
~alpha .
~~micro

SOFTWARE MANUAL

AMOS MONITOR

CALLS MANUAL

DWM-00100-42

AMOS
monitor calls

manual

Thi• document reflect• AMOS versions 4.'1 and later

~alpha
~~micro

'AMOS', 'AlphaBASIC', and 'AM-100'

are trademarks of products
and software of

ALPHA MICROSYSTEMS
Irvine, CA 92714

©1978, 1979 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

Page iii

PREFACE

One of the major features of the AMOS operating system is the Large number
of monitor calls available to the assembly Language programmer. By making
most common routines available in the monitor, AMOS frees the programmer
from having to repetitivly write the same routine. This manual is designed
to describe these monitor calls.

It is assumed that the reader of this manual is familiar with assembly
Language programming and the AM-100 instruction set. It is also assumed
that the reader is familiar with the AM-100 macro assembly system described
in the "Assembly Language Programmers Manual." This manual is most
emphatically NOT a tutorial on assembly Language programming. Many such
tutorials exist; if the reader is just Learning assembly Language, he or she
should consult such a book before reading this manual.

CHAPTER 1

CHAPTER 2

CHAPTER 3

Page v

Table of Contents

COMMUNICATING WITH THE AM-100 MONITOR

1.1 MONITOR CALL CALLING FORMAT •••••••••••••••••• 1-1
1.1.1 Arguments ••••••••••••••••••••••••••••• 1-2
1.1.2 Standard Address Arguments •••••••••••• 1-2

JOB SCHEDULING AND CONTROL SYSTEM

2.1 THE JOB CONTROL BLOCK (JCB) •••••••••••••••••• 2-1
2.1.1 Example - Scanning The Job

Control Area •••••••••••••••••••••••••• 2-2
2.2 ACCESSING YOUR JCB ••••••••••••••••••••••••••• 2-3

2.2.1 Calling Sequence •••••••••••••••••••••• 2-3
2.3 JOB SCHEDULING CALLS ••••••••••••••••••••••••• 2-3
2.4 JOB CONTROL BLOCK FORMAT ••••••••••••••••••••• 2-3

2.4.1 JOBSTS - The Job Status Word •••••••••• 2-4
2.4.2 JOBSPR - The Stack Pointer

2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13
2.4.14
2.4.15
2.4.16
2.4.17
2.4.18
2.4.19

2.4.20
2.4. 21
2.4.22

Reset Address •••••••••••••••••••••••••
JOBNAM - The Job Name •••••••••••••••••
JOBBAS - The Memory Base Address ••••••
JOBSIZ - The Memory Partition Site ••••
JOBUSR - The Current PPN ••••••••••••••
JOBPRV - The Privilege Word •••••••••••
JOBPRG - The Current Program Name •••••
JOBCMZ - The Command File Size ••••••••

JOBCMS - The Command File Status •••••
JOBERC - The Error Control Address •••
JOBTYP - The Job Type ••••••••••••••••
JOBBPT - The Breakpoint Address ••••••
JOBBNK - The Memory Bank Pointer •••••
JOBDEV - The Default Device ••••••••••
JOBDRV - The Default Drive •••••••••••
JOBTRM - The Terminal Block Pointer ••
JOBRBK - The Run Control Block •••••••
JOBFPE - The Floating-Point
Trap Address
JOBRNQ - The
JOBDYS - The
JOBSTK - The

Scheduling Area •••••••••
DYSTAT Address ••••••••••
Job's Stack Area ••••••••

MEMORY CONTROL SYSTEM CALLS

2-4
2-4
2-5
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-7
2-7
2-8

2-8
2-8
2-9
2-9

3.1 MEMORY PARTITION FORMAT •••••••••••••••••••••• 3-2
3.2 MEMORY MODULE FORMAT ••••••••••••••••••••••••• 3-5
3.3 MANIPULATING MEMORY MODULES •••••••••••••••••• 3-6

3.3.1 Allocating a Memory Module •••••••••••• 3-8

CHAPTER 4

CHAPTER 5

CHAPTER 6

3.4

3.3.2
3.3.3
3.3.4
MEMORY
3.4.1

3.4.2
3.4.3

Changing a Memory Module ••••••••••••••
Deleting a Memory Module ••••••••••••••
Permanent and Temporary Modules •••••••
MAPPING SYSTEM ••••••••••••••••••••••••
Internal Table Format •••••••••••••••••
3.4.1.1 The MEMDEF Word ••••••••••••••
3.4.1.2 The JOBBNK Word ••••••••••••••
The Bank Switching Process ••••••••••••
The BNKSWP Monitor Call •••••••••••••••

Page vi

3-8
3-8
3-8
3-9
3-10
3-10
3-11
3-11
3-11

LOADING AND LOCATING MEMORY MODULES

4.1 THE SRCH AND FETCH CALLS ••••••••••••••••••••• 4-1
4.1.1 Specifying the Module Name •••••••••••• 4-1
4.1.2 The Module Address •••••••••••••••••••• 4-2
4.1.3 Flags ••••••••••••••••••••••••••••••••• 4-2

4.1.4

4.1.3.1 F.FCH - Fetch Module
From Disk •••••••••••••••••••• 4-2

4.1.3.2 F.USR - Bypass System
Memory Search •••••••••••••••• 4-3

4.1.3.3 F.ABS - Bypass Memory
Search ••••••••••••••••••••••• 4-3

4.1.3.4 F.FIL - Mark Module as
Permanent ••••••••••••••••••••

Completion Codes 4-3
4-3

MONITOR QUEUE SYSTEM CALLS

5.1 INCREASING THE AVAILABLE QUEUE LIST SIZE ••••• 5-1
5.2 QUEUE BLOCK USAGE BY THE SYSTEM •••••••••••••• 5-2
5.3 QUEUE SYSTEM MONITOR CALLS ••••••••••••••••••• 5-3

5.3.1 QGET - Obtain a Free Queue Block •••••• 5-3
5.3.2 QRET - Return a Queue Block ••••••••••• 5-3
5.3.3 GADD, QINS - Manipulating Queue

Blocks •••••••••••••••••••••••••••••••• 5-3

THE FILE SERVICE SYSTEM

6.1 THE DATASET DRIVER BLOCK ••••••••••••••••••••• 6-1
6.1.1 DOB Format •••••••••••••••••••••••••••• 6-2

6.1.1.1 Error Code ••••••••••••••••••• 6-2
6.1.1.2 Flags •.•.••.•..•••.....•.•••• 6-4
6.1.1.3 Buffer Address ••••••••••••••• 6-4
6.1.1.4 Record Size •••••••••••••••••• 6-4
6.1.1.5 Buffer Index ••••••••••••••••• 6-4
6.1.1.6 Record Number •••••••••••••••• 6-5
6.1.1.7 Queue Chain Link ••••••••••••• 6-5
6.1.1.8 JCB Address •••••••••••••••••• 6-5
6.1.1.9 Job Priority ••••••••••••••••• 6-5
6.1.1.10 Device Code ••••••••••••••••• 6-5
6.1.1.11 Drive- ••••••••••••••••••••••• 6-5

Page vii

6.1.1.12 Call Level •••••••••••••••••• 6-6
6.1.1.13 Filename and Extension •••••• 6-6
6.1.1.14 PPN•...••.•....•...... 6-6
6.1.1.15 Open Code ••••••••••••••••••• 6-6
6.1.1.16 Driver Work Area •••••••••••• 6-6

6.1.2 Device Transfer Buffers ••••••••••••••• 6-6
6.1.3 Error Handling •••••••••••••••••••••••• 6-7

6.1.3.1 Error Codes •••••••••••••••••• 6-7
6.2 FILE SERVICE MONITOR CALLS ••••••••••••••••••• 6-8

6.2.1 FSPEC - Process an ASCII Filespec ••••• 6-8
6.2.2 !NIT - Initialize the DDB ••••••••••••• 6-9
6.2.3 LOOKUP - Find the File •••••••••••••••• 6-10
6.2.4 OPEN! - Open a File for Input ••••••••• 6-10
6.2.5 OPENO - Open a File for Output •••••••• 6-11
6.2.6 OPENR - Open a File for

6.3

Random Processing ••••••••••••••••••••• 6-11
6.2.7 CLOSE - Close a File •••••••••••••••••• 6-11
6.2.8 READ - Perform a Physical Transfer •••• 6-11

6.2.8.1 Sequential Devices ••••••••••• 6-11
6.2.8.2 Random Devices ••••••••••••••• 6-12
6.2.8.3 Interrupt Structure •••••••••• 6-12

6.2.9 WRITE - Perform a Physical Write •••••• 6-12
6.2.9.1 Sequential Devices ••••••••••• 6-12
6.2.9.2 Random Devices ••••••••••••••• 6-12
6.2.9.3 Interrupt Structure •••••••••• 6-13

6.2.10 INPUT - Perform a Logical Read •••••••• 6-13
6.2.10.1 Sequential File

Processing ••••••••••••••••••
6.2.10.1.1 Example •••••••••
Random File Processing ••••••
Special Devices •••••••••••••

Perform a Logical Write ••••••
Sequential File Processing ••
6.2.11.1.1 Example •••••••••

6.2.11.2 Random File Processing ••••••
6.2.11.3 Special Devices •••••••••••••

6.2.12 WAIT - Wait for IO Completion •••••••••

6.2.11

6.2.10.2
6.2.10.3
OUTPUT -
6.2.11.1

6.2.13 DELETE - Delete a File ••••••••••••••••
6.2.14 RENAME - Rename a File ••••••••••••••••
6.2.15 ASSIGN - Assign a Device ••••••••••••••
6.2.16 DEASGN - Deassign a Device ••••••••••••
DISK SERVICE MONITOR CALLS •••••••••••••••••••
6.3.1 Calling Sequence ••••••••••••••••••••••
6.3.2 The Bitmap Area •••••••••••••••••••••••

6.3.2.1 The Status Word ••••••••••••••
6.3.2.2 The Bitmap DOB •••••••••••••••
6.3.2.3 The Bitmap Buffer ••••••••••••
6.3.2.4 The Bitmap •••••••••••••••••••
6.3.2.5 Altering the Bitmap ••••••••••

6.3.3 DSKCTG - Allocate a Contiguous Area •••
6.3.4 DSKALC - Allocate a Record ••••••••••••

6-13
6-14
6-14
6-14
6-14
6-15
6-15
6-15
6-15
6-15
6-16
6-16
6-16
6-17
6-17
6-18
6-18
6-18
6-18
6-19
6-19
6-19
6-19
6-20

CHAPTER 7

CHAPTER 8

Page viii

6.3.5 DSKDEA - Deallocate a Record •••••••••• 6-20
6.3.6 DSKBMR - Read the Bitmap •••••••••••••• 6-20
6.3.7 DSKBMW - Write the Bitmap ••••••••••••• 6-20
6.3.8 DSKDRL - Lock the Directory ••••••••••• 6-21
6.3.9 DSKDRU - Unlock the Directory ••••••••• 6-21

TERMINAL SERVICE SYSTEM

7.1 TERMINOLOGY •••••••••••••••••••••••••••••••••• 7-1
7.2 THE TERMINAL LINE TABLE •••••••••••••••••••••• 7-2

7.2.1 The Terminal Status Word •••••••••••••• 7-2
7.3 THE TERMINAL SERVICE CALLS ••••••••••••••••••• 7-2

7.3.1 KBD - Fetch a Line of Data •••••••••••• 7-2
7.3.2 TTY - Output One Character •••••••••••• 7-3
7.3.3 TIN - Get an Input Character •••••••••• 7-3
7.3.4 TOUT - Output One Character ••••••••••• 7-3
7.3.5 TAB - Output One Tab •••••••••••••••••• 7-4
7.3.6 CRLF - Output a

Carriage-Return I Line-Feed ••••••••••• 7-4
7.3.7 TTY! - Output a String of

Characters •••••••••••••••••••••••••••• 7-4
7.3.8 TTYL - Output a String of

Characters Indexed •••••••••••••••••••• 7-4
7.3.9 PTYIN - Place Character in

Input Buffer •••••••••••••••••••••••••• 7-5
7.3.10 PTYOUT - Fetch Character from

Output Buffer ••••••••••••••••••••••••• 7-5
7.3.11 TTYIN - Fetch Another Jobs Input •••••• 7-5
7.3.12 TTYOUT - Place a Character in

Another Jobs Output ••••••••••••••••••• 7-5
7.3.13 TRMICP - Process Input Character

Within Interface Driver ••••••••••••••• 7-5
7.3.14 TRMOCP - Process Output Character

Within Interface Driver ••••••••••••••• 7-6
7.3.15 TRMBFQ - Process Output Characters

Within Terminal Driver •••••••••••••••• 7-6
7.3.16 TBUF - Output Large Amounts of Data ••• 7-6
7.3.17 TCRT - Call Special Terminal

Driver Routines ••••••••••••••••••••••• 7-7
7.3.17.1 Standard Functions •••••••••• 7-7

7.3.17.1.1 Cursor
Addressing •••••• 7-7

7.3.17.1.2 Other

7.3.18 Message Calls

CONVERSION MONITOR CALLS

Functions ••••••• 7-7
7-8

8.1 NUMERIC CONVERSION CALLS •••••••••••••••••• ~ •• 8-1
8.1.1 Calling Format •••••••••••••••••••••••• 8-1

8.1.1.1 Size Byte •••••••••••••••••••• 8-1

CHAPTER 9

CHAPTER 10

APPENDIX A

APPENDIX B

Page ix

8.1.1.2 Flags ••••••..••••••••.••••••• 8-2
8.2 RAD50 CONVERSION MONITOR CALLS ••••••••••••••• 8-3

8.2.1 RAD50 Packing Algorithm ••••••••••••••• 8-3
8.2.2 Packing and Unpacking Calls ••••••••••• 8-3

8.2.2.1 PACK - Pack Three ASCII
Characters into RAD50 •••••••• 8-4

8.2.2.2 UNPACK - Unpack Three RAD50
Characters into ASCII •••••••• 8-4

8.3 PRINTING CONVERSION CALLS •••••••••••••••••••• 8-4
8.3.1 PFILE - Output a Filespec From a DDB •• 8-4
8.3.2 PRNAM - Output a Filename ••••••••••••• 8-4
8.3.3 PRPPN - Output a PPN •••••••••••••••••• 8-5

INPUT LINE PROCESSING CALLS

9.1 ALF - TEST A CHARACTER FOR ALPHABETIC •••••••• 9-1
9.2 NUM - TEST A CHARACTER FOR NUMERIC ••••••••••• 9-2
9.3 TRM - TEST A CHARACTER FOR TERMINATOR •••••••• 9-2
9.4 LIN - TEST A CHARACTER FOR LINE TERMINATOR ••• 9-2
9.5 BYP - BYPASS BLANKS •••••••••••••••••••••••••• 9-2
9.6 GTDEC - INPUT A DECIMAL NUMBER ••••••••••••••• 9-2
9.7 GTOCT - INPUT AN OCTAL NUMBER •••••••••••••••• 9-2
9.8 GTPPN - INPUT A PROJECT-PROGRAMMER NUMBER •••• 9-3
9.9 FILNAM - INPUT A FILENAME •••••••••••••••••••• 9-3

MISCELLANEOUS MONITOR CALLS

10.1 EXIT - RETURN TO AMOS COMMAND LEVEL •••••••• 10-1
10.2 SLEEP - PUT JOB TO SLEEP ••••••••••••••••••• 10-1
10.3 CTRLC - BRANCH ON CONTROL-C •••••••••••••••• 10-2

DISK STRUCTURE FORMAT

A.1
A.2

PHYSICAL RECORD FORMAT
DISK RECORD TYPES ••••••••••••••••••••••••••••
A.2.1 The Disk ID Record ••••••••••••••••••••
A.2.2 The Bitmap .•••••••••••••••••••••••••••
A.2.3 The Master File Directory •••••••••••••
A.2.4 The User File Directory •••••••••••••••
A.2.5 Sequential File Data Records ••••••••••
A.2.6 Contiguous File Data Records ••••••••••

A.3 FILE STRUCTURE •••••••••••••••••••••••••••••••
A.4 MFD ITEM FORMAT ••••••••••••••••••••••••••••••
A.5 UFO ITEM FORMAT ••••••••••••••••••••••••••••••

SYSTEM COMMUNICATION AREA

A-1
A-2
A-2
A-2
A-3
A-3
A-3
A-3
A-3
A-5
A-5

B.1 SYSTEM - SYSTEM ATTRIBUTES WORD •••••••••••••• B-1
B.2 DEVTBL - ADDRESS OF THE DEVICE TABLE ••••••••• B-1
B.3 DDBCHN - ACTIVE DDB CHAIN •••••••••••••••••••• B-2

APPENDIX C

INDEX

Page x

B.4 MEMBAS & MEMEND - USER MEMORY POINTERS ••••••• B-2
B.S SYSBAS - BASE OF SYSTEM MEMORY ••••••••••••••• B-2
B.6 JOBTBL - ADDRESS OF THE JOB TABLE •••••••••••• B-2
8.7 JOBCUR - JCB ADDRESS OF THE CURRENT JOB •••••• B-2
B.8 JOBESZ - JOB TABLE ENTRY SIZE •••••••••••••••• B-3
B.9 TIME - THE TIME OF DAY ••••••••••••••••••••••• B-3
B.10 DATE - THE SYSTEM DATE •••••••••••••••••••••• B-3
B.11 HLDTIM - THE HEAD LOAD TIMER •••••••••••••••• B-3
B.12 CLKFRQ - LINE CLOCK FREQUENCY ••••••••••••••• B-4
B.13 SPXSAV - STACK POINTER SAVE LOCATION •••••••• B-4
B.14 SPXINT - INTERNAL STACK ••••••••••••••••••••• B-4
B.15 LPTQUE - LINE PRINTER SPOOLER QUEUE ••••••••• B-4
B.16 TRMDFC - BASE OF THE TERMINAL

DEFINITION TABLE •••••••••••••••••••••••••••• B-4
B.17 TRMIDC - ADDRESS OF FIRST INTERFACE DRIVER •• B-4
B.18 TRMTDC - ADDRESS OF FIRST TERMINAL DRIVER ••• B-5
B.19 TRMSCN - THE NON-INTERRUPT TERMINAL QUEUE ••• B-5
B.20 CLKQUE - THE CLOCK QUEUE •••••••••••••••••••• B-5
B.21 SCNQUE - THE IDLE SCAN QUEUE •••••••••••••••• B-5
B.22 RUNQUE - THE JOB SCHEDULING QUEUE ••••••••••• B-5
B.23 DRVTRK - THE DRIVE/TRACK TABLE •••••••••••••• B-5
B.24 MEMDEF & MEMBNK - MEMORY MANAGEMENT CONTROL • B-6
B.25 ZSYDSK - ADDRESS OF SYSTEM DISK DRIVER •••••• B-6
B.26 QFREE - QUEUE SYSTEM CONTROL •••••••••••••••• B-6

ALPHABETICAL LISTING OF AMOS MONITOR CALLS

CHAPTER 1

COMMUNICATING WITH THE AM-100 MONITOR

The AM-10u monitor contains over 70 routines which are available for use by
assembly Language programs running in user or monitor memory. These
routines are called by the supervisor calls SVCA and SVCS which have been
coded into macro form to make them easy to incorporate into user programs.
The macros are included as a part of the system Library file SYS.MAC in area
[7,7J of the system disk. These calls have been grouped into Logical
sections according to the function they perform and will be described in
this and the following chapters.

1.1 MONITOR CALL CALLING FORMAT

The general format for all monitor calls is:

{Label:} opcode {arguments} {;comments}

As can be seen from the format, the only required item in all calls is the
opcode itself which is the name of the monitor call. A Label may be used if
desired in which case it is assigned the address of the SVCA or SVCB
instructions which start all monitor call sequences. The total number of
words generated by any monitor call depends upon the call itself. Some
calls generate up to four words of code to perform the function. Those
calls which incorporate an ASCII message <such as the TYPE call) will
generate a string of bytes which will vary in Length depending on the
message involved. Comments may also be placed at the end of the Line as
desired just as in the machine instructions and will be preceded by the
semicolon which is the identifying character for all comments.

