
ISSUE 55, FOURTH QUARTER 2005
XCELL JOURNAL

XILINX, INC.

R

Issue 55
Fourth Quarter 2005

T H E A U T H O R I T A T I V E J O U R N A L F O R P R O G R A M M A B L E L O G I C U S E R S

Xcell journalXcell journal
T H E A U T H O R I T A T I V E J O U R N A L F O R P R O G R A M M A B L E L O G I C U S E R S

New ISE 8.1i Software –
Faster Timing Closure

New ISE 8.1i Software –
Faster Timing Closure

DESIGN
PERFORMANCE
Physical Synthesis and
Optimization with
ISE Software

VERIFICATION
Early Defect Discovery
with Assertion-Based
Verification Accelerates
Design Closure

PRODUCTIVITY
Using the ISE Foundation
Architecture Wizards

PARTIAL
RECONFIGURATION
PlanAhead Software as
a Platform for Partial
Reconfiguration

DESIGN
PERFORMANCE
Physical Synthesis and
Optimization with
ISE Software

VERIFICATION
Early Defect Discovery
with Assertion-Based
Verification Accelerates
Design Closure

PRODUCTIVITY
Using the ISE Foundation
Architecture Wizards

PARTIAL
RECONFIGURATION
PlanAhead Software as
a Platform for Partial
Reconfiguration

The Programmable Logic CompanySM

FFoorr mmoorree iinnffoorrmmaattiioonn vviissiitt
wwwwww..xxiilliinnxx..ccoomm//ssppaarrttaann33ee

Pb-free devices
available now

©2005 Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. Europe +44-870-7350-600; Japan +81-3-5321-7711; Asia Pacific +852-2-424-5200; Xilinx is a registered trademark, and The Programmable Logic Company is a service mark of Xilinx, Inc.

IInnttrroodduucciinngg tthhee nneeww SSppaarrttaann--33EE ffaammiillyy —— tthhee wwoorrlldd’’ss lloowweesstt--ccoosstt FFPPGGAAss

PPrriicceedd ttoo ggoo..

TThhee iinndduussttrryy’’ss ffiirrsstt 110000,,000000--ggaattee FFPPGGAA ffoorr oonnllyy $$22..0000**
Spartan-3E Platform FPGAs offer an amazing feature set for just $2.00! You get 100K gates, embedded

multipliers for high-performance/low-cost DSP, plenty of RAM, digital clock managers,

and all the I/O support you need. All this in a production-proven 90nm FPGA with a

density range up to 1.6 million gates.

PPeerrffeecctt ffoorr ddiiggiittaall ccoonnssuummeerr aappppss aanndd mmuucchh mmoorree!!
With the Spartan-3E series, we’ve reduced the previous unit cost benchmark by over

30%. Optimized for gate-centric designs, and offering the lowest cost per logic cell in

the industry, Spartan-3E FPGAs make it easy to replace your ASIC with a more flexible, faster-to-market

solution. Compare the value for yourself . . . and get going on your latest design!

MMAAKKEE IITT YYOOUURR AASSIICC

* Pricing for 500K units, second half of 2006

TThere has never been a better time to be a design engineer. With today’s products from Xilinx, you
can accomplish more, in less time, with less risk, than ever before. With our Virtex™-4 FPGA
family, you have the ideal silicon platform to tackle today’s most complex system-design challenges,
and with our ISE™ software you can unleash that power. The Xilinx ISE tools continue to be the
design community’s number-one choice; we hear this loud and clear from our customers.

We thank you for your support and we constantly strive to bring you more software innovations
that maximize the benefits of our silicon solutions. For example, the 2005 EDA Survey conducted
by EE Times indicates that the top three issues and challenges that you face are meeting timing
budgets, getting your design to work on the PCB, and completing functional verification. The
Xilinx software team has been hard at work solving these challenges for you, to help reduce your
design time.

With the release of the ISE 8.1i software, we are introducing the new ISE Fmax technology, which
as the name implies is designed to improve design performance and reduce design bottlenecks.
With the addition of advanced options such as the PlanAhead™ hierarchical floorplanner, the
ChipScope™ Pro analyzer, and wide industry support from leading EDA vendors, it is easy to see
why our ISE software is the top choice.

We want to help you be more productive. With this in mind, this issue of the Xcell Journal includes
a collection of articles highlighting tools and strategies to reduce the time you spend meeting your
timing budgets, as well as articles on productivity enhancement tools and techniques in the areas
of verification and board-level interfaces. We have also included case studies on how some of our
customers are successfully using Xilinx software in their designs, as well as a poster on timing
closure technologies, which we hope will be a handy reference to help you maximize performance
in the shortest possible time.

Thank you for reading Xcell !

L E T T E R F R O M T H E E D I T O R

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2005 Xilinx, Inc. All rights reserved. XILINX,
the Xilinx Logo, and other designated brands included
herein are trademarks of Xilinx, Inc. PowerPC is a
trademark of IBM, Inc. All other trademarks are the
property of their respective owners.

The articles, information, and other materials included
in this issue are provided solely for the convenience of
our readers. Xilinx makes no warranties, express,
implied, statutory, or otherwise, and accepts no liability
with respect to any such articles, information, or other
materials or their use, and any use thereof is solely at
the risk of the user. Any person or entity using such
information in any way releases and waives any claim it
might have against Xilinx for any loss, damage, or
expense caused thereby.

A Roadmap
to Productivity

Forrest Couch
Executive Editor

EDITOR IN CHIEF Carlis Collins
carlis.collins@xilinx.com
408-879-4519

EXECUTIVE EDITOR Forrest Couch
forrest.couch@xilinx.com
408-879-5270

MANAGING EDITOR Charmaine Cooper Hussain

ONLINE EDITOR Tom Pyles
tom.pyles@xilinx.com
720-652-3883

ART DIRECTOR Scott Blair

ADVERTISING SALES Dan Teie
1-800-493-5551

O N T H E C O V E R

1414 4848

D E S I G N P E R F O R M A N C E V E R I F I C A T I O N

6868
P A R T I A L R E C O N F I G U R A T I O N

Physical Synthesis and Optimization
Meet your performance targets with these tips and strategies.

6060

P R O D U C T I V I T Y

Using the ISE Foundation Architecture Wizards
Streamline the process of configuring and
instantiating the complex blocks found
in Xilinx devices.

Early Defect Discovery with Assertion-Based Verification
The convergence of design, synthesis, and verification.

PlanAhead Software as a Platform for Partial Reconfiguration
PlanAhead software delivers a streamlined environment to reduce
space, weight, power, and cost.

Timing closure is perhaps the single most important design
issue facing designers today. This article explores the
methodology to achieve timing closure for Xilinx designs.

Viewpoint

66

F O U R T H Q U A R T E R 2 0 0 5 , I S S U E 5 5 Xcell journalXcell journal
VIEWPOINT
Improving Time to Design Closure with ISE Software .6

DESIGN PERFORNAMCE
Design Tools for Performance .10

Achieve Faster Timing Closure with Graph-Based Physical Synthesis .12

Physical Synthesis and Optimization with ISE Software .14

Improve Design Performance Using PlanAhead Design Tools .18

Synthesis Tool Strategies .22

Accelerate Design Performance Using Xplorer .25

Achieve Your Performance Goals with PlanAhead Software .28

HDL Coding Practices to Accelerate Design Performance .31

Writing RTL Code for Virtex-4 DSP48 Blocks with XST 8.1i .36

VERIFICATION
Un-Tethered Debugging .40

Shorter Verification Cycles at Lucent Technologies .43

Verifying Your Logic Design for First-Time Success .44

Early Defect Discovery with Assertion-Based Verification Accelerates Design Closure 48

PRODUCTIVITY
Simplifying FPGA Pin Assignment Closure .53

Power Considerations in 90 nm FPGA Designs .56

Using the ISE Foundation Architecture Wizards .60

PARTIAL RECONFIGURATION
Benefits of Partial Reconfiguration .65

PlanAhead Software as a Platform for Partial Reconfiguration .68

GENERAL
Supporting Players .72

Real-Time Analysis of DSP Designs .75

Configuration Choices – Platform Flash or Commodity Flash .79

Accelerating PowerPC Software Applications .82

Nucleus Integration with Xilinx FPGA System Design .88

Programming FPGAs for High-Performance Computing Acceleration .92

Flexibility with EasyPath FPGAs .96

Xilinx Embedded Ethernet MACs Negotiate the Data .99

Program SPI Serial Flash from Xilinx FPGAs and CPLDs .103

Add Valuable Software Modules with XPS .106

REFERENCE .110

by Steve Lass
Director, Software Product Marketing
Xilinx, Inc.
steve.lass@xilinx.com

Timing closure is perhaps the single most
important design issue facing designers

today. With FPGAs and other deep
submicron ICs, routing delays usu-
ally dominate logic delays.

Although there are hundreds of ways
to improve timing, such as using the

embedded PowerPC™ processor or
another high-speed core, the focus here is

on improving performance on the logic and
routing portion of the design. In this article,
I will explore the methodology to achieve
timing closure for Xilinx® designs.

Timing Closure Design Flow
Figure 1 shows a typical flow that starts
with well-written HDL optimized for
FPGA architectures. Xilinx ISE™ software
provides Verilog and VHDL templates to
begin crafting good HDL code. FPGAs
have an abundance of registers, so adding
pipeline stages can greatly improve timing
and have very little impact on area. Some
of the frequently used best practices
include keeping critical paths in the same
entity or module, utilizing clock enables
instead of gated clocks, and avoiding the
use of latches, nested for-loops, and if-
then-else statements in the HDL code.

Improving Time to Design
Closure with ISE Software
Improving Time to Design
Closure with ISE Software

6 Xcell Journal Fourth Quarter 2005

Meet your design targets with these tips and strategies.Meet your design targets with these tips and strategies.

V I E W P O I N T

Xilinx also recommends using synchro-
nous resets for modules such as DSP48,
FIFO16, and block RAMs, and using
adder chains instead of adder trees to help
achieve 500 MHz DSP48 performance
(illustrated in Figure 1). A comprehensive
discussion on coding styles can be found in
the article, “HDL Coding Practices to
Accelerate Design Performance.”

Synthesis
The flow continues with synthesis, which
provides an early indication of whether or
not your HDL has a chance of meeting tim-
ing and area requirements. Make sure you
constrain timing in the synthesis tools to
avoid minimizing area at the expense of tim-
ing – something that will likely occur if the
tools are given no other direction. At a min-
imum, constrain your clocks and I/O paths.

You can also allow the synthesis tools
to try harder by indicating an optimiza-
tion effort. Another frequently used
option to meet timing requirements is
register balancing, which moves registers
forwards or backwards through logic to
increase clock frequency. If the synthesis
tools indicate that timing cannot be met,
or if timing is very tight, you may be able
to further optimize your HDL code by
using one or more of the coding tech-
niques previously discussed.

Implementation
Having obtained an acceptable
timing estimate from the syn-
thesis tool, use the implementa-
tion tools (map, place, route,
timing analysis) to determine
the true timing of the design.
Xilinx ISE tools, powered by
Fmax Technology, proactively
attempt to achieve the best per-
formance possible, but do
require that constraints are com-
plete. A recommended set of
timing constraints (as shown in
Figure 2) should include clock
period, I/O offset, multi-cycle
path specification, and timing
ignore (TIG) to ignore false
paths. If you are missing timing
by more than 20%, you may

to turn on retiming and global optimiza-
tion in ISE Mapper.

Xplorer Utility
Xilinx recently introduced a new utility
called Xplorer that delivers optimal
design results by employing smart con-
straining techniques and a variety of
physical optimization strategies. You can

need to do further optimization of your
HDL, especially within the module con-
taining the worst-case path.

If you still haven’t met your timing
requirements in the implementation
phase, there are many tool options that
can provide dramatic improvements. A
good starting place is the use of retiming
in your synthesis tool. Another option is

Fourth Quarter 2005 Xcell Journal 7

Coding Styles
Utilize VHDL and Verilog language templates
in Project Navigator

Pipeline! Add banks of Registers in RTL

Keep critical paths in the same entry/module

Utilize Clock Enable in lieu of Gated Clocks

Don't use reset to infer performance/area
optimized shift registers (SRL)

Avoid nested “if-then-else,”
“for loops,” and latches

Use Synchronous Resets for DSP48,
FIFO16, and block RAM

Achieve 500 MHz DSP48 performance

500 MHz Adder Chain-Based Filter

Adder Tree-Based Filter

IN

OUT

IN

Pe
rfo

rm
an

ce
B

ot
tle

OUT

Figure 1 – Coding styles

Multi-Cycle PathFalse Path

I/O Path I/O Path
Internal Clock Domains

Upstream

Device

Downstream

Device

QD

QD

FPGA

Q D

CE

SR

QD

CE

SR

 RESET

 CLOCK

Detailed Constraining

Strategies

Implementation Constraints

QDD Q

Internal Clock Domains
NET clock TNM_NET = clock;

TIMESPEC TS_CLOCK = PERIOD clock 5 ns;

Input and Output (I/O) Paths
OFFSET = IN 10 ns BEFORE clock;

OFFSET = OUT 10 ns AFTER clock;

Multi-Cycle Paths
TIMESPEC TS_MC = FROM MC_FFS TO MC_FFS TS_CLOCK * 2;

False Paths
TIMESPEC TS_TIG = FROM PADS THRU RESET TO FFS TIG;

Figure 2 – Implementation constraints

V I E W P O I N T

use the Xplorer utility to automatically
try these (implementation tool) options
and even try different clock frequencies to
find the maximum achievable speed of
the design. Once Xplorer has found the
best tool options, you should use those
options the next time you run the imple-
mentation tools, avoiding the long run-
times of Xplorer. You can learn more on
how to achieve the best performance with
Xplorer in the article, “Accelerate Design
Performance Using Xplorer.”

PlanAhead Design Tools
If you’ve tried everything and still can’t
reach that timing closure pinnacle, there is
still hope. The Xilinx PlanAhead™ tool
can be used to analyze, and if necessary,
floorplan the design to achieve higher per-
formance (15% average, but can be as high
as 2X). PlanAhead design tools provide
better insight into the place and route
process. You can quickly examine “what if ”
scenarios, enabling you to identify and fix
potential problems early. You can also
group critical paths and modules to
increase routability through connectivity
analysis and utilization control.

See the article, “Improve Design
Performance Using PlanAhead Design
Tools” to learn more about the capabilities
of this incredible tool. There are many
other advanced techniques like detailed
floorplanning and creating RPMs (rela-
tionally placed macros), but we recom-
mend you try the ideas in this article first.

Conclusion
Xilinx provides a comprehensive suite of
software tools, powered by ISE Fmax
Technology, that you can use to improve
design performance. ISE software, together
with the tips and strategies in this article,
can help you quickly achieve timing closure.

Additionally, we work with leading
third-party synthesis vendors to optimize
designs and improve design performance
for Xilinx devices in their leading synthesis
software. An entire section of the Xcell
Journal has been devoted to achieving
design performance using Xilinx software
tools. Please read the related articles in this
issue to learn more.

8 Xcell Journal Fourth Quarter 2005

Get the latest Virtex news
delivered to your desktop
Get the latest Virtex news
delivered to your desktop

Subscribe Now!
www.xilinx.com/virtex4

Subscribe Now!
www.xilinx.com/virtex4

R

Reach over 70,000
programmable logic

professionals worldwide.
Advertise in the...

Xcell journalXcell journal
for more information
Call: (800) 493-5551
xcelladsales@aol.com

for more information
Call: (800) 493-5551
xcelladsales@aol.com

Reach over 70,000
programmable logic

professionals worldwide.
Advertise in the...

V I E W P O I N T

TPS75003
IS1

SW1
FB1
IS2

FB2
SW2

OUT3
FB3

AGND
DGND

IN1
IN2
IN3
EN1

EN2
SS1

SS2
EN3
SS3
DGND

DGND

5 V_INPUT

VCCAUX

100�F

1.5nF 1.5nF 10nF

0.033 0.033

5�H

15�H VCCINT
1.2 V at
2A

VCCO

3.3V at
2A

VCCAUX

2.5V at
300mA

100�F

100�F

10�F

61.9k

15.4k

61.9k

36.5k

Q2

Q1

D1

D2

3A
BUCK1

3A
BUCK2

300mA
LDO

The TPS75003 power management IC for Xilinx’s SpartanTM and VirtexTM series of FPGAs
integrates multiple functions to significantly reduce the number of external components
required and simplify design. Combining increased design flexibility with cost-effective
voltage conversion, the IC includes programmable soft-start for in-rush current control
and independent enables for sequencing the three channels. The TPS75003 meets all
Xilinx startup profile requirements, including monotonic ramp and minimum ramp times.

TI Powers Xilinx FPGAs

Technology for Innovators and the red/black banner are trademarks of Texas Instruments. Spartan is a trademark of Xilinx. All others are property of their respective owner. 1111A0© 2005 TI

Applications

– DSL modems

– Set-top boxes

– Plasma TV display panels

– DVD players

Features

– Two 95%-efficient, 3-A buck

controllers and one

300-mA LDO

– Adjustable output voltages

– from 1.2 V for bucks

– from 1.0 V for LDO

– Input voltage range of

2.2 V to 6.5 V

– Independent soft-start for

all three power supplies

– LDO stable with small

ceramic output capacitor

– Independent enable for

each supply for flexible

sequencing

– 4.5 mm x 3.5 mm x 0.9 mm

20-pin, QFN package

– $1.90: 1 K price

POWER MANAGEMENT

www.ti.com/xilinxfpga-u 800.477.8924, ext. fpga

NEW!
Power Management

Selection Guide

power.ti.com

For more information on TI’s complete line
of power management solutions for Xilinx

FPGAs—including a library of reference
designs, schematics and BOMs—visit

www.ti.com/xilinxfpga-u.

by Frédéric Rivoallon
Synthesis Methodology Manager
Xilinx, Inc.
frederic.rivoallon@xilinx.com

The increase in FPGA densities is giving
rise to more than just substantially larger
logic arrays. Today’s FPGA designs incor-
porate an increasing amount of tightly
integrated hard IP blocks – a trend that cre-
ates new challenges for design software.
One of the most critical challenges is the
difficulty of traditional logic synthesis tools
to correctly predict the critical path of the
design as geometries shrink and wire delays
become predominant.

The latest advances in logic synthesis
now make it possible to use the integrated
DSP blocks of Xilinx® Virtex™-4 FPGAs
at their full potential. Physical synthesis
has emerged as the key new technology to
reconcile the RTL optimization effort
with performance bottlenecks seen at the
placement stage.

In this article, I’ll consider these and
other new software challenges posed by
state-of-the-art FPGAs, and how Xilinx
and its software partners Synplicity and
Mentor Graphics are responding.

Design Tools for PerformanceDesign Tools for Performance

10 Xcell Journal Fourth Quarter 2005

New tools and features can help you achieve timing closure.New tools and features can help you achieve timing closure.

D E S I G N P E R F O R M A N C E

A Two-Fold Challenge
Most large designs are compiled from the top
down. Given their size and complexity, it is
not uncommon for such designs to engender
several potentially critical paths. As a result,
when operating predominantly from inaccu-
rate estimations based on empirical wire-load
models, a synthesis tool might optimize
paths that are in fact not critical and not con-
sider others that truly could be critical.

A second challenge for synthesis tools is
inferring larger hard IP elements (memory
or DSP blocks) found in Virtex-4 FPGAs.
When you need to keep the RTL code for
a given project portable (as is often the
case), the burden is on the synthesis tool to
generate excellent results based on that
portable code. It must be able to accurately
map the logic onto the hard IP blocks.

New Software Tools and Optimizations
Physical synthesis offers a solution to recon-
cile front-end optimizations with the actual
results derived from performing place and
route. Physical synthesis tightly couples
synthesis and place and route by making syn-
thesis aware of actual timing bottlenecks
early in the design. It ensures that synthesis
optimizations are effectively applied to the
appropriate places and interacts with place-
ment to deliver superior results. This tech-
nology does not require manual intervention
and can be used in “push-button” flows.

Physical synthesis algorithms are now
available in Xilinx ISE™ 8.1i software.
Precision Physical from Mentor Graphics
and Synplify Premier from Synplicity also
provide physical synthesis capabilities. The
latter uses an innovative approach called
“graph-based synthesis” in which placement
takes into account the available routing
resources. Synplify Premier offers this tech-
nology to Xilinx FPGAs only.

Synthesis also addresses the use of more
sophisticated hard IP blocks by providing
inference algorithms that understand the
detailed structure of the FPGA. This recent
enhancement enables the tools to effort-
lessly produce pure RTL descriptions,
yielding 500 MHz predictable perform-
ance without the need for instantiation.

To provide the best push-button results,
Xilinx also provides a multi-compile script

This requires more than a simple
improvement to the “push-button”
synthesis solution.

Xilinx offers a tool called PlanAhead™
software that provides just this type of
resource management. PlanAhead software
has an intuitive graphical interface that lets
you browse the logic hierarchy of a design
to create an optimal connection to the
physical layout of the targeted device.

Additionally, PlanAhead design tools
can help generate IP blocks and make it
simple for you to export them to other
designs. PlanAhead software also makes it
easy to use advanced block-based flows such
as incremental design, modular design, or
even flows involving reconfigurability.

Conclusion
The evolution of larger, more complex
FPGA designs with increasing amounts of
hard IP poses a substantial challenge to tool
suppliers. Advances in areas such as physi-
cal synthesis and new inference algorithms
make the full performance potential of
next-generation FPGAs accessible at virtu-
ally the push of a button, while PlanAhead
software places the full suite of FPGA
resources at your fingertips – even for the
most complex, block-based design flows.
The Xplorer script provides the most effi-
cient path to discover the maximum per-
formance or timing closure.

Other articles in this edition of the Xcell
Journal will provide more details on these
topics, including coding styles, the physical
synthesis capabilities of ISE 8.1i software,
Synplify Premier, the Xplorer tool, and
PlanAhead design tools.

called Xplorer. Xplorer has two modes: the
first one attempts to obtain the maximum
performance for the design, while the sec-
ond one works within the designer’s con-
straints to meet timing. In this second
timing closure mode, Xplorer applies dif-
ferent algorithms for logic packing and
place and route, and reports the best set-
tings for future design iterations.

Think Hardware
Successfully coding RTL for performance
requires silicon considerations. Once you
“think hardware,” your RTL description
directs synthesis to use specific silicon
functions. Consider the integrated
XtremeDSP™ blocks in Virtex-4 FPGAs.

They enable ASIC performance, but that
performance can be severely impacted if
the RTL coding style implies an asynchro-
nous reset. That’s because the native reset
of the block is synchronous. Using a syn-
chronous reset enables registers to be
merged into the block, thus improving
performance (and area) to a large extend.

Regardless of software tools, coding styles
are essential. Combined with synthesis tool
constraints, options and synthesis directives
can drastically affect performance.

PlanAhead
FPGAs offer specialized resources that
designers must manage to create an opti-
mal solution. For example, you may want
to align certain blocks to a given clock
domain using specific resources, or group
the design critical path logic to ensure a
tight implementation of those resources.

Fourth Quarter 2005 Xcell Journal 11

Regardless of software tools, coding styles

are essential. Combined with synthesis tool

constraints, options and synthesis directives

can drastically affect performance.

D E S I G N P E R F O R M A N C E

by Jeff Garrison
Director of Marketing, FPGA Products
Synplicity, Inc.
jeff@synplicity.com

Advances in FPGA technology have
opened the door wide open for use in all
types of applications, including wireless
communications, computer, industrial,
defense/aerospace, medical, automotive,
and even consumer. Xilinx® Virtex™-4
devices have the capacity, performance, and
cost structure to lead a migration from tra-
ditional cell-based ASICs to programmable
devices in all but the highest volume and
bleeding-edge applications. Along with this
capability, however, are new challenges
from a designer’s perspective. In this article,
I’ll discuss a solution to one of these most
important challenges – timing closure.

One of the biggest reasons to use
FPGAs in the first place is their ability to
deliver working silicon to an electronics
system quickly and reliably. As the com-
plexity of FPGAs and all integrated circuits
has increased, the time-to-market advan-
tage offered by FPGAs could be dimin-
ished if you do not make significant
changes to your core design technology.
The primary issue is timing closure – the
ability to reach your design’s timing goals

in a fast, predictable way. Gone are the
days when logic delay and wire-load mod-
els for interconnect delay are enough to
estimate timing and give predictable
results. In 90 nm FPGAs, you must incor-
porate actual routing delay into the syn-
thesis process to achieve rapid timing
closure for high-performance designs.

Timing Accuracy is Everything
The underlying problem that determines if
you will be able to close on timing is esti-
mation accuracy. Historically, synthesis and
placement tools have been based on the
assumption that the proximity of logic and
wire-load estimation determines the routing
delay. Although this used to work reason-
ably well for ASIC design, it does not work
at all for FPGAs. Unlike an ASIC, FPGA
routing is pre-determined. In an ASIC the
routing is customized for the placement of
the logic. In other words, once the place-
ment of an ASIC is done, it is relatively easy
to get a good estimation of routing delay by
measuring Manhattan distances from one
point to another (see Figure 1).

Because FPGAs have fixed routing
resources, the design tool needs to under-
stand the different types of routing and its
implication on timing. In an FPGA, the
fastest routing between two points may very

well not be the shortest. Think of your com-
mute to work – sometimes it’s faster to go
slightly out of your way and get on a freeway
than to travel the shorter distance on side
streets. The same concept applies to FPGAs:
some direct routing resources (freeways) are
faster than those that have to go through
switch matrices (side streets) (Figure 2).

Figure 3 illustrates how placement is dif-
ferent for proximity- and graph-based tools.

Graph-Based Physical Synthesis
Synplicity invented graph-based physical
synthesis to improve timing closure by
means of a single-pass physical synthesis
flow for 90 nm FPGAs. The essence of the
graph-based approach is that the pre-exist-
ing wires, switches, and placement sites used
for routing an FPGA can be represented as a
detailed routing resource graph. The notion
of distance then changes from proximity to
a measure of delay and wire availability.

Synplicity’s graph-based physical syn-
thesis technology merges optimization,
placement, and routing to generate a fully
placed and physically optimized design,
providing rapid timing closure and a 5% to
20% timing improvement.

Graph-based physical synthesis does not
require you to create a floorplan or provide
other information to the physical synthesis

Achieve Faster Timing Closure
with Graph-Based Physical Synthesis
Achieve Faster Timing Closure
with Graph-Based Physical Synthesis

12 Xcell Journal Fourth Quarter 2005

Graph-based physical synthesis was invented to improve timing
closure by means of a single-pass physical synthesis flow.
Graph-based physical synthesis was invented to improve timing
closure by means of a single-pass physical synthesis flow.

D E S I G N P E R F O R M A N C E

process (often only known by expert users)
in order to get good results. It is a fully
automated methodology that can be used
without special knowledge of the physical
FPGA device. In addition to this fully auto-
mated mode, you do have the option to
guide physical synthesis by providing design
planning information (such as a floorplan)
used during the physical synthesis process.

Synplify Premier
To directly address the challenge of keeping
timing closure under control for advanced
FPGA technologies, Synplicity has intro-
duced Synplify Premier, its first FPGA
design product based on graph-based physi-

FPGA directly in the RTL source code or in
waveform. An incremental place and route
capability saves time by allowing you to
quickly update instrumented nodes and
debug. The debugging technology within
Synplify Premier software is closely integrat-
ed with synthesis and Xilinx ISE™ software
for a seamless development environment.

A second technology important for ASIC
prototyping with FPGAs is the ability to
convert gated clocks to FPGA clock-enable
structures without modifying your RTL
source. Synplify Premier performs this task
automatically, along with handling generat-
ed clocks and instantiations of most com-
mon Synopsys DesignWare components.

Conclusion
Because of the increased design complexi-
ty enabled by new devices such as Virtex-
4 FPGAs, designers need EDA tools that
can handle the physical properties of
FPGA architecture to achieve acceptable
timing closure. Several physical design
tools based on ASIC technologies have
been used to address FPGA design, but
they have had little success. The ASIC
approach does not work for FPGAs
because the silicon fabric is completely
different and, unlike ASICs, proximity
does not imply better timing.

Synplicity’s Synplify Premier product
with graph-based physical synthesis direct-
ly addresses the challenges of FPGA physi-
cal design and results in faster designs done
in less time. For more information on
graph-based physical synthesis, ASIC pro-
totyping, and Synplify Premier, visit
www.synplicity.com/products/index.html.

cal synthesis technology. Synplify Premier
includes all of the features in Synplify Pro
and adds graph-based physical synthesis for
the Virtex-4, Virtex-II Pro, and Spartan™-3
families. In addition to the new graph-based
physical synthesis, Synplify Premier also
offers a new capability for debugging and
prototyping ASICs using FPGAs. One such
technology is RTL instrumentation and
debugging of live, running FPGAs.

This technology is based on Synplicity’s
Identify product, which allows you to navi-
gate your design graphically and mark sig-
nals directly in your RTL code as probes or
sample triggers. After synthesis, you can
view the signal values of a live, running

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O I/O

Driver and loads
connected with
direct, orthogonal
routing is possible
with flexible
routing

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O I/O

Short, but slow
connection

Longer, but fast
direct connection

Optimal Graph-Based
Placement for
Best Performance

Traditional Proximity-Based
Placement

CLB with 4 LUTs, 4 Flops, and
No Intra-CLB Direct Connect

Figure 1 – Proximity-based placement is
best when you use flexible routing.

Figure 2 – A graph-based approach is best when
routing is fixed and of differing performance levels.

Figure 3 – Graph-based placement for LUT driving four flops

Fourth Quarter 2005 Xcell Journal 13

D E S I G N P E R F O R M A N C E

by Kevin Bixler
Manager, ISE Technical Marketing
Xilinx, Inc.
kevin.bixler@xilinx.com

David Dye
Senior Technical Marketing Engineer
Xilinx, Inc.
david.dye@xilinx.com

Advances in process technology have lead
to dramatic increases in FPGA device
densities. Several Xilinx® Virtex™ fami-
lies have devices exceeding 1 million sys-
tem gates. This increase in device density
and the use of 300 mm wafers have made
FPGAs affordable for volume production.

Designs that were once exclusively
targeted at ASICs are now being imple-
mented in programmable devices. The
largest 90 nm Virtex-4 device provides
more than 200,000 logic cells, 6 MB of
block RAM, and nearly 100 DSP
blocks. Creating a design to efficiently
utilize the available resources in these
devices and meet performance require-
ments can be challenging. Fortunately,
today’s EDA software tools have evolved
to meet these challenges.

Physical Synthesis
and Optimization
with ISE Software

Physical Synthesis
and Optimization
with ISE Software

14 Xcell Journal Fourth Quarter 2005

These tips can
help you get the
most out of your
implementation tools.

These tips can
help you get the
most out of your
implementation tools.

D E S I G N P E R F O R M A N C E

Logic optimization, logic placement,
and minimized interconnection delays are
all important to achieve maximum per-
formance. Timing-driven synthesis tech-
nology has provided a significant
improvement in design performance. The
limiting factor to the effectiveness of tim-
ing-driven synthesis is the accuracy of esti-
mating routing delays.

Physical synthesis – the use of physical
placement and routing information dur-
ing synthesis – has been at the forefront to
effectively address these issues. Physical
synthesis and optimization further
expands on this technology by involving
synthesis in implementation decisions
after the netlist is generated. This allows
for dynamic re-examination of synthesis
mapping and packing decisions based on
actual placement and routing information
during implementation.

Benefits of Physical
Synthesis and Optimization
Interconnection delays between logic lev-
els are affected by the proximity of place-
ment for the logic elements, routing
congestion, and local competition between
nets for the fastest routing resources. The
answer to this problem is to revisit synthe-
sis decisions during mapping, placement,
and routing. During the mapping phase,
the netlist can be reoptimized, packed, and
placed based on the urgency of individual
timing paths. This approach reduces the
number of implementation cycles required
for timing closure.

Physical Synthesis and
Optimization Flows
Xilinx ISE software provides several soft-
ware options to enable physical synthesis
and optimization. You can use these
options individually or together, depend-
ing on the specific needs of your design.

Define Timing Requirements
The most important step for effective
physical synthesis is to set up accurate,
comprehensive timing constraints. With
these constraints in place, the implemen-
tation tools can make more informed
decisions that will improve your overall

Enable Timing-Driven
Packing and Placement
Timing-driven packing and placement is
at the heart of the physical synthesis capa-
bilities available within the implementa-
tion flow. When you enable this option
(map -timing), the placement phase of
place and route is done within Map,
allowing packing decisions to be revisited
when initial results are less than optimal.
This iterative flow does away with unre-
lated logic packing.

Different levels of optimization exist
in Xilinx physical synthesis and opti-
mization. The first level was introduced
in ISE 6.1i software and began with logic
transformations, including fanout con-
trol, logic replication, congestion con-
trol, and improved delay estimation.
These routines led to much more effi-
cient packing and placement of designs,
resulting in faster clock frequencies and
denser logic utilization.

The next level added logic and register
optimization; Map can now rearrange ele-
ments to improve critical path delays.
These transformations give much greater
flexibility to meet the timing require-
ments of the design. A number of differ-
ent techniques (including pin swapping,
basic element switching, and logic recom-
bination) are used to massage the physical
elements into a different yet logically
identical structure that will meet the
design requirements.

ISE 8.1i software introduces one more
level of physical synthesis – combinatorial
logic optimization. The -logic_opt switch
enables a flow that examines all of the
combinatorial logic in the design. Given
placement and timing information, you
can make more informed decisions about
optimizing LUT structures to improve the
overall design.

results. Constrain the clocks and I/O pins
that have firm requirements to allow the
rest of the design to be relaxed.

The easiest way to define these timing
constraints is to use the Constraints
Editor. This graphical tool allows you to
enter clock frequencies, multi-cycle and
false path constraints, I/O timing require-
ments, and a host of other clarifying
requirements. Constraints are written to a
user constraint file (UCF), which may
also be edited in any text editor.

If user-defined timing constraints are
not provided, a new feature in ISE™ 8.1i
software will automatically generate tim-
ing constraints for each internal clock. In
Performance Evaluation Mode (PEM),
you can get the high-performance results
of physical synthesis and optimization
without having to provide timing targets.

Run Global Optimization
For designs containing IP cores or other
netlists, the NGD file available after the
translate (NGDBuild) phase of imple-
mentation represents the first time that
the entire design has been completely
assembled. Global optimization, a new
feature added to the 7.1.01i version of
Map, will take the fully assembled design
and attempt to improve design perform-
ance by re-optimizing the combinatorial
and register logic. Global optimization
(map -global_opt on the command line)
has been shown to increase design clock
frequencies by an average of 7%.

Two other options let you further con-
trol the optimization completed during
this phase: retiming (map -retiming) will
move registers forward and back to bal-
ance combinatorial logic delays, and
equivalent register removal (map -equiva-
lent_register_removal) will remove regis-
ters with redundant functionality.

Fourth Quarter 2005 Xcell Journal 15

During the mapping phase, the netlist
can be reoptimized, packed, and placed based on the

urgency of individual timing paths. This approach
reduces the number of implementation cycles

required for timing closure.

D E S I G N P E R F O R M A N C E

Examples of Physical Synthesis and Optimization

• Logic Duplication: If a LUT or flip-flop
drives multiple loads, and the placement of
one or more of those loads is too far away
from the source to meet timing, the LUT
or flip-flop can be replicated and placed
close to that group of loads, thus reducing
routing delays (Figure 1)

• Logic Recombination: If the critical path
traverses through multiple LUTs through
multiple slices, the logic can be reassem-
bled utilizing fewer slices by using a more
timing efficient combination of LUTs and
muxes to reduce the routing resources
needed for that path (Figure 2)

• Basic Element Switching: If a function is
built with LUTs and muxes within a slice,
physical synthesis and optimization can
rearrange the function to give the fastest
path (usually through the mux select pin)
to the most critical signal (Figure 3)

• Pin Swapping: Each input pin of a LUT
may have a different delay, so Map has the
ability to swap pins (and the associated
LUT equation) so that the most critical
signal is placed on the fastest pin (Figure 4)

Conclusion
The physical synthesis and optimization
capabilities within the Xilinx toolset will con-
tinue to mature and expand with each soft-
ware release. Along with improved quality of
results, you can expect to see greater control
over the types of optimizations. Other
planned enhancements include the consider-
ation of more design elements in the reopti-
mization phase (such as registers allowing
movement into and out of the I/O blocks or
dedicated functions like block RAM and
DSP blocks) and the inclusion of the routing
phase into the reiterative physical synthesis
and optimization system.

The physical synthesis and optimization
tools in Xilinx ISE software have been created
to re-examine the structure of your FPGA
design during the packing and placement
phases of implementation. With the knowl-
edge of timing constraints and physical lay-
out, optimizing synthesis decisions during
map and place and route can significantly
improve your results.

16 Xcell Journal Fourth Quarter 2005

X

B

A C

Y

Q
Out

S4

S1

S3S2

S0

sig1

sig0

X

S6

A

Y

b

a

S2

S5

S3

sig0

sig1

Out
S1

S7

Q

f

X

S6

A

Y

C

B

S2

S5

S3

sig0

sig1

Out
S1

S7

Q

X

S6

A

Y

Q

P

S2

S5

S3

sig0

sig1

Out
S1

S7

Q

X

S6

A

Y

C

B

S2

S5

S3

sig0

sig1

Out
S1

S7

Q

2
1
0 X

S6

A

Y

C

B

S2

S5

S3

sig0

sig1

Out
S1

S7

Q

2
1
0

B

X

A C

sig0

Q
Out

B

X

A C

B

Q
Out

Figure 1 – Logic Duplication.
Path LUT A → LUT B →LUT C → Out is critical. LUT B is driving

two critical loads and can be duplicated to reduce path delay.

Figure 2 – Logic Recombination.
Path LUT A → LUT B → LUT C → Out is critical. LUTs B and C
can be combined and replaced by LUT a, LUT b, and F5Mux f.

Figure 3 – Basic Element Switching.
Path LUT A → LUT C → MuxF5 → Out is critical. The path through

the mux select pin is faster than through LUT.

Figure 4 – Pin Swapping.
Path LUT A → LUT C → MuxF5 → Out is critical. Pin 2 is faster

than Pin 0 for LUT C. Swap pins 0 and 2 for LUT C.

Before After

Before After

Before After

Before After

D E S I G N P E R F O R M A N C E

����������	�	�
��������		��
�����������
������������������ �����!���!!"� �#�$%&'(

������������������ �����!���!!"� �#�$%&'(

����������	
���������	�
�	����
�������������	�������������
�
������
������������������������
��	������ ��	��������
����	�����������������	��
�
�����
���������	��������
�������
���
������������	������	����������������
��������������������������	�����������������
���
�������� ��������������� !������������"�������#����������
�$��������
�%	�����	����������������
�������"����
��"����
���	���
������
����������	�����������	������
�������$�	�&�
��	������	�������������'�������������������	������������������	�������	���
�	����	�
���������	��'�	���
�������(�	�������������	�		�����)������������		���	������������
�	������������	������	���������	��	���
����*
��������
���*�
���	������	��������	��������
���������	�����������������	��������
�	�����	�������
����������������	�

�
�
�
�
������
+�)�������������
�	���	����������
�
������������ ���������������������������

�	��������������������������������(,��-...�/�#����������(����*�
��
�����������������	���)���������
�	���	������
�0

�����������������������
	��������
+ 1�����
��'���������������������������������
�	�'
���
��	������
���0�2��$���3��	��4�����������%� ������
 ���������������'��5���	������
�&�����6	

+ ��	����
���	���������������������������
����������	

+ /��	������ ����������������������	�����������
�����
���������"�	���
��"�	�

+ /��	������ �����������������������6�����
&�����6	

+ 5����
�	��	�����������������
��	��������	�����
��
����	�����������������	

+� 4������5�1�/���
����������������1���������

+ 4�������'	���#���������������

1��	�����'	������������(�����������
���	����
�	���������������������
������	�	�����	0�7����������$� �7�	����$��
�����7�	�����
�����!��3�����
�������//��������-89�����/5)�*���������������������'�,���1�	������	���
��
����	�����'���������������������������
�	��������������������������
��������������	�������	�������
�����������*����
�	�����������������
�
���
���
�	��������������	�������/�������������������������*����	�����������
���
�	���������������������'�����
��'��������*����	���
�����������	��	��
�������������������������'	������	�������	����������������
�����

1�����3�
�:9(;�&�
���
�����������
��������
������*��������������������
����������������
�	�	��	'	��	����
����	�����
��������������
������3�������
������������6������������
���;�&�
���	������

<

<

by Mark Goosman
Marketing Product Manager
Xilinx, Inc.
mark.goosman@xilinx.com

Design problems – especially those charac-
teristic of large, high-performance designs
– are most effectively addressed by first
investigating the problem and then break-
ing the larger design issues into smaller,
more manageable hurdles. Looking at the
evolution of programmable devices in
recent years, it is apparent that FPGAs have
undergone tremendous growth in size and
complexity, but the PLD EDA tool flow
has remained relatively unchanged.

With a traditional flat design flow, each
design change means re-synthesizing and re-
implementing the entire design. With com-
plex designs on multi-million-gate devices,
even a minor change can lead to unaccept-
ably long place and route (PAR) runtimes,
which itself often leads to inconsistent
results, not to mention the time lost from
RTL to PAR iterations for a typical design.

Few design teams can tolerate unexpect-
edly low performance for a design that took
longer than expected to complete, not to
mention the associated frustration and
stress. In addition, it may mean low utiliza-
tion of the FPGA and even missed time-to-
market opportunities.

Improve Design Performance
Using PlanAhead Design Tools

18 Xcell Journal Fourth Quarter 2005

PlanAhead software helps you tackle the need for speed.

D E S I G N P E R F O R M A N C E

PlanAhead Software Offers a Solution
A growing number of customers are finding
a solution in the hierarchical design method-
ology offered by the Xilinx® PlanAhead™
design analysis tool. PlanAhead software
adds visibility and control to the FPGA
design flow. By addressing problems on the
physical side (between logic synthesis and the
implementation process), you can realize
improved performance in your results.

Although advanced FPGA synthesis
products provide a tremendous level of
automated optimization for multi-million-
gate designs, many designers require more
heuristic techniques to achieve optimal
performance goals. Through early analysis
and floorplanning, PlanAhead design tools
can apply physical constraints to help con-
trol the initial implementation of the
design. After implementation, PlanAhead
software can analyze placement and timing
results to improve the floorplan used to
complete the design. You can use the phys-
ical constraints derived from the imported
results to lock placement during subse-
quent implementation attempts. These
constraints can be used to create reusable
IP, complete with locked placement, for
other designs.

The PlanAhead design methodology
provides performance, productivity, and
repeatability of results. With its hierarchi-
cal design flow, PlanAhead software allows
you to reduce the number of iterations
spent running PAR and then returning to
RTL and synthesis. Instead, you can ana-
lyze your design and address issues on the
physical side before implementation.

Faster Results in Less Time
PlanAhead users are consistently seeing a
10-15% performance improvement, with
some achieving much higher results. In
addition, designers are also finding that
they can squeeze an additional 10% logic
into a tight device. This combination of
faster performance and better utilization
can translate into a smaller, less expensive
device, or design goals achieved with a
slower speed grade.

PlanAhead design tools help reduce
overall design time while adding a level of
consistency in the results. You can perform

trouble spots and place heavily connected
Pblocks close together, or merge them.

Clock regions are also displayed and can
be used during floorplanning to optimize
various clocks or minimize power usage
within the device. By isolating clocks to
specific clock regions, they can run faster
and eliminate the need to power up other
clock regions.

You can use the analysis and exploration
environment of PlanAhead design tools at
various stages in the design process.
Initially, you can analyze the design before
implementation. PlanAhead software pro-
vides a static timing engine, TimeAhead,
that examines the design’s feasibility rela-
tive to timing. You can also perform analy-
sis using estimated routing delays by

factoring in pure logic delays with no inter-
connect. This allows you to see how much
timing tolerance is built into the design.

You can then edit and fine-tune timing
constraints within the PlanAhead envi-
ronment. These same analysis results can
help determine what logic should be
grouped together and floorplanned. Paths
can be logically sorted, grouped, and
selected for floorplanning. The same
TimeAhead environment can also be

design iterations in much less time – with
repeatable results – by leveraging previous
floorplans or incremental design tech-
niques. You can also leverage successful
results by locking them down or reusing
them in other designs.

Tackling really tough performance
issues requires more than just the addition
of new menu items or scripting capabili-
ties. PlanAhead software provides a com-
plete environment to make this hierarchical
methodology interactive and easy to use by
presenting design data through the use of
various views (see Figure 1). These inde-
pendent views are designed to work in con-
junction with each other, allowing you to
quickly identify and navigate critical design
objects and information.

Visually Identify Performance Bottlenecks ...
The PlanAhead environment provides
insight into the data flow of the design by
displaying I/O interconnect as well as phys-
ical block (or “Pblock”) net bundles. You
can control color and line thickness of the
bundles depending on the number of sig-
nals. This makes it easy to identify heavily
connected Pblocks in the overall data flow
through the design. You can then take cor-
rective action to avoid routing congestion

Fourth Quarter 2005 Xcell Journal 19

Figure 1 – PlanAhead software provides different views of the design to display physical hierarchy,
properties, netlists and constraints, device package pins, schematics, and much more.

D E S I G N P E R F O R M A N C E

leveraged with imported timing results
from TRCE, the timing evaluation tool
within Xilinx ISE™ software.

