Altos UNIX® System V/386
Release 3.2

User’s Guide

ystem V/386

Altos UNIx® S

se 3.2

Releq

‘s Guide

User

Document
History

EDITION PART NUMBER DATE

Preliminary Edition 690-23408-001A February 1990

First Edition 690-23408-001 April 1990
Second Edition 690-23408-002 March 1991

Copyright
Notice

Manual Portions Copyright © 1990, 1991 Altos Computer Systems.

Manual Portions Copyright © 1989 AT&T.

Manual Portions Copyright © 1980, 1981, 1982, 1983, 1984, 1985, 1986,
1987, 1988, 1989 Microsoft Corporation.

Manual Portions Copyright © 1983, 1984, 1985, 1986, 1987, 1988, 1989
The Santa Cruz Operation, Inc.

All rights reserved. Printed in U.S.A.

Unless you request and receive written permission from Altos Computer
Systems, you may not copy any part of this document or the software you
received, except in the normal use of the software or to make a backup
copy of each diskette you received.

Trademarks

The Altos logo, as it appears in this manual, is a registered trademark of
Altos Computer Systems.

386 and 486 are trademarks of Intel Corporation.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft
Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Limitations

Altos Computer Systems reserves the right to make changes to the product
described in this manual at any time and without notice. Neither Altos nor its
suppliers make any warranty with respect to the accuracy of the information
in this manual.

GUIDE TO YOUR ALTOS UNIX® SYSTEM V/386
RELEASE 3.2 DOCUMENTATION

DEVELOPMENT SYSTEM
Set Part Number: 690-23417-000

RUN-TIME SYSTEM

These books come with every system:

Installation Guide

Part Number: 690-24096-nnn
==} e Operating System installation
Upgrade procedure

System Administrator’s
Guide

=—| Part Number: 690-23415-nnn

| ® Sysadmsh

e Security

® System tuning. troubleshooting
® Peripherals

 Virtual Disks

‘@ User's Guide

Part Number: 690-23408-nnn
* Vi, ed, mail, awk, sed

» Shells: sh and csh

¢ Job scheduling commands

ﬂ@ User’s Reference (C, M, F)
Part Number: 690-23414-nnn

== | (also provided online with each

operating system)

* (C) Commands

¢ (M) Miscellaneous files and
commands

¢ (F) File formats

System Administrator’s

Reference (ADM, HW)

Part Number: 690-23416-nnn

(also provided online with each

operating system)

* (ADM) Administrative
commands

* (HW) Hardware information

These books may be ordered separately:

=2} Using the AOM

Menu System

Part Numbers: 690-23814-nnn

* Easy-to-use menus to use
programs -

* Menu manager fo add,
update, remove menus

Tutorial

Part Number: 690-23407-nnn

= | * Basic concepts and tasks
Files and directories

* Utilities

International Operating

System Guide

=} Part Number: 690-23810-nnn

e Character sets

e 7-bit vs. 8-bit characters

Programmer’s Reference

(CP.S)

¢ (CP) Programming commands

* (S) System services, library
routines

Programmer’s Guide

e Lex, lint, yacc

¢ SCCS, make

» Extended Terminal
Interface (ETD

* Sdb, adb

¢ Shared libraries

¢ File and record locking

C Language Guide
e C User’s Guide
e C Language Reference

Library Guide

® C Library Guide

* XENIX Development and
Portability Guide

¢ International Development
Guide

Developer's Guide

¢ DOS and OS/2 Development
Guide

o STREAMS Primer

¢ STREAMS Programmer’s Guide

* STREAMS Network
Programmer’s Guide

CodeView and Macro
Assembler User's Guide

» The CodeView Debugger

* Macro Assembler User’s Guide

Device Driver Writer's Guide

e Writing, compiling, and linking
drivers

e SCSI drivers

¢ STREAMS and line disciplines

¢ (K) Kernel routines

To order any of the above manuals, call 408/434-6688, ext. 3004 and give the

manual title and part number.

Operating System Documents
for Different Audiences

As shown on the previous page, Altos offers many manuals with Altos UNIX System V—the manu-
als you receive will depend on your configuration. To help you decide which manuals are best
suited to your needs, we have listed below the manuals according to three broad groups of users.

These lists are only suggested starting points in your search for information. They are not meant to
imply that certain users should not read certain manuals. Find the user group that best applies to
you, and use its list of manuals as a starting point for your reading, from which you can move on to
other manuals.

Note that every Run—time System includes five manuals: the Installation Guide. the User’s Guide,
the User’s Reference, the System Administrator’s Guide, and the System Administrator’s Refer-
ence. The Run-time System reference pages that describe the C, M, F, ADM, and HW commands
(**man pages’’) are provided online as well. jIf you have the Development System, all manuals
listed under ‘‘For Programmers:”’ come with your operating system. (All Development System
reference pages are also provided online.) To order additional manuals, call (408) 434-6688, exten-
sion 3004 and give the manual title and part number.

For General Users (especially Beginners):
Tutorial

User’s Guide

User’s Reference (C, M, F)

Using the AOM Menu System

For System Administrators (and Advanced Users):
Installation Guide

System Administrator’s Guide

System Administrator’s Reference (ADM, HW)
International Operating System Guide

Programmer’s Reference (CP, S)

For Programmers:

Programmer’s Guide

Programmer’s Reference (CP, S)

C Language Guide

Library Guide

Developer’s Guide

CodeView and Macro Assembler User’s Guide
Device Driver Writer’s Guide

Contents

1

Introduction

Overview 1-1
About This Guide 1-2
Notational Conventions 1-4

vi: A Text Editor

Introduction 2-1

Demonstration 2-2

Editing Tasks 2-18

Solving Common Problems 2-55
Setting Up Your Environment 2-57
Summary of Commands 2-64

ed

Introduction 3-1

Demonstration 3-2

Basic Concepts 3-3

Tasks 3-4

Context and Regular Expressions 3-33
Speeding Up Editing 3-50

Cutting and Pasting with the editor 3-55
Editing Scripts 3-57

Summary of Commands 3-58

mail

Introduction 4-1

Basic Concepts 4-2

Using mail 4-9

Leaving Compose Mode Temporarily 4-18
Setting Up Your Environment 4-21

Using Advanced Features 4-24

Communicating with Other Sites

Introduction 5-1

Using Micnet 5-2

Using UUCP 5-6

Logging in to Remote Systems 5-15

6

bc: A Calculator

Introduction 6-1
Demonstration 6-2
Tasks 6-5

Language Reference 6-16

The Shell

Introduction 7-1

Basic Concepts 7-2

Shell Variables 7-11

The Shell State 7-18

A Command’s Environment 7-20

Invoking the Shell 7-22

Passing Arguments to Shell Procedures 7-23
Controlling the Flow of Control 7-26

Special Shell Commands 7-40

Creation and Organization of Shell Procedures 7-44
More About Execution Flags 7-46

Supporting Commands and Features 7-47
Effective and Efficient Shell Programming 7-55
Shell Procedure Examples 7-60

Shell Grammar 7-68

The C-Shell

Introduction 8-1

Invoking the C-shell 8-2

Using Shell Variables 8-4

Using the C-Shell History List 8-7
Using Aliases 8-10

Redirecting Input and Output 8-12
Creating Background and Foreground Jobs 8-13
Using Built-In Commands 8-14
Creating Command Scripts 8-17
Using the argv Variable 8-18
Substituting Shell Variables 8-19
Using Expressions 8-21

Using the C-Shell: A Sample Script 8-22
Using Other Control Structures 8-25
Supplying Input to Commands 8-26
Catching Interrupts 8-27

Using Other Features 8-28

Starting a Loop at a Terminal 8-29
Using Braces with Arguments 8-31
Substituting Commands §-32
Special Characters 8-33

ii-

9 The Korn Shell

Introduction 9-1

Starting ksh 9-2

Using the ksh Built-in Editors 9-3

Accessing Commands in the History File 9-8

Using Job Control 9-10

Customizing the ksh Environment 9-14

Manipulating Commands Wider Than the Screen 9-19
Using Expanded cd Capabilities 9-20

10 Using A Trusted System

Introduction 10-1

Login Security 10-3

Using Commands On A Trusted System 10-7
Recommended Security Practices 10-12

Data Encryption—Commands and Descriptions 10-16

11 Simple Programming with awk

Introduction 11-1

Basic awk 11-2

Patterns 11-11

Actions 11-18

Output 11-34

Input 11-39

Using awk with Other Commands and the Shell 11-45
Example Applications 11-48

awk Summary 11-53

12 Using the Stream Editor: sed
Introduction 12-1
Overall Operation 12-2
Addresses 12-4
Functions 12-6
13 Using the Job Scheduling Commands: at, cron and batch
Introduction 13-1

Automatic Program Execution with cron 13-2
Delaying Program Execution with batch and at 13-4

- 1ii -

14 Using DOS Accessing Utilities
Introduction 14-1
Accessing DOS Files with the dos(C) Utilities
Using Mounted DOS Filesystems 14-5

Index

Change Information

-iv -

14-2

Chapter 1

Introduction

Overview 1-1
About This Guide 1-2

Notational Conventions 1-4

Overview

Overview

This guide provides extensive information on several of the most useful
Altos UNIX System V facilities, including mail, the vi and ed text editors,
uucp, micnet and be, the UNIX ‘‘desktop calculator.”’ In addition, the
guide includes information on the three UNIX ‘‘shells’’: the Bourne shell,
the C shell, and the new Korn shell.

Note

The last section of this manual, ‘‘Change Information,”” summarizes
the changes that have been made to the manual since the previous
version.

Introduction 1-1

About This Guide

About This Guide

This guide is organized as follows:

Chapter 1, ‘‘Introduction’’ provides an overview of the contents of this
guide and gives a list of the notational conventions used throughout.

Chapter 2, ““vi: A Text Editor’’ explains how to use the UNIX fullscreen
editor, vi.

Chapter 3, ‘“‘ed’’ explains how to use the UNIX line editor, ed.

Chapter 4, ‘‘mail’’ explains how to use the UNIX electronic mail facility.
Chapte} 5, ““Communicating with Other Sites’’ explains how to transfer
files to and from and how to execute commands on other computer sites.
These other sites might be XENIX or UNIX sites, but they do not need to
be. They can, for instance, be MS-DOS™ sites.

Chapter 6, ‘“‘bc: A Calculator’’ explains how to use bc, a sophisticated
calculator program.

Chapter 7, ““The Shell’’ explains how to use the powerful features of the
UNIX Bourne shell.

Chapter 8, ‘“The C-Shell’’ explains how to use the powerful features of
the UNIX C shell.

Chapter 9, ‘““The Korn Shell’’ explains how to use the new enhancement
available with the UNIX Korn shell (ksh).

Chapter 10, “‘Using A Trusted System’’ discusses the security features
that may be in use at your site and how to work with them.

Chapter 11, ‘‘Simple Programming with awk’’ shows how to write simple
programs that can be used to manipulate files and data.

Chapter 12, ‘‘Using the Stream Editor: sed’’ demonstrates automated file
editing.

Chapter 13, “‘Using the Job Scheduling Commands: cron, at, and batch’’

demonstrates how to schedule or delay the execution of programs and
utilities.

1-2 User’s Guide

About This Guide

Chapter 14, ‘“Using the DOS Accessing Utilities”’ explains how to access
DOS files indirectly using the DOS utilities, or directly using mounted

DOS filesystems.

Introduction 1-3

Notational Conventions

Notational Conventions

This guide uses a number of notational conventions to describe the syntax

of UNIX commands:

1-4

Initial Capitals

boldface

Initial Capitals indicate the name of a com-
mand or mode. When a command is intro-
duced it is followed by the keystroke that
invokes it, (i.e., the Insert (i) command).

Boldface indicates a command, option, flag,
or program name to be entered as shown.
Keystrokes are boldfaced when they indi-
cate a command to enter as shown, (i.e.,
enter the i command and press (Return)).
Commands that are issued while within a
program, such as a file editor like vi(C), are
not boldfaced so they will not be confused
with commands given to the shell.