COMMUNICATING WITH THE AM-100 MONITOR Page 1-2

1.1.1 Arguments

Some calls will require one or more.arguments which specify parameters for
the execution of the monitor call function. These arguments most normally
are source and/or destination address items for the data being manipulated
by the monitor call. Some calls allow the user to specify the Location of
data parameters while other calls operate with predefined registers that
must be set up by the user beforehand. As each call is defined in the
sections that follow the arguments that are required will be detailed. The
arguments will normally be defined as being expression values, standard
addresses, or ASCII strings. Expression values may be any valid source
expression which evaluates down to a value which is within the predefined
range of the argument definition. ASCII strings are just that; a string of
characters which are probably used as a message to be displayed. Standard
addresses are so important and complex that we will devote the next whole
section to the explanation of them.

1.1.2 Standard Address Arguments

NOTE

The following section is one of the most
important, and most frequently misunder
stood, sections of this manual. The concept
of standard arguments is fundamental to
understanding the monitor call calling
sequences.

Standard addresses form the heart of many of the more complex monitor calls
and therefore should be thoroughly understood by the user in order to gain
maximum flexibility from the.system. A standard address argument" is coded
exactly the same as a standard source or destination operand for ~ ·machine
instruction such as ADD or MOV. There are some restrictions that should be
noted, however, due to the method used in processing the standard address.
Standard addresses are only used with those monitor calls that are coded as
SVCB instructions. The SVCB pushes all user registers onto the stack and it
is from these stored values on the stack that the monitor call processor
gains access to the address calculations using those registers. Standard
addresses may take the form of any of the legal WD16 addressing modes
however all autoincrement and autodecrement processing is done on a word
basis even though the monitor call may be requesting only one byte of data.
In addition, the value used for SP register references is a dummy value
which is not reloaded into SP when the monitor call exits so the
autoincrementing and autodecrementing modes will be ignored if used with the
stack pointer register.

The monitor call processing software within the monitor actually duplicates
the hardware and calculates the target address from the stored register
value on the stack and the data from the extra word if the address mode' uses

COMMUNICATING WITH THE AM-100 MONITOR Page 1-3

one. This target address then becomes the address of the data to be
manipulated by the specific monitor call routine itself. Sometimes this
data is only one byte while other times it may be several words or more.
The target address calculated by the processing of the standard address
argument always points to the first byte of the data if more than one byte
is required by the monitor call. A special case occurs when the standard
address argument specifies the direct register address mode. In the WD16
hardware instructions there is never more than one full word of data
involved for the standard source and destination address modes, so direct
register will work on either the Low byte or the full word in the target
register. In the processing of monitor call standard addresses, however,
this is not always the case since we pointed out that some calls require
several words of data to be manipulated. When direct register mode is used,
the target address is actually the address of the stored register on the
stack, which was a direct result of the SVCB hardware instruction
processing. If more than one word is used by the call it will merely
sequence right on through the stored words on the stack. In si~ple terms
this means that if a monitor call wants three words of data for an argument
and you specify the register R2 as the standard address argument, the three
words that will be used will actually be the words in R2, R3 and R4, in
sequence. This is often very useful when writing reentrant code. A word of
caution: if you specify a register for a call that wants more words than you
have registers, (most I/O calls want a 20-word DOB argument) the monitor
call will walk right on through your stack and most Likely crash the entire
system.

One of the more common errors is forgetting that a standard argument needs a
pound-sign (#) in front of a Literal argument. For example, if we wish to
sleep for 20 clock ticks, the code reads:

SLEEP #20.

Note that without the pound-sign, we would sleep for the number of ticks
contained in program-relative Location 20.

At this point you should go back and reread the above section. It is very
important that you understand the concepts outline above. Just try to think
of the standard address arguments as good old source or destination
addresses as in the machine instructions. When you foul them up you will
definitely find out about it quickly, since the usual result is a system
crash.

CHAPTER 2

JOB SCHEDULING AND CONTROL SYSTEM

The AMOS timesharing monitor performs the task of allocating jobs and
scheduling CPU time and resources for their operation. In order to properly
write assembly Language programs which make use of some of the more complex
features of the system, a basic understanding of how jobs are scheduled and
controlled is necessary. The total theory of how jobs are haniled is too
great a task to attempt to cover in one section of this manual but it is
hoped that enough information can be given to provide the basic fundamentals
on job control by user programs.

Each job that is running in the system basically has two dedicated
components which are not shared by any other job in the system; a monitor
job control block and a user memory partition. In the monitor memory area
itself there exists a job control table which contains one area for each job
that has been allocated to the system. One job is allocated for each JOB
command in the system initialization command file which gives the job name
and the terminal to which it is connected. The area that is allocated for
each job in the job control table is used to contain specific information
about that job. This area is called the job control block and will be
referred to from now on as the JCB.

2.1 THE JOB CONTROL BLOCK (JCS)

The format of the JCS is defined in the system library file SYS.MAC as a
series of equate statements. Each equate statement has the name JOSxxx
where xxx is a three-character code for the specific item of the JCS being
defined. The value of this symbol is actually the offset in bytes from the
base of the JCS to the item itself. The user may, during the course of his
program, desire to read the current data in his own JCB or in some instances
modify it. References to the JCS items should be made in one of two ways:

1. Use the system monitor calls JOBGET, JOBSET and JOBIDX which is the
preferred method.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-2

2. Locate the JCB for your job by moving @#JOBCUR into a register and
then referencing all JCB items via JOBxxxCRx).

There are three words in the system communication area which define the
entire job control system during timesharing operation. These three words
are not part of the JCB areas but rather are non-sharable parameters set up
during system initialization and not part of any one job. I point this fact
out because the names of these three words are JOBTBL, JOBCUR and JOBESZ
which appear to be part of a user JCB but really are not. JOBTBL contains
the base of the JCB table where all JCB's are stacked sequentially. This
address is set up at system initialization time and is never changed.
JOBCUR always contains the address of the JCB which has current control of
the CPU and is updated to point to the new JCB each time the job scheduler
switches to a different job. Therefore, @#JOBCUR will always point to your
JCB if you reference it because the reference will only be executed while
you have current control of the CPU. JOBESZ contains the size of the JCB in
bytes and is used by the system and by user programs for scanning through
the JCB table. Since the size of the JCB may expand as new features are
added to the system, JCB table scans must be made by setting an index to the
base of the table CMOV @#JOBCUR,Rx) and then adding the size to the index to
get to the next entry CADD @#JOBESZ,Rx). When scanning the JCB table, the
first word of each JCB is guaranteed to be non-zero and the table is
terminated by a null (zero) word. Again, these three words are a part of
the master system communication area and not in the job table itself.

2.1.1 Example - Scanning The Job Control Area

The following is a brief example of how to scan the JCB table and process
each JCB entry <such as for a system status report):

MOV @#JOBTBL,RO ;set JCB table index RO to table base
;Loop here to process each job table entry CJCB)
LOOP: ;process JCB entry which is indexed by RO

;references to JCB items are via JOLxxxCRO)

ADD @#JOBESZ,RO
TST @RO
BNE LOOP

;At this point we have finished

;advance RO to next JCB entry
;i~ this end of JCB table? (null word)
; nope - go process valid JCB entry
the job table scan

JOB SCHEDULING AND CONTROL SYSTEM Page 2-3

2.2 ACCESSING YOUR JCB

There are three monitor calls which should be used to gain access to your
own JCB when necessary. Two calls are used to transfer a single word of
data to and from a specific word in the JCB and one call is used to set an
index to a specific spot in the JCB area so that multiple words may be
transferred or so that faster access may be obtained when needed.

JOBGET
JOBS ET
JOBI DX

tag, item
tag, item
tag, item

2.2.1 Calling Sequence

;Transfers one word from JCB item to tag
;Transfers one word from tag to JCB item
;Sets absolute address of JCB item into tag

ALL calls share the same basic format where tag is a standard argument used
for the transfer of one word of data in the JOBGET and JOBSET calls or to
receive the index address in the JOBIDX call. The item argume~t is one of
the JCB item tags (JOBSTS, JOBPRI, JOBNAM, etc.) which identifies the
desired item to be used in the transfer or to have the index set to. These
items are equated to their relative offset value in SYS.MAC and will be
explained in the remainder of this section along with the usage of each and
its importance to the user, if any.

2.3 JOB SCHEDULING CALLS

In addition to the above calls, there are two calls used by various routines
within the system monitor for controlling the job scheduling processes.
These calls are JWAIT and JRUN which will set a job into the wait state and
then reactivate it to the run state, respectively. Both calls require that
the job being controlled be indexed by RO <which must point to the base of
the JCB for that job) and that the argument specify one of the status
control bits Cin JOBSTS) to be used as the control flag. The user should
not make use of these calls so no more detail will be given here.

2.4 JOB CONTROL BLOCK FORMAT

The following is a List of the entries contained in your JCS. Each of these
entries may be accessed via JOBGET, JOBSET, or JOBIDX by using the tag
defined in each entry.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-4

2.4.1 JOBSTS - The Job Status Word

The first word in each JCB is the job status flag word. Each bit in this
word indicates a particular state in which the job may reside. ·Some Legal
states are defined by more than one bit being on at a time. The system and
some of the system programs set and reset these bits as the current state of
the job changes but the user is cautioned against altering this word unless
extreme caution (and intelligence) is used. A brief List of the bits and
the mneumonics assigned to them follows along with a basic description of
the function of the bit when it is set.

J .ALC=1
J. TIW=2
J.tow=4
J.SLP=10
J.IOW=20
J.EXW=40
J.CCC=200
J.RUN=400
J.MON=1000
J.LOD=4000
J.SUS=10000
J.LOK=20000

;Job entry is allocated (guarantees JOBSTS non-zero)
;Job is in Terminal Input Wait state
;Job is in Terminal Output Wait state
;Job is in Sleep state
;Job is in I/O Wait state
;Job is in External Event Wait state
;A control-C abort is waiting to be processed
;Job is running
;Job is in monitor command mode Cno program active)
;Program is being Loaded for execution
;Job is in Suspend state
;Job has CPU Locked Cby user program command)

If any of the following flags are on the job will not be scheduled for CPU
run time until the flag has been cleared: J.TIW, J.TOW, J.SLP, J.IOW, J.EXW,
or J.SUS.

2.4.2 J06SPR - The Stack Pointer Reset Address

One word which is used to store the stack pointer reset address which is
calculated when the system is initialized. This addres• is then used to
reset the stack pointer each time the job exits back to monitor command
mode. The user may allocate a Larger stack area within his own partition by
reloading this address if desired.

2.4.3 JOBNAM - The Job Name

Two words which contain the six-character job name packed RADSO. This name
is set up by the JOBS command in the system initialization file. If a user
program alters this word it is effectively altering the name of the job.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-5

2.4.4 JOBBAS - The Memory Base Address

One word which contains the base address of the user memory partition if one
has been allocated for this job. This address is altered only by the MEMORY
program which allocates and deallocates user memory partitions. The user is
advised against altering this address unless a thorough understanding of the
memory allocation process is first attained.

2.4.5 JOBSIZ - The Memory Partition Size

One word which contains the size of the user memory partition in bytes if
one has been allocated for this job. This size word together with the above
JOBBAS address word define the current user memory partition. JOBSIZ is
altered only by the MEMORY program and the monitor command processor.

2.4.6 JOBUSR - The Current PPN

One word which contains the current user PPN (account number) if the user is
Logged in. Zero indicates that no user is currently Logged into this job.
JOBUSR is modified by the LOG and LOGOFF programs and is tested by various
protection schemes in the system to allow user access to files, etc.

2.4.7 JOBPRV - The Privilege Word

One word which is used
This word is not currently
of the security system.
system is completed.

to store the privileges associated with the job.
used but is allocated for future implementations

Further documentation will be provided when the

2.4.8 JOBPRG - The Current Program Name

Two words which contain the six-character program name which is currently
running or was the Last job run if in monitor command mode. JOBPRG is
Loaded with the program name (packed RAD50) by the command processor when
the program is Loaded or Located for execution. Currently the only
significance of this program name is in the displays created by the SYSTAT
program (user terminal status display) and the DYSTAT program (video
monitor).

JOB SCHEDULING AND CONTROL SYSTEM Page 2-6

2.4.9 JOBCMZ - The Command File Size

One word which contains the size of the current command file area in the
user memory partition if a command file is being processed. If this word is
zero no command file is currently in effect. This word is set to the
initial size of a command file when that file is loaded into the top of the
user partition and is decreased as each line is extracted from the area and
sent to the monitor command processor. When it gets to zero the command
file is finished and the system returns to normal command mode input from
the user terminal. The user should not alter this word.

2.4.10 JOBCMS - The Command File Status

One word which contains flags used by the command file processor when a
command file is being processed. These flags should never be altered by the
user so they will not be detailed here. JOBCMS works in conjunction with
JOBCMZ to effect the command file processing scheme.

2.4.11 JOBERC - The Error Control Address

One word which controls the processing of WD16 hardware bus errors as
described in the "WD16 Programmer's Reference Manual." If JOBERC is zero a
bus error will cause a message to be printed on the user terminal and the
job will be aborted. If JOBERC is non-zero a jump will be made to the
address specified in JOBERC which had better contain a valid routine for
gracefully shutting down the program. Note that the bus error is fatal for
this user only and does not normally kill the whole timesharing system.

2.4.12 JOBTYP - The Job Type

One word which specifies the type of job which is assigned to this
jobstream. The following flags are currently implemented:

J.USR=1
J.NUL=2
J.NEW=4
J.LPT=10
J.HEX=20
J.DER=40
J. VER=100
J.CCA=200
J.GRD=400

;Job is a user partition
;Job is currently running the null subroutine
;Job is processing a new memory allocation
;Job is running the line-printer spooler (LPTSPL)
;Binary inputs and outputs are in hex <not octal)
;Print disk error retry messages
;Activate auto-verify mode for disk writes
;Control-c interrupts are enabled
;Terminal is guarded against SEND commands

JOB SCHEDULING AND CONTROL SYSTEM Page 2-7

2.4.13 JOBBPT - The Breakpoint Address

One word which specifies the address to jump to if a breakpoint is
encountered during the execution of a user program. JOBBPT is used by the
DDT debug program for breakpoint handling and not normally used by user
programs.

2.4.14 JOBBNK - The Memory Bank Pointer

One word which is used by the memory management system to define the bank in
which the job's current memory partition resides. It is actually a pointer
to the control item within the memory mapping table which is used for
turning the bank on and off when the job is allocated CPU time. This word
must not be modified by the user.

2.4.15 JOBDEV - The Default Device

One word which contains the RADSO device code for the default device to be
used if the file specification being processed by the FSPEC call does not
explicitly specify a device. Normally this default device is OSK.

2.4.16 JOBDRV - The Default Drive

One word which contains the drive number in binary for the default drive
number to be used if the file specification being processed by the FSPEC
call does not explicitly specify a drive number. Only used if the device
code matches the code in JOBDEV or if the device code is Left to default
also. JOBDEV and JOBDRV normally contain the device and drive number set by
the LOG program when a user Logs in. They specify the disk device and drive
which will usually be used for processing done by this user.

2.4.17 JOBTRM - The Terminal Block Pointer

One word which contains a pointer to the terminal definition block for the
terminal which is currently attached to this job. If no terminal is
currently attached, this word contains a zero. The first word in the
terminal definition block is the terminal status word which is available to
the user for modification to set various terminal parameters such as echo
control, image mode and Lower case processing. The old monitor call TIDX
would deliver the address of this status word back to the user in register
RO. The TIDX call is no Longer supported and must be replaced by the more
general call:

JOB SCHEDULING AND CONTROL SYSTEM Page 2-8

JOBGET RO,JOBTRM ;Get status word index

As with all of the JOBxxx calls, the destination may be any valid address
and not just RO as in the example above. The above example will replace the
TIDX call exactly in performance since TIDX used RO as its destination.

For further information on the format of the terminal definition block and
its use the user should refer to the source Listing of the terminal service
routine CTRMSER) which is made available to users on a special source
diskette, as well as on the standard system disk pack. The terminal
definition block is defined at the beginning of this routine.

2.4.18 JOBRBK - The Run Control Block

A 14-word area which is the run control block for the jobstream. It is used
for the Loading of programs and overlays during job execution and is set up
by the user program with the parameters needed to fetch the next program or
overlay segment prior to the execution of a FETCH call. Refer to the
description of the FETCH monitor call for more details on the use of this
item.

2.4.19 JOBFPE - The Floating-Point Trap Address

One word which contains the address to jump to if a floating point error is
executed such as a~ divide by zero. Used by AlphaBasic to control such
nonsense. A user program which executes floating point instructions should
enter his error trap address into JOBFPE and not into the vector at memory
Location 76 since this would destroy the sharable resource of that vector.

2.4.20 JOBRNQ - The Scheduling Area

A 7-word area which maintains the parameters for job scheduling and context
switching of this job. The first four words are dynamically changing Links
which are used during the job scheduling process to place the job into the
active run queue for future processing. The user must never alter any of
these four Link words without first taking out group health insurance.

The fifth and sixth words are used to determine the job's run priority. The
fifth word Cat JOBRNQ+10) is the time counter which is decremented once for
each clock interrupt whenever the job is running. When this count goes to
zero the job is put into the wait state and another job is activated. The
sixth word Cat JOBRNQ+12> is the actual priority of the job <set up by the
JOBPRI command) and is used to initialize the above time counter each time
the job is given control of the CPU for running. These two words replace
the old system word called JOBPRI in the JCB.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-9

The seventh word is used for storage of the current stack pointer value when
the job is not in the active run state. The scheduler restores the stack
pointer from this word each time the job is reactivated.

2.4.21 JOBDYS - The OYSTAT Address

One word which contains the address to the byte in the VDM screen memory
area for the job execution arrow. Set by the DYSTAT program and referenced
by the monitor job scheduler. The user should not alter this address.

2.4.22 JOBSTK - The Job's Stack Area

A 100-word area which acts as the stack for this job. SP is set to the top
of this area when a new program is initiated. The user may reset his own
stack pointer by moving the address of a Larger area within his own
partition if the program needs more stack area. Be sure to allow at Least
an extra 20 words or so for possible real-time interrupt handling which
needs a valid stack area for register saves. The job scheduler also saves
all user registers and some other nonsense on the user stack during job
context switching.

The Label "JOBSTK" is not defined explicitly in SYS.MAC but the area exists
as the Last 100 words in the JCB. The area has not been Labeled because the
JCB may be increased in size as the need arises and the JOBSTK area should
not be referenced by a Label which will change value in future releases.

CHAPTER 3

MEMORY CONTROL SYSTEM CALLS

The AM-100 system contains a fairly sophisticated memory control system even
though there is no memory protection or mapping hardware associated with it.
In order to make maximum use of the memory resources available and minimize
system crashes due to memory violations the assembly Language programmer
should understand how the monitor allocates memory and the rules under which
memory should be accessed. This section will describe the memory allocation
scheme and the monitor calls that assist the user in using memory in the
proper way.

The memory that is available to the AM-100 processor is up to 64K bytes (32K
words) with the top 256 bytes being unavailable because it is mapped to the
I/O ports. The AMOS monitor resides in Low memory beginning at Location
zero and extending upward as far as the monitor requires (typically around
14K bytes). The remaining memory above the monitor up to the end of the
total amount of memory in your system is available for assignment as user
memory partitions for each of the jobs. ALL of the user memory may be
allocated to one job or it may be split up into several partitions of
varying sizes with one partition allocated to each job. The amount of
memory that a user program has to play with is therefore defined as the
single contiguous memory partition which has been assigned to his job by the
operator MEMORY command. This memory partition block is then allocated into
smaller defined blocks called "modules" which are used by the system and the
user to contain programs and data areas. Monitor calls exist which allow
the user program to Locate the absolute boundaries of his own memory
partition and also to allocate, change, and delete memory segments in the
form of defined modules. These modules have the capability of being named
just Like files (filename.extension) so they may be Located by that name.
Any program Loaded for execution will be in the form of a module. During
execution some programs create other modules for device buffers, data
tables, etc.

