
s I 6 DA NEWSLETTER
.... CIAL INT•ll•ST GllOU .. ON D•SION AUTOMATION

VOLUME 4 NUMBER 3 SEPTEMBER 1974

Contents:

From the Edi tor

Chairman's Message

Calls for Papers and M:eting Notires

Survey of J:lZ.\ in Universities

Listing of Papers Presented at the 25th Technical Meeting
of the NA'IO Avionics Panel of N'~:
Conputer Aided Design for Electronic Circuits,
May 21-25, 1973.

Working Papers

"A Minioorrputer-Ba.sed logic Circuit Fault Sinrulator,"
M. J. Flarenhoft. and B. M. Csencsits, Bell Laboratories.

"PS Language I:Efinition," Portia Isaacson, Xerox Co:tp.

"A Partitioning Tedmique for LSI Chips," Pao-Tsin Wang,
International Business Machines.

1

2

3

7

11

15

20

29

AC}l Special Interest Croup on Desien Automation

ADDRESSES

CHAIRMAN:
Charles E. Radke
IBM Corporation (B99/951)
P. O. Box 390
Poughkeepsie, New York 12602
{914) 485-7775

VICE-CHAIID!AN:
David W. Hightower
Bell Labs 2B312A
Holmdel, New Jersey 07733
{201) 949-6549

SECRETARY/TREASURER:
Lorna Capodanno
Bell Labs 2Cl69
Murray Hill, New Jersey 07974
{201) 582-6909

CO-EDITOR:
Robert J, Smith, II
P. O. Box 1028
Livermore, California 94550
()

CO-EDITOR:
Stephen P. Krosner
IBM Corporation (96N/002)
P. o. Box 1328
Boca Raton, Florida 33432
(305) 391-0500 (4052)

TECHNICAL CO~ITTEE:
David W. Hightower, Chairman

~MBERSHIP cm!MITTEE:
Lorna Capodanno, Chail"l!'.an

PUBLICITY cmmITTEE:
Lorna Capodanno, Chairman

BOARD OF DIRECTORS:
John R. Hanne
Texas I~struments
P. 0. Box 5012 (M~ 907)
Dallas, Texas 75222
(214) 238-3554

Steven A. Szygenda
Department of Elec. Eng~
University of Texas
Austin, Texas 78712

Donald J. Humcke
Bell Labs 2C-318
Holmdel, New Jersey 07733
(201) 949-6253

Larry Margel
Micro Electronics Division
Rockwell Instruments
D/734--057
Box 3669
Anaheim, California 92803
(714) 632-8~65

Charles W. Rose
Cowputing & Information Sci.
CH!·H, t ... ·cstern R~serve Univ.
C1~veland, N1io 44106
(::.! 6) 36!!-280')

MEMBERSHIP

SIGDA dues are $3.00 for ACM members
and $5 .00 'for non-AC}! members. Checks
should be made payable to the AC:t and
may be mailed to the SIGDA Secretary/
Treasurer listed above, or to SIGDA,
ACM Headquarters, 1133 Avenue of
Americas, New York, N. Y. 10036. Please
enclose your preferred mailing address
and ACM Number (if ACM member).

SIG/SIC FUNCTIONS

Information processing comprises many
fields, and continually evolves new
subsectors. Within ACM these receive
appropriate attention through Special
Interest Groups (SIGs) and Special
Interest Committees (SICs) that function
as centralizing bodies for those of
like technical interests •• • arranging
meetings, issuing bulletins, and acting
as both repositories and clearing houses.
The SIGs and SICs operate cohesively for
the development and advancement of the
group purposes, and optimal coordination
with other activities. ACM members may,
of course, join more than one special
interest body. The existence of SIGs
and SICs offers the individual member
all the advantages of a homogeneous
narrower-purpose group within a large
cross-field society.

ACTIVITIES

l) Informal technical meetings at
SJSS and FJCC.

2) Formal meeting during National
ACM meeting+ DA Workshop.

3) Joint sponsorship of annual
Design Automation Workshop.

4) Quarterly newsletter.
5) Panel and/or technical sessions

at other National meetings.

FIELD OF INTEREST OF SIGDA
MEMBERS

Theoretic, analytic, and heuristic
methods for:

l) performing design tasks,
2) assisting in design tasks,
3) optimizing designs through

the use of computer techniques,
algorithms and programs to:

1) facilitate communications
between designers and design
tasks,

2) provide design documentation,
3) evaluate design through

simulation,
4) control manufacturing

processes.

From the Editor

This issue of the SIGDA Newsletter is being sent to a large number of non

members who attended the 11th Design Automation Workshop in Denver June 17-19.

If you are a nonmember with interests in DA, I hope you will join us and parti

cipate in SIGDA activities. Upcoming issues of the Newsletter will certainly

justify the minimal fee involved,

We plan to bring you a series of larger, more stimulating newsletters,

starting with the present number. A serious effort is being made to collect

material suitable for distribution in the newsletter. If you have copy, send

it to ~! If you have comments (publishable or otherwise) concerning newsletter

contents, please send them to me. (Note the new Lawrence California address

on second cover.)

I am especially interested in promoting non-digital DA and educational

topics: although I am primarily interested in digital DA, perhaps we should

attempt to achieve more of an emphasis balance.

Copy which is ready for inclusion in the Newsletter is especially welcome:

ideal format follows that used in the Workshop Proceedings.

•Use oversized layout sheets suitable for 25% reduction.

•Use an electric typewriter with a carbon ribbon if at all possible.

•Use photostats or xerox illustration reductions and rubber cement them

directly onto the layout sheets.

•Use white liquid products to cover errors and type directly over them.

Do not erase errors.

•Lightly pencil page numbers on the back of each page of your copy.

•Proof your copy carefully.

We will attempt to publish typewritten material which does not arrive in this

format, but much prefer camera rea?y copy.

1

CHAIRMAN'S MESSAGE

The Systems' Approach

Design Automation systems have in the past been
described to provide:

1) Means for communicating (and storing) design data.
2) Means for controlling and checking design data.
3) Application programs which allow the designer/

engineer capability to perform more functions,
quicker, cheaper, and bettei-.

In the past papers at the annual DA Workshop stressed
the application programs. Many algorithms and isolated application
programs which on their own were efficient were presented. However,
this work was seldom tied into how the computer communic.ates,
controls, and checks the design data.

In the past I have pressed for more of a systems
approach to Design Automation. Therefore, I was pleasantly
surprised to hear a number of papers stress the system aspect.
In particular, the presentation, 11 Data Base Design for Design
Automation", by Dr. Ed Hassler of Texas Instrument was greatly
appreciated. Ed talked in terms of the total design data base:
designers insight, marketing data, technology data, test examples,
etc. He described the problem of the control of design data
using a familiar example to most of us - a hand held calculator.

This fall (November 11-13, 1974) SIGDA will have a
session "Data Base ·systems for Design Automation Support 11 • The
session will consist of two invited papers and an invited panel.

For August or September, 1975, a Workshop is being
planned and jointly sponsored by SIGDA, SIGGRAPH, and SIGFIDET
(now SIGMOD). The Workshop will be structured around Interactive
Data Base Systems for Design Automation. Professor James Linders
of University of Waterloo, Waterloo, Ontario, Canada, will be
General Chairman. The Workshop will be held at Waterloo.

I don't want to leave the impression that the programmed
functions or algorithms are not important; on the contrary, they
use the computer to extend the engineers' capabilities. Both
without looking at the total computing and design environment,
they cannot exist or grow.

7/30/74

2

~/,. /2,tJJ14} ..
Chuck Radke
Chairman , SIG DA

DESIGN AUTOMATION WORKSHOP

-;,;,.-::;..::;;::::-- i:1:·~-~ ·.·.. ... > t /
~ - -- -·-•u-:-~.:.~~•,.l ·_;,.:.,~~~~.t~~~ci:; •. ~··~.;,"j!!I~
~~

•++•++-t++•++++4-+t~:+...,,..-. ... ++i-++••• BOSTON, MASSACHUSETTS ++++++++++++++.......+++++••········

REQUIREMENTS FOR
SUBMITTING PAPERS

If you plan to submit a paper, you should send three
copies of the paper (rough drafts are acceptable) to the
program chairman no later than January 2, 1975.

Accompanying the drift should bl the full name. address.
1nd telephone number of the princlpil author, with whom
ill further direct communication wlll be conducted.

t«>tlflcatlon of acceptance will be sent to you during the
fl rst week of February, 1975. After notification of
acceptance, you will receive detailed Instructions on the
format to be observed In typing the final copy. To Insure
the availability of Proceedings at the Workshop. your
final manuscript will be due April 2J. 1975.

Final papers should be no longer than 5000 words, and
the presentation should be limited to 20 minutes.
Projection equipment for 35mm slides and viewgraph
(overhead projector) foils will be available. for every talk.
Please Indicate what if any, additional audio-visual aids
you require.

Program Chairman

Rough drafts are to be sent to the Program Chairman:

S. A. Szygenda
The University of Texas
Electrical Engineering Department (ENS 515)
Austin, Texas 78712
512-471-7365

3

Sponsors

'} Chairman of l21h DAW [>
{, A. a. Hltchalcll 1]

The sponsors ol lhe Design AullDmation workshop are
the ACM !Association lor Computing Machinery> Specill
Interest Group on Design Aulomation and IEEI
l 1 nslllute or Electrlcill and Electronics Engi1111n1
Compuler Society.

Design Automation

Design Automation implies the use of computers ilS aidS
lo the design process.

In lhe broadlslvnse. the design process includes
Mrythlng from specifying the characteristics of a
product ID mnt 1 m1rketing objective ID enumer11ing
the detills of how ii is lo bl. manufactured and ltsled.

Thus 4tsign automation embraces appliCiltions lrom one
end ol the design process ID lhe other.

Slit of l21h DAW

Statler Hiiton Hotel
Park Square al Arlington Street
June Z3, 24 25, 1975

1974 IEEE Workshop on Design Automation

"The 1974 IEEE Workshop on Design Automation will
be held on October 23-25 at Michigan State University,
Kellogg Center. This workshop is devoted to the systems
aspect of design automation. The overall goal is to
provide the participants an environment encouraging
general and specific discussion relating to the design
and construction of design automation software. The
sessions are:

1. Data base design

Organization considerations, centralized vs
distributed data bases, data redundancy,
location of design rules, data structures, use
of data base management systems.

2. Software design

Choice of languages, structured progranming,
software aids such as translator writing systems,
data structures, programming style, machine
hardware and operation system influences.

3. The user interface ---
Human factors, input and output modes such as
graphics and languages, hardware impact, error
analysis of input, DA and general purpose editors,
the.user/dA software interface.

4. Impact of new technology on D.A.

Microprogramming automation, programmed logic
arrays (PLS's}, the future of IC's, impact of
microprocessors on DA.

5. Managing a design project

Project specification, case studies schedule
control, module and program function inter
connection, acceptance and validation, docu
mentation, configuration project organization,
software performance measurement, software
control.

Attendance is by invitation only. If you would like to
attend, please contact Harold W. Carter, Lawrence Livermore
Laboratory, P.O. Box 808, L-156, Livermore, California
911,550, (415) 447-1100, extension 8088."

4

SESSION:

ORGANIZER.:

ABSTRACT:

PAPER: .

AUTHOR:

·ABSTRACT:

7/30/74

SIGDA SESSION AT ACM '74

San Diego - November 11-13, 1974

Data Base Systems for Design Automation

C. E. Radke

The use of data base systems for Design Automation
introduces some special problems; two of which are
discussed. The first problem involves assuring the
integrity of the design data as it grows and is
restructured over time. Discussed are problem
areas, for example, authorization of design changes,
consistency checks, user notification of changes,
monitoring of the design, and history recording.
The second involves the evolution of interactive
graphics to a computer integrated design system
for designing computer hardware. Discussed are
common characteristics of a design data base, use
of graphics for data display, examples for which
graphic concepts have been implemented, and the
control of an interactive editing system.

A panel will expand upon the concepts and approaches
presented in the published papers.

Control of Design Data in the Integrated Ship Design
System

Dr. P. R. Bono, Naval Ship Engineering Center

The Navy's Integrated Ship Design· System (ISDS)
is being designed as a collection of application
program modules (for preliminary design) which
communicate with a centralized set of data files.
These files use the existing COMRADE Data Management
System which was designed specifically for integrated
systems.

Apart from providing an environment in which to operate
the engineering application modules, ISDS's main role
is to manage the creation, flow and archiving of the
ship design data to control access to this data.
consequently, a major concern during the lengthy
and complex ship design process is assuring the
integrity of the design data as it grows and is
revised over time.

Planning for control of the design data requires a
clear understanding of the design process and the inter
relationships between the design tasks. Requirements
are stated, problem areas are identified, and possible
approaches for implementation are suggested.

5

PAPER:

AUTHOR:

ABSTRACT:

PANELISTS:

7/ 30/74

SIGDA SESSION AT ACM '74

San Diego - November 11-13, 1974

A Graphics Window to a Data Base for Electronic
System Design

Mr. Charles Alaimo, Bell Telephone Laboratories

This paper will explore the use of "Graphics Windows"
to data bases used in the physical design of electronic
~quipment. The comon characteristics of connectivity
oriented data bases will be briefly reviewed. Then an
example of a Graphics Window on this type of data base
will be discussed in detail.

