement.

The effect of an EQUIVALENCE statement upon com­
mon assignment may be the lengthening of common;
the only such lengthening permitted is that which ex­
tends common beyond the last assignment for common
made directly by a COMMON statement.

When two variables or array elements share storage
because of the effects of EQUIVALENCE statements, the
symbolic names of the variables or arrays in question
may not both appear in COMMON statements in the
same program unit.

Information contained in 7.2.1.1.1, 7.2.1.3.1, and the
present section suffices to describe the possibilities of
additional cases of sharing of storage between array
elements and entities of common blocks. It is incorrect
to cause either directly or indirectly a single storage
unit to contain more than one element of the same array.

7.2.1.5 External Statements. This subject is no
covered in this standard, but does appear in American
Standard FORTRAN, X3.9-1966.

7.2.I.6 Type-Statements. This subject is not cov­
ered in this standard, but does appear in American
Standard FORTRAN, X3.9-1966.

7.2.2 Data lnitialiution Statement. This subject
is not covered in this standard, but does appear in
American Standard FORTRAN, X3.9-1966.

7.2.3 FORMAT Statement. FORMAT statements
are used in conjunction with the input/output of format­
ted records to provide conversion and editing information
between the internal representation and the external
character strings.

A FORMAT statement is of the form:
FORMAT (q1t 1z 1t2z2 ••• tnznq2 I

where:
(11 (q1t1z1t2z 2 ••• tnznq2 I is the format specification
(21 Each q is a series of slashes or is empty
(31 Each t is a field descriptor or group of field de-

scriptors
(41 Each z is a field separator
(51 n may be zero
A FORMAT statement must be labeled.

7.2.3.1 Field Descriptors. The format field descrip­
tors are of the forms:

where:

rFw.d
rEw.d
riw
nHh1~ ••• hn
nX

(1) The letters F, E, I, H, and X indicate the manner
of conversion and editing between the internal and ex­
ternal representations and are called the conversion
codes.

(21 w and n are nonzero integer constants represent­
ing the width of the field in the external character string.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Jl

:l1

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52
53

54

SS
56

57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Jl

:l1

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

BASIC FORTRAN

(3} d is an integer constant representing the number
of digits in the fractional part of the external character
string.

(4} r, the repeat count, is an optional nonzero integer
constant indicating the number of times to repeat the
succeeding basic field descriptor.

(5} Each h is one character.

For all descriptors, the field width must be specified.
For descriptors of the form w.d , the d must be specified,
even if it is zero. Further, w must be greater than or
equal to d.

The phrase basic field descriptor is used to signify the
field descriptor unmodified by r.

The internal representation of external fields corre­
sponds to the internal representation of the correspond­
ing type constants (4.2 and 5.1.1 }.

7.2.3.2 Field Separators. The format field sepa­
rators are the slash and the comma. A series of slashes is
also a field separator. The field descriptors or groups of
field descriptors are separated by a field separator.

The slash is used not only to separate field descriptors,
but to specify demarcation of formatted records. A
formatted record is a string of characters. The lengths of
the strings for a given external medium are dependent
upon both the processor and the external medium.

The processing of the number of characters that can
be contained in a record by an external medium does not
of itself cause the introduction or inception of processing
of the next record.

7.2.3.3 Repeat Specifications. Repetition of the
field descriptors (except nH and nX I is accomplished by
using the repeat count. If the input/output list warrants,
the specified conversion will be interpreted repetitively
up to the specified number of times.

Repetition of a group of field descriptors or field sepa­
rators is accomplished by enclosing them within paren­
theses and optionally preceding the left parenthesis with
an integer constant called the group repeat count in­
dicating the number of times to interpret the enclosed
grouping. If no group repeat count is specified, a group
repeat count of one is assumed. This form of grouping is
called a basic group.

7.2.3.4 Format Control Interaction with an Input/
Output List. The inception of execution of a formatted
READ or formatted WRITE statement initiates format
control. Each action of format control depends on in­
formation jointly provided respectively by the next ele­
ment of the input/output list, if one exists, and the next
field descriptor obtained from the format specification.
If there is an input/output list, at least one field descrip­
tor other than nH or nX must exist.

When a READ statement is executed under format
control one record is read when the format control is
initiated, and thereafter additional records are read only
as the format specification demands. Such action may
not require more characters of a record than it contains.

X3.10
17

When a WRITE statement is executed under format
control, writing of a record occurs each time the format
specification demands that a new record be started.
Termination of format control causes writing of the cur­
rent record.

Except for the effects of repeat counts, the format
specification is interpreted from left to right.

To each I, F, or E basic descriptor interpreted in a
format specification, there corresponds one element
specified by the input/output list. To each H or X basic
descriptor there is no corresponding element specified
by the input/output list, and the format control com­
municates information directly with the record. When­
ever a slash is encountered, the format specification
demands that a new record start or the preceding record
terminate. During a READ operation, any unprocessed
characters of the current record will be skipped at the
time of termination of format control or when a slash is
encountered.

Whenever the format control encounters an I, F, or E
basic descriptor in a format specification, it determines
if there is a corresponding element specified by the in­
put/output list. If there is such an element, it transmits
appropriately converted information between the ele­
ment and the record and proceeds. If there is no cor­
responding element, the format control terminates.

If, however, the format control proceeds to the last
outer right parenthesis of the format specification, a test
is made to determine if another list element is specified.
If not, control terminates. However, if another list ele­
ment is specified, the format control demands a new
record start and control reverts to that group repeat
specification terminated by the last preceding right
parenthesis, or if none exists, then to the first left paren­
thesis of the format specification.

7.2.3.5 Scale Factor. This subject is not covered
in this standard, but does appear in American Standard
FORTRAN, X3.9-I 966.

7.2.3.5.1 Scale Factor Effects. This subject is
not covered in this standard, but does appear in Ameri­
can Standard FORTRAN, X3.9-I 966.

7.2.3.6 Numeric Conversions. The numeric field
descriptors I, F, and E are used to specify input/output
of integer and real data.

(I) In numeric input fields blanks are permitted only
to the left of the first nonblank character or between the
sign of the field and the next nonblank character. Such
blanks are treated as zero in conversion. Plus signs may
be omitted. A field of all blanks is considered to be zero.

(2) With the F and E input conversions, a decimal
point appearing in the input field overrides the specif­
ication supplied by the field descriptor.

(3) With all output conversions, the output field is
right justified. If the number of characters produced by
the conversion is smaller than the field width, leading
blanks will be inserted in the output field.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

J(,

l I

l!I

1'1

20

:i:

31;

37

38

39

4()

41

42

43

44

45

46

47

43

49

50

51

52

53

54

55

56

57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

:w
21

22

23

24

25

26

27

18

19

30

31

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57

X3.IO
18

141 With all output conversions, the external repre­
sentation of a negative value must be signed; a positive
value may be signed.

(51 The number of characters produced by an output
conversion must not exceed the field width.

7.2.3.6.1 Integer Conversion. The numeric field
descriptor lw indicates that the external field occupies
w positions as an integer. The value of the list item
appears, or is to appear, internally as an integer datum.

In the external input field, the character string must
be in the form of an integer constant or signed integer
constant (5.1. l. l l, except for the interpretation of
blanks (7 .2.:t6 I.

The external output field consists of blanks, if neces­
sary, followed by a minus if the value. of the internal
datum is negative, or an optional plus otherwise, fol­
lowed by the magnitude of the internal value converted
to an integer constant.

