
__ ~ALTOS_
UNIX™ SYSTEM V

USER REfERENCE

UNIX™Sysfem V
User Reference

ACKRafLEDGBMENTS

The Altos logo, as it appears in this manual, is a
registered'trademark of Altos Computer Systems.

DIABLO™ is a trademark of Xerox Corporation.

Hp™ is a trademark of Hewlett-Packard, Inc.

TEKTRONIX® is a registered trademark of Tektronics, Inc.

Versatec® is a registered trademark of versatec
Corporation.

TELETYPE™ is a trademark of AT&T Teletype Corporation.

UNIX™ is a trademark of AT&T Bell Laboratories.

WorkNet™ is a trademark of Altos Computer Systems.

3BTM and DOCUMENTER' S WORKBENCHT~ are trademarks of AT&T
Technologies.

INTRODUCfION

This manual describes the features of the UNIX system. It provides neither a general
overview of the UNIX system nor details of the implementation of the system.

Not all commands, features, and facilities described in this manual are available in
every UNIX system. The entries not applicable for a particular hardware line will have
an appropriate caveat stamped in the center of the mast of an entry. Also, programs or
facilities being phased out will be marked as "Obsolescent" on the top of the entry.
When in doubt, consult your system's administrator.

This manual is divided into two sections, some containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands
1 C. Communications Commands
1 G. Graphics Commands

6. Games

Section 1 (Commands and Application Programs) describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to subrou­
tines, which are intended to be called by the user's programs. Commands generally
reside in the directory Ibin (for binary programs). Some programs also reside in
lusr/bin, to save space in Ibin. These directories are searched automatically by the
command interpreter called the shell. Sub-class 1 C contains communication programs
such as CU, send, uucp, etc. These entries may not apply from system to system
depending upon the hardware included on your processor. Some UNIX systems may
have a directory called lusr/lbin, containing local commands.

Section 6 (Games) describes the games and educational programs that, as a rule, reside
in the directory lusr/games.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each section
are alphabetized, with the exception of the introductory entry that begins each section.
Some entries may describe several routines, commands, etc. In such cases, the entry
appears only once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program
names found elsewhere in the manual (they are underlined in the typed ver­
sion of the entries).

Square brackets [J around an argument prototype indicate that the argument
is optional. When an argument prototype is given as "name" or "file", it
always refers to a file name.

Ellipses 000 are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument begin­
ning with a minus -, plus +, or an equal sign - is often taken to be some sort
of flag argument, even if it appears in a position where a file name could
appear. Therefore, it is unwise to have files whose names begin with -, +, or

<- 3 -

Introduction

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the
suggested fix is also described.

A table of contents and a permuted index derived from that table precede Section 1.
On each index line, the title of the entry to which that line refers is followed by the
appropriate section number in parentheses. This is important because there is consider­
able duplication of names among the sections, arising principally from commands that
exist only to exercise a particular system call.

On most systems, all entries are available on-line via the man(I) command.

- 4 -

HOW TO GET STARTED

This discussion provides the basic information you need to get started on the UNIX sys­
tem: how to log in and log out, how to communicate through your terminal, and how to
run a program. (See the UNIX System User Guide for a more complete introduction to
the system.)

Logging in. You must dial up the UNIX operating system from an appropriate termi­
nal. The UNIX system supports full-duplex ASCII terminals. You must also have a
valid user name, which may be obtained (together with the telephone number(s) of
your UNIX system) from the administrator of your system. Common terminal speeds
are 10, 15, 30, and 120 characters per second (I1O, 150, 300, and 1,200 baud); occa­
sionally, speeds of 240, 480, and 960 characters per second (2,400, 4,800, and 9,600
baud) are also available. On some UNIX systems, there are separate telephone numbers
for each available terminal speed, while on other systems several speeds may be served
by a single telephone number. In the latter case, there is one "preferred" speed; if you
dial in from a terminal set to a different speed, you will be greeted by a string of mean­
ingless characters (the login: message at the wrong speed). Keep hitting the "break" or
"attention" key until the login: message appears. Hard-wired terminals usually are set
to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and a
half-Ifull-duplex switch that should be set to full-duplex. When a connection (at the
speed of the terminal) has been established, the system types login: and you then type
your user name followed by the "return" key. If you have a password (and you
should!), the system asks for it, but does not print ("echo") it on the terminal. After
you have logged in, the "return", "new-line", and "line-feed" keys will give exactly the
same result.

It is important that you type your login name in lower case if possible; if you type
upper-case letters, the UNIX system will assume that your terminal cannot generate
lower-case letters and that you mean all subsequent upper-case input to be treated as
lower case. When you have logged in successfully, the shell will type a $ to you. (The
shell is described below under How to run a program.)

For more information, consult login (I), which discusses the login sequence in more
detail, and stty (I), which tells you how to describe the characteristics of your terminal
to the system. The command (profile (4) in The UNIX System Programmer Reference
Manual explains how to accomplish this last task automatically every time you log in).

Logging out. There are two ways to log out:

1. You can simply hang up the phone.
2. You can log out by typing an end-of-file indication (ASCII EOT character, usu­

ally typed as "control-d") to the shell. The shell will terminate and the login:
message will appear again.

How to communicate through your terminal. When you type to UNIX system, a gnome
deep in the system is gathering your characters and saving them. These characters will
not be given to a program until you type a "return" (or "new-line"), as described above
in Logging in.

UNIX system terminal input/output is full-duplex. It has full read-ahead, which means
that you can type at any time, even while a program is typing at you. Of course, if you
type during output, the output will have interspersed in it the input characters. How­
ever, whatever you type will be saved and interpreted in the correct sequence. There is
a limit to the amount of read-ahead, but it is generous and not likely to be exceeded
unless the system is in trouble. When the read-ahead limit is exceeded, the system
silently throws away all the saved characters.

- 5 -

How To Get Started

On an input line from a terminal, the character @ "kills" all the characters typed
before it. The character # erases the last character typed. Successive uses of # will
erase characters back to, but not beyond, the beginning of the line; @ and # can be
typed as themselves by preceding them with \ (thus, to erase a \, you need two #s).
These default erase and kill characters can be changed; see stty(I).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is use­
ful with CRT terminals to prevent output from disappearing before it can be read. Out­
put is resumed when a DCt (control-q) or a second DC3 (or any other character, for
that matter) is typed. The DCt and DC3 characters are not passed to any other pro­
gram when used in this manner.

The ASCII DEL (a.k.a. "rubout") character is not passed to programs, but instead gen­
erates an interrupt signal, just like the "break", "interrupt", or "attention" signal. This
signal generally causes whatever program you are running to terminate. It is typically
used to stop a long printout that you do not want. However, programs can arrange
either to ignore this signal altogether, or to be notified when it happens (instead of
being terminated). The editor ed(I), for example, catches interrupts and stops what it
is doing, instead of terminating, so that an interrupt can be used to halt an editor print­
out without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a
running program to terminate, but also, if possible, generates a file with the "core
image" of the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, the UNIX system tries to be intelligent as
to whether you have a terminal with the "new-line" function, or whether it must be
simulated with a "carriage-return" and "line-feed" pair. In the latter case, all input
"carriage-return" characters are changed to "line-feed" characters (the standard line
delimiter), and a "carriage-return" and "line-feed" pair is echoed to the terminal. If
you get into the wrong mode, the stty(l) command will rescue you.

Tab characters are used freely in UNIX system source programs. If your terminal does
not have the tab function, you can arrange to have tab characters changed into spaces
during output, and echoed as spaces during input. Again, the stty (1) command will set
or reset this mode. The system assumes that tabs are set every eight character posi­
tions. The tabs (1) command will set tab stops on your terminal, if that is possible.

How to run a program. When you have successfully logged into the UNIX system, a
program called the shell is listening to your terminal. The shell reads the lines you
type, splits them into a command name and its arguments, and executes the command.
A command is simply an executable program. Normally, the shell looks first in your
current directory (see The current directory below) for a program with the given name,
and if none is there, then in system directories. There is nothing special about system­
provided commands except that they are kept in directories where the shell can find
them. You can also keep commands in your own directories and arrange for the shell
to find them there.

The command name is the first word on an input line to the shell; the command and its
arguments are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you
to indicate that it is ready for another command. The shell has many other capabilities,
which are described in detail in sh (I).

The current directory. The UNIX system has a file system arranged in a hierarchy of
directories. When the system administrator gave you a user name, he or she also
created a directory for you (ordinarily with the same name as your user name, and
known as your login or home directory). When you log in, that directory becomes your
current or working directory, and any file name you type is, by default, assumed to be
in that directory. Because you are the owner of this directory, you have full permissions

- 6 -

How To Get Started

to read, write, alter, or destroy its contents. Permissions to have your will with other
directories and files will have been granted or denied to you by their respective ~ners,
or by the system administrator. To change the current directory use cd (1).

Path names. To refer to files not in the current directory, you must use a path name.
Full path names begin with I, which is the name of the root directory of the whole file
system. After the slash comes the name of each directory containing the next sub­
directory (followed by a/), until finally the file name is reached (e.g., lusr/ae/filex
refers to file filex in directory ae, while ae is itself a subdirectory of usr; usr springs
directly from the root directory). See intro (2) for a formal definition of path name.

If your current directory contains subdirectories, the path names of files therein begin
with the name of the corresponding subdirectory (without a prefixed /). Without
important exception, a path name may be used anywhere a file name is required.

Important commands that modify the contents of files are cp (1), mv, and rm (1), which
respectively copy, move (i.e., rename), and remove files. To find out the status of files
or directories, use /s(I). Use mkdir(I) for making directories and rmdir(I) for des­
troying them.

For a fuller discussion of the file system, see the references cited at the beginning of the
INTRODUCTION above. It may also be useful to glance through Section 2 of The
UNIX System Programmer Reference Manual, which discusses system calls, even if you
do not intend to deal with the system at that level.

Writing a program. To enter the text of a source program into a UNIX system file, use
ed (1). The principal languages available under the UNIX system are C (see cc (1»,
Fortran (see j77 (I», and assembly language (see as 0» . After the program text has
been entered with the editor and written into a file (whose name has the appropriate
suffix), you can give the name of that file to the appropriate language processor as an
argument. Normally, the output of the language processor will be left in a file in the
current directory named a.out (if that output is precious, use mv (I) to give it a less
vulnerable name). If the program is written in assembly language, you will probably
need to load with it library subroutines (see Id 0». Fortran and C call the loader
automatically.

When you have finally gone through this entire process without prOVOking any diagnos­
tics, the resulting program can be run by giving its name to the shell in response to the
$ prompt.

If any execution (run-time) errors occur, you will need sdb (1) or adb (1) to examine the
remains of your program.

Your programs can receive arguments from the command line just as system programs
do; see exec (2) .

Text processing. Almost all text is entered through the editor ed(I). The commands
most often used to write text on a terminal are cat(l), prO), and nroff. The cadI)
command simply dumps ASCII text on the terminal, with no processing at all. The
prO) command paginates the text, supplies headings, and has a facility for multi­
column output.

Surprises. Certain commands provide inter-user communication. Even if you do not
plan to use them, it would be well to learn something about them, because someone else
may aim them at you. To communicate with another user currently logged in, writeO)
is used; rnai/O) will leave a message whose presence will be announced to another user
when he or she next logs in. The corresponding entries in this manual also suggest how
to respond to these two commands if you are their target.

When you log in, a message-of-the-day may greet you before the first $.

- 7 -

TABLE OF CONTENTS

1. Commands and Application Programs

intro introduction to commands and application programs
300 ••.• handle special functions of DASI 300 and 300s terminals
4014 • . . • . . .•. paginator for the TEKTRONIX 4014 terminal
450 • . • • • . handle special functions of the DASI 450 terminal
acctcom . . . • . • . • • . • . . • search and print process accounting file(s)
adb••••.• . . • . • • absolute debugger
admin . . . • . • create and administer sees files
ar • . archive and library maintainer for portable archives
archive . • • • • saves the contents of a file system to tape
as . • . . • • . • .- . . . • common assembler
asa • . . • . interpret ASA carriage control characters
at • . ••.•.... execute commands at a later time
awk . . • . . . • . . . • • .••. pattern scanning and processing language
banner • • . . • . • make posters
basename •.•••..... deliver portions of path names
bc • . • . • . • • . • • arbitrary-precision arithmetic language
bdiff. . . • • . . • . • • • • • • • . • . . • big diff
bfs • . . • . • . • . • • • . • big file scanner
bs. a compiler/interpreter for modest-sized programs
cal•..•.•••....•....•.• print calendar
calendar • • • . • • • . . • . . . • . . reminder service
cat • • . . . • • . . • . • . • . concatenate and print files
cb. . . • . • • • e program beautifier
cc . • • • • . • . • . • • . . . • e compiler
cd . . . • •.•••.•.•. change working directory
cdc • . • • . • change the delta commentary of an sees delta
cflow . . cflow- generate e flow graph
chmod • • • • • . • • • . . • . • . . change mode
chown • . . . • • • • change owner or group
cmp•••.....•..••••.•.•• compare two files
col . • . • . . • . • . • . • . • • . • . . • . • . • filter reverse line-feeds
comb ...•........••••......•. combine sees deltas
comm . . . • • . • . • . • . • select or reject lines common to two sorted files

-cp . • . • . . • • • . • • • • . • • • • . • • . . • copy, link or move files
cpio . • . • • • • . . . • . . • . • • • • • . . copy file archives in and out
cpp . • . . • • • • • the e language preprocessor
cpu ••••.•..•.•• display local system names in WorkNet
crontab .•...••••••••••..•.•••... user crontab file
crypt • • • • • . ••.• encode/decode
csplit • . • . • • . • . . • • • . • • • • • • . . . • . • • • context split
ct. . . . • • . • • • • . • .••.•••. spawn getty to a remote terminal
ctrace • . • • . . • . • • • • • • • • • • • . . • . . e program debugger
cu • • • • • • . • . • • • call another UNIX system
cut • • . cut out selected fields of each line of a file
cxref • generaLe C prugli:lIl1 Cfuss-fefefeiice
date. • • • • • . • • • . . . • print and set the date
dc • • • • • • • • • • • . . • • . • • desk calculator
dd • . • • • • • • . • • • • • • • . . . • . • . . . convert and copy a file
delta • . • • . • . • • • • • • . • . • make a delta (change) to an sees file
diff • . . . • . • • • • • • • • • • • • • . . • • differential file comparator
diff3 •.••.•.••.••••••••. 3-way differential file comparison
diffmk •••••.•.••.•••.•..•• mark differences between files

- 1 -

Table of Contents

dircmp . . • . • . • . . • . • • . • • • directory comparison
du • • . . . • . • • • • • . • • . • . • . • summarize disk usage
dump . • dump selected parts of an object file
echo . . • . . • • • . • . . • . • . • . • . . • echo arguments
ed . • • . • . • . . • . • • • . • • • . text editor
edit . • • • . • text editor (variant of ex for casual users)
eft . . • . • . Extended Fortran Language
enable. . • • • • enable/disable LP printers
env . • . set environment for command execution
ex . • . . . • • . text editor
expr . . • . . . • . . • . . • • • . • . evaluate arguments as an expression
f77 . . • . • • • . • . • . • • . . . • • . Fortran 77 compiler
factor . • . . . • . . • • • . • . • . . • factor a number
file ••.. . . • . . . • . . • . • . • • determine file type
find ...••..•••..•.••...•.•....•.•• find files
fsplit . . • . • . • • • • . • . • . • • . • . . . split f77, ratfor, or efl files
gdev .•••.••.•......••. graphical device routines and filters
ged •..•..••.•.••..•..........• graphical editor
get . • . • • . • • • . . • . • . • . • . • . . get a version of an sees file
getopt . . . • • . . . • • • parse command options
graph .••.•...••••..•.•.•...... •. draw a graph
graphics • . • . . • . • . • . . • . access graphical and numerical commands
greek • • • . • • • . • • select terminal filter
grep . . • • . • • . . • • • . • • search a file for a pattern
gutil • • • . • • • . • . . • graphical utilities
help . • . . • • . • . • . • . • • • • . • ask for help
hp .• handle special functions of Hewlett-Packard 2640 and 2621-series terminals
hyphen . • • • • • . • . • • . . . • . • • -find hyphenated words
id • • • . • . • • • . . • . • print user and group IDs and names
ipcrm ..•..•. remove a message queue, semaphore set or shared memory id
ipcs . • • • • • . • report inter-process communication facilities status
join • • • . . • • • relational database operator
kill . . . • • . . . • . . • terminate a process
Id • • • link editor for common object files
lex•.•...• generate programs for simple lexical tasks
line. • • . . • . • • '. read one line
lint • • . . . • . • a e program checker
In • • . • . . .• create a symbolic link in WorkNet
login. • . . • • • . . • sign on
logname • get login name
lorder • • .. .• find ordering relation for an object library
Ip• •• send/cancel requests to an LP line printer
Ipstat•..•.......... print LP status information
Is. • . . . • • • . . • . . list contents of directory
m4••...••••..•.....•... macro processor
machid . . • • • . . • provide truth value about your processor type
mail•..•... send mail to users or read mail
mailx • . • • interactive message processing system
make•.•..• maintain, update, and regenerate groups of programs
makekey • . • . • . . • • generate encryption key
man • . • • . • . . . • print entries in this manual
mesg • . • permit or deny message~
mkdir • . • . . • . • make a directory
netiet . .. • execute a command on remote system without access permissions
newform•••••••••.•... change the format of a text file

- 2 -

Table of Contents

netstat . display status of system in WorkNet
newgrp . • . . • log in to a new group
news. • • • ••••.•.•.•. print news items
nice . • • •• run a command at low priority
nl • • • . • . . • • • . • . • • . line numbering filter
nm • • . • • . print name list of common object file
nohup . • . • run a command immune to hangups and quits
od . . . • . • • . • . • • . • • . . • • octal dump
pack. • • . • . • . . • . • . . . compress and expand files
passwd • . • • . . . • change login password
paste. . • merge same lines of several files or subsequent lines of one file
pg . • • file perusal filter for soft-copy terminals
pr . • . . • • • • . • • • • • • . • • . print files
prof • • • • • . . display profile data
prs . • • . • • • • . • • . print an sees file
ps . . . • . . • • • • • • • . • . • . • • • . . • • . report process status
ptx. . • . • . . • • • . • • • . • • . . . • permuted index
pwd • • . . • • • . • . • • • . • . . . working directory name
ratfor . • • • . . • . • . • • • . • . . • . • . . • rational Fortran dialect
recover • . • . • restore the contents of a file system from streaming tape to disk
regcmp . • . • • • • • • . • • . • • • . • . . • regular expression compile
rm •...•.••••••.•..•••.•.• remove files or directories
rmdel • . • • . . • • • • . remove a delta from an sees file
run •...•••.••.•.•. run a program on a remote WorkNet system
sact . • . • . • • . • • • • . . . • • print current sees file editing activity
sag • • . . • • • . . system activity graph
sar .•.•..•••.•.•.•.•••••.. system activity reporter
sccsdiff . . • . . • . • . • • . • . • • compare two versions of an sees file
sdb . • . . . • • • • • . • . • . • • • • • . • . • . . symbolic debugger
sdiff . • . • • • . . • • . • • • • • • • • . side-by-side difference program
sed. . • . • • • • • • • • . • . • • • • • • • • . • • • . . stream editor
sh ••.•.. -. --.• sheil, the standard/restricted command programming language
shl . . • . . • • • . . • . • . • • • . • • . • • • • . shell layer manager
size. • . • • . • . • • • • • print section sizes of common object files
sleep· - .-..••..••••.••.•••. suspend execution for an interval
sno • . • • • • • • . • . • . . • . • . • • • SNOBOL interpreter
sort ..•..•..•••.•••....•.•.• sort and/or merge files
spell . • . • . • • • • . • • • • • • . • . . . • • . . . find spelling errors
spline • . . . • . • • • • . • • . interpolate smooth curve
split • • • • . • • • . • . • • • • • . . . • . split a file into pieces
stat .•.•.••••••• statistical network useful with graphical commands
strip strip symbol and line number information from a common object file
stty • -.. • • • . • . . . • • . • • • • • . . • set the options for a terminal
su . • . • . • • . • . • . . • • • . • . • become super-user or another user
sum. . • . • . • . • • . . • print checksum and block count of a file
sync . . • . . • • • • • . • • • • • • • . . . • • . update the super block
tabs. . • . • . . • • • . • . • . • • • • • • • • . • set tabs on a terminal
tuil • • . • . . • . . . • _ , , , ,deliver the l::l!"t p::lrt of a file
tar • • . • • • . . • . • . . • . . • • • . . . tape file archiver
tee • • . • • • . • • . • • . • . • . • • • • . pipe fitting
test ...•.•.•.••.•••.••... condition evaluation command
time. • . • • • . • • • • . • • • • • • . • . . • time a command
timex• time a command; report process data and system activity
toc . . . • . • . • • . • . • . • • • • • graphical table of contents routines

- 3 -

Table of Contents

touch • . . • update access and modification times of a file
tplot . . • . . • graphics filters
tput . query terminfo database
tr • translate characters
true . • • • . • . . provide truth values
tsort . . • • • topological sort
tty • . • . • . • • . get the name of the terminal
umask • . • . . set file-creation mode mask
uname • . • . • . • • . . . print name of current UNIX system
unget . . • . • . . undo a previous get of an sees file
uniq ..•••••••.•.•••...... report repeated lines in a file
units . . . • . • . . • • . . • . . • • . • conversion program
uucp •.•••..•........•. UNIX system to UNIX system copy
uustat . • • . . • uucp status inquiry and job control
uuto ••.......••.••.• public UNIX-to-UNIX system file copy
uux •.•.•..•••.•.•• UNIX-to-UNIX system command execution
val •...••••..•.•..•...•...... validate sees file
vc • • . . • • . • • • • . • . • version control

. • • . • • • . • screen-oriented (visual) display editor based on ex vi
wait ••.•••.••••....•.....• await completion of process

• . • • • • . • . . • ..•.•.•......•.•.. word count wc •
what
who
write
xargs
yacc .

• • . • • • • • • . • • • . . • . • • • • identify sees files
• • • • • .• • who is on the system
· . • . • • • • • . • • . . write to another user
• . construct argument list (s) and execute command
· . • • • . • • . . yet another compiler-compiler

- 4 -

300: DASI
terminals.

300: DASI 300 and
l3tol: convert between

comparison. diff3:
TEKTRONIX 4014 terminal.

paginator for the TEKTRONIX
of the DASI 450 terminal.

special functions of the DASI
f77: Fortran

integer and base-64 ASCII/

program •.

value.
adb:

abs: return integer
abs: Fortran

/floor, ceiling, remainder,
requests.

of a file. touch: update
utime: set file

accessibility of a file.
commands. graphics:

machine-independent/ sputl:
sadp: disk

ldfcn: common object file
copy file systems for optimal

getutent:
access: determine

acctdisk: overview of
enable or disable process

acctconl: connect-time
acctprcl: process

shell procedures for
diskusg: generate disk

acct: per-process
search and print process

acctmerg: merg or add total
mclock: return Fortran time

summary from per-process
fwtmp: manipulate connect

runacct: run daily
process accounting.

file format.
per-process accounting/

process accounting file(s).
accounting.
accounting

accounting files.

intrinsic function.
killall: kill all

sag: system
sal: system
sar: system

current SCSS file editing
report process data and system

PERMUTED INDEX

300 and 3ees terminals. • • 30a(1)
3a0: DASI 3aa and 3aas. • • 3aa(1)
3a0s terminals. • • •• 3a0(1)
3-byte integers and long/ • •• 13tol(3C)
3-way differential file. diff3(1)
4a14: paginator for the. . •• 4014(1}
4a14 terminal. 4a14: • . • 4a14(1)
45a: handle special functions ••• 451/J(1}
450 terminal. 45e: handle.. . 450(1)
77 complier. • •••.•••.•• f77(1)
a641: convert between long. . a641(3C)
abort: generated an lOT fault. •• abort(3C)
abort: terminate Fortran ••• abort(3F)
abs: Fortran absolute value. • abs(3F)
abs: return integer absolute . abs(3C}
absolute debugger. ••.• •• adb (1)
absolute value. •••.• • abs (3C)
absolute value. ••.•• •• abs(3F)
absolute value functions. . floor13M)
accept: allow/prevent LP ••..• accept (1M)
access and modification times. touch(l)
access and modification times ••• utime(2)
access: determine. • • • • .• access(2)
access graphical and numerical •. graphics (lG)
access long integer data in a . sputl(3X)
access prof iler. ••••. sadp (1M)
access routines. •••.• . • Idfcn(4)
access time. dcopy: • • • • • dcopy (1M)
access utmp file entry. • • getut(3C)
accessibility of a file. . • access(2)
accounting. • acct(lM)
accounting. acct: •••..•.•• acct(2)
accounting. •.•.• • ••• acctcon(lM)
accounting. ••••• • acctprc(lM)
accounting. chargefee: • acctsh(lM)
accounting data by user ID. diskusg(lM)
accounting file format.. .• acct(4)
accounting file(s). acctcom: ••• acctcom(l)
accounting files. ••••. acctmerg (1M)
accounting. • • • .. . mclock(3F)
accounting records. /command • acctcms(lM)
accounting records. •••.• fwtmp (1M)
accounting. • •••.•.••.• runacct(lM)
acct: enable or disable •••••• acct(2)
acct: per-process accounting ••• acct(4)
acctcms: command summary from ••• acctcms(lM)
acctcom: search and print • • • • • acctcom(l)
acctconl: connect-time ••••.• acctcon(lM)
acctdisk: overview of • • • • • . . acct (1M)
acctmerg: merge or add total . acctmerg(lM)
acctprcl: process accounting. •• acctprc(lM)
acos: Fortran arccosine •.••.. acos(3F)
active processes. • • killall(lM)
acti vity graph. ••.•. .• sag (lG)
activity report package. • •. sar(lM)
acti vity reporter. •••• • sar (1)
activity. sact: print. • • •. sact(l)
activity. /time a command: . timex(l)

1

interface.
acu: Automatic Call Unit

addhd:shell script for
acctmerg: merge or
putenv: change or

SCCS files.
admin: create and

of complex argument.
intrinsic function.

alarm: set a process
clock.

brk: change data segment space
malloc: main memory

malloc: fastmain memory
accept:

boolean functions.
sort: sort

send: gather files
functions.

link editor output.
maintainer.

format.
language. bc:
acos: Fortran

for portable archives. ar:
cpio: format of cpio

ar: common
archive:

ldahread: read the
tar: tape file

maintainer for portable
cpio: copy file

asin: Fortran
atan2: Fortran
atan: Fortran

imaginary part of complex
return Fortran command-line

varargs: handle variable
formatted output of a varags

formatted output of a varargs
command.xargs: construct

getopt: get option letter from
expr: evaluate

echo: echo
bc: arbitrary-precision

number facts.
expr: evaluate arguments

characters. asa: interpret
control characters.

ascii: map of
set.

long integer and base-64
intrinsic function.

help:
output. a.out: common

as: common
assertion.

assert: verify program

acu: Automatic Call unit (ACU) .• acu(7}
(ACU) interface. • acu(7}
adb: absolute debugger. • adb(l}
add-on disk drive •.••..•.• addhd(lM}
add total accounting files. • •• acctmerg(lM)
add value to environment. • putenv(3C)
admin: create and administer • admin(l)
administer sccs files. • admin(l)
aimag: Fortran imaginary part •.• aimag(3F)
aint: Fortran integer part . aint(3F)
alarm clock • . • • . • • . alarm(2)
alarm: set a process alarm . alarm(2)
allocation. • brk(2)
allocator. •.••••••. • malloc(3C}
allocator. .••..••.• . malloc(3X)
allow/prevent LP requests. . accept (IM)
and, or, xor, not: Fortran • bool(3F)
and/or merge files. . • sort(l)
and/or submit RJE jobs: . • • • send(lC)
anint: Fortran nearest integer .• round(3F)
a.out: common assembler and .•.• a.out(4}
ar: archive and library ••.•.• ar(l)
ar: common archive file .•••.• ar(4)
arbitrary-precision arithmetic .• bc(l)
arccosine intrinsic function. acos(3F)
archive and library maintainer •• ar(l)
archive. ••.•.•• . • cpio(4)
archive file format. • •.•• ar(4)
archive files to tape. • archive(l)
archive header. . •• ldahread(3X)
archiver. • •••••..•..• tar (I)
archives. /archive and library ar(l)
archi ves in and out. •••••.• cpio (I)
arcsine intrinsic function. • asin(3F}
arctangent intrinsic function. •• atan2(3F)
arctangent intrinsic function. .• atan(3F)
argument. aimag: Fortran aimag(3F}
argument. getarg: • • • • getarg(3F)
argument list. ••.• . •• varargs(S)
argument list. vprintf: print. vprint(3S)
argument list. vprintf: print ..• vprintf(3X)
argument list(s) and execute •.• xargs(l)
argument vector. ••••• .• getopt (3C)
arguments as an expression. • •• expr(l}
arguments. •••••.• • •• echo(l}
arithmetic language. bc(l)
arithmetic: provide drill in • arithmetic (6)
as an expression. • expr(l}
as: common assembler. • as(l)
ASA carriage control .•••• asa(l}
asa: interpret ASA carriage. • asa(l}
ASCII character set. • • ascii(S}
ascii: map of ASCII character •.• ascii(S)
ASCII string. /convert between •• a641(3C}
asin: Fortran arcsine. .• • • asin(3F}
ask for help. •••.. . •• help(l)
assembler and link editor .• a.out(4)
assembler. • •••••.••••• as(l)
assert: verify program • assert(3X)
assertion. •.••••. . • assert(3X)

2

setbuf:
intrinsic function.
intrinsic function.

interface. acu:
wait:

processing language.
ungetc: push character

archive:
UNIX system file system
finc: fast incremental

frec: recover files from a
print, initialize, update

terminal capability data
between long integer and
portions of path names.

arithmetic language.

update bad information

cb: C program
j9, jl, jn, y9, yl, yn:

cpset: install object files in
fread:

bsearch:
tsearch: manage

remove symbols and relocation
bcopy: interactive

sum: print checksum and
sync: update the super

df: report number of free disk
and, or xor, not: Fortran

UNIX system startup and
shell scripts.

allocation.
modest-sized programs.

sorted table.
studio: standard

setbuf: assign
mknod:

swab: swap
cc:

cflow: generate
ccp: the

cb:
lint: a

cxref: generate
ctrace:

dc: desk
cal: print

cu:
data returned by stat system

acU.; Autom(lti~
intro: introduction to system

link and unlink system
to an LP line printer. lp,

terminfo: terminal

assign buffering to a stream. •• setbuf(3S)
atan: Fortran arctangent ••• atan(3F)
atan2: Fortran arctangent ••••• atan2(3F)
Automatic Call Unit (ACU) ••••• acu(7)
await completion of process. . wait (1)
aWk: pattern scanning and. aWk(l)
back into input stream. • • ungetc (3S)
backup to streaming tape. • archive (1)
backup. /daily/weekly • • • filesave(lM)
backup. •••••••. • finc (1M)
backup tape. • •.•.•••..• frec(lM)
bad information bdblk: .•• bdblk(IM)
banner: make posters. . banner (1)
base. terminfo: • • . • . • •• terminfo(4)
base-64 ASCII string. /convert a64l(3C)
basename, dirname: deliver basename(l)
bd: arbitrary-precision . • • . • • bc (1)
bcopy: interactive block copy. bcopy(lM)
bdblk: print, initialize, •• bdblk(IM)
bdiff: big diff. . • bdiff(l)
beautifier. • •••••••.•• cb(l)
Bessel functions. . • bessel (3M)
bfs: big file scanner. .••• bfs (1)
binary directories. • • cpset(IM)
binary input/output. • • fread(3S)
binary search a sorted table. •• bsearch(3C)
binary search trees. • • tsearch(3C)
bits. strip:.. . • • • • • • . • strip(l)
block copy. •••.• • • bcopy (1M)
block count of a file. • ••••• sum(l)
block. ••••••••. . • sync(l)
blocks. • ••••••••••.• df(lM)
boolean functions. . • bool(3F)
boot procedures. boot:. •• • boot (8-)
brc: system initialization .• brc(lM)
brk: change data segment space •• brk(2)
bs: a compiler/interpreter for •• bs(l)
bsearch: binary search a .• bsearch(3C)
buffered input/output package. .• stdio(3S)
buffering to a stream. • setbuf(3S)
build special file. . • mknod(lM)
bytes. • swab(3C)
C compiler. . cc(l)
C flow graph. • •••.• cflow(l)
C language preprocessor. . • cpp(l)
C program beautifier. • • . • cb(l)
C program checker. . • lintel)
C program cross-reference. . • cxref(l)
C program debugger. • • ctrace(l)
cal: print calendar. . • cal (1)
calculator. •••• • dc(l)
calendar. • •••••••••.• cal (1)
calendar: reminder service. • •• calendar (1)
call another UNIX system. . • cu (IC)
call. stat • • • • • • • • stateS)
,.,~" r1",,'; ~ '1\ ("f1\ ;0. ... 4=:1,..0. ::'~11 '7\
~ '-"& '-' \ w/ _ ... _'- ___ • • ___ ,_,

calls and error numbers.. •• intro(2)
calls. link: exercise • • • •• link (1M)
cancel: send/cancel requests . lp(l)
capability data base. • terminfo(4)

3

pnch: file format for
asa: interpret ASA

files.

commentary of an SCCS delta.
value/ floor: floor,

delta: make a delta
pipe: create an interprocess

stream. ungetc: push
user. cuserid: get
stream. getc: get

putc: put
ascii: map of ASCII

interpret ASA carriage control
toupper: translate
isalpha: classify

tr: translate
for accounting.

directory.
fsck: file system consistency

checking procedure.
lint: a C program

pwck: password/group file
checkall: faster file system
copy file systems with label

systems processed by fsck.
file. sum: print

times: get process and
terminate. wait: wait for

of a file.

for a command.
isalpha:

uuclean: uucp spool directory
clri:

alarm: set a process alarm
cron:

ldclose:
close:

descriptor.
fclose:

line-feeds.

comb:
common to two sorted files.

nice: run a
change root directory for a

env: set environment for
uux: UNIX-to-UNIX system

system: issue a shell
qUits. nohup: run a

card images. .•.•..•. pnch(4)
carriage control characters. . asa (1)
cat: concatenate and print . cat(l)
cb: e program beautifier. • cb(l)
cc: C compiler. •••.• • cc(l)
cd: change working directory. •• cd(l)
cdc: change the delta •.•..•• cdc (1)
ceiling, remainder, absolute . floor (3M)
cflow: generate C flow graph. cflow(l)
(change) to an SCCS file. . delta(l)
channel. .•.•••••••... pipe (2)
character back into input •. . ungetc (3S)
character login name of the. • cuserid(3S)
character or word from a • getc(3S)
character or word on a stream. putc(3S)
character set. • ascii(S)
characters. asa: .•• asa(l)
characters. . conv(3C}
characters. • ctype(3)
characters. . tr(l)
chargefee: shell procedures. • acctsh(lM)
chdir: change working. • •. . chdir(2}
check. • . • • • • • • . •. . fsck(lM)
checkall: faster file system . checkall(lM)
checker. ..••. . lint (1)
checkers. ••••• . ••. pwck(lM}
checking procedure. • • checkall(lM)
checking. volcopy: • . • • volcopy (1M)
checklist: list of file. . checklist(4)
checksum and block count of a ••• sum(l)
child process times. ••.• . times (2)
child process to stop or . wait(2)
chmod: change mode. • chmod(l}
chmod: change mode of file. • chmod(2}
chown: change owner and group. chown(2)
chown: change owner or group. chown(l)
chroot: change root directory. •. chroot(2)
chroot: change root directory ••. chroot(IM)
classify characters. . • ctype(3C)
clean-up. . • uuclean(IM)
clear i-node. clri(lM)
clock. • • • • . alarm(2}
clock daemon. • • . . cron(lM)
clock: report CPU time used. • clock(3C)
closes a common object file. . Idclose(3X)
close a file descriptor. . close(2)
close: close a file. • • • • close(2)
close or flush a stream. . fclose(3S)
clri: clear i-node. . . clri(IM)
cmp: compare two files. • .•.. cmp(l)
col: filter reverse. • • . . col (1)
comb: combine sces deltas. . . comb (I)
combine SCCS deltas. . comb(l)
comm: select or reject lines • comm(l)
command at low priority. . nice(l}
command. chroot: • chroot(lM)
command execution. •••• • env(l)
command execution. • •••..•. (uux(lC)
command from Fortran. ••. • system(3F)
command immune to hangups and . nohup(l)

4

net: execute a
getopt: parse

/shell, the standard/restricted
and system/ timex: time a

per-process/ acctcms:
system: issue a shell

test: condition evaluation
time: time a

argument list(s) and execute
getarg: return Fortran

at: execute
access graphical and numerical

install: install
intro: introduction to

introduction to maintenance
network useful with graphical

cdc: change the delta
ar:

editor output. a.out:
as:

function. logle: Fortran
routines. ldfcn:

reading. ldopen: open a
ldclose: close a

read the file header of a
seek to the symbol table of a

line number entries in a
nm: print name list of

relocation information for a
scnhdr: section header for a

table format. syms:
filehdr: file header for

ld: link editor for
size: print section sizes of
comm: select or reject lines

ipcs: report inter-process
ftok: standard interprocess

pcl: parallel
diff: differential file

cmp:
sces file. sccsdiff:

functions. 1ge: string
diff3: 3-way differential file

dircmp: directory
expression. regcmp:

regexp: regular expression
regcmp: regular expression

term: format of
cc: C

f77: Fortran 77
programs. scc: C

tic: terminfo
yacc: yet another

modest-sized programs. bs: a
erf: error function and

wait: await
Fortran imaginary part of
function. conjh: Fortran

pack:
table entry of a/ ldtbindex:

command on the PCL network. • •• net(lC)
command options. •••••• getopt (1)
command programming language. •• sh(l)
command; report process data • timex(l)
command summary from •• acctcms(lM)
command. system(3S)
command. • • test (1)
command. • • . .. time (1)
command. xargs: construct . • xargs (1)
command-line argument. • getarg(3F)
commands at a later time. • at(l)
commands. graphics: • • graphics(lG)
commands. install(lM)
commands • intro(l)
commands intro: • . . .••• intro(lM)
commands. stat: statistical • • stat(lG)
commentary of an sces delta. . cdc(l)
common archive file format. ar(4)
common assembler and link. a.out(4)
common assembler. •••.• . as (1)
common logarithm intrinsic • logle(3F)
common object file access. • • ldfcn(4)
common object file for • ldopen(3X)
common object file. • • Idclose(3X)
common object file. Idfhread: •.• Idfhread(3X)
common object file. ldtbseek: • ldtbseek(3X)
common object file. linenum: linenum(4)
common object file. • nm(l)
common object file. reloc: . reloc(4)
common object file. • scnhdr(4)
common object file symbol. . • syms(4)'
common object files. . filehdr(4)
common object files. • ••• Id(l)
common object files. size(l)
common to two sorted files. ••• comm(l)
communication facilities/ . . ipcs(l)
communication package. • .• • stdipc(3C)
communications link interface. pcl(7)
comparator. ••••• • diff(l)
compare two files. • cmp(l)
compare two versions of an • sccsdiff(l)
comparison intrinsic . strcmp(3F)
comparison. diff3 (1)'
comparison. ••••. dircmp(l)
compile and execute regular • regcmp(3X)
compi.le and match routines. • regexp (5)
compile. ••••••• •••• regcmp (1)
compiled term file.. • term(4)
compiler. ••••• . ••• cc(l)
compiler. •••••••. f77(1)
compiler for stand-alione • • • scc (1)
compiler. •••••••• tic (1M)
compiler-compiler. • yacc(l)
compiler/interpreter for ••••• bs(l)
complementary error function. erf(3M)
completion of p:cocest) wait {l}
complex argument. aimag: • • aimag (3F)
complex conjugate intrinsic. • conjg(3F)
compress and expand files. • pack(l)
compute the index of a symbol ••• ldtbindex(3X)

5

cat:
test:

system.
config:

system. Ipadmin:
conjugate intrinsic function.

conjg: Fortran complex
fwtmp: manipulate

an out-going terminal line
acctconl:

fsck: file system
math: math functions and

mkfs:
execute command. xargs:

Is: list
toc: graphical table of

cspl it:
asa: interpret ASA carriage

ioctl:
fcntl: file

init: process
msgctl: message

semctl: semaphore
shmctl: shared memory

fcntl: file
uuep status inquiry and job

vc: version
interface. tty:

terminals. term:
int: explicit Fortran type

uni ts:
'dd:

integers and long/ l3tol:
and base-64 ASCII/ a64l:

string. ctime:
to string. ecvt:

scanf :
double-precision/ strtod:

strtol:
dd: convert and

bcopy: interactive block
cpio:

access time. dcopy:
checking. volcopy:

cp, In, mv:
UNIX system to UNIX system

UNIX~to-UNIX system file
file.

core: format of
mem:

function.
cosine intrinsic function.

cos: Fortran
cosh: Fortran hyperbolic

sum: print checksum and block
wc: word

files.
cpio: format of

and out.

concatenate and print files. • cat(l)
condi tion evaluation command • test (1)
config: configure a UNIX •• config(lM)
configure a UNIX system. config(lM)
configure the LP spooling. •• Ipadmin (1M)
conjg: Fortran complex ••• conjg(3F)
conjugate intrinsic function. conjg(3F)
connect accounting reco rds. ••• fwtmp (1M)
connection. dial: establish. • dial(3C)
connect-time accounting. •• acctcon(lM)
consistency check • • • • • •• fsck (1M)
constants. .•••••••• math(S)
construct a file system. •. • mkfs(lM)
construct argument list(s) and •• xargs(l)
contents of directory. • ls(l)
contents routines. • toc(lG)
context split. . • • • csplit(l)
control characters. . ••• asa(l)
control device. • ioctl (2)
control. ••••••.•••• fcntl(2)
control initialization. init(lM)
control operations. • msgctl(2)
control operations. • semctl(2)
control operations. • ••• shmctl(2)
control options. fcntl{S)
control. uustat: .••• uustat(lC)
control. •••• • • vc{l)
controlling terminal tty(7)
conventional names for term{S)
conversion. ••••. •• • • ftype (3F)
conversion program. units{l)
convert and copy a file. • • dd (I)
convert between 3-byte •••••• l3tol (3C)
convert between long integer a641 (3C)
convert date and time to ctime{3C)
convert floating-point number • ecvt(3C)
convert formatted input. • • scanf{3S)
convert string to • • • • • strtod (3C)
convert string to integer. strtol (3C)
copy a file. • •••••••••• dd{l)
copy. •••••••••••• bcopy{lM)
copy file archives in and out. cpio{l)
copy file systems for optimal • dcopy{lM)
copy file systems with label volcopy(lM)
copy, link or move files. • cp(l)
copy. uucp: • • • • • • • uucp{lC)
copy. uuto: public. • • • • uuto(lC)
core: format of core image . • core(4)
core image file. ••••• .• core(4)
core memory. • •••••.••.• mem(7)
cos: Fortran cosine intrinsic • cos(3F)
cosh: Fortran hyperbolic cosh{3F)
cosine intrinsic function. • cos(3F)
cosine int.rinsic function. • • cosh (3F)
count of a file. ••••• • • sum(l)
count. •••••••••••••• wc (1)
cp, In, mv: copy, link or move cp{l)
epio archive. •••••••• cpio(4)
cpio: copy file archives in • • cpio{l)
cpio: format of cpio archive. cpio(4)

6

preprocessor.
binary directories.

clock: report

system crashes.
what to do when the system

rewrite an existing one.
file. tmpnam:

an existing one. creat:
fork:

In:
tmpfile:

channel. pipe:
files. admin:

umask: set and get file

crontab: user

cxref: generate C program
optimization package. curses:

encryption.

terminal.
for terminal.

to string.

activity. sact: print
uname: print name of

uname: get name of
slot in the utmp file of the

getcwd: get path-name of
and optimization package.

spline: interpolate smooth
name of the user.

of each line of a file.
each line of a file. cut:

cross-reference.
cron: clock

errdemon: error-logging
terminate the error-logging

runacct: run
system backup. filesave:

300:
special functions of the

/time a command; report process
terminfo: terminal capability

generate disk accounting
sputl: access long integer

plock: lock process, text, or
prof: display profile

call. stat:
brk: change

types: primitive system
;ni n! r~l ~t-.i on~l

tput~-q~ery-ter~info
ctime: convert

date: print and set the

cpp: the C language • • cpp(l)
cpset: install object files in •• cpset(IM)
CPU time used. • ••••.. clock(3C)
crash: examine system images. crash(IM)
crash: what to do when the . crash(S)
crashes. crash: ••••••••. crash(S)
creat: create a new file or • • • • creat(2)
creat a name for a temporary . tmpnam(3S)
create a new file or rewrite • • • creat(2)
create a new process. • fork(2)
create a symbolic link. . • In(l)
create a temporary file. tmpfile(3S)
create an interprocess • . pipe(2)
create and administer SCCS admin(l)
creation mask. • •••.•. umask(2)
cron: clock daemon. . cron(IM)
crontab file. • .••.•• crontab(l)
crontab: user crontab file. • •. crontab(l)
cross-reference. • • • •• cxref (1)
CRT screen handling and. . .• curses(3X)
crypt: encode/decode. • •• crypt(l)
crypt: generate DES • • • crypt (3C)
csplit~ context split. . csplit(l)
ct: spawn getty to a remote ••.. ct(IC)
ctermid: generate file name. • ctermid(3S)
ctime: convert date and time . ctime(3C)
ctrace: C program debugger •••• ctrace(l)
cu: call another UNIX system. •• cu(IC)
current sces file editing • • • sact (1)
current UNIX system. • ••••.. uname(l)
current UNIX system. • • uname(2)
current user. /find the. • • • ttyslot(3C)
current working di rectory. • • getcwd (3C)
curses: CRT screen handling. • curses(3X)
curve. • ••••..••.•••• spline(IG)
cuserid: get character login cuserid(3S)
cut: cut out selected fields ••• cut (1)
cut out selected fields of • cut (1)
cxref: generate C program • •• cxref (1)
daemon. ••••• • cron (1M)
daemon. •••••••• • errdemon(IM)
daemon. errstop: •••• . errstop(IM)
daily accounting. • •• runacct(IM)
daily/weekly UNIX system file ••• filesave(lM)
DASI 300 and 399s terminals. • 300(1)
DASI 450 terminal. /handle . 450(1)
data and system activity. • timex(l)
data base. • ••••••.•••• terminfo(4)
data by user ID. diskusg:. • diskusg(IM)
data in a machine-independent/ •• sputl(3X)
data in memory. ••••.•• plock (2)
da tao •••••••••••• prof (1)
data returned by stat system • stat(5)
data segment space allocation. •• brk(2)
data types. •••••• • types (5)
database onerator. . ;oin(l)
database. - • • • • • • . tput(l)
date and time to string. ctime(3C)
date. •• .• date (1)
date: print and set the date. •• date(l)

7

optimal access time.

/link with built-in
adb: absolute

ctrace: e program
fsdb: file system

sdb: symbolic
sysdef: system

names. basename, dirname:
file. tail:

delta commentary of an sees
file. delta: make a

delta. cdc: change the
rmdel: remove a

to an sees file.
comb: combine sees

mesg: permit or
crypt: generate

close: close a file
dup: duplicate an open file

dc:
file. access:

file:
master: master
ioctl: control

devnm:
hpd: graphical

blocks.
terminal line connection.
ratfor: rational Fortran

bdiff: big
comparator.
compar ison.

functions. dim: positive
sdiff: side-by-side

diffmk:mark
diff:

diff3: 3-way
between files.

intrinsic functions.

install object files in binary
dir: format of

rm: remove files or
cd: change working

chdir: change working
chroot: change root
uuclean: uucp spool

dircmp:
unlink: remove

chroot: change root
path-name of current working

Is: list contents of
mkdir: make a
mvdir: move a

pwd: working
ordinary file. rnknod: make a

dc: desk calculator. ••.•• dc(l)
dcopy: copy file systems for • dcopy(IM)
dd: convert and copy a file. • dd(l)
DDeMP protocol. • dmc(7)
debugger. • • . • adb(l)
debugger. • • • . . . ctrace(l)
debugger. . •••.• fsdb(IM)
debugger. • • • . sdb (1)
def ini tion. .•.•• • sysdef (1M)
deliver portions of path • basename(l)
deliver the last part of a • tail (1)
delta. cdc: change the • cdc (1)
delta (change) to an sees. • delta(l)
delta commentary of an SCCS .• cdc (1)
delta from an sees file. rmdel(l)
delta: make a delta (change) •.• delta(l)
deltas. • comb(l)
deny messages. • mesg(l)
DES encryption. • crypt(3e)
descriptor. . close(2)
descriptor. . dup(2)
desk calculator. ••• . • dc(l)
determine accessibility of a access(2)
determine file type. file(l)
dev ice information table. • master (4)
device. ioctl (2)
device name. .••••••• devnm(lM}
device routines and filters. • gdev(lG)
devnm: device name. •••• • devnm(lM}
df: report number of free disk •• df(lM}
dial: establish an out-going • dial(3C)
dialect. • .•••••.••••• ratfor(l)
diff. ••••••••• • • bdiff(l)
diff: differential file .••••• diff(l)
diff3: 3-way differential file diff3(1)
difference intrinsic • dim(3F)
difference program. sdiff(l)
differences between files. . diffmk(l)
differential file comparator. diff(l)
differential file comparison. diff3(1)
diffmk: mark differences •• diffrnk(l)
dim: positive difference • dim(3F)
dir: format of directories. • dir(4)
dircmp.: directory comparison. dircmp(l)
directories. cpset: cpset(IM}
directories. . dir(4)
directories. • • • • • • rm(l)
directory. • cd(l)
directory. • • •• • chdir(2)
directory. . chroot(2)
directory clean-up. • uuclean(lM)
directory comparison. • dircmp(l)
directory entry.. • unlink (2)
directory for a command. chroot(lM)
directory. getcwd: get. . getcwd(3C)
directory. . Is(l)
directory. • •••• mkdir(l)
directory. • mvdir(lM)
directory name. • pwd(l)
directory, or a special or • mknod(2)

8

path names. basename,
acct: enable or

type, modes, speed, and line
sadp:

ID. diskusg: generate
df: report number of free

general driver for moving-head
accounting data by user ID.

mount: mount and
cpu:

netstat:
prof:

hypot: Euclidean
drand48: generate uniformly

whodo: who is
intrinsic function. dprod:
strtod: convert string to

product intrinsic function.
distributed pseudo-random/

graph:
gd: general
gt: general

sxt: pseudo-device
trace: event-tracing

gt: general driver for tape
an object file.

extract error records from
od: octal

object file. ~ump:
descriptor.

descriptor. dup:
echo:

number to string.

sact: print current sces file
ed, red: text

edit: text
ex: text

files. ld: link
ged: graphical

ld: link
common assembler and link

sed: stream
vi: screen-oriented

Language.
fsplit: split F77, ratfor, or

printers.
accounting. acct:

enable:
crypt:

crypt: generate DES
makekey: generate

program.
trenter:

nlist: get
file. linenum: line number

man: print
/manipulate line number

dirname: deliver portions of • basename(l)
disable process accounting. • acct(2)
discipline. /set terminal ••••• getty (1M)
disk access profiler. • sadp(IM)
disk accounting data by user • diskusg(lM)
disk blocks. ••••• • • df(lM)
disks. gd: •••••• • gd(7)
diskusg: generate disk • diskusg(IM)
dismount file system. • mount (1M)
display local system name. . cpu(l)
display network system status. netstat(l)
display profile data. • prof(l)
distance function. ••... . hypot (3M)
distributed pseudo-random/ •• drand48(3C)
doing what. •••••• whodo(IM)
double precision product dprod(3F)
double-precision number. • •• strtod(3C)
dprod: double precision ••.••• dprod (3F)
drand48: generate uniformly • drand4813C)
draw a graph. •••.••• graph (IG)
driver for moving-head disks. gd(7)
driver for tape drives. gt(7)
driver. ••••• • sxt(7)
driver. ••••• • trace(7)
drives. .•••• . gt(7)
dump: dump selected parts of dump(l)
dump. errdead: •••••••••• errdead(IM)
dump. •••••••••• od (1)
dump selected parts of an • •• dump(l)
dup: duplicate an open file • dup(2)
duplicate an open file • dup(2)
echo arguments. ••••••••• echo (1)
echo: echo arguments. • echo(l)
ecvt: convert floating-point • ecvt(3C)
ed, red: text editor. • ed(l)
edit: text editor. • ••• edit(l)
editing activity. • sact(l)
editor. • ed(l)
editor ••••• edit(l)
editor. •••• • ex(l)
editor for common object ld(l)
editor. •••• • •••••• get(IG)
editor. •••• ld(l) .
editor output. a.out: • • a.out(4)
edi tor. • • • • • • sed (1)
editor •• • • • • • • • • •. vi (1)
efl: Extended Fortran. • • efl(l)
efl files. ••••••• fsplit(l)
enable: enable/disable LP • enable(l)
enable or disable process. acct(2)
enable/disable LP printers. • •• enable (1)
encode/decode. • crypt(l)
encryption. crypt(3C)
encryption key. makekey(l)
end: last locations in end(3C)
enter a trouble report. trenter(l)
entries from name list. nlist(3C)
entries in a common object •••• linenum(4)
entries in this manual. •• man (1)
entries of a file function. Idlread(3X)

9

Idlseek: seek to line number
Idrseek: seek to relocation

utmp: utmp and wtmp
getgrent: get group file

getpwent: get password file
getutent: access utmp file
name for file symbol table

the index of a symbol table
read an indexed symbol table

putpwent: write password file
unlink: remove directory

command execution.

profile: setting up an
environ: user

execution. env: set
getenv: return value for

putenv: change or add value to
get: return Fortran

complementary error function.

from dump.
daemon.
format.

debugging. serverdaemon:
complementary error/ erf:

function and complementary
perror: system

to system calls and
errdead: extract

matherr:
errfile:

errdemon:
errstop: terminate the

err:
process a report of logged

spell: find spelling
logged errors.

error-logging daemon.
terminal line/ dial:

setmnt:
hypot:

expression. expr:
test: condition

trace:

crash:

network. net:
execl:

netlet:
construct argument list(s) and

time. at:
regcmp: compile and

set environment for command
sleep: suspend
sleep: suspend

monitor: prepare
prof il:

UNIX-to-UNIX system command

entries of a section of a/ • Idlseek(3X)
entries of a section of a/ • Idrseek(3X)
entry formats. • utmp(4)
entry. ••••. • •••. getgrent(3C)
entry. ••••• • getpwent(3C)
entry. ••••• •••• • getut (3C)
entry. /retrieve symbol • • • ldgetname (3X)
entry of a file. /compute • • Idtbindex(3X)
entry of a file. Idtbread: • Idtbread(3X)
entry. •••••••••• • putpwent(3C)
entry. .•••.••••• • unl ink (2)
env: set environment for •• env(l)
environ: user environment. . • environ(S)
environment at login time. • profile(4)
environment. •.••• . • environ(S)
environment for command. • env(l)
environment name. • • getenv(3C)
environment. •••.• • putenv(3C»
environment variable. • getenv(3F)
erf: error function and. • erf(3M)
err: error-logging interface. err(7)
errdead: extract error records errdead(IM)
errdemon: error-logging ••••.• errdemon(IM)
errfile: error-log file.. •• errfile(4)
error analysis and network • serverdaemon(l
er ror function and • • •. .• erf (3M)
error function. erf: error • erf(3M)
error messages. ••••• •• perror(3C)
error numbers. /introduction • intro(2)
error records from dump. • • errdead(lM)
error-handling function. • • matherr(3M)
error-log file format. • •• errfile(4)
error-logging daemon. • er rdemon (IM)
error-logging daemon. • errstop(IM)
error-logging interface. • • err(7)
errors. errpt: •• errpt(IM)
errors. •••••••• spell(l)
errpt: process a report of •• errpt(lM)
errstop: terminate the • errstop(IM)
establish an out-gOing • dial(3C)
establish mount table. • • setmnt(IM)
Euclidean distance function. • hypot(3M)
evaluate arguments as an •• expr(l)
evaluation command. test(l)
event-tracing driver. • trace(7)
ex: text editor.. ex(l)
examine system images. crash(lM)
execI: execute a file. • exec(2)
execute a command on the PCL • net(lC)
execute a file. • •••••.•• exec(2)
execute command on remote system • netlet(l)
execute command. xargs: •••.•• xargs(l)
execute commands at a later. • at(l)
execute regular expression. regcmp(3X)
execution. env: • • • • • •• • env(l)
execution for an interval. • sleep(l)
execution for interval. • • sleep(3C)
execution prof ile. . • • • • • monitor (3C)
execution time profile. • • profil(2)
execution. uux: •• uux(IC)

system calls. link:
a new file or rewrite an

power, square root functions.
intrinsic function.
pack: compress and

conversion. int:
function. exp: Fortran

square root functions. exp:
expression.

routines. regexp: regular
regcmp: regular

expr: evaluate arguments as an
compile and execute regular

efl:
dump. errdead:

factor:

data in a machine-independent
finc:

malloc:
procedure. checkall:

abort: generate an lOT
stream.

inquiries.
statistics for a file system.

times. utime: set
Idfcn: common object

determine accessibility of a
tar: tape

cpio: copy
pwck: password/group

chmod: change mode of
change owner and group of a

diff: differential
diff3: 3-way differential

fcntl:
fcntl:

public UNlX-to-UNlX system
core: format of core image

umask: set and get
crontab: user crontab

fields of each line of a
dd: convert and copy a

a delta (change) to an SCCS
close: close a

dup: duplicate an open

selected parts of an object
sact: print current sces

getgrent: get group
getpwent: get password
aetutent: access utmo

putPwent: write password
execl: execute a

grep: search a
Idopen: open a common object

exercise link and unlink link(lM)
existing one. creat: create • • • • creat(2)
exit: terminate process. • • exit(2)
exp: exponential, logarithm, • exp(3M)
exp: Fortran exponential • exp(3F)
expand files. •••• • pack(l)
explicit Fortran type. • .• • ftype(3F)
exponential intrinsic . • . • • . • exp(3F)
exponential, logarithm, power ••• exp(3M)
expr: evaluate arguments as an •• expr(l)
expression compile and match . regexp(S)
expression compile. regcmp(l)
expression. ••••••. expr(l)
expression. regcmp: . • • • regcmp(3X)
Extended Fortran Language. • efl(l)
extract error records from • errdead(lM)
f77: Fortran 77 compiler. • f77(1)
factor a number. .•••. • factor(l)
factor: factor a number. • .••• factor(l)
fashion /access long integer sputl(3X)
fast incremental backup. .. • finc(lM)
fast main memory allocator. • malloc(3X)
faster file system checking checkall(lM)
fault. •••••••••• • abort(3C)
fclose: close or flush a ..••• fclose(3S)
fcntl: file control. • fcntl(2)
fcntl: file control options. • fcntl(S)
ferror: stream status • . . . ferror (3S)
ff: list file names and. • . • ff(lM)
file access and modification • utime(2)
file access routines. • Idfcn(4)
file. access: • • • • • • • • access(2)
file archiver. .•••••. • tar(l)
file archives in and out. cpio(l)
file checkers. • • • • • pwck(lM)
file. •••••• • chmod(2)
file. chown: • chown(2)
file comparator. diff(l)
file comparison. diff3(1)
file control. • ••••••••• fcntl(2)
file control options. • fcntl(S)
file copy. uuto: ••• uuto(lC)
file. •••••••. • core(4)
file creation mask. • ••• umask(2)
file. ••••••••••• crontab(l)
file. cut: cut out selected ••. cut(l)
file. •••••••• • •• dd(l)
file. delta: make. • • • • • • delta(l)
file descriptor. • •••••••• close(2)
file descr iptor. •••••• • dup(2)
file: determine file type. • • file(l)
file. dupm: dump ••• dump(l)
file editing activity. • sact(l)
file entry. • getgrent(3C)
file entry. • getpwent(3C)
file entrv. . qetut(3C)
file entry. • •• putpwent(3C)
file. • •• exec(2)
file for a pattern. •••• • grep(l)
file for reading. • Idopen(3X)

11

acct: per-process accounting
ar: common archive
errfile: error-log

pnch:
intro: introduction to

line number entries of a
get: get a version of an SCCS

group: group
files. filehdr:

file. ldfhread: read the
ldohseek: seek to the optional

s pI it: s pI ita
issue: issue identification

ldclose: close a common object
file header of a common object

entries of a section of a
the optional file header of a

entries of a section of a
section header of a

section of an object
of a symbol table entry of a

symbol table entry of a
table of a common object

entries in a common object
lockf: record and

link: link to a
mknod: build special

or a special or ordinary
ctermid: generate

mktemp: make a unique
a file system. ff: list

change the format of a text
name list of common object

nUll: the null
/find the slot in the utmp

/identify processes using a
one. creat: create a new

passwd: password
merge same lines of several

soft-copy terminals. pg:
fseek: reposition a

lseek: move read/write
prs: print an sces

read: read from
for a common object

remove a delta from an sces
bfs: big

two versions of an sees
sccsfile: format of sees

header for a common object
stat: get

line number information from a
processes using a file or

checksum and block count of a
/retrieve symbol name for

syms: common object
daily/weekly UNIX system

procedure. checkall: faster
fsck:
fsdb:

file format. ••••• • • acct(4)
file format. ••••• • • ar(4)
file format. ••••••• errfile(4)
file format for card images. • pnch(4)
file formats. ••••••• • intro(4)
file function. /manipulate •• Idlread(3X)
file. • • • • • • • • get(l)
file. • • • • • • • • group(4)
file header for common object ••• filehdr(4)
file header of a common obj ect •• ldfhread (3X)
file header of a file. • ldohseek(3X)
file into pieces. • split(l)
file. •••••••• • ••• issue(4)
file. •••••••• • • Idclose(3X)
file. Idfhread; read the •• Idfhread(3X)
file. /seek to line number •• ldlseek(3X)
file. ldohseek: seek to • •• • ldohseek (3X)
file. /seek to relocation • • • ldrseek (3X)
file. /read an indexed/named • ldshread(3X)
file. Ito an indexed/named • Idsseek(3X)
file. /compute the index Idtbindex(3X)
file. /read an indexed • Idtbread(3X)
file. /seek to the symbol • • • ldtbseek (3X)
file. linenum: line number • linenum(4)
file locking • • • • • • • • lockf(2)
file. • • • • • • • • • link(2)
file. • • • • • • • • • mknod(lM)
file. /make a directory, •• mknod(2)
file name for terminal. ctermid(3S)
file name. • ••••••••••• mktemp(3C)
file names and statistics for ••• ff(lM)
file. newform: • • • • • newform(1)'
file. nm: print. • • • • • • nm(l)
file. •••••••••• • • null(7)
file of the cur rent user. • ttyslot (3C)
file or file structure. • • fuser(lM)
file or rewrite an existing • • creat(2)
file. •••••••••• passwd (4)
file paste: • • • • • • • • • • paste(l)
file perusal filter for • • • pg(l)
file pointer in a stream. • fseek(3S)
file pointer. ••••• • • lseek(2)
file. •••••••••• • • prs(l)
file. ••••••••• read(2)
file. /relocation information ••• reloc(4)
file. rmdel: ••• • • • rmdel(l)
file scanner. • ••••••••• bfs(l)
file. sccsdiff: compare • • sccsdiff (1)
file. •••••••• • • sccsfile(4)
file. scnhdr: section. • scnhdr(4)
file status. ••••••• • • stat(2)
file. strip: strip symbol and ••• strip(l)
file structure. /identify ••••• fuser(lM)
file. sum: print •• • • sum(l)
file symbol table entry. • • ldgetname(3X)
file symbol table format.. • syms(4)
f.ile system backup. filesave: • • • filesave (1M)
file system checking ••••••• checkall(lM)
file system consistency check ••• fsck(lM)
file system debugger. •••••• fsdb (1M)

12

names and statistics for a
volume.

mkfs: construct a
mount: mount and dismount

mount: mount a
ustat: get

mnttab: mounted
umount: unmount a

access time. dcopy: copy
fsck. checklist: list of
checking. volcopy: copy

deliver the last part of a
term: format of compiled term

tmpfile: create a temporary
create a name for a temporary

and modification times of a
ftw: walk a

file: determine
undo a previous get of an SCCS

report repeated lines in a
val: validate SCCS
write: write on a

umask: set
common object files.

and print process accounting
merge or add total accounting

create and administer SCCS
cat: concatenate and print

cmp: compare two
lines common to two sorted

cp, In, mv: copy, link or move
mark differences between

file header for common object
find: find

frec: recover
format specification in text

split f77, ratfor, or elf
string, format of graphical

cpset: install object
intro: introduction to special
link editor for common object

rm: remove
pack: compress and expand

pr: print
section sizes of common object

sort: sort and/or merge
what: identify SCCS

system file system backup.
terminals. pg: file perusal

greek: select terminal
nl: line numbering

col:
graphical device routines and

tplot: graphics

fiuc;

ttyname
object library. lorder

spell

file system. ff:list file • ff(lM)
file system: format of system •.• fs(4)
file system. ••••. • mkfs(IM)
file system. ••••• mount(lM)
file system. ••••• • . mount (2)
file system statistics. ustat(2)
file system table. • rnnttab(4)
file system. •.••. • ••• umount(2)
file systems for optimal ••• dcopy(lM)
file systems processed by • checklist(4)
file systems with label . vol copy (1M)
file. tail: • • • tail(l)
file. •.••• term(4)
file. ••••• tmpfile(3S)
file. tmpnam: • • • • tmpnam(3S)
file. touch: update access . touch(l)
file tree. • • • . • ftw(3C)
file type. • •• file(l)
file. unget: • • • • • unget (1)
file. uniq: • • • • • . uniq(l)
file. val (1)
file. • • • • • • write(2)
file-creation mode mask. • umask(l)
filehdr: file header for filehdr(4)
file(s). acctcom: search • acctcom(l)
files. acctmerg: • acctmerg(lM)
files. admin: • • • • adrnin (1)
files. •...•.••.• cat (I)
f i Ie s • ••••••• • cmp (1)
files. comm: select or reject • • • comm(l)
files. ••••. • • • cp(1)
files. diffmk: • • • • • diffmk (1)
files. filehdr: • • • • filehdr (4)
files. •••••• • find(l)
files from a backup tape. • frec(lM)
files. fspec: • • • • • • fspec(4)
files. fsplit: • • fsplit(l)
files. /graphical primitive. gps(4)
files in binary directories. • cpset(IM)
files. ••••••• • •• intro(7)
files. Id: • • • • • • ld(l)
files or directories. • rm(l)
files. ••••••• pack(l)
files. •••••••••••• pr(l)
files. size: print • size(l)
files. ••••••••••• sort(l)
files. ••••••••• what(l)
filesave: daily/weekly UNIX. • filesave(IM)
filter for soft-copy •••• • pg (1)
filter. •••••••••• greek(l)
filter. •••••••••• • nl(l)
filter reverse line-feeds. col (I)
filters. hpd: • • • • • • • • • gdev(lG)
f il ters. •••••.••••• tplot (lG)
finc: fast incremental backup. finc(lM)
find fil~s. •••••.•. fine!l)
find: find files. ••••• • find(l)
find name of a terminal. ttyname(3C)
find ordering relation for an • lorder(l)
find spelling errors. • spell(l)

13

of the current user. ttyslot:
tee: pipe

string. ecvt: convert
frexp: manipulate parts of

absolute value/ floor:
remainder, absolute value/

cflow: generate C
fclose: close or

per-process accounting file
RMOS disk packs. format:
ar: common archive file
errfile: error-log file

pnch: file
format:

newform: change the
inode:
term:
core:
cpio:
dir:

/graphical primitive string,
sccsfile:

file system:
files. fspec:

object file symbol table
intro: introduction to file

utmp: utmp and wtmp entry
scanf: convert

argument list. vprintf: print
argument list. vprintf: print.

printf: print
f77 :
abs:

system/ signal: specify
function. acos:
function. asin:

function. atan2:
function. atan:

and, or, xor, not:
getarg: return

intrinsic function. 10g19:
intrinsic function. conjg:

function. cos:
ratfor: rational

getenv: return
function. exp:

ntrinsic function. cosh:
ntrinsic function. sinh:
ntrinsic function. tanh:
complex argument. aimag:

function. aint:
efl: Extended

functions. max:
functions. min:

intrinsic function. log:
function. anint:
abort: terminate
functions. mod:

find the slot in the utmp file •• ttyslot(3C)
fitting. ••.••••• tee(l)
floating-point number to ••• ecvt(3C)
floating-point numbers. • • frexp(3C)
floor, ceiling, remainder. floor(3M)
floor: floor, ceiling, • floor(3M)
flow graph. ••••• • cflow(l)
flush a stream. . ••••• fclose(3S)
fopen: open a stream. ••• • fopen(3S)
fork: create a new process. fork(2)
format. acct: ••••••.• acct(4)
format and/or check RPB6 and • . • format(lM)
format. •••••••• • ar(4)
format. ••••••.• • errfile(4)
format for card. images. • • pnch(4)
format floppy disk drive .• format(lM)
format of a text file. • newform(l)
format of an i-node. . •••• inode(4)
format of compiled term file. •• term(4)
format of core image file. • core(4)
format of cpio archive. • • cpio(4)
format of directories. • dir(4)
format of graphical files. • gps(4)
format of SCCS file. • • sccsfile(4)
format of system volume. • ••.• fs(4)
format specification in text • fspec(4)
format. syms: common ••••. syms(4)
formats. •.•••• • •••• intro(4)
formats. ••••• • •••• utmp(4)
formatted input. • • •• • scanf (3S)
formatted output of a varargs ••• vprintf(3S)
formatted output of a varargs ••• vprintf(3X)
formatted output. • printf(3S)
Fortran 77 compiler. • •••••• f77(1)
Fortran absolute value. • • abs(3F)
Fortran action on receipt of a •• signal (3F)
Fortran arccosine intrinsic • • acos (3F)
Fortran arcsine intrinsic ••••• asin(3F)
Fortran arctangent intrinsic • atan2(3F)
Fortran arctangent intrinsic ••• atan(3F)
Fortran boolean functions. • bool(3F)
Fortran command-line argument. •• getarg(3F)
Fortran common logarithm • •• 10glB(3F)
Fortran complex conjugate. •• conjg(3F)
Fortran cosine intrinsic •• cos(3F)
Fortran dialect. • •••••••• ratfor(l)
Fortran environment variable. •• getenv(3F)
Fortran exponential intrinsic ••• exp(3F)
Fortran hyperbolic cosine ••••• cosh(3F)
Fortran hyperbolic sine •••••• sinh(3F)
Fortran hyperbolic tangent. tanh (3F)
Fortran imaginary part of ••.•• aimag(3F)
Fortran integer part intrinsic •• aint(3F)
Fortran Language. • •••• efl (1)
Fortran maximum-value. • . • • max (3F)
Fortran minimum-value. •• • • min(3F)
Fortran natural logarithm. • • 10g(3F)
Fortran nearest integer • • •• round(3F)
Fortran program. • ••••••.• abort(3F)
Fortran remaindering intrinsic •• mod(3F)

14

function. sin:
function. sqrt:

len: return length of
index: return location of

issue a shell command from
function. tan:
mclock: return

intrinsic function. sign:
int: explicit

backup tape.
df: report number of

floating-point numbers.
frec: recover files

and line number information
getc: get character or word

gets: get a string
rmdel: remove a delta

getopt: get option letter
errdead: extract error records

read: read
system: issue a shell command

ncheck: generate names
nlist: get entries

acctcms: command summary
getpw: get name

of file systems processed by
check

pointer in a stream
text files
efl files.

communication package.

Fortran arccosine intrinsic
Fortran integer part intrinsic

error function. erf: error
Fortran arcsine intrinsic

Fortran arctangent intrinsic
Fortran arctangent intrinsic

complex conjugate intrinsic
cos: Fortran cosine intrinsic

hyperbolic cosine intrinsic
precision product intrinsic

and complementary error
Fortran exponential intrinsic

gamma: log gamma
hypot: Euclidean distance

line number entries of a file
common logarithm intrinsic

natural logarithm intrinsic
matherr: error-handling
prof: profile within a

transfer-of-sign intrinsic
sin: Fortran sine intrinsic

hyperbclic ~inG int=in~ic
Fortran square root intrinsic

tan: Fortran tangent intrinsic
hyperbolic tangent intrinsic

math: math

Fortran sine intrinsic sin(3F)
Fortran square root intrinsic ••• sqrt(3F)
Fortran string. ••••. • len(3F)
Fortran substring. ••••• • index (3F)
Fortran. system: ••••• • system(3F)
Fortran tangent intrinsic. • • tan(3F)
Fortran time accounting. • mclock(3F)
Fortran transfer-of-sign .• sign(3F)
Fortran type conversion. •• • ftype (3F)
fread: binary input/output. • •• fread(3S)
frec: recover files from a • frec(IM)
free disk blocks. ••••• . df(lM)
frexp: manipulate parts of • frexp(3C)
from a backup tape. • • frec(lM)
from a file. /strip symbol • • strip(l)
from a stream. • •••••• getc(3S)
from a stream. • gets(3S)
from an SCCS file. • rmdel(l)
from argument vector. getopt(3C)
from dump. • • • • • errdead(lM)
from file. • •• read(2)
from Fortran. • • • • • system(3F)
from i-numbers. • ncheck(lM)
from name list. •••.•• • nlist (3C)
from per-process accounting/ • acctcms(lM)
from UID. .•.••..•. • getPtl(3C)
fsck. checklist: list ••••••• checklist(4)
fsck: file system consistency 0 •• fsck(lM)
fsdb: file system debugger. fsdb(lM)
fseek: reposition a file • fseek(3S)
fspec: format specification in •• fspec(4)
fsplit: split f77, ratfor, or ••• fsplit(l)
ftok: standard interprocess • • stdipc(3C)
ftw: walk a file tree. • ftw(3C)
function. acos: • • • • • • • • • • acos(3F)
function. aint: • • • • • • • • aint(3F)
function and complementary •• erf(3M)
function. asin: • • • • • asin(3F)
function. atan2: •••• • • atan2 (3F)
function. atan: • • • • • • • • • • atan(3F)
function. conjug: Fortran. • • conjg(3F)
function. ••••••• •• • cos (3F)
function. cosh: Fortran. • • • cosh(3F)
function. dprod: double • • • • dprod(3F)
function. erf: er ror function • • • erf (3M)
function. exp: ••••••• • exp(3F)
function. •••••••••••• gamma(3M)
function. ••••••••• • hypot(3M)
function. ldlread: manipulate ••• Idlread{3X)
function. 10g10: Fortran •• 10g10(3F)
function. log: Fortran • 10g{3F)
function. • • • • • •• matherr(3M)
function. • • •• • ••• prof(S)
function. sign: Fortran • sign(3F)
function. •••••• • • sin(3F)
f!.!~ctic~. sinh ~ F0!t!"=~ si!!h (3P)
function. sqrt: •••••••• • • sqrt(3F)
function. • • • • •
function. tanh: Fortran
functions and constants.

15

• • tan (3F)
••• tanh(3F)
• • • math (5)

jg, jl, jn, yg, yn: Bessel
or, xor, not: Fortran boolean
positive difference intrinsic
logarithm, power, square root

remainder, absolute value
max: Fortran maximum-value
min: Fortran minimum-value

Fortran remaindering intrinsic
hp: handle special

terminal. 4Sg: handle special
anint: Fortran nearest integer

sinh: hyperbolic
string comparison intrinsic

sin: trigonometric
using a file or file/

accounting records.
gamma: log

moving-head disks.

abort:
cflow:

cross-reference. cxref:
crypt:

by user ID. diskusg:
makekey:

terminal. ctermid:
ncheck:

lexical tasks. lex:
pseudo-random/ drand48:

rand: simple random-number
irand: random number

gets:
get:

ul imit:
the user. cuserid:

stream. getc:
nlist:

umask: set and
stat:

ustat:
file.

getgrent:
getlogin:

logname:
msgget:

getpw:
system. uname:

unget: undo a previous
argument vector. getopt:

getpwent:
working directory. getcwd:

times. times:
and parent process/ getpid:

semget:
shmget:

tty:
time:

getuid:
command-line argument.

functions. • ••••••••• bessel (3M)
functions. and, • • • • • • • • bool(3F)
functions. dim: • • • • • • • • • • dim(3F)
functions. exp: exponential, • exp(3M)
functions. /floor, ceiling, •••• floor(3M)
functions. . • • • • • • max(3F)
functions. ••••••••• • min(3F)
functions. mod: • • • • • • • • mod(3F)
functions of HP terminals. • • hp(l)
functions of the DASI 4S9 • • 4Sg(1)
functions. • round(3F)
functions. • • • • • • • • sinh(3M)
functions. 1ge: • . • . • • strcmp(3F)
functions. •••••• • •• trig(3M)
fuser: identify processes. . fuser(lM)
fwtmp: manipulate connect • • fwtmp(lM)
gamma function. ••••• • gamma (3M)
gamma: log gamma function. • gamma (3M)
gd: general drive for • • gd(7)
ged: graphical editor. • get(lG)
generate an lOT fault. • abort(3C)
generate C flow graph. • cflow(l)
generate C program • cxref (1)
generate DES encryption. •• • crypt (3C)
generate disk accounting data ••• diskusg(lM)
generate encryption key. • makekey(l)
generate file name for ctermid(3S)
generate names from i-numbers. •• ncheck(lM)
generate programs for simple • lex(l)
generate uniformly distributed •• drand48(3C)
generator. • •••••••• rand(3C)
generator. • ••••••••••• rand(3F)
get a string from a stream • gets(3S)
get a version of an sces file. get(l)
get and set user limits. • ulimit(2)
get character login name of • • cuserid(3S)
get character or word from a ••• getc(3S)
get entries from name list. • •• nlist(3C)
get file creation mask. • • umask(2)
get file status. • •••••••• stat(2)
get file system statistics. ustat(2)
get: get a version of an sces . get(l)
get group file entry. • getgrent(3C)
get login name. • • getlogin(3C)
get login name. • logname(l)
get message gueue. • msgget(2)
get name from UID. • •••• getpw(3C)
get name of current UNIX •• uname(2)
get of an sces file. • unget(l)
get option letter from • • getopt(3C)
get password file entry. • •• getpwent(3C)
get path-name of current •• • • • getcwd(3C)
get process and child process • times(2)
get process, . process group, .•••• getpid(2)
get set of semaphores. •••••• semget(2)
get shared memory segment. • shmget(2)
get the name of the terminal. •• tty(l)
get time. • ••••••••••• time(2)
get user IDs • • • • • • • getuid(2)
getarg: return Fortran •• getarg(3F)

16

from a stream.
current working directory.

environment variable.
environment name.

entry.

argument vector.

group. and parent process/

entry.
stream.

and terminal settings used by
modes, speed, and line/

ct: spawn
settings used by getty.

entry.
setjmp: non-local

string, format of graphical/
cflow: generate C flow

graph: draw a
sag: system activity

commands. graphics: access
/network useful with

filters. hpd:
ged:

primitive string, format of
format of graphical/ gps:

routines. toc:
gutil:

numerical commands.
tplot:
plot:

subroutines. plot:

pattern.
getpid: get process, process

chown: change owner or
getgrent: get

group:

setgrp: set process
id: print user and

setuid, setgid: set user and
newgrp: log in to a new
chown: change owner and

a signal to a process or a
update, and regenerate

drives.

the DASI 459 terminal. 459:
varargs:

pac~age. ~~rses~ CRT screen
nohup: run a command immune to

hsearch: manage
file. scnhdr: section
files. filehdr: file

getc: get character or word. • getc(3S)
getcwd: get path-name of •• getcwd(3C)
getenv: return Fortran • getenv(3F)
getenv: return value for getenv(3C)
getrent: get group file ..•••• getgrent(3C)
getlogin: get login name.. • getlogin(3C)
getopt: get option letter from •• getopt(3C)
getopt: parse command options. getopt(l)
getpass: read a password. • getpass(3C)
getpid: get process, ,process ••• getpid(2)
getpw: get name from UID. . getpw (3C)
getpwent: get password file • • getpwent(3C)
gets: get a string from a . • • gets(3S)
getty. gettydefs: speed. •• . gettydefs(4)
getty: set terminal type, • • getty (1M)
getty to a remote terminal. ct(lC)
gettydefs: speed and terminal • gettydefs(4)
getuid: get user IDs • getuid(2)
getutent: access utmp file • getut(3C)
goto. ••••••.••• . setj mp (3C)
gps: graphical primitive •.••• gps(4)
gr aph. • • . • • cflow (1)
graph: draw a graph. • graph (lG)
graph. • • • • . graph (lG)
graph. • • • • • • sag(lG)
graphical and numerical •••••• graphics(lG)
gr aph ical commands. ••••••• s,ta t (lG)
graphical device routines and ••• gdev(lG)
graphical editor. • . • • • ged (lG)
graphical files. /graphical • • gps(4)
graphical primitive string, • gps(4)
graphical table of contents. • toc(lG)
graphical utilities. . ••. gutil(lG)
graphics: access graphical and •• graphics(lG)
graphics filters. ••••• . tplot(lG)
graphics interface. ••••••• plot (4)
graphics interface •.• •• • plot(3X)
greek: select terminal filter ••• greek(l)
grep: search a file for a grep(l)
group, and parent process IDs. getpid(2)
group. ••••••••••• • chown(l)
group file entry. • getgrent(3C)
group file. • group(4)
group: group file. • group(4)
group 10. ••••• setpgrp(2)
group IDs and names. id(l)
group IDs. • • • • • • setuid(2)
group. ••••••• • newgrp(l)
group of a file. ••••• • chown(2)
group of processes. /send •• • kill(2)
groups of programs. /maintain, make(l)
gt: general driver for tape •••• gt(7)
gutil: graphical utilities. • gutil(lG)
handle special functions of •••• 4Sa(l)
handle variable argument list. varargs(S)
handlina and optimization ••••• curses(3X)
hangups ~ and quits. •••• • nohup(l)
hash search tables. • hsearch(3C)
header for a common object • scnhdr(4)
header for common object •• fielhdr(4)

17

Idahread: read the archive
file. Idfhread: read the file

seek to the optional file
read an indexed/named section

help: ask for
handle special functions of

and filters.
tables.

function. cosh: Fortran
sinh:

function. sinh: Fortran
function. tanh: Fortran

function.

disk accounting data by user
and names.

setpgrp: set process group
issue: issue

file or file/ fuser:
what:

id: print user and group
group. and parent process

getuid: get user
setgid: set user and group

core: format of core
crash: examine system

pnch: file format for card
argument. aimag: Fortran

nohup: run a command
finc: fast

of a/ Idtbindex: compute the
Fortran substring

a file. Idtbread: read an
of a file. Idshread: read an
object/ Idsseek: seek to an

initialization.
inittab: script for the

init: process control
brc: system

information bdblk: print,
process. popen:

process.
clri: clear

inode: format of an
scanf: convert formatted
push character back into

fread: binary
stdio: standard buffered

ferror: stream status
uustat: uucp status

install:

directories. cpset:
conversion.
abs: return

a641: convert between long
sputl: access long

anint: Fortran nearest

header ••• . • • • • • • • Idahread(3X)
header of a common object • •• Idfhread(3X)
header of a file. Idohseek: • Idohseek (3X)
header of a file. Idshread: • • Idshread(3X)
help: ask for help. • • "help(l)
help. ••••...•.. help(l)
HP terminals. hp: • • • • • • • hp(l)
hpd: graphical device routines .• gdev(lG)
hsearch: manage hash search •••• hsearch(3C)
hyperbol ic cosine intrinsic • • cosh (3F)
hyperbolic functions. • sinh(3M)
hyperbolic sine intrinsic ••••• sinh (3F)
hyperbolic tangent intrinsic ••• tanh(3F)
hypot: Euclidean distance ••••• hypot(3M)
iargc. . •••••••.••••• iargc(3F)
10. diskusg: generate. • • • • diskusg(lM)
id: print user and group IDs • id(l)
10. ••••••••••• •• setpgrp(2)
identification file. • • issue(4)
identify processes using a •• fuser(lM)
identify sces files. • • what(l)
IDs and names. •••••• • • id(l)
IDs. /get process, . process •• getpid(2)
IDs. • • •• ••• • getuid(2)
IDs. setuid, • setuid(2)
image file. • • core(4)
images. crash (1M)
images. • • • • • • • • pnch(4)
imaginary part of complex • aimag(3F)
immune to hangups and quits. • nohup(l)
incr emental backup. ••••••• f inc (1M)
index of a symbol table entry ••• Idtbindex(3X)
index: return location of ••••• index(3F)
indexed symbol table entry of ••• Idtbread(3X)
indexed/named section header • Idshread(3X)
indexed/named section of an •••• Idsseek(3X)
init: process control • • • • • init(lM)
init process. • ••••••••• inittab(4)
initialization. • •••••••• init(lM)
initialization shell scripts. •• brc(lM)
initialize, update bad • bdblk(lM)
initiate pipe to/from a • • • • • • popen(3S)
inittab: script for the init ••• inittab(4)
i-node. • • • • • • clri(lM)
inode: format of an i-node. inode(4)
i-node. • . • • . • . • • inode(4)
input. • • • • • scanf(3S)
input stream. ungetc: • • • ungetc(3S)
input/output. • • fread(3S)
input/output package. • stdio(3S)
inquiries. •••••.••• • ferror(3S)
inquiry and job control. • uustat(lC)
install commands. •••• • install(lM)
install: install commands. • ••• install(lM)
install object files in binary •• cpset(lM)
int: explicit Fortran type • ftype(3F)
integer absolute value. • • abs(3C)
integer and base-64 ASCII/ • a64l(3C)
integer data in a/ • • • • • • sputl(3X)
integer functions. ••••• • round(3F)

18

function. aint: Fortran
strtol: convert string to

13tol: convert between 3-byte
3-byte integers and long

bcopy:
system. mailx:

acu: Automatic Call Unit (ACU)
err: error-logging

plot: graphics
plot: graphics

termio: general terminal
tty: controlling terminal

spline:
characters. asa:

sno: SNOBOL
pipe: create an

facilities/ ipcs: report
package. ftok: standard

suspend execution for an
sleep: suspend execution for

acos: Fortran arccosine
aint: Fortran integer part

asin: Fortran arcsine
atan2: Fortran arctangent
atan: Fortran arctangent

Fortran complex conjugate
cos: Fortran cosine

Fortran hyperbolic cosine
double precision product
exp: Fortran exponential
Fortran common logarithm

log: Fortran natural logarithm
sign: Fortran transfer-of-sign

sin: Fortran sine
sinh: Fortran hyperbolic sine
. sqrt: Fortran square root

tan: Fortran tangent
Fortran hyperbolic tangent

dim: positive difference
mod: Fortran remaindering

1ge: string comparison
commands
formats.

maintenance commands
miscellany.

files.
subroutines and libraries.

calls and error numbers.
maintenance procedures.

intro:
intro:

commands intro:
intro:
intro:

and libaries. intro:
__ -"1 __ __ ____ "-___ !_ __ ...

a,lI,,", e::A..LV.L "UUUJC.LO ,''-.L''''.
maintenance/ intro:

ncheck: generate names from

abort: generate an

integer part intrinsic •••••• aint(3F)
integer. •.••••• • • strtol(3C)
integers and long integers. • •• 13tol(3C)
integers. /convert between •• 13tol(3C)
interactive block copy ••••.• bcopy(lM)
interactive message processing mailx(l)
interface. •••••••• • • acu(7)
interface. ••••••. • • err(7)
interface. ••••••. • • plot(4)
interface subroutines. • plot(3X)
interface. •.••••. . • termio(7)
interface. ••••••. tty(7)
interpolate smooth curve.. • spl ine (lG)
interpret ASA carriage control •• asa(l)
interpreter. •••.•.• .• sno(l)
interprocess channel. • pipe(2)
inter-process communication • • ipcs (1)
interprocess communication •• stdipc(3C)
interval. sleep: .• sleep(l)
interval. •••• sleep(3C)
intrinsic function. acos(3F)
intrinsic function. . • aint(3F)
intrinsic function. asin(3F)
intrinsic function. atan2(3F)
intrinsic function. • atan(3F)
intrinsic function. conjg: conjg(3F)
intrinsic function. cos(3F)
intrinsic function. cosh: . cosh(3F)
intrinsic function. drpod: • dprod(3F)
intrinsic function. • exp(3F)
intrinsic function. logl~: • 10gl~(3F)
intrinsic function. • • 10g(3F)
intrinsic function. . • sign(3F)
intrinsic function. sin(3F)
intrinsic function. • • sinh(3F)
intrinsic function. • • sqrt(3F)
intrinsic function. • tan(3F)
intrinsic function. tanh: • • • tanh(3F)
intrinsic functions. • • dim(3F)
intrinsic functions. • mod(3F)
intrinsic functions. • • strcmp(3F)
intro: introduction to • intro(l)
intro: introduction to • intro(4)
intro: introduction to •••• intro(lM)
intro: introduction to • intro(S)
intro: introduction to . intro(7)
intro: introduction to • intro(3)
intro: introduction to system ••• intro(2)
intro: introduction to system ••• intro(8)
introduction to commands •• intro(l)
introduction to file formats. •• intro(4)
introduction to maintenance. . intro(lM)
introduction to miscellany. intro(S)
introduction to special files ••• intro(7)
introduction to subroutines • • intro(3)
int~oducticu to ~y~tGm c~!l~ . i~trc{2}
introduction to system • intro(S)
i-numbers. • • • . • • • ncheck(IM)
ioctl: control device. • ioctl(2)
rOT fault. •••••.•• • abort(3C)

19

communication facilities/
generator.