The discussion of the Graphics Window is in two parts.
The first deals with its use as an editor of files
describing printed board designs. The second deals
with experiments conducted with the window which are
aimed at developing display techniques useful for
interactive design.

Prof. Charles Rose, Case Western Reserve University

Mr. A~ S. Lett, IBM Corporation

6

DJ"SIGN At:TO'.fATION IN UNIVERf.ITIESe
===========;======================
Desl~n Automation ls be~inn!n~ to emer~e as a dislpl!ne

within thP university environment. In order to establish a
dlelo~u• between the unlver~ities involved in DA activities
SIGDA has decided to establish a 1 DA in Universities• section
in its Newsletter•

The followlnp questionalre is intended as a census of
DeF1~n Automation activities in universities.

The res11lt:E= of this questionaire will. be published ln
one of the followin~ SIGDA Newsletters.

Completed quest!onaires as well. as contributions to
this section can be malled to:

WeMe VanCleemput
Dept. of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

QUESTIONAIRE ON DESIGN AUTOMATION IN UNIVERSITIES.
==

1. Personal Information.

Name •••••••••••••••••••••••••••••• Tl~\e •••••••••••••••••

University ••

Department ••

Add~ess •••

Areas of interest in the DA 11e1.de•••••••••~•••••••••••••••

•••••••••••••••••••••••••

•••••••••••••••••••••••••

•••••••••••••••••••••••••

Are you a member of ACM7 IEBE7 SIGDA7

2. Current Status of DA at your university.

2.1 Facul.ty Members involved in DA.

7

G!ve a Lrief c\1tllnr of courses currently belnc tau~ht;
ind! c,•tc prcrPqu! sl tes, level and text or rPferences used.

2.3 Hardware available.

List the facilities available for Design Automation research
(e.g. central computer system, dedicated minicomputer(s),
~raphics devices, etc•)•

2.4 DA Software available.

List major DA software packages available to DA students,
if any.

2.5 Ongoing Research•

Briefly describe each project.

8

::> • (, I' uh l i ca t i 0 n s •

Ll!->t all research reports, thesf's and papers on DA, puhlished

3. Future Plans.
================
Describe briefly any plans 1or expanding DA involvement in your
department (e.g. new courses, hardware aquisltions etc.).

4. Misc.

4.1 Some areas of Design Automation are more suited for
inclusion in a university curriculum than others.
In your opinion, what should be emphasized and what
should not he tRught?

4.2 What rote shoutd SIGDA play in DA education?

4.3 What type of research shoutd be done by universities and
what should be left to industry?

4.4 (If you are ln Computer Science) Do you have any contact
with fuculty members, interested ln DA, in other
departments?

9

4.5 (If you are not in Computer Science) Do you hAve any
contnct with the CS department?

4.6 Do you have any contact with industry? Do you consider
industrial contact necessary, useful, useless?

10

AGARD-CP-130

NORTH ATLANTIC TREATY ORGANIZATION

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

AGARD Conference Proceedings No.130

COMPUTER AIDED DESIGN FOR ELECTRONIC CIRCUITS

11

Copies of papers presented at the 25th Tcchnic:11 r.~cetin!' of the Avionics Panel of AGARD held at
the Technical University of Dc:m11rt'.. Lyn~cby, Denmark, 21-25 May 1973.

CONTENTS

PROGRAM OFFICIALS

TIIBIE

SESSION I - INTRODUCTORY_PAPERS

THE TEACHING OF CACA IN DENMARK
by E.Lindberg

ECONOMICS OF CAD - A NEW APPROACH
by A.J.Llewelyn and G.C.Frecman

SESSION II - RELIABILITY

RELIABILITY RELATED TO COMPUTER AIDED CRCUIT DESIGN - A USER'S VIEW
by N.A. Walter and A.A.Kaposi

RELIABILITY AND COMPUTER AIDED DESIGN
by J.G.Smith

COMPUTER AIDED DESIGN FOR MAXIMUM PRODUCTION YIEW OR MAXIMUM
RELIABILITY

by P.W.Becker and F.Jensen

LA CONCEPTION DE PROJET ASSISTEE PAR ORDINATEUR
par J.P.Vedel

SESSION Ill - MODELLING

TIIE USE OF THE TRANSISTOR SIMULATION PROGRAM SITCAP FOR STATimCAL -
MODELLING OF BIPOLAR TRANSISTORS .

Page

iii

iv

Reference

2.

3

4

5

6

by ff.De Man, R.Merten and H.Grevens 7

TRANSISTOR EQUIV A LENTS
by ~.G.Kjaerstad 8

AN.OPTll\llZATION TECHNIQUE TO CALCULATE BIPOLAR TRANSISTOR PARAMETERS
by R.J.Covello ' 9

LINEAR TRANSISTOR MODELS IN HF NETWORK ANALYSIS. ADAPTATION BETWEEN
MEASUREMENTS AND ANALYSIS BY COMPUTER

by P.Stangerup

TRANSISTOR UNITE. MODELE DE TRANSISTOR BIPOLAIRE EN CONTINU AYANT
COMME PARAMETRES LES DIMENSIONS GEOMETRIQUES DES TRANSISTORS

par P.Leduc

SESSION IV - MICROWAVE

STATE OF ART. AND FUTURE TRENDS OF COMPUTER-AIDED DESIGN OF MICROWAVE
INTEGRATED CIRCUITS

by 11.N.Tou.~saint and R.Hoffmann

A COMPUTER PROGRA'>f FOR ANALYZING WAVE".:iUIDE STRUCTURES
by Ch.J.Wu and W.Johnson

12

10

11

12

13

cmtrUTER OP1T\11SATION OF MICROWAVE INTEGRATED CIRCUITS DESIGN
by S.V.Judd

DAP - DISTRIBUTED ANALYSIS PROGRAM
by J.L.Taurilz

MICROWAVE CIRCUIT ANALYSIS DY DIGITAL COMPUTER
by C.Vidallon

SESSION V - ANALOGUE

SYNTHESE DE FILTRES PASSIFS A POINTES D'ATTENUATION INFINIES REALISES
AVEC DES Co:\IPOSANTS A FAIBLES PERTES APPLICATION AUX FILTRES DE CAUER
DE DEGRE ELEVE .

par C.Gimenes

COMPUTER DESIGN OF EQUAL RIPPLE EQUALIZATION
by A.Maggi and N.Montefusco ·

OOMPUTER AIDED ANALYSIS OF ELECTRONIC CIRCUITS ON A SMALL MACHINE
by K.G.Nichols

STRUCTURE AND APPLICATION OF COMPUTER PROGRAM ICAN: INTEGRATED
CRCUIT AC ANALYSIS . .

by E.M. van der Ouderaa

IMAG II: SIMULATION DE CIRCUITS ELECTRONIQUES
par J.Arnould, J.P.Sicot and C. Le Faou

COMPUTER-AIDED DESIGN ANALYSIS OF MODERN LARGE-SCALE CIRCUITS AND
SUBSYSTEMS .

by W.Hochwald

SESSION VI - DIGIT AL

AN EVOLVING OPERATIONAL COMPUTER AIDED DESIGN SYSTEM
by G.Scott, D.L.Williams and L.C.Beaumont

SPECIFICATION AND DESIGN LANGUAGES FOR LOGIC SYSTEMS
by D.Lewin

LOGIC SIMULATION AND TEST VERIFICATION WITH PHILSIM PROGRAM
by J.G.~.Klomp (withdrawn by the author)

TIIE NASA COMPUTER AIDED DESIGN AND TEST SYSTEM
by J.M.Gould and K.Juergensen

SIGMA: UN SYSTHIE INTEGRE DE PROGRAMMES DE CONCEPTION ASSISTEE
DES CIRCUITS COMPLEXES

par. J.P.Lusinchi

A COMPUTER-AIDED DESIGN SYSTEM FOR LARGE SCALE INTEGRATED DIGIT AL
NETWORKS

by R.G.Hamer and C.S.l\leyer

SESSION VII - I.A YOUT

COMPUTER AIDED DESIGN OF MULTILAYER PRINTED CIRCUIT BOARDS
by W .E.Hillicr

OPTIMISING AUTO!\IATIC TRACKING OF MULTILAYER BOARDS
by H.G.Adshc;id

13

Reference

14

IS

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Reference

A PARALLEL PRINTED CIRCUIT BOARD DESIGN SYSTEM
by D.R.Ocstrcicher JI

COMPUTER AIDED PLACDIENT AND ROUTf.llG OF HIGH DENSITY ClllP
INTERCONNECTION SYSlDIS

by N.R.Crocker, R.W.McGurtin, R.Naylor and ff.Vosper

ERGONOMIC CONSIDERATIONS OF INFORMATION DISPLAY AND CONTROL FOR
DESIGN AUTO~IATION SYSTEMS

by W.M.Gaddes 33

APPENDIX A - LIST OF AlTENDEES Al

DISTRJBUTION OF UNCLASSIFIED. AGARD PUBLICATIONS

NOTE: Initial distributions of AGARD unclassified publications are made to NATO Member Nations through the following National
Oistrib!Jtion Centres. Further copies are sometimes a.ailable from the•e Centres, but if not may be purchased in Microfiche

or photocopy form from the Purchase Agencies listed below. THE UNITED STATES NATIONAL DISTRIBUTION
CENTRE (NASA) DOES NOT HOLD STOCKS OF AGARD PUBLICATIONS, AND APPLICATIONS FOR

FURTHER COPIES SHOULD BE MADE DIRECT TO THE APPROPRIATE PURCHASE AGENCY (NTIS).

BELGIUM
Coordonnateur AGARD - VSL
Etat·Major de la Force Aenenne
Caserne Prince Baudouin
Place Dailly, 1030 Bruxelles

CANADA
Defence Scientific Information Service
Defence Research Board
Department of National Defence
Ottawa, Ontario KIA OZ3

DENMARK
Danish Defence Research Board
0sterbrogades Kaserne
Copenhagen 0

FRANCE
O.N.E.R.A. (Direction)
29, Avenue de la Division Leclerc
92. Chatillon sous Bagneux

GERMANY
Bundesministerium der Verteidigung
Registratur R\J Fo 4
53 Bonn I
Postfach 161

Microfiche or Photocopy

National Technical
Information Service (NTIS)
5285 Port Roval Road
Springfield ·
Virginia 22151, USA

NATIONAL DISTRIBUTION CENTRES
GREECE PORTUGAL

Hellenic Armed Forces Command Direccao do Servico de Material
D Branch, Athens da Forca Aerea

ICELAND ~~:! Escola Politecnica 42

Director of Aviation Attn: AGARD National Delegate
c/o Flugrad
Reykjavik TURKEY

IT ALY Turkish General Staff (ARGE)
Aeronautica Militare Ankara
Ufficio de! Delegato Nazionale aU'AGARD UNITED KINGDOM
3, Piazzale Adenauer Defence Research Information Centre
Roma/EUR Station Square House

LUXEMBOURG St. Mary Cray
Ste Belgium Orpington, Kent DRS 3RE

NETHERLANDS
Netherlands Delegation to AGARD
National Aerospace Laboratory, NlR
P.O. Box 126
Delft

NORWAY
Norwegian Defence Research Establishment
Main Library
P.O. Box 25
N-2007 Kieller

PURCHASE AGENCIES

Microfiche

ESRO/ELDO Space
Documentation Service
European Space
Research Organization
114, Avenue Charles de Gaulle
92200 Neuilly sur Seine, France

UNITED STATES
National Aeronautics and Space Administration (NASA)
lanzley Field, Virginia 23365
Attn: Report Distribution and Storage Unit
(Set Nott abowe)

Microfiche

Technology Reports
Centre (DTI)
Station Square House
St. Mary Cray
Orpington, Kent DRS 3RE
England

Requests for microfiche or pho.iocopies of AGARD documents should include the AGARD serial number, title, author or editor and
publication date. Requests to NTIS should mclude the NASA accession report number. '

•••
Full bibliographical references and abstracts of AGARD publications are gl'ven in the 'ollowi'ng b' hi b. · I

'' 1-mont y a stract iourna s
Scientific and Technical Aerospace Reports (STAR)
published by NASA, '
Scientific and Tcclin1tll Information Facility
P.O. Box 33, Colk~e Park
Maryland 20740, l.JSA

14

Gov~mment Reports Announcements (GRA),
published by the National Technical
Information Services, Springfield
Virginia 22151, USA

l'ritlft•d by Technical Editing and Reproduction Ltd
Harford fluuse, 7-9 Cilarluttc St, Lund111t IV/ P J llD

I

i

A MINICOMPUTt:l\-l.l,\SED LOClr. CifrUIT FAULT SIMULATOR

by

Mark J. Flomenhoft and Brenda M. Csencsits
Bell TelPphone Laboratories, Incorporated

Allentown, Pennsylvania 18103

Presented at the Eleventh Design Automation Workshop
June 17-19, 1974

ABSTRACT

A logic circuit simulator implemented on a mini
computer with 16K core handles 1000 zero- and
unit-delay gates. Single "stuck-at-0", "stuck-at-1",
and "short-circuit" faults are simulated in parallel
seven at a time using a table-driven selective-trace
fault-injection algorithm. For a typical 100-g<1te
circuit the simulation rate for the fault-free cir
cuit or for a group of seven faults is about 800
input patterns per minute, and a complete fault
simulation run takes about 5 minutes and costs $1.

