
www.xilinx.com/xcell

S O L U T I O N S F O R A P R O G R A M M A B L E W O R L D

ISSUE 93, FOURTH QUARTER 2015

Xilinx Speeds Customer
Medical Innovations to Market

FPGA-Based Fuzzy
Controller Manages
Sugarcane Extraction

Zynq MPSoC Gets
Xen Hypervisor Support

Making XDC Timing
Constraints Work for You

The latest Xilinx tool
updates and patches,
as of October 2015

Xilinx FPGAs Advance
Autonomous Monitoring
of Crowds 14

http://www.xilinx.com/xcell

Quick time-to-market demands are forcing you to rethink how you design, build and deploy your

products. Sometimes it’s faster, less costly and lower risk to incorporate an off-the-shelf solution

instead of designing from the beginning. Avnet’s system-on module and motherboard solutions for

the Xilinx Zynq®-7000 All Programmable SoC can reduce development times by more than four

months, allowing you to focus your efforts on adding differentiating features and unique capabilities.

Find out which Zynq SOM is right for you http://zedboard.org/content/design-it-or-buy-it

Lifecycle Technology

facebook.com/avnet twitter.com/avnet youtube.com/avnet

Shorten your development cycle with Avnet’s SoC Modules

Design it or Buy it?

http://zedboard.org/content/design-it-or-buy-it?cmp=glo-avt3-avt-tpm-xcell-201507
http://zedboard.org/content/design-it-or-buy-it?cmp=glo-avt3-avt-tpm-xcell-201507

http://www.synopsys.com/haps-80

L E T T E R F R O M T H E P U B L I S H E R

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2015 Xilinx, Inc. All rights reserved. XILINX,
the Xilinx Logo, and other designated brands included
herein are trademarks of Xilinx, Inc. All other trade-
marks are the property of their respective owners.

The articles, information, and other materials included
in this issue are provided solely for the convenience of
our readers. Xilinx makes no warranties, express,
implied, statutory, or otherwise, and accepts no liability
with respect to any such articles, information, or other
materials or their use, and any use thereof is solely at
the risk of the user. Any person or entity using such
information in any way releases and waives any claim
it might have against Xilinx for any loss, damage, or
expense caused thereby.

PUBLISHER Mike Santarini
mike.santarini@xilinx.com
408-626-5981

EDITOR Jacqueline Damian

ART DIRECTOR Scott Blair

DESIGN/PRODUCTION Teie, Gelwicks & Associates
1-800-493-5551

ADVERTISING SALES Judy Gelwicks
1-800-493-5551
xcelladsales@aol.com

INTERNATIONAL Melissa Zhang, Asia Pacific
melissa.zhang@xilinx.com

Christelle Moraga, Europe/
Middle East/Africa
christelle.moraga@xilinx.com

Tomoko Suto, Japan
tomoko@xilinx.com

REPRINT ORDERS 1-800-493-5551

Xcell journal

www.xilinx.com/xcell/

Zynq UltraScale+ Says ‘Hello World’
Congratulations to Xilinx and especially to the Zynq® UltraScale+™ MPSoC design team for
shipping the first Zynq MPSoC XCZU9EG one quarter ahead of schedule. This accomplish-
ment makes it a “three peat”—the third time in a row Xilinx has beat the competition to
market by being the first programmable-logic company to ship devices on a leading process
node. Xilinx was the first to 28 nanometers with the 7 series, first to 20nm with the
UltraScale™ family and now first to 16/14nm FinFET with the UltraScale+.
The news broke on Sept. 30, when Xilinx announced it had sent the first sampling ship-

ments of the new device to two customers. The design went from tapeout to shipment in two
and half months, which is a true testament to the engineering skills of Xilinx®’s Zynq MPSoC
design and quality teams as well as the good folks at foundry TSMC.
Xilinx received the first silicon in late September for characterization and test, and within

hours was able to boot an upstream Linux kernel on the new device (see video demo).

We highlighted the architectural features as well as the performance-per-watt advantages
of this exciting new device in the cover story of Xcell Journal issue 90. Implemented in TSMC’s
16nm FinFET+ process technology, the Zynq MPSoC features on a single device a quad-core
64-bit ARM® Cortex™-A53 application processor, a 32-bit ARM Cortex-R5 real-time processer
and an ARM Mali-400MP graphics processor, along with 16nm FPGA logic (with UltraRAM),
a host of peripherals, security and reliability features, and an innovative power control tech-
nology. The new Zynq UltraScale+ MPSoC gives users what they need to create systems with
a 5x performance/watt advantage over systems designed with the 28nm Zynq SoC.
In my tenure here as the publisher of Xcell Publications, it’s been truly remarkable to read

about the amazing innovations our readers have been able to create with our 28nm Zynq-7000
All Programmable SoC. So, I’ll be eagerly waiting to see what you will do with the new Zynq
MPSoC, with its many multiprocessing features. As the device becomes more broadly available
over the next few quarters, I hope you will share your Zynq MPSoC design experiences with
your peers by contributing articles to Xcell Journal and our new magazine for software devel-
opers, Xcell Software Journal. I look forward to reading about your remarkable designs.

Mike Santarini
Publisher

The video demonstrates an “upstream” Linux kernel booting on the new
Zynq UltraScale+ MPSoC, the first member of the Xilinx UltraScale+ portfolio to ship.

http://www.xilinx.com/about/xcell-publications/xcell-software-journal.html
http://issuu.com/xcelljournal/docs/xcell_journal_issue_90/8e
https://www.youtube.com/watch?v=kkmVl9YJyLY
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Lift-off-16nm-Zynq-UltraScale-MPSoC-ships-to-customers-From/ba-p/657811
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Lift-off-16nm-Zynq-UltraScale-MPSoC-ships-to-customers-From/ba-p/657811
mailto:mike.santarini@xilinx.com
mailto:xcelladsales@aol.com
mailto:melissa.zhang@xilinx.com
mailto:christelle.moraga@xilinx.com
mailto:tomoko@xilinx.com
http://www.xilinx.com/xcell/
http://www.xilinx.com/xcell/
https://www.youtube.com/watch?v=kkmVl9YJyLY

http://www.synopsys.com/fpga

C O N T E N T S

VIEWPOINTS

Letter from the Publisher

Zynq UltraScale+
Says ‘Hello World’… 4

XCELLENCE BY DESIGN
APPLICATION FEATURES

Xcellence in Vision Systems

Xilinx FPGAs Advance Autonomous
Monitoring of Crowds… 14

Xcellence in Test & Measurement

Test New Memory Technology
Chips Using the Zynq SoC… 22

Xcellence in Test & Measurement

Unleashing High-Performance
USB Devices with Artix-7 FPGA… 26

Xcellence in Industrial

FPGA-Based Fuzzy Controller
Manages Sugarcane Extraction… 30

Cover
Story

8

Xilinx Speeds
Customer Medical
Innovations to Market

30

14 22

F O U R T H Q U A R T E R 2 0 1 5 , I S S U E 9 3

THE XILINX XPERIENCE FEATURES

Xplanation: FPGA 101

Zynq MPSoC Gets Xen Hypervisor Support… 36

Xplanation: FPGA 101

Vivado IPI Opens FPGA Shareable
Resources for Aurora Designs… 44

Xplanation: FPGA 101

Making XDC Timing Constraints Work for You… 52

Tools of Xcellence

Toward Easier Software Development
for Asymmetric Multiprocessing Systems… 58

XTRA READING
Xtra, Xtra The latest Xilinx
tool updates and patches,
as of October 2015… 66

Xclamations! Share your wit and
wisdom by supplying a caption
for our wild and wacky artwork… 68

44

36

52

C O V E R S T O R Y

 8 Xcell Journal Fourth Quarter 2015

Xilinx Speeds Customer
Medical Innovations
to Market

by Mike Santarini
Publisher, Xcell Journal,
Xilinx, Inc.
mike.santarini@xilinx.com

mailto:mike.santarini@xilinx.com

C O V E R S T O R Y

 Fourth Quarter 2015 Xcell Journal 9

All Programmable platforms,

medical-certified IP and software

stacks enable Xilinx customers

to bring life-saving equipment

to market sooner.

E
lectronics affects our lives in
so many ways, but one area
where it is literally having a
life-or-death impact is in the
healthcare industry. People are
living longer thanks in large
part to continual advances in
healthcare fueled by rapid im-

provements in medical electronics. Customers have
created these innovations with Xilinx® All Program-
mable devices over the last three decades.

Today, Xilinx FPGAs (and increasingly, sys-
tems-on-chips like the Zynq®-7000 All Program-
mable SoC) are at the heart of a growing number
of medical systems. End products run the gamut
from surgical robots, patient monitors, ventila-
tors, medical imaging (CT, MRI and ultrasound)
and X-ray machines to defibrillators, endoscopy
machines, infusion pumps and analyzers. FPGAs
are also central to the high-performance comput-
ing systems that enable researchers to perform
genomic sequencing at lightning speed and those
that enable scientists and pharmaceutical compa-
nies to more quickly develop and refine medicines
to treat the symptoms of diseases.

The reason FPGAs have assumed such a key role
in the medical market is simple. FPGAs—and more
recently, Zynq SoCs—enable medical equipment de-
velopers to lower the risk of failures and speed their
equipment through the regulatory process. With All
Programmable devices, designers can take the func-
tions of their systems that must be highly reliable
and implement them in the logic of the Xilinx de-
vices while running other, less-critical functions in
software (Figure 1).

“Medical technologies are evolving rapidly,” said
Kamran Khan, senior product marketing engineer
for Xilinx’s medical group. “They are getting much
smarter, more connected, more integrated, more
compact and less invasive for faster patient recov-
ery times. And, more important, they are better at
what they do.” Demand for medical devices with ad-
vanced features is growing as the population world-
wide increases and as people live longer, thanks in
part to the rapidly evolving healthcare advances of
the last half century.

LIVING LONGER, HEALTHIER LIVES
The biggest growth driver of the healthcare indus-
try and thus the medical equipment market is the
expected increase in the world’s population. Today,
the global population stands at roughly 7.3 billion;
by 2050, it is expected to grow to 9.7 billion. Where-

http://issuu.com/xcelljournal/docs/xcell_journal_issue_77/38?e

C O V E R S T O R Y

 10 Xcell Journal Fourth Quarter 2015

as today, people 65 and older represent
roughly 23 percent of the world’s popu-
lation, by 2050 that number is expected
to be 32 percent, or 3.1 billion people.
Those senior citizens are expected to be
the segment of the population most like-
ly in need of regular medical care.

“People are living longer than be-
fore, because our quality of life and
understanding of medicine are bet-
ter,” said Khan. “Because people are
living longer, we need better health-
care to support them in their older
age, and we need to be able to supply
this with less-invasive techniques that
have fewer side effects.”

Population growth along with the ag-
ing of the populace represents a great
challenge for the world’s medical com-
munity as well as governments, which
are increasingly turning to state-regulated
healthcare. This population growth also
serves as a grand opportunity for inno-
vation in medical electronics and other
medical fields. As such, the medical mar-
ket is expected to grow to $212 billion by
2019, with the semiconductor spend ex-
pected to reach $6 billion, said Khan.

used to have one machine that spe-
cialized in one particular task. Each
of those machines was quite large,
and if many different machines were
needed, they occupied quite a bit of
space in a hospital room.”

What’s more, Khan said, the systems
wouldn’t necessarily communicate or
be compatible with one another, which
could cause other complications. So to-
day there is a demand to have a single
piece of equipment perform multiple
tasks. Similarly, users prefer a smaller
form factor so that the equipment takes
up less space and is easier to move from
room to room. It’s even better if the equip-
ment is battery powered so that it can be
used in areas with no electricity or in
ambulances. Simultaneously, there is a
growing need for each system to be able
to interact with other pieces of equip-
ment in real time to, for example, change
dosages of a medicine in response to a
patient’s changing vital signs.

“Patient monitors, for example,
used to be quite simplistic, but not any-
more,” said Khan. “They used to take
in a few channels of analog biotelem-

“The medical electronics industry
used to be massively consolidated, and
so companies like Siemens and General
Electric could develop new generations
of their systems at their own pace,” said
Khan. “Nowadays, X-ray and ultrasound
have become a commodity. Today, peo-
ple realize that it is not very difficult to
get into these mature, low-risk applica-
tions, even with the regulatory burden.
Now we are seeing a boom in medical
equipment startups, and it’s a global
boom, with a large number of new com-
panies from China and South America
entering the market. Some countries,
like China and Brazil, favor domestic
products, so there are new companies
emerging to serve these new markets.”

Khan said this new competition
is of course increasing both time-to-
market pressure and pricing pressure
for all players. At the same time, it is
also driving greater value and innova-
tion into the medical world faster, for
the benefit of us all.

“The market is demanding more
integration of features and more por-
tability,” said Khan. “Medical facilities

Motor
Control

Unit
MC

Motor
Control

Unit
MC

Processor

Application
Specific
Features

Single Core ARM

RTOS

Peripherals

Analytics

HMI
MC

Video

Network

Sensors

Memory
LPDDR2

Network

Memory
LPDDR3

TI OMAP or
Freescale i.MX6d

Higher Potential
for Failure

Small FPGA for
Sensory input

Multiple
Devices,

Extra BOM

Older Memory,
Slower

Single Chip
Solution with

7010

RTOS
on isolated core

Higher reliablity
with real-time

analytics

Single chip =
lower BOM

Lower power,
Faster memory

FPGA

RTOS
Peripherals

Dual Core A9

Fabric
Analytics

Motor Control

HMI

Video

Zynq SoC

Traditional Clinical Designs Single-Chip Clinical Designs

Sensors

Video
Unit

Video

Motor
Control

Unit
MC

e Core ARM

Video

Figure 1 – Zynq SoC platforms enable medical equipment companies to quickly create innovative,
optimized systems and bring them to market.

C O V E R S T O R Y

 Fourth Quarter 2015 Xcell Journal 11

etry, apply some very simple process-
ing to it and display the information
on a monitor. It was quite simple, so
a lot of this was done with embedded
processors from companies like TI
or Freescale. But nowadays, medical
equipment must be more integrated
and smarter. Systems must be able to
communicate and work in concert.”

For example, he said, a patient monitor
must be able to talk to the ventilator and
infusion pump. If a patient’s vital signs be-
gin to spike, both systems must respond
appropriately, with the ventilation pump
adjusting the oxygen mix and the infu-
sion pump adjusting the medicine dosage.
“They also have to communicate to the
hospital’s main network to keep staff ap-
prised of emergencies,” Khan said. More-
over, the information must be kept as part
of the patient’s long-term medical record.

Khan said that the healthcare indus-
try is also embracing the Internet of
Things, cloud computing and the mod-
ern network infrastructure. All of these
developments are making it possible to
monitor the health of outpatients and re-
cord health patterns remotely, as well as
being able to react in real time to emer-
gency situations. There is a burgeoning
industry to monitor patient health in real
time much in the same way as home se-
curity companies monitor property.

THE EVER-GROWING
REGULATORY CHALLENGE
In the midst of this industry growth and
drive toward smarter, more connected
and more integrated medical systems,
vendors are faced with ensuring that
their equipment conforms to increas-
ingly more stringent safety and reliabil-
ity regulations from a growing number
of regulatory bodies worldwide.

‘Nowadays, medical equipment must be
more integrated and smarter. Systems must
be able to communicate and work in concert.’

 A changing regulatory environment
is often cited as the single biggest chal-
lenge medical equipment companies
face today. Companies can’t legally sell
their products until their systems clear
relatively strict regulatory guidelines
and testing. Medical equipment failure
can lead to medical liability lawsuits.

The amount of regulation depends
largely on the type of equipment a com-
pany wants to bring to market and scales
accordingly. Less-critical equipment that
doesn’t touch the patient’s body typically
requires a regulatory cycle that’s roughly
half a year, while equipment performing
more-critical functions that do touch
a patient’s body requires roughly two
years’ worth of approval cycles before
release to the market.

“Even in established markets like
patient monitoring or ultrasound, they
still require a regulatory cycle of a year
to a year and half, typically because
there is so much documentation and
testing required,” said Khan. “They
have to create a technical file that sup-
ports their product, submit the docu-
mentation to the regulator which, after
a long review cycle, passes or fails the
product. The goal is to pass on the first
try, because if they don’t pass, the sec-
ond review is even more detailed and
can involve an even longer cycle. It’s
like being audited by the IRS.”

Khan said the real goal is to under-
stand and quantify the risk a medical
system poses. “The perception is that
medical devices can’t fail, but regulato-
ry bodies know that everything fails,”
said Khan. “What they want to do is have
OEMs understand and lower the failure
risk, at the same time knowing all pos-
sible cases in which a device could fail
and what will happen if it does.”

Khan said that while the various reg-
ulatory bodies worldwide scrutinize both
hardware and software, they tend to look
hardest at software, since failures in soft-
ware are believed to be more likely to
cause the system to fail into an unknown
state. “Most people have encountered
software bugs on their PCs or mobile de-
vices and not so commonly on the actual
hardware, so software typically comes
under greater regulatory scrutiny in gen-
eral in medical devices,” Khan said.

“A lot of medical devices coming to
market typically require embedded pro-
cessors,” he went on. “They may not
require a lot of compute horsepower
but they have some amount of embed-
ded processing and thus software. The
challenge is, how do I show to regulato-
ry bodies and to customers that the de-
vice is safe and won’t hurt patients? For
example, if it’s an infusion pump that’s
delivering my daily medicine, how do
I know that it is delivering the right
amount of medicine on time and that it
won’t stop in the middle of the night?”

And as devices become more com-
plex to perform multiple tasks, the
code also becomes more complex and
much larger. “‘Reliable’ software is still
something that isn’t well understood,”
said Khan. “Software is very complex;
it’s hard to debug and understand the
risk of it. This high potential for failure
results in high risk, even for mundane
medical systems that aren’t life-critical.”

This is one of the main reasons why
FPGAs and more recently, Zynq SoCs
have become so popular with medical
equipment manufacturers. With these
All Programmable devices, compa-
nies can lower the risk of failures and
speed up the regulatory process. They
can essentially take functions of their

C O V E R S T O R Y

 12 Xcell Journal Fourth Quarter 2015

system that must be reliable and imple-
ment them in the logic of the Xilinx de-
vices while placing other, less-critical
functions in software.

XILINX DEVICES SPEED
MEDICAL INNOVATION
Khan said that with its decades of expe-
rience serving the medical electronics
sector, Xilinx has developed a compre-
hensive medical toolbox consisting first
and foremost of Xilinx’s All Program-
mable FPGAs and SoCs. The toolbox
also contains certified design tools and
methodologies to ensure quality, reli-
ability and redundancy, along with tried-
and-true silicon IP and software stacks
from Xilinx and members of the Xilinx
Alliance Program. The company’s new
SDSoC™ development environment
will enable medical customers to even
more quickly create optimized systems
with critical functions implemented in
the Zynq SoC’s logic while less-critical
functions run on the Zynq SoC’s ARM®

processing system (Figure 2).

For the last 10 of the 30 years that
Xilinx has been serving the medical
market, FPGAs have been rapidly dis-
placing ASICs and ASSPs in medical
gear. Medical equipment is sold in rel-
atively low volumes worldwide, and
so the cost, coupled with the strict and
time-consuming testing-and-regulatory
process, makes ASICs and ASSPs pro-
hibitive. As a result, a vast majority of
medical equipment today employs Xil-
inx devices in some capacity.

Starting in the late 1980s and early
1990s, said Khan, customers began us-
ing Xilinx’s smaller FPGAs as sensor
interfaces in medical equipment. But
over time, companies started adding
more-critical functions to the devices
as FPGAs began displacing ASICs and
ASSPs. In the newest equipment, Xilinx
devices are playing a pivotal role at the
heart of these systems, especially with
the Zynq SoC and the recently shipped
Zynq UltraScale+™ MPSoC, which has
additional safety and security features
beyond those offered in the Zynq SoC.

“With our Zynq SoC portfolio, we are
able to reduce risk and speed medical in-
novations to market,” said Khan. “We are
able to take in the design’s software ele-
ments with our new SDSoC tools, imple-
ment them in programmable-logic fabric
instead of in software and then add in lay-
ers of redundancy to provide more layers
of reliability in these systems.”

For example, said Khan, if a company
is designing an infusion pump, part of the
system will be controlling the motors so
as to deliver the medicine in exact quan-
tities at the exact time specified, with the
metrics staying exactly where a doctor set
them. Meanwhile, another part of the in-
fusion pump is biotelemetry—monitoring
the patient and ensuring he or she is OK.

“Using our isolation design flow, cus-
tomers can partition their system into
critical and noncritical functions, imple-
ment critical functions in logic and create
physical barriers between critical func-
tions in the system,” said Khan. “They
can build in extra safety measures so that
if a failure condition may occur, it shuts

Motor
Control

Unit
MC

Motor
Control

Unit
MC

Processor

Application
Specific
Features

Single Core ARM

RTOS

Peripherals

Analytics

HMI
MC

Video

Network

Sensors

Memory
LPDDR2

Network

Memory
LPDDR3

TI OMAP or
Freescale i.MX6d

~$20

Higher Potential
for Failure

Small FPGA for
Sensory input

~$10

Multiple
Devices,

Extra BOM

Older Memory,
Slower

Single Chip
Solution with
7010 for <$20

RTOS
on isolated core

Higher reliablity
with real-time

analytics

Single chip =
lower BOM

Lower power,
Faster memory

FPGA

RTOS
Peripherals

Dual Core A9

Fabric
Analytics

Motor Control

HMI

Video

Zynq SoC

Traditional Clinical Designs Single Chip Clinical Designs

Sensors

Video
Unit

Video

Motor
Control

Unit
MC

e Core ARM

Video

Complete Medical-Focused Toolbox
Reduce Risk, and Lower Development and Certification Times

Lower Regulatory Risk Longest Life Every RTOSMedical Certified

Lower Risk =
Lower Regulatory

Effort

Precertified Tools
and Devices

Devices Exceeding
Medical Product Life

Isolation Design Flow
Isolation Verification

Flow

ISO 61508
ISO 62304
ISO 9001

Compreshensive Medical
RTOS and OS Options

12 to 15 Years+
Device Availability

Figure 2 – Xilinx has proven design tools that lower risk and help speed designs through the regulatory process.

http://www.xilinx.com/applications/isolation-design-flow.html

 Fourth Quarter 2015 Xcell Journal 13

C O V E R S T O R Y

down in a safe and predictable manner.
Furthermore, they can show regulatory
bodies that they are building their design
in trusted Xilinx fabric. And then, using
reports from our IDT tool, they are also
able to show regulators the signal paths,
predictable outcomes and fail-safes.”