Fortran. system:
system:
issue:
file.

news: print news
functions.

functions. j9,
functions. j~, jl,

operator.
makekey: generate encryption

killall:
process or a group off

processes.
integers and long integers.

copy file systems with
scanning and processing

arbitrary-precision arithmetic
efl: Extended Fortran

cpp: the C
command programming

shl: shell
object files.

header
file.

access routines.
of a common object file.

name for file symbol table/
number entries of a file/

entries of a section of a/
file header of a file

file for reading.
entries of a section of a/

indexed/named section header/
indexed/named section of ani

of a symbol table entry of a/
symbol table entry of a file.

table of a common object/
string.

len: return
getopt: get option

Simple lexical tasks.
generate programs for simple

intrinsic functions.
to subroutines and

relation for an object
portable/ ar: archive and
ulimit: get and set user

an out-going-terminal
type, modes, speed, and

line: read one
common object file. linenum:

function. ldlread: manipulate
section of a/ ldlseek: seek to
file. strip: strip symbol and

nl:

ipcrm: remove a message queue ••• ipcrm(l}
ipcs: report inter-process • ipcs(l}
irand: random number •.•••.• rand(3F}
isalpha: classify characters •.• ctype(3C}
issue a shell command from • system(3F}
issue a shell command. • system(3S)
issue identification file. • • issue(4)
issue: issue identification. • issue(4)
items. • •••.••••• news (1)
j0, jl, jn, y0, yl, yn: Bessel .• bessel (3M)
jl, jn, y0, yl, yn: Bessel •• bessel (3M)
jn, y0, yl, yn: Bessel .•• • bessel (3M)
join: relational database • . • join (I)
key. .••..•••..•• makekey(l)
kill all active processes. • • killall(IM}
kill: send a signal to a •• kill(2}
kill: terminate a process. kill(l}
killall: kill all active •• killall(IM}
13tol: convert between 3-byte .•• 13tol(3C}
label checking. volcopy: •• volcopy(lM)
language. awk: pattern. . •• awk(l}
language. bc: • • • • • • •• • bc(l}
Language. . ••••••••..• efl(l}
language preprocessor. . •• cpp(l}
language. /standard/restricted •• shell
layer manager. • ••••.•.•• shl(l}
ld: link editor for common •• ld(l}
ldahread: read the archive •• Idahread(3X}
ldclose: close a common object •• Idclose(3X}
ldfcn: common object file ••.•• 'ldfcn(4}
ldfhread: read the file header •• Idfhread(3X}
ldgetname: retrieve symbol .• Idgetname(3X}
ldlread: manipulate line •• ldlread(3X}
ldlseek: seek to line number .•• ldlseek(3X}
ldohseek: seek to the optional •• Idohseek(3X}
ldopen: open a common object • Idopen(3X}
ldrseek: seek to relocation. • Idrseek(3X}
ldshread: read an ••••••.•• ldshread(3X)
ldsseek: seek to an • • • • • Idsseek(3X}
ldtbindex: compute the index • ldtbindex(3X}
ldtbread: read an indexed ••••. ldtbread(3X)
ldtbseek: seek to the symbol • Idtbseek(3X}
len: return length of Fortran • len(3F}
length of Fortran string. • len(3F}
letter from argument vector. • •• getopt(3C}
lex: generate programs for • lex(l}
lexical tasks. lex: • • • . lex(l}
1ge: string comparision • • •. strcmp(3F}
libraries. /introduction ••••• intro(3}
library. /find ordering. • lorder(l}
library maintainer for • ar(l}
limits. .••••••••• • ulimit(2}
line connection. /establish • • dial{3C)
line discipline. /set terminal •• getty (1M)
line. • ••••••.•••• line(l)
line number entries in a • linenum(4}
line number entries of a file ••• Idlread(3X}
line number enteries of a .•••• Idlseek(3X}
line number information from a • • strip(l}
line numbering filter. • ••••. nl (I)

out selected fields of each
send/cancel requests to an LP

lp:

lsearch:
col: filter reverse

in a common object file.
files. comm: select or reject

uniq: report repeated
paste: merge same

link: exercise
files. ld:

a.out: common assembler and
system calls.

cp, In, rnv: copy,
link:

Is:
for a file system. ff:

nlist: get entries from name
nm: print name

by fsck. checklist:
handle variable argument

output of a varargs argument
output of a varargs argument

xargs: construct argument
files. cp,

index: return
end: last

memory. plock:
intrinsic function.

gamma:
newgrp:

logarithm intrinsic function.
10g10: Fortran common

log: Fortran natural
functions. exp: exponential,

errpt: process a report of
getlogin: get

logname: get
cuserid: get character

logname: return
passwd: change

setting up an environment at

user.
string. a64l: convert between

sputl: access
between 3-byte integers and

for an object library.
nice: run a command at

requests to an LP line/
spnd!cancpl rpqupsts to an

enable: enable/disable
lpsched: start/stop the

accept: allow/prevent
Ipadmin: configure the

line of a file. cut: cut cut(l)
line printer. lp, cancel: . • • lp(l)
line printer. •••••• . • Ip(7)
line: read one line. • • • • line (1)
linear search and update. • lsearch(3C)
line-feeds. •••••••• col (1)
linenum: line number entries linenum(4)
lines common to two sorted • comm(l)
lines in a file. ••.•.• uniq(l)
lines of several file. • . •• paste(l)
link and unlink system calls link(lM)
link editor for common object. Id(l)
link editor output. ••.•• a.out(4)
link: exercise link and unlink •• link(lM)
link: link to a file. • link(2)
link or move files. cp(l)
link to a file.. link(2)
lint: a C program checker. • lintel)
list contents of directory. Is(l)
list file names and statistics .• ff(lM)
list ••••••.•.•••••• nlist(3C)
list of common object file. nm(l)
list of file systems processed •• checklist(4)
list. varargs: • • • • • •. • varargs(S}
list. /print formatted • vprintf(3S)
list. /print formatted • vprintf(3X)
list(s) and execute command. . xargs(l)
In, mv: copy, link or move. • cp(1)
location of Fortran substring. index(3F)
locations in program. • ••••• end(3C)
lock process,.text, or data in plock(2)
log: Fortran natural logarithm 10g(3F)
log gamma function. ••••••• gamma (3M)
log in to a new group. • newgrp(l)
10g10: Fortran common. • •• • 10g10(3F)
logarithm intrinsic function. 10g10(3F)
logarithm intrinsic function. 10g(3F)
logarithm, power, square root . exp(3M)
logged errors. • • • • • errpt(lM)
login name. • getlogin(3C)
login name. • logname(l)
login name of the user. cuserid(3S)
login name of user. • ••• 10gname(3X)
login password. passwd(l)
login: sign on. • login(l)
login time. profile: • • profile(4)
logname: get login name. logname(l)
logname: return login name of • 10gname(3X)
long integer and base-64 ASCII a641(3X)
long integer data in a/ •••••• sputl(3X)
long integers. 13tol: convert ••. l3tol(3C)
lorder: find ordering relation •• lorder(l)
low priority. ••••••. • nice(l)
Ip, cancel: send/cancel • • • • Ip(l)
LP line printer. lp, cancel: Ip(l)
lp: line-printer. . Ip(7)
LP printers. ••••• . enable(l)
LP request scheduler • Ipsched(lM)
LP requests. • accept (1M)
LP spooling system. • Ipadmin (1M)

21

lpstat: print
spooling system.

request scheduler
information.

directory.
update.

pOinter.

values:
/access long integer data in a

m4:
send mail to user or read

read mail.
mail: send

processing system.
malloc:

malloc: fast
regenerate groups of/ make:

ar: archive and library
intro: introduction to

intro: introduction to system
sccs file. delta:

mkdir:
or ordinary file. mknod:

mktemp:
regenerate groups of/

banner:
key.

allocator.

manual.
tsearch:
hsearch:

shl: shell layer
records. fwtmp:

of a file function. ldlread:
floating-point/ frexp

man: print entries in this
ascii:

files. diffmk:
umask: set file-creation mode

set and get file creation
table. master:

information table.
regular expression compile and

math:
constants.

function.
multiple-access-user-space/

functions.
max: Fortran
accounting.

malloc: main
malloc: fast main

shmctl: shared
mem: core
/(shared
memccpy:

LP status information. • lpstat(l)
Ipadmin: configure the LP • • Ipadmin (1M)
lpsched: start/stop the LP • Ipsched(IM)
Ipstat: print LP status. •. • lpstat(l)
Is: list contents of •• Is(l)
lsearch: linear search and • Isearch(3C)
lseek: move read/write file. • lseek (2)
m4: macro processor. rn4(1)
machine-dependent values. • values(S)
machine-independent fashion. • sputl(3X)
macro processor. ••••• m4(1)
mail. mail:mail (1)
mail: send mail to users or .• mail(l)
mail to users or read mail. • •• mail(l)
mailx: interactive message mailx(l)
main memory allocator. malloc(3C)
main memory allocator. • malloc(3X)
maintain, update, and. • • make(l)
maintainer for portable/ ..•.• ar(l)
maintenance commands intro(IM)
maintenance procedures. intro(S)
make a delta (change) to an • • delta(l)
ma'ke a directory. •••• •• mkdir(l)
make a directory, or a special mknod(2)
make a unique file name. mktemp(3C)
make: maintain, update, and. • make(l)
make posters. •••••••• banner(l)
makekey: generate encryption makekey(l)
malloc: fast main memory malloc(3X)
malloc: main memory allocator. malloc(3C)
man: print entries in this • man (1)
manage binary search trees. • tsearch(3C)
manage hash search tables. hsearch(3C)
manager. ••••••••••• shl(l)
manipulate connect accounting • fwtmp(IM)
manipulate line number entries •• Idlread(3X)
manipulate parts of • • • • • frexp(3C)
manual. ••••••••• • man (1)
map of ASCII character set. ascii(S)
mark differences between •• diffmk(l)
mask. •••••••••••••• umaSk (1)
mask. umask: ••••••••••• umask(2)
master device information • master(4)
master: master dev ice • • • • • • • master (4)
match routines. regexp: • • • • regexp(S)
math functions and constants. math(S)
math: math functions and • math(S)
matherr: error-handling. • • • matherr(3M)
maus: • • • • • • • • • • • • • maus (2)
max: Fortran maximum-value • max(3F)
maximum-value functions. • max(3F)
mcloCk: return Fortran time. • mclock(3F)
mem: core memory. ••••• • mem(7)
memccpy: memory operations. memory (3C)
memory allocator. ••••• • malloc (3C)
memory allocator. ••••• • malloc (3X)
memory control operations. • • shmctl(2)
memo ry • ••••• • • • mem (7)
memory) operations. maus(2)
memory operations. • memory (3C)

22

shmop: shared
lock process, text, or data in

shmget: get shared
sort: sort and/or
files. acctmerg:

file paste:

msgctl:
msgop:

mailx: interactive
ipcrm: remove a

msgget: get
mesg: permit or deny
perror: system error

functions.
min: Fortran

special or ordinary file.
name.

table.
intrinsic functions.

chmod: change
umask: set file-creation

chmod: change
getty: set terminal type.

bs: a compiler/interpreter for
touch: update access and

utime: set file access and
profile.

uusub:
mount:

system. mount:

system.
setmnt: establish

mnttab:
mvdir:

cp, In, mv: c0Pr, link or
lseek:

gd: general driver for
operations.

(shared memory)/ maus:
cp, In,

function. log: Fortran
i-numbers.

anint: Fortran
analysis. serverdaemon:

netstat: display
commands. stat: statistical

uusub: monitor uucp
Q teAt file.

news: print

process.

memory operations. • • • shmop(2)
memory. plock: ••••••• plock(2)
memory segment. • • shmget(2)
merge files.. • • • • • • • • sort(l)
merge or add total accounting. acctmerg(lM)
merge same lines of several • • paste{l)
mesg: permit or deny messages. •• mesg(l)
message control oeprations. • •• msgctl(2)
message operations. • • msgop(2)
message processing system. • mailx(l)
message queue • ipcrm(l}
message queue. ••••••• • msgge t (2)
messages. • • • • • • • • mesg (I)
messages. • • • • • • • • • • perror (3C)
min: Fortran minimum-value • min(3F)
minimum-value functions. • • min(3F)
mkdir: make a directory. • •••• mkdir(l)
mkfs: construct a file system. •• mkfs(lM)
mknod: build special file. • • mknod(lM}
mknod: make a directory, or a ••• mknod(2)
mktemp: make a unique file • • • • mktemp(3C)
mnttab: mounted file system • • mnttab(4)
mod: Fortran remaindering • • • mod (3F)
mode. • • chmod(l)
mode mask. • ••• umask(l)
mode of file. •••• • • • chmod (2)
modes, speed, and line/ • • getty (1M)
modest-sized programs. • ••• bs(l)
modification times of a file. touch (1)
modification times.. • • utime(2)
monitor: prepare execution • monitor{3C)
monitor uucp network. • uusub(lM)
mount a file system. • ••• mount (2)
mount and dismount file • • • • mount (1M)
mount: mount a file system. • •• mount (2)
mount: mount and dismount file • • mount{lM)
mount table. • ••••••• setmnt(lM)
mounted file system table. • • mnttab(4)
move a directory. • ••••••• mvdir(lM)
move files. •••••••• • cp(l)
move read/write file pointer. •• lseek(2)
moving-head disks. •••• •• gd(7)
msgctl: message control. • • • msgctl(2)
msgget: get message queue. • msgget(2)
msgop: message operations. ••• msgop(2)
multiple-access-user-space • maus(2)
mv: copy, link or move files. •• cp{l}
mvdir: move a directory. • • mvdir(lM)
natural logarithm intrinsic. • 10g(3F)
ncheck: generate names from. • ncbeck(lM}
nearest integer functions. • • round (3F)
network debugging and error • • serverdaemon(l)
network system status. • • • • netstat(l}
network useful with graphical • stat(lG}
network. •••••••••• • uusub(lM)
n~"fcr=; change the fc~=at of . • . n~fc~~{l~
newgrp: log in to a new group. newgrp(l}
news items. • • • • • • • • news (1)
news: print news items. • • news (1)
nice: change priority of a •••• nice(2}

23

priority.

list.
object file.

hangups and quits.
setj mp:

null: the

nl: line
graphics: access graphical and

idfcn: common
dump selected parts of an

ldopen: open a common
ldclose: close a common

the file header of a common
indexed/named section of an

the symbol table of a common
number entries in a common

nm: print name list of common
information for a common

section header for a common
format. syms: common

file header for common
directories. cpset: install
ld: link editor for common

print section sizes of common
find ordering relation for an

od:

reading. ldopen:
fopen:

dup: duplicate an
open:

writing.
prfld:

/(shared memory)
memccpy: memory

msgctl: message control
msgop: message

semctl: semaphore control
semop: semaphore

shmctl: shared memory control
shmop: shared memory

strcat: string
join: relational database

dcopy: copy file systems for
CRT screen handling and

vector. getopt: get
file. ldohseek: seek to the

fcntl: file control
stty: set the

getopt: parse command
functions. and,

object library. lorder: find
a directory, or a special or

dial: establish an
assembler and link editor
vprintf: print formatted
vprintf: print formatted
printf: print formatted

nice: run a command at low nice(l)
nl: line numbering filter. • nl(l)
nlist: get entries from name nlist(3C)
nm: print name list of common ••• nrn(l)
nohup: run a command immune to nohup(l)
non-local goto. • setjmp(3C)
null file. •.•.. • •••• null(7)
null: the null file. . •• null(7)
numbering filter. • • nl(l)
numerical commands. ••• • • graphics (IG)
object file access routines. • idfcn(4)
object file. dump: ••••• • dump(l)
object file for reading. Idopen(3X)
object file. ••.••••• Idclose(3X)
object file. ldfhread: read. • Idfhread(3X)
object file. /seek to an • • • Idsseek(3X)
object file. /seek to ••••.•• Idtbseek(3X)
object file. linenum: line • linenum(4)
object file. • •••••••••• nrn(l)
object file. /relocation • reloc(4)
object file. scnhdr: •• scnhdr(4)
object file symbol table ••• syms(4)
object files. filehdr: • filehdr(4)
object files in binary • cpset(IM)
object files. •••• • ld(l)
object files. size: • • • • size(l)
object library. lorder: • • lorder(l)
octal dump. ••••• • odell
od: octal dump. • odell
open a common object file for ••• Idopen(3X)
open a stream. ••••• • 'fopen(3S)
open file descriptor.. • dup(2)
open for reading or writing. • open(2)
open: open for reading or • • open(2)
operating system profiler. • profiler(IM)
operations. ••••• • maus(2)
operations. • memory (3C)
operations. • msgctl(2)
operations. • msgop(2)
operations. • semctl(2)
operations. • semop(2)
operations. •••• • shmctl (2)
operations. • shmop(2)
operations. • string(3C)
operator. ••••• • join(l)
optimal access time. . • dcopy(IM)
optimization package. curses: .• curses(3X)
option letter from argument • • getopt(3C)
optional file header of a • • • Idohseek(3X)
options. • • • . • • • • fcntl(S)
options for a terminal. stty(l)
options. • • • • • • getopt(l)
or, xor, not: Fortran boolean •• bool(3F)
ordering relation for an • lorder(l)
ordinary file. mknod: make • mknod(2)
out-going terminal line/ •• dial(3C)
output. a.out: common. • •• • a.out(4)
output of a varargs argument/ .• vprintf(3S)
output of a varargs argument/ • vprintf(3X)
output. • •••••••••••• printf(3S)

24

acc disk:
chown: change
chown: change

files.
handling and optimization

sal: system activity report
standard buffered input/output

interprocess communication
4~14 terminal. 4~14:

process, process group, and
getopt:

getpwent: get
putpwent: write

passwd:
getpass: read a

passwd: change login
pwck:

several file
dirname: deliver portions of

directory. getcwd: get
grep: search a file for a
processing language. awk:

signal.
mesg:

format. acct:
acctcms: command summary from

terminals. pg: file
soft-copy terminals.

split: split a file into
channel.

tee:
popen: initiate
data in memory.

subroutines
images.

fseek: reposition a file
lseek: move read/write file

process.
and library maintainer for
basename, dirname: deliver

functions. dim:
banner: make

exp: exponential, logarithm,

functions. dprod: double
monitor:

cpp: the C language
unget: undo a

profiler.
prof iler.

graphical/ gps: graphical
types:

prs:
date:
cal:

of a file. sum:

overview o~ accounting acct(lM)
owner and group of a file. chown(2)
owner or group. • ••••.••• chown(l)
pack: compress and expand. •• pack(l)
package. curses: CRT screen. • curses(3X)
package. .••.•••••.••• sar (1M)
package. stdio: •••••••••• stdio(3S)
package. ftok: standard. • . • stdipc(3C)
paginator for the TEKTRONIX. • 4~14(1)
parent process IDs. /get •• getpid(2)
parse command options. . getopt(l)
passwd: change login password. •• passwd(l)
passwd: password file. • passwd(4)
password file entry. . .. getpwent(3C)
password file entry. • putpwent(3C)
password file. • passwd(4)
password. ••••• . ••• getpass(3C)
password. • ••••.••.••• passwd(l)
password/group file checker. . pwck(lM)
paste: merge same lines of . paste(l)
path names. basename, ••.•.•. basename(l)
path-name of current working .•. getcwd(3C)
pattern. •••.••.••. • grep(l)
pattern scanning and • • • . awk(l)
pause: suspend process until • pause(2)
permit or deny messages. mesg(l)
per-process accounting file. • acct(4)
per-process accounting/ • • • • acctcms(lM)
perror: system error messages. •• perror(3C)
perusal filter for soft-copy • pg(l)
pg: file perusal filter for. • pg(l)
pieces. • • • • • • • split(l)
pipe: create an interprocess ••. pipe(2)
pipe fitting. . ••.•.•.•. tee(l)
pipe to/from a process. • • popen(3S)
plock: lock process, text, or • • • plock (2)
plot: graphics interface. • plot(4)
plot: graphics interface. • plot(3X)
pnch: file format for card . pnch(4)
pointer in a stream. • • fseek(3S)
pointer. ••••••••••••• lseek (2)
popen: initiate pipe to/from a • • popen(3S)
portable archives. /archive • • ar(l)
portions of path names. • • basename(2)
positive difference intrinsic ••• dim(3F)
posters. • •••••.•••••• banner(l)
power, square root functions. •• exp(3M)
pr: print files. ••••• • pr(l)
precision product intrinsic. • dprod(3F)
prepare execution profile. monitor(3C)
processor. •••••• • cpp(l)
previous get of an SCCS file. unget(l)
prf: operating system ••••••• prf(7)
prfld: operating system. • •• profiler(lM)
primitive string, format of • • gps(4)
primitive system data types. • types(S)
print an SCCs file. • •.•••• prs(l)
print and set the date. date(l)
print calendar. . •••••••• cal (I)
print checksum and block count •• sum(l)

2S

editing activity. sact:
man:

cat: concatenate and
pr:

varargs argument/ vprintf:
varargs argument/ vprintf:

printf:
information bdblk:

lpstat:
object file. nm:

system. uname:
news:

file(s). acctcom: search and
object files. size:

names. id:
requests to an LP line

lp: line
enable: enable/disable LP

output.
nice: run a command at low

nice: change
errors. errpt:

acct: enable or disable
acctprcl:

acctcom: search and print
alarm: set a

times. times: get
initialization. init:

timex: time a command; report
exit: terminate

fork: create a new
process/ getpid: get process

setpgrp: set
process group, .and parent

inittab: script for the init
kill: terminate a

nice: change priority or a
kill: send a signal to a

popen: initiate pipe to/from a
parent process/ getpid: get

ps: report
memory. plock: lock

times: get process and child
wait: wait for child

ptrace:
pause: suspend

wait: await completion of
list of file systems

to a process or a group of
killall: kill all active

structure. fuser: identify
awk: pattern scanning and

shutdown: terminate all
mailx: interactive message

m4: macro
provide truth value about

dprod~ double precision

function.
profile.

pr int current sees file • •• • sact (1)
print entries in this manual. man(l)
print files. .•••••. • • cat (1)
print files. .•••••• .• pr(l)
print formatted output of a • • vprintf(3S)
print formatted output of a .••• vprintf(3X)
print formatted output • • printf(3S)
print, initialize, update bad ••• bdblk(IM)
print LP status information. • lpstat(l)
pr int name list of common • • • nm (1)
print name of current UNIX . uname(l)
print news items. ••••• • news(l)
print process accounting • •• acctcom(l)
print section sizes of common. size(l)
print user and group IDs and ••. id(l)
printer. /cancel: send/cancel. lp(l)
printer. • • • . • • •• Ip(7)
printers. •.••••.• . enable(l)
printf: print formatted. •• • printf(3S)
priority. •.•••••• • • nice{l)
pr iority of a process . • .• •• nice (2)
process a report of logged • errpt(lM)
process accounting. • ••• acct(2)
process accounting. . . acctprc(IM)
process accounting file(s). acctcom(l)
process alarm clock. . alarm(2)
process and child process • • • times(2)
process control. • • • • • init{lM)
process data and system/ .•• timex(l)
process. • •••••••••••• exit(2)
process. ••.••..• • •• fork(2)
process group, and parent getpid(2)
process group 10. • setpgrp(2)
process IDs. /get process, . getpid(2)
process. . • • • • inittab(4)
process. ••.• • kill{l)
process. •••• • •••.• nice(2)
process or a group off • kill(2)
process. ••.•..• • popen(3S)
process, . process group, and . • getpid (2)
process status. • • ps(l)
process, text, or data in • • • plock(2)
process times. ••••••• • times(2)
process to stop or terminate. •• wait(2)
process trace. ••••••• • ptrace(2)
process until signal. . pause(2)
process. , ••••••••••••• wait{l)
processed by fsck. checklist: ••• checklist(4)
processes. /send a signal • kill(2)
processes. ••••••• • killall(IM)
processes using a file or file •• fuser(IM)
processing language. • • awk(l)
processing. • shutdown(lM)
processing system. • mailx(l)
processor. •••••• • m4(1)
processor type... . machid (1)
product intrinsic function. dprod(3F)
prof: display profile data. • prof(l)
prof: profile within a • prof(S)
profil: execution time • profil(2)

26

prof: display
monitor: prepare execution

profil: execution time
environment at login time

prof:
prf: operating system

prfld: operating system
sadp: disk access

standard/restricted command
processor type:

true:

sxt:
/generate uniformly distributed

stream. ungetc:
a stream.

env ironment.
entry.

stream.
checkers.

tput:
ipcrm: remove a message

msgget: get message
qsort:

command immune to hangups and
generator.

irand:
rand: simple

fsplit: split f77,
dialect.
ratfor:

getpass:
entry of a file. ldtbread:

header of a file. ldshread:
read:

mail: send mail to users or
line:

ldahread:
common object file. ldfhread:
open a common object file for

open: open for
lseek: move

specify what to do upon
/specify Fortran action on

lockf:
from per-process accounting

errdead: extract error
manipulate connect accounting

tape. free:
ed,

regular expression
~nmnilp_

make: maintain, upd~t~;-and
compile and match routines.

match routines. regexp:

profile data. • • • • prof(l)
profile. • • • • • • monitor(3C)
profile. • • • • • • . • profil(2)
profile: setting up an •• • • profile(4)
profile within a function. prof(S)
prof iler. •••.• prf (7)
profiler. ...•...• profiler(lM)
profiler. .••••••• •• sadp(lM)
programming language. /the •• shell
prov ide truth value about • • • machid (1)
provide truth values. • true(l)
prs: print an SCCS file.. •• prs(l)
ps: report process status. • • ps(l)
pseudo-device driver. sxt(7)
pseudo-random numbers. • drand48(3C)
ptrace: process trace. • ••• ptrace(2)
push character back into input ungetc(3S)
putc: put character or word on •• putc(3S)
putenv: change or add value to •• putenv(3C)
putpwent: write password file ••• putpwent(3C)
puts: put a string on a •••••• puts(3S)
pwck: password/group file ••••• pwck(lM)
pwd: working directory name. • •• pwd(l)
qsort: quicker sort. qsort(3C)
query terminfo database. • • tput(l)
queue • • •• • •••••••• ipcrm(l)
queue • • • • • • • • • . . • msgget(2)
quicker sort. ••••• • • qsort(3C)
qui ts. nohup: run a • • • • • nohup(1)
rand: simple random-number • rand(3C)
random number generator. • • rand(3F)
random-number generator. • • rand(3C)
ratfor, or efl files. • •••.• fsplit(l)
ratfor: rational Fortran •• ratfor(l)
rational Fortran dialect. • ratfor(l)·
read a password. ••••• getpass (3C)
read an indexed symbol table ••• Idtbread(3X)
read an indexed/named section ••• ldshread(3X)
read from file. . • read(2)
read mail. ••••• • • mail(l)
read one line. line(l)
read: read from file. • •• read (2)
read the archive header. . . ldahread(3X)
read the file header of a •.••• ldfhread(3X)
reading. ldopen: • • .• ldodpen(3X)
reading or writing.. •• open(2)
read/write file pointer.. lseek(2)
receipt of a signal. signal: ••• signal(2)
receipt of a system signal. • .• signal(3F)
record and file locking. • •••• lockf(2)
records. /command summary •.••• acctcms(lM)
records from dump. ••••• • errdead (1M)
records. fwtmp: • • • .. •• fwtmp(lM)
recover files from a backup. • frec(lM)
red: text editor. ••.•.. ed(l)
regcmp: compile and execute . • regcmp(3X)
rpa~mn! rpoul ar @xnressions ____ reocmo(ll
~~~~~~~at~~groups ~f programs. •• ma~e(ii . 
regexp: regular expression regexp(S) 
regular expression compile and . • regexp(S) 

27 



regcmp: 
regcmp: compile and execute 

sorted files. comm: select or 
lorder: find ordering 

join: 
for a common object file. 
strip: remove symbols and 

section of a/ ldrseek: seek to 
common object file. reloc: 

floor: floor. ceiling, 
functions. mod: Fortran 

calendar: 
netlet: execute command on 

run: run command on a 
ct: spawn getty to a 

file. rmdel: 
ipcrm: 

unlink: 
rm: 

bits. strip: 
uniq: report 

clock: 
communication/ ipcs: 

blocks. df: 
errpt: process a 

sal: system activity 
timex: time a command: 

ps: 
file. uniq: 

trenter: enter a trouble 
sar: system activity 

stream. fseek: 
lpsched: start/stop the LP 

accept: allow/prevent LP 
lp, cancel: send/cancel 

recover: 
symbol table/ Idgetname: 

argument. getarg: 
variable. getenv: 

accounting. mclock: 
abs: 

string. len: 
substring. index: 

logname: 
name. getenv: 

stat: data 
col: filter 

creat: create a new file or 
directories. 

sccs file 
chroot: change 
chroot: change 

logarithm. power, square 
sqrt: Fortran square 

hpd: graphical device 
common object file access 

expression compile and match 
graphical table of contents 

·nice: 
hangups and quits. nohup: 

regular expression compile. regcmp(l} 
regular expression. regcmp(3X} 
reject lines common to two comm(l} 
relation for an object/ •.•.•• lorder(l} 
relational database operator. join(l} 
reloc: relocation information ••• reloc(4} 
relocation bits. ••.••• . strip(l} 
relocation entries of a • • . Idrseek(3X} 
relocation information for a • reloc(4} 
remainder, absolute value/ floor(3M} 
remaindering intrinsic . mod(3F} 
reminder service. • calendar(l} 
remote system. • . • • • netlet (I) 
remote system. • • . . run(l} 
remote terminal. • • ct(IC} 
remove a delta from an SCCS • . rmdel(l} 
remove a message gueue • ipcrm(l} 
remove directory entry. unlink(2) 
remove files or directores. rm(l} 
remove symbols and relocation ..• strip(l} 
repeated lines in a file. • uniq(l) 
report CPU time used. • .•..• clock(3C) 
report inter-process •• ipcs(l} 
report number of free disk • df(IM) 
report of logged errors. errpt(IM) 
report package. • • • . sar (1M) 
report process data and system/ •• timex(l) 
report process status. . ps(l} 
report repeated lines in a •••• uniq(l} 
report. • •.•••••••••• trenter(l} 
reporter. • • • • sar(l} 
reposition a file pointer in a fseek(3S) 
request scheduler . . • • . • Ipsched (1M) 
requests. • . • • accept(lM} 
requests to an LP line/ • • . • • • lp(l} 
restore files from tape to disk .• recover(l} 
retrieve symbol name for file. Idgetname(3X} 
return Fortran command-line. • getarg(3F} 
return Fortran environment •• getenv(3F} 
return Fortran time. • • .• • mclock(3F) 
return integer absolute value. •• abs(3C} 
return length of Fortran len(3F} 
return location of Fortran • index(3F) 
return login name of user. • logname(3X} 
return value for environment ••• getenv(3C} 
returned by stat system call. stateS} 
reverse line-feeds. • • col (I) 
rewrite an existing one. creat(2} 
rm: remove files or • • • • •• rm(l} 
rmdel: remove a delta from an ••• rmdel(l} 
root directory. • ••.•••.• chroot(2} 
root directory for a command. chroot(lM} 
root functions. /exponential,. exp(3M) 
root intrinsic function. • • sqrt(3F} 
routines and filters. • gdev(IG} 
routines. ldfcn: •••. . •• Idfcn(4) 
routines. regexp: regular. regexp(S} 
routines. toc: •••••• • • toc(lG} 
run a command at low priority. nice(l} 
run a command immune to . • nohup(l) 

28 



run: 
runacct: 

package. 
editing activity. 

input. 
ofs: big file 

language. awk: pattern 
the delta commentary of an 

comb: combine 
make a delta (change) to an 

sact: print current 
get: get a version of an 

prs: print an 
rmdel: remove a delta from an 

compare two versions of an 
sccsfile: format of 

undo a previous get of an 
val: validate 

admin: create and administer 
what: identify 

of an SCCS file 

start/stop the LP request 
common object file. 

optimizatioin/ curses: CRT 
vi: 

inittab: 
system initialization shell 

program. 
grep: 

bsearch: binary 
accounting file(s). acctcom: 

lsearch: linear 
hsearch: manage hash 

tsearch: manage binary 
object file. scnhdr: 

/read an indexed/named 
to line number entries of a 
to relocation entries of a 
/seek to an indexed/named 

files. size: print 

section of an object/ Idsseek: 
a section of a file. Islseek: 
a section of a file. Idrseek: 

header of a file. Idohseek: 
common object file. Idtbseek: 

shmget: get shared memory 
brk: change data 

to two sorted files. comm: 
greek: 

of a file. cut: cut out 
file. dump: dump 

semctl: 
semop: 

run command on remote system. •• run(l) 
run daily accounting. • runacct(lM) 
runacct: run daily accounting. •• runacct(IM) 
sal: system activity report. • • • sar (1M) 
sact: print current sces file ••• sact(l) 
sadp: disk access profiler. • •• sadp(lM) 
sag: system activity graph. sag(lG) 
sar: system activity reporter. •• sar(l) 
scanf: convert formatted •• scanf(3S) 
scanner. • •••••••••••. bfs(l) 
scanning and processing. • swk(l) 
SCCS delta. cdc: change • • • cdc (1) 
SCCS deltas. • ..•.•••• comb(l) 
SCCS file. delta: • • . • •• . delta(l) 
sces file editing activity. . •• sact(l) 
SCCS file. • ••.. get(l) 
sces file. . prs(l) 
secs file. • rmdel(l) 
sces file. sccsdiff: . sccsdiff(l) 
sces file. . ••. sccsfile(4) 
SCCS file. unget: • . . • •• • unget(l) 
SCGS file. . • •• • val (1) 
sccs files. • . • • . admin(l) 
sces files. • • . what(l) 
sccsdiff: compare two vers~ons .• sccsdiff(l) 
sccsfile: format of sces file. •• sccsfile(4) 
scheduler lpsched: • . • •• • lpsched(IM) 
scnhdr: section header for a . scnhdr(4) 
screen handling and. . • •• • curses(3X) 
screen-oriented editor • vi(l) 
script for the init process. . inittab(4) 
scripts. brc: • . • • . • •• • brc(lM) 
sdb: symbolic debugger. • • sdb(l) 
sdiff: side-by-side difference sdiff(l) 
search a file for a pattern. • grep(l) 
search a sorted table. • bsearch(3C) 
search and print process ••••• acctcom(l) 
search and update. • Isearch(3C) 
search tables. •••.•• • hsearch(3C) 
search trees. .••.•• • tsearch (3C) 
section header for a common. • scnhdr(4) 
section header of a file. • Idshread(3X) 
section of a file. /seek •• Idlseek(3X) 
section of a file. /seek •• Idrseek(3X) 
section of an object file.. • Idsseek (3X) 
section sizes of common object •• size(l) 
sed: stream editor. . •••••• sed (1) 
seek to an indexed/named •• Idsseek(3X) 
seek to line number entries of •• ldlseek(3X) 
seek to relocation entries of ••• Idrseek(3X) 
seek to the optional file ••••• ldohseek(3X) 
seek to the symbol table of a ••• ldtbseek(3X) 
segment. • •••.•••••••• shmget(2) 
segment space allocation.. • brk(2) 
select or reject lines common •• comm(l) 
select terminal filter. • • greek(l) 
selected fields of each line cut (1) 
Qelec~eu parts of au obj~ct • 
semaphore control operations. 
semaphore operations. 

29 

~, .. ""'''''' I 1 \ • ""'''''AUt'''' \-, 

• • semctl(2) 
• • • semop(2} 



semget: get set of 
operations. 

semget: 

a group of processes. kill: 
mail. mail: 

line printer. lp, cancel: 
stream. 

IDs. setuid, 

login time. profile: 
gettydef: speed and terminal 

group IDs. 
standard/restricted command/ 

operations. shmctl: 
/multiple-access-user-space 

shmop: 
shmget: get 

system: issue a 
system: issue a 

shl: 
accounting. chargefee: 

addhd: 
brc: system initialization 

command programming/ sh: 

operations. 
segment. 

operations. 
processing. 

program. sdiff: 
intrinsic function. 

login: 
pause: suspend process until 
what to do upon receipt of a 

action on receipt of a system 
on receipt of a system/ 

upon receipt of a signal. 
of processes. kill: send a 

sSignal: software 
lex: generate programs for 

generator. rand: 
function. 

sin: Fortran 
sinh: Fortran hyperbolic 

intrinsic function. 

common object files. 
size: print section 

an interval. 
interval. 

current/ ttyslot: find the 
spline: interpolate 

sno: 
pg: file perusal filter for 

ssignal: 

semaphores. •••••••. • semget(2) 
semctl: semaphore control. •• semctl(2) 
get set of semaphores. . semget(2) 
semop: semaphore operations. • semop(2) 
send a signal to a process or • kill(2) 
send mail to users or read. • mail(l) 
send/cancel requests to an LP ••• Ip(l) 
setbuf: assign buffering to a • setbuf(3S) 
setgid: set user and group . setuid(2) 
setjmp: non-local goto. setjmp(3C) 
setmnt: establish mount table. setmnt(lM) 
setpgrp: set process group 10. .. setpgrp(2) 
setting up an environment at • profile(4) 
settings used by getty. gettydefs(4) 
setuid, setgid: set user and setuid(2) 
sh: shell, the • • • • • . • • sh (1) 
shared memory control • • • . shmctl (2) 
(shared memory) operations. maus(2) 
shared memory operations. . shmsop(2) 
shared memory segment. • shmget(2) 
shell command from Fortran. • system(3F) 
shell command. •••• • system(3S) 
shell layer manager. . . shl(l) 
shell procedures for. • ••• acctsh(IM) 
shell script for add-on disk drive addhd(IM) 
shell scripts. • ••••••••. brc(lM) 
shell, the standard/restricted •• sh(l) 
shl: shell layer manager.. • shl(l) 
shmctl: shared memory control ••. shmctl(2) 
shmget: get shared memory. •• shmget(2) 
shmop: shared memory ••• • • shmop(2) 
shutdown: terminate all • • • • shutdown(IM) 
side-by-side difference • • •• sdiff(l) 
sign: Fortran transfer-of-sign sign(3F) 
sign on. .•••.••• login(l) 
signal. . •••••••••••• pause(2) 
signal. signal: specify •••••• signal(2) 
signal. /specify Fortran signal(3F) 
signal: specify Fortran action •• signal(3F) 
signal: specify what to do •• signal(2) 
signal to a process or a group •• kill(2) 
signals. • ••••••.••.•• ssignal(3C) 
simple lexical tasks. • lex (1) 
Simple random-number • . • •. rand (3C) 
sin: Fortran sine intrinsic. sin(3F) 
sin: trigonometric functions. trig(3M) 
sine intrinsic function. • •• sin(3F) 
sine intrinsic function. • • sinh(3F) 
sinh: Fortran hyperbolic sine. sinh(3F) 
sinh: hyperbolic functions. . •• sinh (3M) 
size: print section sizes of size(l) 
sizes of common object files. size(l) 
sleep: suspend execution for • sleep(l) 
sleep: suspend execution for ••• sleep(3C) 
slot in the utmp file of the ttyslot(3C) 
smooth curve. ••••••• spline(lG) 
sno: SNOBOL interpreter. sno(l) 
SNOBOL interpreter. sno(l) 
soft-copy terminals. • pg(l) ~ 
software signals. ssignal(3C) 

30 



sort: 
qsort: quicker 

tsort: topological 
or reject lines common to two 

bsearch: binary search a 
brk: change data segment 

terminal. ct: 
fspec: format 

receipt of a system/ signal: 
receipt of a signal. signal: 

/set terminal type. modes, 
used by getty. gettydefs: 

spell: find 
curve. 
split: 

csplit: context 
files. fspl it: 

pieces. 
uuclean: uucp 

Ipadmin: configure the LP 
data in a machine-independent/ 

intrinsic function. 
exponential, logarithm, power, 

function. sqrt: Fortran 

package. stdio: 
communication package. ftok: 

programming/ sh: shell, the 
scheduler lpsched: 

startnet: 
system call. 

useful with graphical/ 
stat: data returned by 
with graphical/ stat: 

ff: list file names and 
ustat: get file system 

lpstat: print LP 
ferror: stream 

control. uustat: uucp 
communication facilities 

ps: report process 
stat: get file 

input/output package. 

wait for child process to 
stopnet: 

sed: 
fclose: close or flush a 

fopen: open a 
reposition a file pOinter in a 

get character or word from a 
gets: get a string from a 

put character or word on a 
ol1r!':! our ~ !':rrina on a 

setbuf~ -~ssig~-buffering to a 
ferror: 

sort and/or merge files. • • sort(l) 
sort. ••••••.•• • • qsort(3C) 
sort: sort and/or merge files. .• sort(l) 
sort. ••••••.••• •• tsort(l) 
sorted files. comm: select • • comm(l) 
sorted table. ••.••• • • bsearch(3C) 
space allocation. • ••••••• brk(2) 
spawn getty to a remote •.•••• ct(IC) 
specification in text files. • fspec(4) 
specify Fortran action on . . signal(3F) 
specify what to do upon •••••• signal(2) 
speed, and line discipline. getty (1M) 
speed and terminal settings •.• gettydefs(4) 
spell: find spelling errors. • spell(l) 
spelling errors. •.••. .• spell(l) 
spline: interpolate smooth • spline(lG) 
split a file into pieces. • split(l) 
split. •.•••••••• • . csplit(l) 
split f77, ratfor, or efl • • • fsplit(l) 
split: split a file into •••.• split(l) 
spool directory clean-up. • uuclean(IM) 
spooling system. •..•• •• Ipadmin (1M) 
sputl: access long integer • sputl(3X) 
sqrt: Fortran square root. •• sqrt(3F) 
square root functions. exp: • • exp (3M) 
square root intrinsic. • • • sqrt(3F) 
ssignal: software signals.. • ssignal (3C) 
standard buffered input/output .• stdio(3S) 
standard interprocess • • • • stdipc(3C) 
standard/restricted command. . sh(l) 
start/stop the LP request. •• Ipsched(lM) 
starts WorkNet. ••••• • startnet(lM) 
stat: data returned by stat. • stateS) 
stat: get file status. • stat(2) 
stat: statistical network . • • stat(lG) 
stat system call. ••••• • stateS) 
statistical network useful •• stat(lG) 
statistics for a file system. •• ff(IM) 
statistics. ••••• • ustat(2) 
status information. .••• • Ipstat (1) 
status inquiries. ••••• • ferror(3S) 
status inquiry and job • uustat(IC) 
status. /report inter-process ••• ipcs(l) 
status. ••••••.•• • ps(l) 
status. • •••••••••••• stat(2) 
stdio: standard buffered ••••• stdio(3S) 
stime: set time. ••••• stime (2) 
stop or terminate. wait: wait(2) 
stops WorkNet gracefully. • stopnet(lM) 
strcat: string operations. • string(3C) 
stream editor. • sed (1) 
stream. • fclose(3S) 
stream. • fopen(3S) 
stream. fseek: ••••• fseek(3S) 
stream. getc: • • getc(3S} 
stream. • gets(3S) 
stream. putc: • • •••• putc(3S} 
stream. . ......... Duts(3S) 
stream. • setbuf(3S) 
stream status inquiries. ferror(3S) 

31 



push character back into input 
long integer and base-64 ASCII 

functions. 1ge: 
convert date and time to 
floating-point number to 
gps: graphical primitive 

gets: get a 
len: return length of Fortran 

puts: put a 
strcat: 

number. strtod: convert 
strtol: convert 

relocation bits. 
number information from a/ 
information from a/ strip: 

double-precision number. 
integer. 

processes using a file or file 
terminal. 

another user. 
int~o: introduction to 

plot: graphics interface 
return location of Fortran 

count of a file. 
accounting/ acctcms: command 

sync: update the 
sync: update 

su: become 
interval. sleep: 
interval. sleep: 

pause: 

swab: 

information from/ strip: strip 
table/ ldgetname: retrieve 

/retrieve symbol name for file 
/compute the index of a 

ldtbread: read an indexed 
syms: common object file 

object/ ldtbseek: seek to the 
sdb: 

In: create a 
strip: remove 

symbol table format. 

binary search a sorted 
symbol name for file symbol 

/compute the index of a symbol 
/read an indexed symbol 

common object file symbol 
master device information 

mnttab: mounted file system 
ldtbseek: seek to the symbol 

toc: graphical 
setmnt: establish mount 

hsearch: manage hash search 
tabs: set 

stream. ungetc: • • • • •• • ungetc(3S) 
string. a641: convert between ••• a641(3C) 
string comparision intrinsic • • • strcmp(3F) 
string. ctime:. • • • . • •• ctime(3C) 
string. ecvt: convert ••••.•• ecvt(3C) 
string, format of graphical/ • gps(4) 
string from a stream. • gets(3S) 
string. ••...••.• • len(3F) 
string on a stream. • puts(3S) 
string operations. • •.••••• string(3C) 
string to double-precision •• strtod(3C) 
st ring to integer. ••.• •• strtol (3C) 
strip: remove symbols and • • • strip(l) 
strip: strip symbol and line strip(l) 
strip symbol and line number • strip(l) 
strtod: convert string to • • • strtod (3C) 
st rtol: convert string to • •• strtol (3C) 
structure. fuser: identify •• fuser(lM) 
stty: set the options for a • stty(l) 
su: become super-user or ••• su(l) 
subroutines and libraries. • • intro(3) 
subroutines. • • plot(3X) 
substring. index: •••. . • index(3F) 
sum: print checksum and block • sum(l) 
summary from per-process ••••• acctcms(lM) 
super block. •••• . sync(l) 
super-block. ••.• sync(2) 
super-user or another user. • su(l) 
suspend execution for an • • sleep(l) 
suspend execution for • . •• sleep(3C) 
suspend process until signal. •• pause(2) 
swab: swap bytes. ••.• swab (3C) 
swap bytes. •••• • swab(3C) 
sxt: pseudo-device driver. • • sxt(7) 
symbol and line number • strip(l) 
symbol name for file symbol •••• ldgetname(3X) 
symbol table entry.. •••• ldgetname(3X) 
symbol table entry of a file. •• ldtbindex(3X) 
symbol table entry of a file. •• Idtbread(3X) 
symbol table format. • ••• syms(4) 
symbol table of a common •• Idtbseek(3X) 
symbolic debugger. • sdb(l) 
symbolic link. ••••• • In(l) 
symbols and relocation bits. • strip(l) 
syms: common object file syms(4) 
sync: update super-block. • sync(2) 
sync: update the super block. •• sync(l) 
sysdef: system definition. • sysdef(IM) 
table. bsearch: • • • . bsearch (3C) 
table entry. /retrieve •••• Idgetname(3X) 
table entry of a file. • ldtbindex(3X) 
table entry of a file. • • ldtbread(3X) 
table format. syms: • • • • • syms (4) 
table. master: ••. . • • master(4) 
table. ••••• • • •• mnttab(4) 
table of a common object file. •. ldtbseek(3X) 
table of contents routines. • toc (lG) 
table. ••••. • setmnt(IM) 
tables. •••• .•••• hsearch(3C) 
tabs on a terminal. • tabs(l) 

32 



a file. 
function. 

tan: Fortran 
tanh: Fortran hyperbolic 

tangent intrinsic function. 
gt: general driver for 

archive: . 
tar: 

recover: 
recover files from a backup 

programs for simple lexical 

4~14: paginator for the 
tmpfile: create a 

tmpnam: create a name for a 
terminals. 

term: format of compiled 
file .• 

for the TEKTRONIX 4~14 
functions of the DASI 459 

terminfo: 
ct: spawn getty to a remote 

generate file name for 
greek: select 

termio: general 
tty: controlling 

dial: establish an out-going 
getty. gettydefs: speed and 
stty: set the opt~ons for a 

tabs: set tabs on a 
tty: get the name of the 

ttyname: find name of a 
and line/ getty: set 

3~0: DASI 399 and 39~s 
handle special functions of HP 

perusal filter for soft-copy 
term: conventional names for 

kill: 
shutdown: 

abort: 
exit: 

daemon. errstop: 
for child process to stop or 

tic: 
tput: query 
data base. 
interface. 

command. 
ed, red: 

edit: 
ex: 

change the format of a 
fspec: format specification in 

plock: lock process, 

date and system/ timex: 
time: 

mclock: return Fortran 

tabs: set tabs on a terminal • tabs(l) 
tail: deliver the last part of •• tail(l) 
tan: Fortran tangent intrinsic •• tan(3F) 
tangent intrinsic function. tan(3F) 
tangent intrinsic function. • •• tanh(3F) 
tanh: Fortran hyperbolic • • tanh (3F) 
tape drives. gt(7) 
tape file archiver. • • archive(l) 
tape file archiver. . • tar(l) 
tape file restorer. . • recover(l) 
tape. free: • • • • . • frec (1M) 
tar: tape file archiver. . • tar(l) 
tasks. lex: generate •• lex (1) 
tee: pipe fitting. • tee(l) 
TEXTRONIX 4914 terminal. • • 4~14(1) 
temporary file. •••• . • tmpf ile (3S) 
temporary file. ••••• .• tmpnam(3S) 
term: conventional names for . . • term(5) 
term file. ••.•••••••.• term(4) 
term: format of compiled term • term(4) 
terminal. 4~14: paginator ••••• 4014(1) 
te(minal. 450: handle special. 450(1) 
terminal capability data base. •• terminfo(4) 
terminal. •••• • • ct(lC) 
terminal. ctermid: ••••• ctermid(3S) 
terminal filter. •. • • greek(l) 
terminal interface. • termio(7) 
terminal interface. • • tty(7) 
terminal line connection. • dial(3C) 
terminal settings used by • •• gettydefs(4) 
terminal. •• stty (1) 
terminal. • tabs(l) 
terminal. . . tty (1) 
terminal. ttyname(3C) 
terminal type, modes, speed, . getty (1M) 
terminals. ••••• • •••• 3~0(1) 
terminals. hp: • • •••. hp(l) 
terminals. pg: file. • pg(l) 
terminals. ••••••••• • term(5) 
terminate a process. • • • • • kill (1) 
terminate all processing. • shutdown(lM) 
terminate Fortran program. • abort(3F) 
terminate process. ••••• • exit(2) 
terminate the error-logging • . errstop(lM) 
terminate. wait: wait • • • • wait (2) 
terminfo compiler. ••••• • tic (1M) 
terminfo database. ••••• . tput (1) 
terminfo: terminal capability ••• terminfo(4) 
termio: general terminal • termio(7) 
test: condition evaluation • test(l) 
text editor. ••••• • ed(l) 
text editor. • • • •• . edit(l) 
text editor. • ••••••• ex(l) 
text file. newform: • • •••. newform(l) 
text files. • • • fspec(4) 
text, or data in memory. plock(2) 
tic: terminfo compiler. • •••. tic (1M) 
time a command; report process •• timex(l) 
time a command. • time (1) 
time accounting. ••.•••• mclock(3F) 

33 



execute commands at a later 
systems for optimal access 

profil: execution 
up an environment at login 

stime: set 

time: get 
ctime: convert date and 

clock: report CPU 
process times. 

update access and modification 
get process and child process 
file access and modification 

process data and system/ 
file. 

temporary file. 
contents routines. 

popen: initiate pipe 
tsort: 

acctmerg: merge or add 
modification times of a file. 

ptrace: process 
function. sign: Fortran 

toupper: 
tr: 

ftw: walk a file 
tsearch: manage binary search 

report. 
sin: 

trenter: enter a 

type. provide 
true: provide 

trees. 

interface. 
terminal. 
terminal. 

utmp file of the current/ 
int: explicit Fortran 
file: determine file 

truth value about processor 
getty: set terminal 

types. 
types: primitive system data 

getpw: get name from 
limits. 

creation mask. 
mask. 

UNIX system. 
UNIX system. 
file. unget: 

an SCCS file. 

time. at: • • . • . • at(l) 
time. dcopy: file. • • • • • dcopy(IM) 
time: get time. • time(2) 
time profile. •.• • •• profil(2) 
time. profile: setting • profile(4) 
time. ••.••.• • • • • stime(2) 
time: time a command. • time(l) 
time. ••.••.•••••••• time (2) 
time to string. • ••••• ctime(3C) 
time used. • • • •• • clock(3C) 
times: get process and child times(2) 
times of a file. touch: • • • • touch(l) 
times. times: • • • • • • •• • times(2) 
times. utime: set. • • • • • • utime(2) 
timex: time a command; report. timex(l) 
tmpfile: create a temporary. • tmpfile(3S) 
tmpnam: create a name for a • • tmpnam(3S) 
toe: graphical table of • • toc(lG) 
to/from a process. • popen(3S) 
topological sort. • tstor(l) 
total accounting files. acctmerg(lM) 
touch: update access and touch(l) 
toupper: translate characters. conv(3C) 
tplot: graphics filters. • •••• tplot(lG) 
tput: query terminfo database. •• tput(l) 
tr: translate characters. • tr(l) 
trace: event-tracing dr i ver. • trace (7) 
trace. ••••••••••• • ptrace(2) 
transfer-of-sign intrinsic • sign(3F) 
translate characters. • conv(3C) 
translate characters. • tr(l) 
tree. .•••.•• • ftw(3C) 
trees. ••••••••• • tsearch(3C) 
trenter: enter a trouble ••••• trenter(l) 
trigonometric functions. trig(3M) 
trouble report. ••••• • trenter (1) 
true: provide truth values. true(l) 
truth value about processor. • machid(l) 
truth values. .•••••• • true(l) 
tsearch: manage binary search • tsearch(3C) 
tsort: topological sort. tsort{l) 
tty: controlling terminal • tty (7) 
tty: get the name of the •• tty(l) 
ttyname: find name of a • • ttyname(3C) 
ttyslot: find the slot in the ••• ttyslot(3C) 
type conversion. • ftype(3F) 
type. ••••• • • • • . • file (1) 
type. provide. • • machid(l) 
type, modes, speed, and line/ • getty (lM) 
types: primitive system data • types(S) 
types. ••••••••• • types(S) 
UID. ••••••••• • getpw (3C) 
ulimit: get and set user • ulimit(2) 
umask: set and get file. •• • umask(2) 
umask: set file-creation mode • umask(l) 
umount: unmount a file system. umount(2) 
uname: get name of current • uname(2) 
uname: print home of current • uname(l) 
undo a previous get of an SCCS unget(l) 
unget: undo a previous get of ••• unget(l) 

34 



into input stream. 
drand48: generate 

a file. 
mktemp: make a 

acu: Automatic Call 

and boot procedures. 
execution. uux: 

uuto: public 
entry. 

link: exercise link and 
umount: 

times of a file. touch: 
of programs. make: maintain, 

bdblk: print, initialize, 
lsearch: linear search and 

sync: 
sync: 

du: summarize disk 
stat: statistical network 

id: print 
setuid, setgid: set 

crontab: 
character login name of the 

environ: 
disk accounting data by 

getuid: get 
ulimit: get and set 

logname: return login name of 
become super-user or another 
the utmp file of the current 

write: write to another 
mail: send mail to 
wall: write to all 

fuser: identify processes 
statistics. 

gutil: graphical 
modification times. 

utmp: 
getutent: access 

ttyslot: find the slot in the 
formats. 

clean-up. 
uusub: monitor 

uuclean: 
cont role uustat: 

system copy. 
and job control. 

system file copy. 
command execution. 

val: 
provide truth 

abs: return integer absolute 
abs: Fortran absolute 

rr~i-~n'" r~t-llrn 

ceiling, remai~d;;;·abs~i~te 
putenv: change or add 

values. 

ungetc: push character back • ungetc(3S) 
uniformly distributed/ drand48(3C) 
uniq: report repeated lines in uniq(l) 
unique file name. • ••••••• mktemp(3C) 
Unit (ACU) interface. • acu(7) 
units: conversion program. units(l) 
boot: UNIX system startup. booteS) 
UNIX-to-UNIX system command. • uux(lCF) 
UNIX-to-UNIX system file copy. uuto(lC) 
unlink: remove directory •• unlink(2) 
unl ink system calls. .•••• link (1M) 
unmount a file system. • ••..• umount(2) 
update access and modification •• touch(l) 
update, and regenerate groups. make(l) 
update bad information • bdblk(lM) 
update. .••••..• • • lsearch(3C) 
update super-block. sync(2) 
update the super block. sync(l) 
usage. • •.•••.•..•••• du(l) 
useful with graphical/ .•. • stat (IG) 
user and group IDs and names. id(l) 
user and group IDs. • • • • setuid( 2) 
user crontab file. •••. • crontab(l) 
user. cuserid: get .••.•••• cuserid(3S) 
user env ironment. ••.••••• env iron (S) 
user 10. diskusg: generate • diskusg(lM) 
user IDs ..•..•..• getuid(2) 
user limits. • ulimit(2) 
user. logname(3X) 
us e r. s u : • • • • s u ( 1) 
user. /find the slot in • • ttyslot(3C) 
user. • • • . • write(l) 
users or read mail. • mail(l) 
users. •••. wall(lM) 
using a file or file/ • • fuser(lM) 
ustat: get file system • ustat(2) 
utilities. •••••••• gutil(lG) 
utime: set file access and • utime(2) 
utmp and wtmp entry formats. • utmp(4) 
utemp file entry. ••••• • getut (3C) 
utmp file of the current user. ttyslot(3C) 
utmp: utmp and wtmp entry ••••• utmp(4) 
uuclean: uucp spool directory • • • uuclean(lM) 
uucp network. • •••••••.• uusub(lM) 
uucp spool directory clean-up. uuclean(lM) 
uucp status inquiry and job. . uustat(lC) 
uucp: UNIX system to UNIX •••.. uucp(lC) 
uustat: uucp status inquiry •••• uustat(lC) 
uusub: monitor uucp network. • uusub(lM) 
uuto: public UNIX-to-UNIX • • • uuto(lC) 
uux: UNIX-to-UNIX system uux(lC) 
val: validate SCCS file. val(l) 
validate SCCS file. • val(l) 
value about processor type. • •• machid(l) 
value. ••••••. • ••• abs(3C) 
value. ••••••• • abs(3F) 
v~ltlE' for ~nvi ronment name. • qetenv (3C) 
value functions. /floor, floor(3M) 
value to environment. • putenv(3C) 
values: machine-dependent. values(S) 

35 



true: provide truth 
values: machine-dependent 

/print formatted output of a 
/print formatted output of a 

argument list. 
varargs: handle 

return Fortran environment 

option letter from argument 
assert: 

vc: 
get: get a 

sccsdiff: compare two 

with label checking. 
file system: format of system 
output of a varargs argument/ 
output of a varargs argument/ 

process. 
or terminate~ wait: 

to stop or terminate. 
ftw: 

signal. signal: specify 
crashes. crash: 

whodo: 
who: 

cd: change 
chdir: change 

get path-name of current 
pwd: 

write: 
putpwent: 

wall: 
write: 

open: open for reading or 
utmp: utmp and 

list(s) and execute command. 
functions. and, or, 

jfiJ, jl, jn, 
j fiJ, j 1 , j n , yfiJ, 

compiler-compiler. 
jo, jl, jn, yfiJ, yl, 

values. 
values. 
varargs argument list. 
varargs argument list. 
varargs: handle variable 
variable argument list. 
variable. getenv: • • • • 

• true(l) 
• values(S) 
• vprintf(3S) 
• vpr intf (3X) 

• • varargs (5) 
varargs (5) 

• getenv(3F) 
• • vc (1) 

••••• getopt(3C) 
vc: version control. 
vector. getopt: get ••• 
verify program assertion. 
version control. • •••• 
version of an secs file. 
versions of an SCCS file. 
vi: screen-oriented editor 
volcopy: copy file systems 

• assert(3X) 
• vc(l) 

••• get(l) 
• sccsdiff(l) 
• vi (1) 

• • • • volcopy (1M) 
volume. •.•••••• 
vprintf: print formatted 
vprintf: print formatted 
wait: await completion of • 
wait for child process to stop 
wait: wait for child process 
walk a file tree. ••••• 
wail: write to all users. 
wc: word count. ••••• 
what: identify sccs files. 
what to do upon receipt of a 
what to do when the system 
who is doing what. •••• 
who is on the system. 
who: who is on the system. 
whodo: who is dOing what. 
working di rectory. ••••• 
working di rectory. •••• 
working directory. getcwd: 
working directory name. 
write on a file. •••••• 
write password file entry. 
write to all users. 
write to another user. 
write: write on a file. 
write: write to another user. 
writing. • •••••• 

• fs(4) 
vprintf(3S) 

• • vpr intf (3X) 
• wait(l) 

wait(2) 
· wait(2) 
• ftw(3C) 
· wall(lM) 
• wc(l) 

• • what(l) 
signal(2) 

• crash(8) 
• whodo(lM) 
• who (1) 

• • who (1) 
., • whodo (1M) 

• cd(l) 
• chdi r (2) 
• getcwd (3C) 

pwd (1) 
write(2) 
putpwent(3C) 

• • wall(lM) 
• write(l) 

• • write(2) 
• • write(l) 

• open(2) 
utmp(4) 

• • xargs(l) 
bool(3F) 

wtmp entry formats. ....0. 
xargs: construct argument ••• 
xor, not: Fortran boolean ••• 
yfiJ, yl, yn: Bessel functions. • • bessel(3M) 

• bessel (3M) 
• • • • • yaac(l) 

yl, yn: Bessel functions • 
yaac: yet another •••• 
yn: Bessel functions. • bessel (3M) 

36 



INTRO(l) INTRO(l) 

NAME 
intro - introduction to commands and application programs 

DESCRIPTION 
This section describes, in alphabetical order, publicly-accessible commands. 
Certain distinctions of purpose are made in the headings: 

(1) Commands of general utility. 
(1 C) Commands for communication with other systems. 
(1 G) Commands used primarily for graphics and computer-aided design. 

COMMAND SYNTAX 
Unless otherwise noted, commands described in this section accept options and 
other arguments according to the following syntax: 

name [option(s)] [cmdarg(s)] 
where: 

name 

option 

noargletter 

argletter 

optarg 

cmdarg 

The name of an executable file. 

- noargletter (s) or, 
- argletter<>optarg 
where < > is optional white space. 

A single letter representing an option without an argument. 

A single letter representing an option requiring an argument. 

Argument (character string) satisfying preceding argletter. 

Path name (or other command argument) not beginning with 
or, - by itself indicating the standard input. 

SEE ALSO 
getopt(l) . 
exit (2) , wait(2), getopt(3C) in the UNIX System V Programmer Reference 
Manual. 
How to Get Started, at the front of this volume. 

DIAGNOSTICS 

BUGS 

Upon termination, each command returns two bytes of status, one supplied by 
the system and giving the cause for termination, and (in the case of "normal" 
termination) one supplied by the program (see wait (2) and exit (2». The 
former byte is 0 for normal termination; the latter is customarily 0 for success­
ful execution and non-zero to indicate troubles such as erroneous parameters, 
bad or inaccessible data, or other inability to cope with the task at hand. It is 
called variously "exit code", "exit status", or "return code", and is described 
only where special conventions are involved. 

Regretfully, many commands do not adhere to the aforementioned syntax. 

WARNINGS 
Some commands produce unexpected results when processing files containing 
null characters. These commands often treat text input lines as strings and 
therefore become confused upon encountering a null character (the string ter­
minator) within a line. 

- 1 -



300 (I) 300(1) 

NAME 
300, 300s - handle special functions of DASI 300 and 300s terminals 

SYNOPSIS 
300 [ +12 ] [ -n ] [ -dt,l,c ] 

300s [ +12 ] [ ~n ] [ -dt,l,c ] 

DESCRIPTION 
The 300 command supports special functions and optimizes the use of the DASI 
300 (GSI 300 or DTC 300) terminal; 300s performs the same functions for the 
DASI 300s (GSI 300s or DTC 300s) terminal. It converts half-line forward, 
half-line reverse, and full-line reverse motions to the correct vertical motions. 
It also attempts to draw Greek letters and other special symbols. It permits 
convenient use of 12-pitch text. It also reduces printing time 5 to 70%. The 
300 command can be used to print equations neatly, in the sequence: 

neqn file ... I nrotf I 300 

WARNING: if your terminal has a PLOT switch, make sure it is turned on 
before 300 is used. 

The behavior of 300 can be modified by the optional flag arguments to handle 
12-pitch text, fractional line spacings, messages, and delays. 

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor­
mally allow only two combinations: 10-pitch, 6 lineslinch, or 12-
pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch combina­
tion, the user should turn the PITCH switch to 12, and use the + 12 
option. 

- n controls the size of half-line spacing. A half-line is, by default, equal 
to 4 vertical plot increments. Because each increment equals 1148 of 
an inch, a 10-pitch line-feed requires 8 increments, while a 12-pitch 
line-feed needs only 6. The first digit of n overrides the default 
value, thus allowing for individual taste in the appearance of sub­
scripts and superscripts. For example, nroff half-lines could be made 
to act as quarter-lines by using -2. The user could also obtain 
appropriate half-lines for 12-pitch, 8 lines/inch mode by using the 
option - 3 alone, having set the PITCH switch to 12-pitch. 

-dt,l,c controls delay factors. The default setting is -d3,90,30. DASI 300 
terminals sometimes produce peculiar output when faced with very 
long lines, too many tab characters, or long strings of blankless, non­
identical characters. One null (delay) character is inserted in a line 
for every set of t tabs, and for every contiguous string of c non­
blank, non-tab characters. If a line is longer than I bytes, 1 + (total 
length)120 nulls are inserted at the end of that line. Items can be 
omitted from the end of the list, implying use of the default values. 
Also, a value of zero for t (c) results in two null bytes per tab (char­
acter). The former may be needed for C programs, the latter for 
files like /etc/passwd. Because terminal behavior varies according to 
the specific characters printed and the load on a system, the user 
may have to experiment with these values to get correct output. The 
-d option exists only as a last resort for those few cases· that do not 
otherwise print properly. For example, the file letc/passwd may be 
printed using -d3,30,S. The value -dO,1 is a good one to use for C 
programs that have many levels of indentation. 

Note that the delay control interacts heavily with the prevailing car­
riage return and line-feed delays. The stty (1) modes nlO cr2 or nlO 
cr3 are recommended for most uses. 

- 1 -



300(1 ) 300(} ) 

The 300 command can be used with the nroff -s flag or .rd requests, when it 
is necessary to insert paper manually or change fonts in the middle of a docu­
ment. Instead of hitting the return key in these cases, you must use the line­
feed key to get any response. 

In many (but not aU) cases, the following sequences are equivalent: 

nroff -T300 files... and nroff files ••. I 300 
nroff -T300-12 files .•. and nroff files •.• I 300 + 12 

The use of 300 can thus often be avoided unless special delays or options are 
required; in a few cases, however, the additional movement optimization of 300 
may produce better-aligned output. 

The neqn names of, and resulting output for, the Greek and special characters 
supported by 300 are shown in greek (5) . 

SEE ALSO 

BUGS 

450(1), eqn(I), graph(1G), mesg(1), nroff(I) , stty(l) , tabs(1), tbl(1), 
tplot(IG). 
greek(5) in the UNIX System V Programmer Reference Manual. 

Some special characters cannot be correctly printed in column 1 because the 
print head cannot be moved to the left from there. 
If your output contains Greek and/or reverse line-feeds, use a friction-feed pla­
ten instead of a forms tractor; although good enough for drafts, the latter has a 
tendency to slip when reversing direction, distorting Greek characters and 
misaligning the first line of text after one or more reverse line-feeds. 

- 2 -



4014 (1) 4014 (I) 

NAME 
4014 - paginator for the TEKTRONIX 4014 terminal 

SYNOPSIS 
4014 [ -t ] [ -0 ] [ -eN ] [ -pL ] [ file ] 

DESCRIPTION 
The output of 4014 is intended for a TEKTRONIX 4014 terminal; 4014 
arranges for 66 lines to fit on the screen, divides the screen into N columns, and 
contributes an eight-space page offset in the (default) single-column case. 
Tabs, spaces, and backspaces are collected and plotted when necessary. TELE­
TYPE Model 37 half- and reverse-line sequences are interpreted and plotted. 
At the end of each page, 4014 waits for a new-line (empty lin~ from the key­
board before continuing on to the next page. In this wait state, the command 
!cmd will send the cmd to the shell. 

The command line options are: 

-t Do not wait between pages (useful for directing output into a file). 

-0 Start printing at the current cursor position and never erase the screen. 

-eN Divide the screen into N columns and wait after the last column. 

-pL Set page length to L; L accepts the scale factors i (inches) and I 
(lines); default is lines. 

SEE ALSO 
pr(1), tc(l), troff(I). 

- 1 -



450(I) 450 (I ) 

NAME 
450 - handle special functions of the DASI 450 terminal 

SYNOPSIS 
450 

DESCRIPTION 
The 450 command supports special functions of, and optimizes the use of, the 
DASI 450 terminal, or any terminal that is functionally identical, such as the 
DIABLO 1620 or XEROX 1700. It converts half-line forward, half-line reverse, 
and full-line reverse motions to the correct vertical motions. It also attempts to 
draw Greek letters and other special symbols in the same manner as 300(1). 
Use 450 to print equations neatly, in the sequence: 

neqn file ... I nroff I 450 

WARNING: make sure that the PLOT switch on your terminal is ON before 450 
is used. The SPACING switch should be put in the desired position (either 10-
or 12-pitch). In either case, vertical spacing is 6 lineslinch, unless dynamically 
changed to 8 lines per inch by an appropriate escape sequence. 

Use 450 with the nroff -s flag or .rd requests when it is necessary to insert 
paper manually or change fonts in the middle of a document. Instead of hit­
ting the return key in these cases, you must use the line-feed key to get any 
response. 

In many (but not all) cases, the use of 450 can be eliminated in favor of one of 
the following: 

nroff -T450 files ... 
or 

nroff -T450-12 files '" 

The use of 450 can thus often be avoided unless special delays or options are 
required; in a few cases, however, the additional movement optimization of 450 
may produce better-aligned output. 

The neqn names of, and resulting output for, the Greek and special characters 
supported by 450 are shown in greek (5). 

SEE ALSO 

BUGS 

300(1), eqn(I), graph (I G) , mesg(I) , nroff(I) , stty(I), tabs(I),· tbl(I), 
tplot(IG). 
greek(5) in the UNIX System V Programmer Reference Manual. 

Some special characters cannot be correctly printed in column 1 because the 
print head cannot be moved to the left from there. 
If your output contains Greek and/or reverse line-feeds, use a friction-feed pla­
ten instead of a forms tractor; although good enough for drafts, the latter has a 
tendency to slip when reversing direction, distorting Greek characters and 
misaligning the first line of text after one or more reverse line-feeds. 

- 1 -



ACCTCOM(l) ACCTCOM(l) 

NAME 
acctcom - search and print process accounting file(s) 

SYNOPSIS 
acctcom [[ options] [ file] ] 

DESCRIPTION 
Acctcom reads file, the standard input, or lusr/adm/pacct, in the form 
described by acct (4) and writes selected records to the standard output. Each 
record represents the execution of one process. The output shows the COM­
MAND NAME, USER, ITYNAME, START TIME, END TIME, REAL (SEC), CPU 
(SEC), MEAN SIZE(K), and optionally, F (the fork/exec flag: 1 for fork 
without exec), STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU 
FACTOR, CHARS TRNSFD, and BLOCKS IWD (total blocks read and written). 

The command name is prepended with a # if it was executed with super-user 
privileges. If a process is not associated with a known terminal, a ? is printed 
in the ITYNAME field. 

If no files are specified, and if the standard input is associated with a terminal 
or Idev/null (as is the case when using & in the shell), lusr/adm/pacct is read; 
otherwise, the standard input is read. 

If any file arguments are given, they are read in their respective order. Each 
file is normally read forward, i.e., in chronological order by process completion 
time. The file lusr/adm/pacct is usually the current file to be examined; a busy 
system may need several such files of which all but the current file are found in 
lusr/adm/pacct? The options are: 

-a 

-b 

-f 

-h 

-i 
-k 
-m 
-r 
-t 
-v 
-I line 
-u user 

-g group 

-s time 

-e time 
-S time 
-E time 

Show some average statistics about the processes selected. The 
statistics will be printed after the output records. 
Read backwards, showing latest commands first. This option has 
no effect when the standard input is read. 
Print the fork/exec flag and system exit status columns in the 
output. 
Instead of mean memory size, show the fraction of total available 
CPU time consumed by the process during its execution. This 
"hog factor" is computed as: 

(total CPU time)/(elapsed time). 
Print columns containing the I/O counts in the output. 
Instead of memory size, show total kcore-minutes. 
Show mean core size (the default). 
Show CPU factor (user time/ (system-time + user-time). 
Show separate system and user CPU times. 
Exclude column headings from the output. 
Show only processes belonging to terminal I dev I line. 
Show only processes belonging to user that may be specified by: a 
user 10, a login name that is then converted to a user ID, a # 
which designates only those processes executed with super-user 
privileges, or ? which designates only those processes associated 
with unknown user IDs. 
Show only processes belonging to group. The group may be 

designated by either the group 10 or group name. 
Select processes existing at or after time, given in the format 
hr [:min [:sec]]. 
Select processes existing at or before time. 
Select processes starting at or after time. 
Select processes ending at or before time. Using the same time 
for both -8 and - E shows the processes that existed at time. 

- 1 -



ACCTCOM(1) ACCTCOM(1) 

FILES 

-0 pattern 

-q 

-0 ofile 

-H factor 

-0 sec 
-c sec 

-I chars 

fetc/passwd 

Show only commands matching pattern that may be a regular 
expression as in ed(l) except that + means one or more 
occurrences. 
Do not print any output records, just print the average statistics 
as with the -a option. 
Copy selected process records in the input data format to ofile; 
supress standard output printing. 
Show only processes that exceed factor, where factor is the "hog 
factor" as explained in option -h above. 
Show only processes with CPU system time exceeding sec seconds. 
Show only processes with total CPU time, system plus user, 

exceeding sec seconds. 
Show only processes transferring more characters than the cut-off 
number given by chars. 

f usr / admf pacct 
fetc/group 

SEE ALSO 

BUGS 

ps(1), su(1). 
acct(2), acct(4) , utmp(4) in the UNIX System V Programmer Reference 
Manual. 
acct (1 M), acctcms (1 M), acctcoo (1 M), acctmerg (1 M), acctprc( 1 M), 
acctsh(1M), fwtmp(1M), runacct(1M) in the UNIX System V Administrator 
Reference Manual. 

Acctcom only reports on processes that have terminated; use ps(1) for active 
processes. If time exceeds the present time, then time is interpreted as occur­
ring on the previous day. 

- 2 -



ADB(I) ADBU) 

NAME 
adb - absolute debugger 

SYNOPSIS 
adb [-w] [ objfil [ corfil ] ] 

DESCRIPTION 
Adb is a general purpose debugging program. It may be used to examine files 
and to provide a controlled environment for the execution of UN IX system pro­
grams. 

Objfil is normally an executable program file, preferably containing a symbol 
table; if not then the symbolic features of adb cannot be used although the file 
can still be examined. The default for objfil is a.out. Corfil is assumed to be a 
core image file produced after executing objfil; the default for corfil is core. 

Requests to ar/b are read from the standard input and responses are to the 
standard output. If the -w flag is present then both objfil and corfil are 
created if necessary and opened for reading and writing so that files can be 
modified using adb. Adb ignores QUIT; INTERRUPT causes return to the next 
adb command. 

In general requests to adb are of the form 

[ address] [, count] [command] [;] 

If address is present then dot is set to address. Initially dot is set to O. For 
most commands count specifies how many times the command will be executed. 
The default count is 1. Address and count are expressions. 

The interpretation of an address depends on the context it is used in. If a sub­
process is being debugged then addresses are interpreted in the usual way in 
the address space of the subprocess. For further details of address mapping see 
ADDRESSES. 

EXPRESSIONS 
The value of dot. 

+ The value of dot incremented by the current increment. 

The value of dot decremented by the current increment. 

The last address typed. 

integer An octal number if integer begins with a 0; a hexadecimal number if 
preceded by #; otherwise a decimal number. 

integer .fraction 
A 32-bit floating point number. 

'ecce The ASCII value of up to 4 characters. A \ may be used to escape a '. 

< name 
The value of name, which is either a variable name or a register name. 
Adb maintains a number of variables (see VARIABLES) named by sin­
gle letters or digits. If name is a register name then the value of the 
register is obtained from the system header in corfil. 

symbol A symbol is a sequence of upper or lower case letters, underscores or 
digits, not starting with a digit. The value of the symbol is taken 
from the symbol table in objfil. An initial or - will be prefixed to 
symbol if needed. 

• 1 -



ADB(I) ADB(I) 

symbol 
- In C, the "true name" of an external symbol begins with _. It may be 

necessary to utter this name to distinguish it from internal or hidden 
variables of a program. 

routine.name 
The address of the variable name in the specified C routine. Both rou­
tine and name are symbols. If name is omitted the value is the 
address of the most recently activated C stack frame corresponding to 
routine. 

(exp) The value of the expression expo 

Monadic operators: 

*exp The contents of the location addressed by exp in corfil. 

@exp The contents of the location addressed by exp in objfil. 

-exp Integer negation. 

-exp Bitwise complement. 

Dyadic operators are left associative and are less binding than monadic opera­
tors. 

el +e2 Integer addition. 

el -e2 Integer subtraction. 

el*e2 Integer multiplication. 

e 1 % e2 Integer division. 

e 1 & e2 Bitwise conjunction. 

ell e2 Bitwise disjunction. 

el #e2 EI rounded up to the next multiple of e2. 

COMMANDS 
Most commands consist of a verb followed by a modifier or list of modifiers. 
The following verbs are available. (The commands? and I may be followed by 
*; see ADDRESSES for further details') 

?f Locations starting at address in objfil are printed according .to the 
format f and dot is incremented by the sum of the increments for 
each format letter (q.v.). 

If Locations starting at address in corfil are printed according to the 
format f and dot is incremented as for ? 

= f The value of address itself is printed in the styles indicated by the 
format f. (For i format ? is printed for the parts of the instruction 
that reference subsequent words') 

A format consists of one or more characters that specify a style of printing. 
Each format character may be preceded by a decimal integer that is a repeat 
count for the format character. While stepping through a format, dot is incre­
mented by the amount given for each format letter. If no format is given then 
the last format is used. The format letters available are as follows: 

o 2 Print 2 bytes in octal. All octal numbers output by adb are 
preceded by O. 

o 4 Print 4 bytes in octal. 
q 2 Print in signed octal. 
Q 4 Print long signed octal. 
d 2 Print in decimal. 

- 2 -



ADB(I) 

o 4 
x 2 
X 4 
u 2 
U 4 
f 4 
F 8 
b I 
c I 
CI 

s n 

S n 

Y 4 
i n 

a 0 

new-line 

p 2 

o 

r 0 
n 0 
""," 0 

+ 

Print long decimal. 
Print 2 bytes in hexadecimal. 
Print 4 bytes in hexadecimal. 
Print as an unsigned decimal number. 
Print long unsigned decimal. 
Print the 32 bit value as a floating point number. 
Print double floating point. 
Print the addressed byte in octal. 
Print the addressed character. 

ADB(I) 

Print the addressed character using the following escape con­
vention. Character values 000 to 040 are printed as @ fol­
lowed by the corresponding character in the range 0 I 00 to 
0140. The character @ is printed as @ @. 

Print the addressed characters until a zero character IS 

reached. 
Print a string using the @ escape convention. The value n IS 

the length of the string including its zero terminator. 
Print 4 bytes in date format (see ctime(3C)). 
Print as PDP-II instructions. The value n is the number of 
bytes occupied by the instruction. This style of printing causes 
variables I and 2 to be set to the offset parts of the source and 
destination, respectively. 
Print the value of dot in symbolic form. Symbols are checked 
to ensure that they have an appropriate type as indicated 
below. 

I local or global data symbol 
? local or global text symbol 

local or global absolute symbol 

Print the addressed value in symbolic form using the same 
rules for symbol lookup as a. 
When preceded by an integer, tabs to the next appropriate tab 
stop. For example, 8t moves to the next 8-space tab stop. 
Print a space. 
Print a new-line. 
Print the enclosed string. 
Dot is decremented by the current increment. Nothing is 
printed. 
Dot is incremented by 1. Nothing is printed. 
Dot is decremented by I. Nothing is printed. 

Repeat the previous command with a count of I. 

[? III value mask 
Words starting at dot are masked with mask and compared with value 
until a match is found. If L is used then the match is for 4 bytes at a 
time instead of 2. If no match is found then dot is unchanged; other­
wise dot is set to the matched location. If mask is omitted then -I is 
used. 

[? 11w value ... 
Write the 2-byte value into the addressed location. If the command is 
W, write 4 bytes. Odd addresses are not allowed when writing to the 
subprocess address space. 

[? 11m hi el fJ[? I] 
New values for (hi, el, fl) are recorded. If less than three expressions 
are given then the remaining map parameters are left unchanged. If 

- 3 -



ADDU) ADDU) 

the? or I is followed by • then the second segment (b2 ,e2 ,f2) of the 
mapping is changed. If the list is terminated by ? or / then the file 
(objfil or corfil, respectively) is used for subsequent requests. (So that, 
for example, 1m? will cause I to refer to objfif.) 

>name Dot is assigned to the variable or register named. 

A shell is called to read the rest of the line following !. 

$modifier 
Miscellaneous commands. The available modifiers are: 

<f Read commands from the file f and return. 
> f Send output to the file f, which is created if it does not exist. 
r Print the general registers and the instruction addressed by pc. 

Dot is set to pc. 
r Print the floating registers in single or double length. If the 

floating point status of ps is set to double (0200 bit) then dou­
ble length is used anyway. 

b Print all breakpoints and their associated counts and com­
mands. 

a ALGOL 68 stack backtrace. If address is given then it is 
taken to be the address of the current frame (instead of r4). 
If count is given then only the first count frames are printed. 

c C stack backtrace. If address is given then it is taken as the 
address of the current frame (instead of r5). If C is used then 
the names and (l6-bit) values of all automatic and static vari­
ables are printed for each active function. If count is given 
then only the first count frames are printed. 

e The names and values of external variables are printed. 
w Set the page width for output to address (default 80). 
s Set the limit for symbol matches to address (default 255). 
o All integers input are regarded as octal. 
d Reset integer input as described in EXPRESSIONS. 
q Exit from adb. 
v Print all non-zero variables in octal. 
m Print the address map. 

:modifier 
Manage a subprocess. Available modifiers are: 

bc Set breakpoint at address. The breakpoint is executed 
count-l times before causing a stop. Each time the break­
point is encountered the command c is executed. If this com­
mand sets dot to zero then the breakpoint causes a stop. 

d Delete breakpoint at address. 

r Run objfil as a subprocess. If address is given explicitly then 
the program is entered at this point; otherwise the program is 
entered at its standard entry point. The value count specifies 
how many breakpoints are to be ignored before stopping. 
Arguments to the subprocess may be supplied on the same line 
as the command. An argument starting with < or > causes 
the standard input or output t6 be established for the com­
mand. All signals are turned on on entry to the subprocess. 

cs The subprocess is continued with signal s (see signa!(2». If 
address is given then the subprocess is continued at this 
address. If no signal is specified then the signal that caused 
the subprocess to stop is sent. Breakpoint skipping is the same 
as for r. 

- 4 -



ADB(I) 

ss 

ADB (I) 

As for c except that the subprocess is single stepped count 
times. If there is no current subprocess then objfil is run as a 
subprocess as for r. In this case no signal can be sent; the 
remainder of the line is treated as arguments to the subpro­
cess. 

k The current subprocess, if any, is terminated. 

VARIABLES 
Adb provides a number of variables. Named variables are set initially by adb 
but are not used subsequently. Numbered variables are reserved for communi­
cation as follows. 

o The last value printed. 
1 The last offset part of an instruction source. 
2 ~ The previous value of variable 1. 

On entry the following are set from the system header in the corfil. If corfil 
does not appear to be a core file, then these values are set from objfil. 

b The base address of the data segment. 
d The data segment size. 
e The entry point. 
m The "magic" number (0405,6407,0410 or 041 1). 
s The stack segment size. 
t The text segment size. 

ADDRESSES 

FILES 

The address in a file associated with a written address is determined by a map­
ping associated with that file. Each mapping is represented by two triples (bI, 
e I, II) and (b2, e2,12) and the file address corresponding to a written address 
is calculated as follows: 

bl ~address <el => file address=address+11 -bi 
otherwise 

b2 ~address <e2 => file address=address+12-b2, 

otherwise, the requested address is not legal. In some cases (e.g., for programs 
with separated I and D space) the two segments for a file may overlap. If a ? 
or / is followed by an • then only the second triple is used. 

The initial setting of both mappings is suitable for normal a.out and core files. 
If either file is not of the kind expected then, for that file, bl is set to 0, ei is 
set to the maximum file size and 11 is set to 0; in this way the whole file can be 
examined with no address translation. 

In order for adb to be used on large files all appropriate values are kept as 
signed 32-bit integers. 

Idev/mem 
Idev/swap 
a.out 
core 

SEE ALSO 
ptrace(2) , a.out(4), core(4) In the UNIX System V Programmer Relerence 
Manual. 

- 5 -



ADB(I) ADB(I) 

DIAGNOSTICS 

BUGS 

"Adb" when there is no current command or format. Comments about inac­
cessible files, syntax errors, abnormal termination of commands, etc. Exit 
status is 0, unless last command failed or returned nonzero status. 

A breakpoint set at the entry point is not effective on initial entry to the pro­
gram. 
When single stepping, system calls do not count as an executed instruction. 
Local variables whose names are the same as an external variable may foul up 
the accessing of the external. 

- 6 -



ADMIN (1) ADMIN(I) 

NAME 
admin - create and administer sees files 

SYNOPSIS 
admio [ -0] [ -i[name]] [ -rrell [ -([name]] [ -fflag[fiag-vaIll 
[-dfiag[fiag-valll [-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] 
[-z] files 

DESCRIPTION 
Admin is used to create new sees files and change parameters of existing ones. 
Arguments to admin, which may appear in any order, consist of keyletter argu­
ments, which begin with -, and named files (note that sees file names must 
begin with the characters s.). If a named file does nvt exist, it is created, and 
its parameters are initialized according to the specified keyletter arguments. 
Parameters not initialized by a keyletter argument are assigned a default value. 
If a named file does exist, parameters corresponding to specified key letter argu­
ments are changed, and other parameters are left as is. 

If a directory is named, admin behaves as though each file in the directory 
were specified as a named file, except that non-Sees files (Jast component of 
the path name does not begin with s.) and unreadable files are silently ignored. 
If a name of - is given, the standard input is read; each line llf the standard 
input is taken to be the name of an sees file to be processed. Again, non­
sees files and unreadable files are silently ignored. 

The keyletter arguments are as follows. Each is explained as though only one 
named file is to be processed since the effects of the arguments apply indepen­
dently to each named file. 

-0 

-Hname] 

-rrel 

-t[name] 

This key letter indicates that a new sees file is to be 
created. 

The name of a file from which the text for a new sees 
file is to be taken. The text constitutes the first delta of 
the file (see -r keyletter for delta numbering scheme). 
If the i keyletter is used, but the file name is omitted, 
the text is obtained by reading the standard input until 
an end-of-file is encountered. If this keyletter is omit­
ted, then the sees file is created empty. Only one 
sees file may be created by an admin command on 
which the i keyletter is supplied. Using a single admin 
to create two or more sees files requires that they be 
created empty (no -i key letter) . Note that the -i 
key letter implies the -0 keyletter. 

The release into which the initial delta is inserted. This 
key letter may be used only if the -i keyletter is also 
used. If the -r keyletter is not used, the initial delta is 
inserted into release 1. The level of the initial delta is 
always 1 (by default initial deltas are named 1.1). 

The name of a file from which descriptive text for the 
sees file is to be taken. If the -t key letter is used and 
admin is creating a new sees file (the -0 and/or -i 
key letters also used), the descriptive text file name must 
also be supplied. In the case of existing sees files: (1) 
a -t key letter without a file name causes removal of 
descriptive text (if any) currently in the sees file, and 
(2) a -t keyletter with a file name causes text (if any) 
in the named file to replace the descriptive text Of any) 
currently in the sees file. 

- 1 -



ADMIN (I) ADMIN(I) 

-fflag This keyletter specifies a flag, and, possibly, a value for 
the flag, to be placed in the sees file. Several f 
key letters may be supplied on a single admin command 
line. The allowable flags and their values are: 

b Allows use of the - b keyletter on a get (1) command to 
create branch deltas. 

cceil The highest release (i.e., "ceiling"), a number less than 
or equal to 9999, which may be retrieved by a get (1) 
command for editing. The default value for an 
unspecified c flag is 9999. 

fjloor The lowest release (i.e., "floor"), a number greater than 
o but less than 9999, which may be retrieved by a 
get (1) command for editing. The default value for an . 
unspecified f flag is 1. 

dSID The default delta number (SID) to be used by a get(1) 
command. 

i[str] Causes the "No id keywords (ge6)" message issued by 
get (1) or delta (1) to be treated as a fatal error. In the 
absence of this flag, the message is only a warning. The 
message is issued if no sees identification keywords 
(see get (1» are found in the text retrieved or stored in 
the sees file. If a value is supplied, the keywords must 
exactly match the given string; however, the string must 
contain a keyword and no embedded new-lines. 

Allows concurrent get(1) commands for editing on the 
same SID of an sees file. This allows multiple con­
current updates to the same version of the sees file. 

Ilist A list of releases to which deltas can no longer be made 
(get -e against one of these "locked" releases fails). 
The list has the following syntax: 

<list> ::= <range> I <list> , <range> 
<range> ::= RELEASE NUMBER I a 

The character a in the list is e'luivalent to specifying all 
releases for the named sees f If,. 

n Causes delta (1) to create a "null" delta in each of those 
releases (if any) being skipped when a delta is made in 
a new release (e.g., in maki:1g delta 5.1 after delta 2.7, 
releases 3 and 4 are skipped). These null deltas serve as 
"anchor points" so that branch deltas may later be 
created from them. The absence of this flag causes 
skipped releases to be non-existent in the sees file, 
preventing branch deltas from being created from them 
in the future. 

qtext User definable text substituted for all occurrences of the 
%Q% keyword in sees file text retrieved by get (1) . 

mmod Module name of the sees file substituted for all 
occurrences of the %M% keyword in sees file text 
retrieved by get{l). If the m flag is not specified, the 
value assigned is the name of the sees file with the 
leading s. removed. 

- 2 -



ADMIN (I) ADMIN(I) 

-dflag 

ttype T.ype of module in the sees file substituted for all 
occurrences of % Y% keyword in sees file text retrieved 
by get(I). 

v[pgm] Causes delta(1) to prompt for Modification Request 
(M R) numbers as the reason for creating a delta. The 
optional value specifies the name of an MR number vali­
dity checking program (see delta (1». (If this flag is set 
when creating an sees file, the m keyletter must also be 
used even if its value is null). 

IIist 

Causes removal (deletion) of the specified flag from an 
sees file. The -d keylettcr may be specified only 
when processing existing sees files. Several -d 
keyletters may be supplied on a single admin command. 
See the -f keyletter for allowable flag names. 

A list of releases to be "unlocked". See the -f 
keyletter for a description of the I flag and the syntax of 
a list. 

-alogin A login name, or numerical UNIX system group 10, to 
be added to the list of users which may make deltas 
(changes) to the sees file. A group 10 is equivalent to 
specifying all login names common to that group ID. 
Several a keyletters may be used on a single admin 
command line. As many logins, or numerical group IDs, 
as desired may be on the list simultaneously. If the list 
of users is empty, then anyone may add deltas. If login 
or group 10 is preceded by a ! they are to be denied per­
mission to make deltas. 

-elogin A login name, or numerical group 10, to be erased from 
the list of users allowed to make deltas (changes) to the 
sees file. Specifying a group ID is equivalent to speci­
fying all login names common to that group 10. Several 
e keyletters may be used on a single admin command 
line. 

-y[commentJ The comment text is inserted into the sees file as a 
comment for the initial delta in a manner identical to 
that of delta (1). Omission of the -y keyletter results 
in a default comment line being inserted in the form: 

-m[mrlistJ 

-h 

date and time created YY/MM/DD HH:MM:SS by login 

The -y keyletter is valid only if the -i and/or -0 

key letters are specified (i.e., a new sees file is being 
created). 

The list of Modification Requests (MR) numbers is 
inserted into the sees file as the reason for creating the 
initial delta in a manner identical to delta (I). The v 
flag must be set and the MR numbers are validated if 
the v flag has a value (the name of an MR number vali­
dation program). Diagnostics will occur if the v flag is 
not set or MR validation fails. 

Causes admin to check the structure of the sees file 
(see sccsjile(S» , and to compare a newly computed 
check-sum (the sum of all the characters ;.n the sees 
file except those in the first line) with the check-sum 
that is stored in the first line of the sees file. 

- 3 -



ADMIN(l) ADMIN(l) 

FILES 

-z 

Appropriate error diagnostics are produced. 

This keyletter inhibits writing on the file, so that it 
nullifies the effect of any other key letters supplied, and 
is, therefore, only meaningful when processing existing 
files. 

The sees file check-sum is recomputed and stored in 
the first line of the sees file (see - h, above). 

Note that use of this key letter on a truly corrupted file 
may prevent future detection of the corruption. 

The last component of all sees file names must be of the form s.jile-name. 
New sees files are given mode 444 (see chmod(1». Write permission in the 
pertinent directory is, of course, required to create a file. All writing done by 
admin is to a temporary x-file, called x.jile-name, (see get (1», created with 
mode 444 if the admin command is creating a new sees file, or with the same 
mode as the sees file if it exists. After successful execution of admin, the 
sees file is removed (if it exists), and the x-file is renamed with the name of 
the sees file. This ensures that changes are made to the sees file only if no 
errors occurred. 

It is recommended that directories containing sees files be mode 755 and that 
sees files themselves be mode 444. The mode of the directories allows only 
the owner to modify sees files contained in the directories. The mode of the 
sees files prevents any modification at all except by sees commands. 

If it should be necessary to patch an sees file for any reason, the mode may be 
changed to 644 by the owner allowing use of ed(l). Care must be taken! The 
edited file should always be processed by an admin -h to check for corruption 
followed by an admin -z to generate a proper check-sum. Another admin -h 
is recommended to ensure the sees file is valid. 

Admin also makes use of a transient lock file (called z.jile-name) , which is 
used to prevent simultaneous updates to the sees file by different users. See 
get (1) for further information. 

SEE ALSO 
delta(1), ed(l), get(1), help(1), prs(1), what(1). 
sccsfile(4) in the UNIX System V Programmer Reference Manual. 

Source Code Control System User Guide in the UNIX System V User Guide. 

DIAGNOSTICS 
Use help(l) for explanations. 

- 4 -



AR(l) AR(l) 

NAME 
ar - archive and library maintainer for portable archives 

SYNOPSIS 
ar key [ posname ] afile [name] ... 

DESCRIPTION 
The Ar command maintains groups of files combined into a single archive file. 
Its main use is to create and update library files as used by the link editor. It 
can be used, though, for any similar purpose. The magic string and the file 
headers used by ar consist of printable ASCII characters. If an archive is com­
posed of printable files, the entire archive is printable. 

When ar creates an archive, it creates headers in a format that is portable 
across all machines. The portable archive format and structure is described in 
detail in ar(4). The archive symbol table (described in ar(4» is used by the 
link editor ([dO» to effect multiple passes over libraries of object files in an 
efficient manner. An archive symbol table is only created and maintained by 
ar when there is at least one object file in the archive. The archive symbol 
table is in a specially named file which is always the first file in the archive. 
This file is never mentioned or accessible to the user. Whenever the ar(I) 
command is used to create or update the contents of such an archive, the sym­
bol table is rebuilt. The s option described below will force the symbol table to 
be rebuilt. 

Key is an optional -, followed by one character from the set drqtpmx, option­
ally concatenated with one or more of vuaibcls. Afile is the archive file. The 
names are constituent files in the archive file. The meanings of the key charac­
ters are: 

d Delete the named files from the archive file. 

r Replace the named files in the archive file. If the optional character u 
is used with r, then only those files with dates of modification later 
than the archive files are replaced. If an optional positioning character 
from the set abi is used, then the posname argument must be present 
and specifies that new files are to be placed after (a) or before (b or i) 
posname. Otherwise new files are placed at the end. 

q Quickly append the named files to the end of the archive file. Optional 
positioning characters are invalid. The command does not check 
whether the added members are already in the archive. Useful only to 
avoid quadratic behavior when creating a large archive piece-by-piece. 

t Print a table of contents of the archive file. If no names are given, all 
files in the archive are tabled. If names are given, only those files are 
tabled. 

p Print the named files in the archive. 

m Move the named files to the end of the archive. If a positioning char­
acter is present, then the posname argument must be present and, as in 
r, specifies where the files are to be moved. 

x Extract the named files. If no names are given, all files in the archive 
are extracted. In neither case does x alter the archive file. 

v Give a verbose file-by-file description of the making of a new archive 
file from the old archive and the constituent files. When used with t, 
give a long listing of all information about the files. When used with 
x, precede each file with a name. 

c Suppress the message that is produced by default when afile is created. 

- 1 -



AR(l) 

FILES 

AR(I) 

Place temporary files in the local current working directory, rather 
than in the directory specified by the environment variable TMPDIR or 
in the default directory /tmp. 

s Force the regeneration of the archive symbol table even if ar(O is not 
invoked with a command which will modify the archive contents. This 
command is useful to restore the archive symbol table after the 
strip (1) command has been used on the archive. 

Itmp/ar* temporaries 

SEE ALSO 

BUGS 

Id(I), lorder(I), strip(1). 
tmpnam(3S), a.out(4), ar(4) in the UNIX System V Programmer Reference 
Manual. 

If the same file is mentioned twice in an argument list, it may be put in the 
archive twice. 

- 2 -



ARCHIVE(l) 

NAME 
archive-saves the contents of a file system to tape 

SYNOPSIS 
archive [-i string] file system mag tape 

DESCRIPTION 

ARCHIVE(l) 

Use archive to copy the contents of the hard disk to a cartridge tape. If the files will 
not fit on a single tape, you will be prompted to install a new tape. If possible, run 
archive on an unmounted file system. 

Other users must be logged out when you back up jdevjroot. 

Be sure to specify j dev j rsct (for streaming tape) when running archive. 

The i option puts any character string you specify (up to 128 characters) into the 
header block on the tape. 

EXAMPLES 
/etc/dump.hd 

This command backs up the first hard disk to tape. 

To restore the first hard disk from tape, use the recover command. 

/etc/mount /dev /hdla 
archive /dev /rhdla /dev /rsct 

This command backs up the second hard disk to tape. 

SEE ALSO 
recover(l) 

- 1 -



AS(I) AS(I) 

NAME 
as - common assembler 

SYNOPSIS 
as [-0 objfile] [-0] [-j] [-m] [-R] [-r] [-lbwlJ] [-V1 file-name 

DESCRIPTION 

FILES 

The as command assembles the named file. The following flags may be 
specified in any order: 

-0 objfile Put the output of the assembly in objfile. By default, the output 
file name is formed by removing the .s suffix, if there is one, from 
the input file name and appending a .0 suffix. 

-0 

-j 

-m 

-R 
-r 

-lbwI1 

-v 

Turn off long/short address optimization. By default, address 
optimization takes place. 

Invoke the long-jump assembler (for the V AX version of the com­
mon assembler only). The address optimization algorithm chooses 
between long and short address lengths, with short lengths chosen 
when possible. Often, three distinct lengths are allowed by the 
machine architecture; a choice must be made between two of those 
lengths. When the two choices given to the assembler exclude the 
largest length allowed, then some addresses might be unrepre~ent­
able. The long-jump assembler will always have the largest length 
as one of its allowable choices. If the assembler is invoked without 
this option, and the case arises where an address is unrepresentable 
by either of the two allowed choices, then the user will be informed 
of the error, and advised to try again using the -j option. 

Run the m4 macro pre-processor on the input to the assembler. 

Remove (unlink) the input file after assembly is completed. 

Place all assembled data (normally placed in the .data section) into 
the .text section (for the V AX version of the common assembler 
only). This option effectively disables the .data pseudo operation. 
This option is off by default. 

Create byte (b), halfword (w) or long (J) displacements for 
undefined symbols (for the V AX version of the COmmon assembler 
only). (An undefined symbol is a reference to a symbol whose 
definition is external to the input file or a forward reference.) The 
default value for this option is long (J) displacements. 

Write the version number of the assembler being run on the stan­
dard error output. 

lusrltmp/as[I-6]XXXXXX temporary files 

SEE ALSO 
ld(}), m4(1), nm(}), stripe}). 
a.out(4) in the UNIX System V Programmer Reference Manual. 

"Wl\RNING 
If the -m (m4 macro pre-processor invocation) option is used, keywords for 
m4 (see m4 (1» cannot be used as symbols (variables, functions, labels) in the 
input file since m4 cannot determine which are assembler symbols and which 
are real m4 macros. 

Use the -b or -w option only when undefined symbols are known to refer to 
locations rel'resentable by the specified default displacement. Use of either 
option when assembling a file containing a reference to a symbol that is to be 
resolved by the loader can lead to unpredictable results, since the loader may 

- 1 -



AS(I) 

BUGS 

AS(t) 

be unable to place the address of the symbol into the space provided. 

The .align assembler directive is not guaranteed to work in the .text section 
when optimization is performed. 

Arithmetic expressions may only have one forward referenced symbol per 
expression. 

- 2 -



ASA(I) ASA(t) 

NAME 
asa - interpret ASA carriage control characters 

SYNOPSIS 
asa [files] 

DESCRIPTION 
Asa interprets the output of FORTRAN programs that utilize ASA carriage con­
trol characters. It processes either the Jiles whose names are given as argu­
ments or the standard input if no file names are supplied. The first character 
of each line is assumed to be a control character; their meanings are: 

(blank) single new line before printing 

o double new line before printing 

1 new page before printing 

+ overprint previous line. 

Lines beginning with other than the above characters are treated as if they 
began with' '. The first character of a line is not printed. If any such lines 
appear, an appropriate diagnostic will appear on standard error. This program 
forces the first line of each input file to start on a new page. 

To view correctly the output of FORTRAN programs which use ASA carriage 
control characters, asa could be used as a filter thus: 

a.out I asa IIp 

and the output, properly formatted and paginated, would be directed to the line 
printer. FORTRAN output sent to a file could be viewed by: 

asa file 

SEE ALSO 
efl(I), f77(I), fsplit(I), ratfor(I). 

- 1 -



AT(I) AT(I) 

NAME 
at, batch - execute commands at a later time 

SYNOPSIS 
at time [ date ] [ + increment ] 
at -rjob ... 
at -/[job .. J 
batch 

DESCRIPTION 
At and batch read commands from standard input to be executed at a later 
time. At allows you to .• pecify when the commands should be executed, while 
jobs queued with batch will execute when system load level permits. At -r 
removes jobs previously scheduled with at. The -I option reports all jobs 
scheduled for the invoking user. 

Standard output and standard ·error output are mailed to the user unless they 
are redirected elsewhere. The shell environment variables, current directory, 
umask, and ulimit are retained when the commands are executed. Open file 
descriptors, traps, and priority are lost. 

Users are permitted to use at if their name appears in the file 
lusr/lib/cron/at.allow. If that file does not exist, the file lusr/lib/cron/at.deny 
is checked to determine if the user should be denied access to at. If neither file 
exists, only root is allowed to submit a job. If either file is at.deny, global usage 
is permitted. The allow/deny files consist of one user name per line. 

The time may be specified as 1, 2, or 4 digits. One and two digit numbers are 
taken to be hours, four digits to be hours and minutes. The time may alter­
nately be specified as two numbers separated by a colon, meaning hour:minute. 
A suffix am or pm may be appended; otherwise a 24-hour clock time is under­
stood. The suffix zulu may be used to indicate GMT. The special names noon, 
midnight, now, and next are also recognized. 

An optional date may be specified as either a month name followed by a day 
number (and possibly year number preceded by an optional comma) or a day 
of the week (fully spelled or abbreviated to three characters). Two special 
"days", today and tomorrow are recognized. If no date is given, today is 
assumed if the given hour is greater than the current hour and tomorrow is 
assumed if it is less. If the given month is less than the current month (and no 
year is given), next year is assumed. 

The optional increment is simply a number suffixed by one of the following: 
minutes, hours, days, weeks, months, or years. (The singular form is also 
accepted.) 

Thus legitimate commands include: 

at 0815am Jan 24 
at 8:15am Jan 24 
at now + 1 day 
at 5 pm Friday 

At and batch write the job number and schedule time to standard error. 

Batch submits a batch job. It is almost equivalent to "at now", but not quite. 
For one, it goes into a different queue. For another, "at now" will respond with 
the error message too late. 

At -r removes jobs previously scheduled by at or batch. The job number is the 
number given to you previously by the at or batch command. You can also get 
job numbers by typing at -I. You can only remove your own jobs unless you 
are the super-user. 

- 1 -



AT(I) AT(I) 

EXAMPLES 

FILES 

The at and batch commands read from standard input the commands to be 
executed at a later time. Sh (1) provides different ways of specifying standard 
input. Within your commands, it may be useful to redirect standard output. 

This sequence can be used at a terminal: 
batch 
nroff filename > outfile 
<control-D> (hold down 'control' and depress 'D') 

This sequence, which demonstrates redirecting standard error to a pipe, is use­
ful in a shell procedure (the sequence of output redirection specifications is 
significant) : 

batch < <! 
nroff filename 2> & 1 >outfile I mailloginid 
! 

To have a job reschedule itself, invoke at from within the shell procedure, by 
including code similar to the following within the shell file: 

echo "sh shellfile" I at 1900 thursday next week 

lusrllib/cron - main cron directory 
lusrllib/cron/at.allow - list of allowed users 
lusr/lib/cron/aLdeny - list of denied users 
lusrllib/cron/queue - scheduling information 
lusrlspool/cron/atjobs - spool area 

SEE ALSO 
kilI(O, mail(1), nice(1), ps(1), sh(1). 
cron(1M) in the UNIX System V Administrator Reference Manual. 

DIAGNOSTICS 
Complains about various syntax errors and times out of range. 

- 2 -



AWK(l) AWK(I) 

NAME 
awk - pattern scanning and processing language 

SYNOPSIS 
awk [ - Fc ] [ prog ] [ parameters ] [ files ] 

DESCRIPTION 
Awk scans each input file for lines that match any of a set of patterns specified 
in prog. With each pattern in prog there can be an associated action that will 
be performed when a line of a file matches the pattern. The set of patterns 
may appear literally as prog, or in a file specified as -f file. The prog string 
should be enclosed in single quotes (') to protect it from the shell. 

Parameters, in the form X= ... y= ... etc., may be passed to awk. 

Files are read in order; if there are no files, the standard input is read. The file 
name - means the standard input. Each line is matched against the pattern 
portion of every pattern-action statement; the associated action is performed for 
each matched pattern. 

An input line is made up of fields separated by white space. (This default can 
be changed by using FS; see below). The fields are denoted S1, S2, ... ; SO 
refers to the entire line. 

A pattern-action statement has the form: 

pattern { action } 

A missing action means print the line; a missing pattern always matches. An 
action is a sequence of statements. A statement can be one of the following: 

if ( conditional) statement [ else statement ] 
while ( conditional) statement 
for ( expression ; conditional ; expression ) statement 
break 
continue 
{ [ statement ] ... } 
variable = expression 
print [ expression-list ] [ > expression ] 
printf format [ , expression-list ] [ >expression 
next # skip remaining patterns on this input line 
exit # skip the rest of the input 

Statements are terminated by semicolons, new-lines, or right braces. An empty 
expression-list stands for the whole line. Expressions take on string or nurneric 
values as appropriate, and are built using the operators +, -, ., I, %, and 
concatenation (indicated by a blank). The C operators + +, - -, + =. - =, 
·=,1=, and % = are also available in expressions. Variables may be scalars, 
array elements (denoted xCiD or fields. Variables are initialized to the null 
string. Array subscripts may be any string, not necessarily numeric; this allows 
for a form of associative memory. String constants are quoted ("). 

The print statement prints its arguments on the standard output (or on a file if 
>expr is present), separated by the current output field separator, and ter­
minated by the output record separator. The print/ statement formats its 
expression list according to the format (see print/OS». 

The built-in function length returns the length of its argument taken as a 
string, or of the whole line if no argument. There are also built-in functions 
exp, log, sqrt, and int. The last truncates its argument to an integer; 
substr(s, m, n) returns the n-character substring of s that begins at position m. 
The function sprint/(fmt, expr, expr, .. .) formats the expressions according to 
the print/OS) format given by /mt and returns the resulting string. 

- 1 -



AWK(I) AWK(I) 

Patterns are arbitrary Boolean combinations ( !, II, & &, and parentheses) of 
regular expressions and relational expressions. Regular expressions must be 
surrounded by slashes and are as in egrep (see grep (1) ). Isola ted regular 
expressions in a pattern apply to the entire line. Regular expressions may also 
occur in relational expressions. A pattern may consist of two patterns 
separated by a comma; in this case, the action is performed for all lines 
between an occurrence of the first pattern and the next occurrence of the 
second. 

A relational expression is one of the following: 

expression matchop regular-expression 
expression relop expression 

where a relop is any of the six relational operators in C, and a matchop is 
either - (for contains) or !- (for does not contain). A conditional is an arith­
metic expression, a relational expression, or a Boolean combination of these. 

The special patterns BEGIN and END may be used to capture control before 
the first input line is read and after the last. BEGIN must be the first pattern, 
END the last. 

A single character c may be used to separate the fields by starting the program 
with: 

BEGIN { FS = c } 

or by using the - F c option. 

Other variable names with special meanings include NF, the number of fields in 
the current record; NR, the ordinal number of the current record; FILENAME, 
the name of the current input file; OFS, the output field separator (default 
blank); ORS, the output record separator (default new-line); and OFMT, the 
output format for numbers (default % .6g). 

EXAMPLES 
Print lines longer than 72 characters: 

length> 72 

Print first two fields in opposite order: 

{ print $2, $1 } 

Add up first column, print sum and average: 

{ s += $1 } 
END {print "sum is", s, " average is", s/NR } 

Print fields in reverse order: 

{ for (i = NF; i > 0; --0 print $i } 

Print all lines between start/stop pairs: 

/start/, /stop/ 

Print all lines whose first field is different from previous one: 

$1 != prev { print; prev - $1 } 

Print file, filling in page numbers starting at 5: 

/Page/ { $2 = n++; } 
{ print} 

command line: awk -f program n-5 input 

- 2 -



AWK(I) AWK(l) 

SEE ALSO 

BUGS 

grep(I), lex(1), sed(I). 
malloc(3X) in the UNIX System V Programmer Reference Manual. 

UNIX System V Support Tools Guide. 

Input white space is not preserved on output if fields are involved. 
There are no explicit conversions between numbers and strings. To force an 
expression to be treated as a number add 0 to it; to force it to be treated as a 
string concatenate the null string ("") to it. 

- 3 -



BANNER(l) 

NAME 
banner - make posters 

SYNOPSIS 
banner strings 

DESCRIPTION 

BANNER(l) 

Banner prints its arguments (each up to 10 characters long) in large letters on 
the standard output. 

SEE ALSO 
echo(1). 

- 1 -



BASENAME (1) BASENAME (1 ) 

NAME 
basename, dirname - deliver portions of path names 

SYNOPSIS 
base name string [ suffix ] 
dirname string 

DESCRIPTION 
Basename deletes any prefix ending in I and the suffix Of present in string) 
from string, and prints the result on the standard output. It is normally used 
inside substitution marks (, ,) within shell procedures. 

Dirname delivers all but the last level of the path name in string. 

EXAMPLES 
The following example, invoked with the argument lusrlsrc/cmd/cat.c, com­
piles the named file and moves the output to a file named cat in the current 
directory: 

cc $1 
mv a.out 'basename $1 '\.c" 

The following example will set the shell variable NAME to lusrlsrc/cmd: 

NAME='dirname lusrlsrc/cmd/cat.c' 

SEE ALSO 
sh(t). 

BUGS 
The basename of I is null and is considered an error. 

- 1 -



BC( I) BC(I) 

NAME 
be - arbitrary-precision arithmetic language 

SYNOPSIS 
be [ -c ] [ -I ] [ file ... ] 

DESCRIPTION 
Be is an interactive processor for a language that resembles C but provides 
unlimited precision arithmetic. It takes input from any files given, then reads 
the standard input. The -I argument stands for the name of an arbitrary pre­
cision math library. The syntax for be programs is as follows; L means letter 
a-z, E means expression, S means statement. 

Comments 

Names 

are enclosed in /. and ./. 

simple variables: L 
array elements: L [ E ] 
The words "ibase", "obase", and "scale" 

Other operands 
arbitrarily long numbers with optional sign and decimal point. 
( E ) 
sqrt ( E ) 
length ( E ) 
scale ( E) 
L(E, ... ,E) 

number of significant decimal digits 
number of digits right of decimal point 

Operators 
+ - • / % '" (% is remainder; '" is power) 
+ + - - (prefix and postfix; apply to names) 
==== <== >==!== < > 
== == + ==. ==/ == % =="" 

Statements 
E 
{S ; ... ; S } 
if ( E ) S 
while ( E) S 
for ( E ; E ; E ) S 
null statement 
break 
quit 

Function definitions 
define L ( L , ... , L ) 

auto L, ... , L 
S; ... S 
return ( E) 

Functions in -I math library 
~( .. \ 
."A/ 

cCx) 
e(x) 
I(x) 
a(x) 
j (n,x) 

Sine 
cosine 
exponential 
log 
arctangent 
Bessel function 

All function arguments are passed by value. 

- 1 -



BC(l) BC(I) 

The value of a statement that is an expression is printed unless the main opera­
tor is an assignment. Either semicolons or new-lines may separate statements. 
Assignment to seale influences the number of digits to be retained on arith­
metic operations in the manner of dc(O. Assignments to ibase or abase set 
the input and output number radix respectively. 

The same letter may be used as an array, a function, and a simple variable 
simultaneously. All variables are global to the program. "Auto" variables are 
pushed down during function calls. When using arrays as function arguments 
or defining them as automatic variables, empty square brackets must follow the 
array name. 

Be is actually a preprocessor for dc(O, which it invokes automatically, unless 
the -c (compile only) option is present. In this case the de input is sent to the 
standard output instead. 

EXAMPLE 

FILES 

scale = 20 
define e (x) { 

auto a, b, c, i, s 
a=1 
b=1 
s = 1 
for(i=1; 1==1; i++){ 

a = a*x 
b = b*i 
c = alb 
if(c == 0) return (s) 
s = s+c 

defines a function to compute an approximate value of the exponential function 
and 

for(i=1; i<=10; i++) e(j) 

prints approximate values of the exponential function of the first ten integers. 

/usr/lib/lib.b 
/usr/bin/dc 

mathematical library 
desk calculator proper 

SEE ALSO 
dc(l). 

UNIX System V Programmer Guide. 

BUGS 
No & &, I I yet. 
For statement must have all three E's. 
Quit i~ interpreted when read, not when executed. 

- 2 -



BDIFF( I) BDIFF(I) 

NAME 
bdiff - big diff 

SYNOPSIS 
bdiff filel file2 [n] [-s] 

DESCRIPTION 

FILES 

Bdi./J is used in a manner analogous to difJ(1) to find which lines must be 
changed in two files to bring them into agreement. Its purpose is to allow pro­
cessing of files which are too large for di./J. BdifJ ignores lines common to the 
beginning of both files, splits the remainder of each file into n-line segments, 
and invokes difJ upon corresponding segments. The value of n is 3500 by 
default. If the optional third argument is given, and it is numeric, it is used as 
the value for n. This is useful in those cases in which 3500-line segments are 
too large for difJ, causing it to fail. If file 1 (file2) is -, the standard input is 
read. The optional -s (silent) argument specifies that no diagnostics are to be 
printed by bdifJ (note, however, that this does not suppress possible exclama­
tions by di./J. If both optional arguments are specified, they must appear in the 
order indicated above. 

The output of bdifJ is exactly that of difJ, with line numbers adjusted to 
account for the segmenting of the files (that is, to make it look as if the files 
had been processed whole). Note that because of the segmenting of the files, 
bdifJ does not necessarily find a smallest sufficient set of file differences. 

/tmp/bd????? 

SEE ALSO 
diff( I). 

DIAGNOSTICS 
Use help (I) for explanations. 

- 1 -



BFS(1 ) BFS( 1) 

NAME 
bfs - big file scanner 

SYNOPSIS 
bfs [ - ] name 

DESCRIPTION 
The Sfs command is (almost) like ed(I) except that it is read-only and 
processes much larger files. Files can be up to 1024K bytes (the maximum 
possible size) and 32K lines, with up to 512 characters, including new-line, per 
line (255 for 16-bit machines). Sfs is usually more efficient than ed for scan­
ning a file, since the file is not copied to a buffer. It is most useful for identify­
ing sections of a large file where csplit (1) can be used to divide it into more 
manageable pieces for editing. 

Normally, the size of the file being scanned is printed, as is the size of any file 
written with the w command. The optional - suppresses printing of sizes. 
Input is prompted with • if P and a carriage return are typed as in ed. 
Prompting can be turned off again by inputting another P and carriage return. 
Note that messages are given in response to errors if prompting is turned on. 

Al! address expressions described under ed are supported. In addition, regular 
expressions may be surrounded with two symbols besides / and?: > indicates 
downward search without wrap-around, and < indicates upward search without 
wrap-around. There is a slight difference in mark names: only the letters a 
through z may be used, and all 26 marks are remembered. 

The e, g, v, k, p, q, W, =, ! and null commands operate as described under ed. 
Commands such as - - -, + + + -, + + + =, -12, and +4p are accepted. 
Note that 1,10p and 1,10 will both print the first ten lines. The f command 
only prints the name of the file being scanned; there is no remembered file 
name. The w command is independent of output diversion, truncation, or 
crunching (see the XO, xt and xc commands, below). The following additional 
commands are available: 

xf file 
Further commands are taken from the named file. When an end­
of-file is reached, an interrupt signal is received or an error occurs, 
reading resumes with the file containing the xf. The xf commands 
may be nested to a depth of 10. 

xu List the marks currently in use (marks are set by the k command). 

xo [file] 
Further output from the p and null commands is diverted to the 
named file, which, if necessary, is created mode 666. If file is miss­
ing, output is diverted to the standard output. Note that each 
diversion causes truncation or creation of the file. 

: label 
This positions a label in a command file. The label is terminated 
by new-line, and blanks between the: and the start of the label are 
ignored. This command may also be used to insert comments into a 
command file, since labels need not be referenced. 

- 1 -



BFS(1 ) BFS (1) 

( . , . )xb/ regular expressionllabel 
A jump (either upward or downward) is made to label if the com­
mand succeeds. It fails under any of the following conditions: 

1. Either address is not between 1 and $. 
2. The second address is less than the first. 
3. The regular expression does not match at least one line 
in the specified range, including the first and last lines. 

On success, • is set to the line matched and a jump is made to 
label. This command is the only one that does not issue an error 
message on bad addresses, so it may be used to test whether 
addresses are bad before other commands are executed. Note that 
the command 

xbr/ label 

is an unconditional jump. 
The xb command is allowed only if it is read from someplace other 
than a terminal. If it is read from a pipe only a downward jump is 
possible. 

xt number 
Output from the p and null commands is truncated to at most 
number characters. The initial number is 255. 

xv[ digit 1 [spaces] [ value 1 
The variable name is the specified digit following the xv. The com­
mands xv5100 or xv5 100 both assign the value 100 to the variable 
5. The command Xv61,100p assigns the value 1,100p to the vari­
able 6. To reference a variable, put a % in front of the variable 
name. For example, using the above assignments for variables 5 
and 6: 

1,%5p 
1,%5 
%6 

will all print the first 100 lines. 

g/%5/p 

would globally search for the characters 100 and print each line 
containing a match. To escape the special meaning of %, a \ must 
precede it. 

g/". *\%kdsJlp 

could be used to match and list lines containing print! of characters, 
decimal integers, or strings. 

Another feature of the xv command is that the first line of output 
[rum a uNiX sysitm l;umrnanu l;an bt StortU into a variabie. 1 ne 
only requirement is that the first character of value be an!. For 
example: 

.w junk 
xv5!cat junk 
!rm junk 
!echo "%5" 
xV6!expr %6 + 1 

- 2 -



BFS(t) 

xv7\!date 

stores the value !date into variable 7. 

xbz label 

xbn label 

BFS(I) 

These two commands will test the last saved return code from the 
execution of a UNIX system command (!command) or nonzero 
value, respectively, to the specified label. The two examples below 
both search for the next five lines containing the string size. 

xc [switch] 

xv55 
: I 
Isizel 
xv5!expr %5 - 1 
!if 0%5 != 0 exit 2 
xbn I 
xv45 
: I 
Isizel 
xv4!expr %4 - 1 
!if 0%4 = 0 exit 2 
xbz I 

If switch is 1, output from the p and null commands is crunched; if 
switch is 0 it is not. Without an argument, xc reverses switch. Ini­
tially switch is set for no crunching. Crunched output has strings of 
tabs and blanks reduced to one blank and blank lines suppressed. 

SEE ALSO 
csplit(I), ed(I). 
regcmp(3X) in the UNIX System V Programmer Reference Manual. 

DIAGNOSTICS 
? for errors in commands, if prompting is turned off. Self-explanatory error 
messages when prompting is on. 

- 3 -



BS( 1) BS (1) 

NAME 
bs - a compilerlinterpreter for modest-sized programs 

SYNOPSIS 
bs [ file [ args ] ] 

DESCRIPTION 
Bs is a remote descendant of Basic and Snobol4 with a little C language 
thrown in. Bs is designed for programming tasks where program development 
time is as important as the resulting speed of execution. Formalities of data 
declaration and file/process manipulation are minimized. Line-at-a-time 
debugging, the trace and dump statements, and useful run-time error messages 
all simplify program, testing. Furthermore, incomplete programs can be 
debugged; inner functions can be tested before outer functions have been writ­
ten and vice versa. 

If the command line file argument is provided, the file is used for input before 
the console is read. By default, statements read from the file argument are 
compiled for later execution. Likewise, statements entered from the console are 
normally executed immediately (see compile and execute below). Unless the 
final operation is assignment, the result of an immediate expression statement is 
printed. 

Bs programs are made up of input lines. If the last character on a line is a \, 
the line is continued. Bs accepts lines of the following form: 

statement 
label statement 

A label is a name (see below) followed by a colon. A label and a variable can 
have the same name. 

A bs statement is either an expression or a keyword followed by zero or more 
expressions. Some keywords (clear, compile, !, execute, include, ibase, abase, 
and run) are always executed as they are compiled. 

Statement Syntax: 

expression 
The expression is executed for its side effects (value, assignment, or function 
call). The details of expressions follow the description of statement types 
below. 

break 
Break exits from the inner-most forlwhile loop. 

clear 
Clears the symbol table and compiled statements. Clear is executed 
immediately. 

compile [ expression] 
Succeeding statements are compiled (overrides the immediate execution 
default). The optional expression is evaluated and used as a file name for 
further input. A clear is associated with this latter case. Compile is exe­
cuted immediately. 

continue 
Continue transfers to the loop-continuation of the current forlwhile loop. 

dump [ name] 
The name and current value of every non-local variable is printed. Option­
ally, only the named variable is reported. After an error or interrupt, the 
number of the last statement and (possibly) the user-function trace are 
displayed. 

- 1 -



BS (1) BS(l) 

exit [ expression ] 
Return to system level. The expression is returned as process status. 

execute 
Change to immediate execution mode (an interrupt has a similar effect). 
This statement does not cause stored statements to execute (see run below). 

for name = expression expression statement 
for name = expression expression 

next 

for expression, expression, expression statement 
for expression, expression, expression 

next 
The for statement repetitively executes a statement (first form) or a group 
of statements (second form) under control of a named variable. The vari­
able takes on the value of the first expression, then is incremented by one on 
each loop, not to exceed the value of the second expression. The third and 
fourth forms require three expressions separated by commas. The first of 
these is the initialization, the second is the test (true to continue), and the 
third is the loop-continuation action (normally an increment). 

fun f( [a, ... ]) [v, ... ] 

nuf 
Fun defines the function name, arguments, and local variables for a user­
written function. Up to ten arguments and local variables are allowed. 
Such names cannot be arrays, nor can they be I/O associated. Function 
definitions may not be nested. 

fretum 
A way to signal the failure of a user-written function. See the interrogation 
operator (?) below. If interrogation is not present, freturn merely returns 
zero. When interrogation is active, freturn transfers to that expression 
(possibly by-passing intermediate function returns). 

go to name 
Control is passed to the internally stored statement with the matching label. 

ibase N 
[base sets the input base (radix) to N. The only supported values for N are 
8, 10 (the default), and 16. Hexadecimal values 10-15 are entered as a-f. 
A leading digit is required (i.e., fOa must be entered as OfOa). [base (and 
abase, below) are executed immediately. 

if expression statement 
if expression 

[ else 

fi 
The statement (first form) or group of statements (second form) is executed 
if the expression evaluates to non-zero. The strings 0 and "" (null) evaluate 
as zero. In the second form, an optional else allows for a group of state­
ments to be executed when the first group is not. The only statement per­
mitted on the same line with an else is an if; only other fi's can be on the 
same line with a fl. The elision of else and if into an elif is supported. 
Only a single fi is required to close an if ... elif ... [ else ... ] sequence. 

- 2 -



BS(I) BS(I) 

include expression 
The expression must evaluate to a file name. The file must contain bs 
source statements. Such statements become part of the program being com­
piled. Include statements may not be nested. 

obase N 
Obase sets the output base to N (see ibase above). 

onintr label 
onintr 

The onintr command provides program control of interrupts. In the first 
form, control will pass to the label given, just as if a goto had been exe­
cuted at the time onintr was executed. The effect of the statement is 
cleared after each interrupt. In the second form, an interrupt will cause bs 
to terminate. 

return [expression] 
The expression is evaluated and the result is passed back as the value of a 
function call. If no expression is given, zero is returned. 

run 
The random number generator is reset. Control is passed to the first inter­
nal statement. If the run statement is contained in a file, it should be the 
last statement. 

stop 
Execution of internal statements is stopped. Bs reverts to immediate mode. 

trace [ expression ] 
The trace statement controls function tracing. If the expression is null (or 
evaluates to zero), tracing is turned off. Otherwise, a record of user­
function callslreturns will be printed. Each return decrements the trace 
expression value. 

while expression statement 
while expression 

next 
While is similar to for except that only the conditional expression for loop­
continuation is given. 

! shell command 
An immediate escape to the shell. 

# ... 
This statement is ignored. It is used to interject commentary in a program. 

Expression Syntax: 

name 
A name is used to specify a variable. Names are composed of a letter 
(upper or lower case) optionally followed by letters and digits. Only the 
first six characters of a name are significant. Except for names declared in 
fun statements, all names are global to the program. Names can take on 
numeric (double fioat) values. string values. or can be associated with 
input/output (see the built-in function-open 0 below). 

name ( [expression [ , expression] ... ] ) 
Functions can be called by a name followed by the arguments in 
parentheses separated by commas. Except for built-in functions CIisted 
below}, the name must be defined with a fun statement. Arguments to 
functions are passed by value. 

- 3 -



BS(I) BS(I) 

name [ expression [ , expression ] ... ) 
This syntax is used to reference either arrays or tables (see built-in table 
functions below). For arrays, each expression is truncated to an integer and 
used as a specifier for the name. The resulting array reference is syntacti­
cally identical to a name; al1,2) is the same as al1U2J. The truncated 
expressions are restricted to values between 0 and 32767. 

number 
A number is used to represent a constant value. A number is written in 
Fortran style, and contains digits, an optional decimal point, and possibly a 
scale factor consisting of an e followed by a possibly signed exponent. 

string 
Character strings are delimited by "characters. The \ escape character 
allows the double quote (\"), new-line (\n), carriage return (\r), backspace 
(\b), and tab (\t) characters to appear in a string. Otherwise, \ stands for 
itself. 

( expression) 
Parentheses are used to alter the normal order of evaluation. 

( expression, expression [, expression ... ] ) [ expression ) 
The bracketed expression is used as a subscript to select a comma-separated 
expression from the parenthesized iist. List elements are numbered from 
the left, starting at zero. The expression: 

( False, True )[ a == b ] 

has the value True if the comparison is true. 

? expression 
The interrogation operator tests for the success of the expression rather than 
its value. At the moment, it is useful for testing end-of-file (see examples in 
the Programming Tips section below), the result of the eval built-in func­
tion, and for checking the return from user-written functions (see fret urn) . 
An interrogation "trap" (end-of-file, etc.) causes an immediate transfer to 
the most recent interrogation, possibly skipping assignment statements or 
intervening function levels. 

- expression 
The result is the negation of the expression. 

+ + name 
Increments the value of the variable (or array reference). The result is the 
new value. 

- - name 
Decrements the value of the variable. The result is the new value. 

! expression 
The logical negation of the expression. Watch out for the shell escape com­
mand. 

expression operator expression 
Common functions of two arguments are abbreviated by the two arguments 
separated by an operator denoting the function. Except for the assignment, 
concatenation, and relational operators, both operands are converted to 
numeric form before the function is applied. 

Binary Operators Gn increasing precedence): 

= is the assignment operator. The left operand must be a name or an 
array element. The result is the right operand. Assignment binds right to 
left, all other operators bind left to right. 

- 4 -



BS(1 ) BS (1) 

_ (underscore) is the concatenation operator. 

& I 
& (logical and) has result zero if either of its arguments are zero. It has 
result one if both of its arguments are non-zero; I (logical or) has result 
zero if both of its arguments are zero. It has result one if either of its argu­
ments is non-zero. Both operators treat a null string as a zero. 

< <= > >= == != 

+ 

The relational operators « less than, < = less than or equal, > greater 
than, > = greater than or equal, = = equal to, ! = not equal to) return one 
if their arguments are in the specified relation. They return zero otherwise. 
Relational operators at the same level extend as follows: a>b>c is the 
same as a>b & b>c. A string comparison is made if both operands are 
strings. 

Add and subtract. 

• / % 
Multiply, divide, and remainder. 

Exponentiation. 

Built-in Functions: 

Dealing with arguments 

arg(i) 
is the value of the i -th actual parameter on the current level of function 
call. At level zero, arg returns the i-th command-line argument (arg(O) 
returns bs). 

narg( ) 
returns the number of arguments passed. At level zero, the command argu­
ment count is returned. 

Mat hematical 

abs(x) 
is the absolute value of x. 

atan(x) 
is the arctangent of x. Its value is between -7r/2 and 7r/2. 

ceiHx) 
returns the smallest integer not less than x. 

