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WWhat does the number 6,759,852 represent? Well, I guess it could represent a lot of different
things. For example, it could be the current population of Chennai, India. It could be the phone
number of Training Academy Ireland (they’re nice folks, but please don’t call them to verify). Or it
could be the student ID number of a computer science major attending the University of
Manitoba, Canada.

Had you chosen any one of these you would have been correct, but you would not have guessed
the answer I was looking for.

On July 6, 2004, Xilinx® reached the 1,000th patent landmark. The patent, “VDD Detection Path
in Power-Up Circuit,” was U.S. Patent number 6,759,852. (I can’t believe you didn’t guess this.) 
It was issued to Maheen A. Samad in our General Products Division, Engineering department.

So what’s the big deal, you might ask? Although our corporate pride may runneth over, our patent
count doesn’t hold a candle to some corporate giants. That may be true, but Xilinx was founded
with innovation at its core, beginning with Ross Freeman’s invention of the FPGA and continuing 
with innovative practices and ideas, many of which are commemorated in the patent hallway at our
corporate headquarters.

Using our R&D dollars as a metric to measure our efficiency in converting innovation into patents,
Xilinx – as a high-tech company – ranks second only to IBM™. Xilinx also ranks 131st in the 
number of patents held, making it one of the most innovative companies worldwide.

This milestone – while not hugely significant in terms of the raw number – is more about 
celebrating the continued innovation from Xilinx, both in the form of technology patents as well
as business acumen.

This issue of the Xcell Journal features articles in two key technology areas: digital signal 
processing (DSP) and embedded processors. This issue also includes an article on the new Virtex-4™
family of FPGAs, which offers three platforms optimized for logic, DSP, and embedded processor
applications. And speaking of innovation, the Virtex-4 family includes more than 120 new (and,
of course, patented) features, many of which are specific to supporting high-performance signal
processing and embedded processors.

With the launch of the Virtex-4 multi-platform FPGA family, the Xilinx vision expands to encompass
programmable systems, which include logic, embedded processing, and very high-performance digital
signal processing. As illustrated in the many articles in this issue, programmable technologies provide
customers further flexibility and performance benefits to inspire innovation.
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Throughout the
history of semicon-
ductors, when a
technology becomes
programmable, it
dominates. That’s
why, in addition to
p r o g r a m m a b l e
logic, we have
defined two key
p r o g r a m m a b l e

technologies on which we will focus: digital
signal processing and embedded processing.
We have the right technology and the right
business model to be a major player in all of
these important and fast-growing markets.

Digital Signal Processing  
Xilinx FPGAs have long been the highest
performance technology for building DSP
designs. With our devices and software,
you can build systems that are two to three
orders of magnitude faster than what a ded-
icated DSP device can do on its own.
Putting our extremely high performance
DSP functionality next to a programmable
DSP allows DSP designers to develop sys-
tems with unprecedented performance and
value. You also get many other advantages
offered by FPGAs, including flexibility, fast
time to market, and higher levels of system
integration. There simply is no easier,
faster, or better way to develop extreme
performance DSP designs.

For example, with our new Virtex-4™
FPGA family, you can achieve 256
GigaMACs (billions of multiple accumu-
lates per second).  We have achieved this
amazing performance through both
advanced architecture and silicon fabrica-
tion technologies. 

Applications for our high-performance
DSP capabilities are growing. Broadcasting
or video conferencing for high-definition
television, for example, is rapidly being
converted to the H.264 format. This stan-
dard requires a lot of processing power, as
the target is to have the quality of MPEG-
2 video at one-half the bit rate.
Sophisticated motion compensation
schemes are being used to achieve this goal.
Standard video processors can perform this

Focusing on 
Programmable 
Technologies

Focusing on 
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Technologies
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by Wim Roelandts
CEO, Xilinx, Inc.

Xilinx clearly leads the programmable logic 
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function at smaller screen sizes up to com-
mon intermediate format (CIF) resolu-
tions, but to go beyond this to standard
definition (SD) or high definition (HD)
requires the performance of a Xilinx FPGA
to perform some of the more math-inten-
sive functions (such as motion estimation)
in conjunction with a programmable video
processor. Our DSP capability makes
Xilinx the technology of choice for these
new demanding applications.  

For years the only other solution for these
very high performance DSP applications
was custom devices – ASICs. Yet ASICs take
far longer to design, cost much more to
develop, cannot easily be modified to meet
changing requirements, and are risky because
of their complexity. Xilinx programmable
devices and development tools provide a far
better solution with less overall cost. 

Today, the high-performance FPGA-
based DSP market alone is worth more
than $200 million, and we have over 80%
of that market. According to market esti-
mates, the DSP market addressable by
FPGAs is expected to grow to more than
$3 billion by 2007. So, as you can see, the
future looks very bright for Xilinx as the
demand for very high performance DSP
continues to grow. We are well positioned
to provide the devices, the development
tools, and the support services to meet this
growing demand.

Embedded Processing
We are relatively new to the embedded pro-
cessing market – three years ago we intro-
duced our Virtex-II Pro™ family, which
includes an embedded hard-core IBM™
PowerPC™ processor. Although it took
awhile for the idea to catch on, we now have
thousands of design wins using our embed-
ded processors. And in addition to the
PowerPC processor, we now offer our 32-bit
MicroBlaze™ and the 8-bit PicoBlaze™
soft-core processors. All of these embedded
processors work together, using the same
peripherals and IP, so you can easily create
complete high-performance, multi-processor
systems on a single low-cost chip. 