MEMORY CONTROL SYSTEM CALLS Page 3-2

3.1 MEMORY PARTITION FORMAT

The memory partition assigned to a job may be Located anywhere in memory
depending on the memory that was available when the job assigned it using
the MEMORY operator command program. The user program may not count on any
specific Location for this partition. Within the partition, memory modules
are allocated upward beginning at the base of the defined partition and
building modules on top of each other as Long as space permits. Modules may
not be built that will extend past the top boundary of the user partition.
As modules are deleted from memory all modules above them are automatically
shifted downward to fill up the space that the deleted module Left. Also,
when any module is changed in size the modules above it are shifted in
position accordingly. This method insures that all available memory is
always at the top of your partition in one contiguous block. This method of
grabbing the first hunk of free memory to Load a program into is the main
reason that all programs must be written in totally relocatable code.

Figure 3-1 shows a typical memory layout for three users operating in a 64K
system. The free memory at the 56K boundary could be used by a fourth job
or by one of the current jobs for expansion.

There are three monitor calls that will return information about your memory
partition as it happens to be allocated. These three calls all take a
single standard argument into which will be delivered the absolute address
of the base, end, or free base of the user memory partition. The three
calls and the addresses that they return are listed below:

USRBAS
US REND
USRFRE

arg - absolute base of user memory partition (Last word)
arg - absolute end of user memory partition (Last word)
arg - current base of remaining free memory (Last module+2)

Since modules must always occupy an even number of bytes the above calls
will always return an even address. If no modules are allocated in the
current partition the USRFRE address will equal the USRBAS address.
Otherwise, the USRFRE address will be the word following the last currently
allocated module in the memory partition. The remaining free memory that
the user may make use of may be calculated by subtracting the USRFRE address
from the USREND address.

Figure 3-2 shows a typical user job partition during the execution of a
program which was loaded automatically by the operating system. The program
itself was the first module to be allocated in the user partition and then
was executed after being Loaded. It will remain in memory until it has
completed its task and exits to monitor at which time it will be deleted by
the operating system monitor. During execution the program allocated a 1K
data table module which possibly may be used for storage of symbols or some
similar function. Two I/O files were then opened on disk which caused the
operating system file service routine to allocate the two disk buffer
modules. The remaining memory in the partition has not yet been allocated
in our example.

MEMORY CONTROL SYSTEM CALLS

·64K

Free Memory BK

56K

User3 BK

4BK

User 2 16K

32K

User 1

16K

Resident Programs

t- - - - - - - - - - - - - -

Resident Monitor

Memory Map for a Typical 64K System C3 users)

Fig 3-1

Page 3-3

Note: Memory sizes
are typical

Total resident monitor
size is 16K, leaving 4BK
for user partitions

MEMORY CONTROL SYSTEM CALLS

Tap:

Command File Cif used>

Free Memory Area

C Available ta this jab anlyJ

Disk Buffer 512 bytes

Disk Buffer 512 bytes

Data Table 2K bytes

User Program CRunningJ

BK bytes

Bottom:

Page 3-4

,. USREND

These modules allocated by
GETMEM calls during the
execution of the program

User program module loaded
by operating system when the
program name was entered
as an operator command

Memory Map far a Typical User Jab Partition

Fig 3-2

MEMORY CONTROL SYSTEM CALLS Page 3-5

Note that the USREND call does not actually return the absolute end of the
partition but rather the end of the available free memory at the time of the
call. If a command file is in progress it occupies the upper part of the
partition which we do not wish to alter during the execution of a program.
In fact, the program should not have to take into consideration whether or
not it was called by direct command or from a command file. Use of the
USREND call insures that the user program may use all of free memory without
having to compensate for the remaining part of any command file module.

Although the standard use of memory by the operating system is through the
use of the memory management system calls (to be described next) the user
may find that it is easier to make use of free memory without regard to
module boundaries, especially for use in variable Length tables or hashing
techniques. For this reason, the free memory space is always defined as the

area between the addresses returned by the USRFRE and USREND calls. Note
that the initialization of files normally results in the allocation of a
buffer module and the operating system allocates this buffer at the current
setting of the USRFRE address and then updates that USRFRE address.
Therefore, the user must be sure all I/O buffers and any work modules are
allocated before freely using the memory above the USRFRE address. The !NIT
and FETCH calls both cause the indirect allocation of a memory module in
addition to the direct allocation or alteration of modules by the GETMEM,
CHGMEM and DELMEM calls.

3.2 MEMORY MODULE FORMAT

Memory modules are the basic unit of formal data structure within the user
memory partition. They are always allocated on word boundaries and must
contain an even number of bytes to maintain this format. The monitor calls
will automatically pad an odd sized module with a null byte to even it up.
ALL modules contain five housekeeping words followed by any number of data
words from zero to the maximum size Left in the user memory partition. The
five housekeeping words are always allocated and so a single-word module
really takes up six words of memory.

The module format is as follows:

Word 1 total size of module in bytes including the housekeeping words
Word 2 - module flag word
Word 3 - module filename packed RADSO
Word 4 - module filename packed RADSO
Word 5 - module extension packed RADSO
Words 6 thru n - module data area

Figure 3-3 gives a pictorial view of the above standard module format. The
data area is usually the only area with which the user is concerned and so
all references are made from the base of this area. The SRCH and FETCH
calls (to be described in a Later section) will return this absolute address
when Locating or Loading the requested module instead of the address of the

MEMORY CONTROL SYSTEM CALLS Page 3-6

base of the housekeeping words. References to the housekeeping words should
therefore be made via negative offsets relative to the data base address.

When scanning for a specific module or Locating the end of the current
module string, the user may set his index using the USRBAS call which will
return the address of the size word of the first allocated module. He may
then merely check the housekeeping words for the correct module name or
other determining parameters and if the module is to be bypassed, add the
size word to the index. This bumps the index to the next module allocated.
The Last module always has a zero word following it and the user must be
careful not to destroy this zero word if he is manipulating free memo~y
directly wihtout allocating it using the memory calls.

The module filename and extension follow the same format as the file names
on disk if the module in memory is named. The name is optional and need be
used only if the module is to be Located by name at a Later time.

Modules may be either temporary or permanent depending on the method used to
load them into memory. A module is made permanent by setting the file bit
on in the housekeeping f Lag word when the module is allocated. Temporary
modules are automatically deleted by the monitor when the program finishes
and executes the EXIT call. Permanent modules are not automatically deleted
but may be deleted by either the operator DELETE command or the monitor
DELMEM call. Forcing a zero into the size word of the module is another way
of deleting it but this is not the recommended way since this effectively
also deletes all modules above it (the zero is the module area termination
word).

3.3 MANIPULATING MEMORY MODULES

There are three monitor calls which are used to create, alter and delete
these memory modules. ALL three calls take a single standard argument which
must be the address of a two-word block called a memory control block CMCB).
The first word of this MCB will contain the absolute memory address of the
data area in the allocated module (past the housekeeping words). The second
word will contain the size of the data area in bytes (ten bytes Less than
the total module size since the housekeeping words are not included). The
MCB therefore is the user's block which defines a contiguous area in memory
by its base address and size in bytes. The user need not be concerned with
the housekeeping words unless he needs to access them directly for some
exotic reason.

The following three calls are used to manipulate memory modules:

GETMEM MCB
CHGMEM MCB
DELMEM MCB

- allocates a new memory module at current USRFRE
- changes the size of the module defined by MCB
- deletes the memory module defined by MCB

MEMORY CONTROL SYSTEM CALLS Page 3-7

+n

I-

I-

+6

t-

+4

t-

+2

I-

Base:

-2

-4

-6

-10

-12

User Program or Data

Module Extension CRADSOl

Module Name Word 2 CRADSOl

Module Name Word 1 CRADSOl

Module Flag Word

Module Size Word*

-
-

-I

_,

-I

Actual data area size as
specified in GETMEM call

SRCH, FETCH & GETMEM calls
----return this address

S housekeeping words

*Module size equals data
area size plus 10 bytes
CSwordsl

Standard Memory Module Format

Fig 3-3

MEMORY CONTROL SYSTEM CALLS Page 3-8

3.3.1 Allocating a Memory Module

The following example shows the allocation of a 100 byte module

MOV
GETMEM

#100.,MCB+2
MCB

;set module size as 100 (decimal) bytes
;allocate module <MCB gets its address)

MCB: WORD
WORD

0
0

3.3.2 Changing a Memory Module

;receives address of module data area
;size of module data area in bytes

Then we may increase the size of the same module by

ADD
CHGMEM

#20.,MCB+2
MCB

;increase size word by 20 bytes
;change its size

The above will cause the monitor to adjust the module housekeeping size word
to reflect the new size. The address of the module will not change but note
that the USRFRE address will advance by 20 bytes and that any modules that
were allocated after the one at MCB will be shifted up in memory but their
corresponding addresses in their MCB will not be adjusted by the monitor.
I/O buffers allocated after the MCB module will therefore be erroneously
addressed after the change so the CHGMEM call must be used with care.

3.3.3 Deleting a Memory Module

To delete the above module we use the code

DELMEM MCB ;delete the module

3.3.4 Permanent and Temporary Modules

Recall that all temporary modules will automatically be deleted by the
monitor when the program exits. The user may force the module to be
permanently left in memory by giving it a name and setting the file bit
(defined in SYS.MAC as "FIL") in the flag word. The following example will
illustrate the allocation of a 200 word module which is made permanent with
the name "TABLE1.DAT":

MEMORY CONTROL SYSTEM CALLS

TBL1:

MOV
Gt:TMEM
MOV
MOV
MOV
MOV
BIS

WORD
WORD

#200.,TBL1+2
TBL 1
TBL 1,RO
#[DATJ,-(RQ)
#[LE1J,-(R0)
#[TABJ,-(RQ)
#FIL,-(RQ)

0
0

;set size as 200 bytes
;allocate the module
;set RO to index the data area base

Page 3-9

;set the module name and extension CRAD50)
; into the housekeeping words
; in reverse order for efficient use of RO
;set permanent file bit on in flag word

;receives address of module
;size of module in bytes

Permanent memory modules may be saved onto disk using the operator SAVE
command or they may be deleted from memory when done by the operator DEL
command. Refer to the "AMOS User's Guide" for details on these commands.

3.4 MEMORY MAPPING SYSTEM

The AMOS system is capable of supporting memory in excess of 64K by a simple
bank switching technique which turns selected memory boards on and off under
control of the operating system. This section will attempt to define some
of the technical aspects of that system. It is assumed that the reader has
already familiarized himself with the operational aspects of the memory
management system from the standpoint of setting up the SYSTEM.IN! file
commands and operating procedures.

The normal 64K memory area must be defined by the user for his own
particular application as two general areas called sharable and switchable
memory. Sharable memory always starts at Location zero and extends upward
far enough to totally contain the resident operating system and any system
programs or sharable memory area needed for the ·application. Switchable
memory then may occupy the remainder of the memory area up to the 64K
address (octal 177376 inclusive).

There is only one sharable memory area which is always active. The
switchable area, however, may be occupied by multiple memory boards referred
to as "banks." Banks are defined to the operating system during system
startup with the MEMDEF statements. Each MEMDEF statement defines the
memory board (or boards) which are to be activated when that bank is
selected by the operating system. Selection of the bank for activation is
done when one of the user jobs which resides within that bank is granted CPU
time by the AMOS job scheduling system. This action is automatic and
transparent to the user. Only one bank may be active at any given point in
time since all banks effectively respond to the same memory addresses (the
area defined as switchable memory).

MEMORY CONTROL SYSTEM CALLS Page 3-10

3.4.1 Internal Table Format

The memory bank switching system is controlled be a table which is
dynamically built during system startup time by the MEMDEF statements. The
table is basically a Linked List of multi-word entries that resides within
the monitor area. There is one entry which defines the sharable memory area
and then there is one entry for each bank defined by a MEMDEF statement.
Two words that reside in the monitor system communication area are used to
control the memory management system. These words are Labled "MEMDEF" and
"MEMBNK" and are used to store the base address of the table just defined
and the current memory bank which is active respectively. If memory
management is not in use <no MEMDEF statements appeared in the SYSTEM.IN!
file) both of these words will contain a zero value.

3.4.1.1 The MEMDEF Word - The MEMDEF word in the system communication area
will contain the address of the first entry in the table which will always
be the entry defining the sharable memory boundaries. The format for this
entry is:

Word 1 - Link to next entry
Word 2 - base address of sharable memory CO>
Word 3 - top address of sharable memory plus 1

The remaining entries will define the switchable memory banks in use and
have the format:

Word 1 - Link to next entry CO if this is Last entry)
Word 2 - base address of this switchable bank
Word 3 - top address of this switchable bank plus 1
Words 4 through n - hardware control codes for bank switching

The hardware control codes are one or more entries which are used to turn
the memory boards on and off during bank switching. There will be one
control code for each physical board which has been defined as part of this
bank. Each control code is two words in Length with the first word
containing the address of the hardware port for the memory board and the
second word containing the switch-on and switch-off bytes Clow and high
bytes respectively) which are sent to that port. Note that in the MEMDEF
statements you are able to specify more than one board per bank (even
different types of boards) by separating the board definitions with slashes.
The final hardware code will be followed by a single word of zero to
indicate the end of the codes for this bank.

MEMORY CONTROL SYSTEM CALLS Page 3-11

3.4.1.2 The JOBBNK Word - The JOBBNK word in each jobs JCB will contain the
address of the word 4 in the above definition for the bank in which the job
currently resides. This address is the base of the control codes for the
hardware switching operation. The MEMBNK word in the system communication
area will always contain the same address as the JOBBNK word for the job
that is currently running. This is used by the scheduling and switching
system to turn off the current job and turn on the next job for running.

3.4.2 The Bank Switching Process

Memory bank switching is performed by the job scheduler by a simple sequence
of steps:

1. Use the MEMBNK word to locate the currently active bank entry.

2. Send the switch-off byte to the port address for each control code.

3. Use the JOBBNK word for the next job to be run to locate the bank
entry for that job.

4. Send the switch-on byte to the port address for each control code.

5. Store the new job's JOBBNK data into the MEMBNK word for next time.

3.4.3 The BNKSWP Monitor Call

Under normal operation of the AMOS system each user is confined to an area
that resides totally within any one defined memory bank. The BNKSWP call
may be used by a more sophisticated assembly language routine to allow one
user to access more than one bank of memory. The BNKSWP monitor call
expects register R1 to contain the address of word 4 of the bank which is to
be activated (similar to the automatic operation which uses the address
within the JOBBNK word). The currently active memory bank will be switched
off and the new bank (per R1 address) will be switched on. The MEMBNK word
will be updated properly to reflect the newly activated memory bank.
Register R1 will also be changed to contain the index to the previously
operating bank thereby allowing a convenient return to reactivate the
previous bank if R1 is not altered.

Note that since the current bank is switched off, the BNKSWP call must be
executed from somewhere in sharable memory to prevent the return from
executing instructions in the new bank (unless this is the exotic plan in
mind). This can be accomplished in one of several different ways 1ncluding
pushing the routine onto your stack are <within the JCB) or executing a
special subroutine which has been loaded into system memory.

CHAPTER 4

LOADING AND LOCATING MEMORY MODULES

Memory modules may contain an optional filename and extension, which may be
used to Locate modules, both in memory and on the disk. This chapter deals
with Locating and Loading modules via these optional filenames and
extensions. Normally, when an operator command is entered from the
terminal, the first place searched for the requested program is the resident
system memory area followed by the user's own memory partition. If the
program is resident in either of these places, it need not be Loaded in from
disk, and execution begins immediately using the resident program directly
where it was Located.

4.1 THE SRCH AND FETCH CALLS

The user may make use of two monitor calls (FETCH and SRCH) for Locating and
Loading modules in memory by name. In actuality, the SRCH call is a
specialized version of the FETCH call and is included only for convenience
and compatibility with older programs that are still hanging around in the
system. Basically, the SRCH call will only Locate a module if it is in
memory while the FETCH call will automatically Load a module into memory
from the disk if it is not found to be in memory already.

Both calls have the same basic format:

SRCH
FETCH

nameblock,index,control-f Lags
nameblock,index,control-f Lags

4.1.1 Specifying the Module Name

Nameblock is a standard argument used in both cases to specify the name of
the module to be Located or Loaded. The format of the actual nameblock
referenced is different in each case, however. In the case of the SRCH
call, nameblock refers to a 3-word block of memory (or 3 contiguous

LOADING AND LOCATING MEMORY MODULES Page 4-2

registers) which contain the filename and extension of the desired module in
RADSO packed form. For the FETCH call, nameblock refers to a full file
Dataset Driver Block (DDB) which allows the user to specify a full disk file
specification to Load the module from in case it is not Located in memory.
The DDB has not yet been introduced and will be defined and explained in a
Later section dealing with file I/O calls. In brief, the DDB is a 24
(octal) word area in memory which contains all the information and work
areas to define and manipulate a specific disk file in any area on any
defined disk device. The DDB is normally set up by processing an ASCII file
specification with the FSPEC call (more on this later).

4.1.2 The Module Address

The second argument is the index which is to receive the absolute memory
address of the Located (or loaded) memory module data area. Refer to figure
3-3 in the preceding chapter for the Layout of the memory module and the
place that this index is set to. The index argument is also a standard
argument although the normal mode is to receive the module address in a
general register (RO-RS). If the index argument is not specified in the
call, the default used is register RO which is compatible with older
versions of this system.

4.1.3 Flags

The third argument is the optional control flags which may be used to
control the operation of the SRCH and FETCH calls. This argument is any
valid expression which evaluates down to a value in the range of 0-17
(octal). Only the Low order four bits are significant and they have been
given the following mnemonic definitions in the system Library SYS.MAC:

F.FCH=1
F.USR=2
F.ABS=4
F.FIL=10

;Fetch module from disk if not in memory
;Search user memory only
;Load absolute segment from disk
;Set module permanent file flag after Load from disk

4.1.3.1 F.FCH - Fetch Module From Disk - F.FCH is the flag that actually
differentiates the SRCH call from the fetch call since they both technically
are the same SVCB supervisor call. The SRCH call forces this bit off while
the FETCH call forces this bit on. When set, the F.FCH bit causes the
nameblock to be interpreted as a full file DDB and the module to be loaded
from disk if not located in memory first. Since the use of this bit is
controlled by specifying either SRCH or FETCH as the calling opcode, the
user is not supposed to include this bit in the control-flags argument of
his call.

LOADING AND LOCATING MEMORY MODULES Page 4-3

4.1.3.2 F.USR Bypass System Memory Search - F.USR is the flag used to
specify bypassing the searching of the resident system memory area for the
module and proceed directly to searching the user area only. This allows
specific versions of modules to be Loaded and used even though they may
possibly be duplicated in the system memory area. This flag is not normally
used by programs other than system software.

4.1.3.3 F.ABS Bypass Memory Search - F.ABS when set forces a direct
search to the disk for the requested module, bypassing all memory searches
that would normally occur. The module is then Loaded into memory at the
absolute address specified by the index argument in the calling sequence.
No housekeeping words are allocated and the first word of the module gets
Loaded into the first word specified by the index argument. Note that this
form is the only time that the index argument is used to pass an address to
the FETCH processor instead of being used to receive the address of the
Located module. The F.ABS form of the FETCH call is used to Load program
segment overlays but I am certain that some other exotic uses will be
thought of by you all out there.

4.1.3.4 F.FIL Mark Module as Permanent - F.FIL is used to force the
permanent file flag bit on in the module flag word after the module has been
Loaded from disk. The FETCH call always places the filename and extension
into the housekeeping words 3-5 so even if the module is only temporary, it
may still be Located by name as Long as the program which Loaded it is still
active. This is useful for dynamic Loading of subprograms and/or data
modules. Setting the F.FIL f Lag on in the control-f Lags argument means that
the module will not be deleted from memory by the operating system when the
calling program finally exits. The operator LOAD command uses this method
to Load a program into memory and Leave it there to be called by name.

