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Zynq UltraScale+ Says ‘Hello World’
Congratulations to Xilinx and especially to the Zynq® UltraScale+™ MPSoC design team for
shipping the first Zynq MPSoC XCZU9EG one quarter ahead of schedule. This accomplish-
ment makes it a “three peat”—the third time in a row Xilinx has beat the competition to
market by being the first programmable-logic company to ship devices on a leading process
node. Xilinx was the first to 28 nanometers with the 7 series, first to 20nm with the
UltraScale™ family and now first to 16/14nm FinFET with the UltraScale+.  
The news broke on Sept. 30, when Xilinx announced it had sent the first sampling ship-

ments of the new device to two customers. The design went from tapeout to shipment in two
and half months, which is a true testament to the engineering skills of Xilinx®’s Zynq MPSoC
design and quality teams as well as the good folks at foundry TSMC. 
Xilinx received the first silicon in late September for characterization and test, and within

hours was able to boot an upstream Linux kernel on the new device (see video demo).

We highlighted the architectural features as well as the performance-per-watt advantages
of this exciting new device in the cover story of Xcell Journal issue 90. Implemented in TSMC’s
16nm FinFET+ process technology, the Zynq MPSoC features on a single device a quad-core
64-bit ARM® Cortex™-A53 application processor, a 32-bit ARM Cortex-R5 real-time processer
and an ARM Mali-400MP graphics processor, along with 16nm FPGA logic (with UltraRAM),
a host of peripherals, security and reliability features, and an innovative power control tech-
nology. The new Zynq UltraScale+ MPSoC gives users what they need to create systems with
a 5x performance/watt advantage over systems designed with the 28nm Zynq SoC.
In my tenure here as the publisher of Xcell Publications, it’s been truly remarkable to read

about the amazing innovations our readers have been able to create with our 28nm Zynq-7000
All Programmable SoC. So, I’ll be eagerly waiting to see what you will do with the new Zynq
MPSoC, with its many multiprocessing features. As the device becomes more broadly available
over the next few quarters, I hope you will share your Zynq MPSoC design experiences with
your peers by contributing articles to Xcell Journal and our new magazine for software devel-
opers, Xcell Software Journal. I look forward to reading about your remarkable designs.

Mike Santarini
Publisher

The video demonstrates an “upstream” Linux kernel booting on the new 
Zynq UltraScale+ MPSoC, the first member of the Xilinx UltraScale+ portfolio to ship. 
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Xilinx Speeds Customer 
Medical Innovations  
to Market 
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All Programmable platforms,  

medical-certified IP and software  

stacks enable Xilinx customers  

to bring life-saving equipment  

to market sooner.

E
lectronics affects our lives in 
so many ways, but one area 
where it is literally having a 
life-or-death impact is in the 
healthcare industry. People are 
living longer thanks in large 
part to continual advances in 
healthcare fueled by rapid im-

provements in medical electronics. Customers have 
created these innovations with Xilinx® All Program-
mable devices over the last three decades.  

Today, Xilinx FPGAs (and increasingly, sys-
tems-on-chips like the Zynq®-7000 All Program-
mable SoC) are at the heart of a growing number 
of medical systems. End products run the gamut 
from surgical robots, patient monitors, ventila-
tors, medical imaging (CT, MRI and ultrasound) 
and X-ray machines to defibrillators, endoscopy 
machines, infusion pumps and analyzers. FPGAs 
are also central to the high-performance comput-
ing systems that enable researchers to perform 
genomic sequencing at lightning speed and those 
that enable scientists and pharmaceutical compa-
nies to more quickly develop and refine medicines 
to treat the symptoms of diseases. 

The reason FPGAs have assumed such a key role 
in the medical market is simple. FPGAs—and more 
recently, Zynq SoCs—enable medical equipment de-
velopers to lower the risk of failures and speed their 
equipment through the regulatory process. With All 
Programmable devices, designers can take the func-
tions of their systems that must be highly reliable 
and implement them in the logic of the Xilinx de-
vices while running other, less-critical functions in 
software (Figure 1). 

“Medical technologies are evolving rapidly,” said 
Kamran Khan, senior product marketing engineer 
for Xilinx’s medical group. “They are getting much 
smarter, more connected, more integrated, more 
compact and less invasive for faster patient recov-
ery times. And, more important, they are better at 
what they do.” Demand for medical devices with ad-
vanced features is growing as the population world-
wide increases and as people live longer, thanks in 
part to the rapidly evolving healthcare advances of 
the last half century. 

LIVING LONGER, HEALTHIER LIVES   
The biggest growth driver of the healthcare indus-
try and thus the medical equipment market is the 
expected increase in the world’s population. Today, 
the global population stands at roughly 7.3 billion; 
by 2050, it is expected to grow to 9.7 billion. Where-

http://issuu.com/xcelljournal/docs/xcell_journal_issue_77/38?e
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as today, people 65 and older represent 
roughly 23 percent of the world’s popu-
lation, by 2050 that number is expected 
to be 32 percent, or 3.1 billion people. 
Those senior citizens are expected to be 
the segment of the population most like-
ly in need of regular medical care. 

“People are living longer than be-
fore, because our quality of life and 
understanding of medicine are bet-
ter,” said Khan. “Because people are 
living longer, we need better health-
care to support them in their older 
age, and we need to be able to supply 
this with less-invasive techniques that 
have fewer side effects.” 

Population growth along with the ag-
ing of the populace represents a great 
challenge for the world’s medical com-
munity as well as governments, which 
are increasingly turning to state-regulated 
healthcare. This population growth also 
serves as a grand opportunity for inno-
vation in medical electronics and other 
medical fields. As such, the medical mar-
ket is expected to grow to $212 billion by 
2019, with the semiconductor spend ex-
pected to reach $6 billion, said Khan.

used to have one machine that spe-
cialized in one particular task. Each 
of those machines was quite large, 
and if many different machines were 
needed, they occupied quite a bit of 
space in a hospital room.”

What’s more, Khan said, the systems 
wouldn’t necessarily communicate or 
be compatible with one another, which 
could cause other complications. So to-
day there is a demand to have a single 
piece of equipment perform multiple 
tasks. Similarly, users prefer a smaller 
form factor so that the equipment takes 
up less space and is easier to move from 
room to room. It’s even better if the equip-
ment is battery powered so that it can be 
used in areas with no electricity or in 
ambulances. Simultaneously, there is a 
growing need for each system to be able 
to interact with other pieces of equip-
ment in real time to, for example, change 
dosages of a medicine in response to a 
patient’s changing vital signs. 

“Patient monitors, for example, 
used to be quite simplistic, but not any-
more,” said Khan. “They used to take 
in a few channels of analog biotelem-

“The medical electronics industry 
used to be massively consolidated, and 
so companies like Siemens and General 
Electric could develop new generations 
of their systems at their own pace,” said 
Khan. “Nowadays, X-ray and ultrasound 
have become a commodity. Today, peo-
ple realize that it is not very difficult to 
get into these mature, low-risk applica-
tions, even with the regulatory burden. 
Now we are seeing a boom in medical 
equipment startups, and it’s a global 
boom, with a large number of new com-
panies from China and South America 
entering the market. Some countries, 
like China and Brazil, favor domestic 
products, so there are new companies 
emerging to serve these new markets.”

Khan said this new competition 
is of course increasing both time-to-
market pressure and pricing pressure 
for all players. At the same time, it is 
also driving greater value and innova-
tion into the medical world faster, for 
the benefit of us all.

“The market is demanding more 
integration of features and more por-
tability,” said Khan. “Medical facilities 
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etry, apply some very simple process-
ing to it and display the information 
on a monitor. It was quite simple, so 
a lot of this was done with embedded 
processors from companies like TI 
or Freescale. But nowadays, medical 
equipment must be more integrated 
and smarter. Systems must be able to 
communicate and work in concert.”

For example, he said, a patient monitor 
must be able to talk to the ventilator and 
infusion pump. If a patient’s vital signs be-
gin to spike, both systems must respond 
appropriately, with the ventilation pump 
adjusting the oxygen mix and the infu-
sion pump adjusting the medicine dosage. 
“They also have to communicate to the 
hospital’s main network to keep staff ap-
prised of emergencies,” Khan said. More-
over, the information must be kept as part 
of the patient’s long-term medical record.

Khan said that the healthcare indus-
try is also embracing the Internet of 
Things, cloud computing and the mod-
ern network infrastructure. All of these 
developments are making it possible to 
monitor the health of outpatients and re-
cord health patterns remotely, as well as 
being able to react in real time to emer-
gency situations. There is a burgeoning 
industry to monitor patient health in real 
time much in the same way as home se-
curity companies monitor property.

THE EVER-GROWING  
REGULATORY CHALLENGE   
In the midst of this industry growth and 
drive toward smarter, more connected 
and more integrated medical systems, 
vendors are faced with ensuring that 
their equipment conforms to increas-
ingly more stringent safety and reliabil-
ity regulations from a growing number 
of regulatory bodies worldwide.

‘Nowadays, medical equipment must be  
more integrated and smarter. Systems must  
be able to communicate and work in concert.’ 

 A changing regulatory environment 
is often cited as the single biggest chal-
lenge medical equipment companies 
face today. Companies can’t legally sell 
their products until their systems clear 
relatively strict regulatory guidelines 
and testing. Medical equipment failure 
can lead to medical liability lawsuits.

The amount of regulation depends 
largely on the type of equipment a com-
pany wants to bring to market and scales 
accordingly. Less-critical equipment that 
doesn’t touch the patient’s body typically 
requires a regulatory cycle that’s roughly 
half a year, while equipment performing 
more-critical functions that do touch 
a patient’s body requires roughly two 
years’ worth of approval cycles before 
release to the market.

“Even in established markets like 
patient monitoring or ultrasound, they 
still require a regulatory cycle of a year 
to a year and half, typically because 
there is so much documentation and 
testing required,” said Khan. “They 
have to create a technical file that sup-
ports their product, submit the docu-
mentation to the regulator which, after 
a long review cycle, passes or fails the 
product. The goal is to pass on the first 
try, because if they don’t pass, the sec-
ond review is even more detailed and 
can involve an even longer cycle. It’s 
like being audited by the IRS.”

Khan said the real goal is to under-
stand and quantify the risk a medical 
system poses. “The perception is that 
medical devices can’t fail, but regulato-
ry bodies know that everything fails,” 
said Khan. “What they want to do is have 
OEMs understand and lower the failure 
risk, at the same time knowing all pos-
sible cases in which a device could fail 
and what will happen if it does.” 

Khan said that while the various reg-
ulatory bodies worldwide scrutinize both 
hardware and software, they tend to look 
hardest at software, since failures in soft-
ware are believed to be more likely to 
cause the system to fail into an unknown 
state. “Most people have encountered 
software bugs on their PCs or mobile de-
vices and not so commonly on the actual 
hardware, so software typically comes 
under greater regulatory scrutiny in gen-
eral in medical devices,” Khan said.

“A lot of medical devices coming to 
market typically require embedded pro-
cessors,” he went on. “They may not 
require a lot of compute horsepower 
but they have some amount of embed-
ded processing and thus software. The 
challenge is, how do I show to regulato-
ry bodies and to customers that the de-
vice is safe and won’t hurt patients? For 
example, if it’s an infusion pump that’s 
delivering my daily medicine, how do 
I know that it is delivering the right 
amount of medicine on time and that it 
won’t stop in the middle of the night?” 

And as devices become more com-
plex to perform multiple tasks, the 
code also becomes more complex and 
much larger. “‘Reliable’ software is still 
something that isn’t well understood,” 
said Khan. “Software is very complex; 
it’s hard to debug and understand the 
risk of it. This high potential for failure 
results in high risk, even for mundane 
medical systems that aren’t life-critical.”

This is one of the main reasons why 
FPGAs and more recently, Zynq SoCs 
have become so popular with medical 
equipment manufacturers. With these 
All Programmable devices, compa-
nies can lower the risk of failures and 
speed up the regulatory process. They 
can essentially take functions of their 
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system that must be reliable and imple-
ment them in the logic of the Xilinx de-
vices while placing other, less-critical 
functions in software.

XILINX DEVICES SPEED 
MEDICAL INNOVATION   
Khan said that with its decades of expe-
rience serving the medical electronics 
sector, Xilinx has developed a compre-
hensive medical toolbox consisting first 
and foremost of Xilinx’s All Program-
mable FPGAs and SoCs. The toolbox 
also contains certified design tools and 
methodologies to ensure quality, reli-
ability and redundancy, along with tried-
and-true silicon IP and software stacks 
from Xilinx and members of the Xilinx 
Alliance Program. The company’s new 
SDSoC™ development environment 
will enable medical customers to even 
more quickly create optimized systems 
with critical functions implemented in 
the Zynq SoC’s logic while less-critical 
functions run on the Zynq SoC’s ARM® 

processing system (Figure 2).  

For the last 10 of the 30 years that 
Xilinx has been serving the medical 
market, FPGAs have been rapidly dis-
placing ASICs and ASSPs in medical 
gear. Medical equipment is sold in rel-
atively low volumes worldwide, and 
so the cost, coupled with the strict and 
time-consuming testing-and-regulatory 
process, makes ASICs and ASSPs pro-
hibitive. As a result, a vast majority of 
medical equipment today employs Xil-
inx devices in some capacity. 

Starting in the late 1980s and early 
1990s, said Khan, customers began us-
ing Xilinx’s smaller FPGAs as sensor 
interfaces in medical equipment. But 
over time, companies started adding 
more-critical functions to the devices 
as FPGAs began displacing ASICs and 
ASSPs. In the newest equipment, Xilinx 
devices are playing a pivotal role at the 
heart of these systems, especially with 
the Zynq SoC and the recently shipped 
Zynq UltraScale+™ MPSoC, which has 
additional safety and security features 
beyond those offered in the Zynq SoC.

“With our Zynq SoC portfolio, we are 
able to reduce risk and speed medical in-
novations to market,” said Khan. “We are 
able to take in the design’s software ele-
ments with our new SDSoC tools, imple-
ment them in programmable-logic fabric 
instead of in software and then add in lay-
ers of redundancy to provide more layers 
of reliability in these systems.”

For example, said Khan, if a company 
is designing an infusion pump, part of the 
system will be controlling the motors so 
as to deliver the medicine in exact quan-
tities at the exact time specified, with the 
metrics staying exactly where a doctor set 
them. Meanwhile, another part of the in-
fusion pump is biotelemetry—monitoring 
the patient and ensuring he or she is OK. 

“Using our isolation design flow, cus-
tomers can partition their system into 
critical and noncritical functions, imple-
ment critical functions in logic and create 
physical barriers between critical func-
tions in the system,” said Khan. “They 
can build in extra safety measures so that 
if a failure condition may occur, it shuts 
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down in a safe and predictable manner. 
Furthermore, they can show regulatory 
bodies that they are building their design 
in trusted Xilinx fabric. And then, using 
reports from our IDT tool, they are also 
able to show regulators the signal paths, 
predictable outcomes and fail-safes.”

With Xilinx’s new SDx development 
environments (SDAccel™ for C, C++ 
and OpenCL™ design entry into FPGAs; 
and SDSoC for C/C++ design entry in 
Zynq SoCs), medical equipment com-
panies can now develop the prototype 
of their systems in C; determine what 
functions, both critical and noncritical, 
would best be suited to running in hard-
ware and software; and then use the 
isolation design flow to implement the 
hardware functions in greater detail and 
add layers of redundancy for further re-
liability. “Using a system-level methodol-
ogy can cut months out of a design cycle 
at the back end,” said Khan. 

Khan noted that with Xilinx’s rich his-
tory serving the military and space com-
munity, Xilinx’s commercial devices used 
in medical applications already exceed 
any requirements for radiation tolerance. 
Xilinx also diligently ensures that its de-
vices, its Vivado® Design Suite and IP (its 
own and cores from alliance members 
serving the medical device market) ad-
here to strict quality and safety standards. 
Among them are the ISO 60601 3rd edi-

tion and ISO 13485 medical device design 
standards, and international standards in-
cluding ICE 61508 (functional safety) and 
ICE 62304 (RTOS integration). The result 
is to speed customer end-product designs 
through the regulatory processes.

“Customers have to get certification 
on their end products, rather than the 
individual devices, but what we do is en-
sure our devices, tools and IP conform 
to these standards,” said Khan. “For ex-
ample, ICE 62304 is a standard for RTOS 
integration. Alliance member QNX’s 
RTOS has already been precertified for 
62304, so using it on the Zynq SoC can 
cut six months off the certification pro-
cess. Likewise, alliance member TOPIC 
Embedded Products offers remarkable 
IP to further speed prototyping and 
design. Their IP, design flow and SOM 
board are precertified to be compliant 
with the ISO 13485 quality-management 
standard. This enables customers to cut 
even more time off the regulatory pro-
cess” (see video, Figure 3).

A PLATFORM PLAY  
With the increased regulatory burden 
and mounting time-to-market pres-
sures, many medical companies today 
are employing platform design business 
strategies built around the Zynq SoC.    

“The market is quickly coming to 
the realization that it can’t build each 

product from scratch and that it needs 
to take a scalable approach to its prod-
uct lines,” said Khan. “Platform-based 
design and cost-sizing are huge, for ex-
ample, in the medical imaging space, 
where companies offer a portable ver-
sion, low end, midrange and high end 
in a product line. By designing one 
platform based on the Zynq SoC for 
the high end, they can use the same 
hardware at each level and scale the 
functions to suit the needs of each end 
market by reducing features.”