cos (x) 
is the cosine of x (radians). 

exp(x) 
is the exponential function of x. 

floor (x) 
returns the largest integer not greater than x. 

log (x) 
is the natural logarithm of x. 

rand() 
is a uniformly distributed random number between zero and one. 

sin (x) 
is the sine of x (radians). 

- 5 -



BS(I) BS (1) 

sqrt(x) 
is the square root of x. 

String operations 

size(s) 
the size (length in bytes) of s is returned. 

format(f, a) 
returns the formatted value of a. F is assumed to be a format specification 
in the style of print/OS). Only the % ••• f, % ••• e, and % .•• s types are 
safe. 

index(x, y) 
returns the number of the first position in x that any of the characters from 
y matches. No match yields zero. -

trans (s, f, t) 
Translates characters of the source s from matching characters in / to a 
character in the same position in t. Source characters that do not appear in 
/ are copied to the result. If the string / is longer than t, source characters 
that match in the excess portion of/do not appear in the result. 

substr(s, start, width) 
returns the sub-string of s defined by the start ing position and width. 

matcb(string, pattern) 
mstring(n) 

The pattern is similar to the regular expression syntax of the ed(I) com­
mand. The characters ., [, J, " (inside brackets), • and $ are special. The 
mstring function returns the n-th (1 <= n <= 10) substring of the subject 
that occurred between. pairs of the pattern symbols \ ( and \) for the most 
recent call to match. To succeed, patterns must match the beginning of the 
string (as if all patterns began with"). The function returns the number of 
characters matched. For example: 

match("aI23abI23", ".*\([a-z]\)") == 6 
mstring(I) == "b" 

File handling 

open (name, file, function) 
close (name) 

The name argument must be a bs variable name (passed as a string). For 
the open, the file argument may be 1) a 0 (zero), 1, or 2 representing stan­
dard input, output, or error output, respectively; 2) a string representing a 
file name; or 3) a string beginning with an ! representing a command to be 
executed (via sh -c). The function argument must be either r (read), w 
(write), W (write without new-line), or a (append). After a close, the 
name reverts to being an ordinary variable. The initial associations are: 

open ("get", 0, "r") 
open ("put", 1, "w") 
open ("puterr", 2, "w") 

Examples are given in the following section. 

access (s, m) 
executes access (2). 

ftype(s) 
returns a single character file type indication: f for regular file, p for FIFO 
(i.e., named pipe), d for directory, b for block special, or c for character 
special. 

- 6 -



BS(I) BS(I) 

Tables 

table(name, size) 
A table in bs is an associatively accessed, single-dimension array. "Sub­
scripts" (called keys) are strings (numbers are converted). The name argu­
ment must be a bs variable name (passed as a string). The size argument 
sets the minimum number of elements to be allocated. Bs prints an error 
message and stops on table overflow. 

item (name, n 
keyO 

The item function accesses table elements sequentially (in normal use, there 
is no orderly progression of key values). Where the item function accesses 
values, the key function accesses the "subscript" of the previous item call. 
The name argument should not be quoted. Since exact table sizes are not 
defined, th~ interrogation operator should be used to detect end-of-table; for 
example: 

table("t", 100) 

# If word contains "party", the following expression adds one 
# to the count of that word: 
++t[word] 

# To print out the the key/value pairs: 
for i = 0, ?(s = item(t, i», ++i if keyO put = keyO_":"_s 

iskey (name, word ) 
The iskey function tests whether the key word exists in the table name and 
returns one for true, zero for false. 

Odds and ends 

eval(s) 
The string argument is evaluated as a bs expression. The function is handy 
for converting numeric strings to numeric internal form. Eval can also be 
used as a crude form of indirection, as in: 

name = "xyz" 
eval ("++"_ name) 

which increments the variable xyz. In addition, eval preceded by the inter­
rogation operator permits the user to control bs error conditions. For exam­
ple: 

?evaJ("open(\"X\tI, \"XXX\", \tlr\")") 

returns the value zero if there is no file named "XXX" (instead of halting 
the user's program). The following executes a goto to the label L (if it 
exists) : 

label="L" 
if !(?evaI(tlgoto "_label) puterr = "no label" 

plot(request, args) 
The plot function produces output on devices recognized by tplot C1 G). The 
requests are as follows: 

Call 

plot(O, term) 

- 7 -

Function 

causes further plot output to be piped 
into tplot (J G) with an argument of 
-Tterm. 



8S(I) 

plot (4) 

plot (2, string) 

platO, xl, yl, x2, y2) 

plot(4, x, y, r) 

plot (5, x I, Y I, x2, y2, x3, y3) 

plot(6) 

platO, x, y) 

plot(8, x, y) 

plot(9, x, y) 

plot (10, string) 

plot (11, x I, Y I, x2, y2) 

plot (12, x I, Y I, x2, y2) 

BS (1) 

"erases" the plotter. 

labels the current point with string. 

draws the line between (xl,yJ) and 
(x2,y2). 

draws a circle with center (x,y) and 
radius r. 

draws an arc (counterclockwise) with 
center (xl,yJ) and endpoints (x2,y2) 
and (x3,y3). 

is not implemented. 

makes the current point (x,y). 

draws a line from the current point to 
(x,y). 

draws a point at (x,y). 

sets the line mode to string. 

makes (x I ,y I) the lower left corner of 
the plotting area and (x2,y2) the 
upper right corner of the plotting area. 

causes subsequent x (y) coordinates to 
be multiplied by xl (yJ) and then 
added to x2 (y2) before they are plot­
ted. The initial scaling is plot(t2, 1.0, 
1.0, 0.0, 0.0). 

Some requests do not apply to all plotters. All requests except zero and 
twelve are implemented by piping characters to tplot (1 G). See plot(4) for 
more details. 

last() 
in immediate mode, last returns the most recently computed value. 

PROGRAMMING TIPS 
Using bs as a calculator: 

$ bs 
# Distance (inches) light travels in a nanosecond. 
186000 * 5280 * 12 / le9 
11.78496 

# Compound interest (6% for 5 years on $1,000). 
int = .06 / 4 
bal = 1000 
for i = I 5*4 bal = bal + bal*int 
bal - 1000 
346.855007 

exit 

The outline of a typical bs program: 

# initialize things: 
varl = I 
open ("read", "infile", "r") 

# compute: 

- 8 -



BS(I) 

while ? (str = read) 

next 
# clean up: 
close ("read") 

# last statement executed (exit or stop): 
exit 
# last input line: 
run 

Input/Output examples: 

# Copy "oldfile" to "newfile". 
open ("read ", "old file", "r") 
open ("write", "newfile", "W") 

while? (write = read) 

# close "read" and "write": 
close ("read") 
close ("write") 

# Pipe between commands. 
open("ls", "!Is *", "r") 
open ("pr", "!pr -2 -h 'List''', "w") 
while? (pr = Is) .,. 

# be sure to close (wait for) these: 
close ("ls") 
close ("pr") 

BS (I) 

SEE ALSO 
ed(!), she!), tplot(1G). 
access(2), printf(3S), stdio(3S), plot(4) in the UNIX System V Programmer 
Reference Manual. 
See Section 3 of the UNIX System V Programmer Reference Manual for a 
further description of the mathematical functions (pow on exp (3M) is used for 
exponentiation); bs uses the Standard Input/Output package. 

- 9 -



CAL(I) CAL(I) 

NAME 
cal - print calendar 

SYNOPSIS 
cal [ [ month ] year 

DESCRIPTION 

BUGS 

Cal prints a calendar for the specified year. If a month is also specified, a 
calendar just for that month is printed. If neither is specified, a calendar for 
the present month is printed. Year can be between 1 and 9999. The month is 
a number between 1 and 12. The calendar produced is that for England and 
her colonies. 

Try September 1752. 

The year is always considered to start in January even though this is histori­
cally naive. 
Beware that "cal 83" refers to the early Christian era, not the 20th century. 

- 1 -



CALENDAR ( 1 ) CALENDAR (1) 

NAME 
calendar - reminder service 

SYNOPSIS 
calendar [ - ] 

DESCRIPTION 

FILES 

Calendar consults the file calendar in the current directory and prints out lines 
that contain today's or tomorrow's date anywhere in the line. Most reasonable 
month-day dates such as "Aug. 24," "august 24," "8/24," etc., are recognized, 
but not "24 August" or "24/8". On weekends "tomorrow" extends through 
Monday. 

When an argument is present, calendar does its job for every user who has a 
file calendar in the login directory and sends them any positive results by 
mail(I). Nqrmally this is done daily by facilities in the UNIX operating sys­
tem. 

lusrllib/calprog to figure out today's and tomorrow's dates 

1 etcl passwd 

Itmp/cal* 

SEE ALSO 

BUGS 

mail(l). 

Your calendar must be public information for you to get reminder service. 
Calendar's extended idea of "tomorrow" does not account for holidays. 

- 1 -



CAT(l) CAT(I) 

NAME 
cat - concatenate and print files 

SYNOPSIS 
cat [ -u ] [ -s ] [ -v [-t] [-e) ] file 

DESCRIPTION 
Cat reads each file in sequence and writes it on the standard output. Thus: 

cat file 

prints the file, and: 

cat filel file2 >file3 

concatenates the first two files and places the result on the third. 

If no input file is given, or if the argument - is encountered, cat reads from 
the standard input file. Output is buffered unless the -u option is specified. 
The -s option makes cat silent about non-existent files. 

The -v option causes non-printing characters (with the exception of tabs, 
new-lines and form-feeds) to be printed visibly. Control characters are printed 
AX (control-x); the DEL character (octal 0177) is printed "? Non-ASCII 
characters (with the high bit set) are printed as M-x, where x is the character 
specified by the seven low order bits. 

When used with the -v option, -t causes tabs to be printed as ''I's, and -e 
causes a $ character to be printed at the end of each line (prior to the new­
line). The -t and -e options are ignored if the -v option is not specified. 

WARNING 
Command formats such as 

cat filel file2 >filel 
will cause the original data in file1 to be lost; therefore, take care when using 
shell special characters. 

SEE ALSO 
cpO), pg(t), prO). 

- 1 -



CB(t) CB<t> 

NAME 
cb - C program beautifier 

SYNOPSIS 
cb [ -s ] [ -j ] [ -I leng ] [ file ... ] 

DESCRIPTION 
Cb reads C programs either from its arguments or from the standard input and 
writes them on the standard output with spacing and indentation that displays 
the structure of the code. Under default options, cb preserves all user new­
lines. Under the -s flag cb canonicalizes the code to the style of Kernighan 
and Ritchie in The C Programming Language. The -j flag causes split lines 
to be put back together. The -I flag causes cb to split lines that are longer 
than leng. 

SEE ALSO 
cc(l). 

BUGS· 

The C Programming Language by B. W. Kernighan and D. M. Ritchie. 

Punctuation that is hidden in preprocessor statements will cause indentation 
errors. 

- 1 -



CC(t) CC (1) 

NAME 
cc, pcc - C compiler 

SYNOPSIS 
cc [ option ] ... file .. . 
pcc [ option ] ... file .. . 

DESCRIPTION 
Ce is the UNIX system C compiler. Pee is the portable version for a PDP-II 
machine. They accept several types of arguments. 

Arguments whose names end with .c are taken to be C source programs. They 
are compiled, and each object program is left on the file whose name is that of 
the source with .0 substituted for .c. The.o file is normally deleted, however, if 
a single C program is compiled and loaded all at one go. 

In the same way, arguments whose names end with .s are taken to be assembly 
source programs and are assembled, producing a .0 file. 

The following options are interpreted by ee and pee. See ld (I) for link editor 
options and epp (I) for more preprocessor options. 

-c Suppress the link edit phase of the compilation and force an object file 
to be produced even if only one program is compiled. 

-p Arrange for the compiler to produce code that counts the number of 
times each routine is called; also, if link editing takes place, replace 
the standard startoff routine by one that automatically calls 
monitor(3C) at the start and arranges to write out a mOD.out file at 
normal termination of execution of the object program. An execution 
profile can then be generated by use of prol(!). For the PDP-II only, 
the libraries Ilib/libp/libm.a (if the -1m option is used) and 
llib/libp/libc.a must be specified explicitly if the versions reporting 
function call counts are to be loaded. 

-f Link the object program with the floating-point interpreter for systems 
without hardware floating-point. 

-g Cause the compiler to generate additional information needed for the 
useofsdb(I). 

-0 Invoke an object-code optimizer. 

-S Compile the named C programs and leave the assembler-language 
output on corresponding files suffixed .s. 

-E Run only epp(I) on the named C programs and send the result to the 
standard output. 

- P Run only epp (1) on the named C programs and leave the result on 
corresponding files suffixed .i. 

-Bstring 
Construct path names for substitute preprocessor, compiler, assembler 
and link editor passes by concatenating string with the suffixes cpp, cO 
(or ccom or comp, see under FILES below), ct, c2 (or optim), as and 
ld. If string is empty it is taken to be llib/o. 

-t[p012aI] 
Find only the designated preprocessor, compiler, assembler and link 
editor passes in the files whose names are constructed by a - B option. 
In the absence of a - B option, the string is taken to be llib/n. The 
value -t '"' is equivalent to -tp012. 

-We,argi !,arg2 .. .J 
Hand off the argument[s] argi to pass e where C IS one of [p012aI] 

- 1 -



CC(I) 

FILES 

CC(I) 

indicating preprocessor, compiler first pass, compiler second pass, 
optimizer, assembler, or link editor, respectively. 

Other arguments are taken to be either link editor option arguments, C prepro­
cessor option arguments, or C-compatible object programs, typically produced 
by an earlier cc or pee run, or perhaps libraries of C-compatible routines. 
These programs, together with the results of any compilations specified, are 
linked (in the order given) to produce an executable program with the name 
a.out. 

The C language standard was extended to include arbitrary length variable 
names. This standard has been implemented on the VAX and the 38 20 com­
puter, but not on the PDP-II. The option pair" - Wp, -T - WO, - XT" will 
cause the current compiler (on the 38 20 computer and the V AX) to behave the 
same as previous compilers with respect to the length of variable names. 

file.c 
file.o 
a.out 
/tmp/ctm* 
/usr/tmp/ctm* 
/Iib/cpp 
/lib/c[OI] 
/usr /lib/ comp 
/lib/ccom 
/lib/comp 
/lib/c2 
/Iib/optim 
/usr/lib/Oc* 
/bin/as 
/bin/ld 
/lib/crtO.o 
/lib/mcrtO.o 
/lib/fcrtO.o 
/lib/fmcrtO.o 

/Iib/libc.a 

/lib/libp/lib*.a 

input file 
object file 
linked output 
temporary 
temporary 
C preprocessor cpp (I) 
PDP-II compiler, ee 
compiler, pee 
VAX compiler, ec 
38 20 computer compiler ce 
VAX and PDP-II optional optimizer 
38 20 computer optional optimizer 
backup compiler, Oee 
assembler, as(I) 
link editor, Id(I) 
runtime startoff 
profiling startoff 
floating-point interpretation startoff (PDP-II) 
floating-point interpretation and profiling 
startoff (PDP-II) 
standard C library, see section 0) in the UNIX 
System V Programmer Reference Manual 
profiled versions of libraries 

SEE ALSO 

NOTES 

adb(I), cpp(l), as(I), Id(!), profCl), sdb(!). 
exit(2), monitorOC) in the UNIX System V Programmer Reference Manual. 

The C Programming Language by B. W. Kernighan. 
Programming in C-A Tutorial by B. W. Kernighan. 
C Reference Manual by D. M. Ritchie. 

By default, the return value from a C program is completely random. The only 
two guaranteed ways to return a speCIfic value are to explicitly call exit (2) or 
to leave the function main () with a "return expression;" construct. 

DIAGNOSTICS 
The diagnostics produced by C itself are intended to be self-explanatory. Occa­
sional messages may be produced by the assembler or the link editor. 

- 2 -



CD(I) CD(I) 

NAME 
cd - change working directory 

SYNOPSIS 
cd [ directory ] 

DESCRIPTION 
If directory is not specified, the value of shell parameter $HOME is used as the 
new working directory. If directory specifies a complete path starting with I, ., 
•. , directory becomes the new working directory. If neither case applies, cd 
tries to find the designated directory relative to one of the paths specified by 
the $CDPATH shell variable. $CDPATH has the same syntax as, and similar 
semantics to, the $PATH shell variable. Cd must have execute (search) permis­
sion in directory. 

Because a new process is created to execute each command, cd would be 
ineffective if it were written as a normal command; therefore, it is recognized 
and is internal to the shell. 

SEE ALSO 
pwd(I), sh(I). 
chdir(2) in the UNIX System V Programmer Reference Manual . 

. - - 1 -



CDCO) CDCO) 

NAME 
cdc - change the delta commentary of an SCCS delta 

SYNOPSIS 
cdc -rSID [-m[mrlist]] [-y[comment]] files 

DESCRIPTION 
Cdc changes the delta commentary, for the SID specified by the -r keyletter, 
of each named SCCS file. 

Delta commentary is defined to be the Modification Request (MR) and com­
ment information normally specified via the deltaO) command (-m and -y 
key letters) . 

If a directory is named, cdc behaves as though each file in the directory were 
specified as a named file, except that non-SeeS files (last component of the 
path name does not begin with s.) and unreadable files are silently ignored. If 
a name of - is given, the standard input is read (see WARNINGS); each line of 
the standard input is taken to be the name of an sees file to be processed. 

Arguments to cdc, which may appear in any order, consist of keyletter argu­
ments and file names. 

All the described keyletter arguments apply independently to each named file: 

-rSID Used to specify the sees IDentification (SID) string of 
a delta for which the delta commentary is to be 
changed. 

-m[mrlistJ If the sces file has the v flag set (see admin (I» then a 
list of MR numbers to be added andlor deleted in the 
delta commentary of the SID specified by the -r 
keyletter may be supplied. A null MR list has no effect. 

MR entries are added to the list of MRs in the same 
manner as that of delta 0). In order to delete an MR, 
precede the MR number with the character ! (see 
EXAMPLES). If the MR to be deleted is currently in 
the list of MRs, it is removed and changed into a "com­
ment" line. A list of all deleted MRs is placed in the 
comment section of the delta commentary and preceded 
by a comment line stating that they were deleted. 

If -m is not used and the standard input is a terminal, 
the prompt MRs? is issued on the standard output 
before the standard input is read; if the standard input 
is not a terminal, no prompt is issued. The MRs? 
prompt always precedes the comments? prompt (see -y 
key letter) . 

MRs in a list are separated by blanks andlor tab charac­
ters. An unescaped new-line character terminates the 
MR list. 

Note that if the v flag has a value (see admin (I», it is 
taken to be the name of a program (or sheii proceciure) 
which validates the correctness of the MR numbers. If a 
non-zero exit status is returned from the MR number 
validation program, cdc terminates and the delta com­
mentary remains unchanged. 

- 1 -



CDC(I) CDC (I) 

-ykomment] Arbitrary text used to replace the comment (s) already 
existing for the delta specified by the -r keyletter. The 
previous comments are kept and preceded by a comment 
line stating that they were changed. A null comment 
has no effect. 

If -y is not specified and the standard input is a termi­
nal, the prompt comments? is issued on the standard 
output before the standard input is read; if the standard 
input is not a terminal, no prompt is issued. An unes­
caped new-line character terminates the comment text. 

The exact permissions necessary to modify the sees file 'are documented 
in the Source Code Control System User Guide. Simply stated, they are 
either (1) if you made the delta, you can change its delta commentary; or 
(2) if you own the file and directory you can modify the delta commen­
tary. 

EXAMPLES 
cdc -rl.6 -m"bI78-12345 !bl77-54321 bI79-00001" -ytrouble s.file 

adds b178-12345 and b179-00001 to the MR list, removes bl77-54321 from the 
MR list, and adds the comment trouble to delta 1.6 of s.file. 

cdc -r 1.6 s.file 
MRs? !bl77-54321 b178-12345 b179-00001 
comments? trouble 

does the same thing. 

WARNINGS 

FILES 

If sees file names are supplied to the cdc command via the standard input (­
on the command line), then the -m and -y keyletters must also be used. 

x-file (see deltaO» 
z-file (see delta(1) 

SEE ALSO 
admin(1), delta(l), get(l), help(l), prs(l). 
sccsfile(4) in the UNIX System V Programmer Reference Manual. 

Source Code Control System User Guide in the UNIX System V User Guide. 

DIAGNOSTICS 
Use he/pO) for explanations. 

- 2 -



CFLOW(t) CFLOW(t) 

NAME 
cHow- generate C Howgraph 

SYNOPSIS 
cHow [-rJ [-ix] [-i_ ] [-dnum] files 

DESCRIPTION 
Cfiow analyzes a collection of C, Y ACC, LEX, assembler, and object files and 
attempts to build a graph charting the external references. Files suffixed in .y, 
.I, .c, and .i are Y ACe'd, LEX'd, and C-preprocessed (bypassed for .i files) as 
appropriate and then run through the first pass of lint (1). (The -I, - D, and 
- U options of the C-preprocessor are also understood.) Files suffixed with .s 
are assembled and information is extracted (as in .0 files) from the symbol 
table. The output of all this non-trivial processing is collected and turned into 
a graph of external references which is displayed upon the standard output. 

Each line of ovtput begins with a reference (i.e., line) number, followed by a 
suitable number of tabs indicating the level. Then the name of the global (nor­
mally only a function not defined as an external or beginning with an under­
score; see below for the -i inclusion option) a colon and its definition. For 
information extracted from C source, the definition consists of an abstract type 
declaration (e.g., char .), and, delimited by angle brackets, the name of the 
source file and the line number where the definition was found. Definitions 
extracted from object files indicate the file name and location counter under 
which the symbol appeared (e.g., text). Leading underscores in C-style exter­
nal names are deleted. 

Once a definition of a name has been printed, subsequent references to that 
name contain only the reference number of the line where the definition may be 
found. For undefined references, only < > is printed. 

As an example, given the following in file.c: 

int i; 

mainO 
{ 

fO 
{ 

the command 

fO; 
gO; 
fO; 

i = hO; 

cHow -ix file.c 

produces the output 

I main: intO, <file.c 4> 
2 f: intO, <file.c 11 > 
3 h: <> 
4 i: int, < file.c 1 > 
5 g: <> 

- 1 -



CFLOW(l) CFLOW(l) 

When the nesting level becomes too deep, the -e option of pr (1) can be used 
to compress the tab expansion to something less than every eight spaces. 

The following options are interpreted by cflow: 

-r Reverse the "caller:callee" relationship producing an inverted listing 
showing the callers of each function. The listing is also sorted in lexi­
cographical order by callee. 

-ix Include external and static data symbols. The default is to include 
only functions in the flowgraph. 

-i Include names that begin with an underscore. The default is to 
exclude these functions (and data if -ix is used). 

-dnum The num decimal integer indicates the depth at which the flowgraph 
is cut off. By default this is a very large number. Attempts to set the 
cutoff depth to a nonpositive integer will be met with contempt. 

DIAGNOSTICS 
Complains about bad options. Complains about multiple definitions and only 
believes the first. Other messages may come from the various programs used 
(e.g., the C-preprocessor). 

SEE ALSO 

BUGS 

as(}), cc(}), cpp(l), lex(I), lint(I), nm(I), pr(t), yacc(}). 

Files produced by lex(I) and yacc(}) cause the reordering of line number 
declarations which can confuse cflow. To get proper results, feed cfiow the 
yacc or lex input. 

- 2 -



CHMOD(l) CHMOD(l) 

NAME 
chmod - change mode 

SYNOPSIS 
chmod mode files 

DESCRIPTION 
The permissions of the named files are changed according to mode, which may 
be absolute or symbolic. An absolute mode is an octal number constructed 
from the OR of the following modes: 

4000 set user ID on execution 
2000 set group ID on execution 
1000 sticky bit, see chmod (2) 
0400 read by owner 
0200 write by owner 
0100 execu te (search in directory) by owner 
0070 read, write, execute (search) by group 
0007 read, write, execute (search) by others 

A symbolic mode has the form: 

[ who ] op permission [ op permission ] 

The who part is a combination of the letters u (for user's permissions), g 
(group) and 0 (other). The letter a stands for ugo, the default if who is omit­
ted. 

Op can be + to add permission to the file's mode, - to take away permission, 
or = to assign permission absolutely (all other bits will be reset). 

Permission is any combination of the letters r (read), w (write), x (execute), s 
(set owner or group ID) and t (save text, or sticky); u, g, or 0 indicate that per­
mission is to be taken from the current mode. Omitting permission is only 
useful with = to take away all permissions. 

Multiple symbolic modes separated by commas may be given. Operations are 
performed in the order specified. The letter s is only useful with u or g and t 
only works with u. 

Only the owner of a file (or the super-user) may change its mode. Only the 
super-user may set the sticky bit. In order to set the group ID, the group of the 
file must correspond to your current group ID. 

EXAMPLES 
The first example denies write permission to others, the second makes a file 
executable: 

SEE ALSO 
ls(1) . 

chmod o-w file 

chmod +x file 

chmod(2) in the UNIX System V Programmer Reference Manual. 

- 1 -



CHOWN(l) CHOWN(l) 

NAME 
chown, chgrp - change owner or group 

SYNOPSIS 
chown owner file ... 

chgrp group file '" 

DESCRIPTION 

FILES 

Chown changes the owner of the files to owner. The owner may be either a 
decimal user ID or a login name found in the password file. 

Chgrp changes the group 10 of the files to group. The group may be either a 
decimal group ID or a group name found in the group file. 

If either command is invoked by other than the super-user, the set-user-ID and 
set-group-ID bits of the file mode, 04000 and 02000 respectively, will be 
cleared. 

/etc/passwd 
/etc/group 

SEE ALSO 
chmod(l). 
chown(2), group(4), passwd(4) in the UNIX System V Programmer Reference 
Manual. 

- 1 -



CMP(t) CMP(1) 

NAME 
cmp - compare two files 

SYNOPSIS 
cmp [ -I ] [ -s ] filel file2 

DESCRIPTION 
The two files are compared. (If file 1 is -, the standard input is used.) Under 
default options, cmp makes no comment if the files are the same; if they differ, 
it announces the byte and line number at which the difference occurred. If one 
file is an initial subsequence of the other, that fact is noted. 

Options: 

-I Print the byte number (decimal) and the differing bytes (octal) for each 
difference. 

-s Print nothing for differing files; return codes only. 

SEE ALSO 
comm (1), diff( 1) . 

DIAGNOSTICS 
Exit code 0 is returned for identical files, I for different files, and 2 for an inac­
cessible or missing argument. 

- I -



COL(I) COL(1) 

NAME 
col - filter reverse line-feeds 

SYNOPSIS 
col [ -bfpx ] 

DESCRIPTION 
Col reads from the standard input and writes onto the standard output. It per­
forms the line overlays implied by reverse line feeds (ASCII code ESC-7), and 
by forward and reverse half-line feeds (ESC-9 and ESC-8). Col is particularly 
useful for filtering multicolumn output made with the .rt command of nroff and 
output resulting from use of the tbl(I) preprocessor. 

If the -b option is given, col assumes that the output device in use is not capa­
ble of backspacing. In this case, if two or more characters are to appear in the 
same place, only the last one read will be output. 

~ 

Although col accepts half-line motions in its input, it normally does not emit 
them on output. Instead, text that would appear between lines is moved to the 
next lower full-line boundary. This treatment can be suppressed by the -f 
(fine) option; in this case, the output from col may contain forward half-line 
feeds (ESC-9), but will still never contain either kind of reverse line motion. 

Unless the -x option is given, col will convert white space to tabs on output 
wherever possible to shorten printing time. 

The ASCII control characters SO (\016) and SI (\017) are assumed by col to 
start and end text in an alternate character set. The character set to which 
each input character belongs is remembered, and on output SI and SO charac­
ters are generated as appropriate to ensure that each character is printed in the 
correct character set. 

On input, the only control characters accepted are space, backspace, tab, 
return, new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The VT 
character is an alternate form of full reverse line-feed, included for compatibil­
ity with some earlier programs of this type. All other non-printing characters 
are ignored. 

Normally, col will ignore any unknown to it escape sequences found in its 
input; the -p option may be used to cause col to output these sequences as 
regular characters, subject to overprinting from reverse line motions. The use 
of this option is highly discouraged unless the user is fully aware of the textual 
position of the escape sequences. 

SEE ALSO 

NOTES 

BUGS 

nroff(I), tbI( 1) . 

The input format accepted by col matches the output produced by nroff with 
either the -T37 or -Tip options. Use -T37 (and the -f option of col) if the 
ultimate disposition of the output of col will be a device that can interpret 
half-line motions, and -Tip otherwise. 

Cannot back up more than 128 lines. 
Allows at most 800 characters, including backspaces, on a line. 
Local vertical motions that would result in backing up over the first line of the 
document are ignored. As a result, the first line must not have any super­
scripts. 

- 1 -



eOMB(I) eOMB(I) 

NAME 
comb - combine sees deltas 

SYNOPSIS 
comb [-0] [-s] [-psid] [-clist] files 

DESCRIPTION 

FILES 

Comb generates a shell procedure (see sh (1» which, when run, will reconstruct 
the given sees files. The reconstructed files will, hopefully, be smaller than 
the original files. The arguments may be specified in any order, but all 
key letter arguments apply to all named sees files. If a directory is named, 
comb behaves as though each file in the directory were specified as a named 
file, except that non-sees files (last component of the path name does not 
begin with s.) and unreadable files are silently ignored. If a name of - is 
given, the standard input is read; each line of the input is taken to be the name 
of an sees file to be processed; non-sees files and unreadable files are silently 
ignored. The generated shell procedure is written on the standard output. 

The keyletter arguments are as follows. Each is explained as though only one 
named file is to be processed, but the effects of any key letter argument apply 
independently to each named file .. 

-pSID The sees IDentification string (SID) of the oldest delta to be 
preserved. All older deltas are discarded in the reconstructed file. 

- c/ist A list (see get (1) for the syntax of a list) of deltas to be preserved. 
All other deltas are discarded. 

-0 For each get -e generated, this argument causes the reconstructed 
file to be accessed at the release of the delta to be created, otherwise 
the reconstructed file would be accessed at the most recent ancestor. 
Use of the -0 keyletter may decrease the size of the reconstructed 
sees file. It may also alter the shape of the delta tree of the original 
file. 

-s This argument causes comb to generate a shell procedure which, when 
run, will produce a report giving, for each file: the file name, size (in 
blocks) after combining, original size (also in blocks), and percentage 
change computed by: 

100 • (original - combined) / original 
It is recommended that before any sees files are actually combined, 
one should use this option to determine exactly how much space is 
saved by the combining process. 

If no keyletter arguments are specified, comb will preserve only leaf deltas and 
the minimal number of ancestors needed to preserve the tree. 

s.COMB 
comb????? 

The name of the reconstructed sces file. 
Temporary. 

SEE ALSO 
admin(1), delta(t), get(1), help(l), prs(1), sh(t). 
sccsfile(4) in the UNIX System V Programmer Reference Manual. 

Source Code Control System User Guide in the UNIX System V User Guide. 

DIAGNOSTICS 

BUGS 

Use help (1) for explanations. 

Comb may rearrange the shape of the tree of deltas. It may not save any 
space; in fact, it is possible for the reconstructed file to actually be larger than 
the original. 

- 1 -



COMM(I) COMM(I) 

NAME 
comm - select or reject lines common to two sorted files 

SYNOPSIS 
comm [ - [ 123 ] ] filel file2 

DESCRIPTION 
Comm reads file1 and file2, which should be ordered in ASCII collating 
sequence (see sort (1», and produces a three-column output: lines only in file1; 
lines only in file2; and lines in both files. The file name - means the standard 
input. 

Flags l, 2, or 3 suppress printing of the corresponding column. Thus comm 
-12 prints only the lines common to the two files; comm -23 prints only lines 
in the first file but not in the second; comm -123 is a no-op. 

SEE ALSO 
cmp (1), diff( 1), sort (1), uniq (1). 

- 1 -



CP(l) CP(l) 

NAME 
cp, In, mv - copy, link or move files 

SYNOPSIS 
cp file 1 [ file2 .. .1 target 
In [ -f) file 1 [ file2 .. .1 target 
mv [ -f ] filel [ file2 .. .1 target 

DESCRIPTION 
File1 is copied Clinked, moved) to target. Under no circumstance can file 1 and 
target be the same (take care when using sh (1) metacharacters). If target is a 
directory, then one or more files are copied Oinked, moved) to that directory. 
If target is a file, its contents are destroyed. 

If mv or In determines that the mode of target forbids writing, it will print the 
mode (see chmod(2», ask for a response, and read the standard input for one 
line; if the line begins with y, the mv or In occurs, if permissable; if not, the 
command exits. No questions are asked and the mv or In is done when the -f 
option is used or if the standard input is not a terminal. 

Only mv will allow file1 to be a directory, in which case the directory rename 
will occur only if the two directories have the same parent; file1 is renamed 
target. If file1 is a file and target is a link to another file with links, the other 
links remain and target becomes a new file. 

When using cp, if target is not a file, a new file is created which has the same 
mode as file1 except that the sticky bit is not set unless you are super-user; the 
owner and group of target are those of the user. If target is a file, copying a 
file into target does not change its mode, owner, nor group. The last 
modification time of target (and last access time, if target did not exist) lnd 
the last access time of file1 are set to the time the copy was made. If target is 
a link to a file, all links remain and the file is changed. 

SEE ALSO 

BUGS 

cpio(!), rm(!). 
chmod (2) in the UNIX System V Programmer Reference Manual. 

If file 1 and target lie on different file systems, mv must copy the file and delete 
the original. In this case any linking relationship with other files is lost. 

Ln will not link across file systems. 

- 1 -



CPIO(t) CPIO (I) 

NAME 
cpio - copy file archives in and out 

SYNOPSIS 
cpio -0 [ acBv ] 

cpio -i [ BcdmrtuvfsSb6 ] [ patterns 

cpio - p [ adlmruv ] directory 

DESCRIPTION 
Cpio -0 (copy out) reads the standard input to obtain a list of path names and 
copies those files onto the standard output together with path name and status 
information. Output is padded to a 512-byte boundary. 

Cpio -i (copy in) extracts files from the standard input, which is assumed to 
be the product of a previous cpio -0. Only files with names that match pat­
terns are selected. Patterns are given in the name-generating notation of 
sh(I}. In patterns, meta-characters ?, ., and l. . .J match the slash / character. 
Multiple patterns may be specified and if no patterns are specified, the default 
for patterns is • {i.e., select all files}. The extracted files are conditionally 
created and copied into the current directory tree based upon the options 
described below. The permissions of the files will be those of the previous cpio 
-0. The owner and group of the files will be that of the current user unless 
the user is super-user, which causes cpio to retain the owner and group of the 
files of the previous cpio -0. 

Cpio -p (pass) reads the standard input to obtain a list of path names of files 
that are conditionally created and copied into the destination directory tree 
based upon the options described below. 

The meanings of the available options are: 

a Reset access times of input files after they have been copied. 
B Input/output is to be blocked 5,120 bytes to the record (does not apply 

to the pass option; meaningful only with data directed to or from 
/dev/rmtl??) . 

d Directories are to be created as needed. 
c Write header information in ASCII character form for portability. 
r Interactively rename files. If the user types a null line, the file is 

skipped. 
Print a table of contents of the input. No files are created. 

u Copy unconditionally (normally, an older file will not replace a newer 
file with the same name). 

v Verbose: causes a list of file names to be printed. When used with the 
t option, the table of contents looks like the output of an Is -I com­
mand (see Is (I» . 
Whenever possible, link files rather than copying them. Usable only 
with the -p option. 

m Retain previous file modification time. This option is ineffective on 
directories that are being copied. 

f Copy in all files except those in patterns. 
s Swap bytes. Use only with the -i option. 
S Swap halfwords. Use only with the -i option. 
b Swap both bytes and halfwords. Use only with the -i option. 
6 Process an old {i.e., UNIX System Sixth Edition format} file. Only 

useful with -i (copy in). 

- 1 -



CPIO(t) CPIO(t) 

EXAMPLES 
The first example below copies the contents of a directory into an archive; the 
second duplicates a directory hierarchy: 

Is I cpio -0 > /dev/mt/Om 

cd olddir 
find . -depth -print I cpio -pdl newdir 

The trivial case "find . -depth -print I cpio -oB > /devlrmt/Om" can be 
handled more efficiently by: 

find. -cpio /dev/rmt/Om 

SEE ALSO 

BUGS 

ar(1), find(1), Is(1). 
cpio(4) in the UNIX System V Programmer Reference Manual. 

Path names are restricted to 128 characters. If there are too many unique 
linked files, the program runs out of memory to keep track of them and, 
thereafter, linking information is lost. Only the super-user can copy special 
files. The - B option does not work with certain magnetic tape drives (see 
un32(7) in the UNIX System V Administrator Reference Manual). 

- 2 -



Cpp(I) Cpp(I) 

NAME 
cpp - the C language preprocessor 

SYNOPSIS 
IIib/cpp [ option .. , 1 [ ifile [ ofile1 1 

DESCRIPTION 
Cpp is the C language preprocessor which is invoked as the first pass of any C 
compilation using the cc(!) command. Thus the output of cpp is designed to 
be in a form acceptable as input to the next pass of the C compiler. As the C 
language evolves, cpp and the rest of the C compilation package will be 
modified to follow these changes. Therefore, the use of cpp other than in this 
framework is not suggested. The preferred way to invoke cpp is through the 
cc(!) command, since the functionality of cpp may someday be moved else­
where. See m4(I) for a general macro processor. 

Cpp optionally~ accepts two file names as arguments. [file and ofile are respec­
tively the input and output for the preprocessor. They default to standard 
input and standard output if not supplied. 

The following options to cpp are recognized: 

- P Preprocess the input without producing the line control information 
used by the next pass of the C compiler. 

-c By default, cpp strips C-style comments. If the -C option is specified, 
all comments (except those found on cpp directive lines) are passed 
along. 

-Uname 
Remove any initial definition of name, where name is a reserved sym­
bol that is predefined by the particular preprocessor. The current list 
of these possibly reserved symbols includes: 

operating system: ibm, gcos, os, tss, unix 
hardware: interdata, pdplI, u370, u3b, u3b5, vax 
UNIX system variant: RES, RT 
lint(!): lint 

-Dname 
-Dname=dej 

Define name as if by a #define directive. If no =dej is given, name is 
defined as 1. The - D option has lower precedence than the - U 
option. That is, if the same name is used in both a - U option and a 
- D option, the name will be undefined regardless of the order of the 
options. 

-T Except on the PDP-II, preprocessor symbols are no longer restricted to 
eight characters. The -T option forces cpp to use only the first eight 
characters for distinguishing different preprocessor names. This 
behavior is the same as previous preprocessors with respect to the 
length of names and is included for backward compatability. 

- Idir Change the algorithm for searching for #include files whose names do 
not begin with / to look in dir before looking in the directories on the 
standard list. Thus, #include files whose names are enclosed in "" will 
be searched for first in the directory of the file with the #include line, 
then in directories named in - I options, and last in directories on a 
standard list. For #incIude files whose names are enclosed in < >, the 
directory of the file with the #include line is not searched. 

Two special names are understood by cpp. The name __ LINE __ is defined as 
the current line number (as a decimal integer) as known by cpp, and __ FILE __ 
is defined as the current file name (as a C string) as known by cpp. They can 

- 1 -



CPPO) , CPP(l) 

·be used anywhere (including in macros) just as any other defined name. 

An cppdirectives start with lines begun by #. Any nuinber of blanks and tabs 
are allowed between the # and the directive. The directives are: 

#define name token-string 
Replace subsequent instances of name with token-string. 

#define name( a~g, ..• , arg ) token-string 
Notice that there can be no space between name and the <. Replace 
subsequent instances of name followed by a (, a list of comma­
separated set of tokens, and a ) by token-string, where each 
occurrence of an arg in the token-string is replaced by the correspond-

. ing set of tokens in the comma-separated list. When a macro with 
arguments is expanded, the arguments are placed into the expanded 
token-string unchanged. After the entire token-string has been 
expanded, cpp re-starts its scan for names to expand at the beginning 
of newly created token-string. 

#undef' name 
. . ' Cause the definition of name (if any) to be forgotten from now on. 

#include ''filename" 
#include <filename> 

Include at this point the contents of filename {which will then be run 
through cpp}. When the <filename> notation is used, filename is 
only searched for in the standard places, See the -I option above for 
more detail. 

#line integer-constant ''filename'' 

#endif 

Causes cpp to generate line control information for the next pass of the 
C compiler. Integer-constant is the line number of the next line and 
filename is the file where it comes from. If ''filename'' is not given, the 
current file name is unchanged. 

Ends a section of lines begun by a test directive {#if, #ifdef, or 
#ifndef}. Each test directive must have a matching #endif. 

#ifdef name 
The lines following will appear in the output if and only if name has 
been the subject of a previous #define without being the subject of an 
intervening #undef. 

#ifndef name 
The lines following will not appear in the output if and only if name 
has been the subject of a previous #define without being the subject of 
an intervening #undef. 

#if constant-expression 
Lines following will appear in the output if and only if the constant­
expression evaluates to non-zero. All binary non-assignment C opera­
tors, the ?: operator, the unary -, !, and - operators are all legal in 
constant-expression. The precedence of the operators is the same as 
defined by the C language. There is also a unary operator defined, 
which can be used in constant-expression in these two forms: defined ( 
name ) or defined name. This allows the utility of #ifdef-and #ifndef 
in a #if directive. Only these operators, integer constants, and names 
which are known by cpp should be used in constant-expression. In 
particular, the sizeof operator is not available. 

- 2-



CPP(l) CPPO) 

FILE$ 

#else R~verses the notion of the test directive which matches this dir~tive. 
So if lines previo .. s to thi~ directive are ignored. th~ following lines will 
appear in the output, And vice versa. 

The test directives and the possibl~ #else directives. can be nested. 

lusr/include 

S~E ALSO 

standard directory for #incl_ files 

cc(I), m4(}). 

DIAGNOSTlCS 

NOTES 

The error messages produced by cpp are intended to ~ self-e,cplanatory. The 
line number and filename where the error occurred are printed along with the 
diagnostic. 

When new-line characters were found in argum.ent lists for macros to be 
expanded, previous versions of cpp put out the new-lines as they .were found 
and expanded. The current versionofcpp rf:places these new-lines with blanks 
to alleviate problems that the previous versions had when this occurred. 



CPU(l) CPU(l) 

NAME 
cpu-display the local system name in WorkNet 

SYNOPSIS 
cpu 

DESCRIPTION 
Use the cpu command to display the name of your local system in the WorkNet 
network. This command tells you the name of the machine that connects your 
terminal to WorkNet. 

- 1 -





CRONTAB(l) CRONTAB(l) 

NAME 
crontab - user crontab file 

SYNOPSIS 
crontab [file] 
crontab -r 
crontab -I 

DESCRIPTION 
Crontab copies the specified file, or standard input if no file is specified, into a 
directory that holds all users' crontabs. The -r option removes a user's crontab 
from the crontab directory. Crontab -I will list the crontab file for the invok­
ing user. 

Users are permitted to use crontab if their names appear in the file 
/usr/lib/cron/cron.allow. If that file does not exist, the file 
/usr/lib/cron/cron.deny is checked to determine if the user should be denied 
access to crontab. If neither file exists, only root is allowed to submit a job. If 
either file is at.deny, global usage is permitted. The allow/deny files consist of 
one user name per line. 

A crontab file consists of lines of six fields each. The fields are separated by 
spaces or tabs. The first five are integer patterns that specify the following: 

minute (0-59), 
hour (0-23), 
day of the month (1-31), 
month of the year (I -12), 
day of the week (0-6 with O=Sunday). 

Each of these patterns may be either an asterisk (meaning all legal values) or 
a list of elements separated by commas. An element is either a number or two 
numbers separated by a minus sign (meaning an inclusive range). Note that 
the specification of days may be made by two fields (day of the month and day 
of the week). If both are specified as a list of elements, both are adhered to. 
For example, 0 0 1,15 * 1 would run a command on the first and fifteenth of 
each month, as well as on every Monday. To specify days by only one field, the 
other field should be set to * (for example, 0 0 * * 1 would run a command only 
on Mondays). 

The sixth field of a line in a crontab file is a string that is executed by the shell 
at the specified times. A percent character in this field (unless escaped by \) is 
translated to a new-line character. Only the first line (up to a % or end of line) 
of the command field is executed by the shell. The other lines are made avail­
able to the command as standard input. 

The shell is invoked from your $HOME directory with an argO of sh. Users who 
desire to have their .profile executed must explicitly do so in the crontab file. 
Cron supplies a default environment for every shell, defining HOME, LOGNAME, 
SHELL( = /bin/sh), and PATH( =:/bin:/usr/bin:/usr/lbin). 

NOTE: Users should remember to redirect the standard output and standard 
error of their commands! If this is not done, any generated output or errors 
will be mailed to the user. 

- 1 -



CRONTAB(I) 

FILES 

SEE ALSO 
sh (I). 

I usr II i bl cron 
lusrlspool/cron/crontabs 
lusrllib/cronllog 
lusrllib/cron/cron.allow 
lusrllib/cron/cron.deny 

main cron directory 
spool area 

CRONTAB(l) 

accounting information 
list of allowed users 
list of denied users 

cron(1 M) in the UNIX System V Administrator Reference Manual. 

- 2 -



CRYPT (I) CRYPT(t) 

NAME 
crypt - encode/decode 

SYNOPSIS 
crypt [ password ] 

DESCRIPTION 

FILES 

Crypt reads from the standard input and writes on the standard output. The 
password is a key that selects a particular transformation. If no password is 
given, crypt demands a key from the terminal and turns off printing while the 
key is being typed in. Crypt encrypts and decrypts with the same key: 

crypt key < clear > cypher 
crypt key < cypher I pr 

will print the clear. 

Files encrypted by crypt are compatible with those treated by the editor ed in 
encryption mode. 

The security of encrypted files depends on three factors: the fundamental 
method must be hard to solve; direct search of the key space must be infeasible; 
"sneak paths" by which keys or clear text can become visible must be minim­
ized. 

Crypt implements a one-rotor machine designed along the lines of the German 
Enigma, but with a 256-element rotor. Methods of attack on such machines 
are known, but not widely; moreover the amount of work required is likely to 
be large. 

The transformation of a key into the internal settings of the machine is deli­
berately designed to be expensive, i.e., to take a substantial fraction of a second 
to compute. However, if keys are restricted to (say) three lower-case letters, 
then encrypted files can be read by expending only a substantial fraction of five 
minutes of machine time. 

Since the key is an argument to the crypt command, it is potentially visible to 
users executing ps(t) or a derivative. The choice of keys and key security are 
the most vulnerable aspect of crypt. 

/dev/tty for typed key 

SEE ALSO 

BUGS 

ed(1), makekey(1), stty(1). 

If output is piped to nroff and the encryption key is not given on the command 
line, crypt can leave terminal modes in a strange state (see stty (1). 
If two or more files encrypted with the same key are concatenated and an 
attempt is made to decrypt the result, only the contents of the first of the origi­
nal files will be decrypted correctly. 

- 1 -



CSPLIT(I) CSPLIT(I) 

NAME 
csplit - context split 

SYNOPSIS 
csplit [-s] [-k] [-f prefix] file arg 1 [... argn] 

DESCRIPTION 
CspUt reads file and separates it into n+ 1 sections, defined by the arguments 
argJ. .. argn. By default the sections are placed in xxOO ... xxn (n may not 
be greater than 99). These sections get the following pieces of file: 

00: From the start of file up to (but not including) the line refer­
enced by arg J . 

01: From the line referenced by argJ up to the line referenced by 
arg2. 

n+ 1: From the line referenced by argn to the end of file. 

If the file argument is a - then standard input is used. 

The options to cspUt are: 

-s CspUt normally prints the character counts for each file 
created. If the -s option is present, csplit suppresses the 
printing of all character counts. 

-k Csplit normally removes created files if an error occurs. If 
the -k option is present, csplit leaves previously created files 
intact. 

-f prefix If the -f option is used, the created files are named prefixOO 
... prefixn. The default is xxOO ... xxn. 

The arguments (argJ ... argn) to csplit can be a combination of the follow­
ing: 

/rexp/ A file is to be created for the section from the current line up 
to (but not including) the line containing the regular expression 
rexp. The current line becomes the line containing rexp. This 
argument may be followed by an optional + or - some 
number of lines (e.g., IPagel -5). 

%rexp% This argument is the same as /rexp/, except that no file is 
created for the section. 

lnno A file is to be created from the current line up to (but not 
including) lnno. The current line becomes lnno. 

{num} Repeat argument. This argument may follow any of the above 
arguments. If it follows a rexp type argument, that argument 
is applied num more times. If it follows lnno, the file will be 
split every lnno lines (num times) from that point. 

Enclose all rexp type arguments that contain blanks or other characters mean­
ingful to the shell in the appropriate quotes. Regular expressions may not con­
tain embedded new-lines. Csplit does not affect the original file; it is the users 
responsibility to remove it. 

EXAMPLES 
csplit -f cobol file '/procedure division!' /parS./ fpar 16./ 

This example creates four files, cobolOO ... cobol03. After editing the "split" 
files, they can be recombined as follows: 

cat cobolO[O-3] > file 

- 1 -



CSPLIT(I) CSPLIT(t) 

Note that this example overwrites the original file. 

csplit -k file 100 {99} 

This example would split the file at every 100 lines, up to 10,000 lines. The 
-k option causes the created files to be retained if there are less than 10,000 
lines; however, an error message would still be printed. 

csplit -k prog.c '%main(%' 'r}/+l' {20} 

Assuming that prog.c follows the normal C coding convention of ending rou­
tines with a } at the beginning of the line, this example will create a file con­
taining each separate C routine (up to 21) in prog.c. 

SEE ALSO 
ed(l), sh(1). 
regexp(S) in the UNIX System V Programmer Reference Manual. 

DIAGNOSTICS 
Self-explanatory except for: 

arg - out of range 
which means that the given argument did not reference a line between the 
current position and the end of the file. 

- 2 -



CT(IC) CT(IC) 

NAME 
ct - spawn getty to a remote terminal 

SYNOPSIS 
ct [ -b ] [ -v ] [ -wn ] [ -sspeed ] telno ... 

DESCRIPTION 

FILES 

Ct dials the phone number of a modem that is attached to a terminal, and 
spawns a getty process to that terminal. Telno is a telephone number, with 
equal signs for secondary dial tones and minus signs for delays at appropriate 
places. If more than one telephone number is specified, ct will try each in suc­
cession until one answers; this is useful for specifying alternate dialing paths. 

Ct will try each line listed in the file /usrllib/uucp/L-devices until it finds an 
available line with appropriate attributes or runs out of entries. If there are no 
free lines, ct will ask if it should wait for one, and if so, for how many minutes 
it should wait~before it gives up. Ct will continue to try to open the dialers at 
one-minute intervals until the specified limit is exceeded. The dialogue may be 
overridden by specifying the -wn option, where n is the maximum number of 
minutes that ct is to wait for a line. 

Normally, ct will hang up the current line, so that that line can answer the 
incoming call. The -h option will prevent this action. If the -v option is 
used, ct will send a running narrative to the standard error output stream. 

The data rate may be set with the -s option, where speed is expressed in 
baud. The default rate is 300. 

After the user on the destination terminal logs out, ct prompts, Reconnect? If 
the response begins with the letter n the line will be dropped; otherwise, getty 
will be started again and the login: prompt will be printed. 

Of course, the destination terminal must be attached to a modem that can 
answer the telephone. 

/usrllib/uucp/L-devices 
/ usr / adm/ ctlog 

SEE ALSO 
cu(IC), 10gin(I), uucp(IC). 

- I -



CTRACE(t) CTRACE(I) 

NAME 
ctrace - C program debugger 

SYNOPSIS 
ctrace [ options ] [ file ] 

DESCRIPTION 
Ctrace allows you to follow the execution of a C program, statement-by­
statement. The effect is similar to executing a shell procedure with the -x 
option. Ctraee reads the C program in file (or from standard input if you do 
not specify file), inserts statements to print the text of each executable state­
ment and the values of all variables referenced or modified, and writes the 
modified program to the standard output. You must put the output of etrace 
into a temporary file because the edt) command does not allow the use of a 
pipe. You then compile and execute this file. 

As each statement in the program executes it will be listed at the terminal, fol­
lowed by the name and value of any variables referenced or modified in the 
statement, followed by any output from the statement. Loops in the trace out­
put are detected and tracing is stopped until the loop is exited or a different 
sequence of statements within the loop is executed. A warning message is 
printed every 1000 times through the loop to help you detect infinite loops. 
The trace output goes to the standard output so you can put it into a file for 
examination with an editor or the bfs(I) or tai/O) commands. 

The only options you will commonly use are: 

-f functions Trace only these functions. 
-v functions Trace all but these functions. 

You may want to add to the default formats for printing variables. Long and 
pointer variables are always printed as signed integers. Pointers to character 
arrays are also printed as strings if appropriate. Char, short, and int variables 
are also printed as signed integers and, if appropriate, as characters. Double 
variables are printed as floating point numbers in scientific notation. You can 
request that variables be printed in additional formats, if appropriate, with 
these options: 

-0 Octal 
-x Hexadecimal 
-u Unsigned 
-e Floating point 

These options are used only in special circumstances: 

-I n Check n consecutively executed statements for looping trace output, 
instead of the default of 20. Use 0 to get all the trace output from 
loops. 

-s Suppress redundant trace output from simple assignment statements 
and string copy function calls. This option can hide a bug caused by 
use of the = operator in place of the == operator. 

-t n Trace n variables per statement instead of the default of 10 (the max­
imum number is 20). The Diagnostics section explains when to use this 
option. 

- P Run the C preprocessor on the input before tracing it. You can also 
use the -D, -I, and -U edt) preprocessor options. 

These options are used to tailor the run-time trace package when the traced 
program will run in a non-UNIX system environment: 

-b Use only basic functions in the trace code, that is, those in etype(3C), 
printfOS), and string(3C). These are usually available even in cross­
compilers for microprocessors. In particular, this option is needed when 

• 1 -



CTRACE ( I ) CTRACE ( I) 

the traced program runs under an operating system that does not have 
signal (2), fflush (3S), longjmp (3C), or setjmp (3C). 

-p 's' Change the trace print function from the default of 'printf('. For 
example, 'fprintf(stderr,' would send the trace to the standard error 
output. 

~r f Use file f in place of the runtime.c trace function package. This lets 
you change the entire print function, instead of just the name and lead­
ing arguments (see the -p option). 

EXAMPLE 
If the file le.c contains this C program: 
1 #include <stdio.h> 
2 main () /* count lines in input * / 
3 { 
4 int c, nl; 
5 
6 nI = 0; 
7 while «c = getcharO) != EOF) 
8 if (c = '\n') 
9 ++nl; 10 printf{"%d\n", nt); 11 } and you enter 

these commands and test data: cc lc.c a.out 1 (cntl-d), the program will be 
compiled and executed. The output of the program will be the number 2, 
which is not correct because there is only one line in the test data. The error in 
this program is common, but subtle. If you invoke ctrace with these com­
mands: ctrace lc.c > temp.c cc temp.c a.out the output will be: 
2 main{) 
6 nl = 0; 

/* nl == 0 */ 
7 while «c = getcharO) != EOF) The program is now waiting for input. 

If you enter the same test data as before, the output will be: 
/* c == 49 or ' l' * / 

8 if (c = '\n') 
/* c == 10 or '\n' */ 

9 ++nl; 
/* nl == 1 */ 

7 while «c = getchar(» != EOF) 
/* c == 10 or '\n' */ 

8 if (c = '\n') 
/* c == 10 or '\n' */ 

9 ++nl; 
/* nl == 2 */ 

7 while «c = getcharO) != EOF) If you now enter an end of file char-
acter (cntl-d) the final output will be: 

/* c == -1 */ 10 printf("%d\n", nt); 
/* nl == 2 */2 return 

Note that the program output printed at the end of the trace line for the 01 
variable. Also note the return comment added by ctrace at the end of the trace 
output. This shows the implicit return at the terminating brace in the function. 

The trace output shows that variable c is assigned the value' l' in line 7, but in 
line 8 it has the value '\n'. Once your attention is drawn to this if statement, 
you will probably realize that you used the assignment operator (=) in place of 
the equal operator (==). You can easily miss this error during code reading. 

EXECUTION-TIME TRACE CONTROL 
The default operation for ctrace is to trace the entire program file, unless you 
use the -f or -v options to trace specific functions. This does not give you 

- 2 -



CTRACE(t) CTRACE(I) 

statement-by-statement control of the tracing, nor does it let you turn the trac­
ing off and on when executing the traced program. 

You can do both of these by adding ctrojJO and ctron 0 function calls to your 
program to turn the tracing off and on, respectively, at execution time. Thus, 
you can code arbitrarily complex criteria for trace control with if statements, 
and you can even conditionally include this code because ctrace defines the 
CTRACE preprocessor variable. For example: 

#ifdef CTRACE 

#endif 

if (c == '!' && i > 1000) 
ctronO; 

You can also call these functions from sdb(1) if you compile with the -g option. 
For example, to trace all but lines 7 to lOin the main function, enter: 

sdb a.out 
main:7b ctroffO 
main: 11 b ctronO 

You C2.n also turn the trace off and on by setting static variable tr_ct_ to 0 and 
1, respectively. This is useful if you are using a debugger that cannot call these 
functions directly, such as adb (1). 

DIAGNOSTICS 
This section contains diagnostic messages from both ctrace and cd 1), since the 
traced code often gets some cc warning messages. You can get ce error mes­
sages in some rare cases, all of which can be avoided. 

Ctrace Diagnostics 
warning: some variables are not traced in this statement 

Only 10 variables are traced in a statement to prevent the C compiler 
"out of tree space; simplify expression" error. Use the -t option to 
increase this number. 

warning: statement too long to trace 
This statement is over 400 characters long. Make sure that you are 
using tabs to indent your code, not spaces. 

cannot handle preprocessor code, use -P option 
This is usually caused by #ifdef/#endif preprocessor statements in the 
middle of a C statement, or by a semicolon at the end of a #define 
preprocessor statement. 

'if ... else if' sequence too long 
Split the sequence by removing an else from the middle. 

possible syntax error, try -P option 
Use the -P option to preprocess the etrace input, along with any 
appropriate -0, -I, and -U preprocessor options. If you still get the 
error message, check the Warnings section below. 

Cc Diagnostics 
warning: floating point not implemented 
warning: illegal combination oj pointer and integer 
warning: statement not reached 
warning: sizeoJ returns 0 

Ignore these messages. 

- 3 -



CTRACE(I) CTRACE(I) 

compiler takes size of function 
See the ctrace "possible syntax error" message above. 

yacc stack overflow 
See the ctrace '''if ... else if sequence too long" message above. 

out of tree space; simplify expression 
Use the -t option to reduce the number of traced variables per state­
ment from the default of 10. Ignore the "ctrace: too many variables to 
trace" warnings you will now get. 

redeclaration of signal 
Either correct this declaration of signa[(2), or remove it and #include 
<signal.h>. 

WARNINGS 

BUGS 

FILES 

You will get a ctrace syntax error if you omit the semicolon at the end of the 
last element declaration in a structure or union, just before the right brace (}). 
This is optional in some C compilers. 

Defining a function with the same name as a system function may cause a syn­
tax error if the number of arguments is changed. Just use a different name. 

Ctrace assumes that BADMAG is a preprocessor macro, and that EOF and 
NULL are #defined constants. Declaring any of these to be variables, e.g., "int 
EOF;", will cause a syntax error. 

Ctrace does not know about the components of aggregates like structures, 
unions, and arrays. It cannot choose a format to print all the components of an 
aggregate when an assignment is made to the entire aggregate. Ctrace may 
choose to print the address of an aggregate or use the wrong format (e.g., %e 
for a structure with two integer members) when printing the value of an aggre­
gate. 

Pointer values are always treated as pointers to character strings. 

The loop trace output elimination is done separately for each file of a multi-file 
program. This can result in functions called from a loop still being traced, or 
the elimination of trace output from one function in a file until another in the 
same file is called. 

runtime.c run-time trace package 

SEE ALSO 
signaJ(2), ctype(3C), ffiush(3S), 10ngjmp(3C), printf(3S), setjmp(3C), 
string(3C) in the UNIX System V Programmer Reference Manual. 

- 4 -



CU(IC) CU(IC) 

NAME 
cu - call another UNIX system 

SYNOPSIS 
cu [-sspeed] [-Iline] [-h] [-t] [-d] [-m] [-0] [-e] [-0] tetoo I 
systemoame I dir 

DESCRIPTION 
Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. 
It manages an interactive conversation with possible transfers of ASCII files. 

cu accepts the following options and arguments. 

-sspeed 
Specifies the transmission speed (110, 150, 300, 600, 1200, 4800, 9600); 
300 is the default value. Most modems are either 300 or 1200 baud. 
Directly connected lines may be set to a speed higher than 1200 baud. 

-Hine Specifies a device name to use as the communication line. This can be 
used to override searching for the first available line having the right 
speed. When the -1 option is used without the -s option, the speed of a 
line is taken from the file lusr/lib/uucp/L-devices. When the -I and -s 
options are used simultaneously, cu will search the L-devices file to 
check if the requested speed for the requested line is available. If so, 
the connection will be made at the requested speed; otherwise an error 
message will be printed and the call will not be made. The specified 
device is generally a directly connected asynchronous line (e.g., 
Idev!Uyab), in this case a telephone number is not required but the 
string dir may be use to specify a null acu. If the specified device is 
associated with an auto dialer, a telephone number must be provided. 

-h Emulates local echo, supporting calls to other computer systems which 
expect terminals to be set to half-duplex mode. 

-t Used when dialing an ASCII terminal which has been set to auto 
answer. Appropriate mapping of carriage-return to carriage-return­
line-feed pairs is set. 

-d Causes diagnostic traces to be printed. 

-e Designates that even parity is to be generated for data sent to the 
remote. 

-0 Designates that odd parity is to be generated for data sent to the 
remote. 

-m Designates a direct line which has modem contro!' 

-n Will request the telephone number to be dialed from the user rather 
than taking it from the command line. 

tetoo When using an automatic dialer the argument is the teletelephone 
number with equal signs for secondary dial tone or minus signs for 
delays, at appropriate places. 

systemoame 
A uucp system name may be used rather than a telephone number; in 
this case, cu will obtain an appropriate direct line or telephone number 
from lusr/lib/uucp/L.sys (the appropriate baud rate is also read along 
with telephone numbers). Cu will try each telephone number or direct 
line for systemname in the L.sys file until a connection is made or all 
the entries are tried. 

dir Using dir insures that cu will use the line specified by the -1 option. 

- 1 -



CU(IC) CU (IC) 

After making the connection, cu runs as two processes: the transmit process 
reads data from the standard input and, except for lines beginning with -, 
passes it to the remote system; the receive process accepts data from the remote 
system and, except for lines beginning with -, passes it to the standard output. 
Normally, an automatic DC3/DCl protocol is used to control input from the 
remote so the buffer is not overrun. Lines beginning with - have special mean­
ings. 

The transmit process interprets the following: 

terminate the conversation. 

-! escape to an interactive shell on the local system. 

-!cmd. . . run cmd on the local system (via sh - C). 

-$cmd... run cmd locally and send its output to the remote sys-
tem. 

-% cd change the directory on the local system. NOTE: -!cd 
will cause the command to be run by a sub-shell; prob­
ably not what was intended. 

- % take from [ to) copy file from (on the remote system) to file to on the 
local system. If to is omitted, the from argument is 
used in both places. 

- % put from [ to 1 copy file from (on local system) to file to on remote sys­
tem. If to is omitted, the from argument is used in 
both places. 

-%break 

-%nostop 

send the line -... to the remote system. 

transmit a BREAK to the remote system. 

toggles between DC3/DCI input control protocol and no 
input control. This is useful in case the remote system 
is one which does not respond properly to the DC3 and 
DC 1 characters. 

The receive process normally copies data from the remote system to its stan­
dard output. A line from the remote that begins with -> initiates an output 
diversion to a file. The complete sequence is: 

-> [> 1:jile 
zero or more lines to be written to jile 
-> 

Data from the remote is diverted (or appended, if > > is used) to jile. The 
trailing -> terminates the diversion. 

The use of - % put requires stty (1) and cat{ J) on the remote side. It also 
requires that the current erase and kill characters on the remote system be 
identical to the current ones on the local system. Backslashes are inserted at 
appropriate places. 

The use of -%take requires the existence of echo(]) and cad]) on the remote 
system. Also, stty tabs mode should be set on the remote system if tabs are to 
be copied without expansion. 

- 2 -



CU (IC) cu(IC) 

When cu is used on system X to connect to system Y and subsequently used on 
system Y to connect to system Z, commands on system Y can be executed by 
using --. For example, uname can be executed on Z, X, and Y as follows: 

uname 
Z 
-!uname 
X 
--!uname 
Y 
In general, - causes the command to be executed on the original machine, 
causes the command to be executed on the next machine in the chain. 

EXAMPLES 

FILES 

To dial a system whose number is 9 201 555 1212 using 1200 baud: 
cu -s1200 9=2015551212 

If the speed is not specified, 300 is the default value. 

To login to a system connected by a direct line: 
cu -I Idev/ttyXX dir 

To dial a system with the specific line and a specific speed: 
Cll -s1200 -I Idev/ttyXX dir 

To dial a system using a specific line: 
cu -I Idev/culXX 2015551212 

To use a system name: 
cu YYYZZZ 

lusr/Jib/uucp/L.sys 
lusr/lib/ulicp/L-devices 
lusr Ispool/uucp/LCK .. (tty-device) 
Idev/null 

SEE ALSO 
cat(]), ct(IC), echo(I), stty(I), uname(I), uucp(IC). 

DIAGNOSTICS 

BUGS 

Exit code is zero for normal exit, non-zero (various values) otherwise. 

Cu buffers input internally. 
There is an artificial slowing of transmission by cu during the -% put operation 
so that loss of data is unlikely. 
You cannot use cu from the 3B 20 computer system console. 

- 3 -



CUT(I) CUT(I) 

NAME 
cut - cut out selected fields of each line of a file 

SYNOPSIS 
cut -clist [filel file2 .. .1 
cut -flist [-dchar] [-s] [filel file2 .. .1 

DESCRIPTION 

HINTS 

Use cut to cut out columns from a table or fields from each line of a file; in 
data base parlance, it implements the projection of a relation. The fields as 
specified by list can be fixed length, i.e., character positions as on a punched 
card (-c option) or the length can vary from line to line and be marked with a 
field delimiter character like tab (-f option). Cut can be used as a filter; if no 
files are given, the standard input is used. 

The meanings of the options are: 

list A c~mma-separated list of integer field numbers Gn increasing order), 
with optional - to indicate ranges as in the -0 option of nroffltroff 
for page ranges; e.g., 1,4,7; 1-3,8; -5,10 (short for 1-5,10); or 3-
(short for third through last field). 

-clist The list following -c (no space) specifies character positions (e.g., 
-c1-72 would pass the first 72 characters of each line). 

-flist The list following -f is a list of fields assumed to be separated in the 
file by a delimiter character (see -d ); e.g., -fl,7 copies the first 
and seventh field only. Lines with no field delimiters will be passed 
through intact (useful for table subheadings), unless -s is specified. 

-dchar The character following -d is the field delimiter (-f option only). 
Default is tab. Space or other characters with special meaning to the 
shell must be quoted. 

-s Suppresses lines with no delimiter characters in case of -f option. 
Unless specified, lines with no delimiters will be passed through 
untouched. 

Either the -c or -f option must be specified. 

Use grep(1) to make horizontal "cuts" (by context) through a file, or paste (1) 
to put files together column-wise G.e., horizontally). To reorder columns in a 
table, use cut and paste. 

EXAMPLES 
cut -d: -fl,5 letc/passwd mapping of user IDs to names 

name='who am i I cut -fl -d" II, to set name to current login name. 

DIAGNOSTICS 
line too long A line can have no more than 1023 characters or fields. 

bad list for c If option Missing -c or -f option or incorrectly specified list. 

no fields 

SEE ALSO 
grep (1), paste (1) . 

No error occurs if a line has fewer fields than the list 
calls for. 

The list is empty. 

- I -



CXREF(l) CXREF(l) 

NAME 
cxref - generate C program cross-reference 

SYNOPSIS 
cxref [ options ] files 

DESCRIPTION 

FILES 

Cxref analyzes a collection of C files and attempts to build a cross-reference 
table. Cxref utilizes a special version of cpp to include #define'd information in 
its symbol table. It produces a listing on standard output of all symbols (auto, 
static, and global) in each file separately, or with the -c option, in combina­
tion. Each symbol contains an asterisk (.) before the declaring reference. 

In addition to the -0, -I and -U options (which are identical to their 
interpretation by cc (1», the following options are interpreted by cxref: 

-c Print a combined cross-reference of all input files. 

-w<num> 
Width option which formats output no wider than <num> (decimal) 
columns. This option will default to 80 if <num> is not specified or 
is less than 51. 

-0 file Direct output to named file. 

-s Operate silently; does not print input file names. 

-t Format listing for 80-column width. 

lusr/lib/xcpp special version of C-preprocessor. 

SEE ALSO 
cdt). 

DIAGNOSTICS 

BUGS 

Error messages are unusually cryptic, but usually mean that you cannot com­
pile these files, anyway. 

Cxref considers a formal argument in a #define macro definition to be a 
declaration of that symbol. For example, a program that #includes ctype.h, will 
contain many declarations of the variable c. 

- 1 -



DATE(I) DATE(I) 

NAME 
date - print and set the date 

SYNOPSIS 
date [ mmddhhmm[yy] ] [ +format ] 

DESCRIPTION 
If no argument is given, or if the argument begins with +, the current date 
and time are printed. Otherwise, the current date is set. The first mm is the 
month number; dd is the day number in the month; hh is the hour number (24 
hour system); the second mm is the minute number; yy is the last 2 digits of 
the year number and is optional. For example: 

date 10080045 

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is 
mentioned. The system operates in GMT. Date takes care of the conversion to 
and from local standard and daylight time. 

If the argument begins with +, the output of date is under the control of the 
user. The format for the output is similar to that of the first argument to 
printfOS). All output fields are of fixed size (zero padded if necessary). Each 
field descriptor is preceded by % and will be replaced in the output by its 
corresponding value. A single % is encoded by % %. All other characters are 
copied to the output without change. The string is always terminated with a 
new-line character. 

Field Descriptors: 
n insert a new-line character 
t insert a tab character 
m month of year - 01 to 12 
d day of month - 01 to 31 
y last 2 digits of year - 00 to 99 
D date as mm/dd/yy 
H hour - 00 to 23 
M minute - 00 to 59 
S second - 00 to 59 
T time as HH:MM:SS 

day of year - 001 to 366 
w day of week - Sunday = 0 
a abbreviated weekday - Sun to Sat 
h abbreviated month - Jan to Dec 
r time in AM/PM notation 

EXAMPLE 
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S' 

would have generated as output: 
DATE: 08/01176 
TIME: 14:45:05 

DIAGNOSTICS 

FILES 

No permission if you are not the super-user and you try to change the 
date; 

bad conversion if the date set is syntactically incorrect; 
bad format character if the field descriptor is not recognizable. 

Idevlkmem 
SEE ALSO 

printf(3S) in the UNIX System V Programmer Reference Manual. 
WARNING 

It is a bad practice to change the date while the system is running multi-user. 

- 1 -



DC(I) DC(I) 

NAME 
dc - desk calculator 

SYNOPSIS 
de [ file ] 

DESCRIPTION 
De is an arbitrary precIsIon arithmetic package. Ordinarily it operates on 
decimal integers, but one may specify an input base, output base, and a number 
of fractional digits to be maintained. (See bdl), a preprocessor for de that 
provides infix notation and a C-like syntax that implements functions. Be also 
provides reasonable control structures for programsJ The overall structure of 
de is a stacking (reverse Polish) calculator. If an argument is given, input is 
taken from that file until its end, then from the standard input. The following 
constructions are recognized: 

number 
The value of the number is pushed on the stack. A number is an unbro­
ken string of the digits 0-9. It may be preceded by an underscore () 
to input a negative number. Numbers may contain decimal points. 

+-/.%,.. 
The top two values on the stack are added (+), subtracted (-), multi­
plied (.), divided (f), remaindered (%), or exponentiated ("). The two 
entries are popped off the stack; the result is pushed on the stack in their 
place. Any fractional part of an exponent is ignored. 

sx The top of the stack is popped and stored into a register named x, where 
x may be any character. If the s is capitalized, x is treated as a stack 
and the value is pushed on it. 

Ix The value in register x is pushed on the stack. The register x is not 
altered. All registers start with zero value. If the I is capitalized, regis­
ter x is treated as a stack and its top value is popped onto the main 
stack. 

d The top value on the stack is duplicated. 

p The top value on the stack is printed. The top value remains 
unchanged. P interprets the top of the stack as an ASCII string, 
removes it, and prints it. 

f All values on the stack are printed. 

q exits the program. If executing a string, the recursion level is popped by 
two. If q is capitalized, the top value on the stack is popped and the 
string execution level is popped by that value. 

x treats the top element of the stack as a character string and executes it 
as a string of de commands. 

X replaces the number on the top of the stack with its scale factor. 

[ •.• ] puts the bracketed ASCII string onto the top of the stack. 

<x >x =x 
The top two elements of the stack are popped and compared. Register x 
is evaluated if they obey the stated relation. 

v replaces the top element on the stack by its square root. Any existing 
fractional part of the argument is taken into account, but otherwise the 
scale factor is ignored. 

interprets the rest of the line as a UNIX system command. 

- 1 -



DC(I) 

c 

o 

o 
k 

z 

z 
? 

, . 

DC(I) 

All values on the stack are popped. 

The top value on the stack is popped and used as the number radix for 
further input. I pushes the input base on the top of the stack. 

The top value on the stack is popped and used as the number radix for 
further output. 

pushes the output base on the top of the stack. 

the top of the stack is popped, and that value is used as a non-negative 
scale factor: the appropriate number of places are printed on output, and 
maintained during multiplication, division, and exponentiation. The 
interaction of scale factor, input base, and output base will be reasonable 
if all are changed together. 

The stack level is pushed onto the stack. 

replaceS\ the number on the top of the stack with its length. 

A line of input is taken from the input source (usually the terminal) and 
executed. 

are used by bc for array operations. 

EXAMPLE 
This example prints the first ten values of n!: 

SEE ALSO 
bdl). 

[la 1 +dsa .pla 10> y]sy 
Osal 
lyx 

DIAGNOSTICS 
x is unimplemented 

where x is an octal number. 

stack empty 
for not enough elements on the stack to do what was asked. 

Out of space 
when the free list is exhausted (too many digits). 

Out of headers 
for too many numbers being kept around. 

Out of pushdown 
for too many items on the stack. 

Nesting Depth 
for too many levels of nested execution. 

- 2 -



DD(1) DD(I) 

NAME 
dd - convert and copy a file 

SYNOPSIS 
dd [option=value1 ... 

DESCRIPTION 
Dd copies the specified input file to the specified output with possible conver­
sions. The standard input and output are used by default. The input and out­
put block size may be specified to take advantage of raw physical I/O. 

option 
if=Jile 
of=Jile 
ibs=n 
obs=n 
bs=n 

values 
input file name; standard input is default 
output file name; standard output is default 
input block size n bytes (default 512) 
output block size (default 512) 
set both input and output block size, superseding ibs and obs; 
also, if no conversion is specified, it is particularly efficient since 
no in-core copy need be done 

cbs = n conversion buffer size 
skip = n skip n input blocks before starting copy 
seek=n seek n blocks from beginning of output file before copying 
count = n copy only n input blocks 
conv=ascii convert EBCDIC to ASCII 

ebcdic convert ASCII to EBCDIC 
ibm slightly different map of ASCII to EBCDIC 
lease map alphabetics to lower case 
ucase map alphabetics to upper case 
swab swap every pair of bytes 
noerror do not stop processing on an error 
sync pad every input block to ibs 
..• , ••. several comma-separated conversions 

Where sizes are specified, a number of bytes is expected. A number may end 
with k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair 
of numbers may be separated by x to indicate a product. 

Cbs is used only if ascii or ebcdic conversion is specified. In the former case 
cbs characters are placed into the conversion buffer, converted to ASCII, and 
trailing blanks trimmed and new-line added before sending the line to the out­
put. In the latter case ASCII characters are read into the conversion buffer, 
converted to EBCDIC, and blanks added to make up an output block of size cbs. 

After completion, dd reports the number of whole and partial input and output 
blocks. 

EXAMPLE 
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card 
images per block into the ASCII file x: 

dd if=/dev/rmt/Om of=x ibs=800 cbs=80 conv=ascii,lcase 

Note the use of raw magtape. Dd is especially suited to I/O on the raw physi­
cal devices because it allows reading and writing in arbitrary block sizes. 

SEE ALSO 
cpO). 

- 1 -



DD(I) DD(I) 

DIAGNOSTICS 

BUGS 

f +p blocks in(out) numbers of full and partial blocks read(written) 

The ASCII/EBCDIC conversion tables are taken from the 256-character stan­
dard in the CACM Nov, 1968. The ibm conversion, while less blessed as a 
standard, corresponds better to certain IBM print train conventions. There is no 
universal solution. 

New-lines are inserted only on conversion to ASCII; padding is done only on 
conversion to EBCDIC. These should be separate options. 

- 2 -



DELTA(t) DELTA(I) 

NAME 
delta - make a delta (change) to an sees file 

SYNOPSIS 
delta [-rSIO] [-s] [-0] [-glisd [-m[mrlisd] [-y£Comment]] [-p] files 

DESCRIPTION 
Delta is used to permanently introduce into the named sees file changes that 
were made to the file retrieved by get{I) (called the g-file, or generated file). 

Delta makes a delta to each named sees file. If a directory is named, delta 
behaves as though each file in the directory were specified as a named file, 
except that non-sees files (last component of the path name does not begin 
with s.) and unreadable files are silently ignored. If a name of - is given, the 
standard input is read (see WARNINGS); each line of the standard input is 
taken to be the name of an sees file to be processed. 

Delta may issue prompts on the standard output depending upon certain 
keyletters specified and flags (see admin (I» that may be present in the sees 
file (see -m and -y key letters below). 

Keyletter arguments apply independently to each named file. 

-rSID Uniquely identifies which delta is to be made to the 
sees file. The use of this key letter is necessary only if 
two or more outstanding gets for editing (get -e) on 
the same sees file were done by the same person (login 
name). The SID value specified with the -r key letter 
can be either the SID specified on the get command line 
or the SID to be made as reported by the get command 
(see get(l». A diagnostic results if the specified SID is 
ambiguous, or, if necessary and omitted on the com­
mand line. 

-s 

-0 

-glist 

-m[mrlist] 

Suppresses the issue, on the standard output, of the 
created delta's SID, as well as the number of lines 
inserted, deleted and unchanged in the sees file. 

Specifies retention of the edited g-file (normally 
removed at completion of delta processing). 

Specifies a list (see get (I) for the definition of list) of 
deltas which are to be ignored when the file is accessed 
at the change level (SID) created by this delta. 

If the sees file has the v flag set (see admin (I» then a 
Modification Request (MR) number must be supplied as 
the reason for creating the new delta. 

If -m is not used and the standard input is a terminal, 
the prompt MRs? is issued on the standard output before 
the standard input is read; if the standard input is not a 
terminal, no prompt is issued. The MRs? prompt always 
precedes the comments? prompt (see -y keyletter). 

MRs in a list are separated by blanks and/or tab charac­
ters. An unescaped new-line character terminates the 
MR list. 

Note that if the v flag has a value (see admin(I», it is 
taken to be the name of a program (or shell procedure) 
which will validate the correctness of the MR numbers. 
If a non-zero exit status is returned from MR number 
validation program, delta terminates. Ot is assumed 

- 1 -



DELTA (I) DELTA (I) 

FILES 

that the MR numbers were not all valid.) 

-y[commend Arbitrary text used to describe the reason for making 
the delta. A null string is considered a valid comment. 

If -y is not specified and the standard input is a termi­
nal, the prompt comments? is issued on the standard 
output before the standard input is read; if the standard 
input is not a terminal, no prompt is issued. An unes­
caped new-line character terminates the comment text. 

-p Causes delta to print (on the standard output) the sees 
file differences before and after the delta is applied in a 
diff(I) format. 

All files {)f the form ? - file are explained in the Source Code Control System 
User Guide. The naming convention for these files is also described there. 

g-file 

p-file 

q-file 

x-file 

z-file 

Existed before the execution of delta; removed after comple­
tion of delta. 
Existed before the execution of delta; may exist after comple­
tion of delta. 
Created during the execution of delta; removed after comple­
tion of delta. 
Created during the execution of delta; renamed to sees file 
after completion of delta. 
Created during the execution of delta; removed during the exe­
cution of delta. 

d-file Created during the execution of delta; removed after comple­
tion of delta. 

/usr/bin/bdiff Program to compute differences between the "gotten" file and 
the g-jile. 

WARNINGS 
Lines beginning with an SOH ASCII character (binary 001) cannot be placed in 
the sees file unless the SOH is escaped. This character has special meaning to 
sees (see sccsjile(4) (5» and will cause an error. 

A get of many sees files, followed by a delta of those files, should be avoided 
when the get generates a large amount of data. Instead, multiple get/delta 
sequences should be used. 

If the standard input (-) is specified on the delta command line, the -m (if 
necessary) and -y keyletters must also be present. Omission of these 
key letters causes an error to occur. 

Comments are limited to text strings of at most 512 characters. 

SEE ALSO 
admin(I), bdiff(I), cdc(I), get(I), help(I), prs(I), rmdel(I). 
sccsfile(4) in the UNIX System V Programmer Reference Manual. 

Source Code Control System User Guide in the UNIX System V User Guide. 

DIAGNOSTICS 
Use help (I) for explanations. 

- 2 -



DIFF(I) DIFF(I) 

NAME 
diff - differential file comparator 

SYNOPSIS 
diff [ - efbh ] file 1 file2 

DESCRIPTION 

FILES 

Di./f tells what lines must be changed in two files to bring them into agreement. 
If filel (file2) is -, the standard input is used. If filel (file2) is a directory, 
then a file in that directory with the name file2 (filen is used. The normal 
output contains lines of these forms: 

nl a n3,n4 
nl,n2 d n3 
nl,n2 c n3,n4 

These lines resemble ed commands to convert filel into file2. The numbers 
after the letters pertain to file2. In fact, by exchanging a for d and reading 
backward one may ascertain equally how to convert file2 into filel. As in ed, 
identical pairs, where nl = n2 or n3 = n4, are abbreviated as a single number. 

Following each of these lines come all the lines that are affected in the first file 
flagged by <, then all the lines that are affected in the second file flagged by 
>. 
The -b option causes trailing blanks (spaces and tabs) to be ignored and other 
strings of blanks to compare equal. 

The -e option produces a script of a, c, and d commands for the editor ed, 
which will recreate file2 from filel. The -f option produces a similar script, 
not useful with ed, in the opposite order. In connection with -e, the following 
shell program may help maintain multiple versions of a file. Only an ancestral 
file ($1) and a chain of version-to-version ed scripts ($2,$3, .. ') made by diff 
need be on hand. A "latest version" appears on the standard output. 

(shift; cat $*; echo '1,$p') I ed - $1 

Except in rare circumstances, diff finds a smallest sufficient set of file 
differences. 

Option -h does a fast, half-hearted job. It works only when changed stretches 
are short and well separated, but does work on files of unlimited length. 
Options -e and -f are unavailable with -h. 

Itmp/d????? 
/usr/lib/diffh for -h 

SEE ALSO 
cmp(1), comm(1), ed(1). 

DIAGNOSTICS 

BUGS 

Exit status is 0 for no differences, 1 for some differences, 2 for trouble. 

Editing scripts produced under the -e or -f option are naive about creating 
lines consisting of a single period (.). 

WARNINGS 
Missing newline at end of file X 

indicates that the last line of file X did not have a new-line. If the lines 
are different, they will be flagged and output; although the output will 
seem to indicate they are the same. 

- 1 -



DIFF3 (1) DIFF3(t) 

NAME 
diff3 - 3-way differential file comparison 

SYNOPSIS 
diff3 [ -ex3 ] file1 file2 file3 

DESCRIPTION 

FILES 

DijJ3 compares three versions of a file, and publishes disagreeing ranges of text 
flagged with these codes: 

====1 

====2 

====3 

all three files differ 

filel is different 

file2 is different 

file3 is different 

The type of change suffered in converting a given range of a given file to some 
other is indicated in one of these ways: 

f: nl a Text is to be appended after line number nl in file j, 
where f = 1, 2, or 3. 

f: nl , n2 c Text is to be changed in the range line nl to line n2. 
If nl = n2, the range may be abbreviated to nl. 

The original contents of the range follows immediately after a c indication. 
When the contents of two files are identical, the contents of the lower­
numbered file is suppressed. 

Under the -e option, dijJ3 publishes a script for the editor ed that will incor­
porate into filel all changes between file2 and file3, i.e., the changes that nor­
mally would be flagged ==== and ====3. Option -x (-3) produces a 
script to incorporate only changes flagged ==== (====3). The following 
command will apply the resulting script to filel. 

(cat script; echo 'l,$p') I ed - filel 

Itmp/d3* 
I usr Ili bl diff3 prog 

SEE ALSO 

BUGS 

diff(l). 

Text lines that consist of a single. will defeat -e. 
Files longer than 64K bytes will not work. 

- 1 -



DIFFMK(l) DIFFMK(}) 

NAME 
diffmk - mark differences between files 

SYNOPSIS 
diffmk namel name2 name3 

DESCRIPTION 
Diffmk compares two versions of a file and creates a third file that includes 
"change mark" commands for nrojJor trojJ(1). Name1 and name2 are the old 
and new versions of the file. Diffmk generates name3, which contains the lines 
of name2 plus inserted formatter "change mark" (,me) requests. When name3 
is formatted, changed or inserted text is shown by I at the right margin of each 
line. The position of deleted text is shown by a single •. 

If anyone is so inclined, diffmk can be used to produce listings of C (or other) 
programs with changes marked. A typical command line for such use is: 

diffmk old.c new.c tmp; nroff macs tmp I pr 

where the file maes contains: 

.pl 1 

.1177 

.nf 

.eo 

.nc ' 

The .11 request might specify a different line length, depending on the nature of 
the program being printed. The .eo and .ne requests are probably needed only 
for C programs. 

If the characters I and • are inappropriate, a copy of diffmk can be edited to 
change them (diffmk is a shell procedure). 

SEE ALSO 

BUGS 

diff(t), nroff( 1), troff( 1) . 

Aesthetic considerations may dictate manual adjustment of some output. File 
differences involving only formatting requests may produce undesirable output, 
i.e., replacing .sp by .sp 2 will produce a "change mark" on the preceding or 
following line of output. 

- I -



DIRCMP(I) DIRCMP(I) 

NAME 
dircmp - directory comparison 

SYNOPSIS 
dircmp [ -d ] [ -s ] [ -wn ] dirl dir2 

DESCRIPTION 
Dircmp examines dirI and dir2 and generates various tabulated information 
about the contents of the directories. Listings of files that are unique to each 
directory are generated for all the options. If no option is entered, a list is out­
put indicating whether the file names common to both directories have the 
same contents. 

-d Compare the contents of files with the same name in both directories 
and output a list telling what must be changed in the two files to bring 
them into agreement. The list format is described in diff(I). 

-s Suppress messages about identical files. 

-wn Change the width of the output line to n characters. The default width 
is 72. 

SEE ALSO 
cmp(I), diff(I). 

- 1 -



DU(t) DU(t) 

NAME 
du - summarize disk usage 

SYNOPSIS 
du [ -ars ] [ names ] 

DESCRIPTION 

BUGS 

Du gives the number of blocks contained in all files and (recursively) direc­
tories within each directory and file specified by the names argument. The 
block count includes the indirect blocks of the file. If names is missing, . is 
used. 

The optional argument -s causes only the grand total (for each of the specified 
names) to be given. The optional argument -a causes an entry to be gen­
erated for each file. Absence of either causes an entry to be generated for each 
directory only. 

Du is normally silent about directories that cannot be read, files that cannot be 
opened, etc. The -r option will cause du to generate messages in such 
instances. 

A file with two or more links is only counted once. 

If the -a option is not used, non-directories given as arguments are not listed. 
If there are too many distinct linked files, du will count the excess files more 
than once. 
Files with holes in them will get an incorrect block count. 

- 1 -



DUMP(I) DUMP(I) 

NAME 
dump - dump selected parts of an object file 

SYNOPSIS 
dump [-acfghlorst] [-z name] files 

DESCRIPTION 
The dump command dumps selected parts of each of its object file arguments. 

This command will accept both object files and archives of object files. It 
processes each file argument according to one or more of the following options: 

-a Dump the archive header of each member of each archive file 
argument. 

-g Dump the global symbols in the symbol table of an archive. 

-f Dump each file header. 

-0 Dump each optional header. 

-h Dump section headers. 

-s Dump section contents .. 

-r Dump relocation information. 

-I Dump line number information. 

-t Dump symbol table entries. 

-z name Dump line number entries for the named function. 

-c Dump the string table. 

The following modifiers are used in conjunction with the options listed above to 
modify their capabilities. 

-d number Dump the section number or range of sections starting at number 
and ending either at the last section number or number specified 
by +d. 

+d number Dump sections in the range either beginning with first section or 
beginning with section specified by -d. 

-n name Dump information pertaining only to the named entity. This 
modifier applies to -h, -S, -r, -I, and -t. 

-p Supress printing of the headers. 

-t index Dump only the indexed symbol table entry. The -t used in con-
junction with +t, specifies a range of symbol table entries. 

+t index Dump the symbol table entries in the range ending with the 
indexed entry. The range begins at the first symbol table entry or 
at the entry specified by the -t option. 

-u Underline the name of the file for emphasis. 

-v Dump information in symbolic representation rather than numeric 
(e.g., C _ ST A TI C instead of OX02). This modifier can be used with 
all the above options except -s and -0 options of dump. 

-z name, number 
Dump line number entry or range of line numbers starting at 
number for the named function. 

+z number Dump line numbers starting at either function name or number 
specified by -z, up to number specified by +z. 

- 1 -



DUMP(l) DUMP(I) 

Blanks separating an option and its modifier are optional. The comma separat­
ing the name from the number modifying the -z option may be replaced by a 
blank. 

The dump command attempts to format the information it dumps in a mean­
ingful way, printing certain information in character, hex, octal or decimal 
representation as appropriate. 

SEE ALSO 
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual. 

- 2 -



ECHO (I) ECHO (I) 

NAME 
echo - echo arguments 

SYNOPSIS 
echo [ arg ] ... 

DESCRIPTION 
Echo writes its arguments separated by blanks and terminated by a new-line on 
the standard output. It also understands C-like escape conventions; beware of 
conflicts with the shell's use of \: 

\b backspace 
\c print line without new-line 
\f form-feed 
\0 new-line 
\r carriage return 
\t tab 
\v vertical tab 
\ \ backslash 
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit 

octal number n, which must start with a zero. 

Echo is useful for producing diagnostics in command files and for sending 
known data into a pipe. 

SEE ALSO 
sh (1). 

- 1 -



ED(I) ED(I) 

NAME 
ed, red - text editor 

SYNOPSIS 
ed [ - ] [ -p string ] [ -x ] [ file ] 

red [ - ] [ -p string ] [ -x ] [ file ] 

DESCRIPTION 
Ed is the standard text editor. If the file argument is given, ed simulates an e 
command (see below) on the named file; that is to say, the file is read into ed's 
buffer so that it can be edited. The optional - suppresses the printing of char­
acter counts bye, r, and w commands, of diagnostics from e and q commands, 
and of the! prompt after a !shell command. The -p option allows the user to 
specify a prompt string. If -x is present, an x command is simulated first to 
handle an encrypted file. Ed operates on a copy of the file it is editing; changes 
made to the copy have no effect on the file until a w (write) command is given. 
The copy of the text being edited resides in a temporary file called the buffer. 
There is only one buffer. 

Red is a restricted version of ed. It will only allow editing of files in the 
current directory. It prohibits executing shell commands via !shell command. 
Attempts to bypass these restrictions result in an error message (restricted 
shell). 

Both ed and red support the !spec(4) formatting capability. After including a 
format specification as the first line of file and invoking ed with your terminal 
in stty - tabs or stty tab3 mode (see stty (1), the specified tab stops will 
automatically be used when scanning file. For example, if the first line of a file 
contained: 

< :t5, 10, 15 s72: > 
tab stops would be set at columns 5, 10, and 15, and a maximum line length of 
72 would be imposed. NOTE: while inputting text, tab characters when typed 
are expanded to every eighth column as is the default. 

Commands to ed have a simple and regular structure: zero, one, or two 
addresses followed by a single-character command, possibly followed by 
parameters to that command. These addresses specify one or more lines in the 
buffer. Every command that requires addresses has default addresses, so that 
the addresses can very often be omitted. 

In general, only one command may appear on a line. Certain commands allow 
the input of text. This text is placed in the appropriate place in the buffer. 
While ed is accepting text, it is said to be in input mode. In this mode, no 
commands are recognized; all input is merely collected. Input mode is left by 
typing a period (.) alone at the beginning of a line. 

Ed supports a limited form of regular expression notation; regular expressions 
are used in addresses to specify lines and in some commands (e.g., s) to specify 
portions of a line that are to be substituted. A regular expression (RE) 
specifies a set of character strings. A member of this set of strings is said to be 
matched by the RE. The REs allowed by ed are constructed as follows: 

The following one-character REs match a single character: 

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one­
character RE that matches itself. 

1.2 A backslash (\) followed by any special character is a one-character RE 
that matches the special character itself. The special characters are: 

a. .,., [, and \ (period, asterisk, left square bracket, and backslash, 
respectively), which are always special, except when they appear 
within square brackets ([ I; see 1.4 below). 

- 1 -



ED(I) ED (I) 

b. "(caret or circumflex), which is special at the beginning of an 
entire RE (see 3.1 and 3.2 below), or when it immediately follows 
the left of a pair of square brackets ([]) (see 1.4 below). 

c. $ (currency symbol), which is special at the end of an entire RE (see 
3.2 below). 

d. The character used to bound (i.e., delimit) an entire RE, which is 
special for that RE (for example, see how slash (/) is used in the g 
command, below') 

1.3 A period (.) is a one-character RE that matches any character except 
new-line. 

1.4 A non-empty string of characters enclosed in square brackets ([]) is a 
one-character RE that matches anyone character in that string. If, how­
ever, the first character of the string is a circumflex (,,) , the one­
character RE matches any character except new-line and the remaining 
characters in the string. The" has this special meaning only if it occurs 
first in the string. The minus (-) may be used to indicate a range of 
consecutive ASCII characters; for example, [0 -9] is equivalent to 
[01234567891. The - loses this special meaning if it occurs first (after 
an initial ", if any) or last in the string. The right square bracket (J) 
does not terminate such a string when it is the first character within it 
(after an initial ", if any); e.g., []a -f] matches either a right square 
bracket (]) or one of the letters a through f inclusive. The four charac­
ters listed in 1.2.a above stand for themselves within such a string of 
characters. 

The following rules may be used to construct REs from one-character REs: 

2.1 A one-character RE is a RE that matches whatever the one-character RE 
matches. 

2.2 A one-character RE followed by an asterisk (.) is a RE that matches zero 
or more occurrences of the one-character RE. If there is any choice, the 
longest leftmost string that permits a match is chosen. 

2.3 A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that 
matches a range of occurrences of the one-character RE. The values of 
m and n must be non-negative integers less than 256; \{m\} matches 
exactly m occurrences; \{m,\J matches at least m occurrences; \{m,n\} 
matches any number of occurrences between m and n inclusive. When­
ever a choice exists, the RE matches as many occurrences as possible. 

2.4 The concatenation of REs is a RE that matches the concatenation of the 
strings matched by each component of the RE. 

2.5 A RE enclosed between the character sequences \( and \) is a RE that 
matches whatever the unadorned RE matches. 

2.6 The expression \n matches the same string of characters as was matched 
by an expression enclosed between \ ( and \) earlier in the same RE. 
Here n is a digit; the sub-expression specified is that beginning with the 
n-th occurrence of \ ( counting from the left. For example, the expression 
"\<'.\)\1$ matches a line consisting of two repeated appearances of the 
same string. 

Finally, an entire RE may be constrained to match only an initial segment or 
final segment of a line (or both). 

3.1 A circumflex (,,) at the beginning of an entire RE constrains that RE to 
match an initial segment of a line. 

- 2 -



ED(I) ED(I) 

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to 
match a final segment of a line. 

The construction "entire RE$ constrains the entire RE to match the entire line. 

The null RE (e.g., / /) is equivalent. to the last RE encountered. See also the 
last paragraph before FILES below. 

To understand addressing in ed it is necessary to know that at any time there is 
a current line. Generally speaking, the current line is the last line affected by a 
command; the exact effect on the current line is discussed under the description 
of each command. Addresses are constructed as follows: 

1. The character. addresses the current line. 

2. The character $ addresses the last line of the buffer. 

3. A decimal number n addresses the n-th line of the buffer. 

4. IX addresses the line marked with the mark name character x, which 
must be a lower-case letter. Lines are marked with the k command 
described below. 

5. A RE enclosed by slashes (f) addresses the first line found by searching 
forward from the line following the current line toward the end of the 
buffer and stopping at the first line containing a string matching the RE. 
If necessary, the search wraps around to the beginning of the buffer and 
continues up to and including the current line, so that the entire buffer is 
searched. See also the last paragraph before FILES below. 

6. A RE enclosed in question marks (?) addresses the first line found by 
searching backward from the line preceding the current line toward the 
beginning of the buffer and stopping at the first line containing a string 
matching the RE. If necessary, the search wraps around to the end of 
the buffer and continues up to and including the current line. See also 
the last paragraph before FILES below. 

7. An address followed by a plus sign (+) or a minus sign (-) followed by 
a decimal number specifies that address plus (respectively minus) the 
indicated number of lines. The plus sign may be omitted. 

8. If an address begins with + or -, the addition or subtraction is taken 
with respect to the current line; e.g, -5 is understood to mean. -5. 

9. If an address ends with + or -, then 1 is added to or subtracted from 
the address, respectively. As a consequence of this rule and of rule 8 
immediately above, the address - refers to the line preceding the current 
line. (To maintain compatibility with earlier versions of the editor, the 
character A in addresses is entirely equivalent to -.) Moreover, trailing 
+ and - characters have a cumulative effect, so - - refers to the 
current line less 2. 

10. For convenience, a comma (,) stands for the address pair 1,$, while a 
semicolon (;) stands for the pair .,$. 

- 3 -



ED(I) ED(I) 

Commands may require zero, one, or two addresses. Commands that require 
no addresses regard the presence of an address as an error. Commands that 
accept one or two addresses assume default addresses when an insufficient 
number of addresses is given; if more addresses are given than such a command 
requires, the last one(s) are used. 

Typically, addresses are separated from each other by a comma (,). They may 
also be separated by a semicolon (;). In the latter case, the current line (.) is 
set to the first address, and only then is the second address calculated. This 
feature can be used to determine the starting line for forward and backward 
searches (see rules 5. and 6. above). The second address of any two-address 
sequence must correspond to a line that follows, in the buffer, the line 
corresponding to the first address. 

In the following list of ed commands, the default addresses are shown in 
parentheses. 'fhe parentheses are not part of the address; they show that the 
