Altos UNIX® System V/386
Release 3.2

User’s Reference (C, M, F)

V/386

I
I

® System

UNIx

Altos

2

e3

Releqs

P

M

S Reference (C,

’

User

Document
History

EDITION PART NUMBER DATE

Preliminary Edition 690-23414-001A February 1990

First Edition 690-23414-001 ﬁx’il 1600
Second Edition 600-23414-002 arch 1991

Copyright
Notice

Manual Portions Copyright © 1990, 1991 Altos Computer Systems.

Manual Portions Copyright © 1989 AT&T.

Manual Portions Copyright © 1980, 1981, 1982, 1983, 1984, 1985, 1986,
1987, 1988, 1989 Microsoft Corporation.

Manual Portions Copyright © 1983, 1984, 1985, 1986, 1987, 1988, 1989
The Santa Cruz Operation, Inc.

All rights reserved. Printed in U.S.A.

Unless you request and ive written permission from Altos Computer
Systems, you may not copy any part of this document or the software you
received, except in the normal use of the software or to make a backup
copy of each diskette you recelved.

Trademarks

The Altos logo, as it appears in this manual, is a registered trademark of
Altos Computer Systems.

386 and 486 are trademarks of Intel Corporation.
“ACER Fast File System” is a trademark of ACER Technologles
Corporation.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft
Corporation.

PostScript is a registered trademark of Adobe Systems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

Limitations

Altos Computer Systems reserves the right to make changes to the product
described in this manual at any time and without notice. Neither Altos nor its
suppliers make any warranty with respect to the accuracy of the information
in this manual.

GUIDE TO YOUR ALTOS UNIX® SYSTEM V/386
RELEASE 3.2 DOCUMENTATION

RUN-TIME SYSTEM

These books come with every system:

Installation Guide

Part Number: 690-24096-nnn

e Operating System installation
Upgrade procedure

System Administrator’s
Guide

Part Number:
® Sysadmsh
® Security

® System tuning, froubleshooting
® Peripherals

o Virtual Disks

User's Guide

Part Number: 690-23408-nnn
* Vi, ed, mail, awk, sed

¢ Shells: sh and csh

¢ Job scheduling commands

690-23416-nnn

User's Reference (C, M, F)

Part Number: 690-23414-nnn

(also provided online with each

operating system)

® (C) Commands

* (M) Miscellaneous files and
commands

o (F) File formats

System Administrator’s

Reference (ADM, HW)

Part Number: 690-23416-nnn

(also provided online with each

operating system)

* (ADM) Administrative
commands

* (HW) Hardware information

These books may be ordered separately:

L]
=

Using the AOM

Menu System

Part Numbers: 690-23814-nnn

* Easy-to-use menus to use
programs

* Menu manager to add,
update, remove menus

Tutorial

Part Number: 690-23407-nnn

® Basic concepts and tasks
Files and directories

® Utilities

International Operating

System Guide

Part Number: 690-23810-nnn

e Character sets

* 7-bit vs. 8-bit characters

DEVELOPMENT SYSTEM
Set Part Number: 690-23417-000

=
=)

Programmer’s Reference

(CP,S)

¢ (CP) Programming commands

* (S) System services, library
routines

Programmer’s Guide

e Lex, lint, yacc

e SCCS, make

* Extended Terminal
Interface (ETD

® Sdb, adb

® Shared libraries

e File and record locking

C Language Guide
e C User’s Guide
e C Language Reference

Library Guide

o C Library Guide

o XENIX Development and
Portability Guide

¢ International Development
Guide

Developer’s Guide

e DOS and OS/2 Development
Guide

e STREAMS Primer

e STREAMS Programmer’s Guide

¢ STREAMS Network
Programmer’s Guide

CodeView and Macro
Assembler User's Guide

® The CodeView Debugger

* Macro Assembler User’s Guide

Device Driver Writer's Guide

» Writing, compiling, and linking
drivers

e SCSI drivers

e STREAMS and line disciplines

* (K) Kernel routines

To order any of the above manudals, call 408/434-6688, ext. 3004 and give the
manual fitle and part number.

Operating System Documents
for Different Audiences

As shown on the previous page, Altos offers many manuals with Altos UNIX System V—the manu-
als you receive will depend on your configuration. To help you decide which manuals are best
suited to your needs, we have listed below the manuals according to three broad groups of users.

These lists are only suggested starting points in your search for information. They are not meant to
imply that certain users should nor read certain manuals. Find the user group that best applies to
you, and use its list of manuals as a starting point for your reading, from which you can move on to
other manuals.

Note that every Run-time System includes five manuals: the Installation Guide, the User’s Guide,
the User’s Reference, the System Administrator’s Guide, and the System Administrator’s Refer-
ence. The Run—time System reference pages that describe the C, M, F, ADM, and HW commands
(““man pages’’) are provided online as well. If you have the Development System, all manuals
listed under *‘For Programmers:’’ come with your operating system. (All Development System
reference pages are also provided online.) To order additional manuals, call (408) 434-6688, exten-
sion 3004 and give the manual title and part number.

For General Users (especially Beginners):
Tutorial

User’s Guide

User’s Reference (C, M, F)

Using the AOM Menu System

For System Administrators (and Advanced Users):
Installation Guide

System Administrator’s Guide

System Administrator’s Reference (ADM, HW)
International Operating System Guide

Programmer’s Reference (CP, S)

For Programmers:

Programmer’s Guide

Programmer’s Reference (CP, S)

C Language Guide

Library Guide

Developer’s Guide

CodeView and Macro Assembler User’s Guide
Device Driver Writer’s Guide

Preface

Throughout the documentation, a given command, routine, or file is
referred to by its name and a section (in parentheses). For example, the
programming command cc, is listed as cc(CP), which indicates that cc is
described in the Programming Commands (CP) section.

There is a total of twelve reference sections in Altos UNIX System V, in
different volumes of the Operating System and the Development System
documents. (These reference sections are often called manual pages, or
just man pages, in short.) For example, the cc(CP) command mentioned
above is located in the CP section found in the Programmer’s Reference .

This document, the User’s Reference (C, M, F), contains the following
three reference sections:

Section Description Volume

C Commands - used with the User’s Reference
Operating System.

M Miscellaneous - information used User’s Reference

for access to devices, system
maintenance, and communi-
cations.

F File Formats - description of User’s Reference
various system files not defined in
section M.

The following table lists the remaining reference sections, the type of
commands they contain, and in which document each is located.

Section

Description

Volume

ADM

Cp

DOS

HW

NSL

STR
XNX

Administrative Commands - used
for system administration.

Programming Commands - used
with the Development System.

DOS Cross-development
subroutines and libraries

Hardware device manual pages -
information about hardware
devices and device nodes.

Kernel routines - used for writing
device drivers.

Network Services Library - used
with the STREAMS System.

System Calls and Library
Routines - available for C and
assembly language programming.

STREAMS manual pages

XENIX cross-development
manual pages

System Administrator’s
Reference

Programmer’s Reference

Developer’s Guide

System Administrator’s
Reference

Device Driver Writer’s
Guide

Developer’s Guide
Programmer’s Reference '

Developer’s Guide

Library Guide

The alphabetized table of contents following this preface lists all Altos
UNIX System V commands, system calls, library routines, and file
formats. In addition, in the front of each individual reference section there
is an alphabetized list of all the manual pages contained in that section.

The permuted index, found at the end of the User’s Reference, and the
end of the Programmer’s Reference, is useful in matching a desired task
with the manual page that describes it. It too is an organized list of a'l
Altos UNIX System V commands, system calls, library routines, and file
formats, but organized according to function, not alphabetically.

Note that some pages in the Operating System documents refer to
“‘include’’ files that are actually part of the Development System.

Alphabetized List

Commands, Systems Calls, Library Routines and File Formats

300 ...eeeeereeerenns 300(C)
4014 ... 4014(C)
450 .. 450(C)
8orelocvvevens 86rel(F)
Xt e exit (S)
F: W0) 1 | AU a.out(F)
a6dl ..., a641(S)
21070) of S abort(S)
abs .o abs(S)
accept accept (ADM)
ACCESS covvrreereerrneenns access (S)
ACCE .o acct(ADM)
ACCE .eeieeeeceeceeeeenes acct (F)
ACCE e acct(S)
acctems acctcms (ADM)
acctecom acctcom (ADM)
acctdisk acct(ADM)
acctdusg acct(ADM)
acctmerg acctmerg (ADM)
accton ... acct(ADM)
accton accton(ADM)
acctpre acctprc (ADM)
acctprel acctprc (ADM)
acctpre2 acctprc (ADM)
acctsh acctsh(ADM)
acctwtmp acct(ADM)
ACOS ..o, e 1rig (S)
adb ..o adb(CP)
add.vd add.vd(ADM)
addxusers addxusers(ADM)
adfmt adfmt (ADM)
admin admin(CP)
alarmcoveceneene. alarm(S)
210) o + L aom(M)
2) (U ar(CP)
) (ORI ar(F)
archive archive (F)
asCil .ooveeeeeeeceee ascii(M)
asctimeccccevennen. ctime (S)
£: 1)1 1 LT trig(S)
asktime asktime (ADM)

PTTTS) of AR assert(S)
asSiZN ...coverereeereerncnne assign(C)
ASX ceveeeeenenseereeseesnreneanans asx(CP)
.Y USROS at(C)
F:1 71 | T trig(S)
atan2ooeeeeeeenrennene trig(S)
atcronsh atcronsh(ADM)
atof atof (S)
atofcoeerereeeeieeeenen, strtod(S)
atoi atof (S)
AtO ...eecreeeenceeeeeeenen, strtol (S)
atolcceeveiecereeeenee atof (S)
atol strtol (S)
auditcccueenenee. audit(ADM)
auditemd auditcmd(ADM)
auditd auditd(ADM)
auditsh auditsh(ADM)
authcap authcap (F)
authck authck (ADM)
authseeveveenenen, auths(C)
authsh authsh(ADM)
authsh authtsh(ADM)
autoboot autoboot(ADM)
awk awk(C)
backup backup (ADM)
backupsh backupsh(ADM)
badtrk badtrk(ADM)
banner banner(C)
basename basename(C)
batch at(C)
be bc(C)
bcheckre brc(ADM)
bdiffccoevrreeeeenne bdiff(C)
bdosccccoveeuenneen. bdos(DOS)
besselccccevevrueenen. bessel (S)
bfs . bfs(C)
bootcoveerereernne boot(HW)
Bre e brc(ADM)
brk sbrk(S)
brkctlccoceveveeeneeee brkctl(S)

bsearchc..... bsearch(S)

[| cal(C)

calendar calendar (C)
callocueveemenene malloc(S)
canceloeveverreveveenenns Ip(C)
captoinfo captoinfo(ADM)
card_info card_info(F)
CAL vt aenenene cat(C)
Ch e, cb(CP)
cc cc(CP)
CA e cd(C)
CAC orerieeenereecterenne cdc(CP)
cdrom cdrom(HW)
ceil floor(S)
cflow ... cflow(CP)
CgetS .ovrrenerecnenene cgets (DOS)
chargefee acctsh(ADM)
chdircveervevennee. chdir(S)
checkaddr .. checkaddr(ADM)
checklist checklist (F)
checkmail checkmail (C)
checkque checkque (ADM)
checkup checkup (ADM)
chg_audit ... chg_audit(ADM)
chgrp .. chgrp(C)
chmod chmod(C)
chmod chmod(S)
chown chown(C)
chownceeiienne chown(S)
chroot chroot(ADM)
chrootcoeuee. chroot(S)
chrtbl ... chrtbl(M)
chsizeccoeuereunnee. chsize (S)
ckpacct acctsh(ADM)
cleantmp cleantmp (ADM)
clearovverivrienene clear(C)
clearerr ... ferror(S)
ClockK ..o clock (F)
clock ..., clock(S)
ClOSe ..ooeoeeeereerereenne close(S)
cloneceveneenenne clone (M)
closedir directory(S)
(3 | o clri(ADM)
cemchk cmchk (C)
T4 1111 J O cmos(HW)
(411 1 T OOUSIUIROI cmp(C)
col col(C)

coltblccoevvenenee. coltbl (M)
combccooverveenene comb(CP)
0] 111 11 F comm(C)
COMPress compress(C)
configure configure(ADM)
consolec..... console (M)
consoleprint. consoleprint (ADM)
(1) 11 UNOOR conv(S)
convkeycc.... mapkey (M)
(V1) 1) /OO copy(C)
COTC ...ovevenenencennnenneneene core(F)
COS ..oeerncrerisestsnsnsaenenene trig(S)
Coshevevieienerens sinh(S)
[1 J cp(C)
CPIO ... cpio(C)
CPIO ... cpio(F)
(41 + TR cpp (CP)
cprintf cprintf (DOS)
CPULS ...ooevereereneene cputs (DOS)
crashccoeeeeee crash(ADM)
creatcoeeeveeveerenns creat(S)
creatsem creatsem(S)
cref e cref(CP)
(3 (1) 1 (U cron(C)
"crontab" "crontab" (C)
(3 1') 1] SRR crypt(C)
cscanfceeeeee cscanf(DOS)
CSh e csh(C)
(2 1) 11 RO csplit (C)
Ctagscooeeereereveenennnne ctags(CP)
ctermid ctermid(S)
Ctimeccoceveeccecnnnne ctime (S)
(4174 T ctype(S)
CU cereeeerencerereenesseseesersesenees cu(C)
CUTSES ...oevverererrereranns curses(S)
curtblccceueneeneee. curtbl(M)
cuseridccoeeennee. cuserid(S)
custom custom(ADM)
cut cut(C)
cvteoff ... cvtcoff(M)
cvtomfcceevenenee. cvtomf(M)
exrefeeeeiienenns cxref (CP)
daemon.mn daemon.mn(M)
dateccovevevreeenenrenene date(C)
dbmbuild dbmbuild(ADM)
dbminitcccceereeeeeennnne dbm(S)

AC ot dc(C)

dcopyccceveeennne dcopy (ADM)
dd ... dd(C)
deassign assign(C)
default default (F)
defopen defopen(S)
defread defopen(S)
deletecoeeueuvennen. abm(S)
deliver deliver (ADM)
deltacovvvrerrennes delta (CP)
del.vd del.vd(ADM)
devicescceeeuenne devices (F)
devnmcccu....e. devnm(C)
df e df(C)
dialc.ccoovereeennnen. dial(ADM)
dial ..o dial(S)
dialcodes dialcodes (F)
dialersccueuu.. dialers (F)
diff ..o, diff(C)
diff3 ..., dif3(C)
[11 U dir(F)
dircmpcccuueee. dircmp (C)
directory directory (S)
direntcccouevrnenee dirent (F)
dirname dirname (C)
disable disable (C)
diskempe. diskep (C)
diskep ...ocovervnnnee. diskcp (C)
diskusg diskusg (ADM)
display display (HW)
displaypkg . displaypkg (ADM)
divvy .., divwvy (ADM)
dlayout dlayout (ADM)
divr_audit ..dlvr_audit(ADM)
dmesg dmesg (ADM)
dodisk acctsh(ADM)
dOS e dos(C)
doscatcccceereennen. dos(C)
[+ 1114 o S dos(C)
dosdirocevverveninnnne dos(C)
dosexterr dosexter (DOS)
dosformat dos(C)
dosldccoeveeeeeen. dosld(CP)
dOSISoveereerreeeereennes dos(C)
dosmKdircccoeurneee. dos(C)

dosrmccoceeevverneveenene. dos(C)

.......................

dparam(ADM)

getpwent (S)

.........................

................................

ev _block(S)
ev_count(S)

ev_getdev (S)
ev_gtemsk(S)
ev_gindev(S)

......................

ev_getemask

ev_resume(S)
ev_setemask ev_stemsk(S)

............................

(330) S exec(S)

€XECSeEcuvurivernrnnne execseg (S)
€XECV ..eoiieereeerereeseenennes exec (S)
€XECVE ...oveeeerereenrenaennes exec(S)
[0 (e 4 + T exec(S)
(34 A exit (DOS)
exit exit (S)
exp exp(S)
1'4'1) oSN expr(C)
fabs floor(S)
factorccoceceeeenenene factor(C)
1 LY false (C)
fclose fclose (DOS)
fclosecovvveeeeeencnnene fclose (S)
fcloseall fclose (DOS)
fconvert fconvert (M)
fentl ... fentl(M)
10 111 [fentl(S)
fevt ecvt (S)
fd e fA(HW)
fdiskccccccoeeeenenes [fdisk(ADM)
fdopenccccccuncece. fopen(S)
fdswap Jfdswap (ADM)
feof ...ooerereeirieeecrane ferror(S)
ferroreevenenene ferror(S)
fetchcovvveeereee dbm(S)
1111 [fclose (S)
fgete ..o fgetc (DOS)
00511 getc(S)
fgetchar fgetc (DOS)
£ 1 TR gets(S)
1§22) + JO grep(C)
file file(C)
filehdr filehdr (F)
filelength fileleng (DOS)
filenocoeminiiinnne. ferror(§) s
filesys filesys(F)
filesystem filesystem (F)
find find(C)
fingercccoevuruennnne. finger(C)
firstkeycocoeeeveveneeen dbm(S)
fixhdrccooeevevneee. Sfixhdr(C)
fixperm Sixperm(ADM)
1 1071) (R floor(S)
flushall Alushall(DOS)
fmodccooverrrreine floor(S)

iv

fopencocerverrecennene fopen(S)
(1) o - fork(S)
format format(C)
fp_off ... Jfp_seg(DOS)
fp_seg .coovvenenne Jp_seg (DOS)
fprintfooceeenee. printf(S)
fpute ...ocevveevreennnne fputc (DOS)
fPULC ..ceeerereeererenenne putc(S)
fputchar Sfputc(DOS)
11111 TSRO puts(S)
freadcccooveeveeueennen. fread(S)
| § (] malloc (S)
freopencccoeveenene fopen(S)
3 4 1 T frexp(S)
fsavecccocerreennee fsave (ADM)
fscanfccoveeveeecnenene scanf(S)
FSCK oovveeeeeneernrnne fsck(ADM)
fsdbccccoeeiivennen. fSAb(ADM)
fseekcoerveeerereenernnns Jseek(S)
fsname Sfsname (ADM)
fSpecccocveneeenencencne. fspec(F)
fsphoto fsphoto(ADM)
fsstatcceceenenen. Jsstat (ADM)
fstat stat(S)
fstatfsccoevvveerernnnnne statfs(S)
 £71°4 + SO fstyp(ADM)
ftell fseek(S)
ftimeccoceevveevereenens time(S)
F170) QT stdipc (S)
ftw fiw(S)
fusercveeveeeenecrenne fuser(C)
fwritecoceeevevveennee. fread(S)
fwtmp Jwtmp (ADM)
FXLSE ...ovvveeiiivininrennnnnes xlist (S)
gamma gamma(S)
gevt ecvt(S)
get .oiieeeeeeene get(CP)
FL 7 RN getc(S)
getch ..o getch(DOS)
getcharcoveceeneee getc(S)
getchec...... getche (DOS)
getelkccoeereennenen. getclk (M)
getewdcceveinnnene getcwd (S)
getdents getdents (S)
getegidccccuenenenn. getuid(S)
getenycoceeveeunnee getenv(S)

geteuidccoveeernne getuid(S)
getgidcceevveennnne getuid(S)
getgrent getgrent (S)
getgrgid getgrent (S)
getgrnam getgrent o)
gethostid gethostid (S)
getkernelid getsystemid (S)
getlogin getlogin(S)
getoptcocveveernennene getopt (C)
getoptcoceveeereennennn. getopt (S)
getoptevtoeeen. getopts (C)
g2etoptscoeevereenne getopts (C)
getpasscoceeevuenenne getpass(S)
getp_grp getpid(S)
getplq getpid(S)
getppid getpid(S)
etPW ...orrierrereranes getpw(S)
getpwent getpwent (S)
getpwnam getpwent (S)
getpwuid getpwent (S)
FLL TR gets (((SZ;
BetS e gets

getsystemid getsystemid (S)
[0 1 4 /2RO getty(M)
"gettydefs" "gettydefs" (F)
getuidooovvevceenne getuid(S)
getut ..o, getut(S)
ge:u:'e:t getut gg
getutidccoeveenenen. getut

getutline getut (S)
getvg getc S)
gmtimeccoeunee. ctime (S)
goodpw goodpw(AD(l\g
gps gps

graph graph(ADM)
greekcocoeenenene. greek(C)
£ () + OO grep ((%
Eroupoveeevennens group

grpcheck grpcheck (C)
gsignalccceeenene ssignal (S)
haltsys haltsys (ADM)
hashcheck spell (C)
hashmake spell(C)
hcreate hsearch(S)
hd .. hd(C)
hd hd(HW)

hdestroy hsearch(S)

hdr ... hdr(CP)
hdutil hdutil(ADM)
headccoovvceevrennene head(C)
hellocoveeererrceeenene hello (C)
help ...ovveereeeeenene help (CP)
hostidccoeu.... hostid(C)
hp hp(C)
hs hs(F)
hsearch hsearch(S)
hwconfig hwconfig(C)
hypot ... hypot(S)
i286emul i286emul(C)
i386 ..o machid(C)
1+ SOOI id(ADM)
id id(C)
idaddld idaddld(ADM)
idbuild idbuild (ADM)
idcheck idcheck (ADM)
idinstall idinstall (ADM)
idleout idleout (ADM)
idload idload(ADM)
idmemtune . idmemtune (ADM)
idmKkinit idmkinit (ADM)
idspace idspace (ADM)
idtune idtune (ADM)
imacctcceeuenneee. imacct (C)
infocmp infocmp (ADM)
inir init (M)
init init (M)
initcond initcond (ADM)
inittab (F)

........................... inode (F)
inp(DOS)

install install (ADM)
installpkg installpkg (ADM)
int86ceoeunnee. int86 (DOS)
int86x int86x(DOS)
intdos intdos (DOS)
intdosx intdosx (DOS)
integrity integrity (ADM)
ioctl ioctl(S)
iperm ipcrm(ADM)
IPCS ovrrreernenreneenene ipcs(ADM)
IPS woveeeeeceinereerenane ips(ADM)

isalphacocovvrennene ctype(S)

1SasCii .ccoveecernrereneanenens ctype(S)
isattyccccoeenene isatty (DOS)
isattyccoeeeirenne. ttyname (S)
1T 1 L ips(ADM)
isentrl ... ctype(S)
isdigitoocevvveveeeennnene ctype (S)
isgraphccccoeereuenen. ctype(S)
islowerccocevevennne ctype (S)
11311 1), ORI ismpx(C)
isprintcovvennen. ctype (S)
ispunctccoveeerenene ctype (S)
isspacecccooveeeeurennne ctype (S)
1T | TR issue (F)
isupperccccceueenunen. ctype(S)
isverifyccoucu.n... isverify (M)
isxdigitccooeerevrnenene ctype (S)
1100 R itoa(DOS)
JO e bessel(S)
J1 e bessel (S)
jagent ... Jjagent(M)
N e bessel(S)
JOIN e Jjoin(C)
jrand4§ drand48(S)
Jterm e Jjterm(C)
JWIN e Jjwin(C)
kbhitcccervrrneven kbhit (DOS)
kbmode kbmode (ADM)
keyboard keyboard (HW)
1311 L kill (C)
Kill ceoviieeeceeeennees kill (S)
killall killall (ADM)
kmemccecueneee mem(F)
ksh . .. ksh(C)
OOV 1(C)
130l ..o 13tol(S)
164acorriiecienne a641(S)
labelit labelit (ADM)
 F:1 1 LSOO labs (DOS)
langinfo langinfo (F)
1ast o last(C)
lastlogin acctsh(ADM)
layerscccceeennnee. layers (C)
layerscccccceeevennnnee layers (M)
IC e Ic(C)
Icongd8 drand48(S)

vi

Id e ld(CP)
I i ld(M)
Idexp ..ccoovevvreereirnnene, frexp(S)
ldfen ... ldfcn (F)
Idfen ... ldfen(F)
| [S lex(CP)
Ifindcoeeeveennne Isearch(S)
HMitscoooveeereeeeenne limits (F)
| 11 T3 line (C)
linenum linenum (F)
| 170) link (ADM)
HDK e, link(S)
link_unix link_unix (ADM)
| 1111 RO lint (CP)
List oo list (ADM)
IN e In(C)
localecccee.e. locale (M)
localtime ctime(S)
| (171 OO lock(C)
10CK .o, lock(S)
Tockf ... lockf(S)
locking locking (S)
10g oo, exp(S)
10 e log(M)
10g10 ..., exp(S)
loginccocvvceeennee. login(M)
logname logname (C)
logname logname(S)
1085 e logs(F)
longjmpcccevuucee. setjmp (S)
lorderccoeneeee lorder (CP)
|+ T Ip(C)
| + J OO Ip(HW)
IPO0 e Ip(HW)
Ipadmin Ipadmin(ADM)
Ipfilter Ipfilter (ADM)
Ipforms Ipforms (ADM)
Ipmove Ipsched (ADM)
Iprintocoeeeeeennenene. Iprint(C)
Ipsched Ipsched (ADM)
Ipsh ..o Ipsh(ADM)
Ipshut Ipsched (ADM)
Ipstatccoceeveeienene Ipstat (C)
lpusers [pusers(ADM)
Irand4s§ drand48(S)
IS vt ereeecnneeeeeenne Is(C)

Isearch Isearch (S)