This paper, aimed at simulator program-designers
rather than users, describes technical details of
the implementation including minicomputer consider
ations, the data structure, coding three-valued-logic
for efficient parallel simulation, the selective
trace algorithm, the recognition and resolution of
critical races in flip-flops, the recognition and
resolution of circuit oscillations, implicit fault
collapsing, and short-circuit fault simulation.

INTRODUCTION

During the past few years an in-house stand-alone
interactive integrated-circuit mask layout system
has gained wide popularity within Bell Laboratories.
At present, eighteen minicomputer systems with a
common hardware configuration are in operation at
four locations. To further exploit this existing
computing resource, System for Logic Analysis and
Test Evaluation, SLATE, has been added to provide
a low-cost interactive aid for logic verification
and functional test design. SLATE also provides a
low-cost facility for evaluating test sequences
produced by a main-frame heuristic automatic-test
generation program.

Written in assembly language for the HP2100 computer,
with 16K core SLATE's capacity is 1000 gates. Each
gate has either zero- or unic-delay and is allowed
three possible logic values -- 0, 1, and "don't know"
Don't-know is the starting value of every gate and
the resulting value of critical races and oscilla
tions. The simulation is table-driven and employs
a selective-trace fault-injection algorithm. The
16-bit minicomputer word size accommodates eight
two-bit logic values, and the fault-free and seven
faulty circuits are simulated simultaneously in
"parallel".

THE MINICOXJ'UTER IlARDWARE CONFIGURATION.
-------fu'\D frs 1MPLICATLONS

Th<' mask lay011t 0 :--:>t-.~m that SLATE sh3res utilizes
an HP2100 m1nlcomputrr with 16K core, a disk,

15

a magnetic tape unit, a card reader, a CRT keyboard
terminal, and, usually, "'ither a line printer or a
hard-copy unit. Such a system costs about $50,000,
or, amortized over three years and including mainte
nance, about $12 per hour.

In a 16K minicomputer system core is a scarce resource,
and frequent disk accesses would make simulation
unacceptably slow. Thus it is essential that the
main simulation program and the circuit description
data required for simulation are both maintained in
core. (An early version of the program consisted
of an "executive" and a "simulator" that were swapped
from disk for each input pattern. Eliminating these
disk accc.sses by combining the executive and the
simulator into a single program module decreased run
time by more than an order of magnitude.) In order
to accommodate circuits of about a thousand gates,
SLATE employs "parallel" fault simulation [l]-[4)
rather than the newer "deductive" [SJ or "concurrent"
[6] techniques because the newer techniques require
much more memory.

SLATE is a "table-driven" simulator -- a source cir
cuit description is translated into tables that are
directly loaded by the simulator -- rather than a
"compiled" simulator -- a source circuit description
is translated into an assembly language subprogram
that emulates circuit behavior and includes code to
perform fault-injection, selective-trace, etc. Where
a table-driven simulator resides on secondary storage
as a complete core-image program module, a compiled
simulator must be assemhled (second translation) and
loaded (third translation) with an executive and input/
output-routine library. Although a compiled simulator
executes somewhat faster, a table-driven simulator
requires less core and provides greater flexibility
for introducing new features.

In-core data -- principally the circuit topology
description -- is dynamically allocated to storage
as the data is loaded, and pointers are generated to
define the start of each data list. On the other
hand, infrequently needed data -- the input sequence,
symbolic gate names, and the list of faults to be
simulated -- are stored on disk in a fixed-space
per-datum format so that each can be "randomly"
accessed, eliminating the need for pointers. The
input sequence, for example, is stored eight patterns
per disk sector (128 words), and an in-core buffer
is used so chat disk is accessed only every eighth
pattern. Both to save space and maximize execution
speed, the program is written completely in assembly
language.

A 1ogic ci.rndt is composed ol tl1•.~ followi'.1g lo~"iC

~_l_t·_:!f_i~_r!,._t_s: prim.:.iry inputs, t-.:qttn1-<::1"'l;ry (utJit-d-P-~-~-y)
gates (ANDs, N,\NDs, f!Rs, an<l NnRs), zt>ro-d~lay "tied
cnlil~ctnr" nc~dt'S (wired-,\NOs and wired-ORs), and
battrries (ronstant scurc~s nf 0 and I). Fnr pach
element a "topology word" design'1te'' the element's
typr (three hits), fa-, in (thre~ hlt;;), fan'>ut (six
hits), delav (one bit), .:ind three status flagr<: an
"activity" bit (1 when the element is schec!uled for
simulation), a "hu:d" bit (1 when th<' ele1'l<'nt's
value is being "held" to resolve a circuit oscilla
tion), and a "fault" bit (1 when stuck-at faults
associated with the elemen_t_ are beiag simulated).
Noto:> that although the fanjn and fanout of an element
are limited to 7 and 63, respectively, fanin- and
fanout-trees composed of zero-delay ANDs or ORs make
effective fanin and fanout unlimited. (Such trees
can, of course, be automatically generated, although
this feature is not included in our system.)

The input connections for all the elements are con
tained in an "input connectivity list": first the
input elements of element one, then the input ele
ments of element two, etc. A pointer associated
with each element designates the beginning of that
element's sub-list of inputs. Since SLATE simulates
1000-gate circuits and the length of the input con
nectivity list usually exceeds 256, half-word (eight
bit) pointers would be inadequate. Then, given that
a full word is required, each pointer is stored as
an absolute memory address rather than as a position
in-list index, eliminating repetitive address cal
culations during simulation. Similarly an "output
connectivity list" and a list of pointers define the
output connections for every element. Note that
wHh elements defined as above (primary outputs
intentionally excluded), the total number of input
connections equals that. total number of output con
nections, a useful data check.

As is well known to users of logic circuit simula
tors, the coarse unit-gate-delay timing model gives
rise to many circuit oscillations. Fortunately,
critical races in latches (two-gate flip-flops) can
be handled very simply, as described below. To en
able the critical race analysis to be performed,
the pairs of gates composing NAND and NOR latches
are identified in a "flip-flops list". A given gate
can be included in more than one latch, as occurs
for example, in certain toggle flip-flops and gen
eralized latches (three gates each feeding the other
two).

In-core data also includes lists of the circuit
primary inputs, primary outputs, and user-added
monitor points. Space for the remaining data
lists -- the CURRENT and NEXT QUEUEs and the NEW
VALUEs (see below) -- is dynamically allocated
during each unit-delay simulation.

THREE-VALUED LOGIC

In SLATE each element is allowed three possible
logic values -- 0, 1, and "don't know". Don! t-lmow
is the starting value. of ev<'ry gate and the result
ing value of critical races and oscillations. Truth
tables for AND, OR, and NOT with don't-know Op in
puts are as follows [7]-[9]:

A

x
x
lC

~
0

lC

1

A•ll

0

lC

x

A+B A'

lC

x
1

x
x
x

To represent the three logic values a two-bit coding
is required. The coding

0 (00)

x (01)

1 (11)

allows AND and OR to be executed using the corre
sponding logical operations of the host computer [9}.
Since AND, NAND, OR, and NOR all require AND-ing
or OR-ing logic values, this coding is extremely
effictent.

Taking the NOT of a three-valued logic variable is
not so trivial. Simply complementing the two-bit
code is invalid, for whereas x· • X, (01)' = (10);
but (10) is undefined. Allowing two representations
for X [(01) and (10)] makes NOT easy, but then AND
and OR are complicated. One solution for NOT is to
test the existing value and complement it except
when the value is X. However, this scheme is un
acc,,ptable ior parallel simulation because each value
would have tc be tested individually, a serial pro
r,edure. Instead, a "parallel" NOT is performed by
c-omplementing the code and interchanging the bits
[4]. It is easily verified that by this technique
0'•1, X'•X, anc l'=O, as desired.

The "natural" way to pack two-bit logic values in a
word is to use the first pair of bits for the first
value, the second pair for the second value, etc.
While interchanging adjacent bits is straightforward,
several program instructions are required, and this
is time-consuming. However, packing the values so
that the two bits are a half-word apart allows the
interchange to be done.with one register rotate in
struction. For suppose the word bits are denoted

1, 2, ••• , N. Then a rotation of~ bits moves bit
N i to bit posHi.on (i+'2)(mod N), and every pair of

J6

bits a half-word apart are interchanged. (For

example, bit 5 is shifted to position ~ and 5~
is shifted to position S.) Thus NOT is executed
in two steps -- complement and rotate. This tech
nique is analagous to the complement and word-inter
change described in (4].

For later use we call the two bits of a logic value
code "Y" and "Z". Note that Y=O implies a value
is 0 or X, and Z=l implies a value is X or 1.

CRITICAL RACES IN FLIP-FLOPS

If both the "set" and "clear" inputs of a NANO latch
simultaneously change from 0 to 1, the flip-flop
undergoes a "critical race", and the resulting state
is indeterminate. In a three-valued-logic simulator,
such an indeterminate state is conveniently represented
by setting the values of the flip-flop's gates to
dor.'t-know's [3). The recognition of critical races
is an important attribute of a simulator, for a race
manifests itself as an oscillation of the flip-flop's

gatPs -- 11 • 00 • 11 -• 00 4 • • • -- which markedlv
d~·grall~s simul~1tio11 et f tci~11cy.

Under unit-gate-delay thr.,e-valued-logic si111ulation
there are additional critical race situations to be
recoi\nized. For Pxample, if a NANO latch is in
the "set" stat.e with both its input at 1 and a unit
width 0-pulse occurs on the reset input, the effet t.
is the same as the simultaneous multiple-input chang"
situation·, Another example is the simultaneous
change of the set and clear inputs from 0 and X to
1 and 1, which produces the oscilla ticn lX + XO •
lX •XO~••• . After considering all possibilities,
one concludes that the flip-f!op states 00, OX, and
XO occur only in response to critl,:<11 races, and
these three states identify all critical race occur
rences.

When a critical race state is observed, the computed
state is overridden by XX. Taking thls outcome into
account, we can include XX as a state to be "over
ridden". We then obtain an especially simple crit
ical race recognition mechanism, namely, both Y-bits
equal to O. (Recall that Y=O implies a value is 0
or X.) Note, however, that XX should be excluded
as a race occurrence if flip-flop races are reported
to the user. Once recognized, a race is resolved
simply by setting Z=l for both of the flip-flop's
gates, since X is defined hy Y-0, Zzl,

We need to extend the critical race prescription so
it is appropriate for parallel simulation. Effec
tively, many independent flip-flops are simulated
simultaneously, and our goal is an efficient parallel
procedure to selectively override the states of the
racing flip-flops only. This is accomplished by
OR-ing the corresponding Y-bits of the computed
values together (in parallel) and then OR-ing the
complement of the result to the Z-bits of each value
(in parallel). Thus, wherever both Y-bits are 0,
the corresponding Z-bi ts are set to l·; and wherever
a Y-bit is 1, the corresponding Z-bits are unaffected.

For a NOR latch, critical races are recognized and
resolved in a dual manner: When both Z-bits are 1,
the computed state should be overridden by xx. Thus

·we AND the corresponding Z-bits of the computed
values· together and then AND the complement of the
result to the Y-bits of each value.

CIRCUIT OSCILLATIONS

As observed previously, unit-gate-delay simulations
typically give rise to circuit oscillations that
somehow must be artifically terminated so the
simulation can proceed. Again, it is convenient to
use don't-know's to represent the indeterminate
final state of the oscillating gates [3],[4].

The recognition of oscillations is simple, if not
elegant: An oscillation is assumed to occur when
the input pattern changes and a circuit does not
become stable after some reasonable number of gqte
delays [3). In our system this "oscillation crite
rion" is preset at lQO unit delays but can be
changed by the user as part of his input sequence
stream.

We· now describe a technique for resolving oscilla
tions that is optimal in that only oscillating gatPs
are set to don't-know, all other gates being

17

1maffcc:tt·d. (llow .. vpr, dnn't-know's will ::ir•·r·1gate
to non-oscillating gates that are "se1udtizcJ" to
rlon' t-·kn<'w gate~.) Such a terhnique is adv.1·nt.1geous
for two reason:o. First is the obvious point that only
necessary don't-know's are imposed, thus preserving
as much state information as possillle. Second,
after the oscillation is resolved, an audit of the
don't-know' s defim•s the gates that oscillated, en
abling the user to determine the oscillation loops
and, hopefully, infer the source of the oscillation.

Our technique is based on the two observations that
in every oscillating loop at least one gate changes
value at ear.h time unit of the simulation and that
oscillating loops are "sensitized paths". When the
oscillation crilerion is reached, each gate that
ju~t changed value is temporarily replaced by a
don't-know battery (a constant source of don't-know),
thus breaking each oscillation loop in ·at least one
place. The don't-know's then propagate to all the
other oscillating gates. Finally, the batteries
are removed, reclosing loops that now, being don't
know at each point, are stable.

The temporary replacement of an element by a battery
is accomplished eaRily using the HOLD BIT in the
topology word for that element: When an oscillation
is recognized, the HOLD BIT of each ele111ent that
just changed value is set, and an element is ncit
simulated when its hold bit is 1. After the oscil
lation is resolved, the batteries are removed simply
by resetting the HOLD BIT of every element.

All that remains to explain is how don't-know's are
applied selectively to parallel circuits so that
only the oscillating circuits are affected. Given
an element that just changed value, the OR of the
corresponding Y and Z bits of the exclusive-OR of
the LAST and NEW VALllEs is a mask whose l's
define the circuits that changed. Modifying the
element's value by OR-ing that mask to the Z bits
and ANO-ing the complement of that mask to the Y
bits imposes the appropriate X's.