7 .2.3.6.2 Real Conversions. There are two con­
versions available for use with real data: F and E.

The numeric field descriptor Fw.d indicates that the
external field occupies w positions, the fractional part
of which consists of d digits. The value of the list item
appears, or is to appear, internally as a real datum.

The external input field consists of an optional sign,
followed by a string of digits optionally containing a
decimal point.

The external output field consists of blanks, if neces­
sary, followed by a minus ifthe internal value is negative,
or an optional plus otherwise, followed by a string of
digits containing a decimal point representing the magni­
tude, to d fractional digits, of the internal value.

The numeric field descriptor Ew.d indicates that the
external field occupies w positions, the fractional part
of which consists of d digits. The value of the list item
appears, or is to appear, internally as a real datum.

The basic form of the external input field is the same
as for the F conversion. The basic form may be followed
by an exponent of one of the following forms:

(1) Signed integer constant
(2) E followed by an integer constant
(3) E followed by a signed integer constant

7.2.3.6.2.1 The standard form of the external
output field is1

where:
(1) x1 ••• xd are the d most significant digits of the

value or the data to be output.
(2) Y is of the form:

E ± Y1Y2

and has the significance of a decimal exponent (an al­
ternative for the plus in the first of these forms is the
character blank).

(31 Each y is a digit

1 (signifies no charal'ter position or minus in that position.

AMERICAN STANDARD

7 .2.3.6.3 Double Precision Con version. This sub­
ject is not covered in this standard, but does appear in
American Standard FORTRAN, X3.9-l 966.

7.2.3.6.4 Complex Conversion. This subject is
not covered in this standard, but does appear in Ameri­
can Standard FORTRAN, X3.9-l 966.

7.2.3.7 Logical Conversion. This subject is not
covered in this standard, but does appear in American
Standard FORTRAN, X3.9-l 966.

7.2.3.8 Hollerith Field Descriptor. Hollerith in­
formation may be transmitted by means of the field
descriptor nH.

The nH descriptor causes Hollerith information to be
read into, or written from, the n characters (including
blanks) following the nH descriptor in the format specif­
ication itself.

7.2.3.9 Blank Field Descriptor. The field descriptor
for blanks is nX • On input, n characters of the external
input record are skipped. On output, n blanks are in­
serted in the external output record.

7.2.3.10 Format Specification in Arrays. This sub­
ject is not covered in this standard, but does appear in
American Standard FORTRAN, X3.9-l 966.

8. Procedures and Subprograms

There are four categories of procedures: statement
functions, intrinsic functions, external functions, and
external subroutines.

The first three categories are referred to collectively
as functions or function procedures; the last as sub­
routines or subroutine procedures. Function subpro­
grams and subroutine subprograms are classified as
procedure subprograms. Type rules for function pro­
cedures are given in 5.3.

8.1 Statement Functions. A statement function is de­
fined internally to the program unit in which it is ref­
erenced. It is defined by a single statement similar in
form to an arithmetic assignment statement.

In a given program unit, all statement function defi­
nitions must precede the first executable statement bf
the program unit and must follow the specification state­
ments, if any. The name of a statement function must
not appear as a variable name or an array name in the
same program unit.

8.1.1 Defining Statement Functions. A statement
function is defined by a statement of the form:

/(a., ai, ... , an)= e
where f is the function name, e is an expression, and the
relationship between f and e must conform to the assign­
ment rules in 7 .1.1.1. The a's are distinct va~iable names,
called the dummy arguments of the function. Since these
are dummy arguments, their names, which serve only
to indicate type, number, and order of arguments, may
be the same as variable names of the same type appearing
elsewhere in the program unit.

1

2

3

4

5

6

7

8

9

10

II

12

13

14

15

16

ll

18

19

20

21

22

23

24

25

26

27

28

29

30

31

:l1

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57

1

2

3

4

s
6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

n
21

28

29

30

31

17

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

so
51

52

53

54

55
56

51

BASIC FORTRAN

Aside from the dummy arguments, the expression e
may only contain:

(I) Constants
(2} Variable references
(3) Intrinsic function references
(4) References to previously defined statement func­

tions
(5) External function references
8.1.2 Referencing Statement Functions. A state­

ment function is referenced by using its reference (5.2)
as a primary in an arithmetic expression. The actual
arguments, which constitute the argument list, must
agree in order, number, and type with the correspond­
ing dummy arguments. An actual argument in a state­
ment function reference may be any expression of the
same type as the corresponding dummy argument.

Execution of a statement function reference results in
an association (10.2.2 I of actual argument values with
the corresponding dummy arguments in the expression
of the function definition, and an evaluation of the ex­
pression. Following this, the resultant value is made
available to the expression that contained the function
reference.
8.2 Intrinsic Functions and Their Reference. The
symbolic names of the intrinsic functions (see Table 3 I
are predefined to the processor and have a special mean­
ing and type if the name satisfies the conditions of IO. I. 7.

An intrinsic function is referenced by using its ref­
erence as a primary in an arithmetic expression. The
actual arguments, which constitute the argument list,
must agree in type, number, and order with the specif­
ication in Table 3 and may be any expression of the
specified type. The intrinsic functions SIGN and ISIGN
are not defined when the value of the second argument
is zero.

Execution of an intrinsic function reference results in
the actions specified in Table 3 based on the values of
the actual arguments. Following this, the resultant value
is made available to the expression that contained the
function reference.

X3.IO
19

8.3 External Functions. An external function is de­
fined externally to the program unit that references it.
An external function defined by FORTRAN statements
headed by a FUNCTION statement is called a function
subprogram.

8.3.1 Defining Function Subprograms. A FUNC­
TION statement is of the form:

FUNCTION /(a" az, ... , anl

where:
(I) f is the symbolic name of the function to be defined.
(2) The a's, called the dummy arguments, are each

either a variable name or an array name.

8.3.1.1 Function subprograms are constructed as
specified in 9.1.3 with the following restrictions:

(1 I The symbolic name of the function must also ap­
pear as a variable name in the defining subprogram.
During every execution of the subprogram, this variable
must be defined and, once defined, may be referenced
or redefined. The value of the variable at the time of
execution of any RETURN statement in this subprogram
is called the value of the function.

(2 I The symbolic name of the function must not ap­
pear in any nonexecutable statement in this program
unit, except as the symbolic name of the function in the
FUNCTION statement.

(31 The symbolic names of the dummy arguments may
not appear in ~n EQUIVALENCE or COMMON state­
ment in the function subprogram.

(4) The function subprogram may not define or re­
define any of its arguments nor any entity in common.

(51 The function subprogram may contain any state­
ments except SUBROUTINE, another FUNCTION
statement, or any statement that directly or indirectly
references the function being defined.

(6 I The function subprogram must contain at least
one RETURN statement.

Table 3
Intrinsic Functions

Number Type of:
of Symbolic

Intrinsic Function Definition Arguments Name Argument Function

Absolute Value la I ABS Real Real
IABS Integer Integer

Float Conversion from integer to real FLOAT Integer Real

Fix Conversion from real to integer IFIX Real Integer

Transfer of Sign Sign of a2 times I a 1 I 2 SIGN Real Real
ISIGN Integer Integer

1

2

3

4

s
6

1

8

9

10

II

12

13

14

15

16

I 7

18

19

20

2 l

22

2J

') .1

28

11)

'\!