IseekKcoovrvereereeeeennnne Iseek(S)
Itoacccoevevveenrneen Itoa(DOS)
Itol3coevvreerrenen. 13tol(S)
11T m4(CP)
machid machid(C)
machine machine (HW)
mailcccooevveveerrienne mail(C)

maildelivery .. maildelivery (F)

majorsinuse. majorsinuse (ADM)

makeccceeeeeennene make (CP)
makekey makekey (ADM)
malloccoeeueueneee malloc (S)
man man(C)
mapchan mapchan(F)
mapchan mapchan(M)
mapkey mapkey (M)
mapscrn mapkey (M)
mapstrco..... mapkey (M)
masmccceeeeveeennes masm(CP)
mathccoeeueeneene math(M)
matherr matherr(S)
maxuuscheds . maxuuscheds (F)
maxuuxgts maxuuxqts (F)
mconvert mconvert (M)
mdevice mdevice (F)
11151 L meisa(F)
L1112 1 1 mem(F)
MEMCCPY ...cocvrennne memory(S)
memchr memory(S)
memcmp memory (S)
MEMCPY ..coovereenennnne memory(S)
memset memory (S)
memtune memtune (F)
111X R mesg(C)
messages messages(M)
mestbl mestbl (M)
mfSYS ...covvevrrrererernne mfsys (F)
micnetcoeuee. micnet (F)
mkdev mkdev(ADM)
mKkdir ..o mkdir(C)
mkdir mkdir (DOS)
mkfs ... mkfs (ADM)
mknod mknod(C)
mknodoue.... mknod(S)
mKStrccooveveeneeee mkstr(CP)

mktemp mktemp (S)
mmdf mmdf(ADM)
mmdfalias .. mmdfalias(ADM)
mnlist mnlist (ADM)
mnttab mnttab (F)
117071 | frexp(S)
monacct acctsh(ADM)
monitor monitor (S)
montbl montbl(M)
11111 o S more(C)
mount mount(ADM)
mountccceeeeevenee mount(S)
mountall mountall(ADM)
MOUSEccvvereenee mouse (HW)
movedata movedata(DOS)
mrand48 drand48(S)
mscreen mscreen(M)
msgetl ...oeeenennne msgctl(S)
msggetcceeeureenene msgget(S)
111 TT01) + msgop(S)
mMEuneceeceeemeennnne mtune (F)
multiscreen multiscreen (M)
my .. . mv(C)
mvdir mvdir(ADM)
1 T:)+ TR nap(S)
nbwaitsem waitsem(S)
ncheck ncheck (ADM)
netutil netutil (ADM)
newform newform(C)
NEWEIP ..cocovveuevennnnes newgrp(C)
NEWScooverererennrverennenes news(C)
nextkeyoeecenee dbm(S)
1) T nice (C)
1) [nice(S)
nictable nictable (ADM)
11 OO nl(C)
1] 11 AR nlist(S)
nisadmin nlsadmin(ADM)
nl_typecueee. nl_type (F)
T .oconeeereeneeeneeeseesenees nm(CP)
nohupccccueeneee. nohup(C)
nrand48 drand48(S)
null ..o null(F)
nulladm acctsh(ADM)
numtbl numtbl(M)
O .o 0d(C)

vii

(1) 172 | EO open(S)

opendir directory (S)
opensem opensem(S)
otar otar(C)
(1114 + SR outp(DOS)
PaACK ... pack(C)
parallel parallel(HW)
passwdcceereuene passwd(C)
passwdccoe.... passwd(F)
pastecceevveenrenn. paste(C)
PAUSEccoeevvreeereens pause(S)
pax pax(C)
PCAL ... pack(C)
pcloseorererennnee popen(S)
PCPIO ..ot pcpio(C)
PCU .ovivnirneneenanenes pcu(ADM)
permissions permissions(F)
PEITOrcovvvreranennn perror(S)
1 pg(©)
pipe pipe(S)
plock ... plock(S)
plot plot (F)
pnch ..., pnch(F)
poll crerene poll(F)
popenccoeevenne popen(S)
pow exp(S)
powerfail powerfail (M)
1) G pr(C)
pretmp acctsh(ADM)
prdaily acctsh(ADM)
PIrf e prf(HW)
prfdc profiler (ADM)
prild profiler(ADM)
pripr profiler(ADM) -
prfsnap profiler (ADM)
prfstat profiler (ADM)
printfcooccvervennns printf(S)
proctl ... proctl(S)
) 1) S prof(CP)
profil ... profil(S)
profileccccouune.. profile(M)
profiler profiler(ADM)
promain promain(M)
protoceueuen. proto(ADM)
prs prs(CP)
prtacct acctsh(ADM)

viii

ps ps(C)
PSCatoeneneneenrnerennanae pscat(C)
113 £+ 1 A pstat(C)
PLracececeveereene ptrace(S)
PUrEe ...oeeeeneeereenennen purge(C)
D 111 ¢ (N purge(F)
putc putc(S)
putchcc...... putch(DOS)
putcharcccevvenenene putc(S)
putenyc.coeeeeee. putenv(S)
putpwent putpwent (S)
puts puts(S)
pututline getut (S)
11110 putc(S)
pwcheck pwcheck (C)
pwd pwd(C)
[VET1) o SN gsort(S)
QUEUELcocvvrreuenninnnenne queue (F)
queuedefs queuedefs (F)
(01110 S quot(C)
ramdisk ramdisk(HW)
randooeeeeerereenens rand(S)
random random(C)
ranlib ranlib(CP)
ratforcceeuee... ratfor (CP)
(| OO rcO(ADM)
TC2 ivvrenrrnceceraenenes rc2(ADM)
rep rep(C)
TCVETIP covcvererenennne revtrip (C)
rdchkcoovevevrnenne rdchk(S)
readccoeeeceevenennen read(S)
readdir directory (S)
realloccceeunneeee malloc (S)
reboot haltsys (ADM)
red rerevereeseneneserenaens ed(C)
reduce reduce (ADM)

regempo.cceueee regcmp (CP)
Tegempooeeveererucnes regex(S)
| {721, R regex(S)
) (315 4 + SN regexp (S)
rejectcceenee accept (ADM)
o] (11 RSO reloc (F)
relogin relogin(ADM)
remoteoo.eee. remote (C)
removepkg . removepkg (ADM)
rename rename (DOS)

restartccceeee. restart(M)

restore restore (ADM)
rewindcccoceeeeeene fseek(S)
rewinddir directory (S)
9 1 1 O OURR rm(C)
rmailcc.c...... rmail (ADM)
rmbeeienene rmb(M)
rmdel rmdel(CP)
rmdircoocoeveeenennns rm(C)
rmdir rmdir(DOS)
routines routines (ADM)
TSh e rsh(C)
o (O rtc(HW)
runacct acctsh(ADM)
runacct runacct(ADM)
Y ¥ sar(ADM)
SA2 ..ot sar(ADM)
SACE ..o sact(CP)
T 11 [sar(ADM)
L T O sag(ADM)
Y | (O sar(ADM)
10) o | QOO sbrk(S)
scanfooeevevvreennnns scanf(S)
scesdiff scesdiff(CP)

sccsfile ..., sccsfile (F)

schedule schedule (ADM)
senhdr scnhdr (F)
scr_dump scr_dump(F)
SCreen screen(HW)
1) [scsi(HW)
scsinfo scsinfo(ADM)
SAb ..o sdb(CP)
sddate sddate (C)
sdenter sdenter (S)
sdevicecccoeeunen. sdevice (F)
sdfreeooeereereneene. sdget (S)
sdgetccvevrerennnne. sdget (S)
sdgetvcceveevrennee. sdgetv (S)
SAiff ... sdiff(C)

sdleave sdenter (S)
sdwaityou.n.... sdgetv(S)
sed sed(C)
seedd8 drand48(S)
seekdir directory (S)
segread segread(DOS)
selectcooevveevenenne. select (S)

semctl ... semctl(S)
semgetccceeeuennes semget (S)
SEMOP ...ceoeuveerecreanenne semop(S)
sendcooeeeeueeeeen send(ADM)
serialcccoeunen. serial (HW)
setbufcccovennenne. setbuf(S)
setclock setclock (ADM)
setcolor setcolor (C)
setgidccoeeereeenennnn. setuid(S)
setgrent getgrent (S)
120111 + SN setjmp (S)
setkeycococevvvereennes setkey (C)
setlocale setlocale (S)
setmnt setmnt (ADM)
setmode setmode (C)
setmode setmode (DOS)
L1091 71d o + S setpgrp(S)
setpwent getpwent (S)
settime settime (ADM)
setuidcccoeeveevivinnens setuid(S)
setutentccoceeeennn getut (S)
setvbufc.ccoceee.e. setbuf (S)
E] 554 J sfsys (F)
SEetl oo sputl(S)
sh sh(C)
shl ... shi(C)
shmctlcocennenee. shmctl(S)
shmgetccceueueneee shmget (S)
shmopccocevvvevcnunnne shmop(S)
shutacct acctsh(ADM)
shutdnc.c.c....... shutdn(S)
shutdown shutdown(ADM)
signalccocoeienene. signal (S)
sigsemcccoceeeennee sigsem(S)
sin trig (S)
sinh sinh(S)
) ¥ 1SN size (CP)
[1) 1 2R sleep (C)
sleep ..ovevereceeeeecnenanene sleep (S)
SOpencocoeeeeeee sopen(DOS)
sort sort(C)
spawnl spawn(DOS)
SPawnvp spawn(DOS)
Spell ... spell(C)
spellinc.ccooeceeecnencnee spell(C)
splinecccoeeevevcecncnee spline (C)

ix

split split(C)

sprintfcccevnnee. printf(S)
Sputl ..o sputl(S)
sqrt exp(S)
srand48 rand(S)
sscanfccoceeeevereenne scanf(S)
ssignalccccccennee. ssignal (S)
startup acctsh(ADM)
stat stat(F)
stat stat(S)
statfscccceeereeeinenene statfs (S)
3 71 10 O stdio(S)
stimeccoeveerevenennnens stime (S)
F111) o OO abm(S)
stracec...... strace (ADM)
streatoeeeveeeeeveenenee string (S)
13 () 11 R string (S)
strclean strclean (ADM)
18 00 111 + SR string (S)
L1 ¢4 1) string (S)
19 6 1) | FUOORT string (S)
513 1 111+ U string (S)
SEIerT ..coccovrennenes strerr(ADM)
streamio streamio (M)
strftime strftime (S)
SIringcccoeevveeveccnnnns string (S)
Stringsccceeenen. strings (C)
] 1 | + OO strip (CP)
strlen ... strlen(DOS)
Striwr ... striwr (DOS)
strmefg strmcfg (ADM)
strmtune strmtune (ADM)
strocatcoeevennene string (S)
109170111 + S string (S)
11 91141, RN string (S)
strpbrk ... string (S)
strrchr ... string (S)
11 9 o O strrev(DOS)
strsetcccocecenne strset (DOS)
151 | R string (S)
Strtodcccceveeeeeenenenn. strtod(S)
11 4 11) . QSRR string (S)
31 ¢ 11) [strtol (S)
31 91 1) o strupr(DOS)
stty stty (C)
1111 1[I stune (F)

su su(C)
submit submit(ADM)
subsystem subsystem(M)
sulogin sulogin(ADM)
sum sum(C)
SWabooeeveeriieenen. swab(S)
SWAP .ccevrncnennenennes swap(ADM)
sweonfig swconfig(C)
[, T sxt(M)
2372 111 syms (F)
)7 L sync (ADM)
sync sync(S)
sys_errlist perror(S)
SYS_DEITccueemnrnnne perror(S)
sysadmsh sysadmsh(ADM)
sysdef sysdef(ADM)
sysfilescceeuneee. sysfiles (F)
SYSi86covvvreennnee sysi86(S)
SYStemcccccoveuecnnnee system(S)
systemid systemid (F)
SYStemsc.cocceeenee systems (F)
04114 systty (M)
tablesccooceveerreenenne tables (F)
tabs tabs(C)
tail tail (C)
tam tam(S)
AN . trig(S)
tanh sinh(S)
tape tape(C)
tape ..o tape (HW)
tapecntl tapecntl (C)
tapedump tapedump (C)
tar tar(C)
tar tar(F)
teheK e tcbck (ADM)
tdeletecccueneee. tsearch(S)
tee tee (C)
17 | RN tell (DOS)
telldir directory(S)
tempnam impnam(S)
termocoeeveereveccernennes term(F)
termcapceue. termcap (F)
terminal terminal (HW)
terminals terminals (M)
"terminfo" "terminfo” (F)
"terminfo" "terminfo” (M)

"terminfo" "terminfo"” (S)

termio termio (M)
termios termios (M)
L] ARSI test(C)
tfindcccooeneneee. tsearch(S)
tgetent termcap (S)
tgetflag termcap (S)
tgetnum termcap (S)
tgetstrcccceeenen. termcap (S)
t2Otococeeveeneenne termcap (S)
FIC et tic(C)
L9111 L3 time (C)
1911 1 LT time (S)
timescccoevveeveenenene times (S)
timexo........ timex (ADM)
timezone timezone (F)
timodcn....... timod (M)
tirdwrceeenneneee. tirawr(M)
tmpfilec......... tmpfile(S)
tmpnam tmpnam(S)
t0oasCilcooveenreenneennene conv(S)
{107: R 1 (N ctype(S)
tolowercccoecerenennes conv(S)
tolowerc.ccoveeuenene ctype(S)
0] TSP top(F)
top.nextccoceveeuenene. top (F)
touchcceeeennne touch(C)
toupperccceeeveenens conv(S)
touppercccceenenen. ctype(S)
tplotccenvennen. tplot (ADM)
tPUL .ot tput (C)
tputs ..o termcap (S)
L1 tr(C)
translate translate (C)
trchan trchan(M)
trUe eoveveeeeereeereenene true(C)
tsearch tsearch(S)
LR RO tset (C)
270) o AR tsort(CP)
BY s 1ty (C)
BLY e ttyM)
ttyname ttyname (S)
ttyslotcccovvvevernenene ttyslot (S)
turnacct acctsh(ADM)
twalkccooveenenne tsearch(S)
tYPES oo types (F)

TZ e tz(M)
tzsetcoveeeeeeveeenenenne. ctime (S)
uadmin uadmin(S)
uconfig uconfig(ADM)
ulimitcceeeneeee. ulimit (S)
ultoacoeneneee. ultoa(DOS)
umaskccoeeennee. umask(C)
umaskcoeeeveevenene umask(S)
umount umount(ADM)
umountceeeeeene umount (S)
umountall mountall(ADM)
1111 T:1 11 VI uname(C)
UNAMEcooevenennennen uname (S)
uncompress compress(C)
ungetcoeeeeveerenenne unget (CP)
UNZELC ...oovvcncernennene ungetc (S)
ungetch ungetch (DOS)
11111 (s [uniq(C)
unistdococeeeeereencnee unistd(F)
11711127 units (C)
unlink link (ADM)
unlinkcccceuvuenee. unlink (S)
unpackcccoeveuenns pack(C)
117174 ¢ upscfg (S)
upsconfig upsconfig(ADM)
uptimeccoeunee. uptime (C)
usemouse usemouse(C)
ustatccoeeeevieenenennene ustat (S)
utimecoceevevenenee utime (S)
UtMP .eoveerercerereenne utmp (F)
utmpname getut (S)
uuchat dial(ADM)
uucheck uucheck (ADM)
uucico uucico(ADM)
uuclean uuclean(ADM)
111114+ SR uucp(C)
uuencode uuencode (C)
uugetty uugetty (ADM)
uuinstall uuinstall(ADM)’
uulist uulist (ADM)
L1171 (1 SRR uucp(C)
UUNAMEcoverereneenenee uucp(C)
UUPICK ..o uuto(C)
uusched uusched(ADM)
uustatccceeeveeenennns uustat (C)
111171 JUUUOOSO uuto(C)

xi

{11111 o/ uutry (ADM) xt xt(HW)

uux uux(C) xtod xtod(C)
LILTD. (¢ | AR uuxqt (ADM) Xtprotoccceueuene xtproto (M)
val val (CP) XES cveeerreeenrennnnenneenaees xts(ADM)
values values (M) XL ceeeeereneeeeiernene eeereens xtt (ADM)
varargs varargs(S) yo bessel (S)
ve ve(C) yl bessel(S)
vddaemon ... vddaemon(ADM) FACC eceenrrennrnerenrasannons yacc(CP)
vdinfo vdinfo (ADM) yes ' yes(C)
vdutil vdutil (ADM) yn bessel (S)
vectorsinuse. vectorsinuse (ADM) zcatcceueun... compress(C)
veditovevereerereeerenerenenns vi(C)

viprintf vprintf(S)

Vi ... vi(C)

vidi vidi (C)

% (53 1 2O vi(C)

vmstatccceveeenenen vmstat (C)

volcopy volcopy (ADM)

vprintf vprintf(S)

vsprintf vprintf (S)

w w(C)

|12 11 SR wait (C)

wait wait(S)

waitsem waitsem(S)

wallcceveenenene. wall(ADM)

we we(C)

whatcooveereeerennne what (C)

who who(C)

whodo whodo(C)

17 ¢ 11 SRR write (C)

WEILe .ooveevereeereeeeerenene write (S)

wtinit wtinit (ADM)

1377111 1 SO utmp (F)

wtmpfix fwtmp (ADM)

x286emul x286emul (C)

€. 'L S xargs(C)

xbackup xbackup (ADM)

xbackup ... xbackup (F)

xinstall xinstall (ADM)

xlist xlist (S)

XPreateeeeeeenenne. xprcat (C)

xprsetup xprsetup (ADM)

xprtab ... xprtab(F)

XTef ot xref(CP)

xrestore xrestore (ADM)

b €11 NSRRI xstr(CP)

xii

Contents

Commands (C)

Intro
300, 300s

4014

450
assign, deassign
at, batch
auths

awk
banner
basename
bc

bdiff

bfs

cal
calendar
cat

cd
checkmail

chgrp

chmod

chown

clear

cmchk

cmp

col

comm

compress,
uncompress, zcat

copy
cp

cpio
cron

crontab

introduces Altos UNIX System V commands

handle special functions of DASI 300 and 300s
terminals

paginator for the TEKTRONIX 4014 terminal
handle special functions of the DASI 450 terminal
assigns and deassigns devices

executes commands at a later time

list and/or restrict kernel authorizations

pattern scanning and processing language

prints large letters

removes directory names from pathnames

invokes a calculator

compares files too large for diff(C)

scans big files

prints a calendar

invokes a reminder service

concatenates and displays files

changes working directory

checks for mail which has been submitted but not
delivered

changes group ID

changes the access permissions of a file or directory
changes owner ID

clears a terminal screen

reports hard disk block size

compares two files

filters reverse linefeeds

selects or rejects lines common to two sorted files

compress data for storage, uncompress and display
compressed files

copies groups of files

copies files

copy file archives in and out

executes commands scheduled by at, batch, and
crontab

schedule commands to be executed at regular
intervals

crypt encode/decode

csh invokes a shell command interpreter with C-like
syntax

csplit splits files according to context

cu call another UNIX/XENIX system

cut cuts out selected fields of each line of a file

date prints and sets the date

dc invokes an arbitrary precision calculator

dd converts and copies a file

devnm identifies device name

df report number of free disk blocks

diff compares two text files

diff3 compares three files

dircmp compares directories

dirname delivers directory part of pathname

disable turns off terminals and printers

diskep, diskemp copies or compares floppy disks

dos: doscat,

doscp, dosdir,

dosformat,

dosmkdir, dosls, ;

dosrm, dosrmdir access to and manipulation of DOS files and DOS

filesystems
dtox change file format from MS-DOS to UNIX
dtype determines disk type
du summarizes disk usage
echo echo arguments
ed, red invokes the text editor
enable turns on terminals and line printers
env sets environment for command execution
ex, edit invokes a text editor
expr evaluates arguments as an expression
factor factor a number
false returns with a nonzero exit value
file determines file type
find finds files
finger finds information about users
fixhdr changes executable binary file headers
format format floppy disks and mini-cartridge tapes
fuser Identify processes using a file or file structure
getopt parses command options
getopts, getoptcvt parses command options
gets gets a string from the standard input

greek select terminal filter

ii

grep, egrep, fgrep searches a file for a pattern

grpcheck
hd

head
hello
hostid
hp

hwconfig
i286emul
id

ismpx
join
jterm
jwin

kill

ksh, rksh

1
last
layers

lock
logname
Ip, cancel
Iprint
Ipstat

Is

machid: i386
mail

man

mesg
mkdir
mknod
mnt, umnt
more

mv
newform
newgrp
news

nice

nl

checks group file
displays files in hexadecimal format
prints the first few lines of a file
send a message to another user
Print unique hardware ID

terminates a process

KornShell,

programming language
lists information about contents of directory
indicate last logins of users and teletypes
layer multiplexer for windowing terminals
lists directory contents in columns

reads one line

makes a link to a file
locks a user’s terminal

gets login name

handle special functions of Hewlett-Packard
terminals

read the configuration information

emulate UNIX 80286

prints user and group IDs and names
return windowing terminal state
joins two relations

reset layer of windowing terminal
print size of layer

a standard/restricted command and

send/cancel requests to lineprinter

print to a printer attached to the user’s terminal
print information about status of LP print service
gives information about contents of directories

get processor type truth value

interactive message processing system
prints reference pages in this guide
permits or denies messages sent to a terminal

makes a directory

builds special files

mount a filesystem

views a file one screen full at a time

moves or renames files and directories

changes the format of a text file

logs user into a new group

print news items
runs a command at a different scheduling priority

adds line numbers to a file

iii

nohup runs a command immune to hangups and quits

od displays files in octal format

otar original tape archive command

pack, pcat,

unpack compresses and expands files

passwd change login, modem (dialup shell), filesystem, or
group password

paste merges lines of files

pax portable archive exchange

pcpio copy file archives in and out

pg file perusal filter for soft-copy terminals

pr prints files on the standard output

ps reports process status

pscat ASCII-to-PostScript filter

pstat reports system information

ptar process tape archives

purge overwrites specified files

pwcheck checks password file

pwd prints working directory name

quot summarizes file system ownership

random generates a random number

rcp copies files across systems

revtrip notifies mail sender that recipient is away

remote executes commands on a remote system

rm removes files or directories

rmdir removes directories

rsh invokes a restricted shell (command interpreter)

sddate prints and sets backup dates

sdiff compares files side-by-side

sed invokes the stream editor

setcolor, i

setcolour set screen color and other screen attributes

setkey assigns the function keys

setmode Port modes utility

sh invokes the shell command interpreter

shl shell layer manager

sleep suspends execution for an interval

sort sorts and merges files

spell, hashmake,

spellin,

hashcheck finds spelling errors

spline interpolates smooth curve

split splits a file into pieces

strings find the printable strings in an object file

iv

stty

su

sum
swconfig

tabs

tail

tape, mcart
tapecntl
tapedump
tar

tee

test

tic

time
touch
tput

tr
translate
true

tset

tty
umask
uname
uniq
units
uptime
usemouse

uucp, uulog,
uuname
uuencode,
uudecode
uustat

uuto, uupick
uux

ve

vi, view, vedit

vidi
vmstat
w

wait
wC

sets the options for a terminal

makes the user a super-user or another user
calculates checksum and counts blocks in a file
produces a list of the software modifications to the
system

set tabs on a terminal

displays the last part of a file

magnetic tape maintenance program

AT&T tape control for QIC-24/QIC-02 tape device
dumps magnetic tape to output file

archives files

creates a tee in a pipe

tests conditions

terminfo compiler

times a command

updates access and modification times of a file
queries the terminfo database

translates characters

translates files from one format to another

returns with a zero exit value

provide information to set terminal modes

gets the terminal’s name

sets file-creation mode mask

prints the name of the current system

reports repeated lines in a file

converts units

displays information about system activity

maps mouse input to keystrokes for use with non-
mouse based programs

UNIX-to-UNIX system copy

encode/decode a binary file for transmission via mail
uucp status inquiry and job control

public UNIX-to-UNIX system file copy
UNIX-to-UNIX system command execution

version control

invokes a screen-oriented display editor

sets the font and video mode for a video device
report paging and system statistics

displays information about who is on the system and
what they are doing

awaits completion of background processes

counts lines, words and characters

what
who
whodo
write

x286emul”

xargs
xprcat
xtod
yes

vi

identifies files

lists who is on the system

determines who is doing what

writes to another user

emulate XENIX 80286

constructs and executes commands

use transparent printer over modem line
change file format from UNIX to MS-DOS
prints string repeatedly

INTRO (C) INTRO (C)

Intro

introduces Altos UNIX System V commands

Description

This section describes how to use many of the general-purpose com-
mands available in the Altos UNIX System V Operating System.
These command are labeled with a C, as with date(C). The letter
““C”’ stands for ‘‘command.”’

Other commands have different labels, such as CP (for ‘‘Command
Programming’’) or M (for ‘‘Miscellanous’’). Refer to the ‘‘Preface’
of this manual for a list of all the different reference sections, what
commands and utilities each section describes, and in which manual
each section is located.

Note that some reference sections, most notable the CP and S sections,
are included only with the Development System, which is an optional
supplemental package not always included with the standard Operat-
ing System.

Syntax

Unless otherwise noted, commands described in the Syntax section of
a manual page accept options and other arguments according to the
following syntax and should be interpreted as explained below.

name [-option...] [cmdarg...]

where:

[1] Square brackets surround an option or cmdarg that is
not required.

I A pipe (vertical bar) separates mutually exclusive
options. Choose one of the items separated by this
symbol.
Ellipses (three periods) indicate multiple occurrences
of the option or cmdarg .

name This specifies the name of an executable file.

option (Always preceded by a *‘-’".)

noargletter ... or,
argletter optargl,...]

March 15, 1991 INTRO-1

INTRO (C)

INTRO (C)

noargletter A single letter representing an option without an

argletter

optarg

cmdarg .

option-argument. Note that more than one noargletter
option can be grouped after one ‘“->’ (Rule 5 in the
following text).

A single letter representing an option requiring an
option-argument.

An option-argument (character string) satisfying a
preceding argletter. Note that groups of optargs fol-
lowing an argletter must be separated by commas or
separated by white space and quoted (Rule 8 below).

Path name (or other command argument) not begin-
ning with ‘‘->’, or ‘‘-*’ by itself indicating the standard
input.

Command Syntax Standard: Rules

These command syntax rules are not followed by all current com-
mands, but all new commands use them. getopts (C) should be used
by all shell procedures to parse positional parameters and to check for
legal options. It supports Rules 3-10 below. The enforcement of the
other rules must be done by the command itself.

1.

Command names (name above) must be between two and
nine characters long.

Command names must include only lowercase letters and
digits.

Option names (option above) must be one character long.
All options must be preceded by “‘-”’.

Options with no arguments may be grouped after a single

€6 99

The first Option-argument (optarg above) following an
option must be preceded by white space.

Option-arguments cannot be optional.

Groups of option-arguments following an option must either
be separated by commas or separated by white space and
quoted (e.g., -0 XXx,z,yy or -0 "XxXx z yy").

All options must precede operands (cmdarg above) on the
command line.

March 15, 1991 INTRO-2

INTRO (C) INTRO (C)

10. “‘-->> may be used to indicate the end of the options.

11. The order of the options relative to one another should not
matter.

12. The relative order of the operands (cmdarg above) may
affect their significance in ways determined by the command
with which they appear.

13. ¢~ preceded and followed by white space should only be
used to mean standard input.

See Also

getopts(C), exit(S), wait(S), getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one sup-
plied by the system and giving the cause for termination, and (in the
case of ‘‘normal’’ termination) one supplied by the program (see
wait (S) and exit (S)). The former byte is 0 for normal termination; the
latter is customarily O for successful execution and nonzero to indicate
troubles such as erroneous parameters, bad or inaccessible data. It is
called variously ‘‘exit code’’, ‘“‘exit status’’, or ‘‘return code’’, and is
described only where special conventions are involved.

Notes

Not all commands adhere to the syntax described here.

March 15, 1991 INTRO-3

300 (C) 300 (C)

300, 300s

handle special functions of DASI 300 and 300s termi-
nals

Syntax

300 [+12][-n][-dtlc]
300s[+12][-n][-dtlc]

Description

The 300 command supports special functions and optimizes the use of
the DASI 300 (GSI 300 or DTC 300) terminal; 300s performs the same
functions for the DASI 300s (GSI 300s or DTC 300s) terminal. It con-
verts half-line forward, half-line reverse, and full-line reverse motions
to the correct vertical motions. In the following discussion of the 300
command, it should be noted that unless your system contains the text
processing software, references to certain commands (e.g., nroff,
negn, egn, etc.) will not work. It also attempts to draw Greek letters
and other special symbols. It permits convenient use of 12-pitch text.
It also reduces printing time 5 to 70%. The 300 command can be used
to print equations neatly, in the sequence:

neqn file ... | nroff | 300

WARNING: if your terminal has a PLOT switch, make sure it is turned
on before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to
handle 12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 termi-
nals normally allow only two combinations: 10-pitch, 6
lines/inch, or 12-pitch, 8 lines/inch. To obtain the 12-pitch,
6 lines per inch combination, the user should turn the
PITCH switch to 12, and use the +12 option.

March 15, 1989 300-1

300 (C) 300 (C)

-n controls the size of half-line spacing. A half-line is, by
default, equal to 4 vertical plot increments. Because each
increment equals 1/48 of an inch, a 10-pitch line-feed
requires 8 increments, while a 12-pitch line-feed needs
only 6. The first digit of n overrides the default value, thus
allowing for individual taste in the appearance of sub-
scripts and superscripts. For example, nroff half-lines could
be made to act as quarter-lines by using -2. The user could
also obtain appropriate half-lines for 12-pitch, 8 lines/inch
mode by using the option -3 alone, having set the PITCH
switch to 12-pitch.

-dt,l,c controls delay factors. The default setting is -d3,90,30.
DASI 300 terminals sometimes produce peculiar output
when faced with very long lines, too many tab characters,
or long strings of blankless, non-identical characters. One
null (delay) character is inserted in a line for every set of ¢
tabs, and for every contiguous string of ¢ non-blank, non-
tab characters. If a line is longer than [/ bytes, 1+(total
length)/20 nulls are inserted at the end of that line. Items
can be omitted from the end of the list, implying use of the
default values. Also, a value of zero for ¢ (¢) results in two
null bytes per tab (character). The former may be needed
for C programs, the latter for files like /etc/passwd.
Because terminal behavior varies according to the specific
characters printed and the load on a system, the user may
have to experiment with these values to get correct output.
The -d option exists only as a last resort for those few cases
that do not otherwise print properly. For example, the file
letc/passwd may be printed using -d3,30,5. The value

.-d0,1 is a good one to use for C programs that have many
levels of indentation.

Note that the delay control interacts heavily with the pre-
vailing carriage return and line-feed delays. The stty(C)
modes nl0 cr2 or nl0 cr3 are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests,
when it is necessary to insert paper manually or change fonts in the
middle of a document. Instead of hitting the return key in these cases,
you must use the line-feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files ... and nroff files ... | 300
nroff -T300-12 files ... and nroff files ... | 300 +12

The use of 300 can thus often be avoided unless special delays or

options are required; in a few cases, however, the additional move-
ment optimization of 300 may produce better aligned output.

March 15, 1989 ' 300-2

300 (C) , 300 (C)

See Also

450(C), mesg(C), graph(ADM), stty(C), tabs(C), tplot(ADM)

Notes

Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-
feed platen instead of a forms tractor; although good enough for drafts,
the latter has a tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text after one or
more reverse line-feeds.

March 15, 1989 300-3

4014 (C) 4014 (C)

4014
paginator for the TEKTRONIX 4014 terminal

Syntax

4014 [-t][-n][-cN][-pL][file]

Description

The output of 40/4 is intended for a TEKTRONIX 4014 terminal;
4014 arranges for 66 lines to fit on the screen, divides the screen into
N columns, and contributes an eight-space page offset in the (default)
single-column case. Tabs, spaces, and backspaces are collected and
plotted when necessary. TELETYPE Model 37 half- and reverse-line
sequences are interpreted and plotted. At the end of each page, 4014
waits for a new-line (empty line) from the keyboard before continuing
on to the next page. In this wait state, the command !cmd will send
the cmd to the shell.

The command line options are:
-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the
screen.

-cN
Divide the screen into N columns and wait after the last column.
-pL

Set page length to L; L accepts the scale factors i (inches) and 1
(lines); default is lines.

