
N
°' ("')
w =

C/)
m

"" ~
("")
0

~
"" 0 rr-
gJ

PRELIMINARY TECHNICAL MANUAL

Z16C30
USC™ UNIVERSAL
SERIAL CONTROLLER

Q1/92

~2iUlb
INTRODUCTION
Tl-- I 1-~- ·-~--1 1""1-~:-1 ,....._~+~-11- •• fl IC",..,.\ :_ .i.1-- .--··"-
I I It:;' UlllVt'l;:JC:ll VOllC\I VUllLIUllV'I \UVVJ 1;:, lilt lll;JAl-

generation successor to Zilog's popular sec family of
multi-protocol serial controllers, and is recommended
for new designs. Compared to the SCC family and
most competing devices, the USC features more serial
protocols, a 16- or 8-bit data bus, higher data rates,
larger FIFOs, better support for OMA operation, and
more convenient software handling. The USC can
handle higher data rates because it takes its timing
reference from the software-selected receive and
transmit clocks and the host bus control signals, rather
than a separate "bus clock" or "master clock".

FEATURES
* Two full-duplex multi-protocol serial controllers
* Supports external OMA channels with two Request

and two Acknowledge lines

* Serial data rates to 20M bits/second

* 32-character transmit and receive FIFOs for each
channel

* 8- or 16-blt transfers for both serial data and registers
* Flexible adaptation to various system buses

* Serial modes include Asynchronous, Bisync, SDLC,
HDLC, Ethernet, 15538, and Nine-Bit

* Two baud rate generators per channel
* Digital phase locked loop for each channel

* Carrier Detect, Clear to Send, and two Serial Clock
pins for each channel

* Transmit and receive frame-length counters for each
channel

* Async features Include false-start filtering, stop bit
length programmable by 1/16-bit steps, parity
generation/checking, break generation/detection

* HDLC/SDLC features include 8-bit address checking,
extended address support, 16/32 bit CRC,
programmable idle state, auto preamble option, loop
mode

" Sync features Include 2 to 16 bit sync pattern, sync
strip option, 16/32 bit CRC, programmable Idle state,
auto preamble option, X.21 xmit/rcv slaving

* Automatic control character recognition In
Transparent Bisync mode

* Flexible Interrupt modes Including Interrupt
acknowledge daisy chain

* High speed, low power CMOS technology
* 68 pin PLCC

February 28, 1992

PRELIMINARY TECHNICAL MANUAL

Z16C30 USC™
UNIVERSAL SERIAL CONTROLLER

LOGIC SYMBOL

/RESET
/CS

A//B
C//D
/AS

R//W
/DS
/RD
/WR

/SIT ACK
/PIT ACK

!EIA,B

/RxACKA,B
/TxACKA,B

/RxCA,B
/TxCA,B
RxDA,B

/CTSA,B
/DCDA,B

Vdd

Z16C3D

USC

Vss

AD15:0

/WAIT//RDY

/INTA,B

IEOA,B

/RxREQA,B
/TxREQA,B

TxDA,B

Table of Contents

1. INTRODUCTION ... 1
Features ... 1

Logic Symbol .. 1

Table Of Contents ... 2

Packaging ... 4

Pin Descriptions .. 4

Device Structure ... 7

Document Structure .. 8

About Test Modes ... 8

2. Bus lnterfacing ... 9
Multiplexed I Non-Multiplexed Operation ... 9

Read/Write Data Strobes .. 1 O

Bus Width ... 1 O

ACK vs. WAIT Handshaking ... 10

The Bus Configuration Register (BCR) .. 11

Register Addressing , .. 12

Byte Ordering ... 16

Register Read and Write Cycles ... 16

3. Serial lnterfacing .. 21
Transmit and Receive Clocking ... 21

CTRO and CTR1 .. 21
The Baud Rate Generators ... 21
Introduction to the DPLL .. : 23
TxCLK and RxCLK Selection .. 24
Clocking for Asynchronous Mode ... 24
Synchronous Clocking .. 24
Stopping the Clocks ... 24

Data Formats and Encoding -. .. 25

More About the DPLL ... 26

The RxD and TxD Pins ... 28

Edge Detection and lnterrupts ... 28

The /DCD Pin ... 29

The /CTS Pin .. 30

The /RxC and /TxC Pins ... 31

The /RxREQ and /TxREQ Pins ... 31

The /RxACK and /TxACK Pins .. 32

4. Serial Modes and Protocols .. 33
Asynchronous Modes ... 33

Character Oriented Synchronous Modes ... 34

Bit Oriented Synchronous Modes .. 35

2

The Mode Registers (CMR, TMR and RMR) ... 36
Enabling and Disabling the Receiver and Transmitter 37
Character Length ... 37
Parity, CRC, Serial Encoding .. 38

Asynchronous Mode ... 38
Break Conditions .. 39

Isochronous Mode .. 39

Nine-Bit Mode ... 39

Async with Code Violations (1553B) Mode .. 40

External SynL; iviocie 42

Monosync and Bi sync Modes ... 42

Transparent Bi sync Mode ... 44

Slaved Monosync Mode .. 45

IEEE 802.3 (Ethernet) Mode ... 45

HDLC I SDLC Mode ... 46
Received Address and Control Field Handling .. 47
Frame Length Residuals .. 48
Handling a Received Abort ... 49

HDLC I SDLC Loop Mode ... 49

Cyclic Redundancy Checking .. 50

Parity Checking .. 52

Status Reporting ... 52
Detailed Status in the TCSR ... 54
Detailed Status in the RCSR .. 55

OMA Support Features ... 57
The Character Counters ... 57
The RCC FIFO ... 60
Transmit Control Blocks ... 60
Receive Status Blocks .. 61
Using TCB's and RSB's in ACV (1553B) Mode ... 63

Commands ... 63

Resetting a USC Channel ... 66

The Data Registers and the FIFOs ... 66

Between Frames, Messages, or Characters ... 68
Synchronous Transmission .. 68
Async Transmission ... 69
Synchronous Reception ... 69

Synchronizing Frames/Messages with Software Response ... 70

5. Direct Memory Access (OMA) Interfacing ... 71
Flyby vs. Flowthrough OMA Operation .. 71

OMA Requests by the Receiver and Transmitter ... 73
Programming the OMA Request Levels .. 74

OMA Acknowledge Signals ... 75

Separating Received Frames in Memory .. 75

6. Interrupts ... 17
Interrupt Acknowledge Daisy Chains ... 77

External Interrupt Control Logic ... 77

Using /RxREQ and /TxREQ as Interrupt Requests ... 78

3

Internal Interrupt Operation ... 78

Details of the Model .. 80

Software Requirements ... 80

Interrupt Option in the BCR ... 80

Interrupt Acknowledge Cycles ... 81

Interrupt Acknowledge vs. Read Cycles .. 85

Interrupt Types ... 85
Receive Status Interrupt Sources and IA Bits ... 85
Receive Data lnterrupts .. 86
Transmit Status Interrupt Sources and IA Bits .. 86
Transmit Data Interrupts ... 88
1/0 Pin Interrupt Sources and IA Bits .. 89
Miscellaneous Interrupt Sources and IA Bits ... 89

Interrupt Pending and Under Service Bits .. 90

Interrupt Enable Bits ... 90

Channel Interrupt Options ... 90

Interrupt Vectors ... 91

7. Software Summary .. 93
About Resetting .. 93

Programming Order ... · 93

Using DMA to Initialize a Channel ... 94

Register Reference ... 94

Appendix: Name Changes ... 117

Index .. 118

PACKAGING PIN DESCRIPTIONS

/RxACKA
/INTA

IEIA
IEOA

Vss
Vdd
ADO
AD1
A02
AD3
AD4
ADS
ADS
AD7
Vss
Vdd

/RxREQA

Z16C30
USC

(Top View)

/RxACKB
/INTB
IEIB
IEOB
Vss
Vdd
ADS
AD9
AD10
AD11
AD12
AD13
AD14
AD15
Vss
Vdd

---.--.-~...,....,...,--.-,...,....,............ /RxREQB

4

/RESET. Reset (input, active low). A low on this line
places the USC in a known, inactive state, and
conditions it so that the data, from the next write
operation that asserts the /CS pin, goes into the Bus
Configuration Register (BCR) regardless· of register
addressing. /RESET should be driven low as soon as
possible during power-up, and as needed when
restarting the overall system or the communications
subsystem.

AD15-0. Address/Data Bus (inputs/3-state outputs).
These lines carry data between the controlling
microprocessor and the USC, and ·may also carry
multiplexed addresses of registers within the USC. If
the USC is used with an external DMA controller,
these lines also carry data between the USC and
system memory or the DMA controller. AD15-0 can
be used in a variety of ways based on whether the
USC senses activity on /AS after Reset, and on the
data written to the Bus Configuration Register (BCR).

JCS. Chip Select (input, active low). A low on this line
indicates that the controlling microprocessor's current
bus cycle refers to a register in the USC. The USC
ignores /CS when a low on /SIT ACK or /PIT ACK
indicates that the current bus operation is an interrupt
acknowledge cycle. On a multiplexed bus the USC
latches the state of this pin at rising edges on /AS,
while on a non-multiplexed bus it latches /CS at
leading/falling edges on JDS, /RD, or /WR.

AJ/B. Channel Select (input, high indicates "channel
A::). Cycies with /CS iow 1 and /SIT ACK, /P:TACK, and
this pin both high, access registers for channel A.
Cycles with /SITACK and /PITACK high, and /CS and
this pin both low, access registers for channel B. The
state of this line when the Bus Configuration Register
is written determines "wait vs. acknowledge" oper
ation, as described in the text. On a multiplexed bus
the USC latches the state of this pin at rising edges on
/AS, while on a non-multiplexed bus it latches the state
at leading/falling edges on JDS, /RD, or /WR.

D//C. Data/Control (input, high indicates Data). A
read cycle with /CS low, and /SITACK, /PITACK, and
this pin high, fetches data from the receive FIFO of the
channel selected by A//B, via its Receive Data Regis
ter (RDR). A write cycle with the same conditions
writes data into that channel's transmit FIFO via its
Transmit Data Register {TDR). Cycles with /SITACK
and /PITACK high and both /CS and this pin low read
or write a USC register. On a multiplexed bus the
USC determines which register to access from the
low-order AD lines at the rising edge of /AS. On a
non-multiplexed bus it typically selects the register
based on the LSBits of the serial controller's Channel
Command I Address Register. On a multiplexed bus
the USC latches the state of this pin at rising edges on
/AS, while on a non-multiplexed bus it latches the state
at leading/ falling edges on JDS, /RD, or /WR.

/AS. Address Strobe (input, active low). After a reset,
the USC's bus interface logic monitors this signal to
see if the host bus multiplexes address and data on
AD15-0. If the logic sees activity on /AS before (or as)
software writes the Bus Configuration Register, then in
subsequent cycles directed to the USC, it captures
register selection from the AD lines, A//B, and C//D on
rising edges of /AS.

For a non-multiplexed bus this pin should be pulled up
to +5V. If a processor uses a non-multiplexed bus, yet
has an output called Address Strobe (e.g., 680x0
devices), this pin should .!J.Q1 be tied to the output.

R//W. Read I Write control (input, low signifies
"write"). R//W and JDS indicate read and write cycles
on the bus, for host processors I buses having this
kind of signalling. The USC samples R//W at each
leading/falling edge on JDS.

5

JDS. Data Strobe (input, active low). R//W and JDS
indicate read and write cycles on the bus, for host
processors/buses having this kind of signalling. It is
qualified by /CS low or /SITACK low. The USC
samples R//W at each leading/falling edge on this line.
For write cycles, the USC captures data at the rising
(trailing) edge on this line. In read cycles the USC
provides valid data on the AD lines within the specified
access time after this line goes low, and this data
remains valid until after the master releases this line to
high.

/RD. Read Strobe (input, active low). This line indi
cates a read cycle on the bus, for host processors/
buses having this kind of signalling. It is qualified by
/CS low or /SITACK low. In Read cycles the USC
provides valid data on the AD lines within the specified
access time after this line goes low, and this data
remains valid until after the master releases this line to
high.

/WR. Write Strobe (input, active low). This line
indicates write cycles on the bus, for host
processors/buses having this kind of signalling. It is
qualified by /CS low. The USC captures write data at
the rising (trailing) edge of this line.

/WAIT//RDY. Wait, Ready, or Acknowledge hand
shaking (output, active low). This line can carry "wait"
or "acknowledge" signalling depending on the state of
the A//B input during the initial BCR write. If A//B is
high when the BCR is written, this line operates
thereafter as a Ready/Wait line for Zilog and most Intel
processors. In this mode the USC asserts this line low
until it's ready to complete an interrupt acknowledge
cycle, but it never asserts this line when the host
accesses one of the USC registers.

If A//B is low when the BCR is written, this line
operates thereafter as an Acknowledge line for
Motorola and some Intel processors. In this mode tlie
USC asserts this line low for register read and write
cycles, and also when it is ready to complete an
interrupt acknowledge cycle.

In either case this is a full time (totem pole) output.
The board designer can combine this signal with
similar signals from other slaves, by means of an
external logic gate or a 3-state or open-collector driver.

/INTA,B. Interrupt Requests (outputs, active low). A
channel drives its /INT pin low when (1) its IE! pin is
high, (2) one or more of its interrupt condition{s) is
(are) enabled and pending, and (3) the Under Service
flag isn't set for its highest priority enabled/pending
condition, nor for any higher-priority condition within
the channel. The USC drives these pins high or low at
all times -- they are neither 3-state nor open-drain
pins.

/SITACK, /PITACK. Interrupt Acknowledge (inputs,
active low). A low on one of these lines indicates that
the host processor is performing an interrupt
acknowledge cycle. In some systems a low on one of
these lines may further indicate that external logic has
selected this use as the device to be acknowledged,
or as a potential device to be acknowledged. The two
signals differ in that /SITACK should be used for a
level-sensitive "status" signal that the USC should
sample at the leading edge of /AS or /DS, while
/PJTACK should be used for a single-pulse or double
pulse protocol. The other, unused pin should be
pulled up to a high level. A channel will respond to an
interrupt acknowledge cycle in a variety of ways
depending on its /INT and JEJ lines, as described in the
text. ·

IEIA,B. Interrupt Enable In (inputs, active high).
These signals and the IEO pins can be part of an
interrupt-acknowledge daisy-chain with other devices
that may request interrupts. , If a channel's IEI pin is
high outside of an interrupt acknowledge cycle, and
one or more interrupt condition(s) is(are) enabled and
pending for that channel, and the Under Service flag
isn't set for the (highest priority such) condition nor for
any· higher-priority one within the channel, then the
channel requests an interrupt by driving its /INT pin
low. If a channel's IEI pin is high during an JACK
cycle, and one or more interrupt condition(s) is(are)
enabled and pending In that channel, and the Under
Service flag isn't set for the (highest priority such)
condition nor for any higher-priority one within the
channel, then the channel forces its IEO line low and
responds to the cycle.

IEOA,B. Interrupt Enable Out (outputs, active high).
These signals and the IEI pins can be part of an
Interrupt acknowledge daisy chain with other devices
that may request interrupts. A channel drives its IEO
pin low whenever its IEI pin is low, and/or whenever
the Under Service flag is set for any condition within
the channel. These signals operate slightly differently
.dl.l.ri!Jg an Interrupt acknowledge cycle, In that a
channel also forces its IEO pin low if it Is (has been)
requesting an interrupt.

RxDA,B. Received Data (inputs, positive logic). The
serial Inputs for each channel.

TxDA,B. Transmit Data (outputs, positive logic). The
serial outputs for each channel.

/RxCA,B. Receive Clock (inputs or outputs). These
signals can be used as a clock input for any of the
functional blocks within each channel. Or, software
can program a channel so that this pin Is an output
carrying any of several receiver or internal clock
signals, a general purpose input or output, or an
interrupt input.

6

/TxCA,B. Transmit Clock (inputs or outputs). These
signals can be used as a clock input for any of the
functional blocks within each channel. Or, software
can program a channel so that this pin is an output
carrying any of several transmitter or internal clock
signals, a general purpose input or output, or an inter
rupt input.

/RxREQA,B. Receive DMA Request (inputs or
outputs). These pins can carry a low-active OMA
Request from each channel's receive FIFO. If OMA
transfers aren't used for a channel's receiver, its
RxREQ pin can be used as a general-purpose input or
output or as an interrupt input.

/TxREQA,B. Transmit DMA Request (inputs or
outputs). These pins can carry a low-active DMA
Request from each channel's transmit FIFO. If OMA
transfers aren't used for a channel's transmitter, its.
TxREQ pin can be used as a general-purpose Input or
output or as an interrupt input.

/RxACKA,B. Receive DMA Acknowledge (inputs or
outputs). If an external "flyby" OMA controller is being
used for a channel's received data, this pin carries the
low-active Acknowledge signal .from the OMA control
ler. If OMA transfers aren't used for a channel's
receiver, or if the OMA controller uses two-cycle rather
than flyby operation, that channel's RxACK pin can be
used as a general-purpose input or output.

/TxACKA,B. Transmit DMA Acknowledge (inputs or
outputs). if an external "flyby" OMA controller is being
used for a channel's transmit data, this pin carries the
low-active Acknowledge signal from the OMA control
ler. If OMA transfers aren't used for a channel's
receiver, or if the OMA controller uses two-cycle rather
than flyby operation, that channel's TxACK pin can be
used as a general-purpose input or output.

/DCDA,B. Data Carrier Detect. (inputs or outputs,
active low). Software can program a channel so that
this signal enables I disables its receiver. In addition
or instead, software can program a channel to request
interrupts in response to transitions on this line. The
pins can also be used as simple inputs or outputs.

/CTSA,B. Clear to Send (inputs or outputs, active
low). Software can program a channel so that this
signal enables I disables its transmitter. In addition or
instead, software can program a channel to request
interrupts in response to transitions on this line. The
pins can also be used as simple inputs or outputs.

Vee, Vss. Power and Ground. The Inclusion of seven
pins for each power rail insures good signal integrity,
prevents transients on outputs, and improves noise ·
margins on inputs. The USC's internal power
distribution network requires that all these pins be
connected. appropriately.

1--
1

I
I

I

I
I

Transmitter

---1

Receiver

I
I
I
I
I

Receive I
FIFO I

I

I
I
I

Host Bus - -I
Processo""'r.,_ __ ..,.I ~Interface 1-11---.il'---i--+..-,o~~::...•--.;.- I