The timing constraints assigned to the
design can be viewed and modified. You
can define all ISE timing constraints as new
constraints within the editor. This makes
constraint assignment easier because you
no longer have to remember specific con-
straint formats. You can use this with
TimeAhead to validate and optimize the
constraint set before running any ISE
implementation tools.

PlanAhead design tools provide visual
aides to help you comprehend the physical
implementation results. Design rule checks
(DRCs) are provided to catch errors early.
It also flags designs that do not properly
take advantage of certain device resources,
such as the dedicated registers of the
XtremeDSP™ slice or RAM within the
Virtex™-4 FPGA.

By visualizing problem areas, you can
address problems quickly, either in the RTL
or on the physical implementation side,
without having to continue RTL and syn-
thesis iterations. The various logic modules
can be selectively highlighted to better

understand where they were placed, and
Pblocks created where the logic is most con-
centrated. You can highlight failing timing
paths to visualize and understand what is
physically happening within your design.

PlanAhead software has includes metric
maps to quickly identify problem areas of
the design (Figure 2). These can be related
to timing or utilization. This is helpful
when trying to identify areas of the design
to focus on for logic compression or timing
connectivity.

PlanAhead design tools allow you to
explore connectivity within the design.
After selecting a particular net, Pblock, or
instance within the design, you can high-
light all of the nets connected to the select-
ed elements with a single mouse click.

After an instance or Pblock is selected,
all of the nets connecting to that element
will be highlighted. This process can be
continued, selecting and expanding the
logic cone. Running “Show Connectivity”
will highlight the next level of nets con-
nected to the selected instances. This is an
easy way to select a cone of logic starting at
a particular instance or I/O port, taking
real advantage of the design hierarchy.

... Then Address the Performance Problem
The whole idea is to provide a compre-
hensive environment to analyze timing
issues and easily constrain that logic to
avoid or correct it. You can use timing
results from either TimeAhead or TRCE
to drive a floorplan that will produce bet-
ter performing designs by helping deter-
mine what logic should be grouped
together and floorplanned.

Critical paths often traverse the logic
hierarchy. PlanAhead software enables a
physical hierarchy that is independent of
the logic hierarchy, allowing logic from
anywhere in the design to be grouped
together and efficiently floorplanned.

PlanAhead software also provides
resource utilization estimates to help size
and shape Pblocks. These same statistics
report clock information, carry chain, and
RPM sizes for fit and a variety of other
useful information.

PlanAhead design tools provide auto-
matic floorplanning capabilities such as
automatic partitioning based on the logic
hierarchy and automatic Pblock sizing and
placement. Because it is often difficult to
encompass the required device resources
within a single Pblock rectangle, non-
recta-linear shapes can be created with
multiple rectangles. PlanAhead software
also allows you to create Pblocks within
Pblocks, or “child” Pblocks, to help better
maintain design hierarchy.

Device capacity can be improved by
compressing the logic with Pblocks. This
can be achieved in one of two ways. One is
to use the Xilinx AREA_GROUP attribute
called COMPRESSION. AREA_GROUP
is a design implementation constraint that
enables partitioning of the design into
physical regions for mapping, packing,
placement, and routing. Using the COM-
PRESSION attribute will cause the ISE
Mapper to pack unrelated logic into
unused CLB sites. Use this with care, as it
can have an adverse affect on timing.

The best strategy for improving per-
formance is to compress non-timing criti-
cal logic, thereby opening up more space
in the device for timing critical logic. The
second option is to use the PlanAhead
capability to run PAR on Pblocks individ-

20 Xcell Journal Fourth Quarter 2005

Figure 2 – Metric Maps provides a thermal metric display of the various potential
problem areas in the design. The current metrics include utilization and timing

checks at both the Pblock and placed design level.

D E S I G N P E R F O R M A N C E

ually. You can continue to shrink the
Pblock size until PAR fails. This will reduce
and pack the logic as tightly as possible
within the blocks and free up device space.

A Virtex-4 Floorplanning Example
PlanAhead design tools allow you to easily
import placement and timing results. With
this information, you can view and sort
critical paths from the timing report and
visualize paths using either the schematic
or device views. Once you’ve identified fail-
ing paths, you can highlight all path
instances on the floorplan to identify all
path instances in the schematic view.

Figure 3 shows a floorplan of a design
targeting a Virtex-4 FX140 device. In the
display, we’ve highlighted the flip-flops
along a particular path that was not able to
meet timing. Because they are so widely
distributed across the device, design imple-
mentation results in an unacceptably long
delay. With the large number of clock
domains available in Virtex-4 FPGAs, this
is a common situation.

By selecting each of these flip-flops and
restricting them to a single Pblock, you can
then adjust and optimize the Pblock size
and location to reduce delays on critical
paths, as shown in Figure 4. If necessary,
you can even create nested Pblocks, creating
a child/parent hierarchy to further constrain
sub-modules for additional performance
gains. Depending on the resource require-
ments of the captured logic, you can lock
down critical logic to locations for optimal
access to necessary resources.

Conclusion
Visit www.xilinx.com/planahead to down-
load a free evaluation of PlanAhead software
today. This 30-day evaluation provides you
with full access to all of the PlanAhead fea-
tures and functionality. This site also allows
you to view product demonstrations, down-
load white papers, or just learn more.

Xilinx also offers PlanAhead QuickStart!,
an exceptional level of support during the

most critical phase of a project. With this
service, you will receive a QuickStart! engi-
neer at your site for one week who will
train and empower your team to complete
your project on time and make best use of
the Xilinx device you have selected. This
highly customizable service allows you to

develop a training plan tailored specifical-
ly to the needs of your design team. This
will help prevent schedule slips later in the
project by ensuring that the team is skilled
in the needed disciplines. It will also help
you maintain a more effective and highly
motivated team.

Fourth Quarter 2005 Xcell Journal 21

Figure 3 – Initial Virtex-4 FPGA floorplan with the path
highlighted that did not initially meet timing

Figure 4 – After constraining all primitives associated with the path, you can
optimize the Pblock to allow this path to achieve necessary timing.

If necessary, you can even create nested Pblocks, creating a child/parent
hierarchy to further constrain sub-modules for additional performance gains.

D E S I G N P E R F O R M A N C E

by Steve Pereira
Technical Marketing
Synplicity, Inc
stevep@synplicity.com

You can benefit greatly from a proper syn-
thesis strategy. Such strategies include
knowing the final target architecture,
knowing what coding problems could
arise, and understanding what performance
the periphery will require. You should also
understand how to use IP. Are models
available? Is cost an issue? Your initial setup
can greatly affect productivity and help you
achieve quicker peripheral timing closure.

In this article, I’ll describe a known good
strategy while using Synplify Pro tools.

Best Practices
Setting up your design correctly can result
in huge performance increases or reduc-
tions in area. The following checklist
describes the best practices to use when set-
ting up your design.

1. Include any CoreGen EDIFs or timing
models for black boxes. If you use
black-box IP in the design, ensure that
all EDIF, NGC netlists, or timing
models are provided. It is essential that
the Synplify Pro tool knows the timing

requirements into and out of the box
so that surrounding logic can be
altered to reduce or remove criticality.

If the design has an ngc file, use the
ngc2edn (provided in the Xilinx®

ISE™ /bin/ directory) converter utility
to produce an edn file for synthesis.

2. Ensure that the device is correct and
size the design. Ensuring that the
wireload models are correct for syn-
thesis can greatly affect the resulting
logic. The selection of wireload mod-
els is simply a matter of selecting the
correct device and speed grade. If
synthesis is performed on a different
device to the final implementation,
sub-optimal results are quite likely.

Selecting the correct device will also
provide Synplify Pro with the accurate
number of resources. One example of
the importance of this is with block-
select RAM mapping. Synplify orders
all of the RAMs from biggest to small-
est, and then starts to map the largest
RAMs until there are no block RAMs
left. The rest are placed into distributed
RAM. If the wrong device is selected,
sub-optimal mapping will occur.

Sizing the design also has a significant
impact. For example, if the design
uses 80% of the device, the wireload
models are correct for the design. If
the design consumes only a small per-
centage of the total resources (for
example, synthesizing just a part of
the design for verification), the wire-
load models will be inaccurate. To
resolve this problem, you can assign
the logic to an area group. Please see
the Synplify Pro documentation for
instructions on how to do this.

3. Provide accurate clock constraints.
Under- or over-constraining results in
reduced performance. Do not over-
constrain by more than 15%. For max-
imum performance, ensure that there
is 10% negative slack on the critical
clock. This ensures that critical paths
are squeezed. The Fmax field on the
front panel is fine for a quick run, but
do not use it if you need maximum
performance. Put unrelated clocks in
separate clock groups in the Synplify
Pro .sdc file. If your clocks are in the
same group, the Synplify Pro tool
works out the worst-case setup time
for the clock-to-clock paths.

Synthesis Tool StrategiesSynthesis Tool Strategies

22 Xcell Journal Fourth Quarter 2005

Set up your designs in Synplify for performance
improvement and area savings.
Set up your designs in Synplify for performance
improvement and area savings.

D E S I G N P E R F O R M A N C E

Figure 1 shows a timing diagram for
two clocks that are in the same clock
group. Synplify rolls the clocks for-
ward until they match up again.
The tool then calculates the mini-
mum setup time between the clocks,
in this case 10 ns.

If the clocks are unrelated, there may
be several hundred clock periods
before the clocks match up again. This
may result in the worst-case setup time
being very small (100 ps). You can
check the setup time in the clock rela-
tionships table in the log file. If the
setup time is too short, it is best to re-
constrain the clocks so that they are
more related.

4. Specify timing exceptions. Provide all
timing exceptions, such as false and
multicycle paths, to the Synplify Pro
tool. With this information, the tool
can ignore these paths and concentrate
on the real critical paths.

5. Constrain I/Os. If the design has I/O
timing constraints, it is likely that the
critical path is through the I/O block
(IOB). The Synplify Pro tool sees
these paths as the most critical and
tries to optimize them. Usually, I/O
paths physically cannot be optimized
any further; as they are the most criti-
cal, the Synplify Pro tool stops opti-
mizing the rest of the design.

improve your design performance by as
much as 50%. Retiming attributes
such as syn_allow_retiming let you
refine your constraints by surgically
applying retiming to a single register.
Synplicity recommends that you enable
both of these switches.

• Resource sharing. Always turn this
switch on. The behavior of this
switch was changed in Synplify 8.0.
With the switch on, timing-driven
resource sharing occurs. Non-critical
logic will have resource sharing, but
critical logic will not share resources
(for performance reasons).

• FSM Compiler extracts and optimizes
FSMs based on the number of states:

• 2 to 4: sequential

• 5 to 40: one-hot

• More than 40: gray

Synplicity also recommends enabling
the FSM Compiler and setting default
enumerated encoding to the “default”
value for VHDL designs.

• FSM Explorer timing-driven state
encoding. The Synplify Pro tool auto-
matically selects the best encoding for
the specified timing. This switch is
design-dependent. If the critical path
starts or ends at a state machine, turn
the switch on.

Conclusion
Because synthesis tools are operating at
higher levels of abstraction, synthesis opti-
mizations can have a dramatic impact on
design performance. After parsing through
the HDL behavioral source code and
extracting known functions (arithmetic
functions, multiplexers, and memories),
synthesis tools then map these functions on
the target architecture features.

The tools trade off area and performance
based on design constraints and tools set-
tings; these influence the use of optimiza-
tions such as replication, merging, re-timing,
and pipelining. As a result, the right tools set-
tings in synthesis can greatly increase pro-
ductivity and time to market.

A new switch has been added to the
Synplify Pro 7.3 release called “use
clock period for unconstrained I/O.”
When enabled, the tool does not
include any unconstrained I/O paths
in timing optimizations.

6. Keep code generic. Keeping code
generic and not locked down to a
particular architecture can aid design,
reuse, and portability. For example,
with the DSP48 block in the
Virtex™-4 architecture, you can
specify generic code to implement a
DSP function. The tool will map to
that component(s) when possible and
reduce uncertainty regarding how the
function was mapped. If DSP blocks
are generated, timing is better known
and can speed up debug – and time
to market. You can specify the regis-
ter configuration and code in the
opcode to drive the DSP block con-
figuration, all with generic code.

If for some reason you wish to use a dif-
ferent device family, such as moving
from Virtex-4 FPGAs to Virtex-II Pro
FPGAs, the porting process itself should
be seamless, but you may feel uncertain
about implementation and logic levels.

Good Switch Settings

• Retiming and pipelining. Enabling
retiming and pipelining options can

Fourth Quarter 2005 Xcell Journal 23

CLK1

CLK2

0

0 15

10ns 20ns 30ns

30 45 60 75 90 105 120 135

20 40 60 80 100 120 140

Figure 1 – Clock rolling for clocks in the same domain

D E S I G N P E R F O R M A N C E

by Hitesh Patel
Senior Manager, Software Marketing
Xilinx, Inc.
hitesh.patel@xilinx.com

The 2005 EDA Branding Study shows that
71% of FPGA projects have difficulty
meeting their timing budgets. Several
strategies exist to help you meet your tim-
ing goals, such as HDL code changes and
synthesis and implementation tools set-
tings. In this article, we’ll describe the
Xplorer implementation tools strategy to
maximize design performance, whether
you are evaluating the best achievable per-
formance for a specified clock domain or
attempting to meet timing requirements
for designs with user constraints.

Implementation with Xplorer
Xplorer is a perl script that seeks the best
design performance using Xilinx® ISE™
software. After synthesis generates an EDIF
(*.edf) file, the design is ready for imple-
mentation. During this phase, you could
use Project Navigator in ISE software to
apply design constraints and explore differ-
ent tools settings for best performance.

Accelerate Design
Performance
Using Xplorer

Accelerate Design
Performance
Using Xplorer

Fourth Quarter 2005 Xcell Journal 25

You can realize up
to a 70% push-button
performance improvement.

You can realize up
to a 70% push-button
performance improvement.

D E S I G N P E R F O R M A N C E

An alternative approach may be to use
Xplorer. Xplorer is designed to help achieve
optimal results by employing smart con-
straining techniques and various physical
optimization strategies. Because no unique
set of ISE options or timing constraints

works best on all designs, Xplorer finds the
right set of tools options to either meet
design constraints or find the best perform-
ance for the design. Hence, Xplorer has two
modes of operation: best performance mode
and timing closure mode.

Best Performance Mode
In this mode of operation, Xplorer optimizes
design performance for a user-specified clock
domain, allowing easy evaluation of the max-
imum achievable performance. You specify
the design name and a single clock to opti-
mize. Xplorer implements the design with
different architecture-specific optimization
strategies in conjunction with timing-driven
place and route (PAR). It tightens or relaxes
the timing constraints depending on
whether or not the frequency goal is
achieved, as shown in Figure 1. Xplorer esti-
mates the starting frequency based on pre-
PAR timing data. Adjusting timing
constraints such that PAR is neither under-
nor over-constrained enables Xplorer to

Because Xplorer runs approximately 10
iterations, you will experience longer PAR
runtimes. However, Xplorer is something
that users typically run once during their
design cycle. After an Xplorer run, you can
capture the set of options that will give the
best result from the xplorer.rpt file and use
that set of options for future design runs.
Typically, designers will run the tools
many times in a design cycle, so a longer
initial runtime will likely reduce the num-
ber of PAR iterations later.

All Xilinx FPGA architectures are sup-
ported by Xplorer; optimizations are per-
formed based on architecture features.

Using Xplorer
Xplorer is run from the command prompt
by typing:

xplorer <design name> [-clk <clkname>]
[-p <partname>]

<design name>: Name of the top level
edif/ngc file.

-clk <clkname>: Name of the clock to be
optimized. If the -clk option is omitted,
the script uses the timespecs defined in the
UCF file.

-p <partname>: The device name (for
example, XC4VLX100-11FF1152). The
default value is the part specified in the
input design.

-uc <ucf file>: The UCF file name. The
default value is <design name>.ucf.

Here is an example command for Best
Performance Mode:

xplorer cordic -clk clk -p XC4VLX15-12FF668

Here is an example command for
Timing Closure Mode:

xplorer <design name> -uc <ucf file> -p
<partname>

Results, with the tools settings used, are
summarized in xplorer.rpt. The best run is
identified at the end of the report file.

deliver optimal design performance.
In addition to timing constraints,

Xplorer also uses physical optimization
strategies such as global optimization and
timing-driven packing and placement.
Global optimization performs pre-place-

ment netlist optimizations on the critical
region, while timing-driven packing and
placement provides closed-loop packing
and placement such that the placer can rec-
ommend logic packing techniques that
deliver optimal placement. If the design has
a user constraint file (UCF), Xplorer opti-
mizes for the user constraints in addition to
the specified clock domain.

Timing Closure Mode
If you have a design with timing constraints
and your intent is for the tools to meet the
specified constraints, use the timing closure
mode. In this mode, you should not specify
a clock using the -clk <clock name> switch.
Xplorer looks at the UCF to examine the
timing constraints goals. Using these con-
straints together with optimization strate-
gies such as global optimization,
timing-driven packing and placement, reg-
ister duplication, and cost tables, Xplorer
implements the design in multiple ways to
deliver optimal design performance.

26 Xcell Journal Fourth Quarter 2005

User-Specified ClockSlack Violation

Reduce Fmax Goal

Slack Violation

Reduce Fmax Goal

Slack Violation

Reduce Fmax Goal

Slack Violation

Reduce Fmax Goal
Fmax Met

Increase Goal

Fmax Met,

Increase Goal

Fmax Met,

Increase Goal

S0

S2S1

S4

Figure 1 – Xplorer Best Performance Mode flow

D E S I G N P E R F O R M A N C E

Performance Improvement Results
To highlight the performance impact of
these optimization strategies, we com-
pared baseline results (attainable using
tightly constrained, high-effort timing-
driven PAR) with Xplorer. Figure 2 shows
the two flows.

For a high-density, high-performance
Virtex™-4 customer design suite of more
than 75 designs Xplorer provides up to
70% – and on average 10% – performance
improvement, as shown in Figure 3. The
designs range in density from LX15 to
LX200, covering (but not limited to) mar-
ket segments such as consumer, video, stor-
age, telecom/datacom, DSP, and glue logic.

In addition, performance improvements
for eight OpenCores designs for
Spartan™-3 FPGAs are shown in Figure 4.
These OpenCores designs are written in
synthesizable RTL and synthesized to the
target technology without any code modifi-
cations. The designs can be downloaded
from www.opencores.org. For the eight
OpenCores designs, the average perform-
ance improvement using Xplorer is 10%,
with the AES design realizing a 38% per-
formance improvement.

How to Achieve
Additional Performance Gains
At times, the Xplorer implementation strat-
egy still might not be enough to meet your
target timing goals. In these cases, adopt
synthesis and RTL coding strategies geared
towards performance.

Conclusion
Xplorer helps you optimize logic perform-
ance and meet your timing goals by using
smart constraining techniques and
employing the right set of implementation
tools strategies. Xplorer provides an aver-
age performance improvement of 10% for
Xilinx FPGAs.

To view advanced options and to down-
load Xplorer, visit www.xilinx.com/xplorer.

Fourth Quarter 2005 Xcell Journal 27

40.0

30.0

20.0

10.0

0.0
VCS-DCT

Average 10%

CFFT FM VGA VCS-Huffman

Decoder

VCS-Huffman

Encoder

Cordic AES

Performance Improvement Using Xplorer for Virtex-4 FPGAs

0.00

20.00

40.00

60.00

80.00

75 Customer Designs

%

Average 10%

Synplify Pro

ISE

Baseline

Flow

Xplorer

Xplorer

Flow

Compare
Performance

RTL
Code

Tighten Constraint

Until Slack Violation

Tighten Constraint

For Best Netlist

Figure 2 – Baseline and Xplorer flows

Figure 4 – Percentage performance improvement for
Spartan-3 FPGAs using Xplorer on eight OpenCores designs

Figure 3 – Performance improvement for Virtex-4 FPGAs using Xplorer

These OpenCores designs are written in synthesizable RTL and
synthesized to the target technology without any code modifications.

D E S I G N P E R F O R M A N C E

by Bill Saperstein
Senior Director of Engineering
Anchor Bay Technologies, Inc.
ws@anchorbaytech.com

Sanjay Thatte
Product Marketing Manager
Xilinx, Inc.
sanjay.thatte@xilinx.com

The Xilinx® PlanAhead™ hierarchical
design and analysis environment can be
used in conjunction with Xilinx ISE™
tools to improve design performance and
possibly enable incremental design and IP
reuse. Several customers have benefited
from the unique capabilities that
PlanAhead software provides. In this arti-
cle, we’ll describe how one Xilinx customer,
Anchor Bay Technologies of Campbell,
California, was able to successfully utilize
PlanAhead design tools.

A Custom Chip in Three Months
Anchor Bay Technologies specializes in
designing and developing video processing
system- and silicon-based solutions for scal-
ing, de-interlacing, and noise reduction.

Recently, Denon Electronics Company
required a very high-performance scaling
chip for their high-end DVD players to take
standard-definition 480P video from the
MPEG decoder and scale it to 1080P reso-
lution for large display applications. Anchor
Bay had developed several scaling chips, but
Denon required a custom design to fit their
specific application. In particular, they
wanted multiple video output streams, mul-
tiple video formats and resolutions, and a
custom I2C interface to the chip.

Faced with a very short development
cycle and unable to turn an ASIC in this
timeframe, Anchor Bay decided to develop
a custom solution based on Xilinx
Spartan™-3 FPGA technology. They had

only three months to get the chip designed
and tested for initial sampling.

Anchor Bay used ISE Foundation™
design tools to perform basic design and
simulation. Because Denon required the
lowest cost solution, they tried to fit the
design into the smallest Spartan-3 device
that had enough resources. But because of
the aggressive performance requirements,
achieving timing closure was close to
impossible using conventional ISE floor-
planning and place and route (PAR). The
design involved four different clock
domains – the highest frequency at 148
MHz. The design was using more than
80% of the Spartan-3 XC3S1000FT256-
5 part, 100% of the multipliers and clock
buffers, and 60% of the RAM blocks.

This heavy utilization made timing clo-
sure very difficult. There was no way to
guide the tools adequately to close on the
critical paths. In addition, the tools did not

Achieve Your Performance Goals
with PlanAhead Software
Achieve Your Performance Goals
with PlanAhead Software

28 Xcell Journal Fourth Quarter 2005

Obtaining the lowest cost FPGA solution through area and speed optimization.Obtaining the lowest cost FPGA solution through area and speed optimization.

D E S I G N P E R F O R M A N C E

clearly point out routing bottlenecks
that were hindering timing closure.

After several attempts, Anchor
Bay decided to explore the
PlanAhead design tool from Xilinx
to see if it could provide a solution.
Their FAE support team was very
responsive. They obtained an eval-
uation copy of PlanAhead software
and quickly studied the tutorial
before the FAEs came to their
offices and walked them through
the methodologies.

Problem Solved
PlanAhead design tools allowed
Anchor Bay to quickly pinpoint the
resource bottlenecks and the rela-
tionship between timing paths and
placement. They were able to
attempt several “what-if” scenarios
to better open routing channels and
group critical timing paths. Taking
the results from the ISE timing ana-
lyzer and feeding them back into
the floorplanning tool was invalu-
able. Also, the ability to view the
schematic allowed them to change
the logic where necessary to reduce
the critical paths. They found that
providing a simple floorplan was
enough of a seed to allow the PAR
tool to meet their timing needs.

They did not need to use
PlanAhead software to heavily con-
strain the PAR tool, but only con-
centrated on the critical paths and
congested areas. After more than
two weeks of trying without suc-
cess, they accomplished what they
needed in two days using
PlanAhead design tools.

Anchor Bay is continually push-
ing the limits of the FPGA devices
in their systems. This allows them
to not only sell ASIC solutions, but
also to develop custom, cost-effec-
tive silicon solutions based on
FPGA technologies.

Another Customer Example
Like Anchor Bay, a number of
other customers have benefited

from PlanAhead’s advanced capabili-
ties. For one such customer, the
objective was to reduce PAR runtime
and meet timing. To achieve this,
they used PlanAhead software to
quickly analyze the design, find the
bottlenecks, and create the necessary
physical constraints.

PlanAhead’s ability to place indi-
vidual instances at specific locations
and to constrain multiple instances
to desired area groups was very use-
ful in this process. Figure 1 shows a
PlanAhead view showing the criti-
cal paths not meeting timing.
Figure 2 shows how PlanAhead
design tools were used to create spe-
cific LOC constraints. The final
floorplan created using PlanAhead
software is shown in Figure 3, while
the results achieved through use of
PlanAhead design tools are record-
ed in Table 1.

Conclusion
A growing number of customers are
using PlanAhead software to help
them tackle tough design problems.
In doing so, they have increased their
productivity while achieving and
maintaining their design require-
ments. These benefits include:

• Reaching and maintaining
performance goals

• Quicker incremental
design changes

• Faster PAR time

• Fewer design iterations

• Tighter utilization control

• IP reuse

Getting started with PlanAhead
software is easy. Visit www.xilinx.
com/planahead to download a free,
30-day evaluation version, as well as
additional information and an online
demonstration. Also, customers
interested in getting on-site design
support can opt for the PlanAhead
QuickStart! program.

Fourth Quarter 2005 Xcell Journal 29

Without PlanAhead With PlanAhead
Software Software

Timing Errors 9 0

Timing Score 1746 0

Unmet Timing Constraints 3 0

PAR Runtime 234 min. 34 min.

Figure 1 – Analyzing critical paths using PlanAhead software

Figure 2 – Creating LOC constraints with PlanAhead design tools

Figure 3 – Design floorplan created in PlanAhead software

Table 1 – Design results with and without PlanAhead design tools

D E S I G N P E R F O R M A N C E

www.xilinx.com/paq PlanAhead™ QuickStart! provides a new level of personal, expert assistance

to ensure your success. The solution includes configuration of the Xilinx

ISE™ design environment, a comprehensive training plan, and a dedicated

QuickStart! engineer on-site for one week to provide all the training you

need to keep your project on time and on budget.

Your Complete Hierarchical Design Solution

PlanAhead QuickStart! offers a complete system floorplanner solution

to shorten development cycles and limit scheduling challenges. With

PlanAhead QuickStart! your team has immediate design expertise to

guarantee complete success…right from the start!

Contact your Xilinx representative or go to www.xilinx.com/paq for

more information.

©2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Xilinx Productivity Advantage: PlanAhead QuickStart!

We’re With You

Right From The Start

by Philippe Garrault
Technical Marketing Engineer
Xilinx, Inc.
philippe.garrault@xilinx.com

Brian Philofsky
Technical Marketing Engineer
Xilinx, Inc.
brian.philofsky@xilinx.com

You can achieve increases in design per-
formance by selecting the right hardware
platform and silicon features, being famil-
iar with the device architecture, or having
the proper settings and features in your
implementation tools. But one of the most
overlooked ways to increase design per-
formance is to write HDL code that is very
efficient for the targeted device. In this arti-
cle, we’ll present coding style tips to accel-
erate design performance.

Use of Resets and Performance
Few system-wide choices have as much of a
profound effect on performance, area, and
power as reset choice. Some system archi-
tects specify the use of a global asynchro-
nous reset for the system. Whether it is
truly needed or not, the ramifications of
this choice are not always understood.
With Xilinx® FPGA architecture, the use
of and type of reset can have serious effects
on the performance of your code.

HDL Coding Practices to
Accelerate Design Performance
HDL Coding Practices to
Accelerate Design Performance

Fourth Quarter 2005 Xcell Journal 31

Small code changes can make a big difference.Small code changes can make a big difference.

D E S I G N P E R F O R M A N C E

SRLs
In all current Xilinx FPGA architectures,
LUT (look-up table) elements are config-
urable as either logic, ROM/RAM, or a shift
register (SRL, or shift register LUT).
Synthesis tools can infer the use of any one
of these structures from RTL code.
However, in order to realize the use of the
LUT as a shift register, a reset can not be
described in the code, as the SRL does not
have a reset. This means that shift registers
coded with resets results in suboptimal
implementation (requiring several flip-flops
and the associated routing between them),
while code without resets results in fast and
compact implementation (using SRLs).

The effect on area and power is more
obvious for these two cases, but the effect
on performance is a little less clear. In gen-
eral, a shift register built out of flip-flops is
not going to be the critical path in a design
because the timing path between registers is
not normally long enough to be the longest
path in the design. The added consump-
tion of resources (flip-flops and routing)
can have a negative influence on the place-
ment and routing choices for other por-
tions of the design, possibly resulting in
longer routing paths.

Dedicated Multipliers and RAM Blocks
Multipliers are generally thought of for
DSP designs. But because Xilinx FPGA
architectures contain dedicated resources
for multiplication, multipliers can be
found in many types of designs, perform-
ing multiplication as well as other func-
tions. Similarly, virtually every FPGA
design uses RAMs of various sizes, regard-
less of the application.

Xilinx FPGAs contain several block
RAM elements that can be used in a design
as RAM, ROM, a large LUT, or even gen-
eral logic. The use of both multipliers and
RAM resources can result in more compact
and higher performing designs, but reset
choice can have either a positive or negative
performance impact, depending on the
type of reset used. Both RAM and multi-
plier blocks contain only synchronous
resets; thus, if an asynchronous reset is
coded for these functions, the registers
within these blocks cannot be used. The

registers contain the ability to program the
set/reset as either asynchronous or synchro-
nous, you might think that there is no penal-
ty to use asynchronous resets. That
assumption is often wrong. If an asynchro-
nous reset is not used, the set/reset logic can
be configured as synchronous logic; if so, this
frees up added resources for logic optimiza-
tion. To illustrate how asynchronous resets
can inhibit optimization, let’s look at the fol-
lowing suboptimal code examples:

VHDL Example #1

process (CLK, RST)
begin

if (RST = ‘1’) then
Q <= ‘0’;

elsif (CLK’event and CLK = ‘1’) then
Q <= A or (B and C and D and E);

end if;
end process;

Verilog Example #1

always @(posedge CLK, posedge RST)
if (RESET)
Q <= 1’b0;

else
Q <= A | (B & C & D & E);

To implement this code, the synthesis
tool has no choice but to infer two LUTs
for the data path, because there are five sig-
nals used to create this logic. A possible
implementation of the above code would
look like Figure 1.

If, however, this same code is re-written
for a synchronous reset, as in the following

effect this has on performance can be
severe. For example, using a fully pipelined
multiplier targeting Virtex™-4 devices
with an asynchronous reset can result in a
200 MHz performance. Changing the code
to a synchronous reset can more than dou-
ble design performance to 500 MHz.

The issues with RAMs are twofold.
Similar to the multipliers, Virtex-4 block
RAMs have optional output registers which,
when used, can reduce the clock-to-out
times of the RAMs and increase overall
design speed. These registers offer synchro-
nous resets but not asynchronous resets, and
thus cannot be used if the registers within
the code describe an asynchronous reset.

A secondary issue comes to light when
using the RAMs as a LUT or general logic.
At times, it is advantageous for both area
and performance reasons to condense sev-
eral LUTs configured as ROM or general
logic into a single block RAM. This can be
done either by manually specifying these
structures, or (in automated ways) map-
ping the portions of the logical design to
unused block RAM resources. Because the
block RAM has a synchronous reset, the
mapping of general logic can occur without
changing the specified functionality of the
design – if a synchronous reset (or no reset)
is used. If an asynchronous reset is
described, this is not possible.

General Logic
Probably the least-known effect asynchro-
nous resets have is on general logic structures.
Because all Xilinx FPGA general-purpose

32 Xcell Journal Fourth Quarter 2005

LUT4

LUT4

FDCE

CLR

CLK

D

E

A

B

C

Figure 1 – Synthesis infers two LUTs

D E S I G N P E R F O R M A N C E

examples of corrected code with reduced
area and improved performance:

VHDL Example #2

process (CLK)
begin

if (CLK’event and CLK = ‘1’) then
if (RST = ‘1’) then

Q <= ‘0’;
else

Q <= A or (B and C and D and E);
end if;

end if;
end process;

Verilog Example #2

always @(posedge CLK)
if (RESET)
Q <= 1’b0;

else
Q <= A | (B&C&D&E);

The synthesis tool now has more flexi-
bility as to how this function can exist. A
possible implementation of the preceding
code would look like Figure 2.

In this implementation, the synthesis
tool can identify that any time A is
active high, Q is always a logic one (the
OR function). With the register now
configured with the set/reset as a syn-
chronous operation, the set is now free
to be used as part of the synchronous
data path. This reduces the amount of
logic necessary to implement the func-
tion, as well as reducing the data path
delays for the D and E signals from the
previous example. Logic could have also

been shifted to the reset side as well, if the
code was written in a way that was a more
beneficial implementation.

Consider the following addition to
these examples:

VHDL Example #3

process (CLK, RST)
begin

if (RST = ‘1’) then
Q <= ‘0’;

elsif (CLK’event and CLK = ‘1’) then
Q <= (F or G or H) and (A or (B and C
and D and E));

end if;
end process;

Verilog Example #3

always @(posedge CLK, posedge RST)
if (RESET)
Q <= 1’b0;

else
Q <= (F|G|H) & (A | (B&C&D&E));

Now that there are eight signals that
contribute to the logic function, a mini-
mum of three LUTs would be needed to
implement this function. A possible imple-
mentation of the above code would look
like Figure 3.

If the same code is written with a syn-
chronous reset:

VHDL Example #4

process (CLK)
begin

if (CLK’event and CLK = ‘1’) then
if (RST = ‘1’) then

Q <= ‘0’;
else

Q <= (F or G or H) and (A or (B and C
and D and E));

end if;
end if;

end process;

Verilog Example #4

always @(posedge CLK)
if (RESET)
Q <= 1’b0;

else
Q <= (F|G|H) & (A | (B&C&D&E));

A possible implementation of the above
code would look like Figure 4. Again, the
resulting implementation not only uses
fewer LUTs to implement the same logic
function, but also could potentially result
in a faster design because of the reduction
of logic levels for practically every signal
that creates this function.

These examples are simple, but they do
illustrate our point of how asynchronous
resets force all synchronous data signals on
the data input to the register, thus resulting
in possibly more logic levels and less optimal
implementation. In general, the more signals
that fan into a logic function, the more effec-
tive the use of synchronous sets/resets (or no
resets at all) in minimizing logic resources or
maximizing design performance.

Adder Chains Instead of Adder Trees
Many signal processing algorithms perform
an arithmetic operation on an input stream
of samples, followed by a summation of all
outputs of this arithmetic operation. The

Fourth Quarter 2005 Xcell Journal 33

LUT4

FDRSE

R

S

CLK

RST

C

D

E

B

A

Q

LUT4

LUT4

FDCE

CLR

CLK

RST

F

G

A
Q

H

LUT4B

C

D

E

Figure 2 – More flexible LUT inference Figure 3 – Synthesis infers three LUTs

D E S I G N P E R F O R M A N C E

34 Xcell Journal Fourth Quarter 2005

adder tree structure is typically used to
implement the summation in parallel
architectures such as FPGAs.

One difficulty with the adder tree con-
cept is the varying nature of its size. The
number of adders is dependent on the num-
ber of inputs in the adder tree. The more
inputs in the adder tree, the more adders
you need, which increases both the number

of logic resources and power con-
sumption. Larger trees also mean
larger adders in the last stages of
the tree, which further reduces
system performance.

To reduce power consump-
tion and maintain high perform-
ance, adder trees should be
implemented as dedicated silicon
resources. But placing a number
of fixed-size adder tree compo-
nents in silicon is not efficient
because you would have to use
logic resources when the fixed
number of additions is exceeded
or even go to a larger FPGA,

thereby increasing the cost of the device.
With its columns of DSP48 dedicated

silicon, the Virtex-4 device family takes a
different approach in implementing sum-
mations. It involves computing the sum-
mation incrementally using chained adders
instead of adder trees. This approach is a
departure from any existing FPGA and is

key to maximizing performance and lower-
ing power for DSP algorithms because
both logic and interconnect are contained
entirely within the dedicated silicon.

When pipelined, performance of the
DSP48 block is 500 MHz – independent
of the number of adders. As illustrated in
Figure 5, cascading ports combined with
the 48-bit resolution of the adder/accumu-
lator allow computing of the current sam-
ple calculation, along with the summation
of all computed samples so far.

To take advantage of the Virtex-4 adder
chain structure in the RTL, simply replace
the adder tree description with an adder
chain description. This process of convert-
ing a direct form filter to a transposed or
systolic form is detailed in the XtremeDSP
Design Considerations User Guide.

Once the conversion is complete, you
may find that the algorithm runs much faster
than your application needs. In that case,
you could further reduce device utilization
and power consumption by using either

LUT4

FDRSE

R

S

CLK

B

A

C
Q

D

LUT4RST

E

F

G

H

h7(n)

h6(n)

Z-2

18

18

18

18

48 h7(n-7)

No wire shift

Y(n-10)

Slice 8

18

18

48

h6(n-6)

Slice 7

18

18

48

h5(n-5)

Slice 6

18

18

48

h4(n-4)

Slice 5

18

18

48

h3(n-3)

Slice 4

18

18

48

h2(n-2)

Slice 3

18

18

48

h1(n-1)

Slice 2

18

18

48

h0(n)

X(n)

Slice 1

18

18

Zero

48

48

No wire shift

48

No wire shift

48

No wire shift

48

No wire shift

48

No wire shift

48

No wire shift

48

48

48

h5(n)

h4(n)

Z-2

18

18

18

18

48

48

h3(n)

h2(n)

Z-2

18

18

18

18

48

48

h1(n)

h0(n)

X(n)

X(n)

X(n-2)

Y(n-6)

The final stages of the post
addition in logic are the
performance bottlenecks
that consume more power.

The post adders are
contained wholly in
dedicated silicon for
highest performance
and lowest power.

X(n-4)

18

18

18

18

48

48

Figure 4 – Inferred with synchronous reset

Figure 5 – Chaining adders provide predictable performance

D E S I G N P E R F O R M A N C E

Fourth Quarter 2005 Xcell Journal 35

folding or multi-channeling techniques.
Both techniques help implement designs in
smaller devices or allow you to add function-
ality to a design using the freed resources.

Multi-channeling is a process that lever-
ages very fast math elements across multi-
ple input streams (channels) with much
lower sample rates. This technique increas-
es silicon efficiency by a factor almost equal
to the number of channels. Multi-channel
filtering can be looked at as time-multi-
plexing single-channel filters. For example,
in a typical multi-channel filtering sce-
nario, multiple input channels are filtered
using a separate digital filter for each chan-
nel. Taking advantage of the Virtex-4
DSP48 block, you could use a single digi-
tal filter to filter all eight input channels by
clocking the single filter with an 8x clock.
This reduces the number of FPGA
resources needed by almost 8x.

Maximize Block RAM Performance
When inferring memory elements, factors
affecting performance include:

• using dedicated blocks or distributed
RAMs

• using the output pipeline register

• not using asynchronous resets

There are also a couple of lesser known
areas – HDL coding style and synthesis
tool settings – that can substantially
impact memory performance.

HDL Coding Style
When inferring dual-port block memories,
it is possible that both ports could try to
access the same memory cell at the same
time. If both ports are simultaneously writ-
ing different values at the same memory
cell, this creates a collision and the memo-
ry cell content cannot be guaranteed. But
what happens if one port reads while the
other port is writing at the same address?
Well, it depends on the target device. The
latest Virtex and Spartan™ families have
three programmable operating modes to
govern memory output while a write oper-
ation is occurring. Additional information
about these operating modes is provided in
the device user guides.

Note that the different modes affect
how the memory outputs behave and also
affect the performance of the memory. As
illustrated in the following example, your
coding style determines in which mode the
memory is operating:

// Inference of Virtex-4 memory blocks
//
// ‘write first’ or transparent mode
always @(posedge clk) begin
if(we) begin
do <= data;
mem[address] <= data;

end else
do <= mem[address];

end

// ‘read first’ or read before write mode
(slower)

always @(posedge clk) begin
if (we)
mem[address] <= data;

do <= mem[address];
end

// ‘no change’ mode
always @(posedge clk)
if (we)
mem[address] <= data;

else
do <= mem[address];

end

Add Pipeline Levels
Another way to increase performance is to
restructure long data paths made of sever-
al levels of logic, breaking them up over
multiple clock cycles. This method allows
for a faster clock cycle and increased data
throughput, at the expense of latency and
pipeline management overhead logic.
Because FPGAs are register-rich, the addi-
tional registers and overhead logic are usu-
ally not an issue.

Because the data is now on a multi-
cycle path, you must use special consider-
ations for the rest of the design to account
for the added latency. The following
example presents a coding style to add five
levels of registers on the output of a 32 x
32 multiplier. The synthesis tool will
pipeline these registers to the registers

available in the Virtex-4 DSP48 block so
as to maximize data throughput.

// 32x32 multiplier with 4 DSP48 (PIPE=5)
always @(posedge clk) begin

prod[0] <= a * b;
for (i=1; i<=PIPE-1; i=i+1)

prod[i] <= prod[i-1];
end

Nests in the Code
Try not to make too many nests in the
code, such as nested if and case statements.
If you have too many if statements inside of
other if statements, it can make the line
length too long, as well as inhibit synthesis
optimizations. By following this guideline,
your code is generally more readable and
more portable.

When describing “for-loops” in HDL, it
is preferable to place at least one register in
the data path, especially when there are
arithmetics or other logic-intensive opera-
tions. During compilation, the synthesis
tool will unroll the loops. Without these
synchronous elements, it will concatenate
logic created at each iteration of the loop,
resulting in a very long combinatorial path
that may limit design performance.

Conclusion
Recent advances in synthesis and place and
route algorithms have made achieving the
best performance out of a particular device
much more straightforward. Synthesis
tools are able to infer and map complex
arithmetics and memory descriptions onto
the dedicated hardware blocks. They will
also perform optimizations such as retim-
ing and logic and register replications.
Based on timing constraints, the place and
route tool can now restructure the netlist
and perform timing-driven packing and
placement to minimize placement and
routing congestions.

However, today (just as yesterday), there
is only so much the tools can do to maxi-
mize performance. If you need more per-
formance out of your design, then a very
efficient way to proceed is by learning more
about the target device, the synthesis tool,
and by using the coding guidelines illus-
trated in this article.

D E S I G N P E R F O R M A N C E

by Edgard Garcia
Xilinx Consultant/Designer
Multi Video Designs
edgard.garcia@mvd-fpga.com

The Xilinx® Virtex™-4 family introduced
a new high-performance concept for fast
and complex DSP algorithm implementa-
tion. The XtremeDSP™ Design
Considerations User Guide, available on
the Xilinx website (www.xilinx.com/bvdocs/
userguides/ug073.pdf), describes how you
can take advantage of the DSP48 architec-
ture and includes several examples.

When you have to develop a real DSP
application, you can of course instantiate
each DSP48 block and assign their respec-
tive attribute values to obtain the correct
behavior. But did you know you can also
infer most of the useful DSP48 configura-
tions by writing very simple RTL code?

Developing DSP algorithms in VHDL
(or Verilog) is a nice way to maintain
designs over a long period of time, but the

synthesis results must meet your perform-
ance requirements. In this article, I will
show you how to write RTL code to take
full advantage of Virtex-4 DSP48 blocks.

DSP48 Architecture
The Virtex-4 DSP48 architecture is exten-
sively described in the XtremeDSP User
Guide. Let’s start, however, with an
overview of some very important aspects of
DSP48 blocks:

• DSP48 blocks have two 18-bit inputs
to feed the multiplier. If you want to
work with unsigned data, 17 bits is
the maximum width of the multiplier
inputs. Don’t forget to expand the
unsigned data/coefficients by concate-
nating one or more ‘0’ to the most sig-
nificant bit (MSB). Similarly, if using
the adder/subtracter, its inputs and
output will have to be 48 bits or less
for signed arithmetic and 47 bits or
less for unsigned.

For the examples described in this arti-
cle, we will use signed data. You will have
to use the IEEE.STD_LOGIC_SIGNED
package.

• Another important parameter for
describing DSP behavior for Virtex-4
DSP48 blocks is that all DSP48 inter-
nal registers have a synchronous reset
(using asynchronous reset will prevent
the synthesis tool from using the
DSP48 internal registers). The reset
functionality has priority, regardless of
OpCode or other control inputs.

• It is important to note that the last
stage of the adder/subtracter can be
driven dynamically to take a 48-bit
input (from the output stage feedback
or from the DSP48 C or Pcin input)
and to add or subtract another 48- or
36-bit input (originating for most
common cases from the multiplier
output).

Writing RTL Code for Virtex-4
DSP48 Blocks with XST 8.1i

36 Xcell Journal Fourth Quarter 2005

Writing RTL code for your DSP applications is easy and efficient.

D E S I G N P E R F O R M A N C E

Basic Examples
1. Multiplier_accumulator. This commonly used function is our
first example, useful for FIR filters and other DSP functions. Here
is the source code:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL; — Signed arithmetic is used

entity MULT_ACC is
Port (CK : in std_logic;

RST : in std_logic; — Synchronous reset
Ain, Bin : in std_logic_vector(17 downto 0); — A and B inputs of the multiplier
S : out std_logic_vector(47 downto 0)); — Accumulator output

end MULT_ACC;

architecture Behavioral of MULT_ACC is

signal ACC : std_logic_vector(47 downto 0); — Accumulator output

begin

process(CK) begin
if CK’event and CK = ‘1’ then

if RST = ‘1’ then ACC <= (others => ‘0’);
else ACC <= ACC + (AIN * BIN);
end if;

end if;
end process;

S <= ACC;

end Behavioral;

This example will be synthesized into a single DSP48 block – no
other logic resource is necessary. The performance is about 180-200
MHz, depending on placement and routing.