With Xilinx’s new SDx development
environments (SDAccel™ for C, C++
and OpenCL™ design entry into FPGAs;
and SDSoC for C/C++ design entry in
Zynq SoCs), medical equipment com-
panies can now develop the prototype
of their systems in C; determine what
functions, both critical and noncritical,
would best be suited to running in hard-
ware and software; and then use the
isolation design flow to implement the
hardware functions in greater detail and
add layers of redundancy for further re-
liability. “Using a system-level methodol-
ogy can cut months out of a design cycle
at the back end,” said Khan.

Khan noted that with Xilinx’s rich his-
tory serving the military and space com-
munity, Xilinx’s commercial devices used
in medical applications already exceed
any requirements for radiation tolerance.
Xilinx also diligently ensures that its de-
vices, its Vivado® Design Suite and IP (its
own and cores from alliance members
serving the medical device market) ad-
here to strict quality and safety standards.
Among them are the ISO 60601 3rd edi-

tion and ISO 13485 medical device design
standards, and international standards in-
cluding ICE 61508 (functional safety) and
ICE 62304 (RTOS integration). The result
is to speed customer end-product designs
through the regulatory processes.

“Customers have to get certification
on their end products, rather than the
individual devices, but what we do is en-
sure our devices, tools and IP conform
to these standards,” said Khan. “For ex-
ample, ICE 62304 is a standard for RTOS
integration. Alliance member QNX’s
RTOS has already been precertified for
62304, so using it on the Zynq SoC can
cut six months off the certification pro-
cess. Likewise, alliance member TOPIC
Embedded Products offers remarkable
IP to further speed prototyping and
design. Their IP, design flow and SOM
board are precertified to be compliant
with the ISO 13485 quality-management
standard. This enables customers to cut
even more time off the regulatory pro-
cess” (see video, Figure 3).

A PLATFORM PLAY
With the increased regulatory burden
and mounting time-to-market pres-
sures, many medical companies today
are employing platform design business
strategies built around the Zynq SoC.

“The market is quickly coming to
the realization that it can’t build each

product from scratch and that it needs
to take a scalable approach to its prod-
uct lines,” said Khan. “Platform-based
design and cost-sizing are huge, for ex-
ample, in the medical imaging space,
where companies offer a portable ver-
sion, low end, midrange and high end
in a product line. By designing one
platform based on the Zynq SoC for
the high end, they can use the same
hardware at each level and scale the
functions to suit the needs of each end
market by reducing features.”

A platform approach built around the
Zynq SoC has many advantages over a
platform composed of multiple discrete
parts, said Khan. “Medical devices are
typically on the market from 10 to 15
years, much longer than consumer prod-
ucts, which typically have a two- to three-
year lifespan,” he said. “Medical devices
are typically in design for three years, can
go through regulatory approval for an-
other one to three years and then have to
be in the market for 10 more years. But
most embedded processors today have a
lifespan of about five years and then they
are end-of-lifed for a newer version of the
device. That’s because most are designed
mainly for the consumer market. But
in the medical device industry, if a chip
needs to be changed for a newer one be-
cause the older version isn’t available any
longer, the product needs to go through
the regulatory process again.”

Khan said the Zynq SoC and MPSoC
families give customer designs the per-
formance advantages of an embedded
processor or multiple processors plus
the flexibility, product differentiation and
safety of programmability. On top of all
that is I/O flexibility to accommodate a
vast range protocols, sensors and video
configurations. “Integrating multiple sys-
tem functions in the Zynq SoC and MPSoC
families saves space, lowers BOM cost
and lowers power drastically compared
with multichip platforms and speeds med-
ical innovations to market,” said Khan.

For more information on Xilinx in med-
ical applications, visit http://www.xilinx.
com/applications/medical.html.

Figure 3 – TOPIC Embedded Products’ Dyplo IP helps speed medical product design and development.

http://issuu.com/xcelljournal/docs/xcell_journal_issue_85/52
http://issuu.com/xcelljournal/docs/xcell_journal_issue_85/52
https://www.youtube.com/watch?v=pYbZgMTExD0
http://issuu.com/xcelljournal/docs/xcell_journal_issue_88/8?e
http://issuu.com/xcelljournal/docs/xcell_journal_issue_88/8?e
http://www.xilinx.com/applications/medical.html
http://www.xilinx.com/applications/medical.html
https://www.youtube.com/watch?v=pYbZgMTExD0

X C E L L E N C E I N V I S I O N S Y S T E M S

 14 Xcell Journal Fourth Quarter 2015

Xilinx FPGAs Advance
Autonomous
Monitoring of Crowds
by Muhammad Bilal
MSc Candidate
Center for Advanced Studies in Engineering
Islamabad, Pakistan
bilal.case.edu@gmail.com

Dr. Shoab. A. Khan
Professor
Center for Advanced Studies in Engineering (www.case.edu.pk)
Islamabad, Pakistan
shoab@case.edu.pk

mailto:bilal.case.edu@gmail.com
http://www.case.edu.pk
mailto:shoab@case.edu.pk

X C E L L E N C E I N V I S I O N S Y S T E M S

 Fourth Quarter 2015 Xcell Journal 15

C
rowd surveillance and
monitoring have become
an area of great importance
in current times. Govern-
ments and security depart-
ments have started looking

for more advanced ways to intelligently
monitor human crowds across public plac-
es to detect any unusual activity before it
is too late to react. However, there are
still some barriers to cross before achiev-
ing this goal effectively. For example, if it
is desired to monitor all possible crowd
activities across a whole city at once, 24
hours a day, then it is certainly not possi-
ble through all-manual monitoring only,
especially when there are thousands of
CCTV cameras installed.

The solution to this problem lies in
developing new, intelligent cameras or
vision systems that could autonomously
monitor the activities of human crowds
through advanced video analytics tech-
niques, and therefore could immediate-
ly report any unusual event to a central
control station.

The design of such an intelligent cam-
era/vision system would require not only
the typical imaging sensors and optics,
but also a high-performance video pro-
cessor to perform video analytics. The
reason for having such a powerful video
processor onboard is the high process-
ing requirements of sophisticated video
analytics techniques, most of which use
computationally intensive video-process-
ing algorithms.

FPGAs are ideally suited for such
performance-hungry applications. And
thanks to the UltraFast™ design meth-
odology enabled by high-level synthesis
(HLS) in Xilinx®’s Vivado® Design Suite,
it’s now possible to create an optimal
and high-performance design for FPGAs
with great ease. Further, the fusion of an
embedded processor such as the Xilinx
MicroBlaze™ inside the FPGA’s recon-
figurable logic means that applications
with a complex control flow can now be
easily ported to FPGAs.

Keeping this theme in view, we de-
signed a prototype for a human crowd
motion-classification and monitoring

A Spartan-6-based real-time
motion-classification system
opens new possibilities
for autonomous monitoring
and surveillance of crowds.

X C E L L E N C E I N V I S I O N S Y S T E M S

 16 Xcell Journal Fourth Quarter 2015

system using Vivado HLS, Xilinx’s
Embedded Development Kit (EDK)
and software-based EDA tools from
the ISE® Design Suite. Our design
methodology was based on what we
think of as a software-controlled,
hardware-accelerated architecture.
We targeted our design for the low-
cost Xilinx Spartan®-6 LX45 FPGA.
The overall system design, which we
completed in a short span of time, has
demonstrated promising results in
terms of real-time performance, low
cost and a great flexibility of design.

SYSTEM DESIGN
We accomplished the overall system de-
sign in two phases. In the first phase, we
developed a human crowd motion-clas-
sification algorithm. After the verifi-
cation of this algorithm, our next step
was to implement it in an FPGA. In this
second phase of development, our main
focus was on the architectural design
aspects of an FPGA-based real-time vid-
eo-processing application. Tasks includ-
ed developing a real-time video pipeline,
developing hardware accelerators and,
finally, integrating them and implement-
ing algorithmic control and data flow to
complete the system design.

Let’s take a walk through each of
these development stages, starting
with a brief description of the algo-
rithm design followed by a detailed
look at its subsequent implementation
on the FPGA platform.

ALGORITHM DESIGN
Various algorithms have been pro-
posed in the literature regarding crowd
surveillance and monitoring. Most of
these algorithms start with detecting

the other patch’s processing, making
this approach ideal for parallel imple-
mentation on FPGAs.

After computing motion vectors
across the entire image, the algorithm
computes their statistical properties.
These properties include average mo-
tion vector length, number of motion
vectors, dominant direction of motion
and similar metrics.

We also compute a 360-degree his-
togram of the direction of motion vec-
tors and further analyze its properties,
such as standard deviation, mean and
coefficient of variation. These statisti-
cal properties are then projected to a
precomputed motion model to classify
the current motion in one of several cat-
egories. We account for these statistical
properties across multiple frames to as-
certain the classification results.

The precomputed motion model
is built in the form of a weighted de-
cision tree classifier that takes into
account these statistical properties
to classify the motion under obser-
vation. For example, if the motion
is observed to be high and there is a
sudden change in momentum in the
scene while the direction of motion
is random or out of the image plane,
then it will be classified as a possible
panic condition. The algorithm de-
velopment was done using Microsoft
Visual C++ with the OpenCV library.
A complete demonstration of this al-
gorithm can be found at the Web links
provided at the end of this article.

FPGA IMPLEMENTATION
The next phase in our system design
was the FPGA implementation of our
algorithm. Such an implementation

(or placing) interest points in the hu-
man crowd scenes and tracking them
over time to collect motion statistics.
These motion statistics are then pro-
jected to some precomputed motion
models to predict any unusual activity
[1]. Further modifications include the
clustering of interest points and track-
ing of these clusters instead of individ-
ual interest points [2].

Our algorithm for crowd-motion
classification is based on the same con-
cept, except we preferred using a tem-
plate-matching scheme for performing
motion estimation instead of the for-
mer approaches like the Kanade-Lucas-
Tomasi (KLT) feature tracker. This tem-
plate-matching scheme proved much
better for motion estimation in cases of
low or varying contrast at the cost of a
few more computations.

In order to perform motion estima-
tion using this scheme, we divided our
video frame into a grid of smaller rect-
angular patches, and performed motion
computation on the current and previ-
ous images in each patch using a meth-
od based on the sum of weighted abso-
lute differences (SWAD). Each patch
in turn contributed one motion vector
that depicts the extent and direction of
motion in between two frames at that
particular position. The result is compu-
tation of more than 900 motion vectors
across the whole image. The steps in-
volved in computation of these motion
vectors are shown in Figure 1.

We also utilized a weighted Gauss-
ian kernel to achieve robustness
against occlusion and zero contrast ar-
eas in the image. Furthermore, the pro-
cessing of one patch for computation
of a motion vector is independent of

Using the sum of weighted absolute
differences (SWAD), we computed more

than 900 motion vectors across the image.

X C E L L E N C E I N V I S I O N S Y S T E M S

 Fourth Quarter 2015 Xcell Journal 17

comes with its own design challenges,
such as the fact that video input/output
and frame buffering are now a part of
FPGA-based design. Also, limited re-
sources and available performance may
require necessary design optimizations.

Keeping these design aspects and oth-
er architectural considerations in view,
we divided our overall FPGA-based im-
plementation in three parts. In the first
part, we developed a generic real-time
video pipeline into the FPGA to take

Figure 1 – Steps in computing motion vectors, starting with image capture (top)

care of necessary video input/output
and frame buffering. Then, in the next
part, we developed algorithm-specific
hardware accelerators. Finally, in the
third phase of design, we integrated
them together and implemented algo-
rithmic control and data flow. This com-
pleted our overall FPGA-based system
design.

It’s worth taking a closer look at each
stage of the process.

REAL-TIME VIDEO PIPELINE
A real-time video pipeline is the most
important building block in developing
any video-processing application for
FPGA platforms. Such a pipeline hides
the complex memory management re-
lated to video input/output and frame
buffering from the user, and provides
a simple interface for accessing video
frame data for processing.

Although there are several advanced
and commercially licensed video pipe-
lines [3] available in this regard, we opt-
ed to build a customized video pipeline
for this purpose. We built this pipeline
around the Xilinx EDK, with custom
video capture/display ports for handling
video input/output data. The pipeline
is easily configurable for other Xilinx
FPGA families as well.

The video capture port decodes the
incoming video stream data from the
video ADC and buffers it locally. It is
then forwarded to the main memory for
constructing a video frame. Similarly,
the video display port encodes the video
frame data present in a local buffer and
forwards it to the video DAC for display
purposes. The video input and output
ports are connected to the main periph-
eral bus of a MicroBlaze host processor,
which handles this video data traffic to
and from the main memory.

The video ports are capable of gener-
ating interrupts to inform the MicroBlaze
processor that new data is available at
the video input port or required by the
video output port. The video ports carry
out a “ping-pong” buffer-management
scheme such that if the MicroBlaze is
unable to immediately service a video

http://locally.It

X C E L L E N C E I N V I S I O N S Y S T E M S

 18 Xcell Journal Fourth Quarter 2015

port, then buffer overflow or underrun
doesn’t happen. Figure 2 shows the in-
terconnection between the video ports
and the MicroBlaze processor.

The video ports are designed to de-
tect and produce a video line number,
field ID (in case of interlaced video)
and other control information in the
video input/output stream. This infor-
mation is passed to the MicroBlaze
processor through the video ports’ in-
terrupt service routines (ISRs) when
enough video data is buffered by the
video input port or required by the vid-
eo display port. These service routines
in turn perform the video data transfer
between video port local memories
and main memory via DMA.

In addition to video port ISRs, a
set of higher-level video frame queue-
management functions that we named
the Video Frame Queue API operates
in between these ISRs and a user-lev-
el application. This API maintains a
queue of multiple capture and display

frames to support double or triple
frame-buffering schemes. A user ap-
plication running in MicroBlaze can
easily acquire a video capture frame
or can submit a video display frame
using Video Frame Queue API func-
tions. Figure 3 shows these functions
in their respective levels of hierarchy.

There are several benefits of using
a MicroBlaze as a host processor to in-
terconnect various building blocks in
the system. For example, we can eas-
ily interface with a wide range of ex-
ternal memories (SRAM, SDRAM, etc.)
with MicroBlaze for loading or storing
the video frame data from video ports.
Similarly, we can use DMA controllers
in the EDK for transporting video data
between video ports and main memory.
We also interfaced custom hardware ac-
celerators in the same fashion with the
MicroBlaze processor.

These Video Frame Queue API
functions together with video port
ISRs and video input/output ports

complete the construction of the vid-
eo-processing pipeline in our design.
Figure 4 shows an actual video frame
captured, processed and then dis-
played using this video pipeline on our
FPGA. It also shows a picture-in-pic-
ture feature with a zoomed-out view
of computed motion vectors.

VIVADO HLS-BASED
HARDWARE ACCELERATOR
In the crowd motion-classification al-
gorithm we have described, the most
time-consuming and computationally
intensive task was to compute motion
vectors. The other system task—that
is, doing classification—did not in-
volve pixel-level processing and was
pretty simple and easy to accomplish.
Keeping this aspect of the design in
mind, we built a hardware accelera-
tor for computing motion vectors. We
designed, tested and later synthesized
the accelerator in RTL using Xilinx
Vivado HLS in the C/C++ language.

Figure 2 – Video ports and their interconnection

Video Display Port

Video Capture Port
MicroBlaze Processor

Video Capture
DMA Controller

Interrupt
Controller

Video Display
DMA Controller

Processor Core

Display Port
Interface
Controller

ilmb dlmb

32K DPR

A B

Capture Port
Interface
Controller

M
icroBlaze Peripheral Bus (PLB or AXI)

Local M
em

ory
Local M

em
ory

BT-656 Stream
Encoder

BT-656 Stream
Decoder

Video ADC

Camera

Video DAC

Display

C MNote: Donate ‘Control’ and ‘Memory’ interfaces respectively.

C M

C M

FPGA

X C E L L E N C E I N V I S I O N S Y S T E M S

 Fourth Quarter 2015 Xcell Journal 19

One of the key features of Vivado-gen-
erated RTL code is that it is optimal to a
great extent. Vivado HLS synthesizes array
accesses (such as pixel data stored in an

array) into memory interfaces and auto-
generates required addresses by analyzing
the code. It also analyzes precomputable
offsets and constants to perform so-called
“strided” memory accesses very fast. The
strided memory accesses originate from
accessing data from multiple rows of an
image (such as in 2D convolution).

The key considerations in designing
a Vivado-based accelerator were par-
allelizing the computation of motion
vectors and maximizing the data read
from the main memory. For this pur-
pose we used eight Block RAMs to load
and store video frame data in parallel.
The hardware accelerator core is capa-
ble of computing four motion vectors in
parallel and for this purpose it utilizes
all eight of these Block RAMs. The data
pump to these Block RAMs from the
main memory is controlled by the Mi-
croBlaze through DMA.

The hardware accelerator generated
by Vivado HLS comes with some auto-
generated handshake signals that are
necessary to start and stop the hard-

ware accelerator. These handshake
signals include “start,” “busy,” “idle”
and “done” flags. These flags are rout-
ed to the MicroBlaze processor through
GPIOs to perform handshaking. Figure
5 shows the interconnection between
this hardware accelerator, the eight
Block RAMs and the MicroBlaze pro-
cessor’s main peripheral bus.

The Block RAMs—named SA1, TA1
to SA4, TA4 in Figure 5—are each 16
kbytes in size. Each pair of SA1, TA1
to SA4, TA4 holds enough data for the
computation of one complete row of
motion vectors. Thus, upon comple-
tion of its run, the hardware acceler-
ator outputs four rows of motion vec-
tors written back in the same Block
RAM memories. These computed mo-
tion vectors are then read back by the
MicroBlaze processor, which copies
the result in its main memory as a grid
of motion vectors. (Figure 4 shows an
actual frame overlaid with a grid of
motion vectors computed through this
hardware accelerator.)

The hardware accelerator operates
at 200 MHz and all the processing need-
ed to compute motion vectors across
the whole image completes in less than
10 milliseconds, including all data trans-
fers to and from memory.

ALGORITHM CONTROL
AND DATA FLOW
With the video pipeline and hardware
accelerator in place, the last step in
completing the system was to inte-
grate these two elements with the Mi-
croBlaze host processor and to imple-
ment algorithm control and data flow
at a user-level application in C/C++
using Xilinx’s Software Development
Kit (SDK). Implementing algorithm
control and data flow in the Xilinx
SDK brings a great deal of flexibility in
design. That’s because you can design
and integrate new hardware accelera-
tors in the same fashion, and modify
necessary control and data flow to in-
corporate new hardware accelerators.
The result is a kind of software-con-
trolled, hardware-accelerated design

Figure 3 – Video port ISRs and Video Frame
Queue API functions

User Application
(Algorithm Control & Data Flow)

Video Frame Queue API
Grab_Capture_Frame()

Submit_Display_Frame()
Push_Frame_Queue()
Pop_Frame_Queue()
Frame_Queue_Rest()

Video Ports Low-Level ISRs
Video_Capture_ISR()
Video_Display_ISR()

Figure 4 – An actual FPGA-processed frame with motion vector grid overlaid at bottom right

X C E L L E N C E I N V I S I O N S Y S T E M S

 20 Xcell Journal Fourth Quarter 2015

that is as flexible as an all-software imple-
mentation and as high in performance as
an all-hardware implementation.

The control and data flow of our
crowd motion-classification algorithm
starts by capturing a video frame
through the Video Frame Queue API
functions. When a frame is acquired,
the user application transfers the cur-
rent and previous video frame data to
the hardware accelerator and gets the
motion vectors computed.

At this point, the system computes
the motion vectors’ statistical proper-
ties and classification results in soft-

ware. The reason for doing so is that
these steps do not involve any pix-
el-level processing and add very little
processing overhead. When the classi-
fication results are computed, their re-
sults and motion vectors are displayed
on the processed frame using on-screen
display functions. These OSD functions
are also implemented in C/C++ in the
Xilinx SDK.

With all these building blocks (re-
al-time video pipeline, hardware accel-
erator and algorithm control/data flow)
in place, our overall system design was
completed. We tested our FPGA-based

implementation in comparison with an
earlier desktop PC-based implemen-
tation for accuracy of results. The two
results were found to be identical. We
used various test videos from the Uni-
versity of Minnesota database (http://
mha.cs.umn.edu/proj_recognition.sht-
ml) and from www.gettyimages.com
for testing our system.

IMPLEMENTATION RESULTS
The overall design used only 30 percent
of slice LUTs, 60 percent of BRAM and
12 percent of DSP48E multiplier re-
sources on our Spartan-6-LX45 FPGA.