:H

37

.1P

39

.to
41

42

43

.14

45

46

47

48

49

so
51

52

53

54

55

56

57

1

2

3

4

s
6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

n
21

28

29

30

31

17

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

so
51

52

53

54

55
56

51

X3.l0
20

8.3.2 Referencing External Functions. An external
function is referenced by using its reference (5.21 as a
primary in an arithmetic expression. The actual argu­
ments, which constitute the argument list, must agree
in order, number, and type with the corresponding
dummy arguments in the defining program unit. An
actual argument in an external function reference may
be one of the following:

(l l A variable name
(2 l An array element name
(31 An array name
(41 Any other expression

Execution of an external function reference results in
an association (10.2.21 of actual arguments with all
appearances of dummy arguments in executable state­
ments and function definition statements. If the actual
argument is an expression, then this association is by
value rather than by name. Following these associations,
execution of the first executable statement of the defining
subprogram is undertaken.

An actual argument that is an array element name
containing variables in the subscript could in every
case be replaced by the same array name with a con­
stant subscript containing the same values as would
be derived by computing the variable subscript just
before the association of arguments took place.

If a dummy argument of an external function is an
array name, the corresponding actual argument must
be an array name.

8.3.3 Basic External Functions. FORTRAN proc­
essors must supply the external functions listed in Table
4. Referencing of these functions is accomplished as
described in 8.3.2. Arguments for which the result of
these functions is not mathematically defined or is of
type other than that specified are improper.

8.4 Subroutine. An external subroutine is defined
externally to the program unit that references it. An

AMERICAN STANDARD

external subroutine defined by FORTRAN statements
headed by a SUBROUTINE statement is called a sub­
routine subprogram.

8.4.1 Defining Subroutine Subprograms. A SUB­
ROUTINE statement is of one of the forms:

or

SUBROUTINE s

where:
(11 s is the symbolic name of the subroutine to be

defined.
(21 The a's called the dummy arguments, are each

either a variable name or an array name.

8.4.1.1 Subroutine subprograms are constructed as
specified in 9.1.3 with the following restrictions:

(11 The symbolic name of the subroutine must not
appear in any statement in this subprogram except as
the symbolic name of the subroutine in the SUBROU­
TINE statement itself.

(21 The symbolic names of the dummy arguments may
not appear in an EQUIVALENCE or COMMON state­
ment in the subprogram.

(31 The subroutine subprogram may define or re­
define one or more of its arguments so as to effectively
return results.

(41 The subroutine subprogram may contain any
statements except FUNCTION, another SUBROUTINE
statement, or any statement that directly or indirectly
references the subroutine being defined.

(51 The subroutine subprogram must contain at least
one RETURN statement.

8.4.2 Referencing Subroutines. A subroutine is
referenced by a CALL statement (7.1.2.41. The actual
arguments, which constitute the argument list, must
agree in order, number, and type with the correspond­
ing dummy arguments in the defining program. An actual

Table 4

Bask External Funetion

Exponential

Natural Logarithm

Trigonometric Sine

Trigonometric Cosine

Hyperbolic Tangent

Square Root

Arctangent

Basic External Functions

Number
of Symbolic

Oefinition Arguments Name

e" EXP

log ,ta I ALOG

sin ta I SIN

cos ta I r.os

tanh tal TANH

tal 112 SQRT

arctan ta I ATAN

Type of:

Argument Function

Real Real

Real Real

Real Real

Real Real

Real Real

Real Real

Real Real

1

2

3

4

s
6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

n
21

28

29

30

31

17

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

51

l

2

3

4

s
6

7

8

9

10

11

12

13

l 4

15

16

11

18

19

10

21

22

23

24

25

26

27

18

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52
53

54

55

56

57

BASIC FORTRAN

argument in a subroutine reference may be one of the
following:

(1) A variable name
(2) An array element name
(3) An array name
(4) Any other expression
If an actual argument corresponds to a dummy argu­

ment that is defined or redefined in the referenced sub­
program, the actual argument must be a variable name,
an array element name, or an array name.

Execution of a subroutine reference as described in
the preceding paragraphs results in an association of
actual arguments with all appearances of dummy argu­
ments in executable statements or function definition
statements. If the actual argument is as specified in
item (4), this association is by value rather than by name.
Following these associations, execution of the first
executable statement of the defining subprogram is
undertaken.

An actual argument that is an array element name
containing variables in the subscript could, in every case,
be replaced by the same array element name with a con­
stant subscript containing the same values as would
be derived by computing the variable subscript just
before argument association took place.

If a dummy argument of an external function is an
array name, the corresponding actual argument must
be an array name.

If a subroutine reference causes a dummy argument
in the referenced subroutine to become associated with
another dummy argument in the same subroutine or
with an entity in common, a definition of either entity
within the subroutine is prohibited.

8.5 Block Data Subprogram. This subject is not cov­
ered in this standard, but does appear in American
Standard FORTRAN, X3.9-l 966.

9. Programs

An executable program is a collection of statements,
comment lines, and end lines that completely (except
for input data values and their effects I describe a com­
puting procedure.

9.1 Program Components. Programs consist of pro­
gram parts, program bodies, and subprogram statements.

9.1.I Program Part. A program part must contain
at least one executable statement and may hut need
not contain FORMAT statements. A program part may
not contain specification statements.

9.I.2 Program Body. A program body is a collec­
tion of optional specification statements optionally fol­
lowed by statement function definitions, followed by a
program part, followed by an end line. The specification
statements must be in the following order: DIMENSION,
COMMON, and EQUIVALENCE.

X3.10
21

9.I.3 Subprogram. A subprogram consists of a
SUBROUTINE or FUNCTION statement followed by
a program body.

9.I.4 Block Data Subprogram. This subject is not
covered in this standard, but does appear in American
Standard FORTRAN X3.9-l 966.

9.I.5 Main Program. A main program consists of a
program body.

9.1.6 Executable Program. An executable program
consists of a main program plus any number of sub­
programs, external procedures, or both.

9.1.7 Program Unit. A program unit is a main pro­
gram or a subprogram.

9.2 NormaLExecution Sequence. When an executable
program begins operation, execution commences with
the execution of the first executable statement of the
main program. A subprogram, when referenced, starts
execution with execution of the first executable state­
ment of that subprogram. Unless a statement is a GO
TO, arithmetic IF, RETURN, or STOP statement or the
terminal statement of a DO, completion of execution of
that statement causes execution of the next following
executable statement. The sequence of execution follow­
ing execution of any of these statements is described in
Section 7. A program part may not (in the sense of 1.11
contain an executable statement that can never he
executed.

A program part must contain a fin;t executable
statement.

10. Intra- and Inter-program Relationships

IO.I Symbolic Names. A symbolic name has been
defined to consist of from one to five alphanumeric char­
acters, the first of which must be alphabetic. Sequences
of characters that are format field descriptors or u­
niquely identify certain statement types, e.g., GO TO,
READ, FORMAT, etc, are not symbolic names in such
occurrences nor do they form the first characters of
symbolic names in these cases. In a program unit, a
symbolic name (perhaps qualified by a wbscript I must
identify an element of one (and usually only one I of
the following classes:

Class I An array and the elements of that array
Class II A variable
Class III A statement function
Class IV
Class V
Class VI

An intrinsic function
An external function
A subroutine

IO.I.I Restrictions on Class. In the program unit
in which a symbolic name in Class V appears immediately
following the word FUNCTION in a FUNCTION state­
ment, that name must also be in Class II.

