
N
en
n w
N

~2iUlG TECHNICAL MANUAL

Z16C32
IUSC™INTEGRATED
UNIVERSAL SERIAL
CONTROLLER

01/92

INTRODUCTION
The 16C32 Integrated Universal Serial Controller
(IUSC) is the latest member of Zilog's large and
popular family of multi-protocol serial controllers, which
ranges from the original Z80-SIO through the industry
standard sec and the more recent ESCC, ISCC,
USC, and MUSC. Compared to the SCC family and
most competing devices, the USC family features
more serial protocols, a 16-data bus, higher data
rates, larger FIFOs, better support for DMA operation,
and more convenient software handling. The IUSC
adds a Direct Memory Access (DMA) facility that has
correspondingly powerful capabilities for transferring
data to and from data buffers in memory.

FEATURES
* Full-duplex multi-protocol serial controller
* Two multi-mode OMA channels with peak transfer

rates up to 13.33 MBytes/sec
* Serial data rates to 20M bits/second
* Serial modes Include Asynchronous, Synchronous,

SDLC, HDLC, Ethernet, 1553B, and Nine-Bit
* Two baud rate generators
* Digital phase locked loop for clock recovery
* Receive and Transmit Time Slot Assigners for ISDN

and Fractional T1 appllcatlons
* Ten general purpose 1/0 llnes plus Carrier Detect,

Clear to Send, and two Clock I/O's
* Transmit and receive frame-length counters,

Independent of the OMA faclllty
* HDLC/SDLC features Include 8-blt address checking,

loop mode, 16/32 bit CRC, programmable Idle state,
auto preamble option or programmable minimum
Flag count between frames, real-time or In-data
stream Abort notification

* Sync features Include 2 to 16 bit sync pattern, sync
strip option, 16/32 bit CRC, programmable Idle state,
auto preamble option, X.21 xmlt/rcv sieving

* Async features Include false-start fllterlng, stop bit
length programmable by 1/16-blt steps, parity
generation/checking, break generation/detection

* 32-character transmit and receive FIFOs between the
serial controller and the OMA channels

* Improved bus/serlal Interlocks prevent extra received
OMA characters and misreporting of FIFO fill levels

* OMA modes Include slngle buffer, plpellned, array
chained, and llnked-llst

January 27, 1992

PRELIMINARY TECHNICAL MANUAL

Z16C32 IUSC
INTEGRATED UNIVERSAL SERIAL CONTROLLER

* 16·32 bit addressing, 8· or 16-blt data
* Received frames can be placed In separate memory

buffers or stored succeBBlvely without regard for
buffer boundaries

* Received-frame status can be stored with OMA
control Info or after the end of each frame

* Transmit-frame control Info can come from the OMA
control structure or before the start of each frame

* Buffer ring wraparound protection
* Programmable throttling of OMA bus occupancy
* Flexible adaptation to various system buses
* Flexible Interrupt and bus-arbitration modes
* Interrupt and bus-acknowledge daisy chains
* Socket- and software-compatlble with Z16C31 IUSC
* High speed, low power CMOS technology
* 68 pin PLCC

LOGIC SYMBOL

Vdd

CLK AD15:0
/RESET /UAS

/CS /AS
D//C /OS
5//D /RD

/WR
/WAIT//RDY R//W

B//W
/INT ACK Z16C32 /INT

IEI IEO
/ABORT IUSC /BUSREQ

/BIN /BOUT
/RxC /RxREQ
/TxC /TxREQ
RxD TxD

/CTS
/DCD

PORT7:0

Vss

Table of Contents

1. lntroduction .. 1
Features ... 1
Logic Symbol .. 1
Table Of Contents ... 2

Packaging ... 5
Pin Descriptions .. 5

Device Structure ... 8
Document Structure .. 1 o
About Test Modes ... 10

2. Bus lnterfacing ... 11
Multiplexed I Non-Multiplexed Operation ... 11
Read/Write Data Strobes .. 12
Bus Width ... 13

ACK vs. WAIT Handshaking ... 13
The Bus Configuration Register (BCR) .. 14

Register Addressing .. 15
Byte Ordering ... 20
Register Read and Write Cycles ... 21

DMA Cycle Options .. 22
S//D, D//C Status Output .. 22
Wait Insertion ... 22
/UAS Frequency ... 23

3. Serial lnterfacing .. 25
Transmit and Receive Clocking ... 25

CTRO and CTR1 .. 25
Using PORT0-1 for Bit Clocking ... 25
The Baud Rate Generators ... 27
Introduction to the DPLL ... 27
TxCLK and RxCLK Selection .. 28
Clocking for Asynchronous Mode ... 28
Synchronous Clocking .. 28
Stopping the Clocks ... 28

Data Formats and Encoding .. 29
More About the DPLL ... 30
The RxD and TxD Pins ... 32

Edge Detection and Interrupts ... 32
The /DCD Pin ... 33

The /CTS Pin .. 34
The /RxC and /TxC Pins ... 35
The /RxREQ and /TxREQ Pins ... 35

The Port Pins .. 36

The Time Slot Assigners ... 37
Programming the Time Slot Assigners .. 38

4. Serial Modes and Protocols .. 41
Asynchronous Modes ... 41

Character Oriented Synchronous Modes ... 42

Bit Oriented Synchronous Modes .. 43

2

The Mode Registers (CMR, TMR and RMR) ... 44
Enabling and Disabling the Receiver and Transmitter 45
Character Length ... 45
Parity, CRC, Serial Encoding .. 46

Asynchronous Mode ... 46
Break Conditions .. 47

Isochronous Mode .. 47
Nine-Bit Mode ... 48

Async with Code Violations (1553B) Mode .. 48
External Sync Mode .. 50
Monosync and Bisync Modes ... 50

Transparent Bisync Mode ... 52
Slaved Monosync Mode .. 53

IEEE 802.3 (Ethernet) Mode ... 53
HDLC I SDLC Mode ... 54

Received Address and Control Field Handling .. 55
Frame Length Residuals .. 56
Handling a Received Abort ... 57

HDLC I SDLC Loop Mode ... 57

Cyclic Redundancy Checking .. 58
Parity Checking .. 59
Status Reporting ... 60

Detailed Status in the TCSR ... 62
Detailed Status in the RCSR .. 62

DMA Support Features ... 64
The Character Counters ... 65
The RCC FIFO ... 68
Transmit Control Blocks ... 68
Receive Status Blocks .. 69
Using TCB's and RSB's in ACV (1553B) Mode ... 70

Commands ... 71
Resetting the Serial Controller .. 74
The Data Registers and the FIFOs ... 74

Between Frames, Messages, or Characters ... 76
Synchronous Transmission .. 76
Async Transmission ... 77
Synchronous Reception ... 78

Synchronizing Frames/Messages with Software Response ... 78

5. Direct Memory Access (OMA) Channels ... 79
DMA Fundamentals .. 79

Addresses and Byte Counts ... 79
Data Width and Byte Ordering .. 80
Buffer Termination .. 80

Single Buffer Mode ... 81
Pipelined Mode ... 83

Avoiding Problems with the CONT Flag .. 83
Array Mode ... 85
Linked List Mode .. 87

Using Linked List Mode to Create a Buffer Ring ... 89
Adding a Buffer to the End of a List.. .. 90

Fetching Transmit Control Blocks ... 90

Storing Receive Status Blocks .. 92

3

Channel Status ... 93

Commands and /BUSREQ Enable .. 95

Address Sequencing ... 96
Binary Format in Arrays and Lists ... 97
Conditions for OMA Operation .. 97
OMA Requests by the Receiver and Transmitter ... 97

Programming the OMA Request Levels .. 99
Inter-Channel Operation and Priority ... 99
Bus Acquisition and Release Timing ... 100
Bus Cycle Options .. 101

D//C, S//D Status Output .. 101
Wait Insertion ... 101
/UAS Frequency ... 101

Master Bus Cycles , .. 101
Bus Occupancy Throttling ... 104
Array and Linked List Fetching Status ... 104

6. Interrupts .. 107
Interrupt Acknowledge Daisy Chains ... 107
External Interrupt Control Logic ... 107

Internal Interrupt Operation ... 108
Details of the Model .. 109

Software Requirements ... 11 O
Interrupt Options in the BCR ... 11 O
Interrupt Acknowledge Cycles ... 110

Interrupt Acknowledge vs. Read Cycles .. 115
Serial Controller Interrupt Types .. 115

Receive Status Interrupt Sources and IA Bits ... 115
Receive Data Interrupts .. 116
Transmit Status Interrupt Sources and IA Bits .. 118
Transmit Data Interrupts ... 118
1/0 Pin Interrupt Sources and IA Bits .. 119
Miscellaneous Interrupt Sources and IA Bits ... 119

Serial IP and IUSC Bits ... 120
Serial Interrupt Enable Bits ... 120

Serial Controller Interrupt Options ... 120
Serial Interrupt Vectors ... 121
OMA Controller Interrupt Types ... 121

OMA Interrupt Sources and IA Bits ... 122
OMA IP and IUS Bits .. 122

OMA IE Blts .. 122
OMA-Controller-Level Interrupt Options ... 123
OMA Interrupt Vectors .. 123

7. Software Summary .. 125
About Resetting .. 125
Programming Order .. 125
Using OMA to Initialize the Serial Controller .. 126

Register Reference ... 126

Appendix: Changes .. 160

Index .. 161

4

PACKAGING

/ABORT /BIN
/INT /BUSREQ
~ c~

IEO /BOUT
v.. v ..
Vdd Vdd
ADO Z16C32 ADB
AD1 AD9
AD2 IUSC AD10

AD3 (Top View) Ao11
AD4 AD12
AD5 AD13
ADB AD14
AD7 AD15
VII VII
Vdd Vdd

/RxREQ -..,""""'.,....,....,....,..,..""""'..,..'l"""'l'""!"'"...,.r- PORT7

PIN DESCRIPTIONS
/RESET. Reset (input, active low). A low on this line
places the IUSC In a known, inactive state, and
conditions It so that the data, from the next write
operation that asserts the /CS pin, goes into the Bus
Configuration Register (BCR) regardless of register
addressing. /RESET should be driven low as soon as
possible during power-up, and as needed when
restarting the overall system or the communications
subsystem.

CLK. System Clock (input). This signal is the timing
reference for the DMA and bus Interface logic. (The
serial controller section is clocked by the selected
sources of receive and transmit clocking.)

AD15-0. Address/Data Bus (inputs/3-state outputs).
After Reset, these lines carry data between the
controlling microprocessor and the IUSC, and may
also carry multiplexed addresses of registers within
the IUSC. Such operation, between the host
processor and the IUSC, is often called slave mode.
Once the software has set up the device and placed it
into operation, these lines also carry multiplexed
addresses and data between the IUSC and system
memory; such operation is called master mode.
AD15-0 can be used in a variety of ways based on
whether the IUSC senses activity on /AS after Reset,
and on the data written to the Bus Configuration
Register (BCR).

/CS. Chip Select (input, active low). A low on this line
indicates that the controlling microprocessor's current
bus cycle refers to a register in the IUSC. The IUSC

5

ignores /CS when a low on /INT ACK indicates that the
current bus operation is an interrupt acknowledge
cycle. On a multiplexed bus the IUSC latches the
state of this pin at rising edges on /AS, while on a
non-multiplexed bus it latches /CS at leading/falling
edges on /DS, /RD, or /WR.

S//D. Serial/OMA (inpuV3-state output, input high
indicates "serial"). Cycles with /CS low, and /INTACK
and this pin both high, access registers in the serial
controller section. Cycles with /INT ACK high, and /CS
and this pin both low, access registers in the OMA
controller section. The state of this line when the Bus
Configuration Register is written determines "wait vs.
acknowledge" operation, as described in the text. On
a multiplexed bus the IUSC latches the state of this
pin at rising edges on /AS, while on a non-multiplexed
bus it latches the state at leading/falling edges on /DS,
/RD, or /WR.

Software can program the IUSC so that when it is
acting as a bus master, it drives this line high to indi
cate a OMA cycle for serial data and low to indicate an
"array" or "list" access. (Array/list accesses read the
address and length of the next memory buffer.)

D//C. Data/Control (inpuV3-state output, input high
indicates Data). A slave read cycle with /CS low, and
all three of /INTACK, S//D, and this pin high, fetches
data from the serial controller's receive FIFO via the
Receive Data Register (RDR). A slave write cycle
with the same conditions writes data into the transmit
FIFO via its Transmit Data Register (TOR). Slave
cycles with /INTACK and S//D high, and /CS and this
pin low, read or write registers in the serial controller.
On a multiplexed bus the IUSC determines which
register to access from the low-order AD lines at the
rising edge of /AS. On a non-multiplexed bus it
typically selects the register based on the LSBits of
the serial controller's Channel Command I Address
Register. On a multiplexed bus the IUSC latches the
state of this pin at rising edges on /AS, while on a
non-multiplexed bus it latches the state at leading/
falling edges on IDS, /RD, or /WR.

For slave cycles on a multiplexed bus, with /INTACK
high and both /CS and S//D low, the state of this line
at the rising edge of /AS selects between the registers
of the transmit DMA channel (low) and those of the
receive OMA channel (high). On a non-multiplexed
bus with /INTACK high and /CS and S//D both low, the
IUSC can take the DMA channel selection from this
line or from the DMA Command I Address Register.

Software can program the IUSC so that when it is
acting as a bus master, it drives this line high to indi
cate a DMA cycle for the receiver and low to indicate
a cycle for the transmitter.

/AS. Address Strobe (input/3·state output, active
low). After a reset, the !USC's bus Interface logic
monitors this signal to see if the host bus multiplexes
addresses and data on AD15·0. If the logic sees
activity on /AS before (or as) software writes the Bus
Configuration Register, then In subsequent slave
cycles directed to the IUSC, It captures register
selection from the AD lines, S//D, and C//D on rising
edges of /AS.

When the IUSC takes control of the bus and operates
as a master, it always uses the bus in a multiplexed
fashion, driving /AS low when It places the least
significant 16 bits of an address on the AD15·0 lines.
External devices can be used to de-multiplex the ad·
dress and data, If this is necessary to match the
characteristics of the host processor or host bus.

For a non-multiplexed bus this pin should be pulled up
to +5V using a resistor of about 10 KOhms. If a pro·
cessor uses a non-multiplexed bus, yet has an output
called Address Strobe (e.g., 680x0 devices), this pin
should ru21 be tied to the output.

/UAS. Upper Address Strobe (3-state output, active
low). When the IUSC takes control of the bus and
operates as a master, it drives /UAS low when it
places the more significant 16 bits of an address on
AD15·0. External memory and other slave device (or
de-multiplexing latches) should capture the MS
address at each rising edge on this line.

R//W. Read I Write control (lnput/3-state output, low
signifies "write"). R//W and IDS indicate read and
write cycles on the bus, for host processors I buses
having this kind of signalling. When the IUSC has
taken control of the bus and is operating In master
mode, this pin is an ·output that remains valid
throughout the low time of IDS. In slave cycles the
IUSC samples R//W at each leading/falling edge on
/DS.

/OS. Data Strobe (lnput/3-state output, active low).
R//W and IDS Indicate read and write cycles on the
bus, for host processors/buses having this kind of sig·
nailing. It Is an output when the IUSC has taken con
trol of the bus and Is operating In master mode,
otherwise It Is an input that is qualified by /CS low or
/INTACK low. In master mode the R//W line remains
valid throughout the low time of this line. In slave
mode the IUSC samples R//W at each leading/falling
edge on this line. For slave write cycles and master
read cycles, the IUSC captures data at the rising
(trailing) edge on this line. For slave read cycles the
IUSC provides valid data on the AD lines within the
specified access time after this line goes low, and
keeps the data valid until after the master releases
this line to high. For master write cycles, the IUSC
places valid data on the AD lines before it drives this

6

signal to low, and keeps the data valid until after it
drives this line back to high.

/RD. Read Strobe (input/3-state output, active low).
This line indicates a read cycle on the bus, for host
processors/buses having this kind of signalling. It is
an output when the IUSC has taken control of the bus
and is operating in master mode, otherwise it is an
input that is qualified by /CS low or /INT ACK low. For
master read cycles, the IUSC captures data at the
rising (trailing) edge of this line. For slave read cycles
the IUSC provides valid data on the AD lines within
the specified access time after this line goes low, and
keeps the data valid until after the master releases
this line to high.

/WR. Write Strobe (input/3-state output, active low).
This line indicates write cycles on the bus, for host
processors/buses having this kind of signalling. It is
an output when the IUSC has taken control of the bus
and Is operating in master mode, otherwise it is an
input that is qualified by /CS low. For slave write
cycles, the IUSC captures write data at the rising
(trailing) edge of this line. For master write cycles, the
IUSC places valid data on the AD lines before it drives
this signal to low, and keeps the data valid until after it
drives this line back to high.

B//W. Byte I Word Select (3-state output, high indi
cates 8-bit transfer). When the IUSC takes control of
the bus and operates as a master, a high on this line
indicates that a byte is to be transferred, and a low
indicates that 16 bits are to be transferred. The IUSC
ignores this signal during slave cycles: it takes the
byte/word distinction from an AD line at the rising
edge of /AS, or from a bit in the serial or OMA Com
mand/Address Register.

/WAIT//RDY. Wait, Ready, or Acknowledge hand
shaking (input/3-state output, active low). The IUSC
drives this line full-time after Reset, except that it
releases the line to act as an input when it has taken
control of the bus and is operating in master mode. In
both directions, the line can carry "wait" or "acknow
ledge" signalling depending on the state of the S//D
input during the initial BCR write. If S//D is high when
the BCR is written, this line operates thereafter as a
Ready/Wait line for Zilog and most Intel processors.
In this mode the IUSC will not complete a master
cycle ~ this line is low, and it asserts this line low
until it's ready to complete an interrupt acknowledge
cycle, but it never asserts this line when the host
accesses one of the IUSC registers.

If S//D is low when the BCR is written, this line oper
ates thereafter as an Acknowledge line for Motorola
and some Intel processors. In this mode the IUSC will
not complete a master cycle .u..o1i.l this line is low. It
asserts this line low for register read and write cycles,

and when it is ready to complete an interrupt acknow
ledge cycle.

In any case /WAIT//RDY is a 3-state (not open-drain)
output. The board designer can combine this signal
with similar signals from other slaves, by means of an
external logic gate or a 3-state or open-collector
driver.

/INT. Interrupt Request (output, active low). The
IUSC drives this line low when (1) its IEI pin is high,
(2) one or more of its interrupt condition(s) is (are)
enabled and pending, and (3) the Under Service flag
isn't set for its highest priority enabled/pending
condition, nor for any higher-priority internal condition.
Software can program whether the bus interface
drives this pin in a totem-pole or an open-drain
fashion.

/INTACK. Interrupt Acknowledge (input, active low).
A low on this line indicates that the host processor is
performing an interrupt acknowledge cycle. In some
systems a low on this line may further indicate that
external logic has selected this IUSC as the device to
be acknowledged, or as a potential device to be
acknowledged. A field in the Bus Configuration
Register selects whether this line carries a level
sensitive "status" signal that the IUSC should sample
at the leading edge of /AS or /DS, or a single-pulse or
double-pulse protocol. The IUSC will respond to an
interrupt acknowledge cycle in a variety of ways
depending on this programming and the state of the
/INT and IEI lines, as described in the text.

IEI. Interrupt Enable In (input, active high). This
signal and the IEO pin can be part of an interrupt
acknowledge daisy-chain with other devices that may
request interrupts. If IEI is high outside of an inter
rupt acknowledge cycle, one or more IUSC interrupt
condition(s) is(are) enabled and pending, and the
Under Service flag isn't set for the (highest priority
such) condition nor for any higher-priority one, then
the IUSC requests an interrupt by driving its /INT pin
low. If the IEI pin is high during an interrupt acknow
ledge cycle, one or more IUSC interrupt condition(s)
is(are) enabled and pending, and the Under Service
flag isn't set for the (highest priority such) condition
nor for any higher-priority one, then the IUSC keeps
IEO low and responds to the cycle.

IEO. Interrupt Enable Out (output, active high). This
signal and/or IEI can be part of an interrupt acknow
ledge daisy chain with other devices that may request
interrupts. The IUSC drives its IEO pin low whenever
its IEI pin is low, and/or if the Under Service flag is set
for any condition. This IUSC drives this signal slightly
differently mlliml an interrupt acknowledge cycle, in
that it also forces IEO low if it is (has been) requesting
an interrupt.

7

/BUSREQ. Bus Request (output, active low). The
DMA controller section drives this line low to request
control of the host bus. /BUSREQ can be an open
drain or totem-pole output depending on a bit in the
Bus Configuration Register. In open-drain mode the
IUSC samples the pin as an input and only drives it
low after sampling it high.

/BIN. Bus Acknowledge In (input, active low). When
the IUSC receives a falling edge on this input, it
samples whether it has been driving (or has just
begun to drive) /BUSREQ. If so, it keeps /BOUT high
and takes control of the host bus. If not, it "passes
the bus grant" by driving /BOUT low. This signal can
be used with /BOUT to form a bus-grant daisy chain
for arbitration of bus control. Alternatively, it can be
connected to a direct, positive grant from an external
arbiter, and the /BOUT pin can be left unconnected.

/BOUT. Bus Acknowledge Out (output, active low).
As noted above, this signal can be used with /BIN to
form a bus-grant daisy chain for arbitration of bus
control.

/ABORT. Abort Master Cycle (input, active low). A
low on this line during a master cycle makes the cur
rently active DMA channel terminate its activity and
enter a disabled state. Note that /ABORT is only
effective during a DMA cycle, so that the IUSC knows
which channel should be "aborted". Also note that ex
ternal logic must set /WAIT//RDY to the right state for
the cycle to complete, before /ABORT becomes
effective.

RxD. Received Data (input, positive logic). The serial
input.

TxD. Transmit Data (output, positive logic). The
serial output.

/RxC. Receive Clock (input or output). This signal
can be used as a clock input for any of the functional
blocks in the serial controller. Or, software can pro
gram the IUSC so that this pin is an output carrying
any of several receiver or internal clock signals, a
general purpose input or output, or an interrupt input.

/TxC. Transmit Clock (input or output). This signal
can be used as a clock input for any of the functional
blocks in the serial controller. Or, software can pro
gram the IUSC so that this pin is an output carrying
any of several transmitter or internal clock signals, a
general purpose input or output, or an interrupt input.

/RxREQ. Receive OMA Request (input or output). In
device testing or in applications not using the serial
and DMA controller sections together in the usual
way, this pin can carry a low-active DMA Request
from the receive FIFO. On the IUSC this request is
internally routed to the on-chip Receive DMA channel,

and it's more typical to use this pin as a general·
purpose Input or output or as an Interrupt Input.

/TxREQ. Transmit DMA Request (input or output). In
device testing or In applications not using the serial
and OMA controller sections together In the usual
way, this pin can carry a low-active OMA Request
from the transmit FIFO. On the IUSC this request is
internally routed to the on-chip Transmit OMA chan
nel, and it's more typical to use this pin as a general·
purpose Input or output or as an Interrupt input.

/DCD. Data Caffler Detect (Input or output, active
low). Software can program the IUSC so that this
signal enables I disables the receiver. In addition or
instead, software can program the device to request
interrupts In response to transitions on this line. The
pin can also be used as a simple input or output.

/CTS. Clear to Send (Input or output, active low).
Software can program the IUSC so that this signal
enables I disables the transmitter. In addition or
instead, software can program the device to request
interrupts In response to transitions on this line. The
pin can also be used as a simple Input or output.

PORT7//TxComplete. General Purpose /JO or Trans
mit Complete (Input or output). Software can
program the IUSC so that this pin is a general
purpose input or output, or so that it carries a
Transmit Complete signal from the Transmitter, that
can control an external driver on TxO. The IUSC
captures transitions on this pin in internal latches, as
described in the text.

PORT6//FSYNC. General Purpose /JO or Frame
Sync (Input or output). Software can program the
IUSC so that this pin is a general purpose Input or
output, or a Frame Sync Input for the IUSC's Time
Slot Assigner circuits. The IUSC captures transitions
on this pin in internal latches, as described In the text.

PORTS//RxSYNC. General Purpose /JO or Receive
Sync (Input or output). Software can program the
IUSC so that this pin is a general purpose Input or
output, or so that It carries a Receive Sync output
from the Receiver. The IUSC captures transitions on
this pin in internal latches, as described in the text.

PORT4//TxTSA. General Purpose 110 or Transmit
Time Slot Assigner Gate (input or output). Software
can program the IUSC so that this pin is a general
purpose Input or output, or so that it carries the Gate
output of the Transmit Time Slot Assigner, that can
enable an external TxO driver in time-slotted ISON or
Fractional T1 applications. The IUSC captures tran·
sitions on this pin In Internal latches, as described In
the text.

PORT3//RxTSA. General Purpose /JO or Receive
Time Slot Assigner Gate (Input or output). Software
can program the IUSC so that this pin is a general

purpose input or output, or so that it carries the Gate
output of the Receive Time Slot Assigner. The IUSC
captures transitions on this pin in internal latches, as
described in the text.

PORT2. General Purpose 110 (input or output).
Software can program the IUSC so that this pin is a
general purpose input or output. The IUSC captures
transitions on this pin in internal latches, as described
in the text.

PORT1-0/CLK1-0. General Purpose I/Os or
Reference Clocks (inputs or outputs). Software can
program the IUSC so that either of these pins is a
general purpose input or output, or a clock for the Re·
ceiver and/or Transmitter. On the 16C32, this clock
can be used directly as a bit clock or divided down as
a time base. When one of these pins is a general·
purpose 1/0, the IUSC captures transitions on It In
internal latches, as described in the text.

Vee, Vss. Power and Ground. The inclusion of
seven pins for each power rail insures good signal
integrity, prevents transients on outputs, and improves
noise margins on inputs. The IUSC's internal power
distribution network requires that all these pins be
connected appropriately.

DEVICE STRUCTURE
Figure 1 shows the basic structure of the IUSC. The
Bus Interface module stands between the external
bus pins and an on-chip 16-bit data bus that intercon
nects the other functional modules. It includes several
flexible interfacing options that are controlled by the
Bus Configuration Register (BCR). The BCR is auto·
matically the destination of the first write cycle from
the host processor to the IUSC after a Reset; after
that it is no longer accessible to the host software.

The host processor or the on-chip Transmit DMA
channel can write transmit data into a channel's
Transmit First-In, First-Out (FIFO) memory. At any
time, a Transmit FIFO can be empty or can contain
from 1 to 32 characters to be transmitted. Characters
written Into the FIFO automatically migrate to its other
end, where they become available to the Transmitter.

While the host processor can itself write data into the
Transmit FIFOs, It's more efficient to use the Transmit
DMA channel to fetch the data. Software can set up
the Transmit OMA channel to operate in any of four
major modes. In single-buffer mode, the channel

"l transfers one block of consecutive bytes from host
memory given a programmable location and length,
delivering the data to the Transmit FIFO, and then
notifies the host processor and stops. Software has
to reprogram the channel before it can transfer an
other block, but in many applications there is time to
do this because the Transmit FIFO is 32 bytes deep.

8

Figure 1. IUSC Block Diagram

In pipelined mode, there are two sets of buffer ad
dress and length registers: software can program one
set while the OMA channel is using the other set.
When the channel finishes transferring one block, it
notifies the host processor. If the host has set up the
other register set, the channel automatically proceeds
to start transferring data from the next buffer.

In Array mode, the host processor programs the
Transmit OMA channel with the address of a table
containing the addresses and lengths of the actual
memory buffers. With the 16C32, this table can also
contain control information for each frame. When the
channel finishes transferring the data from one
memory buffer to the Transmit FIFO, it automatically
fetches the next buffer address and length from the
table and begins to transfer the data from that buffer.

Finally, in Linked List mode the host programs the
channel with the address of the start of a linked list of
buffer addresses and lengths, in which each entry
also includes the address_ of the next entry. With the
16C32, these entries can also contain control
information for each frame. Channel operation is
similar to operation in array-chained mode, but
includes the extra steps of fetching the link addresses.

The host can program the Transmitter to trigger the
OMA controller to fill its FIFO at varying degrees of
FIFO "emptiness". Selecting this point involves bal
ancing the probability and consequences of "under
running" the transmitter, against the overhead for the
OMA channel to acquire and release control of the
host bus more often.

The Transmitter takes characters from the Transmit
FIFO and converts them to serial data on the TxD pin.
While this function is conceptually simple, the IUSC

9

supports many complex serial protocols, which
increases the complexity of the Transmitter dramati
cally. Depending on the serial mode selected, the
Transmitter may do any of the following in addition to
parallel-serial conversion: start, stop, and/or parity bit
generation, calculating and sending CRCs, automatic
generation of opening and closing Sync or Flag
characters, encoding the serial data into any of
several formats that guarantee transitions and carry
clocking with the data, and/or controlling transmission
based on the CTS pin. The 16C32 can also send a
programmable minimum number of Flags between
HDLC/SDLC frames.

Finally, for ISDN and Fractional T1 applications the
Transmitter section includes Time Slot Assigner logic
that can be used to enable the Transmitter only
periodically and for specific bytes within a multiple
sourced, cyclically time-multiplexed data stream.

In general, the functions of the Receiver section are
the inverse of those of the Transmitter: it monitors the
serial data on the RxD pin, recognizes its organization
according to the serial mode selected by the software,
and convert the data to parallel characters that it
places in the Receive FIFO. Again, there is more to
the process than just serial-parallel conversion.
Depending on the serial mode the Receiver may have
to detect and synchronize start bits, check parity and
stop bits, calculate and check CRCs, detect
Sync/Flag, Abort and/or Idle sequences, recognize
control characters including transparency consid
erations, decode the serial data and extract clocking
using any of several encoding schemes, and/or
enable and disable reception based on the DCO input
pin. The Receiver's checking functions generate
several status bits associated with each character,

that accompany the characters through the Receive
FIFO. The 16C32 can notify software of received
HDLC/SDLC Abort sequences in real time and/or in
the received data stream.

The Receiver section also includes a Time Slot
Assigner that can be used to enable reception only for
specific bytes within a multiple-destination, cyclically
time-multiplexed data stream like an ISDN or Frac
tional T1 link.

The Receive FIFO can hold up to 32 characters and
their associated status bits. As the receiver writes
entries into their FIFOs, they automatically "migrate to
the output side" where they become available to either
the host processor or the Receive OMA channel.
Similarly to the transmit side, the Receive FIFO
includes detection logic for various degrees of
"fullness". Separate thresholds control when the
Receive OMA channel starts refilling the FIFO, and at
which the IUSC requests an interrupt.

While the host processor can access data from the
Receive FIFOs, it's more efficient to use the Receive
OMA channel to transfer the data directly into buffer
areas in memory. As on the transmit side, software
can program the Receive OMA channel to operate in
Single-Buffer mode, Pipelined mode, Array mode, or
Linked List mode. The 16C32 can store the status
and length of each frame after the last character of
each frame, or, in Array and Linked List modes, in the
OMA control structure.

The Serial Clocking Logic section creates the clocking
signals for the channel's Transmitter and Receiver.
Software can program the clocking logic to do this in
various ways based on one or more external clock(s)
for each channel. An on-chip Digital Phase Locked
Loop (DPLL) circuit can recover clocking from
encoded data on RxD.

The Interrupt Control section gathers the various
"request" lines from the Transmitter, Receiver, and
the OMA channels, and takes care of requesting host
interrupts and responding to host interrupt-acknow
ledge cycles or to software equivalents. Interrupt
operation depends on the data written to the Bus
Configuration Register and on several registers in the
Receiver, Transmitter, and OMA channels.

The 1/0 port section provides 8 pins that can be used
for modem control lines or any other purpose. Each
pin can be individually controlled as an input or output,
and most of them can optionally be used for a
specific/dedicated input or output signal.

10

DOCUMENT STRUCTURE
This Chapters in this manual provide the first-time
reader with a staged and gradual introduction to the
IUSC. Chapter 2 discusses interfacing the part to
typical processor or backplane buses. Chapter 3 dis
cusses how to interface the IUSC "on the serial side",
including the various flexibilities and options available
in doing so. Chapter 4 talks about the many serial
protocol capabilities of the part; many readers won't
be familiar with all the protocols described, but each
reader should know the basics of those needed by his
or her application. Chapter 5 describes the IUSC's
integrated Direct Memory Access (OMA): and how to
program them .and how they operate on the system
bus. Chapter 6 deals with interrupts. Finally, Chapter
7 pulls together certain aspects of writing software for
the IUSC and serves as a central programming
reference.

This manual is structured according to the IUSC's
major internal blocks and various aspects of their
operation, rather than as a list and description of each
of its registers. The various registers and fields are
covered in conjunction with the facilities that they
report on and control. Chapter 7 then reviews the
general programming model and includes a concise
description of each register bit and field for quick
reference.

The actual timing parameters and electrical specifi
cations of the IUSC are given in the companion publi
cation /USC Product Specification.

We at Zilog hope that this newly structured manual
will make the IUSC more easily understandable and
accessible. Naturally, it's impossible to write at the
right level for all readers; newcomers will find some
parts hard going, while experts will undoubtedly tire of
full explanations of matters that "everyone knows''.
Our target audience is neither newcomers nor
experts, but midway between: working engineers with
some datacom background.

About Test Modes
Each IUSC channel includes a Test Mode Control
Register (TMCR) and a Test Mode Data Register
(TMDR) that Zilog uses to help test the device and
ensure that customers receive only fully functional
units. In some cases these registers might be useful
to help hardware and software developers solve a
knotty problem. On the other hand, this manual is big
enough without including subjects of use to only a
fraction of its readers. If you are interested in using
the test modes, contact a Zilog sales office for the
forthcoming volume USC Family Test Modes.

2. Bus Interfacing

The IUSC can be used in systems with various
microprocessor or backplane buses. Its flexibility with
respect to host bus interfacing derives from its Bus
Configuration Register (BCR), from on-chip logic that
monitors bus activity before software writes the BCR,
and from certain other registers in the serial and OMA
controllers. This section describes how to use these
facilities to interface the IUSC to a variety of host
microprocessors and buses.

Multiplexed I Non-Multiplexed Operation
One important distinction among buses is whether
they include separate sets of lines for addresses and
for data, or whether the same set of lines carries both
addresses and data. As a OMA bus master the
IUSC always operates in the latter (multiplexed)
fashion. If the host bus doesn't multiplex addresses
and data, they can be easily demultiplexed as
described later. If it does (as with a Zilog 16C01), the
AD pins of the IUSC can be directly connected to
those of the host.

As a DMA master the IUSC maintains 32 bit
addresses. It presents the MS and LS 16 bits of an
address as it drives /UAS and /AS low, respectively,
and this information is valid at the following rising
edge. As a slave on a multiplexed bus, the IUSC
captures addressing at rising edges on /AS. If this
signalling is the same as that used on the host bus
(as with a Zilog 16C01), then the I USC's /AS pin can
be directly connected to the corresponding bus signal.
Figure 2 shows such a system.

If the host's address strobe signalling is different from
that of the IUSC (as with an 8086), then external logic
must generate a compatible /AS signal for the IUSC.

SN6:0 ~-------·

16C01 AD15:0 --------

/AS >---<------...-~

/BUSREQ /BUSACK

/BUSREQ /BIN

AD15:0 i---......i

IUSC

Figure 2. Simple Multiplexed System

11

8086

/BUSREQ

ruse

A19:16 i----------~

/BIN
AD15:0

/UAS

/AS 1--------'

Figure 3. Multiplexed System with ALE-/AS-ALE
Remapping

Unless the rest of the system can use this /AS signal,
external logic must also transform the /AS and /UAS
issued by the IUSC as a bus master, to signalling
that's compatible with the host bus. Figure 3 shows
such an application.

If the host bus doesn't multiplex addresses and data,
external devices must be added to latch the address
when the IUSC is the bus master. Figures 4 and 5
illustrate two ways to interface the IUSC to a non
multiplexed host bus. Figure 4 includes minimum
hardware but requires that software write the register
address into the IUSC each time it is going to access
a register. In this mode the I USC's /AS pin should be
pulled up to ensure a constant high logic level. The
augmented interface of Figure 5 includes drivers to
sequence the low-order bits of the host address onto
the IUSC's AD lines, and logic to synthesize a pulse
on the /AS pin. This interfacing method has the
advantage that software can directly address the
I USC's registers.

The IUSC monitors the /AS pin from the time the
/RESET pin goes high until the software writes the
Bus Configuration Register. If it sees /AS go low at
any point in this period, then after the software writes
the BCR, the IUSC captures the state of the low-order
AD lines, S//D, C//D, and /CS, at each rising edge of
/AS. If /AS remains high, software may have to write
each register address into the Channel or OMA
Command/ Address Register (CCAR or DCAR) before
reading or writing a register. (If the host bus only
includes 8 data lines, AD13-8 can carry register
addresses.)

A31:16
A15:0
015:0

Ctrl SI nals

/BUSREQ

A015:0 ----c
IUSC /UAS 1----<J

Figure 4. Simple Bus Demultiplexing

A31 :16
A15:0
015:0

Ctrl Slgnals

/BUSREQ /BIN

IUSC

Figure 5. User-Friendly Bus Demultiplexing

Read/Write Data Strobes
Another difference among host buses is the way in
which read and write cycles are signalled and differen
tiated. Figures 6 and 7 show two standard methods
supported by the IUSC. In Figure 6, the bus includes
separate strobe lines for read and write cycles,
commonly called /RD and /WR. In Figure 7, the bus
includes a data strobe line, /OS, that goes low for both
read and write cycles, and a R//W line that
differentiates read cycles from writes. The IUSC

12

includes pins for all four of these signals. The two
that match up with host bus signals should be
connected to those signals. The two unused pins
should be pulled up to a high level with resistors of
about 1 OK ohms.

Read Operation:
RD*~
WR*

Data Bus

Write Operation:
RD*

WR*~
Data Bus (Master)=j F
Data Bus (Slave) X F

Figure 6. /RD and /WR Signalling

Read Operation:
R//W (Master) J \:

R//W (Slave) J \ ____ _
OS*~

Data Bus -c::)-
Write Operation:

R//W (Master)_~ _______ .._[_

R//W (Slave)_~_.__/ ____ _

OS*~
Data Bus (Master)9 F

Data Bus (Slavei=====:vx,.........,Fl.C=

Figure 7. R//W and /OS Signalling

There is no programmable option for the distinction
between /RD-/WR and R//W·/DS operation. As a
master the IUSC simply drives all four lines as shown
in Figures 6 and 7. As a slave the IUSC responds to
either pair of lines, which is why it's important to pull
up the unused pair. Also, as a slave the IUSC doesn't
demand that the R//W line remain valid throughout the
assertion of /OS. It captures the state of R//W at the
leading/falling edge of /OS, so that R//W need only
satisfy setup and hold times with respect to this edge.

Only one among the bus signals /DS, /RD, and
/WR may be active at a time. This restriction also
includes /INTACK if it carries a strobe rather than a
sampled level (see Chapter 6 for more information

about interrupts). If the IUSC detects more than one
of these inputs active simultaneously, it enters an
inactive state from which the only escape is via the
/RESET pin.

Bus Width
Another major difference among host buses is the
number of data bits that can be transferred in one
cycle. Software can configure the IUSC to transfer 16
bits at a time, in which case it is still possible to trans
fer 8 bits when this is necessary or desirable. On a
16-bit data bus, the OMA channels can transfer either
two data characters per cycle, or one per cycle with
alternating cycles using AD15-8 and AD?-0.

Or, software can restrict both master and slave
operations to transferring only 8 bits at a time, on the
AD?-0 pins. This leaves the AD15-8 pins unused
during slave cycles: another BCR option allows them
to carry register addresses. The latter option allows
software to directly address IUSC registers even on a
non-multiplexed bus, without having to write an
address into the IUSC before it accesses a register.

ACK vs. WAIT Handshaking
The final major difference among host buses involves
the handshaking signals that slave devices use for
speed-matching with masters. Figure 8 illustrates the
three variations in common use. In the first, which
we'll call Wait signalling, if a master selects a slave
and the slave cannot capture write data or provide
read data within the time required to keep the master
operating at full speed, it quickly (combinatorially)
drives a Wait output low, and then returns it to high
when it's ready to complete the cycle. Slave Wait
outputs that are open-collector or open-drain can be
tied together for a negative logic wired-Or function,
and/or a logic gate can be used to negative-logic OR
(positive-logic AND) separate Wait lines to produce
the /WAIT input to the master (e.g., to the processor).

In the second scheme, "Acknowledge" signalling, all
slaves must respond when the master directs a cycle
to them, by driving an Acknowledge signal (some-

RD* or WR*\ /
orDS* ~-~~~~--

WAIT*

ACK*

times called /DTACK) low to allow the master to
complete the transfer, and keeps it low until the mas
ter does so. As with the previous scheme, slave Ack
outputs that are open-collector or open-drain can be
tied together for a negative logic wired-Or function,
and/or a logic gate can be used to negative-logic OR
separate Ack lines to produce the Acknowledge input
to the master.

In the third scheme, "Ready" signalling, all slaves
must respond when the master directs a cycle to
them, by driving a Ready signal high to allow the
master to complete the transfer, and keeping it high
until the master does so. This scheme differs from
Wait signalling in the default state of the handshaking
signal between cycles (high for Wait signalling, low for
Ready). It has similar timing as Ack signalling, but
differs in the polarity of the handshaking signal. With
Ready signalling, the board designer must include a
logic gate to positive-logic OR the various slaves'
Ready lines to produce a composite Ready input for
the bus master(s).

The IUSC supports Acknowledge and Ready signal
ling for all cycles, and Wait signalling for interrupt
acknowledge cycles. The IUSC register access times
should be short enough to avoid the need for Wait
signalling on all but the fastest processors. The board
designer can combine the !USC's /WAIT//RDY output
with similar signals from other slaves, by means of an
external logic gate or (for Acknowledge and Wait) by
using an external 3-state or open-collector driver.

The next section describes how software can select
which way the IUSC drives its /WAIT//RDY pin,
depending on the address at which it writes the Bus
Configuration Register (BCR).

Ready signalling can be handled by using
Acknowledge signalling and inverting the sense of the
signal. When doing this, remember that /WAIT//RDY
is bidirectional if the on-chip DMA channels are used.

\._ ____ ____,/

Figure 8. A Fast and Slow Cycle, with Three Kinds of Handshaking

13

SepAd Reserved IAckMode BRQTP 16Blt /IRQTP SRlght
A

15 14 13 12 11 10 9 8 7 6 5 4

Figure 8. The 16C32's Bus Configuration Register (BCR)

The Bus Configuration Register (BCR)
The BCR is a 16-bit register having the format shown
in Figure 9. All the bits in the BCR reset to zero. If
the host processor handles 16-bit data, and the data
bus between it and the IUSC is at least 16 bits wide,
then the software's initial access to the IUSC should
be a 16-bit write. This write can be to any address
that activates the /CS pin; the data will be placed in
the BCR. If the host can only write bytes to the IUSC,
all data should be transferred on the AD7-0 pins. In
such a system, pull-down resistors of about 1 OKOhms
should be attached to the AD15-8 pins to ensure the
state of these lines during the BCR write. (AD15 may
want to be pulled up instead of down, as described in
the section on the SepAd bit below.)

The following paragraphs describe the significance of
the various bits and fields in the BCR. Besides these
data bits, the IUSC captures the state of the S//D pin
when the software writes the BCR. It uses this
captured state after the BCR write, such that if S//D
was low, it drives the /WAIT//RDY pin as an "acknow
ledge" (or an inverted "ready") signal during register
accesses and interrupt acknowledge cycles, while if
S//D was high, it drives the pin as a "wait" signal
during interrupt acknowledge cycles only. Therefore,
software should program the BCR at an address that
corresponds to the kind of slave-to-master hand
shaking used on the host bus.

SepAd (Separate Address; BCR15): this bit should
only be written as 1 with 16Bit=0. This combination
conditions the IUSC to use AD7-0 for data and to take
register addressing from AD13-8. In this mode the
IUSC takes the Upper/Lower byte indication (U//L)
from ADS and the register address from AD13-9. The
external drivers for these signals must be 3-stated
when the IUSC is the bus master.

With this interfacing technique, the BCR must be
written at an address such that AD13-8 are low/zero.
Further, AD15 must be high/one and AD14 must be
low/zero when software writes the BCR. The designer
can ensure this by connecting AD15 and AD14 to
more-significant address lines and writing the BCR at
an appropriate address. Alternatively, the designer
can ensure this by connecting a pull-up resistor to
AD15 and a pulldown resistor to AD14, both being
about 1 OK ohms.

leading/ falling edge on /DS, /RD, or /WR. But
software can still program SepAd=1 (with 16Bit=0)
when the IUSC has detected early activity on /AS. In
this case the IUSC captures addressing from AD13-8
on each rising edge of /AS, rather than from the low
order AD lines as would be true with SepAd=O.

The predecessor 16C31 device used BCR7-6 as a
"ByteSwap" field that controlled how the Transmit
DMA channel captured bytes from the D15-0 lines
when it was reading bytes over a 16-bit bus. On the
16C32 these bits are Reserved •• software written for
the 16C31 may program them with 1 O or 11, but new
software should write 00 to this field. (In effect, the
16C32's Transmit DMA channel uses 16Bit (BCR2) in
place of BCR7, to control whether it fetches bytes
from the two halves of the bus alternately, and uses
the state bit that's controlled by "Select D15-8 or D7-0
First" commands in place of BCR6, to control which
half of the bus corresponds to even and odd
addresses.

The IAckMode field (BCR5-4) controls how the host
processor drives the /INTACK pin. 00 indicates that
the IUSC should capture the state of /INTACK at the
start of each bus cycle. On a multiplexed bus it does
this at rising edges on /AS, while on a bus with
separate address and data lines it does so at falling
edges on /DS or /RD.

This field should be 01 if /INTACK carries a single
low-active pulse during interrupt acknowledge cycles.

The 10 value in this field is reserved and should not
be programmed.

IAckMode should be 11 if /INT ACK carries two pulses
during an interrupt acknowledge sequence. This
mode is compatible with severa1 Intel microproc
essors.

BRQTP (Bus Request Totem-Pole; BCR3). ;f this bit is
1, the IUSC drives its /BUSREQ pin in a tOtv.~·pole
fashion (both high and low). If it is O, the IUSC drives
/BUSREQ in an open-drain fashion (low only), in
which case an external pull-up resistor shcuid be
provided. In the latter case, the IUSC samples
/BUSREQ before driving it; if the pin is low, the logic
waits until it goes high before driving it back to low.

16Bit (BCR2): this bit should be written as 1 wh"'ri the
host data bus is 16 bits wide (or wider). Writing this

This mode is useful with a non-multiplexed bus, to bit as 0 has three effects: it restricts the IUSC to using
avoid making the software write a register address to byte operations on AD7-0 when it is the bus master, it
CCAR or DCAR before each register access. In this restricts the host to using byte transfers on AD7-0
mode the IUSC captures the state of AD13-8 on each when reading and writing the I USC's registers, and it

14

makes the IUSC ignore the state of the "B//W" signal
or bit for register accesses. This bit also controls
whether "implicit" accesses to the CCAR, TOR, RDR,
and DCAR are 8 or 16 bit wide.

/IRQTP (Interrupt Request Totem-Pole; BCR1): if this
bit is 0, the IUSC drives its /INT pin in a totem-pole
fashion (both high and low). If /IRQTP is 1, the IUSC
drives /INT in an open-drain fashion (low only), in
which case it should have an external pull-up resistor.

SRightA (Shift Right Addresses; BCRO): this bit is
significant only for a multiplexed bus -- the IUSC
ignores it for a non-multiplexed bus. If SRightA is 1,
the IUSC captures slave register addressing from the
AD6-0 pins and ignores the AD7 pin. In this mode,
ADO carries the Upper/Lower byte indication (U//L),
AD5-1 carry the actual register address, and AD6
carries the Byte/Word indication (B//W). If SRightA is
0, the IUSC captures addressing from AD7-1 and
ignores ADO. It takes U//L from AD1, the register
address from AD6-2, and B//W from AD7. This bit
applies to accesses to both the serial and OMA
sections of the IUSC, but it has no effect on the use of
the Sl/D and D//C pins.

SRightA would be 0 in order to use the IUSC as an
8-bit peripheral on a 16-bit bus, which isn't likely
to be a common application. Some sections of
this manual assume that SRightA is 1.

All other bits in the BCR are reserved and should be
programmed as 0. If the processor can only write
bytes to the IUSC, software should start by writing the
8 LSBits of the BCR on the AD7-0 lines. In this case,
the state of AD15-8, when software writes the BCR,
must be ensured by connecting these pins to pul1down
resistors of about 1 OKohms or, if SepAd=1, to host
address lines.

RTCmd RT
Reset

RTMode

Register Addressing
Tables 1 and 2 show the names and addresses of the
addressable registers in the IUSC, in address and
alphabetical order. As already noted, the device can
take register addresses from any of several sources:
(1) from the AD6-0 lines as latched at the rising edge

of /AS, assuming SRightA (BCRO) is 1,
(2) from the AD13-8 lines as latched at the rising

edge of /AS, IDS, /RD, or /WR,
(3) for serial controller registers, from the least

significant 7 bits of the Channel Command/
Address Register (CCAR) namely the B//W.
RegAddr, and U//L bits/fields. (Figure 10 shows
the CCAR.), and/or

(4) for OMA controller registers, from the LS 8 bits of
the OMA Command/Address Register (DCAR),
namely the Rx/Tx Reg, B//W, RegAddr, and U//L
bits/fields. (Figure 11 shows the DCAR.)

The Tables assume that SRightA (BCRO) is 1. The
RegAddr column in the Tables reflects the state of
AD5-1, AD13-9, CCAR5-1, or DCAR5-1 as applicable.

If 16Bit (BCR2) is 1, the state of AD6, AD14, CCAR6,
or DCAR6 selects between a 16-bit transfer (if O/low)
and an 8-bit transfer (if 1). If "16Bit" is 0, the IUSC
ignores AD6, AD14, CCAR6, or DCAR6 (as applic
able). Note that the values in the "8-bit data" columns
of Tables 1 and 2 include the B//W bit 1 for both direct
and indirect addressing, as is required on a 16-bit
bus. When 16Bit (BCR2) is 0 these address values
can be used as shown, or 64 lower like the addresses
shown in the "16-bit data" columns.

For 8-bit transfers on either an 8- or 16-bit bus, the
state of ADO, AD8, CCARO, or DCARO selects the
less-significant 8 bits of the register (if 0/low) or the
more-significant 8 bits if 1/high. In this regard, and in
the register addresses of the two halves of the 32-bit
OMA address registers, the IUSC is "little Endian" like
Intel microprocessors. (The next section describes
the IUSC's byte-ordering flexibility for OMA oper
ations.) For 16-bit transfers, ADO, AD8, or CCARO
must be 0/low.

Chan
Load

B//W RegAddr U//L

15 14 13 12 11 10 9 8 6 3

Figure 10. The Channel Command/Address Register (CCAR)

DCmd Reserved (0) Rx/Tx MBRE Rx/Tx B//W
Cmd Reg

RegAddr U//L

15 14 13 12 11 10 9 8 6 5 3

Figure 11. The OMA Command /Address Register (DCAR)

15

The Direct Address columns of the Tables assume:
(1) SRightA (BCRO) Is 1,
(2) the processor's multiplexed AD6·0 lines are

connected to AD6-0, or its A5·0 lines are
connected to AD13·8, depending on SepAd
(BCR15),

(3) the processor's A7 line is connected to D//C, and
(4) the processor's AS line is connected to S//D.

If your design differs from these assumptions, register
addressing will be different from that shown in the
Direct Address columns.

The !USC provides certain "implicit addressing"
features that are intended mainly to make indirect
addressing more convenient for host software. Three
notes indicated in the Tables relate to these features:

(Note 1): If S//D is low and no other source of
addressing applies, that is, if the !USC
considers the bus non-multiplexed because it
did not see activity on the /AS pin after
Reset, the SepAd bit (BCR15) is 0, and
DCAR5·0 are all zero, the IUSC assumes a
reference to DCAR. If 16Bit (BCR2) is 1, it
assumes a 16-bit access, while if 16Bit=0 it
assumes an access to DCAR7-0.

(Note 2): If S//D is high and no other source of
addressing applies, that is, if the IUSC
considers the bus non-multiplexed because it
did not see activity on the /AS pin after
Reset, the SepAd bit (BCR15) is 0, D//C is
low, and CCAR5-0 are all zero, then the
!USC assumes a reference to CCAR. If
16Bit (BCR2) is 1, it assumes a 16-bit
access, while 16Bit=O it assumes an access
to CCAR7-0.

(Note 3): If S//D and D//C are both high for a write
operation, the !USC assumes a write to the
Transmit Data Register (TOR), while if S//D
and D//C are both high for a read, it provides
data from the Receive Data Register (RDA).
For both Reads and Writes, if 16Bit (BCR2)

16

is 1 the IUSC assumes a 16 bit access, while
if 16Bit=O it assumes an access to the less
significant byte.

· (On a 16-bit bus, this means that software
can neither write a byte to the TDR/TxFIFO
nor read a byte from the RDR/RxFIFO using
an address that makes D//C high. Instead,
software must provide the explicit address of
the LSbyte of the TDR/RDR, either directly or
by writing it to the CCAR.

The RDA and TOR have certain other special
characteristics:

1. They are actually "the read and write sides of" the
same register location. The IUSC ignores the
state of AD4, AD12, or CCAR4 (as applicable)
whenever the rest of the address indicates an
access to TDR or RDA. For simplicity Tables 1
and 2 show RDA at the lower address and TDR at
the higher one.

2. The MSBytes of RDA and TDR should never be
read or written alone, only as part of a 16-bit
access. On a Zilog 16COx or Motorola 680x0
system, use direct addresses 353 or 369 (161 or
171 hex) to select the LSByte for byte transfers.
On an Intel-based system, use direct addresses
352 or 368 (160 or 170 hex) to select the LSByte
for byte transfers.

The direct, indirect, and implicit addressing features of
the !USC interact in several ways. For example,
CCAR or DCAR can always be used to select a
register for a subsequent access to the CCAR or
DCAR address. This is true whether or not the IUSC
detected activity on /AS after Reset, and regardless of
the state of SepAd (BCR15).

The flowchart of Figures 12 and 13 shows the
complete process by which the IUSC determines
which register to access when a host processor cycle
asserts /CS and one of /RD, /WR, or /OS.

Reg
Direct Direct DCAR7-0 or DCAR7-0 or

Reglater Name Acronym S//D D//C Addr111: Addre88ea: CCAR6·0: CCAR6·0:
Addr

18-blt data 8-blt data 16-blt data S·blt data

OMA Command I Address DCAR L (0) x 00000 0/0 64,5 I 40,1 0/0 64,5 I 40,1
J!iote :!l J!iote :!l

Transmit OMA Mode TDMR LJ.QL LJ.QL 00001 2/2 667/423 2/2 66,7 I 42,3
OMA Control OCR LJQl x 00011 6/6 70 1 I 46 7 6/6 70 1 I 46.7

OMA Arr!!Y_ Count DACR L]Q}_ x 00100 B/8 723/4B9 BIB 723/4B9
Burst I Dwell Control BDCR LJ.QL x 01001 1B I 12 B23/523 1B I 12 B2,3 I 52,3
OMA lntern:!l1! Vector DIVR LJ.QL x 01010 20I14 B45/545 20I14 B4 5 I 54 5
OMA I nterrl:!l1!._ Control DICR LJQt x 01100 24I1B 889/589 24I18 88,9 I 58 9
Clear OMA lnterrl!Q! CDIR LJQl x 01101 26/ 1A 901/5AB 26/ 1A 90, 1 I 5A,B
Set OMA lnterru_Jlt SDIR L::@ x 01110 28/ 1C 923/5CD 28I1C 92 3 I 5C D

Transmit OMA lnterru_Jlt Arm TDIAR LJQj_ LJ.Ql 01111 30/ 1E 945/5E F 30/ 1E 94,5 I SE,F
Transmit ~ Count TBCR LJ.QL LJ.QL 10101 42/2A 106 7 /SA B 42 I 2A 106 7 /6A,B

Transmit Address J_Lowe!1_ TARL LJ.QL l.JQl_ 10110 44/2C 108,9 I 6C D 44/2C 108,9 I 6C,D
Transmit Address:Il.JMe:il TARU LJQl LJQ[10111 46/2E 1101/6EF 46/ 2E 1101 /6E,F
Next Transmit ~ Count NTBCR LlQt L]Qf 11101 58/3A 1223/7AB 58 /3A 122,3 /7A,B

Next Transmit Address__l!..owetl:_ NTARL L::@ LJ([11110 60/3C 124 5 I 7C D 60/3C 124 5 /7C D
Next Transmit Address_J_Uppe_!l_ NTARU LJQL LJQl_ 11111 62/3E 1267/7EF 62 /3E 126,7 I 7E,F

Receive OMA Mode RDMR LJQL HJ.!l 00001 130 I 82 194 5 I C2,3 130/ B2 194,5 I C2,3
Receive OMA lnterrtm!_Arm RDIAR LJQ.)_ HJ.!l 01111 158/9E 222,3 / DE,F 158 /9E 222,3 / DE,F

Receive ~ Count RBCR LJ.QL H_fil 10101 170 I AA 234,5 / EA,B 170/ AA 234 5 / EA,B
Receive Address :ILowe:il RARL LJQt HJ![10110 172/AC 236,7 I EC D 172 /AC 236,7 / EC,D
Receive Addressi:UJlll8Il RARU LJQ[H]I 10111 174 / AE 238,9 / EE,F 174 / AE 238,9 / EE,F
Next Receive ~ Count NRBCR L::@ H]iI 11101 186 /BA 250,1 / FA,B 186 /BA 250,1 I FA,B

Next Receive Addressj!-owe!1_ NRARL LJQl_ HJ.!l 11110 188 /BC 252,3 / FC D 188 /BC 252,3 / FC,D
Next Receive Address::fuw_!l_ NRARU LJ.QL H_fil 11111 190 I BE 254,4 /FE F 190 I BE 254,5 / FE,F

Channel Command I Address CCAR H(1) L (0) 00000 256/ 100 320,1/140,1 010 64,65/ 40, 1
J!iote g)_ J!iote g)_

Channel Mode CMR HJ.!l LJ.QL 00001 258/102 322,3 / 142,3 2/2 66,7 I 42,3
Channel Command I Status CCSR HJ.!l LJ.QL 00010 260/ 104 324,5/144 5 4/4 68,9/44,5

Channel Control CCR HJ.!l LJ.QL 00011 262/106 326,7/146,7 6/6 70, 1I46,7
Port Status PSR H]I LJQ[00100 264/108 328,9 / 148,9 8/8 723/ 48,9
Port Control PCR Hfil L]Qf 00101 266I10A 3301/14A B 10/0A 745/4A,B

Test Mode Data TMDR HJ.!l LJQL 00110 268/10C 3323/14CD 12/0C 76 7 /4C D
Test Mode Control TMCR HJ.!l LJQl_ 00111 270/10E 334,5 / 14E,F 14/0E 78,9/4E,F

Clock Mode Control CMCR HJ.!l LJQl_ 01000 272/110 336,7/1501 16/ 10 80,1 /50,1
Hardware Con!!ll.uratlon HCR HJ.!l LJ.QL 01001 274/112 3389/152,3 18/12 82,3/52,3

lnterrl!Q!_ Vector IVR H]I LjQL 01010 276/114 3401/154,5 20/14 84,5/54 5
I 11Q!Jt I OujQ\Jt Control IOCR Hfil LJ([01011 278/116 342,3/156 7 22/16 86,7 I 56,7

lnterrl!Q! Control ICR HJ.!l LJQl_ 01100 280/118 344,5 I 158,9 24/18 88,9/ 58,9
Dal~Chaln Control DCCR HJ.!l LJQl_ 01101 282/11A 346, 7 / 15A,B 26/ 1A 90,1/5A,B

Miscellaneous lnterrl!Q! Status MISR HJ.!l LJQL 01110 284/11C 348,9 / 15C,D 28/1C 92,3/5C,D
Status lnterrl!Q! Control SICR HJ.!l LJ.QL 01111 286/11E 3501/15E,F 30/1E 94,5/5E,F

Receive Data RDR H(1) L (0) 1xOOO 288/120 (note 3) 32/20 96/60
(Read only; TOR for Wrlte) or Hill: xxxxx 3B4·511 384-511 xxx xxx

Receive Mode RMR Hill LJQL 10001 290/122 354 5 / 162,3 34/22 98,9/62,3
Receive Command I Status RCSR H_fil LJQL 10010 292/124 356, 7 / 164,5 36/24 100, 1I64,5
Receive lnterrl!l1!_ Control RICR H_fil LJQL 10011 294/126 358,9 / 166,7 38/26 102,3/66,7

Recelve~c RSR Hill LJ.QL 10100 296/128 3601I168 9 40/28 104 5 I 68,9
Receive Count Limit RCLR H_fil LJ.QL 10101 298 / 12A 362 3 / 16A,B 42/2A 106,7 I 6A,B

Receive Character Count RCCR H_fil LJ.QL 10110 300 / 12C 3645I16C,D 44/2C 108,9/6C,D
Time Constant 0 TCOR H_fil LJ.QL 10111 302 / 12E 366,7I16E,F 46/2E 110,1 /6E,F
Transmit Data TOR H(1) L (0) 1XOOO 304/130 (note 3) 48/30 112/70

(Write only; RDR for Read) orH]I xxxxx 384-511 384-511 xxx xxx
Transmit Mode TMR H]ii L]Qi 11001 306/132 3701/172,3 50/32 1145/723

Transmit Command I Status TCSR H_fil LJQL 11010 308/134 372,3 / 174,5 52/34 116,7/74,5
Transmit lnterrl!Q!_ Control TICR H_fil LJQL 11011 310 / 136 3745/176,7 54/36 1189/76,7

Transmlt~c TSR H_fil LJQL 11100 312/138 3767/178 9 56/38 120, 1I78,9
Transmit Count Limit TCLR tfilI LjQ[11101 314/13A 378,9 / 17A,B 58/3A 122,3/7A,B

Transmit Character Count TCCR tifil LjQ[11110 316/13C 3801/17CD 60/3C 124,5/7C,D
Time Constant 1 TC1R tifil LJQ[11111 318I13E 382,3 I 17E,F 62/3E 126,7 I 7E,F

Table 1. IUSC Registers, in address order

17

Reg
Direct Direct DCAR7-0 or DCAR7-0 or

Regleter Name Acronym S/ID D/IC Address: Addresses: CCAR6-0: CCAR6-0:
Addr

16-blt data 8-blt data 16-blt data 8-blt data
Burst I Dwell Control BDCR LJQJ_ x 01001 18/ 12 823/523 18/ 12 82,3 I 52,3

Channel Command I Address CCAR H(1) L (0) 00000 256/ 100 320,1I140,1 0/0 64,5/40, 1
_0ote ~ _0ote ~

Channel Command I Status CCSR fi1.!l LJQJ_ 00010 260/104 3245I144,5 4/4 68,9/44,5
Channel Control CCR H]I LJQL 00011 262/106 326,7I146,7 6/6 70, 1I46,7
Channel Mode CMR H]I LJQL 00001 258/102 322 3 I 142,3 2/2 66,7/423

Clear OMA lnterl'\!J2! CDIR LJQL x 01101 26/1A 901 /5AB 26/1A 90,1 /5A,B
Clock Mode Control CMCR HID L::@ 01000 272/ 110 3367/1501 16/10 80,1/501
Dal~Chaln Control DCCR H_fil LJQ)_ 01101 282/ 11A 3467/15AB 26/1A 90,1 /5A,B
OMA Arra.y_ Count DACR LJQJ_ x 00100 8/8 723/489 8/8 72,3 / 48,9

OMA Command I Address DCAR L (0) x 00000 0/0 64,5 I 40,1 0/0 64,5I40,1
_0ote 1l _0ote 1l

OMA Control OCR LJQi x 00011 6/6 701/467 6/6 70,1/46 7
OMA lnterru_.11!._Control DICR LJQJ_ x 01100 24/18 88 9 I 58,9 24 /18 88,9 I 58,9
OMA lnterru_m Vector DIVR LJQJ_ x 01010 20/14 84 5 I 54,5 20I14 84,5 I 54 5

Hardware Con(!g_uratlon HCR H]I L]Ql 01001 274/ 112 338,9I152 3 18/12 82,3/52,3
IQE!Jt I Ou]¥ Control IOCR H]I LJQL 01011 278/116 342,3 / 156, 7 22/16 86,7 /56,7

lnterrldQ! Control ICR HJJI L::@ 01100 280/118 344 5 I 158,9 24/18 88,9/58,9
Intern.mt Vector IVR HJ!l LJQJ_ 01010 276/ 114 340, 1 I 154,5 20/14 84,5/54,5

Miscellaneous lnterrim!._ Status MISR HJ!l LJQL 01t10 284/ 11C 348,9/t5C,D 28/1C 92,3/5C,D
Next Receive Addressjb-owell: NRARL LJQL H]I t1110 188 I BC 252,3 I FC,D 188 I BC 252,3 / FC,D

Next Receive Address]Uppell: NRARU LJQL H]I 1tt11 t90/ BE 254,4 I FE,F 190/ BE 254,5 / FE,F

Next Receive ~ Count NRBCR LJQL r{(i2_ 11t01 186/BA 250,1 / FA,B 186/ BA 250,1 I FA,B

Next Transmit Address]Lowell: NTARL LJQL LJQL 11110 60/3C 124,5 /7C,O 60/3C 124,5 / ?C,O
Next Transmit Address]~ii: NTARU L_@_ LJQJ_ 11111 62/3E 126 7 /7E F 62 /3E 126,7 / 7E,F

Next Transmit ful!_e Count NTBCR LJQJ_ LJQJ_ t1101 58/3A 122,3 / 7A,B 58 /3A 122,3 / 7A,B
Port Control PCR HJ!l LJQJ_ 0010t 266/10A 330,1 / t4A,B 10/0A 74,5/4A,B
Port Status PSR HJ!l LJQJ_ 00100 264/108 328,9 / 148,9 8/8 72,3 I 48,9

Receive Address jb-owe.!1_ RARL LJQJ_ HJiI tOttO 172/AC 236,7 I EC 0 172 /AC 236,7 / EC,O

Receive Address~:!L RARU LJQt rITiI 10111 174/ AE 238,9 I EE F 174/ AE 238 9 / EE,F
Receive ~ Count RBCR LJQl: HJ.ii 10101 170/ AA 234 5 I EA,B 170/ AA 234,5 I EA,B

Receive Character Count RCCR HJ!l LJQJ_ 10110 300/12C 364,5 / 1 6C,D 44/2C 108,9/6C,D
Receive Command I Status RCSR HJ!l LJQJ_ 10010 292I124 356, 7 I 164,5 36/24 100, 1 /64,5

Receive Count Limit RCLR HJ.iI LJQt 10101 298I12A 362,3 I 16A,B 42/2A 106,7/6A,B
Receive Data ROR H(1) L (0) 1x000 288/120 (note 3) 32/20 96/60

(Read only; TOR for Write) or Hill_ xxxxx 384-511 384-511 xxx xxx
Receive OMA lnterrldQ! Arm ROIAR LJQJ_ HJ1l 01111 158 /9E 222,3 / OE,F 158 /SE 222,3 / DE,F

Receive OMA Mode RDMR LJQJ_ fi1.!l 00001 130/82 194,5 I C2,3 130/ 82 194,5 / C2,3
Receive lnterru~ Control RICR fi1.!l LJQJ_ 10011 294/126 358,9 / 166, 7 38/26 102,3/66,7

Receive Mode RMR fi1.!l LJQJ_ 10001 290I122 354,5 / 162,3 34/22 98,9/62,3
Receive ~nc RSR Hill_ LJQJ_ 10100 296/128 360, 1 I 168,9 40/28 104,5/68,9

Set OMA lnterrldQ! SOIR LJQ)_ x 01110 28/1C 92 3 I 5C,O 28/1C 92,3 I 5C,O
Status lnterr'dl1! Control SICR Hill_ LJQJ_ 01111 286/11E 350, 1 I 15E,F 30/1E 94,5/5E,F

Test Mode Control TMCR Hill LJQJ_ 00111 270I10E 334,5 / 14E,F 14/0E 78,9/4E,F
Test Mode Data TMOR Hill_ LJQl_ 00110 268I10C 3323I14C D 12/0C 76,7 I 4C,D
Time Constant O TCOR Hill_ LJQJ_ 10111 302I12E 3667/16E F 46/2E 110,1 /6E,F
Time Constant 1 TC1R Hill_ LJQJ_ 11111 318/ 13E 3823I17E F 62/3E 126,7 I 7E,F

Transmit Addressj_Lowe.!1_ TARL LJQ)_ LJQJ_ 10110 44/2C 108,9 I 6C,D 44 /2C 108,9 / 6C,D
Transmit Address]U..112.e.!i TARU LJQJ_ LJQJ_ 10111 46/2E 110,1 /6E,F 46 / 2E 110,1 /6E,F

Transmit ~ Count TBCR L]Ql L]Ql 10101 42 / 2A 106,7/6A,B 42 / 2A 106,7 /6A,B
Transmit Character Count TCCR @I L]Ql 11110 316/ 13C 3801/17C,D 60/3C 124,5/7C,D

Transmit Command I Status TCSR Hi1T LJQ)_ 11010 308/134 372,3 / 174,5 52/34 116,7 I 74,5
Transmit Count Limit TCLR Hill_ LJQ)_ 11101 314/13A 3789/17A,B 58/3A 122,3/7A,B

Transmit Data TOR H(1) L (0) 1xOOO 304I130 (note 3) 48/30 112/70
(Write only; RDR for Read) or Hill_ xxxxx 384-511 384-511 xxx xxx
Transmit OMA lnterrldQ! Arm TOIAR LJQJ_ LJQ)_ 01111 30/ 1E 94,5 I 5E,F 30/1E 94,5 / 5E,F

Transmit OMA Mode TOMR LJQJ_ LJQ)_ 00001 2/2 66 7 / 42,3 2/2 66,7 / 42,3

Transmit lnterr'dl1! Control TICR Hill_ LJQ)_ 11011 310 /136 374 5 I 176,7 54/36 118,9/76,7
Transmit Mode TMR Hill_ LJQ)_ 11001 306/132 3701I172,3 50/32 114,5/ 72,3
Transmlt~c TSR HJ1l LJQ)_ 11100 312 /138 376, 7 / 178,9 56/38 120, 1I78,9

Table 2. IUSC Registers, in alphabetical order

18

Start: Host Cycle
with /CS low -

which register to R/W??