4.1.4 Completion Codes

When the SRCH or FETCH call returns, the user must test the status of the
Z-bit to see if the module was Located or Loaded successfully. If the Z-bit
is set (tested by BEQ) the operation was successful. If the Z-bit is not
set (tested by BNE) the module was either not Located or would not fit into
the remaining free memory within the user's partition.

CHAPTER 5

MONITOR QUEUE SYSTEM CALLS

The monitor queue is a List of blocks in system memory which are Linked to
each other in a forward chain. The base of this chain, and the count of the
blocks in the chain, are contained in the QFREE monitor communications words
(See Appendix 8). Each queue block in the chain Links to the next one by
storing its address in the first word of the queue block. The Last queue
block in the chain contains a zero Link word to flag it as the end. Each
queue block is currently 8 words (16 bytes) in size although this value may
increase with the next release of the file system. The monitor initially
contains 20 blocks in the available queue List.

During normal monitor operation various functions will use these queue
blocks to perform certain tasks. When a routine needs a queue block it will
issue a QGET monitor call which will deliver the first available queue block
by returning its base address in register R3. The routine will then use
this area to temporarily store information during processing. When the
routine no Longer requires the block it will issue a QRET monitor call which
will return the queue block to the available List for Later re-use.

The monitor queue system was necessary to provide storage for interrupt
driven hardware (AM-300 board) and for storage during memory management
operations. The queue blocks will always reside in sharable system memory
and therefore may be used by interrupt routines without regard for memory
management context switching. The monitor queue system will be used more
and more as the monitor is improved but is also available to the user if
desired. The XLOCK subroutine (for multi-user Locks in AlphaBasic) uses the
monitor queue system to store the Lock parameters.

5.1 INCREASING THE AVAILABLE QUEUE LIST SIZE

It is apparent that the number of queue blocks in use at any one time will
vary with system Loading, number of users, and tasks being performed. Some
applications may demand a Larger available List of queue blocks to insure
safe system operation. Due to overhaed restrictions, no check is performed

MONITOR QUEUE SYSTEM CALlS Page 5-2

to see if the available queue is exausted and if this happens the system
will probably begin doing strange and wonderful things. Therefore, there is
a method by which you may increase the size of the available queue list
during system startup time.

The monitor is initially generated with 20 free blocks in the available
queue. At any time in the SYSTEM.IN! file prior to the final SYSTEM command
you may execute the QUEUE nnn command which will allocate "nnn" more queue
blocks for general use. A typical increase for a large system with several
users running extensive applications might be 100 more blocks for a total of
120.

Once the system is up and running no more queue blocks may be added to the
list so you must give your best guess at your total requirements. The QUEUE
command takes on a new Life once the system is running. If you type the
QUEUE command the system will respond by typing back the current number of
free queue blocks in the available queue List. It is by this method that
you may keep tabs on the operation of your system , as far as queue block
usage.

5.2 QUEUE BLOCK USAGE BY THE SYSTEM

This section will List the areas of the monitor which currently make use of
the queue system to give you a better idea on how to estimate your
particular needs. Remember that this List will probably be expanding in
future releases of the monitor. Also add to this any applications that you
may write which include the QGET and QRET calls (described Later).

The terminal service system makes frequent use of the queue system during
output operations. A typical terminal driver may have up to four or five
queue blocks in use at any one time for Linking buffers and storing
immediate data values.

The monitor SLEEP call uses one queue block during the time the job is
asleep.

The Persci disk driver uses one queue block while the head is Loaded.

The XLOCK AlphaBasic subroutine uses one queue block for each separate
system Lock that is currently active by any job. This block is not returned
to the available List until the lock is released by the job that has it
locked.

The Line printer spooler, as of version 4.1, uses the queue system to store
the printer queue as well as a List of what printers are connected to the
system.

Future releases of the file system will make extensive use of the queue
system for queued I/O operations and device chains.

MONITOR QUEUE SYSTEM CALLS Page 5-3

5.3 QUEUE SYSTEM MONITOR CALLS

The user may make use of the monitor queue system by using one of the four
monitor queue management calls (QGET, QRET, QADD, QINS). These calls are
fast for use in interrupt Level routines. ALL calls work through register
R3 and no other registers are disturbed. Since most queue blocks will be
used in some form of sharable resource chain or interrupt Level routine it
is required that the processor be Locked before executing any of the queue
management calls. Not following this rule could result in destruction of
the available queue List or inter-job foulups. None of the calls require
any arguments to be passed except for the address in R3.

5.3.1 QGET - Obtain a Free Queue Block

This call obtains the first free queue block from the available List and
returns its base address in R3. The queue block is first removed from the
available List and then all words in the block are cleared to zeros.

5.3.2 QRET - Return a Queue Block

This call returns a queue block to the available queue List in the monitor.
The address which was in the first word of the block (usually a Link to the
next block in your chain) will be returned in R3 after the block has been
Linked back into the available queue List. ALL queue blocks that have been
allocated by QGET, QADD or QINS should eventually be returned to the monitor
by the GRET call when they are no Longer needed.

5.3.3 QADD, QINS - Manipulating Queue Blocks

These two calls obtain the first free queue block from the available List
similar to the QGET call. The queue block is then Linked into your own
specific list whose address is in R3. This is because most system calls use
queue blocks as elements of some specific List depending on the application.
The XLOCK subroutine, for instance, maintains a List of all active system
Locks and adds or deletes queue blocks from this List as Locks are set and
reset.

The standard format of these individual Lists follows the format of the free
List. Each block Links to its successor by storing its address in the first
word of the block. ALL other words in the queue block are available for the
storage of specific data. The Last block in the List will contain a zero in
word 1 to mark the end of the List. The QADD call will scan down the chain
marked by the address in R3 and then insert the new queue block at the end
of the existing List. The QINS call will insert the new queue block in the
chain at the point indexed by R3 and Link the remaining List elements (if

MONITOR QUEUE SYSTEM CALLS Page 5-4

any) to the newly inserted block. Both calls will then return the address
of the second word of the new queue block in R3. This is the base of the
data area of the queue block where you may store the data.

Remember that the current size of each queue block is eight words in Length.
The QADD and QINS calls place a Link in the first word so that Leaves seven
words of data storage for your application. The QRET call always requires
the address of the first word when returning the queue block to the
available List regardless of the call used to obtain the block.

CHAPTER 6

THE FILE SERVICE SYSTEM

The AMOS monitor has a simple yet powerful device independent file service
system which relieves the programmer of the task of I/O coding for each
device he wishes to have his program interface with. In addition to this
device independence, the monitor contains all routines to manage the disk
file system on a Logical call basis. The programmer need not be concerned
with the exact physical placement of files on the disk except in rare
instances where the system software is being developed or tested. The
monitor also contains an efficient means for the development of new device
drivers to be incorporated into the system when unsupported devices must be
interfaced. This section will give a general overview of the file service
system and describe the Dataset Driver Block (abbreviated as DOB) which is
the descriptor Link for all I/0 and file calls to the monitor.

6.1 THE DATASET DRIVER BLOCK

ALL I/O operations and file operations are accomplished by monitor calls
with reference to a DDB which defines the device or file being operated
upon. Whether the operation is to a unit record device such as a printer,
or to a specific file within a file structured device such as a disk, will
depend upon the parameters passed to the monitor through the referenced DDB.
There is no Limit to the number of devices or files that may be active at
any given time but there must be one separate DDB for each device or file in
use concurrently. There are no internal channel numbers or device numbers
to Limit the number of concurrently active devices or files. The general
sequence of events for the complete processing of a device or file operation
can be summed up as follows:

1. The DDB is set up with the defining parameters such as device name,
drive number, filename and extension, project-programmer number,
etc. This data normally comes from the processing of an ASCII file
specification such as DSK1:FILTST.MAC[101,1J by an FSPEC call.

THE FILE SERVICE SYSTEM Page 6-2

2. The I/O buffers are allocated either directly by the user program
or by an !NIT call referencing the DDB in use.

3. The Logical opening processes for the device or file are performed
which normally consists of an OPEN call referencing the DOB.

4. Data transfers to or from the device are performed by either READ
and WRITE calls for physical transfers or INPUT and OUTPUT calls
for logical transfers.

5. The Logical closing processes for the device or file are performed
which normally consists of a CLOSE call referencing the DOB.

The monitor contains complete error processing routines which allow the
programmer to specify (by flags in word 1 of the DOB) whether or not any
uncorrectable errors are to result in an automatic error message to the
operator on his terminal, an aborting of the program and return to monitor,
or both. The programmer may also elect to process the errors himself by
checking the error code returned in word 1 of the DOB.

6.1.1 DOB Format

Figure 6-1 shows the format of the DOB which must be allocated within the
user program area and set up by the user before any I/O operations can take
place. The DOB is 24 (octal) words in size and is usually allocated by a
BLKW 24 statement. The DOB can be assigned any tag which will then become
the reference tag for all subsequent operations to that dataset. Some of
the items in the DOB must be set up by the user before certain operations
may be called for while other items are set up and used by the monitor file
service routines. The item descriptions that follow will explain the use of
each of these.

6.1.1.1 Error Code - This byte is set to a non-zero code at the completion
of an 1/0 operation that was unsuccessful for various reasons. A zero
indicates the operation was successful. The user need test this byte only
if the error control flag in the flags byte (008+1) specifies returning to

the user on an error condition or if the operation allowed a non-fatal error
condition to occur. The error codes are Listed at the end of this section.

THE FILE SERVICE SYSTEM Page 6-3

cos: Flags J Error Code

+?- +2 Buffer Address

+ 4 +4 Record Size

+b +6 Buffer Index

-t 'b +10 Record Number

~A +12 Gueue Chain Link

+¢c +14 JCB Address

+E +16

+t~ +20

I Job Priority

Device Code

>--11•FILNAM.EXTC101,4l

+1~ +22 Call Level l Drive

+-ilf +24

+ J. b +26

Filename

I- l -

I- -
+18' +30 Extension

+i.4 +32 PPN

+it. +34 l Open Code

+1[; +36

I- -
t'dJ/) +40

I- Driver Work Area ...,
+ ;t.l +42

I- CS words) ...,
+~~ +44

I- ...,
+'JJ, +46

Dataset Driver Block

Fig 6-1

THE FILE SERVICE SYSTEM Page 6-4

6.1.1.2 Flags - This byte is used to control the flow of the 1/0 operation
and the handling of error codes by the file service routines. The following
functions are controlled by the eight flag bits:

0 - set by user to force a return on error condition (abort if clear)
1 - set by user to bypass printing of error messages on error conditions
2 - real-time transfer flag (currently not implemented)
3 - spare
4 - transfer initiated (for internal file service use only)
5 - read if 0 or write if 1 (for internal file service use only)
6 - device INITed - set by !NIT call or user if explicit buffer in use
7 - dataset busy (transfer initiated or queued)

6.1.1.3 Buffer Address - This is the 16-bit absolute address of the base of
the buffer to be used for all dataset transfers (read and write). It is set
by the !NIT call which allocates a buffer, or by the user program if it is
allocating its own buffer and not using the !NIT call. This address is used
in conjunction with the flag bit 6 above which indicates that a buffer has
been allocated either by the !NIT call or by the user. No transfers can
take place without a buffer.

6.1.1.4 Record Size - This is the size in bytes for the physical transfer
to use. The READ call will transfer this number of bytes from the device to
the user buffer beginning with the address in DDB+2. The WRITE call will
transfer this number of bytes from the user buffer to the user device. This
size is set to the standard buffer size by the !NIT call or by the user if
he is doing his own buffering. It may be modified by the user for
transferring records of variable sizes as Long as it does not exceed the
buffer size of the capacity of the device or driver in use. Various Logical
file service routines set this size word during processing such as the OPEN
call for the disk which must perform directory operations on a 512-byte
buffer at all times.

6.1.1.5 Buffer Index - This is a byte counter which is used by Logical
routines (INPUT and OUTPUT calls) for keeping track of bytes transferred
into and out of the user buffer. Various calls will reset this value and
the user will then make use of it and increment it as bytes are transferred
into and out of the buffer. Details will be given in Later sections where
the calls themselves are described. This buffer index word is normally not
a true buffer pointer but rather an offset from the buffer base (per DDB+2)
to the current byte being manipulated.

THE FILE SERVICE SYSTEM Page 6-5

6.1.1.6 Record Number - Set by the user to read or write a specific random
record from a random access device such as disk. The first record on the
device is considered record zero and the record numbers increment
sequentially from there. This record number is actually used only by the
physical driver routines for READ and WRITE calls but other Logical calls
set this word to perform transfers to specific disk areas such as directory
operations on disk. Most non-disk devices are not random access and
therefore this record number will be ignored by the respective drivers.

6.1.1.7 Queue Chain Link - This word is for internal use only and is the
Link used by the I/O queueing routines for interrupt driven transfers. The
user should not alter this word.

6.1.1.8 JCB Address - File service routines store the address of the
controlling job's JCB so that interrupt driven drivers can Locate the
corresponding job for activation on transfer complete status. This word is
also for internal use only.

6.1.1.9 Job Priority - Job priority - the current software job priority is
set here by file service routines to specify the priority of the transfer in
queued operations. This byte is for internal use only. The top byte of
this word CDDB+17) is currently not used.

6.1.1.10 Device Code - The three character device code (packed RAD50) must
be set here by an FSPEC call or directly by the user before any IO
operations may be performed.

6.1.1.11 Drive - Used only by drivers for devices with multiple drives,
this byte must be set to specify the drive to be used for the transfer. A
-1 byte (octal 377) may be used to indicate the current default drive
number. If the device is OSK the default drive used will be the drive that
the current user is Logged in under. Other devices may have different
defaults.

THE FILE SERVICE SYSTEM Page 6-6

6.1.1.12 Call Level - For internal use only, this byte is used to keep
track of the Level of nesting of the file service calls for proper error
recovery handling. This byte must be zero before the first file call is
executed.

6.1.1.13 Filename and Extension - Three words which contain the RAD50
packed filename and extension for file structured devices. These words are
ignored by drivers for devices which are not file structured but they may
cause funny error messages if they are not set to zero values.

6.1.1.14 PPN - This is the octal project-programmer bytes for the area to
be used to Locate the file. Used only on file structured devices which are
multi-user based such as disk. A zero causes the default value to be the
current PPN which the job is Logged in under. To prevent strange and
erroneous error messages, this word should be zero, if not used.

6.1.1.15 Open Code - This byte is set by the OPEN call to indicate the mode
of the open statement for future processing operations. It is normally
ignored by drivers for devices which are not file structured. It is for
internal use only and should not be modified by the user. The corresponding
top byte of the word (DDB+35) is currently not used. The following open
codes are in use:

0 file is not open
1 file is open for sequential input (OPEN! call)
2 file is open for sequential output COPENO call)
6 file is open for random input/output (OPENR call)

6.1.1.16 Driver Work Area - The remaining five words are for internal use
by the device drivers for Links, record counts, etc and should not be
modified by the user during processing. Not all drivers make use of the
work area but it must be there if device independence is to be preserved.

6.1.2 Device Transfer Buffers

Each dataset must have an associated transfer buffer for input and output
operations to take place through. This buffer must be allocated either
directly or through use of the !NIT call which allocates the buffer as a

memory module by using a GETMEM call. The !NIT call will allocate a
standard size buffer for the device being used (the size of the buffer . is
defined within the driver itself). If you do not wish to use the !NIT call

THE FILE SERVICE SYSTEM

you may allocate any size buffer you wish (must be Large enough
Logical calls to be performed) and then set its address in 008+2.
the section detailing the 1/0 calls themselves for more details on
of these buffers.

6.1.3 Error Handling

Page 6-7

for any
Refer to
the use

When an error occurs during any file service call the file service routines
will normally perform typical error correction procedures. If the error is
fatal (uncorrectable) two operations may or may not take place depending on
the setting of bits 0 and 1 in the flags byte at 008+1. First, bit 1 is
tested and if it is not set, the monitor outputs a standard error message to
the user terminal giving the type of call that failed, the file
specification for the device that the error occurred on, and the reason for
the error. The appropriate error code is also placed in the error byte at
DDB+O for Later testing by the user. Second, bit 0 of the f Lags byte is
tested and if it is not set, the user program is aborted by the file service
system and a return to monitor mode is made. The user will normally set
these bits on before any 1/0 calls are made if it is desired to process the
errors within the user program itself.

6.1.3.1 Error Codes - The following List gives the error code (in octal)
returned in the DOB error byte by the file service system along with the
reason for the error:

01 - file specification error CFSPEC)
02 - insufficient free memory for buffer allocation (!NIT)
03 - file not found COPEN!, OPENR, DELETE, RENAME)
04 - file already exists COPENO)
05 - device not ready Call calls)
06 - device full (OUTPUT)
07 - device error Call calls)

az 10 - device in use (ASSIGN)
<f;q 11 - i Llegal user code Call fi Le calls>
I~ 12 - protection violation (OPENO, OPENR, DELETE, RENAME)
II 13 - write protected Call output calls)
!~ 14 - file type mismatch

13 15 - device does not exist Call calls)
!~ 16 - illegal block number (READ, WRITE)
15 17 - buffer not inited Call calls except !NIT)
!' 20 - file not open (READ, WRITE, INPUT, OUTPUT, CLOSE)
17 21 - file already open Call OPEN calls)
li 22 - bitmap kaput Call disk bitmap calls)
I~ 23 - device not mounted Call calls)
~O 24 - invalid filename COPENO, FSPEC, DSKCTG)

At the conclusion of every file service monitor call the error byte at the

THE FILE SERVICE SYSTEM Page 6-8

base of the DDB is tested for the convenience of the user program.
allows you to test for an error status directly after the call with
instruction without having to first explicitly test the byte with a
instruction. This, of course, will only apply if you have the
trapping bit set in the DDB status word to prevent the job from
aborted on a file error.

6.2 FILE SERVICE MONITOR CALLS

This
a BNE

TSTB
error
being

This section will describe the file service calls which are available to the
user program for both Logical and physical I/O operations. ALL calls have
the same general format which uses a single argument representing the
dataset driver block CDDB) to be used for the operation. See the preceding
chapter for a complete description of the DDB format. In brief, the calls
to be described in this section are:

FSPEC
INIT
LOOKUP
OPEN I
OPE NO
OPENR
CLOSE
READ
WRITE
INPUT
OUTPUT
WAIT
DELETE
RENAME
ASSIGN
DEASGN

process a device specification
initialize a dataset driver block buffer
Lookup a file to see if it exists
open a file for sequential input
open a file for sequential output
open a file for random input/output
close a file to further processing
read a physical record
write a physical record
read a Logical record
write a Logical record
wait for an I/O operation to finish
delete a file
rename a file
assign a device to a job
deassign a device from a job

6.2.1 FSPEC - Process an ASCII Filespec

The FSPEC call is used to process an ASCII file specification from a command
Line Cor any other ASCII buffer) and set up the parameters in the DOB
according to the results of the processing. The ASCII file specification
must be indexed by R2 and must be in the standard format of
dev:filnam.ext(ppnJ with a valid termination character if a short default
specification is used.

The FSPEC call is slightly different from the rest of the I/O calls in that
it allows a second argument to be used if desired. This argument must be
the default extension for the filename parameter to be used in the event
that the file specification does not contain an explicit extension
(identified by a period after the filename). If the second argument does

THE FILE SERVICE SYSTEM Page 6-9

not exist the FSPEC processor will not process the input file specification
past the colon which terminates the device/drive parameters.

The device code (3 characters) will be packed RAOSO and stored in 008+20 if
it exists as marked by the terminating colon. The drive number will be
stored in the byte at 008+22 if it exists. If the device code does not
exist, the current default device (stored in the job's JCB item JOBOEV) will
be stored in ODB+20. If the drive number is not in the input spec an octal
377 will be stored in 008+22 to flag the default drive number to the device
driver.

The filename and extension are then processed unless no second argument was
used in the call in which case the FSPEC processor returns to the user at
this point. The filename and extension are packed RADSO and stored in the
three words at DDB+24 through DDB+30. If no filename is entered in the
input specification the word at DDB+24 will be cleared to zero to flag the
absence of the filename parameter. If a filename is entered but no
extension is entered then the default extension specified in the second
argument of the FSPEC call is stored as the extension in DDB+30.