I -~

I I
DMA I I

Controller, 1

~~~~~ : I 
Receive I 

Transmitter 

Serial Clock 
Logic 

FIFO I 
I 
I 

~ :-cauiiier-.- --: Receiver I 
: BRGO, BRG1 : ·-------------· I ----- ------t---~ 

Figure 1. USC Block Diagram 

DEVICE STRUCTURE 
Figure 1 shows the basic structure of the USC. The 
Bus Interface module stands between the external 
bus pins and an on-chip 16-bit data bus that inter
connects the other functional modules. It includes 
several flexible bus interfacing options that are 
controlled by the Bus Configuration Register (BCR). 
The BCR is automatically the destination of the first 
write cycle from the host processor to the USC after 
a Reset. After that it is no longer accessible to the 
host software. 

Either the host processor or an external DMA 
channel can write transmit data into a channel's 
Transmit First-In, First-Out (FIFO) memory. At any 
time, a Transmit FIFO can be empty or can contain 
from 1 to 32 characters to be transmitted. 
Characters written into the FIFO automatically 
"migrate to its other end", where they become avail
able to the Transmitter. 

While the host processor can itself write data into 
the Transmit Fl FOs, it's more efficient to use exter
nal Transmit DMA channels to fetch the data. The 

7 

host can program a USC channel so that its Trans
mitter will trigger its DMA controller to fill its FIFO at 
varying degrees of FIFO "emptiness". Selecting this 
point involves balancing the probability and conse
quences of "underrunning 11 the transmitter, against 
the overhead for the DMA channel to acquire control 
of the host bus more often. 

The serial Transmitters take characters from the 
Transmit FIFOs and convert them to serial data on 
the TxD pins. While this function is conceptually 
simple, the USC supports many complex serial 
protocols, which increases the complexity of the 
Transmitters dramatically. Depending on the serial 
mode selected, the Transmitters may do any of the 
following in addition to parallel-serial conversion: 
start, stop, and parity bit generation, calculating and 
sending CRCs, automatic generation of opening and 
closing flags, encoding the serial data into any of 
several formats that guarantee transitions and carry 
clocking with the data, and/or controlling transmis
sion based on the CTS pin. 



In general, the functions of the Receivers are the 
inverse of those of the Transmitters: they monitor 
the serial data on the RxD pin, organize it according 
to the serial mode selected by the software, and 
convert the data to parallel characters that they 
place in the Receive FIFOs. Again, there is more to 
the process than just serial-parallel conversion. 
Depending on the serial mode the Receivers may 
have to detect and synchronize start bits, check 
parity and stop bits, calculate and check CRCs, 
detect flag, abort and idle sequences, recognize 
control characters including transparency consider
ations, decode the serial data and clock extraction 
using any of several encoding schemes, and/or 
enable and disable reception based on the DCD 
input pin. The Receivers' checking functions gen
erate several status bits associated with each 
character, that accompany the characters through 
the Receive FIFOs. 

The Receive FIFOs can hold up to 32 characters 
and their associated status bits. As the receivers 
write entries into their FIFOs, the entries automat
ically "migrate to the output side" where they 
become available to either the host processor or 
external Receive OMA channels. As on the transmit 
side, the Receive FIFOs include detection logic for 
various degrees of "fullness". Separate thresholds 
control the point at which a channel starts requesting 
its OMA channel starts to refill its FIFO, and at which 
a channel requests an interrupt. Besides the main 
Receive FIFOs, each channel has a 4-entry Frame 
Status FIFO for status related to entire frames 
rather than individual characters. 

While the host processor can access data from the 
Receive FIFOs; it's more efficient to use external 
Receive OMA channels to transfer the data directly 
into buffer areas in memory. 

Each channel includes a Serial Clocking Logic 
section that creates the clocking signals for the 
channel's Transmitter and Receiver. Software can 
program the clocking logic to do this in various ways 
based on one or two external clock(s) for each 
channel. Each channel also includes a Digital 
Phase Locked Loop (DPLL) circuit that can recover 
clocking from encoded data on RxD. 

There's also an Interrupt Control section in each 
channel, that gathers the various "request" lines 
from the Transmitter and Receiver, and takes care 
of requesting host interrupts and responding to host 
interrupt-acknowledge cycles or to software equiva
lents. Interrupt operation depends on the data 
written to the Bus Configuration Register and on 
several registers in the Receiver and Transmitter. 
There are a separate set of interrupt pins for each 

8 

channel so that external logic can control their 
relative priority. 

DOCUMENT STRUCTURE 
This Chapters in this manual provide the first-time 
reader with a staged and gradual introduction to the 
USC. Chapter 2 discusses interfacing the part to 
typical processor or backplane buses. Chapter 3 
discusses how to interface the USC "on the serial 
side", including the various flexibilities and options 
available in doing so. Chapter 4 talks about the 
many serial protocol capabilities of the part; many 
readers won't be familiar with all the protocols 
described, but each reader should know the basics 
of those needed by his or her application. Chapter 5 
talks about how to interface external Direct Memory 
Access (OMA) channels to the USC. Chapter 6 
deals with interrupts. Finally, Chapter 7 pulls 
together certain aspects of writing software for the 
USC and serves as a central programming 
reference. 

This manual is structured according to the USC's 
major internal blocks and various aspects of their 
operation, rather than as a list and description of 
each of its registers. The various registers and 
fields are covered in coniunction with the facilities 
that they report on and ·control. Chapter 7 then 
reviews the general programming model and 
includes a concise description of each register bit 
and field for quick reference. 

The actual timing parameters and electrical specifi
cations of the IUSC are given in the companion 
publication USC Product Specification. 

We at Zilog hope that this newly structured manual 
will make the USC more easily understandable and 
accessible. Naturally, it's impossible to write at the 
right level for all readers; newcomers will find some 
parts hard going, while experts will undoubtedly tire 
of full explanations of matters that "everyone 
knows". Our target audience is neither newcomers 
nor experts, but midway between: working engineers 
with some datacom background. 

About Test Modes 
Each USC channel includes a Test Mode Control 
Register (TMCR) and a Test Mode Data Register 
(TMDR) that Zilog uses to help test the device and 
ensure that customers receive only fully functional 
units. In some cases these registers might be useful 
to help hardware and software developers solve a 
knotty problem. On the other hand, this manual is 
big enough without including subjects of use to only 
a fraction of its readers. If you are interested in 
using the test modes, contact a Zilog sales office for 
the forthcoming voluml'l USC Family Test Modes. 



2. Bus Interfacing 

The USC can be used in systems with various 
microprocessor or backplane buses. Its flexibility with 
respect to host bus interfacing derives from its Bus 
Configuration Register (BCR), from on-chip logic that 
monitors bus activity before software writes the BCR, 
and from certain other registers in the serial channels. 
This section describes how to use these facilities to 
:~t8rfcice the L.'SC ta e. '-'3r!et~' 0f hn~t mir.rorrocessors 
and buses. 

Multiplexed I Non-Multiplexed Operation 
One important distinction among buses is whether 
they include separate sets of lines for addresses and 
for data, or whether the same set of lines carries both 
addresses and data. On a multiplexed bus, the use 
captures addressing at rising edges on /AS. If this 
signalling is the same as that used on the host bus (as 
with a Zilog 16COx), then the USC's /AS pin can be 
directly connected to the corresponding bus signal. 
Figure 2 shows such a system. 

,---::i·---1 
I 16C01 /ASI 

USC 

Figure 2. __ Sim_ple Multiplexed Syste~__J 

An 80x86-based system differs only in that the 
processor's ALE signal has to be inverted to produce 
/AS for the use. 
Figures 3 and 4 illustrate two ways to interface the 
USC to a non-multiplexed host bus. Figure 3 includes 
minimum hardware but requires the software to write 
the register address into the USC each time it is going 
to access a register. In this mode the USC's /AS pin 
should be pulled up to ensure a constant high logic 
level. Figure 4 includes drivers to sequence the low
order bits of the host address onto the USC's AD 
lines, and logic to synthesize a pulse on the /AS pin. 
This interfacing method has the advantage that 
software can directly address the USC's registers. 

9 

The USC monitors the /AS pin from the time the 
/RESET pin goes high until the software writes the 
Bus Configuration Register. If it sees /AS go low at 
any point in this period, then after the software writes 
the BCR, the USC captures the state of the low-order 
AD lines, A//B, C//D, and /CS, at each rising edge of 
/AS. If /AS remains high, software may have to write 
each reqister address into the Channel Command/ 
Address Register (CCAR) before reading or writing a 
register. (If the host bus only includes 8 data lines, 
AD13-8 can carry register addresses.) 

68000 
D15:0 14--...-~-.. 

/AS f---+----

r: AD15:0 

Vee 

l~ /ASi---~ 
~lgure 3. Slmpl_e_ln_t_e-rf-ac_e_t,o Non-Multiplexed Bus 

--------------·--------, 

USC 

/AS 

/RD,/WR 

AD15:0 

A6:0 

Figure 4. User-Friendly Interface to Non
Multiplexed Bus 



Read/Write Data Strobes 
Another difference among host buses is the way that 
read and write cycles are signalled and differentiated. 
Figures 5 and 6 show two standard methods 
supported by the USC. In Figure 5, the bus includes 
separate strobe lines for read and write cycles, 
commonly called /RD and /WR. In Figure 6, the bus 
includes a data strobe line, /DS, that goes low for both 
read and write cycles, and a R//W line that differen
tiates read cycles from writes. The USC includes pins 
for all four of these signals. The two that match up 
with host bus signals should be connected to those 
signals. The two unused pins should be pulled up to a 
high level. 

Read Operation: 

RD*~ 
WR* 

Data Bus 

------------------ ·- ·----- -- -- -------
Write Operation: 

RD* 

WR*\___r-

DataBus X F 
Figure 5. /RD and /WR Signalling 

Read Operation: 
R//W :J \.._ ___ _ 
OS*~ 

Data Bus -c::>-
Write Operation: 

R//W~ I 
DS*~ 

Data Bus X F 
Figure 6. R//W and /DS Signalling 

There is no programmable option for the distinction 
between /RD-/WR and R//W-/DS operation. The USC 
~imply responds to either pair of lines, which is why it's 
important to pull up the unused pair. Also, the USC 
doesn't demand that the R//W line remain valid 
throughout the assertion of /DS. It captures the state 
of R//W at the leading/falling edge of /DS, so that 
R//W need only satisfy setup and hold times with 
respect to this edge. 

10 

Only one among the bus signals /DS, /RD, /WR, 
and /PITACK may be active at a time. This 
prohibition also includes /RxACKA, /RxACKB, 
/TxACKA, and /TxACKB when these pins are used as 
DMA acknowledge signals. (Chapter 5 covers DMA 
interfacing including the "ACK" signals, and Chapter 6 
describes the USC's interrupt features including 
/PITACK). If the USC detects more than one of these 
inputs active simultaneously, it enters an inactive state 
from which the only escape is via the /RESET pin. 

Bus Width 
Another major difference among host buses is the 
number of data bits that can be transferred in one 
cycle. Software can configure the USC to transfer 16 
bits at a time, in which case it is still possible to trans
fer 8 bits when this is necessary or desirable. Or, 
software can restrict operation to transferring only a 
bits at a time, on the AD7-0 pins. This leaves the 
AD15-8 pins unused: another BCR option allows them 
to carry register addresses. The latter option allows 
software to directly address USC registers even on a 
non-multiplexed bus, without having to write an 
address into the USC before h accesses a register. 

ACK vs. WAIT Handshaking 
The final major difference among host buses involves 
the nature of the handshaking signals that slave 
de.vices use for speed-matching with masters. Figure 
7 illustrates the three variations in common use. In 
the first, which we'll call Wait signalling, if a master 
selects a slave and the slave cannot capture write 
data or provide read data within the time allowed to 
keep the master operating at full speed, it quickly 
(combinatorially) drives a Wait output low, and then 
returns it to high when it's ready to complete the cycle. 
Slave Wait outputs that are open-collector or open
drain can be tied together for a negative logic wired-Or 
function, and/or a logic gate can be used to negative
logic OR (positive-logic AND) separate Wait lines to 
produce the /WAIT input to the master (e.g., to the 
processor). 

In the second scheme, "Acknowledge" signalling, all 
slaves must respond when the master directs a cycle 
to them, by driving an Acknowledge signal (sometimes 
called /DTACK) low to allow the master to complete 
the transfer, and keeping it low until the master does 
so. As with the previous scheme, slave Ack outputs 
that are open-collector or open-drain can be tied 
together for a negative logic wired-Or function, and/or 
a logic gate can be used to negative-logic OR 
separate Ack lines to produce the Acknowledge input 
to the master. 



In the third scheme, "Ready" signalling, all slaves 
must respond when the master directs a cycle to 
them, by driving a Ready signal high to allow the 
master to complete the transfer, and keeping it high 
until the master does so. This scheme differ from 
Wait signalling in the default state of the handshaking 
signal between cycles (high for Wait signalling, low for 
Ready). It has similar timing as Ack signalling, but 
differs in the polarity of the handshaking signal. With 
Ready signalling, the board designer must include a 
logic gate to positive-logic OR the various slaves' 
Ready lines to produce a composite Ready input for 
the bus master(s). 

RD* or WR*\ f 
or OS* ~-~~~~J. 

WAIT* 

ACK* 

Ready----~ 

The USC supports Acknowledge and Ready signalling 
for all cycles, and Wait signalling for interrupt acknow
ledge cycles. The USC register access times should 
be short enough to avoid the need for Wait signalling 
on all but the fastest processors. The board designer 
can combine the USC's /WAIT//RDY output with 
similar signals from other slaves, by means of an 
external logic gate or (for Acknowledge and Wait) an 
external 3-state or open-collector driver. 

The next section describes how software can select 
which way the USC drives its /WAIT//RDY pin. 
depending on the address at which it writes the Bus 
Configuration Register (BCR). 

\ _____ , 

Figure 7. A Fast and Slow Cycle, with Three Kinds of Handshaking 

The Bus Configuration Register (BCR) 
The BCR is a 16-bit register having the format shown 
in Figure 8. All the bits in the BCR reset to zero. If 
the host processor handles 16-bit data, and the data 
bus between it and the USC is at least 16 bits wide, 
then the software's initial access to the USC should be 
a 16-bit write. This write can be to any address that 
activates the /CS pin; the data will be placed in the 
BCR. If the host can only write bytes to the USC, all 
data should be transferred on the AD7-0 pins. In such 
a system, pull-down resistors should be attached to 
the AD15-8 pins to ensure the state of these lines 
during the BCR write. (AD15 may want to be pulled 
up instead of down, as described in the section on the 
SepAd bit below.) 

The following paragraphs describe the significance of 
the various bits and fields in the BCR. Besides these 
data bits, the USC captures the state of the NIB pin 
when the software writes the BCR. It uses this 
captured state after the BCR write, such that if N/B 
was low, it drives the /WAIT//RDY pin as an "acknow
ledge" (or inverted "ready") signal during register 
accesses and interrupt acknowledge cycles, while if 
NIB was high, it drives the pin as a "wait" signal 
during interrupt acknowledge cycles only. Therefore, 
software should program the BCR at an address that 
corresponds to the kind of slave-to-master hand
shaking used on the host bus. 

11 

SepAd (Separate Address; BCR 15): this bit should 
only be written as 1 with 16Bit=0. This combination 
conditions the USC to use AD7-0 for data and to take 
register addressing from AD13-8. In this mode the 
USC takes the Upper/Lower byte indication (U//L) from 
AD8 and the register address from AD13-9. 

With this interfacing technique, the BCR must be 
written at an address such that AD13-8 are low/zero. 
Further, AD15 must be high/one and AD14 must be 
low/zero when software writes the BCR. The designer 
can ensure this by connecting AD15 and AD14 to 
more-significant address lines and writing the BCR at 
an appropriate address. Alternatively, the designer 
can ensure this by connecting a pull-up resistor to 
AD15 and a pulldown resistor to AD14. 

This mode is useful with a non-multiplexed bus, to 
avoid making the software write a register address to 
CCAR before each register access. In this mode the 
USC captures the state of AD13-8 on each leading/ 
falling edge on JDS, /RD, or /WR. But software can 
still program SepAd=1 (with 16Bit=0) when the USC 
has detected early activity on /AS. In this case the 
USC captures addressing from AD13-8 on each rising 
edge of /AS, rather than from the low-order AD lines 
as would be true with SepAd=O. 



SepAd Reserved 1 &Bit 2Pulse SRlght 
IACK A 

15 14 13 12 11 10 9 8 7 6 5 4 3 0 

Figure 7. The USC's Bus Configuration Register (BCR) 

16Blt (SCR2): this bit should be written as 1 when the 
host data bus is 16 bits wide (or wider). Writing this 
bit as o has two effects: it restricts the host to using 
byte transfers on AD7-0 when reading and writing the 
USC's registers, and it makes the USC ignore the 
state of the "S//W" signal or bit for register accesses. 
This bit also controls whether "implicit" accesses to 
the CCAR, TOR, and RDR are 8 or 16 bit wide. 

2PulselACK (Double-Pulse Interrupt Acknowledge; 
SCR1): software should program this bit to 0 if the 
/PITACK pin isn't used or if it carries a single pulse 
when the host processor acknowledges an interrupt, 
or to 1 if /PITACK carries two pulses when the host 
processor acknowledges an interrupt. (The latter 
mode is compatible with certain Intel processors.) 

SRightA (Shift Right Addresses; SCRO): this bit is 
significant only for a multiplexed bus -- the USC 
ignores it for a non-multiplexed bus. If SRightA is. 1, 
the USC captures register addressing from the AD6-0 
pins and ignores the AD7 pin. In this mode, ADO 
carries the Upper/Lower byte indication (U//L), AD5-1 
carry the actual register address, and AD6 carries the 
Byte/Word indication (B//W). If SRightA is 0, the USC 
captures addressing from AD7-1 and ignore,s ADO. It 
takes U//L from AD1, the register address from AD6-2, 
and S//W from AD7. This bit has no effect on the use 
of the S//D and D//C pins. 

SRightA would be 0 when using the USC as an 8-
bit peripheral on a 16-bit bus, which isn't likely to 
be a common application. Some sections of this 
manual assume that SRightA is 1. 

All other bits in the SCR are reserved and should be 
programmed as O. If the processor can only write 
bytes to the USC, software can only write the s LSSits 
of the SCR, on the AD7-0 lines. In this case, the state 
of AD15-S, when software writes the SCR, must be 
ensured by connecting these pins to pulldown 
resistors, or, if SepAd=1, to host address lines. 

RTCmd RT 
Reset 

RTMode 

Register Addressing 
Tables 1 and 2 show the names and addresses of the 
addressable registers in the USC, in address and 
alphabetical order. As already noted, the device can 
take register addresses from any of several sources: 
(1) from the AD6-0 lines as latched at the rising edge 

of /AS, assuming SRightA (SCRO) is 1, 
(2) from the AD13-S lines as latched at the rising 

edge of /AS, /DS, /RD, or /WR, and/or 
(3) from the least significant 7 bits of the Channel 

Command/Address Register (CCAR), namely the 
S//W, RegAddr, and U//L bits/fields. (Figure 9 
shows the CCAR.) 

The Tables assume that SRightA (SCRO) is 1. The 
RegAddr column in the Tables reflects the state of 
AD5-1, AD13-9, or CCAR5-1 as applicable. 

If "16Sit" (SCR2) is 1 , the state of AD6, AD 14, or 
CCAR6 selects between a 16-bit transfer (if O/low) and 
an S-bit transfer (if 1). If "16Sit" is 0, the USC ignores 
AD6, AD14, or CCAR6 (as applicable). Note that the 
values in the "S-bit data" columns of Tables 1 and 2 
include the S//W bit 1 for both direct and indirect 
addressing, as is required on a 16-bit bus. When 
16Sit (SCR2) is o these address values can be used 
as shown, or 64 lower like the addresses shown in the 
"16-bit data" columns. 

For S-bit transfers on either an S- or 16-bit bus, the 
state of ADO, ADS, or CCARO selects the less
significant S bits of the register (if 0/low) or the more
significant S bits if 1/high. In this regard the USC is 
"little Endian" like Intel microprocessors. For 16-bit 
transfers, ADO, ADS, or CCARO must be O/low. 

The Direct Address columns of the Tables assume: 
(1) SRightA (SCRO) is 1, 
(2) the processor's multiplexed AD6-0 lines are 

connected to / AD6-0, or its A5-0 lines are 
connected to AD13-S, depending on SepAd 

· (SCR15), 
(3) the D//C pin is grounded, and 
(4) the processor's A7 line is connected to A//S. 

If your design differs from these assumptions, register 
addressing will be different from that shown in the 
Direct Address columns. 

Chan 
Load 

B//W RegAddr U//L 

15 14 13 12 11 10 9 8 7 6 5 4 3 

Figure 9. The Channel Command/Address Register (CCAR) 

12 



The USC provides certain "implicit addressing" 
features that are intended mainly to make indirect 
addressing more convenient for host software. Two 
notes indicated in the Tables relate to these features: 

(Note 1 ): If no other source of addressing applies, that 
is, if the USC considers the bus non-multi
plexed because: 

1) it saw no activity on /AS after Reset, 
2) the SepAd bit (BCR15) is 0, 
3) D//C is low, and 

4) CCAR5-0 are all zero, 
then the USC assumes a reference to CCAR. 
If 16Bit (BCR2) is 1 , it assumes a 16-bit 
access, while 16Bit=O it assumes an access 
to CCAR7-0. 

(Note 2): If D//C is high for a write operation, the USC 
assumes a write to the Transmit Data 
Register (TOR), while if D//C is high for a 
read, it provides data from the Receive Data 
Register (RDR). For both Reads and Writes, 
if 16Bit (BCR2) is 1 the USC assumes a 16 
bit access, while if 16Bit=0 it assumes an 
access to the less-significant byte. 

(For a 16-bit bus, this means that software 
can neither write a byte to the TDR/TxFIFO 
nor read a byte from the RDR/RxFIFO us:ng 
an address that makes D//C high. Instead, 
software must provide the explicit address of 
the LSbyte of the TDR/RDR, either directly or 
by writing it to the CCAR. 

CCAR6-0 Indirect Address Channel A 
Register Name Acronym Reg or Channel B Direct Address Direct Address: 

Addr 16-bit data 8-bit data 16-bit data 8-bit data 

Channel Command /Address CCAR 00000 0/0 64,65 I 40,1 12s I so 192,3 I C0,1 
lnote 1l lnote 1l J_note 1l J_note 1l 

Channel Mode CMR 00001 2/2 66,7 I 42,3 130 I s2 194.5 I C2,3 
Channel Command I Status CCSR 00010 4/4 6S,9 I 44,5 132 I S4 196,7 I C4,5 

Channel Control CCR 00011 6/6 70,1I46,7 134 I S6 19S,9 I C6,7 
Test Mode Data TMDR 00110 12/0C 76,7 I 4C,D 1401 sc 204,5 I CC,D 

Test Mode Control TMCR 00111 14/0E 7S,9 I 4E,F 142 I SE 206,7 I CE,F 
Clock Mode Control CMCR 01000 16 I 10 so,1I50,1 144 /90 20S,9 I D0,1 

Hardware Conflg_uration HCR 01001 1s I 12 S2,3 I 52,3 146 I 92 210,1I02,3 
lnterru_0 Vector IVR 01010 20I14 S4,5 I 54,5 14S I 94 212,3 I 04,5 

ln_Q_ut I Ou!fl_ut Control !OCR 01011 22I16 S6,7 I 56,7 150 I 96 214,5 I 06,7 
Intern~£! Control ICR 01100 24 I 1s SS,9 I 5S,9 152 I 9S 216,7 I DS.9 

Dai~Chain Control DCCR 01101 26/ 1A 90,1I5A,B 154 I 9A 21S,9 I DA,B 
Miscellaneous lnterrl!Ql Status MISR 01110 2S/ 1C 92,3 I 5C,D 156 I 9C 220,1 I DC,D 

Status lnterrl!Ql Control SICR 01111 30I1 E 94,5 I 5E,F 15S I 9E 222,3 I DE,F 
Receive Data 

RDR 1xOOO 32 I 20 96/60 or 97/61 160 I AO 224/EO or 
J_Read onlY; TOR for Writaj_ lnote ~ J!iote ~ J_note ~ 225/E1 J_note ;W 

Receive Mode RMR 10001 34 I 22 9S,9 I 62,3 162 I A2 226,7 I E2,3 
Receive Command I Status RCSR 10010 36 I 24 100,1I64,5 164 I A4 22S,9 I E4,5 

Receive lnterrl!Ql Control RICR 10011 3S I 26 102,3 I 66,7 166 I A6 230,1 I E6,7 
Receive ~nc RSR 10100 40 I 2S 104,5 I 6S,9 16S I AB 232,3 I ES,9 

Receive Count Limit RCLR 10101 42/ 2A 106,7 I 6A,B 170 I AA 234,5 I EA,B 
Receive Character Count RCCR 10110 44 I 2C 10S,9 I 6C,D 172/ AC 236,7 I EC,D 

Time Constant 0 TCOR 10111 46 I 2E 110, 1 I 6E,F 174 I AE 238.9 I EE,F 
Transmit Data 

TOR 1x000 
4S I 30 112/70 or 176 I BO 240/FO or 

lWrite onJy; RDR for ReacJL J_note ~ 113/71 lnote ~ jnote ~ 241 /F1 lnote ~ 
Transmit Mode TMR 11001 50 I 32 114,5 I 72,3 17S I B2 242,3 I F2,3 

Transmit Command I Status TCSR 11010 52 I 34 116,7/74,5 1SO I B4 244,5 I F4,5 
Transmit lnterr~t Control TICR 11011 54 I 36 11S,9/76,7 1S2 I B6 246,7 I F6,7 

Transmit ~nc TSR 11100 56 I 3S 120,1I7S,9 184 I BS 24S,9 I FS,9 
Transmit Count Limit TCLR 11101 5S/3A 122,3 I 7A,B 1S6 I BA 250,1 I FA,B 

Transmit Character Count TCCR 11110 60/3C 124,5 I 7C,D 1SS I BC 252,3 I FC,D 
Time Constant 1 TC1R 11111 62/3E 126,7 /7E,F 190 I BE 254,5 I FE,F 

Table 1. USC Registers, In address order 

13 



CCAR6-0 Indirect Address Channel A 
Register Name Acronym Reg or Channel B Direct Address Direct Address: 

Addr 
16-blt data 8-blt data 16-blt data 8-blt data 

0/0 64,e5 I 40,1 128 I 80 192,3 I C0,1 
Channel Command I Address CCAR 00000 

J!lote 1l _{_note 1l _{_note 1l _{_note 1l 
Channel Command I Status CCSR 00010 4/4 68,9 J 44,5 132 I 84 196,7 I C4,5 

Channel Control CCR 00011 6/6 70, 1 I 46,7 134 I 86 198,9 /C6,7 
Channel Mode CMR 00001 2/2 66,7 I 42,3 130 I 82 194.5 I C2,3 

Clock Mode Control CMCR 01000 16 I 10 80, 1 I 50, 1 144 I 90 208,9 I D0,1 
Dais~·Chain Control DCCR 01101 26/ 1A 90,1I5A,B 154 I 9A 218,9 I DA,B 

Hardware Conf)g_uration HCR 01001 1B I 12 B2,3 I 52,3 146 I 92 210,1 I D2,3 
lnQ_ut I Ou!Qut Control IOCR 01011 22I16 B6,7 I 56,7 150 /96 214,5/06,7 

I nterruIJt Control ICR 01100 24I1B BB,9 I 5B,9 152 I 9B 216,7 I DB.9 
lntern~m Vector l\/R 01010 20I14 B4,5 I 54,5 148 I 94 212,3 I D4,5 

Miscellaneous lnterrllfl_t Status MISR 01110 2B I 1C 92,3/5C,D 156 I 9C 220,1 I DC,D 
Receive Character Count RCCR 10110 44/2C 10B,9 I 6C,D 172/ AC 236,7 I EC,D 

Receive Command I Status RCSR 10010 36 I 24 100,1I64,5 164 I A4 22B,9 I E4,5 
Receive Count Limit RCLR 10101 42/2A 106,7 I 6A,B 170/ AA 234,5/ EA,B 

Receive Data 32 I 20 96/60 or 97/61 160 I AO 224/EO or 
_{_Read on.!Y; TDR for Writaj_ 

RDR 1x000 ' _(_note~ J!lote ~ _{_note~ 225/E1 _{_note ~ 
Receive lnterrllfl_t Control RICR 10011 3B I 26 102,3 I 66,7 166 I A6 230,1 I E6,7 

Receive Mode RMR 10001 34/22 9B,9 /62,3 162 I A2 226,7 I E2,3 
ReceiveS~c RSR 10100 40/2B 104,5 I 6B,9 16B I AB 232,3 I EB,9 

Status lnterruj)t Control SICR 01111 30I1E 94,5 I 5E,F 15B I 9E 222,3 I DE,F 
Test Mode Control TMCR 00111 14 I OE 7B,9 I 4E,F 142 I BE 206,7 I CE,F 

Test Mode Data TMDR 00110 12 /OC 76,7 I 4C,D 140 I BC 204,5/CC,D 
Time Constant 0 TCOR 10111 46/2E 110,1 /6E,F 174 I AE 23B.9 I EE,F 
Time Constant 1 TC1R 11111 62/3E 126,7 I 7E,F 190 I BE 254,5 I FE,F 

Transmit Character Count TCCR 11110 60/3C 124,5 I 7C,D 1BB I BC 252,3 I FC,D 
Transmit Command I Status TCSR 11010 52 I 34 116,7 I 74,5 1BO I B4 244,5 I F4,5 

Transmit Count Limit TCLR 11101 5B/3A 122,3/?A,B 1B6 I BA 250,1 I FA,B 
Transmit Data 4B/30 112/70 or 176 I BO 240/FO or 

lWrite only; RDR for ReacJ)_ 
TDR 1x000 

_{_note 2l 113/71jnote 2)_ lnote 2l 241/F1(note2), 
Transmit lnterru_m Control TICR 11011 54/36 11B,9/76,7 1B2 I B6 246,7 I F6,7 

Transmit Mode TMR 11001 50/32 114,5 I 72,3 17B I B2 242,3 I F2,3 
Transmit S__y_nc TSR 11100 56/3B 120,1I7B,9 1B4 I BB 24B,9 I FB,9 

Table 2. USC Registers, In alphabetical order 

The RDR and TDR have certain other special 
characteristics: 

1 . They are actually "the read. and write 
sides of" the same register location. The 
USC ignores the state of AD4, AD12, or 
CCAR4 (as applicable) whenver the rest 
of the address indicates an access to 
TDR or RDR. For simplicity Tables 1 
and 2 show RDR at the lower address 
and TDR at the higher one. 

2. The MSBytes of RDR and TOR should 
never be read or written alone, only as 
part of a 16-bit access. On a Zilog 
16COx or Motorola 6BOxO system, use 
direct addresses 97 or 113 (61 or 71 hex) 
for channel B, and 225 or 241 (E1 or F1 

14 

hex) for channel A, to select the LSByte 
for byte transfers. On an Intel-based 
system, use the addresses 96, 112, 224, 
or 240 (60, 70, EO, FO hex) 
correspondingly, to select the LSByte for 
byte transfers. 

The direct, indirect, and implicit addressing features of 
the USC interact in several ways. For example, 
CCAR can always be used to select a register for a 
subsequent access to the CCAR address. This is true 
whether or not the USC detected activity on /AS after 
Reset, and regardless of the state of SepAd (BCR15). 

The flowchart of Figure 10 shows the complete 
process by which the USC determines which register 
to access when a host processor cycle asserts /CS 
and one of /RD, /WR, or IDS. 



Start: Host Cycle 
with /CS low -

which register to R/W?? 

Yes 

(Mux'ed Bus) 

Capture S//D, 
RegAd:=AD13-8, 
iD/C:=D//C at fall 

of /OS, /RD, or /WR 

Force B//W 
:= 1 (Byte) 

0 

Capture iA//B:=A//B, 
B//W:=AD6, RegAd:= 

AD5-0, iD/C:=D//C 
at rise of /AS 

Capture iA//B:=A//B, 
RegAd:=AD13-8, 

iD/C:=D//C 
at rise of I AS 

Read 1 or 2 char
acters from channel 

(iN/B) 1s RxFIFO, '----< 
depending on B//W 

Access the register 
in Channel (iA//B) 

selected by RegAd, 
8/16 bits per B//W 

Figure 10. USC Register Addressing 

15 

Capture iA//B:=A//B, 
iD/C:=D//C at fall 

of /DS, /RD, or /WR 

Using channel iA//B, 
B//W:=CCAR6; 

RegAd:=CCAR5-0; 
then CCAR5-0:=0 

B//W := 16BIT 
(BCR2) 

Write 1 or 2 char
acters to channel 
(iA//B)'s TxFIFO, 

depending on B//W 



Byte Ordering 
Various microprocessors differ on the correspondence 
between byte addresses and how bytes are arranged 
within a 16- or 32-bit value. The Zilog Z80 and most 
Intel processors use what's sometimes called the 
"Little-Endian" convention: the least significant byte of 
a word has the smallest address, and the most 
significant byte has the largest address. The Zilog 
16COx and Motorola 680x0 processors ·are "Big
Endian": they store and fetch the MSByte in the 
lowest-addressed byte, and the LSByte from the 
highest address. 

Two commands in the RTCmd field of the Channel 
Command I Address Register (CCAR15-11) allow the 
USC to be used with either kind of processor. The 
"Select 015-8 First" and "Select 07-0 First" 
commands control the byte ordering within a 16-bit 
transfer of serial data, and apply to OMA and 
processor accesses to RDR and TOR. 

ADnn 

A//B, D//C 

Register Read and Write Cycles 
Figures 11 through 14 show the waveforms of the sig
nals involved when the host processor reads or writes 
a USC register. Separate drawings are included for 
the signalling on a bus with multiplexed addresses and 
data, and for a bus with separate address and data 
lines. On the other hand, since waveforms get pretty 
boring after the first few, several things have been 
done to minimize the number of figures. 
1. The cases of separate read and write strobes, vs. 

a direction line and a common data strobe, have 
been combined by labelling the strobe traces as 
"/OS or /RD" and "/OS or /WR". The direction line 
R//W is shown in the figures, but a note reminds 
the reader that its state doesn't matter with /RD 
and /WR. 

/CS~ I : 
+

/SITACK ____] L.----+---+--1 
/PIT ACK, /WR, (/RD or /OS), 
OMA Acknowledge signals 

/AS I 1--1_) 
------~· ---rl v--f-~-~~(_re~q'_d. b!t1 /DS, not with /RD) 

R/NJ I I\ : : 
---~1 I 1~-

/DS or /RD 
1 

NJAIT//RDY 

Figure 11. A Register Read Cycle with Multiplexed Addresses and Data 

16 



2. The difference between "wait" and "acknowledge" 
signalling is handled by showing the /WAIT//ROY 
trace as "maybe or maybe not" going low, with 
appropriate labelling. (The USC never asserts a 
"Wait" indication during a register access cycle.) 

ADnn--<'addr!ess 

I 

A//B, D//C 
I 

Chapter 5 covers details of OMA cycles initiated by an 
external OMA controller, while Chapter 6 covers 
interrupt acknowledge cycles. 

The actual timing parameters and electrical specifi
cations of the USC are given in the companion publi
cation USC Product Specification. 

daa r
\___LJ L__ 

~ 11/ /CS \ 

I -t-
/SITACK :___] ! \ 

/PIT ACK, /RD, (/WR or /DS), I 
DMA Acknowledge signals : I 

/AS~~ 
I I 

R//W \ 1 / I 

I~---- (req'd bth /DS, not with MIR) 
-------

/OS or /WR ~~J v---- Wait mode 

/WAIT//RDY 
qAcknowledge mode 

Figure 12. A Register Write Cycle with Multiplexed Addresses and Data 

17 



ADnn 

A//B, D//C 

/CS~: I 
/SITACK =1 : \ 

I ~-+---
/PITACK, /AS, /WR, (/RD or JDS), I I 

OMA Acknowledg.e signals I I I 
~ (req'd ith /DS, not with /RD) 

R//W I 

18 



ADnn 

A//8, 0//C 

---cov 
I 

--·+----

/CS ==:1.--+--': /_~~!~ 
/SITACK =--_] : \ 

I~-+--

/PITACK, /AS, /RD, (/WR or /OS), 
OMA Acknowledge signals 

--~. 

I 
I 

RINI~: I 
I ~· (req'dlwith /OS, not with /RD) 

-~- ··~ 
IDS or N/R L___J 

I V---- Wait mode 

N/AIT//RDY LJ 
~ ___..-Acknowledge mode 

Figure 14. A Register Write Cycle with Non-Multiplexed Data Lines 

19 



20 



3. Serial Interfacing 
The USC includes several serial interface options and 
features that promote its usefulness in various kinds of 
applications. It allows a variety of clocking schemes, 
and will do serial encoding and decoding for NRZI and 
Biphase formats that carry clocking information with 
the serial data. The USC further supports such 
decoding with an on-chip Digital Phase Locked Loop 
circuit. Finally. it also provides 1/0 lines that can be 
connected to modem control and status signals, to 
other control and status lines related to the serial link, 
or even to input and/or output signals that aren't 
related to the serial link at all. 

Transmit and Receive Clocking 
The USC's Receiver and Transmitter logic have 
separate internal clock signals that we'll call RxCLK 
and TxCLK. In most of the USC's operating modes, 
the Receiver samples a new bit on RxD once per cycle 
of RxCLK, and the Transmitter presents a new bit on 
TxD for each cycle of TxCLK. One exception is 
asynchronous mode, in which RxCLK and TxCLK run 
at 16, 32, or 64 times the bit rate on RxD and TxD 
respectively. The other exception involves Biphase
encoded serial data, for which the Receiver samples 
RxD on both edges of RxCLK, and the Transmitter 
may change TxD on both edges of TxCLK. 

Figure 15 shows how RxCLK and TxCLK can be 
derived in several different ways. This flexibility is an 
important part of the USC's ability to adapt to a wide 
range of applications. 

In the simplest case, external logic derives clocks 
indicating bit boundaries, and software programs the 
channel to take RxCLK directly from the /RxC pin and 
TxCLK directly from the /TxC pin. When a channel 
uses such external clocking for synchronous operation 
with "NRZ" data, it samples a new bit on the RxD pin 
on each rising edge on /RxC, and presents each new 
bit on the TxD pin on the falling edge of /TxC. 

It is often desirable to vary the bit rates for transmis
sion and reception by programming the USC, rather 
than by means of off-chip hardware. To provide for 
this, each channel includes independent means by 
which high-speed clocking on /RxC or /TxC can be 
divided down to almost any desired bit rate. 

CTRO and CTR1 

There are two separate 5-bit counters called CTRO 
and CTR1 in each channel of a USC, comprising the 
"first stage" of the channel's clock-generation logic. 
Figure 16 shows the Clock Mode Control Register. Its 

21 

CTROSrc and CTR1 Src fields (CMCR13-12 and 
CMCR15-14 respectively) control whether each 
counter runs and whether it takes its input from the 
/RxC or /TxC pin: 

CTRnSRC CTRn clock source 
00 CTRn disabled 
01 Reserved (disabled) 
10 CTRn input = /RxC pin 
11 CTRn input = /TxC pin 

Figure 17 shows the Hardware Configuration Register. 
Its CTRODlv field (HCR15-14) controls the factor by 
which CTRO divides its input to produce its output: 

CTRODiy CTRO operation 
00 CTRO output input I 32 
01 CTRO output input I 16 
10 CTRO output input I 8 
11 CTRO output input I 4 

There were not enough register bits to allow a 
separate 2-bit "CTR1 Div" field. If the CTR1 DSel bit in 
the Hardware Configuration Register (HCR13) is 0, the 
CTRODiv field determines the factor by which both 
CTR1 and CTRO divide their inputs to produce their 
outputs. If CTR1 DSel is 1, the DPLLDiv field in the 
Hardware Configuration Register (HCR11-10) deter
mines the factor by which both CTR1 and the DPLL 
divide their inputs to produce their outputs. In either 
case, the channel interprets the selected 2-bit field as 
shown above for CTRODiv. 

The output of either counter can be used directly as 
RxCLK and/or TxCLK. It can be used as the input to 
either of two Baud Rate Generators called BRGO and 
BRG1, and it can be routed to the /RxC or /TxC pin. 

The Baud Rate Generators 

There are two 16-bit down counters called BRGO and 
BRG1 in each channel of a USC; they form the 
"second stage" of the channel's clock-generation logic. 
The BRGOSrc and BRG1Src fields in the Clock Mode 
Control Register (CMCR9-8 and CMCR 11-1 O 
respectively) control each BRG's input: 

BRGnSRC BRGn clock source 
00 CTRO output 
01 CTRl output 
10 /RxC pin 
11 /TxC pin 



Rxv-~-----------~-----------------,-H 
TxC....+-----------r1----------------~H-< 

RXD-H-++-----'h 
~-----~ 

RxCHAR--++t+r+--1 
RxSYNC--++++-i,;-~ 

TxCHAR-+-+-t--t---< 
TxCMPLT-+-+-t--t---< 

Figure 15. A Model of a USC Channel's Clocking Logic 

CTR1Src CTROSrc BRG1Src BRGOSrc DPLLSrc TxCLKSrc 

15 14 

CT RO Div 

15 14 

13 

CTR1 
DSel 

13 

12 11 10 9 8 7 6 5 4 

Figure 16. The Clock Mode Control Register (CMCR) 

CVOK DPLLDlv DPLLMode TxAMode BRG1S BRG1E 

12 11 10 9 8 7 6 5 4 

Figure 17. The Hardware Configuration Register (HCR) 

22 

4 
5 MUX 

RxAMode 

2 

RxCLK 

TxCLK 

RxCLKSrc 

0 

BRGOS BRGOE 

0 



Each of the two Time Constant registers (TCOR and 
TC1 R) contains a 16-bit starting value for the corres 
ponding BRG down-counter. Zero in a Time Com;tant 
Register makes a BRG's output clock identical with its 
input clock; a value of one makes a BF~G divide its 
input clock by two, and so on -· the all-ones value 
makes a BRG divide its input clock by 65,536 to 
produce its output clock. This flexibility ot dividing by 
any value means that a channel can derive almost any 
baud rate from almost any input clock, unl1kf) son1r3 
rnmrAtino rlRvir:Ps thnt constn::dn 1he syc.;\·em desi9nP1 

to use specified crystal or osc1llatm values 
constrain the available speeds to certain cornmonly
used baud rates. 

The BRGOE and BRG1 E. bits in the Hmdwmc Cor:1ir; 
uration Register (HCRO and HCR4 respedively; the: 
"E" in the names is for "Enable") contml whdhe; r3ac:n 
Baud Rate Generator runs or nol. 0 in one 01 

bits inhibits/blocks down-counting by the cc.m::is
ponding BRG, keeping the current va!ue in the clowr: 
counter unchanged despite transitions on the 
input clock. A 1 in one of these bits enables 11·11; 
corresponding BRG to count down in response to 
input clock transitions. 

When a Baud Rate Generator counts riown to zero, ii 
sets the BRGOL/U or BRG i L/U bit in trm 
Miscellaneous Interrupt Status Flegistm 0) 
Once one of these bits is set, it stays set until sotcwarr' 
writes a 1 to the bit, to "unlatch" it". 

A BRG may or may not continue to operate after 
counting down to zero, depending on the Bl'K:lOS or 
BRG1 S bit in the Hardware Coniiguration Re~1ister 
(HCR1 or HCR5 respectively; the "S" stamt:J for 
"Single cycle"). AO in BRGnS causes [3RGn 
the TCn value automatically and contiriur 
while BRGnS~1 makes BRGn stop it 

Software can (re)load the va!ue in the T::Te 
register(s) into one or both BRG CO'~!nters 
Load TCO, Load TC1, or Load TCO and TC1 comrnend 
to the RTCmd field of the Channel Cornmario ! 
Address Register (CCAR15-1.1), as described 
Commands section of Chapter 4. These comma.nds 

obtain or curn::r:'i: \r~·:lluc.':~ ;~ runninc: 
BFlGni softvvare 1--io1s to 1.Nri'l:'.·:i J. ·1 tn ·u··ie; rCnF1Sei hit 
ju:;t before each 'i.ir--:-10:· reads lho i·cn lc:ic;;x~ict 1 

/fx(; pin. 

also restart a BRG that's in Single Cycle mode The 
has counted down to zero and stopped. 

The TCORSel bit in a channel's ReceivH inteirupt 
Control Register (RICRO) and the TC1 HS0I bit in its 
Transmit Interrupt Control Register (TICRO) CQt1trn! 
what data the channel provides when software reads 
the TCOR and TC1 R register addresses. If a TCnRSe! 
bit is 0, the channel returns the time constant value 
last written to TCn. When a 1 is written to a TCnRSel 
bit, the channel captures the current 'Jaiue of the 
BRGn counter into a special latcl1, and thereafter 
returns the captured value from this latch wl1en 
software reads the TCn address. Note that in order to 

23 

on nxo I and c.::m bo ust~cl D.~~ 
and/(Jl' can bi2 routed to tr-it·; /Fb:C 



TxCLK and RxCLK Selectlon 

The Transmitter can take its TxCLK from any of the 
sources described in preceding sections, under control 
of the TxCLKSrc field of the Clock Mode Control 
Register (CMCRS-3): 
TxCLKSrc Source of TxCLK 

000 No clock (xmitter disabled) 
001 /RxC pin 
010 /TxC pin 
011 Tx output of DPLL 
100 BRGO output 
101 BRGl output 
110 CTRO output 
111, CTRl output 

Similarly, the Receiver can take its RxCLK from 
various sources, under control of the RxCLKSrc field 
of the Clock Mode Control Register (CMCR2-0): 
RxCLKSrc Source of RxCLK 

000 No clock (receiver disabled) 
001 /RxC pin 
010 /TxC pin 
011 Rx output of' DPLL 
100 BRGO output 
101 BRGl output 
110 CTRO output 
111 CTRl output 

Clocking for Asynchronous Mode 

For asynchronous reception, transitions on RxCLK 
don't have to have any relationship to transitions on 
RxD. When the Receiver is searching for a start bit, it 
samples RxD in each cycle of RxCLK, which it divides 
by 16, 32, or 64 to determine the bit rate. After the 
Receiver finds the 1-to-O transition at the beginning of 
each start bit, it counts off the appropriate number of 
RxCLK cycles to the middle of the bit cell. At this point 
it samples RxD to validate the sta.rt bit. If RxD has 
gone back to 1 , the Receiver , ignores the prior 
transition as line noise and goes back to searching for 
a start bit. If RxD is still 0, the Receiver accepts the 
start bit. Then it counts off 16, 32, or 64 RxCLK 
cycles to the middle of each subsequent bit of the 
character, and samples RxD at those times. 

For asynchronous transmission, if a Transmitter has 
been idle and software then provides it with data and 
enables it, it drives TxD from 1 to O for the Start bit at 
the falling edge on TxCLK that follows the latter of 
these two steps. It applies each subsequent bit to 
TxD after counting off 16, 32, or 64 TxCLK cycles. 
When sending successive async characters, the 
Transmitter waits for the stop bit length programmed 
in the two MSBits of the TxSubMode field of the Chan
nel Mode Register (CMR15-14), before driving TxD 
from 1 to 0 for a subsequent start bit. If these bits 
specify "shaved" operation, the Transmitter adjusts the 

24 

stop bit length per the TxShaveL field of the Channel 
Control Register (CCR11-8). 

Synchronous Clocklng 

Except in asynchronous operation, one cycle on 
RxCLK corresponds to one data bit on RxD, and one 
TxCLK cycle corresponds to one bit on TxD. In any of 
the synchronous modes, the clock used by the 
receiver to sample the data must be similar to the one 
used by the remote transmitter to send the data. 

The simplest way to ensure this is to use a separate · 
wire to send the clock from one station's transmitter to 
the other station's receiver. But often cost or the 
nature of the serial medium prevents this -- for 
example, you can't send a ·separate clock over a 
telephone line. In such cases it is common practise to 
encode the data so that serial stream also includes 
clocking information. For such applications, the USC 
can encode transmitted data and decode received· 
data in any of several popular formats. 

in. addition, each channel's Digital Phase Locked Loop 
(DPLL) module can recover a synchronized RxCLK 
from the received data. While the DPLL can source 
TxCLK as well, such operation propagates some of 
the clock jitter from this station's receive path onto its 
transmit path, which may increase the error rate. 

Stopping the Clocks 

CMOS circuits like those in the USC don't draw much 
power compared to older technologies, but their power 
requirements can be reduced still further if their clock 
signals are stopped when the circuits don't need to 
operate. Most of this power savings can be obtained 
by having the software disable RxCLK and TxCLK by 
writing zeroes to the RxCLKSrc and TxCLKSrc fields 
(CMCR2-0 and CMCRS-3). if the Counters and Baud 
Rate Generators are used, power consumption is 
reduced further if software disables them by writing 
zeroes to as many as possible among CTROSrc, 
CTR1Src, BRGOSrc, and BRG1Src (CMCR13-12, 
CMCR15-14, CMCR9-8, and CMCR11-10). The 
ultimate in power savings is obtained by having 
external logic stop the input clock(s) on the /RxC 
and/or /TxC pins. 

When RxCLK is stopped, previously-received data can 
be read from the RxFIFO, but RxD is ignored so that 
no further data will arrive. A final character will be 
available to the software and/or the Receive DMA 
controller if RxCLK runs for at least three cycles after 
its last bit is sampled from RxD. For HDLC/SDLC this 
means at least 3 RxCLKs after the receiver samples 
the last bit of a closing Flag. For Async it means at 
least 3 RxCLKs after the receiver samples the stop bit 
of the last character. 



TxCLK can be stopped after the last desired bit has 
gone out on TxD. This is 2 or 3 TxCLKs after the last 
bit has left the Transmit shift register (because of the 
Transmit encoding logic), which in turn occurs 1 or 2 
TxCLKs after the Transmitter sets the TxUnder bit 
(TCSR1). 

Data Formats and Encoding 
The USC's Transmitter and Receiver can handle data 
in any of the eight formats shown in Figure 18. The 
RxDecode field in the Receive Mode Register 
(RMR15-13) controls the format for the Receiver, and 
the TxEncode field in the Transmit Mode Register 
(TMR15-13) controls it for the Transmitter. The 
channel interprets both fields as follows: 

Data Bit: 1 1 

NRZ 

NRZB 

NRZl-Mark 

NRZl-Space 

Bi phase-Level 

Differential Biphase-Level 

xMRlS-13 .!Lfila Format 
000 NRZ 
001 NRZB 
010 NRZI-Mark 
011 NRZI-Space 
100 Biphase-Mark 
101 Biphase-Space 
110 Bi phase-Level 
111 Differential Biphase-Level 

NRZ mode doesn't involve any Rncorlin~· 11t thP stml 

of each bit cell the transmitter makes TxD low for a o 
or high for a 1. NRZB mode is similar except thal the 
transmitter and receiver invert the data: a low is a i 
and a high is a 0. 

0 

Note: No assumption is made about the starting state of the serial data in this figure. 
As a result, those encoding schemes that operate in terms of transitions rather than levels 
are shown with dual traces corresponding to their two possible starting states. 

Figure 18. Data Formats I Encoding 

25 



In NRZl-Mark mode, at the start of each bit cell the 
transmitter inverts TxD for a 1 but leaves it unchanged 
for a o. In NRZ!~Spac:e mode, at the start of each bit 
cell the transmitter inverts TxD for a O but leaves it 
unchanged for a 1. 

None of these NRZ-type modes, by itself, guarantees 
transitions in the data stream. However, if the serial 
protocol can guarantee transitions often enough, then 
Uie D PLL can use these transitions to recover a clock 
from the data stream. By some method the protocol 
must eliminate long bit sequences without transitions 
in the data: successive zeroes for NRZ, NRZB, and 
NRZl-Mark and successive ones for NRZ, NRZB, and 
NRZl-Space. 

For example, NRZl-Space mode matches up well with 
HDL.C and SDLC protocols, because the Transmitter 
inserts a extra zero into the data stream whenever the 
transmitted data would otherwise produce six ones in 
succession. Thus, there is at least one transition 
every seven bit times. 

The reliability of clock recovery frorn any kind of NRZ 
data stream depends on guaranteed transitions, on 
the transmitter's and receiver's time bases being 
reasonably similar/accurate, and on fairly low phase 
distortion in the serial medium. Such schemes have 
the advantage that bits can be sent at rates up to the 
maximum switching rate (baud rate) of the medium, 

The four Biphase modes, on the other hand, provide 
highly reliable clock recovery and do not constrain the 
content of the data, but they limit the data rate to half 
the switching mte (baud rate) of the serial medium. 

See the waveform for B!phase-Mark mode in Figure 
18. This encoding scheme is also known as FM1. 
Ti·1e transmitter always inverts the data at the start of 
each bit eel!. At the midpoint of the cell it changes the 
data again to indicate a 1-bit, but leaves the data 
unchanged for a zero. In Biphase-Space mode 
(FMO) the transmitter always inverts the data at the 
start of each bit cell. In the middle of the cell it 
changes the data again for a zero-bit but leaves the 
data unchanged for a one .. bit. In Biphase-Level 
mode (also called Manchester encoding), at the start 
of the bit cell the transmitter makes TxD high for a 
one-bit and low for.a zero. It always inverts TxD in the 
middle of the cell. In Differential Biphase Level 
mode, at the start of each bit cell the transmitter 
inverts TxD for a zero but leaves it unchanged for a 
one. It always inverts TxD in the middle of the cell. 

DPLL 
Sync [-~cc~ HCCF Clear 

Ovllo Avail RCCF 
.~---"· 

DPLL 
2Mlss 

DPLL 
1Miss 

DPLLEdge 

More About the DPLL 
While the Transmitter and Receiver must be program
med for the particular serial format to be used, the 
DPLL only needs to know the general category of 
encoding on RxD, in the DPLLMode field of the 
Hardware Configuration Register (HCR9-8): 
DPLLMode DPLL Operation/Decoding 

00 DPLL disabled 
O 1 Any NRZ mode 
10 Biphase-Mark or -Space 
11 Either Biphase-Level mode 

In any of the NRZ modes, transitions on RxD occur 
only at the boundaries between bit cells. The DPLL 
synthesizes a clock having falling edges at bit cell 
boundaries and rising edges in the middle of the cells. 
The Transmitter changes TxD on falling edges of 
TxCLK and the Receiver samples data on rising edges 
of RxCLK. 

In the Biphase-Mark and Biphase-Space encodings, 
there is always a transition at the boundaries between 
active data bits, and there may or may not be a 
transition at the center of each bit cell. The DPLL 
generates a receive clock having its falling edge 1 /4 of 
the way through the bit cell, and its rising edge at the 
3/4 point. The Receiver determines each data bit from 
the state of RxD at rising edges of RxCLK and checks 
for "missing clocks" around falling edges. The DPLL 
generates a Transmit clock that is the same as in NRZ 
modes. The Transmitter complements the state of 
TxD at each falling edge of TxCLK, and may or may 
not change TxD at rising edges, depending on the 
current data bit. 

In the Biphase-Level and Differential Biphase-Level 
encodings, there is always a transition at the midpoint 
of each active data bit, and there may or may not be 
transitions at the boundaries between bit cells. The 
DPLL generates clocks as for Biphase-Mark and 
-Space, but must know the difference between those 
modes and these to do so. The Receiver determines 
each data bit from the state of RxD at falling edges of 
RxCLK and checks for "missing clocks" around rising 
edges. The Transmitter may or may not change TxD 
at falling edges of TxCLK, depending on the current 
data bit. It always inverts TxD at rising edges, 

On 
Loop 

Loop 
Send Resrvd TxResldue !TxACK /RxACK 

15 14 13 12 11 10 9 8 7 6 5 4 3 

Figure 19. The Channel Command/Status Register (CCSR) 

26 



The DPLL does not include logic to track the clock 
frequency of the remote end in a long-term manner. 
Rather it is a counter that is affected by transitions on 
RxD, and uses the reference clock to make bit 
clocking that is more or less synchronized to these 
transitions. Figure 19 shows the USC's Channel 
Command/Status Register. Its DPLLEdge field 
(CCSR9-8) provides further control over DPLL 
operation. For most applications, this field should be 
00, in which case the DPLL resynchronizes its counter 
on botr1 rising and falling edges on RxD. 

For NRZ applications in which one kind of edge is 
significantly more precise than the other, software can 
program the DPLLEdge field to 10 or 01, to make the 
DPLL ignore one kind of transition. One example of 
such an application is a serial bus with passive 
external pull-ups; in such a application, falling edges 
are more accurate than rising edges. If DPLLEdge is 
11, the DPLL never resynchronizes -- that is, it runs 
freely like CTRO and CTR1. 

Because the blocking of edges by DPLLEdge affects 
missing clock detection as well as resynchronization, 
for Biphase operation DPLLEdge should always be 
programmed as 00. 

In any NRZ mode, when the DPLL is in sync, it uses 
the selected nominal value (8, 16, or 32 cycles of its 
input clock) for counting off the next bit cell if a 
transition on RxD falls near the bit cell boundary. If a 
transition comes early it uses the nominal value minus 
1 for the next cell, while if a transition comes late it 