No (Non-Mux'ed
Bus)

Capture S//D,
RegAd := AD13·8,
10/C := D//C at fall

of /OS, /RD, or N/R

Capture S//D, B//W:=
ADS, RegAd:=AD5·0,

iD/C := D//C
at rise of I AS

Capture S//D,
RegAd := AD13·8,

iD/C := D//C
at rise of I AS

Force B/N/
:= 1 (Byte)

To "A" on Next Sheet

Capture S//D.,
iD/C:=D//C at fall

of /OS, /RD, or NIR

RegAd := DCAR5-0;
BINI := DCARS;

iD/C:=iD/C or DCAR7;
then DCAR5·0 := 0

RegAd := CCAR5-0;
BINI := CCARS;

then CCAR5-0 := 0

BINI := NOT 16BIT
(BCR2)

To 'B' on Next Sheet

Figure 12. IUSC Register Addressing (1 of 2)

19

"A" From First Sheet

Access the Serial
Controller register

selected by (RegAd),
8116 bits per Bl/IN

Access the Transmit
OMA register

selected by (RegAd),
8116 bits per BINI

Write 1or2
characters to the

TxFIFO, depending
on Bl/IN

Access the OMA
register selected

by (RegAd),
8116 bits per Bl/IN

Access the Receive
OMA register

selected by (RegAd),
8116 bits per BINI

'B' From First Sheet

Read 1 or 2
characters from the
RxFIFO, depending

on Bl/IN

Figure 13. IUSC Register Addressing (2 of 2)

Byte Ordering
Various microprocessors differ on the correspondence
between addresses and how bytes are arranged with·
in a 16· or 32-bit value. The Zilog Z80 family and
most Intel processors use what's sometimes called
the "Little-Endian" convention: the least significant
byte of a word has the smallest address, and the most
significant byte has the largest address. The Zilog
16COx and Motorola 680xO processors are "Big
Endian": they store and fetch the MSByte in the
lowest-addressed byte, and the LSByte from the
highest address.

The 16C32 includes two separate control facilities that
allow it to be used with either kind of processor. The
"Select D15-8 First" and "Select 07 -0 First"
commands in the RTCmd field of the Channel
Command I Address Register (CCAR15·11) control
the byte ordering within a 16-bit transfer of serial data,
and apply to OMA and processor accesses to RDA

20

and TOR. These commands also control which data
lines the Transmit OMA channel takes byte data from
on a 16-bit bus. The ALBVO bit in the OMA Control
Register (DCR12) controls how the OMA channels
fetch buffer addresses and lengths from memory
when operating in "Array" or "Linked List" mode. The
following table summarizes how these bits should be
programmed for various system configurations:

Bui Proce11or
Programming

Size ___!}tp_e
B bits Blg-Endlan 1661t (6CR2) := 0

ALBVO_iOCR12) := 1
B bits Little-End Ian 16611 (BCR2) := 0

ALBVO_iOCR1g}_:= O
16 bits 61g-Endlan 16611 (6CR2) := 1

AL6VO (OCR12) := 1
RTCmdJ_CCAR15-11) :="Select 015·8 First"

16 bits Llttle-Endlan 1661t (BCR2) := 1
ALBVO (OCR12) := 0
RTCmd_iCCAR15-11) :="Select 07-0 First"

Register Read and Write Cycles
Figures 14 through 17 show the waveforms of the sig
nals involved when the host processor reads or writes
an IUSC register. Separate drawings are included for
the signalling on a bus with multiplexed addresses
and data, and for a bus with separate address and
data lines. On the other hand, since waveforms get
pretty boring after the first few, several things have
been done to minimize the number of figures.
1. The cases of separate read and write strobes, vs.

a direction line and a data strobe, have been com
bined by labelling the strobe traces as "/DS or
/RD" and "/DS or /WR". The direction line R//W is
shown in the figures, but a note reminds readers
that its state doesn't matter with /RD and /WR.

ADnn

S//D, D//C

/CS

/INT ACK

/WR, (/RD or /OS)

/AS

R//W

2. The difference between "wait" and "acknowledge"
signalling is handled by showing the /WAIT//RDY
trace as "maybe or maybe not" going low, with
appropriate labelling. (The IUSC never asserts a
"Wait" indication during a register access cycle.)

3. The difference between a sampled (address-like)
/INTACK signal, and one that's a strobe, is
handled by showing it "maybe or maybe not"
going low after the address-sampling time, again
with appropriate labelling.

Chapter 5 covers details of DMA cycles initiated by
the IUSC as the bus master, while Chapter 6 covers
interrupt acknowledge cycles.

The actual timing parameters and electrical specifi
cations of the IUSC are given in the companion publi·
cation /USC Product Specification.

V-+-1 --- (only if lackMode=OO)

I~ (reg'd with /DS, not with /RD)

I I\ :
~~~~- I ~~~~ 

~ : ;.---/OS or /RD 

/WAIT//RDY 

r . t-? Wait mode 

~Acknowledge mode 

Figure 14. A Register Read Cycle with Multiplexed Addresses and Data 

21 



ADnn 

S//D, D//C 

/CS :=J i L 
I 

/INT ACK "---1 : \,_ ___ ~v ___ ...,.i_<only if 1ackMode=OO) 

/RD, (/WR or /OS) 

/AS 

R//W ~ i L ("q'd tlth /DS, oot with /WR) ----,\ l 
I \?Wait mode 

IDS or /WR 

/WAIT//RDY 
~Acknowledge mode 

Figure 15. A Register Write Cycle with Multiplexed Addresses and Data 

OMA Cycle Options 
Three bits in the OMA Control Register (OCR) affect 
how the IUSC operates as a bus master -- that is, 
how it acts when it has control of the bus. This 
information is presented both here and in Chapter 5. 

S//D, O//C Status Output 

The OCSOOut bit (OCR4) controls whether the IUSC 
drives the S//D and D//C pins when it is the bus 
master. If DCSDOut is 1, the IUSC drives S//D Low 
for Tx channel operations and High for Rx channel 
cycles, and drives D//C High during transfers of serial 
data and Low during array or linked-list fetching. 
When this bit is 1, the external drivers for S//D and 
D//C must be 3-stated (released) while the IUSC is 
the bus master, that is, while the /BIN pin is low. 

22 

If external logic has no use for the information 
described above, software can program OCSOOut as 
0. In this case the IUSC doesn't drive S//O and 0//C, 
and these pins can be driven full-time by the host 
processor or bus interface. 

Walt Insertion 

If the 1Wait bit (OCR3) is 1, the IUSC extends the 
data portion of each master bus cycle by one CLK 
period. This allows use of slower memories for a 
given CLK frequency, or use of a faster CLK 
frequency with a particular memory type. Signalling 
on /WAIT//ROY can be used to extend master bus 
cycles, regardless of the state of this bit. When 1 Wait 
is 1 the IUSC starts actively sampling /WAIT//ROY 
one CLK period later than when it's 0. 



ADnn 

S//D, D//C 

/CS~: I 
/INT ACK _j [ \ [ V (only if lackMode=OO) 

I 

/AS, /WR, (/RD or /OS) I 

: v--f (req'd with /DS, not with /RD) 

=11\ I 
l~l--

R//W 

---W--t=w.;tmod• 
t:::I=Aokoowt•dg• mod• 

IDS or /RD 

/WAIT//RDY 

Figure 16. A Register Read Cycle with Non-Multiplexed Data Lines 

/UAS Frequency 

Since the DMA channels maintain 32-bit addresses 
but have only a 16-bit external bus, they present each 
address in two parts. They signal the availability of 
the more significant half of an address by driving 
/UAS low, and signal that the LS half of an address is 
on the AD lines by driving /AS low. The UASAll bit 
(DCR2) controls how often the channels present the 
more-significant half of the address. If UASAll is 1, 
every master bus cycle includes presentation of the 
more-significant half of the address on the AD15-0 
pins, with a low-going pulse on /UAS. This means 
that every bus cycle takes at least 4 cycles of CLK. 

If UASAll is 0, the IUSC includes a /UAS sequence 
only in cycles that meet one or more of the following 
criteria: 
1. in the first cycle after taking control of the bus 

from another master, 
2. in the first cycle after switching from one channel 

to the other, 

23 

3. in Pipelined mode, in the first cycle after switching 
from one buffer to the next, 

4. for a channel in Array or Linked List mode, in 
every cycle that accesses the array or list, 

5. for a channel in Array or Linked List mode, in the 
first data cycle after fetching from the array or list, 
or 

6. in the first cycle after incrementing a butter 
address results in a carry from A 15 to A 16, even if 
the AddrSeg field (DCR 1-0) is 10 so that the carry 
is blocked. 

When the IUSC includes a /UAS sequence in a bus 
cycle, the minimum length of the bus cycle is 4 CLK 
periods, while if it doesn't the bus cycle can be as 
short as 3 CLKs. 

UASAll should be programmed as 1 only if 
required by unusual external hardware. For 
example, if the IUSC and another bus master share 
an upper-address latch and the other bus master can 
insert cycles between IUSC cycles within the same 
bus grant, UASAll would want to be 1. 



ADnn -$-
S//D, D//C I 

/CS 

/INT ACK V--+--- (only if lackMode=OO) 

/AS, /WR, (/RD or /OS) 

R//W 

IDS or /RD 
\ ""---- ("'!JMh /OS, mrt with /RO) 

I ~Waitmode 
/WAIT//RDY CL Acknowledge mode 

Figure 17. A Register Write Cycle with Non-Multiplexed Data Lines 

24 



3. Serial Interfacing 
The IUSC includes several serial interface options and 
features that promote its usefulness in many different 
kinds of applications. It allows a variety of clocking 
schemes, and will do serial encoding and decoding for 
NRZI and Biphase formats that carry clocking infor
mation with the serial data. The IUSC further 
supports such decoding with an on-chip Digital Phase 
Locked Loop circuit. It also provides specialized and 
general purpose 1/0 lines that can be connected to 
modem control and status signals, to other control 
and status lines related to the serial link, or even to 
input and/or output signals tha,t aren't related to the 
serial link at all. Finally, for time-division-multiplexed 
links such as ISDN and Fractional T1 circuits, the 
IUSC includes separate Time Slot Assigner modules 
for the Receiver and Transmitter. Each "TSA" 
restricts active operation to a programmable time 
window within a cyclic time-multiplexed data stream. 

Transmit and Receive Clocking 
The IUSC's Receiver and Transmitter logic have 
separate internal clock signals that we'll call RxCLK 
and TxCLK. In most of the IUSC's operating modes, 
the Receiver samples a new bit on RxD once per 
cycle of RxCLK, and the Transmitter presents a new 
bit on TxD for each cycle of TxCLK. One exception is 
asynchronous mode, in which RxCLK and TxCLK run 
at 16, 32, or 64 times the bit rate on RxD and TxD 
respectively. The other exception is with Biphase
encoded serial data, for which the Receiver samples 
RxD on both edges of RxCLK, and the Transmitter 
may change TxD on both edges of TxCLK. 

Figure 18 shows how RxCLK and TxCLK can be 
derived in several different ways. This flexibility is an 
important part of the I USC's ability to adapt to a wide 
range of applications. 

In the simplest case, external logic derives clocks 
indicating bit boundaries, and software programs the 
IUSC to take RxCLK directly from the /RxC pin and 
TxCLK directly from the /TxC pin. When an IUSC 
uses such external clocking for synchronous operation 
with "NRZ" data, it samples a new bit on the RxD pin 
on each rising edge on /RxC, and presents each new 
bit on the TxD pin on the falling edge of /TxC. 

It is often desirable to vary the bit rates for transmis
sion and reception by programming the IUSC, rather 
than by means of off-chip hardware. To provide for 
this, the IUSC includes various means by which high
speed clocking on one or more of the /RxC, /TxC. 
PORT1, or PORTO pins can be divided down to 
almost any desired bit rate. 

25 

CTRO and CTR1 

Two separate 5-bit counters called CTRO and CTR1 
comprise the first stage of the !USC's clock-gener
ation logic. Figure 19 shows the Clock Mode Control 
Register. Its CTROSrc and CTR1 Src fields 
(CMCR13-12 and CMCR15-14 respectively) control 
whether each counter runs and whether it takes its 
input from the /RxC, /TxC, PORTO, or PORT1 pin: 

Cl'BnSRC Cl'Rn gJ.Qck source 
00 CTRn disabled 
01 CTRn input PORTn/CLKn pin 
10 CTRn input = /RxC pin 
11 CTRn input = /TxC pin 

Figure 20 shows the Hardware Configuration Register. 
Its CTRODiv field (HCR15-14) controls the factor by 
which CTRO divides its input to produce its output: 

CTRODiv CTRO operation 
00 CTRO output input I 32 
01 CTRO output input I 16 
10 
11 

CTRO output 
CTRO output 

input I 8 
input I 4 

There were not enough register bits to allow a 
separate 2-bit "CTR1 Div" field. If the CTR1 DSel bit 
in the Hardware Configuration Register (HCR 13) is 0, 
the CTRODiv field determines the factor by which both 
CTR1 and CTRO divide their inputs to produce their 
outputs. If CTR1 DSel is 1, the DPLLDiv field in the 
Hardware Configuration Register (HCR11-10) deter
mines the factor by which both CTR1 and the DPLL 
divide their inputs to produce their outputs. In either 
case, the IUSC interprets the selected 2-bit field as 
shown above for CTRODiv. 

Using PORTO and/or PORT1 as a Bit Clock 

With the 16C32, a clock on the PORTO/CLKO and/or 
PORT1/CLK1 pin(s) can be used directly as RxCLK 
and/or TxCLK, without being divided down by CTRO/ 
CTR1 respectively. This feature is controlled by the 
CtrBypass bit in the Channel Command I Status 
Register (CCSR5), which was Reserved in the 16C31. 

When this bit is 0, the 16C32 operates like the 16C31, 
in that the outputs of CTRO and CTR1 can be used 
directly as RxCLK and/or TxCLK, as inputs to the two 
Baud Rate Generators called BRGO and BRG1, and 
can be routed to the /RxC or /TxC pin. 

When CtrBypass is 1, both Counters are effectively 
bypassed. The signals from PORTO and PORT1 can 
be used directly as RxCLK and/or TxCLK, as inputs to 
the Baud Rate Generators, and can be routed to the 
/RxC and /TxC pins. When using this option, always 
program CTROSrc and CTR1 Src as 00 to save power, 
because there is no reason for the Counters to run. 



RxC 
TxC 

PORTO 
/CLKO 

PORT1 
/CLK1 

RxD 

CTR1Src 

15 14 

CT RO Div 

15 14 

CTROSrc 

RxCHAR 
RxSYNC 

TxCHAR-++-r+----~_, 
TxCMPL T-++--++-___, 

Figure 18. A Model of the 16C32's Clocking Logic 

BRG1Src BRGOSrc DPLLSrc TxCLKSrc 

13 12 11 10 9 8 7 6 5 

Figure 19. The Clock Mode Control Register (CMCR) 

0 
1 
2 
3 RxCLK 4 
5 MUX 
6 
7 

CMCA2:0 

TxCLK 

MUX 

CMCA5:3 

0 

RxCLKSrc 

CTR1 
DSel 

CVOK DPLLDlv DPLLMode Reserved BRG1S BRG1E Reserved BRGOS BRGOE 

13 12 11 10 9 8 7 6 5 4 3 

Figure 20. The Hardware Configuration Register (HCR) 

26 



The Baud Rate Generators 

Two 16-bit down counters called BRGO and BRG1 
form the second stage of the I USC's clock-generation 
logic. The BRGOSrc and BRG1 Src fields in the Clock 
Mode Control Register (CMCR9-8 and CMCR11-10 
respectively) control what the BRGs' use as inputs: 
BRGnSRC BRGn clock source 

00 CTRO output or PORTO 
01 CTRl output or PORTl 
10 /RxC pin 
11 /TxC pin 

Each of the two Time Constant registers (TCOR and 
TC1 R) contains a 16-bit starting value for the corres
ponding BRG down-counter. Zero in a Time Constant 
Register makes a BRG's output clock identical with its 
input clock; a value of one makes a BAG divide its 
input clock by two, and so on -- the all-ones value 
makes a BRG divide its input clock by 65,536 to 
produce its output clock. This flexibility of dividing by 
any value means that an JUSC can derive many 
different baud rates from almost any input clock, 
unlike some competing devices that constrain the 
system designer to use specified crystal or oscillator 
values and constrain the available speeds to certain 
commonly-used baud rates. 

The BRGOE and BRG1 E bits in the Hardware Config
uration Register (HCRO and HCR4 respectively; the 
"E" in the names is for "Enable") control whether each 
Baud Rate Generator runs or not. A 0 in one of these 
bits inhibits/blocks down-counting by the corres
ponding BRG, keeping the current value in the down 
counter unchanged despite transitions on the selected 
input clock. A 1 in one of these bits enables the 
corresponding BRG to count down in response to 
input clock transitions. 

When a Baud Rate Generator counts down to zero, it 
sets the BRGOL/U or BRG1 L/U bit in the 
Miscellaneous Interrupt Status Register (MISR1 or 0). 
Once one of these bits is set, it stays set until 
software writes a 1 to the bit, to "unlatch" it". 

A BRG may or may not continue to operate after 
counting down to zero, depending on the BRGOS or 
BRG1 S bit in the Hardware Configuration Register 
(HCR1 or HCR5 respectively; the "S" stands for 
"Single cycle"). A 0 in BRGnS causes BRGn to reload 
the TCn value automatically and continue operation, 
while BRGnS=1 makes BRGn stop when it reaches 0. 

Software can (re)load the value in the Time Constant 
register(s) into one or both BRG counters by writing a 
Load TCO, Load TC1, or Load TCO and TC1 com
mand to the RTCmd field of the Channel Command I 
Address Register (CCAR 15-11), as described in the 
Commands section of Chapter 4. These commands 

27 

also restart a BRG that's in Single Cycle mode and 
has counted down to zero and stopped. 

The TCORSel bit in the Receive Interrupt Control 
Register (RICRO) and the TC1 RSel bit in the Transmit 
Interrupt Control Register (TICRO) control what data 
the IUSC provides when software reads the TCOR 
and TC1 R addresses. If a TCnRSel bit is 0, the IUSC 
returns the time constant value last written to TCn. At 
the time that a 1 is written to a TCnRSel bit, the IUSC 
captures the current value of the BRGn counter into a 
special latch, and thereafter returns the captured 
value from this latch when software reads the TCn 
address. Note that in order to obtain a series of 
relatively current values of a running BRGn, software 
has to write a 1 to the TCnRSel bit just before each 
time it reads the TCnR location. 

The output of either Baud Rate Generator can be 
used as RxCLK and/or TxCLK. It can be used as the 
reference clock input to the Digital Phase Locked 
Loop (DPLL) circuit, and it can be output on the /RxC 
or /TxC pin. 

When a Baud Rate Generator isn't used to make a 
serial clock, software can use it for other purposes 
such as protocol timeouts, and can program the IUSC 
to request an interrupt when it counts down to zero. 
Chapter 6 covers interrupts in detail, but to use BRG 
interrupts software should write 1 's to the BRG1 IA bit 
and/or BRGO IA bit in the Status Interrupt Control 
Register (SICR1 and/or SICRO), as well as to the MIE 
and Misc IE bits in the Interrupt Control Register 
(ICR15 and ICRO). 

Introduction to the DPLL 

A Digital Phase Locked Loop (DPLL) circuit comprises 
the "third stage" of the IUSC's clock-generation logic. 
The DPLL is a 5-bit counter with control logic that 
monitors the serial data on RxD. The DPLLSrc field 
of the Clock Mode Control Register (CMCR?-6) 
controls which signal the DPLL uses as its nominal or 
reference clock: 

DPLLSrc DPLL reference clock 
00 BRGO output 
01 BRGl output 
10 /RxC pin 
11 /TxC pin 

The DPLLDiv field of the Hardware Configuration 
Register (HCR11-10) determines whether the DPLL 
divides this reference clock by 8, 16, or 32 to arrive at 
its nominal bit rate, as follows: 

DPLLDiv Nominal DPLL Clock 
00 reference clock I 32 
01 reference clock,'/ 16 
10 reference clock I 8 
11 Reserved (I 4 for CTRl) 



The 11 value cannot be used for DPLL operation, but 
if the DPLL isn't used, software can program this 
value together with writing a 1 to the CTR1 DSel bit 
(HCR13) to operate CTR1 in "divide by four" mode. 

A later section describes the operation of the DPLL in 
greater detail, but for now it's sufficient to note that it 
samples the (typically encoded) data stream on RxD 
to produce separate receive and transmit outputs. 
These outputs are synchronized to the bit boundaries 
on RxD, and can be used as RxCLK and/or TxCLK 
and/or can be routed to the /RxC or /TxC pin. · 

TxCLK and RxCLK Selection 

The Transmitter can take its TxCLK from any of the 
sources described in preceding sections, under 
control of the TxCLKSrc field of the Clock Mode 
Control Register (CMCR5-3): 
TxCLKSrc Source of TxCLK 

000 No clock (xmitter disabled) 
001 /RxC pin 
010 /TxC pin 
011 TX output of DPLL 
100 BRGO output 
101 BRGl output 
110 PORTO or CTRO output 
111 PORTl or CTRl output 

Similarly, the Receiver can take its RxCLK from 
various sources, under control of the RxCLKSrc field 
of the Clock Mode Control Register (CMCR2-0): 
RxCLKSrc Source of RxCLK 

000 No clock (receiver disabled) 
001 /RxC pin 
010 /TxC pin 
011 Rx output of DPLL 
100 BRGO output 
101 BRGl output 
110 PORTO or CTRO output 
111 PORTl or CTRl output 

Clocking for Asynchronous Mode 

For asynchronous reception, transitions on RxCLK 
don't have to have any relationship to transitions on 
RxD. When the Receiver is searching for a start bit, it 
samples RxD in each cycle of RxCLK, which it divides 
by 16, 32, or 64 to determine the bit rate. After the 
Receiver finds the 1-to-O transition at the beginning of 
each start bit, it counts off the appropriate number of 
RxCLK cycles to the middle of the bit cell. At this 
point it samples RxD to validate the start bit. If RxD 
has gone back to 1, the Receiver ignores the prior 
transition as line noise and goes back to searching for 
a start bit. If RxD is still 0, the Receiver accepts the 
start bit. Then it counts off 16, 32, or 64 RxCLK 
cycles to the middle of each subsequent bit of the 
character, and samples RxD at those times. 

28 

For asynchronous transmission, if the Transmitter has 
been idle and software then provides it with data and 
enables it, it drives TxD from 1 to O for the Start bit at 
the falling edge on TxCLK that follows the latter of 
these two steps. It applies each subsequent bit to 
TxD after counting off 16, 32, or 64 TxCLK cycles. 
When sending successive async characters, the 
Transmitter waits for the stop bit length programmed 
in the two MSBits of the TxSubMode field of the Chan
nel Mode Register (CMR15-14), before driving TxD 
from 1 to 0 for a subsequent start bit. If these bits 
specify "shaved" operation, the Transmitter adjusts 
the stop bit length per the TxShaveL field of the 
Channel Control Register (CCR11-8). 

Synchronous Clocking 

Except in asynchronous operation, one cycle on 
RxCLK corresponds to one data bit on RxD, and one 
TxCLK cycle corresponds to one bit on TxD. In any of 
the synchronous modes, the clock used by the 
receiver to sample the data must be similar to the one 
used by the remote transmitter to send the data. 

The simplest way to ensure this is to use a separate 
wire to send the clock from one station's transmitter to 
the other station's receiver. But often cost or the 
nature of the serial medium prevents this -- for 
example, you can't send a separate clock over a 
telephone line. In such cases it is common practise to 
encode the data so that serial stream also includes 
clocking information. For such applications, the IUSC 
can both encode transmitted data and decode 
received data in any of several popular formats. 

In addition, the IUSC's Digital Phase Locked Loop 
(DPLL) module can recover a synchronized RxCLK 
from the received data. While the DPLL can source 
TxCLK as well, such operation propagates some of 
the clock jitter from this station's receive path onto its 
transmit path, which may increase the error rate. 

Stopping the Clocks 

CMOS circuits like those in the IUSC don't draw much 
power compared to older technologies, but their 
power requirements can be reduced still further if their 
clock signals are stopped when the circuits don't need 
to operate. Most of this power savings can be 
obtained by having the software disable RxCLK and 
TxCLK by writing zeroes to the RxCLKSrc and 
TxCLKSrc fields (CMCR2-0 and CMCR5-3). If the 
Counters and Baud Rate Generators are used, power 
consumption is reduced further if software disables 
them by writing zeroes to as many as possible among 
CTROSrc, CTR1 Src, BRGOSrc, and BRG1 Src 
(CMCR13-12, CMCR15-14, CMCR9-8, and CMCR11-
10). The ultimate in serial-side power savings is 
obtained by having external logic stop the input 
clock(s) on the /RxC and/or /TxC pins. 



When RxCLK is stopped, previously-received data 
can be read from the RxFIFO but RxD is ignored so 
that no further data will arrive. A final character will be 
available to the software and/or the Receive DMA 
controller if RxCLK runs for at least three cycles after 
its last bit is sampled from RxD. For HDLC/SDLC this 
means at least 3 RxCLKs after the receiver samples 
the last bit of a closing Flag. For Async it means at 
least 3 RxCLKs after the receiver samples the stop bit 
of the last character. 

TxCLK can be stopped after the last desired bit has 
gone out on TxD. This is 2 or 3 TxCLKs after the last 
bit has left the Transmit shift register (because of the 
Transmit encoding logic), which in turn occurs 1 or 2 
TxCLKs after the Transmitter sets the TxUnder bit 
(TCSR1). 

Data Formats and Encoding 
The I USC's Transmitter and Receiver can handle data 
in any of the eight formats shown in Figure 21. The 

I I 
Data Bit: I 1 I 1 

] I 
NRZ I 

I I 
NRZB ) I 

I 

NRZl-Mark ~ ~ 
NAZI-Space 

: : 

Bi phase-Mark 

Bi phase-Space 

Bi phase-Level 

Differential Biphase-Level 

DPLL TxCLK (all modes) 
DPLL RxCLK (NRZ modes) 

DPLL RxCLK 
(Blphase modes) 

RxDecode field in the Receive Mode Register 
(RMR15-13) controls the format for the Receiver, and 
the TxEncode field in the Transmit Mode Register 
(TMR15-13) controls it for the Transmitter. The IUSC 
interprets both fields as follows: 
xMR15-13 Data Format 

000 NRZ 
001 NRZB 
010 NRZI-Mark 
011 NRZI-Space 
100 Biphase-Mark 
101 Biphase-Space 
110 Biphase-Level 
111 Differential Biphase-Level 

NRZ mode doesn't involve any encoding: at the start 
of each bit cell the transmitter makes TxD low for a 0 
or high for a 1. NRZB mode is similar except that the 
transmitter and receiver invert the data: a low is a 1 
and a high is a 0. 

I I I I 
I 0 I 0 I 1 I 0 

~ I 
v ~ I 

I I I I 

I I ~ I I 

i l ~ l 
x x : x 

Note: No assumption is made about the starting state of the serial data in this figure. 
As a result, those encoding schemes that operate in terms of transitions rather than levels 
are shown with dual traces corresponding to their two possible starting states. 

Figure 21. Data Formats I Encoding 

29 



In NRZl-Mark mode, at the start of each bit cell the 
transmitter inverts TxD for a 1 but leaves it unchanged 
for a 0. In NRZl-Space mode, at the start of each bit 
cell the transmitter inverts TxD for a O but leaves it 
unchanged for a 1. 

None of these NRZ-type modes, by itself, guarantees 
transitions in the data stream. However, if the higher
level protocol can guarantee transitions often enough, 
then the DPLL can use these transitions to recover a 
clock from the data stream. By some method the 
protocol must eliminate long bit sequences without 
transitions in the data: successive zeroes for NRZ, 
NRZB, and NRZl-Mark and successive ones for NRZ, 
NRZB, and NRZl-Space. 

For example, NRZl-Space mode matches up well with 
HDLC and SDLC protocols, because the Transmitter 
inserts a extra zero into the data stream whenever the 
transmitted data would otherwise produce six ones in 
succession. Thus, there is at least one transition 
every seven bit times. 

The reliability of clock recovery from any kind of NRZ 
data stream depends on guaranteed transitions, on 
the transmitter's and receiver's time bases being 
reasonably similar/accurate, and on fairly low phase 
distortion in the serial medium. Such schemes have 
the advantage that bits can be sent at rates up to the 
maximum switching rate (baud rate) of the medium. 

The four Biphase modes, on the other hand, provide 
highly reliable clock recovery and do not constrain the 
content of the data, but they limit the data rate to half 
the switching rate (baud rate) of the serial medium. 

See the waveform for Biphase-Mark mode in Figure 
21. This encoding scheme is also known as FM1. 
The transmitter always inverts the data at the start of 
each bit cell. At the midpoint of the cell it changes the 
data again to indicate a 1-bit, but leaves the data 
unchanged for a zero. In Biphase-Space mode 
(FMO) the transmitter always inverts the data at the 
start of each bit cell. In the middle of the cell it 
changes the data again for a zero-bit but leaves the 
data unchanged for a one-bit. In Biphase-Level 
mode (also called Manchester encoding), at the start 
of the bit cell the transmitter makes TxD high for a 
one-bit and low for a zero. It always inverts TxD in 
the middle of the cell. In Differential Biphase Level 
mode, at the start of each bit cell the transmitter 
inverts TxD for a zero but leaves it unchanged for a 
one. It always inverts TxD in the middle of the cell. 

More About the DPLL 
While the Transmitter and Receiver must be program
med for the particular serial format to be used, the 
DPLL only needs to know the general category of 

30 

encoding on RxD, in the DPLLMode field of the 
Hardware Configuration Register (HCR9-8): 
DPLLMode DPLL Operation/Decoding 

00 DPLL disabled 
O 1 Any NRZ mode 
10 Biphase-Mark or -Space 
11 Either Biphase-Level mode 

In any of the NRZ modes, transitions on RxD occur 
only at the boundaries between bit cells. The DPLL 
synthesizes a clock having falling edges at bit cell 
boundaries and rising edges in the middle of the cells. 
The Transmitter changes TxD on falling edges of 
TxCLK and the Receiver samples data on rising 
edges of RxCLK. 

In the Biphase-Mark and Biphase-Space encodings, 
there is always a transition at the boundaries between 
active data bits, and there may or may not be a 
transition at the center of each bit cell. The DPLL 
generates a receive clock having its falling edge 1/4 of 
the way through the bit cell, and its rising edge at the 
3/4 point. The Receiver determines each data bit 
from the state of RxD at rising edges of RxCLK and 
checks for "missing clocks" around falling edges. The 
DPLL generates a Transmit clock that is the same as 
in NRZ modes. The Transmitter complements the 
state of TxD at each falling edge of TxCLK, and may 
or may not change TxD at rising edges depending on 
the current data bit. 

In the Biphase-Level and Differential Biphase-Level 
encodings, there is always a transition at the midpoint 
of each active data bit, and there may or may not be 
transitions at the boundaries between bit cells. The 
DPLL generates clocks as for Biphase-Mark and 
Space, but must know the difference between those 
modes and these to do so. The Receiver determines 
each data bit from the state of RxD at falling edges of 
RxCLK and checks for "missing clocks" around rising 
edges. The Transmitter may or may not change TxD 
at falling edges of TxCLK, depending on the current 
data bit. It always inverts TxD at rising edges. 

The DPLL does not include logic to track the clock 
frequency of the remote end in a long-term manner. 
Rather it is a counter that is affected by transitions on 
RxD, and uses the reference clock to make bit 
clocking that is more or less synchronized to these 
transitions. Figure 22 shows the IUSC's Channel 
Command/Status Register. Its DPLLEdge field 
(CCSR9·8) provides further control over DPLL 
operation. For most applications, this field should be 
00, in which case the DPLL resynchronizes its counter 
on both rising and falling edges on RxD. 



RCCF RCCF Clear DPLL DPLL DPLL 
Ovflo Avall RCCF Sync 2Ml88 1 Miss 

DPLLEdge On Loop Ctr 
Loop Send Bypass 

TxResldue Reserved 

15 14 13 12 11 10 9 8 6 5 3 

Figure 22. The 16C32's Channel Command/Status Register (CCSR) 

For NRZ applications in which one kind of edge is 
significantly more precise than the other, software can 
program the DPLLEdge field to 10 or 01, to make the 
DPLL ignore one kind of transition. One example of 
such an application is a serial bus with passive 
external pull-ups; in such a application, falling edges 
are more accurate than rising edges. If DPLLEdge is 
11, the DPLL never resynchronizes -- that is, it runs 
freely like CTRO and CTR1. 

Because the blocking of edges by DPLLEdge affects 
missing clock detection as well as resynchronization, 
for Biphase operation DPLLEdge should always be 
programmed as 00. 

In any NRZ mode, when the DPLL is in sync, it uses 
the selected nominal value (8, 16, or 32 cycles of its 
input clock) for counting off the next bit cell if a 
transition on RxD falls near the bit cell boundary. If a 
transition comes early it uses the nominal value minus 
1 for the next cell, while if a transition comes late it 
uses the nominal value plus one. In /16 and /32 
modes only, the DPLL uses the nominal value plus 
two for the next bit cell if a transition comes very late 
in a cell, and the nominal value minus two if a 
transition comes very early. 

In Biphase-Mark and Biphase-Space modes, when 
the DPLL is in sync it ignores "data" transitions in the 
second and third quarters of the bit cell, and 
resynchronizes to "clock" transitions in the fourth and 
first quarters of the cell. If a clock transition falls very 
close to the cell boundary, the DPLL uses the nominal 
value (8, 16, or 32) as the length of the next bit cell. 
Otherwise it uses the nominal value minus one if a 
clock transition comes early, or the nominal value plus 
one if a clock transition is late. 

In Biphase-Level and Differential Biphase-Level 
modes, when the DPLL is in sync it ignores "data" 
transitions in the first and fourth quarters of the bit 
cell, and resynchronizes to "clock" transitions in the 
second and third quarters of the cell. If a clock trans
ition falls very close to the middle of the cell, the DPLL 
uses the nominal value (8, 16, or 32) as the length of 
the next bit cell. Otherwise it uses the nominal value 
minus one if a clock transition comes early, or the 
nominal value plus one if the transition is late. 

In an NRZ mode, if there's no transition in a bit cell the 
DPLL uses the nominal value (8, 16, or 32 clocks) as 
the length of the next bit cell. It also does this in 
Biphase modes, if there is no clock transition in a bit 

31 

cell when the DPLL is in sync. In particular, in these 
cases the DPLL doesn't re-apply a correction from a 
previous bit cell. 

In Biphase modes, the CVOK bit in the Hardware 
Control Register (HCR12) controls whether the 
Receiver flags a single code violation as an error. If 
CVOK=O, it sets the DPLL 1 Miss bit for a single code 
violation as described below. If CVOK=1, it doesn't 
report a single code violation in DPLL 1 Miss; use this 
setting when the protocol includes single code viola
tions as normal occurrences, as in the 15338 mode 
that's described in Chapter 4. Regardless of CVOK, 
code violations in two consecutive bit cells, set the 
DPLL2Miss and DPLLDSync UU bits and de
synchronize the DPLL. 

After software sets up the DPLL, three bits in the 
Channel Command/Status Register (CCSR) provide 
the operating intertace. The logic enters a "fast sync 
mode" when software writes a 1 to the DPLLSync bit 
(CCSR12), or in a Biphase mode when it detects two 
consecutive missing clocks. In this mode, the next 
RxD transition (that's allowed by the DPLLEdge field) 
resynchronizes the DPLL counter and puts the DPLL 
"back in sync''. 

The DPLLSync bit in the Channel Command/Status 
Register (CCSR 12) reads as 1 if the DPLL is in sync. 
The DPLL2Miss bit (CCSR11) reads as 1 if the DPLL 
is in a Biphase mode and has detected missing clocks 
in two consecutive bit cells. The DPLL 1 Miss bit 
(CCSR10) reads as 1 if the DPLL is in a Biphase 
mode, the CVOK bit (HCR12) is 0, and the DPLL has 
detected a missing clock in at least one cell. Once 
DPLL2Miss or DPLL 1 Miss is 1, it continues to read 
that way until software writes a 1 to it. 

Writing a 0 to any of DPLLSync, DPLL2Miss, or 
DPLL 1 Miss has no effect on the DPLL logic. 

The IUSC sets the DPLLDSync L/U bit when it loses 
sync in a Biphase mode. This bit is similar to 
DPLL2Miss in that once it's set, it stays that way until 
software writes a 1 to the bit to "unlatch" it. Chapter 6 
explains how to program the IUSC so that it interrupts 
the host processor when it sets DPLLDSync. 



CTSMode OCOMode TxRMode RxRMode TxDMode TxCMode RxCMode 

15 14 13 12 11 10 9 8 6 5 4 3 

Figure 23. The Input/Output Control Register (IOCR) 

The RxD and TxD Pins 
In some sense these are the most important pins on 
an IUSC. Typically they carry the serial input to the 
Receiver and the serial output of the Transmitter 
respectively. Figure 23 shows the 1/0 Control 
Register. Its TxOMode field (IOCR7-6) allows soft
ware to control the function of TxD: 

TxDMode Function of the TxD pin 
00 Totem-pole Transmitter output 
01 High-impedance state 
10 Low output 
11 High output 

Software can use the ability to drive TxD low to 
generate a Break condition in Asynchronous appli· 
cations. The duration of such a Break is fully under 
software control. 

The ability to put the TxD pin in a high-impedance 
state allows software to use the IUSC in "serial bus" 
schemes that include multiple senders on the same 
signal line. (But note that the TxDMode field resets to 
00, so that the IUSC drives TxD after a Reset until the 
software programs TxDMode to 01.) The ability for 
direct programmable control over the TxD pin allows 
software to "bit-bang" unusual/occasional serial proto
col requirements, while keeping the IUSC's full power 
for more standard and everyday communications. 

The RTMode field of the Channel Command/Address 
register (CCAR9·8) controls the relationship between 
the Transmitter and the Receiver and thus between 
the TxD and RxD pins. It is encoded as follows: 

RTMode Operation 
00 Normal operation: the 

Transmitter and Receiver are 
completely independent. 

01 Echo mode: the state of the 
RxD pin is copied directly 
onto the TxD pin. Data from 
the Transmitter is ignored. 

10 Pin Controlled Local Loop: 
the data from the TxD pin, as 
determined by the TxDMode 
field (IOCR7-6), is routed to 
the Receiver rather than the 
data from RxD. If TxDMode 
specs TxD as high impedance, 
the Receiver can take its 
input from a remote source 
via TxD rather than RxD. 

32 

11 Internal Local Loop: the data 
from the Transmitter is 
routed to the Receiver rather 
than the data from RxD, 
regardless of the setting of 
the TxDMode field (IOCR7-6). 

Edge Detection and Interrupts 
Software can program the IUSC to detect rising 
and/or falling edges on the /CTS, /DCD, /TxC, /RxC, 
/TxREQ, and /RxREQ pins, and to interrupt when 
such events occur. Figure 24 shows that the Status 
Interrupt Control Register (SICR) includes separate 
Interrupt Arm (IA) bits for rising and falling edges on 
each of these pins. (Chapter 6 describes the IUSC's 
interrupt features in detail.) A 1 in one of these bits 
makes the IUSC detect that kind of edge, while a 0 
makes it ignore such edges. This edge detection and 
interrupt mechanism operates without regard for 
whether the various pins are programmed as inputs or 
outputs in the 1/0 Control Register (IOCR). 

When the IUSC detects an edge that's enabled in the 
SICR, it records the event in an internal "edge 
detection latch" for that input. This latch is not directly 
accessible in the IUSC's register map. Instead, as 
shown in Figure 25, the Miscellaneous Interrupt 
Status Register (MISR) includes two bits for each of 
these six pins, one called a "Latched/Unlatch" or L/U 
bit, and the other being a "data bit" that has the same 
name as the pin itself. 

A hardware or software Reset sequence clears all the 
L/U bits to zero. While the L/U bit for a pin is 0, the 
associated data bit reports and tracks the state of the 
pin in a "transparent" fashion, with a 1 indicating a low 
and a 0 indicating a high. 

Whenever a pin's LIU bit is 0 and its internal edge
detection latch is set, the IUSC sets the LIU bit to 1, 
clears the detection latch, and sets the 1/0 Pin 
Interrupt Pending (IOP IP) bit. IOP IP can be read 
and cleared (and if necessary set) in the Daisy Chain 
Control Register (DCCR 1). Chapter 6 describes how 
the 1/0 Pin Enable and Master Interrupt Enable bits 
determine whether the IP bit actually results in an 
interrupt request to the processor. 



RxCDn RxCUp TxCDn TxCUp RxRDn RxRUp TxRDn TxRUp DCDDn DCDUp CTSDn CTSUp RCC DPLL BRG1 BRGO 
Under DSync IA IA IA IA IA IA IA IA IA IA IA IA 

IA IA 
IA IA 

15 14 13 12 11 10 9 8 7 8 5 4 3 2 0 

Figure 24. The Status Interrupt Control Register (SICR) 

RCC DPLL BRG1 BRGO 
RxCWU /RxC TxCWU /TxC RxRWU /RxREQ TxRWU /TxREQ DCDW /DCD CTSWU /CTS Under DSync WU WU 

WU WU 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Figure 25. The Miscellaneous Interrupt Status Register (MISR) 

While an LJU bit is 1 , the state of the associated data 
bit is frozen (latched). These two bits remain in this 
state, regardless of further transitions on the pin, until 
software writes a 1 to the LJU bit. This clears the LJU 
bit to O and "opens" the data bit to once again report 
and track the state of the pin, at least for an "instant". 
If one or more enabled transitions occurred while the 
LJU bit was set, then LJU is set again right after 
software writes the 1 to it. 

Writing a O to an LJU bit has no effect, and the IUSC 
ignores data written to the data bits. 

One mode in which software can use this logic is to 
read the MISR, then immediately write back what it 
has read. The software should then look for 1 's in any 
and all "interesting" LJU bits, and process/handle all 
such changes without rereading the MISR. To obtain 
the current state of one of these pins, regardless of 
the LJU bit, software can write a 1 to the LJU bit and 
then immediately read back the MISR. 

The/DCD Pin 
The DCDMode field of the 1/0 Control Register 
(IOCR13-12) controls the function of this pin: 

PCPMode Function of the /PCP pin 
00 Low-active Rx Carrier input 
01 Low-active Rx Sync input 
10 Low output 
11 High output 

When DCDMode is 00, software can handle the 
Carrier indication all by itself. Or, the /DCD signal can 
enable and disable the Receiver in hardware if soft
ware also programs the RxEnable field of the Receive 
Mode Register (RMR1-0) to 11. In the latter case, the 
Receiver starts assembling a character only when 
/DCD is low; if /DCD goes high during a received 
character, the Receiver aborts/discards it. Figure 26 
shows how the required relationship between /DCD 
and RxD varies depends on the Receiver mode: 
* for async, nine-bit, and ACV/1553B modes, /DCD 

should set up low to the rising edge of RxCLK 
after the falling edge at which the receiver first 
samples the start bit on RxD. 

33 

* 

* 

* 

for isochronous mode, /DCD should set up low to 
the rising edge of RxCLK at which the receiver 
samples the start bit on RxD. 
for monosync, bisync, and transparent bisync, 
/DCD should set up low to the rising edge of 
RxCLK that precedes the one at which the 
receiver samples the first bit of the last sync 
pattern before the message. 
for HDLC/SDLC mode, /DCD should set up low to 
the rising edge of RxCLK at which the receiver 
samples the ending O of the last Flag before the 
frame. 

DCDMode=01 identifies the /DCD pin as an input from 
external sync detection logic. Software typically 
programs this value in conjunction with programming 
the RxMode field of the Channel Mode Register 
(CMR3-0) with 0001 for External Sync operation or 
1001 for 802.3 (Ethernet) operation. For External 
Sync mode, external logic should drive the /DCD pin 
low during the RxCLK cycle after the last bit in the 
sync character. For 802.3 it should drive /DCD low 
when carrier is detected -- a figure in Chapter 4 shows 
that the timing relationship to RxD isn't critical but 
there should be at least 58 of the 64 alternating bits 
that precede the frame left. The Receiver starts 
sampling RxD at the same rising edge of RxCLK at 
which It first samples /DCD low. If /DCD goes high 
during a received character, the Receiver completes 
receiving the character and transfers it to the Receive 
FIFO before going Inactive. 

Sync conditions generated internal to the IUSC are 
not output on this pin as on certain predecessor 
devices, but can be output on either the /RxC or 
PORTS pin as described later. 

The /DCD pin can alternatively be used as a general
purpose output. To do this, simply program 
DCDMode to 1 O to make the IUSC drive /DCD low, 
and to 11 to drive the pin high. For such an appli
cation the designer may want to connect a pull-up or 
pulldown resistor to the /DCD pin, because the IUSC 
will not drive the pin from the time /RESET goes low 
until the software programs DC OM ode to 10 or 11 . 



/DCD 

RxCLK 
(/RxC) 

RxD (Async, 9-blt, 
ACV/15538) 

RxD (Isochronous) \ 
start j 

~~b_it_~--~-

RxD (Monosync, Blsync, 
Transparent Blsync) 

1st bit 
of.Sync 

rest of (last) 
Sync character(s) 

RxD (HDLC) 0111111 last O 
~~~~~~~~~~-o+fF_l_ag~~_,. __ 

1st bit
of Frame

Figure 26. /DCD Auto-Enable Timing

Software can program the IUSC to interrupt the host
processor on either or both edges on /DCD, as
described in the preceding section. Typically such
interrupts would be used when /DCD is an input, that
is, when DCDMode is 00 or 01 . Software should write
a 1 to the DCDDn IA bit in the Status Interrupt Control
Register (SICR7) to make the IUSC detect falling
edges on /DCD, and write a 1 to DCDUp IA (SICR6)
to make it detect rising edges.

As described in the preceding section, the DCDL/U bit
(MISR7) is 1 if the IUSC has detected an enabled
edge, until software writes a 1 to the bit to clear it.
The /DCD bit (MISR6) reflects the state of the /DCD
pin transparently while DCDL/U is 0, but is frozen
while DCDLJU is 1. MISR6=0 indicates a high on the
pin, and 1 indicates a low.

The /CTS Pin
The CTSMode field of the 1/0 Control Register
(IOCR15-14) controls the function of this pin:
CTSMode Function of the /CTS pin

Ox Low-active Clear to Send input
10 Low output
11 High output

When CTSMode is 00 or 01, software can handle the
Clear to Send input all by itself. Alternatively, the
/CTS input can enable and disable the Transmitter in
hardware, if software writes 11 to the TxEnable field of

34

the Transmit Mode Register (TMR1 -0). In the latter
case, the Transmitter will start sending a character
only when /CTS is low. As shown in the following
Figure, if the Transmitter is otherwise "ready to go"
when /CTS goes low, the first bit active bit on TxD will
begin at the falling edge of TxCLK that is 4.5 clock
periods after the rising edge of TxCLK at which the
Transmitter first samples /CTS low.

/CTS

TxCLK~~JL
(/TxC) . .

' 4.5 clocks

TxD

Figure 27. /CTS Auto-Enable Timing

If /CTS goes high during a transmitted character in an
asynchronous mode, the Transmitter finishes sending
the character before going inactive. In the same
situation in a synchronous mode, the Transmitter
terminates transmission immediately.

The /CTS pin can alternatively be used as a general
purpose output. To do this, simply program CTSMode
to 10 to make the IUSC drive /CTS low, and to 11 to
make it drive the pin high. For such applications the
designer may want to connect a pull-up or pulldown

resistor to the /CTS pin, because the IUSC won't drive
the pin from the time /RESET goes low until the
software programs CTSMode to 1 o or 11.

Software can program the IUSC to interrupt the host
processor on either or both edges on /CTS, as
described in the earlier section £dge Detection and
Interrupts. Typically such interrupts would be used
when /CTS is an input, that is, when CTSMode is 00
or 01 . Software should write a 1 to the CTSDn IA bit
in the Status Interrupt Control Register (SICRS) to
make the IUSC detect falling edges on /CTS, and
write a 1 to CTSUp IA (SICR4) to make it detect rising
edges.

As described in £dge Detection and Interrupts, the
CTSL/U bit (MISRS) is 1 if the IUSC has detected an
enabled edge, until software writes a 1 to the bit to
clear it. The /CTS bit (MISR4) reflects the state of the
/CTS pin transparently while CTSL/U is 0, but is
frozen while CTSL/U is 1. MISR4=0 indicates a high
on the pin, and 1 indicates a low.

The /RxC and /TxC Pins
Figure 18 (near the start of this chapter) shows the
IUSC's options for the function of its /RxC and /TxC
pins. The RxCMode field in the Input/Output Control
Register (IOCR2-0) controls the function of /RxC:
RxCModeFunction of the /RxC pin

000 /RxC is an input
001 /RxC outputs RxCLK
010 /RxC outputs Rx character clock
011 /RxC outputs /RxSYNC
100 /RxC carries the BRGO output
101 /RxC carries the BRGl output
110 /RxC carries PORTO or CTRO out
111 /RxC carries the DPLL Rx output

while the TxCMode field (IOCRS-3) controls the
function of the /TxC pin:
TxCModeFunction of the /TxC pin

000 /TxC is an input
001 /TxC outputs TxCLK
010 /TxC outputs Tx character clock
011 /TxC outputs "Tx Complete"
100 /TxC carries the BRGO output
101 /TxC carries the BRGl output
110 /TxC carries PORTl or CTRl out
111 /TxC carries the DPLL Tx output

Some of these possible outputs need further descrip
tion. An IUSC drives the Receive character clock
high for one RxCLK period as it transfers each
character from the Receive shift register to the
Receive FIFO. Similarly, it drives the Transmit
character clock high for one TxCLK period each time
it transfers a character from the Transmit FIFO to the
Transmit shift register. The /RxSYNC output goes low
for one RxCLK cycle each time the Receiver recog-

35

nizes a Sync or Flag sequence. The Tx Complete
output is suitable for controlling a driver on TxD. It is
low from the start of the first active bit of a sequence
of one or more consecutively-transmitted characters,
through the end of the last bit of the sequence. The
BRG and CTR outputs are square waves. The DPLL
outputs were shown earlier in this chapter.

While it's not very useful to use a high-speed free
running clock as a source of interrupt events, for other
uses of /RxC and /TxC software can program an IUSC
to interrupt the host processor on either or both edges
on these pins, as described in the earlier section £dge
Detection and Interrupts. Typically such interrupts
would be used for an input pin, that is, when
RxCMode or TxCMode is 00 or 01. Software should
write a 1 to the RxCDn IA or TxCDn IA bit in the
Status Interrupt Control Register (SICR15 or SICR13)
to make an IUSC detect falling edges on /RxC or
/TxC, and write a 1 to RxCUp IA or TxCUp IA
(SICR14 or SICR13) to make it detect rising edges.

As described in £dge Detection and Interrupts, the
RxCL/U or TxCL/U bit (MISR15 or MISR13) is 1 if the
IUSC has detected an enabled edge, until software
writes a 1 to the bit to clear it. The /RxC or /TxC bit
(MISR14 or MISR12) reflects the state of the pin
transparently while the LIU bit is O, but is frozen while
the LIU bit is 1. A 0 in MISR14 or MISR12 indicates a
high on the pin, and 1 indicates a low.

The /RxREQ and /TxREQ Pins
The predecessor USC and MUSC devices provided
separate /RxREQ and /TxREQ outputs for signalling
an off-chip DMA controller when the Transmit and
Receive FIFO's were in a programmed degree of
"readiness" for DMA data transfer. They also
provided /RxACK and /TxACK inputs by which the
external DMA controller could signal that a "flyby"
DMA transfer was occurring.

The IUSC includes internal Request and Acknowledge
connections between its serial controller and
integrated DMA channels. Therefore there's little
need for such pins, and in fact there are no ACK pins.
The /RxREQ and /TxREQ pins survive for testing
reasons, and can be used in applications as general
I/O's under control of the RxRMode and TxRMode
fields of the 1/0 Control Register (IOCR9-8 and
IOCR11-1 o respectively):

XxRMode Function of /XxREO pin
00 Input pin
01 DMA Request output (or

Interrupt Request)
10 Low output
11 High output

Note that software doesn't have to program these
fields as 01 in order to use the I USC's DMA channels.

Software can program an IUSC to interrupt the host
processor on either or both edges on these pins, as
described in the earlier section Edge Detection and
Interrupts. Typically such interrupts would be used for
an input pin, that is, when RxRMode or TxRMode is
00. Software should write a 1 to the RxRDn IA or
TxRDn IA bit In the Status Interrupt Control Register
(SICR11 or SICR9) to make the IUSC detect falling
edges on /RxREQ or /TxREQ, and should write a 1 to
RxRUp IA or TxRUp IA (SICR10 or SICR8) to make it
detect rising edges.

As described in Edge Detection and Interrupts, the
RxRL.IU or TxRLJU bit (MISR11 or MISR9) is 1 if the
IUSC has detected an enabled edge, until software
writes a 1 to the bit to clear it. The /RxR or /TxR bit
(MISR10 or MISR9) reflects the state of the pin trans
parently while the LJU bit is 0, but is frozen while the
LIU bit is 1. A 0 in MISR10 or MISR9 indicates a high
on the pin, and 1 indicates a low.

The IUSC doesn't provide /RxACK and /TxACK pins,
and so its Transmitter and Receiver cannot be used
with an external "flyby" DMA controller. The fields
associated with these pins in predecessor devices,
HCR7-6 and HCR3-2, are not used in the IUSC.

The Port Pins
These eight pins can be individually programmed to
be general purpose inputs or outputs. Alternatively,
seven of the eight can carry a specific, dedicated input
or output signal. Regardless of the directions and
roles of the various pins, transitions on all eight are
latched by the IUSC. Host software can read this
latched status from the Port Status Register (PSR).
Unlike the pins described in earlier sections, trans
itions on PORT7-0 cannot make the IUSC interrupt
the host processor.

Figure 28 shows the Port Control Register (PCR). It
includes eight PnMode fields, each of which
determines the use of one PORT pin:
~ Function of PORTn pin

00 General purpose input
01 Dedicated I/O
10 Low output
11 High output

The "dedicated 1/0" function differs for each pin:
PORT7 Tx Complete output
PORT6 /FSYNC input
PORTS /RxSYNC output
PORT4 Tx Time Slot Assigner Gate output

P7Mode P6Mode PS Mode P4Mode

PORT3 Rx Time Slot Assigner Gate output
PORT2 Undefined, Reserved
PORTl Reference clock input to CTRl
PORTO Reference clock input to CTRO

(Other sections of this chapter or Chapter 4 describe
the utilization of each of these inputs and outputs.)

On the 16C32, a hardware or software Reset makes
all the PORT pins act as inputs. (On the 16C31, this
didn't occur until software wrote the BCR.) As noted
earlier for /DCD and /CTS, for Port pins that are out
puts, the system designer may want to connect a pull
up or pulldown resistor of about 1 OKOhms to the
pin(s), to assure their state from when /RESET goes
low to the time that software programs the PCR.

Whether the various pins are inputs or outputs, the
IUSC detects and latches transitions on all eight of
them, and host software can read the latched status
from the Port Status Register (PSR). Figure 29
shows how this register includes two bits for each pin,
one called PnlJU (for Latched/Unlatch) that can be
both written and read back. The other bit of each pair
is called /Pn and can only be read, which is to say, the
IUSC ignores data written to the /P7-0 bits.

After software writes a 1 to a particular PnL/U bit, the
PnLIU bit reads back as a O and the associated /Pn bit
reflects the state of the corresponding PORTn pin at
the time of the write operation. After a Reset PnL/U is
O and /Pn reflects the state of the pin when /RESET
went high. AO in a /P7-0 bit corresponds to a high on
the associated pin, and a 1 corresponds to a low.

The PnL/U bit remains 0, and /Pn does not change,
until the IUSC detects a rising or falling transition on
the associated PORTn pin. After such a transition,
PnL/U reads back as 1 and /Pn reads as 0 for a rising
edge and 1 for a falling edge. The two bits remain in
this state, regardless of further transitions on the
PORTn pin, until host software writes a 1 to PnL/U.
This clears the PnLIU input bit to 0 and "unlatches"
the transition-detecting logic for the pin, although the
IUSC will set the LIU bit again immediately if one or
more transitions occurred while it was set. Writing a 0
to a PnLIU bit has no effect on the logic for that pin.

One mode in which software can use the Port logic is
to read the PSR and immediately write back what it
has read. Software can then look for 1 'sin any and all
"interesting" PnLIU bits, and process/handle all such
changes without rereading the PSR. To obtain the
current state of a PORTn pin, software can write a 1
to its PnLIU bit and then immediately read the PSR.

P3Mode P2Mode P1Mode POMode

15 14 13 12 11 10 9 a 1 e s
Figure 28. The Port Control Register (PCR)

36

P7UU /P7 P8UU /P8 P5UU /P5 P4UU /P4 P3UU /P3 P2UU /P2 P1 UU /P1 POUU /PO

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Figure 29. The Port Status Register (PSR)

The Time Slot Assigners
In applications such as ISDN and Fractional T1, a set
of independent voice and data streams share a high
speed link by means of time multiplexing. The IUSC
can send and/or receive such a data stream with the
aid of its Transmit and Receive Time Slot Assigner
logic (TISA and RTSA).

To use the IUSC in such an application, external logic
must find the start point of (or at least a consistent
point in) each cycle of the total data stream, and
signal the IUSC when this point occurs, using a
"Frame Sync" pulse on the PORT6//FSYNC pin that is
low for one period of RxCLK and/or TxCLK. Both the
Receive and Transmit Time Slot Assigners use this
pulse. This means that if both the Receiver and
Transmitter are operating simultaneously in a Time
Slotted application, they must both be operating in
(different parts of) the same overall data stream. This
also means that RxCLK and TxCLK must come from
the same source.

Figure 30 shows how the Time Slot Assigners. deter
mine when to start receiving and/or transmitting in
each cycle. After sensing the /FSYNC pulse, the
RTSA waits for a number of RxCLK cycles (bit times)
that's determined by the RTSASlot and RTSAOffset
fields in the Receive Interrupt Control Register
(RICR). Specifically, it waits for this many RxCLK

cycles (bits): 8 times the value in RTSASlot, plus the
value in RTSAOffset.

Unless both fields are zero, the RTSA blocks RxCLKs
to the Receiver for this number of bits. Then it allows
RxCLK to reach the Receiver for the number of con
secutive bytes/octets/slots programmed into the
RTSACount field in RICA. That is, it allows
S(RTSACount) RxCLKs to reach the Receiver. Figure
31 illustrates these points. (A zero in the RTSACount
field disables the whole RTSA feature.) Then the
RTSA again blocks RxCLKs to the Receiver until after
the next pulse on /FSYNC.

The net result of this clock-gating is that the IUSC can
receive up to 15 consecutive bytes/octets out of each
cycle on the serial link. This data can start at any
point within the first 128 octets of each cycle. The
TSAs also allow for possible delays in sensing and
signalling the frame sync.

In ISDN circles it seems to be common parlance to
refer to the octets in each frame as numbered "slots"
starting at 0. Given this definition of "slot number", if
the frame sync detection logic is such that /FSYNC
will be sampled low in the bit time before RxD should
be sampled for the first bit of the first slot, then
RTSAOffset should be programmed with zero and
RTSASlot should be programmed with the slot num
ber of the first octet that should be received.

RxCLK or I\ I\ ~~ I\ I\ ~~ I\ I\ I\
TxCLK_j LJ LJ LJ LJ LJ LJ LJ LJ L

RxD
or

TxD:

xTSAOffset=O, 1st Bit Rcved

xTSASlot=O or Xmltted

xTSAOffset>O,
xTSASlot=O

xTSAOffset=O,
xTSASlot>O

xTSAOffset>O,
xTSASlot>O

(xTSAOffset) bits

8*(xTSASlot) Bits

8*(xTSASlot) Bits

Figure 30. Start of Received or Transmitted Data In a TSA Application

37

RxCLK or n n ~~ n n ~~ n n n ~~ n n /
TxCLK_j u u u U u u u u u u u u

/FSVNC I ~~
(PORT6) LJ

8*(xTSACount) Bits
~

RxD or
TxD

Xmlt Gate (PORT4) ~h ~
Rev Gate (PORT3) \._. -----\)~

Figure 31. Length of Received or Transmitted Data In a TSA Application

Otherwise, call the "Frame Sync delay" QM. if /FSYNC
will be sampled low in the same bit time that the first
bit of the first slot is available on RxD, 1YiQ if /FSYNC
is low in the bit time after the first bit appears on RxD,
and so on up through the maximum value of ~ if
/FSYNC is low six bit times after the first bit of the first
slot appears on RxD. In these cases, the first slot
cannot be received: program the RTSAOffset field
with eight minus the "Frame Sync delay", and
program RTSASlot with the slot number of the first
octet that should be received, minus one.

Figure 30 applies equally to the transmit side: the
TTSA similarly blocks TxCLKs to the Transmitter for
the number of TxCLK cycles programmed in the
TTSASlot and TTSAOffset fields in the Transmit
Interrupt Control Register (TICR).

After blocking TxCLKs for 8(TTSAS1ot) +
(TTSAOffset) bits, the TTSA allows TxCLK to reach
the Transmitter for the number of consecutive
bytes/octets/slots programmed into the TTSACount
field in the Transmit Interrupt Control Register (TICR).
That is, it allows 8(TTSACount) TxCLKs to reach the
Transmitter, as shown in Figure 31. (As for the
receive side, zero in the TTSACount field disables the
whole TTSA feature.) Then the TTSA again blocks
TxCLKs to the Transmitter until after the next pulse on
/FSYNC.

Thus, symmetrically with the receive side, the IUSC
can transmit up to 15 consecutive bytes/octets/slots in
each cycle on the serial link. This data can start at
any point within the (first) 128 octets of each cycle,
and the TTSA allows for possible delays in sensing
and signalling the frame sync.

Since the IUSC maintains output drive on TxD
throughout each cycle on the serial link, this kind of
time-multiplexed environment requires an external
driver with an enable/disable input. The IUSC can
provide the required "Transmit Gate" signal on the

38

PORT4 pin. Figure 31 shows how this signal goes
low while the TTSA is enabling the Transmitter in each
frame. There is also a similar facility by which the
RTSA's low-active Receive Gate signal can be output
on the PORT3 pin, but the application of this signal is
less obvious. As already noted in the section on the
PORT pins, the P4Mode and/or P3Mode fields of the
Port Control Register (PCR9-8 and/or PCR7-6
respectively) should be 01 to enable these options.

Programming the Time Slot Assigners

There is an intentional vagueness in the preceding
description of the Time Slot Assigner control fields as
being "in" the Receive and Transmit Interrupt Control
Registers (RICR and TICR). These two registers are
somewhat more complex than other IUSC registers -
this section describes how to access the TSA fields.

Figure 32 shows how the less-significant byte of both
the RICR and TICR contains fixed data, but any of five
different internal registers can be selected as the
more-significant byte of each register. At the first
level of data structure, four of the commands that can
be written to the RCmd field of the Receive Command
I Status Register (RCSR15-12) select the contents of
RICR15-8. Similarly, four of the commands that can
be written to the TCmd field of the Transmit
Command I Status Register (TCSR15-12) select the
contents of TICR15-8. The encoding of both sets of
commands is the same:

xCmd Contents of xICRlS-8
0100 xTSA data
0101 Current xFIFO Level
0110 xFIFO Level for Interrupt
0111 xFIFO Level for DMA Request

(where "x" stands for either "R" or "T"). The other
options will be discussed in subsequent chapters. For
our purposes it's sufficient to note that "TSA data" can
be read and written as xlCR15-8 if the 0100 command

has been written to xSCR15-12 more recently than
0101, 0110, or 0111. The IUSC resets to reading the
Current FIFO level in both the RICR and TICR.

Reading "TSA data" from RICR or TICR always yields
the xTSASlot value, with the LSBit of the MSByte
equal to zero.

Figure 32 also shows how a second level of data
structuring determines the meaning of "TSA data".
For write operations, the bit written in the "bit 8"
position selects the destination of the data:

In summary, to set up xTSA, first write the 0100
command to the xCmd field of the xSCR. Then write
the xTSASlot value to the MSByte of xlCR with the
LSBit of the byte equal to 0. Finally, write the
xTSAOffset and xTSACount values to the MSByte of
xi CR with the LSBit of the byte equal to 1.

xICR8 value Destination of xICRlS-9

.Jc_
/

0 xICRlS-9 --> xTSASlot
1 xICRlS-13 --> xTSAOffset
1 xICR12-9 --> xTSACount

RICR orTICR

/
/

/

<:: -- ------ ---- --
If the last value In the range Then the followlng data can be

0100-0111, written to the "command" accesaed In the MS byte
fleld of the RSCR or TSCR was:

0100

0101

0110

0111

I

I
I

J_

I
I

t'...

of RICR or TICR:

Read or Write "TSA data"

Read the # of empty entries In the TxFIFO, I
l

or the# of rcved bytes In the RxFIFO

I Read or Write the # of empty TxFIFO entries,
I or the# of rcved characters In the RxFIFO,
I at which to request Interrupt

Read or Write the # of empty TxFIFO entries,
or the # of rcved characters In the RxFIFO,

at which to request OMA transfer

I'
\
\
\
\
\
\
\
\

If the LSB of the Then the rest of the "TSA data"
'TSA data' written Is: written should be as follows:

RTSASlotor

\
\
\
_j

0 0
TISASlot

1 RTSAOffset 01 RTSACount or 1 TTSAOffset TTSACount

""""" "TSA data" olwayo ~oldo lhlo byte ~
Figure 32. Structure of the RICR and TICR

39

Notes:

4. Serial Modes and Protocols

The main advantage of USC family members is that
they can communicate in many different modes and
serial protocols. This, in turn, makes for more flexible
and capable products for Zilog's customers. This
chapter describes how to set up and use the IUSC in
its various modes of serial operation. These modes
can be classified into three major categories: asynch
ronous, character-oriented synchronous, and bit
oriented synchronous protocols.

Asynchronous Modes
These protocols date back to when the first teletype
writers were succeeding Morse code, although there
have been various changes since. Figure 32 shows
how a start bit precedes each character in async
communications, and that so-called stop bits separate
characters. A start bit is a period of space/zero that's
the same length as each following data bit. Each stop
bit is a period of mark/one having a nominal minimum
duration of one bit time. (The IUSC and other devices
offer the ability to "shave" stop bits to less than a bit
time.) In most forms of async, the falling edge
between a stop bit and the next start bit can come any
time after this minimum stop bit duration. In other
words, the length of the stop bit does not have to be
any particular multiple of the nominal bit time.

To handle this variability in the length of stop bits,
asynchronous receivers "oversample" the received

serial data at some multiple of the nominal bit fre
quency. Software can set up the IUSC to do this at
16, 32, or 64 samples/bit. When a Receiver is waiting
for a start bit and successive samples reveal a falling
edge, it typically samples again one-half bit time later,
to validate the start bit. If the serial data is still
space/zero, the receiver then samples the following
data bits and stop bit at their nominal centers after
that. If the hardware samples the stop bit as space/
zero, the associated character is invalid or at least
highly suspect.

Some async protocols check further for serial link
errors by including a parity bit with each character.
The transmitter generates such a bit so that the total
number of 1-bits in the character is odd or even. The
receiving station checks each parity bit. If it finds an
incorrect one, it discards the character and/or notifies
the operator(s) of the receiving and/or transmitting ma
chine(s). But a single parity bit is not a very reliable
checking method -- it can be easily deceived by errors
that affect more than one bit. Few async applications
actually check parity nowadays, although they may
generate it just in case they find themselves talking to
equipment that does. Where protection against line
errors is important, some async applications may use
block-oriented checking as described below for
synchronous protocols.

Start
Bit

5 to 8 data bits,
plus optional parity bit

Stop
Bit

Start
Bit

1,UllTlm•i
Rcver detects

Falling Edge

Rcver validates
Start Bit

Minimum 1 Bit Time
(except for "Shaving")

Rcver samples Data
(and Parity?) Bits

Rcver checks
Stop Bit

Figure 32. Asynchronous Data

41

'--'----lt=J !.___.__ __ ~-=----~' nn_nn_
SYN SYN STX ETX May be SYN's,

~(16)~(16)~(02)~Data~(03)~CRC >< Mark,Space, ><SYN~SYN~
or Not Driven <16l <16)

Figure 33. Character Oriented Synchronous Data

The IUSC can handle a variety of options within
"classic" async operation, plus several unique variants.
In isochronous mode, the data format is similar to
classic async, but external hardware supplies a bit
synchronized 1 X clock instead of a 16x, 32x, or 64x
clock. In Nine-Bit mode, an extra bit differentiates
between "address" characters that select a particular
destination on a multi-station link, and subsequent
data characters. In Code Violation mode, a three-bit
sequence that includes violations of the encoding
mode replaces the start bit that precedes each
character. (A primary use of Code Violation mode is
to implement MIL-STD-15538.)

Character Oriented Synchronous Modes
These protocols came into use after async, in an effort
to get better line utilization by eliminating start and
stop bits. In sync modes, characters follow one
another directly on the serial link, each consisting of
an agreed-upon number of bits and each bit having the
same nominal length. Since bits and characters occur
at regular intervals, the datacom hardware can
typically handle higher bit rates because it doesn't
have to oversample as in typical async applications.
This effect combines with having fewer bits per
character, to make synchronous operation substan
tially faster than async.

In sync modes, "special" characters divide the data
into "messages". Figure 33 shows how the transmitter
sends some minimum number of agreed-upon "sync
characters" between messages. When a synchronous
receiver begins to receive a message, it typically starts
in a "search mode" in which it samples successive bits
into its serial-to-parallel shift register. It does this until
the last N bits match a defined sync pattern. Then the
Receiver enters a mode in which it simply captures
each succeeding group of bits as a character.