Once a symbolic name is used in Class V or VI in any
unit of an executable program, no other program unit

l

2

3

4

s
6

7

8

9

10

II

12

13

l 4

15

16

I l

18

19

:w
21

22

23

24

25

26

LT

18

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52
53

54

55

56

57

1

2

3

4

s
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Jl

37

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

so
51

52

S3

54

S5

56

57

X3.l0
22

of that executable program may use that name to identity
an entity of these classes other than the one originally
identified.

In a program unit, no symbolic name can be in more
than one class except as noted in the preceding para­
graphs. There are no restrictions on uses of symbolic
names in different program units of an executable program
other than those noted in the preceding paragraphs.

IO.I.2 Implications of Mentions in Specification
Statements. A symbolic name is in Class I if it appears
as a declarator name and is not in Class III. Only one
such appearance for a symbolic name in a program unit
is permitted.

A symbolic name that appears in a COMMON state­
ment is either in Class I, or in Class II but not Class V
(8.3.U. Only one such appearance for a symbolic name
in a program unit is permitted.

A symbolic name that appears in an EQUIVALENCE
statement is either in Class I, or in Class II but not Class
v (8.3.U.

I0.1.3 Array and Array Element. In a program unit,
any appearance of a symbolic name that identifies an
array must be immediately followed by a subscript, ex­
cept in the following cases:

(l) In the list of an input/output statement
(2) In a list of dummy arguments
(31 In the list of actual arguments in a reference to an

external procedure
(41 In a COMMON statement
Only when an actual argument of an external pro­

cedure reference is an array name may the correspond­
ing dummy argument be an array name. If the actual
argument is an array name, the length of the dummy
argument array must agree with the length of the actual
argument array.

IO.I.4 External Procedures. In the execution of
an executable program, a procedure subprogram may
not be referenced twice without the execution of a
RETURN statement in that procedure having intervened.

10.1.5 Subroutine • . .\ symbolic name is in Class YI
if it appears:

I 11 Immediately following the word SCBROCTl'.\E in
a SCBROCTl:\E statement.

I 21 Immediately following the word C..\LL in a CALL
statement.

10.1.6 Statement Fu11cti011 . ..\ symbolic name is in
Class III in a program unit if and only if it meets all three
of the following conditions:

(l) It is not in Class I or Class IV.
(2) Every appearance of the name is immediately

followed by a left parenthesis.
(3) A function defining statement is present for that

symbolic name.
IO.I.7 Intrinsic Function. A symbolic name is in

Class IV in a program unit if and only if it meets both
of the following conditions:

(1) The symbolic name appears in the name column
of Table 3.

AMERICAN STANDARD

(2) Every appearance of the symbolic name is im­
mediately followed by an actual argument list enclosed
in parentheses.

The use of an intrinsic function in a program unit of
an executable program does not preclude the use of the
same symbolic name to identify some other entity in a
different program unit of that executable program.

10.I.8 External FU11cti011. A symbolic name is in
Class V if it:

(l) Appears immediately following the word Fl'NC­
TION in a FUNCTION statement.

(2) Is not in Class I, Class III, Class IV, or Class VI
and appears immediately followed by a left parenthesis
on every occurrence. There must be at least one such
appearance in the program unit in which it is so used.

IO.I.9 Variable. In a program unit, a symbolic name
is in Class II if it meets both of the following conditions:

(I) It is not in Class VI.
(2) It is never immediately followed by a left paren­

thesis unless it is immediately preceded by the word
FUNCTION in a FUNCTION statement.

IO.I.IO Block Name. This subject is not covered in
this standard, but does appear in American Standard
FORTRAN, X3.9-1966.

10.2 Definition. There are two levels of definition of
numeric values, first level definition and second level
definition. The concept of definition on the first level
applies to array elements and variables; that of second
level definition to integer variables only. These concepts
are defined in terms of progression of execution; and thus,
an executable program, complete and in execution, is
assumed in what follows.

There is another variety of definition which refers to
when an external procedure may be referenced, and it
will be discussed in the next section.

In what follows, otherwise unqualified use of the terms
definition and undefinition (or their alternate forms I
as applied to variables and array elements will imply
modification by the phrase "on the first level."

I0.2.I Definition of Procedures. If an executable
program contains information describing an external
procedure, such an external procedure, with the ap­
plicable symbolic name, is defined for use in that ex­
ecutable program. An external function reference or
subroutine reference (as the case may be) to that sym­
bolic name may then appear in the executable program,
provided that number of arguments agrees between
definition and reference. Other restrictions on agreements
are contained in 8.3.1, 8.3.2, 8.4.1, 8.4.2, and 10.1.3.

The basic external functions listed in 8.3.3 are al­
ways defined and may be referenced subject to the re­
strictions alluded to in the preceding paragraphs.

A symbolic name in Class Ill or Class IV is defined
for such use.

1

2

3

4

s
6

7

8

9

10

11

12

13

14

15

16

11

l 8

19

:w
21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

so
51

52
53

54

55

56

57

1

2

3

4

5
6

7

8

9

10

11

12

l 3

14

15

16

11

18

19

10

21

22

23

'24

25

26

27

28

29

30

31

17

33

H

J5

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55
56

57

BASIC FORTRAN

10.2.2 Associations That Effect Definition. Enti-
ties may become associated by:

(l) COMMON association
(2) EQUIV ALEN CE association
(3) Argument substitution
Multiple association to one or more ent1t1es can be

the result of the foregoing combinations. Any definition
or undefinition of one of a set of associated entities
effects the definition or undefinition of each entity of the
entire set.

For purposes of definition, in a program unit there is
no association between any two entities both of which
appear in COMMON statements. Further, there is no
other association for common and equivalenced entities
other than those stated in 7 .2.1.3.1 and 7 .2.1.4.

If an actual argument of an external procedure refer­
ence is an array name, an array element name, or a vari­
able name, then the discussions in 10.1.3 and l 0.2. l
allow an association of dummy arguments with the actual
arguments only between the time of execution of the first
executable statement of the procedure and the inception
of execution of the next encountered RETURN statement
of that procedure. Note specifically that this associa­
tion can be carried through more than one level of ex­
ternal procedure reference.

In what follows, variables or array elements associated
by the information in 7.2.1.3.l and 7.2.l.4 will be equiv­
alent if and only if they are of the same type.

If an entity of a given type becomes defined, then all
associated entities of different type become undefined at
the same time, while all associated entities of the same
type become defined unless otherwise noted.

Association by argument substitution is only valid in
the case of identity of type, so the rule in this case is
that an entity created by argument substitution is de­
fined at time of entry if and only if the actual argument
was defined. If an entity created by argument substitu­
tion becomes defined or undefined (while the association
exists l during execution of a subprogram, then the corres­
ponding actual entities in all calling program units be­
come defined or undefined accordingly.

10.2.3 Events That Effect Definition. Any entity
is undefined at the time of the first execution of the first
executable statement of the main program. Redefinition
of a defined entity is always permissible except for certain
integer variables (7 .1.2.8 and 7 .1.3.2.1) or certain en­
tities in subprograms (6.4, 8.3.2, and 8.4.2).

Variables and array elements become defined or rede­
fined as follows:

(1) Completion of execution of an arithmetic assign­
ment statement causes definition of the entity which
precedes the equals.