Figure 5 – Vivado HLS-based hardware accelerator and its interconnections

4-Core SAD Computation
Hardware Acceleration

MicroBlaze Processor

SWAD
Engine-1

SWAD
Engine-2

SWAD
Engine-3

SWAD
Engine-4

Control
Handshake

FPGA

16K DPR

A B

TA
1

16K DPR

A B

SA
1

16K DPR

A B

TA
2

16K DPR

A B

SA
2

16K DPR

A B

TA
3

16K DPR

A B

SA
3

16K DPR

A B

TA
4

16K DPR

A B
SA

4

Search Area
BRAM

Controller

Template Area
BRAM

Controller

SA-X, TA-X
Chip-Select

GPIO
Controller

Hardware
Accelerator
Handshake

GPIO
Controller

Hardware
Accelerator DMA

Controller

Interrupt
Controller

Processor Core

ilmb dlmb

32K DPR

A B

M
icro

B
laze P

LB
 o

r A
X

I P
erip

heral B
us

M

M

M

M

M

M

M

M

M

M

MNote: Denotes the memory port.

http://mha.cs.umn.edu/proj_recognition.shtml
http://mha.cs.umn.edu/proj_recognition.shtml
http://mha.cs.umn.edu/proj_recognition.shtml
http://www.gettyimages.com

X C E L L E N C E I N V I S I O N S Y S T E M S

 Fourth Quarter 2015 Xcell Journal 21

Figure 6 shows the hardware setup (top)
and actual system output. The hardware
setup consists of a Digilent Atlys Spar-
tan-6 FPGA board and a custom video
interface card to provide video input/
output functionality to the FPGA using
a video ADC and DAC. You can watch

a detailed demonstration of this system
on the following Web links:

http://www.dailymotion.com/video/
x2av1wo_fpga-based-real-time-hu-
man-crowd-motion-classification-de-
mo_school

http://www.dailymotion.com/vid-
eo/x23icxj_real-time-motion-vec-
tors-computation-on-fpga_news

http://www.dailymotion.com/video/
x28sq1c_crowd-motion-classifica-
tion-using-motion-vectors-statisti-
cal-features_school

GREAT FUTURE POTENTIAL
FPGAs are the ideal platform for per-
formance-hungry applications like
real-time video processing. Develop-
ing such an application requires a few
architectural considerations to fully
leverage the performance of the cho-
sen FPGAs. Furthermore, utilizing ad-
vanced tools like the EDK and Vivado
HLS, it’s possible to achieve an overall
system design with much more effi-
ciency and in a much reduced develop-
ment time than in the past.

Thus, there is great potential in im-
plementing performance-critical appli-
cations over FPGAs using these tools,
as we have demonstrated in this proj-
ect. With a working platform in place,
we hope to extend this work to ad-
dress more technical problems, such
as automatic traffic monitoring, auto-
matic patient observation in hospitals
and many more applications.

REFERENCES
1. Ramin Mehran, Mubarak Shah, “Abnor-

mal Crowd Behavior Detection Using
Social Force Model,” IEEE International
Conference on Computer Vision and Pat-
tern Recognition (CVPR), Miami, 2009

2. Duan-Yu Chen, Po-Chung Huang, “Mo-
tion-based unusual-event detection in
human crowds,” Journal of Visual Com-
putation and Image Representation,
Vol. 22 Issue 2 (2011), pages 178–186

3. OmniTek OSVP: http://omnitek.tv/sites/

default/files/OSVP.pdf

ACKNOWLEDGEMENTS
The author wishes to thank his co-author,
Professor Shoab A. Khan, for his great
ideas, and to acknowledge Dr. Darshika G.
Parera and Dr. Umair Ahsun for outstand-
ing inspiration.

Figure 6 – Hardware setup (top) and an actual FPGA-processed
frame classifying a scene as one of panic

http://www.dailymotion.com/video/x2av1wo_fpga-based-real-time-human-crowd-motion-classification-demo_school
http://www.dailymotion.com/video/x2av1wo_fpga-based-real-time-human-crowd-motion-classification-demo_school
http://www.dailymotion.com/video/x23icxj_real-time-motion-vectors-computation-on-fpga_news
http://www.dailymotion.com/video/x23icxj_real-time-motion-vectors-computation-on-fpga_news
http://www.dailymotion.com/video/x28sq1c_crowd-motion-classification-using-motion-vectors-statistical-features_school
http://www.dailymotion.com/video/x28sq1c_crowd-motion-classification-using-motion-vectors-statistical-features_school
http://omnitek.tv/sites/default/files/OSVP.pdf
http://omnitek.tv/sites/default/files/OSVP.pdf

X C E L L E N C E I N T E S T & M E A S U R E M E N T

 22 Xcell Journal Fourth Quarter 2015

Test New Memory
Technology Chips
Using the Zynq SoC
A platform based on Xilinx’s ZC706
Evaluation Kit proved fast and flexible
enough for MRAM testing at Qualcomm.

X C E L L E N C E I N T E S T & M E A S U R E M E N T

 Fourth Quarter 2015 Xcell Journal 23

T
he electronics industry is heav-
ily invested in the develop-
ment of new memory technol-
ogies such as PRAM, MRAM
and RRAM. The performance
of new memory technology
test chips is improving rapidly,
but work still needs to be done

before these devices can go full-scale to compete
with or replace conventional memories.

Generally speaking, when a test chip for a new
memory technology becomes available, basic tests
have already been carried out to check for man-
ufacture-related problems such as stuck-at faults,
transition faults and address-decoding faults. But
another type of testing is necessary as well in the
form of performance-related tests that will dis-
close how fast the chip can be reliably accessed, as
well as how much the chip access speed impacts
the performance of the whole computing system.

To successfully carry out the planned perfor-
mance tests, the test environment must be able to
generate configurable digital waveforms to access
the chip. It must also be able to construct an entire
computing environment to measure the impact of
chip access speed. There are many ways to create
or purchase a test environment to satisfy these
needs. But our team at Qualcomm decided to make
our own environment based on Xilinx®’s Zynq®-
7000 All Programmable SoC ZC706 Evaluation Kit.

INS AND OUTS OF MEMORIES
Conventional memory technologies like DRAM,
SRAM and flash store ones and zeros using an elec-
trical charge in each memory cell. DRAM is wide-
ly used in PCs and mobile computing devices to
run programs and to store temporary data. SRAM
is commonly used as cache memory and register
files in microprocessors. It is also frequently found
in embedded systems when power consumption is
a big concern. Unlike DRAM or SRAM, flash mem-
ory offers persistent storage after power is re-
moved from the system. Flash memory runs more
slowly than the others, and might wear out with
excessively high numbers of programming cycles.

In comparison to conventional charge-based
memory technologies, new memory technologies
are based on other physical properties of their stor-
age elements. As an example, a memory element of
magnetoresistive RAM (MRAM) is formed from two
ferromagnetic plates separated by a thin layer of in-
sulator. Each plate can hold a magnetization. One
of them is permanent, the other can be changed by

by Botao Lee
Senior Staff Engineer
Qualcomm Technologies, Inc.
blee@qti.qualcomm.com

Baodong Liu
Staff Engineer
Qualcomm Technologies, Inc.
baodongl@qti.qualcomm.com

Wah Hsu
Senior Staff Engineer
Qualcomm Technologies, Inc.
wahh@qti.qualcomm.com

Bill Lu
Staff Engineer
Qualcomm Technologies, Inc.
xiaolu@qti.qualcomm.com

mailto:blee@qti.qualcomm.com
mailto:baodongl@qti.qualcomm.com
mailto:wahh@qti.qualcomm.com
mailto:xiaolu@qti.qualcomm.com

X C E L L E N C E I N T E S T & M E A S U R E M E N T

 24 Xcell Journal Fourth Quarter 2015

an external field to store data. The stored
data is read by measuring the electrical
resistance of the element. MRAM is sim-
ilar in speed to SRAM and similar in den-
sity to DRAM. Compared with flash mem-
ory, MRAM runs much faster and suffers
no degradation from programming.

REQUIREMENT ANALYSIS
When devising a scheme for evaluating
our MRAM test chip, we settled on a
Zynq SoC approach because of the fol-
lowing considerations:

• The FPGA Mezzanine Card (FMC)
interface on the ZC706 board provides
high-speed signaling capability to and
from the memory test chip through an
FMC daughtercard.

HARDWARE AND SYSTEM
ARCHITECTURE
The hardware architecture of our chip
test environment is illustrated in Fig-
ure 1. Software runs on the Zynq SoC’s
ARM A9 processors, while the memo-
ry controller core is created using the
programmable logic. We established a
DMA channel between the PS and the
controller core to move large blocks of
data between them easily. The memory
test chip resides on the FMC daughter-
card, and it talks with the memory con-
troller core through the FMC interface.

The system architecture is illustrat-
ed in Figure 2. The three layers on the
bottom are hardware layers and the
three layers on the top are software
layers. We selected Linux as the oper-

• The programmable logic (PL) portion
of the Zynq SoC provides the ability
to construct parameterizable memo-
ry controller cores. This is essential
to meet the requirement that the test
chip access speed can be varied.

• The Zynq SoC’s processing system
(PS), which consists of two ARM®
A9 cores, provides the ability to
modify test chip access speed
through software.

• The PS also makes it possible to
construct a complete computing
system. This is essential to meet
the requirement that the test sys-
tem measure the impact of chip
access speed on a full computing
environment.

Software runs on the Zynq SoC’s ARM A9
processors, while the memory controller core

is created using the programmable logic.

Figure 1 – Hardware architecture of the test environment

Xilinx ZC706 Evaluation Board

FMC

XC7Z045 SoC

ZYNQ PS

ZYNQ PL

DMA

Memory
Controller

FMC Daughtercard

Test Chip

X C E L L E N C E I N T E S T & M E A S U R E M E N T

Fourth Quarter 2015 Xcell Journal 25

ating system because it is open source,
so the source code can be tweaked if
needed. Although no tweaking was
done in the current stage of develop-
ment, it might be necessary to take ad-
vantage of some unique properties of
new memory chips down the road.

The software we wrote at the appli-
cation layer fell into two categories.
One category was for configuring the
memory controller core, and the oth-
er one involved profiling the perfor-
mance of the memory chip and the
performance of the whole system.

EASY MIGRATION OF
HARDWARE AND SOFTWARE
With help from the local Xilinx FAE,
we brought up the test environment
within a month. Most of our effort was
spent on designing and implementing
the interface between software and
hardware layers. This is actually one
of the reasons that we like the Zynq
SoC: It contains both microprocessors
and programmable logic in one device,
which makes migrating functions be-
tween hardware and software fairly
easy. In our design, we fine-tuned the
software/hardware partition a couple
of times and eventually settled on the
one we liked. To comfortably work on
a Zynq SoC-based system, one needs

to understand both hardware and soft-
ware reasonably well.

Another thing we liked was the
Vivado® Design Suite tool chain. The
Vivado environment intuitively shows
the design blocks, automatically as-
signs register addresses and checks
for errors before exporting hardware
information to the software devel-
opment process. The Vivado Design
Suite also provides in-system sig-
nal-level debugging ability, which is a
must-have to pinpoint the root cause
of any RTL issue.

The final thing we want to mention
here is the Linux OS. Our software at
the application level is heavily GUI
based. The popularity of the Linux OS
allowed us to leverage our previous ex-
perience on Linux GUI development so
that we could get the test programs up
and running quickly.

QUICK AND COST-EFFECTIVE
Using the Zynq-7000 All Programma-
ble SoC ZC706 Evaluation Kit, our
team quickly constructed a complete
computing environment for testing
new memory technology chips at
minimal cost. We expect to one day
use the same design methodology to
build similar systems for other pur-
poses as well.

Figure 2 – Test environment’s system architecture

Application Test Configuration
Performance Profiling

OS Linaro Linux

Device Driver Memory Controller
Device Driver

Core 2x ARM A9 Memory
Controller

Device XC7Z045 SoC Memory Test Chip

Board ZC706 Evaluation Board FMC Daughtercard

www.trenz-electronic.de

difference by design

Platform Features
• 4×5 cm compatible footprint
• up to 8 Gbit DDR3 SDRAM
• 256 Mbit SPI Flash
• Gigabit Ethernet
• USB option

All Programmable
FPGA and SoC modules

4
form x factor

5

Available SoMs:

Design Services
• Module customization
• Carrier board customization
• Custom project development

rugged for harsh environments
extended device life cycle

http://www.trenz-electronic.de

X C E L L E N C E I N T E S T & M E A S U R E M E N T

 26 Xcell Journal Fourth Quarter 2015

Unleashing
High-Performance
USB Devices with
Artix-7 FPGA

The low-power Xilinx
FPGA family puts
bus-powered USB device
designs within easy reach.

X C E L L E N C E I N T E S T & M E A S U R E M E N T

 Fourth Quarter 2015 Xcell Journal 27

With several billion ports in the marketplace, Universal
Serial Bus (USB) is the go-to interface for subgigabit
connections between hosts and peripheral devices.
However, due to the USB specification’s stringent in-
rush and steady-state operating-current limitations,
FPGAs were often overlooked for bus-powered device
applications in favor of lower-performance, less flexi-
ble microcontroller solutions.

With the arrival of the Artix®-7, the latest addition to
the Xilinx® low-power device portfolio, this is no lon-
ger the case. Paying careful attention to system-level
power conversion efficiency and sequencing, and using
the power estimation and optimization tools available
in the Vivado® Design Suite, designers can overcome
these challenging limits to provide a tightly integrated,
tailored bus-powered device with high performance.

Let’s take a look at how to build a USB 2.0 high-
speed bus-powered device around an Artix-7 Micro-
Blaze™-based platform. We successfully used this
approach at Anritsu in the development of a recent
microwave power measurement product. The new
design’s USB 2.0 High-Speed interface provides a sub-
stantial increase in measurement throughput com-
pared with the USB Full-Speed microcontroller-based
solution used in the previous-generation product. In-
creased measurement throughput reduces test time in
a manufacturing production test application. The re-
sult is a cost savings for our customers.

SYSTEM DESIGN
In our project at Anritsu, we knew the major obsta-
cle we had to overcome was going to be the 500-milli-
amp (5-volt nominal) steady-state current draw limit.
Therefore, our approach to system design centered

by Tom Myers

Senior Hardware Engineer

Anritsu Company

tom.myers@anritsu.com W

mailto:tom.myers@anritsu.com

X C E L L E N C E I N T E S T & M E A S U R E M E N T

 28 Xcell Journal Fourth Quarter 2015

around the power budget. We tabulat-
ed typical and maximum current draws
from datasheet numbers on a power
budget spreadsheet.

A large part of the power budget
was driven by the minimum off-chip
memory requirement of 200 Mbytes.
The best fit for this requirement was
found to be a standard 4-Gbit LPDDR2
device. We generated current-draw
estimates for this device with the de-
tailed methodology provided by ven-
dor application notes, applying the

the various peripherals using Vivado’s
IP Integrator tool. We quickly obtained
a synthesizable target and refined the
power consumption numbers with
Vivado power reports.

Since MIG doesn’t provide a native
AXI connection to LPDDR2 devices,
we developed this link later in-house.
Until our shim was available, we used
the MIG-generated LPDDR2 example
design for these preliminary power es-
timate and sizing builds. Figure 1 shows
the resulting system architecture.

estimated data flow profile. We also
evaluated various programmable de-
vices and other solutions with tools
such as Xilinx Power Estimator with
assumptions as to the functionality,
clock speed and toggling rates.

We identified a few candidate de-
vices and refined the power, size and
I/O estimates by building out a subset
of the complete system with a Micro-
Blaze, the memory controller (using
Memory Interface Generator, or MIG)
and adding in the interface blocks for

Lowering the device’s die temperature
reduces leakage power consumption.

Strategies include minimizing device die size
and selecting the largest package possible.

Artix-7 USB Bus-Powered Device Architecture

FPGA
Xilinx

XC7A100TFGG484-2L

PLL, Core Logic
at 100 MHz

Reset
Controller

XADC
Temp/
Voltage
Monitor

SPI
Controller

SPI FLASH Config/
Boot 256Mb/1.8V

AXI4 Lite
Interconnect

LPDDR2
4Gb 128Mx32

LPDDR2
Memory

Onterface

AXI
shim

AXI4
Interconnect

32 bit data
path @

100 MHz

MicroBlaze

Cache

Interrupt
controller

JTAG
config/debug

5V to 1,8V
Reg

JTAG
connector

AXI4 Lite
Peripherals

X32@ 200 MHz

DMA

USB
Core

USB ULPI
Transceiver

USB
connector

5V to 1.2V
Reg

5V to 1.0V
Reg

5V to 1.8V
Reg

USBULPI
100 MHz

osc

System
Clock

Figure 1 – System architecture for our Artix-7-based design

X C E L L E N C E I N T E S T & M E A S U R E M E N T

 Fourth Quarter 2015 Xcell Journal 29

As described in the “Vivado De-
sign Suite User Guide: Xilinx Power
Analysis and Optimization” (UG907),
lowering the device’s die temperature
reduces leakage power consumption.
Strategies we used included minimiz-
ing the device die size and selecting the
largest physical device package possi-
ble, given the application’s tight board
real estate constraints.

We minimized conversion losses and
regulator circuitry costs by reducing the
number of voltage rails. After locking
down the device power requirements,
we designed the voltage-conversion
circuits to step down from the nominal
USB 5-V bus voltage to these rails.

Up to this point, we have been focus-
ing on steady-state current draw. How-
ever, one must also keep in mind inrush
current draw. One way to minimize in-
rush current is to select regulators with
soft-start capability and sequence them.
You must carefully balance the FPGA’s
sequencing and ramp time require-
ments with the USB requirements.

EXPECT THE UNEXPECTED
Although various mechanisms are
provided to gracefully shut down and
remove USB devices, in reality many
users will abruptly unplug the device
without warning. This can be a prob-
lem if the firmware update process is
not sufficiently robust, leading to non-
responsive, “bricked” devices, unhap-
py customers and expensive device
returns for firmware recovery. Anrit-
su competes on the basis of reliabil-
ity and speed for high-volume man-
ufacturing test. Therefore, our main
requirements included fast boot time
and fast firmware update time.
 We solved this problem by imple-
menting the QuickBoot golden-image
firmware update architecture and pro-
cesses described in Xilinx application
note XAPP1081 and summarized in
Figure 2. The traditional 7 series fall-
back multiboot solution provides a boot
process that maintains a known-good
“golden” image including bitstream in
the configuration flash memory. During

the update process, an updated “work-
ing” image is loaded in memory after
the golden image. If the update process
fails, or the working image is somehow
corrupted, the FPGA automatically
detects the error and falls back to the
golden image. The XAPP1081 Quick-
Boot method extends this procedure
with improved configuration time and
golden-image update features.

Based on the success of this project,
we are looking ahead to how the next
generation of devices from Xilinx might
enable additional functionality for An-
ritsu products. For example, a large
amount of the power budget is con-
sumed by the off-chip SDRAM intercon-
nect. We look forward to investigating
how we might use the newer 16-nano-
meter UltraScale+ lineup’s UltraRAM to
reduce or eliminate this load and per-
haps put the ARM7-enabled Zynq®-7000
All Programmable SoC product line in
reach for our application.

For further information, contact
tom.myers@anritsu.com.

Figure 2 – QuickBoot flash memory components and configuration method

Configuration Step 1:
FPGA configuration

starts here – read
critical switch word

Flash Memory
Addr 0

Component 1:
QuickBoot Header

Configuration Step 2A:
If critical switch word is ON,

then execute warm boot
and jump to update bitstream.

Configuration Step 2B:
Synchronize and load

update bitstream.

Configuration Step 3A:
If critical switch word is
OFF, then ignore
warm boot sequence.

Configuration Step 3B:
Synchronize and load
golden bitstream.

Critical
Switch Word

Warm Boot
Jump Sequence

Component 2:
Golden

Bitstream

Component 3:
Update

Bitstream

http://www.xilinx.com/support/documentation/application_notes/xapp1081-quickboot-remote-update.pdf
mailto:tom.myers@anritsu.com

X C E L L E N C E I N I N D U S T R I A L

 30 Xcell Journal Fourth Quarter 2015

FPGA-Based Fuzzy
Controller Manages
Sugarcane Extraction
by Deepali Vyas
Master’s Candidate
Mody University of Science and Technology
Lakshmangarh, Rajasthan, India
deepalivyas100@yahoo.com

Yogesh Misra
Research Scholar
Mewar University
Chittorgarh, Rajasthan, India
yogeshmisra@yahoo.com

H. R. Kamath
Director
Malwa Institute of Technology
Indore, Madhya Pradesh, India
rskamath272@gmail.com

mailto:deepalivyas100@yahoo.com
mailto:yogeshmisra@yahoo.com
mailto:rskamath272@gmail.com

X C E L L E N C E I N I N D U S T R I A L

 Fourth Quarter 2015 Xcell Journal 31

S
ugar is an important food ingre-
dient that’s widely used in day-to-
day life. More than half of the total
global supply of raw sugar is pro-

duced from sugarcane. India is the second
largest sugar manufacturer in the world
after Brazil, with 60 million cane farmers
and their dependents involved in cane cul-
tivation, making for a $12 billion business.

Because the extraction of cane juice
is a nonlinear process, our team looked
to fuzzy logic for a way to improve the
flow. Analysis by researchers at the
Mody Institute of Science and Technolo-
gy (MITS) reveals that the performance
of our fuzzy-based controller, designed
and implemented in a Xilinx® FPGA, has
proven better than that of a conventional
controller. With the specific parameters
for crushing 2,500 tons of cane per day,
a flow rate of 26.6 kg/second is required.

Before looking into the details of how
we implemented our three-input fuzzy
controller, it’s helpful to understand the
basics of sugar manufacturing.

HOW CANE IS EXTRACTED
A schematic of the cane juice extraction
process is shown in Figure 1. The cane
billets that the sugar mill receives from
cane growers are weighed and dumped
in the cane yard. From there, a crane lifts
them to the cane carrier. The cane carrier
moves continuously and is responsible
for bringing the cane to the factory floor
for sugar production.

The cane first passes through two sets
of rotating knives. Cane knives cut the
cane into pieces, while shredder knives
prepare the fiber. A rake carrier feeds
these small fibers, which measure rough-
ly 1 to 2 cm, to a Donnelly chute. Cane
juice is extracted by crushing the fibers
in two or three rolls of the mill. This pro-
cess is repeated through sets of five or six
mills. Residual cane known as bagasse

A three-input fuzzy controller implemented
in a Xilinx Virtex-6 FPGA maintains the cane
level during the sugar-manufacturing process.

is sent to the boiler, where it is burnt as
fuel, while the extracted juice is sent for
clarification and then to the pan section,
where sugar is made from the juice.