Boldface indicates the name of a UNIX util-
ity or library routine. (To find more infor-
mation on a given utility, consult the
‘‘Alphabetized List’” in the appropriate
Reference for the manual page that
describes it.)

User’s Guide

italics

screen font

[]

Introduction

Notational Conventions

Italics indicate a filename. This pertains to
library include filenames (i.e., stdio.h), as
well as, other filenames (i.e., /etc/ttys).

Italics indicate a placeholder for a com-
mand argument. When entering a command,
a placeholder must be replaced with an ap-
propriate filename, number, or option.

Italics indicate a specific identifier, sup-
plied for variables and functions, when
mentioned in text.

Italics indicate a reference to part of an
example.

Italics indicate emphasized words or
phrases in text.

This font is used for screen displays and
messages.

Brackets indicate that the enclosed item is
optional. If you do not use the optional
item, the program selects a default action to
carry out.

Brackets indicate the position of the cursor
in text examples.

Ellipses indicate that you can repeat the
preceding item any number of times.

Vertical ellipses indicate that a portion of a
program example is omitted.

Quotation marks indicate the first use of a
technical term.

Quotation marks indicate a reference to a
word rather than a command.

1-5

Chapter 2

vi: A Text Editor

Introduction 2-1

Demonstration 2-2
Entering the Editor 2-2
Inserting Text 2-3
Repeating a Command 2-4
Undoing a Command 2-4
Moving the Cursor 2-5
Deleting 2-6
Searching for a Pattern 2-10
Searching and Replacing 2-11
Leaving vi 2-13
Adding Text From Another File 2-13
Leaving vi Temporarily 2-14
Changing Your Display 2-15
Canceling an Editing Session 2-16

Editing Tasks 2-18
How to Enter the Editor 2-18
Moving the Cursor 2-19
Moving Around in a File: Scrolling 2-22
Inserting Text Before the Cursor:iand I 2-23
Appending After the Cursor: aand A 2-24
Correcting Typing Mistakes 2-25
Opening a New Line 2-25
Repeating the Last Insertion 2-25
Inserting Text From Other Files 2-25
Inserting Control Characters into Text 2-30
Joining and Breaking Lines 2-30
Deleting a Character: x and X 2-30
Deleting a Word: dw 2-31
Deleting a Line: Danddd 2-31
Deleting an Entire Insertion 2-32
Deleting and Replacing Text 2-32
Moving Text 2-36
Searching: /and ? 2-40
Searching and Replacing 2-41

Pattern Matching 2-43
Undoing a Command: u 2-46

- Repeating a Command: . 2-47
Leaving the Editor 2-48
Editing a Series of Files 2-49
Editing a New File Without Leaving the Editor 2-51
Leaving the Editor Temporarily: Shell Escapes 2-52
Performing a Series of Line-Oriented Commands: Q 2-53
Finding Out What File You're In 2-54
Finding Out What Line You’re On 2-54

Solving Common Problems 2-55

Setting Up Your Environment 2-57
Setting the Terminal Type 2-57
Setting Options: The set Command 2-58
Displaying Tabs and End-of-Line: list 2-59
Ignoring Case in Search Commands: ignorecase 2-59
Displaying Line Numbers: number 2-59
Printing the Number of Lines Changed: report 2-60
Changing the Terminal Type:term 2-60
Shortening Error Messages: terse 2-60
Turning Off Warnings: warn 2-61
Permitting Special Characters in Searches: nomagic 2-61
Limiting Searches: wrapscan 2-61
Turning on Messages: mesg 2-61
Mapping Keys 2-62
Abbreviating Strings 2-62
Customizing Your Environment: The .exrc File 2-63

Summary of Commands 2-64

Introduction

Introduction

Any ASCII text file, such as a program or document, may be created and
modified using a text editor. There are two text editors available on Altos
UNIX System V, ed and vi. ed is discussed in the ‘‘ed’’ chapter of this
manual.

vi (which stands for ‘‘visual’’) combines line-oriented and screen-
oriented features into a powerful set of text editing operations that will
satisfy any text editing need.

The first part of this chapter is a demonstration that gives you some
hands-on experience with vi. It introduces the basic concepts you must be
familiar with before you can really learn to use vi, and shows you how to
perform simple editing functions. The second part is a reference that
shows you how to perform specific editing tasks. The third part describes
how to set up your vi environment and how to set optional features. The
fourth part is a summary of commands.

Because vi is such a powerful editor, it has many more commands than
you can learn at one sitting. If you have not used a text editor before, the
best approach is to become thoroughly comfortable with the concepts and
operations presented in the demonstration section, then refer to the
second part for specific tasks you need to perform. All the steps needed to
perform a given task are explained in each section, so some information is
repeated several times. When you are familiar with the basic vi com-
mands you can easily learn how to use the more advanced features.

If you have used a text editor before, you may want to turn directly to the
task-oriented part of this chapter. Begin by learning the features you will
use most often. If you are an experienced user of vi you may prefer to use
vi(C) in the User’s Reference instead of this chapter.

This chapter covers the basic text editing features of vi. For more

advanced topics, and features related to editing programs, refer to vi(C) in
the User’s Reference.

vi: A Text Editor 2-1

Demonstration

Demonstration

The following demonstration gives you hands-on experience using vi, and
introduces some basic concepts that you must understand before you can
learn more advanced features. You will learn how to enter and exit the
editor, insert and delete text, search for patterns and replace them, and
how to insert text from other files. This demonstration should take one
hour. Remember that the best way to learn vi is to actually use it, so don’t
be afraid to experiment.

Before you start the demonstration, make sure that your terminal has been

properly set up. See the section ‘‘Setting the Terminal Type,”” for more
information about setting up your terminal for use with vi.

Entering the Editor
To enter the editor and create a file named temp, enter:
vi temp .

Your screen will look like this:

/

"temp" [New file]

Note that we show a twelve-line screen to save space. In reality, vi uses
whatever size screen you have.

You are initially editing a copy of the file. The file itself is not altered
until you save it. Saving a file is explained later in the demonstration.
The top line of your display is the only line in the file and is marked by
the cursor, shown above as an underline character. In this chapter, when
the cursor is on a character that character will be enclosed in square
brackets ([]). '

2-2 User’s Guide

Demonstration

The line containing the cursor is called the current line. The lines con-
taining tildes are not part of the file: they indicate lines on the screen
only, not real lines in the file.

Inserting Text

To begin, create some text in the file temp by using the Insert (i) com-
mand. To do this, press:

i
Next, enter the following five lines to give yourself some text to experi-

ment with. Press (Return) at the end of each line. If you make a mistake,
use the (BKSP) key to erase the error and enter the word again.

/

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Press the (ESC) key when you are finished.

Like most vi commands, the i command is not shown (or ‘‘echoed’’) on
your screen. The command itself switches you from Command mode to
Insert mode.

When you are in Insert mode every character you enter is displayed on the
screen. In Command mode the characters you enter are not placed in the
file as text; they are interpreted as commands to be executed on the file. If
you are not certain which mode you are in, press (ESC) until you hear the
bell. When you hear the bell you are in Command mode.

Once in Insert mode, the characters you enter are inserted into the file;
they are not interpreted as vi commands. To exit Insert mode and reenter
Command mode you will always press (ESC). This switching between
modes occurs often in vi, and it is important to get used to it now.

vi: A Text Editor 2-3

Demonstration

Repeating a Command

Next comes a command that you will use frequently in vi: the Repeat
command. The Repeat command repeats the most recent Insert or Delete
command. Since we have just executed an Insert command, the Repeat
command repeats the insertion, duplicating the inserted text. The Repeat
command is executed by entering a period (.) or ‘‘dot’’ . So, to add five
more lines of text, enter ‘*.”’. The Repeat command is repeated relative to
the location of the cursor and inserts text below the current line. (Remem-
ber, the current line is always the line containing the cursor.) After you
enter dot (.), your screen will look like this:

/

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Undoing a Command

Another command which is very useful (and which you will need often in
the beginning) is the Undo (u) command. Press

u

and notice that the five lines you just finished inserting are deleted or
‘‘undone’’.

2-4 User’s Guide

Demonstration

/

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now enter:
u

again, and the five lines are reinserted! This undo feature can be very
useful in recovering from inadvertent deletions or insertions.

Moving the Cursor

Now let’s learn how to move the cursor around on the screen. In addition
to the arrow keys, the following letter keys also control the cursor:

h Left

1 Right
k Up

j Down

The letter keys are chosen because of their relative positions on the key-
board. Remember that the cursor movement keys only work in Command
mode.

Try moving the cursor using these keys. (First make sure you are in Com-
mand mode by pressing the (ESC) key.) Then, enter the H command to
place the cursor in the upper left corner of the screen. Then enter the L
command to move to the lowest line on the screen. (Note that case is sig-
nificant in our example: L moves to the lowest line on the screen; while 1
moves the cursor forward one character.) Next, try moving the cursor to
the last line in the file with the goto command, G. If you enter 2G, the
cursor moves to the beginning of the second line in the file; if you have a
10,000 line file, and enter 8888G, the cursor goes to the beginning of line
8888. (If you have a 600 line file and enter 800G the cursor does not
move.)

vi: A Text Editor 2-5

Demonstration

These cursor movement commands should allow you to move around well
enough for this demonstration. Other cursor movement commands you
might want to try out are:

w Moves forward a word

b Backs up a word

0 Moves to the beginning of a line

$ Moves to the end of a line
You can move through many lines quickly with the scrolling commands:

{CTL)u Scrolls up 1/2 screen |

(CTL)d Scrolls down 1/2 screen

{(CTL)f Scrolls forward one screenful

{CTL)b Scrolls backward one screenful

Deleting

Now that we know how to insert and create text, and how to move around
within the file, we are ready to delete text. Many Delete commands can
be combined with cursor movement commands, as explained below. The
most common Delete commands are:

dd Deletes the current line (the line the cursor is on),
regardless of the location of the cursor in the line.

dw Deletes the word above the cursor. If the cursor is in the
middle of the word, deletes from the cursor to the end of
the word.
X Deletes the character above the cursor.
ds Deletes from the cursor to the end of the line.
- D Deletes from the cursor to the end of the line.
do Deletes from the cursor to the start of the line.

Repeats the last change. (Use this only if your last com-
mand was a deletion.)

2-6 : User’s Guide

Demonstration

To learn how all these commands work, we will delete various parts of
the demonstration file. To begin, press (ESC) to make sure you are in
Command mode, then move to the first line of the file by entering:

1G

At first, your file should look like this:

/

[Fliles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

To delete the first line, enter:
dd

Your file should now look like this:

e

[T]ext contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Delete the word the cursor is sitting on by entering:

dw

vi: A Text Editor 2-7

Demonstration

After deleting, your file should look like this:

/

[clontains lines.

Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

You can quickly delete the character above the cursor by pressing:
X

This leaves:

/

[olntains lines. .
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now enter a w command to move your cursor to the beginning of the
word lines on the first line. Then, to delete to the end of the line, enter:

d$

2-8 User’s Guide

Demonstration

Your file looks like this:

~

ontains_

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

To delete all the characters on the line before the cursor enter:
do

This leaves a single space on the line:

-~

Lines contain characters.
Files contain text.

Text contains lines.
Characters form words.
Words form text.

Lines contain characters.
Characters form words.
Words form text.

For review, let’s restore the first two lines of the file.
Press i to enter Insert mode, then enter:

Files contain text.
Text contains lines.

Press (ESC) to go back to Command mode.

vi: A Text Editor ’ 2-9

Demonstration

Searching for a Pattern
You can search forward for a pattern of characters by entering a slash (/)
followed by the pattern you are searching for, terminated by a (Return).
For example, make sure you are in Command mode (press (ESC)), then
press

H
to move the cursor to the top of the screen. Now, enter:

/char

Do not press (Return) yet. Your screen should look like this:

-

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

/char_

Press (Return). The cursor moves to the beginning of the word characters
on line three. To search for the next occurrence of the pattern char, press
n (as in ‘“‘next’’) . This will take you to the beginning of the word charac-
ters on the eighth line. If you keep pressing ‘‘n’’ vi searches past the end
of the file, wraps around to the beginning, and again finds the char on line
three.

