
___ ALTOS_
UNIX™ SYSTEM V ..

SUPPORT Tools GuidE

UNIXTM System V
Support Tools Guide

ACKNClfLEDGEMENTS

The Altos logo, as it appears in this manual, is a
registered trademark of Altos Computer Systems.

EtherneeM is a trademark of Xerox Corporation.

HYPERchanneYM is a trademark of Network Systems
Corporation.

UNIX™ is a trademark of AT&T Bell Labor ator ies.

VAXTM is a trademark of Digital Equipment Corporation.

WE™ is a trademark of AT&T Technologies.

CONTENTS

Chapter 1. INTRODUCTION

Chapter 2. A PROGRAM FOR
MAINT AINING COMPUTER
PROGRAMS (make)

Chapter 3. AUGMENTED VERSION OF
-make

Chapter 4. SOURCE CODE CONTROL
SYSTEM USER GUIDE

Chapter 5. THE M4 MACRO PROCESSOR

Chapter 6. THE awk PROGRAMMING
LANGUAGE

Chapter 7. THE LINK EDITOR

Chapter 8. THE COMMON OBJECT FILE
FORMAT

Chapter 9. ARBITRARY PRECISION DESK
CALCULATOR LANGUAGE (BC)

Chapter 10. INTERACTIVE DESK
CALCULATOR (DC)

Chapter 11. LEXICAL ANALYZER
GENERATOR (LEX)

Chapter 12. YET ANOTHER COMPILER-
COMPILER (yacc)

Chapter 13. UNIX SYSTEM TO UNIX
SYSTEM COpy (UUCP)

- 1 -

Chapter 1

INTRODUCTION
The SUPPORT TOOLS volume is a description of the various
software "tools" that aid the UNIX* operating system user. The user
should have at least 2 years of specialized training in computer
related fields such as programming or use the UNIX system
primarily for software system development. The following
paragraphs contain a brief description of each chapter.

The chapter A PROGRAM FOR MAINTAINING COMPUTER
PROGRAMS (make) describes a software tool for maintaining,
updating, and regenerating groups of computer programs. The many
activities of program development and maintenance are made simpler
by the make program.

The chapter AUGMENTED VERSION OF "make" describes the
modifications made to handle many of the problems within the
original make program.

The chapter SOURCE CODE CONTROL SYSTEM (SCeS) USER'S
GUIDE describes the collection of SCCS programs under the UNIX
operating system. The SCCS programs act as a "custodian" over the
UNIX system files.

The chapter M4 MACRO PROCESSOR describes a general purpose
macro processor that may be used as a front end for rational
Fortran, C, and other programming languages.

The chapter "awk" PROGRAMMING LANGUAGE describes a
software tool designed to make many common information retrieval
and text manipulation tasks easy to state and to perform.

* Trademark of AT&T Bell Laboratories

1-1

INTRODUCTION

The chapter LINK EDITOR describes a software tool (ld) that creates
load files by combining object files, performing relocation, and
resolving internal references.

The chapter COMMON OBJECT FILE FORMAT (COFF) describes
the output file produced on some UNIX systems by the assembler and
the link editor.

The chapter ARBITRARY PRECISION DESK CALCULATOR
LANGUAGE (BC) describes a compiler for doing arbitrary precision
arithmetic on the UNIX operating system.

The chapter INTERACTIVE DESK CALCULATOR (DC) describes a
program implemented on the UNIX operating system to do
arbitrary-precision integer arithmetic.

The chapter LEXICAL ANALYZER GENERATOR (Lex) describes a
software tool that lexically processes character input streams.

The chapter YET ANOTHER COMPILER-COMPILER (yacc)
describes the yacc program. The yacc program provides a general
tool for imposing structure on the input to a computer program.

The chapter REMOTE JOB ENTRY (RJE) describes a subsystem that
supports remote job entries from a UNIX operating system to an
IBM/360 or /370 host computer. The RJE uses a set of background
processes to support remote job entries.

The chapter UNIX SYSTEM TO UNIX SYSTEM COpy (UUCP)
describes a network that provides information exchange (between
UNIX systems) over the direct distance dialing network.

The support tools provide an added dimension to the basic UNIX
software commands. The "tools" described enable the user to fully
utilize the UNIX operating system.

1-2

Chapter 2

A PROGRAM FOR MAINTAINING COMPUTER
PROGRAMS (make)

PAGE

GENERAL. 2-1

BASIC FEATURES. 2-5

DESCRIPTION FILES AND SUBSTITUTIONS. 2-8

COMMAND USAGE. .. 2-11

SUFFIXES AND TRANSFORMATION RULES 2-12

IMPLICIT RULES... 2-14

SUGGESTIONS AND WARNINGS. .. 2-15

Chapter 2

A PROGRAM FOR MAINTAINING
COMPUTER PROGRAMS (make)

GENERAL
In a programming project, a common practice is to divide large
programs into smaller pieces that are more manageable. The pieces
may require several different treatments such as being processed by
a macro processor or sophisticated program generators (e.g., Yacc or
Lex). The project continues to become more complex as the output of
these generators are compiled with special options and with certain
definitions and declarations. A sequence of code transformations
develops which is difficult to remember. The resulting code may need
further transformation by loading the code with certain libraries
under control of special options. Related maintenance activities also
complicate the process further by running test scripts and installing
validated modules. Another activity that complicates program
development is a long editing session. A programmer may lose track
of the files changed and the object modules still valid especially when
a change to a declaration can make a dozen other files obsolete. The
programmer must also remember to compile a routine that has been
changed or that uses changed declarations.

The "make" is a software tool that maintains, updates, and
regenerates groups of computer programs.

A programmer can easily forget

• Files that are dependent upon other files.

• Files that were modified recently.

• Files that need to be reprocessed or recompiled after a change in
the source.

• The exact sequence of operations needed to make an exercise a
new version of the program.

2-1

MAKE

The many activities of program development and maintenance are
made simpler by the make program.

The make program provides a method for maintaining up-to-date
versions of programs that result from many operations on a number
of files. The make program can keep track of the sequence of
commands that create certain files and the list of files that require
other files to be current before the operations can be done.
Whenever a change is made in any part of a program, the make
command creates the proper files simply, correctly, and with a
minimum amount of effort. The make program also provides a
simple macro substitution facility and the ability to encapsulate
commands in a single file for convenient administration.

The basic operation of make is to

• Find the name of the needed target file in the description.

• Ensure that all of the files on which it depends exit and are up
to date.

• Create the target file if it has not been modified SInce its
generators were modified.

The descriptor file really defines the graph of dependencies. The
make program determines the necessary work by performing a
depth-first search of the graph of dependencies.

If the information on interfile dependencies and command sequences
is stored in a file, the simple command

make

is frequently sufficient to update the interesting files regardless of
the number edited since the last make. In most cases, the
description file is easy to write and changes infrequently. It is
usually easier to type the make command than to issue even one of
the needed operations, so the typical cycle of program development
operations becomes

think - edit - make - test ...

2-2

MAKE

The make program is most useful for medium-sized programming
projects. The make program does not solve the problems of
maintaining multiple source versions or of describing huge programs.

As an' example of the use of make, the description file used to
maintain the make command is given. The code for make is spread
over a number of C language source files and a Yacc grammar. The
description file contains:

Description file for the Make command

p = Ip
FILES = Makefile version.c defs main.c doname.c misc.c

files.c dosys.c gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o

dosys.o gram.o
LIBES= -IS
LINT = lint -p
CFLAGS =-0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
- rm *.0 gram.c
-du

install:
@size make lusr/bin/make
cp make lusr/bin/make ; rm make

print: $(FILES)
pr $? I $P
touch print

print recently changed files

2-3

MAKE

test:
make -dp I grep -v TIME >lzap
lusr/bin/make -dp I grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

lint: dosys.c doname.c files.c main.c misc.c version.c
gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c
version.c gram.c

ar uv Isys/source/s2/make.a $(FILES)

The make program usually prints out each command before issuing
it.

The following output results from typing the simple command make
in a directory containing only the source and description files:

cc -0
cc -0
cc -0
cc -0
cc -0

-c
-c
-c
-c
-c

verSlOn.c
malll.C
doname.c
mlSC.C
files.c

cc -0 -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -0 -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o

gram.o -IS -0 make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by
name in the description file, make found them using its suffix rules
and issued the needed commands. The string of digits results from
the size make command. The printing of the command line itself
was suppressed by an @ sign. The @ sign on the size command in
the description file suppressed the printing of the command, so only
the sizes are written.

2-4

MAKE

The. last few entries in the description file are useful maintenance
sequences. The "print" entry prints only the files changed since the
last make print command. A zero-length file print is maintained to
keep track of the time of the printing. The $? macro in the command
line then picks up only the names of the files changed since print was
touched. The printed output can be sent to a different printer or to a
file by changing the definition of the P macro as follows:

make print" P= cat >zap"

BASIC FEATURES

The basic operation of make is to update a target file by ensuring
that all of the files on which the target file depends exist and are up
to date. The target file is created if it has not been modified since
the dependents were modified. The make program does a depth
first search of the graph of dependencies. The operation of the
command depends on the ability to find the date and time that a file
was last modified.

To illustrate, consider a simple example in which a program named
prog is made by compiling and loading three C language files x.c, y.c,
and z.c with the IS library. By convention, the output of the C
language compilations will be found in files named x.o, y.o, and z.o.
Assume that the files x.c and y.c share some declarations in a file
named defs, but that z.c does not. That is, x.c and y.c have the line

#include " defs"

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o y.o: defs

If this information were stored in a file named makefile, the
command

make

2-5

MAKE

would perform the operations needed to recreate prog after any
changes had been made to any of the four source files x.c, y.c, z.c, or
defs.

The make program operates using the following three sources of
information:

• A user-supplied description file

• File names and "last-modified" times from the file system

• Built-in rules to bridge some of the gaps.

In the example, the first line states that prog depends on three ".0"
files. Once these object files are current, the second line describes
how to load them to create prog. The third line states that x.o and
y.o depend on the file defs. From the file system, make discovers
that there are three ".c" files corresponding to the needed ".0" files
and uses built-in information on how to generate an object from a
source file (i.e., issue a "cc -c" command).

By not taking advantage of make's innate knowledge, the following
longer descriptive file results.

prog: x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o: z.c
cc -c z.c

If none of the source or object files have changed since the last time
prog was made, all of the files are current, and the command

make

2-6

MAKE

announces this fact and stops. If, however, the defs file has been
edited, x.c and y.c (but not z.c) is recompiled; and then prog is
created from the new ".0" files. If only the file y.c had changed, only
it is recompiled; but it is still necessary to reload prog. If no target
name is given on the make command line, the first target mentioned
in the description is created; otherwise, the specified targets are
made. The command

make x.o

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, the file's time of
last modification is used in further decisions. If the file does not
exist after the commands are executed, the current time is used in
making further decisions. A method, often useful to programmers, is
to include rules with mnemonic names and commands that do not
actually produce a file with that name. These entries can take
advantage of make's ability to generate files and substitute macros.
Thus, an entry "save" might be included to copy a certain set of files,
or an entry "cleanup" might be used to throwaway unneeded
intermediate files. In other cases, one may maintain a zero-length
file purely to keep track of the time at which certain actions were
performed. This technique is useful for maintaining remote archives
and listings.

The make program has a simple macro mechanism for substituting
in dependenc~ lines and command strings. Macros are defined by
command arguments or description file lines with embedded equal
signs. A macro is invoked by preceding the name by a dollar sign.
Macro names longer than one character must be parenthesized. The
name of the macro is either the single character after the dollar sign
or a name inside parentheses. The following are valid macro
invocations:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical. A $$ is a dollar sign.

2-7

MAKE

The $*, $@, $?, and $< are four special macros which change values
during the execution of the command. (These four macros are
described in the part "DESCRIPTION FILES AND
SUBSTITUTIONS".) The following fragment shows assignment and
use of some macros:

OBJECTS = x.o y.o z.o
LIBES = -IS
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -0 prog

The make command loads the three object files with the IS library.
The command

make "LIBES= -II -IS"

loads them with both the Lex (-II) and the standard (-IS) libraries
since macro definitions on the command line override definitions in
the description. Remember to quote arguments with embedded
blanks in UNIX software commands.

DESCRIPTION FILES AND SUBSTITUTIONS
A description file contains the following information:

• macro definitions

• dependency information

• executable commands.

2-8

MAKE

The comment convention is that a sharp (#) and all characters on the
same line after a sharp are ignored. Blank lines and lines beginning
with a sharp (#) are totally ignored. If a noncomment line is too
long, the line can be continued by using a backslash. If the last
character of a line is a backslash, then the backslash, the new line,
and all following blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by
a colon or a tab. The name (string of letters and digits) to the left of
the equal sign (trailing blanks and tabs are stripped) is assigned the
string of characters following the equal sign (leading blanks and tabs
are stripped). The following are valid macro definitions:

2 = xyz
abc = -11 -ly -IS
LIBES =

The last definition assigns LIBES the null string. A macro that is
never explicitly defined has the null string as the macro's value.

Macro definitions may also appear on the make command line while
other lines give information about target files. The general form of
an entry is

targetl [target2 ..] :[:] [dependentl ..] I; commands] [# ..]
[(tab) commands] [# ...]

Items inside brackets may be omitted. Targets and dependents are
strings of letters, digits, periods, and slashes. Shell metacharacters
such as "*,, and "?" are expanded. Commands may appear either
after a semicolon on a dependency line or on lines beginning with a
tab immediately following a dependency line. A command is any
string of characters not including a sharp (#) except when the sharp
is in quotes or not including a new line.

2-9

MAKE

A dependency line may have either a single or a double colon. A
target name may appear on more than one dependency line, but all of
those lines must be of the same (single or double colon) type. For the
usual single-colon case, a command sequence may be associated with
at most one dependency line. If the target is out of date with any of
the dependents on any of the lines and a command sequence is
specified (even a null one following a semicolon or tab), it is executed;
otherwise, a default creation rule may be invoked. In the double
colon case, a command sequence may be associated with each
dependency line; if the target is out of date with any of the files on a
particular line, the associated commands are executed. A built-in rule
may also be executed. This detailed form is of particular value in
updating archive-type files.

If a target must be created, the sequence of commands is executed.
Normally, each command line is printed and then passed to a
separate invocation of the shell after substituting for macros. The
printing is suppressed in the silent mode or if the command line
begins with an @ sign. Make normally stops if any command
signals an error by returning a nonzero error code. Errors are
ignored if the -i flags have been specified on the make command
line, if the fake target name ".IGNORE" appears in the description
file, or if the command string in the description file begins with a
hyphen. Some UNIX software commands return meaningless status.
Because each command line is passed to a separate invocation of the
shell, care must be taken with certain commands (e.g., cd and shell
control commands) that have meaning only within a single shell
process. These results are forgotten before the next line is executed.

Before issuing any command, certain internally maintained macros
are set. The $@ macro is set to the full target name of the current
target. The $@ macro is evaluated only for explicitly named
dependencies. The $? macro is set to the string of names that were
found to be younger than the target. The $? macro is evaluated when
explicit rules from the makefile are evaluated. If the command was
generated by an implicit rule, the $< macro is the name of the
related file that caused the action; and the $* macro is the prefix
shared by the current and the dependent file names. If a file must be
made but there are no explicit commands or relevant built-in rules,
the commands associated with the name ".DEFAULT" are used. If
there is no such name, make prints a message and stops.

2-10

MAKE

COMMAND USAGE
The make command takes macro definitions, flags, description file
names, and target file names as arguments in the form:

make [flags] [macro definitions] [targets]

The following summary of command operations explains how these
arguments are interpreted.

First, all macro definition arguments (arguments with embedded
equal signs) are analyzed and the assignments made. Command-line
macros override corresponding definitions found in the description
files. Next, the flag arguments are examined. The permissible flags
are as follows:

-i

-s

-r

-n

-t

-q

-p

Ignore error codes returned by invoked
commands. This mode is entered if the fake
target name ".IGNORE" appears In the
description file.

Silent mode. Do not print command lines before
executing. This mode is also entered if the fake
target name ".SILENT" appears in the
description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not
execute them. Even lines beginning with an
"@" sign are printed.

Touch the target files (causing them to be up to
date) rather than issue the usual commands.

Question. The make command returns a zero or
nonzero status code depending on whether the
target file is or is not up to date.

Print out the complete set of macro definitions
and target descriptions.

2-11

MAKE

-d

-f

Debug mode. Print out detailed information on
files and times examined.

Description file name. The next argument is
assumed to be the name of a description file. A
file name of "-" denotes the standard input. If
there are no "-f" arguments, the file named
makefile or Makefile in the current directory is
read. The contents of the description files
override the built-in rules if they are present.

Finally, the remaining arguments are assumed to be the names of
targets to be made, and the arguments are done in left-to-right order.
If there are no such arguments, the first name in the description files
that does not begin with a period is "made".

SUFFIXES AND TRANSFORMATION RULES

The make program does not know what file name suffixes are
interesting or how to transform a file with one suffix into a file with
another suffix. This information is stored in an internal table that
has the form of a description file. If the -r flag is used, the internal
table is not used.

The list of suffixes is actually the dependency list for the name
".SUFFIXES". The make program searches for a file with any ·of
the suffixes on the list. If such a file exists and if there is a
transformation rule for that combination, make transforms a file
with one suffix into a file with another suffix. The transformation
rule names are the concatenation of the two suffixes. The name of
the rule to transform a .r file to a .0 file is thus .r.o. If the rule is
present and no explicit command sequence has been given in the
user's description files, the command sequence for the rule .r.o is
used. If a command is generated by using one of these suffixing
rules, the macro $* is given the value of the stem (everything but the
suffix) of the name of the file to be made; and the macro $< is the
name of the dependent that caused the action.

2-12

MAKE

The order of the suffix list is significant since the list is scanned
from left to right. The first name formed that has both a file and a
rule associated with it is used. If new names are to be appended, the
user can add an entry for ".SUFFIXES" in his own description file.
The dependents are added to the usual list. A ".SUFFIXES" line
without any dependents deletes the current list. It is necessary to
clear the current list if the order of names is to be changed. The
following is an excerpt from the default rules file:

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s
YACC = yacc
Y ACCR = yacc -r
Y ACCE = yacc -e
YFLAGS =
LEX = lex
LFLAGS =
CC = cc
AS = as
CFLAGS =
RC = ec
RFLAGS =
EC = ec
EFLAGS =
FFlags =
.c.o:

$(CC) $(CFLAGS) -c $<
.e.o .r.O .f.o :

.s.o:

.y.o:

.y.c:

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

$(AS) -0 $@ $<

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

2-13

MAKE

IMPLICIT RULES
The make program uses a table of interesting suffixes and a set of
transformation rules to supply default dependency information and
implied commands. The default suffix list is as follows:

.0 Object file

.c C source file

.e Efl source file

.r Ratfor source file

.f Fortran source file

.s Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.ye Y acc-Efl source grammar

.1 Lex source grammar .

Figure 2-1 summarizes the default transformation paths. If there are
two paths connecting a pair of suffixes, the longer one is used only if
the intermediate file exists or is named in the description.

If the file x.o were needed and there were an x.c in the description or
directory, the x.o file would be compiled. If there were also an x.i,
that grammar would be run through Lex before compiling the result.
However, if there were no x.c but there were an x.l, make would
discard the intermediate C language file and use the direct link as
shown in Figure 2-1.

It is possible to change the names of some of the compilers used in
the default or the flag arguments with which they are invoked by
knowing the macro names used. The compiler names are the macros
AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The
command

make CC= newcc

2-14

MAKE

.0

.C .r .e .f .S .y .yr .ye .1 .d

A
.y .1 .yr .ye

Figure 2-1. Summary of Default Transformation Path

will cause the newcc command to be used instead of the usual C
language compiler. The macros CFLAGS, RFLAGS, EFLAGS,
YFLAGS, and LFLAGS may be set to cause these commands to be
issued with optional flags. Thus

make" CFLAGS=-O"

causes the optimizing C language compiler to be used.

SUGGESTIONS AND WARNINGS

The most common difficulties arise from make's specific meaning of
dependency. If file x.c has a "#include " defs"" line, then the object
file x.o depends on defs; the source file X.c does not. If defs is
changed, nothing is done to the file x.c while file x.o must be
recreated.

2-15

MAKE

To discover what make would do, the -n option is very useful. The
command

make -n

orders make to print out the commands which make would issue
without actually taking the time to execute them. If a change to a
file is absolutely certain to be mild in character (e.g., adding a new
definition to an include file), the -t (touch) option can save a lot of
time. Instead of issuing a large number of superfluous
recompilations, make updates the modification times on the affected
file. Thus, the command

make -ts

("touch silently") causes the relevant files to appear up to date.
Obvious care is necessary since this mode of operation subverts the
intention of make and destroys all memory of the previous
relationships.

The debugging flag (-d) causes make to print out a very detailed
description of what it is doing including the file times. The output is
verbose and recommended only as a last resort.

2-16

Chapter 3

AUGMENTED VERSION OF make

PAGE

GENERAL.. 3-1

THE ENVIRONMENT VARIABLES. 3-2

RECURSIVE MAKEFILES . 3-8

FORMAT OF SHELL COMMANDS WITHIN make. 3-9

ARCHIVE LIBRARIES . 3-9

SOURCE CODE CONTROL SYSTEM FILE NAMES: THE
TILDE... 3-14

THE NULL SUFFIX. .. 3-16

INCLUDE FILES. .. 3-16

INVISIBLE SCCS MAKEFILES , 3-17

DYNAMIC DEPENDENCY PARAMETERS 3-17

EXTENSIONS OF $*, $@, AND $< .. 3-18

OUTPUT TRANSLATIONS. .. 3-19

Chapter 3

AUGMENTED VERSION OF make

GENERAL
This section describes an augmented version of the make command
of the UNIX operating system. The augmented version is upward
compatible with the old version. This section describes and gives
examples of only the additional features. Further possible
developments for make are also discussed. Some justification will
be given for the chosen implementation, and examples will
demonstrate the additional features.

The make command is an excellent program administrative tool
used extensively in at least one project for over 2 years. However,
make had the following shortcomings:

• Handling of libraries was tedious.

• Handling of the Source Code Control System (SCCS) file name
format was difficult or impossible.

• Environment variables were completely ignored by make.

• The general lack of ability to maintain files in a remote
directory.

These shortcomings hindered large scale use of make as a program
support tool.

The AUGMENTED VERSION OF make is modified to handle the
above problems. The additional features are within the original
syntactic framework of make and few if any new syntactical entities
are introduced. A notable exception is the include file capability.
Further, most of the additions result in a "Don't know how to make
... " message from the old version of make.

3-1

AUGMAKE

The following paragraphs describe with examples the additional
features of the make program. In general, the examples are taken
from existing makefiles. Also, the illustrations are examples of
working makefiles.

THE ENVIRONMENT VARIABLES

Environment variables are read and added to the macro definitions
each time make executes. Precedence is a prime consideration in
doing this properly. The following describes make's interaction with
the environment. A new macro, MAKEFLAGS, is maintained by
make. The new macro is defined as the collection of all input flag
arguments into a string (without minus signs). The new macro is
exported and thus accessible to further invocations of make.
Command line flags and assignments in the makefile update
MAKEFLAGS. Thus, to describe how the environment interacts
with make, the MAKEFLAGS macro (environment variable) must
be considered.

When executed, make assigns macro definitions In the following
order:

1. Read the· MAKEFLAGS environment variable. If it is not
present or null, the internal make variable MAKEFLAGS is
set to the null string. Otherwise, each letter in
MAKEFLAGS is assumed to be an input flag argument and
is processed as such. (The only exceptions are the -f, -p, and
-r flags.)

2. Read and set the input flags from the command line. The
command line adds to the previous settings from the
MAKEFLAGS environment variable.

3. Read macro definitions from the command line. These are
made not resettable. Thus, any further assignments to these
names are ignored.

4. Read the internal list of macro definitions. These are found in
the file rules.c of the source for make. Figure 3-1 contains the
complete makefile that represents the internally defined

3-2

AUGMAKE

macros and rules of the current version of make. Thus, if
make -r ... is typed and a makefile includes the makefile in
Figure 3-1, the results would be identical to excluding the -r
option and the include line in the makefile. The Figure 3-1
output can be reproduced by the following:

make -fp - < Idev/null 2>/dev/null

The output appears on the standard output.
They give default definitions for the C language compiler
(CC=cc), the assembler (AS=as), etc.

5. Read the environment. The environment variables are treated
as macro definitions and marked as exported (in the shell
sense). However, since MAKEFLAGS* is not an internally
defined variable (in rules. c), this has the effect of doing the
same assignment twice. The exception to this is when
MAKEFLAGS is assigned on the command line. (The reason
it was read previously was to turn the debug flag on before
anything else was done.)

6. Read the makefile(s). The assignments in the makefile(s)
overrides the environment. This order is chosen so that when a
makefile is read and executed, you know what to expect. That
is, you get what is seen unless the -e flag is used. The -e is
an additional command line flag which tells make to have the
environment override the makefile assignments. Thus, if
make -e ... is typed, the variables in the environment
override the definitions in the makefilef. Also MAKEFLAGS
override the environment if assigned. This is useful for further
invocations of make from the current makefile.

* MAKEFLAGS are read and set again.

t There is no way to override the command line assignments.

3-3

AUGMAKE

LIST OF SUFFIXES

.SUFFIXES: .0 .c .c- .y .y- .1 .1- .s .s-
.sh .sh- .h .h-

PRESET VARIABLES

MAKE=make
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LD=ld···

LDFLAGS=
CC=cc
CFLAGS=-o
AS=as
ASFLAGS=
GET=get
GFLAGS=

Figure 3-1. Example of Internal Definitions (Sheet 1 of 4)

3-4

AUGMAKE

SINGLE SUFFIX RULES

.c:
$(CC) -n -0 $< -0 $@

.c-:

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) -n -0 $* .c -0 $*
-rm -f $*.c

.sh:
@$<@

.sh-:

$(GET) &(GFLAGS) -p $< > .sh
cp $* .sh $*
-rm -f $* .sh

DOUBLE SUFFIX RULES

.c.o:
$(CC) $(CFLAGs) -c $<

.c-.o:

Figure 3-1. Example of Internal Defini~ions (Sheet 2 of 4)

3-5

AUGMAKE

I
$(GET) $(CFLAGS) -p $< > $*.c I
$(CC) $(CFLAGS) -c $*.c
-rm -f $*.c

.c- .c:
$(GET) $(GFLAGS) -p $< >$*.c

.8.0:
$(AS) $(ASFLAGS) -0 $@ $<

.8- .0:

$(GET) $(GFLAGS) -p $< > $*.8
$(AS) $(ASFLAGS) -0 $* .0 $* .8
-rm -f $*.8

.y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.o$@

.y-.o:
$(GET) $(GFLAG) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAG) -c y.tab.c
rm -f y.tab $*.y
mv y.tab.o $*.0

.1.0:
$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm lex.yy.c
mv lex.yy.o $@

Figure 3-1. Example of Internal Definitions (Sheet 3 of 4)

3-6

AUGMAKE

.1*.0:
$(GET) $(GFLAGS) -p $< > $*.1
$(LEX) $(GFLAG) $*.1
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.1
mv lex.yy.o $*.0

.y.c:
$(Y ACC) $(YFLAGS) $<
mv y.tab.c $@

.y-.c:

$(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
mv -f $*.c
-rm -f $*.y

.l.c:
$(LEX) $<
mv lex.yy.c$@

.c.a:
$(CC) -c $(FLAGS) $<
ar rv $@ $*.0
rm -f $*.0

.c-.a:

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) -c $(CFLAGS) $*.c
ar rv $@ $*.0

.s-.a:

$(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -0 $*.0 $*.s
ar rv $@ $*.0
-rm -f $*.[so]

.h-.h

$(GET) $(GFLAGS) -p $< > $*.h

Figure 3-1. Example of Internal Definitions (Sheet 4 of 4)

3-7

AUGMAKE

It may be clearer to list the precedence of assignments. Thus, In
order from least binding to most binding, the precedence of
assignments is as follows:

1. internal definitions (from rules. c)

2. environment

3. makefile(s)

4. command line.

The -e flag has the effect of changing the order to:

1. internal definitions (from rules. c)

2. makefile(s)

3. environment

4. command line.

This order is general enough to allow a programmer to define a
makefile or set of makefiles whose parameters are dynamically
definable.

RECURSIVE MAKEFILES
Another feature was added to make concerning the environment and
recursive invocations. If the sequence "$(MAKE)" appears anywhere
in a shell command line, the line is executed even if the -n flag is
set. Since the -n flag is exported across invocations of make
(through the MAKEFLAGS variable), the only thing that actually
gets executed is the make command itself. This feature is useful
when a hierarchy of makefile(s) describes a set of software
subsystems. For testing purposes, make -n ... can be executed and
everything that would have been done will get printed out including
output from lower level invocations of make.

3-8

AUG MAKE

FORMAT OF SHELL COMMANDS WITHIN make
The make program remembers embedded newlines and tabs in shell
command sequences. Thus, if the programmer puts a for loop in the
makefile with indentation, when make prints it out, it retains the
indentation and backslashes. The output can still be piped to the
shell and is readable. This is obviously a cosmetic change; no new
function is gained.

ARCHIVE LIBRARIES

The make program has an improved interface to archive libraries.
Due to a lack of documentation, most people are probably not aware
of the current syntax of addressing members of archive libraries.
The previous version of make allows a user to name a member of a
library in the following manner:

lib(object.o)
or

Ii b((_local time))

where the second method actually refers' to an entry point of an
object file within the library. (Make looks through the library,
locates the entry point, and translates it to the correct object file
name.)

To use this procedure to maintain an archive library, the following
type of makefile is required:

lib:: lib(ctime.o)
$(CC) -c -0 ctime.c
ar rv lib ctime.o
rm ctime.o

lib:: lib(fopen.o)
$(CC) -c -0 fopen.c
ar rv lib fopen.o
rm fopen.o

., .and so on for each object ...

3-9

AUGMAKE

This is tedious and error prone. Obviously, the command sequences
for adding a C language file to a library are the same for each
invocation; the file name being the only difference each time. (This is
true in most cases.)

The current version gives the user access to a rule for building
libraries. The handle for the rule is the ".a" suffix. Thus, a ".c.a"
rule is the rule for compiling a C language source file, adding it to
the library, and removing the ".0" cadaver. Similarly, the ".y.a", the
".s.a", and the ".l.a" rules rebuild YACC, assembler, and LEX files,
respectively. The current archive rules defined internally are ".c.a",
".c{.a", and ".s{.a". [The tilde C) syntax will be described shortly.]
The user may define in makefile other rules needed.

The above 2-member library is then maintained with the following
shorter makefile:

lib: lib(ctime.o) lib(fopen.o)
echo lib up-to-date.

The internal rules are already defined to complete the preceding
library maintenance. The actual ".c.a" rules are as follows:

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

Thus, the $@ macro is the ".a" target (lib); the $< and $* macros are
set to the out-of-date C language file; and the file name scans the
suffix, respectively (ctime.c and ctime). The $< macro (in the
preceding rule) could have been changed to $*.c.

It might be useful to go into some detail about exactly what make
does when it sees the construction

lib: lib(ctime.o)
@echo lib up-to-date

3-10

AUGMAKE

Assume the object in the library is out of date with respect to
ctime.c. Also, there is no ctime.o file.

1. Do lib.

2. To do lib, do each dependent of lib.

3. Do lib(ctime.o).

4. To do lib(ctime.o), do each dependent of lib (ctime.o). (There
are none.)

5. Use internal rules to try to build lib(ctime.o). (There is no
explicit rule.) Note that lib (ctime.o) has a parenthesis in the
name to identify the target suffix as ".a". This is the key.
There is no explicit ".a" at the end of the lib library name.
The parenthesis forces the ".a" suffix. In this sense, the ".a" is
hard wired into make.

6. Break the name lib(ctime.o) up into lib and ctime.o. Define
two macros, $@ (=lib) and $* (=ctime).

7. Look for a rule ".X.a" and a file $*.X. The first ".X" (in the
.SUFFIXES list) which fulfills these conditions is ".c" so the
rule is ".c.a", and the file is ctime.c. Set $< to be ctime.c and
execute the rule. In fact, make must then do ctime.c.
However, the search of the current directory yields no other
candidates, and the search ends.

8. The library has been updated. Do the rule associated with the
"lib:" dependency; namely:

echo lib up-to-date

It should be noted that to let ctime.o have dependencies, the following
syntax is required:

lib(ctime.o): $(lNCDIR)/stdio.h

Thus, explicit references to .0 files are unnecessary. There is also a
new macro for referencing the archive member name when this form

3-11

AUGMAKE

is used. The $% macro is evaluated each time $@ is evaluated. If
there is no current archive member, $% is null. If an archive
member exists, then $% evaluates to the expression between the
parenthesis.

An example makefile for a larger library is given in Figure 3-2.

@(#)/usr/src/cmd/make/make.tm 3.2
LIB ==lsxlib
PR==lp
INSDIR == /rllflopO/
INS == eva 1
Isx: $(LIB) low.o mch.o

Id -x low.o mch.o $(LIB)
mv a.out lsx
@size Isx

Here, $(INS) as either" ." or" eval" .
Isx:

$(INS),cp lsx $(INSDIR)lsx ..
strip $(INSDIR)lsx ..
Is -I $(INSDIR)lsx'

print:
$(PR) header.slow.smch.s*.h*.c Makefile

Figure 3-2. Example of Library Makefile (Sheet 1 of 3)

3-12

AUGMAKE

$(LIB):
$(LIB)(CLOCK.o)
$(LIB)(main.o)
$(LIB)(tty.o)

$(LIB)(traI!.o)
$(LIB)(sysen t.o)
$(LIB)(sys2.0)
$(LIB)(syn3.0)
$(LIB)(syn4.0)
$(LIB)(sys1.o)
$(LIB)(sig.o)

$(LIB)(fio.o)
$(LIB)(kl.o)
$(LIB)(alloc.o)
$(LIB)(namLo)
$(LIB)(iget.o)
$(LIB)(rdwrLo)
$(LIB)(subr.o)

Figure 3-2. Example of Library Makefile (Sheet 2 of 3)

3-13

AUGMAKE

$(LIB)(bio.o)
$(LIB)(decfd.o)
$(LIB)(si p.o)
$(LIB)(space.o)
$(LIB)(puts.o)
@echo $(LIB) now uj) to date .

. s.o:
as -0 $*.0 header.s $*.s

.o.a:
ar rv $@ $<
rm -f$<

.s.a:
as -0 $*.0 header.s $*.s

I ar rv $@ $*.0
rm -f $*.0

.PRECIOUS: $(LIB)

Figure 3-2. Example of Library Makefile (Sheet 3 of 3)

The reader will note also that there are no lingering "*.0" files left
around. The result is a library maintained directly from the source
files (or more generally from the sees files).

SOURCE CODE CONTROL SYSTEM FILE
NAMES: THE TILDE

The syntax of make does not directly permit referencing of prefixes.
For most types of files on UNIX operating system machines, this is
acceptable since nearly everyone uses a suffix to distinguish different
types of files. The sees files are the exception. Here, "s." precedes
the file name part of the complete pathname.

3-14

AUGMAKE

To allow make easy access to the prefix "s." requires either a
redefinition of the rule naming syntax of make or a trick. The trick
is to use the tilde C) as an identifier of sees files. Hence, ".c-.o"
refers to the rule which transforms an sces e language source file
into an object. Specifically, the internal rule is

$(GET) $(GFLAGS) -p $< > $*.c
$(ee) $(CFLAGS) -c $*.c
-rm -f $*.c

Thus, the tilde appended to any suffix transforms the file search into
an sees file name search with the actual suffix named by the dot
and all characters up to (but not including) the tilde.

The following secs suffixes are internally defined:

.c

.y

.s

.sh

.h-

The following rules involving sees transformations are internally
defined:

.c-:

.sh-:

.c-.o:

.s-.o:

.y-.o:

.1-.0:

.y-.c:

.c-.a:

.s-.a:

.h-.h:

Obviously, the user can define other rules and suffixes which may
prove useful. The tilde gives him a handle on the secs file name
format so that this is possible.

3-15

AUGMAKE

THE NULL SUFFIX
In the UNIX system source code, there are many commands which
consist of a single source file. It was wasteful to maintain an object
of such files for make. The current implementation supports single
suffix rules (a null suffix). Thus, to maintain the program cat, a rule
in the makefile of the following form is needed:

.c:
$(CC) -n -0 $< -0 $@

In fact, this ".c:" rule is internally defined so no makefile is necessary
at all. The user only needs to type

make cat dd echo date

(these are notable single file programs) and all four C language
source files are passed through the above shell command line
associated with the ".c:" rule. The internally defined single suffix
rules are

.c:

.c-:

.sh:

.sh-:

Others may be added in the makefile by the user.

INCLUDE FILES
The make program has an include file capability. If the string
include appears as the first seven letters of a line in a makefile and is
followed by a blank or a tab, the string is assumed to be a file name
which the current invocation of make will read. The file descriptors
are stacked for reading include files so that no more than about 16
levels of nested includes are supported.

3-16

AUGMAKE

INVISIBLE SCCS MAKEFILES
The SCCS makefiles are invisible to make. That is, if make is
typed and only a file named s.makefile exists, make will do a get on
the file, then read and remove the file. Using the -f, make will get,
read, and remove arguments and include files.

DYNAMIC DEPENDENCY PARAMETERS
A new dependency parameter has been defined. The parameter has
meaning only on the dependency line in a makefile. The $$@ refers
to the current "thing" to the left of the colon (which is $@). Also the
form $$(@F) exists which allows access to the file part of $@. Thus,
in the following:

cat: $$@.c

the dependency is translated at execution time to the string "cat.c".
This is useful for building a large number of executable files, each of
which has only one source file. For instance, the UNIX software
command directory could have a makefile like:

CMDS = cat dd echo date cc cmp comm ar ld chown

$(CMDS): $$@.c
$'(CC) -0 $? -0 $@

Obviously, this is a subset of all the single file programs; For
multiple file programs, a directory is usually allocated and a separate
makefile is made. For any particular file that has a peculiar
compilation procedure, a specific entry must be made in the makefile.

The second useful form of the dependency parameter is $$(@F). It
represents the file name part of $$@. Again, it is evaluated at
execution time. Its usefulness becomes evident when trying to
maintain the lusrlinclude directory from a makefile in the
lusrlsrclhead directory. Thus, the lusrlsrclheadlmakefile would
look like

3-17

AUGMAKE

INCDIR = /usr/include

INCLUDES = \
$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(lNCIDR)/dir.h \
$(INCDIR)/a.out.h

$(INCLUDES): $$(@F)
cp $? $@
chmod 0444 $@

This would completely maintain the /usr/include directory whenever
one of the above files in /usr/src/head was updated.

EXTENSIONS OF $*, $@, AND $<
The internally generated macros $*, $@, and $< are useful generic
terms for current targets and out-of-date relatives. To this list has
been added the following related macros: $(@D), $(@F), $(*D),
$(*F), $(<D), and $(<F). The "D" refers to the directory part of the
single letter macro. The "F" refers to the file name part of the single
letter macro. These additions are useful when building hierarchical
makefiles. They allow access to directory names for purposes of
using the cd command of the shell. Thus, a shell command can be

cd $(<D); $(MAKE) $(<F)

An interesting example of the use of these features can be found in
the set of makefiles in Figure 3-3. Each makefile is named "70.mk".
The following command forces a complete rebuild of the operating
system:

FRC=FRC make -f 70.mk

where the current directory is ucb. The FRC is a convention for
FoRCing make to completely rebuild a target starting from scratch.

3-18

AUGMAKE

OUTPUT TRANSLATIONS
Macros in shell commands can now be translated when evaluated.
The form is as follows:

$(macro:stringl =string2)

The meaning of $(macro) is evaluated. For each appearance of
stringl in the evaluated macro, string2 is substituted. The meaning
of finding stringl in $(macro) is that the evaluated $(macro) is
considered as a bunch of strings each delimited by white space
(blanks or tabs). Thus, the occurrence of stringl in $(macro) means
that a regular expression of the following form has been found:

.*<stringl> [TABIBLANK]

This particular form was chosen because make usually concerns
itself with suffixes. A more general regular expression match could
be implemented if the need arises. The usefulness of this type of
translation occurs' when maintaining archive libraries. Now, all that
is necessary is to accumulate the out-of-date members and write a
shell script which can handle all the C language programs (Le., those
files ending in ".c"). Thus, the following fragment optimizes the
executions of make for maintaining an archive library:

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIB)c.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv $(LIB) $?
rm $?

A dependency of the preceding form is necessary for each of the
different types of source files (suffices) which define the archive
library. These translations are added in an effort to make more
general use of the wealth of information which make generates.

3-19

Chapter 4

SOURCE CODE CONTROL SYSTEM USER
GUIDE

PAGE

GENERAL. 4-1

sees FOR BEGINNERS.. 4-2

DELTA NUMBERING. 4-9

sees COMMAND CONVENTIONS 4-12

sees COMMANDS .. 4-14

sees FILES .. 4-46

AN sees INTERFACE PROGRAM '. 4-50

Chapter 4

SOURCE CODE CONTROL SYSTEM
USER GUIDE

GENERAL
The Source Code Control System (SCCS) is a collection of the UNIX
software commands that help individuals or projects control and
account for changes to files of text. The source code and
documentation of software systems are typical examples of files of
text to be changed. The SCCS is a collection of programs that run
under the UNIX operating system. It is convenient to conceive of
SCCS .as a custodian of files. The SCCS provides facilities for

• Storing files of text

• Retrieving particular versions of the files

• Controlling updating privileges to files

• Identifying the version of a retrieved file

• Recording when, where, and why the change was made and who
made each change to a file.

These types of facilities are important when programs and
documentation undergo frequent changes because of maintenance
and/ or enhancement work. It is often desirable to regenerate the
version of a program or document as it existed before changes were
applied to it. This can be done by keeping copies (on paper or other
media), but this method quickly becomes unmanageable and wasteful
as the number of programs and documents increases. The SCCS
provides an attractive solution because the original file is stored on
disk. Whenever changes are made to the file, the SCCS stores only
the changes. Each set of changes is called a "delta".

This chapter, together with relevant portions of the UNIX System
User Reference Manual is a complete user's guide to SCCS. The

4-1

sees

following topics are covered:

• sees for Beginners: How to make an sees file, how to update it,
and how to retrieve a version thereof.

• How Deltas Are Numbered: How versions of sees files are
numbered and named.

• sees Command Conventions: Conventions and rules generally
applicable to all sees commands.

• sees Commands: Explanation of all sees commands with
discussions of the more useful arguments.

• sees Files: Protection, format, and auditing of sees files
including a discussion of the differences between using sees as
an individual and using it as a member of a group or project.
The role of a "project sees administrator" is introduced.

Neither the implementation of sees nor the installation procedure
for sees is described in this section.

Throughout this section, each reference of the form name (1M),
name (7), or name (8) refers to entries in the UNIX System
Administrator Reference Manual. All other references to entries of
the form name(N), where "N" is a number (1 through 6) possibly
followed by a letter, refer to entry name in section N of the UNIX
System User Reference Manual.

sees FOR BEGINNERS
It is assumed that the reader knows how to log onto a UNIX system,
create files, and use the text editor. A number of terminal-session
fragments are presented. All of them should be tried since the best
way to learn sees is to use it.

To supplement the material in this section, the detailed sees
command descriptions in the UNIX System User Reference Manual
should be consulted.

4-2

sees

A. Terminology

Each sees file is composed of one or more sets of changes applied to
the null (empty) version of the file, with each set of changes usually
depending on all previous sets. Each set of changes is called a
"delta" and is assigned a name, called the sees IDentification
string (SID). The SID is composed of at most four components. The
first two components are the "release" and "level" numbers which
are separated by a period. Hence, the first delta (for the original
file) is called "1.1", the second "1.2", the third "1.3", etc. The release
number can also be changed allowing, for example, deltas "2.1", "3.1",
etc. The change in the release number usually indicates a major
change to the file.

Each delta of an sees file defines a particular version of the file.
For example, delta 1.5 defines version 1.5 of the sees file, obtained
by applying to the null (empty) version of the file the changes that
constitute deltas 1.1, 1.2, etc., up to and including delta 1.5 itself, in
that order.

B. Creating an sees File via "admin"

Consider, for example, a file called lang that contains a list of
programming languages.

c
pl/i
fortran
cobol
algol

Custody of the lang file can be given to sees. The following admin
command (used to "administer" sees files) creates an sees file and
initializes delta 1.1 from the file lang:

admin -ilang s.lang

All sees files must have names that begin with "s.", hence, s.lang.
The -i keyletter, together with its value lang, indicates that admin
is to create a new sees file and "initialize" the new sees file with

4-3

sees

the contents of the file lang. This initial version is a set of changes
(delta 1.1) applied to the null sees file.

The admin command replies

No id keywords (cm7)

This is a warning message (which may also be issued by other sees
commands) that is to be ignored for the purposes of this section. Its
significance is described under the get command in the part "sees
COMMANDS." In the following examples, this warning message is
not shown although it may actually be issued by the various
commands. The file lang should now be removed (because it can be
easily reconstructed using the get command) as follows:

rm lang

c. Retrieving a File via "get"

The lang file can be reconstructed by using the following get
command:

get s.lang

The command causes the creation (retrieval) of the latest version of
file s.lang and prints the following messages:

1.1
5 lines

This means that get retrieved version 1.1 of the file, which is made
up of five lines of text. The retrieved text is placed in a file whose
name is formed by deleting the "s." prefix from the name of the
sees file. Hence, the file lang is created.

The "get s.lang" command simply creates the file lang (read-only)
and keeps no information regarding its creation. On the other hand,

4-4

SCCS

in order to be able to subsequently apply changes to an sees file
with the delta command, the get command must be informed of
your intention to do so. This is done as follows:

get -e s.lang

The -e key letter causes get to create a file lang for both reading and
writing (so it may .be edited) and places certain information about
the sees file in another new file. The new file, called the p-file, will
be read by the delta command. The get command prints the same
messages as before except that the SID of the version to be created
through the use of delta is also issued. For example,

get -e s.lang
1.1
new delta 1.2
5 lines

The file lang may now be changed, for example, by

ed lang
27
$a
snobol
ratfor

w
41
q

D. Recording Changes via "delta"

In order to record within the sees file the changes that have been
applied to lang, execute the following command:

delta s.lang

4-5

sees

Delta prompts with

comments?

The response should be a description of why the changes were made.
For exam pIe,

commen ts? added more languages

The delta command then reads the p-file and determines what
changes were made to the file lang. The delta command does this by
doing its own get to retrieve the original version and by applying the
diff(l) command to the original version and the edited version.

When this process is complete, at which point the changes to lang
have been stored in s.lang, delta outputs

1.2
2 inserted
o deleted
5 unchanged

The number "1.2" is the name of the delta just created, and the next
three lines of output refer to the number of lines in the file s.lang.

E. Additional Information About "get"

As shown in the previous example, the command

get s.lang

retrieves the latest version (now 1.2) of the file s.lang. This is done
by starting with the original version of the file and successively
applying deltas (the changes) in order until all have been applied.

4-6

sees

In the example chosen, the following commands are all equivalent:

get s.lang
get - r 1 s.lang
get -r1.2 s.lang

The numbers following the -r keyletter are SIDs. Note that
omitting the level number of the SID (as in "get -rl s.lang") is
equivalent to specifying the highest level number that exists within
the specified release. Thus, the second command requests the
retrieval of the latest version in release 1, namely 1.2. The third
command specifically requests the retrieval of a particular version, in
this case, also 1.2.

Whenever a truly maj or change is made to a file, the significance of
that change is usually indicated by changing the release number
(first component of the SID) of the delta being made. Since normal
automatic numbering of deltas proceeds by incrementing the level
number (second component of the SID), the user must indicate to
sees the need to change the release number. This is done with the
get command.

get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version
before release 2. The get command also interprets this as a request
to change the release number of the delta which the user desires to
create to 2, thereby causing it to be named 2.1, rather than 1.3. This
information is conveyed to delta via the p-file. The get command
then outputs

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the
version delta will create. If the file is now edited, for example, by

4-7

SCCS

ed lang
41
/cobol/d
w
35
q

and delta executed

del ta s.lang
comments? deleted cobol from list of languages

the user will see by delta's output that version 2.1 is indeed created.

2.1
o inserted
1 deleted
6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or
another new release may be created in a similar manner. This
process may be continued as desired.

F. The "help" Command

If the command

get abc

is executed, the following message will be output:

ERROR [abc]: not an sees file (col)

The string "col" is a code for the diagnostic message and may be
used to obtain a fuller explanation of that message by use of the
help command.

4-8

help col

This produces the following output:

col:
" not an sees file"
A file that you think is an sees file
does not begin with the characters" s." .

sees

Thus, help is a useful command to use whenever there is any doubt
about the meaning of an sees message. Detailed explanations of
almost all sees messages may be found in this manner.

DELTA NUMBERING

It is convenient to conceive of the deltas applied to an sees file as
the nodes of a tree in which the root is the initial version of the file.
The root delta (node) is normally named "1.1" and successor deltas
(nodes) are named "1.2", "1.3", etc. The components of the names of
the deltas are called the "release" and the "level" numbers,
respectively. Thus, normal naming of successor deltas proceeds by
incrementing the level number, which is performed automatically by
sees whenever a delta is made. In addition, the user may wish to
change the release number when making a delta to indicate that a
major change is being made. When this is done, the release number
also applies to all successor deltas unless specifically changed again.
Thus, the evolution of a particular file may be represented as in
Figure 4-1.

1.1 1.2

RELEASE

1.3 1.4 2.1 2.2

RELEASE 2

Figure 4-1. Evolution of an sees File

4-9

sees

Such a structure may be termed the "trunk" of the sees tree.
Figure 4-1 represents the normal sequential development of an sees
file in which changes that are part of any given delta are dependent
upon all the preceding deltas.

However, there are situations in which it is necessary to cause a
branching in the tree in that changes applied as part of a given delta
are not dependent upon all previous deltas. As an example, consider
a program which is in production use at version 1.3 and for which
development work on release 2 is already in progress. Thus, release 2
may already have some deltas precisely as shown in Figure 4-1.
Assume that a production user reports a problem in version 1.3 and
that the nature of the problem is such that it cannot wait to be
repaired in release 2. The changes necessary to repair the trouble
will be applied as a delta to version 1.3 (the version in production
use). This creates a new version that will then be released to the
user but will not affect the changes being applied for release 2 (i.e.,
deltas 1.4, 2.1, 2.2, etc.).