The total embedded processor market is
very fragmented because there are multiple
architectures and multiple operating sys-

ers work with high-level languages such as C
or C++, while logic designers usually work in
VHDL or Verilog™. Although the final
implementation is in an FPGA, the design
approach is very different for each of these
customers, and thus we must support these
customers in different ways.

Therefore, to ensure that we are address-
ing the needs of each market segment, I
decided to create two new divisions within
Xilinx; one to focus on the DSP market
and one to focus on the embedded process-
ing market. Each new division, headed by a
vice president, will focus on providing the
development tools, devices, IP (cores), sup-
port services, and marketing functions to
fully capitalize on these growing technolo-
gies. We intend to be the leader in all of
these key programmable technologies.

Conclusion
Xilinx is the only company that can bring
all these programmable technologies
together in a single device, giving you a
tremendous advantage in performance,
cost, and time to market. If you do a sys-
tem-on-chip design in an ASIC, it will
require tens of millions of dollars in up-
front (NRE) investment, and ASIC designs
are risky because you not only have to do
the logic design – you must also do the
physical design. This can only be justified
for high-volume, low-cost applications.

With Xilinx you can do a system-on-
chip design with no NRE. And because the
chip itself is already designed and
debugged, you don’t need to worry about
physical design issues such as crosstalk and
power distribution. All you need to do is
develop the logic design, which can be
quick and easy using our growing family of
IP and development tools that solve many
complex design problems for you. 

Basically, now we can offer a system-
on-chip for the masses, because now we
have the advantages of an ASIC in a flexi-
ble and programmable device. Now you
can create a single chip that includes DSP
and embedded processors, along with IP
and custom logic, for much less cost and
no risk. All these programmable technolo-
gies, available on a single device, give you
a significant advantage.

tems. Customers tend to stay with a known
architecture because of their long-term soft-
ware investment – no one wants to re-code
and re-port their designs to a new architec-
ture. That’s one reason why we chose the
PowerPC as our high-performance proces-
sor, because (except for cell phones and
video games) it is the one most used in our
industry, and it is well supported by both
IBM and Motorola. Capturing even a rela-
tively small percentage of this $15 billion
market would mean significant revenue for
Xilinx. Many embedded processing cus-
tomers are beginning to realize the benefits
of our technology – and we’ve only started
to focus on this market segment.

Because our MicroBlaze and PicoBlaze
processors are created as soft cores, they are
very flexible and extensible. Plus, they are
fast enough to meet the needs of many
applications, very inexpensively. Combined
with our high-performance PowerPC
processor, they form an unbeatable alliance
that can handle the most demanding appli-
cations with ease, all on a single program-
mable device. 

Our processor strategy is to provide a
range of embedded processors, all using
the same peripherals and IP, all working
together seamlessly on a single chip, and
working seamlessly with our DSP and
logic functions. Thus you can build and
simulate very complex systems and pro-
duce production-ready designs faster than
ever before. Then, as your requirements
change or as design errors are uncovered,
you can quickly modify your design and
resume production without losing cus-
tomers. That’s the power of programma-
bility; that’s what Xilinx does best. The
advantages are enormous.

Focusing on the Future
Our original focus was on supporting logic
designers – the traditional customers for our
devices. However, DSP and embedded pro-
cessing designers are very different from logic
designers; they use different tools, they have
different needs and expectations, and they
approach their designs in different ways. For
example, DSP designers usually work with
algorithms such as Fast Fourier Transforms
and FIR filters; embedded processing design-
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by Mark Aaldering
Vice President, Embedded Processing Division
Xilinx, Inc.
mark.aaldering@xilinx.com

In today’s world, just about every system incorporates some form of embedded pro-
cessing in an amazing array of markets and applications. During the last few years,
Xilinx, our partners, and our customers have developed and shared a vision to build
and assemble all of the elements required for a complete and robust range of embed-
ded processing solutions adapted for FPGA technologies. 

In this edition of the Xcell Journal, we have assembled articles representing a wide
range of embedded processing applications. These include articles on state-of-the-art
commercial applications, real-time operating systems, multi-processor debugging envi-
ronments, testing of complex hardware modules, and high-speed Internet communi-
cation protocols.

With our accelerated success in the embedded processing arena, it is appropriate
that this series of articles coincides with the recently announced formation of the
Embedded Processing Division. This division brings talent and technology together in
an organization to accelerate development of an even wider range of embedded system
solutions, optimizing the full capabilities of our silicon architectures at multiple per-
formance and price points.

This new division reinforces our commitment to the increasingly diverse and
changing embedded systems market and represents the evolution of three years of
embedded processing experience.

Embedded with XilinxEmbedded with Xilinx
In this series on embedded processing, the Xcell Journal
samples a broad base of embedded processing applications.
In this series on embedded processing, the Xcell Journal
samples a broad base of embedded processing applications.
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by Jason Daughenbaugh
Sr. Design Engineer
Advanced Electronic Designs, Inc.
jason.daughenbaugh@aedmt.com

New York City’s Times Square is known 
as the “Crossroads of the World.”
Approximately 1.5 million people pass
through the intersection of Broadway and
42nd Street every day, and millions more
see the area daily on television broadcasts.
No better place for outdoor advertising
exists. As a result, dazzling signs have
become a Times Square trademark. 