Note that the slash character and the pattern that you are searching for
appear at the bottom of the screen. This bottom line is the vi status line.

The status line appears at the bottom of the screen. It is used to display

information, including patterns you are searching for, line-oriented com-
mands (explained later in this demonstration), and error messages.

2-10 User’s Guide

Demonstration

For example, to get status information about the file, press (CTL)g. Your
screen should look like this:

(/' Files contain text.

Text contains lines.

Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.

Lines contain [c]haracters.

Characters form words.
Words form text.

"temp" [Modified] line 4 of 10 --4%--

The status line on the bottom tells you the name of the file you are edit-
ing, whether it has been modified, the current line number, the number of
lines in the file, and your location in the file as a percentage of the number
of lines in the file. The status line disappears as you continue working.

Searching and Replacing

Let’s say you want to change all occurrences of fext in the demonstration
file to documents. Rather than search for text, then delete it and insert
documents, you can do it all in one command. The commands you have
learned so far have all been screen-oriented. Commands that can perform
more than one action (searching and replacing) are line-oriented com-
mands.

Screen-oriented commands are executed at the location of the cursor. You
do not need to tell the computer where to perform the operation; it takes
place relative to the cursor. Line-oriented commands require you to
specify an exact location (called an ‘‘address’’) where the operation is to
take place. Screen-oriented commands are easy to enter, and provide
immediate feedback; the change is displayed on the screen. Line-
oriented commands are more complicated to enter, but they can be exe-
cuted independent of the cursor, and in more than one place in a file at a
time.

All line-oriented commands' are preceded by a colon which acts as a

prompt on the status line. Line-oriented commands themselves are
entered on this line and terminated with a (Return).

vi: A Text Editor 2-11

Demonstration

In this chapter, all instructions for line-oriented commands will include
the colon as part of the command.

To change text to documents, press (ESC) to make sure you are in Com-
mand mode, then enter:

:1,$s/text/documents/g

This command means ‘‘From the first line (1) to the end of the file ($),
find text and replace it with documents (s/text/documents/) everywhere it
occurs on each line (g)’.

Press (Return). Your screen should look like this:

/

Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
Words form documents.
Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
[Wlords form documents.

Note that Text in lines two and eight was not changed. Case is significant
in searches.

Just for practice, use the Undo command to change documents back to
text. Press:

u

2-12 User’s Guide

Demonstration

Your screen now looks like this:

//'

[Fliles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Leaving vi

All of the editing you have been doing has affected a copy of the file, and
not the file named temp that you specified when you invoked vi. To save
the changes you have made, exit the editor and return to the UNIX shell,
enter:

X

Remember to press (Return). The name of the file, and the number of lines
and characters it contains are displayed on the status line:

("temp" [New file] 10 lines, 214 characters

Then the UNIX prompt appears.

Adding Text From Another File

In this section we will create a new file, and insert text into it from
another file. First, create a new file named practice by entering:

vi practice

vi: A Text Editor 2-13

Demonstration

This file is empty. Let’s copy the text from temp and put it in practice
with the line-oriented Read command. Press (ESC) to make sure you are
in Command mode, then enter:

T temp

Your file should look like this:

/

[Fliles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

The text from temp has been copied and put in the current file practice.
There is an empty line at the top of the file. Move the cursor to the empty
line and delete it with the dd command.

Leaving vi Temporarily

vi allows you to execute commands outside of the file you are editing,
such as date. To find out the date and time, enter:

:!date

2-14) User’s Guide

Demonstration

Press (Return). This displays the date, then prompts you to press (Return)
to reenter Command mode. Go ahead and try it. Your screen should look
similar to this:

/

Files contain text.

Text contains lines.

Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.

Lines contain characters.
Characters form words.
Words form text.

: !date

Mon Jan 9 16:33:37 PST 1985
[Press return to continue]_

Changing Your Display

Besides the set of editing commands described above, there are a number
of options that can be set either when you invoke vi, or later when editing.
These options allow you to control editing parameters such as line num-
ber display, and whether or not case is significant in searches. In this sec-
tion we will learn how to turn on line numbering, and how to look at the
current option settings.

To turn on automatic line numbering, enter:

:set number

vi: A Text Editor i 2-15

Demonstration

Press (Return). Your screen is redrawn, and line numbers appear to the
left of the text. Your screen looks like this:

~

C VWIS WN K

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

D

You can get a complete list of the available options by entering:

:set all

and pressing (Return). Setting these. options is described in the section
‘Setting Up Your Environment,”’ but it is important that you be aware of
their existence. Depending on what you are working on, and your own
preferences, you will want to alter the default settings for many of these
options.

Canceling an Editing Session
Finally, to exit vi without saving the file practice, enter:
q!
and press (Return). This cancels all the changes you have made to prac-
tice and, since it is a new file, deletes it. The prompt appears. If practice

had already existed before this editing session, the changes you made
would be disregarded, but the file would still exist.

2-16 User’s Guide

Demonstration

This completes the demonstration. You have learned how to get in and
out of vi, insert and delete text, move the cursor around, make searches
and replacements, how to execute line-oriented commands, copy text
from other files, and cancel an editing session.

There are many more commands to learn, but the fundamentals of using
vi have been covered. The following sections will give you more detailed
information about these commands and about other vi commands and fea-
tures.

vi: A Text Editor 2-17

Editing Tasks

Editing Tasks

The following sections explain how to perform common editing tasks. By
following the instructions in each section you will be able to complete
each task described. Features that are needed in several tasks are
. described each time they are used, so some information is repeated.

How to Enter the Editor
There are several ways to begin editing, depending on what you are plan-
ning to do. This section describes how to start, or ‘‘invoke’’ the editor

with one filename. To invoke vi on a series of files, see the section ‘‘Edit-
ing a Series of Files.”’

With a Filename

The most common way to enter vi is to enter the command vi and the
name of the file you wish to edit:

vi filename

If filename does not already exist, a new, empty file is created.

At a Particular Line

You can also enter the editor at a particular place in a file. For example, if
you wish to start editing a file at line 100, enter:

vi +100 filename

The cursor is placed at line 100 of filename.

2-18 © User’s Guide

Editing Tasks

At a Particular Word

If you wish to begixi editing at the first occurrence of a particular word,
enter:

vi +/word filename

The cursor is placed at the first occurrence of word. For example, to begin E
editing the file temp at the the first occurrence of contain, enter:

vi +/contain temp

Moving the Cursor
The cursor movement keys allow you to move the cursor around in a file.
Cursor movement can only be done in Command mode.
Moving the Cursor by Characters: h, |, f, F, t, T, (Space), (BKSP)
The (Space) bar and the 1 key move the cursor forward a specified number
of characters. The (BKSP) key and the h key move it backward a specified
number of characters. If no number is specified, the cursor moves one
character. For example, to move backward four characters, enter:

4h
You can also move the cursor to a designated character on the current
line. F moves the cursor back to the specified character, f moves it for-
ward. The cursor rests on the specified character. For example, to move
the cursor backward to the nearest p on the current line, enter:

Fp

To move the cursor forward to the nearest p, enter:

fp

vi: A Text Editor 2-19

Editing Tasks

The t and T keys work the same way as f and F, but place the cursor
immediately before the specified character. For example, to move the
cursor back to the space next to the nearest p in the current line, enter:

Tp
If the p were in the word telephone, the cursor would sit on the A.
The cursor always remains on the same line when you use these com-
mands. If you specify a number greater than the number of characters on
the line, the cursor does not move beyond the beginning or end of that
line.
Moving the Cursor by Lines: j, k
The j key moves the cursor down a specified number of lines, and the k
key moves it up. If no number is specified, the cursor moves one line. For

example, to move down three lines, enter:

3j

Moving the Cursor by Words: w, W, b, B, ¢, E
The w key moves the cursor forward to the beginning of the specified
number of words. Punctuation and nonalphabetic characters (such as
1@#$% " &*()_+{}[171\‘<>/) are considered words, so if a word is fol-
lowed by a comma the cursor will count the comma in the specified num-
ber. '
For example, your cursor rests on the first letter of this sentence:

No, I didn’t know he had returned.
If you press:

6w

the cursor stops on the & in know.

2-20 User’s Guide

Editing Tasks

W works the same way as w, but includes punctuation and nonalphabetic
characters as part of the word. Using the above example, if you press:

6w

the cursor stops on the r in returned; the comma and the apostrophe are
included in their adjacent words.

The e and E keys move the cursor forward to the end of a specified num-
ber of words. The cursor is placed on the last letter of the word. The e
command counts punctuation and nonalphabetic characters as separate
words; E does not.

B and b move the cursor back to the beginning of a specified number of
words. The cursor is placed on the first letter of the word. The b command
counts punctuation and nonalphabetic characters as separate words; B
does not. Using the above example, if the cursor is on the r in returned,
enter:

4b
and the cursor moves to the ¢ in didn’t.
Enter:

4B
and the cursor moves to the first d in didn’t.
The w, W, b and B commands will move the cursor to the next line if that
is where the designated word is, unless the current line ends in a space.
Moving the Cursor by Lines
Forward: j, (CTL)n, +, (Return), LINEFEED, $
The (Return), LINEFEED and + keys move the cursor forward a specified
number of lines, placing the cursor on the first character. For example, to
move the cursor forward six lines, enter:

6+
The j and (CTL)n keys move the cursor forward a specified number of

lines. The cursor remains in the same place on the line, unless there is no
character in that place, in which case it moves to the last character on the

vi: A Text Editor 2-21

Editing Tasks

line. For example, in the following two lines if the cursor is resting on the
e in characters, pressing j moves it to the period at the end of the second
line:

Lines contain characters.

Text contains lines.

The dollar sign($) moves the cursor to the end of a specified number of
lines. For example, to move the cursor to the last character of the line four
lines down from the current line, enter:

43

Backward: k, (CTL)p
{CTL)p and k move the cursor backward a specified number of lines,

keeping it on the same place on the line. For example, to move the cursor
backward four lines from the current line, enter:

4k

Moving the Cursor on the Screen: H, M, L

The H, M and L keys move the cursor to the beginning of the top, middle
and bottom lines of the screen, respectively.

Moving Around in a File: Scrolling

The following commands move the file so different parts can be displayed
on the screen. The cursor is placed on the first letter of the last line
scrolled.

Scrolling Up Part of the Screen: (CTL)u

{CTL)u scrolls up one-half screen.

2-22 User’s Guide

Editing Tasks

Scrolling Up the Full Screen: (CTL)b

{CTL)b scrolls up a full screen.

Scrolling Down Part of the Screen: (CTL)d

(CTL)d scrolls down one-half screen.

Scrolling Down a Full Screen: (CTL)f

(CTL)f scrolls down a full screen.

Placing a Line at the Top of the Screen: z
To scroll the current line to the top of the screen, press:
z

then press (Return). To place a specific line at the top of the screen, pre-
cede the z with the line number, as in

33z
Press (Return), and line 33 scrolls to the top of the screen. For information

on how to display line numbers, see the section ‘‘Displaying Line Num-
bers: number.”’

Inserting Text Before the Cursor: i and I

You can begin inserting text before the cursor anywhere on a line, or at
the beginning of a line. In order to insert text into a file, you must be in
Insert mode. To enter Insert mode press:

i

vi: A Text Editor . 2-23

Editing Tasks

The “‘i’’ does not appear on the screen. Any text typed after the ‘i’
becomes part of the file you are editing. To leave Insert mode and reenter
Command mode, press (ESC). For more explanation of modes in vi, see
the section ‘‘Inserting Text.”’

Anywhere on a Line: i

To insert text before the cursor, use the i command. Press the i key to
enter Insert mode (the ‘‘i”’ does not appear on your screen), then begin
entering your text. To leave Insert mode and reenter Command mode,
press (ESC).