2. Fully pipelined Multiplier_accumulator. If you need more per-
formance and less dependency on place and route tools, you can
still improve the performance of the Multiplier_accumulator. The
DSP48 blocks have internal input registers (zero, one, or two stages
for A and B inputs), as well as one selectable multiplier output reg-
ister. The following RTL code uses one level of registers at the A and
B inputs, as well as the multiplier output register:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL; — Signed arithmetic is used

entity MULT_ACC is
Port (CK : in std_logic;

RST : in std_logic; — Synchronous reset
Ain, Bin : in std_logic_vector(17 downto 0); — A and B inputs of the multiplier
S : out std_logic_vector(47 downto 0)); — Accumulator output

end MULT_ACC;

architecture Behavioral of MULT_ACC is

signal AinR, BinR : std_logic_vector(17 downto 0); — Registered Ain and Bin
signal MULTR : std_logic_vector(35 downto 0); — Registered multiplier output
signal ACC : std_logic_vector(47 downto 0); — Accumulator output

begin

process(CK) begin
if CK’event and CK = ‘1’ then

if RST = ‘1’ then AinR <= (others => ‘0’);
BinR <= (others => ‘0’);
MULTR <= (others => ‘0’);
ACC <= (others => ‘0’);

else AinR <= Ain;

BinR <= Bin;
MULTR <= AinR * BinR;
ACC <= ACC + MULTR;

end if;
end if;

end process;

S <= ACC;

end Behavioral;

This example will be synthesized by using just a single DSP
block. You can take advantage of the internal registers to greatly
improve performance to more than 400 MHz for the slowest
Virtex-4 speed grade, independent of the implementation (place
and route) tools.

3. Fully pipelined Loadable_Multiplier_accumulator. You can
improve the design further by using a loadable multiplier accumu-
lator. For more details, please refer to the class material of the Xilinx
course, “DSP Implementation Techniques for Xilinx FPGAs”
(www.xilinx.com/support/training/abstracts/dsp-implementation.htm).
Let’s modify the previous code for the load functionality:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL; — Signed arithmetic is used

entity MULT_ACC_LD is
Port (CK : in std_logic;

RST : in std_logic; — Synchronous reset
Ain, Bin : in std_logic_vector(17 downto 0); — A and B inputs of the multiplier
LOAD : in std_logic; — Active high LOAD command
S : out std_logic_vector(47 downto 0)); — Accumulator output

end MULT_ACC_LD;

architecture Behavioral of MULT_ACC_LD is

signal AinR, BinR : std_logic_vector(17 downto 0); — Registered Ain and Bin
signal MULTR : std_logic_vector(35 downto 0); — Registered multiplier output
signal ACC : std_logic_vector(47 downto 0); — Accumulator output

— 48 bit “ZERO” constant used for MULTR sign extension to 48 bits
constant ZERO : std_logic_vector(47 downto 0) := (others => ‘0’);

begin

process(CK) begin
if CK’event and CK = ‘1’ then

if RST = ‘1’ then AinR <= (others => ‘0’);
BinR <= (others => ‘0’);
MULTR <= (others => ‘0’);
ACC <= (others => ‘0’);

else AinR <= Ain;
BinR <= Bin;
MULTR <= AinR * BinR;

if LOAD = ‘1’ then
ACC <= ZERO + MULTR; — OpCode = x05

else
ACC <= ACC + MULTR; — OpCode = x25

end if;
end if;

end if;
end process;

S <= ACC;

end Behavioral;

Fourth Quarter 2005 Xcell Journal 37

D E S I G N P E R F O R M A N C E

4. Multiplier_accumulator_or_adder. This is another useful ver-
sion of the multiplier accumulator. It is useful for multiplications of
data buses of more than 18 bits (see Figure 1-18 in the XtremeDSP
User Guide). Here is the RTL code:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL; — Signed arithmetic is used

entity MULT_ACC_ADD is
Port (CK : in std_logic;

RST : in std_logic;
SEL : in std_logic;
A_in, B_in : in std_logic_vector(17 downto 0);
C_in : in std_logic_vector(47 downto 0);
S : out std_logic_vector(47 downto 0));

end MULT_ACC_ADD;

architecture Behavioral of MULT_ACC_ADD is

constant ZERO : std_logic_vector(47 downto 0) := (others => ‘0’);

signal AR, BR : std_logic_vector(17 downto 0);
signal MULT : std_logic_vector(35 downto 0);
signal Pout : std_logic_vector(47 downto 0);

begin

process(CK) begin
if CK’event and CK = ‘1’ then

if RST = ‘1’ then AR <= (others => ‘0’);
BR <= (others => ‘0’);
MULT <= (others => ‘0’);
Pout <= (others => ‘0’);

else
AR <= A_in;
BR <= B_in;
MULT <= AR * BR;

if SEL = ‘0’ then Pout <= C_in + MULT; — Opcode = 0x35 for C input
— 0x15 for PCIN input

— if SEL = ‘0’ then Pout <= ZERO + MULT; — Opcode = 0x05 for ZERO
— constant as input (Note 1)

else Pout <= Pout + MULT; — Opcode = 0x25 (Notes 2, 3)
end if;

end if;
end if;

end process;

S <= Pout;

end Behavioral;

Note that the synthesis results are not currently as optimized as
we could expect with XST 8.1. Some combinatorial logic will be
used to implement the multiplexer between C_in and Pout, while
the same function was available inside the DSP48 block. The per-
formance is still 220 MHz for the -10 speed grade, and 270+ MHz
for -12. However, Synplify Pro 8.2 provides the ideal implementa-
tion with the same RTL code.

Note 1 : Adding ZERO to Pout is equivalent to the previously
described load function.

Note 2 : You can also use the 17-bit right shift on Pout by chang-
ing this line as follows (at this time, this feature is supported only
by Synplicity Synplify Pro 8.2):

else Pout <= ZERO + Pout(47 downto 17) + MULT;

Note 3 : If for any reason you do not want to use the output reg-
ister of the multiplier, you can write:

Pout <= Pout + (AR * BR);

instead of declaring a combinatorial multiplier output. The result-
ing RTL code is also more compact.

5. Symmetric rounding. Another simple but useful example is a
multiplier with symmetric rounding (see Table 1-9 in the
XtremeDSP User Guide). Assuming that you want to round the
result of the multiplication Ain x Bin to 20 bits, the following RTL
code will be synthesized in just one DSP48 block and one slice:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;

entity ROUNDING is
Port (CK : in std_logic;

RST : in std_logic;
Ain, Bin : in std_logic_vector(17 downto 0);
P : out std_logic_vector(19 downto 0));

end ROUNDING;

architecture Behavioral of ROUNDING is

constant ZERO : std_logic_vector(47 downto 0) := (others => ‘0’);

signal AR, BR : std_logic_vector(17 downto 0);
signal MULTR : std_logic_vector(35 downto 0);
signal Pout : std_logic_vector(47 downto 0);

signal Carry_in, Carry_inR : std_logic;

begin

process(CK) begin
if CK’event and CK = ‘1’ then

Carry_in <= not(Ain(17) xor Bin(17));
Carry_inR <= Carry_in;
if RST = ‘1’ then AR <= (others => ‘0’);

BR <= (others => ‘0’);
MULTR <= (others => ‘0’);
Pout <= (others => ‘0’);

else
AR <= Ain;
BR <= Bin;
MULTR <= AR * BR;

— Note that the following 4 operands adder will be implemented as a 3 operand one :
— ZERO is a constant that allows easy sign extension for the VHDL syntax

Pout <= ZERO + MULTR + x”7FFF” + Carry_inR;
end if;

end if;
end process;

P <= Pout(35 downto 16);

end Behavioral;

This example will also work at 400 MHz for the Virtex-4 -10
speed grade device and 500 MHz for the -12 speed grade device.
Only one LUT and its associated slice flip-flop is used, as the sec-
ond flip-flop is pushed inside the DSP48 block for carry input.

All of these examples can be used in a wide range of applications.
You can see that they are very efficiently synthesized, and all of the
logic is mapped into the DSP48 blocks. The performance for each
of these DSP functions is independent of the place and route tools.

To make it easier for synthesis tools to recognize the DSP48 struc-

38 Xcell Journal Fourth Quarter 2005

D E S I G N P E R F O R M A N C E

ture, it is important to write the code in a simple way, giving your
tools the best option to pack your desired functions into each DSP48
block. For this reason, each code has been written in a single process.

The more simple and compact your RTL code, the more effi-
cient the synthesis result. Of course, depending on your synthesis
tool, other alternatives can also give you excellent results, but they
will be more dependent on the synthesis tools.

Higher Complexity Designs
What happens when you need more complex DSP functions? You
can use a similar approach for many complex DSP algorithm imple-
mentations by describing each block separately to ensure optimal
synthesis results.

You will find many other examples, most of them directly relat-
ed to those explained in their algorithmic and schematic form, in
the XtremeDSP User Guide.

Conclusion
This article is excerpted from the application note, “Virtex-4 DSP48
Inference,” which is available at www.mvd-fpga.com/en/publi_
V4_DSP48.html.

The application note includes additional examples, such as:

• Single DSP slice 35 x 18 multiplier (Figure 1-18 in the
XtremeDSP User Guide)

• Single DSP slice 35 x 35 multiplier (Figure 1-19 in the
XtremeDSP User Guide)

• Fully pipelined complex 18 x 18 multiplier (Figure 1-22
in the XtremeDSP User Guide)

• High-speed FIR filter (Figure 1-17 in the XtremeDSP
User Guide)

The application note also describes many of the important features
of DSP48 blocks supported by XST 8.1i and Synplify Pro 8.2. Map
reports, Timing Analyzer reports, and a detailed view of the FPGA
Editor show the efficiency of the synthesis and implementation tools.
You can also see how the cascade chain between adjacent DSP48 slices
is used to improve both performance and power consumption. Almost
all of these widely used configurations provide the best implementa-
tion results – in terms of resources used as well as performance.
However, some remaining limitations are also described. We expect
these few points to be resolved in future releases.

For more information, see the XtremeDSP Design
Considerations User Guide at www.xilinx.com/bvdocs/userguides/
ug073.pdf. The methodology is clearly explained and implementa-
tion results analyzed in detail, with ISE™ software tools like
Timing Analyzer and FPGA Editor.

Multi Video Designs (MVD) is a training and design center spe-
cializing in FPGA designs, PowerPC™ processors, RTOS for embed-
ded/real-time applications, and high-speed buses like PCI Express
and RapidIO. MVD as an Approved Training Partner and a mem-
ber of the Xilinx XPERTS program, with offices in France, Spain,
and South America.

Fourth Quarter 2005 Xcell Journal 39

XST Support for DSP48 Inference

XST, the synthesis engine included with the Xilinx®

ISE™ toolset, contains extensive support for inference of

DSP48 macros. A number of macro functions are recog-

nized and mapped to these dedicated resources, including

adders, subtracters, multipliers, and accumulators, as well as

combinations like multiply-add and multiply-accumulate

(MAC). Register stages can be absorbed into the DSP48

blocks, and direct connect resources are used to cascade

large or multiple functions.

Macro implementation on DSP48 blocks is controlled

by the USE_DSP48 constraint with a default value of

auto. In auto mode, XST attempts to implement all afore-

mentioned macros except adders or subtracters on DSP48

resources. To push adders or subtracters into a DSP48, set

the USE_DSP48 constraint value to yes.

XST performs automatic resource control in auto mode

for all macros except adders and subtracters. In this mode

you can control the number of available DSP48 resources

for synthesis using the DSP_UTILIZATION_RATIO

constraint, specifying either a percentage or absolute num-

ber. By default, XST tries to utilize, as much as possible, all

available DSP48 resources within a given device.

With the 8.1i release of ISE software, XST has intro-

duced further enhancements to its DSP support. XST can

now infer loadable accumulators and MACs, which are

critical for filter applications. XST can recognize chains of

complex filters or multipliers – even across hierarchical

boundaries – and will use dedicated fast connections to

build these DSP48 chains. The Register Balancing opti-

mization feature will consider the registers with DSP48

blocks when optimizing clock frequencies. Consult the

XST User Guide (http://toolbox.xilinx.com/docsan/xilinx7/

books/docs/xst/xst.pdf) for details about coding styles, and

watch the synthesis reports for specific implementation

results for your Virtex™-4 designs.

– David Dye

Senior Technical Marketing Engineer

Xilinx, Inc.

D E S I G N P E R F O R M A N C E

by Brent Przybus
ChipScope Pro Product Marketing Manager
Xilinx, Inc.
brent.przybus@xilinx.com

For years I have looked at other career
choices with envy. Pilots have an office in
the sky, traveling routes like New York to
London and Los Angeles to Tokyo.
Archeologists go on digs to such exotic
locales as Egypt, Africa, and South
America. Even cable television installers get
to visit exotic homes in the Bay Area hills.

Engineers, on the other hand, toil away
in cold, sterile labs within the bowels of a
corporate complex, trying to solve prob-
lems and bring their next engineering mar-
vel to life. As FPGA designers, most of that
time is spent running simulations, verify-
ing, and debugging designs implemented
with the latest Xilinx® FPGA technology.

I am happy to say that the days of pasty
white skin and wearing sweaters in summer
are over. Remote debugging is finally here.

Un-Tethered Debugging

40 Xcell Journal Fourth Quarter 2005

Remote debugging enables designers to configure,
debug, and verify Xilinx FPGA systems remotely.

V E R I F I C A T I O N

Preparing for Remote Debugging
If you have used ChipScope™ Pro
tools, then you understand the value of
placing ILA, VIO, IBA, and ATC2
cores within your FPGA designs to gain
access and insight into what is happen-
ing. If you have not used the ChipScope
Pro analyzer before, do not despair. The
ChipScope Pro debugging and verifica-
tion design tool allows you to debug
and verify your Xilinx FPGA designs
on-chip by following these steps:

• Instrument your design by using
either the ChipScope Pro core insert-
er or core generator. These tools
allow you to add ChipScope Pro
debugging cores to your new or exist-
ing designs. The debugging cores
come in several different flavors: inte-
grated logic analysis (ILA), integrated
bus analysis (IBA), virtual input out-
put (VIO), and the Agilent Trace
Core 2 (ATC2).

• Configure, debug, and verify your
design using the ChipScope Pro
analyzer. The ChipScope Pro ana-
lyzer runs on a standard PC run-
ning either Windows or Linux and
interfaces to the FPGA through the
JTAG port. Through the analyzer,
you can interact with the debugging
cores you have placed in your
design, setting trigger conditions,
capturing data, and displaying that
data in a convenient waveform or
list view interface similar to a
bench-top logic or bus analyzer.

Figure 1 shows how ChipScope Pro
tools are integrated into the standard
Xilinx FPGA design flow.

The latest version of the ChipScope
Pro analyzer includes remote debug-
ging capability. To use this new feature,
you need to specify a ChipScope Pro
server – a lab machine with network
access – connected to the board and
the FPGA through the JTAG port
using a Parallel IV or USB configura-
tion cable. In most cases, this is the
standard setup that has kept designers
in the lab all these years (Figure 2).

Fourth Quarter 2005 Xcell Journal 41

ChipScope Pro Core
Generator

Design
Entry

ChipScope Pro Core
Inserter

ChipScope Pro Core
On-Chip Debugging

ChipScope Pro Core
On-Chip Verification

Device
Configuration

Design
Implementation

Design Verification

Functional
Simulation

Timing
Simulation

Static Timing
Analysis

Back
Annotation

Synthesis

ChipScope
Pro

Host Computer with
ChipScope Pro Software

Target Device Under Test

User
Function

User
Function

User
Function

JTAG
Connections

Board-Under-Test

Parallel
Cable

ILA Pro

ICON Pro

ILA Pro

ILA Pro

Figure 1 - ChipScope Pro tool integration into the Xilinx FPGA design flow

Figure 2 – Typical ChipScope Pro lab setup

V E R I F I C A T I O N

Setting up and starting the ChipScope
Pro analyzer server is easy using version
7.1i or later of the ChipScope Pro tools:

• Start the server on a Windows machine
by executing:

$CHIPSCOPE/cs_server.bat

or start the server on a Linux machine
by executing:

$CHIPSCOPE/bin/lin/cs_server.sh

($CHIPSCOPE refers to the directory
path where ChipScope Pro tools are
installed on the server machine.)

• Use the following command line
option, as required:

– -port <portnumber>. Specify the
TCP/IP port number to be used by
the client and server to establish a
connection. The default port num-
ber is 50001.

– -password <password>. Protect the
server from unauthorized access. No
password is set by default.

– -l <logfile>. Specify a location for the
log file. The default location is
$HOME/.chipscope/cs_analyzer_
<portnumber>.log.

Moving Out of the Lab
With the ChipScope Pro server running
back in the lab, the next step is to run the
ChipScope Pro client software on your
remote system with a network connection,
such as a laptop with wireless access.
Setting up the client is easy from within the
ChipScope Pro analyzer software:

• Launch the ChipScope Pro analyzer
from the start menu or from the ISE
Project Navigator.

• Select the JTAG Chain > Server Host
Settings menu option. This will
launch a server settings dialog box.

• For remote operation, set the host set-
ting to the IP address of the server or
the appropriate network system name
for the server. Set the port and pass-
word setting to the same values used
on the server. If default settings were
used on the server, these settings are
already set correctly. Click OK.

• Open a connection to the JTAG
download cable you are using and start
device configuration and debugging.
The remote connection to the server
will not be established until you open a
connection to a JTAG download cable.

Note that you must use the same ver-
sion of ChipScope Pro tools on both the
client and server machines.

By running the Xilinx ISE™ tools on
the client machine, you can create and
modify your design and add ChipScope
Pro cores from the comfort of your remote
location. When you have finished imple-
menting your design and creating the con-
figuration file, simply launch the
ChipScope Pro analyzer, connect to the
server in the lab, reconfigure the FPGA,
and debug just as if you were in the lab.

Practical Applications
Beyond debugging from anywhere, there
are some very real, practical applications
for remote debug.

• Sharing resources. Xilinx FPGA
designs utilize embedded processors:
the PowerPC™ 405 hard-core or
MicroBlaze™ soft-core processor. The
designs may consume as many as
100,000 logic cells, more than 10 Mb
of blockRAM, and leverage as many as
512 XtremeDSP™ slices. Often an
entire design team works on a single
FPGA design, and at some point each
member of the design team requires
access to the FPGA. Remote debug-

ging allows the design team to share a
single board in one lab location, with
design team members accessing the lab
from offices throughout the world.

• Support fielded systems. Your product
has shipped, but there is a problem.
The field application resource is on-site
with a laptop but needs factory assis-
tance. ChipScope Pro remote debug-
ging allows the factory to access the
fielding system through the field appli-
cation engineer’s laptop connected to
the board through JTAG. The factory
can quickly uncover the design prob-
lem using ChipScope Pro cores left in
the original design; determine, imple-
ment, and test a fix; and upgrade the
system remotely from the factory.

• Move to hardware faster. The availability
of hardware sooner in the design process
can greatly accelerate the overall FPGA
design flow. Rather than spending hours
simulating a complex sequence of
events, run this portion of the design in
hardware. By using an evaluation devel-
opment board or a prototype system
with a target FPGA, you can run simu-
lations in hardware – with real system
data, at the system clock rate – and
complete analysis in a fraction of time
software simulation takes. The remote
debugging and verification solution
enabled by ChipScope Pro tools allows
you to do this from your design
machine, in the comfort of your office.

Conclusion
Remote debugging can increase productivi-
ty and the quality of the work environ-
ment. For more information about how to
use ChipScope Pro tools, visit www.
xilinx.com/chipscopepro, where you will find
ChipScope Pro documentation, links to
demo-on-demand sessions, and answers to
frequently asked questions.

42 Xcell Journal Fourth Quarter 2005

By running the Xilinx ISE tools on the client machine,
you can create and modify your design and add ChipScope Pro

cores from the comfort of your remote location.

V E R I F I C A T I O N

by Arun Thakkar
Member of the Technical Staff-1
Lucent Technologies
thakkara@lucent.com

The Optical Networking Products Division
at Lucent Technologies is involved in pro-
ducing next-generation SONET optical
networking equipment for Internet service
providers. Our current project adheres to
the OC48 standard, with serial I/O as high
as 2.5 GHz. Internal logic clock speeds can
run anywhere from 155 MHz on down,
with heavy system interface and bus traffic
on our system boards.

Our past projects have relied heavily on
HDL simulation, using VHDL models for
component modeling and bus functional
models to simulate the interface and back-
plane traffic. To accurately model the entire
system, we also added external memory
interface device models and modeled the
effects of interface trace delays. Together,
this system simulation would let us check
new design concepts in our existing and
future projects. The downside was that we
had to create HDL test benches and main-
tain them in parallel. System simulation
times could be quite long and tedious, and
there remained the unanswered question,
“Have we modeled enough to accurately
predict system behavior”?

ChipScope Pro Analyzer – Real-Time Debugging
We began using Xilinx® ChipScope™
Pro in our systems with the 6.1i software
release. In our current project, we are
using two to three ChipScope Pro ILA
cores per clock domain inserted into our
target Virtex™-II Pro XC2VP30 device.
The soft debug cores are inserted after
the synthesis stage using the ChipScope
Pro netlist inserter, and we debug prima-
rily by using the ChipScope Pro logic
analyzer. We are capturing roughly 100
transitions in any one debugging cycle,
depending on the particular problem we
are researching, and we use trigger ports
to save onboard block RAM memory.

ChipScope Pro tools let us capture
data at any point in the FPGA, while the
chip is interacting with the rest of the sys-
tem and running at operating speed. We
have been able to reduce the number of
pins on the FPGA and on the board that
were previously dedicated to verification,
since we debug directly through the
JTAG programming cable.

Uncovering Problems
One example, in which by using the
ChipScope Pro analyzer we debugged a
problem that we wouldn’t have otherwise

uncovered, was in a new revision of one of
our in-production products. At the ven-
dor’s recommendation, our manufacturer
had recently upgraded one of the system’s
external memories. Suddenly we were see-
ing degraded performance and memory
parity errors. Nothing else had changed, yet
the system stopped working. Simulation
didn’t reveal the error, but we started trac-
ing through with the ChipScope Pro tools,
in real time. By triggering on the parity
byte, we were able to discover a handshake
problem when writing data to and from
the controller. We were issuing an auto-
refresh before bank pre-charge before a
write cycle was complete. This was fine in
the older part, but the tolerances had
changed slightly in the new part.

Conclusion
We still use HDL simulation in our proj-
ects here at Lucent, but ChipScope Pro
tools have now become a vital part of our
design and verification cycle, for all of
our projects. By catching problems in
real time in the lab and by taking advan-
tage of the reprogrammability of FPGAs,
we are able to turnaround design prob-
lems in a matter of hours and get more
out of our project time.

Shorter Verification Cycles
at Lucent Technologies
Shorter Verification Cycles
at Lucent Technologies

Fourth Quarter 2005 Xcell Journal 43

ChipScope Pro real-time debugging software has reduced project verification
times for Lucent’s high-speed Optical Networking Products Division.
ChipScope Pro real-time debugging software has reduced project verification
times for Lucent’s high-speed Optical Networking Products Division.

V E R I F I C A T I O N

by Hamid Agah
Senior Technical Marketing Manager,
Design Software Division
Xilinx, Inc.
hamid.agah@xilinx.com

Howard Walker
Technical Marketing Engineer,
Design Software Division
Xilinx, Inc.
howard.walker@xilinx.com

Scott Campbell
Technical Marketing Engineer,
Design Software Division
Xilinx, Inc.
scott.campbell@xilinx.com

When Xilinx invented the FPGA in the mid
1980s, the preferred way to verify a design
was to program the FPGA in the actual sys-
tem and see if it operated properly from
both a timing and functional standpoint.

Those days are long gone.
According to a 2005 EDA study by

CMP Media, verification is one of the top
three considerations for FPGA designers. A
fast and successful verification experience is
essential to get your product to market on
time. But how do you know if your current
flow is the best choice, especially for today’s
high-density FPGAs? At a minimum, a
sound verification strategy should include
static/dynamic timing and dynamic simu-
lation. Optional advanced methodologies
such as equivalency checking and assertion-
based verification are now also available to
Xilinx FPGA users (Figure 1).

Verifying Your Logic Design
for First-Time Success
Verifying Your Logic Design
for First-Time Success

44 Xcell Journal Fourth Quarter 2005

Xilinx and its Alliance Members have the latest tools and
methodologies to support your verification requirements.
Xilinx and its Alliance Members have the latest tools and
methodologies to support your verification requirements.

V E R I F I C A T I O N

In this article, we’ll discuss improve-
ments and additions to the verification
solutions available from Xilinx and its
Alliance Program Members.

Improved Timing Analysis in ISE 8.1i Software
A complete timing verification must
include checking the FPGA design under
both the best- and worst-case operating
conditions. The worst-case conditions
occur when the voltage supply to the
FPGA is at a minimum and the tempera-
ture of the FPGA is at a maximum. These
conditions increase the internal delays of
the device, and thus increase the potential
for setup time violations. The best-case
conditions occur when the voltage supply

this methodology was sufficient for slower
system-level interface standards, the
increasing speed of today’s dual-data-rate
(DDR) source-synchronous interface stan-
dards demands a more complete verifica-
tion solution.

STA Analysis for Real-World Conditions
To provide the most accurate timing verifi-
cation, Xilinx® static timing analysis soft-
ware automatically analyzes the design
under the best- and worst-case operating
conditions. This analysis is performed
simultaneously for the both the system I/O
interface and the internal logic of the
design. The methodology uses a combina-
tion of minimum and maximum delays for
setup and hold-time analysis. In setup time
analysis, the worst-case condition occurs
when the data path delay is at a maximum
and the clock path delay is at a minimum.
Conversely, the worst-case hold-time
analysis condition occurs when the data
path delay is at a minimum and the clock
path delay is at a maximum.

To account for clock uncertainty in the
design, the Xilinx software system allows
the specification of the input jitter for each
clock. In addition to the incoming clock
jitter, the clock uncertainty because of sys-
tem jitter and the clocking system design
automatically takes into account all timing
analysis checks. Clock uncertainty increas-
es the potential for a setup time violation
by effectively decreasing the clock path
delay. In the same manner, clock uncer-
tainty increases the chance of a hold-time
violation by increasing the clock path delay.

By providing the ability to simultane-
ously model both the minimum and maxi-
mum delays of the clock and data paths,
Xilinx timing analysis software ensures the
greatest reliability of your system design
across all operating conditions (Figure 2).

ISE 8.1i Software Breaks New Ground
Although static timing analysis verifies that
the physical delays of data and clock paths
in the FPGA design will not cause setup or
hold-time violations, you must also verify
the design’s functional operation. Because
of the dynamic nature of the design, the
functional timing operation must be tested

to the FPGA is at a maximum and the tem-
perature of the FPGA is at a minimum.
These conditions decrease the internal
delays of the device and increase the poten-
tial for hold-time violations.

In addition to voltage and temperature
variations, the clock system is subject to
uncertainty because of various sources of
jitter throughout the system. Jitter can
cause the early or late arrival of a clock edge
and thus increase the chance of a setup or
hold-time error.

Traditionally, FPGA-based static timing
analysis software has only been able to ana-
lyze device operation under worst-case
temperature and voltage conditions with-
out regard to clock uncertainty. Although

Fourth Quarter 2005 Xcell Journal 45

RTL

Functional Simulation

Synthesis

Static Timing

Place and Route

Static Timing

Silicon

Timing Simulation

Gate-Level Simulation

E
q

u
iv

al
en

cy
 C

h
ec

ki
n

g

Setup Slack

Increased timing
accuracy using
minimum clock

path delays

Setup Slack

Valid Data

TCLK (Min)

TCLK (Max)

Figure 2 – Improved accuracy of static timing analysis (STA)

Figure 1 -Verification solution available to Xilinx users

V E R I F I C A T I O N

at system-level speeds.
In a manner similar to
static timing analysis,
for an accurate timing
simulation you must
take into account the
best- and worst-case
conditions due to
process, voltage, tem-
perature, and clock
uncertainty. Xilinx
ISE™ 8.1i software
breaks new ground in
dynamic timing simu-
lation accuracy by
allowing both mini-
mum and maximum clock and path delays
to be simulated simultaneously. This unique
ability ensures that setup and hold-time vio-
lations will be accurately accounted for, and
works automatically with all simulators.

Easy-to-Use Simulators from Xilinx
ModelSim Xilinx Edition III
Working with the Model Technology divi-
sion of Mentor Graphics, Xilinx has devel-
oped a customized, lower cost version of the
popular ModelSim PE simulator called
ModelSim Xilinx Edition III (MXE III)
(Figure 3). MXE III is ideal for medium-
density FPGAs with capacities as high as 2

million system gates, such as the Spartan™-
3E FPGA family. It enables you to verify the
functional and timing models of your design
and your HDL source code (for more infor-
mation, see www.xilinx.com/ise). A lower
performance version of MXE III called
ModelSim Starter is a no-charge feature of
the ISE Foundation™ toolset.

MXE III’s features and capabilities
include:

• Seamless integration with ISE software,
delivering better dynamic verification
through automated graphical test bench
generation and easy viewing in the
Project Navigator processes window

• More capacity and faster performance
than MXE-II

• Support for system Verilog and Verilog
PLI/VPI

• Excellent debug environment

• Waveform management tools

• Customizable user interface

• Batch-mode simulation

• HDL editor

• Source code debugging

• Verilog-2001 or VHDL-93 support
(single language product)

• The MXE-III Starter version offers 50%
faster HDL simulation and 20 times
more design capacity than MXE-II

• Upgrade path to more powerful simu-
lators such as ModelSim PE and SE

ISE Software SIM 8.1i
Xilinx provides an integrated full-featured
HDL simulator as an optional design
product for ISE Foundation users (Figure
4). Also included at no charge in ISE
Foundation is ISE Simulator Lite. This
starter version of ISE Simulator is ideal for
smaller devices.

ISE SIM 8.1i features include:

• Mixed-language Verilog 2001 and
VHDL-93 design support

• Simple user interface

• Export to XPower for easier device
power estimation

• Integrated wave editor for test bench
creation

• Design hierarchy, waveform, and con-
sole views

• Source-level debugging

• Command-line console with TCL
interface

• Does not require FlexLM licensing

• “Generate Expected Results” process
generates expected design output
behavior based on input stimulus

46 Xcell Journal Fourth Quarter 2005

Figure 4 – Xilinx ISE simulator provides streamlined integration.

Figure 3 – Easy-to-use Xilinx ModelSim Edition (MXE III)

V E R I F I C A T I O N

Easier Verification of Hierarchical Designs
A capability in the ISE Foundation toolset
called KEEP_HIERARCHY makes it
much easier and faster to debug hierarchi-
cal designs. This design flow not only
decreases the time it takes to run timing
simulation, but also addresses the bigger
problem of finding and resolving problems
during the debugging stage.

The idea is to maintain the hierarchy
of selected sub-modules when the design
goes through the synthesis and implemen-
tation flow and then verify these sub-
modules in timing simulation before the
entire design is assembled and verified.
Each sub-module can be written out as a
separate netlist and verified both in RTL
simulation as well as in timing simulation
with a separate associated SDF file.
Because each sub-module for a timing
netlist looks the same as the RTL version
(with the same top-level port names), the
same test benches can be used in timing
simulation that were used in RTL simula-
tion with little or no additional work.

Analysis of this methodology on typical
Virtex™-4 designs has shown that both
the simulation run times as well as the
memory requirements required for simula-
tion were considerably reduced. See the
“Design Hierarchy and Simulation” section
in the ISE 8.1i Synthesis and Verification
Design Guide for more information.

Faster Simulator
Performance for Xilinx Devices
Xilinx and its partners understand that
shorter simulation runtime is a never-end-
ing goal. Cadence NC-Sim v5.5, with its
hard-coded Xilinx library primitives, and
Mentor ModelSim SE 6.1, with ‘vopt’,
have improved simulation runtime.

Advanced Verification Methodologies
Assertion-Based Verification
Assertion-based verification (ABV) is a blend
of assertions, functional coverage, and formal
model checking technologies applicable to
both ASIC and Xilinx FPGA designs.
Assertions are explicit expressions of design
intent, capturing what a circuit structure
should or should not do. By embedding
assertions in a design and having them mon-

itor design activities, assertions improve the
observability of the design. For more infor-
mation on ABV for Xilinx FPGAs, see “Early
Defect Discovery with Assertion-Based
Verification Accelerates Design Closure,”
also in this issue of the Xcell Journal.

Equivalency Checking
EC is a static verification technology that
uses formal techniques to determine if
two versions of the same design, at differ-
ent stages of development, are functional-
ly equivalent. This offers 10 to 100 times
faster verification time and 100% func-
tional coverage, with no test vectors
required. It is also able to check for any
tool-induced bugs. EC can eliminate long
simulation runtimes when doing func-
tional checks, as code is modified to meet
your timing goals.

To use the EC flow for Xilinx devices:

1. Download the EC libraries at
www.xilinx.com/ise/partner_libraries.

2. Set up the synthesis and implementa-
tion tools to generate “formally verifi-
able” netlists by turning off
optimizations such as constant regis-
ters removal, register duplication, reg-
ister merging, and disable re-timing.

a. In Synplify Pro, use the following
variables to enable EC and write
out the automated setup file,
<deign>.vif (text):
set_option -verification_mode 1
set_option -write_vif 1

b. In DC FPGA, include
set_fpga_default -formality to
enable EC and write out the auto-
mated setup file, .svf (encrypted).

c. For ISE enable ‘netgen -ecb’ to
ensure that the <design>.svf file
includes a listing of ISE optimized
constant registers.

3. Output an EC-friendly Verilog netlist
from CoreGen. The netlist is used as a
functional model for each instantiated
CoreGen IP to successfully verify
CoreGen blocks for the post synthesis
to post-PAR check.

Here are some tips for having a successful
EC experience:

• Use CoreGen to instantiate large block
RAMs in the RTL (Figure 5)

• Turn off re-timing in the synthesis tool

• Isolate wide multipliers to a separate
hierarchy and then black box it

• Replace old instantiated components
when targeting the RTL to a new
architecture

Synplicity (Synplify), Cadence Design
Systems (Conformal), and Synopsys (DC-
FPGA and Formality) have been working
with Xilinx to enable this for you. Contact
these companies to learn more about:

• Synplicity Synplify Pro V8.0+ synthesis
with Conformal V5.0+

• Synplicity Synplify Pro V8.0+ synthesis
with eCheck V4.3+

• Synopsys DC FPGA V2005.03+ with
Formality V2005.03+

Conclusion
Verification is now one of the top three
considerations for designers. Xilinx and our
Alliance Program Partners are continually
investing to improve your verification
experience through:

• Improved timing accuracy

• Better integrated and easier-to-use tools

• Hierarchical design support

• Faster simulator performance

• New methodologies

For more information, visit support.
xilinx.com.

Fourth Quarter 2005 Xcell Journal 47

Figure 5 – Xilinx CoreGen netlist
for equivalency checking

V E R I F I C A T I O N

by Ping Yeung
Principal Engineer
Mentor Graphics Corporation
ping_yeung@mentor.com

Darren Zacher
Technical Marketing Engineer
Mentor Graphics Corporation
darren_zacher@mentor.com

When designing a system-on-chip (SoC)
using a platform FPGA for mobile, wireless,
networking, or media applications, design-
ers typically integrate many IP components
within a short period of time. By offering
advanced Xilinx® MicroBlaze™ and on-
chip PowerPC™ processors, platform
FPGAs such as the Virtex™-II Pro and
Virtex-4 families give you a head start on
integrating processor IP.

Regardless of your IP choice, market
requirements are driving the need for more
features, such that processor-based plat-
form designs are becoming more complex
– incorporating multiple processor cores
and multi-layered bus architectures. This
spiraling increase in complexity drives the
need for new approaches to platform
FPGA design and verification. The simple,
push-button flow of synthesis logic map-
ping, with verification as an afterthought,
just doesn’t cut it.

Just as design flows for platform FPGAs
have come to more closely resemble those
adopted by ASIC SoC designers – where
synthesis is closely linked to verification at
every step – so too have FPGA developers
begun to see the benefits of leveraging the
convergent synthesis and verification strate-
gies developed for complex ASIC SoCs.

Assertion-based verification (ABV) has
emerged as a major player within this con-
vergent design and verification flow.
Assertions have been used successfully for
more than a decade in microprocessor
design. But only recently has their full
potential been realized. The payoff is big
for large, complex designs, including plat-
form-based designs that contain a growing
amount of third-party and in-house IP. As
FPGAs approach the complexity and size
of larger ASICs, assertions have become
particularly useful to FPGA designers.

With the goal of examining the value
of ABV within a convergent flow that
encourages early discovery of design defi-
ciencies (hereafter referred to as defects),
we’ll recommended a few strategies for
successful design closure and explore ABV
at greater length.

Early Defect Discovery with
Assertion-Based Verification
Accelerates Design Closure

Early Defect Discovery with
Assertion-Based Verification
Accelerates Design Closure

48 Xcell Journal Fourth Quarter 2005

The convergence of design, synthesis, and verification.The convergence of design, synthesis, and verification.

V E R I F I C A T I O N

Essential Strategies for Success
Defect discovery must be consciously pur-
sued earlier in the design cycle, where the
overall pain and cost of fixing errors is much
less. Here are some recommended best prac-
tices for accelerating design closure:

• Do more timing and performance
analysis up-front. Are you willing to
wait until after your design is function-
ally verified, synthesized, and placed
and routed to find out whether your
chosen arbitration scheme can keep up
with incoming traffic? Early discovery
of throughput issues requires more in-
depth analysis of performance and tim-
ing issues throughout the synthesis
process. Before burning cycles trying to
meet timing constraints in place and
route, you must ensure that constraints
are complete. Early discovery of timing
issues also requires constraint coverage
analysis during synthesis.

• Use interactive synthesis techniques for
greater predictability. An indispensable
weapon in your FPGA design toolkit is
a capable, interactive synthesis and
analysis environment that goes from
RTL to physical implementation.
Interactive synthesis techniques allow
you to perform “what-if ” explorations
earlier in the design cycle. A robust
synthesis environment also provides
several design representations such as
high-level operators and architecture-
specific technology cells. Interactive
synthesis capabilities give you an earlier
understanding of the nature of the
design and indicate whether it will
meet specifications.

• Check HDL code early and often.
Today’s design-management tools assist
in checking code against an established
set of agreed-upon (by the design team
or silicon vendor) coding style rules.
Before burning simulation cycles, you
can use these coding style rule checkers
to catch actual defects and flag poten-
tial defects, thus bringing defect dis-
covery up-front in the design cycle.

• Implement a more effective functional
verification strategy. Synthesis tools for

tions are critical. These assertions originate
from the following sources:

• Using proprietary or standard assertion
languages, such as SystemVerilog
Assertions (SVA) and the Property
Specification Language (PSL), design
engineers can write assertions as you
implement various structures. They may
sometimes make an inadvertent mistake
in their implementations; assertions
provide critical cross-checks between
intended and actual behaviors. For
example, suppose the intended maxi-
mum value of a pointer is 48. An asser-
tion might detect that a coding mistake
exists that allows the pointer to go
beyond 48 in otherwise legal situations.

• Verification engineers can write asser-
tions from a specification of the design,
a design document, or from their per-
sonal understanding of the design.
Normally these assertions address con-
cerns at a high level and cover critical
behaviors of the design. For example,
suppose a particular DMA controller
has a channel configured to do 10
memory transfers. Before the channel is
de-allocated, the total number of trans-
fers must be exactly 10, or a serious
problem will occur. The verification
engineer can add an assertion to check
for such an event.

• Both design and verification engineers
insert protocol assertion monitors to
check for violations of the correspon-
ding interface protocols. These moni-
tors ensure that transactions between
components are properly generated
and handled correctly. EDA vendors
have developed off-the-shelf protocol
assertion monitors for common stan-
dard interfaces (such as Mentor
Graphics CheckerWare protocol mon-
itors). These monitors come with all
of their protocols’ rules encapsulated,
and are kept up-to-date to account for
protocol standards revisions. Used
with simulation, protocol assertion
monitors collect useful statistical
information. For formal verification,
they act as constraints.

platform FPGAs do more than simply
generate a technology-mapped netlist.
Best-of-breed synthesis tools contain
important analysis capabilities that
provide more insight into your design
at every stage in the cycle. These capa-
bilities can identify potential problem
areas, such as clock domain crossing
points, where you need to handle func-
tional verification delicately. Moreover,
when applying a traditional functional
verification approach (using VHDL or
Verilog test benches) to platform
FPGAs, modeling random or pseudo-
random stimuli and checking circuit
response against designer intent
becomes increasingly tedious. This is
where ABV can play a significant role.

Assertion-Based Verification
To go beyond traditional simulation-based
verification, you must improve the observ-
ability of the verification process and con-
trol of the design. This is best done using
ABV: a blend of assertions, functional cov-
erage, and formal model-checking tech-
nologies. Assertions are explicit expressions
of design intent, capturing what a circuit
structure should or should not do. By
embedding assertions in a design and hav-
ing them monitor design activities, asser-
tions improve observability. Formal model
checking (FMC) analyzes the RTL struc-
ture, characterizing the internal nature of a
design to augment control.

Because ABV creates an unlimited num-
ber of observation points (assertions)
throughout the design, it speeds debugging
by identifying errors close to or at their
source. Assertions also identify problems that
do not propagate to a primary output; thus
ABV improves design quality by exposing
bugs that might otherwise go undetected.

Assertions provide a set of properties as
targets for FMC. They also enable simula-
tion test vectors to be used by dynamic for-
mal verification (which we will explain
later) to find potential violations of a mod-
ule’s assertions.

The basic ABV methodology compares
the implementation of a design against its
specified assertions. Therefore, the quality
and comprehensiveness of a design’s asser-

Fourth Quarter 2005 Xcell Journal 49

V E R I F I C A T I O N

• Some verification tools insert assertions
into the design by analyzing the RTL
source-code structure. Solutions for
many common design problems pro-
vide the basis for this analysis, allowing
automation of the instrumentation
process. Many problems are discovered
statically, either by the tool itself (using
netlist analysis) or with formal analysis.
Other problems are detected only with
dynamic verification methods, such as
functional simulation or dynamic for-
mal verification. Examples of problems
analyzed by automatic assertion inser-
tion include synthesis-to-simulation
mismatch problems, unreachable code
or FSM states, clock domain crossing
(CDC) errors, X-semantic problems,
and CDC clock jitter.

ABV Essentials
ABV accelerates debug and improves
design quality by finding and fixing bugs
early, at or near their source.

Simulation-Based
Verification with Assertions
During functional simulation, a design’s
assertions monitor activities both inside the
design and on its interfaces (Figure 1).
Assertion violations are reported immediate-
ly; the problem need not propagate to the
design’s output ports to be detected by the
test bench. This high observability simplifies
bug triage and increases the understanding
of potential causes of discovered problems.

Formal Model Checking with Assertions
FMC is a complementary technology to
simulation and an integral part of an ABV
methodology. FMC uses mathematical
techniques to prove some assertions true
(given a set of assumptions provided by the
assertion library) and other assertions false
(by discovering counterexamples). A proof
means that FMC has explored all possible
behavior with respect to the assertion and
has determined it cannot be violated. A
counterexample shows the circumstances
under which the assertion is not satisfied.
FMC examines all possible states of a
design to determine if any of them violate
a specified set of properties.

Dynamic formal verification, a new
FMC technique pioneered by the 0-In busi-
ness unit of Mentor Graphics, overcomes
the memory and computational limitations
of static formal verification by amplifying a
given simulation trace. This enhances ABV
by enabling FMC at both the sub-block and
chip levels, using static and dynamic formal
techniques, respectively (Figure 2).

Given a set of target behaviors, expressed
as assertions or coverage points, dynamic
formal verification uses formal analysis of
“interesting states” along the simulation
trace to determine if it is possible to reach
any of the coverage points or violate any
assertion. For functional verification, an

“interesting state” is one where a new or rare
design behavior has occurred.

Consider a bug that occurs many cycles
deep into a simulation. This particular bug
might occur only if a particular FIFO in the
design is full and a particular FSM is in state
FOO. With simulation, it is possible that a
test will manage to fill up the FIFO, while
the same or another test can also get the FSM
into state FOO. To get exactly the right com-
bination of random stimuli for both events to
occur may be a low-probability event.

With dynamic formal verification, from a
simulation state where the FIFO is full, for-
mal analysis examines all possible states lead-
ing up to and beyond that point in time,

50 Xcell Journal Fourth Quarter 2005

µC

PCI
Bridge

SDRAM
Controller

Ethernet
Controller

Encryption
Engine

Checker

B
us

B
us

RAM RAM

RAM RAM

DMA

DMA

P
C

I B
us

P
H

Y
S

D
R

A
M

Exercise

Bug Bug

PCI
Bridge

Static Formal
Verification

Exhaustive

SDRAM

Ethernet
Controller

Encryption
Engine

Checker

B
us

B
us

RAM RAM

RAM RAM

DMA

P
C

I B
us

P
H

Y
S

D
R

A
M

MAMA

Confirm

Controller

Dynamic Formal
Verification

Locally Exhaustive

Simulation Test Case

Figure 1 – Simulation-based verification with assertions

Figure 2 - Formal model checking with assertions

V E R I F I C A T I O N

Fourth Quarter 2005 Xcell Journal 51

identifying and reporting the particular
sequence that leads to the state that manifests
the bug. Thus, dynamic formal verification
coupled with constrained random stimuli
uncovers a bug that would have otherwise
required additional test bench code to detect.