The new delta is a node on a branch of the tree. Its name consists of
four components; the release number and the level number (as with
trunk deltas) plus the "branch" number and the "sequence" number.
The delta name appears as follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a descendant
of a particular trunk delta with the first such branch being 1, the
next one 2, etc. The sequence number is assigned, in order, to each
delta on a particular branch. Thus, 1.3.1.2 identifies the second delta
of the first branch that derives from delta 1.3. This is shown in
Figure 4-2.

The concept of branching may be extended to any delta in the tree.
The naming of the resulting deltas proceeds in the manner just
illustrated.

Two observations are of importance with regard to naming deltas.
First, the names of trunk deltas contain exactly two components, and
the names of branch deltas contain exactly four components. Second,

4-10

SCCS

1.1 1.2 1.3 1.4 2.1 2.2

Figure 4-2. Tree Structure With Branch Deltas

the first two components of the name of branch deltas are always
those of the ancestral trunk delta, and the branch component is
assigned in the order of creation of the branch independently of its
location relative to the trunk delta. Thus, a branch delta may always
be identified as such from its name. Although the ancestral trunk
delta may be identified from the branch delta's name, it is not
possible to determine the entire path leading from the trunk delta to
the branch delta. For example, if delta 1.3 has one branch emanating
from it, all deltas on that branch will be named 1.3.1.n. If a delta on
this branch then has another branch emanating from it, all deltas on
the new branch will be named 1.3.2.n (see Figure 4-3). The only
information that may be derived from the name of delta 1.3.2.2 is
that it is the chronologically second delta on the chronologically
second branch whose trunk ancestor is delta 1.3. In particular, it is
not possible to determine from the name of delta 1.3.2.2 all the deltas
between it and trunk ancestor 1.3.

1.3.2.2

1.1 1.2 1.3 1.4 2.1 2.2

Figure 4-3. Extending the Branching Concept

4-11

sees

It is obvious that the concept of branch deltas allows the generation
of arbitrarily complex tree structures. Although this capability has
been provided for certain specialized uses, it is strongly recommended
that the sees tree be kept as simple as possible because
comprehension of its structure becomes extremely difficult as the
tree becomes more complex.

SCCS COMMAND CONVENTIONS
This part discusses the conventions and rules that apply to sees
commands. These rules and conventions are generally applicable to
all sees commands with exceptions indicated. The sees commands
accept two types of arguments:

• Keyletter arguments

• File arguments.

Keyletter arguments (hereafter called simply "keyletters") begin with
a minus sign (-), followed by a lowercase alphabetic character, and
in some cases, followed by a value. These keyletters control the
execution of the command to which they are supplied.

File arguments (names of files and/or directories) specify the file(s)
that the given sees command is to process. Naming a directory is
equivalent to naming all the sees files within the directory. Non
sees files and unreadable files [because of permission modes via
chmod(l)] in the named directories are silently ignored.

In general, file arguments may not begin with a minus sign.
However, if the name "-" (a lone minus sign) is specified as an
argument to a command, the command reads the standard input for
lines and takes each line as the name of an sees file to be processed.
The standard input is read until end-of-file. This feature is often
used in pipelines with, for example, the find(1) or 18(1) commands.
Again, names of non-SeeS files and of unreadable files are silently
ignored.

4-12

sees

All keyletters specified for a given command apply to all file
arguments of that command. All keyletters are processed before any
file arguments with the result that the placement of keyletters is
arbitrary (i.e., keyletters may be interspersed with file arguments).
File arguments, however, are processed left to right. Somewhat
different argument conventions apply to the help, what, sccsdiff,
and val commands.

Certain actions of various sees commands are controlled by flags
appearing in sees files. Some of these flags are discussed in this
part. For a complete description of all such flags, see admin(l)
section in the UNIX System User Reference Manual.

The distinction between the real user [see passwd(l)] and the
effective user of a UNIX system is of concern in discussing various
actions of sees commands. For the present, it is assumed that both
the real user and the effective user are one and the same (i.e., the
user who is logged into a UNIX system). This subject is discussed
further in "sees FILES."

All sees commands that modify an sees file do so by writing a
temporary copy, called the x-file. This file ensures that the sees file
is not damaged if processing should terminate abnormally. The name
of the x-file is formed by replacing the "s." of the sees file name
with "x.". When processing is complete, the old sees file is removed
and the x-file is renamed to be the sees file. The x-file is created in
the directory containing the sees file, given the same mode [see
chmod(l)] as the sees file, and owned by the effective user.

To prevent simultaneous updates to an sees file, commands that
modify sees files create a lock-file, called the z-file, whose name is
formed by replacing the "s." of the sees file name with "z.". The z
file contains the process number of the command that creates it, and
its existence is an indication to other commands that the sees file is
being updated. Thus, other commands that modify sees files do not
process an sees file if the corresponding z-file exists. The z-file is
created with mode 444 (read-only) in the directory containing the
sees file and is owned by the effective user. This file exists only for
the duration of the execution of the command that creates it. In

4-13

sees

general, users can ignore x-files and z-files. The files may be useful
in the event of system crashes or similar situations.

The sees commands produce diagnostics (on the diagnostic output)
of the form:

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to the help
command to obtain a further explanation of the diagnostic message.
Detection of a fatal error during the processing of a file causes the
sees command to terminate processing of that file and to proceed
with the next file, in order, if more than one file has been named.

sees COMMANDS
This part describes the major features of all the sees commands.
Detailed descriptions of the commands and of all their arguments are
given in the UNIX System User Reference Manual and should be
consulted for further information. The discussion below covers only
the more common arguments of the various sees commands.

The commands follow in approximate order of importance. The
following is a summary of all the sees commands and of their major
functions:

get

delta

admin

prs

4~14

Retrieves versions of sees files.

Applies changes (deltas) to the text of sees
files, i.e., creates new versions.

Creates sees files and applies changes to
parameters of sees files.

Prints portions of an sees file in user specified
format.

help

rmdel

cdc

what

sccsdiff

comb

val

SCCS

Gives explanations of diagnostic messages.

Removes a delta from an sees file; allows the
removal of deltas that were created by mistake.

Changes the commentary associated with a
delta.

Search~s any UNIX system file(s) for all
occurrences of a special pattern and prints out
what follows it; is useful in finding identifying
information inserted by the get command.

Shows the differences between any two versions
of an sees file.

Combines two or more consecutive deltas of an
sees file into a single delta; often reduces the
size of the sees file.

Validates an sees file.

A. The "get" Command

The get command creates a text file that contains a particular
version of an sees file. The particular version is retrieved by
beginning with the initial version and then applying deltas, in order,
until the desired version is obtained. The created file is called the g
file. The g-file name is formed by removing the "s." from the sees
file name. The g-file is created in the current directory and is owned
by the real user. The mode assigned to the g-file depends on how the
get command is invoked.

The most common invocation of get is

get s.abc

which normally retrieves the latest version on the trunk of the sees
file tree and produces (for example) on the standard output

4-15

sees

1.3
67 lines
No id keywords (cm7)

which indicates that

1. Version 1.3 of file "s.abc" was retrieved (1.3 is the latest trunk
delta).

2. This version has 67 lines of text.

3. No ID keywords were substituted in the file.

The generated g-file (file "abc") is given mode 444 (read-only). This
particular way of invoking get is intended to produce g-files only for
inspection, compilation, etc. It is not intended for editing (i.e., not for
making deltas).

In the case of several file arguments (or directory-name arguments),
similar information is given for each file processed, but the sees file
name precedes it. For example,

get s.abc s.def

produces

s.abc:
1.3
67 lines
No id keywords (cm 7)

s.def:
1.7
85 lines
No id keywords (cm 7)

4-16

sees

IDKeywords

In generating a g-file to be used for compilation, it is useful and
informative to record the date and time of creation, the version
retrieved, the module's name, etc. within the g-file. This information
appears in a load module when one is eventually created. The SCCS
provides a convenient mechanism for doing this automatically.
Identification (ID) keywords appearing anywhere in the generated
file are replaced by appropriate values according to the definitions of
these ID keywords. The format of an ID keyword is an uppercase
letter enclosed by percent signs (%). For example,

5.1

is defined as the ID keyword that is replaced by the SID of the
retrieved version of a file. Similarly, 5/30/83 is defined as the ID
keyword for the current date (in the form "mm/dd/yy"), and seesl
is defined as the name of the g-file. Thus, executing get on an SCCS
file that contains the PL/I declaration,

DCL ID CHAR(100) VAR INIT('sccs1 5.1 5/30/83');

gives (for example) the following:

DCL ID CHAR(100) VAR INIT('MODNAME 2.3 07/07/77');

When no ID keywords are substituted by get, the following message
is issued:

No id keywords (cm7)

This message is normally treated as a warning by get, although the
presence of the i flag in the SCCS file causes it to be treated as an
error. For a complete list of the approximately 20 ID keywords
provided, see get(l) in the UNIX System User Reference Manual.

4-17

sees

Retrieval of Different Versions

Various keyletters are provided to allow the retrieval of other than
the default version of an sees file. Normally, the default version is
the most recent delta of the highest-numbered release on the trunk of
the sees file tree. However, if the sees file being processed has a d
(default SID) flag, the SID specified as the value of this flag is used
as a default. The default SID is interpreted in exactly the same way
as the value supplied with the -r keyletter of get.

The -r keyletter is used to specify a SID to be retrieved, in which
case the d (default SID) flag (if any) is ignored. For example,

get -r1.3 s.abc

retrieves version 1.3 of file s.abc and produces (for example) on the
standard output

1.3
64 lines

A branch delta may be retrieved similarly,

get -r1.5.2.3 s.abc

which produces (for example) on the standard output

1.5.2.3
234 lines

When a 2- or 4-component SID is specified as a value for the -r
keyletter (as above) and the particular version does not exist in the
sees file, an error message results. Omission of the level number, as
in

get -r3 s.abc

4-18

sees

causes retrieval of the trunk delta with the highest level number
within the given release if the given release exists. Thus, the above
command might output,

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with
the highest level number within the highest-numbered existing
release that is lower than the given release. For example, assuming
release 9 does not exist in file s.abc and that release 7 is actually the
highest-numbered release below 9, execution of

get -r9 s.abc

might produce

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file s.abc
below release 9. Similarly, omission of the sequence number, as in

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence
number on the given branch if it exists. (If the given branch does not
exist, an error message results.) This might result in the following
output:

4.3.2.8
89 lines

The -t keyletter is used to retrieve the latest (top) version in a
particular release (i.e., when no -r keyletter is supplied or when its
value is simply a release number). The latest version is defined as
that delta which was produced most recently, independent of its
location on the sees file tree. Thus, if the most recent delta in

4-19

sees

release 3 is 3.5,

get -r3 -t s.abc

might produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after
delta 3.5), the same command might produce

3.2.1.5
46 lines

Retrieval With Intent to Make a Delta

Specification of the -e keyletter to the get command is an indication
of the intent to make a delta, and as such, its use is restricted. The
presence of this keyletter causes get to check

1. The user list (a list of login names and/or group IDs of users
allowed to make deltas) to determine if the login name or
group ID of the user executing get is on that list. Note that a
null (empty) user list behaves as if it contained all possible
login names.

2. The release (R) of the version being retrieved satisfies the
relation:

floor is < or = to R which is
. < or = to ceiling

to determine if the release being accessed is a protected
release. The "floor" and "ceiling" are specified as flags in the
sees file.

4-20

sees

3. The R is not locked against editing. The "lock" is specified as a
flag in the sees file.

4. Whether or not multiple concurrent edits are allowed for the
sees file as specified by the j flag in the sees file.

A failure of any of the first three conditions causes the processing of
the corresponding sees file to terminate.

If the above checks succeed, the -e keyletter causes the creation of a
g-file in the current directory with mode 644 (readable by everyone,
writable only by the owner) owned by the real user. If a writable g
file already exists, get terminates with an error. This is to prevent
inadvertent destruction of a g-file that already exists and is being
edited for the purpose of making a delta.

Any ID keywords appearing in the g-file are not substituted by get
(when the -e keyletter is specified) because the generated g-file is
subsequently used to create another delta. Replacement of ID
keywords cause them to be permanently changed within the sees
file. In view of this, get does not need to check for the presence of
ID keywords wi thin the g-file~ so the message

No id keywords (cm7)

is never output when get is invoked with the -e keyletter.

In addition, the -e keyletter causes the creation (or updating) of a
p-file which is used to pass information to the delta command.

The following is an example of the use of the -e keyletter:

get -e s.abc

which produces (for example) on the standard output

4-21

sees

1.3
new delta 1.4
67 lines

If the -r and/or -t keyletters are used together with the -e
keyletter, the version retrieved for editing is as specified by the -r
and/or -t keyletters.

The keyletters -i and -x may be used to specify a list [see get(l) in
the UNIX System User Reference Manual for the syntax of such a
list] of deltas to be included and excluded, respectively, by get.
Including a delta means forcing the changes that constitute the
particular delta to be included in the retrieved version. This is useful
if one wants to apply the same changes to more than one version of
the sees file. Excluding a delta means forcing it not to be applied.
This may be used to undo (in the version of the sees file to be
created) the effects of a previous delta. Whenever deltas are included
or excluded, get checks for possible interference between such deltas
and those deltas that are normally used in retrieving the particular
version of the sees file. Two deltas can interfere, for example, when
each one changes the same line of the retrieved g-file. Any
interference is indicated by a warning that shows the range of lines
within the retrieved g-file in which the problem may exist. The user
is expected to examine the g-file to determine whether a problem
actually exists and to take whatever corrective measures (if any) are
deemed necessary (e.g., edit the file).

Warning: The -i and -x keyletters should be used with
extreme care.

The -k keyletter is provided to facilitate regeneration of a g-file that
may have been accidentally removed or ruined subsequent to the
execution of get with the -e keyletter or to simply generate a g-file
in which the replacement of ID keywords has been suppressed. Thus,
a g-file generated by the -k keyletter is identical to one produced by
get and executed with the -e keyletter. However, no processing
related to the p-file takes place.

4-22

sees

Concurrent Edits of Different SID

The ability to retrieve different versions of an sees file allows a
number of deltas to be "in progress" at any given time. This means
that a number of get commands with the -e keyletter may be
executed on the same file provided that no two executions retrieve
the same version (unless multiple concurrent edits are allowed).

The p-file (created by the get command invoked with the -e
key letter) is named by replacing the "s." in the sees file name with
"p.". It is created in the directory containing the sees file, given
mode 644 (readable by everyone, writable only by the owner), and
owned by the effective user. The p-file contains the following
information for each delta that is still "in progress":

• The SID of the retrieved version.

• The SID that is given to the new delta when it is created.

• The login name of the real user executing get.

The first execution of get -e causes the creation of the p-file for the
corresponding sees file. Subsequent executions only update the p
file with a line containing the above information. Before updating,
however, get checks to assure that no entry (already in the p-file)
specifies that the SID (of the version to be retrieved) is already
retrieved (unless multiple concurrent edits are allowed).

If both checks succeed, the user is informed that other deltas are in
progress and processing continues. If either check fails, an error
message results. It is important to note that the various executions
of get should be carried out from different directories. Otherwise,
only the first execution succeeds since subsequent executions would
attempt to overwrite a writable g-file, which is an sees error
condition. In practice, such multiple executions are performed by
different users so that this problem does not arise since each user
normally has a different working directory. See "Protection" under
the part "sees FILES" for a discussion of how different users are
permitted to use sees commands on the same files.

4-23

sees

Figure 4-4 shows, for the most useful cases, the version of an sees
file retrieved by get, as well as the SID of the version to be
eventually created by delta, as a function of the SID specified to
get.

4-24

SCCS

SID -b KEY- OTHER SID SID OF
SPECI- LETTER CONDI- RETRI- DATA
FIED* USEDt TIONS EVED TO BE

CREATED

nonet no R default mRmL mR(mL+1)
to mR

none:j: yes R default mRmL mRmL.(mB+ 1)
to mR

R no R> mR mRmL R.1§
R no R==mR mRmL mR.(mL+1)
R yes R>mR mRmL mR.mL.(mB+ 1).1
R yes R==mR mR.mL mR.mL.(mB+ 1).1
R - R<mR
R - R<mR hR.mL** hR.mL.(mB+ 1).1

and
does
not
exist

R - Trunk R.mL R.mL.(mB+ 1).1
successor
in release
> Rand
R exists

See footnotes on sheet 3 of 3.

Figure 4-4. Determination of New SID (Sheet 1 of 3)

4-25

SCCS

SID -b KEY- OTHER SID SID OF
SPECI LETTER CONDI- RETRI- DATA
FIED* USEDt TIONS EVED TO BE

CREATED

R.L. no No trunk R.L R.(L+1)
successor

R.L. yes No trunks R.L R.L.(mB+ 1).1
successor

R.L - Trunk R.L R.L.(mS+ 1).1
in release
>= R

R.L.b no No branch R.L.B.mS R.L.B.(mS+ 1)
successor

R.L.B yes No branch R.L.B.mS R.L.(mB+ 1).1
successor

R.L.B.S no No branch R.L.B.S R.L.B.(S+ 1)
successor

R.L.B.S no No branch R.L.B.S R.L.(mB+ 1).1
successor

R.L.B.S - Branch R.L.B.S R.L.(mB+ 1).1
successor

Figure 4-4. Determination of New SID (Sheet 2 of 3)

4-26

sees

Footnotes:

* "R", "L", "B", and "S" are" release", "level", "branch", and
" sequence" components of the SID, respectively; "mil means
"maximum". Thus, for example, "R.mL" means" the maximum level
number within release R"; "R.L.(mB+ 1).1" means "the first
sequence number on the (i.e., maximum branch number plus 1) of
level L within release R". Also note that if the SID specified is of
the form "R.L", "R.L.B", or "R.L.B.S", each of the specified
components must exist.

t The -b keyletter is effective only if the b flag [see admin(l)] is
present in the file. In this state, an entry of" -" means" irrelevant" .

:j: This case applies if the d (default SID) flag is not present in the
file. If the d flag is present in the file, the SID obtained from the d
flag is interrupted as if it had been specified on the command line.
Thus, one of the other cases in this figure applies.

§ This case is used to force the creation of the first delta in the new
release.

** "hR" is the highest existing release that is lower than the
specified, nonexisting, release R.

Figure 4-4. Determination of New SID (Sheet 3 of 3)

Concurrent Edits of Same SID

Under normal conditions, gets for editing (-e keyletter is specified)
based on the same SID are not permitted to occur concurrently. That
is, delta must be executed before a subsequent get for editing is
executed at the same SID as the previous get. However, multiple
concurrent edits (defined to be two or more successive executions of
get for editing based on the same retrieved SID) are allowed if the j
flag is set in the sees file.

4-27

sees

Thus:

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by

get -e s.abc
1.1
new delta 1.1.1.1
5 lines

without an intervening execution of delta. In this case, a delta
command corresponding to the first get produces delta 1.2 [assuming
1.1 is the latest (most recent) trunk delta], and the delta command
corresponding to the second get produces delta 1.1.1.1.

Keyletters That Affect Output

Specification of the -p keyletter causes get to write the retrieved
text to the standard output rather than to a g-file. In addition, all
output normally directed to the standard output (such as the SID of
the version retrieved and the number of lines retrieved) is directed
instead to the diagnostic output. This may be used, for example, to
create g-files with arbitrary names.

get -p s.abc > arbitrary-file-name

The -p keyletter is particularly useful when used with the "!" or "$"
arguments of the send(1C) command. For example,

send MOD=s.abc REL=3 compile

given that file compile contains

4-28

Ilplicomp job job-card-information
I I step! exec plickc
I I pli.sysin dd *
-s
!get -p -rREL MOD

1*
II

sees

will send the highest level of release 3 of file s.abc. Note that the
line ,,--s" (that causes send to make ID keyword substitutions
before detecting and interpreting control lines) is necessary if send
is to substitute "s.abc" for MOD and "3" for REL in the line "-!get
-p -rREL MOD".

The -s keyletter suppresses all output that is normally directed to
the standard output. Thus, the SID of the retrieved version, the
number of lines retrieved, etc., are not output. This does not,
however, affect messages to the diagnostic output. This keyletter is
used to prevent nondiagnostic messages from appearing on the user's
terminal and is often used in conjunction with the -p keyletter to
"pipe" the output of get, as in

get -p -s s.abc I nroff

The -g keyletter is supplied to suppress the actual retrieval of the
text of a version of the sees file. This may be useful in a number of
ways. For example, to verify the existence of a particular SID in an
sees file, one may execute

get -g - r4.3 s.abc

This outputs the given SID if it exists in the sees file or it generates
an error message if it does not. Another use of the -g keyletter is in
regenerating a p-file that may have been accidentally destroyed.

get -e -g s.abc

The -1 keyletter causes the creation of an I-file, which is named by
replacing the "s." of the sees file name with "I.". This file is

4-29

sees

created in the current directory with mode 444 (read-only) and is
owned by the real user. It contains a l table [whose format is
described in get(l) in the UNIX System User Reference Manual]
showing the deltas used in constructing a particular version of the
sees file. For example,

get -r2.3 -1 s.abc

generates an i-file showing the deltas applied to retrieve version 2.3
of the sees file. Specifying a value of "p" with the -} keyletter, as
In

get -lp -r2.3 s.abc

causes the generated output to be written to the standard output
rather than to the i-file. The -g keyletter may be used with the -}
keyletter to suppress the actual retrieval of the text.

The -m keyletter is of use in identifying, line by line, the changes
applied to an sees file. Specification of this keyletter causes each
line of the generated g-file to be preceded by the SID of the delta
that caused that line to be inserted. The SID is separated from the
text of the line by a tab character.

The -n keyletter causes each line of the generated g-file to be
preceded by the value of the sees! ID keyword and a tab character.
The -n keyletter is most often used in a pipeline with grep(l). For
example, to find all lines that match a given pattern in the latest
version of each sees file in a directory, the following may be
executed:

get -p -n -s directory I grep pattern

If both the -m and -n keyletters are specified, each line of the
generated g-file is preceded by the value of the sees! ID keyword
and a tab (this is the effect of the -n keyletter) and followed by the
line in the format produced by the -m keyletter. Because use of the
-m keyletter and/or the ~n keyletter causes the contents of the g
file to be modified, such a g-fiie must not be used for creating a delta.

4-30

SCCS

Therefore, neither the -m keyletter nor the -n keyletter may be
specified together with the -e keyletter.

See get(l) in the UNIX System User Reference Manual for a full
description of additional get keyletters.

B. The "delta" Command

The delta command is used to incorporate the changes made to a g
file into the corresponding sees file, i.e., to create a delta, and
therefore, a new version of the file.

Invocation of the delta command requires the existence of a p-file.
The delta command examines the p-file to verify the presence of an
entry containing the user's login name. If none is found, an error
message results. The delta command performs the same permission
checks that get performs when invoked by the -e keyletter. If all
checks are successful, delta determines what has been changed in
the g-file by comparing it via diff(l) with its own temporary copy of
the g-file as it was before editing. This temporary copy of the g-file
is called the d-file (its name is formed by replacing the "s." of the
sees file name with "d.") and is obtained by performing an internal
get at the SID specified in the p-file entry.

The required p-file entry is the one containing the login name of the
user executing delta because the user who retrieved the g-file must
be the one who creates the delta. However, if the login name of the
user appears in more than one entry, the same user has executed get
with the -e keyletter more than once on the same sees file. The -r
keyletter must then be used with delta to specify the SID that
uniquely identifies the p-file entry. This entry is the one used to
obtain the SID of the delta to be created.

In practice, the most common invocation of delta is

delta s.abc

which prompts on the standard output (but only if it is a terminal)

comments?

4-31

sees

to which the user replies with a description of why the delta is being
made, terminating the reply with a newline character. The user's
response may be up to 512 characters long with newlines (not
intended to terminate the response) escaped by backslashes "\".

If the sees file has a v flag, delta first prompts with

MRs? (Modification Requests)

on the standard output. (Again, this prompt is printed only if the
standard output is a terminal.) The standard input is then read for
MR numbers, separated by blanks and/or tabs, terminated in the
same manner as the response to the prompt "comments?". In a
tightly controlled environment, it is expected that deltas are created
only as a result of some trouble report, change request, trouble ticket,
etc., collectively called [MRs]. It is desirable (or necessary) to record
such MR number(s) within each delta.

The -y and/or -m keyletters may be used to supply the commentary
(comments and MR numbers, respectively) on the command line
rather than through the standard input.

delta -y" descriptive comment" _mIt mrnum1 mrnum2" s.abc

In this case, the corresponding prompts are not printed, and the
standard input is not read. The -m keyletter is allowed only if the
sees file has a v flag. These keyletters are useful when delta is
executed from within a shell procedure [see sh(l) in the UNIX
System User Reference Manual}.

The commentary (comments and/or MR numbers), whether solicited
by delta or supplied via key letters, is recorded as part of the entry
for the delta being created and applies to all sees files processed by
the same invocation of delta. This implies that (if delta is invoked
with more than one file argument and the first file named has a v
flag) all files named must have this flag. Similarly, if the first file
named does not have this flag, then none of the files named may have

4-32

sees

it. Any file that does not conform to these rules is not processed.

When processing is complete, delta outputs (on the standard output)
the SID of the created delta (obtained from the p-file entry) and the
counts of lines inserted, deleted, and left unchanged by the delta.
Thus, a typical output might be

1.4
14 inserted
7 deleted
345 unchanged

It is possible that the counts of lines reported as inserted, deleted, or
unchanged by delta do not agree with the user's perception of the
changes applied to the g-file. The reason for this is that there
usually are a number of ways to describe a set of such changes,
especially if lines are moved around in the g-file, and delta is likely
to find a description that differs from the user's perception.
However, the total number of lines of the new delta (the number
inserted plus the number left unchanged) should agree with the
number of lines in the edited g-file.

If (in the process of making a delta) delta finds no ID keywords in
the edited g-file, the message

No id keywords (cm7)

is issued after the prompts for commentary but before any other
output. This indicates that any ID keywords that may have existed
in the sees file have been replaced by their values or deleted during
the editing process. This could be caused by creating a delta from a
g-file that was created by a get without the -e keyletter (recall that
ID keywords are replaced by get in that case). This could also be
caused by accidentally deleting or changing the ID keywords during
the editing of the g-file. Another possibility is that the file had no
ID keywords. In any case, it is left up to the user to determine what
remedial action is necessary. However, the delta is made unless there
is an i flag in the sees file indicating that this should be treated as
a fatal error. In this last case, the delta is not created.

4-33

SCCS

After the processing of an sees file is complete, the corresponding
p-file entry is removed from the p-file. All updates to the p-file are
made to a temporary copy, the q-file, whose use is similar to the use
of the x-file which is described in the part "sees COMMAND
CONVENTIONS". If there is only one entry in the p-file, then the
p-file itself is removed.

In addition, delta removes the edited g-file unless the -n keyletter is
specified. Thus:

delta -n s.abc

will keep the g-file upon completion of processing.

The -s (silent) keyletter suppresses all output that is normally
directed to the standard output, other than the prompts "comments?"
and "MRs?". Thus, use of the -s keyletter together with the -y
keyletter (and possibly, the -m keyletter) causes delta neither to
read the standard input nor to write the standard output.

The differences between the g-file and the d-file (see above),
constitute the delta and may be printed on the standard output by
using the -p keyletter. The format of this output is similar to that
produced by diff(l).

C. The "admin" Command

The admin command is used to administer sees files, that is, . to
create new sees files and to change parameters of existing ones.
When an sees file is created, its parameters are initialized by use of
keyletters or are assigned default values if no keyletters are supplied.
The same keyletters are used to change the parameters of existing
files.

Two keyletters are supplied for use in conjunction with detecting and
correcting "corrupted" sees files (see "Auditing" in part "sees
FILES"). Newly created sees files are given mode 444 (read-only)
and are owned by the effective user. Only a user with write
permission in the directory containing the sees file may use the
admin command upon that file.

4-34

sees

Crea tion of SCCS Files

An sees file may be created by executing the command

admin -ifirst s.abc

in which the value "first" of the -i keyletter specifies the name of a
file from which the text of the initial delta of the sees file s.abc is
to be taken. Omission of the value of the -i keyletter indicates that
admin is to read the standard input for the text of the initial delta.
Thus, the command

admin -i s.abc < first

is equivalent to the previous example. If the text of the initial delta
does not contain ID keywords, the message

No id keywords (cm7)

is issued by admin as a warning. However, if the same invocation of
the command also sets the i flag (not to be confused with the -i
keyletter), the message is treated as an error and the sees file is not
created. Only one sees file may be created at a time using the -i
keyletter.

When an sees file is created, the release number assigned to its first
delta is normally "I", and its level number is always "I". Thus, the
first delta of an sees file is normally "1.1". The -r keyletter is used
to specify the release number to be assigned to the first delta. Thus:

admin -ifirst -r3 s.abc

indicates that the first delta should be named "3.1" rather than "1.1".
Because this keyletter is only meaningful in creating the first delta,
its use is only permitted with the -i keyletter.

4-35

sees

Inserting Commentary for the Initial Delta

When an sees file is created, the user may choose to supply
commentary stating the reason for creation of the file. This is done
by supplying comments (-y keyletter) and/or MR numbers (-m
keyletter) in exactly the same manner as for delta. The creation of
an sees file may sometimes be the direct result of an MR. If
comments (-y keyletter) are omitted, a comment line of the form

date and time created YY/MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (-m keyletter), the v flag must
also be set (using the -f keyletter described below). The v flag
simply determines whether or not MR numbers must be supplied
when using any sees command that modifies a "delta commentary"
[see sccsfile(4) in the UNIX System User Reference Manual] in the
sees file. Thus:

admin -ifirst -mmrnuml -fv s.abc

Note that the -y and -m keyletters are only effective if a new sees
file is being created.

Initialization and Modification of SCCS File Parameters

The portion of the sees file reserved for descriptive text may be
initialized or changed through the use of the -t keyletter. The
descriptive text is intended as a summary of the contents and
purpose of the sees file.

When an sees file is being created and the -t keyletter is supplied,
it must be followed by the name of a file from which the descriptive
text is to be taken. For example, the command

admin -ifirst -tdesc s.abc

4-36

sees

specifies that the descriptive text is to be taken from file desc;.

When processing an existing sees file, the -t key letter specifies that
the descriptive text (if any) currently in the file is to be replaced with
the text in the named file. Thus:

admin - tdesc s.abc

specifies that the descriptive text of the sees file is to be replaced
by the contents of dese; omission of the file name after the -t
keyletter as in

admin -t s.abc

causes the removal of the descriptive text from the sees file.

The flags of an sees file may be initialized, changed, or deleted
through the use of the -f and -d keyletters, respectively. The flags
of an sees file are used to direct certain actions of the various
commands. See admin(l) in the UNIX System User Reference
Manual for a description of all the flags. For example, the i flag
specifies that the warning message (stating that there are no ID
keywords contained in the sees file) should be treated as an error.
Also the d (default SID) flag specifies the default version of the
sees file to be retrieved by the get command. The -f keyletter is
used to set a flag and, possibly, to set its value. For example,

admin -ifirst -fi -fmmodname s.abc

sets the i flag and the m (module name) flag. The value "modname"
specified for the m flag is the value that the get command will use
to replace the sccs2 ID keyword. (In the absence of the m flag, the
name of the g-file is used as the replacement for the sccs2 ID
keyword.) Note that several -f keyletters may be supplied on a single
invocation of admin and that -f keyletters may be supplied whether
the command is creating a new sees file or processing an existing
one.

4-37

SCCS

The -d keyletter is used to delete a flag from an sees file and may
only be specified when processing an existing file. As an example,
the command

admin -dm s.abc

removes the m flag from the sees file. Several -d keyletters may
be supplied on a single invocation of admin and may be intermixed
with -f keyletters.

The sees files contain a list (user list) of login names and/or group
IDs of users who are allowed to create deltas. This list is empty by
default which implies that anyone may create deltas. To add login
names and/or group IDs to the list, the -a keyletter is used. For
example,

admin -axyz -awql -a1234 s.abc

adds the login names "xyz" and "wql" and the group ID "1234" to the
list. The -a keyletter may be used whether admin is creating a new
sees file or processing an existing one and may appear several
times. The -e keyletter is used in an analogous manner if one
wishes to remove (erase) login names or group IDs from the list.

D. The "prs" Command

The prs command is used to print on the standard output all or parts
of an sees file in a format, called the output "data specification,"
supplied by the user via the -d keyletter. The data specification is a
string consisting of sees file data keywords (not to be confused with
get ID keywords) interspersed with optional user text.

Data keywords are replaced by appropriate values according to their
definitions. For example,

:1:

is defined as the data keyword that is replaced by the SID of a
specified delta. Similarly, :F: is defined as the· data keyword for the

4 .. 38

sccs

SCCS file name currently being processed, and :C: is defined as the
comment line associated with a specified delta. All parts of an SCCS
file have an associated data keyword. For a complete list of the data
keywords, see prs(l) in the UNIX System User Reference Manual.

There is no limit to the number of times a data keyword may appear
in a data specification. Thus, for example,

prs -d": I: this is the top delta for :F: :1:" s.abc

may produce on the standard output

2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the
SID of that delta using the -r keyletter. For example,

prs -d": F:: :1: comment line is: :C:" -rl.4 s.abc

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If the -r keyletter is not specified, the value of the SID defaults to
the most recently created delta.

In addition, information from a range of deltas may be obtained by
specifying the -lor -e keyletters. The -e keyletter substitutes data
keywords for the SID designated via the -r keyletter and all deltas
created earlier. The -I keyletter substitutes data keywords for the
SID designated via the -r keyletter and all deltas created later.
Thus, the command

prs -d: I: -rl.4 -e s.abc

may output

4-39

SCCS

1.4
1.3
1.2.1.1
1.2
1.1

and the command

prs -d: I: -r1.4 -1 s.abc

may produce

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the sees file may be
obtained by specifying both the -e and -I keyletters.

E. The "help" Command

The help command prints explanations of sees commands and of
messages that these commands may print. Arguments to help, zero
or more of which may be supplied, are simply the names of sees
commands or the code numbers that appear in parentheses after
sees messages. If no argument is given, help prompts for one. The
help command has no concept of keyletter arguments or file
arguments. Explanatory information related to an argument, if it
exists, is printed on the standard output. If no information is found,
an error message is printed. Note that each argument is processed
independently, and an error resulting from one argument will not
terminate the processing of the other arguments.

Explanatory information related to a command is a synopsis of the
command. For example,

4-40

help ge5 rmdel

produces

ge5:
" nonexistent sid"
The specified sid does not exist in the
given file.
eheck for typos.

rmdel:
rmdel -rSID name ...

F. The "rmdel" Command

SCCS

The rmdel command is provided to allow removal of a delta from an
sees file. Its use should be reserved for those cases in which
incorrect global changes were made a part of the delta to be removed.

The delta to be removed must be a "leaf" delta. That is, it must be
the latest (most recently created) delta on its branch or on the trunk
of the sees file tree. In Figure 4-3, only deltas 1.3.1.2, 1.3.2.2, and 2.2
can be removed; once they are removed, then deltas 1.3.2.1 and 2.1 can
be removed, etc.

To be allowed to remove a delta, the effective user must have write
permission in the directory containing the sees file. In addition, the
real user must either be the one who created the delta being removed
or be the owner of the sees file and its directory.

The -r keyletter, which is mandatory, is used to specify the complete
SID of the delta to be removed (Le., it must have two components for
a trunk delta and four components for a branch delta). Thus:

rmdel - r2.3 s.abc

specifies the removal of (trunk) delta "2.3" of the sees file. Before
removal of the delta, rmdel checks that the release number (R) of
the given SID satisfies the relation.

4-41

SCCS

floor <= R <= ceiling

The rmdel command also checks that the SID specified is not that of
a version for which a get for editing has been executed and whose
associated delta has not yet been made. In addition, the login name
or group ID of the user must appear in the file's "user list", or the
"user list" must be empty. Also, the release specified cannot be
locked against editing. That is, if the I flag is set [see admin(l) in
the UNIX System User Reference Manual], the release specified must
not be contained in the list. If these conditions are not satisfied,
processing is terminated, and the delta is not removed. After the
specified delta has been removed, its type indicator in the "delta
table" of the sees file is changed from "D" ("delta") to "R"
("removed").

G. The "cdc" Command

The cdc command is used to change a delta's commentary that was
supplied when that delta was created. Its invocation is analogous to
that of the rmdel command, except that the delta to be processed is
not required to be a leaf delta. For example,

cdc -r3.4 s.abc

specifies that the commentary of delta" 3.4" of the sees file is to be
changed.

The new commentary is solicited by cdc in the same manner as that
of delta. The old commentary associated with the specified delta is
kept, but it is preceded by a comment line indicating that it has been
changed (i.e., superseded), and the new commentary is entered ahead
of this comment line. The "inserted" comment line records the login
name of the user executing cdc and the time of its execution.

The cdc command also allows for the deletion of selected MR
numbers associated with the specified delta. This is specified by
preceding the selected MR numbers by the character "!".

4-42

Thus:

cdc -rl.4 s.abc
MRs? mrnum3 !mrnuml
comments? deleted wrong MR number and inserted

correct MR number

inserts "mrnum3" and deletes "mrnuml" for delta 1.4.

H. The "what" Command

SCCS

The what command is used to find identifying information within
any UNIX system file whose name is given as an argument to what.
Directory names and a name of "-" (a lone minus sign) are not
treated specially as they are by other sees commands and no
key letters are accepted by the command.

The what command searches the given file(s) for all occurrences of
the string "@(#)", which is the replacement for the @(#) ID keyword
[see get(l)], and prints (on the standard output) the balance
following that string until the first double quote (n), greater than
(», backslash (\), newline, or (nonprinting) NUL character. For
example, if the sees file s.prog.c (a e language program) contains
the following line:

char id[] n @(#)sccs2:5.ln
;

and then the command

get - r3.4 s. prog.c

is executed, the resulting g-fiJe is compiled to produce "prog.o" and
"a.out". Then the command

what prog.c prog.o a.out

produces

4-43

SCCS

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what need not be inserted via an ID
keyword of get; it may be inserted in any convenient manner.

I. The "sccsdiff" Command

The sccsdiff command determines (and prints on the standard
output) the differences between two specified versions of one or more
sees files. The versions to be compared are specified by using the
-r keyletter, whose format is the same as for the get command. The
two versions must be specified as the first two arguments to this
command in the order they were created, i.e., the older version is
specified first. Any following keyletters are interpreted as
arguments to the pr(l) command (which actually prints the
differences) and must appear before any file names. The sees files
to be processed are named last. Directory names and a name of "-"
(a lone minus sign) are not acceptable to sccsdiff.

The differences are printed in the form generated by diff(l). The
following is an example of the invocation of sccsdiff:

sccsdiff -r3.4 -r5.6 s.abc

J. The "comb" Command

The comb command generates a "shell procedure" [see sh(l) in the
UNIX System User Reference Manual] which attempts to reconstruct
the named sees files so that the reconstructed files are smaller than
the originals. The generated shell procedure is written on the
standard output. Named sees files are reconstructed by discarding
unwanted deltas and combining other specified deltas. The sees
files that contain deltas no longer useful should be discarded. It is
not recommended that comb be used as a matter of routine; its use
should be restricted to a very small number of times in the life of an
sees file.

4-44

SCCS

In the absence of any keyletters, comb preserves only leaf deltas and
the minimum number of ancestor deltas necessary to preserve the
"shape" of the sees file tree. The effect of this is to eliminate
middle deltas on the trunk and on all branches of the tree. Thus, in
Figure 4-3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated. Some
of the keyletters are summarized as follows:

The -p keyletter specifies the oldest delta that is to be preserved
in the reconstruction. All older deltas are discarded.

The -c keyletter specifies a list [see get(l) in the UNIX System
User Reference Manual for the syntax of such a list] of deltas to
be preserved. All othe'r deltas are discarded.

The -s keyletter causes the generation of a shell procedure,
which when run, produces only a report summarizing the
percentage space (if any) to be saved by reconstructing each
named sees file. It is recommended that comb be run with this
keyletter (in addition to any others desired) before any actual
reconstructions.

It should be noted that the shell procedure generated by comb is not
guaranteed to save space. In fact, it is possible for the reconstructed
file to be larger than the original. Note, too, that the shape of the
sees file tree may be altered by the reconstruction process.

K. The "val" Command

The val command is used to determine if a file is an sees file
meeting the characteristics specified by an optional list of keyletter
arguments. Any characteristics not met are considered errors.

The val command checks for the existence of a particular delta when
the SID for that delta is explicitly specified via the -r keyletter. The
string following the -y or -m keyletter is used to check the value set
by the t or m flag, respectively [see admin(l) in the UNIX System
User Reference Manual for a description of the flags].

The val command treats the special argument "-" differently from
other sees commands. This argument allows val to read the

4-45

sees

argument list from the standard input as opposed to obtaining it
from the command line. The standard input is read until end of file.
This capability allows for one invocation of val with different values
for the keyletter and file arguments. For example,

val -
-yc -mabc s.abc
-mxyz -ypll s.xyz

first checks if file s.abc has a value "c" for its "type" flag and value
"abc" for the "module name" flag. Once processing of the first file is
completed, val then processes the remaining files, in this case, s.xyz,
to determine if they meet the characteristics specified by the
keyletter arguments associated with them.

The val command returns an 8-bit code; each bit set indicates the
occurrence of a specific error [see val(l) for a description of possible
errors and the codes]. In addition, an appropriate diagnostic is
printed unless suppressed by the -s keyletter. A return code of "0"
indicates all named files met the characteristics specified.

sees FILES
This part discusses several topics that must be considered before
extensive use is made of sees. These topics deal with the protection
mechanisms relied upon by sees, the format of sees files, and the
recommended procedures for auditing sees files.

A. Protection

The sees relies on the capabilities of the UNIX software for most of
the protection mechanisms required to prevent unauthorized changes
to sees files (i.e., changes made by non-SeeS commands). The only
protection features provided directly by sees are the "release lock"
flag, the "release floor" and "ceiling" flags, and the "user list".

New sees files created by the admin command are given mode 444
(read-only). It is recommended that this mode remain unchanged as
it prevents any direct modification of the files by non-SeeS

4-46

sees

commands. It is further recommended that the directories containing
sees files be given mode 755 which allows only the owner of the
directory to modify its contents.

The sees files should be kept in directories that contain only sees
files and any temporary files created by sees commands. This
simplifies protection and auditing of sees files. The contents of
directories should correspond to convenient logical groupings, e.g.,
subsystems of a large project.

The sees files must have only one link (name) because the
commands that modify sees files do so by creating a copy of the file
(the x-file, see "sees COMMAND CONVENTIONS"). Upon
completion of processing, remove the old file and rename the x-file.
If the old file has more than one link, this would break such
additional links. Rather than process such files, sees commands
produce an error message. All sees files must have names that
begin with "s.".

When only one user uses sees, the real and effective user IDs are
the same; and the user ID owns the directories containing sees files.
Therefore, sees may be used directly without any preliminary
preparation.

However, in those situations in which several users with unique user
IDs are assigned responsibility for one sees file (e.g., in large
software development projects), one user (equivalently, one user ID)
must be chosen as the "owner" of the sees files and be the one who
will "administer" them (e.g., by using the admin command). This
user is termed the "sees administrator" for that project. Because
other users of sees do not have the same privileges and permissions
as the sees administrator, they are not able to execute directly those
commands that require write permission in the directory containing
the sees files. Therefore, a project-dependent program is required
to provide an interface to the get, delta, and if desired, rmdel and
cdc commands.

The interface program must be owned by the sees administrator
and must have the "set user ID on execution" bit "on" [see chmod(l)
in the UNIX System User Reference Manual}. This assures that the
effective user ID is the user ID of the administrator. This program

4-47

sees

invokes the desired SCCS command and causes it to inherit the
privileges of the interface program for the duration of that
command's execution. Thus, the owner of an sces file can modify it
at will. Other users whose login names or group IDs are in the "user
list" for that file (but are not the owner) are given the necessary
permissions only for the duration of the execution of the interface
program. Other users are thus able to modify the sces files only
through the use of delta and, possibly, rmdel and cdc. The
project-dependent interface program, as its name implies, must be
custom-built for each project.

B. Formatting

The secs files are composed of lines of ASCII text arranged in six
parts as follows:

Checksum

Delta Table

User Names

Flags

Descri pti ve Text

Body

A line containing the "logical" sum of all the
characters of the file (not including this
checksum itself).

Information about each delta, such as type, SID,
date and time of creation, and commentary.

List of login names and/or group IDs of users
who are allowed to modify the file by adding or
removing deltas.

Indicators that control certain actions of
various SCCS commands.

Arbitrary text provided by the user; usually a
summary of the contents and purpose of the
file.

Actual text that is being administered by sees,
intermixed with internal sees control lines.

Detailed information about the contents of the various sections of the
file may be found in sccsfile(5). The checksum is the only portion of
the file that is of in.terest below.

4-48

SCCS

It is important to note that because sees files are ASCII files they
may be processed by various UNIX software commands, such as
ed(l), grep(l), and cat(l). This is very convenient in those instances

. in which an sees file must be modified manually (e.g., when the
time and date of a delta was recorded incorrectly because the system
clock was set incorrectly) or when it is desired to simply look at the
file.

Caution: Extreme care should be exercised when modifying
SCCS files with non-SCCS commands.

C. Auditing

On rare occasions, perhaps due to an operating system or hardware
malfunction, an sees file or portions of it (Le., one or more "blocks")
can be destroyed. The sees commands . (like most UNIX software
commands) issue an error message when a file does not exist. In
addition, sees commands use the checksum stored in the sees file
to determine whether a file has been corrupted since it was last
accessed [possibly by having lost one or more blocks or by having
been modified with ed(l)]. No sees command will process a
corrupted sees file except the admin command with the -h or -z
keyletters, as described below.

It is recommended that sees files be audited for possible corruptions
on a regular basis. The simplest and fastest way to perform an audit
is to execute the admin command with the -h key letter on all SCCS
files.

admin -h s.filel s.file2 ...
or

admin - h directory 1 directory2

If the new checksum of any file is not equal to the checksum in the
first line of that file, the message

corrupted file (co6)

is produced for that file. This process continues until all the files
have been examined. When examining directories (as in the second

4-49

sees

example above), the process just described will not detect mIssIng
files. A simple way to detect whether any files are missing from a
directory is to periodically execute the 18(1) command on that
directory and compare the outputs of the most current and the
previous executions. Any file whose name appears in the previous
output but not in the current one has been removed by some means.

Whenever a file has been corrupted, the manner in which the file is
restored depends upon the extent of the corruption. If damage is
extensive, the best solution is to contact the local UNIX system
operations group and request that the file be restored from a backup
copy. In the case of minor damage, repair through use of the editor
ed(l) may be possible. In the latter case after such repair, the
following command must be executed:

admin -z s.file

The purpose of this is to recompute the checksum to bring it into
agreement with the actual contents of the file. After this command
is executed on a file, any corruption that existed in the file will no
longer be detectable.

AN SCCS INTERFACE PROGRAM

A. General

In order to permit UNIX system users [with different user
identification numbers (user IDs)] to use sees commands upon the
same files, an sees interface program is provided. It temporarily
grants the necessary file access permissions to these users. This part
discusses the creation and use of such an interface program. The
sees interface program may also be used as a preprocessor to sees
commands since it can perform operations upon its arguments.

4-50

sees

B.Function

When only one user uses sees, the real and effective user IDs are
the same; and that user's ID owns the directories containing sees
files. However, there are situations (e.g., in large software
development projects) in which it is practical to allow more than one
user to make changes to the same set of sees files. In these cases,
one user must be chosen as the "owner" of the sees files and be the
one who will "administer" them (e.g., by using the admin command).
This user is termed the "sees administrator" for that project. Since
other users of sees do not have the same privileges and permissions
as the sees administrator, the other users are not able to execute
directly those commands that require write permission in the
directory containing the sees files. Therefore, a project-dependent
program is required to provide an interface to the get, delta, and if
desired, rmdel, cdc, and unget commands. Other sees commands
either do not require write permission in the directory containing
sees files or are (generally) reserved for use only by the
administrator.

The interface program

• Must be owned by the sees administrator

• Must be executable by the new owner

• Must have the" set user on execution" bit "on" [see chmod (1)
in the UNIX System Users Manual].

Then when executed, the effective user ID is the user ID of the
administrator. This program's function is to invoke the desired sees
command and to cause it to inherit the privileges of the sees
administrator for the duration of that command's execution. In this
manner, the owner of an sees file (the administrator) can modify it
at will. Other users whose login names are in the user list for that
file (but who are not its owners) are given the necessary permissions
only for the duration of the execution of the interface program. They
are thus able to modify the sees files only through the use of delta
and, possibly, rmdel and cdc.

4-51

sccs

c. Basic Program

When a UNIX system program is executed, the program is passed as
argument 0, which is the name that invoked the program, and
followed by any additional user-supplied arguments. Thus, if a
program is given a number of links (names), the program may alter
its processing depending upon which link invokes the program. This
mechanism is used by an sees interface program to determine the
sees command it should subsequently invoke [see exec(2) in the
UNIX System User Reference Manual].

A generic interface program (inter.c, written in C language) is shown
in Figure 4-5. Note the reference to the (unsupplied) function
"filearg". This is intended to demonstrate that the interface program
may also be used as a preprocessor to sees commands. For example,
function "filearg" could be used to modify file arguments to be passed
to the sees command by supplying the full pathname of a file, thus
avoiding extraneous typing by the user. Also, the program could
supply any additional (default) keyletter arguments desired.

D. Linking and Use

In general, the following demonstrates the steps to be performed by
the sees administrator to create the sees interface program. It is
assumed, for the purposes of the discussion, that the interface
program inter.c resides in directory "/xl/xyz/sccs". Thus, the
command sequence

cd /xl/xyz/sccs
cc ... inter.c -0 inter ...

compiles inter.c to produce the executable module inter (the " ... "
represents other arguments that may be required). The proper mode
and the "set user ID on execution" bit are set by executing

chmod 4755 inter

For example, new links are created by

4 .. 52

In inter get
In inter delta
In inter rmdel

sees

The names of the links may be arbitrary if the interface program is
able to determine from them the names of sees commands to be
invoked. Subsequently, any user whose shell parameter PATH [see
sh(l) in the UNIX System User Reference Manual] specifies directory
"/xl/xyz/sccs" as the one to be searched first for executable
commands may execute, e.g.

get -e /xl/xyz/sccs/s.abc

from any directory to invoke the interface program (via its link
"get"). The interface program then executes "/usr/bin/get" (the
actual sees get command) upon the named file. As previously
mentioned, the interface program could be used to supply the
pathname "/xl/xyz/sccs" so that the user would only have to specify

get -e s.abc

to achieve the same results.