At the Beginning of the Line: I
Using an uppercase ‘‘I’’ to enter Insert mode also moves the cursor to the

beginning of the current line. It is used to start an insertion at the begin-
ning of the current line.

Appending After the Cursor: a and A

You can begin appending text after the cursor anywhere on a line, or at
the end of a line. Press (ESC) to leave Insert mode and reenter Command
mode.

Anywhere on a Line: a

To append text after the cursor, use the a command. Press the a key to
enter Insert mode (the ‘‘a’ does not appear on your screen), then begin
entering your text. Press (ESC) to leave Insert mode and reenter Command
mode.

At the end of a Line: A

Using an uppercase “‘A’’ to enter Insert mode also moves the cursor tc the

end of the current line. It is useful for appending text at the end of the
current line.

2-24 User’s Guide

Editing Tasks

Correcting Typing Mistakes

If you make a mistake while you are typing, the simplest way to correct it
is with the (BKSP) key. Backspace across the line until you have back-
spaced over the mistake, then retype the line. You can only do this, how-
ever, if the cursor is on the same line as the error. See the sections
“‘Deleting a Character: x and X’ through ‘‘Deleting an Entire Insertion’’
for other ways to correct typing mistakes.

Opening a New Line

To open a new line above the cursor, press O. To open a new line below
the cursor, press 0. Both commands place you in Insert mode, and you
may begin entering immediately. Press (ESC) to leave Insert mode and
reenter Command mode.

You may also use the (Return) key to open new lines above and below the
cursor. To open a line above the cursor, move the cursor to the beginning
of the line, press i to enter Insert mode, then press (Return). (For informa-
tion on how to move the cursor, see the section ‘“Moving the Cursor.””) To
open a line below the cursor, move the cursor to the end of the current
line, press i to enter Insert mode, then press (Return).

Repeating the Last Insertion

(CTL)@ repeats the last insertion. Press i to enter Insert mode, then press

(CTL)@.

(CTL)@ only repeats insertions of 128 characters or less. If more than
128 characters were inserted, (CTL)Y@ does nothing.

For other methods of repeating an insertion, see the sections ‘‘Repeating

the Last Insertion,’” ‘‘Inserting Text From Other Files,”” and ‘‘Repeating a
Command.”

Inserting Text From Other Files

To insert the contents of another file into the file you are currently editing,
use the Read (r) command. Move the cursor to the line immediately
above the place you want the new material to appear, then enter:

it filename

vi: A Text Editor , 2-25

Editing Tasks

where filename is the file containing the material to be inserted, and press
(Return). The text of filename appears on the line below the cursor, and
the cursor moves to the first character of the new text. This text is a copy;
the original filename still exists.

Inserting selected lines from another file is more complicated. The
selected lines are copied from the original file into a temporary holding
place called a ‘‘buffer’’, then inserted into the new file.

1.

2-26

To select the lines to be copied, save your original file with the
‘Write (:w) command , but do not exit vi.

Enter:
e filename

where filename is the file that contains the text you want to copy,
and press (Return).

Move the cursor to the first line you wish to select.
Enter:

mk

This ‘‘marks’’ the first line of text to be copied into the new file
with the letter “‘’k’’.

Move the cursor to the last line of the selected text. Enter:
"ay7k

The lines from your first ‘‘mark’ to the cursor are placed, or
“‘yanked’’ into buffer a. They will remain in buffer a until you

replace them with other lines, or until you exit the editor.
Enter:
K<

to return to your previous file. (For more information about this
command, see the section ‘‘Editing a New File Without Leaving
the Editor.””) Move the cursor to the line above the place you want
the new text to appear, then enter:

ap

User’s Guide

Editing Tasks

This ‘‘puts’’ a copy of the yanked lines into the file, and the cursor
is placed on the first letter of this new text. The buffer still contains
the original yanked lines.

You can have 26 buffers named a, b, ¢, up to and including z. To name and
select different buffers, replace the a in the above examples with whatever
letter you wish.

You may also delete text into a buffer, then insert it in another place. For
information on this type of deletion and insertion, see the section ‘‘Mov-
ing Text.”’

Copying Lines From Elsewhere in the File

To copy lines from one place in a file to another place in the same file, use
the Copy (co) command.

co is a line-oriented command, and to use it you must know the line num-
bers of the text to be copied and its destination. To find out the number of
the current line enter:

.nu

and press (Return). The line number and the text of that line are displayed
on the status line. To find out the destination line number, move the cursor
to the line above where you want the copied text to appear and repeat the
:nu command. You can also make line numbers appear throughout the
file with the linenumber option. For information on how to set this
option, see the section ‘‘Displaying Line Numbers: number.”” The fol-
lowing example uses the number option to display line numbers in a file.

-

[Fliles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

s W N

vi: A Text Editor 2-27

Editing Tasks

Using the above example, to copy lines 3 and 4 and put them between
lines 1 and 2, enter:

3,4col

The result is:

/

Files contain text.

Lines contain characters.
[Clharacters form words.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

PN o W

i

If you have text that is to be inserted several times in different places, you
can save it in a temporary storage area, called a ‘‘buffer’’, and insert it
whenever it is needed. For example, to repeat the first line of the follow-
ing text after the last line;

-

[Fliles contain text.
.Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

1. Move the cursor over fhe F in Files. Enter the following line,
which will not be echoed on your screen:

ayy

This ‘‘yanks’’ the first line into buffer a. Move the cursor over the
W in Words.

2-28 User’s Guide

Editing Tasks

2. Enter the following line:

ap
This “‘puts’’ a copy of the yanked line into the file, and the cursor

is placed on the first letter of this new text. The buffer still con-
tains the original yanked line.

Your screen looks like this: E

/

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

[Fliles contain text.

If you wish to ‘‘yank’’ several consecutive lines, indicate the number of
lines you wish to yank after the name of the buffer. For example, to place
three lines from the above text in buffer a, enter:

"a3yy

You can also use ‘‘yank’’ to copy parts of a line. For example, to copy the
words Files contain, enter:

2yw
This yanks the next two words, including the word on which you place the
cursor. To yank the next ten characters, enter:

10yl

| indicates cursor motion to the right. To yank to the end of the line you
are on, from where you are now, enter:

y$

vi: A Text Editor 2-29

Editing Tasks

Inserting Control Characters into Text

Many control characters have special meaning in vi, even when typed in
Insert mode. To remove their special significance, press (CTL)v before
typing the control character. Note that (CTL)j, (CTL)q, and (CTL)s cannot
be inserted as text. (CTL)j is a newline character. (CTL)q and (CTL)s are

meaningful to the operating system, and are trapped by it before they are
interpreted by vi.

Joining and Breaking Lines
To join two lines press:
J
while the cursor is on the ﬁrst of the two lines you wish to join.

To break one line into two lines, position the cursor on the space preced-
ing the first letter of what will be the second line, press:

T

then press (Return).

Deleting a Character: x and X

The x and X commands delete a specified number of characters. The x
command deletes the character above the cursor; the X command deletes
the character immediately before the cursor. If no number is given, one
character is deleted. For example, to delete three characters following the
cursor (including the character above the cursor), enter:

3x

To delete three characters preceding the cursor, enter:

3X

2-30 User’s Guide

Editing Tasks

Deleting a Word: dw

The dw command deletes a specified number of words. If no number is
given, one word is deleted. A word is interpreted as numbers and letters
separated by whitespace. When a word is deleted, the space after it is also
deleted. For example, to delete three words, enter:

N

Deleting a Line: D and dd

The D command deletes all text following the cursor on that line, includ-
ing the character the cursor is resting on. The dd command deletes a
specified number of lines and closes up the space. If no number is given,
only the current line is deleted. For example, to delete three lines, enter:

3dd

Another way to delete several lines is to use a line-oriented command. To
use this command it helps to know the line numbers of the text you wish
to delete. For information on how to display line numbers, see the section
“‘Displaying Line Numbers: number.”’
For example, to delete lines 200 through 250, enter:

:200,250d
Press (Return).
When the command finishes, the message:

50 lines
appears on the vi status line, indicating how many lines were deleted.
It is possible to remove lines without displaying line numbers using short-
hand ‘‘addresses’’. For example, to remove all lines from the current line

(the line the cursor rests on) to the end of the file, enter:

,8d

vi: A Text Editor 2-31

Editing Tasks

The dot (.) represents the current line, and the dollar sign stands for the
last line in the file. To delete the current line and 3 lines following it,
enter:

,+3d

To delete the current line and 3 lines preceding it, enter:
,-3d

For more information on using addresses in line-oriented commands, see
vi(C) in the User’s Reference.

Deleting an Entire Insertion

If you wish to delete all of the text you just entered, press (CTL)u while
you are in Insert mode. The cursor returns to the beginning of the inser-
tion. The text of the original insertion is still displayed, and any text you
enter replaces it. When you press (ESC), any text remaining from the ori-
ginal insertion disappears.

Deleting and Replacing Text

Several vi commands combine removing characters and entering Insert
mode. The following sections explain how to use these commands.

Overstriking: r and R

The r command replaces the character under the cursor with the next
character entered. To replace the character under the cursor with a *‘b”’,
for example, enter:

b

2-32 User’s Guide

Editing Tasks

If a number is given before r, that number of characters is replaced with
the next character entered. For example, to replace the character above
the cursor, plus the next three characters, with the letter ‘‘b’’, enter:

4rb
Note that you now have four ‘‘b’’s in a row.

The R command replaces as many characters as you enter. To end the
replacement, press (ESC). For example, to replace the second line in the
following text with ‘‘Spelling is important.”’:

//' Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Move the cursor over the T in Text. Press R, then enter:

Spelling is important.

Press (ESC) to end the replacement. If you make a mistake, use the
(BKSP) key to correct it. Your screen should now look like this:

-

Files contain text.
Spelling is important([.]
Lines contain characters.
Characters form words.
Words form text.

vi: A Text Editor 2-33

Editing Tasks

Substituting: s and S
The s command replaces a specified number of characters, beginning with
the character under the cursor, with text you enter. For example, to substi-
tute ‘‘xyz’’ for the cursor and two characters following it, enter:

3sxyz
The S command deletes a specified number of lines and replaces them
with text you enter. You may enter as many new lines of text as you
wish; S affects only how many lines are deleted. If no number is given,
one line is deleted. For example, to delete four lines, including the current
line, enter:

4S

This differs from the R command. The S command deletes the entire
current line; the R command deletes text from the cursor onward.

Replacing a Word: cw

The ¢w command replaces a word with text you enter. For example, to
replace the word ‘‘bear’’ with the word *‘fox’’, move the cursor over the
‘b’ in ‘‘bear’’. Press:

cw

A dollar sign appears over the ‘‘r’’ in bear, marking the end of the text
that is being replaced. Enter:
fox

and press (ESC). The rest of ‘‘bear’’ disappears and only ‘‘fox’’ remains.

2-34 User’s Guide

Editing Tasks

Replacing the Rest of a Line: C

The C command replaces text from the cursor to the end of the line. For
example, to replace the text of the sentence:

Who's afraid of the big bad wolf?

from big to the end, move the cursor over the b in big and press: E
C

A dollar sign ($) replaces the question mark (?) at the end of the line.

Enter the following:
little lamb?

Press (ESC). The remaining text from the original sentence disappears.

Replacing a Whole Line: cc
The cc command deletes a specified number of lines, regardless of the

location of the cursor, and replaces them with text you enter. If no number
is given, the current line is deleted.

Replacing a Particular Word on a Line

If a word occurs several times on one line, it is often convenient to use a
line-oriented command to replace it. For example, to replace the word
removing with ‘‘deleting’’ in the following sentence:

In vi, removing a line is as easy as removing a letter.

Make sure the cursor is at the beginning of that line, and enter:

:sfremoving/deleting/g

vi: A Text Editor 2-35

Editing Tasks

Press (Return). This line-oriented command means ‘‘Substitute (s) for the
word removing the word deleting, everywhere it occurs on the current line
(g)”’. If you don’t include a g at the end, only the first occurrence of
removing is changed.