See Also

pr(C)

March 15, 1989 4014-1

450 (C) 450 (C)

450

handle special functions of the DASI 450 terminal

Syntax

450

Description

The 450 command supports special functions of, and optimizes the
use of, the DASI 450 terminal, or any terminal that is functionally
identical, such as the Diablo 1620 or Xerox 1700. It converts half-line
forward, half-line reverse, and full-line reverse motions to the correct
vertical motions. It also attempts to draw Greek letters and other spe-
cial symbols in the same manner as 300(C). It should be noted that,
unless your system contains text processing software, certain com-
mands (e.g., eqn, nroff, tbl, etc.) will not work. Use 450 to print
equations neatly, in the sequence:

neqn file ... | nroff | 450

WARNING: Make sure that the PLOT switch on your terminal is ON
before 450 is used. The SPACING switch should be put in the desired
position (either 10- or 12-pitch). In either case, vertical spacing is 6
lines/inch, unless dynamically changed to 8 lines per inch by an ap-
propriate escape sequence.

Use 450 with the nroff -s flag or .rd requests when it is necessary to
insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-
feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor
of one of the following:

nroff -T450 files ...
or
nroff -T450-12 files ...

The use of 450 can thus often be avoided unless special delays or

options are required; in a few cases, however, the additional move-
ment optimization of 450 may produce better aligned output.

See Also

300(C), mesg(C), stty(C), tabs(C), graph(ADM), tplot(ADM)

March 15, 1989 450-1

450 (C) 450 (C)

Notes

Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-
feed platen instead of a forms tractor; although good enough for drafts,
the latter has a tendency to slip when reversing direction, distorting
Greek characters and misaligning the first line of text after one or
more reverse line-feeds.

March 15, 1989 450-2

ASSIGN (C) ASSIGN (C)

assign, deassign

assigns and deassigns devices

Syntax

assign[-u][-v][-d][device]..

deassign [-u] [-v] [device] ...

Description

assign attempts to assign device to the current user. The device argu-
ment must be an assignable device that is not currently assigned. An
assign command without an argument prints a list of assignable de-
vices along with the name of the user to whom they are assigned.

deassign is used to ‘‘deassign’’ devices. Without any arguments,
deassign will deassign all devices assigned to the user. When argu-
ments are given, an attempt is made to deassign each device given as
an argument.

With these commands you can exclusively use a device, such as a tape
drive or floppy drive. This keeps other users from using the device.
They have a similar effect as chown(C) and chmod(C), although they
only act on devices in /dev. Other aspects are discussed further on.

Available options include:

-d Performs the action of deassign. The -d option can be embedded
in device names to assign some devices and deassign others.

-v Gives verbose output.

-u Suppresses assignment or deassignment, but performs error check-
ing.

The assign command will not assign any assignable devices if it can-
not assign all of them. deassign gives no diagnostic if the device can-
not be deassigned. Devices can be automatically deassigned at
logout, but this is not guaranteed. Device names can be just the begit.-
ning of the device required. For example,

assign fd
should be used to assign all floppy disk devices. Raw versions of de-

vice will also be assigned, e.g., the raw floppy disk devices /dev/rfd?
would be assigned in the above example.

March 15, 1989 ASSIGN-1

ASSIGN (C) ASSIGN (C)

Note that in many installations the assignable devices such as floppy
disks have general read and write access, so the assign command may
not be necessary. This is particularly true on single-user systems. De-
vices supposed to be assignable with this command should be owned
by the user asg. The directory /dev should be owned by bin and have
mode 755. The assign command (after checking for use by someone
else) will then make the device owned by whoever invokes the com-
mand, without changing the access permissions. This allows the sys-
tem administrator to set up individual devices that are freely avail-
able, assignable (owned by asg), or nonassignable and restricted (not
owned by asg and with some restricted mode).

Note that the first time assign is invoked, it builds the assignable de-
vices table /etc/atab. This table is used in subsequent invocations to
save repeated searches of the /dev directory. If one of the devices in
/dev is changed to be assignable or unassignable (i.e., owned by asg),
then /etc/atab should be removed (by the super-user) so that a correct
list will be built the next time the command is invoked.

Files

Jetc/atab Table of assignable devices

/dev/asglock File to prevent concurrent access
Diagnostics

Exit code O returned if successful, 1 if problems, 2 if device cannot be
assigned.

March 15, 1989 ASSIGN-2

AT (C)

AT (C)

at, batch

executes commands at a later time

Syntax

at time [date] [increment]

at -r job-id ...

at -1[job-id ...]

at -qletter time [date] [increment]

batch

Description

at and batch both accept one or more commands from the standard
input to be executed at a later time. at and batch differ in the way the
set of commands, or job, is scheduled: at allows you to specify a time
when the job should be executed, while batch executes the job when
the system load level permits. After a job is queued with either com-
mand, the program writes a job identifier (a number and a letter),
along with the time the job will execute, to standard error.

at takes the following arguments:

time

date

The time can be specified as 1, 2, or 4 digits. One- and two-
digit numbers are taken to be hours, four digits to be hours and
minutes. The time can alternately be specified as two numbers
separated by a colon, meaning hour:minute. A suffix am or pm
can be appended; otherwise a 24-hour clock time is understood.
The suffix zulu can be used to indicate Greenwich Mean Time
(GMT). The special names noon, midnight, and now are also
recognized.

An optional date can be specified as either a month name fol-
lowed by a day number (and possibly year number preceded by
an optional comma) or a day of the week (fully spelled or abbre-
viated to three characters). Two special ‘‘days,”” today and
tomorrow, are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less. If the given month is less
than the current month (and no year is given), next year is
assumed. :

March 15, 1989 AT

AT (C) AT (C)

increment
The time and optional date arguments can be modified with an
increment argument of the form ‘‘+n units’’, where n is an
integer and units is one of the following: minutes, hours, days,
weeks, months, or years. The singular form is also accepted,
and ‘‘+1 unit’’ can also be written ‘‘next unit’’. Thus, legiti-
mate commands include:

at 0815am Jan 24

at 8:15am Jan 24

at now + 1 day

at 5 pm Friday next week

-r job-id ...
Removes the specified job or jobs previously scheduled by the at
or batch command. job-id is a job identifier returned by at or
batch. Unless you are the super-user, you can only remove your
own jobs.

-1[job-id ...]
Lists schedule times of specified jobs. If no job-ids are specified,
lists all jobs currently scheduled for the invoking user. Unless you
are the super-user, you can only list your own jobs.

-qletter

Places the specified job in a queue denoted by letter, where letter
is any lowercase letter from ‘‘a” to ‘‘z’’. The queue letter is
appended to the job identifier. The following letters have special
significance:

a atqueue

b batch queue

¢ cronqueue

For more information on the use of different queues, see the
queuedefs (F) manual page.

batch takes no arguments; it submits a job for immediate execution at
lower priority than an ordinary at job.

at and batch jobs are executed using sh(C). Standard output and stan-
dard error output are mailed to the user unless they are redirected else-
where. The shell environment variables, current directory, umask, and
ulimit are retained when the commands are executed. Open file
descriptors, traps, and priorities are lost.

Users are permitted to use at and batch if their names appear in the
file /usr/lib/cron/at.allow. If that file does not exist, the file
lusr/lib/cron/at.deny is checked to determine if a given user should
be denied access to at and batch. If neither file exists, only root is
allowed to submit a job. If only the at.deny file exists, and it is empty,
global usage is permitted. The allow/deny files consist of one user
name per line.

March 15, 1989 AT-2

AT (C) AT (C)

Examples

The simplest way to use at is to place a series of commands in a file,
one per line, and execute these commands at a specified time with the
following command:

at time < file

The following sequence can be used at a terminal to format the file
infile using the text formatter nroff{CT), and place the output in the file
outfile.

batch
nroff infile > outfile
(CTL)-d

The next example demonstrates redirecting standard error to a pipe
(1), which is useful in a shell procedure. The file infile is formatted
and the output placed in outfile, with any errors generated being
mailgd to user (output redirection is covered on the sA(C) manual
page).

batch <<!
nroff infile 2>&1 >outfile | mail user
!

To have a job reschedule itself, invoke at from within the job. For
example, if you want shellfile to run every Thursday, executing a
series of commands and then rescheduling itself for the next Thursday,
you can include code similar to the following within shellfile:

echo "sh shellfile" | at 1900 thursday next week

Files
[ust/lib/cron main cron directory
[usr/lib/cron/at.allow list of allowed users
[usrt/lib/cron/at.deny list of denied users
fusr/lib/cron/queuedefs scheduling information
[usr/spool/cron/atjobs spool area

March 15, 1989 AT-3

AT (C) AT (C)
See Also

cron(C), kill(C), mail(C), nice(C), ps(C), sh(C), queuedefs(F)

Diagnostics

Complains about syntax errors and times out of range.

Standards Conformance

at and batch are conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 AT-4

AUTHS (C) AUTHS (C)

auths

list and/or restrict kernel authorizations

Syntax

auths [-v] [-a authlist] [-r authlist] [-¢c command]

Description

auths performs actions associated with system privilege manipulation.
With no arguments, auths returns the kernel authorizations associated
with the current process. All other uses of auths are discussed below.

Either of the -a or -r options allow the user to alter the kernel authori-
zations in order to run a shell or a single command. The -a option
requires a list of comma-separated authorizations, which become the
absolute set of kernel authorizations for the new process. This new set
must be a subset of the kernel authorizations of the invoking process.
To start a process with a null set of kernel authorizations, use the
empty string ""). The -r option also takes as argument a comma
separated list of authorizations. These are removed from the authori-
zation set of the invoking process when forming the kernel authoriza-
tions for the new process.

The argument to the -c option is passed to the user’s shell as specified
in the user’s /etc/passwd entry which is run as a single command. The
user’s shell must support the

-¢ command

syntax similar to sh(C). When the argument is absent (and -a or -r is
specified), the user’s shell is invoked as a process with adjusted
authorizations. Exiting that shell will resume execution in the previ-
ous shell and the original kernel authorizations will be in effect. This
option may be used to run a command with restricted authorizations,
i.e. fewer than those allowed the user in the protected Password data-
base entry.

The -v option lists the new kernel authorizations before the new com-
mand or shell is run. It also warns with the -a option when more
authorizations are attempted to be set than already exist or with the -r
option when more authorizations are attempted to be removed than
already exist.

March 15, 1989 AUTHS-1

AUTHS (C) AUTHS (C)

The kernel authorizations are:

execsuid - allows the running of SUID programs

nopromain - does not restrict file access when running SUID
programs

writeaudit - process can write directly to the audit trail
configaudit - process can change audit subsystem parameters
suspendaudit - process is not audited by the kernel

chmodsugid - process can set SUID and GID bits on files
chown - process can change file ownership

Examples

To execute a shell without the execsuid kernel authorization:
auths -r execsuid

To list the current kernel authorizations:

auths
To execute yourprog with no kernel authorizations:

auths -a"" -c yourprog

To execute myprog with chmodsugid and execsuid:

auths -a chmodsugid,execsuid -c myprog

See Also

sh(C), promain(M), getpriv(S), setpriv(S), getprpwent(S), ‘‘Using a
Trusted System’” in the User’s Guide

March 15, 1989 AUTHS-2

AWK (C) AWK (C)

awk

pattern scanning and processing language

Syntax

awk [-Fre] [parametcr... 1 [’prog’ 1[-f progfile] [file...]

Description

The -F re option defines the input field separator to be the regular
expression re.

Parameters, in the form x=... y=... may be passed to awk, where x and
y are awk built-in variables (see list below).

awk scans each input file for lines that match any of a set of patterns
specified in prog. The prog string must be enclosed in single quotes
(’) to protect it from the shell. For each pattern in prog there may be
an associated action performed when a line of a file matches the pat-
tern. The set of pattern-action statements may appear literally as prog
or in a file specified with the -f progfile option.

Input files are read in order; if there are no files, the standard input is
read. The file name - means the standard input. Each input line is
matched against the pattern portion of every pattern-action statement;
the associated action is performed for each matched pattern.

An input line is normally made up of fields separated by white space.
(This default can be changed by using the FS built-in variable or the
-F re option.) The fields are denoted $1, $2, ...; $0 refers to the entire
line.
A pattern-action statement has the form:

pattern { action }
Either pattern or action may be omitted. If there is no action with a
pattern, the matching line is printed. If there is no pattern with an
action, the action is performed on every input line.

Patterns are arbitrary Boolean combinations (!, | |, &&, and
parentheses) of rational expressions and regular expressions. A rela-

March 15, 1989 AWK-1

AWK (C) AWK (C)

tional expression is one of the following:

expression relop expression
expression matchop regular expression

where a relop is any of the six relational operators in C, and a matchop
is either ~ (contains) or ! ~ (does not contain). A conditional is an
arithmetic expression, a relational expression, the special expression

var in array,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control
before the first input line has been read and after the last input line has
been read respectively.

Regular expressions are as in egrep (see grep(C)). In patterns they
must be surrounded by slashes. Isolated regular expressions in a pat-
tern apply to the entire line. Regular expressions may also occur in
relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and next occurrence of
the second pattern.

A regular expression may be used to separate fields by using the -F re
option or by assigning the expression to the built-in variable FS . The
default is to ignore leading blanks and to separate fields by blanks
and/or tab characters. However, if FS is assigned a value, leading
blanks are no longer ignored.

Other built-in variables include:

ARGC command line argument count

ARGV command line argument array

FILENAME name of the current input file

FNR ordinal number of the current record in the current file
FS input field separator regular expression (default blank)
NF number of fields in the current record

NR ordinal number of the current record

OFMT output format for numbers (default %.6g)

OFS output field separator (default blank)

ORS output record separator (default new-line)

RS input record separator (default new-line)

March 15, 1989

AWK-2

AWK (C) AWK (C)

An action is a sequence of statements. A statement may be one of the
following:

if (conditional) statement [else statement]

while (conditional) statement

do statement while (conditional)

for (expression ; conditional ; expression) statement
for (var in array) statement

delete array[subscript]

break

continue

{ [statement] ... }

expression # commonly variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]

next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Statements are terminated by semicolons, new lines, or right braces.
An empty expression-list stands for the whole input line. Expressions
take on string or numeric values as appropriate, and are built using the
operators +, -, *, /, %, and concatenation (indicated by a blank). The
C operators ++, --, +=, -=, #=, /=, and %= are also available in
expressions. Variables may be scalars, array elements (denoted x[i]),
or fields. Variables are initialized to the null string or zero. Array
subscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output, or on
a file if >expression is present, or on a pipe if | cmd is present. The
arguments are separated by the current output field separator and ter-
minated by the output record separator. The printf statement formats
its expression list according to the format (see printf(S) in the
Programmer’s Reference).

awk has a variety of built-in functions: arithmetic, string,
input/output, and general.

The arithmetic functions are: atan2, cos, exp, int, log, rand, sin, sqrt,
and srand. int truncates its argument to an integer. rand returns a ran-
dom number between 0 and 1. srand (expr) sets the seed value for
rand to expr or uses the time of day if expr is omitted.

The string functions are:
gsub(for, repl, in)
behaves like sub (see below), except that it replaces

successive occurrences of the regular expression
(like the ed global substitute command).

March 15, 1989 AWK-3

AWK (C)

index(s, t)

length(s)

match(s, re)

split(s, a, f5)

AWK (C)

returns the position in string s where string ¢ first
occurs, or 0 if it does not occur at all.

returns the length of its argument taken as a string, or
of the whole line if there is no argument.

returns the position in string s where the regular
expression re occurs, or O if it does not occur at all.
RSTART is set to the starting position (which is the
same as the returned value), and RLENGTH is set to
the length of the matched string.

splits the string s into array elements a[!], a[2], a[n],
and returns n. The separation is done with the regu-
lar expression fs or with the field separator FS if fs is
not given,

sprintf(fmt, expr, expr,...)

formats the expressions according to the printf(S)
format given by fmt and returns the resulting string.

sub(for, repl, in) substitutes the string rep!/ in place of the first

substr(s, m, n)

instance of the regular expression for in string in and
returns the number of substitutions. If in is omitted,
awk substitutes in the current record ($0).

returns the n-character substring of s that begins at
position m.

The input/output and general functions are:

close(filename)

cmd|getline

getline

getline <file
getline var
getline var <file

system(cmd)

closes the file or pipe named filename.

pipes the output of ¢md into getline; each successive
call to getline returns the next line of output from
cmd.

sets $0 to the next input record from the current input
file.

sets $0 to the next record from file.
sets variable var instead.
sets var from the next record of file.

executes ¢md and returns to its exit status.

All forms of getline return 1 for successful input, O for end of file, and

-1 for an error.

March 15, 1989

AWK-4

AWK (C) AWK (C)

awk also provides user-defined functions. Such functions may be
defined (in the pattern position of a pattern-action statement) as

function name(args,...) { stmts }
func name(args,...) { stmts }

Function arguments are passed by value if scalar and by reference if
array name. Argument names are local to the function; all other vari-
able names are global. Function calls may be nested and functions
may be recursive. The return statement may be used to return a
value.

Examples

Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ", [\tl*[\tl+" }
{ print $2, $1 }

Add up the first column, print sum and average:

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; 1 > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

March 15, 1989 AWK-5

AWK (C) AWK (C)

Simulate echo(C):

BEGIN {
for (i = 1; i < ARGC; i++)

printf "%s", ARGV[i]
printf "\n"
exit
}

Print file, filling in page numbers starting at 5:
/Page/ { $2 = n++; }
{ print }

command line: awk -f program n=S input

See Also

grep(C), sed(C), lex(CP), printf(S)

Notes

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To

force an expression to be treated as a number add O to it; to force it to
be treated as a string concatenate the null string (" ") to it.

Standards Conformance

awk is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 AWK-6

BANNER (C) BANNER (C)

banner

prints large letters

Syntax

banner strings

Description

banner prints its arguments (each up to 10 characters long) in large
letters on the standard output. This is useful for printing names at the
front of printouts.

See Also

echo(C)

Standards Conformance

banner is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 BANNER-1

BASENAME (C) BASENAME (C)

basename

removes directory names from pathnames

Syntax

basename string [suffix]

Description

basename deletes any prefix ending in / and the suffix (if present in
string) from string, and prints the result on the standard output. The
result is the ‘‘base’” name of the file, i.e., the filename without any
preceding directory path and without an extension. It is used inside
substitution marks (~+) in shell procedures to construct new
filenames.

The related command dirname deletes the last level from string and
prints the resulting path on the standard output.

Examples

The following command displays the filename memos on the standard
output:

basename /usr/johnh/memos.old .old
The following shell procedure, when invoked with the argument
lusr/src/emd/cat.c, compiles the named file and moves the output to a
file named cat in the current directory:

cc $1
mv a.out *~basename $1 .c*

See Also

dirname(C), sh(C)

Standards Conformance

basename is conformant with:
The X/Open Portability Guide II of January 1987.

March 15, 1989 BASENAME -1

BC (C) BC (C)

bc

invokes a calculator

Syntax

be[-c][-1][file...]

Description

bc is an interactive processor for a language that resembles C but pro-
vides unlimited precision arithmetic. It takes input from any files
given, then reads the standard input. The -1 argument stands for the
name of an arbitrary precision math library. The syntax for bc pro-
grams is as follows: L means the letters a-z, E means expression, S
means statement.

Comments:

Enclosed in /* and */

Names:

Simple variables: L

Array elements: L [E]

The words ‘‘base”’, ‘‘ibase’’, ‘‘obase’’, and ‘‘scale’’; ‘‘base’’ and
‘‘ibase’’ are interchangeable.

Other operands:

Arbitrarily long numbers with optional sign and decimal point
E

sqrt (E)
length (E) Number of significant decimal digits

scale (E) Number of digits right of decimal point
L(E,..,E)

Additive operators:

+

Multiplicative operators:

*

% (remainder)
" (exponentiation)

March 15, 1989 BC-1

BC (C) BC (C)

Unary operators:

++
-- (prefix and postfix; apply to names)

Relational operators:

<=
>=
1=
<
>

Assignment operators:

=+
—
=/
=%

Statements:

E

{S;..;S}
if(E)S

while (E) S
for(E;E;E)S
null statement
break

quit

Function definitions:

define L (L,...,L) {

autoL, ..., L
S;...S
return (E)

March 15, 1989 BC-2

BC (C) BC (C)

Functions in -1 math library:

s(x) Sine

c(x) Cosine

e(x) Exponential
I(x) Log

a(x) Arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or newlines may
separate statements. Assignment to scale influences the number of
digits to be retained on arithmetic operations in the manner of dc(C).
Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple vari-
able simultaneously. All variables are global to the program. ‘‘Auto’’
variables are pushed down during function calls. When using arrays
as function arguments or defining them as automatic variables, empty
square brackets must follow the array name.

bc is actually a preprocessor for dc(C), which it invokes automatical -

ly, unless the -¢ (compile only) option is present. If the -c¢ option is
present, the dc input is sent to the standard output instead.

Example

The following defines a function to compute an approximate value of
the exponential function:

scale = 20
define e (x){
auto a, b, ¢, i, s

a=1

b =1

s =1

for (i=1; 1==1; i++){

' a = a*x

b = b*i
c = a/b
if (¢ == 0) return(s)
s = s+cC

March 15, 1989 BC-3

BC (C) BC (C)

The following prints the approximate values of the exponential func-
tion of the first ten integers:

for (i=1; i<=10; i++) e(i)

Files

fusr/lib/lib.bc Mathematical library

fusr/bin/dc Desk calculator proper

See Also

dc(C)
User’s Guide

Notes

A For statement must have all three E’s.
Quit is interpreted when read, not when executed.

Trigonometric values should be given in radians.

March 15, 1989 BC-4

BDIFF (C) ‘ BDIFF (C)

bdiff

compares files too large for diff(C)

Syntax

bdiff filel file2 [n] [-s]

Description

bdiff compares two files, finds lines that are different, and prints them
on the standard output. It allows processing of files that are too large
for diff . bdiff splits each file into n-line segments, beginning with the
first nonmatching lines, and invokes diff upon the corresponding seg-
ments. The arguments are:

n The number of lines bdiff splits each file into for processing. The
default value is 3500. This is useful when 3500-line segments are
too large for diff.

-s Suppresses printing of bdiff diagnostics. Note that this does not
suppress printing of diagnostics from diff.

If filel (or file2) is a dash (-), the standard input is read.
The output of bdiff is exactly that of diff. Line numbers are adjusted to

account for the segmenting of the files, and the output looks as if the
files had been processed whole.

Files

See Also

diff(C)

Notes

Because of the segmenting of the files, bdiff does not necessarily find a
smallest sufficient set of file differences.

Specify the maximum number of lines if the first difference is too far
down in the file for diff and an error is received.

March 15, 1989 BDIFF-1

BFS (C) BFS (C)

bfs

scans big files

Syntax

bfs [-] name

Description

bfs is like ed (C) except that it is read-only and processes much larger
files. Files can be up to 1024K bytes and 32K lines, with up to 255
characters per line. bfs is usually more efficient than ed for scanning
a file, since the file is not copied to a buffer. It is most useful for iden-
tifying sections of a large file where csplit(C) can be used to divide it
into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of
any file written with the w command. The optional dash (-)
suppresses printing of sizes. Input is prompted for with an asterisk (*)
when “‘P’” and RETURN are typed. The ‘‘P”’ acts as a toggle, so
prompting can be turned off again by entering another ‘‘P’’ and a
RETURN. Note that messages are given in response to errors only if
prompting is turned on.

All address expressions described under ed are supported. In addition,
regular expressions may be surrounded with two symbols other than
the standard slash (/) and (?): A greater-than sign (>) indicates down-
ward search without wraparound, and a less-than sign (<) indicates
upward search without wraparound. Note that parentheses and curly
braces are special and need to be escaped with a backslash (V). Since
bfs uses a different regular expression-matching routine from ed, the
regular expressions accepted are slightly wider in scope (see
regex (S)). Differences between ed and bfs are listed below:

+ A regular expression followed by + means one or more times .
For exarqgle, [0-9]+ is equivalent to [0-9][0-9]*.
\{m\} \{m,\} \{m,u\}

Integer values enclosed in \{\} indicate the number of times
the preceding regular expression is to be applied. m is the
minimum number and ¥ is a number, less than 256, which is
the maximum. If only m is present (e.g., \{m\}), it indicates
the exact number of times the regular expression is to be
applied. \{m,\} is analogous to \{m,infinity\}. The plus (+)
and star (*) operations are equivalent to \{1\} and \{O\}
respectively.

March 11, 1990 BFS-1

BFS (C) BFS (C)

(...)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+1])th argument
following the subject argument. At most ten enclosed regular
expressions are allowed. regex makes its assignments uncon-
ditionally.

(...) Parentheses are used for grouping. An operator, €.g. *, +,
\{\}, can work on a single character or a regular expression
enclosed in parenthesis. For example, \(a*\(cb-+\)*\)$0.

There is also a slight difference in mark names: only the letters ‘‘a’’
through ‘‘z’’ may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, W, =, ! and null commands operate as described
under ed except that e doesn’t remember filenames and g and v when
given no arguments return the line after the line you were on. Com-
mands such as ---, +++-, +++=, -12, and +4p are accepted. Note that
1,10p and 1,10 will both print the first ten lines. The f command only
prints the name of the file being scanned; there is no remembered
filename. The w command is independent of output diversion, trunca-
tion, or crunching (see the xo, xt and xc commands, below). The fol-
lowing additional commands are available:

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received, or an error
occurs, reading resumes with the file containing the xf. xf com-
mands may be nested to a depth of 10.

xo [file]
Further output from the p and null commands is diverted to the
named file. If file is missing, output is diverted to the standard
output. Note that each diversion causes truncation or creation
of the file.

: label
This positions a label in a command file. The label is ter-
minated by a newline, and blanks between the : and the start of
the label are ignored. This command may also be used to insert
comments into a command file, since labels need not be refer-
enced.

(.,.)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi-
tions:
1. Either address is not between 1 and $.

2. The second address is less than the first.

March 11, 1990 BFS-2

BFS (C) BFS (C)

3. The regular expression doesn’t match at least one line
in the specified range, including the first and last lines.

On success, dot (.) is set to the line matched and a jump is made
to label. This command is the only one that doesn’t issue an
error message on bad addresses, so it may be used to test
whether addresses are bad before other commands are executed.
Note that the command

xb/"/ label

is an unconditional jump.

The xb command is allowed only if it is read from somewhere
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xt number
Output from the p and null commands is truncated to a max-
imum of number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv.
xv5100 or xv5 100 both assign the value 100 to the variable 5.
xv61,100p assigns the value 1,100p to the variable 6. To refer-
ence a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

prints the first 100 lines.
g/%5/p
globally searches for the characters 100 and prints each line

containing a match. To escape the special meaning of %, a \
must precede it. For example,

8/".\%[cds]/p

could be used to match and list lines containing printf charac-
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a Altos UNIX System V command can be stored into a
variable.

March 11, 1990 BFS-3

BFS (C) BFS (C)

The only requirement is that the first character of value be a !.
For example,

xv5!cat junk
Irm junk

lecho "%5"
xv6lexpr %6 + 1

puts the current line in variable 5, prints it, and increments the
variable 6 by one. To escape the special meaning of ! as the first
character of value, precede it with a \. For example,

xv\ldate
stores the value !date into variable 7.
xbz label

xbn label
These two commands test the last saved return code from the
execution of an Altos UNIX System V command (!command) or
nonzero value, respectively, and jump to the specified label.
The two examples below search for the next five lines contain-
ing the string size:

xv55
:1

[size/

xvSlexpr %5 - 1
1if 0%S5 !'= 0 exit 2
xbn 1

xv45

1

[size/

xv4lexpr %4 - 1
1if 0%4 = 0 exit 2
xbz 1

Xc¢ [switch]
If switch is 1, output from the p and null commands is crunched;
if switch is 0, it is not. Without an argument, xc reverses switch.
Initially switch is set for no crunching. Crunched output has
strings of tabs and blanks reduced to one blank and blank lines
suppressed.

See Also

csplit(C), ed(C), umask(C)

March 11, 1990 BFS-4

BFS (C) BFS (C)

Diagnostics

? for errors in commands if prompting is turned off. Self-explanatory
error messages when prompting is on.

March 11, 1990 BFS-5

CAL (C) CAL (C)

cal

prints a calendar

Syntax

cal [[month] year]

Description

cal prints a calendar for the specified year. If a month is also speci-
fied, a calendar for that month only is printed. If no arguments are
specified, the current, previous, and following months are printed,
along with the current date and time. The year must be a number
between 1 and 9999; month must be a number between 1 and 12 or
enough characters to specify a particular month. For example, May
must be given to distinguish it from March, but S is sufficient to
specify September. If only a month string is given, only that month of
the current year is printed.

Notes

Beware that ““cal 84’ refers to the year 84, not 1984.

The calendar produced is that for England and her colonies. Note that
England switched from the Julian to the Gregorian calendar in Sep-
tember of 1752, at which time eleven days were excised from the year.
To see the result of this switch, try ‘‘cal 9 1752,

Standards Conformance

cal is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CAL-1

CALENDAR (C) CALENDAR (C)

calendar

invokes a reminder service

Syntax

calendar [-]

Description

calendar consults the file calendar in the user’s current directory and
mails him lines that contain today’s or tomorrow’s date. Most reason-
able month-day dates, such as ‘‘Sep. 14,”” ‘‘september 14”°, and
“9/14, are recognized, but not ‘14 September’’, or ‘14/9”".