Most sync protocols require the receiving station to
validate the sync pattern match. It can do this by
checking whether the next character is another sync,
an agreed-upon "start of message" character, or
perhaps one of a small set of such characters. This
validation can be done by software or by hardware.

Almost all character-oriented synchronous protocols
also define one or more characters, or sequences of
characters, to mark the end of a message. Instead of

42

(or sometimes besides) parity checking on each
character, synchronous protocols will typically include
a checking code covering most or all the characters in
each message. The transmitter accumulates and
sends this code before or after the end-of-message
character or sequence. Early sync protocols used a
Longitudinal Redundancy Character (LRC) that was
simply the parallel Exclusive Or of the characters in
the message. Newer protocols use various kinds of
Cyclic Redundancy Checking (CRC), which offer
greater reliability in exchange for a somewhat more
involved method of computation. Either kind of
message checking can be computed by either
hardware or software at the Transmitter and Receiver.
The IUSC hardware can automatically generate and
check various kinds of CRCs.

Synchronous applications vary considerably in terms
of the line state between messages. In half-duplex
operation, each station typically stops driving the line
after the end of a message. The other side then starts
driving it to "turn the line around". In full-duplex point
to-point environments, a transmitter may send a
stream of repeated Sync or Idle characters between
messages. This maintains synchronization between
itself and the remote receiver as to character
boundaries. This avoids the need to send several
sync characters before the start of the next message,
when it becomes available for transmission. In other
full-duplex environments, the line may be maintained
at a constant Mark or Space between messages.

While many modes have several variants, the top level
of the !USC's control hierarchy includes the following
character-oriented synchronous modes. In Monosync
mode, the hardware transmits or matches a sync
character of eight bits or less. Software must handle
further receive-sync validation. In Bisync mode the
hardware transmits or matches a minimum of two sync
characters. The two can be the same or different
codes, each of eight bits or less. Transparent Bisync
mode is similar to Bisync mode except that the prefix
character Data Link Escape (OLE) precedes control
characters. This allows the transmission of arbitrary
"binary" data without conflict with the various control
characters. Slaved Monosync mode applies only to
the Transmitter, making it operate in conformance with
the X.21 standard, such that it sends characters in
byte-synchronism with those received. External Sync

mode applies only to the Receiver, and leaves all
sync-detection and framing control to external circuitry.
An input signal simply enables the Receiver to
assemble characters from the RxD line.

The final character-oriented synchronous mode of the
IUSC provides basic facilities for IEEE 802.3 (Ether
net) operation. At the start of a frame, the Transmitter
generates, and the Receiver detects, a preamble
consisting of alternating 0 and 1 bits ending with two
1 's in succession. Bi-phase-level data encoding must
be selected in the Transmit and Receiver Mode
Registers (TMR and RMR), as described in Chapter 3.
External hardware must be provided to detect
collisions and to signal the Transmitter when they
occur. It also must signal the Receiver when a frame
ends based on loss of carrier. Upon collision
detection, "back-off" timing must be determined by
external hardware or host processor software.

Bit Oriented Synchronous Modes
As character-oriented synchronous protocols came
into wider use in the 1960's and 70's, the number of
characters having special significance for the
hardware kept increasing. Hand in hand with this, the
complexity of the required hardware processing and
state machines rose drastically. Particularly trouble
some was data "transparency", the ability to transmit
any kind of "binary" data without conflict with the many
control characters used in these protocols.

These problems might be less severe were they
occurring today. But given the technology available in

the 1960's, the proliferation of sync protocols was
making it harder and harder to build general purpose
datacom hardware. Instead, one had to build dedi
cated communications controllers for each protocol.

Bit oriented synchronous protocols were a response to
these problems. IBM's SDLC was the first one widely
used; subsequent standardization efforts added
several refinements in defining HDLC. These
protocols simultaneously minimized the amount of
required hardware support, while lifting all restrictions
on the content of the data transmitted. Figure 34
shows how in bit-oriented modes, frames are groups
of sequential characters, each ending with a CRC
code to verify its correctness as in character-oriented
protocols. The difference lies in the Flag sequences
used to begin, end, and separate frames.

When a bit-oriented synchronous Receiver starts to
receive a frame, it looks for a Flag sequence
(0111111 O) just as a character-oriented synchronous
Receiver looks for its sync character. While sending a
frame, a bit-oriented synchronous Transmitter continu
ally checks whether any sequence of data bits could
look like a Flag. It does this without regard for charac
ter boundaries. Whenever the data presented to a
Transmitter includes a zero followed by five ones, the
Transmitter adds an extra zero-bit after the fifth one
bit. Correspondingly, a bit-oriented synchronous
Receiver monitors the serial data stream within a
frame; any time it sees 0111110, regardless of charac
ter boundaries, it deletes the trailing zero.

May be Flags,
..::::..-=:::: ... ~ Flag~Mark, Space,~ Flag~ Data

E) or Not Driven (7E)

Suppose that the Data presented to the IUSC includes:

lllOxxxx

yylOOlll

The Data actually sent will include:

xOlllll,lOOly

Extra 0-blt Inserted by Transmitter,
deleted by Receiver

Figure 34. HDLC/SDLC Data

43

This relatively simple technique allows transmission of
any kind of data and assures uniqueness of the Flag
sequence within the data stream. (Uniqueness is
assured as long as line errors don't occur.) This
makes for simpler hardware than with some character
oriented synchronous protocols, in that the hardware
only has to recognize a few bit sequences. They
include 0111111 for zero-bit-stuffing by a Transmitter,
011111 O for bit removal by a Receiver, a Flag
sequence, and finally an Abort sequence. An Abort is
a zero followed by more consecutive ones than in a
Flag (e.g., 7 or 15 ones). ,

As mentioned in the previous chapter, SDLC/HDLC
protocols match up well with NAZI-Space encoding to
ensure data transitions for clock resynchronization.
This is because the Transmitter inverts NAZI-space
data for every 0-bit and there are never more than five
1-bits in succession within a frame.

Finally, since the Flag-matching hardware operates
without regard for character boundaries, bit-oriented
synchronous protocols can handle frames that are any
number of bits in length. (In character-oriented synch
ronous protocols, messages must be composed of an
integral number of characters.)

The IUSC can handle most variations of SDLC and
HDLC protocols, since it leaves the details of almost
all such variations to the host software. One variation
with hardware significance is Loop mode. In this
mode, the Transmitter can forward received data from
the "preceding" station in a loop of stations to the
"next" one in the loop. When this station has a frame
to send, host software can load the start of the frame
into the TxFIFO and then enable the Transmitter. The
Transmitter then waits until it detects the transmit·
permission token called Go Ahead, which is the same
as the short-Abort sequence 01111111 in HDLC/
SDLC mode. The Transmitter then changes this
character to a Flag and begins transmitting.

The Mode Registers (CMR, TMR and RMR)
Three Mode registers control the basic operation and
serial protocol of the IUSC's Transmitter and Receiver.

The Channel Mode Register (CMR) selects among the
various communication protocols mentioned in the
preceding sections. Figure 35 shows that the MSbyte
controls the mode of the Transmitter, while the LSbyte

TxSubMode TxMode

controls that of the Receiver. Software can select the
modes of the two modules independently by writing
bytes to the CMR or, on a 16-bit bus, it can set both
modes simultaneously using a 16-bit write.

Within each byte, the four LSbits select the major
communications protocol. The coding for these fields
is similar but not identical because some modes apply
only to the Transmitter while others apply only to the
Receiver:

TxMode
~ (CMRll-8)
0000 Asynchronous
0001
0010 Isochronous
0011 Async w/Code v.
0100 Monosync
0101 Bisync
0110 HDLC/SDLC
0111 Transp. Bisync
1000 Nine-Bit
1001 802.3 (Ethernet)
1010
1011
1100 Slaved Monosync
1101
1110 HDLC/SDLC Loop
1111

RxMode
(CMR3-0)

Asynchronous
External Sync

Isochronous
Async w/Code v.

Monosync
Bi sync

HDLC/SDLC
Transp. Bisync

Nine-Bit
802.3 (Ethernet)

Zilog reserves values shown above as "·" for use in
future USC family members; they should not be
programmed in the indicated field.

Later sections describe each of these modes and
protocols individually, including the significance of the
Tx and RxSubMode bits (CMR15-12 and CMR7-4
respectively) in each case. The various major modes
use the SubMode bits differently, to control protocol
variations and options that are specific to each mode.
(Sometimes the same SubMode option applies to two
or more related major modes.)

Understanding the choices offered by the Channel
Mode Register is perhaps the most important single
factor in understanding the IUSC.

The Transmit and Receive Mode Registers (TMR and
RMR) contain basic control information for the
Transmitter and Receiver, including the serial format
and data-integrity checking. Figures 36 and 37 show
the TMR and RMR respectively.

RxSubMode RxMode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 35. The Channel Mode Register (CMR)

44

TxEncode TxCRCType TxCRC TxCRC TxCRC TxParType TxPar TxLength TxEneble
Start En ab at End En ab

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 36. The Transmit Mode Register (TMR)

RxDecode RxCRCType RxCRC RxCRC QAbort RxParType Rx Par RxLength RxEnable
Stert Eneb En ab

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 37. The Receive Mode Register (RMR)

Enabllng and Disabling the Receiver and
Transmitter

The TxEnable and RxEnable fields (TMR1-0 and
RMR1-0) enable and disable the Transmitter and
Receiver to send and receive serial data. 00 in
TxEnable disables the Transmitter, so that it keeps its
output inactive and doesn't transfer characters from
the TxFIFO to its shift register. Assuming that the
TxDMode field (IOCR7-6) is 00 to propagate the
Transmitter's output onto TxD, the pin shows constant
Mark/high if the MSBit of the Txldle field (TCSR10) is
1 and/or the TxEncode field (TMR15-14) is 000
indicating NRZ data. If TxDMode is 00, TCSR1 O is 0,
and TxEncode is non-zero, the TxD pin shows
encoded ones.

If software changes TxEnable to 00 while the Trans
mitter is sending a character, it discards the character
and disables its output immediately. Similarly, 00 in
RxEnable disables the Receiver: it ignores the RxD pin
and doesn't assemble characters. If software changes
this field to 00 while the Receiver is assembling a
character, It discards the partial character.

01 in TxEnable or RxEnable disables the Transmitter
or Receiver in a more "graceful" way than 00. If soft
ware changes TxEnable to 01 while the Transmitter is
sending asynchronous data, it finishes sending the
current character before going inactive. If software
changes TxEnable to 01 while the Transmitter Is
sending synchronous data, it finishes sending the
current frame or message before going inactive. If
software changes RxEnable to 01 while the Receiver
is receiving asynchronous data, it finishes assembling
the current character before going inactive. If software
changes RxEnable to 01 while the Receiver is
receiving synchronous data, it finishes receiving the
current frame or message before going inactive.

10 in TxEnable or RxEnable enables the Transmitter
or Receiver unconditionally.

11 in TxEnable places the Transmitter under the
control of the /CTS pin. /CTS should be programmed
as an input in the CTSMode field of the Input/Output
Control Register (IOCR15-14). In this case, the
Transmitter only starts sending a character when /CTS
is low. If /CTS goes high while the Transmitter is
sending a character in an async mode, it finishes

45

sending the character before going inactive. In any
synchronous mode, /CTS high summarily disables the
Transmitter. In either case, sooner or later, /CTS high
forces TxD to Mark or ones as described above for
TxEnable=OO.

11 in RxEnable places the Receiver under the control
of the /DCD pin. /DCD should be programmed as an
input in the DCDMode field of the Input/Output Control
Register (IOCR13-12). The Receiver ignores the RxD
pin and does not assemble characters when /DCD is
high. If /DCD goes high while the Receiver is as
sembling a character in External Sync mode or 802.3
(Ethernet) mode, it finishes assembling the character
and places it in the RxFIFO before going inactive. In
any other mode the Receiver discards any partial
character when /DCD goes high.

Character Length

The TxLength and RxLength fields (TMR4-2 and
RMR4-2) control how many bits the Transmitter sends
and the Receiver assembles in each character. The
IUSC interprets both fields as follows:

xMR4-2 Character Length
000 8 bits
001 1 bit
010 2 bits
011 3 bits
100 4 bits
101 5 bits
110 6 bits
111 7 bits

When TxLength specifies less than 8 bits, the Trans
mitter discards/ignores one or more of the more-signif
icant bits of each byte that it takes from the TxFIFO.

When RxLength specifies less than 8 bits, the Re
ceiver replicates the most significant received bit in the
more significant bits of each byte it places in the
RxFIFO. For Async mode, it includes a received Par
ity bit, if any, in each data byte. If RxLength, plus the
Parity bit if any, is less than 8 bits, the Receiver fills
out the more-significant bits of each byte with the Stop
bit, which is 1 except when there's a Framing Error.

When RxLength is less than 8 in synchronous modes
including HDLC/SDLC, the Receiver fills out the more

significant bits of each byte with the last received bit
(the parity bit if one is used), except In three cases:
1. In Monosync and Bisync modes, when CMR4 is 1

so that sync characters are 8 or 16 bits long, but
data characters contain less than 8 bits, each data
character is left-justified in its byte.

2. In HDLC/SDLC mode, when CMR5-4 are non-zero
so that address and control characters are 8 bits
long but subsequent characters are less than 8
bits long, each subsequent character is left
justified in its byte.

3. In HDLC/SDLC mode, if the frame doesn't end on
a character boundary, its final data bits are left
justified within the (right-justified) number of bits
specified by RxLength, unless case 2 also applies,
in which case they're left-justified in the last byte.
(The number of bits in the last character of each
HDLC/SDLC frame is always indicated in the
RxResidue field of the RCSR.)

In any of these three cases of left-justified data, the
less-significant bits are left over from the previous
character.

If software enables parity checking in an asynch
ronous mode, the Transmitter and Receiver handle the
parity bit as an additional bit after the number of bits
defined by TxLength and RxLength. If software
selects parity checking in a synchronous mode, the
Transmitter and Receiver handle the parity bit as the
last of the number of bits specified by TxLength and
RxLength.

In Async with Code Violations (15538) mode only, the
Transmitter and Receiver can handle "words" that
include up to 16 data bits, treating each word as two
characters in the Transmit and Receive FIFOs. When
software selects this option, the number of data bits
per word is eight more than the number usually
indicated by TxLength and RxLength.

Software should reprogram RxLength only while the
Receiver is either disabled, in Hunt state in a
synchronous mode, or between characters in an
asynchronous mode. Software can reprogram
Txlength at any time, but a new length takes effect
only when the Transmitter loads the next character
into its shift register.

Parity, CRC, Serial Encoding

A later section of this chapter, Parity Checking,
discusses how bits 7-5 of the TMR and 8-5 of the
RMR control parity checking.

Similarly, the later section Cyclic Redundancy
Checking describes how bits 12-8 of the TMR and 12-
9 of the RMR control CRC checking.

The TxEncode and RxDecode fields (TMR15-13 and
RMR15-13) specify how the Transmitter encodes

46

serial data on the TxD pin and how the Receiver
decodes it on the RxD pin. See Chapter 3 for a full
description of the following encodings:
xMRl5-l3 Data Format

000 NRZ
001 NRZB
010 NRZI-Mark
011 NRZI-Space
100 Biphase-Mark
l O l Biphase-Space
l l 0 Biphase-Level
111 Differential Biphase-Level

Asynchronous Mode
Software can select classic asynchronous operation
for both the Transmitter and the Receiver, by program
ming the TxMode and RxMode fields (CMR11-8 and
CMR3-0 respectively) to 0000. The earlier Figure 32
shows how a "O" Start bit precedes each character
and a "Stop bit" follows each, the latter being a "1"
condition that's more than 1/2 bit time long. The idle
state of the line is 1, and the Transmitter and Receiver
divide their input clocks by 16, 32, or 64 to arrive at
the nominal bit time.

Software can make the Transmitter calculate and send
a parity bit with each character and can make the
Receiver check such parity bits, as described in the
later section Parity Checking.

The two more significant TxSubMode bits (CMR15-14)
control the minimum number of Stop bits that the
Transmitter sends between consecutive characters.
The Transmitter interprets them as follows:
CMR15-14 Minimum Length of Tx Stop

00 one bit time
01 Two bit times
10 One, "shaved" per CCRll-8
ll Two, "shaved" per CCRll-8

When CMR15 is 1 in this mode, the TxShaveL field of
the Channel Control Register (CCR11-8) controls the
exact length of the minimum Stop bit(s). If the 4-bit
value in TxShaveL is "n", then the lengt!": of the shaved
stop bit is (n+1)/16 bit times. The following table
summarizes the stop bit possibilities afforded by
CMR15-14 and CCR11-8:
CMR15-14 CCRll-8 Minimum Len th of Tx Sto

00 xx xx 1 bit time

01 xx xx 2 bit times

10 0000-0111 1/2 or less: DO NOT USE

10 1000 9/16

10 1001 5/8

10 1010-1110 11/16 to 15/16

10 1111 1 (as with CMR15-14•00)

11 0000 17/16

11 0001 9/8

11 0010-1110 19/16 to 31/16

11 1111 2 (as with CMR15-14g01)

The two LSblts of the Tx and RxSubMode fields
(CMR13-12 and 5-4) control the factors by which the
Transmitter and Receiver divide their TxCLK and
RxCLK inputs to arrive at the nominal bit length. The
IUSC interprets both fields as follows:
CMR13-12
& CHRS-4

00
01
10

Nominal Bit Length
TxClock or RxClock I 16
TxClock or RxClock I 32
TxClock or RxClock I 64

11 Reserved, do not program

For the Receiver, choosing a larger divisor makes it
sample the data on RxD more often. This may result
in a slightly better error rate in marginal circum
stances. For the Transmitter there is no significance
to the divisor chosen, other than the convenience of
choosing the same value as for the Receiver, so that
the same source can be used for both RxCLK and
TxCLK. (See Chapter 3 for more information about
clock selection.)

Zilog reserves the two MSbits of the RxSubMode field
(CMR7-6) in Asynchronous mode for use in future
products. They should always be programmed as 00.

There is no such thing as a "received stop length"
parameter: the Receiver does not expect or check for
a particular stop bit length. It simply samples the
received data at the nominal midpoint of a single Stop
bit, and loads a corresponding Framing Error bit into
the RxFIFO with each character. This bit migrates
through the FIFO with its associated character and
eventually appears as the CRCE/FE bit in the Receive
Command I Status Register (RCSR3). Note that
RCSR3 can represent the status at the time that a
character marked with RxBound1 status was read from
the RxFIFO, or the status of the oldest 1 or 2
characters that are still in the RxFIFO, as described
later in Status Reporting.

Break Conditions

A Break condition is a period of Space (zero) state on
an Async line, that's longer than the length of a
character. Such a sequence traditionally signals an
exceptional condition or a desire to stop transmission
in the opposite direction. Alternatively, a Break may
mean that the switched or physical connection with the
other station is broken. The Receiver detects a Break
condition when it samples a supposed Stop bit as
Space/zero (a Framing Error) and all the data bits
were also Space/zero. In this case the Receiver

1 Previous USC documentation called RxBound 'CV/EOF/EOT'.

47

doesn't place the all-zero character in the RxFIFO, but
instead sets the Break/Abort bit in the Receive
Command/Status Register (RCSR5). This bit can be
enabled to cause an interrupt at the start of a Break,
but there's no provision for an interrupt at the end of a
Break. Software can tell when the Break ends by
polling the Break/Abort bit. This is because the bit
doesn't go back to 0 until software has written a 1 to
the bit to "unlatch" it, and RxD has gone back to
1/High/Mark.

Software can send a Break by programming the
TxDMode field of the lnpuVOutput Control Register
(IOCR7-6) to 10 to force TxD to low/space. Then it
can use whatever kind of timing resources it has
available to measure the desired duration of the
Break. After this, it can program TxDMode back to 11
to force TxD to high/mark or to 00 to resume normal
operation. Chapter 3 describes the IUSC's Counters
and Baud Rate Generators that may be useful in
timing the length of a transmitted Break. While most
modern serial controllers will detect a Break that's only
slightly longer than a character, older conventions
required a Break to be much longer: 200 milliseconds
or more.

Isochronous Mode
Software can select Isochronous operation for the
Transmitter and the Receiver, by programming the
TxMode and RxMode fields (CM R 11-8 and CM R3-0
respectively) to 0010. This mode is similar to Asynch
ronous mode as described above, except that the
Transmitter and Receiver use 1 X instead of 16X, 32X,
or 64X clocking. This typically means that an external
bit clock must be provided. It's possible to use the
DPLL to recover a 1 X clock, but this is a lot like what
the Receiver does in Async mode anyway.

Of the options available in the Channel Mode Register
for Async mode, the only one that applies in Iso
chronous mode is CMR14. This controls whether the
Transmitter sends one or two stop bits:

.cMRli Length of Tx Stop
O 1 bit time
1 2 bit times

The IUSC doesn't use the other 3 bits of the
TxSubMode field in Isochronous mode, nor any of the
RxSubMode bits, but Zilog reserves these bits for
functional extensions in future products. Software
should always program them with zeroes in Isochron
ous mode on an IUSC.

Nine-Bit Mode
This mode is compatible with various equipment
including some Intel single-chip microcontrollers. In
some contexts it's called "address wake-u mode".
Software can select it for the Transmitter and the
Receiver by programming the TxMode and RxMode
fields (CMR11-8 and CMR3-0 respectively) to 1000.
Operation on the line is similar to Async mode, using a
single stop bit and either eight data bits or seven data
bits plus a parity bit. Following the eighth (MS) data
bit or the Parity bit, an additional bit differentiates
normal data characters from "destination address"
characters. Address characters identify which of
several stations on the link should receive the fol
lowing data characters. In effect, Nine Bit mode is like
a Local Area Network using asynchronous hardware.

The Transmitter saves TxSubMode bit 3 (CMR15) with
each character as it goes into the TxFIFO, and sends
it as that character's address/data bit. By convention
a 0 signifies "data" and a 1 signifies "address". As
software or the Transmit OMA channel writes each
character into the TxFIFO, the IUSC saves the state
of CMR15 with it. This bit accompanies the character
through the FIFO and out onto the link.

TxSubMode bit 2 (CMR14) selects between eight data
bits or seven data bits plus parity:

.cMRli Data bits
0 Eight
1 Seven plus parity. The

TxParEnab bit in the Transmit
Mode Register (TMRS) must be 1.

Typically, Nine Bit receivers check the parity of
received address bytes. This means that when
software selects eight data bits, it must calculate its
own parity bit in the MSBit of addresses.

As in Async mode, the two LSbits of the Tx and
RxSubMode fields (CMR13-12 and 5-4) control
whether the Transmitter and Receiver divide their
TxCLK and RxCLK inputs by 16X, 32X, or 64X to
arrive at the nominal bit length. See the preceding
Async section for the field encodings and a discussion
of the significance of this choice.

The Receiver sets the RxBound status bit for a
received address character, that is, a character that
has its ninth bit equal to 1. This bit accompanies the
character through the RxFIFO and ends up in the
Receive Command I Status Register (RCSR4). Note
that this mode uses the RxBound indicator quite a bit
differently from other modes, in that it marks the start
of each received block rather than the end. Because
of this, some of the mechanisms associated with
RxBound, that are described in later sections, aren't of
much use in Nine-Bit mode. For example, you
probably wouldn't want to store a Receive Status
Block for an address character ...

48

The IUSC doesn't use the two MSBits of the
RxSubMode field (CMR7-6) in Nine Bit mode, but
Zilog reseNes these bits for future enhancements and
software should program them as 00 in this mode.

Async with Code Violations (15538) Mode
Software can select the Async with Code Violations
(ACV) mode for the Transmitter and the Receiver by
writing 0011 to the TxMode and RxMode fields,
CMR11-8 and CMR3-0. The main use of this mode is
to implement MIL-STD-1553B communications.
However, there are at least two variations of this
protocol in use, and the mode has some interesting
properties for use in proprietary datacom schemes as
well. Therefore this section will discuss the mode "at
arm's length from" 1553B itself.

The mode resembles the Isochronous mode in that the
Transmitter and Receiver use a 1 X clock instead of
16, 32, or 64X oversampling.

1553B defines the smallest indivisible group of data on
the line as either 16 or 14 consecutive bits, and calls
such a group a "word". This section will use this term
in this way as well as to describe 16 bits transferred to
or from a FIFO. We'll call 8 bits transferred to or from
a FIFO a "byte".

Zilog recommends ACV mode only with Biphase
encoded data. Standard 1553B uses Biphase-Level
encoding while an Army variant uses Blphase-Mark.
(Before reading further you may want to review the
Data Formats and Encoding section of Chapter 3.)

ACV mode replaces the Start bit of Async and
Isochronous modes by a unique 3-bit sequence, of
which the first and third do not include the usual clock
transition. There are two different sequences: two
ones followed by a zero begin a "command/status
word" while two zeroes followed by a one signify a
"data word".

Because of the missing clock transitions, these
sequences can't occur in the subsequent data bits for
each character. This allows a Receiver to recognize
word boundaries even in a continuous data stream.
(This can be difficult in normal async applications.)

The idle line state between characters is all ones as in
other async modes. Because the 3-bit Start sequen
ces are unique and recognizable, there's no need for a
Stop bit to ensure a transition between characters.
Therefore Stop bits are optional in ACV mode.

In standard 1553B, 16 data bits follow each Start
sequence and are followed by an even parity bit. In an
Army variant there are 14 data bits per word and no
parity bit. Figure 38 shows these two standard data
formats, and includes both kinds of Start sequences
for all four Biphase modes.

3-blt 'Command/ 3-blt
Status' Start 'Data' Start

1-C: :>I l""-C:E--------,:>..il
St~~:;~~ J \ /~. __ 1_6_D...,~t,..;a-B-lt-s --~~~:-:r~~~\ /~--\----1-6 -Da~;,ta-Bl-ts--~;-:-:ity_n _Id-le-

"Command/Status" Start Sequence

TxCLK

Bl phase--_,__~
Mark

(Army)

Blphase-
Space ---!---.-,,~-_,_-~ ~~

Bl~::i•· J; \~_,_ __,!a:.
(Standard) i
Dlfferentlal ·

Blphaae·----~D iX '[__
Level

Data
Bits:

1 W/O
clock

: Normal 1 : Ow/o
clock

1st
Data

;

·--.

"Data" Start Sequence

TxCLK

Blphaaa-_ _,__ __ ..,., ~---<---~
Mark

(Army)

Blphaae
Space-~~

Blphaee- ---n
Level _____J /

(Standard) _ _,_:~-___,_-~

Dlfferentlal
Blphaae

Level

Data
Bits:

o w/o : Normal o : 1 w/o
clock : : clock

' ' ' '

1st
Data

Figure 38. A 15538 Command/Status Word Followed by a Data Word

If software selects ACV mode with any of the four
NRZ encodings, the IUSC sends and scans for Start
sequences that contain the same data bits, but such
Start sequences aren't uniquely recognizable as in
Biphase modes.

The two MSBits of the TxSubMode field (CMR15-14)
select the minimum number of Stop bits that the
Transmitter sends between words:
CMRlS-14 # of Stop Bits Transmitted

00 One
01 Two
10 None
11 Reserved; do not program

If the CMR13 bit of the TxSubMode field is 1 In ACV
mode, the Transmitter sends 8 more data bits per

49

character/word than the number specified by the
TxLength and TxParEnab fields of the Transmit Mode
Register (TMR4-2 and TMR5). If CMR13 is 0, the
Transmitter sends 8 or less bits in each character, as
in other modes.

Similarly, if CMR4 in the RxSubMode field is 1 in ACV
mode, the Receiver expects 8 more data bits per
character/word than the number specified by the
RxLength and RxParEnab fields of the Receive Mode
Register (RMR4-2 and RMR5), and it marks the sec
ond byte of each received word with RxBound status
in the RxFIFO. If CMR4 is 0, the Receiver expects 8
or less bits per character as in other modes, and it
marks every received character with RxBound status.

Thus, for standard 15538 communications, program
both CMR13 and CMR4 to 1, and program TMR7-2

and RMR7-2 to 001000 to specify 16 total data bits fol
lowed by an even parity bit. For the Army variant,
again program CMR13 and CMR4 to 1, but program
TMR7-2 and RMR7-2 to 000110 for 14 data bits with
out a parity bit.

When CMR13 and CMR4 are 1, each word on the line
corresponds to either one 16-bit transfer, or two 8-blt
transfers, to and from the FIFO's. Software can use
the commands available In the Channel Command I
Address Register (CCAR) to match the bit ordering
used on the serial link and the byte ordering employed
by the host processor.

The CMR12 bit of the TxSubMode field controls which
of the two Start sequences the Transmitter sends in
front of each word. When CMR12 Is 1, it sends two
ones followed by a zero, which signifies a "command/
status word". When CMR12 Is 0, It sends two zeroes
followed by a one, signifying a "data word". Software
has to toggle CMR12 to send the two kinds of words.
The IUSC captures the state of CMR12 in the TxFIFO
with each data word, so that software can change it as
needed.

The Receiver sends the Identity of the Start sequence
for each word through the RxFIFO with the data. At
the "host end" of the FIFO, this Information Is available
as the ShortF/CVType bit In the Receive
Command/Status Register (RCSR8). ShortF/CVType
Is 1 for a "command/status" word and 0 for a "data"
word. Note that RCSR8 can represent the status at
the time that an RxBound character was read from the
RxFIFO, or the status of the oldest 1 or 2 characters
that are still in the RxFIFO, as described later in
Status Reporting.

Using "programmed 1/0", software has to set CMR12
and sample RCSR8 for the two kinds of Start
sequences. These matters can be handled on a OMA
basis, without processor intervention for each word.
Transmit software can use the Transmit Control
Block2 feature to change CMR12 for each block of
words that use the same Start sequence. Receiving
software can use the Receive Status Block feature to
make the IUSC store the contents of the RCSR In
memory after each word received. This status
includes the ShortF/CVType bit. See Using TCB's and
RSB's in ACV (15538) Mode later in this chapter for
more details on how to use these features.

The IUSC doesn't use the three MSBits of the
RxSubMode field (CMR7-5) In ACV mode, but Zilog
reserves these bits for future enhancements and soft
ware should always program them as 000 In this
mode.

2 Previous USC documentation called this the Transmit Status Block feature.

50

External Sync Mode
Software can select this mode only for the Receiver,
by programming the RxMode field of the Channel
Mode Register (CMR3-0) as 0001. This value Is not
defined for the TxMode field (CMR11-8).

This Is the most primitive synchronous mode. To use
it, software must program the DCDMode field of the
Input/Output Control Register (IOCR13-12) to 01, to
specify that the /DCD pin carries a Sync input.
External hardware must provide a low-active signal on
this pin, that controls when the Receiver should
capture data. When the external hardware establishes
synchronization and/or data validity, it should drive
/DCD low. The timing should be such that the IUSC
first samples /DCD low at the same rising edge of
RxCLK at which the first data bit that it should capture
is available on RxD. (Typically RxCLK comes directly
from the /RxC pin in this mode.)

While /DCD stays low the Receiver samples RxD on
each rising edge of RxCLK. Ideally, the external hard
ware should negate /DCD such that the IUSC samples
it high on the rising RxCLK edge after the one on
which It samples the last bit of the last character. But
if /DCD goes high wb.il.e. the Receiver Is In the midst of
assembling a received character, it continues on to
sample the remaining bits of the character and place
the character in the RxFIFO. Because of this, it's OK
for /DCD to go high during the last character, at any
time after a hold time after the RxCLK edge at which
the Receiver samples the first bit of the character.

Software can make the Receiver check a parity bit In
each character as described in the following section
Parity Checking. Besides or instead of character
parity, software can make the Receiver check a CRC
code as described in the Cyclic Redundancy Checking
section.

The IUSC doesn't use the RxSubMode field (CMR7-4)
in External Sync mode, but Zilog reserves this field for
future enhancements and software should program it
as 0000 In this mode.

Monosync and Blsync Modes
The Binary Synchronous Communications protocol put
forth by the IBM Corporation In the 1960's is often
abbreviated as "Bisync". But we will use the latter
term more generally, to mean an IUSC mode in which
the Transmitter sends, and the Receiver searches or
"hunts" for, a Sync pattern composed of two charac
ters totalling 16 bits or less. By contrast, we'll use the
term "Monosync" to mean a mode In which the
Transmitter sends, and the Receiver matches, a sync
pattern of eight bits or less. Use of Bisync mode with
the two sync characters equal represents a middle
ground, having the advantage that the two-character

pattern match by the Receiver is more reliable and
secure than the sync match in Monosync mode.

Software can select these modes for the Transmitter
and/or the Receiver, by programming the value 0100
(for Monosync) or 0101 (for Bisync) into the Tx~ode
and/or RxMode fields of the Channel Mode Register
(CMR11-8 and CMR3-0).

Software can make the Transmitter calculate and send
a parity bit with each character and can make the
Receiver check such parity bits, as described in the
Parity Checking section.

In such character-oriented synchronous modes, blocks
of consecutive characters are called messages.
Besides or instead of character parity, software can
make the Transmitter calculate and send a Cyclic
Redundancy Check (CRC) code for each message
and can make the Receiver check a CRC in each
message, as described later in Cyclic Redundancy
Checking.

On the transmit side, the Transmitter "concludes a
message" in either of two situations: when the
Transmitter underruns or after it sends a character
marked with "EOF/EOM" status. The Transmitter
underruns when the TxFIFO is empty and the transmit
shift register needs a new character. Software can
mark a character as End Of Message directly, using a
command in the Transmit Command/Status Register
(TCSR), or more automatically by using the Transmit
Character Counter as described in a later section.

The MSBit of the TxSubMode field (CMR15) deter
mines whether the Transmitter sends a CRC when it
concludes a message because of an Underrun
condition. The TxCRCatEnd bit in the Transmit Mode
Register (TMR8) determines whether it does so when
it concludes a message because of a character
marked as End Of Message. If CMR15 or TMR8 (as
applicable) is 1, the Transmitter sends the CRC code
that It has accumulated while sending the message. If
CMR15 or TMR8 is 0, it doesn't send a CRC code; if
there's any message-level checking, it must be sent
like normal data.

After the CRC, or immediately if CMR15 or TMR8 is 0,
in Monosync mode the Transmitter sends the Sync
character in the LSByte of the Transmit Sync Register
(TSR7-0). In Bisync mode ~t send~ t.he "SYN~"
character in TSR15-8 if CMR14 1s 0, while 1f CMR14 1s
1 it sends one or more character ~. The Trans
mitter takes the first character of each such pair from
TSR7-0; by convention it's called "SYNO". The secon.d
character of each pair comes from TSR15-8 and 1s
called "SYN1".

After sending this closing Sync character or pair,
if/while software doesn't present another message, the
Transmitter maintains the TxD signal in the "idle line
state" defined by the Txldle field of the Transmit

51

Command / Status Register (TCSR10-8). If this field
is 000, it continues to send more of the same Sync
character or pair that it sent to terminate the message.
Other Txldle values select constant or alternating-bit
patterns, as described later in Between Frames,
Messages, or Characters ..

If the CMR13 bit in the TxSubMode field is 1, the
Transmitter sends a "Preamble" before the "opening"
sync character that precedes each message. Soft
ware can select the length and content of the
Preamble in the Channel Control Register (CCR11-8).
A typical use of the Preamble is to send a square
wave pattern for bit rate determination by a phase
locked loop.

The Transmitter always sends at least one "opening"
Sync pattern before the first data character of a
message (after the Preamble if any). In Monosync
mode it sends one character from TSR15-8, while In
Bisync mode it sends the "SYNO" character from
TSR7-0 followed by "SYN1" from TSR15-8. (In Bisync
mode an opening Sync sequence is always a char
acter pair, regardless of CMR14.)

The LSBits of the TxSubMode and RxSubMode fields
(CMR12 and CMR4 respectively) specify the length of
the Sync characters that the Transmitter sends before
and after each message and between messages, and
for which the Receiver hunts. If CMR12 or CMR4 is 1,
sync characters have the same length as data
characters, namely the length specified by the
TxLength field in the Transmit Mode Register (TMR4-
2) or the RxLength field of the Receive Mode Register
(RMR4-2). If sync characters are less than 8 bits long,
they must be programmed in the least significant bits
of TSR15-8, RSR7-0 and, for Bisync, TSR7-0 and
RSR15-8. Furthermore, to guarantee that the
Receiver matches such Sync characters, the "unused"
MSBits among RSR7-0 (and for Bisync RSR15-8)
must be programmed equal to the MS active bit.

If CMR12 or CMR4 is 0, Sync characters are 8 bits
long regardless of the length of data characters.

On the receive side, the CMR5 bit of the RxSubMode
field determines what the Receiver does with Sync
characters. In CMR5 is 1, the Receiver strips char
acters that match the character in RSR15-8, and
neither places them in the RxFIFO nor includes them
in its CRC calculation. (In Bisync mode, aside from
the initial sync match the Receiver treats characters
that match "SYNO" in RSR7-0, but don't match "SYN1"
in RSR15-8, as normal data.) If CMR5 is 0, the
Receiver places all Sync characters inside a message
in the RxFIFO and includes them in the CRC
calculation.

The IUSC doesn't use the two MSBits of the
RxSubMode field (CMR7-5) in Monosync and Bisync
modes, nor CMR14 in the TxSubMode field in Mono-

sync mode. Zilog reserves these bits for future
enhancements, and software should always program
these bits with zeroes in these modes.

Transparent Blsync Mode
This mode is more specific to the Transparent Mode
option of IBM Corp.'s Binary Synchronous Communi
cations protocol than is the Blsync mode described
above. Software can select this mode for the Trans
mitter and the Receiver, by programming the TxMode
and RxMode fields of the Channel Mode Register
(CMR11-8 and CMR3-0) to 0111.

In Monosync and Bisync modes the Sync characters
are programmable, but in this mode the IUSC uses the
fixed characters "OLE" for the first of a sync pair, and
"SYN" for the second of a pair. (Software can make
the Transmitter send only SYNs for closing and idle
Syncs.) The LSBits of the TxSubMode and
RxSubMode fields (CMR12 and CMR4) control
whether the Transmitter and Receiver use the ASCII
or EBCDIC codes for control characters, with a 1
specifying EBCDIC.

Besides using OLE before an opening and possibly a
closing SYN, the Transmitter can check whether each
data character coming out of the TxFIFO is a OLE and
insert another OLE If so. This feature allows any kind
of data to be sent "transparently". The Transmitter
doesn't Include such an inserted OLE in its CRC cal
culation. Software can selectively enable and disable
this function using the Enable OLE Insertion and
Olsable OLE Insertion commands, as described later
In the Commands section. In general software should
enable OLE insertion for sending data and disable it
for sending a control sequence that starts with OLE.
The IUSC routes the state controlled by these
commands through the TxFIFO with each character,
so that software can change the state as needed.

Similarly, in Transparent Bisync mode the Receiver
checks whether each character coming out of Its shift
register is a OLE. If so, it sets a state bit. If the next
character is also a OLE, the Receiver doesn't include it
in the RxFIFO nor In the CRC calculation.

If the character after a OLE Is any of the terminating
codes "ITB", "ETX", "ETB", "EOT", or "ENO", the
Receiver places the terminating character In the
RxFIFO marked with RxBound status. As described In
later sections, this marking may set the Received Data
Interrupt Pending bit and thus force an interrupt
request on its /INT pin, and/or it may force a OMA
request on the /RxREO pin.

The first "OLE-SOH" or "OLE-STX" In a message
makes the Receiver enable its CRC generator for
subsequent data. Therefore, the CRC in Transparent
Blsync mode covers all the data after the first DLE
SOH or OLE-STX.

52

The Receiver doesn't take any other special action
based on received OLE's.

A Transmitter in Transparent Bisync mode sends a
OLE-SYN pair at the start of a message, but a
Receiver in this mode syncs up to SYN-SYN. This is
so that software can determine "transparency" sepa
rately for each message, by testing whether the first
character of the message In the RxFIFO is a OLE.

The following table shows the ASCII and EBCDIC
codes that a IUSC recognizes in this mode:

Character ASCII Code18 EBCDIC Code18

OLE 10 10

ENO 05 20

EOT 04 37

ETB 17 26

ETX 03 03

ITB 1F 1F

SOH 01 01

STX 02 02

SYN 16 32

Given the dedicated nature of the Sync characters, the
Transmitter interprets the three MSBits of the
TxSubMode field similarly to the way It does so in
Bisync mode. If CMR15 is 1, it sends a CRC when a
Tx Underrun condition occurs. If CMR14 is 1, the
Transmitter sends one or more OLE-SYN pairs after a
message, else it just sends SYNs. If CMR13 is 1, it
sends a Preamble sequence before the opening Sync
at the start of each message.

The same data checking options apply to this mode as
in Monosync and Bisync, but since we're quite proto
col-specific here, we can say that character parity is
typically not used while CRC-16 checking is. While
the Receiver can detect the end of the frame in
Transparent Bisync mode, the Receive Status Block
feature can't be used to capture the CRC Error status
of the frame, for reasons discussed later In the Cyc/lc
Redundancy Checking section. But the selective
Inclusion/exclusion of received data in the CRC
calculation, that's typical of this mode, precludes the
kind of automatic reception that the RSB feature
allows in modes. like HDLC/SDLC anyway.

The IUSC doesn't use the three MSBits of the
RxSubMode field (CMR7-5) in Transparent Bisync
mode, but Zilog reserves these bits for future
enhancements and software should always program
them as 000 in this mode.

Slaved Monosync Mode
This mode applies only to the Transmitter. Software
selects It by programming 1100 in the TxMode field of
the Channel Mode Register (CMR11-8), while pro
gramming 0100 in the RxMode field (CMR3-0) to
select Monosync mode for the Receiver.

The mode is intended to implement the X.21 standard
and similar schemes in which character boundaries on
TxO must align with those on RxO. For this to be
meaningful, RxCLK and TxCLK typically come from
the same source, as described in Chapter 3,

Most of the setup and operation in this mode is the
same as in Monosync mode, which was described in
an earlier section. CMR15 determines whether the
Transmitter sends a CRC in an Underrun condition.
CMR12 selects whether sync characters are the same
length as data characters, or are 8 bits long.

CMR13 controls the major operating option in Slaved
Monosync mode. (In regular Monosync mode this bit
controls whether the Transmitter sends a Preamble
before each message; in this mode it can't send one.)

The Transmitter will not go from an inactive to an
active state while CMR13 is 0. If CMR13 is 1 when
the Receiver signals that it has matched a Sync
character, the Transmitter sets the OnLoop bit in the
Channel Command I Status Register (CCSR7) and
becomes active. That is to say, the Transmitter can
go active at any received Sync character, not just one
that makes the Receiver exit from "Hunt mode".

Once the Transmitter starts, operation is identical with
Monosync mode. The Transmitter sends the Sync
character from TSR7-0. Then it sends data from the
TxFIFO, until the TxFIFO underruns or until it sends a
character marked as End of Message. Then the
Transmitter sends the CRC if software has pro
grammed that it should do so for this kind of termi
nation. Finally it sends a Sync character and checks
the CMR13 bit again.,

If CMR13 is still 1, the Transmitter waits, sending the
programmed Idle line condition, until the software
triggers it to send another message. If, however, soft
ware cleared CMR13 to O during the message just
concluded, or if it does so while the !USC is sending
the Idle condition, the Transmitter goes inactive but it
leaves OnLoop (CCSR7) set. In the inactive state it
sends continuous ones until software programs
CMR13 back to 1 again, and the Receiver signals
Sync detection.

If all the transmitted and received sync and data
characters are the same length, and the same clock is
used for both the Transmitter and Receiver, this
method of starting transmission assures that trans
mitted characters start and end simultaneously with
received characters, as required by X.21.

53

The IUSC doesn't use CMR14 in the TxSubMode field
in Slaved Monosync mode, but Zilog reserves this bit
for future enhancements and software should always
program it as zero in this mode.

IEEE 802.3 (Ethernet) Mode
Software can select this mode for the Transmitter and
the Receiver, by programming 1001 into the TxMode
and RxMode fields of the Channel Mode Register
(CMR11-8 and CMR3-0).

The !USC's capabilities for handling Ethernet com
munications are less comprehensive than those
offered by various dedicated Ethernet controllers. In
particular, external hardware must detect collisions
and generate the pseudo-random "backoff" timing
when a collision occurs.

In Ethernet parlance, blocks of consecutive characters
are called frames rather than messages.

Since Ethernet is a relatively specific, well-defined
protocol we can define the proper settings for many of
the !USC's register fields and options. We can specify
the exact values that software should program into the
Transmit Mode Register (070316) and Receive Mode
Register (060316). These values specify Biphase
Level encoding, a 32-bit CRC sent at End of Frame,
no parity, and 8 bit characters, all according to
Ethernet practise and IEEE 802.3. In addition the 2
LSBits specify auto-enabling based on signals from
external hardware on /CTS and /DCD.

On the transmit side, software should program the
TxPreL and TxPrePat fields of the Channel Control
Register (CCR11-8) to 1110. This value makes the
Transmitter send the 64-bit Preamble pattern 101 o ...
before each frame. In 802.3 mode the Transmitter
automatically changes the 64th bit from O to 1 to act
as the "start bit".

Furthermore, software should program the Txldle field
of the Transmit Command I Status Register (TCSR1 o-
8) to 110 or 111. These values select an Idle line
condition of constant Space or Mark. This condition
in turn, allows external logic to detect the missing
clock transition in the first bit after the end of the CRC,
and turn off its transmit line driver. (In a low-cost
variant, such an Idle state can simply disable an open
collector or similar unipolar driver.) Another alternative
is to use the Tx Complete output on {fxC or PORT7 to
control the driver.

External logic must detect collisions that may occur
while the !USC is sending, and signal the Transmitter
by driving the /CTS pin high when this occurs.
Besides the auto-enable already noted for TMR1-0,
software should write the CTSMode field of the Input /
Output Control Register (IOCR15-14) as Ox to support
this use of /CTS.

/DCD

i
Carrier

Detection

0 1 0 ... 1 0 1 0 1 1

At least 58
Alternating

Bits r 16 or 48 bit
Destination

Address

Start Bit

Source Address, Length,
Information

32 Bit
CRC I

Carrier
Loss

Figure 39. Carrier Detection for a Received Ethernet Frame

As in other synchronous modes, the MSBit of the
TxSubMode field (CMR15) controls whether the
Transmitter sends its accumulated CRC code If a
Transmit Underrun condition occurs.

On the receive side, external logic should monitor the
link and drive the /DCD pin low when it detects carrier.
Figure 39 shows the relationship between an Ethernet
frame on RxD and the signal on /DCD. Besides the
auto-enable already noted for RMR1-0, software
should program the DCDMode field of the Input I
Output Control Register (IOCR13-12) as 01 to control
the /DCD pin.

After /DCD goes low, the Receiver hardware hunts for
58 alternating bits of preamble, with the final 0
changed to a 1 as a "start bit". When it finds this
sequence it starts assembling data and may check the
Destination Address in the frame as described below.

After a frame, the external hardware should drive
/DCD high so that it sets up to the rising RxCLK edge
after the one at which it samples the last bit of the
CRC. In this mode and External Sync mode only
among synchronous modes, if /DCD goes high while
the Receiver Is In the midst of assembling a character,
it continues on to sample the remaining bits of the
character and place the character in the RxFIFO.

The receiver marks the character that was partially or
completely assembled when /DCD went high with
RxBound status in the RxFIFO. As described in later
sections, this marking may set the Received Data
Interrupt Pending bit and thus force an Interrupt
request on its /INT pin, and/or it may force a OMA
request on the /RxREQ pin.

The LSBit of the RxSubMode field (CMR4) controls
whether the Receiver checks an Address field at the
start of each frame. If CMR4 is o, the Receiver places
all received frames in the RxFIFO and leaves address
checking to the software. (Some contexts call this
"promiscuous mode".) If CMR4 is 1, the Receiver
compares the first two characters (16 bits) of each
frame to the contents of the Receive Sync Register

54

(RSA). It compares RSRO to the first bit received, and
RSR15 to the last bit, regardless of any "Select Serial
Data MSB First" commands that the software may
have written to the RTCmd field (CCAR15-11). The
Receiver ignores the frame unless the address
matches, or unless the first 16 bits are all ones, which
indicates a frame that should be received by all
stations. The Receiver places the address in the
RxFIFO so that the software can differentiate "locally
addressed" frames from "global" ones.

Except in the CRC, characters ("octets") are sent
LSBit first. The Length field that follows the Desti
nation and Source Address fields is sent MSByte-first.
IEEE 802.3 doesn't include any other byte ordering
information.

The IUSC doesn't use the three LSBits of the
TxSubMode field (CMR14-12) in 802.3 mode, nor the
three MSBits of RxSubMode (CMR7-5), but Zilog re
serves these bits for future enhancements. Software
should always program them with zeroes in this mode.

HDLC I SDLC Mode
Software can select this mode for both the Transmitter
and the Receiver, by writing 011 O to the TxMode and
RxMode fields of the Channel Mode Register (CMR11-
8 and CMR3-0).

In some sense this is the most important mode of the
IUSC, at least for new designs. It is similar to char
acter-oriented synchronous modes in that data char
acters follow one another on the serial medium without
any extra/overhead bits, and are organized into blocks
of data with CRC checking applied to the block as a
whole.

For HDLC and SDLC, the blocks of data are called
frames. Uniquely recognizable 8-bit sequences called
Flags, consisting of 01111110, precede and follow
each frame. HDLC/SDLC protocols ensure the
uniqueness of Flags, without imposing any restrictions
on the data that can be transmitted, by having the
Transmitter insert an extra O bit whenever the last six

bits it has sent are 011111. A Receiver, in turn,
removes such an inserted zero bit whenever it has
sampled 0111110 in the last seven bit times.

Besides Flags, HDLC and SDLC define another
uniquely recognizable bit sequence called an Abort,
consisting of a zero followed by more consecutive
ones than the six in a Flag. Depending on the exact
dialect of HDLC or SDLC, and the security desired in
communicating an abort, software can program the
Transmitter to send Aborts consisting of a zero
followed by either 7 or 15 consecutive ones.

On the Transmit side, the two MSBits of the
TxSubMode field (CMR15-14) control what the Trans
mitter does if a Transmit Underrun condition occurs,
that is, if it needs another character to send but the
TxFIFO is empty:
CMR15-14

00

01

10
11

Underrun Response
Send an Abort consisting of
01111111
Send an Abort consisting of a
zero followed by 15
consecutive ones
Send a Flag
Send the accumulated CRC
followed by a Flag, that is,
make the data transmitted so
far into a proper frame.

After sending the sequence specified by this field, the
Transmitter sends the next frame if software or the
Transmit DMA channel has placed new data in the
TxFIFO. Otherwise it sends the Idle line condition
specified by the Txldle field of the Transmit Command
I Status Register (TCSR 10-8), as described later in
Between Messages, Frames, or Characters. That
section also describes the conditions under which the
Transmitter will combine the closing Flag of one frame,
and the opening Flag of the next, into a single 8-bit
instance. Furthermore, the same section describes
the feature of a 16C32 whereby software can ensure
that a programmable minimum number of Flags is sent
between frames. ·

Software can make the Transmitter send an Abort
sequence at any time, by writing the "Send Abort"
command to the TCmd field of the Transmit Com
mand/Status Register (TCSR15-12). If CMR15-14 is
01 as described above, the Transmitter sends an
extended Abort when software Issues this command;
otherwise it sends the shorter Abort sequence.

If CMR13 is 1, the Transmitter sends the Preamble
sequence defined by the TxPreL and TxPrePat fields
of the Channel Control Register (CCR11-8), before it
sends the opening Flag of each frame.

If the Txldle field (TCSR10-8) is 000 to select Flags as
the idle line condition, CMR12 selects whether con
secutive idle Flags share a single intervening o. If
CMR12 is 1, the idle pattern is 011111101111110 ... ,

55

while if CMR12 is 0 it is 01111110 01111110 ... A Flag
that opens or closes a frame never shares a zero with
an idle-line Flag, even if CMR12 is 1.

On the Receive side, when the receiver detects the
closing Flag of a frame it marks the preceding (partial
or complete) character with RxBound status in the
RxFIFO. As described in later sections, this marking
may set the Received Data Interrupt Pending bit and
thus force an interrupt request on its /INT pin, and/or it
may force a DMA request on the /RxREQ pin.

The receiver automatically copes with single Flags
between frames, and with shared zeroes between
Flags, as described above for the transmit side.

Received Address and Control Field Handling

The RxSubMode field in the Channel Mode Register
(CMR7-4) determines how the Receiver processes the
start of each frame, i.e., whether it does anything
special for Address and/or Control fields. To the
extent that the Receiver handles Address or Control
field(s), it does so in multiples of 8 bits. Thereafter it
divides data into characters of the length specified by
the RxLength field of the Receive Mode Register
(RMR4-2). The Receiver interprets this field as
described below. (An "x" in a bit position means the
bit doesn't matter.)

.QIB2::.4. Address/Control Processing
xxOO The Receiver doesn't handle an

Address or Control field. It
simply divides all the data in
received frames into characters
per RxLength and places them in
the RxFIFO.

xxOl The Receiver checks the first 8
bits of each frame as an address.
If they are all ones or if they
match the contents of the LSByte
of the Receive Sync Register
(RSR7-0), the Receiver receives
the frame into the RxFIFO, other
wise it ignores the frame through
the next Flag. After placing the
first 16 bits of the frame in the
FIFO as two 8-bit bytes, it
divides the rest of the frame
into characters per RxLength.

xOlO The Receiver checks an 8-bit
address as described above. If
these bits are all ones or if
they match the RSR, the Receiver
places the first 24 bits of the
frame in the RxFIFO as 3 8-bit
bytes before shifting to dividing
characters according to RxLength.

xllO The Receiver checks an 8-bit
address as described above. If
these bits are all ones or if
they match the RSR, the Receiver
places the first 32 bits of the

frame in the RxFIFO as 4 8-bit
bytes before shifting to dividing
characters according to RxLength.

0011 The Receiver processes an Ex
tended Address at the start of
each frame. First it checks the
first 8 bits of the frame as
described above. If these bits
are all ones or if they match the
RSR, as the Receiver places eacp
8 bits of the address into the
RxFIFO, it checks the LSBit of
the 8. If the LSBit is O, it
goes on to put the next 8 bits
into the RxFIFO as part of the
address as well, through an
address byte that has its LSBit
1. Then, the Receiver places the
next 16 bits of the frame into
the RxFIFO as two 8-bit bytes,
before shifting to dividing char
acters according to RxLength.

0111 The Receiver processes an Ex
tended Address as described for
0011. If the first 8 bits of the
address are all ones or if they
match the RSR, the Receiver
places the 24 bits after the ex
tended address into the RxFIFO as
3 8-bit bytes, before shifting to
dividing characters per RxLength.

1011 The Receiver processes an Ex
tended Address as described for
0011, and then an "Extended Con
trol field". If the first 8 bits
of the address are all ones or if
they match the RSR, the Receiver
places the next 8 bits after the
extended address in the RxFIFO
without examination. Then, as it
stores each subsequent 8 bits in
the RxFIFO, the Receiver checks
the MSBit of the 8. If the MSBit
is 1, it continues to receive
more 8-bit bytes, through one
that has its MSBit o. Thereafter
the Receiver places one more 8-
bit byte into the RxFIFO, before
shifting to dividing characters
per RxLength.

1111 This mode differs from that
described above for 1011 only in
that the Receiver places the 16
bits after the extended address
in the RxFIFO without exami
nation, before starting to check
MSBits for the end of the
"extended Control field".

Note that even though the Receiver can scan through
an Extended Address, it will still only match its first
byte. Note also that it matches RSRO against the first
bit received, and RSR7 against the last bit, regardless
of whether software has written a "Select Serial Data
MSB First" command to RTCmd (CCAR15-11).

56

If the RxSubMode field specifies some degree of
Address and Control checking, that is, if it's not xxOO,
and a frame ends before the end of the Address and
possibly the Control field specified by the RxSubMode
value, the Receiver sets a Short Frame bit in the
status for the last character of the frame. This bit
migrates through the RxFIFO with the last character,
eventually appearing as the ShortF/CVType bit in the
Receive Command I Status register (RCSR8). Note
that this bit can represent the status at the time that an
RxBound character was read from the RxFIFO, or the
status of the oldest 1 or 2 characters that are still in
the RxFIFO, as described in a later section, Status
Reporting. Note, however, that this length checking
doesn't report a problem if a frame ends within a CRC
that follows an address and control field.

If RxLength (RMR4-2) is 000, specifying 8 bits per
character, all RxSubMode (CMR7-4) values except
xxOO are equivalent aside from short-frame checking.

Frame Length Residuals

The Receiver detects and strips inserted zeroes,
Flags, and Aborts before any other processing, and
doesn't include these bits/sequences in the RxFIFO
nor in CRC calculations. If the Receiver has assem
bled a partial character when it detects a Flag or
Abort, it stores the partial character left-justified in an
RxFIFO entry. (That is, in the MSBits of the byte,
regardless of RxLength.) The Receiver saves the
number of bits received in the last byte in the
RxResldue field of the Receive Command/Status
Register (RCSR11-9). RxResidue remains available
until the end of the next received frame. Software can
use the Receive Status Block feature as described in a
later section, to store the RCSR in memory, which
reduces processing requirements still further.

Conversely, to send a frame that doesn't contain an
integral number of characters, software must ensure
that the number of bits in the last character of the
frame is written into the TxResldue field of the
Channel Command/Status Register (CCSR4-2). This
must happen before the Transmitter takes the last
character out of the TxFIFO

Figure 40 shows the CCSR. The Transmit Control
Block feature can be used to set the TxResidue value
for each block under OMA control, without intervention
by processor software. The active bits of a partial
character must be right-justified, that is, they must be
the LSBits of the last character. If the TxParEnab bit
in the Transmit Command I Status Register (TCSR5)
is 1 specifying parity generation, for a partial character
the Transmitter sends the parity bit mmr the number of
bits specified by TxResidue, while in other characters
the parity bit is the last one of the character length
specified by TxLength (TMR4-2).

The encoding of RxResidue and TxResidue is as for
RxLength and TxLength: 000 specifies that the last
character contains eight bits, while 001-111 specify 1
to 7 bits respectively.

Handling a Received Abort

The 16C32 can report a received Abort sequence to
software in two separate ways. The later section
Status Handling will note that the IUSC sets the
Break/Abort bit in the Receive Command/Status
Register (RCSR5) immediately when it recognizes an
Abort sequence. This notification is not tied to a
specific point in the received data stream.

The same section will also note that, if the QAbort bit
in the Receive Mode Register (RMR8) is 1, the 16C32
queues Abort conditions through the RxFIFO. From
there, they eventually appear as the Abort/PE bit
(RCSR2) of the last character of the frame -- the one
that has RxBound (RCSR4) set to 1. (If QAbort is 0,
the IUSC uses this RxFIFO and RCSR bit for Parity
Error indication as on the 16C31 .)

With other devices, software typically handles Abort
conditions by enabling an interrupt when one is
detected, and at that point ignoring/purging all
received data and forcing the receiver into Hunt mode
for the next frame.

With the 16C32, software can handle Aborts more
efficiently/elegantly by setting QAbort to 1 and using
the Receive Status Block feature to store the RCSR
status in memory for each frame, as described in the
later section Receive Status Blocks. Software can
then examine this status word for each "frame"; any
one that has Abort/PE set isn't a proper frame in that it
ended with an Abort sequence rather than a Flag.

HDLC I SDLC Loop Mode
This mode applies only to the Transmitter. Software
can select it by programming the TxMode field of the
Channel Mode Register (CMR11-8) as 111 o while
programming the RxMode field (CMR3-0) as 011 O to
select HDLC I SDLC mode.

Loop mode is useful in networks in which the nodes or
stations form a physical loop. Except for one station
that acts in a "Primary" or Supervisory role, each must
pass the data it receives from the "preceding" station
to the "following" one. The only time that a secondary
station can break out of this echoing mode is when it
receives a special sequence called a "Go Ahead" and
it has something to send.

Again, this is a specific protocol and we can define
how certain other register fields should be program
med for its intended application. For IBM SDLC Loop
compatibility, software should program the Transmit
Mode Register (TMR) with 670216• This enables the
Transmitter with NRZl-Space encoding, 16-bit CCITT

57

CRC, no parity, and 8 bit characters. Software also
should program the Txldle field in the Transmit
Command/Status Register (TCSR10-8) with 000 to
select Flags as the idle line state.

The two MSBits of the TxSubMode field (CMR15-14)
control what the Transmitter does if an Underrun con
dition occurs, that is, if it needs a character to send but
the TxFIFO is empty. The available choices are simi
lar to those in normal HDLC/SDLC mode but the
Transmitter has a wider range of subsequent actions:
CMR15-14 Response to Underrun

00 The Transmitter sends an Abort
("Go Ahead") sequence _
consisting of a zero followed
by seven consecutive ones, and
then stops sending and reverts
to echoing the data it
receives. Zilog doesn't
recommend this option in IBM
SDLC Loop applications because
only the Primary station
should issue a "Go Ahead"
sequence (and a primary
station should be in regular
HDLC/SDLC mode).

01 Like 00 except that the Abort
includes 15 one-bits.

10 The Transmitter sends Flags on
an Underrun, until another
frame is ready or until
software clears CMR13 to O.

11 The Transmitter sends its
accumulated CRC followed by
Flags on an Underrun, until
another frame is ready to
transmit or until software
clears CMR13 to o. Zilog
doesn't recommend this option
either, because the frame
format probably hasn't been
met when there's an underrun.

The CMR13 bit plays a different role when the Trans
mitter is first being enabled to "insert this station into
the loop", as compared to normal operation thereafter.
Before software programs the Channel Mode Register
for SDLC Loop mode and enables the Transmitter, the
TxD pin carries continuous ones. If software initially
enables the Transmitter with CMR13 being 0, the part
continues to output Ones on TxD. When CMR13 is 1
after software first enables the Transmitter, the IUSC
sends zeroes on TxD until the Receiver detects a "Go
Ahead" sequence (01111111). At this point the IUSC
starts passing data from RxD to TxD with a 4-bit delay,
and sets the OnLoop bit in the Channel
Command/Status Register (CCSR7; see Figure 40).

On Loop stays 1 unless the part is reset or software
programs the TxMode field to a different value. Once
OnLoop is 1 and the IUSC is repeating data from RxD
to TxD, CMR13 controls what the Transmitter does
when it receives a(nother) Go Ahead sequence.

RCCF RCCF Clear DPLL DPLL DPLL
Ovflo Avail RCCF Sync 2Mlss 1 Miss

DPLLEdge On Loop Ctr
Loop Send Bypass

TxResldue Reserved

15 14 13 12 11 10 9 8 6 5 4 3 2

Figure 40. The Channel Command/Status Register (CCSR)

If CMR13 is 0, the IUSC just keeps repeating data,
including the "GA". If CMR13 is 1 when the Receiver
~detects another "Go Ahead", the Transmitter changes
the last bit of the GA from 1 to 0 (making it a Flag),
sets the LoopSend bit (CCSR6) and proceeds to start
sending data. (If there's no data available in the
TxFIFO it keeps sending Flags, otherwise it sends the
data in the TxFIFO.)

When the Transmitter has been sending data and en
counters either a character marked as "EOF/EOM", or
an underrun condition when CMR15=1, CMR13 de
termines how it proceeds. If CMR13 is 1 in either of
these situations, the Transmitter stays active and
sends Flags or additional frames as they become
available in the TxFIFO. If CMR13 is 0 after the IUSC
has sent a closing Flag or an idle Flag, it clears the
LoopSend (CCSR6) bit and returns to repeating data
from RxD onto TxD.

CMR12 controls whether the Transmitter sends idle
Flags with shared zero bits, as described for normal
HDLC I SDLC mode.

Cyclic Redundancy Checking (CRC)
The IUSC will send and check CRC codes only in
synchronous modes, namely External Sync, Mono
sync, Slaved Monosync, Bisync, Transparent Bisync,
HDLC/SDLC, HDLC/SDLC Loop, and 802.3 modes.
The TxCRCType and RxCRCType fields in the
Transmit and Receive Mode Registers (TMR12-11
and RMR12-11) control how the Transmitter and
Receiver accumulate CRC codes.

00 in either field selects the 16-bit CRC-CCITI poly
nomial X15+X12+x5+1. In HDLC, HDLC Loop, and
802.3 modes, the Transmitter inverts each CRC
before sending it, the Receiver checks for remainders
of FOB816, and the TxCRCStart and RxCRCStart bit(s)
should be programmed as 1 to start the CRC
generators with all ones. In other synchronous modes
the Transmitter sends accumulated CRCs normally
and the Receiver checks for all-zero remainders.

01 in either field selects the CRC-16 polynomial x16+
x1s+x2+ 1. The Transmitter sends accumulated CR Cs
normally and the Receiver checks for all-zero remain
ders. This choice is not compatible with HDLC, HDLC
Loop, and 802.3 protocols, and in these modes CRC-
16 will not operate correctly even between USC family
Transmitters and Receivers.

10 in TxCRCType or RxCRCType selects the 32-bit
Ethernet polynomial x32+x2s+x23+x22+x1s+x12+x1 1+x10

58

+xs+x1+xs+x4+x2+x+1. In HDLC, HDLC Loop, and
802.3 modes, the Transmitter inverts each CRC
before transmitting it, the Receiver checks for remain
ders equal to C704DD7B16, and the TxCRCStart and/
or RxCRCStart bit(s) should be programmed as 1 to
start the CRC generator(s) with all ones. In other syn
chronous modes the Transmitter sends CRCs nor
mally and the Receiver checks for all-zero remainders.

Zilog reserves the value 11 in TxCRCType or
RxCRCType for future product enhancements; it
should not be programmed.

The TxCRCStart and RxCRCStart bits (TMR12 and
RMR12) control the starting value of the Transmit and
Receive CRC generators for each frame or message.
A O in this bit selects an all-zero starting value and a 1
selects a value of all ones. In HDLC, HDLC Loop, and
802.3 modes these bits should be 1 .

The Transmitter and Receiver automatically clear their
CRC generators to the state selected by these
CRCStart bits at the start of each frame. The Trans
mitter does this after it sends an opening Sync or Flag
sequence. The Receiver does so each time it recog
nizes a Sync or Flag sequence (it may be the last one
before the first character of the frame or message).
For special CRC requirements, the Clear Rx and Tx
CRC commands give software the ability to clear the
CRC generators at any time. See the later section
Commands for a full description of these operations.

The TxCRCEnab and RxCRCEnab bits (TMR9 and
RMR9) control whether the IUSC processes trans
mitted and received characters through the respective
CRC generators. A 0 excludes characters from the
CRC while a 1 includes them. The Transmitter cap
tures the state of TxCRCEnab with each character as
it's written into the TxFIFO, so that software can
change the bit dynamically for different characters.

If the TxCRCatEnd bit (TMR8) is 1 and the TxMode
field (CMR11-8) specifies a synchronous mode, the
Transmitter sends the contents of its CRC generator
after sending a character marked as EOF/EOM. If
TxCRCatEnd is O the Transmitter doesn't send a CRC
after such a character. (A character can be marked as
EOF/EOM if software writes a command to the
Transmit Command/Status Register (TCSR), or when
the Transmit OMA channel or software writes one or
two characters to the TxFIFO so that the Transmit
Character Counter decrements to zero.) Whether or
not it sends a CRC, the Transmitter then sends a Sync
or Flag sequence, depending on the protocol.

In synchronous modes, the MS 1 or 2 bits of the
TxSubMode field (CMR15 and in some modes also
CMR14) control whether the Transmitter sends the
contents of its CRC generator if it encounters a
Transmit Underrun condition, that is, if it needs a
character to send but the TxFIFO is empty. Whether
or not it sends a CRC, the Transmitter then sends a
Sync or Flag sequence, depending on the protocol.

On the receive side, in synchronous modes other
than HDLC/SDLC, HDLC/SDLC Loop, and 802.3,
there's a two character delay between the time the
Receiver places each received character in the
RxFIFO and when it processes (or doesn't process)
the character through the CRC generator. Therefore,
software can examine each received character and set
RxCRCEnab appropriately to exclude certain char
acters from CRC checking, if it can do so before the
next one arrives. The Receiver doesn't introduce this
delay in HDLC/SDLC, HDLC/SDLC Loop, or 802.3
mode, because in these modes all characters in each
frame should be included in the CRC calculation.

Figure 41 shows how a Receiver routes data to the
Receive CRC generator differently in HDLC/SDLC,
HDLC/SDLC Loop, and 802.3 modes than in other
synchronous modes. In these three modes, the
Receiver shifts each bit from RxD into the CRC
generator when it shifts the bit into its main shift
register. In other sync modes, the Receiver passes
the data through a second shift register located
between the main shift register and the CRC
generator. This second shift register is (RxLength)
bits long, and gives the software time to decide
whether to include each received character in the CRC
calculation.

The Receive CRC generator constantly checks
whether its contents are "correct" according to the kind
of CRC specified by the RxCRCType field (RMR12-
11). In some modes this simply means whether it
contains an all-zero value. The CRC generator
provides a corresponding Error output that the
Receiver captures in the RxFIFO with each received
character. This bit migrates through the RxFIFO with
each character and eventually appears as the
CRCE/FE bit in the Receive Command/Status
Register (RCSR3). Software should ignore this bit for
all characters except the one associated with the end
of each message or frame (it's almost always 1).

The CRCE bit that's important is the one that reflects
the output of the CRC generator after the Receiver
has shifted the last bit of the CRC into it. But the
operating difference described above affects which
character this bit is associated with. The Receiver
always places the CRC code itself in the RxFIFO; if
RxLength calls for 8-bit characters the CRC
represents either 2 or 4 characters. In HDLC/SDLC or
802.3 mode, the CRCE bit associated with the last

59

character of the CRC is the one that shows the CRC
correctness of the frame. But in the other
synchronous modes, the CRCE bit of interest is the
one with the second character after the last character
of the CRC. This means that the Receive Status
Block feature can't be used to capture the CRC
correctness of received messages in Transparent
Bisync mode.

Note that the CRCE/FE bit can represent the status at
the time that an RxBound character was read from the
RxFIFO, or the status of the oldest 1 or 2 characters
that are still in the RxFIFO, as described later in
Status Reporting.