For more information on using line-oriented commands to replace text,
see the section ‘‘Searching and Replacing.”

Moving Text

To move a block of text from one place in a file to another, you can use
the line-oriented m command. You must know the line numbers of your
file to use this command. The number option displays line numbers. To
set this option, press (ESC) to make sure you are in Command mode, then
enter:

set number
Line numbers will appear to the left of your text. For more information
on setting the number option, see the section “Dlsplaymg Line Num-

bers: number.”’

The following example uses the number option. For other ways to dis-
play line numbers, see the section ‘‘Finding Out What Line You’re On.”’

/

1 [Fliles contain text.

2 Text contains lines.

3 Lines contain characters.
4 Characters form words.

5 Words form text.

To insert lines 2 and 3 between lines 4 and 5, enter:

:2,3m4

2-36 User’s Guide

Editing Tasks

Your screen should look like this:

/

Files contain text.
Characters form words.
Text contains lines.
Lines contain characters.
[Wlords form text.

Ol W NP

To place line 5 after line 2, enter:

:Sm2

After moving, your screen should look like this:

-

1 Files contain text.

2 Characters form words.

3 [W]ords form text.

4 Text contains lines.

5 Lines contain characters.

1

To make line 4 the first line in the file, enter:

:4m0

vi: A Text Editor 2-37

Editing Tasks

Your screen should look like this:

/

1 [T]lext contains lines.

2 Files contain text.

3 Characters form words.

4 Words form text.

5 Lines contain characters.

You can also delete text into a temporary storage place, called a ‘‘buffer,”
and insert it wherever you wish. When text is deleted it is placed in a
‘“‘delete buffer.”” There are nine *‘delete buffers.”’

The first buffer always contains the most recent deletion. In other words,
the first deletion in a given editing session goes into buffer 1. The second
deletion also goes into buffer 1, and pushes the contents of the old buffer 1
into buffer 2. The third deletion goes into buffer 1, pushing the contents of
buffer 2 into buffer 3, and the contents of buffer 1 into buffer 2. When
buffer 9 has been used, the next deletion pushes the current text of buffer 9
off the stack and it disappears.

Text remains in the delete buffers until it is pushed off the stack, or until
you quit the editor, so it is possible to delete text from one file, change
files without leaving the editor, and place the deleted text in another file.

Delete buffers are particularly useful when you wish to remove text, store
it, and put it somewhere else. Using the following text as an example:

/

[Fliles contain text.
Text contains lines. .
Lines contain characters.
Characters form words.
Words form text.

Delete the first line by entering:

dd

2-38 User’s Guide

Editing Tasks

Delete the third line the same way. Now move the cursor to the last line
in the example and press:

"lp

The line from the second deletion appears: E

/

Text contains lines.
Characters form words.
Words form text.

[L]ines contain characters.

Now enter:

nzp

The line from the first deletion appears:

-~

Text contains lines.
Characters form words.
Words form text.

Lines contain characters.
[Fliles contain text.

Inserting text from a delete buffer does not remove the text from the
buffer. Since the text remains in a buffer until it is either pushed off the

stack or until you quit the editor, you may use it as many times as you
wish.

It is also possible to place text in named buffers. For information on how
to create named buffers, see the section ‘‘Inserting Text From Other
Files.”

vi: A Text Editor 2-39

Editing Tasks

Searching: / and ?
You can search forward and backward for patterns in vi. To search for-
ward, press the slash (/) key. The slash appears on the status line. Enter
the characters you wish to search for. Press (Return). If the specified pat-
tern exists, the cursor will move to the first character of the pattern.
For example, to search forward in the file for the word ‘‘account’’, enter:
faccount
Press (Return). The cursor is placed on the first character of the pattern.
To place the cursor at the beginning of the line above ‘‘account’’, for
example, enter:
faccount/-
To place the cursor at the beginning of the line two lines above the line

that contains ‘‘account’’, enter:

faccount/-2

To place the cursor two lines below ‘‘account’”’, enter:

faccount/+2
To search backward through a file, use ? instead of / to start the search.
For example, to find all occurrences of ‘‘account’’ above the cursor,
enter:

?account
To search for a pattern containing any of the special characters (. *\[] "
$ and), each special character must be preceded by a backslash. For

example, to find the pattern ‘“U.S.A.”’, enter:

JO\.S\.A\./

2-40 User’s Guide

Editing Tasks

You can continue to search for a pattern by pressing:

n

after each search. The pattern is unaffected by intervening vi commands,
and you can use n to search for the pattern until you enter a new pattern
or quit the editor.

vi searches for exactly what you enter. If the pattern you are searching for
contains an uppercase letter (for example, if it appears at the beginning of
a sentence), vi ignores it. To disregard case in a search command, you can
set the ignorecase option:

:set ignorecase
By default, searches ‘‘wrap around’’ the file. That is, if a search starts in
the middle of a file, when vi reaches the end of the file it will ‘‘wrap
around’’ to the beginning, and continue until it returns to where the
search began. Searches will be completed faster if you specify forward or

backward searches, depending on where you think the pattern is.

If you do not want searches to wrap around the file, you can change the
‘“‘wrapscan’’ option setting. Enter:

:set nowrapscan
and press (Return) to prevent searches from wrapping. For more informa-

tion about setting options, see the section ‘‘Setting Up Your Environ-
ment.”’

Searching and Replacing

The search and replace commands allow you to perform complex changes
to a file in a single command. Learning how to use these commands is a
must for the serious user of vi.

The syntax of a search and replace command is:

glpatternl [s/[pattern2]/[options]

vi: A Text Editor 2-41

Editing Tasks

Brackets indicate optional parts of the command line. The g tells the
computer to execute the replacement on every line in the file. Otherwise
the replacement would occur only on the current line. The options are
explained in the following sections.

To explain these commands we will use the example file from the
demonstration run:

/

[Fliles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Replacing a Word

To replace the word ‘‘contain’’ with the word ‘‘are’’ throughout the file,
enter the following command:

:g/contain /s//are /g

This command says ‘‘On each line of the file (g), find contain and substi-
tute for that word (s//) the word are, everywhere it occurs on that line (the
second g)’’. Note that a space is included in the search pattern for con-
tain; without the space contains would also be replaced.

After the command executes your screen should look like this:

/

[Fliles are text.

Text contains lines.
Lines are characters.
Characters form words.
Words form text.

2-42 User’s Guide

Editing Tasks

Printing all Replacements

To replace ‘‘contain’’ with ‘‘are’” throughout the file, and print every line
changed, use the p option:

:g/contain /s/fare /gp

Press (Return). After the command executes, each line in which ‘‘con-
tain’’ was replaced by ‘‘are’’ is printed on the lower part of the screen. To
remove these lines, redraw the screen by pressing (CTL)r.

Choosing a Replacement

Sometimes you may not want to replace every instance of a given pattern.
The ¢ option displays every occurrence of pattern and waits for you to
confirm that you want to make the substitution. If you press y the substitu-
tion takes place; if you press (Return) the next instance of pattern is dis-
played.

To run this command on the example file, enter:

:g/contain/s//are/gc

Press (Return). The first instance of ‘‘contain’’ appears on the status line:
Files contain text.

AAAAAAA

Press y , then (Return). The next occurrence of contain appears.

Pattern Matching

Search commands often require, in addition to the characters you want to
find, a context in which you want to find them. For example, you may
want to locate every occurrence of a word at the beginning of a line. vi
provides several special characters that specify particular contexts.

vi: A Text Editor 2-43

Editing Tasks

Matching the Beginning of a Line

When a caret(") is placed at the beginning of a pattern, only patterns

found at the beginning of a line are matched. For example, the following

search pattern only finds ‘‘text’’ when it occurs as the first word on a line:
[‘text/

To search for a caret that appears as text you must precede it with a
backslash (\).

Matching the End of a Line

When a dollar sign ($) is placed at the end of a pattern, only patterns
found at the end of a line are matched. For example, the following search
pattern only finds ‘‘text’” when it occurs as the last word on a line:

ftext$/

To search for a dollar sign that appears as text you must precede it with a
backslash (\).

Matching Any Single Character
When used in a search pattern, the period (.) matches any single character
except the newline character. For example, to find all words that end with
“‘ed”’, use the following pattern:

led /
Note the space between the d and the backslash.

To search for a period in the text, you must precede it with a backslash (V.

2-44 User’s Guide

Editing Tasks

Matching a Range of Characters

A set of characters enclosed in square brackets matches any single char-
acter in the range designated. For example, the search pattern:

/la-z]/

finds any lowercase letter. The search pattern:

/laA]pple/
finds all occurrences of ‘‘apple’” and ‘‘Apple’’.
To search for a bracket that appears as text, you must precede it with a
backslash (\).
Matching Exceptions

A caret (") at the beginning of string matches every character except those
specified in string. For example the search pattern:

[fa-z]

finds anything but a lowercase letter or a newline.

Matching the Special Characters

To place a caret, hyphen or square bracket in a search pattern, precede it
with a backslash. To search for a caret, for example, enter:

N1

If you need to search for many patterns that contain special characters,
you can reset the magic option. To do this, enter:

:set nomagic

This removes the special meaning from the characters .,\, $, [and]. You
can include them in search and replace commands without a preceding
backslash. Note that the special meaning cannot be removed from the
special characters star (*) and caret (*); these must always be preceded by
a backslash in searches.

vi: A Text Editor 2-45

Editing Tasks

To restore magic, enter:
:set magic

For more information about setting options, see the ‘‘Setting Up Your
Environment’’ section.

Undoing a Command: u

Any editing command can be reversed with the Undo (u) command. The
Undo command works on both screen-oriented and line-oriented com-
mands. For example, if you have deleted a line and then decide you wish
to keep it, press u and the line will reappear.

Use the following line as an example:

-~

Tlext contains lines.

[

Place the cursor over the ‘‘c’’ in ‘‘contains’’, then delete the word with
the dw command. Your screen should look like this:

/

Text [l]lines.

[R T Y S S T N

2-46 User’s Guide

Editing Tasks

Press u to undo the dw command. contains reappears:

/

Text [clontains lines.

I T T T T B S B |

If you press u again, ‘‘contains’’ is deleted again:

/

Text [llines.

L e N T I I

It is important to remember that u only undoes the last command. For
example, if you make a global search and replace, then delete a few char-
acters with the x command, pressing u will undo the deletions but not the
global search and replace.

Repeating a Command: .

Any screen-oriented vi command can be repeated with the Repeat (.)
command. For example, if you have deleted two words by entering:

2dw

you may repeat this command as many times as you wish by pressing the
period key (.). Cursor movement does not affect the Repeat command, so
you may repeat a command as many times and in as many places in a file
as you wish.

vi: A Text Editor 2-47

Editing Tasks

The Repeat command only repeats the last vi command. Careful planning
can save time and effort. For example, if you want to replace a word that
occurs several times in a file (and for some reason you do not wish to use
a global command), use the cw command instead of deleting the word
with the dw command, then inserting new text with the i command. By
using the ¢cw command you can repeat the replacement with the dot (.)
command. If you delete the word, then insert new text, dot only repeats
the replacement.

Leaving the Editor

There are several ways to exit the editor and save any changes you may
have made to the file. One way is to enter:

X
and press (Return). This command replaces the old copy of the file with
the new one you have just edited, quits the editor, and returns you to the
UNIX shell. Similarly, if you enter:

zZ
the same thing happens, except the old copy file is written out only if you
have made any changes. Note that the ZZ command is not preceded by a

colon, and is not echoed on the screen.

To leave the editor without saving any changes you have made to the file,
enter:

q!

The exclamation point tells vi to quit unconditionally. If you leave out the
exclamation point:

q

vi will not let you quit. You will see the error message:

No write since last change (:quit! overrides)

2-48 User’s Guide

Editing Tasks

This message tells you to use :q! if you really want to leave the editor
without saving your file.