Every advertiser wants to have the best
advertising medium possible, so new signs
must use the latest technology. Times
Square tenants rely on MultiMedia, which
manufactures the majority of the spectacu-
lar signs in Times Square. When
MultiMedia asked our company, Advanced
Electronic Designs, Inc. (AED), to design an
LED sign for JPMorgan Chase™ in Times
Square, we needed a huge amount of signal
processing, data distribution, and interfac-
ing. We also needed to design the sign very
quickly. We met this challenge by utilizing
the advantages of Xilinx® components. 

We used Virtex-II™ XC2V1000 FPGAs
for video processing, and for control and
distribution we chose low-cost Spartan-3™
XC3S200 FPGAs. To configure the FPGAs,
we chose the Platform Flash XCF00 config-
uration PROM family. And for final distri-
bution of the data on the 3800 LED blocks,
we used XC9572XL PLDs.

Sign of the TimesSign of the Times
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The Design
An LED sign is like a large computer mon-
itor; video data goes in and is displayed on
the sign. The sign comprises red, green,
and blue LEDs that turn on and off (pulse-
width modulation) to generate more than
four trillion colors.

What made this particular design a
challenge was the scale, both in terms of
physical size as well as the amount of data
and the transfer rates involved. The sign is
135 feet long and 26 feet tall. With nearly
two million pixels, it is the highest defini-
tion LED display in the world. This is ten
times the resolution of the average televi-
sion screen and twice the resolution of top-
of-the-line HDTV sets. 

After considering our options, design-
ing with Xilinx programmable logic was
the obvious choice. The high-perform-
ance, low-cost FPGAs are well suited for
all three main components of this design:
video processing, data distribution, and
sign control.

Video Processing
The video processor accepts a variety of
video inputs. It captures these video streams
as 36 bit RGB (12 bits per color). It then
crops and places these inputs onto a master
sign image for display. Color-space conver-
sion adjusts image characteristics such as
color temperature and balance.
Additional processing cor-
rects for individual LED
differences. We also use pro-
prietary image processing
algorithms to operate the
LEDs efficiently while main-
taining optimal image quality.

Data Distribution
Video data starts in a control
room and ends at the LEDs. The
first step is the video processor,
which is located in the control
room. The video processor breaks the
images into manageable chunks to send to
the many modules of the sign so that each
LED displays the data for the correspon-
ding pixel. More than 3 Gbps of video data
alone is required to operate the LEDs. In
addition to video data, we also transfer a

allowing great distances between the con-
troller and the sign itself.

We were able to use off-the-shelf switches
to distribute the data within the sign and put

inexpensive 10/100 Ethernet ports on the
individual distribution boards. The avail-

ability of Ethernet protocol analyzers,
such as the open-source project
Ethereal, allowed us to easily analyze
and debug the system.

Sign Control
In advertising, time is money; thus it is cru-
cial to monitor the sign at all times. The
control system monitors temperatures
throughout the sign to ensure that adequate
cooling is present. Voltages are monitored to
detect malfunctioning power supplies. The
control system maintains error and resend
counts to detect faulty data links. It also pro-
vides an interface to upgrade the FPGAs
remotely for enhancements and bug fixes.

variety of control and status functions.
Not wanting to re-invent the wheel,

we chose Ethernet as our data distribu-
tion medium. Our video processor has
multiple Gigabit Ethernet ports that
interface to the sign. Gigabit Ethernet
can be transferred over fiber-optic cable,

Figure 1 – The world’s highest resolution LED display is based on Xilinx devices.
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Figure 2 – The sign is built 
out of 3,800 display blocks. 



The Benefits of Xilinx Devices
Xilinx devices include a large number of
features that are ideal for our sign project:

• The reconfigurable nature of Xilinx
devices is necessary for a project like
this. Without FPGAs, the only alterna-
tive would have been an ASIC. But an
ASIC was not feasible for this project
for several reasons. 

First, this project had a very tight sched-
ule. An ASIC could not have been com-
pleted in the time allotted. Second, the
volumes of the components in this sign
are not of sufficient volume to hide the
NREs of an ASIC. Third, an ASIC lacks
the development opportunities of an
FPGA. To me, as an engineer, this rea-
son is the most important. No matter
how much simulation you perform,
there can always be unexpected bugs. In
an ASIC, these bugs are expensive; in an
FPGA, they can be fixed easily.

Another FPGA advantage is that it can
meet future needs through feature
upgrades; an ASIC cannot. The recon-
figurable nature of Xilinx FPGAs
allows us to provide feature upgrades
and bug fixes to the customer via e-
mail, making it easy for them to apply
to the sign. Through an Ethernet inter-
face, the FPGA reprograms the
Platform Flash configuration PROM
and automatically reboots.

• Video processing requires a large num-
ber of multiply operations. The video
processor must perform color-space
conversion and apply calibration coeffi-
cients in real time. It would require a
large portion of FPGA logic resources to
build multipliers. Instead, this can be
done very efficiently by utilizing the
embedded multipliers. Building
pipelined processing structures with the
embedded multipliers allowed us to eas-
ily meet the processing requirements.

• This design required a large variety of
signaling standards. The flexible Xilinx
I/O blocks allowed us to connect direct-
ly to a large number of different inter-
faces. Voltages ranged from standard
3.3V CMOS down to 1.5V HSTL. 
We required single-ended and differen-
tial interfaces. In some cases we could
have used external driver and receiver
parts, but that would have added com-
plexity and cost to the product.