(2) As execution of an input statement proceeds, each
entity, which is assigned a value of its corresportding
type from the input medium, is defined at the time of
such association and associated entities become uncle-

X3.IO
23

fined. Only at the completion of execution of the state­
ment do associated entities of the same type become
defined.

(3) Completion of execution of a DO statement causes
definition of the control variable.

(4) Inception of execution of action specified by a
DO-implied list causes definition of the control variable.

10.2.3.1 Variables and array elements become un­
defined as follows:

(I) At the time a DO is satisfied, the control variable
becomes undefined.

(2) Completion of execution of action specified by a
DO-implied list causes undefinition of the control variable.

(3) When an associated entity of different type be­
comes defined.

(4) When an associated entity of the same type be­
comes undefined.

10.2.4 Entities in Blank Common. This subject is
not covered in this standard, but does appear in
American Standard FORTRAN, X3.9-I 966.

10.2.5 Entities in Labeled Common This subject
is not covered in this standard, but does appear in
American Standard FORTRAN, X3.9-l 966.

10.2.6 Entities Not in Common. An entity not in
common is initially undefined.

Such entities once defined by any of the rules previ­
ously mentioned, remain defined until they become un­
defined.

If such an entity is in a subprogram, the completion
of execution of a RETURN statement in that subprogram
causes all such entities and their associates at that time
to become undefined. In this respect, it should be noted
that the association between dummy arguments and
actual arguments is terminated at the inception of ex­
ecution of the RETURN statement.

10.2.7 Basic Block. In a program unit, a basic block
is a group of one or more executable statements defined
as follows.

The following statements are block terminal statements:
(I) DO statement
(2) CALL statement
(:H GO TO statement of all types
(4) Arithmetic IF statement
(5) STOP statement
(6) RETURN statement
(7) The first executable statement, if it exists, pre­

ceding a statement whose label is mentioned in a GO TO
or arithmetic IF statement

(8) An arithmetic statement in which an integer vari­
able precedes the equals

(9) A READ statement with an integer variable in the list
10.2.7.l The following statements are block initial

statements:
(I) The first executable statement of a program unit
(2) The first executable statement, if it exists, follow­

ing a block terminal statement

1

2

3

4

s
6

7

8

9

10

11

12

l 3

14

15

16

I l

18

19

:w
21

22

23

'}4

25

26

27

28

29

30

31

17

33

3t

J5

36

37

38

39

40

41

42

43

44

45

46

47

48

49

so
51

52

53

54

55

56

57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Jl

:l1

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

X3.10
24

Every block initial statement defines a basic block. If
that initial statement is also a block terminal statement,
the basic block consists of that one statement. Otherwise,
the basic block consists of the initial statement and all
executable statements that follow until a block terminal
statement is encountered. The terminal statement is
included in the basic block.

10.2.7.2 Last Executable Statement. In a program
unit the last executable statement must be one of the
following statements: GO TO statement, arithmetic IF
statement, STOP statement, or RETURN statement.

10.2.8 Second Level Definition. Integer variables
must be defined on the second level when used in sub­
scripts and computed GO TO statements.

Redefinition of an integer entity causes all associated
variables to be undefined on the second level during the
execution of the program until the associated integer
variable is explicitly redefined.

Except as just noted, an integer variable is defined
on the second level upon execution of the initial state­
ment of a basic block only if both of the following con­
ditions apply:

(l l The variable is used in a subscript or in a com­
puted GO TO in the basic block in question.

(2) The variable is defined on the first level at the
time of execution of the initial statement in question.

10.2.8.1 This definition persists until one of the
following happens:

(l l Completion of execution of the terminal statement
of the basic block in question.

(2) The variable in question becomes undefined or
receives a new definition on the first level.

10.2.8.2 At this time, the variable becomes unde­
fined on the second level.

In addition, the occurrence of an integer variable in
the list of an input statement in which that integer vari­
able appears following in a subscript causes that variable

to be defined on the second level. This definition per­
sists until one of the following happens:

(l l Completion of execution of the terminal statement
of the basic block containing the input statement.

(2 l The variable becomes undefined or receives a new
definition on the first level.

An integer variable defined as the control variable of
a DO-implied list is defined on the second level over the
range of that DO-implied list and only over that range.

10.2.9 Certain Entities in Function Subprograms.
If a function subprogram is referenced more than once
with an identical argument list in a single statement, the
execution of that subprogram must yield identical results
for those cases mentioned, no matter what the order of
evaluation of the statement.
10.3 Definition Requirements for Use of Entities.
Any variable referenced in a subscript or a computed
GO TO must be defined on the second level at the time
of this use.

Any variable, array element, or function referenced
as a primary in an expression and any subroutine ref­
erenced by a CALL statement must be defined at the time
of this use. In the case where an actual argument in the
argument list of an external procedure reference is a
variable name or an array element name, this in itself
is not a requirement that the entity be defined at the time
of the procedure reference.

Any variable used as an initial value, terminal value,
or incrementation value of a DO statement or a DO­
implied list must be defined at the time of this use.

Any variable used to identify an input/output unit
must be defined at the time of this use.

At the time of execution of a HETUHN statement in
a function subprogram, the value of that function must
be defined.

At the time of execution of an output statement, every
entity whose value is to be transferred to the output
medium must be defined. If the output is under control
of a format specification, a correct association of con­
version code with type of entity is required. The following
are the correct associations: I with integer; and E and
F with real.

1

2

3

4

5

6

7

8

9

10

ll

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Jl

:l1

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

l

2

3

4

s
6

7

8

9

10

11

12

13

14

15

16

ll

18

19

20

21

22

23

24

25

n
27

28

29

30

31

33

Jt

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

so
51

52
53

54

55
56

57

X3.IO
25

Appendixes
(These Appendixes are not a part of American Standard Basic FORTRAN, X3.l0-l966, but are included to facilitate its use.I

Appendix A

Considerations Relating to Purpose of FORTRAN Standardization

Al. Introduction

Processors for a group of closely related programming
languages using the name "FORTRAN" have been con­
structed for most of the types of computing systems in
wide use today. These FORTRAN processors are so
widely used that FORTRAN is the most commonly used
of all of the common programming languages for com­
puters and information processing systems.

A2. FORTRAN Historical Development
and Current Status

The original objective in the first FORTRAN program­
ming language was:

"The FORTRAN language is intended to be capable
of expressing any problem of numerical computation.
In particular, it deals easily with problems containing
large sets of formulae and many variables, and it per­
mits any variable to have up to three independent sub­
scripts. However, for problems in which machine words
have a logical rather than a numerical meaning it is less
satisfactory, and it may fail entirely to express some such
problems. Nevertheless, many logical operations not
directly expressable in the FORTRAN language can be
obtained by making use of provisions for incorporating
library routines."

This quotation is taken from "The FORTRAN Auto­
matic Coding System for the IBM 704 EDPM," dated
October 15, 1956.

The first FORTRAN processor was modified in 1958
to accept programs written in an augmented FORTRAN
language, commonly known as "FORTRAN II." The
usage of FORTRAN II grew rapidly and processors be­
came available for a wide variety of computers of quite
varied structure and power.

Beginning in 1962, processors for "FORTRAN IV"
began to appear and have come into increasing use al­
though FORTRAN II processors remain in quite sub­
stantial use. FORTRAN IV not only added to the
FORTRAN language but made certain changes such that
FORTRAN II programs could not be run directly on
FORTRAN IV processors. Computer programs that ac­
cept most FORTRAN II programs and produce correct
equivalent FORTRAN IV programs have been used for
conversion. A brief discussion of the FORTRAN II­
FORTRAN IV interrelation is given in AS.