4-53

Chapter 5

THE M4 MACRO PROCESSOR

PAGE

GENERAL.. 5-1

DEFINING MACROS. 5-6

ARGUMENTS .. 5-10

ARITHMETIC BUILT-INS. 5-11

FILE MANIPULATION... 5-12

SYSTEM COMMAND .. 5-13

CONDITIONALS .. 5-14

STRING MANIPULATION...................................... 5-15

PRINTING. .. 5-17

Chapter 5

THE M4 MACRO PROCESSOR

GENERAL
The M4 macro processor is a front end for rational Fortran (Ratfor)
and the C programming languages. The "#define" statement in C
language and the analogous "define" in Ratfor are examples of the
basic facility provided by any macro processor.

At the beginning of a program, a symbolic name or symbolic constant
can be defined as a particular string of characters. The compiler will
then replace later unquoted occurrences of the symbolic name with
the corresponding string. Besides the straightforward replacement of
one string of text by another, the M4 macro processor provides the
following features:

• arguments

• arithmetic capabilities

• file manipulation

• conditional macro expansion

• string and substring functions.

The basic operation of M4 is to read every alphanumeric token (string
of letters and digits) input and determine if the token is the name of
a macro. The name of the macro is replaced by its defining text, and
the resulting string is pushed back onto the input to be rescanned.
Macros may be called with arguments. The arguments are collected
and substituted into the right places in the defining text before the
defining text is rescanned.

The user also has the capability to define new macros. Built-ins and
user-defined macros work exactly the same way except that some of
the built-in macros have side effects on the state of the process. A

5-1

M4MACROS

list of 21 built-in macros provided by the M4 macro processor can be
found in Figure 5-1.

Macro Function
Name

changequote Restores original
characters or
makes new quote
characters the
left and right
brackets.

changescom Changes left and right
comment markers from
the default # and new
line.

deer Returns the value of
its argument decremented
by 1.

define Defines new macros.
defn Returns the quoted

definition of its
argument(s).

divert Di verts ou tpu t to
1-out-of-10
diversions.

Figure 5-1. Built-in Macros (Sheet 1 of 4)

5-2

M4MACROS

Macro Function
Name

divnum Returns the number
of the currently
active diversion.

dnl Reads and discards
characters up to
and including the
next new line.

dumpdef Dumps the current
names and definitions
of items named as
arguments.

errprint Prints its arguments
on the standard
error file.

eval Prints arbitrary
arithmetic on
integers.

ifdef Determines if a
macro is currently
defined.

ifelse Performs arbitrary
conditional testing.

include Returns the contents
of the file named
in the argument. A
fatal error occurs
if the file name
cannot be accessed.

Figure 5-1. Built-in Macros (Sheet 2 of 4)

5-3

M4MACROS

Macro Function
Name

iner Returns the value of
its argument
incremented by l.

index Returns the position
where the second
argument begins in
the first argument
pf index.

len Returns the number of
characters that makes
its argument.

m4exit Causes immediate
exit from M4.

m4wrap Pushes the exit code
back at final EOF.

maketemp Facilitates making
unique file names.

popdef Removes current
definition of its
argument(s)
exposing any previous
definitions.

pushdef Defines new macros
but saves any
previous definition.

Figure 5-1. Built-in Macros (Sheet 3 of 4)

5-4

M4MACROS

Macro Function
Name

shift Returns all arguments
of shift except the
first argument.

sinclude Returns the contents
of the file named
in the arguments.
The macro remains
silent and continues
if the file is
inaccessi ble.

substr Produces substrings
of strings.

syscmd Execu tes the UNIX System
command given in
the first argument.

traceoff Turns macro trace off.
traceon Turns the macro trace on.
translit Performs character

transliteration.
undefine Removes user-defined

or built-in macro
definitions.

undivert Discards the diverted
text.

Figure 5-1. Built-in Macros (Sheet 4 of 4)

To use the M4 macro processor, input the following command:

m4 [optional files]

5-5

M4 MACROS

Each argument file is processed in order. If there are no arguments
or if an argument is "-", the standard input is read at that point.
The processed text is written on the standard output which may be
captured for subsequent processing with the following input:

m4 [files] >outputfile

DEFINING MACROS

The primary built-in function of M4 is define. Define is used to
define new macros. The following input:

define(name, stuff)

causes the string name to be defined as stufl All subsequent
occurrences of name will be replaced by stufl Name must be
alphanumeric and must begin with a letter (the underscore counts as
a letter). Stuff is any text that contains balanced parentheses. Use
of a slash may stretch stuff over multiple lines. Thus, as a typical
example,

define(N, 100)

if (i > N)

(;·'fines N to be 100 and uses the symbolic constant N in a later if
st.l.tement.

. the left parenthesis must immediately follow the word define to
,ignal that define has arguments. If a user-defined macro or built
in name is not followed immediately by "(", it is assumed to have no
arguments. Macro calls have the following general form:

name(arg1,arg2, ... argn)

5-6

M4 MACROS

A macro name is only recognized as such if it appears surrounded by
nonalphanumerics. Using the following example:

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N even
though the variable contains a lot of Ns.

Macros may be defined in terms of other names. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100. If N is redefined and subsequently
changes, M retains the value of 100 not N.

The M4 macro processor expands macro names into their defining
text as soon as possible. The string N is immediately replaced by
100. Then the string M is also immediately replaced by 100. The
overall result is the same as using the following input in the first
place:

define(M, 100)

The order of the definitions can be interchanged as follows:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when the value of M is
requested later, the result is the value of N at that time (because the
M will be replaced by N which will be replaced by 100).

5-7

M4MACROS

The more general solution is to delay the expansion of the arguments
of define by quoting them. Any text surrounded by left and right
single quotes is not expanded immediately but has the quotes
stripped off. The value of a quoted string is the string stripped of
the quotes. If the input is

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the argument is being
collected. The results of using quotes is to define M as the string N,
not 100. The general rule is that M4 always strips off one level of
single quotes whenever it evaluates something. This is true even
outside of macros. If the word define is to appear in the output, the
word must be quoted in the input as follows:

'define' = 1;

Another example of using quotes is redefining N To redefine N, the
evaluation must be delayed by quoting

define(N, 100)

define('N', 200)

In M4, it is often wise to quote the first argument of a macro. The
following example will not redefine N:

define(N, 100)

define(N, 200)

The N in the second definition is replaced by 100. The result is
equivalent to the following statement:
define(100, 200)

5-8

M4 MACROS

This statement is ignored by M4 SInce only things that look like
names can be defined.

If left and right single quotes are not convenient for some reason, the
quote characters can be changed with the following built-in macro:

changequote([,])

The built-in changequote makes the new quote characters the left
and right brackets. The original characters can be restored by using
changequote without arguments as follows:

changequote

There are two additional built-ins related to define. The undefine
macro removes the definition of some macro or built-in as follows:

undefine('N')

The macro removes the definition of N. Built-ins can be removed
with undefine, as follows:

undefine('define')

But once removed, the definition cannot be reused.

The built-in ifdef provides a way to determine if a macro is
currently defined. Depending on the system, a definition appropriate
for the particular machine can be made as follows:

ifdef('pdpll', 'define(wordsize,16),)
ifdef('u3b', 'define(wordsize,32),)

5-9

M4 MACROS

Remember to use the quotes.

The ifdef macro actually permits three arguments. If the first
argument is defined, the value of ifdef is the second argument. If the
first argument is not defined, the value of ifdef is the third
argument. If there is no third argument, the value of ifdef is null. If
the name is undefined, the value of ifdef is then the third argument,
as in

ifdef('unix', on UNIX, not on UNIX)

ARGUMENTS
So far the simplest form of macro processing has been discussed
which is replacing one string by another (fixed) string. User-defined
macros may also have arguments, so different invocations can have
different results. Within the replacement text for a macro (the
second argument of its define), any occurrence of $n is replaced by
the nth argument when the macro is actually used. Thus, the macro
bum p defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1. The 'bump(x)' ,
statement is equivalent to 'x = x + 1.'

A macro can have as many arguments as needed, but only the first
nine are accessible ($1 through $9). The macro name is $0 although
that is less commonly used. Arguments that are not supplied are
replaced by null strings, so a macro can be defined which simply
concatenates its arguments like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus, 'cat(x, y, z)' is equivalent to 'xyz'. Arguments $4 through $9
are null since no corresponding arguments were provided. Leading

5-10

M4MACROS

unquoted blanks, tabs, or newlines that occur during argument
collection are discarded. All other white space is retained. Thus:

define(a, b c)

defines 'a' to be 'b c'.

Arguments are separated by commas; however, when commas are
within parentheses, the argument is not terminated nor separated.
For example,

define(a, (b,c»

has only two arguments. The first argument is a. The second is
literally (b,e). A bare comma or parenthesis can be inserted by
quoting it.

ARITHMETIC BUILT-INS
The M4 provides three built-in functions for doing arithmetic on
integers (only). The simplest is iner which increments its numeric
argument by 1. The built-in deer decrements by 1. Thus to handle
the common programming situation where a variable is to be defined
as "one more than N', use the following:

define(N, 100)
define(Nl, 'incr(N)')

Then Nl is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in called eval
which is capable of arbitrary arithmetic on integers. The operators
in decreasing order of precedence are

5-11

M4MACROS

unary + and-
** or A (exponentiation)
* / % (modulus)
+ -
== != < <= > >=
! (not)
& or && (logical and)
I or I I (logical or).

Parentheses may be used to group operations where needed. All the
operands of an expression given to eval must ultimately be numeric.
The numeric value of a true relation (like 1>0) is 1 and false is o.
The precision in eval is 32 bits under the UNIX operating system.

As a simple example, define M to be "2==N+ I" using eva} as
follows:

define(N, 3)
define(M, 'eval(2==N+1),)

The defining text for a macro should be quoted unless the text is very
simple. Quoting the defining text usually gives the desired result and
is a good habit to get into.

FILE MANIPULATION
A new file can be included in the input at any time by the built-in
function include. For example,

include(filename)

inserts the contents of filename in place of the include command.
The contents of the file is often a set of definitions. The value of
include (include's replacement text) is the contents of the file. If
needed, the contents can be captured in definitions, etc.

5-12

M4MACROS

A fatal error occurs if the file named in include cannot be accessed.
To get some control over this situation, the alternate form sinclude
can be used. The built-in sinclude (silent include) says nothing and
continues if the file named cannot be accessed.

The output of M4 can be diverted to temporary files during
processing, and the collected material can be output upon command.
The M4 maintains nine of these diversions, numbered 1 through 9. If
the built-in macro

divert(n)

is used, all subsequent output is put onto the end of a temporary file
referred to as n. Diverting to this file is stopped by the divert or
divert(O) command which resumes the normal output process.

Diverted text is normally output all at once at the end of processing
with the diversions output in numerical order. Diversions can be
brought back at any time by appending the new diversion to the
current diversion. Output diverted to a stream other than 0 through 9
is discarded. The built-in undivert brings back all diversions in
numerical order. The built-in undivert with arguments brings back
the selected diversions in the order given. The act of undiverting
discards the diverted text (as does diverting) into a diversion whose
number is not between 0 and 9, inclusive.

The value of undivert is not the diverted text. Furthermore, the
diverted material is not rescanned for macros. The built-in divnum
returns the number of the currently active diversion. The current
output stream is zero during normal processing.

SYSTEM COMMAND
Any program in the local operating system can be run by using the
syscmd built-in. For example,

5-13

M4 MACROS

syscmd(date)

on the UNIX system runs the date command. Normally, syscmd
would be used to create a file for a subsequent include. To facilitate
making unique file names, the built-in maketemp is provided with
specifications identical to the system function mktemp. The
maketemp macro fills in a string of XXXXX in the argument with
the process id of the current process.

CONDITIONALS
Arbitrary conditional testing is performed via built-in ifelse. In the
simplest form

ifelse(a, b, c, d)

compares the two strings a and b. If a and b are identical, ifelse
returns the string c. Otherwise, string d is returned. Thus, a macro
called compare can be defined as one which compares two strings
and returns "yes" or "no" if they are the same or different as follows:

define(compare, 'ifelse($l, $2, yes, no)')

Note the quotes which prevent evaluation of ifelse occurring too
early. If the fourth argument is missing, it is treated as empty.

The built-in ifelse can actually have any number of arguments and
provides a limited form of multiway decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if dis
the same as e, the result is f. Otherwise, the result is g. If the final
argument is omitted, the result is null, so

5-14

M4 MACROS

ifelse(a, b, c)

is c if a matches b, and null otherwise.

STRING MANIPULATION
The built-in len returns the length of the string (number of
characters) that makes up its argument. Thus:

len(abcdef)

is 6, and len « a,b» is 5.

The built-in substr can be used to produce substrings of strings.
Using input, substr(s, i, n) returns the substring of 8 that starts at
the ith position (origin zero) and is n characters long. If n is omitted,
the rest of the string is returned. Inputting

substr('now is the time',1)

returns the following string:

ow is the time.

If j or n are out of range, various actions occur.

The built-in index(sl, s2) returns the index (position) in 81 where
the string 82 occurs or -1 if it does not occur. As with substr, the
origin for strings is O.

The built-in trans lit performs character transliteration and has the
general form

5-15

M4MACROS

translit(s, f, t)

which modifies s by replacing any character found in. f by the
corresponding character of t. Using input

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than
f, characters that do not have an entry in t are deleted. As a limiting
case, if t is not present at all, characters from f are deleted from s.
So

translit(s, aeiou)

would delete vowels from s.

There is also a built-in called dnl that deletes all characters that
follow it up to and including the next new line. The dnl macro is
useful mainly for throwing away empty lines that otherwise tend to
clutter up M4 output. Using input

define(N, 100)
define(M, 200)
define(L, 300)

results in a new line at the end of each line that is not part of the
definition. So the new line is copied into the output where it may not
be wanted. If the built-in dnl is added to each of these lines, the
newlines will disappear. Another method of achieving the same
results is to input

5-16

divert(-1)
define(...)

divert.

M4MACROS

PRINTING
The built-in errprint writes its arguments out on the standard error
file. An exam pIe would be

errprint('fatal error')

The built-in dumpdef is a debugging aid that dumps the current
names and definitions of items named as arguments. If no
arguments are given, then all current names and definitions are
printed. Do not forget to quote the names.

5-17

Chapter 6

THE awk PROGRAMMING LANGUAGE

PAGE

GENERAL.. 6-1

PROGRAM STRUCTURE....................................... 6-1

LEXICAL CONVENTION .. 6-3

PRIMARY EXPRESSIONS. .. 6-10

TERMS ... 6-16

EXPRESSIONS. .. 6-18

USING awk. .. 6-19

INPUT: RECORDS AND FIELDS .. 6-21

INPUT: FROM THE COMMAND LINE 6-23

OUTPUT: PRINTING .. 6-25

OUTPUT: TO DIFFERENT FILES 6-31

OUTPUT: TO PIPES ... 6-32

COMMENTS .. 6-33

PATTERNS. 6-33

ACTIONS. .. 6-42

BUILT IN FUNCTIONS .. 6-51

FLOW OF CONTROL.. .. 6-54

REPORT GENERATION. .. 6-59

COOPERATION WITH THE SHELL 6-61

MISCELLANEOUS HINTS. .. 6-62

Chapter 6

THE awk PROGRAMMING LANGUAGE

GENERAL
The awk is a file-processing programming language designed to make
many common information and retrieval text manipulation tasks
easy to state and perform. The awk:

• Generates reports

• Matches patterns

• Validates data

• Filters data for transmission.

PROGRAM STRUCTURE
The a wk program is a sequence of statements of the form

pa tb~rn {action}
pa ttern {action}

The awk program is run on a set of input files. The basic operation of
awk is to scan a set of input lines, in order, one at a time. In each
line, awk searches for the pattern described in the awk program, then
if that pattern is found in the input line, a corresponding action is
performed. In this way, each statement of the awk program is
executed for a given input line. When all the patterns are tested, the
n~xt input line is fetched; and the awk program is once again
executed from the beginning.

6-1

awk

In the awk command, either the pattern or the action is omitted, but
not both. If there is no action for a pattern, the matching line is
simply printed. If there is no pattern for an action, then the action is
performed for every input line. The null awk program does nothing.
Since patterns and actions are both optional, actions are enclosed in
braces to distinguish them from patterns.

For example, this awk program

Ixl {print}

prints every input line that has an "x" in it.

An a wk program has the following structure:

- a <BEG IN> section
- a <record> or main section
- an <END> section.

The <BEGIN> section is run before any input lines are read, and the
<END> section is run after all the data files are processed. The
<record> section is data driven. That is, it is the section that is run
over and over for each separate line of input.

Values are assigned to variables from the awk command line. The
<BEGIN> section is run before these assignments are made.

The words" BEGIN" and" END" are actually patterns recognized by
a wk. These are discussed further in the pattern section of this guide.

6-2

awk

LEXICAL CONVENTION

All awk programs are made up of lexical units called tokens. In awk
there are eight token types:

l. numeric constants

2. string cons tan ts

3. keywords

4. identifiers

5. operators

6. record and file tokens

7. comments

8. separators.

Numeric Constants

A numeric constant is either a decimal constant or a floating
constant. A decimal constant is a non null sequence of digits
containing at most one decimal point as in 12, 12., 1.2, and .12. A
floating constant is a decimal constant followed by e or E followed by
an optional + or - sign followed by a nonnull sequence of digits as in
12e3, 1.2e3, 1.2e-3, and 1.2E+3. The maximum size and precision
of a numeric constant are machine dependent.

String Constants

A string constant IS a sequence of zero or more characters
surrounded by double quotes as in "," "a", "ab", and" 12". A
double quote is put in a string by proceeding it with \ as in "He said,
\ Sit! \"" . A newline is put in a string by using \n in its place. No
other characters need to be escaped. Strings can be (almost) any
length.

6-3

awk

Keywords

Strings used as keywords are shown in Figure 6-1.

Keywords

begin break length
end close log
FILENAME continue next
FS close number
NF exit print
NR exp printf
OFS for split
ORS getline sprintf
OFMT if sqrt
RS in string

index substr
int while

Figure 6-1. Strings Used as Keywords

Identifiers

Identifiers in awk serve to denote variables and arrays. An identifier
is a sequence of letters, digits, and underscores, beginning with a
letter or an underscore. Uppercase and lowercase letters are
different.

Operators

The awk has assignment, arithmetic, relational, and logical operators
similar to those in the C programming language and regular
expression pattern matching operators similar to those in the UNIX
operating system program egrep and lex.

6-4

awk

Assignment operators are shown in Figure 6-2.

Assignment Operators
Symbol Usage Description

= assignment
+= plus-equals X += Y is similar

toX=X+Y

-- minus-equals X-=Y is similar
to X = X-Y

*= times-equals X *= Y is similar
to X = X*Y

/= divide-equals X = Y is similar
toX = X/Y

%= mod-equals X%=Y is similar
to X = X%Y

++ prefix and + + X and X ++ are similar
postfix to X=X+l
increments

- prefix and - and X- similar
postfix toX=X-l
decrements

Figure 6-2. Symbols and Descriptiolls for Assignment
Operators

6-5

awk

Arithmetic operators are shown in Figure 6-3.

Arithmetic Operators
Symbol Description

+ unary binary plus
- unary and binary minus

* multi plica tion
/ division
% modulus

(...) grouping

Figure 6-3. Symbols and Descriptions for Arithmetic
Operators

6-6

awk

Relational operators are shown in Figure 6-4.

Relational Operators
Symbol Description

< less than
<= less than or equal to
-- equal to
!= not equal to
>= greater than or equal to

> grea ter than

Figure 6-4. Symbols and Descriptions for Relational
Operators

Logical operators are shown in Figure 6-5.

Logical Operators
Symbol Description

&& and
II or II

! not

Figure 6-5. Symbols and Descriptions for Logical Operators

6-7

awk

Regular expression matching operators are shown in the Figure 6-6.

Regular Expression Pattern Matching Operators
Symbol Description

- matches
!- does not match

Figure 6-6. Symbols and Descriptions for Regular
Expression Pattern

Record and Field Tokens

The $0 is a special variable whose value is that of the current input
record. The $1, $2 ... are special variables whose values are those of
the first field, the second field, ... , respectively, of the current
input record. The keyword NF (Number of Fields) is a special
variable whose value is the number of fields in the current input
records. Thus $NF has, as its value, the value of the last field of the
current input records. Notice that the field of each record is
numbered 1 and that the number of fields can vary from record to
record. None of these variables is defined in the action associated
with a BEGIN or END pattern, where there is no current input
record.

The keyword NR (Number of Records) is a variable whose value is
the number of input records read so far. The first input record read
is 1.

6-8

awk

Record Separators

The keyword RS (Record Separators) is a variable whose value is the
current record separator. The value of RS is initially set to newline,
indicating that adjacent input records are separated by a newline.
Keyword RS is changed to any character c by including the
assignment statement RS = "c" in an action.

Field Separator

The keyword FS (Field Separator) is a variable indicating the
current field separator. Initially, the value of FS is a blank,
indicating that fields are separated by white space, i.e., any nonnull
sequence of blanks and tabs. Keyword FS is changed to any single
character c by including the assignment statement F = "c" in an
action or by using the optional command line argument - Fc. Two
values of c have special meaning, space and t. The assignment
statement FS =" " makes white space in field separator; and on the
command line, -Ft makes tab the field separator.

If the field operator is not a blank, then there is a field in the record
on each side of the separator. For instance, if the field separator is 1,
the record lXXXl has three fields. The first and last are null. If the
field separator is blank, then fields are separated by white space, and
none of the NF fields are null.

Multiline Records

The assignment RS =" " makes an empty line the record separator
and makes a non null sequence (consisting of blanks, tabs, and
possibly a newline) the field separator. With this setting, none of the
first NF fields of any record are null.

Output Record and Field Separators

The value of OFS (Output Field Separator) is the output field
separator. It is put between fields by print. The value of ORS
(Output Record Separators) is put after each record by print. Initially
ORS is set to a newline and OFS to a space. These values may
change to any string by assignments such as ORS = "abc" and
OFS = "xyz".

6-9

awk

Comments

A comm~nt is introduced by a # and terminated by a newline. For
example:

part of the line is a comment

A comment can be appended to the end of any line of an awk
program.

Separators and Brackets

Tokens in awk are usually separated by nonnull sequences of blank,
tabs, and newlines, or by other punctuation symbols such as commas
and semicolons. Braces { ... } surround actions, slashes / .. .1 surround
regular expression patterns, and double quotes" ... " surround strings.

PRIMARY EXPRESSIONS

In awk, patterns and actions are made up of expressions. The basic
building blocks of expressions are the primary expressions:

numeric constants
string constant
var
function

Each expression has both a numeric and a string value, one of which
is usually preferred. The rules for determining the preferred value of
an expression are explained below.

Numeric Constants

The format of a numeric constant was defined previously in
LEXICAL CONVENTIONS. Numeric values are stored as
floating point numbers. Both the numeric and string value of a
numeric constant is the decimal number represented by the constant.
The preferred value is the numeric value.

6-10

awk

Numeric values for string constants are in Figure 6-7.

Numeric Constants
Numeric Numeric String
Constant Value Value

0 0 0
1 1 1

.5 0.5 .5

.5e2 50 50

Figure 6-7. Numeric Values for String Constants

String Constants

The format of a string constant was defined previously in LEXICAL
CONVENTIONS. The numeric value of a string constant is 0
unless the string is a numeric constant enclosed in double quotes. In
this case, the numeric value is the number represented. The
preferred value of a string constant is its string value. The string
value of a string constant is always the string itself.

6-11

awk

. String values for string constants are in Figure 6-8.

String Con$tants
String Numeric String

Constant Value Value
"" 0 empty space
" a" 0 a
"XYZ" 0 xyz
" 0" 0 0
" 1" 1 1

" .5" 0.5 .5
" .5e2" 50 .5e2

Figure 6-8. String Values for String Constants

Vars

A var is one of the following:

identifier
iden tifier { expression}
$term

The numeric value of any uninitialized var is 0, and the string value
is the empty string.

An identifier by itself is a simple variable. A var of the form
identifier {expression} represents an element of an. associative array
named by iden tifier. The string value of expression is used as the
index into the array. The preferred value of identifier or identifier
{ expression} is determined by context.

6-12

awk

The var $0 refers to the current input record. Its string and numeric
values are those of the current input record. If the current input
record represents a number, then the numeric value of $0 is the
number and the string value is the literal string. The preferred value
of $0 is string unless the current input record is a number. The $0
cannot be changed by assignment.

The var $1, $2, ... refer to fields 1, 2, ... of the current input record.
The string and numeric value of $i for 1<=i<=NF are those of the
ith field of the current input record. As with $0, if the ith field
represents a number, then the numeric value of $i is the number and
the string value is the literal string. The preferred value of $i is
string unless the ith field is a number. The $i is changed by
assignment. The $0 is then changed accordingly.

In general, $term refers to the input record if term has the numeric
value 0 and to field i if the greatest integer in the numeric value of
term is i. If i<O or if i>=100, then accessing $i causes awk to
produce an error diagnostic. If NF<i<=100, then $i behaves like an
uninitialized var. Accessing $i for i > NF does not change the value
ofNF.

Function

The awk has a number of built-in functions that perform common
arithme.tic and string operations.

6-13

awk

The arithmetic functions are in Figure 6-9.

Functions

exp (expression)
int (expression)
log (expression)
sqrt (expression)

Figure 6-9. Built-in Functions for Arithmetic and String
Operations

These functions (exp, int, log, and sqrt) compute the exponential,
integer part, natural logarithm, and square root, respectively, of the
numeric value of expression. The (expression) may be omitted; then
the function is applied to $0. The preferred value of an arithmetic
function is numeric.

6-14

awk

String functions are shown in Figure 6-10.

String Functions
getline
index (expression1, expression2)
length (expression)

sJlJit (expression, identifier)
split (expression1, identifier, expression2)

sprintf (format, expression1, expression2 ...)
substr (expression1, expression2)
substr (expression1, expression2, expression3)

Figure 6-10. Expressions for String Functions

The function getline causes the next input record to replace the
current record. It returns 1 if there is a next input record or a 0 if
there is no next input record. The value of NR is updated.

The function index (e1,e2) takes the string value of expressions e1
and e2 and returns the first position of where e2 occurs as a
substring in e1. If e2 does not occur in e1, index returns O. For
example, index (" abc" , " be")=2 and index (" abc" , " ac")=0.

The function length without an argument returns the number of
characters in the current input record. With an expression argument,
length (e) returns the number of characters in the string value of e.
For example, length (" abc")=3 and length (17)=2.

The function split (e array, sep) splits the string value of expression e
into fields that are then stored in array [1], array [2], ... , array [n]
using the string value of sep as the field separator. Split returns the
number of fields found in e. The function split (e, array) uses the
current value of FS to indicate the field separator. For example,
after invoking n = split ($0), a[l], a[2, ... , a[n] is the same sequence of
values as $1, $2 ... , $NF.

6-15

awk

The function splitf (f, el, e2 ...) produces the value of expressions
el, e2 ... in the format specified by the string value of the
expression f. The format control conventions are those of the printf
statement in the C programming language [KR].

The function substr (string, pos) returns the suffix of string starting
at position pos. The function substr (string, pos, length) returns the
substring of string that begins at position pos and is length
characters long. If pos + length is greater than the length of string
then substr (string, pos, length) is equivalent to substr (string, pos).
For example, substr (" abc", 2, 1) = "b", substr (" abc", 2, 2) =
" be", and subtr (" abc", 2, 3) = "be". Positions less than 1 are
taken as 1. A negative or zero length produces a null result.

The preferred value of sprintf and substr is string. The preferred
value of the remaining string functions is numeric.

TERMS
Various arithmetic operators are applied to primary expressions to
produce larger syntactic units called terms. All arithmetic is done in
floating point. A term has one of the following forms:

primary expression
term binop term
unop term
incremented var
(term)

Binary Terms

In a term of the form

term 1
binop
term2

binop can be one of the five binary arithmetic operators +, -, *
(multiplication), I(division), % (modulus). The binary operator IS

6-16

awk

applied to the numeric value of the operand terml and term2, and the
result is the usual numeric value. This numeric value is the preferred
value, but it can be interpreted as a string value (see Numeric
Constants). The operators * , /, and % have higher precedence than
+ and -. All operators are left associative.

Unary Term

In a term of the form

unop term

unop can be unary + or -. The unary operator is applied to the
numeric value of term, and the result is the usual numeric value
which is preferred. However, it can be interpreted as a string value.
Unary + and - have higher precedence than *, /, and %.

Incremented Vars

An incremented var has one of the forms

+ + var
- - var
var + +
var.- -

The + + var has the value var + 1 and has the effect of var = var +
1. Similarly, - - var has the value var - 1 and has the effect of var
= var - 1. Therefore, var + + has the same value as var and has the
effect of var = var + 1. Similarly, var - - has the same value as var
and has the effect of var = var - 1. The preferred value of an
incremented var is numeric.

Parenthesized Terms

Parentheses are used to group terms in the usual manner.

6-17

awk

EXPRESSIONS

An awk expression is one of the following:

term
term term ...
var asgnop expression

Concatenation of Terms

In an expression of the form terml term2 ... , the string value of the
terms are concatenated. The preferred value of the resulting
expression is a string value that can be interpreted as a numeric
value. Concatenation of terms has lower precedence than binary +
and -. For example, 1+2 3=4 has the string (and numeric) value 37.

Assignment Expressions

An assignment expression is one of the forms

var asgnop expression

where asgnop is one of the six assignment operators:

+=

*=
/=
%=

The preferred value of var is the same as that of expression.

In an expression of the form

var = expression

the numeric and string value of var becomes those of expression.

6-18

awk

var op = expression

is equivalent to

var = var op expression

where op is one of; +, -, *, I, %. The asgnops are right associative
and have the lowest precedence of any operator. Thus, a += b *= c-2
is equivalent to the sequence of assignments

b = b * (0-2)
a = a+2

USING awk

There are two ways in which to present your awk program of
pattern-action statements to awk for processing:

1. If the program is short (a line or two), it is often easiest to make
the program the first argument on the command line:

a wk ' program ' files

where II files" is an optional list of input files and" program" is
your awk program. Note that there are single quotes around the
program in order for the shell to accept the entire string
(program) as the first argument to a wk. For example, write to
the shell

a wk ' Ixl {print } , files

to run the awk script Ixl {print} on the input file" files" . If no
input files are specified, awk takes input from the standard input
stdin. You can also specify that input comes from stdin by
using" _" (the hyphen) as one of the files. The pattern-action
statement

6-19

awk

awk 'program' files -

looks for input from" files" and from stdin and processes first
from" files" and then from stdin.

2. Alternately, if your awk program is long, it is more convenient to
put the program in a separate file, awkprog, and tell awk to fetch
it from there. This is done by using the "~f" option after the
awk command as follows:

awk -f awkprog files

where" files" is an optional list of input files that may include
stdin as is indicated by a hyphen (-).

For example:

awk' BEGIN {

}

prints

hello, world

print" hello, world"
exit

o

on the standard output when given to the shell. Recall that the word
"BEGIN" is a special pattern indicating that the action following in
braces is run before any data is read. Words" print" and" exit" are
both discussed in later sections.

This awk program could be run by putting

BEGIN {

6-20

print" hello, world"
exit

awk

in a file named awkprog , and then the command

awk -f awkprog

given to the shell. This would have the same effect as the first
procedure.

INPUT: RECORDS AND FIELDS
The awk reads its input one record at a time unless changed by you.
A record is a sequence of characters from the input ending with a
newline character or with an end of file. Thus, a record is a line of
input. The awk program reads in characters until it encounters a
newline or end of file. The string of characters, thus read, is
assigned to the variable $0. You can change the character that
indicates the end of a record by assigning a new character to the
special variable RS (the record separator). Assignment of values to
variables and these special variables such as RS are discussed later.

Once awk has read in a record, it then splits the record into" fields" .
A field is a string of characters separated by blanks or tabs, unless
you specify otherwise. You may change field separators from blanks
or tabs to whatever characters you choose in the same way that
record separators are changed. That is, the special variable FS is
assigned a different value.

As an example, let us suppose that the file" countries" contains the
area in thousands of square miles, the population in millions, and the
continent for the ten largest countries in the world. (Figures are from
1978; Russia is placed in Asia.)

6-21

awk

Sample Input File" countries":

Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 68 14 Australia
India 1269 637 Asia
Argentina 72 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

The wide spaces are tabs in the original input and a single blank
separates North and South from America. We use this data as the
input for many of the awk programs in this guide since it is typical
of the type of material that awk is best at processing (a mixture of
words and numbers separated into fields or columns separated by
blanks and tabs).

Each of these lines has either four or five fields if blanks and/or tabs
separate the fields. This is what awk assumes unless told otherwise.
In the above example, the first record is

Russia 8650 262 Asia

When this record is read by awk, it is assigned to the variable $0. If
you want to refer to this entire record, it is done through the
variable, $0.

For example, the following input:

{print $O}

prints the entire record. Fields within a record are assigned to the
variables $1, $2, $3, and so forth; that is, the first field of the present
record is referred to as $1 by the a wk program. The second field of

6-22

awk

the present record is referred to as $2 by the awk program. The ith
field of the present record is referred to as $i by the awk program.
Thus, in the above example of the file countries, in the first record;

$1 is equal to the string" Russia"
$2 is equal to the integer 8650
$3 is equal to the integer 262
$4 is equal to the string" Asia"
$5 is equal to the null string

... and so forth.

To print the continent, followed by the name of the country, followed
by its population, use the following awk script:

{print $4, $1, $3}

Note that awk does not require type declarations.

INPUT: FROM THE COMMAND LINE
It is possible to assign values to variables from within an awk
program. Because you do not declare types of variables, a variable is
created simply by referring to it. An example of assigning a value to
a variable is:

x=5

This statement in an awk program assigns the value 5 to the variable
x. It is also possible to assign values to variables from the command
line. This provides another way to supply input values to awk
programs.

For example

a wk' {print x }' x=5 -

6-23

awk

will print the value 5 on the standard output. The minus sign at the
end of this command is necessary to indicate that input is coming
from stdin instead of a file called" x=5". Similarly if the input
comes from a file named" file" , the command is

awk ' {print x}' file

It is not possible to assign values to variables used in the BEG IN
section in this way.

If it is necessary to change the record separator and the field
separator, it is useful to do so from the command line as in the
following example:

awk -f awk.program RS=":" file

Here, the record separator is changed to the character "." This
causes your program in the file" awk.program" to run with records
separated by the colon instead of the newline character and with
input coming from the file, "file". It is similarly useful to change
the field separator from the command line.

This operation is so common that there is yet another way to change
the field separator from the command line. There is a separate
option" -Fx" that is placed directly after the command a wk. This
changes the field separator from blank or tab to the character" x" .

For example

awk -F: -f awk.program file

changes the field separator FS to the character":". Note that if the
field separator is specifically set to a tab, (that is, with the -F option
or by making a direct assignment to FS) then blanks are recognized
by awk as separating fields. However, even if the field separator is
specifically set to a blank, tabs are STILL recognized by awk as
separating fields.

An exercise:

6-24

awk

Using the input file (" countries" described earlier) write an awk
script that prints the name of a country followed by the continent
that it is on. Do this in such a way that continents composed of two
words (e. g., North America) are processed as only one field and not
two.

OUTPUT: PRINTING
An action may have no pattern; in this case, the action is executed
for all lines as in the simple printing program

{print}

This is one of the simplest actions performed by awk. It prints each
line of the input to the output. More useful is to print one or more
fields from each line. For instance, using the file" countries" , that
was used earlier,

awk '{ print $1, $3 }' countries

prints the name of the country and the population:

Russia 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 14
Sudan 19
Algeria 18

Note that the use of a semicolon at the end of statements in awk
programs is optional. A wk accepts

{print $1 }

and

6-25

awk

{print $1; }

equally and takes them to mean the same thing. If you want to put
two awk statements on the same line of an awk script, the semicolon
is necessary. For example, the following semicolon is necessary if
you want the number 5 printed:

{x=5; print x }

Parentheses are also optional with the print statement.

print $3, $2

is the same as

print ($3, $2)

Items separated by a comma in a print statement are separated by
the current output field separators (normally spaces, even though the
input is separated by tabs) when printed. The OFS is another special
variable that can be changed by you. These special variables are
summarized in a later section.

An exercise:

U sing the input file, " countries" , print the continent followed by the
country followed by the population for each input record. Then pipe
the output to the UNIX operating system command" sort" so that all
countries from a given continent are printed together.

Print also prints strings directly from your programs with the awk
script

{print" hello, world" }

from an earlier section.

An exercise:

Print a header to the output of the previous exercise that says

6-26

awk

"Population of Largest Countries" followed by headers to the
columns that follow describing what is in that column; for example,
Country or Population.

As we have already seen, awk makes available a number of special
variables with useful values; for example, FS and RS. We now
introduce another special variable in the next example. NR and NF
are both integers that contain the number of the present record and
the number of fields in the present record, respectively. Thus,

{print NR,'NF, $O}

prints each record number and the number of fields in each record
followed by the record itself. Using this program on the file,
"countries" yields:

1 4 Russia 8650 262 Asia
2 5 Canada 3852 24 North America
34 China 3692 866 Asia
45 USA 3615 219 North America
5 5 Brazil 3286 116 South America
64 Australia 2968 14 Australia
74 India 1269 637 Asia
8 5 Argentina 1072 26 South America
94 Sudan 968 19 Africa
104 Algeria 920 18 Africa

and the program
{print NR, $1 }

prints

6-27

awk

1 Russia
2 Canada
3 China
4 USA
5 Brazil
6 Australia
7 India
8 Argentina
9 Sudan
10 Algeria

This is an easy way to supply sequence numbers to a list. Print, by
itself, prints the input record. Use

print" "

to print the empty line.

A wk also provides the statement printf so that you can format output
as desired. Print uses the default format" % .6g" for each variable
printed.

printf format, expr, expr, ...

formats the expressions in the list according to the specification in
the string, format, and prints them. The format statement is exactly
that of the printf in the C library. For example,

{ printf " % lOs % 6dO, $1, $2, $3 }

prints $1 as a string of 10 characters (right justified). The second and
third fields (6-digit numbers) make a neatly columned table.

6-28

awk

Russia 8650 262
Canada 3852 244

China 3692 866
USA 3615 219

Brazil 3286 116
Australia 2968 14

India 1269 637
Argentina 1072 26

Sudan 968 19
Algeria 920 18

With printf, no output separators or newlines are produced
automatically. You must add them as in this example. In the C
library version of printf, the various escape characters "\n" , "\ t" ,
"\b" (backspace) and" \r" (carriage return) are valid with the awk
printf.

There is a third way that printing can occur on standard output when
a pattern is specified but there is no action to go with it. In this case,
the entire record $0 is printed. For example, the program

Ixl

prints any record that contains the character" x" .

There are two special variables that go with printing, OFS and ORS.
These are by default set to blank and the newline character,
respectively. The variable OFS is printed on the standard output
when a comma occurs in a print statement such as

{ x=" hello" ; y=" world"
print x,y
}

which prints

hello world
6-29

awk

However, without the comma in the print statement as

{ x=" hello" ; y=" world"
print x y
}

you get

helloworld

To get a comma on the output, you can either insert it in the print
statement as in this case

{ x=" hello" ; y=" world"
print x" ," y
}

or you can change OFS in a BEGIN section as in

BEGIN {OFS="," }
{ x=" hello" ; y=" world"
print x, y
}

both of these last two scripts yields

hello, world

Note that the output field separator is not used when $0 is printed.

6-30

awk

OUTPUT: TO DIFFERENT FILES
The UNIX operating system shell allows you to redirect standard
output to a file. The awk program also lets you direct output to
many different files from within your awk program. For example,
with our input file" countries" , we want to print all the data from
countries of Asia in a file called" ASIA" , all the data from countries
in Africa in a file called" AFRICA" , and so forth. This is done with
the following a wk program:

{ if ($4 == " Asia") print> " ASIA"

}

if ($4 == " Europe") print> Ii EUROPE"
if ($4 == " North") print> " NORTH_AMERICA"
if ($4 == " South") print> " SOUTH_AMERICA"
if ($4 == " Australia") print>" AUSTRALIA"
if ($4 == " Africa") print> " AFRICA"

The flow of control statements (for example, "if") are discussed
later.

In general, you may direct output into a file after a print or a printf
statement by using a statement of the form

print> " FILE"

where FILE is the name of the file receiving the data, and the print
statement may have any legal arguments to it.

Notice that the file names are quoted. Without quotes, the file names
are treated as uninitialized variables and all output then goes to the
same file.

If > is replaced by», output is appended to the file rather than
overwriting it.

Users should also note that there is an upper limit to the number of
files that are written in this way. At present it is ten.

6-31

awk

OUTPUT: TO PIPES

It is also possible to direct printing into a pipe instead of a file. For
example,

{

}
if ($2 == " XX") print I " mail mary"

where" mary" is someone's login name, any record is sent (with the
second field equal to " XX") to the user, mary, as mail. Awk waits
until the entire program is run before it executes the command that
was piped to, in this case the" mail" command.

For example:
{
print $1 I " sort"
}

takes the first field of each input record, sorts these fields, and then
prints them. The command in parentheses is any UNIX operating
system command.

An exercise:

Write an awk script that uses the input file to

• List countries that were used previously

• Print the name of the countries

• Print the population of each country

• Sort the data so that countries with the largest population
appear first

6-32

awk

• Mail the resulting list to yourself.

Another example of using a pipe for output is the following idiom
which guarantees that its output always goes to your terminal:

print ... I" cat -u > /dev/tty"

Only one o'utput statement to a pipe is permitted in an awk program.
In all output statements involving redirection of output, the files or
pipes are identified by their names, but they are created and opened
only once in the entire run.

COMMENTS
Comments are placed in awk programs; they begin with the character
and end with the end of the line as in

print x, Y # this is a comment

PATTERNS
A pattern in front of an action acts as a selector that determines if
the action is to be executed. A variety of expressions are used as
patterns:

• Regular expressions

• Arithmetic relational expressions

• String valued expressions

• Combinations of these.

6-33

awk

BEGIN and END

The special pattern, BEGIN, matches the beginning of the input
before the first record is read. The pattern, END, matches the end of
the input after the last line is processed. BEGIN and END thus
provide a way to gain control before and after processing for
initialization and wrapping up.

An example:

As you have seen, you can use BEG IN to put column headings on the
output

BEGIN {print" Country" , " Area" , " Population" , " Continent" }
{print}

which produces

Country Area Population Continent

Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26South America
Sudan 968 19 Africa
Algeria 920 18 Africa

Formatting is not very good here; printf would do a better job and is
usually mandatory if you really care about appearance.

Recall also, that the BEGIN section is a good place to change special
variables such as FS or RS.

6-34

Example:

BEGIN { FS="
print" Countries" , " Area" , " Population" , " Continent"
}
{print}

END {print" The number of records is" , NR}

awk

In this program, FS is set to a tab in the BEG IN section and as a
result all records (in the file countries) have exactly four fields.

Note that if BEGIN is present it is the first pattern; END is the last
if it is used.

Relational Expressions

An awk pattern is any expression involving comparisons between
strings of characters or numbers. For example, if you want to print
only countries with more than 100 million population, use

$3 >100

This tiny awk program is a pattern without an action so it prints
each line whose third field is greater than 100 as follows:

Russia 8650 262 Asia
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
India 1269 637 Asia

To print the names of the countries that are in Asia, type

6-35

awk

$4 == "Asia" {print $1}

which produces

Russia
China
India

The conditions tested are <, <=, ==, !=, >=, and >. In such
relational tests if both operands are numeric, a numerical comparison
is made. Otherwise, the operands are compared as strings. Thus,

$1 >=" SIt

selects lines that begin with S, T, U, and so forth which in this case
is

USA 3615 219
Sudan 968 19

North America
Africa

In the absence of other information, fields are treated as strings, so
the program

$1 == $4

com pares the first and fourth fields as strings of characters and
prints the single line

6-36

awk

Australia 2968 14 Australia

If fields appear as numbers, the comparisons are done numerically.

Regular Expressions

Awk provides more powerful capabilities for searching for strings of
characters than were illustrated in the previous section. These are
regular expressions. The simplest regular expression is a literal
string of characters enclosed in slashes.

/ Asia/

This is a complete awk program that prints all lines which contain
any occurrence of the name " Asia" . If a line contains" Asia" as part
of a larger word like" Asiatic" , it is also printed (but there are no
such words in the countries file.)

A wk regular expressions include

• Regular expression forms found in the text editor

• ed and the pattern finder

• grep in which certain characters have special meanings.

For example, we could print all lines that begin with A with

or all lines that begin with A, B, or C with

6-37

awk

or all lines that end with" ia" with

/ia$/

In general, the circumflex () indicates the beginning of a line. The
dollar sign ($) indicates the end of the line and characters enclosed in
brackets ,0, match anyone of the characters enclosed. In addition,
awk allows parentheses for grouping, the pipe (I) for alternatives, +
for " one or more" occurrences, and ? for" zero or one" occurrences.
For example,

/xly/ {print}

prints all records that contain either an "x" or a "y" .

/ax+b/ {print}

prints all records that contain an "a" followed by one or more" x's"
followed by a " bIt . For example, axb, Paxxxxxxxb, QaxxbR.

/ax?b/ {print}

prints all records that contain an "a" followed by zero or one" x"
followed by a " b". For example: ab, axb, yaxbPPP, CabD.

6-38

awk

The two characters"." and" *" have the same meaning as they have
in ed: namely, "." can stand for any character and" *" means zero or
more occurrences of the character preceding it. For example,

la.bl

matches any record that contains an "a" followed by any character
followed by a " b" . That is, the record must contain an "a" and a" b"
separated by exactly one character.' For example, la.bl matches axb,
aPb and xxxxaXbxx, but NOT ab, axxb.

lab*cl

matches a record that contains an "a" followed by zero or more
" bIt '8 followed by a " cIt . For example, it matches

ac
abc
pqrabbbbbbbbbbc901

Just as in ed, it is possible to turn off the special meaning of these
metacharacters such as "~,, and" *" by preceding these characters
with a backslash An example of this is the pattern

1\1.*\11

which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a regular
expression (or does not match it) by using the operators or !'. For
example, with the input file countries as before, the program

$1 - lia$1 {print $1}

6-39

awk

prints all countries whose name ends in " ia" :

Russia
Australia
India
Algeria

that is indeed different from lines which end in " ia" .

Combinations of Patterns

A pattern is made up of similar patterns combined with the
operators II (OR), &&(AND), ! (NOT), and parentheses. For example,

$2 >= 3000 &&$3 >=100

selects lines where both area AND population are large. For
example,

Russia
China
USA
Brazil

while

8650 262
3692 866
3615 219
3286 116

Asia
Asia
North America
Sou th America

$4 == "Asia" II $4 == " Africa"

selects lines with Asia or Africa as the fourth field. An alternate
way to write this last expression is with a regular expression,

6-40

awk

$1 - /A (AsiaIAfrica))$/

&& and II guarantee that their operands are evaluated from left to
right; evaluation stops as soon as truth or falsehood is determined.

Pattern Ranges

The" pattern" that selects an action may also consist of two patterns
separated by a comma as in .

pattern1, pattern2 { ... }

In this case, the action is performed for each line between an
occurrence of pattern1 and the next occurrence of pattern2
(inclusive). As an example with no action

/ Canada/ ,IBrazil/

prints all lines between the one containing" Canada" and the line
containing" Brazil". For example,

Canada
China
USA
Brazil

while

3852
3692
3615
3286

24
866
219
116

North America
Asia
North America
South America

NR == 2, NR == 5 { ... }

6-41

awk

does the action for lines 2 through 5 of the input. Different types of
patterns are mixed as in

/Canada/, $4 == " Africa"

and prints all lines from the first line containing" Canada" up to and
including the next record whose fourth field is " Africa" .

Users should note that patterns in this form occur OUTSIDE of the
action parts of the awk programs (outside of the braces that define
awk actions). If you need to check patterns inside an awk action
(inside the braces), use a flow of control statement such as an " if"
statement or a "while" statement. Flow of control statements are
discussed in the part" BUILT-IN FUNCTIONS" .

ACTIONS

An awk action is a sequence of action statements separated by
newlines or semicolons. These action statements do a variety of
bookkeeping and string manipulating tasks.

Variables, Expressions, and Assignments

The awk provides the ability to do arithmetic and to store the results
in variables for later use in the program. However, variables can also
store strings of characters. You cannot do arithmetic on character
strings, but you can stick them together and pull them apart ~s
shown. As an example, consider printing the population density for
each country in the file countries.

{print $1, (1000000 * $3)/($2 * 1000) }

(Recall that in this file the population is in millions and the- area in
thousands.) The result is population density in people per square
mile.

6-42

Russia 30.289
Canada 6.23053
China 234.561
USA 60.5809
Brazil 35.3013
Australia 4.71698
India 501.97
Argentina 24.2537
Sudan 19.6281
Algeria 19.5652

The formatting is bad; so using printf instead gives the program

{printf" % lOs % 6.1fO, $1, (1000000 * $3)/($2 * 1000) }

and the output

Russia 30.3
Canada 6.2

China 234.6
USA 60.6

Brazil 35.3
Australia 4.7

India 502.0
Argentina 24.3

Sudan 19.6
Algeria 19.6

awk

Arithmetic is done internally in floating point. The arithmetic
operators are +. -, *, / and % (mod or remainder).

To compute the total population and number of countries from Asia,
we could write

6-43

awk

/ Asia/
END

{ pop = pop + $3; n = n + 1 }
{print" total population of" , n, " Asian countries is" , pop}

which produces total population of three Asian countries is 1765.

Actually, no experienced programmer would write

{pop = pop + $3; n = n + 1 }

since both assignments are written more clearly and concisely. The
better way is

{pop += $3; ++n }

Indeed, these operators, ++, --, --, /=, * =, +=, and % = are
available in awk as they are in C. Operator x += y has the same
effect as x = x + y but += is shorter and runs faster. The same is
true of the ++ operator; it adds one to the value of a variable. The
increment operators ++ and -- (as in C) is used as prefix or as
postfix operators. These operators are also used in expressions.

Initialization of Variables

In the previous example, we did not initialize pop nor n; yet,
everything worked properly. This is because (by default) variables are
initialized to the null string which has a numerical value of O. This
eliminates the' need for most initialization of variables in BEGIN
sections. We can use default initialization to advantage in this
program which finds the country with the largest population.