Other high-speed I/O interfaces, such
as to the DDR 333 memory, would not
have been possible without direct
FPGA support. The digitally controlled
impedance (DCI) modes were necessary
on the high-speed single-ended traces.

• With the high data rates involved and
the many data interfaces, we had a large
number of clock domains. The quanti-
ty of global clock nets available and the
ability of the digital clock managers
(DCMs) to synthesize clock frequencies
made this easy. We also used the phase-
shift ability of the DCM to adjust sam-
ple times on various interfaces.

• Block RAM is my favorite resource in
an FPGA. Without block RAM, there
are two memory options. The first
option is the logic slices, using flip-
flops or distributed RAM, but this is
expensive and slow for anything more
than 16- to 32-bit addresses. The sec-
ond option is external memory, such
as SDRAM. SDRAM storage is gener-
ally in the range of tens to hundreds of
megabytes, leaving a huge size gap
between these two memory options.

Block RAM bridges this size gap. It can
be used for a limitless number of
things, from FIFOs for processing
engines to loadable tables for data con-
versions. The flexible port-widths of
block RAM allow you to use them
individually or in efficient combina-
tions. The dual-port capability makes

them easy to use for transferring data
between clock domains or sharing data. 

• While very powerful and convenient,
the PLDs and Spartan-3 FPGAs are
also very inexpensive. When combined
with the development advantages, the
low device price makes Xilinx devices
unbeatable when developing high-per-
formance embedded systems.

PicoBlaze Processors
Device hardware capabilities are essential
for any design, but development tools and
tricks are also very important. The favorite
toy in our Xilinx bag-of-tricks is the
PicoBlaze™ processor. We could not have
completed the project in the time allowed
without extensive use of the PicoBlaze
processor. The sign contains an impressive
count of more than 1,000 of these embed-
ded processors, with nine different designs.

PicoBlaze processors provide efficient
logic resource utilization by time-multiplex-
ing logic circuits. Many functions, especial-
ly control functions, do not need to be

12 Xcell Journal      Winter 2004
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8 Gbps video processing

18 Billion 16-bit multiply 
operations per second

16 DDR333 SDRAM banks

6 Gigabit Ethernet MACs

333 Fast Ethernet MACs

>1000 PicoBlaze Processors

10 XC2V1000 Virtex-II FPGA

323 XC3S200 Spartan-3 FPGA

333 XCF00 Platform Flash PROM

3,800 XC9572XL 72 macrocell PLD

The reconfigurable nature of Xilinx FPGAs allows us to provide 
feature upgrades and bug fixes to the customer via e-mail ...

Table 1 – This sign includes nearly 
4,500 Xilinx devices. 

Table 2 – Xilinx devices achieve 
impressive specifications. 
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especially fast, or don’t happen very often.
One example of this would be a serial

transfer to read a temperature sensor. For
this application, the sensor only needs to
be read every ten seconds. It would be a
waste to have a state machine for tempera-
ture sensor reading that ran once every ten
seconds but only took a few milliseconds
to complete. The logic would be unused
99.9% of the time.

These types of functions can be effi-
ciently combined into a single PicoBlaze
processor, which in the previous example

can not only read the temperature every ten
seconds but perform other similar tasks in
the meantime. 

The PicoBlaze processor also provides a
quick and easy way to develop control
functions. The alternative would be to
build a custom state machine for each
function. The PicoBlaze processor is a pro-
grammable state machine, meaning that
the state machine is already built; one just
has to program it. It has an intuitive and
powerful instruction set and a large code-
space of 1,024 instructions. Programming

the PicoBlaze processor is a quick and easy
way to define many functions.

The PicoBlaze processor is also a great
tool for accelerating the testing and debug-
ging process. The PicoBlaze program code
is stored in block RAM. To make a change
to the program we only need to change the
block RAM contents. It is possible to do
this without re-implementing the FPGA,
saving a lot of time. 

Our favorite method of PicoBlaze
processor development, which is slightly
unique, is to use a PC serial port and a sim-

ple PC application to download the pro-
gram code into the block RAM of a
configured FPGA. We have developed an
interface board that connects to the FPGA
and has the serial port, as well as several
seven-segment displays to which the
PicoBlaze processor can write for debug-
ging. We also allow the selection of different
processors so that we can work on multiple
processors through the same interface.

This interface is not only useful for
debugging PicoBlaze programs, but also
for debugging the logic connected to the

processor. Because it is so quick and easy
to write programs for PicoBlaze proces-
sors, it is very straightforward to write
programs to test the various logic circuits
attached to the processor. We can test each
function individually, greatly simplifying
and accelerating any debugging that
becomes necessary.

A key application of the PicoBlaze
processor in this project is the Ethernet
controller. As mentioned earlier, we select-
ed Ethernet to distribute data throughout
the sign. At each Ethernet connection, we
have an Ethernet physical layer transceiver
(PHY) device connected directly to an
FPGA. We developed a very simple and
tiny media access controller (MAC) mod-
ule, which we use inside the FPGA to con-
nect the PHY to an instantiation of the
PicoBlaze processor.