The supply of cane for processing is
very uneven, and this uneven supply of
cane during juice extraction adversely af-
fects the efficiency of the sugar mill and
can cause mill breakdown, stoppage and
jamming of the equipment. For optimum
juice extraction, it’s necessary to main-
tain the cane level in the Donnelly chute
at a desired height.

We expected that fuzzy logic would
nullify the uneven supply of cane and
maintain the cane level at the desired
height by varying the speed of the rake
carrier better than conventional control-
lers. This is why we made an attempt to
introduce the concept of fuzzy logic to
the sugar world.

Our first step in 2014 was to design a
two-input fuzzy controller [1] that pre-
cisely monitored the variation in two
parameters: weight of cane on the rake
carrier and height of cane in the Don-
nelly chute.The controller aims at main-
taining a constant level in the chute so
as to maintain the needed flow rate of
26.6 kg/s. When we compared the re-
sults with those of the conventional con-
troller, it was clear that the two-input
fuzzy controller performed much bet-
ter. Since the cane is crushed between
the rolls, we decided as an experiment
to introduce a third parameter—roll
speed—on the same algorithm. The ad-
dition of this third parameter revealed
that roll speed is an equally important
variable as the other two.

So, later in 2014 we introduced
roll speed as our third parameter [2].
We redesigned the algorithm with
this additional parameter and imple-
mented it using MATLAB®. When the
software implementation of our new

http://chute.The

X C E L L E N C E I N I N D U S T R I A L

 32 Xcell Journal Fourth Quarter 2015

three-input controller was completed
[3], the next step was to implement the
algorithm and develop an entire fuzzy
system using a Xilinx FPGA. FPGAs
are reprogrammable silicon chips that
provide real-time hardware imple-
mentation of electronic circuits. They
are highly reliable, cost-effective and
provide a medium to check the per-
formance of a circuit before fabrica-
tion. Thus, the Xilinx Virtex®-6 FPGA
turned out to be a perfect solution for
our hardware implementation.

HARDWARE DESIGN
Figure 2 shows the algorithm for a
three-input fuzzy controller. The con-
trol philosophy remains the same as in
the two-input version, modified accord-
ing to the three inputs and implemented
on MATLAB. The control philosophy
is such that it governs weight, height
and the three conditions of roll speed:
that is,when the speed is Roll Low (RL;
12 cm/s), Roll Medium (RM; 14.3 cm/s
(RM) and Roll High (RR; 16.6 cm/s).

After designing the controller on
MATLAB, our next step was to design
the hardware required to measure the
input parameters. Load cell measures
the amount of cane on the rake carri-
er. To measure the level of cane in the

the Sugeno method of design is much
simpler. Therefore, we adopted the Suge-
no method of implementation.

The first and foremost step, fuzzifica-
tion, includes conversion of crisp values
to fuzzy values, which are then represent-
ed by membership functions. Crisp val-
ues are those that belong to a particular
set; fuzzy values lie in a particular range
and are not confined to a particular set.

The three input variables are weight,
height and roll speed. A triangular mem-
bership function is used to represent
these input variables. The universe of dis-
course of input parameter “WEIGHT” is
in the range of 500 kg to 1,000 kg, and it is
fuzzified into 11 triangular linguistic vari-
ables (LV). The universe of discourse of
input parameter “HEIGHT” is in the range
of 0 to 180 cm and it is fuzzified into seven
triangular LVs. The universe of discourse
of input parameter “ROLLSPEED” is in
the range of 12 cm/s to 16.6 cm/s and it is
fuzzified into three triangular LVs.

The fuzzification in terms of VHDL
code is done as follows. We defined each
membership function by three points and
two slopes, as shown in Figure 3. The
upward slope (Slope 1) and downward
slope (Slope 2) can be evaluated using
the following formula:

S1= (y2-y1/Point2-x1)

S2= (y2-y1/x2- Point 2)

The degree-of-membership (DOM)
function (µ) forms the next step of fuzzi-
fication. Our algorithm divides a member-
ship function into four segments, namely
Segment-1(µ=0), Segment-2{(Input - point
1)* slope 1}, Segment-3{(Input-point 2)*
slope 2} and Segment-4 (µ=0). The value
of DOM is calculated as follows:

• If input value < Point 1 (Segment 1),
then DOM =0.

• If input value ≤ Point 2 and ≥ Point 1
(Segment 2), then DOM = (Input Val-
ue –Point 1) * Slope 1.

• If input value ≤ Point 3 and ≥ Point 1
(Segment 3), then DOM = FF- (Input
Value –Point 2) * Slope 2.

• If input value ≥ Point 3 (Segment 4),
then DOM = 0.

chute, we added height sensors to the
design. A tachogenerator sensor mea-
sures the rotational speed of rolls.

The output of the load cell, height sen-
sor and tachogenerator is in microvolts.
In order to use these metrics in the next
steps of the process, we had to amplify
the values to a measurable level, name-
ly, from microvolts to millivolts. We ac-
complished this amplification using a
signal-conditioning system on PSpice.
Next, we converted the results to a digital
value using an analog-to-digital converter
(ADC) that we connected in series with
the conditioning system. In this way the
amplified input is fed to the controller.

FIVE-STEP PROCESS
The VHDL implementation of a fuzzy
controller using Xilinx hardware is divid-
ed into five steps: fuzzification of inputs,
rule evaluation, implication, aggregations
and defuzzification.

There are two methods of designing a
fuzzy-logic controller, Mamdani and Su-
geno. The Mamdani method is difficult
and very complex. According to the re-
search, the Mamdani method requires the
centroid of a two-dimensional shape by
integrating across a continuously varying
function. Hence, this method is not com-
putationally efficient. On the other hand,

Figure 1 – Schematic of the cane juice extraction process

Cane Carrier

Cane Knives

Shredder
Knives

Ra
ke

 C
ar

rie
r

Bagasse
for Boiler

Juice for
Clarification

C
H
U
T
E

X C E L L E N C E I N I N D U S T R I A L

 Fourth Quarter 2015 Xcell Journal 33

Figure 2 – Development algorithm for a three-input fuzzy controller

Roll Speed

RL RM RR

‘HEIGHT’ = EL ‘HEIGHT’ = VL ‘HEIGHT’ = L

NO NO NO

YES YES YES

‘HEIGHT’ = VH ‘HEIGHT’ = H ‘HEIGHT’ = JR

NO NO NO

YES YES YES

Feed Rate = +42% of Flow Rate

For ‘WEIGHT’ = SL, UL, EL, VL, l,
JR, H, VH, EH, UH and SH

Feed Rate = +31% of Flow Rate

For ‘WEIGHT’ = SL, UL, EL, VL, l,
JR, H, VH, EH, UH and SH

Feed Rate = +20% of Flow Rate

For ‘WEIGHT’ = SL, UL, EL, VL, l,
JR, H, VH, EH, UH and SH

Feed Rate = +31% of Flow Rate

For ‘WEIGHT’ = SL, UL, EL, VL, l,
JR, H, VH, EH, UH and SH

Feed Rate = +20% of Flow Rate

For ‘WEIGHT’ = SL, UL, EL, VL, l,
JR, H, VH, EH, UH and SH

Feed Rate = Flow Rate

For ‘WEIGHT’ = SL, UL, EL, VL, l,
JR, H, VH, EH, UH and SH

Feed Rate = +20% of Flow Rate

For ‘WEIGHT’ = SL, UL, EL, VL, l,
JR, H, VH, EH, UH and SH

‘HEIGHT’ = EH

YES

NO

Figure 3 – Membership function, defined by three points and two slopes

Y2

Y1

X1 X2

1

1.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Segment 1
Segment 2 Segment 3 Segment 4

Point 1

Point 2

Point 3

Slope 1
Slope 2

X C E L L E N C E I N I N D U S T R I A L

 34 Xcell Journal Fourth Quarter 2015

DIFFERENT DEGREES
OF MEMBERSHIP
The next step is the designing of rules so
as to determine the action to be taken in
response to the different degree-of-mem-
bership functions. A fuzzy rule is formed
using a simple If-Then condition where
we have a consequence to every anteced-
ent. The Fuzzy Logic Toolbox in MATLAB
provides different operators to combine
multiple antecedents. We selected the
AND operator to combine three anteced-
ents, since it represents a minimum oper-
ation among multiple antecedents. For a
three-input controller, a total of 231 rules
are generated. We designed a rule matrix
for these rules. A minimum function finds
the minimum of three values—that is,
the minimum of DOM among three input
variables is calculated.

We also found that the consequent of
many rules is the same. All such rules
having the same consequent are collect-
ed and the maximum of these values is
calculated using a maximum function. At
the next step, we collected all rules hav-
ing the same consequents. Different max-
imum functions are encoded to evaluate
a maximum value for the entire LV.

After the output for each rule has been
identified, the last step is to combine all the
output into a single value—in other words,
these values are to be converted to crisp
values. This is done using defuzzification.

Defuzzification forms the last and
an important step in designing a fuzzy
system. Defuzzified values generate a
single crisp value, which is the speed
of the rake motor. The Sugeno meth-
od of defuzzification that we used is

the weighted-average method. In this
method, we multiply the fuzzy output
obtained from aggregation with its
corresponding singleton value, then
divide the sum of these values by the
sum of all the fuzzy output obtained
from the rule evaluation—that is, the
values obtained after aggregation.

VIRTEX-6 IMPLEMENTATION
After implementing the above steps, we
successfully designed a three-input fuzzy
controller using a triangular membership
function and centroid defuzzification.
The program code is available with the
authors. We simulated our three-input
fuzzy controller using the Fuzzy Toolbox
of MATLAB version 7.11.0.584 (R2020b)
and implemented it on a Xilinx Virtex-6
FPGA with Xilinx’s ISE® Design Suite

 Parameters Cane Cane Motor Carrier Cane in Feed Data for Cane Cane
 level weight speed speed carrier rate next level (MATLAB)
 (cm) (kg) (rpm) (cm/s) (kg/cm) (kg/s) sampling *(VHDL) ** (cm)

 Time Roll kg cm
 (sec) speed
 (cm/s)

 0 15.4 90.0 750 47.0 24.6 0.938 23.1 -16.0 -6.4 83.6 85.7
 10 15.8 83.6 729 52.0 27.2 0.911 24.8 -5.0 -2.0 81.6 84.3
 20 15.0 81.6 792 50.0 26.2 0.990 25.9 +19.0 +7.6 89.2 90.4
 30 16.2 89.2 908 42.0 22.0 1.135 25.0 -9.0 -3.6 85.6 86.5
 40 16.6 85.6 965 44.0 23.0 1.206 27.7 +11.0 +3.9 89.5 90.5
 50 13.4 89.5 720 49.0 25.7 0.900 23.1 +16.0 +6.4 95.9 95.9
 60 13.8 95.9 760 39.0 20.4 0.950 19.4 -27.0 -9.6 86.3 86.3
 70 13.4 86.3 790 44.0 23.0 0.988 22.7 +12.0 +4.8 91.1 91.3
 80 15.4 91.1 820 46.0 24.1 1.025 24.7 0.0 0.0 91.1 93.4
 90 16.2 91.1 555 73.0 38.2 0.694 26.5 -4.0 -1.6 89.5 93.4
 100 13.0 89.5 609 51.0 26.7 0.761 20.3 -5.0 -2.0 87.5 92.3
 110 14.3 87.5 578 62.0 32.5 0.723 23.5 +6.0 +2.4 89.9 90.2
 120 14.6 89.9 598 57.0 29.8 0.748 22.3 -11.0 -4.4 85.5 87.0
 130 12.3 85.5 700 44.0 23.0 0.875 20.1 +4.0 +1.6 87.1 88.8
 140 12.6 87.1 679 48.0 25.1 0.849 21.3 +11.0 +4.4 91.5 91.7
 150 15.4 91.5 800 46.0 24.1 1.000 24.1 -6.0 -2.4 89.1 91.3
 160 12.0 89.1 845 32.0 16.8 1.056 17.7 -15.0 -6.0 83.1 84.2
 170 14.3 83.1 835 45.0 23.6 1.044 24.6 +17.0 +6.1 89.2 90.3
 180 14.6 89.2 874 42.0 22.0 1.093 24.0 +6.0 +2.4 91.6 92.1
 190 15.0 91.6 900 41.0 21.5 1.125 24.2 +2.0 +0.8 92.4 92.1
 200 15.4 92.4 924 40.0 20.9 1.155 24.1 -6.0 -2.4 90.0 91.4

Table 1 – Cane level at a 90-cm roll speed varies during each sample.

* Cane level of FPGA-implemented system after each sampling ** Cane level of MATLAB-implemented system after each sampling

X C E L L E N C E I N I N D U S T R I A L

 Fourth Quarter 2015 Xcell Journal 35

14.5 using VHDL. The sampling period is
10 seconds and total simulation duration
is 200 seconds.

We have examined in total 756 differ-
ent conditions of input parameters under
six different cases, but here we have fo-
cused on the case when the cane level
and cane weight on the carrier at the ini-
tial stage of simulation are 90 cm and 750
kg respectively. The roll speed varies at
the time of each sampling. The simulation
result is given in Table 1.

The steps of hardware implementa-
tion included VHDL modeling, simula-
tion, synthesis and FPGA implementation
in our lab on the MITS campus. We used
a mixed type of modeling for designing
the VHDL model of our three-input fuzzy
controller, which includes behavioral
and structural modeling. The design is
simulated on Xilinx’s ISim simulator. The
waveform that ISim generated verified
the functionality of the controller. Figure
4 shows the simulated waveform for the

case when the weight of cane in the rake
carrier is 750 kg, the height of the cane
level in the Donnelly chute is 90 cm and
the roll speed is 16.6 cm/s. Under these
conditions, the expected rake motor
speed is 54.2 rpm (MATLAB). The de-
fuzzified simulated results are 36H, or 54
rpm, which matches with the MATLAB
results and verifies the design.

After simulation, we synthesized the
design to generate the technology sche-
matic and the approximate device utiliza-
tion report. We found that our design used
more than 78 percent of the Virtex-6’s slice
lookup tables (LUTs), 93 percent of occu-
pied slices, 1 percent of slice registers and
1 percent of LUT flip-flops.

We then compared the VHDL results
with results of a conventional controller
(see Table 2). The comparison proves that
the fuzzy-logic system is more efficient
than a conventional controller.

The lab at MITS provides a Spartan®-6
FPGA for research use. However, we

found that the number of LUT blocks re-
quired exceeded the capacity of the tar-
get device. This is why we implemented
the design on a Virtex-6 instead. But due
to a lack of resources, we couldn’t per-
form real-time implementation in the lab.

At the next step we are looking for-
ward to linking up with the government
of India’s National Sugar Institute to de-
velop the whole system and verify the
results in a real-world environment. We
have already delivered a presentation to
the institute and received a positive re-
sponse. It is our belief that the concept
of fuzzy logic stands poised to change
the future of the sugar industry.

REFERENCES
1. Y. Misra and H.R. Kamath, “Design Algo-
rithm of Conventional and Fuzzy Controller
for Maintaining the Cane Level During Sug-
ar Making Process,” International Journal
of Intelligent Systems and Applications,
ISSN: 2074-9058,Vol.7 No.1, December 2014

2. Y. Misra and H.R. Kamath, “Implementa-
tion and Performance Analysis of a Three
Inputs Conventional Controller to Maintain
the Cane Level During Cane Crushing in
FPGA using VHDL,” International Jour-
nal of Engineering Research & Technolo-
gy (IJERT), ISSN: 2278-0181, Vol. 3 Issue 9,
September 2014

3. Y. Misra and H.R. Kamath, “Analysis
and design of a three input fuzzy system
for maintaining the cane level during sug-
ar manufacturing,” Journal of Automation
and Control (accepted), ISSN: 2372-3041

Figure 4 – Simulated waveform for the case when weight = 750 kg,
height = 90 cm and roll rate = 16.6 cm/s

 Three-input Three-input Three-input
 conventional fuzzy fuzzy controller
 controller controller (Xilinx VHDL)
 (MATLAB)

 Percentage of time cane is in between 45.8 94.7 88.0
 85 cm-95 cm (% Time)

 Lowest level of cane in chute (cm) 61.7 84.2 81.6

 Highest level of cane in chute (cm) 103.5 95.9 95.9

Table 2 – Comparison of results

X P L A N AT I O N : F P G A 1 0 1

 36 Xcell Journal Fourth Quarter 2015

Zynq MPSoC Gets
Xen Hypervisor Support
by Steven H. VanderLeest
Chief Operating Officer
DornerWorks, Ltd.
Steve.VanderLeest@DornerWorks.com

mailto:Steve.VanderLeest@DornerWorks.com

X P L A N A N T I O N : F P G A 1 0 1

 Fourth Quarter 2015 Xcell Journal 37

The Xen open-source hypervisor is a
full-featured virtualization technology tra-
ditionally used in cloud computing and
more recently finding its way into embed-
ded systems. DornerWorks is providing
Xen support on the new Zynq® UltraScale+
MPSoC device, bringing multiple benefits
to Xilinx users. Not only does the Xen Zynq
hypervisor enable fast software integration
and heightened system safety and security,
it also brings the power of enterprise-style
cloud computing to the embedded world.

The rigorous design compartmentaliza-
tion that the hypervisor provides makes
for rapid integration of new software (in-
cluding entire operating systems) on the
same computing device. At the same time,
the isolation reduces or even eliminates
unexpected interference between inde-
pendent software functionality.

Moreover, isolation greatly enhances
the level of system safety and security by
reducing unexpected interaction between
functions and presenting a smaller attack
surface exposed to threats, thus making it
easier to prove safety or security properties.
The arrival of enterprise-style cloud com-
puting in the embedded world offers many
of the same advantages, such as deployment
of legacy software on new hardware with
few (if any) changes to the software.

Let’s briefly review what hypervisors
are before getting into the specifics of
Xen Zynq, the open-source Xen hypervi-
sor on the Zynq MPSoC.

Xilinx’s latest Zynq
device supercharges
the Xen hypervisor,
but support is key to
choosing this open-source
virtualization approach.

T

X P L A N A N T I O N : F P G A 1 0 1

 38 Xcell Journal Fourth Quarter 2015

WHAT IS A HYPERVISOR?
A hypervisor is the foundational soft-
ware layer enabling virtualization. Just
as an operating system (OS) manages
simultaneously running applications,
each contained within a process with
access to machine resources managed
by the OS, so the hypervisor manages
simultaneously running operating sys-
tems, each contained within a virtual
machine with access to machine re-
sources managed by the hypervisor.

Virtualization is an idea dating back
to the 1960s. Popek and Goldberg for-
malized the idea of a virtual machine
monitor (VMM) in 1974 with three de-
fining characteristics:

• The VMM provides programs with
a runtime (virtual) environment
essentially the same as the original
(physical) machine.

• The VMM has a negligible impact
on performance.

• The VMM manages the system
resources.

A hypervisor is a VMM focusing almost
exclusively on the basic machine manage-
ment tasks. That means some commonly
expected services like file systems, graph-
ical user interfaces and network protocol
stacks are not implemented at this level,
but rather are delegated to a higher layer,
such as a guest operating system running
in one of the virtualized machines the hy-
pervisor is hosting.

A hypervisor running natively on
hardware, as described above, is consid-
ered a Type 1 hypervisor. By contrast, a
Type 2 hypervisor is not the lowest layer
of software, but is hosted on an operat-
ing system. This type is typically used
to allow one OS to run on another, such
as when a Mac user runs Windows on
their MacBook using Parallels or when
a Windows user boots up Linux within a
virtual machine using VirtualBox.

There are also important differences
between enterprise and embedded hy-
pervisors. Cloud computing and big data
are typical enterprise use cases for hy-
pervisors. Hypervisors in the embedded

advanced driver assistance systems
(ADAS), instrument cluster, navigation
systems, Internet connectivity and,
eventually, real-time controls.

When considering virtualization solu-
tions, it is important to evaluate the VMM
characteristic regarding negligible impact
on performance. The hypervisor controls
all hardware resources (CPU, memory,
I/O) and thus may impact the perfor-
mance of any of them. For the CPU, one
important metric is the time it takes to
switch a core from running one virtual
machine to another. This is sometimes
called the context switch time, but may
also be called the partition or domain
switch time to differentiate it from a sim-
ilar concept of operating systems switch-
ing between processes. An associated
metric is the jitter, which is a measure of
how much this switch time varies, thus
affecting determinism and predictability.

Real-time designers are also interested
in measuring the minimum time slice that
can be scheduled, which constrains the
maximum frequency of the CPU sched-
ule, or put another way, the maximum
number of virtual machines that can be
executed in a given period. When measur-
ing impact on memory, the footprint of
the hypervisor kernel consists of a con-
stant base portion along with an incre-
mental portion for each added guest (vir-
tual machine). The cumulative footprint
then constrains the maximum number of
virtual machines possible. For I/O, band-
width and latency are the key measure-
ments to make for each device of interest,
although you could also make estimates
based on some generic metrics such as
the overall interrupt latency or the raw
communication bandwidth.

Many hypervisors support two ap-
proaches to I/O: exclusive and shared.
Exclusive I/O typically incurs a some-
what lower overhead, where the hyper-
visor provides a virtual machine with
direct and sole access to a particular
I/O device, often referred to as a “pass-
through” device. Shared I/O entails a
somewhat higher overhead, because the
hypervisor must impose mechanisms to
enforce a sharing scheme.

space are a more recent development,
with adoption occurring as processors
appeared with sufficient performance
and acceptable power consumption.

Use cases for embedded hypervisors
have a common theme: consolidation of
multiple complex functions into a single
computing platform while maintaining
some separation between them. For aero-
space applications, a hypervisor is often
used to support integrated modular avi-
onics, where the software formerly exe-
cuting on federated (independent) avion-
ics hardware is consolidated into a single
computing platform. The functions might
include flight control, navigation, flight
management systems, collision avoid-
ance and more. The FAA requires that
combined software functions that were
formerly running on separated hardware
cannot affect one another. This isolation
is accomplished via rigorous partitioning
defined by standards such as DO-248C.