In addition to the partial dichotomy introduced into
the FORTRAN language family by the advent of
FORTRAN IV, other language differences have arisen
in the course of time through differences in particular
processors, and these differences restrict the interchange­
ability of FORTRAN programs between processors. These
differences generally exist for one or more of the follow•
ing reasons: (I) to expand the application area of the
language, (2) to simplify the language for the user, (3) to
exploit a particular computing system more effectively,
(4) to simplify or speed up the operation of a processor,
and (5) misunderstanding or disagreement as to what
FORTRAN is for lack of definitive standards.

A3. General Purpose

The purpose of FORTRAN standards is to facUitate
the interchange of programs for use on a number of proc­
essors. The criteria given in Section A4 resulted in
FORTRAN standards that define and qualify the level
of interchangeability. This is reflected in the scope and
in certain specifics of the language (discussed in Appen­
dix B).

A4. Criteria Used in Developing
FORTRAN Standards

The principal criteria used in developing FORTRAN
standards were (in approximate priority):

(l) Interchangeability of FORTRAN programs be­
tween processors.

(2) Compatibility with existing practice.
(3) Consistency and simplicity to the user preparing

FORTRAN programs.
(4) Suitability for efficient processor operation for

a wide range of computing equipment of varying struc­
ture and power.

(5) Allowance for future growth in the language.
The FORTRAN standards were developed without

adding any new language content not presently in use
on some processor. Development of the standards has
been exclusively concerned with codification and regu­
larization of "FORTRAN" practice.

In view of the extensive past and current usage of
FORTRAN, the standards development was devoted
entirely to language definition rather than language
design (l) so that the content of the standards might
reflect only that which had proven itself of value in actual
usage, and (2) to facilitate and encourage acceptance
of the standards.

1

2

3

4

5

6

7

8

9

10

ll

12

13

14

15

16

17

18

19

20

21

n
23

24

25

26

27

28

79

30

31

n
33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

so
51

52

53

54

55

56

57

1

2

3

4

5

6

7

8

9

10

11

12

l 3

14

l 6

IA

19

2 i

76

21

28

?9

3()

35

36

37

38

J<;

40

~l

4'2

4:l

.u
45

46

47

48

49

50

51

52

53

54

55

56

57

X3.l0
26

AS. FORTRAN II and FORTRAN IV

The principal language features of FORTRAN IV
having no counterpart in FORTRAN II are (I} DATA
statement, (2} logical type and its use in expressions,
(3} labeled COMMON, and (4} logical IF statement.
The principal differences between FORTRAN II and
FORTRAN IV which inhibit interchangeability are:

(I} EQUIVALENCE-COMMON ordering and asso­
ciation differ basically. The FORTRAN II rules are rela­
tively complex by comparison to FORTRAN IV rules and
reflect a historical peculiarity of the original processor.

(2} A special class of "library" functions exists in
FORTRAN II which is a vestigial remain from the origi­
nal FORTRAN processor. This class of functions has
special implicit type and naming rules in conflict with
the more general and inclusive FUNCTION capability
retained in FORTRAN IV.

(3} Statement functions in FORTRAN II have special
implicit type and naming rules in contrast to the single
uniform implicit type and naming rules of FORTRAN IV.

(4} FORTRAN II complex and double precision capa­
bilities are expressed differently and are more limited
than the FORTRAN IV counterparts.

(5} FORTRAN IV input/output statements are uni­
form for all device types whereas the FORTRAN II state­
ments are specific in some cases to the device type. In
addition certain machine trigger references of the original
processor were retained in FORTRAN II hut omitted in
FORTRAN IV.

(6} The EXTERNAL statement of FORTRAN IV ex­
presses a feature handled differently in FORTRAN II.

The differences listed in the preceding paragraphs are
so widely used that very few FORTRAN II and FORTRAN

APPENDIX

IV programs are directly interchangeable. Accordingly,
the application of the criteria in A4 indicated that stan­
dards should he based on FORTRAN IV solely.

A6. FORTRAN for a Wide Range of
Equipment

The criteria of interchangeability and suitability for
a wide range of equipment are conflicting. To obtain effi­
cient operation on small computing systems, it is desir­
able to omit certain less commonly used parts of the
FORTRAN language. To restrict the standards for small
systems would, however, deny the advantages of stan­
dardization to processors readily able to handle a much
larger language efficiently.

The compromise adopted therefore provides two re­
lated standards: American Standard FORTRAN, X3.9-
I 966, and American Standard Basic FORTRAN, X3.10-
I 966. Thus processors can he constructed for the
standard judged most effective in exploiting a particular
computing system. All programs written in American
Standard Basic FORTRAN are valid American Standard
FORTRAN programs.

The existence of two standards, however, restricts
interchangeability in that programs written to run on a
processor that accepts American Standard FORTRAN
will not, in general, he acceptable to Basic FORTRAN
processors. A summary of the differences between these
standards is given in Appendix C.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

JI

:l1

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57

1

2

3

4

5

6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

26

21

28

29

30

31

:l1

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

51

X3.10
27

Appendix B

Notes by Section

Bl. Section I Notes

The standard is a permissive standard in that it does
not prescribe how a processor will respond to a program
for which no interpretation is provided. This allows for
language growth in that a processor may accept a super­
set language and perform some useful operation without
thereby deviating from the standard. A program written,
however, in such an augmented language deviates from
the standard and will therefore not, in general, give the
same response on other processors.

A second consequence of excluding a prescription of
processor response where no interpretation is provided,
is that unintentional deviation from a FORTRAN stan­
dard is not covered. This area of"diagnostics" can greatly
affect the usefulness of a processor. This important area
is omitted, however, as it was felt premature to standard­
ize here, since so many considerations affecting internal
processor construction are involved.

Interchangeability is standardized at the coding form
level. While actual interchange is frequently convenient
in the form of data processing media, this standard does
not cover such interchange.

The term "processor" is here defined to include a
combination of program and data processing system, so
as to allow processor constructors to employ combina­
tions of hardware and software techniques including
compiling, interpreting, and combinations of these, to
accomplish interpretation and execution of a FORTRAN
program to conform to the standard.

Manual operation of equipment, operating system
functions, libraries, processor description manuals are
not standardized herein.

Bl.I Processor Limitations. This standard partially
describes a "FORTRAN machine" which is embodied
in an actual FORTRAN processor. The standard, how­
ever, is deliberately incomplete in describing the
"FORTRAN machine" in some specific areas-storage
capacity, number system, range, precision, internal
representation, nature and number of input/output units.
While these differences between processors restrict inter­
changeability, the standard is written to allow great
variability in processor capacity.

B2. Section 2 Notes

External procedures may be written in languages
other than that of the standard. Such procedures or
other procedures that depend on them may not be inter­
changeable.

B3. Section 3 Notes

The FORTRAN character set is contained in the char­
acter set of the American Standard Code for Information
Interchange, X3.4-l 963. Characters not in the FORTRAN
set may be used in Hollerith data if a processor accepts
them. Differing character sets may, however, limit pro­
gram interchangeability.

Specific mention should be made of the character,
"S." Although this character may only appear in Hollerith
data, most processors have accepted it, and the inability
of a processor to handle "S" will definitely restrict inter­
changeability of current programs.