This Ethernet unit is small, requiring
less than a quarter of the logic resources
in the XC3S200 FPGA.  It handles the
basic Ethernet layers and protocols,
including ARP (address resolution proto-
col). It also supports the IP (Internet
protocol) layer with ICMP (Internet
control message protocol), UDP (user
datagram protocol), and DHCP (dynam-
ic host configuration protocol). With
this Ethernet controller, we can plug an
FPGA into our network and it negotiates
an IP address. Then we can transfer files
and data to and from it.

Conclusion
Xilinx devices made the challenge of devel-
oping the world’s highest definition LED
display achievable. These devices are a per-
fect fit for a complex design because of
their flexible nature and powerful feature
set. Valuable design components such as
the PicoBlaze processor further increase
their ease of use and thus their value.

The reconfigurable and flexible nature
of the devices allowed us to ship the sign
with all first-revision circuit boards,
enabling us to develop a very complex sys-
tem in very little time.

For more information about MultiMedia
LED signs, visit www.multimediaLED.com.
For more information about the engineering
provided by AED, visit www.aedmt.com. 

Figure 3 – The video data distribution board is based on an XC3S200 FPGA. It also includes SRAM, 
a 10/100 Ethernet port, a status display, and numerous connections to display blocks.



by Chris Borrelli
Embedded Networking Manager
Xilinx, Inc.
chris.borrelli@xilinx.com

The TCP/IP protocol suite is the de facto
worldwide standard for communications
over the Internet and almost all intranets.
Interconnecting embedded devices is
becoming standard practice even in device
classes that were previously stand-alone
entities.

By its very definition, an embedded archi-
tecture has constrained resources, which is
often at odds with rising application require-
ments. Achieving wire-speed TCP/IP per-
formance continues to be a significant
engineering challenge, even for high-pow-
ered Intel™ Pentium™-class PCs.

In this article, we’ll discusses the per-byte
and per-packet overheads limiting TCP/IP
performance and present the techniques uti-
lized in the Xilinx Gigabit System Reference
Design (GSRD) to maximize TCP/IP over
Gigabit Ethernet performance in embedded
PowerPC™-based applications.

Considerations for High-Bandwidth
TCP/IP PowerPC Applications
Considerations for High-Bandwidth
TCP/IP PowerPC Applications
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GSRD Overview
The GSRD terminates IP-based transport pro-
tocols such as TCP or UDP. It incorporates the
embedded PowerPC and RocketIO™ blocks
of the Virtex-II Pro™ device family, and is
delivered as an Embedded Development Kit
(EDK) reference system.

The reference system as described in
Xilinx Application Note XAPP536 lever-
ages a multi-port DDR SDRAM memory
controller to allocate memory bandwidth
between the PowerPC processor local bus
(PLB) interfaces and two data ports. Each
data port is attached to a direct memory
access (DMA) controller, allowing hard-
ware peripherals high-bandwidth access to
memory.

A MontaVista™ Linux™ port is available
for applications requiring an embedded oper-
ating system, while a commercial standalone
TCP/IP stack from Treck™ is also available to
satisfy applications with the highest bandwidth
requirements.

System Architecture
Memory bandwidth is an important consid-
eration for high-performance network-
attached applications. Typically, external
DDR memory is shared between the proces-
sor and one or more high-bandwidth periph-
erals such as Gigabit Ethernet.

The four-port multi-port memory con-
troller (MPMC) efficiently divides the avail-
able memory bandwidth between the
PowerPC’s instruction/data PLB interfaces
and a communications direct memory
access controller (CDMAC). The CDMAC
provides two bi-directional channels of
DMA that connect to peripherals through a
Xilinx standard LocalLink streaming inter-
face. The CDMAC implements data re-
alignment to support arbitrary alignment of
packet buffers in memory. A block diagram
of the system is shown in Figure 1.

The LocalLink Gigabit Ethernet MAC
(LLGMAC) peripheral incorporates the
UNH-tested Xilinx LogiCORE™ 1-Gigabit
Ethernet MAC to provide a 1 Gbps 1000-
BASE-X Ethernet interface to the reference
system. The LLGMAC implements checksum
offload on both the transmit and receive paths
for optimal TCP performance. Figure 2 is a
simplified block diagram of the peripheral.
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Figure 1 – GSRD system block diagram



TCP/IP Per-Byte Overhead
Per-byte overhead occurs when the processor
touches payload data. The two most com-
mon operations of this type are buffer copies
and TCP checksum calculation. Buffer
copies represent a significant overhead for
two reasons:

1. Most of the copies are unnecessary. 

2. The processor is not an efficient data
mover. 

TCP checksum calculation is also expen-
sive, as it is calculated over each payload
data byte.

Embedded TCP/IP-enabled applications
such as medical imaging require near wire-
speed TCP bandwidth to reliably transfer
image data over a Gigabit Ethernet network.
The data is generated from a high-resolution
image source, not the processor.

In this case, introducing a zero-copy soft-
ware API and offloading the checksum cal-
culation into FPGA fabric completely
removes the per-byte overheads. “Zero-copy”
is a term that describes a TCP software inter-
face where no buffer copies occur. Linux and
other operating systems have introduced
software interfaces like sendfile() that serve
this purpose, and commercial standalone
TCP/IP stack vendors like Treck offer similar
zero-copy features. These software features
allow the removal of buffer copies between
the user application and the TCP/IP stack or
operating system.