While the FAA is concerned with the
safety of commercial flights when con-
solidating functionality, military avionics
has a parallel need to provide separation
in order to support security. Approaches
that support multiple classification lev-
els on one system with strict separation
use an architecture called Multiple Inde-
pendent Levels of Security (MILS).

For health care applications, the in-
dustry is considering similar consoli-
dation using hypervisors for high-end
medical devices such as MRI scanners,
robotic (or robotically assisted) sur-
gery devices and CT scan machines, all
of which currently incorporate multi-
ple independent processing systems.
The combined functions might include
graphical user interfaces for physicians,
image processing, real-time motor con-
trol, patient information databases and
system management functions.

For automotive applications, hyper-
visors are an attractive way of combin-
ing the dozens of separate microproces-
sors and microcontrollers embedded
in a car. Virtually all automotive OEMs
are considering the move to hypervisors
to combine functions such as infotain-
ment, driver and passenger controls,

X P L A N A N T I O N : F P G A 1 0 1

 Fourth Quarter 2015 Xcell Journal 39

ASPECTS OF OPEN SOURCE
The term “open source” is used to
describe software that is free, as in
speech, but not necessarily free as in
beer. Open-source software provides
the freedom to modify and share
source code under carefully devel-
oped licensing to guarantee that free-
dom is preserved. Some of the most
commonly recognized open-source
license agreements are the GNU
General Public License (the active
versions are GPLv2 and GPLv3), the
GNU Lesser General Public License,
the Apache license and the BSD li-
cense (in several variations).
 Open source is not necessarily free
of charge. Businesses built around
open-source products typically use a
different kind of revenue model than
traditional software vendors, instead
selling product support, accessories
(like printed user manuals), training
or custom design services. Red Hat
is one of the best-known examples,
building a billion-dollar business
around the open-source Linux oper-
ating system.

MAPPING XEN TO THE NEW ZYNQ
The new Zynq UltraScale+ MPSoC
from Xilinx offers a powerful platform
for running the Xen hypervisor. This
device provides a quad-core ARM®
Cortex™-A53 with hardware virtual-
ization extensions and 64-bit capability
in the ARMv8 instruction set. Powerful
hardware requires a rich ecosystem of
software in order to take full advan-
tage of its features and performance.
While developing the new Zynq MP-
SoC, Xilinx surveyed key customers in
a variety of industries, including aero-
space and defense, health care, tele-
communications and automotive. The
message: Most customers expected to
have hypervisor options for the new
device, and half of them desired an
open-source hypervisor. Xilinx chose
Xen as the open-source hypervisor and
chose DornerWorks to offer the sup-
port service for the new Xen Zynq.

The Xen hypervisor hosts guest
operating systems within virtual ma-
chines, providing them with a virtual-
ized view of the underlying machine.
The guest OS and its applications then

utilize the virtualized CPU, memory
and I/O, while Xen manages how the
virtualized resources are mapped to
physical resources.

In Xen, each virtual machine is
called a domain. In order to keep the
hypervisor kernel as small as possible,
Xen gives one domain special privileg-
es. This system domain is called dom0.
It starts up other guest domains (each
called a domU), configures the sched-
ule and memory mappings that the ker-
nel enforces, and manages I/O access
permissions. To provide a little more
detail, let’s consider several views of the
hypervisor environment: the boot se-
quence, ARM exception levels, running
schedule and resource management.

Starting from power-on, the boot
sequence on the new Zynq MPSoC can
be configured in a variety of ways, in-
cluding variations on which processor
(Cortex-A53 or Cortex-R5) starts first.
Most use cases will keep the two pro-
cessors quite independent, so the stan-
dard Xen Zynq hypervisor distribution
will run only on the Cortex-A53. Figure
1 illustrates a typical boot sequence. If

Time

First-Stage
Boot Loader

(FSBL)
U-Boot Xen

Kernel

dom0

Guest 1

Guest 2

Figure 1 – Typical boot sequence shows stages until the guest OS is running.

X P L A N A N T I O N : F P G A 1 0 1

 40 Xcell Journal Fourth Quarter 2015

the Cortex-R5 were used to host an in-
dependent, nonvirtualized secure OS,
this would typically boot first, from a
simple first-stage boot loader (FSBL).
Once the R5 had booted, it would then
initiate the A53, starting with its own
FSBL. A second-stage loader, such as
U-Boot, would typically be used to pro-
vide broader booting functionality, per-
haps including some integrity checking
of the hypervisor kernel image.

At this stage, the Xen hypervisor
kernel is invoked. The kernel initiation
includes checking for a valid dom0. In
turn, dom0 checks for valid images for
the guest domains and then initiates and
schedules them on one or more cores. In
most cases, dom0 continues to run in or-
der to monitor the system, provide man-
agement of shared resources and handle
certain system faults. The hypervisor
kernel runs during each domain context
switch and is also invoked through hyper-
calls. Hypercalls are analogous to system

calls that allow an application to invoke
an operating system service, but in this
case, they invoke hypervisor services. By
default, dom0 can make any hypervisor
call, while a domU is restricted to certain
ones. However, developers can use the
Xen module XSM-FLASK to implement
finer-grained control of hypercall access.

The processor hardware enforces
privileges within categories defined by
the ARM exception-levels model. The
Cortex-A53 uses the ARMv8 architec-
ture, which defines four exception lev-
els, as illustrated in Figure 2, with the
highest privileges for the bottom level
in the diagram, and decreasing as one
moves upward. Complete access priv-
ileges are granted at exception level
EL3, which is used for the ARM Trust-
Zone monitor. Hypervisors run at EL2 to
provide virtualization of guest domains.
Within each hosted virtual machine, the
hosted operating system runs at EL1.
Finally, user applications run with the

least privilege at EL0. When changing to
an exception level with lower privilege,
the virtualized machine registers must
be the same width or narrower. That
means you can have a 64-bit hypervisor
and a 32-bit guest, but not vice versa.
Xen Zynq uses the AArch64 execution
mode of the ARMv8 architecture, and
thus supports 64-bit or 32-bit guests.

The privileged domain, dom0, es-
tablishes the schedule, thus determin-
ing when domains run and on which
core or cores. The hypervisor kernel
then executes the configured sched-
ule. To achieve certain types of deter-
minism, you might configure a sched-
ule where a guest domain has sole
access to the machine during its time
slot. Figure 3 provides an example,
where Guest 1 runs on several cores
(along with dom0) in a single time slot,
while Guests 2 and 3 do not need this
restriction, so they can be scheduled
in a more mix-and-match load-balanc-
ing scheme during other time slots.

The hypervisor manages all resourc-
es of the machine. The CPU cores are
managed primarily by time-sharing, as
discussed above. The hypervisor uses
hardware timers to enforce the sched-
ule. Memory is shared not by dividing
time, but by dividing space, allocat-
ing a portion of the memory to each
guest domain. The hypervisor uses the
hardware memory management unit
(MMU) to enforce the memory layout.
Management of I/O varies widely, de-
pending on the type of device. Some
I/O devices are mapped directly to the
Cortex-A53, while others must be con-
figured to connect through the FPGA
programmable fabric.

Hypercalls are analogous to system calls that allow
an application to invoke an operating system service,

but in this case, they invoke hypervisor services.
By default, dom0 can make any hypervisor call.

Figure 2 – This diagram of ARM Exception Levels shows the hypervisor mapped to EL2.

EL0

EL1

EL2

EL3

App 1 App 2 App 3 App 4

Guest OS 1 Guest OS 2 Secure World OS

Hypervisor

TrustZone Monitor

C
o

rt
ex

-A
53

C
o

rtex-R
5

Trusted
App 6

Trusted
App 5

 Fourth Quarter 2015 Xcell Journal 41

X P L A N A N T I O N : F P G A 1 0 1

Guest access to I/O devices is con-
figured and managed by dom0, with ap-
propriate hypercalls to the Xen kernel
to establish memory mappings to the
devices. Dom0 can grant a guest domain
access to specific I/O devices as needed,
or it may manage shared I/O itself, act-
ing as the gateway to enforce a sharing
mechanism. Interdomain communica-
tion in Xen (including I/O) typically uses
Xen event channels for notifications
and shared memory for passing data.
Shared I/O device drivers in Xen use a
split-driver model, where the top half
in the guest domains provides the API
to the guest OS and the functionality to

pass data back and forth to dom0. The
bottom half of the driver inside dom0
then performs the actual I/O operations
to the device.

CREATING SUPPORT FOR XEN ZYNQ
As Xilinx sought customer feedback
about the anticipated next-generation
Zynq SoC device, it heard that many
customers expected strong hypervi-
sor support and half of them wanted
an open-source option. This support
had to be more than a simple help-
desk-style service. Rather, the support
options would need to be more exten-
sive, to provide help designing embed-

ded systems that balance demanding
needs (such as high bandwidth, low
latency, low power, high reliability)
and that connect to a wide variety
of system devices in an embedded
environment. Xilinx selected Dorner-
Works because of our expertise with
the Xen hypervisor, our embedded-
engineering design experience and
our role as a premier member of the
Xilinx Alliance Program, providing
additional options for customers that
also seek support for the FPGA design
portions of their systems.

DornerWorks collaborated with Xil-
inx on finishing the port of Xen to the

Figure 3 – Multicore scheduling places Guest 1 in an exclusive time slot and mixes Guests 2 and 3.

dom0

H
yp

er
vi

so
r

OS App OS AppOS App OS App

dom0

H
yp

er
vi

so
r

OS App OS App

dom0

H
yp

er
vi

so
r

OS App OS App

Guest 1

H
yp

er
vi

so
r

OS1 App1 OS1 App2

Guest 2

H
yp

er
vi

so
r

OS2 App3 OS2 App4

Guest 3

H
yp

er
vi

so
r

OS3 App5 OS2 App6

Guest 1

H
yp

er
vi

so
r

OS1 App1 OS1 App2

Guest 3

H
yp

er
vi

so
r

OS3 App5 OS3 App6

Guest 3

H
yp

er
vi

so
r

OS3 App5 OS3 App6

Guest 1

H
yp

er
vi

so
r

OS1 App1 OS1 App2

Guest 3

H
yp

er
vi

so
r

OS3 App5 OS3 App6

Guest 2

H
yp

er
vi

so
r

OS2 App3 OS2 App4

Core 0

Core 1

Core 2

Core 3

Time

X P L A N A N T I O N : F P G A 1 0 1

 42 Xcell Journal Fourth Quarter 2015

new Zynq MPSoC and then confirmed
correctness by verification and valida-
tion testing. Our testing needed to cover
not only the Xen hypervisor kernel run-
ning correctly on the hardware, but also
the dom0 privileged domain (running
Linux) and guest domains with a variety
of supported guest operating systems.
We named this package of software the
Xen Zynq Distribution.

We faced the additional challenge
of testing before we had the actual
hardware. Our stand-in model of the
hardware was the QEMU open-source
machine emulator software running on
an x86 developer system for individual
debugging and testing or on our team’s
build server for continuous integration
testing. Additionally, we developed
against an emulation board named
Remus (not to be confused with the
Xen live migration tool of the same
name), which uses six Xilinx Virtex®-7
FPGAs to emulate the Zynq MPSoC.

Figure 4 shows our continuous-inte-
gration approach, centered on a build-

and-test server. On a periodic basis, the
server queries the repository of source
code. If it detects any changes, the serv-
er performs an incremental build on the
dependent portions of the build image.
It then loads the images necessary for
each test onto each device of our tar-
get farm and invokes the test script. In
some test cases, external stimuli are
applied to the targets. The test server
gathers results, collates them and pres-
ents a summary dashboard that pro-
vides a view of the overall health of the
test suite or pinpoints where there are
issues to resolve.

DornerWorks has also developed
the infrastructure to provide compre-
hensive support for Xilinx customers
using the Xen hypervisor on the new
Zynq MPSoC. The base level of support
is driven by open-source community
activism, allowing users to compare
notes and share information. Dorner-
Works will host forums and gather
issues from the community. We use
Jira as our tracking tool for issues that

Figure 4 – Continuous integration automates build and test of Xen Zynq.

Repository

I/O Stimulus

Dashboard

Target FarmCode Under Test
Test Scripts

Stimulus Definition

Parsed Results

Test Measurements

Build Image
Load Image
Run Tests

Future
Expansion

Zynq
MPSoC

QEMU

REMUS

Linux Guest
OS

Build
Config

Tests

FSBL U-Boot

Developer
Build and

Debug
Environment

Build &
Test Server

Xilinx uncovers, for internally detect-
ed issues and for customer-identified
issues (from the community or from
paid subscribers). In order to sustain
our work on Xen, we also offer paid
subscription and custom design sup-
port services, which provide the busi-
ness-critical support by contract that
many customers demand in order to
reduce their business risk and ensure
timely response to their needs. You can
find more details about the support op-
tions at http:// http://xen.world.

TEST-DRIVE XEN YOURSELF
While you are waiting for the new Zynq
MPSoC to ship early next year, you
can already start investigating Xen.
Xen runs on an ordinary x86 PC, ei-
ther natively as a Type-1 hypervisor
or hosted inside VirtualBox on top of
Windows for development purposes.
To try out embedded Xen, you’ll need
emulated or actual ARM hardware.
Choose an ARM processor that has the
virtualization extensions—ideally the

http://dornerworks.com/services/XilinxXen

 Fourth Quarter 2015 Xcell Journal 43

X P L A N A N T I O N : F P G A 1 0 1

Cortex-A53, but others, such as the
Cortex-A15, can also provide a fairly
representative environment. Figure 5
depicts the workflow for building a
complete hypervisor-based system for
an embedded target. You can find Xen
at http://www.xenproject.org/, along
with information on building a Linux
image to serve as dom0 and building a
variety of guest OS images.

Figure 5 – The Xen development work flow

Developer PC

Xen source

Xilinx Linux,
ARM FSBL,

U-Boot source

64-bit ARM GCC
cross-compiler

Buildroot source

ARM FSBL,
U-Boot,

Xilinx Linux image

Petalinux
Buildroot

Xen image dom0 image

Pull Pull
Pull

Program

Compile
Build

Generate

Passed as Virtual
SATA Drive

TFTP

Load

Load

Load

Load

On Chip Memory QEMU

U-Boot

Xen

dom0

domU

Target

DornerWorks has published the Xen
Zynq Distribution for the new Zynq MP-
SoC, ready for download from our web-
site: http://dornerworks.com/services/
XilinxXen. Simply add guest OS imag-
es and you have your own embedded,
virtualized system.

With Xen on the new Zynq MPSoC,
you’ve got cloud computing in the palm
of your hand.

We speak FPGA.

Everything FPGA.

Design Center · FPGA Modules
Base Boards · IP Cores

Enclustra

Streaming,
made simple.

One tool for all FPGA communications.
Stream data from FPGA to host over USB 3.0,
PCIe, or Gigabit Ethernet – all with one
simple API.

FPGA MANAGER
IP Solution

4.

PCIe® Gen2
USB 3.0

Gigabit Ethernet

C/C++
C#/.NET

MATLAB®
LabVIEW™

FPGA

MARS ZX2
Zynq-7020 SoC Module

 � Xilinx Zynq-7010/7020 SoC FPGA
 � Up to 1 GB DDR3L SDRAM
 � 64 MB quad SPI flash
 � USB 2.0
 � Gigabit Ethernet
 � Up to 85,120 LUT4-eq
 � 108 user I/Os
 � 3.3 V single supply
 � 67.6 × 30 mm SO-DIMM

1.

from $127

 � Xilinx Zynq-7030/35/45 SoC
 � 1 GB DDR3L SDRAM
 � 64 MB quad SPI flash
 � PCIe 2.0 ×8 endpoint1

 � 8 × 6.6/10.3125 Gbps MGT2

 � USB 2.0 Device
 � Gigabit & Dual Fast Ethernet
 � Up to 350,000 LUT4-eq
 � 174 user I/Os
 � 5-15 V single supply
 � 64 × 54 mm

1, 2: Zynq-7030 has 4 MGTs/PCIe lanes.

MERCURY ZX1
Zynq-7030/35/45 SoC Module

3.

 � Xilinx® Zynq-7015/30 SoC
 � 1 GB DDR3L SDRAM
 � 64 MB quad SPI flash
 � PCIe® 2.0 ×4 endpoint
 � 4 × 6.25/6.6 Gbps MGT
 � USB 2.0 Device
 � Gigabit Ethernet
 � Up to 125,000 LUT4-eq
 � 178 user I/Os
 � 5-15 V single supply
 � 56 × 54 mm

MERCURY ZX5
Zynq™-7015/30 SoC Module

2.

http://www.xenproject.org
http://dornerworks.com/services/XilinxXen
http://dornerworks.com/services/XilinxXen
http://www.enclustra.com

X P L A N AT I O N : F P G A 1 0 1

 44 Xcell Journal Fourth Quarter 2015

Vivado IPI Opens FPGA
Shareable Resources
for Aurora Designs
by K Krishna Deepak
Senior Design Engineer
Xilinx, Inc.
kde@xilinx.com

Dinesh Kumar
Senior Engineering Manager
Xilinx, Inc.
dineshk@xilinx.com

Jayaram PVSS
Senior Engineering Manager
Xilinx, Inc.
jayaram@xilinx.com

Ketan Mehta
Senior IP Product Manager
Xilinx, Inc.
ketanm@xilinx.com

mailto:kde@xilinx.com
mailto:dineshk@xilinx.com
mailto:jayaram@xilinx.com
mailto:ketanm@xilinx.com

X P L A N A N T I O N : F P G A 1 0 1

 Fourth Quarter 2015 Xcell Journal 45

One of the major challenges that custom-
ers encounter when using multiple in-
stances of intellectual property (IP) in a
big design that must fit into a single FPGA
is how to share the resources effectively
across the system. The shared-logic fea-
ture of Xilinx®’s Aurora serial communica-
tions core provides users with shared re-
sources across multiple instances. The IP
Integrator tool within the Vivado® Design
Suite is the key to making the most out of
these shared resources.

The electronics industry is rapidly shift-
ing toward high-speed serial connectivity
solutions while moving away from parallel
communication standards. Industry-stan-
dard serial protocols have fixed line rates
and defined lane widths, sometimes un-
derutilizing the capabilities of gigabit seri-
al transceivers.

Aurora, a high-speed serial communi-
cation protocol from Xilinx, has been very
popular in the industry and is typically
used in applications where competing in-
dustry protocols are either too complex
or too resource-intensive to implement.
By delivering a low-cost, high-data-rate,
scalable IP solution, Aurora provides a
flexible means to build a high-speed seri-
al data channel.

High-performance systems and appli-
cations that need to be scaled, both in
line rate and channel width, are looking
to Aurora as a solution. Aurora is also es-
tablishing a presence in ASIC designs as
well as in systems built of multiple FPGAs

Xilinx’s IP Integrator tool
will help you improve
design-entry productivity
and resource optimization
in multicore Aurora designs. O

X P L A N A N T I O N : F P G A 1 0 1

 46 Xcell Journal Fourth Quarter 2015

with backplanes transporting gigabits
of data. Aurora’s simple framing struc-
ture coupled with protocol-extending
flow control capability can be used to
encapsulate data from existing proto-
cols. Its electrical requirements are
compatible with commodity equip-
ment. Xilinx delivers Aurora 64b66b
and Aurora 8b10b cores as part of the
Vivado Design Suite’s IP Catalog.

AURORA’S SHAREABLE
RESOURCES AT A GLANCE
Figure 1 is the representative block
diagram of the Aurora 64b66b core.
Highlighted are the clocking resourc-
es such as mixed-mode clock manager
(MMCM), BUFG and IBUFDS, along
with gigabit transceiver (GT) resourc-
es such as GT common and GT chan-
nel, illustrated as GT1 and GT2 for a

The Vivado IP Integrator (IPI) is a key
tool for resource optimization in complex
multicore systems. In this regard, IPI will
help you make the best use of the shareable
resources in the Aurora 64b66b and Auro-
ra 8b10b cores, especially the “shared-log-
ic” feature. For convenience, let’s focus on
the Aurora 64b66b IP, with the understand-
ing that similar techniques are applicable
to the Aurora 8b10b core as well.

IPI visualizes cores as top-level blocks. Connections
across standard interface ports are now more

intuitive, intelligent and in some cases automatic.

Tx Aurora Protocol
Engine

Tx Aurora Protocol
Engine

Scrambler
Scrambler

DescramblerRx Aurora Protocol
EngineRx Aurora Protocol

Engine

TxRx Startup
FSM

CBCC

FIFO

CBCC

FIFO

TXMMCM

GT
Common

User IF GT1 GT2

IBUFDS

IBUFDS_GT

BUFG

BUFG

BUFGCE

64 64 64

64 64
32

32

gt_ref_clk

drp_clk drp_clk

user_clk

rxrec_clk

rxusr_clk
rxusr_clk2

init_clk

txusr_clk

txusr_clk2

tx_out_clk
X

X

Figure1 – Shareable resources, highlighted in orange, in the Aurora 64b66b core

X P L A N A N T I O N : F P G A 1 0 1

 Fourth Quarter 2015 Xcell Journal 47

two-lane design based on a Xilinx 7
series device.

For a typical16-lane Aurora 64b66b
core, the clocking and GT resource
requirements, as used in a Kintex®-7
FPGA KC705 Evaluation Kit, are tabu-
lated in Table 1.

Clocking and GT resources in an
FPGA are specific to the device and
the package selected. Often, multiple
IP cores will demand resources for
use at the system level. Hence, it be-
comes imperative to optimize the uti-
lization of these precious resources
to reduce the system cost as well as
the power consumption.