6-44

maxpop < $3 {
maxpop = $3
country = $1
}

END {print country, maxpop}

which produces

China.866

Field Variables

awk

Fields in awk share essentially all of the properties of variables. They
are used in arithmetic and string operations and may be assigned to
and initialized to the null string. Thus, divide the second field by
1000 to convert the area to millions of square miles by

{ $2 1= 1000; print}

or process two fields into a third with

BEG IN {FS = " " }
{ $4 = 1000 * $3 I $2; print}

or assign strings to a field as in

IUSAI { $1 = " United States" ; print}

6-45

awk

which replaces USA by United States and prints the effected line

United States 3615219 North America

Fields are accessed by expressions; thus, $NF is the last field and
$(NF -1) is the second to the last. Note that the parentheses are
needed since $NF -1 is 1 less than the values in the last field.

String Concatenation

Strings are concatenated by writing them one after the other as in
the following example:

{ x =" hello"
x = x " , world"
print x

}

prints the usual

hello, world

With input from the file" countries" , the following program:

I AI { s = s" " $1 }
END { print s }

prints

Australia Argentina Algeria

6-46

awk

Variables, string expressions, and numeric expressions may appear
in concatenations; the numeric expressions are treated as strings in
this case.

Special Variables

Some variables in awk have special meanings. These are detailed
here and the complete list given.

NR

NF

FS

RS

$i

$0

OFS

ORS

OFMT

Number of the current record.

Number of fields in the current record.

Input field separator, by default it is set to a blank
or tab.

Input record separator, by default it is set to the
newline character.

The ith input field of the current record.

The entire current input record.

Output field separator, by default it is set to a blank.

Output record separator, by default it is set to the
newline character.

The format for printing numbers, with the print
statement, by default is " % .6g" .

FILENAME The name of the input file currently being read.
This is useful because awk commands are typically of
the form

awk -f program filel file2 file3 ...

6-47

awk

Type

Variables (and fields) take on numeric or string values according to
context. For example, in

pop += $3

pop is presumably a number, while in

country = $1

country is a string. In

maxpop < $3

the type of maxpop depends on the data found in $3. It is determined
when the program is run.

In general, each variable and field is potentially a string or a number
or both at any time. When,a variable is set by the assignment

v = expr

its type is set to that of expr. (Assignment also includes +=, ++, -=,
and so forth.) An arithmetic expression is of the type, " number" ; a
concatenation of strings is of type " string" . If the assignment is a
sim pIe copy as in

vI = v2

6-48

awk

then the type of vI becomes that of v2.

In comparisons, if both operands are numeric, the comparison is
made numerically. Otherwise, operands are coerced to strings if
necessary and the comparison is made on strings.

The type of any expression is coerced to numeric by subterfuges such
as

expr + 0

and to string by

expr ""

This last expression is string concatenated with the null string.

Arrays

As well as ordinary variables, awk provides I-dimensional arrays.
Array elements are not declared; they spring into existence by being
mentioned. Subscripts may have any non-null value including non
numeric strings.

As an example of a conventional numeric subscript, the statement

x[NR] = $0

assigns the current input line to the NRth element of the array x. In
fact, it is possible in principle (though perhaps slow) to process the
entire input in a random order with the following awk program.

6-49

awk

{ x[NR] = $0 }
END { ... program ... }

The first line of this program records each input line into the array
x. In particular, the following program

{ x[NR] = $1}

(when run on the file countries) produces an array of elements with

x[1] = " Russia"
x[2] = " Canada"
x[3] = " China"

... and so forth.

Arrays are also indexed by non-numeric values that give awk a
capability rather like the associative memory of Snobol tables. For
example, we can write

/ Asia/ {pop[" Asia"] += $3 }
/ Africa/ {pop[Africa] += $3 }
END print" Asia=" pop[" Asia"], " Africa=" pop[" Africa"] }

which produces

Asia= 1765 Africa=37

Notice the concatenation. Also, any expression can be used as a
subscript in an array reference. Thus,

6-50

awk

area[$1] = $2

uses the first field of a line (as a string) to index the array area.

BUILT IN FUNCTIONS

The function

length

is provided by awk to compute the length of a string of characters.
The following program prints each record preceded by its length.

{print length, $0 }

In this case (the variable) length means length($O), the length of the
present record. In general, length(x) will return the length of x as a
string.

Example:

With input from the file countries, the following awk program will
print the longest country name:

length($1) > max {max = length($1); name = $1 }
END {print name}

The function

6-51

awk

split

split (s, array) assigns the fields of the string "s" to successive
elements of the array, " array" .

For example,

split(" Now is the time" , w)

assigns the value "Now" to w[l], "is" to w[2], "the" to w[3] and
"time" to w[4]. All other elements of the array w[], if any, are set to
the null string. It is possible to have a character other than a blank
as the separator for the elements of w. For this, use split with three
elements.

n = split(s, array, sep)

This splits the string s into array[l], ... , array[n]. The number of
elements found is returned as the value of split. If the sep argument
is present, its first character is used as the field separator; otherwise,
FS is used. This is useful if in the middle of an awk script, it is
necessary to change the record separator for one record.

Also provided by the awk are the

Math Functions

sqrt,
log,
exp
int,

They provide the square root function, the base e logarithm function,
exponential and integral part functions. This last function returns
the greatest integer less than or equal to its argument. These

6-52

awk

functions are the same as those of the C library (int corresponds to
the libcfloor function) and so they have the same return on error as
those in libc. (See UNIX System Users Reference Manual.)

The subtract function

substr

substr(s,m,n) produces the substring of s that begins at position m
and is at most n characters long. If the third argument (n in this
case) is omitted, the substring goes to the end of s. For example, we
could abbreviate the country names in the file countries by

{ $1 = substr($l, 1, 3); print}

which produces

Rus 8650 262 Asia
Can 3852 24 NOrth America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
AIg 920 18 Africa

If s is a number, substr uses its printed image;
substr(123456789,3,4)=3456.

The function

index:

6-53

awk

index (sl,s2) returns the leftmost position where the string s2 occurs
in sl or zero if s2 does not occur in s1.

The function

sprintf

formats expressions as the printf statement does but will assign the
resulting expression to a variable instead of sending the results to
stdout. For example,

x = sprintf(" % lOs % 6d " , $1, $2)

sets x to the string produced by formatting the values of $1 and $2.
The x is then used in subsequent computations.

The function

getline'

immediately reads the next input record. Fields NR and $0 are all
set but control is left at exactly the same spot in the awk program.
Getline returns 0 for the end of file and a 1 for a normal record.

FLOW OF CONTROL
The awk provides the basic flow of control statements

• if-else

• whHe/fR

• for

6-54

awk

with statement grouping as in C language.

The if statement is used as follows:

if (condition) statementl else statement2

The condition is evaluated; and if it is true, statementl is executed;
otherwise, statement2 is executed. The else part is optional. Several
statements enclosed in braces ({,}) are treated as a single statement.
Rewriting the maximum population computation from the pattern
section with an if statement results in

if (maxpop < $3) {
maxpop= $3
country= $1
} }

END { print country, maxpop }

There is also a while statement in awk.

while (condition) statement

The condition is evaluated; if it is true, the statement is executed.
The condition is evaluated again, and if true, the statement is
executed. The cycle repeats as long as the condition is true. For
example, the following prints all input fields one per line

6-55

awk

{ i = 1
while (i <= NF) {

pint $i
++i
}

Another example is the Euclidean algorithm for finding the greatest
common divisor of $1 and $2:

{printf " the greatest common divisor of" $1" and" , $2, " is"
while ($1 != $2) {

if ($1 > $2) $1 = $1 - $2
else $2 = $2 - $1
}

printf $1 " 0
}

The for statement is like that of C.

for (expression1 ; condition; expression2) statement

has the same effect as

so

expression1
while (condition) {

statement
expression2
}

6-56

for (i=l ; i <= NF; i++)
print $i

is another awk program that prints all input fields one per line.

awk

This is an alternate form of the or statement that is suited for
accessing the elements of an associative array as is in awk.

for (i in array) statement

executes statement with the variable i set in turn to each subscript of
array. The subscripts are each accessed once but in random order.
Chaos will ensue if the variable i is altered or if any new elements
are created within the loop. For example, you could use the" for"
statement to print the record number followed by the record of all
input records after the main program is executed.

{ x[NR] = $0 }
END { for(i in x) { print i, x[i] }

A more practical example is the following use of strings to index
arrays to add the populations of countries by continents:

BEGIN {FS=""}
{population[$4] =+ $3}

END {for(i in population)
print i, population[i]

In this program, the body of the for loop is executed for j equal to
the string" Asia" , then for j equal to the string" North America" ,

6-57

awk

and so forth until all the possible values of i are exhausted; that is,
until all the strings of names of countries are used. Note, however,
the order the loops are executed is not specified. If the loop
associated with II Canada" is executed before the loop associated with
the string" Russia" , such a program produces

South America 26
Africa 16
Asia 637
Australia 14
North America 219

Note that the expression in the condition part of an if, while, or, for
statement can include relational operators like <, <=, >, >=, ==,
and !=; it can include regular expressions that are used with the
"matching" operators - and !-; it can include the logical operators II,
&&, and !; and it also includes parentheses for grouping.

The break statement (when it occurs within a while or for loop)
causes an immediate exit from the while or for loop.

The continue statement (when it occurs within a while or for loop)
causes the next iteration of the loop to begin.

The next statement in an awk program causes awk to skip
immediately to the next record and begin scanning patterns from the
top of the program. (Note the difference between getline and next.
Getline does not skip to the top of the awk program.)

If an exit statement occurs in the BEGIN section of an awk
program, the program stops executing and the END section is not
executed (if there is one).

An exit that occurs in the main body of the awk program causes
execution of the main body of the awk program to stop. No more
records are read, and the END section is executed.

6-58

awk

An exit In the END section causes execution to terminate at that
point.

REPORT GENERATION
The flow of control statements in the last section are especially
useful when awk is used as a report generator. Awk is useful for
tabulating, summarizing, and formatting information. We have seen
an example of awk tabulating in the last section with the tabulation
of populations. Here is another example of this. Suppose you have a
file" prog.usage" that contains lines of three fields; name, program,
and usage:

Smith draw 3
Brown eqn 1
Jones nroff 4
Smith nroff 1
Jones spell 5
Brown spell 9
Smith draw 6

The first line indicates that Smith used the draw program three
times. If you want to create a program that has the total usage of
each program along with the names in alphabetical order and the
total usage, use the following program, called list.a:

{ use[$l "" $2] += $3}
END {for (np in use)

print np " " use[np] I" sort +0 +2nr" }

This program produces the following output when used on the input
file, prog. usage.

6-59

awk

Brown eqn 1
Brown spell 9
Jones nroff 4
Jones spell 5
Smith draw 9
Smith nroff 1

If you would like to format the previous output so that each name is
printed only once, pipe the output of the previous awk program into
the following program, called" format. a:

{ if ($1 != prev) {

}

print $1 " :"
rev = $1
}

print" " $2" " $3

The variable prell' prints the unique values of the first field. The
command

awk -f list.a prog.usage ; awk -f format.a

gives the output

6-60

Brown:
eqn 1
spell 9

Jones:
nroff 4
spell 5

Smith:
draw 9
nroff 1

awk

It is often useful to combine different awk scripts and other shell
commands such as sort as was done in the last script.

COOPERATION WITH THE SHELL

Normally, an awk program is either contained in a file or enclosed
within single quotes as in

awk '{print $1}' ...

A wk uses many of the same characters that the shell does, such as $
and the double quote. Surrounding the program by , ... ' ensures that
the shell passes the awk program to awk intact.

Consider writing an awk program to print the nth field, where n is a
parameter determined when the program is run. That is, we want a
program called field such that

field n

runs the a wk program

6-61

awk

awk ' {print $n}'

How does the value of n get into the awk program?

There are several ways to do this. One is to define field as follows:

awk ' {print $'$1'}'

Spaces are critical here: as written, there is only one argument, even
though there are two sets of quotes. The $1 is outside the quotes,
visible to the shell, and therefore substituted properly when field is
invoked.

Another way to do this job relies on the fact that the shell
substitutes for $ parameters within double quotes.

awk" {print $1}"

Here the trick is to protect the first $ with a \ \; the $1 is again
replaced by the number when field is invoked.

This kind of trickery is extended in remarkable ways, but it is hard
to understand quickly.

MISCELLANEOUS HINTS
You can simulate the effect of multidimensional arrays by creating
your own subscripts. For example,

6-62

for (i = 1; i <= 10; i ++)
for (j = 1; j <= 10; j ++)

mult[i "," j] = ...

awk

creates an array whose subscripts have the form i,j; that is, 1,1; 1,2;
and so forth and thus simulate a 2-dimensional array.

6-63

Chapter 7

THE LINK EDITOR

PAGE

GENERAL.. 7-1

USING THE LINK EDITOR. 7-4

LINK EDITOR COMMAND LANGUAGE......................... 7-9

NOTES AND SPECIAL CONSIDERATIONS 7-26

ERROR MESSAGES. .. 7 -35

SYNTAX DIAGRAM FOR INPUT DIRECTIVES 7-45

Chapter 7

THE LINK EDITOR

GENERAL
The link editor [ld(l)] is a UNIX system support tool. The ld creates
executable object files by combining object files, performing reloca
tion, and resolving external references. The ld also processes symbolic
debugging information. The inputs to ld are relocatable object files
produced either by the compiler [cc(l)], the assembler [as(l)], or by
a previous ld run. The ld combines these object files to form either a
relocatable or an absolute (i.e., executable) object file.

The ld also supports a command language that allows users to control
the ld process with great flexibility and precision. The UNIX system
ld shares most of its source with other Ids in use on other processors
and operating systems. Therefore, the UNIX system ld provides many
powerful features that mayor may not be useful on a UNIX system.

Although the link edit process is controlled in detail through use of
the ld command language described later, most users do not require
this degree of flexibility, and the manual page obtained by typing

man ld

is sufficient instruction in the use of ld.

The command language (described later) supports the ability to

7-1

LINK EDITOR

• Specify the memory configuration of the machine

• Combine object file sections in particular fashions

• Cause the files to be bound to specific addresses or within
specific portions of memory

• Define or redefine global symbols at link edit time.

There are several concepts and definitions with which you should
familiarize yourself before proceeding further.

Memory Configuration

The virtual memory of the target machine is, for purposes of
allocation, partitioned into configured and unconfigured memory.
The default condition is to treat all memory as configured. It is
common with microprocessor applications, however, to have different
types of memory at different addresses. For example, an application
might have 3K of PROM (Programmable Read-Only Memory)
beginning at address 0, and 8K of RAM (Read-Only Memory) starting
at 20K. Addresses in the range 3K to 20K-l are then not configured.
Unconfigured memory is treated as "reserved" or "unusable" by the
ld. Nothing can ever be linked into unconfigured memory. Thus,
specifying a certain memory range to be unconfigured is one way of
marking the addresses (in that range) "illegal" or "nonexistent" with
respect to the linking process. Memory configurations other than the
default must be explicitly specified by you (the user).

Unless otherwise specified, all discussion in this document of
memory, addresses, etc., are with respect to the configured sections of
the address space.

Section

A section of an object file is the smallest unit of relocation and must
be a contiguous block of memory. A section is identified by a
starting address and a size. Information describing all the sections
in a file is stored in "section headers" at the start of the file.
Sections from input files are combined to form output sections that
contain executable text, data, or a mixture of both. Although there

7-2

LINK EDITOR

may be "holes" or gaps between input sections and between output
sections, storage is allocated contiguously within each output section
and may not overlap a hole in memory.

Addresses

The physical address of a section or symbol is the relative offset
from address zero of the address space. The physical address of an
object is not necessarily the location at which it is placed when the
process is executed. For example, on a system with paging, the
address is with respect to address zero of the virtual space, and the
system performs another address translation.

Binding

It is often necessary to have a section begin at a specific, predefined
address in the address space. Th ~ process of specifying this starting
address is called "binding", and the section in question is said to be
"bound to" or "bound at" the required address. While binding is
most commonly relevant to output sections, it is also possible to bind
global symbols with an assignment statement in the ld command
language.

Object File

Object files are produced both by the assembler (typically as a result
of calling the compiler) and by the ld. The ld accepts relocatable
object files as input and produces an output object file that mayor
may not be relocatable. Under certain special circumstances, the
input object files given to the ld can also be absolute files.

Files produced from the compiler/assembler always contain three
sections, called . text, .data, and .bss. The .text section contains the
instruction text (for example, executable instructions), .data contains
initialized data variables, and .bss contains uninitialized data
variables. For example, if a C program contains the global (that is,
not inside a function) declarations called . text, .data and .bss; the
. text section contains the instruction text (e.g., executable
instructions), .data contains initialized data variables, and .bss
contains uninitialized data variables. For example, if a C program
contained the global (Le., not inside a function) declarations

7-3

LINK EDITOR

int i = 100;
char abc[200];

and the assignment

abc[i] = 0;

then compiled code from the C assignment is stored in . text. The
variable i is located in .data, and abc is located in .hss. There is an
exception to the rule however; both initialized and uninitialized
statics are allocated into the .data section. The value of an
uninitialized static in a .data section is zero.

USING THE LINK EDITOR

The Id is called by the command

ld [options] filenamel filename2 ...

Files passed to the Id must be object files, archive libraries
containing object files, or text source files containing Id directives.
The Id uses the "magic number" (in the first two bytes of the file) to
determine which type of file is encountered. If the Id does not
recognize the magic number, it assumes the file is a text file
containing Id directives and attempts to parse it.

Input object files and archive libraries of object files are linked
together to form an output object file. If there are no unresolved
references, this file is executable on the target machine. An input
file containing directives is referred to as an lfile in this document.
Object files have the form "name.o" throughout the examples in this
chapter. The names of actual input object files need not follow this
convention.

If you merely want to link the object files filel.o and file2.o, the
following command is sufficient.

7-4

LINK EDITOR

ld file1.o file2.0

No directives to the Jd are needed. If no errors are encountered
during the link edit, the output is left on the default file a.out. The
sections of the input files are combined in order. That is, if filel.o
and file2.0 each contain the standard sections . text, .data, and .bss,
the output object file also contains these three sections. The output
.text section is a concatenation of .text from file1.o and .text from
file2.0. The .data and .bss sections are formed similarly. The output
.text section is then bound (with the exception of 3B 5 Computers) at
address OXOOOOOO. The output .data and .bss sections are link edited
together into contiguous addresses (the particular address depending
on the particular processor).

Instead of entering the names of files to be link edited (as well as Jd
options on the Jd command line), this information can be placed into
an ifile, and just the ifile passed to ld. For example, if you are going
to frequently link the object files file1.o, file2.0, and file3.o with the
same options fl and f2, then enter the command

ld -fl -f2 file1.o file2.0 file3.0

each time it is necessary to invoke ld. Alternatively, an ifile
containing the statements

-fl
-f2
file1.o
file2.0
file3.0

could be created, and then the following UNIX system command
would serve:

ld ifilename

Note that it is perfectly permissible to specify some of the object files
to be link edited in the ifile and others on the command line-as well
as some options in the ifile and others on the command line. Input

7-5

LINK EDITOR

object files are link edited in the order they are encountered, whether
this occurs on the command line or in an ifile. As an example, if a
command line were

Id file1.o ifile file2.o

and the ifile contained

file3.o
file4.o

then the order of link editing would be: file1.o, file3.o, file4.o, and
file2.o. Note from this example that an ifile is read and processed
immediately upon being encountered in the command line.

Options may be interspersed with file names both on the command
line and in an ifile. The ordering of options is not significant, except
for the "I" and "L" options for specifying libraries. The "I" option is
a shorthand notation for specifying an archive library, and an
archive library is just a collection of object files. Thus, as is the case
with any object file, libraries are searched as they are encountered.
The "L" specifies an alternative directory for searching for libraries.
Therefore, to be effective, a "-L" option must appear before any "-I"
options.

All options for Id must be preceded by a hyphen (-) whether in the
ifile or on the Id command line. Options that have an argument
(except for the "-I" and "-L" options) are separated from the
argument by white space (blanks or tabs). The following options (in
alphabetical order) are supported, though not all options are
available on each processor.

-a Produces an absolute, executable file. Messages are issued
when undefined symbols are found, and several special

7-6

. symbols (such as "_end") are defined. Unless overridden
by the "-r" option, relocation information is stripped from
the output file. If neither "-r" nor "-a" is specified, "-a"
is assumed. This flag applies only to the 3B 5 Computers.

-e ss

-f bb

LINK EDITOR

Defines the primary entry point of the output file to be
the symbol given by the argument "ss". See" Changing
the Entry Point" in " NOTES AND SPECIAL
CONSIDERATIONS" for a discussion of how the option is
used.

Sets the default fill value. This value is used to fill
"holes" formed within output sections. Also, it is used to
initialize input .bss sections when they are combined with
other non-.bss input sections. The argument "bb" is a
2-byte constant. If the "-f" option is not used, the default
fill value is zero.

-Ix Specifies a UNIX system archive library file as ld input.
The argument is a character string (less than 10
characters) immediately following the "-1" without any
intervening white space. As an example, -lc refers to
libc.a, -IC to libC.a, etc. The given archive library must
contain valid object files as its members.

-m Produces a map or listing of the input/output sections
(including "holes") on the standard output.

-0 name Names the output object file. The argument "name" is the
name of the UNIX system file to be used as the output file.
The default output object file name is "a.out". The
"name" can be a full or partial UNIX system pathname.

-r Retains relocation entries in the output object file.
Relocation entries must be saved if the output file is to be
used as an input file in a subsequent ld call. If the -r
option is used, unresolved references do not prevent the
creation of an output object file.

-s Strips line number entries and symbol table information
from the output object file. Relocation entries ("-r"
option) are meaningless without the symbol table, hence
use of "-s" precludes the use of "_r". All symbols are
stripped, including global and undefined symbols.

-t Disables checking that all instances of a multiply-defined
symbol are the same size.

7-7

LINK EDITOR

-u sym Introduces an unresolved external symbol into the output
file's symbol table. The argument "sym" is the name of
the symbol. This is useful for linking entirely from a
library, since initially the symbol table is empty and an
unresolved reference is needed to force the linking of an
initial routine from the library.

-x Does not preserve any local (non-global) symbols in the
output symbol table; enter external and static symbols
only. This option saves some space in the output file.

-z Configures memory so that nothing may be placed at
address zero. This is used to catch references through null
pointers. This option is overridden if any section or
memory directives are used. This option applies only to
the 3B 5 Computers.

-F The magic number 0413 is stored in the UNIX system
header indicating that the file should be paged. This
option applies only to 3B 5 Computers.

-H Changes the type of all global symbols to "static". This
option can be used to "hide" symbols since static symbols
have different accessing rules from global symbols.

-Ldir Changes the algorithm for searching for libraries to look
in dir before looking in the default location. This option is
for Id libraries as the -I option is for compiler #include
files. The "-L" option is useful for finding libraries that
are not in the standard library directory. To be useful,
this option must appear before the "-1" option.

-M Prints a warning message for all external variables that
are multiply-defined.

-N Places the data section immediately following the text
section in memory and stores the magic number 0407 in
the UNIX system header. This prevents the text from
being shared (the default).

-8 Requests a "silent" Id run. All error messages resulting
from errors that do not immediately stop the Id run are
suppressed.

7-8

LINK EDITOR

- V Prints on the standard error output a "version id"
identifying the ld being run.

- VS num Takes num as a decimal version number identifying the
a.out file that is produced. The version stamp is stored in
the UNIX system header.

LINK EDITOR COMMAND LANGUAGE

Expressions

Expressions may contain global symbols, constants, and most of the
basic C language operators. (See Figure 7-2, "SYNTAX DIAGRAM
FOR INPUT DIRECTIVES" .) Constants are as in C with a number
recognized as decimal unless preceded with "0" for octal or "Ox" for
hexadecimal. All numbers are treated as long ints. Symbol names
may contain uppercase or lowercase letters, digits, and the
underscore ('_'). Symbols within an expression have the value of the
address of the symbol only. The ld does not do symbol table lookup
to find the contents of a symbol, the dimensionality of an array,
structure elements declared in a C program, etc.

The ld uses a lex-generated input scanner to identify symbols,
numbers, operators, etc. The current scanner design makes the
following names reserved and unavailable as symbol names or section
names:

ALIGN DSECT MEMORY PRY SECTIONS
ASSIGN GROUP NOLOAD RANGE SPARE
BLOCK LENGTH ORIGIN REGION TV

align group length origin spare
assign I 0 phy
block len org range

The operators that are supported, in order of precedence from high to
low, are shown in Figure 7-1.

7-9

LINK EDITOR

symbol

!--(UNARY Minus)

* / %
i + -(BINARY Minus) I

~> « l
I & != > < <= >= I

I
I

&&

~ II

= += -- *= /=
I

Figure 7-1. Symbols and Functions of Operators

The above operators have the same meaning as in the C language.
Operators on the same line have the same precedence.

Assignment Statements

External symbols may be defined and assigned addresses via the
assignment statement. The syntax of the assignment statement is

symbol = expression;

or

symbol op= expression;

where op is one of the operators +, -, *, or /.

Assignment statements must be terminated by a semicolon.

7-10

LINK EDITOR

All assignment statements (with the exception of the one case
described in the following paragraph) are evaluated after allocation
has been performed. This occurs after all input-file-defined sym boIs
are appropriately relocated but before the actual relocation of the
text and data itself. Therefore, if an assignment statement
expression contains any symbol name, the address used for that
symbol in the evaluation of the expression reflects the symbol
address in the output object file. References within text and data (to
symbols given a value through an assignment statement) access this
latest assigned value. Assignment statements are processed in the
same order in which they are input to ld.

Assignment statements are normally placed outside the scope of
section-definition directive (see" Section Definition Directive" under
"LINK EDITOR COMMAND LANGUAGE"). However, there exists
a special symbol, called ".", that can occur only within a section
definition directive. This symbol refers to the current R address of
the ld's location counter. Thus, assignment expressions involving "."
are evaluated during the allocation phase of ld. Assigning a value to
the "." symbol within a section-definition directive increments/resets
ld's location counter and can create "holes" within the section, as
described in " Section Definition Directives". Assigning the value of
the "." symbol to a conventional symbol permits the final allocated
address (of a particular point within the link edit run) to be saved.

Align is provided as a shorthand notation to allow alignment of a
symbol to an n-byte boundary within an output section, where n is a
power of 2. For example, the expression

align(n)

is equivalent to

(. + n - 1) &-(n - 1)

Link editor expressions may have either an absolute or a relocatable
value. When the ld creates a symbol through an assignment
statement, the symbol's value takes on that type of expression. That

7-11

LINK EDITOR

type depends on the following rules:

• An expression with a single relocatable symbol (and zero or more
constants or absolute symbols) is relocatable. The value is in
relation to the section of the referenced symbol.

• All other expressions have absolute values.

Specifying a Memory Configuration

MEMORY directives are used to specify

a. The total size of the virtual space of the target machine.

b. The configured and unconfigured areas of the virtual
space.

If no directives are supplied, the ld assumes that all memory is
configured. The size of the default memory is dependent upon the
target machine.

By means of MEMORY directives, an arbitrary name of up to eight
characters is assigned to a virtual address range. Output sections
can then be forced to be bound to virtual addresses within specifically
named memory areas. Memory names may contain uppercase or
lowercase letters, digits, and the special characters '$', '.', or '_'.
Names of memory ranges are used by ld only and are not carried in
the output file symbol table or headers.

When MEMORY directives are used, all virtual memory not described
in a MEMORY directive is considered to be unconfigured.
Unconfigured memory is not used in the ld's allocation process, and
hence nothing can be link edited, bound, or assigned to any address
within unconfigured memory.

As an option on the MEMORY directive, attributes may be associated
with a named memory area. This restricts the memory areas (with
specific attributes) to which an output section can be bound. The
attributes assigned to output sections in this manner are recorded in
the appropriate section headers in the output file to allow for
possible error checking in the future. For example, putting a text
section into writable memory is one potential error condition.
Currently, error checking of this type is not implemented.

7-12

LINK EDITOR

The attributes currently accepted are

a. R: readable memory:

b. W: writable memory.

c. X : executable, i.e. instructions may reside In this
memory.

d. I : initializable, i.e., stack areas are typically not
initialized.

Other attributes may be added in the future if necessary. If no
attributes are specified on a MEMORY directive or if no MEMORY
directives are supplied, memory areas assume the attributes of W, R,
I, and X.

The syntax of the MEMORY directive is

1v.IE1vIORY

namel (attr) :
name2 (attr) :
etc.

origin = nl, length = n2
origin = n3, length = n4

The keyword "origin" (or "org" or "0") must precede the origin of a
memory range, and "length" (or "len" or "I") must precede the length
as shown in the above prototype. The origin operand refers to the
virtual address of the memory range. Origin and length are entered
as long integer constan ts in either decimal, octal, or hexadecimal
(standard C syntax). Origin and length specifications, as well as
individual MEMORY directives, may be separated by white space or a
comma.

By specifying MEMORY directives, the ld can be told that memory is
configured in some manner other than the default. For example, if it
is necessary to prevent anything from being linked to the first
OxlOOOO words of memory, a MEMORY directive can accomplish this.

7-13

LINK EDITOR

MEMORY
{

valid: org = Ox10000, len = OxFEOOOO

Section Definition Directives

The purpose of the SECTIONS directive is to describe how input
sections are to be combined, to direct where to place output sections
(both in relation to each other and to the entire virtual memory
space), and to permit the renaming of output sections.

In the default case where no SECTIONS directives are given, all
input sections of the same name appear in an output section of that
name. For example, if a number of object files from the compiler are
linked, each containing the three sections . text, .data, and .bss, the
output object file also contains three sections, . text, .data, and .bss.
If two object files are linked (one that contains sections sl and s2 and
the other containing sections s3 and s4), the output object file
contains the four sections sl, s2, s3, and s4. The order of these
sections would depend on the order in which the link editor sees the
input files.

The basic syntax of the SECTIONS directive is

SECTIONS
{

etc.
}

secname1 :

file_specifications,
assignmen t_sta temen ts

secname2 :
{

}

file_specifica tions,
assignmen t_sta temen ts

The various types of section definition directives are discussed in the

7-14

LINK EDITOR

remainder of this section.

File Specifica tions

Within a section definition, the files and sections of files to be
included in the output section are listed in the order in which they
are to appear in the output section. Sections from an input file are
specified by

filename (secname)

or

filename (secnaml secnam2 ...)

Sections of an input file are separated either by white space or
commas as are the file specifications themselves.

If a file name appears with no sections listed, then all sections from
the file are linked into the current output section. For example,

SECTIONS

outsecl:

filel.o (secl)
file2.o
file3.o (secl, sec2)

The order in which the input sections appears in the output section
"outsecl" is given by

a. Section secl from file filel.o

7-15

LINK EDITOR

b. All sections from file2.0, in the order they appear in the
file

c. Section sec 1 from file file3.0, and then section sec2 from
file file3.o

If there are any additional input files that contained input sections
also named "outsecl", these sections are linked following the last
section named in the definition of "outsecl". If there are any other
input sections in file1.0 or file3.0, they will be placed in output
sections with the same names as the input sections.

Load a Section at a Specified Address

Bonding of an output section to a specific virtual address is
accomplished by an Id option as shown on the following SECTIONS
directive example:

SECTIONS
{

ou tsec addr:
{

etc.

The "addr" is the bonding address expressed as a C constant. If
"outsec" does not fit at "addr" (perhaps because of holes in the
memory configuration or because "outsec" is too large to fit without
overlapping some other output section), ld issues an appropriate error
message.

So long as output sections do not overlap and there is enough space,
they can be bound anywhere in configured memory. The SECTIONS
directives defining output sections need not be gi".en to Id in any
particular order.

The Id does not ensure that each section's size consists of an even
number of bytes or that each section starts on an even byte
boundary. The assembler ensures that the size (in bytes) of a section

7-16

LINK EDITOR

is evenly divisible by 4. The Id directives can be used to force a
section to start on an odd byte boundary although this is not
recommended. If a section starts on an odd byte boundary, the
section's contents are either accessed incorrectly or are not executed
properly. When a user specifies an odd byte boundary, the ld issues a
warning message.

Aligning an Output Section

It is possible to request that an output section be bound to a virtual
address that falls on an n-byte boundary, where n is a power of 2.
The ALIGN option of the SECTIONS directive performs this
function, so that the option

ALIGN(n)

is equivalent to specifying a bonding address of

(. + n - 1) &-(n - 1)

For example

SECTIONS
{

outsec ALIGN(Ox20000):

etc.

The output section "outsec" is not bound to any given address but is
linked to some virtual address that is a multiple of Ox20000 (e.g., at
address OxO, Ox20000, Ox40000, Ox60000, etc.).

7-17

LINK EDITOR

Grouping Sections Together

The default allocation algorithm for ld

a. Links all input .text sections together into one output
section. This output section is called .text and is bound
to an address of OxO.

b. Links all input .data sections together into one output
section. This output section is called .data and (with the
exception of 3B 5 Computers) is bound to an address
aligned to a machine dependent constant.

c. Links all input .bss sections together into one output
section. This output section is called .bss and is
allocated so as to immediately follow the output section
.data. Note that the output section .bss is not given any
particular address alignment.

Specifying any SECTIONS directives results in this default allocation
not being performed.

The default allocation of ld is equivalent to supplying the following
directive:

SECTIONS
{

.text : { }
GROUP ALIGN(align_ value) :
{

.data : { }

.bss : { }

where aJign_ value is a machine dependent constant. The GROUP
command ensures that the two output sections, .data and .bss, are
allocated (e.g., "grouped") together. Bonding or alignment
information is supplied only for the group and not for the output
sections contained within the group. The sections making up the
group are allocated in the order listed in the directive.

7-18

LINK EDITOR

If . text, .data, and .bss are to be placed in the same segment, the
following SECTIONS directive is used:

SECTIONS
{

GROUP
{

.text

.data

.bss

: { }
. { t • J

: { }

Note that there are still three output sections (.text, .data, and .bss),
but now they are allocated into consecutive virtual memory.

This entire group of output sections could be bound to a starting
address or aligned simply by adding a field to the GROUP directive.
To bind to OxCOOOO, use

GROUP OxCOOOO: {

To align to OxlOOOO, use

GROUP ALIGN(OxlOOOO) : {

With this addition, first the output section .text is bound at OxCOOOO
(or is aligned to OxlOOOO); then the remaining members of the group
are allocated in order of their appearance into the next available
memory locations.

When the GROUP directive is not used, each output section is treated
as an independent entity.

7-19

LINK EDITOR

SECTIONS

.text : { }

.data ALIGN(Ox20000) : { }

.bss : { }

The .text section starts at virtual address OxO and the .data section at
a virtual address aligned to Ox20000. The .bss section follows
immediately after the . text section if there is enough space. If there
is not, it follows the .data section.

The order in which output sections are defined to the ld cannot be
used to force a certain allocation order in the output file.

Creating Holes Within Output Sections

The special symbol dot (.) appears only within section definitions and
assignment statements. When it appears on the left side of an
assignment statement, "." causes the ld's location counter to be
incremented or reset and a "hole" left in the output section. "Holes"
built into output sections in this manner take up physical space in
the ou tpu t file and are initialized using a fill character (either the
default fill character (OxOO) or a supplied fill character). See the
definition of the "-f" option in "USING THE LINK EDITOR" and
the discussion of filling holes in "Initialized Section Holes or .bss
Sections" under" LINK EDITOR COMMAND LANGUAGE".

Consider the following section definition:

7-20

out sec:

· += OxlOOO;
fLo (. text)
· += OxlOO;
f2.0 (.text)
· = align (4);
f3.0 (.text)

LINK EDITOR

The effect of this command is as follows:

a. A OxlOOO byte hole, filled with the default fill character,
is left at the beginning of the section. Input file
fl.o(. text) is linked after this hole.

b. The text of input file f2.0 begins at OxlOO bytes following
the end of fl.o(.text).

c. The text of f3.0 is linked to start at the next full word
boundary following the text of f2.0 with respect to the
beginning of "outsec".

For the purposes of allocating and aligning addresses within an
output section~ the ld treats the output section as if it began at
address zero. As a result, if, in the above example, "outsec"
ultimately is linked to start at an odd address, then the part of
"outsec" built from f3.0(.text) also starts at an odd address-even
though f3.0(.text) is aligned to a full word boundary. This is
prevented by specifying an alignment factor for the entire output
section.

outsec ALIGN(4) : {

It should be noted that the assembler, as, always pads the sections it
generates to a full word length making explicit alignment
specifications unnecessary. This also holds true for the compiler.

Expressions that decrement "." are illegal. For example, subtracting
a value from the location counter is not allowed since overwrites are
not allowed. The most common operators in expressions that assign
a value to "." are "+=" and "align".

7-21

LINK EDITOR

Creating and Defining Symbols at Link-Edit Time

The assignment instruction of the ld can be used to give symbols a
value that is link-edit dependent. Typically, there are three types of
assignments:

a. Use of "." to adjust ld's location counter during allocation

b. Use of "." to assign an allocation-dependent value to a symbol

c. Assigning an allocation-independent value to a symbol.

Case a) has already been discussed in the previous section.

Case b) provides a means to assign addresses (known only after
allocation) to symbols. For example

SECTIONS
{

outsc1: { ... }
outsc2:
{

file1.o (sl)
s2_start = . ;
file2.0 (s2)
s2_end = . - 1;

The symbol "s2_start" is defined to be the address of file2.0(s2), and
"s2_end" is the address of the last byte of file2.0(s2).

Consider the following example:

7-22

SECTIONS

outscl:

file1.o (.da ta)
mark = .;
. += 4;
file2.o (.data)

LINK EDITOR

In this example, the symbol "mark" is created and is equal to the
address of the first byte beyond the end of file1.o's .data section.
Four bytes are reserved for a future run-time initialization of the
symbol mark. The type of the symbol is a long integer (32 bits).

Assignment instructions involving "." must appear within SECTIONS
definitions since they are evaluated during allocation. Assignment
instructions that do not involve "." can appear within SECTIONS
definitions but typically do not. Such instructions are evaluated after
allocation is complete. Reassignment of a defined symbol to a
different address is dangerous. For example, if a symbol within .data
is defined, initialized, and referenced within a set of object files being
link-edited, the symbol table entry for that symbol is changed to
reflect the new, reassigned physical address. However, the associated
initialized data is not moved to the new address. The Id issues
warning messages for each defined symbol that is being redefined
within an ifile. However, assignments of absolute values to new
symbols are safe because there are no references or initialized data
associated with the symbol.

Allocating a Section Into Named Memory

It is possible to specify that a section be linked (somewhere) within a
specific named memory (as previously specified on a MEMORY
directive). (The ">" notation is borrowed from the UNIX system
concept of "redirected output".)

For example,

7-23

LINK EDITOR

MEMORY
{

meml:
mem2 (RW):
mem3 (RW):
meml:

SECTIONS

o=OxOOOOOO I=OxlOOOO
0=Ox020000 I =Ox40000
0=Ox070000 I =Ox40000

0=Oxl20000 I =Ox04000

outsecl: { f1.o(.data) } > meml
outsec2: { f2.0(.data) } > mem3

This directs ld to place "outsecl" anywhere within the memory area
named "meml" (i.e., somewhere within the address range OxO
OxFFFF or Ox120000-0xl23FF). The "outsec2" is to be placed
somewhere in the address range Ox70000-0xAFFFF.

Initialized Section Holes or BSS Sections

When "holes" are created within a section (as in the example in
"LINK EDITOR COMMAND LANGUAGE"), the ld normally puts
out bytes of zero as "fill". By default, .bss sections are not initialized
at all; that is, no initialized data is generated for any .bss section by
the assembler nor supplied by the link editor, not even zeros.

Initialization options can be used in a SECTIONS directive to set
such "holes" or output .bss sections to an arbitrary 2-byte pattern.
Such initialization options apply only to .bss sections or "holes". As
an example, an application might want an uninitialized data table to
be initialized to a constant value without recompiling the ".0" file or
a "hole" in the text area to be filled with a transfer to an error
routine.

Either specific areas within an output section or the entire output
section may be specified as being initialized. However, since no text
is generated for an uninitialized .bss section, if part of such a section
is initialized, then the entire section is initialized. In other words, if
a .bss section is to be combined with a .text or .data section (both of
which are initialized) or if part of an output .bss section is to be

7-24

LINK EDITOR

initialized, then one of the following will hold:

a. Explicit initialization options must be used to initialize
all .bss sections in the output section.

b. The ld will use the default fill value to initialize all .bss
sections in the output section.

Consider the following ld ifile:

SECTIONS
{

sec1:

fLo
. =+ Ox200;
f2.0 (. text)

} = OxDFFF
sec2:
{

fLo (.bss)
f2.0 (.bss) = Ox1234

sec3:
{

f3.o (.bss)

} = OxFFFF
sec4: { f4.0 (.bss) }

In the example above, the Ox200 byte "hole" in section "secl" is filled
with the value OxDFFF. In section "sec2", f1.o(.bss) is initialized to
the default fill value of OxOO, and f2.0(.bss) is initialized to Ox1234.
All .bss sections within "sec3" as well as all "holes" are initialized to
OxFFFF. Section "sec4" is not initialized; that is, no data is written
to the object file for this section.

7-25

LINK EDITOR

NOTES AND SPECIAL CONSIDERATIONS

Changing the Entry Point

The a.out header contains a field for the (primary) entry point of the
file. This field is set using one of the following rules (listed in the
order they are applied):

a. The value of the symbol specified with the "-e" option,
if present, is used.

b. The value of the symbol "_start", if present, is used.

c. The value of the symbol "main", if present, is used.

d. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header
field through the "-e" option or by using an assignment instruction
in an ifile of the form

_start = expression;

If the ld is called through cc(l), a startup routine is automatically
linked in. Then, when the program is executed, the routine exit(l) is
called after the main routine finishes to close file descriptors and do
other cleanup. The user must therefore be careful when calling the
ld directly or when changing the entry point. The user must supply
the startup routine or make sure that the program always calls exit
rather than falling through the end. Otherwise, the program will
dump core.

Use of Archive Libraries

Each member of an archive library (e.g., libc.a) is a complete object
file typically consisting of the standard three sections: . text, .data,
and .bss. Archive libraries are created through the use of the UNIX
system "ar" command from object files generated by running the cc
or as.

7-26

LINK EDITOR

An archive library is always processed using selective inclusion: Only
those members that resolve existing undefined-symbol references are
taken from the library for link editing.

Libraries can be placed both inside and outside section definitions.
In both cases, a member of a library is included for linking whenever

a. There exists a reference to a symbol defined in that
member.

b. The reference IS found by the ld prior to the actual
scanning of the library.

When a library member is included by searching the library inside a
SECTIONS directive, all input sections from the member are included
in the output section being defined. When a library member is
included by searching the library outside of a SECTIONS directive,
all input sections from the member are included into the output
section with the same name. That is, the .text section of the member
goes into the output section named . text, the .data section of the
member into .data, the .bss section of the member into .bss, etc. If
necessary, new output sections are defined to provide a place to put
the input sections. Note, however, that

a. Specific members of a library cannot be referenced
explicitly in an ifile.

b. The default rules for the placement of members and
sections cannot be overridden when they apply to
archive library members.

The "-1" option is a shorthand notation for specifying an input file
coming from a predefined set of directories and having a predefined
name. By convention, such files are archive libraries. However, they
need not be so. Furthermore, archive libraries can be specified
without using the "-1" option by simply giving the (full or relative)
UNIX system file path.

The ordering of archive libraries is important since for a member to
be extracted from the library it must satisfy a reference that is

7-27

LINK EDITOR

known to be unresolved at the time the library is searched. Archive
libraries can be specified more than once. They are searched every
time they are encountered. Archive files have a symbol table at the
beginning of the archive. The ld will cycle through this symbol table
until it has determined that it cannot resolve any more references
from that library.

Consider the following example:

a. The input files filel.o and file2.o each contain a
reference to the external function FCN.

b. Input file1.o contains a reference to symbol ABC.

c. Input file2.o contains a reference to symbol XYZ.

d. Library liba.a, member 0, contains a definition of XYZ.

e. Library libc.a, member 0, contains a definition of ABC.

f. Both libraries have a member 1 that defines FCN.

If the ld command were entered as

ld filel.o -la file2.o -lc

then the FCN references are satisfied by liba.a, member 1, ABC is
obtained from libc.a, member 0, and XYZ remains undefined (since
the library liba.a is searched before file2.o is specified). If the ld
command were entered as

Id file1.o fiIe2.o -Ia -Ic

then the FCN references is satisfied by Iiba.a, member 1, ABC is
obtained from Iibc.a, member 0, and XYZ is obtained from liba.a,
member 0. If the ld command were entered as

Id . fiIel.o fiIe2.o -Ic -Ia

7-28

LINK EDITOR

then the FCN references is satisfied by libc.a, member 1, ABC is
obtained from libc.a, member 0, and XYZ is obtained from liba.a,
member O.

The "-u" option is used to force the linking of library members when
the link edit run does not contain an actual external reference to the
members. For example,

ld -u routl -la

creates an undefined symbol called "routl" in the ld's global symbol
table. If any member of library liba.a defines this symbol, it (and
perhaps other members as well) is extracted. Without the "-u"
option, there would have been no "trigger" to cause ld to search the
archive library.

Dealing With Holes in Physical Memory

When memory configurations are defined such that unconfigured
areas exist in the virtual memory, each application or user must
assume the responsibility of forming output sections that will fit into
memory. For example, assume that memory is configured as follows:

MEMORY
{

mem!:
mem2:
mem3:

o = OxOOOOO
o = Ox40000
o = Ox20000

I = Ox02000
I = Ox05000
I = Ox10000

Let the files fLo, f2.0, . . . fn.o each contain the standard three
sections .text, .data, and .bss, and suppose the combined .text section
is Ox12000 bytes. There is no configured area of memory in which
this section can be placed. Appropriate directives must be supplied to
break up the .text output section so ld may do allocation. For
example,

7-29

LINK EDITOR

SECTIONS
{

txt1:

}
txt2:

etc.

fl.o (. text)
f2.0 (. text)
f3.o (. text)

f4.0 (.text)
fS.o (. text)
f6.0 (.text)

Allocation Algorithm

An output section is formed either as a result of a SECTIONS
directive or by combining input sections of the same name. An
output section can have zero or more input sections comprising it.
After the composition of an output section is determined, it must
then be allocated into configured virtual memory. Ld uses an
algorithm that attempts to minimize fragmentation of memory, and
hence increases the possibility that a link edit run will be able to
allocate all output sections within the specified virtual memory
configuration. The algorithm proceeds as follows:

7-30

a. Any output sections for which explicit bonding addresses
were specified are allocated.

b. Any output sections to be included in a specific named
memory are allocated. In both this and the succeeding
step, each output section is placed into the first available
space within the (named) memory with any alignment
taken into consideration.

c. Output sections not handled by one of the above steps
are allocated.

LINK EDITOR

If all memory is contiguous and configured (the default case), and no
SECTIONS directives are given, then output sections are allocated in
the order they appear to the Id, normally .text, .data, .hss. Otherwise,
output sections are allocated in the order they were defined or made
known to the ld into the first available space they fit.

Incremental Link Editing

As previously mentioned, the output of the ld can be used as an input
file to subsequent ld runs providing that the relocation information is
retained ("-r" option). Large applications may find it desirable to
partition their C programs into "subsystems", link each subsystem
independently, and then link edit the entire application. For
example,

Step 1:
ld -r -0 outfile1 ifile1

/* ifile1 * /
SECTIONS
{

ssl:
{

f1.o
f2.0

fn.o

7-31

LINK EDITOR

Step 2:
ld -r -0 outfile2 ifile2

/* ifile2 * /
SECTIONS
{

ss2:
{

g1.o
g2.0

gn.o

Step 3:
ld -a -m -0 final.out outfilel outfile2

By judiciously forming subsystems, applications may achieve a form
of "incremental link editing" whereby it is necessary to relink only a
portion of the total link edit when a few programs are recompiled.

To apply this technique, there are two simple rules

a. Intermediate link edits should contain only SECTIONS
declarations and be concerned only with the formation
of output sections from input files and input sections.
No binding of output sections should be done in these
runs.

b. All allocation and memory directives, as well as any
assignment statements, are included only in the final ld
call.

DSECT, COPY, and NOLOAD Sections

Sections may be given a "type" in a section definition as shown in the
following example:

7-32

SECTIONS

namel Ox200000 (DSECT)
name2 Ox400000 (COPY)
name3 Ox600000 (NOLOAD)

: { file1.o }
: { file2.o }

: { file3.o }

LINK EDITOR

The DSECT option creates what is called a "dummy section". A
"dummy section" has the following properties:

a. It does not participate in the memory allocation for
output sections. As a result, it takes up no memory and
does not show up in the memory map (the "-m" option)
generated by the ld.

b. It may overlay other output sections and even
unconfigured memory. DSECTs may overlay other
DSECTs.

c. The global symbols defined within the "dummy section"
are relocated normally. That is, they appear in the
output file's symbol table with the same value they
would have had if the DSECT were actually loaded at its
virtual address. DSECT-defined symbols may be
referenced by other input sections. Undefined external
symbols found within a DSECT cause specified archive
libraries to be searched and any members which define
such symbols are link edited normally (Le., not in the
DSECT or as a DSECT).

d. None of the section contents, relocation information, or
line number information associated with the section is
written to the output file.

In the above example, none of the sections from file1.o are allocated,
but all symbols are relocated as though the sections were link edited
at the specified address. Other sections could refer to any of the
global symbols and they are resolved correctly.

A "copy section" created by the COPY option is similar to a "dummy
section". The only difference between a "copy section" and a

7-33

LINK EDITOR

"dummy section" is that the contents of a "copy section" and all
associated information is written to the output file.

A section with the "type" of NOLOAD differs in only one respect
from a normal output section: its text and/or data is not written to
the output file. A NOLOAD section is allocated virtual space,
appears in the memory map, etc.

Output File Blocking

The BLOCK option (applied to any output section or GROUP
directive) is used to direct ld to align a section at a specified byte
offset in the output file. It has no effect on the address at which the
section is allocated nor on any part of the link edit process. It is used
purely to adjust the physical position of the section in the output file.

SECTIONS

.text BLOCK(Ox200) : { }

.data ALIGN(Ox20000) BLOCK(Ox200) : {

With this SECTIONS directive, ld assures that each section, . text and
.data, is physically written at a file offset which is a multiple of
Ox200 (e.g., at an offset of 0, Ox200, Ox400, ... , etc. in the file).

Nonrelocatable Input Files

If a file produced by the ld is intended to be used in a subsequent ld
run, the first ld run has the "-r" option set. This preserves
relocation information and permits the sections of the file to be
relocated by the subsequent ld run.