ZERO- AND UNIT~DELAY SELECTIVE-TRACE SIMULATION

In order to ensure accuracy in evaluating test se
quences, one would like to employ a timing model
where each gate is assigned an independent prop
agation delay. However, since ·in effect a circuit
has to be resimulated for each fault being considered,
employing such a precise model is impractical for
minicomputer as well as main-frame implementations.
On the other hand, the state-variable Huffman model
[11], which makes for economical simulation [l],[4],
often lacks sufficient accuracy for asynchronous
circuits.

Jn a unit-gate-delay simulator each gate is assumed
to have ideal equal (unit) delay. This timing model
ts a reasonable approximation to real circuit per
formance, yet is simple enough to be practical for
fault simulation. Furthermore, the model is appeal
ing because it does not require a user to insert
artificial feedback-delay elements.

Unit-delay simulation is implemented by maintaining
two lists of logic values -- LAST VALUEs and NEW
VALUEs. A unit-delay gate is simulated hy taki:lg
input values from the LAST VALUEs list and storing
the computed 0111·1u1t v11lue in the NEW VALliEs list.

Thus NEW VALUEs art> logic statPs one gate delay
later than !.AST VALlJEs. After all the gates are
prores!'ed, "time" is incrPmented one unit delay by
repladng LAST VALUEs by NEW VALUEs.

The accuracy of the simulation model is enhanced
without substantially complicating the program by
allowing zero-delay elements to represent tied
collector wired-ANDs and wirPd-ORs. A zero-delay
gate is simulated by immediately storing the ~mnputed
output value in the LAST VALUEs list, thus achieving
a zero-delay effect. ·

At any point in time, logic values are changi.ng at
relatively few points in a circuit. Thus for ~ost
of the elements in a circuit, at any given time
none of the inputs have just changed, and the ele
ment need not be simulated f3),f4),[10]. The tech
nique of simulating at any given delay time only
those elements with an input that just changed is
called "selective trace". Selective trace is imple
mented most economically using "queues" to list those
elements that were just simulated and those that
are next to be simulated. (An experimental version
of the program that polled the ACTIVITY BIT of each
element, rather than employ queues, to determine
which to simulate, was unacceptably slow. Changing
the algorithm to the one given below reduced run
time for a 1000-gate circuit by an order of magnitude.)

The complete selective-trace parallel simulation
algorithm using the zero- and unit-gate-delay model
is as follows;

(1) Enter the input elements in the CURRENT QUEUE
and set the input values as NEW VALUEs. Set
the DELAY COUNT to zero.

(2) Null the NEXT QUEUE.

(3) For each element in the CURRENT QUEUE, compare
the NEW VALUE arid the LAST VALUE. For each
fanout element of an element that changed value,
if neither the HOLD BIT nor the ACTIVITY BIT is
aet, add the fanout element to the NEXT QUEUE
and set its ACTIVITY BIT.

(4) Is the NEXT QUEUE empty? If yes, go to step
13.

(5) Does the DELAY COUNT equal the OSCILLATION
CRITERION? If no, go to step 7.

(6) For each element in the CURRENT QUEUE, do the
following: Set the HOLD BIT, exclusive-OR
the LAST and NEW VALUEs, and OR the correspond
ing Y and Z BITs of the result to produce the
element's OSCILLATION MASK. Modify the ele
ment's NEW VALUE by OR-ing the OSCILLATION
MASK to the Z BITs and AND-ing the complement
of the OSCILLATION MASK to the Y BITs.

(7) For each element in the CURRENT QUEUE, replace
its LAST VALUE by its NEW VALUE. Replace the
CURRENT QUEUE by the NEXT QUEUE. Increment the
DELAY COUNT.

(8) Does the CURRENT QUEUE contain any zero-delay
elements? If no, go to step 10.

18

(9) Select a zero-delay element from the CURRENT
QUEUE. Simulate thP eleml"nt. Remove it from
the queue, and resPt its A~TIVITY BIT. If its
simulat0d value differs from its LAST V•\LllE, do
the following: For each fanout element, if
neither the HOLll BIT nor the ACTIVITY !HT is
set, add the fanout element to the CURR::NT Q\IEUE
and set its 1\CTIVITY BIT. Replace the LAST
VALUE of the simulated element by the simulated
value. Go to step 8.

(lO) Simulate each element in the CURRENT QUEUE.
Store the simulated values as NEW VALUEs.

(11) Analyze for critical races each f lip-f Jop both
of whose .elements have their ACTIVITY BIT set.

(12) Reset the ACTIVITY BIT of each element in the
CURRENT QUEUE. Go to step 2.

(13) For each element in the CURRENT QUEUE, replace
its LAST VALUE by its NEW VALUE. Null the
CURRENT QUEUE.

(14) If the DELAY COUNT exceeds the OSCILLATION
CRITERION, reset the HOLD BIT of each element.

IMPLICIT FAUl.T COLLAPSING

Associated with every gate in a circuit is a set
of indistinguishable stuck-at faults [3),[12],[13].
For example, if i is an input and p is the output of
an AND gate, then there is no test that can distinguish
between i stuck-at-0 and p stuck-at-0. As proved in
[14), the following algorithm implicitly generates a
"collapsed" fault list in which such equivalences are
excluded:

(1) For each element with fanin greater than one,
include in the list an "input-open-from" fault
for each input -- stuck-at-1 for an AND or NANJ.J
input and stuck-at-0 for an OR or NOR input.

(2) For each element with fanout not equal to one,
include in the list "output stuck-at-0" and
"output stuck-at-111 •

Note that step 2 allows for zero fanout, which occurs
for example, when an element drives a primary output
only.

FAULT SIMULATION

Fault simulation is initiated with the circuit state
either all don't-know's or the same as the·fault-free
state after some user-specified input vector. An
initial state consistent with the faults being simu
lated is obtained as follows: The faulty elements
are entered in the CURRENT QUEUE, and the selective
trace algorithm is entered at step 8. As each faulty
element is simulated, its faults are "injected" into
the appropriate bits of its NEW VALUE simply by
overriding the computed value by the fault-value [l],
[2]. Successive vectors are simulated starting at
step 1 of the algorithm, and fault injection is per
formed each time a faulty gate is simulated. Since
the simulator is not required to generate a fault
matrix fl5) or a fault dictionary, simulation for a
group of seven faults is terminated as soon as all of
those faults have been "detected". Note that a
fault is considered detected when.at some circuit
output the fault-free and fault-present values differ
and neither value is don't-know.

Tn ensurC' high cffe 1,tiv~ne~~s of test seq11ent'f'Fi, it
is de::>irahlc to si:';'iulate "short-circuit" faults
pairs of P1"mcnts unintenticnally connected to form
wired-AND's or wired-OR's -- as well as stuck-at
faults. A short circuit can be simulated as a single
stuck-at fault if a battery and four zpro-delay g.,1t0s
are added to the circuit description. For an AND
short the modification is as follows:

s
5

b

t T

Here, s and t are the shorted element outputs and b
is a battery whose value is l.' The modification in
cludes reconnecting the fano~ts of s and t to S and
T, respectively. Normally, the AND gates output
unaltered values (S=s and T=t), and the cirrui~ be
haves as if the modification were not present.
However, with b stuck at 0 the AND gates both output
the shorted value s•t. A~ OR-short can be handled
in a dual manner.

Since the presence of a short is simulated by a
single stuck-at fault, parallel simulation can be
employed for N shorts at a time, where N is the
number of faults that are simulated simultaneously.
In our case, the circuit size increase is a modest
35 elements for each group of seven shorts. To
simplify the implementation, after a fault group
has been simulated, the current circuit description
is discarded, and the modifications for the next
fault group are performed on an original description.

PERFORMANCE STATISTICS

For a typical 100-gate circuit the simulation rate
for the fault-free circuit or for a group of seven
faults is about 800 input patterns per minute. A
complete fault simulation to evaluate a test sequence
of 700 input patterns for a 90-gate circuit took less
than ten minutes -- about five minutes for execution
and the remainder for input and output -- and cost $2
based on the amortized rate of $12 per hour.

ACKNOWLEDGMENT

The authors wish to thank George W. Smith and
Stephen G. Chappell for their time and effort in
carefully reading this manuscript and offering
helpful suggestions.

1. S. Seshu and D. "N. Freeman, "Tl,e ll !agnos is of
Asynchronous Sequential Switching Systems,"
IRE Trans. Elec. Cornn., vol. EC-ll, no. 4,
pp. 459-465, August 1~62.

19

2. F. H. Ilardi" and R. J. Suhocki, "DPsign and
Use of fault Simulation for Saturn C:omputcr
DPsign," _!i_EE Tr".lls. El~_!=~J2..'._, vol. EC-11\,
no. 4, pp. 412-429, August 19fi7.

3. M. J. Flomenhoft, "A System of Computer Aids
for Designing Logic Circuit Tests," Proc. 7th
Design ,~,itnmation l./clrkshop, pp. 128-131, 1970.

4. R. M. Mc·C:lure, "Fault Simulation of Digital Logic
Utilizing a Small Hos-t Machine," Pree. 'Ith Desig12_
Automation Wnrkshop, pp. 104-110, 1972.

5. D. B. Armstrong, "A Deductive Method for Simu
lating Faults in Logic Circuits," IEEE Trans.
Comp., vol. C-21, no. 5, pp. 464-471, May 1972.

6. E. G. Ulrich and T. Baker, "Concurrent Simulation
of Nearly Identical Digital Networks," Computer,
vol. 7, no. 4, pp. 39-44, April 1974.

7. E. B. Eichelberger, "Hazard Detectien in Combi
national and Sequential Switching Circuits,"
IBM J. Res. & Devel., vol. 9, no. 2, pp. 90-99,
March 1965.

8. M. A. Breuer, "A Note on Three-Valued Logic
Simulation," IEEE Trans. Comp., vol. C-21, no. 4,
pp. 399-402, April 1972.

9. L. C. Bening, Jr., "Accurate Simulation of High
Speed Computer Logic," Proc. 6th Design Automa
tion Workshop, pp. 90-93, 1969.

10. S. A. Szygenda, "TEGAS2 -- Anatomy of a General
Purpose Test Generation and Simulation System
for Digital Logic," Proc. 9th Design Automation
Workshop, pp. 116-127, 1972.

11. D. A. Huffman, "The Synthesis of Sequential
Switching Circuits," J. Franklin Institute,
vol. 257, nos. 3 and 4, pp. 161-190 and 275-303,
March and April 1954.

12. J. P. Hayes, "ANAND Model for Fault Diagnosis
in Combinational Logic Networks," IEEE Trans.
Comp., vol. C-20, no. 12, pp. 1496-1506, December
1971.

13. D. R. Schertz and G. Metze, "A New Representation
for Faults in Combinational Digital Circuits,"
IEEE Trans. Comp., vol. C-21, no. 8, pp. 858-866,
August 1972.

14. M. J. Flomenhoft, Algebraic Techniques for
Finding Tests for Logical Faults in Digital Cir
cuits, Ph.D. Thesis, Electrical Engineering,
Lehigh University, 1973.

15. W. H. Kautz, "Fault Testing and Diagnosis in
Combinational Digital Circuits," IEEE Trans.
Comp., vol. C-17, no. 4, pp. 352-366, April 1968.

!'S LJ\NGlL\GE DEFINITION

Portia Isaacson
Xerox Corporation

l. Tntroduct ion
-~111c--fasCTcw yea rs has brought a

numhcr of changes to the digital system
designer's parts inventory - mainly the
addition of large scale integration compo
nents such as memories and processors.
The solution of an informati6n processing
problem involves making the right choices
from the variety of components offered
and designing the hardware/software inter
face mechanisms between the components.
Methods of simulating this new generation
of digital systems are needed as tools.
The demands placed on such a tool arc
great: it must (1) facilitate modeling of
a digital system at various levels of
architectural detail; (2) al low within a
single model two components at quite dif
ferent specification levels; (3) as a
design progresses, allow replacement of
models by more detailed models; (4) fac
ilitate modeling of all types of components

- hardware, firmware, and gbftwarc; and
(5) have a readily changeahlc~parts library.
PS is a tool for simulation ot digital
svstems which meets these demands. In
a~dition PS is designed to case the
problem of communicating hardware/software
mechanisms between people by automati-
cally producing pictures of a system in
its various states. These pictures can
be. used as a means of describing the
system. The models produced by PS are
called picture-system models [1,2,3].

2. Picturc-svstem models and PS
-A pictU'rc-systcm moder-era computer

system consists of (l) a picture set con
taining a picture for each state of the
computer system that is relevant to the
mechanism being modeled, (2) a distin
guished initial picture corresponding to
the initial state of the computer system,

This work was conducted while the
author was an instructor at North Texas
State University and a Ph. D. candidate
at Southern Methodist University.
Present address: Xerox Corporation,
1341 W. Mockingbird Lane, Dallas,
Texas 75247.

20

and, (3) a transition graph which defines
for each picture the set of pictures 1\llich
may follow it. J\ simulation on a picture
systcm model is a movie~ or sequence of
pictures, which corresponds to a sequence
of states in the computer system. 1\11
movies can be obtained by starting with the
initial picture and choosing the next pic
ture at each step from the choices defined
by the transition graph.