AURORA RESOURCE SHARING
As part of the shared-logic feature sup-
ported across multiple GT-based Xilinx
cores, the Aurora core can be config-
ured either as “Shared logic in core
(Master)” or “Shared logic in example
design (Slave).” A combination of the
two configurations makes it possible
to share the clocking and GT resources
across master and slave when instanti-
ated at the system level.
 For applications in which the
shared-logic feature is to be used,
handcrafting the connections across
multiple pieces of IP could create er-
rors and will increase the overall de-
sign-entry time. Tool-assisted design
entry is the way to solve this problem,
and Xilinx’s IP Integrator has elegant-
ly addressed it.

The IPI tool visualizes cores as
top-level blocks, and connections
across standard interface ports are
now more intuitive, intelligent and in
some cases automatic. Appropriate
design rule checks are built into the
tool and around the IP to ensure the
wrong connections are highlighted
so the designer will spot them at the
time of design entry itself. Top-lev-
el wrapper files and inference of ap-
propriate pin-level I/O requirements
are automatic, making the tool pro-
ductive for system designers. If you
have designed custom sub-blocks,
you could consider packaging your

design by following Xilinx application
note 1168, “Packaging Custom AXI IP
for Vivado IP Integrator” (XAPP1168),
and use the sub-blocks in IPI.

Not only does the shared-logic fea-
ture of Aurora provide users with shared
resources across multiple instances, it
also allows an out-of-the-box experi-
ence for utilizing the GT channels in the
same GT quad without the pain of edit-
ing the GT common, PLL, clocking and
related modules. The only constraint is
that the line rates of the “shared” cores
should be the same (harmonics are also
allowed if you can take a penalty on the
clocking resources).

A typical shared-logic design would
include one master and one or more
slave instances within a quad. Unlike
most other communication IP, Auro-

ra doesn’t limit itself to a single-quad
sharing. The shared-logic definition for
the Aurora core can be extended to any
number of supported lanes.

Here are some examples that show-
case applications based on Aurora’s
shared-logic feature.

MULTIPLE SINGLE-LANE DESIGNS
Multiple single-lane designs in a single
FPGA differ from multilane designs in
that they require channel bonding. In-
tuitively, it seems clear that resources
needed for multiple single-lane designs
linearly add up at the system level. Let
us consider different scenarios and
examine how the shared-logic feature
helps in each case.

We will start with a design that
has four single lanes. You could build
this kind of design straightaway by
instantiating four single-lane Aurora
cores. If we actually ran through the
implementation, each Aurora design
would have one instance of GT com-
mon; therefore, the placement and re-
source utilization of this design would
be spread across four GT quads. This
might not always be a feasible solu-
tion because it is resource-intensive.
For a better placement and optimized
solution in terms of power and re-
sources, the four GTs selected should
be from the same GT quad.

Without the shared-logic feature,
handcrafting the generated design to
suit this requirement is a focused ef-
fort. To use the shared-logic feature
effectively, you will need to generate
one Aurora core in master mode and
the other three Aurora cores in slave
mode, as shown in Figure 2. Addition-
al system-level considerations need
to be taken into account, such as re-
setting the cores because the master
core controls the clocking to the slave
cores. This configuration and resource
optimization are possible out of the
box only if the Aurora cores are con-
figured with the same line rate. Ta-
ble 2 quantifies the benefits of using
the shared-logic feature for four sin-
gle-lane designs in a system.

 16-Lane Aurora Design

 Availability Used by
Resource in Device Aurora

MMCME2_ADV 10 1
IBUFDS_GTE2 8 2
GTE2_COMMON 4 4
GTXE2_CHANNEL 16 16

Table 1 – Clocking and GT resource utilization on a Kintex-7 FPGA KC705 Evaluation Kit

X P L A N A N T I O N : F P G A 1 0 1

 48 Xcell Journal Fourth Quarter 2015

DESIGNS OCCUPYING
12 GT CHANNELS
For a 7 series FPGA, the GT require-
ment based on north-south clocking is
that a single reference clock source can

serve up to maximum of 12 GT channels
if it is chosen in a middle quad.

Let us consider the use case
where the requirement is to have 12
single-lane designs utilizing as few

clocking resources as possible. You
can save on clocking resources if
you try to extend the one-master-
plus-three-slave configurations as
shown in Figure 2. But if this 1+3
configuration is extended for the
three quads, the design will need
a total of six differential-clocking
resources. However, more savings
are possible if you select two of
the master designs such that they
accept a single-ended INIT_CLK
and GT reference clock. This way,
potentially we could reduce the
differential-clock input require-
ment from six to two for this sys-
tem, saving IBUFDS/IBUFDS_GTE2
resource requirements (see Table
3). IBUFDS_GTE2 resource reduc-
tion in the design actually would
also mean a reduction in external

Figure 2 – Shared-logic design using one master Aurora core (left) and three slaves

cholesky_alt_top_0_if

S_AXI

M_AXIS_0

AP_CTRL

interupt

AXI4-Stream Accelerator Adapter

S_AXI_0

AP_FIFO_IAR_0

AP_FIFO_OARG_0

ap_oscalar_0_din[31:0]

USER_DATA_S_AXIS_TX

GT_DIFF_REFCLK1

INIT_DIFF_CLK

CORE_CONTROL

GT_SERIAL_RX

reset_pb

pma_init

drp_clk_in

GT_DIFF_REFCLK1
INIT_DIFF_CLK

USER_DATA_M_AXIS_RX

CORE_STATUS

channel_up

gt_pll_lock

lane_up[0:0]

hard_err

mmom_not_locked_out

soft_err

GT_SERIAL_TX

tx_out_clk

link_reset_out

user_clk_out

sync_clk_out

gt_qpllclk_quad1_out

gt_qpllrefclk_quad1_out

init_clk_out

sys_reset_out

gt_reset_out

gt_refclk1_out

aurora_64b66b_master

Aurora 64B66B

aurora_64b66b_slave1

Aurora 64B66B

USER_DATA_S_AXIS_TX

CORE_CONTROL

GT_SERIAL_RX

gt_rxcdrovrden_in

loopback[2:0]

mmcm_not_locked

power_down

refclk1_in

user_clk

sync_clk

reset_pb

pma_init

drp_clk_in

init_clk

gt_qpllclk_quad1_in

gt_qpllrefclk_quad1_in

USER_DATA_M_AXIS_RX

CORE_STATUS

GT_SERIAL_TX

tx_out_clk

link_reset_out

sys_reset_out

aurora_64b66b_slave3

Aurora 64B66B

USER_DATA_S_AXIS_TX

CORE_CONTROL

GT_SERIAL_RX

gt_rxcdrovrden_in

loopback[2:0]

mmcm_not_locked

power_down

refclk1_in

user_clk

sync_clk

reset_pb

pma_init

drp_clk_in

init_clk

gt_qpllclk_quad1_in

gt_qpllrefclk_quad1_in

USER_DATA_M_AXIS_RX

CORE_STATUS

GT_SERIAL_TX

tx_out_clk

link_reset_out

sys_reset_out

aurora_64b66b_slave2

Aurora 64B66B

USER_DATA_S_AXIS_TX

CORE_CONTROL

GT_SERIAL_RX

gt_rxcdrovrden_in

loopback[2:0]

mmcm_not_locked

power_down

refclk1_in

user_clk

sync_clk

reset_pb

pma_init

drp_clk_in

init_clk

gt_qpllclk_quad1_in

gt_qpllrefclk_quad1_in

USER_DATA_M_AXIS_RX

CORE_STATUS

GT_SERIAL_TX

tx_out_clk

link_reset_out

sys_reset_out

 Design with Four Single Lanes

 Without With
Resource Shared Logic Shared Logic

MMCME2_ADV 4 1

IBUFDS_GTE2 4 1

GTE2_COMMON 4 1

GTXE2_CHANNEL 4 4

Table 2 – Resource usage benefits with shared logic for designs with four single lanes

 Fourth Quarter 2015 Xcell Journal 49

X P L A N A N T I O N : F P G A 1 0 1

clocking resources as well as design
pinouts. Similar optimization can be
imagined for the MMCM as well.

THREE-BY-FOUR-LANE DESIGNS
If there is a requirement of having
three four-lane designs, without the
shared-logic feature you might end up
creating three four-lane Aurora cores
in master mode and then handcrafting
the generated design for optimal uti-
lization of clocking resources. What
if you could achieve the same result
out of the box? You can do just that by
customizing one master core and two
slave cores as shown in Figure 3.

Moving up in size to large (16 and
over) single-lane Aurora designs, the
need for shared logic becomes even
more acute. Sometimes the require-
ment could be as large as having 48
single-lane independent duplex links.
The number of allowable Aurora sin-
gle-lane links is limited only by the
number of GT resources available in a
chosen device. In such use cases, it is
difficult to realize this system design
without making effective use of the
shared-logic feature.

This design would spread over 12
quads; hence, there could be a require-
ment of 2*12 differential-clocking re-

sources, which could be a daunting
task from the point of view of board
design. By using the techniques men-
tioned in the 12-single-lane design use
case, you could reduce the differen-
tial clocks and MMCM requirements
of the overall system (see Table 5).

ASYMMETRIC LANES AND
OTHER CUSTOM OPTIMIZATIONS
In applications like video projectors,
mainstream data will flow in one di-
rection with high throughput while a
back channel with lower throughput
is used to transmit auxiliary or con-
trol information. In such applications,

Figure 3 – Single-master, two-slave configuration for a four-lane Aurora design over three consecutive quads

Table 3 – Resource benefit with shared-logic feature for designs with 12 single lanes

 12-Single-Lane Designs

 With Shared Logic
 With Shared Logic (using single-ended
Resource Without Shared Logic (default) master input clocks)

MMCME2_ADV 12 3 3

IBUFDS_GTE2 12 3 1

GTE2_COMMON 12 3 3

GTXE2_CHANNEL 12 12 12

aurora_64b66b_slave2

aurora_64b66b_slave1

aurora_64b66b_master1aurora_64b66b__master1

aurora_64b66b__slave1

Aurora 64B66B

GT_DIFF_REFCLK1
INIT_DIFF_CLK

USER_DATA_M_AXIS_RX

CORE_STATUS

tx_out_clk

link_reset_out

QPLL_CONTROL_OUT

GT_SERIAL_TX

gt_qplllock_quad1_out

gt_qplllock_quad2_out

gt_qplllock_out

gt_qpllrefclklost_out

gt_qpllrefclklost_quad1_out

gt_qpllrefclklost_quad2_out

user_clk_out

sync_clk_out

gt_qpllclk_quad1_out

gt_qpllrefclk_quad1_out

gt_qpllclk_quad2_out

gt_qpllrefclk_quad2_out

gt_qpllclk_quad3_out

gt_qpllrefclk_quad3_out

init_clk_out

sys_reset_out

gt_reset_out

gt_refclk1_out

USER_DATA_S_AXIS_TX

GT_DIFF_REFCLK1

INIT_DIFF_CLK

CORE_CONTROL

GT_SERIAL_RX

reset_pb

pma_init

drp_clk_in

GTXQ2

GTXQ1

GTXQ0

3 4

X X

X X

X 2

X X

1 X

GT Refclk1 GT Refclk2GTXQ1 None

GT Refclk1 GT Refclk2GTXQ1 None

USER_DATA_S_AXIS_TX

CORE_CONTROL

GT_SERIAL_RX

QPLL_CONTROL_IN

gt_qplllock_in

gt_qplllock_quad1_in

qt_qpllrefclklost_in

qt_qpllrefclklost_quad1_in

refclk1_in

user_clk

sync_clk

reset_pb

pma_init

drp_clk_in

init_clk

gt_qpllclk_quad1_in

gt_qpllrefclk_quad1_in

gt_qpllclk_quad2_in

gt_qpllrefclk_quad2_in

Aurora 64B66B

GTXQ2

GTXQ1

GTXQ0

X X

X X

X X

4 2

2 3

X 1

USER_DATA_M_AXIS_RX

CORE_STATUS

GT_SERIAL_TX

tx_out_clk

link_reset_out

sys_reset_out

aurora_64b66b__slave2

GT Refclk1 GT Refclk2GTXQ1 None

USER_DATA_S_AXIS_TX

CORE_CONTROL

GT_SERIAL_RX

QPLL_CONTROL_IN

gt_qplllock_in

gt_qplllock_quad1_in

qt_qpllrefclklost_in

qt_qpllrefclklost_quad1_in

refclk1_in

user_clk

sync_clk

reset_pb

pma_init

drp_clk_in

init_clk

gt_qpllclk_quad2_in

gt_qpllrefclk_quad2_in

gt_qpllclk_quad3_in

gt_qpllrefclk_quad3_in

Aurora 64B66B

GTXQ2

GTXQ1

GTXQ0

X X

3 4

1 2

X X

X X

X X

USER_DATA_M_AXIS_RX

CORE_STATUS

GT_SERIAL_TX

tx_out_clk

link_reset_out

sys_reset_out

X P L A N A N T I O N : F P G A 1 0 1

 50 Xcell Journal Fourth Quarter 2015

Figure 4 – Asymmetric data transfer across links made possible with Aurora

having a full-blown duplex link would
mean lesser usage of bandwidth and
essentially result in lower ROI of
the system design. An ideal solution
for this kind of problem could be, as
shown in Figure 4, to have an asym-
metric link width with optimized GT
resource utilization, where the num-

Table 4 – Optimized lane selection for three four-lane designs

 Optimized Lane Selection for 3 x 4-Single-Lane Designs

GTQ2 Master1_3 Master1_4

 Slave2_3 Slave2_4

GTQ1 Slave2_1 Slave2_2

 Slave1_4 Master1_2

GTQ0 Slave1_3 Slave1_2

 Master1_1 Slave1_1

Tx

TxRx

Rx

Board1/Chip1 Board2/Chip2
N != M

#M lanes

#N lanes

ber of lanes in one direction of data
flow (higher throughput) could be
higher than that of the other direction
(lower throughput).

With the current available data flow
modes (simplex/duplex) in the Aurora
cores, it is possible only to configure
the cores with an equal number of

TX and RX lanes. To have a different
number of lanes in the two directions,
you need to generate two Aurora sim-
plex cores for each direction. One
way of building these kinds of asym-
metric-lane designs on 7 series FPGAs
is discussed in Xilinx application note
1227, “Asymmetric Lane Design with
Aurora 64B/66B IP Core” (XAPP1227).

Another useful design strategy is
BUFG resource optimization. Often,
system designers implementing mul-
tiple Aurora cores that operate at the
same or different line rates need to be
aware of the device-specific clocking
requirements and limitations. Imple-
menting numerous Aurora links de-
mands generation of clocks for the
respective links. Conserving clocking
resources will make the system more
cost-effective. If the system design
has multiple blocks and if there is a
clocking resource (BUFG) crunch,
you could consider replacing the
BUFG with BUFR/BUFH. It is recom-
mended, though, that you drive both
TX path user clocks of the GT cores
with the same buffer type.

The 7 series Aurora core requires
an additional dynamic reconfiguration
port (DRP) clock input that otherwise
would need to use one BUFG. If Au-
rora’s free-running clock frequency is
chosen in the allowable range of the
DRP clock, then the available output
free-running clock from Aurora could
be reused and connected back to the
DRP clock. As a result, you could save
on the number of BUFGs in the gener-
ated designs.

When selecting the line rates across
multiple Aurora designs, keep in mind

System designers implementing multiple Aurora cores
need to be aware of the device-specific clocking

requirements and limitations. Conserving clocking
resources will make the system more cost-effective.

http://www.xilinx.com/support/documentation/application_notes/xapp1227-aurora-64b66b-asymmetric-lane-design.pdf

 Fourth Quarter 2015 Xcell Journal 51

X P L A N A N T I O N : F P G A 1 0 1

that you can share clocking resources
if line rates are integral multiples for
easier clock derivation and sharing
across the links. If the shared-logic
feature is to be extended to harmonic
line rates, then by designing in few ex-
tra clock dividers, you could generate
the required input frequencies for the
slave Aurora cores.

FUTURE POSSIBILITIES
Aurora’s flexibility opens up possibili-
ties of creating a variety of system con-
figurations and applications. Aided by
a powerful tool like Xilinx’s Vivado IP
Integrator, design-entry productivity
and system-level resource sharing are
speeding up innovation in the All Pro-
grammable application space. With the

 48-Single-Lane Designs

 Without With
Resource Shared Logic Shared Logic

MMCME2_ADV 48 4

IBUFDS_GTE2 48 4

GTE2_COMMON 48 12

GTXE2_CHANNEL 48 48

Table 5 – Resource benefit with shared-logic feature for 48-single-lane designs

Xilinx UltraScale™ architecture, there
are devices with many more GT chan-
nels with enhanced GT line rate support
and hence the possibilities and effective
resource utilization are even greater.

To evaluate the Aurora cores, check
out the IP Catalog, IPI and Aurora prod-
uct Web page at http://www.xilinx.
com/products/design_resources/conn_
central/grouping/aurora.htm.

Support for
Xilinx Zynq® Ultrascale+™
and Zynq-7000 families

► Concurrent debugging and

 tracing of ARM Cortex-A53/-R5, -A9

 and MicroBlaze™ soft processor core

► RTOS support, including Linux

 kernel and process debugging

► Run time analysis of functions and

 tasks, code coverage, system trace

http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
http://www.lauterbach.com

X P L A N AT I O N : F P G A 1 0 1

 52 Xcell Journal Fourth Quarter 2015

Making XDC
Timing Constraints
Work for You
by Adam Taylor
Chief Engineer
e2v
aptaylor@theiet.org

mailto:aptaylor@theiet.org

X P L A N A N T I O N : F P G A 1 0 1

 Fourth Quarter 2015 Xcell Journal 53

C
ompleting the RTL design is one part of get-
ting your FPGA design production-ready.
The next challenge is to ensure the design
meets its timing and performance require-

ments in the silicon. To do this, you will often need to
define both timing and placement constraints.

Let’s take a look at how to create and use both
of these types of constraints when designing systems
around Xilinx® FPGAs and SoCs.

TIMING CONSTRAINTS
At their most basic level, timing constraints define the
operating frequency of your system’s clock or clocks.
However, more advanced constraints establish the rela-
tionships between clock paths. Engineers include these
types of constraints to determine if it will be necessary
to analyze the path or—if there is no valid timing rela-
tionship between those clock paths—discount it.

By default, Xilinx’s Vivado® Design Suite will ana-
lyze all relationships. However, not all clocks within
a design will have a timing relationship that can be
accurately analyzed. One example is clocks that are
asynchronous, since it’s not possible to accurately
determine their phase, as shown in Figure 1.

You can manage the relationships between clock
paths using a constraints file and declaring clock
groups. When a clock group is declared, the Vivado
tools perform no timing analysis in either direction
between the clocks defined within it.

To aid in the generation of timing constraints,
the Vivado tools define clocks as being within
one of three categories: synchronous, asynchro-
nous or unexpandable.

• Synchronous clocks have a predictable timing/phase
relationship. This is normally the case for a primary
clock and its generated clocks, as they share a com-
mon root and will have a common period.

• Asynchronous clocks have no predictable timing/
phase relationship between them. This is normal-
ly the case for different primary (and their gen-
erated) clocks. Asynchronous clocks will have
different roots.

• Two clocks are unexpandable if, over 1,000 cycles, a
common period cannot be determined. If this is the
case, then the worst-case setup relationship over
these 1,000 cycles will be used. However, there is no
guarantee it is the worst case in reality.

To determine which type of clock you are dealing
with, use the clock report that Vivado produces. This
report will aid you in identifying asynchronous and
unexpandable clocks.

Timing and placement
constraints are a crucial
factor in achieving your
design requirements.
Here’s a primer on how
to use them.

X P L A N A N T I O N : F P G A 1 0 1

 54 Xcell Journal Fourth Quarter 2015

With these clocks identified, you can
now use the “set clock group” constraint
to disable timing analysis between
them. The Vivado suite uses Xilinx De-
sign Constraints (XDC), which are con-
straints based upon Synopsys Design
Constraints (SDC), a widely used Tcl-
based constraints format. With the XDC
constraints, you can use the command
below to define a clock group:

set_clock_groups –name –
logically_exclusive –physi-
cally_exclusive –asynchro-
nous –group

The –name is the name given to the
group. The –group option is the place
where you can define the members of
the group—that is, the clocks that have
no timing relationship. The logically and
physically exclusive options are used
when you have multiple clock sources
from which to select in order to drive a
clock tree, including BUFGMUX and

TIMING EXCEPTIONS
You must also focus upon what hap-
pens within a defined clock group
when you have an exception. But what
is an exception?
 One common example of a timing
exception would be a result being cap-
tured only every other clock cycle. An-
other would be transferring data from
a slow to a faster clock (or vice versa)
where both clocks are synchronous.
In fact, both of these situations are ex-
amples of a timing exception common-
ly referred to as a multicycle path, as
shown in Figure 2.

Declaring a multicycle path for these
paths results in a more appropriate and
less restrictive timing analysis, allowing
the timing engine to focus upon other,
more critical paths. The upshot is to in-
crease the quality of results.

Within your XDC file, you can de-
clare a multicycle path using the fol-
lowing XDC command:

BUFGCTL. Therefore, the clocks cannot
be present upon the clock tree at the same
time. As such, we do not want Vivado to
analyze the relationship between these
clocks as they are mutually exclusive.
Finally, the –asynchronous constraint is
used to define asynchronous clock paths.

The final aspect of establishing the
timing relationship is to take into account
the nonideal relationship of the clocks, in
particular jitter. You need to consider jit-
ter in two forms: input and system jitter.
Input jitter is present upon the primary
clock inputs and is the difference be-
tween when the transition occurs against
when it should have occurred under ide-
al conditions. System jitter results from
noise existing within the design.

You can use the set_input_jitter
constraint to define the jitter for each
primary input clock. Meanwhile, the
system jitter is set for the whole design
(that’s all the clocks) using the set_sys-
tem_jitter constraint.

Declaring a multicycle path results in a more
appropriate and less restrictive timing analysis,

allowing the timing engine to focus upon
other, more critical paths.