Saving a File Without Leaving the Editor

There are many occasions when you must save a file without leaving the
editor, such as when starting a new shell, or moving to another file.
Before you can perform these tasks you must first save the current file
with the Write (:w) command:

R
You do not need to enter the name of the file; vi remembers the name you
used when you invoked the editor. If you invoked vi without a filename,
you may name the file by entering:

'w filename

where filename is the name of the new file.

Editing a Series of Files

Entering and leaving vi for each new file takes time, particularly on a
heavily used system, or when you are editing large files. If you have
many files to edit in one session, you can invoke vi with more than one
filename, and thus edit more than one file without leaving the editor, as
in:

vi filel file2 file3 filed4 fileS file6
But entering many filenames is tedious, and you may make a mistake. If
you mistype a filename, you must either backspace over to mistake and
reenter the line, or kill the whole line and reenter it. It is more convenient
to invoke vi using the special characters as abbreviations.

To invoke vi on the above files without typing each name, enter:

vi file*

vi: A Text Editor 2-49

Editing Tasks

This invokes vi on all files that begin with the letters ‘‘file’’. You can plan
your filenames to save time in later editing. For example, if you are writ-
ing a document that consists of many files, it would be wise to give each
file the same filename extension, such as ‘‘.s’”. Then you can invoke vi on
the entire document:

vi *8

You can also invoke vi on a selected range of files:
vi [3-5]*.s
or
vi [a-h]*
To invoke vi on all files that are five letters long, and have any extension:

For more information on using special characters, see ‘‘Naming Conven-
tions’’ in the ‘‘Basic Concepts’’ chapter of the Tutorial.

When you invoke vi with more than one filename, you will see the fol-
lowing message when the first file is displayed on the screen:

x files to edit
After you have finished editing a file, save it with the Write (:w) com-
mand, then go to the next file with the Next (:n) command:

n
The next file appears, ready to edit. It is not necessary to specify a
filename; the files are invoked in alphabetical (or numerical, if the
filenames begin with numbers) order.
If you forget what files you are editing, enter:

:args

2-50 User’s Guide

Editing Tasks

The list of files appears on the status line. The current file is enclosed in
square brackets.

To edit a file out of order, such as file4 after file2, enter:

e file4

instead of using the (:n) command. If you enter: E
‘n

after you finish editing file4, you will go back to file3.

If you wish to start again from the beginning of the list, enter:

Tew

To discard the changes you made and start again at the beginning, enter:

rew!

Editing a New File Without Leaving the Editor

You can start editing another file anywhere on a UNIX system without
leaving vi. This saves time when you wish to edit several files in one ses-
sion that are in different directories, or even in the same directory. For
example, if you have finished editing /usr/joe/memo and you wish to edit
lusr/marylletter, first save the file memo with the Write (:w) command
then enter:

:¢ /usr/mary/letter

lusr/marylletter appears on your screen just as though you had left vi.

vi: A Text Editor 2-51

Editing Tasks

Note

You must write out your file with the Write (:w) command to save
the changes you have made. If you try to edit a second file without
writing out the first file, the message ‘‘No write since last change
(:e! overrides)’’ appears. If you use :e! all your changes to the first
file are discarded.

If you want to switch back and forth between two files, vi remembers the
name of the last file edited. Using the above example, if you wish to go
back and edit the file /usr/joe/memo after you have finished with
lusrimaryl/letter, enter:

e#

The cursor is positioned in the same location it was when you first saved
lusrljoe/ memo.

Leaving the Editor Temporarily: Shell Escapes
You can execute any UNIX command from within vi using the shell
Escape (!) command. For example, if you wish to find out the date and
time, enter:

:!date
The exclamation point sends the remainder of the line to the shell to be
executed, and the date and time appear on the vi status line. You can use
the ! to perform any UNIX command. To send mail to joe without leaving
the editor, enter:

:Imail joe

Type your message and send it. (For more information about the UNIX
mail system, see the ‘‘mail’’ chapter.) After you send it, the message

[Press return to continue]

appéars. Press (Return) to continue editing.

2-52 User’s Guide

Editing Tasks

If you want to perform several UNIX commands before returning to the
editor, you can invoke a new shell:

:Ish

The UNIX prompt appears. You may execute as many commands as you
like. Press (CTL)d to terminate the new shell and return to your file.

If you have not written out your file before a shell escape, you will see
the message:

[No write since last change]

It is a good idea to save your file with the Write (:w) command before
executing an escape, just in case something goes wrong. However, once
you become an experienced vi user, you may wish to turn off this mes-
sage. To turn off the ‘‘No write’’ message, reset the warn option, as fol-
lows:

:set nowarn

For more information about setting options in vi, see the section ‘‘Setting
Up Your Environment.”’

Performing a Series of Line-Oriented Commands:

Q

If you have several line-oriented commands to perform, you can place
yourself temporarily in Line-oriented mode by entering:

Q

while you are in Command mode. A colon prompt appears on the status
line.

Commands executed in this mode cannot be undone with the u command,
nor do they appear on the screen until you re-enter Normal vi mode. To
re-enter Normal vi mode, enter:

vi

vi: A Text Editor 2-53

Editing Tasks

Finding Out What File You’re In
If you forget what file you are editing, press (CTL)g while you are in
Command mode. A line similar to the following appears appears on the
status line:
‘‘memo’’ [Modified] line 12 of 100 --12%--

From left to right, the following information is displayed:

e The name of the file

e Whether or not the file has been modified

e The line number the cursor is on

e How many lines there are in the file

® Your location in the file (expressed as a percentage)

This command is also useful when you need to know the line number of
the current line for a line-oriented command.

The same information can be obtained by entering:
file

or

Finding Out What Line You’re On
To find out what line of the file you are on, enter:
‘nu

and press (Return). This command displays the current line number and
the text of the line.

To display line numbers for the entire file, see the section ‘‘Displaying
Line Numbers: number.”’

2-54 User’s Guide

Solving Common Problems

Solving Common Problems

The following is a list of common problems that you may encounter when
using vi, along with the probable solution.

1 don’t know which mode I'm in.

Press (ESC) until the bell rings. When the bell rings you are in
Command mode.

I can’t get out of a subshell.
Press (CTL)d to exit any subshell. If you have created more than
one subshell (not a good idea, usually), keep pressing (CTL)d until
you see the message:
[Press return to continue]
I made an inadvertent deletion (or insertion).
Press u to undo the last Delete or Insert command.
There are extra characters on my screen.
Press (CFL)i to redraw the screen.

When I type, nothing happens.

vi has crashed and you are now in the shell with your terminal
characteristics set incorrectly. To reset the keyboard, slowly enter:

stty sane

then press (CTL)j or LINEFEED. Pressing (CTL)j instead of
(Return) is important here, since it is quite possible that the (Return)
key will not work as a newline character. To make sure that other
terminal characteristics have not been altered, log off, turn your
terminal off, turn your terminal back on, and then log back in. This
should guarantee that your terminal’s characteristics are back to
normal. This procedure may vary somewhat depending on the ter-
minal.

vi: A Text Editor 2-55

Solving Common Problems

2-56

The system crashed while 1 w¢‘1s editing.

Normally, vi will inform you (by sending you mail) that your file
has been saved before a crash. The file can be recovered by enter-
ing:

vi -r filename

If vi was unable to save the file before the crash, it is irretrievably
lost.

I keep getting a colon on the status line when I press (Return)
You are in line-oriented Command mode. Enter:

vi
to return to normal vi Command mode.

I get the error message ‘‘Unknown terminal type [Using open
mode]’’ when I invoke vi.

Your terminal type is not set correctly. To leave Open mode, press
(ESC), then enter:

'wq

and press (Retrn). Turn to the section ‘‘Setting the Terminal
Type”’ for information on how to set your terminal type correctly.

User’s Guide

Setting Up Your Environment

Setting Up Your Environment

There are a number of options that can be set that affect your terminal
type, how files and error messages are displayed on your screen, and how
searches are performed. These options can be set with the set command
while you are editing, they can be defined with the EXINIT environment
variable (see the environ(M) manual page), or they can be placed in the vi
.exrc startup file (see ‘‘Customizing Your Environment: The .exrc File’’).

You can also define mappings and abbreviations to reduce repetitive tasks
with the map and abbr commands while you are editing, with EXINIT, or
in the .exrc file.

The following sections describe how to set some commonly used options
and how to create mappings and abbreviations. There is a complete list
of options in vi(C) in the User’s Reference.

Setting the Terminal Type

Before you can use vi, you must set the terminal type, if this has not
already been done for you, by defining the TERM variable in your .profile
or .login file. The TERM variable is a number that tells the operating sys-
tem what type of terminal you are using. To determine this number you
must find out what type of terminal you are using. Then look up this type
in terminals(M) in the User’s Reference. If you cannot find your terminal
type or its number, consult your System Administrator.

For these examples, we will suppose that you are using an HP 2621 termi-
nal. For the HP 2621, the TERM variable is ‘2621”’. How you define this
variable depends on which shell you are using. You can usually deter-
mine which shell you are using by examining the prompt character. The
Bourne shell prompts with a dollar sign ($); the C-shell prompts with a
percent sign (%).

Setting the TERM Variable: The Bourne Shell

To set your terminal type to 2621 place the following commands in the
file .profile:

TERM=2621
export TERM

vi: A Text Editor 2-57

Setting Up Your Environment

Setting the TERM Variable: The C Shell

To set your terminal type to 2621 for the C shell, place the following
command in the file .login:

setenv TERM 2621

Setting Options: The set Command

The set command is used to display option settings and to set options.

Listing the Available Options

To get a list of the options available to you and how they are set, enter:

:set all

Your display should look similar to this:

/

noautoindent open noslowopen
autoprint nooptimize tabstop=8
noautowrite paragraphs=IPLPPPQPP LIbp taglength=0
nobeautify noprompt ttytype=hl9
directory=/tmp noreadonly term=hl9
noerrorbells redraw noterse
hardtabs=8 report=5 warn
noignorecase scroll=4 window=8
nolisp sections=NHSHH HU wrapscan
nolist shell=/bin/sh wrapmargin=0
magic shiftwidth=8 nowriteany
nonumber noshowmatch

This chapter discusses only the most commonly used options. For infor-
mation about the options not covered in this chapter, see vi(C) in the

User’s Reference.

2-58

User’s Guide

Setting Up Your Environment

Setting an Option

To set an option, use the set command. For example, to set the ignore-
case option so that case is not ignored in searches, enter:

set noignorecase

Displaying Tabs and End-of-Line: list E

The list option causes the ‘‘hidden’’ characters and end-of-line to be dis-
played. The default setting is nolist. To display these characters, enter:

:set list

Your screen is redrawn. The dollar sign ($) represents end-of-line and
(CTL)i ("I) represents the tab character.

Ignoring Case in Search Commands: ignorecase

By default, case is significant in search commands. To disregard case in
searches, enter:

:set ignorecase
To change this option, enter:

set noignorecase

Displaying Line Numbers: number

It is often useful to know the line numbers of a file. To display these num-
bers, enter:

:set number

This redraws your screen. Numbers appear to the left of the text.

vi: A Text Editor 2-59

Setting Up Your Environment

Printing the Number of Lines Changed: report

The report option tells you the number of lines modified by a line-
oriented command. For example,

:set report=1

reports the number of lines modified, if more than one line is changed.
The default setting is:

report=5

which reports the number of lines changed when more than five lines are
modified.

Changing the Terminal Type:term

If you are logged in on a terminal that is a different type than the one you
normally use, you can check the terminal type setting by entering:

set term

Press (Return). See the section ‘‘Setting the Terminal Type’’ for more in-
formation about TERM variables.