A platform approach built around the 
Zynq SoC has many advantages over a 
platform composed of multiple discrete 
parts, said Khan. “Medical devices are 
typically on the market from 10 to 15 
years, much longer than consumer prod-
ucts, which typically have a two- to three-
year lifespan,” he said. “Medical devices 
are typically in design for three years, can 
go through regulatory approval for an-
other one to three years and then have to 
be in the market for 10 more years. But 
most embedded processors today have a 
lifespan of about five years and then they 
are end-of-lifed for a newer version of the 
device. That’s because most are designed 
mainly for the consumer market. But 
in the medical device industry, if a chip 
needs to be changed for a newer one be-
cause the older version isn’t available any 
longer, the product needs to go through 
the regulatory process again.” 

Khan said the Zynq SoC and MPSoC 
families give customer designs the per-
formance advantages of an embedded 
processor or multiple processors plus 
the flexibility, product differentiation and 
safety of programmability. On top of all 
that is I/O flexibility to accommodate a 
vast range protocols, sensors and video 
configurations. “Integrating multiple sys-
tem functions in the Zynq SoC and MPSoC 
families saves space, lowers BOM cost 
and lowers power drastically compared 
with multichip platforms and speeds med-
ical innovations to market,” said Khan.

For more information on Xilinx in med-
ical applications, visit http://www.xilinx.
com/applications/medical.html.  

Figure 3 – TOPIC Embedded Products’ Dyplo IP helps speed medical product design and development.
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http://issuu.com/xcelljournal/docs/xcell_journal_issue_88/8?e
http://www.xilinx.com/applications/medical.html
http://www.xilinx.com/applications/medical.html
https://www.youtube.com/watch?v=pYbZgMTExD0
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C
rowd surveillance and 
monitoring have become 
an area of great importance 
in current times. Govern-
ments and security depart-
ments have started looking 

for more advanced ways to intelligently 
monitor human crowds across public plac-
es to detect any unusual activity before it 
is too late to react. However, there are 
still some barriers to cross before achiev-
ing this goal effectively. For example, if it 
is desired to monitor all possible crowd 
activities across a whole city at once, 24 
hours a day, then it is certainly not possi-
ble through all-manual monitoring only, 
especially when there are thousands of 
CCTV cameras installed. 

The solution to this problem lies in 
developing new, intelligent cameras or 
vision systems that could autonomously 
monitor the activities of human crowds 
through advanced video analytics tech-
niques, and therefore could immediate-
ly report any unusual event to a central 
control station.

The design of such an intelligent cam-
era/vision system would require not only 
the typical imaging sensors and optics, 
but also a high-performance video pro-
cessor to perform video analytics. The 
reason for having such a powerful video 
processor onboard is the high process-
ing requirements of sophisticated video 
analytics techniques, most of which use 
computationally intensive video-process-
ing algorithms.

FPGAs are ideally suited for such 
performance-hungry applications. And 
thanks to the UltraFast™ design meth-
odology enabled by high-level synthesis 
(HLS) in Xilinx®’s Vivado® Design Suite, 
it’s now possible to create an optimal 
and high-performance design for FPGAs 
with great ease. Further, the fusion of an 
embedded processor such as the Xilinx 
MicroBlaze™ inside the FPGA’s recon-
figurable logic means that applications 
with a complex control flow can now be 
easily ported to FPGAs.

Keeping this theme in view, we de-
signed a prototype for a human crowd 
motion-classification and monitoring 

A Spartan-6-based real-time  
motion-classification system  
opens new possibilities  
for autonomous monitoring  
and surveillance of crowds.
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system using Vivado HLS, Xilinx’s 
Embedded Development Kit (EDK) 
and software-based EDA tools from 
the ISE® Design Suite. Our design 
methodology was based on what we 
think of as a software-controlled, 
hardware-accelerated architecture. 
We targeted our design for the low-
cost Xilinx Spartan®-6 LX45 FPGA. 
The overall system design, which we 
completed in a short span of time, has 
demonstrated promising results in 
terms of real-time performance, low 
cost and a great flexibility of design.

SYSTEM DESIGN  
We accomplished the overall system de-
sign in two phases. In the first phase, we 
developed a human crowd motion-clas-
sification algorithm. After the verifi-
cation of this algorithm, our next step 
was to implement it in an FPGA. In this 
second phase of development, our main 
focus was on the architectural design 
aspects of an FPGA-based real-time vid-
eo-processing application. Tasks includ-
ed developing a real-time video pipeline, 
developing hardware accelerators and, 
finally, integrating them and implement-
ing algorithmic control and data flow to 
complete the system design. 

Let’s take a walk through each of 
these development stages, starting 
with a brief description of the algo-
rithm design followed by a detailed 
look at its subsequent implementation 
on the FPGA platform.

ALGORITHM DESIGN   
Various algorithms have been pro-
posed in the literature regarding crowd 
surveillance and monitoring. Most of 
these algorithms start with detecting 

the other patch’s processing, making 
this approach ideal for parallel imple-
mentation on FPGAs.

After computing motion vectors 
across the entire image, the algorithm 
computes their statistical properties. 
These properties include average mo-
tion vector length, number of motion 
vectors, dominant direction of motion 
and similar metrics. 

We also compute a 360-degree his-
togram of the direction of motion vec-
tors and further analyze its properties, 
such as standard deviation, mean and 
coefficient of variation. These statisti-
cal properties are then projected to a 
precomputed motion model to classify 
the current motion in one of several cat-
egories. We account for these statistical 
properties across multiple frames to as-
certain the classification results. 

The precomputed motion model 
is built in the form of a weighted de-
cision tree classifier that takes into 
account these statistical properties 
to classify the motion under obser-
vation. For example, if the motion 
is observed to be high and there is a 
sudden change in momentum in the 
scene while the direction of motion 
is random or out of the image plane, 
then it will be classified as a possible 
panic condition. The algorithm de-
velopment was done using Microsoft 
Visual C++ with the OpenCV library. 
A complete demonstration of this al-
gorithm can be found at the Web links 
provided at the end of this article.

FPGA IMPLEMENTATION   
The next phase in our system design 
was the FPGA implementation of our 
algorithm. Such an implementation 

(or placing) interest points in the hu-
man crowd scenes and tracking them 
over time to collect motion statistics. 
These motion statistics are then pro-
jected to some precomputed motion 
models to predict any unusual activity 
[1]. Further modifications include the 
clustering of interest points and track-
ing of these clusters instead of individ-
ual interest points [2]. 

Our algorithm for crowd-motion 
classification is based on the same con-
cept, except we preferred using a tem-
plate-matching scheme for performing 
motion estimation instead of the for-
mer approaches like the Kanade-Lucas- 
Tomasi (KLT) feature tracker. This tem-
plate-matching scheme proved much 
better for motion estimation in cases of 
low or varying contrast at the cost of a 
few more computations.

In order to perform motion estima-
tion using this scheme, we divided our 
video frame into a grid of smaller rect-
angular patches, and performed motion 
computation on the current and previ-
ous images in each patch using a meth-
od based on the sum of weighted abso-
lute differences (SWAD). Each patch 
in turn contributed one motion vector 
that depicts the extent and direction of 
motion in between two frames at that 
particular position. The result is compu-
tation of more than 900 motion vectors 
across the whole image. The steps in-
volved in computation of these motion 
vectors are shown in Figure 1.

We also utilized a weighted Gauss-
ian kernel to achieve robustness 
against occlusion and zero contrast ar-
eas in the image. Furthermore, the pro-
cessing of one patch for computation 
of a motion vector is independent of 

Using the sum of weighted absolute  
differences (SWAD), we computed more  

than 900 motion vectors across the image. 
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comes with its own design challenges, 
such as the fact that video input/output 
and frame buffering are now a part of 
FPGA-based design. Also, limited re-
sources and available performance may 
require necessary design optimizations.

Keeping these design aspects and oth-
er architectural considerations in view, 
we divided our overall FPGA-based im-
plementation in three parts. In the first 
part, we developed a generic real-time 
video pipeline into the FPGA to take 

Figure 1 – Steps in computing motion vectors, starting with image capture (top)

care of necessary video input/output 
and frame buffering. Then, in the next 
part, we developed algorithm-specific 
hardware accelerators. Finally, in the 
third phase of design, we integrated 
them together and implemented algo-
rithmic control and data flow. This com-
pleted our overall FPGA-based system 
design. 

It’s worth taking a closer look at each 
stage of the process.

REAL-TIME VIDEO PIPELINE  
A real-time video pipeline is the most 
important building block in developing 
any video-processing application for 
FPGA platforms. Such a pipeline hides 
the complex memory management re-
lated to video input/output and frame 
buffering from the user, and provides 
a simple interface for accessing video 
frame data for processing. 

Although there are several advanced 
and commercially licensed video pipe-
lines [3] available in this regard, we opt-
ed to build a customized video pipeline 
for this purpose. We built this pipeline 
around the Xilinx EDK, with custom 
video capture/display ports for handling 
video input/output data. The pipeline 
is easily configurable for other Xilinx 
FPGA families as well. 

The video capture port decodes the 
incoming video stream data from the 
video ADC and buffers it locally. It is 
then forwarded to the main memory for 
constructing a video frame. Similarly, 
the video display port encodes the video 
frame data present in a local buffer and 
forwards it to the video DAC for display 
purposes. The video input and output 
ports are connected to the main periph-
eral bus of a MicroBlaze host processor, 
which handles this video data traffic to 
and from the main memory. 

The video ports are capable of gener-
ating interrupts to inform the MicroBlaze 
processor that new data is available at 
the video input port or required by the 
video output port. The video ports carry 
out a “ping-pong” buffer-management 
scheme such that if the MicroBlaze is 
unable to immediately service a video 

http://locally.It
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port, then buffer overflow or underrun 
doesn’t happen. Figure 2 shows the in-
terconnection between the video ports 
and the MicroBlaze processor.

The video ports are designed to de-
tect and produce a video line number, 
field ID (in case of interlaced video) 
and other control information in the 
video input/output stream. This infor-
mation is passed to the MicroBlaze 
processor through the video ports’ in-
terrupt service routines (ISRs) when 
enough video data is buffered by the 
video input port or required by the vid-
eo display port. These service routines 
in turn perform the video data transfer 
between video port local memories 
and main memory via DMA.

In addition to video port ISRs, a 
set of higher-level video frame queue- 
management functions that we named 
the Video Frame Queue API operates 
in between these ISRs and a user-lev-
el application. This API maintains a 
queue of multiple capture and display 

frames to support double or triple 
frame-buffering schemes. A user ap-
plication running in MicroBlaze can 
easily acquire a video capture frame 
or can submit a video display frame 
using Video Frame Queue API func-
tions. Figure 3 shows these functions 
in their respective levels of hierarchy.

There are several benefits of using 
a MicroBlaze as a host processor to in-
terconnect various building blocks in 
the system. For example, we can eas-
ily interface with a wide range of ex-
ternal memories (SRAM, SDRAM, etc.) 
with MicroBlaze for loading or storing 
the video frame data from video ports. 
Similarly, we can use DMA controllers 
in the EDK for transporting video data 
between video ports and main memory. 
We also interfaced custom hardware ac-
celerators in the same fashion with the 
MicroBlaze processor.

These Video Frame Queue API 
functions together with video port 
ISRs and video input/output ports 

complete the construction of the vid-
eo-processing pipeline in our design. 
Figure 4 shows an actual video frame 
captured, processed and then dis-
played using this video pipeline on our 
FPGA. It also shows a picture-in-pic-
ture feature with a zoomed-out view 
of computed motion vectors. 

VIVADO HLS-BASED  
HARDWARE ACCELERATOR  
In the crowd motion-classification al-
gorithm we have described, the most 
time-consuming and computationally 
intensive task was to compute motion 
vectors. The other system task—that 
is, doing classification—did not in-
volve pixel-level processing and was 
pretty simple and easy to accomplish. 
Keeping this aspect of the design in 
mind, we built a hardware accelera-
tor for computing motion vectors. We 
designed, tested and later synthesized 
the accelerator in RTL using Xilinx 
Vivado HLS in the C/C++ language. 

Figure 2 – Video ports and their interconnection
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One of the key features of Vivado-gen-
erated RTL code is that it is optimal to a 
great extent. Vivado HLS synthesizes array 
accesses (such as pixel data stored in an 

array) into memory interfaces and auto-
generates required addresses by analyzing 
the code. It also analyzes precomputable 
offsets and constants to perform so-called 
“strided” memory accesses very fast. The 
strided memory accesses originate from 
accessing data from multiple rows of an 
image (such as in 2D convolution).

The key considerations in designing 
a Vivado-based accelerator were par-
allelizing the computation of motion 
vectors and maximizing the data read 
from the main memory. For this pur-
pose we used eight Block RAMs to load 
and store video frame data in parallel. 
The hardware accelerator core is capa-
ble of computing four motion vectors in 
parallel and for this purpose it utilizes 
all eight of these Block RAMs. The data 
pump to these Block RAMs from the 
main memory is controlled by the Mi-
croBlaze through DMA.

The hardware accelerator generated 
by Vivado HLS comes with some auto-
generated handshake signals that are 
necessary to start and stop the hard-

ware accelerator. These handshake 
signals include “start,” “busy,” “idle” 
and “done” flags. These flags are rout-
ed to the MicroBlaze processor through 
GPIOs to perform handshaking. Figure 
5 shows the interconnection between 
this hardware accelerator, the eight 
Block RAMs and the MicroBlaze pro-
cessor’s main peripheral bus.

The Block RAMs—named SA1, TA1 
to SA4, TA4 in Figure 5—are each 16 
kbytes in size. Each pair of SA1, TA1 
to SA4, TA4 holds enough data for the 
computation of one complete row of 
motion vectors. Thus, upon comple-
tion of its run, the hardware acceler-
ator outputs four rows of motion vec-
tors written back in the same Block 
RAM memories. These computed mo-
tion vectors are then read back by the 
MicroBlaze processor, which copies 
the result in its main memory as a grid 
of motion vectors. (Figure 4 shows an 
actual frame overlaid with a grid of 
motion vectors computed through this 
hardware accelerator.)

The hardware accelerator operates 
at 200 MHz and all the processing need-
ed to compute motion vectors across 
the whole image completes in less than 
10 milliseconds, including all data trans-
fers to and from memory. 

ALGORITHM CONTROL  
AND DATA FLOW  
With the video pipeline and hardware 
accelerator in place, the last step in 
completing the system was to inte-
grate these two elements with the Mi-
croBlaze host processor and to imple-
ment algorithm control and data flow 
at a user-level application in C/C++ 
using Xilinx’s Software Development 
Kit (SDK). Implementing algorithm 
control and data flow in the Xilinx 
SDK brings a great deal of flexibility in 
design. That’s because you can design 
and integrate new hardware accelera-
tors in the same fashion, and modify 
necessary control and data flow to in-
corporate new hardware accelerators. 
The result is a kind of software-con-
trolled, hardware-accelerated design 

Figure 3 – Video port ISRs and Video Frame 
Queue API functions
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Figure 4 – An actual FPGA-processed frame with motion vector grid overlaid at bottom right



X C E L L E N C E  I N  V I S I O N  S Y S T E M S

 20 Xcell Journal Fourth Quarter 2015

that is as flexible as an all-software imple-
mentation and as high in performance as 
an all-hardware implementation. 

The control and data flow of our 
crowd motion-classification algorithm 
starts by capturing a video frame 
through the Video Frame Queue API 
functions. When a frame is acquired, 
the user application transfers the cur-
rent and previous video frame data to 
the hardware accelerator and gets the 
motion vectors computed. 

At this point, the system computes 
the motion vectors’ statistical proper-
ties and classification results in soft-

ware. The reason for doing so is that 
these steps do not involve any pix-
el-level processing and add very little 
processing overhead. When the classi-
fication results are computed, their re-
sults and motion vectors are displayed 
on the processed frame using on-screen 
display functions. These OSD functions 
are also implemented in C/C++ in the 
Xilinx SDK. 

With all these building blocks (re-
al-time video pipeline, hardware accel-
erator and algorithm control/data flow) 
in place, our overall system design was 
completed. We tested our FPGA-based 

implementation in comparison with an 
earlier desktop PC-based implemen-
tation for accuracy of results. The two 
results were found to be identical. We 
used various test videos from the Uni-
versity of Minnesota database (http://
mha.cs.umn.edu/proj_recognition.sht-
ml) and from www.gettyimages.com 
for testing our system. 

IMPLEMENTATION RESULTS  
The overall design used only 30 percent 
of slice LUTs, 60 percent of BRAM and 
12 percent of DSP48E multiplier re-
sources on our Spartan-6-LX45 FPGA. 

Figure 5 – Vivado HLS-based hardware accelerator and its interconnections
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Figure 6 shows the hardware setup (top) 
and actual system output. The hardware 
setup consists of a Digilent Atlys Spar-
tan-6 FPGA board and a custom video 
interface card to provide video input/
output functionality to the FPGA using 
a video ADC and DAC. You can watch 

a detailed demonstration of this system  
on the following Web links: 

http://www.dailymotion.com/video/
x2av1wo_fpga-based-real-time-hu-
man-crowd-motion-classification-de-
mo_school

http://www.dailymotion.com/vid-
eo/x23icxj_real-time-motion-vec-
tors-computation-on-fpga_news 

http://www.dailymotion.com/video/
x28sq1c_crowd-motion-classifica-
tion-using-motion-vectors-statisti-
cal-features_school 

GREAT FUTURE POTENTIAL  
FPGAs are the ideal platform for per-
formance-hungry applications like  
real-time video processing. Develop-
ing such an application requires a few 
architectural considerations to fully 
leverage the performance of the cho-
sen FPGAs. Furthermore, utilizing ad-
vanced tools like the EDK and Vivado 
HLS, it’s possible to achieve an overall 
system design with much more effi-
ciency and in a much reduced develop-
ment time than in the past. 