OSC 1

OSC 2

CLK1
Domain

CLK2
Domain

CLK1
Domain

Figure 1 – Domains CLK1 and CLK2 are asynchronous to each other.

X P L A N A N T I O N : F P G A 1 0 1

 Fourth Quarter 2015 Xcell Journal 55

set_multicycle_path path_
multiplier [-setup|-hold]
[-start|-end][-from <start-
points>] [-to <endpoints>]
[-through <pins|cells|nets>]

When you declare a multicycle path,
you are in effect multiplying the re-
quirements for the setup and hold (or
both) analysis by the path_mutiplier.
For instance, in the first example above,
where the output occurs every two
clock cycles, the path_multiplier would
be two in the case of the setup timing.

Since the multicycle path can be ap-
plied to either setup or hold, you then
have the choice of where to apply it.
When you declare a setup multiplier, it is
often best practice to also declare a hold
time multiplier using the equation below.

hold cycles = setup multi-
plier – 1 – hold multiplier

What this means for the simple exam-
ple we have been following is that the hold
multiplier is defined by this equation:

hold multiplier = setup
multiplier – 1 When using a
common clock.

To demonstrate the importance of
multicycle paths, I have created a sim-
ple example that you can downloaded
here. Within the XDC file there is one
example which contains two multicycle
paths declared, both setup and hold.

PHYSICAL CONSTRAINTS
The most commonly used physical
constraints are the placement of I/O
pins and the definition of parameters
associated with the I/O pins, for in-
stance standard drive strength. How-
ever, there are other types of physical
constraints, including placement, rout-
ing, I/O and configuration constraints.
Placement constraints make it possible
to define the locations of cells, while
routing constraints allow you to define
the routing of signals. I/O constraints
let you define the location of I/Os and
their parameters. Finally, configura-
tion constraints offer a way to define
your configuration methods.

As always, there are a few con-
straints that sit outside of these groups.
The Vivado Design Suite has three such
constraints, and they are predominantly
used on the netlist.

• DONT_TOUCH – This constraint is
used to prevent optimization, and
as such it can be of great use when
implementing a safety-critical or
high-reliability system.

• MARK_DEBUG – This constraint is
used to preserve an RTL net such that
it can be used for debugging later.

• CLOCK_DEDICATED_ROUTE –
This constraint identifies a route
for the clock routing.

The most commonly used constraints
relate to I/O placement and configuration
of the I/O. Placing an I/O on an FPGA in-
volves the use of both placement con-
straints to locate the physical pin and I/O
constraints to configure the I/O properties
such as the I/O standard, slew rate, etc.

Modern FPGAs support a number of
single and differential I/O standards. These
are defined via the I/O constraints. Howev-
er, you must take care to ensure you are
following I/O banking rules, which depend
upon the final pin placement.

But what are I/O banking rules? The
user I/Os within an FPGA are grouped
together into a number of banks con-
sisting of a number of I/Os. These banks
have independent voltage supplies, en-
abling the support of the wide range of
I/O standards. On the Zynq®-7000 All
Programmable SoC (and other 7 series
devices), I/O banks are further classi-
fied as belonging to one of two overall
groups—high performance and high
range. These categories further con-
strain their performance and require
that the engineer use the correct class
for the correct interface.

The high-performance (HP) class is
optimized for higher data rates. As such,
it uses lower operating voltages and
does not support LVCMOS 3v3 and 2v5.
The other class, high range (HR), is opti-
mized to handle wider I/O standards not
supported by HP. HR therefore supports

Propagation Time

> 1 CLK period

Timing analysis between registers uses 1 CLK period by default.

Figure 2 – The multicycle path is one example of a timing exception.

https://github.com/ATaylorCEngFIET

X P L A N A N T I O N : F P G A 1 0 1

 56 Xcell Journal Fourth Quarter 2015

traditional 3v3 and 2v5 interfacing. Fig-
ure 3 demonstrates these banks.

Once you have determined which
banks to use for which signal, you
still have the ability to change the
signal drive strength and slew rate.
These metrics will be of great interest
to your hardware design team as they
strive to ensure that the signal integ-
rity upon the board is optimal. These
selections will also affect the timing
of the board design. As such, you may
opt to use a signal integrity tool.

SI tools require an IBIS model. You
can extract an IBIS model of your de-
sign from the Vivado tools when you
have the implemented design open us-
ing the File->Export->Export IBIS mod-
el option. You can then use this file to
close the system-level SI issues and tim-
ing analysis of the final PCB layout.

Once the design team is happy with
the SI performance and timing of the

system as a whole, you will end up with
a number of constraints like the ones be-
low for the I/Os in the design.

 set_property PACKAGE_PIN
G17 [get_ports {dout}]
 set_property IOSTAN-
DARD LVCMOS33 [get_ports
{dout}]
 set_property SLEW SLOW
[get_ports {dout}]

 set_property DRIVE 4 [get_
ports {dout}]

With the HP I/O banks, you can

also use the digitally controlled im-
pedance to terminate the I/O correct-
ly and increase the SI of the system
without the need for external termi-
nation schemes. You must also con-
sider the effects of the I/O if there
is no signal driving it, for instance
if it is attached to an external con-

nector. In that case, you can use the
I/O constraints to implement a pull-
up or pull-down resistor to prevent
the FPGA input signal from floating,
which can cause system issues.

Of course, you can also use phys-
ical constraints to improve the tim-
ing of your design by implementing
the final output flip-flop within the
I/O block itself. Doing so reduces
the clock-to-output timing. You can
do the same thing on input signals as
well, which will allow the design to
meet the pin-to-pin setup-and-hold
timing requirements.

PHYSICAL CONSTRAINTS
START WITH PLACEMENT
You may wish to constrain the place-
ment for a number of reasons—perhaps
to help achieve timing or maybe to pro-
vide isolation between sections of the
design. In this regard, three types of
constraints will be important:

• BEL – The basic element of logic al-
lows a netlist element to be placed
within a slice.

• LOC – Location places an element from
the netlist to a location within a device.

• PBlock – You can use the physical (or
“P”) block to constrain logic blocks to
a region of the FPGA.

Thus, while a LOC allows you to

define a slice or other location within
the device, a BEL constraint lets you
target at a finer granularity the flip-
flop to use within the slice. PBlocks
can be used to group logic together
when segmenting large areas of the
design. Another use for PBlocks is to
define logical regions when you wish
to perform partial reconfiguration.

In some instances, you will wish to
group together smaller logic functions
to ensure the timing is optimal. While
it’s possible to do so using PBlocks, it
is more common in this scenario to use
relatively placed macros.

Relatively placed macros (RPMs) al-
low design elements such as DSPs, flip-
flops, LUTs and RAMs to be grouped to-Figure 3 – High-performance (left) and high-range I/O banks on a Xilinx 7 series device.

Bank 18
HP

50 I/0

Bank 17
HP

50 I/0

Bank 16
HP

50 I/0

Bank 32
HP

50 I/0

Bank 33
HP

50 I/0

Bank 34
HP

50 I/0

Bank 12
HP

50 I/0

Bank 13
HP

50 I/0

Bank 14
HP

50 I/0

Bank 15
HP

50 I/0

 Fourth Quarter 2015 Xcell Journal 57

X P L A N A N T I O N : F P G A 1 0 1

gether in the placement. Unlike PBlocks,
RPMs do not constrain the location of
these elements to a specific area of the
device (unless that’s what you want).
Instead, RPMs group these elements to-
gether when they are placed.

Placing design elements close to-
gether makes it possible to achieve
two goals. It improves resource effi-
ciency and it allows you to fine-tune

interconnection lengths to enable bet-
ter timing performance.

To co-locate design elements, you can
use three types of constraints, which can
be defined with the HDL source files.

• U_SET makes it possible to define an
RPM set of cells regardless of hierarchy.

• HU_SET allows definition of an RPM
set of cells with hierarchy.

• RLOC allows the assignment of relative
locations to the SET.

The RLOC constraints use the defi-

nition RLOC = XmYm, where the X and
Y relate to the coordinates of the FPGA
array. When you define an RLOC, you
can make this either a relative or an
absolute coordinate, depending upon
whether you add in the RPM_GRID at-
tribute. Including this attribute makes
the definition absolute and not relative.

As these constraints are defined
within the HDL as in Figure 4, it is of-
ten necessary to run a place-and-route
iteration initially, before adding the
constraints to the HDL file, so as to cor-
rectly define the placement.

In short, understanding timing and
placement constraints and learning
how to correctly use them are the
keys to obtaining the best quality of
results in your Xilinx-based program-
mable logic design.

Figure 4 – Constraints within the source code

SIGNAL ip_sync : STD_LOGIC_VECTOR(1 DOWNTO 0) :=(OTHERS =>’0’);
SIGNEL shr_reg : STD_LOGIC_VECTOR(31 DOWNTO 0) :=(OTHERS =>’0’);

ATTRIBUTE RLOC : STRING;
ATTRIBUTE HU_SET : STRING;
ATTRIBUTE HU_SET OF ip_sync : SIGNAL IS “ip_sync”;
ATTRIBUTE HU_SET of shr_reg : SIGNAL IS “shr_reg”;

200 Gbps bandwidth
VITA 57 compliant

www.techway.eu

The highest
optical

bandwidth
for FPGA

carrier

TigerFMC

http://www.techway.eu

T O O L S O F X C E L L E N C E

 58 Xcell Journal Fourth Quarter 2015

Toward Easier
Software Development
for Asymmetric
Multiprocessing Systems
by Arvind Raghuraman
Staff Engineer
Mentor Graphics Corp.
arvind_raghuraman@mentor.com

mailto:arvind_raghuraman@mentor.com

T O O L S O F X C E L L E N C E

 Fourth Quarter 2015 Xcell Journal 59

Heterogeneous multiprocessing is becoming in-
creasingly important to embedded applications
today. System-on-chip (SoC) architectures such
as Xilinx®’s Zynq® UltraScale+™ MPSoC provide
a powerful heterogeneous multiprocessing infra-
structure consisting of quad ARM® Cortex®-A53
cores and dual ARM Cortex-R5 cores. In addition
to the core compute infrastructure, the SoC con-
tains a rich collection of hardened peripheral IP
and FPGA fabric, enabling flexible design para-
digms for system developers to create high-perfor-
mance multiprocessing systems.

Various software development paradigms are
available that enable developers to leverage the
multiprocessing capabilities offered by SoCs such
as the Zynq MPSoC. Symmetric multiprocessing
(SMP) operating systems provide the infrastruc-
ture required to balance application workloads
symmetrically or asymmetrically across multiple
homogeneous cores present in a multiprocessing
system. However, to leverage the compute band-
width provided by the heterogeneous processors
present in the system, asymmetric multiprocess-
ing (AMP) software architectures are needed.

AMP architectures typically entail a combina-
tion of dissimilar software environments such as
Linux, a real-time operating system (RTOS) or
bare-metal software running on dissimilar pro-
cessing cores present in the SoC—all working in
concert to achieve the design goals of the end ap-
plication. Typical designs involve a software con-
text on a master core bringing up a remote soft-
ware context on a remote core in a demand-driven
manner to offload computation. The master, re-
mote processors and their associated software
contexts (that is, their OS environments) could

The Mentor Embedded
Multicore Framework
eases SoC system design
by hiding the complexities
of managing heterogeneous
hardware and software
environments. H

T O O L S O F X C E L L E N C E

be homogeneous or heterogeneous
in nature. Effectively dealing with the
complexities of managing the life cycles
of several operating systems on pos-
sibly dissimilar processors, while also
providing an enabling interprocessor
communication (IPC) infrastructure for
offloading compute workload, demands
new and improved software capabilities
and methods.

The Mentor Embedded Multicore
Framework from Mentor Graphics is a
software framework that provides two
key capabilities for AMP system de-
velopers: the remoteproc component
and API for life cycle management of
remote processors and their associat-
ed software contexts; and the rpmsg
component and API for IPC between
OS contexts in the AMP environment.
The framework hides the complexities
of managing heterogeneous hardware
and software environments, provid-

However, the Linux-provided infra-
structure had some limitations. For
starters, Linux rpmsg implicitly assumed
that Linux would always be the master
operating system, and it did not support
Linux as a remote OS in an AMP config-
uration. Furthermore, the remoteproc
and rpmsg APIs were available from the
Linux kernel space only—there were no
equivalent APIs or libraries usable with
other OSes and runtimes.

The Mentor Embedded Multicore
Framework is a standalone library writ-
ten in the C language. It provides a clean-
room implementation of the remoteproc
and rpmsg functionality usable with
RTOS or bare-metal software environ-
ments, with API-level compatibility and
functional symmetry to its Linux coun-
terpart. Figure 1a shows a software
stack diagram of the Mentor Embedded
Multicore Framework and its usage in
RTOS or bare-metal environments. As

ing the user with a simplified applica-
tion-level interface.

Let’s take a closer look at how you
can use this new development frame-
work to manage heterogeneous compu-
tation in AMP systems.

COMPATIBILITY AND ORIGINS
Compliance to open standards and
adoption by the Linux community were
important criteria when selecting an ap-
propriate API for the Mentor Embedded
Multicore Framework. Mentor chose
the remoteproc and rpmsg API present
in the Linux 3.4.x kernel and newer.
The Linux remoteproc and rpmsg infra-
structure was originally conceived and
committed to the Linux kernel by Tex-
as Instruments. The infrastructure al-
lowed Linux OS on a master processor
to manage the life cycle and communi-
cations with a remote software context
on a remote processor.

Mentor chose the remoteproc and rpmsg API
present in the Linux 3.4.x kernel and newer.

Figure 1 – Mentor Embedded Multicore Framework in RTOS and bare-metal environments (a), and remoteproc and rpmsg in the Linux kernel (b)

a. b.

Application Application

Mentor Embedded Multicore Framework Linux Kernel

Hardware Hardware

Environment

remoteproc remoteproc
platform driver

rpmsg user device
driver

rpmsg

remoteprocPorting Layer HIL

RTOS
Or

Bare-Metal

VirtIO

rpmsg

VirtIO

Char
device

 60 Xcell Journal Fourth Quarter 2015

T O O L S O F X C E L L E N C E

 Fourth Quarter 2015 Xcell Journal 61

shown, the framework’s well-abstract-
ed porting layer consists of a hardware
interface layer and an OS abstraction
(environment) layer, allowing users to
easily port the framework to other pro-
cessors and operating systems.

Figure 1b shows the remoteproc and
rpmsg infrastructure present in the Li-
nux kernel. The remoteproc and rpmsg
kernel-space drivers provide services
to the remoteproc platform driver and
rpmsg user device driver. The remote-
proc platform driver allows for remote
life cycle management, and the rpmsg
user device driver exposes IPC services
to user-space applications.

In addition to enabling RTOS and
bare-metal environments to interoper-
ate with Linux remoteproc/rpmsg in-
frastructure in AMP architectures, the
Mentor Embedded Multicore Frame-
work provides work flows and runtime
infrastructure to package and boot Li-
nux as a remote OS in AMP configura-
tions. Figure 2 shows the various AMP
configurations the framework supports.

USE CASES AND APPLICATIONS
The Mentor Embedded Multicore Frame-
work is well suited for both unsuper-
vised and supervised AMP architectures.

The unsupervised AMP (uAMP) ar-
chitecture is useful in applications that
do not require a strong separation be-
tween the participating OS contexts. In
this architecture, the participating oper-
ating systems run natively on the proces-
sors present in the system. As shown in
Figure 3a, the Mentor Embedded Multi-
core Framework provides a simple and
effective infrastructure in which a mas-
ter software context on a master (boot)
processor can manage the life cycle and
offload computation to other compute
resources present in the SoC.

A supervised asymmetric multipro-
cessing (sAMP) architecture is best for
applications that require isolation of
software contexts and virtualization of
system resources. In sAMP, the partic-
ipating guest operating systems run in
guest virtual machines that are managed
and scheduled by a hypervisor (aka vir-
tual machine monitor). The hypervisor
provides isolation and virtualization
services for the virtual machines. The
Mentor Embedded Multicore Frame-
work enables sAMP architectures to
manage computation on heterogeneous
compute resources present in the SoC.

As illustrated in Figure 3b, the frame-
work can be used in two ways: from the

Figure 2 – AMP configurations that the Mentor Multicore Framework supports

guest OS context for unsupervised man-
agement of heterogeneous compute re-
sources; and from within the hypervisor
for supervised management of hetero-
geneous compute resources, allowing
the hypervisor to supervise interactions
between the guest operating systems
and remote contexts involved.

In general, the Mentor Embedded
Multicore Framework is well-suited for
applications requiring demand-driven off-
load of compute functions to specialized
cores present on a multiprocessing chip.
In the case of power-constrained devices,
the framework enables on-demand bring-
up and shutdown of compute resources,
allowing for optimal power usage.

The framework also provides an easy
path for consolidation of legacy sin-
gle-core embedded systems onto powerful
and more capable multiprocessing SoCs.
With very little effort, the framework al-
lows for migration of legacy software
originally developed for unicore silicon
to easily interoperate with enhanced sys-
tem functionality developed on newer and
more powerful multiprocessing chips.

Lastly, the framework facilitates im-
plementation of fault-tolerant system ar-
chitectures. For example, the framework
can enable an RTOS context (master)

remoteproc

Linux

remoteproc &
rpmsg

Master Core

RTOS
or

Bare
metal

Remote
Core

Master Core
Remote

Core Master Core
Remote

Core

Linux

remoteproc &
rpmsg

rpmsg rpmsg rpmsg

Master

Remote

RTOS
or

Bare
metal

RTOS
or

Bare
metal

RTOS
or

Bare
metal

M
E
M
F

M
E
M
F

M
E
M
F

M
E
M
F

remoteproc remoteproc

Configuration a Configuration b Configuration c

T O O L S O F X C E L L E N C E

 62 Xcell Journal Fourth Quarter 2015

that’s handling critical system function-
ality to manage a Linux context handling
noncritical system functions. Upon fail-
ure of the Linux-based subsystem, the
RTOS can simply reboot the failed sub-
system without causing any adverse ef-
fects to critical system functions.

SYSTEM-LEVEL CONSIDERATIONS
Mentor Embedded Multicore Frame-
work APIs provide the required soft-
ware infrastructure to manage compu-
tation in AMP systems. However, those
designing AMP systems must take cer-
tain system-level considerations into
account before developing application
software using these APIs.

During the initial design phase, you
will be determining the AMP topology.
The framework can be used in a star to-
pology—a single master managing mul-
tiple remotes—or in a chain topology,
with chained master and remote nodes.

Once you have chosen a suitable
topology, the next step is to determine

the memory layout. You should assign
memory regions for each participating
OS runtime, and assign shared-mem-
ory regions for IPC between the OS
instances. Once the memory layout is
finalized, you will need to update the
platform-specific configuration data
provided to the framework to reflect
the chosen memory architecture.

Off-the-shelf operating systems gen-
erally assume they own the entire SoC,
and are not readily suited for operation
in unsupervised AMP environments,
where cooperative usage of shared re-
sources and mutually exclusive usage
of nonshared resources are key require-
ments. Each participating OS in an AMP
system needs to be modified so that
shared resources are used in a cooper-
ative fashion. For example, the remote
OS should not reset and reinitialize a
shared global interrupt controller that
might already be in use within the mas-
ter context; nor can shared clock trees
or peripherals be modified to cause

conflicts. These changes will typically
require modifications to the participat-
ing OS kernel, BSP sources or both.

The next step is to perform system
partitioning. You must partition system
resources such as memory and non-
shared I/O devices between the partic-
ipating operating systems so that each
OS has visibility and can access only
the resources that are assigned to it.
You can accomplish this task by modi-
fying the platform-specific data (device
and memory definitions) provided to
the participating OSes. For example,
modify memory and device definitions
in a Linux device tree source (DTS) file
for the Linux OS; in a platform defini-
tion file for the Nucleus RTOS; and per-
haps in the platform-specific headers in
bare-metal environments.

LIFE CYCLE MANAGEMENT
USING REMOTEPROC
Once you have made the system-level
design decisions and modifications to

Figure 3 – Mentor Embedded Multicore Framework use cases, including the uAMP (a) and sAMP (b) architectures

Cortex-
A53
Core

Cortex-
A53
Core

Cortex-
R5

Core

Cortex-
R5

Core

a.

IPC between OS contexts using rpmsg

b.

Cortex-
A53
Core

Cortex-
A53
Core

Cortex-
R5

Core-

Bare
metal

RTOS
Mentor

Embedded
Linux (SMP)

Linux
Guest 0

Linux
Guest 1

Bare
metal

RTOS

Hypervisor

remoteproc remoteproc

IPC between OS contexts using rpmsg

M E M F M E M F M E M F

M E M F

M E M F M E M F

remoteproc

Cortex-
R5

Core Cortex-
A53
Core

remoteproc
rpmsg

remoteproc
rpmsg

T O O L S O F X C E L L E N C E

 Fourth Quarter 2015 Xcell Journal 63

the participating operating systems,
you are now ready to start using the
Mentor Embedded Multicore Frame-
work from application software. The
framework provides work flows that
make it possible to package Linux,
RTOS or bare-metal-based software
images along with required bootstrap-
ping firmware to produce remote firm-
ware images in ELF format.

A remote firmware ELF image con-
tains a special section called the re-
source table. The resource table is a
static data structure with predefined
bindings where users can specify re-
sources required by the remote firm-
ware. Some key definitions supplied
in resource tables include memory re-
quired by the remote firmware and IPC
capabilities supported by remote firm-
ware. The remoteproc component in
the master software context will use the
resource table definitions to allocate re-
sources and establish communications
with the remote context.

The framework master initializes the
remote processor context using the re-
moteproc_init API. On invocation, the
remoteproc master fetches the remote
firmware image, decodes it, obtains
the resource table and parses it to dis-
cover the remote firmware’s resource
requirements. Based on resource ta-
ble definitions, remoteproc carves out
the physical memory required for the
remote firmware and performs cer-
tain initialization functions specific to
rpmsg/VirtIO-based IPC.