Without dynamic formal verification,
you would have to know that a potential
bug is lurking and modify the stimulus
constraints in an attempt to guide the test
to the right set of states. In actuality,
dynamic formal verification can amplify
any single scenario into 10,000 or more
effective tests. With this in mind, the actu-
al set of constraints for the test bench can
be much simpler because the constraints do
not need to accommodate the fine-grained
tweaking discussed above, saving the sub-
stantial time it takes to conceive and code
such elaborate constraint environments.

Interface Protocol Monitors
Interface protocol monitors allow devices in
platform-based designs to be isolated and
verified. In any good processor-based design,
every component must communicate cor-
rectly with the available interfaces. Protocol
monitors check for violations of the corre-
sponding interfaces at the block or chip level.

A protocol monitor includes assertions
to enforce the protocol rules. It ensures that
transactions between components are
properly generated and handled correctly.
During simulation or formal verification,
incorrect protocol transactions will be
identified at the source.

For hardware-related issues, an ABV
methodology using the CheckerWare asser-
tion library can improve defect discovery in
processor-based platform FPGA designs.
Besides checking for violations during sim-
ulation, CheckerWare protocol monitors
collect functional coverage and statistical
information and act as constraints for for-
mal functional verification. Monitors
affirm the transactions performed, high-
light “holes” in the regression suite, and
audit the quality of pseudo-random stimu-
lus generation environments.

Hard-to-Verify Structures
As processor-based designs become more
complex, components become buried so

deeply in designs that it is difficult to con-
trol and test them effectively. For example,
in any multi-layered bus architecture, mul-
tiple masters can talk to multiple slaves
concurrently. This capability increases
overall system bandwidth, but it also
increases verification complexity.

To tackle these hard-to-verify structures,
you can capture design intent with assertions
and checkers and embed them in the RTL
code. The embedded assertions automatical-
ly check for incorrect behavior resulting from
errors in the RTL code itself, catching design
problems locally without manual interven-
tion by the designer or verification engineer.

Embedded assertions also allow you to
locate the source of problems faster. In a
traditional verification flow, errors detected
during simulation are time-consuming to
trace to the originating problem because
there are many possible causes for each fail-
ure symptom. For instance, if multiple
DMA channels are set up to transfer data
from several interfaces to memory, you may
detect an error in the memory data at the
end of the test, but it is difficult to track
down the exact transaction that produced
the data error. Using assertions, you can
quickly identify the exact time of the data
corruption and the hardware resources
involved with the problem.

Conclusion
The higher capacity and complexity of
modern platform FPGAs has opened up
unprecedented opportunities for compa-
nies, but it has also created increasingly
tough challenges for designers. Adopting –
and adapting to – strategies that leverage a
convergent design, synthesis, and verifica-
tion flow for earlier defect discovery can
prove beneficial for FPGA engineering
teams in terms of reduced iterations and
faster design closure.

ABV accelerates debugging by finding
and fixing bugs early, at or near their
source, and improves design quality while
reducing development costs by discovering
errors that would otherwise go undetected
until after tape-out.

For more information on advanced ver-
ification methodologies from Mentor
Graphics, visit www.mentor.com/fv.

Xilinx Events
and Tradeshows
Xilinx participates in numerous trade
shows and events throughout the year.

This is a perfect opportunity to meet our
silicon and software experts, ask questions,

see demonstrations of new products,
and hear other customer success stories.

For more information and the current
schedule, visit www.xilinx.com/events/.

Worldwide Events Schedule

North America

Oct. 12-13 Denali Memcon
Santa Clara, CA

Oct. 17-20 MILCOM 2005
Atlantic City, NJ

Oct. 18-20 NSDC 2005
San Jose, CA

Oct. 24-27 GSPx 2005
Santa Clara, CA

Oct. 24-27 Storage Networking World
Orlando, FL

Oct. 25 FPF 2005
San Jose, CA

Nov. 15-16 SDRF 2005
Anaheim, CA

Jan. 5-8 CES 2006
Las Vegas, NV

V E R I F I C A T I O N

by Philippe Garrault
Technical Marketing Engineer
Xilinx, Inc.
philippe.garrault@xilinx.com

Apart from the devices we proudly display
in our cubicles here at the factory (because
they represent the fruits of a lot of labor),
FPGAs usually end up on printed circuit
boards (PCBs).

Closing on a pin assignment that will
meet requirements from both the PCB and
FPGA environments is becoming more
challenging. On one side of the interface,
ever-increasing FPGA performance, densi-
ty, and I/O count are placing tighter board
constraints on the layout of the signal to
and from the FPGA. On the other side,
timing, congestion, and signal integrity of
ever-faster signals on the PCB are placing
constraints on FPGA pin assignment.

The latest EDA survey conducted by
EE Times tends to reflect this challenge.
Two-thirds of respondents said that their
latest design uses two or more program-
mable devices. They also selected “getting
the FPGA to work on the PCB” as the sec-
ond most challenging part of FPGA
design projects.

Until recently, very few tools or process-
es existed to assist with FPGA pin assign-

ments, but this is changing. In this article,
I’ll look at the causes of pin assignment
changes in today’s design environments,
describe the implications of such changes,
and review the different tools available to
simplify and automate FPGA pin assign-
ment closure.

The Need for FPGA Pinout Changes
There are many good reasons to modify the
FPGA pinout throughout the system design
process. The flowchart in Figure 1 presents
a typical design flow, with an emphasis on
FPGA pinout closure and the sources for
these changes. It clearly shows many areas
where changes may occur; however, these
are introduced by three specific sources:

1. Pinout changes because of design flow
constraints. With today’s highly compet-
itive and constantly evolving electronic
markets, it has become critical for com-
panies to shorten design cycles so as to
react faster to market demand changes.
Therefore, product development is par-
allelized wherever possible. This goes for
FPGA and PCB design processes too.
The system architect defines an initial
list of interface characteristics, which
PCB and FPGA designers use to start
their design. This assignment is later
refined (that is, changed) as both the

PCB and FPGA teams progress with
product development. Additionally, mar-
ket changes throughout the development
cycle may require changes to the pinout,
such as adding support for a new proto-
col or adding a feature at the last minute.

2. Pinout changes because of PCB con-
straints. Because of form-factor restric-
tions or board cost control, the available
real estate on the board may be limited.
In such cases, using the programmabili-
ty and flexibility of the FPGA pinout
can help solve PCB congestion or rout-
ing problems. Some of the FPGA fea-
tures you can use include:

• Swapping pins to untangle nets on the
board. This diminishes the number of
vias needed and may reduce the num-
ber of layers. Reducing the number of
layer changes a signal encompasses will
also improve its signal integrity and
electromagnetic emissions.

• Adjusting I/O properties to augment
board signal integrity by lowering the
signal drive strength or slew rate.

• Using the programmable internal ter-
minations to save on discrete compo-
nent costs or to save board space in
congested areas.

Simplifying FPGA Pin Assignment ClosureSimplifying FPGA Pin Assignment Closure

Fourth Quarter 2005 Xcell Journal 53

When integrating FPGAs on printed circuit boards,
you have a myriad of tools from which to choose.
When integrating FPGAs on printed circuit boards,
you have a myriad of tools from which to choose.

P R O D U C T I V I T Y

3. Pinout changes because of FPGA con-
straints. In turn, FPGAs impose con-
straints on the design of the PCB, which
may require pinout changes as the imple-
mentation progresses. These pinout
changes are because of:

• Timing. Margins on some signals
going into or out of the device may be
tight enough that only a limited set of
package pins will work.

• Dedicated/special-purpose pins.
Because only a subset of package pins
can be programmed to function as spe-
cial-purpose pins (such as global or
regional clocks or programming pins),
this places constraints on the board to
route signals to these capable I/Os.

• Voltage/termination compatibility.
FPGA I/Os are grouped in banks,
with all pins in a particular bank shar-
ing power and reference voltages. This
means that once a particular voltage is

Implications of Pin Assignment Change
Given the reasons I have discussed, it is
almost certain that the FPGA pinout will
change during the system design process.
But what implications – in terms of time
and effort – do these changes have on both
the FPGA and PCB environments? What
steps are necessary to verify that both envi-
ronments are in sync and that constraints
on either side are met?

From the FPGA side, after each pinout
change you will need to update the user con-
straint file (.UCF) and verify that the inter-
nal timing constraints are met. You can also
run PACE and SSO calculations to verify the
assignment’s I/O banking or SSO guidelines.

From the PCB side, you will need to
update the schematic and layout symbols fol-
lowing a pinout change. You may also want
to run the DRC to ensure that electrical and
physical properties of the changed signal(s)
pass the constraints. You can also run signal
integrity analysis to verify that timing and
amplitude margins are still adequate.

The important step is to communicate
pin assignment changes to the other envi-
ronment. Historically, PCB and FPGA
design environments have been pretty iso-
lated, with only limited communication
channels between them. As I will explain in
the next section, there are now tools and
options available that make synchroniza-
tion and data transfer far less cumbersome
and time-consuming.

Available Tools and Processes
Now that you know that FPGA pin map-
ping will change, and you understand the
frequency and implication of such changes
in both FPGA and PCB designs, what are
your options to minimize the burden of
incorporating these changes? How can the
pin mapping be propagated between envi-
ronments in an automated fashion so that
no data gets lost in translation? How can
this be done quickly so that you can iterate
pinout changes until a solution satisfactory
to both the PCB and FPGA teams is found?

Within the FPGA Environment
The PACE (Pin and Area Constraint
Editor) program allows you to graphically
assign design signal names to package pins.

used in this bank, only I/Os with
compatible voltage can be assigned in
the same bank. This too may force you
to select pins on the FPGA package
that are not optimal from a PCB
routing standpoint.

• Simultaneous switching outputs (SSO).
To ensure that signals driven by the
FPGA will meet I/O standard electrical
characteristics, Xilinx publishes a rec-
ommended maximum number of SSOs
per area of the device. You might have
to scatter pins across different areas if
you exceed these recommendations.

• Device decoupling circuits. As with
any other IC on the board, FPGAs
require certain characteristics for the
power delivery system, which includes
adding local decoupling networks (dis-
crete components) to supply power to
the circuit (the voltage regulator is typ-
ically unable to respond to rapid device
demand changes).

54 Xcell Journal Fourth Quarter 2005

change

PCB

Design Team

FPGA

Design Team

Design

Creation

To accommodate design changes

• I/O locations edits

• I/O properties edits

• Signals add/remove

Design

Implementation

Initial pinout

Incremental changes

Incremental change

Final Pinout

System Architect

closure

InputsInputs

UCF

For place and route, timing and

floorplan closure

• I/O locations edits

• I/O properties edits

• Signals add/remove

Design

Entry

To accommodate design changes

• I/O locations edits

• I/O properties edits

• Signals add/remove

PCB

Layout

Netlist

For place and route, timing or signal

integrity closure

• I/O locations edits

• I/O properties edits

Specification

change

FPGA

Constraint File

Schematic

and Layout

Symbol

FPGA

Constraint File

Schematic

and Layout

Symbol

Schematic

and Layout

Symbol

FPGA

Constraint File

Figure 1 – Typical pin assignment closure process

P R O D U C T I V I T Y

PACE also presents a die view with a graph-
ical representation of the FPGA internal
logic. Thus, you can assign pins close to the
driving logic while also being mindful of
the location recommendations from the
PCB designer. You can enter pin properties
for I/O standard, drive, and slew rate. The
graphical view easily identifies special-pur-
pose pins such as global or region-
al clocks. As illustrated in Figure
2, PACE also performs voltage
compliance and SSO checks so
that the pin assignment is correct
by construction.

This tool proves valuable at dif-
ferent stages in the design process.
You can create a pin assignment
from scratch or read in the signal
names from a synthesized netlist.
After place and route, you can
interactively adjust the pin assign-
ment to satisfy the implementation
or PCB tool constraints. PACE
generates a Verilog module or
VHDL entity, along with a pinout
file that can be loaded in most
PCB tools to generate and update
schematic and layout symbols.
PACE also reads pin files from the
PCB tool and generates a UCF
constraint file for ISE™ software.

Another tool worth mention-
ing here is DesignF/X from
Product Acceleration. With this
application, you define the I/O
properties (standards, drive
strength) and general area of the
package on which your interfaces
will be placed. The tool will then
place every I/O so as to facilitate
PCB routing, while making sure
the FPGA banking, clocking,
and SSO rules are obeyed.

Within the PCB Environment
Your favorite PCB design tool likely has a
wizard or some documented process to
assist with the creation and maintenance of
your FPGA schematic and layout symbols.
There is probably an assisted way to update
these symbols after a pinout change. Finally,
to assist with high-pin-count devices, there
is also an option to fracture symbols onto

multiple sheets to simplify documentation
and the connectivity process.

FPGA/PCB Co-Design Tools
Tools designed to bridge the FPGA and
PCB environments have recently debuted,
with their feature lists continuously
expanding. Shown in Figure 3, programs

such as Mentor I/O Designer (although
not the panacea, because they do not yet
understand all of the FPGA and PCB con-
straints related to pin assignment) already
go a long way toward simplifying and
accelerating FPGA pinout closure. From a
single environment, you can:

• Automate the synchronization of both
environments after a pinout change.

The program will update the Xilinx
UCF file and schematic and layout
symbols. This greatly reduces manual
and error-prone data entry and the
ensuing verification process to make
sure that both the FPGA and PCB
environments are in sync.

• Assign or swap pins from a
graphical view of the FPGA
package. Like PACE, it will
perform DRCs to ensure that
the pin assignment does not
violate any device rules.

• Assign or swap pins from a
graphical view of the PCB.
Visualizing the physical
location of the other com-
ponents the FPGA is inter-
facing provides you with
information you can use to
assign pins in a manner that
will reduce wire crossover on
the board and simplify the
FPGA breakout. This can in
turn lead to saved design
time (PCB router iterations)
and money (better use of
board real estate, reduced
layer, or via count).

Conclusion
Using traditional spreadsheet-
based approaches, it is becoming
more cumbersome to close on
programmable device pinout,
because both FPGA and PCB
environments impose ever-tight-
ening or sometimes conflicting
constraints. Manual and time-
consuming data entry and verifi-
cation to ensure synchronization
of both environments some-

times results in designers creating subop-
timal PCBs, or not taking advantage of all
of the power and flexibility of the FPGA.
Thankfully, there is a growing set of tools
and techniques that FPGA and EDA
companies are putting in place to assist
you with pinout data creation, manage-
ment, and synchronization. Check out
these tools, as they may help make better
use of your time.

Fourth Quarter 2005 Xcell Journal 55

Figure 2 – PACE pinout export to PCB tools

Figure 3 – PCB wire uncrossing within Mentor I/O Designer

P R O D U C T I V I T Y

by Matt Klein
Sr. Staff Engineer, Applications Engineering,
Advanced Products Division
Xilinx, Inc.
matt.klein@xilinx.com

Managing your system power within budg-
et is essential to maintain reliability in your
system. Failure to do so may cause compo-
nents to break down and reduce reliability.

The semiconductor industry’s rapid
move toward 90 nm silicon processes bene-
fits the performance and cost aspects, but
places enormous pressure on power budg-
ets. As transistor sizes decrease, leakage cur-
rent (and hence static power) increases
exponentially. Dynamic power also increas-
es, with increasing system speed and larger
design density, but in a more linear fashion.

Today, many designs have 50/50 static
and dynamic power dissipation. According
to International Technology Roadmap for
Semiconductors (ITRS) projections, static
power is increasing exponentially at every
process node; thus, innovative process tech-
nologies are imperative.

With the adoption of FPGAs in more
markets and systems every year, driven by
increasing performance/density and
decreasing price, FPGA power consump-
tion within the entire system is becoming
critical. Leading FPGA vendors are already
adopting new techniques to mitigate static
and dynamic power consumption.

Power Consumption Considerations
The amount of power being consumed in
the system is very important, and FPGAs
(often used for system integration func-
tions) make up the majority of power con-
sumed in these systems. A given system or
individual components usually have a
power budget, which falls into two major
areas. The first area is a simple practical
one, which is to accommodate the power
capacity of the supplies used in a design to
meet system power needs. The second area
is about thermal concerns, which you need
to understand to keep the system working
within its various components’ tempera-
ture specifications. To this end, it is impor-

tant to know where power consumption
comes from in the FPGAs you choose and
how you can optimize it.

Working Within a Power Budget
As mentioned, the power budget arises
because of power consumption and ther-
mal concerns. Here is a typical example: a
board has a power budget of 20W with a
normal operating environment of 10°C to
40°C. Under conditions of a failed fan(s),
ambient air above certain components may
rise above 70°C. Many components’ man-
ufacturers have operating conditions that
range as high as 85°C in junction tempera-
ture (for commercial grade) and 100°C for
industrial grade parts. Using Xilinx®

ISE™ XPower or Web-based power esti-
mation tools, you can see where power
consumption will fall and if you will need
to optimize your FPGA’s power consump-
tion. It is also important to learn what con-
sumes power in the FPGA and what
methods of design optimization may be
available to help reduce consumed power.

Power Considerations
in 90 nm FPGA Designs
Power Considerations
in 90 nm FPGA Designs

56 Xcell Journal Fourth Quarter 2005

Learn how to design for reduced power with Virtex-4 FPGAs.Learn how to design for reduced power with Virtex-4 FPGAs.

P R O D U C T I V I T Y

Where is Power Consumed in the FPGA?
There are two primary areas of power con-
sumption in FPGAs. Static power comes
from transistor leakage; dynamic power
comes from voltage swing, toggle rate, and
capacitance. Both are important factors in
meeting a power budget and power opti-
mization. It is therefore important to know
what each factor is and how it varies with
different operating conditions.

Static Power
Static power is power consumed by transis-
tors due to leakage. This leakage is now sig-
nificant for 90 nm devices. To get higher
performance from the transistor, you need
to lower the voltage threshold, (VT) of the
transistor, which also increases leakage.

Leakage of the 90 nm transistors varies
strongly with process: the VT of the transis-
tors varies because of doping, and the gate
length varies because of lithography. This
can produce strong changes in transistor
speed and leakage. Reduced VT or gate
length both increase leakage and speed,
while the converse is also true. The varia-

present, the absolute leakage in Virtex-4
FPGAs is about one-third that of compet-
ing high-performance 90 nm FPGAs.

Dynamic Power
Dynamic power is power consumed by
transistors and traces that are toggling. The
effect, simply put, is from changing an
internal voltage from a logic “0” to a logic
“1” (or vice versa) and charging a capaci-
tance to that voltage. The more often this is
done, the more power consumed. In the
FPGA, transistors are used for logic and
programmable interconnects between
metal traces. The capacitance that we are
talking about is transistor parasitic capaci-
tance and metal interconnect capacitance.

The formula for dynamic power is:

PDYNAMIC = nCV2f
where n = number of toggling nodes,
C = capacitance, V = voltage swing, and
f = frequency.

All nodes in the FPGA consume power
through a combination of charging tran-
sistor parasitic capacitance and metal
interconnect capacitance. The latter
depends on the length of routes in the
FPGA, while net node capacitance is
determined by the number of transistors
that are switching. Tighter logic packing
will reduce the number of switching tran-
sistors and minimize routing lengths,
which will reduce dynamic power.

Figure 2 shows the variation of dynam-
ic power with voltage swing and core volt-
age, VCCINT. Process and temperature cause
little variation in dynamic power. Taken
together, their effect is less than 5-10%.

Lowering Design Power by
Changing the FPGA Environment
To optimize the power consumption of a
given design, there are certain things that
you can do independent of the design con-
tained in the FPGA. Knowing the environ-
ment is therefore important.

Temperature
Controlling temperature can help reduce
static power. A reduction in junction tem-
perature from 100 °C to 85 °C will reduce
static power by ~ 20% (as shown earlier in

tion in leakage and static power is about 2
to 1 between worst-case and typical process.

Leakage and static power are also influ-
enced strongly by core voltage, VCCINT,
with variations that go approximately as
the square and cube, respectively, of
VCCINT. Static power shows a ~15%
increase, with only a 5% increase in
VCCINT. Leakage is very strongly influ-
enced by junction (or die) temperature, TJ.

Because each of these factors – process,
voltage, and temperature – have a strong
effect on leakage and static power of the
FPGA, it is important for you to under-
stand them and how they might influence
total power consumption of the FPGA or
ASIC. Gate-to-substrate leakage is also
part of total leakage, but is not highly
temperature-dependent.

Figure 1 shows the variation in transistor
leakage and static power in 90 nm FPGAs
due to process, voltage, and temperature.

Seeing the increasing transistor leakage
when moving toward a high-performance
90 nm FPGA, Xilinx IC designers chose to
adopt the use of a third gate-oxide thick-
ness in the transistors of the newest Xilinx
Virtex™-4 FPGAs. In previous FPGAs
and ASICs, only two oxide (dual-oxide)
thicknesses exist: a thin oxide for core tran-
sistors and a thick oxide for I/O transistors.
The use of a third middle thickness of
oxide (triple-oxide) and higher VT in a por-
tion of the transistors of Virtex-4 FPGAs
allows for a dramatic reduction in overall
leakage and static power compared to other
competitive FPGAs, which do not use
triple oxide. So although variations with
process, voltage, and temperature are still

Fourth Quarter 2005 Xcell Journal 57

2.0

1.5

1.0

0.5

0
Faster Slower

1.4

1.2

1.0

0.8

0.6
Faster -5 0 +5 Slower

7.0

5.0

3.0

1.0

0-40 -20 20 40 60 80 100 120 140

Transistor Speed Variation
with Process

R
el

at
iv

e
Le

ak
ag

e
C

ur
re

nt
 o

r
St

at
ic

 P
ow

er

% Change in VCCINT Junction Temp oC

Typical

Leakage Current
Static

 Power

ICCINTQ = IS-->D + IGATE

Gate

Source Drain

I C
CI

NT
Q

I S-
->

D

IGATE

S-->D

G
ATE

VCCINT Variation Dynamic Power
from Nominal Change

-10.0% -19.0%

-5.0% -9.8%

0.0% 0.0%

5.0% 10.3%

10.0% 21.0%

Figure 1 – Leakage and static power variations with process, voltage, and temperature

Figure 2 – Variation in dynamic power
due to core voltage variation

P R O D U C T I V I T Y

Figure 2). Even though the static power of
the Virtex-4 FPGA is already low compared
to other 90 nm FPGAs, reducing it by
another 20% is valuable, since in some
designs static power of the FPGA represents
a sizeable portion (30-40%) of the total
power budget. The reduction in junction
temperature can be achieved by increased
airflow and larger heat sinks, which will
transfer heat away from the FPGA, reduc-
ing junction temperature. The reduction in
junction temperature also has the added
benefit of increasing reliability.

Voltage
Keeping core voltage at or below nominal
will reduce static and dynamic power. Static
and dynamic power consumed at the core
voltage, VCCINT, is often the largest power
consumer in the FPGA. FPGAs are usually
specified to be able to run and meet per-
formance with power supply voltage within
+/- 5% of nominal. Figure 2 shows that a +/-
5% variation in VCCINT causes a ±15% and

±10% variation in static and dynamic power,
respectively. To the extent that the VCCINT

power supply can be specified more tightly,
you can also set it to be at or even slightly
below nominal rather than being able to have
a worst case that is 5% above nominal.

Lowering Design Power
by Changing the Design
To make FPGA design-related tradeoffs in
power consumption, it is important to
know where you should start. Xilinx has
several design tools that can help you get
an early or detailed estimate of design
power consumption.

Based on your estimates of design size
(logic and flip-flops), operating frequency,
toggle rates, embedded block utilization,
and environment conditions such as tem-

perature, the Xilinx Web Power
tool shown in Figure 3 allows
initial estimates to be made on
the power consumption of a
given design. It does not rely on
detailed information about the
design such as exact routing,
placement, and utilization.

The XPower tool included
with all configurations of ISE
software is a detailed power
analysis program that allows
you to input stimulus vectors
for the design. Along with the
information from the actual
routed and placed design, the
tool calculates power con-
sumption much more accu-
rately, as shown in Figure 4.

FPGA Design
Techniques to Reduce Power
Several design-specific tech-
niques can also reduce power
consumption. These include
constraining logic to a small
area where possible, setting
synthesis flags to minimize
area, and minimizing layers of

logic. Pipelining is also a good technique
because it allows a higher timing constraint
to be set, which allows reduction of capaci-
tance and thus dynamic power reduction.

Setting Placement
and Timing Constraints
Floorplanning the design properly reduces
dynamic power. ISE Floorplanner allows
you to create placement constraints. A
more sophisticated floorplanning tool from
Xilinx called the PlanAhead™ design tool
allows you to observe hierarchy in a design
and group sets of related logic into small
areas. Using the placement and grouping
constraints reduces the physical area, allow-
ing you to achieve higher performance
while minimizing routing capacitance and
reducing dynamic power consumption.

Other techniques include constraining
timing in a design. Synthesis tools as well as
ISE routing and placement tools allow you
to input timing constraints. If you raise the
target timing constraint – especially the
clock target – the router will try harder to
meet it through more aggressive placement
and routing efforts. The net effect is to min-
imize routes, which reduces routing power.

Other Partial Shutdown or
Reprogramming Methods
Other commonly used design techniques
can help reduce dynamic power consump-
tion. One of these techniques is to use
clock multiplexing. This entails turning off
sections of the FPGA. A hardware feature
in the Virtex-4 FPGA and its predecessors
is a clock gating block, which allows a
smooth way to turn off or on a global clock
net. Better than clock enables on flip-flops,
this method allows the entire large toggling
clock net to be gated off, which saves power
on the net and on the flip-flops.

Some types of designs, especially those
used in battery-type applications, only need
to consume power at certain times. In these
applications, you can turn off clocks and
lower the core voltage to the minimum

58 Xcell Journal Fourth Quarter 2005

Figure 3 – Xilinx Web-based power estimation tools

Figure 4 – ISE XPower power estimation tool

Xilinx has several design tools that can help you get an
early or detailed estimate of design power consumption.

P R O D U C T I V I T Y

Fourth Quarter 2005 Xcell Journal 59

level that still allows FPGA data retention.
In the Virtex-4 device, this is 0.9V. At this
level, static power is reduced by greater
than 60% when compared with the nomi-
nal 1.2V level.

A way to shrink the FPGA size required
for a given set of tasks is to use the dynam-
ic reconfigurability port, or DRP, which is
available in Virtex-4 and other Xilinx
FPGAs. If there are several functions that
don’t need to coexist, this port allows
reloading only a portion of the FPGA. In
doing so, you can choose a much smaller
FPGA, which reduces static power.

Use of Embedded Blocks
Another method of reducing power con-
sumption is through the use of embedded
blocks. Although it is more work in some
cases to instantiate special blocks, Virtex-4
FPGAs have a number of pieces of hard IP,
which are essentially ASIC gates. Some of
these functions are in fact automatically
synthesized by some of the modern synthe-
sis tools. These new blocks have between
5x and 20x lower power than programma-
ble logic and programmable interconnect
implementations. The embedded blocks
reduce static power by not having extra
transistors (as in programmable logic) and
by not using programmable interconnect
transistors. They reduce dynamic power by
using only metal interconnects versus metal
and programmable interconnects; reducing
trace lengths; reducing extra node capaci-
tance because of lack of pass transistors;
and minimizing layers of logic.

Some of these blocks include the
following:

• PowerPC™ – embedded high-per-
formance processor

• DSP – XtremeDSP™ slice, a high-
performance sophisticated multi-
function arithmetic and logic block

• SSIO – New ChipSync™ block avail-
able in every I/O pin reduces logic cell
counts for source-synchronous I/O
designs

• Embedded Ethernet MAC(s) – no
need to use logic and interconnect for
MAC functions

• FIFO – SmartRAM memory includes
built-in FIFO controllers

• SRL16 – Allows multiple cascade flip-
flops to be used without programmable
interconnects

Power-Based Routing Optimization
Another exciting tool available in the 8.1i
release of ISE software allows the optimiza-
tion of a design for power consumption.

This initial release allows automatic capac-
itance minimization without the need for
you to enter faster timing constraints.

Figure 5 shows testing results of this
new interconnect capacitance reduction. It
is estimated that interconnect capacitance
is approximately two-thirds of the dynamic
power, so this improvement can be valuable
to reduce dynamic power.

Future releases of ISE software will offer
more power-optimization enhancements,
including power-optimized synthesis and
power-optimized placement.

Conclusion
It is very important to know the system
power budget and operating environment.
Understanding where various forms of power
consumption come from allows you to adjust
the FPGA environment and design character-
istics to minimize power consumption and
successfully meet a given power budget.

FPGA Family Average Maximum %
Reduction Capacitance

Capacitance Reduction

Spartan-3 11% 21 %

Virtex-4 6 % 9.5 %

Virtex-II Pro 13 % 18 %

Figure 5 – Interconnect capacitance reduction
using power-based routing optimization

in ISE 8.1i software

P R O D U C T I V I T Y

by David W. Blevins
Staff Software Marketing Engineer
Xilinx, Inc.
david.blevins@xilinx.com

Xilinx® device architectures include several
configurable functional blocks – including
clocking, digital signal processing, and
high-speed I/O blocks – that provide you
with advanced functionality. Typically,
these blocks are fairly complex in their
operation and yet very flexible, so parame-
terizing them for the desired behavior can
be a daunting and time-consuming task if
done by hand.

The architecture wizards found in the
ISE™ Foundation™ design environment
can streamline the process of customizing
such blocks. There are several wizards avail-
able; each one leads you through a
sequence of screens that allows you to pre-
cisely define the behavior of the block at
hand. Each screen has built-in design rule
checking that ensures that the result will be
“correct by construction” – that is, that the
combination of selections made is a legal
configuration of the target block.

After selecting “Finish” on the final
screen, the wizard creates a customized
block definition file (filename.xaw). ISE
Foundation software then translates that
definition into a HDL description of the
block and creates a corresponding HDL
instantiation template that you can then
use in your design.

Using the ISE Foundation
Architecture Wizards
Using the ISE Foundation
Architecture Wizards

60 Xcell Journal Fourth Quarter 2005

Streamline the process of configuring and instantiating the complex blocks found in Xilinx devices.Streamline the process of configuring and instantiating the complex blocks found in Xilinx devices.

P R O D U C T I V I T Y

The Clocking Wizard
As an example, let’s use the clocking wizard
to create a digital clocking manager module
for a Virtex™-4 FPGA, which will be driv-
en by a clock source external to the device. It
will generate a main clock signal, as well as a
frequency-doubled clock that drives an
enabled buffer. A LOCKED signal will indi-
cate when the DCM clock signal has stabi-
lized after the FPGA is powered up or reset.

Examining the resulting HDL code and
instantiation template generated by ISE
Foundation software after the wizard fin-
ishes clearly shows the benefit of using an
architecture wizard for this type of task.

Starting the Clocking Wizard
From within ISE’s Project Navigator, we start
the clocking wizard by selecting “Add New
Source” and selecting the “IP (CoreGen and
Architecture Wizard)” source type. The
resulting dialog will let us select the “Single
DCM ADV v8.1i” variant (see Figure 1).

Pressing “Next” and “Finish” on the
subsequent dialog boxes invokes the clock-
ing wizard.

General Setup Screen
On the first clocking wizard screen, we
select the desired inputs and outputs of the
block, the clock source, phase shift type,
frequency, and feedback configuration
(Figure 2).

Using the “Add Buffer” button on the
next screen, we place an enabled buffer at
the block’s clock input (Figure 4).

Summary Screen
After creating the buffer by pressing the
“OK” button, we click the “Next” button

Clock Buffers Screens
Selecting “Next” takes us to the clock
buffers screen. By default, all clock outputs
drive global buffers, but for our design, we
need to place an enabled buffer after the
frequency-doubled clock output. To do
this, we select “Customize Buffers” and
then click the “Global Buffer” button next
to CLK2X to change its global buffer to an
enabled buffer (Figure 3).

Fourth Quarter 2005 Xcell Journal 61

Figure 1 -Select IP dialog box

Figure 2 – General Setup screen

Figure 3 – Clock Buffers screen

Figure 4 – View/Edit Buffer screen

Figure 5 – Summary screen

Examining the resulting HDL code and instantiation template generated
by ISE Foundation software after the wizard finishes clearly shows the

benefit of using an architecture wizard for this type of task.

P R O D U C T I V I T Y

on the clock buffers screen to advance to
the summary page, which provides a
detailed report on the block that will be
generated (Figure 5).

Selecting the “Finish” button creates a
binary filename.xaw source file in the ISE
Foundation project directory. The .xaw
will automatically be converted by ISE
Foundation software to the corresponding
HDL description required for synthesis
when you implement your design, but
you can view that HDL at any time after
the .xaw file has been created. Either
VHDL or Verilog is available; VHDL is
shown in our example.

Here is where you can really see the true
value of the architecture wizard – imagine
having to write this code by hand:

— Module dcm1

— Generated by Xilinx Architecture Wizard

— Written for synthesis tool: XST

library ieee;

use ieee.std_logic_1164.ALL;

use ieee.numeric_std.ALL;

— synopsys translate_off

library UNISIM;

use UNISIM.Vcomponents.ALL;

— synopsys translate_on

entity dcm1 is

port (CLKIN_ENABLE_IN : in std_logic;

CLKIN_IN : in std_logic;

RST_IN : in std_logic;

CLKIN_IBUFG_OUT : out std_logic;

CLKIN_OUT : out std_logic;

CLK0_OUT : out std_logic;

LOCKED_OUT : out std_logic);

end dcm1;

architecture BEHAVIORAL of dcm1 is

signal CLKFB_IN : std_logic;

signal CLKIN_IBUFG : std_logic;

signal CLK0_BUF : std_logic;

signal GND1 : std_logic_vector (6 downto 0);

signal GND2 : std_logic_vector (15 downto 0);

signal GND3 : std_logic;

component BUFGCE

port (I : in std_logic;

CE : in std_logic;

O : out std_logic);

end component;

component IBUFG

port (I : in std_logic;

O : out std_logic);

end component;

component BUFG

port (I : in std_logic;

O : out std_logic);

end component;

component DCM_ADV

generic(CLK_FEEDBACK : string := “1X”;

CLKDV_DIVIDE : real := 2.000000;

CLKFX_DIVIDE : integer := 1;

CLKFX_MULTIPLY : integer := 4;

CLKIN_DIVIDE_BY_2 : boolean := FALSE;

CLKIN_PERIOD : real := 10.000000;

CLKOUT_PHASE_SHIFT : string := “NONE”;

DCM_AUTOCALIBRATION : boolean := TRUE;

DCM_PERFORMANCE_MODE : string :=

“MAX_SPEED”;

DESKEW_ADJUST : string := “SYSTEM_SYNCHRO-

NOUS”;

DFS_FREQUENCY_MODE : string := “LOW”;

DLL_FREQUENCY_MODE : string := “LOW”;

DUTY_CYCLE_CORRECTION : boolean := TRUE;

FACTORY_JF : bit_vector := x”F0F0”;

PHASE_SHIFT : integer := 0;

STARTUP_WAIT : boolean := FALSE);

port (CLKIN : in std_logic;

CLKFB : in std_logic;

DADDR : in std_logic_vector (6 downto 0);

DI : in std_logic_vector (15 downto 0);

DWE : in std_logic;

DEN : in std_logic;

DCLK : in std_logic;

RST : in std_logic;

PSEN : in std_logic;

PSINCDEC : in std_logic;

PSCLK : in std_logic;

CLK0 : out std_logic;

CLK90 : out std_logic;

CLK180 : out std_logic;

CLK270 : out std_logic;

CLKDV : out std_logic;

CLK2X : out std_logic;

CLK2X180 : out std_logic;

CLKFX : out std_logic;

CLKFX180 : out std_logic;

DRDY : out std_logic;

DO : out std_logic_vector (15 downto 0);

LOCKED : out std_logic;

PSDONE : out std_logic);

end component;

begin

GND1(6 downto 0) <= “0000000”;

GND2(15 downto 0) <= “0000000000000000”;

GND3 <= ‘0’;

CLK0_OUT <= CLKFB_IN;

CLKIN_BUFGCE_INST : BUFGCE

port map (CE=>CLKIN_ENABLE_IN,

I=>CLKIN_IBUFG,

O=>CLKIN_OUT);

CLKIN_IBUFG_INST : IBUFG

port map (I=>CLKIN_IN,

O=>CLKIN_IBUFG);

CLK0_BUFG_INST : BUFG

port map (I=>CLK0_BUF,

O=>CLKFB_IN);

DCM_ADV_INST : DCM_ADV

generic map(CLK_FEEDBACK => “1X”,

CLKDV_DIVIDE => 2.000000,

CLKFX_DIVIDE => 1,

CLKFX_MULTIPLY => 4,

CLKIN_DIVIDE_BY_2 => FALSE,

CLKIN_PERIOD => 10.000000,

CLKOUT_PHASE_SHIFT => “NONE”,

DCM_AUTOCALIBRATION => TRUE,

DCM_PERFORMANCE_MODE => “MAX_SPEED”,

DESKEW_ADJUST => “SYSTEM_SYNCHRONOUS”,

DFS_FREQUENCY_MODE => “LOW”,

DLL_FREQUENCY_MODE => “LOW”,

DUTY_CYCLE_CORRECTION => TRUE,

FACTORY_JF => x”F0F0”,

PHASE_SHIFT => 0,

STARTUP_WAIT => FALSE)

port map (CLKFB=>CLKFB_IN,

CLKIN=>CLKIN_IBUFG,

DADDR(6 downto 0)=>GND1(6 downto 0),

DCLK=>GND3,

DEN=>GND3,

DI(15 downto 0)=>GND2(15 downto 0),

DWE=>GND3,

PSCLK=>GND3,

PSEN=>GND3,

PSINCDEC=>GND3,

RST=>RST_IN,

CLKDV=>open,

CLKFX=>open,

CLKFX180=>open,

CLK0=>CLK0_BUF,

CLK2X=>open,

CLK2X180=>open,

CLK90=>open,

CLK180=>open,

CLK270=>open,

DO=>open,

DRDY=>open,

LOCKED=>LOCKED_OUT,

PSDONE=>open);

end BEHAVIORAL;

62 Xcell Journal Fourth Quarter 2005

P R O D U C T I V I T Y

The preceding HDL source code
describes the DCM module to the synthe-
sis tool that we are using, but we will still
need to create an instance of the module in
our design. This is achieved with an
“instantiation template,” which is created
by using the “View HDL Instantiation
Template” process in Project Navigator.
The resulting code snippet can be inserted
into our design to create an instance of the
DCM module:

COMPONENT dcm1

PORT(

CLKIN_ENABLE_IN : IN std_logic;

CLKIN_IN : IN std_logic;

RST_IN : IN std_logic;

CLKIN_IBUFG_OUT : OUT std_logic;

CLKIN_OUT : OUT std_logic;

CLK0_OUT : OUT std_logic;

LOCKED_OUT : OUT std_logic

);

END COMPONENT;

Inst_dcm1: dcm1 PORT MAP(

CLKIN_ENABLE_IN => ,

CLKIN_IN => ,

RST_IN => ,

CLKIN_IBUFG_OUT => ,

CLKIN_OUT => ,

CLK0_OUT => ,

LOCKED_OUT =>

);

Supported Block Configurations
The above example illustrates only a sin-
gle configuration of one type of block
that the architecture wizards support.
Other supported blocks and configura-
tions include:

Clocking Wizard
The digital clock management module
provides you with extensive control over
the global clocking configuration(s) in your
design and features the choice of either an
external or internal clock source, clock
deskew, phase shift control, and frequency
synthesis.

The clocking wizard can create several
DCM configurations using one or more
DCM modules:

• Single DCM

• Single DCM_ADV

• Clock forwarding/board deskew

• Board deskew with an internal deskew

• Clock switching with two DCMs

• Cascading in series with two DCMs

• PMCD (Virtex-4 FPGAs)

Rocket IO Wizard
The Xilinx Rocket IO™ wizard configures
the multi-gigabit transceiver block in
Virtex-II Pro and Virtex-II Pro X devices
(Virtex-4 Rocket IO support is found in
CORE Generator™ software). For certain
protocols, it also allows the configuration
of multiple channels of transceivers.

For Virtex-II Pro devices, the following
Rocket IO protocols are available through
the wizard:

• Fibre Channel

• Gigabit Ethernet

• XAUI

• Infiniband

• Aurora

• PCI Express

• SONET OC-48 (Virtex-II Pro X
devices)

• SONET OC-192 (Virtex-II Pro X
devices)

• Custom user-defined configurations

Xtreme DSP Wizard (Virtex-4 Devices)
This wizard can create several different
types of DSP blocks using the Virtex-4
Xtreme DSP™ slice, including:

• Multiplier

• Accumulator

• Multiplier-accumulator (MAC)

• Adder/subtractor

ChipSync Wizard (Virtex-4 Devices)
Two basic types of ChipSync configura-
tions can be created:

• The memory applications mode config-
ures a block of I/O for memory applica-
tion usage. The wizard allows you to set
up the data bus and clocks/strobes,
including specifying delay information.
You can also configure the address bus,
reference clocks, and control signals.

• The non-memory applications mode
configures a block of I/O for non-
memory application usage, such as for
networking cases. The wizard allows
you to set up the data bus and clocks,
including specifying delay information.
You can also configure reference clocks
and control signals.

Conclusion
As shown in this article, the architecture
wizards act as intelligent assistants that
facilitate easy creation of customized
instances of the various built-in complex
blocks found in Xilinx FPGAs.

The architecture wizards augment other
Xilinx IP block creation tools such as
Platform Studio, CORE Generator soft-
ware, and System Generator for DSP – all
of which help you to get your product to
market as quickly as possible.

Fourth Quarter 2005 Xcell Journal 63

The architecture wizards augment other

Xilinx IP block creation tools such as

Platform Studio, CORE Generator software,

and System Generator for DSP – all of

which help you to get your product to

market as quickly as possible.

P R O D U C T I V I T Y

A series of compelling, highly technical product demonstrations, presented

by Xilinx experts, is now available on-line. These comprehensive videos

provide excellent, step-by-step tutorials and quick refreshers on a wide array

of key topics. The videos are segmented into short chapters to respect your

time and make for easy viewing.

Ready for viewing, anytime you are

Offering live demonstrations of powerful tools, the videos enable you to

achieve complex design requirements and save time. A complete on-line

archive is easily accessible at your fingertips. Also, a free DVD containing all

the video demos is available at www.xilinx.com/dod. Order yours today!

©2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

FREE on-line training
Demos On Demand

Pb-free devices
available now

with

www.xilinx.com/dod

by Cindy Kao
Marketing Specialist
Xilinx, Inc.
cindy.kao@xilinx.com

Partial reconfiguration offers countless bene-
fits across multiple industries. It can be an
important component to any design or
application – allowing designers more capa-
bilities and resources than meets the eye.

Partial reconfiguration is the ability to
reconfigure select areas of an FPGA any-
time after its initial configuration. You can
do this while the design is operational and
the device is active (known as active partial
reconfiguration) or when the device is inac-
tive in shutdown mode (known as static
partial reconfiguration).

By taking advantage of partial reconfig-
uration, you gain the ability to:

• Adapt hardware algorithms

• Share hardware between various
applications

• Increase resource utilization

• Provide continuous hardware servicing

• Upgrade hardware remotely

Xilinx has supported partial reconfigura-
tion for many generations of devices. All
Xilinx® FPGAs support partial reconfigura-
tion, from Virtex™-4 devices to our lowest
cost FPGAs, the Spartan™-3/E family.

Benefits of Partial
Reconfiguration
Benefits of Partial
Reconfiguration

Fourth Quarter 2005 Xcell Journal 65

Take advantage of even more capabilities in your FPGA.Take advantage of even more capabilities in your FPGA.

PART IAL RECONFIGURATION

How Partial Reconfiguration Works
Xilinx supports two basic styles of partial
reconfiguration: module-based and differ-
ence-based. Module-based partial reconfigu-
ration uses modular design concepts to
reconfigure large blocks of logic. The dis-
tinct portions of the design to be reconfig-
ured are known as reconfigurable modules.
Because specific properties and specific lay-
out criteria must be met with respect to a
reconfigurable module, any FPGA design
intending to use partial reconfiguration
must be planned and laid out with that
in mind. These properties and layout cri-
teria are outlined in the Xilinx
Development System Reference Guide,
which can be found at http://toolbox.
xilinx.com/docsan/xilinx7/books/docs/
dev/dev.pdf.

Difference-based partial reconfigura-
tion is a method of making small
changes in an FPGA design, such as
changing I/O standards, LUT equa-
tions, and block RAM content. There
are two supported ways to make such
design changes: at the front end or the
back end. Front-end changes can be
HDL or schematic. You must re-syn-
thesize and re-implement the design,
creating a new placed and routed native
circuit description (NCD) file. Back-
end modifications are made in FPGA
Editor, a GUI tool within ISE™ soft-
ware used to view/edit device layout
and routing.

You can also perform partial recon-
figuration by implementing a basic con-
troller to manage the reconfiguration of
an FPGA. This could be in the form of
an embedded or external processor.