Thus, there is great potential in im-
plementing performance-critical appli-
cations over FPGAs using these tools, 
as we have demonstrated in this proj-
ect. With a working platform in place, 
we hope to extend this work to ad-
dress more technical problems, such 
as automatic traffic monitoring, auto-
matic patient observation in hospitals 
and many more applications.  
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Test New Memory 
Technology Chips  
Using the Zynq SoC 
A platform based on Xilinx’s ZC706  
Evaluation Kit proved fast and flexible 
enough for MRAM testing at Qualcomm.
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T
he electronics industry is heav-
ily invested in the develop-
ment of new memory technol-
ogies such as PRAM, MRAM 
and RRAM. The performance 
of new memory technology 
test chips is improving rapidly, 
but work still needs to be done 

before these devices can go full-scale to compete 
with or replace conventional memories. 

Generally speaking, when a test chip for a new 
memory technology becomes available, basic tests 
have already been carried out to check for man-
ufacture-related problems such as stuck-at faults, 
transition faults and address-decoding faults. But 
another type of testing is necessary as well in the 
form of performance-related tests that will dis-
close how fast the chip can be reliably accessed, as 
well as how much the chip access speed impacts 
the performance of the whole computing system.

To successfully carry out the planned perfor-
mance tests, the test environment must be able to 
generate configurable digital waveforms to access 
the chip. It must also be able to construct an entire 
computing environment to measure the impact of 
chip access speed. There are many ways to create 
or purchase a test environment to satisfy these 
needs. But our team at Qualcomm decided to make 
our own environment based on Xilinx®’s Zynq®-
7000 All Programmable SoC ZC706 Evaluation Kit.

INS AND OUTS OF MEMORIES  
Conventional memory technologies like DRAM, 
SRAM and flash store ones and zeros using an elec-
trical charge in each memory cell. DRAM is wide-
ly used in PCs and mobile computing devices to 
run programs and to store temporary data. SRAM 
is commonly used as cache memory and register 
files in microprocessors. It is also frequently found 
in embedded systems when power consumption is 
a big concern. Unlike DRAM or SRAM, flash mem-
ory offers persistent storage after power is re-
moved from the system. Flash memory runs more 
slowly than the others, and might wear out with 
excessively high numbers of programming cycles. 

In comparison to conventional charge-based 
memory technologies, new memory technologies 
are based on other physical properties of their stor-
age elements. As an example, a memory element of 
magnetoresistive RAM  (MRAM) is formed from two 
ferromagnetic plates separated by a thin layer of in-
sulator. Each plate can hold a magnetization. One 
of them is permanent, the other can be changed by 
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an external field to store data. The stored 
data is read by measuring the electrical 
resistance of the element. MRAM is sim-
ilar in speed to SRAM and similar in den-
sity to DRAM. Compared with flash mem-
ory, MRAM runs much faster and suffers 
no degradation from programming.

REQUIREMENT ANALYSIS   
When devising a scheme for evaluating 
our MRAM test chip, we settled on a 
Zynq SoC approach because of the fol-
lowing considerations: 

•  The FPGA Mezzanine Card (FMC) 
interface on the ZC706 board provides 
high-speed signaling capability to and 
from the memory test chip through an 
FMC daughtercard.

HARDWARE AND SYSTEM 
ARCHITECTURE  
The hardware architecture of our chip 
test environment is illustrated in Fig-
ure 1. Software runs on the Zynq SoC’s 
ARM A9 processors, while the memo-
ry controller core is created using the 
programmable logic. We established a 
DMA channel between the PS and the 
controller core to move large blocks of 
data between them easily. The memory 
test chip resides on the FMC daughter-
card, and it talks with the memory con-
troller core through the FMC interface.

The system architecture is illustrat-
ed in Figure 2. The three layers on the 
bottom are hardware layers and the 
three layers on the top are software 
layers. We selected Linux as the oper-

•  The programmable logic (PL) portion 
of the Zynq SoC provides the ability 
to construct parameterizable memo-
ry controller cores. This is essential 
to meet the requirement that the test 
chip access speed can be varied.

•  The Zynq SoC’s processing system 
(PS), which consists of two ARM® 
A9 cores, provides the ability to 
modify test chip access speed 
through software.

•  The PS also makes it possible to 
construct a complete computing 
system. This is essential to meet 
the requirement that the test sys-
tem measure the impact of chip 
access speed on a full computing 
environment.

Software runs on the Zynq SoC’s ARM A9  
processors, while the memory controller core 

is created using the programmable logic. 

Figure 1 – Hardware architecture of the test environment
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ating system because it is open source, 
so the source code can be tweaked if 
needed. Although no tweaking was 
done in the current stage of develop-
ment, it might be necessary to take ad-
vantage of some unique properties of 
new memory chips down the road. 

The software we wrote at the appli-
cation layer fell into two categories. 
One category was for configuring the 
memory controller core, and the oth-
er one involved profiling the perfor-
mance of the memory chip and the 
performance of the whole system.

EASY MIGRATION OF  
HARDWARE AND SOFTWARE   
With help from the local Xilinx FAE, 
we brought up the test environment 
within a month. Most of our effort was 
spent on designing and implementing 
the interface between software and 
hardware layers. This is actually one 
of the reasons that we like the Zynq 
SoC: It contains both microprocessors 
and programmable logic in one device, 
which makes migrating functions be-
tween hardware and software fairly 
easy. In our design, we fine-tuned the 
software/hardware partition a couple 
of times and eventually settled on the 
one we liked. To comfortably work on 
a Zynq SoC-based system, one needs 

to understand both hardware and soft-
ware reasonably well. 

Another thing we liked was the 
Vivado® Design Suite tool chain. The 
Vivado environment intuitively shows 
the design blocks, automatically as-
signs register addresses and checks 
for errors before exporting hardware 
information to the software devel-
opment process. The Vivado Design 
Suite also provides in-system sig-
nal-level debugging ability, which is a 
must-have to pinpoint the root cause 
of any RTL issue.

The final thing we want to mention 
here is the Linux OS. Our software at 
the application level is heavily GUI 
based. The popularity of the Linux OS 
allowed us to leverage our previous ex-
perience on Linux GUI development so 
that we could get the test programs up 
and running quickly. 

QUICK AND COST-EFFECTIVE  
Using the Zynq-7000 All Programma-
ble SoC ZC706 Evaluation Kit, our 
team quickly constructed a complete 
computing environment for testing 
new memory technology chips at 
minimal cost. We expect to one day 
use the same design methodology to 
build similar systems for other pur-
poses as well. 

Figure 2 – Test environment’s system architecture
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Unleashing  
High-Performance  
USB Devices with 
Artix-7 FPGA

The low-power Xilinx  
FPGA family puts  
bus-powered USB device  
designs within easy reach.
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With several billion ports in the marketplace, Universal 
Serial Bus (USB) is the go-to interface for subgigabit 
connections between hosts and peripheral devices. 
However, due to the USB specification’s stringent in-
rush and steady-state operating-current limitations, 
FPGAs were often overlooked for bus-powered device 
applications in favor of lower-performance, less flexi-
ble microcontroller solutions. 

With the arrival of the Artix®-7, the latest addition to 
the Xilinx® low-power device portfolio, this is no lon-
ger the case. Paying careful attention to system-level 
power conversion efficiency and sequencing, and using 
the power estimation and optimization tools available 
in the Vivado® Design Suite, designers can overcome 
these challenging limits to provide a tightly integrated, 
tailored bus-powered device with high performance. 

Let’s take a look at how to build a USB 2.0 high-
speed bus-powered device around an Artix-7 Micro-
Blaze™-based platform. We successfully used this 
approach at Anritsu in the development of a recent 
microwave power measurement product. The new 
design’s USB 2.0 High-Speed interface provides a sub-
stantial increase in measurement throughput com-
pared with the USB Full-Speed microcontroller-based 
solution used in the previous-generation product. In-
creased measurement throughput reduces test time in 
a manufacturing production test application. The re-
sult is a cost savings for our customers.

SYSTEM DESIGN  
In our project at Anritsu, we knew the major obsta-
cle we had to overcome was going to be the 500-milli-
amp (5-volt nominal) steady-state current draw limit. 
Therefore, our approach to system design centered 

by Tom Myers 

Senior Hardware Engineer

Anritsu Company

tom.myers@anritsu.com W

mailto:tom.myers@anritsu.com
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around the power budget. We tabulat-
ed typical and maximum current draws 
from datasheet numbers on a power 
budget spreadsheet. 

A large part of the power budget 
was driven by the minimum off-chip 
memory requirement of 200 Mbytes. 
The best fit for this requirement was 
found to be a standard 4-Gbit LPDDR2 
device. We generated current-draw 
estimates for this device with the de-
tailed methodology provided by ven-
dor application notes, applying the 

the various peripherals using Vivado’s 
IP Integrator tool. We quickly obtained 
a synthesizable target and refined the 
power consumption numbers with 
Vivado power reports. 

Since MIG doesn’t provide a native 
AXI connection to LPDDR2 devices, 
we developed this link later in-house. 
Until our shim was available, we used 
the MIG-generated LPDDR2 example 
design for these preliminary power es-
timate and sizing builds. Figure 1 shows 
the resulting system architecture.

estimated data flow profile. We also 
evaluated various programmable de-
vices and other solutions with tools 
such as Xilinx Power Estimator with 
assumptions as to the functionality, 
clock speed and toggling rates. 

We identified a few candidate de-
vices and refined the power, size and 
I/O estimates by building out a subset 
of the complete system with a Micro-
Blaze, the memory controller (using 
Memory Interface Generator, or MIG) 
and adding in the interface blocks for 

Lowering the device’s die temperature  
reduces leakage power consumption.  

Strategies include minimizing device die size 
and selecting the largest package possible. 

 

Artix-7 USB Bus-Powered Device Architecture
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Figure 1 – System architecture for our Artix-7-based design
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As described in the “Vivado De-
sign Suite User Guide: Xilinx Power 
Analysis and Optimization” (UG907), 
lowering the device’s die temperature 
reduces leakage power consumption. 
Strategies we used included minimiz-
ing the device die size and selecting the 
largest physical device package possi-
ble, given the application’s tight board 
real estate constraints.

We minimized conversion losses and 
regulator circuitry costs by reducing the 
number of voltage rails. After locking 
down the device power requirements, 
we designed the voltage-conversion 
circuits to step down from the nominal 
USB 5-V bus voltage to these rails. 

Up to this point, we have been focus-
ing on steady-state current draw. How-
ever, one must also keep in mind inrush 
current draw. One way to minimize in-
rush current is to select regulators with 
soft-start capability and sequence them. 
You must carefully balance the FPGA’s 
sequencing and ramp time require-
ments with the USB requirements.

EXPECT THE UNEXPECTED    
Although various mechanisms are 
provided to gracefully shut down and 
remove USB devices, in reality many 
users will abruptly unplug the device 
without warning. This can be a prob-
lem if the firmware update process is 
not sufficiently robust, leading to non-
responsive, “bricked” devices, unhap-
py customers and expensive device 
returns for firmware recovery. Anrit-
su competes on the basis of reliabil-
ity and speed for high-volume man-
ufacturing test. Therefore, our main 
requirements included fast boot time 
and fast firmware update time. 
 We solved this problem by imple-
menting the QuickBoot golden-image 
firmware update architecture and pro-
cesses described in Xilinx application 
note XAPP1081 and summarized in 
Figure 2. The traditional 7 series fall-
back multiboot solution provides a boot 
process that maintains a known-good 
“golden” image including bitstream in 
the configuration flash memory. During 

the update process, an updated “work-
ing” image is loaded in memory after 
the golden image. If the update process 
fails, or the working image is somehow 
corrupted, the FPGA automatically 
detects the error and falls back to the 
golden image. The XAPP1081 Quick-
Boot method extends this procedure 
with improved configuration time and 
golden-image update features. 

Based on the success of this project, 
we are looking ahead to how the next 
generation of devices from Xilinx might 
enable additional functionality for An-
ritsu products. For example, a large 
amount of the power budget is con-
sumed by the off-chip SDRAM intercon-
nect. We look forward to investigating 
how we might use the newer 16-nano-
meter UltraScale+ lineup’s UltraRAM to 
reduce or eliminate this load and per-
haps put the ARM7-enabled Zynq®-7000 
All Programmable SoC product line in 
reach for our application. 

For further information, contact 
tom.myers@anritsu.com.  

Figure 2 – QuickBoot flash memory components and configuration method
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S
ugar is an important food ingre-
dient that’s widely used in day-to-
day life. More than half of the total 
global supply of raw sugar is pro-

duced from sugarcane. India is the second 
largest sugar manufacturer in the world 
after Brazil, with 60 million cane farmers 
and their dependents involved in cane cul-
tivation, making for a $12 billion business. 

Because the extraction of cane juice 
is a nonlinear process, our team looked 
to fuzzy logic for a way to improve the 
flow. Analysis by researchers at the 
Mody Institute of Science and Technolo-
gy (MITS) reveals that the performance 
of our fuzzy-based controller, designed 
and implemented in a Xilinx® FPGA, has 
proven better than that of a conventional 
controller. With the specific parameters 
for crushing 2,500 tons of cane per day, 
a flow rate of 26.6 kg/second is required. 

Before looking into the details of how 
we implemented our three-input fuzzy 
controller, it’s helpful to understand the 
basics of sugar manufacturing.

HOW CANE IS EXTRACTED   
A schematic of the cane juice extraction 
process is shown in Figure 1. The cane 
billets that the sugar mill receives from 
cane growers are weighed and dumped 
in the cane yard. From there, a crane lifts 
them to the cane carrier. The cane carrier 
moves continuously and is responsible 
for bringing the cane to the factory floor 
for sugar production. 

The cane first passes through two sets 
of rotating knives. Cane knives cut the 
cane into pieces, while shredder knives 
prepare the fiber. A rake carrier feeds 
these small fibers, which measure rough-
ly 1 to 2 cm, to a Donnelly chute. Cane 
juice is extracted by crushing the fibers 
in two or three rolls of the mill. This pro-
cess is repeated through sets of five or six 
mills. Residual cane known as bagasse 

A three-input fuzzy controller implemented 
in a Xilinx Virtex-6 FPGA maintains the cane 
level during the sugar-manufacturing process. 

is sent to the boiler, where it is burnt as 
fuel, while the extracted juice is sent for 
clarification and then to the pan section, 
where sugar is made from the juice.

The supply of cane for processing is 
very uneven, and this uneven supply of 
cane during juice extraction adversely af-
fects the efficiency of the sugar mill and 
can cause mill breakdown, stoppage and 
jamming of the equipment. For optimum 
juice extraction, it’s necessary to main-
tain the cane level in the Donnelly chute 
at a desired height. 

We expected that fuzzy logic would 
nullify the uneven supply of cane and 
maintain the cane level at the desired 
height by varying the speed of the rake 
carrier better than conventional control-
lers. This is why we made an attempt to 
introduce the concept of fuzzy logic to 
the sugar world. 

Our first step in 2014 was to design a 
two-input fuzzy controller [1] that pre-
cisely monitored the variation in two 
parameters: weight of cane on the rake 
carrier and height of cane in the Don-
nelly chute.The controller aims at main-
taining a constant level in the chute so 
as to maintain the needed flow rate of 
26.6 kg/s. When we compared the re-
sults with those of the conventional con-
troller, it was clear that the two-input 
fuzzy controller performed much bet-
ter. Since the cane is crushed between 
the rolls, we decided as an experiment 
to introduce a third parameter—roll 
speed—on the same algorithm. The ad-
dition of this third parameter revealed 
that roll speed is an equally important 
variable as the other two. 

So, later in 2014 we introduced 
roll speed as our third parameter [2]. 
We redesigned the algorithm with 
this additional parameter and imple-
mented it using MATLAB®. When the 
software implementation of our new 

http://chute.The
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three-input controller was completed 
[3], the next step was to implement the 
algorithm and develop an entire fuzzy 
system using a Xilinx FPGA. FPGAs 
are reprogrammable silicon chips that 
provide real-time hardware imple-
mentation of electronic circuits. They 
are highly reliable, cost-effective and 
provide a medium to check the per-
formance of a circuit before fabrica-
tion. Thus, the Xilinx Virtex®-6 FPGA 
turned out to be a perfect solution for 
our hardware implementation.

HARDWARE DESIGN    
Figure 2  shows the algorithm for a 
three-input fuzzy controller. The con-
trol philosophy remains the same as in 
the two-input version, modified accord-
ing to the three inputs and implemented 
on MATLAB. The control philosophy 
is such that it governs weight, height 
and the three conditions of roll speed: 
that is,when the speed is Roll Low (RL; 
12 cm/s), Roll Medium (RM; 14.3 cm/s 
(RM) and Roll High (RR; 16.6 cm/s). 

After designing the controller on 
MATLAB, our next step was to design 
the hardware required to measure the 
input parameters. Load cell measures 
the amount of cane on the rake carri-
er. To measure the level of cane in the 

the Sugeno method of design is much 
simpler. Therefore, we adopted the Suge-
no method of implementation. 

The first and foremost step, fuzzifica-
tion, includes conversion of crisp values  
to fuzzy values, which are then represent-
ed by membership functions. Crisp val-
ues are those that belong to a particular 
set; fuzzy values lie in a particular range 
and are not confined to a particular set.