Once remoteproc is initialized, you
can use the remoteproc_boot API to
boot the remote processor with the
associated software context. On in-
vocation, the firmware image is lo-
cated to execute in place in memory,
and the remote processor is released
from reset to execute the image. The
remoteproc_shutdown and remote-
proc_deinit APIs allow applications to
shut down the remote processor and
de-initialize resources, respectively.
(The pseudo-code block in Figure 5
shows an example of remoteproc API
usage from the master context.)

In the remote context, the boot
and shutdown APIs are irrelevant.
To initialize and de-initialize the re-
moteproc component, you must use
remoteproc_resource_init, remote-
proc_resource_deinit APIs. For infor-
mation on how remoteproc is used
from the Linux context, please refer
to Linux kernel documentation.

RPMSG AND INTERPROCESSOR
COMMUNICATION
Once the remote firmware is up and
running on the remote processor, you
can use the rpmsg APIs for interproces-
sor communication between the master
and remote software contexts. The key
abstractions and concepts to be under-
stood when using rpmsg are as follows:

• From the perspective of the master,

an rpmsg device represents a remote
processor.

• An rpmsg channel is a bidirectional
communication channel between
the master and the remote processor
(aka rpmsg device).

• An rpmsg endpoint is a logical ab-
straction that can be present on ei-
ther side of an rpmsg channel.

• The endpoints provide the infrastruc-
ture for sending targeted messages
between master and remote contexts.

• When an endpoint is created, the user
provides a unique endpoint index or
allows the rpmsg component to as-
sign an index for the endpoint. In ad-
dition, the user provides an applica-
tion-defined callback to be associated
with the endpoint being created.

• When a message is received target-
ed to a given endpoint index, rpmsg
invokes the associated receive call-
back with a reference to the data
payload received.

• Users can create any number of end-
points on either side of an rpmsg
channel.

• Messages that are not explicitly tar-
geted to a destination endpoint index
reach a default endpoint associated
with the rpmsg channel.

• The rpmsg component notifies user
applications of events such as chan-
nel creation and deletion using user
provided callbacks registered during
initialization.

The framework provides work flows that
make it possible to package Linux, RTOS or

bare-metal software images along with
required bootstrapping firmware to produce

remote firmware images in ELF format.

T O O L S O F X C E L L E N C E

 64 Xcell Journal Fourth Quarter 2015

Figure 4 illustrates rpmsg channel
and endpoint abstractions and their
usage. The rpmsg component works in
concert with remoteproc to establish
and manage the rpmsg communication
channel between master and remote
contexts. Once remoteproc on master
brings up the remote context, rpmsg on
the remote context sends a name ser-
vice announcement. Upon receiving the
name service announcement, the master
registers the announced rpmsg device
and establishes an rpmsg channel. Once
the channel is established, the rpmsg
channel-created callback is invoked on
both sides, notifying the master and re-
mote applications of channel creation.

At this point, the master and remote
context can transmit data to each other
using the rpmsg_sendxx and rpmsg_
trysendxx APIs for blocking and non-
blocking transmit requests respective-

ly. When the remote context invokes
remoteproc_resource_deinit, the mas-
ter application is notified of the event
by the rpmsg channel deleted callback,
allowing for graceful termination of the
rpmsg-based communication link. The
master can choose to asynchronously
shut down the remote processor using
the remoteproc_shutdown API in sit-
uations where the remote context be-
comes unresponsive. The pseudo-code
segment in Figure 5 shows usage of
rpmsg APIs in concert with remoteproc
APIs in a master context.

The rpmsg component uses VirtIO as
a shared-memory-based transport ab-
straction. VirtIO has its roots as an I/O
virtualization standard used for guest-to-
host communications in lguest, KVM and
the Mentor Embedded Hypervisors. The
rpmsg driver uses services provided by
the VirtIO layer for shared-memory-based

communications with its counterpart.
The rpmsg driver instantiates an rpmsg
VirtIO device and uses the VirtQueue in-
terface to push and consume data w.r.t.
its communicating counterpart.

TOOLS FOR DEVELOPMENT
OF AMP SYSTEMS
Development of AMP application soft-
ware presents a unique set of challeng-
es. System developers typically find
themselves having to simultaneously
debug different OS environments de-
ployed on dissimilar processors on het-
erogeneous SoCs. Having a unified de-
bugging environment with awareness of
the operating systems involved will not
only enhance the debug experience, but
improve productivity. Mentor Embed-
ded Sourcery CodeBench tools provide
a unified IDE with OS awareness for all
supported OS environments (including

Figure 4 – rpmsg channel and endpoint abstractions

1

1

2
1

2

Application logic producing data

Remote 1

rpmsg channel

endpoint

Master

Remote 2

Endpoint

Data producer

T O O L S O F X C E L L E N C E

 Fourth Quarter 2015 Xcell Journal 65

Mentor Embedded Linux and Nucle-
us RTOS). Sourcery CodeBench also
supports a multitude of debug options,
which include JTAG-based debug for

debugging Linux kernel space, Nucle-
us RTOS and bare-metal contexts; and
GDB-based debug for Linux user space
and Nucleus RTOS-based applications.

While developing AMP systems, soft-
ware profiling is a valuable tool to gain
insight into how various applications
deployed on heterogeneous OSes in-
teract with each other during runtime.
Each OS instance typically uses an in-
dependent clock reference, and any
profiling data collected within a given
OS context will be based on a time base
that is local to the OS. Mentor Embed-
ded Sourcery Analyzer host-based tools
and Mentor’s operating systems contain
built-in algorithms that enable users to
graphically visualize and analyze trace
data collected from disparate OS sourc-
es in a unified time reference. This ca-
pability allows users to gain interesting
insights into complex interactions and
hard-to-find timing issues typically en-
countered in developing AMP software.

AN OPEN-SOURCE
RUNTIME COMPONENT
The Mentor Embedded Multicore Frame-
work is tightly integrated with Mentor’s de-
velopment tools and operating systems. It
supports a diverse set of ARM-based SoCs
and platforms. Using the framework with
Mentor tools and operating systems frees
users from having to design their AMP
system from scratch—that is, perform the
tasks discussed under the system-level
considerations section above. Users can
get started with AMP application devel-
opment with one of the reference config-
urations and later customize the system
configuration to fit their needs.

For AMP system design, there is a
clear need for a standards-based soft-
ware framework that enables develop-
ment of RTOS or bare-metal software
that can interoperate with interfaces
adopted by the open-source Linux
community. To address this need and
to promote industry adoption, Mentor
Graphics and Xilinx have jointly open-
sourced the Mentor Embedded Multi-
core Framework’s runtime component
under the OpenAMP open-source proj-
ect, with platform support for the the
Zynq-7000 All Programmable SoC. This
project is currently jointly maintained
by Mentor Graphics and Xilinx.

/* rpmsg channel created callback - invoked on channel creation */
void rpmsg_channel_created(struct rpmsg_channel *rp_chnl) {
 ..
 /* Use RTOS provided primitives (ex., semaphores) to
 release the application context blocked on rpmsg
 channel creation */
}

/* rpmsg channel deletion callback - invoked on channel deletion */
void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl) {
 ..
 /* Use RTOS provided primitives (ex., semaphores) to
 release the application context blocked on rpmsg
 channel deletion */
}

/* rpmsg receive callback - invoked when data received on
default endpoint */
void rpmsg_rx_cb(struct rpmsg_channel *rp_chnl, void *data,
 int len, void * priv, unsigned long src) {
 ..
 /* Copy received data to application buffer and use
 RTOS provided primitives (ex., semaphores) to release
 the application IPC data processing context */
}

/* Initialize remote context */
int Initialize_Remote_Context(..) {
 ...
 /* Initialize remote context */
 remoteproc_init(remote_fw_info,
 rpmsg_channel_created, rpmsg_channel_deleted,
 rpmsg_rx_cb, &proc);

 /* Boot remote context */
 remoteproc_boot(proc);
 ...
}

/* Send data to remote context after rpmsg channel creation */
int Send_Data_To_Remote(..) {
 ..
 rpmsg_send(app_rp_chnl, user_buff, sizeof(user_buff));
 ..
}

/* Finalize remote context after rpmsg channel deletion */
int Finalize_Remote_Context(..) {
 ..
 /* Shut down and finalize the remote processor */
 remoteproc_shutdown(proc);
 remoteproc_deinit(proc);
 ..
}

Figure 5 – Pseudo code that illustrates the usage of key remoteproc
and rpmsg APIs from the master context

 66 Xcell Journal Fourth Quarter 2015

What’s New in the
Vivado 2015.3 Release?
Xilinx is continually improving its products, IP and design tools as it strives to help designers work more effectively.
Here, we report on the most current updates to Xilinx design tools including the Vivado® Design Suite, a revolution-
ary system- and IP-centric design environment built from the ground up to accelerate the design of Xilinx®
All Programmable devices. For more information about the Vivado Design Suite, please visit www.xilinx.com/vivado.

Product updates offer significant enhancements and new features to the Xilinx design tools. Keeping your installation
up to date is an easy way to ensure the best results for your design.

The Vivado Design Suite 2015.3 is available from the Xilinx Download Center at www.xilinx.com/download.

XTRA, XTRA

VIVADO DESIGN SUITE:
DESIGN EDITION UPDATES

Partial Reconfiguration and
Tandem Configuration
The new release of the Vivado Design
Suite features expanded support for
UltraScale devices, including place-and-
route support for the KU085, KU095,

VIVADO DESIGN SUITE 2015.3
RELEASE HIGHLIGHTS
The Vivado Design Suite 2015.3 release introduces new market-tai-
lored plug-and-play IP subsystems. These new subsystems, in
combination with enhancements to Vivado IP Integrator (IPI) and
high-level synthesis (HLS) for C/C++ and SystemC-based design,
significantly decrease design creation and integration efforts by ab-
stracting time-consuming RTL development.

Also, the Vivado 2015.3 implementation has new features including
pipeline reporting, automated pipeline insertion and retiming, and
enhanced cross-probing, as well as core engine enhancements.

VU065 and VU080, bringing the total
number of UltraScale devices supported
to 12.

Partial-bit-file generation is now en-
abled for the KU060, KU095, KU115 and
VU095 production silicon, bringing the
total number of devices enabled for bit-
streams up to six.

Also new is this release is the Partial
Reconfiguration Decoupler IP. This new
core makes it easy for designers to iso-
late reconfigurable partitions from the
static design during reconfiguration.

See the Xilinx IP page for more details:
http://www.xilinx.com/products/intel-
lectual-property/pr-decoupler.html.

Vivado IP Integrator
To speed design integration, the new
release offers easy access to IP exam-
ple designs from IP Integrator (IPI),
along with enhanced configurable ex-
ample designs. Among these example
designs is an option to configure the
MicroBlaze™ processor.

Vivado Simulator
The latest simulator version offers up
to a 3x improvement in elaboration
runtime performance.

Vivado Debug and Reporting
Xilinx has added a host of new reports to
speed timing closure and debug. The re-
port_design_analysis command reports
a list of paths that are critical at both the
current design stage and the prior stage.
This provides a way to check on which
critical paths the tools will focus on at
each stage. Another new command, re-
port_pipeline_analysis, evaluates poten-
tial design performance improvements
by hypothetically adding latency (pipe-
line stages) to the design and reporting
the new, resulting Fmax.

Device Support
New Devices
The following UltraScale™ devices
are introduced in this release:

• Kintex® UltraScale devices:
XCKU095, XCKU025,
XCKU085

New General Access
Supported Devices
The following devices are production
ready (in -1 and -2 speed grades)

• Kintex UltraScale devices:
XCKU095, XCKU025, XCKU085

• Virtex® UltraScale devices:
XCVU095, XCVU080

http://www.xilinx.com/vivado
http://www.xilinx.com/download
http://www.xilinx.com/products/intellectual-property/pr-decoupler.html
http://www.xilinx.com/products/intellectual-property/pr-decoupler.html

 Fourth Quarter 2015 Xcell Journal 67

VIVADO DESIGN SUITE:
SYSTEM EDITION UPDATES

Vivado High-Level Synthesis
To accelerate development of C-based
IP, Vivado HLS can now launch the
Vivado waveform viewer after running
a C/RTL co-simulation to visualize the
simulation waveforms. Just click on
the Open Wave Viewer toolbar button.
Also new is support for half-precision
floating-point through the hls_half.h
header file. The half-precision feature
allows for smaller and faster designs
while in many cases retaining suffi-
cient numerical precision.

See the Vivado Design Suite User
Guide: High-Level Synthesis (UG902)
for more information.

System Generator for DSP
New for System Generator is support for
MATLAB® 2015B, including tighter in-
tegration that allows the HDL Coder to
automate the generation of a combined
model containing high-level RTL and tar-
get-optimized IP.

For better usability, Xilinx has enhanced
the System Generator’s blockset for dig-
ital upconverters and digital downcon-
verters (DUC/DDC), greatly simplifying
this blockset for wireless algorithm de-
velopment. Enhancements to improve
verification and compile runtime have
been added to the new blocks, all of
which are configured with seven or
fewer parameters. The digital FIR filter
block tightly integrates with the Filter
Design and Analysis Tool from Math-
Works to build area-efficient filters, in-
cluding fixed-fractional interpolation
or decimation types. The sine-wave and
complex-product blocks greatly simplify
modulator design for frequency conver-
sion at high sample rates. The requan-
tize block enables quick manipulation of
data types to maximize dynamic range at
any point in the data path.

System Generator for DSP also features
new interactive cross-probing that ac-
celerates design exploration and pro-
vides iterative design closure. With the
cross-probing of timing analysis, algo-
rithm developers can quickly identify
their critical paths and single out bot-
tlenecks that may affect throughput and

latency of their algorithms to make swift
adjustments. Also new to this release
are improvements in System Generator’s
hardware-based co-simulation, improv-
ing verification runtime by 45x.

XILINX INTELLECTUAL
PROPERTY (IP) UPDATES

Xilinx’s new LogiCORE™ IP subsystems
are highly configurable, market-tailored
building blocks that integrate up to 80 in-
dividual IP cores, software drivers, design
examples and testbenches. Available with
the Vivado Design Suite 2015.3 release are
new IP subsystems for Ethernet, PCIe®,
video processing, image sensor process-
ing and OTN development. These IP sub-
systems are based on industry standards
such as the AMBA® AXI-4 interconnect
protocol, IEEE P1735 encryption and IP-
XACT to enable interoperability with Xil-
inx and Alliance member IP and to accel-
erate integration.

The highly configurable Video Processing
Subsystem supports a 4K2K video pipe.
Comprehensive video support includes
VDMA, deinterlacer, chroma resampler
and scaler. The subsystem can also easily
source and sync DisplayPort, HDMI and
MIPI interfaces by leveraging the auto-
matically generated AXI interfaces and
Vivado IPI. The new video IP subsystem
replaces Xillinx’s VIPP cores.

LEARN MORE
See the Vivado Design Suite 2015.3 Re-
lease Notes for more information.

QuickTake Video Tutorials
Vivado Design Suite QuickTake tutorials
are how-to videos that take a look inside
the features of the Vivado Design Suite
and UltraFast™ Design Methodology.

See all QuickTake Videos here: www.xil-
inx.com/training/vivado.

Training
For instructor-led training on the Viva-
do Design Suite, UltraFast Design
Methodology and more, visit www.xil-
inx.com/training.

Download Vivado Design Suite 2015.3
today at http://www.xilinx.com/down-
load.

This
year’s
best

release.

The definitive resource for
software developers speeding

C/C++ & OpenCL code with
Xilinx SDx IDEs & devices

The Award-winning Xilinx Publication Group
is publishing a brand new trade journal

specifically for the programmable FPGA
software industry, focusing on users of

Xilinx SDx™ development environments and
high-level entry methods for programming

Xilinx All Programmable devices.

This is where you come in.
Xcell Software Journal is now accepting

reservations for advertising opportunities
in this new, beautifully designed and written
resource. Don’t miss this great opportunity

to get your product or service into the minds
of those who matter most. Call or write
today for your free advertising packet!

For advertising inquiries (including
calendar and advertising rate card),

contact xcelladsales@aol.com
or call: 408-842-2627.

SOLUTIONS FOR A
PROGAMMABLE WORLD

Xcell Publications

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_3/ug973-vivado-release-notes-install-license.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_3/ug973-vivado-release-notes-install-license.pdf
http://www.xilinx.com/training/vivado
http://www.xilinx.com/training/vivado
http://www.xilinx.com/training
http://www.xilinx.com/training
http://www.xilinx.com/download
http://www.xilinx.com/download
http://www.xilinx.com/xcell

Xpress Yourself
in Our Caption Contest

Every designer knows that debugging is one of the trickiest steps in
the flow, but at this lab, things have gotten out of hand. Xercise your
funny bone as you help our beleaguered cartoon engineer swat some

of the most recalcitrant bugs we’ve ever seen. We invite readers to submit an
engineering- or technology-related caption for this cartoon showing a worst-
case debugging situation. The image might inspire a caption like “Henry
longed for an automated way to debug his latest design, because doing it by
hand just wasn’t working.”

Send your entries to xcell@xilinx.com. Include your name, job title,
company affiliation and location, and indicate that you have read the con-
test rules at www.xilinx.com/xcellcontest. After due deliberation, we will
print the submissions we like the best in the next issue of Xcell Journal.
The winner will receive a Digilent Zynq Zybo board, featuring the Xilinx®

Zynq®-7000 All Programmable SoC (http://www.xilinx.com/products/
boards-and-kits/1-4AZFTE.htm). Two runners-up will gain notoriety, fame
and have their captions, names and affiliations featured in the next issue.

The contest begins at 12:01 a.m. Pacific Time on Oct. 15, 2015. All entries
must be received by the sponsor by 5 p.m. PT on Jan. 6, 2016.

NO PURCHASE NECESSARY. You must be 18 or older and a resident of the fifty United States, the District of Columbia, or Canada (excluding Quebec) to enter. Entries must be entirely original. Contest begins on
Oct. 15, 2015. Entries must be received by 5:00 pm Pacific Time (PT) Jan. 6, 2016. Official rules are available online at www.xilinx.com/xcellcontest. Sponsored by Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124.

TRAVIS ROTHLISBERGER,
director of device development at

Cerevast Medical (Redmond, Wash.),
won a shiny new Digilent Zynq Zybo

board with this caption for the
dartboard cartoon in Issue 92

of Xcell Journal:

 “To Ed’s delight, nobody questioned
him when he said that his

Monte Carlo analysis would take
several months to complete.”

Congratulations as well to
our two runners-up:

 “Keep debugging, I’m finalizing the
feature set and pricing right now!”

 — Lee Courtney, CTO/VP-Product,

Qurasense (Menlo Park, Calif.)

“I figure this is a better way to meet
targets than what goes on upstairs!”

– Larry Standage, principal
applications engineer,

Microchip Technology Inc.
(Chandler, Ariz.)

XCLAMATIONS!
D

A
N

IE
L

G
U

ID
ER

A

 68 Xcell Journal Fourth Quarter 2015

mailto:xcell@xilinx.com
http://www.xilinx.com/xcellcontest
http://www.xilinx.com/products/boards-and-kits/1-4AZFTE.htm
http://www.xilinx.com/products/boards-and-kits/1-4AZFTE.htm

FPGA-Based Prototyping for Any Design Size?
Any Design Stage? Among Multiple Locations?

That’s Genius!
Realize the Genius of
Your Design with S2C’s
Prodigy Prototyping Platform

Download our white paper at:
http://www.s2cinc.com/resource-library/white-papers

Get Published

www.xilinx.com/xcell/

Interested in adding “published author” to your resume and achieving a greater level of credibility and recognition in your
peer community? Consider submitting an article for global publication in the highly respected, award-winning Xcell Journal.
For more information on this exciting and highly rewarding opportunity, please contact:
Mike Santarini, Publisher
Xcell Publications, xcell@xilinx.com

http://www.s2cinc.com/resource-library/white-papers
http://www.xilinx.com/xcell

n $55 Zynq-based Wireless Snickerdoodle single-board computer with WiFi, Bluetooth launched today on CrowdSupply

n Tiny 100x62mm, Zynq-based Avnet PicoZed SDR implements 2x2 MIMO, 70MHz to 6GHz radio using ADI RF Agile Transceiver

n ARTY—the $99 Artix-7 FPGA Dev Board/Eval Kit with Arduino I/O and $3K worth of Vivado software. Wait, What????

n Lift-off! 16nm Zynq UltraScale+ MPSoC ships to customers. From tapeout to “Hello World” in 2.5 months.

n Zynq-based, $179 Skreens Nexus on Kickstarter allows you to safely cross the (HDMI video) streams

https://forums.xilinx.com/t5/Xcell-Daily-Blog/55-Zynq-based-Wireless-Snickerdoodle-single-board-computer-with/ba-p/658683
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Tiny-100x62mm-Zynq-based-Avnet-PicoZed-SDR-implements-2x2-MIMO/ba-p/658015
https://forums.xilinx.com/t5/Xcell-Daily-Blog/ARTY-the-99-Artix-7-FPGA-Dev-Board-Eval-Kit-with-Arduino-I-O-and/ba-p/657818
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Lift-off-16nm-Zynq-UltraScale-MPSoC-ships-to-customers-From/ba-p/657811
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Zynq-based-179-Skreens-Nexus-on-Kickstarter-allows-you-to-safely/ba-p/656159
http://www.forums.xilinx.com/t5/Xcell-Daily/bg-p/Xcell

	p02_avnetad
	p03_synopsys_haps
	p04_93_Col_LP
	p05_93_synopsysad-fpga
	p06-07_93-TOC
	p08_13_93_CoverStory
	p22-25_93_XinTest&Meas
	p26-29_93_FPGA101-USB
	p36-43_93_FPGA101-dornerworks
	p44-51_93_FPGA101-AURORA
	p52-57_93_FPGA101-Taylor
	p58-65_93_ToX-Mentor
	p66-67_93_XtraXtra
	p68_93-xclamations
	p69_Xcell advertising01