When the ld detects an input file (that does not have relocation or
symbol table information), a warning message is given. Such
information can be removed by the ld (see the "-a" and "-s" options
in the part USING THE LINK EDITOR) or by the strip(l) program.
However, the link edit run continues using the nonrelocatable input
file.

7-34

LINK EDITOR

For such a link edit to be successful (i.e., to actually and correctly
link edit all input files, relocate all symbols, resolve unresolved
references, etc.), two conditions on the nonrelocatable input files
must be met.

a. Each input file must have no unresolved external
references.

b. Each input file must be bound to the exact same virtual
address as it was bound to in the Id run that created it.

Note that if these two conditions are not met for all nonrelocatable
input files, no error messages are issued. Becavse of this fact,
extreme care must be taken when supplying such input files to the ld.

ERROR l\lESSAGES

Corrupt Input Files

The following error messages indicate that the input file is corrupt,
nonexistent, or unreadable. The user should check that the file is in
the correct directory with the correct permissions. If the object file
is corrupt, try recompiling or reassembling it.

• Can't open name

• Can't read archive header from archive name

• Can't read file header of archive name

• Can't read 1st word of file name

• Can't seek to the beginning of file name

• Fail to read file header of name

• Fail to read lnno of section sect of file name

• Fail to read magic number of file name

7-35

LINK EDITOR

• Fail to read section headers of file name

• Fail to read section headers of library name member number

• Fail to read symbol table of file name

• Fail to read symbol table when searching libraries

• Fail to read the aux en try of file name

• Fail to read the field to be relocated

• Fail to seek to symbol table of file name

• Fail to seek to symbol table when searching libraries

• Fail to seek to the end of library name member number

• Fail to skip aux entries when searching libraries

• Fail to skip the mem of struct of name

• Illegal relocation type

• No reloc entry found for symbol

• Reloc entries out of order in section sect of file name

• Seek to name section sect failed

• Seek to name section sect lnno failed

• Seek to name section sect reloc entries failed

• Seek to relocation entries for section sect in file name failed.

Errors During Output

These errors occur because the Id cannot write to the output file. This
usually indicates that the file system is out of space.

7-36

LINK EDITOR

• Cannot complete output file name. Write error.

• Fail to copy the rest of section num of file name

• Fail to copy the bytes that need no reloc of section num of file

• name 1/0 error on outp~t file name.

Internal Errors

These messages indicate that something is wrong with the Id
internally. There is probably nothing the user can do except get help.

• Attempt to free nonallocated memory

• Attempt to reinitialize the SDP aux space

• Attempt to reinitialize the SDP slot space

• Default allocation did not put .data and .bss into the same region

• Failed to close SDP symbol space

• Failure dumping an AIDFNxxx data structure

• Failure in closing SDP aux space

• Failure to initialize the SDP aux space

• Failure to initialize the SDP slot space

• Internal error: audit....,groups, address mismatch

• Internal error: audit....,group, finds a node failure

• Internal error: fail to seek to the member of name

• Internal error: in allocate lists, list confusion (num num)

• Internal error: invalid aux table id

7-37

LINK EDITOR

• Internal error: invalid symbol table id

• Internal error: negative aux table ld

• Internal error: negative symbol table id

• Internal error: no symtab entry for DOT

• Internal error: split_scns, SIze of sect exceeds its new
displacemen t.

Allocation Errors

These error messages appear during the allocation phase of the link
edit. They generally appear if a section or group does not fit at a
certain address or if the given MEMORY or SECTION directives in
some way conflict. If you are using an ifile, check that MEMORY
and SECTION directives allow enough room for the sections to
ensure that nothing overlaps and that nothing is being placed in
un configured memory. For more information, see" LINK EDITOR
COMMAND LANGUAGE" and "NOTES AND SPECIAL
CONSIDERATIONS" .

• Bond address address for sect is not in configured memory

• Bond address address for sect overlays previously allocated
section sect at address

• Can't allocate output section sect, of size num

• Can't allocate section sect into owner mem

• Default allocation failed: name is too large

• GROUP containing section sect is too big

• Memory types namel and name2 overlap

• Output section sect not allocated into a region

~ Sect at address overlays previously allocated section sect at
address

7-38

LINK EDITOR

• Sect, bonded at address, won't fit into configured memory

• Sect enters unconfigured memory at address

• Section sect in file name is too big.

Misuse of Link Editor Directives

These errors arise from the misuse of an input directive. Please
review the appropriate section in the manual.

• Adding name(sect) to multiple output sections.

The input section is mentioned twice in the SECTION directive.

• Bad attribute value in MEMORY directive: c.

An attribute must be one of "R", "W", "X", or "I".

• Bad flag value in SECTIONS directive, option.

Only the "-1" option is allowed inside of a SECTIONS directive

• Bad fill value.

The fill value must be a 2-byte constant.

• Bonding excludes alignment.

The section will be bound at the given address regardless of the
alignment of that address.

• Cannot align a section within a group

• Cannot bond a section within a group

7-39

LINK EDITOR

• Cannot specify an owner for sections within a group.

The entire group is treated as one unit, so the group may be aligned
or bound to an address, but the sections making up the group may
not be handled individually.

• DSECT sect can't be given an owner

• DSECT sect can't be linked to an attribute.

Since dummy sections do not participate in the memory allocation, it
is meaningless for a dummy section to be given an owner or an
attribute.

• Region commands not allowed.

The UNIX system link editor does not accept the REGION
commands.

• Section sect not built.

The most likely cause of this IS a syntax error In the SECTIONS
directive.

• Semicolon required after expression

• Statement ignored.

Caused by a syntax error in an expression.

• Usage of unimplemented syntax.

The UNIX system ld does not accept all possible Id commands.

7-40

LINK EDITOR

Misuse of Expressions

These errors arise from the misuse of an input expression. Please
review the appropriate section in the manual.

• Absolute symbol name being redefined.

An absolute symbol may not be redefined.

• ALIGN illegal in this context.

Alignment of a symbol may only be done within a SECTIONS
directive.

• A ttem pt to decrement DOT

• Illegal assignment of physical address to DOT.

• Illegal operator in expression

• Misuse of DOT symbol in assignment instruction.

The DOT symbol (".") cannot be used in assignment statements that
are outside SECTIONS directives.

• Symbol name is undefined.

All symbols referenced in an assignment statement must be defined.

• Symbol name from file name being redefined.

A defined symbol may not be redefined in an assignment statement.

• Undefined symbol in expression.

7-41

LINK EDITOR

Misuse of Options

These errors arise from the misuse of options. Please review the
appropriate section of the manual.

• Both -r and -s flags are set; -s flag turned off.

Further relocation requires a symbol table.

• Can't find library libx.a

• -L path too long (string)

• -0 file name too large (>128 char), truncated to (string)

• Too many -L options, seven allowed.

Some options require white space before the argument, some do not;
see" USING THE LINK EDITOR". Including extra white space or
not including the required white space is the most likely cause of the
following messages.

• option flag does not specify a number

• option is an invalid flag

• -e flag does not specify a legal symbol name name

• -f flag does not specify a 2-byte number

• No directory given with -L

• -0 flag does not specify a valid file name: string

• the -1 flag (specifying a default library) is not supported

• -u flag does not specify a legal symbol name: name.

7-42

~INK EDITOR

Space Restraints

The following error messages may occur if the Id attempts to allocate
more space than is available. The user should attempt to decrease
the amount of space used by the ld. This may be accomplished by
making the ifile less complicated or by using the "-r" option to
create intermediate files.

• Fail to allocate num bytes for slotvec table

• Internal error: aux table overflow

• Internal error: symbol table overflow

• Memory allocation failure on num-byte 'calloc' call

• Memory allocation failure on realloc call

• Run is too large and complex.

Miscellaneous Errors

These errors occur for many reasons. Refer to the error message for
an indication of where to look in the manual.

• Archive symbol table is empty in archive name, execute 'ar ts
name' to restore archive symbol table.

On systems with a random access archive capability, the link editor
requires that all archives have a symbol table. This symbol table may
have been removed by strip.

• Cannot create output file name.

The user may not have write permission in the directory where the
output file is to be written.

• File name has no relocation information.

LINK EDITOR

See" NOTES AND SPECIAL CONSIDERATIONS".

• File name is of unknown type, magic number;;:: num

• !file nesting limit exceeded with file name.

!files may be nested 16 deep.

• Library name, member has no relocation information.

• Line nbr entry (num num) found for nonrelocatable symbol:

Section sect, file name

This is generally caused by an interaction of yacc(l) and cc(l).
Re-yacc the offending file with the" -1" option of yacc.

See the part" NOTES AND SPECIAL CONSIDERATIONS".

• Multiply defined symbol sym, in name has more than one size.

A multiply defined symbol may not have been defined in the same
manner in all files.

• name(sect) not found.

An input section specified in a SECTIONS directive was not found in
the input file.

• Section sect starts on an odd byte boundary!

This will happen only if the user specifically binds a section at an odd
boundary.

• Sections . text, .data, or .bss not found. Optional header may be
useless.

7-44

LINK EDITOR

The UNIX system a.out header uses values found in the .text, .data,
and .bss section headers .

• Undefined symbol sym first referenced in file name.

Unless the -r option is used, the ld requires that all referenced
symbols are defined .

• Unexpected EOF (End Of File).

Syntax error in the ifile.

SYNTAX DIAGRAM FOR INPUT DIRECTIVES
A syntax diagram for input directives is found in Figure 7-2.

7-45

LINK EDITOR

directives -> expanded directives
<file> -> { <cmd> }
<cmd> -> <memory>

-> <sections>
-> <assignmen t>
-> <filename>
-> <flags>

<memory> -> MEMORY { <memory_spec>
{ [,] <memory. spec> }}

<memory_spec> -> <name> [<attributes>] :
<origin_spec> [,] <length spec>

<attributes> -> ({ RIWIXII})
<origin spec> -> <origin> = <long>
<lenth spec> -> <length> = <long>
<origin> -> ORIGIN I 0 I org I origin
<length> -> LENGTH III len I length
<sections> -> SECTIONS { { <sec or~roup> } }
<sec or~roup> -> <section> I <group> I <library>
<group> -> GROUP <group_options> : {

<section list>,} [<mem spec>]
<section list> -> <section> { [,] <section> }

Figure 7-2. Syntax Diagram for Input Directives (Sheet 1
of 4)

7-46

LINK EDITOR

directives -> expanded directives ~ <section> -> <name> <sec_options> : { I

<statement_list> }
1

I
I

[<fill>] [<mem_spec>] I

<group. options> -> [<addr>] [<align option>] !

<sec_options> -> [<addr>] [<align_option>] I
[<block option>] [<type option>] !

I

<addr> -> <long>

<align o~tion> -> <align> (<long>)

<align> -> ALIGN I align
<block option> -> <block> (<long>) I

<block> -> BLOCK I block
<type option> -> (DSECT) I (NOLOAD) I (COPY)
<fill> -> = <long> I

I <mem_spec> -> I > <name> i

i -> > <attributes> I
I <statement> -> 1 <file_name> [(<name_list>)] [<fill>] I
i -> I <library>
i
I -> <assignment> I I

<name_list> -> <name> { [,] <name> } I

<library> -> -l<name> I

, <assignment> -> <lside> <assign_op> <expr> <end>
<lside> -> <name> I. I
<assign op> -> = I += I -= I *= II = I
<end> I • I -> , I , I
<expr> r -> <expr> <binary_op> <expr> I

l i
-> <term> !

< binary _op> I,

-> * 1/ 1% !

-> + 1-
-> »1«

Figure 7-2. Syntax Diagram for Input Directives (Sheet 2
of 4)

7-47

LINK EDITOR

I directives -> expanded directives
-> == I != I > I < I <= I >=
-> &
-> , ,
-> &&
-> " "

<term> -> <long>
-> <name>
-> <align> (<term>)
-> (<expr)
-> <unary op> <term>

<unary op> -> 11-
<flags> -> -e<wht space><name>

-> -f <wht_space><long>
-> -h<wht space><long>
-> -l<name>
-> -m
-> -o<wht space><filename>
-> -r
-> -s
-> -t
-> -u<wht space><name>
-> -z
-> -H
-> -F
-> -L<pathname>
-> -M
-> -N
-> -S
-> -V
-> -VS<wht space><long>
-> -a
-> -x

Figure 7-2. Syntax Diagram for Input Directives (Sheet 3
of 4)

7-48

LINK EDITOR

directives -> expanded directives

<name> -> Any valid symbol name
<long> -> Any valid long integer constant
<wht_space> -> Blanks, tabs, and newlines

<filename> -> Any valid UNIX operating system
filename. This may include a
full or partial pathname.

<pathname> -> Any valid UNIX operating system
pathname (full or partial)

Figure 7-2. Syntax Diagram for Input Directives (Sheet 4
of 4)

7-49

Chapter 8

THE COMMON OBJECT FILE FORMAT

PAGE

GENERAL . 8-1

DEFINITIONS AND CONVENTIONS 8-3

FILE HEADER .. 8-4

OPTION AL HEADER INFORMATIOl'l ...•....................... 8-9

SECTION HEADERS ... 8-14

SECTIONS. .. 8-18

RELOCATION INFORMATION 8-19

LINE NUMBERS .. 8-24

SYMBOLTABLE .. 8-26

STRING TABLE ... ;. 8-57

ACCESS ROUTINES ... 8-58

Chapter 8

THE COMMON OBJECT FILE FORMAT

GENERAL
This chapter describes the Common Object File Format (COFF) used
on several processors and operating systems, including the Western
Electric 3B Computer family and the UNIX operating system. The
COFF is simple enough to be easily incorporated into existing
projects, yet flexible enough to meet the needs of most projects. The
COFF is the output file produced on some UNIX systems by the
assembler (as) and the link editor (ld). This format is also used by
other operating systems; hence, the word common is both descriptive
and widely recognized. Currently, this object file format is used for
the Western Electric 3B Computers family, including the 3B 20D, the
3B 20S, and the 3B 5 Computers, and on the VAX -11/780 and 111750
UNIX operating systems. Some key features of COFF are

• Applications may add system-dependent information to the
object file without causing access utilities to become obsolete.

• Space is provided for symbolic information used by debuggers
and other applications

• Users may make some modifications In the object file
construction at compile time.

The object file supports user-defined sections and contains extensive
information for symbolic software testing. An object file contains

• A file header

• Optional header information

8-1

COFF

• A table of section headers

• Data corresponding to the section header

• Relocation information

• Line numbers

• A symbol table

• A string table.

Figure 8-1 shows the overall structure.

FILE HEADER
Optional Information

Section 1 Header
...

Section n Header
Raw Data for Section 1

...
Raw Data for Section n

Relocation Info for Sect. 1
...

Relocation Info for Sect. n
Line Numbers for Sect. 1

...
Line Numbers for Sect. n

SYMBOL TABLE
STRING TABLE

Figure 8-1. Object File Format

8-2

COFF

The last four sections (relocation, line numbers, symbol table, and the
string table) may be missing if the program is linked with the -s
option of the UNIX system link editor or if the line number
information, symbol table, and string table are removed by the strip
command. The line number information does not appear unless the
program is compiled with the -g option of the compiler (GG)
command. Also, if there are no unresolved external references after
linking, the relocation information is no longer needed and is absent.
The string table is also absent if the source file does not contain any
symbols with names longer than eight characters.

An object file that contains no errors or unresolved references can be
executed on the target machine.

DEFINITIONS AND CONVENTIONS

Before proceeding further, you should become familiar with the
following terms and conventions:

Sections

A section is the smallest portion of an object file that is relocated
and treated as one separate and distinct entity. In the default case,
there are three sections named .text, .data, and .hss. Additional
sections accommodate multiple text or data segments, shared data
segments, or user-specified sections. However, the UNIX operating
system loads only the . text, .data, and .bss into memory when the file
is executed.

Physical and Virtual Addresses

The physical address of a section or symbol is the offset of that
section or symbol from address zero of the address space. The term
physical address as used in COFF does not correspond to the general
usage. The physical address of an object is not necessarily the
address at which the object is placed when the process is executed.
For example, on a system with paging, the address is located with
respect to address zero of virtual memory and the system performs
another address translation. The section heading contains two
address fields, a physical address, and a virtual address; but in all

8-3

COFF

versions of COFF on UNIX systems, the physical address IS

equivalent to the virtual address.

FILE HEADER

The file header contains the· 20 bytes of information shown in Figure
8-2. The last 2 bytes are flags that are used by ld and object file
utilities.

Bytes Declaration Name Description

0-1 unsigned short f_magic Magic
number, see
Figure 8-3.

2-3 unsigned short f_nscns Number of
section
headers
(equals the
number of
sections)

4-7 long int f_timdat Time and
date stamp
indicating
when the file
was created
relative to
the number
of elapsed
seconds since
00:00:00 GMT,
January 1,
1970.

Figure 8-2. File Header Contents (Sheet 1 of 2)

8-4

i Bytes I Declaration N arne Description i
~~ ------~---------+---- ~

I 8-11 I long int f_symptr File pointer!
I containing i

i the starting i

i address of I

I the symbol II

i table
i-12---1-5-+----I-o--n-g-i-n-t----~f-_-n--s-y-m-s~--N-u-m--b-e-r---o-f~1

I entries in the I

symbol table I
16-17 unsigned short

18-19 unsigned short

Number of I
bytes III the I'

optional
header
Flags (see
Figure 8-4)

L-.----+-----------+----+----_
Figure 8-2. File Header Contents (Sheet 2 of 2)

COFF

The size of optional header information (f_opthdr) is used by all
referencing programs that seek to the beginning of the section header
table. This enables the same utility programs to work correctly on
files targeted for different systems.

8-5

COFF

Magic Numbers

The magic number specifies the target machine on which the object
file is executable. The currently defined magic numbers are in Figure
8-3.

Mnemonic Magic Number System

N3B MAGIC 0550 3B 208 Computers
FBOMAGIC 0560 WE-32 (Forward

Byte Ordering)

RBOMAGIC 0565 WE-32 (Reverse
Byte Ordering)

VAXWRMAGIC 0570 V AX-11/750 and
VAX-11/780
(writable text
segments)

VAXROMAGIC 0575 VAX-11/750 and
VAX-11780
(writable text
segments)

U370WRMAGIC 0530 IBM 370 (writable
text segments)

U370ROMAGIC 0535 IBM 370 (read-only
sharable text
segments)

MC68MAGIC 0520 Altos 3068

Figure 8-3. Magic Numbers

8-6

COFF

Flags

The last 2 bytes of the file header are flags that describe the type of
the object file. The currently defined flags are given in Figure 8-4.

I Mnemonic Flag Meaning I
-----l

I F_RELFLG

I
I

00001 Relocation i
I

information I
i stripped from I

I the file
IF_EXEC 00002 File is executable
i (i.e. no

I

unresolved
external

I references)

I 00004 I Line numbers

I

stripped from I
the file

F_LSYMS 00010 Local symbols
i stripped from
I the file

F_MINMAL 00020 Not used by
UNIX

F_UPDATE 00040 Not used by I
UNIX

F_SWABD 00100 Not used by
UNIX

F_AR16WR I 00200 File has the byte
I I ordering used by

I

I

the PDP -11/70

I
processor.

Figure 8-4. File Header Flags (Sheet 1 of 2)

8-7

COFF

8-8

\ Mnemonic
[F_AR32WR

i
I
I
j

i
i
i

I
I

i
I F_AR32W
i

I
i

Flag Meaning I

00400 File has the byte I

ordering used by
the VAX-11/780 ,
(i.e., 32 bits per

i I word, least I

/

' II significant byte I
i first).
I 01000 I File has the byte
I ordering used by

the 3B 208

I I

I I I

computers (i.e.,
32 bi ts per word,
most significant
byte first).

iF_PATCH I 02000

I

Not
UNIX

used by

Figure 8-4. File Header Flags (Sheet 2 of 2)

COFF

File Header Declaration

The C structure declaration for the file header is given in Figure 8-5.
This declaration may be found in the header file filehdr.h.

struct filehdr {
unsigned short f_magic; /* magic number * /
unsigned short f_nscns; /* number of section *

long f_timdat; /* time and data stamp /*

long f_symptr; /* file ptr to symbol table * /

long f-nsyms; /* number entries in the symbol table * /

unsigned short f_opthdr; /* size of optional header * /

unsigned short f_flags; /* flags * /

Figure 8-5. File Header Declaration

OPTIONAL HEADER INFORMATION

The template for optional information varies among different
systems that use the COFF. Applications place all system-dependent
information into this record. This allows different operating systems
access to information that only that operating system uses without
forcing all COFF files to save space for that information. General
utility programs (for example, the symbol table access library
functions, the disassembler, etc.) are made to work properly on any
common object file. This is done by seeking past this record using
the size of optional header information in the file header f_opthdr.

8-9

COFF

Standard UNIX System a.out Header

By default, files produced by the link editor for a UNIX system
always have a standard UNIX System a.out header in the optional
header field. The UNIX system a.out header is 28 bytes. There is
one exception; files produced for the 3B 20S Computers have an
optional header of 36 bytes. The extra 8 bytes represent unused
fields that are present for historical reasons. Therefore, the two
formats contain functionally equivalent information. The fields of
the optional header are described in Figure 8-6 and 8-7.

! Bytes I Declaratiol Name Description I

0-1
I

short magic Magic number
I
i

2-3 short vstamp Version stamp ~ 4-7 long int tsize Size of text
in bytes

8-11 long int dsize Size of initialized
data in bytes

12-15 long int bsize Size of uninitialized I
da ta in bytes

16-19 long int dum1 Unused dummy field
20-23 long int dum2 Unused dummy field
24-27 long int entry Entry point
27-31 long int text_start Base address of text
32-35 long int data_start Base address of data

Figure 8-6. Optional Header Contents (3B 20S Computers
Only)

8-10

COFF

Bytes ~ Declaration N arne Description :
~---.--+-----~---.------~'---'---'-"-----'--- ._-_.-....

L_g-1_+_ sho~! _________ ~ _~_~gi~ ______ -+-M_~~_ n u m b_e_r __
2-3 ; short · vstamp Version stamp

--------t--- .---+----.... _----------------t""---- .. ---- ---------.---.. -----<

4-7 long int l-_~ize _____ _t~~~.9-L!:.exU.!!. by!_~~ __
; 8-11 : long int : dsize Size of initialized
'; : data in bytes
-; -------t-----------f-------- -----+-------._-----------------,

'12-15 long int bsize Size of uninitialized
-l ___________ -t_data ~ byte~ _____ ,

16-19 long int entry _----+- Entry poi,_n_t __ _
20-23 long int text_start Base address

, ____ -+--__________ ' _____________ QL!~xt ________ _
24-37 long int data_start Base address of data

Figure 8-7. Optional Header Contents Altos 3068

The magic number in the optional header supplies operating system
dependent information about the object file. Whereas, the magic
number in the file header specifies the machine on which the object
file runs. The magic number in the optional header supplies
information telling the operating system on that machine how that
file should be executed.

8-11

COFF

The magic numbers recognized by the UNIX operating system are
given in Figure 8-8.

Value Meaning

0407 The text segment IS

not write-protected or
sharable; the data
segment is contiguous
with the text segment.

0410 The data segment
starts at the next
segment following the
text segment and the
text segment is write
protected.

0413 Demand paged, virtual
memory segmentation .

. Figure 8-8. UNIX Magic Numbers

8-12

COFF

Optional Header Declaration

The C language structure declaration currently used for the UNIX
system a.out file header is given in Figure 8-9. This declaration may
be found in the header file aouthdr.h.

typedef struct aouthdr {
short magic;
short vstamp;
long tsize;

/* magic number * /
/* version stamp * /

/* text size in bytes, padded * /

/* to full word boundary * /

long dsize; /* initialized data size * /

long bsize; /* uninitialized data size * /

#if u3b
long dum1; /* unused dummy field * /
long dum2; /* unused dummy field * /

#endif
long entry; /* entry point * /
long text_s tart; /* base of text for this file * /

long data_start /* base of data for this file * /

} AOUTHDR;

Figure 8-9. Aouthdr Declaration

8-13

COFF

SECTION HEADERS

Every object file has a table of section head~rs to specify the layout
of data within the file. The section header table consists of one entry
for every section in the file. The information in the section header is
described in Figure' 8-10.

Bytesi Declaratiol Name Description

0-7 char s_name 8-char null

I

padded section
name

I

8-11
I

long int s_paddr Physical
I address of section

12-15 I long int s_vaddr
I

Virtual I
address of section I

I
16-19 long int s_size r Section

1 I size in bytes
20-23 long int

I
s_scnptr File pointer

I to raw data
24-27 long int

I

s_relptr File ptr to

I I relocation
entries i

28-31 long int s_lnnoptr File ptr to line I
I

number entries I

I 32-33 unsigned
i

s_nreloc
I

Number of
short entries

34-35 unsigned I s_nlnno 1 Number of line I
I short

I
I number entries

I 36-39 long int s_flags Flags (see
I Figure 8-11)
I

Figure 8-10. Section Header Contents

8-14

COFF

The size of a section is padded to a multiple of 4 bytes.

File pointers are byte offsets that can be used to locate the start of
data, relocation, or line number entries for the section. They can be
readily used with the UNIX system function fseek(3S).

Flags

The lower 4 bits of the flag field indicate a section type. The flags
are described in Figure 8-11.

Mnemonic Flag

STYP_REG OxOO

I STYP_DSECT Ox01

I STYP _NOLOAD Ox02

Meaning :
-----1

Regular section
(alloca ted,
relocated, loaded)

Dummy sectIOn I

(not allocated,
relocated, not

I
i

loaded) I
Noload section
(allocated,
relocated, not
loaded)

Figure 8-11. Section Header Flags (Sheet 1 of 2)

8-15

COFF

I Mnemonic Meaning. I
Flag

I STYP _GROUP Ox04 Grouped sectIOn I

(formed from
input sections)

STYP_PAD
I

Ox08 Padding section
(not allocated,

I

I

not relocated,
loaded)

STYP_COPY OxlO Copy section (for
a decision
function used in
updating fields;
not allocated, not

I
relocated, loaded,
relocation and
line number
entries processed
normally)

STYP_TEXT Ox20 Section contains
execu table text

STYP_DATA Ox40 Section contains
initialized data

STYP_BSS Ox80 Section contains

I

only uninitialized
data

Figure 8 .. 11. Section Header Flags (Sheet 2 of 2)

8-16

COFF

Section Header Declaration

The C structure declaration for the section headers is described in
Figure 8-12. This declaration may be found in the header file
scuhdr.h.

struct scnhdr {
char s_name[8];
long s_paddr;
long s_ vaddr;
long s_size;
long s_scnptr;

long

long

/* section name * /
/* physical address * /
/* virtual address * /

/* section size * /
/* file ptr to section raw data * /

/* file ptr to relocation * /

/* file ptr to line number * /

unsigned short s_nreloc; /* number of relocation entries * /

unsigned short s_nlnno; /* number of line number entries * /

long /* flags * /

};

#define SCNHDR struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

Figure 8-12. Section Header Declaration

.bss Section Header

The one deviation from the normal rule in the section header table is
the entry for uninitialized data in a .bss section. A .bss section has
a size and symbols that refer to it, and symbols that are defined in it.
At the same time, a .bss section has no relocation entries, no line
number entries, and no data. Therefore, a .bss section has an entry
in the section header table but occupies no space elsewhere in the file.
In this case, the number of r~location and line number entries, as
well as all file pointers in a .bss section header, are zero.

8-17

COFF

SECTIONS

Figure 8-1 shows that section headers are followed by the appropriate
number of bytes of text or data. The raw data for each section
begins on a full word boundary in the file.

Files produced by the cc and the as always contain three sections,
called .text, .data, and .bss. The .text section contains the
instruction text (i.e., executable code), the .data section contains
initialized data variables, and the .bss section contains uninitialized
data variables.

The link editor "SECTIONS directives" (see Chapter 7) allows users
to

• Describe how input sections are to be combined.

• Direct the placement of output sections.

• Rename output sections.

If no SECTIONS directives are given, each input section appears in
an output section of the same name. For example, if a number of
object files from the" cc" are linked together (each containing the
three sections .text, .data, and .bss), the output object file contains
three sections, .text, .data, and .hss.

8-18

COFF

RELOCATION INFORMATION
Object files have one relocation entry for each relocatable reference
in the text or data. The relocation information consists of entries
with the format described in Figure 8-13.

Bytes Declaration Name Descriptiol

0-3 long int r_symndx (Virtual)
address
of reference

I

4-7 long int r_symndx symbol
table
index

8-9 unsigned short r_type Relocation
type

Figure 8-13. Relocation Section Contents

The first 4 bytes of the entry are the virtual address of the text or
data to which this entry applies. The next field is the index, counted
from 0, of the symbol table entry that is being referenced. The type
field indicates the type of relocation to be applied.

As the link editor reads each input section and performs relocation,
the relocation entries are read. They direct how references found
within the input section are treated.

8-19

COFF

The currently recognized relocation types are given in Figures 8-14
through 8-16.

Mnemonic Flag Meaning

R_AB8 0 Reference IS

absolute; no
relocation IS

necessary. The
entry will be
ignored.

R_DIR24 04 Direct 24-bit
reference to the
symbol's virtual
address.

R_REL24 05 A "PC-relative"
24-bit reference
to the symbol's
virtual address.
Actual address is
calculated by
adding a
constant to the
PC value.

Figure 8-14. 3B 208 Computers Relocation Types

8-20

COFF

Mnemonic Flag Meaning

R_BS 0 Reference is
absolute; no
relocation IS
necessary. The
entry will be
ignored.

R_DIR32 06 Direct 32-bit
reference to the
symbol's virtual
address

R_DIR32S 012 Direct 32-bit
reference to the
symbol's virtual
address, with the
32-bit value
stored In the
reverse order in
the object file.

Figure 8-15. 3B 5 Relocation Types

8-21

COFF

Mnemonic Flag Meaning

R_ABS 0 Reference IS

absolute; no
relocation IS

necessary. The
entry will be
ignored.

R_RELBYTE 017 Direct 8-bit
reference to the
symbol's virtual
address.

R_RELWORD 020 Direct 16-bit
reference to the
symbol's virtual
address.

R_RELLONG 021 Direct 32-bit
reference to the
symbol's virtual
address.

R_PCRBYTE 022 A " PC_relative"
8-bit reference to
the symbol's
virtual address.

R_PCRWORD 023 A "PC_relative"
16-bit reference
to the symbol's
virtual address.

R_PCRLONG 024 A "PC_relative"
32-bit reference
to the symbol's
virtual address.

Figure 8-16. Altos Relocation Types.

8-22

COFF

On the V AX processors, relocation of a symbol index of -1 indicates
that the amount by which the section is being relocated is added to
the relocatable address.

The as automatically generates relocation entries which are then
used by the link editor. The link editor uses this information to
resolve external references in the file.

Relocation Entry Declaration

The structure declaration for relocation entries is given in Figure 8-
17. This declaration may be found in the header file reloc.h.

struct reloc {
long r _ vaddr; /* virtual address of reference * /

long r_symndx; /* index into symbol table * /

unsigned short r_type; /* relocation type * /
};

#define RELOC struct reloc

#define RELSZ 10

Figure 8-17. Relocation Entry Declaration

8-23

COFF

LINE NUMBERS
When invoked with the -g option, UNIX system ccs (cc, 177)
generates an entry in the object file for every C language source line
where a breakpoint can be inserted. You can then reference line
numbers when using a software debugger like sdb. All line numbers
in a section are grouped by function, as shown in Figure 8-18.

symbol index 0
physical address line number
physical address line number

symbol index 0
physical address line number
physical address line number

Figure 8-18. Line Number Grouping

The first entry in a function grouping has line number 0 and has, in
place of the physical address, an index into the symbol table for the
entry containing the function name. Subsequent entries have actual
line numbers and addresses of the text corresponding to the line
numbers. The line number entries appear in increasing order of
address.

8-24

COFF

Line Number Declaration

The structure declaration currently used for line number entries is
given in Figure 8-19.

struct lineno {
umon

} ;

long l_symndx; /* symtbl index of func name * /

long l_paddr; /* paddr of line number * /
} Laddr;
unsigned short Llnno; /* line number * /

#define LINENO struct lineno

#define LINESZ 6

Figure 8-19. Line Number Entry Declaration

8-25

COFF

SYMBOL TABLE
Because of symbolic debugging requirements, the order of symbols in
the symbol table is very important. Symbols appear in the sequence
shown in Figure 8-20.

file name 1
function 1

local symbols
for function 1

function 2
local symbols
for function 2

statics

file name 2
function 1

local symbols
for function 1

statics

defined global
symbols

undefined global
symbols

Figure 8-20. COFF Global Symbol Table

The word "statics" in Figure 8-20 means symbols defined in the C
language storage class static outside any function. The symbol table
consists of at least one fixed-length entry per symbol with some
symbols followed by auxiliary entries of the same size. The entry for
each symbol is a structure that holds the value, the type, and other
information.

8-26

COFF

Special Symbols

The symbol table contains some special symbols that are generated
by the "cc", "as", and other tools. These symbols are given in
Figure 8-21.

Symbol Meaning

.file file name
.text address of .text section
.data address of .data section
.bss address of .bss section
.bb address of start of inner block
.eb address of end of inner block
.bf address of start of function
.ef address of end of function
.target pointer to the structure or

union returned by a function
.xfake dummy tag name for

structure, union, or enumeran

Figure 8-21. Special Symbols in the Symbol Table (Sheet 1
of 2)

8-27

COFF

Symbol Meaning
.eos end of members of

structure, union, or
enumeration

_etext,etext next available address
after the end of the
output section .text

_edata,edata next available address
after the end of the
output section .data

_end,end next available address
after the end of the
output section .bss.

Figure 8-21. Special Symbols in the Symbol Table (Sheet 2
of 2)

Six of these special symbols occur in pairs. The .bb and .eb symbols
indicate the boundaries of inner blocks. A .bf and .ef pair brackets
each function; and a .xfake and .eos pair names and defines the
limit of structures, unions, and enumerations that were not named.
The .eos symbol also appears after named structures, unions, and
enumera tions.

When a structure, union, or enumeration has no tag name, the" cc"
invents a name to be used in the symbol table. The name chosen for
the symbol table is .x.fake, where "x" is an integer. If there are
three unnamed structures, unions, or enumerations in the source,
their tag names are ".Ofake", ".lfake", and ".2fake".

Each of the special symbols has different information stored in the
symbol table entry as well as the auxiliary entry.

8-28

COFF

Inner Blocks

The C language defines a block as a compound statement that begins
and ends with braces ({ and }). An inner block is a block that
occurs within a function (which is also a block).

For each inner block that has local symbols defined, a special symbol
.bb is put in the symbol table immediately before the first local
symbol of that block. Also a special symbol, .eb is put in the symbol
table immediately after the last local symbol of that block. The
sequence is shown in Figure 8-22 .

. bb
local symbols
for that block
.eb

Figure 8-22. Special Symbols (.bb and .eb)

8-29

COFF

Because inner blocks can be nested by several levels, the .bb-.eb
pairs and associated symbols may also be nested. See Figure 8-23.

/* block 1 */
int i;
char c;

/* block 2 */
long a;

/* block 3 */
int x;

} /* block 3 */
} /* block 2 */

/* block 4 */
long i;

/* block 4 */
/* block 1 */

Figure 8-23. Nested blocks

8-30

COFF

The symbol table would look like Figure 8-24 .

. bb for block 1
i
0

.bb for block 2
a

.bb for block 3
x

.eb for block 3

.e b for block 2 .

. bb for block 4
i

.bb for block 4

.eb for block 1

Figure 8-24. Example of the Symbol Table

8-31

COFF

Symbols and Functions

For each function, a special symbol .bf is put between the function
name and the first local symbol of the function in the symbol table.
Also, a special symbol .ef is put immediately after the last local
symbol of the function in the symbol table. The sequence is shown in
Figure 8-25.

function name
.bf

local signal
.ef

Figure 8-25. Symbols for Functions

If the return value of the function is a structure or union, a special
symbol .target is put between the function name and the .bf. The
sequence is shown in Figure 8-26.

function name
.target

.bf
local sym bois

.ef

Figure 8-26. The Special Symbol .Target

The cc invents .target to store the function-return structure or
union. The symbol .target is an automatic variable with "pointer"
type. Its value field in the symbol is always O.

Symbol Table Entries

All symbols, regardless of storage class and type, have the same
format for their entries in the symbol table. The symbol table
entries each contain the 18 bytes of information. The meaning of each
of the fields in the symbol table entry is described in Figure 8-27.

8-32

COFF

It should be noted that indices for symbol table entries begin at zero
and count upward. Each auxiliary entry also counts as one symbol.

Bytes Declaration Name Description
0-7 (see text below) - n These eight

bytes contain
either the
name of a
pointer or the
name of a
symbol.

8-11 long int n_value Symbol value;
storage class
dependent

12-13 short n_scnum Section
number of
symbol

14-15 unsigned short n_type Basic and
derived type
specifica tion

16 char n_sclass Storage class
of symbol

17 char n_numaux Number of
auxiliary
entries.

Figure 8-27. Symbol Table Entry Format

Symbol Names

The first 8 bytes in the symbol table entry are a union of a character
array and two longs. If the symbol name is eight characters or less,
the (null-padded) symbol name is stored there. If the symbol name is
longer than eight characters, then the entire symbol name is stored
in the string table. In this case, the 8 bytes contain two long
integers, the first is zero, and the second is the offset (relative to the
beginning of the string table) of the name in the string table. Since
there can be no symbols with a null name, the zeroes on the first 4

8-33

COFF

bytes serve to distinguish a symbol table entry with an offset from
one with a name in the first 8 bytes as shown in Figure 8-28.

I Bytes Declaration I Name Description
I

0-7 char n_name 8-character
null-padded
symbol name

0-3 long n_zeroes zero In this
field
indicates the
name is In

the string
table

4-7 long n_offset offset of the
name In the
string table

Figure 8-28. Name Field

Some special symbols are generated by the II cc" and link editor as
discussed in "special symbols". The V AX "cc" prepends an
underscore e-') to all the user defined symbols it generates.

8-34

COFF

Storage Classes

The storage class field has one of the values described in Figure 8-29.
These" defines" may be found in the header file storclass.h.

Mnemonic Value Storage Class

C EFCN -1 physical end of a function
C_NULL 0 -
C AUTO 1 automatic variable
C EXT 2 external ~mbol
C STAT 3 static
C REG 4 register variable
C_EXTDEF 5 external definition
C LABEL 6 label
C_ULABEL 7 undefined label
CMOS 8 member of structure
C ARG 9 function argument
C STRTAG 10 structure tag
C MOU 11 member of union
C_UNTAG 12 union tag
C TPDEF 13 type definition
C USTATIC 14 uninitialized static
C_ENTAG 15 enumeration tag
C MOE 16 member of enumeration
C REGPARM 17 register parameter
C_FIELD 18 bit field

Figure 8-29. Storage Classes (Sheet 1 of 2)

8-35

COFF

Mnemonic Value Storage Class

C BLOCK 100 beginning and end of block
C_FCN 101 beginning and end of function
C EOS 102 end of structure
C FILE 103 file name
C_LINE 104 used only by utility programs
CALlAS 105 duplicated tag
C_HIDDEN 106 like static, used to avoid

name conflicts

Figure 8-29. Storage Classes (Sheet 2 of 2)

All of these storage classes except for C_ALIAS and C-HIDDEN are
generated by the" cc" or" as". The compress utility, cprs, generates
the C_ALIAS mnemonic. This utility (described in the UNIX System
Reference Manual) removes duplicated structure, union, and
enumeration definitions and puts ALIAS entries in their places. The
storage class C-HIDDEN is not used by any UNIX system tools.

Some of these storage classes are used only internally by the "cc"
and the "as". These storage classes are C_EFCN, C_EXTDEF,
C_ULABEL, C_USTATIC, and C_LINE.

8-36

COFF

Storage Classes for Special Symbols

Some special symbols are restricted to certain storage classes. They
are given in Figure 8-30.

I
Special Symbol Storage Class

.file C FILE

.bb C BLOCK

.eb C BLOCK

.bf C FCN

.ef C FCN

.target C_AUTO

.xfake C STRTAG, C UNTAG, C ENTAG

.eos C EOS
.text C STAT
.data C STAT
.bss C_STAT

Figure 8-30. Storage Class by Special Symbols

Also some storage classes are used only for certain special symbols.
They are summarized in Figure 8-31.

Storage Class Special Symbol

C BLOCK .bb, .eb
C FeN .bf, .ef
C_EOS .eos
C_FILE .file

Figure 8-31. Restricted Storage Classes

8-37

COFF

Symbol Value Field

The meaning of the "value" of a symbol depends on its storage class.
This relationship is summarized in Figure 8-32.

I

Storage Class Meaning

C AUTO stack offset in bytes
C EXT relocatable address
C STAT relocatable address
C REG register number
C LABEL relocatable address
C_MOS offset in bytes
C ARG stack offset in bytes
C_STRTAG 0
C MOU 0
C_UNTAG 0
C TPDEF 0
C ENTAG 0
C_MOE enumeration value
C REGPARM register number
C FIELD bit displacement
C_BLOCK relocatable address
C FCN relocatable address
C_EOS SIze
C FILE (see text below)
CALlAS tag index
C_HIDDEN relocatable address

Figure 8-32. Storage Class and Value

If a symbol has storage class C_FILE, the value of that symbol
equals the symbol table entry index of the next .file symbol. That is,
the .file entries form a l-waylinked list in the symbol table. If there

8-38

COFF

are no more .file entries in the symbol table, the value of the symbol
is the index of the first global symbol.

Relocatable symbols have a value equal to the virtual address of that
symbol. When the section is relocated by the link editor, the value of
these symbols changes.

Section Number Field

Section numbers are listed in Figure 8-33.

I

Mnemonic Section Number Meaning

N_DEBUG -2 special symbolic
debugging
symbol

N_ABS -1 absolute symbol
N_UNDEF 0 undefined

external symbol
N;...SCNUM 1-077777 section number

where symbol
was defined

Figure 8-33. Section Number

A special section number (-2) marks symbolic debugging symbols,
including structure/union/enumeration tag names, typedefs, and the
name of the file. A section number of -1 indicates that the symbol
has a value but is not relocatable. Examples of absolute-valued
symbols include automatic and register variables, function
arguments, and .eos symbols. The .text, .data, and .bss symbols
default to section numbers 1, 2, and 3, respectively.

With one exception, a section number of 0 indicates a relocatable
external symbol that is not defined in the current file. The one

8-39

COFF

exception is a multiply defined external symbol (i.e., FORTRAN
common or an uninitialized variable defined external to a function in
C). In the symbol table of each file where the symbol is defined, the
section number of the symbol is 0 and the value of the symbol is a
positive number giving the size of the symbol. When the files are
combined, the link editor combines all the input symbols into one
symbol with the section number of the .bss section. The maximum
size of all the input symbols with the same name is used to allocate
space for the symbol and the value becomes the address of the
symbol. This is the only case where a symbol has a section number
of 0 and a non-zero value.

8-40

COFF

Section Numbers and Storage Classes

Symbols having certain storage classes are also restricted to certain
section numbers. They are summarized in Figure 8-34.

Storage Class Section Number

C_AUTO N_ABS
C EXT NABS, N UNDEF, N SCNUM
C_STAT N_SCNUM
C REG NABS
C_LABEL N_UNDEF, N_SCNUM
CMOS NABS
C ARG NABS
C STRTAG N_DEBUG

1-- -

C MOU NABS
C_UNTAG N_DEBUG

I
[C TPDEF N_DEBUG

C_ENTAG N_DEBUG I

C MOE N_ABS
C REGPARM NABS
C_FIELD N_ABS
C BLOCK N SCNUM
C_FCN N_SCNUM

C EOS N_ABS
, C FILE I N DEBUG

C_ALIAS N_DEBUG

Figure 8-34. Section Number and Storage Class

Type Entry

The type field in the symbol table entry contains information about
the basic and derived type for the symbol. This information is
generated by the "cc". The V AX "ce" generates this information
only if the -g option is used. Each symbol has exactly one basic or

8-41

COFF

fundamental type but can have more than one derived type. The
format of the 16-bit type entry is

l1d5 1 d41 d31 d2i dl I typ I
Bits 0 through 3, called "typ", indicate one of the fundamental types
given in Figure 8-35.

Mnemonic Value Type
T NULL 0 type not assigned
T_CHAR 2 character
T SHORT 3 short integer
TINT 4 integer
T_LONG 5 long integer
T FLOAT 6 floating point
T DOUBLE 7 double word
T STRUCT 8 structure
T UNION 9 union
T_ENUM 10 enumeration
T MOE 11 member of enumeration
T_UCHAR 12 unsigned character
T USHORT 13 unsigned short
T UINT 14 unsigned integer
T_ULONG 15 unsigned long

Figure 8-35. Fundamental Types

8-42

COFF

Bits 4 through 15 are arranged as six 2-bit fields marked "d1"
through "d6." These "d" fields represent levels of the derived types
given in Figure 8-36.

I

I Mnemonic Value Type
DT NON 0 no derived type
DT_PTR 1 pointer I

DT FeN 2 function
DT_ARY 3 array

Figure 8-36. Derived Types

The following examples demonstrate the interpretation of the symbol
table entry representing type.

char *fune();

Here fune is the name of a function that returns a pointer to a
character. The fundamental type of fune is 2 (character), the d1 field
is 2 (function), and the d2 field is 1 (pointer). Therefore, the type
word in the symbol table for fune contains the hexadecimal number
Ox62, which is interpreted to mean "function that returns a pointer to
a character."

short *tabptr[lO][25][3];

Here tabptr is a 3-dimensional array of pointers to short integers.
The fundamental type of tabptr is 3 (short integer); the d1, d2, and d3
fields each contains a 3 (array), and the d4 field is 1 (pointer).
Therefore, the type entry in the symbol table contains the
hexadecimal number Ox7f3 indicating a "3-dimensional array of
pointers to short integers."

8-43

COFF

Type Entries and Storage Classes

Figure 8-37 shows the type entries that are legal for each storage
class.

Storage ----------"d" entry---------- "typ" entry

Class Function? I Array? Pointer? Basic Type
C_AUTO no yes yes Any except

T_MOE
C_EXT yes yes yes Any except

T MOE
C_STAT yes yes yes Any except

T MOE
C_REG no no yes Any except

T MOE
C LABEL no no no T NULL
C_MOS no yes yes Any except

T MOE
C_ARG yes no yes Any except

T MOE
C STRTAG no no no T STRUCT
C_MOU no yes yes Any except

T MOE
C_UNTAG no no no T_UNION

Figure 8-37. Type Entries by Storage Class (Sheet 1 of 2)

8-44

COFF

Storage ----------"d" entry---------- "typ" entry

Class Function? Array? Pointer? Basic Type
C_TPDEF no yes yes Any except

T_MOE
C ENTAG no no no T ENUM
C_MOE no no no T_MOE
C_REGPARM no no yes Any except

T MOE
C_FIELD no no no T_ENUM,

T_UCHAR,
T_USHORT,
T_UNIT,
T_ULONG

C BLOCK no no no T NULL
C FCN no no no T NULL
C EOS no no no T NULL
C FILE no no no T NULL
C_ALIAS no no no T_STRUCT,

T_UNION<,
T_ENUM

Figure 8-37. Type Entries by Storage Class (Sheet 2 of 2)

Conditions for the "d" entries apply to dl through d6, except that it
is impossible to have two consecutive derived types of "function."

Although function arguments can be declared as arrays, they are
changed to pointers by default. Therefore, no function argument can
have "array" as its first derived type.

8-45

COFF

Structure for Symbol Table Entries

The C language structure declaration for the symbol table entry is
given in Figure 8-38. This declaration may be found in the header
file syms.h.

8-46

struct syment

union

char _n_name[SYMNMLEN];
/* symbol name*/

struct

long _n_zeroes;
/* symbol name * /

long _n_offset;
/* location in string table * /

_n_nptr[2];
/* allows overlaying * /

n_value;
/* value of symbol * /

short n_scnum;
/* section number * /

unsigned short n_type;
/* type and derived * /

char n_sclass;
/* storage class * /

char n_numaux;

#define n_name
#define n_zeroes
#define n_offset
#define n_Qptr

/* number of aux entries * /

_n._n_name
_n._n_n._n_zeroes
_n._n_n._n_offset
_n._n_n ptr [1]

#define SYMNMLEN 8
#define SYMESZ 18 /* size of a symbol table entry * /

Figure 8-38. Symbol Table Entry Declaration

COFF

Auxiliary Table Entries

Currently, there is at most one auxiliary entry per symbol. The
auxiliary table entry contains the same number of bytes as the
symbol table entry. However, unlike symbol table entries, the format
of an auxiliary table entry of a symbol depends on its type and
storage class. They are summarized in Figure 8-39.

Storage Type Entry Auxiliary
Name

I Class dl typ Entry Format

.file C FILE DT NON T NULL file name

.text,.data, C_STAT DT_NON T_NULL section

.bss
tagname C_STRTAG DT_NON T_NULL tag name

C_UNTAG
C ENTAG

.eos C_EOS DT_NON T_NULL end of
structure

fcname C_EXT DT_FCN (Note 1) function
C STAT

arrname (Note 2) DT_ARY (Note 1) array
.bb C_BLOCK DT_NON T_NULL beginning

of block
.eb C BLOCK DT NON T NULL end of block
.bf,.ef C_FCN DT_NON T_NULL beginning

and end of
function

name related (Note 2) DT_PTR T_STRUCT, name related
to structure DT_ARR, T_UNION, to structure,
union, DT_NON T_ENUM union,
enumeration enumeration

Notes:
1. Any except T _M 0 E.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

Figure 8-39. Auxiliary Symbol Table Entries

'8-47

COFF

In Figure 8-39, "tagname" means any symbol name including the
special symbol .xfake, and "fcname" and "arrname" represent any
symbol name.

Any syulbol that satisfies more than one condition in Figure 8-39
should have a union format in its auxiliary entry. Symbols that do
not satisfy any of the above conditions should NOT have any
auxiliary entry.

File Names

Each of the auxiliary table entries for a file name contains a 14-
character file name in bytes 0 through 13. The remaining bytes are
0, regardless of the size of the entry.

Sections

The auxiliary table entries for sections have the format as shown in
Figure 8-40.

Bytes Declaration Name Description

0-3 long int x_sen len section
length

4-6 ' unsigned short x_nreloc number of
relocation
entries

6-7 unsigned short x_nlinno number of
line numbers

8-17 - - unused (filled
with zeroes)

Figure 8-40. Format for Auxiliary Table Entries

8-48

COFF

Tag Names

The auxiliary table entries for tag names have the format shown in
Figure 8-41.