Xilinx offers a suite of processor
solutions. The PicoBlaze™ and
MicroBlaze™ soft-core processors both
support the Spartan and Virtex families.
The Virtex-II Pro FPGA embodies the
hard-processor solution with the inte-
gration of an IBM PowerPC™ 405 32-
bit RISC processor into the FPGA.
Now, with the introduction of the
Virtex-4 FX platform FPGA, Xilinx has
increased processing power by intro-
ducing two PowerPC 405 processor
cores in a single device (see Table 1).

advantage of its capabilities. Partially
reconfigurable devices have benefited
the Joint Tactical Radio System (JTRS)
Program, which I’ll discuss more in the
following section.

• Increased system performance. Although
a portion of the design is being reconfig-
ured, the rest of the system can continue
to operate. There is no loss of perform-
ance or functionality with unaffected
portions of a design – no down time. It

also allows for multiple applica-
tions on a single FPGA.

• The ability to change hard-
ware. Xilinx FPGAs can be
updated at any time, locally
or remotely. Partial reconfigu-
ration allows you to easily
support, service, and update
hardware in the field.

• Hardware sharing. Because
partial reconfiguration allows
you to run multiple applica-
tions on a single FPGA, hard-
ware sharing is realized.
Benefits include reduced
device count, reduced power
consumption, smaller boards,
and overall lower costs.

• Shorter reconfiguration times.
Configuration time is directly
proportional to the size of the
configuration bitstream.
Partial reconfiguration allows
you to make small modifica-
tions without having to
reconfigure the entire device.
By changing only portions of
the bitstream – as opposed to
reconfiguring the entire
device – the total reconfigura-
tion time is shorter.

Applications
Partial reconfiguration is the cor-
nerstone for power-efficient, cost-
effective software-defined radios
(SDRs). Through the JTRS
Program, SDRs are becoming a
reality for the defense industries as
an effective and necessary tool for

For more information, visit Processor
Central at www.xilinx.com/products/
design_resources/proc_central/index.htm.

Benefits
There are many benefits that come with
partially reconfigurable devices:

• Applications. Partial reconfiguration is
useful in a variety of applications across
many industries. The aerospace and
defense industries have certainly taken

66 Xcell Journal Fourth Quarter 2005

DSP
(Option

al)
GPPFPGA

A/D
D/A

Waveform Control

DSP
(Option

al)
GPPFPGA

A/D
D/A

Waveform Control

DSPDSP GPPGPPFPGAFPGAA/D
D/A
A/D
D/A

GPP Functions
• SCA CF
• CORBA
• RTOS
• DSP

FPGA Functions
• Channelization
• DSP

DSP Functions
• Mod/Demod
• FEC

Waveform Control

Waveform C

Waveform A
Waveform B

Dedicated Resources Model

Processor Type of Processor Supported Devices

PicoBlaze Soft-Processor Core Virtex Family
Spartan Family

CoolRunner-II CPLDs

MicroBlaze Soft-Processor Core Virtex Family
Spartan Family

PowerPC Hard Processor Virtex-II Pro
Virtex-4 FX

FPGAFPGA

GPPGPP
A/Ds
D/As
A/Ds
D/As

GPP Functions
• SCA CF
• CORBA/RTOS
• DSP

FPGA Functions
• Channelization
• DSP

W
aveform

 A

W
aveform

 B
W

aveform
 C

Waveform Control

Shared Resources Model

Table 1 – Xilinx processor solutions and supported devices

Figure 1 – Dedicated resources model: three-channel SDR modem

Figure 2 – Shared resources model: three-channel SDR modem

PART IAL RECONFIGURATION

communication. SDRs satisfy the JTRS
standard by having both a software-repro-
grammable operating environment and the
ability to support multiple channels and net-
works simultaneously.

Figure 1 shows a three-channel SDR
modem supporting a Software
Communications Architecture Core
Framework (SCA CF), as mandated for
JTRS. Current implementations of SCA-
enabled SDR modems with multiple chan-
nels require multiple sets of processing
resources and a dedicated set of hardware
for each channel. The more channels SDR
must support, the more dedicated resources
needed. This aversely affects space, weight,
power consumption, and cost.

With partial reconfiguration, the ability

to implement an SDR modem using
shared resources is realized, as shown in
Figure 2. A shared resources model enabled
by partial reconfiguration of an FPGA to
support multiple waveforms can be sup-
ported by the SCA as mandated by JTRS.
FPGA implementations of SDR, with par-
tial reconfiguration, results in effective use
of resources, lower power consumption,
and extensive cost savings.

Partial reconfiguration can also be used
in many other applications. Another exam-
ple is in mitigation and recovery from sin-
gle-event upsets (SEU). In-orbit,
space-based, and extra-terrestrial applica-
tions have a high probability of experiencing
SEUs. By performing partial reconfigura-
tion, in conjunction with readback, a system

can detect and repair SEUs in the configura-
tion memory without disrupting its opera-
tions or completely reconfiguring the FPGA.
(Readback is the process of reading the inter-
nal configuration memory data to verify that
current configuration data is correct.)

Conclusion
The capabilities and benefits offered by par-
tial reconfiguration reach across many
industries and applications. Leverage partial
reconfiguration by using Xilinx FPGAs in
your next design, the only truly partially
reconfigurable devices. You can take advan-
tage of any of its benefits, from remote hard-
ware upgrading to on-chip hardware
sharing, and give your designs the reconfig-
urability advantage.

Fourth Quarter 2005 Xcell Journal 67

As a developer, you are concerned with many
issues—project deadlines, code quality and
integrated tool support, to name a few. And now
that you’ve selected an FPGA-based processor to
power your next application, what do you do?
Where can you find a rich development
environment that supports both the Xilinx
MicroBlaze™ and PowerPC™ processors,
individually and simultaneously? The Nucleus®

EDGE software, based on Eclipse, answers this
need by providing a comprehensive, fully
developed tool suite for both MicroBlaze and
immersed PowerPC developers alike.

The Nucleus EDGE software consists of an IDE,
compiler, debugger and system profiler — all
seamlessly integrated so that FPGA developers
can create their product from conception to
deployment in one complete environment.

NucleusEDGE
Rich Development Suite for FPGA

©2005 Mentor Graphics Corporation

www.AcceleratedTechnology.com/xilinx

Nucleus. Embedded made easy.

PART IAL RECONFIGURATION

by Nij Dorairaj
Senior Staff Engineer
Xilinx, Inc.
nij.dorairaj@xilinx.com

Eric Shiflet
Technical Marketing Engineer
Xilinx, Inc.
eric.shiflet@xilinx.com

Mark Goosman
Product Marketing Manager
Xilinx, Inc.
mark.goosman@xilinx.com

The architecture of the Xilinx® Virtex™
platform family of FPGAs allows design
modules to be swapped on-the-fly using a
partial reconfiguration (PR) methodology.
This powerful capability allows multiple
design modules to time-share resources on a
single device, even while the base design
operates uninterrupted.

Partial reconfiguration is a process of
device configuration that allows a limited,
predefined portion of an FPGA to be
reconfigured while the remainder of the
device continues to operate. This is espe-
cially valuable where devices operate in a
mission-critical environment that can not
be disrupted while some subsystems are
being redefined.

Using partial reconfiguration, you can
dramatically increase the functionality of a
single FPGA, allowing for fewer, smaller
devices than would otherwise be needed.
Important applications for this technology
include reconfigurable communication
and cryptographic systems.

Virtex Configuration Background
Partial reconfiguration is supported in
both the Virtex and Spartan™ families.
In this article, we will focus on imple-
menting the partial reconfiguration

methodology as it applies to Virtex-II and
Virtex-II Pro FPGAs.

All user-programmable features inside a
Virtex FPGA are controlled by memory cells
that are volatile and must be configured on
power-up. These memory cells are known as
the configuration memory, and define the
look-up table (LUT) equations, signal rout-
ing, input/output block (IOB) voltage stan-
dards, and all other aspects of the design.

To program configuration memory,
instructions for the configuration control
logic and data for the configuration memory
are provided in the form of a bitstream,
which is delivered to the device through the
JTAG, SelectMAP, serial, or ICAP configura-
tion interface.

A programmed Virtex FPGA can be par-
tially reconfigured using a partial bitstream.
You can use partial reconfiguration to change
the structure of one part of an FPGA design
as the rest of the device continues to operate.

PlanAhead Software as a Platform
for Partial Reconfiguration

68 Xcell Journal Fourth Quarter 2005

PlanAhead software delivers a streamlined environment to reduce space, weight, power, and cost.

PART IAL RECONFIGURATION

Use Cases
Partial reconfiguration is useful for systems
with multiple functions that can time-share
the same FPGA device resources. In such
systems, one section of the FPGA continues
to operate, while other sections of the FPGA
are disabled and partially reconfigured to
provide new functionality. This is analogous
to the situation shown in Figure 1, where a
microprocessor manages context switching
between software processes. Except in the
case of partial reconfiguration of an FPGA,
it is the hardware – not the software – that is
being switched.

Partial reconfiguration provides an advan-
tage over multiple full bitstreams in applica-
tions that require continuous operation not
otherwise accessible during full reconfigura-
tion. One example, illustrated in Figure 2, is
a graphics display that utilizes horizontal and
vertical synchronization. Because of the envi-
ronment in which this application operates,

• Place bus macros

• Follow PR-specific design rules

• Run the partial reconfiguration imple-
mentation flow

PlanAhead™ software provides a single
environment (or platform) to manage the
preceding guidelines.

Here is a list of the steps in which you
can use PlanAhead design tools to imple-
ment a partial reconfiguration design:

• Netlist import

• Floorplanning for partial reconfiguration

• Design rule checks

• Netlist export

• Implementation flow management

• Bitstream size estimation

Netlist Import
PlanAhead software works with any syn-
thesized netlist, such as XST or Synplify.
You can import any hierarchical netlist
(single edf/ngc or multiple edf/ngc files).
Follow the regular guidelines to import the
design into PlanAhead design tools and
create a floorplan for the design.

Floorplanning for
Partial Reconfiguration
This is an important step in the partial
reconfiguration flow. Floorplanning within
PlanAhead software is based on design par-
titions referred to as physical blocks, or
Pblocks. A Pblock can have an area (such as
a rectangle) defined on the FPGA device to
constrain the logic. You can define Pblocks
without rectangles and ISE™ software will
attempt to group the logic during place-
ment. Netlist logic placed inside of Pblocks
will receive AREA_GROUP constraints.

The key floorplanning tasks for partial
reconfiguration are:

1. Setting up a PRM:

• Assign an area for the PRM by creating
a Pblock with an area defined within
the fabric

• Assign RANGES for the Pblock

signals from radio and video links need to be
preserved – but the format and data process-
ing format require updates and changes dur-
ing operation. With partial reconfiguration,
the system can maintain these real-time links
while other modules within the FPGA are
changed on the fly.

Methodology
To implement a partial reconfiguration
design successfully, you have to follow a
strict design methodology. Here are some
of the guidelines to follow:

• Insert bus macros between modules that
need to be swapped out (called partial
reconfiguration modules, or PRMs) and
the rest of the design (static logic)

• Follow synthesis guidelines to generate
a partially reconfigurable netlist

• Floorplan the PRMs and cluster all
static modules

Fourth Quarter 2005 Xcell Journal 69

MMU

S
ta

c
k

µP

Processor Context Switch

P
R

 R
e

g
io

n
 N

P
R

 R
e

g
io

n
 2

P
R

 R
e

g
io

n
 1

FPGA

FPGA Configuration Switch

Process 1 Partial Bitstream A

Process 2 Partial Bitstream B

Process N Partial Bitstream N

P
R

 R
e

g
io

n
 3

P
R

 R
e

g
io

n
 2

P
R

 R
e

g
io

n
 1

Radio Link

Bus Link
FPGA

Video

Link

Monitor

Figure 1 – The analogy between microprocessor context switching
and FPGA partial reconfiguration regions

Figure 2 – Maintaining real-time links during partial reconfiguration

PART IAL RECONFIGURATION

• Define the MODE=RECONFIG
attribute on the PRM

(Pblock property->attribute section)

2. Setting up static logic:

• Every top-level module, other then
PRMs, should be grouped together in
a single Pblock. This is called a static
logic block. This block should not have

a RANGE defined; this will cluster the
static logic together in a single Pblock.
Select all top-level modules (except the
PRM) and assign it to a Pblock. Figure
3 shows the static logic grouped in a
Pblock named AG_base.

• When you have completed the floor-
planning in PlanAhead design tools,
the resulting physical hierarchy will be
organized as shown in Figure 4.

3. Bus macro placement:

• Bus macros are physical ports that con-
nect a PRM to static logic. Any con-
nection from a PRM to static logic
should always go through a bus macro.
Bus macros are instantiated as black
boxes in RTL and are filled with a pre-
defined routing macro in the form of
an .nmc file. Bus macros are placed on
the PRM boundary. Static logic con-
nected to PRMs will migrate towards
the bus macro during placement.

Design Rule Checks
Given the complexity of the flow, it is
common for mistakes to be introduced in
the original RTL and during the floor-
planning process. PlanAhead-PR design
tools check for design violations. Also
integrated into this feature is the PR-
Advisor, which provides feedback on how
to improve your design.

The PR design rule checks are:

1. Bus macro DRC. This provides verifica-
tion for all design rules related to bus
macro connectivity and placement. One
example of a bus macro DRC is the
PRBP check. This DRC checks for all
rules that should be followed for bus
macro placement. Figure 5 shows an
example of a design that failed the
PRBP DRC. In this case, the inter-
leaved/nested macro should be placed at
SLICE_X41Y*.

2. Floorplanning DRC. This covers floor-
planning rules. Clock objects (global
clock buffers, DCM) and I/Os should be
placed and static logic clustered.

3. Glitching logic DRC. This verifies glitch-
ing logic elements (SRL and distributed
RAM) above and below PRM regions.

4. Timing Advisor/DRC. This provides a
check for timing-related issues. One
example of timing DRC is the PRTP
check. The static module is implement-
ed before the PRM during the imple-
mentation phase. Regular timing
constraints do not cover the paths that
cross between the static and a PRM.
This does not present a problem, pro-
vided that the bus macro is synchro-
nous. However, if it is an asynchronous
bus macro, the static module does not
know about the propagating of asyn-
chronous paths, as shown in Figure 6.
This could be important if these paths
are timing-critical. One way to pass this
information to the static module is to
specify a TPSYNC constraint on the bus
macro output net. PlanAhead software
will recommend a TPSYNC constraint
that can be added to the .UCF file.

70 Xcell Journal Fourth Quarter 2005

PRM1.... Static I/O Buffers, Clock

Logic, and Bus

Top

Figure 3 – All static logic is grouped in
a single Pblock AG_base.

Figure 4 – The hierarchy for a partial reconfiguration design

Figure 5 – The PRBP DRC verifies all rules that should be followed for bus macro placement.

PART IAL RECONFIGURATION

Fourth Quarter 2005 Xcell Journal 71

Netlist Export
Once the design is floorplanned and passes
the DRC checker, it is ready to be export-
ed. PlanAhead design tools take care of
exporting the original hierarchical netlist

into a PR-style netlist that has a specific
format (static and PRM in separate direc-
tories). The export directory will appear as
shown in Figure 7.

Implementation Flow Management
The partial reconfiguration flow wizard,
shown in Figure 8, runs the partial recon-
figuration implementation on the export-
ed design. It will produce a full bitstream
for the complete design and a partial bit-
stream for each of the PRMs. The imple-
mentation steps are:

• Initial budgeting

• Static module implementation

• PRM implementation (one implemen-
tation for each version of every PRM)

• Assembly and bitstream generation
(results are stored in the merge directory)

To run the tools, start the flow wizard
by selecting “Tools > Run Partial
Reconfig.” This wizard will guide you
through each of the implementation steps.
You can either run the implementation or
just generate the scripts, which can be used
from a command line outside of the
PlanAhead user interface.

Bitstream Size Estimation
The Pblock statistics report includes a sec-
tion that reports PRM bitstream size (Figure

9). This information can be used for estimat-
ing the size of configuration memory storage
such as external flash and DDR. This infor-
mation can also be used to calculate how
long it will take to swap the module based on
your bitstream memory interface.

Conclusion
PlanAhead software is the first graphical
environment for partial reconfiguration.
Using PlanAhead design tools as a platform
for partial reconfiguration applications can
greatly simplify the complexities of jug-
gling the dynamic operating environment
of these cutting-edge applications, allowing
a single device to operate in applications
that previously required multiple FPGAs.

The methodology offered by PlanAhead
software can dramatically increase produc-
tivity and decrease time-to-solution for
designers using partial reconfiguration.

The capability of designs to leverage par-
tial reconfiguration opens doors to a whole
host of applications. By providing a plat-
form that leverages the advantages of partial
reconfiguration for designs targeting Virtex-
II and Virtex-II Pro FPGAs, PlanAhead
design tools allow you to dramatically
extend the functionality of your design.
With similar support for designs targeting
the Virtex-4 multi-platform FPGA in the
near future, the application space for partial
reconfiguration is practically limitless.

All modules are
black boxed

PRM, all static
modules are
black boxed

Static Module

Figure 6 – Special consideration should
be given to timing-critical paths, which

include an asynchronous path.

Figure 7 – Upon successful completion of the
floorplanning DRC processes, all modules will be

displayed in black text within the Export
Floorplan dialog box.

Figure 8 – The PlanAhead partial
reconfiguration flow wizard provides

an easy-to-follow flow.
Figure 9 – The display of Pblock properties includes the estimated size of the bitstream.

PART IAL RECONFIGURATION

by Jonathan Trotter
Titanium Business Development Manager
Xilinx, Inc.
jonathan.trotter@xilinx.com

Once a specification has been defined and
authorized, several critical stages remain in
every design cycle. The first stage is design
entry. HDL coding is the most prominent
form of entry when designing platform
FPGAs. The code must be written proper-
ly for the design to pass through synthesis.
Xilinx recommends that designers simulate
their HDL before moving on.

The next stage is implementation, with
the most important aspect being place and
route. Implementation maps the HDL-
entered design into FPGA building blocks,
creating a bitstream. Analysis is required
before downloading the bitstream into an
FPGA. Downloading the FPGA without
this analysis can damage the device, or even
the system.

Designs must also meet system timing
parameters. If timing is not met after an
implementation, then the code, timing
constraints, implementation options, or
internal logic placement must be changed.
Yet adjusting any one of these areas can
yield your desired results or further remove
you from them.

Determining which area to adjust first
can be challenging to design teams, espe-
cially those feeling the heat of a deadline.
The best design teams are those that can
make the necessary changes or corrections
the fastest. Once the changes have been
made, a final verification or timing simula-
tion is required. If the design does not pass,
more modifications are needed.

Supporting PlayersSupporting Players

72 Xcell Journal Fourth Quarter 2005

Titanium Dedicated Engineering
provides assistance in overcoming
technical obstacles.

Titanium Dedicated Engineering
provides assistance in overcoming
technical obstacles.

To the Rescue
Xilinx has the expertise to solve your prob-
lem and meet your deadline regardless of
your application or specification require-
ments. Under our Titanium Dedicated
Engineering program, Xilinx engineers can
successfully:

• Aid designers with embedded process-
ing, timing closure, signal integrity,
and DSP challenges

• Assist teams starting their first FPGA
design with design flow and funda-
mentals

• Help with adding a feature to a design
that is already at capacity

• Meet a deadline with timing closure
assistance

Titanium Dedicated Engineering can
improve your design productivity and
accelerate your time to market by provid-
ing you with a dedicated application engi-
neer on a contract basis. This expert can
offer the technical assistance that your
team and design require, either remotely
or at your site. Not only will your design
team have access to the engineer’s expert-
ise, they will also have access to the knowl-
edge possessed by Xilinx product and
development groups.

Design Challenges
To create a complete and powerful plat-
form FPGA design requires knowledge,
skill, time, resources, and patience. To
fully utilize and take advantage of all of the
new features of a Xilinx device requires
ramp-up time for any design team, regard-
less of their experience level. A good exam-
ple of this is Xilinx embedded processing
technology. Designing with embedded fea-
tures requires extra skills and knowledge
above and beyond those needed for a suc-
cessful FPGA design. With time, most
capable teams will learn how take advan-
tage of these features, but the competition
may learn faster with assistance.

Each design team operates and functions
differently, but they all seem to have similar
practices and styles. The greater familiarity

lize the device features most applicable to
their design. In this case, the application
engineer quickly identified and recom-
mended that the team take advantage of
the DCMs as well as IOB registers.

After an architecture-specific re-
design, the next issue was to apply proper
timing and area constraints based on their
timing report. The constraints force
Xilinx place and route tools to concen-
trate on the most critical areas of the
design. The application engineer also
focused on educating the design team so
that they could apply these fundamentals
on their own during their next design.

The main culprit of the configuration
issue turned out to be a faulty crystal oscil-
lator. The frequency was a little lower than
what its datasheet specified. Once it was
replaced, the FPGAs could be configured
via System ACE technology.

Conclusion
Xilinx has encountered and solved almost
every presentable difficulty at every stage
of the design cycle. Most of the issues and
solutions have been documented in a
database. In a critical design situation, this
knowledge can be the difference between
success and failure.

Xilinx will give you personalized
access to one of our application engineers
for the duration of your choosing. This
Titanium Dedicated Engineer will be an
expert in the area of your design needs
and can provide an understanding of
Xilinx design methodologies and tech-
niques. The engineer will provide a solu-
tion to your problem, at any stage of the
design cycle, and also educate your
design team on the steps needed to pre-
vent those issues from recurring.

A Titanium Dedicated Engineer can
work at Xilinx, on-site with your design
team, or a mix of both. This flexibility
allows our engineers to fully understand
the needs and requirements of our clients,
as well as leverage Xilinx factory resources
to resolve problems and accelerate produc-
tion. For more information about
Titanium Dedicated Engineering, call
(800) 888-FPGA (3742) or visit www.
xilinx.com/titanium.

they have with FPGAs, the easier it is to uti-
lize advanced features like the embedded
processor or multi-gigabit transceiver, or to
reach desired performance levels. Problems
can occur if the team is relatively new or
inexperienced. The quicker designers adopt
our fundamental design style, the quicker
they will complete successful designs. For
example, timing verification must be per-
formed before transferring the design in
software to silicon. The step is not mandato-
ry, but precautionary.

Success Story
Many ASIC design teams prototype their
ideas in an FPGA. This allows them to
make changes or modifications without the
time and expense of re-spinning an ASIC.
One Xilinx customer wanted to implement
an ARM processor core and additional cus-
tom logic inside a Xilinx device. The design
was so large that it had to be split up
between two Virtex™-II devices. It can be
challenging enough to successfully imple-
ment a function in one platform FPGA, let
alone splitting it across two of them.

The customer’s design was not meeting
timing, nor could they configure their sys-
tem utilizing our System ACE™ technolo-
gy. Because two devices were required,
board connectivity techniques were critical;
the board timing and FPGA timing had to
be in harmony for the two devices to func-
tion in unison.

There were other several crucial design
challenges for this team:

• They were one month behind schedule.

• They had a customer demonstration in
six weeks

• System frequency was 15 Mhz below
the application’s minimum requirement

• Configuring via JTAG was successful,
but not utilizing System ACE technology

Xilinx sent a Titanium Dedicated
Engineer to work onsite with the team to
identify their timing, integration, and con-
figuration issues. The engineer first helped
them understand the device architecture to
ensure that they had the knowledge to uti-

Fourth Quarter 2005 Xcell Journal 73

Now you can see inside your FPGA designs in a way that

will save days of development time.

The FPGA dynamic probe, when combined with an Agilent

16900 Series logic analysis system, allows you to access

different groups of signals to debug inside your FPGA—

without requiring design changes. You’ll increase visibility

into internal FPGA activity by gaining access up to 64

internal signals with each debug pin.

You’ll also be able to speed up system analysis with the

16900’s hosted power mode—which enables you and your

team to remotely access and operate the 16900 over the

network from your fastest PCs.

The intuitive user interface makes the 16900 easy to get up

and running. The touch-screen or mouse makes it simple to

use, with prices to fit your budget. Optional soft touch

connectorless probing solutions provide unprecedented

reliability, convenience and the smallest probing footprint

available. Contact Agilent Direct today to learn more.

U.S. 1-800-829-4444, Ad# 7909
Canada 1-877-894-4414, Ad# 7910
www.agilent.com/find/new16900
www.agilent.com/find/new16903quickquote

©Agilent Technologies, Inc. 2004
Windows is a U.S. registered trademark of Microsoft Corporation

• Increased visibility with FPGA dynamic probe
• Intuitive Windows

®
XP Pro user interface

• Accurate and reliable probing with soft touch connectorless probes
• 16900 Series logic analysis system prices starting at $21,000

Get a quick quote and/or FREE CD-ROM
with video demos showing how you can
reduce your development time.

X-ray vision for your designs
Agilent 16900 Series logic analysis system with FPGA dynamic probe

X-ray vision for your designs

by Scott Ferguson
Factory Application Engineer, Logic Analyzers
Agilent Technologies, Inc.
sferguson@agilent.com

As FPGAs become a viable option for high-
performance signal processing in the digital
communications design space (cellular base
stations, satellite communications, and
radar), analysis and debug tools must
include new techniques to help you get the
most optimal performance in your circuits
in the least amount of time.

Although signal analysis tools that con-
nect to simulation and RF analog signals
are available, it’s important to be able to
measure signal quality (frequency spec-
trum, I-Q constellation, and error vector
magnitude [EVM]) in the sub-circuits of
your FPGA. Thus, Agilent has linked its
89601A Vector Signal Analysis (VSA) soft-
ware with its line of logic analyzer products
(1680, 1690, and 16900 families) to create
a digital VSA tool. This tool, when com-
bined with the Xilinx® ChipScope™ Pro
Agilent Trace Core, allows you to perform
signal analysis anywhere inside your FPGA
design quickly and easily.

In this article, we’ll show how this com-
bination of tools works – and how it can
help you get the most from your Xilinx-
based DSP circuits.

Real-Time Analysis
of DSP Designs
Real-Time Analysis
of DSP Designs

Fourth Quarter 2005 Xcell Journal 75

Agilent combines the FPGA Dynamic Probe and digital VSA.Agilent combines the FPGA Dynamic Probe and digital VSA.

Digital VSA
VSA uses Fast Fourier Transform (FFT)-
based data processing to provide a combi-
nation of time- and frequency-domain
displays and measurements. Figure 1
shows a typical VSA display. Although
the display is extremely flexible and con-
figurable, the main components include
the I-Q constellation plot (upper left),
magnitude spectrum (lower left), error
vector (upper right), and measurements
(lower right). The EVM is displayed in
the measurements section. This single
value is a key indicator of the quality of
the modulated signal.

EVM is computed by extracting I-Q
symbols from the captured data; the sym-
bols are the grid points in the constella-
tion defined by the QPSK, QAM, or
other modulation scheme. Once extracted
from the measured signal, the symbol
sequence is used to create an ideal (theo-
retically perfect) signal known as the “ref-
erence” signal. Each measured signal is
compared to the reference signal, and the
difference is known as an error vector.
(The error can contain both I and Q, or
magnitude and phase components). The
individual error vectors for a single cap-
ture are combined to make a single EVM
measurement.

Although this analysis software was
originally created to analyze analog RF
signals, it was developed in a hardware-
independent, PC-based software package.
Because Agilent logic analyzers are also
PC-based, it was easy to extend the VSA
software to link to the logic analyzers.

Digital baseband and IF signals are rep-
resentations of analog signals. Rather than
using an instrument that digitizes a signal
to enable FFT analysis (like an RF signal
analyzer), the signal is digital from the
start. These digital versions of analog sig-
nals can be displayed in a logic analyzer in
a chart-style waveform, which resembles
an oscilloscope display (as in Figure 2).

As you can see, when the bus is syn-
chronously sampled and the sample rate
meets the Nyquist requirements, the logic
analyzer captures a sufficiently accurate
version of the “once-was” or “will-soon-
be” analog signal.

core is a switching MUX incorporated
into the design using the ChipScope Pro
Core Inserter, typically post-synthesis.
During core insertion, you select the
internal nets to connect to the trace core,
and the physical pads to which you will
connect the MUX output. These pads are

then routed on the circuit board to
a logic analyzer probe.

The logic analyzer controls the
FPGA through JTAG (downloading
the bit file and selecting banks).
When you select a new bank, the
logic analyzer automatically reconfig-
ures itself to match the names of the
nets now connected to the probe.

Design Example – QAM16 Modulator
With help from our local Xilinx
DSP specialist FAE, we created a
demo that fits into a small Virtex™-
II part (XC2V250-FG256) using
Xilinx System Generator for DSP.
This tool makes creating DSP
designs quick and easy. The design
(shown in the block diagram in
Figure 3) contains a 25 MHz symbol
encoder; a root-raised cosine filter
with 24 taps and 4X interpolation
(the output running at 100 MHz);
and an IF modulation stage with a
25 MHz local oscillator.

FPGA Dynamic Probe
The FPGA Dynamic Probe, working with
the ChipScope Pro analyzer, can provide
access to any part of a DSP design without
recompiling. In Figure 3, a simplified dig-
ital radio transmitter design is connected
to the Agilent Trace Core 2 (ATC2). This

76 Xcell Journal Fourth Quarter 2005

Symbol
Encoder

BB Filter

BB Filter

IF LO

90 deg

0deg

Bank 0 Bank 1 Bank 2 Bank 3

MUX

Logic Analyzer Probe

JTAG

I

Select Signal Bank
via JTAG

Q

Figure 3 – FPGA Dynamic Probe

Figure 2 – Chart display of digital bus

Figure 1 – VSA display

Integrating the ATC2 Core
in a System Generator Design
After compiling this design into
VHDL, we inserted the ATC2 core.
To make the signal names more logi-
cal on the logic analyzer display, we
did some hand-editing of the VHDL.
(You could avoid this step by carefully
choosing net names in the System
Generator.) We then connected most
of the interesting nets as output ports
from the top-level object to make the
net names short enough to fit on the
logic analyzer screen.

When connecting nets to output
ports solely for use with the FPGA
Dynamic Probe, a good trick is to use
the “keep” attribute in the VHDL.
Because you don’t add the ATC2 core
to the design until after synthesis,
many nets would otherwise be opti-
mized out because they’re not con-
nected to anything. In VHDL, the
syntax to use the “keep” attribute
looks like this:

attribute keep : string;

attribute keep of i_symbol:
signal is “true”;

attribute keep of q_symbol:
signal is “true”;

We created an ATC2 core with
four banks, each with 48 signals.
Using the ATC2 core’s 2X TDM
option (time-slicing two signals at a
time on each pad), this requires only
25 package pads on the FPGA (one
for a clock and 24 for data). This gives
us access to 192 signals. Actually, we
only need to view about 92 signals:

• I-Q symbols, 8 bits each (16)

• I-Q filter output, 24 bits each (48)

• IF local oscillator sine and cosine,
2 bits each (4)

• Combined IF signal (24)

The output of the RRC filter with
24-bit I and Q signals was the largest
requirement, defining the number of
pins required. If 24 pins were not
available, you could drop the least sig-

nificant bits, losing some dynamic range
but still being able to view the signals.

Time-Domain, Logic,
and VSA Measurements
The logic analyzer uses synchronous
sampling (or “state mode”) to capture
the output of the ATC2 core. This
means that data is sampled on each
edge of the ATC2’s output clock. Our
design has two clock rates in the circuit
– 25 MHz for the symbol data before
the RRC filter and 100 MHz for all
parts after the filter. Because the ATC2
core supports only one clock per core,
two options exist for debug:

• Using two cores, one for each
clock rate

• Using one core with the faster
clock rate and over-sampling the
25 MHz bus

Because the two clocks are correlated
– and one is an integer multiple of the
other – you can just over-sample the
slower bus. If over-sampling is not desir-
able, the logic analyzer can use a setup
that stores every fourth sample, thereby
capturing the 25 MHz bus accurately
with one sample per 25 MHz clock.

With the extra signals available in
the MUX, we were able to double-
probe some of the interesting signals.
For example, in bank 0 we have the I
and Q symbols before the filter, and
also the I component after the RRC fil-
ter. This means we can do some time-
domain analysis in the logic analyzer to
measure group delay in the filter, as in
Figure 4. Two markers indicate a com-
mon signal feature: a wide, flat top and
the marker measurement display show-
ing an interval of 250 ns.

After probing the interesting parts of
the circuit, we performed vector signal
analysis on the signals and measured the
quality of our RRC filter and IF modu-
lation stages.

Looking at the QAM16 I-Q symbols
before they were filtered (as shown in
Figure 5), you can see the 16-point
QAM constellation (upper left graph).

Fourth Quarter 2005 Xcell Journal 77

Figure 7 – Digital IF signal

Figure 6 – Filtered IQ baseband data

Figure 5 – Unfiltered QAM16 symbols

Figure 4 – Filter group delay measurement

With one point per symbol, the lines
between the constellation points are
straight. The frequency spectrum (in the
lower left graph) is centered at 0 Hz and
has a 25 MHz pass-band with power in
adjacent channels. Adjacent channel power
is undesirable in the RF signal, of course,
which is the reason for the baseband filter.

By selecting a different bank in the
ATC2 core (controlled by the logic analyz-
er), you can perform analysis on the IQ sig-
nal after the baseband filter, as seen in
Figure 6. Now the spectrum has sidebands
removed, and the measurement display (in
the lower right quadrant) shows an EVM
of 0.5%. The next time your RF team com-
plains of errors in the baseband design, you
can point to this measurement (with which
they are quite familiar), and prove that it’s
not your filter’s fault.

In many digital radio designs, this IQ
signal would now be converted to analog.
However, we performed the IF modulation
digitally inside the same FPGA. Switching
banks in the FPGA Dynamic Probe gives us
access to the digital IF (again, without
another synthesis and place and route step),
as shown in Figure 7. Note that the spec-
trum and I-Q constellation are roughly the
same, only now centered about 25 MHz.
The EVM is a little bit higher, indicating
that you may want to use a higher quality
local oscillator or another filter stage.

Conclusion
Xilinx System Generator and ChipScope
Pro analyzer, combined with the Agilent
logic analyzer and Agilent VSA software,
allow you to perform real-time in-depth
analysis on digital baseband and IF signals
inside your Xilinx FPGA. This will save
you time and eliminate doubts about the
difference between simulation and real
hardware. It can also help you communi-
cate with your colleagues on the RF design
team, enabling you to speak their language
and use the same analysis software regard-
less of signal format (analog, digital, base-
band, or RF).

For more information about these
applications, visit www.agilent.com/find/
logic-sw-apps, or contact your Agilent
representative.

78 Xcell Journal Fourth Quarter 2005

Would you like to write for
Xcell Publications?

It’s easier than you think.

Would you like to write for
Xcell Publications?

It’s easier than you think.
We recently launched the Xcell Publishing Alliance

to help you publish your technical ideas. We can help you –
from concept research and development, through planning and

implementation, all the way to publication and marketing.

Submit articles for our Web-based Xcell Online or our printed
Xcell Journal and we will assign an editor and a graphics artist to work

with you to make your work look as good as possible. Submit your
book concepts and we will bring our partnership with Elsevier,

the largest English language publisher in the world, and our
broad industry resources to assist you in planning, research,

writing, editing, and marketing.

We recently launched the Xcell Publishing Alliance
to help you publish your technical ideas. We can help you –

from concept research and development, through planning and
implementation, all the way to publication and marketing.

Submit articles for our Web-based Xcell Online or our printed
Xcell Journal and we will assign an editor and a graphics artist to work

with you to make your work look as good as possible. Submit your
book concepts and we will bring our partnership with Elsevier,

the largest English language publisher in the world, and our
broad industry resources to assist you in planning, research,

writing, editing, and marketing.

For more information on this exciting and
highly rewarding program, please contact:

Forrest Couch
Executive Editor, Xcell Publications

xcell@xilinx.com

by Anthony Le
Product Marketing Manager,
Configuration Memory Solutions
Xilinx, Inc.
anthony.le@xilinx.com

FPGA configuration is often a last-minute
design decision, because engineers view
FPGA configuration as an easy, no-brainer
step in the design cycle. That is true when
customers use the Xilinx “recipe” – a Xilinx®

FPGA, Platform Flash PROM, ISE™ soft-
ware, and platform cable USB. However,
FPGA configuration becomes increasingly
complex if you use a non-Xilinx solution. In
this article, I’ll discuss the differences
between Platform Flash and commodity
Flash (see Table 1 for a summary).

Added Flexibility in Configuration Solutions
Before the introduction of the Spartan™-
3E FPGA family, customers who config-
ured Xilinx FPGAs with commodity Flash
would use a three-chip solution: an FPGA,
a commodity Flash PROM, and a CPLD.
Spartan-3E FPGAs eliminate the need for a
CPLD (or other controller) by providing a
direct interface for leading commodity
Flash devices, thus reducing the chip count
to two (FPGA and PROM).

Because Xilinx gives you complete flexi-
bility to use multiple memory sources for
FPGA configuration, you should consider
the following factors at the start of the design
process: total cost of ownership, board space,
configuration speed, source of supply, value-
added features, and ease of use. If these fac-
tors are not thoroughly thought out from the
beginning, then the final design can incur
additional costs and possible board redesign.

Configuration Choices –
Platform Flash or
Commodity Flash

Configuration Choices –
Platform Flash or
Commodity Flash

Fourth Quarter 2005 Xcell Journal 79

Xilinx provides flexibility for
configuration memory so
that you can make the best
decision for your design.

Total Cost of Ownership
On a per-unit basis, commodity Flash
might appear to be attractively priced;
however, you need to consider the total
cost of ownership. Total cost of ownership
is the summation of per-unit cost, design
and prototyping cost, and manufacturing
and test cost.

1. The cost difference between a commod-
ity Flash PROM versus a Platform Flash
PROM is negligible when compared to
the overall board cost. In fact, Xilinx
Platform Flash PROMs are competitive-
ly priced with all non-volatile memories
in the market (commodity Flash PROM
and competing PROMs).

2. The prototyping phase of a design sig-
nificantly favors Platform Flash over
commodity Flash because Xilinx offers
one of the lowest cost in-system pro-
gramming (ISP) solutions:

• Platform cable USB: $150

• Programming software – iMPACT: $0

• Xilinx award-winning support: $0
(included)

3. Once in production, you can significant-
ly reduce costs by utilizing the Boundary
Scan (JTAG) capability of Xilinx FPGAs
and Platform Flash PROMs (along with
other JTAG devices on the board) for
low-cost Boundary Scan testing and pro-
gramming. Commodity Flash devices do
not offer JTAG interfaces; therefore, cus-
tomers cannot take advantage of the low
cost of Boundary Scan testing. In most
cases, expensive Automatic Test
Equipment (ATE) is required to test and
perform in-system programming of com-
modity Flash memories.

Board Space
If board space is critical to your design,
then consider the following:

• Standard SPI PROMs are typically
offered in the smallest form factor. The
1 Mb to 4 Mb SPI PROMs are usually
offered in a SOIC-8L (5 x 6 mm)
package and 8 Mb (and larger) devices
are usually offered in a SOIC-16L (10
x 6 mm) package.

a Xilinx FPGA with a commodity Flash
PROM would require using a CPLD
device to translate memory into the
FPGA bitstream (refer to XAPP058,
“Xilinx In-System Programming Using
an Embedded Microcontroller”).
Resulting data transfer rates can
degrade based on the translation logic.

3. If using a Spartan-3E device with a par-
allel commodity Flash, the configuration
mode is limited to 6 MHz. Platform
Flash features a maximum transfer rate
of 40 MHz x 8 I/O (or 320 bps) with
Spartan-3E devices.

In theory, Parallel commodity Flash is
faster, but given the limitations listed
above, the practical transfer rate is signifi-
cantly less than that of Platform Flash.

Source Supply
Although there are many commodity Flash
vendors, you should be aware of two
potential pitfalls. First, every vendor pro-
vides similar commodity Flash PROMs,
but there are nuances with each vendor
that can limit their interoperability. For

• Platform Flash PROMs are a close sec-
ond with 1, 2, and 4 Mb PROMs
offered in a TSOP-20L (6.5 x 6.4 mm)
package and 8, 16, and 32 Mb PROMs
in a TFBGA-48 (8 x 9 mm) package.

• Parallel commodity Flash devices have
large packages to address the additional
control, address, and I/O pins.

SPI PROM has the advantage here, but
Platform Flash is a close second consider-
ing that there is only a 12 mm2 difference
in area. The difference in area is minute
compared to the overall board space.

Configuration Speed
Parallel commodity Flash devices are typi-
cally the fastest memory on the market.
They are offered in either x8 or x16 I/O
configurations. The theoretical data trans-
fer rate can be as fast as 50 MHz x 16 I/O,
but there are limitations when configuring
a Xilinx FPGA.

1. At this time, Xilinx FPGAs can only be
configured in x8 mode.

2. Before Spartan-3E devices, configuring

80 Xcell Journal Fourth Quarter 2005

Platform Flash SPI Flash Parallel Flash

Minimum Config Pins 3 4 37

Configuration Serial & Parallel* Serial Only Parallel Only

Storage Density 1 – 32 Mb 512K – 128 Mb 512K – 256 Mb

Sourcing Xilinx only Multiple Multiple

Supply Management Yes No No

Storage Cost Low Lowest Low

FPGA Read/Write Yes** Yes Yes

JTAG Interface Yes No No

Configuration Time Fast Slow Fastest

Compression Yes*** No No

Design Revisioning Yes*** No MultiBoot

Power Reliability Excellent Fair Fair

Xilinx Support Excellent Limited Very Limited

ISE 7.1i Support Excellent None None

* XCF00P supports both Serial & Parallel, XCF00S only suports Serial
** Read-Only using XAPP694
*** Only with XCF08P, XCF16P, and XCF32P

Table 1 – Memory summary chart

example, a STMicro SPI is not fully com-
patible with an Atmel SPI PROM.
Second, during a period of tight source
supply, customers might find themselves
paying more for expedites or end up with
very long lead times. Xilinx answers the
source supply conundrum by holding a
large inventory of Platform Flash at fin-
ished goods, which allows Xilinx to quick-
ly react to increased demand.

Ease of Use
Platform Flash was designed to work seam-
lessly with all Xilinx FPGAs and is also sup-
ported by an award-winning support team.
Xilinx provides a total configuration solu-
tion that includes software and hardware.
No other configuration memory solution
offers this type of support.

Value-Added Features
Finally, Platform Flash offers the following
value-added features that are not found in
commodity Flash:

1. Compression. The higher density
Platform Flash PROM devices have
built-in de-compressors, which, on aver-
age, can fit 50% more configuration
data into the same memory space. Xilinx
patented compression technology can
help you reduce costs in two ways:

a. Reduce component costs by fitting a
large bitstream into a lower density
Platform Flash PROM device. For
example, a Virtex™-4 LX60 design
requiring more than 17 Mb of config-
uration bits can fit into a XCF16P
instead of a 32 Mb PROM.

b. Reduce component count by fitting a
design into one PROM as opposed to
two or more. For example, a Virtex-4
LX160 device requires more than 40
Mb of configuration bits, which nor-
mally would require a 32 Mb and 8
Mb PROM, but compression enables
the design to fit into a single XCF32P.

2. JTAG. Allows low-cost board-level
Boundary Scan testing for opens and
shorts, as well as programmability dur-
ing prototyping and in the production
environment.

3. Design Revisioning. Allows one board to
have many functions. Platform Flash
PROMs (XCF08P, XCF16P, and
XCF32P) have blocks of memories that
can be written and read independently of
one another. The logic to switch between
each block is already built into Platform
Flash, thus reducing design time and
cost. Although commodity Flash devices
have a similar feature called “sectors,”
you would need glue logic and software
to access the various sectors.

4. Access to unused memory. Most FPGA
bitstreams will not use all of the memory
of a PROM. Thus, any unused memory
can be used for processor “scratch pad” or
“boot code.” You can access unused mem-
ory within a Platform Flash PROM
through JTAG (refer to XAPP544, “Using
Xilinx XCF02S/XCF04S JTAG PROMs
for Data Storage Applications”). Note that
you can still access unused memory with-
in commodity Flash PROM, but you
might need to design additional logic and
software to access the unused memory.

Conclusion
When planning your next board design,
use Platform Flash for your FPGA con-
figuration and you can beat your com-
petitors to market and lower
development cost. Platform Flash is an
innovative configuration memory with
value-added features that enable greater
flexibility and performance for Virtex
and Spartan FPGAs.

Platform Flash PROMs provide you
with a system-level drop-in solution
that allows you to maximize the flexi-
bility of Virtex and Spartan FPGA-
based systems to significantly reduce
your design effort and accelerate time
to market. Platform Flash PROMs are
competitively priced, reduce the
amount of board space required for
configuration, and offer a complete
1 to 32 Mb PROM density solution
(Table 2).

For more information, visit
www.x i l inx . c om/produc t s / s i l i c on_
solutions/proms/pfp/index.htm.