Because the Receiver places all the bits of each
received CRC in the RxFIFO, the IUSC can be used
for CRC-pass-through applications like bridges and
routers. This is not true of all serial controllers.

RxFIFO

Data In

PO
SI (RxLength)·blt

Shift Register

(Rxlength)-blt so
Shift Register

RxCRC
Generator Err

Used in HDLC/SDLC
and 802.3 Modes

Used in all
other Sy"!~. modes

RxD
Flag/Abort

SI Oetect Logic, so
Incl. Shift Register

Used in HDLC/
SDLC Mode

Figure 41. A Model of the Receive Datapath

Parity Checking
The IUSC can handle a Parity bit in each character in
either asynchronous or synchronous modes, although
some synchronous protocols use CRC checking only.

If the TxParEnab bit in the Transmit Mode Register
(TMR5) is 1, the Transmitter creates a parity bit as

specified by the TxParType field (TMR7-6) and sends
it with each character. Similarly, if the RxParEnab bit
(RMR5) is 1, the Receiver checks a parity bit in each
received character, according to the RxParType field
(RMR7-6).

The IUSC interprets TxParType and RxParType as
follows:

.xMR1.::..6. Type of Parity
00 Even
01 Odd
10 Zero
11 One

For unencoded data, 1 O/Zero is the same as "Space
parity" and 11 /One is the same as "Mark parity".

TxParEnab and TxParType are "global states" in that
the IUSC doesn't carry these bits thru the TxFIFO with
each character.

In asynchronous modes, the Transmitter and Receiver
handle the parity bit as an additional bit after the
number of bits specified by the TxLength and
RxLength fields (TMR4-2 and RMR4-2). In synch
ronous modes they handle the parity bit as the last
(most significant) bit of that number. The Receiver
includes a parity bit in the data characters in the
RxFIFO and Receive Data Register (RDR), except in
asynchronous modes with 8 bit data.

In HDLC/SDLC protocols the 16C32's Receiver can
queue either a Parity Error or an Abort indication
through the RxFIFO, but not both. Regardless of the
protocol, in order to have the Receiver check parity,
software should ensure that the QAbort bit in the
Receive Mode Register (RMR8) is 0.

If QAbort is 0, RxParEnab is 1 , and the Receiver finds
that the parity bit of a received character is not as
specified by RxParType, it sets a Parity Error bit. This
bit accompanies the character through the RxFIFO,
eventually appearing as the Abort/PE bit in the
Receive Command I Status Register (RCSR2). The
Abort/PE bit can represent a latched interrupt bit, or
the status at the time that an RxBound character was
read from the RxFIFO, or the status of the oldest 1 or
2 characters that are still in the RxFIFO, as described
in the next section.

Status Reporting
The most important status reported by the Transmitter
and Receiver is available in the LSBytes of the
Transmit and Receive Command I Status Registers
(TCSR and RCSR). Figures 43 and 44 show the
format of these registers. It will be helpful to describe
some common characteristics of these status bits
before discussing each individually.

When software writes and reads transmit and received
data directly to and from a serial controller, it can read

60

and write status and control registers as needed to
handle the overall communications process. But the
IUSC's integrated OMA channels often handle the data
without software/processor intervention. Because of
this, software needs other means of controlling the
transmit and receive processes and tracking their
status. These means include the Transmit and
Receive Character Counters and the Transmit Control
Block and Receive Status Block features. Later
sections describe these features in considerable detail.
For now we just note that Receive Status Blocks allow
the Receive OMA channel to store a version of the
RCSR in memory, either with the received data or with
OMA control information. Such stored status differs
slightly from that which software can read from the
RCSR.

Software can program the IUSC to assert its Interrupt
Request output {/INT) based on certain bits in the
TCSR and RCSR. Chapter 6 covers interrupts in
detail; for now we'll just note that the IUSC typically
sets one of these bits when a specified event occurs
or a specified condition starts. Such a bit typically
remains 1 until host software clears or "unlatches" it by
writing a 1 to it. This means that the device won't re
quest another Interrupt for the same condition until
software has written a 1 to the bit. For the two inter
rupts that reflect the start of an ongoing condition,
ldleRcved and the "break" sense of Break/Abort, the
Receiver doesn't clear the RCSR bit until the software
has written a 1 to unlatch the bit, 2illf the condition has
ended.

Five of the bits in the RCSR (ShortF/CVType,
RxBound3, CRCE/FE, Abort/PE, and RxOver) are
associated with particular received characters. The
Receiver queues these bits through the RxFIFO with
the characters. The corresponding bits in the RCSR
may reflect the status of the oldest character(s) in the
FIFO, or that of the character last read out of the
FIFO, as described in the next few paragraphs.

In order for these queued interrupt features to operate
properly, software should set the WordStatus bit in
the Receive Interrupt Control Register (RICR3) to 1
before it reads data from the RxFIFO/RDR 16 bits at a
time, and to O before it reads data 8 bits at a time.

The RxBound, Abort/PE, and RxOver bits actually
operate differently in the RCSR depending on whether
software has enabled each to act as a source of inter
rupts. If the Interrupt Arm (IA) bit4 in the Receive
Interrupt Control Register (RICA) for one of these bits
is 1, the IUSC sets the RCSR bit to 1 when a char-

Previous USC documentation called RxBound 'CV/EOF/EOT'.

4 Previous USC documentation called the bits that control individual interrupt
sources Interrupt Enable (IE) bits, the same as those that enable entire interrupt
types.

acter having the subject status becomes the oldest
one in the RxFIFO, or the second-oldest with
WordStatus=1, and once one of these bits is 1, it stays
that way until software writes a 1 to it. (The IUSC
doesn't actually set the Receive Status IP bit to
request an Interrupt for one of these bits, until software
or the Receive DMA channel reads the associated
character from RDR.)

For ShortF/CVType and CRCE/FE, and for RxBound,
Abort/PE, and RxOver when the associated IA bit is 0,
if the last time that software or the Receive DMA
channel read the RxFIFO via the RDR, the IUSC
provided a character marked with RxBound status,
then these RCSR bits reflect the status of that
character. This is true only until software reads the
(MSByte of) RCSR, or the Receive DMA channel
stores it in the Receive Status Block, or until software
or the Receive DMA channel reads the RDR again.

Start for RxBound,
Abort/PE, or RxOver:

Yes

(The bit Is not None
defined I)

For ShortF/CVType and CRCE/FE, and for RxBound,
Abort/PE, and RxOver when the associated IA bit is 0,
if the last time that software or the Receive DMA
channel read the RxFIFO via the RDR, the character
returned (both of the characters returneo) had
RxBound=O, or if software has read the (MSByte of
the) RCSR or the Receive DMA channel has stored it
in a Receive Status Block since the last time either
one read the RDR, then the RCSR bit reflects the
status of the oldest character(s) in the RxFIFO, if any.
In this latter case, if the RxFIFO is empty the status bit
Is not defined. If the WordStatus bit Is 1 in the
Receive Interrupt Control Register (RICR3) and there
are two or more characters in the FIFO, the status bit
is the inclusive OR of the status of the oldest two
characters in the FIFO. Otherwise the bit reflects the
status of the oldest character in the FIFO. Just in
case that wasn't perfectly clear, the flowchart of Figure
42 presents the same information.

Provide the state of a latch
that's set when a character
with this condition becomes

the oldest in the RxFIFO
(or the 2nd-oldest with

WordStatus=1), and Is cleared
when SW writes a 1 to this bit

Provide the saved
status of the

RxBound character

Provide the status of
the oldest character

in the RxFIFO

Provide the Inclusive
OR of the status of the
two oldest characters

In the RxFIFO

Figure 42. How the IUSC Provides the "Queued" Status Bits In the RCSR

61

TCmd Rsrvd Txldle Pre
Sent

Idle
Sent

Abort EOF/
Sent EOM

Sent

CRC
Sent

All Tx Tx
Sent Under Empty

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 43. The Transmit Command/Status Register (TCSR)

Detailed Status In the TCSR

The Transmitter sets the Present bit (TCSR7) in a
synchronous mode, when it has finished sending the
Preamble specified in the TxPreL and TxPrePat fields
of the Channel Control Register (CCR). The IUSC can
request an Interrupt when this bit goes from 0 to 1 if
the Present IA bit in the Transmit Interrupt Control
Register (TICR7) is 1. Software must write a 1 to
Present to unlatch and clear it, and to allow further
interrupts If TICR7 Is 1; writing a o to Present has no
effect. See the later section Between Frames, Mes
sages, or Characters for more information on
Preambles.

The Transmitter sets the ldleSent bit (TCSR6) in any
mode, when it has finished sending "one unit" of the
Idle line condition specified in the Txldle field in the
MSByte of this TCSR. If the Idle condition is Syncs or
Flags as described later in Between Frames, Mes
sages, or Characters, the unit is one character or
sequence and the flag and interrupt can recur for each
one sent. For any other Idle condition, the
Transmitter sets the flag and interrupt only once, when
it has sent the first bit of the condition. The IUSC can
request an interrupt when this bit goes from O to 1 if
the ldleSent IA bit in the Transmit Interrupt Control
Register (TICR6) is 1. Software must write a 1 to
ldleSent to unlatch and clear it, and to allow further
interrupts If TICR6 Is 1; writing a O to ldleSent has no
effect.

The Transmitter sets the AbortSent bit (TCSR5) in
HOLC/SOLC or HOLC/SOLC Loop mode, when it has
finished sending an Abort sequence. The IUSC can
request an interrupt when this bit goes from O to 1 if
the AbortSent IA bit in the Transmit Interrupt Control
Register (TICR5) is 1. Software must write a 1 to
AbortSent to unlatch and clear it, and to allow further
interrupts if TICR5 is 1; writing a O to AbortSent has no
effect. See the earlier sections HDLC/SDLC Mode
and HDLC/SDLC Loop Mode for more information on
Abort sequences.

The Transmitter sets the EOF/EOM Sent bit (TCSR4)
in a synchronous mode, when it has finished sending a
closing Flag or Sync sequence. The IUSC can re
quest an interrupt when this bit goes from O to 1 if the
EOF/EOM Sent IA bit in the Transmit Interrupt Control
Register (TICR4) is 1. Software must write a 1 to
EOF/EOM Sent to unlatch and clear it, and to allow
further interrupts if TICR4 is 1; writing a 0 has no
effect. See the later section Between Frames,

62

Messages, or Characters for more information on
closing Flags and Syncs.

The Transmitter sets the CRCSent bit (TCSR3) in a
synchronous mode, when it has finished sending a
Cyclic Redundancy Check sequence. The IUSC can
request an interrupt when this bit goes from 0 to 1 if
the CRC Sent IA bit In the Transmit Interrupt Control
Register (TICR3) is 1. Software must write a 1 to
CRCSent to unlatch and clear it, and to allow further
interrupts if TICR3 is 1; writing a O has no effect. See
the section Cyclic Redundancy Checking for more
information on CRC's.

The read-only bit AilSent (TCSR2) is O In asynch
ronous modes, while the Transmitter Is sending a
character. Software can use this bit to figure out when
the last character of an async transmission has made
It out onto TxO, before changing the mode of the
Transmitter.

The Transmitter sets the TxUnder bit (TCSR1) in any
mode, when it needs another character to send but the
TxFIFO is empty. It does this even In asynchronous
modes. The IUSC can request an interrupt when this
bit goes from O to 1 if the TxUnder IA bit in the
Transmit Interrupt Control Register (TICR1) is 1.
Software must write a 1 to TxUnder to unlatch and
clear it, and to allow further interrupts if TICR1 is 1;
writing a 0 has no effect. The Transmitter sets
TxUnder one or two clocks before the current char
acter is completely sent on TxO.

The read-only bit TxEmpty (TCSRO) is 1 when the
TxFIFO is empty, or 0 if it contains 1 or more
characters.

Detailed Status In the RCSR

The IUSC sets the read-only 2nci3t:: bit (RCSR15) to
1 when software or the Receive Di.~A cnannel reads
data from the ROR, there are two or mere c:haracters
in the RxFIFO, and the Receiver marked :"a second
oldest one with one or more of RxBound, Abort/PE, or
RxOver status. (The bit's name stands for Second
Byte Exception.) The IUSC clears this bit to 0 when
software or the Receive OMA channel reads data from
the RxFIFO/ROR, there are two or more characters in
the RxFIFO, and the Receiver didn't mark the second
oldest one with any of these three conditions. If
software or the Receive OMA channel reads d"ta from
the ROR when there's only one character in it, this bit
is undefined until the next time one of them reads
ROR.

RCmd (WO)

1stBE
RxResldue ShortF/ Exited Idle Break Rx CRCE Abort Rx Rx

CVType Hunt Rcved /Abort Bound /FE /PE Over Avail

15 14 13 12 11 10 9 8 7 6 5 4 0

Figure 44. The Receive Command/Status Register (RCSR)

The IUSC sets the read-only 1stBE bit (RCSR14) to 1
when software or the Receive OMA channel reads
data from the RDR, and the Receiver marked the
oldest character read with one or more of RxBound,
Abort/PE, or RxOver status. (The bit's name stands
for First Byte Exception.) The IUSC clears this bit to O
when software or the Receive OMA channel reads
data from the RDR, and the Receiver didn't mark the
oldest character with any of these three conditions.

The Receiver queues a ShortF/CVType bit through
the RxFIFO with each character. RCSR8 may reflect
the status at the time that an RxBound character was
read from the RxFIFO, or the status associated with
the oldest 1 or 2 character(s) still in the RxFIFO, as
described earlier in this Status Reporting section. In a
stored Receive Status Block it always represents the
status of the preceding RxBound character.

This bit will be 1 only in HDLC/SDLC or Async with
Code Violation (1553B) mode, and only for characters
that the Receiver also marks with RxBound=1. When
the RxSubMode field (CMR7-4) specifies Address and
possibly Control field processing in HDLC/SDLC
mode, the Receiver sets this bit for the last character
of a frame if it hasn't come to the end of the specified
field(s) by the end of the frame.

In Async with Code Violations (1553B) mode, this bit
identifies which of the two types of Code Violation
introduced each received word. A 0 indicates a Data
word and a 1 indicates a Command/Status word.
When the RxSubMode bit CMR4 is 1, signifying that
each word includes more than 8 data bits, this bit is
valid with the second byte of each received word (the
one marked with RxBound status).

The Receiver sets the ExltedHunt bit (RCSR7) in any
mode, when it leaves its Hunt state. In Async modes
this happens right after software enables the Receiver.
In External Sync mode, the Receiver leaves Hunt
state when the Enable/Sync signal on /DCD goes from
high to low. In Monosync, Bisync, or Transparent
Bisync mode the Receiver leaves Hunt state when it
recognizes a Sync sequence. In HDLC/SDLC mode
the Receiver leaves Hunt state when it recognizes an
opening Flag. In 802.3 (Ethernet) mode, if software
has enabled address checking the Receiver leaves
Hunt state when it matches the Address at the start of
a frame, otherwise it does so after detecting the start
bit at the end of the Preamble.

The IUSC can request an interrupt when this bit goes
from O to 1 if the ExitedHunt IA bit in the Receive
Interrupt Control Register (RICR7) is 1. Software

63

must write a 1 to ExitedHunt to unlatch and clear it,
and allow further interrupts if RICR7 is 1; writing a 0
has no effect.

The Receiver sets the ldleRcved bit (RCSR6) when it
samples RxD as one for 15 consecutive RxCLKs in
HDLC/SDLC mode, or for 16 consecutive RxCLKs in
any other mode. The IUSC can request an interrupt
when this bit goes from O to 1 if the ldleRcved IA bit in
the Receive Interrupt Control Register (RICR6) is 1.
Software must write a 1 to ldleRcved to unlatch it, and
to allow further interrupts if RICR6 is 1; writing a O has
no effect. The device doesn't actually clear RCSR6
until software has written a 1 to unlatch it, .filld. RxD
has gone to O to end the idle condition. (ldleRcved
isn't useful in Async modes that use a 16X, 32X, or
64X clock. In these cases keep RICR6=0 to avoid
interrupts, and ignore RCSR6.)

The Receiver sets the Break/Abort bit (RCSR5) in an
asynchronous mode when it detects a Break condition,
that is, when it samples the Stop bit of a character as
o, and all the preceding data bits (and the parity bit if
any) have also been 0. It sets the bit in HDLC/SDLC
mode when it detects seven consecutive 1 s, i.e., an
Abort or Go Ahead sequence.

Break/Abort is not associated with a particular point in
the received data stream, for either the Break or Abort
condition. (But see the description of "Abort/PE"
below for an Abort indication that is queued with
received data.)

The IUSC can request an interrupt when this bit goes
from O to 1 if the Break/Abort IA bit in the Receive
Interrupt Control Register (RICR5) is 1. Software
must write a 1 to Break/Abort to unlatch it, and to allow
further interrupts if RICR5 is 1; writing a 0 has no
effect. In async modes, the IUSC doesn't actually
clear RCSR5 until software has written a 1 to unlatch
it, and RxD has gone to 1 to end the break condition.

The Receiver queues a RxBound bit through the
RxFIFO with each received character. It sets the bit
with a character that represents the boundary of a
logical grouping of data on the line, but this indication
isn't visible to software until the character is the oldest
one in the RxFIFO.

As described earlier in this Status Reporting section,
RCSR4 may represent an interrupt bit, or the status
associated with the oldest 1 or 2 character(s) still in
the RxFIFO; or may be 1 if a RxBound character was
just read from the RxFIFO. Since the Receive Status
Block feature stores the RCSR in memory after each

character that the Receiver marks with this bit set, a
Receive Status Block always shows RxBound5 as 1.

In HDLC/SDLC mode the Receiver sets RxBound for
the last complete or partial character before an ending
Flag or Abort. In Transparent Bisync mode it sets this
bit for an ENO, EOT, ETB, ED<, or ITB character that
follows a DLE. In External Sync or 802.3 (Ethernet)
mode the Receiver sets this bit for the character just
completed or partially assembled when the /DCD pin
went High. In Nine-Bit mode it sets this bit for an
address character. In the Async with Code Violations
(15538) mode, it sets this bit for the second character
of each received word if the CMR13 bit is 1 to enable
word lengths greater than 8 bits, or for every character
if not. Note that the Receiver never sets this bit in
other modes, including Monosync and Bisync modes.

The IUSC can request an interrupt when software or
the Rx DMA channel reads a character from the RDR
that has this bit set, if the RxBound IA bit in the Re
ceive Interrupt Control Register (RICR4) is 1. In this
case software must write a 1 to RxBound to unlatch it
and allow further interrupts; writing a O has no effect.

The Receiver queues a CRCE/FE bit through the
RxFIFO with each received character. RCSR3 may
represent the status at the time that a RxBound char
acter was read from the RxFIFO, or the status associ
ated with the oldest 1 or 2 character(s) still in the
RxFIFO, as described earlier in this Status Reporting
section. In a stored Receive Status Block it repre
sents the status from the previous character, which in
turn represents the CRC-correctness of the frame in
802.3 and HDLC/SDLC mode.

In synchronous modes the Receiver makes CRCE/FE
0 if its CRC generator showed "correct" status when it
stored the character in the RxFIFO, or 1 if the CRC
generator wasn't correct. See the earlier section
Cyclic Redundancy Checking for more information. In
asynchronous, isochronous, or Nine-Bit mode the
Receiver makes this bit 1 to show a Framing Error if it
samples the associated character's Stop bit as O.

The Receiver queues an Abort/PE bit through the
RxFIFO with each received character. RCSR2 may
represent an interrupt bit, or the status at the time that
a RxBound character was read from the RxFIFO, or
the status associated with the oldest 1 or 2 char
acter(s) still in the RxFIFO, as described earlier in this
Status Reporting section. In a stored Receive Status
Block it may represent an interrupt bit or the status of
the previous 1 or 2 character(s).

If the QAbort bit in the Receive Mode Register
(RMRB) is 0, the Receiver sets this bit to show a Parity
Error for a character if RxParEnab (RMRS) is 1 and

5 Previous USC documentation called RxBound 'CV/EOF/EOT'

64

the character's parity bit doesn't match the condition
specified by the RxParType field. See the earlier
section Parity Checking for more information.

In HDLC/SLDC mode with the QAbort bit 1, the
Receiver sets this bit (along with RxBound) for a
character that was followed by an Abort sequence.

The IUSC can request an interrupt when software or
the Receive DMA channel reads a character from the
RDR that has this bit set, if the Abort/PE IA bit in the
Receive Interrupt Control Register (RICR2) is 1. In
this case software must write a 1 to Abort/PE
(RCSR2) to unlatch it and allow further interrupts;
writing a O to RCSR2 has no effect.

The Receiver queues a RxOver bit through the
RxFIFO with each received character. It sets the bit to
indicate a Receive FIFO overrun, but the overrun isn't
visible to software until the character that caused it is
the oldest one in the RxFIFO.

As described earlier in this Status Reporting section,
RCSR1 may represent an interrupt bit, or the status at
the time a RxBound character was read from the
RxFIFO, or the status associated with the oldest 1 or 2
character(s) still in the RxFIFO. In a stored Receive
Status Block this bit may represent an interrupt bit or
the status of the previous character.

The Receiver sets this bit to 1 for the first character for
which there was no room, which overwrites its
predecessor in the RxFIFO. Once this happens, the
Receiver doesn't store any more received characters
in the RxFIFO, until software writes a command that
purges the RxFIFO to the RTCmd field in the Channel
Command I Address Register (CCAR15-11).

The IUSC can request an interrupt when software or
the Rx DMA channel reads a character from the RDR
that has this bit set, if the RxOver IA bit in the Receive
Interrupt Control Register (RICR1) is 1. In this case,
software must write a 1 to RxOver to unlatch it and
allow further interrupts; writing a O has no effect.

The read-only bit RxAvall (RCSRO) is 1 if the RxFIFO
contains 1 or more characters, or O if it's empty.

OMA Support Features
When software writes and reads all the data to and
from a serial controller, it can maintain its own
counters and length-tracking mechanisms, and can
use them to tell when to read status and issue
commands. But in DMA applications we would like to
"decouple" the processor and its software from such
intimate and real-time involvement with the transmit
and receive processes. This is only possible if we
include features in the serial and/or DMA controllers,
by which they can figure out the length of frames or
messages, and change parameters and save status

information at appropriate points, with as little proces
sor software involvement as possible.

The IUSC features that support such operation include
the Receive and Transmit Character Counters, the
RCC FIFO that stores the length of received frames,
the Transmit Control Block feature that allows the Tx
OMA channel to fetch control information for each
frame from memory, and the Receive Status Block
feature that allows the Rx OMA channel to store status
for each frame in memory. The following subsections
describe these features.

The Character Counters

The Transmitter includes a 16-bit Transmit Character
Counter (TCC) that software can use to control the
length of transmitted frames and messages in OMA
applications. The Receiver includes a similar Receive
Character Counter (RCC) that software can use to
record and save the length of frames and messages in
OMA applications. Software can also use the RCC to
specify the maximum frame/message length allowed
in such applications.

While most of this section describes these features in
terms of the length of frames and messages In
synchronous protocols, they may be useful in asynch
ronous work as well. In particular, for Async with
Code Violations (1553B) transmitting, software can
use the TCC and Transmit Control Block features to
control which type of Code Violation (Command/
Status or Data) to send, for each series of words of
the same type. Similarly, 1553B receiving software
can use the RCC and Receive Status Block features
to make the Receive OMA channel store the type of
Code Violation after each received word. A later
subsection describes these features more fully.

Figures 45 and 46 show the structure of the TCC and
RCC features, respectively. Software can write the
16-bit Transmit Count Limit Register (TCLR) at any
time, to define the length of the next transmitted
message(s) or frame(s). Similarly, it can write the 16-
bit Receive Count Limit Register (RCLR) at any time,
to define the maximum length of future received mes
sages and frames. Software can also use the Trans
mit Control Block feature to make the IUSC automat
ically fetch a new value for the TCLR and TCC from
memory before each block of characters. The TCLR
and RCLR can be read back at any time. The device
never changes their values except to clear them to
zero at reset time, and when it loads TCLR from a 32-
bit Transmit Control Block.

Writing the TCLR or RCLR doesn't have any immedi
ate effect on the TCC or RCC feature. Only when one
of several events occurs does the IUSC load the value
from TCLR or RCLR into the actual 16-bit character
counter. If the value In TCLR or RCLR is zero at that

65

time, the device disables the TCC or RCC feature,
while if the value is nonzero it enables the feature.

The IUSC loads the value from the TCLR into the
Transmit Character Counter, and enables or disables
the TCC accordingly, when one of the following
occurs:
1. software writes the Trigger Tx OMA (or Trigger Tx

and Rx OMA) command to the RTCmd field of the
Channel Command/Address Register (CCAR15-
11),

2. software writes the Load TCC (or Load RCC and
TCC) command to RTCmd In the CCAR,

3. software writes the Purge Tx FIFO (or Purge Tx
and Rx FIFO) command to RTCmd in CCAR, or

4. the TxCtrlBlk field in the Channel Control Register
(CCR15-14) Is 10, specifying a two-word Transmit
Control Block, and the Transmit DMA channel
fetches (the second byte of) the second word con
taining the new character count. Which Is to say,
the IUSC fetches the count "through" the TCLR.

The IUSC loads the value from the RCLR into the
Receive Character Counter, and enables or disables
the RCC feature, when any of the following occur:
1. software writes the Trigger Rx OMA (or Trigger Tx

and Rx OMA) command to the RTCmd field of the
Channel Command/Address Register (CCAR15-
11),

2. software writes the Load RCC (or Load RCC and
TCC) command to RTCmd in the CCAR,

3. software writes the Purge Rx FIFO (or Purge Tx
and Rx FIFO) command to RTCmd in CCAR, or

4. the Receiver detects an opening Flag or Sync
character.

Once the IUSC has loaded the TCC or RCC with a
non-zero value (which enables the feature) it
decrements the counter for each character/byte
written into the associated FIFO. That is, the Trans
mitter decrements the TCC by 1 or 2 when software or
the Transmit OMA channel loads transmit data into the
TxFIFO. The Receiver decrements the RCC by 1 for
each character/byte that it transfers from its shift
register into the RxFIFO.

A non-zero TCLR value should represent the number
of characters to send (of course this doesn't include
any Transmit Control Block information). A non-zero
RCLR value can be either all ones, or the maximum
number of characters/bytes allowed in a message or
frame, Including any CRC (not including any Receive
Status Block information). For applications like 1553B,
the RCLR value should simply be the number of char
acters/bytes between successive RSB's. For frame or
message-oriented applications in which there's no
particular maximum received frame or message
length, the all-ones value simplifies computing the
length of each frame or message slightly. This value

allows software to obtain the frame length by simply
ones-complementing the value read from RCCR or
from a Received Status Block in memory, rather than
by subtracting it from the starting value.

On the Transmit side, software can read the value in
the TCC at any time from the Transmit Character
Count Register (TCCR), but writing the TCCR address
has no effect. Figure 45 shows a decoder that detects
when the counter contains 0001. When software or
the Transmit OMA channel writes enough data into the
TxFIFO so that the TCC counts down to 0, the IUSC
marks the character that corresponds to decrementing
from 1 to O as End of Frame I End of Message
(EOF/EOM). When this character gets to the other
end of the FIFO, the marking makes the Transmitter
conclude the frame appropriately. (Typically, it sends
a CRC and a closing Flag or Sync character after the
marked character.)

If software or the Transmit OMA channel writes 16 bits
to the TOR while the TCC contains 0001, the serial
controller only puts the character on the IUSC's
internal 07-0 lines into the TxFIFO -· it ignores the
data on the internal 015-8 lines. In a system in which
even-addressed bytes fall on 07-0 (e.g., a system
based on a Zllog Z380 or an Intel processor) this isn't
a problem. On the other hand, in systems in which
even-addressed bytes reside on 015-8 (e.g., a system
based on a Zllog zaooo or 16COx or a Motorola
680xO) it can cause problems.

015-0

TCLR

Non-Zero
Detect

Chapter 5 describes a feature of the 16C32's Tx OMA
channel that helps alleviate this problem. If the Tx
OMA channel is reading the data in a frame 16 bits at
a time, and it decrements its Transmit Byte Count
Register (TBCR) to 1, it next signals the memory for a
byte read, and ensures that the data from the proper
half of the data bus (according to "Select 015-8 First"
or "Select 07-0 First" commands) is driven onto the
internal 07-0 lines for the serial controller.

Assuming that
1. the Tx OMA channel is used,
2 the end of a transmitted frame always corres

ponds to the end of a memory buffer, and
3. the TBCR is programmed to reflect the number of

transmit characters in the buffer, rather than
relying on the Early Termination feature to
terminate the buffer,

then this feature eliminates an unfortunate require
ment that previous USC family members imposed on
host software in Big Endian systems. This require
ment still applies when these assumptions aren't met:
if the last character of a frame falls at an even address
in a Big Endian system, software must copy the last
character into the subsequent odd address as well,
before presenting the frame to the Tx OMA channel.

EnableTCC

(From
Command·

Driven
Logic)

~~:)D·---------'f-<>

LO
oN Counter (TCCR)

0001
Detect

TxFIFO

Figure 45. A Model of the Transmit Character Counter Feature

66

Rx Char

LO

ON

RCLR

Non-Zero
Detect

EnableRCC

RxFIFO

Clk -'-----+----+------1---+-~LO

RCCFIFO

RCCR

To
Interrupt
Logic

~

LO

To Software

---..-----........

RCHR

r
To Receive
Status Block

Figure 46. A Model of the Receive Character Counter Feature

The Transmitter suppresses its DMA request from the
time the Transmit DMA channel places the EOF/EOM
character In the TxFIFO until the Transmitter sends It.
When software uses the Transmit Control Block
feature, this procedure ensures that the Transmit DMA
channel doesn't load the control information for the
next frame or message, while the Transmitter still
needs the values for the current one.

On the Receive side, software can't directly read the
RCC (except perhaps by using test modes that are
beyond the scope of this section). Instead, when the
Receiver detects an end-of-frame situation, it captures
the decremented value In the counter into a four-entry
RCC FIFO and In a register called RCHR. (It may do
this when it receives a Flag or Sync character, or, In
External Sync and 802.3 modes only, when the /DCD
pin goes false.) It then reloads the RCC from RCLR in
preparation for the next frame. If software enables
two-word Receive Status Blocks, the IUSC stores the
value from RCHR as the second word of the RSB.

Besides recording the length of received frames/
messages, the RCC feature can help detect frames or
messages that are longer than a maximum length
defined by the serial protocol. This typically happens

67

because the Flag, terminating character or Sync
character(s) separating two frames or messages gets
corrupted on the serial link. This makes the two
frames or messages look like a single continuous one
to the Receiver. The usual strategy in such a case is
to ignore (or possibly "NAK") the whole mess.

If the IUSC decrements the RCC to zero and then
receives another character as part of the same frame/
message, it sets the RCCUnder LIU bit in the Miscel
laneous Interrupt Status Register (MISR3). To use
this feature to check for overly long frames or mes
sages, program the RCLR with the maximum number
of characters that a frame or message can validly
have. This value should Include any terminating and
CRC characters but exclude any Receive Status Block
information. Also, arm the RCC Underflow Interrupt by
setting the RCCUnder IA bit in the Status Interrupt
Control Register (SICR3), as described in Chapter 6.

If the IUSC ever sets RCCUnder LIU and interrupts,
clear the condition by writing a 1 to the LIU bit, discard
the data received for the frame(s) by purging the
RxFIFO, reprogram the Receive DMA channel if it's
being used, and do whatever else Is necessary to
clean up the situation. Then write the "Enter Hunt

Mode" command to the RCmd field of the Receive
Command/Status Register (RCSR15-12).

The RCC FIFO

Figure 46 shows the RCC FIFO. When software has
enabled the Receive Character Counter, the FIFO
captures the contents of the RCC at the end of each
frame or message in External Sync, Transparent Bi
sync, 802.3, and HDLC/SDLC modes. (The previous
section described how the Receiver decrements the
RCC by one for each character it receives.)

The RCC Fl FO can hold up to four 16-bit entries.
Figure 47 shows the Channel Command/Status Regi
ster (CCSR), the 3 MSBits of which allow software to
monitor and control the RCC FIFO. The RCCFAvail
bit (CCSR14) is 1 if the RCC FIFO contains at least
one entry, or is O if the RCC FIFO is empty.

When RCCFAvail is 1, software can read the oldest
entry in the RCC FIFO from the Receive Character
Count Register (RCCR). It can then compute the
length of the frame or message by subtracting this
ending value from the starting value that came from
the Receive Count Limit Register (RCLR). (Or, if the
starting value was all ones, software can simply one's
complement the value from RCCR.) Reading the
RCCR removes the oldest entry from the RCC FIFO.

For internal synchronization reasons a 16C32 doesn't
set RCCFAvail, nor certain other status related to an
End of Frame condition, until one bit time after it
places an RxBound character in the RxFIFO. Unlike
the 16C31, the 16C32 delays forcing an Rx Data
interrupt and/or an Rx OMA request until the same
RxCLK rising edge at which It sets RCCFAvail, so that
an Rx Data service routine can rely on the RCC FIFO
and Its status flags being current.

If software has enabled the RCC, and a frame or mes
sage ends when the RCC FIFO is already full, the new
value overwrites Its predecessor, and the three oldest
entries are not affected. The IUSC remembers this
event in a status bit that It routes through the RCC
FIFO (much like It routes other status bits through the
RxFIFO). When software reads the preceding entries
so that an overwriting/overwritten entry becomes the
oldest one left in the RCC FIFO, the IUSC sets the
RCCFOvflo bit in the Channel Command I Status
Register (CCSR15). Once RCCFOvflo is set, the only
way to clear it (other than to Reset the whole serial
controller) is to write a 1 to the ClearRCCF bit
(CCSR13). This also empties the RCC FIFO and
clears the RCCFAvail bit.

Writing to the RCCFOvflo and RCCFAvail bits has no
effect, nor does writing a 0 to the ClearRCCF bit.
ClearRCCF always reads as 0.

68

Transmit Control Blockse

Figure 48 shows the Channel Control Register. its
TxCtrlBlk field (CCR15-14) controls what the Trans
mitter does with the first 16 or 32 bits of data that the
Transmit OMA channel or software writes to the TOR
at the start of a frame or message. (While software
can use Transmit Control Blocks when it fills the
TxFIFO, there's no obvious reason to do so,
compared to just writing the control registers directly.)
The Transmitter Interprets TxCtrlBlk as follows:
TxCtrlBlk Kind of TCB's used

00 No Transmit Control Block
01 16-bit Transmit Control Block
10 32-bit Transmit Control Block
11 Reserved; do not program

When TxCtrlBlk is 01 or 10, the IUSC treats the next
16 or 32 bits, that the Transmit OMA channel or
software writes to the TOR, as a Transmit Control
Block after any of following happen:
1. after software writes the Trigger Tx OMA (or Trig

ger Tx and Rx OMA) command to the RTCmd field
of the Channel Command I Address Register
(CCAR15·11),

2. after software writes the Load TCC (or Load RCC
and TCC) command to RTCmd,

3. after software writes the Purge Tx FIFO (or Purge
Tx and Rx FIFO) command to RTCmd, or

4. after the Transmit OMA channel (or software)
writes data into the TxFIFO that decrements the
TCC to zero. As noted in an earlier subsection,
the Transmitter drops its OMA request from the
time the OMA channel fetches the last character of
a frame, until after it transfers the character to Its
serial shift register. It does this so that the OMA
channel doesn't fetch the Transmit Control Block
for the next frame or message, while the Trans
mitter still needs the control information for the
current frame.

Chapter 5 describes how the 16C32's Transmit OMA
channel can fetch a Transmit Control Block from either
of two locations in memory. The first method is
16C31-compatible: the channel fetches the TCB from
the memory data buffer, before fetching the first
characters of the frame or message. The other
method is new with the 16C32, and applies only when
the Tx OMA channel is in "Array mode" or "Linked List
mode". With this method, the channel fetches a TCB
from the Array or Linked List entry for a buffer other
than the first one in the list, if its start aligns with the
start of a frame. For the transmit side the choice
between these methods should be based on which is a
better fit with the software 1/0 architecture.

6 Previous USC documentation called these Transmit Status Blocks.

RCCF RCCF Clear DPLL DPLL DPLL On Loop Ctr
Ovflo Avall RCCF Sync 2Mlaa 1Mlaa

DPLLEDOE
Loop Send

Tl<Reeldue Reserved
Bypesa

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 47. The Channel Command/Status Register (CCSR)

Flag Async:TxShaveL
TxCtrlBlk Pre- RxStatBlk ReBBrved (0)

amble Sync:TxPrel Sync:TxPrePat

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 48. The Channel Control Register (CCR)

TxSubMode Reeervad(O) TxReeldue Reserved (0)

15 14 13 12 11 10 9 8 7 8 5 4 3 2 0

Figure 49. The First (or Only) 16 bits of a Transmit Control Block

Figure 49 shows the format of the first word of a 32-bit
TCB or the only word of a 16-bit TCB. Its most
significant four bits define a new TxSubMode value for
the following transmit data. When the Transmit OMA
channel or software writes this word to the TOR, the
IUSC copies these four bits into the TxSubMode field
of its Channel Mode Register (CMR15-12) without
changing the rest of the CMR. Bits 4-2, of the first or
only word, define the TxResidue value for the following
frame in HOLC/ SOLC or HOLC/SOLC Loop mode.
The IUSC similarly copies these bits into the
TxResidue field of the Channel Command/Status
Register (CCSR4-2) without affecting the rest of the
CCSR. The device ignores bits 11-5 and 1-0 of the
first or only word of a TCB, but Zilog reserves these
bits for future enhancements and software should
ensure that they're all zero.

For most protocols, the second word of a 32-bit TCB
should contain the number of characters/bytes in this
frame or message. The IUSC writes this word through
the Transmit Count Limit Register (TCLR) and into the
Transmit Character Counter (TCCR). In a non-block
structured mode like 1553B, the value simply reflects
the number of bytes until the next TCB. Note that with
a 16-bit TCB, the IUSC still reloads the TCC, but it
uses the old value in TCLR to do so. Thus, 16-bit
TCBs are useful in protocols that use fixed-length
frames or messages, but 32-bit TCBs should be used
when successive transmitted frames or messages can
vary in length.

Chapter 5 describes and shows the various cases of
TCB placement in memory in OMA applications.

2ndBE 1atBE 00 RxRaaldua ShortF/
CVTypa

Receive Status Blocks

The Receiver sets the RxBound bit in the RxFI FO to
indicate the end of a frame, message, or word, in
External Sync, Transparent Bisync, 802.3, HOLC/
SOLC, and ACV/1553B modes. In these modes the
Receiver can store summary/status information in
memory for each frame, message, or 1553B word.
The RxStatBlk field of the Channel Control Register
(CCR7-6) controls whether it does this. The IUSC
interprets it like TxCtrlBlk:
RxStatBlk Kind of RSB's used

00 No Receive Status Block
01 16-bit Receive Status Block
10 32-bit Receive Status Block
11 Reservedi do not program

If this field is either 01 or 10, the Receiver stores
frame status as the first word of a 32-bit Receive
Status Block, or the only word of a 16-bit RSB. Figure
50 shows this word, which is similar to but not identical
with the contents of the Receive Command/Status
Register (RCSR). The differences include:
1. The IUSC forces the bits that correspond to

ExitedHunt, ldleRcved, and Break/Abort in the
RCCR to 0. These are "global" rather than
"queued" status bits, and must be handled by
software on a more or less real-time basis.

2. The LS Bit of the first word of an RSB is a copy of
the LS Bit of the RCC at the end of the frame
rather than the RxAvail bit that's in the RCCR.
This bit is also available in the RCC FIFO and in
the second word of a 32-bit RSB, but for 16-bit
OMA operation it may be handy to have it here,
especially in a 16-bit RSB.

000 Always CRCE Abort Rx
1 /FE /PE Over

RCCO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 50. The First (or Only) 16 Bits of a Receive Status Block

69

The CRCE/FE bit In an RSB reflects the CRC
correctness of the frame In 802.3 and HDLC/SDLC
modes, but not In Transparent Bisync mode.

A 10 In RxStatBlk makes the IUSC also store the
ending value of the Receive Character Counter in a
second 16-blt word after the frame status word.

Chapter 5 describes how the Receive OMA channel
can store an Receive Status Block in memory In two
different ways. With the 16C31-compatible method,
the OMA channel does not handle the RSB In any
special way, It simply stores it in the memory buffer
after the RxBound character, and decrements its
Receive Byte Count Register (RBCR) as for serial
data.

The other method is new with the 16C32, and more or
less assumes the following circumstances:
1. the Receive OMA channel is In Array or Linked

List mode, and either
2A. the channel's Early Termination feature Is enabled,

or
28 the line protocol uses a fixed frame length and

memory buffers are of this length as well,

When this method, after a buffer is terminated the
Receive OMA channel reads the RSB and stores it in
the Array or List entry for the terminated buffer, before
going on to the next one. The channel does not
decrement Its byte count as It transfers this data.

The problem with the 16C31-compatible method is
that software has to know how long each received
frame Is, In order to find Its RSB. To obtain these
lengths It has to read the RCC FIFO in a sufficiently
timely manner to prevent overflows. For four or more
successive frames each composed of, say, 4-6 char
acters, the four-entry depth of the RCC FIFO may
impose interrupt-response requirements that can't be
met In the worst-case.

By contrast, storing the RSB's in Array or Linked List
entries allows software to ignore the receive process
for longer periods, these being limited only by the
extent of the Array or List structures it sets up, and/or
by response timeouts Imposed by the serial protocol.

When software or the Receive OMA channel reads 16
bits from the RDR, and the Receiver has marked the
oldest character in the RxFIFO with RxBound status,
the IUSC only takes that one character out of the
RxFIFO. When the Receive OMA channel Is doing
16-blt transfers, software has several ways to figure
out whether the 16-bit "word" preceding a RSB
contains one or two characters/bytes.

The most straightforward way is to compute the length
of the frame or message, by subtracting the ending
RCC value In the RCC FIFO or the second word of the
RSB, from the starting RCC value that the hardware

70

took from RCLR. (If the starting value was all ones,
software can just ones-complement the ending value.)
If the result Is odd there's one character in the 16-bit
word that precedes the RSB, while if it's even there
are two characters In the word.

A "narrower" version of the same computation Is that If
bit O of the first or second word of the RSB Is the
same as the units bit of the starting RCC value that
came from RCLR, then the preceding word contains
two characters. If the two bits are different the word
contains only one character.

Still another method applies only when bits 2-1 of the
first word of the RSB, namely Abort/PE and RxOver,
are both 0. The usual handling for a receive overrun
condition in synchronous modes includes forcing the
receiver Into Hunt mode for the start of the next frame
or message, which means that an RSB would never
be stored for a frame that encountered an overrun.
When Abort/PE and RxOver are both zero, If bit 14 of
the first word of the RSB (1 stBE) is 1, there is one
character in the preceding word, while if bit 14 is 0
there are two characters.

Chapter 5 describes the various ways In which the
Receive OMA channel can store an RSB In memory.

Using TCB's and RSB',s In ACV (1553B) Mode

In Async with Code Violations (1553B) mode, the
Receiver sets the RxBound bit for the second (or only)
byte of each word received. It does this so that soft
ware can use the Receive Status Block mechanism to
record the type of Code Violation (Command/Status or
Data) that introduced each word. To use this facility,
software should program the RxStatBlk field (CCR7-6)
to 01 to select 16-bit RSB's. The Receiver then stores
a 16-bit status word after each word (or byte) of
received data. The ShortF/ CVType bit (bit 8) of the
status word is 1 after a "command/status" word and O
after a "data• word.

On the Transmit side, software can use Transmit
Control Blocks to send any sequence of mixed Com
mand/Status and Data words under OMA control. To
do this, it should program TxCtrlBlk (CCR15-14) to 10
to select 32-blt TCB's, and should structure the data in
memory so that a TCB precedes each block of words
of the same kind. Bit 12 of the first word of each TCB
(the LSBit of the TxSubMode value) should be 1 for a
block of Command/Status words and O for a block of
Data words. The second word of each TCB should
specify the number of bytes in the block (typically this
Is twice the number of words).

RTCmd RT
Reset

RTMode Chan
Load

B//W RegAddr U//L

15 14 13 12 11 10 9 8 7 6 5 4 3

Figure 51. The Channel Command/Address Register (CCAR)
2 0

Commands
Commands are encoded values that software writes to
a register field to change the state of the IUSC or
make It perform some action. Typically commands
don't take any software-perceptible time to perform.
IUSC command fields are write-only; reading them
back may yield zeroes, or some unrelated status item.

Often commands represent a more compact and effi
cient way to provide control features than dedicated
register bits. In fact, commands are so popular that
the IUSC includes three separate encoded command
fields in its serial section and one in its OMA section!
Figure 51 shows the Channel Command / Address
Register. Software can write any of 18 different
commands that affect the Transmitter and/or the
Receiver to its RTCmd field (CCAR15-11). In
addition, software can write any of 11 commands that
affect the Transmitter to the TCmd field in the
Transmit Command/Status Register (TCSR15-12).
Finally, software can write any of six commands that
affect the Receiver to the RCmd field in the Receive
Command/Status Register (RCSR15-12). Chapter 5
describes the commands for the IUSC's DMA chan
nels that software can write to the OMA Command I
Address Register.

Writing all zeroes to any of the command fields
does nothing, which can be useful when the intent is
to write to other fields of the register. Zilog reserves
other values not listed below for future extensions to
the USC family; such values should not be written to
the subject field.

RTCmd
~
00010
00100
00101
00110
00111
01001
01010
01011
01101
01110
01111
10001
10010
10011

Function
Reset"Highest serial IUS
Trigger Channel Load OMA
Trigger Rx OMA
Trigger Tx OMA
Trigger Rx and Tx OMA
Purge Rx FIFO
Purge TX FIFO
Purge Rx and Tx FIFO
Load RCC
Load TCC
Load RCC and TCC
Load TCO
Load TCl
Load TCO and TCl

10100 Select Serial LSBit First

71

10101
10110
10111

TCmd
~

0010
0100
0101
0110
0111
1000
1001
1100
1101
1110
1111

RCmd
~

0010
0011
0100
0101

Select Serial MSBit First
Select 015-8 First
Select 07-0 First

Function
Clear Tx CRC Generator
Select TICRHi=TTSA Data
Select TICRHi=FIFO Status
Select TICRHi=/INT Level
Select TICRHi=/TxREQ Level
Send Frame/Message
Send Abort
Enable OLE Insertion
Disable OLE Insertion
Clear EOF/EOM
Set EOF/EOM

Function
Clear Rx CRC Generator
Enter Hunt Mode
Select RICRHi=RTSA Data
Select RICRHi=FIFO Status

0110 Select RICRHi•/INT Level
0111 Select RICRHi=/RxREQ Level

A description of each command follows, in alphabetical
order. Some of them include references to other
chapters or sections, which provide more information
that's important to fully understanding the command.

Clear EOF/EOM (TCmd:=111 O): this command con
ditions the IUSC so that it~ mark the next char
acter, that software or the Transmit OMA channel
writes to the Transmit Data Register, as End of
Frame/End of Message. Since the IUSC assumes this
state after each write to the TDR, and after a hardware
or programmed Reset, software will need this
command only if it "changes its mind" about where the
frame ends, between issuing a Set EOF/EOM
command and writing the TDR.

Clear Rx or Tx CRC Generator7 (RCmd or TCmd:=
0010): these commands force the Receive or Transmit
CRC Generator to all zeroes or all ones, depending on
the RxCRCStart bit In the Receive Mode Register
(RMR10) or the TxCRCStart bit in the Transmit Mode
Register (TMR10). Software will seldom need these
commands because the Receiver and Transmitter

7 Previous USC documentation called these commands Preset CRC

automatically clear their associated CRC generators at
the start of each frame.

Disable OLE Insertion (TCmd:=1101): this command
applies only to Transparent Bisync mode. It conditions
the IUSC so that It doesn't check subsequent
characters written to the Transmit Data Register
(TOR) for OLE characters, and so that it doesn't add
any OLE characters to the transmitted data stream.
Software should use this command before writing a
two-character control sequence that starts with OLE to
the TOR. OLE insertion remains disabled until soft
ware issues the Enable OLE Insertion command or
until a hardware or software Reset. The IUSC queues
the state that's affected by this and the following
command through its TxFIFO with each character, so
that software can change the state as needed.

Enable OLE Insertion (TCmd:=1100): this command
applies only to Transparent Bisync mode. It conditions
the IUSC so that it checks subsequent characters
written to the Transmit Data Register (TOR) for OLE
characters, and adds another OLE for each OLE
written to the TOR. Software should use this
command before writing normal data to the TOR. OLE
insertion remains enabled until software issues the
Disable OLE Insertion command. The !USC queues
the state that's affected by this and the preceding
command through its TxFIFO with each character, so
that software can change it as needed.

Enter Hunt Mode (RCmd:=0011): this command
forces the Receiver into "Hunt Mode" Immediately,
regardless of its previous state. In synchronous
modes, this means that the Receiver starts searching
for a Sync or Flag sequence. In asynchronous modes
it starts searching for a start bit or (in 1553B mode) for
a code violation. In any mode, the Receiver discards
any partial character that was in progress when
software issued the command.

Load RCC and/or recs (RTCmd:=01101-01111):
these commands load the Receive and/or Transmit
Character Counter from the Receive and/or Transmit
Count Limit Register (RCC from RCLR and/or TCC
from TCLR). This may enable or disable character
counting. If software has enabled the Transmit Con
trol Block feature in the TxCtrlBlk field of the Channel
Control Register (CCR15-14=01 or 10), a Load TCC or
Load RCC and TCC command also conditions the
Transmitter to treat the next data written to the
Transmit Data Register as a TCB.

Lo~d TCO and/or TC1 (RTCmd:=10001-10011):
these commands load the counter in Baud Rate
Generator O and/or 1 from the Time Constant 0 and/or
1 Register (BRGO from TCOR and/or BRG1 from

Previous USC documentation called these commands Reload TCC and/or RCC

72

TC1 R). Loading a BRG via one of these commands
also enables it to count. This is particularly important
when software has programmed a BRG for single
cycle mode (HCR1=1 for BRGO or HCR5=1 for BRG1)
and it has stopped after counting down to zero. See
Chapter 3 for more information about the BRG's.

Purge Rx and/or Tx FIFO (RTCmd:=01001-01011):
these commands remove all entries from the RxFIFO
and/or TxFIFO. These commands also reload the
Receive and/or Transmit Character Counter from the
Receive and/or Transmit Count Limit Register (RCC
from RCLR and/or TCC from TCLR). This may enable
or disable character counting. If software has enabled
the Transmit Control Block feature in the TxCtrlBlk
field of the Channel Control Register (CCR15-14=01
or 10), a Purge Tx FIFO command also conditions the
Transmitter to treat the next data written to the
Transmit Data Register as a TCB. If software is using
the Transmit OMA channel, a Purge Tx FIFO
command may cause the /TxREQ pin to be asserted
immediately, while if it's using Transmit Data
interrupts, the command may cause the /INTA or
/INTB pin to be asserted immediately. (The previous
two sentences also apply to a Purge Rx and Tx FIFO
command.)

Reset Highest Serlal IUS (RTCmd:=00010): Chapter
6 describes how this command clears the highest
priority Interrupt Under Service latch in the serial
controller section that's currently set (if any).

Select 015·8 or 07·0 Flrst9 (RTCmd:=10110-10111):
these commands control which of the two characters
in a 16-bit write to the TDR/TxFIFO the Transmitter
sends first. They also control how the IUSC arranges
the oldest and second-oldest characters in the
RxFIFO when software or the Receive OMA channel
reads 16 bits from it via the Receive Data Register.
"015~8 First" is the default value after either a hard
ware or programmed reset, and is compatible with the
Zilog ZSOOO, Zilog 16COx and Motorola 680x0 proces
sors. "07-0 First" should be programmed for the Zilog
Z380 and most Intel processors. The IUSC applies
this option only during a 16-bit transfer, between the
TxFIFO or RxFIFO and the A015-0 pins. However, if
the Transmit Character Counter contains 0001 and the
Transmit OMA channel writes 16 bits to the TxFIFO,
the IUSC only puts the character from A07-0 in the
TxFIFO, regardless of these commands. In a "07-0
First" system this isn't a problem. But if the last
character of a frame or message falls at an even
address when using the Transmit OMA channel in a
"015-8 First" system, software must copy the last

9 Previous USC documentation called these commands Select Straight Memory
Data and Select Swapped Memory Data.

character Into the subsequent odd address as well.
(Usually this applies to a frame with an odd length.)

Select RICRHl=/INT Level (RCmd:=0110): this
command conditions the IUSC so that subsequent
accesses to the MSByte of the Receive Interrupt
Control Register (RICR15-8) read or write the number
of received characters at which the IUSC starts
requesting a Receive Data interrupt, as described in
Chapter 6. If software uses the Receive OMA channel
to store data in memory, it should disable Receive
Data interrupts.

Select RICRHl=/RxREQ Level (RCmd:=0111): this
command conditions the IUSC so that subsequent
accesses to the MSByte of the Receive Interrupt
Control Register (RICR15-8) read or write the number
of received characters at which the Receiver asserts
/RxREQ to the Receive OMA channel, as described in
Chapter 5.

Select RICRHl=FIFO Status (RCmd:=0101): this
command conditions the IUSC so that reading the
MSByte of the Receive Interrupt Control Register
(RICR15-8 yields the number of characters in its
RxFIFO. This is described more fully in The Data
Registers and the FIFOs later In this chapter.

Select RICRHl=RTSA Data (RCmd:=0100): this
command conditions the IUSC so that subsequent
accesses to the MSByte of the Receive Interrupt
Control Register (RICR15-8) read or write Receive
Time Slot Assigner data. This is described more fully
In Programming the Time Slot Assigners in Chapter 3.

Select Serial Data LSB or MSB First (RTCmd:=
10100-10101): these commands control whether the
IUSC transmits and assembles serial data with the
Least Significant or Most Significant bit going first on
the line. "LSB first" is the default after either a
hardware or programmed reset, and is the method
used in most traditional data communications
schemes. The IUSC applies this option as it transfers
data between the AD pins and the FIFOs. Because of
this, these commands don't affect functions like
matching addresses and sync characters and sending
syncs. This, In turn, means that software must
program such values "backward" in the TSR and RSR
for "MSB first" applications.

Select TICRHl=/INT Level (TCmd:=0110): this
command conditions the IUSC so that subsequent
accesses to the MSByte of its Transmit Interrupt
Control Register (TICR15-8) read or write the number
of empty TxFIFO entries at which the Transmitter
starts requesting a Transmit Data interrupt, as
described In Chapter 6. If software uses the Transmit
OMA channel to fetch data from memory, it should
disable Transmit Data interrupts.

73

Select TICRHl=/TxREQ Level (TCmd:=0111): this
command conditions the IUSC so that subsequent
accesses to the MSByte of the Transmit Interrupt
Control Register (RICR15-8) read or write the number
of empty TxFIFO entries at which the Transmitter
asserts /TxREQ to the Transmit OMA channel, as
described in Chapter 5.

Select TICRHi=FIFO Status (TCmd:=0101): this
command conditions the IUSC so that reading the
MSByte of the Transmit Interrupt Control Register
(TICR15-8) yields the number of empty entries in its
TxFIFO. This is described more fully in The Data
Registers and the FIFOs later in this chapter.

Select TICRHl=TTSA Data (TCmd:=0100): this
command conditions the IUSC so that subsequent
accesses to the MSByte of the Transmit Interrupt
Control Register (TICR15-8) read or write Transmit
Time Slot Assigner data. This is described more fully
in Programming the Time Slot Assigners in Chapter 3.

Send Abort (TCmd:=1001): this command is valid
only in HDLC/SDLC mode and makes the Transmitter
send an Abort (Go Ahead) sequence. If the 2 MSBits
of the TxSubMode field of the Channel Mode Register
(CMR15-14) are 01, the Abort consists of a zero fol
lowed by 15 consecutive ones. Otherwise it consists
of a zero followed by seven ones. After sending the
Abort, the Transmitter operates as it would have after
sending a closing Flag. That is, if Wait2Send (TICR2)
is O and there's data in the TxFIFO, it starts a new
frame, otherwise it sends the Idle condition defined by
the Txldle field (TCSR10-8).

Send Frame/Message (TCmd:=1000): if the
Wait2Send bit in the Transmit Interrupt Control
Register (TICR2) is 1, the Transmitter waits between
frames, sending the Idle pattern defined by the Txldle
field of the Transmit Command/Status Register
(TCSR10-8), until software issues this command. The
later section Synchronizing Frames/Messages with
Software Response describes how this feature differs
from the one controlled by the Wait4TxTrig bit in the
Channel Control Register and the Trigger Tx OMA
command in RTCmd.

Set EOF/EOM (TCmd:=1111): this command condi
tions the IUSC so that it marks the next character that
software or the Transmit OMA channel writes to the
Transmit Data Register (TOR) as End of Frame/End of
Message. This marking makes the Transmitter
perform the appropriate closing actions after sending
the character. (For example, in HDLC/SDLC mode it
sends a CRC and then a closing Flag.) Typically, after
issuing this command, software should write the last
character of the frame or message to the LSByte of
the Transmit Data Register (TDR7-0). The IUSC auto
matically clears the state set by this command when
software (or the Transmit OMA channel) writes to the

TOR. Therefore this command applies to at most one
character.

Trigger Channel Load OMA (RTCmd:=00100):
Chapter 7 will describe how this command puts the
serial controller section of the IUSC in a special mode
in which the Transmit OMA channel can initialize all
the registers in the serial controller. Software must
program and set up the Transmit OMA channel as for
transmitting data, before it issues this command. This
operation can't initialize any of the registers in the
!USC's OMA section.

Trigger Rx and/or Tx OMA (RTCmd:=00101·00111):
if one of the Wait4xxTrig bits in the Channel Control
Register (CCR13 for Tx, CCR5 for Rx) is 1, the serial
controller section of the IUSC stops requesting that
kind of OMA transfer after the end of each frame.
When this happens, software should use one of these
commands to reenable requests to one or both OMA
channel(s), for the next frame. These commands also
load the Receive and/or Transmit Character Counter
from the Receive and/or Transmit Count Limit Register
(RCC from RCLR and/or TCC from TCLR). This may
enable or disable character counting. If software has
enabled the Transmit Control Block feature In the
TxCtrlBlk field of the Channel Control Register
(CCR15·14=01 or 10), a Trigger Tx OMA or Trigger Tx
and Rx OMA command also conditions the Transmitter
to treat the next 16 or 32 bits written to the Transmit
Data Register as a TCB. The later section
Synchronizing Frames/Messages with Software
Response describes how this feature differs from the
one controlled by the Wait2Send bit in the Transmit
Interrupt Control Register and the "Send
Frame/Message" command in TCmd.

Resetting the Serial Controller
Figure 51 shows the RTReset bit in the Channel
Command/Address Register (CCAR10). Software can
use this bit to reset the serial controller section of the
IUSC to a known and inactive state like that produced
by driving the /RESET pin low. (The most significant
difference Is that the IUSC requires software to write
the Bus Configuration Register (BCR) after a hardware
reset, but not after this kind of "software Reset".)

To software-reset the serial controller when using a
16-bit data bus:
1. Write CCAR (or its MSByte) with RTReset=1.
2. Write a 16-bit zero to CCAR.

To software-reset the serial controller when using an
8-bit bus:

1. Write the MSByte of CCAR with RTReset=1.
2. Write the LSByte of CCAR with an 8-bit zero.
3. Write the MSByte of CCAR with an 8-blt zero.

74

The way this "software reset" works is that the 1 state
of RTReset conditions the serial controller's register
address decoding logic so that the subsequent write
operation actually writes data Into all the registers in
the serial controller. Between the time that software
writes RTReset as 1, and when it writes it back to o,
the IUSC doesn't drive 1/0 pins, it either 3-states
output pins or holds them in their inactive state, but
register bits that don't directly affect these pins are
unchanged/undefined.

Leaving the RTReset bit set Is a common_mlstake
made by first-time users of a USC famlly member.

The Data Registers and the FIFOs
When the RxFIFO contains received characters, soft
ware can read the "oldest" 1 or 2 characters In it from
the Receive Data Register (RDR). When software
uses the Receive OMA channel, it takes care of taking
data out of the RxFIFO, in a "flyby" fashion using an
internal "RxACK" signal. The Mode Registers: Char
acter Length, earlier in this Chapter, describes how the
Receiver aligns characters and fills out bytes in the
RDR/RxFIFO when characters are less than 8 bits
long.

Similarly, when the TxFIFO Isn't full software can write
1 or 2 characters to it via the Transmit Data Register
(TOR), or the Transmit OMA channel can write the
TxFIFO in a flyby fashion using an internal "TxACK"
signal.

Chapter 2 describes how software can access the
TOR and RDR using a register address that may be 1)
multiplexed on the AD5·1 pins, 2) full-time on AD13·8
if only AD7·0 carry data, or 3) written into the Channel
Command I Address Register (CCAR5·1).

Two other features of the IUSC make it easier for
software to access these registers when the AD lines
don't carry multiplexed addresses and the data bus is
16 bits wide. Host processor write cycles to the IUSC,
with the S//D and D//C pin both high, always write the
TOR. Similarly, host processor read cycles from the
IUSC, with S//D and D//C both high, always read the
RDR. Typically the system designer connects these
pins to processor address lines, such as A2 and A 1 for
a non-multiplexed 16-bit bus, or AB and A7 for a
multiplexed bus.

Chapter 2 also describes how to write the Bus Config
uration Register to configure the IUSC for a 16-bit data
bus. With a 16-blt data bus, software can write two
characters at once to the TOR, or the Transmit OMA
channel can read two characters out of memory at
once. Similarly, software can read two characters at a
time from the RDR, or the Receive OMA channel can
write two characters into memory in each bus cycle.
The earlier section Commands describes how the
"Select 015·8 First" and "Select 07 -0 First" com-

mands allow the two characters, in each 16-bit transfer
to the TOR or from the RDR, to be arranged in either
order. This is important because available micro
processors differ about the order.

With a 16-bit data bus, software can read or write
most IUSC registers as a 16-bit word, or can read or
write either their "more significant" byte (bits 15-8) or
"less significant" byte (bits 7-0). The TOR and RDR
are different in this regard: software should never read
or write their more significant bytes alone, only as part
of a 16-bit transfer. On a 2ilog 28000 or 16COx or
Motorola 680x0 based system this typically means that
software should write bytes to the TOR and read bytes
from the RDR at odd addresses. On a 2ilog 2380 or
Intel 80x86 processor, software should typically write
bytes to the TOR and read bytes from the RDR at
even addresses.

On a 16-bit bus there's no way for software to read
single characters from RDR, or write single characters
to TOR, using an address that makes D//C high. To
do this, software must either address the LSByte of
TDR/RDR directly, or it must write the address of the
LSByte to the CCAR.

The TxFIFO and RxFIFO have a maximum capacity of
32 characters (bytes) each. The IUSC empties them
of all data when external hardware drives the /RESET
pin low, when software resets the serial controller via
the RTReset bit (CCAR10), and when software writes
a "Purge Rx and/or Tx FIFO" command to the RTCmd
field (CCAR 15-11).

The RxFIFO becomes one byte more full for each
character received on the serial link, and one or two
bytes less full each time software reads data from it
via the RDR or the Rx OMA channel writes data into
memory. The TxFIFO becomes one or two bytes
more full each time software writes data to it via the
TOR or the Tx OMA channel reads data from memory,
and one byte less full each time the Transmitter
moves a character into its output shift register.

The exceptions to the above statements are that in
Async with Code Violations (15538) mode with the
Extended Word option selected, the RxFIFO becomes
two bytes more full for each received word, and the
TxFIFO becomes two bytes emptier each time the
Transmitter transfers a word to its shift register.

The IUSC maintains a counter for each FIFO that
reflects its current contents. Software can read the
number of received characters/bytes that are currently
in the RxFIFO. To do this, it may first have to write
the "Select RICRHi=FIFO Status" command to the
RCmd field of the Receive Command/Status Register
(RCSR15-12). Then software can read the MSByte of
the Receive Interrupt Status Register (RICR15-8).
The resulting 8-bit value represents the number of
received characters in the RxFIFO. It ranges from O

75

for an empty RxFIFO to 32 for a full one. Software
can skip the step of writing the Select command if it
hasn't written any of the other "Select RICRHi= ... "
commands to the RCSR since the last time it issued
this command.

Similarly, software can read the number of entries that
are currently empty in the TxFIFO. It may first have to
write the "Select TICRHi=FIFO Status" command to
the TCmd field of the Transmit Command/Status
Register (TCSR15-12). Then software should read
the MSByte of the Transmit Interrupt Status Register
(TICR15-8). The resulting 8·bit value represents the
number of empty positions in the TxFIFO. It ranges
from 0 for a full TxFIFO to 32 for an empty one. As for
the RxFIFO, software can skip the step of writing the
Select command if it hasn't written any of the other
"Select TICRHi" commands to the TCSR since the last
time it issued this command.

The IUSC continually compares the contents of these
counters against two "threshold" levels for each.
Chapter 5 describes how the "Tx OMA Request Level"
determines how empty the TxFIFO must get before
the Transmitter starts requesting that the Transmit
OMA channel should read more data from memory.
Once the Transmitter has started to request OMA
transfer, it typically keeps doing so until the OMA
channel has filled the TxFIFO or until the Transmit
Character Counter has counted down to zero.

Chapter 5 also describes how the "Receive OMA
Request Level" controls how full the RxFIFO should
get before the Receiver starts requesting that the
Receive OMA channel should move data to memory.
Once the Receiver has started to request OMA
transfer, it typically keeps doing so until the OMA
channel has emptied the RxFIFO, or until it has stored
the last character of a frame or message.

Chapter 6 describes how, if software enables "Trans
mit Data" interrupts, the "Transmit /INT Level" controls
how empty the TxFIFO should get before the
Transmitter starts requesting such an interrupt. It also
describes how, if software enables "Receive Data"
interrupts, the "Receive /INT Level" controls how full
the RxFIFO should get before the Receiver starts
requesting such an interrupt. Software doesn't use
these kinds of interrupts in most IUSC applications,
because the Transmit and Receive OMA channels
handle the data. But if software does use data
interrupts, the interrupt service routine should fill the
TxFIFO or empty the RxFIFO completely each time it
executes. (As a minimum the ISR should transfer
enough data to bring the Fl FO status below the
threshold level, or should raise the threshold level to
accomplish the same thing.)

With the 16C31 and other older members of the USC
family, certain worst-case interarrivals of serial

clocking and bus timing could result in transient states
In which the RxFIFO and TxFIFO counts were
Incorrect. When software read these counts and
transferred data to the TOR or from the ROR, it could
work around such problems by the classic control
system technique of reading the counts until two
successive readings agreed. The 16C32, and similar
devices such as the 16230 use, include logical
interlocks so that these counts will always be correct
and need only be read once.

These interlocks have also eliminated a related
problem of earlier USC family members, wherein a
received character was completed just as the Receiver
was deciding to withdraw its Receive OMA request
because the latter had emptied the RxFIFO. Under
worst-case lnterarrivals, the logic would maintain the
request on a 16-bit bus even though the RxFIFO
contained only the single newly-received character.
The OMA channel would then do a 16-bit transfer, so
that the observable symptom of the problem was that
occasionally, "extra characters" would appear In the
received frame In memory. Such phenomena will not
occur with the 16C32 and 16230.

Between Frames, Messages, or
Characters
Synchronous Transmission

When software issues a "Set EOF/EOM" command
and then writes data to the TOR, or when software or
the Transmit OMA channel fetches enough data so
that the TCC counts down to zero, the IUSC flags the
last character of the message or frame in the TxFIFO.
After this last character gets to the other end of the
TxFIFO and out onto the serial link, the Transmitter
terminates the frame or message. The Transmitter
also terminates a frame or message if it needs a
character from the TxFIFO but it's empty (an
"underrun" condition). The IUSC's exact actions at
these points depend on the serial mode/protocol and
possibly on certain programmed options.

If the TxCRCatEnd bit in the Transmit Mode Register
(TMR8) is 1, the Transmitter sends the CRC code it
has accumulated during the frame, after a character
marked as the end of a frame or message. If the
TxSubMode field says to do so, the Transmitter sends
its accumulated CRC In an underrun situation. The
CRC can be 16 or 32 bits long.

Then, or right after the last character from the TxFIFO
if it doesn't send the CRC, except in 802.3 (Ethernet)
mode the Transmitter sends a closing Sync or Flag
sequence as determined by the TxMode and some
times the TxSubMode, as follows:

76

TxMode Cloelng aequence:

Monosync (TSR15-8)

Slaved Monosync (TSR15·8)

Bi sync (TSR15-8) lfCMR14=0
(TSR7-0)(TSR15-8) If CMR14=1

Transparent Blsync SYN If CMR14=0
OLE-SYN lfCMR14=1
(ASCII or EBCDIC per CMR12)

802.3 (Ethernet) None

HDLC/SDLC Flag (01111110)

HDLC/SDLC Loop Flag (01111110)

Then, or immediately after sending the CRC in 802.3
(Ethernet) mode, the Transmitter decides whether to
send another frame or message immediately or not.
In HOLC/SOLC Loop mode only, when it sends a
closing or Idle Flag the Transmitter checks whether
software has cleared the CMR13 bit to signal the end
of sending activity. If so, it returns to repeating data
from RxO onto TxO. In any other mode, and in Loop
mode if CMR13 is 1, the Transmitter commits to
sending a new message or frame when:
1. there is at least one character in the TxFIFO, and
2a. either the Walt2Send bit in the Transmit Interrupt

Control Register (TICR2) is O, or

2b. software has written the "Send Frame/Message"
command to the TCmd field of the Transmit
Command/Status Register (TCSR15-12) since the
end of the last frame.

If these conditions aren't met, the Transmitter sends
the "Idle line condition" specified by the Txldle field of
the Transmit Command/Status Register (TCSR10-8).
This field also determines what the Transmitter sends
between characters in async modes. The Transmitter
interprets Txldle as follows:

.'.IxldJ& Idle Line Condition
000 The idle line condition is the

default for the mode/ protocol
defined by TxMode:
* All ones in 802.3 and all
async modes.
* Flags in HDLC/SDLC and
HDLC/SDLC Loop.
* Sync sequences in Monosync,
Slaved Monosync, Bisync, and
Transparent Bisync. (In the
Bisync modes these are like
closing Syncs: they may be
single characters or pairs
based on CMR14.)