given addresses are the default. 

It is generally illegal for more than one command to appear on a line. How­
ever, any command (except e,j, r, or w) may be suffixed by I, n, or p in which 
case the current line is either listed, numbered or printed, respectively, as dis­
cussed below under the I, n, and p commands. 

(Ja 
<text> 

(Jc 
<text> 

C,.M 

efile 

Efile 

The append command reads the given text and appends it after the 
addressed line; • is left at the last inserted line, or, if there were none, 
at the addressed line. Address 0 is legal for this command: it causes 
the "appended" text to be placed at the beginning of the buffer. The 
maximum number of characters that may be entered from a terminal 
is 256 per line (including the new-line character). 

The change command deletes the addressed lines, then accepts input 
text that replaces these lines; . is left at the last line input, or, if there 
were none, at the first line that was not deleted. 

The delete command deletes the addressed lines from the buffer. The 
line after the last line deleted becomes the current line; if the lines 
deleted were originally at the end of the buffer, the new last line 
becomes the current line. 

The edit command causes the entire contents of the buffer to be 
deleted, and then the named file to be read in; . is set to the last line of 
the buffer. If no file name is given, the currently-remembered file 
name, if any, is used (see the j command). The number of characters 
read is typed; file is remembered for possible use as a default file name 
in subsequent e, r, and w commands. If file is replaced by!, the rest 
of the line is taken to be a shell (sh(I» command whose output is to 
be read. Such a shell command is not remembered as the current file 
name. See also DIAGNOSTICS below. 

The Edit command is like e, except that the editor does not check to 
see if any changes have been made to the buffer since the last w com­
mand. 

- 4 -



EO(l) 

f file 

EO(l) 

If file is given, the file-name command changes the currently­
remembered file name to file; otherwise, it prints the currently­
remembered file name. 

( 1, $) g/ RE / command list 
In the global command, the first step is to mark every line that 
matches the given RE. Then, for every such line, the given command 
list is executed with . initially set to that line. A single command or 
the first of a list of commands appears on the same line as the global 
command. All lines of a multi-line list except the last line must be 
ended with a \; a, i, and c commands and associated input are permit­
ted. The. terminating input mode may be omitted if it would be the 
last line of the command list. An empty command list is equivalent to 
the p command. The g, G, v, and V commands are not permitted in 
the command list. See also BUGS and the last paragraph before FILES 
below. 

<t,$)G/RE/ 

h 

H 

( .)i 
<text> 

In the interactive Global command, the first step is to mark every line 
that matches the given RE. Then, for every such line, that line is 
printed, . is changed to that line, and anyone command (other than 
one of the a, c, i, g, G, v, and V commands) may be input and is exe­
cuted. After the execution of that command, the next marked line is 
printed, and so on; a new-line acts as a null command; an & causes 
the re-execution of the most recent command executed within the 
current invocation of G. Note that the commands input as part of the 
execution of the G command may address and affect any lines in the 
buffer. The G command can be terminated by an interrupt signal 
(ASCII DEL or BREAK). 

The help command gives a short error message that explains the reason 
for the most recent ? diagnostic. 

The Help command causes ed to enter a mode in which error messages 
are printed for all subsequent ? diagnostics. It will also explain the 
previous? if there was one. The H command alternately turns this 
mode on and off; it is initially off. 

The insert command inserts the given text before the addressed line; . 
is left at the last inserted line, or, if there were none, at the addressed 
line. This command differs from the a command only in the placement 
of the input text. Address 0 is not legal for this command. The max­
imum number of characters that may be entered from a terminal is 
256 per line (including the new-line character). 

C,. +t)j 

(.)kx 

The join command joins contiguous lines by removing the appropriate 
new-line characters. If exactly one address is given, this command 
does nothing. 

The mark command marks the addressed line with name x, which 
must be a lower-case letter. The address IX then addresses this line; • 
is unchanged. 

- 5 -



ED(I) 

(.,.)1 

(,,')ma 

( .,'>0 

(.,.>p 

p 

q 

Q 

ED(I) 

The list command prints the addressed lines in an unambiguous way: 
a few non-printing characters (e.g., tab, backspace) are represented by 
(hopefully) mnemonic overstrikes. All other non-printing characters 
are printed in octal, and long lines are folded. An I command may be 
appended to any other command other than e, j, r, or w. 

The move command repositions the addressed line(s) after the line 
addressed by a. Address 0 is legal for a and causes the addressed 
line (s) to be moved to the beginning of the file. I t is an error if 
address a falls within the range of moved lines; . is left at the last line 
moved. 

The number command prints the addressed lines, preceding each line 
by its line number and a tab character; . is left at the last line printed. 
The n command may be appended to any other command other than e, 
j, r, or w. 

The print command prints the addressed lines; . is left at the last line 
printed. The p command may be appended to any other command 
other than e, j, r, or w. For example, dp deletes the current line and 
prints the new current line. 

The editor will prompt with a • for all subsequent commands. The P 
command alternately turns this mode on and off; it is initially off. 

The quit command causes ed to exit. No automatic write of a file is 
done (but see DIAGNOSTICS below). 

The editor exits without checking if changes have been made in the 
buffer since the last w command. 

($)rfile 
The read command reads in the given file after the addressed line. If 
no file name is given, the currently-remembered file name, if any, is 
used (see e and j commands). The currently-remembered file name is 
not changed unless file is the very first file name mentioned since ed 
was invoked. Address 0 is legal for r and causes the file to be read at 
the beginning of the buffer. If the read is successful, the number of 
characters read is typed; • is set to the last line read in. If file is 
replaced by!, the rest of the line is taken to be a shell (sh (1» com­
mand whose output is to be read. For example, "$r !ls" appends 
current directory to the end of the file being edited. Such a shell com­
mand is not remembered as the current file name. 

L, Js/ RE /replacement / or 
L,,>s/RE/replacement/g or 
(.,.)s/RE/replacement/o n = 1-512 

The substitute command searches each addressed line for an 
occurrence of the specified RE. In each line in which a match is found, 
all (non-overlapped) matched strings are replaced by the replacement 
if the global replacement indicator g appears after the command. If 
the global indicator does not appear, only the first occurrence of the 
matched string is replaced. If a number n appears after the command, 
only the n th occurrence of the matched string on each addressed line 

- 6 -



EO(t) 

<., .>ta 

u 

EO(t) 

is replaced. It is an error for the substitution to fail on all addressed 
lines. Any character other than space or new-line may be used instead 
of / to delimit the RE and the replacement; . is left at the last line on 
which a substitution occurred. See also the last paragraph before 
FJ LES below. 

An ampersand (&) appearing in the replacement is replaced by the 
string matching the RE on the current line. The special meaning of & 
in this context may be suppressed by preceding it by \. As a more 
general feature, the characters \n, where n is a digit, are replaced by 
the text matched by the n-th regular subexpression of the specified RE 
enclosed between \ ( and \). When nested parenthesized subexpressions 
are present, n is determined by counting occurrences of \ ( starting 
from the left. When the character % is the only character in the 
replacement, the replacement used in the most recent substitute com­
mand is used as the replacement in the current substitute command. 
The % loses its special meaning when it is in a replacement string of 
more than one character or is preceded by a \. 

A line may be split by substituting a new-line character into it. The 
new-line in the replacement must be escaped by preceding it by \. 
Such substitution cannot be done as part of a g or v command list. 

This command acts just like the m command, except that a copy of the 
addressed lines is placed after address a (which may be 0); . is left at 
the last line of the copy. 

The undo command nullifies the effect of the most recent command 
that modified anything in the buffer, namely the most recent a, c, d, g, 
i, j, m, r, s, t, v, G, or V command. 

<t , $ >v / RE / command list 
This command is the same as the global command g except that the 
command list is executed with. initially set to every line that does not 
match the RE. 

<t,$)V/RE/ 
This command is the same as the interactive global command G except 
that the lines that are marked during the first step are those that do 
not match the RE. 

(l,$)wfile 

x 

The write command writes the addressed lines into the named file. If 
the file does not exist., it is created with mode 666 (readable and writ­
able by everyone), unless your umask setting (see sh (1» dictates oth­
erwise. The currently-remembered file name is not changed unless file 
is the very first file name mentioned since ed was invoked. If no file 
name is given, the currently-remembered file name, if any, is used (see 
e and f commands); • is unchanged. If the command is successful, the 
number of characters written is typed. If file is replaced by!, the rest 
of the line is taken to be a shell (sh (1» command whose standard 
input is the addressed lines. Such a shell command is not remembered 
as the current file name. 

A key string is demanded from the standard input. Subsequent e, r, 
and w commands will encrypt and decrypt the text with this key by the 
algorithm of crypr(l). An explicitly empty key turns off encryption. 

- 7 -



ED(I) 

FILES 

ED(I) 

The line number of the addressed line is typed; . is unchanged by this 
command. 

!shell command 
The remainder of the line after the ! is sent to the UN IX system shell 
(sh (I» to be interpreted as a command. Within the text of that com­
mand, the unescaped character % is replaced with the remembered file 
name; if a ! appears as the first character of the shell command, it is 
replaced with the text of the previous shell command. Thus,!! will 
repeat the last shell command. If any expansion is performed, the 
expanded line is echoed; . is unchanged. 

(. +1) <new-line> 
An address alone on a line causes the addressed line to be printed. A 
new-line~ alone is equivalent to . + Ip; it is useful for stepping forward 
through the buffer. 

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns 
to its command level. 

Some size limitations: 512 characters per line, 256 characters per global com­
mand list, 64 characters per file name, and 128K characters in the buffer. The 
limit on the number of lines depends on the amount of user memory: each line 
takes 1 word. 

When reading a file, ed discards ASCII NUL characters and all characters after 
the last new-line. Files (e.g., a.out) that contain characters not in the ASCII 
set (bit 8 on) cannot be edited by ed. 

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the 
last character before a new-line, that delimiter may be omitted, in which case 
the addressed line is printed. The following pairs of commands are equivalent: 

s/sl/s2 s/sl/s2/p 
g/sl g/sl/p 
?sl ?sl? 

/tmp/e# 
ed.hup 

DIAGNOSTICS 

temporary; # is the process number. 
work is saved here if the terminal is hung up. 

? 
?file 

for command errors. 
for an inaccessible file. 
(use the help and Help commands for detailed explanations). 

If changes have been made in the buffer since the last w command that wrote 
the entire buffer, ed warns the user if an attempt is made to destroyed's buffer 
via the e or q commands. It prints ? and allows one to continue editing. A 
second e or q command at this point will take effect. The - command-line 
option inhibits this feature. 

SEE ALSO 
crypt(I), grep(I), sed(l), sh(I), stty(I). 
fspec(4), regexp(5) in the UNIX System V Programmer Reference Manual. 

UNIX System V Editing Guide. 

- 8 -



ED(l) ED(l) 

CA VEA TS AND BUGS 
A ! command cannot be subject to a g or a v command. 
The! command and the! escape from the e, r, and w commands cannot be 
used if the the editor is invoked from a restricted shell (see sh (1». 
The sequence \0 in a RE does not match a new-line character. 
The I command mishandles DEL. 
Files encrypted directly with the crypt (1) command with the null key cannot 
be edited. 
Characters are masked to 7 bits on input. 
If the editor input is coming from a command file (i.e., ed file < ed-cmd-file), 
the editor will exit at the first failure of a command that is in the command 
file. 

- 9 -



EDIT(I) EDIT(I) 

NAME 
edit - text editor (variant of ex for casual users) 

SYNOPSIS 
edit [ -r ] name ... 

DESCRIPTION 
Edit is a variant of the text editor ex recommended for new or casual users 
who wish to use a command-oriented editor. The following brief introduction 
should help you get started with edit. If you are using a CRT terminal you may 
want to learn about the display editor vi. 

BRIEF INTRODUCTION 
To edit the contents of an existing file you begin with the command "edit 
name" to the shell. Edit makes a copy of the file which you can then edit, and 
tells you how many lines and characters are in the file. To create a new file, 
just make up a name for the file and try to run edit on it; you will cause an 
error diagnostic, but do not worry. 

Edit prompts for commands with the character ':', which you should see after 
starting the editor. If you are editing an existing file, then you will have some 
lines in edit's buffer (its name for the copy of the file you are editing). Most 
commands to edit use its "current line" if you do not tell them which line to 
use. Thus if you say print (which can be abbreviated p) and hit carriage return 
(as you should after all edit commands) this current line will be printed. If 
you delete (d) the current line, edit will print the new current line. When you 
start editing, edit makes the last line of the file the current line. If you delete 
this last line, then the new last line becomes the current one. In general, after 
a delete, the next line in the file becomes the current line. (Deleting the last 
line is a special case.) , 

If you start with an empty file or wish to add some new lines, then the append 
(a) command can be used. After you give this command (typing a carriage 
return after the word append) edit will read lines from your terminal until you 
give a line consisting of just a ".", placing these lines after the current line. 
The last line you type then becomes the current line. The command insert (i) 
is like append but places the lines you give before, rather than after, the current 
line. 

Edit numbers the lines in the buffer, with the first line having number 1. If 
you give the command "1" then edit will type this first line. If you then give 
the command delete edit will delete the first line, line 2 will become line 1, and 
edit will print the current line (the new line 1) so you can see where you are. 
In general, the current line will always be the last line affected by a command. 

You can make a change to some text within the current line by using the sub­
stitute (s) command. You say "sloldlnewl" where old is replaced by the old 
characters you want to get rid of and new is the new characters you want to 
replace it with. 

The command file (f) will tell you how many lines there are in the buffer you 
are editing and will say "[Modified]" if you have changed it. After modifying 
a file you can put the buffer text back to replace the file by giving a write (w) 
command. You can then leave the editor by issuing a quit (q) command. If 
you run edit on a file, but do not change it, it is not necessary (but does no 
harm) to write the file back. If you try to quit from edit after modifying the 
buffer without writing it out, you will be warned that there has been "No write 
since last change" and edit will await another command. If you wish not to 
write the buffer out then you can issue another quit command. The buffer is 
then irretrievably discarded, and you return to the shell. 

- 1 -



EDIT(I) EDIT(I) 

By using the delete and append commands, and giving line numbers to see lines 
in the file you can make any changes you desire. You should learn at least a 
few more things, however, if you are to use edit more than a few times. 

The cbange (c) command will change the current line to a sequence of lines 
you supply (as in append you give lines up to a line consisting of only a"."). 
You can tell cbange to change more than one line by giving the line numbers of 
the lines you want to change, i.e., "3,5change". You can print lines this way 
too. Thus" 1 ,23p" prints the first 23 lines of the file. 

The undo (u) command will reverse the effect of the last command you gave 
which changed the buffer. Thus if you give a substitute command which does 
not do what you want, you can say undo and the old contents of the line will be 
restored. You can also undo an undo command so that you can continue to 
change your mind. Edit will give you a warning message when commands you 
do affect more than one line of the buffer. If the amount of change seems 
unreasonable, you should consider doing an undo and looking to see what hap­
pened. If you decide that the change is ok, then you can undo again to get it 
back. Note that commands such as write and quit cannot be undone. 

To look at the next line in the buffer you can just hit carriage return. To look 
at a number of lines hit AD (control key and, while it is held down D key, then 
let up both) rather than carriage return. This will show you a half screen of 
lines on a CRT or 12 lines on a hardcopy terminal. You can look at the text 
around where you are by giving the command "z.". The current line will then 
be the last line printed; you can get back to the line where you were before the 
"z." command by saying """. The z command can also be given other follow­
ing characters "z-" prints a screen of text (or 24 lines) ending where you are; 
"z+" prints the next screenful. If you want less than a screenful of lines, type 
in "z.12" to get 12 lines total. This method of giving counts works in general; 
thus you can delete 5 lines starting with the current line with the command 
"delete 5". 

To find things in the file, you can use line numbers if you happen to know 
them; since the line numbers change when you insert and delete lines this is 
somewhat unreliable. You can search backwards and forwards in the file for 
strings by giving commands of the form /text/ to search forward for text or 
?text? to search backward for text. If a search reaches the end of the file 
without finding the text it wraps, end around, and continues to search back to 
the line where you are. A useful feature here is a search of the form I"text/ 
which searches for text at the beginning of a line. Similarly /text$/ searches 
for text at the end of a line. You can leave off the trailing / or ? in these com­
mands. 

The current line has a symbolic name "."; this is most useful in a range of lines 
as in ".,$print" which prints the rest of the lines in the file. To get to the last 
line in the file you can refer to it by its symbolic name "$". Thus the com­
mand "$ delete" or "$d" deletes the last line in the file, no matter which line 
was· the current line before. Arithmetic with line references is also possible. 
Thus the line "$-5" is the fifth before the last, and ".+20" is 20 lines after the 
present. 

You can find out which line you are at by doing ".=". This is useful if you 
wish to move or copy a section of text within a file or between files. Find out 
the first and last line numbers you wish to copy or move (say 10 to 20). For a 
move you can then say "1O,20delete a" which deletes these lines from the file 
and places them in a buffer named a. Edit has 26 such buffers named a 
through z. You can later get these lines back by doing "put a" to put the con­
tents of buffer a after the current line. If you want to move or copy these lines 
between files you can give an edit (e) command after copying the lines, 

- 2 -



EDIT (1) EDIT(I) 

following it with the name of the other file you wish to edit, i.e., "edit 
chapter2". By changing delete to yank above you can get a pattern for copying 
lines. If the text you wish to move or copy is all within one file then you can 
just say "1O,20move $" for example.. It is not necessary to use named buffers 
in this case (but you can if you wish). 

SEE ALSO 
ex (I ), vi{ 1) . 

- 3 -



EFL(I) EFL(I) 

NAME 
efl - Extended Fortran Language 

SYNOPSIS 
efl [ options ] [ files ] 

DESCRIPTION 
Efl compiles a program written in the EFL language into clean Fortran on the 
standard output. Efl provides the C-like control constructs of ratfor< 1): 

statement grouping with braces. 

decision-making: 
if, if-else, and select-case (also known as switch-case); 
while, for, Fortran do, repeat, and repeat ... until loops; 
multi-level break and next. 

EFL has C-like data structures, e.g.: 

struct 
{ 
integer flags(3) 
character(S) name 
long real coords (2) 
} table(100) 

The language offers generic functions, assignment operators (+ -, & -, etc.), 
and sequentially evaluated logical operators (& & and II). There is a uniform 
input/output syntax: 

write(6,x,y:f(7,2), do i-l,lO { a(i,j),z.b(i) }) 

EFL also provides some syntactic "sugar": 

free-form input: 
multiple statements per line; automatic continuation; statement 
label names (not just numbers). 

comments: 
# this is a comment. 

translation of relational and logical operators: 
>, > -, &, etc., become .GT., .GE., .AND., etc. 

return expression to caller from function: 
return (expression) 

defines: 
define name replacement 

includes: 
include file 

Eft understands several option arguments: -w suppresses warning messages, 
-# suppresses comments in the generated program, and the default option -C 
causes comments to be included in the generated program. 

An argument with an embedded - (equal sign) sets an EFL option as if it had 
appeared in an option statement at the start of the program. Many options are 
described in the reference manual. A set of defaults for a particular target 
machine may be selected by one of the choices: system-unix, system-gcos, or 
system-cray. The default setting of the system option is the same as the 
machine the compiler is running on. 

- 1 -



EFL(I) EFL(t) 

Other specific options determine the style of input/output, error handling, con­
tinuation conventions, the number of characters packed per word, and default 
formats. 

Efl is best used withj77(t). 

SEE ALSO 
ce(1), f77(1), ratfor(I). 

- 2 -



ENABLE(l) ENABLE(l) 

NAME 
enable, disable - enable/disable LP printers 

SYNOPSIS 
enable printers 
disable [ -c] [ -r[ reason]] printers 

DESCRIPTION 

FILES 

Enable activates the named printers, enabling them to print requests taken by 
Ip (1). Use Ipstat (1) to find the status of printers. 

Disable deactivates the named printers, disabling them from printing requests 
taken by lp (1). By default, any requests that are currently printing on the 
designated printers will be reprinted in their entirety either on the same printer 
or on another member of the same class. Use Ipstat(1) to find the status of 
printers. Options useful with disable are: 

-c Cancel any requests that are currently printing on any of the 
designated printers. 

-r[ reason] Associates a reason with the deactivation of the printers. This 
reason applies to all printers mentioned up to the next -r option. 
If the -r option is not present or the -r option is given without 
a reason, then a default reason will be used. Reason is reported 
by IpstadO. 

/usr/spoollip/* 

SEE ALSO 
Ip(1),lpstat(I). 

- 1 -



ENV(I) ENV(I) 

NAME 
env - set environment for command execution 

SYNOPSIS 
en" [-] [ name-value ] ... [command args 

DESCRIPTION 
Env obtains the current environment, modifies it according to its arguments, 
then executes the command with the modified environment. Arguments of the 
form name = value are merged into the inherited environment before the com­
mand is executed. The - flag causes the inherited environment to be ignored 
completely, so that the command is executed with exactly the environment 
specified by the arguments. 

If no command is specified, the resulting environment is printed, one name­
value pair pe~ line. 

SEE ALSO 
sh (1). 
exec(2), profile(4), environ(S) in the UNIX System V Programmer Reference 
Manual. 

- 1 -



EX(l) EX(l) 

NAME 
ex - text editor 

SYNOPSIS 
ex [ - ] [ -v ] [ -t tag] [ -r ] [ -R ] [ +command ] [ -I ] [ -x 
] name ... 

DESCRIPTION 
Ex is the root of a family of editors: ex and vi. Ex is a superset of ed, with 
the most notable extension being a display editing facility. Display based edit­
ing is the focus of vi. 

If you have a CRT terminal, you may wish to use a display based editor; in this 
case see v;(l), which is a command which focuses on the display editing por­
tion of ex. 

DOCUMENTATION 
The Ex Reference Manual is a comprehensive and complete manual for the 
command mode features of ex, but you cannot learn to use the editor by read­
ing it. For an introduction to more advanced forms of editing using the com­
mand mode of ex see the editing documents written by Brian Kernighan for the 
editor ed; the material in the introductory and advanced documents works also 
with ex. 

An Introduction to Display Editing with Vi introduces the display editor vi 
and provides reference material on vi. The Vi Quick Reference card summar­
izes the commands of vi in a useful, functional way, and is useful with the 
Introduction. The vi(I) manual page can also be used as reference. 

FOR ED USERS 
If you have used ed you will find that ex has a number of new features useful 
on CRT terminals. Intelligent terminals and high speed terminals are very 
pleasant to use with vi. Generally, the editor uses far more of the capabilities 
of terminals than ed does, and uses the terminal capability data base ter­
minjo(4) and the type of the terminal you are using from the variable TERM 
in the environment to determine how to drive your terminal efficiently. The 
editor makes use of features such as insert and delete character and line in its 
visual command (which can be abbreviated vi) and which is the central mode of 
editing when using vi (1). 

Ex contains a number of new features for easily viewing the text of the file. 
The z command gives easy access to windows of text. Hitting AD causes the 
editor to scroll a half-window of text and is more useful for quickly stepping 
through a file than just hitting return. Of course, the screen-oriented visual 
mode gives constant access to editing context. 

Ex gives you more help when you make mistakes. The undo (u) command 
allows you to reverse any single change which goes astray. Ex gives you a lot 
of feedback, normally printing changed lines, and indicates when more than a 
few lines are affected by a command so that it is easy to detect when a com­
mand has affected more lines than it should have. 

The editor also normally prevents overwriting existing files unless you edited 
them so that you do not accidentally clobber with a write a file other than the 
one you are editing. If the system (or editor) crashes, or you accidentally hang 
up the telephone, you can use the editor recover command to retrieve your 
work. This will get you back to within a few lines of where you left off. 

Ex has several features for dealing with more than one file at a time. You can 
give it a list of files on the command line and use the next (n) command to deal 
with each in turn. The next command can also be given a list of file names, or 
a pattern as used by the shell to specify a new set of files to be dealt with. In 

- 1 -



EX(I) EX(I) 

general, file names in the editor may be formed with full shell metasyntax. The 
metacharacter '%' is also available in forming file names and is replaced by the 
name of the current file. 

For moving text between files and within a file the editor has a group of 
buffers, named a through z. You can place text in these named buffers and 
carry it over when you edit another file. 

There is a command & in ex which repeats the last substitute command. In 
addition there is a confirmed substitute command. You give a range of substi­
tutions to be done and the editor interactively asks whether each substitution is 
desired. 

It is possible to ignore case of letters in searches and substitutions. Ex also 
allows regular expressions which match words to be constructed. This is con­
venient, for example, in searching for the word "edit" if your document also 
contains the word "editor." 

Ex has a set of options which you can set to tailor it to your liking. One 
option which is very useful is the autoindent option which allows the editor to 
automatically supply leading white space to align text. You can then use the 
AD key as a backtab and space and tab forward to align new code easily. 

Miscellaneous new useful features include an intelligent join (j) command 
which supplies white space between joined lines automatically, commands < 
and > which shift groups of lines, and the ability to filter portions of the buffer 
through commands such as sort. 

INVOCATION OPTIONS 
The following invocation options are interpreted by ex: 

-v 

-t tagfR 

-r file 

-R 
+ command 

-I 

-x 

Suppress all interactive-user feedback. This is useful in pro­
cessing editor scripts. 

Invokes vi 

Edit the file containing the tag and position the editor at its 
definition. 

Recover file after an editor or system crash. If file is not 
specified a list of all saved files will be printed. 

Readonly mode set, prevents accidentally overwriting the file. 

Begin editing by executing the specified editor search or posi­
tioning command. 

LISP mode; indents appropriately for lisp code, the 0 {} [[ 
and J] commands in vi are modified to have meaning for lisp. 

Encryption mode; a key is prompted for allowing creation or 
editing of an encrypted file. 

The name argument indicates files to be edited. 

Ex States 
Command 

Insert 

Visual 

Normal· and initial state. Input prompted for by:. Your kill 
character cancels partial command. 

Entered by a i and c. Arbitrary text may be entered. Insert 
is normally terminated by line having only. on it, or abnor­
mally with an interrupt. 

Entered by vi, terminates with Q or A\. 

- 2 -



EX(l) 

Ex command names and abbreviations 
abbrev ab 
append a 
args ar 
change c 
copy co 
delete d 
edit e 
file f 
global g 
insert 
join 
list 
map 
mark ma 
move m 

Ex Command Addresses 
n 

$ 
+ 

line n 
current 
last 
next 
previous 

next n 
number nu 

preserve pre 
print p 
put pu 
quit q 
read re 
recover rec 
rewind rew 
set se 
shell sh 
source so 
stop st 
substitute s 

/pat 
?pat 
x-n 
X,Y 
'x 

unabbrev una 
undo u 
unmap unm 
version ve 
visual vi 
write w 
xit x 
yank ya 
window z 
escape 
lshift < 
print next CR 
resubst & 
rshift > 
scroll AD 

next with pat 
previous with pat 
n before x 

+n 
% 

n forward 
1,$ 

x through y 
marked with x 
previous context 

Initializing options 
EXINIT 
$HOME/.exrc 
.I.exrc 
set x 
set nox 
set x=val 
set 
set all 
set x? 

Most useful options 
autoindent 
auto write 
ignorecase 
lisp 
list 
magic 
number 
paragraphs 
redraw 
scroll 
sections 
shiftwidth 
showmatch 
show mode 
slow open 
window 
wrapscan 
wrapmargin 

place set's here in environment var. 
editor initialization file 
editor initialization file 
enable option 
disa ble option 
give value val 
show changed options 
show all options 
show value of option x 

ai 
aw 
ic 

nu 
para 

sect 
sw 
sm 
smd 
slow 

ws 
wm 

supply indent 
write before changing files 
in scanning 
( ) {} are s-exp's 
print "I for tab, $ at end 
. [ * special in patterns 
number lines 
macro names which start ... 
simulate smart terminal 
command mode lines 
macro names ... 
for < >, and input AD 
to ) and } as typed 
show insert mode in vi 
stop updates during insert 
visual mode lines 
around end of buffer? 
automatic line splitting 

- 3 -

EX(l) 



EX(I) EX(I) 

Scanning pattern formation 
A beginning of line 
$ end of line 

\< 
\> 
[str] 
[lstr) 
[x-y] 

* 

any character 
beginning of word 
end of word 
any char in str 
... not in str 
... between x and y 
any number of preceding 

AUTHOR 

FILES 

Vi and ex are based on software developed by The University of California, 
Berkeley California, Computer Science Division, Department of Electrical 
Engineering and Computer Science. 

lusr/lib/ex? ?strings 
I usr IIi bl ex? . ? recover 
lusrlIib/ex? ?preserve 
lusrlIib/* 1* 
$HOME/.exrc 
.I.exrc 
Itmp/Exnnnnn 
Itmp/Rxnnnnn 
I usr I preserve 

error messages 
recover command 
preserve command 
describes capabilities of terminals 
editor startup file 
editor startup file 
editor temporary 
named buffer temporary 
preservation directory 

SEE ALSO 
awk(I), ed(I), edit(I), grep(l), sedO), viet). 
curses(3X), term (4) , terminfo(4) in the UNIX System V Programmer Refer­
ence Manual. 

CAVEATS AND BUGS 
The undo command causes all marks to be lost on lines changed and then 
restored if the marked lines were changed. 

Undo never clears the buffer modified condition. 

The z command prints a number of logical rather than physical lines. More 
than a screen full of output may result if long lines are present. 

File input/output errors do not print a name if the command line' -' option is 
used. 

There is no easy way to do a single scan ignoring case. 

The editor does not warn if text is placed in named buffers and not used before 
exiting the editor. 

Null characters are discarded in input files and cannot appear in resultant files. 

- 4 -



EXPR(I) EXPR(t) 

NAME 
expr - evaluate arguments as an expression 

SYNOPSIS 
expr arguments 

DESCRIPTION 
The arguments are taken as an expression. After evaluation, the result is writ­
ten on the standard output. Terms of the expression must be separated by 
blanks. Characters special to the shell must be escaped. Note that 0 is 
returned to indicate a zero value, rather than the null string. Strings contain­
ing blanks or other special characters should be quoted. Integer-valued argu­
ments may be preceded by a unary minus sign. Internally, integers are treated 
as 32-bit, 2s complement numbers. 

The operators and keywords are listed below. Characters that need to be 
escaped are preceded by \. The list is in order of increasing precedence, with 
equal precedence operators grouped within {} symbols. 

expr \ I expr 
returns the first expr if it is neither null nor 0, otherwise returns the 
second expr. 

expr \& expr 
returns the first expr if neither expr is null or 0, otherwise returns O. 

expr { -, \>, \> -, \<, \< -, !- } expr 
returns the result of an integer comparison if both arguments are 
integers, otherwise returns the result of a lexical comparison. 

expr { +, - } expr 
addition or subtraction of integer-valued arguments. 

expr { \-, I, % } expr 
multiplication, division, or remainder of the integer-valued arguments. 

expr: expr 

EXAMPLES 
1. 

2. 

The matching operator: compares the first argument with the second 
argument which must be a regular expression. Regular expression 
syntax is the same as that of ed(l), except that all patterns are 
"anchored" (i.e., begin with A) and, therefore, ,. is not a special char­
acter, in that context. Normally, the matching operator returns the 
number of characters matched (0 on failure). Alternatively, the 
\ ( ..• \) pattern symbols can be used to return a portion of the first 
argument. 

a='expr $a + l' 
adds 1 to the shell variable a. 

# 'For $a equal to either "/usr/abc/file" or just "file'" 
expr $a : '.-1\(.-\)' \ I $a 

returns the last segment of a path name (i.e., file). Watch out 
for / alone as an argument: expr will take it as the division 
operator (see BUGS below). 

- 1 -



EXPR<t) EXPR(}) 

3. # A better representation of example 2. 
expr / /$a : '.*1\(.*\)' 

The addition of the 1/ characters eliminates any ambiguity 
about the division operator and simplifies the whole expression. 

4. expr $VAR : '.*' 
returns the number of characters in $V AR. 

SEE ALSO 
ed(I), sh(I). 

EXIT CODE 
As a side effect of expression evaluation, expr returns the following exit values: 

o if the expression is neither null nor 0 
1 if the expression is null or 0 
2 for invalid expressions. 

DIAGNOSTICS 

BUGS 

syntax error 
non-numeric argument 

for operator/operand errors 
if arithmetic is attempted on such a string 

After argument processing by the shell, expr cannot tell the difference between 
an operator and an operand except by the value. If $a is an =, the command: 

expr $a - '-' 

looks like: 

expr 

. as the arguments are passed to expr (and they will all be taken as the 
operator). The following works: 

expr X$a - X-

- 2 -



F77(I) F77(I) 

NAME 
f77 - Fortran 77 compiler 

SYNOPSIS 
f77 [ options ] files 

DESCRIPTION 
F77 is the UNIX System Fortran 77 compiler; it accepts several types of file 
arguments: 

Arguments whose names end with .f are taken to be Fortran 77 source 
programs; they are compiled and each object program is left in the 
current directory in a file whose name is that of the source, with .0 

substituted for .f. 

Arguments whose names end with .r or .e are taken to be RATFOR or 
EFL source programs, respectively. These are first transformed by the 
appropriate preprocessor, then compiled by .177, producing .0 files. 

In the same way, arguments whose names end with .c or .s are taken to 
be C or assembly source programs and are compiled or assembled, pro­
ducing .0 files. 

The following options have the same meaning as in cd!) (see Id(1) for link 
editor options): 

-c 
-p 
-0 
-S 

-ooutput 
-f 

-g 

Suppress link editing and produce .0 files for each source file. 
Prepare object files for profiling (see prof(1». 
Invoke an object-code optimizer. 
Compile the named programs and leave the assembler-language 
output in corresponding files whose names are suffixed with .s. 
(No .0 files are created.) 
Name the final output file output, instead of a.out. 
In systems without floating-point hardware, use a version of .177 
that handles floating-point constants and links the object program 
with the floating-point interpreter. 
Generate additional information needed for the use of sdb(1). 

The following options are peculiar to .177: 

-onetrip Compile DO loops that are performed at least once if reached. 

-1 
-66 
-c 
-u 

-u 

-v 

-w 

-F 

-m 

-E 

(Fortran 77 DO loops are not performed at all if the upper limit 
is smaller than the lower limit.) 
Same as -onetrip. 
Suppress extensions which enhance Fortran 66 compatibility. 
Generate code for run-time subscript range-checking. 
Do not "fold" cases. F77 is normally a no-case language (i.e., a is 
equal to A). The - U option causes .177 to treat upper and lower 
cases to be separate. 
Make the default type of a variable undefined, rather than using 
the default Fortran rules. 
Verbose mode. Provide diagnostics for each process during com­
pilation. 
Suppress all warning messages. If the option is -w66, only For­
tran 66 compatibility warnings are suppressed. 
Apply EFL and RATFOR preprocessor to relevant files, put the 
result in files whose names have their suffix changed to .f. (No.o 
files are created.) 
Apply the M4 preprocessor to each EFL or RA TFOR source file 
before transforming with the ratfor(!) or eft (1) processors. 
The remaining characters in the argument are used as an EFL 
flag argument whenever processing a .e file. 

- 1 -



F77 (l) 

FILES 

F77 (t) 

-R The remaining characters in the argument are used as a RATFOR 
flag argument whenever processing a .r file. 

Other arguments are taken to be either link-editor option arguments or 177-
compilable object programs (typically produced by an earlier run), or libraries 
of 177 -compilable routines. These programs, together with the results of any 
compilations specified, are linked (in the order given) to produce an executable 
program with the default name a.out . 

file.[ fresc1 
file.o 
a.ol,lt 
.I fort[pid). ? 
lusrllib/f77pass 1 
lusr/lib/f77p~ss2 
llib/c2 
lusr/libllibF77 .a 
lusr Ilib/libI77.a 
Ilib/libc.a 

input file 
object file 
linked output 
temporary 
compiler 
pass 2 
optional optimizer 
intrinsic function library 
Fortran I/O library 
C library; see Section 3 of this Manual. 

SEE ALSO 
asa(1), cc(l), efl(l), fsplit(1), Id(I), m4(l), prof(1), ratfor(1), sdb(l). 

DIAGNOSTICS 
The diagnostics produced by j77 itself are intended to be self-explanatory. 
Occasional messages may be produced by the link editor Id(1). 

- 2 -



FACTOR(I) FACTOR(I) 

NAME 
factor - factor a number 

SYNOPSIS 
factor [ number ] 

DESCRIPTION 
When factor is invoked without an argument, it waits for a number to be typed 
in. If you type in a positive number less than 256 (about 7.2xl016

) it will fac­
tor the number and print its prime factors; each one is printed the proper 
number of times. Then it waits for another number. It exits if it encounters a 
zero or any non-numeric character. 

If factor is invoked with an argument, it factors the number as above and then 
exits. 

Maximum time to factor is proportional to .Jfi and occurs when n is prime or 
the square of a prime. It takes 1 minute to factor a prime near 1014 on a 
PDP-ll. 

DIAGNOSTICS 
"Ouch" for input out of range or for garbage input. 

- 1 -



FILE(1) FILE (1 ) 

NAME 
file - determine file type 

SYNOPSIS 
file [ -c ] [ -f flUe ] [ -m mfile ] arg ... 

DESCRIPTION 
File performs a series of tests on each argument in an attempt to classify it. If 
an argument appears to be ASCII, file examines the first 512 bytes and tries to 
guess its language. If an argument is an executable a.out, file will print the 
version stamp, provided it is greater than 0 (see Id(I). 

If the -f option is given, the next argument is taken to be a file containing the 
names of the files to be examined. 

File uses the file /etc/magic to identify files that have some sort of magic 
number, that is, any file containing a numeric or string constant that indicates 
its type. Commentary at the beginning of /etc/magic explains its format. 

The -m option instructs file to use an alternate magic file. 

The -c flag causes file to check the magic file for format errors. This valida­
tion is not normally carried out for reasons of efficiency. No file typing is done 
under -c. 

SEE ALSO 
ld(!). 

- 1 -



FIND(l) FIND(l) 

NAME 
find - find files 

SYNOPSIS 
find path-name-list expression 

DESCRIPTION 
Find recursively descends the directory hierarchy for each path name in the 
path-name-list (i.e., one or more path names) seeking files that match a 
boolean expression written in the primaries given below. In the descriptions, 
the argument n is used as a decimal integer where +n means more than n, -n 
means less than nand n means exactly n. 

-name file True if file matches the current file name. Normal shell 
argument syntax may be used if escaped (watch out for l, ? 
and .). 

-perm onum True if the file permission flags exactly match the octal 
number onum (see chmod (1) ) . If onum is prefixed by a 
minus sign, more flag bits (017777, see stat(2» become 
significant and the flags are compared. 

-type c True if the type of the file is c, where c is b, c, d, p, or f for 
block special file, character special file, directory, fifo (a.k.a 
named pipe), or plain file respectively. 

-links n True if the file has n links. 

-user uname True if the file belongs to the user uname. If uname is 
numeric and does not appear as a login name in the 
/etc/passwd file, it is taken as a user 10. 

-group gname True if the file belongs to the group gname. If gname is 
numeric and does not appear in the /etc/group file, it is 
taken as a group ID. 

-size nrc] True if the file is n blocks long (512 bytes per block). If n is 
followed by a c, the size is in characters. 

-atime n True if the file has been accessed in n days. The access time 
of directories in path-name-list is changed by find itself. 

-mtime n True if the file has been modified in n days. 

-ctime n True if the file has been changed in n days. 

-exec cmd True if the executed cmd returns a zero value as exit status. 
The end of cmd must be punctuated by an escaped semi­
colon. A command argument {} is replaced by the current 
path name. 

-ok cmd Like -exec except that the generated command line is 
printed with a question mark first, and is executed only if the 
user responds by typing y. 

-print Always true; causes the current path name to be printed. 

-cpio device Always true; write the current file on device in cpio (4) . for-
ma t (5 120-byte records). 

-newer file True if the current file has been modified more recently than 
the argument file. 

- 1 -



FIND(t) FIND(t) 

-depth 

( expression ) 

Always true; causes descent of the directory hierarchy to be 
done so that all entries in a directory are acted on before the 
directory itself. This can be useful when find is used with 
cpio (1) to transfer files that are contained in directories 
without write permission. 

True if the parenthesized expression is true (parentheses are 
special to the shell and must be escaped). 

The primaries may be combined using the following operators (in order of 
decreasing precedence): 

1) The negation of a primary (! is the unary not operator). 

2) Concatenation of primaries (the and operation is implied by the juxtaposi­
tion of two primaries). 

~ 

3) Alternation of primaries (-0 is the or operator). 

EXAMPLE 
To remove all files named a.out or •• 0 that have not been accessed for a week: 

find / \( -name a.out -0 -name ' •. 0' \) -atime +7 -exec rm {} \; 

FILES 
/etc/passwd, /etc/group 

SEE ALSO 
chmod(l), cpio(1), sh(1), test(l). 
stat(2), cpio(4), fs(4) in the UNIX System V Programmer Reference Manual. 

- 2 -



FSPLIT(l) FSPLIT(l) 

NAME 
fsplit - split f77, ratfor, or efl files 

SYNOPSIS 
fsplit options files 

DESCRIPTION 
Fsplit splits the named filds) into separate files, with one procedure per file. A 
procedure includes blockdata, function, main, program, and subroutine pro­
gram segments. Procedure X is put in file X.f, X.r, or X.e depending on the 
language option chosen, with the following exceptions: main is put in the file 
MAIN.lefr) and unnamed blockdata segments in the files blockdataN.lefrl 
where N is a unique integer value for each file. 

The following options pertain: 

-f (default) Input files are j77. 

-r Input files are ratfor. 

-e Input files are Eft. 

-s Strip j77 input lines to 72 or fewer characters with trailing blanks 
removed. 

SEE ALSO 
csplit(1), efl(1), f77(1), ratfor(1), split(1). 

- 1 -



GDEV(IG) GDEV(IG) 

NAME 
hpd, erase, hardcopy, tekset, td - graphical device routines and filters 

SYNOPSIS 
hpd [-options] [GPS file •.• ] 
erase 
hardcopy 
tekset 
td [-eurn] [GPS file .. .1 

DESCRIPTION 
All of the commands described below reside in /usr/bin/graf (see 
graphics (1 G». 
hpd Hpd translates a GPS (see gps(4», to instructions for the Hewlett­

Packard 7221A Graphics Plotter. A viewing window is computed 
from the maximum and minimum points in file unless the -u or 
-r option is provided. If no file is given, the standard input is 
assumed. Options are: 

en Select character set n, n between 0 and 5 (see the HP7221 A 
Plotter Operating and Programming Manual, Appendix A). 

pn Select pen numbered n, n between 1 and 4 inclusive. 

rn Window on GPS region n, n between 1 and 25 inclusive. 

sn Slant characters n degrees clockwise from the vertical. 

u Window on the entire GPS universe. 

xdn Set x displacement of the viewport's lower left corner to n 
inches. 

xvn Set width of viewport to n inches. 

ydn Set y displacement of the viewport's lower left corner to n 
inches. 

yvn Set height of viewport to n inches. 

erase Erase sends characters to a TEKTRONIX 4010 series storage termi­
nal to erase the screen. 

hardcopy When issued at a TEKTRONIX display terminal with a hard copy 
unit, hardcopy generates a screen copy on the unit. 

tekset Tekset sends characters to a TEKTRONIX terminal to clear the 
display screen, set the display mode to alpha, and set characters to 
the smallest font. 

td Td translates a GPS to scope code for a TEKTRONIX 4010 series 
storage terminal. A viewing window is computed from the max­
imum and minimum points in file unless the -u or -r option is 
provided. If no file is given, the standard input is assumed. 
Options are: 

e Do not erase screen before initiating display. 

rn Display GPS region n, n between 1 and 25 inclusive. 

u Display the entire GPS universe. 

SEE ALSO 
ged(1G), graphics(1G). 
gps(4) in the UNIX System V Programmer Reference Manual. 

- 1 -



GED(lG) GED(IG) 

NAME 
ged - graphical editor 

SYNOPSIS 
ged [-euRrn1 [GPS file •• .1 

DESCRIPTION 
Ged is an interactive graphical editor used to display, construct, and edit GPS 
files on TEKTRONIX 4010 series display terminals. If GPS jile(s) are given, 
ged reads them into an internal display buffer and displays the buffer. The 
GPS in the buffer can then be edited. If - is given as a file name, ged reads a 
G PS from the standard input. 

Ged accepts the following command line options: 

e Do not erase the screen before the initial display. 

rn Display region number n. 

u Display the entire GPS universe. 

R Restricted shell invoked on use of !. 

A GPS file is composed of instances of three graphical objects: lines, arc, and 
text. Arc and lines objects have a start point, or object-handle, followed by 
zero or more points, or point-handles. Text has only an object-handle. The 
objects are positioned within a Cartesian plane, or universe, having 64K (-32K 
to +32K) points, or universe-units, on each axis. The universe is divided into 
25 equal sized areas called regions. Regions arc arranged in five rows of five 
squares each, numbered 1 to 25 from the lower left of the universe to the upper 
right. 

Ged maps rectangular areas, called windows, from the universe onto the display 
screen. Windows allow the user to view pictures from different locations and at 
different magnifications. The universe-window is the window with minimum 
magnification, i.e., the window that views the entire universe. The home­
window is the window that completely displays the contents of the display 
buffer. 

COMMANDS 
Ged commands are entered in stages. Typically each stage ends with a <cr> 
(return). Prior to the final < cr> the command may be aborted by typing 
rubout. The input of a stage may be edited during the stage using the erase 
and kill characters of the calling shell. The prompt • indicates that ged is wait­
ing at stage 1. 

Each command consists of a subset of the following stages: 

1. Command line 
A command line consists of a command name followed by 
argument(s) followed by a <cr>. A command name is a single 
character. Command arguments are either option(s) or a .file­
name. Options are indicated by a leading -. 

2. Text Text is a sequence of characters terminated by an unescaped 
<cr> (120 lines of text maximum). 

3. Points Points is a sequence of one or more screen locations (maximum 
of 30) indicated either by the terminal crosshairs or by name. 
The prompt for entering points is the appearance of the 
crosshairs. When the crosshairs are visible, typing: 

sp (space) enters the current location as a point. The point is 
identified with a number. 

- 1 -



GED(IG) 

4. Pivot 

GED(IG) 

$n enters the previous point numbered n. 

> x labels the last point entered with the upper case letter x. 

$x enters the point labeled x. 

establishes the previous points as the current points. At the 
start of a command the previous points are those locations 
given with the previous command. 

echoes the current points. 

$.n enters the point numbered n from the previous points. 

# erases the last point entered. 

@ erases all of the points entered. 

The pivot is a single location, entered by typing <cr> or by 
u~ing the $ operator, and indicated with a *. 

5. Destination 
The destination is a single location entered by typing <cr> or 
by using $. 

COMMAND SUMMARY 
In the summary, characters typed by the user are printed in bold. Command 
stages are printed in italics. Arguments surrounded by brackets "[ J" are 
optional. Parentheses "0" surrounding arguments separated by "or" means 
that exactly one of the arguments must be given. 

Construct commands: 
Arc [ -echo,style,weight1 points 

Box [ -echo,style,weight] points 

Circle [ -echo,style,weight1 points 

Hardware [ -echo] text points 

Lines [ -echo,style,weight1 points 

Text [ -angle,echo,height,mid-point,right-point,text,weight] text 
points 

Edit commands: 
Delete 

Edit 

Kopy 

Move 

Rotate 

Scale 

View commands: 
coordinates 

erase 

( - (universe or view) or points) 

[-angle,echo,height,style,weight] ( - (universe or view) or 
points) 

[ -echo,points,x] points pivot destination 

[ -echo,points,x] points pivot destination 

[ -angle,echo,kopy,x] points pivot destination 

[ -echo,factor,kopy,x] points pivot destination 

points 

new-display 

object-handles ( - (universe or view) or points) 

- 2 -



GED(tG) 

poin t -handles 

view 

x 

zoom 

Other commands: 
quit or Quit 

GED(tG) 

( - (labelled-points or universe or view) or points) 

( - (home or universe or region) or [ -x] pivot desti­
nation) 

[ -view] points 

[-out] points 

read [ -angle,echo,height,mid-point,right-point,text,weight 
file-name [destination] 

set [ -angle,echo,factor,height,kopy,mid-point,points, 
right-point,style,text,weight,x] 

write file-name 

!command 

? 

Options: 
Options specify parameters used to construct, edit, and view graphical objects. 
If a parameter used by a command is not specifed as an option, the default 
value for the parameter will be used (see set below). The format of command 
options is: 

-option [,option] 
where option is keyletter[ value], Flags take on the values of true or false indi­
cated by + and - respectively. If no value is given with a flag, true is 
assumed. 

Object options: 

anglen 

echo 

factorn 

heightn 

kopy 

mid-point 

points 

right-point 

styletype 

Angle of n degrees. 

When true, echo additions to the display buffer. 

Scale factor is n percent. 

Height of text is n universe-units (0 ~ n < 1280). 

When true, copy rather than move. 

When true, mid-point is used to locate text string. 

When true, operate on points; otherwise operate on objects. 

When true, right-point is used to locate text string. 

Line style set to one of following types: 
so solid 
da dashed 
dd dot-dashed 
do dotted 
Id long-dashed 

- 3 -



GED(IG) GED(IG) 

text When false, text strings are outlined rather than drawn. 

weighttype Sets line weight to one of following types: 

Area options: 

home 

out 

regionn 

universe 

view 

x 

n narrow 
m medium 
b bold 

Reference the home-window. 

Reduce magnification. 

Reference region n. 

Reference the universe-window. 

Reference those objects currently in view. 

Indicate the center of the referenced area. 

COMMAND DESCRIPTIONS 
Construct commands: 

Arc and Lines 
behave similarly. Each consists of a command line followed by points. 
The first point entered is the object-handle. Successive points are point­
handles. Lines connect the handles in numerical order. Arc fits a curve 
to the handles (currently a maximum of 3 points will be fit with a circu­
lar arc; splines will be added in a later version). 

Box and Circle 
are special cases of Lines and Arc, respectively. Box generates a rectan­
gle with sides parallel to the universe axes. A diagonal of the rectangle 
would connect the first point entered with the last point. The first point 
is the object-handle. Point-handles are created at each of the vertices. 
Circle generates a circular arc centered about the point numbered zero 
and passing through the last point. The circle's object-handle coincides 
with the last point. A point-handle is generated 180 degrees around the 
circle from the object-handle. 

Text and Hardware 
generate text objects. Each consists of a command line, text and points. 
Text is a sequence of characters delimited by <cr>. Multiple lines of 
text may be entered by preceding a cr with a backslash (i.e., \cr). The 
Text command creates software-generated characters. Each line of 
software text is treated as a separate text object. The first point entered 
is the object-handle for the first line of text. The Hardware command 
sends the characters in text uninterpreted to the terminal. 

Edit commands: 
Edit commands operate on portions of the display buffer called defined areas. 
A defined area is referenced either with an area option or interactively. If an 
area option is not given, the perimeter of the defined area is indicated by 
points. If no point is entered, a small defined area is built around the location 
of the <cr>. This is useful to reference a single point. If only one point is 
entered, the location of the <cr> is taken in conjunction with the point to 
indicate a diagonal of a rectangle. A defined area referenced by points will be 
outlined with dotted lines. 

Delete 
removes all objects whose object-handle lies within a defineri area. The 
universe option removes all objects and erases the screen. 

- 4 -



GED(IG) GED (IG) 

Edit modifies the parameters of the objects within a defined area. Parameters 
that can be edited are: 

angle angle of text 
height height of text 
style style of lines and arc 
weight weight of lines, arc, and text. 

Kopy (or Move) 
copies (or moves) object- and/or point-handles within a defined area by 
the displacement from the pivot to the destination. 

Rotate 

Scale 

rotates objects within a defined area around the pivot. If the kopy flag is 
true then the objects are copied rather than moved. 

For objects whose object handles are within a defined area, point displace­
ments from the pivot are scaled by factor percent. If the kopy flag is 
true then the objects are copied rather than moved. 

View commands: 
coordinates 

prints the location of point(s) in universe- and screen-units. 

erase 
clears the screen (but not the display buffer), 

new-display 
erases the screen then displays the display buffer. 

object-handles (or point-handles) 
labels object-handles (and/or point-handles) that lie within the defined 
area with 0 (or P). Point-handles identifies labeled points when the 
labelled-points flag is true. 

view moves the window so that the universe point corresponding to the pivot 
coincides with the screen point corresponding to the destination. Options 
for home, universe, and region display particular windows in the universe. 

x indicates the center of a defined area. Option view indicates the center of 
the screen. 

zoom 
decreases (zoom out) or increases the magnification of the viewing win­
dow based on the defined area. For increased magnification, the window 
is set to circumscribe the defined area. For a decrease in magnification 
the current window is inscribed within the defined ar€a. 

Other commands: 
quit or Quit 

exit from ged. Quit responds with ? if the display buffer has not been 
written since the last modification. 

read inputs the contents of a file. If the file contains a G PS it is read directly. 
If the file contains text it is converted into text object (s). The first line of 
a text file begins at destination. 

set when given option(s) resets default parameters, otherwise it prints current 
default values. 

write outputs the contents of the display buffer to a file. 

- 5 -



GED(IG) GED(IG) 

escapes ged to execute a UNIX system command. 

? lists ged commands. 

SEE ALSO 
gdev(IG), graphics(IG), she}). 
gps(4) in the UNIX System V Programmer Manual. 

An Introduction to the Graphical Editor in the UNIX System V Graphics 
Guide. 

WARNING 
See Appendix A of the TEKTRONIX 4014 Computer Display Terminal User's 
Manual for the proper terminal strap options. 

- 6 -



GET(l) GET(t) 

NAME 
get - get a version of an sees file 

SYNOPSIS 
get [-rSID] [-ccutoff] [-ilistl [-xlist] [-wstring] [-aseq-no.1 [-k] 
[-e) [-I[p)) [-p] [-m] [-0] [-s] [-b) [-g) [-t] file ... 

DESCRIPTION 
Get generates an Asell text file from each named sees file according to the 
specifications given by its key letter arguments, which begin with -. The argu­
ments may be specified in any order, but all keyletter arguments apply to all 
named sees files. If a directory is named, get behaves as though each file in 
the directory were specified as a named file, except that non-sees files (last 
component of the path name does not begin with s.) and unreadable files are 
silently ignored. If a name of - is given, the standard input is read; each line 
of the standard input is taken to be the name of an sees file to be processed. 
Again, non-sees files and unreadable files are silently ignored. 

The generated text is normally written into a file called the g-file whose name 
is derived from the sees file name by simply removing the leading s.; (see also 
FILES, below). 

Each of the key letter arguments is explained below as though only one sees 
file is to be processed, but the effects of any key letter argument applies 
independently to each named file. 

-rSID The sees IDentification string (SID) of the version (delta) of an 
sees file to be retrieved. Table I below shows, for the most useful 
cases, what version of an sees file is retrieved (as well as the SID 
of the version to be eventually created by delta (1) if the -e 
key letter is also used), as a function of the SID specified. 

-ccutoJJ Cutoff date-time, in the form: 

YY[MM[DD[HH[MM[SS]]]]] 

No changes (deltas) to the sees file which were created after the 
specified cutoff date-time are included in the generated Asell text 
file. Units omitted from the date-time default to their maximum 
possible values; that is, -c7502 is equivalent to -c750228235959. 
Any number of non-numeric characters may separate the various 
2-digit pieces of the cutoff date-time. This feature allows one to 
specify a cutoff date in the form: II -c77/2/2 9:22:25". Note that 
this implies that one may use the %E% and %U% identification 
keywords (see below) for nested gets within, say the input to a 
send (1 C) command: 

-!get "-c%E% %U%" s.file 

-e Indicates that the get is for the purpose of editing or making a 
change (delta) to the sees file via a subsequent use of delta (1). 
The -e keyletter used in a get for a particular version (SID) of the 
sees file prevents further gets for editing on the same SID until 
delta is executed or the j (joint edit) flag j.s set in the sees file 
(see admin (I». Concurrent use of get -e for different SIDs is 
always allowed. 

If the g-file generated by get with an -e key letter is accidentally 
ruined in the process of editing it, it may be regenerated by re­
executing the get command with the - k keyletter in place of the 
-e keyletter. 

- 1 -



GET(t) 

-b 

-iUst 

GET(I) 

sees file protection specified via the ceiling, floor, and authorized 
user list stored in the sees file (see admin(1» are enforced when 
the -e keyletter is used. 

Used with the -e keyletter to indicate that the new delta should 
have an SID in a new branch as shown in Table 1. This keyletter is 
ignored if the b flag is not present in the file (see admin (1» or if 
the retrieved delta is not a leaf delta. (A leaf delta is one that has 
no successors on the sees file tree.) 
Note: A branch delta may always be created from a non-leaf 
delta. 

A list of deltas to be included (forced to be applied) in the creation 
of the generated file. The list has the following syntax: 

<list> ::= <range> I <list> , <range> 
<range> ::- SID I SID - SID 

SID, the sees Identification of a delta, may be in any form shown 
in the "SID Specified" column of Table 1. Partial SIDs are inter­
preted as shown in the "SID Retrieved" column of Table 1. 

-xlist A list of deltas to be excluded (forced not to be applied) in the 
creation of the generated file. See the -i keyletter for the list for­
mat. 

-k Suppresses replacement of identification keywords (see below) in 
the retrieved text by their value. The -k keyletter is implied by 
the -e keyletter. 

-l[p] Causes a delta summary to be written into an I-file. If -Ip is used 
then an I-file is not created; the delta summary is written on the 
standard output instead. See FILES for the format of the I-file. 

-p Causes the text retrieved from the sees file to be written on the 
standard output. No g-file is created. All output which normally 
goes to the standard output goes to file descriptor 2 instead, unless 
the -s keyletter is used, in which case it disappears. 

-s Suppresses all output normally written on the standard output. 
However, fatal error messages (which always go to file descriptor 
2) remain unaffected. 

- m Causes each text line retrieved from the sees file to be preceded 
by the SID of the delta that inserted the text line in the sees file. 
The format is: SID, followed by a horizontal tab, followed by the 
text line. 

-0 Causes each generated text line to be preceded with the %M% 
identification keyword value (see below). The format is: %M% 
value, followed by a horizontal tab, followed by the text line. 
When both the-m and -0 keyletters are used, the format is: 
%M% value, followed by a horizontal tab, followed by the -m 
key letter generated format. 

-g Suppresses the actual retrieval of text from the sees file. It is pri­
marily used to generate an I-file, or to verify the existence of a 
particular SID. 

-t Used to access the most recently created ("top") delta in a given 
release (e.g., -rI), or release and level (e.g., -r1.2). 

-w string Substitute string for all occurrences of @(#)get.l 6.2 when 
geting the file. 

- 2 -



GET (1) GET(t) 

SID* 

-aseq-no. The delta sequence number of the sees file delta (version) to be 
retrieved (see sccsfile(S». This key letter is used by the comb (1) 
command; it is not a generally useful key letter , and users should 
not use it. If both the -r and -a key letters are specified, the -a 
keyletter is used. Care should be taken when using the -a 
keyletter in conjunction with the -e keyletter, as the SID of the 
delta to be created may not be what one expects. The -r key letter 
can be used with the -a and -e key letters to control the naming 
of the SID of the delta to be created. 

For each file processed, get responds (on the standard output) with the SID 
being accessed and with the number of lines retrieved from the sees file. 

If the -e keyletter is used, the SID of the delta to be made appears after the 
SID accessed and before the number of lines generated. If there is more than 
one named file or if a directory or standard input is named, each file name is 
printed (preceded by a new-line) before it is processed. If the -i keyletter is 
used included deltas are listed following the notation "Included"; if the -x 
keyletter is used, excluded deltas are listed following the notation "Excluded". 

TABLE 1. Determination of sees Identification String 
-b Keyletter Other SID SID of Delta 

Specified Usedt Conditions Retrieved to be Created 
none:j: 
none:j: 

R 
R 
R 
R 

R 

R 

R.L 
R.L 

R.L 

R.L.B 
R.L.B 
R.L.B.S 
R.L.B.S 
R.L.B.S 

* 

** 

*** 
# 

no R defaults to mR mR.mL mR.(mL+U 
yes R defaults to mR mR.mL mR.mL. (mB+ 1).1 

no R> mR mR.mL R.l *** 
no R-mR mR.mL mR.(mL+l) 
yes R> mR mR.mL mR.mL. (mB+ 1).1 
yes R-mR mR.mL mR.mL. (mB+ 1).1 

R < mR and hR.mL** hR.mL.(mB+l).l 
R does not exist 
Trunk succ.# 
in release > R R.mL R.mL. (mB+ 1).1 
and R exists 

no No trunk succ. R.L R.(L+U 
yes No trunk succ. R.L R.L.(mB+1).l 

Trunk succ. R.L R.L.(mB+1).l 
in release ~ R 

no No branch succ. R.L.B.mS R.L.B.(mS+U 
yes No branch succ. R.L.B.mS R.L.(mB+I).1 

no No branch succ. R.L.B.S R.L.B.(S+I) 
yes No branch succ. R.L.B.S R.L.(mB+1).l 

Branch succ. R.L.B.S R.L. (mB+ 1).1 

"R", "L", "B", and "S" are the "release", "level", "branch", and 
"sequence" components of the SID, respectively; "m" means "maximum". 
Thus, for example, "R.mL" means "the maximum level number within 
release R"; "R.L. (mB+ 1).1" means "the first sequence number on the 
new branch (i.e., maximum branch number plus one) of level L within 
release R". Note that if the SID specified is of the form "R.L", "R.L.B", 
or "R.L.B.S", each of the specified components must exist. 
"hR" is the highest existing release that is lower than the specified, 
nonexistent, release R. 
This is used to force creation of the first delta in a new release. 
Successor. 

- 3 -



GET(I) GET(I) 

t The -b keyletter is effective only if the b flag {see admin (}) is present 
in the file. An entry of - means "irrelevant". * This case applies if the d (default SID) flag is not present in the file. If 
the d flag is present in the file, then the SID obtained from the d flag is 
interpreted as if it had been specified on the command line. Thus, one of 
the other cases in this table applies. 

IDENTIFICATION KEYWORDS 

FILES 

Identifying information is inserted into the text retrieved from the sees file by 
replacing identification keywords with their value wherever. they occur. The 
following keywords may be used in the text stored in an sees file: 

Keyword 
%M% 

%1% 

%R% 
%L% 
%8% 
%S% 
%D% 
%H% 
%T% 
%E% 
%G% 
%U% 
%Y% 
%F% 
%P% 
%Q% 
%C% 

%Z% 
%W% 

%A% 

Value 
Module name: either the value of the m flag in the file (see 
admin(I», or if absent, the name of the sees file with the leading 
s.lemoved. 
sees identification (SID) (%R%.%L%.%B%.%S%) of the retrieved 
text. 
Release. 
Level. 
Branch. 
Sequence. 
Current date (YY IMM/DD). 
Current date (MM/DD/YY). 
Current time (HH:MM:SS). 
Date newest applied delta was created (YY IMM/DD). 
Date newest applied delta was created (MM/DD/YY). 
Time newest applied delta was created (HH:MM:SS). 
Module type: value of the t flag in the sees file (see admin (1). 
sees file name. 
Fully qualified sees file name. 
The value of the q flag in the file (see admin (I». 
Current line number. This keyword is intended for identifying mes­
sages output by the program such as "this should not have hap­
pened" type errors. It is not intended to be used on every line to 
provide sequence numbers. 
The 4-character string @(#) recognizable by what(}). 
A shorthand notation for constructing what (}) strings for UNIX sys­
tem program files. %W% - %Z%%M%<horizontal-tab>%I% 
Another shorthand notation for constructing what{I) strings for 
non-UNIX system program files. 
%A% - %Z%%Y% %M% %I%%Z% 

Several auxiliary files may be created by get. These files are known generically 
as the g-file, I-file, p-file, and z-file. The letter before the hyphen is called 
the tag. An auxiliary file name is formed from the SCCS file name: the last 
component of all sees file names must be of the form s.module-name, the aux­
iliary files are named by replacing the leading s with the tag. The g-file is an 
exception to this scheme: the g-file is named by removing the s. prefix. For 
example, s.xyz.c, the auxiliary file names would be xyz.c, I.xyz.c, p.xyz.c, and 
z.xyz.c, respectively. 

The g-file, which contains the generated text, is created in the current direc­
tory (unless the -p key letter is used). A g-file is created in all cases, whether 
or not any lines of text were generated by the get. It is owned by the real user. 
If the -k keyletter is used or implied its mode is 644; otherwise its mode is 
444. Only the real user need have write permission in the current directory. 

- 4 -



GET(1) GET(1) 

The I-file contains a table showing which deltas were applied in generating the 
retrieved text. The I-file is created in the current directory if the -I keyletter 
is used; its mode is 444 and it is owned by the real user. Only the real user 
need have write permission in the current directory. 

Lines in the I-file have the following format: 

a. A blank character if the delta was applied; 
• otherwise. 

b. A blank character if the delta was applied or was not applied 
and ignored; 
• if the delta was not applied and was not ignored. 

c. A code indicating a "special" reason why the delta was or was 
not applied: 

"I": Included. 
"X": Excluded. 
"C": Cut off (by a -c keyletter). 

d. Blank. 
e. sees identification (SID). 
f. Tab character. 
g. Date and time (in the form YY IMM/DD HH:MM:SS) of crea-

tion. 
h. Blank. 
1. Login name of person who created delta. 

The comments and MR data follow on subsequent lines, indented one 
horizontal tab character. A blank line terminates each entry. 

The p-file is used to pass information resulting from a get with an -e keyletter 
along to delta. Its contents are also used to prevent a subsequent execution of 
get with an -e key letter for the same SID until delta is executed or the joint 
edit flag, j, (see admin(1» is set in the sees file. The p-file is created in the 
directory containing the sees file and the effective user must have write per­
mission in that directory. Its mode is 644 and it is owned by the effective user. 
The format of the p-file is: the gotten SID, followed by a blank, followed by the 
SID that the new delta will have when it is made, followed by a blank, followed 
by the login name of the real user, followed by a blank, followed by the date­
time the get was executed, followed by a blank and the -i keyletter argument 
if it was present, followed by a blank and the -x keyletter argument if it was 
present, followed by a new-line. There can be an a' t .trary number of lines in 
the p-file at any time; no two lines can have the sarr ; new delta SID. 

The z-file serves as a lock-out mechanism against simultaneous updates. Its 
contents are the binary (2 bytes) process ID of the command (i.e., get) that 
created it. The z-file is created in the directory containing the sees file for 
the duration of get. The same protection restrictions as those for the p-file 
apply for the z-file. The z-file is created mode 444. 

SEE ALSO 
admin(I), delta(I), help(I), prs(I), what(I). 
sccsfile(4) in the UNIX System V Programmer Reference Manual. 

Source Code Control System in the UNIX System V Support Tools Guide. 

DIAGNOSTICS 

BUGS 

Use help (1) for explanations. 

. If the effective user has write permission (either explicitly or implicitly) in the 
directory containing the sees files, but the real user does not, then only one file 
may be named when the -e keyletter is used. 

- 5 -



GETOPT(I) GETOPT(I) 

NAME 
getopt - parse command options 

SYNOPSIS 
set - - "getopt optstring $-" 

DESCRIPTION 
Getopt is used to break up options in command lines for easy parsing by shell 
procedures and to check for legal options. Optstring is a string of recognized 
option letters (see getopt(3C»; if a letter is followed by a colon, the option is 
expected to have an argument which mayor may not be separated from it by 
white space. The special option - - is used to delimit the end of the options. 
If it is used explicitly, getopt will recognize it; otherwise, getopt will generate 
it; in either case, getopt will place it at the end of the options. The positional 
parameters ($1 $2 ... ) of the shell are reset so that each option is preceded by 
a - and is in its own positional parameter; each option argument is also parsed 
into its own positional parameter. 

EXAMPLE 
The following code fragment shows how one might process the arguments for a 
command that can take the options a or b, as well as the option 0, which 
requires an argument: 

set -- 'getopt abo: $*' 
if [ $? != 0 ] 
then 

fi 

echo $USAGE 
exit 2 

for in $* 
do 

done 

case $i in 
-a I -b) 
-0) 
--) 
esac 

FLAG=$i; shift;; 
OARG=$2; shift 2;; 
shift; break;; 

This code will accept any of the following as equivalent: 

cmd -aoarg file file 
cmd -a -0 arg file file 
cmd -oarg -a file file 
cmd -a -oarg -- file file 

SEE ALSO 
sh(1), getopt(3C). 

DIAGNOSTICS 
Getopt prints an error message on the standard error when it encounters an 
option letter not included in optstring. 

- 1 -



GRAPH(IG) GRAPH(IG) 

NAME 
graph - draw a graph 

SYNOPSIS 
graph [ options ] 

DESCRIPTION 
Graph with no options takes pairs of numbers from the standard input as 
abscissas and ordinates of a graph. Successive points are connected by straight 
lines. The graph is encoded on the standard output for display by the 
tplot (I G) filters. 

If the coordinates of a point are followed by a non-numeric string, that string is 
printed as a la!:>el beJinning on the point. Labels may be surrounded with 
quotes ", in which case they may be empty or contain blanks and numbers; 
labels never contain new-lines. 

The following options are recognized, each as a separate argument: 

-a Supply abscissas automatically (they are missing from the input); 
spacing is given by the next argument (default I). A second 
optional argument is the starting point for automatic abscissas 
(default 0 or lower limit given by -x). 

-b Break (discornect) the graph after each label in the input. 
-c Character string given by next argument is default label for each 

point. 
-g ;\J"ext argument is grid style, 0 no grid, 1 frame with ticks, 2 full 

grid (default). 
-I Next argument is label for graph. 
-m Next argument is mode (style) of connecting lines: 0 disconnected, 

1 connected (default). Some devices give distinguishable line styles 
for other small integers (e.g., the TEKTRONIX 4014: 2=dotted, 
3=dash-dot, 4=short-dash, 5=long-dash). 

-s Save screen, do not erase before plotting. 
-x [ 1 ] If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are 

lower (and upper) x limits. Third argument, if present, is grid 
spacing on x axis. Normally these quantities are determined 
automatically. 

-y [ 1 ] Similarly for y. 
-h Next argument is fraction of space for height. 
-w Similarly for width. 
-r Next argument is fraction of space to move right before plotting. 
-u Similarly to move up before plotting. 
-t Transpose horizontal and vertical axes. (Option -x now applies to 

the vertical axis.) 
A legend indicating grid range is produced with a grid unless the -s option is 
present. If a specified lower limit exceeds the upper limit, the axis is reversed. 

SEE ALSO 

BUGS 

graphics(IG), spline(IG), tplot(IG). 

Graph stores all points internally and drops those for which there is no room. 
Segments that run out of bounds are dropped, not windowed. 
Log~rithmic axes may not be reversed. 

- 1 -



GRAPHICS(1G) GRAPHICS(IG) 

NAME 
graphics - access graphical and numerical commands 

SYNOPSIS 
graphics [ - r ] 

DESCRIPTION 
Graphics prefixes the path name lusrlbin/graf to the current $PATH value, 
changes the primary shell prompt to ", and executes a new shell. The directory 
lusr/bin/graf contains all of the Graphics subsystem commands. If the -r 
option is given, access to the graphical commands is created in a restricted 
environment; that is, $PATH is set to 

:/usr Ibin/graf:/rbin:/usr Irbin 
and the restricted shell, rsh, is invoked. To restore the environment that 
existed prior to issuing the graphics command, type EOT (control-d on most 
terminals). T<\ logoff from the graphics environment, type quit. 

The command line format for a command in graphics is command name fol­
lowed by argument(s). An argument may be a file name or an option string. 
A file name is the name of any UNIX system file except those beginning with 
-. The file name - is the name for the standard input. An option string con­
sists of - followed by one or more option(s). An option consists of a keyletter 
possibly followed by a value. Options may be separated by commas. 

The graphical commands have been partitioned into four groups. 

Commands that manipulate and plot numerical data; see statClG). 

Commands that generate tables of contents; see tocClG). 

Commands that interact with graphical devices; see gdevClG) and 
gedClG). 

A collection of graphical utility commands; see gutU Cl G). 

A list of the graphics commands can be generated by typing whatis in the 
graphics environment. 

SEE ALSO 
gdevClG), ged(IG), gutiI(IG), statClG), tocClG). 
gps(4) in the UNIX System V Programmer Reference Manual. 

UNIX System V Graphics Guide. 

- 1 -



GREEK(t) GREEK (I) 

NAME 
greek - select termina! filter 

SYNOPSIS 
greek [ - Tterminal ] 

DESCRIPTION 

FILES 

Greek is a filter that reinterprets the extended character set, as well as the 
reverse and half-line motions, of a 128-character TELETYPE Model 37 termi­
nal (which is the nroff(1) default terminal) for certain other terminals. Special 
characters are simulated by overstriking, if necessary and possible. If the argu­
ment is omitted, gruk attempts to use the environment variable STERM (see 
environ (5». The fOilvwing terminals are recognized currently: 

300 
300-12 
300s 
300s-12 
450 
450-12 
1620 
1620-12 
2621 
2640 
26.1.5 
4014 
hp 
tek 

/usr/bin/300 
lusr/bin/300s 
/ usr /bin/ 4014 
/usr/bin/450 
/usr/bin/hp 

DAS1300. 
DASI 300 in 12-pitch. 
DASI300s. 
DASI 300s in 12-pitch. 
DASI450. 
DASI 450 in 12-pitch. 
Diablo 1620 (alias DASI 450). 
Diablo 1620 (alias DASI 450) in 12-pitch. 
Hewlett-Packard 2621, 2640, and 2645. 
Hewlett-Packard 2621, 2640, and 2645. 
Hewlett-Packard 2621, 2640, and 2645. 
TEKTRONIX 4014. 
Hewlett-Packard 2621, 2640, and 2645. 
TEKTRONIX 4014. 

SEE ALSO 
300(1), 4014(1), 450(1), eqn(I), hp(I), mm(I), nroff(l), tplot(IG). 
environ (5) , greek(5), term(5) in the UNIX System V Programmer Reference 
Manual. 

- 1 -



GREP(I) GREP(I) 

NAME 
grep, egrep, fgrep - search a file for a pattern 

SYNOPSIS 
grep [ options ] expression [ files ] 

egrep [ options ] [ expression ] [ files ] 

fgrep [ options ] [ strings ] [ files ] 

DESCRIPTION 
Commands of the grep family search the input files (standard input default) 
for lines matching a pattern. Normally, each line found is copied to the stan­
dard output. Grep patterns are limited regular expressions in the style of 
ed(l); it uses a compact non-deterministic algorithm. Egrep patterns are full 
regular expressions; it uses a fast deterministic algorithm that sometimes needs 
exponential space. Fgrep patterns are fixed strings; it is fast and compact. 
The following options are recognized: 

-v All lines but those matching are printed. 
-x (Exact) only lines matched in their entirety are printed (fgrep only). 
-c Only a count of matching lines is printed. 
-i Ignore upperllower case distinction during comparisons. 
-I Only the names of files with matching lines are listed (once), separated 

by new-lines. 
-0 Each line is preceded by its relative line number in the file. 
-b Each line is preceded by the block number on which it was found. This 

is sometimes useful in locating disk block numbers by context. 
-s The error messages produced for nonexistent or unreadable files are 

suppressed (grep only). 
-e expression 

Same as a simple expression argument, but useful when the expression 
begins with a - (does not work with grep). 

-f file 
The regular expression (egrep) or strings list (fgrep) is taken from the 
file. 

In all cases, the file name is output if there is more than one input file. Care 
should be taken when using the characters $, *, [, ", I, (, ), and \ in expression, 
because they are also meaningful to the shell. It is safest to enclose the entire 
expression argument in single quotes ' ... '. 

Fgrep searches for lines that contain one of the strings separated by new-lines. 

Egrep accepts regular expressions as in ed(1), except for \( and \), with the 
addition of: 

1. A regular expression followed by + matches one or more occurrences of 
the regular expression. 

2. A regular expression followed by ? matches 0 or 1 occurrences of the 
regular expression. 

3. Two regular expressions separated by I or by a new-line match strings 
that are matched by either. 

4. A regular expression may be enclosed in parentheses () for grouping. 

The order of precedence of operators is [J, then .? +, then concatenation, then 
I and new-line. 

SEE ALSO 
ed(l), sed( I), sh(l). 

DIAGNOSTICS 
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inac­
cessible files (even if matches were found). 

- 1 -



GREP(I) GREP(I) 

BUGS 
Ideally there should be only one grep, but we do not know a single algorithm 
that spans a wide enough range of space-time tradeoffs. 
Lines are limited to BUFSIZ characters; longer lines are truncated. (BUFSIZ is 
defined in lusr/include/stdio.h.) 
Egrep does not recognize ranges, such as (a -z), in character classes. 
If there is a line with embedded nulls, grep will only match up to the first null; 
if it matches, it will print the entire line. 

- 2 -



GUTIL(IG) GUTIL(IG) 

NAME 
gutil - graphical utilities 

SYNOPSIS 
command-name [options] [files] 

DESCRIPTION 
Below is a list of miscellaneous device independent utility commands found in 
lusr/bin/graf. If no files are given, input is from the standard input. All out­
put is to the standard output. Graphical data is stored in GPS format; see 
gps(4). 

bel 

cvrtopt 

- send bel character to terminal 

[ =sstring fstring istring tstring] [args] - options converter 
Cvr/opt reformats args (usually the command line arguments of a 
calling shell procedure) to facilitate processing by shell procedures. 
An arg is either a file name (a string not beginning with a -, or a 
- by itself) or an option string (a string of options beginning with a 
-). Output is of the form: 

-option -option . .. file name(s) 
All options appear singularly and preceding any file names. Options 
that take values (e.g., -rl.}) or are two letters long must be 
described through options to cvrtopt. 

Cvrtopt is usually used with set in the following manner as the first 
line of a shell procedure: 

set - 'cvrtopt =[options] $@' 
Options to cvrtopt are: 

sstring 

fstring 

istring 

tstring 

String accepts string values. 

String accepts floating point numbers as values. 

String accepts integers as values. 

String is a two-letter option name that takes no value. 

String is a one- or two-letter option name. 

gd [GPS Jiles ] - GPS dump 
Gd prints a human readable listing of GPS. 

gtop [ -rn u ] [GPS files ] - GPS to plot (4) filter 

pd 

ptog 

quit 

remcom 

Gtop transforms a GPS into plot (4) commands displayable by plot 
filters. GPS objects are translated if they fall within the window 
that circumscribes the first file unless an option is given. 
Options: 

rn translate objects in GPS region n. 

u translate all objects in the G PS universe. 

[ plot (5) files ] - plot (4) dump 
Pd prints a human readable listing of plot (4) format graphical 
commands. 

[ plot (5) files] - plot (4) to GPS filter 
Ptog transforms plot (4) commands into a GPS. 

- terminate session 

[files ] - remove comments 
Remcom copies its input to its output with comments removed. 
Comments are as defined in C (i.e., 1* comment */). 

- 1 -



GUTIL(tG) 

whatis 

GUTIL(IG) 

[-0 ] [ names ] - brief on-line documentation 
Whatis prints a brief description of each name given. If no name is 
given, then the current list of description names is printed. The 
command whatis \. prints out every description. 
Option: 

o just print command options 

yoo file - pipe fitting 
Yoo is a piping primitive that deposits the output of a pipeline into 
a file used in the pipeline. Note that, without yoo, this is not usu­
ally successful as it causes a read and write on the same file simul­
taneously. 

SEE ALSO 
graphics(IG). 
gps(4), plot(4) in the UNIX System V Programmer Reference Manual. 

- 2 -



HELP(I) HELP(I) 

NAME 
help - ask for help 

SYNOPSIS 
help [args] 

DESCRIPTION 

FILES 

Help finds information to explain a message from a command or explain the 
use of a command. Zero or more arguments may be supplied. If no arguments 
are given, help will prompt for one. 

The arguments may be either message numbers (which normally appear in 
parentheses following messages) or command names, of one of the following 
types: 

type 1 

type 2 

type 3 

Begins with non-numerics, ends in numerics. The non­
numeric prefix is usually an abbreviation for the pro­
gram or set of routines which produced the message 
(e.g., ge6, for message 6 from the get command). 

Does not contain numerics (as a command, such as get) 

Is all numeric (e.g., 212) 

The response of the program will be the explanatory information related to the 
argument, if there is any. 

When all else fails, try "help stuck". 

/usr/lib/help 

/usrllib/help/helploc 

directory containing files of message text. 

file containing locations of help files not in 
lusr lIib/help. 

DIAGNOSTICS 
Use help (1) for explanations. 

- 1 -



HP(l) 

NAME 

HP(l) 

hp - handle special functions of Hewlett-Packard 2640 and 2621-series termi­
nals 

SYNOPSIS 
bp [ -e ] [ -m ] 

DESCRIPTION 
Hp supports special functions of the Hewlett-Packard 2640 series of terminals, 
with the primary purpose of producing accurate representations of most nroff 
output. A typical use is: 

nroff -h files ... I hp 

Regardless of the hardware options on your terminal, hp tries to do sensible 
things with underlining and reverse line-feeds. If the terminal has the "display 
enhancements" feature, subscripts and superscripts can be indicated in distinct 
ways. If it has the "mathematical-symbol" feature, Greek and other special 
characters can be displayed. 

The flags are as follows: 
-e It is assumed that your terminal has the "display enhancements" 

feature, and so maximal use is made of the added display modes. 
Overstruck characters are presented in the Underline mode. Super­
scripts are shown in Half-bright mode, and subscripts in Half-bright, 
Underlined mode. If this flag is omitted, hp assumes that your termi­
nal lacks the "display enhancements" feature. In this case, all over­
struck characters, subscripts, and superscripts are displayed in Inverse 
Video mode, i.e., dark-on-light, rather than the usual light-on-dark. 

-m Requests minimization of output by removal of new-lines. Any con­
tiguous sequence of 3 or more new-lines is converted into a sequence of 
only 2 new-lines; i.e., any number of successive blank lines produces 
only a single blank output line. This allows you to retain more actual 
text on the screen. 

With regard to Greek and other special characters, hp provides the same set as 
does 300(1), except that "not" is approximated by a right arrow, and only the 
top half of the integral sign is shown. The display is adequate for examining 
output from neqn. 

DIAGNOSTICS 
"line too long" if the representation of a line exceeds 1,024 characters. 
The exit codes are 0 for normal termination, 2 for all errors. 

SEE ALSO 

BUGS 

300(1), coHO, eqn(1), greek(I), nroff(1), tbI(I). 

An "overstriking sequence" is defined as a printing character followed by a 
backspace followed by another printing character. In such sequences, if either 
printing character is an underscore, the other printing character is shown 
underlined or in Inverse Video; otherwise, only the first printing character is 
shown (again, underlined or in Inverse Video). Nothing special is done if a 
backspace is adjacent to an ASCII control character. Sequences of control 
characters (e.g., reverse line-feeds, backspaces) can make text "disappear"; in 
particular, tables generated by tb/(I) that contain vertical lines will often be 
missing the lines of text that contain the "foot" of a vertical line, unless the 
input to hp is piped through co/(I). 
Although some terminals do provide numerical superscript characters, no 
attempt is made to display them. 

- 1 -



HYPHEN (1) HYPHEN(I) 

NAME 
hyphen - find hyphenated words 

SYNOPSIS 
hyphen [ files ] 

DESCRIPTION 
Hyphen finds all the hyphenated words ending lines in files and prints them on 
the standard output. If no arguments are given, the standard input is used; 
thus, hyphen may be used as a filter. 

EXAMPLE 
The following will allow the proofreading of nroff hyphenation in textfile. 

mm textfile I hyphen 

SEE ALSO 

BUGS 

mm (1), nroff(1). 

Hyphen cannot cope with hyphenated italic (i.e., underlined) words; it will 
often miss them completely, or mangle them. 
Hyphen occasionally gets confused, but with no ill effects other than spurious 
extra output. 

- 1 -



ID (1) 

NAME 
id - print user and group IDs and names 

SYNOPSIS 
id 

DESCRIPTION 

ID (1) 

Id writes a message on the standard output giving the user and group IDs and 
the corresponding names of the invoking process. If the effective and real IDs 
do not match, both are printed. 

SEE ALSO 
logname (1) . 
getuid(2) in the UNIX System V Programmer Reference Manual. 

- 1 -



IPCRM(I) IPCRM(l) 

NAME 
ipcrm - remove a message queue, semaphore set or shared memory id 

SYNOPSIS 
ipcrm [ options ] 

DESCRIPTION 
[perm will remove one or more specified messages, semaphore or shared 
memory identifiers. The identifiers are specified by the following options: 

-q msqid removes the message queue identifier msqid from the system and 
destroys the message queue and data structure associated with it. 

-m shmid removes the shared memory identifier shmid from the system. 

-s semid 

The shared memory segment and data structure associated with it 
are destroyed after the last detach. 

removes the semaphore identifier semid from the system and des­
troys the set of semaphores and data structure associated with it. 

-Q msgkey removes the message queue identifier, created with key msgkey, 
from the system and destroys the message queue and data struc­
ture associated with it. 

-M shmkey removes the shared memory identifier, created with key shmkey, 
from the system. The shared memory segment and data struc­
ture associated with it are destroyed after the last detach. 

-s semkey removes the semaphore identifier, created with key semkey, from 
the system and destroys the set of semaphores and data structure 
associated with it. 

The details of the removes are described in msgct/(2) , shmct/(2) , and 
semct/(2). The identifiers and keys may be found by using ipcsO). 

SEE ALSO 
ipcs(1) . 
msgctl (2), msgget (2), msgop (2), semctl (2), semget (2) , semop (2), shmctl (2) , 
shmget(2), shmop(2) in the UNIX System V Programmer Reference Manual. 

- 1 -



IPCS(I) IPCS(I) 

NAME 
ipcs - report inter-process communication facilities status 

SYNOPSIS 
ipcs [ options ] 

DESCRIPTION 
[pes prints certain information about active inter-process communication facili­
ties. Without options, information is printed in short format for message 
queues, shared memory, and semaphores that are currently active in the sys­
tem. Otherwise, the information that is displayed is controlled by the following 
options: 

380.spOu 
-q Print information about active message queues. 
-m Print information about active shared memory segments. 
-s Print information about active semaphores. 

If any of the options -q, -m, or -s are specified, information about only 
those indicated will be printed. If none of these three are specified, information 
about all three will be printed. 

-b Print biggest allowable size information. (Maximum number of bytes 
in messages on queue for message queues, size of segments for shared 
memory, and number of semaphores in each set for semaphores.) See 
below for meaning of columns in a listing. 

-c Print creator's login name and group name. See below. 
-0 Print information on outstanding usage. (Number of messages on 

queue and total number of bytes in messages on queue for message 
queues and number of processes attached to shared memory seg­
ments.) 

-p Print process number information. (Process ID of last process to send a 
message and process ID of last process to receive a message on message 
queues and process ID of creating process and process ID of last process 
to attach or detach on shared memory segments) See below. 

-t Print time information. (Time of the last control operation that 
changed the access permissions for all facilities. Time of last msgsnd 
and last msgrcv on message queues, last shmat and last shmdt on 
shared memory, last semop{2) on semaphores.) See below. 

-a Use all print options. {This is a shorthand notation for -b, -c, -0, 

-p, and -tJ 
-C eorefile 

Use the file eorefile in place of Idevlkmem. 
-N namelist 

The argument will be taken as the name of an alternate namelist 
(/unix is the default). 

The column headings and the meaning of the columns in an ipcs listing are 
given below; the letters in parentheses indicate the options that cause the 
corresponding heading to appear; all means that the heading always appears. 
Note that these options only determine what information is provided for each 
facility; they do not determine which facilities will be listed. 

T (aU) 
Type of the facility: 

q message queue; 
m shared memory segment; 
s semaphore. 

- 1 -



IPCS(I) 

ID 

KEY 

MODE 

OWNER 

GROUP 

CREATOR 

CGROUP 

CBYTES 

QNUM 

QBYTES 

LSPID 

(aU) 

(aU) 

(aU) 

(aU) 

IPCS (1) 

The identifier for the facility entry. 

The key used as an argument to msgget, semget, or shmget 
to create the facility entry. (Note: The key of a shared 
memory segment is changed to IPC_PRIVATE \\hen the seg­
ment has been removed until all processes attached to the 
segment detach it.) 

The facility access modes and flags: The mode consists of 11 
characters that are interpreted as follows: 
The first two characters are: 

R if a process is waiting on a msgrcv; 
S if a process is waiting on a msgsnd; 
D if the associated shared memory segment has 

been removed. It will disappear when the last 
process attached to the segment detaches it; 

C if the associated shared memory segment is to 
be cleared when the first attach is executed; 
if the corresponding special flag is not set. 

The next 9 characters are interpreted as three sets of three 
bits each. The first set refers to the owner's permissions; the 
next to permissions of others in the user-group of the facility 
entry; and the last to all others. Within each set, the first 
character indicates permission to read, the second character 
indicates permission to write or alter the facility entry, and 
the last character is currently unused. 

The permissions are indicated as follows: 

r if read permission is granted; 
w if write permission is granted; 
a if alter permission is granted; 

if the indicated permission is not granted. 

The login name of the owner of the facility entry. 
(aU) 

(a,c) 

The group name of the group of the owner of the facility 
entry. 

The login name of the creator of the facility entry. 
(a,c) 

(a,o) 

The group name of the group of the creator of the facility 
entry. 

The number of bytes in messages currently outstanding on 
the associated message queue. 

(a,o) 
The number of messages currently outstanding on the associ­
ated message queue. 

(a,b) 
The maximum number of bytes allowed in messages out­
standing on the associated message queue. 

(a,p) 
The process ID of the last process to send a message to the 
?::sociated queue. 

- 2 -



IPCS( 1) 

FILES 

LRPID 

STIME 

RTIME 

crIME 

NATTCH 

SEGSZ 

CPID 

LPID 

ATIME 

DTIME 

NSEMS 

OTIME 

IPCS(I) 

(a,p) 

(a,t) 

The process ID of the last process to receive a message from 
the associated queue. 

The time the last message was sent to the associated queue. 
(a,t) 

(a,t) 

The time the last message was received from the associated 
queue. 

The time when the associated entry was created or changed. 
(a,o) 

The number of processes attached to the associated shared 
memory segment. 

(a,b) 
The size of the associated shared memory segment. 

(~,p) 
The process ID of the creator of the shared memory entry. 

(a,p) 

(a,t) 

(a,t) 

The process ID of the last process to attach or detach the 
shared memory segment. 

The time the last attach was completed to the associated 
shared memory segment. 

The time the last detach was completed on the associated 
shared memory segment. 

(a,b) 

(a,t) 

The number of semaphores in the set associated with the 
semaphore entry. 

The time the last semaphore operation was completed on the 
set associated with the semaphore entry. 

/unix system namelist 
/ dev /kmem memory 
/etc/passwd user names 
/etc/group group names 

SEE ALSO 

BUGS 

msgop(2), semop(2), shmop(2) in the UNIX System V Programmer Reference 
Manual. 

Things can change while ipcs is running; the picture it gives is only a close 
approximation to reality. 

- 3 -



JOIN(I) JOIN(I) 

NAME 
join - relational database operator 

SYNOPSIS 
join [ options ] file 1 file2 

DESCRIPTION 
Join forms, on the standard output, a join of the two relations specified by the 
lines of filel and file2. If file1 is -, the standard input is used. 

Filel and file2 must be sorted in increasing ASCII collating sequence on the 
fields on which they are to be joined, normally the first in each line. 

There is one line in the output for each pair of lines in file1 and file2 that have 
identical join fields. The output line normally consists of the common field, 
then the rest of the line from file1 , then the rest of the line from file2. 

The default input field separators are blank, tab, or new-line. In this case, mul­
tiple separators count as one field separator, and leading separators are ignored. 
The default output field separator is a blank. 

Some of the below options use the argument n. This argument should be a 1 
or a 2 referring to either file1 or file2, respectively. The following options are 
recognized: 

-an In addition to the normal output, produce a line for each unpairable 
line in file n, where n is 1 or 2. 

-e s Replace empty output fields by string s. 

-jn m Join on the mth field of file n. If n is missing, use the mth field in 
each file. Fields are numbered starting with 1. 

-0 list Each output line comprises the fields specified in list, each element of 
which has the form n.m, where n is a file number and m is a field 
number. The common field is not printed unless specifically requested. 

-tc Use character c as a separator (tab character). Every appearance of c 
in a line is significant. The character c is used as the field separator 
for both input and output. 

EXAMPLE 
The following command line will join the password file and the group file, 
matching on the numeric group ID, and outputting the login name, the group 
name and the login directory. It is assumed that the files have been sorted in 
ASCII collating sequence on the group ID fields. 

join -jl 4 -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd /etc/group 

SEE ALSO 

BUGS 

awkO), comm{t), sortO), uniq(I). 

With default field separation, the collating sequence is that of sort -b; with 
-t, the sequence is that of a plain sort. 

The conventions of join, sort, comm, uniq and awk(I) are wildly incongruous. 

Filenames that are numeric may cause conflict when the -0 option is used right 
before listing filenames. 

- 1 -



KILL(l ) KILL (I ) 

NAME 
kill - terminate a process 

SYNOPSIS 
kill [ -signo I PID 

DESCRIPTION 
Kill sends signal 15 (terminate) to the specified processes. This will normally 
kill processes that do not catch or ignore the signal. The process number of 
each asynchronous process started with & is reported by the shell (unless more 
than one process is started in a pipeline, in which case the number of the last 
process in the pipeline is reported). Process numbers can also be found by 
using ps (1) . 

The details of the kill are described in kil[(2). For example, if process number 
o is specified, all processes in the process group are signaled. 

The killed process must belong to the current user unless he is the super-user. 

If a signal number preceded by - is given as first argument, that signal is sent 
instead of terminate (see signaI(2». In particular "kill -9 ... " is a sure kill. 

SEE ALSO 
ps(1), sh(1). 
kill (2), signal (2) in the UNIX System V Programmer Reference Manual. 

- 1 -



LD(l) LD(l) 

NAME 
ld - link editor for common object files 

SYNOPSIS 
Id [options] filename 

DESCRIPTION 
The ld command combines several· object files into one, performs relocation, 
resolves external symbols, and supports symbol table information for symbolic 
debugging. In the simplest case, the names of several object programs are 
given, and ld combines them, producing an object module that can either be 
executed or used as input for a subsequent ld run. The output of ld is left in 
a.out. By default this file is executable if no errors occurred during the load. 
If any input file, file-name, is not an object file, ld assumes it is either an 
archive library or a text file containing link editor directives. (See the Link 
Editor User Guide in the UNIX System V Programmer Guide for a discussion 
of input directives.> 

If any argument is a library, it is searched exactly once at the point it is 
encountered in the argument list. Only those routines defining an unresolved 
external reference are loaded. The library (archive) symbol table (see ar(4)) is 
searched sequentially with as many passes as are necessary to resolve external 
references which can be satisfied by library members. Thus, the ordering of 
library members is unimportant. 

The following options are recognized by ld. 

-e epsym 
Set the default entry point address for the output file to be that of the 
symbol epsym. 

-f fill Set the default fill pattern for "holes" within an output section as well 
as initialized bss sections. The argument fill is a two-byte constant. 

-Ix Search a library Iibx.a, where x is up to seven characters. A library is 
searched when its name is encountered, so the placement of a -I is 
significant. By default, libraries are located in llib and lusr/lib/. 

-m Produce a map or listing of the input/output sections on the standard 
output. 

-ooutfile 
Produce an output object file by the name outfile. The name of the 
default object file is a.out. 

-r Retain relocation entries in the output object file. Relocation entries 
must be saved if the output file is to become an input file in a subse­
quent ld run. The link editor will not complain about unresolved refer­
ences. 

-s Strip line number entries and symbol table information from the output 
object file. 

-t Turn off the warning about multiply-defined symbols that are not the 
same size. 

-u symname 
Enter symname as an undefined symbol in the symbol table. This is 
useful for loading entirely from a library, since initially the symbol 
table is empty and an unresolved reference is needed to force the load­
ing of the first routine. 

- 1 -



LD(l) 

FILES 

-x 

LD(l) 

Do not preserve local (non-.globO symbols in the output symbol table; 
enter external and static symbols only. This option saves some space in 
the output file. 

- L dir Change the algorithm of searching for libx.a to look in dir before look­
ing in /lib and lusr/lib. This option is effective only if it precedes the 
-I option on the command line. 

- M Output a message for each multiply-defined external definition. How-
ever, if the objects being loaded include debugging information, 
extraneous output is produced (see the -g option in cc(I». 

- N Put the data section immediately following the text in the output file. 

- V Output a message giving information about the version of ld being 
used. 

-VS num 
Use num as a decimal version stamp identifying the a.out file that is 
produced. The versiGn stamp is stored in the optional header. 

Ilib/libx.a 
lusrllibllibx.a 
a.out 

libraries 
libraries 
output file 

SEE ALSO 
as(I), cc(I). 
exit(2), a.out(4), ar(4) in the UNIX System V Programmer Reference Manual. 

CAVEATS 
Through its options and input directives, the common link editor gives users 
great flexibility; however, those who use the input directives must assume some 
added responsibilities. Input directives and options should insure the following 
properties for programs: 

C defines a zero pointer as null. A pointer to which zero has been 
assigned must not point to any object. To satisfy this, users must not 
place any object at virtual address zero in the data space. 

When the link editor is called through cc(I), a startup routine is linked 
with the user's program. This routine calls exit() (see exit(2» after exe­
cution of the main program. If the user calls the link editor directly, then 
the user must insure that the program always calls exit( ) rather than fal­
ling through the end of the entry routine. 

- 2 -



LEX (I) LEX(l) 

NAME 
lex - generate programs for simple lexical tasks 

SYNOPSIS 
lex [ -rctvn ] [ file ] ... 

DESCRIPTION 
Lex generates programs to be used in simple lexical analysis of text. 

The input files (standard input default) contain strings and expressions to be 
searched for, and C text to be executed when strings are found. 

A file lex.yy.c is generated which, when loaded with the library, copies the 
input to the output except when a string specified in the file is found; then the 
corresponding program text is executed. The actual string matched is left in 
yytext, an external character array. Matching is done in order of the strings in 
the file. Th~e strings may contain square brackets to indicate character classes, 
as in [abx-zl to indicate a, b, x, y, and z; and the operators ., +, and? mean 
respectively any non-negative number of, any positive number of, and either 
zero or one occurrence of, the previous character or character class. The char­
acter • is the class of all ASCII characters except new-line. Parentheses for 
grouping and vertical bar for alternation are also supported. The notation 
r{d,e} in a rule indicates between d and e instances of regular expression r. It 
has higher precedence than I, but lower than *, ?, +, and concatenation. The 
character" at the beginning of an expression permits a successful match only 
immediately after a new-line, and the character $ at the end of an expression 
requires a trailing new-line. The character / in an expression indicates trailing 
context; only the part of the expression up to the slash is returned in yytext, 