The three input variables are weight, 
height and roll speed. A triangular mem-
bership function is used to represent 
these input variables. The universe of dis-
course of input parameter “WEIGHT” is 
in the range of 500 kg to 1,000 kg, and it is 
fuzzified into 11 triangular linguistic vari-
ables (LV). The universe of discourse of 
input parameter “HEIGHT” is in the range 
of 0 to 180 cm and it is fuzzified into seven 
triangular LVs. The universe of discourse 
of input parameter “ROLLSPEED” is in 
the range of 12 cm/s to 16.6 cm/s and it is 
fuzzified into three triangular LVs. 

The fuzzification in terms of VHDL 
code is done as follows. We defined each 
membership function by three points and 
two slopes, as shown in Figure 3. The 
upward slope (Slope 1) and downward 
slope (Slope 2) can be evaluated using 
the following formula:

S1= (y2-y1/Point2-x1) 

S2= (y2-y1/x2- Point 2) 

The degree-of-membership (DOM) 
function (µ) forms the next step of fuzzi-
fication. Our algorithm divides a member-
ship function into four segments, namely 
Segment-1(µ=0), Segment-2{(Input - point 
1)* slope 1}, Segment-3{(Input-point 2)* 
slope 2} and Segment-4 (µ=0). The value 
of DOM is calculated as follows:

•  If input value < Point 1 (Segment 1), 
then DOM =0.

•  If input value ≤ Point 2 and ≥ Point 1 
(Segment 2), then DOM = (Input Val-
ue –Point 1) * Slope 1.

•  If input value ≤ Point 3 and ≥ Point 1 
(Segment 3), then DOM = FF- (Input 
Value –Point 2) * Slope 2.

•  If input value ≥ Point 3 (Segment 4), 
then DOM = 0.

chute, we added height sensors to the 
design. A tachogenerator sensor mea-
sures the rotational speed of rolls. 

The output of the load cell, height sen-
sor and tachogenerator is in microvolts. 
In order to use these metrics in the next 
steps of the process, we had to amplify 
the values to a measurable level, name-
ly, from microvolts to millivolts. We ac-
complished this amplification using a 
signal-conditioning system on PSpice. 
Next, we converted the results to a digital 
value using an analog-to-digital converter 
(ADC) that we connected in series with 
the conditioning system. In this way the 
amplified input is fed to the controller.

FIVE-STEP PROCESS   
The VHDL implementation of a fuzzy 
controller using Xilinx hardware is divid-
ed into five steps: fuzzification of inputs, 
rule evaluation, implication, aggregations 
and defuzzification.

There are two methods of designing a 
fuzzy-logic controller, Mamdani and Su-
geno. The Mamdani method is difficult 
and very complex. According to the re-
search, the Mamdani method requires the 
centroid of a two-dimensional shape by 
integrating across a continuously varying 
function. Hence, this method is not com-
putationally efficient. On the other hand, 

Figure 1 – Schematic of the cane juice extraction process
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Figure 2  – Development algorithm for a three-input fuzzy controller 
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DIFFERENT DEGREES  
OF MEMBERSHIP  
The next step is the designing of rules so 
as to determine the action to be taken in 
response to the different degree-of-mem-
bership functions. A fuzzy rule is formed 
using a simple If-Then condition where 
we have a consequence to every anteced-
ent. The Fuzzy Logic Toolbox in MATLAB 
provides different operators to combine 
multiple antecedents. We selected the 
AND operator to combine three anteced-
ents, since it represents a minimum oper-
ation among multiple antecedents. For a 
three-input controller, a total of 231 rules 
are generated. We designed a rule matrix 
for these rules. A minimum function finds 
the minimum of three values—that is, 
the minimum of DOM among three input 
variables is calculated. 

We also found that the consequent  of 
many rules is the same. All such rules 
having the same consequent are collect-
ed and the maximum of these values is 
calculated using a maximum function. At 
the next step, we collected all rules hav-
ing the same consequents. Different max-
imum functions are encoded to evaluate 
a maximum value for the entire LV. 

After the output for each rule has been 
identified, the last step is to combine all the 
output into a single value—in other words, 
these values are to be converted to crisp 
values. This is done using defuzzification.

Defuzzification forms the last and 
an important step in designing a fuzzy 
system. Defuzzified values generate a 
single crisp value, which is the speed 
of the rake motor. The Sugeno meth-
od of defuzzification that we used is 

the weighted-average method. In this 
method, we multiply the fuzzy output 
obtained from aggregation with its 
corresponding singleton value, then 
divide the sum of these values by the 
sum of all the fuzzy output obtained 
from the rule evaluation—that is, the 
values obtained after aggregation. 

VIRTEX-6 IMPLEMENTATION  
After implementing the above steps, we 
successfully designed a three-input fuzzy 
controller using a triangular membership 
function and centroid defuzzification. 
The program code is available with the 
authors. We simulated our three-input 
fuzzy controller using the Fuzzy Toolbox 
of MATLAB version 7.11.0.584 (R2020b) 
and implemented it on a Xilinx Virtex-6 
FPGA with Xilinx’s ISE® Design Suite 

 Parameters Cane Cane Motor Carrier Cane in Feed Data for  Cane Cane 
  level weight speed speed carrier rate next  level (MATLAB)
  (cm) (kg) (rpm) (cm/s) (kg/cm) (kg/s) sampling  *(VHDL) ** (cm)

 Time Roll       kg cm
 (sec) speed
  (cm/s)

 0 15.4 90.0 750 47.0 24.6 0.938 23.1 -16.0 -6.4 83.6 85.7
 10 15.8 83.6 729 52.0 27.2 0.911 24.8 -5.0 -2.0 81.6 84.3
 20 15.0 81.6 792 50.0 26.2 0.990 25.9 +19.0 +7.6 89.2 90.4
 30 16.2 89.2 908 42.0 22.0 1.135 25.0 -9.0 -3.6 85.6 86.5
 40 16.6  85.6 965 44.0 23.0 1.206 27.7 +11.0 +3.9 89.5 90.5
 50 13.4  89.5 720 49.0 25.7 0.900 23.1 +16.0 +6.4 95.9 95.9
 60 13.8  95.9 760 39.0 20.4 0.950 19.4 -27.0 -9.6 86.3 86.3
 70 13.4  86.3 790 44.0 23.0 0.988 22.7 +12.0 +4.8 91.1 91.3
 80 15.4 91.1 820  46.0 24.1 1.025 24.7 0.0 0.0 91.1 93.4
 90 16.2  91.1 555 73.0 38.2 0.694 26.5 -4.0 -1.6 89.5 93.4
 100 13.0 89.5 609 51.0 26.7 0.761 20.3 -5.0 -2.0 87.5 92.3
 110 14.3 87.5 578 62.0 32.5 0.723 23.5 +6.0 +2.4 89.9 90.2
 120 14.6 89.9 598 57.0 29.8 0.748 22.3 -11.0 -4.4 85.5 87.0
 130 12.3 85.5 700 44.0 23.0 0.875 20.1 +4.0 +1.6 87.1 88.8
 140 12.6 87.1 679 48.0 25.1 0.849 21.3 +11.0 +4.4 91.5 91.7
 150 15.4 91.5 800 46.0 24.1 1.000 24.1 -6.0 -2.4 89.1 91.3
 160 12.0 89.1 845 32.0 16.8 1.056 17.7 -15.0 -6.0 83.1 84.2
 170 14.3 83.1 835 45.0 23.6 1.044 24.6 +17.0 +6.1 89.2 90.3
 180 14.6 89.2 874 42.0 22.0 1.093 24.0 +6.0 +2.4 91.6 92.1
 190 15.0 91.6 900 41.0 21.5 1.125 24.2 +2.0 +0.8 92.4 92.1
 200 15.4 92.4 924 40.0 20.9 1.155 24.1 -6.0 -2.4 90.0 91.4

Table 1 – Cane level at a 90-cm roll speed varies during each sample.

* Cane level of FPGA-implemented system after each sampling     ** Cane level of MATLAB-implemented system after each sampling
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14.5 using VHDL. The sampling period is 
10 seconds and total simulation duration 
is 200 seconds. 

We have examined in total 756 differ-
ent conditions of input parameters under 
six different cases, but here we have fo-
cused on the case when the cane level 
and cane weight on the carrier at the ini-
tial stage of simulation are 90 cm and 750 
kg respectively. The roll speed varies at 
the time of each sampling. The simulation 
result is given in Table 1. 

The steps of hardware implementa-
tion included VHDL modeling, simula-
tion, synthesis and FPGA implementation 
in our lab on the MITS campus. We used 
a mixed type of modeling for designing 
the VHDL model of our three-input fuzzy 
controller, which includes behavioral 
and structural modeling. The design is 
simulated on Xilinx’s ISim simulator. The 
waveform that ISim generated verified 
the functionality of the controller. Figure 
4  shows the simulated waveform for the 

case when the weight of cane in the rake 
carrier is 750 kg, the height of the cane 
level in the Donnelly chute  is 90 cm and 
the roll speed is 16.6 cm/s. Under these 
conditions, the expected rake motor 
speed is 54.2 rpm (MATLAB). The de-
fuzzified simulated results are 36H, or 54 
rpm, which matches with the MATLAB 
results and verifies the design. 

After simulation, we synthesized the 
design to generate the technology sche-
matic and the approximate device utiliza-
tion report. We found that our design used 
more than 78 percent of the Virtex-6’s slice 
lookup tables (LUTs), 93 percent of occu-
pied slices, 1 percent of slice registers and  
1 percent of LUT flip-flops. 

We then compared the VHDL results 
with results of a conventional controller 
(see Table 2). The comparison proves that 
the fuzzy-logic system is more efficient 
than a conventional controller. 

The lab at MITS provides a Spartan®-6 
FPGA for research use. However, we 

found that the number of LUT blocks re-
quired exceeded the capacity of the tar-
get device. This is why we implemented 
the design on a Virtex-6 instead. But due 
to a lack of resources, we couldn’t per-
form real-time implementation in the lab. 

At the next step we are looking for-
ward to linking up with the government 
of India’s National Sugar Institute to de-
velop the whole system and verify the 
results in a real-world environment. We 
have already delivered a presentation to 
the institute and received a positive re-
sponse. It is our belief that the concept 
of fuzzy logic stands poised to change 
the future of the sugar industry.  
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Figure 4 – Simulated waveform for the case when weight = 750 kg,  
height = 90 cm and roll rate = 16.6 cm/s

  Three-input Three-input Three-input
  conventional fuzzy fuzzy controller
  controller controller (Xilinx VHDL)
   (MATLAB)

 Percentage of time cane is in between 45.8 94.7 88.0
 85 cm-95 cm (% Time)

 Lowest level of cane in chute (cm) 61.7 84.2 81.6

 Highest level of cane in chute (cm) 103.5 95.9 95.9

Table 2 – Comparison of results
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The Xen open-source hypervisor is a 
full-featured virtualization technology tra-
ditionally used in cloud computing and 
more recently finding its way into embed-
ded systems. DornerWorks is providing 
Xen support on the new Zynq® UltraScale+ 
MPSoC device, bringing multiple benefits 
to Xilinx users. Not only does the Xen Zynq 
hypervisor enable fast software integration 
and heightened system safety and security, 
it also brings the power of enterprise-style 
cloud computing to the embedded world. 

The rigorous design compartmentaliza-
tion that the hypervisor provides makes 
for rapid integration of new software (in-
cluding entire operating systems) on the 
same computing device. At the same time, 
the isolation reduces or even eliminates 
unexpected interference between inde-
pendent software functionality. 

Moreover, isolation greatly enhances 
the level of system safety and security by 
reducing unexpected interaction between 
functions and presenting a smaller attack 
surface exposed to threats, thus making it 
easier to prove safety or security properties. 
The arrival of enterprise-style cloud com-
puting in the embedded world offers many 
of the same advantages, such as deployment 
of legacy software on new hardware with 
few (if any) changes to the software.

Let’s briefly review what hypervisors 
are before getting into the specifics of 
Xen Zynq, the open-source Xen hypervi-
sor on the Zynq MPSoC.

Xilinx’s latest Zynq  
device supercharges  
the Xen hypervisor,  
but support is key to  
choosing this open-source 
virtualization approach. 

T
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WHAT IS A HYPERVISOR?  
A hypervisor is the foundational soft-
ware layer enabling virtualization. Just 
as an operating system (OS) manages 
simultaneously running applications, 
each contained within a process with 
access to machine resources managed 
by the OS, so the hypervisor manages 
simultaneously running operating sys-
tems, each contained within a virtual 
machine with access to machine re-
sources managed by the hypervisor. 

Virtualization is an idea dating back 
to the 1960s. Popek and Goldberg for-
malized the idea of a virtual machine 
monitor (VMM) in 1974 with three de-
fining characteristics:  

•   The VMM provides programs with 
a runtime (virtual) environment 
essentially the same as the original 
(physical) machine.

•  The VMM has a negligible impact 
on performance.

•  The VMM manages the system 
resources. 

A hypervisor is a VMM focusing almost 
exclusively on the basic machine manage-
ment tasks. That means some commonly 
expected services like file systems, graph-
ical user interfaces and network protocol 
stacks are not implemented at this level, 
but rather are delegated to a higher layer, 
such as a guest operating system running 
in one of the virtualized machines the hy-
pervisor is hosting.

A hypervisor running natively on 
hardware, as described above, is consid-
ered a Type 1 hypervisor. By contrast, a 
Type 2 hypervisor is not the lowest layer 
of software, but is hosted on an operat-
ing system. This type is typically used 
to allow one OS to run on another, such 
as when a Mac user runs Windows on 
their MacBook using Parallels or when 
a Windows user boots up Linux within a 
virtual machine using VirtualBox. 

There are also important differences 
between enterprise and embedded hy-
pervisors. Cloud computing and big data 
are typical enterprise use cases for hy-
pervisors. Hypervisors in the embedded 

advanced driver assistance systems 
(ADAS), instrument cluster, navigation 
systems, Internet connectivity and, 
eventually, real-time controls.

When considering virtualization solu-
tions, it is important to evaluate the VMM 
characteristic regarding negligible impact 
on performance. The hypervisor controls 
all hardware resources (CPU, memory, 
I/O) and thus may impact the perfor-
mance of any of them. For the CPU, one 
important metric is the time it takes to 
switch a core from running one virtual 
machine to another. This is sometimes 
called the context switch time, but may 
also be called the partition or domain 
switch time to differentiate it from a sim-
ilar concept of operating systems switch-
ing between processes. An associated 
metric is the jitter, which is a measure of 
how much this switch time varies, thus 
affecting determinism and predictability.  

Real-time designers are also interested 
in measuring the minimum time slice that 
can be scheduled, which constrains the 
maximum frequency of the CPU sched-
ule, or put another way, the maximum 
number of virtual machines that can be 
executed in a given period. When measur-
ing impact on memory, the footprint of 
the hypervisor kernel consists of a con-
stant base portion along with an incre-
mental portion for each added guest (vir-
tual machine). The cumulative footprint 
then constrains the maximum number of 
virtual machines possible. For I/O, band-
width and latency are the key measure-
ments to make for each device of interest, 
although you could also make estimates 
based on some generic metrics such as 
the overall interrupt latency or the raw 
communication bandwidth. 

Many hypervisors support two ap-
proaches to I/O: exclusive and shared. 
Exclusive I/O typically incurs a some-
what lower overhead, where the hyper-
visor provides a virtual machine with 
direct and sole access to a particular 
I/O device, often referred to as a “pass-
through” device. Shared I/O entails a 
somewhat higher overhead, because the 
hypervisor must impose mechanisms to 
enforce a sharing scheme.

space are a more recent development, 
with adoption occurring as processors 
appeared with sufficient performance 
and acceptable power consumption.

Use cases for embedded hypervisors 
have a common theme: consolidation of 
multiple complex functions into a single 
computing platform while maintaining 
some separation between them. For aero-
space applications, a hypervisor is often 
used to support integrated modular avi-
onics, where the software formerly exe-
cuting on federated (independent) avion-
ics hardware is consolidated into a single 
computing platform. The functions might 
include flight control, navigation, flight 
management systems, collision avoid-
ance and more. The FAA requires that 
combined software functions that were 
formerly running on separated hardware 
cannot affect one another. This isolation 
is accomplished via rigorous partitioning 
defined by standards such as DO-248C. 

While the FAA is concerned with the 
safety of commercial flights when con-
solidating functionality, military avionics 
has a parallel need to provide separation 
in order to support security. Approaches 
that support multiple classification lev-
els on one system with strict separation 
use an architecture called Multiple Inde-
pendent Levels of Security (MILS). 

For health care applications, the in-
dustry is considering similar consoli-
dation using hypervisors for high-end 
medical devices such as MRI scanners, 
robotic (or robotically assisted) sur-
gery devices and CT scan machines, all 
of which currently incorporate multi-
ple independent processing systems. 
The combined functions might include 
graphical user interfaces for physicians, 
image processing, real-time motor con-
trol, patient information databases and 
system management functions. 

For automotive applications, hyper-
visors are an attractive way of combin-
ing the dozens of separate microproces-
sors and microcontrollers embedded 
in a car. Virtually all automotive OEMs 
are considering the move to hypervisors 
to combine functions such as infotain-
ment, driver and passenger controls, 
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ASPECTS OF OPEN SOURCE    
The term “open source” is used to 
describe software that is free, as in 
speech, but not necessarily free as in 
beer. Open-source software provides 
the freedom to modify and share 
source code under carefully devel-
oped licensing to guarantee that free-
dom is preserved. Some of the most 
commonly recognized open-source 
license agreements are the GNU 
General Public License (the active 
versions are GPLv2 and GPLv3), the 
GNU Lesser General Public License, 
the Apache license and the BSD li-
cense (in several variations). 
 Open source is not necessarily free 
of charge. Businesses built around 
open-source products typically use a 
different kind of revenue model than 
traditional software vendors, instead 
selling product support, accessories 
(like printed user manuals), training 
or custom design services. Red Hat 
is one of the best-known examples, 
building a billion-dollar business 
around the open-source Linux oper-
ating system. 