On weekends ‘‘tomorrow’’ extends through Monday. Lines that con-
tain the date of a Monday will be sent to the user on the previous Fri-
day. This is not true for holidays.

When an argument is present, calendar does its job for every user who
has a file calendar in his login directory and sends the result to the
standard output. Normally this is done daily, in the early morning,
under the control of cron (C).

Files

calendar

/usr/lib/calprog To figure out today’s and tomorrow’s dates
fetc/passwd

/tmp/cal*

See Also

cron(C), mail(C)

Notes

To get reminder service, a user’s calendar file must have read permis-
sion for all.

March 15, 1989 ; CALENDAR-1

CALENDAR (C) CALENDAR (C)

Standards Conformance

calendar is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CALENDAR-2

CAT (C) CAT (C)

cat

concatenates and displays files

Syntax

cat[-u][-s][-v][-t][-e]file...

Description

cat reads each file in sequence and writes it on the standard output. If
no input file is given, or if a single dash (-) is given, cat reads from the
standard input. The options are:

-s Suppresses warnings about nonexistent files.
-u Causes the output to be unbuffered.

-v Causes non-printing characters (with the exception of tabs, new-
lines, and form feeds) to be displayed. Control characters are dis-
played as ‘“"X’’ (Cul-X), where X is the key pressed with the Ctrl
key (for example, Ctrl-M is displayed as "M). The DEL character
(octal 0177) is printed as ‘“"2.”” Non-ASCII characters (with the
high bit set) are printed as ‘“M -x,”” where x is the character
specified by the seven low order bits.

-t Causes tabs to be printed as ““’I"’ and form feeds as ‘“°L’’. This
option is ignored if the -v option is not specified.

-e Causes a “‘$’’ character to be printed at the end of each line (prior
to the new-line). This option is ignored if the -v option is not set.

No input file may have the same name as the output file unless it is a
special file.

Examples

The following example displays file on the standard output:

cat file

March 15, 1989 CAT-

CAT (C) CAT (C)

The following example concatenates filel and file2 and places the
result in file3:

cat filel file2 >file3

The following example concatenates filel and appends it to fileZ :

cat filel >> file2

See Also

cp(C), pr(C)

Warnihg

Command lines such as:
cat filel file2 > filel

will cause the original data in filel to be lost; therefore, you must be
careful when using special shell characters.

Standards Conformance

cat is conformant with:

AT&T SVID Issue 2, Select Code 307-127,;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CAT-2

CD (C) CD (C)

cd

changes working directory

Syntax

cd [directory]

Description

If specified, directory becomes the new working directory; otherwise
the value of the shell parameter $HOME is used. The process must
have search (execute) permission in all directories (components)
specified in the full pathname of directory .

Because a new process is created to execute each command, cd would
be ineffective if it were written as a normal command; therefore, it is
recognized and executed by the shell.

If the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory, in a
search for the ‘‘correct’’ name. The shell then asks whether or not to
try and change directory to the corrected directory name; an answer of
nmeans ‘‘no’’, and anything else is taken as ‘‘yes’’.

Notes

Wildcard designators will work with the cd command.

See Also

pwd(C), sh(C), chdir(S)

March 15, 1989 CD-1

CHECKMAIL (C) CHECKMAIL (C)

checkmail

checks for mail which has been submitted but not
delivered

Syntax

checkmail [-a][-f][-m]

Description

checkmail checks the mail queue on the local machine for messages
which have been sent by the invoker. If invoked without any argu-
ments, the ‘‘Subject:’’ of each message found is given along with a
list of addressees that have not yet received the message. Usually,
messages are still in the queue because the addressee’s host is down.

The -a (all addresses) option causes all addresses to be shown (both
delivered and undelivered). Some delivered addresses may not appear
since some sites prune already delivered addresses from the address
list files for efficiency. The -f (fast) option suppresses the printing of
the ‘“‘Subject’’ line. The -m (all messages) option causes checkmail to
check all messages in the mail queue, not just those of the invoker.
This is only useful for mail system maintainers who wish to find
obstinate hosts.

See Also

send(ADM), deliver(ADM), mmdf(ADM)

March 15, 1989 CHECKMAIL-1

CHGRP (C) CHGRP (C)

chgrp

changes group ID

Syntax

chgrp group file ...

Description

chgrp changes the group ID of each file to group. The group may be
either a decimal group ID or a group name found in the file /etc/group.

Files

Jetc/passwd

Jetc/group

See Also

chown(C), chown(S), passwd(F), group(F)

Notes

Only the owner or the super-user can change the group ID of a file.

Standards Conformance

chgrp is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CHGRP-1

CHMOD (C) CHMOD (C)

chmod

changes the access permissions of a file or directory

Syntax

chmod mode file
chmod [who] [+]-I=] [permission ...] file ...

Description

The chmod command changes the access permissions (or mode) of a
specified file or directory. It is used to control file and directory
access by users other than the owner and super-user. The mode may
be an expression composed of letters and operators (called symbolic
mode), or a number (called absolute mode).

A chmod command using symbolic mode has the form:

chmod [who] [+l-|=] [permission ...] filename

In place of who you can use one or any combination of the following
letters:

a

(]

u

Stands for ‘‘all users’’. If who is not indicated on the command
line, a is the default. The definition of ‘‘all users’’ depends on the
user’s umask. See umask(C).

Stands for ‘‘group’’, all users who have the same group ID as the
owner of the file or directory.

Stands for ‘others’’, all users on the system.

Stands for ‘‘user’’, the owner of the file or directory.

The operators are:

+

Adds permission
Removes permission
Assigns the indicated permission and removes all other permis-

sions (if any) for that who. If no permission is assigned, existing
permissions are removed.

March 15, 1989 CHMOD-1

CHMOD (C) CHMOD (C)

Permissions can be any combination of the following letters:

X

r

1

Execute (search permission for directories)
Read
Write

Sets owner or group ID on execution of the file to that of the owner
of the file. The mode ‘‘u+s’’ sets the user ID bit for the file. The
mode ‘‘g+s’’ sets the group ID bit. Other combinations have no
effect. When the group ID bit is set on a directory, all files created
under it thereafter receive the group ID of that directory. When
the group ID bit is not set, files are created with the group ID of the
creating process/user.

This is known as the “‘sticky bit.”” (see chmod(S)). Only the mode
“‘u+t’’ sets the sticky bit. All other combinations have no effect.
When this bit is set on a directory, files within the directory cannot
be removed by anyone but the owner or the super-user. The owner
can set or remove the sticky bit.

Mandatory locking will occur during access

Multiple symbolic modes may be given, separated by commas, on a
single command line. See the following Examples section for sample
permission settings.

Mandatory file and record locking refers to a file having locked read-
ing or writing permissions while a program is accessing that file. A file
cannot have group execution permission and be able to be locked on
execution. In addition, it is not possible to turn on the set-group-ID
and enable a file to be locked on execution at the same time. The fol-
lowing examples show illegal uses of chmod and will generate error
messages:

chmod g+x,+] filename

chmod g+s,+! filename

A chmod command using absolute mode has the form:

chmod mode filename

where mode is an octal number constructed by performing logical OR
on the following:

4000 Set user ID on execution

20#0 Set group ID on execution if “‘#” is 7, 5, 3, or 1 and

enable mandatory locking if “‘#’’ is 6, 4, 2, or 0.

March 15, 1989 CHMOD-2

CHMOD (C)

1000
0400
0200
0100
0040
0020
0010
0004
0002
0001
0000

Examples

Sets the sticky bit (see chmod(S))
Read by owner

Write by owner

Execute (search in directory) by owner
Read by group

Write by group

Execute (search in directory) by group
Read by others

Write by others

Execute (search in directory) by others

No permissions

CHMOD (C)

Symbolic Mode

The following command gives all users execute permission for file:

chmod +x file

The following command removes read and write permission for group
and others from file:

chmod go-rw file

The following command gives other users read and write permission

for file:

chmod o+rw file

The following command gives read permission to group and other:

chmod g+r,0+r file

Absolute Mode

March 15, 1989

CHMOD-3

CHMOD (C) CHMOD (C)

The following command gives all users read, write and execute per-
mission for file:

chmod 0777 file

The following command gives read and write permission to all users
for file:

chmod 0666 file

The following command gives read and write permission to the owner
of file only:

chmod 0600 file
The following example causes the file to be locked on access:

chmod +l file

See Also

1s(C), chmod(S)

Notes

The setuid, setgid and sticky bit settings have no effect on shell
scripts.

Standards Conformance

chmod is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CHMOD-4

CHOWN (C) CHOWN (C)

chown

changes owner ID

Syntax

chown owner file ...

Description

chown changes the owner ID of the files to owner. The owner may be
either a decimal user ID or a login name found in the file /etc/passwd.

Files

fetc/passwd
fetc/group

See Also

chgrp(C), chown(S), group(F), passwd(F)

Notes

Use of this utility is governed by the chown kernel authorization. If
this authorization is not granted, ownership of files can only be
changed by root. Restricted chown is required for NIST FIPS 151-1
conformance. The chown authorization should not. be assigned to
users if you wish to conform to these requirements.

Standards Conformance

chown is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
NIST FIPS 151-1;
and The X/Open Portability Guide II of January 1987,

March 15,1989 CHOWN-1

CLEAR (C) CLEAR (C)

clear

clears a terminal screen

Syntax

clear [term]

Description

The clear command clears the screen. If term is not specified, the ter-
minal type is obtained from the TERM environment variable.

If a video terminal does not have a clear screen capability, newlines

are output to scroll the screen clear. If the terminal is a hardcopy, the
paper is advanced to the top of the next page.

Files

[etc/termcap

See Also

environ(M), termcap(F), tput(C)

Notes

If the standard output is not a terminal, clear issues an error message.

March 15, 1989 CLEAR-1

CMCHK (C) CMCHK (C)

cmchk

reports hard disk block size

Syntax

cmchk

Description

Reports the hard disk block size in 512-byte blocks.
Value Added

cmchk is an extension of AT&T System V provided by Altos UNIX
System V.

.March 11, 1990 CMCHK-1

CMP (C) CMP (C)

cmp

compares two files

Syntax

cmp [-1][-s]filel file2

Description

cmp compares two files and, if they are different, displays the byte and
line number of the differences. If filel is -, the standard input is used.

The options are:

-1 Prints the byte number (decimal) and the differing bytes (octal)
for each difference.

-S Returns an exit code only, O for identical files, 1 for different
files and 2 for an inaccessible or missing file.

This command should be used to compare binary files; use diff(C) or
diff3(C) to compare text files.

See Also

comm(C), diff(C), diff3(C)

Standards Conformance

cmp is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CMP-1

COL (C) COL (C)

col

filters reverse linefeeds

Syntax

col [-bfxp]

Description

col prepares output from processes, such as the text formatter
nroff (CT), for output on devices that limit or do not allow reverse or
half-line motions. col is typically used to process nroff output text
that contains tables generated by the tbl program. A typical command
line might be:

tbl file | nroff | col | Ipr
col takes the following options:

-b Assumes the output device in use is not capable of backspacing. If
two or more characters appear in the same place, col outputs the
last character read.

-f Allows forward half linefeeds. If not given, col accepts half line
motions in its input, but text that would appear between lines is
moved down to the next full line. Reverse full and half linefeeds
are never allowed with this option.

-x Prevents conversion of whitespace .to tabs on output. col normally
converts whitespace to tabs wherever possible to shorten printing
time.

-p Causes col to ignore unknown escape sequences found in its input
and pass them to the output as regular characters. Because these
characters are subject to overprinting from reverse line motions,
the use of this option is discouraged unless the user is fully aware
of the position of the escape sequences.

col assumes that the ASCII control characters SO (octal 016) and SI
(octal 017) start and end text in an alternate character set. If you have
a reverse linefeed (ESC 7), reverse half linefeed (ESC 8), or forward
half linefeed (ESC 9), within an SI-SO sequence, the ESC 7, 8 and 9
are still recognized as line motions.

On input, the only control characters col accepts are space, backspace,

tab, return, newline, reverse linefeed (ESC 7), reverse half linefeed
(ESC 8), forward half linefeed (ESC 9), alternate character start(SI),

March 15, 1989 COL-1

COL (C) COL (C)

alternate character end (SO), and vertical tag (VT). (The VT charac-
ter is an alternate form of full reverse linefeed, included for compati-
bility with some earlier programs of this type.) All other nonprinting
characters are ignored.

See Also

nroff(CT), tbl(CT)

Notes

col cannot back up more than 128 lines.
col allows at most 800 characters, including backspaces, on a line.

Vertical motions that would back up over the first line of the document
are ignored. Therefore, the first line must not contain any superscripts.

Standards Conformance

col is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 COL-2

COMM (C) COMM (C)

comm

selects or rejects lines common to two sorted files

Syntax

comm [-123] filel file2

Description

comm reads filel and file2 , which should be ordered in ASCII collat-
ing sequence (see sort (C)), and produces a three-column output: lines
only in filel ; lines only in file2 ; and lines in both files. The filename
- means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm -12 prints only the lines common to the two files; comm -23
prints only lines in the first file but not in the second; comm -123 is a
no-op. '

See Also

cmp(C), diff(C), sort(C), unig(C)

Standards Conformance

comm is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 COMM-1

COMPRESS (C) COMPRESS (C)

compress, uncompress, zcat

compress data for storage, uncompress and display
compressed files

Syntax

compress [-dfFqc] [-b bits] file
uncompress [-fqc] file
zcat file

Description

compress takes a file and compresses it to the smallest possible size,
creates a compressed output file, and removes the original file unless
the -c option is present. Compression is achieved by encoding com-
mon strings” within the file. uncompress restores a previously
compressed file to its uncompressed state and removes the
compressed version. zcat uncompresses and displays a file on the stan-
dard output.

If no file is specified on the command line, input is taken from the
standard input and the output is directed to the standard output. Output
defaults to a file with the same filename as the input file with the suf-
fix ““.Z”’ or it can be directed through the standard output. The output
files have the same permissions and ownership as the corresponding
input files or the user’s standard permissions if output is directed
through the standard output.

If no space is saved by compression, the output file is not written
unless the -F flag is present on the command line.

Options
The following options are available from the command line:
-d Decompresses a compressed file.
-C Writes output on the standard output and does not remove
original file.
-bbits Specifies the maximum number of bits to use in encoding.
-f Overwrites previous output file.

March 15, 1989 COMPRESS-1

COMPRESS (C) COMPRESS (C)

-F Writes output file even if compression saves no space.
-q Generates no output except error messages, if any.
See Also

pack(C), ar(C), tar(C), cat(C)

March 15, 1989 COMPRESS-2

COPY (C) COPY (C)

copy

copies groups of files

Syntax

copy [option] ... source ... dest

Description

The copy command copies the contents of directories to another direc-
tory. It is possible to copy whole file systems since directories are
made when needed.

If files, directories, or special files do not exist at the destination, then
they are created with the same modes and flags as the source. In addi-
tion, the super-user may set the user and group ID. The owner and
mode are not changed if the destination file exists.

Note that there may be more than one source directory. If so, the
effect is the same as if the copy command had been issued for each
source directory with the same destination directory for each copy.

Options do not have to be given as separate arguments, and may
appear in any order, even after the other arguments. The options are:

-a Asks the user before attempting a copy. If the response does
not begin with a ‘‘y’’, then a copy is not done. When used
together with the -v option, it overrides the verbose option
so that messages regarding the copy action are not dis-

played.

-1 Uses links instead whenever they can be used. Otherwise a
copy is done. Note that links are never done for special files
or directories.

-n Requires the destination file to be new. If not, then the copy

command does not change the destination file. The -n flag is
meaningless for directories. For special files a -n flag is
assumed (i.e., the destination of a special file must not
exist).

-0 If set then every file copied has its owner and group set to

those of the source. If not set, then the file’s owner is the
user who invoked the program.

March 15, 1989 COPY-1

COPY (C) COPY (C)

-m If set, then every file copied has its modification time and
access time set to that of the source. If not set, then the
modification time is set to the time of the copy.

r If set, then every directory is recursively examined as it is
encountered. If not set then any directories that are found
are ignored.

-ad Asks the user whether a -r flag applies when a directory is
discovered. If the answer does not begin with a ‘‘y”’, then
the directory is ignored.

-v Messages are printed that reveal what the program is doing.
If used with the -a option, the -a option is given priority so
that it overrides the verbose option, and the copy action
message is not displayed.

Arguments to copy are:

source This may be a file, directory or special file. It must exist. If
it is not a directory, then the results of the command are the
same as for the cp command.

dest The destination must be either a file or directory name that
is different from the source.

If the source and destination are anything but directories, then copy
acts just like a cp command. If both are directories, then copy copies
each file into the destination directory according to the flags that have
been set.

Examples

This command line verbosely copies all files in the current directory
to /tmp/food: '

copy -v . /tmp/food
The next command line copies all files, except for those that begin
with a period (.), and copies the immediate contents of any child
directories:

copy * /tmp/logic
This command is the same as the previous one, except that it recur-
sively examines all subdirectories, and it sets group and ownership
permissions on the destination files to be the same as the source files:

copy -ro * [tmp/logic

March 15, 1989 COPY-2

COPY (C) COPY (C)

Notes

Special device files can be copied. When they are copied, any data
associated with the specified device is not copied.

March 15, 1989 COPY-3

CP (C) CP (C)

cp

copies files

Syntax

cp filel file2

cp files directory

Description

There are two ways to use the ¢p command. With the first way, filel
is copied to file2 . Under no circumstance can filel and file2 be ident-
ical. With the second way, directory is the location of a directory into
which one or more files are copied. This directory must exist prior to
the execution of the ¢p command.

See Also

copy(C), cpio(C), In(C), mv(C), rm(C), chmod(S)

Notes

Special device files can be copied. If the file is a named pipe, then the
data in the pipe is copied to a regular file. Similarly, if the file is a de-
vice, then the file is read until the end-of-file is reached, and that data
}“slcopied to a regular file. It is not possible to copy a directory to a
ile.

Standards Conformance

¢p is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CP-1

CPIO (C) CPIO (C)

cpio

copy file archives in and out

Syntax

cpio -o[acBvV] [-C bufsize] [[-O file] [-K volumesize] [-M mes-
sage]]

cpio -i [BedmrtTuvVfsSb6k] [-C bufsize] [[-I file] [-K volumesize]
[-M message]] [pattern ...]

cpio -p [adlmuvV] directory

Description

cpio -o (copy out) reads the standard input to obtain a list of path
names and copies those files onto the standard output together with
path name and status information. Output is padded to a 512-byte
boundary by default.

cpio -i (copy in) extracts files from the standard input, which is
assumed to be the product of a previous cpio -0. Only files with
names that match patterns are selected. patterns are regular expres-
sions given in the filename-generating notation of sh(C). In patterns,
metacharacters ?, *, and [...] match the slash (/) character, and
backslash (\) is an escape character. A ! metacharacter means not.
(For example, the !abc* pattern would exclude all files that begin with
abc.) Multiple patterns may be specified and if no patterns are speci-
fied, the default for patterns is * (i.e., select all files). Each pattern
must be enclosed in double quotes otherwise the name of a file in the
current directory is used. Extracted files are conditionally created and
copied into the current directory tree based upon the options described
below. The permissions of the files will be those of the previous cpio
-o . The owner and group of the files will be that of the current user
unless the user is super-user, which causes cpio to retain the owner
and group of the files of the previous cpio -0 . NOTE: If cpio -i tries
to create a file that already exists and the existing file is the same age
or newer, cpio will output a warning message and not replace the file.

(The -u option can be used to unconditionally overwrite the existing
file.)

cpio -p (pass) reads the standard input to obtain a list of path names of
files that are conditionally created and copied into the destination
directory tree based upon the options described below. Archives of
text files created by cpio are portable between implementations of
UNIX System V.

March 15, 1991 CPIO-1

CPIO (C) CPIO (C)

The meanings of the available options are:

-a Reset access times of input files after they have been copied.
Access times are not reset for linked files when cpio -pla is
specified.

-b Reverse the order of the bytes within each word. Use only with the
-i option.

-B Input/output is to be blocked 5,120 bytes to the record. The default
buffer size is 512 bytes when this and the -C options are not used.
(-B does not apply to the pass option; -B is meaningful only with
data directed to or from a character-special device, e.g.,
/dev/rdsk/f0q15dt.)

-c Write header information in ASCII character form for portability.
Always use this option when origin and destination machines are
different types.

-C bufsize
Input/output is to be blocked bufsize bytes to the record, where buf-
size is replaced by a positive integer. The default buffer size is 512
bytes when this and -B options are not used. (-C does not apply to
the pass option; -C is meaningful only with data directed to or
from a character-special device, e.g., /dev/irmt/c0s0.) When used
with the -K option, bufsize is forced to be a 1K multiple.

-d directories are to be created as needed.

-f Copy in all files except those in patterns. (See the paragraph on
cpio -i for a description of patterns.)

Ifile
Read the contents of file as input. If file is a character-special de-
vice, when the first medium is full, replace the medium and type a
carriage return to continue to the next medium. Use only with the
-i option.

-k Attempt to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is cor-
rupted or out of sequence, this option lets you read only those files
with good headers. (For cpio archives that contain other cpio
archives, if an error is encountered, cpio may terminate prema-
turely. cpio will find the next good header, which may be one for a
smaller archive, and terminate when the smaller archive’s trailer is
encountered.) Used only with the -i option.

-1 Whenever possible, link files rather than copying them. Usable
only with the -p option.

March 15, 1991 CPIO-2

CPIO (C) CPIO (C)

-m
Retain previous file modification time. This option is ineffective
on directories that are being copied.

-K volumesize
Specifies the size of the media volume. Must be in 1K blocks. For
example, a 1.2 MB floppy disk has a volumesize of 1200. Must
include the -C option with a bufsize multiple of 1K.

-M message
Define a message to use when switching media. When you use the
-O or -I options and specify a character-special device, you can
use this option to define the message that is printed when you
reach the end of the medium. One %d can be placed in the mes-
sage to print the sequence number of the next medium needed to
continue. -

-0 file
Direct the output of cpio to file. If file is a character-special de-
vice, when the first medium is full, replace the medium and type a
carriage return to continue to the next medium. Use only with the
-0 option.

-r Interactively rename files. If the user types a null line, the file is

skipped. If the user types a ".", the original pathname will be

copied. (Not available with cpio -p.)
-s swap bytes within each half word. Use only with the -i option.
-S Swap halfwords within each word. Use only with the -i option.

-T Truncate long filenames to 14 characters. Use only with the -i
option.

-t Print a table of contents of the input. No files are created.

-u Copy unconditionally (normally, an older file will not replace a
newer file with the same name).

-v verbose: causes a list of file names to be printed. When used with
the -t option, the table of contents looks like the output of an Is -1
command [see Is(C)].

-V Special Vefbose: print a dot for each file seen. Useful to assure the
user that cpio is working without printing out all file names.

-6 Process an old (i.e., UNIX System Sixth Edition format) file. Use
only with the -i option.

NOTE: cpio assumes 4-byte words.

March 15, 1991 CPIO-3

CPIO (C) CPIO (C).

If cpio reaches end of medium (end of a diskette for example) when
writing to (-0) or reading from (-i) a character-special device, and -O
and -1 are not used, cpio will print the message:

If you want to go on, type devicel file name when ready.

To continue, you must replace the medium and type the character-
special device name (/dev/rdsk/f0q15dt for example) and a carriage
return. You may want to continue by directing cpio to use a different
device. For example, if you have two floppy drives, you may want to
switch between them so cpio can proceed while you are changing the
floppies. (A carriage return alone causes the cpio process to exit.)

Examples

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -o, it groups the

files so they can be directed (>) to a single file (../newfile). The -c

option insures that the file will be portable to other machines. Instead

of Is(C), you could use find(C), echo(C), cat(C), etc., to pipe a list of

games to cpio. You could direct the output to a device instead of a
le.

Is | cpio -oc >../newfile

cpio -i uses the output file of cpio -o (directed through a pipe with cat
in the example), extracts those files that match the patterns (memo/al,
memo/b *), creates directories below the current directory as needed
(-d option), and places the files in the appropriate directories. The -c
option is used when the file is created with a portable header. If no
patterns were given, all files from newfile would be placed in the
directory.

cat newfile | cpio -icd "memolal” "memolb*"

cpio -p takes the file names piped to it and copies or links (-1 option)
those files to another directory on your machine (newdir in the exam-
ple). The -d options says to create directories as needed. The -m
option says retain the modification time. [It is important to use the
-depth option of find(C) to generate path names for cpio. This elim-
inates problems cpio could have trying to create files under read-only
directories.]

find . -depth -print | cpio -pdlmv newdir
See Also

cat(C), echo(C), find(C), 1s(C), tar(C), cpio(F)

March 15, 1991 CPIO-4

CPIO (C) CPIO (C)

Notes

1) Path names are restricted to 256 characters.

2) Only the super-user can copy special files.

3) Blocks are reported in 512-byte quantities.

4) If a file has 000 permissions, contains more than O characters of data,
and the user is not root, the file will not be saved or restored.

Standards Conformance

cpio is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1991 CPIO-5

CRON (C) CRON (C)

cron

executes commands scheduled by at, batch, and
crontab

Syntax

Jetc/cron

Description

cron is the clock daemon that executes commands at specified dates
and times. cron processes jobs submitted with at(C), batch(C), and -
crontab(C). cron never exits; the cron command usually appears in
the /etc/rc2 scripts to be invoked by init(M) when the system is
brought up in multi-user mode.

Files
fetc/default/cron cron logging default information
fust/lib/cron main cron directory
[ust/lib/cron/atjobs at directory
[usr/spool/cron/crontabs crontab directory
/usr/lib/cron/log accounting information
Jusr/lib/cron/queuedefs cron data file
Jusr/lib/cron/.proto cron environment information
See Also

at(C), crontab(C), queuedefs(F), sh(C)

Diagnostics

A history of all actions by cron can be recorded in /usr/lib/cron/log.
This logging occurs only if the variable CRONLOG is set to YES in
letc/default/cron. By default this value is set to NO and no logging
occurs. If logging should be turned on, be sure to check the size of the

March 15, 1989 CRON-1

CRON (C)
log file regularly.

Standards Conformance

CRON (C)

cron is conformant with:

AT&T SVID Issue 2, Select Code 307-127.

March 15, 1989

CRON-2

CRONTAB (C) CRONTAB (C)

crontab

schedule commands to be executed at regular inter-
vals

Syntax

crontab [file]
crontab -r
crontab -l

Description

The crontab command can be used to schedule commands to be exe-
cuted at regular intervals. These commands are stored in the user’s
crontab file, /usr/spool/cron/crontabs/username. Any output or
errors generated by the commands are mailed to the user.

If called with no options, crontab copies the specified file, or standard
input if no file is specified, into the crontabs directory (if the user has
a previous crontab file, it is replaced).

The -r option removes the user’s crontab file from the crontab direc-
tory.

The -1 option lists the contents of the user’s crontab file.

If the file /usr/lib/cron/cron.allow exists, only the users listed in that
file are allowed to use crontab. If cron.allow does not exist, and the
file /usr/lib/cron/cron.deny does, then all users not listed in
cron.deny are allowed access to crontab, with an empty cron.deny
allowing global usage. If neither file exists, only the super user is
allo;yed to submit a job. The allow/deny files consist of one user name
per line.

The crontabs files consist of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns that
specify the minute (0-59), hour (0-23), day of the month (1-31), month
of the year (1-12), and day of the week (0-6, with O=Sunday). Each of
these patterns may contain:

- A number in the (respective) range indicated above

- Two numbers separated by a minus (indicating an inclusive range)

March 15, 1989 CRONTAB-1

CRONTAB (C) CRONTAB (C)

- Alist of numbers separated by commas (meaning all of these num-
bers)

- An asterisk (meaning all legal values)

Note that the specification of days may be made by two fields (day of
the month and day of the week). If both are specified as a list of ele-
ments, both are adhered to. For example, 0 0 1,15 * 1 would run a
command on the first and fifteenth of each month, as well as on every
Monday. To specify days by only one field, the other field should be
set to * (for example, 0 0 * * 1 would run a command only on Mon-
days).

The sixth field is a string that is executed by the shell at the specified
time(s). A % in this field is translated into a newline character. Only
the first line (up to a % or end-of-line) of the command field is exe-
cuted by the shell. The other lines are made available to the command
as standard input.

The shell is invoked from your SHOME directory with an arg0 of sh.
Users who desire to have their .profile executed must explicitly do so
in the crontab file. cron supplies a default environment for every
shell, defining' HOME, LOGNAME, SHELL (=/bin/sh), and
PATH (=/bin:%usr/bin:).