The data re-alignment and the checksum
offload features of GSRD provide the hard-
ware support necessary for zero-copy func-
tionality. The data re-alignment feature is a
flexibility of the CDMAC that allows soft-
ware buffers to be located at any byte offset.
This removes the need for the processor to
copy unaligned buffers.

Checksum offload is a feature of the
LocalLink Gigabit Ethernet (LLGMAC)
peripheral. It allows the TCP payload check-
sum to be calculated in FPGA fabric as
Ethernet frames are transferred between
main memory and the peripheral’s hardware
FIFOs. GSRD removes the need for costly
buffer copies and processor checksum opera-
tions, leaving the PowerPC 405 to process
only protocol headers.

TCP/IP Per-Packet Overhead
Per-packet overhead is associated with opera-
tions surrounding the transmission or recep-
tion of packets. Packet interrupts, hardware
interfacing, and header processing are exam-
ples of per-packet overheads.

Interrupt overhead represents a consider-
able burden on the processor and memory
subsystem, especially when small packets are
transferred. Interrupt moderation (coalesc-
ing) is a technique used in GSRD to alleviate
some of this pressure by amortizing the inter-
rupt overhead across multiple packets. The
DMA engine waits until there are n frames
to process before interrupting the processor,
where n is a software-tunable value.

Transferring larger sized packets (jumbo
frames of 9,000 bytes) has a similar effect
by reducing the number of frames trans-
mitted, and therefore the number of inter-
rupts generated. This amortizes the
per-packet overhead over a larger data pay-
load. GSRD supports the use of Ethernet
jumbo frames.

The components of GSRD use the
device control register (DCR) bus for con-
trol and status. This provides a clean inter-
face to software without interfering with the
high-bandwidth data ports. The per-packet
features of GSRD help make efficient use of
the processor and improve system-level
TCP/IP performance.

Conclusion
The Xilinx GSRD is an EDK-based refer-
ence system geared toward high-performance
bridging between TCP/IP-based protocols
and user data interfaces like high-resolution
image capture or Fibre Channel. The com-
ponents of GSRD contain features to address
the per-byte and per-packet overheads of a
TCP/IP system.

Table 1 details the GSRD TCP transmit
performance with varying levels of optimiza-
tion for Linux and standalone Treck stacks.

Future releases of GSRD will explore fur-
ther opportunities for TCP acceleration
using the FPGA fabric to offload functions
such as TCP segmentation.

The GSRD Verilog™ source code is
available as part of  Xilinx Application
Note XAPP536. It leverages the MPMC
and CDMAC detailed in Xilinx
Application Note XAPP535 to allocate
memory bandwidth between the processor
and the LocalLink Gigabit Ethernet MAC
peripheral. The MPMC and CDMAC can
be leveraged for PowerPC-based embedded
applications where high-bandwidth access
to DDR SDRAM memory is required.

For more information about XAPP536
and XAPP535, visit www.xilinx.com/gsrd/. 
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TCP/IP Stack Ethernet Frame Size Optimization TCP Transmit Bandwidth

MontaVista Linux 9000 bytes (jumbo) None 270 Mbps

MontaVista Linux 9000 bytes (jumbo) Zero-copy, checksum offload 540 Mbps

Treck, Inc 9000 bytes (jumbo) Zero-copy 490 Mbps

Treck, Inc 9000 bytes (jumbo) Zero-copy, checksum offload 780 Mbps

Associated Links:
Xilinx XAPP536, “Gigabit System
Reference Design”
http://direct.xilinx.com/bvdocs/
appnotes/xapp536.pdf

Xilinx XAPP535, “High Performance
Multi Port Memory Controller”
http://direct.xilinx.com/bvdocs/
appnotes/xapp535.pdf

Treck, Inc. (www.treck.com)

MontaVista Software (www.mvista.com)

“End-System Optimizations for High-
Speed TCP” (www.cs.duke.edu/ari/
publications/end-system.pdf)

“Use sendfile to optimize data transfer”
(http://builder.com.com/
5100-6372-1044112.html)

Table 1 – TCP transmit benchmark results
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by Gordon Cameron
Business Development Manager
Accelerated Technology, Mentor Graphics
gordon_cameron@mentor.com

Accelerated Technology’s Nucleus™
PLUS real-time operating system
(RTOS) is already available for both the
Xilinx® MicroBlaze™ 32-bit soft
processor core and the IBM™
PowerPC™ 405 core integrated into
Virtex-II Pro™ devices. This determin-
istic, fast, small footprint RTOS is ideal
for “hard” real-time applications. 

With the release of the Xilinx
Platform Studio EDK 6.3i, configura-
tion of this leading royalty-free RTOS
on your newly designed system is as
easy as selecting from a pull-down
menu. Instead of spending hours mod-
ifying your target software to work with
your new hardware configuration, you
can configure the target software auto-
matically in minutes, without the error-
prone possibilities of configuring by
hand. This is especially valuable during
the earlier design phases when the hard-
ware may be changing frequently. This
process was enabled by one of the
underlying technologies of Xilinx
Platform Studio EDK, called micro-
processor library definition, or MLD. 

MLD Technology
The Xilinx Platform Studio EDK devel-
opment system is based on a data-driven
code base that makes it extensible and
open. MLD is one example of this
underlying capability. It was created
specifically to allow you to easily create
and modify kernel configurations and
associated board support packages
(BSPs) for partner-supported RTOSs
like Nucleus PLUS and its extensive
middleware offering.