uses the nominal value plus one. In /16 and /32 
modes only, the DPLL uses the nominal value plus 
two for the next bit cell if a transition comes very late 
in a cell, and the nominal value minus two if a 
transition comes very early. 

In Biphase-Mark or Biphase-Space modes, when the 
DPLL is in sync it ignores "data" transitions in the 
second and third quarters of the bit cell, and 
resynchronizes to "clock" transitions in the fourth and 
first quarters of the cell. If a clock transition falls very 
close to the cell boundary, the DPLL uses the nominal 
value (8, 16, or 32) as the length of the next bit cell. 
Otherwise it uses the nominal value minus one if a 
clock transition comes early, or the nominal value plus 
one if a clock transition is late. 

In Biphase-Level or Differential Biphase-Level modes, 
when the DPLL is in sync it ignores "data" transitions 
in the first and fourth quarters of the bit cell, and 
resynchronizes to "clock" transitions in the second and 
third quarters of the cell. If a clock transition falls 
close to the middle of the cell, the DPLL uses the 

27 

nominal value (8, 16, or 32) as the length of the next 
bit cell. Otherwise it uses the nominal value minus 
one if a clock transition comes early, or the nominal 
value plus one if the clock transition is late. 

In an NRZ mode, if there's no transition in a bit cell the 
DPLL uses the nominal value (8, 16, or 32 clocks) as 
the length of the next bit cell. It also does this in 
Biphase modes, if there is no clock transition in a bit 
cell when the DPLL is in sync. In particular, in these 
cases the DPLL doesn't re-apply a correction from a 
previous bit cell. 

In Biphase modes, the CVOK bit in the Hardware 
Control Register (HCR12) controls whether the 
Receiver flags a single code violation as an error. If 
CVOK=O, it sets the DPLL 1 Miss bit for a single code 
violation as described below. If CVOK=1, it doesn't 
report a single code violation in DPLL 1 Miss; use this 
setting when the protocol includes single code viola
tions as normal occurrences, as in the 15338 mode 
that's described in Chapter 4. Regardless of CVOK, 
code violations in two consecutive bit cells set the 
DPLL2Miss and DPLLDSync LIU bits and de-synch
ronize the DPLL. 

After software sets up the DPLL, three bits in the 
Channel Command/Status Register (CCSR) provide 
the operating interface. The logic enters a "fast sync 
mode" when software writes a 1 to the DPLLSync bit 
(CCSR12), or in a Biphase mode when it detects two 
consecutive missing clocks. In this mode, the next 
RxD transition (that's allowed by the DPLLEdge field) 
resynchronizes the DPLL counter and puts the DPLL 
"back in sync". 

The DPLLSync bit in the Channel Command/Status 
Register (CCSR12) reads as 1 if the DPLL is in sync. 
The DPLL2Miss bit (CCSR11) reads as 1 if the DPLL 
is in a biphase mode and has detected missing clocks 
in two consecutive bit cells. The DPLL 1 Miss bit 
(CCSR10) reads as 1 if the DPLL is in a biphase 
mode, the CVOK bit (HCR12) is 0, and the DPLL has 
detected a missing clock in at least one cell. Once 
DPLL2Miss or DPLL 1 Miss is 1, it continues to read 
that way until software writes a 1 to it. 

Writing a 0 to any of DPLLSync, DPLL2Miss, or 
DPLL 1 Miss has no effect on the DPLL logic. 

The channel sets the DPLLDSync L/U bit when it 
loses sync in a Biphase mode. This bit is similar to 
DPLL2Miss in that once it's set, it stays that way until 
software writes a 1 to the bit to "unlatch" it. Chapter 6 
explains how to program a channel so that it interrupts 
the host processor when it sets DPLLDSync. 



CTSMode DCDMode TxRMode RxRMode TxDMode TxCMode RxCMode 

15 14 13 12 11 10 6 5 4 3 

Figure 20. The Input/Output Control Register (IOCR) 

The RxD and TxD Pins 
In some sense these are the most important pins on a 
USC. Typically they carry the serial input to the 
Receiver and the serial output of the Transmitter 
respectively. Figure 20 shows the 1/0 Control 
Register. Its TxDMode field (IOCR7-6) allows soft
ware to control the function of TxD: 

TxDMode Function of the TxD pin 
00 Totem-pole Transmitter output 
01 High-impedance state 
10 Low output 
11 High output 

Software can use the ability to drive TxD low to 
generate a Break condition in Asynchronous appli
cations. The duration of such a Break is fully under 
software control. 

The ability to put the TxD pin in a high-impedance 
state allows software to use the USC in "serial bus" 
schemes that include multiple senders on the same 
signal line. (But note that the TxDMode field resets to 
00, so that the channel drives TxD after a Reset until 
the software programs TxDMode to 01.) The ability 
for direct programmable control over the TxD pin 
allows software to "bit-bang" unusual/occasional serial 
protocol requirements, while keeping the USC's full 
power for more standard and everyday communi
cations. 

The RTMode field of the Channel Command/Address 
register (CCAR9-8) controls the relationship between 
the Transmitter and the Receiver and thus between 
the TxD and RxD pins. It is encoded as follows: 
~ Operation 

00 Normal operation: the 
Transmitter and Receiver are 
completely independent. 

01 Echo mode: the state of the 
RxD pin is copied directly 
onto the TxD pin. Data from 
the Transmitter is ignored. 

10 Pin Controlled Local Loop: 
the data from the TxD pin, as 
determined by the TxDMode 
field (IOCR7-6), is routed to 
the Receiver rather than the 
data from RxD. If TxDMode 
specs TxD as high impedance, 
the Receiver can take its 

28 

input from a remote source 
via TxD rather than RxD. 

11 Internal Local Loop: the data 
from the Transmitter is 
routed to the Receiver rather 
than the data from RxD, 
regardless of the setting of 
the TxDMode field (IOCR7-6). 

Edge Detection and Interrupts 
Software can program each channel to detect rising 
and/or falling edges on the /CTS, /DCD, /TxC, /RxC, 
/TxREQ, and /RxREQ pins, and to interrupt when such 
events occur. Figure 21 shows that the Status 
Interrupt Control Register (SICR) includes separate 
Interrupt Arm (IA) bits for rising and falling edges on 
each of these pins. (Chapter 6 describes the USC's 
interrupt features in detail.) A 1 in one of these bits 
makes the channel detect that kind of edge, while a 0 
makes it ignore such edges. This edge detection and 
interrupt mechanism operates without regard for 
whether the various pins are programmed as inputs or 
outputs in the 1/0 Control Register (!OCR). 

When a channel detects an edge that's enabled in the 
SICR, it records the event in an internal "edge 
detection latch" for that input. This latch is not directly 
accessible in the USC's register map. Instead, as 
shown in Figure 22, the Miscellaneous Interrupt 
Status Register (MISR) includes two bits for each of 
these six pins, one called a "Latched/Unlatch" or LIU 
bit, and the other being a "data bit" that has the same 
name as the pin itself. 

A hardware or software Reset sequence clears all the 
LIU bits to zero. While the LIU bit for a pin is O, the 
associated data bit reports and tracks the state of the 
pin in a "transparent" fashion, with a 1 indicating a low 
and a O indicating a high. 

Whenever a pin's LIU bit is 0 and its internal edge
detection latch is set, the channel sets the LIU bit to 1 , 
clears the detection latch, and sets the 1/0 Pin 
Interrupt Pending (IOP IP) bit. !OP IP can be read 
and cleared (and if necessary set) in the Daisy Chain 
Control Register (DCCR1). Chapter 6 describes how 
the 1/0 Pin Enable and Master Interrupt Enable bits 
determine whether the IP bit actually results in an 
interrupt request to the processor. 



RxCDn RxCUp TxCDn TxCUp RxRDn RxRUp TxRDn TxRUp DCDDn DCDUp CTSDn CTSUp RCC DPLL BRG1 BRGO 
IA IA IA IA IA IA IA IA IA IA IA IA Under DSync IA IA 

IA IA 

15 14 13 12 11 10 9 8 7 6 

Figure 21. The Status Interrupt Control Register (SICR) 

RCC DPLL BRG1 BRGO 
RxCLJU /RxC TxCLJU !TxC RxRLJU /RxREQ TxRLJU !TxREQ DCDLJU /DCD CTSLJU /CTS Under DSync 

LJU LJU 
LJU LJU 

15 14 13 12 11 10 9 8 7 6 5 4 3 

Figure 22. The Miscellaneous Interrupt Status Register (MISR) 

While an LIU bit is 1 , the state of the associated data 
bit is frozen (latched). These two bits remain in this 
state, regardless of further transitions on the pin, until 
software writes a 1 to the LIU bit. This clears the LIU 
bit to 0 and "opens" the data bit to once again report 
and track the state of the pin, at least for an "instant". 
If one or more enabled transitions occurred while the 
LIU bit was set, then LIU is set again right after 
software writes the 1 to it. 

Writing a O to an LIU bit has no effect, and the channel 
ignores data written to the "data" bits. 

One mode in which software can use this logic is to 
read the MISR, then immediately write back what it 
has read. The software should then look for 1 's in any 
and all "interesting" LIU bits, and process/handle all 
such changes without rereading the MISR. To obtain 
the current state of one of these pins, regardless of 
the LIU bit, software can write a 1 to the LIU bit and 
then immediately read back the MISR. 

The /DCD Pin 
The DCDMode field of the 1/0 Control Register 
(IOCR13-12) controls the function of this pin: 

DCDMode Function of the /PCP pin 
00 Low-active Rx Carrier input 
01 Low-active Rx Sync input 
10 Low output 
11 High output 

When DCDMode is 00, software can handle the 
Carrier indication all by itself. Or, the /DCD signal can 
enable and disable the Receiver in hardware if soft
ware also programs the RxEnable field of the Receive 
Mode Register (RMR1-0) to 11. In the latter case, the 
Receiver starts assembling a character only when 
/DCD is low; if /DCD goes high during a received 
character, the Receiver aborts/discards it. Figure 23 
shows how the required relationship between /DCD 
and RxD varies depends on the Receiver mode: 
* for async, nine-bit, and ACV/15538 modes, /DCD 

should set up low to the rising edge of RxCLK 
after the falling edge at which the receiver first 
samples the start bit on RxD. 

29 

* 

* 

* 

for isochronous mode, /DCD should set up low to 
the rising edge of RxCLK at which the receiver 
samples the start bit on RxD. 
for monosync, bisync, and transparent bisync, 
/DCD should set up low to the rising edge of 
RxCLK that precedes the one at which the 
receiver samples the first bit of the last sync 
pattern before the message. 
for HDLC/SDLC mode, /DCD should set up low to 
the rising edge of RxCLK at which the receiver 
samples the ending O of the last Flag before the 
frame. 

DCDMode=01 identifies the /DCD pin as an input from 
external sync detection logic. Software typically 
programs this value in conjunction with programming 
the RxMode field of the Channel Mode Register 
(CMR3-0) with 0001 for External Sync operation or 
1001 for 802.3 (Ethernet) operation. For External 
Sync mode, external logic should drive the /DCD pin 
low during the RxCLK cycle after the last bit in the 
sync character. For 802.3 it should drive /DCD low 
when carrier is detected -- a figure in Chapter 4 shows 
that the timing relationship to RxD isn't critical but 
/DCD should go low with at least 58 of the 64 
alternating bits that precede the frame left. The 
Receiver starts sampling RxD at the same rising edge 
of RxCLK at which it first samples /DCD low. If /DCD 
goes high during a received character, the Receiver 
completes receiving the character and transfers it to 
the Receive FIFO before going inactive. 

Sync conditions generated internal to the channel are 
not output on this pin as on certain predecessor 
devices, but can be output on the /RxC pin as 
described later. 

The /DCD pin can alternatively be used as a general
purpose output. To do this, simply program DCDMode 
to 10 to make the channel drive /DCD low, and to 11 
to drive the pin high. For such an application the 
designer may want to connect a pull-up or pulldown 
resistor to the /DCD pin, because the channel will not 
drive the pin from the time /RESET goes low until the 
software programs DC OM ode to 10 or 11. 



/DCD 

RxCLK 
(/RxC) 

RxD (Isochronous) 

RxD (Monosync, Bisync, 
Transparent Bisync) 

RxD (HDLC) 0111111 

\! 

\ 

A 

start bit 

start rr-bit 

1st bit rest of (last) 
of.Sync Sync character(s) 

last 0 ~ 1st bit 
of Flag ~f ~rame 

Figure 23. /DCD Auto-Enable Timing 

Software can program a channel to interrupt the host 
processor on either or both edges on /DCD, as 
described in the preceding section. Typically such 
interrupts would be used when /DCD is an input, that 
is, when DCDMode is 00 or 01. Software should write 
a 1 to the DCDDn IA bit in the Status Interrupt Control 
Register (SICR7) to make a channel detect falling 
edges on /DCD, and write a 1 to DCDUp IA (SICR6) 
to make it detect rising edges. 

As described in the preceding section, the DCDL/U bit 
(MISR7) is 1 if the channel has detected an enabled 
edge, until software writes a 1 to the bit to clear it. 
The /DCD bit (MISR6) reflects the. state of the /DCD 
pin transparently while DCDUU is 0, but is frozen 
while DCDUU is 1. MISR6=0 indicates a high on the 
pin, and 1 indicates a low. 

The /CTS Pin 
The CTSMode field of the 1/0 Control Register 
(IOCR15-14) controls the function of this pin: 
CTSMode Function of the /CTS pin 

Ox Low-active Clear to Send input 
10 Low output 
11 High output 

When CTSMode is 00 or 01, software can handle .the 
Clear to Send input all by itself. Alternatively, the 
/CTS input can enable and disable the Transmitter in 
hardware, if software writes 11 to the TxEnable field of 

30 

the Transmit Mode Register (TMR1-0). In the latter 
case, the Transmitter will start sending a character 
only when /CTS is low. As shown in the following 
Figure, if the Transmitter is otherwise "ready to go" 
when /CTS goes low, the first bit active bit on TxD will 
begin at the falling edge of TxCLK that is 4.5 clock 
periods after the rising edge of TxCLK at which the 
Transmitter first samples /CTS low. 

;crs-U~--------
rxcLK Jl.-..J~JL 
(/TxC) :~ ~·· 

;......._ 4.5 clocks ~, 

TxD ~ 

Figure 24. /CTS Auto-Enable Timing 

If /CTS goes high during a transmitted character in an 
asynchronous mode, the Transmitter finishes sending 
the character before going inactive. In the same 
situation in a synchronous mode, the Transmitter 
terminates transmission immediately. 

The /CTS pin can alternatively be used as a general
purpose output. To do this, simply program CTSMode 
to 10 to make the channel drive /CTS low, and to 11 to 
make it drive the pin high. For such applications the 
designer may want to connect a pull-up or pulldown 
resistor to the /CTS pin, because the channel won't 



drive the pin from the time /RESET goes low until the 
software programs CTSMode to 1 O or 11. 

Software can program a channel to interrupt the host 
processor on either or both edges on /CTS, as 
described in the earlier section Edge Detection and 
Interrupts. Typically such interrupts would be used 
when /CTS is an input, that is, when CTSMode is 00 
or 01. Software should write a 1 to the CTSDn IA bit 
in the Status Interrupt Control Register (SICR5) to 
make a channel detect falling edges on /CTS, and 
write a 1 to CTSUp IA (SICR4) to make it detect rising 
edges. 

As described in Edge Detection and Interrupts, the 
CTSL/U bit (MISR5) is 1 if the channel has detected 
an enabled edge, until software writes a 1 to the bit to 
clear it. The /CTS bit (MISR4) reflects the state of the 
/CTS pin transparently while CTSUU is 0, but is frozen 
while CTSUU is 1. MISR4=0 indicates a high on the 
pin, and 1 indicates a low. 

The /RxC and /TxC Pins 
Figure 15 (near the start of this chapter) shows each 
channel's options for the function of its /RxC and /TxC 
pins. The RxCMode field in the Input/Output Control 
Register (IOCR2-0) controls the function of /RxC: 
RxCMode Function of the /RxC pin 

000 /RxC is an input 
001 /RxC outputs RxCLK 
010 /RxC outputs Rx character clock 
011 /RxC outputs /RxSYNC 
100 /RxC 
101 /RxC 
110 /RxC 
111 /RxC 

carries 
carries 
carries 
carries 

the 
the 
the 
the 

BRGO output 
BRGl output 
CTRO output 
DPLL Rx output 

while the TxCMode field (IOCR5-3) controls the 
function of the /TxC pin: 
TxCMode Function of the /TxC pin 

000 /TxC is an input 
001 /TxC outputs TxCLK 
010 /TxC outputs Tx character clock 
011 /TxC outputs 11 Tx Complete" 
100 /TxC carries the BRGO output 
101 /TxC carries the BRGl output 
110 /TxC carries the CTRl output 
111 /TxC carries the DPLL Tx output 

Some of these possible outputs need further descrip
tion. A channel drives its Receive character clock 
high for one RxCLK period as it transfers each 
character from the Receive shift register to the 
Receive FIFO. Similarly, it drives its Transmit 
character clock high for one TxCLK period each time 
it transfers a character from the Transmit FIFO to the 
Transmit shift register. A channel's /RxSYNC output 
goes low for one RxCLK cycle each time its Receiver 
recognizes a Sync or Flag sequence. The Tx 

31 

Complete output is suitable for controlling a driver on 
TxD. It is low from the start of the first active bit of a 
sequence of one or more consecutively-transmitted 
characters, through the end of the last bit of the 
sequence. The BRG and CTR outputs are square 
waves. The DPLL outputs were shown earlier in this 
chapter. 

While it's not very useful to employ a high-speed free
running clock as a source of interrupt events, for other 
uses of /RxC and /TxC software can program a 
channel to interrupt the host processor on either or 
both edges on these pins, as described in the earlier 
section Edge Detection and Interrupts. Typically such 
interrupts would be used for an input pin, that is, when 
RxCMode or TxCMode is 00 or 01. Software should 
write a 1 to the RxCDn IA or TxCDn IA bit in the 
Status Interrupt Control Register (SICR15 or SICR13) 
to make a channel detect falling edges on /RxC or 
/TxC, and write a 1 to RxCUp IA or TxCUp IA 
(SICR14 or SICR13) to make it detect rising edges. 

As described in Edge Detection and Interrupts, the 
RxCL/U or TxCL/U bit (MISR15 or MISR13) is 1 if the 
channel has detected an enabled edge, until software 
writes a 1 to the bit to clear it. The /RxC or /TxC bit 
(MISR14 or MISR12) reflects the state of the pin 
transparently while the UU bit is 0, but is frozen while 
the UU bit is 1. AO in MISR14 or MISR12 indicates a 
high on the pin, and 1 indicates a low. 

The /RxREQ and /TxREQ Pins 
The RxRMode and TxRMode fields of the 1/0 Control 
Register (IOCR9-8 and IOCR11-10 respectively) 
control the function of these pins: 

XxRMode Function of /XxREO pin 
00 Input pin 
01 DMA Request output (or 

Interrupt Request) 
10 Low output 
11 High output 

Chapter 5 describes the DMA Request function, 
whereby a channel signals an off-chip OMA controller 
when its TxFIFO or RxFIFO reaches a programmed 
degree of "readiness" for OMA data transfer. 

Chapter 6 suggests another use for these pins if 
they're not used as OMA requests, namely as interrupt 
request outputs that are separate from /INT. This is 
advantageous in a system in which the host processor 
and bus provide multiple interrupt request levels and 
the software uses them for nested interrupts. See 
Using /RxREQ and /TxREQ as Interrupt Requests in 
Chapter 6 for more details. 

Software can program a channel to interrupt the host 
processor on either or both edges on these pins, as 
described in the earlier section Edge Detection and 
Interrupts. Typically such interrupts would be used for 



an input pin, that is, when RxRMode or TxRMode is 
00. Software should write a 1 to the RxRDn IA or 
TxRDn IA bit in the Status Interrupt Control Register 
(SICR11 or SICR9) to make a channel detect falling 
edges on /RxREQ or /TxREQ, and program RxRUp IA 
or TxRUp IA (SICR10 or SICR8) to 1 to make it detect 
rising edges. 

As described in Edge Detection and Interrupts, the 
RxRL/U or TxRL/U bit (MISR11 or MISR9) is 1 if the 
channel has detected an enabled edge, until software 
writes a 1 to the bit to clear it. The /RxR or /TxR bit 
(MISR1 O or MISR9) reflects the state of the pin trans
parently while the LIU bit is 0, but is frozen while the 
LIU bit is 1. A 0 in MISR10 or MISR9 indicates a high 
on the pin, and 1 indicates a low. 

The /RxACK and /TxACK Pins 
The RxAMode and TxAMode fields of the Hardware 
Configuration Register (HCR3-2 and HCR7-6 respec
tively) control the function of these pins: 

XxAMode Function of /XxA~ 
00 General purpose input 
01 DMA Acknowledge input 
10 Low output 
11 High output 

Chapter 5 describes the DMA Acknowledge function, 
whereby an off-chip DMA controller signals a USC 
channel that a "flyby" or single-cycle DMA operation is 
occurring in response to the channel's assertion of the 
corresponding REQ pin, and that the channel should 
provide data on, or capture data from, the AD pins. 

The USC does not provide transition-detection, 
latching, or interrupt capabilities for the /RxACK and 
/TxACK pins as it does for most of the other signals 
described in this chapter. Therefore, if these pins 
aren't used as OMA Acknowledge inputs, they can be 
used either for outputs or for non-critical polled inputs. 

The two LSBits of the Channel Command/Status 
Register (CCSR1 and CCSRO) allow software to 
sense the state of a channel's ACK pins if they're used 
as general-purpose inputs. Figure 19 (earlier in this 
chapter) shows the CCSR. Its /TxACK and /RxACK 
bits are forced to O unless the corresponding 
TxAMode or RxAMode field in the HCR is 00, in which 
case the bit reads back as a o when the /TxACK or 
/RxACK pin is high and 1 when the pin is low. 

32 



4. Serial Modes and Protocols 

The main advantage of USC family members is that 
they can communicate in many different modes and 
serial protocols. This, in turn, makes for more flexible 
and capable products for Zilog's customers. This 
chapter describes how to set up and use the USC in 
its various modes of serial operation. These modes 
can be classified into three major categories: asynch-

oriented synchronous protocols. 

Asynchronous Modes 
These protocols date back to when the first teletype
writers were succeeding Morse code, although there 
have been various changes since. Figure 25 shows 
how a start bit precedes each character in async 
communications, and that so-called stop bits separate 
characters. A start bit is a period of space/zero that's 
the same length as each following data bit. Each stop 
bit is a period of mark/one having a nominal minimum 
duration of one bit time. (The USC and other devices 
offer the ability to "shave" stop bits to less than a bit 
time.) In most forms of async, the falling edge 
between a stop bit and the next start bit can come any 
time after this minimum stop bit duration. In other 
words, the length of the stop bit does not have to be 
any particular multiple of the nominal bit time. 

To handle this variability in the length of stop bits, 
asynchronous receivers "oversample" the received 
serial data at some multiple of the nominal bit fre-

quency. Software can set up each Receiver and 
Transmitter to do this at 16, 32, or 64 samples/bit. 
When a Receiver is waiting for a start bit and succes
sive samples reveal a falling edge, it typically samples 
again one-half bit time later, to validate the start bit. If 
the serial data is still space/zero, the receiver then 
samples the following data bits and stop bit at their 
---:--1 ---.i.-~.- -A-~ .i.1--.a. IJ: LL-.- 1------'···-··- --·--·-1--
llUJlllflQl \..tllLt::I;::> dllt::I lllctl. 11 lilt:: lld.[UWctlt: ::>dfllf.Jlt:::> 

the stop bit as space/zero, the associated character is 
invalid or at least highly suspect. 

Some async protocols check further for serial link 
errors by including a parity bit with each character. 
The transmitter generates such a bit so that the total 
number of 1-bits in the character is odd or even. The 
receiving station checks each parity bit. If it finds an 
incorrect one, it discards the character and/or notifies 
the operator(s) of the receiving and/or transmitting ma
chine(s). But a single parity bit is not a very reliable 
checking method -- it can be easily deceived by errors 
that affect more than one bit. Few async applications 
use parity checking nowadays, although they may 
generate it just in case they find themselves talking to 
equipment that does. Where protection against line 
errors is important, some async applications may use 
block-oriented checking as described below for 
synchronous protocols. 

Start 
Bit 

5 to 8 data bits, 
plus optional parity bit 

Stop 
Bit 

Start 
Bit 

1,0 Bit Tlm•-i 
Flever detects 

Falling Edge 

. I 
Flever validates 

Start Bit 

Minimum 1 Bit Time 
(except for "Shaving") 

Rcver samples Data 
(and Parity?) Bits 

Flever checks 
Stop Bit 

Figure 25. Asynchronous Data 

33 



'-----'----\t=J .___I -----'----~-----,----,,,....,-,--~1 flILJlIL 
SYN SYN STX ETX May be SYN's, 

~(16)~ (16)~(02)~Data~(03)~CRC >< Mark, Spac~SYN~SYN~ 
or Not Driven <16) (16) 

Figure 26. Character Oriented Synchronous Data 

Each USC channel can handle a variety of options 
within "classic" async operation, plus several unique 
variants. In isochronous mode, the data format is 
similar to classic async, but external hardware 
supplies a bit-synchronized 1 X clock instead of a 16x, 
32x, or 64x clock. In Nine-Bit mode, an extra bit 
differentiates between "address" characters that select 
a particular destination on a multi-station link, and 
subsequent data characters. In Code Violation mode, 
a three-bit sequence that includes violations of the 
encoding mode replaces the start bit that precedes 
each character. (A primary use of Code Violation 
mode is to implement MIL-STD-15538.) 

Character Oriented Synchronous Modes 
These protocols came into use after async, in an effort 
to get better line utilization by eliminating start and 
stop bits. In sync modes, characters follow one 
another directly on the serial link, each consisting of 
an agreed-upon number of bits and each bit having the 
same nominal length. Since bits and characters occur 
at regular intervals, the datacom hardware can 
typically handle higher bit rates because it doesn't 
have to oversample as in typical async applications. 
This effect combines with having fewer bits per 
character, to make synchronous operation substan
tially faster than async. 

In sync modes, "special" characters divide the data 
into "messages". Figure 26 shows how the transmitter 
sends some minimum number of agreed-upon "sync 
characters" between messages. When a synchronous 
receiver begins to receive a message, it typically starts 
in a "search mode" in which it samples successive bits 
into its serial-to-parallel shift register. It does this until 
the last N bits match a defined sync pattern. Then the 
Receiver enters a mode in which it simply captures 
each succeeding group of bits as a character. 

Most sync protocols require the receiving station to 
validate the sync pattern match. It can do this by 
checking whether the next character is another sync, 
an agreed-upon "start of message" character, or 
perhaps one of a small set of such characters. This 
validation can be done by software or by hardware. 

Almost all character-oriented synchronous protocols 
also define one or more characters, or sequences of 
characters, to mark the end of a message. Instead of 

34 

(or sometimes besides) parity checking on each 
character, synchronous protocols will typically include 
a checking code covering most or all the characters in 
each message. The transmitter accumulates and 
sends this code before or after the end-of-message 
character or sequence. Early sync protocols used a 
Longitudinal Redundancy Character (LRC) that was 
simply the parallel Exclusive Or of the characters in 
the message. Newer protocols use various kinds of 
Cyclic Redundancy Checking (CRC) which offer 
greater reliability in exchange for a somewhat more 
involved method of computation. Either kind of 
message checking can be computed by either 
hardware or software at the Transmitter and Receiver. 
The USC channels can automatically generate and 
check various kinds of CRCs. 

Synchronous applications vary considerably in terms 
of the line state between messages. In half-duplex 
operation, each station typically stops driving the line 
after the end of a message. The other side then starts 
driving it to "turn the line around". In full-duplex point
to-point environments, a transmitter may send a 
stream of repeated Sync or Idle characters between 
messages. This maintains synchronization between 
itself and the remote receiver as to character 
boundaries. This avoids the need to send several 
sync characters before the start of the next message, 
when it becomes available for transmission. In other 
full-duplex environments, the line may be maintained 
at a constant Mark or Space between messages. 

While many modes have several variants, the top level 
of each channel's control hierarchy includes the fol
lowing character-oriented synchronous modes. In 
Monosync mode, the hardware transmits or matches a 
sync character of eight bits or less. Software must 
handle further receive-sync validation. In Bisync mode 
the hardware transmits or matches a minimum of two 
sync characters. The two can be the same or different 
codes, each of eight bits or less. Transparent Bisync 
mode is similar to Bisync mode except that the prefix 
character Data Link Escape (OLE) precedes control 
characters. This allows the transmission of arbitrary 
"binary" data without conflict with the various control 
characters. Slaved Monosync mode applies only to 
the Transmitter, making it operate in conformance with 
the X.21 standard, such that it sends characters in 
byte-synchronism with those received. External Sync 



mode applies only to the Receiver, and leaves all 
sync-detection and framing control to external circuitry. 
An input signal simply enables the Receiver to 
assemble characters from the RxD line. 

The final character-oriented synchronous mode of the 
USC channels provides basic facilities for IEEE 802.3 
(Ethernet) operation. At the start of a frame, the 
Transmitter generates, and the Receiver detects, a 
preamble consisting of alternating O and 1 bits ending 
with two 1 's in succession. Bi-phase-level data encod
ing must be selected in the Transmit and Receiver 
Mode Registers (TMR and RMR), as described in 
Chapter 3. External hardware must be provided to 
detect collisions and to signal the Transmitter when 
they occur. External hardware also must signal the 
Receiver when a frame ends based on loss of carrier. 
Upon collision detection, "back-off" timing must be 
determined by external hardware or host processor 
software. 

Bit Oriented Synchronous Modes 
As character-oriented synchronous protocols came 
into wider use in the 1960's and ?O's, the number of 
characters having special significance for the 
hardware kept increasing. Hand in hand with this, the 
complexity of the required hardware processing and 
state machines rose drastically. Particularly trouble
some was data "transparency", the ability to transmit 
any kind of "binary" data without conflict with the 
various control characters used in these protocols. 

These problems might be less severe were they 
occurring today. But given the technology available in 

... <~---- Frame -----11> .. 

the 1960's, the proliferation of sync protocols was 
making it harder and harder to build general purpose 
datacom hardware. Instead, one had to build dedi
cated communications controllers for each protocol. 

Bit oriented synchronous protocols were a response to 
these problems. IBM's SDLC was the first one widely 
used; subsequent standardization efforts added 
several refinements in defining HDLC. These 
protocols simultaneously minimized the amount of 
required hardware support, while lifting all restrictions 
on the content of the data transrnitted. Figure 27 
shows how in bit-oriented modes, frames are groups 
of sequential characters, each ending with a CRC 
code to verify its correctness as in character-oriented 
protocols. The difference lies in the Flag sequences 
used to begin, end, and separate frames. 

When a bit-oriented synchronous Receiver starts to 
receive a frame, it looks for a Flag sequence 
(01111110) just as a character-oriented synchronous 
Receiver looks for its sync character. While sending a 
frame, a bit-oriented synchronous Transmitter continu
ally checks whether any sequence of data bits could 
look like a Flag. It does this without regard for charac
ter boundaries. Whenever the data presented to a 
Transmitter includes a zero followed by five ones, the 
Transmitter adds an extra zero-bit after the fifth one
bit. Correspondingly, a bit-oriented synchronous 
Receiver monitors the serial data stream within a 
frame; any time it sees 0111110, regardless of charac
ter boundaries, it deletes the trailing zero. 

~~:-----___J_J 
May be Flags, 

-=~4MllE- Flag~Mark, Space,~ Flag~ Data 
(7E) or Not Driven (7E) 

Suppose that the Data presented to the Transmitter includes: 

lllOxxxx 

yylOOlll 

The Data actually sent will include: 
xOlllllOlOOly 

' Extra 0-bit inserted by Transmitter, 
deleted by Receiver 

Figure 27. HDLC/SDLC Data 

35 



This relatively simple technique allows transmission of 
any kind of data and assures uniqueness of the Flag 
sequence. within the data stream. (Uniqueness is 
assured as long as line errors don't occur.) This 
makes for simpler hardware than with some character
oriented synchronous protocols, in that the hardware 
only has to recognize a few bit sequences. They 
include 0111111 for zero-bit-stuffing by a Transmitter, 
0111110 for bit removal by a Receiver, a Flag 
sequence, and finally an Abort sequence. An Abort is 
a zero followed by more consecutive ones than in a 
Flag (e.g., 7 or 15 ones). 

As mentioned in the previous chapter, SDLC/HDLC 
protocols match up well with NRZl-Space encoding to 
ensure data transitions for clock resynchronization. 
This is because the Transmitter inverts NRZl-space 
data for every 0-bit and there are never more than five 
1-bits in succession within a frame. 

Finally, since the Flag-matching hardware operates 
without regard for character boundaries, bit-oriented 
synchronous protocols can handle frames that are any 
number of bits in length. (In character-oriented synch
ronous protocols, messages must be composed of an 
integer number of characters;) 

The USC can handle most variations of SDLC and 
HDLC protocols, since it leaves the details of almost 
all such variations to the host software. One variation 
with hardware significance is Loop mode. In this 
mode, the Transmitter can forward received data from 
the "preceding" station in a loop of stations to the 
"next" one in the loop. When this station has a frame 
to send, host software can load the start of the frame 
into the TxFIFO and then enable the Transmitter. The 
Transmitter then waits until it detects the transmit
permission token called Go Ahead, which is the same 
as the short-Abort sequence 01111111 in HDLC/ 
SDLC mode. The Transmitter then changes this 
character to a Flag and begins transmitting. 

The Mode Registers (CMR, TMR and RMR) 
Three Mode registers in each channel of the USC 
control the basic operation and serial protocol of the 
channel's Transmitter and Receiver. 

The Channel Mode Register (CMR) selects among the 
various communication protocols mentioned in the 

TxSubMode 
I 

TxMode 

preceding sections. Figure 28 shows that the MSbyte 
controls the.mode of the Transmitter, while the LSbyte 
controls that of the Receiver. Software can select the 
modes of the two modules independently by writing 
bytes to the CMR, or it can set both modes simultane-
ously on a 16-bit bus using a 16-bit write. · 

Within each byte, the four LSbits select the major 
communications protocol. The coding for these fields 
is similar but not identical because some modes apply 
only to the Transmitter while others apply only to the 
Receiver: 

TxMode 
)lll.lJ.te (CMRll-8 l 
0000 Asynchronous 
0001 
0010 Isochronous 
0011 Async w/Code V, 
0100 Monosync 
0101 Bisync 
0110 HDLC/SDLC 
0111 Transp. Bisync 
1000 Nine-Bit 
1001 802.3 (Ethernet) 
1010 
1011 
1100 Slaved Monosync 
1101 
1110 HDLC/SDLC Loop 
1111 

RxMode 

Asynchronous 
External Sync 

Isochronous 
Async w/Code v. 

Monosync 
Bi sync 

HDLC/SDLC 
Transp. Bisync 

Nine-Bit 
802.3 (Ethernet) 

Zilog reserves values shown above as "-" for future 
use; they should not be programmed in the indicated 
field. 

Later sections describe each of these modes and 
protocols individually, including the significance of the 
Tx and RxSubMode bits (CMR15-12 and CMR?-4 
respectively) in each case. The various major modes 
use the SubMode bits differently, to control protocol 
variations and options that are specific to each mode. 
(Sometimes the same SubMode option applies to two 
or more related major modes.) 

Understanding the choices offered by the Channel 
Mode Register is perhaps the most important single 
factor in understanding the USC family. 

The Transmit and Receive Mode Registers (TMR and 
RMR) contain basic control information for the 
Transmitter and Receiver, including the serial format 
and data-integrity checking. Figures 29 and 30 show 
the TMR and RMR respectively. 

RxSubMode RxMode 

15 14 13 12 11 10 9 8 7 4 0 

Figure 28. The Channel Mode Register (CMR) 

36 



TxEncode TxCRCType TxCRC TxCRC TxCRC TxParType 
TxPar 

Txlength 
Start Enab at End Enab 

TxEnable 

15 14 13 12 11 10 7 6 5 0 

Figure 29. The Transmit Mode Register (TMR) 

RxDecode RxCRCType 
RxCRC RxCRC 

Rsrvd RxParType 
RxPar 

Rx length 
Start En ab Enab 

RxEnable 

15 14 13 12 11 10 9 6 

Figure 30. The Receive Mode Register (RMR) 

Enabling and Disabling the Receiver and 
Transmitter 

The TxEnable and RxEnable fields (TMR1 -0 and 
RMR1 -0) enable and disable the Transmitter and 
Receiver to send and receive serial data. 00 in 
TxEnable disables the Transmitter, so that it keeps its 
output inactive and doesn't transfer characters from 
the TxFIFO to its shift register. Assuming that the 
TxDMode field (IOCR7-6) is 00 to propagate the 
Transmitter's output onto TxD, the pin shows constant 
Mark/high if the MS Bit of the Txldle field (TCSR1 O) is 
1 and/or the TxEncode field (TMR15-14) is ooo 
indicating NRZ data. If TxDMode is 00, TCSR10 is 0, 
and TxEncode is non-zero, the TxD pin shows 
encoded ones. 

If software changes TxEnable to 00 while the Trans
mitter is sending a character, it discards the character 
and disables its output immediately. Similarly, 00 in 
RxEnable disables the Receiver: it ignores the RxD pin 
and doesn't assemble characters. If software changes 
this field to 00 while the Receiver is assembling a 
character, it discards the partial character. 

01 in TxEnable or RxEnable disables the Transmitter 
or Receiver in a more "graceful" way than 00. If soft
ware changes TxEnable to 01 while the Transmitter is 
sending asynchronous data, it finishes sending the 
current character before going inactive. If software 
changes TxEnable to 01 while the Transmitter is 
sending synchronous data, it finishes sending the 
current frame or message before going inactive. If 
software changes RxEnable to 01 while the Receiver 
is receiving asynchronous data, it finishes assembling 
the current character before going inactive. If software 
changes RxEnable to 01 while the Receiver is 
receiving synchronous data, it finishes receiving the 
current frame or message before going inactive. 

1 O in TxEnable or RxEnable enables the Transmitter 
or Receiver unconditionally. 

11 in TxEnable places the Transmitter under the 
control of the /CTS pin. /CTS should be programmed 
as an input in the CTSMode field of the Input/Output 
Control Register (IOCR15-14). In this case, the 
Transmitter only starts sending a character when /CTS 
is low. If /CTS goes high while the Transmitter is 
sending a character in an async mode, it finishes 

37 

sending the character before going inactive. In any 
synchronous mode, /CTS high summarily disables the 
Transmitter. In either case, sooner or later, /CTS high 
forces TxD to Mark or ones as described above for 
TxEnable=OO. 

11 in RxEnable places the Receiver under the control 
of the /DCD pin. /DCD should be programmed as an 
input in the DCDMode field of the Input/Output Control 
Register (IOCR13-12). The Receiver ignores the RxD 
pin and does not assemble characters when /DCD is 
high. If /DCD goes high while the Receiver is as
sembling a character in External Sync mode or 802.3 
(Ethernet) mode, it finishes assembling the character 
and places it in the RxFIFO before going inactive. In 
any other mode the Receiver discards any partial 
character when /DCD goes high. 

Character Length 

The TxLength and RxLength fields (TMR4-2 and 
RMR4-2) control how many bits the Transmitter sends 
and the Receiver assembles in each character. The 
channel interprets both fields as follows: 

xMR4-2 Character Length 
000 8 bits 
001 1 bit 
010 2 bits 
Oll 3 bits 
100 4 bits 
101 5 bits 
110 6 bits 
lll 7 bits 

When TxLength specifies less than 8 bits, the Trans
mitter discards/ignores one or more of the more-signif
icant bits of each byte that it takes from the TxFIFO. 

When RxLength specifies less than 8 bits, the Re
ceiver replicates the most significant received bit in the 
more significant bits of each byte it places in the 
RxFIFO. For Async mode, it includes a received Par
ity bit, if any, in each data byte. If RxLength, plus the 
Parity bit if any, is less than 8 bits, the Receiver fills 
out the more-significant bits of each byte with the Stop 
bit, which is 1 except when there's a Framing Error. 

When RxLength is less than 8 in synchronous modes 
including HDLC/SDLC, the Receiver fills out the more 



significant bits of each byte with the last received bit 
(the parity bit if one is used), except in three cases: 
1. In Monosync and Bisync modes, when CMR4 is 1 

so that sync characters are 8 or 16 bits long, but 
data characters contain less than 8 bits, each data 
character is left-justified in its byte. 

2. In HDLC/SDLC mode, when CMR5-4 are non-zero 
so that address and control characters are 8 bits 
long but subsequent characters are less than 8 
bits long, each subsequent character is left
justified in its byte. 

3. In HD LC/SD LC mode, if the frame doesn't end on 
a character boundary, its final data bits are left
justified within the (right-justified) number of bits 
specified by RxLength, unless case 2 also applies, 
in which case they're left-justified in the last byte. 
(The number of bits in the last character of each 
HDLC/SDLC frame is always indicated in the 
RxResidue field of the RCSR.) 

In any of these three cases of left-justified data, the 
less-significant bits are left over from the previous 
character. 

If software enables parity checking in an asynch
ronous mode, the Transmitter and Receiver handle the 
parity bit as an additional bit after the number of bits 
defined by TxLength and RxLength. If software 
selects parity checking in a synchronous mode, the 
Transmitter and Receiver handle the parity bit as the 
last of the number of bits specified by TxLength and 
RxLength. 

In Async with Code Violations (15538) mode only, the 
Transmitter and Receiver can handle "words" that 
include up to 16 data bits, treating each word as two 
characters in the Transmit and Receive FIFOs. When 
software selects this option, the number of data bits 
per word is eight more than the number usually 
indicated by TxLength and RxLength. 

Software should reprogram RxLength only while the 
Receiver is either disabled, in Hunt state in a 
synchronous mode, or between characters in an 
asynchronous mode. Software can reprogram 
TxLength at any time, but a new length takes effect 
only when the Transmitter loads the next character 
into its shift register. 

Parity, CRC, Serial Encoding 

A later section of this chapter, Parity Checking, 
discusses how bits 7-5 of both the TMR and RMR 
control parity checking. 

Similarly, a later section of this chapter, Cyclic 
Redundancy Checking, describes how bits 12-8 of the 
TMR and RMR control CRC checking. 

The TxEncode and RxDecode fields (TMR15-13 and 
RMR15-13) specify how the Transmitter encodes 

38 

serial data on the TxD pin and how the Receiver 
decodes it on the RxD pin. See Chapter 3 for a full 
description of the following encodings: 
xMR15-13 Data Format 

000 NRZ 
001 NRZB 
010 NRZI-Mark 
011 NRZI-Space 
100 Biphase-Mark 
101 Biphase-Space 
110 Biphase-Level 
111 Differential Biphase-Level 

Asynchronous Mode 
Software can select classic asynchronous operation 
for both the Transmitter and the Receiver, by program
ming the TxMode and RxMode fields (CMR11-8 and 
CMR3-0 respectively) to 0000. The earlier Figure 25 
shows how a "O" Start bit precedes each character 
and a "Stop bit" follows each, the latter being a "1" 
condition that's more than 1/2 bit time long. The idle 
state of the line is 1, and the Transmitter and Receiver 
divide their input clocks by 16, 32, or 64 to arrive at 
the nominal bit time. 

Software can make the Transmitter calculate and send 
a parity bit with each character and can make the 
Receiver check such parity bits, as described in the 
later section Parity Checking. 

The two more significant TxSubMode bits (CMR15-14) 
control the minimum number of Stop bits that the 
Transmitter sends between consecutive characters. 
The Transmitter interprets them as follows: 
CMR15-14 Minimum Length of Tx Stop 

00 One bit time 
01 Two bit times 
10 One, "shaved" per CCRll-8 
11 Two, "shaved" per CCRll-8 

When CMR15 is 1 in this mode, the TxShaveL field of 
the Channel Control Register (CCR11-8) controls the 
exact length of the minimum Stop bit(s). If the 4-bit 
value in TxShaveL is "n", then the length of the shaved 
stop bit is (n+ 1 )/16 bit times. The following table 
summarizes the stop bit possibilities afforded by 
CMR15-14 and CCR11-8: 

CMR15-14 CCRll-8 Minimum Len th of Tx Sto 
00 xx xx 1 bit time 

01 xx xx 2 bit times 

10 0000-0111 1/2 or less: DO NOT USE 
10 1000 9/16 

10 1001 5/8 
10 1010-1110 11/16 to 15/16 

10 1111 1 (as with CMR15-14=00) 

11 0000 17/16 

11 0001 9/8 

11 0010-1110 19/16 to 31/16 

11 1111 2 (as with CMR15-14=01) 



The two LSbits of the Tx and RxSubMode fields 
(CMR13-12 and 5-4) control the factors by which the 
Transmitter and Receiver divide their TxCLK and 
RxCLK inputs to arrive at the nominal bit length. The 
channel interprets both fields as follows: 
CMR13-12 
& CMRS-4 

00 
01 
10 

Nominal Bit Length 
TxClock or RxClock I 16 
TxClock or RxClock I 32 
TxClock or RxClock I 64 

11 Reserved, do Dot progra_m 

For the Receiver, choosing a larger divisor makes it 
sample the data on RxD more often. This may result 
in a slightly better error rate in marginal circum
stances. For the Transmitter there is no significance 
to the divisor chosen, other than the convenience of 
choosing the same value as for the Receiver, so that 
the same source can be used for both RxCLK and 
TxCLK. (See Chapter 3 for more information about 
clock selection.) 

Zilog reserves the two MSbits of the RxSubMode field 
(CMR?-6) in Asynchronous mode for use in future 
products. They should always be programmed as 00. 

There is no such thing as a "received stop length" 
parameter: the Receiver does not expect or check for 
a particular stop bit length. It simply samples the 
received data at the nominal midpoint of a single Stop 
bit, and loads a corresponding Framing Error bit into 
the RxFIFO with each character. This bit migrates 
through the FIFO with its associated character and 
eventually appears as the CRCE/FE bit in the Receive 
Command/Status Register (RCSR3). Note that 
RCSR3 can represent the status at the time that a 
character marked with RxBound 1 status was read from 
the RxFIFO, or the status of the oldest 1 or 2 
characters that are still in the RxFIFO, as described in 
the later section Status Reporting. 

Break Conditions 

A Break condition is a period of Space (zero) state on 
an Async line, that's longer than the length of a 
character. Such a sequence traditionally signals an 
exceptional condition or a desire to stop transmission 
in the opposite direction. Alternatively, a Break may 
mean that the switched or physical connection with the 
other station is broken. The Receiver detects a Break 
condition when it samples a supposed Stop bit as 
Space/zero (a Framing Error) and all the data bits 
were also Space/zero. In this case the Receiver 
doesn't place the all-zero character in the RxFIFO, but 
instead sets the Break/Abort bit in the Receive 
Command/Status Register (RCSR5). This bit can be 
enabled to cause an interrupt at the start of a Break, 

1 Previous USC documentation called RxBound "CV/EOF/EOT". 

39 

but there's no provision for an interrupt at the end of a 
Break. Software can tell when the Break ends by 
polling the Break/Abort bit. This is because the bit 
doesn't go back to 0 until software has written a 1 to 
the bit to "unlatch" it, .ao.Q RxD has gone back to 
1/High/Mark. 

Software can send a Break by programming the 
TxDMode field of the Input/Output Control Register 
(IOCR?-6) to 1 O to force TxD to low/space. Then it 
can use whatever kind of timing resources it has 
available to measure the desired duration of the 
Break. After this, it can program TxDMode back to 11 
to force TxD to high/mark or to 00 to resume normal 
operation. Chapter 3 describes a channel's Counters 
and Baud Rate Generators that may be useful in 
timing the length of a transmitted Break. While most 
modern serial controllers will detect a Break that's only 
slightly longer than a character, older conventions 
required a Break to be much longer: 200 milliseconds 
or more. 

Isochronous Mode 
Software can select Isochronous operation for the 
Transmitter and the Receiver, by programming the 
TxMode and RxMode fields (CMR11-8 and CMR3-0 
respectively) to 001 o. This mode is similar to Asynch
ronous mode as described above, except that the 
Transmitter and Receiver use 1 X instead of 16X, 32X, 
or 64X clocking. This typically means that an external 
bit clock must be provided. It's possible to use the 
DPLL to recover a 1X clock, but this is a lot like what 
the Receiver does in Async mode anyway. 

Of the options available in the Channel Mode Register 
for Async mode, the only one that applies in Iso
chronous mode is CMR14. This controls whether the 
Transmitter sends one or two stop bits: 
~ Length of Tx Stop 

O 1 bit time 
1 2 bit times 

The USC doesn't use the other 3 bits of the 
TxSubMode field in Isochronous mode, nor any of the 
RxSubMode bits, but Zilog reserves these bits for 
functional extensions in future products. Software 
should always program them with zeroes in Isochron
ous mode on a USC. 

Nine-Bit Mode 
This mode is compatible with various equipment 
including some Intel single-chip microcontrollers. 
Some contexts call it "address wakeup mode". 
Software can select it for the Transmitter and the 
Receiver by programming the TxMode and RxMode 
fields (CMR11-8 and CMR3-0 respectively) to 1000. 
Operation on the line is similar to Async mode, using a 
single stop bit and either eight data bits or seven data 
bits plus a parity bit. Following the eighth (MS) data 



bit or the Parity bit, an additional bit differentiates 
normal data characters from "destination address" 
characters. Address characters identify which. of 
several stations on the link should rec.eive the fol
lowing data characters. In effect, Nine Bit mode is like 
a Local Area Network using asynchronous hardware. 

The Transmitter saves TxSubMode bit 3 (CMR15) with 
each character as it goes into the TxFIFO, and sends 
it as that character's address/data bit. By convention 
a O signifies "data" and a 1 signifies "address". As 
software or an external Transmit OMA controller writes 
each character into the TxFIFO, the channel saves the 
state of CMR15 with it. This bit accompanies the 
character through the FIFO and out onto the link. 

TxSubMode bit 2 (CMR14) selects between eight data 
bits or seven data bits plus parity: 

.cMRli Data bits 
0 Eight 
1 Seven plus parity. The 

TxParEnab bit in the Transmit 
Mode Register (TMR5) must be 1. 

Typically, Nine Bit receivers check the parity of 
received address bytes. This means that when 
software selects eight data bits, it must calculate its 
own parity bit in the MSB of addresses. 

As in Async mode, the two LSbits of the Tx and 
RxSubMode fields (CMR13-12 and 5-4) control 
whether the Transmitter and Receiver divide their 
TxCLK and RxCLK inputs by 16X, 32X, or 64X to 
arrive at the nominal bit length. See the preceding 
Async section for the field encodings and a discussion 
of the significance of this choice. 

The Receiver sets the RxBound status bit for a 
received address character, that is, a character that 
has its ninth bit set to 1. This bit accompanies the 
character through the RxFIFO and ends up in the 
Receive Command/ Status Register (RCSR4). Note 
that this mode uses the RxBound indicator quite a bit 
differently from other modes, in that it marks the start 
of each received block rather than the .!2.Q.Q. Because 
of this, some of the mechanisms associated with 
RxBound, that are described in later sections, aren't of 
much use in Nine-Bit mode. For example, you 
probably wouldn't want to store a Receive Status 
Block for an address character ... 

The USC doesn't use the two MSBits of the 
RxSubMode field (CMR7-6) in Nine Bit mode, but 
Zilog reserves these bits for future enhancements and 
software should program them as 00 in this mode. 

40 

Async with Code Violations (15538) Mode 
Software can select the Async with Code Violations 
(ACV) mode for the Transmitter and the Receiver by 
writing 0011 to the TxMode and RxMode fields, 
CMR11-8 and CMR3-0. The main use of this mode is 
to implement MIL-STD-1553B communications. 
However, there are at least two variations of this 
protocol in use, and the mode has some interesting 
properties for use in proprietary datacom schemes as 
well. Therefore this section will discuss the mode "at 
arm's length from" 1553B itself. 

The mode resembles the Isochronous mode in that the 
Transmitter and Receiver use a 1X clock instead of 
16, 32, or 64X oversampling. 

1553B defines the smallest indivisible group of data on 
the line as either 16 or 14 consecutive bits, and calls 