N

Examples

An example crontabs file follows:

0 4 * * * calendar -

15 4 * * * find /usr/preserve -mtime +7 -exec rm -f {} ;
30 4 1 * 1 /usr/lib/uucp/uuclean

40 4 x * * find / -name ‘#*’ -atime +3 -exec rm -f {} ;
1,21,41 * * * * (echo -n ' ’; date; echo) >/dev/console

The lines in this example do the following: run the calendar program
every night at 4:00 am, clear old files from the /etc/preserve directory
every night at 4:15 am, clean up the uucp spool directory every Mon-
day and the first of every month at 4:30 am, find and remove any old
files with names beginning with “‘#°’ every night at 4:40 am, and echo
the current date and time to the console three times an hour at one
minute, 21 minutes, and 41 minutes past the hour.

Files

/usr/lib/cron main cron directory

March 15, 1989 CRONTAB-2

CRONTAB (C) CRONTAB (C)

[usr/spool/cron/crontabs crontab directory
fust/lib/cron/cron.allow list of allowed users
/ust/lib/cron/cron.deny list of denied users
fust/lib/cron/.proto cron environment information
/usr/lib/cron/queuedefs , cron data file

See Also
at(C), cron(C), sh(C)

Diagnostics

crontab exits and returns a value of 55 if it cannot allocate enough
memory. If it exits for any other reason, it returns a value of 1.

Notes

crontab commands are executed by cron(C). cron reads the files in
the crontabs directory only on startup or when a new crontab is sub-
mitted with the crontab command, so changes made to these files by
hand will not take effect until the system is rebooted. Changes sub-
mitted with the crontab command will take effect as soon as cron is
free to read them (that is, when cron is not in the process of running a
§cll)1e)duled job or reading another newly submitted at(C) or crontab
job.).

Users who do not wish to have output from their commands mailed to
them may want to redirect it to a file:

0 * * * * ywho > /tmp/whofile 2> /dev/null
The example above would append the output of the who(C) command
to a file, and throw away any errors generated. For more details on
output redirection, see the s4(C) manual page. -
Users should remember to redirect the standard output and standard
error of their commands otherwise any generated output or errors will
be mailed to the user.

crontab will overwrite any previous crontab submitted by the same
user.

March 15, 1989 - CRONTAB-3

CRONTAB (C)

Standards Conformance

CRONTAB (C)

crontab is conformant with:
AT&T SVID Issue 2, Select Code 307-127;

and The X/Open Portability Guide II of January 1987.

March 15, 1989

CRONTAB-4

CRYPT (C) CRYPT (C)

crypt

encode/decode

Syntax

crypt [password]
crypt [-k]

Description

The crypt command reads from the standard input and writes to the
standard output. The password is a key that selects a particular
transformation. If no argument is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. If the
-k option is used, crypt will use the key assigned to the environment
variable CRYPTKEY. The crypt command encrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher | pr

Files encrypted by crypt are compatible with those treated by the edi-
tors ed(C), edit (C), ex(C), and vi(C) in encryption mode.

The security of encrypted files depends on three factors: the funda-
mental method must be hard to solve; direct search of the key space
must be infeasible; ‘‘sneak paths’’ by which keys or clear text can
become visible must be minimized.

The crypt command implements a one-rotor machine designed along
the lines of the German Enigma, but with a 256-element rotor.
Methods of attack on such machines are known, but not widely; more-
over the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e., to take a substantial frac-
tion of a second to compute. However, if keys are restricted to (say)
three lower-case letters, then encrypted files can be read by expending
only a substantial fraction of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visi-
ble to users executing ps(C) or a derivative. To minimize this possi-
bility, crypt takes care to destroy any record of the key immediately
upon entry. The choice of keys and key security are the most vulner-
able aspect of crypt.

March 15, 1989 CRYPT-1

CRYPT (C) CRYPT (C)

Files

[devi/tty for typed key

See Also

ed(C), edit(C), ex(C), makekey(C), ps(C), stty(C), vi(C)

Notes

If two or more files encrypted with the same key are concatenated and
an attempt is made to decrypt the result, only the contents of the first
of the original files will be decrypted correctly.

Distribution of the crypt libraries and utilities is regulated by the U.S.
Government and are not available to sites outside of the United States
and its territories. Because we cannot control the destination of the
software, these utilities are not included in the standard product. If
your site is within the U.S. or its territories, you can obtain the crypt
software through your product distributor or reseller.

March 15,1989 CRYPT-2

CSH (C) CSH (C)

csh

invokes a shell command interpreter with C-like syntax

Syntax

csh [-cefinstvVxX] [arg ...]

Description

csh is a command language interpreter. It begins by executing com-
mands from the file .cshrec in the home directory of the invoker. If
this is a login shell, it also executes commands from the file .login
there. In the normal case, the shell begins reading commands from the
terminal, prompting with % . Processing of arguments and the use of
{he shell to process files containing command scripts will be described
ater.

The shell then repeatedly performs the following actions: a line of
command input is read and broken into words. This sequence of words
is placed on the command history list and then parsed. Finally, each
command in the current line is executed.

When a login shell terminates, it executes commands from the file
.JJogout in the user’s home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the fol-
lowing exceptions. The characters &, 1, ;, <, >, (,), form separate
words. If doubled in &&, | I, <<, or >>, these pairs form single words.
These parser metacharacters may be made part of other words, or their
special meaning prevented, by preceding them with \. A newline pre-
ceded by a\is equivalent to a blank.

In addition, strings enclosed in matched pairs of quotations, *, * or "
form parts ofa word; metacharacters in these strings, including blanks
and tabs, do not form separate words. These quotations have seman-
tics to be described subsequently. Within pairs of “ or " characters, a
newline preceded by a\ gives a true newline character.

When the shell’s input is not a terminal, the character # introduces a
comment which continues to the end of the input line. It does not
have this special meaning when preceded by \ and placed inside the

"

quotation marks °, “, or ".

March 15, 1989 CSH-1

CSH (C) CSH (C)

Commands

A simple command is a sequence of words, the first of which specifies
the command to be executed. A simple command or a sequence of
simple commands separated by | characters forms a pipeline. The out-
put of each command in a pipeline is connected to the input of the
next. Sequences of pipelines may be separated by ;, and are then exe-
cuted sequentially. A sequence of pipelines may be executed without
waiting for it to terminate by following it with a &. Such a sequence
is automatically prevented from being terminated by a hangup signal;
the nohup command need not be used.

Any of the above may be placed in parentheses to form a simple com-
mand (which may be a component of a pipeline, etc.) It is also possi-
ble to separate pipelines with | | or && indicating, as in the C lan-
guage, that the second is to be executed only if the first fails or
succeeds respectively. (See Expressions.)

Substitutions

The following sections describe the various transformations the shell
performs on the input in the order in which they occur.

History Substitutions

History substitutions can be used to reintroduce sequences of words
from previous commands, possibly performing modifications on these
words. Thus, history substitutions provide a generalization of a redo
function.

History substitutions begin with the character ! and may begin any-
where in the input stream if a history substitution is not already in
progress. The ! may be preceded by a\ to prevent its special meaning;
a ! is passed unchanged when it is followed by a blank, tab, newline,
=, or (. History substitutions may also occur when an input line begins
with . This special abbreviation will be described later.

Any input line which contains history substitution is echoed on the
terminal before it is executed as it could have been entered without
history substitution.

Commands input from the terminal which consist of one or more
words are saved on the history list, the size of which is controlled by
the history variable. The previous command is always retained. Com-
mands are numbered sequentially from 1.

March 15, 1989 CSH-2

CSH (C) CSH (C)

For example, enter the command:
history
Now, consider the following output from the history command:

9 write michael

10 ex write.c

11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually
necessary to use event numbers, but the current event number can be
made part of the prompt by placing a ! in the prompt string.

With the current event 13 we can refer to previous events by event
number !11, relatively as in !-2 (referring to the same event), by a pre-
fix of a command word as in !d for event 12 or !w for event 9, or by a
string contained in a word in the command as in !?mic? also referring
to event 9. These forms, without further modification, simply reintro-
duce the words of the specified events, each separated by a single
blank. As a special case !! refers to the previous command; thus !!
alone is essentially a redo. The form !# references the current com-
mand (the one being entered). It allows a word to be selected from
further left in the line, to avoid retyping a long name, as in 1#:1.

To select words from an event, we can follow the event specification
by a : and a designator for the desired words. The words of an input
line are numbered from 0, the first (usually command) word being O,
the second word (first argument) being 1, and so on. The basic word
designators are:

0 First (command) word

n nth argument

First argument, i.e. 1

$ Last argument

% Word matched by (immediately preceding) ?s ? search

x-y
Range of words

-y Abbreviates 0-y

* Abbreviates *-$, or nothing if only 1 word in event

March 15, 1989 CSH-3

CSH (C) CSH (C)

x * Abbreviates x-$
x - Like x * but omitting word $

The : separating the event specification from the word designator can
be omitted if the argument selector begins with a *, $, *, - or %. After
the optional word designator, a sequence of modifiers can be placed,
each preceded by a :. The following modifiers are defined:

h Removes a trailing pathname component
r Removes a trailing .xxx component

sfl/r/
Substitutes [for r

t Removes all leading pathname components

& Repeats the previous substitution

g Applies the change globally, prefixing the above

p Prints the new command but does not execute it

q Quotes the substituted words, preventing substitutions

x Like q, but breaks into words at blanks, tabs, and newlines

Unless preceded by a g, the modification is applied only to the first

modifiable word. In any case it is an error for no word to be applica-
ble.

The left sides of substitutions are not regular expressions in the sense
of the editors, but rather strings. Any character may be used as the de-
limiter in place of /; a\ quotes the delimiter within the / and r strings.
The character & in the right side is replaced by the text from the left.
A\ quotes & also. A null / uses the previous string either from a / or
from a contextual scan string s in !?s?. The trailing delimiter in the
substitution may be omitted if a newline follows immediately as may
the trailing ? in a contextual scan.

A history reference may be given without an event specification, e.g.,
1$. In this case the reference is to the previous command unless a pre-
vious history reference occurred on the same line in which case this
form repeats the previous reference. Thus 1?fo0?"!$ gives the first and
last arguments from the command matching ?foo?.

A special abbreviation of a history reference occurs when the first
nonblank character of an input line is a *. This is equivalent to !:s",
providing a convenient shorthand for substitutions on the text of the
previous line. Thus “Ib’lib fixes the spelling of lib in the previous
command. Finally, a history substitution may be surrounded with {

March 15, 1989 CSH-4

CSH (C) CSH (C)

and } if necessary to insulate it'from the characters that follow. Thus,
after Is -1d “paul we might do !{1}a to do Is -1d “paula, while !la would
look for a command starting la.

Quotations With “and "

The quotation of strings by “and " can be used to prevent all or some
of the remaining substitutions. Strings enclosed in “ are prevented any
further interpretation. Variable and command expansion occurs in
strings enclosed in ".

In both cases, the resulting text becomes (all or part of) a single word;
only in one special case (see Command Substitution below) does a "
quoted string yield parts of more than one word; “ quoted strings never
do.

Alias Substitution

The shell maintains a list of aliases which can be established, dis-
played and modified by the alias and unalias commands. After a com-
mand line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an
alias. If it does, then the text which is the alias for that command is
reread with the history mechanism available as though that command
were the previous input line. The resulting words replace the com-
mand and argument list. If no reference is made to the history list,
then the argument list is left unchanged.

Thus if the alias for Is is “‘Is -1’’ the command *‘Is /usr’> would map to
“Is -1 fusr’”’. Similarly if the alias for ‘‘lookup’” was ‘‘grep \I”
fetc/passwd’’ then ‘‘lookup bill”” would map to ‘‘grep bill
fetc/passwd’’.

If an alias is found, the word transformation of the input text is per-
formed and the aliasing process begins again on the reformed input
line. Looping is prevented if the first word of the new text is the same
as the old by flagging it to prevent further aliasing. Other loops are
detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyn-
tax. Thus we can alias print *““pr\!I*+ | Ipr”’ to make a command that
paginates its arguments to the lineprinter.

There are four csh aliases distributed. These are pushd, popd, swapd,
and flipd. These aliases maintain a directory stack.

pushd dir

Pushes the current directory onto the top of the directory stack,
then changes to the directory dir.

March 15, 1989 CSH-5

CSH (C) CSH (C)

popd
Changes to the directory at the top of the stack, then removes
(pops) the top directory from the stack, and announces the current
directory.

swapd
Swaps the top two directories on the stack. The directory on the
top becomes the second to the top, and the second to the top direc-
tory becomes the top directory.

flipd
Flips between two directories, the current directory and the top
directory on the stack. If you are currently in dirl,and dir2 is on
the top of the stack, when flipd is invoked, you change to dir2 and
dirl is replaced as the top directory on the stack. When flipd is
again invoked, you change to dirl and dir2 is again the top direc-
tory on the stack.

Variable Substitution

The shell maintains a set of variables, each of which has a list of zero
or more words as its value. Some of these variables are set by the
shell or referred to by it. For instance, the argy variable is an image of
the shell’s argument list, and words of this variable’s value are
referred to in special ways.

The values of variables may be displayed and changed by using the set
and unset commands. Of the variables referred to by the shell a num-
ber are toggles; the shell does not care what their value is, only
whether they are set or not. For instance, the verbose variable is a tog-
gle which causes command input to be echoed. The setting of this
variable results from the -v command line option.

Other operations treat variables numerically. The at-sign (@) com-
mand permits numeric calculations to be performed and the result
assigned to a variable. However, variable values are always
represented as (zero or more) strings. For the purposes of numeric
operations, the null string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is
executed, variable substitution is performed, keyed by dollar sign ($)
characters. This expansion can be prevented by preceding the dollar
sign with a backslash (\) except within double quotation marks (")
where it always occurs, and within single quotation marks (") where it
never occurs. Strings quoted by back quotation marks (*) are inter-
preted later (see Command substitution below) so dollar sign substitu-
tion does not occur there until later, if at all. A dollar sign is passed
unchanged if followed by a blank, tab, or end-of-line.

March 15, 1989 CSH-6

CSH (C) CSH (C)

Input and output redirections are recognized before variable expan-
sion, and are expanded separately. Otherwise, the command name and
entire argument list are expanded together. It is thus possible for the
first (command) word to generate more than one word, the first of
which becomes the command name, and the rest of which become
arguments.

Unless enclosed in double quotation marks or given the :q modifier,
the results of variable substitution may eventually be subject to com-
mand and filename substitution. Within double quotation marks ("), a
variable whose value consists of multiple words expands to a portion
of a single word, with the words of the variable’s value separated by
blanks. When the :q modifier is applied to a substitution, the variable
expands to multiple words with each word separated by a blank and
quoted to prevent later command or filename substitution.

The following sequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a vari-
able which is not set.

$name

${name}
Are replaced by the words of the value of variable name, each
separated by a blank. Braces insulate name from following
characters which would otherwise be part of it. Shell variables
have names consisting of up to 20 letters, digits, and under-
scores.

If name is not a shell variable, but is set in the environment, then that
value is returned (but : modifiers and the other forms given below are
not available in this case).

$name[selector]

${name[selector]}
May be used to select only some of the words from the value of
name. The selector is subjected to $ substitution and may con-
sist of a single number or two numbers separated by a -. The
first word of a variables value is numbered 1. If the first number
of a range is omitted it defaults to 1. If the last member of a
range is omitted it defaults to $#name. The selector * selects all
words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$#name

${#name)
Gives the number of words in the variable. This is useful for
later use in a [selector].

$0 Substitutes the name of the file from which command input is being
read. An error occurs if the name is not known.

March 15, 1989 . CSH-7

CSH (C) CSH (C)

$number
${number}
Equivalent to $argv[number].

$+ Equivalent to $argv[*].

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions
above as may :gh, :gt and :gr. If braces { } appear in the command
form then the modifiers must appear within the braces. Only one :
modifier is allowed on each $ expansion.

The following substitutions may not be modified with : modifiers.

$7name
${name}
Substitutes the string 1 if name is set, O if it is not.

$70 Substitutes 1 if the current input filename is known, O if it is not.
$$ Substitutes the (decimal) process number of the (parent) shell.
Command and Filename Substitution

Command and filename substitution are applied selectively to the
arguments of built-in commands. This means that portions of expres-
sions which are not evaluated are not subjected to these expansions.
For commands which are not internal to the shell, the command name
is substituted separately from the argument list. This occurs very late,
after input-output redirection is performed, and in a child of the main
shell.

Command Substitution

Command substitution is indicated by a command enclosed in back
quotation marks. The output from such a command is normally bro-
ken into separate words at blanks, tabs and newlines, with null words
being discarded. This text then replaces the original string. Within
double quotation marks, only newlines force new words; blanks and
tabs are preserved.

In any case, the single final newline does not force a new word. Note
that it is possible for a command substitution to yield only part of a
word, even if the command outputs a complete line.

Filename Substitution

If a word contains any of the characters *, ?, [or { or begins with the
character ~, then that word is a candidate for filename substitution,
also known as globbing. This word is then regarded as a pattern, and
is replaced with an alphabetically sorted list of filenames which match
the pattern. In a list of words specifying filename substitution it is an

March 15, 1989 CSH-8

CSH (C) CSH (C)

error for no pattern to match an existing filename, but it is not required
for each pattern to match. Only the metacharacters *, ?, and [imply
pattern matching. The characters ~ and { are more akin to abbrevia-
tions.

In matching filenames, the character . at the beginning of a filename or
immediately following a /, as well as the character / must be matched
explicitly. The character * matches any string of characters, including
the null string. The character ? matches any single character. The
sequence within square brackets [] matches any one of the characters
enclosed. Within square brackets [], a pair of characters separated by
- matches any character lexically between the two.

The character ~ at the beginning of a filename is used to refer to home
directories. Standing alone, it expands to the invoker’s home directory
contained in the variable HOME. When followed by a name consist-
ing of letters, digits and - characters the shell searches for a user with
that name and substitutes their home directory; thus “ken might
expand to /usr/ken and “ken/chmach to /usr/ken/chmach. If the charac-
ter ~ is followed by a character other than a letter or /, or if it does not
appear at the beginning of a word, it is left unchanged.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left to
right order is preserved, with results of matches being sorted
separately at a low level to preserve this order. Thus
“source/s1/{oldls,ls}.c expands to Jusr/source/s1/oldls.c
[usr/source/s1/ls.c, whether or not these files exist, assuming that the
home directory for source is /usr/source. Similarly ../{memo,*box}
might expand to ../ memo ../box ../mbox. (Note that memo was not
sorted with the results of matching *box.) As a special case {, } and
{} are passed unchanged. This construct can be nested.

Spelling Checker

If the local variable cdspell has been set, the shell checks spelling
whenever you use cd to change directories. For example, if you
change to a different directory using cd and misspell the directory
name, the shell responds with an alternative spelling of an existing
directory. Enter ‘‘y’”’ and press RETURN (or just press RETURN) to
change to the offered directory. If the offered spelling is incorrect,

enter ‘‘n”’, then retype the command line. In this example the csh(C)
response is boldfaced:

% cd /usr/spol/uucp

/usr/spool/uucp? y
ok

March 15, 1989 CSH-9

CSH (C) CSH (C)

Input/Output

The standard input and standard output of a command may be
redirected with the following syntax:

< name
Opens file name (after variable, command and filename expan-
sion) as the standard input.

<< word

Reads the shell input up to a line which is identical to word.
Word is not subjected to variable, filename or command substi-
tution, and each input line is compared to word before any sub-
stitutions are done on this input line. Unless a quoting
backslash, double, or single quotation mark, or a back quotation
mark appears in word, variable and command substitution is
performed on the intervening lines, allowing \ to quote $,\and *.
Commands which are substituted have all blanks, tabs, and new-
lines preserved, except for the final newline which is dropped.
The resulting text is placed in an anonymous temporary file
which is given to the command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not
exist, then it is created; if the file exists, it is overwritten.

If the variable noclobber is set, then an error results if the file
already exists or if it is not a character special file (e.g., a termi-
nal or /dev/null). This helps prevent accidental destruction of
files. In this case, the ! forms can be used to suppress this check.

The forms involving & route the diagnostic output into the
specified file as well as the standard output. Name is expanded
in the same way as < input filenames are.

>> name

>>& name

>>! name

>>&! name
Uses file name as standard output like > but places output at the
end of the file. If the variable noclobber is set, then it is an error
for the file not to exist unless one of the ! forms is given. Other-
wise similar to >.

If a command is run in the background (followed by &) then the
default standard input for the command is the empty file /dev/null.
Otherwise, the command receives the input and output parameters
from its parent shell. Thus, unlike some previous shells, commands
run from a file of shell commands have no access to the text of the

March 15, 1989 CSH-10

CSH(C) CSH (C)

commands by default; rather they receive the original standard input
of the shell. The << mechanism should be used to present inline data.
This permits shell command scripts to function as components of pipe-
lines and allows the shell to block read its input.

Diagnostic output may be directed through a pipe with the standard
output. Simply use the form | & rather than just I.

Expressions

A number of the built-in commands (to be described later) take
expressions, in which the operators are similar to those of C, with the
same precedence. These expressions appear in the @, exit, if, and
while commands. The following operators are available:

1 && 1" & == 1= <= >= < > << >>
+-% /%! " ()

Here the precedence increases to the right, == and !=, <=, >=, <, and
>, << and >>, + and -, * / and % being, in groups, at the same level.
The == and != operators compare their arguments as strings, all others
operate on numbers. Strings which begin with 0 are considered octal
numbers. Null or missing arguments are considered 0. The result of
all expressions are strings, which represent decimal numbers. It is
important to note that no two components of an expression can appear
in the same word unless a word is adjacent to components of expres-
sions which are syntactically significant to the parser (& | < > (1)), it
should be surrounded by spaces.

Also available in expressions as primitive operands are command exe-
cutions enclosed in { and } and file enquiries of the form -/ name
where [is one of:

Read access
Write access
Execute access
Existence
Ownership
Zero size

Plain file
Directory

amNOoO O X g

Command and filename expansion is applied to the specified name,
then the result is tested to see if it has the specified relationship to the
real user. If the file does not exist or is inaccessible then all enquiries
return false, i.e. 0. Command executions succeed, returning true, i.e.
1, if the command exits with status 0, otherwise they fail, returning
false, i.e. 0.

If more detailed status information is required then the command

should be executed outside of an expression and the variable status
examined.

March 15, 1989 CSH-11

CSH (C) CSH (C)

Control Flow

The shell contains a number of commands which can be used to regu-
late the flow of control in command files (shell scripts) and (in limited
but useful ways) from terminal input. Due to the implementation,
some restrictions are placed on the word placement for the foreach,
switch, and while statements, as well as the if-then-else form of the if
statement. Please pay careful attention to these restrictions in the
descriptions in the next section.

If the shell’s input is not seekable, the shell buffers up input whenever
a loop is being read and performs seeks in this internal buffer to
accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto commands will succeed on nonseekable
inputs.)

Built-In Commands

Built-in commands are executed within the shell. If a built-in com-
mand occurs as any component of a pipeline except the last, then it is
executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias
for name. The final form assigns the specified wordlist as the
alias of name; wordlist is command and filename substitution is
applied to wordlist. Name is not allowed to be alias or unalias

break
Causes execution to resume after the end of the nearest enclos-
ing foreach or while statement. The remaining commands on
the current line are executed. Multilevel breaks are thus possi-
ble by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
This is part of the switch statement discussed below.

cd

cd name

chdir

chdir name
Changes the shell’s working directory to directory name. If no
argument is given, it then changes to the home directory of the
user. If name is not found as a subdirectory of the current direc-
tory (and does not begin with /, ./, or ../), then each component of
the variable cdpath is checked to see if it has a subdirectory
name. Finally, if all else fails but name is a shell variable

March 15, 1989 CSH-12

CSH (C) CSH (C)

whose value begins with /, then this is tried to see if it is a direc-
tory.

If cdspell has been set, the shell runs a spelling check as follows. If
the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory in a
search for the ‘‘correct’” name. The shell then asks whether or not to
try and change the directory to the corrected directory name; an
answer of n means ‘‘no,”” and anything else is taken as ‘‘yes.”’

continue
Continues execution of the nearest enclosing while or foreach.
The rest of the commands on the current line are executed.

default:
Labels the default case in a switch statement. The default
should come after all case labels.

echo wordlist
The specified words are written to the shell’s standard output. A
\c causes the echo to complete without printing a newline. A \n
in wordlist causes a newline to be printed. Otherwise the words
are echoed, separated by spaces.

else

end

endif

endsw
See the description of the foreach, if, switch, and while state-
ments below.

exec command
The specified command is executed in place of the current shell.

exit

exit(expr)
The shell exits either with the value of the status variable (first
form) or with the value of the specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of
wordlist and the sequence of commands between this command

and the matching end are executed. (Both
foreachname(wordlist) and end must appear alone on separate
lines.)

The built-in command continue may be used to continue the
loop prematurely and the built-in command break to terminate it
prematurely. When this command is read from the terminal, the

March 15, 1989 CSH-13

CSH (C) . CSH (C)

contents of the loop are read by prompting with ? until end is
typed before any statements in the loop are executed.

glob wordlist
Like echo but no\ escapes are recognized and words are delim-
ited by null characters in the output. Useful for programs which
wish to use the shell to apply filename expansion to a list of
words.

goto word
Filename and command expansion is applied to the specified
word to yield a string of the form label:. The shell rewinds its
input as much as possible and searches for a line of the form
label: possibly preceded by blanks or tabs. Execution continues
after the specified line.

history
Displays the history event list.

if (expr) command

If the specified expression evaluates true, then the single com-
mand with arguments is executed. Variable substitution on
command happens early, at the same time it does for the rest of
the if command. Command must be a simple command, not a
pipeline, a command list, or -a parenthesized command list.
Input/output redirection occurs_even if expr is false, and com-
mand is not executed.

if (expr) then
else if (expr2) then
els.é'

endif

If the specified expr is true then the commands before the first
else are executed; else if expr2 is true then the commands after
the second then and before the second else are executed, etc.
Any number of else-if pairs are possible; only one endif is
needed. The else part is likewise optional. (The words else and
endif must appear at the beginning of input lines; the if (expr)
then must appear alone on its input line or after an else.)

logout

Terminates a login shell. The only way to log out if ignoreeof is
set.

March 15, 1989 CSH-14

CSH (C) CSH (C)

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell to 4. By default, com-
mands run under C-Shell have a ‘‘nice value’” of 0. The second
form sets the nice to the given number. The final two forms run
command at priority 4 and number respectively. The super-user
may specify negative niceness by using ‘‘nice -number"”> The
command is always executed in a subshell, and the restrictions
placed on commands in simple if statements apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to be
ignored for the remainder of the script. The second form causes
the specified command to be run with hangups ignored. Unless
the shell is running in the background, nohup has no effect. All
processes running in the background with & are automatically
nohuped.

onintr

onintr -

onintr label
Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts which is to
terminate shell scripts or to return to the terminal command
input level. The second form, onintr, causes all interrupts to be
ignored. The final form causes the shell to execute a goto label
when an interrupt is received or a child process terminates
because it was interrupted.

In any case, if the shell is running in the background, interrupts
are ignored whether any form of onintr is present or not.

rehash
Causes the internal hash table of the contents of the directories
in the path variable to be recomputed. This is needed if new
commands are added to directories in the path while you are
logged in.

repeat count command
The specified command, which is subject to the same restric-
tions as the command in the simple if statement above, is exe-
cuted count times. 1/O redirection occurs exactly once, even if
count is 0.

set

set name
set name=word

March 15, 1989 CSH-15

CSH (C) CSH (C)

set name[index]=word

set name=(wordlist)
The first form of the command shows the value of all shell vari-
ables. Variables which have other than a single word as value
print as a parenthesized word list. The second form sets name to
the null string. The third form sets name to the single word. The
fourth form sets the indexth component of name to word; this
component must already exist. The final form sets name to the
list of words in wordlist. Command and filename expansion is
applied in all cases.