001 Alternating zeroes and ones
010 Continuous zeroes
011 Continuous ones
100 Reserved; do not program
101 Alternating Mark and Space
110 Continuous Space (TxD low)
111 Continuous Mark (TxD high)

With choices 000-011, the Transmitter encodes the
Idle condition as specified by the TxEncode field of the
Transmit Mode Register (TMR15-13), while for
choices 101-111 it doesn't encode the condition.
Software can use these idle-condition options to keep
Phase Locked Loop and decoding circuits at the
remote receiver "in sync" between messages, frames,
or async characters. Consider the sections of Chapter
3 that deal with data encoding and the DPLL, and
whatever standards or specifications apply to your
application, in selecting how to program Txldle.

In sync modes, once the conditions to start sending a
message or frame (described above) are met, the
Transmitter may send a bit sequence called a
Preamble. A Preamble can be used to synchronize
Phase Locked Loop and decoding circuits at the
remote receiver, or, with the 16C32, to guarantee a
minimum number of Flags between HDLC/SDLC
frames. Whether the Transmitter sends a Preamble is
a function of the TxMode and sometimes the
TxSubMode, as follows:

TxMode Preamble sent?

Monosync If CMR13=1

Slaved Monosync Never

Bi sync If CMR13=1

Transparent Bisync If CMR13=1

802.3 (Ethernet) Always

HDLC/SDLC If CMR13=1

HDLC/SDLC Loop Never

If the Transmitter sends a Preamble, the TxPreL and
TxPrePat fields of the Channel Control Register
(CCR11-10 and CCR9-8) control its length and
content:
~

00
01
10
11

Length of Preamble Sent
8 bits
16 bits
32 bits
64 bits

TxPrePat Prea!l\ble Pattern Sent
00 All zeroes
01 All ones, or Flags
10 101010 •••
11 010101 •••

For HDLC/SDLC mode, if TxPrePat is 01 and the
FlagPreamble bit in the Channel Control Register
(CCR12, see Figure 48) is 1, the 16C32 sends 1, 2, 4,
or 8 Flags as the Preamble. Including the opening
and closing ones, this guarantees a minimum of 3, 4,
6, or 1 O Flags between frames respectively. This is
useful when sending to certain kinds of equipment that
can't handle less Flags, or as a means of slowing
down the gross frame rate slightly.

77

FlagPreamble should be O in all other modes. For
802.3 (Ethernet) mode, program TxPreL=11 and
TxPrePat=10; the Transmitter automatically modifies
the last (64th) bit from a O to a 1 to act as the "start
bit". For other modes, consider the sections of
Chapter 3 that deal with data encoding and the DPLL,
and whatever standards or specifications apply to your
application, in deciding whether to use a preamble and
if so what kind.

After sending the Preamble, or when the conditions for
starting a frame have been met if there is no
Preamble, except in 802.3 (Ethernet) mode the
Transmitter sends an opening Flag or Sync sequence.
In the two Bisync modes this may differ from the
closing sequence:

TxMode Opening eequence:

Monosync (TSR15-8)

Slaved Monosync (TSR15-8)

Bisync (TSR7-0)(TSR15-B)

Transparent Bisync DLE-SYN
(ASCII or EBCDIC per CMR12)

602.3 (Ethernet) None

HDLC/SDLC Flag (01111110)

HDLC/SDLC Loop Flag (01111110)

In the HDLC/SDLC and HDLC/SDLC Loop modes
only, the Transmitter will combine the closing and
opening Flags into a single instance if all of the
following are true:
1. software has not selected sending a Preamble

(CMR13=0; this doesn't apply in Loop mode),
2. the Wait2Send bit (TICR2) is 0, and
3. at least one character is available in the TxFIFO

as the Flag is going out.

As described in the earlier section Status Reporting,
software can use four of the bits in the Transmit
Command/Status Register (TCSR) to track the
progress of the Transmitter through these inter-frame
activities. They occur in the time order CRCSent, then
EOF/EOM Sent, ldleSent, and finally Present.
Chapter 6 describes how software can enable any or
all of these conditions to cause an interrupt.

Async Transmission

As described in the previous section, the Txldle field of
the Transmit Command/Status Register (TCSR10-8)
controls what kind of idle line condition the Transmitter
sends between characters (or words) in asynchronous
modes. The bits in the Channel Command Register
that define the Preamble in sync modes (CCR11-8)
can be used in Async mode to "shave" the length of
transmitted Stop bits.

Synchronous Reception

Between the end of one message or frame and the
start of the next, the Receiver goes through states that
are similar to the inter-message or inter-frame
activities that are described above for the Transmitter.
As covered in the earlier section Status Reporting,
software can use some or all of the following status
bits to track these state changes: RxBound (RCSR4),
CRCE/FE (RCSR3), ldleRcved (RCSR6), and
ExitedHunt (RCSR7). If the DPLL Is used, chapter 3
describes the DPLLSync bit in the Channel
Command/Status Register (CCSR12) which bears a
certain symmetry with the Present bit on the Transmit
side. Chapter 6 describes how software can enable
the RxBound, ldleRcved, and/or Exited Hunt condi·
tions to cause an interrupt.

The ldleRcved logic Isn't as flexible as the corres
ponding Txldle logic in the Transmitter, in that it only
detects an Idle condition consisting of (15 or 16)
consecutive ones.

In HDLC/SDLC mode the Receiver automatically
copes with single Flags between frames and with
shared zeroes between Flags (01111110111111 O).

Synchronizing Frames/Messages with
Software Response
In some applications, software can simply set up OMA
buffers for multiple frames or messages, and set the
IUSC's Transmitter and/or Receiver and OMA chan
nel(s) into operation to send and/or receive all of them.
In other applications, software has to interact with and
supervise the communications process more closely.
(The extreme case is when software has to check
status register bits for each character that it transfers
to the TxFIFO or from the RxFIFO.)

The IUSC provides two alternatives for interlocking the
start of transmission of a frame or message with
software response, and one similar interlock on the
receive side.

If the Walt2Send bit in the Transmit Interrupt Control
Register (TICR2) is 1, then each time the Transmitter
finishes sending a frame and before It sends the next,
it waits for software to write the Send Frame/ Message
command to the TCmd field of the Transmit
Command/Status Register (TCSR15·12). Depending
on the programmed mode the Transmitter may then
go on to send the Preamble or the opening Sync or
Flag. This kind of interlock allows the software to re
program global Transmitter parameters that may need
to change between frames or messages. It allows the
Transmit DMA channel (or software) to fill the TxFIFO
in preparation for the next frame or message, before
software issues the Send Frame/Message command.
One use for this interlock would be to change the
TxCRCatEnd bit in the Transmit Mode Register

78

(TMRB) between frames, in an application in which the
Transmitter should calculate a CRC code in some
messages or frames but not in others.

If the Walt4TxTrlg bit in the Channel Control Register
(CCR13) is 1, then each time the Transmitter finishes
sending a frame and before it sends the next, it waits
for software to issue the Trigger Tx OMA (or Trigger
Rx and Tx DMA) command before it requests OMA
operation. This is a "more stringent" interlock than the
preceding one, in that the Transmit OMA channel
won't fill the TxFIFO in preparation for the next frame,
until software issues the command. This kind of inter
lock is useful if OMA-related parameters, or param
eters that go through the TxFIFO with the data, need
to be changed between frames. The most obvious
example is reprogramming the buffer location and
length in the Transmit DMA channel, although the
OMA section provides three different modes that do
this more efficiently.

On the Receive side, if the Walt4RxTrlg bit in the
Channel Control Register (CCR5) is 1 , then after the
Receive OMA channel has written a character marked
as RxBound to memory (and after it has written the
Receive Status Block if software has enabled this
feature), the Receiver doesn't assert /RxREQ to the
Receive DMA channel again until software writes the
Trigger Rx OMA (or Trigger Rx and Tx OMA)
command to the RTCmd field of the Channel
Command/Status Register (CCAR15-11). Software
can use this interlock to reprogram the Receive OMA
channel between frames.

5. Direct Memory Access (OMA) Channels

The main advantage of the IUSC, compared to prede
cessor devices like the 16C3x MUSC, is the inclusion
of Transmit and Receive OMA channels. These allow
the IUSC to fetch its own transmit data from memory
and store its received data in memory. This chapter
describes the various operating modes of these DMA
channels and how to program the IUSC for them.

The IUSC's Receiver and Transmitter can be handled
via DMA or programmed transfers. Software can
even mix DMA and programmed transfers for the
Receiver or the Transmitter.

For example, software could use the Wait4RxTrig bit
(CCR13) to inhibit DMA transfers at the start of each
received frame, so that it can read the first few char
acters of the frame from the RxFIFO itself. Software
can then determine the kind of frame from examining
the first characters, optionally program the Rx DMA
controller accordingly, and then write the "Trigger Rx
DMA" command to the RTCmd field of the Channel
Command/Address Register (CCAR15-11). The DMA
controller can then transfer the rest of the frame into
memory without further software intervention.

OMA Fundamentals
Each channel can operate in any of four main
operating modes. Figure 52 shows the format of the
Transmit and Receive DMA Mode Registers (TDMR
and RDMR). The DMAMode fields of these registers
control the main mode of each channel, and are
encoded as follows:

DMAHode
00
01
10
11

Basic OMA Mode
Single Buff er
Pipelined
Array
Linked List

Later sections will describe each of these modes In
detail, but first it's worthwhile to present some charac
teristics that are common to all the modes.

Addresses and Byte Counts

Before the Transmit DMA channel can transfer data
from a memory buffer to the TxFIFO, and before the
Receive DMA channel can transfer data from the
RxFIFO to a memory buffer, software and/or hard
ware (depending on the mode) has to load the data

buffer's starting address into the Transmit or
Receive Address Register (TAR or RAR). The
same software/hardware mechanism has to load the
number of bytes to be read out of the buffer into the
Transmit Byte Count Register (TBCR), or load the
(maximum) number of bytes to be written into the
buffer into the Receive Byte Count Register
(RBCR). The TAR and RAR are 32-bit registers,
allowing the IUSC to address up to a 4-gigabyte linear
address space, while the TBCR and RBCR are 16-bit
registers, allowing a channel to transfer up to 65,535
bytes to or from each buffer. (In Single-Buffer and
Pipelined modes, a zero byte count makes a channel
do nothing, while in Array and Linked List modes, a
zero byte count indicates that the last requested
buffer has been completed.) In any mode, a block of
data longer than 65,535 bytes can be easily
transferred, simply by treating it as two or more
consecutively-addressed buffers.

The 32-bit TAR and RAR are each divided into two
16-bit registers, with the less significant half being
called Lower (TAAL, RARL) and the more significant
half being called Upper (TARU, RARU), In Single
Buffer and Pipelined modes, software must program
address registers directly; they are arranged with the
Lower register at the lower register address, which
sounds right but is In fact the natural order only for
little-Endian systems (Z80 family or 8086 family
processors). On Big Endian machines, including
Z8000 and 680x0 processors, software should not
program an address register using an instruction that
moves 32-bit data, but rather by means of two
separate instructions each transferring 16 bits.

Aside from certain "overhead" memory operations in
Array and Linked List modes, each DMA channel
actually transfers data only when the serial Receiver
or Transmitter requests that it do so, using an internal
request signal. Programming the DMA Request
Levels, later in this chapter, describes how software
can program the number of received characters in the
RxFIFO at which the Receiver requests DMA transfer,
and the number of empty slots in the TxFIFO at which
the Transmitter does so.

DMAMode
TCB
/RSB Clear AddrMode TermE 8/16 CONT GLlnk BUSY INITG i~~ EOB HAbort SAbort
lnAIL Count

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 52. The OMA Mode Registers (TDMR and RDMR)

79

Data Width and Byte Ordering

If "16Bit" in the Bus Configuration Register (BCR2) is
O, indicating an 8-bit external data bus, and/or if the
8/16 bit in a channel's OMA Mode Register (TOMR8
or ROMR8) is 1, the channel does only 8-bit transfers
with memory, Including data buffer transfers and
"array" and "list" accesses In Array and Linked List
modes. The channel decrements its Byte Count
Register (TBCR or RBCR) by 1 for each transfer to or
from a data buffer. Typically it also Increments its
address register by 1 for each byte transfer, although
software can program a channel to keep a data buffer
address constant, or decrement it. If 16Bit is 0, the
IUSC transfers all bytes on the A07-0 lines. If 16Bit
and 8/16 are both 1, and address incrementing or
decrementing is enabled, the Transmit OMA channel
provides each byte on both halves of the data bus,
while the Receive OMA channel alternates between
taking a byte from A015-8 and from A07-0, as deter
mined by bit O of its address register. Chapter 4
describes the "Select 015-8 First" or "Select 07-0
First" commands that software can write to the CCAR;
these affect how the channel relates address bit O to
A015-8 and A07-0.

If 16Bit is 1 and 8/16 is o, a 16C32 OMA channel will
do 16-bit transfers whenever It can. This includes all
array and list transfers in Array and Linked List
modes, and all transfers to and from data buffers
when the address In TAR or RAR is even and TBCR
or RBCR contains 0002 or more. The 16C32 is more
flexible than the 16C31 in that, if the address in TAR
or RAR is odd, and/or if the byte count in TBCR or
RBCR Is 0001, It will do a byte transfer with memory.
(This can happen only for the first byte and last bytes
of a buffer.) In such transfers the Receive channel
will take the byte from A015·8 or A07-0 according to
bit o of its address register, interpreted according to
any "Select 015-8 First" or "Select 07 -0 First"
command that software has written to the CCAR.

When an IUSC does a 16-bit transfer to or from a
memory buffer it decrements TBCR or RBCR by 2,
and typically increments its address register by 2. For
serial data, the IUSC arranges the oldest and second
oldest characters from the RxFIFO on the A015-0
lines, or routes the two characters on these lines into
the TxFIFO, according to any "Select 015-8 First" or
"Select 07-0 First" command that software has written
to the CCAR.

There is one other feature of the 16C32's byte/word
switching mechanism that software needs to know
about. When a channel is programmed for 16-bit
transfers and for Early Termination as described in
the next section, and the last character of a frame
falls at an even memory address, the serial controller
signals the OMA channel that the current transfer

includes the last character of a frame, but it doesn't
indicate whether this character is the first or second of
the two characters in the transfer. That is, it doesn't
tell the OMA channel whether or not to force a byte
transfer. On the receive side this Is not a big problem,
because if such an end-of-frame character is the
oldest one in the RxFIFO, the IUSC provides it on the
"even-addressed" half of the data bus. On the trans
mit side this isn't a problem In a Little-Endian system,
because when the TCC contains 0001 the serial con
troller always takes the last byte from A07-0, which is
the even-addressed location In such systems. On the
Transmit side in a Big-Endian system, software can
avoid this situation by not programming the Transmit
OMA channel for Early Termination, but rather setting
the byte count for the last buffer of the frame to match
the frame length used by the TCC.

Buffer Termination

A OMA channel transfers data from memory to the
TxFIFO as the Transmitter requests it, or from the
RxFIFO to memory as the Receiver requests such
transfer, until one of the following occurs:

· 1. The channel decrements the count in TBCR or
RBCR to zero.

80

2. If the TermE bit in the OMA Mode Register
(TOMR9 or ROMR9) Is 1, and the serial controller
signals for a "buffer termination".

3. External hardware asserts the /ABORT input
during a OMA transfer.

4. Host software writes one of the following
commands to the OMA Command I Status
Register (OCAR):

"Reset This Channel",
"Pause This Channel",
"Abort This Channel",
"Reset All Channels",
"Pause All Channels", or
"Abort All Channels".

When a channel stops because of 3 or 4 above, it
does so summarily, without any further actions. But
when a channel terminates a buffer for reason 1 or 2, .
it attempts to go on to another buffer, except in Single
Buffer Mode. In Pipelined mode, If software has pro
vided the address and byte count of the next buffer,
the channel continues on to transfer that buffer;
otherwise it stops. In Array or Linked List, the channel
tries to fetch the address and byte count of the next
buffer from the array or list in memory; if it finds them
it continues on to transfer that buffer, otherwise it
stops.

Point 2 above notes that if the TermE bit in a OMA
Mode Register (TOMR9 or ROMR9) is 1, the channel
will terminate a memory buffer before it decrements
its byte count (in TBCR or RBCR) to zero, if/when the

serial controller asserts a termination signal. (If
TermE is o, the channel ignores the signal.)

The serial controller asserts the internal termination
signal to the Transmit DMA channel only in synch
ronous modes. It does so as the DMA channel writes
1 or 2 characters into the TxFIFO, so that the Trans
mit Character Counter (TCC) is decremented to 0.

On the receive side, the Receiver forces the Request
signal True to the Receive DMA channel, as/after it
places an RxBound character in the RxFIFO in
HDLC/SDLC, EtherneV802.3, Transparent Bisync, or
1553B mode. It does this to force the DMA channel
to store the end of the frame or message, and does it
without regard for the number of received characters
in the FIFO. The serial controller then maintains the
request until the DMA channel stores the RxBound
character (and the Receive Status Block if it's
enabled) In memory. The serial controller asserts
buffer termination as the DMA channel stores these
last bytes. (Early termination signalling on the receive
side is actually more complex than we need to know
about at this point. The full story is told later in
Storing Receive Status Blocks.)

The Receive Character Counter (RCC) feature can
neither cause early buffer termination nor forcing of
the internal DMA Request.

Single Buffer Mode
This is the most basic of the IUSC DMA channels'
major modes.

Figure 53 illustrates Single Buffer mode. Software
loads the starting address of each memory buffer
containing data to be transmitted into the Transmit
Address Register (TAR). Similarly, it loads the
starting address of each memory area, into which
received data should be stored, Into the Receive
Address register (RAR). The software also loads the
number of characters to be transmitted from each
memory area into the Transmit Byte Count Register
(TBCR). Similarly, it loads the maximum number of
received characters to be stored In each memory area
into the Receive Byte Count Register (RBCR).

Then the host processor software enables the DMA
channel for operation by writing a "Start This Channel"
command to the DMA Command I Address Register
(DCAR). Thereafter the DMA channel moves the data
from memory to the TxFIFO or from the RxFIFO into
memory, as described in OMA Fundamentals above.

Software can program the IUSC to request several
kinds of interrupts at the end of the buffer. A OMA

81

channel interrupt, an interrupt request from the serial
controller, or both can be used to trigger host software
response at appropriate points in the serial data
stream. Alternatively, host software can periodically
poll the OMA channel status in the OMA Mode
Register (TOMR or ROMR) and/or the serial channel
status to determine when the DMA transfer is over.

Note that for transmitting, the DMA channel completes
its operation before the serial Transmitter has finished
sending all the data in the block. For reception the
serial Receiver may know about an end-of-block
situation before the Receive DMA channel has
finished transferring the data into memory.

When an interrupt or polled status has informed the
host software that a OMA block transfer is over, the
software can read back the ending contents of the
TAR or TBCR to figure out whether all of the bytes to
be sent actually were sent. Similarly, software can
read back the ending contents of the RAR or RBCR to
determine how many bytes the channel stored in
memory. Note that software can read similar infor
mation from the RCC FIFO in the serial controller, or
can have the IUSC store it in memory in a Receive
Status Block.

Particularly for receiving, host software will typically
want to reprogram the RAR and RBCR, or TAR and
TBCR, and restart the channel for the next block of
data, as soon as possible after the DMA channel
finishes with each block.

In many applications, data from two or more memory
areas must be sent without interruption on the serial
link (e.g., In the same frame). The corresponding
characteristic on the receive side is almost always
required, namely that received data not be Jost while
the host software responds to a buffer-complete
condition, reprograms the channel for the next buffer,
and restarts the channel.

While the IUSC's deep FIFOs provide some assur
ance of continuous transmission and protection
against loss of receive data, above a certain bit rate
these characteristics can only be assured by using
Pipelined, Array, or Linked List mode. The actual rate
at which Single-Buffer mode is no longer sufficient is a
fairly complex matter involving processor speed and
system architecture.

(1) Host Software Sets Up the Channel

Buffer
Address

TAR or RAR
Data to Transmit, or Empty for Receive

Host---------;- Buffer Length }~ ~ M1--e_m_o_ry ____ >~I
TBCRorRBCR ~

I "Start"
. Command I

DCAR

(2) The Channel Transfers Data

Address
in Buffer

TAR or RAR

I Remaining Length ~
TBCR or RBCR

(3) Buffer Complete

Ending
Address

TAR or RAR

0000
TBCR or RBCR

Transmitted or
Received Data

Data to Transmit,
or Empty for Receive

Data Buffer in Memory

Host

Channel

Transmitted or Received Data

Data Buffer in Memory

Figure 53. Single Buffer Mode OMA Operation

82

Pipelined Mode
In this mode the \USC employs two additional regis
ters for each channel, called the Next Transmit
Address Register (NTAR), the Next Transmit Byte
Count Register (NTBCR), the Next Receive Address
Register (NRAR), and the Next Receive Byte Count
Register (NRBCR). Figure 54 illustrates Pipelined
mode, in which software can write the starting
address and byte count for the next data buffer into
these registers, while the OMA channel is using the
TAR and TBCR, or RAR and RBCR, to transfer the
preceding buffer.

After programming a Channel Mode Register for Pipe
lined mode, the host software can start the channel in
one of two ways. It can program the address and
length of the first buffer into the TAR and TBCR, or
RAR and RBCR, and then write the "Start This Chan
nel" command to the OCAR. Alternatively, software
can ~ write the address and length of the second
buffer into the NTAR and NTBCR, or NRAR and
NRBCR, and then write the "StarVContinue This
Channel" command to the OCAR. The latter com
mand differs from the former in that, in addition to
setting the BUSY bit in the channel's OMA Mode
Register (TOMR5 or ROMR5), it also sets the CONT
bit (TOMR7 or ROMR7).

Whichever way software starts the channel, it then
transfers from the data buffer indicated by TAR and
TBCR, or into the buffer indicated by RAR and RBCR,
as described earlier in OMA Fundamentals.

If a new transmit buffer is available in Pipelined mode
and the CONT bit is zero, while the Transmit OMA
channel is still transferring an earlier buffer, software
should write the address and byte count of the new
buffer into the NT AR and the NTBCR, and then write
a "StarVContinue This Channel" command for the
Transmit OMA channel into the OCAR. If it accom
plishes these things before the OMA channel finishes
transferring the preceding buffer from memory to the
TxFIFO, then when the channel finishes with the
preceding buffer, It automatically transfers the
contents of the NT AR and NTBCR to the TAR and
TBCR respectively, and continues sending the data in
the new buffer.

Similarly, if an empty receive buffer is available and
the CONT bit is zero, while the Receive OMA channel
is still transferring an earlier buffer, software should
write the address and byte count for the buffer into the
NRAR and the NRBCR, and then write the "StarV
Continue This Channel" command for the Receive
OMA channel into the OCAR. If it accomplishes these
steps before the channel finishes transferring the
preceding buffer from the RxFIFO to memory, then
when the OMA channel finishes with the preceding
buffer, it automatically transfers the contents of the

83

NRAR and NRBCR to the RAR and RBCR respec
tively, and goes on to receive data into the new buffer.

In Pipelined mode, a OMA channel tries to advance to
the next buffer when it has decremented the TBCR or
RBCR to 0, and/or if software enables the early buffer
termination feature and the serial controller signals for
termination. In either case the channel does so only if
the CONT bit in its OMA Mode Register (TOMR7 or
ROMR7) is 1. The channel sets the CONT bit when
software writes a "StarVContinue" command to the
OCAR, and clears the bit each time it advances to a
new buffer,

A OMA channel will .aQ.t advance to the next buffer in
response to assertion of the /ABORT signal during a
transfer. Nor will it advance to the next buffer in
response to any software commands.

As in Single Buffer mode, software can program the
\USC to request a OMA channel interrupt and/or a
serial controller interrupt as these modules finish with
each buffer. Alternatively, host software can period
ically poll the OMA channel status and/or the serial
channel status to track the progress of OMA transfer.

Avoiding Problems with the CONT Flag

Software must take care not to write a "StarV
Continue" command to an operating channel while the
channel is testing the CONT bit after completing a
buffer. This is because, if the command occurs just
after the channel has tested CONT as Q and therefore
cleared BUSY, the command restarts the channel to
reuse the buffer described by TAR and TBCR, or RAR
and RBCR, a second time.

The performance and interrupt-response character
istics of the processor and total system, considered in
the context of the line protocol, may guarantee that
software will always write the StarVContinue com
mand for a buffer before the channel finishes with the
previous one. But if this is not so, software should
approach "notifying" the channel of a new buffer as
shown in Figure 55. First, clear the Master Bus
Request Enable bit (MBRE; DCARB) and then test the
BUSY bit (xOMR5). If BUSY is 1, write the register
address and length to NxAR and NxBCR and then
issue the "StarVContinue This Channel" command. If
it's 0, write the address and length to xAR and xBCR
and then issue the "Start This Channel" command.
Be sure to set MBRE when writing either command,
so that the channe\(s) can operate again.

One drawback of Pipelined mode (as well as Array
and Linked List modes), compared to Single-Buffer
mode, is that host software can't read back the ending
address and byte count to figure out the exact
completion status of the buffer. For receiving, similar
information can be obtained by using the Receive
Status Block feature of the serial controller.

(1) Host Software Sets Up the First Buffer

Buffer1 _____

Address J --y
TARorRAR ~I----------~

. Data to Transmit, or Empty for Receive

Host~---- Buffer 1 Length }-----.__ ~" In Memory

TBCR or RBCR ~

(Last) "Start"
Command

DCAR

(2) Host Sets Up the Next Buffer while the Channel Transfers Data

Host~-~

Address in
Buffer 1

'---------''----''

DCAR '"-~ w
CONT

(TDCMR7 or RDCMR7)

(3) The Channel Moves to the Next Buffer
Host

CONT ----
(TDCMR7 or RDCMR7)

Interrupt
Request

Data to Transmit, or Empty for Receive

Data Buffer "2" In Memory

Transmitted or Received Data

Data Buffer "1" In Memory

Buffer 2
Address

}
Channel

)I Address ~
Buffer2 ~

'-------' AddrY, Data

NTAR or NRAR TAR or RAR I Data to Transmit, or Empty for Receive

I Buffer 2 Length 1---i)l•I Buffer 2 Length ~~ ~" In Memory

NTBCR or NRBCR TBCR or RBCR ~

Figure 54. Pipelined Mode OMA Operation

84

>I

>I

Provide Next Buffer
to Channel x (x=R!T)

Write Buffer Address
to NxAR, Byte Count

to NxBCR

Clear MBRE
(DCAR8) too

Write Start/Continue
command to DCAR,

with MBRE=1

Write Buffer Address
to xAR, Byte Count

to xBCR

Write Start
command to DCAR,

with MBRE=1

Figure 55. Posting a New Buffer (Pipelined Mode)

Array Mode
In Array mode, host processor software sets up an
arbitrarily long array or table of buffer addresses and
byte counts in memory. Then it sets the DMA channel
into operation to send all the data in all the buffers, or
to receive data into all of them in turn.

The Array and Linked List modes differ from Pipelined
mode in that software does not write the address of a
data buffer into the Next Transmit Address Register
(NTAR) or Next Receive Address Register (NRAR).
Instead, in Array mode, it writes NTAR or NRAR with
the address of the start of an array in memory, that
contains the address,es and lengths of each of a
whole set of data buffers.

Figure 56 illustrates Array mode operation. Each
entry in the array may be six or 12 bytes long, as
described in the later sections Fetching Transmit
Status Blocks and Storing Receive Status Blocks; the
Figure shows 6-byte entries to keep it as simple as
possible. With either entry format, the first 4 bytes of
each entry are the 32-bit buffer address and the next
two bytes are the 16-bit byte count for the buffer.

Software can program the order in which the channel
fetches the two halves of the address to match the
characteristics of the host processor, as described
later in Format of Binary Values in Arrays and Lists. If
16Bit (BCR2) is 0 and/or the 8/16 bit (TDMR8 or
RDMR8) is 1, this parameter defines the order in

85

which the channel fetches the 4 bytes of the address
and the 2 bytes of the count.

After programming a Channel Mode Register for Array
mode, software should start the channel by program
ming NTAR or NRAR to point to the array at the
address of the first buffer to be used, and writing a
"Start/lnit This Channel" command to the OCAR. This
command differs from a "Start This Channel" com
mand in that it set the INITG bit in the channel's OMA
Mode Register (TOMR4 or ROMR4) as well as the
BUSY bit (TOMR5 or ROMR5), so that the channel
fetches the first array entry before starting OMA data
transfer.

After the channel fetches a buffer's address and byte
count, and verifies that the byte count is non-zero, if
the ClearCount bit in the channel's OMA mode
register (TOMR12 or ROMR12) is 1, the channel
clears the byte count field of the entry, by writing zero
to it. (Software can use this feature to track the OMA
channel's progress through the array, but the main
purpose of the feature is in Linked List mode.)

On the Transmit side, if the channel's TCBinNL bit
(TDM R13) is 1, the channel next reads but discards
the last 6 bytes of the entry. (If a subsequent entry in
the array aligns with the start of a frame, the OMA
channel will fetch a Transmit Control Block from the
first 2 or 4 of these bytes.)

At this point, if and when the internal Request signal
from the Transmitter or Receiver is true, the OMA
channel begins transferring data to or from the first
buffer in memory, as described earlier in OMA Funda
mentals. (On the Transmit side, if Transmit Control
Blocks are enabled the Transmitter may interpret the
first 2 or 4 bytes from the buffer as a TCB.)

As in other modes, a OMA channel typically finishes a
buffer when it has decremented a buffer's byte count
to zero, and/or if the TermE bit in the channel's OMA
Mode Register (TOMR9 or ROMR9) is 1 to enable the
Early Buffer Termination feature and the serial
controller signals that the current transfer includes the
last character of a frame or message.

On the Receive side, if Receive Status Blocks are
enabled as described in Chapter 4, after the Receive
OMA channel stores a character marked with
RxBound status, the Receiver maintains its request to
the OMA channel until the latter has read out the 2- or
4-byte RSB. (The Receiver does this whether or not
Early Termination is enabled,) If the RSBinNL bit in
the Receive OMA Mode Register (ROMR13) is 0, the
channel writes the RSB into the data buffer after the
last character of the frame. If RSBinNL is 1, the
channel writes the RSB into the array entry after the
byte count, and then writes zero to the next 2-4 bytes.

(1) Host Software Sets Up the Array and Starts the Channel,
which Fetches the First Entry rxFiFo ~

(or)~
Address of

Start of Array

Host/NTAR or NRA

cr~l 'Star!Anlt' I
Command I

DCAR
Buffer 2 Length

(2) The Channel Moves to Buffer 2

Buffer 1
Address

Buffer 1 Length

In Array Address _____. Address

Transmitted or Received Data I
Data Buffer "1 " In Memory

Address Buffer 2 Buffer 2 }

NTAR or NRAR Buffer2 Length '-._ TAR or RAR Add•,,,""-----------.

(After~~ ~I Buffer2Lengthl
2nd
~~ raCRMR~R

0000

(3) The Channel Reaches the End of the Array Host

Address of
End of Array

(Fin al)

,k

b<j
'-._. TARorRAR

'-------' ~ Transmitted or Received Data

I 0000 I Last Data Buffer In Memory
TBCR or RBCR

Figure 56. Array Mode DMA Operation

86

The OMA channel then tries to advance to the next
buffer in the array, reading the next address and byte
count as it did for the first buffer. When the channel
fetches a zero byte count from an array entry, it goes
to an inactive state, in which case the software must
reprogram the channel and restart it before it can
perform further OMA transfers.

In Array mode a channel uses NTBCR or NRBCR
only as a temporary holding register, so software
doesn't have to set up this register. In particular,
NxBCR does NOT specify the length of the array -
rather, a zero in the byte count field of an entry
signals the end of the array.

Software can program the IUSC to interrupt when the
OMA channel and/or the serial controller completes
each data buffer, and/or when the OMA channel
reaches the end of the array. Host software can track
the channel's progress through the array by reading
back the address in the NTAR or NRAR.

In Array mode a OMA channel becomes more auto
nomous and independent of processor response than
in Pipelined mode. In general, this mode is less
dependent on processor action than is Pipelined
mode. This is particularly important when several
short frames arrive and must be placed into consec
utive buffers.

But in one way Array mode is more dependent on
host processor response than is Pipelined mode.
When the OMA channel comes to the zero buffer
length that signals the end of the array, it becomes
inactive and waits for host processor software action,
just as in Single Buffer mode. Presumably on the
transmit side, each array can be made to end at the
end of a message or frame, so that this characteristic
should not cause any problems. But, on the receive
side, the serial controller may be subject to FIFO
overruns and lost data if the host processor software
doesn't reprogram the OMA channel with a new array
in a timely manner.

Linked List Mode
This mode is similar to Array mode, particularly in its
capability to switch buffers rapidly for each of multiple
successive short frames, but it adds a capability for
dynamic updating as in Pipelined mode.

In Linked List mode the OMA channel fetches a buffer
address and a byte count from the first six bytes of a
list entry for each buffer, just as in Array mode, but in
Linked List mode these entries don't have to follow
one another in memory. The difference between
array entries and list entries is that each list entry
includes the 32-bit address of the next entry. As in
array mode, a zero in the byte count field of an entry
signals the end of the list, and the other fields in such
a final entry don't matter.

87

List entries can be 1 O bytes long or 16 bytes long,
depending on whether they include a Transmit Control
Block or Receive Status Block, as described in the
later sections Fetching TCBs and Storing RSBs.
(Figure 57 shows 10-byte entries to keep it as simple
as possible.) With either entry format, the first 4 bytes
of each entry are the 32-bit buffer address and the
next two bytes are the 16-bit byte count for the buffer.

As in Array mode, software can control the order in
which the channel fetches the two halves of each
address. When a channel is restricted to byte trans
fers, this option controls the order in which it fetches
the 4 bytes of the address and the 2 bytes of the byte
count.

After programming a Channel Mode Register for
Linked List mode, host software typically starts the
channel by programming NTAR or NRAR to point to
the linked list at the address of the first buffer to be
used, and then writing a "Start/lnit This Channel"
command to the OCAR. This command differs from
"Start This Channel" in that it set the INITG bit in the
channel's OMA Mode Register (TOMR4 or ROMR4)
as well as the BUSY bit (TOMR5 or ROMR5), which
makes the OMA channel fetch the first list entry
before beginning OMA data transfer.

After the channel fetches a buffer's address and byte
count, and verifies that the byte count is non-zero, if
the ClearCount bit in the channel's OMA Mode
Register (TOMR12 or ROMR12) is 1, the channel
clears the byte count field of the entry, by writing zero
to it. This feature is especially valuable when soft
ware arranges the linked list in a "ring" structure, as
described later.

On the Transmit side, if the channel's TCBinNL bit
(TOMR13) is 1, the channel then reads but discards
the next 6 bytes of the entry. (If a subsequent entry
aligns with the start of a frame, the OMA channel will
fetch a Transmit Control Block from the first 2 or 4 of
these bytes.)

At this point, when the internal Request signal from
the Transmitter or Receiver is true, the OMA channel
transfers data to or from the first buffer in memory, as
described earlier in DMA Fundamentals. (On the
Transmit side, if Transmit Control Blocks are enabled,
the Transmitter may interpret the first 2 or 4 bytes
from the buffer as a TCB.)

As in other modes, a OMA channel typically finishes a
buffer when it has decremented a buffer's byte count
to zero, and/or if the TermE bit in the channel's OMA
Mode Register (TOMR9 or RDMR9) is 1 to enable the
Early Buffer Termination feature, and the serial con
troller signals that the current transfer includes the last
character of a frame or message.

(1) Host Software Sets Up the Linked List and Starts the Channel,
which Fetches the First Entry and then Clears the Byte Count

~8
1-------4- =:.: h 1Ch::~1

~ TAR or RAR Addy~
l ~I Buffer 1 Length I rl D~a-ta-to-T-ran-sm-lt-, o-r E-m-p-ty_fo_r R-e-ce-lv-,e I

~-~1--__, TBCR or RBCR Data Buffer "1" In Memory

{
Buffer 3
Address

1----------1

0000

Address of
Buffer 1 Entry

(Being filled or emptied by software)

Data Buffer "3" In Memory

Buffer 2
Address

Buffer 2 Length

Address of
Buffer 3 Entry

(2) Software Finishes Filling or Emptying Buffer #3,
and Sets Its Length

Address In
Linked List

Address
In Buffer 1

TAR or RAR

'---~~~- TBCRorRBCR t i Remaining Length j

{
Buffer 3
Address

·~ Buffer 3 Len th

Address of
Buffer 1 Entry

Data Buffer "3" In Memory

Buffer2
Address

Buffer 2 Length

Address of
Buffer 3 Entry

Data to Transmit, or Empty for Receive

Data Buffer "2" In Memory

Data to Transmit, or Empty for Receive

Data Buffer "2" In Memory

Figure 57. Linked List OMA Mode with a Three-Buffer Ring (1 of 2)

88

(3) The Channel Moves to Buffer 2,
and Requests a Host Interrupt

Address In
Linked List

Buffer1 ~
Address

1---------< I Transmitted or Received Data I

{
Buffer 3
Address

!-------;_

Buffer 3 Length

Address of
Buffer 1 Entry

Data to Transmit, or Empty for Receive

Data Buffer "3" In Memory

0000

Buffer 2
Address

Buffer 2
Address

Data Buffer "1" In Memory

Host

Figure 57. Linked List OMA Mode with a Fixed Three-Buffer Ring (2 of 2)

On the Receive side, if Receive Status Blocks are
enabled as described in Chapter 4, after the Receive
DMA channel stores a character marked with
RxBound status, the Receiver maintains its DMA
request until the channel has read out the 16· or 32·
bit RSB. (It does this whether or not Early Termi·
nation is enabled.) If the RSBinNL bit in the Receive
DMA Mode Register (RDMR13) is 0, the channel
writes the RSB into the data buffer after the last
character of the frame. If RSBinNL is 1, the channel
writes the RSB into the list entry after the byte count,
and then writes zeroes to the next 2 or 4 bytes.

The DMA channel then tries to advance to the next
buffer in the list, by first fetching the address of the
next entry (this address follows the byte count if the
TCBinNL or RSBinNL bit is 0, otherwise it follows the
last unused byte). Then the DMA channel fetches the
buffer address and byte count from the next entry.

If the next byte count is non-zero, the channel con·
tinues to transfer data to or from the new buffer. If the
byte count is zero, the channel goes to an inactive
state, in which case software must reprogram and re·
start the channel before it can transfer any more data.

Software can program the IUSC to interrupt the pro·
cessor when the DMA channel and/or serial controller
completes each data buffer, and/or when the DMA
channel reaches the end of the linked list. Host soft·
ware can track the channel's progress through the list

89

by reading back the address in the NTAR or NRAR.

Using Linked List Mode to Create a Buffer Ring

Figure 57 illustrates operation in Linked List mode. In
the application shown, DMA transfers and software
processing of the data rotate among a fixed set of
three buffer areas in memory. The next-entry
addresses in their list entries configure the list as a
"circular ring". This is the kind of application for which
the ClearCount bits are provided on the 16C32.

In the first part of the Figure, software starts the DMA
channel, to transfer data into or out of buffer "1 ". The
host processor (or another hardware element) is
putting new transmit data into buffer "3", or is taking
received data out of "3". While it's doing so, the byte
count field for buffer 3 remains zero.

As described earlier, when a channel's ClearCount bit
(TDMR12 or RDMR12) is 1, the channel writes zero
into the byte count field of each buffer's list entry, after
it has read the count and found it to be non-zero.
This zero byte count prevents the DMA channel from
circling around the ring and reusing the buffer again,
before the software has filled or emptied the buffer
and then "refreshed" the byte count.

In the second part of the Figure, software (or what·
ever) finishes filling or emptying buffer "3'', and
software places a non-zero byte count in its list entry.

It needs to do this with care to avoid problems if the
DMA channel accesses the end of the list at (more or
less) the same time. The following procedure is
recommended:

1 a. On a 16-bit bus, store the byte count using a 16-
bit write operation, OR

1 b. on an 8-bit bus, write the Master Bus Request
Enable Bit (MBRE, DCAR8) to 0, then write the
two halves of the byte count, then write MBRE
back to 1.

2. Read the TDMR or RDMR and test the DMA
channel's BUSY bit. If it's 0, the channel fetched
the byte count as zero before we stored the new
value, and must be restarted •• go to a routine
that does this. If BUSY is still 1, the newly filled or
emptied buffer has been successfully added to
the list and will be handled by the DMA channel.

In the third part of the Figure, the channel finishes
sending data from buffer "1" or receiving data into it.
It request an interrupt on the host processor, and
goes on to buffer "2", clearing its byte count. The
interrupt triggers the software to empty or fill buffer "1"
and then set its new byte count.

Adding a Buffer to the End of a List

On other systems, buffers are not arranged in a ring,
but are passed from one software routine to another
as they're filled and emptied. In such systems, soft·
ware may set the ClearCount bit for progress-tracking
reasons, but doesn't need to do so. In this case, the
procedure that software be careful with is that of
adding a buffer to the end of a linked list for an
operating DMA channel. It should do so as follows:

1. Create a list entry for the new buffer·· often one
exists and simply needs its buffer address and/or
byte count "refreshed". Place the address and
count in the entry, along with the TCB for a
transmit buffer if this feature is used.

2. Place the address of an "end of list" entry (one
that includes a zero byte count) in the next entry
address field of the new list entry.

3. Locate the list entry for the previous last buffer in
the list. (This entry will also have its "next entry
address" pointing to an "end-of-list" entry.)

4a. If the processor and system bus are both 32 bits
wide, or if it can be otherwise ensured that the
software can write a 32-bit address into memory
without interference from 16C32 activity, software
can simply write the address of the new entry into
the next entry address field of the entry for the
previously last buffer.

4b. Otherwise, software should write the Master Bus
Request Enable bit (MBRE; DCAR8) to 0, then
write the address of the new entry into the next
entry address field of the entry for the previously

90

last buffer, and then set MBRE back to 1 again.
5. In systems that use the MaxXfers or MaxCLKs

fields of the Burst/Dwell Control Register (BDCR)
to "throttle" the DMA activity of the 16C32 (as
described in a later section), it might be a good
practice to include a few "No-ops" at this point.
There should be enough NOPs to eliminate the
case in which the DMA channel fetches the link
address to the "end of list" entry from the pre
viously-last entry, before we store the new one in
step 4, but then releases the bus for a while
because of this throttling, before it fetches the
zero byte count.

6. Read the TDMR or RDMR and test the DMA
channel's BUSY bit. If it's 0, the channel got to
the end-of-list before our new link address could
prevent this, and the channel must be restarted ••
go to a routine that does this. If BUSY is still 1,
the new buffer has been successfully added to the
list and will be handled by the DMA channel.

Fetching Transmit Control Blocks
In Array and Linked-List modes, if software enables
the Transmit Control Block feature of the serial
controller (see OMA Support Features: Transmit
Control Blocks in Chapter 4 for more information
about this feature), the Transmit DMA channel can
fetch the TCBs in two ways.

The TCBinA/L bit in the Transmit DMA Mode Register
(TDMR13) controls whether the channel fetches TCBs
from Array and Linked List entries. This bit also
controls the length of the entries. If TCBinNL is 0,
Array entries are 6 bytes long, Linked List entries are
10 bytes long, and the channel handles TCBs the
same way that it does in Single Buffer or Pipelined
mode. That is, it fetches a 16- or 32-bit TCB from the
data buffer just before it fetches the first character of
each frame. In this case, the length of the TCB is
included in the Byte Count of the buffer (but not in the
length of the frame for the TCC).

If TCBinNL is 1 , Array entries are 12 bytes long and
Linked List entries are 16 bytes long. The channel
fetches TCBs from array or list entries, other than the
first entry, if the start of their buffers aligns with the
start of a frame. For such entries, the channel fetches
the two or four bytes of the TCB after it has read (and
if the ClearCount bit is 1 written zero back to) the byte
count in the array or list entry, and then reads and
discards 2 or 4 bytes. For the first entry in the array
or list after a Start or Start/lnit command, and when
advancing to a subsequent buffer within the same
frame, the channel simply reads and discards the 6
bytes that follow the byte count.

Figure 58 shows two examples of TCBs with
TCBinNL=1.

Array mode, with the first TCB in the Data Buffer

not used

Buffer
Address 3

Byte Count 3

Transmit Data
for the second half
of the first Frame

Transmit Data
for the

second Frame

Linked List mode, software writes the first TCB to the TOR

Frame 1 control word
Frame 1 TCC length }

(Softwar loads these
befor tarting DMA)

Buffer
Address 2

Byte Count 2

not used

Address of
Entry 3

not used

Address of
Entry 2

Buffer !
B~~ed~e::n~3 -~

Frame 2 control word
Frame 2 TCC length }

not used

Transmit Data
for the first half

of the first Frame

Transmit Data
for the second half
of the first Frame

Transmit Data
for the

second Frame

Figure 58. Examples of Transmit Control Blocks with TCBinA/L=1

91

The length of a TCB In an Array/List entry is not
included in the DMA channel's byte counts nor in the
frame length values for the TCC.

With either kind of TCB placement, the DMA and
serial controllers operate fairly independently, without
a lot of context-signalling between them, and it's
important that software do what's needed to keep
them co-ordinated and synchronized. These
measures include:
1. With TCBinNL=O, allow 6 bytes for each array

entry or 1 O bytes for each list entry, place' a TCB
of the length Indicated by TxCtrlBlk (CCR15-14)
before the start of each frame, and include the
length of TCBs In the byte counts of the buffers In
which they're included.

2. With TCBinNL=1, allow 12 bytes for each array
entry or 16 bytes for each list entry, and place a
TCB In the 7th-8th or 7th-10th bytes of each entry
after the first one, that starts a frame. (The
16C32 ignores these locations in the first array or
list entry, and in entries for subsequent buffers
within a frame.)

3. With TCBlnNL=1, either write the TCB for the first
frame of an array or linked list directly to the
Transmit Data Register before starting the
Transmit DMA channel, or place the TCB for the
first frame at the start of the first buffer and in
clude its length in the first buffer's byte count (as
when TCBinNL=O).

4. With TCBinNL=1, either ensure that a frame
never starts in the middle of a buffer, or else place
a TCB in the buffer before the start of each frame
that does (as when TCBinNL=O). In a Little
Endian system or with an 8-bit data bus, it's OK to
use the Early Buffer Termination feature
(described later) as a simple way to ensure that a
frame never starts in the middle of a buffer.

But for a 16-bit or wider bus in a Big Endian
system, the DMA channel is only guaranteed to
access the final byte of a frame correctly If
software programs the Byte Count of the last
buffer of the frame correctly, to match the TCC
frame length. (In this case there's no reason to
enable Early Termination.)

Storing Receive Status Blocks
Similarly, if software enables the Receive Status Block
feature as described in Chapter 4, In Array or Linked
List mode a Receive DMA channel can store RSBs in
two ways. Figure 59 shows the two worthwhile cases
of RSBs.

If the RSBinA/L bit in the Receive DMA Mode
Register (RDMR13) is 0, the channel handles RSBs
as it does in Single Buffer and Pipelined modes.

92

Array entries are 6 bytes long, Linked List entries are
1 o bytes long, and the channel stores the RSB after
the last byte of each frame. In these cases, software
should allow for the length of RSBs in the byte counts
of the buffers in which they're stored. (RCC residual
values never reflect RSB bytes.)

But when RSB's are stored in the data buffers, soft
ware has to read the RCC FIFO to determine the
length of each frame received, so that it can find the
RSB's. (Because of this, there's no reason to ever
use a 32-blt RSB In this mode.) Since the RCC FIFO
is only four deep, software must read It In a reason
ably timely manner. In Array and Linked List modes,
this software response requirement can be eased by
programming 32-bit RSBs and the RSBinNL bit 1.

When RSBinNL is 1 , Array entries are 12 bytes long,.
Linked List entries are 16 bytes long, and the OMA
channel stores an RSB in the (7th-8th or) 7th-10th
bytes of the last array or list entry for each frame,
after It has placed the last character of the frame In
the buffer. When RSBinNL is 1, software can ignore
the. RCC FIFO, and need not respond to IUSC
Interrupts as promptly.

After the Rx DMA channel has stored the RSB in the
array or list entry, it writes 2 (or 4) zero bytes to skip
over that many "extra" bytes In the entry. These extra
bytes maintain 32-bit-boundary alignment of the
addresses In the array or list entries, as required by
some processors.

When RSBinNL Is 1, the length of the RSB Is not
Included in either the DMA channel's byte counts nor
in the RCC residual values.

As on the Transmit side, software has to take certain
steps to ensure that the Receiver and the DMA
channel work together:

1. With RSBinNL=O, allow 6 bytes for each array
entry or 10 bytes for each list entry, and allow for
Receive Status Blocks in the byte counts of
buffers in which they're stored.

2. With RSBinNL=O, read the RCC FIFO once for
each frame and use these RCC residual values as
described in Chapter 4, to determine the length of
each frame. Knowing the frame lengths, software
can then find the RSBs, which follow the last
character of each frame.

3. With RSBinNL=1, always program the TermE bit
In the Receive DMA Mode Register (RDMR9) to 1
to enable the Early Buffer Termination feature.

4. With RSBinNL=1, allow 12 bytes for each array
entry or 16 bytes for each list entry. The length of
RSB's need not be included in buffer byte counts
for the DMA channel, nor in a maximum frame
length value for the RCC.

A 16-bit RSB in the Data Buffer

Buffer ~
Address

Byte Count
·~

Received Data

Address of Next
Buffer or Next Entry

Compute:
(Starting RCC value)
• (Ending RCC value)

RSB status word • (# characters in previous
buffers of this frame)

w unchanged

A 32-bit RSB in an Array or Linked List Entry

Buffer
Address

Byte Count

RSB status word

Ending RCC value

not used

Address of Next
Buffer or Next Entry

Received Data

unchanged

Compute:
(Starting RCC value)
• (Ending RCC value)

• (# characters in previous
buffers of this frame)

Figure 59. Receive Status Blocks

5. With RSBinNL=1, the channel stores an RSB in
the 7th-10th (or 7th-8th) bytes of the array or list
entry for each buffer in which it stores a character
marked with RxBound status. It zeroes these
locations in array or list entries for preceding
buffers within the same frame, that is, those that it
fills before the frame ends. Thus, software can
examine the RxBound bit of each entry that the
DMA channel has finished with; those in which
this bit is 1 represent buffers that include the end
of a frame.

On the Receive side, there are actually two internal
termination signals that the serial controller asserts to
the Receive DMA channel. [The DMA channel honors
these signals only when its TermE bit (RDMR9) is 1.]
The serial controller asserts one of these signals as
the DMA channel takes a byte marked with RxBound
status out of the RxFIFO. If software hasn't enabled
the Receive Status Block (RSB) feature in the
Channel Control Register (CCR7-6}, the serial
controller asserts the other signal at the same time,
otherwise it asserts the other termination signal when
the DMA channel stores the last of the two or four
bytes of the RSB. If the DMA channel is in Array or

93

Linked List mode and has been programmed to store
RSB's in the array or list, it uses the first signal to shift
from storing in the data buffer to storing in the array or
list, and uses the second signal to shift from storing in
the array or list to fetching information for the next
buffer. In all other modes, the channel simply uses
the second signal to know when it has stored all the
information for the current buffer.

Channel Status
The earlier Figure 52 shows the less significant byte
of each DMA Mode Register (TDMR or RDMR), which
contains eight bits indicating the status of that
channel. A channel clears these bits to 0 in response
to a hardware Reset or when software writes a Reset
command to the DMA Command I Address Register
(DCAR). All of them can be set and/or cleared by the
DMA channel. Some of them are affected by
commands other than Reset, and/or when software
reads the (LSByte of the) register.

Some of these bits exist solely for the information of
host software. The DMA channel uses many of them
as part of its internal state.

The CONT bit (TDMR7/RDMR7) is used only in
Pipelined mode. In this mode the IUSC sets it to 1
when software writes a "Start/Continue This Channel"
command to the MSByte of the DCAR. A channel
checks CONT when it has decremented its Byte
Count Register (TBCR or RBCR) to zero, or, if soft
ware has enabled early buffer termination, if/when the
serial controller signals for such a termination. If
CONT is O at this time, the channel clears the BUSY
bit (xDMR5} and stops. Otherwise, the channel clears
CONT to O and continues operating. It transfers the
contents of its Next Address Register to its Address
register (NTAR to TAR, or NRAR to RAR) and
transfers the contents of its Next Byte Count Register
to its Byte Count Register (NTBCR to TBCR, or
NRBCR to RBCR). Then it resumes transferring
serial data to or from the new buffer, as requested by
the serial controller.

Software may need to take special precautions to
avoid issuing the "Start/Continue" command while the
channel is testing the CONT bit, as described in the
earlier section, Pipelined Mode.

The GLlnk bit (TDMR6 or RDMR6) can only be 1 in
Linked List mode, while the channel is reading the
address of the next list entry from memory. GLink
stays set if the channel clears BUSY (xDMR5} while
reading the link address, because of a command or a
hardware Abort. In this case software must clear
GLink by issuing a "Reset This Channel" command
before it restarts the channel.

The BUSY bit (TDMR5 or RDMR5) is set to 1 by any
of the Start commands, and remains 1 while the
channel is still operating in response to the command.
It is o if the channel has stopped and will need
software attention (including another Start command)
before it can resume operation. The channel sets
BUSY when host software writes a Start, Start/I nit, or
Start/Continue command (for one or all channels) to
the DCAR. The channel clears BUSY when one of
the following occurs:
1 . a hardware Reset,

2. a Reset, Pause, or Abort command, for this
channel or all channels,

3. if external hardware asserts the /ABORT pin low
during a transfer by the channel,

4. reading a zero byte count in Array or Linked List
mode,

5. decrementing the byte count (TBCR or RBCR) to
zero in Single Buffer mode,

6. if software has enabled early buffer termination in
Single Buffer mode, and the serial channel signals
for such a termination, or

7. if the channel tests the CONT bit as zero in
Pipelined mode, after it has decremented the Byte
Count Register to zero, or, if software has

94

enabled early buffer termination, after the serial
channel has signalled for such a termination.

The INITG bit (TDMR4 or RDMR4) is used only in
Array and Linked List modes. It indicates whether the
channel is reading from the array or list. The channel
sets lnitG to 1 when software issues a Start/lnit com
mand, and/or when the channel decrements its byte
count (TBCR or RBCR) to zero, and/or if software has
enabled the early termination feature and the serial
controller signals for buffer termination. The channel
clears INITG to 0 after it has read the address and
byte count of the next buffer from memory.

INITG stays set if a channel clears the BUSY bit while
reading array or list information, due to a zero byte
count or some other reason. In this case software
should clear the bit using a "Reset This Channel"
command, before restarting the channel using a Start
This Channel command. (There's no need to clear
INITG before a Start/lnit.)

A channel sets the EOA/EOL bit (TDMR3 or RDMR3;
the name stands for End Of Array I End Of List) to 1
in Array or Linked List mode, when it reads a zero
byte count from the array or list in memory. A
channel clears EOA/EOL to 0 in response to a
hardware or software Reset, and when software reads
the bit as 1.

A channel sets the EOB bit (TDMR2 or RDMR2; the
name stands for End Of Buffer) to 1 in any mode,
when it decrements its Byte Count Register to zero. It
also sets EOB if software has enabled the early
termination feature and the serial controller signals for
buffer termination. A channel clears EOB to o in
response to a hardware or software Reset, and when
software reads the bit as 1 .

A channel sets the HAbort bit (TDMR1 or RDMR1) to
1 in any mode, when external hardware asserts the
/ABORT pin low during a bus cycle by the channel. A
channel clears HAbort to O in response to a hardware
or software Reset, and when software reads the bit as
1.

A channel sets the SAbort pin (TDMRO or RDMRO) to
1 in any mode, when host software writes an Abort
command for this channel (or all channels) to the
DCAR. A channel clears SAbort to 0 in response to a
hardware or software Reset, and when software reads
it as 1.

Chapter 6 describes how each of the EOA/EOL, EOB,
HAbort, and SAbort bits has a corresponding Interrupt
Arm (IA) bit in the channel's DMA Interrupt Arm
Register (TDIAR or RDIAR). If a status bit's
corresponding IA bit is 1, the IUSC can request an
interrupt when the channel sets the status bit to 1.

Since the channel clears the EONEOL, EOB, HAbort,
and SAbort bits each time software reads the LSByte
of its Channel Mode Register, software should take
care when reading this register so that important
events are not inadvertently lost. Specifically, any
time software reads the LSByte of TOMR or ROMR, it
should check and handle any and all of these four
conditions/bits that are possible and significant.

Commands and /BUSREQ Enable
The OMA Command I Address Register (OCAR),
shown in Figure 60, is a "shareable register", meaning
that there's only one OCAR and that its contents apply
to both of the I USC's OMA channels.

Software can use the LSByte of the OCAR for indirect
register addressing, as described in Chapter 3, and
can write commands for the OMA channels to the
MSByte. Such commands can be directed to a
specific channel or to all channels. The MSByte also
contains one bit that enables or disables all operation
of the OMA channels, by allowing or blocking
assertion of the I USC's /BUSREQ output.

The MSByte of the OCAR can be viewed as including
a four-bit DCmd field in OCAR15-12 and a Channel
Select bit in OCAR9. For commands that affect one
channel, the latter bit selects whether the command is
for the Transmit or Receive channel. For other com
mands the IUSC ignores the Channel Select bit.
Since there are only two channels and only six
channel-specific commands, it is probably simpler to
regard OCAR15-9 as a 7-bit field encoded as follows:

!2!:ABl~H~ CQmIDS!.!l2.
0000000 Null (no operation)
0001000 Reset Tx Channel
0001001 Reset Rx Channel
0010000 Start TX Channel
0010001 Start Rx Channel
0011000 Start/Continue Tx Channel
0011001 Start/Continue Rx Channel
0100000 Pause Tx Channel
0100001 Pause Rx Channel
0101000 Abort TX Channel
0101001 Abort Rx Channel
0111000 Start/Init TX Channel
0111001 Start/Init Rx Channel
1000000 Reset Highest IUS
1001000 Reset All Channels
1010000 Start All Channels

1011000 Start/Continue All Channels
1100000 Pause All Channels
1101000 Abort All Channels
1111000 Start/Init All Channels

Other combinations of the OCAR15-9 bits are
reserved by Zilog and should not be written to the
OCAR.

The Master Bus Request Enable bit (MBRE/OCARS)
controls whether the OMA channels can assert the
/BUSREQ output to request control of the external
bus from the host processor or central arbiter.
Carrying the integration of the MSByte value one step
further, note that the IUSC always captures a new
state for MBRE whenever software writes the MSByte
of OCAR. Note also that there is a strong link
between certain commands and a particular state of
MBRE. The following table gives typical full-byte
hexadecimal values that can be written to the MSByte
of OCAR to accomplish various operations. For
commands that deactivate one channel, the table
includes two values. The first applies to full-duplex
operation in which the two channels operate indepen
dently, while the second applies to half-duplex oper
ation in which only one channel is active at a time.
DCAE,15-8 OperatiQn

00 Disable /BUSREQ (no other

01

11/10
13/12

21
23
31
33

41/40
43/42
51/50
53/52

71
73
81

effect on the Channels)
Enable /BUSREQ (no other
effect on the Channels)
Reset Tx Channel
Reset Rx Channel
Start TX Channel
Start Rx Channel
Start/Continue Tx Channel
Start/Continue Rx Channel
Pause TX Channel
Pause Rx Channel
Abort TX Channel
Abort Rx Channel
Start/Init Tx Channel
Start/Init Rx Channel
Reset Highest OMA IUS (enable
/BUSREQ)

90 Reset All Channels
Al Start All Channels
Bl Start/Continue All Channels
CO Pause All Channels
DO Abort All Channels
Fl Start/Init All Channels

DCmd Reserved (0) RX/Tx MBRE RX/Tx B/W
Cmd Reg RegAddr U/L

15 14 13 12 11 10 9 8 7 6 5 4 3

Figure 60. The OMA Command /Address Register (DCAR)

95

A Reset command to a channel clears all the status
bits In the LSByte of its OMA Mode Register, including
BUSY, thus disabling the channel. It also clears the
register bits associated with Interrupts from the
channel, namely the IE, IP, and IUS bits, as described
in Chapter 6.

A Start command to a channel sets the BUSY bit
(xOMR5), which enables the OMA channel to operate
when the Transmitter requests that Its FIFO be filled,
or when the Receiver requests that its FIFO be
emptied. A Start command can be used to initially
start up a channel, or to restart one after a Pause
command.

The Start/Continue command operates identically to
Start In Single Buffer, Array, and Linked List Modes.
In Pipelined mode, it sets both the BUSY and CONT
bits (xOMR7 and 5), so that after the buffer described
by the xAR and xBCR, the channel goes on to
another buffer that's described by NxAR and NxBCR.
The channel does this by transferring the contents of
NxAR to xAR, transferring the contents of NxBCR to
xBCR, and clearing CONT but keeping BUSY set.

In Pipelined mode, software can use this command to
start up a channel, after writing the xAR, xBCR,
NxAR, and NxBCR, or to provide a subsequent buffer
to a channel after writing just NxAR and NxBCR. In
the latter case, software may need to take special
precautions to avoid issuing the Start/Continue com
mand while the channel is testing the CONT bit, as
described in the earlier section, Pipelined Mode.

The Start/lnit command operates identically to Start
In Single Buffer and Pipelined modes. In Array and
Linked List modes, Start/lnit sets both the BUSY and
INITG bits (xOMR5 and 4), so that the channel starts
by loading the address and length of the initial buffer
from the first entry in the array or list. Thereafter the
channel transfers data as requested by the
Transmitter or Receiver based on its FIFO status, just
as for a Start command. Start/lnit is intended only for
starting an inactive channel in a new buffer.

A Pause command to a channel clears the BUSY bit
(xOMR5), making the channel Inactive until software
restarts it by means of a Start command.

An Abort command to a channel similarly clears
BUSY (xOMR5), but It also sets the SAbort bit
(xOMRO), which can cause an interrupt if enabled.
Software can use this command (instead of Pause) to

ChanPrl
Pre

Empt ALBVO ReArbTlme Re11rved (0)

stop a OMA channel when the channel will not be
restarted to continue operation in the current buffer.

The Reset Highest OMA IUS command clears the
IUS bit of the highest priority OMA channel that has
the bit set (if any). See Chapter 6 for complete infor
mation on IUSC interrupt facilities.

Address Sequencing
The AddrMode field of each OMA Mode Register
(TOMR11-10 and ROMR11-10) controls how the
channel sequences the buffer address from one data
cycle to the next:

AddrMode Address Seguencing
00 the channel increments xAR
01 the channel decrements xAR
10 xAR stays the same
11 Reserved: do not program

The "increment" mode is the most commonly used.
The "decrement" mode is included primarily to match
the capabilities of other OMA channels that were used
for applications such as magnetic tape that could be
read backward. The "fixed" mode is useful to transfer
data to and from external FIFO devices, although the
only handshaking provided for such applications is via
the N/AIT//ROY line.

Figure 61 shows the shareable OMA Control Register
(OCR), the fields of which may affect one or both
OMA channels. Its AddrSeg field (OCR 1-0) controls
how far the OMA channels will propagate a carry
when incrementing or decrementing a memory
address:

AddrSeg
00
01
10

11

Address Iner/Deer Range
All 32 bits are affected
Reserved: do not program
The LS 16 bits are affected:
A31-16 are fixed
The LS 24 bits are affectedi
A31-24 are fixed

This field applies to the incrementing and. decre
menting of addresses in data buffers and, for the
Array and Linked List modes, to the incrementing of
addresses while reading from arrays and lists. It
applies to both the receive and transmit channels. In
the latter two cases, if a channel attempts to incre
ment or decrement an address over the implied
boundary, the address Instead wraps around to the
opposite end of the same 64 KByte block (for 10) or
the same 16 M Byte block (for 11).

Reserved (0) Min DCSD 1Walt
Off39 Out

UAS
All AddrSeg

15 14 13 12 11 10 9 8 7 8 5 4 3 2 0

Figure 61. The OMA Control Register (OCR)

96

Binary Format In Arrays and Lists
In Array and Linked List modes the IUSC OMA chan
nels can fetch addresses and byte counts from
memory In either of the two ways that different micro
processors may store them. The ALBVO bit In the
OMA Control Register (DCR12; the name stands for
Array/List Binary Value Order) controls how the OMA
channels fetch binary values from memory. If ALBVO
is 0, they fetch the less-significant portions of binary
values from lower-addressed memory locations, which
is compatible with the Zilog zso and most Intel
processors. If ALBVO is 1, the channels fetch the
more-significant portions of binary values from lower
addressed locations, which is compatible with the
Zilog ZSOOO and most Motorola processors. The
channel fetches these values using 16-bit transfers if
16Bit (BCR2) Is 1 and S/16 (TOMAS or ROMAS) is 0,
or using S-bit transfers if 16Bit Is 0 and/or S/16 Is 1 .
Figure 62 shows how the IUSC expects the 32-bit
addresses and 16-bit counts to appear on the AD pins
for the various ALBVO options, data widths, and TCB/
RSB locations.

Conditions for OMA Operation
Several conditions must be met before the IUSC will
request use of the host bus and then operate as a
OMA bus master:
1. The Master Bus Request Enable bit (MBRE) In

the OMA Command I Address Register (DCARS)
must be 1 , and

2. the BUSY bit (xDMR5) of one or both of the OMA
channels must be set due to a Start command,
and

3a. the Receiver or Transmitter, associated with a
Busy channel, must be requesting OMA transfer,

3b. OR, a Busy channel must be in Array or Linked
List mode with its INITG bit (xDMR4) set, either
because of a StarVlnit command or because of
the termination of the previous buffer, and

4a. the BRQTP bit in the Bus Configuration Register
(BCR3) must be 1, indicating that this IUSC
should drive the /BUSREQ signal full-time, OR

4b. /BUSREQ must be high, and
5. the minimum time between bus requests must

have elapsed. The Min0ff39 bit (DCR5) controls
the exact minimum time.

Once the IUSC has driven /BUSREQ low because
these conditions are met, it continues to do so until
one of the following occurs:
a. the duration of this period of bus mastership

exceeds either of the two programmable limits in
the Burst/Dwell Control Register (BDCR), or

b. one channel runs out of things to do, for example,
because the serial controller negates its request

97

because the TxFIFO becomes full or the RxFIFO
becomes empty, and the other channel isn't
requesting to use the bus, or

c. a channel clears its BUSY bit, for any of the
reasons given in an earlier section, and the other
channel isn't requesting to use the bus, or

d. software clears MBRE to 0, or
e. the external hardware negates the /BIN input after

asserting It for at least three CLK cycles in
response to this bus request.

The following sections cover various aspects of the
conditions described above.

OMA Requests by the Receiver and
Transmitter
Aside from fetching addresses and counts from array
and linked lists, the IUSC's OMA channels will only
transfer data when the serial controller requests that
they do so.

The Transmitter asserts Its Internal OMA Request to
the transmit channel as follows:
1. when the Transmitter isn't "holding between

frames", from the time the number of empty
character positions in the TxFIFO exceeds the
Transmit DMA Request Level value (TICR15-S
after a "Select TICRHi=/TxREQ Level" command),
until
a. the TxFIFO is filled, or
b. the Transmit Character Counter counts down

to zero, indicating the end of a message or
frame and
I. the Transmit Control Block feature is enabled

and/or
ii. the Wait4TxTrlg bit (CCR13) is 1.

2. from the time software writes a Trigger Channel
Load DMA command to the Channel Command I
Address register (CCAR), until a OMA transfer
into CCAR clears the ChanLoad bit (CCAR7).

Each of 1.b.i and 1.b.ii establishes a separate "holding
between frames" state for the Transmitter. The
Transmitter clears the former one automatically, when
It finishes sending the frame. Software must clear the
latter one, by issuing a "Trigger Tx DMA" command to
the RTCmd field of the Channel Command I Address
Register (CCAR15-11).

Point 1.b.i reflects the fact that, when Transmit
Control Blocks are enabled, the Transmitter stops
requesting further DMA transfers after the Transmit
OMA channel fetches the last character of one frame,
until it has sent that character and terminated the
frame or message. The Transmitter does this so that
the loading of the TCB information for a new frame
doesn't affect sending the end of the preceding frame.