B4. Section 4 Notes

An alternative and equivalent formulation to that given
in the standard would have defined a seventh data type,
"statement label type" for a datum assuming a statement
label as its value.

Any variable referred to in any ASSIGN or assigned
GO TO statement would also have an implied "statement
label type." In 10.2.2 there would be a fourth class of
association for such variables, i.e., association of state­
ment label variables and integer variables of the same
name. In 10.2.3, the ASSIGN statement would define or
redefine the value of a statement label variable. It would
be unnecessary to state explicitly that the ASSIGN causes
undefinition of an integer variable since this would be
covered by the rule that undefinition occurs when an
associated variable of different type is defined or rede­
fined. In this alternative formulation the assigned GO
TO (7.1.2.1.2) and ASSIGN (7.1.1.3) statement defini­
tions would use "statement label" in place of "integer."

. BS. Section 6 Notes

The construction and evaluation rules of common alge­
bra are defined in this section. The maximum latitude
consistent with the normal rules of arithmetic is allowed
in the evaluation sequence with a single significant excep­
tion. The purpose of allowing this latitude is to permit
processors to most efficiently exploit equipment capa­
bilities of a particular computer. In order to ensure that
this latitude does not result in ambiguity it is necessary
to prohibit intra-statement "side-effects" (i.e., function
references may not define or redefine other elements in
the same statement).

2

3

4

s
6

1

8

9

10

11

12

'3
14

15

lb

I 7

18

19

:w
21

n
21

25

n
'27

28

79

30

31

1']

33

3{

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

so
51

52

53

54

55

56

57

1

2

3

4

s
6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

n
21

28

29

30

31

17

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

so
51

52

53

54

55
56

51

X3.IO
28

To allow a user to control the evaluation sequence
where this might affect the approximation error in com­
putation (e.g., arithmetic of real number approximantsl,
a processor may not use mathematical identities which
involve parentheses (e.g., factoring or distributive laws).

B6. Section 7 Notes

The restrictions on redefining the control variable of
a DO and its parameters when control is within the DO
is for the purpose of permitting efficient processor
operation.

The extended DO is retained in American Standard
FORTRAN for the purpose of conforming to current
practice, despite the somewhat ad hoc character of this
aspect of FORTRAN.

The input/output description is given in great detail
owing to its great practical importance. It is important
to note that the definition of "record" covers its usage
in the language only and does not necessarily correspond
to its physical embodiment in a processor or medium.
The language provides for any "length" records includ­
ing zero length records, "length" being measured in
characters for formatted records and "list element values"
for unformatted records. Processor restrictions arising
from specific input/output devices are not discussed in
the standard. The type of restriction may best be illus­
trated by an example: A line printer might be expected
to accept formatted WRITE statements only, and then
only if the length of each record does not exceed the
width of the carriage. Unformatted I/0, backspace, end­
file, rewind, and read operations might be prohibited on
such a device. The standard does not prescribe which
input/output operations are meaningful on a given proc­
essor and computer configuration even though inter­
changeability of programs is compromised.

Although the word "REWIND" might imply tape-like
devices, the definition given does not require tape, and
drums and disks can and have been used in processors
with "REWIND" as well as "BACKSPACE."

The ENDFILE performs no intrinsic function in
FORTRAN in that there is no interpretation for reading
such a record. It is included for historical purposes
where one of its uses has been to identify to the machine
operator separation points for off-line printing.

APPENDIX

The PAUSE statement has customarily been used to
allow intervention manually, but has been defined to
allow for unspecified external intervention.

B6.I Common-Equivalence f7.2.l.3.ll. The value
correspondence of variables in COMMON that are men­
tioned in different program units is expressed by cor­
responding position of mention in COMMON where
"corresponding" is counted in "storage units." In proc­
essors, this is customarily implemented by allocating
equal storage for "storage units." This is not always
the most efficient usage of physical storage, however
alternatives which require type correspondence in cor­
responding positions and the prohibition on EQUIV­
ALENCE of variables of different type were deemed un­
duly restrictive.

The "storage unit" chosen fixes the number of char­
acters of Hollerith data that corresponds and this varia­
tion between processors limits interchangeability.

FORMAT control as described in the standard differs
very slightly from one common practice. A "l" on writing
can cause a zero length record to be written. This makes
FORMAT operation with a given list.completely symmet­
rical, i.e., always the same number of records on writing
as on reading.

B7. Section 8 Notes

Subscripted variables may not he mentioned in intrin­
sic functions. This corresponds to a restriction in many
current processors.

BB. Section 10 Notes

BB.I Second Level Definition. For processor efficiency,
it has been customary often to treat variables in sub­
scripts and variables in a computed GO TO in a special
way. In particular they are computed at the beginning of
a basic block and assumed to be fixed in value through­
out the block unless they "appear" to vary. Side effects
through COMMON via function references not mention­
ing the variable explicitly in the argument list and similar
redefinitions through EQUIVALENCE association are
restricted when they affect subscripts and the computed
GO TO. That is the purpose of the restrictions in 10.2.8.

1

2

3

4

s
6

1

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

11

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

so
51

52

53

54

55

56

57

1

2

3

4

5

6

7

8

9

10

11

12

13

l 4

15

lb

11

18

19

20

21

22

23

'24

25

26

27

28

29

30

31

33

H

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

SS
56

57

X3.l0
29

Appendix C

Principal Differences between American Standard FORTRAN
and American Standard Basic FORTRAN

The two FORTRAN standards documents use identi­
cal section numbering and discuss the same topics in
the identically numbered sections. Where American
Standard Basic FORTRAN has no language content
counterpart to that defined in a particular section of
American Standard FORTRAN, only the section number
and section title are retained.

The following list summarizes the principal differences
between the two standards. This list is provided for con­
venience only and for an exhaustive comparison the
two documents should be studied section by section.

American Standard Basic FORTRAN (as compared to
American Standard FORTRANl has:

(l l A maximum of five continuation cards (instead of
19 continuation cardsl.

(2 l A maximum of five characters in a symbolic name
(rather than six l.

(3 l Neither logical type, logical nor relational ex­
pressions, logical IF statement, nor "L" format descriptor.

(41 No"$" in its character set.
(5 l Neither complex type, double precision type, type­

statement, double precision and complex constants and
expressions, nor "D" and "G" format descriptors.

(61 No EXTERNAL statement.

(7 l No 3-dimensional arrays, subscripts.

(8 l A prohibition on FUNCTION subprograms, in
that they may not define nor redefine any of their argu­
ments nor any entity in common.

(91 No array declarator permitted in a COMMON
statement.

(lO l No labeled common blocks.
(11 l No ASSIGN nor assigned GO TO statements.
(12 l No DATA statement nor BLOCK DATA programs.
(13 l A maximum of four (rather than five l octal digits

in the PAUSE statement.
(14 l No print carriage control for formatted output

records.
(15 l No Hollerith datum nor the" A" format descriptor

and therefore no FORMAT can be read in during exe­
cution.

(161 No provisions in a FORMAT statement for
(al scale factor, (bl data exponent on input for "F"
descriptor, (cl second level of parentheses.

(17 l A restriction on external functions that they may
not alter variables in common or variables associated
with common via an EQUIVALENCE statement.

(181 A requirement that all DIMENSION statements
must precede all COMMON statements, which must in
turn precede all EQUIVALENCE statements.