These arguments may be repeated to set multiple values in a
single set command. Note however, that variable expansion
happens for all arguments before any setting occurs.

setenv name value
Sets the value of the environment variable name to be value,
which must be a single string. Two useful environment vari-
ables are TERM, the type of your terminal and SHELL, the shell
you are using.

shift

shift variable
In the first form, the members of argv are shifted to the left, dis-
carding argv[1]. It is an error for argv not to be set or to have
less than one word as a value. The second form performs the
same function on the specified variable.

source name

The shell reads commands from name. Source commands may
be nested, but if they are nested too deeply, the shell may run
out of file descriptors. An error in a source at any level ter-
minates all nested source commands, including the csh process
from which source was called. If source is called from the login
shell, it is logged out. Input during source commands is never
placed on the history list.

switch (string)
case strl:

b?eaksw
.c‘l'efault:

breaksw
endsw
Command and filename substitution is applied to string. The
each case label is successively matched against the result. Vari-
able expansion is also applied to the case labels, so the file
metacharacters *, ?, and [...] can be used. If none of the labels
match before a default label is found, then the execution begins
after the default label. Each case label and the default label

March 15, 1989 CSH-16

CSH (C) CSH (C)

must appear at the beginning of a line. The command breaksw
causes execution to continue after the endsw. Otherwise control
may fall through case labels and default labels, as in C. If no
label matches and there is no default, execution continues after
the endsw.

time

time command
With no argument, a summary of CPU time used by this shell
and its children is printed. If arguments are given, the specified
simple command is timed and a time summary as described
under the time variable is printed. If necessary, an extra shell is
created to print the time statistic when the command completes.
command has the same restrictions as the simple if statement
described above.

umask

umask value
The file creation mask is displayed (no arguments) or set to the
specified value (one argument). The mask is given in octal.
Common values for the mask are 002 giving all access to the
group and read and execute access to others, or 022 giving read
and execute access to users in the group and all other users.

unalias pattern
All aliases whose names match the specified pattern are dis-
carded. Thus, all aliases are removed by unalias *. It is not an
error for nothing to be unaliased.

unhash

Use of the internal hash table to speed location of executed pro-
grams is disabled.

unset pattern
All variables whose names match the specified pattern are
removed. Thus, all variables are removed by unset *; this has
noticeably distasteful side-effects. It is not an error for nothing
to be unset.

wait
All child processes are waited for. If the shell is interactive,
then an interrupt can disrupt the wait, at which time the shell
prints names and process numbers of all children known to be
outstanding.

while (expr)
end
While the specified expression evaluates nonzero, the com-

mands between the while and the matching end are evaluated.
Break and continue may be used to terminate or continue the

March 15, 1989 CSH-17

CSH (C) CSH (C)

loop prematurely. (The while (expr) and end must appear alone
on their input lines.) Prompting occurs here the first time
through the loop as for the foreach statement if the input is a ter-
minal.

@

@ name = expr

@ namel[index] = expr
The first form prints the values of all the shell variables. The
second form sets the specified name to the value of expr. If the
expression contains <, >, & or | then at least this part of the
expression must be placed within (). The third form assigns the
value of expr to the indexth argument of name. Both name and
its indexth component must already exist.

The operators *=, +=, etc. are available as in C. The space
separating the name from the assignment operator is optional.
Spaces are mandatory in separating components of expr which
would otherwise be single words The space between @ and
name is also mandatory.

Special postfix ++ and -- operators increment and decrement
name tespectively, i.e. @ i++.

Predefined Variables

The following variables have special meaning to the shell. Of these,
argv, child, home, path, prompt, shell and status are always set by the
shell. Except for child and status this setting occurs only at initializa-
tion; these variables will not be modified unless done explicitly by the
user.

The shell copies the environment variable PATH into the variable
path, and copies the value back into the environment whenever path is
set. Thus it is not necessary to worry about its setting other than in the
file .cshre since inferior ¢sh processes will import the definition of
path from the environment.

argv Set to the arguments to the shell, it is from this vari-
able that positional parameters are substituted, i.e.,
$1 is replaced by S$argv[l], etc. argv[0] is not
defined, but $0 is.

cdpath Gives a list of alternate directories searched to find
subdirectories in cd commands.

child The process number of the last command forked
with &. This variable is unset when this process
terminates.

March 15, 1989 CSH-18

CSH (C)

echo

histchars

history

home

ignoreeof

mail

noclobber

March 15, 1989

CSH (C)

Set when the -x command line option is given.
Causes each command and its arguments to be
echoed just before it is executed. For nonbuilt-in
commands all expansions occur before echoing.
Built-in commands are echoed before command and
filename substitution, since these substitutions are
then done selectively.

Can be assigned a two-character string. The first
character is used as a history character in place of !,
the second character is used in place of the " substi-
tution mechanism. For example, set histchars=",;"
will cause the history characters to be comma and

semicolon.

Can be given a numeric value to control the size of
the history list. Any command which has been
referenced in this many events will not be dis-
carded. A history that is too large may run the shell
out of memory. The last executed command is
always saved on the history list.

The home directory of the invoker, initialized from
the environment. The filename expansion of ~
refers to this variable.

If set, the shell ignores end-of-file from input de-
vices that are terminals. This prevents a shell from
accidentally being terminated by pressing Ctrl-D.

The files where the shell checks for mail. This
check is executed after each command completion.
The shell responds with, ‘“You have new mail’’ if
the file exists with an access time not greater than
its modify time.

If the first word of the value of mail is numeric, it
specifies a different mail checking interval: in
seconds, rather than the default, which is 10
minutes.

If multiple mail files are specified, then the shell
responds with ‘‘New mail in name’’, when there is
mail in the file name.

As described in the section Input/Output, restric-
tions are placed on output redirection to insure that
files are not accidentally destroyed, and that >>
redirections refer to existing files.

CSH-19

CSH (C)

noglob

nonomatch

path

prompt

shell

status

March 15, 1989

CSH (C)

If set, filename expansion is inhibited. This is most
useful in shell scripts which are not dealing with
filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is not an error for a filename expansion to
not match any existing files; rather, the primitive
pattern is returned. It is still an error for the primi-
tive pattern to be malformed, i.e., echo [still gives
an error.

Each word of the path variable specifies a directory
in which commands are to be sought for execution.
A null word specifies the current directory. If there
is no path variable, then only full pathnames will
execute. The usual search path is /bin, fusr/bin, and
., but this may vary from system to system. For the
super-user, the default search path is /etc, /bin and
fusr/bin. A shell which is given neither the -¢ nor
the -t option will normally hash the contents of the
directories in the path variable after reading .cshrc,
and each time the path variable is reset. If new
commands are added to these directories while the
shell is active, it may be necessary to give the
rehash command, or the commands may not be
found.

The string which is printed before reading each
command from an interactive terminal input. Ifa!
appears in the string, it will be replaced by the
current event number unless a preceding \ is given.
Default is % , or # for the super-user.

The file in which the shell resides. This is used in
forking shells to interpret files which have execute
bits set, but which are not executable by the system.
(See the description of Nonbuilt-In Command Exe-
cution below.) Initialized to the home of the shell.

The status returned by the last command. If it ter-
minated abnormally, then 0200 is added to the
status. Built-in commands which fail return exit
status 1, otherwise these commands set status to 0.

CSH-20

CSH (C) CSH (C)

time Controls automatic timing of commands. If set,
then any command which takes more than this
many cpu seconds will cause a line to be sent to the
screen displaying user time, system time, real time,
and a utilization percentage which is the ratio of
user plus system times to real time.

verbose Set by the -v command line option, causes the
words of each command to be printed after history
substitution.

Nonbuilt-In Command Execution

When a command to be executed is found to not be a built-in com-
mand, the shell attempts to execute the command via exec(S). Each
word in the variable path names a directory from which the shell will
attempt to execute the command. If it is given neither a -c nor a -t
option, the shell will hash the names in these directories into an inter-
nal table so that it will only try an exec in a directory if there is a pos-
sibility that the command resides there. This greatly speeds command
location when a large number of directories are present in the search
path. If this mechanism has been turned off (via urhash), or if the
shell was given a -c or -t argument, and for each directory component
of path which does not begin with a /, the shell concatenates each
directory component of path with the given command name to form a
pathname of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus
(cd ; pwd) ; pwd

prints the home directory; leaving you where you were and printing
the name of the current directory, while

cd ; pwd

leaves you in the home directory. Parenthesized commands are
always executed in a subshell. Thus

(cd; pwd); pwd

prints the home directory but leaves you in the original directory,
while ‘

cd; pwd
moves you to the home directory.
If the file has execute permissions but is not an executable binary to

the system, then it is assumed to be a file containing shell commands
and a new shell is spawned to read it.

March 15, 1989 CSH-21

CSH (C) ' CSH (C)

If there is an alias for shell then the words of the alias are prepended
to the argument list to form the shell command. The first word of the
alias should be the full pathname of the shell (e.g. $shell). Note that
this is a special, late occurring, case of alias substitution, and only
allows words to be prepended to the argument list without
modification.

Argument List Processing

If argument O to the shell is - then this is a login shell. The flag argu-
ments are interpreted as follows:

-c Commands are read from the (single) following argument which
must be present. Any remaining arguments are placed in argv.

-e The shell exits if any invoked command terminates abnormally
or yields a nonzero exit status:

-f The shell will start faster, because it will neither search for nor
execute commands from the file .cshrc in the invoker’s home
directory.

-i The shell is interactive and prompts for its top-level input, even
if it appears to not be a terminal. Shells are interactive without
this option if their input and output are terminals.

-n Commands are parsed, but not executed. This may aid in syn-
tactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be used to
escape the newline at the end of this line and continue onto
another line.

-v Causes the verbose variable to be set, with the effect that com-
mand input is echoed after history substitution.

-X Causes the echo variable to be set, so that commands are echoed
immediately before execution.

-V Causes the verbose variable to be set even before .cshrc is exe-
cuted.

-X Causes the echo variable to be set even before .cshrc is exe-
cuted.

After processing the flag arguments, if arguments remain but none of
the -c, -i, -s, or -t options were given, the first argument is taken as the
name of a file of commands to be executed. The shell opens this file,
and saves its name for possible resubstitution by $0. On a typical sys-
tem, most shell scripts are written for the standard shell (see sh(C)).

March 15, 1989 CSH-22

CSH (C) CSH (C)

The C shell will execute such a standard shell if the first character of
the script is not a # (i.e. if the script does not start with a comment).
Remaining arguments initialize the variable argv.

Signal Handling

The shell normally ignores quit signals. The interrupt and quit signals
are ignored for an invoked command if the command is followed by
&; otherwise the signals have the values which the shell inherited
from its parent. The shells handling of interrupts can be controlled by
onintr. By default, login shells catch the terminate signal; otherwise
this signal is passed on to children from the state in the shell’s parent.
In no case are interrupts allowed when a login shell is reading the file

Jogout.
Files
~/.cshrc Read at by each shell at the beginning
of execution
Jetc/cshre Systemwide default cshrc file if none is present
“/login Read by login shell, after .cshrc at login
~/logout Read by login shell, at logout
/bin/sh Shell for scripts not starting with a #
/tmp/sh* Temporary file for <<
/dev/null Source of empty file
fetc/passwd Source of home directories for "name
Limitations

Words can be no longer than 512 characters. The number of argu-
ments to a command which involves filename expansion is limited to
1/6 the number of characters allowed in an argument list, which is
5120, less the characters in the environment. Also, command substitu-
tions may substitute no more characters than are allowed in an argu-
ment list.

To detect looping, the shell restricts the number of alias substitutions
on a single line to 20.

See Also

access(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),

March 15, 1989 CSH-23

CSH (C) CSH (C)
a.out(F), environ(M)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

Built-in control structure commands like foreach and while cannot be
used with |, & or ;.

Commands within loops, prompted for by ?, are not placed in the his-
tory list.

It is not possible to use the colon (:) modifiers on the output of com-
mand substitutions.

The C-shell has many built-in commands with the same name and
functionality as Bourne shell commands. However, the syntax of
these C-shell and Bourne shell commands often differs. Two examples
are the nice and echo commands. Be sure to use the correct syntax
when working with these built-in C-shell commands.

When a C-shell user logs in, the system reads and executes commands
in /etc/cshrc before executing commands in the user’s $HOME].cshrc.
You can, therefore, modify the C-shell environment for all users on the
system by editing /etc/cshrc.

During intervals of heavy system load, pressing the delete key while
at a C-shell prompt (%) may cause the shell to exit. If csh is the login
shell, the user is logged out.

csh attempts to import and export the PATH variable for use with reg-

ular shell scripts. This only works for simple cases, where the PATH
contains no command characters.

March 15, 1989 CSH-24

CSPLIT (C) CSPLIT (C)

csplit

splits files according to context

Syntax

csplit [-s] [-k] [-f prefix] file argl [. .. argn]

Description

csplit reads file and separates it into n+1 sections, defined by the
arguments argl... argn. By default the sections are placed in files
xx00 ... xxn (n may not be greater than 99). These sections get the
following pieces of file:

00: From the start of file up to (but not including) the line refer-
enced by argl.

01: From the line referenced by argl up to the line referenced by
arg2.

n+l: From the line referenced by argn to the end of file.
The options to csplit are:

-S csplit normally prints the character counts for each file creat-
ed. If the -s option is present, csplit suppresses the printing
of all character counts.

-k csplit normally removes created files if an error occurs. If
the -k option is present, csplit leaves previously created files
intact.

-f prefix If the -f option is used, the created files are named prefix00
... prefixn. The default is xx00 ... xxn.

The arguments (argl ... argn)to csplit can be a combination of the
following:

frexp/ A file is to be created for the section from the current line
down to (but not including) the line containing the regular
expression rexp. The current line becomes the line contain-
ing rexp. This argument may be followed by an optional +
or - some number of lines (e.g., /Page/-5).

March 15, 1989 CSPLIT-1

CSPLIT (C) CSPLIT (C)

Yrexp % This argument is the same as /rexp/, except that no file is
created for the section.

Inno A file i to be created from the current line down to (but not
including) lnno. The current line becomes Inno.

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If 1t follows Inno, the
file will be split every [nno lines (num times) from that
point.

Enclose all rexp type arguments that contain blanks or other charac-
ters meaningful to the shell in the appropriate quotation marks. Regu-
lar expressions may not contain embedded newlines. csplit does not
affect the original file; it is the users responsibility to remove it.

Examples

csplit -f cobol file “/procedure division/” “/par5./” “/parl6./

This example creates four files, cobol00 ... cobol03. After editing
the “‘split’’ files, they can be recombined as follows:

cat cobol0[0-3] > file
Note that this example overwrites the original file.
csplit -k file 100 {99}
This example would split the file at every 100 lines, up to 10,000 lines.
The -k option causes the created files to be retained if there are less
than 10,000 lines; however, an error message would still be printed.
csplit -k prog.c “%main(% "~ /"}/+1" {20}
Assuming that prog.c follows the normal C coding convention of end-

ing routines with a } at the beginning of the line, this example will
create a file containing each separate C routine (up to 21) in prog.c.

March 15, 1989 CSPLIT-2

CSPLIT (C) CSPLIT (C)

See Also

ed(C), sh(C), regex(S)

Diagnostics

Self-explanatory except for:
arg - out of range

which means that the given argument did not reference a line between
the current position and the end of the file.

Standards Conformance

csplit is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CSPLIT-3

Cu (C)

cu

Cu (C)

call another UNIX/XENIX system

Syntax

cu [-sspeed] [-lline] [-h] [-t][-xn][-0l-el-0e] [-n] telno
cu[-sspeed][-h][-xn][[-0l-el-0e]-Iline [dir]
cu[-h][-xn][-0l-el-0e] systemname

Description

cu calls up another UNIX system, a terminal, or possibly a non-UNIX
system. It manages an interactive conversation with possible transfers

of ASCII files.

cu accepts the following options and arguments:

-sspeed

-line

-h

March 15, 1989

Specifies the transmission speed (150, 300, 600, 1200,
2400, 4800, 9600, 19200, 38400). The default value is
"Any" speed which will depend on the order of the lines
in the /usr/lib/uucp/Devices file. A speed range can
also be specified (for example, -s1200-4800).

Specifies a device name to use as the communication
line. This can be used to override the search that would
otherwise take place for the first available line having
the right speed. When the -1 option is used without the
-s option, the speed of a line is taken from the Devices
file. When the -1 and -s options are both used together,
cu will search the Devices file to check if the requested
speed for the requested line is available. If so, the con-
nection will be made at the requested speed; otherwise
an error message will be printed and the call will not be
made. The specified device is generally a directly con-
nected asynchronous line (e.g., /dev/ttyab) in which
case a telephone number (telno) is not required. The
specified device need not be in the /dev directory. If
the specified device is associated with an auto dialer, a
telephone number must be provided. Use of this option
with systemname rather than telno will not give the
desired result (see systemname below).

Emulates local echo, supporting calls to other computer

systems which expect terminals to be set to half-duplex
mode.

CuU-1

CuU (C) CuU (C)

-t Used to dial an ASCII terminal which has been set to
auto answer. Appropriate mapping of carriage-return to
carriage-return-line-feed pairs is set.

-Xn Causes diagnostic traces to be printed; it produces a
detailed output of the program execution on stderr. The
debugging level, n, is a single digit; -x9 is the most
useful value.

-n For added security, will prompt the user to provide the
telephone number to be dialed rather than taking it
from the command line.

telno When using an automatic dialer, the argument is the
telephone number with equal signs for secondary dial
tone or minus signs placed appropriately for delays of 4
seconds.

systemname A UUCP system name may be used rather than a tele-
phone number. In this case, cu will obtain an appropri-
ate direct line or telephone number from
/usr/lib/uucp/Systems. Note: the systemname option
should not be used in conjunction with the -1 and -s
options as cu will connect to the first available line for
the system name specified, ignoring the requested line
and speed.

dir The keyword- dir can be used with cu -lline, in order to
talk directly to a modem on that line, instead of talking
to another system via that modem. This can be useful
when debugging or checking modem operation. Note:
only users with write access to the Devices file are per-
mitted to use cu -line dir.

In addition, cu uses the following options to determine communica-
tions settings:

-0 If the remote system expects or sends 7-bit with odd parity.
-e If the remote system expects or sends 7-bit with even parity.
-oe . . 0
If the remote system expects or sends 7-bit, ignoring parity and
sends 7-bit with either parity.
By default, cu expects and sends 8-bit characters without parity. If the
login prompt received appears to contain incorrect 8-bit characters, or
a correct login is rejected, use the 7-bit options described above.
After making the connection, cu runs as two processes: the transmit

process reads data from the standard input and, except for lines begin-
ning with 7, passes it to the remote system; the receive process accepts

March 15, 1989 Cu-2

cu (C)

CU (C)

data from the remote system and, except for lines beginning with ~,
passes it to the standard output. Normally, an automatic DC3/DCI
protocol is used to control input from the remote so the buffer is not
overrun. Lines beginning with ~ have special meanings.

The transmit process interprets the following user initiated com-

mands:

-

temd. ..

“$cmd . . .

“"%cd

“%take from [to]

“%oput from [to]

“line

“%break

“%debug

t

March 15, 1989

terminate the conversation.

escape to an interactive shell on the local sys-
tem.

run ¢md on the local system (via sh -c).

run cmd locally and send its output to the
remote system.

change the directory on the local system.
Note: “!ed will cause the command to be run
by a sub-shell, probably not what was
intended.

copy file from (on the remote system) to file
to on the local system. If to is omitted, the
from argument is used in both places.

copy file from (on local system) to file fo on
remote system. If to is omitted, the from
argument is used in both places.

For both "%take and ~%put commands, as
each block of the file is transferred, consecu-
tive single digits are printed to the terminal.

send the line “line to the remote system.

transmit a BREAK to the remote system
(which can also be specified as “%Db).

toggles the -x debugging level between 0 and
9 (which can also be specified as “%d).

prints the values of the termio structure vari-
ables for the user’s terminal (useful for
debugging).

prints the values of the termio structure vari-

ables for the remote communication line
(useful for debugging).

Cu-3

CU (C) CU (C)

“%nostop toggles between DC3/DC1 input control pro-
tocol and no input control. This is useful in
case the remote system is one which does not
respond properly to the DC3 and DCI1 charac-
ters.

The receive process normally copies data from the remote system to
its standard output. Internally the program accomplishes this by ini-
tiating an output diversion to a file when a line from the remote begins
with ~. Data from the remote is diverted (or appended, if >> is used)
to file on the local system. The trailing "> marks the end of the diver-
sion.

The use of “%put requires stty (C) and cat(C) on the remote side. It
also requires that the current erase and kill characters on the remote
system be identical to these current control characters on the local
system. Backslashes are inserted at appropriate places.

The use of “%take requires the existence of echo(S) and cat(C) on the
remote system. Also, tabs mode (See stty(C)) should be set on the
remote system if tabs are to be copied without expansion to spaces.

When cu is used on system! to connect to system2 and subsequently
used on system2 to connect to system3, commands on system2 can be
executed by using ~. Executing a tilde command reminds the user of
the local system uname. For example, uname can be executed on sys-
tems 1, 2, and 3 as follows:

uname

system3
“system1!uname
system1
““system2!uname
system2

In general, ~ causes the command to be executed on the original ma-
chine, ™~ causes the command to be executed on the next machine in
the chain.

Examples

To dial a system whose telephone number is 9 201 555 1212 using
1200 baud (where dialtone is expected after the 9):

cu -s1200 9=12015551212
If the speed is not specified, ‘‘Any’’ is the default value.
To login to a system connected by a direct line:

cu -1 /dev/ttyXX

March 15, 1989 Ccu-4

CuU (C) CuU (C)

or
cu -1 ttyXX
To dial a system with the specific line and a specific speed:
cu -s1200 -1 ttyXX
To dial a system using a specific line associated with an auto dialer:
cu -1 ttyXX 9=12015551212
To use a system name:
cu systemname

To talk directly to an ACU (connect directly with the modem and
enter modem commands manually):

cu -lttyXX dir

Files

[usr/lib/uucp/Systems
/usr/lib/uucp/Devices
fusr/lib/uucp/LCK..(tty-device)

See Also

cat(C), ct(C), echo(S), stty(C), uucp(C), uname(C)

Diagnostics

Exit code is zero for normal exit, otherwise, one.

March 15, 1989 Cu-5

CU (C) Cu (C)

Warnings

The cu command does not do any integrity checking on data it
transfers. Data fields with special cu characters may not be
transmitted properly. Depending on the interconnection hardware,
it may be necessary to use a ~. to terminate the conversion even if
stty 0 has been used. Non-printing characters are not dependably
transmitted using either the “%put or “%take commands. cu
between an IMBR1 and a penril modem will not return a login
prompt immediately upon connection. A carriage return will
return the prompt.

Notes

There is an artificial slowing of transmission by cu during the
"%put operation so that loss of data is unlikely.

Standards Conformance

cu is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CuU-6

CUT (C) CUT (C)

cut

cuts out selected fields of each line of a file

Syntax

cut -c list [filel file2 ...]
cut -f list [-d char] [-s] [file] file2 ...]

Description

Use cut to cut out columns from a table or fields from each line of a
file. The fields as specified by list can be fixed length, i.e., character
positions as on a punched card (-c option), or the length can vary from
line to line and be marked with a field delimiter character like tab (-f
option). cut can be used as a filter. If no files are given, the standard
input is used.

The meanings of the options are:

list A comma-separated list of integers (in increasing order), with
an optional dash (-), indicates ranges, as in the -0 option of
nroffftroff for page ranges; e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field).

-clist The list following -c (no space) specifies character positions
(e.g., -¢1-72 would keep the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated
in the file by a delimiter character (see -d); e.g., -f1,7 copies
the first and seventh field only. Lines with no field delimiters
will be passed through intact (useful for table subheadings),
unless -s is specified.

-dchar The character following -d is the field delimiter (-f option
only). Default is tab. Space or other characters with special
meaning to the shell must be quoted.

-S If the -f option is used, -s suppresses lines with no delimiter
characters. Unless specified, lines with no delimiters will be
passed through untouched.

Either the -c¢ or -f option must be specified.

March 15, 1989 CuUT-1

CUT (C) CUT (C)

Notes

Use grep(C) to make horizontal ‘‘cuts’” (by context) through a file, or
paste(C) to put files together horizontally. To reorder columns in a
table, use cut and paste.

Examples

cut -d: -f1,5 /etc/passwd Maps user ID’s to names.

name=*who ami | cut -f1 -d" "~
Sets name to current login name.

See Also

grep(C), paste(C)

Diagnostics

line too long A line can have no more than 511 characters or
fields.

bad list for c ! f option
Missing -c¢ or -f option or incorrectly specified list.
No error occurs if a line has fewer fields than the list
calls for.

no fields The list is empty.

Standards Conformance

cut is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 CuUT-2

DATE (C) DATE (C)

date

prints and sets the date

Syntax

date [-cms] [mmddhhmm([yy]] [+format]

Description

If no argument is given, or if the argument begins with +, the current
date and time are printed as defined by the locale. Otherwise, the
current date is set. The first mm is the month number; dd is the day
number in the month; hh is the hour number (24-hour system); the
second mm is the minute number; yy is the last 2 digits of the year
number and is optional. For example:

date 10080045
sets the date to Oct 8, 12:45 AM, if the local language is set to English.
The current year is the default if no year is mentioned. The system
operates in GMT. date takes care of the conversion to and from local
standard and daylight time.
If the argument begins with +, the output of date is under the control
of the user. The format for the output is similar to that of the first
argument to printf (S). All output fields are of fixed size (zero padded
if necessary). Each field descriptor is preceded by a percent sign (%)
and will be replaced in the output by its corresponding value. A single
percent sign is encoded by doubling the percent sign, i.e., by specify-
ing “%%’’. All other characters are copied to the output without
change. The string is always terminated with a newline character.
Field Descriptors:
n Inserts a newline character
t Inserts a tab character
m Month of year - 01 to 12
d Day of month - 01 to 31
y Last 2 digits of year - 00 to 99

D Date as mm/dd/yy

March 16, 1991 DATE-1

DATE (C) DATE (C)

H Hour-00to23
M Minute - 00 to 59
S Second - 00 to 59
T Time as HH:MM:SS
J Julian date - 001 to 366
w Day of the week - Sunday =0
a Abbreviated weekday - Sun to Sat
h Abbreviated month - Jan to Dec
r Time in AM/PM notation
Options
-¢ Prints the current date and time from the hardware real-time
clock. Thus, date -c mmddhhmm[yy] sets the real-time clock.
-m Updates the year on the hardware real-time clock, if it is Janu-

-S

ary 1, and makes adjustments to the real-time clock if it is
February 29 in a leap year. These dates are not automatically
incremented. Be sure to use this option after midnight. The -m
option determines if it is January 1 or February 29, and then
updates the hardware real-time clock if necessary. For the -m
option to work correctly, the software clock and the hardware
clock should be within twelve hours of each other. Use cron(C)
to execute date m each day.

Sets (synchronizes) the system (i.e., software) clock to the
current time and date from the hardware real-time clock.

The operating system normally uses only the system (software) clock.
It uses the hardware real-time clock only with the date command.

Example

The line

date +DATE: %m/%d/%y%nTIME: %H:%M: %S’

generates as output:

March 16, 1991 DATE-2

DATE (C) DATE (C)

DATE: 08/01/90
TIME: 14:45:05

Diagnostics
no permission You aren’t the super-user and you are trying to
" change the date.
bad conversion The date set is syntactically incorrect.

bad format character The field descriptor is not recognizable.

Standards Conformance

date is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 16, 1991 DATE-3

DC (C)

dc

DC (C)

invokes an arbitrary precision calculator

Syntax

dc [file]

Description

dc is an arbitrary precision arithmetic package. Ordinarily it operates
on decimal integers, but you may specify an input base, output base,
and a number of fractional digits to be maintained. The overall struc-
ture of dc is a stacking (reverse Polish) calculator. If an argument is
given, input is taken from that file until its end, then from the standard
input. The following constructions are recognized:

number

The value of the number is pushed on the stack. A number is
an unbroken string of the digits 0-9. It may be preceded by an
underscore (_) to input a negative number. Numbers may con-
tain decimal points.

+-/%%"

March 11,

The top two values on the stack are added (+), subtracted (-),
multiplied (*), divided (/), remaindered (%), or exponentiated
("). The two entries are popped off the stack and the result
pushed on the stack in their place. Any fractional part of an
exponent is ignored.

The top of the stack is popped and stored into a register named
x, where x may be any character. If the s is capitalized, x is
treated as a stack and the value is pushed on it.

The value in register x is pushed on the stack. The register x is
not altered. All registers start with zero value. If the 1 is capi-
talized, register x is treated as a stack and its top value is
popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains
unchanged. p interprets the top of the stack as an ASCII string,
removes it, and prints it.

All values on the stack are printed.

1990 DC-1

DC (C)

X

DC (C)

Exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.

Treats the top element of the stack as a character string and
executes it as a string of dc commands.

Replaces the number on the top of the stack with its scale fac-
tor.

[...] Puts the bracketed ASCII string onto the top of the stack.

<X >X =X

The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

Replaces the top element on the stack by its square root. Any
existing fractional part of the argument is taken into account,
but otherwise the scale factor is ignored.

Interprets the rest of the line as an Altos UNIX System V com-
mand.

All values on the stack are popped.

The top value on the stack is popped and used as the number
radix for further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number
radix for further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non-
negative scale factor; the appropriate number of places are
printed on output, and maintained during multiplication, divi-
sion, and exponentiation. The interaction of scale factor, input
base, and output base will be reasonable if all are changed
together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the ter-
minal) and executed.

Used by bc for array operations.

March 11, 1990 - DC-2

DC (C)

Example

DC (C)

This example prints the first ten values of n!:

[lal+dsa*plalO>y]sy

Osal
lyx

See Also

be(C)

Diagnostics

X is unimplemented

stack empty

Out of space

Out of headers
Out of pushdown
Nesting Depth

Notes

The octal number x corresponds to a character
that is not implemented as a command

Not enough elements on the stack to do what
was asked

The free list is exhausted (too many digits)
Too many numbers being kept around
Too many items on the stack

Too many levels of nested execution

bc is a preprocessor for dc, providing infix notation and a C-like syn-
tax which implements functions and reasonable control structures for
programs. For interactive use, bc is preferred to dc .

March 11, 1990

DC-3

DD (C)

dd

converts and copies a file

DD (C)

Syntax

dd [option=value] ...