ALBVO (DCR12) = 0 (little-endlan)
16BIT (BCR2) = 1 and 8/16 (xDMR8) = 0
TCBinA/L or RSBinA/L (xDMR13) = 0

Allllrlli AD15 ADO
N Buffer Address 15-0

N+2
N+4
N+6
N+B

Buffer Address 31-16
Byte Count

Next Buffer or Link Address 15-0
Next Buffer or Link Address 31-16

ALBVO (DCR12) = 0 (little-endian)
16BIT (BCR2) = 0 and/or 8/16 (xDMR8) = 1

TCBlnA/L or RSBlnA/L (xDMR13) = 0
Add.llU

N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
N+B
N+9

AD16L7 ADQL!l
Buffer Address 7-0

Buffer Address 15·8
Buffer Address 23-16
Buffer Address 31-24

Byte Count 7-0
Byte Count 15-8

NexVLlnk Address 7-0
NexVLlnk Address 15-8

NexVLink Address 23-16
NexVLink Address 31-24

ALBVO (DCR12) = 0 (llttle-endlan)
16BIT (BCR2) = 1 and 8/16 (xDMR8) = 0
TCBinA/L or RSBinA/L (xDMR13) = 1

Ad!IJ:ul AD15 ADO
Buffer Address 15-0
Buffer Address 31-16

Byte Count
TCB Control or RSB Status

N
N+2
N+4
N+6
N+8

N+10
N+12
N+14

TCC Length, RCC Residual, or not used

not used
Next Buffer or Link Address 15-0

Next Buffer or Link Address 31-16

ALBVO (DCR12) = 0 (llttle-endian)
16BIT (BCR2) = 0 and/or 8/16 (xDMR8) = 1

TCBinA/L or RSBinA/L (xDMR13) = 1
Add.llU AD15/7 ADB/0

N
N+1
N+2
N+3
N+4
N+S
N+6
N+7
N+8
N+9
N+10
N+11
N+12
N+13
N+14
N+15

Buffer Address 7-0
Buffer Address 15-8

Buffer Address 23-16
Buffer Address 31-24

~eCount7-0

Byte Count 15-8

Control or Status 7-0
Control or Status 15·8

TCC/RCC 7-0 or not used
TCC/RCC 15-8 or not used

not used
not used

NexVLlnk Address 7-0
Next/Link Address 15-8

Next/Link Address 23-16
Next/Link Address 31-24

ALBVO (DCR12) = 1 (big-endian)
16BIT (BCR2) = 1 and 8/16 (xDMR8) = 0
TCBinA/L or RSBinA/L (xDMR13) = 0

AllllrllirA~D~1~5~~~~~~~~~~~A~Dc.=,O
N Buffer Address 31-16

N+2 Buffer Address 15-0
N+4 Byte Count
N+6 Next Buffer or Link Address 31-16
N+8 Next Buffer or Link Address 15-0

ALBVO (DCR12) = 1 (big-endian)
16BIT (BCR2) = 0 and/or 8/16 (xDMR8) = 1

TCBlnA/L or RSBinA/L (xDMR13) = 0
Add.llU

N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
N+8
N+9

AD1~ ADQL!l
Buffer Address 31-24
Buffer Address 23-16

Buffer Address 15-8
Buffer Address 7-0

Byte Count 15-8
Byte Count 7-0

NexVLink Address 31-24
NexVLink Address 23-16
NexVLink Address 15-8
NexVLink Address 7-0

ALBVO (DCR12) = 1 (blg-endlan)
16BIT (BCR2) = 1 and 8/16 (xDMR8) = 0
TCBinA/L or RSBinA/L (xDMR13) = 1

Allllrlli AD15 ADO
N

N+2
N+4
N+6
N+8
N+10
N+12
N+14

Buffer Address 31-16
Buffer Address 15-0

Byte Count
TCB Control or RSB Status

TCC Length, RCC Residual, or not used

no1 used
Next Buffer or Link Address 31-16
Next Buffer or Link Address 15-0

ALBVO (DCR12) = 1 (blg-endian)
16BIT (BCR2) = 0 and/or 8/16 (xDMR8) = 1

TCBinA/L or RSBinA/L (xDMR13) = 1
Add.llU AD15/7 ADB/0

N
N+1
N+2
N+3
N+4
N+5
N+6
N+7

N+8
N+9

N+10
N+11
N+12
N+13
N+14

N+15

Buffer Address 31-24
Buffer Address 23-16
Buffer Address 15-8
Buffer Address 7-0

~e Count 15-8
Byte Count 7 -0

Control or Status 15-8
Control or Status 7 -0

TCC/RCC 15-8 or not used
TCC/RCC 7-0 or not used

not used
not used

Next/Link Address 31-24
Next/Link Address 23-16
Next/Link Address 15-8
Next/Link Address 7-0

Figure 62. The Order of Binary Values in Arrays and Linked Lists

98

When the Receiver isn't "holding between frames", it
asserts the internal DMA Request to the receive
channel in two situations:
A. from the time the number of received characters

in the RxFIFO exceeds the Receive DMA Request
Level value (RICR15·8 after a "Select RICRHi=
/RxREQ Level" command), until the channel
empties the RxFIFO, or

B. in HDLC/SDLC, Ethernet/802.3, Transparent
Bisync, or 15538 mode, from the time that the
Receiver places a byte marked with RxBound
status into the RxFIFO, until the channel has read
out the RxBound character. (Such RxBound
status signifies the last character of each frame or
message in HDLC, Ethernet, and Transparent
Bisync mode, and the second or only character of
each word in ACV/15538 mode.)

If the software has enabled Receive Status
Blocks, the Receiver keeps its request asserted
while the DMA channel stores the status block in
memory. Also, if the number of characters left in
the RxFIFO, after the DMA channel has read out
the RxBound character, still exceeds the Receive
DMA Request Level, the channel keeps asserting
its request per condition A.

Note that, if the Wait4RxTrig bit in the Channel
Control Register (CCR4) is 1, then after the Receive
DMA channel writes a character marked with
RxBound status into memory (plus the Receive Status
Block if this feature is enabled), the Receiver enters
the "holding between frames" state. In this state, it
doesn't request any more DMA transfers until after
software writes a "Trigger Rx DMA" command to the
RTCmd field of the Channel Command/Address
Register (CCAR 15-11). This interlock overrides
points A and B above.

The Receive Character Counter feature cannot force
the internal OMA Request nor early buffer termination.

Programming the OMA Request Levels

As noted in other chapters, the MSBytes of the Trans·
mit and Receive Interrupt Control Register (TICR and
RICR) may each represent any of several registers.
The content of each MSByte depends on which of
several selection commands was most recently writ·
ten to the Transmit or Receive Command Status Reg
ister (TCSR or RCSR), respectively. The selections
for the Transmitter and Receiver are independent.

To program or read back a DMA Request Level, soft
ware must first write the "Select RICRHi=/RxREQ
Level" or "Select TICRHi=/TxREQ Level" command
(0111) to the TCmd or RCmd field of the Transmit or
Receive Command I Status Register (TCSR15-12 or
RCSR 15-12). This step can be omitted if it's known
that none of the commands 0100-0110 have been

99

written to TCSR or RCSR since the last time 0111
was written there. The DMA Request Level value can
then be read or written as the MSByte of the TICR or
RICR.

The Transmit DMA Request Level should be pro
grammed with 1 less than the number of empty
TxFIFO positions, at which the Transmitter should
start asserting its internal Request to the Transmit
DMA channel. The Receive DMA Request Threshold
should be programmed with 1 less than the number of
received characters in the RxFIFO, at which the
Receiver should start asserting its internal Request to
the Receive DMA channel. For example, if the
Receiver should request DMA operation when its 32-
byte RxFIFO is 3/4 full, software should write hex 70
to RCSR15-8 to select the DMA threshold as RICR15-
8, and then write decimal 23 (hex 17) to RICR15-8.

Note that a Purge Tx FIFO (or Purge Rx and Tx FIFO)
command can make a channel immediately assert
/TxREQ.

Inter-Channel Operation and Priority
If/when both DMA channels are active, three fields in
the DMA Control Register (DCR) control how they
share use of the external bus.

The ChanPrl field (DCR15-14) selects the relative pri·
ority of the two channels for use of the bus, that is,
which one gets to use the bus first if both are
requesting at the time of a bus grant:

ChanPri Channel Priority
00 Transmit channel has priority
01 Receive channel has priority
10 Alternating: whichever

channel uses the bus first in
one bus grant, has the lower
priority in the next one.

11 Reservedi do not program

The PreEmpt bit (DCR13) selects whether the higher
priority channel (as defined by the ChanPri field) can
take over control of the bus if it starts requesting con
trol while the lower-priority one is using the bus. If
PreEmpt is 0, once a channel starts using the bus it
continues to do so until one of four events occurs:
1. it fills or empties its FIFO, or
2. it reaches the time limit for use of the bus, or
3. it clears its BUSY bit, or
4. software clears MBRE.

If PreEmpt is 1, the lower-priority channel relinquishes
bus control to the higher one, after it completes any
bus cycle that was in progress when the higher
priority channel started requesting.

When PreEmpt is 0, the ReArbTime field (DCR11-10)
determines when the IUSC reselects which channel is
using the bus:
ReArbTime Channel Re-arbitration Time

00 The IUSC reselects the active
channel at the start of each
bus grant, and one channel
can use the bus after the
other within the same period
of bus control.

01 Once a DMA channel has
started using the bus, it
continues to do so until its
part of the serial controller
request has released its
request, even if this takes
several periods of bus
control. However, once this
occurs, the other channel can
use this bus for the duration
of the same period of bus
control.

10 The IUSC reselects the active
channel only at the start of
each bus grant; only one
channel uses the bus per
period of bus control.

11 Reserved; do not program

When PreEmpt Is 1, ReArbTlme should be program
med as 00. In particular, do not program PreEmpt=1
and ReArbTime=1 O. This combination results in a
mode in which, If preemption has occurred and the
higher-priority channel runs out of things to do, the
IUSC stays on the bus until one of the duration limits

/BUSREQ

/BIN\'-+1---t-
AD15·0

is reached, without letting the lower-priority channel
use the busl

Bus Acquisition and Release Timing
Figure 63 shows typical bus acquisition and release
sequences. If the IUSC is asserting /BUSREQ when it
first samples /BIN low at a rising edge of CLK, it starts
preparing to take control of the bus, otherwise it drives
/BOUT low. Two CLK cycles after first sampling /BIN
low with /BUSREQ low, the IUSC samples /BIN again.
If /BIN is still low, then from the next rising edge the
IUSC places the more-significant half of the Initial
memory address on the AD lines, and starts driving
/UAS, /AS, IDS, R//W, /RD, /WR, plus S//D and D//C if
the DCSDOut bit in the OMA Control Register (DCR4)
is 1. From the next rising edge of CLK, it drives /UAS
to low. There is one more CLK period of address
setup between the AD lines and the first rising edge of
/UAS after bus acquisition, than there is for
subsequent /UAS pulses (if any) within the same
period of bus control.

The IUSC will release control of the bus if the bus
grant on /BIN goes false/high while it's using the bus.
A following section, Master Bus Cycles, shows the
timing for the withdrawal of /BIN.

Typically, the IUSC makes the decision to release the
bus during a bus cycle, which is the case shown in the
latter part of Figure 63. It drives or releases
/BUSREQ to high from the rising CLK edge that is 4.5
CLK periods after the falling edge from which it drives
/DS and (/RD or /WR) to high. It also releases the
/UAS, /AS, /OS, R//W, /RD, and /WR lines, and if
necessary the AD lines, S//D, and D//C, from the
same rising edge.

One
or

More
Bus

~-----· Cycles•---~~---------++'

/UAS

/OS

/AS.R//W,
/RD, /WR, etc.

Figure 63. Bus Acquisition and Release

100

If the IUSC makes the decision to release the bus
later than is needed to achieve the timing shown in
Figure 63, it still drives or releases /BUSREQ to high
from the same rising edge on CLK at which it releases
the various other bus signals.

Bus Cycle Options
Three bits in the shareable OMA Control Register
(OCR; see Figure 61) affect how the OMA channels
operate as bus masters -- that is, how they act once
they have control of the bus. This information is pre
sented both here and in Chapter 2, Bus Interfacing.

D//C, S//D Status Output

The DCSOOut bit (OCR4) controls whether the IUSC
drives the 0//C and S//D pins when it is the bus
master. If OCSOOut is 1, the IUSC drives 0//C Low
for Transmit channel operations and High for Receive
channel cycles, and drives S//D High during transfers
of serial data and Low for array or linked-list fetching.
When this bit is 1, external drivers for O//C and S//0
must be 3-stated (released) when the IUSC has
control of the bus, that is, when the /BIN pin is low.

If external logic has no use for the above information,
software can program OCSOOut as o, in which case
the IUSC never drives 0//C and S//0, This means
that the host processor or bus interface can drive
these pins full-time.

Wait Insertion

If the 1 Wait bit (OCR3) is 1, the IUSC extends the
data portion of each master bus cycle by 1 CLK
period. This allows use of slower memories for a
given CLK frequency, or use of a faster CLK
frequency with a particular memory type. Signalling
on /WAIT//ROY can be used to extend master bus
cycles regardless of the state of this bit. When 1Wait
is 1 the !USC starts actively sampling /WAIT//ROY
one CLK period later than when it's 0.

/UAS Frequency

Since the OMA channels maintain 32-bit addresses
but have only a 16-bit external bus, they present each
address in two parts. They signal the availability of
the more significant half of an address with a strobe
on the /UAS pin, and signal the LS half of each
address with a strobe on /AS. The UASAll bit (OCR2)
controls how often the channels present the more
significant half of the address. If UASAll is 1, every
master bus cycle includes presentation of the more
significant half of the address on the A015-0 pins,
with a low-going pulse on /UAS. This means that
every bus cycle takes at least 4 cycles of CLK.

101

If UASAll is 0, the IUSC includes a /UAS sequence
only in cycles that meet one or more of the following
criteria:
1 . in the first cycle after taking control of the bus

from another master,
2. in the first cycle after switching from one channel

to the other,
3. in Pipelined mode, in the first cycle after switching

from one buffer to the next,
4. in Array or Linked List mode, in every cycle that

accesses the array or list,
5. in Array or Linked List mode, in the first data cycle

after fetching from the array or list, or
6. in the first cycle after incrementing a buffer

address results in a carry out from A 15, even if
the AddrSeg field (OCR1 -0) is 1 O so that the carry
Is blocked.

When the IUSC includes a /UAS sequence in a bus
cycle, the cycle is at least 4 CLK periods long, while if
it doesn't, the bus cycle can be as short as 3 CLKs.

UASAll should be programmed as 1 only if
required by unusual external hardware. For
example, if the IUSC and another bus master share
an upper-address latch and the other bus master can
insert cycles between IUSC cycles within the same
bus grant, UASAll would want to be 1.

Master Bus Cycles
Figures 64 and 65 show OMA Read and Write cycles
with the IUSC as bus master and the UASAll bit
(OCR2) set to 0. In each case two cycles are shown.
The first includes a /UAS strobe and is four CLK
periods long. The second does not include a /UAS
and is three CLK periods long. In both cases, to
achieve these minimum bus-cycle times, the /WAIT/
/ROY signal should setup and hold in the "ready"
state, around the falling edge of CLK that follows the
rising edge of /AS. As noted in the preceding section,
if the 1Wait bit in the OMA Control Register (OCR3) is
1, the IUSC delays its first sampling of /WAIT /ROY by
one CLK period. In this case, bus cycles that include
a /UAS strobe are at least five CLK periods long, and
those that don't are at least four CLKs long. For each
falling edge of CLK at which the IUSC samples
/WAIT//ROY as "Not Ready", it extends the length of
the cycle by one CLK period.

As shown in the Figures, the "ready" state is High for
"Wait" signalling and Low for "Acknowledge" signal
ling. The kind of signalling on /WAIT//ROY depends
on whether the S//D pin was High or Low at the time
that software wrote the Bus Configuration Register
(BCR) after the last Reset.

I I
--Y- Addr"" ~

· AD15·0 31-1 ~

I ~'~---'---1-~~-.--~~--r-~~~I_
/UAS -:u: I i

/AS i i ui :
I I I I

RINI i i I i I : :

/OS] : : \'-'--j _ __,/,..._-..........,\ j r
I I I I :

/RD Ji i \ j ~ hi l
I ! '-T-----11

/WR I I
I I I I

/WAIT//RDY i I j\ i Ii\ (as Walt)

/WAIT//RDY
: ~ ! L : ~ i L (as Ack)
I I

s i l 7 /ABORT
: \

/BIN ! L L!
Figure 64. Master Read Cycles

102

/UAS

/AS

R//W

/RD I

I
/WR JI

I

r-uu I .
Write Data Write Data

I I
I I

:u:
I I
I I
I

\...____~!:
I

I I I

: \ ;i : \ I I ·--1 I ~~

/WAI~~~~~ ____ __...,.........! I : \ i I \~--
/WAIT//RDY : \ ! I : \ I

(as Ack) _____ _,._! -\.--t-1-1 ------+!---+----
/ABORT : \,_ ___ -'\--+-! _.__I __ ~I

I
/BIN I

Figure 65. Master Write Cycles

103

Note also that in DMA Read operations, read data
from memory should set up and hold around the rising
edge of the /DS and /RD lines. This gives the
memory subsystem some extra access time as com
pared to having to set up to the falling CLK edge from
which the IUSC drives /DS and /RD to high, but this
characteristic must be considered in the memory
design and the NVAIT//RDY logic.

Given that the Figures assume the UASAll bit (DCR2)
is 0, the "possibly low" states at start of the /DS and
/RD or NVR traces in the Figures illustrate the lnter
cycie timing when there is a carry out of A15 during
address incrementing (that is, when address "X" has
16 low-order zeroes). When UASAll is o, this is the
only case in which a cycle that includes a /UAS will
directly follow another cycle. The other occasions that
force a /UAS strobe in the middle of a period of bus
control ail involve several CLK period delays for inter·
nal "housekeeping" functions, between the preceding
cycle and the cycle that includes the /UAS, as follows:

Condition forcing /UAS:
of extra CLK periods
before the /UAS ~cle

Inter-channel switch 4

Pipelined mode
8 buffer switch

Serial Data Transfer
8

to Arr~ or List Fetch
Array or List Fetch to

8 Serial Data Transfer

(All of the values above are in addition to the one CLK
cycle needed for the /UAS sequence itself.)

The last two signals in Figures 64 and 65 illustrate the
timing of the /ABORT and /BIN inputs. Both inputs
are effective at the rising edge of CLK that immedi·
ately precedes the falling edge of CLK at which the
IUSC samples NVAIT//RDY "ready". If DMA operation
is to be aborted after the bus cycle shown for
"address X+1 or 2", then /ABORT must set up and
hold Low around that edge. To force the IUSC to give
up bus control after the bus cycle shown for "address
X+1 or 2", /BIN must set up High to that edge.

Bus Occupancy Throttling
In some systems it may be necessary or desirable to
llmit the IUSC's use of the host bus. For example, In
a dedicated control system it may be necessary to
guarantee a maximum Interrupt response time, and
IUSC OMA activity may be a factor In the Interrupt

MaxXfert

response time of the host processor. As well as
responding to an external withdrawal of its bus grant
as described in the preceding section, the IUSC
allows its OMA activity to be programmatically limited.
This can be done in terms of the maximum duration
that the part will use the bus for each bus grant. Bus
activity can also be limited in terms of the minimum
time that the IUSC will stay off the bus before
requesting It again.

The Mln0ff39 bit in the OMA Control Register (DCR5)
controls the minimum time for which the IUSC will
keep /BUSREQ inactive/high. If Min0ff39 is 0, this
minimum Is 7 CLK periods, while if Mln0ff39 is 1, the
IUSC will not "rerequest" the bus for at least 39 CLKs.

The shareable BursVDwell Control Register (BDCR)
controls the maximum duration for which the IUSC will
use the bus, per bus grant. Figure 66 shows the
BDCR. If the MaxXfers field (BDCR15-8) Is non-zero,
the IUSC treats its contents as the largest number of
bus transactions it will do in response to one bus
grant. If the MaxCLKs field (BDCR7·0) is non-zero,
the IUSC will use the bus for up to 8 times that
number of CLK periods, In response to each grant. If
both values are zero (as they are after Reset), for
each bus grant the IUSC will use the bus until It runs
out of things to do, e.g., until the RxFIFO Is empty
and/or the TxFIFO is full. If both values are non-zero,
the IUSC limits its bus usage according to whichever
one expires first.

Reaching one of these limits never terminates a cycle
in progress; a limit takes effect only after a cycle is
over. If a timeout on the length of a cycle is desired,
for example to detect an access to a non-existent
memory address, it must be implemented externally
using the /ABORT pin.

Array and Linked List Fetching Status
In Array and Linked List modes, the INITG and GLink
bits In the TOMA or RDMR provide a first level of
Information by which software can read the state of a
channel that is fetching information from an array or
!Inked list. More detailed status about array and
linked-list fetching is available in the shareable OMA
Array Count Register (DACR). Figure 67 shows the
DACR, which contains separate RALCnt and T ALCnt
fields (DACR7-4 and DACR3·0 respectively) for the
two channels. These fields are 1 bit wider than on the
16C31 because the OMA channels need more states
to implement the 16C32's new features.

MaxCLKa

15 14 13 12 11 10 s a 1 · a s 4 3 2 0

Figure 66. The Burst/Dwell Control Register (BDCR)

104

The DMA channels sequence these fields from all
ones downward as they go through the steps of
fetching array and list entries and transferring data to
or from the buffers that the entries describe.

8/16 (TDMR8 or RDMR8) is 0. If 16Bit=0 and/or
8/16=1, the channel will use 8 bit transfers and will
thus go through more states.

The TCBinNL (TDMR13), RSBinNL (RDMR13), and
ClearCount (TDMR12 or RDMR12) bits also affect the
state sequence that the DMA channels follow and
show in TALCnt and RALCnt.

In Linked List mode a channel sequences TALCnt or
RALCnt with GLink=O while fetching the buffer ad
dress and count, and then goes through further states
with GLink=1 while fetching the next entry address.

A 16C32 DMA channel will use 16-bit transfers to
access the array or linked-list if 16Bit (BCR2) is 1 and

Table 3 shows all the values that TALCnt and RALCnt
can assume, and their meaning, wi!h notes indicating
in which contexts each state can occur.

Reserved (0) RALCnt TALCnt

15 14 13 12 11 10 9 8 7 6 5

Figure 67. The OMA Array Count Register (DACR)

This State Can Occur For:
INITG Gllnk TALCnt State of the Channel Data

Mode
Clear TCBinA/L

RALCnt Width Count RSBlnA/L
0 0 0000 Si1l9.!e Buffer or P!Q_elined mode 8/16 SB/P lnaj_ J.naj_

Array fetch pending, A
1 0 1111 First list fetch pending, or 8/16 L 0/1 0/1

Link Address fetched L
1 0 1110 1st byJe of Buffer Address fetched 8 NL 0/1 0/1
1 0 1101 1st half of Buffer Address fetched 8/16 NL 0/1 0/1
1 0 1100 3rd twe of Buffer Address fetched 8 NL 0/1 0/1
1 0 1011 Buffer Address fetched 8/16 NL 0/1 0/1
1 0 1010 1st tw_e of f:Me Count fetched 8 NL 0/1 0/1
1 0 1001 f:Me Count fetched 8/16 NL 0/1 0/1

0 0 1001
Receiving Into data buffer, or

8/16 NL
0 0/1

Transmittir:!.9._from data buffer 0 0
1 0 1000 1st twe of EM_e Count cleared to zero 8 NL 1 0/1
1 0 0111 Byt_e Count cleared to zero 8/16 NL 1 0/1

0 0 0111
Receiving into data buffer, or

8/16 NL
1 0/1

Transmittir:!.9._from data buffer 1 0

1 0 0110
1st byte of TCB fetched, or

8 NL 0/1 1
1st twe of RSB J.or zer<21. stored

1 0 0101
TCB control word fetched, or

8/16 NL 0/1 1
RSB status word J.or zerol stored

1 0 0100
3rd byte of TCB fetched (ignored if 16 bit TCB) or

8 NL 0/1 1
3rd twe of RSB J.or zer~ stored

1 0 0011
TCC frame length fetched (ignored if 16 bit TCB) or
RCC residualJ.or zer<21. stored

8/16 NL 0/1 1

1 0 0010
11th byte of entry read/ignored (Tx), or

8 NL 0/1 1
11th tw,e of entry_ cleared to zero1Rxl_

1 0 0001
6th word of entry read/ignored (Tx), or

8/16 NL 0/1 1
6th word of en!!Y_ cleared to zero J.R&

0 0 0001 Transmittir:!.9._from data buffer 8/16 NL 0/1 1
1 1 1111 Link Address Fetch Pendin_g_ 8/16 L 0/1 0/1
1 1 1110 1st byt_e of Link Address fetched 8 L 0/1 0/1
1 1 1101 1st half of Link Address fetched 8/16 L 0/1 0/1
1 1 1100 3rd b_11_e of Link Address fetched 8 L 0/1 0/1

Table 3. States of a OMA Channel

105

106

6. Interrupts

The interrupt subsystem of the IUSC derives from
Zilog's long experience in providing the most
advanced interrupt capabilities in the microprocessor
field. These capabilities can be used to their best
advantage in a system including a Zilog processor and
other Zilog peripherals, but it's easy to interface the
IUSC to interrupt other processors as well. This
chapter describes the IUSC's interrupt capabilities and
how to use them in various system applications.

The IUSC dedicates four pins to interrupts. It uses
the /INT output to request an interrupt on the host
processor. The /INTACK input signals that the proc
essor is acknowledging an interrupt, in different ways
for use with different kinds of host microprocessors.
(For applications in which interrupt acknowledge
cycles cannot easily be detected at the IUSC,
software can simulate such cycles.)

The Interrupt Enable In (IEI) and Out (IEO) pins allow
systems including several Zilog-compatible periph
erals to use an interrupt acknowledge daisy chain to
select which of multiple interrupting devices should be
serviced first. This can eliminate the need for a sepa
rate interrupt controller as in other approaches.
Alternatively, external interrupt control logic can
process interrupt requests in a round-robin or
dynamic-priority fashion among one or more IUSCs
and/or other peripheral devices.

Interrupt Acknowledge Daisy Chains
Figure 68 shows an interrupt acknowledge daisy
chain. The highest-priority (or only) daisy-chainable
device that can request an interrupt has its IEI pin tied
High. Because of this, it can always request an
interrupt, and it "has first claim at" providing an inter
rupt vector in answer to an interrupt acknowledge
cycle. Unless the IUSC is the only daisy-chainable
device that can request an interrupt, the IEO pin of the
highest-priority device is connected to the IEI pin of
the next-higher-priority device. This daisy chaining of
IEO outputs to IEI inputs continues until the lowest
priority (or only) daisy-chainable interrupting device,
which has its IEO pin left unconnected.

With the IUSC as with all Zilog-compatible devices
except ZBO family members, the IACK daisy chain
serves two separate functions. During an interrupt
acknowledge cycle, the daisy chain acts to select the
highest-priority requesting device as the one to return
an interrupt vector. After that, until the resulting inter
rupt service routine is over, the daisy chain serves to
block interrupt requests from devices having a lower
priority than that of the one currently being serviced,
while allowing requests from higher-priority devices.

107

Vee

Figure 68. An Interrupt Daisy Chain

This daisy-chain structure allows nesting of interrupt
service routines. Nesting can greatly improve worst
case interrupt response times for critical real-time
applications as well as 1/0-intensive computing
systems. Whether or not host software uses nested
interrupts, the !USC's interrupt subsystem provides
the most efficient interrupt handling possible.

External Interrupt Control Logic
There are two valid reasons why a system designer
might choose not to use an interrupt acknowledge
daisy chain (plus the less valid one of not being
familiar with them). First, in a system that includes
many IUSCs all having similar baud rates and serial
traffic, the strict priority that's inherent in a daisy chain
might endanger proper interrupt servicing for the
device(s) at the low-priority end of the chain. In such
cases, interrupt service requirements may be more
easily guaranteed by using a central interrupt
controller that distributes interrupt acknowledgements
among the devices on a round-robin (rotating-priority)
basis. Such schemes target "fairness" rather than
strict priority in interrupt servicing among the devices.

A second reason not to use a simple/wired interrupt
daisy chain would be in a system in which data rates
vary over a considerable range among several IUSCs,
and are determined dynamically rather than being
known as the system is being programmed. (An
!USC's interrupt servicing requirements typically vary
directly with its serial data rate.) In such a system,
external interrupt logic can distribute interrupt acknow
ledge cycles using a dynamic priority determined by
each IUSC's data rate.

Both rotating-priority and dynamic-priority systems
can be arranged as shown in Figure 69. The interrupt
control logic maintains the IEI inputs of the IUSCs
high most or all of the time, so that they can assert
their /INT outputs. The logic may simply OR the /INT
outputs of the various IUSCs to make the interrupt
request to the processor. Alternatively, in a dynamic
priority system with a processor that supports multiple
levels of interrupts, the control logic may assign
different IUSCs to different processor levels.

Processor

/INT IEIA /INTACK

IUSC other devices

Figure 69. External Interrupt Control

Regardless of how the interrupt control logic derives
the processor request, when the processor does an
interrupt acknowledge cycle, the logic must select a
particular IUSC from among those requesting an
interrupt, to "receive" the cycle. The control logic can
implement this choice in one of two ways. First, it can
negate the IEI inputs of all of the other IUSCs, and
then wait for the specified setup time before present
ing the cycle to all of them using the /INTACK signal
and possibly other bus control signals. Or, it can
simply present the cycle only to the selected IUSC,
typically using a single pulse on /INT ACK.

Internal Interrupt Operation
Internally, the IUSC uses a daisy-chaining scheme
much like that described earlier. Thus its benefits are
available, to some extent, even in systems that don't
include any other Zilog-compatible peripherals. At the
first level, the IUSC's serial and DMA sections
("megacells") have separate interrupt subsystems.
Their request lines are logically OR'ed to make the
/INT output. The IUSC's IEI pin is connected to the
I El input of the serial controller; the serial controller's
IEO output is internally connected to the DMA
controller's IEI input, and the DMA controller's IEO
output is routed to the IUSC's IEO pin. This
arrangement means that serial controller interrupts
have higher priority than DMA controller interrupts.
The two sections also have fully independent interrupt
vectors.

The IUSC carries interrupt daisy-chaining further, to a
second level of internal resolution. Each section or
megacell includes several interrupt "types" -- six for
the serial controller and two for the DMA section. The
various types in each megacell are arranged a fixed
priority order in an internal daisy-chain. Each type

108

may request an interrupt due to any of several
interrupt stimuli or "sources" within it.

Figure 70 presents a model of the typical internal
structure of the interrupt subsystem, for a source "s"
that is of type "t". Note that the Figure represents a
model of the IUSC's interrupt logic rather than the
exact logic; it's included only as an aid to under
standing the interrupt subsystem.

Each individual source has an associated register bit
that we'll call its Interrupt Arm or IA bit. (Previous
Zilog documents called this bit an Interrupt Enable or
IE bit, but also used the same term for another bit that
applies to the entire type. To distinguish between
these two kinds of register bits, this description will
call the one that applies to the individual sources "IA''.)

IA bits are fully under software control. When an IA
bit is 1, the associated source can cause an interrupt.

The sources are typically readable as register bits
themselves, and may be derived from various kinds of
logic, such as logic that compares the fullness of a
FIFO with a threshold level at which to interrupt, or
logic that detects transitions of another register bit.
Whenever one of the sources for a type and its IA bit
are both true, an "Interrupt Pending" register bit (IP)
for the type is set to 1. For the IUSC and other USC
family members, IP bits are set independently of the
state of the associated IUS bits, and are cleared to O
only by software (or by Reset).

A close examination of Figure 70 will show that setting
of IP is delayed if an "armed" source comes true
.d.!Jri.ng, an interrupt acknowledge cycle, but that's not
particularly important for understanding the IUSC's
interrupt subsystem ...

A second register bit associated with each type is the
Interrupt Enable or IE bit. This bit is also under full
software control. When an IE bit is 1, an interrupt can
be requested when the type's IP bit is 1. Note that an
IP bit can be set while its associated IE bit is O; if
software sets IE when the associated IP bit is set, an
immediate interrupt can result.

There is one more register bit for each type, called the
Interrupt Under Service or IUS bit. The interrupt logic
sets the IUS bit for a type to 1 during an interrupt
acknowledge cycle, if the daisy chain shows that it is
the highest-priority type that's currently requesting an
interrupt. (This includes types in higher-priority exter
nal devices and higher-priority types within the IUSC.)
Aside from a hardware or software Reset, an IUS bit
can only be reset to 0 by software. This is typically
done near the end of an interrupt service routine for
that type. During the execution of the interrupt service
routine for a given type, the type's I US bit blocks
interrupt requests from lower-priority types.

WA:: o :

CLA

Reaet

tlE

From IEI pin,
or Next-

Higher-Priority
Type

From Other
Sources

Source 'a"=---------1

A Ona D Q

NV----u

SW op I

Reset
SWopg
SWoph

Drive Vector

s

R

SET
D

/INT

tlUS

!IP

Q

a

Q

lack Read----------+---------<

To IEO or
Next-Lower
Priority Type

Figure 70. A Model of the Interrupt Logic for Source "s" and Type "t"

The And gate near the top of Figure 70 shows the
actual conditions for a type to request an interrupt. A
type's IP and IE bits must both be 1, its IUS bit must
be 0, and its incoming "IEI" signal must be true. IEI
true indicates that no higher-priority type (on-chip or
external) has its IUS bit set. Finally, a Master
Interrupt Enable (MIE) register bit for the megacell
must be set to 1 .

Details of the Model
The IA and IE bits appear near the left side of Figure
70, as D-type flip-flops that capture the state of an AD
line when software writes a specific register. The IP
bit appears as an SR-type latch that's set "by
hardware" as described above; software can set and

109

clear the latch. The signal labelled /IACKcy is active
Low for the duration of an interrupt acknowledge
sequence. The IUS bit appears as a D-type flip-flop
that can be set via its clock and D inputs at the end of
an acknowledge cycle; again, software can set or
clear IUS.

The various signals named "SW op x", that set and
clear IP and !US, represent software operations.
These may reflect the writing of a "1" bit to a certain
register bit position, or may represent the writing of an
encoded command to a register. Since software
always has to clear !US and try to clear IP during an
interrupt service routine, there are often several ways
to do so, as shown by the multiple "SW op" signals for
these functions in the Figure. One thing not shown in

the Figure is how the typical command "Reset Highest
IUS" is implemented -- including this function would
have considerably increased the complexity of the
logic, which is already complex enough!

The two downward-pointing gates in Figure 70 form
the type's "IEO" output. They assert this output only if
the type's incoming IEI is High and its IUS bit is O.
There is a register bit "Disable Lower Chain" (DLC) in
each megacell; if/when DLC is 1 the megacell's IEO is
forced false/low. The downward-pointing OR gate
reflects the functional shift of the daisy-chain during
interrupt-acknowledge cycles. Its output is High
except during IACK cycles, at which time it allows IEO
to be asserted High only if this type is not requesting
an interrupt.

Finally, the signal labelled "Drive Vector" controls
when the megacell places an interrupt vector on the
data bus during an interrupt acknowledge cycle.
There is a register bit No Vector (NV) in each
megacell; NV=1 prevents driving a vector. The bus
interface logic derives the signal "IACK Read" from
R//W and IDS, /RD, or /INTACK, depending in part on
a field in the Bus Configuration Register (BCR) that
specifies how /INTACK works. In most cases IACK
Read is true during the latter part of the time that
/IACKcy is true. The megacell provides a vector on
AD7-0 while IACK Read is true, if NV is 0 and any of
the types in the megacell is the highest priority
interrupting type.

To keep its complexity reasonable, Figure 70 doesn't
include the mechanism by which the content of a
returned interrupt vector can reflect the identity of the
highest-priority interrupting type within the megacell.

Software Requirements
While there's considerable variability and flexibility in
the IUSC's interrupt subsystem, there are some
common requirements in what an interrupt service
routine must do to keep the hardware operating
correctly:
1. If the ISR wants to allow nested interrupts, it can

re-enable processor interrupts near its start. The
IUSC won't request another interrupt of the same
type (or any lower-priority type) until software
clears the type's IUS bit.

2. The service routine must figure out which type of
interrupt it's servicing. This is automatic if the
software enables the "Vector Includes Status"
(VIS) options of the serial and OMA controller
sections.

3. Next the service routine must choose which
source(s) within the type it wants to deal with. For
each such source that's both active and armed, it
must clear the source signal (whatever that takes)
or, less typically, clear the associated IA bit.

110

4. After dealing with as many sources for the type as
it can, it must clear both the IP and IUS bits for
the type. This may involve writing one or two
specific register bit(s) or writing one or two
encoded command(s) to a register. The IP bit
{remains set J is set again immediately} if the
service routine left any sources for the type both
active and armed.

5. Typically the service routine then returns to the
interrupted process or program.

The IUSC's serial controller and OMA section provide
register bits and/or commands to set the IP and/or
IUS bits as well as clear them. Software can set IP to
force an initial interrupt from a previously-inactive
type. The ability to set IUS may be needed as part of
simulating an interrupt acknowledge cycle.

Interrupt Options in the BCR
Two fields in the Bus Configuration Register (BCR)
affects the interrupt subsystem. The following is also
presented in Chapter 2, Bus Interfacing.

The IAckMode field (BCR5-4) tells the IUSC how the
host processor drives the /INTACK pin. 00 makes the
IUSC capture the state of /INT ACK at the start of each
bus cycle. It does this at rising edges on /AS on a bus
with multiplexed addresses and data, or at falling
edges on IDS or /RD on a non-multiplexed bus.

This field should be written as 01 if /INT ACK carries a
single low-active pulse during an interrupt acknowl
edge cycle.

The 10 value in IACKMODE is reserved and should
not be programmed.

IACKMODE should be written as 11 if /INTACK
carries a double pulse during an interrupt acknow
ledge sequence. This mode is compatible with
several Intel microprocessors.

If the /IRQTP bit (BCR1) is 0, the IUSC drives its /INT
pin in a totem-pole fashion (both high and low). If
/IRQTP is 1, the IUSC drives /INT in an open-drain
fashion (low only) so that the request can be wire
ORed, in which case an external pull-up resistor
should be provided.

Interrupt Acknowledge Cycles
The IUSC doesn't require Interrupt Acknowledge
cycles. The system designer can simply pull up the
/INTACK pin, and software can read the Interrupt
Pending (IP) bits in the Daisy Chain Control Register
(DCCR) and the Set OMA Interrupt Register (SDIR),
which are described in later sections.

Even if the host processor does Interrupt Acknow
ledge cycles, the IUSC doesn't have to provide a
vector. If IEI is high and the NV bit in the Interrupt

Control Register (ICR) or DMA Interrupt Control
Register (DICR) is 1, the IUSC sets the IUS bit of the
highest priority interrupt then pending, but it does not
return an interrupt vector.

But, since most microprocessors in use today perform
interrupt acknowledge cycles to obtain an B·bit inter·
rupt vector, the rest of this section will assume
vectored interrupts.

Figure 71 shows the kind of interrupt acknowledge
cycle that the IUSC expects when the IAckMode field
(BCRS-4) is 00, on a bus with multiplexed addresses
and data. (Actually there are two subcases of this
kind of cycle, depending on whether the host
processor uses /DS or /RD signalling. Since the timing
is the same for either strobe, Figure 71 simply shows
a trace labelled "/DS or /RD".)

If the IUSC samples /INTACK low at the rising edge of
/AS, it "freezes" its internal interrupt state; if it is
requesting an interrupt it forces its IEO output low

AD15-0 --\ (not used) f

/INT ACK ~
I

/AS

IEO

IEI

IDS or /RD

/WAIT//RDY
(as Wait)

/WAIT//RDY
(as Ack)

/INT

regardless of the state of IEI, and starts resolving its
internal interrupt priorities. If the IEI and IEO pins are
part of an interrupt acknowledge daisy chain with
other interrupting devices, this resolution occurs in
concert with the interrupt logic in the other devices.

The IEI pin must be valid for a specified setup time
before JDS or /RD goes low. The host CPU's strobe
must be delayed if needed to guarantee this. If IEI is
high and the IUSC is requesting an interrupt, it
responds to /DS or /RD by setting the IUS bit of its
highest requesting type of interrupt, driving a vector
onto the AD7-0 pins, and driving /WAIT//RDY
appropriately to signal when the vector is valid. If IEI
is low at the leading/falling edge of /DS or /RD, and/or
if the IUSC is not requesting an interrupt, it doesn't
respond to the cycle.

:-u
I

Figure 71. An Interrupt Acknowledge Cycle with IACKMODE=OO on a Multiplexed Bus

111

Figure 72 shows the kind of interrupt acknowledge
cycle that the IUSC expects when the IAckMode field
(BCRS-4) is 00, on a bus with separate address and
data lines. (As before there are two subcases of this
kind of cycle, depending on whether the host
processor uses /DS or /RD signalling. Since the
timing is identical for either strobe, Figure 72 simply
shows a trace labelled "/DS or /RD".)

Here the IUSC freezes its internal interrupt state in
response to a falling edge on /INTACK; again, if it is
requesting an interrupt it forces its IEO output low
regardless of the state of I El, and starts resolving its
internal interrupt priorities.

AD15-0

In this mode /INTACK must stay low until after /DS or
/RD goes low, and IEI must be valid for a specified
setup time before /DS or /RD goes low. (The falling
edge of /DS or /RD may have to be delayed to
guarantee this.) If IEI is high and the IUSC is
requesting an interrupt, it responds to /DS or /RD by
setting the IUS bit of its highest priority requesting
type of interrupt, driving a vector onto the AD7·0 pins,
and driving /WAIT//RDY appropriately to signal when
the vector is valid. If IEI is low at the leading/falling
edge on /DS or /RD, and/or if the IUSC is not
requesting an interrupt, it doesn't respond to the cycle.

/INTACK -~~----+---'-/---+---_
IEO

IEI

IDS or /RD

/WAIT//RDY
(as Wait)

/WAIT//RDY
(as Ack)

nNT 1
-- --- - ----- -~---- - -- - -

Figure 72. An Interrupt Acknowledge Cycle with IACKMODE=OO on a Non-Multiplexed Bus

112

Figure 73 shows the kind of interrupt acknowledge
cycle that the IUSC expects when the IAckMode field
is 01. Here a single pulse on /INTACK substitutes for
the pulse on /DS or /RD in the previous cases; the
latter two signals must remain high throughout the
cycle. For this case, operation on a non-multiplexed
bus is identical with that on a multiplexed bus once
the /AS strobe is over. The only distinction is that a
multiplexed bus must meet minimum times between
the pulse on /INTACK and the preceding and following
pulses on /AS. These minima are similar to those
required for register read and write cycles.

In this mode, an interrupt acknowledge daisy chain on
IEl/IEO QaDDQ1 be used to select whether the IUSC or
another device should respond to each interrupt
acknowledge cycle. Instead, external logic like that

AD15·0

/AS u
IEI

/INT ACK

/WAIT//RDY
(as Wait)

/WAIT//RDY
(as Ack)

/INT

shown in Figure 69 must decide which requesting
device is to respond to an interrupt acknowledge
cycle, if such a cycle occurs when more than one is
requesting an interrupt. The external logic would
typically consider the state of the individual requesting
devices' interrupt request lines in making this decision.
(The lines cannot be OR-tied in this case.)

In this "single-pulse" mode, the IEI pin must set up
and hold around the leading/falling edge on /INTACK.
If IEI is high and the IUSC is requesting an interrupt at
that point, it responds to /INTACK by driving a vector
onto the AD7-0 pins and driving /WAIT//RDY
appropriately to signal when the vector is valid. If IEI
is low at the leading/falling edge of /INTACK, and/or if
the IUSC is not requesting an interrupt at that point, it
doesn't respond to the cycle.

--ta-
I
I 0
I

I
I

i I
u

Figure 73. An Interrupt Acknowledge Cycle with IACKMODE=01

113

Figure 74 shows the kind of interrupt acknowledge
cycle that the IUSC expects when the IAckMode field
is 11. Here, two consecutive low pulses on /INTACK
constitute the complete interrupt acknowledge cycle,
and /DS and /RD should both stay high throughout the
cycle. This mode is compatible with several
microprocessors made by Intel Corp. and other
companies. As in the preceding case, operation is
similar whether the bus is multiplexed or non
multiplexed. The multiplexed bus must meet
minimum times between the pulses on /AS and the
pulses on /INTACK. These minima are similar to
those between /AS and /DS or /RD in register read
cycles.

In "double pulse mode" the IUSC keeps an internal
state bit that distinguishes the two /INT ACK pulses in
each pair. The IUSC freezes its internal interrupt

AD15·0

/AS u
/INT ACK

IEO

IEI

/WAIT//RDY
(as Wait)

/WAIT//RDY
(as Ack)

/INT

state in response to the first falling edge on /INTACK.
If it is requesting an interrupt it forces its I EO output
low regardless of the state of IEI, and starts resolving
its internal interrupt priorities, but the IUSC does not
otherwise respond to the first cycle.

In this mode the IEI pin must be valid for a specified
setup time before /INTACK goes low for the second
pulse. If IEI is high at this point and the iUSC is
requesting an interrupt, it responds to the second
/INTACK pulse by setting the IUS bit of its highest
priority requesting type of interrupt, driving a vector
onto the AD7-0 pins, and driving /WAIT//RDY
appropriately to signal when the vector is valid. If IEI
is low at the leading edge of /INTACK, and/or if the
IUSC is not requesting an interrupt, it doesn't respond
to the cycle.

--+8-
I

0 I u I
I
I
I
I

7 I

\J I

Figure 74. An Interrupt Acknowledge Cycle with IACKMODE=11

114

Interrupt Acknowledge vs. Read Cycles
Interrupt Acknowledge cycles are similar to the cycles
that occur when the host processor reads an IUSC
register, which are discussed in Chapter 2. However,
the user should note the following ways in which
interrupt acknowledge cycles differ from read cycles:

* With IAckMode=OO on a multiplexed bus,
/INT ACK acts like an address line. When an
IUSC samples /INT ACK low at a rising edge on
/AS, it ignores the address on the AD lines.

* On a non-multiplexed bus with IAckMode=OO,
each leading edge of /RD or /DS captures the
state of /INTACK.

*

*

*

With IAckMode=OO and /DS signalling, the state of
R//W doesn't matter for a cycle in which the IUSC
samples /INT ACK low. (In other cycles R//W
differentiates Read cycles from Writes.)

When the /WAIT//RDY pin carries the Wait
function, the IUSC asserts the pin during interrupt
acknowledge cycles, but never does so during
register Read or Write cycles.
When /WAIT//RDY carries the Acknowledge
function, the IUSC asserts it later in Interrupt
Acknowledge cycles than in Reads. However, the
relationship between the falling edge of /WAIT
//RDY and the validity of data on the AD lines is
similar in both kinds of cycles.

Serial Controller Interrupt Types
The serial controller section of the IUSC includes six
types of interrupts, arranged on the internal interrupt
daisy chain in the following priority order:
1. Receive Status (highest priority)
2. Receive Data
3. Transmit Status
4. Transmit Data
5. 1/0 Pin
6. Miscellaneous (lowest priority)

Each of these types has one each IE, IP, and IUS bit,
as described in an earlier section of this chapter.

Receive Status Interrupt Sources and IA Bits

Any of six interrupt sources can set the Receive
Status IP bit. Software can read the status of each
source in the LSByte of the Receive Command I
Status Register (RCSR), which is shown in Figure 75.
The following descriptions of the RCSR status bits are
similar to those in the Detailed Status in the RCSR
section of Chapter 4:

Exited Hunt The RS IP bit can be set when this
bit (RCSR?) goes from 0 to 1
because the receiver has detected

ldleRcved

Break/Abort

RxBound

Abort/PE

Rx Over

115

a Sync or Flag sequence in a
synchronous mode.
The RS IP bit can be set when this
bit (RCSR6) goes from 0 to 1
becausetherece~erhasseen 15
or 16 consecutive one bits. In
asynchronous modes with 16, 32,
or 64X clocking, the receiver sets
RCSR6 after one bit time or less; so
this source's IA bit shouldn't be set
in any async mode.
The RS IP bit can be set when this
bit (RCSR5) goes from O to 1
because the Receiver has detected
a Break condition in an asynch
ronous mode or an Abort condition
in an HDLC/SDLC mode.
If the IA bit for this source is 1, the
interrupt logic sets the RS IP bit
when software or the Receive DMA
channel reads a character from the
RxFIFO that's marked with
RxBound status. Such marking
reflects an address character in
Nine-Bit mode, a word boundary in
1553B mode, negation of /DCD
during the character in external
sync mode, the last character of a
frame in HDLC/SDLC and 802.3
modes, or one of five block term
inating characters in Transparent
Bisync mode.
If the IA bit for this source is 1, the
interrupt logic sets the RS IP bit
when software or the Receive OMA
channel reads a character from the
RxFIFO that failed parity checking,
or, in HDLC/SDLC mode with the
QAbort bit (RMR8) set, a character
that was followed by an Abort
sequence.
If the IA bit for this source is 1, the
interrupt logic sets the RS IP bit
when software or the Receive DMA
channel reads a character from the
RxFIFO that's marked with Overrun
status. The character so marked is
the first one that arrived while the
FIFO was full; the character before
this one is lost, and an indeter
minate number after it may have
been lost as well.

RCmd (WO)
RxRHldu• ShortF/ Exited Idle Braak Rx CRCE Abort Rx Rx

2ndBE 11tBE CVType Hunt Rcved /Abort Bound /FE /PE Over Avall

15 14 13 12 11 10 9 8 7 6 5 4 3

Figure 75. The Receive Command/Status Register (RCSR)

"RTSA data• If laet RCSR15-12 command 4·7 wae 4
Idle Break/ Rx

"RxFIFO flll laval" If laet RCSR16·12 command 4-7 WBI 6 Exited Word Abort Rx Over TCOR
"Rx Int Req level" If laat RCSR16-12 command 4-7 waa 8 Hunt IA Rcved Abort Bound Status /PEIA IA Sel

"Rx DMA R11g_leva1• If lalt RCSR16·12 command 4-7 WBI 7 IA IA IA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 76. The Receive Interrupt Control Register (RICA)

As described in Chapter 4, once an Interrupt-Armed
RCSR bit has been set, it must be "unlatched" by
writing a 1 to that bit position in RCSR. For Exited
Hunt, Abort (in HDLC mode), RxBound, Abort/PE, and
RxOver, this action. also clears the RCSR bit. The
ldleRcved and Break/Abort (In async modes) bits in
RCSR don't become O until software has unlatched
the bit aru1 the line condition has ended.

Each of these six sources has a separate Interrupt
Arm (IA) bit in the LSByte of the Receive Interrupt
Control Register (RICR). Figure 76 shows the RICA.
If an IA bit is 1, the interrupt logic sets the Receive
Status IP bit as described above. If an IA bit is 0, the
corresponding bit in RCSR has no effect on the IP bit
and thus will not cause interrupts. The setting of the
IA bits for the ExitedHunt, ldleRcved, and Break/Abort
conditions has no effect on the bits in RCSR, while the
IA bits for the RxBound, Abort/PE, and Overrun
conditions affect how the corresponding RCSR bits
operate, as described in Chapter 4.

Receive Data Interrupts

This interrupt type has only one source, so there's no
IA bit for it. The interrupt logic sets the RD IP bit
when a character is received and the number of pre·
viously-received characters in the RxFIFO is equal to
the number programmed as the "Receive Data Inter
rupt Request Level". That is, the IP bit is set when a
character is received, that makes the number of char·
acters in the RxFIFO exceed the programmed value.

The RD IP bit is also set if the number of characters is
less than the programmed threshold level, and the
receiver places a character marked with RxBound
status in the RxFIFO.

If received data is handled by either software polling
or the Receive OMA channel, disable the Receive
Data interrupt by leaving its IE bit 0. (A later section
discusses IE bits.)

To program the Receive Data Interrupt Request Level,
first write the "Select RICRHi=/INT Level" command to
the RCmd field of the Receive Command/Status
Register (RCSR15·12). Then write the number of

116

received characters at which the IUSC should start
requesting a Receive Data interrupt, minus one, to the
MSByte of the Receive Interrupt Control Register
(RICR). For example, if the IUSC should request a
Receive Data interrupt when its 32-byte RxFIFO
becomes 3/4 full, write hex 60 to RCSR15·8, then
write decimal 23 (hex 17) to RICR15-8.

Figure 77 shows a sample service routine for Receive
Data interrupts. While it's not particularly fancy or
efficient, it does illustrate several important points:

1. It reads the FIFO fill level to determine how many
characters to read. The fact, that reception of an
RxBound character (i.e., the last character of a
frame, message, or ACV/15538 word) can set the
Receive Data IP bit, means that a Receive Data
interrupt service routine can't blindly read the
number of characters implied by the Interrupt
Request Level.

2. It explicitly clears the Receive Data IP and IUS
bits by writing to the Daisy Chain Control Register
(DCCR) as described in a later section. Neither
bit is affected by reading data from the RxFIFO.

3. It re-reads the FIFO fill level after clearing the IP
bit, and processes any characters that have been
received while it was processing earlier charac
ters. This procedure guards against losing an
interrupt associated with a late-arriving End of
Frame (RxBound) character.

4. It reads the status from RCSR "before" reading
each character, and reads RCSR an extra time
after reading out an End of Frame (RxBound)
character, to clear the latching of the status that
occurs when an RxBound character is read out.

(This is not the only way to handle RxBound
checking. Another way is to enable a Receive
Status interrupt when the Receive Data interrupt
service routine reads an RxBound character out of
the RxFIFO, and not check RxBound status in this
routine at all. Software that uses this method
must ensure that an Receive Status interrupt can
interrupt the Receive Data ISR in a "nested"
fashion.)

Start: Interrupt with
Vector= "Rx Data"

IF NECESSARY,
write 0101 to

RCmd (RCSR15·12)

Read FIFO count
CT:=RICR15·8

Read Status
from RCSR.

Handle bits other than
RxBound as required.

Yes
Clear the RD IP bit

(write 901e
to DCCR7·0)

Read & store last

>--'-Y~e=-s-?._I byte/word from RDR.
Decrement CT by
1 or 2 accordingly

Read & store byte
or word from RDR.
Decrement CT by
1 or 2 accordingly

Read RCSR15·8
or RCSR15·0, to

clear latched status

Perform End of
Frame processing

(switch buffers etc.)

No

Read FIFO count
CT:=RICR15·8

Clear the RD IUS bit
(write 901e

to DCCR15·8)

Return from
Interrupt

Figure 77. A Sample Service Routine for Receive Data Interrupts

117

TCmd R1rvd Txldle Pre
Sent

Idle
Sent

Abort
Sent

EOF/
EOM
Sent

CRC
Sent

All Tx Tx
Sent Under Empty

15 14 13 12 11 10 9 8 7 6 5 3

Figure 78. The Transmit Command/Status Register (TCSR)

'TTSA data' If l11t TCSR15·12 command 4-7 wee 4
Idle Abort EOF/ CRC Tx

'TxFIFO fill level' If lastTCSR15-12 command 4·7 waa s Pre Walt2 TC1R
'Tx Int Req level' If last TCSR1 s-12 command 4-7 was 6 Sent IA Sent Sent EOM Sent Send Under Sel

"Tx OMA R11<1._level' If laat TCSR15-12 command 4-7 was 7
IA IA Sent IA IA IA

15 14 13 12 11 10 9 B 7 6 5 4 3 2

Figure 79. The Transmit Interrupt Control Register (TICR)

Transmit Status Interrupt Sources and IA Bits

The interrupt logic can set the Transmit Status IP bit
in response to any of six interrupt sources. Software
can read the status of each source in the LSByte of
the Transmit Command/Status Register (TCSR),
which is shown in Figure 78. The following descrip
tions of the TCSR bits are similar to those in the
Detailed Status in the TCSR section of Chapter 4:
Present The interrupt logic can set the TS IP

bit when this bit (TCSR7) goes from
a 0 to a 1, because the transmitter
has finished sending the "Preamble"
selected in the Channel Control
Register (CCR11-8) in a
synchronous mode.

ldleSent The interrupt logic can set the TS IP
bit when this bit (TCSR6) goes from
a O to a 1, because the transmitter
has sent the idle line state selected
by the Txldle field (TCSR10-8). If
Txldle and TxMode specify the
condition as Flags or Syncs, this bit
can be set for each one sent.
Otherwise, for bit-oriented Idle
conditions, it's set only after the first
bit is sent.

AbortSent The interrupt logic can set the TS IP
bit in HDLC/SDLC mode, when this
bit (TCSR5) goes from O to 1
because the transmitter has sent an
Abort character.

EOF/EOM Sent The interrupt logic can set the TS IP
bit in a synchronous mode, when
this bit (TCSR4) goes from Oto 1
because the transmitter has sent
the closing Flag or Sync character
at the end of a message or frame.

CRCSent The interrupt logic can set the TS IP
bit in a sync mode, when this bit
(TCSR3) goes from 0 to 1 because
the transmitter has sent the CRC
sequence just before the end of a
message or frame.

TxUnder The interrupt logic can set the TS IP
bit when this bit (TCSR 1) goes from
0 to 1, because the transmitter
needed a character from the
TxFIFO but it was empty.

All six of these sources operate differently from the
general model described earlier, in that the interrupt
logic sets the IP bit only when a TCSR bit goes from 0
to 1 and its associated IA bit is 1. Once one of these
TCSR bits is 1, it must be cleared to 0 by writing a 1
to that bit position in TCSR.

118

Each of these six sources has a separate Interrupt
Arm (IA) bit in the LSByte of the Transmit Interrupt
Control Register (TICR). Figure 79 shows the TICR.
If an IA bit is 1, the interrupt logic sets the Transmit
Status IP bit when the corresponding bit in the
Transmit Command I Status Register (TCSR) goes
from 0 to 1. If an IA bit is 0, the corresponding TCSR
bit has no effect on the IP bit and thus will not cause
interrupts. The setting of the IA bits in TICR has no
direct effect on the TCSR bits.

Transmit Data Interrupts

This interrupt type has only one source, so there's no
need for an IA bit for it. The interrupt logic sets the
Transmit Data IP bit whenever the number of empty
character positions in the TxFIFO is greater than
the number programmed as the "Transmit Data
Interrupt Request Level". If transmitted data is to be
handled by the Transmit OMA channel, disable this
interrupt by leaving its IE bit 0. (A later section
discusses IE bits.)

To program the Transmit Data Interrupt Request
Level, first write the "Select TICRHi=/INT Level"
command (value 0110) to the TCmd field of the
Transmit Command I Status Register (TCSR15-12).
Then write the number of empty character positions at
which the IUSC should start requesting a Transmit
Data interrupt, minus one, to the MSByte of the
Transmit Interrupt Control Register (TICR). For
example, if the IUSC should request a Transmit Data
interrupt when its 32-byte TxFIFO has only four
characters left in it, write hex 60 to TCSR15-8, then
write decimal 27 (hex 1 B) to RICR15-8.

RxCDn RxCUp TxCDn TxCUp RxRDn RxRUp TxRDn TxRUp DCDDn DCDUp CTSDn CTSUp RCC DPLL BRG1 BRGO
IA IA IA IA IA IA IA IA IA IA IA IA Under DSync IA IA

IA IA

15 14 13 12 11 10 9 8 7 6 5 4 3

Figure 80. The Status Interrupt Control Register (SICR)

RCC DPLL
RxCLIU /RxC TxCLIU /TxC RxRLIU /RxR TxRLIU /TxR DCDLIU /DCC CTSLIU /CTS Under DSync BRG1

LIU LIU LIU

BRGO
L/U

15 14 13 12 11 10 9 8 7 6 5 4 3

Figure 81. The Miscellaneous Interrupt Status Register (MISR)

Note that a Purge Tx FIFO (or Purge Rx and Tx FIFO)
command will typically make the IUSC immediately
set its Transmit Data IP bit. This will, in turn, make it
start requesting an interrupt on its /INT pin if:
* it hadn't been doing so,
*the IEI pin is high,
*its TD IE and MIE bits are 1, and
* its TD IUS and all higher-priority IUS bits are o.

As with all IUSC interrupts, a Transmit Data interrupt
service routine must explicitly clear the Transmit Data
IP and IUS bits by writing to the Daisy Chain Control
Register (DCCR) as described later; the bits aren't
cleared by simply writing data into the TxFIFO.

1/0 Pin Interrupt Sources and IA Bits

The interrupt logic can set the 1/0 Pin IP bit in
response to rising and/or falling edges on any of six
pins, namely /RxC, /TxC, /RxREQ, /TxREQ, /DCD,
and /CTS. The following description is similar to that
in the Edge Detection and Interrupts section of
Chapter 3.

Software can program the IUSC to detect rising
and/or falling edges on the /CTS, /DCD, /TxC, /RxC,
/TxREQ, and /RxREQ pins, and to interrupt when
such events occur. Figure 80 shows that the Status
Interrupt Control Register (SICR) includes separate
Interrupt Arm (IA) bits for rising and falling edges on
each of these pins. A 1 in one of these bits makes the
IUSC detect that kind of edge, while a O makes it
ignore such edges. This edge detection and interrupt
mechanism operates without regard for whether the
various pins are programmed as inputs or outputs in
the 1/0 Control Register (IOCR).

When the IUSC detects an edge that's enabled in the
SICR, it records the event in an internal latch that's
not directly accessible in the IUSC's register map.
Instead, as shown in Figure 81, the Miscellaneous
Interrupt Status Register (MISR) includes two bits for
each of these six pins, one called a "Latched/Unlatch"
or LIU bit, and the other being a "data bit" that has the
same name as the pin itself.

A hardware or software Reset sequence clears all the
LIU bits to zero. While the LIU bit for a pin is o, the

119

associated data bit reports and tracks the state of the
pin in a "transparent" fashion, with a 1 indicating a low
and a 0 indicating a high.

Whenever a pin's LIU bit is 0 and its internal edge
detecting latch is set, the IUSC sets the LIU bit to 1,
clears the detection latch, and sets the IOP IP bit.
IOP IP can be read and cleared (and if necessary set)
in the Daisy Chain Control Register (DCCR 1).

While an LIU bit is 1, the state of the associated data
bit is frozen (latched). These two bits remain in this
state, regardless of further transitions on the pin, until
software writes a 1 to the LIU bit. This clears the liU
bit to 0 and "opens" the data bit to once again report
and track the state of the pin, at least for an "instant".
If one or more enabled transitions occurred while the
LIU bit was set, then LIU is set again right after
software writes the 1 to it.

Writing a 0 to an LIU bit has no effect; it doesn't
matter what value software writes to the status bits.

Miscellaneous Interrupt Sources and IA Bits

The interrupt logic can set the Miscellaneous IP bit in
response to any of four interrupt sources. Software
can read the status of these sources in the LSByte of
the Miscellaneous Interrupt Status Register (MISR),
which is shown in Figure 81. The following descrip
tions repeat some information that was presented in
Chapters 3 and 4:

RCCUnder

DPLLDSync

If the RCCUnder IA bit is 1, the
IUSC sets this bit (MISR3) and
the Misc IP bit if the receiver has
decremented the Receive
Character Counter (RCC) to zero
and then it receives another
character (in the same frame I
message).
If the DPLLUnder IA bit is 1, the
IUSC sets this bit (MISR2) and
the Misc IP bit if software set up
the Digital Phase Locked Loop
circuit for Bi phase encoding and
the DPLL detects two consecutive
missing clocks, indicating a loss
of synchronization.

BRG1

BRGO

If the BRG1 IA bit is 1, the IUSC
sets this bit (MISR1) and the Misc
IP bit when Baud Rate Generator
1 counts down to zero.
If the BRGO IA bit is 1, the IUSC
sets this bit (MISRO) and the Misc
IP bit when Baud Rate Generator
O counts down to zero.

Once any of these bits is 1, software must write a 1 to
that bit position to "unlatch" it. Writing a 1 to any of
MISR3-0 clears the "read-side" bit unless the setting
event recurred while the bit was latched, in which
case the bit Is set again immediately.

Each of these four sources has a separate Interrupt
Arm (IA) bit in the LSByte of the Status Interrupt
Control Register (SICA). Figure 80 shows the SICR.
If an IA bit is 1, the interrupt logic sets the corres
ponding bit in MISR, and the Miscellaneous IP bit,
when the indicated condition occurs. If an IA bit is O,
the corresponding MISR bit is not set and thus the
associated condition can't cause interrupts. Clearing
an IA bit does not clear the corresponding bit in MISR.

Serial IP and IUSC Bits
Software can read, set, and clear the Interrupt
Pending (IP) and Interrupt Under Service (IUS) bits,
for all six interrupt types in the serial controller, via the
Daisy-Chain Control Register (DCCR). Figure 82
shows the DCCR. The MSByte deals only with the
IUS bits, while the LSByte deals with the IP bits but
can be used to clear the IP and IUS bits in one step.

Software can read the six IUS bits from DCCR13-8
and the six IP bits from DCCR5-0. The two MSBits of
each byte always read as 00. When software writes
the DCCR, the two MSBits of each byte can represent
a command that is applied to the type(s) selected by
ones written in the six LSBits of that byte. DCCR15·
14 are an IUS Op field that the IUSC interprets as
follows:

~ Operation
Ox No operation
10 Clear the IUS bit(s) of the

type(s) selected in DCCR13-8
11 Set the IUS bit(s) of the

type(s) selected in DCCR13-8

DCCR7-6 are an IP Op field that the IUSC interprets
as follows:

.IL.QR
00
01

Operation
No operation
Clear both the IP and
bit(s) of the type(s)
in DCCRS-0

IUS
selected

10 Clear the IP bit(s) of the
type(s) selected in DCCRS-0

120

11 Set the IP bit(s) of the
type(s) selected in DCCRS-0

If software writes both bytes of the DCCR simul
taneously on a 16-bit bus, the IUS command is "set",
the IP command is "clear both", and a particular type
is selected by ones in both the MSByte and LSByte,
the IUSC clears the IUS bit for that type. On the other
hand, if the IUS command says "set" for a type and
the LSbyte says "clear both" but that type's bit in
DDCR5-0 is 0, the IUSC sets that type's IUS bit.

In addition, one of the encoded commands that can
be written to the Channel Command/Address Register
(CCAR) allows for a general exit from a serial
controller interrupt service routine, regardless of which
type initiated the routine. If software writes the Reset
Highest Serial IUS command (00010) to the RTCmd
field (CCAR15-11), it clears the highest-priority IUS bit
that's set in the serial controller. Unfortunately, the
command doesn't also clear the corresponding IP bit,
so that an interrupt service routine has to do this
explicitly for the particular type that it's servicing.

Serial Interrupt Enable Bits
Software can read, set, and clear the Interrupt
Enable (IE) bits for all six interrupt types in the serial
controller, in the LSByte of its Interrupt Control
Register (ICR). Figure 83 shows the ICR. Software
can read all six IE bits from ICR5-0; ICR7-6 always
read as 00. When software writes the LSByte of the
ICR, the IE Op field (ICR7-6) comprises a command
that the IUSC applies to any and all IE bits selected by
ones written to ICR5-0. The IUSC interprets IE Op as
follows:
~ Operation

Ox No operation
10 Clear the IE bit(s) of the

type(s) selected in ICRS-0
11 Set the IE bit(s) of the

type(s) selected in ICRS-0

Serial Controller Interrupt Options
Figure 83 shows that the MSByte of the Interrupt
Control Register (ICR) contains control bits that apply
to all interrupts from the serial controller. These bits
are fully under software control and can be read or
written at any time.

The Master Interrupt Enable (MIE; ICR15) must be
set to 1 to allow any of the types in the serial
controller to request an interrupt.

Whenever the Disable Lower Chain bit (DLC; ICR14)
is 1, the serial controller forces its IEO output low, so
that neither the !USC's DMA channels, nor external
devices further down the daisy chain, can request int
errupts nor respond to interrupt acknowledge cycles.

IUSOp RS RD TS TD IOP Misc IP Op RS RD TS TD IOP Misc
(WO) IUS IUS IUS IUS IUS IUS (WO) IP IP IP IP IP IP

15 14 13 12 11 10 9 8 6 5 4

Figure 82. The Daisy Chain Control Register (DCCR)

MIE DLC NV VIS Rsrvd IE Op RS RD TS TD IOP Misc
(WO) IE IE IE IE IE IE

15 14 13 12 11 10 9 8 7 6 5 4

Figure 83. The Interrupt Control Register (ICR)

Interrupt Vector 7-4 (RO) TypeCode (RO)
IVO

(RO)
Interrupt Vector (RW)

15 14 13 12 11 10 9 8 6 5

Figure 84. The Interrupt Vector Register (IVR)

If the No Vector bit (NV; ICR13) is 1, the !USC
neither provides a vector nor drives the /WAIT//RDY
pin during an interrupt acknowledge cycle in which the
highest-priority requesting type is in the serial
controller. However, in such a case the !USC still sets
the IUS bit of the highest-priority requesting type.

The Vector Includes Status field (VIS; ICR12-9)
controls whether the vector, that the IUSC returns
during an interrupt acknowledge cycle in which the
highest-priority requesting type is in the serial con
troller, identifies the type or not. Such vector modifi
cation can be enabled for all types in the serial con
troller, or only for those above a selected priority level:

Yl..S_ Which types appear in vectors
Oxxx No types
lOOx All types
1010 IOP and above (not Misc)
1011 Transmit Data and above
1100 Transmit Status and above
1101 Receive Data & Status
1110 Receive Status only
1111 No types

If the contents of VIS allow the highest-priority type,
that's requesting at the time of an Interrupt
Acknowledge cycle, to modify the interrupt vector,
then bits 4-1 of the returned vector identify that type
as described in the next section. If not, the !USC
returns the 8-bit vector exactly as the host software
programmed it.

Serial Interrupt Vectors
The vectors returned by the !USC for interrupts from
the serial controller section are independent of those
from the DMA section. Software can read and write
serial interrupt vector information in the Interrupt
Vector Register (IVR). This register is also the basis
of the vector that the !USC returns during an interrupt

121

acknowledge cycle in which the highest priority
requesting type is in the serial controller.

Figure 84 shows the IVR. The basic vector can be
written and read in its LSByte; software can read a
modified version of the vector in its MSByte. (Writing
the MSByte has no effect.) Bits 15-12 and 8 are the
image of those in the corresponding bits of the
LSByte, while the TypeCode field (IVR11-9) gives the
identity of the highest priority interrupt type that has its
IP bit set (the state of its IUS bit doesn't matter).

TygeCode Meaning
000 No serial interrupt pending
001 Miscellaneous
010 I/O pin
011 Transmit Data
100 Transmit Status
101 Receive Data
110 Receive Status
111 (will not be read)

The state of the VIS field (ICR12-9) has no effect on
reading the IVR. VIS simply controls how the serial
controller decides whether to return IVR15-8 or IVR7-
0 as the interrupt vector when it responds to an
interrupt acknowledge cycle for which the highest
priority requesting type is in the serial controller.

OMA Controller Interrupt Types
There are only two interrupt types in the DMA
Controller section of the IUSC, one each for the trans
mit and receive channels. Receive channel interrupts
have higher priority than Transmit channel interrupts.
Each DMA channel has one each IE, IP, and IUS bit,
as described in an earlier section of this chapter. The
interrupt capabilities of the two channels are identical
and, except as noted, the information in the rest of
this section applies equally to both.

OMA Interrupt Sources and IA Bits
Software can set each OMA channel's IP bit in
response to any of 4 possible interrupt sources, which
are readable as the four LSBits of each OMA Mode
Register (TOMR3-0 and ROMR3-0):
EOA/EOL A OMA channel sets this bit (xOMR3) in

Array and Linked List modes, when it goes
inactive because it fetches a zero Byte
Count from an array or list entry, indicating
the end of the array or list.