Picture-system model

Fig. 1--A black-box view of PS

Figure 1 is a black-box view of PS.
The primary inputs to PS arc the element
list and the element models. The element
models define types of components. The
clement list defines particular instances
of the components.

An element can have one of a finite
number of states at any time. Each element
is described by giving its element model
and the elements which are its interfaces.
Similar elements, those having the same
states and transition rules, reference the
same clement model. Each clement supplies
its particular set of interfaces in its
reference to the element model. An cle
ment model defines the transition rules for
an clement of its type in terms of the in
ternal state of the element and the states
of the interfaces to the element.

1;r;1phic; can Ill' SJl<'c·ii"il'd for each
cll'llll'lll in the cll'lllL'nl list ;ind also for
each ell'111c11t 111odcl. lhl' gr;iphics L'xprcs
scd in the clc11wnt model c;in lie dependent
0 n l h L' stat c 0 r th c l' 1L'llll'11 I c ;i w> ill g the
pictnr<'s to var)' ,,·ith clc111ent states.

PS output is ;1 picturl'·system model.
PS forms the modl'l by st;irting with the
initial state of the subject co111putcr sys
tem, the composition of the clement st;:itcs,
and applying all possible clement transi
tion rules to determine the set of states
reachable by a single clement tr;:insition
from its initial state. This process is
repeated for each gcncratcLl system state.
The result is a transition graph which
shows all possible transitions during
operation of the computer system. Since
PS rearranges the transition graph into
str;:iight order [11], much information
about the computer system is immediately
available, such as the identification of
deadlocks whether they be single hang-up
states or the more subtle cycle from which
there is no escape.

Each state reachable by the modeled
system has a corresponding picture in the
picture-set. A picture is formed by plac
ing in the picture, graphics determined
by the states of the clements of the com
puter system.

3. The PS LanPuagc
---orhe-Ps langLlage is composed of two

integrated sublanguages. The computer
system description sublanguage is used·
to define a subject system in terms of
its elements, their possible states, and
the rules for their changing__states. The
graphics sublanguagc, based on a method
of encoding curves described ~y Freeman
(3), is used to express curves which,
when placed in the frame, form a picture.
These sublanguagcs arc integrated by
associating a different cutve with each
element state. A state of the subject
system is the composition of the states
of its elements. The picture correspond
ing to a particular state of the subject
sys~em is the one formed by placing in the
frame the curves determined by the states.
of the elements.

Since PS is presently implemented as
a set of PL/I [8] macros and support
subroutines, its ~yntax is PL/I deter
mined.

An overview of the language is shown
in Figure 2. A PS "program" is a
picture-system specification consisting
of a frame, global curves, and the clement
models. The frame section specifies the
elements of the subject system, the size
of each picture, and any graphics which
appears in all pictures as background for
the state-dependent graphics. Each ele
ment within the frame is given a unique
name and described hy a reference to the
element model of the appropriate type.
The reference supplies the ;:ictual inter
faces of the clement, an initial sta~e,

21

<p le ture-ey:> \..tl'll- 9 p<!c 1f le• t 101\>

<fr1tme>

~ <tl~~~!;s>

<111~ .. - -''-~-··-l __ ._... ~
<b,,ckrround- <l'}f"Tll:!nts>

. _:::::------~

~
<natne> <model-reference> <e;rapl\ics> <1n1 tial-
~ aute>

<tr1odd-type> <lnterfaces>

<traneitlon
ruha>

<state-de pend ent-r;raph~c'>

<non-var lat..le-graphlcs>

Fig. 2--PS language overview

and graphics that is unique to the element.
Each clement-model specification consists
of the model type, the dummy interfaces,
non-variable graphics, state-dependent
graphics, and transition rules expressed in
terms of the states of the dummy inter
faces and the internal state of the dummy
element.

The next several sections describe
the PS language. Each language construct
is described by giving a BNF-like (SJ speci
fication, a user-manual-semantic specifica
tion and examples. In the BNF-like speci
fication brackets surround options items.

3.1. Picture-~tem ~ecific:J.tion

<picture-system-specification> <frame>
[<glob:J.l-curves>]
<element-model-list>

<global-curves> : :• <named-curve>
I <global-curves> <named-curve>

<element-model-list> : :• <element-moJel>
I <element-model-list>

<element-model>

An example picture system spccifica
t ion is shown in F~gurc 3. The frame seg
ment of the picture system specification

s ll j l I' I i l's t h (' s i :: l' 0 r (' :1 ch I' i ,. t II r '.' i n th l'
1110.il'I :ind the list or elc·111c•11t "hid1 comp
ri,;e till' suhjc·c·t srstl'lll. In l'i::ure 3 thl'
frame size is I.! rcH's (vertic:ll units) by
33 col11111ns (huri:ontal units). !he ele-
111c11ts arc;-.;() or t,·1•e ClllLI' and ;-.;1 and NZ
of type NOIJE. (;Joh:il curves are curves
1vhich can h<' used by more th:rn one element
model. In I' igurc• :; Fl l.J.LR ;111d OUT LI NI: arc
global curves. The element models arc
NOIJE and CllIEF.

!'=RA.ME(l~~::n•.Ull,U 0 1Ulll 011\J lll2) Ul10t
Cl'-'I JTl7,l0t 0 HDd• AIZH
Cl'l'l .Ul3 1 ll 0 Oct•• ATIJ,HI 0 OfO

fl.F'i;'."ITt i.i\~~OlNOI Ht5 1 61 15_LIKEtC1-4IEF,ltill I Telfl'NO'I
t"llTlAUSIO~n I I

El.F'1".:~H ~\~;ou:ll Af(S,tsl ts_llKEINOOEt INOI 1 TB.rt 4 ,.l'f
l'ilTIAUS(CHI I I

ELEH;"4H ·~-\~~OPiZI ATl5,2'tl IS_lllC.ElP-100£1 INU I TEXTt'l<tZ'I
INITIAl..l5(0~1 I l

CVQ.V'!IFll.lF.A., .\f12,2t J ~C110121\..fJIUlllAU1 l
cuav:MIJTU~:,o .R 15 IOC 'tJL I 51UI) IC l 1 - 1 li\ll l, -210 RI llCI '>' llll l l

1400".lC oi:p·~IJ'.>F., ClEFTI
itUll!SC

WliE~C ..,.(LFFT • N'JOEl l SfTtNOOE • L.EFT
I

GIUP•llC.S(
Cl'•')Z(f'lUTLt"lt;I
FQ~IStG14 11 OPlt..W!CC'.') llFllLH) I
fl'OIUS!CHll DRAW()
,uu.11 1

H~Dfll OFtCHtH, ILHTI I
lt1JLESI

w••F'H LE'Ff •SIO~I (CHIEF •Staru I
SETfC.HIEF • StoFF1 I

wwi:-.i1 LffT •SlQFFJ t CHIEF •SIOFFt
SETtcttlEF • StDlil t

I
GA.AP~ICSI

Ct••' 1 lt O'JTll ~F')
F'J~CSl:Nll QR,&.'JICl 1 •'1 ZCFJl.l.HI)
FO~l ')(QFf 11 O!lAWI J
,uc~.u >

Fig. 3- -A PS specification

Figure 3 is a PS specification of a
computer system consisting of three ele
ments which arc nodes in a three-node
self-stabilizing network [6]. If a node
can change states, it is privileged. In
a stabilized system only one node is
privileged at a time. A node can test
only its left neighbor's state and its
own state when deciding whether or not
to change states. There is no central
clock. The initial states chosen for the
nodes start the system in an unstable state
as shown in picture l of Figure 4. All
three nodes arc privileged. The output
of the program is the transition list and
the picture set shown in Figure 4. Each
picture is shown with a picture number.
The transition list is in terms of the
picture numbers. For example, the transi
tion list shows that pictures number 6,
4 or 2 can follow picture number 1. A
movie can be constructed from the picture
sc~ by starting with picture number 1 and
following it with any sequence of pictures
permitted by the transitions. One such

...

. 1-------------------------1 1--------------------------1 .
I I • • I I
I • ••••• • •• • • • I • I I
I • • •• • • • l • I • ••• •• • • • • • • • • I .. ->• ·-->. • > •••••• -1 • ··>········>. >

NO NI NZ NZ

PICTVRt I PtCfUA(2 •••••••••• •

..................................
1-------------------------1 . 1--..:..·--·---~----------1

• I I • I I •
f •• •••111 •• ••• • I ' ' .
I • • • I -->• ·-->. .-->. • I • • • • 1 -->•······->· ... ->. .-t •

NO
.

NI u NZ . .
••••••••••• .PICYURE J

...........
..

1-·--------------------------1
I . I

1---------------------------1
I I •

' • 1
I • • • •• • • • I •

I •••••• ••• • ••. 1
•.• •••••• •••••• • ••••• f. >••••••--> .• ~ > •••••• -1 • -->••• •••--> •.•••• -->. .-1

NO NI NZ NO NI • NZ

PtCfUllE ' ••••••••••~ Pl:T\JR! 4 •••~•••••••

.. ;
1-----------~------------1

• I · I
• t •••••• • • • • • • 1
• I • •• ••• • • • •••• 1 • -->• ·--> •••••• -> •••••• -• •

')')

·-"'

......
NO NI. NZ

PICTV~E 7

I --> 6 OR 2

Ho AU~<----------~-----~~-·
2 --> 3 . I
3 --> 4 I
4 --> s I
5 --> 6 I
6 --> 1 I
1 --> 2 . I
TAIL~->----~----~----~~---·

. Fig. 4--PS generated transition li~t and
picture set

movie is
1 to 4 to S to 6 to 7 to 2 to 3 to

4 to
Clearly, for this initial state the network
stabilizes after a single transition in all
cases.

3.2. Frame

<frame> .- l'RAME(<rows> , <columns>
[<background-curv~>]
<clement-list>)

<clement-list> ::= <element-specification>
I <clement-list>

<element-specification>
<rows> ::=<integer> ·
<columns> . . <integer>

'l'lc111<'11l-:;pl'cifi.-;1tio1P ::~ l'LLMLNT(
NA~lt:U(<L'll'lllt'lll-11aml'··)

[<pre-model -..:11rvl» I
<c I ClllL'll l - ll!tlllL' I - re r.- l'L'll<.:c>
I <pu:;t -modl'l-curve> j
[INITL\I.('.L'lcmcnt-st'-!tc>))

J
<clc111~11t-n~1mc >::~ ~11a1nc>

cclcmcnt-modcl-rcfcrcncc~ : := IS LIKE(
<modcl-tyiic>

[, (<model-parameter-list>)
)

<intcrfacc-lis'.:> : :~ <interface>
I <interface-list> <interface>

<interface> ::=<clement-name>
I <clement-state>

<pre-model-curve>::·' <curve>
<post-model-curve> ::=<curve>
<clement-state> : := S(<name>)

Rows and columns are integers which
define the slze of each picture in the
picture set. Rows is the vertical dimen
sion of the picture and column is the
horizontal dimension. Background curve is
optional. If given, it ·is placed first in
every picture in the picture set, before
any of the variahle element graphics are
placed in the picture. Element graphics
may overwrite the background curve.

The clement description has a number
of options. An example minimum specifi-
cation is ·

ELEMENT(NAMED(T) IS LIKE(CLOCK)) ..
A unique clement name m~st be given; in
this case it is T. The element model
reference must be given; in this case the
referenced element model is CLOCK. Since
neit~er a pre-model curve nor a post-model
curve is given, the clement model CLOCK
should not contain graphics -~ the graphics
within the element model arc relative to
the frame location set by the ~re-model
curve. For example, the clement descrip
tion
ELEMENT (NAMED (N7) AT (3, 8) ·IS LIKE (NAND,

(A,B ,C) T)
sets frame location (3,8) in the pre-model
curve so that this instance of a NAND will
be drawn at that location. A post-model
curve only, is convenient when the shape
of the curve depends on the clbment, al
though the character with which the curve
is drawn depends on the state of the ele
ment and is therefore determined in the
element model. The clement dcsciiption

ELEMENT(NAMED(/\) IS LIKE(LINE)
R (3) U (4) R (6))

is of a LINE that is drawn with either a
0 or a 1 depending on the state of the
line. The shape of the line is specified
by the post-model curve.

The clement model reference define•
the type of the clement and determines its
interfaces. Only the state of the
element and its interfaces can be U£ed
to ch3ngc the clement state as specified
in the rules section of the clement
model. In other \\"Ords, if the state of
element A depends on the state of clement
B, element B must be specificJ as 0 n inter-

23

facC' to <'l<'mC'nt A in ,\'s C'l<'lll<'llt dl";t.:rip-
tion. S11,·h an <'lc111<'11t ,lescription might
take the form

f'IHlr::-;T(NMll'.ll(/\) rs l.fl\E(TllfNl:,(ll)))
/\n clL'lllL'nt llL'('tl not have an internal state.
For C'xamplC', the cll'llll'llt dcscript ion
ELEMLNT(N,\MUl(N3) ,\T(l-1,2)

TS J.IH(N,\Nll,(,\ 1 11,C)))
describes a-~/\Nll gate. The gate has three
interfaces. /\ and II arc input 1 ines and
C is an output line. 1bc rules in N/\Nll
specify state changL'S in C in terms of the
states of /\ and B.