Description

dd copies the specified input file to the specified output with possible
conversions. The standard input and output are used by default. The
input and output block size may be specified to take advantage of raw

physical I/O.

Option Value

if=file Input filename; standard input is default

of=file Output filename; standard output is default

ibs=n Input block size is n bytes (default is BSIZE block
size)

obs=n Output block size (default is BSIZE block size)

bs=n Sets both input and output block size, superseding ibs
and obs. If no conversion is specified, it is particu-
larly efficient since no in-core copy needs to be done

cbs=n Conversion buffer size

skip=n Skips n input records before starting copy

seek=n Seeks n records from beginning of output file before
copying

count=n Copies only » input records

conv=ascii Converts EBCDIC to ASCII

conv=ebcdic
conv=ibm

conv=Ilcase

March 15, 1989

Converts ASCII to EBCDIC
Slightly different map of ASCII to EBCDIC

Maps alphabetic characters to lowercase

DD (C) DD (C)

Option Value

conv=ucase Maps alphabetic characters to uppercase
~conv=swab Swaps every pair of bytes

conv=sync Pads every input record to ibs

conv="...,..."
Several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number
may end with k, b, or w to specify multiplication by 1024, 512, or 2
respectively; a pair of numbers may be separated by x to indicate a
product.

cbs is used only if ascii or ebcdic conversion is specified. In the
former case cbs characters are placed into the conversion buffer, con-
verted to ASCII, and trailing blanks trimmed and newline added before
sending the line to the output. In the latter case ASCII characters are
read into the conversion buffer, converted to EBCDIC, and blanks
added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input
and output blocks.

Examples

This command reads an EBCDIC tape, blocked ten 80-byte EBCDIC
card images per record, into the ASCII file outfile :

dd if=/dev/rmtO of=outfile ibs=800 cbs=80 conv=ascii,lcase
Note the use of raw magtape. dd is especially suited to I/O on raw

physical devices because it allows reading and writing in arbitrary
record sizes.

See Also

copy(C), cp(C), tar(C)

Diagnostics

f+p records in(out) Numbers of full ‘and partial records
read(written)

March 15, 1989 DD-2

DD (C) DD (C)

Notes

The ASCII/EBCDIC conversion tables are taken from the 256-
character standard in the CACM Nov, 1968. The ibm conversion cor-
responds better to certain IBM print train conventions. There is no
universal solution.

Newlines are inserted only on conversion to ASCII; padding is done
only on conversion to EBCDIC.

When using dd with a raw device, specify the block size as a multiple
of 512-byte blocks. For example, to use a 9K block size, enter:

dd if=file of=/dev/rfd0 bs=18b
You could also enter:

dd if=file of=/dev/rfd0 bs=9K

Standards Conformance

dd is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DD-3

DEVNM (C) DEVNM (C)

devnm

identifies device name

Syntax

/etc/devnm [names |

Description

devnm identifies the special file associated with the mounted file sys-
tem where the argument name resides.

This command is most commonly used by the /etc/rc2 scripts to con-
struct a mount table entry for the root device.

Examples

Be sure to type full pathnames in this example:
fetc/devnm fusr
If /dev/hdb is mounted on /usr, this produces:

hdb /usr

Files

/dev/* Device names

fetc/rc2 Startup commands

See Also

setmnt(ADM)

Standards Conformance

devnm is conformant with:
AT&T SVID Issue 2, Select Code 307-127.

March 17, 1991 DEVNM-1

DF (C) B DF (C)

df

report number of free disk blocks

Syntax

df [-t][-f][-v][filesystems]

Description

df prints out the number of free blocks and free inodes available for
on-line filesystems by examining the counts kept in the super-blocks;
filesystems may be specified by device name (e.g., /dev/root). If the
filesystems argument is unspecified, the free space on all of the
mounted filesystems is sent to the standard output. The list of
mounted filesystems is given in /etc/mnttab.

Options include:

-t Causes total allocated block figures to be reported as well as
number of free blocks.

-f Reports only an actual count of the blocks in the free list (free
inodes are not reported). With this option, df reports on raw de-
vices.

-v Reports the percent of blocks used as well as the number of
blocks used and free.

The -v option can not be used with other df options.

Files

[dev/*
fetc/mnttab

See Also

mount(ADM), fsck(ADM), mnttab(F)

Notes

See Notes under mount(ADM).

March 15, 1989 DF-1

DF (C) DF (C)

This utility reports sizes in 512 byte blocks. df will report 2 blocks
less free space, rather than 1 block, since the file uses one system
block of 1024 bytes.

The directory /etc/fsemd.d/TYPE contains programs for each hlesys-
tem type, df invokes the appropriate binary.

Authorization

The behavior of this utility is affected by assignment of the querys-
pace authorization, which is usually reserved for system administra-
tors. Refer to the ‘“Using a Trusted System’’ chapter of the User’s
Guide for more details.

Standards Conformance

df is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DF-2

DIFF (C) DIFF (C)

d

iff

compares two text files

Syntax

diff [-befh] filel file2

Description

diff tells what lines must be changed in two files to bring them into
agreement. If filel or file2 is a dash (-), the standard input is used. If
filel or file2 is a directory, diff uses the file in that directory that has
the same name as the file (file2 or filel respectively) it is compared to.
For example:

diff /tmp dog

compares the file named dog that is in the /tmp directory, with the file
dog in the current directory. The normal output contains lines of these
forms:

nl an3,.né4
nl,n2 d n3
nl,n2 ¢ n3,n4

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a for
d and reading backward, one may ascertain equally how to convert
file2 into filel . As in ed, identical pairs where nl = n2 or n3 = n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the
first file flagged by <, then all the lines that are affected in the second
file flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be ignored
and other strings of blanks to compare equal.

The -e option produces a script of a, ¢ and d commands for the editor
ed, which will recreate file2 from filel. The -f option produces a simi-
lar script, not useful with ed, in the opposite order. In connection with
-e, the following shell procedure helps maintain multiple versions of a
file:

(shift; cat $*; echo “1,$p”) led - $1

March 15, 1989 DIFF-1

DIFF (C) DIFF (C)

This works by performing 'a set of editing operations on an original
ancestral file. This is done by combining the sequence of ed scripts
given as all command line arguments except the first. These scripts
are presumed to have been created with diff in the order given on the
command line. The set of editing operations is then piped as an edit-
ing script to ed where all editing operations are performed on the
ancestral file given as the first argument on the command line. The
final version of the file is then printed on the standard output. Only an
ancestral file ($1) and a chain of version-to-version ed scripts
($2,$3,...) made by diff need be on hand.

Except in rare circumstances, diff finds the smallest sufficient set of
file differences.

The -h option does a fast, less-rigorous job. It works only when
changed stretches are short and well separated, but the files can be of
unlimited length. The -e and -f options cannot be used with the -h
option.

Files

/usr/lib/difth (executable used when -h option is specified)

See Also

cmp(C), comm(C), ed(C)

Diagnostics

Exit status is O for no differences, 1 for some differences, 2 for errors.

Notes

Editing scripts produced under the -e or -f option do not always work
correctly on lines consisting of a single period (.).

Standards Conformance

diffis conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ' DIFF-2

DIFF3 (C) DIFF3 (C)

diff3

compares three files

Syntax

diff3 [-ex3] filel file2 file3

Description

diff3 compares three versions of a file, and publishes disagreeing
ranges of text flagged with these codes:

==== All three files differ
====] Filel is different
==== File2 is different
==== File3 is different

The type of change suffered in converting a given range of a given file
to some other range is indicated in one of these ways:

f:nla Text is to be appended after line number nl in
file f, where f =1, 2, or 3.

finl,n2c Text is to be changed in the range line nl to
line n2. If nl = n2, the range may be abbrevi-
ated to nl.

The original contents of the range follows immediately after a ¢ indi-
cation. When the contents of two files are identical, the contents of
the lower-numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will
incorporate into filel all changes between file2 and file3, i.e., the
changes that normally would be flagged ==== and ====3. The -x
option produces a script to incorporate changes flagged with *‘===="’,
Similarly, the -3 option produces a script to incorporate changes
flagged with ‘‘====3"". The following command applies a resulting

editing script to filel :
(cat script; echo "1,$p”) I ed - filel

March 15, 1989 DIFF3-1

DIFF3 (C) DIFF3 (C)

Files

/tmp/d3*
fust/lib/diff3prog

See Also

diff(C)

Notes

The -e option does not work properly for lines consisting of a single
period.

The input file size limit is 64K bytes.

March 15, 1989 DIFF3-2

DIRCMP (C) DIRCMP (C)

dircmp

compares directories

Syntax

dircmp [-d][-s][-wn]dirl dir2

Description

dircmp examines dirl and dir2 and generates tabulated information
about the contents of the directories. Listings of files that are unique
to each directory are generated in addition to a list that indicates
whether the files common to both directories have the same contents.

There are three options available:

-d Performs a full diff on each pair of like-named files if the
contents of the files are not identical.

-S Suppresses output of identical filenames.

-wn Changes the width of the output line to n characters. The

default width is 72.

See Also

cmp(C), diff(C)

Standards Conformance

dircmp is conformant with:

AT&T SVID Issue 2, Select Code 307-127,
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DIRCMP-1

DIRNAME (C) DIRNAME (C)

dirname

delivers directory part of pathname

Syntax

dirname string

Description

dirname delivers all but the last component of the pathname in string
and prints the result on the standard output. If there is only one com-
ponent in the pathname, only a ‘‘dot’’ is printed. It is normally used
inside substitution marks (* ~) within shell procedures.

The companion command basename deletes any prefix ending in a

slash (/) and the suffix (if present in string) from string, and prints the
result on the standard output.

Examples

The following example sets the shell variable NAME to /usr/src/cmd:
NAME==dirname /usr/src/cmd/cat.c*

This example prints /a/b/c on the standard output:
dirname /a/b/c/d

This example prints a ‘‘dot’’ on the standard output:
dirname file.ext

This example moves to the location of a file being searched for (lost-

file):

cd ‘find . -name lostfile -exec dirname { } ;°

See Also

basename(C), sh(C)

Standards Conformance

dirname is conformant with:

March 15, 1989 DIRNAME-1

DIRNAME (C) ' DIRNAME (C)

The X/Open Portability Guide II of January 1987.

March 15, 1989 DIRNAME-2

DISABLE (C) DISABLE (C)

disable

turns off terminals and printers

Syntax

disable tty ...
disable [-c][-r[reason]] printers

Description

For terminals, this program manipulates the /etc/conf/cf.d/init.base
file and signals init to disallow logins on a particular terminal. For
printers, disable stops print requests from being sent to the named
printer. The following options can be used:

- Cancels any requests that are currently printing.

-r[reason] Associates a reason with disabling the printer. The rea-
son applies to all printers listed up to the next -r option.
If the -r option is not present or the -r option is given
without a reason, then a default reason is used. Reason
is reported by Ipstat (C).

Examples

In this example, a printer named linepr is disabled because of a paper
jam:

disable -r"paper jam" linepr

Files

[dev/tty*
fetc/conf/cf.d/init.base

[usr/spool/lp/*

See Also

login(M), enable(C), inittab(F), getty(M), init(M), 1p(C), Ipstat(C),
uugetty(ADM)

March 15, 1989 DISABLE-1

DISABLE (C) DISABLE (C)

Authorization

The behavior of this utility is affected by assignment of the printer-
stat authorization, which is usually reserved for system administra-
tors. Refer to the ‘“Using a Trusted System’’ chapter of the User’s
Guide for more details.

March 15, 1989 DISABLE-2

DISKCP (C) DISKCP (C)

diskcp, diskecmp

copies or compares floppy disks

Syntax

diskep [-f][-d][-s][-48ds9][-96ds9][-96ds15][-135ds9][-135ds18]
diskemp [-d][-s][-48ds9][-96ds9][-96ds15][-135ds9][-135ds18]

Description

diskep is used to make an image (exact copy) of a source floppy disk
on a target floppy disk. On machines with one floppy drive diskcp
temporarily transfers the image to the hard disk until a ‘‘target’’
floppy is inserted into the floppy drive. On machines with two floppy
drives diskcp immediately places the image of the source floppy
directly on the target floppy.

diskcmp functions similarly to diskcp. It compares the contents of one
floppy disk with the contents of a second floppy disk using the cmp
utility.

The options are:

-f Format the target floppy disk before the image is copied (diskcp
only).

-d The computer has dual floppy drives. diskcp copies the image
directly onto the target floppy.

-s Uses sum(C) to compare the contents of the source and target
floppies; gives an error message if the two do not match.

-48ds9

This setting is for low density 48tpi floppies. It is the default set-
ting.

-96ds9
This setting is for high density 96tpi floppies.

-96ds15
This setting is for quad density 96tpi floppies.

-135ds9
This setting is for high density 135tpi 3.5 inch floppies.

March 11, 1990 DISKCP-1

DISKCP (C) DISKCP (C)

-135ds18
This setting is for quad density 135tpi 3.5 inch floppies.

When using the -96ds9 and -96ds15 options of diskcp without the -f
option, if the first target disk is unformatted, the program will note it,
format it and make the copy. If another copy is requested and another
unformatted target disk inserted, diskep exits with a ‘‘System error.”’
Quit, format the floppy, and reinvoke diskcp to make another copy.

Examples

To make a copy of a floppy, place the source floppy in the drive and
type: :

diskcp
When diskcp is finished copying to the hard disk, it prompts you to
insert the target floppy in the drive. If you specify the -f flag when you
invoke diskcp , the program formats the target floppy. When the copy
is finished, diskcp asks if you would like to make another copy of the

same source disk. If you enter ‘n’, it asks if you would like to copy
another source disk.

Specify the -d flag on the command line if you have two floppy drives:
diskep -d

Notes

If diskcp encounters a write error while copying the source image to
the target disk, it formats the disk and tries to write the source image
again. This happens most often when an unformatted floppy is used
and the -f flag is not specified.

Files

Just/bin/diskcp
/usr/bin/diskecmp
/tmp/disk?2??

See Also

cmp(C), dd(C), format(C), sum(C)

Value Added

diskemp and diskcp are extensions of AT&T System V provided by
Altos UNIX System V.

March 11, 1990 DISKCP-2

DOS (C) DOS (C)

dos: doscat, doscp, dosdir, dosfor-
mat, dosmkdir, dosls, dosrm,
dosrmdir

access to and manipulation of DOS files and DOS
filesystems

Syntax

doscat [-r |-m] file ...

doscp [-r | -m] filel file2
doscp [-r | -m] file ... directory
dosdir directory ...

dosformat [-fqv] drive

dosls directory ...

dosmkdir directory ...

dosrm file ...

dosrmdir directory ...

Description

The dos commands provide access to the files and directories on MS-
DOS disks and on a DOS partition of a hard disk. Note that in order to
use these commands on a DOS partition of a hard disk, the partition
must be bootable, although not active. It is also possible to mount and
access a DOS filesystem while operating from the Altos UNIX System
V partition.

The dos commands perform the following actions:

doscat Copies one or more DOS files to the standard output. If
-r is given, the files are copied without newline conver-
sions. If -m is given, the files are copied with newline
conversions (see ‘‘Conversions’’ below).

doscp Copies files between a DOS disk and an Altos UNIX

System V filesystem. If filel and file2 are given, filel is
copied to file2. If a directory is given, one or more files

September 19, 1990 DOS-1

DOS (C) DOS (C)

are copied to that directory. If -r is given, the files are
copied without newline conversions. If -m is given, the
files are copied with newline conversions (see
““Conversions’’ below).

dosdir Lists DOS files in the standard DOS style directory for-
mat.

dosformat Creates a DOS 2.0 formatted diskette. The drive may
be specified in either DOS drive convention, using the
default file /etc/default/msdos, or using the Altos UNIX
System V special file name. dosformat cannot be used
to format a hard disk. The -f option suppresses the
interactive feature. The -q (quiet) option is used to
suppress information normally displayed during dosfor-
mat . The -q option does not suppress the interactive
feature. The -v option prompts the user for a volume
label after the diskette has been formatted. The max-
imum size of the volume label is 11 characters.

dosls Lists DOS directories and files in an Altos UNIX Sys-
tem V format (see Is(C)).

dosrm Removes files from a DOS disk.
dosmkdir Creates a directory on a DOS disk.
dosrmdir Deletes directories from a DOS disk.

The file and directory arguments for DOS files and directories have the
form:

device:name

where device is an Altos UNIX System V pathname for the special de-
vice file containing the DOS disk, and name is a pathname to a file or
directory on the DOS disk. The two components are separated by a
colon (:). For example, the argument:

/dev/fd0:/src/file.asm

specifies the DOS file, file.asm, in the directory, /src, on the disk in the
device file /dev/fd0. Note that slashes (and not backslashes) are used
as filename separators for DOS pathnames. Arguments without a de-
vice: are assumed to be Altos UNIX System V files.

For convenience, the wuser configurable default file,
/etc/default/msdos, can define DOS drive names to be used in place of
the special device file pathnames. It can contain lines with the follow-
ing format:

September 19, 1990 DOS-2

DOS (C) DOS (C)

=/dev/fdO
C=/dev/hdad
D=/dev/hdbd

The drive letter ‘‘A’’ may be used in place of special device file path-
name /dev/fd0 when referencing DOS files (see ‘‘Examples’’ below).
The drive letter *‘C”’ or ““D’’ refer to the DOS partition on the first or
second hard disk.

The commands operate on the following kinds of disks:

DOS partitions on a hard disk
5 1/4 inch DOS

3 1/2 inch DOS

8,9, 15, or 18 sectors per track
40 tracks per side

1 or 2 sides

DOS versions 1.0, 2.0 or 3.0

Conversions

In the case of doscp, certain conversions are performed when copying
an Altos UNIX System V file. Filenames with a basename longer than
eight characters are truncated. Filename extensions (the part of the
name following separating period) longer than three characters are
truncated. For example, the file 123456789.12345 becomes
12345678.123. A message informs the user that the name has been
changed and the altered name is displayed. Filenames containing ille-
gal DOS characters are stripped when writing to the MS-DOS format.
A message informs the user that characters have been removed and
displays the name as written.

All DOS text files use a carriage-return/linefeed combination, CR-LF ,
to indicate a newline. Altos UNIX System V files use a single newline
LF character. When the doscat and doscp commands transfer DOS
text files to the Altos UNIX System V filesystem, they automatically
strip the CR. When text files are transferred to DOS , the commands
insert a CR before each LF character.

Under some circumstances the automatic newline conversions do not
occur. The -m option may be used to ensure the newline conversion.
The -r option can be used to override the automatic conversion and
force the command to perform a true byte copy regardless of file type

Examples

doscat /dev/fd0:/docs/memo.txt
doscat /tmp/f1 /tmp/f2 /dev/fdO:/src/file.asm

September 19, 1990 DOS-3

DOS (C)

DOS (C)
dosdir /dev/fd0:/src
dosdir A:/src A:/dev

doscp /tmp/myfile.txt /dev/fd0:/docs/memo.txt
doscp /tmp/f1 /tmp/f2 /dev/fdO:/mydir
dosformat /dev/fd0

dosls /dev/fd0:/src
dosls B:

dosmkdir /dev/fd0:/usr/docs

dosrm /dev/fd0:/docs/memo.txt
dosrm A:/docs/memol.txt

dosrmdir /dev/fdO:/usr/docs

fi\gcessing DOS Filesystems From the UNIX Parti-
n

The ability to mount DOS filesystems is an extension of the DOS utili-
ties documented here.

There are several limitations with the DOS directory structure which
makes this a difficult task. These limitations are due to insufficient in-
formation when compared to the Altos UNIX System V filesystem.

The DOS directory structure contains the following information:

Filename: up to 8 characters with 3 character extension
(foo.bat)

File Attribute: read-only/read-write, hidden/visible file,
system/normal file, Volume name/normal file name,
subdirectory/normal file, archive/modified bit

Time of last modification

Date of last modification

Starting point (reference through FAT)

File size in bytes

Using this information, it is converted to an actual UNIX inode. There
are some Altos UNIX System V provisions that cannot be carried over,
because the filesystem must remain sane under DOS.

°

Any date in the UNIX inode table for the DOS filesystem is the
same as the modification date (ctime = atime = mtime).

The only types of nodes allowed in the DOS filesystem are

September 19, 1990 ‘ DOS-4

DOS (C) DOS (C)

directories and normal files. Pipes, semaphores, and special de-
vice files do not exist because they do not have a counterpart
under DOS.

e The permissions are 0777 for readable/writable files and 0555
for read only files. If a user can access the filesystem, the user
will be limited by the permissions available under the DOS
directory structure. This permission is read-only or read write.
When creating a file, the creator’s umask/mode is examined.
The creation mode is based on the owner write bit.

e The gid/uid for all files on the DOS filesystem is the same as
the mountpoint. The mount point will maintain the necessary
security. If a user can get into the mountpoint, then the user has
the same access as the owner.

e There is only one link for each file under the DOS filesystem.
‘¢’ and ““..”” are a special case and are not links.

e On every change of the modification time (which on an Altos
UNIX System V system would change atime, ctime, mtime) the
DOS archive bit is set.

e Following DOS filesystem requirements, all blocks previous to
a written block are allocated before the original block is writ-
ten. This differs from Altos UNIX System V systems where the
program may seek out beyond the end of a file and write a
block. Altos UNIX System V systems do not necessarily write
blocks that have been skipped over.

e If a program does not use the directory(S) system calls, but
opens the directory in the DOS filesystem as a file, the program
should see the DOS directory structure as it really exists. By
using the directory(S) system calls, the filesystem switch code
will put together an Altos UNIX System V style directory entry.

¢ File contents are not mapped from the DOS filesystem. The file
appears exactly as it is under DOS. For example, \f\n combina-
tions are left as \f\n and not mapped to just \n. The file and
directory names are mapped to uppercase.

DOS File Conversion

The utilities xtod(C) and dtox(C) can be used to convert the EOL
sequences used to and from DOS, respectively.

September 19, 1990 DOS-5

DOS (C) DOS (C)

Files
fetc/default/msdos Default information
[dev/fd* Floppy disk devices
/dev/hd* Hard disk devices
See Also

assign(C), dtype(C), mkfs(ADM), dtox(C), xtod(C), and ‘‘Using
DOS”’ in the System Administrator’s Guide

Notes

Using the DOS utilities, is not possible to refer to DOS directories with
wild card specifications. The programs mentioned above cooperate
among themselves so no two programs will access the same DOS disk.
Only one process will access a given DOS disk at any time, while
other processes wait. If a process has to wait too long, it displays the
error message, ‘‘can’t seize a device,’’ and exits with an exit code of
1.

You cannot use the dosformat command to format device A: bbecause
it is aliased to /dev/install, which cannot be formatted. Use /dev/rfd0/
instead.

The following hard disk devices:

/dev/hdad
/dev/rhdad
/dev/hdbd
/dev/rhdbd

are similar to /dev/hdaa in that the disk driver determines which parti-
tion is the DOS partition and uses that as hd?d. This means that soft-

ware using the DOS partition does not need to know which partition is
DOS.

The Development System supports the creation of DOS executable
files, using cc (CP). Refer to the C User’s Guide and C Library Guide
for more information on using your Altos UNIX System V system to
create programs suitable for DOS systems.

All of the DOS utilities leave temporary files in /tmp. These files are
automatically removed when the system is rebooted. They can also be
manually removed.

You must have DOS 3.3 or earlier. Extended DOS partitions are not
supported.

September 19, 1990 DOS-6

DOS (C) DOS (C)

Value Added

doscat, doscp, dosdir, dosformat, dosls, dosmkdir, dosrm and dosrmdir
are extensions of AT&T System V provided by Altos UNIX System V.

September 19, 1990 DOS-7

DTOX (C) DTOX (C)

dtox
change file format from MS-DOS to UNIX

Syntax

dtox filename > output file

Description

The dtox command converts a file from MS-DOS format to Altos UNIX
System V format. MS-DOS files terminate a line of text with a carriage
return and a linefeed, while Altos UNIX System V files terminate a
line with a linefeed only. Also MS-DOS places a (CTL)z at the end of a
file, while Altos UNIX System V systems do not. Some programs and
utilities are sensitive to this difference and some are not. If a text or
data file is not being interpreted correctly, then use the dtox and xtod
conversion utilities. The dfox command strips the extra carriage
return from the end of each line and strips the (CTL)z from the end of
the file. This utility is not required for binary object files.

If no filename is specified on the command line, dfox takes input from
standard input. Output of the utility goes to standard output.

See Also

xtod(C)

Value Added

dtox is an extension of AT&T System V provided by Altos UNIX Sys-
tem V.

March 11, 1990 DTOX-1

DTYPE (C) DTYPE (C)

dtype

determines disk type

Syntax

dtype [-s] device ...

Description

dtype determines type of disk, prints pertinent information on the stan-
dard output unless the silent (-s) option is selected, and exits with a
corresponding code (see below). When more than one argument is
given, the exit code corresponds to the last argument.

Disk Exit Message
Type Code | (optional)
Misc. 60 error (specified)
61 empty or unrecognized data
Storage 70 backup format, volume n
71 tar format|, extent e of n]
72 cpio format
73 cpio character (-¢) format
MS-DOS | 80 DOS 1.x, 8 sec/track, single sided
81 DOS 1.x, 8 sec/track, dual sided

90 DOS 2.x, 8 sec/track, single sided

o1 DOS 2.x, 8 sec/track, dual sided

92 DOS 2.x, 9 sec/track, single sided

93 DOS 2.x, 9 sec/track, dual sided

94 DOS 2.x, fixed disk

110 DOS 3.x, 9 sec/track, dual sided

XENIX 120 XENIX 2.x filesystem [needs cleaning]

130 XENIX 3.x or later filesystem [needs cleaning]

UNIX 140 UNIX 1K filesystem [needs cleaning]

Notes

word-swapped refers to byte ordering of long words in relation to the
host system.

XENIX filesystems and backup and cpio binary formats may not be
recognized if created on a foreign system. This is due to such system
differences as byte and word swapping and structure alignment.

This utility only works reliably for floppy diskettes.

March 11, 1900 DTYPE-1

DTYPE (C) DTYPE (C)

Value Added

dtype is an extension of AT&T System V provided by Altos UNIX
System V.

March 11, 1900 DTYPE-2

DU (C) DU (C)

du

summarizes disk usage

Syntax

du [-afrsu] [names]

Description

du gives the number of blocks contained in all files and directories
recursively within each directory and file specified by the names
argument. The block count includes the indirect blocks of the file. If
names is missing, the current directory is used.

-s causes only the grand total (for each of the specified names) to be
given. -a causes an entry to be generated for each file. Absence of
either causes an entry to be generated for each directory only.

The -f option causes du to display the usage of files in the current file
system only. Directories containing mounted file systems will be
ignored. The -u option causes du to ignore files that have more than
one link.

du is normally silent about directories that cannot be read, files that
cannot be opened, etc. The -r option will cause du to generate mes-
sages in such instances.

A file with two or more links is only counted once.

Notes

If the -a option is not used, nondirectories given as arguments are not
listed.

If there are too many distinct linked files, du will count the excess
files more than once.

Files with holes in them will get an incorrect block count.
This utility reports sizes in 512 byte blocks. du interprets 1 block

from a 1024 byte block system as 2 of its own 512 byte blocks. Thus a
500 byte file is interpreted as 2 blocks rather than 1.

March 15, 1989 DU-1

DU (C) DU (C)

Standards Conformance

du is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 DU-2

ECHO (C)

echo

ECHO (C)

echo

Syntax

echo [-n] [arg] ...

Description

The echo command writes its arguments separated by blanks and ter-
minated by a new-line on the standard output. The -n option prints a
line without the new-line; same as using the \c escape sequence.

echo also understands C-like escape conventions; beware of conflicts
with the shell’s use of \:

\b backspace

\c print line without new-line

\f form-feed
\n new-line

\r carriage return

\t tab
\v vertical tab
\\ backslash

\n The 8-bit character whose ASCII code is a 1, 2 or 3-digit octal
number. In all cases, n must start with a zero. For example:

echo
echo
echo
echo

" \07 "
"\007 "
"\065 "
"\0101"

Echoes Ctrl-G.

Also echoes Ctrl-G.
Echoes the number “‘5”’.
Echoes the letter “‘A’’.

The echo command is useful for producing diagnostics in com-
mand files and for sending known data into a pipe.

See Also

sh(C)

March 19, 1990

ECHO-1

ECHO (C) ECHO (C)

Notes

When representing an 8-bit character by using the escape conven-
tion \On, the n must always be preceded by the digit zero (0).

For example, typing: echo "WARNING:\07" will print the phrase
WARNING: and sound the ‘‘bell’” on your terminal. The use of
single (or double) quotes (or two backslashes) is required to protect
the “*\’” that precedes the *‘07".

For the octal equivalents of each character, see ascii(M).