XCF01S XCF02S XCF04S XCF08P XCF16P XCF32P

Density 1 Mb 2 Mb 4 Mb 8 Mb 16 Mb 32 Mb

JTAG Prog ✔ ✔ ✔ ✔ ✔ ✔

Serial Config ✔ ✔ ✔ ✔ ✔ ✔

SelectMap Config ✔ ✔ ✔

Compression ✔ ✔ ✔

Design Revisions ✔ ✔ ✔

VCC (V) 3.3 3.3 3.3 1.8 1.8 1.8

VCCO (V) 1.8 – 3.3 1.8 – 3.3 1.8 – 3.3 1.5 – 3.3 1.5 – 3.3 1.5 – 3.3

VCCJ (V) 2.5 – 3.3 2.5 – 3.3 2.5 – 3.3 2.5 – 3.3 2.5 – 3.3 2.5 – 3.3

Clock(MHz) 33 33 33 40 40 40

Packages VO20 VO20 VO20 FS48 FS48 FS48

VO48 VO48 VO48

Pb-Free Pkg VOG20 VOG20 VOG20 FSG48 FSG48 FSG48

VOG48 VOG48 VOG48

Availability Now Now Now Now Now Now

Table 2 – Platform Flash features

Fourth Quarter 2005 Xcell Journal 81

David Pellerin
Chief Technology Officer
Impulse Accelerated Technologies, Inc.
david.pellerin@impulsec.com

Greg Edvenson
Senior Software Engineer
Pico Computing, Inc.
greg@picocomputing.com

Kunal Shenoy
Design Engineer
Xilinx, Inc.
kunal.shenoy@xilinx.com

Dan Isaacs
Director, Embedded PowerPC Marketing, APD
Xilinx, Inc.
dan.isaacs@xilinx.com

The Xilinx® Virtex™-4 FX family of
FPGA devices provides embedded systems
developers with new alternatives for creat-
ing high-performance, hardware-accelerat-
ed applications. With an integrated
industry-standard PowerPC™ processor
and innovative Auxiliary Processor Unit
(APU) interface, the Virtex-4 FX device
allows system designers to efficiently con-
nect custom hardware accelerators to the
integrated processor, yielding unprece-
dented performance.

In the past, software programmers who
wanted to take advantage of FPGAs for
algorithm acceleration have experienced
significant technical barriers because of the
complexity of writing low-level hardware
descriptions to represent higher level soft-
ware functions.

Accelerating PowerPC
Software Applications

82 Xcell Journal Fourth Quarter 2005

Using custom APU peripherals, C-to-hardware tools enable
fast creation of Virtex-4 hardware accelerators.

In this article, we’ll show how the
power of the Virtex-4 FX FPGA can be
made readily available to embedded sys-
tems designers and software programmers
through the use of software-to-hardware
tools. The emergence of such tools bring
the performance benefits of FPGAs to
anyone who can program in C.
Accelerated FPGA-based designs are now
easier and more practical for a wide range
of application domains, including image
processing, DSP, and data encryption.

From Software to FPGA Hardware
By virtue of their massively parallel struc-
tures, FPGAs have the potential to dramati-
cally accelerate embedded software
applications. But because these devices
require different (hardware-oriented) skills
than traditional processors, the creation and
programming of a system based on an FPGA
has remained challenging for all but the most
hardware-savvy software programmers. This
is changing, however. With the introduction
of simplified FPGA-based computing plat-
forms and streamlined tools for platform
building, most of the barriers to FPGA adop-
tion have been removed. In addition, the
introduction of software-to-hardware tools
for FPGAs has dramatically improved the
practicality of these devices as software-pro-
grammable computing platforms.

The tools that make this shift possible –
enabling FPGA-based platforms to be con-
sidered viable alternatives to traditional
processors for embedded systems – serve
two basic needs. At the front end, software-
to-hardware compiler tools accept high-
level descriptions written in a language
familiar to embedded software program-
mers. The de facto standard for embedded
systems design is standard C, with C++ and
Java beginning to make inroads as well.

At the back end, existing synthesis and
place and route technologies are combined
with system-level platform building tools,
allowing designers to develop and target
complete systems on programmable logic
to specific development boards. Both of
these needs are being met today, by tools
currently available.

In the area of software-to-hardware com-
pilation, compiler tools such as Impulse

rience with low-level FPGA design – to
assemble a complete system within a single
FPGA, including one or more processors
and related peripherals. When these tools
are combined with a platform-aware soft-
ware-to-hardware compiler, the complete
system can include custom accelerators
originally written in C.

Accelerating Embedded Applications
The Virtex-4 FX family of devices provides
an ideal platform for hardware acceleration
of embedded applications. The Virtex-4
FX12 FPGA, for example, includes more
than 12,000 logic cells; an integrated
PowerPC 405 core, which can operate at
speeds as fast as 450 MHz; and dual
10/100/1000 Ethernet MACs, configured
by the processor through the device control
register (DCR) interface or through the
FPGA fabric.

Looking inside the embedded processor
block (see Figure 2), the PowerPC 405
CPU is directly coupled to the unique and
innovative APU controller, which provides
direct access to hardware accelerators
implemented in the FPGA logic. The APU
controller supports three classes of instruc-
tions: PowerPC floating-point instructions,
APU load and store instructions, and user-
defined instructions (UDI). UDIs are pro-

CoDeveloper (Figure 1) can simplify the
generation of FPGA hardware from higher
level C-language descriptions of software
algorithms. These tools provide the necessary
bridge between the domains of software pro-
gramming and lower level hardware design.

Serving the need for platform building
tools is Xilinx Platform Studio, which sup-
ports a wide variety of Xilinx FPGA-based
boards and systems. Platform Studio makes
it practical for an embedded systems
designer – who may have little or no expe-

Fourth Quarter 2005 Xcell Journal 83

HDL
Files

C Software
Libraries

C Language
Applications

Generate
FPGA

Hardware

Generate
Software
Interfaces

Generate
Hardware
Interfaces

EMAC

DCR
I/F

DSOCM

ISOCM
Control

PowerPC
405 Core

ISOCM

DSOCM

DSPLB

ISPLB

APU

DCREMAC

 APU
Control

Statistics

Client PHY

Client PHY

FCM

Ext DCR

Statistics

Host

DCR
Control

Reset
Debug

Figure 1 – Impulse CoDeveloper tools simplify the
conversion of C subroutines to lower level FPGA
logic and provide the necessary software-to-hard-
ware communications on the Virtex-4 platform.

Figure 2 – The Virtex-4 FX12 embedded processing block includes the embedded PowerPC 405
processor and a high-performance APU interface, along with dual 10/100/1000 EMACs.

grammed into the APU controller either
dynamically through the PowerPC 405 via
the DCR bus or statically during FPGA
configuration via the bitstream. The APU
supported instructions are executed by
hardware acceleration co-processing
engines implemented in the FPGA logic.

When packaged in a highly integrated

compact device such as the Pico
Computing E-12 card (see sidebar, “A
Wide Range of Development Platforms”),
the FX12 device becomes a complete
embedded development platform that
requires little or no hardware design expert-
ise. For embedded application developers
requiring a wider range of hardware

peripherals (such as direct access to video
and audio signals), the Xilinx ML403
board, also based on the FX12 device, pro-
vides an excellent embedded systems
development platform.

On-chip, the Virtex-4 FX APU con-
troller provides a flexible high-bandwidth
interface between the FPGA fabric and the

84 Xcell Journal Fourth Quarter 2005

Taking Advantage of Parallelism in FPGAs
A key aspect of any software-to-hardware design flow is the use of parallelism to increase performance. When accelerating C appli-
cations using FPGAs, parallelism can be exploited at two distinct levels: at the application system level and at the level of statements
(or blocks of statements) within a specific subroutine or loop.

Although there are ongoing attempts to create compiler technologies that can exploit both levels of parallelism with a high degree
of automation, the best approach today is to focus automation efforts (represented by the software-to-hardware compiler) on the
lower level aspects of the problem, while at the same time providing software programmers an appropriate and easy-to-use pro-
gramming model that allows higher level, coarse-grained parallelism to be expressed. In this way programmers can make hard-
ware/software partitioning decisions and experiment with alternative algorithmic approaches, leaving the task of low-level
optimization to automated compiler tools. This approach is particularly useful for platforms such as the Virtex-4 device that include
embedded processors.

A number of programming models can be applied to FPGA-based programmable platforms, but the most successful of these
models share a common attribute: they support modularity and parallelism through a dataflow-like method of design partitioning
and abstraction. Communicating sequential processes, or CSP, is one such programming model. CSP has proven to be highly effec-
tive in expressing application-level parallelism for FPGA targets. This programming model is directly supported in the Impulse C
tools provided by Impulse Accelerated Technologies, Inc.

At the heart of the Impulse C programming model are processes and streams (Figure 4). Processes are independently synchro-
nized, concurrently operating portions of an application that are written in a standard language (in this case C language). Processes
perform the work of the application by accepting data, performing computations, and generating relevant outputs.

Unlike traditional C subroutines, processes are considered persistent; they are normally called once (whether in hardware or
software) and continue as long as there is streaming data to be processed. The data processed by such an application flows from
process to process by means of streams, or in some cases by means of messages or shared memories, which are also supported in
the programming model. Streams represent one-way
channels of communication between concurrent processes
and are self-synchronizing with respect to the processes
by virtue of buffering. The primary method of synchro-
nization between processes is therefore the data being
passed on the streams.

The key to allocating processing power within such a
system – and using such a programming model – is to
implement one or more processes in the FPGA to handle
the heavy computation, and implement other processes
on embedded or external microprocessors to handle file
I/O, memory management, system setup, and other non-
performance-critical tasks. Using tools such as those
included with Impulse C, an application comprising mul-
tiple parallel C processes can be modeled entirely in soft-
ware, verified using a standard desktop C debugging
environment, and then, after the application is function-
ally complete, incrementally moved into the FPGA for
further optimization and acceleration.

Software processes
set up data and
perform non-time-
critical functions

Hardware processes are independently
synchronized and perform most of the work

Shared Memory
Block Reads/Writes

Stream
Inputs

Signal
Inputs

Register
Inputs

Stream
Outputs

Signal
Outputs

Register
Outputs

Application
Monitoring

Outputs

Figure 4 – The Impulse C programming model emphasizes the use of
processes, streams, and shared memories for hardware/software partitioning.

pipeline of the on-chip PowerPC. Fabric
co-processor modules (FCMs) implement-
ed in the FPGA fabric are connected to the
embedded PowerPC processor through the
APU interface, allowing the creation of
custom hardware accelerators. These hard-
ware accelerators operate as extensions to
the PowerPC, thereby offloading the CPU
from demanding computational tasks.

Software engineers can access the FCM
from within assembler or C code. Assembler
mnemonics are available for user-defined
instructions and pre-defined load/store
instructions, enabling programmers to
invoke hardware-accelerated functions into
the regular program flow. Programmers can
also define custom instructions designed
specifically for the hardware functionality of
the FCM. When combined with C-to-hard-
ware compiler tools, the APU controller
allows software programmers to create hard-
ware-accelerated software applications with
little or no FPGA design expertise.

C-to-Hardware Tools
Increase Design Productivity
To make productive use of any computing
platform, software programmers need
appropriate compiler and debugging tools.
Impulse C, from Impulse Accelerated
Technologies, gives software pro-
grammers access to FPGAs by
allowing hardware accelerators to
be compiled directly from software
descriptions.

These accelerators, which are
typically represented by one or
more software subroutines, are
automatically compiled into effi-
cient, high-performance hardware
that can be mapped directly into
FPGA gates. In the case of the
Virtex-4 FPGA, Impulse C is also
capable of automatically generating
software/hardware interfaces using
the APU. This is particularly useful for
applications that combine both traditional
and FPGA-based processing.

Because it is based on standard C,
Impulse C allows FPGA algorithms to be
developed and debugged using popular C
and C++ development environments,
including Microsoft Visual Studio and

GCC-based tools. The CoDeveloper soft-
ware-to-hardware compiler translates spe-
cific C-language subroutines to low-level
FPGA-hardware (see Figure 3) while opti-
mizing the generated logic and identifying
opportunities for parallelism. The compiler
is also capable of unrolling loops and gener-
ating loop pipelines to exploit the extreme
levels of parallelism possible in an FPGA.
Instrumentation and monitoring functions
generate debugging visualizations for highly
parallel multi-process applications, helping
system designers identify dataflow bottle-
necks and other areas for acceleration.

For applications involving the embed-
ded PowerPC and MicroBlaze™ proces-
sors, the Impulse C compiler automates the
creation of hardware/software interfaces
and generates outputs compatible with
Xilinx Platform Studio. This makes it pos-
sible to create high-performance, mixed
hardware/software applications for FPGA-
based platforms without the need to write
low-level VHDL or Verilog.

For large applications comprising multi-
ple hardware and software elements,
Impulse C includes interface libraries (see
sidebar, “Taking Advantage of Parallelism
in FPGAs”) and related compiler features,
allowing parallelism to be expressed at the

level of multiple and independently syn-
chronized processes. These processes can be
mapped either to software running on an
embedded PowerPC or MicroBlaze proces-
sor, or to FPGA hardware.

For all such applications, integration of
front-end compiler tools and back-end
platform building tools is important. The

design process is highly iterative, reflecting
the fact that decisions made up-front (such
as C coding styles and system-level parti-
tioning decisions) may have a dramatic
impact on the results obtained after C
compilation, synthesis, place and route,
and final bitmap generation. At each point
in the process, the tools provide feedback,
allowing you to evaluate and estimate per-
formance before moving to subsequent
(and perhaps more time-consuming) phas-
es of the platform generation process.

Let’s summarize the steps required for a
typical PowerPC-based application using
Impulse and Xilinx tools:

1. The application is initially written
in standard C, using common C
development tools. These tools
include readily available tools such as
Visual Studio, Eclipse, or GCC and
GDB, and may also involve more
comprehensive cross-development
tools. During this phase, a baseline
for validation (a software test bench,
also written in C) is established,
allowing you to quickly test later
design iterations.

2. A C profiler such as gprof may be
invoked, or other, less sophisticated
methods are used to identify compu-
tational hotspots. Often these
hotspots can be isolated to a few C
subroutines or inner code loops
requiring acceleration. Application
monitoring (made possible by instru-
menting the C code during software
testing) can help characterize these
hotspots and analyze data movement.

3. Using software-to-hardware interface
functions provided in the Impulse
C library, data streams or shared
memories create abstract connections
between the main algorithm running
on the PowerPC and hardware-
accelerated subroutines running in
the FPGA. The modified software
algorithm, which now includes one
or more independently synchronized
processes, is simulated again in a
standard C environment to ensure
its correct behavior.

Fourth Quarter 2005 Xcell Journal 85

Figure 3 – The C-language-to-FPGA-accelerator design flow

4. C-language subroutines (or processes,
as they may now be referred to) repre-
senting hardware accelerators are ana-
lyzed and optimized by the Impulse C
compiler, resulting in hardware
description files compatible with
FPGA synthesis tools. Optimization
reports generated in this phase help
you understand the impact of various
coding styles, and make appropriate
revisions in the original C code for
improved performance. During this
compilation process, additional com-
piler outputs are generated that repre-
sent hardware-to-software interfaces,
including (in the case of the Virtex-4
FPGA) the necessary APU interface
logic. Software run-time libraries are
also generated at this point, corre-
sponding to the abstract stream and
shared memory interfaces specified on
the processor side of the application.

5. The generated hardware and software
files are exported from the Impulse
tools (as a PCORE peripheral) and
imported directly into the Xilinx
Platform Studio environment.

The stream and shared memory inter-
faces defined in the C application are
mapped to APU, PLB, or other interfaces
where appropriate, along with other com-
ponents (such as standard processor
peripherals or non-standard IP blocks) to
create the complete system. From within
the Platform Studio interface, the entire
application (both hardware and software) is
built, resulting in a downloadable bitmap.

Evaluating FPGA Acceleration
Using the Pico E-12 card and the Xilinx
ML403 development kit, in conjunction
with Impulse C and Platform Studio, we set
out to compare the relative performance of
the embedded PowerPC 405 processor both
with and without APU hardware accelera-
tion – and using only C programming tech-
niques. To investigate a range of potential
application domains, we selected the fol-
lowing three representative algorithms:

1. An image filter. This algorithm allowed
us to evaluate two pipelined hardware

routines for processing a stream of
image data. The algorithm chosen for
this experiment is a relatively simple
3 x 3 edge-detection function operat-
ing on a 512 x 512 image buffer. This
algorithm allowed us to quickly
evaluate the performance of data
streaming through the Virtex-4 APU
interface, as well as the potential
speedups of using multiple, pipelined
hardware processes.

2. A triple-DES encryption engine. This
algorithm allowed us to evaluate the
impact of various C-level optimization
strategies, as well as the practicality
of adapting and optimizing legacy C
code for a streaming programming
model. One million character blocks
(of eight characters each) were
processed to obtain performance
numbers for this test.

3. A fractal image generator. This algo-
rithm is computationally intensive
and can be characterized in many
ways to explore the size/performance
space. For this experiment, we created
a single hardware process in the
FPGA as an APU peripheral. This
hardware process communicates with
a single controlling software process
running on the embedded PowerPC.
The design of this algorithm, which
generates a 1024 x 768 pixel image
with a selectable level of image accura-
cy, is scalable such that additional
hardware accelerator processes can be
easily added, up to the limit of the
target FPGA.

For each of these algorithms, various
combinations of compiler loop unrolling,
pipelining, and maximum stage delays

were selected in the Impulse C compiler. In
this way the applications could be opti-
mized (in most cases without modifying
the original C code) to obtain a desirable
balance of size, cycle delays, and maximum
clock speed in the generated hardware. In
most cases, we determined that using a rel-
atively low clock rate (50 MHz) in the
FPGA fabric – in combination with
increased cycle-by-cycle throughput
(through the use of automated pipelining)
– produced the best overall results given the
nominal overhead of software-to-hardware
data communication.

Using these algorithms as a baseline,
numerous tests were performed in which
the same C code was compiled both to the
FPGA (as an APU accelerator) and to the
embedded PowerPC processor as a soft-
ware-only application. The results of these
tests are summarized in Table 1.

As the chart shows, the hardware-accel-
erated algorithms show an impressive
increase in performance, even at reduced
FPGA clock rates, compared to the
PowerPC software-only version.

Conclusion
In this article, we have demonstrated how it
is possible, using an FPGA-based platform
and C-to-hardware tools, to create highly
accelerated systems without low-level hard-
ware design skills. The Virtex-4 FX device,
when implemented in a card such as the Pico
E-12 or on a prototyping board such as the
Xilinx ML403, promises to revolutionize the
way that FPGA devices are applied for high-
performance embedded computing.

Software-to-hardware tools such as
Impulse C, when combined with the plat-
form building capabilities of Platform
Studio, make programming for such
devices practical and efficient.

Application
PowerPC Only PowerPC/APU

Acceleration(300 MHz) (300/50 MHz)

Image Filter (512 x 512 Image) 0.1414 sec 0.0124 sec 11.4 X

Encryption (8M Characters) 2.257 sec 0.0667 sec 33.84 X

Fractal Image (10K Max Iterations) 660 sec 31 sec 21.29 X

Table 1 – Virtex-4 APU acceleration results

86 Xcell Journal Fourth Quarter 2005

Fourth Quarter 2005 Xcell Journal 87

A Wide Range of Development Platforms
Providing embedded application developers – software programmers – with an easy-to-use hardware platform is a critical first step
in making FPGAs viable as embedded development platforms. A growing number of vendors are offering FPGA-based proto-
typing and high-performance computing platforms ranging from low-cost, single-FPGA systems to larger FPGA grids intended

for hardware-accelerated computing.
The Pico E-12 card mentioned in the main article (which is avail-

able from Pico Computing, www.picocomputing.com) is a
CompactFlash form-factor package that draws well under 2W. It
features 10/100/1000 Ethernet, 64 MB of Flash, 128 MB of RAM,
and a wide host of peripheral adapters such as A/D, D/A, asynchro-
nous serial, synchronous serial, CAN bus, relay control, and JTAG.
The card is supported by platform development and programming
tools appropriate for software developers. The Pico E-12 platform
advances desktop and portable computing by providing massively
parallel hardware computing resources in a low-power, self-con-
tained package (Figure 5).

There are two versions of the Pico E-12. The Logic
Optimized (LO) version is based on the Virtex-4 LX-25 device,
while the Embedded Processor (EP) version is based on the
Virtex-4 FX12 device, with its integrated PowerPC processor.

In either case, the FPGA on the E-12 card is configured
from the 64 MB of on-board flash memory using an on-board
loader. The unique design of this loader allows new FPGA
images to be swapped into the FPGA on demand. A large num-
ber of FPGA images can be stored in flash memory, and any
image can be loaded at any time through on-board software or
external software communicating with the E-12 card through
its external interfaces. The contents of the 128 MB of external
RAM remain intact through the swapping sequence, allowing
subsequent FPGA images to operate on existing RAM data.

The Xilinx ML403 (shown in Figure 6), the first of sever-
al Virtex-4 FX embedded processing development boards,
combines the Virtex-4 FX12 with a wide variety of software-
configurable interfaces, including network interfaces; serial,
parallel, and USB ports; LVDS and D/A and A/D interfaces;
and a VGA driver. As such, the ML403 is ideal for embedded
systems designers requiring direct FPGA access to external
hardware devices.

Figure 7 shows a comparison between the APU with
Impulse-generated hardware accelerators and a processor/soft-
ware-only implementation. Both systems are utilizing the
ML403 in this example. You can see that the APU-accelerated
version is significantly faster than the processor-only version.

Figure 5 – The Pico Computing EP-12 card packages
the FX12 or LX-25 device with a CompactFlash

interface in an extremely compact form-factor.

Figure 6 – Xilinx ML403 development system

Figure 7 – Xilinx ML403 development system showing
APU hardware accelerated implementation versus software

only executing on the PowerPC

by Aaron Spear
Lead Architect, Tools Solution
Accelerated Technology, A Mentor Graphics Division
aaron_spear@mentor.com

Phillip Walker
Technical Marketing Engineer
Accelerated Technology, A Mentor Graphics Division
phillip_walker@mentor.com

The FPGA-based embedded system design
flow provides many benefits to system
developers, as well as new challenges. Chief
among the benefits are accelerated design
flows that allow you to move quickly from
the design and testing cycles to marketing
and selling. With this accelerated flow, it is
more important than ever that the hardware
and software designs are in sync throughout
the entire engineering design cycle.

Accelerated Technology, A Mentor
Graphics Division, has developed a version
of its Nucleus embedded software suite that
integrates with the Xilinx® Embedded
Development Kit (EDK). This provides a
tight integration of software systems in the
FPGA embedded systems design flow.
EDK is based on a data-driven code base
that makes it extensible and open. By lever-
aging this functionality, Nucleus software is
able to achieve a level of integration into
the FPGA-based embedded system design
flow that was previously not possible.

Nucleus Integration with
Xilinx FPGA System Design
Nucleus Integration with
Xilinx FPGA System Design

88 Xcell Journal Fourth Quarter 2005

Accelerated Technology’s Nucleus, integrated with EDK, provides
the most extensive solution for embedded system architects.
Accelerated Technology’s Nucleus, integrated with EDK, provides
the most extensive solution for embedded system architects.

The Nucleus embedded software suite
for Xilinx FPGA system design includes a
complete tool offering and target software
platform, including high-level modeling
with xtUML and advanced target software
debugging with the Eclipse-based Nucleus
EDGE environment.

Auto Configuration with MLD
The underlying technology of the Xilinx
approach is microprocessor library defini-
tion (MLD). This technology allows for
automatic kernel configurations and the
generation of board support packages
(BSPs). This unique and straightforward
approach allows the Nucleus embedded
software suite to configure to FPGA system
designs created in EDK. This eliminates the
need to re-port the software system to the
new memory map and peripherals for every
hardware design cycle.

The Data-Driven Approach
EDK uses two main data repositories to
store information on hardware- and soft-
ware-related settings. All hardware-related
settings are stored in the MHS (micro-
processor hardware specification) file, while
software-related settings are stored in the
MSS (microprocessor software specifica-
tion) file. These files provide a database
that other tools in the Xilinx system can
access for any given project.

The data-generation component, as
defined in a TCL file, takes hardware
details from the MHS data file and custom
information from the MLD file and
decides which files to generate and what
parameters to customize. The Nucleus-

Introduction to Nucleus EDGE
Accelerated Technology offers the
Eclipse-based Nucleus EDGE develop-
ment environment, a complete develop-
ment environment that supports JTAG
debugging of both PowerPC and
MicroBlaze processors. Nucleus EDGE
extends the Eclipse platform for multi-
core, multi-process, multi-thread debug-
ging. It can be installed as a stand-alone
or into Platform Studio SDK to provide
advanced debugging and project manage-
ment capabilities.

Nucleus EDGE is state-of-the-art
debugging technology that includes fea-
tures such as:

• Full multi-core/multi-process/multi-
thread debugging, with support for
synchronous operation on multiple
cores simultaneously

• Advanced C-like scripting language
(codelets)

• Data-driven target/core/peripheral
descriptions (XML)

• Support for freeze-mode/run-mode
debugging (OS- and hardware-
dependent)

• Pluggable kernel awareness (data-driven)

• Pluggable connection devices

• Pluggable core support

• Pluggable real-time trace support

• Pluggable profiling engine

specific functions of the TCL file encapsu-
late the entire algorithm, generating con-
sistent information used by the Nucleus
kernel to support a wide range of hardware
IP configurations (see Figure 1).

The elements of the Nucleus PLUS real-
time kernel modified by the data genera-
tion file include:

• The number and type of
peripherals used

• Memory map information

• Locations of memory-mapped
device registers

• Timer configurations

• Interrupt controller configurations

Core Generation
Xilinx currently offers two processor choic-
es for implementation in their FPGAs: the
PowerPC™ 405 hard-core processor and
the MicroBlaze™ soft-core processor. The
Nucleus embedded software suite currently
works with both options. Once you have
selected your processor and configured
your system inside EDK, enabling Nucleus
is as simple as a drop-down menu selection.

Configuring Nucleus
and BSP Generation
After you have generated your basic system
design and core selection in EDK, you are
ready to implement the Nucleus embedded
software suite. As Figure 2 illustrates, we
leveraged Xilinx MLD technology to add
this functionality to EDK.

Once you have configured Nucleus to
fit your system requirements, generating
the corresponding BSP is straightforward.
Simply choose the “Generate Libraries and
BSPs” from the Tools menu option in
EDK. This will build the correct libraries
and any associated applications that the
Nucleus embedded suite requires in order
to run on your newly designed system.

System Debugging with Nucleus EDGE
You now have your hardware defined and
the Nucleus PLUS kernel configured to
run on your new platform. But what about
software development? Where do we go
from here?

Fourth Quarter 2005 Xcell Journal 89

MHS MSS

MLD

TCL

User Parameters

Figure 1 – Dataflow in Xilinx EDK

Figure 2 – Components of the Nucleus system are
now configurable from within the EDK through

the Library/OS Parameters dialog.

Creating and Building Applications
Nucleus EDGE provides a powerful build
and project management environment.
The Nucleus EDGE builder is a front end
for any tool that transforms one or more
files from one format into another format;
examples include a compiler that trans-
forms a C file into an object module or a
linker that transforms N object modules
into an executable. You can plug tools into
the Nucleus EDGE builder by writing a
simple XML description for that tool. We
currently have built-in support for 32 dif-
ferent tool sets, including Xilinx GNU for
both PowerPC and MicroBlaze processors.

BSPs
When targeting traditional processors with
Nucleus EDGE, you are responsible for cre-
ating and maintaining BSPs that the debug-
ger and project manager use. One advantage
of Nucleus software integration with EDK is
that BSPs are generated automatically, mak-
ing maintenance painless. When you finish
your hardware design and generate the BSP,
the Nucleus EDGE BSP is also generated.
This BSP is then used to determine appro-
priate tool defaults when creating applica-
tions, or knowing the layout of memory and
peripherals when debugging.

Getting Started with
Project Management
Nucleus EDGE provides a powerful user
interface to change compiler settings for a
given project, or optionally override them
for a particular file. You are free to type in
the command-line arguments if you know
them, or you can peruse the options using a
tree, which contains information about the
command and allowable settings for it. It is
nice not to have to wade through obscure
compiler documentation to find the setting
you need and its syntax (Figure 3).

Editing and Building
Nucleus EDGE provides a full-featured
context-sensitive editor for C/C++ as well
as assembly. The editor provides the fol-
lowing features:

• Configurable syntax highlighting (you
can change the colors)

• Outliner that aids in navigation for
your active source file

• Right-click navigation for declara-
tion/definition of function calls

• During debugging, hovering over vari-
ables displays their current value; addi-
tionally, you can define your own
script functions to render tool tips for
your application data types

• Code completion for both functions
and macros

Any errors in your source during build-
ing are displayed in the build console. You
can click on errors; the editor synchronizes
to the location for you. The editor decorates
all warning or error source locations with
special icons (Figure 4). Figure 4 also shows
the outliner at the right side of the file.

Debugging PowerPC
and MicroBlaze Processors
For Nucleus PLUS kernel applications,
Nucleus EDGE can support run-mode
debugging – the debug of individual tasks
while the rest of the system continues to
run. To accomplish this, it can use a serial
port, Ethernet connection, or even the
Xilinx JTAG UART.

For MicroBlaze processors, Nucleus
EDGE currently supports debugging
through XMD (Xilinx Microprocessor
Debugger). For PowerPC, connection
options include XMD, or, for PowerPC
designs in which you have instantiated a
dedicated JTAG scan chain, third-party
JTAG devices such as Abatron’s BDI2000
and MacCraigor Systems On Chip Demon
family of connections.

Platform Debugging
(Hardware/Software Co-Debugging)
One useful feature gained from connecting
through XMD is that you can leverage
ChipScope™ Pro hardware debugging fea-
tures simultaneously while you debug your
software using Nucleus EDGE. In the
ChipScope Pro GUI, you get a logic ana-
lyzer view of signals inside your core. You
can then configure the ChipScope Pro ana-
lyzer to halt the processor when the state of
a certain peripheral changes, for example.

When this occurs, Nucleus EDGE syn-
chronizes, and you see the exact state of
your software when the event occurred.

Debugging
Nucleus EDGE contains many special fea-
tures for embedded debugging. The regis-
ter view, for example, shows groups of
native processor registers as well as memo-
ry-mapped peripherals. Those bits in the
register that are set are highlighted in an
optional graphical control. Bit-mapped
registers show the bits set, and allow you
to control them individually.

In Figure 5, you can see that “Exception
Enable” is bit 6 in the MSR (the bold box
around the bit), and that the bit is not cur-
rently set (the blue background). Gone are
the days of getting out your calculator to
do binary conversions and counting bits to

90 Xcell Journal Fourth Quarter 2005

Figure 3 – Nucleus EDGE build settings
for MicroBlaze GNU

Figure 4 - Building with errors

Figure 5 - MicroBlaze registers

figure out if a bit is set. Figure 5 also shows
how values that changed from the last step
are color-coded (red).

Breakpoints
One other compelling feature that Nucleus
EDGE offers above and beyond the capabil-
ities of Platform Studio SDK is built-in inte-
gration with hardware breakpoints. As you
may know, you can locate as many as eight
program counter hardware breakpoints
(used for stepping), as well as four read
watch points and four write watch points in
a given MicroBlaze design. Nucleus EDGE
offers a completely integrated and graphical
method to set both types of breakpoints.
Also, the Nucleus EDGE debug engine is
able to use the hardware breakpoints seam-
lessly to enable stepping in ROM.

Multi-Core Debugging
The number of MicroBlaze cores that can
be placed in a design is only limited by the
size of the FPGA. However, the MicroBlaze
debug module can support debugging of as
many as eight MicroBlaze cores simultane-
ously. The Nucleus EDGE user interface
and debug engine have the ability to create
“synchronization groups” of different cores.
When one of these cores stops, all of the
cores in the group are stopped.

Although Xilinx does not currently ship
an IP block that supports configuration of
synchronous control of multiple cores, it is
a relatively trivial matter to implement it
yourself – after all, you have an FPGA.
Simply tie together a memory-mapped reg-
ister with some MUX logic on the
MB_HALT pin (that indicates that a core
has gone into debugging state) as well as the
DBG_STOP pin (that can force a core into
debugging state). This way, when one core
in a group either hits a breakpoint or has an
exception, all of the cores stop. Then, in
Nucleus EDGE, you can provide a codelet
script that sets this register appropriately.

Codelets/Scripting
Nucleus EDGE contains support for a
scripting language that we call “codelets.”
The syntax is standard ISO/ANSI C, with
a few extensions. Simply put, codelets are
scripts that run in the debugger but have

full visibility and control over the target.
You can access target registers, memory,

and variables, as well as call target functions
from within a codelet. You can read and
write host files as well as sockets. You can
open “channel viewers” in the debugger GUI
and execute them through any different
expression evaluation. You can call them
from the command line, or when hitting a
breakpoint, or by typing an expression in the
watch window. Codelets are meant to be an
enabling technology. They allow you to get
inside your hardware in a way that is not
otherwise possible. Some things that cus-
tomers have done with codelets include:

• Board initialization during debug

• Complex conditional breakpoints

• Custom hardware validation/
regression testing

• Virtual console I/O

• “Poor man’s” kernel awareness

• SmartWatch – the ability to define
a codelet that is used to “render” a
given data type to a string, giving
you nice tool tips for your data
structures when debugging

Channels
Nucleus EDGE contains an abstraction for
communications that we call channels. Any
byte stream can be a channel. Files, sockets,
and serial ports can all be channels. Codelets
can also be used to create channels. On top of
that, the GUI provides the ability to write
“channel viewer plug-ins,” a way to render the
data that comes from these channels. Using
this infrastructure offers all kinds of interesting
capabilities. Nucleus EDGE currently ships
with the following built-in channel viewers:

• Generic text console I/O (standard I/O
with the app)

• VT-100 compatible console I/O (sup-
ports escape sequences)

• Strip chart recorder that allows you to
plot any value over time in real time

• Windows Media Player streaming
plug-in (plays MP3s, MPEG video)
(on Windows hosts only)

• Binary data viewer (like the memory
view, in effect a “protocol analyzer”)

These viewers are just the beginning.
Channels also allow us to abstract the mech-
anism used to connect to a profiling agent or
run-mode debugging, for instance. When
coupled with the Xilinx JTAG UART, this
yields a powerful infrastructure for getting
inside your application.

Kernel Awareness
Nucleus EDGE kernel awareness gives you
the ability to see a snapshot of the state of
your system, as well as providing the ability to
set thread-dependent breakpoints. We cur-
rently provide out-of-the-box kernel aware-
ness for the Nucleus PLUS kernel. However,
Nucleus EDGE also gives you the ability to
configure your own kernel awareness. This
can be done for a third-party RTOS, an in-
house kernel, or no RTOS at all.

Nucleus EDGE provides a data-driven
mechanism to describe how it should iterate
objects of a given type and display their
attributes. They do not even have to be soft-
ware objects – they could be anything that
is memory-mapped (Figure 6).

Conclusion
Configurable cores are the future of embed-
ded development. With the combination of
auto configuration of Nucleus target software
and advanced debugging with Nucleus
EDGE, Accelerated Technology has bridged
long-standing gaps in integrated system
design. By supporting both PowerPC- and
MicroBlaze-based FPGA systems, Accelerated
Technology distinguishes itself from the com-
petition and provides unparalleled software
tools and support for FPGA system designers.

For more information, evaluations, and
updates to these exciting technologies, visit
www.acceleratedtechnology.com/xilinx.

Fourth Quarter 2005 Xcell Journal 91

Figure 6 - Kernel awareness

by Anders Dellson
President and CEO
Mitrionics Inc.
anders.dellson@mitrionics.com

An entirely new and exciting market
and technology segment is emerging
with the growth of FPGA-based high-
performance computing (HPC). To
date, technical obstacles have made
practical success in this area more of a
challenge than an opportunity. This
year, the FPGA-based HPC market
takes off, with system vendors (such as
Cray and Silicon Graphics) and FPGA
board suppliers (such as Nallatech)
spearheading the hardware side of the
equation. Now Mitrionics is providing
its Mitrion Platform for fast and easy
software programming of FPGAs.

FPGAs have the potential to be
great application accelerators by work-
ing as co-processors, off-loading com-
putationally intensive tasks from
conventional CPUs. The promise of
achieving orders of magnitude acceler-
ation in processing has fueled a num-
ber of projects and enterprise ventures
over the last decade. Some were
proven very successful, while others
were not. Until now, the critical com-
ponent of converting applications to
run on FPGAs has depended on the
services of highly skilled hardware
designers. This has put the benefits of
FPGA performance boosts out of
reach for the majority of software
developers, who do not have the abili-
ty nor inclination to go into the exten-
sive details of designing hardware.

At least that was the case until now.
With the Mitrion Platform, software
developers have the ability to convert
applications to be accelerated on an
FPGA without knowing the first thing
about the complexities of hardware
design. The Mitrion Platform allows
FPGA-based HPC applications to be
written in days or weeks with just a few
hundred lines of code – versus taking
months or years and tens of thousands
of lines of code to write with other
FPGA programming tools.

Programming FPGAs
for High-Performance
Computing Acceleration

92 Xcell Journal Fourth Quarter 2005

You can make your applications run
faster by using FPGAs as co-processors.

Putting FPGAs to Work
FPGAs are potentially small supercomput-
ers. One of the main reasons FPGAs have
not been prevalent in supercomputing is
their lack of programmability. The users
and application developers for supercom-
puters do not know hardware
design, and have no wish to
learn it. These users are often
researchers with their own com-
plex field of work.

The Mitrion Platform gives
these users access to the per-
formance of FPGAs, while still
allowing them to write their
algorithms in software. It is
applicable to fields such as gene
sequencing, weather prediction,
image analyses, industrial
automation, and geosciences.
You will find FPGA-based
application acceleration highly
attractive in two main areas:
from a raw processing perform-
ance perspective and because of
the significant reduction of
power consumption compared
to clusters of regular micro-
processors. Many problems
within these areas have been dif-
ficult to address with traditional
FPGA design methods, mainly
because of their complexity.

The Mitrion Virtual Processor
Compiling software into a hard-
ware design is not a trivial task.
The program code that makes
up the software and the transis-
tors, wires, and gates that make
up the hardware are very differ-
ent things. We say that the best
solution is simply not to do it.

Traditional processors solve
this problem by using the von
Neumann architecture, a
machine (designed in hardware)
that reads the program code in
sequence and executes the
instructions. The problem with
the von Neumann architecture is
that it really does not lend itself
to the high level of parallelism

is the key to bridging the software-to-hard-
ware gap. Software developed for the
Mitrion Platform is compiled into instruc-
tions for the Mitrion Virtual Processor,
which is then adapted accordingly and
instantiated in programmable logic. It

delivers massive parallelism and
high silicon utilization, and is
aimed at the acceleration of cal-
culation-intensive programs.

The Mitrion Virtual
Processor performs thousands of
operations simultaneously by
allocating computational units
for each instruction. The fine-
grained nature of the processing
elements permits every individ-
ual operation of the program to
run in parallel.

To assure sufficient memory
bandwidth, the Mitrion proces-
sor operates with simultaneous
access to multiple shared exter-
nal memories as well as all
internal memory banks in the
FPGA. Using heavy pipelining,
data is communicated directly
between the thousands of pro-
cessing units, and we reduce
the number of memory access-
es and I/O performance bottle-
necks.

With the Mitrion Virtual
Processor, we are able to elimi-
nate the direct translation of
software to hardware.

The Mitrion-C Programming
Language
To exploit the parallel process-
ing capabilities of the Mitrion
Virtual Processor, traditional,
sequential programming lan-
guages are not sufficient. For
that reason we have developed
Mitrion-C, an implicitly paral-
lel C-family programming lan-
guage. Mitrion-C helps you (as
a programmer) reveal and uti-
lize the parallelism inherent in
your algorithm. It gives you
access to implicit parallelism.
This means that parallelism is

that is required to extract the performance
benefits that you can get from an FPGA.

Pontus Borg and Stefan Möhl, two
“software guys” and the founders of
Mitrionics, realized that the concept of an
abstract machine that executes the software

Fourth Quarter 2005 Xcell Journal 93

 {
 a1 = _memwrite(a0, index, value);
 } a1;
 a3 = _wait(a2);
} a3;

#define RANGE <0 .. 0xffff> //Defines how many values to read from each memory

(mem int:64[0x100000], mem int:64[0x100000],
 mem int:64[0x100000], mem int:64[0x100000])
 main
(mem int:64[0x100000] extA, mem int:64[0x100000] extB,
 mem int:64[0x100000] extC, mem int:64[0x100000] extD)
{
 (a, extAr) = mem2collection(extA, RANGE); //Read values into vector a
 (b, extBr) = mem2collection(extB, RANGE); //Read values into vector b
 (c, extCr) = mem2collection(extC, RANGE); //Read values into vector c

 d = foreach(e0, e1, e2 in a, b,c) e0 * e1 + e2; //Calculate each element in vector d

 extDr = collection2mem(d, extD); //Write vector d back to memory
} (extAr, extBr, extCr, extDr);

Mitrion-C 1.0;

// Options: -cpp

mem2collection(a0, range)
{
 (values, a2) = foreach(e in range)
 {
 (value, a1) = _memread(a0, e);
 } (value, a1);
 a3 = _wait(a2);
} (values, a3);

collection2mem(data, a0)
{
 a2 = foreach(value in data by index)

Figure 1 – The Mitrion debugger and simulator running
the program shown in Figure 2.

Figure 2 – A Mitrion-C program that multiplies two vectors
and adds a third vector element by element.

found automatically, without you having to
manually specify which parts of the algo-
rithm are to be executed simultaneously.
With Mitrion-C, many hundreds of dissim-
ilar parallel interacting operations are creat-
ed without the risk of deadlocks or race
conditions. Mitrion-C is a C-family lan-
guage, which is easy to learn and has a syn-
tax familiar to C programmers.

Developing Software for
the Mitrion Virtual Processor
For the great majority of applications, only
a small amount of code limits the perform-

ance. Typically, when you develop an appli-
cation to be run on the Mitrion Virtual
Processor, you would identify the critical
code and write that in Mitrion-C. You
would then write the rest of the application
in the language of your choice to execute
on a host CPU, calling the critical code to
be run on the Mitrion processor.

The Mitrion Software Development Kit
comprises the Mitrion-C compiler, a
graphical debugger, a code simulator, and a
processor configurator. A C/C++ library is
included that gives easy access to the
Mitrion processor from the host applica-

tion. Several integration modules interface
the Mitrion Virtual Processor to a number
of system platforms.

The graphical debugger and code simu-
lator give you a hierarchical overview of all
the parallel operations and data dependen-
cies in the program. Figure 1 illustrates the
results from running the debugger and
simulator on the sample Mitrion-C code
shown in Figure 2; Figure 3 shows a non-
trivial example. Through the debugger, you
will find it easy to locate programming
errors and identify performance bottle-
necks and inefficient code. This lets you
efficiently refine your Mitrion-C program
and then recompile.

The final output from the Mitrion
Software Development Kit is a hardware
design in VHDL for a Mitrion Virtual
Processor, programmed and optimized to
execute the software algorithm. You will
then use third-party tools to complete
synthesis and place and route. Because the
algorithm you are developing can be test-
ed and simulated inside the Mitrion
Software Development Kit, there is no
need for tedious and time-consuming iter-
ations through the synthesis and place and
route steps to confirm the functionality of
your finished Mitrion Virtual Processor.

Conclusion
The Mitrion Platform allows rapid soft-
ware development for FPGA-based systems
to be completed by regular programmers
who have no hardware design experience.
The resulting applications are typically
accelerated 10x to 30x compared to execu-
tion on a sequential CPU, with a fraction
of the power consumption.

The development of FPGA technolo-
gy is set to outpace the performance of
traditional CPUs. Solutions created on
the Mitrion Platform leverage this
through the platform’s portability. When
a new, more powerful FPGA is available,
all you have to do is reconfigure the
Mitrion Virtual Processor to take advan-
tage of the capabilities of the new device.

For more information, contact
Mitrionics Inc. at (310) 558-9495, visit
www.mitrionics.com, or e-mail info@
mitrionics.com.

94 Xcell Journal Fourth Quarter 2005

Figure 3 – A Bayesian Confidence Propagating Neural Network
running in the Mitrion simulator and debugger.

by Gokul Krishnan
Sr. Marketing Manager, Market Specific Products
Xilinx, Inc.
gokul.krishnan@xilinx.com

Xilinx® EasyPath™ FPGAs are the
industry’s only customer-specific solu-
tion that gets you to volume production
with very little risk and in as few as eight
weeks. EasyPath FPGAs use the same sil-
icon as standard FPGAs. The key differ-
ence between the two is that while the
former are tested for specific customer
designs, the latter are tested for all possi-
ble customer designs. By testing to a spe-
cific design, EasyPath FPGAs provide as
much as an 80% reduction in unit price
(due to improved yields) compared to
the equivalent standard FPGAs.

One of the major advantages of
EasyPath devices is that because they are
identical (in all aspects except testing) to
standard FPGAs, all features supported
in standard FPGAs are in turn support-
ed in the analogous EasyPath FPGA.
From a customer perspective, this means
that very little engineering resources are
required to interface with Xilinx. The
migration process itself is essentially
risk-free. Once the design files are hand-
ed off, Xilinx creates custom test pat-
terns based on the design to get to a
guaranteed 99.9% stuck-at fault cover-
age. With EasyPath FPGAs, you get the
same extensive Xilinx IP portfolio with-
out any additional licensing fees for the
EasyPath conversion.

Flexibility with EasyPath FPGAsFlexibility with EasyPath FPGAs

96 Xcell Journal Fourth Quarter 2005

You can now seamlessly convert to production
and still retain some unique flexibility features.