MLD has two required file types: the
data definition file (.MLD) and data
generation file (.Tcl). The .MLD con-
tains the Nucleus user-customization
parameters, while the .Tcl file is a Tcl
script that defines a set of Nucleus-
specific procedures for building the
final software system (see Figure 1). 

Configure and Build the
Embedded Nucleus PLUS
RTOS Using Xilinx EDK

Configure and Build the
Embedded Nucleus PLUS
RTOS Using Xilinx EDK
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Nucleus PLUS RTOS for MicroBlaze and PowerPC 405 processors 
is now automatically configurable using XPS MLD technology.
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Installing MLD files in XPS
The installation CD of Nucleus PLUS
installs the RTOS, associated drivers, and
the two Nucleus-configured MLD files
that enable you to use MLD technology
within the Xilinx Platform Studio EDK.
The default install path for the MLD files
is the \nucleus\bsp sub-directory, located in
\edk_user_repository.

Once you have installed these, you
can use Xilinx Platform Studio EDK
with Nucleus now visible in the RTOS
pull-down selection menu. See Figure 3a
for the PPC405 and Figure 3b for the
MicroBlaze processor. 

Evaluating Nucleus PLUS in EDK
The Accelerated Technology Nucleus
PLUS evaluation software provided in
the EDK Platform Studio 6.3i shipment
includes a limited version (LV) of
Nucleus PLUS. This is a fully function-
al version of the RTOS compiled into a
library format (rather than the normal
source code distribution) with the single
restriction that it will stop working after
60 minutes, facilitating evaluation of its
full functionality. When you purchase a
full license of Nucleus PLUS from
Accelerated Technology, you receive the
full source code and, obviously, the 60-
minute run time restriction is lifted.

The LV version of Nucleus PLUS is
configured to execute from the off-chip
SRAM or SDRAM module. Once you
have a full license to the RTOS, you can
configure it to run from any memory in
your system.

Nucleus PLUS is a scalable RTOS –
only the software you use in your design
is included in the downloaded code.
This may be contrasted with other larg-
er, more static systems, which consume
far more system resources. In some cir-
cumstances, the whole RTOS and appli-
cation can fit in the on-chip memory,
thus achieving high performance and
low power consumption. Even with larg-
er applications, which may utilize exten-
sive middleware, the efficient use of the
relatively small amount of on-chip mem-
ory means that the size of the kernel
footprint is an important consideration.

You can configure other components
of the Nucleus system by hand to work
in this environment, such as network-
ing, web server, graphics, file manage-
ment, USB, WiFi, and CAN bus.
Future releases of Nucleus will move
these products into full integration with
Xilinx Platform Studio EDK and MLD
technology.

Accelerated Technology supplies these
files and the associated installer as an eval-
uation disk, included in the latest release of
Xilinx EDK 6.3i. Accelerated Technology
has also established a website to support
and distribute this evaluation. This site
contains updates, evaluations, reference
designs, and documentation for all of the
Accelerated Technology Xilinx offerings
and will be updated regularly with new
middleware implementations that you can
add to the automatic configuration of your
application. The website is located at
www.acceleratedtechnology.com/xilinx/.

To get up and running quickly with
your first Nucleus-based system, the instal-
lation also includes a sample pre-built ref-
erence design with a compiled Nucleus
PLUS demonstration. The pre-built refer-
ence designs currently support the
Memec™ design-based DS-KIT-
2VP7FG456 and DS-KIT-V2MB1000
FPGAs. This is the fastest method to
employ for a sample Nucleus-based, MLD-
enabled Xilinx system. 

Use of Xilinx’s Base System Builder is
also well documented inside the applica-
tion notes accompanying the installation.
With the Base System Builder, you can
build a variety of system core configura-
tions to work with the Nucleus PLUS
RTOS (see Figure 2).

If you have received your EDK 6.3i
update recently or have purchased a seat,
please check the contents for this evalua-
tion. After running the Nucleus PLUS
evaluation disk installer, the necessary files
will be placed into the Xilinx EDK 6.3i
and the support of Nucleus PLUS will be
automatically added.

The elements of Nucleus PLUS modi-
fied by the data generation file (.Tcl) for
specific hardware configuration are:

• The number and type of devices used
by the hardware designer

• Memory map information

• Locations of memory-mapped device
registers

• Timer configuration

• Interrupt controller configuration
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Figure 1 – Outline of an 
MLD-enabled system design

Figure 2 – The hardware design is complete 
and ready to configure the software. 
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Nucleus PLUS and Xilinx Devices
As we have said, the process of creating a
working BSP for Nucleus PLUS begins
with configuring the hardware platform
using Xilinx Base System Builder or the
supplied sample reference designs. Then
you can go to the Project > Software
Platform Settings menu item and select
the operating system you want to use from
the list. Choosing the Nucleus option
(Figure 3 a/b) will make available the spe-
cific software settings for the RTOS under
each of the tabs on the Software Platform
Settings menu (Figure 4 shows the user
enabling the cache on the PowerPC). Note
that in the LV version most of the software
options are disabled, but can be changed
in the full version.

Once you are satisfied with the soft-
ware settings, you can use the Generate
Netlist and Generate Bitstream com-
mands and download the hardware con-
figuration onto the FPGA using Xilinx
XPS or ISE tools.