If a project-programmer number is in the file specification (marked by a
Left square bracket "[") it wi LL be processed and stored in DDB+32. If no
ppn is entered, DDB+32 will be cleared to zero to flag its absence.

At the conclusion of the processing of the input file specification, the
index R2 will be pointing to the termination character (the first character
following the file specification string). If an error in the input string
is detected the FILE SPECIFICATION ERROR message will be printed <unless
suppressed by bit 1 in 008+1) and the program will be aborted (unless
suppressed by bit 0 in 008+1). The error code 01 will be set in DDB+O error
code byte.

No other modifications take place to the DDB area except that the error byte
at DDB+O is cleared at the start of the FSPEC processing. If the user does
not use the FSPEC call to set up his DOB then he must use some other form of
explicit code to insure that the DDB is set up properly to define the device
and file for any subsequent I/O operations.

6.2.2 INIT - Initialize the DDB

The INIT call is the normal means for allocating the dataset buffer and
initializing the DDB for processing. The INIT call will locate the device
driver (searching area 1,6 on DSKO if not in memory) and then allocate a
standard size buffer based on the size specified in the driver. Bit 6 of
the flag byte at DDB+1 will be set to indicate the initialization. The
address of the buffer will be set into DDB+2 and the size in bytes will be
set into DDB+4.

There are no calls which deallocate the buffer once it has been allocated by

THE FILE SERVICE SYSTEM Page 6-10

the !NIT call. Multiple OPEN-CLOSE processes may be performed on the DDS
once the INIT has been done. The buffer is temporary and will be
deallocated automatically when the program exits to monitor or it can be
explicitly deallocated by using the DELMEM call with the address stored in
DDS+2. Recall that the buffer is allocated as a standard memory module with
a GETMEM call.

NOTE

All file service calls with the exception of
the FSPEC call require the use of a disk
buffer and therefore must be preceded by the
INIT call for processing.

6.2.3 LOOKUP - Find the File

This is a form of the OPEN call which does nothing except search for the
file and return an error code if it is not found. The file is not actually
opened for processing and an OPEN! call must be used if the file is to be
subsequently read from. The LOOKUP call is useful for determining if a file
that is about to be opened for output already exists so that it can first be
deleted by the DELETE call. The LOOKUP call is ignored for devices which
are not file structured.

The LOOKUP call is also useful for some system programming techniques since
it returns parameters about the file in the DDS work area. The work area is
located in the last five words of the DDB. The first three words of this
work area are loaded with the three words of the directory item if the file
is found. These three words are the number of records in the file, the
number of active data bytes in the last record, and the record number of the
first data record in the file. Refer to the appendix titled "Disk Structure
Format'' for complete details on the directory formatw

6.2.4 OPEN! - Open a File for Input

The OPEN! call locates a file in a file structured device and sets
DDS parameters (work area) for subsequent INPUT processing.
results if the file is not found. The code 01 is set into DDS+34
the OPEN! operation. The OPEN! call is normally followed by a
INPUT calls which deliver sequential records from the file to
buffer. The OPEN! call is ignored for devices which are
structured.

up the
An error
to flag

series of
the user

not file

THE FILE SERVICE SYSTEM Page 6-11

6.2.5 OPENO - Open a File for Output

The OPENO call first searches the specified device in the specified user
area and returns an error if the file already exists. If it does not, the
DDB is set up for OUTPUT processing. The code 02 is set into DDB+34 to flag
the OPENO operation. The OPENO call is normally followed by a series of
OUTPUT calls which transfer data from the user buffer to sequential records
in the file. The OPENO call is ignored for devices which are not file
structured.

6.2.6 OPENR - Open a File for Random Processing

The OPENR executes basically the same as the OPEN! call but the code stored
in DDB+34 is 04 to flag random processing. The file Located for random
processing must be a contiguous file. The OPENR call is normally followed
by a series of INPUT and OUTPUT calls which transfer data between specific
records in the file and the user buffer in both directions. The OPENR call
is also ignored for devices which are not file structured.

6.2.7 CLOSE - Close a File

The CLOSE call finishes up Logical processing of a file and clears the open
code in DDB+34. No further INPUT or OUTPUT operation may occur once a file
has been closed. No action is normally done on a file which is open for
input. For files open for output, the final record is written out and the
file is added to the directory system on the specific device. The CLOSE
call is ignored for devices which are not file structured.

6.2.8 READ - Perform a Physical Transfer

This is the physical transfer call for reading input data from a device. No
check is made for file open status since the READ call is not a Logical file
call.

6.2.8.1 Sequential Devices - For sequential access devices such as a paper
tape reader, the READ call will deliver one record from the device to the
user buffer. The size of this record will normally be the number of bytes
specified in DDB+4 but this may not necessarily be true if the driver does
not transfer under the rul~s of the system. If the device is not capable of
generating the requested number of bytes per DDB+4 (such as a tape reader
which runs out of tape) a Lesser number may be transferred in which case the
count in DDB+4 will be adjusted to reflect the true number actually
transferred to the user buffer.

THE FILE SERVICE SYSTEM Page 6-12

6.2.8.2 Random Devices - For random access devices such as disk, the user
must specify the record number to be Located and read by placing that number
into DDB+10 before executing the READ call. Most random access devices will
always transfer the requested number of bytes per DDB+4 into the user
buffer. An error will result if the record number is not within the range
of the specific device. For example, the standard AMOS floppy disk is
structured as 500 (decimal> records of 512 bytes each. The legal record
numbers therefore range from 0 through 499 decimal. Similar range
restrictions apply for each random device.

6.2.8.3 Interrupt Structure - The system allows interrupt driven devices to
be queued and processed in a priority fashion. Normally, the execution of a
READ call will suspend the running of the user program until the transfer
has been completed at which time the user job will be reactivated. The user
may optionally set the realtime bit Cbit 2) in the f Lag byte at DDB+1 to
force an immediate return to the program once the transfer has been queued

· or initiated. The user must then either test the dataset busy bit Cbit 7)
of the flag byte or use the WAIT call to stall until the transfer has been
completed. The dataset busy flag will be reset when the transfer has been
completed. The user must also then check for errors. The realtime bit is
ignored for devices which are not interrupt driven or whose drivers do not
run under the I/O queue system.

6.2.9 WRITE - Perform a Physical Write

This is the physical transfer call for writing data to a device. No check
is made for file open status since the WRITE call is not a logical file
call.

6.2.9.1 Sequential Devices - For sequential access devices such as a
printer, the WRITE call will deliver one record to the device from the user
buffer. The size of this record will be the number of bytes specified in
DDB+4. The driver is responsible for the correct transfer count and the
user may alter the number in DDB+4 for each new WRITE call to the same
device for the writing of variable length records.

6.2.9.2 Random Devices - For random access devices such as disk, the user
must specify the .r:.e£Ord number to be located and read by placing that number
into DDB+10 before executing the WRITE call. Most random access devices
will always transfer the requested number of bytes per DDB+4 into the user.
buffer. An error will result if the record number is not within the range

THE FILE SERVICE SYSTEM Page 6-13

of the specific device. The standard AMOS f Loppy disk is structured as 500
(decimal) ~ecords of 512 bytes each. The Legal record numbers therefore
range from 0 through 499 decimal.

6.2.9.3 Interrupt Structure - The system allows interrupt driven devices to
be queued and processed in a priority fashion. Normally, the execution of a
WRITE call will suspend the running of the user program until the transfer
has been completed at which time the user job will be reactivated. The user
may optionally set the realtime bit Cbit 2> in the flag byte at DDB+1 to
force an immediate return to the program once the transfer has been queued
or initiated~ The user must then either test the dataset busy bit Cbit 7)
of the flag byte or use the WAIT call to stall until the transfer has been
completed. The dataset busy flag will be reset when the transfer has been
completed. The user must also then check for errors. The realtime bit is
ignored for devices which are not interrupt driven or whose drivers do not
run under the I/O queue system.

6.2.10 INPUT - Perform a Logical Read

The INPUT call is the logical equivalent of the READ call for Logical
processing of datasets. The INPUT call reads a Logical record within a file
or device dataset under the control of the specific driver in use. A
dataset must be opened for input COPEN!) or random access COPENR) before
INPUT calls are performed. The INPUT call first sets the standard buffer
size into DDB+4 so the user may not use this call to transfer non-standard
record sizes. The number of bytes actually read may be Less than the
standard record size due to the driver processing or due to an end of file
condition. The actual number of bytes transferred will be set into DDB+4 by
the driver routine.

6.2.10.1 Sequential File Processing - The main use of the INPUT call is in
Logical sequential file processing and the INPUT call therefore sets up the
buffer index value in DDB+6 to direct the processing of the data by the user
routines. This index value is actually the offset to the first byte of
valid data within the user buffer whose base address is at DDB+2. For unit
record devices this value will be zero since all data within the buffer is
user data. For sequential disk files, however, the first word in each
record within the file is a link word to the next record and therefore the
value set into DDB+6 by the disk driver will be 2 so that processing starts
with the third byte in the user buffer.

THE FILE SERVICE SYSTEM Page 6-14

6.2.10.1.1 Example - The following subroutine is normally used to get each
byte of data from a sequential file:

;Subroutine to get next byte from file defined as INDDB and leave it in R1 . ,
IN8YTE:

IN8G:

CMP
8LO
INPUT
TST
8EQ
PUSH
ADD
MOV8
AND
INC
RTN

INDD8+6,INDD8+4
IN8G
INDD8
INDD8+4
INEOF
INDD8+2
INDD8+6,@SP
@(SP)+,R1
#377,R1
INDD8+6

;is the buffer empty?
; no - get next byte
;read next logical record into buffer
;check for end of file (no data transferred)
; go to end of file routine
;stack the buffer base address
; and add the index offset to get position
;pick up the next byte from user buffer
;insure upper byte is cleared in R1
;increment the buffer index for next time
;subroutine return

6.2.10.2 Random File Processing - A special situation is involved for files
opened for random access by the OPENR call. Instead of reading the next
sequential record,· the specific relative record whose number is in DD8+10
will be read into the user buffer. The user first sets this number up and
then executes the INPUT call. The record number is actually relative to the
base of the file and has no direct relationship to the physical record on
the device as would be returned by a READ call.

6.2.10.3 Special Devices - For devices that do not implement special
processing of logical calls the INPUT call performs a READ call instead.

6.2.11 OUTPUT - Perform a Logical Write

The OUTPUT call is the logical equivalent of the WRITE call for logical
processing of datasets. The OUTPUT call writes a logical record to a file
or device dataset under the control of the specific driver in use. A
dataset must be opened for output COPENO) or random access COPENR) before
OUTPUT calls are performed. The OUTPUT call will transfer the number of
bytes in DD8+4 but it will normally do it as a standard record (depends on
the driver in use>. The user is discouraged from attempting to use the
OUTPUT call for transferring non-standard record sizes.

THE FILE SERVICE SYSTEM Page 6-15

6.2.11.1 Sequential File Processing - The main use of the OUTPUT call is in
Logical sequential file processing and the OUTPUT call therefore sets up the
buffer index value in DDB+6 to direct the processing of the data by the user
routines. This index value is actually the offset to the first byte
position for valid data within the user buffer whose base address is at
DDB+2. For unit record devices this value will be zero since all data
within the buffer is user data. For sequential disk files, however, the
first word in each record within the file is a link word to the next record
and therefore the value set into DDB+6 by the disk driver will be 2 so that
processing starts with the third byte in the user buffer.

6.2.11.1.1 Example - The following subroutine is normally used to put each
byte of data to a sequential file:

;Subroutine to put next byte from R1 into file defined as OTDDB
;
OUTBYT: PUSH OTDDB+2 ;stack the buffer base address

ADD OTDDB+6,@SP ; and add index offset to get position
MOVB R1,@(SP)+ ;move data byte to user buffer
INC OTDDB+6 ;increment the buffer index offset value
CMP OTDDB+6,0TDDB+4 ;is the user buffer full now?
BLO OTBX ; not yet so return
OUTPUT OTDDB ;output the current Logical record to file

OTBX: RTN ;subroutine return

6.2.11.2 Random File Processing - A special situation is involved for files
opened for random access by the OPENR call. Instead of writing the next
sequential record, the specific relative record whose number is in DDB+10
will be written out from the user buffer. The user first sets this number
up and then executes t~e OUPUT call. The record number is actually relative
to the base of the file and has no direct relationship to the physical
record on the device as would be written by a WRITE call.

6.2.11.3 Special Devices - For devices that do not implement special
processing of Logical calls the OUTPUT call performs a WRITE call instead.

6.2.12 WAIT - Wait for IO Completion

The WAIT call is used only for interrupt device processing to stall until
the record transfer has been completed. The WAIT call has no effect unless
the user has set the realtime flag bit (bit 2) in DDB+2 and the device is
interrupt driven. The job will be suspended until the specified dataset is
not busy as marked by the flag bit 7 becoming zero. If the dataset is not

THE FILE SERVICE SYSTEM Page 6-16

busy when the call is executed, an immediate return is made. The WAIT call
also checks for an error condition that may have occurred during the
transfer process and performs error handling under control of flag bits 0
and 1.

NOTE

At the release of 4.1 no drivers
support interrupt driven and real
calls. The WAIT call would merely
ignored in these cases and is detailed
in preparation for future releases.

6.2.13 DELETE - Delete a File

fully
time

be
here

The DELETE call deletes a specific file from a file structured device. The
filename, extension and ppn (if used) must be set in the DDB before
executing the call. An error results if the file is not found. The DELETE
call is ignored for devices which are not file structured.

6.2.14 RENAME - Rename a File

The RENAME call renames a specific file on a file structured device. The
filename, extension and ppn (if used) must be set in the DDB before
executing the call. The new filename and extension must be packed RADSO
into the three words immediately following the DDB in memory. The RENAME
call merely locates the directory item for the file and replaces the three
words which store the filename and extension. The RENAME call is ignored
for devices which are not file structured.

6.2.15 ASSIGN - Assign a Device

The ASSIGN call is used to assign a non-sharable device (such as a printer)
to the current user's job by setting a flag in the device's entry in the
device table in monitor memory. Once a device has been assigned by this
call any attempt to assign it by another job will result in an error. The
device will stay assigned to this job until deassigned by the DEASGN call.
The ASSIGN call performs no action if the specified device is sharable such
as a disk.

THE FILE SERVICE SYSTEM Page 6-17

6.2.16 DEASGN - Deassign a Device

The DEASGN call is used to deassign a device which has been assigned to the
user's job by the ASSIGN call. Once deassigned, the device becomes
available for assignment by other jobs. The DEASGN call performs no action
if the specified device is sharable of if it is not currently assigned to
the user's job. ALL devices are deassigned when the program exits to the
monitor.

6.3 DISK SERVICE MONITOR CALLS

In the previous section we covered the file-oriented monitor calls. Those
calls allow you to access data files without regard to the actual structure
of the data on the device. Internally, of course, AMOS does have to deal
with the structure of the data. This section deals with the monitor calls
used to manipulate that structure. A description of the data structures
used to maintain files on a device can be found in Appendix A - Disk
Structure Format.

The disk presents special problems which require the use of special monitor
calls to control the accessing of the directory and bitmap records. These
records have a non-sharable attribute associated with them even though the
disk in general is a sharable device. For instance, two user programs may
not both be updating the same directory records at the same time. The same
holds true for the bitmap records. The following monitor calls are used to
control the access to these non-sharable records:

DSKCTG - allocates a contiguous file for random processing
DSKALC - allocates the next available record on disk
DSKDEA - deallocates a specific record on disk
DSKBMR - reads disk bitmap and sets reentrant lock flag
DSKBMW - rewrites disk bitmap after user modification
DSKDRL - sets reentrant directory lock for a specific user
DSKDRU - clears reentrant directory Lock for a specific user

The access to these records is normally done by the monitor routines as a
direct result of normal 1/0 processing by file service calls. It is a
somewhat tricky process and the disk calls should not be used except with
extreme caution since misuse could violate the integrity of the file
structure on the disk. The following descriptions are directed at those
system programmers who are familiar with shared file techniques.

THE FILE SERVICE SYSTEM Page 6-18

6.3.1 Calling Sequence

All calls use a standard argument which is the address of the associated DOB
to be used for the call. In addition to the first argument which is the
DDB, some calls use a second argument for processing. The second argument,
if used, will be detailed in the description of the call.

6.3.2 The Bitmap Area

The bitmap area is an area in monitor memory which is allocated by the
BITMAP program run at system startup time by the BITMAP command in the
system initialization command file. This area consists of a status word, a
DOB for bitmap reads and writes, and a buffer for the actual bitmap
including the hash total words. The format of the bitmap area is as
follows:

WORD
BLKW
BLKW
BLKW

0
12
Bitmap-size
2

;Bitmap status word
;Partial DOB for bitmap I/O
;Bitmap buffer (size depends on device)
;Hash total words

The device table entry for each drive has the address of the corresponding
bitmap area to be used for that drive. More than one drive may share the
same bitmap area which will force a rewrite each time a different drive is
referenced. This is not efficient timewise but can save some memory for
larger devices where the bitmap buffer may be several hundred words or more.

6.3.2.1 The Status Word - The status word (first word in bitmap area)
contains two flags which are used to control bitmap access. Bit 0 is the
bitmap lock flag and is set to flag that the bitmap is locked and being read
or modified by some user job. The DSKBMR call sets this flag on and it is
up to the user to clear it after he has finished the bitmap access and
modification. Bit 1 is the bitmap rewrite flag which is set to indicate
that one or more modifications have been made to the bitmap in memory and
that it must be rewritten to disk before being discarded. If the user
program modifies the bitmap in memory it must set the rewrite flag to insure
that the bitmap is rewritten.

6.3.2.2 The Bitmap DOB - The bitmap DOB is a partial DOB due to the fact
that no files are ever referenced and the rest of the DOB is not needed.
The bitmap is normally allocated as record 2 of each disk and it extends
across successive records for those devices which overflow one record.

THE FILE SERVICE SYSTEM Page 6-19

6.3.2.3 The Bitmap Buffer - The bitmap buffer area is the exact size
required to contain the entire bitmap from the disk. Two extra words are
allocated to contain the hash total which is used to insure the integrity of
the bitmap in memory and on disk. Each time the bitmap is read or before
the bitmap is rewritten this hash total is checked and an error results if
it is bad. The hash total is merely the double-word binary sum of the
entire bitmap buffer. The user must update this hash total each time he
modifies the bitmap or else an error will result when it becomes time to
rewrite the bitmap to disk.

6.3.2.4 The Bitmap - The bitmap itself contains one bit for each Logical
record on the disk structure and this bit is off if the record is free and
on if the record is in use by anyone including the system structure records
themselves. Each word in the bitmap can define up to 16 records. The first
word in the bitmap defines records 0 through 17 <octal) with bit 0 defining
record 0 and proceeding upward throughout the word. The second word defines
records 20 thorugh 27, and so on. To define the 500 decimal records in a
standard IBM-compatible AMOS floppy disk we need 32 words (32 times 16 =
512) with the Last word not being totally used. The bitmap itself therefore
takes up 34 words which includes the two hash total words.

6.3.2.5 Altering the Bitmap
sequence recommended is:

Altering the bitmap is tricky but the

1. Read the bitmap using the DSKBMR call
2. Alter the bitmap as necessary (recompute the hash total)
3. Set the rewrite flag <status word bit 1)
4. Clear the bitmap Lock (status word bit 0)
5. Rewrite the bitmap using the DSKBMR call
6. Breathe a sign of relief if it worked

6.3.3 DSKCTG - Allocate a Contiguous Area

The DSKCTG call is used to allocate a contigous file on a random access
device. A standard argument is used as the second argument which represents
the number of records to be allocated in the file. A search will be made to
find the first available hole on the disk which will fully contain the
requested number of records. These records are marked as in-use on the disk
bitmap and a file descriptor item is added to the user directory. The word
which gives the number of bytes in the Last record will be set negative to
flag this file as contiguous to distinguish it from the normal sequential
files. A device full error will result if no hole can be found on the disk
which is large enou~h to contain the file.