Shortening Error Messages: terse

After you become experienced with vi, you may want to shorten your
error messages. To change from the default noterse, enter:

:set terse
As an example of the effect of terse, when terse is set the message:
No write since last change, quit! overrides
becomes:

No write

2-60 User’s Guide

Setting Up Your Environment

Turning Off Warnings: warn

After you become experienced with vi, you may want to turn off the error
message that appears if you have not written out your file before a Shell
Escape (:!) command. To turn these messages off, enter:

:set nowarn

Permitting Special Characters in Searches:
nomagic

The nomagic option allows the inclusion of the special characters (. \ $ [
1) in search patterns without a preceding backslash. This option does not

affect caret (™) or star (*); they must be preceded by a backslash in
searches regardless of magic. To set nomagic, enter:

:set nomagic

Limiting Searches: wrapscan

By default, searches in vi ‘‘wrap’’ around the file until they return to the
place they started. To save time you may want to disable this feature. Use
the following command:

s€t nowrapscan

When this option is set, forward searches go only to the end of the file,
and backward searches stop at the beginning.

Turning on Messages: mesg

If someone sends you a message with the write command while you are
in vi the text of the message will appear on your screen. To remove the
message from your display you must press (CTL)l. When you invoke vi,
write permission to your screen is automatically turned off, preventing
write messages from appearing. If you wish to receive write messages
while in vi, reset this option as follows:

:set mesg

vi: A Text Editor 2-61

Setting Up Your Environment

Mapping Keys
The map command maps any character or escape sequence to a command
sequence. For example, with the following command defined, when you
enter the pound sign (#) in Command mode, vi adds a semicolon to the
end of the current line.

map # A;"[

{CTL)[represents the ESC key you must enter to exit from Insert mode.
When you create a mapping, use (CTL)v to escape control characters.

Here is a more complex example:

map P :w"M:!spell %M
(CTL)p key is mapped to two commands; it writes the file, then executes a
shell escape to run the spell checker on the current file (represented by the
percent sign). The (CTL)m represents the (Return) you must enter to exe-

cute each command.

Be careful not to map keys that are already defined within vi, such as
{CTL)r, which is defined by default to redraw the screen.

You can remove a mapping with the unmap command.

Abbreviating Strings
The abbr command allows you to avoid typing a frequently used word or
phrase by mapping a short string to a longer string. For example, with the
following command defined, when you enter ‘‘Usa’’ in Insert mode, vi
expands the string to ‘‘United States of America’’.

:abbr Usa United States of America
When you create an abbreviation, it helps to use mixed case (as in
“Usa’’) so that you can still enter ‘“USA”’ if you need to without it
expanding.

You can remove an abbreviation with the unabbreviate command.

2-62 User’s Guide

Setting Up Your Environment

Customizing Your Environment: The .exrc File

Each time vi is invoked, it reads commands from the file named .exrc in
your home directory. This file sets your preferred options so that they do
not need to be set each time you invoke vi. A sample .exrc file follows:

set number

set ignorecase)
set nowarn
set report=1

map "W !}fmt"M
abbr unix \s-1UNIX\s+1

Each time you invoke vi with the above settings, your file is displayed
with line numbers, case is ignored in searches, warnings before shell
escape commands are turned off, and any command that modifies more
than one line will display a message indicating how many lines were
changed. In addition, the (CTL)w key is defined to escape to the shell to
run a formatting command on the current paragraph, and the string
“‘unix’’ is defined to expand to a string containing troff(CT) commands
that print small capital letters.

vi: A Text Editor 2-63

Summary of Commands

Summary of Commands

The following tables contain all the basic commands discussed in this

chapter.

Entering vi

Typing this:

vi file

vi +n file

vi + file

vi +/pattern file

vi -r file

Does this:

Starts at line 1
Starts at line n
Starts at last line
Starts at pattern

Recovers file after a sys-
tem crash

2-64

User’s Guide

Summary of Commands

Cursor Movement

Pressing this key: Does this:

h Moves 1 space left

1 Moves 1 space right

(Space) Moves 1 space right

w Moves 1 word right

b Moves 1 word left

k Moves 1 line up

j Moves 1 line down

(Return) Moves 1 line down

) Moves to end of sentence

(Moves to beginning of sentence

} Moves to beginning of paragraph

{ Moves to end of paragraph

(CTL)w Moves to first character of inser-
tion

(CTL)u Scrolls up 1/2 screen

(CTL)d Scrolls down 1/2 screen

(CTL) Scrolls down one screen

(CTL)b Scrolls up one screen

vi: A Text Editor 2-65

Summary of Commands

Inserting Text

Pressing

oo » & ==

-y

Starts insertion:

Before the cursor

Before first character on the line
After the cursor

After last character on the line
On next line down

On the line above

On current character, replaces
one character only

On current character, replaces
until (ESC)

Delete Commands

Command Function
dw Deletes a word
do Deletes to beginning of line
ds Deletes to end of line
3dw Deletes 3 words
dd Deletes the current line
5dd Deletes 5 lines
X Deletes a character
2-66

User’s Guide

Change Commands

Command
cw

3ew

cc

Scc

Function

Changes 1 word
Changes 3 words
Changes current line

Changes 5 lines

Search Commands

Summary of Commands

Command

/and

?7and

/"The

/[bBlox/

Function

Finds the next
occurrence of and

Finds the previous
occurrence of and

Finds next line
that starts with
The

Finds the next
occurrence of box
or Box

Repeats the most
recent search, in
the same direction

Example

and, stand, grand

and, stand, grand

The, Then, There

vi: A Text Editor

2-67

Summary of Commands

Search and Replace Commands

Command

:s/pear/peach/g

:1,$s/file/directory

:gfone/s//1/g

Result

All pears become
peach on the
current line

Replaces file with
directory from
line 1 to the end.

Replaces every
occurrence of one
with 1.

Example

filename becomes
directoryname

one becomes 1,
oneself becomes
1self, someone
becomes somel

Pattern Matching: Special Characters

This character:

-

{

Matches:
Beginning of a line
End of a line

Any single character

A range of characters

2-68

User’s Guide

Leaving vi

[Command

W

:q!

:lcommand
:Ish

lcommand

e file

Result
Writes out the file

Writes out the file, quits
vi

Quits vi without saving
changes

Executes command
Forks a new shell

Executes command and
places output on current
line

Edits file (save current
file with :w first)

vi: A Text Editor

Summary of Commands

2-69

Summary of Commands

Options
This option: Does this:
all Lists all options
term Sets terminal type
ignorecase Ignores case in searches
list Displays tab and end-of-line characters
number Displays line numbers
report Prints number of lines changed by a line-
oriented command
terse Shortens error messages
warn Turns off ‘‘no write’’ warning before escape
nomagic Allows inclusion of special characters in search
patterns without a preceding backslash
nowrapscan Prevents searches from wrapping around the
end or beginning of a file.
mesg Permits display of messages sent to your termi-
nal with the write command
2-70

User’s Guide

Chapter 3
ed

Introduction 3-1
Demonstration 3-2

Basic Concepts 3-3
The Editing Buffer 3-3
Commands 3-3
Line Numbers 3-3

Tasks 3-4
Entering and Exiting The Editor 3-4
Appending Text: a 3-5
Writing Out a File: w 3-6
Leaving The Editor: q 3-7
Editing a New File: e 3-8
Changing the File to Write Out to: f 3-8
Reading in a File: r 3-9 '
Displaying Lines On The Screen: p 3-10
Displaying the Current Line: dot (.) 3-13
Deleting Lines: d 3-15
Performing Text Substitutions: s 3-16
Searching 3-19
Changing and Inserting Text: candi 3-23
Moving Lines: m 3-25
Performing Global Commands: gandv = 3-26
Displaying Tabs and Control Characters: I 3-29
Undoing Commands: u 3-30
Marking Your Spot in a File: k 3-30
Transferring Lines: t 3-31
Escaping to the Shell: ! 3-32

Context and Regular Expressions 3-33
Period: (.) 3-34
Backslash: \ 3-36
Dollar Sign: $ 3-39
Caret: © 3-41
Star: * 3-41

Brackets: [and] 3-44
Ampersand: & 3-45

Substituting New Lines 3-47
Joining Lines 3-48

Rearranging a Line: \(and)) 3-48

Speeding Up Editing 3-50
Semicolon: ; 3-52
Interrupting the editor 3-54
Cutting and Pasting with the editor 3-55
Inserting One File Into Another 3-55
Writing Out Part of a File 3-55
Editing Scripts 3-57

Summary of Commands 3-58

Introduction

Introduction

ed is a text editor used to create and modify text. The text is normally a
document, a program, or data for a program, thus ed is a truly general pur-
pose program. Note that the line editor ex is very similar to ed, and there-
fore this chapter can be used as an introduction to ex as well asto ed.

ed 3-1

Demonstration

Demonstration

This section leads you through a simple session with ed, giving you a feel
for how it is used and how it works. To begin the demonstration, invoke
ed by entering:

ed

This invokes the editor and begins your editing session. ed has no prompt
unless -p string is used on the command line to specify one. A blank line
prompts you for commands to be entered. Initially, you are editing a tem-
porary file that you can later copy to any file that you name. This tem-
porary file is called the ‘‘editing buffer,”” because it acts as a buffer
between the text you enter and the file that you will eventually write out
your changes to. Typically, the first thing you will want to do with an
empty buffer is add text to it. For example, after the prompt, enter:

a
this is line 1
this is line 2
this is line 3
this is line 4

Follow this with (CTL)d. This ‘‘appends’’ four lines of text to the buffer.
To view these lines on your screen, enter:

1,4p

where the ‘1,4 specifies a line number range and the p command
““prints’’ the specified lines on the screen.

Now enter:
2p

to view line number two. Next enter:

P

This prints out the current line on the screen, which happens to be line
number two. By default, most ed commands operate on only the current
line.

3-2 User’s Guide

Basic Concepts

Basic Concepts

This section illustrates some of the basic concepts that you need to under-
stand to effectively use ed.

The Editing Buffer

Each time you invoke ed, an area in the memory of the computer is allo-
cated for you to perform all of your editing operations. This area is
called the ‘‘editing buffer.”” When you edit a file, the file is copied into
this buffer where you will work on the copy of the original file. Only
when you write out your file, do you affect the original copy of the file.

Commands

Commands are entered at your keyboard. Like normal UNIX commands,
entry of a command is ended by entering a (Return). After you enter
(Return) the command is carried out. In the following examples, we will
presume that entry of each command is completed by entering a (Return),
although this will not be shown in our examples. Most commands are sin-
gle characters that can be preceded by the specification of a line number
or a line number range. By default, most commands operate on the
“‘current line’’ described below in the section ‘‘Line Numbers.”” Many
commands take filename or string arguments that are used by the com-
mand when it is executed.

Line Numbers

Any time you execute a command that changes the number of lines in the
editing buffer, ed immediately renumbers the lines. At all times, every
line in the editing buffer has a line number. Many editing commands will
take either single line numbers or line number ranges as prefixing argu-
ments. These arguments normally specify the actual lines in the editing
buffer that are to be affected by the given command. By default, a special
line number called ‘‘dot’’ specifies the current line.

ed 3-3

Tasks

Tasks

This section discusses the tasks you perform in everyday editing. Fre-
quently used and essential tasks are discussed near the beginning of this
section. Seldom used and special-purpose commands are discussed later.

Entering and Exiting The Editor
The simplest way to invoke ed is to enter:

ed
The most common way, however, is to enter:

ed filename
where filename is the name of a new or existing file.
To exit the editor, all you need to do is enter:

q

If you have not yet written out the changes you have made to your file, ed
warns you that you will lose these changes by displaying the message:

(?

If you still want to quit, enter another q. In most cases you will want to
exit by entering:

w
q

so that you first write out your changes and only then exit the editor.

3-4 User’s Guide

Tasks

Appending Text: a

Suppose that you want to create some text starting from scratch. This
section shows you how to enter text in a file, just to get started. Later
we’ll talk about how to change it.

When you first invoke ed, it is like working with a blank piece of
paper—there is no text or information present. Text must be supplied by
the person using ed, usually by entering the text, or by reading it in from a
file. We will start by entering some text, and discuss how to read files
later.