Bytes Declaration Name Description

0-5 - - unused (filled
with zeros)

6-7 unsigned short x_size size of strucrt,
union,and
enumeration

8-11 - - unused (filled
with zeroes)

12-15 long int x_endndx index of next
entry beyond
this structure,
union, or
enumeration

16-17 - - unused (filled
wi th zeroes)

Figure 8-41. Tag Names Table Entries

8-49

COFF

End of Structures

The auxiliary table entries for the end of structures have the format
shown in Figure 8-42:

Bytes Declaration Name Description I

0-3 long int x tagndx tag index
4-5 - - unused (filled

wi th zeroes)
6-7 unsigned short X_SIze size of struct,

union, or I

enumeration
8-17 - - unused (filled

wi th zeroes)

Figure 8-42. Table Entries fQr End of Structures

8-50

COFF

Functions

The auxiliary table entries for functions have the format shown In

Figure 8-43:

I Bytes Declaration Name Description

0-3 long int x_tagndx tag index
4-7 long int x_fsize size of

function
(in bytes)

8-11 long int x-Innoptr file pointer
I to line number

12-15 long int x_endndx index of
next entry
beyond this
point

16-17 unsigned short x_tvndx index of the
function's address
in the transfer
vector table (not
used in UNIX system)

Figure 8-43. Table Entries for Functions

8-51

COFF

Arrays

The auxiliary table entries for arrays have the format shown in
Figure 8-44:

I Bytes Declaration I Name Description

0-3 long int x_tagndx tag index
4-5 unsigned short x_Inno line number of

declaration
6-7 unsigned short x SIze size of array
8-9 unsigned short x_dimen[O] first dimension
10-11 unsigned short x dimen[l] second dimension
12-13 unsigned short x dimen[2] third dimension
14-15 unsigned short x dimen[3] fourth dimension
16-17 - - unused (filled

wi th zeroes)

Figure 8-44. Table Entries for Arrays

8 .. 52

COFF

End of Blocks and Functions

The auxiliary table entries for the end of blocks and functions have
the format shown in Figure 8-45:

I

Bytes Declaration Name Description

0-3 - - used (filled
with zeroes)

4-5 unsigned short x_Inno C-source line
number

6-17 - - unused (filled
wi th zeroes)

Figure 8-45. End of Block and Function Entries

8-53

COFF

Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and functions
have the format shown in Figure 8-46:

Bytes Declaration Name Description

0-3 - - unused (filled
with zeroes)

4-5 unsigned short x_Inno C-source line
number

6-11 - - unused (filled
wi th zeroes)

12-15 long int x_endndx index of next I
entry past
this block

16-17 - - unused (filled
with zeroes)

Figure 8-46. Format for Beginning of Block and Function

8-54

COFF

Names Related to Structures, Unions, and Enumerations

The auxiliary table entries for structure, union, and enumerations
symbols have the format shown in Figure 8-47:

I

I Name I Bytes Declaration Description

0-3 long int x tagndx tag index
4-5 - - unused (filled

wi th zeroes)
6-7 unsigned short X_SIze size of the

I
structure, union,
or numeration

8-17 - - unused (filled
wi th zeroes)

Figure 8-47. Entries for Structures, Unions, and
Numerations

Names defined by "typedef" mayor may not have auxiliary table
entries. For example,

typedef struct people STUDENT;

struct people {
char name[20);
long id;
};

typedef struct people EMPLOYEE;

The symbol "EMPLOYEE" has an auxiliary table entry in the symbol
table but symbol "STUDENT" will not.

COFF

Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol table
entry is given in Figure 8-48. This declaration may be found in the
header file syms.h.

8-56

union auxent {
struct {

}

union {
struet {

lx_mise;
union {

struet {

} x_fen;
struet {

) x_ary;
} x_fenary;

l x_sym;
struet {

lx_file;
struet {

} x_sen;
struct {

long x_tagndx;

unsigned short x_Inno;
unsigned short x_size;

long x_Innoptr;
long x_endndx;

unsigned short x_dimen[DIMNUM];

unsigned short x_tvndx;

ehar x_fname[FILNMLEN];

long x_senlen;
unsigned short x_nreloe;
unsigned short x_nlinno;

long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

#define FILNMLEN 14
#define DIMNUM 4
#define A UXENT union auxent
#define A UXESZ 18

Figure 8-48. Auxiliary Symbol Table Entry

COFF

STRING TABLE

Symbol table names longer than eight characters are stored
contiguously in the string table with each symbol name delimited by
a null byte. The first four bytes of the string table are the size of the
string table in bytes; offsets into the string table therefore are
greater than or equal to four.

For example, given a file containing two symbols (with names longer
then eight characters, long_name_l and another_one) the string table
has the format as shown in Figure 8-49:

28

'1' '0' 'n' 'g'

, ,
'n' 'a' 'm' -

'e'
, , '1' ,\0'

'a' 'n' '0' 't'

'h' 'e' 'r'
, ,

'0' 'n' 'e' ,\0'

Figure 8-49. String Table

The index of long_name_l in the string table is 4 and the index of
another_one is 16.

8-57

COFF

ACCESS ROUTINES

Supplied with every standard UNIX system release is a set of access
routines that are used for reading the various parts of a common
object file. Although the calling program must know the detailed
structure of the parts of the object file it processes, the routines
effectively insulate the calling program from the knowledge of the
overall structure of the object file. In this way, you can concern
yourself with the section you are interested in without knowing all
the object file details.

The access routines can be divided into four categories:

1. Functions that open or close an object file.

2. Functions that read header or symbol table information.

3. Functions that position an object file at the start of a particular
section of the object file.

4. A function that returns the symbol table index for a particular
symbol.

These routines can be found in the library libld.a and are listed in
Chapter 3 of the UNIX System Programmer Reference Manual. A
summary of what is available can be found in the UNIX System
Programmer Reference Manual under LDFCN(4).

8-58

Chapter 9

ARBITRARY PRECISION DESK CALCULATOR
LANGUAGE (BC)

PAGE

GENERAL.. 9-1

BASES... 9-4

SCALING. 9-5

FUNCTIONS. 9-7

SUBSCRIPTED VARIABLES. 9-9

CONTROL STATEMENTS...................................... 9-9

ADDITIONAL FEATURES. 9-12

APPENDIX 9.1 9-14

Chapter 9

ARBITRARY PRECISION DESK
CALCULATOR LANGUAGE (BC)

GENERAL
The arbitrary precision desk calculator language (Be) is a language
and compiler for doing arbitrary precision arithmetic under the
UNIX operating system. The output of the compiler is interpreted
and executed by a collection of routines that can input, output, and do
arithmetic on infinitely large integers and on scaled fixed-point
numbers. These routines are based on a dynamic storage allocator.
Overflow does not occur until all available core storage is exhausted.

The BC language has a complete control structure as well as
immediate-mode operation. Functions can be defined and saved for
later execution. A small collection of library functions is also
available, including sin, cos, arctan, log, exponential, and Bessel
functions of integer order.

The BC compiler was written to make conveniently available a
collection of routines (called DC) that are capable of doing arithmetic
on integers of arbitrary size. The compiler is not intended to provide
a complete programming language. It is a minimal language facility.

Some of the uses of this compiler are:

• Compile large integers

• Compute accurately to many decimal places

• Convert numbers from one base to another base.

There is a scaling provision that permits the use of decimal point
notation. Provision is also made for input and output in bases other
than decimal. Numbers can be converted from decimal to octal by
simply setting the output base to equal eight.

9-1

Be

The actual limit on the number of digits that can be handled depends
on the amount of core storage available. This is possible even on the
smallest versions of the UNIX operating system.

The syntax of BC is very similar to that of the C language. This
enables users who are familiar with C language to easily work with
BC.

The simplest kind of statement is an arithmetic expression on a line
by itself. For instance, if you type in the addition of two numbers
(with the + operator) such as

142857 + 285714

the program responds immediately with the sum

428571.

The operators -, *, I, %, and can also be used. They indicate
subtraction, multiplication, division, remaindering, and integer result
truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to
indicate that it is to be negated (the unary minus sign). The
expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with
parentheses are interpreted just as in power, then *, %, and J, and
finally, + and -. Contents of parentheses are evaluated before

9-2

Be

material outside the parentheses. Exponentiations are performed
from right to left and the other operators from left to right.

are equivalent as are the two expressions

However, BC shares with Fortran and C language the undesirable
convention that

a/b*c is equivalent to (a/b)*c.

Internal storage registers to hold numbers have single lowercase
letter names. The value of an expression can be assigned to a
register in the usual way. The statement

x=x+3

has the effect of increasing by three the value of the contents of the
register named x. When, as in this case, the outermost operator is an
"=", the assignment is performed; but the result is not printed. Only
26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to
an integer (see the part on "SCALING"). Entering the lines

x = sqrt(191)
x

produces the printed result

13

9-3

Be

BASES
There are two special internal quantities; ibase (input base) and
obase (output base). The contents of ibase, initially set to 10
(decimal), determines the base used for interpreting numbers read in.
For example, the input lines

ibase = 8
11

produces the output line

9

and the system is ready to do octal to decimal conversions. Beware,
however, of trying to change the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement has no
effect. For dealing in hexadecimal notation, the characters A
through F are permitted in numbers (regardless of what base is in
effect) and are interpreted as digits having values 10 through 15,
respectively. The statement

ibase = A

changes the base to decimal regardless of what the current input
base is. Negative and large positive input bases are permitted but
are useless. No mechanism has been provided for the input of
arbitrary numbers in bases less than 1 and greater than 16.

The content of obase, initially 10 (decimal), is used as the base for
output numbers.' The input lines

obase = 16
1000

produces the output line

3E8

9-4

Be

which is to be interpreted as a 3-digit hexadecimal number. Very
large output bases are permitted and are sometimes useful. For
example, large numbers can be output in groups of five digits by
setting obase to 100000. Strange output bases (i.e., 1, 0, or negative)
are handled appropriately.

Very large numbers are split across lines with 70 characters per line.
Lines which are continued end with a backslash (\). Decimal output
conversion is practically instantaneous, but output of very large
numbers (i.e., more than 100 digits) with other bases is rather slow.
Nondecimal output conversion of a 100-digit number takes about 3
seconds.

The ibase and obase have no effect on the course of internal
computation or on the evaluation of expressions. They only affect
input and output conversions, respectively.

SCALING

A third special internal quantity called scale is used to determine
the scale of calculated quantities. The number of digits after the
decimal point of a number is referred to as its scale. Numbers may
have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations.

The contents of scale must be no greater than 99 and no less than o.
It is initially set to o. However, appropriate scaling can be arranged
when more than 99 fraction digits are required.

When two scaled numbers are combined by means of one of the
arithmetic operations, the result has a scale determined by the
following rules:

• Addition and subtraction-The scale of the result is the larger of
the scales of the two operands. In this case, there is never any
truncation of the result.

9-5

Be

• Multiplication-The scale of the result is never less than the
maximum of the two scales of the operands and never more than
the sum of the scales of the operands. Subject to those two
restrictions, the scale of the result is set equal to the contents of
the internal quantity scale.

• Division-The scale of a quotient is the contents of the internal
quantity scale. The scale of a remainder is the sum of the
scales of the quotient and the divisor.

• Exponentiation-The result of an exponentiation is scaled as if the
implied multiplications were performed. An exponent must be
an integer.

• Square root-The scale of a square root is set to the maximum of
the scale of the argument and the contents of scale.

All of the internal operations are actually carried out in terms of
integers with digits being discarded when necessary. In every case
where digits are discarded, truncation and not rounding is performed.

The internal quantities scale, ibase, and obase can be used in
expressions just like other variables. The input line

scale = scale + 1

increases the value of scale by one, and the input line

scale

causes the current value of scale to be printed.

The value of scale retains its meaning as a number of decimal digits
to be retained in internal computation even when ibase or obase
are not equal to 10. The internal computations (which are still
conducted in decimal regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal, octal, or any
other kind of digits.

9-6

Be

FUNCTIONS

The name of a function is a single lowercase letter. Function names
are permitted to coincide with simple variable names. Twenty-six
different defined functions are permitted in addition to the 26
variable names. The input line

define a(x) {

begins the definition of a function with one argument. This line must
be followed by one or more statements which make up the body of
the function ending with a right brace (}). The general form of a
function is

define a(x) {

return

Return of control from a function occurs when a return statement is
executed or when the end of the function is reached. The return
statement can take either of the two forms:

return
return(x)

In the first case, the value of the function is 0; and in the second, the
value of the function is the expression in parentheses.

Variables used in the function can be declared as automatic by a
statement of the form

auto X,y,Z

9-7

Be

There can be only one auto statement in a function, and it must be
the first statement in the definition. These automatic variables are
allocated space and initialized to zero on entry to the function and
thrown away on return (exit). The values of any variables with the
same names outside the function are not disturbed. Functions may
be called recursively and the automatic variables at each level of call
are protected. The parameters named in a function definition are
treated in the same way as the automatic variables of that function
with the single exception that they are given a value on entry to the
function. An example of a function definition is

define a(x,y){
auto z
z = x*y
return(z)

The value of this function a, when called, IS the product of its two
arguments, "x" and "y".

A function is called by the appearance of its name followed by a
string of arguments enclosed in parentheses and separated by
commas. The result IS unpredictable if the wrong number of
arguments is used.

Functions with no arguments are defined and called using
parentheses with nothing between them: O.

If the function a above has been defined, then the line

a(7,3.14)

causes the result 21.98 to be printed, and the line

z = a(a(3,4),5)

causes the result 60 to be printed.

9-8

Be

SUBSCRIPTED VARIABLES
A single lowercase letter variable name followed by an expression in
brackets is called a subscripted variable (an array element). The
variable name is called the array name, and the expression in
brackets is called the subscript. Only I-dimensional arrays are
permitted. The names of arrays are permitted to coincide with the
names of simple variables and function names. Any fractional part
of a subscript is discarded before use. Subscripts must be greater
than or equal to 0 and less than or equal to 2047.

Subscripted variables may be used in expressions, in function calls,
and in return statements.

An array name may be used as an argument to a function or may be
declared as automatic in a function definition by the use of empty
brackets:

f(a[])
define f(a[])
auto a[]

When an array name is so used, the whole contents of the array are
copied for the use of the function and thrown away on exit from the
function. Array names that refer to whole arrays cannot be used in
any other con texts.

CONTROL STATEMENTS
The if, while, and for statements may be used to alter the flow
within programs or to cause iteration. The range of each of them is a
statement or a compound statement consisting of a collection of
statements enclosed in braces. They are written in the following
way:

if(relation) statement
while(relation) statement
for(expression1; relation; expression2) statement

9-9

Be

or

if(relation) {statements}
while(relation) {statements}
for(expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression of the
form

x>y

where two expressions are related by one of the following SIX

relational operators:

< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
!= not equal to

Beware of using "=" instead of "==" as a relational operator.
Unfortunately, both of these are legal, so there will be no diagnostic
message, but "=" will not do a comparison.

The if statement causes execution of its range if and only jf the
relation is true. Then control passes to the next statement in
sequence.

The while statement causes execution of its range repeatedly as long
as the relation is true. The relation is tested before each execution of
its range; and if the relation is false, control passes to the next
statement beyond the range of the while statement.

9-10

Be

The for statement begins by executing expressionl. Then the
relation is tested; and if true, the statements in the range of the for
are executed. Then expression2 is executed. The relation is then
tested, etc. The typical use of the for statement is for a controlled
iteration, as in the statement

for(i=1; i<=10; i=i+ 1) i

which prints the integers from one to ten. The following are some
examples of the use of the control statements:

define f(n) {
auto i, x
x=1
for(i=1; i<=n; i=i+ 1) x=x*i
return(x)
}

The input line

f(a)

prints "a" factorial if "a" is a positive integer. The following is the
definition of a function that computes values of the binomial
coefficient (m and n are assumed to be positive integers):

define b(n,m){
auto x, j
x=l
for(j=1; j<=m; j=j+1) x=x*(n-j+l)/j
return(x)
}

9-11

Be

The following function computes values of the exponential function
by summing the appropriate series without regard for possible
truncation errors:

scale = 20
define e(x) {

auto a, b, c, d, n
a = 1
b=l
c = 1
d=O
n = 1
while(l==l){

a = a*x
b = b*n
c = c + alb
n=n+1
if(c==d) return(c)
d=c

ADDITIONAL FEATURES
There are some additional language features that every user should
know.

Normally, statements are typed one to a line. It is also permissible,
however, to type several statements on a line by separating the
statements by semicolons.

If an assignment statement is parenthesized, it then has a value; and
it can be used anywhere that an expression can. For example, the
input line

(x=y+ 17)

not only makes the indicated assignment, but also prints the
resulting value.

9-12

Be

The following is an example of a use of the value of an assignment
statement even when it is not parenthesized. The input line

x = a[i=i+l]

causes a value to be assigned to x and also increments j before it is
used as a subscript.

The following constructs work in BC in exactly the same manner as
they do in the C language. Refer to Appendix 7.1 or the C language
programming documents for more details.

x=y=z is the same as x=(y=z)
x =+ Y x = x+y
x =- y x = x-y
x =* y x = x*y
x =/ y x = x/y
x =% y x = x%y
x= y x=xy
x++ (x=x+ 1)-1
x-- (x=x-l)+1
++x x = x+l
--x x = x-I

Warning: In some of these constructions, spaces are
significant. There is a real difference between x=-y
and x= - y. The first replaces x by x-y and the second
by-yo

The following are three important things to remember when using
BC programs:

• To exit a BC program, type quit.

• There is a comment convention identical to that of the C
language. Comments begin with /* and end with */.

• There is a library of math functions that may be obtained by
typing at command level:

be -1

9-13

Be

This command loads a set of library functions that includes sine (8),
cosine (c), arctangent (a), natural logarithm (I), exponential (e), and
Bessel functions of integer order [j(n,x)]. The library sets the scale
to 20, but it can be reset to another value.

If you type

bc file ...

the BC program reads and executes the named file or files before
accepting commands from the keyboard. In this way, programs and
function definitions are loaded.

APPENDIX 9.1

NOTATION

In the following pages, syntactic categories are in italics and literals
are in bold. Material in brackets "[]" is optional.

TOKENS

Tokens consist of keywords, identifiers, constants, operators, and
separators. Token separators may be blanks, tabs, or comments.
Newline characters or semicolons separate statements.

Comments are introduced by the characters 1* and terminated by *1.

There are three kinds of identifiers-ordinary, array, and function.
All three types consist of single 'lowercase letters. Array identifiers
are followed by square brackets, possibly enclosing an expression
describing a subscript. Arrays are singly dimensioned and may
contain up to 2048 elements. Indexing begins at zero so an array may
be indexed from 0 to 2047. Subscripts are truncated to integers.
Function identifiers are followed by parentheses, possibly enclosing
arguments. The three types of identifiers do not conflict. A program
can have a variable named x, an array named x, and a function
named x; all of which are separate and distinct.

9-14

Be

The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto
length return
while quit
for

Constants consist of arbitrarily long numbers with an optional
decimal point. The hexadecimal digits A through F are also
recognized as digits with values 10 through 15, respectively.

EXPRESSIONS

The value of an expression is printed unless the main operator is an
assignment. Precedence is the same as the order of presentation here
with highest appearing first. Left or right associativity, where
applicable, is discussed with each operator.

Named Expressions

Named expressions are places where values are stored. Simply
stated, named expressions are legal on the left side of an assignment.
The value of a named expression is the value stored in the place
named.

identifiers

Simple identifiers are named expressions. They have an initial value
of zero.

array-name[expression]

Array elements are named expressions. They have an initial value of
zero.

9-15

Be

scale, ibase, and obase

The internal registers scale, ibase, and obase are all named
expressions. The scale register is the number of digits after the
decimal point to be retained in arithmetic operations. It has an
initial value of zero. The ibase and obase registers are the input
and output number radix, respectively. Both ibase and obase have
initial values of ten.

Function Calls

function name ([expression[,expression ..]])

A function call consists of a function name followed by parentheses
containing a comma-separated list of expressions, which are the
function arguments. A whole array passed as an argument is
specified by the array name followed by empty square brackets. All
function arguments are passed by value. As a result, changes made
to the formal parameters have no effect on the actual arguments. If
the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of
the return statement or is zero if no expression is provided or if
there is no return statement.

sqrt(expression)

The result is the square root of the expression. The result is
truncated in the least significant decimal place. The scale of the
result is the scale of the expression or the value of scale, whichever
is larger.

length (expression)

The result is the total number of significant decimal digits In the
expression. The scale of the result is zero.

9-16

Be

scale(expression)

The result is the scale of the expression. The scale of the result IS

zero.

Constants

Constants are primitive expressions.

Parentheses

An expression surrounded by parentheses is a primitive expression.
The parentheses are used to alter the normal precedence.

The unary operators bind right to left.

- expression

The result is the negative of the expression.

++ named-expression

The named expression is incremented by one. The result is the value
of the named expression after incrementing.

--named-expression

The named expression is decremented by one. The result is the value
of the named expression after decrementing.

named-expression++

The named expression is incremented by one. The result is the value
of the named expression before incrementing.

9-17

Be

named-expression-:--

The named expression is decremented by one. The result is the value
of the named expression before decrementing.

The exponentiation operator binds right to left.

expression expression

The result is the first expression raised to the power of the second
expression. The second expression must be an integer. If a is the
scale of the left expression and b is the absolute value of the right
expression, then the scale of the result is

min(aX b,max(scale,a))

The operators *, I, and % bind left to right.

expression * expression

The result is the product of the two expressions. If a and b are the
scales of the two expressions, then the scale of the result is

min(a + b,max(scale,a, b))

expression / expression

The result is the quotient of the two expressions. The scale of the
result is the value of scale.

expression % expression

The % operator produces the remainder of the division of the two
expressions. More precisely, a % b is a-a I b*b.

The scale of the result is the sum of the scale of the divisor and the
value of scale.

9-18

Be

The additive operators bind left to right.

expression + expression

The result is the sum of the two expressions. The scale of the result
is the maximum of the scales of the expressions.

expression - expression

The result is the difference of the two expressions. The scale of the
result is the maximum of the scales of the expressions.

The assignment operators bind right to left.

named-expression = expression

This expression results in assigning the value of the expression on
the right to the named expression on the left.

named-expression =+ expression
named-expression =- expression
named-expression =* expression
named-expression =/ expression
named -expression = % expression
named -expression = - expression

The result of the above expressions is equivalent to "named
expression = named expression OP expression", where OP is the
operator after the = sign.

9-19

BC

RELATIONAL OPERATORS

Unlike all other operators, the relational operators are only valid as
the object of an if or while statement or inside a for statement.

expression < expression
expression > expression
expression <= expression
expression >= expression
expression == expression
expression != expression

STORAGE CLASSES

There are only two storage classes in BC-global and automatic (local).
Only identifiers that are to be local to a function need be declared
with the auto command. The arguments to a function are local to
the function. All other identifiers are assumed to be global and
available to all functions. All identifiers, global and local, have
initial values of zero. Identifiers declared as auto are allocated on
entry to the function and released on returning from the function.
They therefore do not retain values between function calls. The auto
arrays are specified by the array name followed by empty square
brackets.

Automatic variables in BC do not work in exactly the same way as in
C language. On entry to a function, the old values of the names that
appear as parameters and as automatic variables are pushed onto a
stack. Until return is made from the function, reference to these
names refers only to the new values.

STATEMENTS

Statements must be separated by a semicolon or newline. Except
where altered by control statements, execution is sequential.

When a statement is an expression unless the main operator is an
assignment, the value of the expression is printed followed by a
newline character.

Statements may be grouped together and used when one statement is
expected by surrounding them with braces { }.

9-20

Be

The following statement prints the string inside the quotes.

" any string"

if(relation)statement

The substatement is executed if the relation is true.

while (relation)statement

The while statement is executed while the relation is true. The test
occurs before each execution of the statement.

for(expression; relation; expression)statement

The for statement is the same as

first-expression
while (relation) {

statement
last-expression

All three expressions must be present.

break

The break statement causes termination of a for or while
statement.

auto identifier[,identifier]

9-21

Be

The auto statement causes the values of the identifiers to be pushed
down. The identifiers can be ordinary identifiers or array identifiers.
Array identifiers are specified by following the array name with
empty square brackets. The auto statement must be the first
statement in a function definition.

define ([parameter [,parameter ...]]) {
statements}

The define statement defines a function. The parameters may be
ordinary identifiers or array names. Array names must be followed
by empty square brackets.

return
return (expression)

The return statement causes the following:

• Termination of a function

• Popping of the auto variables on the stack

• Specifies the results of the function.

The first form is equivalent to return(O). The result of the function
is the result of the expression in parentheses.

The quit statement stops execution of a Be program and returns
control to the UNIX system software when it is first encountered.
Because it is not treated as an executable statement, it cannot be
used in a function definition or in an if, for, or while statement.

9-22

Chapter 10

INTERACTIVE DESK CALCULATOR (DC)

PAGE

GENERAL. 10-1

DC COMMANDS... 10-2

INTERNAL REPRESENTATION OF NUMBERS.................. 10-5

THE ALLOCATOR.. 10-6

INTERNAL ARITHMETIC. 10-7

ADDITION AND SUBTRACTION. 10-8

MULTIPLICATION. 10-8

DIVISION. 10-9

REMAINDER ... 10-9

SQUARE ROOT.. 10-9

EXPONENTIATION.. 10-10

INPUT CONVERSION AND BASE. .. 10-10

OUTPUT COMMANDS .. 10-11

OUTPUT FORMAT AND BASE. 10-11

INTERNAL REGISTERS...................................... 10-11

STACK COMMANDS ... 10-12

SUBROUTINE DEFINITIONS AND CALLS. .. 10-12

INTERNAL REGISTERS-PROGRAMMING DC 10-12

PUSHDOWN REGISTERS AND ARRAyS 10-12

MISCELLANEOUS COMMANDS. .. 10-13

DESIGN CHOICES. .. 10-13

Chapter 10

I~TERACTIVE DESK CALCULATOR (DC)

GENERAL
The DC program is an interactive desk calculator program
implemented on the UNIX operating system to do arbitrary-precision
integer arithmetic. It has provisions for manipulating scaled fixed
point numbers and for input and output in bases other than decimal.

The size of numbers that can be manipulated by DC is limited only
by available core storage. On typical implementations of the UNIX
system, the size of numbers that can be handled varies from several
hundred on the smallest systems to several thousand on the largest.

The DC program works like a stacking calculator using reverse
Polish notation. Ordinarily, DC operates on decimal integers; but an
input base, output base, and a number of fractional digits to be
maintained can be specified.

A language called Be has been developed which accepts programs
written in the familiar style of higher-level programming languages
and compiles the output which is interpreted by DC. Some of the
commands described below were designed for the compiler interface
and are not easy for a human user to manipulate.

Numbers that are typed into DC are put on a pushdown stack. The
DC commands work by taking the top number or two off the stack,
performing the desired operation, and pushing the result on the
stack. If an argument is given, input is taken from that file until its
end, then it is taken from the standard input.

10-1

de

DC COMMANDS
Any number of commands are permitted on a line. Blanks and new
line characters are ignored except within numbers and in places
where a register name is expected.

The following constructions are recognized:

number (e.g. 244)

The value of a number is pushed onto the stack. A number is an
unbroken string of digits 0 through 9 and uppercase letters A
through F (treated as digits with values 10 through 15, respectively).
The number may be preceded by an underscore L) to input a negative
number and numbers may contain decimal points.

The top two values on the stack are added (+), subtracted (-),
multiplied (*), divided (I), remaindered (%), or exponentiated () by
using

The two entries are popped off the stack, and the result is pushed on
the stack in their place. The result of a division is an integer
truncated toward zero. An exponent must not have any digits after
the decimal point.

sx

The top of the main stack is popped and stored in a register named x
(where x may be any character). If s is uppercase, x is treated as a
stack; and the value is pushed onto it. Any character, even blank or
newline, is a valid register name.

The value of register x is pushed onto the stack. Register x IS not
altered. If the I in

Ix

10-2

de

is uppercase, register x is treated as a stack, and its top value is
popped onto the main stack. All registers start with empty value
which is treated as a zero by the command 1 and is treated as an
error by the command L.

The following characters perform the stated tasks:

d

The top value on the stack is duplicated.

p

The top value on the stack IS printed. The top value remains
unchanged.

f

All values on the stack and in registers are printed.

x

Treats the top element of the stack as a character string, removes it
from the stack, and executes it as a string of DC commands.

[...]

Puts the bracketed character string onto the top of the stack.

q

Exits the program. If executing a string, the recursion level is
popped by two. If q is uppercase, the top value on the stack is
popped; and the string execution level is popped by that value.

10-3

de

<x >x =x !<x !>x !=x

The top two elements of the stack are popped and compared.
Register x is executed if they obey the stated relation. Exclamation
point is negation.

v

Replaces the top element on the stack by its square root. The square
root of an integer is truncated to an integer.

Interprets the rest of the line as a UNIX software command. Control
returns to DC when the command terminates.

c

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix
for further input. If i is uppercase, the value of the input base is
pushed onto the stack. No mechanism has been provided for the
input of arbitrary numbers in bases less than 1 or greater than 16.

o

The top value on the stack is popped and used as the number radix
for further output. If 0 is uppercase, the value of the output base is
pushed onto the stack.

k

The top of the stack is popped, and that value is used as a scale
factor that influences the number of decimal places that are

10-4

de

maintained during multiplication, division, and exponentiation. The
scale factor must be greater than or equal to zero and less than 100.
If k is uppercase, the value of the scale factor is pushed onto the
stack.

z

The value of the stack level is pushed onto the stack.

?

A line of input is taken from the input source (usually the console)
and executed.

INTERNAL REPRESENTATION OF NUMBERS

Numbers are stored internally using a dynamic storage allocator.
Numbers are kept in the form of a string of digits to the base 100
stored one digit per byte (centennial digits). The string is stored
with the low-order digit at the beginning of the string. For example,
the representation of 157 is 57,1. After any arithmetic operation on a
number, care is taken that all digits are in the range 0 to 99 and that
the number has no leading zeros. The number zero is represented by
the empty string.

Negative numbers are represented in the 100s complement notation,
which is analogous to twos complement notation for binary numbers.
The high-order digit of a negative number is always -1 and all other
digits are in the range 0 to 99. The digit preceding the high-order -1
digit is never a 99. The representation of -157 is 43,98,-1. This is
called the canonical form of a number. The advantage of this kind of
representation of negative numbers is ease of addition. When
addition is performed digit by digit, the result is formally correct.
The result need only be modified, if necessary, to put it into canonical
form.

Because the largest valid digit is 99 and the byte can hold numbers
twice that large, addition can be carried out and the handling of
carries done later when it is convenient.

10-5

de

An additional byte is stored with each number beyond the high-order
digit to indicate the number of assumed decimal digits after the
decimal point. The representation of .001 is 1,3 where the scale has
been italicized to emphasize the fact that it is not the high-order
digit. The value of this extra byte is called the scale factor of the
number.

THE ALLOCATOR
The DC program uses a dynamic string storage allocator for all of its
internal storage. All reading and writing of numbers internally is
through the allocator. Associated with each string in the allocator is
a 4-word header containing pointers to the beginning of the string,
the end of the string, the next place to write, and the next place to
read. Communication between the allocator and DC is via pointers
to these headers.

The allocator initially has one large string on a list of free strings.
All headers except the one pointing to this string are on a list of free
headers. Requests for strings are made by size. The size of the
string actually supplied is the next higher power of two. When a
request for a string is made, the allocator first checks the free list to
see if there is a string of the desired size. If none is found, the
allocator finds the next larger free string and splits it repeatedly
until it has a string of the right size. Leftover strings are put on the
free list. If there are no larger strings, the allocator tries to combine.
smaller free strings into larger ones. Since all strings are the result
of splitting large strings, each string has a neighbor that is next to it
in core and, if free, can be combined with it to make a string twice as
long.

If a string of the proper length cannot be found, the allocator asks
the system for more space. The amount of space on the system is the
only limitation on the size and number of strings in DC. If the
allocator runs out of headers at any time in the process of trying to
allocate a string, it also asks the system for more space.

10-6

de

There are routines in the allocator for reading, writing, copying,
rewinding, forward spacing, and backspacing strings. All string
manipulation is done using these routines.

The reading and writing routines increment the read pointer or write
pointer so that the characters of a string are read or written in
succession by a series of read or write calls. The write pointer is
interpreted as the end of the information-containing portion of a
string and a call to read beyond that point returns an end of string
indication. An attempt to write beyond the end of a string causes the
allocator to allocate a larger space and then copy the old string into
the larger block.

INTERNAL ARITHMETIC
All arithmetic operations are done on integers. The operands (or
operand) needed for the operation are popped from the main stack
and their scale factors stripped off. Zeros are added or digits
removed as necessary to get a properly scaled result from the
internal arithmetic routine. For example, if the scale of the operands
is different and decimal alignment is required, as it is for addition;
zeros are appended to the operand with the smaller scale. After
performing the required ar"ithmetic operation, the proper scale factor
is appended to the end of the number before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic
operations. The scale register limits the number of decimal places
retained in arithmetic computations. The scale register may be set
to the number on the top of the stack truncated to an integer with
the k command. The K command may be used to push the value of
scale on the stack. The value of scale must be greater than or
equal to 0 and less than 100. The descriptions of the individual
arithmetic operations includes the exact effect of scale on the
computations.

10-7

de

ADDITION AND SUBTRACTION
The scales of the two numbers are compared and trailing zeros are
supplied to the number with the lower scale to give both numbers the
same scale. The number with the smaller scale is multiplied by 10 if
the difference of the scales is odd. The scale of the result is then set
to the larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted
and proceeding as in addition.

The addition is performed digit by digit from the low-order end of
the number. The carries are propagated in the usual way. The
resulting number is brought into canonical form, which may require
stripping of leading zeros, or for negative numbers, replacing the
high-order configuration 99,-1 by the digit -1. In any case, digits
that are not in the range 0 through 99 must be brought into that
range, propagating any carries or borrows that result.

MULTIPLICATION
The scales are removed from the two operands and saved. The
operands are both made positive. Then multiplication is performed
in a digit by digit manner that exactly follows the hand method of
multiplying. The first number is multiplied by each digit of the
second number, beginning with its low-order digit. The intermediate
products are accumulated into a partial sum which becomes the final
product. The product is put into the canonical form and its sign is
computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two
operands. If that scale is larger than the internal register scale and
also larger than both of the scales of the two operands, then the scale
of the result is set equal to the largest of these three last quantities.

10-8

de

DIVISION
The scales are removed from the two operands. Zeros are appended,
or digits are removed from the dividend to make the scale of the
result of the integer division equal to the internal quantity scale.
The signs are removed and saved.

Division is performed much as it would be done by hand. The
difference of the lengths of the two numbers is computed. If the
divisor is longer than the dividend, zero is returned. Otherwise, the
top digit of the divisor is divided into the top two digits of the
dividend. The result is used as the first (high-order) digit of the
quotient. If it turns out to be one unit too low, the next trial quotient
is larger than 99; and this is adjusted at the end of the process. The
trial digit is multiplied by the divisor, the result subtracted from the
dividend, and the process is repeated to get additional quotient digits
until the remaining dividend is smaller than the divisor. At the end,
the digits of the quotient are put into the canonical form with
propagation of carry as needed. The sign is set from the sign of the
operands.

REMAINDER
The division routine is called, and division is performed exactly as
described. The quantity returned is the remains of the dividend at
the end of the divide process. Since division truncates toward zero,
remainders have the same sign as the dividend. The scale of the
remainder is set to the maximum of the scale of the dividend and the
scale of the quotient plus the scale of the divisor.

SQUARE ROOT

The scale is removed from the operand. Zeros are added if necessary
to make the integer result have a scale that is the larger of the
internal quantity scale and the scale of the operand. The method
used to compute the square root is Newton's method with successive
approximations by the rule.

10-9

de

The initial guess is found by taking the integer square root of the top
two digits.

EXPONENTIATION
Only exponents with 0 scale factor are handled. If the exponent is 0,
then the result is 1. If the exponent is negative, then it is made
positive; and the base is divided into 1. The scale of the base is
removed.

The integer exponent is viewed as a binary number. The base is
repeatedly squared, and the result is obtained as a product of those
powers of the base that correspond to the positions' of the one-bits in
the binary representation of the exponent. Enough digits of the
result are removed to make the scale of the result the same as if the
indicated multiplication had been performed.

INPUT CONVERSION AND BASE

Numbers are converted to the internal representation as they are
read in. The scale stored with a number is simply the number of
fractional digits input. Negative numbers are indicated by preceding
the number with an underscore (_). The hexadecimal digits A
through F correspond to the numbers 10 through 15 regardless of
input base. The i command can be used to change the base of the
input numbers. This command pops the stack, truncates the
resulting number to an integer, and uses it as the input base for all
further input. The input base (ibase) is initialized to 10 (decimal)
but may, for example, be changed to 8 or 16 for octal or hexadecimal
to decimal conversions. The command I pushes the value of the input
base on the stack.

10-10

de

OUTPUT COMMANDS

The command p causes the top of the stack to be printed. It does not
remove the top of the stack. All of the stack and internal registers
are output by typing the command f. The 0 command is used to
change the output base (obase). This command uses the top of the
stack truncated to an integer as the base for all further output. The
output base in initialized to 10 (decimal). It works correctly for any
base.' The command 0 pushes the value of the output base on the
stack.

OUTPUT FORMAT AND BASE
The input and output bases only affect the interpretation of numbers
on input and output; they have no effect on arithmetic computations.
Large numbers are output with 70 characters per line; a backslash (\)
indicates a continued line. All choices of input and output bases
work correctly, although not all are useful. A particularly useful
output base is 100000, which has the effect of grouping digits in fives.
Bases of 8 and 16 are used for decimal-octal or decimal-hexadecimal
conversions.

INTERNAL REGISTERS
Numbers or strings may be stored in internal registers or loaded on
the stack from registers with the commands sand l. The command
sx pops the top of the stack and stores the result in register x. The x
can be any character. The command Ix puts the contents of register
x on the top of the stack. The I command has no effect on the
contents of register x. The s command, however, is destructive.

10-11

de

STACK COMMANDS

The command e clears the stack. The command d pushes a duplicate
of the number on the top of the stack onto the stack. The command z
pushes the stack size on the stack. The command X replaces the
number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

SUBROUTINE DEFINITIONS AND CALLS
Enclosing a string in brackets "[]" pushes the ASCII string on the
stack. The q command quits or (in executing a string) pops the
recursion levels by two.

INTERNAL REGISTERS-PROGRAMMING DC

The load and store commands, together with "[]" to store strings, the
x command to execute, and the testing commands «, >, =, !<, !>,
!=), can be used to program DC. The x command assumes the top of
the stack is a string of DC commands and executes it. The testing
commands compare the top two elements on the stack and, if the
relation holds, execute the register that follows the relation. For
example, to print the numbers 0 through 9,

[lipl + si lilO>a]sa
Osi lax

PUSHDOWN REGISTERS AND ARRAYS

These commands are designed for use by a compiler, not directly by
programmers. They involve pushdown registers and arrays. In
addition to the stack that commands work on, DC can be thought of
as having individual stacks for each register. These registers are
operated on by the commands Sand L. Sx pushes the top value of
the main stack onto the stack for the register x. Lx pops the stack
for register x and puts the result on the main stack. The commands

10-12

de

s and I also work on registers but not as pushdown stacks. The
command I does not affect the top of the register stack, but s
destroys what was there before.

The commands to work on arrays are : and ;. The command :x pops
the stack and uses this value as an index into the array x. The next
element on the stack is stored at this index in x. An index must be
greater than or equal to 0 and less than 2048. The command ;x loads
the main stack from the array x. The value on the top of the stack is
the index into the array x of the value to be loaded.

MISCELLANEOUS COMMANDS

The command ! interprets the rest of the line as a UNIX software
command and passes it to the UNIX operating system to execute.
One other compiler command is Q. This command uses the top of the
stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator is that a
general purpose program can be used for a variety of other tasks. The
allocator has some value for input and for compiling (i.e., the bracket
[...] commands) where it cannot be known in advance how long a
string will be. The result is that at a modest cost in execution time:

• All considerations of string allocation and sizes of strings are
removed from the remainder of the program.

• Debugging is made easier.

• The allocation method used wastes approximately 25 percent of
available space.

The choice of 100 as a base for internal arithmetic seemingly has no
compelling advantage. Yet the base cannot exceed 127 because of
hardware limitations and at the cost of 5 percent in space debugging
was made a great deal easier, and decimal output was made much
faster.

10-13

de

The reason for a stack-type arithmetic design was to permit all DC
commands from addition to subroutine execution to be implemented
in essentially the same way. The result was a considerable degree of
logical separation of the final program into modules with very little
communication between modules.

The rationale for the lack of interaction between the scale and the
bases is to provide an understandable means of proceeding after a
change of base or scale (when numbers had already been entered). An
earlier implementation which had global notions of scale and base did
not work out well. If the value of scale is interpreted in the current
input or output base, then a change of base or scale in the midst of a
computation causes great confusion in the interpretation of the
results. The current scheme has the advantage that the value of the
input and output bases are only used for input and output,
respectively, and they are ignored in all other operations. The value
of scale is not used for any essential purpose by any part of the
program. It is used only to prevent the number of decimal places
resulting from the arithmetic operations from growing beyond all
bounds.

The rationale for the choices for the scales of the results of
arithmetic is that in no case should any significant digits be thrown
away if, on appearances, the user actually wanted them. Thus, if the
user wants to add the numbers 1.5 and 3.517, it seemed reasonable to
give them the result 5.017 without requiring to unnecessarily specify
rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results
with many more digits than their operands. It seemed reasonable to
give as a minimum the number of decimal places in the operands but
not to give more than that number of digits unless the user asked for
them by specifying a value for scale. Square root can be handled in
just the same way as multiplication. The operation of division gives
arbitrarily many decimal places, and there is simply no way to guess
how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the
dividend from the quotient and remainder. This is easy to implement;
no digits are thrown away.

10-14

Chapter 11

LEXICAL ANALYZER GENERATOR (LEX)

PAGE

GENERAL. 11-1

LEX SOURCE. 11-4

LEX REGULAR EXPRESSIONS. 11-6

LEX ACTIONS. 11-12

AMBIGUOUS SOURCE RULES. .. 11-16

LEX SOURCE DEFINITIONS. .. 11-20

USAGE.. 11-22

LEX AND YACC.. 11-22

EXAMPLES.. 11-23

LEFT CONTEXT SENSITIVITy................................ 11-25

CHARACTER SET .. " 11-27

SUMMARY OF SOURCE FORMAT 11-28

CAVEATS AND BUGS... 11-30

Chapter 11

LEXICAL ANALYZER GENERATOR
(LEX)

GENERAL
The Lex is a program generator that produces a program in a
general purpose language that recognizes regular expressions. I t is
designed for lexical processing of character input streams. It accepts
a high-level, problem oriented specification for character string
matching. The regular expressions are specified by you (the user) in
the source specifications given to Lex. The Lex program generator
source is a table of regular expressions and corresponding program
fragments. The table is translated to a program that reads an input
stream, copies the input stream to an output stream, and partitions
the input into strings that match the given expressions. As each
such string is recognized, the corresponding program fragment is
executed. The recognition of the expressions is performed by a
deterministic finite automaton generated by Lex. The program
fragments written by you are executed in the order in which the
corresponding regular expressions occur in the input stream.

The user supplies the additional code beyond expression matching
needed to complete the tasks, possibly including codes written by
other generators. The program that recognizes the expressions is
generated in the general purpose programming language employed
for your program fragments. Thus, a high-level expression language
is provided to write the string expressions to be matched while your
freedom to write actions is unimpaired.

The Lex written code is not a complete language, but rather a
generator representing a new language feature which can be added to
different programming languages, called "host languages". Just as
general purpose languages can produce code to run on different
computer hardware, Lex can write code in different host languages.
The host language is used for the output code generated by Lex and
also for the program fragments added by the user. Compatible run
time libraries for the different host languages are also provided.
This makes Lex adaptable to different environments and different

11-1

LEX

users. Each application may be directed to the combination of
hardware and host language appropriate to the task, the user's
background, and the properties of local implementations. At present,
the only supported host language is the C language, although Fortran
(in the form of Ratfor) has been available in the past. The Lex
generator exists on the UNIX operating system, but the codes
generated by Lex may be taken anywhere the appropriate compilers
exist.

The Lex program generator turns the user's expressions and actions
(called source) into the host general purpose language; the
generated program is named yylex. The yylex program recognizes
expressions in a stream (called input) and performs the specified
actions for each expression as it is detected. See Figure 11-1.

Source~ G ~ yylex

Input_ 1 yylex 1-Output

Figure 11-1. Overview of Lex

For example, consider a program to delete from the input all blanks
or tabs at the ends of lines.

%%
[\t]+$

IS all that is required. The program contains a % % delimiter to
mark the beginning of the rules. This rule contains a regular
expression that matches one or more instances of the characters

11-2

LEX

blank or tab (written for visibility, in accordance with the C
language convention) and occurs prior to the end of a line. The
brackets indicate the character class made of blank and tab; the +
indicates "one or more ... "; and the $ indicates "end of line," as in
QED. No action is specified, so the program generated by Lex
yylexO ignores these characters. Everything else is copied. To
change any remaining string of blanks or tabs to a single blank, add
another rule.

%%
[\t]+$
[\t]+ printf(" ");

The coded instructions (generated for this source) scan for both
rules at once, observe (at the termination of the string of blanks or
tabs) whether or not there is a newline character, and then execute
the desired rule action. The first rule matches all strings of blanks
or tabs at the end of lines, and the second rule matches all remaining
strings of blanks or tabs.

The Lex program generator can be used alone for simple
transformations or for analysis and statistics gathering on a lexical
level. The Lex generator can also be used with a parser generator to
perform the lexical analysis phase; it is particularly easy to interface
Lex and yacc. The Lex program recognizes only regular
expressions; yacc writes parsers that accept a large class of context
free grammars but requires a lower level analyzer to recognize input
tokens. Thus, a combination of Lex and yacc is often appropriate.
When used as a preprocessor for a later parser generator, Lex is
used to partition the input stream; and the parser generator assigns
structure to the resulting pieces. The flow of control in such a case is
shown in Figure 11.2. Additional programs, written by other
generators or by hand, can be added easily to programs written by
Lex. You will realize that the name yylex is what yacc expects its
lexical analyzer to be named, so that the use of this name by Lex
simplifies interfacing.

In the program written by Lex, the user's fragments (representing
the actions to be performed as each regular expression is found) are
gathered as cases of a switch. The automaton interpreter directs the
control flow. Opportunity is provided for the user to insert either

11-3

LEX

lexical granunar
rules rules

1 1

G Yace

1 1
Input- I yylex I-I yyparse I-parsed input

Figure 11-2. Lex With Yacc

declarations or additional statements in the routine containing the
actions or to add subroutines outside this action routine.

The Lex program generator is not limited to a source that can be
interpreted on the basis of one character look-ahead. For example, if
there are two rules, one looking for "ab" and another for "abcdefg"
and the input stream is "abcdefh," Lex recognizes "ab" and leaves
the input pointer just before "cd ... ". Such backup is more costly
than the processing of simpler languages.

LEX SOURCE

The general format of Lex source is

11-4

{definitions}
%%
{rules}
%%
{user subroutines}

LEX

where the definitions and the user subroutines are often omitted.
The first % % is required to mark the beginning of the rules, but the
second % % is optional. The absolute minimum Lex program is

%%

(no definitions, no rules) which translates into a program that copies
the input to the output unchanged.

In the outline of Lex programs shown above, the rules represent
your control decisions. They are in a table containing

• A left column with regular expressions

• A right column with actions and program fragments to be
executed when the expressions are recognized.

Thus an individual rule might be

integer printf(" found keyword INT');

to look for the string integer in the input stream and print the
message" found keyword INT' whenever it appears. In this example,
the host procedural language is C, and the C language library
function printf is used to print the string. The end of the expression
is indicated by the first blank or tab character. If the action is
merely a single C language expression, it can just be given on the
right side of the line; if it is compound or takes more than a line, it
should be enclosed in braces. As a more useful example, suppose you
desire to change a number of words from British to American
spelling.

11-5

LEX

The Lex rules such as:

colour
mechanise
petrol

printf(" color");
printf(" mechanize");

printf(" gas");

would be a start. These rules are not sufficient since the word
"petroleum" would become II gaseum" .

LEX REGULAR EXPRESSIONS
The definitions of regular expressions are very similar to those in
QED. A regular expression specifies a set of strings to be matched.
It contains text characters (which match the corresponding
characters in the strings being compared) and operator characters
(which specify repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; the regular
expression

integer

matches the string "integer" wherever it appears, and the expression

a57D

looks for the string "a57D".

Operators

The operator characters are

"\[] - ?*+I()$/{} % <>

and if they are to be used as text characters, an escape should be
used. The quotation mark operator " indicates that whatever is
contained between a pair of quotes is to be taken as text characters.

11-6

LEX

Thus:

xyz" ++"

matches the string xyz++ when it appears. Note that a part of a
string may be quoted. It is harmless, but unnecessary, to quote an
ordinary text character; the expression

" xyz++"

is equivalent to the one above. Thus, by quoting every
nonalphanumeric character being used as a text character, the user
can avoid remembering the list above of current operator characters
and is safe should further extensions to Lex lengthen the list.

An operator character may also be turned into a text character by
preceding it with a backs lash (\) as in

xyz\+\+

which is another, less readable, equivalent of the above expressions.
Another use of the quoting mechanism is to get a blank into an
expression; normally, as explained above, blanks or tabs end a rule.
Any blank character not contained within [] (see below) must be
quoted. Several normal C language escapes with \ are recognized: \n
is newline, \t is tab, and \b is backspace. To enter \ itself, use \ \.
Since newline is illegal in an expression, \n must be used; it is not
required to escape tab and backspace. Every character except blank,
tab, newline, and the list of operator characters above is always a
text character.

Character Classes

Classes of characters can be specified using the operator pair []. The
construction r abc] matches a single character which may be "a", "b",
or "c". Within square brackets, most operator meanings are ignored.
Only three characters are special; these are \, -, and A. The -
character indicates ranges. For example,

[a-zO-9<> _]

11-7

LEX

indicates the character class containing all the lowercase letters, the
digits, the angle brackets, and underline. Ranges may be given in
either order. Using - between any pair of characters which are not
both uppercase letters, both lowercase letters, or both digits is
implementation dependent and gets a warning message (e.g., [O-z] in
ASCII is many more characters than is in EBCDIC). If it is desired
to include the character - in a character class, it should be first or
last; thus:

[-+0-9]

matches all the digits and the two signs.