THE FILE SERVICE SYSTEM Page 6-20

6.3.4 DSKALC - Allocate a Record

The DSKALC call is used to allocate one record for use by this user as a
directory record or as a file record. A standard argument is used as the
second argument which represents the word which is to. receive the record
number of the allocated record. An error will result if there are no free
records Left on the specified disk. A DSKBMR call is first performed to
insure that the current job has access to the bitmap and then the first free
record is Located and marked in use. The bitmap record is f Lagged as
modified which will cause it to be rewritten at the next DSKBMW call or if
it must be swapped out to make room for another bitmap sharing the same area
in memory.

6.3.S DSKDEA - Deallocate a Record

The DSKDEA call is used to deallocate a specific record on a disk and make
it immediately available for use by another user (or the same user). A
standard argument is used as the second argument which represents the
address of the word which contains the record number of the record to be
deallocated. No check is made to insure that this record is allocated to
either the current user or any other user. A DSKBMR call is first performed
to insure that the current job has access to the bitmap and then the
specified record's bit is set to zero to indicate that the record is free.
The bitmap record is flagged as modified to force a rewrite.

6.3.6 DSKBMR - Read the Bitmap

The DSKBMR call Locates the bitmap area in monitor memory for the specified
disk and insures that it is not Locked by another job. If it is Locked, a
stall will be made until it is released. It is then Locked for this job and
a return is made to the user. The address of the bitmap area will be set
into the word specified by the second argument in the calling sequence. The
second argument is a standard argument in format. Refer to the description
of the bitmap area above and note that the second argument receives the
address of this area and not the address of the bitmap itself. The user may
Locate the bitmap itself because its address is in the third word of the
bitmap area (second word of the bitmap DOB).

6.3.7 DSKBMW - Write the Bitmap

The DSKBMW call locates the bitmap area in monitor memory for the specified
disk and insures that it is not locked by another job. If it is locked, a
stall will be made until it is released. It is then locked for this job and

THE FILE SERVICE SYSTEM Page 6-21

rewritten to disk from memory unless the hash total is bad. After the
rewrite is complete both the rewrite and Lock flags are cleared and a return
is made to the user.

6.3.8 DSKDRL - Lock the Directory

The DSKDRL call Locks the directory for the specified drive for modification
by the user program. It is used by such file service routines as CLOSE for
output files, DELETE and RENAME calls. If the directory is already Locked
by another job a stall will be made until it is released. The user program
or routine must unlock the directory via the DSKDRU call after the
modifications have been made.

6.3.9 DSKDRU - Unlock the Directory

The DSKDRU call unlocks the directory for the specified drive after it has
been locked by the DSKDRL call for modification. No action will be
performed if the directory is not Locked by the current job.

CHAPTER 7

TERMINAL SERVICE SYSTEM

The AMOS monitor has several calls which deliver data to and from both the
user terminal and other terminals connected to the system. A terminal is
defined as an ASCII character-oriented device which is capable of both
output and input. This is the formal definition and does not preclude the
use of output-cnly devices on terminal designated ports. Also, the system
includes software terminals known as "pseudo terminals" which can be used to
control jobs that are not actually associated with a hardware interface on a
designated port address. The calls Listed here normally input from or
output to the terminal which is controlling the job that the call is being
executed by. Some calls (as specified) will input from or output to another
terminal not connected to the current job or to a pseudo terminal
controlling another job.

Programs which make use of the standard terminal service calls that
communicate with the user terminal can be run in a job controlled by a
pseudo terminal without modification. Keyboard input calls and terminal
output calls will always go to the controlling terminal regardless of which
job they are running in. The user, therefore, need not b~ concerned with
the physical port address or attributes of the terminal which is controlling
the job. The monitor routines handle all this automatically.

7.1 TERMINOLOGY

Due to a holdover from older system terminology most terminal output calls
reference the device name of "TTY" which used to define the teletype device
on systems which normally used teletypes as terminals. The input device of
the teletype was then called the keyboard and the calls reference the device
name of "KBD." These are strictly mnemonics and hold no true bearing to the
attributes of the physical terminals which now are more commonly the higher
speed video CRT terminals.

TERMINAL SERVICE SYSTEM Page 7-2

7.2 THE TERMINAL LINE TABLE

Each terminal has associated with it a terminal line table which is a work
area in monitor memory set up to contain the parameters and work areas
associated with the control of the terminal device. Most of the items in
this terminal Line table are for internal use only and the user need not be
concerned with them. The JOBGET Rx,JOBTRM call may be used to set an index
to the associated terminal line table so that the user may inspect or modify
the items within.

7.2.1 The Terminal Status Word

The only item that the user normally need be concerned with is the terminal
status word which is the first word in the terminal Line table. This word
has certain flags in it which the user may modify to alter the operation of
his terminal calls. The terminal status word has the following f Lag
positions defined:

Bit 0 - user sets to force image mode input (see KBD call)
Bit 1 - user sets to suppress echoing of input characters
Bit 2 - user sets to allow escapes to be processed (as in EDIT)
Bit 4 - user sets to allow Lower case input (disables conversion)
Bit 7 - internal flag used to indicate output is in progress
Bit 9 - flag used to indicate "hog" mode for terminal (set by TRMDEF)
Bit 10 - user sets to indicate terminal runs in Local mode (no echo)

The terminal status word is cleared each time the user program exits back to
monitor mode upon program completion thereby restoring normal terminal
operation regardless of program operation.

7.3 THE TERMINAL SERVICE CALLS

AMOS supports the terminals connected to the system with 17 monitor calls to
perform both input and output from any of the terminals connected to the
system.

7.3.1 KBD - Fetch a Line of Data

The KBD call accepts one full Line of input from the user terminal into a
monitor Line buffer and then sets index R2 tn the base of that buffer for
the user reference. During the inputting of the Line, the user job is set
into the terminal input wait state thereby consuming no CPU time until the
Line is finished. ALL normal Line editing features are active <rubout,
controL-U, tab, etc) and a control-c input will abort the job unless the
user has set up control-c trapping via the JOBICP item in the JCB for the

TERMINAL SERVICE SYSTEM Page 7-3

job. The Line will be terminated when a carriage-return or a Line-feed is
entered. The carriage-return will have a Line-feed automatically appended
to it by the monitor and a null byte will be set after the Line-feed
character.

If the echo-suppress flag is set in the terminal status word, normal echoing
of the input characters will be suppressed such as when the password is
being entered for the LOG command. If the image-mode input f Lag is set the
KBD command takes on a whole new Lease on Life. No editing is performed and
instead of one Line being accepted, only one character is accepted and it is
delivered back to the user in register R1 instead of setting register R2 to
the monitor Line buffer. Image mode input echoing is still under control of
the echo-suppress flag as in normal Line mode.

7.3.2 TTY - Output One Character

The TTY call outputs one character from register R1 to the controlling
terminal and then returns. Tabs are echoed as spaces up to the next
modulo-8 carriage position unless the image-mode output f Lag is set in the
terminal status word. If the job is running under the command of a control
file, the character will only be output to the terminal if the output
suppress command is in the normal state (:R revives it, :S silences it).

7.3.3 TIN - Get an Input Character

Gets the next input character from either the terminal input buffer or from
the command string if the job is controlled by a command file. The
character is delivered in R1. This call is normally only used within the
operating system itself and not by user programs.

7.3.4 TOUT - Output One Character

Outputs one character to the controlling terminal of the job or to the job
which has this job attached (by the address in the JOBATT item). This call
differs from the general TTY call in that the command file status is not
checked by the TOUT call. The TOUT call, Like the TIN call, is normally
only used within the operating system itself.

TERMINAL SERVICE SYSTEM Page 7-4

7.3.5 TAB - Output One Tab

This is a convenience call which outputs a single tab character to the user
terminal. It is in effect the same as the code sequence:

MOVI 11,R1
TTY

7.3.6 CRLF - Output a Carriage-Return I Line-Feed

This is a convenience call which outputs a carriage-return and line-feed
pair to the user terminal. It is in effect the same as the code sequence:

MOVI 15,R1
TTY
MOVI 12,R1
TTY

7.3.7 TTY! - Output a String of Characters

The TTY! call outputs a string of characters which follows the call itself
up to but not including a null byte. The call could be used as follows to
output two lines of data to the user terminal:

TTY!
ASCII /LINE 1 DATA/
BYTE 15
ASCII /LINE 2 DATA/
BYTE 15,0
EVEN

The TTY! call will also automatically append a line-feed to all
carriage-returns which are included in the string.

7.3.8 TTYL - Output a String of Characters Indexed

The TTYL call is similar to the TTY! call in that it outputs a string of
ASCII characters up to a null byte. The string of characters for the TTYL
call may be anywhere in memory and not inline with the call itself in the
program flow. The TTYL call takes one standard argument which is the
address of the message to be output. The TTYL call is therefore useful for
outputting from a table of messages by setting an index to the specific
message within the table (per some numeric director code> and then using
that register as the argument to the TTYL call. The TTYL call also appends
a line-feed to each carriage-return in the string.

\

TERMINAL SERVICE SYSTEM Page 7-5

7.3.9 PTYIN - Place Character in Input Buffer

The PTYIN call allows one job to force a character into the input buffer of
another job which is probably controlled by a pseudo terminal. The PTYIN
call takes two standard arguments. The first argument is the data byte to
be sent to the other job and the second argument is the address of the JCB
of the job into which the character is to be forced. The PTYIN call is the
method by which the FORCE operator command does its dirty work.

7.3.10 PTYOUT - Fetch Character from Output Buffer

The PTYOUT call allows one job to get a character from the terminal output
buffer of another job which is controlled by a pseudo terminal. If no
output is available from the specified job, the calling job is put to sleep
until a character is available. The PTYOUT call takes two standard
arguments. The first argument is the address of the byte which will receive
the data character and the second argument is the address of the JCB from
which the character is to be stolen.

7.3.11 TTYIN - Fetch Another Jobs Input

The TTYIN call allows one job to get waiting input data from the terminal
input buffer of another job. This call has not yet been fully inplemented.

7.3.12 TTYOUT - Place a Character in Another Jobs Output

The TTYOUT call allows one job to put data into another jobs terminal output
buffer. This call, like the TTYIN call, is not yet fully implemented.

7.3.13 TRMICP - Process Input Character Within Interface Driver

The TRMICP call is executed from within a terminal interface driver to
process one character which has just been received from the terminal by the
hardware tn-terface. R1 must contain the input character to be processed and
RS must index the terminal definition table entry for the specific terminal
being serviced. TRMSER will then take the character and pass it to the
terminal driver input routine for pre-processing if desired. When the
terminal driver passes it back to TRMSER it will then be edited for control
codes and other special characters and then added to the terminal input
buffer. ALL the pertinent flags will be set automatically to indiciate
a~tions to be taken by the application program when it requests the input

TERMINAL SERVICE SYSTEM Page 7-6

data. If the input character is a break character Cline-feed) or if image
mode is active the associated job will be awakened to process the available
data.

7.3.14 TRMOCP - Process Output Character Within Interface Driver

The TRMOCP call is executed from within a terminal interface driver to get
the next output character from TRMSER which is to be sent to the terminal.
This is usually in response to an interrupt from the interface board
indicating that the prior character has been fully output and the board is
ready to transmit the next character. RS must index the terminal definition
table entry for the specific terminal being serviced and R1 will get the
next available character upon return from TRMSER processing of the call. If
there is no more output available in the output buffer, R1 will be set to -1
as a flag and the associated job will be awakened to fill the output buffer
again.

7.3.1S TRMBFQ - Process Output Characters Within Terminal Driver

The TRMBFQ call is a physical output call usually executed from within a
terminal driver or a monitor routine. There are, however, times when it can
be used by an assembly language application program. The TRMBFQ call
effectively adds a buffer full of data characters to the output buffering
system for a specific terminal. It does this by Linking the buffer into the
dynamic output queue list used by TRMSER for this terminal. When using this
call R2 must index the buffer to be queued, R3 must contain the number of
characters in the buffer, and RS must index the terminal definition table
entry for the specific terminal. The TRMBFQ call will perform the output
initiation function if the output system for the terminal is currently idle.

7.3.16 TBUF - Output Large Amounts of Data

The TBUF call is the normal call for user programs to use for queueing up
Large amounts of data into the terminal output system of a terminal where
the single character calls are considered inefficient. It is a buffered
call in that it works through the two output buffers for the terminal as
opposed to going directly into the output queue system. If more data is
attempted to be output via the TBUF call then there is currently room for in
the output buffers, the user job will be suspended while the output buffers
are unloaded to the terminal. Each time one of the output buffers is
emptied the job is awakened and the TBUF call proceeds to fill that buffer.
This continues until the original amount of data is exhausted whereby the
call returns to the user program. When the call is executed R2 must index

TERMINAL SERVICE SYSTEM Page 7-7

the buffer to be output and R3 must contain the number of characters to be
output (similar to the TRMBFQ call). RS need not index the terminal
definition table entry since this is a user Level call.

7.3.17 TCRT - Call Special Terminal Driver Routines

The TCRT call is the Linkage into the special processing routine portion of
a terminal driver. R1 usually contains a two-byte code which is interpreted
by the terminal driver routine as a special function such as cursor
positioning or special editing action. The only action actually performed
by the TCRT call within TRMSER is to locate the terminal driver for the
attached terminal and call the driver control routine within it. The user
must refer to the actual driver Listing to determine the action performed
relative to the code passed to it in R1.

7.3.17.1 Standard Functions - The TCRT call will most commonly be used for
controlling such special CRT functions as cursor addressing and screen
clearing. To maintain compatability between terminal drivers, Alpha Micro
has defined the following functions within the terminal drivers it supports.

7.3.17.1.1 Cursor Addressing - To perform cursor addressing, R1 is Loaded
with a two byte argument defining the screen row and column to which the
cursor is to be moved. The high-order byte is Loaded with the row, and the
Low-order byte is Loaded with the column. The uppermost-Leftmost (Home)
position is considered to be column 1, row 1.

7.3.17.1.2 Other Functions - To perform other special CRT functions, the
high-order byte of R1 should be Loaded with 377 <octal). The Low-order byte
is then Loaded with one of the special function codes as Listed below.

0 Clear Screen and set normal intensity
1 Cursor Home (move to 1,1)
2 Cursor Return (move to column 1)
3 Cursor Up
4 Cursor Down
5 Cursor Left
6 Cursor Right
7 Lock Keyboard

10 Unlock Keyboard
11 Erase to End of Line
12 Erase to End of Screen
13 Enter Background Display Mode <reduced intensity)
14 Enter Foreground Display Mode <normal intensity)

TERMINAL SERVICE SYSTEM Page 7-8

15
16
17
20
21
22
23
24
25
26
27
30
31
32
33

Not all terminal
terminals do not
features, Alpha
function codes.

Enable Protected Fields
Disable Protected Fields
Delete Line
Insert Line
Delete Character
Insert Character
Read Cursor Address
Read Character at Current Cursor Address
Start Blinking Field
End Blinking Field
Start Line Drawing Mode (enable alternate character set)
End Line Drawing Mode (disable alternate character set)
Set Horizontal Position
Set Vertical Position
Set Terminal Attributes

drivers have all of the above functions simply because all
have all of the functions. If your terminal has additional
Micro recommends starting at 100 (octal) when assigning

7.3.18 Message Calls

There are three calls which have been defined in SYS.MAC as macros using the
TTYI call. These calls are for the convenience of the programmer and to
make the program more readily understandable. They all take a single
argument which is an ASCII message string to be output to the user terminal.
Due to the way that macro arguments are processed, if the message has
Leading or trailing spaces or if it has imbedded commas, it must be enclosed
in angle brackets or part of it will be lost. The three calls are:

TYPE msg
TYPESP msg
TYPECR msg

The macros are defined

DEFINE TYPE MSG
TTYI
ASCII /MSG/
BYTE 0
EVEN
ENDM

DEFINE TYPE SP MSG
TTYI
ASCII /MSG'
BYTE 0
EVEN
ENDM

I

;Types the message on the user terminal as is
;Types the message and appends one space to it
;Types the message and appends a CRLF pair to it

in SYS.MAC as fol Lows:

l~

·.,
'

TERMINAL SERVICE SYSTEM Page 7-9

DEFINE TYPE CR MSG
TTY!
ASCII /MSG/
BYTE 15,0
EVEN
ENDM

It should be noted that the message may not contain any slashes since these
are used as delimiters for the ASCII statement in the macros.

CHAPTER 8

CONVERSION MONITOR CALLS

8.1 NUMERIC CONVERSION CALLS

The AMOS monitor contains two calls which perform conversions from a single
binary word value to an ASCII formatted decimal or octal string. Options
for the conversion allow the string to be sent to the user terminal, to an
output file or to a buffer in memory. Options also allow control of the
result format.

8.1.1 Calling Format

Both calls have the same general format and take two arguments, each of
which must be an expression that evaluates down to a byte value within the
specified range. The two calls are:

DCVT
OCVT

size,f lags
size,f lags

;Convert binary number in R1 to decimal
;Convert binary number in R1 to octal
; (hexadecimal if J.HEX is set for this job)

8.1.1.1 Size Byte - The size byte determines the number of digits in the
output result. A zero size specifies a floating format in which the number
of digits used will be just enough to fully contain the result. A non-zero
size specifies a fixed number of digits for the result with leading zeros
being replaced by blanks. In either form, if the R1 value is zero at least
one zero digit will be output as the result.

CONVERSION MONITOR CALLS Page 8-2

8.1.1.2 Flags - The flags byte contains six flags which control the
destination of the result string and also some other formatting options.
The following List. gives the flag bit positions and the action taken when
the flag is set:

1 - Bit 0 - disables Leading zero blanking
?. - Bit 1 - outputs the resu Lt to the user termi na L
~-Bit 2 - outputs the result to the file whose DOB is indexed by R2
1~- Bit 3 - puts result in memory at buffer indexed by R2 and updates R2
':).(j)- Bit 4 - adds one Leading space to the result
4¢1- Bit 5 - adds one trailing space to the result

Note that the maximum value which can be displayed using these calls is the
maximum value of a 16-bit word. All numbers are considered unsigned so the
largest decimal number is 65535, the Largest octal number is 177777, and the
largest hex number is FFFF.

If the size byte is non-zero, the sense of the Leading zero blanking flag
described below is reversed. In other words, when the size byte is zero,
the conversion calls default to Leading zero blanking, with bit 0 turning
that blanking off. When the size byte is non-zero, the calls default to
Leading zeroes, with bit 0 specifying that Leading zeroes are to be blanked.

The following examples may clarify things a bit. ALL examples assume the
value in R1 is 964 (decimal) and the letter "b" in the result field
indicates a blank.

DCVT 0,2 prints 964
DCVT 0,22 prints b964
DCVT 0,42 prints 964b
DCVT 5,2 prints 00964
DCVT 5,3 prints bb964
DCVT 5,43 prints bb964b
DCVT S,62 prints b00964b
DCVT 2,2 prints 64 (the 9 is Lost)

CONVERSION MONITOR CALLS Page 8-3

8.2 RADSO CONVERSION MONITOR CALLS

Radix-SO packing is used throughout the system where the packing of filenames
and other data entities Lends itself. Radix-SO CRADSO) packing is a system
by which 3 ASCII characters may be packed into a single 16-bit word using a
special algorithm based on the value of octal SO. The character set that may
be packed RADSO is Limited in scope to the alphanumeric characters, the period,
the dollar sign, and the blank. The following List gives the Legal characters
that may be packed RADSO and their equivalent octal codes:

Character

blank
~z

$

0-9

RADSO code

0
1-32
33
34

36-47

There is no character for the RADSO code 3S.

8.2.1 RADSO Packing Algorithm

The packing algorithm for a three-character input to a 16-bit RADSO result
is:

1. The first character code is multiplied by 3100 octal CSOxSO)

2. The second character code is multiplied by 50 and added to the
first

3. The third character code is added to the above to form the result

The unpacking algorithm merely reverses the above sequence to get the
triplet.

8.2.2 Packing and Unpacking Calls

There are two monitor calls which perform the above packing and unpacking
algorithms. Both calls use registers R1 and R2 as indexes to the components
and require no calling arguments.