such a group a "word". This section will use this term 
in this way, as well as to describe 16 bits transferred 
to or from a FIFO. We'll call 8 bits transferred to or 
from a FIFO a "byte". 

Zilog recommends ACV mode only with Biphase
encoded data. Standard 1553B uses Biphase-Level 
encoding while an Army variant uses Biphase-Mark. 
(Before reading further you may want to review the 
Data Formats and Encoding section of Chapter 3.) 

ACV mode replaces the Start bit of Async and 
Isochronous modes by a unique 3-bit sequence, of 
which the first and third do not include the usual clock 
transition. There are two different sequences: two 
ones followed by a zero begin a "command/status 
word" while two zeroes followed by a one signify a 
"data word". 

Because of the missing clock transitions, these 
sequences can't occur in the subsequent data bits for 
each character. This allows a Receiver to recognize 
word boundaries even in a continuous data stream. 
(This can be difficult in normal async applications.) 

The idle line state between characters is all ones as in 
other async modes. Because the 3-bit Start sequen
ces are unique and recognizable, there's no need for a 
Stop bit to ensure a transition between characters. 
Therefore Stop bits are optional in ACV mode. 

In standard 1553B, 16 data bits follow each Start 
sequence and are followed by an even parity bit. In an 
Army variant there are 14 data bits per word and no 
parity bit. Figure 31 shows these two standard data 
formats, and includes both kinds of Start sequences 
for all four Biphase modes. 

If software selects ACV mode with any of the four 
NRZ encodings, the channel sends and scans for Start 
sequences that contain the same data bits, but such 
Start sequences aren't uniquely recognizable as in 
Biphase modes. 



3-blt "Command/ 3-blt 
Status" Start "Data" Start 

I-< ~I I-< ~I 

Standard]L 
15538: i 16 D~)a Bits ~;:r~t~~ I \ 16 D~ta Bits 

Even 
Parity Idle 

..... --------

Army~, , 
Variant: a Bits 

'!------_) 
1..,_ __ 1_4_D-1a;1-;a_B_1t_s _ __,/ 1dle 

141(---------

• 3-bit "Command/ 
Status" Start 

"Command/Status" Start Sequence 

TxCLK --\ n n r---\ I \_j \_j :\_) \_j 
' ' ' ' 

' ' ' . 
Blphase- : • • : 
Mark~~ 

(Army) ' _, • - '-·--- ' . ' ' ' 
' . ' ' 

Blphase
Space _ _,_ __ --c' L__ _ __,_ _ _, 

Blphase- __,,;.;-·-+-\ •.', IV 
Level __ij • \ L__}\_ 

(Standard) : : ~+----~ 

Differential ___ _ 

Bl phase- ~ 
Level 

Data 
Bits: 

1 w/o 
clock 

: Normal 1 : 
Ow/o 
clock 

1st 
Data 

3-bit 
"Data" Start 

------. 

·---- ·-------. 
------. 

"Data" Start Sequence 

TxCLK 

Blphase--~--~--~-~ 

Mark 
(Army) 

Blphase
Space 

Blphase-~ 

Level ____ij j 
(Standard)-~.~--~~ 

Dlfferentlal_ 
Blphase

Level 

Data 
Bits: 

' ' 
0 w/o i Normal 0 ; 1 w/o 
clock clock 

1st 
Data 

Figure 31. A 15538 Command/Status Word Followed by a Data Word 

The two MSBits of the TxSubMode field (CMR15-14) 
select the minimum number of Stop bits that the 
Transmitter sends between words: 
CMR15-14 

00 
01 
10 
11 

# of Stop Bits Transmitted 
One 
Two 
None 
Reserved; do not program 

If the CMR13 bit of the TxSubMode field is 1 in ACV 
mode, the Transmitter sends 8 more data bits per 
character/word than the number specified by the 
TxLength and TxParEnab fields of the Transmit Mode 
Register (TMR4-2 and TMR5). If CMR13 is 0, the 
Transmitter sends 8 or less bits in each character, as 
in other modes. 

41 

Similarly, if CMR4 in the RxSubMode field is 1 in ACV 
mode, the Receiver expects 8 more data bits per 
character/word than the number specified by the 
RxLength and RxParEnab fields of the Receive Mode 
Register (RMR4-2 and RMR5), and it marks the sec
ond byte of each received word with RxBound status 
in the RxFIFO. If CMR4 is 0, the Receiver expects 8 
or less bits per character as in other modes, and it 
marks every received character with RxBound status. 

Thus, for standard 15538 communications, program 
both CMR13 and CMR4 to 1, and program TMR7·2 
and RMR7-2 to 001000 to specify 16 total data bits fol
lowed by an even parity bit. For the Army variant, 
again program CMR13 and CMR4 to 1, but program 
TMR7-2 and RMR7-2 to 000110 for 14 data bits with
out a parity bit. 



When CMA13 and CMR4 are 1, each word on the line 
corresponds to either one 16-bit transfer, or two 8-bit 
transfers, to and from the FIFO's. Software can use 
the commands available in the Channel Command I 
Address Register (CCAR) to match the bit ordering 
used on the serial link and the byte ordering employed 
by the host processor. 

The CMR12 bit of the TxSubMode field controls which 
of the two Start sequences the Transmitter sends in 
front of each word. When CMA12 is 1, it sends two 
ones followed by a zero, which signifies a "command/ 
status word". When CMA12 is O, it sends two zeroes 
followed by a one, signifying a "data word". Software 
has to toggle CMR12 to send the two kinds of words. 
The channel captures the state of CMR12 in the 
TxFIFO with each data word, so that software can 
change it as needed. 

The Receiver sends the identity of the Start sequence 
for each word through the RxFIFO with the data. At 
the "host end" of the FIFO, this information is available 
as the ShortF/CVType bit in the Receive Command/ 
Status Register (RCSA8). ShortF/CVType is 1 for a 
"command/status" word and O for a "data" word. Note 
that RCSR8 can represent the status at the time that 
an RxBound character was read from the RxFIFO, or 
the status of the oldest 1 or 2 characters that are still 
in the RxFIFO, as described later in Status Reporting. 

Using "programmed 1/0", software has to set CMR12 
and sample RCSR8 for the two kinds of Start 
sequences. These matters can be handled on a OMA 
basis, without processor intervention for each word. 
Transmit software can use the Transmit Control 
Block2 feature to change CMR12 for each block of 
words that use the same Start sequence. Receiving 
software can use the Receive Status Block feature to 
make the channel store the contents of the RCSR in 
memory after each word received. This status 
includes the ShortF/CVType bit. See Using TCB's and 
RSB's in ACV (15538) Mode later in this chapter for 
more details on how to use these features. 

The USC doesn't use the three MSBits of the 
RxSubMode field (CMR7-5) in ACV mode, but Zilog 
reserves these bits for future enhancements and soft
ware should always program them as 000 in this 
mode. 

External Sync Mode 
Software can select this mode only for the Receiver, 
by programming the RxMode field of the Channel 
Mode Register (CMR3-0) as 0001. This value is not 
defined for the TxMode field (CMA11-8). 

2 Previous USC documentation called this the Transmit Status Block feature. 

42 

This is the most primitive synchronous mode. To use 
it, software must program the DCDMode field of the 
Input/Output Control Register (IOCR13-12) to 01, to 
specify that the /DCD pin carries a Sync input. 
External hardware must provide a low-active signal on 
this pin, that controls when the Receiver should 
capture data. When the external hardware establishes 
synchronization and/or data validity, it should drive 
/DCD low. The timing should be such that the channel 
first samples /DCD low at the same rising edge of 
RxCLK at which the first data bit that it should capture 
is available on RxD. (Typically, RxCLK comes directly 
from the /RxC pin in this mode.) 

While /DCD stays low the Receiver samples RxD on 
each rising edge of RxCLK. Ideally, the external hard
ware should negate /DCD such that the channel sam
ples it high on the rising RxCLK edge after the one on 
which it samples the last bit of the last character. But 
if /DCD goes high ~ the Receiver is in the midst of 
assembling a received character, it continues on to 
sample the remaining bits of the character and place 
the character in the RxFIFO. Because of this, it's OK 
for /DCD to go high during the last character, at any 
time after a hold time after the RxCLK edge at which 
the Receiver samples the first bit of the character. 

Software can make the Receiver check a parity bit in 
each character as described in the following section 
Parity Checking. Besides or instead of character 
parity, software can make the Receiver check a CRC 
code as described in the Cyclic Redundancy Checking 
section. 

The USC doesn't use the RxSubMode field (CMR7-4) 
in External Sync mode, but Zilog reserves this field for 
future enhancements and software should program it 
as 0000 in this mode. 

Monosync and Bisync Modes 
The Binary Synchronous Communications protocol put 
forth by the IBM Corporation in the 1960's is often 
abbreviated as "Bisync". But we will use the latter 
term more generally, to mean a mode of a USC 
channel, in which the Transmitter sends, and the 
Receiver searches or "hunts" for, a Sync pattern 
composed of two characters totalling 16 bits or less. 
By contrast, we'll use the term "Monosync" to mean a 
mode in which the Transmitter sends, and the 
Receiver matches, a sync pattern of eight bits or less. 
Use of Bisync mode with the two sync characters 
equal represents a middle ground, having the advan
tage that the two-character pattern match by the 
Receiver is more reliable and secure than the sync 
match in Monosync mode. 

Software can select these modes for the Transmitter 
and/or the Receiver, by programming the value 0100 
(for Monosync) or 0101 (for Bisync) into the TxMode 



and/or RxMode fields of the Channel Mode Register 
(CMR11 -8 and CMR3·0). 

Software can make the Transmitter calculate and send 
a parity bit with each character and can make the 
Receiver check such parity bits, as described in the 
Parity Checking section. 

In such character-oriented synchronous modes, blocks 
of consecutive characters are called messages. 
Besides or instead of character parity, software can 
make the Transmitter calculate and send a Cyclic 
Redundancy Check (CRC) code for each message 
and can make the Receiver check a CRC in each 
message, as described later in Cyclic Redundancy 
Checking. 

On the transmit side, the Transmitter "concludes a 
message" in either of two situations: when it underruns 
or after it sends a character marked with "EOF/EOM" 
status. The Transmitter underruns when the TxFIFO is 
empty and the transmit shift register needs a new 
character. Software can mark a character as End Of 
Message directly, using a command in the Transmit 
Command/Status Register (TCSR), or more automat
ically by using the Transmit Character Counter as 
described in a later section. 

The MSBit of the TxSubMode field (CMR15) deter
mines whether the Transmitter sends a CRC when it 
concludes a message because of an Underrun 
condition. The TxCRCatEnd bit in the Transmit Mode 
Register (TMR8) determines whether it does so when 
it concludes a message because of a character 
marked as End Of Message. If CMR15 or TMR8 (as 
applicable) is 1, the Transmitter sends the CRC code 
that it has accumulated while sending the message. If 
CMR15 or TMR8 is 0, it doesn't send a CRC code; if 
there's any message-level checking, it must be sent 
like normal data. 

After the CRC, or immediately if CMR15 or TMR8 is 0, 
in Monosync mode the Transmitter sends the Sync 
character in the LSByte of the Transmit Sync Register 
(TSR?-0). In Bisync mode it sends the "SYN1" 
character in TSR15-8 if CMR14 is 0, while if CMR14 is 
1 it sends one or more character _o.m. The Trans
mitter takes the first character of each such pair from 
TSR?-0; by convention it's called "SYNO". The second 
character of each pair comes from TSR15-8 and is 
called "SYN1". 

After sending this closing Sync character or pair, 
if/while software doesn't present another message, the 
Transmitter maintains the TxD signal in the "idle line 
state" defined by the Txldle field of the Transmit 
Command I Status Register (TCSR10-8). If this field 

, is 000, it continues to send more of the same Sync 
' character or pair that it sent to terminate the message. 

Other Txldle values select constant or alternating-bit 

43 

patterns, as described later in Between Frames, 
Messages, or Characters. 

If the CMR13 bit in the TxSubMode field is 1, the 
Transmitter sends a "Preamble" before the "opening" 
sync character that precedes each message. Soft
ware can select the length and content of the 
Preamble in the Channel Control Register (CCR11 -8). 
A typical use of the Preamble is to send a square
wave pattern for bit rate determination by a phase 
locked loop. 

The Transmitter always sends at least one "opening" 
Sync pattern before the first data character of a 
message (after the Preamble if any). In Monosync 
mode it sends one character from TSR15-8, while in 
Bisync mode it sends the "SYNO" character from 
TSR?·O followed by "SYN1" from TSR15-8. (In Bisync 
mode an opening Sync sequence is always a char
acter pair, regardless of CMR14.) 

The LSBits of the TxSubMode and RxSubMode fields 
(CMR12 and CMR4 respectively) specify the length of 
the Sync characters that the Transmitter sends before 
and after each message and between messages, and 
for which the Receiver hunts. If CMR12 or CMR4 is 1, 
sync characters have the same length as data 
characters, namely the length specified by the 
TxLength field in the Transmit Mode Register (TMR4· 
2) or the RxLength field of the Receive Mode Register 
(RMR4-2). If sync characters are less than 8 bits long, 
they must be programmed in the least significant bits 
of TSR15-8, RSR?-0 and, for Bisync, TSR?·O and 
RSR15-8. Furthermore, to guarantee that the 
Receiver matches such Sync characters, the "unused" 
MSBits among RSR?-0 (and for Bisync RSR15-8) 
must be programmed equal to the MS active bit. 

If CMR12 or CMR4 is 0, Sync characters are 8 bits 
long regardless of the length of data characters. 

On the receive side, the CMR5 bit of the RxSubMode 
field determines what the Receiver does with Sync 
characters. In CMR5 is 1, the Receiver strips char
acters that match the character in RSR15-8, and 
neither places them in the RxFIFO nor includes them 
in its CRC calculation. (In Bisync mode, aside from 
the initial sync match the Receiver treats characters 
that match "SYNO" in RSR7·0, but don't match "SYN1" 
in RSR15·8, as normal data.) If CMR5 is 0, the 
Receiver places all Sync characters inside a message 
in the RxFIFO and includes them in the CRC 
calculation. 

The USC doesn't use the two MSBits of the 
RxSubMode field (CMR?-5) in Monosync and Bisync 
modes, nor CMR14 in the TxSubMode field in Mono
sync mode. Zilog reserves these bits for future 
enhancements, and software should always program 
these bits with zeroes in these modes. 



Transparent Bisync Mode 
This mode is more specific to the Transparent Mode 
option of IBM Corp.'s Binary Synchronous Communi
cations protocol than is the Bisync mode described 
above. Software can select this mode for the Trans
mitter and the Receiver, by programming the TxMode 
and RxMode fields of the Channel Mode Register 
(CMR11-8 and CMR3-0) to 0111. 

In Monosync and Bisync modes the Sync characters 
are programmable, but in this mode a channel uses 
the fixed characters "OLE" for the first of a sync pair, 
and "SYN" for the second of a pair. (Software can 
make the Transmitter send only SYNs for closing and 
idle Syncs.) The LSBits of the TxSubMode and 
RxSubMode fields (CMR12 and CMR4) control 
whether the Transmitter and Receiver use the ASCII 
or EBCDIC codes for control characters, with a 1 
specifying EBCDIC. 

Besides using OLE before an opening and possibly a 
closing SYN, the Transmitter can check whether each 
data character coming out of the TxFIFO is a OLE and 
insert another OLE if so. This feature allows any kind 
of data to be sent "transparently". The Transmitter 
doesn't include such an inserted OLE in its CRC cal
culation. Software can selectively enable and disable 
this function using the Enable OLE Insertion and 
Disable OLE Insertion commands, as described later 
in the Commands section. In general software should 
enable OLE insertion for sending data and disable it 
for sending a control sequence that starts with OLE. 
The channel routes the state controlled by these 
commands through the TxFIFO with each character, 
so that software can change the state as needed. 

Similarly, in Transparent Bisync mode the Receiver 
checks whether each character coming out of its shift 
register is a OLE. If so, it sets a state bit. If the next 
character is also a OLE, the Receiver doesn't include it 
in the RxFIFO nor in the CRC calculation. 

If the character after a OLE is any of the terminating 
codes "ITS", "ETX", "ETB", "EOT", or "ENQ", the 
Receiver places the terminating character in the 
RxFIFO marked with RxBound status. As described in 
later sections, this marking may set the channel's 
Received Data Interrupt Pending bit and thus force an 
interrupt request on its /INT pin, and/or it may force a 
OMA request on the /RxREQ pin. 

The first "DLE-SOH" or "OLE-STX" in a message 
makes the Receiver enable its CRC generator for 
subsequent data. Therefore, the CRC in Transparent 
Bisync mode covers all the data after the first DLE
SOH or OLE-STX. 

The Receiver doesn't take any other special action 
based on received DLE's. 

44 

A Transmitter in Transparent Bisync mode sends a 
OLE-SYN pair at the start of a message, but a 
Receiver in this mode syncs up to SYN-SYN. This is 
so that software can determine "transparency" sepa
rately for each message, by testing whether the first 
character of the message in the RxFI FO is a OLE. 

The following table shows the ASCII and EBCDIC 
codes that a channel recognizes in this mode: 

Character ASCII Code16 EBCDIC Code16 

OLE 10 10 

ENQ 05 20 

EOT 04 37 

ETB 17 26 

ETX 03 03 

ITS 1F 1F 

SOH 01 01 

STX 02 02 

SYN 16 32 

Given the dedicated nature of the Sync characters, the 
Transmitter interprets the three MSBits of the 
TxSubMode field similarly to the way it does so in 
Bisync mode. If CMR15 is 1, it sends a CRC when a 
Tx Underrun condition occurs. If CMR14 is 1, the 
Transmitter sends one or more OLE-SYN pairs after a 
message, else it just sends SYNs. If CMR13 is 1, it 
sends a Preamble sequence before the opening Sync 
at the start of each message. 

The same data checking options apply to this mode as 
in Monosync and Bisync, but since we're quite proto
col-specific here, we can say that character parity is 
typically not used while CRC-16 checking is. While 
the Receiver can detect the end of the frame in 
Transparent Bisync mode, the Receive Status Block 
feature can't be used to capture the CRC Error status 
of the frame, for reasons discussed later in the Cyclic 
Redundancy Checking section. But the selective 
inclusion/exclusion of received data in the CRC 
calculation, that's typical of this mode, precludes the 
kind of automatic reception that the RSB feature 
allows in modes like HDLC/SDLC anyway. 

The USC doesn't use the three MSBits of the 
RxSubMode field (CMR7-5) in Transparent Bisync 
mode, but Zilog reserves these bits for future 
enhancements and software should always program 
them as 000 in this mode. 



Slaved Monosync Mode 
This mode applies only to the Transmitter. Software 
selects it by programming 1100 in the TxMode field of 
the Channel Mode Register (CMR11-8), while pro
gramming 0100 in the RxMode field (CMR3-0) to 
select Monosync mode for the Receiver. 

The mode is intended to implement the X.21 standard 
and similar schemes in which character boundaries on 
TxO must align with those on RxO. For this to be 
meaningful, RxCLK and TxCLK typically come from 
the same source, as described in Chapter 3. 

Most of the setup and operation in this mode is the 
same as in Monosync mode, which was described in 
an earlier section. CMR15 determines whether the 
Transmitter sends a CRC in an Underrun condition. 
CMR12 selects whether sync characters are the same 
length as data characters, or are 8 bits long. 

CMR13 controls the major operating option in Slaved 
Monosync mode. (In regular Monosync mode this bit 
controls whether the Transmitter sends a Preamble 
before each message; in this mode it can't send one.) 

The Transmitter will not go from an inactive to an 
active state while CMR13 is 0. If CMR13 is 1 when 
the Receiver signals that it has matched a Sync 
character, the Transmitter sets the Onloop bit in the 
Channel Command I Status Register (CCSR7) and 
becomes active. That is to say, the Transmitter can 
go active at any received Sync character, not just one 
that makes the Receiver exit from "Hunt mode". 

Once the Transmitter starts, operation is identical with 
Monosync mode. The Transmitter sends the Sync 
character from TSR7-0. Then it sends data from the 
TxFIFO, until the TxFIFO underruns or until it sends a 
character marked as End of Message. Then the 
Transmitter sends the CRC if software has pro
grammed that it should do so for this kind of termi
nation. Finally it sends a Sync character and checks 
the CMR13 bit again. 

If CMR13 is still 1, the Transmitter waits, sending the 
programmed Idle line condition, until the software 
triggers it to send another message. If, however, soft
ware cleared CMR13 to 0 during the message just 
concluded, or if it does so while the channel is sending 
the Idle condition, the Transmitter goes inactive but it 
leaves Onloop (CCSR7) set. In the inactive state it 
sends continuous ones until software programs 
CMR13 back to 1 again, and the Receiver signals 
Sync detection. 

If all the transmitted and received sync and data 
characters are the same length, and the same clock is 
used for both the Transmitter and Receiver, this 
method of starting transmission assures that trans
mitted characters start and end simultaneously with 
received characters, as required by X.21. 

45 

The USC doesn't use CMR14 in the TxSubMode field 
in Slaved Monosync mode, but Zilog reserves this bit 
for future enhancements and software should always 
program it as zero in this mode. 

IEEE 802.3 (Ethernet) Mode 
Software can select this mode for the Transmitter and 
the Receiver, by programming 1001 into the TxMode 
and RxMode fields of the Channel Mode Register 
(CMR11-8 and CMR3-0). 

The USC's capab111t1es for handiing Ethernet com
munications are less comprehensive than those 
offered by various dedicated Ethernet controllers. In 
particular, external hardware must detect collisions 
and generate the pseudo-random "backoff" timing 
when a collision occurs. 

In Ethernet parlance, blocks of consecutive characters 
are called frames rather than messages. 

Since Ethernet is a relatively specific, well-defined 
protocol we can define the proper settings for many of 
the channel's register fields and options. We can 
specify the exact values that software should program 
into the Transmit Mode Register (070316) and Receive 
Mode Register (060316). These values specify 
Biphase-Level encoding, a 32-bit CRC sent at End of 
Frame, no parity, and 8 bit characters, all according to 
Ethernet practise and IEEE 802.3. In addition the 2 
LSBits specify auto-enabling based on signals from 
external hardware on /CTS and /OCO. 

On the transmit side, software should program the 
TxPreL and TxPrePat fields of the Channel Control 
Register (CCR11-8) to 1110. This value makes the 
Transmitter send the 64-bit Preamble pattern 101 o ... 
before each frame. In 802.3 mode the Transmitter 
automatically changes the 64th bit from o to 1 to act 
as the "start bit". 

Furthermore, software should program the Txldle field 
of the Transmit Command I Status Register (TCSR10-
8) to 110 or 111. These values select an Idle line 
condition of constant Space or Mark. This condition, 
in turn, allows external logic to detect the missing 
clock transition in the first bit after the end of the CRC, 
and turn off its transmit line driver. (In a low-cost 
variant, such an Idle state can simply disable an open
collector or similar unipolar driver.) Another alternative 
is to use the Tx Complete output on /TxC to control 
the driver. 

External logic must detect collisions that may occur 
while the channel is sending, and signal the 
Transmitter by driving the /CTS pin high when this 
occurs. Besides the auto-enable already noted for 
TMR1-0, software should write the CTSMode field of 
the Input I Output Control Register (IOCR15-14) as Ox 
to support this use of /CTS. 



/DCD 

i 
Carrier 

Detection 

0 1 0 ... 1 0 1 0 1 1 

At least 58 
Alternating 

Bits r 16 or48 bit · 
Destination 

Address 

Start Bit 

Source Address, Length, 
Information 

32 Bit 
CRC i 

Carrier 
Loss 

Figure 32. Carrier Detection for a Received Ethernet Frame 

As in other synchronous modes, the MSBit of the 
TxSubMode field (CMR15) controls whether the 
Transmitter sends its accumulated CRC code if a 
Transmit Underrun condition occurs. 

On the receive side, external logic should monitor the 
link and drive the /DCD pin low when it detects carrier. 
Figure 32 shows the relationship between an Ethernet 
frame on RxD and the signal on /DCD. Besides the 
auto-enable already noted for RMR1 -0, software 
should program the DCDMode field of the Input / 
Output Control Register (IOCR13-12) as 01 to control 
the /DCD pin. 

After /DCD goes low, the Receiver hardware hunts for 
58 alternating bits of preamble, with the final 0 
changed to a 1 as a "start bit". When it finds this 
sequence it starts assembling data and may check the 
Destination Address in the frame as described below. 

After a frame, the external hardware should drive 
/DCD high so that it sets up to the rising RxCLK edge 
after the one at which it samples the last bit of the 
CRC. In this mode and External Sync mode only 
among synchronous modes, if /DCD goes high while 
the Receiver is in the midst of assembling a character, 
it continues on to sample the remaining bits of the 
character and place the character in the RxFIFO. 

The receiver marks the character that was partially or 
completely assembled when /DCD went high with 
RxBound status in the RxFIFO. As described in later 
sections, this marking may set the channel's Received 
Data Interrupt Pending bit and thus force an interrupt 
request on its /INT pin, and/or it may force a DMA 
request on the /RxREQ pin. 

The LSBit of the RxSubMode field (CMR4) controls 
whether the Receiver checks an Address field at the , 
start of each frame. If CMR4 is o, the Receiver places 
all received frames in the RxFIFO and leaves address
checking to the software. (Some contexts call this 
"promiscuous mode".) If CMR4 is 1, the Receiver 
compares the first two characters (16 bits) of each 
frame to the contents of the Receive Sync Register 

46 

(RSR). It compares RSRO to the first bit received, and 
RSR15 to the last bit, regardless of any "Select Serial 
Data MSB First" commands that the software may 
have written to the RTCmd field (CCAR15-11). The 
Receiver ignores the frame unless the address 
matches, or unless the first 16 bits are all ones, which . 
indicates a frame that should be received by all 
stations. The Receiver places the address in the 
RxFIFO so that the software can differentiate "locally 
addressed" frames from "global" ones. 

Except in the CRC, characters ("octets") are sent 
LSBit first. The Length field that follows the Desti
nation and Source Address fields is sentMSByte-first. 
IEEE 802.3 doesn't include any other byte ordering 
information. 

The USC doesn't use the three LSBits of the 
TxSubMode field (CMR14-12) in 802.3 mode, ·nor the 
three MSBits of RxSubMode (CMR7-5), but Zilog re
serves these bits for future enhancements. Software 
should always program them with zeroes in this mode. 

HDLC I SDLC Mode 
Software can select this mode for both the Transmitter 
and the Receiver, by writing 0110 to the TxMode and 
RxMode fields of the Channel Mode Register (CMR 11 • 
8 and CMR3·0). 

In some sense this is the most important mode of the 
USC, at least for new designs. It is similar to 
character-oriented synchronous modes in that data 
characters follow one another on the serial medium 
without any extra/overhead bits, and are organized 
into blocks of data with CRC checking applied to the 
block as a whole. 

For HDl!.C and SDLC, the blocks of data are called 
frames. Uniquely recognizable 8-bit sequences called 
Flags, consisting of 01111110, precede and follow 
each frame. HDLC/SDLC protocols ensure the 
uniqueness of Flags, without imposing any restrictions 
on the data that can be transmitted,. by having the 
Transmitter insert an extra O bit whenever the last six 



bits it has sent are 011111. A Receiver, in turn, 
removes such an inserted zero bit whenever it has 
sampled 011111 O in the last seven bit times. 

Besides Flags, HDLC and SDLC define another 
uniquely recognizable bit sequence called an Abort, 
consisting of a zero followed by more consecutive 
ones than the six in a Flag. Depending on the exact 
dialect of HDLC or SDLC, and the security desired in 
communicating an abort, software can program the 
Transmitter to send Aborts consisting of a zero 
followed bv either 7 or 15 consecutive ones. 

On the Transmit side, the two MSBits of the 
TxSubMode field (CMR15-14) control what the Trans
mitter does if a Transmit Underrun condition occurs, 
that is, if it needs another character to send but the 
TxFIFO is empty: 
CMR15-14 Underrun Response 

00 Send an Abort consisting of 
01111111 

01 Send an Abort consisting of 
zero followed by 15 
consecutive ones 

10 Send a Flag 
11 Send the accumulated CRC 

followed by a Flag, that is, 
make the data transmitted so 
far into a proper frame. 

a 

After sending the sequence specified by this field, the 
Transmitter sends the next frame if software or the 
external Transmit OMA controller has placed new data 
in the TxFIFO. Otherwise it sends the Idle line 
condition specified by the Txldle field of the Transmit 
Command/ Status Register (TCSR10-8), as described 
later in Between Messages, Frames, or Characters. 
This section also describes the conditions under which 
the Transmitter will combine the closing Flag of one 
frame, and the opening Flag of the next, into a single 
8-bit instance. 

Software can make the Transmitter send an Abort 
sequence at any time, by writing the "Send Abort" 
command to the TCmd field of the Transmit Com
mand/Status Register (TCSR 15-12). If the field 
described above is 01, the Transmitter sends an 
extended Abort when software issues this command; 
otherwise it sends the shorter Abort sequence. 

If CMR13 is 1, the Transmitter sends the Preamble 
sequence defined by the TxPreL and TxPrePat fields 
of the Channel Control Register (CCR11-8), before it 
sends the opening Flag of each frame. 

If the Txldle field (TCSR 10-8) is 000 to select Flags as 
the idle line condition, CMR12 selects whether con
secutive idle Flags share a single intervening o. If 
CMR12 is 1, the idle pattern is 011111101111110 .. ., 
while if CMR12 is 0 it is 01111110 01111110 ... A Flag 

47 

that opens or closes a frame never shares a zero with 
an idle-line Flag, even if CM R 12 is 1. 

On the Receive side, when the receiver detects the 
closing Flag of a frame, it marks the preceding (partial 
or complete) character with RxBound status in the 
RxFIFO. As described in later sections, this marking 
may set the channel's Received Data Interrupt 
Pending bit and thus force an interrupt request on its 
/INT pin, and/or it may force a OMA request on the 
/RxREQ pin. 

The ieceiver automatically copes >vvith single F!ags 
between frames, and with shared zeroes between 
Flags, as described above for the transmit side. 

Received Address and Control Field Handling 

The RxSubMode field in the Channel Mode Register 
(CMR?-4) determines how the Receiver processes the 
start of each frame, i.e., whether it handles Address 
and/or Control fields. To the extent that the Receiver 
handles Address or Control field(s), it does so in 
multiples of 8 bits. Thereafter it divides data into 
characters of the length specified by the Rxlength 
field of the Receive Mode Register (RMR4-2). The 
Receiver interprets this field as described below. (An 
"x" in a bit position means the bit doesn't matter.) 
~ Address/Control Processing 

xxOO The Receiver doesn't handle the 
Address or Control field. It 
simply divides all the data in 
all received frames into char
acters per RxLength and places it 
in the RxFIFO. 

xxOl The Receiver checks the first 8 
bits of each frame as an address. 
If they are all ones or if they 
match the contents of the LSByte 
of the Receive Sync Register 
(RSR7-0), the Receiver receives 
the frame into the RxFIFO, other
wise it ignores the frame through 
the next Flag. After placing the 
first 16 bits of the frame in the 
FIFO as two 8-bit bytes, it 
divides the rest of the frame 
into characters per RxLength. 

xOlO The Receiver checks an 8-bit 
address as described above. If 
these bits are all ones or if 
they match the RSR, the Receiver 
places the first 24 bits of the 
frame in the RxFIFO as 3 8-bit 
bytes before shifting to dividing 
characters according to RxLength. 

xllO The Receiver checks an 8-bit 
address as described above. If 
these bits are all ones or if 
they match the RSR, the Receiver 
places the first 32 bits of the 
frame in the RxFIFO as 4 8-bit 



bytes before shifting to dividing 
characters according to RxLength. 

0011 The Receiver processes an Ex
tended Address at the start of 
each frame. First it checks the 
first 8 bits of the frame as 
described above. If these bits 
are all ones or if they match the 
RSR, as the Receiver places each 
8 bits of the address into the 
RxFIFO, it checks the LSBit of 
the 8. If the LSBit is O, it 
goes on to put the next 8 bits 
into the RxFIFO as part of the 
address as well, through an 
address byte that has its LSBit 
1. Then, the Receiver places the 
next 16 bits of the frame into 
the RxFIFO as two 8-bit bytes, 
before shifting to dividing char
acters according to RxLength. 

0111 The Receiver processes an Ex
tended Address as described for 
0011. If the first 8 bits of the 
address are all ones or if they 
match the RSR, the Receiver 
places the 24 bits after the ex
tended address into the RxFIFO as 
3 8-bit bytes, before shifting to 
dividing characters per RxLength. 

1011 The Receiver processes an Ex
tended Address as described for 
0011, and then an "Extended Con
trol field". If the first 8 bits 
of the address are all ones or if 
they match the RSR, the Receiver 
places the next 8 bits after the 
extended address in the RxFIFO 
without examination. Then, as it 
stores each subsequent 8 bits in 
the RxFIFO, the Receiver checks 
the MSBit of the 8. If the MSBit 
is 1, it continues to receive 
more 8-bit bytes, through one 
that has its MSBit O. Thereafter 
the Receiver places one more 8-
bit byte into the RxFIFO, before 
shifting. to dividing characters 
per RxLength. 

1111 This mode differs from that 
described above for 1011 only in 
that the Receiver places the 16 
bits after the extended address 
in the RxFIFO without exami
nation, before starting to check 
MSBits for the end of the 
"extended Control field". 

Note that even though the Receiver can scan through 
an Extended Address, it will still only match its first 
byte. Note also that it matches RSRO against the first 
bit received, and RSR7 against the last bit, regardless 
of whether software has written a "Select Serial Data 
MSB First" command to RTCmd (CCAR15-11). 

48 

If the RxSubMode field specifies some degree of 
Address and Control checking, that is, if it's not xxOO, 
and a frame ends before the end of the Address and 
possibly the Control field specified by the RxSubMode 
value, the Receiver sets a Short Frame bit in the 
status for the last character of the frame. This bit 
migrates through the RxFIFO with the last character, 
eventually appearing as the ShortF/CVType bit in the 
Receive Command / Status register (RCSRS). Note 
that this bit can represent the status at the time that an 
RxBound character was read from the RxFIFO, or the 
status- of the oldest 1 or 2 characters that are still in 
the RxFIFO, as described in a later section, Status 
Reporting. Note, however, that this length checking 
doesn't report a problem if a frame ends within a CRC 
that follows an address and control field. 

If Rxlength (RMR4-2) is 000, specifying 8 bits per 
character, all RxSubMode (CMR7-4) values except 
xxoo are equivalent aside from short-frame checking. 

Frame Length Residuals 

The Receiver detects and strips inserted zeroes, 
Flags, and Aborts before any other processing, and 
doesn't include these bits/sequences in the RxFIFO 
nor in CRC calculations. If the Receiver has assem
bled a partial character when it detects a Flag or 
Abort, it stores the partial character left-justified in an 
RxFIFO entry. (That is, in the MSBits of the byte 
regardless of Rxlength.) The Receiver saves the 
number of bits received in this last byte in the 
RxResidue field of the Receive Command/Status 
Register (RCSR 11-9). RxResidue remains available 
until the end of the next received frame. Software can 
use the Receive Status Block feature as described in a 
later section, to store the RCSR in memory after the 
frame. This reduces processing requirements still 
further. 

Conversely, to send a frame that doesn't contain an 
integral number of characters, software must ensure 
that the number of bits in the last character of the 
frame is written into the TxResidue field of the 
Channel Command/Status Register (CCSR4-2). This 
must happen before the Transmitter takes the last 
character out of the TxFIFO. 

Figure 33 shows the CCSR. The Transmit Control 
Block feature can be used to set the TxResidue value 
for each block under DMA control, without the inter
vention of processor software. The active bits of a 
partial character must be right-justified, that is, they 
must be the LSBits of the last character. If the 
TxParEnab bit in the Transmit Command I Status 
Register (TCSR5) is 1 specifying parity generation, for 
a partial character the Transmitter sends the parity bit 
after the number of bits specified by TxResidue, while 
in other characters the parity bit is the last one of the 
character length specified by Txlength (TMR4-2). 



The encoding of RxResidue and TxResidue is as for 
RxLength and TxLength: 000 specifies that the last 
character contains eight bits, while 001-111 specify 1 
to 7 bits respectively. 

Handling a Received Abort 

The later section Status Handling will note that a 
channel sets the Break/Abort bit in the Receive 
Command/Status Register (RCSR5) immediately 
when it recognizes an Abort sequence -- this 
not:flcat~cn !s ~at tied to a specifi~ pnint in the received 
data stream. The simplest way for software to handle 
this condition is to ignore any data that has already 
been read out of the RxFIFO for the current frame, 
and issue a Purge Rx FIFO command followed by an 
Enter Hunt Mode command. (These operations are 
covered in the later section Commands.) 

Software can try examining received data, in memory 
for a OMA application or in the RxFIFO for "program
med 1/0", to see if it can locate any valid frames that 
may have been received before the Abort. But this 
procedure should take into account that the Abort 
sequence itself sets the RxBound bit for the character 
preceding it. It should accept a frame only if 1) the 
CRCE/FE bit is O for its RxBound character, indicating 
CRC correctness, 2) the RxResidue field is O if the 
protocol restricts frames to multiples of 8 bits in length, 
and 3) the frame passes any other link-level frame
verification tests for the protocol being used. 

HDLC I SDLC Loop Mode 
This mode applies only to the Transmitter. Software 
can select it by programming the TxMode field of the 
Channel Mode Register (CMR11-8) as 1110 while 
programming the RxMode field (CMR3-0) as 0110 to 
select HDLC I SDLC mode. 

Loop mode is useful in networks in which the nodes or 
stations form a physical loop. Except for one station 
that acts in a "Primary" or Supervisory role, each must 
pass the data it receives from the "preceding" station 
to the "following" one. The only time that a secondary 
station can break out of this echoing mode is when it 
receives a special sequence called a "Go Ahead" and 
it has something to send. 

Again, this is a specific protocol and we can define 
how certain other register fields should be program
med for its intended application. For IBM SDLC Loop 
compatibility, software should program the Transmit 
Mode Register (TMR) as 670216 • This enables the 
Transmitter with NAZI-Space encoding, 16-bit CCITT 

RCCF RCCF Clear DPLL DPLL DPLL 
Ovflo Avail RCCF Sync 2Mlss 1Mlss DPLLEdge 

CRC, no parity, and 8 bit characters. Software also 
should program the Txldle field in the Transmit 
Command/Status Register (TCSR 10-8) as 000 to 
select Flags as the idle line state. 

The two MS Bits of the TxSubMode field (CMR15-14) 
control what the Transmitter does if an Underrun con
dition occurs, that is, if it needs a character to send but 
the TxFIFO is empty. The available choices are simi
lar to those in normal HDLC/SDLC mode but the 
Transmitter has a wider range of subsequent actions: 
rMRlS-14 ~~se to Underrun 

00 The Transmitter sends an Abort 
( "Go Ahead" ) sequence 
consisting of a zero followed 
by seven consecutive ones, and 
then stops sending and reverts 
to echoing the data it 
receives. Zilog doesn't 
recommend this option in IBM 
SDLC Loop applications because 
only the Primary station 
should issue a "Go Ahead" 
sequence (and it should be in 
regular HDLC/ SDLC mode). 

01 Like 00 except that the Abort 
includes 15 one-bits. 

10 The Transmitter sends Flags on 
an Underrun, until another 
frame is ready or until 
software clears CMR13 to O. 

11 The Transmitter sends its 
accumulated CRC followed by 
Flags on an Underrun, until 
another frame is ready to 
transmit or until software 
clears CMR13 to 0. Zilog 
doesn't recommend this option 
either, because the frame 
format probably hasn't been 
met when there's an underrun. 

The CMR13 bit plays a different role when the 
Transmitter is first being enabled to "insert this station 
into the loop", as compared to normal operation after 
that. Before software programs the Channel Mode 
Register for SDLC Loop mode and enables the Trans
mitter, the TxD pin carries continuous Ones. If soft
ware initially enables the Transmitter with CMR13 0, it 
continues to output Ones on TxD. When CMR13 is 1 
after software first enables the Transmitter, the chan
nel sends Zeroes on TxD until the Receiver detects a 
"Go Ahead" sequence (01111111). At this point the 
channel starts passing data from RxD to TxD with a 4-
bit delay, and sets the OnLoop bit in the Channel 
Command/Status Register (CCSR7; see Figure 33). 

On Loop 
Loop Send Resrvd TxResldue /TxACK /RxACK 

15 14 13 12 11 10 9 8 6 5 3 

Figure 33. The Channel Command/Status Register (CCSR) 

49 



On Loop stays 1 unless the part is reset or software 
programs the TxMode field to a different value. Once 
OnLoop is 1 and the channel is repeating data from 
RxD to TxD, CMR13 controls what the Transmitter 
does when it receives a(nother) Go Ahead sequence. 
If CMR13 is O, the channel just keeps repeating data, 
including the "GA". If CMR13 is 1 when the Receiver 
detects another "Go Ahead", the Transmitter changes 
the last bit of the GA from 1 to 0 (making it a Flag), 
sets the LoopSend bit (CCSR6) and proceeds to start 
sending data. (If there's no data available in the 
TxFIFO it keeps sending Flags, otherwise it sends the 
data in the TxFIFO.) 

When the Transmitter has been sending data and en
counters either a character marked as "EOF/EOM", or 
an underrun condition when CMR15=1, CMR13 de
termines how it proceeds. If CMR13 is 1 in either of 
these situations, the Transmitter stays active and 
sends Flags or additional frames as they become 
available in the TxFIFO. If CMR13 is 0 after the 
channel has sent a closing Flag or an idle Flag, it 
clears the LoopSend (CCSR6) bit and returns to 
repeating data from RxD onto TxD. 

CMR12 controls whether the Transmitter sends idle 
Flags with shared zero bits, as described for normal 
HDLC I SDLC mode. 

Cyclic Redundancy Checking 
A USC channel will send and check CRC codes only 
in synchronous modes, namely External Sync, Mono
sync, Slaved Monosync, Bisync, Transparent Bisync, 
HDLC/SDLC, HDLC/SDLC Loop, and 802.3 modes. 

The TxCRCType and RxCRCType fields in the 
Transmit and Receive Mode Registers (TMR12-11 
and RMR12-11) control how the Transmitter and 
Receiver accumulate CRC codes. 

00 in either field selects the 16-bit CRC-CCITT poly
nomial X15+X12+x5+1. In HDLC,. HDLC Loop, and 
802.3 modes, the Transmitter inverts each CRC 
before sending it, the Receiver checks for remainders 
of FOB816' and the TxCRCStart and RxCRCStart bit(s) 
should be programmed as 1 to start the CRC 
generators with all ones. In other synchronous modes 
the Transmitter sends accumulated CRCs normally 
and the Receiver checks for all-zero remainders. 

01 in either field selects the CRC-16 polynomial x16+ 
x15+x2+1. The Transmitter sends accumulated CRCs 
normally and the Receiver checks for all-zero 
remainders. This choice is not compatible with HDLC, 
HDLC Loop, and 802.3 protocols, and in these modes 
CRC-16 will not operate correctly even between USC 
family Transmitters and Receivers. 

10 in TxCRCType or RxCRCType selects the 32-bit 
Ethernet polynomial xa2+x2s+x2a+x22+x1s+x12+x11+x10 

50 

+xa+x1+x5+x4+x2+x+1. In HDLC, HDLC Loop, and 
802.3 modes, the Transmitter inverts each CRC 
before transmitting it, the Receiver checks for remain
ders equal to C704DD7816' and the TxCRCStart and/ 
or RxCRCStart bit(s) should be programmed as 1 to 
start the CRC generator(s) with all ones. In other syn
chronous modes the Transmitter sends CRCs nor
mally and the Receiver checks for all-zero remainders. 

Zilog reserves the value 11 in TxCRCType or 
RxCRCType for future product enhancements; it 
should not be programmed. 

The TxCRCStart and RxCRCStart bits (TMR12 and 
RMR12) control the starting value of the Transmit and 
Receive CRC generators for each frame or message. 
A O in this bit selects an all-zero starting value and a 1 
selects a value of all ones. In HDLC, HDLC Loop, and 
802.3 modes these bits should be 1. 

The Transmitter and Receiver automatically clear their 
CRC generators to the state selected by these 
CRCStart bits at the start of each frame. The Trans
mitter does this after it sends an opening Sync or Flag 
sequence. The Receiver does so each time it recog
nizes a Sync or Flag sequence (it may be the last one 
before the first character of the frame .or message). 
For special CRC requirements, the Clear Rx and Tx 
CRC commands give software the ability to clear the 
CRC generators at any time. See the later section 
Commands for a full description of these operations. 

The TxCRCEnab and RxCRCEnab bits (TMR9 and 
RMR9) control whether the channel processes 
transmitted and received characters through the 
respective CRC generators. A 0 excludes characters 
from the CRC while a 1 includes them. The Trans
mitter captures the state of TxCRCEnab with each 
character as it's written into the TxFIFO, so that soft
ware can change the bit dynamically for different 
characters. 

If the TxCRCatEnd bit (TMR8) is 1 and the TxMode 
field (CMR11-8) specifies a synchronous mode, the 
Transmitter sends the contents of its CRC generator 
after sending a character marked as EOF/EOM. If 
TxCRCatEnd is 0 the Transmitter doesn't send a CRC 
after such a character. (A character can be marked as 
EOF/EOM if software writes a command to the 
Transmit Command/Status Register (TCSR), or when 
software or an external Transmit OMA controller writes 
one or two characters to the TxFIFO so that the 
Transmit Character Counter decrements to zero.) 
Whether or not it sends a CRC, the Transmitter then 
sends a Sync or Flag sequence, depending on the 
protocol. 

In synchronous modes, the MS 1 or 2 bits of the 
TxSubMode field (CMR15 and in some modes also 
CMR14) control whether the Transmitter sends the 
contents of its CRC generator if it encounters a 



Transmit Underrun condition, namely if it needs a 
character to send but the TxFIFO is empty. Whether 
or not it sends a CRC, the Transmitter then sends a 
Sync or Flag sequence, depending on the protocol. 

On the receive side, in synchronous modes other 
than HDLC/SDLC, HDLC/SDLC Loop, and 802.3, 
there's a two character delay between the time a 
Receiver places each received character in the 
RxFIFO and when it processes (or doesn't process) 
the character through the CRC generator. Therefore, 
software can use examine each received character 
and set RxCRCEnab appropriately to exclude certain 
characters from CRC checking, if it can do so before 
the next one arrives. A Receiver doesn't introduce this 
delay in HDLC/SDLC, HDLC/SDLC Loop, or 802.3 
mode, because in these modes all characters in each 
frame should be included in the CRC calculation. 

Figure 34 shows how a Receiver routes data to the 
Receive CRC generator differently in HDLC/SDLC, 
HDLC/SDLC Loop, and 802.3 modes than in other 
synchronous modes. In the former three modes, the 
Receiver shifts each bit from RxD into the CRC 
generator when it shifts the bit into its main shift 
register. In other sync modes, the Receiver passes 
the data through a second shift register located 
between the main shift register and the CRC 
generator. This second shift register is effectively 
(RxLength) bits long, and gives the software time to 
decide whether to include each received character in 
the CRC calculation. 

The Receive CRC generator constantly checks 
whether its contents are "correct" according to the kind 
of CRC specified by the RxCRCType field (RMR12-
11). In some modes this simply means whether it 
contains an all-zero value. The CRC generator 
provides a corresponding Error output that the 
Receiver captures in the RxFIFO with each received 
character. This bit migrates through the RxFIFO with 
each character and eventually appears as the 
CRCE/FE bit in the Receive Command/Status 
Register (RCSR3). Software should ignore this bit for 
all characters except the one associated with the end 
of each message or frame (it's almost always 1). 

The CRCE bit that's important is the one that reflects 
the output of the CRC generator after the Receiver 
has shifted the last bit of the CRC into it. But the 
operating difference described above affects which 
character this bit is associated with. The Receiver 
always places the CRC code itself in the RxFIFO; if 
RxLength calls for 8-bit characters the CRC 
represents either 2 or 4 characters. In HDLC/SDLC or 
802.3 mode, the CRCE bit associated with the last 
character of the CRC is the one that shows the CRC
correctness of the frame. But in the other 
synchronous modes, the CRCE bit of interest is the 
one with the second character after the last character 

51 

of the CRC. This means that the Receive Status 
Block feature can't be used to capture the CRC 
correctness of received messages in Transparent 
Bisync mode. 

Note that the CRCE/FE bit can represent the status at 
the time that an RxBound character was read from the 
RxFIFO, or the status of the oldest 1 or 2 characters 
that are still in the RxFIFO, as described later in 
Status Reporting. 

Because the Receiver places all the bits of each 
received CRC in the Rxf'IFO, a USC channei can be 
used for CRC-pass-through applications like bridges 
and routers. This is not true of all serial controllers. 

RxFIFO 

Data In 

PO 
SI (Rxlength)-bit so 

Shift Register 

Si (Rxlength)-blt so 
Shift Register 

RxCRC 
SI Generator Err 

Used in HDLC/SDLC Used in all 
and 802.3 Modes other Syn.~ modes 

RxD 
Flag/Abort 

SI Detect Logic, so 
incl. Shift Register 

Used in HDLC/ 
· SDLC Mode 

Figure 34. A Model of the Receive Datapath 



Parity Checking 
A USC channel can handle a Parity bit in each char
acter in either asynchronous or synchronous modes, 
although some synchronous protocols use CRC 
checking only. 

If the TxParEnab bit in the Transmit Mode Register 
(TMR5) is 1 , the Transmitter creates a parity bit as 
specified by the TxParType field (TM R?-6) and sends 
it with each character. Similarly, if the RxParEnab bit 
(RMR5) is 1, the Receiver checks a parity bit in each 
received character, according to the RxParType field 
(RMR?-6). A channel interprets TxParType and 
RxParType as follows: 

AMR.Z.=.2 Type of Parity 
00 Even 
01 Odd 
10 Zero 
11 One 

For unencoded data, 10/Zero is the same as "Space 
parity" and 11/0ne is the same as "Mark parity". 

TxParEnab and TxParType are "global states" in that 
a channel doesn't carry these bits thru the TxFIFO 
with each character. 

In asynchronous modes, the Transmitter and Receiver 
handle the parity bit as an additional bit after the 
number of bits specified by the TxLength and 
RxLength fields (TMR4-2 and RMR4-2). In synch
ronous modes they handle the parity bit as the last 
(most significant) bit of that number. The Receiver 
Includes a parity bit in the data characters in the 
RxFIFO and Receive Data Register (RDR), except in 
asynchronous modes with 8 bit data. 

If RxParEnab is 1 and the Receiver finds that the 
parity bit of a received character is not as specified by 
RxParType, it sets a Parity Error bit. This bit accom
panies the character through the RxFIFO, eventually 
appearing as the PE bit in the Receive Command I 
Status Register (RCSR2). The PE bit can represent a 
latched interrupt bit, or the status at the time that an 
RxBound character was read from the RxFIFO, or the 
status of the oldest 1 or 2 characters that are still in 
the RxFIFO, as described in the next section. 

Status Reporting 
The most important status reported by the Transmitter 
and Receiver is available in the LSBytes of the 
Transmit and Receive Command I Status Registers 
(TCSR and RCSR). Figures 36 and 37 show the 
format of these registers. It will be helpful to describe 
some common characteristics of these status bits 
before discussing each individually. 

When software writes and reads transmit and received 
data directly to and from a serial controller, it can read 
and write status and control registers as needed to 

52 

handle the overall communications process. But with 
the USC, external DMA controllers often handle the 
data without software/processor intervention. 
Because of this, software needs other means of 
controlling the transmit and receive processes and 
tracking their status. These means include the 