EOB A OMA channel sets this bit (xOMR2) in
any mode, when it decrements the Byte
Count for the current buffer (TBCR or
RBCR) to zero. It also sets this bit if
software has enabled the Early
Termination feature, when the serial
controller signals for buffer termination. In
Single Buffer mode the channel goes
inactive at this time. The channel also
goes inactive at this time in Pipelined
mode, if the software hasn't provided a
new buffer address and byte count and set
the CONT bit (xDMR7).

HAbort A channel sets this bit (xDMR1) in any
mode, if external hardware drives the
/ABORT pin low during a bus cycle by the
channel. The channel goes inactive when
this occurs, regardless of the mode.

SAbort A channel sets this bit (xOMRO) in any
mode, if host software writes an Abort This
Channel or Abort All Channels command
to the MS Byte of the OMA Command I
Address Register (OCAR). The channel
goes inactive when this occurs, regardless
of the mode.

As noted in Chapter 4, the channel clears all four of
these bits whenever software reads them in the LS
byte of its OMA Channel Mode Register (xOMR7-0).

Each of these four sources has a separate Interrupt
Arm (IA) bit in each channel's OMA Interrupt Arm
Register (TOIAR and ROIAR). Figure 85 shows the
format of these registers. If an IA bit is 1, the interrupt

Reserved (0)

logic sets the channel's IP bit when the corresponding
status bit is 1. If an IA bit is 0, the corresponding
status bit operates normally but has no effect on the
channel's IP bit and thus cannot cause interrupts.

OMA IP and IUS Bits
Software can read, set, and clear the Interrupt
Pending (IP) and Interrupt Under Service (IUS) bits
for both OMA channels using the shareable Set and
Clear OMA Interrupt Registers (SDIR and COIR).
Figure 86 shows the arrangement of these registers.
Software can read the current state of the bits from
the SDIR at any time. Writing a one, to one or more
of the four active bit positions in the SDIR, sets the
corresponding bit(s), while writing a zero has no
effect. Writing a one, to one or more of the four active
bit positions in the COIR, clears the corresponding
bit(s), while writing a zero has no effect. The registers
are defined like this to avoid interactions between
hardware setting the IP and IUS bits and software
clearing them.

In addition, one of the encoded commands that can
be written to the OMA Command I Address Register
(OCAR) allows for a general exit from a OMA interrupt
service routine, regardless of whether it serviced the
transmit or receive channel. If software writes the
Reset Highest OMA IUS command (1000) to the
OCmd field (OCAR15-12), the IUSC clears the
highest-priority IUS bit that's set in the OMA section.
Unfortunately, the command doesn't also clear the
corresponding IP bit, so that an interrupt service
routine has to do this explicitly for the particular
channel that it's servicing.

OMA IE Bits
Software can read and write both channels' Interrupt
Enable (IE) bits in the less significant byte of the
shareable OMA Interrupt Control Register (DICR).
Figure 87 shows the DIGA. If a channel's IE bit is 1,
then the IUSC requests an interrupt when its IP bit is
1 and its IUS bit is 0, provided that the channel's "IEI"
from higher-priority types is true, and the OMA Con
troller's MIE bit (DICR15) is 1.

EOA/ EOB HAbort SAbort
EOL IA IA IA IA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 85. The Transmit and Receive OMA Interrupt Arm Registers (TOIAR and ROIAR)

Reserved (0) RxOMA TxOMA
IUS IUS

Reeerved (0) RxOMA TxOMA
IP IP

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Figure 86. The Set and Clear OMA Interrupt Registers (SOIR and COIR)

122

OMA-Controller-Level Interrupt Options
Figure 87 also shows how the MSByte of the DMA
Interrupt Control Register (DICR) includes four control
bits that affect all interrupts from the DMA section.
These bits are fully under software control and can be
read or written at any time.

The Master Interrupt Enable (MIE; DICR15) must be
set to allow either of the DMA channels to request an
interrupt.

Whenever the Disable Lower Chain bit (DLC;
DICR14) is 1, the IUSC forces its IEO output low, so
that devices further down the daisy chain can neither
request interrupts nor respond to interrupt acknow
ledge cycles.

If the No Vector bit (NV; DICR13) is 1, the IUSC
neither provides a vector nor drives the /WAIT//RDY
pin, during an interrupt acknowledge cycle in which
the highest-priority requesting type is one of the DMA
channels. However, in such a case the IUSC still sets
the IUS bit of the highest-priority requesting DMA
channel.

The Vector Includes Status bit (VIS; DICR12)
controls whether the vector returned, during an
interrupt acknowledge cycle in which the highest
priority requesting type is one of the DMA channels,
identifies the channel or not. If VIS is 0, the IUSC
returns the vector programmed by the host software
unchanged for both channels. If VIS is 1, bits 2-1 of
the returned vector are 10 for a Tx channel interrupt
and 11 for an Rx channel interrupt.

MIE DLC NV VIS

OMA Interrupt Vectors
The vectors returned by the IUSC for interrupts from
the DMA Controller are completely independent of
those from the serial channel. Software can read and
write interrupt vector information in the DMA Interrupt
Vector Register (DIVR). This register is also the basis
of the vector that the IUSC returns during an interrupt
acknowledge cycle in which the highest-priority
requesting type is one of the OMA channels.
Figure 88 shows the format of the DIVR. Software
can read and write the basic vector in its LSByte, and
can read a modified version of the vector in its
MSByte. (Writing the MSByte has no effect.) Bits 15-
11 and 8 are the image of those in the corresponding
bits of the LSByte. DICR10-9 are a TypeCode for the
highest priority DMA interrupt type that has its IP bit
set (the state of its IUS bit doesn't matter):
TypeCode Meaning

00 No OMA interrupt is pending
01 Reserved (will not be read)
10 Tx but not Rx interrupt
11 Rx interrupt

The state of the VIS bit (DICR12) has no effect on
reading the DIVR. In reality, VIS simply determines
whether the IUSC returns the MSByte or LSByte of
the DIVR as the vector, during an interrupt acknow
ledge cycle in which the highest-priority requesti11q
type is one of the DMA channels.

Reserved (0)
RxDMA TxDMA

IE IE

15 14 13 12 11 10 9 8 7 6 5 4

15

Figure 87. The OMA Interrupt Control Register (DICR)

Interrupt Vector 7-3 (RO)
Type Code

(RO)
IVO

(RO)
Interrupt Vector (RW)

14 13 12 11 10 9 8 7 6 5

Figure 88. The OMA Interrupt Vector Register (DIVA)

123

124

7. Software Summary

Just about everything important about the IUSC has
been said in previous chapters. This one simply pulls
together some loose ends of interest to software
types, as well as providing a unified reference to all
the register fields.

About Resetting
The IUSC goes into an initial inactive state whenever
external hardware drives the /RESET pin low. In this
state, it stores the next data written to it in the Bus
Configuration Register (BCR), whichever register
address within the IUSC software uses for the write
operation. Chapter 2 describes how the address used
for the BCR write ~ actually important, in the sense
that the address line connected to the S//D pin (the
one that selects between the Serial Controller and
DMA sections of the IUSC in normal operation)
determines whether the IUSC drives and receives the
NJAIT//RDY pin as a "wait" or "acknowledge" hand
shake.

Aside from requiring the BCR write, software can
reset the IUSC just as thoroughly and completely as a
hardware reset does. Resetting the Serial Controller
in Chapter 4 describes how to do this, by first writing a
1 to the RTReset bit in the Channel Command I
Address Register (CCAR10), and then writing zeroes
to the whole CCAR. Software can also fully reset the
DMA channels, by writing the "Reset All Channels"
command (hex 90) to the MSByte of the DMA
Command I Address Register (DCAR15-8).

After either a hardware or a software reset1 all
register bits In the IUSC are zero except for the
following:

1. The following bits reflect the state of pins. The
IUSC treats these as inputs until and unless
software programs them as outputs.

MISR14 /RxC
MISR12 /TxC
MISR10 /RxREQ
MISRB /TxREQ
MISR6 /DCD
MISR4 /CTS
PSR14 /PORT7
PSR12 /PORTS
PSR10 /PORTS
PSR8 /PORT4
PSR6 /PORT3
PSR4 /PORT2
PSR2 /PORT1
PSR1 /PORTO

125

2. The following bits are 1 because the TxFIFO is
empty:

TCSRO TxEmpty
TICR13 (indicates 32 empty entries)

Programming Order
The IUSC and other USC family members aren't as
particular about the order in which software programs
their register fields as are the members of Zilog's sec
family. Still, initializing registers in the wrong order
can thoroughly confuse the IUSC's internal logic and
make it do strange things. Always initialize the IUSC
in the following order:

1. Set the pin configurations in the IOCR and PCR.
While it's OK to change the modes and even the
direction of a signal dynamically, it should be fairly
obvious that if you're going to use pins in certain
ways, they ought to be pointing in the right
direction before telling internal logic to use them.

2. Select the clocking scheme in the CMCR and
HCA. (It's OK to enable a BAG at this point if it's
only used for clocking, but if it's used for interrupts
it's probably best to wait until later.)

3. Set up most or all of the other mode and control
bits in the Transmitter, Receiver, DMA channels,
etc., but don't enable anything to run or operate
until all of the basic modes and controls are in
place. This procedure avoids messy interactions
when one internal unit is trying to signal another
before the latter is ready to listen.

4. Set up the initial Interrupt Arm bits and Interrupt
Enable bits; it might be a good superstition to
clear all the IP and IUS bits after doing this.

5. Enable whichever units need to run and operate
initially. Some units might not want to be enabled
until later, like enabling the Transmitter and
Receiver after a call is established.

6. Finally, set the Master Interrupt Enable (MIE) bits
in the serial controller and DMA sections. In
general, you want to do this last so that interrupt
service routines can assume that everything's set
up in its starting configuration.

Using OMA to Initialize the Serial
Controller
Instead of initializing the serial controller and DMA
channels together as described above, software can
initialize the !USC's Transmit DMA channel first and
then use it to initialize the serial controller. To do this:
1. Initialize the shared DMA registers DCR and

BDCR to match the system hardware and
software configuration. There shouldn't be any
need to use interrupts for this operation, but it
might be a good idea to set up the DICR and
DIVRaswell.

2. Program the MSByte of the TDCMR appropriately
for the initializing transfer. Single Buffer mode
should suffice.

3. Program the TAR with the address of a sequence
of bytes or 16-bit words that will initialize the serial
controller. If there's only an 8-bit bus, structure
this string as a series of byte pairs. The first byte
of each pair goes into the LSByte of the Channel
Command I Address Register (CCAR) to identify
the destination (register address) of the second
byte of the pair. If there's a 16-bit bus, structure
the sequence as pairs of 16-bit words. The first
word of each pair goes into CCAR to identify the
destination of the second word of the pair.

4. Arrange the string/sequence to initialize the serial
controller registers in the order described in the
previous section. Make the ChanLoad bit (bit 7)
of the first byte or word of each pair be 1, except
make it 0 in the last entry of the sequence. If the
RegAddr field in that last entry is non-zero, that is,
if it doesn't point to the CCAR, the IUSC will fetch
the second byte or word of the last pair and write
it into the indicated register before finishing the
initializing operation. If the RegAddr is zero, the
IUSC stop without fetching a following byte or
word.

5. Program the TDCMR with the length of the initial
izing string. This should include at least the first
byte or word of the last entry, and optionally the
second word or byte, as described above.

6. Write a "Start Tx Channel" command including
MBRE=1 (hex 21) to the MSByte of the DMA
Command I Address Register (DCAR).

7. Write a "Trigger Channel Load DMA" command
(hex 20) to the MSByte of the CCAR.

8. Assuming the processor is set up to grant use of
the bus to the lUSC, the operation should
complete very quickly. This should be verified by
checking the LSByte of the TDCMR for hex 04
(End of Block).

126

Register Reference
The following pages include all of the fields in all of
the registers in the IUSC, including both the serial
controller and DMA sections. They are arranged in
alphabetical order by register name, like Table 2 in
Chapter 2. (If you want to look up a register by its
address/register number, look in Table 1 in Chapter 2
and then come back here ...)

Register Addresses

These are located to the right of the name of each
register on the following pages, and are shown as
s d b aaaaa, where:
s is the address bit connected to the S//D pin

(O=DMA, 1 =Serial);
d is the address bit connected to the D//C pin,

or the bit in DCAR7 (O=serial control regs or
DMA Tx, 1 =Serial Data regs or DMA Rx);

b is 1 for a byte access on a 16-bit bus (it's just
shown as "b" in all cases, like a placeholder);

aaaaa is the actual register address, from AD5-1,
AD13-9, CCAR5-1, or DCAR5-1.

Conditions/Context

Entries in this column indicate the conditions under
which descriptions to their right apply or can validly be
used. If an entry is blank, the description to the right
~applies.

Description

Often entries in this column consist of one or more
subentries of the form "value=description". If some
possible values aren't shown, it may mean they are
reserved (and should not be written) or that they will
never be read. Or, particularly for single Read-Write
bits, if the other case is obvious, it's left out. For
example, for an entry like "1=dog is dead" we didn't
feel obliged to add "O=dog is alive".

The following abbreviation is used in some entries in
this column and "Conditions/Context":

this "assignment operator" indicates that
the value on its right is written to the field
or bit on its left.

RW Status

This column includes the following codes for each
register field:
RW The field is fully under the control of

software, and can be read and written.
RO The field is read only; writing to it has no

effect.
ROC The bit is read-only; the IUSC clears it

automatically after software reads it as 1.
WO The field is write-only; reading it will either

return zeroes or an unrelated item that's
described next in the list.

WOC The field is write only. After using its value
the IUSC will clear it to zero, so that it
points back to the indirect address register.

R,W1 C The bit is set by the IUSC hardware,
writing a 1 to it clears it.

R,W1 U The bit is controlled by the IUSC hardware,
writing a 1 to it "unlatches" it.

127

Burst/Dwell Control Register (BDCR) Register Address 0 x b 01001

I MaxXlera MaxCLKs I
15 14 13 12 11 10 9 8 7 6 5 4 3 2

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

BDCR15-8 MaxXfers O=no effect; RW 5: Bus Occupancy Throttling
1-255=maximum number of bus cycles/transfer~ (p.104)
the OMA channels will doe._er bus _g_rant;

BDCR7-0 MaxCLKs O=no effect;
1-255=DMA channels limited to 8-2040 CLK

Le.eriodse._er bus _g_rant

Bus Configuration Register (BCR) No Address (First Write after /RESET)

SepAd

15 14 13

Bit(s) Field/Bit
Name

BCR15 SepAd

BCR5-4 IAckMode

BCR3 BRQTP

BCR2 16Blt
BCR1 /IRQTP

SCRO SRightA

Reaerved (Must be zero) IAckMode BRQTP 16Blt /IRQTP SRlght
A

12 11 10 9 8 7 6 5 0

Conditions Description RW Ref Chapter: Section
/Context Status
8-bit bus 1 if AD13-8 carry register addresses WO 2: Bus Configuration Register

16-bit bus Must be 0 (pp.14-15)
OO=sample /INT ACK at start of each slave cycle
01 =single pulse on /INT ACK
11 =double _.Q_ulse on /INT ACK
O=drlve /BUSREQ open-drain, sample it first
1 =drive /BUSREQ totem _.Q_ole _(full timE!l_
0=8 bit data on AD7-0; 1=16 bit data on AD15-0
O=drlve /INT pin totem pole (full time)
1 =drive /INT <m._en drain

MuxedAD 1 =Use AD6-0 as B/W, RegAddr, U/L
0=USeAD7-1

128

Channel Command/Address Register (CCAR)

RTCmd

15 14 13 12 11

Bit(s) Field/Bit Conditions
Name !Context

CCAR15·12 RTCmd

CCAR10 RTReset

CCAR9·8 RTMode

CCAR7 Chan Load Channel
Load OMA

CCAR6 B/M/ 16 bit bus

CCAR5·1 RegAddr

CCARO U//L

RT
Reset

10

RTMode

9

Description

OOOOO=no operation
00001 =Reserved

Chan
Load

00010=Reset Highest Serial IUS

B//W

00100= Trigger Channel Load DMA
001 01 =Trigger Rx OMA
00110= Trigger Tx OMA
00111 =Trigger Rx and Tx OMA
01001 =Purge Rx FIFO
0101 O=Purge Tx FIFO
01011 =Purge Rx and Tx FIFO
01101 =Load RCC
0111 O=Load TCC
01111 =Load RCC and TCC
10001 =Load TCO
1001 O=Load TC1
1 0011 =Load TCO and TC1
101 OO=Select Serial Data LS Bit First
10101 =Select Serial Data MS Bit First
1011 O=Select 015·8 First
10111 =Select 07·0 First
11xxx=Reserved

5

1 =put Serial Controller in software Reset state
O=release it from Reset state
OO=normal mode: Tx and Rx are independent
01 =echo RxD to TxD
1 O=Local Loop TxD to RxD
11 =internal Local LoQE._
1 =continue Channel Load operation;
O=terminate it
0=16-bit access to register selected by RegAddr
1 =access MS or LS ~e of r~ster
register address for next access to CCAR (see
Table u_
1 =access MS Byte of reg selected by RegAddr
O=access LSE!Y!_e or whole 16-bit r~ster

129

Register Address 1 0 b 00000

RegAddr U//L

4 3 2

RW Ref Chapter: Section
Status
WO 4: Commands (pp.70-74)

RW 4: Resetting the Serial
Controller~ 7 '!)_

RW 3: The RxD and TxD Pins
(pp.31-32)

RW 7: Using OMA to Initialize the
Serial Controller JQ., 12Ql.

woe 2: Register Addressing
(pp.15-19)

woe

woe

Channel Command/Status Register (CCSR)

RCCF RCCF Clear DPLL DPLL DPLL
Ovtlo Avall RCCF Sync 2MIH 1 Ml••

DPLLEdge On Loop Ctr
Loop Send Bypaaa

15 14 13 12 11 10 9 7 6 5

Blt{s) Field/Bit Conditions Description
Name /Context

CCSR15 RCCFOvflo RCC 1=RCC FIFO overflow (4+1 frames)
Enabled

CCSR14 RCCFAvail 1=RCC FIFO not em...2!Y_
CCSR13 Clear RCCF 1=purge RCC FIFO, clear RCCF Ovflo and

RCCF Avail to 0
CCSR12 DPLL~c 1=DPLL in ~nc
CCSR11 DPLL2Mlss BJ2!lase 1 =DPLL has seen 2 consecutive mlsslQg_ clocks
CCSR10 DPLL1Mlss Bi phase, 1 =DPLL has seen a missing clock

CVOK=O
CCSR9-8 DPLL Edge OO=DPLL resyncs on rising and falling edges

NAZ 01 =DPLL sees rising edges only;
modes 10=DPLL sees falling edges only;

on]y 11 =DPLL free-runs like CTR1 ,0
CCSR7 On Loop Slaved 1=Transmlt Is or has been active (cleared only

Monosync by leaving Slave Monosync mode)
H/SDLC 1 =IUSC has inserted Itself In the loop

Locm_
CCSR6 Loop Send H/SDLC 1 =Transmit actively sending;

Locm_ O=Transmlt r~atir!Q__Receive
CCSR5 CtrBypass O=route CTR1-0 outputs to Rx/TxCLK selection,

BRG's, /RxC, /TxC output selection
1 =route PORT1-0 _E)ns direct to these uses

CCSR4-2 TxResidue H/SDLC, OOO=last character of Transmit frame contains 8
H/SDLC bits; 001-111 = last character contains 1-7 bits
Lo~

130

Register Address 1 O b 00010

TxR881due Reserved

2

RW Ref Chapter: Section
Status

RO 4: DMA Support Features:
The RCC FIFO (p.68)

RO
WO

R,W1C 3: More About the DPLL
R,W1C (pp.30-31)
R,W1C

RW

RO 4: Slaved Monosync Mode
(p.53)
4: HDLC/SDLC Loop Mode
(pp.57-58)

RO 4: HDLC/SDLC Loop Mode
i(pp.57-5fil_

RW 3: Transmit and Receive
Clocking: Using PORT0-1 for
Bit Clocki~2fil_

RW 4: HDLC/SDLC Mode:
Frame Length Residuals
[(pp.48·4~

Channel Control Register (CCR) Register Address 1 ob 00011

TxCtrlBlk
Flag Alync:TxShavaL
Pre·

amble Sync:TxPreL Sync:TxPrePat
RxStatBlk R eaerved (0)

15 14 13 12 11 10 9 8 7 6 4 3 2 0

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

CCR15·14 TxCtrlBlk OO=don't use Transmit Control Blocks; AW 4: DMA Support Features:
01 =Use 16-bit TC B's; 1 O=USe 32-bit TCB's Transmit Control Blocks

l(pp.68·6fil_
CCR13 Walt4TxTrlg Sync 1 =hold Transmit DMA Request between frames, 4: Synchronizing Frames/

messages until software issues "Trigger Tx Messages with Software
DMA" command ReSQ_onse Jg. 78}_

CCR12 Flag H/SDLC, 1 =send Flags as Preamble 4: Between Frames,
Preamble CCR9·8 Messages, or Characters

=01 l.'22: 76· 78}_
CCR11·8 TxShaveL Async, shave the number of Stop bits 4: Asynchronous Mode

CMR15=1 specified by TxSubMode CMR14 (pp.46-47)
hl15 minus the value in this fielq}/16 bit times

CCR11·10 TxPreL Sync w/ OO=send 8-bit Preamble; 01 =16-bit; 4: Between Frames,
Preamble 10=32-bit; 11 =64-blt Messages, or Characters

CCR9·8 TxPrePat Syncw/ OO=all-zero Preamble; 01 =all ones or Flags; (pp.76·78)
Preamble 10=101010 ... ; 11=010101...

CCR7·6 RxStatBlk OO=don't use Receive Status Blocks; 4: DMA Support Features:
Ext Sync, 01 =Use 16-bit RS B's; Receive Status Blocks

T. Blsync, 1 O=use 32-bit RS B's (pp.69·70)

H/SDLC,
802.3,

ACY
_D553~ -

CCR5 Wait4RxTrig Sync 1 =hold Receive DMA Request between frames/ 4: Synchronizing Frames/
messages until software issues "Trigger Rx Messages with Software
DMA" command ReSQ_onse Jg, 78}_

131

Channel Mode Register (CMR) Register Address 1 O b 00001

I TxSubMode I TxMode RxSubMode I RxMode I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Because the content of the SubMode fields depends on the Mode fields, the following descriptions are grouped by
mode. TxSubMode and RxSubMode bits that are not shown for a particular Mode value are Reserved In that mode
and should be programmed with zeroes.

Bit(s) Fleld/Bn Conditions Description RW Ref Chapter: Section
Name /Context Status

CMR11-8 TxMode OOOO=A@Ynchronous RW 4: Asynchronous Mode
CMR15-14 TxSubMode TxMode=O OO=send one stop bit; 01 =two stop bits; RW (pp.46-47)

10=1 shaved stop bit (per CCR 11-8);
11 =2 shaved stQ!l_ bits

CMR13-12 00=16 TxCLKs/Tx bit; 01=32 TxCLKs/Tx bit;
10=64 TxCLKs/Tx bit

CMR3-0 RxMode OOOO=A!}'._nchronous RW
CMR5-4 RxSubMode RxMode=O 00=16 RxCLKs/Rx bit; 01=32 RxCLKs/Rx bit; RW

10=64 RxCLKs/Rx bit
CMR11-8 TxMode 0001 =Reserved RW
CMR3-0 RxMode 0001 =External ~nc 4: External S_y_nc Mode J2.:5q)j
CMR11-8 TxMode 0010=2=1sochronous RW 4: Isochronous Mode (p.47)
CMR14 TxSubMode TxMode=2 O=send one stQ!l_ bit; 1 =two stQ!l_ bits RW
CMR3-0 RxMode 0010=2=1sochronous RW
CMR11-8 TxMode 0011 =3=A@YnC w/Code Violations :I1553Bl RW 4: Async w/Code Violations
CMR15-14 TxSubMode TxMode=3 OO=send one stop bit; 01 =two stop bits; RW Mode (pp.48-50)

1 O=no stQ!l bits
CMR13 0= Tx length <= 8 bits per TxLength (TMR4-2);

1 = Tx le~ is 8 more than indic. ~ TxLeQg!h
CMR12 O=send Data words;

1 =send Command/Status words
CMR3-0 RxMode 0011 =3=A@Ync w/Code Violations :I1553Bl RW
CMR4 RxSubMode RxMode=3 O=Rx length<= 8 bits per RxLength (RMR4-2); RW

1 =Rx length is 8 more than ind le. by RxLe~h
CMR11-8 TxMode 0100=4=MonO!Y!lC RW 4: Monosync and Bisync
CMR15 TxSubMode TxMode=4 1 =send CRC on Tx Underrun RW Modes (pp.50-51)
CMR13 1 =send Preamble before Q!l_eni~ Sy_nc
CMR12 O=send 8-bit Syncs;

1 =send S_y_ncs _Q_er TxLength
CMR3-0 RxMode 0100=4=Mono!Y._nc RW
CMR5 RxSubMode RxMode=4 1 =strip received Syncs; RW

O=include them In RxFIFO and CRC calculation
CMR4 O=expect 8-bit Syncs;

1 =ex.11_ect S_y_ncs _Q_er RxLen_IDh
CMR11-8 TxMode 0101 =S=Bl!Y!lC RW
CMR15 TxSubMode TxMode=5 1 =send CRC on Tx Underrun RW
CMR14 O=send closing/Idle SYNs from TSR15-8;

1=send closll}gfidle SYNO/SYN1JI.SR7-0/15-~
CMR13 1 =send Preamble before Q!l_eni~ Sy_nc
CMR12 O=send 8-bit Syncs;

1 =send Sy_ncs _per TxLeQg!h
CMR3-0 RxMode 0101=5=Blqnc RW
CMR5 RxSubMode RxMode=5 1 =strip received Syncs; RW

O=include them in RxFIFO and CRC calculation
CMR4 O=expect 8-bit Syncs;

1 =elg1_9ct Sy_ncs jl_er RxLength

132

Channel Mode Register (CMR) -- Continued
Because the content of the SubMode fields depends on the Mode fields, the following descriptions are grouped by
mode. TxSubMode and RxSubMode bits that are not shown for a particular Mode value are Reserved In that mode
and should be programmed with zeroes.

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

CMA11-8 TxMode 0110=6=HDLC/SDLC AW 4: HDLC/SDLC Mode
CMA15-14 TxSubMode TxMode=6 OO=send 7-bit Abort on Tx Underrun; AW (pp.54-56)

01 =send 15-bit Abort; 1 O=send Flag;
11 =send CAC then Fl'!ll_

CMA13 1 =send Preamble before OQ_ening_ Flag_
CMA12 1 =consecutive idle Flags share a O

(.11111101111111 .. J.; 0={_11111100111111 .. J_
CMA3-0 AxMode 0110=6=HDLC/SDLC AW
CMA7-4 AxSubMode AxMode=6 xxOO=no Address or Control field handling; AW

xx01=1-byte Address only;
x010=1-byte Address, 1-byte Control;
x110= 1-byte Address, 2-byte Control;
0011 =Extended Address, 1-byte Control;
0111 =Extended Address, 2-byte Control;
1011=Extended Address, Control>= 2 bytes;
1111 =Extended Address, Control >= 3 ~es

CMA11-8 TxMode 0111 =7=Trans_1>_arent Bl~c AW 4: Transparent Bisync Mode
CMA15 TxSubMode TxMode=7 1 =send CAC on Tx Underrun AW (pp.51-52)
CMA14 O=send closing/idle SYNs;

1 =send closiQg/idle DLE-SYNs
CMA13 1 =send Preamble before OQ_ening_ OLE-SYN
CMA12 O=send ASCII control characters;

1=send EBCDIC
CMR3-0 RxMode 0111 =7=Trans_1>_arent Bl~c RW
CMR4 RxSubMode RxMode=7 O=look for ASCII control ~haracters; RW

1 =look for EBCDIC
CMR11-8 TxMode 1 OOO=S=Nlne Bit RW 4: Nine Bit Mode (pp.47-48}
CMR15 TxSubMode TxMode=8 O=send 9th bit O (data); RW

1 =send 9th bit 1 J_addres~
CMR14 O=send eight data bits;

1 =send seven data bits _£!us _1>_atj!y_
CMR13-12 00=16 TxCLKs/Tx bit; 01 =32 TxCLKs/Tx bit;

10=64 TxCLKs/Tx bit
CMR3-0 Rx Mode 1000=8=Nlne Bit RW
CMR5-4 RxSubMode RxMode=8 00=16 RxCLKs/Rx bit; 01 =32 RxCLKs/Rx bit; RW

10=64 RxCLKs/Rx bit
CMR11-8 TxMode 1001 =9=802.3 IEtherne!l RW 4: 802.3 (Ethernet) Mode
CMR15 TxSubMode TxMode=9 1 =send CRC on Tx Underrun RW (pp.53-54)
CMR3-0 RxMode 1001 =9=802.3 l_Etherne_!l_ RW
CMR4 RxSubMode RxMode=9 O=receive all frames; RW

1=match 16-bit Destination Address vs. RSR
CMR11-8 TxMode 101x=10·11 =Reserved
CMR3-0 RxMode
CMR11-8 TxMode 1100=12=Slaved MonollY_nc RW 4: Slaved Monosync Mode
CMR15 TxSubMode TxMode 1 =send CRC on Tx Underrun RW (p.53)
CMR13 =12 O=don't send (stop sending at EOM);

1 =send ~othed_ messag_e
CMR12 O=send 8-bit Syncs;

1 =send ~cs_E_er T)!;Leng_th
CMR3-0 RxMode 1100=12=Reserved (use RxMode=0100=4=

Monosy_nc with TxMode=1100=121_

133

Channel Mode Register (CMR) ··Continued
Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section

Name /Context Status
CMR11-8 TxMode 1101=13=Raaarvad
CMR3-0 RxMode
CMR11-8 TxMode 1110=14=HDLC/SDLC Loo~ RW 4: HOLC/SOLC Loop Mode
CMR15-14 TxSubMode TxMode OO=send 7-blt Abort on Tx Underrun; RW (pp.57-58)

=14 01=send 15-blt Abort; 10=send Flag;
11 =Send CRC then Fl1!9_

CMR13 (Initially) O=Transmlt disabled; 1 =insert into RW
loQQ;j_once lnserte<& O=r~at Rx to Tx; 1 =Send

CMR12 1=consecutlve idle Flags share a O RW
U.11111101111111 .. .:.l.i._ O=:tl 1111100111111 .. J.

CMR3-0 RxMode 1110=14=Raaarvad (use RxMode=0110=6=
HOLC/SOLC with TxMode=1110=1~

CMR11·8 TxMode 1111=15=Raaarvad
CMR3-0 RxMode

Clear OMA Interrupt Register (CDIR) Register Address ox b 01101

Reaarved (0) RxDMA TxDMA
IUS IUS

Reserved (0) RxDMA TxDMA
IP IP

15 14 13 12 11 10 9 8 7 6 5 2

Blt(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

COIR9 RxOMAIUS 1 =clear Rx OMA IUS bit; O=no chang_e WO 6: OMA IP and IUS Bits
COIRS TxOMAIUS 1 =clear Tx OMA IUS bit" O=no chang_e (p.122)
COIR1 RxOMAIP 1 =clear Rx OMA IP bit; O=no chan_Jl.e
COIRO TxOMAIP .1 =clear Tx OMA IP bit; O=no chang_e

134

Clock Mode Control Register (CMCR) Register Address 1 0 b 01000

CTR1Src CTROSrc BRG1Src BRGOSrc DPLLSrc TxCLKSrc RxCLKSrc

15 14 13 12 11 10 9 8 7 6 5 3

Blt(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

CMCR15-14 CTR1Src 00=CTR1 disabled; RW 3: Tx and Rx Clocking:
01 =CTR1 Input is PORT1/CLK1; CTRO and CTR1 (p.25)
10=/RxC _.2!.n; 11 =/TXC _.e!n

CMCR13-12 CTROSrc OO=CTRO disabled;
01 =CTRO Input is PORTO/CLKO;
10=/RxC _.2!.n; 11 =/TXC _.e!n

CMCR11-10 BRG1Src 00=BRG1 input Is CTRO output or PORTO; 3: Tx and Rx Clocking:
01 =CTR1 output or PORT1; The Baud Rate Generators
10=/RxC _.2!.n; 11 =/TXC _.e!n (pp.25-27)

CMCR9-8 BR GOS re OO=BRGO Input Is CTRO output or PORTO;
01 =CTR1 output or PORT1;
10=/RxC _.2!.n; 11 =/TXC _.2!.n

CMCR7-6 DPLLSrc OO=DPLL input Is BRGO output; 3: Tx and Rx Clocking:
01=BRG1ou!Q_ut;10=/RxC_Q)n; 11=/TxC_.Q!n Intro to the DPLLJE>.,2~

CMCR5-3 TxCLKSrc OOO=no TxCLK (Transmit disabled); 3: Tx and Rx Clocking:
001 = TxCLK is /RxC; 010=/TxC; TxCLK and RxCLK Selection
011 =DPLL Tx output; (p.28)
1 OO=BRGO output; 101 =BRG1 output;
11 O=CTRO output or PORTO;
111 = TxCLK is CTR1 oul!l_ut or PORT1

CMCR2-0 RxCLKSrc OOO=no RxCLK (Receive disabled);
001 =RxCLK is /RxC; 010=/TxC;
011 =DPLL Rx output;
1 OO=BRGO output; 101 =BRG1 output;
11 O=CTRO output or PORTO;
111 =RxCLK is CTR1 ou.!E_ut or PORT1

135

Daisy Chain Control Register (DCCR)
IUSOp
(WO)

15 14

Blt{s)

DCCR15·14

DCCR13

DCCR12

DCCR11

DCCR10

DCCR9

DCCR8

DCCR7·6

DCCR5

DCCR4

DCCR3

DCCR2

DCCR1

DCC RO

RS
IUS

13

Field/Bit
Name
IUSOp

RSIUS

RDIUS

TSIUS

TDIUS

IOPIUS

Misc IUS

IP Op

RSIP

RDIP

TSIP

TDIP

IOPIP

Misc IP

RD
IUS

12

TS
IUS

11

Conditions
/Context

write

read
write

read
write

read
write

read
write

read
write

read
write

write

read
write

read
write

read
write

read
write

read
write

read
write

TD
IUS

10

IOP MllC
IUS IUS

9 8

Description

Ox=no operation;

7

IP Op
(WO)

6

RS
IP

s

10=clear IUS bits selected by 1s In DCCR13-8;
11 =set IUS bits selected ~ 1 sin DCCR13-8
1 =Receive Status Interrupt under service
1 =set or clear Receive Status IUS per IUS Op;
O=no change

1 =Receive Data Interrupt under service
1 =set or clear Receive Data IUS per IUS Op;
O=no cha11Q.e
1 =Transmit Status Interrupt under service
1 =set or clear Transmit Status IUS per IUS Op;
O=no change

1 =Transmit Data Interrupt under service
1 =set or clear Transmit Data IUS per IUS Op;
O=nochange

1 =1/0 Pin interrupt under service
1 =set or clear 1/0 Pin IUS per IUS Op;
O=no change

1 =Miscellaneous Interrupt under service
1 =set or clear Miscellaneous IUS per IUS Op;
O=no change

OO=no operation;
01 =clear IP and IUS bits sel by 1 s in DCCR5-0;
1 O=clear IP bits selected by 1 s In DCCR5-0;
11 =set IP bits selected ~ 1 s in DCCR5·0
1 =Receive Status Interrupt pending
1 =set or clear Receive Status IP/IUS per IP Op;
O=nochange

1 =Receive Data interrupt pending
1=set or clear Receive Data IP/IUS per IP Op;
O=no chaQQ_e
1 =Transmit Status interrupt pending
1 =set or clear Transmit Status IP/IUS per IP
Op;
O=no char:!Q_e
1=Transmlt Data Interrupt pending
1 =set or clear Transmit Data IP/IUS per IP Op;
O=no change

1 =110 Pin interrupt pending
1 =set or clear 1/0 Pin IP/IUS per IP Op;
O=nochange

1 =Miscellaneous Interrupt pending .
1 =set or clear Miscellaneous IP/IUS per IP Op;
O=no change

136

Register Address 1 0 b 01101

RD
IP

4

RW
Status
WO

RO
WO

RO
WO

RO
WO

RO
WO

RO
WO

RO
WO

WO

RO
WO

RO
WO

RO
WO

RO
WO

RO
WO

RO
WO

TS
IP

TD
IP

IOP Misc
IP IP

3 2 0

Ref Chapter: Section

6: Interrupt Pending and
Under Service Bits (p.120)

6: Interrupt Pending and
Under Service Bits (p.120);
6: Receive Status Interrupt
Sources and IA Bits (pp.115-
11 fil.
6: Interrupt Pending and
Under Service Bits (p.120);
6: Rx Data interrupts (p.116)
6: Interrupt Pending and
Under Service Bits (p.120);
6: Tx Status Interrupt Sour-
ces and IA Bits (pp.116-11 ~
6: interrupt Pending and
Under Service Bits (p.120);
6: Transmit Data interrupts

l<oo.118-1191
6: Interrupt Pending and
Under Service Bits (p.120);
6: 1/0 Pin Interrupt Sources
and IA Bits JQ. 119)_
6: Interrupt Pending and
Under Service Bits (p.120);
6: Miscellaneous Int. Sources
and IA Bits (pp.119-12Ql_
6: Interrupt Pending and
Under Service 13its (p.120)

6: interrupt Pending and
Under Service Bits (p.120);
6: Rx Status Interrupt Sour-
ces and IA Bits (pp.115-11 ~
6: Interrupt Pending and
Under Service Bits (p.120);
6: Rx Data interrupts (p.116)
6: interrupt Pending and
Under Service Bits (p.120):
6: Tx Status Interrupt Sour-
ces and IA Bits (pp.116-118)
6: Interrupt Pending and
Under Service Bits (p.120):
6: Transmit Data Interrupts
I (pp.110-11 fil.
6: Interrupt Pending and
Under Service Bits (p.120);
6:1/0 Pin interrupt Sources
and IA Bits _(p_. 119}
6: interrupt Pending and
Under Service Bits (p.120);
6: Miscellaneous Int, Sources
and IA Bits (pp.119-12Ql_

OMA Array Count Register (OACR) Register Address ox b 00100

I Reserved (0) RALCnt I TALCnt I
15 14 13 12 11 10 9 8 7 6 5 2

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

OACR7-4 RALCnt Array or reflects the Rx OMA channel's progress while RO 5: Array and Linked-List
Linked List fetchl'!Q_arr~or list Information. See Ref text. Fetching Status (pp.104-105)

OACR3-0 TALCnt reflects the Tx OMA channel's progress while
fetchlr:!9_ arr~or list information. See Ref text.

OMA Command/Address Register (OCAR) Register Address o x b 00000

DCmd Reserved (0) Rx/TX MBRE Rx/TX B/W
Cmd Reg

RegAddr U/L

15 14 13 12 11 10 9

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

OCAR15-12 OCmd treating ail of OCAR15-9 as a single field: WO 5: Commands and

OCAR9 Rx/Tx Cmd OOOOOOO=Null (no operation); /BUSREQ Enable (pp.95-96)
0001 OOO=Reset Tx Channel;
0001001 =Reset Rx Channel;
0010000=Start Tx Channel;
0010001 =Start Rx Channel;
0011 OOO=Start/Continue Tx Channel;
0011001 =Start/Continue Rx Channel;
0100000=Pause Tx Channel;
0100001 =Pause Rx Channel;
0101 OOO=Abort Tx Channel;
0101001 =Abort Rx Channel;
0111 OOO=Start/lnlt Tx Channel;
0111001 =Start/In it Rx Channel;
1000000=Reset Highest OMA IUS;
1001 OOO=Reset All Channels;
101 OOOO=Start All Channels;
1011 OOO=Start/Continue All Channels;
11 OOOOO=Pause All Channels;
1101 OOO=Abort All Channels;
1111 OOO=Start/lnit All Channels

OCARB MBRE 1 =enable Bus Requests by the OMA channels; RW
O=block Bus R~uests 12l_the OMA channels

OCAR7 Rx/Tx Reg 1 =RegAddr refers to a Rx OMA register; woe 2: Register Addressing
O=use 0//C to select Rx/Tx r~ster (pp.15-19)

OCAR6 B/W 16 bit bus 0=16-bit access to reg selected by RegAddr; woe
16 bit bus 1 =access MS or LS iwe of rE19_

OeAR5-1 R~ddr OMA r~ster address for next access to OCAR woe
oeARO U/L 1 =access MSByte of reg selected by RegAddr; woe

O=access LS~e or whole 16-bit r~ster

137

OMA Control Register (OCR)

ChanPrl

15 14

Bit(s)

DCR15-14

DCR13
DCR12

DCR11-10

DCR5

DCR4

DCR3
DCR2

DCR1-0

Pre
Empt ALBVO ReArbTlme Reserved (0) Reserved (0)

Min
01139

13 12 11 10 9 7 5

Field/Bit Conditions Description
Name /Context
ChanPrl 00= Tx DMA has priority for bus access;

01 =Rx DMA has _2riorl!Y; 10=alternati1J9...2!iori!Y_
PreEm_E! 1 =hjg_her:.2.!'iorj!Y_ channel can seize bus control
ALBVO Array and O=addresses/counts are Little-Endian (Z80/intel)

Linked List 1 = B)g_ Endian _1?:8000/680xQ2_
ReArbTime OO=select channel at start of each grant, both

channels can use the bus In one grant;
01 =channel keeps selection until its request is
gone; then other channel can use the bus in the
same grant;·
1 O=select channel at start of each grant, only
one channel can use the bus jl_er_grant

Min0ff39 1 =minimum bus re-request time is 39 CLKs;
0=7 CLKs

DCSDOut 1 =drive D//C pin low for Tx DMA, high for Rx
DMA and drive S//D low for array/list access,
high for data;
O=don't drive D//C, S//D .Q!ns

1Wait 1 =add one Wait state to all DMA S:'.'._cles
UASAll 1 =present /UAS and MS16 of address in every

~le; O=on_!y_ when necess~
AddrSeg 00=32-bit address incrementing/decrementing;

1 O=incr/decr affects only LS 16 address bits;
11 =incr/decr affects on.!Y._LS 24 address bits

OMA Interrupt Control Register (DICR)

MIE DLC NV VIS Reserved (0)

15 14 13 12 11 10

Bit(s) Field/Bit Conditions Description
Name /Context

DICR15 MIE 1 =enable interrl!£ls from DMA channels
DICR14 DLC 1 =disable IEO from IUSC
DICR13 NV 1 =don'l__Qrovide a vector during_ IAck ~les
DICR12 VIS 1 =include TypeCode in DMA interrupt vectors;

O=return vector as software wrote it to DIVR7-0
DICR1 RxDMA IE 1 =Rx DMA interrl!£! enable_(cj)_
DICRO TxDMA IE 1 = Tx DMA interrl!£! enable_(cj)_

138

Register Address 0 x b 00011

DCSD
Out

RW
Status

RW

1Walt
UAS
All AddrSeg

Ref Chapter: Section

5: Inter-Channel Operation
and Priority (pp.99-100)

5: Format of Binary Values
in Arr~s/Lists (pp.96-9fil_
5: Inter-Channel Operation
and Priority (pp.99-100)

5: Bus Occupancy Throttling
l.\2c 1 O'!)_
2: DMA Cycle Options
(pp.22-23)
5: Bus Cycle Options (p. 101)

5: Address Sequencing
(p.96)

Register Address ox b 01100

RxDMA TxDMA
IE IE

RW Ref Chapter: Section
Status

RW 6: OMA-Controller-Level
Interrupt Options (p. 123)

OMA Interrupt Vector Register (DIVR)

Interrupt Vector 7-3 (RO)

15 14 13 12 11

Bit(s) Field/Bit Conditions
Name /Context

OIVR15-11 read

OIVR10-9 TypeCode OIVR15-8,
or !Ack w/

VIS=1
(OICR12)

OIVR8
OIVR7-0 read/write

OIVR7-0,
or !Ack w/

VIS=O
l01CR1~

Type Code
(RO)

10 9

Description

IVO
(RO)

8 7

as software wrote OIVR7-3

highest pending interrupt type:
OO=no OMA type pending;
10=Tx OMA (no Rx OMA);
11=RX OMA
as software wrote OIVRO
basic 8-bit OMA interrupt vector

Hardware Configuration Register (HCR)

Register Address 0 x b 01010

Interrupt Vector (RW)

6

AW Ref Chapter: Section
Status

RO 6: DMA Interrupt Vectors
(pp.122-123)

RO

RO
RW

Register Address 1 O b 01001

CTRODlv CTR1
DSel

CVOK DPLLDlv DPLLMode Reserved BRG1S BRG1E Reserved BRGOS BRGOE

15 14 13 12 11 10 9

Bit(s) Field/Bit Conditions Description AW Ref Chapter: Section
Name /Context Status

HCR15-14 CTRODiv OO=CTRO divides by 32; RW 3: Tx and Rx Clocking:
01=/16; 10=/8; 11=/4 CTRO and CTR1 (p.25)

HCR13 CTR1DSel O=CTRODiv determines CTR1 divisor;
1=0PLLOiv determines CTR1 divisor

HCR12 CVOK Bi phase 1 =don't report single code violations 3: More About the DPLL
I (pp.30-3 u._

HCR11-10 OPLLOiv 00=0PLL divides by 32; 01 =/16; 10=/8; 3: Tx and Rx Clocking:
11 =don't use for OPLL jj_4 for CTR1j_ Intro to the DPLLJl2.:2ZJ._

HCR9-8 DPLLMode OO=disable DPLL; 3: More About the DPLL
01 =run DPLL for NRZ modes; (pp.30-31)
1 O=run OPLL for Biphase-Mark or -Space;
11 =run DPLL for either B.!E_hase-Level mode

HCR5 BRG1S 1 =BRG1 single ~cle mode; O=continuous 3: Tx and Rx Clocking:
HCR4 BRG1E 1 =enable BRG1 The Baud Rate Generators

I (pp.25-2Z2_
HCR1 BR GOS 1 =BRGO single cycle mode; O=continuous 3: Tx and Rx Clocking:
HCRO BRGOE 1 =enable BRGO The Baud Rate Generators

I (pp.25-2Z2_

139

Input/Output Control Register (IOCR) Register Address 1 0 b 01011

CTSMode DCDMode TxRMode RxRMode TxDMode TxCMode RxCMode

15 14 13 12 11 10 9 8 6 3

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

IOCR15-14 CTSMode Ox=/CTS pin is low-active Clear To Send input; RW 3: The /CTS Pin (pp.34-35)
1 O=drive /CTS Low; 11 =drive /CTS Hig_h

IOCR13-12 DCDMode 00=/DCD is low-active Rx Carrier Detect input; 3: The /DCD Pin (pp.33-34)
01 =/DCD is.low-active Rx Sync Detect input;
1 O=drive /DCD Low; 11 =drive /DCD Hig_h

IOCR11-10 TxRMode 00=/TxREQ pin is an input; 3: The /RxREQ and /TxREQ
01 =drive /TxREQ with Transmit DMA Request; Pins (pp.35-36)
1 O=drive /TxREQ Low; 11 =drive /TxREQ H.!.g_h

IOCR9-8 RxRMode 00=/RxREQ pin is an input;
01 =drive /RxREQ with Receive DMA Request;
1 O=drlve /RxREQ Low; 11 =drive /RxREQ Hig_h

IOCR7-6 TxDMode OO=drive /TxD with Transmitter output; 3: The /RxD and /TxD Pins
01 =release /TxD to high impedance; (pp.31-32)
1 O=drive /TxD Low; 11 =drive /TxD H .!.g_h

IOCR5-3 TxCMode 000=/TxC pin is an input; 3: The /RxC and /TxC Pins
001 =drive /TxC with TxCLK; (p.35)
01 O=drive /TxC with Transmit char clock;
011 =drive /TxC with Transmit Complete;
1 OO=drive /TxC with output of BRGO;
101 =drive /TxC with output of BRG1;
11 O=drive /TxC with output of CTR 1 ;
111 =drive /TxC with Tx output of DPLL

IOCR2-0 RxCMode 000=/RxC pin is an input;
001 =drive /RxC with RxCLK;
01 O=drive /RxC with Receive char clock;
011 =drive /RxC with /RxSYNC;
1 OO=drive /RxC with output of BRGO;
101 =drive /RxC with output of BRG1;
11 O=drive /RxC with output of CTRO;
111 =drive /RxC with Rx ou!Q_ut of DPLL

140

Interrupt Control Register (ICR)

MIE OLC NV

15 14 13

Bit(s) Field/Bit
Name

ICR15 MIE
ICR14 DLC
ICR13 NV
ICR12-9 VIS

ICR7-6 IE Op

ICR5 RSIE

ICR4 RD IE

ICR3 TSIE

ICR2 TD IE

ICR1 IOP IE

ICRO Misc IE

VIS Rsrvd IE Op
f'/'10)

RS
IE

12 11 10 9

Conditions Description
/Context

1 =enable interrl!Q!s from this serial controller
1 =disable Intern~£! Enable Out]Eo}
1 =don't return a vector duril)_g_/INTACK ~le
Oxxx=interrupt vectors never include status:
1 OOx=interrupt vectors always include status;
101 O=vectors include status except for Misc;
1011 =vectors include status only for TD, TS,
RD and RS
1100=vectors include status only for TS, RD,
and RS
1101 =vectors include status only for RD and RS
111 O=vectors include status only for RS
1111 =interrLJ_Q_t vectors never include status

write Ox=no operation;
10=clear the IE bits selected by 1 sin ICR5-0;
11 =set the IE bits selected l:ly_ 1s in ICR5-0

read 1 =Receive Status interrupt enabled
write 1 =set or clear Receive Status IE per IE Op;

O=no chal)_g_e
read 1 =Receive Data interrupt enabled

write 1 =set or clear Receive Data IE per IE Op;
O=no chal)_g_e

read 1 =Transmit Status interrupt enabled
write 1 =set or clear Transmit Status IE per IE Op;

O=no chal)_g_e
read 1 =Transmit Data interrupt enabled
write 1 =set or clear Transmit Data IE per IE Op;

O=no chang_e
read 1 =1/0 Pin interrupt enabled

write 1 =set or clear 1/0 Pin IE per IE Op;
O=no chal)_g_e

read 1 =Miscellaneous interrupt enabled

write 1 =set or clear Miscellaneous IE per IE Op;
O=no chal)_g_e

141

Register Address 1 o b 01100

RO
IE

RW
Status

RW
RW
RW
RW

WO

RO
WO

RO

WO

RO
WO

RO
WO

RO
WO

RO

WO

TS
IE

TO
IE

IOP Misc
IE IE

Ref Chapter: Section

6: Serial Interrupt Options
(pp. 120-121)

6: Serial Interrupt Enable Bits
(p.120)

Interrupt Vector Register (IVR)

Interrupt Vector7-4 (RO) Type Code (RO)
IVO

(RO)

15 14 13 12 11 10 9 8 7

Bit(s) Field/Bit Conditions Description
Name /Context

IVR15·12 read as software wrote IVR7·4

IVR11·9 TypeCode IVR15·8, highest pending Interrupt type:
or IAckw/ OOO=no Interrupt type pending;

highest 001=Misc;
pending 010=1/0 Pin;

type 011 =Transmit Data;
enabled by 100= Transmit Status;

ICR12·9 101 =Receive Data;
11 O=Recelve Status

IVR8 as software wrote IVRO
IVR7·0 read/write basic 8·blt Interrupt vector

IVR7·0, (reads back as software wrote it)
or !Ack w/

highest
pending

type
blocked by

ICR12·9

142

Register Address 1 0 b 0101 o

Interrupt Vector (RW)

6 5

RW Ref Chapter: Section
Status

RO 6: Serial Interrupt Vectors
(p.121)

RO

RO
RW

Miscellaneous Interrupt Status Register (MISR) Register Address 1 o b 0111 o

RxCUU /RxC TxCUU /TxC RxRUU /RxR TxRUU /TxR DCDL/U /DCC CTSUU /CTS
RCC DPLL BRG1 BRGO

Under DSync L/U L/U
L/U UU

15 14 13 12 11 10 8

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

MISR15 RxCLJU Read 1 =one or more transition(s) enabled by SICR15- R,W1U 3: The /RxC and /TxC Pins
14 has (have) occurred on the /RxC pin (p .. 35)

Write 1 =~en the latches for /RxC and for this bit
MISR14 /RxC RxCLJU=1 1 =the (first such) enabled transition was a rising RO

edge; O=it was a falling edge

RxCLJU=O 1 =the /RxC _Qi_n is low; O=it's h!_g_h
MISR13 TxCLJU Read 1 =one or more transition(s) enabled by SICR13- R,W1U

12 has (have) occurred on the /TxC pin

Write 1 =qe_en the latches for /TxC and for this bit
MISR12 /TxC TxCLJU=1 1 =the (first such) enabled transition was a rising RO

edge; O=it was a falling edge

TxCLJU=O 1 =the /TxC _])in is low; O=it's h!_g_h
MISR11 RxRLJU Read 1 =one or more transition(s) enabled by SICR11- R,W1U 3: The /RxREQ and /TxREQ

1 O has (have) occurred on the /RxREQ pin Pins (pp.35-36)

Write 1 =0....12._en the latches for /RxR and for this bit
MISR10 /RxR RxRLJU=1 1 =the (first such) enabled transition was a rising RO

edge; O=it was a falling edge

RxRUU=O 1 =the /RxREQ_j)in is low; O=it's h!_g_h
MISR9 TxRLJU Read 1 =one or more transition(s) enabled by SICR9-8 R,W1U

has (have) occurred on the /TxREQ pin

Write 1 =~en the latches for /TxR and for this bit
MISR8 /TxR TxRLJU=1 1 =the (first such) enabled transition was a rising RO

edge; O=it was a falling edge

TxRLJU=O 1 =the /TxREQ_Qi_n is low; O=it's high
MISR7 DCDLJU Read 1 =one or more transition(s) enabled by SICR7-6 R,W1U 3: The /DCD Pin (pp.33-34)

has (have) occurred on the /DCD pin

Write 1 =~en the latches for /DCD and for this bit
MISR6 /DCD DCDLJU=1 1 =the (first such) enabled transition was a rising RO

edge; O=it was a falling edge

DCDUU=O 1 =the /DCD _Ei_n is low; O=it's h!.g!l
MISR5 CTSLJU Read 1 =one or more transition(s) enabled by SICR5-4 R,W1U 3: The /CTS Pin (pp.34-35)

has (have) occurred on the /CTS pin

Write 1 =0....12._en the latches for /CTS and for this bit
MISR4 /CTS CTSLJU=1 1 =the (first such) enabled transition was a rising RO

edge; O=it was a falling edge

CTSLJU=O 1 =the /CTS _E!n is low; O=it's hJ.g_h
MISR3 RCC Under 1 =RCC FIFO has counted down past O R,W1U 4: DMA Support Features:

LJU (Receive frame/message longer than max The RCC FIFO (p.68)
allowec!)_

MISR2 DPLLDSync 1 =DPLL has lost sync R,W1U 3: More About the DPLL
LJU (pp.30-31);

6: Miscellaneous Interrupt
Sources and IA Bits (p.119-
12q}_

MISR1 BRG1 LJU 1 =BRG1 has counted down to O R,W1U 3: Tx and Rx Clocking:
MISRO BRGO LJU 1 =BRGO has counted down to O R,W1U The Baud Rate Generators

I (pp.25-2Cl_

143

Next Receive Address Register Lower (NRARL)

LS 16 bits of "next receive address" (see below)

15 14 13 12 11 10 a 6

Next Receive Address Register Upper (NRARU)

MS 16 bits of "next receive address" (see below)

15 14 13 12 11 10 a 6

Bit(s) Field/Bit Conditions Description
Name /Context

NRARU15-0 Pipelined 32-bit address of next Rx OMA buffer
NRARL15-0 Array or 32-blt address in Array or Linked List (used to

Linked List fetch address and count of next Rx OMA buffer)

Next Receive Byte Count Register (NRBCR)

I length of next Rx OMA buffer

15 14 13

Bit(s) Field/Bit
Name

NRBCR15-0

12 11 10 9

Conditions Description
/Context

a

Pi elined len th of next Rx OMA buffer, in b es

Next Transmit Address Register Lower (NTARL)

LS 16 bits of "next transmit address" (see below)

15 14 13 12 11 10 a

Next Transmit Address Register Upper (NTARU)

MS 16 bits of "next transmit addreaa" (see below)

15 14 13 12 11 10 a

Bit(s) Field/Bit Conditions Description
Name /Context

NTARU15-0 Pipelined 32-bit address of next Tx OMA buffer
NTARL 15-0 Array or 32-bit address in Array or Linked List (used to

Linked List fetch address and count of next Tx OMA buffer)

Next Transmit Byte Count Register (NTBCR)

I number of bytes In next Tx OMA buffer

15 14 13

Bit(s) Field/Bit
Name

NTBCR15-0

12 11 10 9

Conditions Description
/Context

Pi elined number of b tes in next Tx OMA buffer

144

Register Address O 1 b 1111 o

2

Register Address 0 1 b 11111

4 2

RW Ref Chapter: Section
Status

RW 5: Pipelined Mode (pp.83-85)
5: Array Mode (pp.85-93)
5: Linked List Mode (pp.87-
90)_

Register Address O 1 b 11101

RW Ref Chapter: Section
Status

RW 5: Pi elined Mode .83-85

Register Address O O b 11110

Register Address 0 0 b 11111

RW Ref Chapter: Section
Status

RW 5: Pipelined Mode (pp.83-85)

5: Array Mode (pp.85-93)
5: Linked List Mode (pp.87-
90)_

Register Address 0 0 b 11101

RW Ref Chapter: Section
Status

RW 5: Pi elined Mode 83-85

Port Control Register (PCR) Register Address 1 0 b 00101

P7Mode P6Mode PS Mode P4Mode P3Mode P2Mode P1Mode POMode

15 14 13 12 11 10 9 8 5

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

PCR1S-14 P7Mode 00=PORT7 pin Is an input; RW 3: The Port Pins (pp.36-37)
01 =drive PORT? with TxComplete;
1 O=drlve PORT? low; 11 =drive PORT? hlg_h

PCR13-12 P6Mode OO=PORT6 pin Is a GP input; 3: The Port Pins (pp.36-37)
01 =PORTS pin is /FSYNC input; 3· The Time Slot Assigners
1 O=drive PORT6 low; 11 =drive PORT6 hlg_h i(pp.37-3~

PCR11-10 PSMode OO=PORTS pin is an Input; 3: The Port Pins (pp.36-37)
01 =drive PORTS with /RxSYNC;
1 O=drive PORTS low; 11 =drive PORTS hlg_h

PCR9-8 P4Mode OO=PORT4 pin is an input; 3: The Port Pins (pp.36-37)
01 =drive PORT4 with Tx TSA Gate; 3: The Time Slot Assigners
1 O=drive PORT4 low; 11 =drive PORT4 hlg_h (pp.37-39)

PCR7-6 P3Mode 00=PORT3 pin is an input;
01 =drive PORT3 with Rx TSA Gate;
1 O=drive PORT3 low; 11 =drive PORT3 hlg_h

PCRS-4 P2Mode OO=PORT2 pin is an input; 3: The Port Pins (pp.36-37)
1 O=drive PORT2 low; 11 =drive PORT2 high

PCR3-2 P1Mode 00=PORT1 pin is a GP input; 3: The Port Pins (pp.36-37)
01 =PORT1 is CLK1 input; 3: Tx and Rx Clocking: CTRO
1 O=drive PORT1 low; 11 =drive PORT1 hlg_h and CTR1 (p.2S)

PCR1-0 PO Mode OO=PORTO pin is a GP input;
01 =PORTO is CLKO input;
1 O=drive PORTO low; 11 =drive PORTO hlg_h

145

Port Status Register (PSR) Register Address 1 ob 00100

P7L/U /P7 P8LJU IP8 P6L/U /PS P4L/U /P4 P3L/U /P3 P21../U /P2 P1 L/U /P1 POL/U /PO

15 14 13 12 11 10 9 8 6 5 3 0

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

PSR15 P7LJU 1 =transition detected on PORT7.E]n R.W1U 3: The Port Pins (pp.36-37)
PSR14 /P7 P7LJU=1 1 =rising edge on PORT7; O=falling edge RO

P7LJU=0 1 =PORT7 was low last time P7LJU:=1;
0=PORT7 was hJ.g_h

PSR13 PSLJU 1 =transition detected on PORTS ~n R,W1U
PSR12 /PS PSLJU=1 1 =rising edge on PORTS; O=falllng edge RO

P6LJU=0 1 =PORTS was low last time PSLJU:=1;
O=PORTS was h_lg_h

PSR11 P5LJU 1 =transition detected on PORT5 ~n R,W1U
PSR10 /P5 P5LJU=1 1 =rising edge on PORT5; O=falllng edge RO

P5LJU=O 1 =PORT5 was low last time P5LJU:=1;
0=PORT5 was h_lg_h

PSR9 P4LJU 1 =transition detected on PORT4~n R,W1U
PSR8 /P4 P4LJU=1 1=rlslng edge on PORT4; O=falling edge RO

P4LJU=0 1 =PORT4 was low last time P4LJU:=1;
0=PORT4 was h_lg_h

PSR7 P3LJU 1=transltion detected on PORT3.E]n R,W1U
PSR6 /P3 P3LJU=1 1 =rising edge on PORT3; O=falling edge RO

P3LJU=0 1 =PORT3 was low last time P3LJU:=1;
0=PORT3 was h_lg_h

PSR5 P2LJU 1=transitlon detected on PORT2.E]n R,W1U
PSR4 /P2 P2LJU=1 1 =rising edge on PORT2; O=falling edge RO

P2LJU=0 1 =PORT2 was low last time P2LJU:=1;
0=PORT2 was h_lg_h

PSR3 P1LJU 1 =transition detected on PORT1 ~n R,W1U
PSR2 /P1 P1 LJU=1 1 =rising edge on PORT1; O=falling edge RO

P1 LJU=O 1 =PORT1 was low last time P1 LJU: = 1 ;
0=PORT1 was h_lg_h

PSR1 POLJU 1 =transition detected on PORTO ~n R,W1U
PSRO /PO POLJU=1 1 =rising edge on PORTO; O=falling edge RO

POLJU=O 1 =PORTO was low last time POLJU:=1;
O=PORTO was h_lg_h

146

Receive Address Register Lower (RARL) Register Address O 1 b 1011 o

I LS 18 bit• of current Rx OMA buffer addreaa

15 14 13 12 11 10 9 8 7 4 3 0

Receive Address Register Upper (RARU) Register Address o 1 b 10111

MS 16 bit• of current Rx OMA buffer addreH

15 14 13 12 11 10 9 8 5 0

Blt(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RARU15-0 32-blt current address In Rx OMA buffer RW 5: OMA Fundamentals:
RARL15-0 Addresses and Byte Counts

li2:7~

Receive Byte Count Register (RBCR) Register Address o 1 b 10101

number of bytea left In current Rx OMA buffer

15 14 13 12 11 10 9 7 6 5 3

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RBCR15-0 number of byte locations left In Rx OMA buffer RW 5: OMA Fundamentals:
Addresses and Byte Counts

l.(EJ9l

Receive Character Count Register (RCCR) Register Address 1 O b 1011 O

ending count of oldeat received framelmeasage In RCC FIFO

15 14 13 12 11 10 9 8 7 6 5 3

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RCCR15-0 RCCAvall final RCC value of oldest received frame/ RO 4: OMA Support Features:
(CCSR14) message in the RCC FIFO The RCC FIFO (p.68)

=1

147

Receive Command/Status Register (RCSR) Register Address 1 0 b 10010

RCmd (WO)
AxRuldue ShortF/ Exited Idle Break Rx CRCE Abort Rx Rx

CVType Hunt Rcved /Abort Bound /FE /PE Over Avail 2ndBE 1etBE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RCSR15-12 RCmd Sync OOOO=no operation; 0001 =Reserved WO 4: Commands (pp.70-74)
0010=Clear Receive CRC Generator
0011 =Enter Hunt Mode; 01 OO=Reserved
0100=Select RICRHi=RTSA Data
0101 =Select RICRHl=RxFIFO Status
0110=Select RICRHi=/INT Level
0111 =Select RICRHl=/RxREQ Level
1 xxx=Reserved

RCSR15 2nd BE Last RDR 1=2nd-oldest byte in RxFIFO had RxBound, PE, RO 4: Status Reporting:
read was or RxOver when RDR was last read Detailed Status in the RCSR

16 bits (pp.62-64)
RCSR14 1stBE 1=oldest byte in RxFIFO had RxBound, PE, or RO

RxOver when RDR was last read
RCSR11-9 RxResldue H/SDLC OOO=frame ended at character boundary RO 4: HDLC/SDLC Mode:

001-111 =number of extra bits at end Frame Length Residuals
]lpp.48-4fil_

RCSR8 ShortF/ H/SDLC, 1 =received frame ended before Address/Control R,W1U 4: Status Reporting:
CVType CMR7-4 fields (see Note 1) or RO Detailed Status in the RCSR

<>xxOO (pp.62-64)

ACV O=recelved Data word
_{_1553~ 1 =received Command/Status word jsee Note !l

RCSR7 ExltedHunt 1 =receiver has left Hunt mode R,W1U
RCSR6 ldleRcved 1 =15 or 16 ones received R,W1U
RCSR5 Break/Abort Async 1 =Break received R,W1U

H/SDLC 1 =Abort recelvedjg!obal/real-time fl~
RCSR4 RxBound Nine Bit 1 =address character (see Note 2) R,W1C

ACV 1 =2nd (or only) byte of word (see Note 2) or RO
(1553B)

Ext Sync, 1 =end of message (see Note 2)
T. Bisync

802.3 1 =emd of frame (see Note 2)

HDLC/ 1 =Flag or Abort followed this character
SDLC llsee Note fil

RCSR3 CR CE/FE Sync 1 =CRC not correct (at this point; see Note 1) RO
Async 1 =framing error (Stop bit= zero/space; see

Note 11
RCSR2 Abort/PE QAbort 1 =parity error (see Note 2) R,W1C

(RMR8)=0 or RO

H/SDLC, 1 =Abort followed this character (see Note 2)
QAbort=1

RCSR1 RxOver 1=RxFIFO overflow (see Note 2) R,W1C
RO??

RCS RO RxAvall 1 =RxFIFO is not emotv RO

Note 1: the IUSC carries these bits through the RxFIFO with data characters; they may represent the status of the oldest
character or two currently In the FIFO, or of the last one or two read from It, as described in the referenced Chapter/Section.

Note 2: the IUSC carries these bits through the RxFIFO with data characters; they may represent the status of the oldest
character or two currently In the FIFO, of the last one or two read from it, or may be a cumulative/latched bit, as described in
the referenced Chapter/Section.