but the remainder of the expression must follow in the input stream. An opera­
tor character may be used as an ordinary symbol if it is within" symbols or 
preceded by \. Thus [a -zA -zl + matches a string of letters. 

Three subroutines defined as macros are expected: inputO to read a character; 
unput(c) to replace a character read; and output(c) to place an output charac­
ter. They are defined in terms of the standard streams, but you can override 
them. The program generated is named yylexO, and the library contains a 
mainO which calls it. The action REJECT on the right side of the rule causes 
this match to be rejected and the next suitable match executed; the function 
yymoreO accumulates additional characters into the same yytext; and the func­
tion yyless(p) pushes back the portion of the string matched beginning at p, 
which should be between yytext and yytext+yyleng. The macros input and 
output use files yyin and yyout to read from and write to, defaulted to stdin 
and stdout, respectively. 

Any line beginning with a blank is assumed to contain only C text and is 
copied; if it precedes % % it is copied into the external definition area of the 
lex.yy.c file. All rules should follow a % %, as in Y ACe. Lines preceding % % 
which begin with a non-blank character define the string on the left to be the 
remainder of the line; it can be called out later by surrounding it with {}. Note 
that curly brackets do not imply parentheses; only string substitution is done. 

- 1 -



LEX (1) LEX (I ) 

EXAMPLE 
D 
%% 
if 
[a-z]+ 
O{D}+ 
{D}+ 
"++" 
"+" 
"/." 

[0-9] 

printf("IF statement\n"); 
printf("tag, value %s\n ",yytext); 
printf("octal number %s\n",yytext); 
printf("decimal number %s\n",yytext); 
printf("unary op\n "); 
printf("binary op\n ") ; 
{ loop: 

while (inputO != '.'); 
switch (input 0) 

{ 
case ' /': break; 
case '.': unput('*'); 
default: go to loop; 
} 

The external names generated by lex all begin with the prefix yy or YY. 

The flags must appear before any files. The flag -r indicates RA TFOR actions, 
-c indicates C actions and is the default, -t causes the lex.yy.c program to be 
written instead to standard output, -v provides a one-line summary of statistics 
of the machine generated, -0 will not print out the - summary. Multiple files 
are treated as a single file. If no files are specified, standard input is used. 

Certain table sizes for the resulting finite state machine can be set in the 
definitions section: 

% p n number of positions is n (default 2000) 

% 0 n number of states is n (500) 

%t n number of parse tree nodes is n (1000) 

% a n number of transitions is n (3000) 

The use of one or more of the above automatically implies the -v option, 
unless the -0 option is used. 

SEE ALSO 
yacc(l). 
malloc(3X) in the UNIX System V Programmer Reference Manual. 

BUGS 
The -r option is not yet fully operational. 

- 2 -



LINE(I) 

NAME 
line - read one line 

SYNOPSIS 
line 

DESCRIPTION 

LINE(I) 

Line copies one line (up to a new-line) from the standard input and writes it on 
the standard output. It returns an exit code of 1 on EOF and always prints at 
least a new-line. It is often used within shell files to read from the user's termi­
nal. 

SEE ALSO 
sh(I) . 
read(2) in the UNIX System V Programmer Reference Manual. 

- 1 -



LINT(t) LINT(t) 

NAME 
lint - a C program checker 

SYNOPSIS 
lint [ option ] ... file ... 

DESCRIPTION 
Lint attempts to detect features of the C program files that are likely to be 
bugs, non-portable, or wasteful. It also checks type usage more strictly than 
the compilers. Among the things that are currently detected are unreachable 
statements, loops not entered at the top, automatic variables declared and not 
used, and logical expressions whose value is constant. Moreover, the usage of 
functions is checked to find functions that return values in some places and not 
in others, functions called with varying numbers or types of arguments, and 
functions whose values are not used or whose values are used but none 
returned. 

Arguments whose names end with .c are taken to be C source files. Arguments 
whose names end with .In are taken to be the result of an earlier invocation of 
lint with either the -c or the -0 option used. The.ln files are analogous to .0 

(object) files that are produced by the cc(1) command when given a .c file as 
input. Files with other suffixes are warned about and ignored. 

Lint will take all the .c,.ln, and IIib-Ix.ln (specified by -Ix) files and process 
them in their command line order. By default, lint appends the standard Clint 
library ((Iib-Ic.ln) to the end of the list of files. However, if the -p option is 
used, the portable C lint library (lIib-port.ln) is appended instead. When the 
-c option is not used, the second pass of lint checks this list of files for mutual 
compatibility. When the -c option is used, the .In and the IIib-Ix.ln files are 
ignored. 

Any number of lint options may be used, in any order, intermixed with file­
name arguments. The following options are used to suppress certain kinds of 
complaints: 

-a Suppress complaints about assignments of long values to variables that 
are not long. 

-b Suppress complaints about break statements that cannot be reached. 
(Programs produced by lex or yacc will often result in many such com­
plaints) . 

-h Do not apply heuristic tests that attempt to intuit bugs, improve style, 
and reduce waste. 

-u Suppress complaints about functions and external variables used and 
not defined, or defined and not used. (This option is suitable for run­
ning lint on a subset of files of a larger program). 

-v Suppress complaints about unused arguments in functions. 

-x Do not report variables referred to by external declarations but never 
used. 

The following arguments alter lint's behavior: 

-Ix Include additional lint library llib-Ix.ln. For example, you can include 
a lint version of the Math Library llib-Im.ln by inserting -1m on the 
command line. This argument does not suppress the default use of 
IIib-lc.ln. These lint libraries must be in the assumed directory. This 
option can be used to reference local lint libraries and is useful in the 
development of multi-file projects. 

-n Do not check compatibility against either the standard or the portable 
lint library. 

- 1 -



LINT(l) 

-p 

LINT(l) 

Attempt to check portability to other dialects (IBM and GCOS) of C. 
Along with stricter checking, this option causes all non-external names 
to be truncated to eight characters and all external names to be trun­
cated to six characters and one case. 

-c Cause lint to produce a .In file for every .c file on the command line. 
These .In files are the product of lint's first pass only, and are not 
checked for inter-function compatibility. 

-0 lib Cause lint to create a lint library with the name lIib-llib.ln. The -c 
option nullifies any use of the -0 option. The lint library produced is 
the input that is given to lint's second pass. The -0 option simply 
causes this file to be saved in the named lint library. To produce a 
Ilib-Ilib.ln without extraneous messages, use of the -x option is sug­
gested. The -v option is useful if the source file(s) for the lint library 
are just external interfaces (for example, the way the file Ilib-Ic is writ­
ten). These option settings are also available through the use of "lint 
comments" (see below). 

The -D, -U, and -I options of cpp(1) and the -g and -0 options of cc(l) 
are also recognized as separate arguments. The -g and -0 options are 
ignored, but, by recognizing these options, lint's behavior is closer to that of the 
ceO) command. Other options are warned about and ignored. The pre­
processor symbol "lint" is defined to allow certain questionable code to be 
altered or removed for lint. Therefore, the symbol "lint" should be thought of 
as a reserved word for all code that is planned to be checked by lint. 

Certain conventional comments in the C source will change the behavior of 
lint: 

/*NOTREACHED*/ 
at appropriate points stops comments about unreachable code. 
(This comment is typically placed just after calls to functions 
like exit (2) ) . 

/*VARARGSn*/ 
suppresses the usual checking for variable numbers of argu­
ments in the following function declaration. The data types of 
the first n arguments are checked; a missing n is taken to be O. 

/*ARGSUSED*/ 
turns on the -v option for the next function. 

/*LINTLIBRARY*/ 
at the beginning of a file shuts off complaints about unused 
functions and function arguments in this file. This is 
equivalent to using the -v and -x options. 

Lint produces its first output on a per-source-file basis. Complaints regarding 
included files are collected and printed after all source files have been pro­
cessed. Finally, if the -c option is not used, information gathered from all 
input files is collected and checked for consistency. At this point, if it is not 
clear whether a complaint stems from a given source file or from one of its 
included files, the source file name will be printed followed by a question mark. 

The behavior of the -c and the -0 options allows for incremental use of lint 
. on a set of C source files. Generally, one invokes lint once for each source file 
with the -c option. Each of these invocations produces a .In file which 
corresponds to the .c file, and prints all messages that are about just that source 
file. After all the source files have been separately run through lint, it is 
invoked once more (without the -c option), listing all the .In files with the 
needed -Ix options. This will print all the inter-file inconsistencies. This 
scheme works well with make(l); it allows make to be used to lint only the 

- 2 -



LINT ( 1) LINT ( 1) 

FILES 

source files that have been modified since the last time the set of source files 
were linted. 

lusr/lib 

lusr/lib/lind 12] 
lusrllib/llib-Ic.ln 

lusrllib/llib-port.ln 

lusr/lib/llib-Im.ln 

lusr/tmp/*lint* 

the directory where the lint libraries specified by the -Ix 
option must exist 
first and second passes 
declarations for C Library functions (binary format; source 
is in lusr Iliblllib-Ic) 
declarations for portable functions (binary format; source 
is in lusrlliblllib-port) 
declarations for Math Library functions (binary format; 
source is in lusrlliblllib-Im) 
temporaries 

SEE ALSO 

BUGS 

cc(1), cpp(1), make(I). 

exit (2), /ongjmp (3C), and other functions that do not return are not under­
stood; this causes various lies. 

- 3 -



LN(l) LN(l) 

NAME 
In-create a symbolic link in WorkNet 

SYNOPSIS 
In -s [@system] [filename] [@system] [symbolic link name] 

DESCRIPTION 
Use In to create a symbolic link within one system or across system boundaries to a 
remote system. 

A symbolic link can be used to establish a link to a remote file or directory from the 
local system. A symbolic link does not contain any data; it simply points to the 
referenced file where the data resides. This allows application programs to access 
data on different computers. 

Create symbolic links judiciously, especially if you are linking between systems. If 
either system is disconnected from the network, the link will be pointing to a file or 
directory that cannot be accessed. 

EXAMPLES 
In the following example, /etc/termcap is the file you are referencing, and 
/usr /sarah/terms is the name of the symbolic link. Both the file and the symbolic 
link are on the same system. By creating this link, you can access the file 
/etc/termcap using the alternate path name, /usr/sarah/terms. 

$In -s /etc/termcap /usr/sarah/terms 

In the following example, the vi program on altosl is referenced by a symbolic link 
on altos2. After this link is created, when you access /bin/vi on altos2, you are 
actually accessing / bin / vi on altos 1. 

$ In -s @a1tosl/bin/vi @altos2/bin vi 

- 1 -



LOGIN (I) LOGIN (I) 

NAME 
login - sign on 

SYNOPSIS 
login [ name [ env-var ... ]] 

DESCRIPTION 
The login command is used at the beginning of each terminal session and 
allows you to identify yourself to the system. It may be invoked as a command 
or by the system when a connection is first established. Also, it is invoked by 
the system when a previous user has terminated the initial shell by typing a 
cntrl-d to indicate an "end-of-file." (See How to Get Started at the beginning 
of this volume for instructions on how to dial up initially.) 

If login is invoked as a command it must replace the initial command inter­
preter. This is accomplished by typing: 

exec login 
from the initial shell. 

Login asks for your user name (if not supplied as an argument), and, if 
appropriate, your password. Echoing is turned off (where possible) during the 
typing of your password, so it will not appear on the written record of the ses­
sion. 

At some installations, an option may be invoked that will require you to enter a 
second "dialup" password. This will occur only for dial-up connections, and 
will be prompted by the message "dialup password:". Both passwords are 
required for a successful login. 

If you do not complete the login successfully within a certain period of time 
(e.g., one minute), you are likely to be silently disconnected. 

After a successful login, accounting files are updated, the procedure /etc/profile 
is performed, the message-of-the-day, if any, is printed, the user-ID, the group­
ID, the working directory, and the command interpreter (usually sh (1» is ini­
tialized, and the file .profile in the working directory is executed, if it exists. 
These specifications are found in the /etc/passwd file entry for the user. The 
name of the command interpreter is - followed by the last component of the 
interpreter's path name (i.e., -sh). If this field in the password file is empty, 
then the default command interpreter, /bin/sh is used. If this field is "*", then 
a chroot (2) is done to the directory named in the directory field of the entry. 
At that point login is re-executed at the new level which must have its own root 
structure, including /etc/login and /etc/passwd. 

The basic environment (see environ (5» is initialized to: 

HOME=your-login-directory 
PATH=:/bin:/usr/bin 
SHELL=last -field -of-passwd -entry 
MAIL=/usr/mail/your-login-name 
TZ=timezone-specijication 

The environment may be expanded or modified by supplying additional argu­
ments to login, either at execution time or when login requests your login 
name. The arguments may take either the form xxx or xxx =yyy. Arguments 
without an equal sign are placed in the environment as 

Ln=xxx 
where n is a number starting at 0 and is incremented each time a new variable 
name is required. Variables containing an = are placed into the environment 
without modification. If they already appear in the environment, then they 
replace the older value. There are two exceptions. The variables PATH and 
SHELL cannot be changed. This prevents people, logging into restricted shell 

- 1 -



LOGIN (I) LOGIN(l) 

FILES 

environments, from spawning secondary shells which are not restricted. Both 
login and getty understand simple single-character quoting conventions. Typing 
a backslash in front of a character quotes it and allows the inclusion of such 
things as spaces and tabs. 

/etc/utmp accounting 
/etc/wtmp accounting 
/usr/mail/your-name mailbox for user your-name 
/ etc/ motd message-of -the-da y 
/etc/passwd password file 
/etc/profile system profile 
.profile user's login profile 

SEE ALSO 
mail(I), newgrp(1), sh(1), su(1). 
passwd(4), profile(4), environ(5) in the UNIX System V Programmer Reference 
Manual. 

DIA.GNOSTICS 
Login incorrect if the user name or the password cannot be matched. 
No shell, cannot open password file, or no directory: consult a UNIX system 
programming counselor. 
No utmp entry. You must exec "login" from the lowest level "sh". if you 
attempted to execute login as a command without using the shell's exec inter­
nal command or from other than the initial shell. 

- 2 -



LOGNAME(l) 

NAME 
logname - get login name 

SYNOPSIS 
logname 

DESCRIPTION 

LOGNAME(l) 

Logname returns the contents of the environment variable $LOGNAME, which is 
set when a user logs into the system. 

FILES 
/ etc/ profile 

SEE ALSO 
env(I), login(1). 
logname(3X), environ (5) in the UNIX System V Programmer Reference 
Manual. 

- 1 -



LORDER(l) LORDER(I) 

NAME 
lorder - find ordering relation for an object library 

SYNOPSIS 
lorder file ... 

DESCRIPTION 

FILES 

The input is one or more object or library archive files (see arO». The stan­
dard output is a list of pairs of object file names, meaning that the first file of 
the pair refers to external identifiers defined in the second. The output may be 
processed by tsort (1) to find an ordering of a library suitable for one-pass 
access by Id(l). Note that the link editor (except on the PDP-} 1) Id(!) is 
capable of multiple pa.sses over an archive in the portable archive format (see 
ar(4» and does not require that lorder(1) be used when building an archive. 
The usage of the lorder(!) command may, however, allow for a slightly more 
efficient access of the archive during the link edit process. 

The following example builds a new library from existing .0 files. 

ar cr library 'lorder ·.0 I tsort' 

·~symref, *symdef temporary files 

SEE ALSO 

BUGS 

arC!), ld(}), tsort(I). 
ar(4) in the UNIX System V Programmer Reference Manual. 

Object files whose names do not end with .0, even when contained in library 
archives, are overlooked. Their global symbols and references are attributed to 
some other file. 

- } -



LP(l) LP(l) 

NAME 
lp, cancel - send/cancel requests to an LP line printer 

SYNOPSIS 
Ip [-c] [-ddest] [-m] [-nnumbed [-ooption] [-s] [-ttitle] [-w] files 
cancel [ids] [printers] 

DESCRIPTION 
Lp arranges for the named files and associated information (collectively called a 
request} to be printed by a line printer. If no file names are mentioned, the 
standard input is assumed. The file name - stands for the standard input and 
may be supplied on the command line in conjunction with named files. The 
order in which files appear is the same order in which they will be printed. 

Lp associates a unique id with each request and prints it on the standard out­
put. This id can be used later to cancel (see cancel) or find the status (see 
Ipstadl» of the request. 

The following options to Ip may appear in any order and may be intermixed 
with file names: 

-c Make copies of the files to be printed immediately when Ip is 
invoked. Normally, files will not be copied, but will be linked 
whenever possible. If the -c option is not given, then the user 
should be careful not to remove any of the files before the request 
has been printed in its entirety. It should also be noted that in the 
absence of the -c option, any changes made to the named files 
after the request is made but before it is printed will be reflected in 
the printed output. 

-ddest Choose dest as the printer or class of printers that is to do the 
printing. If dest is a printer, then the request will be printed only 
on that specific printer. If dest is a class of printers, then the 
request will be printed on the first available printer that is a 
member of the class. Under certain conditions (printer unavaila­
bility, file space limitation, etc.), requests for specific destinations 
may not be accepted (see accept (I M) and Ipstat (1». By default, 
dest is taken from the environment variable LPDEST (if it is set). 
Otherwise, a default destination (if one exists) for the computer 
system is used. Destination names vary between systems (see 
Ipstat(I». 

-m Send mail (seemai/O)) after the files have been printed. By 
default, no· mail is sent upon normal completion of the print 
request. 

-nnumber Print number copies (default of 1) of the output. 

-ooption Specify printer-dependent or class-dependent options. Several 
such options may be collected by specifying the -0 keyletter more 
than once. For more information about what is valid for options, 
see Models in Ipadmin(IM). 

-s Suppress messages from Ip(1) such as "request id is ... ". 

-ttitle Print title on the banner page of the output. 

-w Write a message on the user's terminal after the files have been 
printed. If the user is not logged in, then mail will be sent instead. 

Cancel cancels line printer requests that were made by the Ip(1) command. 
The command line arguments may be either request ids (as returned by Ip(I» 
or printer names (for a complete list, use Ipstat (1) . Specifying a request id 
cancels the associated request even if it is currently printing. Specifying a 

- 1 -



LP(I) 

FILES 

LP(I) 

printer cancels the request which is currently printing on that printer. In either 
case, the cancellation of a request that is currently printing frees the printer to 
print its next available request. 

/usr/spooillp/. 

SEE ALSO 
enable(1), Ipstat(1), maiI(l). 
accept(1M), Ipadmin(1M), Ipsched(IM) in the UNIX System V Administrator 
Reference Manual. 

- 2 -



LPSTAT(I) LPSTAT(t) 

NAME 
lpstat - print LP status information 

SYNOPSIS 
Ipstat [options] 

DESCRIPTION 

FILES 

Lpstat prints information about the current status of the LP line printer system. 

If no options are given, then Ipstat prints the status of all requests made to 
/p (1) by the user. Any arguments that are not options are assumed to be 
request ids (as returned by /p). Lpstat prints the status of such requests. 
Options may appear in any order and may be repeated and intermixed with 
other arguments. Some of the key letters below may be followed by an optional 
list that can be in one of two forms: a list of items separated from one another 
by a comma" or a list of items enclosed in double quotes and separated from 
one another by a comma and/or one or more spaces. For example: 

-u"userl, user2, user3" 

The omission of a list following such key letters causes all information relevant 
to the key letter to be printed, for example: 

lpstat -0 

prints the status of all output requests. 

-a[ list] Print acceptance status (with respect to /p) of destinations for 
requests. List is a list of intermixed printer names and class names. 

-c[ list] Print class names and their members. List is a list of class names. 

-d Print the system default destination for /p. 

-o[ list] Print the status of output requests. List is a list of intermixed 
printer names, class names, and request ids. 

-p[ list] Print the status of printers. List is a list of printer names. 

-r Print the status of the LP request scheduler 

-s Print a status summary, including the status of the line printer 
scheduler, the system default destination, a list of class names and 
their members, and a list of printers and their associated devices. 

-t Print all status information. 

-u[ list] Print status of output requests for users. List is a list of login 
names. 

-v[ list] Print the names of printers and the path names of the devices asso­
ciated with them. List is a list of printer names. 

/usr/spoollip/* 

SEE ALSO 
enable(1),lp(1). 

- 1 -



LS(l) LS(l) 

NAME 
Is - list contents of directory 

SYNOPSIS 
Is [ - RadCxmloogrtucpFbqisf ] [names] 

DESCRIPTION 
For each directory argument, Is lists the contents of the directory; for each file 
argument, Is repeats its name and any other information requested. The output 
is sorted alphabetically by default. When no argument is given, the current 
directory is listed. When several arguments are given, the arguments are first 
sorted appropriately, but file arguments appear before directories and their con­
tents. 

There are three major listing formats. The default format is to list one entry 
per line, the -C and -x options enable multi-column formats, and the -m 
option enables stream output format in which files are listed across the page, 
separated by commas. In order to determine output formats for the -C, -x, 
and -m options, Is uses an environment variable,. COLUMNS, to determine the 
number of character positions available on one output line. If this variable is 
not set, the terminfo database is used to determine the number of columns, 
based on the environment variable TERM. If this information cannot be 
obtained, 80 columns are assumed. 

There are an unbelievable number of options: 

- R Recursively list subdirectories encountered. 

-a List all entries; usually entries whose names be~in with a period (.) are 
not listed. 

-d If an argument is a directory, list only its name (not its contents); 
often used with -I to get the status of a directory. 

-C Multi-column output with entries sorted down the columns. 

-x Multi-column output with entries sorted across rather than down the 
page. 

-m Stream output format. 

-L List all files and symbolic links. All symbolic links are listed with a greater-
than sign (» to the right of the filename, for example: 

abc def> dirl dir2> 

where def and dir2 are symbolic links. 

-I List in long format, giving mode, number of links, owner, group, size in 
bytes, and time of last modification for each file (see below). If the file 
is a special file, the size field will instead contain the major and minor 
device numbers rather than a size. 

-0 The same as -I, except that the owner's UID and group's GID 
numbers are printed, rather than the associated character strings. 

-0 The same as -I, except that the group is not printed. 

-g The same as -I, except that the owner is not printed. 

-r Reverse the order of sort to get reverse alphabetic or oldest first as 
a ppropria teo 

- 1 -



LS(I) 

-t 

-u 

-c 

-p 

-F 

-b 

-q 

-i 

-s 

-f 

LS(l) 

Sort by time modified Oatest first) instead of by name. 

Use time of last access instead of last modification for sorting (with the 
- t option) or printing (with the -I option). 

Use time of last modification of the i-node (file created, mode changed, 
etc.) for sorting (-t) or printing (-0. 
Put a slash (/) after each filename if that file is a directory. 

Put a slash (/) after each filename if that file is a directory and put an 
asterisk (*) after each filename if that file is executable. 

Force printing of non-graphic characters to be in the octal \ddd nota­
tion. 

Force printing of non-graphic characters in file names as the character 
(?). 

For each file, print the i-number in the first column of the report. 

Give size in blocks, including indirect blocks, for each entry. 

Force each argument to be interpreted as a directory and list the name 
found in each slot. This option turns off -I, -t, -s, and -r, and 
turns on -a; the order is the order in which entries appear in the 
directory. 

The mode printed under the -I option consists of 10 characters that are inter­
preted as follows: 

The first character is: 

d if the entry is a directory; 
b if the entry is a block special file; 
c if the entry is a character special file; 
p if the entry is a fifo (a.k.a. "named pipe") special file; 

if the entry is an ordinary file. 

The next 9 characters are interpreted as three sets of three bits each. 
The first set refers to the owner's permissions; the next to permissions 
of others in the user-group of the file; and the last to all others. 
Within each set, the three characters indicate permission to read, to 
write, and to execute the file as a program, respectively. For a direc­
tory, "execute" permission is interpreted to mean permission to search 
the directory for a specified file. 

The permissions are indicated as follows: 

r if the file is readable; 
w if the file is writable; 
x if the file is executable; 

if the indicated permission is not granted. 

The group-execute permission character is given as s if the file has set­
group-ID mode; likewise, the user-execute permission character is given 
as s if the file has set-user-ID mode. The last character of the mode 
(normally x or -) is t if the 1000 (octal) bit of the mode is on; see 
chmod (1) for the meaning of this mode. The indications of set-ID and 
1000 bits of the mode are capitalized (S and T respectively) if the 
corresponding execute permission is not set. 

When the sizes of the files in a directory are listed, a total count of blocks, 
including indirect blocks, is printed. 

- 2 -



LS(l) 

[FILES 
/etc/passwd 

/etc/group 

/usr/lib/terminfo/* 

SEE ALSO 
chmod (1), find (I) . 

BUGS 

LS(l) 

to get user IDs for Is -I and Is 
-0. 

to get group IDs for Is -I and Is 
-g. 
to get terminal information. 

Unprintable characters in file names may confuse the columnar output options. 

- 3 -



M4(l) M4(t) 

NAME 
m4 - macro processor 

SYNOPSIS 
m4 [ options ] [ files ] 

DESCRIPTION 
M4 is a macro processor intended as a front end for Ratfor, C, and other 
languages. Each of the argument files is processed in order; if there are no 
files, or if a file name is -, the standard input is read. The processed text is 
written on the standard output. 

The options and their e:i'ects are as follows: 

-e Operate interactively. Interrupts are ignored and the output is 
unbuffered. 

-s Enable line sync output for the C preprocessor (#line ... ) 

- Bint Change the size of the push-back and argument collection buffers from 
the default of 4,096. 

- Hint Change the size of the symbol table hash array from the default of 
199. The size should be prime. 

-Sint Change the size of the call stack from the default of 100 slots. Macros 
take three slots, and non-macro arguments take one. . 

-Tint Change the size of the token buffer from the default of 512 bytes. 

To be effective, these flags must appear before any file names and before any 
-D or -U flags: 

- Dname[ = val] 
Defines name to valor to null in val's absence. 

-Uname 
undefines name. 

Macro calls have the form: 

name(argl,arg2, ... , argn) 

The ( must immediately follow the name of the macro. If the name of a 
defined macro is not followed by a (, it is deemed to be a call of that macro 
with no arguments. Potential macro names consist of alphabetic letters, digits, 
and underscore....) where the first character is not a digit. 

Leading unquoted blanks, tabs, and new-lines are ignored while collecting argu­
ments. Left and right single quotes are used to quote strings. The value of a 
quoted string is the string stripped of the quotes. 

When a macro name is recognized, its arguments are collected by searching for 
a matching right parenthesis. If fewer arguments are supplied than are in the 
macro definition, the trailing arguments are taken to be null. Macro evaluation 
proceeds normally during the collection of the arguments, and any commas or 
right parentheses which happen to turn up within the value of a nested call are 
as effective as those in the original input text. After argument collection, the 
value of the macro is pushed back onto the input stream and rescanned. 

M4 makes available the following built-in macros. They may be redefined, but 
onc.e this is done the original meaning is lost. Their values are null unless oth­
erwise stated. 

- 1 -



M4(I) 

define 

undefine 

defn 

pushdef 

popdef 

ifdef 

shift 

changequote 

changecom 

divert 

undivert 

divnum 

dnl 

ifelse 

incr 

M4(I) 

the second argument is installed as the value of the macro whose 
name is the first argument. Each occurrence of $n in the 
replacement text, where n is a digit, is replaced by the n-th argu­
ment. Argument 0 is the name of the macro; missing arguments 
are replaced by the null string; $# is replaced by the number of 
arguments; $. "is replaced by a list of all the arguments separated 
by commas; $@ is like $., but each argument is quoted (with the 
current quotes). 

removes the definition of the macro named in its argument. 

returns the quoted definition of its argument (s) . It is useful for 
renaming macros, especially built-ins. 

like define, but saves any previous definition. 

removes current definition of its argument(s), exposing the previ­
Jus one, if any. 

if the first argument is defined, the value is the second argument, 
otherwise the third. If there is no third argument, the value is 
null. The word unix is predefined on UNIX system versions of 
m4. 

returns all but its first argument. The other arguments are 
quoted and pushed back with commas in between. The quoting 
nullifies the effect of the extra scan that will subsequently be per­
formed. 

change quote symbols to the first and second arguments. The 
symbols may be up to five characters long. Changequote without 
arguments restores the original values (i.e., ' ,). 

change left and right comment markers from the default # and 
new-line. With no arguments, the comment mechanism is 
effectively disabled. With one argument, the left marker becomes 
the argument and the right marker becomes new-line. With two 
arguments, both markers are affected. Comment markers may be 
up to five characters long. 

m4 maintains 10 output streams, numbered 0-9. The final output 
is the concatenation of the streams in numerical order; initially 
stream 0 is the current stream. The divert macro changes the 
current output stream to its (digit-string) argument. Output 
diverted to a stream other than 0 through 9 is discarded. 

causes immediate output of text from diversions named as argu­
ments, or all diversions if no argument. Text may be undiverted 
into another diversion. Undiverting discards the diverted text. 

returns the value of the current output stream. 

reads and discards characters up to and including the next new­
line. 

has three or more arguments. If the first argument is the same 
string as the second, then the value is the third argument. If not, 
and if there are more than four arguments, the process is 
repeated with arguments 4, 5, 6 and 7. Otherwise, the value is 
either the fourth string, or, if it is not present, null. 

returns the value of its argument incremented by 1. The value of 
the argument is calculated by interpreting an initial digit-string 
as a decimal number. 

- 2 -



M4(t) 

decr 

eval 

len 

index 

M4(t) 

returns the value of its argument decremented by 1. 

evaluates its argument as an arithmetic expression, using 32-bit 
arithmetic. Operators include +, -, ., /, %, ,. (exponentiation), 
bitwise &, I, ", and -; relationals; parentheses. Octal and hex 
numbers may be specified as in C. The second argument specifies 
the radix for the result; the default is 10. The third argument 
may be used to specify the minimum number of digits in the 
result. 

returns the number of characters in its argument. 

returns the position in its first argument where the second argu­
ment begins (zero origin), or -1 if the second argument does not 
occur. 

substr returns a substring of its first argument. The second argument is 
a zero origin number selecting the first character; the third argu­
ment indicates the length of the substring. A missing third argu­
ment is taken to be large enough to extend to the end of the first 
string. 

translit transliterates the characters in its first argument from the set 
given by the second argument to the set given by the third. No 
abbreviations are permitted. 

include returns the contents of the file named in the argument. 

sinclude is identical to include, except that it says nothing if the file is 
inaccessible. 

syscmd executes the UNIX system command given in the first argument. 
No value is returned. 

sysval is the return code from the last call to syscmd. 

maketemp fills in a string of XXXXX in its argument with the current pro­
cess ID. 

m4exit 

m4wrap 

errprint 

dumpdef 

traceon 

traceoff 

causes immediate exit from m4. Argument 1, if given, is the exit 
code; the default is O. 

argument 1 will be pushed back at final EOF; example: 
m4wrap('cleanupO ,} 

prints its argument on the diagnostic output file. 

prints current names and definitions, for the named items, or for 
all if no arguments are given. 

with no arguments, turns on tracing for all macros (including 
built-ins). Otherwise, turns on tracing for named macros. 

turns off trace globally and for any macros specified. Macros 
specifically traced by traceon can be untraced only by specific 
calls to traceoff. 

SEE ALSO 
cc(1}, cpp(l). 

The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie. 

- 3 -



MACHID(1) MACHID(I) 

NAME 
pdpll, u3b, u3b5, vax - provide truth value about your processor type 

SYNOPSIS 
pdp 11 

u3b 

u3b5 

vax 

m68k 

DESCRIPTION 
The following commands will return a true value (exit code of 0) if you are on 
a processor that the command name indicates. 

pdp11 True if you are on a PDP-I 1145 or PDP-I 1/70. 

u3b True if you are on a 3B 20 computer. 

u3b5 True if you are on a 3B 5 computer. 

vax True if you are on a VAX-I 1/750 or VAX-I 11780. 

m68k True if you are on an Altos 68000 or 3068 computer. 

The commands that do not apply will return a false (non-zero) value. These 
commands are often used within make(1) makefiles and shell procedures to 
increase portability. 

SEE ALSO 
make(I), sh(t), test (I) , true(l). 

- I -



MAIL(l) MAIL(l) 

NAME 
mail, rmail - send mail to users or read mail 

SYNOPSIS 
mail [ -epqr 1 [ -f file 1 
mail [ - t 1 persons 

rmail [ - t 1 persons 

DESCRIPTION 
Mail without arguments prints a user's mail, message-by-message, in last-in, 
first-out order. For each message, the user is prompted with a ?, and a line is 
read from the standard input to determine the disposition of the message: 

<new-line> 
+ 
d 
p 

s [files] 
W [files 1 

m [persons] 

Go on to next message. 
Same as <new-line>. 
Delete message and go on to next message. 
Print message again. 
Go back to previous message. 
Save message in the named files (mbox is default). 
Save message, without its header, in the named files 
(mbox is default). 
Mail the message to the named persons (yourself is 
default) . 

q Put undeleted mail back in the mailfile and stop. 
EOT (control-d) Same as q. 
x Put all mail back in the mailfile unchanged and 

stop. 
!command Escape to the shell to do command. 
• Print a command summary. 

The optional arguments alter the printing of the mail: 

-e 

. -p 
-q 

-r 
-ffile 

causes mail not to be printed. An exit value of 0 is returned if the user 
has mail; otherwise, an exit value of 1 is returned. 
causes all mail to be printed without prompting for disposition . 
causes mail to terminate after interrupts. Normally an interrupt only 
causes the termination of the message being printed. 
causes messages to be printed in first-in, first-out order. 
causes mail to use file (e.g., mbox) instead of the default mailfile. 

When persons are named, mail takes the standard input up to an end-of-file 
(or up to a line consisting of just a .) and adds it to each person's mailfile. 
The message is preceded by the sender's name and a postmark. Lines that look 
like postmarks in the message, (i.e., "From ... ") are preceded with a >. The 
-t option causes the message to be preceded by all persons the mail is sent to. 
A person is usually a user name recognized by login(1). If a person being sent 
mail is not recognized, or if mail is interrupted during input, the file dead.letter 
will be saved to allow editing and resending. Note that this is regarded as a 
temporary file in that it is recreated every time needed, erasing the previous 
contents of dead.letter. 

To denote a recipient on a remote system, prefix person by the system name 
and exclamation mark {see uucp (1 e)). Everything after the first exclamation 
mark in persons is interpreted by the remote system. In particular, if persons 
contains additional exclamation marks, it can denote a sequence of machines 
through which the' message is to be sent on the way to its ultimate destination. 
For exainple, specifying a!b!cde as a recipient's name causes the message to be 
sent to user b!cde on system a. System a will interpret that destination as a 
request to send the message to user cde on system b. This might be useful, for 
instance, if the sending system can access system a but not system b, and 

- 1 -



MAIL(l) MAIL(l) 

FILES 

system a has access to system b. Mail will not use uucp if the remote system 
is the local system name (i.e., localsystem!user). 

The mailfile may be manipulated in two ways to alter the function of mail. 
The other permissions of the file may be read-write, read-only, or neither read 
nor write to allow different levels of privacy. If changed to other than the 
default, the file will be preserved even when empty to perpetuate the desired 
permissions. The file may also contain the first line: 

Forward to person 

which will cause all mail sent to the owner of the mailfile to be forwarded to 
person. This is especially useful to forward all of a person's mail to one 
machine in a mUltiple machine environment. In order for forwarding to work 
properly the mailfile should have "mail" as group ID, and the group permission 
should be reaq-write. 

Rmail only permits the sending of mail; uucp (1 C) uses rmail as a security pre­
caution. 

When a user logs in, the presence of mail, if any, is indicated. Also, notification 
is made if new mail arrives while using mail. 

letc/passwd 
lusr/mail/user 
$HOME/mbox 
$MAIL 
Itmp/ma* 
lusr/maill*.lock 
dead.letter 

to identify sender and locate persons 
incoming mail for user; i.e., the mailfile 
saved mail 
variable containing path name of mailfile 
temporary file 
lock for mail directory 
unmailable text 

SEE ALSO 

BUGS 

login (I) , mailx(1) , uucp(1C) , write(I). 

Conditions sometimes result in a failure to remove a lock file. 
After an interrupt, the next message may not be printed; printing may be 
forced by typing a p. 

- 2 -



MAILX(l) MAILX(l) 

NAME 
mailx - interactive message processing system 

SYNOPSIS 
mailx [options) [name .. J 

DESCRIPTION 
The command mailx provides a comfortable, flexible environment for sending 
and receiving messages electronically. When reading mail, mailx provides com­
mands to facilitate saving, deleting, and responding to messages. When sending 
mail, mailx allows editing, reviewing and other modification of the message as 
it is entered. 

Incoming mail is stored in a standard file for each user, called the system mail­
box for that user. When mailx is called to read messages, the mailbox is the 
default place to find them. As messages are read, they are marked to be moved 
to a secondary file for storage, unless specific action is taken, so that the mes­
sages need not be seen again. This secondary file is called the mbox and is nor­
mally located in the user's HOME directory (see "MBOX" (ENVIRONMENT 
V ARIABLES) for a description of this file). Messages remain in this file until 
forcibly removed. 

On the command line, options start with a dash (-) and any other arguments 
are taken to be destinations (recipients). If no recipients are specified, mailx 
will attempt to read messages from the mailbox. Command line options are: 

-d Turn on debugging output. Neither particularly 
interesting nor recommended. 

-e Test for presence of mail. Mailx prints nothing and 
exits with a successful return code if there is mail to 
read. 

-f [filename] Read messages from filename instead of mailbox. If 
no filename is specified, the mbox is used. 

- F Record the message in a file named after the first reci­
pient. Overrides the "record" variable, if set (see 
ENVIRONMENT VARIABLES). 

-h number The number of network "hops" made so far. This is 
provided for network software to avoid infinite delivery 
loops. 

-H Print header summary only. 
-i Ignore interrupts. See also "ignore" (ENVIRONMENT 

VARIABLES) . 
-0 Do not initialize from the system default Mailx.rc file. 
- N Do not print initial header summary. 
-r address Pass address to network delivery software. All tilde 

commands are disabled. 
-s subject Set the Subject header field to subject. 
-u user Read user's mailbox. This is only effective if user's 

mailbox is not read protected. 
- U Convert uucp style addresses to internet standards. 

Overrides the "conv" environment variable. 

When reading mail, mailx is in command mode. A header summary of the 
first several messages is displayed, followed by a prompt indicating mailx can 
accept regular commands (see COMMANDS below). When sending mail, 
mailx is in input mode. If no subject is specified on the command line, a 
prompt for the subject is printed. As the message is typed, mailx will read the 
message and store it in a temporary file. Commands may be entered by 

- 1 -



MAILX (1) MAILX(I) 

beginning a line with the tilde (-) escape character followed by a single com­
mand letter and optional arguments. See TILDE ESCAPES for a summary of 
these commands. 

At any time, the behavior of mailx is governed by a set of environment vari­
ables. These are flags and valued parameters which are set and cleared via the 
set and unset commands. See ENVIRONMENT VARIABLES below for a sum­
mary of these parameters. 

Recipients listed on the command line may be of three types: login names, 
shell commands, or alias groups. Login names may be any network address, 
including mixed network addressing. If the recipient name begins with a pipe 
symbol ( I ), the rest of the name is taken to be a shell command to pipe the 
message through. This provides an automatic interface with any program that 
reads the standard input, such as Ip (1) for recording outgoing mail on paper. 
Alias groups are set by the alias command (see COMMANDS below) and are 
lists of recipients of any type. 

Regular commands are of the form 

[ command] [ msglist ] [ arguments ] 

If no command is specified in command mode, print is assumed. In input 
mode, commands are recognized by the escape character, and lines not treated 
as commands are taken as input for the message. 

Each message is assigned a sequential number, and there is at any time the 
notion of a 'current' message, marked by a '>' in the header summary. Many 
commands take an optional list of messages (msglist) to operate on, which 
defaults to the current message. A msglist is a list of message specifications 
separated by spaces, which may include: 

n Message number n. 

$ 

* 
n-m 

The current message. 
The first undeleted message. 
The last message. 
All messages. 
An inclusive range of message numbers. 

user All messages from user. 
Istring All messages with string in the subject line (case ignored). 
:c All messages of type c, where c is one of: 

d deleted messages 
n new messages 
o old messages 
r read messages 
u unread messages 

Note that the context of the command determines whether this 
type of message specification makes sense. 

Other arguments are usually arbitrary strings whose usage depends on the com­
mand involved. File names, where expected, are expanded via the normal shell 
conventions (see sh (1». Special characters are recognized by certain com­
mands and are documented with the commands below. 

At start-up time, mailx reads commands from a system-wide file 
Uusr/lib/mailx/mailx.rc) to initialize certain parameters, then from a private 
start-up file ($HOME/.mailrc) for personalized variables. Most regular com­
mands are legal inside start-up files, the most common use being to set up ini­
tial display options and alias lists. The following commands are not legal in the 
start-up file: !, Copy, edit, followup, Followup, hold, mail, preserve, reply, 
Reply, shell, and visual. Any errors in the start-up file cause the remaining 

- 2 -



MAILX(l) MAILX(l) 

lines in the file to be ignored. 

COMMANDS 
The following is a complete list of mailx commands: 

!shell-command 
Escape to the shell. See "SHELL" (ENVIRONMENT VARIABLES). 

# comment 
Null command (comment). This may be useful in .mailrc files. 

Print the current message number. 

? 
Prints a summary of commands. 

alias alias name .. . 
group alias name .. . 

Declare an alias for the given names. The names will be substituted 
when alias is used as a recipient. Useful in the .mailrc file. 

alternates name ... 
Declares a list of alternate names for your login. When responding to 
a message, these names are removed from the list of recipients for the 
response. With no arguments, alternates prints the current list of alter­
nate names. See also "allnet" (ENVIRONMENT VARIABLES). 

cd [directory] 
chdir [directory] 

Change directory. If directory is not specified, $HOME is used. 

copy [filename] 
copy [msglistl filename 

Copy messages to the file without marking the messages as saved. 
Otherwise equivalent to the save command. 

Copy [msglist] 
Save the specified messages in a file whose name is derived. from the 
author of the message to be saved, without marking the messages as 
saved. Otherwise equivalent to the Save command. 

delete [msglist1 
Delete messages from the mailbox. If "autoprint" is set, the next mes­
sage after the last one deleted is printed (see ENVIRONMENT VARI­
ABLES). 

discard [header-field .. .1 
ignore [header-field .. .1 

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status" 
and "cc." The fields are included when the message is saved. The 
Print and Type commands override this command. 

dp [msglistl 
dt [msglistl 

Delete the specified messages from the mailbox and print the next 
message after the last one deleted. Roughly equivalent to a delete 

- 3 -



MAILX(I) MAILX (1) 

command followed by a print command. 

echo string .. , 
Echo the given strings (like echo (1) ) . 

edit [msglist] 

exit 
xit 

Edit the given messages. The messages are placed in a temporary file 
and the "EDITOR" variable is used to get the name of the editor (see 
ENVIRONMENT VARIABLES). Default editor is ed(I). 

Exit from mailx, without changing the mailbox. No messages are 
saved in the mbox (see also quit). , 

file £filename] 
folder [jUename] 

Quit from the current file of messages and read in the specified file. 
Several special characters are recognized when used as file names, with 
the following substitutions: 

% the current mailbox. 
%user the mailbox for user. 
# the previous file. 
& the current mbox. 

Default file is the current mailbox. 

folders 
Print the names of the files in the directory set by the "folder" variable 
(see ENVIRONMENT VARIABLES). 

followup [message] 
Respond to a message, recording the response in a file whose name is 
derived from the author of the message. Overrides the "record" vari­
able, if set. See also the Followup, Save, and Copy commands and 
"outfolder" (ENVIRONMENT VARIABLES). 

Followup [msglisd 
Respond to the first message in the msglist, sending the message to the 
author of each message in the msglist. The subject line is taken from 
the first message and the response is recorded in a file whose name is 
derived from the author of the first message. See also the followup, 
Save, and Copy commands and "outfolder" (ENVIRONMENT VARI­
ABLES). 

from [msglisd 
Prints the header summary for the specified messages. 

group alias name .,. 
alias alias name ... 

Declare an alias for the given names. The names will be substituted 
when alias is used as a recipient. Useful in the .mailrc file. 

headers [message] 
Prints the page of headers which includes the message specified. The 
"screen" variable sets the number of headers per page (see ENVIRON­
MENT VARIABLES). See also the z command. 

- 4 -



MAILX(I) MAILX(I) 

help 
Prints a summary of commands. 

hold [msglist] 
preserve [msglist] 

Holds the specified messages in the mailbox. 

if sir 
mail-commands 
else 
mail-commands 
eDdif 

Conditional execution, where s will execute following mail-commands, 
up to an else or eDdif, if the program is in send mode, and r causes the 
mail-commands to be executed only in receive mode. Useful in the 
.mailrc file. 

ignore header-field .. . 
discard header-field .. . 

list 

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status" 
and "cc." All fields are included when the message is saved. The Print 
and Type commands override this command. 

Prints all commands available. No explanation is given. 

mail name ... 
Mail a message to the specified users. 

mbox [msglist1 
Arrange for the given messages to end up in the standard mbox save 
file when mailx terminates normally. See "MBOX" (ENVIRONMENT 
V ARIABLES) for a description of this file. See also the exit and quit 
commands. 

Dext [message] 
Go to next message matching message. A msglist may be specified, 
but in this case the first valid message in the list is the only one used. 
This is useful for jumping to the next message from a specific user, 
since the name would be taken as a command in the absence of a real 
command. See the discussion of msglists above for a description of 
possible message specifications. 

pipe [msglist1 [shell-command] 
I [msglistl [shell-command] 

Pipe the message through the given shell-command. The message is 
treated as if it were read. If no arguments are given, the current mes­
sage is piped through the command specified by the value of the "cmd" 
variable. If the "page" variable is set, a form feed character is inserted 
after each message (see ENVIRONMENT VARIABLES). 

preserve [msglist] 
hold [msglist1 

Preserve the specified messages in the mailbox. 

- 5 -



MAILX(I) MAILX(I) 

Print [msglistl 
Type [msglistl 

Print the specified messages on the screen, including all header fields. 
Overrides suppression of fields by the ignore command. 

print [msglistl 
type [msglistl 

quit 

Print the specified messages. If "cd" is set, the messages longer than 
the number of lines specified by the "crt" variable are paged through 
the command specified by the "PAGER" variable. The default com­
mand is pg(I) (see ENVIRONMENT VARIABLES). 

Exit from mailx, storing messages that were read in mbox and unread 
messages in the mailbox. Messages that have been explicitly saved in 
a file are deleted. 

Reply [msglistl 
Respond [msglistl 

Send a response to the author of each message in the msglist. The 
subject line is taken from the first message. If "record" is set to a file 
name, the response is saved at the end of that file (see ENVIRON­
MENT VARIABLES). 

reply [message] 
respond [message] 

Reply to the specified message, including all other recipients of the 
message. If "record" is set to a file name, the response is saved at the 
end of that file (see ENVIRONMENT VARIABLES). 

Save [msglistl 
Save the specified messages in a file whose name is derived from the 
author of the first message. The name of the file is taken to be the 
author's name with all network addressing stripped off. See also the 
Copy, followup, and Followup commands and "outfolder" (ENVIRON­
MENT VARIABLES). 

save [jllename] 
save [msglistl filename 

set 

Save the specified messages in the given file. The file is created if it 
does not exist. The message is deleted from the mailbox when mailx 
terminates unless "keepsave" is set (see also ENVIRONMENT VARI­
ABLES and the exit and quit commands). 

set name 
set name=string 
set name=number 

shell 

Define a variable called name. The variable may be given a null, 
string, or numeric value. Set by itself prints all defined variables and 
their values. See ENVIRONMENT VARIABLES for detailed descrip­
tions of the mailx variables. 

Invoke an interactive shell (see also "SHELL" (ENVIRONMENT VARI­
ABLES». 

- 6 -



MAILX(l) MAILX(l) 

size [msglist] 
Print the size in characters of the specified messages. 

source filename 
Read commands from the given file and return to command mode. 

top [msglist] 
Print the top few lines of the specified messages. If the "toplines" vari­
able is set, it is taken as the number of lines to print (see ENVIRON­
MENT VARIABLES). The default is 5. 

touch [msglist] 
Touch the specified messages. If any message in msglist is not 
specifically saved in a file, it will be placed in the mbox upon normal 
termination. See exit and quit. 

Type [msglist1 
Print [msglist1 

Print the specified messages on the screen, including all header fields. 
Overrides suppression of fields by the ignore command. 

type [msglist] 
print [msglist] 

Print the specified messages. If "crt" is set, the messages longer than 
the number of lines specified by the "crt" variable are paged through 
the command specified by the "PAGER" variable. The default com­
mand is pg(1) (see ENVIRONMENT VARIABLES). 

undelete [msglist] 
Restore the specified deleted messages. Will only restore messages 
deleted in the current mail session. If "autoprint" is set, the last mes­
sage of those restored is printed (see ENVIRONMENT VARIABLES). 

unset name ... 

version 

Causes the specified variables to be erased. If the variable was 
imported from the execution environment (i.e., a shell variable) then it 
cannot be erased. 

Prints the current version and release date. 

visual [msglisd 
Edit the given messages with a screen editor. The messages are placed 
in a temporary file and the "VISUAL" variable is used to get the name 
of the editor (see ENVIRONMENT VARIABLES). 

write [msglist1 filename 

xit 
exit 

Write the given messages on the specified file, minus the header and 
trailing blank line. Otherwise equivalent to the save command. 

Exit from mailx, without changing the mailbox. No messages are 
saved in the mbox (see also quit). 

- 7 -



MAILX(l) 

z[ +1-] 

TILDE ESCAPES 

MAILX(l) 

Scroll the header display forward or backward one screen-full. The 
number of headers displayed is set by the "screen" variable (see 
ENVIRONMENT VARIABLES). 

The following commands may be entered only from input mode, by beginning a 
line with the tilde escape character (-). See "escape" (ENVIRONMENT VARI­
ABLES) for changing this special character. 

-! shell -command 
Escape to the shell. 

Simulate end of file (terminate message input). 
\ 

-: mail-command 
- mail-command 

Perform the command-level request. Valid only when sending a mes­
sage while reading mail. 

Print a summary of tilde escapes. 

Insert the autograph string "Sign" into the message (see ENVIRON­
MENT VARIABLES). 

Insert the autograph string "sign" into the message (see ENVIRON­
MENT VARIABLES). 

-b name ... 
Add the names to the blind carbon copy (Bce) list. 

-c name ... 
Add the names to the carbon copy (CC> list. 

Read in the dead. letter file. See "DEAD" (ENVIRONMENT VARI­
ABLES) for a description of this file. 

Invoke the editor on the partial message. See also "EDITOR" 
(ENVIRONMENT VARIABLES). 

-r [msglisd 

-j string 

Forward the specified messages. The messages are inserted into the 
message, without alteration. 

Prompt for Subject line and To, Cc, and Bcc lists. If the field is 
displayed with an initial value, it may be edited as if you had just 
typed it. 

Insert the value of the named variable into the text of the message. 
For example, -A is equivalent to '-j Sign.' 

- 8 -



MAILX(I) MAILX (1) 

-m [msglisd 
Insert the specified messages into the letter, shifting the new text to the 
right one tab stop. Valid only when sending a message while reading 
mail. 

Print the message being entered. 

Quit from input mode by simulating an interrupt. If the body of the 
message is not null, the partial message is saved in dead. letter. See 
"DEAD" (ENVIRONMENT VARIABLES) for a description of this file. 

-r filename 
-< filename 
-< !shell-command 

Read in the specified file. If the argument begins with an exclamation 
point (!), the rest of the string is taken as an arbitrary shell command 
and is executed, with the standard output inserted into the message. 

-5 string ... 
Set the subject line to string. 

-t name ... 
Add the given names to the To list. 

Invoke a preferred screen editor on the partial message. See also 
"VISUAL" (ENVIRONMENT VARIABLES). 

-w filename 
Write the partial message onto the given file, without the header. 

Exit as with -q except the message is not saved in dead. letter. 

1 shell-command 
Pipe the body of the message through the given shell-command. If the 
shell-command returns a successful exit status, the output of the com­
mand replaces the message. 

ENVIRONMENT VARIABLES 
The following are environment variables taken from the execution environment 
and are not alterable within mailx. 

HOME=directory 
The user's base of operations. 

MAILRC=filename 
The name of the start-up file. Default is $HOME/.mailrc. 

The following variables are internal mailx variables. They may be imported 
from the execution environment or set via the set command at any time. The 
unset command may be used to erase variables. 

aHnet 
All network names whose last component (login name) match are 
treated as identical. This causes the msglist message specifications to 

- 9 -



MAILX( 1) 

append 

askcc 

asksub 

MAILX (1) 

behave similarly. Default is noallnet. See also the alternates command 
and the "metoo" variable. 

Upon termination, append messages to the end of the mhox file instead 
of prepending them. Default is noappend. 

Prompt for the Cc list after message is entered. Default is noaskcc. 

Prompt for subject if it is not specified on the command line with the 
-s option. Enabled by default. 

autoprint 

bang 

Enable automatic printing of messages after delete and undelete com­
mands. Default is noautoprint. 

Enable the special-casing of exclamation points (!) in shell escape com­
mand lines as in vi (1). Default is nobang. 

cmd=shell-command 
Set the default command for the pipe command. No default value. 

conv=conversion 
Convert uucp addresses to the specified address style. The only valid 
conversion now is internet, which requires a mail delivery program con­
forming to the RFC822 standard for electronic mail addressing. 
Conversion is disabled by default. See also "send mail" and the - U 
command line option. 

crt=number 
Pipe messages having more than number lines through the command 
specified by the value of the "PAGER" variable (pg(1) by default). 
Disabled by default. 

DEAD=filename 

debug 

dot 

The name of the file in which to save partial letters in case of untimely 
interrupt or delivery errors. Default is $HOME/dead.letter. 

Enable verbose diagnostics for d~bugging. Messages are not delivered. 
Default is nodebug. 

Take a period on a line by itself during input from a terminal as end­
of-file. Default is nodot. 

EDITOR=shell-command 
The command to run when the edit or -e command is used. Default is 
ed(l) . 

escape=c 
Substitute c for the - escape character. 

- 10 -



MAILX(l) MAILX(l) 

folder=directory 

header 

hold 

ignore 

The directory for saving standard mail files. User-specified file names 
beginning with a plus (+) are expanded by preceding the file name 
with this directory name to obtain the real file name. If directory does 
not start with a slash (/), $HOME is prepended to it. In order to use 
the plus (+) construct on a mailx command line, "folder" must be an 
exported sh environment variable. There is no default for the "folder" 
variable. See also "outfolder" below. 

Enable printing of the header summary when entering mailx. Enabled 
by default. 

Preserve all messages that are read in the mailbox instead of putting 
them in the standard mbox save file. Default is nohold. 

Ignore interrupts while entering messages. Handy for noisy dial-up 
lines. Default is noignore. 

ignoreeof 

keep 

Ignore end-of-file during message input. Input must be terminated by 
a period (.) on a line by itself or by the -, command. Default is noig­
noreeof. See also "dot" above. 

When the mailbox is empty, truncate it to zero length instead of 
removing it. Disabled by default. 

keeps ave 
Keep messages that have been saved in other files in the mailbox 
instead of deleting them. Default is nokeepsave. 

MBOX=filename 

metoo 

The name of the file to save messages which have been read. The xit 
command overrides this function, as does saving the message explicitly 
in another file. Default is $HOME/mbox. 

If your login appears as a recipient, do not delete it from the list. 
Default is nometoo. 

LISTER=shell-command 

onehop 

The command (and options) to use when listing the contents of the 
"folder" directory. The default is Is (I). 

When responding to a message that was originally sent to several reci­
pients, the other recipient addresses are normally forced to be relative 
to the originating author's machine for the response. This flag disables 
alteration of the recipients' addresses, improving efficiency in a network 
where all machines can send directly to all other machines (i.e., one 
hop away). 

- 11 -



MAILX (I) MAILX(I) 

outfolder 

page 

Causes the files used to record outgoing messages to be located in the 
directory specified by the "folder" variable unless the path name is 
absolute. Default is nooutfolder. See "folder" above and the Save, 
Copy, followup, and Followup commands. 

Used with the pipe command to insert a form feed after each message 
sent through the pipe. Default is nopage. 

PAGER=shell-command 
The command to use as a filter for paginating output. This can also be 
used to specify the options to be used. Default is pg(1). 

prompt=string \ 

quiet 

Set the command mode prompt to string. Default is "? ". 

Refrain from printing the opening message and version when entering 
mailx. Default is noquiet. 

record=filename 

save 

Record all outgoing mail in filename. Disabled by default. See also 
"outfolder" above. 

Enable saving of messages in dead. letter on interrupt or delivery error. 
See "DEAD" for a description of this file. Enabled by default. 

screen=number 
Sets the number of lines in a screen-full of headers for the headers 
command. 

sendmail=shell-command 
Alternate command for delivering messages. Default is mail(I). 

sendwait 
Wait for background mailer to finish before returning. Default is 
nosendwait. 

SHELL=s hell-command 

showto 

The name of a preferred command interpreter. Default is sh (1). 

When displaying the header summary and the message is from you, 
print the recipient's name instead of the author's name. 

sign=string 
The variable inserted into the text of a message when the -a (auto­
graph) command is given. No default (see also -i (TILDE ESCAPES». 

Sign=string 
The variable inserted into the text of a message when the -A command 
is given. No default (see also -i (TILDE ESCAPES». 

- 12 -



MAILX(I) MAILX(I) 

FILES 

toplines=number 
The number of lines of header to print with the top command. Default 
is 5. 

VISUAL=shell-command 
The name of a preferred screen editor. Default is v;(I). 

$HOME/.mailrc 
$HOME/mbox 
lusr/maill* 
lusrllib/mailx/mailx.help* 
lusr/lib/mailx/mailx.rc 
Itmp/R[emqsx]* 

personal start-up file 
secondary storage file 
post office directory 
help message files 
global start-up file 
temporary files 

SEE ALSO 

BUGS 

maiJ(l), pg(I), IsO), 

Where shell-command is shown as valid, arguments are not always allowed. 
Experimentation is recommended. 

Internal variables imported from the execution environment cannot be unset. 

The full internet addressing is not fully supported by mailx. The new stan­
dards need some time to settle down. 

Attempts to send a message having a line consisting only of a "," are treated 
as the end of the message by mail(I) (the standard mail delivery program). 

- 13 -



MAKE(l) MAKE(I) 

NAME 
make - maintain, update, and regenerate groups of programs 

SYNOPSIS 
make [-f makefile] [-p] [-il [-k] [-s] [-rl [-0] [-b] [-e] [-m] 
[-t] [-d] [-q] [names] 

DESCRIPTION 
The following is a brief description of all options and some special names: 

-f makefile Description file name. Makefile is assumed to be the name of a 
description file. A file name of - denotes the standard input. 
The contents of makefile override the built-in rules if they are 
present. 

-p Print out the complete set of macro definitions and target descrip­
tions. 

- i Ignore error codes returned by invoked commands. This mode is 
entered if the fake target name .IGNORE appears in the descrip­
tion file. 

-k Abandon work on the current entry, but continue on other 
branches that do not depend on that entry. 

-s Silent mode. Do not print command lines before executing. This 
mode is also entered if the fake target name .sILENT appears in 
the description file. 

-r Do not use the built-in rules. 

-n No execute mode. Print commands, but do not execute them. 
Even lines beginning with an @ are printed. 

-b Compatibility mode for old makefiles. 

-e Environment variables override assignments within makefiles. 

-m Print a memory map showing text, data, and stack. This option 
is a no-operation on systems without the getu system call. 

-t Touch the target files (causing them to be up-to-date) rather 
than issue the usual commands. 

-d Debug mode. Print out detailed information on files and times 
examined. 

-q Question. The make command returns a zero or non-zero status 
code depending on whether the target file is or is not up-to-date . 

• DEFAULT If a file must be made but there are no explicit commands or 
relevant built-in rules, the commands associated with the name 
.DEFAULT are used if it exists . 

. PRECiOUS Dependents of this target will not be removed when quit or inter-
rupt are hit. 

.SILENT Same effect as the -s option . 

• IGNORE Same effect as the -i option. 

Make executes commands in makefile to update one or more target names. 
Name is typically a program. If no -f option is present, makefile, Makefile, 
s.makefile, and s.Makefile are tried in order. If make file is -, the standard 
input is taken. More than one - makefile argument pair may appear. 

Make updates a target only if its dependents are newer than the target. All 
prerequisite files of a target are added recursively to the list of targets. Missing 
files are deemed to be out-of-date. 

- 1 -



MAKE(l) MAKE(l) 

Makefile contains a sequence of entries that specify dependencies. The first 
line of an entry is a blank-separated, non-null list of targets, then a :, then a 
(possibly null) list of prerequisite files or dependencies. Text following a ; and 
all following lines that begin with a tab are shell commands to be executed to 
update the target. The first line that does not begin with a tab or # begins a 
new dependency or macro definition. Shell commands may be continued across 
lines with the < backslash > <new-line> sequence. Everything printed by 
make (except the initial tab) is passed directly to the shell as is. Thus, 

echo a\ 
b 

will produce 

ab 

exactly the same as the shell would. 

Sharp (#) and new-line surround comments. 

The following makefile says that pgm depends on two files a.o and b.o, and that 
they in turn depend on their corresponding source files (a.c and b.c) and a com­
mon file iocl.h: 

pgm: a.o b.o 
cc a.o b.o -0 pgm 

a.o: incl.h a.c 
cc -c a.c 

b.o: incl.h b.c 
cc -c h.c 

Command lines are executed one at a time, each by its own shell. The first one 
or two characters in a command can be the following: -, @, -@, or @-. If @ is 
present, printing of the command is suppressed. If - is present, make ignores 
an error. A line is printed when it is executed unless the -s option is present, 
or the entry .SILENT: is in makefile, or unless the initial character sequence 
contains a @. The -0 option specifies printing without execution; however, if 
the command line has the string $(MAKE) in it, the line is always executed (see 
discussion of the MAKEFLAGS macro under Environment). The -t (touch) 
option updates the modified date of a file without executing any commands. 

Commands returning non-zero status normally terminate make. If the -i 
option is present, or the entry .IGNORE: appears in makefile, or the initial char­
acter sequence of the command contains -. the error is ignored. If the -k 
option is present, work is abandoned on the current entry, but continues on 
other branches that do not depend on that entry. 

The -b option allows old makefiles (those written for the old version of make) 
to run without errors. The difference between the old version of make and this 
version is that this version requires all dependency lines to have a (possibly null 
or implicit) command associated with them. The previous version of make 
assumed, if no command was specified explicitly, that the command was null. 

Interrupt and quit cause the target to be deleted unless the target is a depen­
dent of the special name .PRECIOUS. 

Environment 
The environment is read by make. All variables are assumed to be macro 
definitions and processed as such. The environment variables are processed 
before any makefile and after the internal rules; thus, macro assignments in a 
makefile override environment variables. The -e option causes the environ­
ment to over ride the macro assignments in a makefile. 

- 2 -



MAKE(I) MAKE(I) 

The MAKEFLAGS environment variable is processed by make as containing any 
legal input option (except -f, -p, and -d) defined for the command line. 
Further, upon invocation, make "invents" the variable if it is not in the 
environment, puts the current options into it, and passes it on to invocations of 
commands. Thus, MAKEFLAGS always contains the current input options. This 
proves very useful for "super-makes". In fact, as noted above, when the -0 

option is used, the command $(MAKE) is executed anyway; hence, one can per­
form a make -n recursively on a whole software system to see what would 
have been executed. This is because the -n is put in MAKEFLAGS and passed 
to further invocations of $(MAKE). This is one way of debugging all of the 
makefiles for a software project without actually doing anything. 

Macros 
Entries of the form string] = string2 are macro definitions. String2 is defined 
as all characters up to a comment character or an unescaped new-line. Subse­
quent appearahces of $(stringJ[:subst]==[subst21]) are replaced by string2. 
The parentheses are optional if a single character macro name is used and 
there is no substitute sequence. The optional :subst] =subst2 is a substitute 
sequence. If it is specified, all non-overlapping occurrences of substl in the 
named macro are replaced by subst2. Strings (for the purposes of this type of 
substitution) are delimited by blanks, tabs, new-line characters, :md beginnings 
of lines. An example of the use of the substitute sequence is shown under 
Libraries. 

Internal Macros 
There are five internally maintained macros which are useful for writing rules 
for building targets. 

$* The macro $* stands for the file name part of the current dependent with 
the suffix deleted. It is evaluated only for inference rules. 

$@ The $@ macro stands for the full target name of the current target. It is 
evaluated only for explicitly named dependencies. 

$< The $< macro is only evaluated for inference rules or the .DEFAULT 
rule. It is the module which is out-of-date with respect to the target (i.e., 
the "manufactured" dependent file name). Thus, in the .c.o rule, the $ < 
macro would evaluate to the .c file. An example for making optimized .0 

files from .c files is: 

.c.o: 
cc -c -0 $*.c 

or: 

.c.o: 
cc -c -0 $< 

$? The $? macro is evaluated when explicit rules from the makefile are 
evaluated. It is the list of prerequisites that are out-of-date with respect 
to the target; essentially, those modules which must be rebuilt. 

$% The $% macro is only evaluated when the target is an archive library 
member of the form lib(file.o). In this case, $@ evaluates to lib and $% 
evaluates to the library member, file.o. 

Four of the five macros can have alternative forms. When an upper case D or 
F is appended to any of the four macros, the meaning is changed to "directory 
part" for D and "file part" for F. Thus, $(@D) refers to the directory part of 
the string $@. If there is no directory part, ./ is generated. The only macro 
excluded from this alternative form is $1. The reasons for this are debatable. 

- 3 -



MAKE(l) MAKE(l) 

Suffixes 
Certain names (for instance, those ending with .0) have inferable prerequisites 
such as .c, .s, etc. If no update commands for such a file appear in make file , 
and if an inferable prerequisite exists, that prerequisite is compiled to make the 
target. In this case, make has inference rules which allow building files from 
other files by examining the suffixes and determining an appropriate inference 
rule to use. The current default inference rules are: 

.c .c- .sh .sh- .c.o .c-.o .c-.c .s.o .s-.o .y.o .y-.o .1.0 r.o 

.y.c .y-.c .I.c .c.a .c-.a .s-.a .h-.h 

The internal rules for make are contained in the source file rules.c for the 
make program. These rules can be locally modified. To print out the rules 
compiled into the make on any machine in a form suitable for recompilation, 
the following command is used: 

make -fp - 2> /dev/null </dev/null 

The only peculiarity in this output is the (null) string which print/OS) prints 
when handed a null string. 

A tilde in the above rules refers to an sees file (see sccsfile (4». Thus, the 
rule .c-.o would transform an sees C source file into an object file (.0). 
Because the s. of the sees files is a prefix, it is incompatible with make's suffix 
point of view. Hence, the tilde is a way of changing any file reference into an 
sees file reference. 

A rule with only one suffix (i.e., .c:) is the definition of how to build x from 
x.c. In effect, the other suffix is null. This is useful for building targets from 
only one source file (e.g., shell procedures, simple C programs). 

Additional suffixes are given as the dependency list for .SUFFIXES. Order is 
significant; the first possible name for which both a file and a rule exist is 
inferred as a prerequisite. The default list is: 

.SUFFIXES: .0 .c .y .1 .s 

Here again, the above command for printing the internal rules will display the 
list of suffixes implemented on the current machine. Multiple suffix lists accu­
mulate; .SUFFIXES: with no dependencies clears the list of suffixes. 

Inference Rules 
The first example can be done more briefly. 

pgm: a.o b.o 
cc a.o b.o -0 pgm 

a.o b.o: incl.h 

This is because make has a set of internal rules for building files. The user 
may add rules to this list by simply putting them in the make file . 

Certain macros are used by the default inference rules to permit the inclusion 
of optional matter in any resulting commands. For example, CFLAGS, LFLAGS, 
and YFLAGS are used for compiler options to ce(I), lex (I), and yacc(I) , 
respectively. Again, the previous method for examining the current rules is 
recommended. 

The inference of prerequisites can be controlled. The rule to create a file with 
suffix .0 from a file with suffix .c is specified as an entry with .c.o: as the target 
and no dependents. Shell commands associated with the target define the rule 
for making a .0 file from a .c file. Any target that has no slashes in it and 
starts with a dot is identified as a rule and not a true target. 

- 4 -



MAKE(I) MAKE(I) 

Libraries 

FILES 

If a target or dependency name contains parentheses, it is assumed to be an 
archive library, the string within parentheses referring to a member within the 
library. Thus Iib(file.o) and $ (UB)(file.o) both refer to an archive library 
which contains file.o. (This assumes the LIB macro has been previously 
defined.) The expression $ (LIB) (filel.o file2.0) is not legal. Rules pertaining to 
archive libraries have the form .xX.a where the xx is the suffix from which the 
archive member is to be made. An unfortunate byproduct of the current imple­
mentation requires the xx to be different from the suffix of the archive 
member. Thus, one cannot have Iib(file.o) depend upon file.o explicitly. The 
most common use of the archive interface follows. Here, we assume the source 
files are all C type source: 

lib: lib(filel.o) lib(file2.0) lib(file3.0) 
@echo lib is now up-to-date 

.c.a: 
$(CC) -c $(CFLAGS) $< 
ar rv $@ $*.0 
rm -f $*.0 

In fact, the .c.a rule listed above is built into make and is unnecessary in this 
example. A more interesting, but more limited example of an archive library 
maintenance construction follows: 

lib: lib(filel.o) lib(file2.0) lib(file3.0) 
$(CC) -c $(CFLAGS) $(?:.o=.c) 
ar rv lib $? 
rm $? @echo lib is now up-to-date 

.c.a:; 

Here the substitution mode of the macro expansions is used. The $? list is 
defined to be the set of object file names (inside lib) whose C source files are 
out-of-date. The substitution mode translates the .0 to .c. (Unfortunately, one 
cannot as yet transform to .c-; however, this may become possible in the 
future.) Note also, the disabling of the .c.a: rule, which would have created 
each object file, one by one. This particular construct speeds up archive library 
maintenance considerably. This type of construct becomes very cumbersome if 
the archive library contains a mix of assembly programs and C programs. 

[Mm1akefile and s.[Mm1akefile 

SEE ALSO 

BUGS 

cdI), cd(I), lex(I), sh(I), yacdI). 
printf(3S), sccsfile(4) in the UNIX System V Programmer Reference Manual. 

Some commands return non-zero status inappropriately; use -i to overcome the 
difficulty. File names with the characters = : @ will not work. Commands 
that are directly executed by the shell, notably cd(I), are ineffectual across 
new-lines in make. The syntax (Ub(filel.o file2.0 file3.0) is illegal. You cannot 
build Iib(file.o) from file.o. The macro $(a:.o=.c-) does not work. 

- 5 -



MAKEKEY(l) MAKEKEY(l) 

NAME 
makekey - generate encryption key 

SYNOPSIS 
lusr llib/makekey 

DESCRIPTION 
M akekey improves the usefulness of encryption schemes depending on a key by 
increasing the amount of time required to search the key space. It reads 10 
bytes from its standard input, and writes 13 bytes on its standard output. The 
output depends on the input in a way intended to be difficult to compute (i.e., 
to require a substantial fraction of a second). 

The first eight input bytes (the input key) can be arbitrary ASCII characters. 
The last two (the salt) are best chosen from the set of digits, ., I, and upper­
and lower-case letters. The salt characters are repeated as the first two charac­
ters of the output. The remaining 11 output characters are chosen from the 
same set as the salt and constitute the output key. 

The transformation performed is essentially the following: the salt is used to 
select one of 4,096 cryptographic machines all based on the National Bureau 
of Standards DES algorithm, but broken in 4,096 different ways. Using the 
input key as key, a constant string is fed into the machine and recirculated a 
number of times. The 64 bits that come out are distributed into the 66 output 
key bits in the result. 

Makekey is intended for programs that perform encryption (e.g., ed(l) and 
crypt( 1). Usually, its input and output will be pipes. 

SEE ALSO 
crypt( 1), ed( 1). 
passwd(4) in the UNIX System Programmer Reference Manual. 

- 1 -



MAN(l) MAN(l) 

NAME 
man - print entries in this manual 

SYNOPSIS 
man [ options ] [ section ] titles 

DESCRIPTION 

FILES 

Man locates and prints the entry of this manual named title in the specified 
section. (For historical reasons, the word "page" is often used as a synonym 
for "entry" in this context.) The title is entered in lower case. The section 
number may not have a letter suffix. If no section is specified, the whole 
manual is searched for title and all occurrences of it are printed. Options and 
their meanings are: 

-Tterm Print the entry as appropriate for terminal type term. For a list of 
recognized values of term, type help term2. The default value of 
term is 450. 

-w Print on the standard output only the path names of the entries, 
relative to lusr/man, or to the current directory for -d option. 

-d Search the current directory rather than lusr/eatman; requires the 
full file name (e.g., cu. Ie, rather than just eu). 

-e Causes man to invoke co/(O; note that co/(O is invoked automat­
ically by man unless term is one of 300, 300s, 450, 37, 4000a, 382, 
4014, tek, 1620, andX. 

Man examines the environment variable STERM (see environ(5» and attempts 
to select options that adapt the output to the terminal being used. The 
-Tterm option overrides the value of STERM; in particular, one should use 
-Tip when sending the output of man to a line printer. 

Section may be changed before each title. 

As an example: 

man man 

would reproduce on the terminal this entry, as well as any other entries named 
man that may exist in other sections of the manual. 

lusr/catmanl? _man/man[ 1-81/· Preformatted manual entries 

SEE ALSO 
term(S) in the UNIX System V Programmer Reference Manual. 

CAVEAT 
The man command prints manual entries that were formatted by nroff when 
the UNIX system was installed. Entries are originally formatted with terminal 
type 37, and are printed using the correct terminal filters as derived from the 
-Tterm and STERM settings. Typesetting or other non-standard printing of 
manual entries requires installation of the UNIX system Documenter's Work­
bench. 

- 1 -



MESG(I) 

NAME 
mesg - permit or deny messages 

SYNOPSIS 
mesg [ n ] [ y ] 

DESCRIPTION 

MESG(I) 

Mesg with argument n forbids messages via write(I) by revoking non-user 
write permission on the user's terminal. Mesg with argument y reinstates per­
mission. All by itself, mesg reports the current state without changing it. 

FILES 
/dev/tty. 

SEE ALSO 
write(I). 

DIAGNOSTICS 
Exit status is 0 if messages are receivable, 1 if not, 2 on error. 

- 1 -



MKDIR(I) 

NAME 
mkdir - make a directory 

SYNOPSIS 
mkdir dirname ... 

DESCRIPTION 

MKDIR(I) 

Mkdir creates specified directories in mode 777 (possibly altered by 
umask(t». Standard entries, ., for the directory itself, and •. , for its parent, 
are made automatically. 

Mkdir requires write permission in the parent directory. 

SEE ALSO 
sh( 1), rm (1), umask( 1) . 

DIAGNOSTICS 
Mkdir returns exit code 0 if all directories were successfully made; otherwise, it 
prints a diagnostic and returns non-zero. 

- 1 -



NETLET(l) NETLET(l) 

NAME 
netlet-execute a command on remote system without access permissions for that 
system 

SYNOPSIS 
netlet machine I machine2 ... -c command arguments 

DESCRIPTION 
The net let command executes commands on remote systems even if you do not have 
permission to access the remote systems. 

Before you use netlet, make sure that: 

1. The command you use with net let exists as an entry in the jetcjnetjcmd 
directory on each system. 

2. Each command in the jetcjnetjcmd directory on each system is linked to 
the same file. This ensures that all systems agree on the version of the 
command to be used. 

EXAMPLES 
The following commands link the tar command on each system to the same file, 
j bin j tar, on System B to make sure the same version of the command is being run. 

To create the appropriate entries in the j etc j net j cmd directory, log in as root on any 
system, and enter: 

mkdir @Ajetcjnetjcmd 
mkdir @B j etc j net j cmd 
mkdir @C j etc j net j cmd 
In -s @Bjbinjtar @Ajetcjnetjcmdjtar 
In -s @Bjbinjtar @Bjetcjnetjcmdjtar 
In -s @Bjbinjtar @Cjetcjnetjcmdjtar 

Note that you must have access permissions on systems A, B, and C to create these 
files, but you need not have access permissions to use netlet. 

Then, you can use netlet to run tar on a remote system: 

$ netlet @C -c tar cv < CR> 

- 1 -



NEWFORM(l) NEWFORM(l) 

NAME 
newform - change the format of a text file 

SYNOPSIS 
newform [-s] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f) 
[-cchad [-In] [files] 

DESCRIPTION 
New/orm reads lines from the named files, or the standard input if no input file 
is named, and reproduces the lines on the standard output. Lines are reformat­
ted in accordance with command line options in effect. 

Except for -s, command line options may appear in any order, may be 
repeated, and may be intermingled with the optional files. Command line 
options are processed in the order specified. This means that option sequences 
like" -eI5 -160" will yield results different from" -160 -eI5". Options are 
applied to all files on the command line. 

-itabspec Input tab specification: expands tabs to spaces, according to the tab 
specifications given. Tabspec recognizes all tab specification forms 
described in tabs (I). In addition, tabspec may be - -, in which 
new/orm assumes that the tab specification is to be found in the 
first line read from the standard input (see Jspec (4». If no tabspec 
is given, tabspec defaults to -8. A tabspec of -0 expects no tabs; 
if any are found, they are treated as -1. 

-otabspec Output tab specification: replaces spaces by tabs, according to the 
tab specifications given. The tab specifications are the same as for 
-itabspec. If no tabspec is given, tabspec defaults to -8. A 
tabspec of -0 means that no spaces will be converted to tabs on 
output. 

-In Set the effective line length to n characters. If n is not entered, -I 
defaults to 72. The default line length without the -I option is 80 
characters. Note that tabs and backspaces are considered to be one 
character (use -i to expand tabs to spaces). 

-bn Truncate n characters from the beginning of the line when the line 
length is greater than the effective line length (see -In). Default is 
to truncate the number of characters necessary to obtain the 
effective line length. The default value is used when -b with no n 
is used. This option can be used to delete the sequence numbers 
from a COBOL program as follows: 

newform -1I -b7 file-name 

The -11 must be used to set the effective line length shorter than 
any existing line in the file so that the -b option is activated. 

-en Same as -bn except that characters are truncated from the end of 
the line. 

-ck Change the prefix/append character to k. Default character for k 
is a space. 

-pn Prefix n characters (see -ck) to the beginning of a line when the 
line length is less than the effective line length. Default is to prefix 
the number of characters necessary to obtain the effective line 
length. 

-an Same as -pn except characters are appended to the end of a line. 

-f Write the tab specification format line on the standard output 
before any other lines are output. The tab specification format line 
which is printed will correspond to the format specified in the last 

- I -



NEWFORM(l) NEWFORM(l) 

-0 option. If no -0 option is specified, the line which is printed 
will contain the default specification of -8. 

-s Shears off leading characters on each line up to the first tab and 
places up to 8 of the sheared characters at the end of the line. If 
more than 8 characters (not counting the first tab) are sheared, the 
eighth character is replaced by a • and any characters to the right 
of it are discarded. The first tab is always discarded. 

An error message and program exit will occur if this option is used 
on a file without a tab on each line. The characters sheared off are 
saved internally until all other options specified are applied to that 
line. The characters are then added at the end of the processed 
line. 

For example, to convert a file with leading digits, one or more tabs, 
and text on each line, to a file beginning with the text, all tabs after 
the first expanded to spaces, padded with spaces out to column 72 
(or truncated to column 72), and the leading digits placed starting 
at column 73, the command would be: 

newform -s -i -1 -a -e file-name 

DIAGNOSTICS 
All diagnostics are fatal. 
usage: '" 
not - s format 
can't open file 
internal line too long 

tabspec in error 

tabspec indirection illegal 

Newform was called with a bad option. 
There was no tab on one line. 
Self -explana tory. 
A line exceeds 512 characters after being expanded 
in the internal work buffer. 
A tab specification is incorrectly formatted, or 
specified tab stops are not ascending. 
A tabspec read from a file (or standard input) may 
not contain a tabspec referencing another file (or 
standard input). 

EXIT CODES 
o - normal execution 
1 - for any error 

SEE ALSO 

BUGS 

csplit(1), tabs(I). 
fspec(4) in the UNIX System V Programmer Reference Manual. 

Newform normally only keeps track of physical characters; however, for the -i 
and -0 options, newform will keep track of backspaces in order to line up tabs 
in the appropriate logical columns. 

NewJorm will not prompt the user if a tabspec is to be read from the standard 
input (by use of -i - - or -0 - -). 

If the -f option is used, and the last -0 option specified was -0 - -, and was 
preceded by either a -0 - - or a -i - -, the tab specification format line will 
be incorrect. 

- 2 -



NETSTAT(l) 

NAME 
netstat-display status of systems in WorkNet 

SYNOPSIS 
netstat [machine I machine2 ... ] 

DESCRIPTION 

NETSTAT(l) 

The netstat command tells you the status of all or some ofthe systems in WorkNet. 

EXAMPLES 
To find out what computers on the network you have access to and their status, enter: 

$ netstat < CR> 
The status of all systems on your network then appears: 

SYSTEM 
machine I 
machine2 
machine3 

STATUS 
local system 
not available 
available 

LOAD 

10 

To display the status for a specific system, enter: 

$ netstat machine2 <CR> 
where: machine2 is the system name 

The status of the system machine2 then appears: 

SEE ALSO 
netlet(l) 

SYSTEM STATUS LOAD 
machine2 not available 

- 1 -

ACCESS 
permitted 
not permitted 
not permitted 

ACCESS 
not permitted 



NEWGRP(I) NEWGRP(I) 

NAME 
newgrp - log in to a new group 

SYNOPSIS 
newgrp [ -] [ group] 

DESCRIPTION 

FILES 

Newgrp changes a user's group identification. The user remains logged in and 
the current directory is unchanged, but calculations of access permissions to 
files are performed with respect to the new real and effective group IDs. The 
user is always given a new shell, replacing the current shell, by newgrp, regard­
less of whether it terminated successfully or due to an error condition (i.e., un­
known group). 

Exported variables retain their values after invoking newgrp; however, all unex­
ported variables are either reset to their default value or set to null. System 
variables (such as PSI, PS2, PATH, MAIL, and HOME), unless exported by 
the system or explicitly exported by the user, are reset to default values. For 
example, a user has a primary prompt string (pst) other than $ (default) and 
has not exported PSt. After an invocation of newgrp , successful or not, their 
PSt will now be set to the default prompt string $. Note that the shell com­
mand export (see sh(1» is the method to export variables so that they retain 
their assigned value when invoking new shells. 

With no arguments, newgrp changes the group identification back to the group 
specified in the user's password file entry. 

If the first argument to newgrp is a -, the environment is changed to what 
would be expected if the user actually logged in again. 

A password is demanded if the group has a password and the user does not, or 
if the group has a password and the user is not listed in Jete/group as being a 
member of that group. 

/etc/group system's group file 
/etc/passwd system's password file 

SEE ALSO 

BUGS 

login (1), sh (1 ). 
group(4) , passwd(4), environ(S) in the UNIX System V Programmer Reference 
Manual. 

There is no convenient way to enter a password into Jete/group. Use of group 
passwords is not encouraged, because, by their very nature, they encourage poor 
security practices. Group passwords may disappear in the future. 

- 1 -



NEWS(l) NEWS(l) 

NAME 
news - print news items 

SYNOPSIS 
news [ -a ] [ -n ] [ -s ] [ items ] 

DESCRIPTION 

FILES 

News is used to keep the user informed of current events. By convention, these 
events are described by files in the directory /usr /news. 

When invoked without arguments, news prints the contents of all current files 
in /usr/news, most recent first, with each preceded by an appropriate header. 
News stores the "currency" time as the modification date of a file named 
.news_time in the user's home directory (the identity of this directory is deter­
mined by the environment variable SHOME); only files more recent than this 
currency time ar~ considered "current." 

The -a option causes news to print all items, regardless of currency. In this 
case, the stored time is not changed. 

The -n option causes news to report the names of the current items without 
printing their contents, and without changing the stored time. 

The -s option causes news to report how many current items exist, without 
printing their names or contents, and without changing the stored time. It is 
useful to include such an invocation of news in one's .profile file, or in the 
system's /etc/profile. 

All other arguments are assumed to be specific news items that are to be 
printed. 

If a delete is typed during the printing of a news item, printing stops and the 
next item is started. Another delete within one second of the first causes the 
program to terminate. 

I etc/ profile 
lusr/news/· 
$HOME/.news_time 

SEE ALSO 
profile(4), environ(5) in the UNIX System V Programmer Reference Manual. 

- 1 -



NICE(l) 

NAME 
nice - run a command at low priority 

SYNOPSIS 
nice [ -increment] command [ arguments 

DESCRIPTION 

NICE(l) 

Nice executes command with a lower CPU scheduling priority. If the incre­
ment argument (in the range 1-19) is given, it is used; if not, an increment of 
lOis assumed. 

The super-user may run commands with priority higher than normal by using a 
negative increment, e.g., - -10. 

SEE ALSO 
nohup(I). 
nice(2) in the UNIX System V Programmer Reference Manual. 

DIAGNOSTICS 
Nice returns the exit status of the subject command. 

BUGS 
An increment larger than 19 is equivalent to 19. 

- 1 -



NL(I) NL(1) 

NAME 
nl - line numbering filter 

SYNOPSIS 
nl [-htype] [-btype] [-ftype] [-vstart#] [-iincd [-p] [-Inurn] [-ssep] 
[-wwidth] [-nformat1 [-ddelim] file 

DESCRIPTION 
NI reads lines from the named file or the standard input if no file is named and 
reproduces the lines on the standard output. Lines are numbered on the left in 
accordance with the command options in effect. 

NI views the text it reads in terms of logical pages. Line numbering is reset at 
the start of each logical page. A logical page consists of a header, a body, and 
a footer section. Empty sections are valid. Different line numbering options 
are independently available for header, body, and footer (e.g., no numbering of 
header and footer lines while numbering blank lines only in the body). 

The start of logical page sections are signaled by input lines containing nothing 
but the following delimiter character(s): 

Line contents Start of 

\:\:\: 
\:\: 
\: 

header 

body 

footer 

Unless optioned otherwise, nl assumes the text being read is in a single logical 
page body. 

Command options may appear in any order and may be intermingled with an 
optional file name. Only one file may be named. The options are: 

-btype Specifies which logical page body lines are to be numbered. Recog­
nized types and their meaning are: a, number all lines; t, number 
lines with printable text only; n, no line numbering; pstring, number 
only lines that contain the regular expression specified in string. 
Default type for logical page body is t (text lines numbered). 

-htype 

-(type 

Same as -btype except for header. Default type for logical page 
header is n (no lines numbered). 

Same as -btype except for footer. Default for logical page footer 
is n (no lines numbered). 

-p Do not restart numbering at logical page delimiters. 

-vstart# Start# is the initial value used to number logical page lines. 

-iincr 

Default is 1. 

[ncr is the increment value used to number logical page lines. 
Default is 1. 

-ssep Sep is the character(s) used in separating the line number and the 
corresponding text line. Default sep is a tab. 

-wwidth Width is the number of characters to be used for the line number. 
Default width is 6. 

-nformat Format is the line numbering format. Recognized values are: In, 
left justified, leading zeroes suppressed; rn, right justified, leading 
zeroes supressed; rz, right justified, leading zeroes kept. Default 
format is rn (right justified). 

- 1 -



NL(I) 

-Inum 

-dxx 

EXAMPLE 

NL(l) 

Num is the number of blank lines to be considered as one. For 
example, -12 results in only the second adjacent blank being num­
bered (if the appropriate -ha, -ba, and/or -fa option is set). 
Default is 1. 

The delimiter characters specifying the start of a logical page sec­
tion may be changed from the default characters (\:) to two user­
specified characters. If only one character is entered, the second 
character remains the default character (:). No space should 
appear between the -d and the delimiter characters. To enter a 
backs lash, use two backslashes. 

The command: 

nl -viO -iiO -d!+ filel 

will number filel starting at line number 10 with an increment of ten. The log­
ical page delimiters are !+. 

SEE ALSO 
pdt). 

- 2 -



NM(I) 

NAME 
nm - print name list of common object file 

SYNOPSIS 
om [-0] [-x] [-h] [-v] [-oJ [-e] [-f] [-u] [-V] [-T] file-names 

DESCRIPTION 
The nm command displays the symbol table of each common object file file­
name. File-name may be a relocatable or absolute common object file; or it 
may be an archive of relocatable or absolute common object files. For each 
symbol, the following information will be printed: 

Name The name of the symbol. 

Value Its value expressed as an offset or an address depending on its 
storage class. 

Class I ts storage class. 

Type Its type and derived type. If the symbol is an instance of a structure 
or of a union then the structure or union tag will be given following 
the type (e.g., struct-tag). If the symbol is an array, then the array 
dimensions will be given following the type (e.g., char[n](m)). Note 
that the object file must have been compiled with the -g option of 
the cd}) command for this information to appear. 

Size Its size in bytes, if available. Note that the object file must have 
been compiled with the -g option of the cd}) command for this 
information to appear. 

Lioe The source line number at which it is defined, if available. Note that 
the object file must have been compiled with the -g option of the 
cd I) command for this information to appear. 

Section For storage classes static and external, the object file section contain-
ing the symbol (e.g., text, data or bss). 

The output of nm may be controlled using the following options: 

-0 Print the value and size of a symbol in octal instead of decimal. 

-x Print the value and size, of a symbol in hexadecimal instead of 
decimal. 

-h Do not display the output header data. 

-v Sort external symbols by value before they are printed. 

-n Sort external symbols by name before they are printed. 

-e Print only external and static symbols. 

-f Produce full output. Print redundant symbols (,text, .data and .bss), 
normally suppressed. 

-u Print undefined symbols only. 

- V Print the version of the nm command executing on the standard error 
output. 

-T By default, nm prints the entire name of the symbols listed. Since 
object files can have symbols names with an arbitrary number of 
characters, a name that is longer than the width of the column set 
aside for names will overflow its column, forcing every column after 
the name to be misaligned. The -T option causes nm to truncate 
every name which would otherwise overflow its column and place an 
asterisk as the last character in the displayed name to mark it as 
truncated. 

- 1 -



NM(l) 

FILES 

NM(l) 

Options may be used in any order, either singly or in combination, and may 
appear anywhere in the command line. Therefore, both nm name -e -v and 
nm -ve name print the static and external symbols in name, with external sym­
bols sorted by value. 

/usrltmp/nm? ????? 

CAVEATS 
When all the symbols are printed, they must be printed in the order they 
appear in the symbol table in order to preserve scoping information. Therefore, 
the -v and -n options should be used only in conjunction with the -e option. 

SEE ALSO 
as(l), cdt), Id(l). 
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual. 

DIAGNOSTICS 
"nm: name: cannot open" 

if name cannot be read. 

"nm: name: bad magic" 
if name is not an appropriate common object file. 

"nm: name: no symbols" 
if the symbols have been stripped from name. 

- 2 -



NOHUP(I) NOHUP(l) 

NAME 
nohup - run a command immune to hangups and quits 

SYNOPSIS 
nohup command [ arguments] 

DESCRIPTION 
Nohup executes command with hangups and quits ignored. If output is not 
re-directed by the user, both standard output and standard error are sent to 
nohup.out. If nohup.out is not writable in the current directory, output is 
redirected to SHOME/nohup.out. 

EXAMPLE 
It is frequently desirable to apply nohup to pipelines or lists of commands. 
This can be done only by placing pipelines and command lists in a single file, 
called a shell procedure. One can then issue: 

nohup sh file 

and the nohup applies to everything in file. If the shell procedure file is to be 
executed often, then the need to type sh can be eliminated by giving file exe­
cute permission. Add an ampersand and the contents of file are run in the 
background with interrupts also ignored (see sh (I»: 

nohup file & 

An example of what the contents of file could be is: 

tbl ofile I eqn I nroff > nfile 

SEE ALSO 
chmod (1), nice (I), sh( 1) . 
signaI(2) in the UNIX System V Programmer Reference Manual. 

WARNINGS 
nohup command1; command2 nohup applies only to command] 
nohup (command1; command2) is syntactically incorrect. 

Be careful of where standard error is redirected. The following command may 
put error messages on tape, making it unreadable: 

nohup cpio -0 <list >/dev/rmtllm& 
while 

nohup cpio -0 <list> Idev/rmtllm 2>errors& 

puts the error messages into file errors. 

- 1 -



00(1) 00(1) 

NAME 
od - octal dump 

SYNOPSIS 
od [ -bcdosx 1 [ file 1 [ [ + 10ffsed . ][ b 1 1 

DESCRIPTION 
Od dumps file in one or more formats as selected by the first argument. If the 
first argument is missing, -0 is default. The meanings of the format options 
are: 

-b Interpret bytes in octal. 

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C 
escapes: null=\O, backspace=\b, form-feed=\f, new-line=\n, return=\r, 
tab=\t; others appear as 3-digit octal numbers. 

-d Interpret words in unsigned decimal. 

-0 Interpret words in octal. 

-s Interpret 16-bit words in signed decimal. 

-x Interpret words in hex. 

The file argument specifies which file is to be dumped. If no file argument is 
specified, the standard input is used. 

The offset argument specifies the offset in the file where dumping is to com­
mence. This argument is normally interpreted as octal bytes. If. is appended, 
the offset is interpreted in decimal. If b is appended, the offset is interpreted in 
blocks of 512 bytes. If the file argument is omitted, the offset argument must 
be preceded by +. 
Dumping continues until end-of-file. 

SEE ALSO 
dump(l). 

- 1 -



PACK (I) PACK (I) 

NAME 
pack, pcat, unpack - compress and expand files 

SYNOPSIS 
pack [ - ] [ -f] name '" 

pcat name ... 

unpack name .. , 

DESCRIPTION 
Pack attempts to store the specified files in a compressed form. Wherever pos­
sible (and useful), each input file name is replaced by a packed file name.z 
with the same access modes, access and modified dates, and owner as those of 
name. The -f option will force packing of name. This is useful for causing an 
entire directory to be packed even if some of the files will not benefit. If pack 
is successful, name will be removed. Packed files can be restored to their origi­
nal form using unpack or pcat. 

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If 
the - argument is used, an internal flag is set that causes the number of times 
each byte is used, its relative frequency, and the code for the byte to be printed 
on the standard output. Additional occurrences of - in place of name will 
cause the internal flag to be set and reset. 

The amount of compression obtained depends on the size of the input file and 
the character frequency distribution. Because a decoding tree forms the first 
part of each .z file, it is usually not worthwhile to pack files smaller than three 
blocks, unless the character frequency distribution is very skewed, which may 
occur with printer plots or pictures. 

Typically, text files are reduced to 60-75% of their original size. Load modules, 
which use a larger character set and have a more uniform distribution of char­
acters, show little compression, the packed versions being about 90% of the ori­
ginal size. 

Pack returns a value that is the number of files that it failed to compress. 

No packing will occur if: 

the file appears to be already packed; 
the file name has more than 12 characters; 
the file has links; 
the file is a directory; 
the file cannot be opened; 
no disk storage blocks will be saved by packing; 
a file called name.z already exists; 
the .z file cannot be created; 
an I/O error occurred during processing. 

The last segment of the file name must contain no more than 12 characters to 
allow space for the appended .z extension. Directories cannot be compressed. 

Peat does for packed files what cat (1) does for ordinary files, except that peat 
cannot be used as a filter. The specified files are unpacked and written to the 
standard output. Thus to view a packed file named name.z use: 

pcat name.z 
or just: 

pcat name 

- 1 -



PACK(l) PACK(l) 

To make an unpacked copy, say nnn, of a packed file named name.z (without 
destroying name .z) use the command: 

pcat name> nnn 

Pcat returns the number of files it was unable to unpack. Failure may occur if: 

the file name (exclusive of the .z) has more than 12 characters: 
the file cannot be opened; 
the file does not appear to be the output of pack. 

Unpack expands files created by pack. For each file name specified in the 
command, a search is made for a file called name.z (or just name, if name ends 
in .z). If this file appears to be a packed file, it is replaced by its expanded ver­
sion. The new file has the .z suffix stripped from its name, and has the same 
access modes, access and modification dates, and owner as those of the packed 
file. 

Unpack returns a value that is the number of files it was unable to unpack. 
Failure may occur for the same reasons that it may in peat, as well as for the 
following: 

SEE ALSO 
cat(I) . 

a file with the "unpacked" name already exists; 
if the unpacked file cannot be created. 

- 2 -



PASSWD(I) PASSWD(I) 

NAME 
passwd - change login password 

SYNOPSIS 
passwd [ name ] 

DESCRIPTION 

FILES 

This command changes or installs a password associated with the login name. 

Ordinary users may change only the password which corresponds to their login 
name. 

Passwd prompts ordinary users for their old password, if any. It then prompts 