Transmit and Receive Character Counters and the 
Transmit Control Block and Receive Status Block 
features. Later sections describe these features in 
considerable detail. For now we just note that Receive 
Status Blocks allow the Receive DMA controller to 
store a version of the RCSR in memory with the 
received data. Such stored status differs slightly from 
that which software can read from the RCSR. 

Software can program a channel to assert its Interrupt 
Request output (/INTA or /INTB) based on certain bits 
in the TCSR and RCSR. Chapter 6 covers interrupts 
in detail; for now we'll just note that a channel typically 
sets one of these bits when a specified event occurs 
or a specified condition starts. Such a bit typically 
remains 1 until host software clears or "unlatches" it by 
writing a 1 to it. This means that a channel won't re
quest another interrupt for the same condition until 
software has written a 1 to the bit. For the two inter
rupts that reflect the start of an ongoing condition, 
ldleRcved and the "break" sense of Break/Abort, the 
Receiver doesn't clear the RCSR bit until the software 
has written a 1 to unlatch the bit, fill.d. the condition has 
ended. 

Five of the bits in the RCSR (ShortF/CVType, 
RxBound3, CRCE/FE, PE, and RxOver) are associ
ated with particular received characters. The Receiver 
queues these bits through the RxFIFO with the 
characters. The corresponding bits in the RCSR may 
reflect the status of the oldest character(s) in the 
FIFO, or that of the character last read out of the 
FIFO, as described in the next few paragraphs. 

In order for these queued interrupt features to operate 
properly, software should set the WordStatus bit in 
the Receive Interrupt Control Register (RICR3) to 1 
before it reads data from the RxFIFO/RDR 16 bits at a 
time, and to 0 before it reads data 8 bits at a time. 

The RxBound, PE, and RxOver bits actually operate 
differently in the RCSR depending on whether soft
ware has enabled each to act as a source of inter
rupts. If the Interrupt Arm (IA) bit4 in the Receive 
Interrupt Control Register (RICR) for one of these bits 
is 1, the channel sets the RCSR bit to 1 when a char
acter having the subject status becomes the oldest 
one in the RxFIFO, or the second-oldest with 

3 Previous USC documentation called RxBound "CV/EOF/EOT". 

4 Previous USC documentation called the bits that control individual interrupt 
sources Interrupt Enable (IE) bits, the same as those that enable entire interrupt 
types. 



Word Status= 1 , and once one of these bits is 1 , it stays 
that way until software writes a 1 to it. (The channel 
doesn't actually set the Receive Status IP bit to 
request an interrupt for one of these bits, until software 
or thel Receive OMA controller reads the associated 
character from RDR.) 

For ShortF/CVType and CRCE/FE, and for RxBound, 
PE, and RxOver when the associated IA bit is 0, if the 
last time that software or an external Receive OMA 
controller read this channel's RxFIFO via the ROR, the 
channel provided a character marked wiiil Rx6oum1 
status, then these RCSR bits reflect the status of that 
character. This is true only until software reads the 
(MSByte of) RCSR, or a Receive OMA controller 
stores it in the Receive Status Block, or until software 
or the Receive OMA controller reads ROR again. 

For ShortF/CVType and CRCE/FE, and for RxBound, 
PE, and RxOver when the associated IA bit is 0, if the 

Start for RxBound, 
PE, or RxOver: 

last time that software or the Receive OMA controller 
read the RxFIFO via the ROR, the character returned 
(both of the characters returned) had RxBound=O, or if 
software has read the (MSByte of the) RCSR or the 
Receive OMA controller has stored it in a Receive 
Status Block since the last time either one read the 
ROR, then the RCSR bit reflects the status of the 
oldest character(s) in the RxFIFO (if any). In this latter 
case, if the RxFIFO is empty the status bit is not 
defined. If the WordStatus bit is 1 in the Receive 
Interrupt Control Register (RICR3) and there are two 
or more characters in the FIFO, the status bit is the 
inclusive OR of the status of the oldest two characters 
in the Fl FO. Otherwise it reflects the status of the 
oldest character in the FIFO. 

Just in case that wasn't perfectly clear, the flowchart of 
Figure 35 presents the same information. 

Provide the state of a latch 
that's set when a character 
with this condition becomes 

corresponding IA 
bit in the RICR? 

>-------------~--> the oldest in the RxFIFO 
(or the 2nd-oldest with 

WordStatus=1), and is cleared 
when SW writes a 1 to th is bit 

0 
~ Start for Short Frame/ 

CVType or CRCE!FE: 

Did the last read 
from the RDR have 

RxBound=1? 

(The bit is not 
defined!) 

Yes 

None 

Provide the status of 
the oldest character 

in the RxFIFO 

No 

more 

Provide the saved 
status of the 

RxBound character 

01 

Provide the inclusive 
OR of the status of the 
two oldest characters 

in the RxFIFO 

Figure 35. How a USC Channel Provides the "Queued" Status Bits in the RCSR 

53 



TCmd Rsrvd Txldle Pre 
Sent 

Idle 
Sent 

Abort 
Sent 

EOF/ 
EOM 
Sent 

CRC 
Sent 

All 
Sent 

TX Tx 
Under Empty 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Figure 36. The Transmit Command/Status Register (TCSR) 

Detailed Status In the TCSR 

The Transmitter sets the Present bit (TCSR7) in a 
synchronous mode, when it has finished sending the 
Preamble specified in the TxPreL and TxPrePat fields 
of the Channel Control Register (CCR). A channel 
can request an interrupt when this bit goes from 0 to 1 
if the Present IA bit in the 1ransmit Interrupt Control 
Register (TICR7) is 1. Software must write a 1 to 
Present to unlatch and clear it, and to allow further 
interrupts if TICR7 is· 1; writing a 0 to Present has no 
effect. See the later section Between Frames, 
Messages, or Characters for more information on 
Preambles. 

The Transmitter sets the ldleSent bit (TCSR6) in any 
mode, when it has finished sending "one unit" of the 
Idle line condition specified in the Txldle field in the 
MSByte of this TCSR. If the Idle condition is Syncs or 
Flags as described later. in Between Frames, Mes
sages, or Characters, the unit is one character or 
sequence and the flag and interrupt can recur fcir each 
one sent. For any other Idle condition, the Trans
mitter sets the flag and interrupt only once, when it 
has sent the first bit of the condition. The channel can 
request an interrupt when this bit goes from 0 to 1 if 
the ldleSent IA bit in the Transmit Interrupt Control 
Register (TICR6) is 1. Software must write a 1 to 
ldelSent to unlatch and clear it, and to allow further 
interrupts if TICR6 is 1; writing a 0 to ldleSent has no 
effect. 

The Transmitter sets the AbortSent bit (TCSR5) in 
HDLC/SDLC or HDLC/SDLC Loop mode, when it has 
finished sending an Abort sequence. A channel can 
request an interrupt when this bit goes from O to 1 if 
the AbortSent IA bit in the Transmit Interrupt Control 
Register (TICR5) is 1. Software must write a 1 to 
AbortSent to unlatch and clear it, and to allow further 
interrupts if TICR5 is 1; writing a 0 to AbortSent has no 
effect. See the earlier sections HDLC/SDLC Mode 
and HDLC!SDLC toop Mode for more information on 
Abort sequences. 

54 

The Transmitter sets the EOF/EOM Sent bit (TCSR4) 
in a synchronous mode, when it has finished sending a 
closing Flag or Sync sequence. A channel can re
quest an interrupt when this bit goes from 0 to 1 if the 
EOF/EOM Sent IA bit in the Transmit Interrupt Control 
Register (TICR4) is 1. Software must write a 1 to 
EOF/EOM Sent to unlatch and clear it, and to allow 
further interrupts if TICR4 is 1; writing a 0 has no 
effect. See the later section Between Frames, 
Messages, or Characters for more information on 
closing Flags and Syncs. · 

The Transmitter sets the CRCSent bit (TCSR3) in a 
synchronous mode, when it has finished sending a 
Cyclic Redundancy Check sequence. A channel can 
request an interrupt when this bit goes from 0 to 1 if 
the CRC Sent IA bit in the Transmit Interrupt Control 
Register (TICR3) is 1. Software must write a 1 to 
CRCSent to unlatch and clear it, and to allow further 
interrupts if TICR3 is 1; writing a o to CRCSent has no 
effect. See the section Cyclic Redundancy Checking 
for more information on CRC's. 

The read-only bit AllSent (TCSR2) is 0 in asynch
ronous modes, while the Transmitter is sending a 
character. Software can use this bit to figure out when 
the last character of an async transmission has made 
it out onto TxD, before changing the mode of the 
Transmitter. 

The Transmitter sets the TxUnder bit (TCSR1) in any 
mode, when it needs another character to send but the 
TxFIFO is empty. it does this even in asynchronous 
modes. A channel can request an interrupt when this 
bit goes from O to 1 if the TxUnder IA bit In the 
Transmit Interrupt Control Register (TICR1) is 1. 
Software must write a 1 to TxUnder to unlatch and 
clear it, and to allow further interrupts if TICR1 is 1; 
writing a 0 has no effect. The Transmitter sets 
TxUnder one or two clocks before the current char
acter is completely sent on TxD. 

The read-only bit TxEmpty (TCSRO) is 1 when the 
TxFIFO is empty, and 0 when it contains 1 or more 
characters. 



RCmd (WO) 

1stBE 
RxResldue ShortF/ Exited Idle Break Rx CRCE PE Rx Rx 

CVType Hunt Rcved /Abort Bound /FE Over Avail 

15 14 13 12 11 10 9 B 7 6 5 4 3 2 

Figure 37. The Receive Command/Status Register (RCSR) 

Detailed Status In the RCSR 

A channel sets the read-only 2ndBE bit (RCSR15) to 
1 when software or an external Receive DMA 
controller reads data from the RDR, there are two or 
more characters in the RxFIFO, and the Receiver 
marked the second-oldest one with one or more of 
RxBound, Parity Error, or Rx Overrun status. (The 
bit's name stands for Second Byte Exception.) A 
channel clears this bit to O when software or the 
Receive DMA controller reads data from the 
RxFIFO/RDR, there are two or more characters in the 
RxFIFO, and the Receiver didn't mark the second
oldest one with any of these three conditions. If 
software or the Receive DMA controller reads data 
from the RDR when there's only one character in it, 
this bit is undefined until the next time one of them 
reads RDR. 

A channel sets the read-only 1stBE bit (RCSR14) to 1 
when software or an external Receive DMA controller 
reads data from the RDR, and the Receiver marked 
the oldest character read with one or more of 
RxBound, Parity Error, or Rx Overrun status. (The 
bit's name stands for First Byte Exception.) A channel 
clears this bit to 0 when software or the Receive DMA 
controller reads data from the RDR, and the Receiver 
didn't mark the oldest character with any of these 
three conditions. 

The Receiver queues a ShortF/CVType bit through 
the RxFIFO with each character. RCSRB may reflect 
the status at the time that an RxBound character was 
read from the RxFIFO, or the status associated with 
the oldest 1 or 2 character(s) still in the RxFIFO, as 
described earlier in this Status Reporting section. In a 
stored Receive Status Block it always represents the 
status of the preceding RxBound character. 

This bit will be 1 only in HDLC/SDLC or Async with 
Code Violation (1553B) mode, and only for characters 
that the Receiver also marks with RxBound=1. When 
the RxSubMode field (CMR?-4) specifies Address and 
possibly Control field processing in HDLC/SDLC 
mode, the Receiver sets this bit for the last character 
of a frame if it hasn't come to the end of the specified 
field(s) by the end of the frame. 

In Async with Code Violations (1553B) mode, this bit 
identifies which of the two types of Code Violation 
introduced each received word. A 0 indicates a Data 
word and a 1 indicates a Command/Status word. 
When the RxSubMode bit CMR4 is 1, signifying that 
each word includes more than 8 data bits, this bit is 

55 

valid with the second byte of each received word (the 
one marked with RxBound status). 

The Receiver sets the ExitedHunt bit (RCSR?) in any 
mode, when it leaves its Hunt state. In Async modes 
this happens right after software enables the Receiver. 
In External Sync mode, the Receiver ieaves Hunt 
state when the Enable/Sync signal on /DCD goes from 
high to low. In Monosync, Bisync, or Transparent 
Bisync mode the Receiver leaves Hunt state when it 
recognizes a Sync sequence. In HDLC/SDLC mode 
the Receiver leaves Hunt state when it recognizes an 
opening Flag. Jn 802.3 (Ethernet) mode, if software 
has enabled address checking the Receiver leaves 
Hunt state when it matches the Address at the start of 
a frame, otherwise it does so after detecting the start 
bit at the end of the Preamble. 

A channel can request an interrupt when this bit goes 
from 0 to 1 if the ExitedHunt IA bit in the Receive 
Interrupt Control Register (RICR7) is 1. Software 
must write a 1 to ExitedHunt to unlatch and clear it, 
and allow further interrupts if RICR7 is 1; writing a 0 to 
ExitedHunt has no effect. 

The Receiver sets the ldleRcved bit (RCSR6) when it 
samples RxD as one for 15 consecutive RxCLKs in 
HDLC/SDLC mode, or for 16 consecutive RxCLKs in 
any other mode. A channel can request an interrupt 
when this bit goes from 0 to 1 if the l{!leRcved IA bit in 
the Receive Interrupt Control Register (RICR6) is 1. 
Software must write a 1 to ldleRcved to unlatch it, and 
to allow further interrupts if RICR6 is 1; writing a 0 has 
no effect. A channel doesn't actually clear RCSR6 
until software has written a 1 to unlatch it, .and. RxD 
has gone to 0 to end the idle condition. (ldleRcved 
isn't useful in Async modes that use a 16X, 32X, or 
64X clock. In these cases keep RICR6=0 to avoid 
interrupts, and ignore RCSR6.) 

The Receiver sets the Break/Abort bit (RCSR5) in an 
asynchronous mode when it detects a Break condition, 
that is, when it samples the Stop bit of a character as 
0, and all the preceding data bits (and the parity bit if 
any) have also been 0. It sets the bit in HDLC/SDLC 
mode when it detects seven consecutive 1s, i.e., an 
Abort or Go Ahead sequence., 

This bit is not associated with a particular point in the 
received data stream, for either the Break or Abort 
condition. 

A channel can request an interrupt when this bit goes 
from o to 1 if the Break/Abort IA bit in the Receive 
Interrupt Control Register (RICR5) is 1. Software 



must write a 1 to Break/Abort to unlatch it, and to allow 
further interrupts if RICR5 is 1 ; writing a 0 has no 
effect. In async modes, a channel doesn't actually 
clear RCSR5 until software has written a 1 to unlatch 
it, .anQ. RxD has gone to 1 to end the break condition. 

The Receiver queues a RxBound5 bit through the 
RxFIFO with each received character. It sets the bit 
with a character that represents the boundary of a 
logical grouping of data on the line, but this indication 
isn't visible to software until the character is the oldest 
one in the RxFIFO. 

As described earlier in this Status Reporting section, 
RCSR4 may represent an interrupt bit, or the status 
associated witb the oldest 1 or 2 character(s) still in 
the RxFIFO; or may be 1 if a RxBound character was 
just read from the RxFIFO. Since the Receive Status 
Block feature stores the RCSR in memory after each 
character that the Receiver marks with this bit set, a 
Receive Status Block always shows RxBound as 1. 

In HDLC/SDLC mode the Receiver sets RxBound for 
the last complete or partial character before an ending 
Flag or Abort. In Transparent Bisync mode it sets this 
bit for an ENQ, EOT, ETB, ETX, or ITS character that 
follows a DLE. In External Sync or 802.3 (Ethernet) 
mode the Receiver sets this bit for the character just 
completed or partially assembled when the /DCD pin 
went High. In Nine-Bit mode it sets this bit for an 
address character. In the Async with Code Violations 
(15538) mode, it sets this bit for the second character 
of each received word if the CMR13 bit is 1 to enable 
word lengths greater than 8 bits, or for every character 
if not. Note that the Receiver never sets this bit in 
other modes, including Monosync and Bisync modes. 

A channel can request an interrupt when software or a 
DMA channel reads a character from the RDR that 
has this bit set, if the RxBound IA bit in the Receive 
Interrupt Control Register (RICR4) is 1. Jn this case 
software must write a 1 to RxBound to unlatch it and 
allow further interrupts; writing a 0 has no effect. 

The Receiver queues a CRCE/FE bit through the 
RxFIFO with each received character. RCSR3 may 
represent the status at the time that a RxBound char
acter was read from the RxFIFO, or the status associ
ated with the oldest 1 or 2 character(s) still in the 
RxFIFO, as described earlier in this Status Reporting 
section. In a stored Receive Status Block it repre
sents the status of the previous character, which in 
turn represents the CRC·correctness of the frame in 
802.3 and HDLC/SDLC modes. 

In synchronous modes the Receiver makes CRCE/FE 
0 if its CRC generator showed "correct" status when it 
stored the character in the RxFIFO, or 1 if the CRC 

5 Previous USC documentation called RxBound "CV/EOF/EOT". 

56 

generator wasn't correct. See the earlier section 
Cyclic Redundancy Checking for more information. In 
asynchronous, isochronous, or Nine-Bit mode the 
Receiver makes this bit 1 to show a Framing Error if it 
samples the associated character's Stop bit as 0. 

The Receiver queues a PE bit through the RxFIFO 
with each received character. RCSR2 may represent 
an interrupt bit, or the status at the time that a 
RxBound character was read from the RxFIFO, or the 
status associated with the oldest 1 or 2 character(s) 
still in the RxFIFO, as described earlier in this Status 
Reporting section. In a stored Receive Status Block it 
may represent an interrupt bit or the status of the 
previous 1 or 2 character(s). 

The Receiver sets this bit to show a Parity Error for a 
character if the RxParEnab bit (RMR5) is 1 and the 
character's parity bit doesn't match the condition 
specified by the RxParType field. See the earlier 
section Parity Checking for more information. 

A channel can request an interrupt when software or a 
DMA channel reads a character from the RDA that 
has this bit set, if the PE IA bit in the Receive Interrupt 
Control Register (RICR2) is 1. In this case software 
must write a 1 to Abort/PE to unlatch it and allow 
further interrupts; writing a 0 to PE has no effect. 

The Receiver queues a RxOver bit through the 
RxFIFO with each received character. It sets the bit to 
indicate a Receive FIFO overrun, but the overrun isn't 
visible to software until the character that caused it is 
the oldest one in the RxFIFO. 

As described earlier in this Status Reporting section, 
RCSR1 may represent an interrupt bit, or the status at 
the time a RxBound character was read from the 
RxFIFO, or the status associated with the oldest 1 or 2 
character(s) still in the RxFIFO. In a stored Receive 
Status Block this bit may represent an interrupt bit or 
the status of the previous character. 

The Receiver sets this bit to 1 for the first character for 
which there was no room, which overwrites its 
predecessor in the RxFIFO. Once this happens, the 
Receiver doesn't store any more received characters 
in the RxFIFO, until software writes a command that 
purges the RxFIFO to the RTCmd field in the Channel 
Command I Address Register (CCAR15-11). 

A channel can request an interrupt when software or a 
OMA channel reads a character from the RDR that 
has this bit set, if the RxOver IA bit in the Receive 
Interrupt Control Register (RICR1) is 1. In this case, 
software must write a 1 to RxOver to unlatch it and 
allow further interrupts; writing a O has no effect. 

The read-only bit RxAvall (RCSRO) is 1 if the RxFIFO 
contains 1 or more characters, or 0 if it's empty. 



OMA Support Features 
When software writes and reads all the data to and 
from a serial controller, it can maintain its own 
counters and length-tracking mechanisms, and can 
use them to tell when to read status and issue 
commands. But in DMA applications we would like to 
"decouple" the processor and its software from such 
intimate and real-time involvement with the transmit 
and receive processes. This is only possible if we 
include features in the serial and/or DMA controllers, 
by which software can figure out the length amd 
correctness of frames or messages long after they're 
received, and by which the hardware can change 
parameters and save status information at appropriate 
points with as little processor software involvement as 
possible. 

The USC features that support such operation include 
the Receive and Transmit Character Counters, the 
RCC FIFO that stores the length of received frames, 
the Transmit Control Block feature that allows 
software to include control information with transmit 
data in Transmit DMA buffers, and the Receive Status 
Block feature that stores status with received data in 
Receive DMA buffers. The following subsections 
describe these features. 

The Character Counters 

The Transmitter includes a 16-bit Transmit Character 
Counter (TCC) that software can use to control the 
length of transmitted frames and messages in DMA 
applications. The Receiver includes a similar Receive 
Character Counter (RCC) that software can use to 
record and save the length of frames and messages in 
DMA applications. Software can also use the RCC to 
specify the maximum frame/message length allowed 
in such applications. 

While most of this section describes these features in 
terms of the length of frames and messages in 
synchronous protocols, they may be useful in asynch
ronous work as well. In particular, for Async with 
Code Violations (1553B) transmitting, software can 
use the TCC and Transmit Control Block features to 
control which type of Code Violation (Command/Status 
or Data) to send, for each series of words of the same 
type. Similarly, 1553B receiving software can use the 
RCC and Receive Status Block feature to make an 
external Receive DMA controller store the type of 
Code Violation after each received word. A later 
subsection describes these features more fully. 

Figures 38 and 39 show the structure of the TCC and 
RCC features, respectively. Software can write the 
16-bit Transmit Count Limit Register (TCLR) at any 
time, to define the length of the next transmitted 
message(s) or frame(s). Similarly, it can write the 16-
bit Receive Count Limit Register (RCLR) at any time, 
to define the maximum length of future received mes-

57 

sages and frames. Software can also use the Trans
mit Control Block feature to make a channel automat
ically fetch a new value for the TCLR and TCC from 
memory before each block of characters. The TCLR 
and RCLR can be read back at any time. A channel 
never changes their values except to clear them to 
zero at reset time, and when it loads TCLR from a 32-
bit Transmit Control Block. 

Writing the TCLR or RCLR doesn't have any immedi
ate effect on the TCC or RCC feature. Only when one 
of several events occurs does a cnanne1 ioaa me 
value from TCLR or RCLR into the actual 16-bit char
acter counter. If the value in TCLR or RCLR is zero at 
that time, the channel disables the TCC or RCC 
feature, while if the value is nonzero it enables the 
feature. 

A channel loads the value from the TCLR into the 
Transmit Character Counter, and enables or disables 
the TCC accordingly, when one of the following 
occurs: 
1. software writes the Trigger Tx DMA (or Trigger Tx 

and Rx DMA) command to the RTCmd field of the 
Channel Command/Address Register (CCAR15-
11)' 

2. software writes the Load TCC (or Load RCC and 
TCC) command to RTCmd in the CCAR, 

3. software writes the Purge Tx FIFO (or Purge Tx 
and Rx FIFO) command to RTCmd in CCAR, or 

4. the TxCtrlBlk field in the Channel Control Register 
(CCR15-14) is 1 O, specifying a two-word Transmit 
Control Block, and an external Transmit DMA 
controller fetches (the second byte of) the second 
word containing the new character count. Which 
is to say, the channel fetches the count "through" 
the TCLR. 

A channel loads the value from the RCLR into the 
Receive Character Counter, and enables or disables 
the RCC feature, when any of the following occur: 
1. software writes the Trigger Rx DMA (or Trigger Tx 

and Rx DMA) command to the RTCmd field of the 
Channel Command I Address Register (CCAR 15-
11)' 

2. software writes the Load RCC (or Load RCC and 
TCC) command to RTCmd in the CCAR, 

3. software writes the Purge Rx FIFO (or Purge Tx 
and Rx FIFO) command to RTCmd in CCAR, or 

4. the Receiver detects an opening Flag or Sync 
character. 

Once a channel has loaded the TCC or RCC with a 
non-zero value (which enables the feature) it 
decrements the counter for each character/byte 
written into the associated FIFO. That is, the Trans
mitter decrements the TCC by 1 or 2 when software or 
an external Transmit DMA controller loads transmit 
data into the TxFIFO. The Receiver decrements the 



RC Counter by 1 for each character/byte that it trans
fers from its shift register into the RxFIFO. 

A non-zero TCLR value should represent the number 
of characters to send, not including any Transmit 
Control Block information. A non-zero RCLR value 
can be either all ones, or the maximum number of 
characters/bytes allowed in a message or frame, 
including any CRC but not including any Receive 
Status Block information. For applications like 1553B, 
the RCLR value should simply be the number of char
acters/bytes between successive Receive Status 
Blocks. For frame or message-oriented applications in 
which there's no particular maximum received frame or 
message length, the all-ones value simplifies com
puting the length of each frame or message slightly. 
This value allows software to obtain the. frame length 
by simply ones-complementing the value read from 
RCCR or from a Received Status Block in memory, 
rather than by subtracting it from the starting value. 

On the Transmit side, software can read the value in 
the TCC at any time from the Transmit Character 
Count Register (TCCR), but writing the TCCR address 
has no effect. Figure 38 shows a decoder that detects 
when the counter contains 0001 . When software or an 
external Transmit OMA controller writes enough data 
into the TxFIFO so that the TCC counts down to O, the 
channel marks the character that corresponds to 
decrementing from 1 to O as End of Frame I End of 
Message. When this character gets to the other end 

015-0 

TCLR 

Non-Zero 
Detect 

of the FIFO, the marking makes the Transmitter con
clude the frame appropriately. (Typically, it sends a 
CRC and a closing Flag or Sync character after the 
marked character.) 

If software or an external Transmit OMA controller 
writes 16 bits to the TOR while the counter contains 
0001, the channel only puts the character on the 07-0 
lines into the TxFIFO -- it ignores the data on 015-8. 
In a system in which even-addressed bytes fall on 07-
0 (e.g., a system based on an Intel processor) this 
isn't a problem. On the other hand, in systems in 
which even-addressed bytes reside on 015-8 (e.g., a 
system based on the Zilog Z8000 or 16COx or a 
Motorola 680x0) it can cause problems. In such 
systems, if the last character of a frame falls at an 
even address, software must copy the last character 
into the subsequent odd address as well, before 
presenting the buffer to the Transmit OMA controller. 
(Typically software needs to do this for an odd-length 
frame.) 

The Transmitter suppresses its OMA request from the 
time an external Transmit OMA controller places the 
EOF/EOM character in the TxFIFO until the Trans
mitter sends it. When software uses the Transmit 
Control Block feature, this procedure ensures that the 
Transmit OMA controller doesn't load the control 
information for the next frame or message, while the 
Transmitter still needs the values for the current one. 

(From 
Command· 

Driven 
Logic) 

D 
i~':)~-r-~~~-j-~~~~+-i> 

EnableTCC 

LO 
oN Counter (TCCR) 

0001 
Detect 

TxFIFO 

Figure 38. A Model of the Transmit Character Counter Feature 

58 



015-0 

Rx Char 

RCLR 

Non-Zero 
Detect 

Enable RCC 

RxFIFO 

Clk ~------'f-----<------<----<---ILO 

RCC FIFO 

RCCR 

LO 

~ 
To Software 

'------'~ 

RCHR 

r 
To Receive 
Status Block 

Figure 39. A Model of the Receive Character Counter Feature 

On the Receive side, software can't directly read the 
RCC (except perhaps by using test modes that are 
beyond the scope of this section). Instead, when the 
Receiver detects an end-of-frame situation, it captures 
the decremented value in the counter into a four-entry 
RCC FIFO and in a register called RCHR. (It may do 
this when it receives a Flag or Sync character, or, in 
External Sync and 802.3 modes only, when the /DCD 
pin goes false.) It then reloads the RCC from RCLR i(l 
preparation for the next frame. If software enables 
two-word Receive Status Blocks, the channel stores 
the value from RCHR as the second word of the RSB. 

Besides recording the length of received frames/ 
messages, the RCC feature can help detect frames or 
messages that are longer than a maximum length 
defined by the serial protocol. This typically happens 
because the Flag, terminating character or Sync 
character(s) separating two frames or messages gets 
corrupted on the serial link. This makes the two 
frames or messages look like a single continuous one 
to the Receiver. The usual strategy in such a case is 
to ignore (or possibly "NAK") the whole mess. 

59 

If the channel decrements the RCC to zero and then 
receives another character as part of the same frame/ 
message, it sets the RCCUnder L/U bit in the Miscel
laneous Interrupt Status Register (MISR3). To use 
this feature to check for overly long frames or mes
sages, program the RCLR with the maximum number 
of characters that a frame or message can validly 
have. This value should include any terminating and 
CRC characters but exclude any Receive Status Block 
information. Also, arm the RCC Underflow interrupt by 
setting the RCCUnder IA bit in the Status Interrupt 
Control Register (SICR3), as described in Chapter 6. 

If the channel ever sets RCCUnder L/U and interrupts, 
clear the condition by writing a 1 to the LIU bit, discard 
the data received for the frame(s) by purging the 
RxFIFO, reprogram the external Receive DMA 
controller if one is being used, and do whatever else is 
necessary to clean up the situation. Then write the 
"Enter Hunt Mode" command to the RCmd field of the 
Receive Command/Status Register (RCSR15-12). 



The RCC FIFO 

Figure 39 shows the RCC FIFO. When software has 
enabled the Receive Character Counter, the FIFO 
captures the contents of the RCC at the end of each 
frame or message in External Sync, Transparent Bi
sync, 802.3, and HDLC/SDLC modes. (The previous 
section described how the Receiver decrements the 
RCC by one for each character it receives.) 

The RCC FIFO can hold up to four 16-bit entries. 
Figure 40 shows the Channel Command/Status Regi
ster (CCSR), the 3 MSBits of which allow software to 
monitor and control the RCC FIFO. The RCCFAvall 
bit (CCSR14) is 1 if the RCC FIFO contains at least 
one entry, or is 0 if the RCC FIFO is empty. 

When RCCFAvail is 1, software can read the oldest 
entry in the RCC FIFO from the Receive Character 
Count Register (RCCR). It can then compute the 
length of the frame or message by subtracting this 
ending value from the starting value that came from 
the Receive Count Limit Register (RCLR). (Or, if the 
starting value was all ones, software can simply one's 
complement the value from RCCR.) Reading the 
RCCR removes the oldest entry from the RCC FIFO. 

For internal synchronization reasons, a channel does 
not set RCCFAvail for one bit time after it sets other 
status related to an End of Frame condition. That is, it 
sets these bits on the rising edge of RxCLK after the 
rising edge of RxCLK on which it places the RxBound 
character in the RxFIFO, and from which it may force 
a Receive Data interrupt or a Receive DMA request. 

If software has enabled the RCC, and a frame or mes
sage ends when the RCC FIFO is already full, the new 
value overwrites its predecessor, and the three oldest 
entries are not affected. The channel remembers this 
event in a status bit that it routes through the RCC 
FIFO, much like it routes other status bits through the 
RxFIFO. When software reads the preceding entries 
so that an overwriting/overwritten entry becomes the 
oldest one left in the RCC FIFO, the channel sets the 
RCCFOvflo bit in the Channel Command/Status 
Register (CCSR15). Once RCCFOvflo is set, the only 
way to clear it (other than to Reset the whole channel) 
is to write a 1 to the ClearRCCF bit (CCSR13). This 
also empties the RCC FIFO and clears RCCFAvail. 

Writing to the RCCFOvflo and RCCFAvail bits has no 
effect, nor does writing a 0 to the ClearRCCF bit. 
ClearRCCF always reads as 0. 

60 

Transmit Control Blocks6 

Figure 41 shows the Channel Control Register. Its 
TxCtrlBlk field (CCR15-14) controls what the Trans
mitter does with the first 16 or 32 bits of data that an 
external Transmit DMA controller fetches from 
memory at the start of a frame or message. (While 
software can use Transmit Control Blocks when it fills 
the TxFIFO, there's no obvious reason to do so, 
compared to just writing the control registers directly.) 
The Transmitter interprets TxCtrlBlk as follows: 
TxCtrlBlk Kind of TCB's used 

00 No Transmit Control Block 
01 16-bit Transmit Control Block 
10 32-bit Transmit Control Block 
11 Reserved; do not program 

When TxCtrlBlk is 01 or 10, a channel treats the next 
16 or 32 bits, that software or an external Transmit 
DMA controller writes to the TDR, as a Transmit 
Control Block after any of following happen: 
1. after software writes the Trigger Tx DMA (or Trig

ger Tx and Rx DMA) command to the RTCmd field 
of the Channel Command/ Address Register, 

2. after software writes the Load TCC (or Load RCC 
and TCC) command to RTCmd, 

3. after software writes the Purge Tx FIFO (or Purge 
Tx and Rx FIFO) command to RTCmd, or 

4. after the Transmit DMA controller (or software) 
writes data into the TxFIFO that decrements the 
TCC to zero. As noted earlier, the Transmitter 
drops its DMA request from the time the DMA 
controller fetches the last character of a frame, 
until after it moves the character to its shift regis
ter. It does this so that the DMA controller doesn't 
fetch the Transmit Control Block for the next frame 
or message, while the Transmitter still needs the 
control information for the current frame. 

Figure 42 shows a 32-bit Transmit Control Block as 
part of a sequence of 16-bit words in memory. The 
MS 4 bits of the first word (or the only word in a 16-bit 
TCB) define a new TxSubMode value for the following 
transmit data. A channel writes these bits into the 
TxSubMode field of its Channel Mode Register 
(CMR15-12) without changing the rest of the CMR. 
Bits 4-2, of the first or only word, define the TxResidue 
value for the following frame in HDLC/SDLC or 
HDLC/SDLC Loop mode. The channel writes these 
bits into the TxResidue field of the Channel Command/ 
Status Register (CCSR4-2) without affecting the rest 
of the CCSR. The channel ignores bits 11-5 and 1-0 
of the first or only word, but Zilog reserves these bits 
for future enhancements and software should ensure 
that they're all zero. 

Previous USC documentation called these Transmit Status Blocks. 



RCCF RCCF Clear DPLL DPLL DPLL DPLLEDGE On Loop Resrvd 
Ovflo Avail RCCF Sync 2Mlss 1Mlss Loop Send 

TxResldue {rxACK /RxACK 

15 14 13 12 11 10 9 8 7 6 5 4 3 

Figure 40. The Channel Command/Status Register (CCSR) 

TxCtrlBlk 
Async: TxShaveL 

Rsrvd e----~------• 
Sync:TxPreL Sync:TxPrePat 

RxStatBlk 
Walt4 

Rx 
Tri 

Reserved (O) 

15 14 13 12 11 10 9 8 7 6 5 3 

Figure 41. The Channel Control Register (CCR) 

MSByte ignored 
if Length of 

frame/message N 
was odd 

--

Address x 

x+2 

x+4 

Address x+6 

,,,.-- / 

Last 1 or 2 character(s) 
of frame or message "N" 

Control Word for 
-tra_me or message "N+1"-

Le~gtii 'OM•afll_e 
or message "N+1 1·-----

First character(s) of 
frame or message "N+1" 

-- --~·~----~--------.---------,--------,'> 
I TxSubMode I o o O O O O O I TxResldue I 0 0 I 
015 012 04 02 

I~ 
015 DO 

Figure 42. A 32-bit Transmit Control Block in a OMA Buffer 

A channel transfers the second word of a 32-bit TCB 
through the Transmit Count Limit Register (TCLR) and 
into the TC Counter (TCCR). Therefore this word 
should contain the number of characters/bytes that 
follow this TCB, until the end of the frame or message. 
In a non-block-structured mode like 15538, the value 
simply reflects the number of bytes until the next TC8. 
Note that with a 16-bit TCB, the channel still reloads 
the TC Counter, but it uses the old value in TCLR to 
do so. Thus, 16-bit TC8s are useful in protocols that 
use fixed-length frames or messages, but 32-bit TC8s 
should be used when successive transmitted frames 
or messages can vary in length. 

Figure 42 shows a TC8 in the middle of a memory 
buffer, that is, directly following the last characters of 
the previous frame. Perhaps more typically, the TC8 
would be the first two or four bytes of a memory buffer 
dedicated to this frame or message. 

61 

Receive Status Blocks 

The Receiver sets the Rx8ound bit in the RxFIFO to 
indicate the end of a frame, message, or word, in 
External Sync, Transparent 8isync, 802.3, HDLC/ 
SDLC, and ACV/15538 modes. In these modes the 
Receiver can store summary/status information in 
memory after the last character of the frame, 
message, or word. The RxStatBlk field of th~ 

Channel Control Register (CCR?-6) controls whether 1t 
does this. A channel interprets it like TxCtrlBlk: 
RxStatBlk Kind of RSB's used 

00 No Receive Status Block 
01 16-bit Receive Status Block 
10 32-bit Receive Status Block 
11 Reserved; do not program 

If this field is either 01 or 10, the Receiver stores the 
status from the Receive Command I Status Register 
(RCSR) after the frame. The 10 value makes ~he 
channel also store the ending value of the Receive 
Character Counter in a second 16-bit word after the 
RCSR status word. (For what it's worth, the channel 
temporarily stores the RCC value in a holding register 
called RCHR.) Figure 43 shows a 32-bit RS8. 



,,- / 

Addressx Last 1 or 2 character(s) 
of frame or message "N" 

Status Word for 
, frame or message "N" .. 

x+2 

x+4 Ending RC Count for 
frame or message "N" 

Address x+6 First character(s) of 
frame or message "N+ 1" 

v -D15 DO 

Always 
1 

··.. \ ·· ... 
\-- · .. ·- ..... 
\ 
\ 

Different 
from 

RCSR 

\ 
\ 
\ 

····-.\ .. :}.. 

1stBE 00 RxResldue 
ShorlF/ 
CVType 000 

Rx CRCE 
Bound /FE PE 

Rx 
Over RCCO 

D15 D14 D11 D9 DB D4 D3 D2 D1 DO 

Figure 43. A 32·bit Receive Status Block In a OMA Buffer 

The only trouble with the 32-bit RSB option is that 
software has to know how long each received frame 
is, in order to find the RSB that indicates the length. 
(This is somewhat reminiscent of trying to follow a 
forward-linked-list backward.) Typically software will 
need to use the RCC FIFO to keep track of frame 
lengths instead of, or in addition to, Receive Status 
Blocks. 

Figure 43 shows the contents of the first word of a 
Receive Status Block; they are identical with the 
contents of the RCSR with the following exceptions: 
1. The channel forces the bits that correspond to 

ExitedHunt, ldleRcved, and Break/Abort in the 
RCCR to O. These are "global" rather than 
"queued" status bits and must be handled by 
software on a more or less real-time basis. 

2. The LSBit of the first word of an RSB is a copy of 
the LSBit of the RCC at the end of the frame, 
rather than the RxAvail bit that's in the RCCR. 
This bit is also available in the RCC FIFO and in 
the second word of a 32-bit RSB, but for 16-bit 
OMA operation it may be handy to have it here, 
especially in a 16-bit RSB. 

The CRCE/FE bit in an RSB reflects the CRC
correctness of the frame in 802.3 and HDLC/SDLC 
modes, but not in Transparent Bisync mode. 

When software or an external Receive OMA controller 
reads 16 bits from the ROR, and the Receiver has 
marked the oldest character in the RxFIFO as End of 
Frame or End of Message, the channel only takes that 
one character out of the RxFIFO. When the Receive 

62 

DMA controller is doing 16-bit transfers, software has 
several ways to figure out whether the 16-bit "word" 
preceding a RSB contains one or two char
acters/bytes. 

The most straightforward way is to compute the length 
of the frame or message, by subtracting the ending 
RCC value in the RCC FIFO or the second word of the 
RSB, from the starting RCC value that the hardware 
took from RCLR. (If the starting value was all ones, 
software can just ones-complement the ending value.) 
If the result is odd there's one character in the 16-bit 
word that precedes the RSB, while if it's even there 
are two characters in the word. 

A "narrower" version of the same computation is that if 
bit O of the first or second word of the RSB is the 
same as the units bit of the starting RCC value that 
came from RCLR, then the preceding word contains 
two characters. If the two bits are different the word 
contains only one character. 

Still another method applies only when bits 2-1 of the 
first word of the RSB, namely Parity Error and Rx 
Overrun, are both 0. (Most "modern" protocols don't 
use parity checking anyway.) The usual handling for 
an Rx Overrun condition in synchronous modes 
involves forcing the receiver into Hunt mode for the 
start of the next frame or message, which means that 
an RSB would never be stored for a frame that 
encountered an overrun. When PE and RxOver are 
both zero, if bit 14 of the first word of the RSB (1 stBE) 
is 1, there is one character in the preceding word, 
while if bit 14 is 0 there are two characters. 



Figure 43 shows the first characters of the next frame 
stored right after the RSB. This indicates that the 
DMA controller didn't switch memory buffers between 
the frames. 

Using TCB's and RSB's In ACV (15538) Mode 

In Async with .Code Violations (1553B) mode, the 
Receiver sets the RxBound bit for the second (or only) 
byte of each word received. It does this so that soft
ware can use the Receive Status Block mechanism to 
;eco;d the type of Code Vioiation (CommandiStatus or 
Data) that introduced each word. To use this facility, 
software should program the RxStatBlk field (CCR7-6) 
to 01 to select 16-bit RSB's. The Receiver then stores 
a 16-bit status word after each word (or byte) of 
received data. The ShortF/CVType bit (bit 8) of the 
status word is 1 after a "command/status" word and 0 
after a "data" word. 

On the Transmit side, software can use Transmit 
Control Blocks to send any sequence of mixed Com
mand/Status and Data words under DMA control. To 
do this, it should program TxCtrlBlk (CCR15-14) to 10 
to select 32-bit TCB's, and should structure the data in 
memory so that a TCB precedes each block of words 
of the same kind. Bit 12 of the first word of each TCB 
(the LSBit of the TxSubMode value) should be 1 for a 
block of Command/Status words and 0 for a block of 
Data words. The second word of each TCB should 
specify the number of bytes in the block (typically, this 
is twice the number of words). 

Commands 
Commands are encoded values that software writes to 
a register field to change the state of a channel or 
make it perform some action. Typically commands 
don1t take any software-perceptible time to perform. 
USC command fields are write-only; reading them 
back may yield zeroes or some unrelated status item. 

Often commands represent a more compact and effi
cient way to provide control features than dedicated 
register bits. In fact, commands are so popular that 
each use channel includes three separate encoded 
command fields! Figure 44 shows the Channel 
Command/Address Register. Software can write any 
of 18 different commands that affect the Transmitter 
and/or the Receiver to its RTCmd field (CCAR 15-11). 
In addition, software can write any of ten commands 
that affect the Transmitter to the TCmd field in the 
Transmit Command/Status Register (TCSR15-12). 

RTCmd RT 
Reset 

RTMode 

Finally, software can write any of five commands that 
affect the Receiver to the RCmd field in the Receive 
Command/Status Register (RCSR15-12). 

Writing all zeroes to any of the command fields 
does nothing, which can be useful when the intent is 
to write to other fields of the register. Zilog reserves 
other values not listed below for future extensions to 
the USC family; such values should not be written to 
the subject field. 

Chan 
Load 

RTCmd 
~ 
00010 
00100 
00101 
00110 
00111 
01001 
01010 
01011 
01101 
01110 
01111 
10001 
10010 
10011 
10100 
10101 
10110 
10111 

TCmd 
~ 

0010 
0101 
0110 
0111 
1000 
1001. 
1100 
1101 
1110 
1111 

RCmd 
~ 

0010 
0011 
0101 
0110 
0111 

B//W 

Function 
Reset Highest Serial IUS 
Trigger Channel Load DMA 
Trigger Rx OMA 
Trigger Tx OMA 
Trigger Rx and Tx OMA 
Purge Rx FIFO 
Purge TX FIFO 
Purge Rx and Tx FIFO 
Load RCC 
Load TCC 
Load RCC and TCC 
Load TCO 
Load TCl 
Load TCO and TCl 
Select Serial LSBit First 
Select Serial MSBit First 
Select 015-8 First 
Select 07-0 First 

Function 
Clear Tx CRC Generator 
Select TICRHi=FIFO Status 
Select TICRHi=/INT Level 
Select TICRHi=/TxREQ Level 
Send Frame/Message 
Send Abort 
Enable DLE Insertion 
Disable DLE Insertion 
Clear EOF/EOM 
Set EOF/EOM 

Function 
Clear Rx CRC Generator 
Enter Hunt Mode 
Select RICRHi=FIFO Status 
Select RICRHi=/INT Level 
Select RICRHi=/RxREQ Level 

RegAddr U//L 

15 14 13 12 11 10 9 8 7 6 5 4 3 

Figure 44. The Channel Command/Address Register (CCAR) 
2 0 

63 



A description of each command follows, in alphabetical 
order. Some of them include references to other 
chapters or sections, which provide more information 
that's important to fully understanding the command. 

Clear EOF/EOM (TCmd:=1110): this command con
ditions a channel so that it ~ mark the next char
acter that software or an external Transmit DMA 
controller writes to the Transmit Data Register as End 
of Frame/End of Message. Since a channel assumes 
this state after each write to the TOR, and after a 
hardware or programmed Reset, software will need 
this command only if it "changes its mind" about where 
the frame ends, between issuing a Set EOF/EOM 
command and writing the TOR. 

Clear Rx or Tx CRC Generator7 (RCmd or TCmd:= 
0010): these commands force the Receive or Transmit 
CRC Generator to all zeroes or all ones, depending on 
the RxCRCStart bit in the Receive Mode Register 
(RMR1 O) or the TxCRCStart bit in the Transmit Mode 
Register (TMR10). Software will seldom need these 
commands because the Receiver and Transmitter 
automatically clear their associated CRC generators at 
the start of each frame. 

Olsable OLE Insertion (TCmd:=1101 ): this command 
applies only to Transparent Bisync mode. It conditions 
a channel so that it doesn't check subsequent 
characters written to the Transmit Data Register 
(TOR) for OLE characters, and so that it doesn't add 
any OLE characters to the transmitted data stream. 
Software should use this command before writing a 
two-character control sequence that starts with OLE to 
the TOR. OLE insertion remains disabled until soft
ware issues the Enable OLE Insertion command or 
until a hardware or software Reset. Each channel 
queues the state that's affected by this and the 
following command through its TxFIFO with each 
character, so that software can change the state as 
needed.· 

Enable OLE Insertion (TCmd:=1100): this command 
applies only to Transparent Bisync mode. It conditions 
a channel so that it checks subsequent characters 
written to the Transmit Data Register (TOR) for OLE 
characters, and adds another OLE for each OLE 
written to the TOR. Software should use this 
command before writing normal data to the TOR. OLE 
insertion remains enabled until software issues the 
Disable OLE Insertion command. Each channel 
queues the state that's affected by this and the 
preceding command through its TxFIFO with each 
character, so that software can change the state as 
needed. 

7 Previous USC documentation called these commands Preset CRC 

64 

Enter Hunt Mode (RCmd:=0011): this command 
forces the Receiver into "Hunt Mode" immediately, 
regardless of its previous state. In synchronous 
modes, this means that the Receiver starts searching 
for a Sync or Flag sequence. In asynchronous modes 
it starts searching for a start bit or (in 1553B mode) for 
a code violation. In .any mode, the Receiver discards 
any partial character that was in progress when 
software issued the command. 

Load RCC and/or TCC8 (RTCmd:=01101-01111): 
these commands load the Receive and/or Transmit 
Character Counter from the Receive and/or Transmit 
Count Limit Register (RCC from RCLR and/or TCC 
from TCLR). This may enable or disable character 
counting. If software has enabled the Transmit Con
trol Block feature in the TxCtrlBlk field of the Channel 
Control Register (CCR15-14=01or10), a Load TCC or 
Load RCC and TCC command also conditions the 
Transmitter to treat the next data written to the 
Transmit Data Register as a TCB. 

Load TCO and/or TC1 (RTCmd:=10001-10011): 
these commands load the counter in Baud Rate 
Generator 0 and/or 1 from the Time Constant 0 and/or 
1 Register (BRGO from TCOR and/or BRG1 from 
TC1R). Loading a BRG via one of these commands 
also enables it to count. This is particularly important 
when software has programmed a BRG for single 
cycle mode (HCR1=1 for BRGO or HCR5=1 for BRG1.) 
and it has stopped after counting down to zero. See 
Chapter 3 for more information about the BRG's. 

Purge. Rx and/or Tx FIFO (RTCmd:=01001-01011): 
these commands remove all entries from the RxFIFO 
and/or TxFIFO. They also reload the Receive and/or 
Transmit Character Counter from the Receive and/or 
Transmit Count Limit Register (RCC from RCLR 
and/or TCC from TCLR). This may enable or disable 
character counting. If software has enabled the 
Transmit Control Block feature in the TxCtrlBlk field of 
the Channel Control Register (CCR15-14=01 or 10), a 
Purge Tx FIFO command also conditions the Trans
mitter to treat the next data written to the Transmit 
Data Register as a TCB. If software is using an 
external Transmit OMA channel, a Purge Tx FIFO 
command may cause the /TxREQ pin to be asserted 
immediately, while if it's using Transmit Data 
interrupts, the command may cause the /INTA or 
/INTB pin to be asserted immediately. (The previous 
two sentences also apply to a Purge Rx and Tx FIFO 
command.) 

Previous USC documentation called these commands Reload TCC and/or RCC 



Reset Highest IUS (RTCmd:=00010): Chapter 6 
describes how this command clears the highest
priority Interrupt Under Service latch in the channel 
that's currently set (if any). 

Select 015-8 or 07-0 Flrst9 (RTCmd:=10110-10111): 
these commands control which of the two characters 
in a 16-bit write to the TDR{fxFIFO the Transmitter 
sends first. They also control how the channel 
arranges the oldest and second-oldest characters in 
the RxFIFO when software or an external Receive 
DMA controller reads 16 bits frcm :t 'v'ia the Recclvc 
Data Register. "015-8 First" is the default value after 
either a hardware or programmed reset, and is 
compatible with the Zilog Z8000, Zilog 16COx and 
Motorola 680x0 processors. "07-0 First" should be 
programmed for the Zilog Z380 and most Intel 
processors. A channel applies this option only during 
a 16-bit transfer, between the TxFIFO or RxFIFO and 
the AD15-0 pins. However, if the Transmit Character 
Counter contains 0001 and the Transmit OMA 
controller writes 16 bits to the TxFIFO, the channel 
only puts the character from AD7-0 in the TxFIFO, 
regardless of these commands. In a "07-0 First" 
system this isn't a problem. But if the last character of 
a frame or message falls at an even address when 
using the Transmit OMA controller in a "015-8 First" 
system, software must copy the last character into the 
subsequent odd address as well. (Usually this applies 
to a frame with an odd length.) 

Select RICRHl=/INT Level (RCmd:=0110): this 
command conditions a channel so that subsequent 
accesses to the MSByte of its Receive Interrupt 
Control Register (RICR15-8) read or write the number 
of received characters at which the channel starts 
requesting a Receive Data interrupt, as described in 
Chapter 6. If software uses a Receive OMA controller 
to store data in memory, it should disable Receive 
Data interrupts. 

Select RICRHi=/RxREQ Level (RCmd:=0111 ): this 
command conditions a channel so that subsequent 
accesses to the MSByte of its Receive Interrupt 
Control Register (RICR15-8) read or write the number 
of received characters at which the Receiver asserts 
/RxREQ to a Receive OMA controller, as described in 
Chapter 5. 

Select RICRHi=FIFO Status (RCmd:=0101): this 
command conditions a channel so that reading the 
MSByte of its Receive Interrupt Control Register 
(RICR15-8 yields the number of characters in its 
RxFIFO. This is described more fully in The Data 
Registers and the FIFOs later in this chapter. 

9 Previous USC documentation called these commands Select Straight Memory 
Data and Select Swapped Memory Data. 

65 

Select Serial Data LSB or MSB First (RTCmd:= 
10100-10101): these commands control whether a 
channel transmits and assembles serial data with the 
Least Significant or Most Significant bit going first on 
the line. "LSB first" is the default after either a 
hardware or programmed reset, and is the method 
used in most traditional data communications 
schemes. A channel applies this option as it transfers 
data between the AD pins and the FIFOs. Because of 
this, these commands don't affect functions like 
matching addresses and sync characters and sending 
syncs. This, in turn, means that software must 
program such values "backward" in the TSR and RSR 
for "MSB first" applications. 

Select TICRHl=/INT Level (TCmd:=0110): this 
command conditions a channel so that subsequent 
accesses to the MSByte of its Transmit Interrupt 
Control Register (TICR15-8) read or write the number 
of empty TxFIFO entries at which the Transmitter 
starts requesting a Transmit Data interrupt, as 
described in Chapter 6. If software uses a Transmit 
OMA controller to fetch data from memory, it should 