148

Receive Count Limit Register (RCLR) Register Address 1 0 b 10101

starting value for Receive Character Counter

15 14 13 12 11 10 9 8 7 6 5 2

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RCLR15-0 starting value for RCC: O=disable RCC; RW 4: OMA Support Features:
FFFF=enable RCC, no set max frame/message The Character Counters
le~h; else maximum allowed le~h lcoo.65-6fil_

Receive Data Register (RDR) Register Address 1 0 b 1x000 or 1 1 b xxxxx

received character: read only ualng 16-blt operation received character: a- or 16-blt read

15 14 13 12 11 10 9 8 7 6 o

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RDR15-8 16 bit bus the "other" received character in a 16-bit read RO 4: The Data Registers and
(may be the oldest or 2nd-oldest per "Select the FIFOs (pp.74-76)
015-8 First" or "Select 07-0 First" commands in
RTCmdJ_CCAR15-11])

RDR7·0 received character

Receive OMA Interrupt Arm Register (RDIAR) Register Address o 1 b 01111

Re88rved (0)
EOA/ EOB HAbort SAbort

EOL IA IA IA IA

15 14 13 12 11 10 9 8 7 6 5 4

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RDIAR3 EONEOLIA Array, 1 =arm interrupt on End of Array/End of List RW 6: OMA Interrupt Sources
Linked List [iRMCR~ and IA Bits (p.122)

RDIAR2 EOBIA 1 =arm intern:!E! on End of Buffer:IRDMR[
RDIAR1 HAbort IA 1 =arm lnterrlJ!l! on Hardware Abort :IRDMR[
RD IA RO SAbort IA 1 =arm lnterrlJ!l! on Software AbortlRDMRQ.)_

149

Receive OMA Mode Register (RDMR) Register Address O 1 b 00001

DMAMode RSB Clear
lnA/L Count

AddrMode TermE 8/16 CONT Gllnk BUSY INITG EOA/
EOL

EOB HAbort SAbort

15 14 13 12 11 10 9 8 3

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RDMR15·14 DMAMode OO=Single Buffer; 01 =Pipelined; RW 5: DMA Fundamentals (p.79)
1 O=Arrl!Yi 11 =:Linked List

RDMR13 RSBlnA/L Array or O=store Receive Status Blocks in data buffers RW 5: Storing Receive Status
Linked List after frames/messages; Blocks (pp.92-93)

1 =store RSBs in Arr~List entries;
RDMR12 ClearCount Array or 1 =clear Byte Count fields in Array/List entries to RW 5: Array Mode (pp.85-93)

Linked List zero after fetching them 5: Linked List Mode (pp.87·
9Ql_

RDMR11-10 AddrMode OO=lncrement addresses; RW 5: Address Sequencing
01 =decrement addresses; 1 O=fixed address l\Q,96}_

RDMR9 TermE 1 =terminate buffer on RxBound RW 5: DMA Fundamentals:
Buffer Termination (pp.80·
81_2_

RDMR8 8/16 16-bit bus 1 =8 bit transfers; RW 5: DMA Fundamentals: Data
0=16 bit transfers Width, B~e OrderiQ.9...(E:.8Ql_

RDMR7 CONT Pipelined 1 =software has issued a Start/Continue RO 5: Channel Status (pp.90-95)
command after loadiQfl_Next Address and Cou~

RDMR6 GLink Linked List 1 =the channel is reading the Link address from RO
a list en!,ry, or it sto..EE..ed while doiQfl_ so

RDMR5 BUSY 1 =the channel is operating per a Start RO
command; O=the channel is st~ed

RDMR4 INITG Array or 1 =the channel is fetching information from the RO
Linked List arr~or linked list, or it st~ed while doilJ.9. so

RDMR3 EOA/EOL Array or 1 =the channel has reached the end of the array ROC
Linked List or list, s_!g_nified ~a zero B~e Count field

RDMR2 EOB 1 =the channel has reached the end of a buffer ROC
RDMR1 HAbort 1 =the channel stopped because the /ABORT ROC

L2[n went low while it was doin_g_ a memo!Y_ ~cle
RDMRO SAbort 1 =software stopped the channel via an Abort ROC

command

150

Receive Interrupt Control Register (RICR) Register Address 1 O b 10011
"RTSA data• If lllt RCSR15-12 command 4·7 Wll 4

Idle Break/ Rx Abort
"RxFIFO fill level" If last RCSR15·12command 4-7wae 5 Exited Word RxOver TCOR
"Rx Int Req level" If laat RCSR15-12 command 4-7 w11 6 Hunt IA Rcved Abort Bound Status /PE IA Sel

"Rx OMA R~level" If last RCSR15·12 command 4-7 w11 7
IA IA IA IA

15 14 13 12 11 10 9 8 5 0

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RICR15·9 RTSASlot 4 written to "slot number" (number of bytes from frame RW 3: Time Slot Assigners
RCmd sync) at which to activate Rx in each frame

since 5-7
written

there, read,
or write

w/RICRB=O
RICR15-13 RTSAOffset 4 written to "offset" (number of bits delay) at which to WO

RCmd activate Rx in each frame
since 5-7

written
there, write
w/RICRB=1

RICR12-9 RTSACount 4 written to OOOO=disable Rx Time Slot Assigner WO
RCmd 0001-1111 =number of consecutive bytes/

since 5-7 octets/time slots to receive in each frame
written

there, write
w/RICR8=1

RICR15·8 5 written to the number of characters/bytes/octets RO 4: The Data Registers and
RCmd, or currently in the RxFIFO the FIFOs (pp.74-76)

Reset,
since 4, 6,

or 7 written
there

RICR15·8 6 written to number of characters/bytes/octets in the RW 6: Receive Data Interrupts
RCmd RxFIFO, above which to request a Receive (p.116)

slnce4, 5, Data Interrupt
or 7 written

there
RICR15·8 7 written to number of characters/bytes/octets in the RW 5: DMA Requests by the

RCmd RxFIFO, above which to request Receive DMA Receiver and Transmitter
since 4-6 transfer (pp.97-99)

written
there

RICR7 ExltedHunt 1 =arm Interrupts on ExitedHunt (RCSR7) RW 6: Receive Status Interrupt
IA Sources and IA Bits

RICR6 ldleRcvedlA 1 =arm interru_.E!s on ldleRcved IRCSR~ RW (pp.115-116)
RICR5 Break/Abort 1 =arm interrupts on Break/Abort (RCSR5) RW

IA
RICR4 RxBound IA 1=arm interr~ts on RxBoundJ.RCSR'il_ RW
RICR3 Word Status O="queued" status in RCSR reflects oldest RW 4: Status Reporting

character in RxFIFO; 1 =two oldest characters [iQQ,60-64}_
RICR2 Abort/PE IA 1 =arm interruf)ts on Abort/P([RCSR2[RW 6: Receive Status Interrupt
RICR1 RxOver IA 1 =arm Interrupts on RxOver (RCSR1) RW Sources & IA Bits (pp.115-

11 fil_
RICRO TCORSel O=select Time Constant value for reading TCOR RW 3: Tx and Rx Clocking: The

1 =capture current count for reading TCOR Baud Rate Generators
I (pp.25-2"Q.

151

Receive Mode Register (RMR)

RxDecode RxCRCType

15 14 13 12 11

Bit(s) Field/Bit Conditions
Name /Context

RMR15-13 RxDecode

RMR12-11 RxCRCType Sync

RMR10 RxCRCStart Sync

RMR9 RxCRCEnab S_ync
RMR8 QAbort HDLC/

SDLC

RMR7-6 RxParType

RMR5 RxParEnab
RMR4-2 RxLength

RMR1-0 Rx Enable

RxCRC RxCRC QAbort
Start Enab

RxParType

10 9 6

Description

OOO=RxD not encoded ("NAZ");
001=invert polarity of RxD ("NRZB");
010=decode RxD NAZI-Mark;
011 =decode RxD NAZI-Space;
100=decode RxD Biphase-Mark (FM1);

RxPar
Enab

5

101 =decode RxD Biphase-Space (FMO);
11 O=decode RxD Biphase-Level (Manchester);
111 =decode RxD Differential BiQ_hase-Level
OO=use 16-bit CRC-CCITT for Rx;
01 =Use CRC-16 for Rx;
1 O=use 32-blt Ethernet CRC for Rx
O=start Receive CRC generator as all-zeroes;
1=all ones
1 =include Receive characters in CRC
1 =use Abort/PE bit in RxFIFO, RCSR2 for Abort
indication; O=use it for Parity Error indication

OO=Receive Parity Even; 01 =Odd;
1O=Zero1S..£?C~ 11 =One J_Mar!5)_
1 =accumulate & check Par.!!Y_ bits
OOO=receive eight bit characters;
001-111 =receive 1-7 bit characters
OO=disable Receiver (immediately);
01 =disable Rx at end of message/frame/char;
1 O=enable Rx unconditionally;
11 =auto-enable Rx ~r /DCD Jl.ln

Receive Sync Register (RSR)

Register Address 1 0 b 10001

RxLength RxEnable

2

RW Ref Chapter: Section
Status

RW 3: Data Formats and
Encoding (pp.29-30)

4: Cyclic Redundancy
Checking (pp.58-59)

4: Status Reporting: Detailed
Status in RCSR (pp.62-64);
4: HDLC/SDLC: Handling a
Received Abort_i2.:5D_
4: Parity Checking (pp.59-60)

4: The Mode Registers:
Character Length (pp.45-46)

Register Address 1 ob 10100

Receive Sync, SYN1, or 9th-16th blta of Ethernet address Receive SYNC or 1st-8th bits of address

15 14 13 12 11 10 9 7 6 5 3

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RSR15-8 Monosync Receive Sync match character AW 4: Monosync and Bisync

Bisync second half of Receive sync match (SYN 1) Modes (pp.50-51)

802.3 match against last-received 8 bits of address 4: 802.3 (Ethernet) Mode
~53-5-B_

RSR7-0 Bisync first half of Receive sync match (SYNO) 4: Monosync and Bisync
Modes (pp.50-51)

H/SDLC, match against first-received 8 bits of address 4: HDLC/SDLC Mode
(CMR7-4) (pp.54·56)

<>XXOO, 4: 802.3 (Ethernet) Mode
802.3 i(pp.53·5'!)_

152

Set OMA Interrupt Register (SDIR) Register Address Ox b 01110

Reeerved (0) RxDMA TxDMA
IUS IUS

Reserved (0) RxDMA TxDMA
IP IP

15 14 13 12 11 10 9 6

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

SOIR9 RxOMA IUS read 1 =Rx OMA interrupt under service RO 6: DMA IP and IUS Bits

write 1 =set Rx OMA IUS bit; O=no chan_g_e WO (p.122)

SOIRS TxOMA IUS read 1 = Tx DMA interrupt under service RO

write 1 =Set Tx OMA IUS bit; O=no cha'l9_e WO
SDIR1 RxOMA IP read 1 =Rx DMA interrupt pending RO

write 1 =set Rx OMA IP bit; O=no cha'l9_e WO
SOIRO TxOMA IP read 1 = Tx DMA interrupt pending RO

write 1 =set Tx OMA IP bit; O=no change WO

Status Interrupt Control Register (SICA) Register Address 1 0 b 01111

RxCDn RxCUp TxCDn TxCUp RxRDn RxRUp TxRDn TxRUp DCDDn DCDUp CTSDn CTSUp RCC DPLL BRG1 BRGO
IA IA IA IA IA IA IA IA IA IA IA IA u~~er D~xnc IA IA

15 14 13 12 11 10 5

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

SICR15 RxCOn IA 1=set MISR15/interru_e_t on fall of /RxC RW 3: The /RxC and /TxC Pins
SICR14 RxCU_Q_IA 1 =Set MISR15/interrupJ on rise of /RxC (p.35)
SICR13 TxCOn IA 1 =set MISR13/interru_e_t on fall of /TxC
SICR12 TxCU_Q_IA 1 =set MISR13/interru_m on rise of /TxC
SICR11 RxROn IA 1 =set MISR11/interru_e_t on fall of /RxREQ 3: /RxREQ and /TxREQ Pins
SICR10 RxRU_Q_IA 1 =set MISR11/interrupt on rise of /RxREQ (pp.35-36)
SICR9 TxROn IA 1 =set MISR9/interrl!Q_t on fall of /TxREQ
SICR8 TxRU_Q_IA 1 =set MISR9/interrl!Q_t on rise of /TxREQ
SICR7 DCDDn IA 1 =Set MISR7/interr~ on fall of /OCO 3: The /DCD Pin (pp.33-34)
SICR6 OCOLIQ_IA 1=set MISR7/interr~ on rise of /OCD
SICR5 CTSOn IA 1 =set MISR5/interrl!Q_t on fall of /CTS 3: The /CTS Pin (pp.34-35)
SICR4 CTSU_Q_IA 1 =set MISR5/interrl!Q_t on rise of /CTS
SICR3 RCC Under RCC used 1 =interrupt on RCC underflow 4: DMA Support Features:

IA (Receive frame/message longer than max The RCC FIFO (p.68)
allowe<1}_

SICR2 OPLLDSync Bi phase 1 =interrupt on DPLL sync loss 3: More About the DPLL
IA (pp.30-31);

6: Miscellaneous Int. Source~
and IA Bits (pp. 119-12Q2_

SICR1 BRG1 IA 1 =interrl!Q_t on BRG 1 zero 3: Tx and Rx Clocking:
SICRO BRGO IA 1 =interrupt on BRGO zero The Baud Rate Generators

l(pp.25-2D_

Test Mode Control Register (TMCR) Register Address 1 O b 00111

I Reserved (0) Test Register Address I

15 14 13 12 ,, 10

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

TMCR4-0 address of test register to read and write in ? USC Family Test Modes
TMDR (forthcoming separate

documen.!)_

153

Test Mode Data Register (TMDR) Register Address 1 o b 0011 O

I Test Register selected by TMCR4-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

TMCR15-0 test register selected by TMCR4-0 varies USC Family Test Modes
(forthcoming separate
documen!}_

Time Constant O Register (TCOR) Register Address 1 O b 10111

divisor for (or current count In) Baud Rate Generator o

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

TCOR15-0 write, or divisor/starting value for BRGO: RW 4: DMA Support Featur~s:
read w/ O=lnput=output; 1 =divide by 2; The Character Counters

TCORSel n=dlvlde by n+ 1 (pp.65-68)
(RICRO)=O

read w/ value of BRGO counter last time TCORSel:=1 RO
TCORSel

liRICRQ}_=1

Time Constant 1 Register (TC1 R) Register Address 1 O b 11111

divisor for (or current count In) Baud Rate Generator 1

15 14 13 12 11 10' 9 8 7 6 5 4 3 2 0

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

TC1R15-0 write, or divisor/starting value for BRG1: RW 4: DMA Support Features:
read w/ O=input=output; 1 =divide by 2; The Character Counters

TC1RSel n=divide by n+ 1 (pp.65-68)
(TICRO)=O

read w/ value of BRG1 counter last time TC1 RSel:=1 RO
TC1RSel

JI!CRQ}_=1

154

Transmit Address Register Lower (TARL) Register Address O O b 1011 O

LS 16 bits of currant Tx OMA buffer address

15 14 13 12 11 10 7

Transmit Address Register Upper (TARU) Register Address 0 0 b 10111

MS 16 bits of current Tx OMA buffer address

15 14 13 12 11 10 5

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name !Context Status

TARU15-0 32-bit current address in Tx OMA buffer RW 5: OMA Fundamentals:
TARL15-0 Addresses and Byte Counts

lliic79J.

Transmit Byte Count Register (TBCR) Register Address 0 Ob 10101

number of bytes left to send In current Tx OMA buffer

15 14 13 12 11 10

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

TBCR15-0 number of bytes left to send in Tx OMA buffer RW 5: OMA Fundamentals:
Addresses and Byte Counts

lliic79J.

Transmit Character Count Register (TCCR) Register Address 1 0 b 11110

current value of Transmit Character Counter

15 14 13 12 11 10

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

TCCR15-0 0= TCC disabled; else number of bytes (left) to RO 4: OMA Support Features:
send in current/next Transmit frame/message The Character Counters

liJ:i.Q,65-68)_

155

Transmit Command/Status Register (TCSR)

TCmd Rsrvd

15 14 13 12 11

Bit(s) Field/Bit Conditions
Name /Context

TCSR15-12 TCmd

Sync

TICR2=1

H/SDLC

T.Bisync

Sync

TCSR10-8 Txldle

TCSR7 Present ~c
TCSR6 ldleSent
TCSR5 AbortSent H/SDLC
TCSR4 EOF/EOM Sync

Sent
TCSR3 CRCSent ~c
TCSR2 All Sent A~c
TCSR1 TxUnder
TCSRO TxEmpty

Txldle

10 9

Description

8

Pre
Sent

Idle
Sent

6

OOOO=no operation; 0001 =reserved

001 O=Clear Tx CRC Generator

0011 =reserved
0100=Select TICRHi=TTSA Data
0101 =Select TICRHi= TxFIFO Status
011 O=Select TICRHi=/INT Level
0111 =Select TICRHi=/TxREQ Level

1 OOO=Send Frame/Message

1001 =Send Abort

101 x=reserved

11 OO=Enable DLE Insertion
1101 =Disable DLE Insertion

111 O=Clear EOF/EOM
1111 =Set EOF/EOM
selects the Transmit idle line condition:

Abort
Sent

OOO=the default for TxMode (sync/Flag/Mark)
001 =alternating zeroes and ones
01 O=continuous zeroes
011 =continuous ones
1 OO=reserved
101 =alternating Mark and Space
11 O=continuous Space (TxD low)
111 =continuous Mark_ffxD hig_ti}_
1 =Transmitter has finished sendirig_ Preamble
1 =Transmitter has sent Idle condition
1 =Transmitter has sent Abort
1 =Transmitter has sent End of Frame/End of
Mess~e

1 =Transmitter has sent a CRC code
1 =last bit has _g_one out onto TxD
1 =Transmitter has Underflowed
1 = TxFIFO is em..Q!y_

Transmit Count Limit Register (TCLR)

starting value for Transmit Character Counter

15 14 13 12 11 10 9

Bit(s) Field/Bit Conditions Description
Name /Context

TCLR15-0 starting value for TCC: O=disable TCC;
else length of next frame/message

156

Register Address 1 0 b 1101 o
EOF/
EOM
Sent

4

RW
Status
WO

RW

R,W1U
R,W1U
R,W1U
R,W1U

R,W1U
RO

R,W1U
RO

CRC
Sent

3

All
Sent

Tx Tx
Under Empty

Ref Chapter: Section

4: Commands (pp.70-74)

4: Between Messages,
Frames, or Characters
(pp.76-78)

4: Status Reporting:
Detailed Status in the TCSR
(p.62)

Register Address 1 0 b 11101

RW Ref Chapter: Section
Status

AW 4: DMA Support Features:
The Character Counters
I (pp.65-6<11

Transmit Data Register (TOR) Register Address 1 Ob 1xOOO or 1 1 b xxxxx

Transmit character: write only using 18-blt operation Transmit character: 8- or 16-blt write

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

TDR15-8 16 bit bus the "other" Transmit character in a 16-bit write WO 4: The Data Registers and
(may be sent 1st or 2nd per "Select 015-8 First" the FIFOs (pp.74-76)
or "Select 07-0 First" command in RTCmd

[CCAR15·11.ll_
TDR7-0 Transmit character

Transmit OMA Interrupt Arm Register (TDIAR) Register Address 0 0 b 01111

Reserved (0)
EOA/ EOB HAbort SAbort

EOLIA IA IA IA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

See the description of the Receive OMA Interrupt Arm Register (RDIAR). This one Is Identical except that it arms
status bits In the TDMR rather than the RDMR.

Transmit OMA Mode Register (TDMR) Register Address 0 0 b 00001

DMAMode TCB Claar
lnA/L Count

AddrMode TermE 8/16 CONT GLlnk BUSY INITG EOA/
EOL

EOB HAbort $Abort

15 14 13 12 11 10 9 8 7 6 5 2

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

TDMR15·14 DMAMode OO=Single Buffer; 01 =Pipelined; RW 5: OMA Fundamentals (p. 79)
10=Arr!IY; 11 =:Linked List

TDMR13 TCBlnA/L Array or O=fetch Transmit Control Blocks from data RW 5: Fetching Transmit Control
Linked List buffers before start of frames/messages; Blocks (pp.90·92)

1 =fetch TCBs from Arr~List entries;
TDMR12 ClearCount Array or 1 =clear Byte Count fields in Array/List entries to RW 5: Array Mode (pp.85-93)

Linked List zero after fetching them 5: Linked List Mode (pp.87-
9Q)_

TDMR11-10 AddrMode OO=increment addresses; RW 5: Address Sequencing
01 =decrement addresses; 1 O=fixed address li!i.9fil_

TDMR9 TermE 1 =terminate buffer on RxBound RW 5: OMA Fundamentals:
Buffer Termination (pp.BO·
BD_

TDMRB 8/16 16·bit bus 1 =8 bit transfers; RW 5: OMA Fundamentals: Data
0= 16 bit transfers Width, B_}'!e Orderi!J.9J.e.:.8Q)_

TDMR7 CONT Pipelined 1 =software has issued a StarVContinue RO 5: Channel Status (pp.90-95)
command after loadiQg_ Next Address and Coun

TDMR6 GLink Linked List 1=the channel is reading the Link address from RO
a list en!!Y, or it stcmQ_ed while doiQg_ so

TDMR5 BUSY 1 =the channel is operating per a Start RO
command; O=the channel is stcmQ_ed

TDMR4 INITG Array or 1 =the channel is fetching information from the RO
Linked List arr<lY_ or linked list, or it st0flll9d while doirig_ so

TDMR3 EOA/EOL Array or 1 =the channel has reached the end of the array ROC
Linked List or list, as s_ig_nified lly_ a zero Byte Count field

TDMR2 EOB 1 =the channel has reached the end of a buffer ROC
TDMR1 HAbort 1 =the channel stopped because the /ABORT ROC

LQin went low while it was doirig_ a memory_ cycle
TOM RO SAbort 1 =software stopped the channel via an Abort AOC

command

157

Transmit Interrupt Control Register (TICR) Register Address 1 O b 11011
"TTSA data" If last TCSR15·12 command 4·7 was 4

Idle Abort EOF/ CRC Tx
'TxFIFO fill level" If last TCSR15·12 command 4·7 was 5 Pre Walt2 TC1R
'Tx Int Req level" If last TCSR15·12 command 4·7 was 6 Sent IA Sent Sent EOM Sent Send Under Sel

'Tx OMA R~level" If laat TCSR15·12 command 4·7 was 7
IA IA Sent IA IA IA

15 14 13 12 11 10 9 7 6

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

TICR15·9 TTSASlot 4 written to "slot number" (number of bytes from frame RW 3: Time Slot Assigners
TCmd sync) at which to activate Tx in each frame

since 5·7
written

there, read,
or write

w!TICR8=0
TICR15·13 TTSAOffset 4 written to "offset" (number of bits delay) at which to WO

TCmd activate Tx in each frame
since 5-7

written
there, write
w{flCR8=1

TICR12-9 TTSACount 4 written to OOOO=disable Tx Time Slot Assigner: WO
TCmd 0001-1111 =number of consecutive bytes/

since 5-7 octets/time slots to send in each frame
written

there, write
w!TICR8=1

TICR15-8 5 written to the number of character/byte/octet entries RO 4: The Data Registers
TCmd, or currently empty in the TxFIFO and the FIFOs (pp.74-76)

Reset,
since 4, 6,

or 7 written
there

TICR15-8 6 written to the number of empty character/byte/octet RW 6: Transmit Data Interrupts
TCmd entries in the TxFIFO, above which to request a (pp.118-119)

since 4, 5, Transmit Data interrupt
or 7 written

there
TICR15-8 7 written to the number of empty character/byte/octet RW 5: OMA Requests by the

TCmd entries in the TxFIFO, above which to request Receiver and Transmitter
since 4-6 Transmit OMA transfer (pp.97-99)

written
there

TICR7 Present IA S_y_nc 1 =arm interr~s on Preamble SentJ.I.CSRrr_ RW 6: Transmit Status Interrupt
TICR6 ldleSent IA 1 =arm interr~s on ldleSentl[CSR~ RW Sources and IA Bits
TICR5 AbortSentlA H/SDLC 1 =arm interr~s on AbortSentl[CSR~ RW (pp. 116-118)
TICR4 EOF/EOM Sync 1 =arm interrupts on EOF/EOM Sent (TCSR4) RW

Sent IA
TICR3 CRCSent IA Sync 1 =arm interrupts on CRCSent(fCSR~ RW
TICR2 Wait2Send Sync 1 =hold Transmitter from sending each RW 4: Synchronizing Frames/

frame/message until software issues "Send Messages with Software
Mess~e/Frame" command Re~nse JEc 7~

TICR1 TxUnder IA 1 =arm interrupts on TxUnder (TCSR 1) RW 6: Transmit Status Interrupt
Sources and IA Bits (pp. 116-
11~

TICRO TC1R Sel O=select Time Constant value for reading TC1 R RW 3: Tx and Rx Clocking:
1 =capture current count for reading TC1 R The Baud Rate Generators

I (pp.25-2rr_

158

Transmit Mode Register (TMR) Register Address 1 o b 11001

TxEncode TxCRC TxCRC TxCRC TxPar
TXCRCType Start Enab atEnd TxParType Enab TxLength TxEnable

15 14 13 12 11 10 9 7 5 3 0

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

TMR15-13 TxEncode OOO=don't encode TxD ("NRZ"); RW 3: Data Formats and
001 =invert polarity of TxD ("NRZB"); Encoding (pp.29-30}
01 O=encode TxD NRZl-Mark;
011 =encode TxD NAZI-Space;
100=encode TxD Biphase-Mark (FM1);
101 =encode TxD Bi phase-Space (FMO);
11 O=encode TxD Bi phase-Level (Manchester);
111 =encode TxD Differential B:!Q_hase-Level

TMR12-11 TxCRCType Sync OO=use 16-bit CRC-CCITT for Tx; 4: Cyclic Redundancy
01 =use CRC-16 for Tx; Checking (pp.58-59)
1 O=use 32-blt Ethernet CRC for Tx

TMR10 TxCRCStart Sync O=start Transmit CRC generator as all-zeroes;
1=all ones

TMR9 TxCRCEnab ~c 1 =include Transmit characters in CRC
TMRB TxCRCatE~ ~c 1 =send accumulated CRC at EOF/EOM
TMR7-6 TxParType OO=Transmit Parity Even; 01 =Odd; 4: Parity Checking (pp.59-60)

1 O=Zero..@e..ac!tl; 11 =One J_Marlg_
TMR5 TxParEnab 1 =accumulate & send Par:!!Y. bits
TMR4-2 TxLength OOO=send eight bit characters; 4: The Mode Registers:

001-111=send1-7 bit characters Character LenJl!hJe.e.:45-4~
TMR1-0 TxEnable OO=disable Transmitter (immediately); 4: The Mode Registers:

01 =disable Tx at end of message/frame/char; Enabling and Disabling
1 O=enable Tx unconditionally; (p.45)
11 =auto-enable Tx _Q_er /CTSgin

Transmit Sync Register (TSR) Register Address 1 o b 11100

I Transmit SYN1 Transmit Sync or SYNO I
15 14 13 12 11 10 9 5

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section
Name /Context Status

RSR15-8 Bi~c second half of Transmit ~cj_SYN1_l WR 4: Monosync and Bisync
RSR7-0 Monosync, Transmit Sync character Modes (pp.50-51)

Slaved 4: Slaved Monosync Mode
Monosync (p.53)

Bl~c first half of Transmit ~nc J_SYNQ)_

159

Appendix: Changes

This section summarizes the changes in the names of
registers and commands since the original USC
Technical Manual, as well as the improvements added
in the 16C32.

Transmit Status Blocks--> Transmit Control Blocks

The names of registers and other USC features, in
past documentation, maintained the distinction
between "status" info as flowing from the USC to the
host, and "control" information as flowing from the
host to the USC pretty strictly -- all except this one.

Interrupt Enable (for individual sources) -·>
Interrupt Arm

There was no distinction between the enabling of a
whole interrupt type and the enabling of an individual
source within a type, and it seemed important to
distinguish between these, so we kept the former as
"enabling" and called the latter "arming" instead.
Vague memories of early minicomputer terminology
say the same terms were used.

Commands

Reload RCC I TCC --> Load RCC/TCC

It wasn't clear why RCC and TCC were "reloaded"
while TCO and TC1 were just "loaded".

Select Straight/Swapped Memory Data --> Select
015-8/07-0 First

"Straight" means whichever way your microprocessor
wants it, while "swapped" is the way the other guys'
part works ...

Preset CRC --> Clear Tx/Rx CRC Generator

More descriptive of the function: "preset" seemed to
carry the possibility that you might be able to load in
any arbitrary starting value ...

Bit/Field Names
There weren't really bit and field names in the old
Technical Manual -- they were more like text titles. But
for those bits and fields that had fairly short titles, the
names in this manual may or may not be the same.
One change of note is that RCSR4 has been changed
from "CV/EOF/EOM" to "RxBound", after it was noted
that the bit has a fourth use: in Nine-Bit mode it flags
address bytes. ("CV/EOF/EOM/Addr" seemed a little
long ...)

Another such change is that CCSR14 is now called
RCCF Avail rather than RCC Valid. (It's perfectly
valid for the RCC FIFO to be empty, in which case
there's nothing available to be read from it.)

The bit and field names in this book are similar to, but
not identical with, those in the Electronic Program
mer's Manual.

Changes from the 16C31
Here's what's new in the 16C32, including the page
number of "the most important" description of each:

1 . The redundant ByteSwap field in the BCR was
removed in favor of using the state controlled by
the "Select 015-8 First" and "Select 07-0 First"
commands. (p.14)

2. The PORTO/CLKO and PORT1/ CLK1 pins can
now carry direct bit clocks, without dividing them
in CTRO and CTR1. (p.25)

3. A hardware or software Reset forces the PORT
pins to input status. (p.36)

4. HDLC/SDLC Abort status can be queued with
received characters (p.64)

5. Receive Data interrupts are delayed by one
receive bit clock so that the RCC FIFO status is
correct at the time of such an interrupt. (p.68)

160

6. Improved synchronization and interlocking
between the serial clock and bus transactions
have eliminated incorrect FIFO status and
Receive OMA requesting. (pp.75-76)

7. Flags can be used as a Preamble, for remote
equipment that needs more than one or two of
them, or for slowing down the frame rate slightly
for congestion management. (p.77)

8. A OMA channel operating in 16-bit mode will do a
byte transfer if a buffer starts at an odd address,
or if the last character of a frame doesn't
complete a 16-bit word. (p.80)

9. In array and linked list modes, the DMA channels
can clear the Byte Count of each buffer after
fetching it, to prevent ring wraparound when a
linked list is arranged as a ring of buffers. (pp.
89-90)

10. In array and linked list modes, the OMA channels
can fetch Transmit Control Blocks and store
Receive Status Blocks in the array/list entries
rather than with the data. On the receive side this
eliminates the need for interrupt service routines
to read the RCC FIFO as frames arrive, for frame
length determination. (pp.90-93)

11. The OMA channels' state variables had to be
expanded to implement 9 and 1 0. (pp.104-1 05)

Index

In the following index:

Bold page numbers identify the definition or main
explanation of a term.

Italic page numbers identify a Figure that illustrates the
term.

Bold Italic page numbers identify a section about the
term, that includes both text and pictorial information.

/ABORT pin, 7, 80, 83, 94, 102-103, 104, 122

/AS pin, 6, 11, 16, 21-24, 100, 101, 102-103, 110,
111-114, 115

/BIN pin, 7, 97, 100, 101, 102-103, 104

/BOUT pin, 7, 100

/BUSREQ pin, 7, 14, 95, 97, 100, 104, 128, 137

/CS pin, 5, 11, 14, 21-24

/CTS bit, 35, 143

/CTS pin, 8, 32, 34-35, 45, 53, 119

/DCD bit, 34, 143

/DCD pin, 8, 32, 33-34, 45, 50, 53, 54, 63, 64, 67, 115,
119

IDS pin, 6, 12-13, 14, 21-24, 100, 102-103, 104, 110,
111-114, 115

/DTACK, see/WAIT//RDY pin

/FSYNC, 36, 37-38

/INT pin, 7, 15, 52, 54, 55, 60, 72, 107, 108, 110, 111-
114, 119, 120, 128

/INT ACK pin, 7, 12, 14, 21-24, 107, 108, 110, 111-
114, 115, 128

/IRQTP, 15, 110, 128

/P7-0 bits, 36, 146

/RD pin, 6, 12-13, 14, 21-24, 100, 102-103, 104, 110,
111-114, 115

/RESET pin, 5, 11, 33, 74, 75

/RxACK, 35, 36

/RxC bit, 35, 143

/RxC pin, 7, 25, 27, 28, 32, 34, 35, 37-38, 50, 119

/RxD pin, 34, 37-38

/RxR bit, 36, 143

/RxREQ pin, 7, 32, 35-36, 52, 54, 55, 68, 73, 78, 119

/RxSYNC, 36

/TxACK, 35, 36

/TxC bit, 35, 143

/TxC pin, 7, 25, 27, 28, 32, 34, 35, 37-38, 53, 119

161

/TxD pin, 34, 37-38

/TxR bit, 36, 143

/TxREQ pin, 7, 32, 35-36, 67, 68, 72, 73, 99, 119

/UAS Frequency, 23, 101

/UAS pin, 6, 23, 100, 101, 102-103, 104

/WAIT//RDY pin, 5, 6, 13, 14, 21-24, 96, 101, 102-103,
104, 111-114, 115, 121, 123, 125

/WR pin, 6, 12-13, 14, 21-24, 100, 102-103, 104

1553B,33,46,48-50, 49, 63,64, 65,69, 70, 72, 75,
81,99, 115, 132

16Bit, 14, 80, 85, 97, 98, 105, 128

16COx, 72, 75

1 stBE, 63, 70, 148

1Wait, 101, 138

2ndBE, 62, 148

680x0, 72, 75, 79

8/16,80,85, 98, 105, 150, 157

802.3,33,53-54, 58,63,64, 67, 68, 69, 70, 77,81,
99, 115, 133

80x86, 75, 79

A15 (carryout of), 101, 104

Abort
All Channels (command), 80, 94, 96, 122
Handling a Received, 57
Hardware, see /ABORT pin
Master Cycle, see /ABORT pin
Sequence (HDLC/SDLC), 44, 55, 56, 60, 62, 63,

64, 73, 115, 116, 148
This Channel (command), 80, 94, 96, 122

Abort/PE,57,60,61,64, 70, 116, 148

Abort/PE IA, 64, 115, 151

AbortSent, 62, 156

AbortSentlA,62, 118, 158

Acknowledge, see /WAIT//RDY pin

AD pins, 5, 11, 21-24, 72, 73, 80, 97, 100, 102-103,
111-114, 115, 128

Adding a Buffer to a List, 90

Address, 63
/Data Bit, 48
/Data Bus, see AD pins
All Ones, 54, 55
Buffer, 79, 85, 87
Character, 115
Destination, 54
DMA, 81
Even,66, 72, 75
Extended (HDLC/SDLC), 56
Field Handling (HDLC/SDLC), 55, 63
Implicit, 16
Indirect, 16
Link, 87
Odd, 66, 73, 75
Receive DMA, 81
Register, 15-19, 74
Separate, 14
Sequencing, 96
Source (Ethernet), 54
Strobe, see /AS pin

Upper, see /UAS pin
Transmit DMA, 81
Wakeup, see Nine-Bit

AddrMode, 96, 150, 157

AddrSeg,96, 101, 138

ALBVO, 97, 98, 138

All Ones, 48, 58, 65, 68, 70, 71, 76
Address, 54, 55

All Zeroes, 71

AllSent, 62, 156

Alternating bits, 54

Army, 48, 50

Array
/List Binary Value Order, 97
/List vs. Serial Cycles, 5
Fetch, 80, 104
Mode,9, 68, 70, 85-87,94,96,97, 101, 122

Array Mode, 90, 92, 104

ASCII, 52

Async with Code Violations, see 1553B

Asynchronous, 25, 28, 32, 33, 34, 41-42, 46-47, 59,
63,64, 72, 76, 77, 115, 132

Auto-enabling, 53

B//W, 6, 15, 129, 137

Backoff,53

Baud Rate Generators, see BRGO and BRG1

162

BCR, 5, 6, 7, 8, 11, 13, 14-15, 74, 80, 85, 97, 101,
105, 110, 111, 112, 125, 128

BDCR, 90, 97, 104, 128

Between Frames, Messages, or Characters, 76-78

Big Endian, 20, 66, 79, 80, 92, 138

Binary Format (in Arrays/Lists), 97

Binary Synchronous Communications, see Bisync

Biphase, 119

Biphase-Level, 29, 30, 31, 48, 53

Biphase-Mark, 29, 30, 31, 48

Biphase-Space, 29, 30, 31

Bisync, 33, 50-53, 58, 63, 132
Transparent, see Transparent Bisync

Block Diagram, 9

Break, 32

Break/Abort, 47, 57, 60, 63, 116, 148

Break/Abort IA, 63, 115, 151

BRGO, 25-27, 35, 72

BRGO IA, 27, 120, 153

BRGOE, 27, 139

BRGOL/U, 27, 143

BRGOS, 139

BRGOSrc, 27, 28, 135

BRG1, 25-27, 35, 72

BRG1 IA, 27, 120, 153

BRG1E, 27, 139

BRG1L/U, 27, 143

BRG1S, 27, 139

BRG1Src, 27, 28, 135

BRQTP, 14, 97, 128

Buffer
Address(es), 79, 85, 87
Ring, 89
Termination, 80-81
Termination, Early, 80, 97

Burst/Dwell Control Register, see BDCR

Bus
Acknowledge In, see /BIN pin
Acknowledge Out, see /BOUT pin
Acquisition, 100-101
Address/Data, see AD pins
Configuration Register, see BCR
Cycles

Interrupt Acknowledge, 111-114
Master, 6, 101-103
Register Access, 21-24

Data, see AD pins

Bus (continued)
Interfacing, 11-24
Multiplexed, 11, 15, 21-22, 102-103, 111
Non-multiplexed, 11, 14, 23-24, 112
Occupancy Throttling, 104
Release, 100-101
Request, see /BUSREQ pin

Totem Pole (vs. open drain), 14
Serial, 31, 32
Width, 13, 14, 80

BUSY,83,90,94,96,97,99, 150, 157

Byte Count, 79, 80, 85, 87, 90, 92
Receive, 81
Transmit, 81
Zero, 79,87,89,90,94

Byte Ordering, 20, 80

Byte/Word Select, see B//W

ByteSwap, 14

C//D pin, 11

Carrier Detect, see /DCD pin

CCAR, 11, 14, 15, 16, 20, 27, 32, 50, 54, 56, 64, 65,
68, 71, 74, 75, 78, 79,80,99, 120, 126, 129

CCR, 28, 46, 51, 53, 55, 62, 65, 68, 69, 70, 72, 74, 77,
78, 79,92,93,99, 118, 131

CCSR, 25, 30, 31, 53, 56, 57, 58, 68, 69, 78, 130

CDIR, 122, 134

ChanLoad,126, 129

Channel
Command/Address Register, see CCAR
Command/Status Register, see CCSR
Control Register, see CCR
Mode Register, see CMR
Select (OMA), 5, 95

ChanPri, 99, 138

Character
Clocks, 35
Counters, see RCC and TCC
Length, 45-46
Pairs, 51
Partial, 56

Chip Select, see /CS pin

Clear
OMA Interrupt Register, see CDIR
EOF/EOM (command), 71
RCCF, 68, 130
Rx CRC (command), 58, 71

to Send, see /CTS pin
Tx CRC (command), 58, 71

163

ClearCount, 85, 87, 89, 90, 105, 150, 157

CLK, 5, 100, 101, 102-103, 104
Max per Bus Grant, 128

CLK1-0 pins, 25

Clock(s), 25-29
External, 25, 47
from PORT pins, 8, 25
Logic Model, 26
Missing, 30, 53, 119
Mode Control Register, see CMCR
Receive, see RxCLK, /RxC pin
Reference, 36
Stopping, 28-29
Synchronous, 28
Transitions, 31
Transmit, see TxCLK, /TxC pin

Closing Flag, 55, 58, 73, 76

Closing Sync, 76

CMCR, 25, 26, 27, 28, 135

CMOS,28

CMR, 28, 33, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55,57,59,63,69, 73, 76, 77, 132-134

Code Violation, 31

Collisions, 53

Command(s), 51, 52, 70-71, 120, 160
/Status Word, 48, 49, 50, 63, 70
OMA, 95-96

Conditions for OMA Operation, 97

CONT, 83, 94, 96, 122, 150, 157

Control Field
Extended, 56

Control Field Handling, 55, 63

Counters, see CTRO and CTR1
Character, see RCC andTCC

CRC, 42, 50, 51, 52, 53, 54, 56, 57, 58-59, 65, 66, 71,
73, 76, 78

CRCE/FE, 47, 59, 60, 61, 64, 70, 78, 148

CRCSent, 62, 77, 156

CRCSent IA, 62, 118, 158

CTRO, 25, 35, 36

CTRODiv, 25, 139

CTROSrc, 25, 28, 135

CTR1, 25, 35, 36

CTR1DSel, 25, 28, 139

CTR1Src, 25, 28, 135

CtrBypass, 25, 130

CTSDn IA, 35, 119, 153

CTSL/U, 35, 143

CTSMode, 34, 45, 53, 140

CTSUp IA, 35, 119, 153

CV/EOF/EOM, 160

CVOK, 31, 139

CVType, see ShortF/CVType

Cycle(s), 13
Interrupt Acknowledge, 110-115

vs. Read, 115
Master, 6, 101-103
Max per Bus Grant, 128
Read,6
Register Access, 21-24
Slave, 6
Write, 6

Cyclic Redundancy Check(ing), see CRC

D//C pin, 5, 16, 21-24, 74, 100, 101, 138

DACR, 105, 137

Daisy Chaln(s), 7, 107
Control Register, see DCCR

Data
/Control, see D//C pin
Bus, see AD pins
Carrier Detect, see /DCD pin
Decoding, 2~30, 77
Encoding, 2~30
Formats, ~30
Interrupts, see Receive and Transmit Data

Interrupts
Receive, see RxD pin
Registers, 74-75
Strobe, see IDS pin
Transitions, 31
Transmit, see TxD pin
vs. Address (Nine-Bit), 48
Width, 13, 14, 80
Word, 48, 49, 50, 63, 70

DCAR, 11, 15, 16, 80, 81, 83, 87, 90, 93, 94, 95, 97,
122, 137

DCCR,32, 110, 116, 119, 120, 121, 136

DCDDn IA, 34, 119, 153

DCDL/U, 34, 143

DCDMode, 33, 45, 50, 54, 140

DCDUp IA, 34, 119, 153

DCmd, 95, 122, 137

DCR, 23, 96, 97, 99, 100, 101, 104, 138

DCSDOut, 101, 138

164

Decrement (DMA address), 96

Destination Address, 48, 54

DICR, 110, 123, 138

Differential Biphase-Level, 29, 30, 31

Digital Phase Locked Loop, see DPLL

Disable DLE Insertion (command), 52, 72

Disable Lower Chain, see DLC

Disabling (Rx and Tx), 45

DIVA, 123, 139

DLC, 110,120, 123, 138, 141

DLE,52,64, 72

DLE-SOH, 52

DLE-STX, 52

DLE-SYN, 52

DMA, 8, 7~ 105
Abort

Hardware, 7, 94
Software, 94, 96

Address, 81
Array Count Register, see DACR
Byte Count, 81
Channel Select, 5, 95
Command/Address Register, see DCAR
Control Register, see DCR
Cycle(s), 6, 101-103

Options, 22-23, 101
Initializing a Serial Channel via, 126
Interrupt Control Register, see DICR
Interrupt Vector Register, see DIVR
lnterrupt(s), 81, 83, 87, 89, 121-123
Request Level, 73, 75, 79, 97, 99
Request(s), 7, 8, 52, 54, 55, 67, 68, 73, 78, 79,

97-99
Support Features, 64-70

DMAMode, 79, 150, 157

Double Pulse mode (of interrupts), 110, 114

DPLL,25,27,28,30-31,35,47, 78, 119

DPLL 1 Miss, 31, 130

DPLL2Miss, 31, 130

DPLLDiv, 27, 139

DPLLDSync IA, 119, 153

DPLLDSync L/U, 31, 143

DPLLEdge,30,31, 130

DPLLMode, 30, 139

DPLLSrc, 27, 135

DPLLSync,31, 78, 130

Driver (TxD), 8, 38, 53

Dynamic Priority, 107

Early Buffer Termination, 70, 80, 83, 87, 92, 94, 122

EBCDIC, 52

Echo,32

Edge Detection, 32, 119

Electrical Specifications, 10

Enable OLE Insertion (command), 52, 72

Enabling (Rx and Tx), 45

Encoding of Data, ~30

End Of
Array, see EOA/EOL
Buffer, see EOB
Frame, 53, see also EOF/EOM and RxBound
List, see EOA/EOL
Message, 51, 53, see also EOF/EOM and

RxBound

ENQ, 52, 64

Enter Hunt Mode (command), 68, 72

EOA/EOL, 94, 122, 150, 157

EOA/EOL IA, 149

EOB, 94, 122, 150, 157

EOB IA, 149

EOF/EOM, 51, 53, 58, 66, 67, 71, 73
Sent, 62, 77, 156
Sent IA, 62, 118, 158

EOT, 52, 64

ETB, 52, 64

Ethernet, see 802.3

ETX, 52, 64

Even Address, 66, 72, 75, 80

ExitedHunt, 63, 78, 116, 148

ExitedHunt IA, 63, 115, 151

Experts, 10

Extended Address (HDLC/SDLC), 56

Extended Control Field, 56

External
Clocking, 25, 47
Driver, 8, 38
Hardware, 53
Interrupt Control Logic, 107-108
Sync,33,50,58,63,64,67, 68,69, 132

Extra CLK Periods (OMA), 104

Falling Edges, 119

FE, see CRCE/FE

Features, 1

Fetching TCB's, 90-92

165

FIFO, see RxFIFO andTxFIFO
Capacity, 75

First Byte Exception, see 1 stBE

Fixed (OMA address), 96

Flag(s), 29, 33, 43, 54, 56, 57, 58, 62, 63, 64, 65, 66,
67, 72, 73, 115, 118

Closing, 55, 58, 73, 76
Idle, 58, 76
Minimum Number of, 55, 77
Opening, 55, 77
Single, 77, 78

FlagPreamble, 77, 131

Flowchart
Queued Status Bits, 61
Register Addressing, 19
Sample Receive Status Interrupt Service Routine,

117

Flyby, 74

FM0, 30

FM1, 30

Format(s)
Binary Values, 97
Data, 29-30

Fractional T1, 8, 37

Frame(s), 53, 54, 55
Length, 65, 68, 70

Max Received, 67
Residual, 56-57

Sync,8,36,37
Delay, 38

Framing Error, see CRCE/FE

Gate
Receive Time Slot Assigner, 8, 38
Transmit Time Slot Assigner, 8, 38

GLink, 94, 104, 105, 150, 157

Global (address), 54

Go Ahead, 44, 57, 63, 73

Ground pins, 8

HAbort,94, 122, 150, 157

HAbort IA, 149

Handling
Address Field (HDLC/SDLC), 55, 63
Control Field, 55, 63
Received Abort, 57

Handshaking, 13

Hardware
Abort, see /ABORT pin
Configuration Register, see HCR
External, 53

HCR, 25, 26, 27, 30, 31, 139

HDLC/SDLC, 29, 30, 33, 43, 46, 54-57, 58, 63, 64, 68,
69, 70, 73, 77, 78,81,99, 115, 118, 133

Loop,57-58,69, 76, 134

Holding Between Frames, 78, 97, 99
Hunt, 53, 63, 70, 72

1/0 Pin Interrupts, 119
IA,32,60,61, 108, 109, 110, 116, 118, 119, 120, 122,

160
IAckMode, 14, 110,111, 112,113, 114, 115,128
ICR, 27, 110, 120, 121, 141

ldle,48,51,53,55,57,62, 73, 76, 77, 78
Flag, 58, 76

ldleRcved, 60, 63, 78, 116, 148
ldleRcved IA, 63, 115, 151
ldleSent, 62, 77, 156
ldleSent IA, 62, 118, 158
IE,96, 108, 109,120, 122, 160
IE Op, 120, 141
IEEE 802.3, see 802.3
IEI pin, 7, 107, 108, 110, 111, 112, 113, 114, 119, 122
IEO pin, 7, 107, 108, 110, 111, 112, 114, 120

I mpliclt Addressing, 16
Increment (OMA address), 96
Indirect Addressing, 16
INITG,85,87,94,96,97, 104, 105, 150, 157
Initializing via a OMA Channel, 74, 126
Input/Output Control Register, see IOCR
Inserted Zeroes, 55, 56
Intel, 14, 15, 16, 20, 72, 75, 97, 114
Inter-Channel Operation and Priority, 99
Interlocks, 76
lnterrupt(s), 107-121

Acknowledge, 14, see also /INTACK pin
Cycle(s), 108, 110-115
Daisy Chain, 7, 107
vs. Read Cycles, 115

Arm, see IA
Control Register, see ICR
OMA, 81, 83, 87, 89, 121-123

Edge Detection, 32

166

lnterrupt(s) (continued)
Enable, 120, see also IE

In, see IEI pin
Out, see IEO pin

1/0 Pin, 32, 119
Logic Model, 109
Mlscellaneous, 119-120
Nested, 107, 110
Options

OMA, 123
Serial, 120-121

Receive Data, 116, see also RD IP
Request Level, 116

Receive Status, 115-116
Request Level, 73, 75

Receive, 116
Transmit, 118

Request(s), see also /INT pin
Totem-Pole, 15

Sources, 1 08
OMA, 122
Serial, 115-120

Transmit Data, 118
Request Level, 118

Transmit Status, 116-118
Types, 108

OMA, 121
Serial, 115-120

Vector(s), 107, 110, 114, 121, 142
OMA, 123
Register, see IVR
Serial, 121

IOCR, 32, 33, 34, 35, 45, 47, 50, 53, 119, 140

IOP IE, 120, 141
IOP IP, 32, 119, 120, 136
IOP IUS, 120, 136
IP,96, 108, 109, 110, 120, 122
IP Op, 120, 136

ISDN, 8, 37
Isochronous, 33, 47, 64, 132

ITB, 52, 64
IUS, 7, 72,96,108, 109, 110,111, 114, 120, 121, 122,

123,136
IUS Op, 120, 136
IVR, 121, 142

L/U, 32, 119
Latched/Unlatch, 32, 119

Length
Character, 45-46
Field (Ethernet), 54
Frame, 65, 68, 70

Max Received, 67
Residual, 56-57

Message, 65

Level
OMA Request, 73, 75, 79, 97, 99
Interrupt Request, 73, 75, 116, 118
Receive Data Interrupt Request, 116
Transmit Data Interrupt Request, 118

Line Driver, 53

Link Address, 87

Linked List Fetch, 80, 104

Linked List mode, 9, 68, 70, 87-90, 92, 94, 96, 97,
101, 104, 105, 122

Little Endian, 15, 20, 79, 80, 92, 138

Load RCC (command), 65, 72

Load TCO (command), 27, 72

Load TC1 (command), 27, 72

Load TCC (command), 65, 68, 72

LocalLoop,32

Logic Model
Clock(s), 26
Interrupts, 109

RCC, 67
Receive Datapath, 59
TCC, 66

Logic Symbol, 1

LoopSend,58, 130

Lower Register, 79

LSB First, 73

Manchester, 30

Mark, 42, 53, 76
Parity, 60

Master
Bus Cycles, 6, 101-103

Bus Request Enable, see MBRE
Interrupt Enable, see MIE

MaxCLKs,90, 104, 128

MaxXfers, 90, 104, 128

MBRE, 83, 90, 95, 97, 99, 137

Message(s), 42, 51, 52, 53, see also Frame(s) and its
subtopics

MIE,27, 109, 119, 120, 122, 123, 138, 141

Min0ff39, 97, 104, 138

167

Miscellaneous lnterrupt(s), 119-120
Status Register, see MISR

MisclE, 27, 120, 141

MisclP, 119, 120, 136

MisclUS, 120, 136

MISR,27,33,35,36,67, 119, 120, 143

Missing Clock(s), 30, 48, 53, 119

Model, see Logic Model

Monosync,33,50-53,58,63, 132
Slaved, 53, 58

Motorola, 16, 20, 72, 75, 97

MSB First, 73

Nested Interrupts, 107, 11 O

Newcomers, 1 0

Next
Receive Address Register, see NRAR
Receive Byte Count Register, see NRBCR
Transmit Address Register, see NTAR
Transmit Byte Count Register, see NTBCR

Nine-Bit, 33, 48, 64, 115, 133

No Vector, see NV

Non-Existent Memory, 104

NRAR,83,85,87,89,94, 144

NRBCR, 83, 87, 94, 144

NRZ, 25, 29, 30, 31, 45

NRZB, 29, 30

NRZl-Mark, 30

NRZl-Space, 30, 44, 57

NTAR,83,85,87,89,94, 144

NTBCR, 83, 87, 94, 144

NV, 110,121, 123, 138, 141

Odd Address, 66, 73, 75

Ones, 53, 115
Consecutive, 44, 55, 78

OnLoop,53,57, 130

Opening Flag, 55, n
Opening Sync, 51, 52, 77

Options
OMA Cycles, 22-23, 101
Interrupt

OMA, 123
Serial, 120-121

Order (of programming), 125

Overflow (RCC FIFO), 68

Overrun, 64, 70, 115

Oversampling, 41

P3Mode, 38

P4Mode, 38

P7-0L/U, 36, 146

P7-0Mode, 36, 145

Package Drawing, 5
Parity, 41, 46, 48, 50, 51, 52, 56, 59-60, 115

Mark, 60
Space, 60

Partial Character, 56

Pause
All Channels (command), 80, 94, 96
This Channel (command), 80, 94, 96

PCR, 36, 38, 145

PE, see Abort/PE

Phase Locked Loop, 51, 77

Pins, 5-8, see also specific names, e.g., /AS

Pipelined mode, 9, 83-85, 94, 96, 101, 104, 122

Port
Control Register, see PCR
Pins, 36-37
Status Register, see PSR

PORT1-0/CLK1-0 pins, 8, 25, 36

PORT2 pin, 8

PORT3//RxTSA pin, 8, 36, 38

PORT4//TxTSA pin, 8, 36, 38

PORT5//RxSYNC pin, 8, 36

PORT6//FSYNC pin, 8, 36, 37-38

PORT7//TxComplete pin, 8, 36

Power pins, 8

Preamble, 51, 52, 53, 55, 62, 63, 77
Flags as, 77

Preempt, 99, 138

Present, 62, 77, 78, 156

Present IA, 62, 118, 158

Preset CRC, 160

Primary (station), 57

Priority (of OMA Channels), 99

Programming, Order of, 125

Promiscuous, 54.

Protocol, 44

PSR, 37, 146

Pullup Resistor, 6

Purge Rx FIFO (command), 65, 72, 75

168

Purge Tx FIFO (command), 65, 68, 72, 75, 99, 119

QAbort,57,60,64, 115, 152

Queued Status Bits Flowchart, 61

R,W1C, 127

R,W1U, 127

R//W pin, 6, 12-13, 21-24, 100, 102-103, 110, 115

RALCnt, 104, 105, 137

RAR, 79, 81,83,94, 147

RBCR, 70, 79, 80, 81, 83, 94, 122, 147

RCC, 65-68, 70, 72, 74, 81, 92, 99, 119
FIFO, 67, 68, 70, 81, 92
Logic Model, 67
Underflow, 67
Valid, 160

RCCFAvail, 68, 130

RCCFOvflo, 68, 130

RCCR, 66, 68, 147

RCCUnder IA, 67, 119, 153

RCCUnder LIU, 67, 143

RCHR, 67

RCLR,65,67,68, 70, 72, 74, 149

RCmd, 38, 68, 71, 75, 116, 148

RCSR, 38, 46, 47, 48, 50, 56, 57, 59, 60, 61, 62-64,
68, 75, 78, 99, 115, 116, 148

RD IE, 116, 120, 141

RDIP,52,54,55,68, 73, 116, 120, 136

RD IUS, 116, 120, 136

RDIAR, 94, 122, 149

RDMR,~~.~.~.~.~.oo.~.~.~.~.oo.
97, 104, 105, 122, 150

RDR, 15, 16, 60, 61, 62, 70, 72, 74-75, 76, 149

Read Strobe, see /RD pin

Read/Write control, see R//W pin

Ready, see /WAIT//RDY pin

ReArbTime, 100, 138

Receive
Address Register, see RAR
Byte Count Register, see RBCR
Character Clock, 35
Character Count Register, see RCCR
Clock(s), 25-29, 30, see also RxCLK, /RxC pin
Command/Status Register, see RCSR
Count Limit Register, see RCLR
Data, see RxD pin

Receive (continued)
Data Interrupt, 116

Enable, see RD IE
Pending, see RD IP
Request Level, 116
Under Service, see RD IUS

Data Register, see RDR
Datapath Logic Model, 59
OMA

Interrupt Arm Register, see RDIAR
Mode Register, see RDMR
Request, 7, 52, 54, 55, 68, 73, 78, see also

/RxREQ pin
Interrupt Control Register, see RICR
Mode Register, see RMR
Status Block, see RSB
Status Interrupt, 115-116

Enable, see RS IE
Pending, see RS IP
Service Routine (sample flowchart), 117
Under Service, see RS IUS

Sync output, 8, 35
Sync Register, see RSR
Time Slot Assigner, 37-39

Gate, 8, 38
vs. Transmit OMA Indication, 5, 22, 101

Reference Clock(s), 8, 27, 36

RegAddr, 15, 126, 129, 137

Register(s), see specific register names, e.g., CCAR
Addressing, 15-19, 74, 126
Reading and Writing, 21-24

Request Level
OMA, 73, 75, 79, 97, 99
Interrupt, 73, 75, 116, 118

Request Threshold, see Request Level

Request(s)
OMA, 97-99
Interrupt, see /INT pin

Reset, 5, 32, 36, 125
All Channels (command), 80, 93, 94, 96
Highest OMA IUS (command), 96, 122
Highest Serial IUS (command), 72, 120
Software, 74
This Channel (command), 80, 93, 94, 96

Residual Frame Length, 56-57

Resynchronization, 44

RICR,37,38,60,61,63,64, 73, 75,99, 116, 151

Ring (of Buffers), 89

Rising Edges, 119

169

RMR, 29, 33, 45, 49, 51, 53, 55, 56, 57, 58, 59, 60,
64, 71, 115, 152

R0, 127

ROC, 127

Rotating Priority, 107

RS IE, 120, 141

RSIP,61, 115, 116, 120, 136

RS IUS, 120, 136

RSB, 50, 52, 56, 57, 59, 60, 61, 63, 64, 65, 67, 6~70,
69, 78,81, 85,87,89,92-93, 99

Using for 15538, 70

RSBinNL, 85, 89, 92, 93, 98, 105, 150

RSR, 51, 54, 55, 73, 152

RTCmd, 20, 27, 54, 56, 64, 65, 68, 71, 75, 78, 79, 97,
99,120, 129

RTMode, 32, 129

RTReset, 74, 75, 129

RTSACount, 37, 39, 151

RTSAOffset, 37, 39, 151

RTSASlot, 37, 39, 151

RW, 127

Rx/Tx Cmd, 137

Rx/Tx Reg, 15, 137

RxAvail, 64, 148

RxBound,48,49,50,52,54,55, 56,57,59, 60, 61,
63,64,68,69, 70, 78,81,85,89,93,99, 116, 148

RxBoundlA,64,115, 151

RxCDn IA, 35, 119, 153

RxCL/U, 35, 143

RxCLK, 25-29, 33, 34, 37-38, 47, 50, 54, 63

RxCLKSrc, 28, 135

RxCMode, 35, 140

RxCRCEnab, 58, 59, 152

RxCRCStart, 58, 71, 152

RxCRCType, 58, 59, 152

RxCUp IA, 35, 119, 153

RxD pin, 7, 25, 27, 28, 29, 31-32, 33, 45, 46, 50, 54,
59,63, 76

RxDecode,29,46, 152

RxDMA IE, 138

RxDMA IP, 134, 153

RxDMA IUS, 134, 153

RxEnable, 33, 45, 152

RxFIFO, 10, 47, 48, 50, 51, 52, 54, 56, 59, 60, 61, 62,
64,65,67,68, 69, 70, 72, 73, 74-75, 76, 79,81,83,
93,97,99, 104, 115, 116, 148

RxLength,45,49,51,55,56,59,60, 152

RxMode,33,46,47,48,50,51,52,53,54,57, 132-
134

RxOver, 60, 61, 64, 70, 116, 148

RxOver IA, 64, 115, 151

RxParEnab,60,64, 152

RxParType,60,64, 152

RxRDn IA, 36, 119, 153

RxResidue, 46, 56, 148

RxRLJU, 36, 143

RxRMode, 35, 140

RxRUplA,36, 119, 153

RxStatBlk, 69, 70, 131

RxSubMode,44,47,49,51,52,54,55,56,63,132-
134

RxSYNC, see Receive Sync output

S//D pin, 5, 11, 14, 16, 21-24, 100, 101, 138

SAbort,94,96, 122, 150, 157

SAbort IA, 149

SDIR, 110, 122, 153

SDLC, 43, see also HDLC/SDLC
Loop, see HDLC/SDLC Loop

Second Byte Exception, see 2ndBE

Select
D15-8 First (command), 14, 20, 66, 72, 74, 80
D7-0 First (command), 14, 20, 66, 72, 74, 80
RICRHi=/INT Level (command), 73, 116
RICRHi=/RxREQ Level (command), 73, 99
RICRHi=FIFO Status (command), 73, 75
RICRHi=RTSA Data (command), 38, 73
Serial Data LSB First (command), 73
Serial Data MSB First (command), 54, 56, 73
Straight/Swapped Memory Data, 160
TICRHi=/INT Level (command). 73, 118
TICRHi=/TxREQ Level (command), 73, 97, 99
TICRHi=FIFO Status (command), 73, 75
TICRHi= TISA Data (command), 38, 73

Send Abort (command), 55, 73

Send Frame/Message (command), 73, 74, 76, 78

SepAd, 14, 16, 128

Separate Address, 14

Serial
/DMA, see SllD pin
Bus, 31,32
vs. Array/List Cycles, 5

Set DMA Interrupt Register, see SDIR

Set EOF/EOM (command), 71, 73, 76

170

Shared Zeroes (between Flags), 55, 58, 78

Shaved (Stop bits), 28, 77

Shift Register, 59

ShortF/CVType,50,56,60,61,63, 70, 148

SICR, 27, 33, 35, 36, 67, 119, 120, 153

Single
Buffer mode, 8, 81-83, 94, 122
Cycle (BRG), 27, 72
Flag, 77, 78
Pulse (interrupts), 110, 113

Slave Cycles, 6

Slaved Monosync, 53, 58, 133

Software
Requirements, Interrupt Service Routines, 110
Reset, 74

Source Address (Ethernet), 54

Sources (of Interrupts), 108
DMA, 122
Serial, 115-120

Space,42,47,53, 76
Parity, 60

Square Wave, 51

SRightA, 15, 128

Start
(commands), 94, 97
/Continue All Channels (command), 96
/Continue This Channel (command), 83, 94, 96
/lnit All Channels (command), 96

/lnit This Channel (command), 85, 87, 94, 96, 97
All Channels (command), 96

Bit(s), 41, 46, 53, 54, 72, 77
Sequence(s), 48, 50
This Channel (command), Sf, 83, 94, 96

Status Interrupt Control Register, see SICR

Status Interrupts, see Receive and Transmit Status
Interrupts, also Miscellaneous Interrupts

Status Reporting, 60-64

Stop Bit(s), 41, 46, 47, 49, 63, 64
Shaved,28, 77

Stopping the Clocks, 28-29

Storing RSBs, 92-93

Strip (Sync), 51

Strobe
Address, see /AS pin

Upper, see /LIAS pin
Data, see IDS pin
Read, see /RD pin
Upper Address, see /LIAS pin

Strobe (continue)
Write, see NJR pin

Supervisory (station), 57

SYN, 52

SYN-SYN, 52

SYNO, 51

SYN1, 51

Sync
Character(s), 42, 50-53, 58, 62, 63, 65-67, 72,

115, 118
Closing, 76
Idle, 76
Opening, 77

Frame, 36, 37
Input, 33, 43, 50
Output, 8, 35

Synchronizing Frames/Messages with Software
Response, 78

Synchronous, 78, 50, 59
Clocking, 28

Table of Contents, 2-4

TALCnt, 104, 105, 137

TAR, 79,81,83,94, 155

TBCR, 66, 79, 80, 81, 83, 94, 122, 155

TCOR, 27, 72, 154

TCORSel, 27, 151

TC1 R, 27, 72, 154

TC1RSel, 27, 158

TCB, 50, 56, 65, 67, 68-69, 72, 74, 87, 90-92, 91, 97
Using for 1553B, 70

TCBinNL, 85, 87, 89, 90, 92, 98, 105, 157

TCC, 51, 58, 65-68, 72, 74, 76, 80, 81, 90, 92
Logic Model, 66

TCCR, 66, 69, 155

TCLR,65,69, 72, 74, 156

TCmd, 38, 55, 71, 75, 76, 78, 118, 156

TCSR, 29, 38, 45, 51, 53, 55, 56, 57, 58, 62, 73, 75,
76, 77, 78,99, 118, 156

TD IE, 118, 119, 120, 141

TD IP, 73, 118, 119, 120, 136

TD IUS, 119, 120, 136

TDIAR, 94, 122, 157

TDMR, 79, 80, 83, 85, 87, 89, 90, 93, 94, 95, 96, 97,
104, 105, 122, 157

TOR, 15, 16, 66, 68, 71, 72, 73, 74-75, 76, 157

TermE, 80, 85, 87, 92, 93, 150, 157

171

Test Mode, 1 o
Control Register, see TMCR
Data Register, see TMDR

Threshold (Request), see Level

TICR,38,62, 73, 75, 76, 77, 78,99, 118, 158

Time
Constant O Register, see TCOR
Constant 1 Register, see TC1 R
Slot Assigners, 8, 37-39

Gate outputs, 36

Timing
Bus Acquisition, 100-101
Bus Release, 100-101
Interrupt Acknowledge, 111-114
Master Read Cycles, 102
Master Write Cycles, 103
Parameters, 10
Reference (DMNBus), 5
Register Access, 23-24

TMCR, 10, 153

TMDR, 10, 154

TMR, 29, 34, 45, 51, 53, 57, 58, 59, 71, 76, 77, 78,
159

Transfer(s), Max per Bus Grant, 128

Transitions, 31

Transmit
Address Register, see TAR
Byte Count Register, see TBCR
Character

Clock, 35
Count Register, see TCCR
Counter, see TCC

Clock(s), 25-29, 30, see also TxCLK, /TxC pin
Command/Status Register, see TCSR
Complete, 8, see Tx Complete
Control Block, see TCB
Count Limit Register, see TCLR
Data, see TxD pin
Data Interrupt, 118

Enable, see TD IE
Pending, see TD IP
Request Level, 118
Under Service, see TD IUS

Data Register, see TOR
OMA

Byte Ordering, 14
Interrupt Arm Register, see TDIAR
Mode Register, see TDMR
Request, 7, 67, 68, 73, see also /TxREQ pin

Interrupt Control Register, see TICR
Mode Register, see TMR

Transmit (continued)
Status Block, see TCB
Status Interrupt, 116-118

Enable, see TS IE
Pending, see TS IP
Under Service, see TS IUS

Sync Register, see TSR
Time Slot Assigner, 37-39

Gate, 8, 38

Transparency, 43, 52

Transparent Bisync, 33, 52, 58, 59, 63, 64, 68, 69, 70,
72,81,99, 115, 133

Trigger
Channel Load OMA (command), 74, 126

Rx OMA (command), 65, 74, 78, 79, 99
Tx OMA (command), 65, 68, 74, 78, 97

TS IE, 120, 141

TSIP, 118, 120, 136

TS IUS, 120, 136

TSR, 51, 53, 73, 159

TTSACount, 38, 39, 158

TTSAOffset, 38, 39, 158

TTSASlot, 38, 39, 158

Two Pulse Mode, 14, 114

Tx Complete, 35, 36, 53

TxCDn IA, 35, 119, 153

TxCLJU, 35, 143

TxCLK, 25-29, 34, 37-38, 47

TxCLKSrc, 28, 135

TxCMode, 35, 140

TxCRCatEnd, 51, 58, 76, 78, 159

TxCRCEnab, 58, 159

TxCRCStart, 58, 71, 159

TxCRCType, 58, 159

TxCtrlBlk, 65, 68, 70, 72, 74, 92, 131

TxCUp IA, 35, 119, 153

TxD pin, 7, 8, 25, 28, 30, 31-32, 34 45 46 47 51 57
62, 76 ' ' ' ' ' '

TxDMA IE, 138

TxDMA IP, 134, 153

TxDMA IUS, 134, 153

TxDMode, 32, 45, 47, 140

TxEmpty, 62, 125, 156

TxEnable, 34, 45, 159

TxEncode,29,45,46, 77, 159

TxFIFO, 8, 48, 50, 52, 53, 55, 57, 58, 59, 62, 65, 67,
68, 72, 73, 74-75, 76, 77, 78, 81, 97, 104, 118, 119

172

Txldle, 45, 51, 53, 55, 57, 62, 73, 76, 77, 78, 118, 156

TxLength,45,49,51,56,60, 159

TxMode,46,47,48,51,52,53,54,57,58, 76 77
118, 132-134 ' '

TxParEnab,56,59, 159

TxParType, 60, 159

TxPreL, 53,55, 62, 77, 131

TxPrePat, 53, 55, 62, 77, 131

TxRDn IA, 36, 119, 153

TxResidue, 56, 69, 130

TxRLJU, 36, 143

TxRMode, 35, 140

TxRUp IA, 36, 119, 153

TxShaveL,28,46, 131

TxSubMode,28,44,46,47,48,49,51,52,54,55,57,
59, 69, 70, 73, 76, 77, 132-134

TxUnder, 29, 62, 156

TxUnderlA,62, 118, 158

TypeCode,121, 123, 139, 142

Types (of Interrupts), 108
OMA, 121
Serial, 115-120

U//L, 14, 15, 129, 137

UASAll, 23, 101, 104, 138

Underflow (RCC), 67

Underrun, 9, 51, 52, 53, 54, 55, 57, 58, 59, 76

Unlatch, 116, 120

Upper Address Strobe, see /UAS pin

Vee pins, 8

Vector, see Interrupt Vector

Vector Includes Status, see VIS

VIS, 110, 121, 123, 138, 141

Vss pins, 8

Wait, see/WAIT//RDY pin
Insertion, 22, 101, 138

Wait2Send, 73, 74, 76, 77, 78, 158

Wait4RxTrig, 74, 78, 79, 99, 131

Wait4TxTrig, 73, 74, 78, 131

WO, 127

woe. 121

Word(s), 46, 48
Command/Status, 63, 70

Data, 63, 70

WordStatus, 60, 61, 151

Write
Strobe, see /WR pin

X.21, 53

Z380, 72

Z80, 79,97

Z8000, 72, 75, 79,97

Zero Byte Count, 79, 87, 89, 90, 94

Zeroes
Inserted, 55, 56
Shared, 58, 78

173

Notes:

Notes:

Notes:

ZILOG DOMESTIC SALES OFFICES
AND TECHNICAL CENTERS

CALIFORNIA
Agoura 818-707-2160
Campbell 408-370-8120
Tustin 714-838-7800

COLORADO
Boulder ..

FLORIDA
Largo .

GEORGIA

. 303-494-2905

.. . 813-585-2533

Norcross 404-448-9370

ILLINOIS
Schaumburg 708-517-8080

MINNESOTA
Minneapolis 612-944-0737

NEW HAMPSHIRE
Nashua 603-888-8590

NORTH CAROLINA
Raleigh

OHIO
Independence

PENNSYLVANIA

.. 919-790-7706

................... 216-447-1480

Ambler " ... " 215-653-0230

TEXAS
Dallas 214-987-9987

WASHINGTON
Seattle 206-523-3591

Ii:> 1992 byZilog, Inc. All rights reserved . No part of this document
may be copied or reproduced in any form or by any means
without the prior written consent of Zilog, Inc. The information in
this document is subject to change without notice. Devices sold
by Zilog, Inc. are covered by warranty and patent indemnification
provisions appearing in Zilog , Inc. Terms and Conditions of Sale
only. Zilog , Inc. makes no warranty, express, statutory, implied or
by description, regarding the information set forth herein or
regarding the freedom of the described devices from intellectual
property infringement. Zilog, Inc. makes no warranty of mer-

DC 8292-01

INTERNATIONAL SALES OFFICES

CANADA
Toronto 416-673-0634

GERMANY
Munich
SOmmerda

. . 49-89-672-045
... .. 37-626-23906

JAPAN
Tokyo " ... " 81-3-3587-0528

HONG KONG
Kowloon 852-7238979

KOREA
Seoul

SINGAPORE
Singapore

TAIWAN

.......... 82-2-552-5401

..... 65-2357155

Taipei 886-2-7 41-3125

UNITED KINGDOM
Maidenhead 44-628-392-00

chantability or fitness for any purpose. Zilog, Inc. shall not be
responsible for any errors that may appear in this document.
Zilog, Inc. makes no commitment to update or keep current the
information contained in th is document.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056