for the new password twice. The first time the new password is entered passwd 
checks to see if the old password has "aged" sufficiently. If "aging" is 
insufficient the new password is rejected and passwd terminates; see 
passwd(4). 

Assuming "aging" is sufficient, a check is made to insure that the new pass­
word meets construction requirements. When the new password is entered a 
second time, the two copies of the new password are compared. If the two 
copies are not identical the cycle of prompting for the new password is repeated 
for at most two more times. 

Passwords must be constructed to meet the following requirements: 

Each password must have at least six characters. Only the first eight 
characters are significant. 

Each password must contain at least two alphabetic characters and at 
least one numeric or special character. In this case, "alphabetic" 
means upper and lower case letters. 

Each password must differ from the user's login name and any reverse 
or circular shift of that login name. For comparison purposes, an 
upper case letter and its corresponding lower case letter are equivalent. 

New passwords must differ from the old by at least three characters. 
For comparison purposes, an upper case letter and its corresponding 
lower case letter are equivalent. 

One whose effective user 10 is zero is called a super-user; see id (t), and su (I). 
Super-users may change any password; hence, passwd does not prompt super­
users for the old password. Super-users are not forced to comply with password 
aging and password construction requirements. A super-user can create a null 
password by entering a carriage return in response to the prompt for a new 
password. 

/ etc/ passwd 

SEE ALSO 
10gin(I), id(I), suO). 
crypd3C), passwd(4) in the UNIX System V Programmer Reference Manual. 

- 1 -



PASTE(l) PASTE(l) 

NAME 
paste - merge same lines of several files or subsequent lines of one file 

SYNOPSIS 
paste file 1 file2 ... 
paste - d list file 1 file2 
paste -s [-dlist1 filel file2 

DESCRIPTION 
In the first two forms, paste concatenates corresponding lines of the given input 
files file], file2, etc. It treats each file as a column or columns of a table and 
pastes them together horizontally (parallel merging). If you will, it is the coun­
terpart of cadI) which concatenates vertically, i.e., one file after the other. In 
the last form above, paste replaces the function of an older command with the 
same name by combining subsequent lines of the input file (serial merging). In 
all cases, lines are glued together with the tab character, or with characters 
from an optionally specified list. Output is to the standard output, so it can be 
used as the start of a pipe, or as a filter, if - is used in place of a file name. 

The meanings of the options are: 

-d Without this option, the new-line characters of each but the last file 
(or last line in case of the -s option) are replaced by a tab character. 
This option allows replacing the tab character by one or more alternate 
characters (see below). 

list One or more characters immediately following -d replace the default 
tab as the line concatenation character. The list is used circularly, i.e., 
when exhausted, it is reused. In parallel merging (i.e., no -s option), 
the lines from the last file are always terminated with a new-line char­
acter, not from the list. The list may contain the special escape 
sequences: \0 (new-line), \t (tab), \\ (backslash), and \0 (empty string, 
not a null character). Quoting may be necessary, if characters have 
special meaning to the shell (e.g., to get one backslash, use -d"\\\\" ). 

-s Merge subsequent lines rather than one from each input file. Use tab 
for concatenation, unless a list is specified with -d option. Regardless 
of the list, the very last character of the file is forced to be a new-line. 

May be used in place of any file name, to read a line from the stan­
dard input. (There is no prompting). 

EXAMPLES 
Is I paste -d" " -

Is I paste - - - -

paste -s -d"\ t\n" file 

SEE ALSO 
cut(I), grep(I), pr(I). 

DIAGNOSTICS 
line too long 

too many files 

list directory in one column 

list directory in four columns 

combine pairs of lines into lines 

- 1 -

Output lines are restricted to 511 char­
acters. 

Except for -s option, no more than 12 
input files may be specified. 



PG(O PG(I) 

NAME 
pg - file perusal filter for soft-copy terminals 

SYNOPSIS 
pg [-number) [-p string) [-cefns) [+linenumber) (+Ipattern/) [files ... ) 

DESCRIPTION 
The pg command is a filter which allows the examination of files one screenful 
at a time on a soft-copy terminal. (The file name - and/or NULL arguments 
indicate that pg should read from the standard input.) Each screenful is fol­
lowed by a prompt. If the user types a carriage return, another page is 
displayed; other possibilities are enumerated below. 

This command is different from previous paginators in that it allows you to 
back up and review something that has already passed. The method for doing 
this is explained below. 

In order to determine terminal attributes, pg scans the terminfo (4) data base 
for the terminal type specified by the environment variable TERM. If TERM is 
not defined, the terminal type dumb is assumed. 

The command line options are: 

-number 
An integer specifying the size (in lines) of the window that pg is to use 
instead of the default. (On a terminal containing 24 lines, the default 
window size is 23). 

-p string 
Causes pg to use string as the prompt. If the prompt string contains a 
"%d", the first occurrence of "%d" in the prompt will be replaced by 
the current page number when the prompt is issued. The default 
prompt string is ":". 

-c Home the cursor and clear the screen before displaying each page. 
This option is ignored if clear_screen is not defined for this terminal 
type in the termin!o(4) data base. 

-e Causes pg not to pause at the end of each file. 

-f Normally, pg splits lines longer than the screen width, but some 
sequences of characters in the text being displayed (e.g., escape 
sequences for underlining) generate undesirable results. The -/ option 
inhibits pg from splitting lines. 

-n Normally, commands must be terminated by a <newline> character. 
This option causes an automatic end of command as soon as a com­
mand letter is entered. 

-s Causes pg to print all messages and prompts in standout mode (usually 
inverse video). 

+linenumber 
Start up at linen umber . 

+ Ipattern I 
Start up at the first line containing the regular expression pattern. 

The responses that may be typed when pg pauses can be divided into three 
categories: those causing further perusal, those that search, and those that 
modify the perusal environment. 

Commands which cause further perusal normally take a preceding address, an 
optionally signed number indicating the point from which further text should be 
displayed. This address is interpreted in either pages or lines depending on the 
command. A signed address specifies a point relative to the current page or 

- 1 -



PGO) PG(t) 

line, and an unsigned address specifies an address relative to the beginning of 
the file. Each command has a default address that is used if none is provided. 

The perusal commands and their defaults are as follows: 

(+1) <newline> or <blank> 
This causes one page to be displayed. The address is specified in 
pages. 

(+ 1) I With a relative address this causes pg to simulate scrolling the screen, 
forward or backward, the number of lines specified. With an absolute 
address this command prints a screenful beginning at the specified line. 

(+1) d or AD 
Simulates scrolling half a screen forward or backward. 

The following perusal commands take no address . 

. or AL Typing a single period causes the current page of text to be 
redisplayed. 

$ Displays the last windowful in the file. Use with caution when the 
input is a pipe. 

The following commands are available for searching for text patterns in the 
text. The regular expressions described in ed(1) are available. They must 
always be terminated by a <newline>, even if the -n option is specified. 

ilpatternl 
Search forward for the ith (default i=1) occurrence of pattern. 
Searching begins immediately after the current page and continues to 
the end of the current file, without wrap-around. 

i"pattern A 

i?pattern? 
Search backwards for the ith (default i=1) occurrence of pattern. 
Searching begins immediately before the current page and continues to 
the beginning of the current file, without wrap-around. The A notation 
is useful for Adds 100 terminals which will not properly handle the? 

After searching, pg will normally display the line found at the top of the 
screen. This can be modified by appending m or b to the search command to 
leave the line found in the middle or at the bottom of the window from now on. 
The suffix t can be used to restore the original situation. 

The user of pg can modify the environment of perusal with the following com­
mands: 

in Begin perusing the ith next file in the command line. The i is an 
unsigned number, default value is 1. 

ip Begin perusing the ith previous file in the command line. is an 
unsigned number, default is 1. 

iw Display another window of text. If i is present, set the window size to 
i. 

sfilename 
Save the input in the named file. Only the current file being perused is 
saved. The white space between the s and filename is optional. This 
command must always be terminated by a <newline>, even if the -n 
option is specified. 

h Help by displaying an abbreviated summary of available commands. 

q or Q Quit pg. 

- 2 -



PG(l) PG(l) 

!command 
Command is passed to the shell, whose name is taken from the SHELL 
environment variable. If this is not available, the default shell is used. 
This command must always be terminated by a <newline>, even if 
the -n option is specified. 

At any time when output is being sent to the terminal, the user can hit the quit 
key (normally control-\) or the interrupt (break) key. This causes pg to stop 
sending output, and display the prompt. The user may then enter one of the 
above commands in the normal manner. Unfortunately, some output is lost 
when this is done, due to the fact that any characters waiting in the terminal's 
output queue are flushed when the quit signal occurs. 

If the standard output is not a terminal, then pg acts just like car( 1), except 
that a header is printed before each file (if there is more than one). 

EXAMPLE 

NOTES 

FILES 

A sample usage of pg in reading system news would be 

news I pg -p "(Page %d):" 

While waiting for terminal input, pg responds to BREAK, DEL, and '" by ter­
minating execution. Between prompts, however, these signals interrupt pg's 
current task and place the user in prompt mode. These should be used with 
caution when input is being read from a pipe, since an interrupt is likely to ter­
minate the other commands in the pipeline. 

Users of Berkeley's more will find that the z and f commands are available, and 
that the terminal I, "', or ? may be omitted from the searching commands. 

I027.sp40u 
/usr/liblterminfo/* 

Terminal information data base 

Itmp/pg* 
Temporary file when input is from a pipe 

SEE ALSO 

BUGS 

crypt(1), ed (1), grep(1). 
terminfo(4) in the UNIX System V Programmer Reference Manual. 

If terminal tabs are not set every eight positions, undesirable results may occur. 

When using pg as a filter with another command that changes the terminal I/O 
options (e.g., crypt (1», terminal settings may not be restored correctly. 

- 3 -



PR(l) PR(l) 

NAME 
pr - print files 

SYNOPSIS 
pr [ options ] [ files ] 

DESCRIPTION 
Pr prints the named files on the standard output. If file is -, or if no files are 
specified, the standard input is assumed. By default, the listing is separated 
into pages, each headed by the page number, a date and time, and the name of 
the file. 

By default, columns are of equal width, separated by at least one space; lines 
which do not fit are truncated. If the -s option is used, lines are not truncated 
and columns are separated by the separation character. 

If the standard output is associated with a terminal, error messages are 
withheld until p/ has completed printing. 

The below options may appear singly or be combined in any order: 

+ k Begin printing with page k {default is I}. 

- k Produce k-column output (default is 1). The options -e and -i are 
assumed for multi-column output. 

-a Print multi-column output across the page. 

-m Merge and print all files simultaneously, one per column {overrides the 
- k, and -a options}. 

-d Double-space the output. 

-eck Expand input tabs to character positions k+l, 2·k+l, 3.k+l, etc. If 
k is 0 or is omitted, default tab settings at every eighth position are 
assumed. Tab characters in the input are expanded into the appropri­
ate number of spaces. If c {any non-digit character} is given, it is 
treated as the input tab character (default for c is the tab character). 

-ick In output, replace white space wherever possible by inserting tabs to 
character positions k+l, 2.k+l, 3·k+l, etc. If k is 0 or is omitted, 
default tab settings at every eighth position are assumed. If c (any 
non-digit character) is given, it is treated as the output tab character 
(default for c is the tab character). 

-nck Provide k-digit line numbering {default for k is 5}. The number occu­
pies the first k+ 1 character positions of each column of normal output 
or each line of -m output. If c (any non-digit character) is given, it is 
appended to the line number to separate it from whatever follows 
{default for c is a tab}. 

-wk Set the width of a line to k character positions (default is 72 for 
equal-width multi-column output, no limit otherwise). 

-ok Offset each line by k character positions (default is O). The number of 
character positions per line is the sum of the width and offset. 

-Ik Set the length of a page to k lines (default is 66). 

-h Use the next argument as the header to be printed instead of the file 
name. 

-p Pause before beginning each page if the output is directed to a termi­
nal {pr will ring the bell at the terminal and wait for a carriage 
return}. 

- 1 -



PR (1) 

-f 

-r 

-t 

-sc 

PR(I) 

Use form-feed character for new pages (default is to use a sequence of 
line-feeds). Pause before beginning the first page if the standard out­
put is associated with a terminal. 

Print no diagnostic reports on failure to open files. 

Print neither the five-line identifying header nor the five-line trailer 
normally supplied for each page. Quit printing after the last line of 
each file without spacing to the end of the page. 

Separate columns by the single character c instead of by the appropri­
ate number of spaces (default for c is a tab). 

EXAMPLES 

FILES 

Print filet and file2 as a double-spac~d, three-column listing headed by "file 
list": 

pr - 3dh "file list" file 1 file2 

Write filet on fUe2, expanding tabs to columns 10, 19, 28, 37, ... : 

pr -e9 -t < file 1 > file2 

/dev/tty. to suspend messages 

SEE ALSO 
cat(I). 

- 2 -



PROF(I) PROF(I) 

NAME 
prof - display profile data 

SYNOPSIS 
prof [-tcao] [-ox] [-g) [-z] [-h) [-s] [-m mdata] [prog] 

DESCRIPTION 
Prof interprets a profile file produced by the monitorOC) function. The sym­
bol table in the object file prog (a.out by default> is read and correlated with a 
profile file (moo.out by default). For each external text symbol the percentage 
of time spent executing between the address of that symbol and the address of 
the next is printed, together with the number of times that function was called 
and the average number of milliseconds per call. 

The mutually exclusive options t, c, a, and 0 determine the type of sorting of 
the output lines: 

-t Sort by decreasing percentage of total time (default>. 

-c Sort by decreasing number of calls. 

-a Sort by increasing symbol address. 

-0 Sort lexically by symbol name. 

The mutually exclusive options 0 and x specify the printing of the address of 
each symbol monitored: 

-0 Print each symbol address Gn octal) along with the symbol name. 

-x Print each symbol address Gn hexadecimal} along with the symbol 
name. 

The following options may be used in any combination: 

-g Include non-global symbols (static functions). 

-z Include all symbols in the profile range (see monitor(3C» , even if 
associated with zero number of calls and zero time. 

-h Suppress the heading normally printed on the report. (This is useful if 
the report is to be processed further') 

-s Print a summary of several of the monitoring parameters and statistics 
on the standard error output. 

-m mdata 
Use file mdata instead of moo.out as the input profile file. 

A program creates a profile file if it has been loaded with the -p option of 
cc(l). This option to the cc command arranges for calls to monitor(3C) at the 
beginning and end of execution. It is the call to monitor at the end of execu­
tion that causes a profile file to be written. The number of calls to a function is 
tallied if the -p option was used when the file containing the function was 
compiled. 

The name of the file created by a profiled program is controlled by the environ­
ment variable PROFDIR. If PROFDIR does not exist, "mon.out" is produced in 
the directory current when the program terminates. If PROFDIR - string, 
"string/pid.progname" is produced, where progname consists of argv[O] with 
any path prefix removed, and pid is the program's process id. If PROFDIR -
nothing, no profiling output is produced. 

A single function may be split into subfunctions for profiling by means of the 
MARK macro (see prof(S». 

- 1 -



PROF(t) PROF(I) 

FILES 
mon.out for profile 
a.out for namelist 

SEE ALSO 
cd}). 
exit(2), profil(2), monitorOC), prof(5) in the UNIX System V Programmer 
Reference Manual. 

WARNING 

BUGS 

The times reported in successive identical runs may show variances of 20% or 
more, because of varying cache-hit ratios due to sharing of the cache with other 
processes. Even if a program seems to be the only one using the machine, hid­
den background or asynchronous processes may blur the data. In rare cases, 
the clock ticks initiating recording of the program counter may "beat" with 
loops in a program, grossly distorting measurements. 

Call counts are always recorded precisely, however. 

Only programs that call exit (2) or return from main will cause a profile file to 
be produced, unless a final call to monitor is explicitly coded. 

The use of the -p option cd}) to invoke profiling imposes a limit of 600 000 
on the PDP-II) functions that may have call counters established during pro­
gram execution. For more counters you must call monitor(3C) directly. If 
this limit is exceeded, other data will be overwritten and the mOD.out file will be 
corrupted. The number of call counters used will be reported automatically by 
the prof command whenever the number exceeds 5/6 of the maximum. 

- 2 -



PRS(l) PRS(l) 

NAME 
prs - print an sees file 

SYNOPSIS 
prs [-d[dataspec]] [-r[SID]] [-e) [-I] [-c[date-time)) [-a] files 

DESCRIPTION 
Prs prints, on the standard output, parts or all of an sees file (see sccsfile (4)) 
in a user-supplied format. If a directory is named, prs behaves as though each 
file in the directory were specified as a named file, except that non-Sees files 
(last component of the path name does not begin with s.), and unreadable files 
are silently ignored. If a name of - is given, the standard input is read; each 
line of the standard input is taken to be the name of an sees file or directory 
to be processed; non-sees files and unreadable files are silently ignored. 

Arguments to prs, which may appear in any order, consist of keyletter argu­
ments, and file 'names. 

All the described keyletter arguments apply independentl.y to each named file: 

-d[dataspec] Used to specify the output data specification. The 
dataspec is a string consisting of sees file data key­
words (see DATA KEYWORDS) interspersed with 
optional user supplied text. 

-r[S/D] Used to specify the sees IDentification (SID) string of 
a delta for which information is desired. If no SID is 
specified, the SID of the most recently created delta is 
assumed. 

-e Requests information for all deltas created earlier than 
and including the delta designated via the -r keyletter 
or the date given by the -c option. 

-I Requests information for all deltas created later than 
and including the delta designated via the -r key letter 
or the date given by the -c option. 

-c[date-time] The cutoff date-time -clcutoffll is in the form: 

-a 

DA T A KEYWORDS 

YY[MM[DD[HH[MM[SS))))] 

Units omitted from the date-time default to their max­
imum possible values; that is, -c7502 is equivalent to 
-c750228235959. Any number of non-numeric charac­
ters may separate the various 2-digit pieces of the cutoff 
date in the form: "-c77 /2/2 9:22:25". 

Requests printing of information for both removed, i.e., 
delta type = R, (see rmdel< I)) and existing, i.e., delta 
type = D, deltas. If the -a keyletter is not specified, 
information for existing deltas only is provided. 

Data keywords specify which parts of an sees file are to be retrieved and out­
put. All parts of an sees file (see sccsfile (4)) have an associated data key­
word. There is no limit on the number of times a data keyword may appear in 
a dataspec. 

The information printed by prs consists of: (I) the user-supplied text; and (2) 
appropriate values (extracted from the sees file) substituted for the recog­
nized data keywords in the order of appearance in the dataspec. The format of 
a data keyword value is either Simple (S), in which keyword substitution is 
direct, or Multi-line (M), in which keyword substitution is followed by a car­
riage return. 

- 1 -



PRS (J) 

Keyword 
:Dt: 
:DL: 
:Li: 
:Ld: 
:Lu: 
:DT: 

:1: 
:R: 
:L: 
:B: 
:S: 
:D: 
:Dy: 
:Dm: 
:Dd: 
:T: 

:Th: 
:Tm: 
:Ts: 
:P: 

:D5: 
:DP: 
:01: 
:Do: 
:Dx: 
:Dg: 
:MR: 

:C: 
:UN: 
:FL: 
:Y: 

:MF: 
:MP: 
:KF: 
:KV: 
:BF: 
:J: 

:LK: 
:Q: 
:M: 
:FB: 
:CB: 
:Ds: 
:ND: 
:FD: 
:BD: 
:GB: 
:W: 
:A: 
:Z: 
:F: 

:PN: 

PRS(I) 

User-supplied text is any text other than recognized data keywords. 
A tab is specified by \t and carriage return/new-line is specified by \n. The 
default data keywords are: 

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:" 

TABLE 1. SCCS Files Data Keywords 
Data Item File Section Value Format 
Delta information Delta Table See below* S 
Delta line statistics :Li:/:Ld:/:Lu: S 
Lines inserted by Delta nnnnn S 
Lines deleted by Delta nnnnn S 
Lines unchanged by Delta nnnnn S 
Delta type D or R S 
SCCS ID string (SID) :R:.:L:.:B:.:S: S 
Release number nnnn S 
Level number nnnn S 
Branch number nnnn S 
Sequence number nnnn S 
Date Delta created :Dy:/:Dm:/:Dd: S 
Year Delta created nn S 
Month Delta created nn S 
Day Delta created nn S 
Time Delta created :Th:::Tm:::Ts: S 
Hour Delta created nn S 
Minutes Delta created nn S 
Seconds Delta created nn S 
Programmer who c~ated Delta logname S 
Delta sequence number nnnn S 
Predecessor Delta seq-no. nnnn S 
Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S 
Deltas included (seq #) :DS: :DS: .•• S 
Deltas excluded (seq #) :DS::DS: •.. S 
Deltas ignored (seq #) :DS::DS: ... S 
MR numbers for delta text M 
Comments for delta text M 
User names User Names text M 
Flag list Flags text M 
Module type flag text S 
MR validation flag yes or no S 
MR validation pgm name text S 
Keyword error/warning flag yes or no S 
Keyword validation string text S 
Branch flag yes or no S 
Joint edit flag yes or no S 
Locked releases :R: ..• S 
User-defined keyword text S 
Module name text S 
Floor boundary :R: S 
Ceiling boundary :R: S 
Default SID :1: S 
Null delta flag yes or no S 
File descriptive text Comments text M 
Body Body text M 
Gotten body " text M 
A form of what (J) string N/A :Z::M:\t:l: S 
A form of what (I) string N/A :Z::Y: :M: :I::Z: S 
what (I) string delimiter N/A @(#) S 
SCCS file name N/A text S 
SCCS file path name N/A text S 

* :Dt: =: :DT: :1: :D: :T: :P: :DS: :DP: 

- 2 -



PRS(I) PRS(J) 

EXAMPLES 

FILES 

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file 

may produce on the standard output: 

Users andlor user IDs for s.file are: 
xyz 
131 
abc 

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file 

may produce on the standard output: 

Newest delta for pgm main.c: 3.7 Created 77/1211 By cas 

As a special case: 

prs s.file 

may produce on the standard output: 

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000 
MRs: 
b178-12345 
b179-54321 
COMMENTS: 
this is the comment line for s.file initial delta 

for each delta table entry of the "D" type. The only keyletter argument 
allowed to be used with the special case is the -a keyletter. 

Itmp/pr????? 

SEE ALSO 
admin(I), delta(I), get(l) , help(l). 
sccsfile(4) in the UNIX System V Programmer Reference Manual. 

Source Code Control System User Guide in the UNIX System V User Guide. 

DIAGNOSTICS 
Use help (I) for explanations. 

- 3 • 



PS(I ) PS(I) 

NAME 
ps - report process status 

SYNOPSIS 
ps [ options 1 

DESCRIPTION 
Ps prints certain information about active processes. Without options, infor­
mation is printed about processes associated with the current terminal. The 
output consists of a short listing containing only the process ID, terminal 
identifier, cumulative execution time, and the command name. Otherwise, the 
information that is displayed is controlled by the selection of options. 

Options using lists as arguments can have the list specified in one of two forms: 
a list of identifiers separated from one another by a comma, or a list of 
identifiers enclosed in double quotes and separated from one another by a 
comma and/or one or more spaces. 

The options are: 

-e 
-d 

-a 

-f 

-I 
-c core file 
-s swapdev 

-0 namelist 

-t term list 

-p proclist 

-u uidlist 

-g grplist 

Print information about all processes. 
Print information about all processes, except process group 
leaders. 
Print information about all processes, except process group 
leaders and processes not associated with a terminal. 
Generate a full listing. (See below for meaning of columns in a 
full listing). 
Generate a long listing. See below. 
Use the file corefile in place of /dev/mem. 
Use the file swapdev in place of Idev/swap. This is useful when 
examining a corefile; a swapdev of Idev/oull will cause the user 
block to be zeroed out. 
The argument will be taken as the name of an alternate system 
name list file in place of luoix. 
Restrict listing to data about the processes associated with the 
terminals given in term list . Terminal identifiers may be specified 
in one of two forms: the device's file name (e.g., tty04) or if the 
device's file name starts with tty, just the digit identifier (e.g., 
04). 
Restrict listing to data about processes whose process ID numbers 
are given in proclist. 
Restrict listing to data about processes whose user I D numbers or 
login names are given in uidlist. In the listing, the numerical 
user ID will be printed unless the -f option is used, in which case 
the login name will be printed. . 
Restrict listing to data about processes whose process group 
leaders are given in grp/ist. 

The column headings and the meaning of the columns in a ps listing are given 
below; the letters f and I indicate the option (full or long) that causes the 
corresponding heading to appear; all means that the heading always appears. 
Note that these two options determine only what information is provided for a 
process; they do not determine which processes will be listed. 

- 1 -



PS(t) 

FILES 

F 

s 

UID 

PID 

PPID 
C 
PRI 

Nf 
ADDR 

sz 
WCHAN 

STIME 
TTY 
TIME 
CMD 

PS(I) 

Flags (octal and additive) associated with the process: 
o swapped; 
I in core; 
2 system process; 
4 locked-in core (e.g., for physical I/O); 
10 being swapped; 
20 being traced by another process; 
40 another tracing flag; 

100 3820 computer: swapin segment expansion; 
VAX-I 11780: text pointer valid; 

200 38 20 computer: process is child (during fork 
swap); 
VAX-I 11780: process is partially swapped. 

The state of the process: 
o non-existent; 
S sleeping; 
W waiting; 
R running; 
I intermediate; 
Z terminated; 
T stopped; 
X growing. 

(f,I) The user ID number of the process owner; the login name is 
printed under the -f option. 

(all) The process ID of the process; it is possible to kill a process if 
you know this datum. 

(f,1) The process 10 of the parent process. 
(f,I) Processor utilization for scheduling. 
(\) The priority of the process; higher numbers mean lower 

(I) 
(I) 

(I) 
(I) 

priority. 
Nice value; used in priority computation. 
The memory address of the process (a pointer to the segment 
table array on the 38 20 computer), if resident; otherwise, 
the disk address. 
The size in blocks of the core image of the process. 
The event for which the process is waiting or sleeping; if 
blank, the process is running. 

(f) Starting time of the process. 
(all) The controlling terminal for the process. 
(all) The cumulative execution time for the process. 
(all) The command name; the full command name and its argu­

ments are printed under the -f option. 

A process that has exited and has a parent, but has not yet been waited for by 
the parent, is marked <defunct>. 

Under the -f option, ps tries to determine the command name and arguments 
given when the process was created by examining memory or the swap area. 
Failing this, the command name, as it would appear without the -f option, is 
printed in square brackets. 

lunix 
Idev/mem 
Idev/swap 
letc/passwd 
I etcl ps _ da 1:1 
Idev 

system namelist 
memory 
the default swap device 
supplies UID information 
internal data structure 
searched to find terminal ("tty") names 

- 2 -



PS(I ) PS(I ) 

SEE ALSO 

BUGS 

acctcom (I), kill (1), nice( 1). 

Things can change while ps is running; the picture it gives is only a close 
approximation to reality. Some data printed for defunct processes are 
irrelevant. 

- 3 -



PTX(I) PTX(t) 

NAME 
ptx - permuted index 

SYNOPSIS 
ptx [ options ] [ input [ output ] ] 

DESCRIPTION ( 

FILES 

Ptx generates the file output that can be processed with a text formatter to 
produce a permuted index of file input (standard input and output default). It 
has three phases: the first does the permutation, generating one line for each 
keyword in an input line. The keyword is rotated to the front. The permuted 
file is then sorted. Finally, the sorted lines are rotated so the keyword comes at 
the middle of each line. Ptx output is in the form: 

.xx "tail" "before keyword" "keyword and after" "head" 

where .xx is assumed to be an nroff or troff(I) macro provided by the user, or 
provided by the mptx (S) macro package. The before keyword and keyword 
and after fields incorporate as much of the line as will fit around the keyword 
when it is printed. Tail and head, at least one of which is always the empty 
string, are wrapped-around pieces small enough to fit in the unused space at the 
opposite end of the line. 

The following options can be applied: 

-f Fold upper and lower case letters for sorting. 

-t Prepare the output for the phototypesetter. 

-w n Use the next argument, n, as the length of the output line. The 
default line length is 72 characters for nroff and 100 for troff. 

-g n Use the next argument, n, as the number of characters that ptx 
will reserve in its calculations for each gap among the four parts of 
the line as finally printed. The default gap is 3. 

-0 only Use as keywords only the words given in the only file. 

-i ignore Do not use as keywords any words given in the ignore file. If the 
-i and -0 options are missing, use /usr/lib/eign as the ignore file. 

-b break Use the characters in the break file to separate words. Tab, new-
line, and space characters are always used as break characters. 

-r Take any leading non-blank characters of each input line to be a 
reference identifier (as to a page or chapter), separate from the 
text of the line. Attach that identifier as a Sth field on each out­
put line. 

The index for this manual was generated using ptx. 

Ibin/sort 
lusr/lib/eign 
I usr llib/tmac/tmac. ptx 

SEE ALSO 

BUGS 

nrofT( 1), troff( 1) . 
mm(S), mptx(S) in the UNIX System V Programmer Reference Manual. 

Line length counts do not account for overstriking or proportional spacing. 
Lines that contain tildes (-) are botched, because ptx uses that character inter­
nally. 

- 1 -



PWD(I) 

NAME 
pwd - working directory name 

SYNOPSIS 
pwd 

DESCRIPTION 
Pwd prints the path name of the working (current) directory. 

SEE ALSO 
cd(I). 

DIAGNOSTICS 

PWD(t) 

"Cannot open .," and "Read error in ,," indicate possible file system trouble 
and should be referred to a UNIX system programming counselor, 

- 1 -



RATFOR(t) RATFOR(I) 

NAME 
ratfor - rational Fortran dialect 

SYNOPSIS 
ratfor [ options ] [ files ] 

DESCRIPTION 
Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran. 
Ratfor provides control flow constructs essentially identical to those in C: 

statement grouping: 
{ statement; statement; statement} 

decision-making: 

loops: 

if <Condition) statement [ else statement] 
switch (integer value) { 

case integer: statement 

[ default: ] statement 

while (condition) statement 
for (expression; condition; expression) statement 
do limits statement 
repeat statement [ until (condition) 
break 
next 

and some syntactic sugar to make programs easier to read and write: 

free form input: 
multiple statements/line; automatic continuation 

comments: 
# this is a comment. 

translation of relationals: 
>, > -, etc., become .GT., .GE., etc. 

return expression to caller from function: 
return (expression) 

define: 
define name replacement 

include: 
include file 

The option -h causes quoted strings to be turned into 27" constructs. The 
-C option copies comments to the output and attempts to format it neatly. 
Normally, continuation lines are marked with a & in column 1; the option 
-6x makes the continuation character x and places it in column 6. 

Ratfor is best used with j77 (1). 

SEE ALSO 
ef1(l). t77(1). 

B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976. 

- 1 -



RECOVER(l) RECOVER(l) 

NAME 
recover - restores the contents of a file system from streaming tape to disk 

SYNOPSIS 
recover [-i] [-s] mag-tape file-system 

DESCRIPTION 
The recover command copies the tape (specified by mag-tape) to the hard disk file 
system (specified by file-system). It restores the contents of the tape created by the 
archive command. 

OPTIONS 
-i Displays the character string that was specified by the -i option on the 

archive command that created the tape. This option does not copy the 
contents of the tape to the hard disk. 

-s Displays information from the header block: the number ofthe tape, the 
creation date, the starting block number on the tape, and the name of the 
file system. This option does not copy the contents of the tape to the hard 
disk. 

When restoring the root file system on the hard disk (i.e., /dev /rhdOb), boot UNIX 
from the Root File System floppy disk. 

Be sure to specify / dev / rsct (for streaming tape) when running archive or recover. 

EXAMPLES 
/ etc/umount / dey /hdla 
archive /dev /rhdla /dev /rset 

This command backs up the second hard disk to tape. 

/etc/umount /dev/hdla 
recover /dev /rset /dev /rhdla 

This command restores the files on the archive tape to the second hard disk. 

SEE ALSO 
archive( 1) 

- 1 -



REGCMP(l) REGCMP(l) 

NAME 
regcmp ....., regular expression compile 

SYNOPSIS 
regcmp [ - ] files 

DESCRIPTION 
Regcmp, in most cases, precludes the need for calling regcmp(3X) from C pro­
grams. This saves on both execution time and program size. The command 
regcmp compiles the regular expressions in file and places the output in file.i. 
If the - option is used, the output will be placed in file.c. The format of 
entries in file is a name (C variable) followed by one or more blanks followed 
by a regular expression enclosed in double quotes. The output of regcmp is C 
source code. Compiled regular expressions are represented as extern char vec­
tors. File.i files may thus be included into C programs, or file.c files may be 
compiled and later loaded. In the C program which uses the regcmp output, 
regex (abc ,line) will apply the regular expression named abc to line. Diagnos­
tics are self-explanatory. 

EXAMPLES 
name n([A-Za-z)[A-Za-zO-9 J.)$on 

telno n\({o,I}([2-9)[Ol][I-9])$O\){o,J}·n 
n([2-9)[O-9]{2})$1[ _](O,J}" 
n([O-9]{4}) $2n 

In the C program that uses the regcmp output, 

regex (telno, line, area, exch, rest) 

will apply the regular expression named telno to line. 

SEE ALSO 
regcmp(3X) in the UNIX System V Programmer Reference Manual. 

- 1 -



RM{J) RM(J) 

NAME 
rm, rmdir - remove files or directories 

SYNOPSIS 
rm [ -fri ] file 

rmdir dir ... 

DESCRIPTION 
Rm removes the entries for one or more files from a directory. If an entry was 
the last link to the file, the file is destroyed. Removal of a file requires write 
permission in its directory, but neither read nor write permission on the file 
itself. 

If a file has no write permission and the standard input is a terminal, its per­
missions are printed and a line is read from the standard input. If that line 
begins with y the file is deleted, otherwise the file remains. No questions are 
asked when the -f option is given or if the standard input is not a terminal. 

If a designated file is a directory, an error comment is printed unless the 
optional argument -r has been used. In that case, rm recursively deletes the 
entire contents of the specified directory, and the directory itself. 

If the -i (interactive) option is in effect, rm asks whether to delete each file, 
and, under -r, whether to examine each directory. 

Rmdir removes entries for the named directories, which must be empty. 

SEE ALSO 
unlink(2) in the UNIX System V Programmer Reference Manual. 

DIAGNOSTICS 
Generally self-explanatory. It is forbidden to remove the file " merely to avoid 
the antisocial consequences of inadvertently doing something like: 

rm -r ,. 

- 1 -



RMDEL(I) RMDEL(I) 

NAME 
rmdel - remove a delta from an sees file 

SYNOPSIS 
rmdel -rSID files 

DESCRIPTION 

FILES 

Rmdel removes the delta specified by the SID from each named sees file. The 
delta to be removed must be the newest (most recent> delta in its branch in the 
delta chain of each named sees file. In addition, the specified must not be 
that of a version being edited for the purpose of making a delta G. e., if a p-ftle 
(see get (I» exists for the named sees file, the specified must not appear in 
any entry of the p-ftleL 

If a directory is named, rmdel behaves as though each file in the directory were 
specified as a named file, except that non-sees files (last component of the 
path name do'es not begin with s.) and unreadable files are silently ignored. If 
a name of - is given, the standard input is read; each line of the standard 
input is taken to be the name of an sees file to be processed; non-SeeS files 
and unreadable files are silently ignored. 

The exact permissions necessary to remove a delta are documented in the 
Source Code Control System User Guide. Simply stated, they are either (I) if 
you make a delta you can remove it; or (2) if you own the file and directory 
you can remove a delta. 

x.file (see delta (I» 
z.file (see delta (I» 

SEE ALSO 
delta (I), get( I), help( J), prs (J). 
sccsfile(4) in the UNIX System V Programmer Reference Manual. 

Source Code Control System User Guide in the UNIX System V User Guide. 

DIAGNOSTICS 
Use help (I) for explanations. 

- 1 -



RUN(l) RUN(l) 

NAME 
run-run a program on a remote WorkNet system 

SYNOPSIS 
run machine-name command 

DESCRIPTION 
The WorkN et run command executes a program directly on a remote processor 
while all terminal input and output is still done using your local terminal. 

It may be useful to execute a program on another system if: 

o The other computer has a special version of the operating system which is 
not in use on yours. 

o The other computer has more memory than yours, and the program you 
want to run requires this extra memory. 

EXAMPLES 

FILES 

In the following example, the run command is used to run the process status (ps) 
program on the machine named altos2. The ps program then outputs to your local 
terminal screen the status of all processes running on altos2: 

$ run altos2 ps -ef < CR> 

In the next example, the run command is used to connect your terminal to the 
C-shell command line interpreter on another computer: 

$ run a1tos2 csh < CR> 

/ etc / net / runserver 

- 1 -



SACT(I) SACT(I) 

NAME 
sact - print current sees file editing activity 

SYNOPSIS 
sact files 

DESCRIPTION 
Sact informs the user of any impending deltas to a named sees file. This 
situation occurs when get (1) with the -e option has been previously executed 
without a subsequent execution of delta (I). If a directory is named on the 
command line, sact behaves as though each file in the directory were specified 
as a named file, except that non-sees files and unreadable files are silently 
ignored. If a name of •• is given, the standard input is read with each line 
being taken as the name of an sees file to be processed. 

The output for each named file consists of five fields separated by spaces. 

SEE ALSO 

Field 1 specifies the SID of a delta that currently exists in the sees 
file to which changes will be made to make the new delta. 

Field 2 

Field 3 

Field 4 

Field 5 

specifies the SID for the new delta to be created. 

contains the logname of the user who will make the delta 
(i.e., executed a get for editing). 

contains the date that get -e was executed. 

contains the time that get -e was executed. 

delta (1), get (t), unget (I) . 

DIAGNOSTICS 
Use help(I) for explanations. 

- 1 -



SAG(IG) SAG(IG) 

NAME 
sag - system activity graph 

SYNOPSIS 
sag [ options ] 

DESCRIPTION 
Sag graphically displays the system activity data stored in a binary data file by 
a previous sad!) run. Any of the sar data items may be plotted singly, or in 
combination; as cross plots, or versus time. Simple arithmetic combinations of 
data may be specified. Sag invokes sar and finds the desired data by string­
matching the data column header (run sar to see what is available). These 
options are passed through to sar: 

-s time Select data later than time in the form hh [:mm]. Default is 08:00. 

-e time Select data up to time. Default is 18:00. 

-i sec Select data at intervals as close as possible to sec seconds. 

-f file Use file as the data source for sar. Default is the current daily data 
file lusr/adm/sa/sadd. 

Other options: 

-T term Produce output suitable for terminal term. See tplot(IG) for known 
terminals. If term is vpr, output is processed by vpr -p and queued 
to a Versatec printer. Default for term is $TERM. 

-x spec x axis specification with spec in the form: 
"name [op name] ... [10 hi)" 

-y spec y axis specification with spec in the same form as above. 

Name is either a string that will match a column header in the sar report, with 
an optional device name in square brackets, e.g., r +w/sldsk -1), or an integer 
value. Op is + - • or I surrounded by blanks. Up to five names may be 
specified. Parentheses are not recognized. Contrary to custom, + and -
have precedence over • and I. Evaluation is left to right. Thus 
A I A + B * 100 is evaluated (A/(A+B»*100, and A + B I C + 0 is 
(A+B)/(C+D). Lo and hi are optional numeric scale limits. If unspecified, 
they are deduced from the data. 

A single spec is permitted for the x axis. If unspecified, time is used. Up to 5 
spec's separated by ; may be given for -yo Enclose the -x and -y argu­
ments in II II if blanks or \ <CR> are included. The -y default is: 

-y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100· 

EXAMPLES 

FILES 

To see today's CPU utilization: 
sag 

To see activity over 15 minutes of all disk drives: 
TS-'date +%H:%M' 
sar -0 tempfile 60 15 
TE-'date +%H:%M' 
sag -f tempfile -s STS -e STE -y "r+w/s[dsk)" 

lusr/adm/sa/sadd 

SEE ALSO 

daily data file for day dd. 

sar(I), tplot(IG). 

- 1 -



SAR(I) SAR(I) 

NAME 
sar - system activity reporter 

SYNOPSIS 
sar [ -ubdycwaqvmA] [-0 file] t [ n ] 

sar [ -ubdycwaqvmA] [-s time] [ -e time] [-i sec] [-f file] 

DESCRIPTION 
Sar, in the first instance, samples cumulative activity counters in the operating 
system at n intervals of t seconds. If the -0 option is specified, it saves the 
samples in file in binary format. The default value of n is 1. In the second 
instance, with no sampling interval specified, sar extracts data from a previ­
ously recorded file, either the one specified by -f option or, by default, the 
standard system activity daily data file lusr/adm/sa/sadd for the current day 
dd. The starting and ending times of the report can be bounded via the -s 
and -e time arguments of the form hh [:mm [:ss ] 1. The - i option selects 
records at sec second intervals. Otherwise, all intervals found in the data file 
are reported. 

In either case, subsets of data to be printed are specified by option: 

-u Report CPU utilization (the default): 
%usr, %sys, %wio, %idle - portion of time running in user mode, running 
in system mode, idle with some process waiting for block 110, and other­
wise idle. 

- b Report buffer activity: 
bread/s, bwrit/s - transfers per second of data between system buffers 
and disk or other block devices; 
lread/s, lwrit/s - accesses of system buffers; 
%rcache, %wcache - cache hit ratios, e. g., 1 - breadllread; 
pread/s, pwritls - transfers via raw (physical) device mechanism. 

-d Report activity for each block device, e. g., disk or tape drive. When data 
is displayed, the device specification dsk- is generally used to represent a 
disk drive. (On Digital Equipment Corporation machines, the device 
specification dsk- is used to represent a MASSBUS disk, while the 
specification dskR- is used to represent an RA disk.) The device 
specification used to represent a tape drive is machine dependent. The 
activity data reported is: 
%busy, avque - portion of time device was busy servicing a transfer 
request, average number of requests outstanding during that time; 
r+w/s, blks/s - number of data transfers from or to device, number of 
bytes transferred in 512-byte units; 
avwait, avserv - average time in ms. that transfer requests wait idly on 
queue, and average time to be serviced (which for disks includes seek, 
rotational latency and data transfer times). 

-y Report TTY device activity: 
rawch/s, canch/s, outch/s - input character rate, input character rate 
processed by canon, output character rate; 
rcvin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt rates. 

-c Report system calls: 
scall/s - system calls of all types; 
sread/s, swrit/s, fork/s, exec/s - specific system calls; 
rcharls, wcharls - characters transferred by read and write system calls. 

-w Report system swapping and switching activity: 
swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and number of 
512-byte units transferred for swapins and swapouts (including initial 
loading of some programs); 
pswch/s - process switches. 

- 1 -



SAR(I) SAR(t) 

-a Report use of file access system routines: 
iget/s, namei/s, dirblk/s. 

-q Report average queue length while occupied, and % of time occupied: 
runq-sz, %runocc - run queue of processes in memory and runnable; 
swpq-sz, %swpocc - swap queue of processes swapped out but ready to 
run. 

-v Report status of text, process, inode and file tables: 
text-sz, proc-sz, inod-sz, file-sz - entries/size for each table, evaluated 
once at sampling point; 
text-ov, proc-ov, inod-ov, file-ov - overflows occurring between sampling 
points. 

-m Report message and semaphore activities: 
msg/s, sema/s - primitives per second. 

- A Report all data. Equivalent to -udqbwcayvm. 
EXAMPLES 

~ 

FILES 

To see today's CPU activity so far: 
sar 

To watch CPU activity evolve for 10 minutes and save data: 
sar -0 temp 60 10 

To later review disk and tape activity from that period: 
sar -d -f temp 

/usr/adm/sa/sadd daily data file, where dd are digits representing the day of 
the month. 

SEE ALSO 
sag(IG). 
sar(IM) in the UNIX System V Administrator Reference Manual. 

- 2 -



SCCSDIFF(l) SCCSDIFF(I) 

NAME 
sccsdiff - compare two versions of an sees file 

SYNOPSIS 
sccsdiff -rSIDl -rSID2 [-p] [-sn] files 

DESCRIPTION 

FILES 

Sccsdiff compares two versions of an sees file and generates the differences 
between the two versions. Any number of secs files may be specified, but 
arguments apply to all files. 

-rSID? 

-p 

-sn 

SID} and SID2 specify the deltas of an sees file that are to 
be compared. Versions are passed to bdiff( 1) in the order 
given. 

pipe output for each file through pr (1) . 

n is the file segment size that bdiff will pass to diff(l). 
This is useful when diff fails due to a high system load. 

Itmp/get????? Temporary files 

SEE ALSO 
bdiff(1), get(1), help(1), pr(1). 

Source Code Control System User Guide in the UNIX System V User Guide. 

DIAGNOSTICS 
''file: No differences" If the two versions are the same. 
Use help (1) for explanations. 

- 1 -



SDB(I) SOB (I) 

NAME 
sdb - symbolic debugger 

SYNOPSIS 
sdb [-w] [-W] [ objfil [ corfil [ directory. list ] ] ] 

DESCRIPTION 
Sdb is a symbolic debugger that can be used with C and F77 programs. It 
may be used to examine their object files and core files and to provide a con­
trolled environment for their execution. 

Objfil is normally an executable program file which has been compiled with the 
-g (debug) option; if it has not been compiled with the -g option, or if it is 
not an executable file, the symbolic capabilities of sdb will be limited, but the 
file can still be examined and the program debugged. The default for objfil is 
a.out. Corfil is assumed to be a core image file produced after executing objfil~ 
the default for corfil is core. The core file need not be present. A - in place 
of corfil will force sdb to ignore any core image file. The colon separated list 
of directories (directory-list) is used to locate the source files used to build 
objfil. 

It is useful to know that at any time there is a current line and current file. If 
corfil exists then they are initially set to the line and file containing the source 
statement at which the process terminated. Otherwise, they are set to the first 
line in main U. The current line and file may be changed with the source file 
examination commands. 

By default, warnings are provided if the source files used in producing objfil 
cannot be found, or are newer than objfil. This checking feature and the 
accompanying warnings may be disabled by the use of the -W flag. 

N ames of variables are written just as they are in C or F77. Note that names 
in C are now of arbitrary length, sdb will no longer truncate names. Variables 
local to a procedure may be accessed using the form procedure:variable. If no 
procedure name is given, the procedure containing the current line is used by 
default. 

It is also possible to refer to structure members as variable.member, pointers to 
structure members as variable-> member and array elements as 
variablelnumberl. Pointers may be dereferenced by using the form pointer[OJ. 
Combinations of these forms may also be used. F77 common variables may be 
referenced by using the name of the common block instead of the structure 
name. Blank common varia.bles may be named by the form .variable. A 
number may be used in place of a structure variable name, in which case the 
number is viewed as the address of the structure, and the template used for the 
structure is that of the last structure referenced by sdb. An unqualified struc­
ture variable may also be used with various commands. Generally, sdb will 
interpret a structure as a set of variables .. Thus, sdb will display the values of 
all the elements of a structure when it is requested to display a structure. An 
exception to this interpretation occurs when displaying variable addresses. An 
entire structure does have an address, and it is this value sdb displays, not the 
addresses of individual elements. 

Elements of a multidimensional array may be referenced as 
variablelnumber Hnumber J ••• , or as variable[number,number, ... J. In place of 
nUJ?lber, the form number;number may be used to indicate a range of values, • 
may be used to indicate all legitimate values for that subscript, or subscripts 
may be omitted entirely if they are the last subscripts and the full range of 
values is desired. As with structures, sdb displays all the values of an array or 
of the section of an array if trailing subscripts are omitted. It displays only the 
address of the array itself or of the section specified by the user if subscripts 

- 1 • 



SDB(I) SDB(I) 

are omitted. A multidimensional parameter in an F77 program cannot be 
displayed as an array, but it is actually a pointer, whose value is the location of 
the array. The array itself can be accessed symbolically from the calling func­
tion. 

A particular instance of a variable on the stack may be referenced by using the 
form procedure:variable,number. All the variations mentioned in naming vari­
ables may be used. Number is the occurrence of the specified procedure on the 
stack, counting the top, or most current, as the first. If no procedure is 
specified, the procedure currently executing is used by default. 

It is also possible to specify a variable by its address. All forms of integer con­
stants which are valid in C may be used, so that addresses may be input in 
decimal, octal or hexadecimal. 

Line numbers in the source program are referred to as file-name:number or 
procedure:number. In either case the number is relative to the beginning of the 
file. If no procedure or file name is given, the current file is used by default. If 
no number is given, the first line of the named procedure or file is used. 

While a process is running under sdb, all addresses refer to the executing pro­
gram; otherwise they refer to objfil or corfil. An initial argument of -w per­
mits overwriting locations in objfil. 

Addresses 
The address in a file associated with a written address is determined by a map­
ping associated with that file. Each mapping is represented by two triples (bI, 
eI, fI) and (b2, e2, f2) and the file address corresponding to a written address 
is calculated as follows: 

bI address < el 

file address=address+fI-b1 
otherwise 

b2address<e2 

file address=address+f2 -b2, 

otherwise, the requested address is not legal. In some cases (e.g., for programs 
with separated I and 0 space) the two segments for a file may overlap. 

The initial setting of both mappings is suitable for normal a.out and core files. 
If either file is not of the kind expected then, for that file, b1 is set to 0, el is 
set to the maximum file size, and f1 is set to 0; in this way the whole file can 
be examined with no address translation. 

In order for sdb to be used on large files, all appropriate values are kept as 
signed 32-bit integers. 

Commands 
The commands for examining data in the program are: 

Print a stack trace of the terminated or halted program. 

T Print the top line of the stack trace. 

variable / elm 
Print the value of variable according to length I and format m. A 
numeric count c indicates that a region of memory, beginning at the 
address implied by variable, is to be displayed. The length specifiers are: 

b one byte 
h two bytes (half word) 
I four bytes (long word) 

- 2 -



SDB(I) SDB (I) 

Legal values for mare: 
c character 
d decimal 
u decimal, unsigned 
o octal 
x hexadecimal 
f 32-bit single precision floating point 
g 64-bit double precision floating point 
s Assume variable is a string pointer and print characters 

starting at the address pointed to by the variable. 
a Print characters starting at the variable's address. This 

format may not be used with register variables. 
p pointer to procedure 

disassemble machine-language instruction with addresses 
printed numerically and symbolically. 
disassemble machine-language instruction with addresses 
just printed numerically. 

The length specifiers are only effective with the formats c, d, u, 0 and x. 
Any of the specifiers, c, I, and m, may be omitted. If all are omitted, sdb 
choses a length and a format suitable for the variable's type as declared 
in the program. If m is specified, then this format is used for displaying 
the variable. A length specifier determines the output length of the value 
to be displayed, sometimes resulting in truncation. A count specifier c 
tells sdb to display that many units of memory, beginning at the address 
of variable. The number of bytes in one such unit of memory is deter­
mined by the length specifier I, or if no length is given, by the size associ­
ated with the variable. If a count specifier is used for the s or a com­
mand, then that many characters are printed. Otherwise successive char­
acters are printed until either a null byte is reached or 128 characters are 
printed. The last variable may be redisplayed with the command ./. 

The sh (1) metacharacters • and ? may be used within procedure and 
variable names, providing a limited form of pattern matching. If no pro­
cedure name is given, variables local to the current procedure and global 
variables are matched; if a procedure name is specified then only vari­
ables local to that procedure are matched. To match only global vari­
ables, the form :pattern is used. 

linenumber ?1m 
variable:? 1m 

Print the value at the address from a.out or I space given by linenumber 
or variable (procedure name), according to the format 1m. The default 
format is 4i'. 

variable = 1m 
linen umber = 1m 
number=lm 

Print the address of variable or linen umber , or the value of number, in 
the format specified by 1m. If no format is given, then Ix is used. The 
last variant of this command provides a convenient way to convert 
between decimal, octal and hexadecimal. 

variable!value 
Set variable to the given value. The value may be a number, a character 
constant or a variable. The value must be well defined; expressions which 
produce more than one value, such as structures, are not allowed. Char­
acter constants are denoted 'character. Numbers are viewed as integers 
unless a decimal point or exponent is used. In this case, they are treated 
as having the type double. Registers are viewed as integers. The 

- 3 -



SDB(t) SDB(I) 

variable may be an expression which indicates more than one variable, 
such as an array or structure name. If the address of a variable is given, 
it is regarded as the address of a variable of type int. C conventions are 
used in any type conversions necessary to perform the indicated assign­
ment. 

x Print the machine registers and the current machine-language instruction. 

X Print the current machine-language instruction. 

The commands for examining source files are: 

e procedure 
efile-name 
e directory/ 
e directory file-name 

The first two forms set the current file to the file containing procedure or 
to file-name. The current line is set to the first line in the named pro­
cedure or file. Source files are assumed to be in directory. The default is 
the current working directory. The latter two forms change the value of 
directory. If no procedure, file name, or directory is given, the current 
procedure name and file name are reported. 

/regular expression/ 
Search forward from the current line for a line containing a string match­
ing regular expression as in ed (I). The trailing / may be deleted. 

? regular expression? 
Search backward from the current line for a line containing a string 
matching regular expression as in ed(l). The trailing? may be deleted. 

p Print the current line. 

z Print the current line followed by the next 9 lines. Set the current line to 
the last line printed. 

w Window. Print the 10 lines around the current line. 

number 
Set the current line to the given line number. Print the new current line. 

count + 
Advance the current line by count lines. Print the new current line. 

count-
Retreat the current line by count lines. Print the new current line. 

The commands for controlling the execution of the source program are: 

count r args 
count R 

Run the program with the given arguments. The r command with no 
arguments reuses the previous arguments to the program while the R 
command runs the program with no arguments. An argument beginning 
with < or > causes redirection for the standard input or output, respec­
tively. If count is given, it specifies the number of breakpoints to be 
ignored. 

linenumber c count 
linen umber C count 

Continue after a breakpoint or interrupt. If count is given, it specifies the 
breakpoint at which to stop after ignoring count - 1 breakpoints.C con­
tinues with the signal which caused the program to stop reactivated and c 
ignores it. If a line number is specified then a temporary breakpoint is 
placed at the line and execution is continued. The breakpoint is deleted 
when the command finishes. 

- 4 -



SDB(I) SDB(I) 

linenumber g count 
Continue after a breakpoint with execution resumed at the given line. If 
count is given, it specifies the number of breakpoints to be ignored. 

s count 
S count 

Single step the program through count lines. If no count is given then 
the program is run for one line. S is equivalent to s except it steps 
through procedure calls. 

Single step by one machine-language instruction. I steps with the signal 
which caused the program to stop reactivated and i ignores it. 

variable$m count 
address:m count 

Single step (as with s) until the specified location is modified with a new 
value. If count is omitted, it is effectively infinity. Variable must be 
accessible from the current procedure. Since this command is done by 
software, it can be very slow. 

level v 
Toggle vetbose mode, for use when single stepping with S, s or m. If 
level is omitted, then just the current source file and/or subroutine name 
is printed when either changes. If level is I or greater, each C source 
line is printed before it is executed; if levelis 2 or greater, each assembler 
statement is also printed. A v turns verbose mode off if it is on for any 
level. 

k Kill the program being debugged. 

procedure(arg 1 ,arg2, .. J 
procedure (arg 1 ,arg2, .. '} 1m 

Execute the named procedure with the given arguments. Arguments can 
be integer, character or string constants or names of variables accessible 
from the current procedure. The second form causes the value returned 
by the procedure to be printed according to format m. If no format is 
given, it defaults to d. 

linen umber b commands 
Set a breakpoint at the given line. If a procedure name without a line 
number is given (e.g., "proc:"), a breakpoint is placed at the first line in 
the procedure even if it was not compiled with the -g option. If no 
linen umber is given, a breakpoint is placed at the current line. If no 
commands are given, execution stops just before the breakpoint and con­
trol is returned to sdb. Otherwise the commands are executed when the 
breakpoint is encountered and execution continues. Multiple commands 
are specified by separating them with semicolons. If k is used as a com­
mand to execute at a breakpoint, control returns to sdb, instead of con­
tinuing execution. 

B Print a list of the currently active breakpoints. 

linenumber d 
Delete a breakpoint at the given line. If no ltnenumber is given then the 
breakpoints are deleted interactively. Each breakpoint location is printed 
and a line is read from the standard input. If the line begins with a y or 
d then the breakpoint is deleted. 

D Delete all breakpoints. 

Print the last executed line. 

- 5 -



SDB(t) 

FILES 

SDB(t) 

linen umber a 
Announce. If linenumber is of the form proc:number, the command 
effectively does a linenumber b l. If linenumber is of the form proc:, the 
command effectively does a proc: b T. 

Miscellaneous commands: 

!command 
The command is interpreted by sh( 1). 

new-line 
If the previous command printed a source line, then advance the current 
line by one line and print the new current line. If the previous command 
displayed a memory location, then display the next memory location. 

control-D 
Scroll. Print the next 10 lines of instructions, source or data depending 
on which was printed last. 

< filename 
Read commands from filename until the end of file is reached, and then 
continue to accept commands from standard input. When sdb is told to 
display a variable. by a command in such a file, the variable name is 
displayed along with the value. This command may not be nested; < 
may not appear as a command in a file. 

M Print the address maps. 

M [? II[ * I b e f 
Record new values for the address map. The arguments ? and / specify 
the text and data maps, respectively. The first segment (bl. el. fI) is 
changed unless • is specified, in which case the second segment (b I. e I. 
fI) of the mapping is changed. If fewer than three values are given, the 
remaining map parameters are left unchanged. 

" string 
Print the given string. The C escape sequences of the form \character 
are recognized, where character is a nonnumeric character. 

q Exit the debugger. 

The following commands also exist and are intended only for debugging the 
debugger: 

V Print the version number. 
Q Print a list of procedures and files being debugged. 
Y Toggle debug output. 

a.out 
core 

SEE ALSO 
cd!), f77(1), sh(l). 
a.out(4), core(4) in the UNIX System V Programmer Reference Manual. 

WARNINGS 
When sdb prints the value of an external variable for which there is no debug­
ging information, a warning is printed before the value. The value is assumed 
to be int Gnteger). 

- 6 -



SDB(1) 

BUGS 

SDB (1) 

Data which are stored in text sections are indistinguishable from functions. 

Line number information in optimized functioris is unreliable, and some infor­
mation may be missing. 

If a procedure is called when the program is not stopped at a breakpoint (such 
as when a core image is being debugged), all variables are initialized before the 
procedure is started. This makes it impossible to use a procedure which for­
mats data from a core image. 

The default type for printing F77 parameters is incorrect. Their address is 
printed instead of their value. 

Tracebacks containing F77 subprograms with multiple entry points may print 
too many arguments in the wrong order, but their values are correct. 

~ 

The range of an F77 array subscript is assumed to be 1 to n, where n is the 
dimension corresponding to that subscript. This is only significant when the 
user omits a subscript, or uses • to indicate the full range. There is no problem 
in general with arrays having subscripts whose lower bounds are not 1. 

On the 3B 20 computer there is no hardware trace mode and single-stepping is 
implemented by setting pseudo breakpoints where possible. This is slow. The 
s, S, i, and J commands do not always convert on the 38 20 computer due to 
pseudo-breakpointing. Thus sdb will not allow single-stepping from an indirect 
jump, a switch instruction, or a switdt instruction. 

The entry point to an optimized function cannot be found on the 3B 20 com­
puter. Setting a breakpoint at the beginning of an optimized function may 
cause the middle of some instruction within the function to be overwritten. 
This problem can be circumvented by disassembling the first few instructions of 
the function, and manually setting a breakpoint at the first instruction after the 
stack pointer is adjusted. 

- 7 -



SDIFF(t) SDIFF(l) 

NAME 
sdiff - side-by-side difference program 

SYNOPSIS 
sdiff [ options ... ] file 1 file2 

DESCRIPTION 
Sdiff uses the output of diff{I) to produce a side-by-side listing of two files 
indicating those lines that are different. Each Hne of the two files is printed 
with a blank gutter between them if the lines are identical, a < in the gutter if 
the line only exists in file1 , a > in the gutter if the line only exists in file2, and 
a I for lines that are different. 

For example: 

x 
a 
b 
c 
d 

< 
< 

y 
a 

d 
> c 

The following options exist: 

-w n Use the next argument. n, as the width of the output line. The 
default line length is 130 characters. 

-I Only print the left side of any lines that are identical. 

-s Do not print identical lines. 

-0 output Use the next argument, output, as the name of a third file that is 

SEE ALSO 

created as a user-controlled merging of file1 and file2. Identical 
lines of file1 and file2 are copied to output. Sets of differences, as 
produced by diff(I), are printed; where a set of differences share a 
common gutter character. After printing each set of differences, 
sdiff prompts the user with a % and waits for one of the following 
user-typed commands: 

append the left column to the output file 

r append the right column to the output file 

s turn on silent mode; do not print identical lines 

v turn off silent mode 

e 1 call the editor with the left column 

e r call the editor with the right column 

e b call the editor with the concatenation of left and 
right 

e call the editor with a zero length file 

q exit from the program 

On exit from the editor, the resulting file is concatenated on the 
end of the output file. 

diff(1), ed{I). 

- 1 -



SED(I) SED (I) 

NAME 
sed - stream editor 

SYNOPSIS 
sed [ -0 ] [ -e script ] [ -f sfile ] [ files ] 

DESCRIPTION 
Sed copies the named files (standard input default) to the standard output, 
edited according to a script of commands. The -f option causes the script to 
be taken from file sfile; these options accumulate. If there is just one -e 
option and no -f options, the flag -e may be omitted. The -0 option 
suppresses the default output. A script consists of editing commands, one per 
line, of the following form: 

[ address [ , address ] ] function [ arguments ] 

In normal operation, sed cyclically copies a line of input into a pattern space 
(unless there is something left after a D command), applies in sequence all 
commands whose addresses select that pattern space, and at the end of the 
script copies the pattern space to the standard output (except under -0) and 
deletes the pattern space. 

Some of the commands use a hold space to save all or part of the pattern 
space for subsequent retrieval. 

An address is either a decimal number that counts input lines cumulatively 
across files, a $ that addresses the last line of input, or a context address, i.e., a 
/regular expression/ in the style of ed(I) modified thus: 

In a context address, the construction \?regular expression?, where? 
is any character, is identical to /regular expression/. Note 
that in the context address \xabc\xdefx, the second x stands 
for itself, so that the regular expression is abcxdef. 

The escape sequence \0 matches a new-line embedded in the pattern 
space. 

A period . matches any character except the terminal new-line of the 
pattern space. 

A command line with no addresses selects every pattern space. 
A command line with one address selects each pattern space that 

matches the address. 
A command line with two addresses selects the inclusive range from 

the first pattern space that matches the first address through 
the next pattern space that matches the second. (If the second 
address is a number less than or equal to the line number first 
selected, only one line is selected.) Thereafter the process is 
repeated, looking again for the first address. 

Editing commands can be applied only to non-selected pattern spaces by use of 
the negation function! (below). 

In the following list of functions the maximum number of permissible addresses 
for each function is indicated in parentheses. 

The text argument consists of one or more lines, all but the last of which end 
with \ to hide the new-line. Backslashes in text are treated like backslashes in 
the. replacement string of an s command, and may be used to protect initial 
blanks and tabs against the stripping that is done on every script line. The rfile 
or wfile argument must terminate the command line and must be preceded by 
exactly one blank. Each wfile is created before processing begins. There can 
be at most 10 distinct wfile arguments. 

- 1 -



SED(1) SED(I) 

(1) a\ 
text Append. Place text on the output before reading the next input 

line. 
(2) b label Branch to the : command bearing the label. If label is empty, 

branch to the end of the script. 
(2) c\ 
text Change. Delete the pattern space. With 0 or 1 address or at the 

end of a 2-address range, place text on the output. Start the next 
cycle. 

(2) d Delete the pattern space. Start the next cycle. 
(2) D Delete the initial segment of the pattern space through the first 

new-line. Start the next cycle. 
(2) g Replace the contents of the pattern space by the contents of the 

hold space. 
(2) G Append the contents of the hold space to the pattern space. 
(2) h Replace the contents of the hold space by the contents of the pat­

tern space. 
(2) H Append the contents of the pattern space to the hold space. 
(1) i\ 
text 
(2)1 

Insert. Place text on the standard output. 
List the pattern space on the standard output in an unambiguous 
form. Non-printing characters are spelled in two-digit ASCII and 
long lines are folded. 
Copy the pattern space to the standard output. Replace the pattern 
space with the next line of input. 
Append the next line of input to the pattern space with an embed­
ded new-line. (The current line number changes,) 
Print. Copy the pattern space to the standard output. 
Copy the initial segment of the pattern space through the first 
new-line to the standard output. 

(1) q Quit. Branch to the end of the script. Do not start a new cycle. 
(2) r rfile Read the contents of rfile. Place them on the output before reading 

the next input line. 
(2) s/regular expression/replacement /flags 

Substitute the replacement string for instances of the regular 
expression in the pattern space. Any character may be used 
instead of t. For a fuller description see ed(I). Flags is zero or 
more of: 

n n== 1 - 512. Substitute for just the n th occurrence 
of the regular expression. 

g Global. Substitute for all nonoverlapping instances 
of the regular expression rather than just the first 
one. 

p Print the pattern space if a replacement was made. 
w wfile Write. Append the pattern space to wfile if a 

replacement was made. 
(2) t label Test. Branch to the: command bearing the label if any substitu­

tions have been made since the most recent reading of an input line 
or execution of a t. If label is empty, branch to the end of the 
script. 

(2) w wfile Write. Append the pattern space to wfile. 
(2) x Exchange the contents of the pattern and hold spaces. 
(2) y/ string1 / string2/ 

Transform. Replace all occurrences of characters in string1 with 
the corresponding character in string2. The lengths of string1 and 
string2 must be equal. 

- 2 -



SED(I) SED(I) 

(2)! function 
Don't. Apply the function (or group, if function is () only to lines 
not selected by the address (es) . 

(0): label This command does nothing; it bears a label for band t commands 

(1)= 
(2){ 

(0) 
(0)# 

to branch to. 
Place the current line number on the standard output as a line. 
Execute the following commands through a matching} only when 
the pattern space is selected. 
An empty command is ignored. 
If a # appears as the first character on the first line of a script file, 
then that entire line is treated as a comment, with one exception. If 
the character after the # is an 'n', then the default output will be 
suppressed. The rest of the line after #n is also ignored. A script 
file must contain at least one non-comment line. 

SEE ALSO 
a w k( 1), ed (1), grep (1) . 

- 3 -



SH(l) SH(l) 

NAME 
sh, rsh - shell, the staJldard/restricted command programming language 

SYNOPSIS 
sh [ - acefhiknrstuvx ] [ args ] 
rsh [ - acefhiknrstuvx ] [ args ] 

DESCRIPTION 
Sh is a command programming language that executes commands read from a 
terminal or a file. Rsh is a restricted version of the standard command inter­
preter sh; it is used to set up login names and execution environments whose 
capabilities are more r.ontrolled than those of the standard shell. See Invoca­
tion below for the mea 'ling of arguments to the shell. 

Definitions 
A blank is a tab or a space. A ,:ame is a sequence of letters, digits, or under­
scores beginning with a letter or underscore. A parameter is a name, a digit, 
or any of the characters *, @, #, 1, -, $, and !. 

Commands 
A simple-command is a sequence of non-blank words separated by blanks. 
The first word specifies the name of the command to be executed. Except as 
3pecified below, the remaining words are passed as arguments to the invoked 
command. The command name is passed as argument 0 (see exec (2». The 
value of a simple-command is its exit status if it terminates normally, or 
(octal) 200~status if it terminates abnormally (see signa/(2) for a list of status 
values). 

A pipeline is a sequence of one or more commands separated by I (or, for his­
torical compatibility, by"). The standard output of each command but the last 
is connected by a pipe (2) to the standard input of the next command. Each 
command is run as a separate process; the shell waits for the last command to 
terminate. The exit status of a pipeline is the exit status of the last command. 

A list is a sequence of one or more pipelines separated by;, &, & &, or I I, 
and optionally terminated by ; or &. Of these four symbols, ; and & have 
equal precedence, which is lower than that of & & and I I. The symbols & & 
and II also have equal precedence. A semicolon (;) causes sequential execu­
tion of the preceding pipeline; an ampersand (&) causes asynchronous execu­
tion of the preceding pipeline (i.e., the shell does not wait for that pipeline to 
finish). The symbol & & (I I) causes the list following it to be executed only 
if the preceding pipeline returns a zero (non-zero) exit status. An arbitrary 
number of new-lines may appear in a list, instead of semicolons, to delimit 
commands. 

A command is either a Simple-command or one of the following. Unless other­
wise stated, the value returned by a command is that of the last smple­
command executed in the command. 

for name [ in word ... ] do list done 
Each time a for command is executed, name is set to the next word 
taken from the in word list. If in word .,. is omitted, then the for 
command executes the do list once for each positional parameter that 
is set (see Parameter Substitution below). Execution ends when there 
are no more words in the list. 

case .word in [ pattern [ I pattern ] ... ) list ;; ] ... esac 
A case command executes the list associated with the first pattern that 
matches word. The form of the patterns is the same as that used for 
file-name generation (see File Name Generation) except that a slash, a 
leading dot, or a dot immediately following a slash need not be 
matched explicitly. 

- 1 -



SH(l) SH(l) 

if list then list [ elif list then list 1 ... [ else list ] fi 
The list following if is executed and, if it returns a zero exit status, the 
list following the first then is executed. Otherwise, the list following 
elif is executed and, if its value is zero, the list following the next then 
is executed. Failing that, the else list is executed. If no else list or 
then list is executed, then the if command returns a zero exit status. 

while list do list done 

(list) 

{list;} 

A while command repeatedly executes the while list and, if the exit 
status of the last command in the list is zero, executes the do list; oth­
erwise the loop terminates. If no commands in the do list are exe­
cuted, then the while command returns a zero exit status; until may be 
used in place of while to negate the loop termination test. 

Execute list in a sub-shell. 

list is simply executed. 
name 0 {list;} 

Define a function which is referenced by name. The body of the func­
tion is the list of commands between { and}. Execution of functions is 
described below (see execution). 

The following words are only recognized as the first word of a command and 
when not quoted: 

if then else elif fi case esac for while until do done { } 

Comments 
A word beginning with # causes that word and all the following characters up 
to a new-line to be ignored. 

Command Substitution 
The standard output from a command enclosed in a pair of grave accents (,,) 
may be used as part or all of a word; trailing new-lines are removed. 

Parameter Substitution 
The character $ is used to introduce substitutable parameters. There are two 
types of parameters, positional and keyword. If parameter is a digit, it is a 
positional parameter. Positional parameters may be assigned values by set. 
Keyword parameters (also known as variables) may be assigned values by writ­
ing: 

name = value [ name = value ] ... 

Pattern-matching is not performed on value. There cannot be a function and a 
variable with the same name. 

$ {parameter} 
The value, if any, of the parameter is substituted. The braces are 
required only when parameter is followed by a letter, digit, or under­
score that is not to be interpreted as part of its name. If parameter is 
• or @, all the positional parameters, starting with $1, are substituted 
(separated by spaces). Parameter $0 is set from argument zero when 
the shell is invoked. 

$ {parameter: -word} 
If parameter is set and is non-null, substitute its value; otherwise sub­
stitute word. 

$ {parameter: = word} 
If parameter is not set or is null set it to word; the value of the param­
eter is substituted. Positional parameters may not be assigned to in 
this way. 

- 2 -



SH(I) SH(I) 

$ {parameter:?word} 
If parameter is set and is non-null, substitute its value; otherwise, print 
word and exit from the shell. If word is omitted, the message "param­
eter null or not set" is printed. 

${parameter: +word} 
If parameter is set and is non-null, substitute word; otherwise substi­
tute nothing. 

In the above, word is not evaluated unless it is to be used as the substituted 
string, so that, in the following example, pwd is executed only if d is not set or 
is null: 

echo ${d:-'p'Nd'} 

If the colon (:) is omitted from the above expressions, the shell only checks 
whether parameter is set or not. 

The following parameters are automatically set by the shell: 
# The number of positional parameters in decimal. 

Flags supplied to the shell on invocation or by the set com­
mand. 

? The decimal value returned by the last synchronously executed 
command. 

$ The process number of this shell. 
The process number of the last background command invoked. 

The following parameters are used by the shell: 
HOME The default argument (home directory) for the cd command. 
PATH The search path for commands (see Execution below), The 

user may not change PATH if executing under rsh. 
CDPATH 

The search path for the cd command. 
MAIL If this parameter is set to the name of a mail file and the 

MAILPATH parameter is not set, the shell informs the user of 
the arrival of mail in the specified file. 

MAILCHECK 
This parameter specifies how often Gn seconds) the shell will 
check for the arrival of mail in the files specified by the MAIL­
PATH or MAIL parameters. The default value is 600 seconds 
(10 minutes). If set to 0, the shell will check before each 
prompt. 

MAILPATH 
A colon (:) separated list of file names. If this parameter is 
set, the shell informs the user of the arrival of mail in any of 
the specified files. Each file name can be followed by % and a 
message that will be printed when the modification time 
changes. The default message is you have mail. 

PSt Primary prompt string, by default "$ ". 
PS2 Secondary prompt string, by default "> ". 
IFS Internal field separators, normally space, tab, and new-line. 
SHACCT 

If this parameter is set to the name of a file writable by the 
user, the shell will write an accounting record in the file for 
each shell procedure executed. Accounting routines such as 
acctcom (1) and acctcms (1 M) can be used to analyze the data 
collected. 

- 3 -



SH (1) SH(I) 

SHELL When the shell is invoked, it scans the environment (see 
Environment below) for this name. If it is found and there is 
an 'r' in the file name part of its value, the shell becomes a 
restricted shell. 

The shell gives default values to PATH, PSt, PS2, MAILCHECK and IFS. HOME 
and MAIL are set by login (1) . 

Blank Interpretation 
After parameter and command substitution, the results of substitution are 
scanned for internal field separator characters (those found in IFS) and split 
into distinct arguments where such characters are found. Explicit null argu­
ments ("" or ,,) are retained. Implicit null arguments (those resulting from 
parameters that have no values) are removed. 

File Name Generation 
Following substitution, each command word is scanned for the characters ., ?, 
and I. If one of these characters appears the word is regarded as a pattern. 
The word is replaced with alphabetically sorted file names that match the pat­
tern. If no file name is found that matches the pattern, the word is left 
unchanged. The character. at the start of a file name or immediately follow­
ing a I, as well as the character I itself, must be matched explicitly. 

Quoting 

• Matches any string, including the null string. 
? Matches any single character. 
I ... ] Matches anyone of the enclosed characters. A pair of charac­

ters separated by - matches any character lexically between 
the pair, inclusive. If the first character following the opening 
"[ " is a "!" any character not enclosed is matched. 

The following characters have a special meaning to the shell and cause termi­
nation of a word unless quoted: 

; & ( ) I A < > new-line space tab 

A character may be quoted (i.e., made to stand for itself) by preceding it with 
a \. The pair \new-Iine is ignored. All characters enclosed between a pair of 
single quote marks ("), except a single quote, are quoted. Inside double quote 
marks (""), parameter and command substitution occurs and \ quotes the char­
acters \, " ", and $. "$." is equivalent to "$1 $2 ... ", whereas "$@" is 
equivalent to "$1" "$2" .... 

Prompting 
When used interactively, the shell prompts with the value of PSt before reading 
a command. If at any time a new-line is typed and further input is needed to 
complete a command, the secondary prompt (i.e., the value of PS2) is issued. 

Input/Output 
Before a command is executed, its input and output may be redirected using a 
special notation interpreted by the shell. The following may appear anywhere 
in a simple-command or may precede or follow \l command and are not passed 
on to the invoked command; substitution occurs before word or digit is used: 

<word Use file word as standard input (file descriptor 0). 
> word Use file word as standard output (file descriptor 1). If the file 

does not exist it is created; otherwise, it is truncated to zero 
length. 

> word Use file word as standard output. If the file exists output is 
appended to it (by first seeking to the end-of-file); otherwise, 
the file is created. 

- 4 -



SH(t) SHU) 

«[ - 1word The shell input is read up to a line that is the same as word, or 
to an end-of-file. The resulting document becomes the stan­
dard input. If any character of word is quoted, no interpreta­
tion is placed upon the characters of the document; otherwise, 
parameter and command substitution occurs, (unescaped) 
\new-Iine is ignored, and \ must be used to quote the characters 
\, $, " and the first character of word. If - is appended to 
«, all leading tabs are stripped from word and from the 
document. 

< & digit Use the file associated with file descriptor digit as standard 
input. Similarly for the standard output using > & digit. 

< & - The standard input is closed. Similarly for the standard output 
using >&-. 

If any of the above is preceded by a digit, the file descriptor which will be asso­
ciated with the file is that specified by the digit (instead of the default 0 or 1). 
For example: 

... 2>&1 

associates file descriptor 2 with the file currently associated with file descriptor 
1. 

The order in which redirections are specified is significant. The shell evaluates 
redirections left-to-right. For example: 

... 1 > xxx 2>&1 

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with 
the file associated with file descriptor 1 (i.e., xxx). If the order of redirections 
were reversed, file descriptor 2 would be associated with the terminal (assuming 
file descriptor 1 had been) and file descriptor 1 would be associated with file 
xxx. 

If a command is followed by & the default standard input for the command is 
the empty file Idev/null. Otherwise, the environment for the execution of a 
command contains the file descriptors of the invoking shell as modified by 
input/output specifications. 

Redirection of output is not allowed in the restricted shell. 

Environment 
The environment (see environ (5» is a list of name-value pairs that is passed to 
an executed program in the same way as a normal argument list. The shell 
interacts with the environment in several ways. On invocation, the shell scans 
the environment and creates a parameter for each name found, giving it the 
corresponding value. If the user modifies the value of any of these parameters 
or creates new parameters, none of these affects the environment unless the 
export command is used to bind the shell's parameter to the environment (see 
also set -a). A parameter may be removed from the environment with the 
unset command. The environment seen by any executed command is thus com­
posed of any unmodified name-value pairs originally inherited by the shell, 
minus any pairs removed by unset, plus any modifications or additions, all of 
which must be noted in export commands. 

The environment for any simple-command may be augmented by prefixing it 
with one or more assignments to parameters. Thus: 

TERM==450 cmd and 
(export TERM; TERM=450; cmd) 

are equivalent (as far as the execution of cmd is concerned). 

- 5 -



SH(l) SH(l) 

If the -k flag is set, all keyword arguments are placed in the environment, 
even if they occur after the command name. The following first prints a = b c 
and c: 

echo a=b c 
set -k 
echo a=b c 

Signals 
The INTERRUPT and QUIT signals for an invoked command are ignored if the 
command is followed by &; otherwise signals have the values inherited by the 
shell from its parent, with the exception of signal 11 (but see also the trap com­
mand below). 

Execution 
Each time a command is executed, the above substitutions are carried out. If 
the command name matches one of the Special Commands listed below, it is 
executed in the shell process. If the command name does not match a Special 
Command, but matches the name of a defined function, the function is exe­
cuted in the shell process (note how this differs from the execution of shell pro­
cedures). The positional parameters $1, $2, .... are set to the arguments of 
the function. If the command name matches neither a Special Command nor 
the name of a defined function, a new process is created and an attempt is 
made to execute the command via exec (2). 

The shell parameter PATH defines the search path for the directory containing 
the command. Alternative directory names are separated by a colon (:). The 
default path is :/bin:/usr/bin (specifying the ~urrent directory, Ibin, and 
lusrlbin, in that order). Note that the current directory is specified by a null 
path name, which can appear immediately after the equal sign or between the 
colon delimiters anywhere else in the path list. If the command name contains 
a I the search path is not used; such commands will not be executed by the res­
tricted shell. Otherwise, each directory in the path is searched for an execut­
able file. If the file has execute permission but is not an a.out file, it is assumed 
to be a file containing shell commands. A sub-shell is spawned to read it. A 
parenthesized command is also executed in a sub-shell. 

The location in the search path where a command was found is remembered by 
the shell (to help avoid unnecessary execs later). If the command was found in 
a relative directory, its location must be re-determined whenever the current 
directory changes. The shell forgets all remembered locations whenever the 
PATH variable is changed or the hash -r command is executed (see below). 

Special Commands 
Input/output redirection is now permitted for these commands. File descriptor 
1 is the default output location. 

No effect; the command does nothing. A zero exit code is returned . 
. file Read and execute commands from file and return. The search path 

specified by PATH is used to find the directory containing file. 
break [ n ] 

Exit from the enclosing for or while loop, if any. If n is specified break 
n levels. 

continue [ n ] 
Resume the next iteration of the enclosing for or while loop. If n is 
specified resume at the n-th enclosing loop; 

cd [ arg ] 
Change the current directory to argo The shell parameter HOME is the 
default argo The shell parameter CDPATH defines the search path for 
the directory containing argo Alternative directory names are 
separated by a colon (:). The default path is <null> (specifying the 

- 6 -



SH(t) SH(t) 

current directory}. Note that the current directory is specified by a 
null path name, which can appear immediately after the equal sign or 
between the colon delimiters anywhere else in the path list. If arg 
begins with a / the search path is not used. Otherwise, each directory 
in the path is searched for argo The cd command may not be executed 
by rsh. 

echo [ arg ... ] 
Echo arguments. See echo (1) for usage and description. 

eval [ arg ... ] 
The arguments are read as input to the shell and the resulting 
command (s) executed. 

exec [ arg ... ] 
The command specified by the arguments is executed in place of this 
shell without creating a new process. Input/output arguments may 
appea~ and, if no other arguments are given, cause the shell 
input/output to be modified. 

exit [ n ] 
Causes a shell to exit with the exit status specified by n. If n is omit­
ted the exit status is that of the last command executed (an end-of-file 
will also cause the shell to exit.) 

export [ name ... ] 
The given names are marked for automatic export to the environment 
of subsequently-executed commands. If no arguments are given, a list 
of all names that are exported in this shell is printed. Function names 
may not be exported. 

hash [ -r ] [ name ... ] 
For each name, the location in the search path of the command 
specified by name is determined and remembered by the shell. The-r 
option causes the shell to forget all remembered locations. If no argu­
ments are given, information about remembered commands is 
presented. Hits is the number of times a command has been invoked 
by the shell process. Cost is a measure of the work required to locate a 
command in the search path. There are certain situations which 
require that the stored location of a command be recalculated. Com­
mands for which this will be done are indicated by an asterisk (*) 
adjacent to the hits information. Cost will be incremented when the 
recalculation is done. 

newgrp [ arg ... ] 
Equivalent to exec newgrp arg .... See newgrp (I) for usage and 
description. 

pwd Print the current working directory. See pwd(I) for usage and 
description. 

read [ name ... ] 
One line is read from the standard input and the first word is assigned 
to the first name, the second word to the second name, etc., with left­
over words assigned to the last name. The return code is 0 unless an 
end-of-file is encountered. 

read only [ name ... ] 
The given names are marked readonly and the values of the these 
names may not be changed by subsequent assignment. If no argu­
ments are given, a list of all readonly names is printed. 

return [ n ] 
Causes a function to exit with the return value specified by n. If n is 
omitted, the return status is that of the last command executed. 

- 7 -



SH(l) SH(l) 

set [ - - aefhkotuvx [ arg ... ] ] 
-a Mark variables which are modified or created for export. 
-e Exit immediately if a command exits with a non-zero exit 

status. 
-f Disable file name generation 
-h Locate and remember function commands as functions are 

defined (function commands are normally located when the 
function is executed). 

- k All keyword arguments are placed in the environment for a 
command, not just those that precede the command name. 

-0 Read commands but do not execute them. 
-t Exit after reading and executing one command. 
-u Treat unset variables as an error when substituting. 
-v Print shell input lines as they are read. 
-x Print commands and their arguments as they are executed. 

Do not change any of the flags; useful in setting $1 to -. 
Using + rather than - causes these flags to be turned off. These flags 
can also be used upon invocation of the shell. The current set of flags 
may be found in $ -. The remaining arguments are positional parame­
ters and are assigned, in order, to $1, $2, .... If no arguments are 
given the values of all names are printed. 

shift [ n ] 

test 

times 

The positional parameters from $0 + 1 are renamed $1 .... If n is 
not given, it is assumed to be 1. 

Evaluate conditional expressions. See tesr(l) for usage and description. 

Print the accumulated user and system times for processes run from 
the shell. 

trap [ arg ] [ n ] .. , 
The command arg is to be read and executed when the shell receives 
signaI(s) n. (Note that arg is scanned once when the trap is set and 
once when the trap is takenJ Trap commands are executed in order of 
signal number. Any attempt to set a trap on a signal that was ignored 
on entry to the current shell is ineffective. An attempt to trap on sig­
nal 11 (memory fault) produces an error. If arg is absent all trap(s) n 
are reset to their original values. If arg is the null string this signal is 
ignored by the shell and by the commands it invokes. If n is 0 the 
command arg is executed on exit from the shell. The trap command 
with no arguments prints a list of commands associated with each sig­
nal number. 

type [ name ... ] 
For each name, indicate how it would be interpreted if used as a com­
mand name. 

ulimit [ -fp ] [ n ] 
imposes a size limit of n 
-f imposes a size limit of n blocks on files written by child 

processes (files of any size may be read). With no argument, 
the current limit is printed. 

-p changes the pipe size to n (UNIX system/RT only). 
. If no option is given, -f is assumed. 

umask [ nnn ] 
The user file-creation mask is set to nnn (see umask(2». If nnn is 
omitted, the current value of the mask is printed. 

- 8 -



8H(I) 8H(1 ) 

unset [ name ... ] 
For each name, remove the corresponding variable or function. The 
variables PATH, PSt, PS2, MAILCHECK and IFS cannot be unset. 

wait [ n ] 
Wait for the specified process and report its termination status. If n is 
not given all currently active child processes are waited for and the 
return code is zero. 

Invocation 
If the shell is invoked through exec (2) and the first character of argument zero 
is -, commands are initially read from /etc/profile and from $HOME/.profile, 
if such files exist. Then.after, commands are read as described below, which is 
also the case when the shell is invoked as /bin/sh. The flags below are inter­
preted by the shell on invocation only; Note that unless the -c or -s flag is 
specified, the first argument is assumed to be the name of a file containing 
commands, and the remaining arguments are passed as positional parameters to 
that command file: 

-c string If the -c flag is present commands are read from string. 
-s If the -s flag is present or if no arguments remain commands are 

read from the standard input. Any remaining arguments specify 
the positional parameters. Shell output (except for Special Com­
mands) is written to file descriptor 2. 

-i If the -i flag is present or if the shell input and output are 
attached to a terminal, this shell is interactive. In this case TER­
MINATE is ignored (so that kill 0 does not kill an interactive shell) 
and INTERRUPT is caught and ignored (so that wait is interrupti­
ble). In all cases, QUIT is ignored by the shell. 

-r If the -r flag is present the shell is a restricted shell. 

The remaining flags and arguments are described under the set command 
above. 

Rsh Only 
Rsh is used to set up login names and execution environments whose capabili­
ties are more controlled than those of the standard shell. The actions of rsh 
are identical to those of sh, except that the following are disallowed: 

changing directory (see cd (1) ) , 
setting the value of SPATH, 
specifying path or command names containing !, 
redirecting output (> and > ». 

The restrictions above are enforced after .profile is interpreted. 

When a command to be executed is found to be a shell procedure, rsh invokes 
sh to execute it. Thus, it is possible to provide to the end-user shell procedures 
that have access to the full power of the standard shell, while imposing a lim­
ited menu of commands; this scheme assumes that the end-user does not have 
write and execute permissions in the same directory. 

The net effect of these rules is that the writer of the .profile has complete con­
trol over user actions, by performing guaranteed setup actions and leaving the 
user in an appropriate directory (probably not the login directory). 

The system administrator often sets up a directory of commands (i.e., 
/usr/rbin) that can be safely invoked by rsh. Some systems also provide a res­
tricted editor red. 

- 9 -



SH(I) SH(I) 

EXIT STATUS 

FILES 

Errors detected by the shell, such as syntax errors, cause the shell to return a 
non-zero exit status. If the shell is being used non-interactively execution of 
the shell file is abandoned. Otherwise, the shell returns the exit status of the 
last command executed (see also the exit command above). 

/ etc/profilt( 
$HOME/.profile 
Itmp/sh* 
/dev/null 

SEE ALSO 
acctcom (I) , cd (1) , echo (1) , env (1), login (I) , newgrp (1) , pwd (1), test (I) , 
umask(I). 
acctcms(IM) in the UNIX System V Administrator Reference Manual. 
dup(2), exec(2), fork(2), pipe(2) , signaI(2), ulimit(2) , umask(2), wait(2), 
a.out(4), profile(4), environ (5) in the UNIX System V Programmer Reference 
Manual. 

CAVEATS 
If a command is executed, and a command with the same name is installed in a 
directory in the search path before the directory where the original command 
was found, the shell will continue to exec the original command. Use the hash 
command to correct this situation. 

If you move the current directory or one above it, pwd may not give the correct 
response. Use the cd command with a full path name to correct this situation. 

- 10 -



SHL(l) SHL(t) 

NAME 
shl - shell layer manager 

SYNOPSIS 
shl 

DESCRIPTION 
Shl allows a user to interact with more than one shell from a single terminal. 
The user controls these shells, known as layers, using the commands described 
below. 

The current layer is the layer which can receive input from the keyboard. 
Other layers attempting (Q read from the keyboard are blocked. Output from 
multiple layers is multiplexed onto the terminal. To have the output of a layer 
blocked when it is not current, the stty option loblk may be set within the 
layer. 

\ 

The stty character swtch (set to "z if NUL) is used to switch control to shl 
from a layer. Shl has its own prompt, »>, to help distinguish it from a 
layer. 

A layer is a shell which has been bound to a virtual tty device (/dev/sxt???). 
The virtual device can be manipulated like a real tty device using stty (1) and 
ioctJ(2). Each layer has its own process group id. 

Definitions 
A name is a sequence of characters delimited by a blank, tab or new-line. 
Only the first eight characters are significant. The names (1) through (7) can­
not be used when creating a layer. They are used by shl when no name is sup­
plied. They may be abbreviated to just the digit. 

Commands 
The following commands may be issued from the shl prompt level. Any unique 
prefix is accepted. 

create [ name ] 
Create a layer called name and make it the current layer. If no argu­
ment is given, a layer will be created with a name of the form (#) 
where # is the last digit of the virtual device bound to the layer. The 
shell prompt variable PSt is set to the name of the layer followed by a 
space. A maximum of seven layers can be created. 

block name [ name ... ] 
For each name, block the output of the corresponding layer when it is 
not the current layer. This is equivalent to setting the stty option loblk 
within the layer. 

delete name [ name ... ] 
For each name, delete the corresponding layer. All processes in the 
process group of the layer are sent the SIGHUP signal (see signaJ(2». 

help (or ?) 
Print the syntax of the shl commands. 

layers [ -I ] [ name ... ] 
For each name, list the layer name and its process group. The -I 
option produces a ps (1) -like listing. If no arguments are given, infor­
mation is presented for all existing layers. 

resume [ name ] 
Make the layer referenced by name the current layer. If no argument 
is given, the last existing current layer will be resumed. 

toggle Resume the layer that was current before the last current layer. 
unblock name [name ... ] 

For each name, do not block the output of the corresponding layer 
when it is not the current layer. This is equivalent to setting the stty 

- 1 -



SHL(t) SHL(1) 

FILES 

option loblk within the layer. 
quit Exit shl. All layers are sent the SIGHUP signal. 
name Make the layer referenced by name the current layer. 

/ dev / sxt??? 
$SHELL 

Virtual tty devices 
Variable containing path name of the shell to use (default 
is Ibinl sh) . 

SEE ALSO 
sh(}), stty(1). 
ioctI(2), signa1(2) in the UNIX System V Programmer Reference Manual. 
sxt(7) in the UNIX System V Administrator Reference Manual. 

- 2 -



SIZE (I ) SIZE (I) 

NAME 
size - print section sizes of common object files 

SYNOPSIS 
size [-0] [-x] [-V] files 

DESCRIPTION 
The size command produces section size information for each section in the 
common object files. The size of the text, data and bss (uninitialized data) sec­
tions are printed along with the total size of the object file. If an archive file is 
input to the size command the information for all archive members is 
displayed. 

Numbers will be printed in decimal unless either the -0 or the -x option is 
used, in which case they will be printed in octal or in hexadecimal, respectively. 

The - V flag will supply the version information on the size command. 

SEE ALSO 
as(I), cc(I), ld (1). 
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual. 

DIAGNOSTICS 
size: name: cannot open 

if name cannot be read. 

size: name: bad magic 
if name is not an appropriate common object file. 

. - 1 -



SLEEP (1) SLEEP (1) 

NAME 
sleep - suspend execution for interval 

SYNOPSIS 
unsigned sleep (seconds) 
unsigned seconds; 

DESCRIPTION 
The current process is suspended from execution for the number of seconds 
specified by the argument. The actual suspension time may be less than that 
requested for two reasons: (I) Because scheduled wakeups occur at fixed 1-
second intervals, (on the second, according to an internal clock) and (2) 
because any caught signal will terminate the sleep following execution of that 
signal's catching routine. Also, the suspension time may be longer than 
requested by an arbitrary amount due to the scheduling of other activity in the 
system. The, value returned by sleep will be the "unslept" amount (the 
requested time minus the time actually slept) in case the caller had an alarm 
set to go off earlier than the end of the requested sleep time, or premature 
arousal due to another caught signal. 

The routine is implemented by setting an alarm signal and pausing until it (or 
some other signal) occurs. The previous state of the alarm signal is saved and 
restored. The calling program may have set up an alarm signal pefore calling 
sleep. If the sleep time exceeds the time till such alarm signal, the process 
sleeps only until the alarm signal would have occurred. The caller's alarm 
catch routine is executed just before the sleep routine returns. But if the sleep 
time is less than the time till such alarm, the prior alarm time is reset to go off 
at the same time it would have without the intervening sleep. 

SEE ALSO 
alarm (2), pause (2), signaI(2). 

- 1 -



'SNO(t) SNO(t) 

NAME 
sno - SNOBOL interpreter 

SYNOPSIS 
sno [ files ] 

DESCRIPTION 
Sno is a SNOBOL compiler and interpreter (with slight differences). Sno 
obtains input from the concatenation of the named files and the standard input. 
All input through a statement containing the label end is considered program 
and is compiled. The rest is available to syspit. 

Sno differs from SNOBOL in the following ways: 

SEE ALSO 
awk(l). 

There are no unanchored searches. To get the same effect: 

a •• b 
a ·x. b = x c 

There is no back referencing. 

x = "abc" 
a .x· x 

unanchored search for b. 
unanchored assignment 

is an unanchored search for abc. 

Function declaration is done at compile time by the use of the (non­
unique) label define. Execution of a function call begins at the state­
ment following the define. Functions cannot be defined at run time, 
and the use of the name define is preempted. There is no provision for 
automatic variables other than parameters. Examples: 

define f( ) 
define f(a, b, c} 

All labels except define (even end) must have a non-empty statement. 

Labels, functions and variables must all have distinct names. In partic­
ular, the non-empty statement on end cannot merely name a label. 

If start is a label in the program, program execution will start there. 
If not, execution begins with the first executable statement; define is 
not an executable statement. 

There are no built-in functions. 

Parentheses for arithmetic are not needed. Normal precedence applies. 
Because of this, the arithmetic operators / and • must be set off by 
spaces. 

The right side of assignments must be non-empty. 

Either I or " may be used for literal quotes. 

The pseudo-variable syspptis not available. 

- 1 -



SORT(t) SORT (I) 

NAME 
sort - sort and/or merge files 

SYNOPSIS 
sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-btx] [+posl 