MAPPING XEN TO THE NEW ZYNQ  
The new Zynq UltraScale+ MPSoC 
from Xilinx offers a powerful platform 
for running the Xen hypervisor. This 
device provides a quad-core ARM® 
Cortex™-A53 with hardware virtual-
ization extensions and 64-bit capability 
in the ARMv8 instruction set. Powerful 
hardware requires a rich ecosystem of 
software in order to take full advan-
tage of its features and performance. 
While developing the new Zynq MP-
SoC, Xilinx surveyed key customers in 
a variety of industries, including aero-
space and defense, health care, tele-
communications and automotive. The 
message: Most customers expected to 
have hypervisor options for the new 
device, and half of them desired an 
open-source hypervisor. Xilinx chose 
Xen as the open-source hypervisor and 
chose DornerWorks to offer the sup-
port service for the new Xen Zynq.

The Xen hypervisor hosts guest 
operating systems within virtual ma-
chines, providing them with a virtual-
ized view of the underlying machine. 
The guest OS and its applications then 

utilize the virtualized CPU, memory 
and I/O, while Xen manages how the 
virtualized resources are mapped to 
physical resources. 

In Xen, each virtual machine is 
called a domain. In order to keep the 
hypervisor kernel as small as possible, 
Xen gives one domain special privileg-
es. This system domain is called dom0. 
It starts up other guest domains (each 
called a domU), configures the sched-
ule and memory mappings that the ker-
nel enforces, and manages I/O access 
permissions. To provide a little more 
detail, let’s consider several views of the 
hypervisor environment: the boot se-
quence, ARM exception levels, running 
schedule and resource management. 

Starting from power-on, the boot 
sequence on the new Zynq MPSoC can 
be configured in a variety of ways, in-
cluding variations on which processor 
(Cortex-A53 or Cortex-R5) starts first. 
Most use cases will keep the two pro-
cessors quite independent, so the stan-
dard Xen Zynq hypervisor distribution 
will run only on the Cortex-A53. Figure 
1 illustrates a typical boot sequence. If 

Time

First-Stage
Boot Loader

(FSBL)
U-Boot Xen

Kernel

dom0

Guest 1

Guest 2

Figure 1 – Typical boot sequence shows stages until the guest OS is running.
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the Cortex-R5 were used to host an in-
dependent, nonvirtualized secure OS, 
this would typically boot first, from a 
simple first-stage boot loader (FSBL). 
Once the R5 had booted, it would then 
initiate the A53, starting with its own 
FSBL. A second-stage loader, such as 
U-Boot, would typically be used to pro-
vide broader booting functionality, per-
haps including some integrity checking 
of the hypervisor kernel image. 

At this stage, the Xen hypervisor 
kernel is invoked. The kernel initiation 
includes checking for a valid dom0. In 
turn, dom0 checks for valid images for 
the guest domains and then initiates and 
schedules them on one or more cores. In 
most cases, dom0 continues to run in or-
der to monitor the system, provide man-
agement of shared resources and handle 
certain system faults. The hypervisor 
kernel runs during each domain context 
switch and is also invoked through hyper-
calls. Hypercalls are analogous to system 

calls that allow an application to invoke 
an operating system service, but in this 
case, they invoke hypervisor services. By 
default, dom0 can make any hypervisor 
call, while a domU is restricted to certain 
ones. However, developers can use the 
Xen module XSM-FLASK to implement 
finer-grained control of hypercall access.

The processor hardware enforces 
privileges within categories defined by 
the ARM exception-levels model. The 
Cortex-A53 uses the ARMv8 architec-
ture, which defines four exception lev-
els, as illustrated in Figure 2, with the 
highest privileges for the bottom level 
in the diagram, and decreasing as one 
moves upward. Complete access priv-
ileges are granted at exception level 
EL3, which is used for the ARM Trust-
Zone monitor. Hypervisors run at EL2 to 
provide virtualization of guest domains. 
Within each hosted virtual machine, the 
hosted operating system runs at EL1. 
Finally, user applications run with the 

least privilege at EL0. When changing to 
an exception level with lower privilege, 
the virtualized machine registers must 
be the same width or narrower. That 
means you can have a 64-bit hypervisor 
and a 32-bit guest, but not vice versa. 
Xen Zynq uses the AArch64 execution 
mode of the ARMv8 architecture, and 
thus supports 64-bit or 32-bit guests.

The privileged domain, dom0, es-
tablishes the schedule, thus determin-
ing when domains run and on which 
core or cores. The hypervisor kernel 
then executes the configured sched-
ule. To achieve certain types of deter-
minism, you might configure a sched-
ule where a guest domain has sole 
access to the machine during its time 
slot. Figure 3 provides an example, 
where Guest 1 runs on several cores 
(along with dom0) in a single time slot, 
while Guests 2 and 3 do not need this 
restriction, so they can be scheduled 
in a more mix-and-match load-balanc-
ing scheme during other time slots. 

The hypervisor manages all resourc-
es of the machine. The CPU cores are 
managed primarily by time-sharing, as 
discussed above. The hypervisor uses 
hardware timers to enforce the sched-
ule. Memory is shared not by dividing 
time, but by dividing space, allocat-
ing a portion of the memory to each 
guest domain. The hypervisor uses the 
hardware memory management unit 
(MMU) to enforce the memory layout. 
Management of I/O varies widely, de-
pending on the type of device. Some 
I/O devices are mapped directly to the 
Cortex-A53, while others must be con-
figured to connect through the FPGA 
programmable fabric. 

Hypercalls are analogous to system calls that allow  
an application to invoke an operating system service, 

but in this case, they invoke hypervisor services. 
By default, dom0 can make any hypervisor call.

Figure 2 – This diagram of ARM Exception Levels shows the hypervisor mapped to EL2.
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Guest access to I/O devices is con-
figured and managed by dom0, with ap-
propriate hypercalls to the Xen kernel 
to establish memory mappings to the 
devices. Dom0 can grant a guest domain 
access to specific I/O devices as needed, 
or it may manage shared I/O itself, act-
ing as the gateway to enforce a sharing 
mechanism. Interdomain communica-
tion in Xen (including I/O) typically uses 
Xen event channels for notifications 
and shared memory for passing data. 
Shared I/O device drivers in Xen use a 
split-driver model, where the top half 
in the guest domains provides the API 
to the guest OS and the functionality to 

pass data back and forth to dom0. The 
bottom half of the driver inside dom0 
then performs the actual I/O operations 
to the device.

CREATING SUPPORT FOR XEN ZYNQ  
As Xilinx sought customer feedback 
about the anticipated next-generation 
Zynq SoC device, it heard that many 
customers expected strong hypervi-
sor support and half of them wanted 
an open-source option. This support 
had to be more than a simple help-
desk-style service. Rather, the support 
options would need to be more exten-
sive, to provide help designing embed-

ded systems that balance demanding 
needs (such as high bandwidth, low 
latency, low power, high reliability) 
and that connect to a wide variety 
of system devices in an embedded 
environment. Xilinx selected Dorner-
Works because of our expertise with 
the Xen hypervisor, our embedded- 
engineering design experience and 
our role as a premier member of the 
Xilinx Alliance Program, providing 
additional options for customers that 
also seek support for the FPGA design 
portions of their systems.  

DornerWorks collaborated with Xil-
inx on finishing the port of Xen to the 

Figure 3 – Multicore scheduling places Guest 1 in an exclusive time slot and mixes Guests 2 and 3.
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new Zynq MPSoC and then confirmed 
correctness by verification and valida-
tion testing. Our testing needed to cover 
not only the Xen hypervisor kernel run-
ning correctly on the hardware, but also 
the dom0 privileged domain (running 
Linux) and guest domains with a variety 
of supported guest operating systems. 
We named this package of software the 
Xen Zynq Distribution.

We faced the additional challenge 
of testing before we had the actual 
hardware. Our stand-in model of the 
hardware was the QEMU open-source 
machine emulator software running on 
an x86 developer system for individual 
debugging and testing or on our team’s 
build server for continuous integration 
testing. Additionally, we developed 
against an emulation board named 
Remus (not to be confused with the 
Xen live migration tool of the same 
name), which uses six Xilinx Virtex®-7 
FPGAs to emulate the Zynq MPSoC.

Figure 4 shows our continuous-inte-
gration approach, centered on a build-

and-test server. On a periodic basis, the 
server queries the repository of source 
code. If it detects any changes, the serv-
er performs an incremental build on the 
dependent portions of the build image. 
It then loads the images necessary for 
each test onto each device of our tar-
get farm and invokes the test script. In 
some test cases, external stimuli are 
applied to the targets. The test server 
gathers results, collates them and pres-
ents a summary dashboard that pro-
vides a view of the overall health of the 
test suite or pinpoints where there are 
issues to resolve.

DornerWorks has also developed 
the infrastructure to provide compre-
hensive support for Xilinx customers 
using the Xen hypervisor on the new 
Zynq MPSoC. The base level of support 
is driven by open-source community 
activism, allowing users to compare 
notes and share information. Dorner-
Works will host forums and gather 
issues from the community. We use 
Jira as our tracking tool for issues that 

Figure 4 – Continuous integration automates build and test of Xen Zynq.
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Xilinx uncovers, for internally detect-
ed issues and for customer-identified 
issues (from the community or from 
paid subscribers). In order to sustain 
our work on Xen, we also offer paid 
subscription and custom design sup-
port services, which provide the busi-
ness-critical support by contract that 
many customers demand in order to 
reduce their business risk and ensure 
timely response to their needs. You can 
find more details about the support op-
tions at http:// http://xen.world.

TEST-DRIVE XEN YOURSELF  
While you are waiting for the new Zynq 
MPSoC to ship early next year, you 
can already start investigating Xen. 
Xen runs on an ordinary x86 PC, ei-
ther natively as a Type-1 hypervisor 
or hosted inside VirtualBox on top of 
Windows for development purposes. 
To try out embedded Xen, you’ll need 
emulated or actual ARM hardware. 
Choose an ARM processor that has the 
virtualization extensions—ideally the 

http://dornerworks.com/services/XilinxXen
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Cortex-A53, but others, such as the 
Cortex-A15, can also provide a fairly 
representative environment. Figure 5 
depicts the workflow for building a 
complete hypervisor-based system for 
an embedded target. You can find Xen 
at http://www.xenproject.org/, along 
with information on building a Linux 
image to serve as dom0 and building a 
variety of guest OS images.  

Figure 5 – The Xen development work flow
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DornerWorks has published the Xen 
Zynq Distribution for the new Zynq MP-
SoC, ready for download from our web-
site: http://dornerworks.com/services/
XilinxXen. Simply add guest OS imag-
es and you have your own embedded, 
virtualized system. 

With Xen on the new Zynq MPSoC, 
you’ve got cloud computing in the palm 
of your hand.   
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One of the major challenges that custom-
ers encounter when using multiple in-
stances of intellectual property (IP) in a 
big design that must fit into a single FPGA 
is how to share the resources effectively 
across the system. The shared-logic fea-
ture of Xilinx®’s Aurora serial communica-
tions core provides users with shared re-
sources across multiple instances. The IP 
Integrator tool within the Vivado® Design 
Suite is the key to making the most out of 
these shared resources. 

The electronics industry is rapidly shift-
ing toward high-speed serial connectivity 
solutions while moving away from parallel 
communication standards. Industry-stan-
dard serial protocols have fixed line rates 
and defined lane widths, sometimes un-
derutilizing the capabilities of gigabit seri-
al transceivers. 

Aurora, a high-speed serial communi-
cation protocol from Xilinx, has been very 
popular in the industry and is typically 
used in applications where competing in-
dustry protocols are either too complex 
or too resource-intensive to implement. 
By delivering a low-cost, high-data-rate, 
scalable IP solution, Aurora provides a 
flexible means to build a high-speed seri-
al data channel. 

High-performance systems and appli-
cations that need to be scaled, both in 
line rate and channel width, are looking 
to Aurora as a solution. Aurora is also es-
tablishing a presence in ASIC designs as 
well as in systems built of multiple FPGAs 

Xilinx’s IP Integrator tool  
will help you improve  
design-entry productivity  
and resource optimization  
in multicore Aurora designs. O
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with backplanes transporting gigabits 
of data. Aurora’s simple framing struc-
ture coupled with protocol-extending 
flow control capability can be used to 
encapsulate data from existing proto-
cols. Its electrical requirements are 
compatible with commodity equip-
ment. Xilinx delivers Aurora 64b66b 
and Aurora 8b10b cores as part of the 
Vivado Design Suite’s IP Catalog.

AURORA’S SHAREABLE 
RESOURCES AT A GLANCE  
Figure 1 is the representative block 
diagram of the Aurora 64b66b core. 
Highlighted are the clocking resourc-
es such as mixed-mode clock manager 
(MMCM), BUFG and IBUFDS, along 
with gigabit transceiver (GT) resourc-
es such as GT common and GT chan-
nel, illustrated as GT1 and GT2 for a 

The Vivado IP Integrator (IPI) is a key 
tool for resource optimization in complex 
multicore systems. In this regard, IPI will 
help you make the best use of the shareable 
resources in the Aurora 64b66b and Auro-
ra 8b10b cores, especially the “shared-log-
ic” feature. For convenience, let’s focus on 
the Aurora 64b66b IP, with the understand-
ing that similar techniques are applicable 
to the Aurora 8b10b core as well.

IPI visualizes cores as top-level blocks. Connections 
across standard interface ports are now more  

intuitive, intelligent and in some cases automatic. 
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Figure1 – Shareable resources, highlighted in orange, in the Aurora 64b66b core
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two-lane design based on a Xilinx 7 
series device. 

For a typical16-lane Aurora 64b66b 
core, the clocking and GT resource 
requirements, as used in a Kintex®-7 
FPGA KC705 Evaluation Kit, are tabu-
lated in Table 1. 

Clocking and GT resources in an 
FPGA are specific to the device and 
the package selected. Often, multiple 
IP cores will demand resources for 
use at the system level. Hence, it be-
comes imperative to optimize the uti-
lization of these precious resources 
to reduce the system cost as well as 
the power consumption.

AURORA RESOURCE SHARING    
As part of the shared-logic feature sup-
ported across multiple GT-based Xilinx 
cores, the Aurora core can be config-
ured either as “Shared logic in core 
(Master)” or “Shared logic in example 
design (Slave).” A combination of the 
two configurations makes it possible 
to share the clocking and GT resources 
across master and slave when instanti-
ated at the system level. 
 For applications in which the 
shared-logic feature is to be used, 
handcrafting the connections across 
multiple pieces of IP could create er-
rors and will increase the overall de-
sign-entry time. Tool-assisted design 
entry is the way to solve this problem, 
and Xilinx’s IP Integrator has elegant-
ly addressed it. 

The IPI tool visualizes cores as 
top-level blocks, and connections 
across standard interface ports are 
now more intuitive, intelligent and in 
some cases automatic. Appropriate 
design rule checks are built into the 
tool and around the IP to ensure the 
wrong connections are highlighted 
so the designer will spot them at the 
time of design entry itself. Top-lev-
el wrapper files and inference of ap-
propriate pin-level I/O requirements 
are automatic, making the tool pro-
ductive for system designers. If you 
have designed custom sub-blocks, 
you could consider packaging your 

design by following Xilinx application 
note 1168, “Packaging Custom AXI IP 
for Vivado IP Integrator” (XAPP1168), 
and use the sub-blocks in IPI.

Not only does the shared-logic fea-
ture of Aurora provide users with shared 
resources across multiple instances, it 
also allows an out-of-the-box experi-
ence for utilizing the GT channels in the 
same GT quad without the pain of edit-
ing the GT common, PLL, clocking and 
related modules. The only constraint is 
that the line rates of the “shared” cores 
should be the same (harmonics are also 
allowed if you can take a penalty on the 
clocking resources). 

A typical shared-logic design would 
include one master and one or more 
slave instances within a quad. Unlike 
most other communication IP, Auro-

ra doesn’t limit itself to a single-quad 
sharing. The shared-logic definition for 
the Aurora core can be extended to any 
number of supported lanes.

Here are some examples that show-
case applications based on Aurora’s 
shared-logic feature. 

MULTIPLE SINGLE-LANE DESIGNS  
Multiple single-lane designs in a single 
FPGA differ from multilane designs in 
that they require channel bonding. In-
tuitively, it seems clear that resources 
needed for multiple single-lane designs 
linearly add up at the system level. Let 
us consider different scenarios and 
examine how the shared-logic feature 
helps in each case.

We will start with a design that 
has four single lanes. You could build 
this kind of design straightaway by 
instantiating four single-lane Aurora 
cores. If we actually ran through the 
implementation, each Aurora design 
would have one instance of GT com-
mon; therefore, the placement and re-
source utilization of this design would 
be spread across four GT quads. This 
might not always be a feasible solu-
tion because it is resource-intensive. 
For a better placement and optimized 
solution in terms of power and re-
sources, the four GTs selected should 
be from the same GT quad. 

Without the shared-logic feature, 
handcrafting the generated design to 
suit this requirement is a focused ef-
fort. To use the shared-logic feature 
effectively, you will need to generate 
one Aurora core in master mode and 
the other three Aurora cores in slave 
mode, as shown in Figure 2. Addition-
al system-level considerations need 
to be taken into account, such as re-
setting the cores because the master 
core controls the clocking to the slave 
cores. This configuration and resource 
optimization are possible out of the 
box only if the Aurora cores are con-
figured with the same line rate. Ta-
ble 2 quantifies the benefits of using 
the shared-logic feature for four sin-
gle-lane designs in a system.