disable Transmit Data interrupts. 

Select TICRHl=ffxREQ Level (TCmd:=0111): this 
command conditions a channel so that subsequent 
accesses to the MSByte of its Transmit Interrupt 
Control Register (RICR15-8) read or write the number 
of empty TxFIFO entries at which the Transmitter 
asserts {fxREQ to a Transmit OMA controller, as 
described in Chapter 5. 

Select TICRHl=FIFO Status (TCmd:=0101): this 
command conditions a channel so that reading the 
MSByte of its Transmit Interrupt Control Register 
(TICR15-8) yields the number of empty entries in its 
TxFIFO. This is described more fully in The Data 
Registers and the F/FOs later in this chapter. 

Send Abort (TCmd:=1001): this command is valid 
only in HDLC/SDLC mode and makes the Transmitter 
send an Abort (Go Ahead) sequence. If the 2 MSBits 
of the TxSubMode field of the Channel Mode Register 
(CMR15-14) are 01, the Abort consists of a zero fol
lowed by 15 consecutive ones. Otherwise it consists 
of a zero followed by seven ones. After sending the 
Abort, the Transmitter operates as itwould have after 
sending a closing Flag. That is, if Wait2Send (TICR2) 
is O and there's data in the TxFIFO, it starts a new 
frame, otherwise it sends the Idle condition defined by 
the Txldle field (TCSR10-8). 

Send Frame/Message (TCmd:=1000): if the 
Wait2Send bit in the Transmit Interrupt Control 
Register (TICR2) is 1, the Transmitter waits between 
frames, sending the Idle pattern defined by the Txldle 
field of the Transmit Command/Status Register 
(TCSR10-8), until software issues this command. The 
later section Synchronizing Frames/Messages with 



Software Response describes how this feature differs 
from the one controlled by the Wait4TxTrig bit in the 
Channel Control Register and the Trigger Tx OMA 
command In RTCmd. 

Set EOF/EOM {TCmd:=1111): this command condi
tions a channel so that It marks the next character, 
that software or an external Transmit OMA controller 
writes to the Transmit Data Register (TDR), as End of 
Frame/End of Message. This marking makes the 
Transmitter perform the appropriate closing actions 
after sending the character. (For example, in 
HDLC/SDLC mode it sends a CRC and then a closing 
Flag.) Typically, after issuing this command, software 
should write the last character of the frame or 
message to the LSByte of the Transmit Data Register 
(TDR7-0). The channel automatically clears the state 
set by this command when s'oftWare {or a Transmit 
OMA controller) writes to the TOR. Therefore this 
command applies to at most one character. 

Trigger Channel Load OMA {RTCmd:=00100): 
Chapter 7 will describe how this command puts a 
channel in a special mode in which an external 
Transmit OMA controller can initialize all the registers 
in the channel. Software must program and set up an 
external Transmit DMA controller as for transmitting 
data, before it issues this command. 

Trigger Rx and/or Tx OMA {RTCmd:=00101-00111): 
if one of the Wait4xxTrig bits in a channel's Channel 
Control Register {CCR13 for Tx, CCR5 for Rx) is 1, 
the channel stops requesting that kind of OMA transfer 
after the end of each frame. When this happens, 
software should use one of these commands to re
enable requests to the external OMA controller{s), for 
the next frame. These commands also load the 
Receive and/or Transmit Character Counter from the 
Receive and/or Transmit Count Limit Register {RCC 
from RCLR and/or TCC from TCLR). This may enable 
or disable character counting. If software has enabled 
the Transmit Control Block feature in the TxCtrlBlk 
field of the Channel Control Register (CCR15-14=01 
or 10), a Trigger Tx OMA or Trigger Tx and Rx OMA 
command also conditions the Transmitter to treat the 
next 16 or 32 bits written to the Transmit Data 
Register as a TCB. The later section Synchronizing 
Frames/Messages with Software Response describes 
how this feature differs from the one controlled by the 
Walt2Send bit in the Transmit Interrupt Control Regis
ter and the "Send Frame/Message" command in 
TCmd. 

Resetting a USC Channel 
Figure 44 shows the RTReset b1t in the Channel 
Command/Address Register {CCAR10). Software can 
use this bit to reset a channel to a known and inactive 
state like that produced by driving the /RESET pin low. 
(The most significant difference is that the USC 

requires software to write the Bus Configuration 
Register (BCR) after a hardware reset, but not after 
this kind of "software Reset".) 

To software-reset a channel when using a 16-blt data 
bus: 
1. Write CCAR {or its MSByte) with RTReset=1. 
2. Write a 16-bit zero to CCAR. 

To software-reset a channel when using an 8-bit bus: 
1. Write the MSByte of CCAR with RTReset=1. 
2. Write the LSByte of CCAR with an 8-bit zero. 
3. Write the MSByte of CCAR with an 8-bit zero. 

The way this "software reset" works is that the 1 state 
of RTReset conditions the channel's register address 
decoding logic so that the subsequent write operation 
actually writes data into all the registers in the channel. 
Between the time that software writes RTReset as 1 , 
and when it writes it back to 0, the channel doesn't 
drive 1/0 pins, it either 3-states output pins or holds 
them in their inactive state, but register bits that don't 
directly affect these pins are unchanged/undefined. 

Leaving the RTReset bit set Is a common mistake 
made by first-time users of a USC family member. 

The Data Registers and the FIFOs 
When the RxFIFO contains received characters, soft
ware can read the "oldest" 1 or 2 characters in it from 
the Received Data Register (RDA). When software 
uses an external Receive OMA controller, it takes care 
of taking data out of the RxFIFO. The Mode 
Registers: Character Length, earlier in this Chapter, 
describes how the Receiver aligns characters and fills 
out bytes in the RDR/RxFIFO when characters are 
less than 8 bits long. 

· Similarly, when the TxFIFO isn't full software can write 
1 or 2 characters to it via the Transmit Data Register 
(TOR), or an external OMA controller can dq_ so. 

66 

Chapter 2 describes how software can access the 
TOR and RDA using a register address that may be 1) 
multiplexed on the AD5-1 pins, 2). full-time on AD13-8 
if only AD7-0 carry data, or 3) written into the Channel 
Command/ Address Register {CCAR5-1). 

Two other features of the USC make it easier for 
software to access these registers when the AD lines 
don't carry multiplexed addresses and the data bus is 
16 bits wide. Host processor write cycles to the USC, 
with the D//C pin high, always write the TOR. 
Similarly, host processor read cycles from the USC, 
with D//C high, always read the RDA. A system 
designer may connect D//C to a prpcessor address 
line, such as A1 for a non-multiplexed 16-bit bus or A7 
for a multiplexed bus. 

Chapter 2 also describes how to write the Bus Config
uration Register to configure the USC for a 16-bit data 



bus. With a 16-bit data bus, software can write two 
characters at once to the TDR, or an external Transmit 
DMA controller can read two characters from memory 
at once. Similarly, software can read two characters 
at a time from the RDR, or an external Receive DMA 
controller can write two characters into memory in 
each bus cycle. The earlier section Commands 
describes how the "Select D15-8 First" and "Select 
D7-0 First" commands allow the two characters in 
each 16-bit transfer, to the TDR or from the RDR, to 
be arranged in either order. This is important because 
available microprocessors differ about the order. 

With a 16-bit data bus, software can read or write 
most USC registers as a 16-bit word, or can read or 
write either their "more significant" byte (bits 15-8) or 
"less significant" byte (bits 7-0). The TDR and RDR 
are different in this regard: software should never read 
or write their more significant bytes alone, only as part 
of a 16-bit transfer. On a Zilog 28000 or 16COx or 
Motorola 680x0 based system this typically means that 
software should write bytes to the TDR and read bytes 
from the RDR at an odd address. On an Intel 80x86 
processor software should typically write bytes to the 
TDR and read bytes from the RDR at an even 
address. 

On a 16-bit bus there's no way for software to read 
single characters from RDR, or write single characters 
to TDR, using an address that makes D//C high. To 
do this, software must either address the LSByte of 
TDR/RDR directly, or it must write the address of the 
LSByte to the CCAR. 

The TxFIFO and RxFIFO have a maximum capacity of 
32 characters (bytes) each. A USC channel empties 
them of all data when external hardware drives the 
/RESET pin low, when software resets the channel via 
the RTReset bit (CCAR 10), and when software writes 
a "Purge Rx and/or Tx FIFO" command to the RTCmd 
field (CCAR 15-11). 

The RxFIFO becomes one byte more full for each 
character received on the serial link, and one or two 
bytes less full each time software or an external 
Receive DMA controller reads data from it via the 
RDR. The TxFIFO becomes one or two bytes more 
full each time software or an external Transmit DMA 
controller writes data to it via the TOR, and one byte 
less full each time the Transmitter moves a character 
into its output shift register. 

The exceptions to the above statements are that in 
Async with Code Violations (15538) mode with the 
Extended Word option selected, the RxFIFO becomes 
two bytes more full for each received word, and the 
TxFIFO becomes two bytes emptier each time the 
Transmitter transfers a word to its shift register. 

Each channel maintains a counter for each FIFO that 
reflects its current contents. Software can read the 

67 

number of received characters/bytes that are currently 
in the RxFIFO. To do this, it may first have to write 
the "Select RICRHi=FIFO Status" command to the 
RCmd field of the Receive Command/Status Register 
(RCSR15-12). Then software can read the MSByte of 
the Receive Interrupt Status Register (RICR15-8). 
The resulting 8-bit value represents the number of 
received characters in the RxFIFO. It ranges from o 
for an empty RxFIFO to 32 for a full one. Software 
can skip the step of writing the Select command if it 
hasn't written any of the other "Select RICRHi= ... " 
commands to the RCSR since the last time it issued 
this command. 

Similarly, software can read the number of entries that 
are currently empty in the TxFIFO. It may first have to 
write the "Select TICRHi=FIFO Status" command to 
the TCmd field of the Transmit Command/Status 
Register (TCSR15-12). Then software should read 
the MSByte of the Transmit Interrupt Status Register 
(TICR15-8). The resulting 8-bit value represents the 
number of empty positions in the TxFIFO. It ranges 
from O for a full TxFIFO to 32 for an empty one. As for 
the RxFIFO, software can skip the step of writing the 
Select command if it hasn't written any of the other 
"Select TICRHi" commands to the TCSR since the last 
time it issued this command. 

The USC channels continually compare the contents 
of these counters against two "threshold" levels for 
each. Chapter 5 describes how the "Tx DMA Request 
Level" determines how empty the TxFIFO must get 
before the Transmitter starts requesting that an 
external Transmit DMA controller should read more 
data from memory. Once the Transmitter has started 
to request DMA transfer, it typically keeps doing so 
until the DMA controller has filled the TxFIFO or until 
the Transmit Character Counter has counted down to 
zero. 

Chapter 5 also describes how the "Receive DMA 
Request Level" controls how full the RxFIFO should 
get before the Receiver starts requesting that an 
external Receive DMA controller should move data to 
memory. Once the Receiver has started to request 
DMA transfer, it typically keeps doing so until the DMA 
controller has emptied the RxFIFO, or until it has 
stored the last character of a frame or message. 

Chapter 6 describes how, if software enables 
"Transmit Data" interrupts, the "Transmit /INT Level" 
controls how empty the TxFIFO should get before the 
Transmitter starts requesting such an interrupt. It also 
describes how, if software enables "Receive Data" 
interrupts, the "Receive /INT Level" controls how full 
the RxFIFO should get before the Receiver starts 
requesting such an interrupt. Software doesn't use 
these kinds of interrupts in USC applications in which 
external Transmit and Receive DMA controllers handle 
the data. But if software does use data interrupts, the 



interrupt service routine should fill the TxFIFO or 
empty the RxFIFO completely each time It executes. 
(As a minimum the ISR should transfer enough data to 
bring the FIFO status below the threshold level, or 
should raise the threshold level to accomplish the 
same thing.) 

Between Frames, Messages, or 
Characters 

Synchronous Transmission 

When software issues a "Set EOF/EOM" command 
and then writes data to a channel's TOR, or when 
software or an external Transmit OMA controller 
fetches enough data so that the TCC counts down to 
zero, the channel flags the last character of the 
message or frame in, the TxFIFO. After this last char
acter gets to the other end of the TxFIFO and out onto 
the serial link, the Transmitter terminates the frame or 
message. The Transmitter also terminates a frame or 
message if it needs a character from the TxFIFO but 
It's empty (an "underrun" condition). The Transmitter's 
exact actions at these points depend on the serial 
mode/protocol and perhaps on certain programmed 
options. 

If the TxCRCatEnd bit in the Transmit Mode Register 
(TMR8) is 1, the Transmitter sends the CRC code it 
has accumulated during the frame, after a character 
marked as the end of a frame cir message. If the 
TxSubMode field says to do so, the Transmitter sends 
its accumulated CRC in an underrun situation. The 
CRC can be 16 or 32 bits long. 

Then, or right after the last character from the TxFIFO 
If it doesn't send the CRC, except in 802.3 (Ethernet) 
mode the Transmitter sends a closing Sync or Flag 
sequence as determined by the TxMode and some
times the TxSubMode, as follows: 

TxMode Closing sequence: 

Monosync (TSR15-8) 

Slaved Monosync (TSR15-8) 

Bisync (TSR15-8) ifCMR14=0 
(TSR7-0)(TSR15-8) H CMR14=1 

Transparent Blsync SYN ifCMR14=0 
DLE-SYN H CMR14=1 
(ASCII or EBCDIC per CMR12) 

802.3 (Ethernet) None 

HDLC/SDLC Flag (01111110) 

HDLC/SDLC Loop Flag (01111110) 

Then, or immediately after sending the CRC in 802.3 
(Ethernet) mode, the Transmitter decides whether to 
send another frame or message immediately or not. 
In HOLC/SOLC Loop mode only, when it sends a 
closing or idle Flag the Transmitter checks whether 
software has cleared the CMR13 bit to signal the end 

68 

of sending activity. If so, it returns to repeating data 
from RxO onto TxO. In any other mode, and in Loop 
mode if CMR13 is 1, the Transmitter commits to 
sending a new message or frame when: 
1. there is at least one character in the TxFIFO, and 
2a. either the Wait2Send bit in the Transmit Interrupt 

Control Register (TICR2) Is 0, or 
2b. software has written the "Send Frame/Message" 

command to the TCmd field of the Transmit 
Command/Status Register (TCSR15-12) since the 
end of the last frame. 

If these conditions aren't met, the Transmitter sends 
the "Idle line condition" specified by the Txldle field of 
the Transmit Command/Status Register (TCSR10-8). 
This field also determines what the Transmitter sends 
between characters in async modes. The Transmitter 
interprets Txldle as follows: 

.'l'.xlQ.l.e. Idle Line Condition 
000 The idle line condition is the 

default for the mode/protocol 
defined by TxMode: 
* All ones in 802.3 and all 
async modes. 
* Flags in HDLC/SDLC and 
HDLC/SDLC Loop. 
* Sync sequences in Monosync, 
Slaved Monosync, Bisync, and 
Transparent Bisync. (In the 
,Bisync modes these are like 
closing Syncs: they may be 
single characters or pairs 
based on CMR14.) 

001 Alternating zeroes and ones 
010 Continuous zeroes 
011 Continuous ones 
100 Reserved; do not program 
101 Alternating Mark and Space 
110 Continuous Space (TxD low) 
111 Continuous Mark (TxD ~igh) 

With choices 000-011, the Transmitter encodes the 
idle condition as specified by the TxEncode field of the 
Transmit Mode Register (TMR15-13), while for 
choices 101-111 it doesn't encode the condition. 
Software can use these idle-condition options to keep 
Phase Locked Loop and decoding circuits at the 
remote receiver "in sync" between messages, frames, 
or async characters. Consider the sections of Chapter 
3 that deal with data encoding and the OPLL, and 
whatever standards or specifications apply to your 
application, in selecting how to program Txldle. 

In sync modes, once the conditions to start sending a · 
message or frame (described above) are met, the 
Transmitter may send a bit sequence called a 
Preamble. A Preamble can be used to synchronize 
Phase Locked Loop and decoding circuits at the 
remote receiver. Whether the Transmitter sends a 



Preamble is a function of the TxMode and sometimes 
the TxSubMode, as follows: 

TxMode Preamble sent? 

Monosync If CMR13=1 

Slaved Monosync Never 

Bi sync If CMR13=1 

Transparent Bisync If CMR13=1 

802.3 (Ethernet) Always 

HDLC/SDLC If CMR13=1 

HDLC/SDLC Loop Never 

If the Transmitter sends a Preamble, the TxPreL and 
TxPrePat fields of the Channel Control Register 
(CCR11-10 and CCR9-8) control its length and 
content: 

'1'z.l'..Uo.L 
00 
01 
10 

Length of Preamble Sent 
8 bits 
16 bits 
32 bits 

11 64 bits 

TxPrePat Preamble Pattern Sent 
00 All zeroes 
01 All ones 
10 101010 .•• 
11 010101. •. 

For 802.3 (Ethernet) mode, the proper values are 
TxPreL=11 and TxPrePat=1 O; the Transmitter auto
matically modifies the last (64th) bit from a 0 to a 1 to 
act as the "start bit". For other modes, consider the 
sections of Chapter 3 that deal with data encoding and 
the DPLL, and whatever standards or specifications 
apply to your application, in deciding whether to use a 
preamble and if so what kind. 

After sending the Preamble, or when the conditions for 
starting a frame have been met if there is no 
Preamble, except in 802.3 (Ethernet) mode the 
Transmitter sends an opening Flag or Sync sequence. 
In the two Bisync modes this may differ from the 
closing sequence: 

TxMode Opening sequence: 

Monosync (TSR15-8) 

Slaved Monosync (TSR15-8) 

Bisync (TSR7-0) (TSR15-8) 

Transparent Bisync DLE-SYN 
(ASCII or EBCDIC per CMR12) 

802.3 (Ethernet) None 

HDLC/SDLC Flag (01111110) 

HDLC/SDLC Loop Flag (01111110) 

69 

In the HDLC/SDLC and HDLC/SDLC Loop modes 
only, the Transmitter will combine the closing and 
opening Flags into a single instance if all of the 
following are true: 
1. software has not selected sending a Preamble 

(CMR13=0; this doesn't apply in Loop mode), 
2. the Wait2Send bit (TICR2) is 0, and 
3. at least one character is available in the TxFIFO 

as the Flag is going out. 

As described in the earlier section Status Reporting, 
software can use four of the bits 1n the Transmit 
Command/Status Register (TCSR) to track the 
progress of the Transmitter through these inter-frame 
activities. They occur in the time order CRCSent, then 
EOF/EOM Sent, ldleSent, and finally Present. 
Chapter 6 describes how software can enable any or 
all of these conditions to cause an interrupt. 

Async Transmission 

As described in the previous section, the Txldle field of 
the Transmit Command/Status Register (TCSR10-8) 
controls what kind of idle line condition the Transmitter 
sends between characters (or words) in asynchronous 
modes. The bits in the Channel Command Register 
that define the Preamble in sync modes (CCR11-8) 
can be used in Async mode to "shave" the length of 
transmitted Stop bits. 

Synchronous Reception 

Between the end of one message or frame and the 
start of the next, the Receiver goes through states that 
are similar to the inter-message or inter-frame 
activities that are described above for the Transmitter. 
As described in the earlier section Status Reporting, 
software can use some or all of the following status 
bits to track these state changes: RxBound (RCSR4), 
CRCE/FE (RCSR3), ldleRcved (RCSR6), and 
ExitedHunt (RCSR7). If the DPLL is used, chapter 3 
describes the DPLLSync bit in the Channel Command/ 
Status Register (CCSR12) which bears a certain 
symmetry with the Present bit on the Transmit side. 
Chapter 6 describes how software can enable the 
RxBound, ldleRcved, and/or Exited Hunt conditions to 
cause an interrupt. 

The ldleRcved logic isn't as flexible as the corres
ponding Txldle logic in the Transmitter, in that it only 
detects an Idle condition consisting of (15 or 16) 
consecutive ones. 

In HDLC/SDLC mode the Receiver automatically 
copes with single Flags between frames and with 
shared zeroes between Flags (011111101111110). 



Synchronizing Frames/Messages with 
Software Response 
In some applications, software can simply set up OMA 
buffers for multiple frames or messages, and set the 
USC's Transmitter and/or Receiver and external OMA 
controller(s) into operation to send and/or receive all of 
them. In other applications, software has to interact 
with and supervise the communications process more 
closely. (The extreme case is when software has to 
check status register bits for each character that it 
transfers to the TxFIFO or from the RxFIFO.) 

The USC provides two alternatives for interlocking the 
start of transmission of a frame or message with 
software response, and one similar interlock on the 
receive side. 

If the Wait2Send bit in the Transmit Interrupt Control 
Register (TICR2) is 1, then each time the Transmitter 
finishes sending a frame and before it sends the next, 
it waits for software to write the Send Frame/Message 
command to the TCmd field of the Transmit Command 
I Status Register (TCSR 15-12). Depending on the 
programmed mode the Transmitter may then go on to 
send the Preamble or the opening Sync or Flag. This 
kind of interlock allows the software to reprogram 
global Transmitter parameters that may need to 
change between frames or messages. It allows an 
external Transmit OMA controller (or software) to fill 
the TxFIFO in preparation for the next frame or 
message, before software issues the Send Frame/ 
Message command. One use for this interlock would 
be to change the TxCRCatEnd bit in the Transmit 
Mode Register (TMRS) between frames, in an appli
cation in which the Transmitter should calculate a 
CRC in some messages or frames but not in others. 

If the Wait4TxTrig bit in the Channel Control Register 
(CCR13) is 1, then each time the Transmitter finishes 
sending a frame and before it sends the next, it waits 
for software to issue the Trigger Tx OMA (or Trigger 
Rx and Tx OMA) command before it requests OMA 
operation. This is a "more stringent" interlock than the 
preceding one, in that the external Transmit OMA 
controller won't fill the TxFIFO in preparation for the 
next frame, until software issues the command. This 
kind of interlock is useful if OMA-related parameters, 
or parameters that go through the TxFIFO with the 
data, need to be changed between frames. The most 
obvious example is reprogramming the buffer location 
and length in the Transmit OMA controller. 

On the Receive side, if the Wait4RxTrig bit in the 
Channel Control Register (CCR5) is 1, then after an 
external Receive OMA controller has written a 
character marked as RxBound to memory (and after it 
has written the Receive Status Block if software has 
enabled this feature) the Receiver doesn't assert 
/RxREQ to the Receive OMA controller again until 

70 

software writes the Trigger Rx OMA (or Trigger Rx and 
Tx OMA) command to the RTCmd field of the Channel 
Command/Status Register (CCAR15-11). Software 
can use this interlock to reprogram the Receive OMA 
controller between frames. 



5. Direct Memory Access (OMA) Interfacing 

Chapter 4 described many of the features of the USC 
that support handling serial traffic on a OMA basis, 
that is, without processor intervention on a byte-by
byte basis. This chapter describes how to interface 
external OMA controllers and how to program the USC 
to work with them. 

OMA and processor data transfers can be mixed in 
several ways. The USC's two Receivers and two 
Transmitters can be handled via any mixture of OMA 
and programmed transfers. Furthermore, software 
can even mix OMA and programmed transfers for a 
particular Receiver or Transmitter. 

For example, software could use the Wait4RxTrig bit 
(CCR13) to inhibit OMA transfers at the start of each 
received frame, so that it can read the first few char
acters of the frame from the RxFIFO itself. The 
software can then determine the kind of frame from 
examining those first characters, optionally program 
the receive OMA controller accordingly, and then write 
the "Trigger Rx OMA" command to the RTCmd field of 
the Channel Command/Address Register (CCAR15-
11). The OMA controller can then transfer the rest of 
the frame into memory without further software inter
vention. 

DMAC 

Memory Device 

Address '~--M-em_o_ry_L_oc_at_lon __ ~f 

/RD 

Data 

/WR 

OMA Request 
(e.g., /TXREQ) 

\ from Memory f 
toDMAC 

Flyby vs. Flowthrough OMA Operation 
OMA controllers can operate in one of two ways that 
are called "flyby" or single-cycle mode and "flow
through" or two-cycle mode. Figures 45 and 46 
illustrate flowthrough mode, in which the OMA 
controller performs two bus cycles for each piece of 
data transferred between the peripheral device and 
memory. The first cycie reads data from the source, 
be it the peripheral or the memory. The OMA 
controller captures this read data and then presents it 
on the data bus again in the second cycle, which is a 
write to memory if the data came from the device, or a 
write to the device if the data came from memory. 

The main advantage of flowthrough transfers is that 
they involve minimal hardware design considerations, 
because both c.:ycles of each pair are similar to bus 
cycles performed by the host processor. In the case 
of the use there's a secondary advantage in that the 
/TxACK and/or /RxACK pin(s) can be used for 
general-purpose input or output. 

DMAC 

data 

----------. 
Memory Device 

\ Data Register In Device 

( from DMAC 'r----
\'------"to"-'D"'ev-'ic..:..e __ ~/ 

tt that's enough data for now 

I 
if the device wants more data 

Figure 45. Flowthrough OMA Transfer, Memory to Peripheral Device 

71 



DMAC 

Mem_ory Memory Device 

Address \.__ __ D_at_a_R_eg_1s_te_r_1n_D_ev_1c_e _ _,f \.__ ___ M_em_o_ry_Lo_~_ti_on __ _,r----

/RD 

Data 

/WR 

OMA Request 
(e.g., /RxREQ) 

\ from Device f 
toDMAC (·----f~ro_m_D_M~A~c __ __,T--\_ to Memory / 

if the device doesn't have much more data 

ff the device wants to provide more data 

Figure 46. Flowthrough OMA Transfer, Peripheral Device to Memory 

Address 

/RD 

Data 

/WR 

OMA Request 
(e.g., /TxREQ) 

OMA Acknowledge 
(e.g., /TxACK) 

Memory Location 

( from Memory 'r---
\ to Device / 

n that's enough data for now 

I n the device wants more data 

Figure 47. Flyby OMA Transfer, Memory to Peripheral Device 

72 



Address 

/RD 

Data 

/WR 

OMA Request 
(e.g., /RxREQ) 

OMA Acknowledge 
(e.g., /RxACK) 

Memory Location 

from Device 

if the device doesn~ have (much) more data 

If the device wants to provide more data 

Figure 48. Flyby OMA Transfer, Peripheral Device to Memory 

Figures 47 and 48 illustrate flyby (single-cycle) oper
ation. In addition to the Request signal from the 
device to the OMA controller, there's an Acknowledge 
signal from the DMAC back to the device. The OMA 
controller performs just one bus cycle for each piece 
of data transferred, in which the address lines and 
standard bus control signals tell the memory what to 
do to fulfill its part in the transaction. But in addition to 
this signalling, the OMA controller asserts the Acknow
ledge line to the device to tell it to perform its part, i.e. 
to place data on the data lines for a write to memory, 
or to capture data that's bei'hg read from memory. 

The main advantage of flyby mode is faster operation, 
but there's a price to be paid in greater design 
complexity. Most OMA controllers place this burden 
mostly on the device side, and try to make OMA 
cycles appear to the memory as much like processor 
cycles as possible. 

The USC's Transmitters and Receivers can operate in 
either mode, with one important covenant for flyby 
operation. Chapter 2 noted that only one among /OS, 
/RD, /WR, /PITACK, and those /TxACK and /RxACK 
pins that are used as OMA Acknowledge lines, may be 
asserted at the same time. While system designers 
usually think of signals like /OS, /RD, and /WR as 
being important only when they're qualified by 
assertion of /CS, the above restriction is true 
regardless of the state of /CS. 

73 

Since the OMA controller typically asserts JDS or /RD 
or /WR to the memory during a flyby OMA cycle, in 
order to use flyby transfers the system designer 
must provide external logic that blocks JDS, or 
/RD and /WR, from being asserted at the USC 
simultaneously with /TxACK or /RxACK. The 
simplest way to do this is with a logic gate or two to 
keep the pin(s) high whenever the OMA controller is in 
control of the system bus. 

OMA Requests by the Receiver and 
Transmitter 
In general, a OMA controller only transfers data when 
the associated device requests that it do so. To use 
either flowthrough or flyby OMA operation with a USC 
Receiver or Transmitter, connect the /RxREQ or 
/TxREQ pin to the Request input of the OMA control
ler, and program the RxRMode or TxRMode field 
(IOCR9-8 or IOCR11-10 respectively) to 01. The 01 
value makes the channel output the Receiver's or 
Transmitter's OMA request on /RxREQ or /TxREQ. 

The Transmitter asserts /TxREQ to the transmit OMA 
controller as follows: 

1. when TxRMode (IOCR 11-1 O) is 01 and the 
Transmitter isn't "holding between frames", from 
the time that the number of empty character 
positions in the TxFIFO exceeds the Transmit 



OMA Request Level value (TICR15-8 after a 
"Select TICRHi=fTxREQ Level" command), until 
a. the TxFIFO is filled, or 
b. the Transmit Character Counter counts down to 

zero, indicating that the OMA controller is 
fetching the last character of a message or 
frame, and either 
i. the Transmit Control Block feature is 

enabled, and/or 
ii. the Wait4TxTrig bit (CCR13) is 1. 

2. from the time software writes a Trigger Channel 
Load OMA command to the Channel Command I 
Address register (CCAR), until a OMA transfer into 
CCAR clears the ChanLoad bit (CCAR7). 

Each of 1.b.i and 1.b.ii establishes a separate "holding 
between frames" state for the Transmitter. The 
Transmitter clears the former one automatically, when 
it finishes sending the frame. Software must clear the 
latter one, by issuing a "Trigger Tx OMA" command to 
the RTCmd field of the Channel Command I Address 
Register (CCAR15-11). 

Point 1.b.i reflects the fact that, when Transmit Control 
Blocks are enabled, the Transmitter stops requesting 
further OMA transfers after the OMA controller fetches 
the last character of one frame, until it has sent that 
character and terminated the frame or message. The 
Transmitter does this so that the loading of the TCB 
information for a new frame doesn't affect sending the 
end of the preceding frame. 

When RxRMode (IOCR9-8) is 01 and the Receiver 
isn't "holding between frames", it asserts /RxREQ to 
the receive DMA controller in two situations: 

A. from the time that the number of received 
characters in the RxFIFO exceeds the Receive 
OMA Request Level value (RICR15-8 after a 
"Select RICRHi=/RxREQ Level" command), until 
the OMA controller empties the RxFIFO, or 

B. in HOLC/SOLC, Ethernet/802.3, Transparent 
Bisync, or 1553B mode, from the time that the 
Receiver places a byte marked with RxBound 
status into the RxFIFO, until the OMA controller 
has read out the RxBound character. (Such 
RxBound status signifies the last character of 
each frame or message in HOLC, Ethernet, and 
Transparent Bisync mode, and the second or only 
character of each word in ACV/1553B mode.) 

If the software has enabled Receive Status 
Blocks, the channel keeps /RxREQ asserted while 
the OMA controller stores the status block in 
memory. Also, if the number of characters left in 
the RxFIFO, after the OMAC has read out the 
RxBound character, still exceeds the Receive 
OMA Request Level, the channel keeps asserting 
/RxREQ per condition A. 

74 

Note that, if the Wait4RxTrig bit in the Channel Control 
Register (CCR4) is 1, then after the receive OMA 
controller writes a character marked with RxBound 
status into memory (plus the Receive Status Block if 
this feature is enabled), the Receiver enters a "holding 
between frames" state. In this state, it doesn't request 
any more OMA transfers until after software writes a 
"Trigger Rx OMA" command to the RTCmd field of the 
Channel Command/Address Register (CCAR15-11). 
This interlock overrides points A and B above. 

The Receive Character Counter feature cannot force 
the Receiver to assert /RxREQ. 

A channel negates rrxREQ within a specified time of 
the start of the bus cycle that fills the TxFIFO or 
fetches the last character of the frame or message. A 
channel negates /RxREQ within a specified time after 
the start of a bus cycle that empties the RxFIFO or 
completes the storing of the Receive Status Block. 

Programming the OMA Request Levels 

As noted in other chapters, the MSByte of the Trans
mit and Receive Interrupt Control Registers (TICA and 
RICR) may each represent any of several registers. 
The content of each register's MSByte depends on 
which of several selection commands was most 
recently written to the Transmit or Receive Command 
Status Register (TCSR or RCSR), respectively. The 
selections for the Transmitter and Receiver are 
independent. 

To program or read back a OMA Request Level, first 
write the "Select RICRHi=/RxREQ Level" or "Select 
TICRHi=fTxREQ Level" command (both being the 
value 0111) to the TCmd or RCmd field of the Trans
mit or Receive Command/Status Register (TCSR 15-
12 or RCSR15-12). This step can be omitted if it's 
known that no 0101 or 011 o commands have been 
written to TCSR or RCSR since the last time 0111 
was written there. The OMA Request Level value can 
then be read or written as the MSByte of the TICR or 
RICR. 

The Transmit OMA Request Level should be pro
grammed with 1 less than the number of empty 
TxFIFO positions, at which the Transmitter should 
start asserting frxREQ. The Receive OMA Request 
Level should be programmed with 1 less than the 
number of received characters in the RxFIFO, at 
which the Receiver should start asserting /RxREQ. 
For example, if the Receiver should request OMA 
operation when its 32-byte RxFIFO is 3/4 full, software 
should write hex 70 to RCSR15-8 to select the OMA 
Request Level as RICR15-8, and then write decimal 
23 (hex 17) to RICR15-8. 

Note that a Purge Tx FIFO (or Purge Rx and Tx FIFO) 
command can make a channel immediately assert 
frxREQ. 



OMA Acknowledge Signals 
Each channel of the USC has a /TxACK and an 
/RxACK pin. In modes other than flyby OMA oper
ation, these pins can be used as outputs or as polled 
inputs, as described in Chapter 3. For flyby OMA 
applications, connect these pins to the acknowledge 
outputs of the OMA controller, and program the 
RxAMode and TxAMode fields of the Hardware 
Configuration Register (HCR3-2 and HCR7-6) with 01. 
The 01 value makes the USC route the signals from 
these pins to the DMA Acknowledge inputs cf the 
Receiver and Transmitter. 

The USC channel provides data on the AD lines within 
a specified time after /RxACK goes low. For Transmit 
OMA cycles, data must be valid on the AD lines for 
specified setup and hold times around each 
trailing/rising edge on /TxACK. If the NJAIT//RDY pin 
is configured for the Ready (Data Transfer 
Acknowledge) function as described in Chapter 2, the 
USC channel drives N/AIT//RDY low after either 
/TxACK or /RxACK goes low. Note that, in a system 
in which the DMA controller requires a Ready or Data 
Transfer Acknowledge signal, external logic will 
probably want to condition and combine NJAIT//RDY 
from the USC and the corresponding signal from the 
memory, to produce the signal for the DMA controller. 

Separating Received Frames in Memory 
In some block-oriented communications protocols, 
software needs to separate received frames or 
messages so that there is one and only one in each 
buffer area in memory. Since the only signals 
between the USC and an external DMA controller are 
REQ and ACK, there's no way for the USC to tell the 
DMAC about frame/message boundaries. Therefore 
there's no way for the DMA transfer process to 
automatically separate frames/messages in memory 
by hardware means, and if such separation is to be 
done it must be by means of software intervention 
between frames. 

As described in an earlier section of this chapter, a 
USC Receiver asserts the /RxREQ pin when it places 
a character with end of frame/message (RxBound) 
status in the RxFIFO, regardless of the FIFO fill level. 
This promotes separation of received frames/ 
messages in memory, 

The channel then keeps /RxREQ asserted at least 
until the OMA channel moves the RxBound character 
from the RxFIFO to memory, at which time the 
channel sets the RxBound status bit (RCSR4). If the 
Receive Status interrupt on RxBound Is armed and 
enabled, software can respond to the resultant 
interrupt by reprogramming the OMA channel for the 
next memory buffer and restarting it to store the next 
frame there. 

75 

However, this feature is not in itself a complete 
solution because the USC will keep /RxREQ asserted 
until the RxFIFO is empty. Unless the OMA response, 
OMA transfer rate, and interrupt response are all fast 
relative to the data rate, the first few characters of the 
next frame may arrive and be stored at the end of the 
preceding frame's memory buffer, before software can 
reprogram the DMA controller for the next buffer. 

The answer to this problem is to use the Wait4RxTrig 
bit (CCRS) that's described near the end of Chapter 4. 
VVhen this bit is set to 1, the USC channel negates 
/RxREQ as it moves the RxBound character to 
memory or completes storing the Receive Status 
Block. Software can then respond to the Receive 
Status interrupt, reprogram the OMA channel for the 
next frame, and finally write the "Trigger Rx OMA" 
command to the RTCmd field (CCAR15-11) to allow 
the channel to assert /RxREQ again. 



76 



6. Interrupts 

The interrupt subsystem of the USC derives from 
Zilog's long experience in providing the most advanced 
interrupt capabilities in the microprocessor field. 
These capabilities can be used to their best advantage 
in a system including a Zilog processor and other Zilog 
peripherals, but it's easy to interface the USC to 
interrupt other processors as well. This chapter 
describes the USC's interrupt cerahilitiP.s anrl hnw to 
use them in various system applications. 

The USC dedicates eight pins to interrupts. Each 
channel has its own interrupt request output (/INTA 
and /INTB). The /SITACK and /PITACK inputs signal 
that the processor is acknowledging an interrupt, in 
different ways for use with different kinds of host 
microprocessors. 

For applications in which interrupt acknowledge cycles 
cannot easily be detected at the USC, software can 
simulate such a cycle. 

Each channel has its own Interrupt Enable In (IE/A, 
/EIB) and Out (IEOA, IEOB) pins. These signals allow 
systems including several Zilog-compatible peripherals 
to use an interrupt acknowledge daisy chain to select 
how multiple interrupting devices should be serviced. 
This can eliminate the need for a separate interrupt 
controller as in other approaches. On the other hand, 
because the USC provides separate Interrupt Request 
outputs and Interrupt Enable inputs for each channel, 
external interrupt control logic can process interrupt 
requests in a round-robin or dynamic-priority fashion 
among the channels in one or more uses. 

Interrupt Acknowledge Daisy Chains 
Figure 49 shows an interrupt acknowledge daisy 
chain. The highest-priority daisy-chainable device that 
can request an interrupt has its IE/ pin tied High. 
Because of this, it can always request an interrupt, 
and it "has first claim at" providing an interrupt vector 
in answer to an interrupt acknowledge cycle. The IEO 
pin of the highest-priority device is connected to the 
IEI pin of the hext-higher-priority device. This "daisy 
chaining" of IEO outputs to IEI inputs continues until 
the lowest-priority daisy-chainable device that can 
request an interrupt, which has its /EO pin left 
unconnected. 

With the USC as with all Zilog-compatible devices 
except ZBO family members, the /ACK daisy chain 
serves two separate functions. During an interrupt 
acknowledge cycle, the daisy chain acts to select the 
highest-priority requesting device as the one to return 
an interrupt vector. After that, until the resulting 
interrupt service routine is over, the daisy chain serves 
to block interrupt requests from devices having a lower 

77 

priority than that of the one currently being serviced, 
while allowing them from higher-priority devices. 

/INTB 

:r::::m [liEi iEOI \NCJ 
USC lEOA 1 I 1 Per!pheral •c• 

Figure 49. An Interrupt Daisy Chain 

This daisy-chain structure allows nesting of interrupt 
service routines. Nesting can greatly improve worst
case interrupt response times for critical real-time 
applications as well as 1/0-intensive computing 
systems. Whether or not host software uses nested 
interrupts, the USC's interrupt subsystem provides the 
most efficient interrupt handling possible. 

External Interrupt Control Logic 
There are two valid reasons why a system designer 
might choose not to use an interrupt acknowledge 
daisy chain (plus the less valid one of not being 
familiar with them). First, in a system that includes 
many USC channels all having similar baud rates and 
serial traffic, the strict priority among channels, that's 
inherent in a daisy chain, might endanger proper 
interrupt servicing for the channel(s) at the low-priority 
end of the chain. In such cases, interrupt service 
requirements may be more easily guaranteed by using 
a central interrupt controller that distributes interrupt 
acknowledgements among the channels on a round
robin (rotating-priority) basis. Such schemes target 
"fairness" rather than priority in interrupt servicing 
among the channels. 

A second reason not to use a simple/wired interrupt 
daisy chain would be in a system in which data rates 
vary over a considerable range among several USC 
channels, and are determined dynamically rather than 
being known as the system is being designed. (A 
channel's interrupt servicing requirements typically 
vary directly with its serial data rate.) In such a 
system, external interrupt logic can distribute interrupt 
acknowledge cycles using a dynamic priority 
determined by each channel's data rate. 

Both rotating-priority and dynamic-priority systems can 
be arranged as shown in Figure 50. The interrupt 
control logic maintains the IEI inputs of the channels 
high most or all of the time, so that the channels can 
assert their /INT outputs. The logic may simply OR 
the /INT outputs of the various channels to make the 
interrupt request to the processor. Alternatively, in a 



dynamic-priority system with a processor that supports 
multiple levels of interrupts, the control logic may 
assign different channels to different processor levels. 

Processor 

/INTA, IEIA, /SITACK 

/INTB lEIB /Plf'lcK 

USC other devices 

Figure 50. External Interrupt Control 

Regardless of how the interrupt control logic derives 
the processor request, when the processor does an 
interrupt acknowledge cycle, the logic must select a 
particular device from among· those requesting an 
interrupt, to "receive" the cycle. The control logic can 
implement this choice in one of two ways., First, it can 
negate the IEI inputs of all but one device, and then 
wait for the specified setup time before presenting the 
cycle to all of them using the /PITACK or /SITACK 
signal and possibly other bus control signals. 
(/PITACK's probably easier to use in this kind of 
application.) Or, it can simply present the cycle only to 
the selected channel, typically using a single pulse on 
/PITACK. 

Using /RxREQ and JTxREQ as Interrupt 
Requests 
When an external OMA controller isn't used to handle 
the Receive or T•ansmit data for a channel, the 
corresponding REQ pin isn't used to output a OMA 
transfer request. In this case software can still 
program the pin as a OMA request output, and the 
system designer can use the output signal as another 
interrupt request instead. 

As we will see, software can program "FIFO request 
levels" for a FIFO's contribution to the /INT pin, that 
are similar to those discussed in Chapter 5 for the way 
the FIFO controls its REQ pin. Using an REQ pin for 
another interrupt request line is advantageous only in 
a system in which the host processor has multiple 
interrupt request levels, and the software allows/uses 
nested interrupts. In such a system, the REQ pin(s) 
can be connected to a different request level than is 

78 

the /I NT pin, so that data interrupts have a different 
priority than other kinds of interrupts. 

The OMA Requests by the Receiver and Transmitter 
section of Chapter 5 describes how the channel 
asserts the REQ pin until the software has completely 
filled the TxFIFO or emptied the RxFIFO, or until the 
end of the message/frame, whichever comes first. 
This differs from how the channel asserts its /INT 
output, and means that an interrupt service routine 
must take or provide data until the FIFO is full or 
empty or until the end of the frame or message, in 
order to avoid immediate re-interruption. 

Internal Interrupt Operation 
Internally, the USC uses a daisy-chaining scheme 
much like that described earlier. Each channel 
includes six interrupt "types", that are arranged in a 
fixed priority order. Four of the six types include 
several independent interrupt stimuli or "sources". 

Figure 51 presents a model of the typical internal 
structure of the interrupt subsystem, for a source "s" 
that is of type "t". Note that the Figure represents a 
model of the USC's interrupt logic rather than the 
exact logic; it's included only as an aid to under
standing the interrupt subsystem. 

Each individual source has an associated register bit 
that we'll call its Interrupt Arm or IA bit. (Previous 
Ziiog documents called this bit an Interrupt Enable or 
IE bit, but also used the same term for another bit that 
applies to the entire type. To distinguish between 
these two kinds of register bits, this description will call 
the one that applies to the individual sources "IA".) 

IA bits are fully under software control. When an IA bit 
is 1, the associated source can cause an interrupt. 

The sources are typically readable as register bits 
themselves, and may be derived from various kinds of 
logic, such as logic that compares the fullness of a 
FIFO with a threshold level at which to interrupt,. or 
logic that detects transitions of another register bit. 
Whenever one of the sources for a type and its IA bit 
are both true, an "Interrupt Pending" register bit (IP) 
for the type is set to 1. For USC family members, IP 
bits are set independently of the state of the 
associated IUS bits, and are cleared to O only by 
software (or by Reset). 

A close examination of Figure 51 will show that setting 
of IP is delayed if an "armed" source comes true 
.d..Yrirl.g an interrupt acknowledge cycle, but that's not 
particularly important for understanding the USC's 
interrupt subsystem ... 

A second register bit associated with each type is the 
Interrupt Enable or IE bit. This bit is also under full 
software control. When an IE bit is 1, an interrupt can 
be requested when the type's IP bit is 1. Note that an 



IP bit can be set while its associated IE bit is O; if 
software sets IE before it clears the associated IP bit, 
an immediate interrupt can result. 

There is one more register bit for each type, called the 
Interrupt Under Service or IUS bit. The interrupt logic 
sets the IUS bit for a type to 1 during an interrupt 
acknowledge cycle, if the daisy chain shows that it is 
the highest-priority type that's currently requesting an 
interrupt. (This includes types in higher-priority 
devices and higher-priority types within the channel.) 
Aside from a hardware or software Reset, an !US bit 
can only be reset to 0 by software. This is typically 

done near the end of an interrupt service routine for 
that type. During the execution of the interrupt service 
routine for a given type, the type's IUS bit blocks 
interrupt requests from lower-priority types. 

The And gate near the top of Figure 51 shows the 
actual conditions for a type to request an interrupt. A 
type's IP and IE bits must both be 1, its IUS bit must 
be 0, and its incoming "IEI" signal must be true. IEI 
true indicates that no higher-priority type (on-chip or 
external) has its IUS bit set. Finally, a Master Interrupt 
Enable (MIE) register bit for th0 channel must be set 
to 1. 

From IEI pin, 
or Next

Higher-Priority 
Type 

From Other 
Types 

/INT 

ADna 

DLC----fl 

NV----ll 

lack Read----------+---------< 

TolEOor 
Next-Lower
Priority Type 

Drive Vector 

Figure 51. A Model of the Interrupt Logic for Source "s" and Type "t" 

79 



Details of the Model 
The IA and IE bits appear near the left side of Figure 
51, as D-type flip-flops that capture the state of an AD 
line when software writes a specific register. The IP 
bit appears as an SR-type latch that's set "by 
hardware" as described above; software can set and 
clear the latch. The signal labelled /IACKcy is Low for 
the duration of an interrupt acknowledge sequence. 
The IUS bit appears as a D-type flip-flop that can be 
set via its clock and D inputs at the end of an acknow
ledge cycle; again, software can set or clear IUS. 

The various signals named "SW op x", that set and 
clear IP and IUS, represent software operations. 
These may reflect the writing of a "1" bit to a certain 
register bit position, .or may represent the writing of an 
encoded command to a register. Since software 
always has to clear IUS .and try to clear IP during an 
interrupt service routine, there are often several ways 
to do so, as shown by the multiple "SW op" signals for 
these functions in the Figure. One thing not shown in 
the Figure is how the typical command "Reset Highest 
IUS" is implemented -- including this function would 
have considerably increased the complexity of the 
logic, which is already complex enough! 

The two downward-pointing gates in Figure 51 form 
the type's "IEO" output. They assert this output only if 
the type's incoming IEI is High and its IUS bit is O. 
There is a register bit "Disable Lower Chain" (DLC) in 
each channel; if/when DLC is 1 the channel's IEO is 
forced false/low. The downward-pointing OR gate 
reflects the functional shift of the daisy-chain during 
interrupt-acknowledge cycles. Its output is High 
except during IACK cycles, at which time it allows IEO 
to be asserted High only if this type is not requesting 
an interrupt. 

Finally, the signal labelled "Drive Vector" controls 
when the channel places an interrupt vector on the 
data bus during an interrupt acknowledge cycle. 
There is a register bit No Vector (NV) in each channel; 
NV=1 prevents driving a vector. The bus interface 
logic derives the signal "IACK Read" from R//W and 
IDS, /RD, or /PITACK. In most cases IACK Read is 
true during the latter part of the time that /IACKcy is 
true. The channel provides a vector on AD7-0 while 
IACK Read is true, if NV is 0 and any of the types in 
the channel is the highest priority interrupting type. 

To keep its complexity reasonable, Figure 51 doesn't 
include the mechanism by which the content of a 
returned interrupt vector can reflect the identity of the 
channel's highest-priority interrupting type. 

80 

Software Requirements 
While there's considerable variability and flexibility in 
the USC's interrupt subsystem, there are some 
common requirements in what an interrupt service 
routine must do to keep the hardware operating 
correctly: 
1. If the ISR wants to allow nested interrupts, it can 

reenable processor interrupts near its start. The 
channel won't request another interrupt of the 
same type (or any lower-priority type) until 
software clears the type's IUS bit. 

2. The service routine must figure out which type of 
interrupt it's servicing. This is automatic if the 
software enables the "Vector Includes Status" 
(VIS) option. 

3. Next the service routine must choose which 
source(s) within the type it wants to deal with. For 
each such source that's both active and armed, it 
must clear the source signal (whatever that takes) 
or, less typically, clear the associated IA bit. 

4. After dealing with as many sources for the type as 
it can, it must try to clear the IP bit, and clear the 
IUS bit for the type. This may involve writing one 
or two specific register bit(s) or writing one or two 
encoded command(s) to a register. The IP bit 
{remains set / is set again immediately} if the 
service routine left any sources for the type both 
active and armed. 

5. Typically the service routine then returns to the 
interrupted process or program. 

The USC channels provide register bits and/or 
commands to set the IP and/or IUS bits as well as 
clear them. Software can set IP to force an initial 
interrupt from a previously-inactive type. The ability to 
set IUS may be needed as part of simulating an 
interrupt acknowledge cycle. 

Interrupt Option in the BCR 
One bit in the Bus Configuration Register (BCR) 
affects the interrupt subsystem. The following is also 
presented in Chapter 2, Bus Interfacing. 

2Pulse1ACK (Double-Pulse Interrupt Acknowledge; 
BCR1): software should program this bit to 0 if the 
/PITACK pin isn't used or if it carries a single pulse 
when the host processor acknowledges an interrupt, 
or to 1 if /PIT ACK carries two pulses when the host 
processor· acknowledges an interrupt. (The latter 
mode is compatible with certain Intel processors.) 



Interrupt Acknowledge Cycles 
The USC doesn't require Interrupt Acknowledge 
cycles. The system designer can simply pull up the 
/SITACK and /PITACK pins, and software can read 