An clement state can be supplied as an
interface to an clement model in order to
parameterize the clement model. 1:or
example,
ELHIENT(N/\MED(READER) AT(S0,20)

IS LIKE(TASK,(S(RE/\D)))
ELEMENTCNMIED(\rnTTFR) AT(10, l)

IS LIKE(T/\SK,(S(WRITE)))
describei two TASKs that differ only in
their frame locations and the operation
that the task performs - RE/\D for one,
WRITE for the other.

An element may be given an initial
state. In the element description
ELEMENT(NAMED(E) IS LIKE(LINE)

- INITIAL(S(LOW)))
the LINE is given the initial state LOW.
Only those elements having no internal
state, such as the NAND described earlier,
need not have an initial state specified.

3.3. Element-model specification

<elem_ent-model> : ~· MODEL(OF(<model-type>
[, <dummy-interface-list>])
<graphics> <rules>)

<dummy-intcrf:ice-list> : := <dummy-interface>
I <dummy-interface-list>

<dummy-interface>
<model-type>::= <name>

Each element model specifics the
model type, the transition rules and the
graphics associated with an clement of its
type. The· model type is used in the rules
and graphics parts of the clement model to
refer to the internal state of an element
defined as the model type. If an element
of model type has interfaces, a dummy
interface list is supplied. The actual
interface list is supplied in an element
description referencing the clement model.
The element model for LINE in Figure S
has no interfaces; however, the element
model for N/\ND in Figure 6 specifies three
interfaces.

MOO~ll OF(L[~EI
RIJL~SCI
GRAPHICS I

FOiUS(HlGHI I ()RAwc:t 1 1' II
FORlSILOW II ORAWCCl'O'll
I

Fig. 5--Elcmcnt model of LINE

MOD~LC IJf'('l\'lJ, I Ill ,ILZ,Olll I
R«JL" SC

""r~c !ll • ql•l'./J I Ill • SlLO~l I
S':TlOLl • Slll(Glll I

WHrNI lll = SllllGlll f. Ill • Sllt!GHI
SETlOLI • SILOW I I

I
G~APlllC51'

AT(lo II TFXTC •--------'I
ATC 5, II TEXTI •--------'I
Cl'l'l
ATI lo 11 0131 ATI \, Bl Dill
ATI lr 31 TEXT('NANO' I
I

Fig. 6--Elcmcnt model of NAND

3.3.1. Rules

<rules> ::=RULES([<rule-list>
<rule-list> ::= crulc>
· I crulc-list>.<rulc>
<rule> ::=WHEN(<state-conditional>

SLT(<state-assignments>)
I WHEN{ <state-conditional>
APPLY([<rule-list>])

<state-conditional> : := <state-term>,
I <state-conditional> <state-term>

<state-term> . := <state- factor>
I <state-term> & <state-factor>

<state-factor> : := <~late-operand>
I <state-factor> "I"

<state-operand>
Note: the quotes arc meta characters

denoting that the bar inside
them is not.

<state-operand> ::=<state-test>
(<state-conditional>

estate-test> ::=<clement-reference>=
<state-reference>
I <clcmcnt-rcf~rcncc>,=
<~tatc-refcrence>

<element-reference> ::=<model-type>
<dummy-interface>

<state-assignments> : := <state-assignment>
I <state-assignments> ;

<state-assignment>
<state-assignment> ::=<element-reference>

= <~tatc-refcrence>
<state-reference> ::=<clement-reference>

I <element-sta~e>
<element-state> ::= S(name)

Rules must be specified although they
need not contain a rule. The clement
model for LINE in figure 5 has no rule.
Within a rule list each rule is independent
of any others. The order in which they are
specified has no cf[cct on the picturc
systcm model to he generated. A rule has
two parts - the 1·:hen part and the set or
apply part.

The when part specifies a true/false
valued expression in terms of model type,
dummy interfaces, clement states, paren
thesis, and PL/I lo~ical orcrators. For
each system state the 1d1en part is evalu
ated. The resulting true or [Jlsc value
determines whether or not the following

24

sl't or :q1ply p:1rts 111:1y ,·au~e a d1:1111!c in
the syste111 state .ind therefore a transi
tion.

The st't p;1rt spt'cifics chani:"s to
thc state,; of 111odel l}'p·t', lht• i;1tt'rnal
statc of the ;1ct11:1! element, and intt•rfaccs
that arc to hc made in any system state for
1>liich the 1d1en prefix is true. The set is
specified ;i,; a seq11cnce of assignmt•nts of
states to clcmt'nts. The rule

lrnEN(ILl = S(lllGll) & IL3 = S(llIGll))
SET(OLI = S(LOW))

in Figure 6 tests all system states to
determine if any element of typd NANO
has interfaces !LI and IL2 both at state
lllG!l. For any system state for which
this when part is true, a transition to a
new system state is recorded for the change
in interface OLl's state to LOW. The rule

WHEN (LEFT = NODE) SET (NODE = I.EFT)

from Figure 3 tests all system states to
determine whether or not the state of any
clement of type NODE is the same as the
state of its interface LEFT. For any
system states for which the when part is
true, a transition to a new system state
is ~ecorded. The new state differs from
the last only in that the state of the
element of type NODE has been changed to
the state of its interface LEFT. ·

An apply part specifies an entire
rule list that is to he considered only
when its when prefix is true. It is
simply a method of factoring out an
"anded" term from a set of whens. The
following example codes are equivalent:

Example code 1
\\illEN{A S(l) & B
WllEN(A = S(l) & B

Example code 2

S(2)) SET(B=A)
S(H)) SET(B=S(S))

WHEN(A = S(l)) .APPLY(
WllEN(B S(2)) SET(B=A)
WllEN(B = S(#)) SET(B=S(S))

3.2.2. Graphics

<graphics> : := GRAPHICS(
[<pre-for-list-curve>
[<for-list>]
[, <post-for-list-curve>

<pre-for-list-curve> : := <curve>
<post-for-list-curve> ::=<curve>
<for-list> : := <.::or-list-entry>

I <for-list> <for-list-entry>
<for-list-entry> : := FOR(<clement-state>

DRAW (<curves>)
I <curve>

Graphics must be specified although
the body of the graphics specification may
be empty. All three parts of a graphics
specification are optional. The forlist
can specify a different curve for each
state of an clement of the model type.

I

I
I

1\ll curn's in thl' l'l1·m1·nt mndl'I an'
rl'lat iVl' to thl' pla,·L· in the fra:Ul' st•t hy
th<• pre· mode· I .:i1rV<' of t>:1d1 l'I 'lll'llt n·fer
l'llC i fl)~ t lH' ,_• l r•ll\L'll t mode I. Thi:; a I lows
d1·a1dngs as,;ociated 1•ilh 1liffl'rcnt elc
ml·nts of the same type to have the same
graphics hut at <l i flcrl'nl places in the
frame.

The pre- for- I ist curve is placed in
the frame first; then thl' curves sell'<"tcd
by the for-list; and last the post-for-list
curve. The graphics spl·cification

Gl!APll res
C(I. I) z (OUTLINE)
FOR(S(ON)) DRAW(C('.') Z(FILLER))
FOR(S(OFF))DRAW()
• J\1'(6,3))

from Figure 3 has all three parts of the
graphics specification. The pre-for-list
curve draws the outline for a NODE by
referencing th~ global curve. OUTLINE.
The for-list causes the outline to he
filled in for ON clements and to be left
empty for OFF clements. The post-for
list curve is done in either case. It
causes the frame location to be set to
(6,3) relative to the location on entry
to the model. This location is set so that
the post model curve in the element
description can place the name of the
particular element below the drawing.

3.4. Curves

<curve> ::=·<curve-order>

!<curve curve-order>
null

<curve-order> ::= O
R(<integer>
L(.<integer~
U(<integer>
D(<integer>

UR(<integer>
UL(<integer>
DR(<intcge_r>
DL (<integer>)
AT(<signcd-~ntcger> ,

<signed-integer>)

I C(<quoted-string>)
C(<c-name>)

·I TEXT(<quoted-string>

I ST(<name>)
<named-curve>

I Z(<curve-name>)
<c-name> ::= <element-name> <modcl-nam~>
<named-curve> ::=CURVE(<curve-name>,

<curve>)

The picture associated with a parti
cular system state is formed by executing
all curve orders in the frame specification
and in the clement models referenced in the
frame specification. The order in which
the curve orders are executed is important
to the appearance of a picture. For
example, a curve order may determine the
location of the following curve, or the
characters used in dr~wing the following

25

n1rvl'. "lhe clll"\"L' n1«krs arl' L'Xl'Cllfl•J in
tlll' nrtll'r in 1>hich rhtv arl' h'l"itll'I\

L'.\Cq1t that for t":1d1 ,.·1,•ml'nl 1k:>cription
till' Clll"\'L' Ol"Lkr~ dl'tl'l"lllilll'<I hv the rl'fl'l"·
l'nced elt•1:1t'11t 1!1odcl arc l'XL·,·u.ted aft,•r the
prc-;:10Jl'l curVL' in thL' clt•111"nt descrip
tion an,! before th,• pust-mo,ll'l curve.

3.4.l. AT curve order
The AT curve order means to set the

current location to the ~pecified row
and colwnn relative to (l,l) in the upper
left corner of the frame or relative to
the location at which the clement model
was entereJ. When an clement model is
entered the location at the time it was
entered becomes (1,1) for graphics inside
the model. \'/hen the model is exited, the
current location is relocated to (1,1) in
the frame. Figure 7 shows the current
location in the frame set by the curve
order AT (1,1).

Fig. 7--Example l of use of AT curve
order.

Figure 8 shows the current location
in the frame set by the curve order AT(3,S).

Fig. 8--Example 2 of use of AT curve
order.

Figure 9 shows the current location
in the frame set by the curve order AT(l,l)
followed by an element description followed
by the curve order AT(3,5) in the clement
model.

\

Fig. 9--Examplc 3 of use of AT curve
order in clement model

Figure 10 shows the current location
in the frame set by the curve order AT(3,S)
followed by the clement description
followed by the curve order AT(Z,3) in the
clement model. ·

Fig. 10--Example 4 of use of AT curve
order in element model.

Figure 11 shows the cui~cnt location
in the frame set by the curvciordcr AT(7,6)
followed by an clement description follow
ed by the curve order AT(-1,-2) in the ele
ment mode 1.

Fig. 11--Example 5 of use of AT curve
order in element model

3.4.2. C Curve Order
The C curve order means to set the

source of current characters to the value
specified in the quoted string or the cur
rent value of c-namc. The current char
acter becomes ~he leftmost chararter of

the string. The d1:1ractl•rs are llS<•d one
at a t i 111 c• Ill<> v i n g r i f'. It t u n t i I the s t r in g
is exhaustc'll. i\t that tilllL' the leftmost
ch a r a c I c r i s 11 :; c'<l ;1 g a in , a 11 d so on.
Lxamplcs of the• C curve order arc

C (I • I)
c (I ALPllA I)
c (I 0 I)
C('l,234,782')
C (I _ I)

c (ELE

3.4.3. 0, R, L, U, D, UR, UL, DR, and DL
The 0 curve order means to place the

current character at the current location
and then update the current character to
the next character in the string moclulo
the string length. The current location
is not changed.

Curve orders R (right), L (left),
U (up), D (dmm), UR (up-right), UL (up
left), DR (down-right), and DL (down-left)
all have the same algorithm except for the
direction of movement. The integer in each
case is the number of directional movements
to be made. At each new location during
the movement a character is placed and the
current character is updated to the next
character in the string modulo the string
length. Notice that no character is
placed at the initial current location and
that the current location at the completion
of the movement is still at the last char
acter place:!.

Figure 12 shows the curve

AT(l,l) C('X') R(2) D(7)

Fig. 12--Example 1 of curve movements

Figure 13 shows the curve

AT(3,2} C('*-') 0 R(S)

Fig. 13--Example 2 of curve movements

AT(l,I) C('*') III:(:') H(~) llll(l) 11(·1)
ll 1! (2 l II (1) ll I. (l J l.l s) C(I - t) lJ I. (3)

AT(7,S) 0

Fig. 14--Example 3 of curve movements

3.4.4. TEXT Curve Order
The TEXT curve order means to place

the quoted string in the frame starting
at the current location and moving to the
right. Figure 15 shows the result of
placing the curve

AT(3,3) TEXT('ALPHA')

in the frame.

Fig. 15--Example_of use of TEXT curve order

3.4.S. ST Curve Order
The ST curve order means that the state

of the named element or model is placed in
the frame statting at· the current location
and moving to the right. Figure 16 shows
the result of placing the curve

AT(4,3) ST(SWITCH)

in the frame if the state of element SWITCH
is OFF.

27

Fig. 16--Example of use of ST curve order

3.4.6. CURVE and Z Curve Orders
The CURVE cu1·ve order names a

curve so that it can be referenced from
several different places by using the Z
curve order with the curve name. The
effect of the Z curve order is to cause
the curve to be placed at the current loc
ation. Figure 17 shows the result of
placing the curve

CURVE(BOX, RN3) 0(3) L(3) U(3))
C('*') AT(l,l) Z(BOX)
C('.') AT(6,l) Z(BOX)

in the frame.

Fig. 17--Exam~le of use of CURVE and
Z curve orders.

4. Conclusion
We have presented picture-system

models as a simulation tool for the digital
system designer. The generation and anal
ysis of picture-system models has been
automated by the PS language implementation.
This paper has described the PL/I-based PS
language.