CONVERSION MONITOR CALLS Page 8-4

8.2.2.1 PACK - Pack Three ASCII Characters into RADSO - The triplet C3
ASCII characters> indexed by R2 is packed into RADSO form and the result is
left in the word indexed by R1. R1 is incremented by 2 to receive the next
result word for multiple packing. R2 is left indexing the first character
which was not included in the packing of this triplet. The PACK call will
terminate packing and force blank fill for any input which does not contain
3 valid RADSO characters. For the PACK call, a blank will be considered an
illegal input character and will terminate packing.

8.2.2.2 UNPACK - Unpack Three RADSO Characters into ASCII - The word in the
address indexed by R1 will be unpacked and the triplet will be left in the
three bytes beginning with the byte currently indexed by R2. R1 will be
incremented by 2 for the next word and R2 will be incremented by 3 for the
next triplet result. Blanks are legal in unpacking and will be placed into
the result if they are decoded from the input word.

8.3 PRINTING CONVERSION CALLS

There are three calls in the monitor which accept a system unit input and
convert the unit to standard printable form and then output it to the user
terminal. These calls are used to print out file specifications, filenames,
and project-programmer numbers. Each call takes one standard argument which
addresses the system unit to be converted and printed.

8.3.1 PFILE - Output a Filespec From a DOB

The argument addresses a file DOB and the PFILE call extracts the parameters
in the file specification words and prints them in the ~tandard format of
dev:filnam.ext[ppnJ on the user terminal.

8.3.2 PRNAM - Output a Filename

The argument addresses a 3-word filename.extension block (packed RADSO> and
the PRNAM call prints the converted result in the standard format of
filnam.ext on the user terminal.

CONVERSION MONITOR CALLS Page 8-5

8.3.3 PRPPN - Output a PPN

The argument addresses a 1-word project-programmer code and the PRPPN call
prints the converted result in the standard format of proj,prog on the user
terminal. The PPN will be output in octal regardless of the setting of
J.HEX.

CHAPTER 9

INPUT LINE PROCESSING CALLS

When a program is executed by an operator command, register R2 is Left
pointing to the first non-blank character on the command Line which follows
the command name itself. The remainder of the Line is normally interpreted
by the particular program and used to determine the files to be acted on,
the record number to be dumped, the devices to be accessed, etc. For
example, the MACRO call requires the name of the program and any switch
options to follow the MACRO command name on the same Line. The macro
assembly program then processes the program name and the switch options by
way of the R2 index which was Left indexing the rest of the command Line.
This command Line is actually the user's terminal input buffer.

In addition to the command input Line, the KBD monitor call also Leaves R2
set to the input Line buffer which contains the user input data. Also,
various translators and file processing programs may read in a Line of data
and then set index R2 to the base of that Line for scanning. For this
reason, there exist a number of monitor calls which perform scanning and
conversion functions based on an input Line which is indexed by R2. Some of
the calls merely test the character indexed by R2 for a specific condition
and return with f Lags set based on the result of the test. In these
instances R2 is not modified. In calls which perform scan conversions, R2
is updated to point to the character which terminated the conversion. With
the exception of the FILNAM call, none of these calls require any arguments.
Conversion results are always delivered back to the user in register R1.

9.1 ALF - TEST A CHARACTER FOR ALPHABETIC

The character indexed by R2 is tested for alphabetic (A-Z) and the Z-f Lag is
set if it is or cleared if it is not. R2 is not changed.

INPUT LINE PROCESSING CALLS Page 9-2

9.2 NUM - TEST A CHARACTER FOR NUMERIC

The character indexed by R2 is tested for numeric C0-9) and the Z-flag is
set if it is or cleared if it is not. R2 is not changed.

9.3 TRM - TEST A CHARACTER FOR TERMINATOR

The character indexed by R2 is tested for a legal terminator
blank, tab, comma, semicolon, carriage-return, or line-feed.
set if the character is a terminator and cleared if it is not.
changed.

9.4 LIN - TEST A CHARACTER FOR LINE TERMINATOR

defined as a
The Z-f lag is

R2 is not

The character indexed by R2 is tested for a legal end-of-line defined as a
semicolon, carriage-return, or line-feed. The Z-flag is set if the
character is an end-of-line character and cleared if it is not. R2 is not
changed.

9.5 BYP - BYPASS BLANKS

Index R2 is advanced past all characters which are blanks or tabs and left
indexing the first non-blank, non-tab character it finds.

9.6 GTDEC - INPUT A DECIMAL NUMBER

Index R2 is used to process a decimal number whose value may be from 0-65535
in the input line (leading zeros are legal> and deliver the resultant binary
value back in R1. The N-flag will be set if there was an error (result was
greater than 65535). R2 will be updated to point to the character following
the decimal input number. In the case of an error, R2 will be left indexing
the digit that would have caused the overflow past 65535 for double-word
processing techniques.

9.7 GTOCT - INPUT AN OCTAL NUMBER

Index R2 is used to process a octal number whose value may be from 0-177777
in.the input line (leading zeros are legal) and deliver the resultant binary
value back in R1. The N-flag will be set if there was an error (result was

INPUT LINE PROCESSING CALLS Page 9-3

greater than 177777). R2 will be updated to point to the character
following the octal input number. If J.HEX is set for this job Cvia the SET
HEX command) this call will process input in hexadecimal instead of octal.

9.8 GTPPN - INPUT A PROJECT-PROGRAMMER NUMBER

Index R2 is used to process a project-programmer number in the standard
format of proj,prog and deliver the resultant binary code back in R1. The
format dictates that project numbers be octal numbers with a value between
1-377, and programmer numbers be octal numbers with a value between 0-377.
The N-flag will be set if the PPN was not in valid format. R2 will be
updated to point to the character following the PPN.

9.9 FILNAM - INPUT A FILENAME

Index R2 is used to process a filename.extension input string and leave the
RADSO packed 3-word result in the 3 words starting with the address
specified as the first argument of the call. This argument is a standard
monitor call argument in format. The second argument is a 1-3 character
extension which is to be used in case no explicit extension is entered in
the input string. R2 is updated to index the terminating character. The
Z-bit will be set if there was no filename to process Cthe first character
was not a legal RADSO character>.

CHAPTER 10

MISCELLANEOUS MONITOR CALLS

This section deals with the monitor calls which don't seem to have a home in
any other section covered thus far.

10.1 EXIT - RETURN TO AMOS COMMAND LEVEL

This is the normal means that a program uses to terminate processing and
return to monitor command mode. The EXIT call takes no arguments. The
monitor, upon executing the EXIT call, will delete all temporary memory
modules in the user partition and reset any parameters that are program
dependent such as JOBICP, JOBBPT, etc. ALL assigned devices are also
released at this time. The user terminal is then placed in the monitor
command mode ready to process another operator command.

10.2 SLEEP - PUT JOB TO SLEEP

This is a simple call which puts the user job to sleep for a specified

number of line clock ticks. The argument is a standard argument which
specifies how many clock ticks to sleep for. After the specified number of
clock ticks have elapsed the job is automatically awakened and execution
proceeds with the instruction following the SLEEP call. Caution - a sleep
call with an argument of zero clock ticks will put the job to sleep for
about 18 minutes (65536 clock ticks) due to the nature of processing the
call. The normal AM-100 system runs with a clock frequency of 60 Hz so each
clock tick therefore has a value of 16.7 milliseconds. Also, the first
clock tick may occur any time within the first 16.7 milliseconds (not
necessarily a full clock tick).

MISCELLANEOUS MONITOR CALLS Page 10-2

Remember that SLEEP takes a standard argument, therefore to sleep for 1
minute, you would execute a

SLEEP #3600.

not a

SLEEP 3600.

Leaving off the pound-sign (#) is one of the most frequently made coding
errors.

10.3 CTRLC - BRANCH ON CONTROL-C

Whenever a control-C is entered on a terminal keyboard (usually to abort a
program) no action takes place immediately but rather a flag is set in the
JCB status word which must be tested Later by the program. The CTRLC call
is used within an application program to check the status of the control-C
flag Cin the JCB status word) and branch to a specific address if the flag
is set. This call is a convenience since the user could perform the same
task with a few instructions by Locating his own JCB status word and
checking the J.CCC flag within it. The format of this call is:

CTRLC routine-address

where routine-address is the address to branch to within the program if the
control-C flag is set.

The CTRLC call does not reset the J.CCC flag but merely indicates that it is
set (this allows nested routines to unwind themselves correctly). The user
program must then reset the flag explicitly by clearing it in the JCB status
word or implicitly by performing the EXIT call which kills the program and
returns to monitor mode, clearing J.CCC.

APPENDIX A

DISK STRUCTURE FORMAT

The AMOS monitor supports a flexible disk file system which relieves the
programmer of the task of keeping track of files, Links and record counts.
The structure of the standard disk format used in the AMOS system will be
described here for those programmers who wish to do some disk file
manipulation or system software programming.

A.1 PHYSICAL RECORD FORMAT

The logical record size for all disks used within the AMOS file structure,
regardless of type, is 512 bytes. The hard-disk structures (such as the
AM-500 or Trident subsystems>, and the AMS floppy format all define the
physical record size to be this 512-byte Logical record size for efficiency.
To maintain compatibility with other systems, the standard IBM- compatible
floppy disk format is somewhat different and will be expained in more detail
here.

The standard IBM-compatible f Loppy disk has 2002 128-byte physical records
on 77 tracks, each track having 26 sectors numbered 1 through 26. The AMOS
system uses a Logical record size of 512 bytes (256 words) for each record
so the actual record is made up of four standard size 128-byte records on
the floppy disk itself. The disk driver routine is responsible for
translating the AMOS record number <0-499) to the proper four physical
records on the disk. There are only 500 records of 512 bytes each as far as
the programmer is concerned and the Last two 128-byte records on the floppy
disk are Lost to his use.

The driver translates the AMOS record number into a starting record number
which is four times as great. In addition, a physical sector interleave
factor is used so that a 512-byte record requires only one rotation of the
disk instead of four which would be the case if an attempt was made to
access four physically contiguous sectors on the floppy disk. The
interleave factor is 5 meaning that there are four sectors between each
Logically contiguous pair of sectors.

DISK STRUCTURE FORMAT Page A-2

A.2 DISK RECORD TYPES

There are six different record types in use in the AMOS system, categorized
by their use in the logical processing of files. Each record is 512 bytes
long but their internal structure differs due to different usage in the
system. The six record types are:

1. Disk ID record
2. Bitmap records
3. Master File Directory record CMFD)
4. User directory records
5. Sequential file data records
6. Contiguous file data records

The following three record types take care of records 0-2 which are the same
on all disks. Initializing the disk by using the "I" command in the SYSACT
program will write out record 1 (empty MFD of all zeros) and record 2
(bitmap wi~h records 0-2 allocated) which Logically clears the disk of all
users and files and makes all remaining records (3-499) available. These
records are then allocated as either user directory records or file data
records.

A.2.1 The Disk ID Record

The Disk ID record is always record 0 and is not currently used by the AMOS
system. It has been reserved for use by user routines which may want to
store disk identification information in it. It is permanently allocated so
it will not accidently be used as a data record by any system routine.
Alpha Micro will be using this record in the future. If users require the
use of this space for a specific application, it is suggested that the user
start allocating space at the end of the disk ID record so as to minimize
any conflict with Alpha Micro.

A.2.2 The Bitmap

The bitmap is one or more records which always begin with record 2 and
extend into as many sequential records as necessary to represent the entire
disk. Each word in the bitmap is capable of representing the state of 16
Logical records with one bit being used for each record. The bit is set if
the record is in use and cleared if it is free. The Last two words of every
bitmap are a double-word hash total used to maintain bitmap integrity during
processing. Any remaining words in the Last bitmap record are unused. The
bitmap itself is permanently allocated but contains no Links to other system
disk records. If you destroy the bitmap you can run the DSKANA program to
recover it.

DISK STRUCTURE FORMAT Page A-3

A.2.3 The Master File Directory

The master file directory record is always record 1 and forms the root of
the file structure tree. It contains one entry of four words for each user
PPN which is allocated to this disk by the SYSACT program. A maximum of 63
users may be allocated on any one disk since only one MFD record is
available.

A.2.4 The User File Directory

User directory records contain up to 42 entries of six words each to
describe user files in the corresponding PPN. The first word of each
directory record is a link word to the next directory record in the event
that more than 42 files are allocated in the current user area. The final
directory record will have a zero Link word indicating no more directory
records follow.

A.2.5 Sequential File Data Records

Sequential file data records have a link word and 255 data words. The link
word is the record number of the next record in the file. A zero link word
indicates this is the last record in the file. The last record in the file
may have anywhere from 0-509 active data bytes in its data area. The
directory record item contains this number. Sequential files are normally
processed as one long string of bytes from start to finish.

A.2.6 Contiguous File Data Records

Contiguous file data records have 256 data words and no links. Contiguous
files must be allocated as a block of records with no intervening records
belonging to other files. Contiguous files must be preallocated before
their use while sequential files are allocated one record at a time as they
are required. Contiguous files allow random access processing since any
record may be located as a direct offset relative to the base record.

A.3 FILE STRUCTURE

The file struture is depicted in figure A-1 and resembles a tree with the
MFD record as its root. The MFD record has one item for each allocated user
on this disk. Each MFD item then contains the tecord number of the first
user directory record for that PPN number. The user directory record has
one item for each data file in this user's area. Each directory item then
contains the record number of the first data record in he file. Sequential

DISK STRUCTURE FORMAT

¢
(AloFM.u)

I MFD l
~ECORD .1.J

Page A-4

zo' z.o !---+--+------------.

PllZ.'~"'f DllCE!CTOll..'(RSC.01!.P

FoR. [1 1 Y]

13')SIC. ~ ___ TO IM\SIC..~
FIL&'

~lUv. PRGr ,__ __ - - - ..,., 1u.111>.P'e,A;.

Fii-ii

Disk File Structure

Fig A-1

I ~·c...
I
I
I
I

C>IRE:c. TO IC V l115CDll0

!='Ott [zo, -zo]

FUN.BASf- _ __ ni FUAJ.M:;.
F"lLli

IOlll.SASf-- __ To Tofll.IAS.

1011. RU~
f--,

FIL.E

-;-- :
.j, TD TDWl.tt.W)

ii TC. l'ILlii

DISK STRUCTURE FORMAT Page A-5

files then chain through the data records by link words as shown in the
diagram. The two files that are partially depicted are EDIT.PRG and DIR.PRG
in user area [1,4J which just happens to be the system program area.
Contiguous files have no Link words and must occupy physically adjacent
records beginning with the first record as addressed in the directory item.
Contiguous files are not depicted in the diagram since they are so
straightforward in organization.

A.4 MFD ITEM FORMAT

Each MFD item is four words Long and contains the PPN, user directory Link,
and password~ The format of the item is:

Word 1 - user PPN (proj and prog are each one byte)
Word 2 - record number of first user directory record
Words 3-4 - password packed RAD5U (up to 6 characters)

Word 2 is zero if no files have been allocated to this user yet meaning no
directory records have yet been allocated. Words 3-4 are zero if no
password is required to gain access to this user account when Logging on via
the LOG command.

MFD items are added, deleted, and changed by the SYSACT program.

A.5 UFD ITEM FORMAT

Each user directory item is six words Long and contains information about
the data file which it defines. The format of the item is:

Words 1-3 - filename.extension of the file packed RAD50
Word 4 - number of data records in this file
Word 5 - number of active data bytes in Last record
Word 6 - record number of first data record in file

Word 1 is -1 (octal 177777) if this file has been erased and the directory
item is available for another file definition. Word 1 is zero to mark the
Logical end of the user directory. The byte count in word 5 is negative if
this is a contiguous file. It will also represent the negative active byte
count of the file if the contiguous file has been opened for output and
written into sequentially.

APPENDIX B

SYSTEM COMMUNICATION AREA

There is an area in monitor memory starting at Location 100 (octal) which is
called the system communication area. It is'defined mnemonically in SYS.MAC
and contains specific parameters that deal directly with singular system
resources and root addresses. The user should not mess around with these
parameters because he might create a disaster. They are briefly defined
here for those users who wish to gingerly reference them for whatever
diabolical reasons programmers dream up. ALL refe.rences to these parameters
should be made symbolically in the absolute addressing mode. An example:
the instruction MOV @#JOSTBL,RO should be used to set the base of the user
job table into index register RO.

B.1 SYSTEM - SYSTEM ATTRIBUTES WORD

This word is used to contain system attribute and status flags. Currently
it is only used to indicate that the system has been properly Loaded when
bit 0 is set on. The user should not count on this remaining the case in
future releases, however.

8.2 DEVTSL - ADDRESS OF THE DEVICE TABLE

Set up by the DEVTBL program in the system initialization command file this
word contains the absolute address of the device table in monitor memory.
The format of this table remains a mystery to all.

SYSTEM COMMUNICATION AREA Page B-2

a.3 DOBCHN - ACTIVE 008 CHAIN

This is the base of the active DOB chain for interrupt driven routines. It
is set up and altered by the file service routines as new I/O ooa•s are
queued for transfer requests and goes to zero each time that there are no
requests pending. i>fot used for non-interrupt driven devices.

8.4 MEMBAS & MEMEND - USER MEMORY POINTERS

These two words define the beginning and end of the complete user memory
area. MEMBAS is the address of the first word following the complete
resident monitor including the system memory area for user resident
programs. MEMEND is the address of the last word in the total physically
contiguous RA~ memory in the machine. It is set up by the INITIA program
when the monitor first starts up by a memory scan technique which locates
the last available 1K bank. If memory management is active, MEMEND can only
reflect the·end of switchable memory within bank 0 and its use in the system
diminishes.

B.5 SYSBAS - 8ASE OF SYSTEM MEMORY

This is the address of the system memory area which is used to contain any
user programs set up by the SYSTEM command in the system initialization
command file. It is zero if no system memory area exists.

a.6 JOBTBL - ADDRESS OF THE JOB TABLE

This is the address of the user job table which contains one JCB entry for
each user allocated via the JOB command in the system initialization command
file. For a complete description of the job table and JCS entries refer to
the section titled JOB SCHEDULING ANO CONTROL SYSTEM.

8.7 JOBCUR - JCB ADDRESS OF THE CURRENT JOB

This word always contains the address of the JCB for the job
currently running and has control of the CPU. For the user program,
a(ways point to your own JCa as long as you are running. Obviously
are referencing this word you must be running. JOBCUR is updated
the job scheduler in the timesharing monitor.

that is
it will
if you
only by

SYSTEM COMMUNICATION AREA Page B-3

8.8 JOBESZ - JOB TABLE ENTRY SIZE

This word is set up when the monitor is built and contains the size in bytes
of the JCB entry in the job table. This way, when the JCB item expands the
programs which scan the job table will not have to be reassembled since they
get the JCB size dynamically from JOSESZ. This includes routines within the
monitor itself.

B.9 TIME - THE TIME OF DAY

This is a two-word field which is incremented each time the Line clock
interrupts. It represents the current time of day, which is stored as the
number of ticks since midnight. It is the parameter which you can reference
if you want to keep track of the time it takes to do something on the
machine. Remember, TIME is used to count clock ticks and not seconds or
milliseconds. To calculate the actual time in seconds you should divide the
elapsed time in ticks by the clock frequency which is stored in the CLKFRQ
constant described further on. This of course optimistically assumes that
the CLKFRQ command has been used in the system initialization command file
to properly set the constant up for your particular frequency CSO Hz
overseas, remember?>.

B.1U DATE - THE SYSTEM DATE

This is a two-word field which is used by various date routines to store the
current date in some specific format. Its use is dependent upon the
applications which are defining the format. The DATE field is not accessed
or altered by the system monitor itself.

B.11 HLDTIM - THE HEAD LOAD TIMER

This is a two-word area which controls the head-Load timing for the AM-200
floppy disk system when used with the Persci Floppy Disk Drive. The second
word <at HLDTIM+2) is set up by the HEDLOD program in the system
initialization command file to the number of clock ticks desired to wait
before unloading the disk heads during periods of inactivity. Each time the
h~ad is loaded or another disk transfer is initiated, the count in the
second word is transferred to the first word. Each time the clock
interrupts, the count in the first word is decremented and if it ever gets
to zero the head is unloaded.