the Interrupt Pending (IP) bits in the Daisy Chain 
Control Register (DCCR), which are described in later 
sections. 

Even if the host processor does Interrupt Acknowledge 
cycles, the USC doesn't have to provide a vector. If 
IEI is high and the NV bit in a channel's Interrupt 
Control Register (ICR) is 1, the channel sets the IUS 
bit of the highestpriority interrupt then pending, but it 
does not return an interrupt vector. 

But, since most microprocessors in use today perform 
interrupt acknowledge cycles to obtain an 8-bit inter
rupt vector, the rest of this section will assume 
vectored interrupts. 

Figure 52 shows an interrupt acknowledge cycle that's 
signalled by /SITACK, on a bus with multiplexed 
addresses and data. (Actually there are two subcases 
of this kind of cycle, depending on whether the host 

AD15-0 - (not used) 

/SIT ACK ~ : I 
I 

/AS 

IEO 

IEI 

processor uses /OS or /RD signalling. Since the timing 
is the same for either strobe, Figure 52 simply shows 
a trace labelled "/OS or /RD".) 

If the channel samples /SITACK low at the rising edge 
of /AS, it "freezes" its internal interrupt state; if it is 
requesting an interrupt it forces its IEO output low 
regardless of the state of IEI, and starts resolving its 
internal interrupt priorities. If the IEI and IEO pins are 
part of an interrupt acknowledge daisy chain with other 
interrupting devices, this resolution occurs in concert 
with the interrupt logic in the other devices. 

The IEI pin must be valid for a specified setup time 
before /OS or /RD goes low. The host CPU's strobe 
must be delayed if needed to guarantee this. If IEI is 
high and the channel is requesting an interrupt, it 
responds to JDS or /RD by setting the IUS bit of its 
highest requesting type of interrupt, driving a vector 
onto the AD7-0 pins, and driving /WAIT//RDY 
appropriately to signal when the vector is valid. If IEI 
is low at the leading/falling edge of JDS or /RD, and/or 
if the channel is not requesting an interrupt, it doesn't 
respond to the cycle. 

I I 

IDS or /RD 

I I -----,i : I 
\J /WAIT//RDY 

(as Wait) 

/WAIT//RDY -----~1 
(as Ack) 

/INT 

Figure 52. An Interrupt Acknowledge Cycle signalled by /SITACK, on a Multiplexed Bus 

81 



Figure 53 shows an interrupt acknowledge cycle that's 
signalled by /SITACK, on a bus with separate address 
and data Jines. (As before there are two subcases of 
this kind of cycle, depending on whether the host 
processor uses /DS or /RD signalling. Since the 
timing is identical for either strobe, Figure 53 simply 
shows a trace labelled "/DS or /RD".) 

Here the channel freezes its internal interrupt state in 
response to a falling edge on /SITACK; again, if it is 
requesting ah interrupt it forces its JEO output low 
regardless of the state of JEJ, and starts resolving its 
internal interrupt priorities. 

AD15-0 

/SIT ACK ~ 
IEO 

IEI 

Jn this mode /SJTACK must stay low until after /DS or 
/RD goes low, and IEI must be valid for a specified 
setup time before /DS or /RD goes low. (The falling 
edge of /DS or /RD may have to be delayed to 
guarantee this.) If IEI is high and the channel is 
requesting an interrupt, it responds to /DS or /RD by 
setting the IUS bit of its highest priority requesting type 
of interrupt, driving a vector onto the AD?-0 pins, and 
driving /WAIT//RDY appropriately to signal when the 
vector is valid. If IEI is low at the leading/falling edge 
on /DS or /RD, and/or if the channel is not requesting 
an interrupt, it doesn't respond to the cycle. 

I 

I I 

IDS or /RD 
I I ------,i I I 
u /WAIT//RDY 

(as Wait) 
I 

/WAIT//RDY 
(as Ack) 

/INT 

Figure 53. An Interrupt Acknowledge Cycle signalled by /SITACK, on a Non-Multiplexed Bus 

82 



Figure 54 shows the kind of interrupt acknowledge 
cycle that the USC expects when /PITACK goes low 
and the 2PulselACK bit (BCR1) is 0. Here a single 
pulse on /PITACK substitutes for the pulse on /DS or 
/RD in the previous cases; the latter two signals must 
remain high throughout the cycle. For this case, 
operation on a non-multiplexed bus is identical with 
that on a multiplexed bus once the /AS strobe is over. 
The only distinction is that a multiplexed bus must 
meet minimum times between the pulse on /PITACK 
and the preceding and following pulses on /AS. These 
minima are similar to those required for register read 
and write cycles. 

In this mode, an interrupt acknowledge daisy chain on 
IEl/IEO cannot be used to select whether an USC 
channel or another device should respond to each 
interrupt acknowledge cycle. Instead, external logic 

AD15·0 

/AS u 
IEI 

/PIT ACK 

/WAIT//RDY 
(as Walt) 

/WAIT//RDY 
(as Ack) 

/INT 

like that shown in Figure 50 must decide which 
requesting device/channel is to respond to an interrupt 
acknowledge cycle, if such a cycle occurs when more 
than one is requesting an interrupt. The external logic 
would typically consider the state of the individual 
devices'/channels' interrupt request lines in making 
this decision. (The lines cannot be OR-tied in this 
case.) 

In this "single-pulse" mode, the !El pin must set up 
and hold around the leading/falling edge on /PITACK. 
!f !E! !s h!gh and the channel [s requesting an intern.~pt 
at that point, it responds to /PITACK by driving a 
vector onto the AD?-0 pins and driving /WAIT//RDY 
appropriately to signal when the vector is valid. If IEI 
is low at the leading/falling edge of /PITACK, and/or if 
the channel is not requesting an interrupt at that point, 
it doesn't respond to the cycle. 

----le 
I 
I u 
I 

I I 
I I 

i I I 
I u 

Figure 54. A /PITACK Interrupt Acknowledge Cycle with 2PulselACK=O 

83 



Figure 55 shows the kind of interrupt acknowledge 
cycle that the USC expects when /PITACK goes low 
and the 2PulselACK bit (BCR1) is 1. Here, two 
consecutive low pulses on /PITACK constitute the 

. complete interrupt acknowledge cycle, and /OS and 
/RD should both stay high throughout the cycle. This 
mode is compatible with several microprocessors 
made by Intel Corp. and other companies. As in the 
preceding case, operation is similar whether the bus is 
multiplexed or non-multiplexed. The multiplexed bus 
must meet minimum times between the pulses on /AS 
and the pulses on /PITACK. These minima are similar 
to those between /AS and /OS or /RD in register read 
cycles. 

In "double pulse mode" the channel keeps an internal 
state bit that distinguishes the two /PITACK pulses in 
each pair. The channel freezes its internal Interrupt 

AD15-0 

/AS u 
/PIT ACK \ I 

IEO 

IEI 

/WAIT//RDY 
(as Walt) 

/WAIT//RDY 
(as Ack) 

/INT 

state in response to the first falling edge on /PITACK. 
If it is requesting an interrupt it forces its LEO output 
low regardless of the state of IEI, and starts resolving 

, its internal interrupt priorities, but the channel does not 
otherwise respond to the first cycle . 

In this mode the IEI pin must be valid for a specified 
setup time before /PITACK goes low for the second 
pulse. If IEI is high at this point and the channel is 
requesting an interrupt, it responds to the second 
/PITACK pulse by setting the IUS bit of its highest
priority requesting type of interrupt, driving a vector 
onto the AD7-0 pins; and driving /WAIT//RDY 
appropriately to signal when the vector is valid. If IEI 
is low at the leading edge of /PITACK, and/or if the 
channel is not requesting an interrupt, it doesn't 
respond to the cycle. 

--+a-
I 

u I u I 

l I I I 
I I 
I I 

I I I 

\J I 

· Figure 55. A /PIT ACK Interrupt Acknowledge Cycle with 2PulselACK=1 

84 



Interrupt Acknowledge vs. Read Cycles 
Interrupt Acknowledge cycles are similar to the cycles 
that occur when the host processor reads a USC 
register, which are discussed in Chapter 2. However, 
the user should note the following ways in which 
interrupt acknowledge cycles differ from read cycles: 

* On a multiplexed bus, /SIT ACK acts like an 
address line. When a USC samples /SITACK low 
at a rising edge on /AS, it ignores the address on 
the AD lines. 

* On a non-multiplexed bus, each leading edge of 
/RD or /OS captures the state of /SIT ACK. 

* With /OS signalling, the state of R//W doesn't 
matter for a cycle in which the USC samples 
/SITACK low. (In other cycles R//W differentiates 
Read cycles from Writes.) 

* When the /WAIT//RDY pin carries the Wait 
function, a USC channel asserts the pin during 
interrupt acknowledge cycles, but never does so 
during register Read or Write cycles. 

* When /WAIT//RDY carries the Acknowledge 
function, a channel asserts it later in Interrupt 
Acknowledge cycles than in Reads. However, the 
relationship between the falling edge of /WAIT 
//ROY and the validity of data on the AD lines is 
similar in both kinds of cycles. 

Interrupt Types 
Each USC channel includes six types of interrupts, 
arranged on the internal interrupt daisy chain in the 
following priority order: 

1. Receive Status (highest priority) 
2. Receive Data 
3. Transmit Status 
4. Transmit Data 
5. 1/0 Pin 
6. Miscellaneous (lowest priority) 

Each of these types has one each IE, IP, and IUS bit, 
as described in an earlier section of this chapter. 

Receive Status Interrupt Sources and IA Bits 

Any of six interrupt sources can set a channel's 
Receive Status IP bit. Software can read the status of 
each source in the LSByte of the Receive Command / 
Status Register (RCSR), which is shown in Figure 56. 
The following descriptions of the RCSR status bits are 
similar to those in the Detailed Status in the RCSR 
section of Chapter 4: 

Exited Hunt 

ldleRcved 

Break/Abort 

RxBound 

PE 

Rx Over 

The RS IP bit can be set when this 
bit (RCSR7) goes from 0 to 1 
because the receiver has detected a 
Sync or Flag sequence in a 
synchronous mode. 
The RS IP bit can be set when this 
bit (RCSR6) goes from 0 to 1 
because the receiver has seen 15 or 
16 consecutive one bits. In 
asynchronous modes with 16, 32, or 
64X clnc;king, the receiver sets 
RCSR6 after one bit time or less, so 
this source's IA bit shouldn't be set 
in such modes. 
The RS IP bit can be set when this 
bit (RCSR5) goes from O to 1 
because the Receiver has detected 
a Break condition in an asynch
ronous mode or an Abort condition 
in an HDLC/SDLC mode. 
If the IA bit for this source is 1, the 
interrupt logic sets the RS IP bit 
when software or the Receive OMA 
channel reads a character from the 
RxFIFO that's marked with 
RxBound status. Such marking 
reflects an address character in 
Nine-Bit mode, a word boundary in 
1553B mode, negation of /DCD 
during the character in external sync 
mode, the last character of a frame 
in HDLC/SDLC and 802.3 modes, or 
one of five block terminating char
acters in Transparent Bisync mode. 
If the IA bit for this source is 1, the 
interrupt logic sets the RS IP bit 
when software or the Receive OMA 
channel reads a character from the 
RxFIFO that failed parity checking. 
If the IA bit for this source is 1 , the 
interrupt logic sets the RS IP bit 
when software or the Receive OMA 
channel reads a character from the 
RxFIFO that's marked with Overrun 
status. A character so marked is 
the first one that arrived while the 
FIFO was full; the character before 
this one is lost, and an indeter
minate number after it may have 
been lost as well. 

RxResidue ShortF/ Exited Idle Break Rx CRCE PE Rx Rx 
CVType Hunt Rcved /Abort Bound /FE Over Avail 

15 14 13 12 11 10 7 6 5 4 3 0 

Figure 56. The Receive Command/Status Register (RCSR) 

85 



'RxFIFO flll leval' If last RCSR15·12 commane! 4·7 wes 5 Exited Idle Break/ Rx Word Parity RxOVar TCOR 
'Rx Int Req level' If last RCSR15·12 command 4-7 was 6 Hunt IA Rcved Abort Bound Status Error IA Sel 

"Rx OMA Req level' If last RC:SR15·12 command 4-7 was 7 IA IA IA IA 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Figure 57. The Receive Interrupt Control Register (RICR) 

As described in Chapter 4, once an Interrupt-Armed 
RCSR bit has been set, it must be "unlatched" by 
writing a 1 to that bit position in RCSR. For Exited 
Hunt, Abort (in HDLC mode), RxBound, PE, and 
RxOver, this action also clears the RCSR bit. The 
ldleRcved and Break/Abort (in async modes) bits in 
RCSR don't become O until software has unlatched the 
bit .aru:I the line condition has ended. 

Each of these six sources has a separate Interrupt 
Arm (IA) bit in the LSByte of the Receive Interrupt 
Control Register (RICA). Figure 57 shows the RICA. 
If an IA bit is 1, the interrupt logic sets the Receive 
Status IP bit as described above. If an IA bit is 0, the 
corresponding bit in RCSR has no effect on the IP bit 
and thus will not cause interrupts. The setting of the 
IA bits for the ExitedHunt, ldleRcved, and Break/Abort 
conditions has no effect on the bits in RCSR, while the 
IA bits for the RxBound, Parity Error, and Overrun 
conditions affect how the corresponding RCSR bits 
operate, as described in Chapter 4. 

Receive Data Interrupts 

This interrupt type has only one source, so there's no 
IA bit for it. The interrupt logic sets the RD IP bitwhen 
a character is received and the number of previously
received characters in the RxFIFO is equal to the 
number programmed a.s the "Receive Data Interrupt 
Request Level". That is, the IP bit is set for the 
character that makes the number of characters in the 
RxFIFO exceed the programmed value. 

The RD IP bit is also set if the number of characters is 
less than the programmed threshold level, and the 
receiver places a character marked with RxBound 
status in the RxFIFO. 

If received data is handled by either software polling or 
an external Receive DMA channel, disable the 
Receive Data interrupt by leaving its IE bit o. (A later 
section discusses IE bits.) 

To program the Receive Data Interrupt Request Level, 
first write the "Select RICRHi=/INT Level" command to 
the RCmd field of the Receive Command/Status 
Register (RCSR15-12). Then write the number of 
received characters at which the channel should start 
requesting a Receive Data interrupt, minus one, to the 
MSByte of the Receive Interrupt Control Register 
(RICA). For example, if the channel should request a 
Receive Data interrupt when its 32-byte RxFIFO 

86 

becomes 3/4 full, write hex 60 to RCSR15-8, then 
write decimal 23(hex17) to RICR15-8. 

Figure 58 shows a sample service routine for Receive 
Data interrupts. While it's not particularly fancy or 
efficient, it does illustrate several important points: 

1. It reads the FIFO fill level to determine how many 
characters to read. The fact, that reception of an 
RxBound character (i.e., the last character of a 
frame, message, or ACV/1553B word) can set the 
Receive Data IP bit, means that a Receive Data 
interrupt service routine can't blindly read the 
number of characters implied by the Interrupt 
Request Level. 

2. It explicitly clears the Receive Data IP and IUS 
bits by writing to the Daisy Chain Control Register 
(DCCR) as described in a later section. Neither bit 
is affected by reading data from the RxFIFO. 

3. It re-reads the FIFO fill level after clearing the IP 
bit, and processes any characters that have been 
reqeived while it was processing earlier charac
ters. This procedure guards against losing an 
interrupt associated with a late-arriving End of 
Frame (RxBound) character. 

4. It reads the status from RCSR "before" reading 
each character, and reads RCSR an extra time 
after reading out an End of Frame (RxBound) 
character, to clear the latching of the status that 
occurs when an RxBound character h~ read out. 

(This is not the only way to handle RxBound 
checking. Another way Is to enable a Receive 
Status interrupt when the Receive Data interrupt 
service routine reads a RxBound character out of 
the RxFIFO, and not check RxBound status in this 
routine at all. Software that uses this method 
must ensure that an Receive Status interrupt can 
interrupt the Receive Data ISR in a "nested" 
fashion.) 

Transmit Status Interrupt Sources and IA Bits 

The interrupt logic can set the Transmit Status IP bit in 
response to any of six interrupt sources. Software can 
read the status of each source ·in the LSByte of the 
Transmit Command/Status Register (TCSR), which is 
shown in Figure 59. The following descriptions of the 
TCSR bits are similar to those in the Detailed Status in 
the TCSR section of Chapter 4: 



Start: Interrupt with 
Vector= "Rx Data" 

IF NECESSARY, 
write 0101 to 

RCmd (RCSR15-12) 

Read FIFO count 
CT:=RICR15-8 

Read Status 
from RCSR. 

Handle bits other than 
RxBound as required. 

Yes 
Clear the RD IP bit 

(write 90rn 
to DCCR7-0} 

Read & store last 
>-_Y_e_s __ , byte/word from RDR. 

Decrement CT by 

Read & store byte 
or word from RDR. 
Decrement CT by 
1 or 2 accordingly 

1 or 2 accordingly 

Read RCSR15-8 
or RCSR15-0, to 

clear latched status 

Perform End of 
Frame processing 
(switch buffers etc.) 

No 

Read FIFO count 
CT:=RICR15-8 

Clear the RD IUS bit 
(write 901e 

to DCCR15-8} 

Return from 
Interrupt 

Figure 58. A Sample Service Routine for Receive Data Interrupts 

87 



TCmd Rsrvd Pre Idle Abort 
EOF/ 

CRC All Tx Tx Txldle EOM 
Sent Sent Sent Sent Sent Sent Under Empty 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Figure 59. The Transmit Command/Status Register (TCSR) 

"TxFIFO Status" If last TCSR15·12 command 4.7 was s Pre Idle Abort EOF/ CRC Tx 
"Tx/INT Level" If last TCSR15·12 command 4.7 was 6 

Walt2 TC1R 
Sent IA Sent Sent EOM Sent Under 

"!TxREQ Level" If last TCSR15·12 command 4.7 was 7 IA IA Sent IA IA 
Send 

IA 
Sel 

15 14 13 12 11 10 9 8 7 6 5 4 3 0 

Figure 60. The Transmit Interrupt Control Register (TICR) 

Present The interrupt logic can set the TS IP 
bit when this bit (TCSR7) goes from 
a 0 to a 1, because the transmitter 
has finished sending the "Preamble" 
selected in the Channel Control 
Register (CCR11·8) in a 
synchronous mode. 

ldleSent The interrupt logic can set the TS IP 
bit when this bit (TCSR6} goes from 
a 0 to a 1, because the transmitter 
has sent the idle line state selected 
by the Txldle field (TCSR10-8). If 
Txldle and TxMode specify the 
condition as Flags or Syncs, this bit 
can be set for each one sent. 
Otherwise, for bit-oriented Idle 
conditions, it's set only after the first 
bit is sent. 

AbortSent The interrupt logic can set the TS IP 
bit in HDLC/SDLC mode, when this 
bit (TCSR5) goes from O to 1 
because the transmitter has sent an 
Abort character. 

EOF/EOM Sent The interrupt logic can set the TS IP 
bit in a synchronous mode, when 
this bit (TCSR4) goes from Oto 1 
because the transmitter has sent 
the closing Flag or Sync character 
at the end of a message or frame. 

CRCSent The interrupt logic can set the TS IP 
bit in a sync mode, when this bit 
(TCSR3} goes from 0 to 1 because 
the transmitter has sent the CRC 
sequence just before the end of a 
message or frame. 

TxUnder The interrupt logic can set the TS IP 
bit when this bit (TCSR1) goes from 
0 to 1, because the transmitter 
needed a character from the 
TxFIFO but it was empty. 

All six of these sources operate differently from the 
general model described earlier, in that the interrupt 
logic sets the IP bit only when a TCSR bit goes from o 
to 1 and its associated IA bit is 1. Once one of these 

88 

TCSR bits is 1 , it must be cleared to O by writing a 1 to 
that bit position in TCSR. 

Each of these six sources has a separate Interrupt 
Arm (IA) bit in the LSByte of the Transmit Interrupt 
Control Register (TICR). Figure 60 shows the TICR. 
If an IA bit is 1, the interrupt logic sets the Transmit 
Status IP bit when the corresponding bit in the 
Transmit Command/Status Register (TCSR) goes 
from 0 to 1. If an IA bit is 0, the corresponding TCSR 
bit has no effect on the IP bit and thus will not cause 
interrupts. The setting of the IA bits in TICR has no 
direct effect on the TCSR bits. 

Transmit Data Interrupts 

This interrupt type has only one source, so there's no 
need for an IA bit for it. The interrupt logic sets the 
Transmit Data IP bit whenever the number of empty 
character positions in the TxFIFO is greater than 
the number programmed as the "Transmit Data 
Interrupt Request Level". If transmitted data is to be 
handled by an external Transmit DMA channel, disable 
this interrupt by leaving its IE bit 0. (A later section 
discusses IE bits.) 

To program the Transmit Data Interrupt Request 
Level, first write the "Select TICRHi=/INT Level" 
command (value 0110) to the TCmd field of the 
Transmit Command I Status Register (TCSR15-12). 
Then write the number of empty character positions at 
which the channel should start requesting a Transmit 
Data interrupt, minus one, to the MSByte of the 
Transmit Interrupt Control Register (TICR). For 
example, if the channel should request a Transmit 
Data interrupt when its 32-byte TxFIFO has only four 
characters left in it, write hex 60 to TCSR15-8, then 
write decimal 27 (hex 18) to RICR15-8. 

Note that a Purge Tx FIFO (or Purge Rx and Tx FIFO) 
command will typically make a channel immediately 
set its Transmit Data IP bit. This will, in turn, make the 
channel start requesting an interrupt on its /INT pin if: 
* it hadn't been doing so, 
*the channel's IEI pin is high, 
*its TD IE and MIE bits are 1, and 
*its TD IUS and all higher-priority IUS bits are o. 



RxCDn RxCUp TxCDn TxCUp RxRDn RxRUp TxRDn TxRUp DCDDn DCDUp CTSDn CTSUp RCC DPLL BRG1 BRGO 
IA IA IA IA IA IA IA IA IA IA IA IA Under DSync IA IA 

IA IA 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Figure 61. The Status Interrupt Control Register (SICR) 

RCC DPLL 
RxCLJU /RxC TxCLJU /TxC RxRLJU /RxR TxRLJU /TxR DCDLJ /DCD CTSLJU /CTS Under DSync BRG1 BRGO 

LJU LJU LJU LJU 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ' 0 

Figure 62. The Miscellaneous Interrupt Status Register (MISR) 

As with all USC interrupts, a Transmit Data interrupt 
service routine must explicitly clear the Transmit Data 
IP and IUS bits by writing to the Daisy Chain Control 
Register (DCCR) as described later; the bits aren't 
cleared by simply writing data into the TxFIFO. 

1/0 Pin Interrupt Sources and IA Bits 

The interrupt logic can set the 1/0 Pin IP bit in 
response to rising and/or falling edges on any of six 
pins for each channel, namely /RxC, /TxC, /RxREQ, 
/TxREQ, /DCD, and /CTS. The following description is 
similar to that in the Edge Detection and Interrupts 
section of Chapter 3. 

Software can program the channel to detect rising 
and/or falling edges on the /CTS, /DCD, /TxC, /RxC, 
/TxREQ, and /RxREQ pins, and to interrupt when such 
events occur. Figure 61 shows that the Status 
Interrupt Control Register (SICA) includes separate 
Interrupt Arm (IA) bits for rising and falling edges on 
each of these pins. A 1 in one of these bits makes the 
channel detect that kind of edge, while a O makes it 
ignore such edges. This edge detection and interrupt 
mechanism operates without regard for whether the 
various pins are programmed as inputs or outputs in 
the 1/0 Control Register (IOCR). 

When a channel detects an edge that's enabled in the 
SICA, it records the event in an internal latch that's not 
directly accessible in the USC's register map. Instead, 
as shown in Figure 62, the Miscellaneous Interrupt 
Status Register (MISR) includes two bits for each of 
these six pins, one called a "Latched/Unlatch" or LIU 
bit, and the other being a "data bit" that has the same 
name as the pin itself. 

A hardware or software Reset sequence clears all the 
LIU bits to zero. While the LIU bit for a pin is 0, the 
associated data bit reports and tracks the state of the 
pin in a "transparent" fashion, with a 1 indicating a low 
and a O indicating a high. 

Whenever a pin's LIU bit is 0 and its internal edge-

While an LIU bit is 1, the state of the associated data 
bit is frozen (latched). These two bits remain in this 
state, regardless of further transitions on the pin, until 
software writes a 1 to the LIU bit.. This clears the LIU 
bit to 0 and "opens" the data bit to once again report 
and track the state of the pin, at least for an "instant". 
If one or more enabled transitions occurred while the 
LIU bit was set, then LIU is set again right after 
software writes the 1 to it. 

Writing a 0 to an LIU bit has no effect; it doesn't matter 
what value software writes in the "data" bits. 

Miscellaneous Interrupt Sources and IA Bits 

The interrupt logic can set the Miscellaneous IP bit in 
response to any of four interrupt sources. Software 
can read the status of these sources in the LSBY1e of 
the Miscellaneous Interrupt Status Register (MISR), 
which is shown in Figure 62. The following descrip
tions repeat some information that was presented in 
Chapters 3 and 4: 
RCCUnder 

DPLLDSync 

BRG1 

If the RCCUnder IA bit is 1, a 
channel sets this bit (MISR3) and 
the Misc IP bit if the receiver has 
decremented the Receive 
Character Counter (RCC) to zero 
and then it receives another 
character (in the same frame I 
message). 
If the DPLLDSync IA bit is 1, a 
channel sets this bit (MISR2) and 
the Misc IP bit if software set up 
the Digital Phase Locked Loop 
circuit for Biphase encoding and 
the DPLL detects two consecutive 
missing clocks, indicating a loss of 
synchronization. 
If the BRG1 IA bit is 1, a channel 
sets this bit (MISR1) and the Misc 
IP bit when Baud Rate Generator 
1 counts down to zero. 

detecting latch is set, the channel sets the LIU bit to 1 , BRGO If the BRGO IA bit is 1, a channel 
sets this bit (MISRO) and the Misc 
IP bit when Baud Rate Generator 
o counts down to zero. 

clears the detection latch, and sets the IOP IP bit. 
IOP IP can be read and cleared (and if necessary set) 
in the Daisy Chain Control Register (DCCR1). 

89 



Once any of these bits is 1, software must write a 1 to 
that bit position to "unlatch" it. Writing a 1 to any of 
MISR3-0 clears the "read-side" bit unless the setting 
event recurred while the bit was latched, in which case 
the bit is set again immediately. 

Each of these four sources has a separate Interrupt 
Arm (IA) bit in the LSByte of the Status Interrupt 
Control Register (SICR). Figure 61 shows the SICR. 
If an IA bit is 1, the interrupt logic sets the corres
ponding bit in MISR, and the Miscellaneous IP bit, 
when the indicated condition occurs. If an IA bit is o, 
the logic won't set the corresponding MISR bit and 
thus the associated condition can't cause interrupts. 
Clearing an IA bit does not clear the corresponding bit 
in MISR. 

Interrupt Pending and Under Service Bits 
Software can read, set, and clear the Interrupt 
Pending (IP) and Interrupt Under Service (IUS) bits, 
for all six interrupt types in a use channel, via the 
Daisy-Chain Control Register (DCCR). Figure 63 
shows the DCCR. The MSByte deals only with the 
IUS bits, while the LSByte deals with the IP bits but 
can be used to clear the IP and IUS bits in one step. 

Software can read the six IUS bits from DCCR13-8 
and the six IP bits from DCCR5-0. The two MSBits of 
each byte always read as 00. When software writes 
the DCCR, the two MSBits of each byte can represent 
a command that is applied to the type(s) selected by 
ones written in the six LSBits of that byte. DCCR15-
14 are an IUS Op field that the channel interprets as 
follows: 
~ Operation 

Ox No operation 
10 Clear the IUS bit(s) of the 

type(s) selected in DCCR13-8 
11 Set the IUS bit(s) of the 

type(s) selected in DCCR13-8 

DCCR7-6 are an IP Op field that the channel interprets 
as follows: 

.n:__Qp Operation 
00 No operation 
01 Clear both the IP and IUS 

bit(s) of the type(s) selected 
in DCCR5-0 

10 Clear the IP bit(s) of the 
type(s) selected in DCCR5-0 

11 Set the IP bit(s) of the 
type(s) selected in DCCR5-0 

If software writes both bytes of the DCCR simul
taneously on a 16-bit bus, the IUS command is "set", 
the IP command is "clear both", and a particular type 

90 

is selected by ones in both the MSByte and LSByte, 
the channel clears the IUS bit for that type. On the 
other hand, if the IUS command says "set" for a type 
and the LSbyte says "clear both" but that type's bit in 
DDCR5-0 is 0, the channel sets that type's IUS bit. 

In addition, one of the encoded commands that can be 
written to the Channel Command/Address Register 
(CCAR) allows for a general exit from an interrupt 
service routine, regardless of which type initiated the 
routine. If software writes the Reset Highest IUS 
command (00010) to a channel's RTCmd field 
(CCAR15-11), it clears the highest-priority IUS bit 
that's set in the channel. Unfortunately, the command 
doesn't also clear the corresponding IP bit, so that an 
interrupt service routine has to do this explicitly for the 
particular type that it's servicing. 

Interrupt Enable Bits 
Software can read, set, and clear the Interrupt 
Enable (IE) bits for all six interrupt types in a USC 
channel, in the LSByte of its Interrupt Control Register 
(ICR). Figure 64 shows the ICR. Software can read 
all six IE bits from ICR5-0; ICR7-6 always read as 00. 
When software writes the LSByte of the ICR, the IE 
Op field (ICR7-6) comprises a command that the 
channel applies to any and all IE bits selected by ones 
written to ICR5-0. The channel interprets IE Op as 
follows: 

.IE_Qp, Operation 
Ox No operation 
10 Clear the IE bit(s) of the 

type(s) selected in ICR5-0 
11 Set the IE bit(s) of the 

type(s) selected in ICR5-0 

Channel Interrupt Options 
Figure 64 shows that the MSByte of the Interrupt 
Control Register (ICR) contains control bits that apply 
to all interrupts from a USC channel. These bits are 
fully under software control and can be read or written 
at any time . 

The Master Interrupt Enable (MIE; ICR15) must be 
set to 1 to allow the channel to request an interrupt on 
its /INT pin. 

Whenever the Disable Lower Chain bit (DLC; ICR14) 
is 1, the channel forces its IEO output low, so that 
devices further down the daisy chain can't request 
interrupts nor respond to interrupt acknowledge 
cycles. 



IUSCmd RS RD TS TD IOP Misc IPCmd RS RD TS TD IOP Misc 
(WO) IUS IUS IUS IUS IUS IUS (WO) IP IP IP IP IP IP 

15 14 13 12 11 10 9 8 7 6 5 4 3 

Figure 63. The Daisy Chain Control Register (DCCR) 

MIE DLC NV VIS Rsrvd IECmd RS RD TS TD IOP Misc 
(WO) IE IE IE IE IE IE 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Figure 64. The Interrupt Control Register (ICR) 

If the No Vector bit (NV; ICR 13) is 1, the channel 
neither provides a vector nor drives the /WAIT//RDY 
pin during an interrupt acknowledge cycle in which the 
highest-priority requesting type is in the channel. 
However, in such a case the channel still sets the IUS 
bit of the highest-priority requesting type. 

The Vector Includes Status field {VIS; ICR12-9) 
controls whether the vector, that the channel returns 
during an interrupt acknowledge cycle in which the 
highest-priority requesting type is in the channel, 
identifies the type or not. Such vector modification 
can be enabled for all types in the channel, or only for 
those above a selected priority level: 

YIS Which types appear in vectors 
Oxxx No types 
lOOx All types 
1010 IOP and above (not Misc) 
1011 Transmit Data and above 
1100 Transmit Status and above 
1101 Receive Data & Status 
1110 Receive Status only 
1111 No types 

If the contents of VIS allow the highest-priority type, 
that's requesting at the time of an Interrupt 
Acknowledge cycle, to modify the interrupt vector, 
then bits 4-1 of the returned vector identify that type as 
described in the next section. If not, the channel 
returns the 8-bit vector exactly as the host software 
programmed it. 

Interrupt vector 7-4 (RO) TypeCode (RO) 
IVO 

(RO) 

Interrupt Vectors 
Software can read and write a channel's interrupt 
vector information in the Interrupt Vector Register 
(IVR). This register is also the basis of the vector that 
the channel returns during an interrupt acknowledge 
cycle in which the highest priority requesting type is in 
the channel. 

Figure 65 shows the IVR. The basic vector can be 
written and read in its LSByte; software can read a 
modified version of the vector in its MSByte. (Writing 
the MSByte has no effect.) Bits 15-12 and 8 are the 
image of those in the corresponding bits of the 
LSByte, while the TypeCode field (IVR11-9) gives the 
identity of the highest priority interrupt type that has its 
IP bit set (the state of its IUS bit doesn't matter). 
Type Code 

000 
001 
010 
011 

Meaning 
No interrupt pending 
Miscellaneous 
I/O pin 
Transmit Data 

100 Transmit Status 
101 Receive Data 
110 Receive Status 
111 (will not be read) 

The state of the VIS field {ICR12-9) has no effect on 
reading the IVR. VIS simply controls how the channel 
decides whether to return IVR15-8 or IVR?-0 as the 
interrupt vector when it responds to an interrupt 
acknowledge cycle. 

Interrupt Vector (RW) 

15 14 13 12 11 10 9 8 7 6 5 4 2 

Figure 65. The Interrupt Vector Register (IVR) 

91 



92 



7. Software Summary 

Just about everything important about the USC has 
been said in previous chapters. This one simply pulls 
together some loose ends of interest to software 
types, as well as providing a unified reference to all 
the register fields. 

About Resetting 
The USC is piaced in an initial inactive state whenever 
external hardware drives the /RESET pin low. In this 
state, it stores the next data written to it in the Bus 
Configuration Register (BCR), whichever register 
address within it software uses for the write operation. 
Chapter 2 describes how the address used for the 
BCR write is actually important, in the sense that the 
address line connected to the NIB pin (the one used 
for channel selection in normal operation) determines 
whether the USC drives and receives the /WAIT//RDY 
pin as a "wait" or "acknowledge" handshake. 

Aside from requiring the BCR write, software can reset 
a channel just as thoroughly and completely as a 
hardware reset does. Resetting a Channel in Chapter 
4 describes how to do this, by first writing a 1 to the 
RTReset · bit in the Channel Command I Address 
Register (CCAR10), and then writing zeroes to the 
whole CCAR. 

After either a hardware or a software reset, all 
register bits in the USC are zero except for the 
following: 

1. The following bits reflect the state of pins. The 
USC treats these as Inputs until and unless 
software programs them as outputs. 

MISR14 /RxC 
MISR12 /TxC 
MISR10 /RxREQ 
MISRB /TxREQ 
MISR6 /DCD 
MISR4 /CTS 
CCSR1 /TxACK 
CCSRO /RxACK 

2. The following bits are 1 because the TxFIFO is 
empty: 

TCSRO TxEmpty 
TICR13 (indicates 32 empty entries) 

93 

Programming Order 
The USC and other USC family members aren't as 
particular about the order in which software programs 
their register fields as are the members of Zilog's sec 
family. Still, initializing registers in the wrong order 
can thoroughly confuse the USC's internal logic and 
make it do strange things. Always initialize the USC in 
the following order: 

1. Set the pin configurations in the !OCR. While it's 
OK to change the modes and even the direction of 
a signal dynamically, it should be fairly obvious 
that if you're going to use pins in certain ways, 
they ought to be pointing in the right direction 
before telling internal logic to use them. 

2. Select the clocking scheme in the CMCR and 
HCR. (It's OK to enable a BRG at this point if it's 
only used for clocking, but if it's used for interrupts 
it's probably best to wait until later.) 

3. Set up most or all of the other mode and control 
bits in the Transmitter, Receiver, DMA channels, 
etc., but don't enable anything to run or operate 
until all of the basic modes and controls are in 
place. This procedure avoids messy interactions 
when one internal unit is trying to signal another 
before the latter is ready to listen. 

4. Set up the initial Interrupt Arm bits and Interrupt 
Enable bits; it might be a good superstition to clear 
all the IP and IUS bits after doing this. 

5. Enable whichever units need to run and operate 
initially. Some units might not want to be enabled 
until later, like enabling the Transmitter and 
Receiver after a call is established. 

6. Finally, set the Master Interrupt Enable (MIE) bit. 
In general, you want to do this last so that 
interrupt service routines can assume that 
everything's set up in its starting configuration. 



Using OMA to Initialize a Channel 
Instead of software initializing a channel by writing the 
various registers itself, it can initialize a channel's 
Transmit OMA controller first and then use the OMA 
controller to initialize the serial channel. To do this: 
1. Initialize the transmit OMA controller, including 

giving it the address of a sequence of bytes or 16-
bit words that will initialize the channel. If there's 
only an 8-bit bus, structure this string as a series 
of byte pairs. The first byte of each pair goes into 
the LSByte of the Channel Command I Address 
Register (CCAR) to identify the destination 
(register address) of the second byte of the pair. 
If there's a 16-bit bus, structure the sequence as 
pairs of 16-bit words. The first word of each pair 
goes into CCAR to identify the destination of the 
second word of the pair. 

2. Arrange the string/sequence to initialize the 
channel registers in the order described in the 
previous section. Make the ChanLoad bit (bit 7) 
of the first byte or word of each pair be 1 , except 
make it o in the last entry of the sequence. If the 
RegAddr field in that last entry is non-zero, that is, 
if it doesn't point to the CCAR, the USC will 
request that the OMA controller fetch the second 
byte or word of the last pair and write it into the 
indicated register before finishing the initializing 
operation. If the RegAddr is zero, the USC will 
release /TxREQ and stop without accessing a 
following byte or word. 

3. Program the OMA controller with the length of the 
initializing string. This should include at least the 
first byte or word of the last entry, and optionally 
the second word or byte, as described above. 

4. Start the OMA .controller so that it will respond to 
the channel's /TxREQ output. 

5. Write a "Trigger Channel Load OMA" command 
(hex 20) to the MSByte of the CCAR. 

6. Assuming the processor is set up to grant use of 
the bus to the OMA controller, the operation 
should complete very quickly. This should be 
verified by checking the OMA controller status. 

Register Reference 
The following pages include all of the fields in all of the 
registers in one of the USC's channels, plus the Bus 
Configuration Register which is common to both 
channels. They are arranged in alphabetical order by 
register name, like Table 2 in Chapter 2. (If you want 
to look up a register by its address/register number, 
look in Table 1 in Chapter 2 and then come back 
here ... ) 

Register Addresses 

These are located to the right of the name of each 
register on the following pages, and are shown as 

94 

d b aaaaa, where: 
d represents the state of 0//C (1 =high=data) 
b is 1 for a byte access on a 16-bit bus (it's just 

shown as "b" in all cases, like a placeholder); 
aaaaa is the actual register address, from A05-1, 

A013-9, or CCAR5-1. 

Conditions/Context 

Entries in this column indicate the conditions under 
which descriptions to their right apply or can validly be 
used. If an entry is blank, the description to the right 
always applies. 

Description 

Often entries in this column consist of one or more 
subentries of the form "value=description". If some 
possible values aren't shown, it may mean they are 
reserved (and should not be written) or that they will 
never be read. Or, particularly for single Read-Write 
bits, if the other case is obvious, it's left out. For 
example, for an entry like "1=dog is dead" we didn't 
feel obliged to add "O=dog is alive". 

The following abbreviation is used in some entries in 
this column and "Conditions/Context": 
.- this "assignment operator" indicates that 

the value on its right is written to the field or 
bit on its left. 

RW Status 

This column includes the following codes for each 
register field: 
RW The field is fully under the control of 

software, and can be read and written. 
RO The field is read only; writing to it has no 

effect. 
ROC The bit is read-only; the USC clears it 

automatically after software reads it as 1 . 
WO The field is write-only; reading it will either 

return zeroes or an unrelated item that's 
described next in the list. 

woe The field is write only. After using its value 
the USC will clear it to zero, so that it 
points back to the indirect address register. 

R,W1 C The bit is set by the USC hardware, writing 
a 1 to it clears it. 

R,W1 U The bit is controlled by the USC hardware, 
writing a 1 to it "unlatches" it. 



Bus Configuration Register (BCR) No Address (First Write after /RESET) 

Sep Ad Reserved (must be O) 

15 14 13 12 11 10 8 

Bit(s) Field/Bit Conditions Description 
Name /Context 

BCR15 SepAd 8-bit bus 1 if AD13-8 carry register addresses 
16-bit bus Must be O 

BCR2 16Bit 0=8 bit data on AD7-0; 1 =16 bit data on A015] 
BCR1 2PuiseiACK /PiTACK O=one pulse on /PIT ACK per interrupt 

used acknowleclg_e; 1 =two _Jl_Ulses J!ntel com_Jl_atibl~ 
BCRO SRightA MuxedAD 1=USe AD6-0 as B/W, RegAddr, U/L 

O=use AD7-1 

Channel Command/Address Register (CCAR) 

RTCmd 

15 14 13 12 11 

Bit(s) Field/Bit Conditions 
Name /Context 

CCAR15-12 RTCmd 

CCAR10 RTReset 

CCAR9-8 RTMode 

CCAR7 Chan Load Channel 
Load OMA 

CCAR6 B//W 16 bit bus 

CCAR5-1 RegAddr 

Ce ARO U//L 

RT 
Reset 

10 

Description 

RTMode 

OOOOO=no operation 
00001 =ReseNed 

Chan 
Load 

00010=Reset Highest IUS 

B//W 

6 

00100= Trigger Channel Load DMA 
00101=Trigger Rx DMA 
00110= Trigger Tx DMA 
00111 =Trigger Rx and Tx OMA 
01001=Purge Rx FIFO 
01010=Purge Tx FIFO 
01011=Purge Rx and Tx FIFO 
01101 =Load RCC 
0111 O=Load TCC 
01111 =Load RCC and TCC 
10001=Load TCO 
1001 O=Load TC1 
10011 =Load TCO and TC1 
101 OO=Select Serial Data LSBit First 
10101 =Select Serial Data MS Bit First 
1011 O=Select 015-8 First 
10111 =Select D7-0 First 
11xxx=ReseNed 
1 =put channel in software Reset state 
O=release it from Reset state 

5 

OO=normal mode: Tx and Rx are independent 
01 =echo RxD to TxD 
1 O=Local Loop TxD to RxD 
11 =internal Local Lo~ 
1 =continue Channel Load operation; 
O=terminate it 
0=16-bit access to register selected by 
RegAddr 
1 =access MS or LS ~ of r~ster 
register address for next access to CCAR (see 
Table 1l 
1 =access MSByte of reg selected by RegAddr 
O=access LS~e or whole 16-bit r~ster 

95 

16811 2Pulse SRlght 
IACK A 

4 3 2 

RW Ref Chapter: Section 
Status 
WO 2: Bus Configuration 

Register (pp.11-12) 
WO 
WO 

WO 

Register Address O b 00000 

RegAddr U//L 

3 2 

RW Ref Chapter: Section 
Status 
WO 4: Commands (pp.63-66) 

RW 4: Resetting a USC Channel 
i(p.6~ 

RW 3: The RxD and TxD Pins 
(pp.27-28) 

RW 7: Using OMA to Initialize a 
ChannelJ.2.:9'!)_ 

woe 2: Register Addressing 
(pp.12-15) 

woe 

woe 



Channel Command/Status Register (CCSR) 
RCCF RCCF Clear OPLL OPLL OPLL 
Ovflo Avail RCCF Sync 2Mlss 1 Miss OPLLEdge On Loop Resrvd 

Loop Send 

15 14 13 12 11 10 6 

Bit(s) Field/Bit Conditions Description 
Name /Context 

CCSR15 RCCFOvflo RCC 1=RCC FIFO overflow (4+1 frames) 
Enabled 

CCSR14 RCCFAvail 1=RCC FIFO not em.B!Y_ 
CCSR13 Clear RCCF 1 =purge RCC FIFO, clear RCCF Ovflo and 

RCCF Avail to 0 
CCSR12 DPLL~c 1=DPLLin~c 

CCSR11 DPLL2Miss BiQhase 1 =DPLL has seen 2 consecutive missirig_ clocks 
CCSR10 DPLL1Miss Biphase, 1 =DPLL has seen a missing clock 

CVOK=O 
CCSR9-8 DPLL Edge OO=DPLL re~cs on rising_ and falling edges 

NRZ 01 =DPLL sees rising edges only; 
modes 1 O=DPLL sees falling edges only; 

on_lyj 11 =DPLL free-runs like CTR1 ,0 
CCSR7 On Loop Slaved 1 =Transmit is or has been active (cleared only 

Monosync by leaving Slave Monosync mode) 
H/SDLC 1 =USC has inserted itself in the loop 

Lo<m] 
CCSR6 Loop Send H/SDLC 1 =Transmit actively sending; 

Lo<mJ 0= Transmit r~eatiQ.9_ Receive 
CCSR4-2 TxResidue H/SDLC, OOO=last character of Transmit frame contains 

H/SDLC 8 bits; 001-111 = last character contains 1-7 
Loop I bits 

CCSR1 (rxACK TxAMode 1 =frxACK pin Is low 
(HCR7-6) 

=00 
CCSRO /RxACK RxAMode 1 =/RxACK pin is low 

(HCR3-2) 
=00 

96 

Register Address o b 0001 o 

TxResldue fTxACK /RxACK 

4 2 

RW Ref Chapter: Section 
Status 

RO 4: OMA Support Features: 
The RCC FIFO (p.60) 

RO 
WO 

R,W1C 3: More About the DPLL 
R,W1C (pp.26-27) 
R,W1C 

RW 

RO 4: Slaved Monosync Mode 
(p.45) 
4: HDLC/SDLC Loop Mode 
(pp.49-50) 

RO 4: HDLC/SDLC Loop Mode 
I (pp.49-5QL 

RW 4: HDLC/SDLC Mode: 
Frame Length Residuals 
f(pp.48-4~ 

RO 3: The (rxACK and /RxACK 
Pins (p.32) 



Channel Control Register (CCR) 

TxCtrlBlk 

15 14 

Bit(s) 

CCR15-14 

GGR13 

CCR11-8 

CCR11-10 

CCR9-8 

CCR7-6 

CCR5 

RSNdt--~~-A_sy~n_cT:Tx~S_ha_v_e_L~--t 
Sync:TxPreL Sync:TxPrePat 

RxStatBlk 

13 12 11 10 9 8 7 6 5 

Field/Bit Conditions Description 
Name /Context 
TxCtrlBlk OO=don't use Transmit Control Blocks; 

01 =use 16-bit TCB's; 1 O=use 32-bit TCB's 

Wait4TxTrig Sync 1 =held Transmit DMA Request between 
frames/ messages until software issues 
"Tr_[gg_er Tx OMA" command 

TxShaveL Async, shave the number of Stop bits 
CMR15=1 specified by TxSubMode CMR14 

~15 minus the value in this fielQ}f16 bit times 
TxPreL Syncw/ OO=send 8-bit Preamble; 01 =16-bit; 

Preamble 10=32-bit; 11 =64-bit 
TxPrePat Syncw/ OO=all-zero Preamble; 01 =all ones; 

Preamble 10=101010 ... ; 11=010101 ... 
RxStatBlk OO=don't use Receive Status Blocks; 

Ext Sync, 01 =use 16-bit RSB's; 
T. Bisync, 1 O=USe 32-bit RS B's 

H/SOLC, 
802.3, 

ACV 
_(1553Bl 

Wait4RxTrig Sync 1 =hold Receive OMA Request between frames/ 
messages until software issues "Trigger Rx 
OMA" command 

97 

Register Address o b 00011 

ReseNed (O) 

4 3 2 0 

RW Ref Chapter: Section 
Status 

AW 4: OMA Support Features: 
Transmit Control Blocks 
I (pp.60-61.l 

RW 4; Synchronizing Framesi 
Messages with Software 
Re~onse JQ, 7Ql 

RW 4: Asynchronous Mode 
(pp.38-39) 

RW 4: Between Frames, 
Messages, or Characters 

AW (pp.68-70) 

AW 4: OMA Support Features: 
Receive Status Blocks 
(pp.61-63) 

AW 4: Synchronizing Frames/ 
Messages with Software 
Re~onse JQ, 7Ql 



Channel Mode Register (CMR) Register Address 0 b 00001 

I TxSubMode I TxMode RxSubMode I RxMode I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Because the content of the SubMode fields depends on the Mode fields, the following descriptions are grouped by 
mode. TxSubMode and RxSubMod.e bits that are not shown for a particular Mode value are Reserved in that mode 
and should be programmed with zeroes. 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

CMR11-8 TxMode OOOO=A~nchronous RW 4: Asynchronous Mode 
CMR15-14 TxSubMode TxMode=O OO=send one stop bit; 01 =two stop bits; RW (pp.38-39) 

10=1 shaved stop bit (per CCR11-8}; 
11 =2 shaved stCJ]J_ bits 

CMR13-12 00=16 TxCLKs(fx bit; 01 =32 TxCLKs(fx bit; 
1 0=64 TxCLKs(fx bit 

CMR3-0 RxMode OOOO=A~nchronous RW 
CMR5-4 RxSubMode RxMode=O 00=16 RxCLKs/Rx bit; 01 =32 RxCLKs/Rx bit; RW 

10=64 RxCLKs/Rx bit 
CMR11-8 TxMode 0001 =Reserved RW 
CMR3-0 RxMode 0001 =External Sync 4: External Sync Mode 

liJJ . .4~ 
CMR11-8 TxMode 0010=2=lsochronous RW 4: Isochronous Mode (p.39) 
CMR14 TxSubMode TxMode=2 O=send one stqg_ bit; 1 =two stQQ_ bits RW 
CMR3-0 RxMode 0010=2=1sochronous RW 
CMR11-8 TxMode 0011 =3=A~nc w/Code Violations J.1553~ RW 4: Async w/Code Violations 
CMR15-14 TxSubMode TxMode=3 OO=send one stop bit; 01 =two stop bits; RW Mode (pp.40-42} 

1 O=no stCJ]J_ bits 
CMR13 0= Tx length<= 8 bits per Txlength (TMR4-2}; 

1 = Tx length is B more than indic. ~ Txlength 
CMR12 O=send Data words; 

1 =send Command/Status words 
CMR3-0 RxMode 0011 =3=A~nc w/Code Violations J:1553~ RW 
CMR4 RxSubMode RxMode=3 O=Rx length <= 8 bits per Rxlength (RMR4-2}; RW 

1 =Rx length is 8 more than indic. ~ Rxlength 
CMR11-8 TxMode 0100=4=Mono~nc RW 4: Monosync and Bisync 
CMR15 TxSubMode TxMode=4 1 =send CRC on Tx Underrun RW Modes (pp.42-43) 
CMR13 1 =send Preamble before CJ]J_eniQ9_ ~c 
CMR12 O=send 8-bit Syncs; 

1=send ~cs_2_er Txlength 
CMR3-0 RxMode 0100=4=MonO!ly!'IC RW 
CMR5 RxSubMode RxMode=4 1 =strip received Syncs; RW 

O=include them in RxFIFO and CRC calculation 
CMR4 O=expect 8-bit Syncs; 

1 =e~ct ~cs _2_er Rxler:i.g!h 
CMR11-8 TxMode 0101=5=Bi~nc RW 
CMR15 TxSubMode TxMode=5 1 =send CRC on Tx Underrun RW 
CMR14 O=send closing/idle SYNs from TSR15-8; 

1 =send closingfidle SYNO/SYN1JISR7-0/15-8}_ 
CMR13 1 =send Preamble before ~niQ9_ S_y_nc 
CMR12 O=send 8-bit Syncs; 

1 =send ~cs_2_er Txlength 
CMR3-0 RxMode 0101 =5=Blsync RW 
CMR5 RxSubMode RxMode=5 1 =strip received Syncs; RW 

O=include them in RxFIFO and CRC calculation 
CMR4 O=expect 8-bit Syncs; 

1 =e~ct ~cs_2_er Rxlength 

98 



Channel Mode Register (CMR) •• Continued 
Because the content of the SubMode fields depends on the Mode fields, the following descriptions are grouped by 
mode. TxSubMode and RxSubMode bits that are not shown for a particular Mode value are Reserved In that mode 
and should be programmed with zeroes. 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

CMR11-8 TxMode 0110=6=HDLC/SDLC RW 4: HDLC/SDLC Mode 
CMR15-14 TxSubMode TxMode=6 OO=send 7-bit Abort on Tx Underrun; RW (pp.46-49) 

01 =Send 15-bit Abort; 1 O=send Flag; 
11 =send CRC then Fl~ 

CMR13 1 =send Preamble before cmening_FIE!Q_ 
CMR12 1 =consecutive idle Flags share a o 

ln 1111101111111 .. J; 0=_1_11111100111111 . .j_ 
CMR3-0 RxMode 0110=6=HDLC/SDLC RW 
CMR7-4 RxSubMode RxMode=6 xxOO=no Address or Control field handling; RW 

xx01 =1-byte Address only; 
x010=1-bY1e Address, 1-bY1e Control; 
x110=1-bY1e Address, 2-bY1e Control; 
0011 =Extended Address, 1-bY1e Control; 
0111 =Extended Address, 2-bY1e Control; 
1011 =Extended Address, Control >= 2 bytes; 
1111 =Extended Address, Control >= 3 Qy!_es 

CMR11-B TxMode 0111 =7=Tramm__arent Bl~nc RW 4: Transparent Bisync Mode 
CMR15 TxSubMode TxMode=7 1 =send CRC on Tx Underrun RW (pp.43-44) 
CMR14 O=send closing/idle SYNs; 

1 =send closing/idle DLE-SYNs 
CMR13 1 =send Preamble before cm_enir:i.g_ DLE-SYN 
CMR12 O=send ASCII control characters; 

1 =send EBCDIC 
CMR3-0 RxMode 0111=7=Tram1~arent Bl~nc RW 
CMR4 RxSubMode RxMode=7 O=look for ASCII control characters; RW 

1 =look for EBCDIC 
CMR11-B TxMode 1000=8=Nlne Bit RW 4: Nine Bit Mode (pp.39-40) 
CMR15 TxSubMode TxMode=B O=send 9th bit o (data); RW 

1 =send 9th bit 1 J_address) 
CMR14 O=send eight data bits; 

1 =send seven data bits J1)us _.Q?ri!Y_ 
CMR13-12 00=16 TxCLKs/Tx bit; 01 =32 TxCLKs/Tx bit; 

10=64 TxCLKs/Tx bit 
CMR3-0 RxMode 1000=8=Nlne Bit RW 
CMR5-4 RxSubMode RxMode=8 00=16 RxCLKs/Rx bit; 01 =32 RxCLKs/Rx bit; RW 

10=64 RxCLKs/Rx bit 

CMR11-B TxMode 1001 =9=802.3 _iEtherne!}_ RW 4: 802.3 (Ethernet) Mode 
CMR15 TxSubMode TxMode=9 1 =send CRC on Tx Underrun RW (pp.45-46) 
CMR3-0 RxMode 1001 =9=802.3 IEtherneti RW 
CMR4 RxSubMode RxMode=9 O=receive all frames; RW 

1 =match 16-bit Destination Address vs. RSA 
CMR11-8 TxMode 101x=10·11 =Reserved 
CMR3-0 RxMode 
CMR11-8 TxMode 1100=12=Slaved Mono!!Y_nc RW 4: Slaved Monosync Mode 
CMR15 TxSubMode TxMode 1 =send CRC on Tx Underrun RW (p.45) 
CMR13 =12 O=don't send (stop sending at EOM); 

1 =send aj_notheJi messifil_e 
CMR12 O=send 8-bit Syncs; 

1 =send ~ncs_p_er TxLength 
CMR3-0 RxMode 1100=12=Reserved (use RxMode=0100=4= 

Mono~nc with TxMode= 1100= 1 ~ 

99 



Channel Mode Register (CMR) •• Continued 
Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 

Name /Context Status 
CMR11-8 TxMode 1101=13=Reserved 
CMR3-0 RxMode 
CMR11-8 TxMode 1110=14=HDLC/SDLC LOQJ!_ RW 4: HDLC/SDLC Loop Mode 
CMR15-14 TxSubMode TxMode OO=send 7-bit Abort on Tx Underrun; RW (pp.49-50) 

=14 01 =send 15-bit Abort; 1 O=send Flag; 
11 =send CRC then Flf!!l 

CMR13 (initially) 0= Transmit disabled; 1 =insert into RW 
loop; (once inserted) O=repeat Rx to Tx; 
1 =send 

CMR12 1 =consecutive idle Flags share a O w 1111101111111 .. J; 0':{11111100111111. d 
RW 

CMR3-0 RxMode 1110=14=Reserved (use RxMode=0110=6= 
HDLC/SDLC with TxMode=1110=14)_ 

CMR11-8 TxMode 1111=15=Reserved 
CMR3-0 RxMode 

Clock Mode Control Register (CMCR) Register Address 0 b 01000 

CTR1Src CTR OS re BRG1Src BRGOSrc DPLLSrc TxCLKSrc RxCLKSrc 

15 14 13 12 11 10 9 7 6 5 4 3 0 

Bit(s) Field/Bit Conditions Description ' RW Ref Chapter: Section 
Name /Context Status 

CMCR15-14 CTR1Src 00=CTR1 disabled; RW 3: Tx and Rx Clocking: 
01 =CTR1 input is PORT1/CLK1; CTRO and CTR1 (p.21) 
10=/RxCpin· 11 =/TxC _Qin 

CMCR13-12 CTROSrc OO=CTRO disabled; RW 
01 =CTRO input is PORTO/CLKO; 
10=/RxC_Qjn· 11=/TxC_Qin 

CMCR11-10 BRG1Src 00=BRG1 input is CTRO output; RW 3: Tx and Rx Clocking: 
01 =CTR1 out~ut; 10=/RxC pin; 11 =/TxC_Qjn The Baud Rate Generators 

CMCR9-8 BRGOSrc OO=BRGO input is CTRO output; RW (pp.21-23) 
01 =CTR1 ou_!Q_ut; 10=/RxC _Qjn; 11 =/TxC _Qjn 

CMCR7-6 DPLLSrc OO=DPLL input is BRGO output; RW 3: Tx and Rx Clocking: 
01 =BRG1 ou_!Q_ut· 10=/RxC_Q]n· 11 =/TxC_Qjn Intro to the DPLL 100:23-24)_ 

CMCR5-3 TxCLKSrc OOO=no TxCLK (Transmit disabled); RW 3: Tx and Rx Clocking: 
001 = TxCLK is /RxC; 010=/TxC; TxCLK and RxCLK Selection 
011 =DPLL Tx output; (p.24) 
1 OO=BRGO output; 101 =BRG1 output; 
11 O=CTRO oum._ut; 111 = TxCLK is CTR1 ou!fillt 

CMCR2-0 RxCLKSrc OOO=no RxCLK (Receive disabled); RW 
001 =RxCLK is /RxC; 010=/TxC; 
011 =DPLL Rx output; 
1 OO=BRGO output; 101 =BRG1 output; 
11 O=CTRO oum._ut· 111 =RxCLK is CTR1 ou_!Q_ut 

100 



Daisy Chain Control Register (DCCR) 

IUSOp 
(WO) 

15 14 

Bit(s) 

DCCR15-14 

DCCR13 

DCCR12 

DCCR11 

DCCR10 

DCCR9 

DCC RB 

DCCR7-6 

DCCR5 

DCCR4 

DCCR3 

DCCR2 

DCCR1 

DCC RO 

RS 
IUS 

13 

Field/Bit 
Name 
IUSOp 

RSIUS 

RDIUS 

TSIUS 

TDIUS 

IOPIUS 

Misc IUS 

IP Op 

RSIP 

RD IP 

TSIP 

TDIP 

IOP IP 

Misc IP 

RD 
IUS 

12 

TS 
IUS 

11 

Conditions 
/Context 

write 

read 
write 

read 
write 

read 
write 

read 
write 

read 
write 

read 
write 

write 

read 

write 

read 
write 

read 

write 

read 
write 

read 

write 

read 

write 

TD 
IUS 

10 

IOP Misc 
IUS IUS 

Description 

Ox=no operation; 

IP Op 
(WO) 

RS 
IP 

10=clear IUS bits selected by 1s in DCCR13-8; 
11 =set IUS bits selected~ 1s in DCCR13-8 
1 =Receive Status interrupt under service 
1 =set or clear Receive Status IUS per IUS Op; 
O=no change 

1 =Receive Data interrupt under service 
1 =set or clear Receive Data IUS per IUS Op; 
O=no chang_e 
1 =Transmit Status interrupt under service 
1 =set or clear Transmit Status IUS per IUS Op; 
O=no change 

1 =Transmit Data interrupt under service 