A wide variety of models have been
developed using the prototype implementation
of PS. Models of traditional digital logic
components at gate level as well as func•
tional levels have been developed (9].
These models will be a powerful teaching
aid. PS digital logic models reveal races
and hazards as would be expected from an
asynchronous simulator. The development
of digital logic models has motivated, in
part, the exploration of synchronous PS
models in addition to the asynchronous

llllHit·h 1>hich l><'l'l' th<• ()l'i)',ill:ll :.11f>jt•\'tS
or <Jiii' i11\'c:;tig:1tio11.

,\t the hil'h <'lid of the ;1rvhitl'ct11ral
spcctn1111, :t ""';icl of a ch:11111<'i-to-c!i:tnncl
... -onq111tcr intcrf:11.:e 11ll'Ch:111i;·.1n in\·oJving
both h;1rdwarl' and ><>ft1>:1r•· ha:; hl'en devel
oped [31. This V<'I')' lal')',C model, more
than l,000 :;t;1t<'s, has i>v<'ll the s11hj<'Ct of
a study of the computer sy::tem dC's ign rneth
odolo~:r that lil' arc dl'l'l'iopin.t: aroun<l I'S.
The idea o[submodels or picturc-:;ystem
models has emerged as an important analysis
methtnl. Computer systems can he explored
[or hang-ups, inescapable cycles, races,
and hazards. l'ault studies have been
done using the ch:1nnel-to-ch:rnnel model
to study the potential o[I'S for such
studies. The effect of an errant oper
ating system in one computer, on the oper
ating system in another computer communi
cating 1dth it, has been explored as a
fault study. The interface unit in the
chhnnel-to-channel connection has been
subjected to fa~lt studies which predicted
its reaction to any sequence of channel
signals from the two computers no matter
ho1; nonsensical. The potential for
diagnostic capability based on this type
of study is clear. A model of a channel
to-channcl interface mechanism somewhat
simplier than the one described in [3] has
been used-during the actual design of
the interface (2]. The model had a very
favorable effect on the cooonunication
between the hardware and software groups
invtlved, in addition to pinpointlng
oversights which would have led to inter
face unit hang-ups.

Another interesting sei of models that
are being developed is Dijkstra's cooper
ating sequential processes (-7.]. These
models give this author hope for proofs
of operating systems done by '!ordinary"
operating system designers assisted by
PS models. These proofs will be based
on the structure of submodeJs of system
behavior as defined by the transition
graph produced by the PS system. The
analysis of these transition graphs is
one of the most useful features in PS
that is not found in traditional digital
system simulators. The current analysis
is by ordering of nodes as described by
Earnest [11) and applied by Korfhage (12].
The many other possibilities for transition
graph analysis arc one subject of our
current investigations.

. The goal of this continuing research
is to incorporate within a single automated
design aid the features necessary to sim
ulate digital systems at various levels
of architectural detail, in such a way
that we can sec (1) that it works and
(2) how it works. The prototype implemen
tation of PS has sho1>n the feasibility and
usefulness of such a system.

28

.. \t: k.111) \\'I cd !~ t•111t· 11 t ,.;
The_. :1111 linr)'.rat<•f11l ly acknowledges

h<'lpi'11l Sllt'.);<'Stion:; from Ch:1r!l's J\if'.i'.>',
Pennis l'raill'y, .lamt·s l:;a:1c,;on 1 Hoh Korfhage',
.\h1nct Oner, llill Nylin, Dan Scott, and
llnh Smith. -+
Re fercnccs -----·----
l. P. Isaacson, "Picture-system models and
computer system dcs.ign," Ph.ll- dissertation
in preparation, Computer Science Department,
Institute of Technology, Southern ~lcthodist
University, Dallas, Texas.

2. I'. Isaacson, "PS:!\ tool for building
picture-system models of computer systems,"
to i1ppear, June, 1974.

3. P. Isaacson, "Picture systems, PS, and
the design of a channel-to-channel computer
interface," to ;ippear, July 1974.

4. II. Freeman, "On the encoding of arbitrary
geometric configurations," .!_RE Transactions
on Electronic Computers, June 1961,
2~0 :Z-68-. --- --

S. P. Naur, (Ed.), "Revised report on the
algorithmic language ALGOL 60," CACM 6,
(Jan 1963), 1-17. --

6. E. Dijkstra, Lectures at a conference
on programming methodology, University of
New Nexico, March 1974.

7. E. Dijkstra, "Co-operating sequential
processes," Pro&_!_<!_mming_ !0nguages, . Cenuys,
Ed., Academic Press, New Y~T968.

8, IBM, PL/I Language Reference Manual.

9. C. Biggs, "Picture-system models of
digital logic clements," Master's thesis
in preparation, Computer Sciences Department,
North Texas State-University, Denton, Texas.

10. P. Isaacson and A. Oner, "Picture-system
models of Dijkstra's co-operating sequential
processes," in preparation.

11. C.P. Earnest, et al, "Analysis of
graphs by ordering of nodes," JACM, January
1972, 23-42. --

12. R. Korfhage, "Program restructuring:
garbage in, daisies out," to appear, June
1974.

A PARTITIONING TECHNIQUE

FOR

LSI CHIPS

Pao-Tsin Wang

International Busin"S?ss Machines Corporation
System Development Division

9500 Godwin Dr.

Manassas, Va. Z2110

29

I. Introduction

A technique for partitioning
is presented in this paper.
technique is a refinement of
previous work [l).

LSI chips
This
the author's

The word "partitioning" is taken to mean
the dividing of a chip into n sections.
Each section will contain a group of cir
cuits. The size of a section is defined
as the amount of physical area occupied
by the group of circuits. Each section
does not have to be equal in size, how
ever, the difference in size between any
two sections should be within some pre
specified number. Since the physical
dimension of each circuit is not uniform,
the number of circuits in a section may
vary a great deal from section to section.
A good partition is one such that each
section has a valid size and the number
of interconnections between any two sec
tions is the smallest. In essence, one
should attempt to achieve two goals in
the process of partitioning:- iiiaiii:tain
a valid size for eacn section and reauce
the numberof-rritersecuon connectrcm:s
as much as possible.

The partitioning technique presented
in this paper consists of the following
steps. First, the set of circuits is
ordered according to a scoring mechanism
and the resulting order is called the
initial order of the circuits. Next,
an intercnange~eehriiaue is used to
improve that initial order and the
resulting order is called the imoroved
order of the circuits. Last, the
same-interchange technicrrte is used to
partition the improved order into n
sections.

II, Construction of the Initial Order

On a chip, the set of circuits is inter
connected by a set of nets. A net is
defined as a collection of electrically
common points, where a point may be
either an input gate or an output gate
of a circuit. A circuit, for example,
could be a 4-input-1-output NAND. Since
a circuit, in general, consists of more
than one gate, there is a set of nets
in which the circuit is involved. This
set of nets is called the associated
~for the circuit. On the other hand,
a net connects a group of circuits which
will now be called the group of circuits
in the I.:!.£!.,

An iterative ordering algorithm is
used to establish the initial order
in which one circuit follows the other.
An iteration is a pass where a circuit
ls selected and or~d-:---There are
a:g· inany iterations as t:here are cir
cuits. To begin the algorithm, the
circuit with the smallest number of

associated nets is chosen as the
starting circuit. This circuit now
becomes an ordered circuit. At the end
of every iteration, a set of candidate
circuits (unordered, of course) wiil
be constructed from the set of nets
associated with the group of ordered
circuits. To select for ordering the
best circuit among the candidate cir=
cuits, a scoring mechanism is used.
The iteration repeats until all the
circuits have been ordered.

In essence, the scoring mechanism
calculates a score for each candi
date circuit and selects the circuit
with the highest score. A net is
said to be complete .when all"the-"
circuits in it have been oraered;
otherwise, the net i'S'Said to be
incomplete. One-DbVi'ous criterTon
in constructing the scoring mechanism
is to give the highest score to a cir
cuit that has the potential of completing
the largest number of nets while, at
the same time, including relatively
small number of incomplete nets. Before
the complete scoring mechanism is pre
sented, some items should be defined as
follows:

x a a candidate circuit after the
ith iteration

NET(X) the set of associated nets for
the circuit X

CKT(X) the set of distinct circuits
derived from NET(X)

tCKT(X) the total number of circuits
in CKT(X)

SCKT(X) =a subset of CKT(X), repre
senting the circuits that
have been ordered

ISCKT(X)= the total number of circuits
in SCKT(X)

NT(n) the set of connected circuits
in the net n

iNT(ni the number of circuits in the
·set NT(n)

SNT(n) a subset of NT(n), represen
ting the circuits that have
been ordered

tSNT(n) the total number of circuits
in SNT(N)

C the number of common nets
between the circuit X and
the set of ordered circuits

Z the number of nets in the set
NET(X)

N the number of new and incom
plete nets brought in by the
circuit X; N=S-C

D degree of completeness, repre
senting a measurement on the
potential of the circuit x to
complete its associated nets.
There are two forms used to
define·n:

0 Sum Form - D

30

llSCKT(X)+l
fCKT(X)

I

IC

0 Product Form - D
lT tSNT(n)+l

#NT(n)
ne NE.TO<)

• the total number of incomplete
nets after the ith iteration

• the total number of common
nets between the circuit X
and the earticular circuit
ordered in the ith iteration

The score s for the candidate circuit
X is now defined as:

s (C) 2xoxIC
• zx(I+N)

Note that since there are two forms for
computing o and that IC could be ignored,
these are four possible scoring mecha
nisms, any one of whic~ could be used
for the ordering algorithm.

1. Score with D in product form and
ignore IC.

2. Score with D in sum for and
ignore IC.

3. Score with D in sum form and
include IC.

4. Score with D in product form
and include IC.

Since the score s is calculated in
a heuristiC""iiiariner-;-it is difficult
to predict which scoring mechanism
would produce a better result for a
given chip. Experimental runs have
been made on many chips and the results
indicated the scoring mechanism 1, in
general, produced relatively better
circuit orders; hence, it was chosen
for the iterative ordering algorithm.

III. Construction of the Improved Circuit
Order

The initial circuit order can be described
graphically, as shown in Figure 1, where
the order is to be read from top to bottom.
For example, net A connects circuits 78,
79 and 73, and net B, circuits 90, 88,
89 and 86. Gates are treated as if they
were equal in width in order to simplify
the work of displaying nets. Imaginary
vertical channels are assumed, each of
which is to be filled successively with
nets. If a channel is full or no net
fits, a new channel begins. The total
number of channels required tO"O"isplay
all thenets is a rouqn measurement
~ the "goodness" of '.:. given initial
circuit order; in other words, the
smaller the number of channels required,
the better the initial circuit order.

To improve the initial order, an inter
change technique is required, derived
from [2], and will be' referred to as
the K-L interchanae algorithm. The
strength of the K-L algorithm is its

31

capability in identifying groups of
circuits to be interchanged; further
more, the algorithm decides when the
interchange process should stop, and
thus provides a dvnamic stopping
~· The existence of such a
aynaffiic stopping point resolves.the
general problem as to when the inter
change of objects ought to stop, as
compared to other interchange tech
niques that could be employed. Due
to the fact that a net, in general,
connects more than twO' pOints, it was
necessaryt:c>"mfdify-ui'e K-L algorithm
so that net:S o more"'thant'wo points
would not cause the algorithm to
produce misleading results. This
modification was used in [l], and
was also discussed in a recent paper
[3]. It is assumed that the readers
are familiar with [2] and hence, no
detailed description of the K-L
algorithm and its modifications will
be presented.

The improvement of the initial circuit
order is accomplished on a step-by-step
basis.· Refer to.Figure 1. When an
imaginary dividing line ~s d~awn.on
Location 1, the set of circuits is
split into two subsets. Application
of the K-L algorithm on these two
subsets results in identifying two
groups of circuits to be interch~nge~,
one group originating from the circuits
above the dividing line, the othe.r
below. There is no order consideration
for each--crrcuIT Within each of the
'tWO groyps. After the interchange
taK'es p ace, one group of circuits
will be placed immediately above ~h7
dividing line and pushes the remaining
circuits above this line upward; the
other group of circuits will be inserted
below the dividing line and pushes the
rest of the circuits below the line
downward, As a result, the initial
order has been altered; however, the
numberer Interconnections ~"'the
crrvTdTng-"line was reduced. Since the
goal at the"tiii\e-is to improve.the .
initial circuit order, no consideration
is given to the physical dimension of
circuits during the process of inter
change,

The dividing line now moves down to a
new location, say location 2, and again
the K-L algorithm is applied, resulting
in a reduction of the interconnections
across the current dividing line. When
there are no more new locations avail
able, the dividing line stops moving
downward and starts moving up, genera
ting new locations where the K-L
algorithm will be applied. For
convenience, the one round of moving
the dividing ITne dowi1ii'i'i'O :::£ aqain ror vice versa) is called a pass.
Within a pass, the number of-circuit~
which .!::!!!:. line Juiii'ps over when moving

96- - -
911 1 1
95- l l - • 1 - .

:E: ~I~-~ i ~~~--
9Cl l 1,- - 1 -
ee1 1 1:- 1 1 - • -
911 • 1 : 1: 1 1 1
eca 1 •-: 1 1 - • -
8tl - 1t~ 1 1 1 -
87- - 1 1 1 1 - •
e1t1 1 1 - 1 1 1 .
821 l 1 - l 1 - l • - Dir1DiA1fL:'ltll.