Just as with structured ASICs (or stan-
dard cell ASICs), you would typically move
from a standard FPGA to an EasyPath
FPGA when your design has been frozen
and the volumes justify a cost-reduction
path. However, unlike structured ASIC
solutions, EasyPath FPGAs provide you
with some unique flexibility features,
including:

* Dual bitstream and in-system engi-
neering change order (ECO) capability

* Flexibility in production and lifecycle
management

* Ability to use all standard FPGA fea-
tures without any constraints

Dual Bitstream and In-System ECOs
Xilinx Virtex™-4 and Spartan™-3
EasyPath FPGAs allow you to retain some
of the design flexibility of standard FPGAs
even after the devices are in production.
Specifically, the dual bitstream option
allows you to target two different designs in
a single EasyPath device – so long as their
pinouts remain the same. This allows you to
combine, for example, two different modes
of operation in the same socket. One design
could provide a diagnostic check that is
active only at or soon after power up;
another design could be active during the
normal functional mode of the device.

A second way you can use the dual bit-
stream option is to try and address two dif-
ferent industry standards at the same time.
Product specifications and market viability
in many wired and wireless segments, for
example, depend heavily on evolving stan-
dards. Given long product development
cycles and the importance of being first to
market, you can now go to market with
potentially two different versions of a prod-
uct to hedge your market position. When
you exercise the dual bitstream option,
Xilinx ensures that all of the resources cor-
responding to both designs are tested.

Another important flexibility feature in
Virtex-4 and Spartan-3 families is the abil-

rerun synthesis and implementation. To
learn more about making these changes
using FPGA Editor, see XAPP803,
“Leveraging ‘In-System ECO’ Capability
of Spartan-3 and Virtex-4 EasyPath
FPGAs” at www.xilinx.com/bvdocs/
appnotes/xapp803.pdf.

Figure 1 shows a screenshot of the
FPGA Editor user interface that you would

use to drill down into the functional blocks
you want to change. The change process
itself requires no intervention from Xilinx.
You can make changes on your own, gener-
ate a new bitstream, download it into the
EasyPath devices already in production,
and implement a bug fix in the field in a
very short time.

Production Flexibility
Another big advantage of EasyPath FPGAs
is that because they are very similar to stan-
dard FPGAs, they can be used inter-

ity to make in-system ECOs. Specifically,
the ECO feature allows you to make mod-
ifications to the combinatorial logic in an
EasyPath FPGA (contained in look-up
tables [LUTs]) and I/O block (IOB)
parameters (such as drive strength and slew
rate) even after volume shipments have
begun and devices are deployed. Xilinx
ensures that 100% of the LUTs used in the

design and all combinations of drive
strengths and slew rates for IOBs are com-
pletely tested to allow for any potential
changes later.

This feature allows you to make simple
bug fixes (within a LUT) such as adding or
removing an AND gate or tweaking the
drive strength of an I/O based on system
requirements with minimal disruption to
ongoing production. You can open the
configuration equation of a LUT or the rel-
evant IOB within the FPGA Editor tool
and make modifications without having to

Fourth Quarter 2005 Xcell Journal 97

Figure 1 – Main window in FPGA Editor used to implement in-system
ECOs in Virtex-4 and Spartan-3 EasyPath FPGAs
(Courtesy: Elizabeth Janney, Application Engineer, Xilinx, Inc.)

Xilinx Virtex-4 and Spartan-3 EasyPath FPGAs allow you to retain some of the
design flexibility of standard FPGAs even after the devices are in production.

changeably with a standard FPGA on a
given board. (All EasyPath devices are
offered in the full range of packages as
the corresponding standard FPGAs.)
The advantage of this interchangeability
is that should a design modification be
required that cannot be accommodated
by the ECO feature, you can quickly
make modifications in a standard FPGA
and continue shipping in production
with standard FPGAs for the eight weeks
or so that it takes to do the EasyPath
migration of the modified design.

Because of the identical nature of
EasyPath FPGAs and standard FPGAs,
no additional prototyping phase or re-
qualification is required. Instead, you go
directly from design freeze to full pro-
duction in as little as eight weeks. This
quick turnaround allows you to postpone
your design freeze milestone in the prod-
uct development cycle and adapt to any
last-minute changes in market condi-
tions, demand, or design specifications.
In today’s age of just-in-time supply
chain management, EasyPath devices
enable you to get to market quickly with-
out the constraints of large inventories.

No Constraints on FPGA Designs
With alternative cost-reduction solutions
such as structured ASICs (or standard cell
ASICs), you typically have to plan ahead
to take advantage of the lowered cost.
Some of the migration issues you may
face when converting from FPGAs to
structured ASICs are well documented
(see the November 2004 article in the
FPGA Journal, “Customer-specific
FPGAs: Low-cost solution for volume
production”). To get around some of
these issues, some vendors impose signifi-
cant constraints on the up-front FPGA
design, thus reducing the flexibility that
FPGAs are designed to provide.

EasyPath FPGAs, on the contrary, do
not impose any design constraints. You
can take full advantage of the flexibility
and embedded features (such as multi-
pliers, PowerPC™, Ethernet MACs, and
high-speed transceivers) in standard
FPGAs to cost-reduce if the design/mar-
ket conditions are appropriate.

Conclusion
With the introduction of Spartan-3 and
Virtex-4 EasyPath FPGAs, you can now
prototype with standard FPGAs and
then move to the corresponding lower
cost EasyPath FPGA in a seamless fash-
ion. The unique in-system ECO and
dual bitstream capabilities in these
EasyPath FPGAs allow you to make
changes in your design and target differ-
ent functional modes even after you have
moved into high-volume production.

The quick time to market and inter-
changeability of standard FPGAs with
EasyPath FPGAs allows you to imple-
ment bug fixes and efficiently manage
inventory without loss of revenue or dis-
ruption of production. In addition,
EasyPath FPGAs do not impose con-
straints on the FPGA design, thus leav-
ing you with the flexibility to choose if
and when you want to freeze your design
and cost-reduce.

98 Xcell Journal Fourth Quarter 2005

The EasyPath
“Migration-Free Advantage”

Since their introduction in March
2002, EasyPath FPGAs, which offer an
innovative approach to high-volume
cost reduction, have received broad
market acceptance. This has been driv-
en by the higher level of flexibility and
ease of migration offered by EasyPath
FPGAs when compared to traditional
ASIC solutions.

In the past year, EasyPath FPGA
usage has grown by more than 600% by
enabling customers in applications
from communications equipment to
storage solutions to achieve a total cost
of ownership that is lower than any
ASIC. With the introduction of Virtex-
4 EasyPath and Spartan-3 EasyPath
FPGAs, customers will continue to
benefit from the EasyPath “migration-
free” advantage.

by Timothy Campbell
FPGA Programmer
University of Vermont, Burlington, VT
tcampbel@uvm.edu

Tian Xia
UVM Assistant Professor of EE
University of Vermont, Burlington, VT
xiat@cems.uvm.edu

DSP algorithmic realization in FPGA
fabric can be easily controlled and
debugged through high-speed Ethernet
communication. This interoperable solu-
tion allows for portability and usage in
other designs. Because of the widespread
use of the standard, the FPGA is capable
of transmitting data at high speeds to a
vast array of external devices.

In the example we’ll present in this
article, a broadcast HTML page is used as
a debugging interface to the FPGA. This
broadcast page can be easily modified
through software to tailor to your debug-
ging needs. The design is built on a sam-
ple design packaged with the Xilinx®

ML403 Virtex™-4 evaluation board, in
which the HTML code is stored locally to
the FPGA. Connecting to the IP address
of the Ethernet MAC (media access con-
troller) through a Web browser loads the
HTML file.

Ethernet Basics
The first Ethernet standard was produced
in 1985. Ethernet fits into the Open
Standards Interface model of the
International Standards Organization, as
illustrated in Figure 1. Several LAN tech-
nologies are in use today, but Ethernet is
by far the most popular technology for
departmental networks. The vast majority
of computer vendors provide equipment
with Ethernet attachments, making it pos-
sible to link all manner of computers with
an Ethernet LAN.

Transmitted data is encapsulated in a
so-called Ethernet frame, which has
defined fields for data and other informa-
tion such that the data gets to its destina-

tion and the destination computer is able
to discern whether the data it receives is
valid. The frame format defines Ethernet
and is illustrated in Figure 2. Frame sizes
vary from 64 to 1518 bytes, and can be up
to 1522 bytes when VLAN (virtual bridged
local area network) is tagged.

As noted in Figure 2, the source and
destination address of the transmitted data
is encapsulated within the frame. The other
fields consist of:

• The preamble, which is a repeating
pattern of 1010 needed for some PHYs

• Start-of-frame delimiter (SFD), which
marks the byte boundary for the MAC

• Type/length of frame

• Data

• Pad, which is only necessary
to extend the frame to 64
bytes

• Checksum, which imple-
ments a cyclic-redundancy
check (CRC) to determine if
the frame is sent in error

• Idle, which occurs between
frames and must be at least
96 bit times

Xilinx Embedded Ethernet
MACs Negotiate the Data
Xilinx Embedded Ethernet
MACs Negotiate the Data

Fourth Quarter 2005 Xcell Journal 99

You can use the Xilinx Embedded Ethernet MAC as an interoperable
standard for data communication between the FPGA and external devices.
You can use the Xilinx Embedded Ethernet MAC as an interoperable
standard for data communication between the FPGA and external devices.

Application

Transport
(TCP/UDP) IETF

Scope

IEEE
802 Scope

TIA/EIA/Others
(Media)

Data Link
(LLC/MAC)

Physical
(PHYs/Media)

Network
(IP)

ISO OSI Stack
Reference Model

Presentation

ession

Transport

Network

Data Link

Physical

Figure 1 – Ethernet’s fit in the Open Standards Interface
model of the International Standards Organization

Ethernet frame transmission is con-
trolled by the MAC layer. The MAC han-
dles data encapsulation from the upper
layers, frame transmission and reception,
data decapsulation, and delivery to upper
layers. The MAC operates independently
of the physical layer employed and thus
does not need to know the speed of the
physical layer (as shown in Figure 3).

The Virtex-4 series offers two embed-
ded Ethernet MACs. In this way, C-code
software implementation through the
PowerPC™ processor can be used to tailor
the MAC to the particular application. You
are thus encapsulated from the lower layers
of the MAC.

The Xilinx Ethernet Register Interface
The Ethernet capability of a Xilinx FPGA
allows for possibilities such as broadcasting
captured data from the FPGA to an
HTML-based website. In this manner, data
can be sent to and retrieved from the
FPGA through user I/O to the HTML
GUI. The HTML page we used in build-
ing our project is shown in Figure 4.

A register interface is critical in the
debugging of a design. It allows you to trig-
ger events, obtain the status of intermediate
results, and dump the values stored in

read/write procedure. To read, we select an
SRAM block by writing the block number
in Register 1, and write the SRAM address
to Registers 2 and 3. After the completion
of register writing for Register 6, the
SRAM contents corresponding to the
SRAM address written in the SRAM block
selected are available for read out through
Registers 4, 5, and 6.

To write a register, we select an SRAM
block by writing the block number in
Register 1, and write the SRAM address to
Registers 2 and 3. Then we fill the SRAM
contents we want to write into Registers 4,
5, and 6. After the completion of register
writing for Register 6, SRAM contents will
changed to new value.

The schematic shown in Figure 5 shows
a single 8-bit register and the signals need-
ed to control it. A select bus allows for
multiple registers based on the size of the
select bus. The “write_d0” signal allows
the register to be written to. When reading
a register, its contents appear on the
REGOUT(7:0) output, and this output is
fed back to the HTML page during a reg-
ister read. The alternative register output is
used to act as control signals, sample input
to block RAMs, or whatever the situation
may call for. We’ll provide a detailed
description of the transmission of data
from the register to the HTML debugging
page in the next section.

block RAM. The latter is especially useful
for processing and verifying a partial piece
of an algorithm. As an example, an FPGA
with an ADC feeding into it can serve as a
sampler through a register dump of stored
ADC sampled data in block RAM.

The contents of block RAM data can
be accessed through a simple register

100 Xcell Journal Fourth Quarter 2005

Preamble

Bytes 7 1 6 6 2 0-1500 0-46 4

Data Pad ChecksumDestination
Address

Start of Frame Delimiter (SFD) Type/Length

Source
Address

MAC Client
(Upper Layers)

Physical
Layer

MAC

write_d0

reg_8

ethernet_reg_interface

write_d0

sel(23:0)

sel(21)

BUF

AND2
OUT_EN

REG_EN

BUSIN(7:0)

BUSOUT(7:0)

REGOUT(7:0)

CLK

control_signals(7:0)

reg_out(7:0)

reg_out(7:0)

reg_in(7:0)

reg_in(7:0)sys_clk

system_reset

reg_out(7:0)

sys_clk

system_reset

q_strobe

q_strobe

write_d0

sel(23:0)

reg_in(7:0)

q_strobe

Figure 2 – Ethernet data frame

Figure 3 – Ethernet MAC layer

Figure 4 – Example HTML page connection
through communication to the Xilinx

embedded MAC IP address

Figure 5 – Ethernet register interface schematic

Implementation of the
Ethernet Register Interface
The Xilinx EMAC interface we used sup-
ports the IEEE Std. 802.3 media independ-
ent interface (MII) to industry-standard
physical layer (PHY) devices and communi-
cates to the PowerPC proces-
sor through an IBM on-chip
peripheral bus (OPB) inter-
face. The EMAC comprises
two IP blocks as shown in
Figure 6. The IP interface
(IPIF) block is a subset of the
OPB bus interface features
chosen from the full set of
IPIF features.

The proposed EDK design
to implement the register inter-
face through Ethernet uses a
general-purpose input/output
(GPIO) core for the processor
local bus (PLB) bus. The
GPIO is a 32-bit peripheral
that attaches to the PLB. We
used this GPIO capability to
communicate between the
PowerPC C-software imple-
mentation and the register
interface linked to the DSP
algorithmic implementation
using dedicated logic. Figure 7
illustrates the block diagram for
the Ethernet register interface.

The Xilinx EDK
PowerPC design was easily
integrated into ISE™ design
tools to access DSP algorith-
mic implementation (the
non-software portion of the
design implemented in dedi-
cated logic). This was
achieved by exporting the
design to ISE software and
encapsulating the logic to
communicate to the PowerPC inside a
schematic block, as shown in Figure 6.
The GPIO bus was used to feed input
and output to the processor, as different
bus lines served different purposes. At a
higher level, this schematic block was
packaged with a state-machine interface
to achieve the register communication to
the FPGA, as illustrated in Figure 5.

Xilinx ML403 Board: Test
Platform for the Interface
At first, the task of employing Ethernet as a
means of communication between the
FPGA and the “outside world” seems pretty
daunting. This is not the case, as Xilinx pro-

vides a reference design from which to build
your own custom design. Xilinx also offers a
tutorial for those not familiar with imple-
menting processor designs using EDK.

The ML403 Embedded Processor
Reference System contains a combination
of known working hardware and software
elements. The reference system demon-
strates a system utilizing the PLB, OPB,

device control register (DCR) bus, and
the PowerPC 405 or MicroBlaze™
processor core. The design operates under
the EDK suite of tools, which yields a
graphical tool framework for designing
embedded hardware and software. Each

of the pieces of the system can
be separately activated as a
stand-alone project.

The proposed Ethernet regis-
ter interface was built from the
Webserver project, which comes
as part of the ML403 reference
system. The Webserver project
implements an Ethernet MAC
through an IBM OPB, built-in
for interfacing with the PowerPC
405. This core supports
10BASE-T- and 100BASE-
TX/FX-compliant PHYs in full-
or half-duplex mode.

The reference design serves
as a good starting point to get
you up and running with a
design. The groundwork is laid
out for you, allowing for addi-
tional modifications and
enhancements.

Conclusion
What better way to transmit
data from the FPGA to an aux-
iliary device, be it a web page
or server, than Ethernet?
Regarded as one of the most
interoperable communication
standards, Ethernet allows you
to achieve high-speed data
transmission with a widely
employed standard.

Virtex-4 devices offer two
embedded Ethernet MAC
cores, and when combined
with the design environment

ease of EDK, an application for data
transmission can be achieved with relative
ease through C-code software implemen-
tation. The capabilities of such a system
allow for FPGA algorithmic debugging
and trigger, as well as SRAM fill and read
at speeds as high as 1 Gbps, providing
control and debugging of dedicated logic
DSP algorithmic realizations.

Fourth Quarter 2005 Xcell Journal 101

Rx
DMA

&
S/G

Read
Packet
FIFO

(2K, 4K,
8K, 16K,

32K bytes)

Master
Attachment

Slave
Attachment

Register

OPB
Bus

Write
Packet
FIFO

(2K, 4K,
8K, 16K,

32K bytes)

Ethernet
IP

Tx

Receive
Data

IPIF Local Bus

Ethernet IPIF (simplified)

Transmit
Data

BRAM

Ethernet
MAC

Register
Interface

OPB

.HTML
File

Stored
Locally to

FPGA

PowerPC

DSP Application
Dedicated Logic

End User
PC/Server

GPIO

Figure 6 – IPIF and EMAC modules

Figure 7 – Block diagram of proposed application

www.xilinx.com/epq With Embedded Processing QuickStart!, Xilinx offers on-site training

and support right from the start. Our solution includes a dedicated expert

application engineer for one week, to train your hardware team on creating

embedded systems, instruct software engineers how to best use supporting

FPGA features, and help your team finish on time and on budget.

The Quicker Solution to Embedded Design

QuickStart! features include configuration of the Xilinx ISE™ design envi-

ronment, an embedded processing and EDK (Embedded Development Kit)

training class, and design architecture and implementation consultations

with Xilinx experts. Get your team started today!

Contact your Xilinx representative or go to www.xilinx.com/epq for

more information.

©2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Xilinx Productivity Advantage: Embedded Processing QuickStart!

Getting You Started With

On-Site Embedded Training

by Rick Folea
CTO
Ricreations, Inc.
rfolea@UniversalScan.com

The good news: starting with the Xilinx®

Spartan™-3E device, you can now use
industry-standard SPI Serial Flash to config-
ure your Xilinx FPGAs. Even better news:
this will be the trend for all new Xilinx
devices going forward, meaning that you will
have multiple vendors from which to choose
inexpensive and readily available memories.

The bad news: Xilinx won’t be support-
ing these devices with programming tools –
you are left on your own to program them.
In this article, I’ll take a look at SPI Flash,
explain your options, and help you get up
and running quickly.

SPI Flash – What’s the Big Deal?
Until now, memories used to configure
Xilinx devices had to be specific Xilinx-
supported memories. This meant poten-
tially higher prices per byte of storage and
being subject to limited deliveries of
devices through limited sources.

By making the switch to SPI Flash, you
now have many vendors from which to
choose, a wider variety of memory densities
and types, and most importantly, lower cost

and better availability. Table 1 shows a list of
SPI Flash vendors and devices compatible
with Xilinx FPGAs supporting SPI Flash.

SPI Flash Varieties
SPI Flash can be lumped into three gener-
al categories: SPI Serial Flash for code stor-
age, SPI Serial Flash for data storage, and
Atmel’s DataFlash.

DataFlash devices are Atmel’s older
Serial Flash AT45DB parts. They are
mature, plentiful, and have densities up to
128 MB. They are slightly more difficult
to use because the programming and erase
algorithms don’t conform to the SPI Flash
algorithms, and there aren’t many vendors
from which to choose. So unless you
absolutely have to have 128 MB of storage,
you will probably want to look at the more
recent SPI Flash memories.

Figure 1 shows two types of SPI mem-
ories: code and data. These are really the
same thing, except that data memories
have a few extra instructions that allow you
to do things like write to memory without
erasing first; this comes in handy when
you are trying to quickly read/write data
from your application. Unless you have a
real need for the data memories’ special
features, you will probably want to stick
with using the programming features of

the code memories for now – just because
there are a lot more vendors and devices
from which to choose. You can still use the
data memories, as they are a superset of the
code memories, but don’t rely on the data
memories’ special command sets if you
want to keep your options open.

SPI Flash Memory Caveats
SPI Flash memories from the various ven-
dors are very similar, but there are a few
things to watch out for. Most of the newer
devices support a “ReadID” instruction so
that you can identify the device by polling
it. Make sure that you read the fine print in
the datasheet. For example, although the
ST datasheet for some of the M25P series
devices have the ReadID instruction listed,
you have to read the fine print, which says
that only devices with an “X” at the end of
the part number support this feature. I was
unable to find these devices anywhere.

Although all vendors’ devices support
read/erase/program instructions, they all
use different command sets. The com-
mands do the same things, but use differ-
ent bits for the commands (a page program
for an ST device is a 0xD8, but a page pro-
gram for an ATMEL device is 0x52, for
example). See the individual instructions
below for more caveats.

Program SPI Serial Flash
from Xilinx FPGAs and CPLDs

Fourth Quarter 2005 Xcell Journal 103

It’s easy to do it yourself by using tools available today.

Programming SPI Flash Memory
As long as you stick with the basic instruc-
tions and keep an eye out for the caveats
I’ve discussed, it is really pretty simple to
write a small, dedicated SPI flash program-
mer yourself. Note that all data and com-
mands are shifted in msb first.

To erase the device, simply:

• Lower chip enable

• Serially shift in the 8-bit erase
command

• Raise chip enable

You can then check the status register to
see when the erase cycle is done or wait the
maximum expected erase time (one to sev-
eral hundred seconds, depending on man-
ufacturer and device density).

To read data from the memory array:

• Lower chip enable

• Serially shift in the 8-bit ReadData
command

• Serially shift in the address (24 bits on
most devices, msb first)

• Continue issuing clocks, capturing
data from the memory serial output

• Raise chip enable when you have shift-
ed out as many bytes as you want

You can continue issuing clocks right up
to the end of the device, at which point the

Tools Available Today
Creating your own programmer works well
on a microprocessor where you have an SPI
port and room in your memory for a few
extra functions. But what if you want to
program a memory connected to a small
CPLD or FPGA? You may be surprised to
find that there are not a lot of low-cost,
simple, general-purpose programmers
available. The options we have today for
non-microprocessor applications fall into
the categories I’ll discuss next.

Dedicated FPGA Configuration
Because the command set is small and sim-
ple, some designers have resorted to creat-
ing a dedicated FPGA configuration that
can be used to program the SPI Flash.

The designers at Memec (recently pur-
chased by Avnet) have taken this one step
further – their configuration uses the
MicroBlaze™ soft-core processor and on-
chip peripheral bus (OPB) SPI core. Given
the processor in the FPGA, they simply
wrote an application to read and write the
SPI Memory. They ran a great demo of this
at the XFEST seminars last Spring that
showed how the SPI Flash could be used to:

• Configure the FPGA (Spartan-3E
device)

• Boot the MicroBlaze processor

• Be used for non-volatile data storage

Call your local Memec/Avnet FAE for a
demo or more information.

These methods provide very fast SPI
Flash access, but require a device with
enough space to accommodate the config-
uration. You could not use it on a CPLD or
other non-configurable devices.

X-SPI Utility
There is a little-known utility on the Xilinx
website called “X_SPI.” If you put an extra
header on your board and can 3-state all
devices connected to the SPI bus, then you
can use this command-line utility to direct-
ly program your SPI Flash with a Xilinx
Parallel-III or Parallel-IV cable. This is doc-
umented in XAPP800, “Configuring
Xilinx FPGAs with SPI Flash Memories
Using CoolRunner-II CPLDs,” along with

address will wrap and start back at the begin-
ning (on most devices).

To write data to the memory array:

• Lower the chip enable

• Serially shift in the WriteEnable
command

• Raise chip enable

• Lower chip enable

• Serially shift in the 8-bit PageProgram
command

• Serially shift in the address (24 bits on
most devices, msb first)

• Shift 8-bit data in, msb first (you can clock
up to 256 bytes at a time on most devices)

• Raise chip enable

• Monitor status register or just wait the
maximum time (a few msec, typically) to
see when write is complete

• Repeat for next page (typically 256 bytes)

Note that if you go past a page boundary,
the data will wrap and overwrite the data at
the bottom of the page – it will not continue
on to the next page.

That’s all you really need to get started. As
you can see, it is really pretty simple to pro-
gram an SPI Flash memory, especially if you
are creating a small programmer for a dedi-
cated application and you stick with the basic
command set.

104 Xcell Journal Fourth Quarter 2005

Vendor Series Type 1M 2M 4M 8M 16M 32M 64M 128M

ST M25P Code
ST M2/45PE Data
ATMEL AT45DB Data
ATMEL AT25F Code
NexFlash NX25P Code
SST SST25VF Code
SST SST25LF Code
AMD/Fujitsu S25FL Code
PMC Pm25LV Code
SAIFUN SA25F Code
SAIFUN SA25C Code
Sanyo LE25FW Code
MXIC MX25L Code

Figure 1 – SPI Flash is available from many vendors in a wide variety of memory densities (green =
available, yellow = planned, gray = not available, and boldface series have been tested in Xilinx Labs).

a method to use a CoolRunner™ CPLD
to transform the SPI signals into the signals
required by Xilinx FPGAs (pre-Spartan-3E
devices). The downside to this approach is
that you have to add an extra header to
your board, be able to 3-state all devices on
the SPI bus, and hope that the utility sup-
ports the SPI Flash device you want to use.

A Better Way – JTAG
XAPP800 also mentions JTAG, but at the
time there were no simple, inexpensive gen-
eral-purpose tools available to program SPI
Flash through JTAG. Now, the latest release
of Universal Scan supports programming of
SPI Flash. We offer a free trial and the SPI
programming feature has been added to this
hardware debugging and memory program-
ming tool without increasing the price.

Using the Boundary Scan chain in your
Xilinx device to program SPI Flash is a snap

– you just specify which pins are connected
to the SPI device, choose a data file, and hit
“program.” You don’t need any test vectors,
test executives, CAD data, or anything else
normally associated with Boundary Scan
test and programming operations. The
pins on the Xilinx device are placed into
EXTEST; vectors are automatically for-
matted and shifted in to drive the SPI
Flash memory pins, and the next thing you
know the memory is programmed. It
includes the usual erase, program, and ver-
ify functions along with a memory viewer,
utilities, sector erase capability, and auto-
matic device ID interrogator.

The beauty of this method is that you can
use it on any FPGA, CPLD, microprocessor,

Ethernet switch, or DSP – any device that
has a JTAG port. The device does not need
to be configured or programmed (or even
necessarily working entirely correctly) for
this to work. Plus, it requires no additional
precious device resources in your FPGA or
CPLD, no special code or configurations,
and does not require any special headers or
other support devices on your circuit card.

There is a downside to this – it can be
much slower than the other methods
because you have to shift a full-scan vector
into the JTAG chain for each and every
clock edge, data setup, and chip enable. As
an example, suppose you have an FPGA
with a scan chain of 2,000 bits. It takes one
scan to setup the serial data into the SPI
Flash, another to raise the clock, and yet
another to lower the clock. We need eight
sets to shift a single byte into the SPI Flash
memory, and that’s 48,000 clocks just to

get 8 bits into the Flash device. Multiply
that by the number of bytes you have to
program and you can see why it takes a
while, especially if you use a parallel port
that is fundamentally limited to a few hun-
dred kilohertz TCK rate.

If you need to speed up the program-
ming time, take a look at the newer
USB2.0 versions of these products; they
increase the TCK rate by an order of mag-
nitude. You can also make sure the SPI
device is connected to a device with a short
scan chain and put all the other devices
into bypass mode to help speed things up.

There are also traditional JTAG tools
available that will program SPI Flash, and if
you are lucky enough to have access, defi-

nitely take advantage of them. These tools are
very powerful and can program memories
rapidly. The only drawback is that they can
require more setup than the method outlined
previously and also tend to be more expen-
sive. But if you need speed, the traditional
Boundary Scan tools are a great option. (See
the sidebar for a list of JTAG tool vendors.)

Other Methods
Most SPI Flash vendors have some kind of
utility for programming their devices, but
they are usually limited to their devices,
require direct connection to the device, or
are a cost adder to another set of utilities.

Conclusion
Figure 2 summarizes all of these options I’ve
described. If you need speed – design your
own. If you can afford some board modifi-
cations and an extra header, consider using

the X-SPI utility, which is
free. Otherwise, take a look
at the new JTAG tools avail-
able for your SPI Flash pro-
gramming needs; they are
easy to use and inexpensive.

The proliferation of SPI
Flash devices, memory
densities, and ease of use
make SPI Flash an ideal
configuration or data stor-
age solution for your next
design. And because Xilinx
is leading the way for
future devices, there is no

time like the present to get started.
For more information about Universal

Scan, visit www.universalscan.com.

Fourth Quarter 2005 Xcell Journal 105

Method
Use on Use on Use on Any General Extra Multiple Prog
FPGAS CPLDs JTAG Device Purpose HW Reqd. Vendors Time

Special
Configuration

Some No No No No Yes Fast

X-SPI N.A. N.A. N.A. Yes Yes Some Medium

JTAG Yes Yes Yes Yes No Yes
Slow or
Medium

Miscel No No N.A. Yes Yes No Medium

Figure 2 – Options for quick, easy, and inexpensive general-purpose in-circuit SPI Flash programming

JTAG Tool Vendors

JTAG Technologies www.JTAG.com

Acculogic www.acculogic.com

Corelis www.corelis.com

Goepel www.goepel.com

Assett-Intertech www.assett-intertech.com

Intellitech www.intellitech.com

Flynn www.flynn.com

Universal Scan www.universalscan.com

by Matt Gordon
Software Engineer
Micrium
matt.gordon@micrium.com

The Xilinx® Embedded Development Kit
(EDK) enables you to create powerful
embedded processor systems, as well as the
complex applications running on them.
These applications may need to perform
numerous tasks and access a wide range of
peripherals, such as memory controllers,
display interfaces, and network interface
cards. It is difficult, expensive, and ineffi-
cient to design such large applications from
scratch, especially when existing software
modules are capable of meeting some or all
of your system’s goals.

Integrating these modules with your
application, however, can sometimes prove
to be more difficult than writing equivalent
modules yourself. Luckily, Xilinx Platform
Studio (XPS) provides a standard interface,
known as the microprocessor library defini-
tion (MLD) interface, to facilitate adding
such modules to your projects. Operating
systems and other software modules adher-
ing to this interface can conveniently be
configured for your application from with-
in XPS. Micrium has adapted many of its
software modules to the MLD interface,
allowing you to quickly and easily add
high-quality, well-documented modules to
your embedded applications.

Add Valuable Software
Modules with XPS
Add Valuable Software
Modules with XPS

106 Xcell Journal Fourth Quarter 2005

XPS, with its MLD interface, simplifies the process of configuring and compiling software modules.XPS, with its MLD interface, simplifies the process of configuring and compiling software modules.

The MLD Format
Each Micrium software module that can be
configured using XPS has an MLD file
defining that module’s configurable parame-
ters. Generally, configurable parameters cor-
respond to features and services that will
comprise the compiled module. These
parameters can also be used to identify the
hardware components that the module will
utilize. For example, the MLD file for a
graphical user interface (GUI) module
might define parameters stipulating the col-
ors and resolutions supported by the com-
piled module, as well as a parameter
indicating the memory-mapped location of
the display controller used by the module.
You would be able to configure these param-
eters from the Software Platform Settings
dialog box in XPS, tailoring modules as
needed to create a suitable software platform
for nearly any application.

Once you have configured a software
platform, you can build it with Library
Generator (LibGen), a utility that is auto-
matically invoked when a project is com-
piled in XPS. LibGen is responsible for
building software modules according to the
parameter values set forth in XPS, and it
uses Tool Command Language (Tcl) files
to meet this objective. Tcl files, which are
provided with each Micrium software
module that complies with the MLD inter-
face, contain functions that are able to
access the parameter values you specify.
These functions are called by LibGen, and
they normally generate source and header
files that allow the module to be built as
per the requirements of the application.

The specific role that Tcl and MLD files
play in the process of configuring and
building software modules can be better
understood by examining one of Micrium’s
software modules, µC/OS-II, The Real-
Time Kernel. µC/OS-II is a popular real-
time operating system (RTOS) that has
been proven effective in hundreds of prod-
ucts. The module’s clean and consistent
source code, which is certifiable for use in
systems deemed safety-critical by the FAA
and FDA, is described in “MicroC/OS-II,
The Real-Time Kernel,” by Jean Labrosse.
This book describes µC/OS-II’s efficient
implementation of semaphores, message

II’s Tcl file has access to the values specified
for each of these configurable parameters,
it can generate os_cfg.h whenever LibGen
is run. This automatic generation of the
configuration file gives you a custom ver-
sion of µC/OS-II each time you build your
project, making the operating system
instantly amendable to the changing needs
of an application.

An Example Application
Although the benefits of the MLD inter-
face are apparent even when considering a
single module like µC/OS-II, they are

more pronounced in a large,
multi-faceted application such as
a Web server. A Web server has
many responsibilities, and from a
design perspective, it is conven-
ient to view each of these respon-
sibilities as a separate component,
as depicted in Figure 2. Once an
application has been logically
divided in this manner, you can
choose software modules to
implement each component.

A Web server might, for exam-
ple, use modules to handle the
various protocols, such as HTTP
and TCP, involved in serving Web
pages. It might also take advan-
tage of a module capable of inter-

queues, timers, and other standard operat-
ing system services.

As Labrosse’s book explains, µC/OS-II’s
services are normally configured by manip-
ulating constants in a header file, os_cfg.h.
The MLD interface eliminates the need to
manually edit this file, instead letting you
configure the operating system from XPS’s
Software Platform Settings dialog box, as
shown in Figure 1. The contents of this
dialog box are determined by µC/OS-II’s
MLD file, which defines configurable
parameters representing the constants nor-
mally found in os_cfg.h. Because µC/OS-

Fourth Quarter 2005 Xcell Journal 107

Web Pages

Web Server

Hardware

Real-Time
Operating System

µC/OS-II

HTTP Server
µC/HTTP

TCP/IP Protocol Stack
µC/TCP-IP

File System
µC/FS

CPU Network Storage Device

Figure 2 – You can efficiently implement each of the components
of a Web server with software modules from Micrium.

Figure 1 – You can configure µC/OS-II in XPS.

facing with a storage device, allowing Web
pages to be saved as files. The Web server
could rely on an RTOS to coordinate the
tasks performed by each of these modules.

The use of these types of software
modules as “building blocks” for con-
structing large applications, such as Web
servers, significantly reduces the time and
effort needed to develop such applica-
tions, provided that you can easily incor-
porate the modules in your design. Many
software modules, though, are unwieldy,
and they introduce unnecessary complex-
ities into projects that use them. Our
example Web server could encompass
hundreds of source files, requiring the
inclusion of a comparable amount of
header files. Adding these files to an
application in XPS would result in a cum-
bersome project, teeming with files that
shouldn’t be of concern to application
developers. To avoid such a confusing
muddle of files, you could create an
object code library, but this would force
you to learn the compilation procedures
for several software modules, and the
resultant library would have to be rebuilt
for different configurations and versions
of the modules.

The MLD interface obscures these
compilation details, resulting in organ-
ized and efficient applications running on
highly configurable software platforms. A
Web server designed on such a platform
would be outwardly simple, with the
multitude of files composing the server’s
modules invisible to designers. The Web
server would appear to consist only of the
files directly implicated in the applica-
tion’s primary task of serving Web pages,
so it could be debugged quickly, even by
developers unfamiliar with the project
and its modules. Updating or revising the
Web server would be similarly painless,
because well-documented and depend-
able software modules, such as those pro-

vided by Micrium, could be added to the
application without needing to under-
stand the mechanics of configuring and
compiling the modules.

The Micrium Software Modules
Micrium’s software modules are readily
adaptable to most applications. The
process of adding such high-quality soft-
ware to a project is expedited in XPS, as
Micrium offers an assortment of modules
that comply with the MLD interface. You
can add any of these modules to a project
by using the Software Platform Settings
dialog box, as shown in Figure 3. This

dialog box gives you the ability to rapidly
deploy practical software platforms to
support complex applications, including
Web servers. In fact, you can construct a
Web server entirely of software from
Micrium simply by specifying the appro-
priate modules in XPS.

The centerpiece of such a Web server
would be µC/TCP-IP, Micrium’s TCP/IP
protocol stack. µC/TCP-IP was meticu-
lously developed using stringent coding
standards. The module’s completely orig-
inal design, which was not derived from
any existing protocol stacks, supports an
extensive array of network options that
are presented to XPS users, along with a
selection of useful add-on modules. You
can use these modules in conjunction
with µC/TCP-IP to accommodate the
needs of a variety of applications. At least
one such module, µC/HTTPs (which
offers a consistent means of serving Web

pages), would be an integral part of a
Web server based on Micrium’s modules.

Another key component of a Micrium
Web server would be µC/FS, Micrium’s
embedded file system. µC/FS is a com-
pact and versatile module, with an API
similar to that available from the stan-
dard C library. The files accessed through
this API can reside on storage devices
implementing any of the numerous for-
mats that µC/FS recognizes, including
CompactFlash, Secure Digital (SD), and
SmartMedia. The files themselves can
also be of varying formats, because
µC/FS is compatible with both the

Microsoft FAT file system and a
proprietary file system. Support
for either of these formats is one
of the many features reflected in
the module’s MLD file, allowing
µC/FS, like Micrium’s other
modules, to be configured in XPS
and seamlessly included in a Web
server or any other application.

Conclusion
By offering a convenient way of config-
uring useful software modules, such as
µC/FS, µC/TCP-IP, and µC/OS-II, the
MLD interface accelerates the process of
constructing complex applications from
these embedded building blocks. The
benefits afforded by the interface may be
unintentionally relinquished, however, if
poorly documented, unreliable modules
are selected.

To avoid the headaches that can result
from the use of such modules, you should
choose dependable and easy-to-use mod-
ules. Micrium’s software modules com-
plement the valuable tools provided with
the EDK, enabling the efficient develop-
ment of powerful applications.

For more information about
Micrium’s modules, please visit
www.micrium.com/microblaze/.

108 Xcell Journal Fourth Quarter 2005

Figure 3 – The Software Platform Settings dialog box
lets you quickly add Micrium’s modules to your project.

By offering a convenient way of configuring useful software modules, such as
µC/FS, µC/TCP-IP, and µC/OS-II, the MLD interface accelerates the process of

constructing complex applications from these embedded building blocks.

Partitioning your design onto the 3.7 million ASIC gates (LSI meas-
ure) of our new board is a lot easier. With three of the biggest,
fastest, new Xilinx Virtex-4 FPGAs this PCI hosted logic prototyping
system takes full advantage of the integrated ISERDES/OSERDES.
400MHz LVDS differential communication with 10X multiplexing
means more than 1800 signals between FPGA A & B. Synplicity
Certify™ models are provided for partitioning assistance.

A dedicated PCI Bridge (533mb/s data transfer) means that all FPGA
resources are available for logic emulation. Other features are
designed to ease your prototyping job:

• 5 programmable clock synthesizers

• 2 DDR2 SODIMMs (custom DIMMs for SSRAM, QDR, Flash …)

• Two, 200 pin expansion connectors for daughter cards

• 10 GB/s serial I/O interfaces with SMA connectors and XFP or
SFP Modules

• Configured by PCI, USB 2.0, or SmartMedia with partial
reconfiguration support on all FPGAs

Various stuffing options and a wide selection of daughter cards let
you meet your exact design requirements. Prices start at less than
$10,000. Call The Dini Group today for the latest ASIC prototyping
solution.

1010 Pearl Street, Suite 6 • La Jolla, CA 92037 • (858) 454-3419
Email: sales@dinigroup.com

www.dinigroup.com

VIR
TEX-4

X
il

in
x
 V

ir
te

x
-4

™
FP

G
A

s
w

w
w

.x
il

in
x

.c
o

m
/d

e
v

ic
e

s/

110 Xcell Journal Fourth Quarter 2005

4V
FX

12
4V

FX
20

4V
FX

40
4V

FX
60

4V
FX

10
0

4V
FX

14
0

24
0

32
0

4V
SX

25
4V

SX
35

4V
SX

55

32
0

44
8

4V
LX

15
4V

LX
25

4V
LX

40
4V

LX
60

4V
LX

80
4V

LX
10

0
4V

LX
16

0
4V

LX
20

0

24
0

24
0

SF
36

3
17

 x
 1

7
m

m
—

24
0

Pa
ck

ag
e

1
A

re
a

M
G

T2
Pi

ns

32
0

44
8

44
8

44
8

FF
66

8
27

 x
 2

7
m

m

—
44

8

64
0

64
0

64
0

76
8

76
8

76
8

FF
11

48
35

 x
 3

5
m

m

—
76

8

96
0

96
0

96
0

FF
15

13
40

 x
 4

0
m

m

—
96

0

32
0

(8
)3

35
2

(1
2)

3
35

2
(1

2)
3

FF
67

2
27

 x
 2

7
m

m

12
35

2

44
8

(1
2)

3
57

6
(1

6)
3

57
6

(2
0)

3
FF

11
52

35
 x

 3
5

m
m

20

57
6

76
8

(2
0)

3
76

8
(2

4)
3

FF
15

17
40

 x
 4

0
m

m

24
76

8

89
6

(2
4)

3
FF

17
60

42
.5

 x
 4

2.
5

m
m

24

89
6

N
ot

es
: 1

. S
FA

 P
ac

ka
ge

s
(S

F)
: f

lip
-c

hi
p

fin
e-

pi
tc

h
BG

A
(0

.8
0

m
m

 b
al

l s
pa

ci
ng

).

 F

FA
 P

ac
ka

ge
s

(F
F)

: f
lip

-c
hi

p
fin

e-
pi

tc
h

BG
A

(1
.0

0
m

m
 b

al
l s

pa
ci

ng
).

Al
l V

irt
ex

-4
 L

X
an

d
Vi

rt
ex

-4
 S

X
de

vi
ce

s
av

ai
la

bl
e

in
 th

e
sa

m
e

pa
ck

ag
e

ar
e

fo
ot

pr
in

t-
co

m
pa

tib
le

.

2.
 M

G
T:

Ro
ck

et
IO

 M
ul

ti-
G

ig
ab

it
Tr

an
sc

ei
ve

rs
.

3.
 N

um
be

r o
f a

va
ila

bl
e

Ro
ck

et
IO

 M
ut

i-G
ig

ab
it

Tr
an

sc
ei

ve
rs

.

4.

 E
as

yP
at

h
so

lu
tio

ns
 p

ro
vi

de
 c

on
ve

rs
io

n-
fre

e
pa

th
 fo

r v
ol

um
e

pr
od

uc
tio

n.

Pb

-fr
ee

 s
ol

ut
io

ns
 a

re
 a

va
ila

bl
e.

 F
or

 m
or

e
in

fo
rm

at
io

n
ab

ou
t P

b-
fre

e
so

lu
tio

ns
, v

is
it

w
w

w
.x

ili
nx

.c
om

/p
bf

re
e.