(191 A statement label may contain only 4 digits
rather than 5.

1

2

3

4

5

6

7

8

9

10

11

12

13

l 4

15

lb

11

18

19

20

21

22

23

24

25

26

27

28

29

30

31

17

33

H

J5

36

37

36

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

SS
56

57

X3.IO
30

Appendix D
A Current Media Representation for

the Graphics of the
Basic FORTRAN Character Set

At the time of drafting the Proposed American Standard
Basic FORTRAN, no American or International existing
or proposed standard defined media representations for
the graphics of the FORTRAN character set defined in

3.1. However, a current representation in 80-column
punched cards, widely used in the USA, is given below
in columns 1 through 46 in the same sequence as in 3.1.

ABCDEFG~IJKLMNOFQR~TUVWXYZ0123456789 =+-~/()~ .

.......... ~ ---------------------1----
'°l&rr !

TAT ... H I
-· !

111111111 FORTRAN

I 0 I II 0101111110111 DI 10111010011 D 018100
1l11•11111•"nnM11•o•••nnnMaan•••nnn•a•n•••41aa•••41•••11uuM••11•
111 I 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 I I I I 1 I 1 1 I I 1 I 1 1 1 I 1 1 I 1 1 1 I I I I 1 I I I I I I I I
I
~22222 212222222212222222122222222212222222222222222222222

~33333333l33333333l3333333l333333333l33~3333l333333ll33333
~444444444l44444444l4444444l444444444l444444444l4ll4444444
~5S55555555l55555555l5555555l555555555l5555555555555555555

~1&111666666l66666666l6666666l666666666l6&666666666666666
I

717 7 7 7 7 7 7 7 7 7 7 7 I 7 7 7 7 7 7 7 7 I 7 7 7 7 7 7 7 I 7 7 7 7 7 7 7 7 7 I 7 7 7 7 7 1 7 1 1 1 7 7 1 7 7 11

~8118881818811l88881BBBIB888111l118888881IBBIBBIBllllBBB88
~····· 19911919l99999999l9999999l999999999l999999999999999 1111 4111 •• IGllll111411111111ft•nnDl425lllD•••nnn•••D•••4141G•••41•••HRUM5'l•ll•

•118157

1

2

3

4

s
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Jl

17

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

so
51

52
53

54

55

56

57

Committees

X3.IO
31

The ASA Sectional Committee on Computers and Information Processing, X3, which developed this standard, had
the following personnel at the time of approval:

C. A. Phillips, Chairman V. E. Henriques, Secretary

Organization Represented Name of Representative

ASA Sectional Committee on Standards for Office Machines, X4 .. . C. E. Ginder
Administrative Management Society .. . F. B. Gardner

E. S. Everhardt (Alt)
Air Transport Association . F. C. White

G. F. Maulsby (Alt)
American Bankers Association .. G. W. Frey

American Gas Association and Edison Electric Institute fjointlyl ..

American Newspaper Publishers Association

T. Hough (Alt)
J. A. Comerford
F. W. Beyer (Alt)
J. P. Markey (Alt)
W. D. Rinehart
W. C. Wieck (Alt)

American Petroleum Institute F. A. Gitzendanner
J. R. Noble (Alt)
C. Byham Association of American Railroads

Association for Computing Machinery .. S. Gorn

Business Equipment Manufacturers Association

Council of State Governments

Data Processing Management Association

Electronic Industries Association

Engineers Joint Council

General Services Administration

E. Lohse (Alt)
W. H. Burkhart
H. N. Cantrell
E. H. Clamons
R. F. Clippinger
G. T. Croft
C. T. Deere
R. W. Green
J. A. Haddad
R. I. Mindlin
B. Pollard
G. E. Poorte
M. Sanders
W. E. Andrus, Jr (Alt)
R. W. Bremmer (Alt)
W. Hanstein (Alt)
A. H. Hassan (Alt)
R. J. LaManna (Alt)
W. R. Lonergan (Alt)
B. Lyman (Alt)
C. S. Margach (Alt)
T. J. McNamara (Alt)
J. S. Wrubel (Alt)
D. G. Price
E. S. Legg (Alt)
W. Claghorn
R. C. Elliott (A ltJ
R. F. Stone (Alt)
H. Tholstrup
J. A. Caffiaux (Alt)

. . . W. M. Carlson
F. Y. Speight (Alt)

.... L. Wolff

Industrial Communications Association
J. W. Purvis (Alt)

. C. L. Hutchinson
Institute of Electrical and Electronics Engineers R. W. Ferguson

G. W. Patterson
J. F. Auwaerter (Alt)
D. R. Brown (Alt)
L. C. Hobbs (Alt)
R. M. Kalb (Alt)
W. C. Marble (Alt)

Insurance Accounting and Statistical Association . C. 0. Orkild
J. C. Nix (Alt)

1

2

3

4

s
6

7

8

9

10

11

12

13

14

15

16

I l

18

19

10

21

22

23

24

25

26

27

28

29

30

Jl

33

Jt

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52
53

54

55
56

57

1

2

3

4

s
6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

n
21

28

29

30

31

17

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

so
51

52

53

54

55

56

51

X3.l0
32

Joint Usen Group
Life Office Management Association .. · ... · ·

National Bureau of Standards

National Machine Tool Builden Association

National Retail Merchants Association

Scientific Apparatus Maken Association .. :

Systems and Procedures Association
Telephone Group

U.S. Department of Defense

R. E. Ulman
E. Boulanger
A. J. Tufts fAltJ
S. N. Alexander
J. H. Wegstein (Alt}
M. Sluis
E. Koschella
E. Langtry
R. E. Ulman (Alt)
W. B. Schultz
J. M. Lombardo (Alt)
E. Tomeski
L. W. Oaussen
R. C. Matlack (Alt)
G. L. Bowlby
R. L. Johnson (Alt)

At the time this standard was processed through ASA Subcommittee X3.4, membership was as follows:

F. L. Alt, Chairman

P. W. Abrahams
H. Bromberg
E. F. Cooley
C. H. Davidson
W. L. Donally
W. C. Finley
n. .\. Goldstein
S. Gorn
J. A. Gosden
M. F. Hill

W.W. Youden

P. Z. lngerman
J. B. Jordan
W. P. Keating
H. A. McWilliams
J. :'II. Merner
A. Podvin
J. C. Robertson
T. B. Steel, Jr
H. E. Utman
L. D. Yarbrough

At the time this standard was developed and processed through ASA Working Group, X:t4.:~, the membership was

as follows:

W. P. Heising, Chairman

W. T. Altmann
L. Ayres
C. B. Baily
R. J. Beeber
H. Bright
G. Bowen
H. Brunelle
D. M. Dahm
R. Danek
C. H. Davidson
S. R. Dickson
L. Catt
M. Greenfield
M. Guss
W. J. Heffner
R. W. Holliday
R. E. Hux

R. Zemlin

W. B. Kehl
R. Kerker
D. Laird
A. F. Lazowski
I. C. Liggett
T. W. Martin
W. P. Melcher
R. W. Mitchell
G. Moshos
J. 0. Neuhaus
J. H. Palmer
R. Hanshaw
R. K. Ridgway
A. V. Scura
L. W. Strobel
K. F. Tiede
W. Unke

The membership above, with some exceptions, has been active from the beginning of this work in 1962.

1

2

3

4

s
6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

23

24

25

n
21

28

29

30

31

17

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55
56

51