---=~~ .• -~ -~. ~- ~ ~ ~ ·i ~--- ./ LoU..-t;·,,. ·;
--e-1-:.-: 1-i- r re i-:-- • - J: ---

- . 8C 1 - 1 • l 1 l 1 - . . . - .. r!"ET A
721 1 1 - 1 l - 1 1 - -
141 1 1 - l 1 1 1 1 1 • - r ,

711 1 1 1 1 1 1 1 1 1 - 1 -·-·
lll • f l 1. f 1 1 1 y 1-1 • : l !-
791 1 1 1 1· l 1 1 1 1. :-11
75- - 1 1 1 l 1 1 1 - 1 :•'1
7 3 f • · 1 .;: 1 1 :.:. - 1-·1 ··:...·· 1: 1
101 - 1 • 1 1 1 1 1 1 1 1
11- - 1 l l 1 1 1 • 1 - 1

---·5fT1.:.:-·1f1C1···11
41 l 1 • 1 1 1 1 1 - 1 1 - 1

: ~o.+e · * __ ; tf-ie.,,11 ... t olso
duo+:"' -tilt ~ .. c(,,.,
f>Ol"t of o. nd·.

·- 1 · : nat C..n 11ec:.+.o"'- -

. -z"~ers de11ot. c..-rcuit· ..
number.).

-· --H-~ {-:--}-~--{-f-:-: ~-·i t-}--··--··-·---Fij.--1 --·--·-·-
31 ... 1 1 1 1 1 1 • 1 1 • 1 lot:.11-+.•.,,, 2

-·u·•r=T1111-rr- -r---
---e1 ·•· 1 · • · fT i·-c1 ---1 1 ---1 --- · ···· -···--·----· ·-·-- - -·· - ·· ----·- -

981 - 1 1 1 • 1 1 1 1 1
381 - 1 • l l 1 1 1 1 l

-·-ioc• 1 l - ·1 1- 1"1 ··--·i 1 1 ··
101- 1 1 • 1 1 l 1 1 1 1

161 1 1 - 1 1 1 - • 1 1 . --24s1·-1--·1····-c;·-..--.:--:..-•-:.--·-r-------------·------------

61 1 1 - 1 1 1 1 1
1051 1 - 1 - - 1 1 1 1 1 --106•1· .-···-1-1 ·--··1-=~-1--i--i·--i·- •••-• • -------· U•--•••••·-··-·- -•-•

1071 1 - 1 - - 1 1 - l 1 1 1
1091 l 1 1 - • 1 1 1 - 1 1 l -·ra·a·1-··1- .;-·i-...; .--1-...:-1r-i-·--1 ··------ ------·-·· ---------------

-~~~~ ~ ~ ~ :_;j ~ • ~ -~ ~_J...f~~~" J ___________ _
1111 1 1 1 • 1 1 1 - • 1 1 1
1131 1 - 1 - - 1 1 - 1 1 1
1151 1 1 1 • 1 1 1 - l 1

-n1e1 ··c:..··-1 · :..··:.-·cc•---c-·1- y· ·--·- -· -----·-------- -------·- ---
1161 1 l 1 •• 1 1 - 1 1 1
1181 1 1 1 - 1 - - - 1 1 1111 i" l-c1-:..-·i -c.----.-- ,-,---------------------· -- ---··---· --
12c1 i - 1 - - 1 1 - 1 1
1221 1 1 1 - 1 1 1 • - 1 1 -. -i19c1-:..-1-.-:..-·cc::.-y--·-1---i-------------------- ----· -··---
1211 1 1 1 • 1 1 • 1 l
12.41 1 1 1 - l - 1

32

' ,,

from one loc.:ition to another is called
the step Sl3c, i\!:t"'r cipply.inym~
passes of line-moving, the initial
circuit order will be greatly improved,
which will now be called the improved
circuit order.

The number of passes and the step size
obviously has a great deal to do with
the degree of improvement on the initial
order; however, it is difficult to
determine in advance how many passes
would be enough and what step size would
be proper for a given chip. For the
program the author developed, it was
decided empirically that the number of
passes was 14 and the step size was
as follows:

Step Size Number of Circuits

5 K<.100
9 150 >K> 100

13 200:>K>150

Step Size Number of Circuits K

17 JOO> K >200
25 K:;> 300

IV. Partitioning of Chips

Partitioning of chips is accomplished
by applying the K-L algorithm on the
improved circuit order. Since a proper
size is to be maintained for each sec
tion, the size of the circuits can no
longer be ignored during the process
of interchanging circuits. In this
paper, the size of a circuit is taken
to mean the height of the circuit;
hence, the size of a section is defined
as the sum OT"the heights of the cir
cuits that are-COntained in the section.

There are in general, two major steps
in partitioning a chip: the initial
partitioning and the succeeding
partitioning. Two large sect.ions of
circuits are constructed after the
initial partitioning is applied; the
succeeding partitioning divides each
of the two large sections into a number
of smaller sections until there are
n sections totally where n is the
number of sections required.

A. Initial Partitioning

• Case 1: n is even

The chip size is defined as the sum of
the heights of all the circuits that
the chip contains. To obtain a proper
size for each of the two large sections
to be constructed, the chip size is
divided by two. Let S denote this
size. The balance index is set equal
to S/20; in other words, one section,
at most, can only be- 10% larger than
the other section.

On the improved circuit order, a dividing
line is to be drawn at the place where
two sections of circuits can be identi
fied with the size of one section close
to the other section. When the K-L
algorithm is applied, a series of inter
changes of circuits takes place; the size
difference between the two sections will
be monitored aaainst the balance index
at each .intercl~ange ofCircuits. ~
the end of the algorithm, two large
sections of circuits with proper size
are constructed.

,Case 2: n is odd

As noted in the previous discussion,
there is only one way to draw the
dividing line on-tne-improved circuit
order and identify two sections of
circuits when n is even; however,
there are two ways to construct two
sections of circuits when n is odd.
For example, let n be 5 to illustrate
the case.

The approximate size for each of the
five sections is set equal to one
fifth of the chip size. Let S denote
this size. For the two large sections
to be identified, one section will
take the size of 25, the other 35.
The balance index-rs 25. Refert:'o

Figure 1. A line dra6&" at location
1 could identify two large sections;
on the other hand, a line drawn at
location 3 would also identify two
large sections. After applying the
K-L algorithm on both configurations,
the one with the smallest number of
interconnections will be chosen.

B. Succeeding Partitioning

The succeeding partitioning is simply
the extension of the initial parti
tioning; the only difference is that
each of the two large sections of
circuits is treated as if they were
complete chips, hence, the initial
partitioning is applied. In essence,
n sections of circuits are constructed
by repeatedly applying the initial
partitioning.

The following table provides some
computational results.

en

CD

....
N

0
in

N
0
N

CD

0
M
in

Cii't--.,t--~~~~en--1

e,.. I'"" N
H in

~------I 0
Z \0 in N
t!t-~t--M~~~-in--1

N
en
\0
M

N
\0
M

0
CD

in
rt
in

II)
•E-t~OO"I

or..i:.:i rt """ °' zoz in \0

.
II) in

• E-1 .. 0 ,.,,
Or>.:.; rt N rt
ZOU in \0 rt

..

''

v. Discussions

Since the partitioning algorithm presen
ted in this paper is heuristi.c in nature,
many decision-making mechanisms are con
structed empirically. As such, it is
difficult to assess a partitioning result
produced by the algorithm.

In the course of constructing the initial
circuit order, a certain circuit is chosen
as the starting circuit. It appears
that the selection of the starting circuit
has a great deal to do with the final
Partition result, The application of
the' line-moving approach is used not
only to improve the initial order, but
also to diminish the impact of the
starting circuit on the final result;
nevertheless, the impact still remains,
although to a lesser degree.

There are four scoring mechanisms pre
sented in this paper. ·Many other scoring
mechanisms can be found in [4], At one
time, all four scoring mechanisms were
used to construct the initial order and
compa~ison~ were made on the four final
partition results; however, no conclu
sive evidence was indicated as to which
one was superior to the other three.

Number of passes and step size are the
other two subjects to be further studied,
The values used in this paper were
selected on the basis of experimental
runs.

It should be noted that no section is
truly independent of the remaining
sections because there are always some
interconnecting nets which tend to
pull circuits in one section to cir
cuits in.other sections. Effort should
be made to reduce the.number of the
interconnections which cross many
section boundaries. From a practical
point of view, these interconnections
could very well mean trouble during
wiring. On occasion certain circuits
may have to be assigned to certain
sections; this pre-assignment of cir-
cuits can also be implemented in the
partitioning algorithm. Due to the
space limitation, no detailed dis
cussions pertaining to these special
features will be presented.

Acknowledgments

The author wishes to thank Mr. John
Fischer for reviewing the manu
script and Mr. David Gentner for
providing programming effort,

34

References

l. Unpublished Work, 1972.

2. B. W. Ke-rnigham and s. Lin, "An
Efficient Heuristic Procedure
for Partitioning Graphs", The
Bell System Technical Journal,
February 1970.

J, D. G. Schweikert and B. w. Kernighan,
•A Proper Model for the Partitioning
of Electrical Circuits", Proceedings
of the ACM-IEEE Design Automation
Workshop, June 1972.

4. M. Hanan and J. M. Kurtzberg,
•Placement Techniques", IBM Tech
nical Report RC-2846, April 1970.

35

ACM 74 SAN DIEGO
ASSOCIATION FOR COMPUTING MACHINERY

DYNAMIC, PERTINENT, PARTICIPATIVE

ANNUAL MEETING
NOV. 11 THROUGH 13
This will be an ACTIVE meeting.
Come to learn, to discuss, to
explore. ACM SIG's and SIC's
have already begun organizing
sessions and refereeing papers.
Chances are we've already arranged
something pertinent and practical in
more than one of your fields of ·
specie.I interest

There'll be seminars, tutorials,
specialized technical and commercial
events. We'll meet in superb facilities
where it is easy to run into those
you want to see. In November San
D•r)go will be the focal point for
nwGting with colleagues of stature
from the Californiil and International
computing communities S;in Di8go
is home ground for ma1or California
univer31ties and import;rnt oceanic.
medical, nuclear ilnd ;1crospnce
research. Through ACM '74 you ciin
establish contact with these
inst1tut1ons and others spec1;ilizing
in computer appl1cilt1on to social
problems, computers in education
:rnd hardware manufacturing

ACM '74's published proceedings
will represent papers of significant
impilct ilnd p8rtinency, of lasting
value to the computer community.

In a delightful Pacific setting

SOME PROGRAM
HIGHLIGHTS
• The anual ACM Turing award.
• SICMINI session on minicomputers.

Panel discussion Will Minis
Replace Large Computers?

• SpGc1al Paper Computers and
Society; Public Policies and the
ACM-- Daniel D. McCracken.

• Sessions on Structured Program
ming, Programming Languages,
Performance Measurement,
Computer Aids to the Physically
H;rnd1cilpped, Numerical Analysis,
some 50 more

• Tutorial: Minicomputer Operating
Systems

• Unpopular Ideas in Computing;
a p;rnel

• Security and Privacy Their Effects
on Computer Management

• SIGGRAPH 2 sessions, plus a
tutorial and workshop

• ACM Computer Ombudsman
Progrilm.

MOST CONVENIENT
CONFERENCE EVER
All hotel space has been arranged
on "walk-around" Harbor Island with
marinas, restaurants and beaches
1n an uncommonly comfortable
environment. Free shuttle buses
run on Harbor Island to and from
the Convention Center for technical
sessions.

If you're coming from outside San
Diego: treat yourself (and spouse?)
to an extra day or two. Enjoy world
famed San Diego balmy beaches,
zoo, wild animal park, Old Mexico,
66 goif courses, sumptuous restau
rants, scores of other things to do.

If you're coming from California
the shuttle bus service wili include
the airport and AMTRAK station,
providing local transportation
Commute or stay over.

Street _________ _

City ___ _ State __ _

Zip_. _____ _

Are you an ACM national member? I
D Yes D No I
-----------------~

PROCEEDING FOR 9th and 10th DA WORKSHOP

The following is the rate schedule as agreed to by SIGDA and the DA
Technical Committee of IEEE.

1)

2)

Copies

9th DA Workshop Proceeding (1972) @ $10. 00
376 Pages

10th DA Workshop Proceedings (1973)
288 Pages

SIGDA Members } @ $10. 00 =
ACM Members

Non-ACM/Non SIG Persons @ $16. 00 =

Subscribers @ $16. 00 =

(Member Number) TITTAL = ---- ------
Please send your order prepaid to:

ACM Inc.
P. 0. Box 12105
Church Street Station
New York, New York 10249

Make your checks payable to Association for Computing Machinery (an
added charge is made for billing).

JOIN JOIN JOIN JOIN JOIN JOIN JOIN JOIN JOIN JOIN JOIN JOIN
SIGDA SIGDA SIGDA SIGDA SIGDA SIGDA SIGDA SIGDA SIGDA SIGDA SIGDA SIGDA

Name (please type or print)

Affiliation

Mailing Address

City State Zip

Annual membership dues are
$3.00 for ACM members and
$5.00 for others.

Enclosed annual dues.

Please send more info.

Mail to SIGDA
ACM INC.
P.O. Box 12105
Church Street Station
New York, NY 10249

I
I