[-pos211 [files] 

DESCRIPTION 
Sort sorts lines of all the named files together and writes the result on the stan­
dard output. The standard input is read if - is used as a file name or no input 
files are named. 

Comparisons are based on one or more sort keys extracted from each line of 
input. By default, there is one sort key, the entire input line, and ordering is 
lexicographic by bytes in machine collating sequence. 

The following options alter the default behavior: 

-e Check that the input file is sorted according to the ordering rules; give no 
output unless th~ file is out of sort. 

-m Merge only, the input files are already sorted. 

-u Unique: suppress all but one in each set of lines having equal keys. 

-ooutput 
The argument given is the name of an output file to use instead of the 
standard output. This· file may be the same as one of the inputs. There 
may be optional blanks between -0 and output. 

-ykmem 
The amount of main memory used by the sort has a large impact on its 
performance. Sorting a small file in a large amount of memory is a 
waste. If this option is omitted, sort begins using a system default 
memory size, and continues to use more space as needed. If this option is 
presented with a value, kmem, sort will start using that number of kilo­
bytes of memory, unless the administrative minimum or maximum is 
violated, in which case the corresponding extremum will be used. Thus, 
-yO is guaranteed to start with minimum memory. By convention, -y 
(with no argument) starts with maximum memory. 

-zrecsz 
The size of the longest line read is recorded in the sort phase so buffers 
can be allocated during the merge phase. If the sort phase is omitted via 
the -e or -m options, a popular system default size will be used. Lines 
longer than the buffer size will cause sort to terminate abnormally. Sup­
plying the actual number of bytes in the longest line to be merged (or 
some larger value) will prevent abnormal termination. 

The following options override the default ordering rules. 

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are 
significant in comparisons. 

-f Fold lower case letters into upper case. 

-i Ignore characters outside the ASCII range 040-0176 in non-numeric com-
parisons. 

- M Compare as months. The first three non-blank characters of the field are 
folded to uppercase and compared so that "JAN" < "FEB" < ... < 
"DEC". Invalid fields compare low to "JAN". The -M option implies 
the - b option (see below). 

-0 An initial numeric string, consisting of optional blanks, optional minus 
sign, and zero or more digits with optional decimal point, is sorted by 

- 1 -



SORT(t) SORTO) 

arithmetic value. The -0 option implies the -b option (see below). 
Note that the -b option is only effective when restricted sort key 
specifications are in effect. 

-r Reverse the sense of comparisons. 

When ordering options appear before restricted sort key specifications, the 
requested ordering rules are applied globally to all sort keys. When attached to 
a specific sort key (described below), the specified ordering options override all 
global ordering options for that key. 

The notation +posl -pos2 restricts a sort key to one beginning at posl and 
ending at pos2. The characters at positions posl and pos2 are included in the 
sort key (provided that pos2 does not precede pos]). A missing -pos2 means 
the end of the line. 

Specifying pos.! and pos2 involves the notion of a field, a minimal sequence of 
characters followed by a field separator or a new-line. By default, the first 
blank (space or tab) of a sequence of blanks acts as the field separator. All 
blanks in a sequence of blanks are considered to be part of the next field; for 
example, all blanks at the beginning of a line are considered to be part of the 
first field. The treatment of field separators can be altered using the options: 

-tx Use x as the field separator character; x is not considered to be part of a 
field (although it may be included in a sort key). Each occurrence of x is 
significant (e.g., xx delimits an empty field). 

-b Ignore leading blanks when determining the starting and ending positions 
of a restricted sort key. If the -b option is specified before the first 
+posl argument, it will be applied to all +posl arguments. Otherwise, 
the b flag may be attached independently to each +posl or -pos2 argu­
ment (see below). 

Posl and pos2 each have the form m.n optionally followed by one or more of 
the flags bdfior. A starting position specified by +m.n is interpreted to mean 
the n+lst character in the m+lst field. A missing .n means .0, indicating the 
first character of the m+ 1st field. If the b flag is in effect n is counted from 
the first non-blank in the m+lst field; +m.Ob refers to the first non-blank 
character in the m+lst field. 

A last position specified by -m.n is interpreted to mean the nth character 
(including separators) after the last character of the m th field. A missing .n 
means .0, indicating the last character of the mth field. If the b flag is in effect 
n is counted from the last leading blank in the m+ 1st field; - m.l b refers to 
the first non-blank in the m+lst field. 

When there are multiple sort keys, later keys are compared only after all ear­
lier keys compare equal. Lines that otherwise compare equal are ordered with 
all bytes significant. 

EXAMPLES 
Sort the contents of infilewith the second field as the sort key: 

sort + 1 -2 infile 

Sort, in reverse order, the contents of infilel and infile2, placing the output in 
outfile and using the first character of the second field as the sort key: 

sort -r -0 outfile + 1.0 -1.2 infilel infile2 

Sort, in reverse order, the contents of infilel and infile2 using the first non­
blank character of the second field as the sort key: 

sort -r + LOb -1.1 b infilel infile2 

- 2 -



SORTO) SORTO) 

FILES 

Print the password file (passwd(4» sorted by the numeric user ID (the third 
colon-separated field): 

sort -t: +2n -3 /etc/passwd 

Print the lines of the already sorted file infile, suppressing all but the first 
occurrence of lines having the same third field (the options -urn with just one 
input file make the choice of a unique representative from a set of equal lines 
predictable) : 

sort -urn +2 -3 infile 

/usr/tmp/stm??? 

SEE ALSO 
comm(t), join(t), uniq(I). 

DIAGNOSTICS 
Comments and exits with non-zero status for various trouble conditions (e.g., 
when input lines are too long), and for disorder discovered under the -c 
option. When the last line of an input file is missing a new-line character, sort 
appends one, prints a warning message, and continues. 

- 3 -



SPELL(I) SPELL(I) 

NAME 
spell, hashmake, spellin, hashcheck - find spelling errors 

SYNOPSIS 
spell [ -v ] [ -b ] [ -x ] [ -I ] [ -i ] [ +local_file ] [ files ] 

lusr llib/spell/basbmake 

lusr llib/spell/spellio n 

lusr llib/spell/basbcheck spellingJist 

DESCRIPTION 
Spell collects words from the named files and looks them up in a spelling list. 
Words that neither occur among nor are derivable (by applying certain 
inflections, prefixes, and/or suffixes) from words in the spelling list are printed 
on the standard output. If no files are named, words are collected from the 
standard input. 

Spell ignores most trojJ( 1), thl( 1), and eqn (I) constructions. 

Under the -v option, all words not literally in the spelling list are printed, and 
plausible derivations from the words in the spelling list are indicated. (Not 
available on PDP-II.) 

Under the - b option, British spelling is checked. Besides preferring centre, 
colour, programme, speciality, travelled, etc., this option insists upon -ise in 
words like standardise, Fowler and the OED to the contrary notwithstanding. 

Under the -x option, every plausible stem is printed with = for each word. 

By default, spell (like derojJ(I» follows chains of included files (.so and .ox 
trojJ(1) requests}, unless the names of such included files begin with lusr/lib. 
Under the -I option, spell will follow the chains of all included files. Under 
the -i option, spell will ignore all chains of included files. 

Under the + local.file option, words found in local.file are removed from 
spell's output. Local.file is the name of a user-provided file that contains a 
sorted list of words, one per line. With this option, the user can specify a set of 
words that are correct spellings {in addition to spell's own spelling list} for 
each job. 

The spelling list is based on many sources, and while more haphazard than an 
ordinary dictionary, is also more effective with respect to proper names and 
popular technical words. Coverage of the specialized vocabularies of biology, 
medicine, and chemistry is light. 

Pertinent auxiliary files may be specified by name arguments, indicated below 
with their default settings (see FILES>' Copies of all output are accumulated in 
the history file. The stop list filters out misspellings (e.g., thier-thy-y+ier) 
that would otherwise pass. 

Three routines help maintain and check the hash lists used by spell: 

hashmake Reads a list of words from the standard input and writes the 
corresponding nine-digit hash code on the standard output. 

spellio n Reads n hash codes from the standard input and writes a 
compressed spelling list on the standard output. Information 
about the hash coding is printed on standard error. 

hashcheck Reads a compressed spelling_list and recreates the nine-digit hash 
codes for all the words in it; it writes these codes on the standard 
output. 

- 1 -



SPELL(l) SPELL(l) 

EXAMPLES 

FILES 

The following example creates the hashed spell list bUst and checks the result 
by comparing the two temporary files; they should be equal. 

cat goodwds I lusr/lib/spell/hashmake I sort -u >tmpl 
cat tmpl I lusr/lib/spell/spellin 'cat tmpl I wc -1' > hlist 
cat hlist I lusr/lib/spell/hashcheck >tmp2 
diff tmpl tmp2 

D _SPELL==/usr/lib/spell/hlist£ab1 hashed spelling lists, American & British 
S_SPELL==/usr/lib/spell/hstop hashed stop list 
H_SPELL==/usr/lib/spell/spellhist history file 
lusr/lib/spell/spellprog program 

SEE ALSO 

BUGS 

deroff(I), eqn(I), sed(I), sort(I), tbl(I), tee(I), troff(I). 

The spelling list's coverage is uneven; new installations will probably wish to 
monitor the output for several months to gather local additions; typically, these 
are kept in a separate local file that is added to the hashed spelling_list via 
spellin. 
The British spelling feature was done by an American. 

- 2 -



SPLINE(lG) SPLINE(lG) 

NAME 
spline - interpolate smooth curve 

SYNOPSIS 
spline [ options ] 

DESCRIPTION 
Spline takes pairs of numbers from the standard input as abscissas and ordi­
nates of a function. It produces a similar set, which is approximately equally 
spaced and includes the input set, on the standard output. The cubic spline 
output (R. W. Hamming, Numerical Methods for Scientists and Engineers, 
2nd ed., pp. 349ff) has two continuous derivatives, and sufficiently many points 
to look smooth when plotted, for example by graph (1 G), 

The following options are recognized, each as a separate argument: 

-a SUPIUY abscissas automatically (they are missing from the input); 
spacing is given by the next argument, or is assumed to be 1 if next 
argument is not a number. 

-k The constant k used in the boundary value computation: 
y~ = ky;', y~' = kY~'_1 

is set by the next argument (default k = 0). 

-n Space output points so that approximately n intervals occur between 
the lower and upper x limits (default n = 100). 

-p Make output periodic, i.e., match derivatives at ends. First and last 
input values should normally agree. 

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally, 
these limits are calculated from the data. Automatic abscissas start at 
lower limit (default 0). 

SEE ALSO 
graph(IG). 

DIAGNOSTICS 

BUGS 

When data is not strictly monotone in x, spline reproduces the input without 
interpolating extra points. 

A limit of 1,000 input points is enforced silently. 

- 1 -



SPLIT (1 ) SPLIT(I) 

NAME 
split - split a file into pieces 

SYNOPSIS 
split [ -n ] [ file [ name] ] 

DESCRIPTION 
Split reads file and writes it in n-line pieces (default 1000 lines) onto a set of 
output files. The name of the first output file is name with aa appended, and so 
on lexicographically, up to Zz (a maximum of 676 files). Name cannot be 
longer than 12 characters. If no output name is given, x is default. 

If no input file is given, or if - is given in its stead, then the standard input file 
is used. 

SEE ALSO 
bfs (I), csplit (I) . 

- 1 -



STAT(IG) STAT(IG) 

NAME 
stat - statistical network useful with graphical commands 

SYNOPSIS 
node-name [options] [files] 

DESCRIPTION 
Stat is a collection of command level functions (nodes) that can be intercon­
nected using sh (1) to form a statistical network. The nodes reside in 
lusr/bin/graf (see graphics (1G». Data is passed through the network as 
sequences of numbers (vectors), where a number is of the form: 

[sign] (digits) (digits) [e[sign]digits] 

evaluated in the usual way. Brackets and parentheses surround fields. All 
fields are optional, but at least one of the fields surrounded by parentheses must 
be present. Any character input to a node that is not part of a number is taken 
as a delimiter. 

Stat nodes are divided into four classes. 

Transformers, which map input vector elements into output vec­
tor elements; 

Summarizers, which calculate statistics of a vector; 

Translators, which convert among formats; and 

Generators, which are sources of definable vectors. 

Below is a list of synopses for stat nodes. Most nodes accept options indicated 
by a leading minus (-). In general, an option is specified by a character fol­
lowed by a value, such as e5. This is interpreted as c :- 5 (c is assigned 5). 
The following keys are used to designate the expected type of the value: 

c characters, 

integer, 

f floating point or integer, 

file file name, and 

string string of characters, surrounded by quotes to include a shell 
argument delimiter. 

Options without keys are flags. All nodes except generators accept files as 
input, hence it is not indicated in the synopses. 

Transformers: 

abs 

af 

ceil 

cusum 

exp 

floor 

gamma 

list 

log 

[ -ei] - absolute value 
columns (similarly for -c options that follow) 

[ -ci tv] - arithmetic function 
titled output, verbose 

[ -ci] - round up to next integer 

[ -ci] - cumulative sum 

[ -ci] - exponential 

[ -ei] - round down to next integer 

[ -en - gamma 

[ -ci dstring] - list vector elements 
delimiter{s} 

[ -ci bf] - logarithm 
base 

- 1 -



STAT(IG) 

mod 

pair 

power 

root 

round 

siline 

sin 

subset 

[ -ci mf] - modulus 
modulus 

[-ci Ffile xi] - pair elements 
File containing base vector, x group size 

[ -ci pf] - raise to a power 
power 

[ -ci rf] - take a root 
root 

STAT(lG) 

[ -ci pi si ] - round to nearest integer, .5 rounds to 1 
places after decimal point, significant digits 

[ -ci ifni sf] - generate a line given slope and intercept 
intercept, number of positive integers, slope 

[ -cd - sine 

[ -al bl ci Ffile ii Vol np pi si ti] - generate a subset 
above, below, File with master vector, interval, leave, master 
contains element numbers to leave, master contains element 
numbers to pick, pick, start, terminate 

Summarizers: 

bucket [ -ai ci Ffile hf ii V ni] - break into buckets 
average size, File containing bucket boundaries, high, interval, 
low, number 
Input data should be sorted 

cor [ - Ffile] - correlation coefficient 
File containing base vector 

hilo [ - hi 0 ox oy ]- find high and low values 
high only, low only, option form, option form with x 
prepended, option form with y prepended 

Ireg [ - Ffile i 0 s ] - linear regression 
File containing base vector, intercept only, option form for 
siline, slope only 

mean [ -if ni pi] - (trimmed) arithmetic mean 
fraction, number, percent 

point [ -if ni pi s ] - point from empirical cumulative density func­
tion 
fraction, number, percent, sorted input 

prod - internal product 

qsort [ -ci] - quick sort 

rank - vector rank 

total - sum total 

var - variance 

Translators: 

bar [ -a b f g ri wi xl xa yf ya yV ylif ] - build a bar chart 
suppress axes, bold, suppress frame, suppress grid, region, 
width in percent, x origin, suppress x-axis label, y origin, 
suppress y-axis label, y-axis lower bound, y-axis high bound 
Data is rounded off to integers. 

hist [ - a b f g ri xl xa yf ya yV yhl ] - build a histogram 
suppress axes, bold, suppress frame, suppress grid, region, x 

- 2 -



STAT(IG) 

label 

pie 

plot 

title 

Generators: 

gas 

prime 

rand 

RESTRICTIONS 

STAT(IG) 

origin, suppress x-axis label, y origin, suppress y-axis label, y­
axis lower bound, y-axis high bound 

[ -b c Ffile h p ri x xu y yr ] - label the axis of a GPS file 
bar chart input, retain case, label File, histogram input, plot 
input, rotation, x-axis, upper x-axis, y-axis, right y-axis 

[ -b 0 p pni ppi ri v xi yi ] - build a pie chart 
bold, values outside pie, value as percentage(:=lOO), value as 
percentage(:-D, draw percent of pie, region, no values, x ori­
gin, y origin 
Unlike other nodes, input is lines of the form 

[< i e f cc >] value DabeI1 
ignore (do not draw) slice, explode slice, fill slice, color 
slice c-( black, red, green, blue) 

, [-a b cstring d f Ffile g m ri xf xa xif xhf xif xni xt yf ya 
yif yhf yif yni yt ] - plot a graph 
suppress axes, bold, plotting characters, disconnected, suppress 
frame, File containing x vector, suppress grid, mark points, 
region, x origin, suppress x-axis label, x interval, x high 
bound, x low bound, number of ticks on x-axis, suppress x­
axis title, y origin, suppress y-axis label, y interval, y high 
bound, y low bound, number of ticks on y-axis, suppress y-axis 
title 

[ -b c Istring vstring ustring ] - title a vector or a GPS 
title bold, retain case, lower title, upper title, vector title 

[ -ci ifni sf if] - generate additive sequence 
interval, number, start, terminate 

[-ci hi Ii ni] - generate prime numbers 
high, low, number 

[ -ci hi V mf ni si] - generate random sequence 
high, low, multiplier, number, seed 

Some nodes have a limit on the size of the input vector. 

SEE ALSO 
graphics(l G). 
gps(4) in the UNIX System V Programmer Reference Manual. 

- 3 -



STRIP(l) STRIP(I) 

NAME 
strip - strip symbol and line number information from a common object file 

SYNOPSIS 
strip [-11 [-x] [-r] [-V] filename 

DESCRIPTION 

FILES 

The strip command strips the symbol table and line number information from 
common object files, including archives. Once this has been done, no symbolic 
debugging access will be available for that file; therefore, this command is nor­
mally run only on production modules that have been debugged and tested. 

The amount of information stripped from the symbol table can be controlled by 
using any of the following options: 

-I Strip line number information only; do not strip any symbol table 
informa tion. 

-x Do not strip static or external symbol information. 

-r Reset the relocation indexes into the symbol table. 

- V Print the version of the strip command executing on the standard 
error output. 

If there are any relocation entries in the object file and any symbol table infor­
mation is to be stripped, strip will complain and terminate without stripping 
file-name unless the -r flag is used. 

If the strip command is executed on a common archive file (see ar(4» the 
archive symbol table will be removed. The archive symbol table must be 
restored by executing the ar(I) command with the s option before the archive 
can be link-edited by the Id(I) command. Strip will instruct the user with 
appropriate warning messages when this situation arises. 

The purpose of this command is to reduce the file storage overhead taken by 
the object file. 

lusr Itmpl strp?????? 

SEE ALSO 
ar(!), as(}), cd}), ld(}). 
a.out(4), ar(4) in the UNIX System V Programmer Reference Manual. 

DIAGNOSTICS 
strip: name: cannot open 

if name cannot be read. 

strip: name: bad magic 
if name is not an appropriate common object file. 

strip: name: relocation entries present; cannot strip 
if name contains relocation entries and the -r flag 

is not used, the symbol table information cannot be 
stripped. 

- 1 -



STTY(l) STTY(I) 

NAME 
stty - set the options for a terminal 

SYNOPSIS 
stty [ -a ] [ -g ] [ options ] 

DESCRIPTION 
Stty sets certain terminal I/O options for the device that is the current standard 
input; without arguments, it reports the settings of certain options; with the -a 
option, it reports all of the option settings; with the -g option, it reports 
current settings in a form that can be used as an argument to another stty 
command. Detailed information about the modes listed in the first five groups 
below may be found in termio(7) for asynchronous lines, or in stermio(7) for 
synchronous lines in the UNIX System V Administrator Reference Manual. 
Options in the last group are implemented using options in the previous groups. 
Note that many combinations of options make no sense, but no sanity checking 
is performed. The options are selected from the following: 

Control Modes 
parenb (-parenb) enable (disable) parity generation and detection. 
parodd (-parodd) select odd (even) parity. 
es5 es6 es7 es8 select character size (see termio (7». 
o hang up phone line immediately. 
5075 110 134 150 200300600 1200 180024004800 9600 exta extb 

hupel (-bupeO 

bup (-bup) 
estopb (-estopb) 
eread (-eread) 
eloeal (-eloeaO 
loblk (-Ioblk) 

Input Modes 
ignbrk (-ignbrk) 
brkint (-brkint) 
ignpar (-ignpar) 
parmrk (-parmrk) 
inpek (- inpek) 
istrip (-istrip) 
inler (-inler) 
igner (-igner) 
iernl (-iernI) 
iuele (-iuele) 

ixon (-ixon) 

ixany (- ixany) 
ixoff (-ixoff) 

Output Modes 
opost (-opost) 

oleue (-oleue) 

Set terminal baud rate to the number given, if possible. 
(All speeds are not supported by all hardware inter­
faces.) 
hang up (do not hang up) DATA-PHONE® connection on 
last close. 
same as bupel (-bupeO . 
use two (one) stop bits per character. 
enable (disable) the receiver. 
n assume a line without (with) modem control. 
block (do not block) output from a non-current layer. 

ignore (do not ignore) break on input. 
signal (do not signal) INTR on break. 
ignore (do not ignore) parity errors. 
mark (do not mark) parity er: o-s (see termio (7». 
enable (disable) input parity '·~lecking. 
strip (do not strip) input chal acters to seven bits. 
map (do not map) NL to CR on input. 
ignore (do not ignore) CR on input. 
map (do not map) CR to NL on input. 
map (do not map) upper-case alphabetics to lower case 
on input. 
enable (disable) START/STOP output control. Output is 
stopped by sending an ASCII DC3 and started by send­
ing an ASCII DC 1. 
allow any character (only DC1) to restart output. 
request that the system send (not send) START/STOP 
characters when the input queue is nearly empty/full. 

post-process output (do not post-process output; ignore 
all other output modes). 
map (do not map) lower-case alphabetics to upper case 
on output. 

- 1 -



STTY(I) 

onlcr (-onlcr) 
ocrnl (-ocrn)) 
onocr ( - onocr) 
onlret (-onlret) 

ofill (-of ill) 
of del (-of de)) 
crO crt cr2 cr3 
nlO nil 
tabO tab 1 tab2 tab3 

bsO bsl 
fCO fft 
vtO vtl 

Local Modes 
isig (- isig) 

icanon (-icanon) 

xcase ( - xcase) 
echo (-echo) 
echoe (-echoe) 

echok (-echok) 
Ifkc (-Ifkc) 
echonl (-echonO 
noflsh (-noflsh) 
stwrap (-stwrap) 

stflush (-stfiush) 

stappl (-stapp)) 

Control Assignments 
control-character c 

line i 
Combination Modes 

map (do not map) NL to CR-NL on output. 
map (do not map) CR to NL on output. 
do not (do) output CRs at column zero. 

STTY(I) 

on the terminal NL performs (does not perform) the CR 
function. 
use fill characters (use timing) for delays. 
fill characters are DELs (NULs). 
select style of delay for carriage returns (see termio (7». 
select style of delay for line-feeds (see termio (7». 
select style of delay for horizontal tabs (see termio (7) or 
stermio (7» . 
select style of delay for backs{.iaces (see termio (7». 
select style of delay for form-feeds (see termio (7». 
select style of delay for vertical tabs (see termio (7». 

enable (disable) the checking of characters against the 
special control characters INTR, QUIT, and SWTCH. 
enable (disable) canonical input (ERASE and KILL pro­
cessing). 
canonical (unprocessed) upper/lower-cas"! presentation. 
echo back (do not echo back) every character typed. 
echo (do not echo) ERASE character as a backspace­
space-backspace string. Note: this mode will erase the 
ERASEed character on many CRT terminals; however, it 
does not keep track of column position and, as a result, 
may be confusing on escaped characters, tabs, and back­
spaces. 
echo (do not echo) NL after KILL character. 
the same as echok (-echok); obsolete. 
echo (do not echo) NL. 
disable (enable) flush after INTR, QUIT, or SWTCH. 
disable (enable) truncation of lines longer than 79 char­
acters on a synchronous line. 
enable (disable) flush on a synchronous line after every 
write(2). 
use application mode (use line mode) on a synchronous 
line. 

set control-character to c, where control-character is 
erase, kill, intr, quit, swtch, eof, ctab, min, or time (ctab 
is used with -stappl; see stermio (7», (min and time are 
used with -icanon; see termio (7». If c is preceded by 
an (escaped from the shell) caret (A), then the value 
used is the corresponding CTRL character (e.g., "Ad" is 
a CfRL-cJ); "A?" is interpreted as DEL and "A "is 
interpreted as undefined. 
set line discipline to i (0 < i < 127 ). 

evenp or parity enable parenb and cs7. 
oddp enable parenb, cs7, and parodd. 
-parity, -evenp, or -oddp 

raw (-raw or cooked) 
disable parenb, and set csS. 

enable (disable) raw input and output (no ERASE, 
KILL, INTR, QUIT, SWTCH, EOT, or output post pro­
cessing) . 

- 2 -



STTY(I) 

nl (-nI) 

lease (-lease) 
LCASE (-LCASE) 
tabs (-tabs or tab3) 
ek 

sane 
term 

SEE ALSO 
tabs(I) . 

STTY(I) 

unset (set) ieml, onler. In addition -nl unsets inler, 
igner, oernl, and onlret. 
set (unset)· xease, iucie, and oleuc. 
same as lease (-lease). 
preserve (expand to spaces) tabs when printing. 
reset ERASE and KILL characters back to normal # and 
@. 

resets all modes to some reasonable values. 
set all modes suitable for the terminal type term, where 
term is one of tty33, tty37, vt05, tn300, ti700, or tek. 

ioct1(2) in the UNIX System V Programmer Reference Manual. 
stermio(7), termio(7) in the UNIX System V Administrator Reference Manual. 

- 3 -



SU(I) SU(l) 

NAME 
su - become super-user or another user 

SYNOPSIS 
su [ - ] [ name [ arg ... ] ] 

DESCRIPTION 
Su allows one to become another user without logging off. The default user 
name is root (i.e., super-user). 

To use su, the appropriate password must be supplied (unless one is already 
root). If the password is correct, su will execute a new shell with the real and 
effective user ID set to that of the specified user. The new shell will be the 
optional program named in the shell field of the specified user's password file 
entry (see passwd(4», or Ibin/sh if none is specified (see sh (1». To restore 
normal user ID privileges, type an EOF (cntrl-d) to the new shell. 

Any additional arguments given on the command line are passed to the pro­
gram invoked as the shell. When using programs like sh (1), an arg of the 
form -e string executes string via the shell and an arg of -r will give the user 
a restricted shell. 

The following statements are true only if the optional prograrr named in the 
shell field of the specified user's password file entry is like sh(1). If the first 
argument to su is a -, the environment will be changed to what would be 
expected if the user actually logged in as the specified user. This is done by 
invoking the program used as the shell with an argO value whose first character 
is -, thus causing first the system's profile (fete/profile) and then the specified 
user's profile (.profile in the new HOME directory) to be executed. Otherwise, 
the environment is passed along with the possible exception of $PATH, which is 
set to /bin:/ete:/usr/bin for root. Note that if the optional program used as the 
shell is /bin/sh, the user's .profile can check argO for -sh or -su to determine 
if it was invoked by login(1) or su(1), respectively. If the user's program is 
other than /bin/sh, then .profile is invoked with an argO of -program by both 
login(I) and su(I). 

All attempts to become another user using su are logged in the log file 
/usr / adm/ sulog. 

EXAMPLES 
To become user bin while retaining your previously exported environment, exe­
cute: 

su bin 

To become user bin but change the environment to what would be expected if 
bin had originally logged in, execute: 

su - bin 

To execute command with the temporary environment and permissions of user 
bin, type: 

su - bin -c "command args" 

- 1 -



SU(l) 

FILES 
/etc/passwd 
/ etc/ profile 
$HOME/ .profile 
I usr I adml sulog 

system'S password file 
system's profile 
user's profile 
log file 

SU(l) 

SEE ALSO 
env(I), login(I), sh(I). 
passwd(4), profile(4), environ(5) in the UNIX System V Programmer Reference 
Manual. 

- 2 -



SUM(I) 

NAME 
sum - print checksum and block pount of a file 

SYNOPSIS 
sum [ -r ] file 

DESCRIPTION 

SUM(l) 

Sum calculates and prints a 16-bit checksum for the named file, and also prints 
the number of blocks in the file. It is typically used to look for bad spots, or to 
validate a file communicated over some transmission line. The option -r 
causes an alternate algorithm to be used in computing the checksum. 

SEE ALSO 
wc(I). 

DIAGNOSTICS 
"Read error" is indistinguishable from end of file on most devices; check the 
block count. ' 

- 1 -



SYNC(l) 

NAME 
sync - update the super block 

SYNOPSIS 
sync 

DESCRIPTION 

SYNC(l) 

Sync executes the sync system primitive. If the system is to be stopped, sync 
must be called to insure file system integrity. It will flush all previously unwrit­
ten system buffers out to disk, thus assuring that all file modifications up to 
that point will be saved. See sync(2) for details. 

SEE ALSO 
sync(2) in the UNIX System V Programmer Reference Manual. 

- 1 -



TABS(I) TABS (1 ) 

NAME 
tabs - set tabs on a terminal 

SYNOPSIS 
tabs [ tabspec ] [ +mn ] [ -Ttype ] 

DESCRIPTION 
Tabs sets the tab stops on the user's terminal according to the tab specification 
tabspec, after clearing any previous settings. The user's terminal must have 
remotely-settable hardware tabs. 

Users of GE TermiNet terminals should be aware that they behave in a 
different way than most other terminals for some tab settings. The first 
number in a list of tab settings becomes the left margin on a TermiNet termi­
nal. Thus, any list of tab numbers whose first element is other than 1 causes a 
margin to be left on a TermiNet, but not on other terminals. A tab list begin­
ning with 1 causes the same effect regardless of terminal type. It is possible to 
set a left margin on some other terminals, although in a different way (see 
below). 

Four types of tab specification are accepted for tabspec: "canned," repetitive, 
arbitrary, and file. If no tabspec is given, the default value is -8, i.e., UNIX 
system "standard" tabs. The lowest column number is 1. Note that for tabs, 
column 1 always refers to the leftmost column on a terminal, even one whose' 
column markers begin at 0, e.g., the DASI 300, DASI 300s, and DASI 450. 

-code Gives the name of one of a set of "canned" tabs. The legal codes and 
their meanings are as follows: 

-a 1,10,16,36,72 
Assembler, IBM S/370, first format 

-a2 1,10,16,40,72 
Assembler, IBM S/370, second format 

-c 1,8,12,16,20,55 
COBOL, normal format 

-c2 1,6,10,14,49 
COBOL compact format {columns 1-6 omitted}. Using this code, the 
first typed character corresponds to card column 7, one space gets you 
to column 8, and a tab reaches column 12. Files using this tab setup 
should include a format specification as follows: 

<:t-c2 m6 s66 d:> 
-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67 

COBOL compact format (columns 1-6 omitted), with more tabs than 
-c2. This is the recommended format for COBOL. The appropriate 
format specification is: 

<:t-c3 m6 s66 d:> 
-f 1,7,11,15,19,23 

FORTRAN 
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61 

PL/I 
-s 1,10,55 

SNOBOL 
-u 1,12,20,44 

UNIY AC 1100 Assembler 

In addition to these "canned" formats, three other types exist: 

-n A repetitive specification requests tabs at columns 1 +n, 1 +2*n, etc. 
Note that such a setting leaves a left margin of n columns on Ter­
miNet terminals only. Of particular importance is the value -8: this 
represents the UNIX system "standard" tab setting, and is the most 
likely tab setting to be found at a terminal. It is required for use with 

- 1 -



TABS(I) TABS (I) 

the nroff -h option for high-speed output. Another special case is the 
value -0, implying no tabs at all. 

n1 ,n2,... The arbitrary format permits the user to type any chosen set of 
numbers, separated by commas, in ascending order. Up to 40 
numbers are allowed. If any number (except the first one) is pre­
ceded by a plus sign, it is taken as an increment to be added to the 
previous value. Thus, the tab lists 1,10,20,30 and 1,10,+10,+10 are 
considered identical. 

- -file If the name of a file is given, tabs reads the first line of the file, 
searching for a format specification. If it finds one there, it sets the 
tab stops according to it, otherwise it sets them as -8. This type of 
specification may be used to make sure that a tabbed file is printed 
with correct tab settings, and would be used with the pr(1) command: 

tabs -- file; pr file 

Any of the following may be used also; if a given flag occurs more than once, 
the last value given takes effect: 

-Ttype Tabs usually needs to know the type of terminal in order to set tabs 
and always needs to know the type to set margins. Type is a name 
listed in term (5). If no -T flag is supplied, tabs searches for the 
STERM value in the environment (see environ (5». If no type can be 
found, tabs tries a sequence that will work for many terminals. 

+mn The margin argument may be used for some terminals. It causes all 
tabs to be moved over n columns by making column n + 1 the left 
margin. If +m is given without a value of n, the value assumed is 10. 
For a TermiN et, the first value in the tab list should be 1, or the mar­
gin will move even further to the right. The normal (leftmost) margin 
on most terminals is obtained by +mO. The margin for most termi­
nals is reset only when the +m flag is given explicitly. 

Tab and margin setting is performed via the standard output. 

DIAGNOSTICS 
illegal tabs 
illegal increment 

unknown tab code 
can't open 
file indirection 

when arbitrary tabs are ordered incorrectly. 
when a zero or missing increment is found in an arbitrary 
specification. 
when a "canned" code cannot be found. 
if - -file option used, and file can't be opened. 
if - -file option used and the specification in that file 
points to yet another file. Indirection of this form is not 
permitted. 

SEE ALSO 
prO) . 

BUGS 

environ(S), term(5) in the UNIX System V Programmer Reference Manual. 

There is no consistency among different terminals regarding ways of clearing 
tabs and setting the left margin. 
It is generally impossible to usefully change the left margin without also setting 
tabs. 
Tabs clears only 20 tabs (on terminals requiring a long sequence), but is wil­
ling to set 64. 

- 2 -



TAIL (I) TAIL(t) 

NAME 
tail - deliver the last part of a file 

SYNOPSIS 
tail [ ±[number][Ibc[f] ] ] [ file] 

DESCRIPTION 
Tail copies the named file to the standard output beginning at a designated 
place. If no file is named, the standard input is used. 

Copying begins at distance +number from the beginning, or -number from 
the end of the input (if number is null, the value lOis assumed). Number is 

.counted in units of lines, blocks, or characters, according to the appended 
option I, b, or c. When no units are specified, counting is by lines. 

With the -f ("follow") option, if the input file is not a pipe, the program will 
not terminate after the line of the input file has been copied, but will enter an 
endless loop, wherein it sleeps for a second and then attempts to read and copy 
further records from the input file. Thus it may be used to monitor the growth 
of a file that is being written by some other process. For example, the com­
mand: 

tail -f fred 

will print the last ten lines of the file fred, followed by any lines that are 
appended to fred between the time tail is initiated and killed. As another 
example, the command: 

tail -15cf fred 

will print the last 15 characters of the file fred, followed by any lines that are 
appended to fred between the time tail is initiated and killed. 

SEE ALSO 
dd(I). 

BUGS 
Tails relative to the end of the file are treasured up in a buffer, and thus are 
limited in length. Various kinds of anomalous behavior may happen with char­
acter special files. 

- 1 -



TAR (I) TARO) 

NAME 
tar - tape file archiver 

SYNOPSIS 
tar [ key ] [ files ] 

DESCRIPTION 
Tar saves and restores files on magnetic tape. Its actions are controlled by the 
key argument. The key is a string of characters containing at most one func­
tion letter and possibly one or more function modifiers. Other arguments to the 
command are files (or directory names) specifying which files are to be 
dumped or restored. In all cases, appearance of a directory name refers to the 
files and (recursively) subdirectories of that directory. 

The function portion of the key is specified by one of the following letters: 

The named files are written on the end of the tape. The c function 
implies this function. 

x The named files are extracted from the tape. If a named file matches 
a directory whose contents had been written onto the tape, this direc­
tory is (recursively) extracted. If a named file on tape does not exist 
on the system, the file is created with the same mode as the one on 
tape except that the set-user-ID and set-group-ID bits are not set 
unless you are super-user. If the files exist, their modes are not 
changed except for the bits described above. The owner, group, and 
modification time are restored (if possible). If no files argument is 
given, the entire content of the tape is extracted. Note that if several 
files with the same name are on the tape, the last one overwrites all 
earlier ones. 
The names of all the files on the tape are listed. 

u The named files are added to the tape if they are not already there, or 
have been modified since last written on that tape. 

c Create a new tape; writing begins at the beginning of the tape, instead 
of after the last file. This command implies the r function. 

The following characters may be used in addition to the letter that selects the 
desired function: 

#s Where # is a tape drive number (0, ... ,7), and s is the density (1 - low 
(800 bpi), m - medium (I600 bpi), or h - high (6250 bpj». This 
modifier selects the drive on which the tape is mounted. The default 
is Om. 

v Normally, tar does its work silently. The v (verbose) option causes it 
to type the name of each file it treats, preceded by the function letter. 
With the t function, v gives more information about the tape entries 
than just the name. 

w Causes tar to print the action to be taken, followed by the name of 
the file, and then wait for the user's confirmation. If a word begin­
ning with y is given, the action is performed. Any other input means 
"no". 

f Causes tar to use the next argument as the name of the archive 
instead of Idev Imt!?? If the name of the file is -, tar writes to the 
standard output or reads from the standard input, whichever is 
appropriate. Thus, tar can be used as the head or tail of a pipeline. 
Tar can also be used to move hierarchies with the command: 

cd fromdir; tar cf - . I (cd todir; tar xf -) 

- 1 -



TAR(I) 

FILES 

b 

m 

o 

TAR(I) 

Causes tar to use the next argument as the blocking factor for tape 
records. The default is 1, the maximum is 20. This option should 
only be used with raw magnetic tape archives (see f above). The 
block size is determined automatically when reading tapes (key letters 
x and t). 
Tells tar to complain if it cannot resolve all of the links to the files 
being dumped. If I is not specified, no error messages are printed. 
Tells tar not to restore the modification times. The modification time 
of the file will be. the time of extraction. 
Causes extracted files to take on the user and group identifier of the 
user running the program rather than those on the tape. 

Idev/mtl* 
Itmpltar* 

DIAGNOSTICS 

BUGS 

Complaints about bad key characters and tape read/write errors. 
Complaints if enough memory is not available to hold the link tables. 

There is no way to ask for the n-th occurrence of a file. 
Tape errors are handled ungracefully. 
The u option can be slow. 
The b option should not be used with archives that are going to be updated. 
The current magnetic tape driver cannot backspace raw magnetic tape. If the 
archive is on a disk file, the b option should not be used at all, because updat­
ing an archive stored on disk can destroy it. 
The current limit on file-name length is 100 characters. 
Note that tar cOm is not the same as tar cmO. 

- 2 -



TEE(l) 

NAME 
tee - pipe fitting 

SYNOPSIS 
tee [ -i ] [ -a ] [ file ] ... 

DESCRIPTION 

TEE(l) 

Tee transcribes the standard input to the standard output and makes copies in 
the files. The -i option ignores interrupts; the -a option causes the output to 
be appended to the files rather than overwriting them. 

- 1 -



TEST (I ) TEST (I) 

NAME 
test - condition evaluation command 

SYNOPSIS 
test expr 
I expr ) 

DESCRIPTION 
Test evaluates the expression expr and, if its value is true, returns a zero (true) 
exit status; otherwise, a non-zero (false) exit status is returned; test also returns 
a non-zero exit status if there are no arguments. The following primitives are 
used to construct expr: 

-r file true if file exists and is readable. 

-w file true if file exists and is writable. 

-x file 

-f file 

-dfile 

-cfile 

-bfile 

-pfile 

-ufile 

-gfile 

-kfile 

tru~ if file exists and is executable. 

true if file exists and is a regular file. 

true if file exists and is a directory. 

true if file exists and is a character special file. 

true if file exists and is a block special file. 

true if file exists and is a named pipe (fifo). 

true if file exists and its set-user-ID bit is set. 

true if file exists and its set-group-ID bit is set. 

true if file exists and its sticky bit is set. 

-s file true if file exists and has a size greater than zero. 

-t [fi/des] true if the open file whose file descriptor number is fildes (1 by 
default) is associated with a terminal device. 

- z s 1 true if the length of string s 1 is zero. 

-0 sl true if the length of the string sl is non-zero. 

sl = s2 true if strings sl and s2 are identical. 

sl ! = s2 true if strings sl and s2 are not identical. 

sl true if sl is not the null string. 

nl -eq n2 true if the integers nl and n2 are algebraically equal. Any of the 
comparisons -De, -gt, -ge, -It, and -Ie may be used in place 
of -eq. 

These primaries may be combined with the following operators: 

unary negation operator. 

-a 

-0 

( expr ) 

binary and operator. 

binary or operator (-a has higher precedence than -0). 

parentheses for grouping. 

Notice that all the operators and flags are separate arguments to test. Notice 
also that parentheses are meaningful to the shell and, therefore, must be 
escaped. 

- 1 -



TEST(I) TEST(I) 

SEE ALSO 
find (I), sh(I). 

WARNING 
In the second form of the command (i.e., the one that uses [], rather than the 
word test), the square brackets must be delimited by blanks. 
Some UNIX systems do not recognize the second form of the command. 

- 2 -



TIME(t) TIME(t) 

NAME 
time - time a command 

SYNOPSIS 
time command 

DESCRIPTION 
The command is executed; after it is complete, time prints the elapsed time 
during the command, the time spent in the system, and the time spent in exe­
cution of the command. Times are reported in seconds. 

The times are printed on standard error. 

SEE ALSO 
timex( 1). 
times(2) in the UNIX System V Programmer Reference Manual. 

CAVEATS 
When time is used on a 38 20A dual computer system the sum of system and 
user time could be greater than real time. This is the result when command is a 
multi-threaded task running on a 38 20A computer system with both processors 
active. 

- 1 -



TIMEX(l) TIMEX(l) 

NAME 
timex - time a command; report process data and system activity 

SYNOPSIS 
timex [ options 1 command 

DESCRIPTION 
The given command is executed; the elapsed time, user time and system time 
spent in execution are reported in seconds. Optionally, process accounting data 
for the command and all its children can be listed or summarized, and total 
system activity during the execution interval can be reported. 

The output of timex is written on standard error. 

Options are: 

-p List process accounting records for command and all its children. 
Suboptions f, h, k, m, r, and t modify the data items reported, as defined 
in acctcom (1). The number of blocks read or written and the number 
of characters transferred are always reported. 

-0 Report the total number of blocks read or written and total characters 
transferred by command and all its children. 

-s Report total system activity (not just that due to command) that 
occurred during the execution interval of command. All the data items 
listed in sadO are reported. 

SEE ALSO 
acctcom (1), sar (1) . 

CAVEATS 
When timex is used on a 3B 20A dual computer system the sum of system and 
user time could be greater than real time. This is the result when command is 
a multi-threaded task runing on a 3B 20A computer system with both processors 
active. 

WARNING 
Process records associated with command are selected from the accounting file 
/usr/adm/pacct by inference, since process genealogy is not available. Back­
ground processes having the same user-id, terminal-id, and execution time win­
dow will be spuriously included. 

EXAMPLES 
A simple example: 

timex -ops sleep 60 

A terminal session of arbitrary complexity can be measured by timing a sub­
shell: 

timex -opskmt sh 

session commands 
EOT 

- 1 -



TOC (IG) TOC(IG) 

NAME 
toe - graphical table of contents routines 

SYNOPSIS 
dtoe [directory] 
ttoe mm-file 
vtoe [-edhnimsvn] [TTOC file] 

DESCRIPTION 
All of the commands listed below reside in /usr/bin/graf {see graphics (I G». 

dtoe Dtoc makes a textual table of contents, TTOC, of all subdirectories 
beginning at directory (directory defaults to .). The list has one 
entry per directory. The entry fields from left to right are level 
number, directory name, and the number of ordinary readable files 
in t\le directory. Dtoc is useful in making a visual display of all or 
parts of a file system. The following will make a visual display of 
all the readable directories under /: 

dtoe / I vtoe I td 

ttoe Output is the table of contents generated by the .TC macro of 
mm(I) translated to TTOC format. The input is assumed to be an 
mm file that uses the .H family of macros for section headers. If no 
file is given, the standard input is assumed. 

vtoe Vtoc produces a GPS describing a hierarchy chart from a TTOC. 
The output drawing consists of boxes containing text connected in a 
tree structure. If no file is given, the standard input is assumed. 
Each TTOC entry describes one box and has the form: 

id [Une-weight,line-style] "text" [mark] 
where: 

id is an alternating sequence of numbers and dots. The 
id specifies the position of the entry in the hierarchy. 
The id o. is the root of the tree. 

line-weight is either: 

line-style is either: 

n, normal-weight; or 
m, medium-weight; or 
b, bold-weight. 

so, solid-line; 
do, dotted-line; 
dd, dot-dash line; 
da, dashed-line; or 
Id, long-dashed 

text is a character string surrounded by quotes. The char­
acters between the quotes become the contents of the 
box. To include a quote within a box it must be 
escaped (\"). 

mark is a character string (surrounded by quotes if it con­
tains spaces), with included dots being escaped. The 
string is put above the top right corner of the box. To 
include either a quote or a dot within a mark it must 
be escaped. 

Entry example: 1.1 b,da "ABC" DEF 
Entries may span more than one line by escaping the new-line 
(\new-Iine) . 

- 1 -



TOC(IG) TOC(IG) 

Comments are surrounded by the /*,*/ pair. They may appear 
anywhere in a TTOC. 

Options: 

c Use text as entered (default is all upper case). 

d Connect the boxes with diagonal lines. 

hn Horizontal interbox space is n% of box width. 

Suppress the box id. 

m Suppress the box mark. 

s Do not compact boxes horizontally. 

vn Vertical interbox space is n% of box height. 

SEE ALSO 
graphicsOG). 
gps(4) in the UNIX System V Programmer Reference Manual. 

- 2 -



TOUCH(I) TOUCH(I) 

NAME 
touch - update access and modifica,tion times of a file 

SYNOPSIS 
touch [ -arne ] [ mmddhhmm[yy] ] files 

DESCRIPTION 
Touch causes the access and modification times of each argument to be 
updated. The file name is created if it does not exist. If no time is specified 
(see date(t» the current time is used. The -a and -m options cause touch 
to update only the access or modification times respectively (default is -am). 
The -c option silently prevents touch from creating the file if it did not previ­
ously exist. 

The return code from touch is the number of files for which the times could not 
be successfully modified (including files that did not exist and were not 
created) . 

SEE ALSO 
date(l) . 
utime(2) in the UNIX System V Programmer Reference Manual. 

- 1 -



TPLOT(IG) TPLOT(IG) 

NAME 
tplot - graphics filters 

SYNOPSIS 
tplot [ -Tterminal [ -e raster ] ] 

DESCRIPTION 

FILES 

These commands read plotting instructions (see plor(4» from the standard 
input and in general produce, on the standard output, plotting instructions suit­
able for a particular terminal. If no terminal is specified, the environment 
parameter $TERM (see environ (5» is used. Known terminals are: 

300 DASI 300. 
300S DASI 300s. 
450 DASI 450. 
4014 TEKTRONIX 4014. 
ver Versatec D1200A. This version of plot places a scan-converted image 

in /usr/tmp/raster$$ and sends the result directly to the plotter device, 
rather than to the standard output. The -e option causes a previously 
scan-converted file raster to be sent to the plotter. 

lusrllib/t300 
I usr llib/t300s 
I usr llib/t450 
lusr/lib/t4014 
lusr Ilib/vplot 
lusr/tmp/raster$$ 

SEE ALSO 
plot(3X), plot(4), term(5) in the UNIX System V Programmer Reference 
Manual. 

- 1 -



TPUT(} ) TPUT(l) 

NAME 
tput - query terminfo database 

SYNOPSIS 
tput [ -Ttype ) capname 

DESCRIPTION 
Tput uses the terminfo(4) database to make terminal-dependent capabilities 
and information available to the shell. Tput outputs a string if the attribute 
(capability name) is of type string, or an integer if the attribute is of type 
integer. If the attribute is of type boolean, tput simply sets the exit code (0 for 
TRUE, 1 for FALSE), and does no output. 

-Ttype indicates the type of terminal. Normally this flag is unnecessary, 
as the default is taken from the environment variable $TERM. 

Capname indicates the attribute from the terminfo database. See ter­
minfo(4). 

EXAMPLES 

FILES 

tput clear 
tput cols 
tput -T 450 cols 
bold = 'tput smso' 

tput hc 

Echo clear-screen sequence for the current terminal. 
Print the number of columns for the current terminal. 
Print the number of columns for the 450 terminal. 
Set shell variable "bold" to stand-out mode sequence for 
current terminal. This might be followed by a prompt: 
echo "$ {bold} Please type in your name: \c" 
Set exit code to indicate if current terminal is a hardcopy 
terminal. 

letclterm/? 1* 
lusr/includelterm.h 
lusr /include/ curses.h 

Terminal descriptor files 
Definition files 

DIAGNOSTICS 
Tput prints error messages and returns the following error codes on error: 
-1 U sage error. 
-2 Bad terminal type. 
-3 Bad ca pname. 

In addition, if a capname is requested for a terminal that has no value for that 
capname (e.g., tput -T450 lines), -1 is printed. 

SEE ALSO 
stty(l). 
terminfo(4) in the UNIX System V Programmer Reference Manual. 

- 1 -



TR(t) TR(t) 

NAME 
tr - translate characters 

SYNOPSIS 
tr [ -cds ] [ string 1 [ string2 ] ] 

DESCRIPTION 
Tr copies the standard input to the standard output with substitution or dele­
tion of selected characters. Input characters found in stringl are mapped into 
the corresponding characters of string2. Any combination of the options -cds 
may be used: 

-c Complements the set of characters in string1 with respect to the 
universe of characters whose ASCII codes are 001 through 377 octal. 

-d Deletes all input characters in stringl. 

-s Squedes all strings of repeated output characters that are in string2 
to single characters. 

The following abbreviation conventions may be used to introduce ranges of 
characters or repeated characters into the strings: 

[a -zl Stands for the string of characters whose ASCII codes run from char­
acter a to character z, inclusive. 

[a*nl Stands for n repetitions of a. If the first digit of n is 0, n is con­
sidered octal; otherwise, n is taken to be decimal. A zero or missing n 
is taken to be huge; this facility is useful for padding string2. 

The escape character \ may be used as in the shell to remove special meaning 
from any character in a string. In addition, \ followed by 1, 2, or 3 octal digits 
stands for the character whose ASCII code is given by those digits. 

The following example creates a list of all the words in file1 one per line in 
file2, where a word is taken to be a maximal string of alphabetics. The strings 
are quoted to protect the special characters from interpretation by the shell; 
012 is the ASCII code for newline. 

tr -cs "[A-Z][a-z]" "[\012*]" <filel > file2 

SEE ALSO 

BUGS 

ed(I), sh(1). 
ascii(S) in the UNIX System V Programmer Reference Manual. 

Will not handle ASCII NUL in stringl or string2; always deletes NUL from 
input. 

- 1 -



TRUE(I) 

NAME 
true, false - provide truth values 

SYNOPSIS 
true 

false 

DESCRIPTION 

TRUE(I) 

True does nothing, successfully. False does nothing, unsuccessfully. They are 
typically used in input to sh (1) such as: 

SEE ALSO 
sh(1) . 

DIAGNOSTICS 

while true 
do 

command 
done 

True has exit status zero, false nonzero. 

- 1 -



TSORT(t) TSORT(I) 

NAME 
tsort - topological sort 

SYNOPSIS 
tsort [ file ] 

DESCRIPTION 
Tsart produces on the standard output a totally ordered list of items consistent 
with a partial ordering of items mentioned in the input file. If no file is 
specified, the standard input is understood. 

The input consists of pairs of items (nonempty strings) separated by blanks. 
Pairs of different items indicate ordering. Pairs of identical items indicate pres­
ence, but not ordering. 

SEE ALSO 
lorder(I) . 

DIAGNOSTICS 

BUGS 

Odd data: there is an odd number of fields in the input file. 

Uses a quadratic algorithm; not worth fixing for the typical use of ordering a 
library archive file. 

- 1 -



TTY (I) TTY(t) 

NAME 
tty - get the name of the terminal 

SYNOPSIS 
tty [ -I ] [ -s ] 

DESCRIPTION 
Tty prints the path name of the user's terminal. The -I option prints the syn­
chronous line number to which the user's terminal is connected, if it is on an 
active synchronous line. The -s option inhibits printing of the terminal path 
name, allowing one to test just the exit code. 

EXIT CODES 
2 
o 
1 

DIAGNOSTICS 

if invalid options were specified, 
if standard input is a terminal, 
otherwise. 

"not on an active synchronous line" if the standard input is not a synchronous 
terminal and -I is specified. 
"not a tty" if the standard input is not a terminal and -s is not specified. 

- 1 -



UMASK(l) UMASK(l) 

NAME 
umask - set file-creation mode mask 

SYNOPSIS 
umask [ 000 ] 

DESCRIPTION 
The user file-creation mode mask is set to 000. The three octal digits refer to 
read/write/execute permissions for owner, group, and others, respectively (see 
chmod(2) and umask(2». The value of each specified digit is subtracted from 
the corresponding "digit" specified by the system for the creation of a file (see 
crear(2». For example, umask 022 removes group and others write permission 
(files normally created with mode 777 become mode 755; files created with 
mode 666 become mode 644). 

If 000 is omitted, the current value of the mask is printed. 

Umask is recognized and executed by the shell. 

SEE ALSO 
chmod(I), sh(I). 
chmod(2), creat(2), umask(2) in the UNIX System V Programmer Reference 
Manual. 

- 1 -



UNAME(l) 

NAME 
uname - print name of current UNIX system 

SYNOPSIS 
uname [ -snrvma ] 

DESCRIPTION 

UNAME(l) 

Uname prints the current system name of the UNIX system on the standard 
output file. It is mainly useful to determine which system one is using. The 
options cause selected information returned by uname (2) to be printed: 

-s print the system name (default). 

-n print the nodename (the nodename may be a name that the system is 
known by to a communications network). 

-r print the operating system release. 

-v print the operating system version. 

-m print the machine hardware name. 

-a print all the above information. 

SEE ALSO 
uname(2) in the UNIX System V Programmer Reference Manual. 

- 1 -



UNGET(I) UNGET(l) 

NAME 
unget - undo a previous get of an SCCS file 

SYNOPSIS 
uoget [-rsml [-sl [-01 files 

DESCRIPTION 
Unget undoes the effect of a get -e done prior to creating the intended new 
delta. If a directory is named, unget behaves as though each file in the direc­
tory were specified as a named file, except that non-SCeS files and unreadable 
files are silently ignored. If a name of - is given, the standard input is read 
with each line being taken as the name of an secs file to be processed. 

Keyletter arguments apply independently to each named file. 

-rSID 

-s 

-n 

SEE ALSO 

Uniquely identifies which delta is no longer intended. (This 
would have been specified by get as the "new delta"). The 
use of this keyletter is necessary only if two or more out­
standing gets for editing on the same sces file were done 
by the same person (login name). A diagnostic results if 
the specified SID is ambiguous, or if it is necessary and 
omitted on the command line. 

Suppresses the printout, on the standard output, of the 
intended delta's SID. 

Causes the retention of the gotten file which would nor­
mally be removed from the current directory. 

delta (I) , get(I), help(1), sact(1). 

DIAGNOSTICS 
Use help (1) for explanations. 

- 1 -



UNIQ(I) UNIQ (1) 

NAME 
uniq - report repeated lines in a file 

SYNOPSIS 
uniq [ -ude [ +n ] [ -n ] ] [ input [ output ] ] 

DESCRIPTION 
Uniq reads the input file comparing adjacent lines. In the normal case, the 
second and succeeding copies of repeated lines are removed; the remainder is 
written on the output file. Input and output should always be different. Note 
that repeated lines must be adjacent in order to be found; see sort (1). If the 
-u flag is used, just the lines that are not repeated in the original file are out­
put. The -d option specifies that one copy of just the repeated lines is to be 
written. The normal mode output is the union of the -u and -d mode out­
puts. 

The -c optioll supersedes -u and -d and generates an output report in 
default style but with each line preceded by a count of the number of times it 
occurred. 

The n arguments specify skipping an initial portion of each line in the com­
parison: 

- n The first n fields together with any blanks before each are ignored. A 
field is defined as a string of non-space, non-tab characters separated 
by tabs and spaces from its neighbors. 

+n The first n characters are ignored. Fields are skipped before charac­
ters. 

SEE ALSO 
comm(1), sort(1). 

-1 -



UNITS(l) UNITS(l) 

NAME 
units - conversion program 

SYNOPSIS 
units 

DESCRIPTION 

FILES 

Units converts quantities expressed in various standard scales to their 
equivalents in other scales. It works interactively in this fashion: 

You have: inch 
You want: em 

• 2.540000e+OO 
/3.937008e-Ol 

A quantity is specified as a multiplicative combination of units optionally pre­
ceded by a numeric multiplier. Powers are indicated by suffixed positive 
integers, division by the usual sign: 

You have: 15 Ibs force/in2 
You want: atm 

• 1.02068ge+OO 
/ 9.79729ge-Ol 

Units only does multiplicative scale changes; thus it can convert Kelvin to 
Rankine, but not Celsius to Fahrenheit. Most familiar units, abbreviations, and 
metric prefixes are recognized, together with a generous leavening of exotica 
and a few constants of nature including: 

pi ratio of circumference to diameter, 
c speed of light, 
e charge on an electron, 
g acceleration of gravity, 
force same as g, 
mole Avogadro's number, 
water pressure head per unit height of water, 
au astronomical unit. 

Pound is not recognized as a unit of mass; Ib is. Compound names are run 
together, (e.g., light year) . British units that differ from their u.s. counterparts 
are prefixed thus: brgallon. For a complete list of units, type: 

cat lusrlIib/unittab 

lusrlIib/unittab 

- 1 -



UUCP(IC) UUCp(tC) 

NAME 
uucp, uulog, uuname - UNIX system to UNIX system copy 

SYNOPSIS 
uucp [ options ] source-files destination-file 

uulog [ options 

uuname [ -I ] [ - v ] 

DESCRIPTION 
Uucp 

Uucp copies files named by the source-file arguments to the destination-file 
argument. A file name may be a path name on your machine, or may have the 
form: 

system-name!path-name 

where system-name is taken from a list of system names which uucp knows 
about. The system-name may also be a list of names such as 

system-name!system-name! ... !system-name!path-name 

in which case an attempt is made to send the file via the specified route, and 
only to a destination in PUBDIR (see below). Care should be taken to insure 
that intermediate nodes in the route are willing to foward information. 

The shell metacharacters ?, • and L .. J appearing in path-name will be 
expanded on the appropriate system. 

Path names may be one of: 

(1) a full path name; 

(2) a path name preceded by -user where user is a login name on 
the specified system and is replaced by that user's login direc­
tory; 

(3) a path name preceded by - /user where user is a login name on 
the specified system and is replaced by that user's directory 
under PUBDIR; 

(4) anything else is prefixed by the current directory. 

If the result is an erroneous path name for the remote system the copy will fail. 
If the destination-file is a directory, the last part of the source-file name is 
used. 

Uucp preserves execute permissions across the transmission and gives 0666 read 
and write permissions (see chmod (2». 

The following options are interpreted by uucp: 

-d Make all necessary directories for the file copy (default). 

-f Do not make intermediate directories for the file copy. 

-c Use the source file when copying out rather than copying the file to 
the spool directory (default). 

-C Copy the source file to the spool directory. 

-mfile Report status of the transfer in file. If file is omitted, send mail to the 
requester when the copy is completed. 

-nuser Notify user on the remote system that a file was sent. 

-esys Send the uucp command to system sys to be executed there. (Note: 
this will only be successful if the remote machine allows the uucp 
command to be executed by /usr/lib/uucp/uuxqtJ 

- 1 -



UUCP(IC) UUCp(IC) 

-r 

-j 

Queue job but do not start the file transfer process. By default a file 
transfer process is started each time uucp is evoked. 

Control writing of the uucp job number to standard output (see 
below). 

Uucp associates a job number with each request. This job number can be used 
by uustat to obtain status or terminate the job. 

The environment variable JOBNO and the -j option are used to control the list­
ing of the uucp job number on standard output. If the environment variable 
JOB NO is undefined or set to OFF, the job number will not be listed (default). 
If uucp is then invoked with the -j option, the job number will be listed. If the 
environment variable JOBNO is set to ON and is exported, a job number will 
be written to standard output each time uucp is invoked. In this case, the -j 
option will supress output of the job number. 

Uulog 
Uulog queries a summary log of uucp and uux (1 C) transactions in the file 
lusr Ispool/uucp/LOGFlLE. 

The options cause uulog to print logging information: 

-ssys Print information about work involving system sys. If sys is not 
specified, then logging information for all systems will be printed. 

-uuser Print information about work done for the specified, user. If user is 
not specified then logging information for all users will be printed. 

Uuname 

FILES 

Uuname lists the uucp names of known systems. The -I option returns the 
local system name. The -v option will print additional information about each 
system. A description will be printed for each system that has a line of infor­
mation in lusr/lib/uucp/ADMIN. The format of ADMIN is: sysname tab 
description tab. 

/usr/spoolluucp spool directory 
/usr/spoolluucppublic public directory for receiving and sending (PUBDIR) 
/usrllib/uucp/. other data and program files 

SEE ALSO 
maiI(l), uux(IC). 
chmod(2) in the UNIX System V Programmer Reference Manual. 

WARNING 

NOTES 

The domain of remotely accessible files can (and for obvious security reasons, 
usually should) be severely restricted. You will very likely not be able to fetch 
files by path name; ask a responsible person on the remote system to send them 
to you. For the same reasons, you will probably not be able to send files to 
arbitrary path names. As distributed, the remotely accessible files are those 
whose names begin lusrlspool/uucppublic (equivalent to -nuucp or just -). 

In order to send files that begin with a dot (e.g., .profile) the files must by 
qualified with a dot. For example: .profile, .prof*, .profil? are correct; whereas 
*prof*, ?profile are incorrect. 

U.ucp will not generate a job number for a strictly local transaction. 

- 2 -



UUCP(IC> UUCp(IC> 

BUGS 
All files received by uucp will be owned by uucp. 
The -m option will only work sending files or receiving a single file. Receiving 
multiple files specified by special shell characters ? • [. •. ] will not activate the 
-m option. 
The -m option will not work if all transactions are local or if uucp is executed 
remotely via the -e option. 
The -0 option will function only when the source and destination are not on 
the same machine. 
Only the first six characters of a system-name are significant. Any excess 
characters are ignored. 

- 3 -



UUSTAT(IC) UUSTATOC) 

NAME 
uustat - uucp status inquiry and job control 

SYNOPSIS 
uustat [ options ) 

DESCRIPTION 
[/uslal will display the status of, or cancel, previously specified uucp com­
mands. or provide general status on uucp connections to other systems. The 
following options are recognized: 

-jjobn Report the status of the uucp rcquest john. If all is used for jobn, 
the status of all uucp requests is rcported. An argument must be 
supplied; otherwise. the usage message will be printed and the 
request will fail. 

-kjobn Kill the uucp request whose job number is jobn. The killed uucp 
request must belong to the person issuing the uustat command 
unless one is the super-user. 

-rjobn Rejuvenate john. That is, jobn is touched so that its modification 
time is set to the current time. This prevents uuclean from deleting 
the job until the jobs modification time reaches the limit imposed by 
uuclean. 

-chour Remove the status entries \\ hich are older than hour hours. This 
administrative option can only be initiated by the user uucp or the 
super-user. 

-uuser 
-ssys 

-ohour 

-yhour 

-mmch 

-Mmch 

-0 

-q 

Report the status of all uucp requests issued by user. 
Report the status of all uucp requests which communicate with 
remote system sys. 
Report the status of all uucp requests which are older than hour 
hours. 
Report the status of all uucp requests which are younger than hour 
hours. 
Report the status of accessibility of machine mch. If mch is 
specified as all, then the status of all machines known to the local 
uucp are provided. 
This is the same as the -m option except that two times are 
printed. The time that the last status was obtained and the time 
that the last successful transfer to that sy~tem occurred. 
Report the uucp status using the octal st, t .S codes listed below. If 
this option is not specified, the verbose ( ~~cription is printed with 
each u ucp request. 
List the number of jobs and other control files queued for each 
machi!1e and the time of the oldest and youngest file queued for 
each :nachine. If a lock file exists for that system, its date of crea­
tion is listed. 

When no options are given, uustat outputs the status of all uucp requests 
issued by the current user. Note that only one of the options -j, -m, -k, 
-c, -r, can be used with the rest of the other options. 

For example, the command: 

uustat -uhdc -smhtsa -y72 

will print the status of all uucp requests that were issued by user hdc to com­
municate with system mhtsa within the last 72 hours. The meanings of the job 
request status are: 

job-number user remote-system command-time status-time status 

- 1 -



UUSTATOC) UUSTAT(IC) 

FILES 

where the status may be either an octal number or a verbose description. The 
octal code corresponds to the following description: 

OCTAL 
000001 
000002 
000004 
000010 
000020 
000040 
000100 
000200 
000400 
001000 
002000 
004000 
010000 
020000 

STATUS 
the copy failed, but the reason cannot be determined 
permission to access local file is denied 
permission to access remote file is denied 
bad uucp command is generated 
remote system cannot create temporary file 
cannot copy to remote directory 
cannot copy to local directory 
local system cannot create temporary file 
cannot execute uucp 
copy (partially) succeeded 
copy finished, job deleted 
job is queued 
job killed (incomplete) 
job killed (complete) 

The meanings of the machine accessibility status are: 

system-name time status 

where time is the latest status time and status is a self-explanatory description 
of the machine status. 

lusrlspool/uucp 
lusr/lib/uucp/L_stat 
lusrllib/uucp/R_stat 

spool directory 
system status file 
request status file 

SEE ALSO 
uucpOC). 

- 2 -



UUTO(lC> UUTO(IC> 

NAME 
uuto, uupick - public lTNIX-to-UNIX system file copy 

SYNOPSIS 
uuto [ options ] source-files destination 
uupick [ -s system ] 

DESCRIPTION 

FILES 

Uuto sends source-files to destination. Uuto uses the uucp (1 C) facility to 
send files, while it allows the local system to control the file access. A source­
file name is a path name on your machine. Destination has the form: 

system!user 

where system IS taken fmm a list of system names that uucp knows about (see 
uuname). Logname is th~ login name of someone on the specified system. 

Two options are available: 

-p Copy the source file into the spool directory before transmission. 
-m Send mail to the sender when the copy is complete. 

The files (or sub-trees if directories are specified) are sent to PUBDIR on sys­
tem, where PUBDIR is a public directory defined in the uucp source. 
Specifically the files are sent to 

PUBDIR/receive/userlmysystemlfiles. 

The destind recipient is notified by mai/(I) of the arrival of files. 

Uupick ac::epts or rejects the files transmitted to the user. Specifically, uupick 
searches PUB0IR for files destined for the user. For each entry (file or direc­
tory) found, the following message is printed on the standard output: 

from system: [file file-name] [dir dirname] ? 

Uupick then reads a line from the standard input to determine the disposition 
of the file: 

<new-line> Go on to next entry. 

d Delete the entry. 

m [ dir ] Move the entry to named directory dir (current directory is 
default) . 

a [ dir ] Same as m except moving all the files sent from system. 

p Print the content of the file. 

q Stop. 

EOT (control-d) Same as q. 

!command Escape to the shell to do command. 

* Print a command summary. 

Uupick invoked with the -ssystem option will only search the PUBDIR for files 
sent from system. 

PUBDIR/usrlspooIluucppublic 

NOTES 

public directory 

In order to send files that begin with a dot (e.g., .profile) the files must by 
qualified with a dot. For example: .profile, .prof*, .profil? are correct; whereas 
*prof*, ?profile are incorrect. 

SEE ALSO 
maiI(l), uucp(IC), uustat(lC), uux(lC). 
uuclean(lM) in the UNIX System V Administrator Reference Manual. 

- 1 -



UUX(IC) uux(IC) 

NAME 
uux - UNIX-to-UNIX system command execution 

SYNOPSIS 
DUX [ options ] command-string 

DESCRIPTION 
Uux will gather zero or more files from various systems, execute a command on 
a specified system and then send standard output to a file on a specified system. 
Note that, for security reasons, many installations will limit the list of com­
mands executable on behalf of an incoming request from uux. Many sites will 
permit little more than the receipt of mail (see mai/O» via uux. 

The command-string is made up of one or more arguments that look like a 
shell command line, except that the command and file names may be prefixed 
by system-name!. A null system-name is interpreted as the local system. 

File names m~y be one of 

(1) a full path name; 

(2) a path name preceded by ·xxx where xxx is a login name on the 
specified system and is replaced by that user's login directory; 

(3) anything else is prefixed by the current directory. 

As an example, the command 

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/ft > !ft.diff" 

will get the f1 files from the "usg" and "pwba" machines, execute a diff com­
mand and put the results in fl.4W in the local directory. 

Any special shell characters such as < >; I should be quoted either by quoting 
the entire command-string, or quoting the special characters as individual 
arguments. 

Uux will attempt to get aU files to the execution system. For files which are 
output files, the file name must be escaped using parentheses. For example, the 
command 

uux a!uucp b!lusrlfile \(c!/usr/file\) 

will send a uucp command to system "a" to get /usr/file from system "b" and 
send it to system "c". 

Uux will notify you if the requested command on the remote system was disal­
lowed. The response comes by remote mail from the remote machine. Execut­
able commands are listed in /usr/lib/uucp/L.cmds on the remote system. The 
format of the L.cmds file is: 

cmd,machine 1 ,machine2" .. 

If no machines are specified, then any machine can execute cmd. If machines 
are specified, only the listed machines can execute cmd. If the desired com­
mand is not listed in L.sys then no ml;l.chine can execute that command. 

Redirection of standard input and output is usually restricted to files in PUB­
DIR. Directories into which redirection is allowed must be specified in 
lusr/lib/uucp/USERFILE by the system administrator. See the uuep Adminis­
trator Manual in the UNIX System V Administrator Guide. 

The following options are interpreted by uux: 

The standard input to uux is made the standard input to the 
command -string. 

-0 Send no notification to user. 

- 1 -



uux{tC) uux(tc> 

FILES 

-mfile Report status of the transfer in file. If file is omitted, send mail to the 
requester when the copy is completed. 

- j Control writing of the uucp job number to standard output. 

Uux asso.,;iates a job number with each request. This job number can be used 
by uustat to obtain status or terminate the job. 

The environment variable JOBNO and the -j option are used to control the list­
ing of the uux job number on standard output. If the environment variable 
JOBNO is undefined or set to OFF, the job number will not be listed (default). 
If uuco is then invoked with the -j option, the job number will be listed. If 
the environment vr~riaHe JOBNO is set to ON and is exported, a job number will 
be written to standar d O'ltput each time uux is invoked. In this case, the -j 
option will suppress Olltput of "he job number. 

/usr/spool/uucp 
/usr/spool/uucppubJic 
/usrllib/uucp/* 

spool directory 
public directory (PCBDIR) 
other data and programs 

SEE ALSO 

BUGS 

f,1aiJ( 1), uuclean (I M), uucp (1 C). 

Only the first command of a shell pipeline may have a system-name!. All other 
command~ a~e executed on the system of the first command. 
The use 01 the shell metacharacter • will probably not do what you want it to 
do. The shell tokens < < and > > are not implemented. 
Only the first six characters of the system-name are significant. Any excess 
characters are ignored. 

- 2 -



VAL(l) VAL(t) 

NAME 
val - validate sees file 

SYNOPSIS 
val -
val [-s) [-rSIO) [-mname) [-ytype) files 

DESCRIPTION 
Val determines if the specified file is an sees file meeting the characteristics 
specified by the optional argument list. Arguments to val may appear in any 
order. The arguments consist of key letter arguments, which begin with a -, 
and named files. 

Val has a special argument, -, which causes reading of the standard input 
until an end-of-file condition is detected. Each line read is independently pro­
cessed as if it were a command line argument list. 

Val generates diagnostic messages on the standard output for each command 
line and file processed, and also returns a single 8-bit code upon exit as 
described below. 

The keyletter arguments are defined as follows. The effects of any keyletter 
argument apply independently to each named file on the command line. 

-s 

-rSID 

-mname 

-ytype 

The presence of this argument silences the diagnostic 
message normally generated on the standard output for 
any error that is detected while processing each named 
file on a given command line. 

The argument value SID (Sees IDentification String) is 
an sees delta number. A check is made to determine if 
the SID is ambiguous (e. g., rl is ambiguous because it 
physically does not exist but implies 1.1, 1.2, etc., which 
may exist) or invalid {e. g., r1.0 or r1.1.0 are invalid 
because neither case can exist as a valid delta number}. 
If the SID is valid and not ambiguous, a check is made 
to determine if it actually exists. 

The argument value name is compared with the sees 
%M% keyword in file. 

The argument value type is compared with the sees 
% Y% keyword in file. 

The 8-bit code returned by val is a disjunction of the possible errors, i. e., can 
be interpreted as a bit string where (moving from left to right) set bits are 
interpreted as follows: 

bit 0 = missing file argument; 
bit 1 = unknown or duplicate keyletter argument; 
bit 2 = corrupted sees file; 
bit 3 = cannot open file or file not sees; 
bit 4 = SID is invalid or ambiguous; 
bit 5 = SID does not exist; 
bit 6 = % Y%, -y mismatch; 
bit 7 = %M%, -m mismatch; 

Note that val can process two or more files on a given command line and in 
turn can process multiple command lines (when reading the standard input). 
In these cases an aggregate code is returned - a logical OR of the codes gen­
erated for each command line and file processed. 

- 1 -



VALet) VAL(I) 

SEE ALSO 
admin(1), delta(1), get(1), help(l), prs(1). 

DIAGNOSTICS 

BUGS 

Use help (I) for explanations. 

Val can process up to 50 files on a single command line. Any number above 50 
will produce a core dump. 

- 2 -



VC(O VC(I) 

NAME 
vc - version control 

SYNOPSIS 
vc [~a] [-t] [-cchad [-s] [keyword==value ... keyword==value] 

DESCRIPTION 
The vc command copies lines from the standard input to the standard output 
under control of its arguments and control statements encountered in the stan­
dard input. In the process of performing the copy operation, user declared key­
words may be replaced by their string value when they appear in plain text 
andlor control statements. 

The copying of lines from the standard input to the standard output is condi­
tional, based on tests Gn control statements) of keyword values specified in con­
trol statements or as vc command arguments. 

\ 

A control statement is a single line beginning with a control character, except 
as modified by the -t key letter (see below). The default control character is 
colon (:), except as modified by the -c keyletter (see below). Input lines 
beginning with a backslash (\.) followed by a control character are not control 
lines and are copied to the standard output with the backslash removed. Lines 
beginning with a backslash followed by a non-control character are copied in 
their entirety. 

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic. 
A value is any ASCII string that can be created with ed(I); a numeric value is 
an unsigned string of digits. Keyword values may not contain blanks or tabs. 

Replacement of keywords by values is done whenever a keyword surrounded by 
control characters is encountered on a version control statement. The -a 
key letter (see below) forces replacement of keywords in all lines of text. An 
uninterpreted control character may be included in a value by preceding it with 
\. If a literal \ is desired, then it too must be preceded by \. 

Keyletter Arguments 

-a 

-t 

-cchar 

-s 

Forces replacement of keywords surrounded by control 
characters with their assigned value in all text lines and 
not just in vc statements. 

All characters from the beginning of a line up to and 
including the first tab character are ignored for the pur­
pose of detecting a control statement. If one is found, 
all characters up to and including the tab are discarded. 

Specifies a control character to be used in place of :. 

Silences warning messages (not error) that are normally 
printed on the diagnostic output. 

Version Control Statements 

:dcl keyword[' "', keyword] 
Used to declare keywords. All keywords must be declared. 

:asg keyword==value 
Used to assign values to keywords. An asg statement overrides the 
assignment for the corresponding keyword on the vc command line and 
all previous asg's for that keyword. Keywords declared, but not assigned 
values have null values. 

:if condition 

:end 

- 1 -



VC(t) 

::text 

:on 

:off 

VC(t) 

Used to skip lines of the standard input. If the condition is true all lines 
between the if statement and the matching end statement are copied to 
the standard output. If the condition is false, all intervening lines are dis­
carded, including control statements. Note that intervening if statements 
and matching end statements are recognized solely for the purpose of 
maintaining the proper if-end matching. 
The syntax of a condition is: 

<cond> 
<or> 
<and> 
<exp> 
<op> 
<value> 

::= [ "not" ] <or> 
::= <and> I <and> "I" <or> 
::= <exp> I <exp> "&" <and> 
::= "(" <or> ")" I <value> <op> <value> 
::== U=" I "!==" I "<" I ">" 
::= <arbitrary ASCII string> I <numeric string> 

The available operators and their meanings are: 

!= 
& 
I 
> 
< 
() 
not 

equal 
not equal 
and 
or 
greater than 
less than 
used for logical groupings 
may only occur immediately after the if, and 
when present, inverts the value of the 
entire condition 

The > and < operate only on unsigned integer values (e.g., : 012 > 12 
is false). All other operators take strings as arguments (e.g., : 012 != 12 
is true). The precedence of the operators (from highest to lowest) is: 

= != > < all of equal precedence 
& 
I 

Parentheses may be used to alter the order of precedence. 
Values must be separated from operators or parentheses by at least one 
blank or tab. 

Used for keyword replacement on lines that are copied to the standard 
output. The two leading control characters are removed, and keywords 
surrounded by control characters in text are replaced by their value 
before the line is copied to the output file. This action is independent of 
the - a keyletter. 

Turn on or off keyword replacement on all lines. 

:ctl char 
Change the control character to char. 

:msg message 
Prints the given message on the diagnostic output. 

- 2 -



YC(l) YCO) 

:err message 
Prints the given message followed by: 

ERROR: err statement on line ... (915) 
on the diagnostic output. Vc halts execution, and returns an exit code of 
l. 

SEE ALSO 
ed(l), help(1). 

DIAGNOSTICS 
Use helpO) for explanations. 

EXIT CODES 
0- normal 
1 - any error 

- 3 -



VI (1) VI (1) 

NAME 
vi - screen-oriented (visual) display editor based on ex 

SYNOPSIS 
vi [ -t tag] [ -r file] [ -I ] [ -wn ] [ -x ] [ -R ] [ +command ] 
name ... 
view [ -t tag] [ -r file ] [ -I ] [ -wn ] [ -x ] [ -R ] [ +command 
] name ... 
vedit [ -t tag ] [ -r file ] [ -I ] [ -wn ] [ -x ] [ -R ] [ +com­
mand] name ... 

DESCRIPTION 
Vi (visual) is a display-oriented text editor based on an underlying line editor 
ex (1). It is possible to use the command mode of ex from within vi and vice­
versa. 

When using vi, changes you make to the file are reflected in what you see on 
your terminal screen. The position of the cursor on the screen indicates the 
position within the file. The Vi QUick Reference card, the Introduction to 
Display Editing with Vi and the Ex Reference Manual provide full details on 
using vi. 

INVOCATION 
The following invocation options are interpreted by vi: 

-t tag Edit the file containing the tag and position the editor at its 
definition. 

-rfile 

-I 

-wn 

-x 

-R 

+command 

Recover file after an editor or system crash. If file is not 
specified a list of all saved files will be printed. 

LISP mode; indents appropriately for lisp code, the 0 {} [( and 
II commands in vi and open are modified to have meaning for 
lisp. 

Set the default window size to n. This is useful when using 
the editor over a slow speed line. 

Encryption mode; a key is prompted for allowing creation or 
editing of an encrypted file. 

Read only mode; the readonIy flag is set, preventing accidental 
overwriting of the file. 

The specified ex command is interpreted before editing 
begins. 

The name argument indicates files to be edited. 

The view invocation is the same as vi except that the readonIy flag is set. 

The vedit invocation is intended for beginners. The report flag is set to I, and 
the showmode and novice flags are set. These defaults make it easier to get 
started learning the editor. 

"VI MODES" 
Command 

Input. 

Last line 

Normal and initial mode. Other modes return to command 
mode upon completion. ESC (escape) is used to cancel a par­
tial command. 

Entered by a i A I 0 0 c C s S R. Arbitrary text may then be 
entered. Input mode is normally terminated with ESC charac­
ter, or abnormally with interrupt. 

Reading input for : / ? or !; terminate with CR to execute, 
interrupt to cancel. 

- 1 -



VI (I) 

COMMAND SUMMARY 
Sample commands 

-1 f-
h j k I 
itextESC 
cwnewESC 
easESC 
x 
dw 
dd 
3dd 
u 
ZZ 
:q!CR 
ltextCR 
~U AD 
:ex cmdCR 

Counts before vi commands 

arrow keys move the cursor 
same as arrow keys 
insert text abc 
change word to new 
pluralize word 
delete a character 
delete a word 
delete a line 
... 3 lines 
undo previous change 
exit vi, saving changes 
quit, discarding changes 
search for lext 
scroll up or down 
any ex or ed command 

VI (1) 

Numbers may be typed as a prefix to some commands. They are interpreted in 
one of these ways. 
line/column number 
scroll amount 
repeat effect 

Interrupting, canceling 

z G I 
AD AU 
most of the rest 

ESC end insert or incomplete cmd 
A? (delete or rubout> interrupts 
~L reprint screen if A? scrambles it 
AR reprint screen if ~ L is - key 

File manipulation 
:wCR 
:qCR 
:q!CR 
:e nameCR 
:e!CR 
:e + nameCR 
:e +nCR 
:e #CR 

write back changes 
quit 
quit, discard changes 
edit file name 
reedit, discard changes 
edit, starting at end 
edit starting at line n 
edit alternate file 
synonym for :e # 

:w nameCR write file name 
:w! nameCR overwrite file name 
:shCR run shell, then return 
:!cmdCR run cmd, then return 
:nCR edit next file in arglist 
:n argsCR specify new arglist 
AG show current file and line 
:ta tagCR to tag file entry tag 
AI :ta, following word is tag 

In general, any ex or ed command (such as substitute or global) may be typed, 
preceded by a colon and followed by a CR. 

- 2 -



VI (I) 

Positioning within file 
~F 

~B 

~D 

~U 

G 
/pat 
?pat 
n 
N 
/pat/ +n 
?pat? -n 
11 
[( 
( 
) 
{ 
} 
% 

forward screen 
backward screen 
scroll down half screen 
scroll up half screen 
go to specified line (end default) 
next line matching pat 
prev line matching pat 
repeat last / or ? 
reVerse last / or ? 
nth h-.e after pat 
nth line before pat 
next section/function 
previous sectionlfunction 
beginning of sentence 
end of sentence 
beginning of paragraph 
end of paragraph 
find matching ( ) { or } 

Adjusting the screen 
~L clear and redraw 
~R 

zCR 
z-CR 
z.CR 
/pat/z-CR 
zn.CR 
~E 

~y 

retype, eliminate @ lines 
redraw, current at window top 
... at bottom 
... at center 
pat line at bottom 
use n line window 
scroll window down 1 line 
scroll window up 1 line 

Marking and returning 
" move cursor to previous context 

.,. at first non-white in line 
rnx mark current position with letter x 
'x move cursor to mark x 
'x .,. at first non-white in line 

Line positioning 
H 
L 
M 
+ 

CR 
1 or j 
1 or k 

top line on screen 
last line on screen 
middle line on screen 
next line, at first non-white 
previous line, at first non-white 
return, same as + 
next line, same column 
previous line, same column 

- 3 -

VI (1) 



VI (1) 

Character positioning 
" first non white 
o beginning of line 
$ end of line 
h or­
lor -
"H 
space 
fx 
Fx 
tx 
Tx 

forward 
backwards 
same as -
same as -
find x forward 
f backward 
upto x forward 
back upto x 
repeat last f F t or T 
inverse of; 
to specified column 

% find matching ( ( ) or } 

Words, sentences, paragraphs 
w wordfurward 
b back word 
e end of word 
) to next sentence 
} to next paragraph 
( back sentence 
{ back paragraph 
W blank delimited word 
B back W 
E to end of W 

Commands for LISP Mode 
) Forward s-expression 
} ... but do not stop at atoms 
( Back s-expression 
{ ... but do not stop at atoms 

Corrections during insert 
"H erase last character 
"w erase last word 
erase your erase, same as "H 
kill your kill, erase input this line 
\ quotes "H. your erase and kill 
ESC ends insertion, back to command 
"? interrupt. terminates insert 
AD backtab over autoindent 
lAD kill autoindent, save for next 
O"D ... but at margin next also 
"V quote non-printing character 

nsert and replace 
a 
i 
A 
I 
o 
o 
rx 
RtextESC 

append after cursor 
insert before cursor 
append at end of line 
insert before first non-blank 
open line below 
open above 
replace single char with x 
replace characters 

- 4 -

VI (1) 



VI< I) VI (I) 

Operators 
Operators are followed by a cursor motion, and affect all text that would have 
been moved over. For example, since w moves over a word, dw deletes the word 
that would be moved over. Double the operator, e.g., dd to affect whole lines. 

d delete 
c change 
y yank lines to buffer 
< left shift 
> right shift 

filter through command 
indent for LISP 

Miscellaneous Operations 
C change rest of line (c$) 
D delete rest of line (dS) 
s substitute chars (cl) 
S substitute lines (cc) 
J join lines 
x delete characters (dO 
X ... before cursor (dh) 
Y yank lines (yy) 

Yank and Put 
Put inserts the text most recently deleted or yanked. However, if a buffer is 
named, the text in that buffer is put instead. 

p put back text after cursor 
P put before cursor 
"xp put from buffer x 
"xy yank to buffer x 
"xd delete into buffer x 

Undo, Redo, Retrieve 
u undo last change 
U restore current line 

repeat last change 
tId p retrieve d'th last delete 

AUTHOR 
Vi and ex were developed by The University of California, Berkeley California, 
Computer Science Division, Department of Electrical Engineering and Com­
puter Science. 

SEE ALSO 
ex (1). 

Vi QUick Reference Card. 
An Introduction to Display Editing with Vi, and Ex Reference Manual in the 
UNIX System Documentation Workbench. 

CA VEA TS AND BUGS 
The commands which are not supported are detailed in "An Introduction to 
Display Editing with Vi". The most notable commands which are missing 
are the macro and abbreviation facilities, and the vedit invocation. 

- 5 -



VI (I) VI (I) 

Software tabs using "'T work only immediately after the autoindent. 

Left and right shifts on intelligent terminals do not make use of insert and 
delete character operations in the terminal. 

There should be an interactive help facility and a tutorial suited for beginners. 

- 6 -



WAIT(l) WAIT (I) 

NAME 
wait - await completion of process 

SYNOPSIS 
wait 

DESCRIPTION 
Wait until all processes started with & have completed, and report on abnor­
mal terminations. 

Because the wait (2) system call must be executed in the parent process, the 
shell itself executes wait, without creating a new process. 

SEE ALSO 

BUGS 

sh (1). 
wait(2) in the UNIX System V Programmer Reference Manual. 

Not all the processes of a 3- or more-stage pipeline are children of the shell, 
and thus cannot be waited for. 

- 1 -



WC(t) WC(1) 

NAME 
wc - word count 

SYNOPSIS 
we [ -Iwe ] [ names 

DESCRIPTION 
We counts lines, words, and characters in the named files, or in the standard 
input if no names appear. It also keeps a total count for all named files. A 
word is a maximal string of characters delimited by spaces, tabs, or new-lines. 

The options I, w, and c may be used in any combination to specify that a subset 
of lines, words, and characters are to be reported. The default is -Iwc. 

When names are specified on the command line, they will be printed along with 
the counts. 

- 1 -



WHAT(I) WHAT(I) 

NAME 
what - identify SCCS files 

SYNOPSIS 
what [-s] files 

DESCRIPTION 
What searches the given files for all occurrences of the pattern that ger(l) sub­
stitutes for %Z% (this is @(#) at this printing) and prints out what follows 
until the first ", >, new-line, \, or null character. For example, if the C pro­
gram in file f.c contains 

char idend] = "@(#)identification information "; 

and f.c is compiled to yield f.o and a.out, then the command 

what f.c f.o a.out 

will print 

f.c: 
identification information 

f.o: 
identification information 

a.out: 
identification information 

What is intended to be used in conjunction with the command get (I), which 
automatically inserts identifying information, but it can also be used where the 
information is inserted manually. Only one option exists: 

-s Quit after finding the first occurrence of pattern in each 
file. 

SEE ALSO 
get (1), help( 1). 

DIAGNOSTICS 

BUGS 

Exit status is 0 if any matches are found, otherwise 1. Use he/pO) for expla­
nations. ' 

It is possible that an unintended occurrence of the pattern @(#) could be 
found just by chance, but this causes no harm in nearly all cases. 

- 1 -



WHO(l) WHO(l) 

NAME 
who - who is on the system 

SYNOPSIS 
who [ - uTHlpdbrtasq] [ file ] 

who am i 

who am I 

DESCRIPTION 
Who can list the user's name, terminal line, login time, elapsed time since 
activity occurred on the line, and the process-ID of the command interpreter 
(shell) for each current UNIX system user. It examines the letc/utmp file to 
obtain its information. If file is given, that file is examined. Usually, file will 
be letc/wtmp, which contains a history of all the logins since the file was last 
created. 

Who with the am i or am I option identifies the invoking user. 

Except for the default -s option, the general format for output entries is: 

name [state] line time activity pid [comment1 [exit1 

With options, who can list logins, logoffs, reboots, and changes to the system 
clock, as well as other processes spawned by the init process. These options are: 

-u This option lists only those users who are currently logged in. The name 
is the user's login name. The line is the name of the line as found in the 
directory Idev. The time is the time that the user logged in. The 
activity is the number of hours and minutes since activity last occurred 
on that particular line. A dot (,) indicates that the terminal has seen 
activity in the last minute and is therefore "current". If more than 
twenty-four hours have elapsed or the line has not been used since boot 
time, the entry is marked old. This field is useful when trying to deter­
mine whether a person is working at the terminal or not. The pid is the 
process-ID of the user's shell. The comment is the comment field associ­
ated with this line as found in letc/inittab (see inittab (4». This can 
contain information about where the terminal is located, the telephone 
number of the dataset, type of terminal if hard-wired, etc. 

-T This option is the same as the -u option, except that the state of the 
terminal line is printed. The state describes whether someone else can 
write to that terminal. A + appears if the terminal is writable by any­
one; a - appears if it is not. Root can write to all lines having a + or a 
- in the state field. If a bad line is encountered, a ? is printed. 

-I This option lists only those lines on which the system is waiting for 
someone to login. The name field is LOGIN in such cases. Other fields 
are the same as for user entries except that the state field does not exist. 

- H This option will print column headings above the regular output. 

-q This is a quick who, displaying only the names and the number of users 
currently logged on. When this option is used, all other options are 
ignored. 

-p This option lists any other process which is currently active and has been 
previously spawned by init. The name field is the name of the program 
executed by init as found in letc/inittab. The state, line, and activity 
fields have no meaning..:rhe comment field shows the id field of the line 
from letc/inittab that spawned this process. See inittab (4). 

- 1 -



WHO(I) WHO(t) 

FILES 

-d This option displays all processes that have expired and not been 
respawned by in it . The exit field appears for dead processes and con­
tains the termination and exit values (as returned by wait (2», of the 
dead process. This can be useful in determining why a process ter­
minated. 

-b This option indicates the time and date of the last reboot. 

-r This option indicates the current run-level of the init process. 

-t This option indicates the last change to the system clock (via the 
date (t) command) by root. See su (1). 

-a This option processes /etc/utmp or the named file with all options turned 
on. 

-s This option is the default and lists only the name, line, and time fields. 

letc/utmp 
letc/wtmp 
letc/inittab 

SEE ALSO 
date{ 1), login (1), mesg (1), su (1). 
wait(2), inittab(4), utmp(4) in the UNIX System V Programmer Reference 
Manual. 
init(IM) in the UNIX System V Administrator Reference Manual. 

- 2 -



WRITE(t) WRITE(I) 

NAME 
write - write to another user 

SYNOPSIS 
write user [ line ] 

DESCRIPTION 

FILES 

Write copies lines from your terminal to that of another user. When first 
called, it sends the message: 

Message from yourname <tty??) [ date ] •.. 

to the person you want to talk to. When it has successfully completed the con­
nection, it also sends two bells to your own terminal to indicate that what you 
are typing is being sent. 

The recipient of the message should write back at this point. Communication 
continues until an end of file is read from the terminal, an interrupt is sent, or 
the recipient has executed "mesg n". At that point write writes EOT on the 
other terminal and exits. 

If you want to write to a user who is logged in more than once, the line argu­
ment may be used to indicate which line or terminal to send to (e.g., ttyOO); 
otherwise, the first writable instance of the user found in /etc/utmp is assumed 
and the following message posted: 

user is logged on more than one place. 
You are connected to "terminal". 
Other locations are: 
terminal 

Permission to write may be denied or granted by use of the mesg{]) command. 
Writing to others is normally allowed by default. Certain commands, in partic­
ular nroff(l) and prO) disallow messages in order to prevent interference with 
their output. However, if the user has super-user permissions, messages can be 
forced onto a write-inhibited terminal. 

If the character! is found at the beginning of a line, write calls the shell to exe­
cute the rest of the line as a command. 

The following protocol is suggested for using write: when you first write to 
another user, wait for them to write back before starting to send. Each person 
should end a message with a distinctive signal (i.e., (0) for "over") so that the 
other person knows when to reply. The signal (00) (for "over and out") is sug­
gested when conversation is to be terminated. 

letc/utmp to find user 
Ibin/sh to execute! 

SEE ALSO 
maiI(l), mesg(l), nrotf(I), pr(l), sh(l), whoO). 

DIAGNOSTICS 
"user is not logged on" if the person you are trying to write to is not logged on. 
"Permission denied" if the person you are trying to write to denies that permis­

sion (with mesg). 
"Warning: cannot respond, set mesg -y" if your terminal is set to mesg nand 

the recipient cannot respond to you. 
"Can no longer write to user" if the recipient has denied permission (mesg n) 

after you had started writing. 

- 1 -



XARGS(I) XARGS(I) 

NAME 
xargs - construct argument list(s) and execute command 

SYNOPSIS 
xargs [flags] [ command [initial-arguments] ] 

DESCRIPTION 
Xargs combines the fixed initial-arguments with arguments read from standard 
input to execute the specified command one or more times. The number of 
arguments read for each command invocation and the manner in which they 
are combined are determined by the flags specified. 

Command, which may be a shell file, is searched for, using one's $PATH. If 
command is omitted, Ibin/echo is used. 

Arguments read in from standard input are defined to be contiguous strings of 
characters delimited by one or more blanks, tabs, or new-lines; empty lines are 
always discarded. Blanks and tabs may be embedded as part of an argument if 
escaped or quoted. Characters enclosed in quotes (single or double> are taken 
literally, and the delimiting quotes are removed. Outside of quoted strings a 
backslash (\.) will escape the next character. 

Each argument list is constructed starting with the initial-arguments, followed 
by some number of arguments read from standard input (Exception: see -i 
flag). Flags -i, -I, and -n determine how arguments are selected for each 
command invocation. When none of these flags are coded, the initial­
arguments are followed by arguments read continuously from standard input 
until an internal buffer is full, and then command is executed· with the accumu­
lated args. This process is repeated until there are no more args. When there 
are flag conflicts (e.g., -I vs. -n), the last flag has precedence. Flag values 
are: 

-Inumber 

-ireplstr 

-nnumber 

Command is executed for each non-empty number lines 
of arguments from standard input. The last invocation 
of command will be with fewer lines of arguments if 
fewer than number remain. A line is considered to end 
with the first new-line unless the last character of the 
line is a blank or a tab; a trailing blank/tab signals con­
tinuation through the next non-empty line. If number is 
omitted, 1 is assumed. Option -x is forced. 

Insert mode: command is executed for each line from 
standard input, taking the entire line as a single arg, 
inserting it in initial-arguments for each occurrence of 
replstr. A maximum of 5 arguments in initial­
arguments may each contain one or more instances of 
replstr. Blanks and tabs at the beginning of each line 
are thrown away. Constructed arguments may not grow 
larger than 255 characters, and option -x is also 
forced. {} is assumed for replstr if not specified. 

Execute command using as many standard input argu­
ments as possible, up to number arguments maximum. 
Fewer arguments will be used if their total size is 
greater than size characters, and for the last invocation 
if there are fewer than number arguments remaining. If 
option -x is also coded, each number arguments must 
fit in the size limitation, else xargs terminates execu­
tion. 

- 1 -



XARGS(I) 

-t 

-p 

-x 

-ssize 

-eeofstr 

XARGS(I) 

Trace mode: The command and each constructed argu­
ment list are echoed to file descriptor 2 just prior to 
their execution. 

Prompt mode: The user is asked whether to execute 
command each invocation. Trace mode (-t) is turned 
on to print the command instance to be executed, fol­
lowed by a ? •• prompt. A reply of y (optionally fol­
lowed by anything) will execute the command; anything 
else, including just a carriage return, skips that particu­
lar invocation of command. 

Causes xargs to terminate if any argument list would be 
greater than size characters; -x is forced by the options 
-i and -I. When neither of the options -i, -I, or -0 

are coded, the total length of all arguments must be 
within the size limit. 

The maximum total size of each argument list is set to 
size characters; size must be a positive integer less than 
or equal to 470. If -s is not coded, 470 is taken as the 
default. Note that the character count for size includes 
one extra character for each argument and the count of 
characters in the command name. 

Eofstr is taken as the logical end-of-file string. Under­
bar (_) is assumed for the logical EOF string if -e is 
not coded. The value -e with no eofstr coded turns off 
the logical EOF string capability (underbar is taken 
literally). Xargs reads standard input until either end­
of-file or the logical EOF string is encountered. 

Xargs will terminate if either it receives a return code of -1 from, or if it can­
not execute, command. When command is a shell program, it should explicitly 
exit (see sh (I» with an appropriate value to avoid accidentally returning with 
-1. 

EXAMPLES 
The following will move all files from directory $1 to directory $2, and echo 
each move command just before doing it: 

Is $1 I xargs -i -t mv $1/{} $2/{} 

The following will combine the output of the parenthesized commands onto one 
line, which is then echoed to the end of file log: 

(Iogname; date; echo $0 $.) I xargs > > log 

The user is asked which files in the current directory are to be archived and 
archives them "into arch (I.) one at a time, or (2.) many at a time. 

1. Is I xargs -p -1 ar r arch 
2. Is I xargs -p -1 I xargs ar r arch 

The following will execute diff(l) with successive pairs of arguments originally 
typed as shell arguments: 

SEE ALSO 
sh(O. 

DIAGNOSTICS 

echo $. I xargs -n2 diff 

Self-ex plana tory. 

- 2 -



YACCO) YACCO) 

NAME 
yacc - yet another compiler-compiler 

SYNOPSIS 
yacc [ - vdlt ] grammar 

DESCRIPTION 

FILES 

Yacc converts a context-free grammar into a set of tables for a simple automa­
ton which executes an LR(I) parsing algorithm. The grammar may be ambigu­
ous; specified precedence rules are used to break ambiguities. 

The output file, y.tab.c, must be compiled by the C compiler to produce a pro­
gram yyparse. This program must be loaded with the lexical analyzer pro­
gram, yylex, as well as main and yyerror, an error handling routine. These 
routines must be supplied by the user; lex (I) is useful for creating lexical 
analyzers usable by yacc. 

If the -v flag is given, the file y.output is prepared, which contains a descrip­
tion of the parsing tables and a report on conflicts generated by ambiguities in 
the grammar. 

If the -d flag is used, the file y.tab.h is generated with the #define statements 
that associate the yacc-assigned "token codes" with the user-declared "token 
names". This allows source files other than y.tab.c to access the token codes. 

If the -I flag is given, the code produced in y.tab.c will not contain any #line 
constructs. This should only be used after the grammar and the associated 
actions are fully debugged. 

Runtime debugging code is always generated in y.tab.c under conditional com­
pilation control. By default, this code is not included when y.tab.c is compiled. 
However, when yacc's -t option is used, this debugging code will be compiled 
by default. Independent of whether the -t option was used, the runtime 
debugging code is under the control of YYDEBUG, a pre-processor symbol. If 
YYDEBUG has a non-zero value, then the debugging code is included. If its 
value is zero, then the code will not be included. The size and execution time 
of a program produced without the runtime debugging code will be smaller and 
slightly faster. 

y.output 
y.tab.c 
y.tab.h 
yacc.tmp, 

defines for token names 

yacc.debug, yacc.acts temporary files 
/usrllib/yaccparparser prototype for C programs 

SEE ALSO 
lex (I). 
malloc(3X) in the UNIX System V Programmer Reference Manual. 

Y ACC - Yet Another Compiler Compiler in the UNIX System V Support Tools 
Guide. 

DIAGNOSTICS 

BUGS 

The number of reduce-reduce and shift-reduce conflicts is reported on the stan­
dard error output; a more detailed report is found in the y.output file. Simi­
larly, if some rules are not reachable from the start symbol, this is also 
reported. 

Because file names are fixed, at most one yacc process can be active in a given 
directory at a time. 

- 1 -





READER COMMENT FORM 

UNIX SYSTEM V 
Use r Ref erence 

Altos Computer Systems 
2641 Orchard Parkway 

San Jose, CA 95134 

This document has been prepared for use with your Altos 
Computer System. Should you find an error or problem in 
this manual, please write it down (noting page number), 
and return this form to the ALTOS PUBLICATIONS DEPARTMENT. 

System Model Number __________________ __ 

Serial Number ______________ __ 

Document Title ____________________________________________ __ 

Revision Number 698-15834-881 Date ________________________ _ 
Name ______________________________________________________ __ 

Company Name ______________________________________________ __ 

Address, __________________________________________________ ___ 





Printed in U.S.A. 
PIN 690-15834'()01 

[ALOOl) 
COMPUTER SYSTEMS® 

2641 Orchard Park Way, San Jose, California 95134 
(408) 946-6700, Telex 470642 Alto UI July 1985 