1 =set or clear Transmit Data IUS per IUS Op; 
O=no change 

1 =1/0 Pin interrupt under service 
1 =set or clear 1/0 Pin IUS per IUS Op; 
O=no change 

1 =Miscellaneous interrupt under service 
1 =set or clear Miscellaneous IUS per IUS Op; 
O=no change 

OO=no operation; 
01 =clear IP and IUS bits sel by 1s in DCCR5-0; 
1 O=clear IP bits selected by 1 s in DCCR5-0; 
11 =set IP bits selected ~ 1 sin DCCR5-0 
1 =Receive Status interrupt pending 

1 =set or clear Receive Status IP/IUS per IP Op; 
O=no change 

1 =Receive Data interrupt pending 
1 =set or clear Receive Data IP/IUS per IP Op; 
O=no chaQilll 
1 =Transmit Status interrupt pending 
1 =set or clear Transmit Status IP/IUS per IP 
Op; 
O=no change 
1 =Transmit Data interrupt pending 
1 =set or clear Transmit Data IP/IUS per IP Op; 
O=no change 

1 =1/0 Pin interrupt pending 

1 =set or clear 1/0 Pin IP/IUS per IP Op; 
O=no change 

1 =Miscellaneous interrupt pending 

1 =set or clear Miscellaneous IP/IUS per IP Op; 
O=no change 

101 

Register Address 0 b 01101 

RD 
IP 

RW 
Status 
WO 

RO 
WO 

RO 
WO 

RO 
WO 

RO 
WO 

RO 
WO 

RO 
WO 

WO 

RO 

WO 

RO 
WO 

RO 
WO 

RO 
WO 

RO 
WO 

RO 

WO 

TS 
IP 

TD 
IP 

IOP Misc 
IP IP 

Ref Chapter: Section 

6: Interrupt Pending and 
Under Service Bits (p.90) 

6: Interrupt Pending and 
Under Service Bits (p.90); 
6: Rx Status Interrupt Sour-
ces and IA BitsJQQ.85-8fil_ 
6: Interrupt Pending and 
Under Service Bits (p.90); 
6: Rx Data Interrupts (p.86) 

6: Interrupt Pending and 
Under Service Bits (p.90); 
6: Tx Status Interrupt Sour-
ces and IA Bits (pp.86-8fil_ 
6: Interrupt Pending and 
Under Service Bits (p.90); 
6: Transmit Data Interrupts 
I (pp.88-8fil. 
6: Interrupt Pending and 
Under Service Bits (p.90); 
6: 1/0 Pin Interrupt Sources 
and IA Bits jg,8~ 
6: Interrupt Pending and 
Under Service Bits (p.90}; 
6: Miscellaneous Int. Sour-
ces and IA Bits (Po.89-9Ql 
6: Interrupt Pending and 
Under Service Bits (p.90) 

6: Interrupt Pending and 
Under Service Bits (p.90); 
6: Rx Status Interrupt Sour-
ces and IA Bits JQQ.85-8fil_ 
6: Interrupt Pending and 
Under Service Bits (p.90); 
6: Rx Data Interrupts (p.86) 

6: Interrupt Pending and 
Under Service Bits (p.90); 
6: Tx Status Interrupt Sour-
ces and IA Bits (pp.86-88} 

6: Interrupt Pending and 
Under Service Bits (p.90); 
6: Transmit Data Interrupts 
l<oo.88-8~ 
6: Interrupt Pending and 
Under Service Bits (p.90); 
6:1/0 Pin Interrupt Sources 
and IA Bits ~8fil. 
6: Interrupt Pending and 
Under Service Bits (p.90); 
6: Miscellaneous Int, Sour-
ces and IA Bits (pp.89-9Ql_ 



Hardware Configuration Register (HCR) Register Address o b 01001 

CTRODlv CTR1 CVOK 
DSel 

DP LL Div DPLLMode TxAMode BRG1S BRG1E RxAMode BRGOS BRGOE 

15 14 13 12 11 10 6 5 4 3 2 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

HCR15-14 CTRODiv OO=CTRO divides by 32; RW 3: Tx and Rx Clocking: 
01 =/16' 10=/8' 11 =/4 CTRO and CTR1 (p.21) 

HCR13 CTR1DSel O=CTRODiv determines CTR1 divisor; RW 
1 =DPLLDiv determines CTR1 divisor 

HCR12 CVOK Bi phase 1 =don't report single code violations RW 3: More About the DPLL 
I (pp.26-2n_ 

HCR11-10 DPLLDiv OO=DPLL divides by 32; 01 =/16; 10=/8; RW 3: Tx and Rx Clocking: 
11 =don't use for DPLL J!..4 for CTRU. Intro to the DPLL (pp.23·2~ 

HCR9-8 DPLLMode OO=disable DPLL; RW 3: More About the DPLL 
01 =run DPLL for NRZ modes; (pp.26-27) 
1 O=run DPLL for Bi phase-Mark or -Space; 
11 =run DPLL for either BiQ_hase-Level mode 

HCR7-6 TxAMode 00=/TxACK pin is a general purpose input; RW 3: The /TxACK and /RxACK 
01 =/TxACK is a Tx DMA Acknowledge input; Pins (p.32) 
1 O=drive /TxACK Low· 11 =drive /TxACK H_jg_h 

HCR5 BRG1S 1 =BRG1 siQg)e 21'.91e mode; O=continuous RW 3: Tx and Rx Clocking: 
HCR4 BRG1E 1 =enable BRG1 RW The Baud Rate Generators 

IJpp.21-23) 
HCR3-2 RxAMode 00=/RxACK pin is a general purpose input; RW 3: The /TxACK and /RxACK 

01 =/RxACK is a Rx DMA Acknowledge input; Pins (p.32) 
1 O=drive /RxACK Low· 11 =drive /RxACK H_jg_h 

HCR1 BRGOS 1=BRGO sifl91e ~cle mode; O=continuous RW 3: Tx and Rx Clocking: 
HCRO BRGOE 1 =enable BRGO RW The Baud Rate Generators 

I roo.21-2:n_ 

102 



Input/Output Control Register (IOCR) Register Address o b 01011 

CTSMode DCDMode TxRMode RxRMode TxDMode TxCMode RxCMode 

15 14 13 12 11 10 9 8 7 8 5 4 3 2 

Bit(s) Field/Bit Conditions Description RW Raf Chapter: Section 
Name /Context Status 

IOCR15-14 CTSMode Ox=/CTS pin is low-active Clear To Send input; RW 3: The /CTS Pin (pp.30-31) 
1 O=drive /CTS Low· 11 =drive /CTS Hjg_h 

IOCR13-12 DCDMode 00=/DCD is low-active Rx Carrier Detect input; RW 3: The /DCD Pin (pp.29-30) 
01 "/DCD Is low-active Rx Sync Detect input: 
1 O=drive /DCD Low· 11 =drive /DCD Hjg_h 

IOCR11-10 TxRMode 00=/TxREQ pin is an input; RW 3: The /RxREQ and /TxREQ 
01 =drive /TxREQ with Transmit DMA Request; Pins (pp.31-32) 
1 O=drlve /TxREQ Low· 11 =drive /TxREQ H_jg_h 

IOCR9-8 RxRMode 00=/RxREQ pin is an input; RW 
01 =drive /RxREQ with Receive DMA Request; 
1 O=drive /RxREQ Low; 11 =drive /RxREQ Hjg_h 

IOCR7-6 TxDMode OO=drive /TxD with Transmitter output; RW 3: The /RxD and /TxD Pins 
01 =release /TxD to high impedance; (pp.27-28) 
1 O=drive /TxD Low· 11 =drive /TxD H_jg_h 

IOCR5-3 TxCMode 000=/TxC pin is an input; RW 3: The /RxC and /TxC Pins 
001 =drive /TxC with TxCLK; (p.31) 
01 O=drlve /TxC with Transmit char clock; 
011 =drive /TxC with Transmit Complete; 
1 OO=drive /TxC with output of BRGO; 
101 =drive /TxC with output of BRG1; 
11 O=drive /TxC with output of CTR1; 
111 =drive /TxC with Tx ou!Q_ut of DPLL 

IOCR2-0 RxCMode 000=/RxC pin is an input; RW 
001 =drive /RxC with RxCLK; 
01 O=drive /RxC with Receive char clock; 
011 =drive /RxC with /RxSYNC; 
1 OO=drive /RxC with output of BRGO; 
101 =drive /RxC with output of BRG1; 
11 O=drlve /RxC with output of CTRO; 
111 =drive /RxC with Rx oum_ut of DPLL 

103 



Interrupt Control Register (ICR) 

MIE DLC NV 

15 14 13 

Bit(s) Field/Bit 
Name 

ICR15 MIE 
ICR14 DLC 
ICR13 NV 
ICR12-9 VIS 

ICR7-6 IE Op 

ICR5 RSIE 

ICR4 RDIE 

ICR3 TSIE 

ICR2 TDIE 

ICR1 !OPIE 

ICRO Misc IE 

VIS Rsrvd IE Op 
(WO) 

RS 
IE 

12 11 10 9 8 6 

Conditions Description 
/Context 

1 =enable interr~s from this channel 
1 =disable lntern:1.E! Enable OutJ!EOl 
1=don't return a vector during_/INTACK ~le 
OXXX=interrupt vectors never include status; 
1 OOx=interrupt vectors always include status; 
101 O=vectors include status except for Misc; 
1011 =vectors include status only for TD, TS, 
RD and RS 
11 OO=vectors include status only for TS, RD, 
and RS 
1101 =vectors include status only for RD and 
RS 
111 O=vectors include status only for RS 
1111 =interr~ vectors never include status 

write Ox=no operation; 
10=clear the IE bits selected by 1 sin ICR5-0; 
11 =set the IE bits selected '2Y_ 1 s in ICR5-0 

read 1 =Receive Status interrupt enabled 
write 1 =Set or clear Receive Status IE per IE Op; 

O=no chal}g!l 
read 1 =Receive Data interrupt enabled 
write 1 =set or clear Receive Data IE per IE Op; 

O=no change 
read 1 =Transmit Status interrupt enabled 
write 1 =set or clear Transmit Status IE per IE Op; 

O=no chang_e 
read 1 =Transmit Data interrupt enabled 
write 1 =set or clear Transmit Data IE per IE Op; 

O=no' chang_e 
read 1 =1/0 Pin interrupt enabled 
write 1 =set or clear 1/0 Pin IE per IE Op; 

O=no chang_e 
read 1 =Miscellaneous interrupt enabled 
write 1 =set or clear Miscellaneous IE per IE Op; 

O=no chang_e 

104 

Register Address o b 011 oo 
RD 
IE 

4 

RW 
Status 
RW 
RW 
RW 
RW 

WO 

RO 
WO 

RO 
WO 

RO 
WO 

RO 
WO 

RO 
WO 

RO 
WO 

TS 
IE 

TD 
IE 

2 

IOP Misc 
IE IE 

Ref Chapter: Section 

6: Channel Interrupt Options 
(pp.90-91) 

6: Interrupt Enable Bits 
(p.90) 



Interrupt Vector Register (IVR) 

Interrupt Vector7-4 (RO) Type Code (RO) 
IVO 

(RO) 

15 14 13 12 11 10 

Bit(s) Field/Bit Conditions Description 
Name /Context 

IVR15-12 read as software wrote IVR7-4 
IVR11-9 TypeCode IVR15-8, highest pending interrupt type: 

or !Ack w/ OOO=no interrupt type pending; 
highest 001=Mlsc: 

pending 010=1/0 Pin; 
type 011 =Transmit Data; 

enabled by 1 00= Transmit Status; 
ICR12-9 101 =Receive Data; 

11 0= Receive Status 
IVRS as software wrote IVRO 
IVR7-0 read/write basic 8-bit interrupt vector 

IVR7-0, (reads back as software wrote it) 
or !Ack w/ 

highest 
pending 

type 
blocked by 

ICR12-9 

105 

Register Address ob 01010 

Interrupt Vector (RW) 

4 2 0 

RW Ref Chapter: Section 
Status 

RO 6: Interrupt Vectors (p.91) 
RO 

RO 
AW 



Miscellaneous Interrupt Status Register (MISR) Register Address o b 0111 O 

RxCLJU /RxC TxCWU /TXC RxRWU /RxR TxRWU (l'xR DCDLJ /DCD CTSLJU /CTS 
RCC DPLL BRG1 BRGO 

Under DSync WU WU 
LJU WU 

15 14 13 12 11 10 .9 7 5 4 3 2 0 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

MISR15 RxCLJU Read 1 =one or more transition(s) enabled by R,W1U 3: The /RxC and /TxC Pins 
SICR15-14 has (have) occurred on the /RxC (p .. 31) 

Write pin 
1 =~en the latches for /RxC and for this bit 

MISR14 /RxC RxCLJU=1 1 =the (first such) enabled transition was a RO 
rising edge; O=it was a falling edge 

RxCLJU=O 1 =the /RxC _Qin is low· O=it's hlg_h 
MISR13 TxCLJU Read 1 =one or more transition(s) enabled by R,W1U 

SICR13-12 has (have) occurred on the /TxC pin 
Write 1 =~en the latches for /TxC and for this bit 

MISR12 /TxC TxCLJU=1 1 =the (first such) enabled transition was a RO 
rising edge; O=it was a falling edge 

TxCLJU=O 1 =the /TxC _Qin is low· O=it's hlg_h 
MISR11 RxRLJU Read 1 =one or more transition (s) enabled by R,W1U 3: /RxREQ and /TxREQ Pins 

SICR11-10 has (have) occurred on the /RxREQ (pp.31-32) 
Write pin 

1 =~en the latches for /RxR and for this bit 
MISR10 /RxR RxRLJU=1 1 =the (first such) enabled transition was a RO 

rising edge; O=lt was a falling edge 
RxRLJU=O 1 =the /RxREQ Qin is low· O=it's hlg_h 

MISR9 TxRLJU Read 1 =one or more transition(s) enabled by SICR9- R,W1U 
8 has (have) occurred on the /TxREQ pin 

Write 1 =~en the latches for /TxR and for this bit 
MISRB /TxR TxRUU=1 1 =the (first such) enabled transition was a RO 

rising edge; O=it was a falling edge 
TxRUU=O 1 =the /TxREQ pin is low· O=it's hlg_h 

MISR7 DCDLJU Read 1 =one or more transition(s) enabled by SICR7- R,W1U 3: The /DCD Pin (pp.29-30) 
6 has (have) occurred on the /DCD pin 

Write 1 =open the latches for /DCD and for this bit 
MISR6 /DCD DCDUU=1 1 =the (first such) enabled transition was a RO 

rising edge; O=it was a falling edge 
DCDUU=O 1 =the /DCD _Qin is low; O=it's h_jg_h 

MISR5 CTSUU Read 1 =one or more transition(s) enabled by SICR5- R,W1U 3: The /CTS Pin (pp.30-31) 
4 has (have) occurred on the /CTS pin 

Write 1 =~en the latches for /CTS and for this bit 
MISR4 /CTS CTSLJU=1 1 =the (first such) enabled transition was a RO 

rising edge; O=it was a falling edge 
J CTSLJU=O 1 =the /CTS Jl]n is low· O=it's hjg_h 

MISR3 RCCUnder 1 =RCC FIFO has counted down past 0 R,W1U 4: OMA Support Features: 
LJU (Receive frame/message longer than max The RCC FIFO (p.60) 

all owe<& 
MISR2 DPLLDSync 1 =DPLL has lost sync R,W1U 3: More About the DPLL 

LJU (pp.26-27); 
6: Miscellaneous Interrupt 
Sources and IA Bits (p.89-
9Q)_ 

MISR1 BRG1 LJU 1=BRG1 has counted down to O R,W1U 3: Tx and Rx Clocking: 
MISRO BRGO LJU 1 =BAGO has counted down to O R,W1U The Baud Rate Generators 

I (pp.21-2:n_ 

106 



Receive Character Count Register (RCCR) Register Address 0 b 10110 

ending count of oldest received frame/message In RCC FIFO 

15 14 13 12 11 10 9 8 7 6 5 4 2 0 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

RCCR15-0 RCCAvail final RCC value of oldest received frame/ RO 4: OMA Support Features: 
(CCSR14) message in the RCC FIFO The RCC FIFO (p.60) 

=1 

107 



Receive Command/Status Register (RCSR) Register Address o b 1001 o 
RCmd (WO) 

RxResldue ShortF/ Exited Idle Break Rx CRCE 
CVType Hunt Rcved /Abort Bound /FE 

PE Rx Rx 
Over Avail 2ndBE 1stBE 

15 14 13 12 11 10 6 5 4 3 2 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

RCSR15-12 RCmd Sync OOOO=no operation; 0001 =Reserved WO 4: Commands (pp.63-66) 
001 O=Clear Receive CRC Generator 
0011 =Enter Hunt Mode; 01 OO=Reserved 
0101 =Select RICRHi= TxFIFO Status 
011 O=Select RICRHi=/INT Level 
0111 =Select RICRHi=/RxREQ Level 
1 xxx=Reserved 

RCSR15 2nd BE Last RDR 1 =2nd-oldest byte in RxFIFO had RxBound, RO 4: Status Reporting: 
read was PE, or RxOver when RDR was last read Detailed Status in the RCSR 

16 bits (pp.55-56) 
RCSR14 1stBE 1 =oldest byte in RxFIFO had RxBound, PE, or RO 

RxOver when RDR was last read 
RCSR11-9 RxResidue H/SDLC OOO=frame ended at character boundary RO 4: HDLC/SDLC Mode: 

001-111 =number of extra bits at end Frame Length Residuals 
j(pp.48-4~ 

RCSR8 ShortF/ H/SDLC, 1 =received frame ended before R,W1U 4: Status Reporting: 
CVType CMR?-4 Address/Control fields (see Note 1) or RO Detailed Status in the RCSR 

<>XXOO (pp.55-56) 
ACV O=received Data word 

_{155313}_ 1 =received Command/Status word_(see Note 1J1 
RCSR7 Exited Hunt 1 =receiver has left Hunt mode R,W1U 
RCSR6 ldleRcved 1 =15 or 16 ones received R,W1U 
RCSR5 Break/ Abort Async 1 =Break received R,W1U 

H/SDLC 1 =Abort received 
RCSR4 RxBound Nine Bit 1 =address character (see Note 2) R,W1C 

ACV 1 =2nd (or only) byte of word (see Note 2) or RO 
(1553B) 

Ext Sync, 1 =end of message (see Note 2) 
T. Bisync 
H/SDLC, 1 =end of frame (see Note 2) 

802.3 
RCSR3 CRCE/FE Sync 1 =CRC not correct (at this point; see Note 1) RO 

Async 1 =framing error (Stop bit= zero/space; see 
Note D_ 

RCSR2 PE 1 =parity error (see Note 2) R,W1C 
or RO 

RCSR1 RxOver 1 =RxFIFO overflow (see Note 2) R,W1C 
RO?? 

RCS RO RxAvail 1 =RxFIFO is not em_Q!Y_ RO 
Note 1: the USC carries these bits through the RxFIFO with data characters; they may represent the status of the oldest 
character or two currently in the FIFO, or of the last one or two read from it, as described in the referenced Chapter/Section. 
Note 2: the USC carries these bits through the RxFIFO with data characters; they may represent the status of the oldest 
character or two currently in the FIFO, of the last one or two read from it, or may be a cumulative/latched bit, as described in 
the referenced Chapter/Section. 

108 



Receive Count Limit Register (RCLR) Register Address o b 10101 

starting value for Receive Character Counter 

15 14 13 12 11 10 6 4 3 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

RCLR15-0 starting value for RCC: O=disable RCC; RW 4: DMA Support Features: 
FFFF=enable RCC, no set max frame/message The Character Counters 
lel}f!!h' else maximum allowed lel}f!!h ~57-5fil_ 

Receive Data Register (RDR) Register Address 0 b 1x000 or 1 b xxxxx 

received character: read only using 16-blt operation received character: 8- or 16-blt read 

15 14 13 12 11 10 6 5 4 3 0 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

RDR15-8 16 bit bus the "other" received character in a 16-bit read RO 4: The Data Registers and 
(may be the oldest or 2nd-oldest per "Select the FIFOs (pp.66-68) 
015-8 First" or "Select 07-0 First" commands in 
RTCmd _LCCAR 15-1 !.]}_ 

RDR7-0 received character RO 

109 



Receive Interrupt Control Register (RICA) Register Address 0 b 10011 
"RxFIFO Status" If last RCSR15·12 command 4·7 was 5 Exited Idle Break/ Rx Word Parity Rx Over TCOR 

"Rx/INT level" If last RCSR15·12 command 4·7was 6 Hunt IA R~~ed Abort Bound Status Error IA Sel 
"/RxREQ level" If last RCSR15·12 command 4·7 was 7 IA IA IA 

15 14 13 12 11 10 9 5 4 3 2 0 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

RICR15-8 5 written to the number of characters/bytes/octets RO 4: The Data Registers and 
RCmd currently in the RxFIFO the FIFOs (pp.66-68) 

(RCSR15-
12) or 

Reset since 
6or7 

written to 
RCmd 

RICR15-8 6 written to number of characters/bytes/octets In the RW 6: Receive Data Interrupts 
RCmd RxFIFO, above which to request a Receive (p.86) 

(RCSR15- Data interrupt 
12) since 

5 or 7 
written to 

RCmd 
RICR15·8 7 written to number of characters/bytes/octets in the RW 5: DMA Requests by the 

RCmd RxFIFO, above which to request Receive DMA Receiver and Transmitter 
(RCSR15- transfer (pp.73-75) 
12) since 

5 or 6 
written to 

RCmd 
RICR7 Exited Hunt 1 =arm interrupts on ExitedHunt (RCSR7) RW 6: Receive Status Interrupt 

IA Sources and IA Bits 
RICR6 ldleRcvedlA 1 =arm interrup_ts on ldleRcvedlRCSR~ RW (pp.85-86) 
RICR5 Break/ Abort 1 =arm interrupts on Break/Abort (RCSR5) RW 

IA 
RICR4 RxBound IA 1 =arm interrl!.Q!s on RxBound :IRCSR4)" RW 
RICR3 WordStatus O="queued" status in RCSR reflects oldest RW 4: Status Reporting 

character in RxFIFO· 1 =two oldest characters llPP.52-5~ 
RICR2 PEIA 1=arm interrl!.Q!s on PElRCSR~ RW 6: Receive Status Interrupt 
RICR1 RxOver IA 1=arm interrl!.Q!s on RxOverJ_RCSRU. RW Sources & IA Bits (pp.85-8~ 
RICRO TCORSel O=select Time Constant value for reading TCOR RW 3: Tx and Rx Clocking: The 

1 =capture current count for reading TCOR Baud Rate Generators 
l(pp.21·2~ 

110 



Receive Mode Register (RMR) 

RxDecode RxCRCType 

15 14 13 12 11 

Bit(s) Field/Bit Conditions 
Name !Context 

RMR15-13 RxDecode 

RMR12-11 RxCRCType Sync 

RMR10 RxCRCStart Sync 

RMR9 RxCRCEnab ~nc 
RMR?-6 RxParType 

RMR5 RxParEnab 
RMR4-2 Rxlength 

RMR1-0 RxEnable 

RxCRC RxCRC Rsrvd 
Start Enab 

RxParType 

10 6 

Description 

OOO=RxD not encoded ("NRZ"); 
001 =invert polarity of RxD ("NRZB"); 
01 O=decode RxD NRZl-Mark; 
011 =decode RxD NRZl-Space; 
100:=decode RxD Biµhi:isr=:-Mark (fiv11); 

RxPar 
En ab 

101 =decode RxD Biphase-Space (FMO); 
11 O=decode RxD Biphase-Level (Manchester); 
111 =decode RxD Differential BIQ.tiase-Level 
OO=USe 16-bit CRC-CCITT for Rx; 
01 =use CRC-16 for Rx; 
1 O=use 32-bit Ethernet CRC for Rx 
O=start Receive CRC generator as all-zeroes; 
1=all ones 
1 =include Receive characters in CRC 
OO=Receive Parity Even; 01 =Odd; 
1 O=Zero lS_Q_ac!tl; 11 =One J.Marl9_ 
1 =accumulate & check Pari!Y._ bits 
OOO=receive eight bit characters; 
001-111 =receive 1-7 bit characters 
OO=disable Receiver (immediately); 
01 =disable Rx at end of message/frame/char; 
1 O=enable Rx unconditionally; 
11 =auto-enable Rx _Q_er /DCD _Qin 

Receive Sync Register (RSR) 

Register Address 0 b 10001 

Rx Length RxEnable 

RW Ref Chapter: Section 
Status 

RW 3: Data Formats and 
Encoding (pp.25-26) 

RW 4: Cyclic Redundancy 
Checking (pp.50-51) 

RW 

RW 
RW 4: Parity Checking (p.52) 

RW 
RW 4: The Mode Registers: 

Character Length (pp.45-46) 
RW 

Register Address ob 10100 

Receive Sync, SYN1, or 9th-16th bits of Ethernet address Receive SYNO or 1st-8th bits of address 

15 14 13 12 11 10 3 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

RSR15-8 Monosync Receive Sync match character WR 4: Monosync and Bisync 

Bi sync second half of Receive sync match (SYN1) Modes (pp.42-43) 

802.3 match against last-received 8 bits of address 4: 802.3 (Ethernet) Mode 
l(pp.45-4~ 

RSR?-0 Bi sync first half of Receive sync match (SYNO) WR 4: Monosync and Bisync 
Modes (pp.42-43) 

H/SDLC, match against first-received 8 bits of address 4: HDLC/SDLC Mode 
(CMR?-4) (pp.46-49) 

<>XXOO, 4: 802.3 (Ethernet) Mode 
802.3 i(QQ.45-46) 

111 



Status Interrupt Control Register (SICR) Register Address o b 01111 

RxCDn RxCUp TxCDn TxCUp RxRDn RxRUp TxRDn TxRUp DCDDn DCDUp CTSDn CTSUp U~~;r DPLL BRG1 BRGO 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ D~c ~ ~ 

15 14 13 12 11 10 9 6 5 4 3 2 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

SICR15 RxCDn IA 1 =set MISR15/interrUQt on fall of /RxC RW 3: The /RxC and /TxC Pins 
SICR14 RxC~IA 1 =set MISR15/interrUQt on rise of /RxC RW (p.31) 
SICR13 TxCDn IA 1 =set MISR13/interrUQt on fall of /TxC RW 
SICR12 TxCU_ll_IA 1 =set MISR13/interrUQt on rise of /TxC RW 
SICR11 RxRDn IA 1 =set MISR11/interrUQt on fall of /RxREQ RW 3: /RxREQ and /TxREQ Pins 
SICR10 RxR~IA 1 =set MISR11/interrUQt on rise of /RxREQ RW (pp.31-32) 
SICR9 TxRDn IA 1 =set MISR9/interrUQt on fall of /TxREQ RW 
SICRB TxR~IA 1 =set MISR9/interrUQt on rise of /TxREQ RW 
SICR7 DCDDn IA 1=set MISR7/interru_E! on fall of /DCD RW 3: The /DCD Pin (pp.29-30) 
SICRS DCDU_l)_IA 1 =set MISR7/interrUQt on rise of /DCD RW 
SICR5 CTSDn IA 1 =set MISR5/interrUQt on fall of /CTS RW 3: The /CTS Pin (pp.30-31) 
SICR4 CTSU_l)_IA 1 =set MISR5/interrUQt on rise of /CTS RW 
SICR3 RCC Under RCC used 1=interrupt on RCC underflow RW 4: DMA Support Features: 

IA (Receive frame/message longer than max The RCC FIFO (p.60) 
alloweQl_ 

SICR2 DPLLDSync Biphase 1 =interrupt on DPLL sync loss RW 3: More About the DPLL 
IA (pp.26-27); 

6: Miscellaneous Int. Sour-
ces and IA Bits (pp.89-9QL 

SICR1 BRG1 IA 1 =intern:!Q! on BRG1 zero RW 3: Tx and Rx Clocking: 
SICRO BRGO IA 1 =interrupt on BRGO zero RW The Baud Rate Generators 

I loo.21-2:n, 

Test Mode Control Register (TMCR) Register Address o b 00111 

I Reserved (0) Test Register Address I 
15 14 13 12 11 10 9 6 5 3 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

TMCR4-0 adc;!ress of test register to reaq and write in ? USC Family Test Modes 
TMDR (forthcoming separate 

document}_ 

Test Mode Data Register (TMDR) Register Address o b 0011 o 

I Test Register selected by TMCR4·0 

15 14 13 12 11 10 9 6 5 3 2 0 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

TMCR15-0 test register selected by TMCR4-0 varies USC Family Test Modes 
(forthcoming separate 
document}_ 

112 



Time Constant 0 Register (TCOR) Register Address O b 10111 

divisor for (or current count In) Baud Rate Generator O 

15 14 13 12 11 10 7 6 5 3 2 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

TCOR15-0 write, or divisor/starting value for BRGO: RW 4: OMA Support Features: 
read w/ O=input=output; 1 =divide by 2; The Character Counters 

TCORSel n=divide by n+ 1 (pp.57-59) 
(RICRO)=O 

read w/ value of BRGO counter last time TCORSel:=1 RO 
TCORSel 

lJ..RICRQ}_=1 

Time Constant 1 Register (TC1 R) Register Address o b 11111 

divisor for (or current count In) Baud Rate Generator 1 

15 14 13 12 11 10 9 4 3 2 0 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

TC1R15-0 write, or divisor/starting value for BRG1: RW 4: OMA Support Features: 
read w/ O=input=output; 1 =divide by 2; The Character Counters 

TC1RSel n=divide by n+ 1 (pp.57-59) 
(TICRO)=O 

read w/ value of BRG1 counter last time TC1 RSel:=1 RO 
TC1RSel 

JI!CRQ}_=1 

Transmit Character Count Register (TCCR) Register Address 0b11110 

current value of Transmit Character Counter 

15 14 13 12 11 10 9 6 5 4 2 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

TCCR15-0 0= TCC disabled; else number of bytes (left) to RO 4: OMA Support Features: 
send in currenVnext Transmit frame/message The Character Counters 

f (pp.57-5fil_ 

113 



Transmit Command/Status Register (TCSR) 

TCmd Rsrvd 

15 14 13 12 11 

Bit(s) Field/Bit Conditions 
Name /Context 

TCSR15-12 TCmd 
Sync 

TICR2=1 
H/SDLC 

T.Bisync 

Sync 

TCSR10-8 Txldle 

TCSR7 Present ~c 
TCSR6 ldleSent 
TCSR5 Abort Sent H/SDLC 
TCSR4 EOF/EOM Sync 

Sent 
TCSR3 CRCSent Sync 
TCSR2 All Sent A~nc 
TCSR1 TxUnder 
TCSRO TxEm_J)ty_ 

Txldle 

10 9 

Description 

Pre 
Sent 

7 

Idle 
Sent 

OOOO=no operation; 0001=reserved 
001 O=Clear Tx CRC Generator 
0011, 0100=reserved 
0101 =Select TICRHi= TxFIFO Status 
011 O=Select TICRHi=/INT Level 
0111 =Select TICRHi=/TxREQ Level 
1 OOO=Send Frame/Message 
1001 =Send Abort 
101x=reserved 
11 OO=Enable DLE Insertion 
1101 =Disable DLE Insertion 
111 O=Clear EOF/EOM 
1111 =Set EOF/EOM 
selects the Transmit idle line condition: 

Abort 
Sent 

5 

OOO=the default for TxMode (sync/Flag/Mark) 
001 =alternating zeroes and ones 
01 O=continuous zeroes 
011 =continuous ones 
1 OO=reserved 
101 =alternating Mark and Space 
110=continuous Space (TxD low) 
111 =continuous Mark_ffi<D hjgb)_ 
1 =Transmitter has finished sendil}Q_ Preamble 
1 =Transmitter has sent Idle condition 
1 =Transmitter has sent Abort 
1 =Transmitter has sent End of Frame/End of 
Mess~e 
1 =Transmitter has sent a CRC code 
1 =last bit has _g_one out onto TxD 
1 =Transmitter has Underflowed 
1 = TxFIFO is empty 

Transmit Count Limit Register (TCLR) 

starting value for Transmit Character Counter 

15 14 13 12 11 10 9 8 7 6 

Bit(s) Field/Bit Conditions Description 
Name /Context 

TCLR15-0 starting value for TCC: O=disable TCC; 
else length of next frame/message 

114 

Register Address 0 b 11010 
EOF/ 
EOM 
Sent 

4 

RW 
Status 
WO 

RW 

R,W1U 
RW1U 
RW1U 
R,W1U 

R,W1U 
RO 

R,W1U 
RO 

CRC 
Sent 

All 
Sent 

Tx Tx 
Under Empty 

2 0 

Ref Chapter: Section 

4: Commands (pp.63-66) 

4: Between Messages, 
Frames, or Characters 
(pp.68-70) 

4: Status Reporting: 
Detailed Status in the TCSR 
(p.54) 

Register Address O b 11101 

4 3 

RW Ref Chapter: Section 
Status 

RW 4: DMA Support Features: 
The Character Counters 
I (pp.57-5!ll_ 



Transmit Data Register (TOR) Register Address Ob 1xOOO or 1 b xxxxx 

Transmit character: write only using 16-blt operation Transmit character: 8- or 16-blt write 

15 14 13 12 11 10 5 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

TDR15-8 16 bit bus the "other" Transmit character in a 16-bit write WO 4: The Data Registers and 
(may be sent 1st or 2nd per "Select 015-8 the Fl FOs (pp.66-68) 
First" or "Select 07-0 First" command in 

ITDR?-0 
RTGmd fGGAR15-11]) 

I Transmit character I WO I 

Transmit Interrupt Control Register (TICR) Register Address O b 11011 

"TxFIFO Status" If last TCSR15-12 command 4-7 was 5 
Pre 

Idle Abort EOF/ CRC Walt2 Tx TC1R 
"Tx/INT Level" If lastTCSR15-12 command 4-7 was 6 

Sent IA 
Sent Sent EOM Sent 

Send 
Under 

Set 
"/TxREQ level" If last TCSR15-12 command 4-7 was 7 IA IA Sent IA IA IA 

15 14 13 12 11 10 3 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

TICR15-8 5 written to the number of character/byte/octet entries RO 4: The Data Registers 
TCmd currently empty in the TxFIFO and the FIFOs (pp.66-68) 

(TCSR15-
12), or 
Reset, 

since 6 or 7 
written 

there 
TICR15-8 6 written to the number of empty character/byte/octet RW 6: Transmit Data Interrupts 

TCmd entries in the TxFIFO, above which to request a (pp.88-89) 
(TCSR15- Transmit Data interrupt 

12) since 5 
or 7 written 

there 
TJCR15-8 7 written to the number of empty character/byte/octet RW 5: OMA Requests by the 

TCmd entries in the TxFIFO, above which to request Receiver and Transmitter 
(TCSR15- Transmit OMA transfer (pp.73-75) 

12) since 5 
or 6 written 

there 
TICA? Present IA S_Y'.1c 1 =arm interrl!Q!s on Preamble SentlfCSR?l RW 6: Transmit Status Interrupt 
TICR6 ldleSent IA 1 =arm interrl!Q!s on ldleSent_IT_CSRfil_ AW Sources and IA Bits 
TJCR5 AbortSentlA H/SDLC 1 =arm interrl!Q!s on AbortSentJ:!:_CSR~ RW (pp.86-88) 
TICR4 EOF/EOM Sync 1 =arm interrupts on EOF/EOM Sent (TCSR4) RW 

Sent IA 
TICR3 CRCSent IA ~c 1 =arm interrl!Q!s on CRCSentl!_CSR:n_ RW 
TICR2 Wait2Send Sync 1 =hold Transmitter from sending each AW 4: Synchronizing Frames/ 

frame/message until software issues "Send Messages with Software 
Mess~e/Frame" command Re~onse JQ, 7Q)_ 

TJCR1 TxUnder IA 1 =arm interrupts on TxUnder (TCSR1) RW 6: Transmit Status Interrupt 
Sources and IA Bits (pp.86-
8fil_ 

TJCRO TC1R Sel O=select Time Constant value for reading TC1 R RW 3: Tx and Rx Clocking: 
1 =capture current count for reading TC1 R The Baud Rate Generators 

liP2-21-23l 

115 



Transmit Mode Register (TMR) 

TxEncode TxCRCType 

15 14 13 12 11 

Bit(s) Field/Bit Conditions 
Name /Context 

TMR15-13 TxEncode 

TMR12-11 TxCRCType Sync 

TMR10 TxCRCStart Sync 

TMR9 TxCRCEnab ~c 
TMR8 TxCRCatEn Sync 

d 
TMR7-6 TxParType 

TMR5 TxParEnab 
TMR4-2 TxLength 

TMR1-0 TxEnable 

TxCRC TxCRC TxCRC 
Start Enab atEnd 

TxParType 

10 8 6 

Description 

OOO=don't encode TxD ("NRZ"); 
001=invert polarity ofTxD ("NRZB"); 
01 O=encode TxD NRZl-Mark; 
011 =encode TxD NAZI-Space; 
1 OO=encode TxD Biphase-Mark (FM 1); 

TxPar 
En ab 

5 

101 =encode TxD Bi phase-Space (FMO); 
110=encode TxD Biphase-Level (Manchester); 
111 =encode TxD Differential B_!Q_hase-Level 
OO=use 16-bit CRC-CCITT for Tx; 
01 =use CRC-16 for Tx; 
1 O=use 32-bit Ethernet CRC for Tx 
O=start Transmit CRC generator as all-zeroes; 
1=all ones 
1 =include Transmit characters in CRC 
1 =send accumulated CRC at EOF/EOM 

00= Transmit Parity Even; 01 =Odd; 
1 O=Zero j~ac~ 11 =One JMar!Q_ 
1 =accumulate & send Pari!Y_ bits 
OOO=send eight bit characters; 
001-111=send 1-7 bit characters 
OO=disable Transmitter (immediately); 
01 =disable Tx at end of message/frame/char; 
1 O=enable Tx unconditionally; 
11 =auto-enable Tx J1.er /CTS _Q)n 

Transmit Sync Register (TSR) 

Register Address o b 11001 

Txlength TxEnable 

4 3 2 0 

RW Ref Chapter: Section 
Status 
RW 3: Data Formats and 

Encoding (pp.25-26) 

RW 4: Cyclic Redundancy 
Checking (pp.50-51) 

RW 

RW 
RW 

RW 4: Parity Checking (p.52) 

RW 
RW 4: The Mode Registers: 

Character Ler:!Q_th (pp.45-4~ 
RW 4: The Mode Registers: 

Enabling and Disabling 
(p.37) 

Register Address 0 b 11100 

I Transmit SYN1 Transmit Sync or SYNO I 
15 14 13 12 11 10 8 7 6 5 4 3 2 0 

Bit(s) Field/Bit Conditions Description RW Ref Chapter: Section 
Name /Context Status 

RSR15-8 Bi§Y_nC second half of Transmit 3'._ncJ.SYNll WR 4: Monosync and Bisync 
RSR7-0 Monosync, Transmit Sync character WR Modes (pp.42-43) 

Slaved 4: Slaved Monosync Mode 
Monosync (p.45) 

Bi§Y_nc first half of Transmit ~ncJ.SYNQl 

116 



Appendix: Name Changes 

This is for the reader of previous USC documentation. 
It summarizes the changes in the names of registers 
and commands that were made in this document, with 
a few words about why they were changed. 

Transmit Status Blocks--> Transmit Control Blocks 

The names of registers and other USC features, in 
past documentatlon, r?:a.!nta!ned !he dist!nct!on 
between "status" info as flowing from the use to the 
host, and "control" information as flowing from the host 
to the USC pretty strictly -- all except this one. 

Interrupt Enable (for individual sources) --> 
Interrupt Arm 

There was no distinction between the enabling of a 
whole interrupt type and the enabling of an individual 
source within a type, and it seemed important to 
distinguish between these, so we kept the former as 
"enabling" and called the latter "arming" instead. 
Vague memories of early minicomputer terminology 
say the same terms were used. 

Commands 

Reload RCC I TCC --> Load RCC/TCC 

It wasn't clear why RCC and TCC were "reloaded" 
while TCO and TC1 were just "loaded". 

Select Straight/Swapped Memory Data --> Select 
015-8/07-0 First 

"Straight" means whichever way your microprocessor 
wants it, while "swapped" is the way the other guys' 
part works ... 

Preset CRC --> Clear Tx/Rx CRC Generator 

More descriptive of the function: "preset" seemed to 
carry the possibility that you might be able to load in 
any arbitrary starting value ... 

Bit/Field Names 
There weren't really bit and field names in the old 
Technical Manual -- they were more like text titles. But 
for those bits and fields that had fairly short titles, the 
names in this manual may or may not be the same. 
One change of note is that RCSR4 has been changed 
from "CV/EOF/EOM" to "RxBound", after it was noted 
that the bit has a fourth use: in Nine-Bit mode it flags 
address bytes. ("CV/EOF/EOM/Addr" seemed a little 
long ... ) 

Another such change is that CCSR14 is now called 
RCCF Avail rather than RCC Valid. (It's perfectly valid 
for the RCC FIFO to be empty, in which case there's 
nothing available to be read from it.) 

117 

The bit and field names in this book are similar to, but 
not identical with, those in the Electronic Program
mer's Manual. 



Index 

In the following index: 

Bold page numbers identify the definition or main 
explanation of a term. 

Italic page numbers identify a Figure that illustrates the 
term. 

Bold Italic page numbers identify a section about the 
term, that includes both text and pictorial information. 

/AS pin, 5, 9, 83, 84, 85 

/CS pin, 5, 9, 11 
/CTS bit, 31, 106 
/CTS pins, 6, 2B, 30-31, 37, 45, 89 

Timing, 30 
/DCD bit, 30, 106 

/DCD pins, 6, 28, 29-30, 37, 42, 45, 46, 55, 56, 59, 85, 
89 

Timing, 30 
/OS pin, 5, 10, 11, 73, 80, 81, 82, 85 
/DTACK, see/WAIT//RDY pin 
/INT pins, 5, 31, 44, 46, 47, 52, 64, 77, 88, 90 
/PITACK pin, 6, 12, 77, 78, 80, 81, 83, 84 
/RD pin, 5, 10, 11, 73, 80, 81, 82, 85 

/RESET pin, 4, 9, 66, 67 
/RxACK bit, 32, 96 
/RxACK pins, 6, 32, 71, 75 

/RxC bit, 31, 106 
/RxC pins, 6, 21, 23, 24, 28, 31, 42, 89 

/RxR bit, 32, 106 
/RxREQ pins, 6, 28, 31-32, 44, 46, 47, 60, 65, 70, 73, 

74, 75,89 
as Interrupt Requests, 78 

/SITACK pin, 6, 77, 78, 81, 82, 85 
/TxACK bit, 32, 96 . 

/TxACK pins, 6, 32, 71, 75 
/TxC bit, 31, 106 

/TxC pins, 6, 21, 23, 24, 28, 31, 45, 89 
/TxR bit, 32, 106 

/TxREQ pins, 6, 28, 31-32, 58, 60, 64, 65, 73, 74, 89, 
94 

as Interrupt Requests, 78 

/WAIT//RDY pill, 5, 10, 11, 17, 75, 81, 82, 83, 84, 85, 
91,93 

/WR pin, 5, 10, 11, 73 

118 

1553B,29,38,40-42, 41,55,56,57,58,61,63,64, 
67, 74,85,98 

16Bit, 12, 95 

16COx, 65, 67 
1 stBE, 55, 62, 108 

2nd BE, 55, 108 
2PulselACK, 12, 80, 83, 84, 95 

680x0,65,67 

802.3, 29, 45-46, 50, 55, 56, 59, 60, 61, 62, 69, 74, 
, 85, 99 

80x86,67 

A//B pin, 5, 9, 11, 93 
Abort, 36, 47, 48, 54, 55, 56, 65, 85, 86, 108 

Handling a Received, 49 
AbortSent, 54, 114 
AbortSentlA,54,88, 115 
Acknowledge, see /WAIT//RDY pin 
AD pins, 4, 9, 65, 85 
Address, 55 

/Data Bit, 40 
/Data Bus, see AD pins 
All Ones, 46, 47 
·Character, 85 

Destination, 46 
Even,58,65,67 
Extended (HDLC/SDLC), 48 

Field Handling (HDLC/SDLC), 47, 55 
Implicit, 13 
Indirect, 13 
Odd, 58, 65, 67 
Register, 12-15, 13, 14, 66 
Separate, 11 
Source, 46 
Strobe, see /AS pin 
Wakeup, see Nine-Bit 

All Ones, 40, 50, 58, 60, 62, 64, 68 
Address,46,47 · 

All Zeroes, 63, 64 
AllSent, 54, 114 
Alternating bits, 46 
Army, 40, 41 
ASCII, 44 



Async with Code Violations, see 1553B 

Asynchronous, 21,24, 28, 29, 30, 33-34,38-39, 52, 
55,56,64, 68,69, 85,98 

Auto-enabling, 45 

B//W, 12, 95 
Backoff, 45 
Baud Rate Generators, see BRGO and BRG1 

BCR, 4, 7, 9, 11-12, 66, 80, 83, 84, 93, 95 
Bet't.:esn Frames, r ... 1ossages, er Characters, 68-69 
Big Endian, 16 
Binary Synchronous Communications, see Bisync 

Biphase, 89 
Biphase-Level, 25, 26, 27, 40, 45 

Biphase-Mark, 25, 26, 27, 40 

Biphase-Space, 25, 26, 27 

Bisync, 29, 42-45, 50, 55, 98 

Transparent, see Transparent Bisync 

Block Diagram, 7 
Blocking Strobes (during OMA cycles), 73 

Break, 28 
Break/Abort,39,49,52,55,86, 108 

Break/Abort IA, 55, 85, 11 O 
BRGO, 21-23, 31, 64 

BRGO IA, 23, 89, 112 

BRGOE, 23, 102 

BRGOL/U, 23, 106 

BRGOS, 102 

BRGOSrc, 21, 24, 100 

BRG1, 21-23, 31, 64 

BRG1 IA, 23, 89, 112 

BRG1 E, 23, 102 

BRG1 LIU, 23, 106 

BRG1S, 23, 102 

BRG1 Src, 21, 24, 100 

Bus 
Address/Data, see AD pins 

Configuration Register, see BCR 

Data, see AD pins 
Interfacing, 9-19 

Multiplexed, 9, 12 

Non-multiplexed, 9, 11 

Serial, 27, 28 

Width, 10 
Byte Ordering, 16 

C!/D pin, 9 
Carrier, 46 

Carrier Detect, see /DCD pins 

119 

CCAR, 9, 11, 12, 13, 16, 23, 28, 42, 46, 48, 56, 57, 
63,66,67, 70, 71, 74, 75,90,94, 95 

CCR, 24, 38, 43, 45, 47, 54, 57, 60, 61, 63, 64, 66, 69, 
70, 71, 74, 75,88,97 

CCSR, 26, 27, 32, 45, 48, 49, 60, 61, 69, 96 
ChanLoad, 74,94, 95 

Channel 
Command/Address Register, see CCAR 
Command/Status Register, see CCSR 
Control Register. see CCR 
Mode Register, see CMR 

Select, see NIB pin 

Character 
Clocks, 31 

Counters, see RCC andTCC 

Length, 37 

Pairs, 43 

Partial, 48 

Chip Select, see /CS pin 

Clear 
EOF/EOM (command), 64 
RCCF, 60, 96 

Rx CRC (command), 50, 64 
to Send, see /CTS pins 

Tx CRC (command), 50, 64 
Clock(s), 21-25 

External, 21, 39 

Logic Model, 22 

Missing, 26, 45, 89 
Mode Control Register, see CMCR 
Receive, see also RxCLK, /RxC pins 

Stopping, 24-25 
Synchronous, 24 
Transitions, 27 

Transmit, see also TxCLK, /TxC pins 

Closing Flag, 47, 50, 65, 68 
Closing Sync, 68 
CMCR, 21, 22, 23, 24, 100 

CMOS, 1, 24 

CMR, 24, 29, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 
47,49,50,55, 60, 65,68,69, 98-100 

Code Violation, 27 

Collisions, 45 

Command(s), 43, 44, 63-64, 90, 117 

/Status Word, 40, 41, 42, 55, 63 

Control Field 
Extended, 48 

Control Field Handling, 47, 55 

Counters, see CTRO and CTR1 

Character, see RCC andTCC 



CRC, 34, 42, 43, 44, 45, 46, 48, 49, 50-52, 58, 64, 66, 
68 

CRCE/FE, 39, 49, 51, 52, 53, 56, 62, 69, 108 
CRCSent, 54, 69, 114 
CRCSent IA, 54, 88, 115 

CTRO, 21, 31 
CTRODiv, 21, 102 

CTROSrc, 21, 24, 100 
CTR1, 21, 31 
CTR1 DSel, 21, 23, 102 

CTR1 Src, 21, 24, 100 
CTSDn IA, 31, 89, 112 

CTSUU, 31, 106 

CTSMode, 30, 37, 45, 103 
CTSUp IA, 31, 89, 112 

CV/EOF/EOM, 117 
CVOK, 27, 102 
CVType, see ShortF/CVType 
Cycle(s), 11 

Interrupt Acknowledge, 81-85 
vs. Read, 85 

Register Access, 16-19 
Cyclic Redundancy Check(ing), see CRC 

D//C pin, 5, 13, 66 

Daisy Chain Control Register, see DCCR 
Daisy Chains, 77 

Data 
/Control, see D//C pin 
Bus, see AD pins 
Carrier Detect, see /DCD pins 
Decoding, 25-26, 68 

Encoding, 25-26 

Formats, 25-26 
Interrupts, see Receive and Transmit Data 

Interrupts 

Receive, see RxD pins 
Registers, 66-68 
Strobe, see IDS pin 

Transitions, 27 
Transmit, see TxD pins 
vs. Address (Nine-Bit}, 40 
'11/ord, 40, 41, 42, 55, 63 

DCCR, 28, 81, 86, 89, 90, 91, 101 

DCDDn IA, 30, 89, 112 

DCDUU, 30, 106 

DCDMode, 29, 37, 42, 46, 103 

DCDUp IA, 30, 89, 112 

Destination Address, 40, 46 

120 

Differential Biphase-Level, 25, 26, 27 

Digital Phase Locked Loop, see DPLL 
Disable OLE Insertion (command), 44, 64 

Disable Lower Chain, see DLC 
Disabling (Rx and Tx), 37 

DLC, 80, 90, 104 
OLE, 44, 56, 64 
DLE-SOH, 44 
OLE-STX, 44 
OLE-SYN, 44 
OMA, 7 

Acknowledge, see /RxACK and /TxACK pins, 75 
Controller, 94 

Initializing a Serial Channel via, 94 
Interfacing, 71-75 
Request Level, 67, 74 

Request(s), 6, 31-32, 44, 46, 47, 58, 60, 65, 70, 
73-74, 75 

Support Features, 57-63 
Double Pulse mode (of interrupts), 84 
DPLL, 21, 23, 24, 26-27, 31, 39, 69, 89 

DPLL1Miss, 27, 96 
DPLL2Miss, 27, 96 

DPLLDiv, 23, 102 
DPLLDSync IA, 89, 112 
DPLLDSync UU, 27, 106 

DPLLEdge, 27, 96 
DPLLMode, 26, 102 

DPLLSrc, 23, 100 
DPLLSync,27,69,96 
Driver (TxD), 45 
Dynamic Priority, 77 

EBCDIC, 44 
Echo,28 
Edge Detection, 28, 89 

Electrical Specifications, 8, 17 
Enable OLE Insertion (command),,44, 64 
Enabling (Rx and Tx), 37 
Encoding of Data, 25-26 
End Of Frame, 45, see also EOF/EOM and RxBound 
End Of Message, 43, 45, see also EOF/EOM and 

RxBound 
ENQ, 44, 56 
Enter Hunt Mode (command), 49, 59, 64 

EOF/EOM, 43, 45, 50, 58, 62, 64, 66 
Sent, 54, 69, 114 

Sent IA, 54, 88, 115 

EOT, 44, 56 



ETB, 44, 56 
Ethernet, see 802.3 
ETX, 44, 56 
Even Address, 58, 65, 67 
Exited Hunt, 55, 69, 86, 108 
ExitedHunt IA, 55, 85, 110 

Extended Address (HDLC/SDLC), 48 

Extended Control Field, 48 
External 

Clock, 39 
Clocking, 21 
Hardware, 45 
Interrupt Control Logic, 77·78 
Sync,29,42,50,55,56,59,60,61,98 

Falling Edges, 89 
FE, see CRCE/FE 
Features, 1 
FIFO, 7, see RxFIFO andTxFIFO 

Capacity, 67 
First Byte Exception, see 1stBE 
Flag(s), 24, 29, 35, 46, 48, 49, 50, 54, 55, 56, 57, 58, 

59,64,66,85,88 
Closing, 47, 50, 65, 68 
Idle, 50, 68 
Opening, 47, 69 

Single, 69 

Flowchart 
Queued Status Bits, 53 
Register Addressing, 15 

Sample Receive Status Interrupt Service Routine, 
87 

Flowthrough, 71, 72 
Flyby, 32, 71, 72, 73, 75 
FMO, 26 
FM1, 26 
Formats, Data, 25-26 

Frame(s), 45, 46, 47 
Length, 57, 60, 62 

Max Received, 59 
Residual, 48-49 

Framing Error, see CRCE/FE 

Global (address), 46 
Go Ahead, 36, 49, 55, 65 
Ground pins, 6 

121 

Handling 
Address Field (HDLC/SDLC), 47, 55 
Control Field, 47, 55 
Received Abort, 49 

Handshaking, 11 
Hardware 

Configuration Register, see HCR 
External, 45 

HCR, 21, 22, 23, 26, 27, 32, 75, 102 
HDLC/SDLC, 24, 26, 29, 35, 38, 46-49, 50, 55, 56, 60, 

61,62,65,66,69, 74,85,88,99 
Loop,49-50,60, 68 

HDLC/SDLC Loop, 100 
Holding Between Frames, 73, 74 
Hunt, 45, 55, 62, 64 

1/0 Pin Interrupts, 89 

IA,28,52,53, 78,80,86,88,89,90, 117 
ICR, 23, 81, 90, 91, 104 

Idle, 40, 43, 45, 47, 49, 54, 65, 68, 69 
Flag, 50, 68 

ldleRcved, 52, 55, 69, 86, 108 
ldleRcved IA, 55, 85, 11 o 
ldleSent, 54, 69, 114 

ldleSent IA, 54, 88, 115 
IE, 78,80,90, 117 
IE Op, 90, 104 

IEEE 802.3, see 802.3 
IEI pins, 6, 77, 78, 80, 81, 82, 83, 84, 88 
IEO pins, 6, 77, 80, 81, 82, 84, 90 
Implicit Addressing, 13 
Indirect Addressing, 13 
Initializing via a OMA Channel, 66, 94 
Input/Output Control Register, see IOCR 
Inserted Zeroes, 47, 48 
Intel, 12, 14, 16, 65, 67, 84 
lnterrupt(s), 77-92 

Acknowledge, 12, see also /SIT ACK and /PIT ACK 
pins 

Cycle(s), 79, 81-85 

Daisy Chains, 77 
vs. Read Cycles, 85 

Arm, see IA 
Control Register, see ICR 
Edge Detection, 28 

Enable, 90, see also IE 
In, see IEI pins 

Out, see IEO pins 
1/0 Pin, 28, 89 



lnterrupt(s) continued 
Logic Model, 79, 80 
Miscellaneous, 89-90 
Nested, 77, 80 
Receive Data, 86, see also RD IP 

Request Level, 86 
Receive Status, 75, 85-86 

Request Level, 67 
Receive, 86 
Transmit, 88 

Request(s), 31, see also /INT pins 
Sources, 78 
Transmit Data, 88 

Request Level, 88 
Transmit Status; 86-88 

Types, 78,85 
Vector(s), 77, 80, 84, 91, 105 

Register, see IVR 
IOCR,28,29,30,31,37,39,42,45, 73, 74,89, 103 
IOP IE, 90, 104 
IOP IP, 28, 89, 90, 101 
IOP IUS, 90, 101 
IP, 78,80,81,90 

IP Op, 90, 101 
Isochronous, 29, 39, 56, 98 

ITB, 44, 56 
IUS,65, 79,80,81,84,90,91, 101 

IUS Op, 90, 101 
IVR, 91, 105 

LIU, 28, 89 
Latched/Unlatch, 28, 89 
Length 

Character, 37 
Field, 46 

Frame, 57, 60, 62 
Max Received, 59 

Residual, 48-49 
Message, 57 

Level 

OMA Request, 67, 74 
Interrupt Request, 67 
Receive Data Interrupt Request, 86 
Transmit Data Interrupt Request, 88 

Line Driver, 45 
Little Endian, 12, 16 

Load RCC (command), 57, 64 

Load TCO (command), 23, 64 
Load TC1 (command), 23, 64 

122 

Load TCC (command), 57, 60, 64 

Local Loop,28 
Logic Model 

Clock(s), 22 
Interrupts, 79, 80 
RCC, 59 
Receive Datapath, 51 
TCC, 58 

Logic Symbol, 1 
LoopSend,50,96 
LSB First, 65 

Manchester, 26 
Mark, 34, 45, 68 

Parity, 52 
Master Interrupt Enable, see MIE 
Message(s), 34, 43, 44, 45, see also Frame(s) and its 

subtopics 
MIE,23, 79,88,90, 104 
Miscellaneous lnterrupt(s), 89-90 

Status Register, see MISR 
MisclE, 23, 90, 104 
MisclP, 89, 90, 101 
MisclUS, 90, 101 
MISR,23,29,31,32,59,89,90, 106 
Missing Clock(s), 26, 40, 45, 89 
Model, see Logic Model 

Monosync,29,42-45,50,55,98 
Slaved, 45, 50 

Motorola, 14, 16, 65, 67 
MSB First, 65 

Nested Interrupts, 77, 80 
Nine-Bit, 29, 39-40, 56, 85, 99 
No Vector, see NV 
NAZ, 21, 25, 26, 27, 37 
NRZB,25 

NAZI-Mark, 25, 26 
NAZI-Space, 25, 26, 36, 49 
NV, 80, 81, 91, 104 

Odd Address, 58, 65, 67 
Ones, 45, 85 

Consecutive, 36, 47, 69 
OnLoop,45,49,96 

Opening Flag, 47, 69 
Opening Sync, 43, 44, 69 
Order (of programming), 93 

Overflow (RCC FIFO), 60 



Overrun, 56, 62, 85 
Oversampling, 33 

Package Drawing, 4 

p~~~.M.~.~.~.«.~.~.~ 

Mark, 52 

Space,52 
Partial Character, 48 
PE, 52,53,56, 62, 86, 108 
PE IA, 56, 85, 110 

Phase Locked Loop, 43, 68 
Pins, 4-6, see also specific names, e.g., /AS 

PLCC, 1 
Power pins, 6 
Preamble, 43, 44, 45, 47, 54, 55, 68, 69 
Present, 54, 69, 114 
Present IA, 54, BB, 115 

Preset CRC, 117 
Primary (station), 49 
Programming, Order of, 93 

Promiscuous, 46 
Protocol, 36 
Purge Rx FIFO (command), 49, 57, 64, 67 

Purge Tx FIFO (command), 57, 60, 64, 67, 74, 88 

Queued Status Bits Flowchart, 53 

R//W pin, 5, 10, 80, 85 

RCC, 57-59, 62, 64, 66, 74, 89 
FIFO, 59, 60, 62 

Logic Model, 59 
Underflow, 59 
Valid, 117 

RCCFAvail, 60, 96 

RCCFOvflo, 60, 96 

RCCR, 58, 60, 107 
RCCUnder IA, 59, 89, 112 

RCCUnder L/U, 59, 106 

RCHR, 59, 61 
RCLR,57,58,59,60,62,64,66, 109 
RCmd, 59, 63, 67, 74, 86, 108 

RCSR, 38, 39, 40, 42, 48, 49, 51, 52, 53, 55-56, 59, 
61,67, 69, 74, 75, 85,86 

RD IE, 86, 90, 104 
RDIP,44,46,47,60,65,86,90, 101 

RD IUS, 86, 90, 101 

RDR, 12, 13, 52, 53, 55, 62, 65, 66-6B, 109 
Read Strobe, see /RD pin 

123 

Read/Write control, see R//W pin 
Ready, see /WAIT//RDY pin, 75 
Receive 

Character Clock, 31 

Character Count Register, see RCCR 
Clock(s), 21-25, 26, see also RxCLK, /RxC pins 

Command/Status Register, see RCSR 
Count Limit Register, see RCLR 
Data, see RxD pins 
Data lnteirupt, 86 

Enable, see RD IE 
Pending, see RD IP 
Request Level, 86 

Under Service, see RD IUS 
Data Register, see RDR 
Datapath Logic Model, 51 
DMA 

Acknowledge, see /RxACK pins 
Request, 6, 31-32, 44, 46, 47, 60, 65, 70, 74, 

75, see also /RxREQ pin 
Request Level, 74 

Interrupt Control Register, see RICR 
Mode Register, see RMR 
Status Block, see RSB 
Status Interrupt, 75, B5-86 

Enable, see RS IE 
Pending, see RS IP 
Service Routine (sample flowchart), 87 

Under Service, see RS IUS 

Sync output, 31 

Sync Register, see RSR 

Reference Clock, 23 
RegAddr, 12, 94, 95 
Register(s), see specific register names, e.g., CCAR 

Addressing, 12-15, 13, 14, 66, 94 
Reading and Writing, 16-19 

Request Level 
DMA, 67, 74 
Interrupt, 67 

Request Threshold, see Request Level 
Reset, 4, 28, 93 

Highest IUS (command), 65, 90 

Software, 66 

Residual Frame Length, 4B-49 

Resynchronization, 36 
RICR,52,53,55,56,65,67, 74, 86, 110 
Rising Edges, 89 
RMR, 25, 29, 37, 41, 43, 45, 47, 48, 50, 51, 52, 56, 

64, 111 
Rotating Priority, 77 



RS IE, 90, 104 
RSIP,53, 85, 86,90, 101 
RS IUS, 90, 101 
RSB, 42, 44, 48, 51, 52, 53, 55, 56, 57, 58, 59, 61-63, 

70, 74, 75 
Using for 1553B, 63 

RSR, 43, 46, 47, 65, 111 
RTCmd, 16, 23, 46, 48, 56, 57, 60, 63, 67, 70, 71, 74, 

90,95 
RTMode, 28, 95 

RTReset, 66, 67, 95 

RxAMode, 32, 75, 102 
RxAvail, 56, 108 
RxBound,39,40,41,42,44,46,47,48,49,51,52, 

53,55,56,60,61,69, 70, 74, 75,86, 108 
RxBoundlA,56,85, 110 
RxCDn IA, 31, 89, 112 

RxCL/U, 31, 106 
RxCLK, 21-25, 29, 39, 42, 46, 55, 60 

RxCLKSrc, 24, 1 00 
RxCMode, 31, 103 

RxCRCEnab, 50, 51, 111 
RxCRCStart, 50, 64, 111 
RxCRCType, 50, 51, 111 

RxCUplA,31,89, 112 
RxD pins, 6, 21, 23, 24, 27-28, 29, 37, 38, 42, 46, 51, 

55,68 
RxDecode,25,38, 111 

RxEnable, 29, 37, 111 
RxFIF0,31,39,40,42,43,44,46,48,49,51,52,53, 

55,56,58,59,60,61,62,64,65,66-68, 71, 74, 75, 
85,86, 108 

RxLength,37,41,43, 47,48,51,52, 111 

RxMode,29,38,39,40,42,43,44,45,46,49,98-100 
RxOver,52,53,56,62,86, 108 
RxOverlA,56,85, 110 
RxParEnab,52,56, 111 

RxParType,52,56, 111 

RxRDnlA,32,89, 112 
RxResidue, 38, 48, 49, 108 
RxRL/U, 32, 106 

RxRMode, 31, 73, 74, 103 

RxRUp IA, 32, 89, 112 
RxStatBlk, 61, 63, 97 

RxSubMode,36,39,41,43,44,46,47,48,55,98-100 
RxSYNC, 31 

SDLC, 35, see a/so HDLC/SDLC 
Loop, see HDLC/SDLC Loop 

Second Byte Exception, see 2ndBE 

124 

Select 015-8 First (command), 65, 67 
Select 07-0 First (command), 65, 67 
Select RICRHi=/INT Level (command), 65, 86 
Select RICRHi=/RxREQ Level (command), 65, 74 
Select RICRHi=FIFO Status (command), 65, 67 
Select Serial Data LSB First (command), 65 

Select Serial Data MSB First (command), 46, 48, 65 

Select Straight/Swapped Memory Data, 117 
Select TICRHi=/INT Level (command), 65, 88 
Select TICRHi=/TxREQ Level (command), 65, 74 
Select TICRHi=FIFO Status (command), 65, 67 

Send Abort (command), 47, 65 

Send Frame/Message (command), 65, 66, 68, 70 

SepAd, 11, 95 
Separate Address, 11 
Separating Received Frames in Memory, 75 
Serial Bus, 27, 28 
Set EOF/EOM (command), 64, 66, 68 

Shared Zeroes (between Flags), 47, 50, 69 
Shaved (Stop bits), 24, 69 
Shift Register, 51 
ShortF/CVType,42,48,52,53,55,63, 108 

SICA, 23, 29, 31, 32, 59, 89, 90, 112 
Single 

Cycle (BRG), 23, 64 
Cycle (DMA), see Flyby 
Flag, 69 

Pulse (interrupts), 83 
Slaved Monosync, 45, 50, 99 
Software Requirements, Interrupt Service Routines, 80 
Software Reset, 66 

Source Address, 46 
Sources (of Interrupts), 78 

Space,34,39,45,68 
Parity, 52 

Square Wave, 43 
SRightA, 12, 95 

Start 
Bit(s), 33, 38, 45, 46, 64, 69 
Sequence(s), 40, 42 

Status Interrupt Control Register, see SICA 
Status Interrupts, see Receive and Transmit Status 

Interrupts, a/so Miscellaneous Interrupts 
Status Reporting, 52-56 
Stop Bit(s), 33, 38, 39, 41, 55, 56 

Shaved,24,69 
Stopping the Clocks, 24-25 
Strip (Sync), 43 



Strobe 
Address, see /AS pin 
Blocking (during OMA cycles), 73 
Data, see IDS pin 
Only One Active, 10, 73 

Read, see /RD pin 
Write, see /WR pin 

Supervisory (station), 49 
SYN, 44 
SYN-SYN, 44 
SYNO, 43 
SYN1, 43 
Sync Character(s), 34, 42-45, 50, 54, 55, 57-59, 64, 

85, 88 
Closing, 68 

Idle, 68 
Opening, 69 

Sync Input, 35, 42 
Synchronizing Frames/Messages with Software 

Response, 70 
Synchronous, 70,42,52 

Clocking, 24 

Table of Contents, 2 
TCOR, 23, 64, 113 
TCORSel, 23, 110 

TC1R, 23, 64, 113 

TC1 RSel, 23, 115 

TCB, 42, 48, 57, 58, 60-61, 64, 66, 74 

Using for 1553B, 63 
TCC, 43, 50, 57-59, 64, 66, 68, 74 

Logic Model, 58 

TCCR, 58, 61, 113 

TCLR,57,58,61,64,66, 114 

TCmd,47,63,67,68, 70, 74,88, 114 
TCSR,25,37,43,45, 47,48,49,50, 54, 65,67,68, 

69, 70, 74, 86, 88, 114 

TD IE, 88, 90, 104 
TDIP,65,88, 89,90, 101 
TD IUS, 88, 89, 90, 101 
TOR, 12, 13, 58, 60, 64, 66-68, 115 

Test Mode, 8 
Control Register, see TMCR 
Data Register, see TMDR 

Threshold (Request), see Level 
TICR, 54, 65, 67, 68, 69, 70, 74, 88, 115 

Time Constant 0 Register, see TCOR 
Time Constant 1 Register, see TC1 R 
Timing Parameters, 8, 17 

125 

TMCR, 8, 112 

TMDR, 8, 112 

TMR, 25, 30, 37, 43, 45, 49, 50, 52, 64, 68, 70, 116 

Transitions, 27 
Transmit 

Character 
Clock, 31 
Count Register, see TCCR 
Counter, see TCC 

Clock(s). 21-25, 26. see also TxCLK, frxC pins 

Command/Status Register, see TCSR 
Complete, see Tx Complete 
Control Block, see TCB 
Count Limit Register, see TCLR 
Data, see TxD pins 
Data Interrupt, 88 

Enable, see TD IE 
Pending, see TD IP 
Request Level, 88 
Under Service, see TD IUS 

Data Register, see TOR 
OMA 

Acknowledge, see /TxACK pins 
Request, 6, 31-32, 58, 60, 65, 74, see also 

/TxREQ pins 
Request Level, 74 

Interrupt Control Register, see TICR 
Mode Register, see TMR 
Status Block, see TCB 
Status Interrupt, 86-88 

Enable, see TS IE 
Pending, see TS IP 
Under Service, see TS IUS 

Sync Register, see TSR 
Transparency,35,44 
Transparent Bisync, 29, 44, 50, 51, 55, 56, 60, 61, 62, 

64, 74,85,99 
Trigger 

Channel Load OMA (command), 66, 74, 94 
Rx OMA (command), 57, 66, 70, 71, 74, 75 
Tx OMA (command), 57, 60, 66, 70, 74 

TSIE,90, 104 
TSIP,86,88,90, 101 
TS IUS, 90, 101 
TSR, 43, 45, 65, 116 

Two Cycle (OMA), see Flowthrough 
Tx Complete, 31, 45 

TxAMode, 32, 75, 102 

TxCDn IA, 31, 89, 112 

TxCLJU, 31, 106 



TxCLK, 21-25, 30, 39 

TxCLKSrc, 24, 100 
TxCMode, 31, 103 

TxCRCatEnd, 43, 50, 68, 70, 116 
TxCRCEnab, 50, 116 
TxCRCStart, 50, 64, 116 
TxCRCType, 50, 116 
TxCtrlBlk, 57, 60, 63, 64, 66, 97 
TxCUp IA, 31, 89, 112 
TxD pins, 6, 21, 24, 26, 27-28, 30, 37, 38, 39, 43, 49, 

54, 68 
TxDMode, 28, 37, 39, 103 

TxEmpty, 54, 93, 114 

TxEnable, 30, 37, 116 
TxEncode,25,37,38, 68, 116 
TxFIF0,31,40,42, 44, 45,47,48,49, 50,51,54,57, 

58,60,64,65,66-68, 69, 70, 73, 74, 88,89 
Txldle, 37, 43, 45, 47, 49, 54, 65, 68, 69, 88, 114 
TxLength,37,41,43,48,52, 116 

TxMode,38,39,40,43,44,45, 46,49,50,68, 69,88, 
98-100 

TxParEnab,48,52, 116 

TxParType,52, 116 
TxPreL,45, 47,54, 69,97 

TxPrePat, 45, 47, 54, 69, 97 
TxRDn IA, 32, 89, 112 

TxResidue, 48, 60, 96 
TxRLJU, 32, 106 

TxRMode, 31, 73, 103 
TxRUp IA, 32, 89, 112 
TxShaveL,24,38,97 
TxSubMode, 24,36,38, 39, 40, 41,43, 44,46,47, 49, 

50, 60, 63, 65, 68, 69,98-100 

TxUnder, 25, 54, 114 

TxUnder IA, 54, 88, 115 
TypeCode, 91, 105 

Types (of Interrupts), 78, 85 

U//L, 11, 12, 95 
Underflow (RCC), 59 
Underrun, 43, 44, 45, 46, 47, 49, 50, 51, 68 
Unlatch, 86, 90 

Vee pins, 6 
Vector, see Interrupt Vector 
Vector Includes Status, see VIS 

VIS, 80, 91, 104 

Vss pins, 6 

126 

Wait, see /WAIT//RDY pin 
Wait2Send, 65, 66, 68, 69, 70, 115 

Wait4RxTrig, 66, 70, 71, 74, 75, 97 

Wait4TxTrig, 66, 70, 74, 97 
Word(s), 38, 40 

Command/Status, 55, 63 
Data, 55, 63 

Word Status, 52, 53, 110 

Write 
Strobe, see /WR pin 

X.21, 45 

2380,65 
28000,65,67 
Zeroes 

Inserted, 47, 48 
Shared, 50, 69 



ZILOG DOMESTIC SALES OFFICES 
AND TECHNICAL CENTERS 

CALIFORNIA 
Agoura 
Campbell 
Tus tin ........ . 

COLORADO 
Boulder ............... . 

FLORIDA 

..... 8 18-707-2160 
..... 408-370-8 120 

. ...... 7 14-838-7800 

. .... .. 303-494-2905 

Largo . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813-585-2533 

GEORGIA 
Norcross ........... .... . . .. 404-448-9370 

ILLINOIS 
Schaumburg ... ······-·· ·--·-········· - 708-5 17-8080 

MINNESOTA 
Minneapolis --· _____ .... ----·---·-····- .............. 612-944-0737 

NEW HAMPSHIRE 
Nashua .. _________ . __ .. _______ --- -- -- --- ... ... . . ....... 603-888-8590 

NORTH CAROLINA 
Raleigh ............... ... ........ .... ... . . .......... 919-790-7706 

OHIO 
Independence .... -- ······· ······ ...... .... ...... ..... 216-4 47- 1480 

PENNSYLVANIA 
Amb ler 

TEXAS 
Dallas .... 

WASHINGTON 
Seattle ....... ... ... ... ... . 

...... 215-653-0230 

-. -214-987-9987 

206-523-359 1 

© 1992 by Zilog, Inc. All rights reserved. No part of this document 
may be copied or reproduced in any form or by any means 
without the prior written consent of Zilog, Inc. The information in 
this document is subject to change without notice. Devices sold 
by Zilog, Inc. are covered by warranty and patent indemnification 
provisions appearing in Zilog , Inc. Terms and Conditions of Sale 
only. Zilog , Inc. makes no warranty, express, statutory, implied or 
by description, regarding the information set forth herein or 
regarding the freedom of the described devices from intellectual 
property infringement. Zilog, Inc. makes no warranty of mer-

DC 8280-02 

INTERNATIONAL SALES OFFICES 

CANADA 
Toronto -·--· 416-673-0634 

GERMANY 
Munich 
S6mmerda . 

. . . 49-89-672-045 
.......... .... .. .. 37-626-23906 

JAPAN 
Tokyo --..... 81-3-3587-0528 

HONG KONG 
Kowloon ···················- ······-···-·· · -- ..... 852-7238979 

KOREA 
Seoul ... ····· ···· · ..... . . ............. -82-2-552-5401 

SINGAPORE 
Singapore --··········· ······· ............. ..... .. ...... 65-2357 155 

TAIWAN 
Taipei -·-·····---········· · .... 886-2-7 41-3125 

UNITED KINGDOM 
Maidenhead .. ... . . . -. ----44-628-392-00 

chantability or fitness for any purpose. Zilog, Inc. shall not be 
responsible for any errors that may appear in this document. 
Zilog, Inc. makes no commitment to update or keep current the 
information contained in this document. 

Zilog, Inc. 210 East Hacienda Ave. 
Campbell, CA 95008-6600 
Telephone (408) 370-8000 
Telex 910-338-7621 
FAX 408 370-8056 