3YSTEM COMMUNICATION AREA Page B-4

B.12 CLKFRQ - LINE CLOCK FREQUENCY

This word is set up by the CLKFRQ command in the system initialization
command file to contain the frequency at which the Line clock is running.
It is used by routines which· compute elapsed time based on counting the
clock ticks in the TIME constant. Normally set to 60 for systems in North
American countries and to 50 for systems rt.inning overseas. Achtung!

Remember that CLKFRQ specifes only the Local Line frequency. Changing
CLKFRQ will have no effect on the execution speed of the computer.

8.13 SPXSAV - STACK POINTER SAVE LOCATION

This word is used by the clock interrupt routine for saving the user stack
pointer just prior to switching to the internal stack.

B.14 SPXINT - INTERNAL STACK

The address of the internal work stack used for processing clock interrupts.
It is set up by the initial Load routine and used by the clock interrupt
processor.

B.15 LPTQUE - LINE PRINTER SPOOLER QUEUE

The dynamic link address to the base of the line printer spooler queue. The
format of the spooler queue is subject to frequent change, so it is not
detailed here.

t).16 TRMDFC - SASE OF THE TERMINAL DEFINITION TA8L£

The Link to the base of the terminal definition table. There is one entry
in this table for each terminal defined at system startup by a TRl'llDEF
statement in the SYSTEM.Ifd file.

B.17 TRMIDC - ADDRESS Of FIRST INTERFACE DRIVER

The link to the first terminal interface driver defined in the system. Each
driver then links to the next one in the chain.

SYSTEM COMMUNICATION AREA

B.18 TRMTDC - ADDRESS OF FIRST TERMINAL DRIVER

The link to the first terminal driver defined in the system.
then links to the next one in the chain.

B.19 TRMSCN - THE NON-INTERRUPT TERMINAL QUEUE

Page B-5

Each driver

The Link to the chain of queue blocks for all terminals which are defined as
being non-interrupt driven and requiring terminal scan service each clock
tick.

B.20 CLKQUE - THE CLOCK QUEUE

The link to the clock queue which will get scanned every clock interrupt.
This queue has some entries which will remain constant and some entries
which will be continuously added and deleted <such as SLEEP command queue
blocks>. CLKQUE is actually the base entry in the queue chain and therefore
is two words in size.

B.21 SCNQUE - THE IDLE SCAN QUEUE

The Link to that point within the clock queue chain which defines the idle
scan queue or that portion of the clock queue which will be continuously
scanned when the system is idle. SCNQUE is actually the base entry in the
qµeue chain and therefore is two words in size.

B.22 RUNQUE - THE JOB SCHEDULING QUEUE

A 5-word block which forms the base and end entries for the job scheduling
and run queue along with the necessary control information. Its format is
unimportant to the user, who must never alter it.

B.23 ORVTRK - THE DRIVE/TRACK TABLE

A 4-byte block which is used to store head track positioning information for
floppy disks used in the system. It is used only by the head unload and
head positioning routines in various floppy disk drivers.

SYSTEM COMMUNICATION AREA Page B-6

B.24 MEMDEF & MEMBNK - MEMORY MANAGEMENT CONTROL

These two words
store the base of
bank index. They
control.

are used by the memory management system (when active) to
the memory bank definition table and the currently active
are explained in detail in the section dealing with memory

B.25 ZSYDSK - ADDRESS OF SYSTEM DISK DRIVER

This word contains the base address of the system disk driver within the
monitor. It is used by MONGEN to overlay the disk driver with another one
when changing the resident disk type.

8.26 QFREE - QUEUE SYSTEM CONTROL

QFREE consists of two words, the first containing the number of queue blocks
currently available, the second pointing to the first available queue block.
Queue blocks are allocated and deallocated by getting and returning them
from the front of the List controlled by this address, automatically
incrementing or decrementing the free count in the process. The operation
of the queue system is more fully explained in Chapter S.

APPENDIX C

ALPHABETICAL LISTING OF AMOS MONITOR CALLS

The following is a quick reference to all AM-100 monitor calls:

ALF
ASSIGN
BNKSWP
BYP
CHGMEM
-CLOSE
CRLF
CTR LC
DCVT
DEASGN
DELETE
OELMEM
DSKALC
l)SKBMR
l)SKBMW
DSKCTG
OSKDEA
OSKDRL
DSKDRU
EXIT
FETCH
FILNAM
FSPEC
GETMEM
'GT DEC
GT OCT
GTPPN
HTIM
INI.T
INPUT
JOBGET
JOBI DX
J08SET

tests the character indexed by R2 for alphabetic
assigns a non-sharable device to a job
changes banks when running under memory management system
bypasses all spaces and tabs in the string indexed by R2
changes the size of a user memory module
closes a logical dataset
prints a carriage-return Line-feed pair on the user terminal
checks for a control-c pending
converts a binary value to decimal and prints it on the user terminal
deassigns a non-sharable device from a job
deletes a file from a .fi Le-structured device
deletes a user memory module from his partition
allocates next available record on disk and returns block number
reads disk bitmap and sets reentrant lock for user modification
rewrites disk bitmap after user modification
allocates a contiguous file for random processing
deallocates a record on disk and makes it available for use again
sets reentrant directory lock for a specific user's directory
clears reentrant di rectory lock for a specific user's di rectory
exits from user program and returns to monitor command mode
fetches a module from disk into user memory unless already in memory
processes a fi Lename· specification indexed by R2 into RA050 format
processes a complete file specification indexed by R2 and sets up DDB
allocates a user memory module in his partition
converts a decimal number indexed by R2 into binary and returns it in R1
converts an octal number indexed by R2 into binary and returns it in R1
converts a PPN format indexed by R2 into binary and returns it in R1
sets up the diskette head unload timer function
initializes a dataset driver block (008) for I/O processing
performs a Logical record input I/O function on an open dataset
retrieves a job control block item for the current job
set an im:lex to a job control block item for the current job
sets data into a job control block item for the current job

ALPHABETICAL LISTING OF AMOS MONITOR CALLS Page C-2

JRUN
JWAIT
KBD
LIN
LOCK
LOOKUP
NUM
OCVT
OPEN
OPEN!
OPENO
OPENR
OUTPUT
PACK
PF!LE
PR NAM
PRPPN
PTYlN
PTYOUT
QAOO
QGET
QlNS
QRET
READ
RENAME
SCAN
SLEEP
SRCH
TAS
TBUF
TCRT
TIN
TOUT
TRM
TRMBFQ
TRMICP
TRMOCP
TTY
TTYI
TTY IN
TTYL
TT YO UT
TYPE
TYPECR
TYPE SP
UNLOCK
l.INPACK

restores a waiting job to the run request state
sets an active job into the wait state
accepts input from user terminal keyboard (character or line mode)
tests the character indexed by R2 for valid end-of-Line character
locks the processor against interrupts Cperfoms IDS instruction>
looks for a specific file on disk and returns information about it
tests the character indexed by R2 for numeric
converts a binary value: to octal and prints it on the user terminal
general form of the I/O logical dataset open calls
opens a logical dataset for input
opens a logical dataset for output
opens a logical dataset for random access
performs a Logical record output I/O function on an open dataset
packs an ASCII triplet into its RAD50 code
prints a complete file specification on user terminal from a DOB
prints a filename specification on user terminal from its packed format
prints a PPN specification on user terminal from its packed format
forces one character into another job's terminal input buffer
retrieves one character from another job's terminal output buffer
adds a queue block to the end of a queue list
gets a queue block from the free List and clears it for use
inserts a queue block into a queue list at a defined point
removes a queue block from a queue list and returns it to the free List
performs a physical record read I/O function on a dataset
renames a file on a file-structured device
forces a single scan of the idle scanner queue CSCNQUEJ
puts the user job to sleep for a specified number of line clock ticks
searches for a named memory module and.returns its address
sends a tab character to the user terminal
queues up a variable Length data buffer for output to a terminal
executes the special function CRT routine in the active terminal driver
reads one character from the user terminal input buffer
sends one character to the user terminal output buffer
tests the character indexed by R2 for a valid termination character
adds a data buffer to the active output queue of a terminal
processes one input character <used within terminal drivers)
processes one output character <used within terminal drivers>
outputs one character to the user terminal
outputs an inline message to the user terminal
retrieves one character from any job's terminal input buffer
outputs a message to the user terminal
forces one character into any job's output buffer
types an ASC!I message on the user terminal
types an ASCII message on the user terminal with appended CRLF pair
types an ASCII message on the user terminal with one appended space
unlocks the processor for interrupts (performs IEN instruction>
unpacks a RAOSO code word into its equivalent ASCII triplet

ALPHABETICAL LISTING OF AMOS MONITOR CALLS Page C-3

USRBAS
US REND
USRFRE
WAIT
WRITE

returns the address of the current user's memory partition base
returns the address of the current user's memory partition end
returns the address of the current user's free memory area
puts user job into a wait state until the completion of I/O
performs a physical record write I/O function on a dataset

INDEX

ALF • • • • •
ASSIGN

Bitmap Format •••••••
Bitmaps ••••
BNKSWP
BYP ••

CHGMEM
CLKFRQ
CLKQUE
Clock Frequency ••••••
CLOSE • • • • • •
Contiguous Files ••••••••
Control-C •••••••••
Convenience Macros
CRLF
CTRLC • • •
Cursor Addressing •

DATE • • • •
DCVT
DOB • •

Buffer Address • • • • •
Buffer Index
Buffers • •
Call Level
Device Code
Drive •••

.. . . .

Driver Work Area ••••
Error Code • • • •
Error Handling
Extension ••
Filename •••••
Flags • • •
JCB Address •
Job Priority ••••
Open Code • • •
PPN • • • • • •
Queue Chain Link ••••
Record Number • • • • • •

. . ..

Index

9-1
6-16

6-18
A-2
3-11
9-2

3-6
B-4
B-5
B-4
6-11
A-3
10-2
7-8
7-4
10-2
7-7

B-3
8-1
6-1
6-4
6-4
6-6
6-6
6-5
6-5
6-6
6-2
6-7
6-6
6-6
6-4
6-5
6-5
6-6
6-6
6-5
6-5

Page lndex-1

INDEX

Record Size •
DDB Format
DDBCHN
OEASGN
Decimal Input ••••
Decimal Output •••••••••
DELETE • • • • • • • •
DELMEM • • • • • • • •
OEVTBL • • • • • • • •
DEVTBL program • • • • • • • • •
Disk File Structure •••••••
Disk ID Record ••••••
Disk Record Types •
Disk Service Monitor Calls
Disk Structure ••••
DSKALC • • • • •
DSKBMR
DSKBMW
DSKCTG • • • •
DSKDEA
DSKDRL
DSKDRU

EXIT

FETCH
Flags • • ••••

File Service Monitor Calls
File Service System
File Structure ••••
Filenames • • •••
Filespecs •••••••
FILNAM
FORCE command • • • • • • • •
FSPEC • •

GETMEM
GT DEC
GTOCT
GTPPN . . "'
Head Load Time . . .
HEDLOD program
Hexadecimal Input .
Hexadecimal Output . . .
HLDTIM
INIT
INPUT
Input Line Processing Calls .
Interface Driver

. .

. .

. .

. .

Page Index-2

6-4
6-2
8-2
6-17
9-2
8-1
6-16
3-6
B-1
B-1
A-3
A-2
A-2
6-17
A-1
6-20
6-20
6-20
6-19
6-20
6-21
6-21

10-1

4-1
4-2
6-8
6-1
A-3
8-4, 9-3
8-4
9-3
7-5
6-8

3-6, 6-6
9-2
9-2
9-3

B-3
B-3
9-2
8-1
B-3

6-6, 6-9
6-13
9-1
B-4

INDEX Page Index-3

Interface Drivers • 7-5 to 7-6

JCB • 2-1, B-2
Size B-3

JCB Entries
JOBBAS 2-5
JOBBNK 2-7, 3-11
JOBBPT 2-7
JOBBRK 2-8
JOBCMS 2-6
JOBCMZ 2-6
JOB CUR 2-1
JOBDEV 2-7
JOBDRV 2-7
JOBDYS . . 2-9
JOBERC 2-6
JOBFPE 2-8
JOBNAM 2-4
JOBPRG 2-5
JOBPRV 2-5
JOBRNQ 2-8
JOBSIZ 2-5
JOBS PR 2-4
JOBSTK 2-9
JOBS TS 2-4
JOBTRM 2-7
JOBTYP 2-6
JOBUSR 2-5

Job Control Block • 2-1, B-2
Size B-3

Job Table B-2
JOBBAS 2-5
JOBBNK 2-7, 3-11
JOBBPT 2-7
JOBBRK 2-8
JOB CMS 2-6
JOBCMZ 2-6
JOBCUR . . . 2-1, B-2
JOBDEV 2-7
JOBDRV 2-7
JOBDYS 2-9
JOBERC • 2-6
JOBESZ B-3
JOBFPE 2-8
JOBGET 2-1, 2-3
JOBI DX • 2-1, 2-3
JOBNAM 2-4
JOBPRG 2-5
JOBPRV 2-5
JOBRNQ 2-8

" JOBS ET . . 2-1, 2-3

INDEX

JOBSIZ
JOBS PR
JOBSTK
JOBS TS
JOBTBL
JOBTRM
JOBTYP
JOBUSR
JRUN
JWAIT •

KBD •

LIN •
Line Printer Spooler
LOOKUP
LPTQUE

Master File Directory •
MEMBAS
MEMBNK
MEMDEF
MEMDEF Program
MEMEND
Memory Management •
Memory Mapping
Memory Modules
Memory Partitions •
MFD •
Miscellaneous Monitor Calls •
Monitor Calls

ALF •
Arguments •
ASSIGN
BNKSWP
BYP •
Calling Format
CHGMEM
CLOSE •
CRLF
CTRLC •
DCVT
DEASGN
DELETE
DELMEM
Disk Service
DSKALC
DSKBMR
DSKBMW
DSKCTG
DSKDEA

2-5
2-4
2-9
2-4
B-2
2-7
2-6
2-5
2-3
2-3

7-2, 9-1

9-2
B-4
6-10
B-4

A-3, A-5
B-2
B-6
B-6
3-9
B-2
3-9, B-6
3-9
3-5, 4-1
3-2
A-3, A-5
10-1

9-1
1-2
6-16
3-11
9-2
1-1
3-6
6-11
7-4
10-2
8-1
6-17
6-16
3-6
6-17
6-20
6-20
6-20
6-19
6-20

Page Index-4

INDEX

DSKDRL
DSKDRU
EXIT
FETCH •
File Service
FSPEC •
GE TM EM
GTDEC •
GTOCT •
GTPPN •
!NIT
INPUT •
Input Line Processing •
JOBGET
JOBI DX
JOBS ET
JRUN
JWAIT •
KBD •
LIN •
LOOKUP
Memory Control
Miscellaneous •
NUM ••
Numeric Conversion
OCVT
OPEN! •
OPENO •
OPENR •
OUTPUT
PACK
PFILE •
Printing Conversion •
PRNAM •
PRPPN •
PTYIN •
PTYOUT
QADD
QGET
QINS
QRET
RAD50 Conversion
READ
RENAME
SLEEP •
SRCH

•

Standard Address Argument •
TAB •
TBUF
TCRT
Terminal Service

6-21
6-21
10-1
3-5, 4-1
6-8
6-8
3-6, 6-6
9-2
9-2
9-3
6-6, 6-9
6-13
9-1
2-1, 2-3
2-1, 2-3
2-1, 2-3
2-3
2-3
7-2, 9-1
9-2
6-10
3-1
10-1
9-2
8-1
8-1
6-10
6-11
6-11
6-14
8-4
8-4
8-4
8-4
8-5
7-5
7-5
5-3
5-3
5-3
5-3
8-3
6-11
6-16
10-1
3-5, 4-1
1-2
7-4
7-6
7-7
7-1

Page Index-5

INDEX

TIDX (obsolete) •
TIN ••
TOUT
TRM •
TRMBFQ
TRMICP
TRMOCP
TTY •
TTY!
TTYIN •
TTYL
TTY OUT
TYPE
UNPACK
USRBAS
US REND
USRFRE
WAIT
WRITE •

NUM •
Numeric Conversion Monitor Calls
Numeric Input •

Octal Input •
Octal Output
OCVT
OPEN I
OPENO •
OPENR
OUTPUT

PACK
PF ILE
Physical Disk Record Format •
PPNs
Printing Conversion Monitor Calls
PRNAM •
Project-Programmer Numbers
PRPPN • .
Pseudo Terminals
PTYIN •
PTYOUT

QADD
QFREE
QGET
QINS
QRET
QUEUE command •
Queue System

2-8
7-3
7-3
9-2
7-6
7-5
7-6
7-3
7-4, 7-8
7-5
7-4
7-5
1-1
8-4
3-2
3-2
3-2
6-15
6-12

9-2
8-1
9-2

9-2
8-1
8-1
6-10
6-11
6-11
6-14

8-4
8-4
A-1
8-5, 9-3
8-4
8-4
8-5, 9-3
8-5
7-5
7-5
7-5

5-3
B-6
5-3
5-3
5-3
5-2
5-1, B-6

Page Index-6

INDEX Page Index-7

Manipulating Queue Blocks 5-3
Obtaining a Free Queue Block 5-3
Returning a Queue Block • • • • 5-3

RAD50 Conversion Monitor Calls 8-3
Random File Processing 6-11, 6-14
Random Files A-3
READ 6-11
RENAME 6-16
RUNQUE B-5

SCNQUE B-5
Sequential Files A-3
SLEEP 10-1
SPXINT B-4
SPXSAV B-4
SRCH 3-5, 4-1

Flags 4-2
Standard Address Argument . . 1-2
SYS.MAC 1-1, 2-1, 7-8
SYSBAS B-2
SYSTEM B-1
System Communication

QFREE 5-1
System Communication Area . . B-1

CLKFRQ B-4
CLKQUE B-5
DATE B-3
DDBCHN B-2
DEVTBL B-1
DRVTRK B-5
HLDTIM B-3
JOB CUR B-2
JOBESZ B-3
JOBTBL B-2
LPTQUE B-4
MEMBAS B-2
MEMBNK 3-10, B-6
MEMDEF 3-10, B-6
MEMEND B-2
QFREE . B-6
RUNQUE B-5
SCNQUE B-5
SPXINT B-4
SPXSAV B-4
SYSBAS B-2
SYSTEM B-1
TIME B-3
TRMDFC B-4
TRMIDC B-4
TRMSCN B-5

INDEX

TR MT DC
ZSYDSK

System Date •

TAB •
TBUF
TCRT
Terminal Definition Table •
Terminal Driver ••••••
Terminal Drivers ••••••••
Terminal Input
Terminal Service Monitor Calls
Terminal Status Word ••••••
TIDX <obsolete) •
TIME • • • • • • • • • • • • • •
Time of Day
TIN •••
TOUT
TRM •••
TRMBFQ
TRMDFC ••••••••••
TRMICP ••••••••
TRMIDC •••••
TRMOCP
TRMSCN
TR MT DC
TTY •
TTY!
TTY IN
TTYL
TTY OUT
TYPE
TYPECR • • • • • • •
TYPESP

UFO • • • • • • •
UNPACK • • • • •
User File Directory
USRBAS
US REND
USRFRE

WAIT
WRITE

ZSYDSK

Page Index-8

B-5
B-6
B-3

7-4
7-6
7-7
B-4
B-5
7-6
7-2
7-1
7-2
2-8
B-3
B-3
7-3
7-3
9-2
7-6
B-4
7-5
B-4
7-6
B-5
B-5
7-3
7-4, 7-8
7-5
7-4
7-5
1-1, 7-8
7-8
7-8

A-3, A-5
8-4
A-3, A-5
3-2
3-2
3-2

6-15
6-12

B-6

Alpha Microsysterns
1 7881 Sky Park North
Irvine, California 9271 4

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	10-01
	10-02
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	xBack