In character classes, the ~ operator must appear as the first character
after the left bracket to indicate that the resulting string is
complemented with respect to the computer character set. Thus:

(abc]

matches all characters except "a", "b", or "c", including all special or
control characters; or

(a-zA-Z]

is any character that is not a letter. The \ character provides the
usual escapes within character class brackets.

Arbitrary Character

To match almost any character, the operator character (dot)

is the class of all characters except newline. Escaping into octal is
possible although nonportable.

[\40-\176]

11-8

LEX

matches all printable ASCII characters from octal 40 (blank) to octal
176 (tilde).

Optional Expressions

The operator? indicates an optional element of an expression. Thus:

ab?c

matches either "ac" or "abc".

Repeated Expressions

Repetitions of classes are indicated by the operators * and +. For
example,

a*

is any number of consecutive "a" characters, including zero; while

a+

is one or more instances of "a". For example,

[a-z]+

is all strings of lowercase letters. And

[A-Za-z] [A-Za-zO-9]*

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing identifiers in
computer languages.

11-9

LEX

Alternation and Grouping

The operator I indicates alternation

(ablcd)

matches either "ab" or "cd". Note that parentheses are used for
grouping; although they are not necessary on the outside level,

ablcd

would have sufficed. Parentheses can be used for more complex
expressions.

(ablcd+)?(ef)*

matches such strings as "abefef", "efefef", "cdef", or "cddd"; but not
"abc", "abcd", or "abcdef".

Context Sensitivity

The Lex program recognizes a small amount of surrounding context.
The two simplest operators for this are ~ and $. If the first character
of an expression is A, the expression is only matched at the beginning
of a line (after a newline character or at the beginning of the input
stream). This never conflicts with the other meaning of A

(complementation of character classes) since that only applies within
the [] operators. If the very last character is $, the expression is only
matched at the end of a line (when immediately followed by newline).
The latter operator is a special case of the / operator character which
indicates trailing context. The expression

ab/cd

matches the string "ab" but only if followed by "cd". Thus:

ab$

11-10

LEX

is the same as

ab/\n

Left context is handled in Lex by "start conditions" as explained
later. If a rule is only to be executed when the Lex automaton
in terpreter is in start condition x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we considered "being
at the beginning of a line" to be start condition ONE, then the A

operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions

The operators {} specify either repetitions (if they enclose numbers)
or definition expansion (if they enclose a name). For example,

{ digit}

looks for a predefined string named "digit" and inserts it at that
point in the expression. The definitions are given in the first part of
the Lex input before the rules. In contrast,

a{1,5}

looks for 1 to 5 occurrences of "a".

Finally, initial % is special being the separator for Lex source
segments.

11-11

LEX

LEX ACTIONS
When an expression written as above is matched, Lex executes the
corresponding action. This part describes some features of Lex that
aid in writing actions. Note that there is a default action that
consists of copying the input to the output. This is performed on all
strings not otherwise matched. Thus, the Lex user who wishes to
absorb the entire input, without producing any output, must provide
rules to match everything. When Lex is being used with yacc, this
is the normal situation. One may consider that actions are what is
done instead of copying the input to the output; thus, in general, a
rule that merely copies can be omitted. Also, a character
combination that is omitted from the rules and that appears as input
is likely to be printed on the output, thus calling attention to the gap
in the rules.

One of the simplest things that can be done is to ignore the input.
Specifying a C language null statement, ; as an action causes this
result. A frequent rule is

[\t\nJ

which causes the three spacing characters (blank, tab, and newline)
to be ignored.

Another easy way to avoid writing actions is the action character I
which indicates that the action for this rule is the action for the next
rule. The previous example could also have been written

" II

" \t"
"\n"

with the same result although in different style. The quotes around
\n and \ t are not required.

In more complex actions, you may often want to know the actual text
that matched some expression like "[a-z]+". The Lex program
leaves this' text in an external character array. Thus, to print the
name found, a rule like

11-12

LEX

[a-z]+ printf(" %s" , yytext);

prints the string in yytext[j. The C language function printf accepts
a format argument and data to be printed; in this case, the format is
"print string" (% indicating data conversion, and s indicating string
type), and the data are the characters in yytext[j. This places the
matched string on the output. This action is so common that it may
be written as ECHO.

[a-z]+ ECHO;

is the same as the above. Since the default action is just to print the
characters found, one might ask why give a rule like this one which
merely specifies the default action. Such rules are often required to
avoid matching some other rule that is not desired. For example, if
there is a rule that matches read, it normally matches the instances
of read contained in bread or readjust. To avoid this, a rule of the
form "[a-z]+" is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has been
found; hence, Lex also provides a count yyleng of the number of
characters matched. To count both the number of words and the
number of characters in words in the input, write

[a-zA-Z]+ {words++; chars += yyleng;}

which accumulates in chars the number of characters in the words
recognized. The last character in the string matched can be accessed
by

yytext [yy leng -1]

Occasionally, a Lex action may decide that a rule has not recognized
the correct span of characters. Two routines are provided to aid with
this situation. First, yymore() can be called to indicate that the next
input expression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite the current
entry in yytext. Second, yyless(n) may be called to indicate that not
all the characters matched by the currently successful expression are

11-13

LEX

wanted right now. The argument "n" indicates the number of
characters in yytext to be retained. Further characters previously
matched are returned to the input. This provides the same sort of
look ahead offered by the / operator but in a different form.

Example:

Consider a language that defines a string as a set of characters
between quotation (") marks and provides that to include a (") in a
string it must be preceded by a \. The regular expression which
matches that is somewhat confusing, so that it might be preferable to
write

\" e"]* {
if (yytext[yyleng-l] =='\ \')

yymore();
else

... normal user processing
}

will, when faced with a string such as " abc\" def" , first match the
five characters" abc\; then the call to yymoreO will cause the next
part of the string" def to be tacked on the end. Note that the final
quote terminating the string should be picked up in the code labeled
"normal processing".

The function yylessO might be used to reprocess text in various
circumstances. Consider the C language problem of distinguishing
the ambiguity of "=-a ". Suppose it is desired to treat this as "=
a" but also to print a message: a rule might be

=-[a-zA-Z] {
printf(" Operator (=-) ambiguous\n");
yyless(yyleng-l);
... action for =-
}

which prints a message, returns the letter after the operator to the
input stream, and treats the operator as "=- ". Alternatively, it
might be desired to treat this as "=-a ". To do this, just'return the

11-14

minus sign as well as the letter to the input.

=-[a-zA-Z] {
printf(fI Operator (=-) ambiguous\n");
yyless(yyleng-2);
... action for = ...
}

LEX

performs the other interpretation. Note that the expressions for the
two cases might more easily be written

=-/[A-Za-z]

in the first case, and

=/ -[A-Za-z]

in the second; no backup is required in the rule action. It is not
necessary to recognize the whole identifier to observe the ambiguity.
The possibility of "=-3", however, makes

=-/C \t\n]

a still better rule.

In addition to these routines, Lex also permits access to the I/O
routines it uses. They are as follows:

1. input() returns the next input character.

2. output(c) writes the character "c" on the output.

3. unput(c) pushes the character "c" back onto the input stream
to be read later by input().

By default, these routines are provided as macro definitions; but the
user can override them and supply private versions. These routines

11 .. 15

LEX

define the relationship between external files and internal characters
and must all be retained or modified consistently. They may be
redefined to cause input or output to be transmitted to or from
strange places including other programs or internal memory. The
character set used must be consistent in all routines and a value of
zero returned by input must mean end of file. The relationship
between unput and input must be retained or the Lex look ahead will
not work. The Lex program does not look ahead at all if it does not
have to, but every rule ending in +, *, ?, or $ or containing / implies
look ahead. Look ahead is also necessary to match an expression that
is a prefix of another expression. The standard Lex library imposes
a 100-character limit on backup.

Another Lex library routine that you may sometimes want to
redefine is yywrap() which is called whenever Lex reaches an end of
file. If yywrap returns a 1, Lex continues with the normal wrap-up
on end of input. Sometimes, however, it is convenient to arrange for
more input to arrive from a new source. In this case, the user should
provide a yywrap which arranges for new input and returns O. This
instructs Lex to continue processing. The default yywrap always
returns 1.

This routine is also a convenient place to print tables, summaries,
etc., at the end of a program. Note that it is not possible to write a
normal rule that recognizes end of file; the only access to this
condition is through yywrap. In fact, unless a private version of
input() is supplied, a file containing nulls cannot be handled since a
value of 0 returned by input is taken to be end of file.

AMBIGUOUS SOURCE RULES

The Lex program can handle ambiguous specifications. When more
than one expression can match the current input, Lex chooses as
follows:

1. The longest match is preferred.

2. Among rules that matched the same number of characters, the
rule given first is preferred.

11-16

Thus, suppose the rules

integer
[a-z]+

keyword action ... ;
identifier action ... ;

LEX

are to be given in that order. If the input is "integers", it is taken as
an identifier because

"[a-z]+"

matches eight characters while "integer" matches only seven. If the
input is "integer", both rules match seven characters; and the
keyword rule is selected because it WaS given first. Anything shorter
(e.g., "int") does not match the expression "integer" and so the
identifier interpretation is used.

The principle of preferring the longest match makes rules containing
expressions like .* dangerous. For example:

, *'

might appear to be a good way of recognIzIng a string in single
quotes. However, it is an invitation for the program to read far
ahead looking for a distant single quote. Presented with the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the form

'('\n]*'

which, on the above input, stops after ('first'). The consequences of
errors like this are mitigated by the fact that the dot (.) operator

11-17

LEX

does not match newline. Thus expressions like .* stop on the current
line. Do not try to defeat this with expressions like [.\n]+ or
equivalents; the Lex generated program tries to read the entire input
file causing internal buffer overflows.

Note that Lex is normally partitioning the input stream not
searching for all possible matches of each expression. This means
that each character is accounted for once and only once. FOr"

example, suppose it is desired to count occurrences of both "she" and
"he" in an input text. Some Lex rules to do this might be

she s++;
he h++;
\n

where the last two rules ignore everything besides "he" and "she".
Remember that dot (.) does not include newline. Since "she" includes
"he", Lex normally does not recognize the instances of "he" includ"ed
in "she" since once it has passed a "she" those characters are gone. "

Sometimes the user desires to override this choice. The action
REJECT means "go do the next alternative". It causes whatever rule
was second choice after the current rule to be executed. The position
of the input pointer is adjusted accordingly. Suppose you really want
to count the included instances of "he". Use the following rule to
change the previous example to accomplish the task.

she {s++; REJECT;}
he {h++; REJECT;}
\n

After counting each expression, it is rejected; whenever appropriate,
the other expression is then counted. In this example, you could note
that "she" includes "he" but not vice versa and omit the REJECT
action on "he". In other cases, it is not possible to state which input
characters are in both classes.

11-18

Consider the two rules

a[bc]+
a[cd]+

{ ... ; REJECT;}
{ ... ; REJECT;}

LEX

If the input is "ab", only the first rule matches, and on "ad" only the
second matches. The input string "accb" matches the first rule for
four characters and then the second rule for three characters. In
contrast, the input "aced" agrees with the second rule for four
characters and then the first rule for three.

In general, REJECT is useful whenever the purpose of Lex is not to
partition the input stream but to detect all examples of some items in
the input, and the instances of these items may overlap or include
each other. Suppose a digram table of the input is desired; normally,
the digrams overlap, that is the word "the" is considered to contain
both "th" and "he". Assuming a 2-dimensional array named
digram[] to be incremented, the appropriate source is

%%
[a-z] [a-z] {digram[yytext[O]] [yytext[l]]++; REJECT;}

\n

where the REJECT is necessary to pick up a letter pair beginning at
every character rather than at every other character.

The action REJECT does not rescan the input; instead it remembers
the results of the previous scan. This means that if a rule with
trailing context is found and REJECT executed, the user must not
have used unput to change the characters forthcoming from the input
stream. This is the only restriction on the user's ability to
manipulate the not-yet-processed input.

11-19

LEX

LEX SOURCE DEFINITIONS

Recalling the format of the Lex source,

{ definitions}
%%
{rules}
%%
{user routines}

So far, only the rules have been described. You need additional
options to define variables for use in the program and for use by
Lex. Variables can go either in the definitions section or in the rules
section.

Remember Lex is generating the rules into a program. Any source
not intercepted by Lex is copied into the generated program. There
are three classes of such things.

1. Any line not part of a Lex rule or action that begins with a
blank or tab is copied into the Lex generated program. Such
source input prior to the first % % delimiter is external to any
function in the code; if it appears immediately after the first
% %, it appears in an appropriate place for declarations in the
function written by Lex which contains the actions. This
material must look like program fragments and should precede
the first Lex rule.

Lines that begin with a blank or tab and that contain a
comment are passed through to the generated program. This
can be used to include comments in either the Lex source or
the generated code; the comments should follow the host lan
guage convention.

2. Anything included between lines containing only % { and %} is
copied out as above. The delimiters are discarded. This
format permits entering text like preprocessor statements that
must begin in column 1 or copying lines that do not look like
programs.

11-20

LEX

3. Anything after the third % % delimiter, regardless of formats,
etc., is copied out after the Lex output.

Definitions intended for Lex are given before the first % %
delimiter. Any line in this section not contained between % { and %}
and beginning in column 1 is assumed to define Lex substitution
strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with
the name. The name and translation must be separated by at least
one blank or tab, and the name must begin with a letter. The
translation can then be called out by the {name} syntax in a rule.
Using {D} for the digits and {E} for an exponent field, for example,
abbreviate rules to recognize numbers

D
E
%%

[0-9]
[DEde][-+]?{D}+

{D}+ printf(" integer");
{D}+"." {D}*({E})?
{D}*"." {D}+({E})?
{D} + {E} printf(" real");

Note the first two rules for real numbers; both require a decimal
point and contain an optional exponent field. The first requires at
least one digit before the decimal point, and the second requires at
least one digit after the decimal point. To correctly handle the
problem posed by a Fortran expression such as "35.EQ.I", which does
not contain a real number, a context-sensitive rule such as:

[0-9]+1" ." EQ printf(" integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands including
the selection of a host language, a character set table, a list of start
conditions, or adjustments to the default size of arrays within Lex

11-21

LEX

itself for larger source programs. These possibilities are discussed
later.

USAGE
There are two steps in com piling a Lex source program. First, the
Lex source must be turned into a generated program in the host
general purpose language. Then this program must be compiled and
loaded usually with a library of Lex subroutines. The generated
program is on a file named lex.yy.c. The 1/0 library is defined in
terms of the C language standard library.

On the UNIX operating system, the library is accessed by the loader
flag -ll. So an appropriate set of commands is

lex source
cc lex.yy.c -ll

The resulting program is placed on the usual file a.out for later
execution. To use Lex with yacc, see part "LEX AND Y ACC" .
Although the default Lex 1/0 routines use the C language standard
library, the Lex automata themselves do not do so; if private
versions of input, output, and unput are given, the library is avoided.

LEX AND YACC

To use Lex with yacc, observe that Lex writes a program named
yylex() (the name required by yacc for its analyzer). Normally, the
default main program on the Lex library calls this routine; but if
yacc is loaded and its main program is used, yacc calls yylex(). In
this case, each Lex rule ends with

return(token);

where the appropriate token value is returned. An easy way to get
access to yacc's names for tokens is to compile the Lex output file
as part of the yacc output file by placing the line

11-22

LEX

include" lex.yy.c"

in the last section of yacc input. If the grammar is to be named
"good" and the lexical rules are to be named "better", the UNIX
software command sequence could be

yacc good
lex better
cc y.tab.c -ly -11

The yacc library (-ly) should be loaded before the Lex library to
obtain a main program that invokes the yacc parser. The
generations of Lex and yacc programs can be done in either order.

EXAMPLES
As a problem, consider copying an input file while adding three to
every positive number divisible by seven. A suitable Lex source
program follows:

%%
int k;

[0-9]+ {
k = atoi(yytext);
if (k%7 == 0)

printf(" % d" , k+3);
else

printf(" % d" ,k);
}.

The rule "[0-9] +" recognizes strings of digits; atoi() converts the
digits to binary and stores the result in "k". The operator %
(remainder) is used to check whether "k" is di visi ble by seven; if it is,
"k" is incremented by three as it is written out. It may be objected
that this program alters such input items as "49.63" or "X7".
Furthermore, it increments the absolute value of all negative
numbers divisible by seven. To avoid this, add a few more rules after

11-23

LEX

the active one, as here:

%%

-?[O-9]+
int k;

{
k = atoi(yytext);
printf(" % d" , k% 7 == 0 ? k+3 : k);
}

-?[O-9.]+ ECHO;
[A-Za-z][A-Za-zO-9]+ ECHO;

Numerical strings containing a dot (.) or preceded by a letter will be
picked up by one of the last two rules and not changed. The "if-else"
has been replaced by a C language conditional expression to save
space; the form "a ?b:c" means "if a then b else c".

For an example of statistics gathering, here is a program that
histograms the lengths of words, where a word is defined as a string
of letters:

%%
[a-z]+

\n
%%
yywrap()
{
int i;

int lengs[lOO];

lengs[yyleng]++;

printf(" Length No. words\n");
for(i=O; i<lOO; i++)

if (lengs[i] > 0)
printf(" %5d%lOd\n" ,i,lengs[i]);

return(l);
}

This program accumulates the histogram while producing no output.
At the end of the input, it prints the table. The final statement
"return(l);" indicates that Lex is to perform wrap- up. If yywrap
returns zero (false), it implies that further input is available and the
program is to continue reading and processing. Providing a yywrap
(that never returns true) causes an infinite loop.

11-24

LEX

LEFT CONTEXT SENSITIVITY

Sometimes it is desirable to have several sets of lexical rules to be
applied at different times in the input. For example, a compiler
preprocessor might distinguish preprocessor statements and analyze
them differently from ordinary statements. This requires sensitivity
to prior context, and there are several ways of handling such
problems. The A operator, for example, is a prior context operator
recognizing immediately preceding left context just as $ recognizes
immediately following right context. Adjacent left context could be
extended to produce a facility similar to that for adjacent right
context, but it is unlikely to be as useful since often the relevant left
context appeared some time earlier such as at the beginning of a line.

This part describes three means of dealing with different
environments: a simple use of flags (when only a few rules change
from one environment to another), the use of "start conditions" on
rules, and the possibility of making multiple lexical analyzers all run
together. In each case, there are rules that recognize the need to
change the environment in which the following input text is analyzed
and that set a parameter to reflect the change. This may be a flag
explicitly tested by the user's action code; this is the simplest way of
dealing with the problem since Lex is not involved at all. It may be
more convenient, however, to have Lex remember the flags as initial
conditions on the rules. Any rule may be associated with a start
condition. It is only recognized when Lex is in that start condition.
The current start condition may be changed at any time. Finally, if
the sets of rules for the different environments are very dissimilar,
clarity may be best achieved by writing several distinct lexical
analyzers and switching from one to another as desired.

Consider the following problem: copy the input to the output,
changing the word" magic" to" first" on every line which began
with the letter" a", changing" magic" to" second" on every line
which began with the letter" btl , and changing" magic" to" third"
on every line which began with the letter" c". All other words and
all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a
flag.

11-25

LEX

int flag.
%%
Aa {flag = 'a'; ECHO;}
Ab {flag = 'b'; ECHO;}
AC {flag = 'c'; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)
{
case 'a': printf(" first"); break;
case 'b': printf(" second"); break;
case 'c': printf(" third"); break;
default: ECHO; break;
}

}

should be adequate.

To handle the same problem with start conditions, each start
condition must be introduced to Lex in the definitions section with a
line reading

% Start namel name2 ...

where the conditions may be named in any order. The word "Start"
may be abbreviated to "s" or "S". The conditions may be referenced
a t the head of a rule with <> brackets;

<namel>expression

is a rule that is only recognized when Lex is in the start condition
name!. To enter a start condition, execute the action statement

BEGIN namel;

which changes the start condition to name!. To resume the normal
state

11-26

LEX

BEGIN 0;

resets the initial condition of the Lex automaton interpreter. A rule
may be active in several start conditions.

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator
is always active.

The same example as before can be written as follows:

% START AA BB CC
%%
a

-b

c
\n
<AA>magic
<BB>magic
<CC>magic

{ECHO; BEGIN AA;}
{ECHO; BEG IN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN O;}

printf(" first");
printf(" second");
printf(" third");

where the logic is exactly the same as in the previous method of
handling the problem, but Lex does the work rather than the user's
code.

CHARACTER SET
The programs generated by Lex handle character I/O only through
the routines inputO, ou tpu to, and unputO. Thus, the character
representation provided in these routines is accepted by Lex and
used to return values in yytextO. For internal use, a character is
represented as a small integer which, if the standard library is used,
has a value equal to the integer value of the bit pattern representing
the character on the host computer. Normally, the letter a is
represented in the same form as the character constant 'a'. If this
interpretation is changed by providing I/O routines that translate the
characters, Lex must be given a translation table that is in the
definitions section and must be bracketed by lines containing only

11-27

LEX

% T; the translation table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.

SUMMARY OF SOURCE FORMAT
The general form of a Lex source file is

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1. Definitions in the form "name space translation".

2. Included code in the form "space code".

3. Included code in the form:

%{
code
%}

4. Start conditions given in the form:

% S namel name2 ...

5. Character set tables in the form:

11-28

LEX

%T
number space character-string

%T

6. Changes to internal array sizes in the form:

%x nnn

where "nnn" is a decimal integer representing an array size and "a"
selects the parameter as follows:

Letter
p
n
e
a
k
o

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form "expression action" where
the action may be continued on succeeding lines by using braces to
delimit it.

Regular expressions in Lex use the operators shown in Figure 11-3.

11-29

LEX

OPERATOR DESCRIPTION

x the character " x" .
" x" an " x" , even if x is an operator.
\x an " x" , even if x is an operator.
[xy] the character x or y.
[x-z] the characters x, y, or z.
(x] any character but x.

any character but newline.
A

x an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
x$ an x at the end of a line.
x? an optional x.
X* 0,1,2, ... instances of x.
x+ 1,2,3, ... instances of x.
xly an x or a y.

(x) an x.
x/y an x but only if followed by y.
{xx} the translation of xx from

the definitions section.
x{m,n} m through n occurrences of x.

Figure 11-3. Operators and Descriptions

CAVEATS AND BUGS

There are pathological expressions that produce exponential growth
of the tables when converted to deterministic machines; fortunately,
they are rare.

REJECT does not rescan the input; instead it remembers the results
of the previous scan. This means that if a rule with trailing context is
found and REJECT executed, the user must not have used unput to
change the characters forthcoming from the input stream. This is
the only restriction on the user's ability to manipulate the not-yet
processed input.

11-30

Chapter 12

YET ANOTHER COMPILER-COMPILER (yacc)

PAGE

GENERAL... 12-1

BASIC SPECIFICATIONS 12-4

ACTIONS. 12-8

LEXICAL ANALySIS... 12-11

PARSER OPERATION .. 12-13

AMBIGUITY AND CONFLICTS................................ 12-19

PRECEDENCE .. 12-26

ERROR HANDLING. .. 12-29

THE "yacc" ENVIRONMENT 12-33

HINTS FOR PREPARING SPECIFICATIONS.................... 12-34

ADVANCED TOPICS ... 12-38

APPENDIX 12.1 .. 12-42

APPENDIX 12.2.. 12-46

APPENDIX 12.3.. 12-48

APPENDIX 12.4.. 12-58

Chapter 12

YET ANOTHER COMPILER-COMPILER
(yacc)

GENERAL

The yacc program provides a general tool for imposing structure on
the input to a computer program. The yacc user prepares a
specification of the input process. This includes rules describing the
input structure, code to be invoked when these rules are recognized,
and a low-level routine to do the basic input. The yacc program
then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the
lexical analyzer) to pick up the basic items (called tokens) from the
input stream. These tokens are organized according to the input
structure rules, called grammar rules. When one of these rules has
been recognized, then user code (supplied for this rule, an action) is
invoked. Actions have the ability to return values and make use of
the values of other actions.

The yacc program is written in a portable dialect of the C language,
and the actions and output subroutine are in the C language as well.
Moreover, many of the syntactic conventions of yacc follow the C
language.

The heart of the input specification is a collection of grammar rules.
Each rule describes an allowable structure and gives it a name. For
example, one grammar rule might be

date : month_name day ',' year

where "date", "month_name", "day", and "year" represent structures
of interest in the input process; presumably, "month name", "day",
and "year" are defined elsewhere. The comma is enclosed in single
quotes. This implies that the comma is to appear literally in the
input. The colon and semicolon merely serve as punctuation in the

12-1

YACC

rule and have no significance in controlling the input. With proper
definitions, the input

July. 4, 1776

might be matched by the rule.

An important part of the input process is carried out by the lexical
analyzer. This user routine reads the input stream, recognizes the
lower-level structures, and communicates these tokens to the parser.
For historical reasons, a structure recognized by the lexical analyzer
is called a "terminal symbol", while the structure recognized by the
parser is called a "nonterminal symbol". To avoid confusion,
terminal symbols will usually be referred to as "tokens".

There is considerable leeway in deciding whether to recognize
structures using the lexical analyzer or grammar rules. For example,
the rules

month_name: 'J' 'a' 'n'
month_name: 'F' 'e' 'b'

month_name: 'D' 'e' 'c'

might be used in the above example. The lexical analyzer only needs
to recognize individual letters, and "month name" is a nonterminal
symbol. Such low-level rules tend to waste time and space and may
complicate the specification beyond the ability of yacc to deal with
it. Usually, the lexical analyzer recognizes the month names and
returns an indication that a "month name" is seen. In this case,
"month name" is a "token".

Literal characters such as a comma must also be passed through the
lexical analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the
above example the rule

date : month 'I' day 'I' year

12-2

YACC

allowing

7/4/1776

as a synonym for

July 4,1776

on input. In most cases, this new rule could be "slipped in" to a
working system with minimal effort and little danger of disrupting
existing input.

The input being read may not conform to the specifications. These
input errors are detected as early as is theoretically possible with a
left-to-right scan. Thus, not only is the chance of reading and
computing with bad input data substantially reduced, but the bad
data can usually be quickly found. Error handling, provided as part
of the input specifications, permits the reentry of bad data or the
continuation of the input process after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self
contradictory, or they may require a mor.e powerful recognition
mechanism than that available to yacc. The former cases represent
design errors; the latter cases can often be corrected by making the
lexical analyzer more powerful or by rewriting some of the grammar
rules. While yacc cannot handle all possible specifications, its power
compares favorably with similar systems. Moreover, the
constructions which are difficult for yacc to handle are also
frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid yacc specifications
for their input revealed errors of conception or design early in the
program development.

The yacc program has been extensively used in numerous practical
applications, includillg lint, the Portable C Compiler, and a system
for typesetting mathematics.

12-3

YACC

The remainder of this document describes the following subjects as
they relate to yacc

• Basic process of preparing a yacc specification

• Parser operation

• Handling ambiguities

• Handling operator precedences in arithmetic expressions

• Error detection and recovery

• The operating environment and special features of the parsers
yacc produces

• Suggestions to improve the style and efficiency of the
specifications

• Advanced topics.

In addition, there are four appendices. Appendix 12.1 is a brief
example, and Appendix 12.2 is a summary of the yacc input syntax.
Appendix 12.3 gives an example using some of the more advanced
features of yacc, and Appendix 12.4 describes mechanisms and
syntax no longer actively supported but provided for historical
continuity with older versions of yacc.

BASIC SPECIFICATIONS
Names refer to either tokens or nonterminal symbols. The yacc
program requires token names to be declared as such. In addition, it
is often desirable to include the lexical analyzer as part of the
specification file. It may be useful to include other programs as well.
Thus, every specification file consists of three sections: the
declarations, (grammar) rules, and programs. The sections are
separated by double percent (% %) marks. (The percent symbol IS

generally used in yacc specifications as an escape character.)

12-4

In other words, a full specification file looks like

declara tions
%%
rules
%%
programs

when each section is used.

YACC

The declaration section may be empty, and if the programs section is
omitted, the second % % mark may also be omitted. The smallest
legal yacc specification is

%%
rules

since the other two sections may be omitted.

Blanks, tabs, and newlines are ignored, but they may not appear in
names or multicharacter reserved symbols. Comments may appear
wherever a name is legal. They are enclosed in 1* ••• *1, as in C
language.

The rules section is made up of one or more grammar rules. A
grammar rule has the'form

A : BODY;

where "A" represents a nonterminal name, and "BODY" represents a
sequence of zero or more names and literals. The colon and the
semicolon are yacc punctuation.

Names may be of arbitrary length -and may be made up of letters,
dots, underscores, and noninitial digits. Uppercase and lowercase
letters are distinct. The names used in the body of a grammar rule
may represent tokens or nonterminal symbols.

12-5

YACC

A literal consists of a character enclosed in single quotes C). As in C
language, the backslash (\) is an escape character within literals,
and all the C language escapes are recogni~ed. Thus:

,\n' newline
,\r' return
'\" single quote (,)
'\ \' backslash (\)
,\t' tab
'\ b' backspace
,\f' form feed
,\xxx' "xxx" in octal

are understood by yacc. For a number of technical reasons, the NUL
character (,\0' or 0) should never be used in grammar rules.

If there are several grammar rules with the same left-hand side, the
vertical bar (I) can be used to avoid rewriting the left-hand side. In
addition, the semicolon at the end of a rule can be dropped before a
vertical bar. Thus the grammar rules

A
A
A

BCD
E F
G ;

can be given to yacc as

A : BCD
E F
G

by using the vertical bar. It is not necessary that all grammar rules
with the same left side appear together in the grammar rules section
although it makes the input much. more readable and easier to
change.

12-6

YACC

If a nonterminal symbol matches the empty string, this can be
indicated by

empty:

which is understood by yacc.

Names representing tokens must be declared. This is most simply
done by writing

% token namel name2 ...

in the declarations section. Every name not defined in the
declarations section is assumed to represent a nonterminal symbol.
Every nonterminal symbol must appear on the left side of at least
one rule.

Of all the nonterminal symbols, the start symbol has particular
importance. The parser is designed to recognize the start symbol.
Thus, this symbol represents the largest, most general structure
described by the grammar rules. By default, the start symbol is
taken to be the left-hand side of the first grammar rule in the rules
section. It is possible and desirable to declare the start symbol
explicitly in the declarations section using the %start keyword

% start symbol

to define the start symbol.

The end of the input to the parser is signaled by a special token,
called the end-marker. If the tokens up to but not including the end
marker form a structure that matches the start symbol, the parser
function returns to its caller after the end-marker is seen and accepts
the input. If the end-marker is seen in any other context, it is an
error.

It is the job of the user-supplied lexical analyzer to return the end
marker when appropriate. Usually the end-marker represents some
reasonably obvious 1/0 status, such as "end of file" or "end of
record".

12-7

YACC

ACTIONS
With each grammar rule, the user may associate actions to be
performed each time the rule is recognized in the input process.
These actions may return values and may obtain the values returned
by previous actions. Moreover, the lexical analyzer can return values
for tokens if desired.

An action is an arbitrary C language statement and as such can do
input and output, call subprograms, and alter external vectors and
variables. An action is specified by one or more statements enclosed
in curly braces ({) and (}). For example:

and

A : '(' B ')'
{

hello(1, "abc");
}

XXX : YYY ZZZ
{

printf(" a message\n");
flag = 25;

are grammar rules with actions.

To facilitate easy communication between the actions and the parser,
the action statements are altered slightly. The dollar sign symbol ($)
is used as a signal to yacc in this context.

To return a value, the action normally sets the pseudo-variable $$ to
some value. For example, the action

{ $$ = 1; }

does nothing but return the value of one.

12-8

YACC

To obtain the values returned by previous actions and the lexical
analyzer, the action may use the pseudo-variables $1, $2, ... , which
refer to the values returned by the components of the right side of a
rule, reading from left to right. If the rule is

A : BCD;

then $2 has the value returned by C, and $3 the value returned by D.

The rule

expr : '(' expr ')' ;

provides a more concrete example. The value returned by this rule is
usually the value of the "expr" in parentheses. This can be indicated
by

expr : '(' expr ')'
{

$$ = $2;

By default, the value of a rule is the value of the first element in it
($1). Thus, grammar rules of the form

A : B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of rules.
Sometimes, it is desirable to get control before a rule is fully parsed.
The yacc permits an action to be written in the middle of a rule as
well as at the end. This rule is assumed to return a value accessible
through the usual $ mechanism by the actions to the right of it. In

12-9

YACC

turn, it may access the values returned by the symbols to its left.
Th us, in the rule

A B
{

$$ =1;
}
C

x = $2;
y = $3;

the effect is to set x to 1 and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by
manufacturing a new nonterminal symbol name and a new rule
matching this name to the empty string. The interior action is the
action triggered off by recognizing this added rule. The yacc
program actually treats the above example as it it had been written

$ACT : /* empty */
{

$$ = 1;

A B $ACT C

x = $2;
y = $3;

where $ACT is an empty action.

In many applications, output is not done directly by the actions. A
data structure, such as a parse tree, is constructed in memory and
transformations are applied to it before output is generated. Parse
trees are particularly easy· to construct given routines to build and

12-10

YACC

maintain the tree structure desired. For example, suppose there is a
C function node written so that the call

node(L, n1, n2)

creates a node with label L and descendants n1 and n2 and returns
the index of the newly created node. Then parse tree can be built by
su pplying actions such as

expr : expr '+' expr
{

$$ = node('+', $1, $3);
}

in the specification.

The user may define other variables to be used by the actions.
Declarations and definitions can appear in the declarations section
enclosed in the marks % { and %}. These declarations and
definitions have global scope, so they are known to the action
statements and the lexical analyzer. For example:

% { int variable = 0; % }

could be placed in the declarations section making "variable"
accessible to all of the actions. The yacc parser uses only names
beginning with yy. The user should avoid such names.

In these examples, all the values are integers. A discussion of values
of other types is found in the part "ADVANCED TOPICS".

LEXICAL ANALYSIS
The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The
lexical analyzer is an integer-valued function called yylex. The
function returns an integer, the token number, representing the kind
of token read. If there is a value associated with that token, it
should be assigned to the external variable yylval.

12-11

YACC

The parser and the lexical analyzer must agree on these token
numbers in order for communication between them to take place.
The numbers may be chosen by yacc or the user. In either case, the
#define mechanism of C language is used to allow the lexical
analyzer to return these numbers symbolically. For example, suppose
that the token name DIGIT has been defined in the declarations
section of the yacc specification file. The relevant portion of the
lexical analyzer might look like

yylexO
{

extern int yylval;
int c;

c = getcharO;

switch(c)
{

case '0':
case'l':

case '9':

}

yylval = c-'O';
return(DIGIT);

to return the appropriate token.

The intent is to return a token number of DIG IT and a value equal to
the numerical value of the digit. Provided that the lexical analyzer
code is placed in the programs section of the specification file, the
identifier DIGIT is defined as the token number associated with the
token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The
only pitfall to avoid is using any token names in the grammar that
are reserved or significant in C language or the parser. For example,
the use of token names if or while will almost certainly cause severe

12-12

YACC

difficulties when the lexical analyzer is compiled. The token name
error is reserved for error handling and should not be used naively.

As mentioned above, the token numbers may be chosen by yacc or
the user. In the default situation, the numbers are chosen by yacc.
The default token number for a literal character is the numerical
value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first
appearance of the token name or literal in the declarations section
can be immediately followed by a nonnegative integer. This integer
is taken to be the token number of the name or literal. Names and
literals not defined by this mechanism retain their default definition.
It is important that all token numbers be distinct.

For historical reasons, the end-marker must have token number 0 or
negative. This token number cannot be redefined by the user. Thus,
all lexical analyzers should be prepared to return 0 or a negative
number as a token upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex
program. These lexical analyzers are designed to work in close
harmony with yacc parsers. The specifications for these lexical
analyzers use regular expressions instead of grammar rules. Lex can
be easily used to produce quite complicated lexical analyzers, but
there remain some languages (such as FORTRAN) which do not fit
any theoretical framework and whose lexical analyzers must be
crafted by hand.

PARSER OPERATION
The yacc program turns the specification file into a C language
program, which parses the input according to the specification given.
The algorithm used to go from the specification to the parser is
complex and will not be discussed here. The parser itself, however, is
relatively simple and understanding how it works will make
treatment of error recovery and ambiguities much more
comprehensible.

12-13

YACC

The parser produced by yacc consists of a finite state machine with
a stack. The parser is also capable of reading and remembering the
next input token (called the look-ahead token). The current state is
always the one on the top of the stack. The states of the finite state
machine are given small integer labels. Initially, the machine is in
state 0 (the stack contains only state 0) and no look-ahead token has
been read.

The machine has only four actions available-shift, reduce, accept,
and error. A step of the parsor is done as follows:

1. Based on its current state, the parser decides if it needs a
look-ahead token to choose the action to be taken. If it needs
one and does not have one, it calls yylex to obtain the next
token.

2. Using the current state and the look-ahead token if needed, the
parser decides on its next action and carries it out. This may
result in states being pushed onto the stack or popped off of
the stack and in the look-ahead token being processed or left
alone.

The shift action is the most common action the parser takes.
Whenever a shift action is taken, there is always a look-ahead token.
For example, in state 56 there may be an action

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current
state (56) is pushed down on the stack, and state 34 becomes the
current state (on the top of the stack). The look-ahead token is
cleared.

The reduce action keeps the stack from growing without bounds.
Reduce actions are appropriate when the parser has seen the right
hand side of a grammar rule and is prepared to announce that it has
seen an instance of the rule replacing the right-hand side by the
left-hand side. It may be necessary to consult the look-ahead token
to decide whether to reduce or not (usually it is not necessary). In
fact, the default action (representeq by a dot) is often a reduce action.

12-14

YACC

Reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, and this leads
to some confusion. The action

. reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule

A : x y z

is being reduced. The reduce action depends on the left-hand symbol
(A in this case) and the number of symbols on the right-hand side
(three in this case). To reduce, first pop off the top three states from
the stack. (In general, the number of states popped equals the
number of symbols on the right side of the rule.) In effect, these
states were the ones put on the stack while recognizing x, y, and z
and no longer serve any useful purpose. After popping these states, a
state is uncovered which was the state the parser was in before
beginning to process the rule. Using this uncovered state and the
symbol on the left side of the rule, perform what is in effect a shift
of A. A new state is obtained, pushed onto the stack, and parsing
continues. There are significant differences between the processing
of the left-hand symbol and an ordinary shift of a token,. however, so
this action is called a goto action. In particular, the look-ahead token
is cleared by a shift but is not affected by a goto. In any case, the
uncovered state contains an entry such as

A go to 20

causing state 20 to be pushed onto the stack and become the current
state.

12-15

YACC

In effect, the reduce action "turns back the clock" in the parse
popping the states off the stack to go back to the state where the
right-hand side of the rule was first seen. The parser then behaves
as if it had seen the left side at that time. If the right-hand side of
the rule is empty, no states are popped off of the stacks. The
uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with
the rule is executed before the stack is adjusted. In addition to the
stack holding the states, another stack running in parallel with it
holds the values returned from the lexical analyzer and the actions.
When a shift takes place, the external variable "yylval" is copied onto
the value stack. After the return from the user code, the reduction is
carried out. When the goto action is done, the external variable
"yyval" is copied onto the value stack. The pseudo-variables $1, $2,
etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The
accept action indicates that the entire input has .been seen and that it
matches the specification. This action appears only when the look
ahead token is the end-marker and indicates that the parser has
successfully done its job. The error action, on the other hand,
represents a place where the parser can no longer continue parsing
according to the specification. The input tokens it has seen (together
with the look-ahead token) cannot be followed by anything that
would result in a legal input. The parser reports an error and
attempts to recover the situation and resume parsing. The error
recovery (as opposed to the detection of error) will be discussed later.

Consider:

% token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place : DELL

as a yacc specification.

12-16

YACC

When yacc is invoked with the -v option, a file called y.output is
produced with a human-readable description of the parser. The
y.output file corresponding to the above grammar (with some
statistics stripped off the end) is

state 0
$accept : _r hyme $end

DING shift 3
· error

rhyme go to 1
sound goto 2

state 1
$accept: r hyme_$end

$end accept
· error

state 2
rhyme : sound_place

DELL shift 5
· error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
· error

state 4
rhyme sound place_ (1)

· reduce 1

state 5

12-17

YACC

place : DELL_ (3)

. reduce 3

state 6
sound DING DONG_ (2)

. reduce 2

where the actions for each state are specified and there is a
description of the parsing rules being processed in each state. The _
character is used to indicate what has been seen and what is yet to
come in each rule. The following input

DING DONG DELL

can be used to track the operations of the parser. Initially, the
current state is state O. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the first
token, DING, is read and becomes the look-ahead token. The action
in state 0 on DING is shift 3, state 3 is pushed onto the stack, and
the look-ahead token is cleared. State 3 becomes the current state.
The next token, DONG, is read and becomes the look-ahead token.
The action in state 3 on the token DONG is shift 6, state 6 is pushed
onto the stack, and the look-ahead is cleared. The stack now contains
0, 3, and 6. In state 6, without even consulting the look-ahead, the
parser reduces by

sound: DING DONG

which is rule 2. Two states, 6 and 3, are popped off of the stack
uncovering state O. Consulting the description of state 0 (looking for
a goto on sound),

sound goto 2

is obtained. State 2 is pushed onto the stack and becomes the current
state.

12-18

YACC

In state 2, the next token, DELL, must be read. The action is shift 5,
so state 5 is pushed onto the stack, which now has 0, 2, and 5 on it,
and the look-ahead token is cleared. In state 5, the only action is to
reduce by rule 3. This has one symbol on the right-hand side, so one
state, 5, is popped off, and state 2 is uncovered. The goto in state 2
on place (the left side of rule 3) is state 4. Now, the stack contains 0,
2, and 4. In state 4, the only action is to reduce by rule 1. There are
two symbols on the right, so the top two states are popped off,
uncovering state ° again. In state 0, there is a goto on rhyme causing
the parser to enter state 1. In state 1, the input is read and the end
marker is obtained indicated by $end in the y.output file. The action
in state 1 (when the end-marker is see~) successfully ends the parse.

The reader is urged to consider how the parser works when
confronted with such incorrect strings as DING DONG DONG, DING
DONG, DING DONG DELL DELL, etc. A few minutes spent with
this and other simple examples is repaid when problems arise in
more complicated contexts.

AMBIGUITY AND CONFLICTS

A set of grammar rules is ambiguous if there is some input string
that can be structured in two or more different ways. For example,
the grammar rule

expr : expr ' -' expr

is a natural way of expressing the fact that one way of forming an
arithmetic expression is to put two other expressions together with a
minus sign between them. Unfortunately, this grammar rule does
not completely specify the way that all complex inputs should be
structured. For example, if the input is

expr - expr - expr

12-19

YACC

the rule allows this input to be structured as either

expr - expr) - expr

or as

expr - (expr - expr)

(The first is called "left association", the second "right association".)

The yacc program detects such ambiguities when it is attempting to
build the parser. Given the input

expr - expr - expr

consider the problem that confronts the parser. When the parser has
read the second expr, the input seen

expr - expr

matches the right side of the grammar rule above. The parser could
reduce the input by applying this rule. After applying the rule, the
input is reduced to "expr" (the left side of the rule). The parser
would then read the final part of the input

- expr

and again reduce. The effect of this is to take the left associative
interpretation.

Alternatively, if the parser sees

expr - expr

it could defer the immediate application of the rule and continue
reading the input until

expr - expr - expr

12-20

YACC

is seen. It could then apply the rule to the rightmost three symbols
reducing them to "expr" which results in

expr - expr

being left. Now the rule can be reduced once more. The effect is to
take the right associative interpretation. Thus, having read

expr - expr

the parser can do one of two legal things, a shift or a reduction. It
has no way of deciding between them. This is called a "shift/reduce
conflict". It may also happen that the parser has a choice of two
legal reductions. This is called a "reduce/reduce conflict". Note that
there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still
produces a parser. It does this by selecting one of the valid steps
wherever it has a choice. A rule describing the choice to make in a
given situation is called a "disambiguating rule".

The yacc program invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the
earlier grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred in favor of shifts when
there is a choice. Rule 2 gives the user rather crude control over the
behavior of the parser in this situation, but reduce/reduce conflicts
should be avoided when possible.

Conflicts may arise because of mistakes in input or logic or because
the grammar rules (while consistent) require a more complex parser
than yacc can construct. The use of actions within rules can also

12-21

YACC

cause conflicts if the action must be done before the parser can be
sure which rule is being recognized. In these cases, the application of
disambiguating rules is inappropriate and leads to an incorrect
parser. For this reason, yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule
2.

In general, whenever it is possible to apply disambiguating rules to
produce a correct parser, it is also possible to rewrite the grammar
rules so that the same inputs are read but there are no conflicts. For
this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this
rewriting is somewhat unnatural and produces slower parsers. Thus,
yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider

stat : IF '(' cond ')' stat
IF '(' cond ')' stat ELSE stat

which is a fragment from a programming language involving an "if
then-else" statement. In these rules, "IF" and "ELSE" are tokens,
"cond" is a nonterminal symbol describing conditional (logical)
expressions, and "stat" is a nonterminal symbol describing
statements. The first rule will be called the "simple-if" rule and the
second the "if-else" rule.

These two rules form an ambiguous construction since input of the
form

IF (C1) IF (C2) Sl ELSE S2

12-22

can be structured according to these rules in two ways

or

IF (Cl)
{

IF (C2)
SI

}
ELSE

S2

IF (Cl)
{

IF (C2)
SI

ELSE
S2

YACC

where the second interpretation is the one given in most
programming languages having this construct. Each "ELSE" is
associated with the last preceding "un-ELSE'd" IF. In this example,
consider the situation where the parser has seen

IF (Cl) IF (C2) SI

and is looking at the "ELSE". It can immediately reduce by the
simple-if rule to get

IF (Cl) stat

and then read the remaining input

ELSE S2

and reduce

IF (Cl) stat ELSE S2

12-23

YACC

by the if-else rule. This leads to the first of the above groupings of
the input.

On the other hand, the "ELSE" may be shifted, "S2" read, and then
the right-hand portion of

IF (Cl) IF (C2) SI ELSE S2

can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second
of the above groupings of the input which is usually desired.

Once again, the parser can do two valid things- there is a
shift/reduce conflict. The application of disambiguating rule 1 tells
the parser to shift in this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular
current input symbol, "ELSE", and particular inputs, such as

IF (Cl) IF (C2) SI

have already been seen. In general, there may be many conflicts, and
each one will be associated with an input symbol and a set of
previously read inputs. The previously read inputs are characterized
by the state of the parser.

The conflict messages of yacc are best understood by examining the
verbose (-v) option output file. For example, the output
corresponding to the above conflict state might be

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF cond stat (18)
stat IF cond stat_ELSE stat

ELSE shift 45
reduce 18

12-24

YACC

where the first line describes the conflict-giving the state and the
input symbol. The ordinary state description gives the grammar
rules active in the state and the parser actions. Recall that the
underline marks the portion of the grammar rules which has been
seen. Thus in the example, in state 23 the parser has seen input
corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser
can do two possible things. If the input symbol is "ELSE", it is
possible to shift into state 45. State 45 will have, as part of its
description, the line

stat : IF (cond) stat ELSE_stat

since the "ELSE" will have been shifted in this state. In state 23, the
alternative action [describing a dot (.)] is to be done if the input
symbol is not mentioned explicitly in the actions. In this case, if the
input symbol is not "ELSE", the parser reduces to

stat : IF '(' cond ')' stat

by grammar rule 18.

Once again, notice that the numbers following "shift" commands
refer to other states, while the numbers following "reduce"
commands refer to grammar rule numbers. In the y.output file, the
rule numbers are printed after those rules which can be reduced. In
most one states, there is reduce action possible in the state and this
is the default command. The user who encounters unexpected
shift/reduce conflicts will probably want to look at the verbose
output to decide whether the default actions are appropriate.

12-25

YACC

PRECEDENCE
There IS one common situation where the rules given above for
resolving conflicts are not sufficient. This is in the parsing of
arithmetic expressions. Most of the commonly used constructions for
arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about left
or right associativity. It turns out that ambiguous grammars with
appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from
unambiguous grammars. The basic notion is to write grammar rules
of the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very
ambiguous grammar with many parsing conflicts. As disambiguating
rules, the user specifies the precedence or binding strength of all the
operators and the associativity of the binary operators. This
information is sufficient to allow yacc to resolve the parsing
conflicts in accordance with these rules and construct a parser that
realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the
declarations section. This is done by a series of lines beginning with
a yacc keyword: %left, %right, or %nonassoc, followed by a list
of tokens. All of the tokens on the same line are assumed to have the
same precedence level and associativity; the lines are listed in order
of increasing precedence or binding strength. Thus:

%left '+' '-'
% left '*' 'I'

12-26

YACC

describes the precedence and associativity of the four arithmetic
operators. Plus and minus are left associative and have lower
precedence than star and slash, which are also left associative. The
keyword %right is used to describe right associative operators, and
the keyword %nonassoc is used to describe operators, like the
operator .LT. in FORTRAN, that may not associate with themselves.
Thus:

A .LT. B .LT. C

is illegal in FORTRAN and such an operator would be described with
the keyword %nonassoc in yacc. As an example of the behavior of
these declarations, the description

%right '='
%left '+' '-'
% left ,*, '1'

%%

expr expr '=' expr
expr '+' expr
expr " expr
expr '*' expr
expr 'I' expr
NAME

might be used to structure the input

a = b = c * d - e - f*g

as follows

a = (b = («c*d)-e) - (f*g)))

12-27

YACC

in order to perform the correct precedence of operators. When this
mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have
the same symbolic representation but different precedences. An
example is unary and binary "-". Unary minus may be given the
same strength as multiplication, or even higher, while binary minus
has a lower strength than multiplication. The keyword, %prec,
changes the precedence level associated with a particular grammar
rule. The keyword %prec appears immediately after the body of the
grammar rule, before the action or closing semicolon, and is followed
by a token name or literal. It causes the precedence of the grammar
rule to become that of the following token name or literal. For
example, the rules

%left '+' '-'
% left '*' , /'

%%

expr expr '+' expr
expr " expr
expr '*' expr
expr '/' expr
'-' expr % prec '*'
NAME

might be used to give unary minus the same precedence as
multiplication.

A token declared by %left, %right, and %nonassoc need not be,
but may be, declared by %token as well.