March 19, 1990 ECHO-2

ED (C) ED (C)

ed, red

invokes the text editor

Syntax

ed[-] [-pstring‘] [file]
red [file]

Description

ed is the standard text editor. If the file argument is given, ed simu-
lates an e command (see below) on the named file; that is to say, the
file is read into ed’s buffer so that it can be edited. ed operates on a
copy of the file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The copy of the text
being edited resides in a temporary file called the buffer. There is
only one buffer.

red is a restricted version of ed(C). It will only allow editing of files
in the current directory. It prohibits executing s#(C) commands via
the ! command. red displays an error message on any attempt to
bypass these restrictions.
In general, red does not allow commands like

!date
or

Ish

Furthermore, red will not allow pathnames in its command line. For
example, the command:

red /etc/passwd

when the current directory is not /etc causes an error.

Options

The options to ed are:
- Suppresses the printing of character counts by the e, r, and w

commands, of diagnostics from ¢ and ¢ commands, and the !
prompt after a !shell command.

March 15, 1989 ED-1

ED (C) ED (C)

-p Allows the user to specify a prompt string.

ed supports formatting capability. After including a format specifica-
tion as the first line of file and invoking ed with your terminal in stty
-tabs or stty tab3 mode (see sty (C)), the specified tab stops will auto-
matically be used when scanning file. For example, if the first line of
a file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line
length of 72 would be imposed. NOTE: While inputing text, tab char-
acters are expanded to every eighth column as the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed
by parameters to that command. These addresses specify one or more
lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain com-
mands allow the input of text. This text is placed in the appropriate
place in the buffer. While ed is accepting text, it is said to be in input
mode. In this mode, no commands are recognized; all input is merely
collected. Input mode is left by entering a period (.) alone at the
beginning of a line.

ed supports a limited form of regular expression notation; regular
expressions are used in addresses to specify lines and in some com-
mands (e.g., s) to specify portions of a line that are to be substituted.
A regular expression specifies a set of character strings. A member of
this set of strings is said to be matched by the regular expression. The
regular expressions allowed by ed are constructed as follows:

The following one-character regular expressions match a single char-
acter:

1.1 An ordinary character (not one of those discussed in 1.2 below)
is a one-character regular expression that matches itself.

1.2 A backslash (\) followed by any special character is a one-
character regular expression that matches the special character
itself. The special characters are:

a. ., % [, and \ (dot, star, left square bracket, and backslash,
respectively), which are otherwise special, except when they
appear within square brackets ([]); see 1.4 below).

b. ~ (caret), which is special at the beginning of an entire regu-
lar expression (see 3.1 and 3.2 below), or when it immedi-
ately follows the left of a pair of square brackets ([]) (see
1.4 below).

March 15, 1989 ED-2

ED (C) ED (C)

c. $ (dollar sign), which is special at the end of an entire regu-
lar expression (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire regular
expression, which is special for that regular expression (for
example, see how slash (/) is used in the g command below).

1.3 A period (.) is a one-character regular expression that matches
any character except newline.

1.4 A nonempty string of characters enclosed in square brackets ([1)
is a one-character regular expression that matches any one char-
acter in that string. If, however, the first character of the string is
a caret (»), the one-character regular expression matches any-
character except newline and the remaining characters in the
string. The star (*) also has this special meaning only if it occurs
first in the string. The dash (-) may be used to indicate a range of
consecutive ASCII characters; for example, [0-9] is equivalent to
[0123456789]. The dash (-) loses this special meaning if it
occurs first (after an initial caret (»), if any) or last in the string.
The right square bracket (]) does not terminate such a string
when it is the first character within it (after an initial caret (~), if
any);, e.g., [Ja-f] matches either a right square bracket (]) or one
of the letters “‘a’’ through ‘‘f*’ inclusive. Dot, star, left bracket,
and the backslash lose their special meaning within such a string
of characters.

Ranges of characters (characters separated by -) are treated according
to the current locale’s collation sequence (see locale (M)). Therefore,
if the collation sequence in use is A, a, B, b, C, ¢, then the expression
[a-d] is equivalent to the expression [aBbCcDd].

To specify a collation item within a class, the item must be enclosed
between [. and .] . Two character to one collation item mappings must
be specified this way. For example, if the current collation rules
specify that the characters ‘“‘Ch’’ map to one character for collation

plérposes (as in Spanish), then this collation item would be specified as
[.Ch.] .

To specify a group of collation items, which are classified as equal
unless all other collation items in the string also match, in which case
a secondary ‘‘weight’’ becomes significant, a single member of that
group must be enclosed between [= and =] . For example, if the char-
acters A and a are in the same group then the class expressions
[[=a=]b], [[=A=]b] and [Aab] are all equivalent.

The ctype classes can also be specified within regular expressions.
These are enclosed between [: and :] . The possible ctype classes are:

March 15, 1989 ED-3

ED (C) ED (C)

[:alpha:] Matches alphabetic characters
[:upper:] Matches upper case characters
[:lower:] Matches lower case characters
[:digit:] Matches digits

[:alnum:] Matches alphanumeric characters
[:space:] Matches white space

[:print:] Matches printable characters
[:punct:] Matches punctuation marks
[:graph:] Matches graphical characters
[:cntrl:] Matches control characters

The following rules may be used to construct regular expressions from
one-character regular expressions:

2.1
A one-character regular expression followed by a star (*) is a regu-
lar expression that matches zero or more occurrences of the one-
character regular expression. If there is any choice, the longest
leftmost string that permits a match is chosen.

22

A one-character regular expression followed by \{m\}, \{m,\}, or
\{m,n\} is a regular expression that matches a range of occurren-
ces of the one-character regular expression. The values of m and n
must be nonnegative integers less than 255; \{m\} matches exact!
m occurrences; \{m,\} matches at least m occurrences; \{m,n\}
matches any number of occurrences between m and n, inclusive.
Whenever a choice exists, the regular expression matches as many
occurrences as possible.

23
The concatenation of regular expressions is a regular expression
that matches the concatenation of the strings matched by each
component of the regular expression.

24
A regular expression enclosed between the character sequences \(
and \) is a regular expression that matches whatever the unadorned
regular expression maiches. See 2.6 below for a discussion of why
this is useful.

2.5
The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the
same regular expression. Here n is a digit; the subexpression
specified is that beginning with the n-th occurrence of \(counting
from the left. For example, the expression ~\(.*\)\1$ matches a
line consisting of two repeated appearances of the same string.

Finally, an entire regular expression may be constrained to match
only an initial segment or final segment of a line (or both):

March 15, 1989 ED-4

ED (C)

3.1

32

ED (C)

A caret (») at the beginning of an entire regular expression con-
strains that regular expression to match an initial segment of a
line.

A dollar sign ($) at the end of an entire regular expression con-
strains that regular expression to match a final segment of a line.
The construction ~entire regular expression$ constrains the
entire regular expression to match the entire line.

The null regular expression (e.g., /) is equivalent to the last regular
expression encountered.

To understand addressing in ed , it is necessary to know that there is a
current line at all times. Generally speaking, the current line is the last
line affected by a command; the exact effect on the current line is dis-
cussed under the description of each command. Addresses are con-
structed as follows:

1.

2
3.
4

The character . addresses the current line.
The character $ addresses the last line of the buffer.
A decimal number n addresses the n-th line of the buffer.

x addresses the line marked with the mark name character x,
which must be a lowercase letter. Lines are marked with the &
command described below.

A regular expression enclosed by slashes (/) addresses the first
line found by searching forward from the line following the
current line toward the end of the buffer and stopping at the first
line containing a string matching the regular expression. If
necessary, the search wraps around to the beginning of the buffer
and continues up to and including the current line, so that the
entire buffer is searched.

A regular expression enclosed in question marks (?) addresses
the first line found by searching backward from the line preced-
ing the current line toward the beginning of the buffer and stop-
ping at the first line containing a string matching the regular
expression. If necessary, the search wraps around to the end of
the buffer and continues up to and including the current line. See
also the last paragraph before Files below.

An address followed by a plus sign (+) or a minus sign (-) fol-
lowed by a decimal number specifies that address plus or minus
the indicated number of lines. The plus sign may be omitted.

If an address begins with + or -, the addition or subtraction is
taken with respect to the current line; e.g, -5 is understood to
mean .-5.

March 15, 1989 ED-5

ED (C) ' ED (C)

9. If an address ends with + or -, then 1 is added to or subtracted
from the address, respectively. As a consequence of this rule and
of rule 8 immediately above, the address - refers to the line
preceding the current line. (To maintain compatibility with ear-
lier versions of the editor, the character ~ in addresses is entirely
equivalent to -.) Moreover, trailing + and - characters have a
cumulative effect, so -- refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$,
while a semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error.
Commands that accept one or two addresses assume default addresses
when an insufficient number of addresses is given; if more addresses
are given than such a command requires, the last address(es) are used.

Typically, addresses are separated from each other by a comma (,).
They may also be separated by a semicolon (;). In the latter case, the
current line (.) is set to the first address, and only then is the second
address calculated. This feature can be used to determine the starting
line for forward and backward searches (see rules 5 and 6 above). The
second address of any two-address sequence must correspond to a line
that follows, in the bufter, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown
in parentheses. The parentheses are not part of the address.

It is generally illegal for more than one command to appear on a line.
However, any command (except ¢, f, r, or w) may be suffixed by p or
by 1, in which case the current line is either printed or listed, respec-
tively, as discussed below under the p and / commands.

(.)a

<text>

The append command reads the given text and appends it after the
addressed line; dot is left at the address of the last inserted line, or,
if there were no inserted lines, at the addressed line. Address O is
legal for this command: it causes the ‘‘appended’’ text to be
placed at the beginning of the buffer.

(.)c
<text>

The change command deletes the addressed lines, then accepts
input text that replaces these lines; dot is left at the address of the
last line input, or, if there were none, at the first line that was not
deleted.

(.y.d

The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the

March 15, 1989 ED-6

ED (C) | ED (C)

lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

e file

Efi

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; dot is set to the last
line of the buffer. If no filename is given, the currently remem-
bered filename, if any, is used (see the f command). The number
of characters read is typed. file is remembered for possible use as
a default filename in subsequent e, r, and w commands. If file
begins with an exclamation (1), the rest of the line is taken to be a
shell command. The output of this command is read for the e and r
commands. For the w command, the file is used as the standard
input for the specified command. Such a shell command is not
remembered as the current filename.

le

The Edit command is like ¢, except the editor does not check to
see if any changes have been made to the buffer since the last w
command.

f file

If file is given, the filename command changes the currently
remembered filename to file; otherwise, it prints the currently
remembered filename.

(1,9$)glregular-expression/command list

In the global command, the first step is to mark every line that
matches the given regular expression. Then, for every such line,
the given command list is executed with . initially set to that line.
A single command or the first of a list of commands appears on the
same line as the global command. All lines of a multiline list
except the last line must be ended with a \; 4, i, and ¢ commands
and associated input are permitted; the . terminating input mode
may be omitted if it would be the last line of the command list. An
empty command list is equivalent to the p command. The g, G, v,
and V commands are not permitted in the command list. See also
Notes and the last paragraph before Files below.

(1,$)Glregular-expression!

In the interactive Global command, the first step is to mark every
line that matches the given regular expression. Then, for every
such line, that line is printed, dot (.) is changed to that line, and
any one command (other than one of the a, ¢, i, g, G, v,and V
commands) may be input and is executed. After the execution of
that command, the next marked line is printed, and so on. A new-
line acts as a null command. An ampersand (&) causes the re-
execution of the most recent command executed within the current
invocation of G. Note that the commands input as part of the exe-
cution of the G command may address and affect any lines in the
buffer. The G command can be terminated by entering an INTER-
RUPT (pressing the DEL key).

March 15, 1989 ED-7

ED (C) ED (C)

h
The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error mes-
sages are printed for all subsequent ? diagnostics. It will also
explain the previous diagnostic if there was one. The H command
alternately turns this mode on and off. It is initially off.

(i
<text>

The insert command inserts the given text before the addressed
line; dot is left at the address of the last inserted line, or if there
were no inserted lines, at the addressed line. This command differs
from the @ command only in the placement of the input text.
Address 0 is not legal for this command.

(.y.+1)j
The join command joins contiguous lines by removing the appro-
priate newline characters. If only one address is given, this com-
mand does nothing.

()kx
The mark command marks the addressed line with name x, which
must be a lowercase letter. The address x then addresses this line.
Dot is unchanged.

()
The list command prints the addressed lines in an unambiguous
way: a few nonprinting characters (e.g., tab, backspace) are
represented by mnemonic overstrikes, all other nonprinting charac-
ters are printed in octal, and long lines are folded. An [command
may be appended to any command other than e, f, r, or w.

(.,.)ma
The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines. Dot is left at the
last line moved.

(.,.)n
The number command prints the addressed lines, preceding each
line by its line number and a tab character. Dot is left at the last
line printed. The n command may be appended to any command
other than e, f, r, or w.

()p

The print command prints the addressed lines. Dot is left at the
last line printed. The p command may be appended to any

March 15, 1989 ED-8

ED (C) ED (C)

command other than e, f, r, or w; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The
P command alternately turns this mode on and off. It is initially off.

The quit command causes ed to exit. No automatic write of a file
is done.

The editor exits without checking if changes have been made in
the buffer since the last w command.

($)r file

The read command reads in the given file after the addressed line.
If no filename is given, the currently remembered filename, if any,
is used (see ¢ and f commands). The currently remembered
filename is not changed unless file is the very first filename men-
tioned since ed was invoked. Address O is legal for r and causes
the file to be read at the beginning of the buffer. If the read is suc-
cessful, the number of characters read is typed. Dot is set to the
address of the last line read in. If file begins with !, the rest of the
line is taken to be a shell command whose output is to be read.
Such a shell command is not remembered as the current filename.

(.s.)slregular-expression Ireplacement | or
(.,.)slregular-expression /replacement /g or
(.,.)s/regular-expression/replacement In n=1-512

The substitute command searches each addressed line for an oc-
currence of the specified regular expression. In each line in which
a match is found, all nonoverlapped matched strings are replaced
by replacement if the global replacement indicator g appears after
the command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. It is an error for the
substitution to fail on a// addressed lines. Any character other than
space or newline may be used instead of / to delimit regular-
expression and replacement . Dot is left at the address of the last
line on which a substitution occurred.

The n character represents any number between one and 512. This
number indicates the instance of the pattern to be replaced on each
addressed line.

An ampersand (&) appearing in replacement is replaced by the
string matching the regular-expression on the current line. The
special meaning of the ampersand in this context may be
suppressed by preceding it with a backslash. The characters \n,

March 15, 1989 ' ED-9

ED (C) ED (C)

h
The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error mes-
sages are printed for all subsequent ? diagnostics. It will also
explain the previous diagnostic if there was one. The H command
alternately turns this mode on and off. It is initially off.

()i

<text>

The insert command inserts the given text before the addressed
line; dot is left at the address of the last inserted line, or if there
were no inserted lines, at the addressed line. This command differs
from the a command only in the placement of the input text.
Address 0 is not legal for this command.

(oy4+1)j
The join command joins contiguous lines by removing the appro-
priate newline characters. If only one address is given, this com-
mand does nothing.

()kx
The mark command marks the addressed line with name x, which
must be a lowercase letter. The address “x then addresses this line.
Dot is unchanged.

(.,)l
The list command prints the addressed lines in an unambiguous
way: a few nonprinting characters (e.g., tab, backspace) are
represented by mnemonic overstrikes, all other nonprinting charac-
ters are printed in octal, and long lines are folded. An / command
may be appended to any command other than e, f, r, or w.

(.,.)ma
The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines. Dot is left at the
last line moved.

(.5.)n
The number command prints the addressed lines, preceding each
line by its line number and a tab character. Dot is left at the last
line printed. The n command may be appended to any command
other than e, f, r, orw.

(.5.)p

The print command prints the addressed lines. Dot is left at the
last line printed. The p command may be appended to any

March 15, 1989 ED-8

ED (C) ED (C)

command other than e, f, r, or w; for example, dp deletes the
current line and prints the new current line.

P
The editor will prompt with a * for all subsequent commands. The
P command alternately turns this mode on and off. It is initially off.

q . o
The quit command causes e¢d to exit. No automatic write of a file
is done.

Q : . o :
The editor exits without checking if changes have been made in
the buffer since the last w command.

($)r file

The read command reads in the given file after the addressed line.
If no filename is given, the currently remembered filename, if any,
is used (see e and f commands). The currently remembered
filename is not changed unless file is the very first filename men-
tioned since ed was invoked. Address O is legal for » and causes
the file to be read at the beginning of the buffer. If the read is suc-
cessful, the number of characters read is typed. Dot is set to the
address of the last line read in. If file begins with !, the rest of the
line is taken to be a shell command whose output is to be read.
Such a shell command is not remembered as the current filename.

(.,.)slregular-expression/replacement/| or
(.,.)s/regular-expression [replacement /g or
(.,.)slregular-expression /replacement In n=1-512

The substitute command searches each addressed line for an oc-
currence of the specified regular expression. In each line in which
a match is found, all nonoverlapped matched strings are replaced
by replacement if the global replacement indicator g appears after
the command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. It is an error for the
substitution to fail on a// addressed lines. Any character other than
space or newline may be used instead of / to delimit regular-
expression and replacement. Dot is left at the address of the last
line on which a substitution occurred.

The n character represents any number between one and 512. This
number indicates the instance of the pattern to be replaced on each
addressed line.

An ampersand (&) appearing in replacement is replaced by the
string matching the regular-expression on the current line. The
special meaning of the ampersand in this context may be
suppressed by preceding it with a backslash. The characters \n,

March 15, 1989 ED-9

ED (C) ED (C)

where n is a digit, are replaced by the text matched by the n-th reg-
ular subexpression of the specified regular expression enclosed
between \(and \). When nested parenthesized subexpressions are
present, n is determined by counting occurrences of \(starting
from the left. When the character % is the only character in
replacement , the replacement used in the most recent substitute
command is used as the replacement in the current substitute com-
mand. The % loses its special meaning when it is in a replace-
ment string of more than one character or when it is preceded by a

A line may be split by substituting a newline character into it. The
newline in the replacement must be escaped by preceding it with a
\. Such a substitution cannot be done as part of a g or v command
list.

(.,.)ta
’ This command acts just like the m command, except that a copy of
the addressed lines is placed after address a (which may be 0). Dot
is left at the address of the last line of the copy.

u
The undo command nullifies the effect of the most recent com-
mand that modified anything in the buffer, namely the most recent
a,c,d,g,i,j,m,r,s,t,v,G,or Vcommand.

(1,$)vlregular-expression lcommand list
This command is the same as the global command g except that
the command list is executed with dot initially set to every line
that does not match the regular expression.

(1,$)Viregular-expression/
This command is the same as the interactive global command G
except that the lines that are marked during the first step are those
that do not match the regular expression.

(1,$)wfile

The write command writes the addressed lines into the named file.
If the file does not exist, it is created with mode 666 (readable and
writeable by everyone), unless the umask setting (see sh(C)) dic-
tates otherwise. The currently remembered filename is not
changed unless file is the very first filename mentioned since ed
was invoked. If no filename is given, the currently remembered
filename, if any, is used (see ¢ and f commands), and dot remains.
If the command is successful, the number of characters written is
displayed. If file begins with an exclamation (!), the rest of the
line is taken to be a shell command to which the addressed lines
are supplied as the standard input. Such a shell command is not
remembered as the current filename.

March 15, 1989 ED-10

ED (C) ED (C)

($)=
The line number of the addressed line is typed. Dot is unchanged
by this command.

shell command

The remainder of the line after the ! is sent to the UNIX shell
(sh(C)) to be interpreted as a command. Within the text of that
command, the unescaped character % is replaced with the remem-
bered filename. If a ! appears as the first character of the shell
command, it is replaced with the text of the previous shell com-
mand. Thus, !! will repeat the last shell command. If any expan-
sion is performed, the expanded line is echoed. Dot is unchanged.

(.+1)
An address alone on a line causes the addressed line to be printed.
A RETURN alone on a line is equivalent to .+1p. This is useful for
stepping forward through the editing buffer a line at a time.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ques-
tion mark (?) and returns to its command level.

ed has size limitations: 512 characters per line, 256 characters per
global command list, 64 characters per filename, and 128K characters
in the buffer. The limit on the number of lines depends on the amount
of user memory.

When reading a file, ed discards ASCII NUL characters and all charac-
ters after the last newline. Files (e.g., a.out) that contain characters
not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a regular expression or of a replacement
string (e.g., /) would be the last character before a newline, that delim-
iter may be omitted, in which case the addressed line is printed. Thus,
the following pairs of commands are equivalent:

s/s1/s2 s/s1/s2/p
g/sl g/sl/p
sl ?s1?

Files

/tmp/e# . Temporary; # is the process number

ed.hup Work is saved here if the terminal is hung up

See Also

coltbl(M), grep(C), locale(M), sed(C), sh(C), stty(C), regexp(S)

March 15, 1989 ED-11

ED (C) ED (C)

Diagnostics

? Command errors
? file Aninaccessible file

Use the help and Help commands for detailed explanations.

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to de-
stroy ed’s buffer via the ¢ or ¢ commands by printing ? and allowing
you to continue editing. A second e or ¢ command at this point will
take effect. The dash (-) command-line option inhibits this feature.

Notes

An exclamation (!) command cannot be subject to a g or a v com-
mand.

The ! command and the ! escape from the e, r, and w commands can-
not be used if the the editor is invoked from a restricted shell (see
sh(C)).

The sequence \n in a regular expression does not match any character.
The | command mishandles DEL.

Because 0 is an illegal address for the w command, it is not possible to
create an empty file with ed.

If the editor input is coming from a command file (i.e., ed file < ed-

cmd-file), the editor will exit at the first failure of a command in the
command file.

Standards Conformance

ed is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ED-12

ENABLE (C) ENABLE (C)

enable

turns on terminals and line printers

Syntax

enable tty ...
enable printers

Description

For terminals this program manipulates the /etc/conf/init.base file and
signals init to allow logins on a particular terminal.

For line printers, enable activates the named printers and enables them

to print requests taken by Ip(C). Use Ipstat(C) to find the status of the
printers.

Examples

A simple command to enable tty01 follows:
enable tty0l
Files

[dev/tty*
fetc/conf/init.base

Jusr/spool/lp/*

See Also

disable(C), getty(M), init(M), login(M), 1p(C), Ipstat(C), inittab(F),
uugetty(M)

Authorization

The behavior of this utility is affected by assignment of the printer-
stat authorization, which is usually reserved for system administra-
tors. Refer to the ‘“Using a Trusted System’’ chapter of the User’s
Guide for more details.

March 15, 1989 ENABLE-1

ENV (C) ENV (C)

env

sets environment for command execution

Syntax

env [-] [name=value | ... [command [args]]

Description

env obtains the current environment , modifies it according to its argu-
ments, then executes the command with the modified environment.
Arguments of the form name=value are merged into the inherited
environment before the command is executed. The - flag causes the
inherited environment to be ignored completely, so that the command
is executed with exactly the environment specified by the arguments.

If no command is specified, the environment is printed, one name-
value pair per line.

See Also

sh(C), exec(S), profile(F), environ(M)

Notes

The old printenv command was replaced in and System V by the env
command. The current printenv is a link to env.

Standards Conformance

env is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ENV-1

EX (C) EX (C)

ex, edit

invokes a text editor

Syntax

ex[-s][-v][-ttag][-rfile][-L][-R][-ccommand]name ...

edit [-r] [-x] [-C] name ...

Description

ex is the root of the editors ex and vi. ex is a superset of ed, with the
most notable extension being a display editing facility. Display based
editing is the focus of vi.

edit is a variant of the text editor ¢x recommended for new or casual
users who wish to use a command-oriented editor. It operates pre-
cisely as ex(C) with the following options automatically set:

novice ON
report ON
showmode ON
magic OFF

These options can be turned on or off via the set command in ex(C).

Refer to the vi(C) page for a complete description of the ex com-
mands.

Files
fusr/lib/ex3.7strings Error messages
[usr/lib/ex3.7recover Recover command
[usr/lib/ex3.7preserve Preserve command
Jetc/termcap Describes capabilities of terminals
$HOME/.exrc Editor startup file
/tmp/Exnnnnn Editor temporary
tmp/Rxnnnnn Named buffer temporary

March 15, 1989 EX-1

EX (C) EX (C)
[ust/preserve Preservation directory

See Also

awk(C), ctags(CP), ed(C), grep(C), sed(C), termcap(F), vi(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Standards Conformance

ex is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 EX-2

EXPR (C) EXPR (C)

expr

evaluates arguments as an expression

Syntax

expr arguments

Description

The arguments are taken as an expression. After evaluation, the result
is written on the standard output. Terms of the expression must be
separated by blanks. Characters special to the shell must be escaped.
Note that zero is returned to indicate a zero value, rather than the null
string. Strings containing blanks or other special characters should be
quoted. Integer-valued arguments may be preceded by a unary minus
iS)iegn. Internally, integers are treated as 32-bit, 2’s complement num-
1S.

The operators and keywords are listed below. Expressions should be
quoted, since many of the characters that have special meaning in the
shell also have special meaning in expr. The list is in order of increas-
ing precedence, with equal precedence operators grouped within
braces ({ and }).

expr | expr
Returns the first expr if it is neither null nor 0, otherwise
returns the second expr.

expr & expr
Returns the first expr if neither expr is null nor 0, otherwise
returns 0.

expr { =,>,>=,<,<=,1=} expr
Returns the result of an integer comparison if both arguments
are integers, otherwise returns the result of a lexical com-
parison, as defined by the locale.

expr { +, - } expr
Addition or subtraction of integer-valued arguments.

expr { *,/, % } expr
Multiplication, division, or remainder of the integer-valued
arguments.

expr : expr

The matching operator : compares the first argument with the
second argument which must be a regular expression; regular

March 15, 1989 EXPR-1

EXPR (C) EXPR (C)

expression syntax is the same as that of ed(C), except that all
patterns are ‘‘anchored’’ (i.e., begin with a caret (")) and there-
fore the caret is not a special character in that context. (Note
that in the shell, the caret has the same meaning as the pipe
symbol (1).) Normally the matching operator returns the num-
ber of characters matched (zero on failure). Alternatively, the
\(...\) pattern symbols can be used to return a portion of the
first argument.

Examples

1. a=vexpr $a + I»
Adds 1 to the shell variable a.

2. # For $a ending in "/file"
expr $a ¢ “#/\(H)’

Returns the last segment of a pathname (i.e., file). Watch out
for the slash alone as an argument: expr will take it as the divi-
sion operator (see Notes on the next page).

3. expr $VAR : ¥’

Returns the number of characters in $VAR.

See Also

coltbl(M), ed(C), locale(M), sh(C)

Diagnostics

As a side effect of expression evaluation, expr returns the following
exit values:

0 If the expression is neither null nor zero
1 If the expression is null or zero
2 For invalid expressions

Other diagnostics include:

syntax error For operator/operand errors, including unset vari-
ables

nonnumeric argument
If arithmetic is attempted on a nonnumeric string

March 15, 1989 EXPR-2

EXPR (C) EXPR (C)

Notes

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an
equals sign (=), the command:

expr $a = =
looks like:

expr = = =

The arguments are passed to expr and will all be taken as the = opera-
tor. The following permits comparing equals signs:

expr X$a = X=

Standards Conformance

expr is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide IT of January 1987.

March 15, 1989 EXPR-3

FACTOR (C) FACTOR (C)

factor

factor a number

Syntax

factor [number]

Description

When factor is invoked without an argument, it waits for a number to
be typed in. If you type in a positive number less than 2* (about
7.2x10") it will factor the number and print its prime factors; each
one is printed the proper number of times. Then it waits for another
number. It exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above
and then exits.

The time it takes to factor a number, #, is proportional to vn. It usu-
ally takes longer to factor a prime or the square of a prime, than to fac-
tor other numbers.

Diagnostics

factor Jeturns an error message if the supplied input value is greater
than 2 or is not an integer number.

March 15, 1989 FACTOR-1

FALSE (C) FALSE (C)

false

returns with a nonzero exit value

Syntax

false

Description

false does nothing except return with a nonzero exit value. true(C),
false’s counterpart, does nothing except return with a zero exit value.
‘‘False’’ is typically used in shell procedures such as:

until false
do
command
done
See Also

sh(C), true(C)

Diagnostics

false is any non-zero value.

Standards Conformance

false is conformant with:

AT&T SVID Issue 2, Select Code 307-127;
and The X/Open Portability Guide II of January 1987.

March 15, 1989 ' FALSE-1

FILE (C) FILE (C)

file

determines file type

Syntax

file [-m] file ...

file [-m] -f namesfile

Description

file performs a series of tests on each argument in an attempt to clas-
sify it. If an argument appears to be ASCII, file examines the first 512
bytes and tries to guess its language.

If the -f option is given, file takes the list of filenames from namesfile.
If the -m option is given, file sets the access time for the examined file
to the current time. Otherwise, the access time remains unchanged.

Several object file formats are recognized. For a.out and x.out format
object files, file reports ‘‘separate’’ if the file was linked with cc -i,
“‘pure’’ if the file was linked with cc -n, and ‘‘not stripped’’ if the
file was not linked with cc -s or it strip(CP) was not run.

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

file makes errors; in particular it often mistakes command files