Ea
sy

Pa
th

™
 C

os
t

Re
du

ct
io

n
So

lu
ti

on
s1

—
XC

E4
VL

X2
5

XC
E4

VL
X4

0
XC

E4
VL

X6
0

XC
E4

VL
X8

0
XC

E4
VL

X1
00

XC
E4

VL
X1

60
XC

E4
VL

X2
00

XC
E4

VS
X2

5
XC

E4
VS

X3
5

XC
E4

VS
X5

5
—

XC
E4

VF
X2

0
XC

E4
VF

X4
0

XC
E4

VF
X6

0
XC

E4
VF

X1
00

XC
E4

VF
X1

40

XC
4V

FX
12

XC
4V

FX
20

XC
4V

FX
40

XC
4V

FX
60

XC
4V

FX
10

0
XC

4V
FX

14
0

64
 x

 2
4

64
 x

 3
6

96
 x

 5
2

12
8

x
52

16
0

x
68

19
2

x
84

10
,9

44
17

,0
88

37
,2

48
50

,5
60

84
,3

52
12

6,
33

6

5,
47

2
8,

54
4

18
,6

24
25

,2
80

42
,1

76
63

,1
68

12
,3

12
19

,2
24

41
,9

04
56

,8
80

94
,8

96
14

2,
12

8

87
,5

52
13

6,
70

4
29

7,
98

4
40

4,
48

0
67

4,
81

6
1,

01
0,

68
8

36
68

14
4

23
2

37
6

55
2

64
8

1,
22

4
2,

59
2

4,
17

6
6,

76
8

9,
93

6

XC
4V

SX
25

XC
4V

SX
35

XC
4V

SX
55

64
 x

 4
0

96
 x

 4
0

12
8

x
48

20
,4

80
30

,7
20

49
,1

52

10
,2

40
15

,3
60

24
,5

76

23
,0

40
34

,5
60

55
,2

96

16
3,

84
0

24
5,

76
0

39
3,

21
6

19
2

32
0

2,
30

4
3,

45
6

5,
76

0

12
8

XC
4V

LX
15

XC
4V

LX
25

XC
4V

LX
40

XC
4V

LX
60

Vi
rt

ex
-4

 L
X

(L
og

ic
)

XC
4V

LX
80

XC
4V

LX
10

0
XC

4V
LX

16
0

XC
4V

LX
20

0

64
 x

 2
4

96
 x

 2
8

12
8

x
36

12
8

x
52

16
0

x
56

19
2

x
64

19
2

x
88

19
2

x
11

6
CL

B
A

rr
ay

 (R
ow

 x
 C

ol
um

n)

12
,2

88
21

,5
04

36
,8

64
53

,2
48

71
,6

80
98

,3
04

13
5,

16
8

17
8,

17
6

CL
B

Fl
ip

 F
lo

ps

CL
B

Re
so

ur
ce

s
6,

14
4

10
,7

52
18

,4
32

26
,6

24
35

,8
40

49
,1

52
67

,5
84

89
,0

88
Sl

ic
es

13
,8

24
24

,1
92

41
,4

72
59

,9
04

80
,6

40
11

0,
59

2
15

2,
06

4
20

0,
44

8
Lo

gi
c

Ce
lls

M
em

or
y

Re
so

ur
ce

s

Cl
oc

k
Re

so
ur

ce
s

I/O
 R

es
ou

rc
es

Em
be

dd
ed

H

ar
d

IP
Re

so
ur

ce
s

Po
w

er
PC

™
 P

ro
ce

ss
or

 B
lo

ck
s

10
/1

00
/1

00
0

Et
he

rn
et

 M
AC

 B
lo

ck
s

Ro
ck

et
IO

™
 S

er
ia

l T
ra

ns
ce

iv
er

s

Vi
rt

ex
-4

 F
X

(E
m

be
dd

ed
 P

ro
ce

ss
in

g
&

 S
er

ia
l C

on
ne

ct
iv

it
y)

Vi
rt

ex
-4

 S
X

(S
ig

na
l P

ro
ce

ss
in

g)

98
,3

04
17

2,
03

2
29

4,
91

2
42

5,
98

4
57

3,
44

0
78

6,
43

2
1,

08
1,

34
4

1,
42

5,
40

8
M

ax
. D

is
tr

ib
ut

ed
 R

A
M

 B
it

s

48
72

96
16

0
20

0
24

0
28

8
33

6
Bl

oc
k

RA
M

/F
IF

O
 w

/E
CC

 (1
8

kb
it

s
ea

ch
)

86
4

1,
29

6
1,

72
8

2,
88

0
3,

60
0

4,
32

0
5,

18
4

6,
04

8

4
4

8
12

12
20

4
8

8
4

8
8

8
12

12
12

12

0
0

4
8

8
8

0
4

4
0

4
4

4
8

8
8

8

32
0

32
0

44
8

57
6

76
8

89
6

32
0

44
8

64
0

32
0

44
8

64
0

64
0

76
8

96
0

96
0

96
0

9
9

11
13

15
17

9
11

13
9

11
13

13
15

17
17

17

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

16
0

16
0

22
4

28
8

38
4

44
8

16
0

22
4

32
0

16
0

22
4

32
0

32
0

38
4

48
0

48
0

48
0

32
32

48
12

8
16

0
19

2
12

8
19

2
51

2
32

48
64

64
80

96
96

96

1
1

2
2

2
2

—
—

—
—

—
—

—
—

—
—

—

2
2

4
4

4
4

—
—

—
—

—
—

—
—

—
—

—

0
8

12
16

20
24

—
—

—
—

—
—

—
—

—
—

—

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0

4,
76

5,
56

8
7,

24
2,

62
4

13
,5

50
,7

20
21

,0
02

,8
80

33
,0

65
,4

08
47

,8
56

,8
96

13
,7

00
,2

88
22

,7
45

,2
16

4,
76

5,
56

8
7,

81
9,

90
4

12
,2

59
,7

12
17

,7
17

,6
32

23
,2

91
,0

08
30

,7
11

,6
80

40
,3

47
,0

08
51

,3
67

,8
08

9,
14

7,
64

8

To
ta

l B
lo

ck
 R

A
M

 (k
bi

ts
)

D
ig

it
al

 C
lo

ck
 M

an
ag

er
s

(D
CM

)

Ph
as

e-
m

at
ch

ed
 C

lo
ck

 D
iv

id
er

s
(P

M
CD

)

M
ax

 S
el

ec
t

I/O
™

To
ta

l I
/O

 B
an

ks

D
ig

it
al

ly
 C

on
tr

ol
le

d
Im

pe
de

nc
e

M
ax

 D
iff

er
en

ti
al

 I/
O

 P
ai

rs

I/O
 S

ta
nd

ar
ds

Xt
re

m
eD

SP
™

 S
lic

es

D
SP

 R
es

ou
rc

es

Sp
ee

d
G

ra
de

s

Co
m

m
er

ci
al

 (s
lo

w
es

t
to

 fa
st

es
t)

In
du

st
ri

al
 (s

lo
w

es
t

to
 fa

st
es

t)

Co
nf

ig
ur

at
io

n
M

em
or

y
Bi

ts

LD
T-

25
, L

VD
S-

25
, L

VD
SE

XT
-2

5,
 B

LV
DS

-2
5,

 U
LV

DS
-2

5,
 L

VP
EC

L-
25

, L
VC

M
O

S2
5,

 L
VC

M
O

S1
8,

 L
VC

M
O

S1
5,

 P
CI

33
, L

VT
TL

, L
VC

M
O

S3
3,

 P
CI

-X
, P

CI
66

, G
TL

, G
TL

+
, H

ST
L

I (
1.

5V
,1

.8
V)

, H
ST

L
II

(1
.5

V,
1.

8V
),

HS
TL

 II
I (

1.
5V

,1
.8

V)
, H

ST
L

IV
 (1

.5
V,

1.
8V

),
SS

TL
2I

, S
ST

L2
II,

 S
ST

L1
8

I,
SS

TL
18

 II

P
ro

d
u

ct
 S

e
le

ct
io

n
 M

a
tr

ix

Im
po

rt
an

t:
Ve

ri
fy

 a
ll

da
ta

 in
 t

hi
s

do
cu

m
en

t
w

it
h

th
e

de
vi

ce
 d

at
a

sh
ee

ts
 f

ou
nd

 a
t

ht
tp

://
w

w
w

.x
ili

nx
.c

om
/p

ar
ti

nf
o/

da
ta

bo
ok

.h
tm

X
il

in
x
 S

p
a
rt

a
n

™
-3

 F
P
G

A
s

a
n

d
 P

la
tf

o
rm

 F
la

sh
w

w
w

.x
il

in
x

.c
o

m
/d

e
v

ic
e

s/

P
ro

d
u

ct
 S

e
le

ct
io

n
 M

a
tr

ix
P
a
ck

a
g

e
 O

p
ti

o
n

s
a
n

d
 U

se
rI

/O
1

CL
B

Re
so

ur
ce

s
M

em
or

y
Re

so
ur

ce
s

CL
K

Re
so

ur
ce

s
D

SP
I/O

 F
ea

tu
re

s
Sp

ee
d

PR
O

M

System Gates (see note 1)

CLB Array (Row x Col)

XC
3S

50
50

K
16

 x
 1

2

Number of Slices

76
8

Equivalent Logic Cells

1,
72

8

CLB Flip-Flops

1,
53

6

Max. Distributed RAM Bits

12
K

Block RAM

4

Block RAM (bits)

72
K

Dedicated Multipliers

4

DCM Frequency (min/max)

24
/2

80

24
/2

80

24
/2

80

24
/2

80

24
/2

80

24
/2

80

24
/2

80

24
/2

80

DCMs

2

Digitally Controlled Impedance

Number of Differential I/O Pairs

Maximum I/O

I/O Standards

Commercial Speed Grades
(slowest to fastest)

YE
S

56
12

4
Si

ng
le

-e
nd

ed
LV

TT
L,

 L
VC

M
O

S3
.3

/2
.5

/1
.8

/
1.

5/
1.

2,
 P

CI
 3

.3
V

–
32

/6
4-

bi
t

33
M

Hz
, S

ST
L2

 C
la

ss
 I

&
 II

,
SS

TL
18

 C
la

ss
 I,

 H
ST

L
Cl

as
s

I,
III

, H
ST

L1
.8

 C
la

ss
 I,

 II
 &

 II
I,

G
TL

, G
TL

+

Di
ffe

re
nt

ia
l

LV
DS

2.
5,

 B
us

 L
VD

S2
.5

,
U

ltr
a

LV
DS

2.
5,

 L
VD

S_
ex

t2
.5

,
RS

DS
, L

DT
2.

5,
 L

VP
EC

L

Si
ng

le
-e

nd
ed

LV
TT

L,
 L

VC
M

O
S3

.3
/2

.5
/1

.8
/

1.
5/

1.
2,

 P
CI

 3
.3

V
–

32
/6

4-
bi

t
33

/6
6M

Hz
, P

CI
-X

 1
00

M
Hz

,
SS

TL
 I

1.
8/

2.
5,

 H
ST

L
I 1

.8
,

HS
TL

 II
I 1

.8

Di
ffe

re
nt

ia
l

LV
DS

2.
5,

 B
us

 L
VD

S2
.5

,
m

in
i-L

VD
S,

 R
SD

S,
 L

VP
EC

L

-4
 -5

Industrial Speed Grades
(slowest to fastest)

-4

Configuration Memory (Bits)

EasyPath

.4
M

XC
3S

20
0

20
0K

24

 x
 2

0
1,

92
0

4,
32

0
3,

84
0

30
K

12
21

6K
12

4
YE

S
76

17
3

-4
 -5

-4
1.

0M

XC
3S

40
0

40
0K

32

 x
 2

8
3,

58
4

8,
06

4
7,

16
8

56
K

16
28

8K
16

4
YE

S
11

6
26

4
-4

 -5
-4

1.
7M

XC
3S

10
00

10

00
K

48
 x

 4
0

7,
68

0
17

,2
80

15
,3

60
12

0K
24

43
2K

24
4

YE
S

17
5

39
1

-4
 -5

-4
3.

2M

XC
3S

15
00

15

00
K

64
 x

 5
2

13
,3

12
29

,9
52

26
,6

24
20

8K
32

57
6K

32
4

YE
S

22
1

48
7

-4
 -5

-4
5.

2M

XC
3S

20
00

20

00
K

80
 x

 6
4

20
,4

80
46

,0
80

40
,9

60
32

0K
40

72
0K

40
4

YE
S

27
0

56
5

-4
 -5

-4
7.

7M

XC
3S

40
00

XC
3S

10
00

L

XC
3S

15
00

L

XC
3S

40
00

L
40

00
K

96
 x

 7
2

27
,6

48
62

,2
08

55
,2

96
43

2K
96

1,
72

8K
96

4
YE

S
31

2
71

2
-4

 -5
-4

11
.3

M

XC
3S

50
00

50

00
K

10
4

x
80

33
,2

80
74

,8
80

66
,5

60
52

0K
10

4
1,

87
2K

10
4

4
YE

S
34

4
78

4
-4

 -5
-4

13
.3

M

N
ot

e:

1.
 S

ys
te

m
 G

at
es

 in
cl

ud
e

20
-3

0%
 o

f C
LB

s
us

ed
 a

s
RA

M
s.

2.

 S
pa

rt
an

-3
L

de
vi

ce
s

of
fe

r r
ed

uc
ed

 q
ui

es
ce

nt
 p

ow
er

 c
on

su
m

pt
io

n.
 P

ac
ka

ge
 o

ffe
rin

gs
 m

ay
 v

ar
y

sl
ig

ht
ly

 fr
om

 th
os

e
of

fe
re

d
in

 th
e

Sp
ar

ta
n-

3
fa

m
ily

.
Se

e
Pa

ck
ag

e
Se

le
ct

io
n

M
at

rix
 fo

r d
et

ai
ls.

Sp
ar

ta
n-

3
an

d
Sp

ar
ta

n-
3L

 F
am

ili
es

 –
 1

.2
 V

ol
t

(s
ee

 n
ot

e
2)

XC
3S

10
0E

10
0K

16
 x

 2
2

2,
16

0
19

20
4

72
K

4
5/

32
6

2
N

O
10

8
0.

6M

XC
3S

25
0E

25
0K

26

 x
 3

4
5,

50
8

48
96

12
21

6K
12

5/
32

6
4

N
O

17
2

1.
4M

XC
3S

50
0E

50

0K

34
 x

 4
6

10
,4

76
93

12
20

36
0K

20
5/

32
6

4
N

O
23

2
2.

3M

XC
3S

12
00

E
12

00
K

46
 x

 6
0

19
,5

12
17

34
4

28
50

4K
28

5/
32

6
8

N
O

30
4

3.
8M

XC
3S

16
00

E
16

00
K

58
 x

 7
6

33
,1

92

96
0

24
48

46
56

86
72

14
75

2
29

50
4

15
K

38
K

73
K

13
6K

23
1K

36
64

8K
36

5/
32

6
8

N
O

37
6

40 68 92 12
4

15
6

5.
9M

-4
 -5

-4
 -5

-4
 -5

-4
 -5

-4
 -5

-4 -4 -4 -4 -4

Sp
ar

ta
n-

3E
 F

am
ily

 –
 1

.2
 V

ol
t

✔ ✔✔ ✔

Im
po

rt
an

t:
Ve

ri
fy

 a
ll

da
ta

 in
 t

hi
s

do
cu

m
en

t
w

it
h

th
e

de
vi

ce
 d

at
a

sh
ee

ts
 f

ou
nd

 a
t

ht
tp

://
w

w
w

.x
ili

nx
.c

om
/p

ar
ti

nf
o/

da
ta

bo
ok

.h
tm

FP
G

A
 a

nd
 C

P
L

D
 D

ev
ic

es
w

w
w

.x
ili

nx
.c

om
/d

ev
ic

es
/

C
on

fi
gu

ra
ti

on
 a

nd
 S

to
ra

ge
 S

ys
te

m
s

w
w

w
.x

ili
nx

.c
om

/c
on

fig
so

ln
s/

Pa
ck

ag
in

g
w

w
w

.x
ili

nx
.c

om
/p

ac
ka

gi
ng

/

So
ft

w
ar

e
w

w
w

.x
ili

nx
.c

om
/is

e/

Fo
r t

he
 la

te
st

 in
fo

rm
at

io
n

an
d

pr
od

uc
t s

pe
cif

ica
tio

ns
 o

n
al

l X
ilin

x
pr

od
uc

ts
, p

lea
se

 v
isi

t t
he

 fo
llo

w
ing

 li
nk

s:

N
ot

es
:

1.
 N

um
be

rs
 in

 ta
bl

e
in

di
ca

te
 m

ax
im

um
 n

um
be

r o
f u

se
r I

/O
s.

2.
 A

re
a

di
m

en
si

on
s

fo
r l

ea
d-

fra
m

e
pr

od
uc

ts
 a

re
 in

cl
us

iv
e

of
 th

e
le

ad
s.

Pb
-fr

ee
 s

ol
ut

io
ns

 a
re

 a
va

ila
bl

e.
 F

or
 m

or
e

in
fo

rm
at

io
n

ab
ou

t P
b-

fre
e

so
lu

tio
ns

 v
is

it
w

w
w

.x
ili

nx
.c

om
/p

bf
re

e.

XC3S100E

XC3S250E

XC3S500E

XC3S1200E

XC3S1600E

A
re

a2
Pi

ns
I/O

’s
10

8
17

2
23

2
30

4
37

6

30
.6

 x
 3

0.
6

m
m

20
8

34
.6

 x
 3

4.
6

m
m

24
0

16
.0

 x
 1

6.
0

m
m

10
0

22
.0

 x
 2

2.
0

m
m

14
4

12
 x

 1
2

m
m

14
4

PQ
FP

 P
ac

ka
ge

s
(P

Q
) –

 w
ir

e-
bo

nd
 p

la
st

ic
 Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

VQ
FP

 P
ac

ka
ge

s
(V

Q
) –

 v
er

y
th

in
 Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

TQ
FP

 P
ac

ka
ge

s
(T

Q
) –

 t
hi

n
Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

Ch
ip

 S
ca

le
 P

ac
ka

ge
s

(C
S)

 –
 w

ir
e-

bo
nd

 c
hi

p-
sc

al
e

BG
A

 (0
.8

 m
m

 b
al

l s
pa

ci
ng

)

31
 x

 3
1

m
m

90
0

35
 x

 3
5

m
m

11
56

17
 x

 1
7

m
m

25
6

17
 x

 1
7

m
m

25
6

23
 x

 2
3

m
m

45
6

23
 x

 2
3

m
m

48
4

27
 x

 2
7

m
m

67
6

27
 x

 2
7

m
m

25
6

19
 x

 1
9

m
m

32
0

21
 x

 2
1

m
m

40
0

FG
A

 P
ac

ka
ge

s
(F

T)
 –

 w
ir

e-
bo

nd
 fi

ne
-p

it
ch

 t
hi

n
BG

A
 (1

.0
 m

m
 b

al
l s

pa
ci

ng
)

FG
A

 P
ac

ka
ge

s
(F

G
) –

 w
ir

e-
bo

nd
 fi

ne
-p

it
ch

 B
G

A
 (1

.0
 m

m
 b

al
l s

pa
ci

ng
)

BG
A

 P
ac

ka
ge

s
(B

G
) –

 w
ir

e-
bo

nd
 s

ta
nd

ar
d

BG
A

 (1
.2

7
m

m
 b

al
l s

pa
ci

ng
)

Sp
ar

ta
n-

3E
 (1

.2
V)

XC3S50

XC3S200

XC3S400

XC3S1000

XC3S1500

XC3S2000

XC3S4000

I/O
’s

12
4

17
3

26
4

39
1

48
7

56
5

71
2

78
4XC3S5000

63
66

66

10
8

10
8

15
8

15
8

19
0

25
0

25
0

17
2

19
0

23
2

30
4

30
4

63

97

12
4

14
1

14
1

97 89
92

92

97

56
5

63
3

63
3

71
2

78
4

26
4

33
3

39
1

48
7

48
9

48
9

17
3

17
3

17
3

33
3

33
3

22
1

22
1

22
1

Sp
ar

ta
n-

3
(1

.2
V)

37
6

Ch
ip

 S
ca

le
 P

ac
ka

ge
s

(C
P)

 –
 w

ir
e-

bo
nd

 c
hi

p-
sc

al
e

BG
A

 (0
.5

 m
m

 b
al

l s
pa

ci
ng

)

8
x

8
m

m
13

2

XC

F0
1S

XC

F0
2S

XC

F0
4S

XC

F0
8P

XC

F1
6P

XC

F3
2P

De
ns

ity

1
M

b
2

M
b

4
M

b
8

M
b

16
 M

b
32

 M
b

JT
AG

 P
ro

g
�

�

�

�

�

�

Se
ria

l C
on

fig

�

�

�

�

�

�

Se
le

ct
M

ap
 C

on
fig

�

�

�

Co
m

pr
es

si
on

�

�

�

De
si

gn
 R

ev
is

io
ns

�

�

�

VC
C

(V
)

3.
3

3.
3

3.
3

1.
8

1.
8

1.
8

VC
CO

 (V
)

1.
8

–
3.

3
1.

8
–

3.
3

1.
8

–
3.

3
1.

5
–

3.
3

1.
5

–
3.

3
1.

5
–

3.
3

VC
CJ

 (V
)

2.
5

–
3.

3
2.

5
–

3.
3

2.
5

–
3.

3
2.

5
–

3.
3

2.
5

–
3.

3
2.

5
–

3.
3

Cl
oc

k(
M

Hz
)

33

33

33

40

40

40

Pa
ck

ag
es

VO

20

VO
20

VO

20

FS
48

FS

48

FS
48

VO
48

VO

48

VO
48

Pb
-F

re
e

Pk
g

VO
G

20

VO
G

20

VO
G

20

FS
G

48

FS
G

48

FS
G

48

VO
G

48

VO
G

48

VO
G

48

Av
ai

la
bi

lit
y

N
ow

N

ow

N
ow

N

ow

N
ow

N

ow

Fourth Quarter 2005 Xcell Journal 111

P
la

tf
o

rm
 F

la
sh

 F
e
a
tu

re
s

D
ev

el
op

m
en

t
R

ef
er

en
ce

 B
oa

rd
s

w
w

w
.x

ili
nx

.c
om

/b
oa

rd
_s

ea
rc

h/

IP
 R

ef
er

en
ce

w
w

w
.x

ili
nx

.c
om

/ip
ce

nt
er

/

P
la

tf
or

m
 F

la
sh

w
w

w
.x

ili
nx

.c
om

/p
ro

du
ct

s/s
ili

co
n_

so
lu

ti
on

s/p
ro

m
s/p

fp
/

G
lo

ba
l S

er
vi

ce
s

w
w

w
.x

ili
nx

.c
om

/su
pp

or
t/g

sd
/

X
il

in
x
 C

P
LD

w
w

w
.x

il
in

x
.c

o
m

/d
e

v
ic

e
s/

112 Xcell Journal Fourth Quarter 2005

XC
R3

03
2X

L
75

0
32

XC
R3

06
4X

L
1,

50
0

64

XC
R3

12
8X

L
3,

00
0

12
8

XC
R3

25
6X

L
6,

00
0

25
6

XC
R3

38
4X

L
9,

00
0

38
4

XC
R3

51
2X

L
12

,0
00

51
2

48 48 48 48 48

36
5

-5
 -7

 -1
0

 -7
 -1

0
4

16

68
6

-6
 -7

 -1
0

 -7
 -1

0
4

16

10
8

6
-6

 -7
 -1

0
 -7

 -1
0

4
16

16
4

7.
5

-7
 -1

0
-1

2
-1

0
-1

2
4

16

22
0

7.
5

-7
 -1

0
-1

2
-1

0
-1

2
4

16

3.
3/

5

3.
3/

5

3.
3/

5

3.
3/

5

3.
3/

5

3.
3/

5

 3
.3

 3
.3

 3
.3

 3
.3

 3
.3

 3
.3

26
0

7.
5

-7
 -1

0
-1

2
-1

0
-1

2
4

16

XC
2C

32
A

75
0

32

XC
2C

64
A

1,
50

0
64

XC
2C

12
8

3,
00

0
12

8

XC
2C

25
6

6,
00

0
25

6

XC
2C

38
4

9,
00

0
38

4

XC
2C

51
2

12
,0

00
51

2

40 40 40 40 40 40

System Gates

Macrocells

Product Terms per Macrocell

1.
5/

1.
8/

2.
5/

3.
3

Input Voltage Compatible

1.
5/

1.
8/

2.
5/

3.
3

33

Output Voltage Compatible

Maximum I/O

2
3.

8

I/O Banking

Min. Pin-to-pin Logic Delay (ns)

-4
 -6

-6

Commercial Speed Grades
(fastest to slowest)

Industrial Speed Grades
(fastest to slowest)

3Global Clocks

17

1.
5/

1.
8/

2.
5/

3.
3

1.
5/

1.
8/

2.
5/

3.
3

64
2

4.
6

-5
 -7

-7
3

17

1.
5/

1.
8/

2.
5/

3.
3

1.
5/

1.
8/

2.
5/

3.
3

10
0

2
5.

7
-6

 -7
-7

3
17

1.
5/

1.
8/

2.
5/

3.
3

1.
5/

1.
8/

2.
5/

3.
3

18
4

2
5.

7
-6

 -7
-7

3
17

1.
5/

1.
8/

2.
5/

3.
3

1.
5/

1.
8/

2.
5/

3.
3

24
0

4
7.

1
-7

 -1
0

-1
0

3
17

1.
5/

1.
8/

2.
5/

3.
3

1.
5/

1.
8/

2.
5/

3.
3

27
0

4
7.

1
-7

 -1
0

-1
0

3
17Product Term Clocks per

Function Block

Co
ol

Ru
nn

er
-II

 F
am

ily
 –

 1
.8

 V
ol

t

Co
ol

Ru
nn

er
 X

PL
A

3
Fa

m
ily

 –
 3

.3
 V

ol
t

-1
0

-1
0

-1
0

-1
2

-1
2

-1
2-6

IQ Speed Grade

-7 -7 -7 -1
0

-1
0

I/O
Fe

at
ur

es
Sp

ee
d

Cl
oc

ki
ng

48

P
ro

d
u

ct
 S

e
le

ct
io

n
 M

a
tr

ix
 –

 C
o

o
lR

u
n

n
e
r™

S
e
ri

e
s

P
a
ck

a
g

e
 O

p
ti

o
n

s
a
n

d
 U

se
r

I/
O

*
JT

AG
 p

in
s

an
d

po
rt

 e
na

bl
e

ar
e

no
t p

in
 c

om
pa

tib
le

 in
 th

is
 p

ac
ka

ge
 fo

r t
hi

s
m

em
be

r o
f t

he
 fa

m
ily

.

N
ot

e
1:

 A
re

a
di

m
en

si
on

s
fo

r l
ea

d-
fra

m
e

pr
od

uc
ts

 a
re

 in
cl

us
iv

e
of

 th
e

le
ad

s.

XC2C512

XCR3032XL

XCR3064XL

XCR3128XL

XCR3256XL

XCR3384XL

XCR3512XL

A
re

a1
Pi

ns

 5
 x

 5
 m

m
32

XC2C32A

XC2C64A

XC2C128

XC2C256

XC2C384

XC2C512

30
.6

 x
 3

0.
6

m
m

20
8

12
.0

 x
 1

2.
0

m
m

44

21

 7
 x

 7
 m

m
48

37

16
.0

 x
 1

6.
0

m
m

10
0

11
8*

22
.0

 x
 2

2.
0

m
m

14
4

48
6

x
6

m
m

56
33

45

8
x

8
m

m
13

2
10

0
10

6

40
36

7
x

7
m

m
48

10
8

12
 x

 1
2

m
m

14
4

16
4

16
 x

 1
6

m
m

28
0

21
2

16
4

21
2

17
 x

 1
7

m
m

25
6

18
4

21
2

21
2

26
0

22
0

23
 x

 2
3

m
m

32
4

24
0

27
0

17
3

17
3

17
3

18
0

16
4

17
2

33
33

36
36

68
84

64
80

80

10
8

12
0

10
0

11
8

11
8

PQ
FP

 P
ac

ka
ge

s
(P

Q
) –

 w
ir

e-
bo

nd
 p

la
st

ic
 Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

VQ
FP

 P
ac

ka
ge

s
(V

Q
) –

 v
er

y
th

in
 Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

TQ
FP

 P
ac

ka
ge

s
(T

Q
) –

 t
hi

n
Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

FG
A

 P
ac

ka
ge

s
(F

T)
 –

 w
ir

e-
bo

nd
 fi

ne
-p

it
ch

 t
hi

n
BG

A
 (1

.0
 m

m
 b

al
l s

pa
ci

ng
)

FB
G

A
 P

ac
ka

ge
s

(F
G

) –
 w

ir
e-

bo
nd

 fi
ne

-li
ne

 B
G

A
 (1

.0
 m

m
 b

al
l s

pa
ci

ng
)

Ch
ip

 S
ca

le
 P

ac
ka

ge
s

(C
S)

 –
 w

ir
e-

bo
nd

 c
hi

p-
sc

al
e

BG
A

 (0
.8

 m
m

 b
al

l s
pa

ci
ng

)

Ch
ip

 S
ca

le
 P

ac
ka

ge
s

(C
P)

 –
 w

ir
e-

bo
nd

 c
hi

p-
sc

al
e

BG
A

 (0
.5

 m
m

 b
al

l s
pa

ci
ng

)

Co
ol

Ru
nn

er
 X

PL
A

3
Co

ol
Ru

nn
er

-II

Q
FN

 P
ac

ka
ge

s
(Q

FG
) –

 q
ua

d
fla

t
no

-le
ad

 (0
.5

 m
m

 le
ad

 s
pa

ci
ng

)

36
36

17
.5

 x
 1

7.
5

m
m

44
33

33

PL
CC

 P
ac

ka
ge

s
(P

C)
 –

 w
ir

e-
bo

nd
 p

la
st

ic
 c

hi
p

ca
rr

ie
r

(1
.2

7
m

m
 le

ad
 s

pa
ci

ng
)

X
il

in
x
 C

P
LD

w
w

w
.x

il
in

x
.c

o
m

/d
e

v
ic

e
s/

Fourth Quarter 2005 Xcell Journal 113

P
ro

d
u

ct
 S

e
le

ct
io

n
 M

a
tr

ix
 –

 9
5
0
0
 S

e
ri

e
s

P
a
ck

a
g

e
 O

p
ti

o
n

s
a
n

d
 U

se
r

I/
O

XC9536XV

XC9572XV

XC95144XV

XC95288XV

34
34

XC9536XL

XC9572XL

XC95144XL

XC95288XL

34
34

34
34

81
81

11
7

11
7

11
7

11
7

38
36

38
36

11
7

11
7

19
2

19
2

19
2

19
2

19
2

72

34

52
36

72

N
ot

e
1:

 A
re

a
di

m
en

si
on

s
fo

r l
ea

d-
fra

m
e

pr
od

uc
ts

 a
re

 in
cl

us
iv

e
of

 th
e

le
ad

s.

A
re

a1
Pi

ns

17
.5

 x
 1

7.
5

m
m

44

23
.3

 x
 1

7.
2

m
m

10
0

12
.0

 x
 1

2.
0

m
m

44

12
.0

 x
 1

2.
0

m
m

64

16
.0

 x
 1

6.
0

m
m

10
0

22
.0

 x
 2

2.
0

m
m

14
4

7
x

7
m

m
48

12
 x

 1
2

m
m

14
4

16
 x

 1
6

m
m

28
0

27
 x

 2
7

m
m

25
6

17
 x

 1
7

m
m

25
6

XC9536

XC9572

XC95108

XC95144

34
34 72

81
81

81
81

34

XC95216

XC95288

30
.2

 x
 3

0.
2

m
m

84
69

69

31
.2

 x
 3

1.
2

m
m

16
0

10
8

13
3

13
3

16
8

16
8

30
.6

 x
 3

0.
6

m
m

20
8

16
6

16
8

35
.0

 x
 3

5.
0

m
m

35
2

16
6

19
2

FB
G

A
 P

ac
ka

ge
s

(F
G

) –
 w

ir
e-

bo
nd

 F
in

e-
lin

e
BG

A
 (1

.0
 m

m
 b

al
l s

pa
ci

ng
)

BG
A

 P
ac

ka
ge

s
(B

G
) –

 w
ir

e-
bo

nd
 s

ta
nd

ar
d

BG
A

 (1
.2

7
m

m
 b

al
l s

pa
ci

ng
)

34
34XC

95
00

XC
95

00
XL

XC
95

00
XV

72

TQ
FP

 P
ac

ka
ge

s
(T

Q
) –

 t
hi

n
Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

VQ
FP

 P
ac

ka
ge

s
(V

Q
) –

 v
er

y
th

in
 T

Q
FP

 (0
.5

 m
m

 le
ad

 s
pa

ci
ng

)

PQ
FP

 P
ac

ka
ge

s
(P

Q
) –

 w
ir

e-
bo

nd
 p

la
st

ic
 Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

PL
CC

 P
ac

ka
ge

s
(P

C)
 –

 w
ir

e-
bo

nd
 p

la
st

ic
 c

hi
p

ca
rr

ie
r

(1
.2

7
m

m
 le

ad
 s

pa
ci

ng
)

Ch
ip

 S
ca

le
 P

ac
ka

ge
s

(C
S)

 –
 w

ir
e-

bo
nd

 c
hi

p-
sc

al
e

BG
A

 (0
.8

 m
m

 b
al

l s
pa

ci
ng

)

System Gates

Macrocells

Product Terms per Macrocell

Input Voltage Compatible

Output Voltage Compatible

Maximum I/O

I/O Banking

Min. Pin-to-pin Logic Delay (ns)

Commercial Speed Grades
(fastest to slowest)

Industrial Speed Grades
(fastest to slowest)

Global Clocks

Product Term Clocks per
Function Block

IQ Speed Grade

I/O
Fe

at
ur

es
Sp

ee
d

Cl
oc

ki
ng

XC
95

36
80

0
36

XC
95

72
1,

60
0

72

XC
95

10
8

2,
40

0
10

8

XC
95

14
4

3,
20

0
14

4

90 90 90 90

36
10

 -7
 -1

0
-1

5
3

18

72
10

-1
0

-1
5

3
18

10
8

10
-7

 -1
0

-1
5

-2
0

3
18

13
3

10

-5
 -6

 -1
0

-1
5

-7
 -1

0
-1

5

-7
 -1

0
-1

5
-2

0

-7
 -1

0
-1

5
-1

0
-1

5

-1
5

-1
5

N
A

N
A

3
18

5 5 5

5
5

5 5 5

XC
95

21
6

4,
80

0
21

6
90

16
6

10
-1

0
-1

5
-2

0
-1

0
-1

5
-2

0
N

A
3

18
5

5

XC
95

28
8

6,
40

0

Pb
-fr

ee
 s

ol
ut

io
ns

 a
re

 a
va

ila
bl

e.
 F

or
 m

or
e

in
fo

rm
at

io
n

ab
ou

t P
b-

fre
e

so
lu

tio
ns

 v
is

it
w

w
w

.x
ili

nx
.c

om
/p

bf
re

e

28
8

90
19

2
10

-1
0

-1
5

-2
0

-1
5

-2
0

N
A

3
18

5
5

XC
95

00
 F

am
ily

 –
 5

 V
ol

t

XC
95

36
XL

80
0

36

XC
95

72
XL

1,
60

0
72

XC
95

14
4X

L
3,

20
0

14
4

XC
95

28
8X

L
6,

40
0

28
8

90 90 90 90

36
5

 -7
 -1

0
3

18

72
5

-7
 -1

0
3

18

11
7

5
-7

 -1
0

3
18

19
2

6

-5
 -7

 -1
0

-5
 -7

 -1
0

-5
 -7

 -1
0

-6
 -7

 -1
0

-7
 -1

0

-1
0

-1
0

N
A

N
A

3
18

2.
5/

3.
3/

5

2.
5/

3.
3/

5

2.
5/

3.
3/

5

2.
5/

3.
3/

5

2.
5/

3.
3

 2
.5

/3
.3

2.
5/

3.
3

 2
.5

/3
.3

XC
95

00
XL

 F
am

ily
 –

 3
.3

 V
ol

t

XC
95

36
XV

80
0

36

XC
95

72
XV

1,
60

0
72

XC
95

14
4X

V
3,

20
0

14
4

XC
95

28
8X

V
6,

40
0

28
8

90 90 90 90

36
5

-7

3
18

72
5

-7

3
18

11
7

5
-7

3

18

19
2

6

1 1 2 4

-5
 -7

-5
 -7

-5
 -7

-6
 -7

 -1
0

-7
 -1

0

N
A

N
A

N
A

N
A

3
18

2.
5/

3.
3

2.
5/

3.
3

2.
5/

3.
3

2.
5/

3.
3

1.
8/

2.
5/

3.
3

 1
.8

/2
.5

/3
.3

1.
8/

2.
5/

3.
3

1.
8/

2.
5/

3.
3

XC
95

00
XV

 F
am

ily
 –

 2
.5

 V
ol

t

X
il

in
x
 S

o
ft

w
a
re

 –
 I

S
E
 8

.1
i

w
w

w
.x

il
in

x
.c

o
m

/i
se

114 Xcell Journal Fourth Quarter 2005

Fe
at

ur
e

IS
E

W
eb

PA
CK

™
IS

E
Fo

un
da

ti
on

™
Fe

at
ur

e
IS

E
W

eb
PA

CK
™

IS
E

Fo
un

da
ti

on
™

Pl
at

fo
rm

s

M
ic

ro
so

ft
W

in
do

w
s

20
00

 /
XP

M

ic
ro

so
ft

W
in

do
w

s
20

00
 /

XP

Re

d
Ha

t E
nt

er
pr

is
e

Li
nu

x
3

(3
2

bi
t)

Su
n

So
la

ris
 2

.8
 o

r 2
.9

Re

d
Ha

t E
nt

er
pr

is
e

Li
nu

x
3

(3
2

&
 6

4
bi

t)

D
ev

ic
es

Vi

rt
ex

™
 S

er
ie

s

Vi
rt

ex
: X

CV
50

 -
XC

V6
00

AL

L

Vi

rt
ex

-E
: X

CV
50

E-
 X

CV
60

0E

Vi

rt
ex

-II
: X

C2
V4

0
- X

C2
V5

00

Vi

rt
ex

-II
 P

ro
: X

C2
VP

2
- X

C2
VP

7

Vi

rt
ex

-4
:

 L

X:
 X

C4
VL

X1
5,

 X
C4

VL
X2

5

 S
X:

 X
C4

VS
X2

5

 F
X:

 X
C4

VF
X1

2

Vi

rt
ex

 Q
: X

Q
V1

00
- X

Q
V6

00

Vi

rt
ex

 Q
R:

 X
Q

VR
30

0,
 X

Q
VR

60
0

Vi
rt

ex
-E

 Q
: X

Q
V6

00
E

Sp

ar
ta

n™
 S

er
ie

s
Sp

ar
ta

n-
II/

IIE
: A

ll
Sp

ar
ta

n-
II/

IIE
: A

ll

Sp

ar
ta

n-
3:

 X
C3

S5
0

- X
C3

S1
50

0
Sp

ar
ta

n-
3:

 A
ll

Sp
ar

ta
n-

3E
: A

ll
Sp

ar
ta

n-
3E

: A
ll

Sp
ar

ta
n-

3L
: X

C3
S1

00
0L

, X
C3

S1
50

0L

Sp
ar

ta
n-

3L
: A

ll

XA

 (X
ili

nx
 A

ut
om

ot
iv

e)
 S

pa
rt

an
-3

: A
ll

XA
 (X

ili
nx

 A
ut

om
ot

iv
e)

 S
pa

rt
an

-3
: A

ll

Co

ol
Ru

nn
er

™
 X

PL
A3

Co

ol
Ru

nn
er

-II
™

Co
ol

Ru
nn

er
-II

A
Al

l

XC

95
00

™
 S

er
ie

s

Al
l

D
es

ig
n

En
tr

y
Sc

he
m

at
ic

 E
di

to
r

Ye
s

HD

L
Ed

ito
r

Ye
s

St

at
e

Di
ag

ra
m

 E
di

to
r

M
ic

ro
so

ft
W

in
do

w
s

on
ly

Xi

lin
x

CO
RE

 G
en

er
at

or
 S

ys
te

m
™

Ye

s

RT

L
&

 T
ec

hn
ol

og
y

Vi
ew

er
s

Ye
s

PA

CE
 (P

in
ou

t &
 A

re
a

Co
ns

tr
ai

nt
 E

di
to

r)
Ye

s

Ar

ch
ite

ct
ur

e
W

iz
ar

ds

Ye
s

3r

d
Pa

rt
y

RT
L

Ch
ec

ke
r S

up
po

rt

Ye
s

Xi

lin
x

Sy
st

em
 G

en
er

at
or

 fo
r D

SP

So
ld

 a
s

an
 O

pt
io

n

Em
be

dd
ed

 S
ys

te
m

D
es

ig
n

Em
be

dd
ed

 D
es

ig
n

Ki
t (

ED
K)

So

ld
 a

s
an

 O
pt

io
n

Sy
nt

he
si

s
XS

T
- X

ili
nx

 S
yn

th
es

is
 T

ec
hn

ol
og

y

Ye
s

M

en
to

r G
ra

ph
ic

s
Le

on
ar

do
Sp

ec
tr

um

In
te

gr
at

ed
 In

te
rfa

ce

(E

DI
F

In
te

rfa
ce

 o
n

Li
nu

x)

M

en
to

r G
ra

ph
ic

s
Pr

ec
is

io
n

RT
L

In
te

gr
at

ed
 In

te
rfa

ce

M

en
to

r G
ra

ph
ic

s
Pr

ec
is

io
n

Ph
ys

ic
al

ED

IF
 In

te
rfa

ce

Sy

no
ps

ys
 D

C-
FP

G
A

Co
m

pi
le

r
ED

IF
 In

te
rfa

ce

Sy

np
lif

y/
Pr

o/
Pr

em
ie

r
In

te
gr

at
ed

 In
te

rfa
ce

Sy

np
lic

ity
 A

m
pl

ify
 P

hy
si

ca
l S

yn
th

es
is

ED

IF
 In

te
rfa

ce

AB

EL

CP
LD

 (M
ic

ro
so

ft
W

in
do

w
s

on
ly

)

Im
pl

em
en

ta
ti

on

Fl
oo

rP
la

nn
er

Ye

s

Pl

an
Ah

ea
d™

So

ld
 a

s
an

 O
pt

io
n

Ti

m
in

g
Dr

iv
en

 P
la

ce
 &

 R
ou

te

Ye
s

In

cr
em

en
ta

l D
es

ig
n

Ye
s

Ti

m
in

g
Im

pr
ov

em
en

t W
iz

ar
d

Ye
s

Xp

lo
re

r
Ye

s

Pr
og

ra
m

m
in

g
IM

PA
CT

 /S
ys

te
m

 A
CE

™
/ C

ab
le

Se
rv

er

Ye
s

Bo
ar

d
Le

ve
l

In
te

gr
at

io
n

IB
IS

 /
ST

AM
P

/ H
SP

IC
E*

 M
od

el
s

Ye
s

EL

DO
 M

od
el

s*
 (M

G
T

on
ly

)
Ye

s

Ve
ri

fic
at

io
n

Ch
ip

Sc
op

e
PR

O
™

So

ld
 a

s
an

 O
pt

io
n

G

ra
ph

ic
al

 T
es

tb
en

ch
 E

di
to

r
M

ic
ro

so
ft

 W
in

do
w

s
on

ly

IS

E
Si

m
ul

at
or

 L
ite

Ye

s

IS

E
Si

m
ul

at
or

IS

E
Si

m
ul

at
or

 is
 a

va
ila

bl
e

as
 a

n
O

pt
io

na
l D

es
ig

n
To

ol
 fo

r I
SE

 F
ou

nd
at

io
n

on
ly

M

od
el

Si
m

®
 X

E
III

 S
ta

rt
er

Ye

s

M

od
el

Si
m

 X
E

III

So
ld

 a
s

an
 o

pt
io

n

St

at
ic

 T
im

in
g

An
al

yz
er

Ye

s

FP

G
A

Ed
ito

r w
ith

 P
ro

be

Ye
s

Ch

ip
Vi

ew
er

Ye

s

XP

ow
er

 (P
ow

er
 A

na
ly

si
s)

Ye

s

3r

d
Pa

rt
y

Eq
ui

va
le

nc
y

Ch

ec
ki

ng
 S

up
po

rt

Ye
s

SM

AR
TM

od
el

s
fo

r P
ow

er
PC

™

an

d
Ro

ck
et

IO
™

Ye

s

3r

d
Pa

rt
y

Si
m

ul
at

or
 S

up
po

rt

Ye
s

*H
SP

IC
E

an
d

EL
DO

 M
od

el
s

ar
e

av
ai

la
bl

e
at

 th
e

Xi
lin

x
De

si
gn

 T
oo

ls
 C

en
te

r a
t w

w
w

.x
ili

n
x.

co
m

/is
e

Fo
r m

or
e

in
fo

rm
at

io
n,

 v
is

it
w

w
w

.x
ili

n
x.

co
m

/is
e

IS
E
™

 8
.1

i
–

P
o

w
e
re

d
 b

y
 I

S
E
 F

m
a
x
 T

e
ch

n
o

lo
g

y

Enabling success from the center of technology™

1 800 332 8638

www.em.avnet.com

© Avnet, Inc. 2005. All rights reserved. AVNET is a registered trademark of Avnet, Inc.

Avnet Electronics Marketing has collaborated with National

Semiconductor® and Xilinx® to create a design guide that

matches National Semiconductor’s broad portfolio of power

solutions to the latest releases of FPGAs from Xilinx.

Featuring parametric tables, sample designs and step-by-step

directions, this guide is your fast, accurate source for choosing the

best National Semiconductor Power Supply Solution for your design.

It also provides an overview of the available design tools, including

application notes, development software and evaluation kits.

Go to em.avnet.com/powermgtguide

to request your copy today.

Support Across The Board.
™

Power Management Solutions for FPGAs

National Devices supported:

• Voltage Regulators

• Voltage Supervisors

• Voltage References

Xilinx Devices supported:

• Virtex™

• Virtex-E

• Virtex-II

• Virtex-II Pro

• Virtex-4FX, 4LX, 4SX

• Spartan™-II

• Spartan™-IIE

• Spartan-3, 3E, 3L

Best Signal Integrity:
7x Less SSO Noise

Virtex-4 FPGAs deliver the industry’s best signal integrity, allowing you to
pre-empt board issues at the chip level, for high-speed designs such as memory
interfaces. Featuring a unique SparseChevron™ pin out pattern, the Virtex-4 family
provides the highest ratio of VCCO/GND pin pairs to user I/O pins available in any
FPGA. By strategically positioning one hard power pin and one hard ground pin
adjacent to every user I/O on the device, we’ve reduced signal path inductance
and SSO noise to levels far below what you can attain with a virtual ground or
soft ground architecture.

The Industry’s Highest Signal Integrity,
Proven By Industry Experts
Incorporating continuous power and ground planes, plus integrated bypass
capacitors, we’re eliminating power-supply noise at its source. In addition, we
provide on-chip termination resistors to control signal ringing. The lab tests
speak for themselves. As measured by signal integrity expert Dr. Howard Johnson,
no competing FPGA comes close to achieving the low-noise benchmarks of
Virtex-4 devices.

Visit www.xilinx.com/virtex4/sipi today, and choose the right high-performance
FPGA before things get noisy.

The Programmable Logic CompanySM

Design Example: 1.5 volt LVCMOS 4mA, I/O, 100 aggressors shown.

Dr. Howard Johnson, author of High-Speed Digital Design,

frequently conducts technical workshops for digital engineers

at Oxford University and other sites worldwide.

Visit www.sigcon.com to register.

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

PN 0010885