The precedences and associativities are used by yacc to resolve
parsing conflicts. They give rise to disambiguating rules. Formally,
the rules work as follows:

1. The precedences and associativities are recorded for those
tokens and literals that have them.

12-28

YACC

2. A precedence and associativity is associated with each
grammar rule. It is the precedence and associativity of the last
token or literal in the body of the rule. If the %prec
construction is used, it overrides this default. Some grammar
rules may have no precedence and associativity associated with
them.

3. When there is a reduce/reduce conflict or there is a
shift/reduce conflict and either the input symbol or the
grammar rule has no precedence and associativity, then the
two disambiguating rules given at the beginning of the section
are used, and the conflicts are reported.

4. If there is a shift/reduce conflict and both the grammar rule
and the input character have precedence and associativity
associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher
precedence. If the precedences are the same, then the
associativity is used; left associative implies reduce, right
associative implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of
shift/reduce and reduce/reduce conflicts reported by yacc. This
means that mistakes in the specification of precedences may disguise
errors in the input grammar. It is a good idea to be sparing with
precedences and use them in an essentially "cookbook" fashion until
some experience has been gained. The y.output file is very useful in
deciding whether the parser is actually doing what was intended.

ERROR HANDLING
Error handling is an extremely difficult area, and many of the
problems are semantic ones. When an error is found, for example, it
may be necessary to reclaim parse tree storage, delete or alter symbol
table entries, and, typically, set switches to avoid generating any
further output.

It is seldom acceptable to stop all processing when an error is found.
It is more useful to continue scanning the input to. find further
syntax errors. This leads. to the problem of getting the parser

12-29

YACC

"restarted" after an error. A general class of algorithms to do this
involves discarding a number of tokens from the input string and
attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a
simple, but reasonably general feature. The token name "error" is
reserved for error handling. This name can be used in grammar
rules. In effect, it suggests places where errors are expected and
recovery might take place. The parser pops its stack until it enters a
state where the token "error" is legal. It then behaves as if the token
"err<Jr" were the current look-ahead token and performs the action
encountered. The look-ahead token is then reset to the token that
caused the error. If no special error rules have been specified, the
processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after
detecting an error, remains in error state until three tokens have
been successfully read and shifted. If an error is detected when the
parser is already in error state, no message is given, and the input
token is quietly deleted.

As an example, a rule of the form

stat : error

means that on a syntax error the parser attempts to skip over the
statement in which the error is seen. More precisely, the parser
scans ahead, looking for three tokens that might legally follow a
statement, and start processing at the first of these. If the beginnings
of statements are not sufficiently distinctive, it may make a false
start in the middle of a statement and end up reporting a second
error where there is in fact no error.

Actions may be used with these special error rules. These actions
might attempt to reinitialize tables, reclaim symbol table space, etc.

12-30

YACC

Error rules such as the above are very general but difficult to
control. Rules such as

stat : error ';'

are somewhat easier. Here, when there is an error, the parser
attempts to skip over the statement but does so by skipping to the
next semicolon. All tokens after the error and before the next
semicolon cannot be shifted and are discarded. When the semicolon
is seen, this rule will be reduced and any "cleanup" action associated
with it performed.

Another form of error rule arises in interactive applications where it
may be desirable to permit a line to be reentered after an error. The
following example

input : error ,\n'
{

printf(" Reenter last line:");
}
input

$$ = $4;
}

is one way to do this. There is one potential difficulty with this
approach. The parser must correctly process three input tokens
before it admits that it has correctly resynchronized after the error.
If the reentered line contains an error in the first two tokens, the
parser deletes the offending tokens and gives no message. This is
clearly unacceptable. For this reason, there is a mechanism that can
force the parser to believe that error recovery has been
accomplished. The statement

yyerrok;

12-31

YACC

in an action resets the parser to its normal mode. The last example
can be rewritten as

input : error ,\n'

yyerrok;
printf(" Reenter last line:");

}
input

$$ = $4;

which is somewhat better.

As previously mentioned, the token seen immediately after the
"error" symbol is the input token at which the error was discovered.
Sometimes, this is inappropriate; for ex~mple, an error recovery
action might take upon itself the job of finding the correct place to
resume input. In this case, the previous look-ahead token must be
cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action
after error were to call some sophisticated resynchronization routine
(supplied by the user) that attempted to advance the input to the
beginning of the next valid statement. After this routine is called,
the next token returned by yyJex is presumably the first token in a
legal statement. The old illegal token must be discarded and the
error state reset. A rule similar to

stat : error

resynchO;
yyerrok ;
yyclearin;

could perform this.

12-32

YACC

These mechanisms are admittedly crude but do allow for a simple,
fairly effective recovery of the parser from many errors. Moreover,
the user can get control to deal with the error actions required by
other portions of the program.

THE "yacc" ENVIRONMENT

When the user inputs a specification to yacc, the output is a file of C
language programs, called y. tah.e on most systems. (Due to local file
system conventions, the names may differ from installation to
installation.) The function produced by yacc is called yyparse(); it is
an integer valued function. When it is called, it in turn repeatedly
calls yylex(), the lexical analyzer supplied by the user (see "LEXICAL
ANALYSIS"), to obtain input tokens. Eventually, an error is
detected, yyparse() returns the value 1, and no error recovery is
possible, or the lexical analyzer returns the end-marker token and the
parser accepts. In this case, yyparse() returns the value O.

The user must provide a certain amount of environment for this
parser in order to obtain a working program. For example, as with
every C language program, a program called main() must be defined
that eventually calls yyparse(). In addition, a routine called yyerror()
prints a message when a syntax error is detected.

These two routines must be supplied in one form or another by the
user. To ease the initial effort of using yacc, a library has been
provided with default versions of main() and yyerror(). The name of
this library is system dependent; on many systems, the library is
accessed by a -ly argument to the loader. The source codes

mainO
{

return (yyparseO);

12-33

YACC

and

include <stdio.h>

yyerror(s)
char *s;

fprintf(stderr, " % s\n" , s);

show the triviality of these default programs. The argument to
yyerror() is a string containing an error message, usually the string
"syntax error". The average application wants to do better than this.
Ordinarily, the program should keep track of the input line number
and print it along with the message when a syntax error is detected.
The external integer variable yychar contains the look-ahead token
number at the time the error was detected. This may be of some
interest in giving better diagnostics. Since the main() program is
probably supplied by the user (to read arguments, etc.), the yacc
library is useful only in small projects or in the earliest stages of
larger ones.

The external integer variable yydebug is normally set to o. If it is set
to a nonzero value, the parser will output a verbose description of its
actions including a discussion of the input symbols read and what the
parser actions are. Depending on the operating environment, it may
be possible to set this variable by using a debugging system.

HINTS FOR PREPARING SPECIFICATIONS

This part contains miscellaneous hints on preparing efficient, easy to
change, and clear specifications. The individual subsections are more
or less independent.

12-34

YACC

Input Style

It is difficult to provide rules with substantial actions and still have a
readable specification file. The following are a few style hints.

1. Use all uppercase letters for token names and all lowercase
letters for nonterminal names. This rule comes under the
heading of "knowing who to blame when things go wrong".

2. Put grammar rules and actions on separate lines. This allows
either to be changed without an automatic need to change the
other.

3. Put all rules with the same left-hand side together. Put the
left-hand side in only once and let all following rules begin
with a vertical bar.

4. Put a semicolon only after the last rule with a given left-hand
side and put the semicolon on a separate line. This allows new
rules to be easily added.

5. Indent rule bodies by two tab stops and action bodies by three
tab stops.

The example in Appendix 12.1 is written following this style, as are
the examples in this section (where space permits). The user must
make up his own mind about these stylistic questions. The central
problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the yacc parser encourages so called "left
recursive" grammar rules. Rules of the form

name

12-35

YACC

match this algorithm. These rules such as

list item
list ',' item

and

seq item
seq item

frequently arise when writing specifications of sequences and lists.
In each of these cases, the first rule will be reduced for the first item
only; and the second rule will be reduced for the second and all
succeeding items.

With right recursive rules, such as

seq : item
item seq

the parser is a bit bigger; and the items are seen and reduced from
right to left. More seriously, an internal stack in the parser is in
danger of overflowing if a very long sequence is read. Thus, the user
should use left recursion wherever reasonable.

I t is worth considering if a sequence with zero elements has any
meaning, and if so, consider writing the sequence specification as

seq : /* empty * /
seq item

using an empty rule. Once again, the first rule would always be
reduced exactly once before the first item was read, and then the
second rule would be reduced once for each item read. Permitting
empty sequences often leads to increased generality. However,
conflicts might arise if yacc is asked to decide which empty sequence
it has seen when it hasn't seen enough to know!

12-36

YACC

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical
analyzer might want to delete blanks normally but not within quoted
strings, or names might be entered into a symbol table in
declarations but not in expressions.

One way of handling this situation is to create a global flag that is
examined by the lexical analyzer and set by actions. For example,

%{
int dflag;

%}
... other declarations ...

%%

prog decls stats

decls: /* empty * /
{

dflag = 1;
}

decls declaration

stats: /* empty */
{

dflag = 0;
}

stats statement

other rules ...

specifies a program that consists of zero or more declarations
followed by zero or more statements. The flag "dflag" is now 0 when
reading statements and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the
parser before it can tell that the declaration section has ended and
the statements have begun. In many cases, this single token

exception does not affect the lexical scan.

12-37

YACC

This kind of "back-door" approach can be elaborated to a noxious
degree. Nevertheless, it represents a way of doing some things that
are difficult if not impossible to do otherwise.

Reserved Words

Some programming languages permit you to use words like "if",
which are normally reserved as label or variable names, provided
that such use does not conflict with the legal use of these names in
the programming language. This is extremely hard to do in the
framework of yacc. It is difficult to pass information to the lexical
analyzer telling it "this instance of if is a keyword and that instance
is a variable". The user can make a stab at it using the mechanism
described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until
then, it is better that the keywords be reserved, i.e., forbidden for use
as variable names. There are powerful stylistic reasons for
preferring this.

ADVANCED TOPICS
This part discusses a number of advanced features of yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action
by use of macros YYACCEPT and YYERROR. The YYACCEPT
macro causes yyparse() to return the value 0; YYERROR causes the
parser to behave as if the current input symbol had been a syntax
error; yyerror() is called, and error recovery takes place. These
mechanisms can be used to simulate parsers with multiple end
markers or context sensitive syntax checking.

12-38

YACC

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the
current rule. The mechanism is simply the same as with ordinary
actions, a dollar sign followed by a digit.

sent adj noun verb adj noun
{

look at the sentence ...
}

adj THE

$$ = THE;

YOUNG
{

$$ = YOUNG;
}

noun DOG
{

$$ = DOG;
}
I CRONE I

{
if($0 == YOUNG)
{

printf(" what?\n");
}
$$ = CRONE;

In this case, the digit may be 0 or negative. In the action following
the word CRONE, a check is made that the preceding token shifted
was not YOUNG. Obviously, this is only possible when a great deal
is known about what might precede the symbol "noun" in the input.
There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism prevents a great deal of
trouble especially when a few combinations are to be excluded from
an otherwise regular structure.

12-39

YACC

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer
are integers. The yacc program can also support values of other
types including structures. In addition, yacc keeps track of the types
and inserts appropriate union member names so that the resulting
parser is strictly type checked. The yacc value stack is declared to
be a union of the various types of values desired. The user declares
the union and associates union member names to each token and
nonterminal symbol having a value. When the value is referenced
through a $$ or $n construction, yacc will automatically insert the
appropriate union name so that no unwanted conversions take place.
In addition, type checking commands such as lint is far more silent.

There are three mechanisms used to provide for this typing. First,
there is a way of defining the union. This must be done by the user
since other programs, notably the lexical analyzer, must know about
the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is
a mechanism for describing the type of those few values where yacc
cannot easily determine the type.

To declare the union, the user includes

% union

body of union ...

in the declaration section. This declares the yacc value stack and
the external variables yylval and yyval to have type equal to this
union. If yacc was invoked with the -d option, the union
declaration is copied onto the y.tab.h file. Alternatively, the union
may be declared in a header file, and a typedef used to define the

12-40

YACC

variable YYSTYPE to represent this union. Thus, the header file
migh t have said

typedef union
{

body of union ...
}
YYSTYPE;

instead. The header file must be included in the declarations section
by use of % { and %}.

Once YYSTYPE is defined, the union member names must be
associated with the various terminal and nonterminal names. The
construction

< name>

is used to indicate a union member name. If this follows one of the
keywords %token, % left, %right, and %nonassoc, the union
member name is associated with the tokens listed. Thus, saying

%left <optype> '+' , ,

causes any reference to values returned by· these two tokens to be
tagged with the union member name optype. Another keyword,
%type, is used to associate union member names with nonterminals.
Thus, one might say

% type <nodetype> expr stat

to associate the union member nodetype with the nonterminal
symbols "expr" and "stat".

There remains a couple of cases where these mechanisms are
insufficient. If there is an action within a rule, the value returned by
this action has no a priori type. Similarly, reference to left context
values (such as $0) leaves yacc with no easy way of knowing the
type. In this case, a type can be imposed on the reference by

12-41

YACC

inserting a union member name between < and > immediately after
the first $. The example

rule : aaa·

{

}

$<intval>$ = 3;
}
bbb

fun($<intval>2, $<other>O);

shows this usage. This syntax has little to recommend it, but the
situation arises rarely.

A sample specification is given in Appendix 12.3. The facilities in
this subsection are not triggered until they are used. In particular,
the use of % type will turn on these mechanisms. When they are
used, there is a fairly strict level of checking. For example, use of $n
or $$ to refer to something with no defined type is diagnosed. If
these facilities are not triggered, the yacc value stack is used to hold
int's, as was true historically.

APPENDIX 12.1

A Simple Example

This example gives the complete yacc applications for a small desk
calculator; the calculator has 26 registers labeled" a" through" z"
and accepts arithmetic expressions made up of the operators +, -,
*,1, % (med operator), & (bitwise and), I (bit wise or), and
assignments. If an expression at the top level is an assignment, the
value is printed; otherwise, the expression is printed. As in C
language, an integer that begins with 0 (zero) is assumed to be octal;
otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator does a
reasonable job of showing how precedence and ambiguities are used
and demonstrates simple recovery. The major oversimplifications are
that the lexical analyzer is much simpler for most applications, and
the output is produced immediately line by line. Note the way that

12-42

YACC

decimal and octal integers are read in by grammar rules. This job is
probably better done by the lexical analyzer.

%{
includes<stdio.h>
includes<ctype.h>

int regs[26];
int base;

%}

% start list

% token DIGIT LETTER

% left 'I'
% left '&'
% left '+' '-'
% left '*' 'I' '%'
% left UMINUS /* supplies precedence for unary minus * /

% % /* beginning of rule section * /

list /* empty * /
list stat ,\n'

1 list error ,\n'

yyerrork;

}

stat expr

printf(" % dn" , $1);
}
I LETTER '=' expr
{

regs[$l] = $3

12-43

YACC

expr '(' expr ')'

$$ = $2;
}
I expr '+' expr
{

$$ = $1 + $3
}
I expr '-' expr
{

$$ = $1 - $3
{
I expr '*' expr
{

$$ = $1 * $3;
}
1 expr 'I' expr
{

$$ = $1/$3;

exp '%' expr

$$ = $1 % $3
},
I expr '&' expr I

{
$$ = $1 &$3;

}
expr 'I' expr

$$ = $11 $3
}
1 '-' expr % prec UMINUS
{

$$ = - $2;
}
1 LETTER
{

$$ = reg[$1];
}'

12-44

number

number : DIG IT
{

$$ = $1; base = ($1==0) ? 8 ; 10;
}
I number DIG IT
{

$$ = bas * $1 + $2

% % /* start of program * /

yylex() /* lexical analysis routine * /
{ /* return LETTER for lowercase letter,

yylval = 0 through 25*/

/* returns DIGIT for digit, yylval = 0 through 9*/
/* all other characters are returned immediately * /

int c;
/*skip blanks* /

while (c=getchar(» = = ")

/* c is now nonblank * /

if(islower(c »
{

}

yylval = c- 'a';
return(LETTER);

if(isdigit(c)
}

}

yylval = c-'O';
return(DIGIT);

return(c);

YACC

12-45

YACC

APPENDIX 12.2

YACC Input Syntax

This appendix has a description of the yacc input systax as a yacc
specification. Contex dependencies, etc. are not considered. Ironically,
the yacc input specification language is most naturally specified as
an LR(2) grammar; the sticky part comes when an identifier is seen
in a rule immediately following an action. If this identifier is
followed by a colon, it is the start of the next rule; otherwise, it is a
continuation of the current rule which just happens to have an action
embedded in it. As implemented, the lexical analyzer looks ahead
after seeing an identifier and decides whether the next token
(skipping blanks, newlines, and comments, etc.) is a colon. If so, it
returns the token C_IDENTIFIER. Otherwise, it returns
IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIERS but never as part of C_IDENTIFIERs.

/* grammar for the input to yacc * /

/* basic entries * /
% token IDENTIFIER /* includes identifiers and literals * /
% token C_IDENTIFIER /* identifier (but not literal)

followed by a colon * /
% token NUMBER /* [0-9]+ */

/* reserved words: %type=> TYPE %left=>LEFT,etc. */

% token LEFT RIGHT NONASSOC TOKENPREC TYPE START UNION

% token MARK /* the % % mark * /
% token LCURL /* the % { mark * /
% token RCURL /* the % } mark * /

/* ASCII character literals stand for themselves * /

% token spec

%%

12-46

spec : defs MARK rules tail

tail MARK

}

defs :

defs :

}

In this action, eat up the rest of the file

/* empty: the second MARK is optional * /

/* empty */
defs def

START IDENTIFIER
UNION

Copy union definition to output

I LCURL
{

}

Copy C code to output file
RCURL

ndefs rword tag nlist

rword: TOKEN
LEFT
RIGHT
NONASSOC
TYPE

tag /* empty: union tag is optional * /
'<' IDENTIFIER '>'

nlist : nmno
nlist nmno

I nlist','nmno

YACC

12-47

YACC

nmno : IDENTIFIER· /*N ote: literal illegal with % type * /
IDENTIFIER NUMBER /* Note: illegal with % type */

/* rule section * /

rules : C_IDENTIFIER rbody proc
rules rule

rule : C_IDENTIFIER rbody prec
1 'I' r body prec

rbody : /* empty * /
rbody IDENTIFIER
rbodyact

act '{'
{

Copy action translate $$' etc.
}

'}'

Bprec /* empty */
PREC IDENTIFIER

1 PREC IDENTIFIER act
1 prec';'

12-48

YACC

APPENDIX 12.3

An Advanced Example

This appendix gives an example of a grammar using some of the
advanced features. The desk calculator example in Appendix 12.1 is
modified to provide a desk calculator that does floating point interval
arithmetic. The calculator understands floating point constants; the
arithmetic operations +, - *, /, unary - "a" through" zIt . Moreover, it
also understands intervals written

(X,Y)

where X is less than or equal to Y. There are 26 interval valued
variables" A" through" Z" that may also be used. The usage is
similar to that in Appendix 12.1; assignments returns no value and
prints nothing while expressions print the (floating or interval) value.

This example explores a number of interesting features of yacc and
C language. Intervals are represented by a structure consisting of the
left and right endpoint values stored as doubles. This structure is
given a type name, INTERVAL, by using typedef. The yacc value
stack can also contain floating point scalars and integers (used to
index into the arrays holding the variable values). Notice that the
entire strategy depends strongly on being able to assign structures
and unions in C language. In fact, many of the actions call functions
that return structures as well.

It is also worth noting the use of YYERROR to handle error
conditions-division by an interval containing 0 and an interval
presented in the wrong order. The error recovery mechanism of yacc
is used to throwaway the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar
also demonstrates an interesting use of syntax to keep track of the
type (for example, scalar or interval) of intermediate expressions.
Note that scalar can be automatically promoted to an interval if the
context demands an interval value. This causes a large number of
conflicts when the grammar is run through yacc-18 Shift/Reduce

12-49

YACC

and 26 Reduce/Reduce. The problem can be seen by looking at the
two input lines.

2.5+(3.5-4.)

and

2.5 + (3.5,4)

Notice that the 2.5 is to be used in an interval value expression in the
second example, but this fact is not known until the comma is read.
By this time" 2.5 is finished, and the parser cannot go back and
change its mind. More generally, it might be necessary to look ahead
an arbitrary number of tokens to decide whether to convert a scalar
to an interval. This problem is evaded by having two rules for each
binary interval valued operator-one when the left operand is a
scalar and one when the left operand is an interval. In the second
case, the right operand must be an interval, so the conversion will be
applied automatically. Despite this evasion, there are still many cases
where the conversion may be applied or not, leading to the above
conflicts. They are resolved by listing the rules that yield scalars first
in the specification file; in this way, the conflict will be resolved in
the direction of keeping scalar valued expressions scalar valued unti
they are forced to become intervals.

This way of handling multiple types is very instructive but not very
general. If there were many kinds of expression types instead of just
two, the number of rules needed would increase dramatically and the
conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming
language environment to keep the type information as part of the
value and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is
the treatment of floating point constants. The C language library
routine atof() is used to do the actual conversion from a character
string to a double precision value. If the lexical analyzer detects an
error, it responds by returning a token that is illegal in the grammar
provoking a syntax error in the parser and t.hence error recovery.

%{

#include<stdio.h>
#include<ctype.h>

12-50

typedef struct interval
{

double 10, hi;
INTERVAL;

INTERV AL vmulO, vdiv();

double atof();

double dreg[26];
INTERV AL vreg[26];

%}

% start line

% union
{

}

int ivaI;
double dval;
INTERV AL vval;

YACC

% token <ivaI> DREG VREG /*indices into dreg, vreg arrays * /

% token <dval> CONST /* floating point constant * /

% type <dval> dexp /* expression * /

% type <vval> vexp /* interval expression * /

/* precedence information about the operators * /

% left '+' '-'
% left '*' 'I'
% left UMINUS /* precedence for unary minus * /

%%

lines : /* empty * /
lines line

12-51

YACC

line dexp '\n'
{

}
printf(" % 15.8f\n" .$1);

I vexp ,\n'

{
printf(" (% 15.8f , % 15.8f)O,$1.10,$l.hi);

}
I DREG '=' '\n'
{

dreg[$I] = $3;

}
I VREG '=' vexp ,\n'
{

vreg[$I] = $3;

I error '\0'
{

yyerrork;

}

dexp : CONST
I DREG
{

$$ = dreg[$I]

}
I dexp '+' dexp
{

$$ = $1 + $3

12-52

I dexp '-' dexp
{

$$ = $1 - $3

I dexp '*' dexp
{

$$ = $1 * $3

}
I dexp 'I' dexp
{

$$ = $1 / $3

}
I '-' dexp %prec UMINUS
{

$$ =- $2

}
I 'C dexp')'
{

$$.::;: $2

vexpp : dexp
{

$$.hi = $$.10 = $1;

I 'C dexp',' dexp')'
{

$$.10 = $2;
$$.hi = $4;
If($$.10 > $$.hi)
{

YACC

12-53

YACC

}

}

printf(" interval out of order n");
YYERROR;·

I VREG
{

$$ = vreg[$1]

}
I vexp '+' vexp
{

$$.hi = $l.hi + $3.hi;
$$.10 = $1.10 + $3.10

I dexp '+' vexp
{

}

$$.hi = $1 + $3.hi;
$$.10 = $1 + $3.10

I vexp '=' vexp
{

$$.hi = $l.hi - $3.10;
$$.10 = $1.10 - $3.hi

I dvep '-' vdep

{

}

$$.hi = $1 - $3.10;
$$.10 = $1 - $3.hi

I vexp ,*, vexp
{

$$ = vrnul($1.10,$.hi,$3)

12-54

%%

I dexp '*' vexp
{

$$ = vmul($1, $1, $3)

I vexp 'I' vexp
{

}

}

if(dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3)

dexp 'I' vexp

if(dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3)

I '-' vexp % prec UMINUS
{

$$.hi = -$2.10;$$.10 =-$2.hi
}
I '(' vexp ')'
}

$$ = $2

define BSZ 50 /* buffer size for floating point number * /

/* lexical analysis * /

yylex()
{

register c;

/* skip over blanks * /

YACC

12-55

YACC

if(isupper(c))
{

}

yylval.ival = c - 'A'
return(VREG);

if(islower(c))
{

yylval.ival = c - 'a',
return(DREG);

/* gobble up digits. points, exponents * /
if(idigit(c) II c=='.')
{

{

12-56

char buf[BSZ+ 1], *cp = buf;
int dot = 0, exp = 0;

for(; (cp-buf)<BSZ ; ++cp,c=getchar())

*cp = c;
if(isdigit(c))

continue;
if(c =='.'
{
if(dot++ II exp)

}

return(',');/* will cause syntax error * /
continue;

if(c == 'e')
{

if(exp++)
return('e'); * /will cause syntax error * /

continue;

/* end of number * /
break;

*cp = ,\0';
if(cp-buff) >= BSZ)

printcf(" constant too long truncated\n");
else

ungetc(c, stdin); /* push back last char read * J
yylval.dval = atof(buf);
return(CONST);
}
return(c);

INTERVAL
hilo(a, b, c, d)

double a, b, c, d;

YACC

/* returns the smallest interval containing a, b, c, and d * /

/* used by *,1 routine */
INTERVAL v;

if(a>b)
{

}
else
{

}

v.hi = a;
v.lo = b;

v.hi = b;
v.lo = a;

if(c>d)
{

}
else
}

}

if(c>v.hi)
v.hi = c;

if(d<v.lo)
v.lo = d;

if(d>v.hi)
v.hi = d;

if(c<v.lo)
v.lo = c;

12-57

YACC

return(v);
}
INTERV AL vmul(a, b, v)

double a, b;
INTERVAL v;

return(hilo(a*v.hi, a*v,lo, b*v.hi, b*v.lo));
}
dcheck(v)

INTERVAL v;

if(v.hi >=0.&& v.lo <=0.)
{

}

printf(" divisor internal contains O.\n");
return(1);

return(0);

INTERV AL vdiv(a, b, v)
double a, b;
INTERVAL v;

{
return(hilo(a/v.hi, a/v,lo, b/v.hi, b/v.lo));

}

APPENDIX 12.4

Old Features Supported But Not Encouraged

This appendix mentions synonyms and features that are supported
for historical continuity but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes.

2. Literals may be more that one character long. If all the
characters are alphabetic, numeric, or _, the type number of
the literal is defined just as if the literal did not have the

12-58

YACC

quotes around it. Otherwise, it is difficult to find the value for
such literal.

The use of multicharacter literals is likely to mislead those
unfamiliar with yacc since it suggests that yacc is doing a job
which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In
particular, \ \ is the same as % %, \left the same as % left, etc.

4. There are a number of other synonyms:

% < is the same as % left
% > is the same as % right
% binary and % 2 are the same as % nonassoc
% 0 and % term are the same as % token
% = is the same as % prec

5. Action may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C
language statement.

6. The C language code between % { and %} use to be permitted
at the head of the rules section as well as in the declaration
section.

12-59

Chapter 13

UNIX SYSTEM TO UNIX SYSTEM COpy (UUCP)

INTRODUCTION ,

THE UUCP NETWORK

Network Hardware

Network Topology

Forwarding .. .

Security

Software Structure

Rules of the Road

Special Places: The Public Area

Permissions .. .

NETWORK USAGE .. .

Name Space

Forwarding Syntax

Types of Transfers

Remote Executions

Spooling

Notification .. .

Tracking and Status

Job Status

Network Status .. .

Job Control .. .

UTILITIES THAT USE UUCP

The Stockroom

Mail .. .

Netnews

Uuto .. .

Other Applications

PAGE

13-1

13-1

13-2

13-3

13-6

13-6

13-7

13-7

13-9

13-9

13-10

13-10

13-12

13-13

13-14

13-14

13-15

13-15

13-17

13-17

13-18

13-18

13-19

13-19

13-19

13-19

13-20

Chapter 13

UNIX SYSTEM TO UNIX SYSTEM COpy
(UUCP)

INTRODUCTION

The uucp network has provided a means of information exchange
between UNIX systems over the direct distant dialing (DDD)
network for several years. This chapter provides you with the
background to make use of the network.

The first half of the document discusses concepts. Understanding
these basic principles helps the user make the best possible use of the
uucp network. The second half explains the use of the user level
interface to the network and provides numerous examples.

There are several major uses of the network. Some of the uses are:

• Distribution of software

• Distribution of documentation

• Personal communication (mail)

• Data transfer between closely sited machines

• Transmission of debugging dumps and data exposing bugs

• Production of hard copy output on remote printers.

THE UUCP NETWORK

The uucp(l) network is a network of UNIX systems that allows file
transfer and remote execution to occur on a network of UNIX
systems. The extent of the network is a function of both the
interconnection hardware and the controlling network software.
Membership in the network is tightly controlled via the software to

13-1

UUCP

preserve the integrity of all members of the network. You cannot use
the uucp facility to send files to systems that are not part of the
uucp network. The following parts describe the topology, services,
operating rules, etc., of the network to provide a framework for
discussing use of the network.

Network Hardware

The uucp was originally designed as a dialup network so that
systems in the network could use the DDD network to communicate
with each other. The three most common methods of connecting
systems are:

1. Connecting two UNIX systems directly by cross-coupling (via a
null modem) two of the computers ports. This means of
connection is useful for only short distances (several hundred
feet can be "achieved although the RS232 standard specifies a
much shorter distance) and is usually run at high speed (9600
baud). These connections run on asynchronous terminal ports.

2. Using a modem (a private line or a limited distance modem) t.)
directly connect processors over a private line (using 103- or 212-
type data sets).

3. Connecting a processor to another system through a modem, an
automatic calling unit (ACU), and the DDD network. This is by
far the most common interconnection method, and it makes
available the largest number of connections.

The uucp could be extended to use higher speed media (e.g.,
HYPERchannel, Ethernet, etc.), and this possibility is being
explored for future UNIX system releases. Some sites already
support local modifications to uucp to allow the use of Datakit, X.25
(permanent virtual circuits), and calling through data switches.

13-2

UUCP

Network Topology

A large number of connections between systems are possible via the
DDD network. The topology of the network is determined by both
the hardware connections and the software that control the network.
The next two parts deal with how that topology is controlled.

Hardware Topology

As discussed earlier, it is possible to build a network using
permanent or dial up connections. In Figure 14-1, a group of
systems (A, B, C, D, and E) are shown connected via hard-wired lines.
All systems are assumed to have some answer-only data sets so that
remote users or systems can be connected.

A t---------()---------(C

LEGEND

~ - AUTOMATIC CALLING UNIT

o -COMPUTER SYSTEM

Figure 14-1. UUCP Nodes

®

13-3

UUCP

A few systems have automatic calling units (K, D, F, and G) and one
system (H) has no capability for calling other systems. Users should
be aware that the network consists of a series of point-to-point
connections (A-B, B-C, D-B, E-B) even though it appears in Figure
14-1 that A and C are directly connected through B. The following
observations are made:

1. System H is isolated. It can be made part of the network by
arranging for other systems to poll it at fixed intervals. This is
an important concept to remember since transfers from systems
that are polled do not leave the system until that system is called
by a polling system.

2. Systems K, F, G, and D easily reach all other systems since they
have calling units.

3. If system A (E or G) wishes to send a file to H (K, F, or G), it
must first send it to D (via system B) since D is the only system
with a calling unit.

Software Topology

The hardware capability of systems in the network defines the
maximum number of connections in the network. The software at
each node restricts the access by other systems and thereby defines
the extent of the network. The systems of Figure 14-1 can be
configured so that they appear as a network of systems that have
equal access to each other or some restrictions can be applied. As
part of the security mechanism used by uucp, the extent of access
that other systems have can be controlled at each node. Figures 14-2
and 14-3 show how the network might appear at one node.

13-4

UUCP

Figure 14-2. UUCP Network Excluding One Node

Figure 14-3. UUCP Network With Several Levels of
Permissions

13-5

UUCP

Access is available from all systems in Figure 14-2, however, in
Figure 14-3 some of the systems have been configured to have greater
or less access privileges than others (i.e., systems C, E, and G have
one set of access privileges, systems F and B have another set, etc.).

The uucp uses the UNIX system password mechanism coupled with a
system file (/usr/Jib/uucp/L.sys) and a file system permission file
(/usr/Jib/uucp/USERFILE) to control access between systems. The
password file entries for uucp (usually, luucp, nuucp, uucp, etc.)
allow only those remote systems that know the passwords for these
IDs to access the local system. (Great care should be taken in
revealing the password for these uucp logins since knowing the
password allows a system to join the network.) The system file
(/usr/lib/uucp/L.sys) defines the remote systems that a local host
knows about. This file contains all information needed for a local
host to contact a remote system (including system name, password,
login sequence, etc.) and as such is protected from viewing by
ordinary users.

In summary, while the available hardware on a network of systems
determines the connectivity of the systems, the combination of
password file entries and the uucp system files determine the extent
of the network.

Forwarding

One of the recent additions to uucp (for UNIX system 5.0) is a
limited forwarding capability whereby systems that are part of the
network can forward files through intermediate nodes. For example,
in Figure 14-1, it is possible to send a file between node A and C
through intermediate node B. For security reasons, when forwarding:
files may only be transmitted to the public area or fetched from the
remote systems public area.

Security

The most critical feature of any network is the security that it
provides. Users are familiar with the security that UNIX system
provides in protecting files from access by other users and in
accessing the system via passwords. In building a network of
processors, the notion of security is widened because access by a

13-6

UUCP

wider community of users is granted. Access is granted on a system
basis (that is, access is granted to all users on a remote system).
This follows from the fact that the process of sending (receiving) a
file to (from) another system is done via daemons that use one
special user ID(s). This user ID(s) is granted (denied) access to the
system via the uucp system file (/usr/Jib/uucp/L.sys) and the areas
that the system has access to is controlled by another file
(/usr/Jib/uucp/USERFILE). For example, access can be granted to
the entire file system tree or limited to specific areas.

Software Structure

The uucp network is a batch network. That is, when a request IS

made, it is spooled for later transmission by a daemon. This IS

important to users because the success or failure of a command is
only known at some later time via mail(l) notification. For most
transfers, there is little trouble in transmitting files between
systems, however, transmissions are occasionally delayed or fail
because a remote system cannot be reached.

Rules of the Road

There are several rules by which the network runs. These rules are
necessary to provide the smooth flow of data between systems and to
prevent duplicate transmissions and lost jobs. The following chapters
outline these rules and their influence on the network.

Queuing

Jobs submitted to the network are assigned a sequence number for
transmission. Jobs are represented by a file (or files) in a common
spool directory (/usr/spooJ/uucp). When a file transfer daemon
(uucico) is started to transmit a job, it selects a system to contact
and then transmits all jobs to that system. Before breaking off the
conversation, any jobs to be received from that remote system are
accepted. The system selected as the one to contact is randomly
selected if there is work for more than one system. In releases of
uucp prior to UNIX system 5.0, the first system appearing in the
spool directory is selected so preference is given to the most recently
spawned jobs. Uucp may be sending to or receiving from many
systems simultaneously. The number of incoming requests is only
limited by the number of connections on the system, and the number

13-7

UUCP

of outgoing transfers IS limited by the number of ACUs (or direct
connections).

Dialing and the DDD Network

In order to transfer data between processors that are not directly
connected, an auto dialer is used to contact the remote system.
There are several factors that can make contacting a remote system
difficult.

1. All lines to the remote system may be busy. There is a
mechanism within uucp that restricts contact with a remote
system to certain times of the day (week) to minimize this
problem.

2. The remote system may be down.

3. There may be difficulty in dialing the number (especially if a
large sequence of numbers involving access through PBXs is
involved). The dialing algorithm tries dialing a number twice
and the algorithm used to dial remote systems is not perfect,
particularly when intermediate dial tones are involved.

Scheduling and Polling

When a job is submitted to the network, an attempt to contact that
system is made immediately. Only one conversation at a time can
exist between the same two systems.

Systems that are polled can do nothing to force immediate
transmission of data. Jobs will only be transmitted when the system
is polled (hourly, daily, etc.) by a remote system.

Retransmissions and Hysteresis

The uucp network is fairly persistent in its attempt to contact
remote systems to complete a transmission. To prevent uucp from
continually calling systems that are unavailable, hysteresis is built
into the algorithm used to contact other systems. This mechanism
forces a minimum fixed delay (specifiable on a per system basis) to
occur before another transmission can take place to that system.

13-8

UUCP

Purging and Cleanup

Transfers that cannot be completed after a defined period of time (72
hours is the value that is set when the system is distributed) are
deleted and the user is notified.

Special Places: The Public Area

In order to allow the transfer of files to a system for which a user
does not have a login on, the public directory (usually kept in
lusrlspoolluucppublic) is available with general access privileges.
When receiving files in the public area, the user should dispose of
them quickly as the administrative portion of uucp purges this area
on a regular basis.

Permissions

File Level Protection

In transferring files between systems, users should make sure that
the destination area is writable by uucp. The uucp daemons
preserve execute permission between systems and assign permission
0666 to transferred files.

System Level Protection

The system administrator at each site determines the global access
permissions for that processor. Thus, access between systems may be
confined by the administrator to only some sections of the file
system.

Forwarding Permissions

The forwarding feature is a new addition to the uucp package. You
should be aware that

1. When forwarding is attempted through a node that is running an
old version of uucp, the transmission fails.

13-9

UUCP

2. Nodes that allow forwarding can restrict the forwarding feature
in several ways.

a. Forwarding is allowed for only certain users.

b. Forwarding to certain destination nodes (e.g., Australia)
should be avoided.

c. Forwarding for selected source nodes is allowed.

3. The most important restriction is that forwarding is allowed only
for files sent to or fetched from the public area.

NETWORK USAGE

The following parts discuss the user interface to the network and give
examples of command usage.

Name Space

In order to reference files on remote systems, a syntax is necessary to
uniquely identify a file. The notation must also have several defaults
to allow the reference to be compact. Some restrictions must also be
placed on pathnames to prevent security violations. For example,
pathnames may not include" .. " as a component because it is difficult
to determine whether the reference is to a restricted area.

Naming Con yen tions

Uucp uses a special syntax to build references to files on remote
systems. The basic syntax is

system -name!pathname

where the system-name is a system that uucp is aware of. The
pathname part of the name may contain any of the following:

1. A fully qualified pathname such as

mhtsa!/usr/you/file

13-10

UUCP

The pathname may also be a directory name as in

mhtsa!/usr/you/directory

2. The login directory on a remote· may be specified by use of the -
character. The combination -user references the login directory
of a user on the remote system. For example,

mh tsa!-adml file

would expand to

mhtsa!/usrlsys/adm/file

if the login directory for user adm on the remote system is
/usr/sys/adm.

3. The public area is referenced by a similar use of the prefix -Iuser
preceding the pathname. For example, --

mhtsa!-Iyou/file

would expand to

mhtsa!/usrlspool/uucp/you/file

if /usr/spool/uucp is used as the spool directory.

4. Path names not using any of the combinations or prefixes
discussed above are prefixed with the current directory (or the
login directory on the remote). For example,

mhtsa!file

13-11

UUCP

would expand to

mhtsa!/usr/you/file

The naming convention can be used in reference to either the source
or destination file names. ---

Forwarding Syntax

The newest feature of uucp is the ability to allow files to be passed
between systems via intermediate nodes. This is done via a variation
of the bang (!) syntax that describes the path to be taken to rea<;h
that file. For example, a user on system a wishing to transmit a file
to system e might specify the transfer as -

uucp file b!c!d!e!-Iyou/file

if the user desires the request to be sent through b, c, and d before
reaching e. Note that the pathname is the path that the file would
take to reach node e. Note also that the destination must be specified
as the public area. Fetching a file from another system via
intermediate nodes is done similarly. For example,

uucp b!c!d!e!-/you/file x

fetches file from system e and renames it x on the local system. The
forwarding prefix is the path from the local system and not the path
from the remote to the local system. The forwarding feature may
also be used in conjunction with remote execution. For example,

uux mhtsa!uucp mhtsb!mhrtc!/usrlspool/uucppublic/file x

sends a request to mhtsa to execute the uucp command to copy a file
from mhrtc to x on mhtsa.

13-12

UUCP

The pathname may also be a directory name as in

mhtsa!lusr Iyoul directory

2. The login directory on a remote· may be specified by use of the -
character. The combination -user references the login directory
of a user on the remote system. For example,

mh tsa!-adml file

would expand to

mhtsa!lusr I sysl adm/file

if the login directory for user adm on the remote system IS

/usr/sys/adm.

3. The public area is referenced by a similar use of the prefix -luser
preceding the pathname. For example, --

mhtsa!-/you/file

would expand to

mhtsa!lusrlspool/uucp/you/file

if /usr/spool/uucp is used as the spool directory.

4. Pathnames not using any of the combinations or prefixes
discussed above are prefixed with the current directory (or the
login directory on the remote). For example,

mhtsa!file

13-11

UUCP

would expand to

mh tsa!1 usr I you I file

The naming convention can be used in reference to either the source
or destination file names.

Forwarding Syntax

The newest feature of uucp is the ability to allow files to be passed
between systems via intermediate nodes. This is done via a variation
of the bang (!) syntax that describes the path to be taken to reaGh
that file. For example, a user on system a wishing to transmit a file
to system ~ might specify the transfer as -

uucp file b!c!d!e!-Iyou/file

if the user desires the request to be sent through b, c, and d before
reaching e. Note that the pathname is the path that the file would
take to reach node e. Note also that the destination must be specified
as the public area. Fetching a file from another system via
intermediate nodes is done similarly. For example,

uucp b!c!d!e!-/you/file x

fetches file from system e and renames it x on the local system. The
forwarding prefix is the path from the local system and not the path
from the remote to the local system. The forwarding feature may
also be used in conjunction with remote execution. For example,

uux mhtsa!uucp mhtsb!mhrtc!lusrlspool/uucppublic/file x

sends a request to mhtsa to execute the uucp command to copy a file
from mhrtc to x on mhtsa.

13-12

UUCP

Types of Transfers

Uucp has a very flexible command syntax for file transmission. The
following chapters give examples of different combinations of
transfers.

Transmissions of Files to a Remote

Any number of files can be transferred to a remote system via uucp.
The syntax supports the *, ? and [..] metacharacters. For example,

uucp *.[ch] mhtsa!dir

transfers all files whose name ends in c or h to the directory dir in
. the users login directory on mhtsa. - -

Fetching Files From a Remote

Files can be fetched from a remote system in a similar manner. For
example,

uucp mhtsa!*.[ch] dir

will fetch all files ending in c or h from the users login directory on
mhtsa and place the copies- in the subdirectory dir on the local

. system.

Switching

Transmission of files can be arranged in such a way that the local
system effectively acts as a switch. For example,

uucp mhtsb!files mhtsa!filed

will fetch files from the users login directory on mhtsb, rename it as
filed, and place it in the login directory on mhtsa.---

13-13

UUCP

Broadcasting

Broadcast capability (that is, copying a file to many systems) is not
supported by uucp, however, it can be simulated via a shell script as
III

for i in mhtsa mhtsb mhtsd
do

uucp file $i!broad
done

Unfortunately, one uucp command is spawned for each transmission
so that it is not possible to track the transfer as a single unit.

Remote Executions

The remote execution facility allows commands to be executed
remotely. For example,

uux" !diff mhtsa!/etc/passwd mhtsd!/etc/passwd > !pass.diff'

will execute the command diff(l) on the password file on mhtsa and
mhtsd and place the result in pass.diff. --

Spooling

To continue modifying a file while a copy is being transmitted across
the network, the -c option should be used. This forces a copy of the
file to be queued. The default for uucp is not to queue copies of the
files since it is wasteful of both Central Processing Unit time and
storage. For example, the following command forces the file work to
be copied into the spool directory before it is transmitted. --

uucp -c work mhtsa!-/you/work

13-14

UUCP

Notification

The success or failure of a transmission is reported to users
asynchronously via the mail(l) command. A new feature of uucp is
to provide notification to the user in a file (of the users choice). The
choices for notification are:

1. Notification returned to the requesters system (via the -m
option). This is useful when the requesting user is distributing
files to other machines. Instead of logging onto the remote
machine to read mail, mail is sent to the requester when the copy
is finished.

2. A variation of the -m option is to force notification in a file
(using the -mfile option where file is a file name). For example,

uucp -mans letc/passwd mhtsb!ldev/null

sends the file /etc/passwd to system mhtsb and place the file in
the bit bucket (/dev/nuJ1). The status of the transfer is reported
in the file ans as,

uucp job 0306 (8/20-23:08:09) (0:31:23) /etc/passwd copy succeeded

3. Uux(l) always reports the exit status of the remote execution
unless notification is suppressed (via the -n option).
Notification can be sent to a different user on the remote system
via the -nuser option.

Tracking and Status

The most pervasive change to the uucp package is revIsIng the
internal formatting of jobs so that each invocation of uucp or uux(l)
corresponds to a single job. It is now possible to associate a single
job number with each command execution so that the job can be
terminated or its status obtained.

13-15

UUCP

The Job ID

The default for the uucp and uux command is not to print the job
number for each job. This was done for compatibility with previous
versions of uucp and to prevent the many shell scripts built around
uucp from printing job numbers. If the following environment
variable

JOBNO=ON

is made part of the users environment and exported, uucp and uux
prints the job number. Similarly, if the user wishes to turn the job
numbers off, the environment variable is set as follows:

JOBNO=OFF

If you wish to force printing of job numbers without using the
environment mechanism, use the -j option. For example,

uucp -j /etc/passwd mhtsb!/dev/null
uucp job 282

forces the job number (282) to be printed. If the -j option is not
used, the IDs of the jobs (belonging to the user) are found by using
the uustat(1) command. This provides the job number. For
example,

uustat
0282 tom mhtsb 08/20-21:47 08/20-21:47 JOB IS QUEUED
0272 tom mhtsb 08/20-21:46 08/20-21:46 JOB IS QUEUED

shows that the user has two jobs (282 and 272) queued.

13-16

UUCP

Job Status

The uustat command allows a user to check on one or all jobs that
have been queued. The ID printed when a job is queued is used as a
key to query status of the particular job. An example of a request
for the status of a given job is

uustat - j0711

0711 tom mhtsb 07/30-02:18 07/30-02:18 JOB IS QUEUED

There are several status messages that may be printed for a given
job; the most frequent ones are JOB IS QUEUED and JOB
COMPLETED (meanings are obvious). The manual page for uustat
lists the other status messages.

Network Status

The status of the last transfer to each system on the network is
found by using the uustat command. For example,

uustat -mall

reports the status of the last transfer to all of the systems known to
the local system. The output might appear as

mhb5c
resear
minimo
austra
ucbvax

08/10-12:35
08/20-17:01
07/22-16:31
08/20-18:36
08/20-20:37

CONVERSATION SUCCEEDED
CONVERSATION SUCCEEDED
DIAL FAILED
WRONG TIME TO CALL
LOGIN FAILED

where the status indicates the time and state of the last transfer to
each system. When sending files to a system that has not been
contacted recently, it is a good idea to use uustat to see when the
last access occurred (because the remote system may be down or out
of service).

13-17

UUCP

Job Control

With the unique job ID generated for each uucp or uux command, it
is possible to control jobs in the following ways.

Job Termination

A job that consists of transferring many files from several different
systems can be terminated using the - k option of uustat. If any
part of the job has left the system, then only the remaining parts of
the job on the local system is terminated.

Requeuing a Job

The uucp package clears out its working area of jobs on a regular
basis (usually every 72 hours) to prevent the buildup of jobs that
cannot be delivered. The -r option is used to force the date of a job
to be changed to the current date, thereby lengthening the time that
uucp attempts to transmit the job. It should be noted that the -r
option does not impart immortality to a job. Rather, it only
postpones deleting the job during housekeeping functions until the
next cleanup.

Network Names

Users may find the names of the systems on the network via the
uuname(l) command. Only the names of the systems in the network
are printed. ---

UTILITIES THAT USE UUCP

There are several utilities that rely on uucp or uux(l) to transfer
files to other systems. The following parts outline the more
important of these functions. This increases awareness of the extent
of the use of the network.

13-18

UUCP

The Stockroom

The UNIX system stockroom is a facility whereby a library of source
can be maintained at a central location for distribution of source or
bug fixes. Access to and distribution of library entries is controlled
by shell scripts that use uucp.

Mail

The mail(l) command uses uux to forward mail to other systems.
For example, when a user types

mail mhtsa!tom

the mail command invokes uux to execute rmail on the remote
system (rmail is a link to the mail command). Forwarding mail
through several systems (e.g., mail a!b!tom) does not use the uucp
forwarding feature but is simulated by the mail command itself.

Netnews

The netnews(l) command that is locally supported on many
systems uses uux in much the same way that mail does to broadcast
network mail to systems subscribing to news categories.

Uuto

The uuto(l) command uses the uucp facility to send files while
allowing the local system to control the file access. Suppose your
login is emsgene and you are on system aaaaa. You have a friend
(David) on system bbbbb with a login name of wldmc. Also assume
that both systems are networked to each other [See uuname(l)]. To
send files using uuto, enter the following:

uuto filename aaaaa!wldmc

13-19

UUCP

where filename is the name of a file to be sent. The files are sent to a
public directory defined in the uucp source. In this example, David
will receive the following mail:

From nuucp Tue Jan 25 11:09:55 1983
lusrlspool/uucppublic/receive/w1dmc/aaaaa\
Ilfilename from aaaaa!emsgene arrived

See uuto(l) for more details.

Other Applications

The Office Automation System (OAS) uses uux to transmit
electronic mail between systems in a manner similar to the standard
mail command. Some sites have replaced utilities such as lpr(l),
opr(l), etc., with shell scripts that invoke uux or uucp. Other sites
use the uucp ne. work as a backup for higher speed networks (e.g.,
PCL, NSC HYPERchannel, etc.).

13-20

READER COMMENT FORM

UNIX SYSTEM V SUPPORT TOOLS GUIDE

Altos Computer Systems
2641 Orchard Parkway

San Jose, CA 95134

This document has been prepared for use with your Altos
Cpmputer System. Should you find an error or problem in
this manual, please write ii down (noting page number),
and return this form to the ALTOS PUBLICATIONS DEPARTMENT.

System Model Number ____________________ -

Serial Number ________________ _

Document Title __ __

Revision Number 690-15841-001 Date ________________________ ___

Name __ ___

Company Name __ __

Address __ _

Printed in U .S.A .
PIN 690-15841-001

[ALLm]
COMPUTER SYSTEMS®

2641 Orchard Park Way, San Jose, Califomia 95134
(408) 946-6700,. Telex 470642 Alto UI July 1985