 16-Lane Aurora Design

 Availability Used by
Resource in Device Aurora

MMCME2_ADV 10 1
IBUFDS_GTE2 8 2
GTE2_COMMON 4 4
GTXE2_CHANNEL 16 16

Table 1 – Clocking and GT resource utilization on a Kintex-7 FPGA KC705 Evaluation Kit
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DESIGNS OCCUPYING  
12 GT CHANNELS  
For a 7 series FPGA, the GT require-
ment based on north-south clocking is 
that a single reference clock source can 

serve up to maximum of 12 GT channels 
if it is chosen in a middle quad.  

Let us consider the use case 
where the requirement is to have 12 
single-lane designs utilizing as few 

clocking resources as possible. You 
can save on clocking resources if 
you try to extend the one-master-
plus-three-slave configurations as 
shown in Figure 2. But if this 1+3 
configuration is extended for the 
three quads, the design will need 
a total of six differential-clocking 
resources. However, more savings 
are possible if you select two of 
the master designs such that they 
accept a single-ended INIT_CLK 
and GT reference clock. This way, 
potentially we could reduce the 
differential-clock input require-
ment from six to two for this sys-
tem, saving IBUFDS/IBUFDS_GTE2 
resource requirements (see Table 
3). IBUFDS_GTE2 resource reduc-
tion in the design actually would 
also mean a reduction in external 

Figure 2 – Shared-logic design using one master Aurora core (left) and three slaves
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 Design with Four Single Lanes

 Without With
Resource Shared Logic Shared Logic

MMCME2_ADV 4 1

IBUFDS_GTE2 4 1

GTE2_COMMON 4 1

GTXE2_CHANNEL 4 4

Table 2 – Resource usage benefits with shared logic for designs with four single lanes
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clocking resources as well as design 
pinouts. Similar optimization can be 
imagined for the MMCM as well.

THREE-BY-FOUR-LANE DESIGNS  
If there is a requirement of having 
three four-lane designs, without the 
shared-logic feature you might end up 
creating three four-lane Aurora cores 
in master mode and then handcrafting 
the generated design for optimal uti-
lization of clocking resources. What 
if you could achieve the same result 
out of the box? You can do just that by 
customizing one master core and two 
slave cores as shown in Figure 3.  

Moving up in size to large (16 and 
over) single-lane Aurora designs, the 
need for shared logic becomes even 
more acute. Sometimes the require-
ment could be as large as having 48 
single-lane independent duplex links. 
The number of allowable Aurora sin-
gle-lane links is limited only by the 
number of GT resources available in a 
chosen device. In such use cases, it is 
difficult to realize this system design 
without making effective use of the 
shared-logic feature. 

This design would spread over 12 
quads; hence, there could be a require-
ment of 2*12 differential-clocking re-

sources, which could be a daunting 
task from the point of view of board 
design. By using the techniques men-
tioned in the 12-single-lane design use 
case, you could reduce the differen-
tial clocks and MMCM requirements 
of the overall system (see Table 5).

ASYMMETRIC LANES AND 
OTHER CUSTOM OPTIMIZATIONS  
In applications like video projectors, 
mainstream data will flow in one di-
rection with high throughput while a 
back channel with lower throughput 
is used to transmit auxiliary or con-
trol information. In such applications, 

Figure 3 – Single-master, two-slave configuration for a four-lane Aurora design over three consecutive quads

Table 3 – Resource benefit with shared-logic feature for designs with 12 single lanes 

 12-Single-Lane Designs

   With Shared Logic
  With Shared Logic (using single-ended 
Resource Without Shared Logic (default) master input clocks) 

MMCME2_ADV 12 3 3

IBUFDS_GTE2 12 3 1

GTE2_COMMON 12 3 3

GTXE2_CHANNEL 12 12 12
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Figure 4 – Asymmetric data transfer across links made possible with Aurora

having a full-blown duplex link would 
mean lesser usage of bandwidth and 
essentially result in lower ROI of 
the system design. An ideal solution 
for this kind of problem could be, as 
shown in Figure 4, to have an asym-
metric link width with optimized GT 
resource utilization, where the num-

Table 4 – Optimized lane selection for three four-lane designs 

 Optimized Lane Selection for 3 x 4-Single-Lane Designs 

GTQ2 Master1_3 Master1_4

 Slave2_3 Slave2_4

GTQ1 Slave2_1 Slave2_2

 Slave1_4 Master1_2

GTQ0 Slave1_3 Slave1_2

 Master1_1 Slave1_1

Tx

TxRx

Rx

Board1/Chip1 Board2/Chip2
N != M

#M lanes

#N lanes

ber of lanes in one direction of data 
flow (higher throughput) could be 
higher than that of the other direction 
(lower throughput).  

With the current available data flow 
modes (simplex/duplex) in the Aurora 
cores, it is possible only to configure 
the cores with an equal number of 

TX and RX lanes. To have a different 
number of lanes in the two directions, 
you need to generate two Aurora sim-
plex cores for each direction. One 
way of building these kinds of asym-
metric-lane designs on 7 series FPGAs 
is discussed in Xilinx application note 
1227, “Asymmetric Lane Design with 
Aurora 64B/66B IP Core” (XAPP1227).

Another useful design strategy is 
BUFG resource optimization. Often, 
system designers implementing mul-
tiple Aurora cores that operate at the 
same or different line rates need to be 
aware of the device-specific clocking 
requirements and limitations. Imple-
menting numerous Aurora links de-
mands generation of clocks for the 
respective links. Conserving clocking 
resources will make the system more 
cost-effective. If the system design 
has multiple blocks and if there is a 
clocking resource (BUFG) crunch, 
you could consider replacing the 
BUFG with BUFR/BUFH. It is recom-
mended, though, that you drive both 
TX path user clocks of the GT cores 
with the same buffer type.

The 7 series Aurora core requires 
an additional dynamic reconfiguration 
port (DRP) clock input that otherwise 
would need to use one BUFG. If Au-
rora’s free-running clock frequency is 
chosen in the allowable range of the 
DRP clock, then the available output 
free-running clock from Aurora could 
be reused and connected back to the 
DRP clock. As a result, you could save 
on the number of BUFGs in the gener-
ated designs.

When selecting the line rates across 
multiple Aurora designs, keep in mind 

System designers implementing multiple Aurora cores
need to be aware of the device-specific clocking

requirements and limitations. Conserving clocking
resources will make the system more cost-effective.

http://www.xilinx.com/support/documentation/application_notes/xapp1227-aurora-64b66b-asymmetric-lane-design.pdf
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that you can share clocking resources 
if line rates are integral multiples for 
easier clock derivation and sharing 
across the links. If the shared-logic 
feature is to be extended to harmonic 
line rates, then by designing in few ex-
tra clock dividers, you could generate 
the required input frequencies for the 
slave Aurora cores.

FUTURE POSSIBILITIES  
Aurora’s flexibility opens up possibili-
ties of creating a variety of system con-
figurations and applications. Aided by 
a powerful tool like Xilinx’s Vivado IP 
Integrator, design-entry productivity 
and system-level resource sharing are 
speeding up innovation in the All Pro-
grammable application space. With the 

 48-Single-Lane Designs

 Without With
Resource Shared Logic Shared Logic

MMCME2_ADV 48 4

IBUFDS_GTE2 48 4

GTE2_COMMON 48 12

GTXE2_CHANNEL 48 48

Table 5 – Resource benefit with shared-logic feature for 48-single-lane designs

Xilinx UltraScale™ architecture, there 
are devices with many more GT chan-
nels with enhanced GT line rate support 
and hence the possibilities and effective 
resource utilization are even greater.  

To evaluate the Aurora cores, check 
out the IP Catalog, IPI and Aurora prod-
uct Web page at http://www.xilinx.
com/products/design_resources/conn_
central/grouping/aurora.htm.   

Support for 
Xilinx Zynq® Ultrascale+™ 
and Zynq-7000 families 

► Concurrent debugging and 

 tracing of ARM Cortex-A53/-R5, -A9 

 and MicroBlaze™ soft processor core

► RTOS support, including Linux 

 kernel and process debugging

► Run time analysis of functions and 

 tasks, code coverage, system trace

http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
http://www.lauterbach.com
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C
ompleting the RTL design is one part of get-
ting your FPGA design production-ready. 
The next challenge is to ensure the design 
meets its timing and performance require-

ments in the silicon. To do this, you will often need to 
define both timing and placement constraints. 

Let’s take a look at how to create and use both 
of these types of constraints when designing systems 
around Xilinx® FPGAs and SoCs.

TIMING CONSTRAINTS   
At their most basic level, timing constraints define the 
operating frequency of your system’s clock or clocks. 
However, more advanced constraints establish the rela-
tionships between clock paths. Engineers include these 
types of constraints to determine if it will be necessary 
to analyze the path or—if there is no valid timing rela-
tionship between those clock paths—discount it. 

By default, Xilinx’s Vivado® Design Suite will ana-
lyze all relationships. However, not all clocks within 
a design will have a timing relationship that can be 
accurately analyzed. One example is clocks that are 
asynchronous, since it’s not possible to accurately 
determine their phase, as shown in Figure 1.

You can manage the relationships between clock 
paths using a constraints file and declaring clock 
groups. When a clock group is declared, the Vivado 
tools perform no timing analysis in either direction 
between the clocks defined within it.

To aid in the generation of timing constraints, 
the Vivado tools define clocks as being within 
one of three categories: synchronous, asynchro-
nous or unexpandable.

•   Synchronous clocks have a predictable timing/phase 
relationship. This is normally the case for a primary 
clock and its generated clocks, as they share a com-
mon root and will have a common period.

•  Asynchronous clocks have no predictable timing/
phase relationship between them. This is normal-
ly the case for different primary (and their gen-
erated) clocks. Asynchronous clocks will have 
different roots.

•  Two clocks are unexpandable if, over 1,000 cycles, a 
common period cannot be determined. If this is the 
case, then the worst-case setup relationship over 
these 1,000 cycles will be used. However, there is no 
guarantee it is the worst case in reality.

To determine which type of clock you are dealing 
with, use the clock report that Vivado produces. This 
report will aid you in identifying asynchronous and 
unexpandable clocks. 

Timing and placement 
constraints are a crucial 
factor in achieving your 
design requirements. 
Here’s a primer on how 
to use them.
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With these clocks identified, you can 
now use the “set clock group” constraint 
to disable timing analysis between 
them. The Vivado suite uses Xilinx De-
sign Constraints (XDC), which are con-
straints based upon Synopsys Design 
Constraints (SDC), a widely used Tcl-
based constraints format. With the XDC 
constraints, you can use the command 
below to define a clock group:

set_clock_groups –name –
logically_exclusive –physi-
cally_exclusive –asynchro-
nous –group 

The –name is the name given to the 
group. The –group option is the place 
where you can define the members of 
the group—that is, the clocks that have 
no timing relationship. The logically and 
physically exclusive options are used 
when you have multiple clock sources 
from which to select in order to drive a 
clock tree, including BUFGMUX and 

TIMING EXCEPTIONS    
You must also focus upon what hap-
pens within a defined clock group 
when you have an exception. But what 
is an exception? 
 One common example of a timing 
exception would be a result being cap-
tured only every other clock cycle. An-
other would be transferring data from 
a slow to a faster clock (or vice versa) 
where both clocks are synchronous. 
In fact, both of these situations are ex-
amples of a timing exception common-
ly referred to as a multicycle path, as 
shown in Figure 2.

Declaring a multicycle path for these 
paths results in a more appropriate and 
less restrictive timing analysis, allowing 
the timing engine to focus upon other, 
more critical paths. The upshot is to in-
crease the quality of results. 

Within your XDC file, you can de-
clare a multicycle path using the fol-
lowing XDC command:

BUFGCTL. Therefore, the clocks cannot 
be present upon the clock tree at the same 
time. As such, we do not want Vivado to 
analyze the relationship between these 
clocks as they are mutually exclusive. 
Finally, the –asynchronous constraint is 
used to define asynchronous clock paths.

The final aspect of establishing the 
timing relationship is to take into account 
the nonideal relationship of the clocks, in 
particular jitter. You need to consider jit-
ter in two forms: input and system jitter. 
Input jitter is present upon the primary 
clock inputs and is the difference be-
tween when the transition occurs against 
when it should have occurred under ide-
al conditions. System jitter results from 
noise existing within the design. 

You can use the set_input_jitter 
constraint to define the jitter for each 
primary input clock. Meanwhile, the 
system jitter is set for the whole design 
(that’s all the clocks) using the set_sys-
tem_jitter constraint.

Declaring a multicycle path results in a more  
appropriate and less restrictive timing analysis,  

allowing the timing engine to focus upon  
other, more critical paths. 

OSC 1

OSC 2

CLK1
Domain

CLK2
Domain

CLK1
Domain

Figure 1 – Domains CLK1 and CLK2 are asynchronous to each other.
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set_multicycle_path path_
multiplier [-setup|-hold] 
[-start|-end][-from <start-
points>] [-to <endpoints>] 
[-through <pins|cells|nets>]

When you declare a multicycle path, 
you are in effect multiplying the re-
quirements for the setup and hold (or 
both) analysis by the path_mutiplier. 
For instance, in the first example above, 
where the output occurs every two 
clock cycles, the path_multiplier would 
be two in the case of the setup timing. 

Since the multicycle path can be ap-
plied to either setup or hold, you then 
have the choice of where to apply it. 
When you declare a setup multiplier, it is 
often best practice to also declare a hold 
time multiplier using the equation below.

hold cycles = setup multi-
plier – 1 – hold multiplier

What this means for the simple exam-
ple we have been following is that the hold 
multiplier is defined by this equation:

hold multiplier = setup 
multiplier – 1 When using a 
common clock.

To demonstrate the importance of 
multicycle paths, I have created a sim-
ple example that you can downloaded 
here. Within the XDC file there is one 
example which contains two multicycle 
paths declared, both setup and hold.

PHYSICAL CONSTRAINTS     
The most commonly used physical 
constraints are the placement of I/O 
pins and the definition of parameters 
associated with the I/O pins, for in-
stance standard drive strength. How-
ever, there are other types of physical 
constraints, including placement, rout-
ing, I/O and configuration constraints.  
Placement constraints make it possible 
to define the locations of cells, while 
routing constraints allow you to define 
the routing of signals. I/O constraints 
let you define the location of I/Os and 
their parameters. Finally, configura-
tion constraints offer a way to define 
your configuration methods.

As always, there are a few con-
straints that sit outside of these groups. 
The Vivado Design Suite has three such 
constraints, and they are predominantly 
used on the netlist.

•   DONT_TOUCH – This constraint is 
used to prevent optimization, and 
as such it can be of great use when 
implementing a safety-critical or 
high-reliability system.

•  MARK_DEBUG – This constraint is 
used to preserve an RTL net such that 
it can be used for debugging later.

•  CLOCK_DEDICATED_ROUTE – 
This constraint identifies a route 
for the clock routing. 

 

The most commonly used constraints 
relate to I/O placement and configuration 
of the I/O. Placing an I/O on an FPGA in-
volves the use of both placement con-
straints to locate the physical pin and I/O 
constraints to configure the I/O properties 
such as the  I/O standard, slew rate, etc. 

Modern FPGAs support a number of 
single and differential I/O standards. These 
are defined via the I/O constraints. Howev-
er, you must take care to ensure you are 
following I/O banking rules, which depend 
upon the final pin placement. 

But what are I/O banking rules? The 
user I/Os within an FPGA are grouped 
together into a number of banks con-
sisting of a number of I/Os. These banks 
have independent voltage supplies, en-
abling the support of the wide range of 
I/O standards.  On the Zynq®-7000 All 
Programmable SoC (and other 7 series 
devices), I/O banks are further classi-
fied as belonging to one of two overall 
groups—high performance and high 
range. These categories further con-
strain their performance and require 
that the engineer use the correct class 
for the correct interface. 

The high-performance (HP) class is 
optimized for higher data rates. As such, 
it uses lower operating voltages and 
does not support LVCMOS 3v3 and 2v5. 
The other class, high range (HR), is opti-
mized to handle wider I/O standards not 
supported by HP. HR therefore supports 

Propagation Time

> 1 CLK period

Timing analysis between registers uses 1 CLK period by default.

Figure 2 – The multicycle path is one example of a timing exception.

https://github.com/ATaylorCEngFIET
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traditional 3v3 and 2v5 interfacing. Fig-
ure 3 demonstrates these banks. 

Once you have determined which 
banks to use for which signal, you 
still have the ability to change the 
signal drive strength and slew rate. 
These metrics will be of great interest 
to your hardware design team as they 
strive to ensure that the signal integ-
rity upon the board is optimal. These 
selections will also affect the timing 
of the board design. As such, you may 
opt to use a signal integrity tool. 

SI tools require an IBIS model. You 
can extract an IBIS model of your de-
sign from the Vivado tools when you 
have the implemented design open us-
ing the File->Export->Export IBIS mod-
el option. You can then use this file to 
close the system-level SI issues and tim-
ing analysis of the final PCB layout.

Once the design team is happy with 
the SI performance and timing of the 

system as a whole, you will end up with 
a number of constraints like the ones be-
low for the I/Os in the design.

 set_property PACKAGE_PIN 
G17 [get_ports {dout}]
 set_property IOSTAN-
DARD LVCMOS33 [get_ports 
{dout}]
 set_property SLEW SLOW 
[get_ports {dout}]

 set_property DRIVE 4 [get_
ports {dout}]
 
With the HP I/O banks, you can 

also use the digitally controlled im-
pedance to terminate the I/O correct-
ly and increase the SI of the system 
without the need for external termi-
nation schemes. You must also con-
sider the effects of the I/O if there 
is no signal driving it, for instance 
if it is attached to an external con-

nector. In that case, you can use the 
I/O constraints to implement a pull-
up or pull-down resistor to prevent 
the FPGA input signal from floating, 
which can cause system issues.