In ed terminology, the text being worked on is said to be ‘‘kept in a
buffer.”” Think of the buffer as a workspace, or simply as a place where
the information that you are going to be editing is kept. In effect, the
buffer is the piece of paper on which you will write, make changes, and
save (write to the disk).

You tell ed what to do to your text by entering instructions called ‘‘com-
mands.”” Most commands consist of a single letter, each entered on a
separate line. ed prompts with an asterisk (*). The prompt can be turned
on and off with the prompt command, P.

The first command we will discuss is append (a), written as the letter ‘‘a’’
on a line by itself. It means ‘‘append (or add) text lines to the buffer, as
they are entered.” Appending is like writing new material on a piece of
paper. :

To enter lines of text into the buffer, enter an ‘‘a’’ followed by a (Return),
followed by the lines of text you want, as shown below:

a

Now is the time

for all good men

to come to the aid of their party.

To stop appending, enter a line that contains only a period. The period (.)
tells ed that you have finished appending. (You can also use (CTL)d, but
we will use the period throughout this discussion.) If ed seems to be
ignoring you, enter an extra line with just a period (.) onit. You may find
you’ve added some garbage lines to your text, which you will have to take
out later.

3-5

Tasks

After appending is completed, the buffer contains the following three
lines:

Now is the time
for all good men
to come to the aid of their party.

The a and . aren’t there, because they are not text.

To add more text to what you already have, enter another a command, and
continue entering your text.

If you make an error in the commands you enter to ed, and if you have
configured ed to provide details of the error, it will tell you by displaying
the message:

?
error message

For an explanation of how to turn the error message display on or off,
refer to ‘‘Commands’’ in the User’s Reference. By default, the error mes-
sage display is turned off.

Writing Out a File: w

You will probably want to save your text for later use. To write out the
contents of the buffer into a file, use the write (w) command, followed
by the name of the file that you want to write to. This copies the contents
of the buffer to the specified file, destroying any previous contents of the
file. For example, to save the text in a file named text, enter:

W text

Leave a space between w and the filename. ed responds by displaying the
number of characters it has written out. For instance, ed might respond
with

(68

(Remember that blanks and the newline character at the end of each line
are included in the character count.) Writing out a file just makes a copy
of the text—the buffer’s contents are not disturbed, so you can go on add-

3-6 User’s Guide

Tasks

ing text to it. If you invoked ed with the command ‘‘ed filename,”’ then
by default, a w command by itself will write the buffer out to filename.

Note that ed at all times works on a copy of a file, not the file itself. No
change in the contents of a file takes place until you give a w command.
Writing out the text to a file from time to time as it is being created is a
good idea. If the system crashes, or you make a mistake (not saving the
file on disk), you will lose all of the text in the buffer, but any text that
was written out to a file is relatively safe.

Leaving The Editor: g

To terminate a session with ed, save the text you’re working on by writing
it to a file using the w command, then enter:

q

The system responds with the UNIX prompt character. If you try to quit
without writing out the file ed will display:

(?

At that point, write out the text if you want to save it; if not, entering

€6 99

another ‘‘q’” will get you out of the editor.

Exercise

Enter ed and create some text by entering:
a
.. text ...

Write it out by entering:
w filename

Then leave ed by entering:

q

ed 3-7

Tasks

Next, use the cat command to display the file on your terminal screen to
see that everything has worked.

Editing a New File: e

A common way to get text into your editing buffer is to read it in from a
file. This is what you do to edit text that you have saved with the w com-
mand in a previous session. The edit (e) command places the entire con-
tents of a file in the buffer. If you had saved the three lines ‘‘Now is the
time’’ etc., with a w command in an earlier session, the ed command:

e text

would place the entire contents of the file fext into the buffer and respond
with

(68

which is the number of characters in text. If anything is already in the
buffer, it is deleted first.

If you use the e command to read a file into the buffer, then you don’t
need to use a filename after a w command. ed remembers the last
filename used in an e command, and w will write to this file. Thus, a
good way to operate is this:

ed

e file

[editing session]
w

q

This way, you can enter w from time to time and be secure in the

knowledge that if you entered the filename right in the beginning, you are
writing out to the proper file each time.

Changing the File to Write Out to: f

You can find out the last file written to at any time using the file (f) com-
mand. Just enter f without a filename. You can also change the name of
the remembered filename with f. Thus, a useful sequence is:

3-8 User’s Guide

Tasks

ed precious
f junk

which gets a copy of the file named precious, then uses f to save the text
in the file junk. The original file will be preserved as precious.

Reading in a File: r

Sometimes you want to read a file into the buffer without destroying what
is already there. This function is useful for combining files. This is done
with the read (r) command. The command:

T text

reads the file text into your editing buffer and adds it to the end of what-
ever is already in the buffer. For example, suppose you have performed a
read after an edit:

e text
r text

The buffer now contains two copies of text (i.e., six lines):

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, after the reading operation is complete r
prints the number of characters read in.
Exercise

Experiment with the e command by reading and printing various files.
You may get the following error message:

2name
cannot open input file

where name is the name of a nonexistent file. This means that the file
doesn’t exist, typically because you spelled the filename wrong, or

ed 3-9

Tasks

.

perhaps because you do not have permission to read from or write to that
file. Try alternately reading and appending, to see how they work. Verify
that the command:

ed file.text
is equivalent to

ed
e file.text

Displaying Lines On The Screen: p

Use the “‘print’’(command to print the contents of the editing buffer (or
parts of it) on the terminal screen. Specify the lines where you want
printing to begin and where you want it to end, separated by a comma and
followed by the letter “‘p>’. Thus, to print the first two lines of the buffer
(that is, lines 1 through 2) enter:

1,2p

ed displays:

Now is the time
for all good men

Suppose you want to print all the lines in the buffer. You could use
““1,3p” as shown above if you knew there were exactly 3 lines in the
buffer. But you will rarely know how many lines there are, so ed provides
a shorthand symbol for the line number of the last line in the buffer—the
dollar sign ($). Use it as shown below:

1,$p

3-10 User’s Guide

Tasks

This will print all the lines in the buffer (from line 1 to the last line). If
you want to stop the printing before it is finished, press the (DEL) key. ed
then displays:

?
(interrupt

and waits for the next command.

To print the last line of the buffer, enter:
$p

You can print any single line by entering the line number, followed by a
p. Thus:

1p

produces the response:

(Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further: you can print any single line
by entering just the line number; there’s no need to enter the letter p. If
you enter:

$

ed prints the last line of the buffer.

You can also use $ in combinations like:
$-1,9p

which prints the last two lines of the buffer. This helps when you want to
see how far you are in your entering.

The next step is to use address arithmetic to combine the line numbers
like dot (.) and dollar sign ($) with plus (+) and minus (-). (Note that
““‘dot’’ is shorthand for the current line, and is discussed in a later sec-
tion.) Thus:

ed 3-11

Tasks

$-1
prints the next to last line of the current file (that is, one line before the
line $). For example, to recall how far you were in a previous editing ses-
sion:

$-5,%p

prints the last six lines. (Be sure you understand why it’s six, not five.) If
there aren’t six lines in the file, an error message is displayed.

The command:
~3,43p

prints from three lines before the current line (line dot) to three lines
after. The plus (+) can be omitted. Thus:

-3,.3p
is identical in meaning.

Another area in which you can save entering effort in specifying lines is
to use plus and minus as line numbers by themselves. For example:

by itself is a command to move back one line in the file. In fact, you can
string several minus signs together to move back that many lines.
For example:

moves back three lines, as does:
-3

Thus:
-3,43p

is also identical to

2.-3p+3p

3-12 User’s Guide

Tasks

Displaying the Current Line: dot (.)
Suppose your editing buffer still contains the following six lines:
Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.
If you enter:
1,3p

ed displays:

Now is the time
for all good men
to come to the aid of their party.

Try entering:

p

This prints:

(/k to come to the aid of their party.

which is the third line of the buffer. In fact, it is the last (most recent) line
that you have done anything with. You can repeat this p command
without line numbers, and ed will continue to print line 3.

This happens because ed maintains a record of the last line that you did
anything to (in this case, line 3, which you just printed) so that it can be
used instead of an explicit line number. The line most recently acted on
is referred to with a period (.) and is called ‘‘dot.”” Dot is a line number
in the same way that dollar ($) is; it means ‘‘the current line’’ or loosely,
“‘the line you most recently did something to.”” You can use it in several
ways. One way is to enter:

.9p

This prints all the lines from (and including) the current line clear to the
end of the buffer. In our example, these are lines 3 through 6.

ed 3-13

Tasks

Some commands change the value of dot, while others do not. The p
command sets dot to the number of the last line printed. In the example
above, p sets dot to 6.

Dot is often used in combinations like this one:

+1

v

Or equivalently:
+1p

This means, ‘‘print the next line’’ and is one way of stepping slowly
through the editing buffer. You can also enter:

-1

This means, ‘‘print the line before the current line.”” This enables you to
go backwards through the file if you wish. Another useful command is
shown below:

-3,-1p
which prints the previous three lines.

Dor't forget that all of these change the value of dot. You can find out
what dot is at any time by entering:

ed responds by printing the value of dot. Essentially, p can be preceded
by zero, one, or two line numbers. If no line number is given, ed prints
the ‘‘current line”’ the line that dot refers to. If one line number is given
(with or without the letter p), ed prints that line (and dot is set there); and
if two line numbers are given, ed prints all the lines in that range (and sets
dot to the last line printed). If two line numbers are specified, the first
cannot be bigger than the second.

Pressing (Return) once causes printing of the next line. It is equivalent to:
+1p

Try it. Next, try entering a minus sign (-) by itself; it is equivalent to
entering:

~1p

3-14 User’s Guide

Tasks

Exercise

Create some text using the a command, and experiment with the p com-
mand. You will find, for example, that you can’t print line O, or a line
beyond the end of the buffer, and that attempting to print lines in reverse
order using ‘‘3,1p,”” does not work.

Deleting Lines: d

Suppose you want to remove three extra lines in the buffer. Use the
delete (d) command. Its action is similar to that of p, except that d
deletes lines instead of printing them. The lines to be deleted are
specified for d exactly as they are for p. Thus, the command:

4,$d

deletes lines 4 through the end. There are now three lines left in our
example, and you can check by entering:

1,%p

Notice that $ now is line 3! Dot is set to the next line after the last line
deleted, unless the last line deleted is the last line in the buffer. In that
case, dot is set to $.

Exercise

Experiment with the a, e, r, w, p, and d commands until you are sure that
you know what they do, and until you understand how dot (.), dollar ($),
and line numbers are used.

Try using line numbers with a, r, and w, as well. You will find that a
appends lines after the line number that you specify (rather than after
dot); that r reads in a file after the line number you specify (not neces-
sarily at the end of the buffer); and that w writes out exactly the lines you
specify, not the whole buffer. These variations are sometimes useful. For
instance, you can insert a file at the beginning of a buffer by entering:

Or filename

ed 3-15

Tasks

and you can enter lines at the beginning of the buffer by entering:
Oa
[input text here]
Notice that entering:
R
is very different from entering:
w

since the former writes out only a single line and the latter writes out the
whole file.

Performing Text Substitutions: s

One of the most important ed commands is the substitute (s) command.
This is the command that is used to change individual words or letters
within a line or group of lines. It is the command used to correct spelling
mistakes and entering errors.

Suppose that, due to a typing error, line 1 is:

(Now is th time

The letter ‘‘e’’ has been left off of the word ‘‘the’’ You can use s to fix
this up as follows:

1s/th/the/

This substitutes for the characters ‘‘th’’ the characters ‘‘the’’ in line 1. To
verify that the substitution has worked, enter:

p

3-16 , User’s Guide

Tasks

to get:

(/' Now is the time

which is what you wanted. Notice that dot must be the line where the
substitution took place, since the p command printed that line. Dot is
always set this way with the s command.

The syntax for the substitute command follows:
[starting-line ending-line 1s/ patternl replacement! cmds

Whatever string of characters is between the first pair of slashes is
replaced by whatever is between the second pair