Of course, you can also use phys-
ical constraints to improve the tim-
ing of your design by implementing 
the final output flip-flop within the 
I/O block itself. Doing so reduces 
the clock-to-output timing. You can 
do the same thing on input signals as 
well, which will allow the design to 
meet the pin-to-pin setup-and-hold 
timing requirements.

PHYSICAL CONSTRAINTS  
START WITH PLACEMENT   
You may wish to constrain the place-
ment for a number of reasons—perhaps 
to help achieve timing or maybe to pro-
vide isolation between sections of the 
design. In this regard, three types of 
constraints will be important: 

•   BEL – The basic element of logic al-
lows a netlist element to be placed 
within a slice. 

•   LOC – Location places an element from 
the netlist to a location within a device.

•  PBlock – You can use the physical (or 
“P”) block to constrain logic blocks to 
a region of the FPGA.
 
Thus, while a LOC allows you to 

define a slice or other location within 
the device, a BEL constraint lets you 
target at a finer granularity the flip-
flop to use within the slice. PBlocks 
can be used to group logic together 
when segmenting large areas of the 
design. Another use for PBlocks is to 
define logical regions when you wish 
to perform partial reconfiguration. 

In some instances, you will wish to 
group together smaller logic functions 
to ensure the timing is optimal. While 
it’s possible to do so using PBlocks, it 
is more common in this scenario to use 
relatively placed macros.

Relatively placed macros (RPMs) al-
low design elements such as DSPs, flip-
flops, LUTs and RAMs to be grouped to-Figure 3 – High-performance (left) and high-range I/O banks on a Xilinx 7 series device.
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gether in the placement. Unlike PBlocks, 
RPMs do not constrain the location of 
these elements to a specific area of the 
device (unless that’s what you want). 
Instead, RPMs group these elements to-
gether when they are placed.

Placing design elements close to-
gether makes it possible to achieve 
two goals. It improves resource effi-
ciency and it allows you to fine-tune 

interconnection lengths to enable bet-
ter timing performance.

To co-locate design elements, you can 
use three types of constraints, which can 
be defined with the HDL source files. 

•     U_SET makes it possible to define an 
RPM set of cells regardless of hierarchy. 

•    HU_SET  allows definition of an RPM 
set of cells with hierarchy.

•   RLOC allows the assignment of relative 
locations to the SET. 

 
The RLOC constraints use the defi-

nition RLOC = XmYm, where the X and 
Y relate to the coordinates of the FPGA 
array. When you define an RLOC, you 
can make this either a relative or an 
absolute coordinate, depending upon 
whether you add in the RPM_GRID at-
tribute. Including this attribute makes 
the definition absolute and not relative. 

As these constraints are defined 
within the HDL as in Figure 4, it is of-
ten necessary to run a place-and-route 
iteration initially, before adding the 
constraints to the HDL file, so as to cor-
rectly define the placement.

In short, understanding timing and 
placement constraints and learning 
how to correctly use them are the 
keys to obtaining the best quality of 
results in your Xilinx-based program-
mable logic design.  

Figure 4 – Constraints within the source code

SIGNAL ip_sync : STD_LOGIC_VECTOR(1 DOWNTO 0) :=(OTHERS =>’0’);
SIGNEL shr_reg : STD_LOGIC_VECTOR(31 DOWNTO 0) :=(OTHERS =>’0’);

ATTRIBUTE RLOC : STRING;
ATTRIBUTE HU_SET : STRING;
ATTRIBUTE HU_SET OF ip_sync : SIGNAL IS “ip_sync”;
ATTRIBUTE HU_SET of shr_reg : SIGNAL IS “shr_reg”;
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Heterogeneous multiprocessing is becoming in-
creasingly important to embedded applications 
today. System-on-chip (SoC) architectures such 
as Xilinx®’s Zynq® UltraScale+™ MPSoC provide 
a powerful heterogeneous multiprocessing infra-
structure consisting of quad ARM® Cortex®-A53 
cores and dual ARM Cortex-R5 cores. In addition 
to the core compute infrastructure, the SoC con-
tains a rich collection of hardened peripheral IP 
and FPGA fabric, enabling flexible design para-
digms for system developers to create high-perfor-
mance multiprocessing systems. 

Various software development paradigms are 
available that enable developers to leverage the 
multiprocessing capabilities offered by SoCs such 
as the Zynq MPSoC. Symmetric multiprocessing 
(SMP) operating systems provide the infrastruc-
ture required to balance application workloads 
symmetrically or asymmetrically across multiple 
homogeneous cores present in a multiprocessing 
system. However, to leverage the compute band-
width provided by the heterogeneous processors 
present in the system, asymmetric multiprocess-
ing (AMP) software architectures are needed.

AMP architectures typically entail a combina-
tion of dissimilar software environments such as 
Linux, a real-time operating system (RTOS) or 
bare-metal software running on dissimilar  pro-
cessing cores present in the SoC—all working in 
concert to achieve the design goals of the end ap-
plication. Typical designs involve a software con-
text on a master core bringing up a remote soft-
ware context on a remote core in a demand-driven 
manner to offload computation. The master, re-
mote processors and their associated software 
contexts (that is, their OS environments) could 

The Mentor Embedded  
Multicore Framework  
eases SoC system design  
by hiding the complexities  
of managing heterogeneous 
hardware and software  
environments. H
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be homogeneous or heterogeneous 
in nature. Effectively dealing with the 
complexities of managing the life cycles 
of several operating systems on pos-
sibly dissimilar processors, while also 
providing an enabling interprocessor 
communication (IPC) infrastructure for 
offloading compute workload, demands 
new and improved software capabilities 
and methods.

The Mentor Embedded Multicore 
Framework from Mentor Graphics is a 
software framework that provides two 
key capabilities for AMP system de-
velopers: the remoteproc component 
and API for life cycle management of 
remote processors and their associat-
ed software contexts; and the rpmsg 
component and API for IPC between 
OS contexts in the AMP environment. 
The framework hides the complexities 
of managing heterogeneous hardware 
and software environments, provid-

However, the Linux-provided infra-
structure had some limitations. For 
starters, Linux rpmsg implicitly assumed 
that Linux would always be the master 
operating system, and it did not support 
Linux as a remote OS in an AMP config-
uration. Furthermore, the remoteproc 
and rpmsg APIs were available from the 
Linux kernel space only—there were no 
equivalent APIs or libraries usable with 
other OSes and runtimes.

The Mentor Embedded Multicore 
Framework is a standalone library writ-
ten in the C language. It provides a clean-
room implementation of the remoteproc 
and rpmsg functionality usable with 
RTOS or bare-metal software environ-
ments, with API-level compatibility and 
functional symmetry to its Linux coun-
terpart. Figure 1a shows a software 
stack diagram of the Mentor Embedded 
Multicore Framework and its usage in 
RTOS or bare-metal environments. As 

ing the user with a simplified applica-
tion-level interface.

Let’s take a closer look at how you 
can use this new development frame-
work to manage heterogeneous compu-
tation in AMP systems.

COMPATIBILITY AND ORIGINS  
Compliance to open standards and 
adoption by the Linux community were 
important criteria when selecting an ap-
propriate API for the Mentor Embedded 
Multicore Framework. Mentor chose 
the remoteproc and rpmsg API present 
in the Linux 3.4.x kernel and newer. 
The Linux remoteproc and rpmsg infra-
structure was originally conceived and 
committed to the Linux kernel by Tex-
as Instruments. The infrastructure al-
lowed Linux OS on a master processor 
to manage the life cycle and communi-
cations with a remote software context 
on a remote processor. 

Mentor chose the remoteproc and rpmsg API 
present in the Linux 3.4.x kernel and newer. 

Figure 1 – Mentor Embedded Multicore Framework in RTOS and bare-metal environments (a), and remoteproc and rpmsg in the Linux kernel (b)
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shown, the framework’s well-abstract-
ed porting layer consists of a hardware 
interface layer and an OS abstraction 
(environment) layer, allowing users to 
easily port the framework to other pro-
cessors and operating systems. 

Figure 1b shows the remoteproc and 
rpmsg infrastructure present in the Li-
nux kernel. The remoteproc and rpmsg 
kernel-space drivers provide services 
to the remoteproc platform driver and 
rpmsg user device driver. The remote-
proc platform driver allows for remote 
life cycle management, and the rpmsg 
user device driver exposes IPC services 
to user-space applications. 

In addition to enabling RTOS and 
bare-metal environments to interoper-
ate with Linux remoteproc/rpmsg in-
frastructure in AMP architectures, the 
Mentor Embedded Multicore Frame-
work provides work flows and runtime 
infrastructure to package and boot Li-
nux as a remote OS in AMP configura-
tions. Figure 2 shows the various AMP 
configurations the framework supports.

USE CASES AND APPLICATIONS   
The Mentor Embedded Multicore Frame-
work is well suited for both unsuper-
vised and supervised AMP architectures.  

The unsupervised AMP (uAMP) ar-
chitecture is useful in applications that 
do not require a strong separation be-
tween the participating OS contexts. In 
this architecture, the participating oper-
ating systems run natively on the proces-
sors present in the system. As shown in 
Figure 3a, the Mentor Embedded Multi-
core Framework provides a simple and 
effective infrastructure in which a mas-
ter software context on a master (boot) 
processor can manage the life cycle and 
offload computation to other compute 
resources present in the SoC. 

A supervised asymmetric multipro-
cessing (sAMP) architecture is best for 
applications that require isolation of 
software contexts and virtualization of 
system resources. In sAMP, the partic-
ipating guest operating systems run in 
guest virtual machines that are managed 
and scheduled by a hypervisor (aka vir-
tual machine monitor). The hypervisor 
provides isolation and virtualization 
services for the virtual machines. The 
Mentor Embedded Multicore Frame-
work enables sAMP architectures to 
manage computation on heterogeneous 
compute resources present in the SoC. 

As illustrated in Figure 3b, the frame-
work can be used in two ways: from the 

Figure 2 –  AMP configurations that the Mentor Multicore Framework supports

guest OS context for unsupervised man-
agement of heterogeneous compute re-
sources; and from within the hypervisor 
for supervised management of hetero-
geneous compute resources, allowing 
the hypervisor to supervise interactions 
between the guest operating systems 
and remote contexts involved. 

In general, the Mentor Embedded 
Multicore Framework is well-suited for 
applications requiring demand-driven off-
load of compute functions to specialized 
cores present on a multiprocessing chip. 
In the case of power-constrained devices, 
the framework enables on-demand bring-
up and shutdown of compute resources, 
allowing for optimal power usage. 

The framework also provides an easy 
path for consolidation of legacy sin-
gle-core embedded systems onto powerful 
and more capable multiprocessing SoCs. 
With very little effort, the framework al-
lows for migration of legacy software 
originally developed for unicore silicon 
to easily interoperate with enhanced sys-
tem functionality developed on newer and 
more powerful multiprocessing chips. 

Lastly, the framework facilitates im-
plementation of fault-tolerant system ar-
chitectures. For example, the framework 
can enable an RTOS context (master) 
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that’s handling critical system function-
ality to manage a Linux context handling 
noncritical system functions. Upon fail-
ure of the Linux-based subsystem, the 
RTOS can simply reboot the failed sub-
system without causing any adverse ef-
fects to critical system functions.

SYSTEM-LEVEL CONSIDERATIONS   
Mentor Embedded Multicore Frame-
work APIs provide the required soft-
ware infrastructure to manage compu-
tation in AMP systems. However, those 
designing AMP systems must take cer-
tain system-level considerations into 
account before developing application 
software using these APIs.  

During the initial design phase, you 
will be determining the AMP topology. 
The framework can be used in a star to-
pology—a single master managing mul-
tiple remotes—or in a chain topology, 
with chained master and remote nodes. 

Once you have chosen a suitable 
topology, the next step is to determine 

the memory layout. You should assign 
memory regions for each participating 
OS runtime, and assign shared-mem-
ory regions for IPC between the OS 
instances. Once the memory layout is 
finalized, you will need to update the 
platform-specific configuration data 
provided to the framework to reflect 
the chosen memory architecture. 

Off-the-shelf operating systems gen-
erally assume they own the entire SoC, 
and are not readily suited for operation 
in unsupervised AMP environments, 
where cooperative usage of shared re-
sources and mutually exclusive usage 
of nonshared resources are key require-
ments. Each participating OS in an AMP 
system needs to be modified so that 
shared resources are used in a cooper-
ative fashion. For example, the remote 
OS should not reset and reinitialize a 
shared global interrupt controller that 
might already be in use within the mas-
ter context; nor can shared clock trees 
or peripherals be modified to cause 

conflicts. These changes will typically 
require modifications to the participat-
ing OS kernel, BSP sources or both. 

The next step is to perform system 
partitioning. You must partition system 
resources such as memory and non-
shared I/O devices between the partic-
ipating operating systems so that each 
OS has visibility and can access only 
the resources that are assigned to it. 
You can accomplish this task by modi-
fying the platform-specific data (device 
and memory definitions) provided to 
the participating OSes. For example, 
modify memory and device definitions 
in a Linux device tree source (DTS) file 
for the Linux OS; in a platform defini-
tion file for the Nucleus RTOS; and per-
haps in the platform-specific headers in 
bare-metal environments. 

LIFE CYCLE MANAGEMENT  
USING REMOTEPROC  
Once you have made the system-level 
design decisions and modifications to 

Figure 3 – Mentor Embedded Multicore Framework use cases, including the uAMP (a) and sAMP (b) architectures
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the participating operating systems, 
you are now ready to start using the 
Mentor Embedded Multicore Frame-
work from application software. The 
framework provides work flows that 
make it possible to package Linux, 
RTOS or bare-metal-based software 
images along with required bootstrap-
ping firmware to produce remote firm-
ware images in ELF format.  

A remote firmware ELF image con-
tains a special section called the re-
source table. The resource table is a 
static data structure with predefined 
bindings where users can specify re-
sources required by the remote firm-
ware. Some key definitions supplied 
in resource tables include memory re-
quired by the remote firmware and IPC 
capabilities supported by remote firm-
ware. The remoteproc component in 
the master software context will use the 
resource table definitions to allocate re-
sources and establish communications 
with the remote context.

The framework master initializes the 
remote processor context using the re-
moteproc_init API. On invocation, the 
remoteproc master fetches the remote 
firmware image, decodes it, obtains 
the resource table and parses it to dis-
cover the remote firmware’s resource 
requirements. Based on resource ta-
ble definitions, remoteproc carves out 
the physical memory required for the 
remote firmware and performs cer-
tain initialization functions specific to 
rpmsg/VirtIO-based IPC. 

Once remoteproc is initialized, you 
can use the remoteproc_boot API to 
boot the remote processor with the 
associated software context. On in-
vocation, the firmware image is lo-
cated to execute in place in memory, 
and the remote processor is released 
from reset to execute the image. The 
remoteproc_shutdown and remote-
proc_deinit APIs allow applications to 
shut down the remote processor and 
de-initialize resources, respectively. 
(The pseudo-code block in Figure 5 
shows an example of remoteproc API 
usage from the master context.) 

In the remote context, the boot 
and shutdown APIs are irrelevant. 
To initialize and de-initialize the re-
moteproc component, you must use 
remoteproc_resource_init,  remote-
proc_resource_deinit APIs. For infor-
mation on how remoteproc is used 
from the Linux context, please refer 
to Linux kernel documentation. 

RPMSG  AND INTERPROCESSOR 
COMMUNICATION   
Once the remote firmware is up and 
running on the remote processor, you 
can use the rpmsg APIs for interproces-
sor communication between the master 
and remote software contexts. The key 
abstractions and concepts to be under-
stood when using rpmsg are as follows:

   
•  From the perspective of the master, 

an rpmsg device represents a remote 
processor.

•  An rpmsg channel is a bidirectional 
communication channel between 
the master and the remote processor 
(aka rpmsg device).

•  An rpmsg endpoint is a logical ab-
straction that can be present on ei-
ther side of an rpmsg channel.

•  The endpoints provide the infrastruc-
ture for sending targeted messages 
between master and remote contexts. 

•  When an endpoint is created, the user 
provides a unique endpoint index or 
allows the rpmsg component to as-
sign an index for the endpoint. In ad-
dition, the user provides an applica-
tion-defined callback to be associated 
with the endpoint being created.

•  When a message is received target-
ed to a given endpoint index, rpmsg 
invokes the associated receive call-
back with a reference to the data 
payload received. 

•  Users can create any number of end-
points on either side of an rpmsg 
channel.

•  Messages that are not explicitly tar-
geted to a destination endpoint index 
reach a default endpoint associated 
with the rpmsg channel.

•  The rpmsg component notifies user 
applications of events such as chan-
nel creation and deletion using user 
provided callbacks registered during 
initialization. 
   

The framework provides work flows that  
make it possible to package Linux, RTOS or 

bare-metal software images along with  
required bootstrapping firmware to produce  

remote firmware images in ELF format.



T O O L S  O F  X C E L L E N C E

 64 Xcell Journal Fourth Quarter 2015

Figure 4 illustrates rpmsg channel 
and endpoint abstractions and their 
usage. The rpmsg component works in 
concert with remoteproc to establish 
and manage the rpmsg communication 
channel between master and remote 
contexts. Once remoteproc on master 
brings up the remote context, rpmsg on 
the remote context sends a name ser-
vice announcement. Upon receiving the 
name service announcement, the master 
registers the announced rpmsg device 
and establishes an rpmsg channel. Once 
the channel is established, the rpmsg 
channel-created callback is invoked on 
both sides, notifying the master and re-
mote applications of channel creation. 

At this point, the master and remote 
context can transmit data to each other 
using the rpmsg_sendxx and rpmsg_
trysendxx APIs for blocking and non-
blocking transmit requests respective-

ly. When the remote context invokes 
remoteproc_resource_deinit, the mas-
ter application is notified of the event 
by the rpmsg channel deleted callback, 
allowing for graceful termination of the 
rpmsg-based communication link. The 
master can choose to asynchronously 
shut down the remote processor using 
the remoteproc_shutdown API in sit-
uations where the remote context be-
comes unresponsive. The pseudo-code 
segment in Figure 5 shows usage of 
rpmsg APIs in concert with remoteproc 
APIs in a master context. 

The rpmsg component uses VirtIO as 
a shared-memory-based transport ab-
straction. VirtIO has its roots as an I/O 
virtualization standard used for guest-to-
host communications in lguest, KVM and 
the Mentor Embedded Hypervisors. The 
rpmsg driver uses services provided by 
the VirtIO layer for shared-memory-based 

communications with its counterpart. 
The rpmsg driver instantiates an rpmsg 
VirtIO device and uses the VirtQueue in-
terface to push and consume data w.r.t. 
its communicating counterpart. 

TOOLS FOR DEVELOPMENT  
OF AMP SYSTEMS  
Development of AMP application soft-
ware presents a unique set of challeng-
es. System developers typically find 
themselves having to simultaneously 
debug different OS environments de-
ployed on dissimilar processors on het-
erogeneous SoCs. Having a unified de-
bugging environment with awareness of 
the operating systems involved will not 
only enhance the debug experience, but 
improve productivity. Mentor Embed-
ded Sourcery CodeBench tools provide 
a unified IDE with OS awareness for all 
supported OS environments (including 

 
Figure 4 – rpmsg channel and endpoint abstractions
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Mentor Embedded Linux and Nucle-
us RTOS). Sourcery CodeBench also 
supports a multitude of debug options, 
which include JTAG-based debug for 

debugging Linux kernel space, Nucle-
us RTOS and bare-metal contexts; and 
GDB-based debug for Linux user space 
and Nucleus RTOS-based applications.

While developing AMP systems, soft-
ware profiling is a valuable tool to gain 
insight into how various applications 
deployed on heterogeneous OSes in-
teract with each other during runtime. 
Each OS instance typically uses an in-
dependent clock reference, and any 
profiling data collected within a given 
OS context will be based on a time base 
that is local to the OS. Mentor Embed-
ded Sourcery Analyzer host-based tools 
and Mentor’s operating systems contain 
built-in algorithms that enable users to 
graphically visualize and analyze trace 
data collected from disparate OS sourc-
es in a unified time reference. This ca-
pability allows users to gain interesting 
insights into complex interactions and 
hard-to-find timing issues typically en-
countered in developing AMP software.

AN OPEN-SOURCE  
RUNTIME COMPONENT  
The Mentor Embedded Multicore Frame-
work is tightly integrated with Mentor’s de-
velopment tools and operating systems. It 
supports a diverse set of ARM-based SoCs 
and platforms. Using the framework with 
Mentor tools and operating systems frees 
users from having to design their AMP 
system from scratch—that is, perform the 
tasks discussed under the system-level 
considerations section above. Users can 
get started with AMP application devel-
opment with one of the reference config-
urations and later customize the system 
configuration to fit their needs.  

For AMP system design, there is a 
clear need for a standards-based soft-
ware framework that enables develop-
ment of RTOS or bare-metal software 
that can interoperate with interfaces 
adopted by the open-source Linux 
community. To address this need and 
to promote industry adoption, Mentor 
Graphics and Xilinx have jointly open-
sourced the Mentor Embedded Multi-
core Framework’s runtime component 
under the OpenAMP open-source proj-
ect, with platform support for the the 
Zynq-7000 All Programmable SoC. This 
project is currently jointly maintained 
by Mentor Graphics and Xilinx.  

/* rpmsg channel created callback - invoked on channel creation */
void rpmsg_channel_created(struct rpmsg_channel *rp_chnl) {
    ..
 /* Use RTOS provided primitives (ex., semaphores) to 
    release the application context blocked on rpmsg 
    channel creation */
}

/* rpmsg channel deletion callback - invoked on channel deletion */
void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl) {
    ..
 /* Use RTOS provided primitives (ex., semaphores) to 
    release the application context blocked on rpmsg 
    channel deletion */
}

/* rpmsg receive callback - invoked when data received on 
default endpoint */
void rpmsg_rx_cb(struct rpmsg_channel *rp_chnl, void *data, 
     int len, void * priv, unsigned long src) {
    ..
 /* Copy received data to application buffer and use 
 RTOS provided primitives (ex., semaphores) to release 
 the application IPC data processing context */
}

/* Initialize remote context */
int Initialize_Remote_Context(..) {
    ...
    /* Initialize remote context */
    remoteproc_init(remote_fw_info, 
        rpmsg_channel_created, rpmsg_channel_deleted, 
        rpmsg_rx_cb, &proc);

 /* Boot remote context */
    remoteproc_boot(proc);
 ...
}

/* Send data to remote context after rpmsg channel creation */
int Send_Data_To_Remote(..) {
    ..
 rpmsg_send(app_rp_chnl, user_buff, sizeof(user_buff));
 ..
}

/* Finalize remote context after rpmsg channel deletion */
int Finalize_Remote_Context(..) {
    ..
 /* Shut down and finalize the remote processor */
 remoteproc_shutdown(proc);
 remoteproc_deinit(proc);
 ..
}

Figure 5 –  Pseudo code that illustrates the usage of key remoteproc  
and rpmsg APIs from the master context 
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What’s New in the  
Vivado 2015.3 Release?
Xilinx is continually improving its products, IP and design tools as it strives to help designers work more effectively. 
Here, we report on the most current updates to Xilinx design tools including the Vivado® Design Suite, a revolution-
ary system- and IP-centric design environment built from the ground up to accelerate the design of  Xilinx®  
All Programmable devices. For more information about the Vivado Design Suite, please visit www.xilinx.com/vivado.

Product updates offer significant enhancements and new features to the Xilinx design tools. Keeping your installation 
up to date is an easy way to ensure the best results for your design. 

The Vivado Design Suite 2015.3 is available from the Xilinx Download Center at www.xilinx.com/download.

XTRA, XTRA

VIVADO DESIGN SUITE: 
DESIGN EDITION UPDATES

Partial Reconfiguration and 
Tandem Configuration   
The new release of the Vivado Design 
Suite features expanded support for 
UltraScale devices, including place-and-
route support for the KU085, KU095, 

VIVADO DESIGN SUITE 2015.3  
RELEASE HIGHLIGHTS     
The Vivado Design Suite 2015.3 release introduces new market-tai-
lored plug-and-play IP subsystems. These new subsystems, in 
combination with enhancements to Vivado IP Integrator (IPI) and 
high-level synthesis (HLS) for C/C++ and SystemC-based design, 
significantly decrease design creation and integration efforts by ab-
stracting time-consuming RTL development.

Also, the Vivado 2015.3 implementation has new features including 
pipeline reporting, automated pipeline insertion and retiming, and 
enhanced cross-probing, as well as core engine enhancements.

VU065 and VU080, bringing the total 
number of UltraScale devices supported 
to 12.

Partial-bit-file generation is now en-
abled for the KU060, KU095, KU115 and 
VU095 production silicon, bringing the 
total number of devices enabled for bit-
streams up to six.

Also new is this release is the Partial 
Reconfiguration Decoupler IP. This new 
core makes it easy for designers to iso-
late reconfigurable partitions from the 
static design during reconfiguration.

See the Xilinx IP page for more details: 
http://www.xilinx.com/products/intel-
lectual-property/pr-decoupler.html.
 
Vivado IP Integrator  
To speed design integration, the new 
release offers easy access to IP exam-
ple designs from IP Integrator (IPI), 
along with enhanced configurable ex-
ample designs. Among these example 
designs is an option to configure the 
MicroBlaze™ processor.  

Vivado Simulator
The latest simulator version offers up 
to a 3x improvement in elaboration 
runtime performance. 

Vivado Debug and Reporting 
Xilinx has added a host of new reports to 
speed timing closure and debug. The re-
port_design_analysis command reports 
a list of paths that are critical at both the 
current design stage and the prior stage. 
This provides a way to check on which 
critical paths the tools will focus on at 
each stage. Another new command, re-
port_pipeline_analysis, evaluates poten-
tial design performance improvements 
by hypothetically adding latency (pipe-
line stages) to the design and reporting 
the new, resulting Fmax. 

Device Support    
New Devices
The following UltraScale™ devices 
are introduced in this release:

•  Kintex® UltraScale devices: 
XCKU095, XCKU025,  
XCKU085

New General Access  
Supported Devices 
The following devices are production 
ready (in -1 and -2 speed grades)

•  Kintex UltraScale devices:  
XCKU095, XCKU025, XCKU085

•  Virtex® UltraScale devices: 
XCVU095, XCVU080 

http://www.xilinx.com/vivado
http://www.xilinx.com/download
http://www.xilinx.com/products/intellectual-property/pr-decoupler.html
http://www.xilinx.com/products/intellectual-property/pr-decoupler.html
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VIVADO DESIGN SUITE: 
SYSTEM EDITION UPDATES

Vivado High-Level Synthesis
To accelerate development of C-based 
IP, Vivado HLS can now launch the 
Vivado waveform viewer after running 
a C/RTL co-simulation to visualize the 
simulation waveforms. Just click on 
the Open Wave Viewer toolbar button. 
Also new is support for half-precision 
floating-point through the hls_half.h 
header file. The half-precision feature 
allows for smaller and faster designs 
while in many cases retaining suffi-
cient numerical precision.

See the Vivado Design Suite User 
Guide: High-Level Synthesis (UG902) 
for more information. 

System Generator for DSP
New for System Generator is support for 
MATLAB® 2015B, including tighter in-
tegration that allows the HDL Coder to 
automate the generation of a combined 
model containing high-level RTL and tar-
get-optimized IP.

For better usability, Xilinx has enhanced 
the System Generator’s blockset for dig-
ital upconverters and digital downcon-
verters (DUC/DDC), greatly simplifying 
this blockset for wireless algorithm de-
velopment. Enhancements to improve 
verification and compile runtime have 
been added to the new blocks, all of 
which are configured with seven or 
fewer parameters. The digital FIR filter 
block tightly integrates with the Filter 
Design and Analysis Tool from Math-
Works to build area-efficient filters, in-
cluding fixed-fractional interpolation 
or decimation types. The sine-wave and 
complex-product blocks greatly simplify 
modulator design for frequency conver-
sion at high sample rates. The requan-
tize block enables quick manipulation of 
data types to maximize dynamic range at 
any point in the data path.

System Generator for DSP also features 
new interactive cross-probing that ac-
celerates design exploration and pro-
vides iterative design closure. With the 
cross-probing of timing analysis, algo-
rithm developers can quickly identify 
their critical paths and single out bot-
tlenecks that may affect throughput and 

latency of their algorithms to make swift 
adjustments. Also new to this release 
are improvements in System Generator’s 
hardware-based co-simulation, improv-
ing verification runtime by 45x.

XILINX INTELLECTUAL 
PROPERTY (IP) UPDATES 

Xilinx’s new LogiCORE™ IP subsystems 
are highly configurable, market-tailored 
building blocks that integrate up to 80 in-
dividual IP cores, software drivers, design 
examples and testbenches. Available with 
the Vivado Design Suite 2015.3 release are 
new IP subsystems for Ethernet, PCIe®, 
video processing, image sensor process-
ing and OTN development. These IP sub-
systems are based on industry standards 
such as the AMBA® AXI-4 interconnect 
protocol, IEEE P1735 encryption and IP-
XACT to enable interoperability with Xil-
inx and Alliance member IP and to accel-
erate integration.

The highly configurable Video Processing 
Subsystem supports a 4K2K video pipe. 
Comprehensive video support includes 
VDMA, deinterlacer, chroma resampler 
and scaler. The subsystem can also easily 
source and sync DisplayPort, HDMI and 
MIPI interfaces by leveraging the auto-
matically generated AXI interfaces and 
Vivado IPI. The new video IP subsystem 
replaces Xillinx’s VIPP cores. 

LEARN MORE
See the Vivado Design Suite 2015.3 Re-
lease Notes for more information.

QuickTake Video Tutorials  
Vivado Design Suite QuickTake tutorials 
are how-to videos that take a look inside 
the features of the Vivado Design Suite 
and UltraFast™ Design Methodology. 
 
See all QuickTake Videos here: www.xil-
inx.com/training/vivado.

Training  
For instructor-led training on the Viva-
do Design Suite, UltraFast Design 
Methodology and more, visit www.xil-
inx.com/training. 

Download Vivado Design Suite 2015.3 
today at http://www.xilinx.com/down-
load.    

This  
year’s  
best  
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The definitive resource for  
software developers speeding  

C/C++ & OpenCL code with  
Xilinx SDx IDEs & devices

The Award-winning Xilinx Publication Group  
is publishing a brand new trade journal  

specifically for the programmable FPGA  
software industry, focusing on users of  

Xilinx SDx™ development environments and 
high-level entry methods for programming  

Xilinx All Programmable devices.

This is where you come in. 
Xcell Software Journal is now accepting  

reservations for advertising opportunities  
in this new, beautifully designed and written 
resource. Don’t miss this great opportunity  

to get your product or service into the minds  
of those who matter most. Call or write  
today for your free advertising packet!
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calendar and advertising rate card),  
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Xpress Yourself 
in Our Caption Contest

Every designer knows that debugging is one of the trickiest steps in 
the flow, but at this lab, things have gotten out of hand. Xercise your 
funny bone as you help our beleaguered cartoon engineer swat some 

of the most recalcitrant bugs we’ve ever seen. We invite readers to submit an  
engineering- or technology-related caption for this cartoon showing a worst-
case debugging situation. The image might inspire a caption like “Henry 
longed for an automated way to debug his latest design, because doing it by 
hand just wasn’t working.” 

Send your entries to xcell@xilinx.com. Include your name, job title,  
company affiliation and location, and indicate that you have read the con-
test rules at www.xilinx.com/xcellcontest. After due deliberation, we will 
print the submissions we like the best in the next issue of Xcell Journal.  
The winner will receive a Digilent Zynq Zybo board, featuring the Xilinx® 

Zynq®-7000 All Programmable SoC (http://www.xilinx.com/products/
boards-and-kits/1-4AZFTE.htm). Two runners-up will gain notoriety, fame 
and have their captions, names and affiliations featured in the next issue.

The contest begins at 12:01 a.m. Pacific Time on Oct. 15, 2015. All entries 
must be received by the sponsor by 5 p.m. PT on Jan. 6, 2016.

NO PURCHASE NECESSARY. You must be 18 or older and a resident of the fifty United States, the District of Columbia, or Canada (excluding Quebec) to enter. Entries must be entirely original. Contest begins on  
Oct. 15, 2015. Entries must be received by 5:00 pm Pacific Time (PT) Jan. 6, 2016. Official rules are available online at www.xilinx.com/xcellcontest. Sponsored by Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124.

TRAVIS ROTHLISBERGER, 
director of device development at 

Cerevast Medical (Redmond, Wash.), 
won a shiny new Digilent Zynq Zybo 

board with this caption for the  
dartboard cartoon in Issue 92  

of Xcell Journal:

 “To Ed’s delight, nobody questioned 
him when he said that his  

Monte Carlo analysis would take  
several months to complete.”

Congratulations as well to  
our two runners-up:

 “Keep debugging, I’m finalizing the 
feature set and pricing right now!”

 — Lee Courtney, CTO/VP-Product, 

Qurasense (Menlo Park, Calif.)  

“I figure this is a better way to meet 
targets than what goes on upstairs!” 

– Larry Standage, principal  
applications engineer,  

Microchip Technology Inc.  
(Chandler, Ariz.)
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FPGA-Based Prototyping for Any Design Size?  
Any Design Stage? Among Multiple Locations?

That’s Genius!
Realize the Genius of  
Your Design with S2C’s  
Prodigy Prototyping Platform

Download our white paper at:
http://www.s2cinc.com/resource-library/white-papers

Get Published

www.xilinx.com/xcell/

Interested in adding “published author” to your resume and achieving a greater level of credibility and recognition in your
peer community? Consider submitting an article for global publication in the highly respected, award-winning Xcell Journal.
For more information on this exciting and highly rewarding opportunity, please contact:
Mike Santarini, Publisher
Xcell Publications, xcell@xilinx.com
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http://www.xilinx.com/xcell


n   $55 Zynq-based Wireless Snickerdoodle single-board computer with WiFi, Bluetooth launched today on CrowdSupply

n Tiny 100x62mm, Zynq-based Avnet PicoZed SDR implements 2x2 MIMO, 70MHz to 6GHz radio using ADI RF Agile Transceiver

n ARTY—the $99 Artix-7 FPGA Dev Board/Eval Kit with Arduino I/O and $3K worth of Vivado software. Wait, What????

n Lift-off! 16nm Zynq UltraScale+ MPSoC ships to customers. From tapeout to “Hello World” in 2.5 months.

n Zynq-based, $179 Skreens Nexus on Kickstarter allows you to safely cross the (HDMI video) streams

https://forums.xilinx.com/t5/Xcell-Daily-Blog/55-Zynq-based-Wireless-Snickerdoodle-single-board-computer-with/ba-p/658683
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