You can now execute the Tools >
Generate Libraries and BSP commands
to configure Nucleus PLUS. The appli-
cation software can be linked with the
RTOS. Now you are ready to switch over
to the GDB debugger and download the
combined RTOS and application image
to the FPGA.

Advanced Software Tools
Up to this point, we have bypassed many
aspects of application software design,
assuming that you have code ready to
compile and link and download to the
FPGA. In fact, as systems become ever
more complex, both hardware and soft-
ware designers require advanced state-of-
the-art tools to help them complete their
projects within budget and on time. 

The Xilinx EDK-configurable version
of Nucleus PLUS uses the standard GNU
suite of tools supplied with the Xilinx
EDK package. This is more than adequate
for many projects for getting systems up
and running, but advanced application
development often needs more.
Accelerated Technology can provide a
complete range of tools that encompass all
phases of the software design process.

• If code footprint or performance is
important, then consider the highly
optimizing Microtec compiler for
PowerPC Virtex-II Pro devices. This
ensures that the code that is shipped is
the same as the code that is debugged –
a goal not achieved by many compilers.

• Application debugging often needs
RTOS awareness, advanced break-
points, and debugging of fully opti-
mized code. These features are available
on PowerPC Virtex-II Pro devices with
the industry-standard XRAY debugger.

• To bring software development forward
in time so that it can be started before
the hardware is complete, software
teams can use our advanced prototyp-
ing products Nucleus SIM or Nucleus
SIMdx. These tools allow the develop-
ment of the complete application soft-
ware in a host-based environment.

• UML enables software teams to raise
their level of abstraction and produce
models of their software. Nucleus
BridgePoint enables full code genera-
tion by using the xtUML subset of
UML 2.0.

• You can verify software/hardware inter-
action in the Mentor Graphics®

Seamless® co-verification environment,
which allows combined hardware and
software simulation for PowerPC Virtex-
II Pro devices. 

These tools, when combined with the
Nucleus PLUS RTOS, are ideal for helping
you maximize the functionality and efficien-
cy of your designs.

Conclusion
The latest EDK-configurable Nucleus
PLUS RTOS brings a new dimension to
systems incorporating high-performance
embedded processors from Xilinx. Its
small size means that it can use available
on-chip memory to minimize power dissi-
pation and deliver increased performance,
while its wealth of middleware makes it
ideal for products targeted at the network-
ing, telecommunications, data, communi-
cation, and consumer markets.

Making this solution easy to configure
within Xilinx EDK allows you to 
easily exploit the benefits of this powerful
product. For more information, visit
www.acceleratedtechnology.com or www.
mentor.com.

Figure 3a – After installing Nucleus PLUS 
in EDK, Nucleus appears as an option in the
drop-down menu choosing which operating 

system to use with the PowerPC 405 processor.

Figure 3b – Nucleus appears as an option 
in the drop-down menu choosing which 

operating system to use with the MicroBlaze
soft-core processor. 

Figure 4 – Enabling the cache in the RTOS
configuration parameters
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by David Pellerin 
CTO 
Impulse Accelerated Technologies
david.pellerin@impulsec.com

Milan Saini
Technical Marketing Manager
Xilinx, Inc.
milan.saini@xilinx.com

Regardless of whether you are using a
processor core in your FPGA design,
using a Xilinx® MicroBlaze™ or IBM™
PowerPC™ embedded processor can
accelerate unit testing and debugging of
many types of FPGA-based application
components.  

C code running on an embedded proces-
sor can act as an in-system software/hardware
test bench, providing test inputs to the
FPGA, validating the results, and obtaining
performance numbers. In this role, the
embedded processor acts as a vehicle for in-
system FPGA verification and as a comple-
ment to hardware simulation.

By extending this approach to include
not only C compilation to the embedded
processor but C-to-hardware compilation
as well, it is possible – with minimal effort

– to create high-performance, mixed soft-
ware/hardware test benches that closely
model real-world conditions.

Key to this approach are high-performance
standardized interfaces between test software
(C-language test benches) running on the
embedded processor and other components
(including the hardware under test) imple-
mented in the FPGA fabric. These interfaces
take advantage of communication channels
available in the target platform.

For example, the MicroBlaze soft-core
processor has access to a high-speed serial
interface called the Fast Simplex Link, or FSL.
The FSL is an on-chip interconnect feature
that provides a high-performance data chan-
nel between the MicroBlaze processor and the
surrounding FPGA fabric.

Similarly, the PowerPC hard processor
core, as implemented in Virtex-II Pro™
and Virtex-4™ FPGAs, provides high-per-
formance communication channels through
the processor local bus (PLB) and on-chip
memory (OCM) interfaces, as illustrated in
Figure 1.

Using these Xilinx-provided interfaces to
define an in-system unit test allows you to
quickly verify critical components of a larger
application. Unlike system tests (which model

real-world conditions of the entire applica-
tion), a unit test allows you to focus on poten-
tial trouble spots for a given component, such
as boundary conditions and corner cases, that
might be difficult or impossible to test from a
system-level perspective. Such unit testing
improves the quality and robustness of the
application as a whole. 

Unit Testing
A comprehensive hardware/software testing
strategy includes many types of tests, includ-
ing the previously-described unit tests, for all
critical modules in an application.
Traditionally, system designers and FPGA
application developers have used HDL simu-
lators for this purpose.

Using simulators, the FPGA designer cre-
ates test benches that will exercise specific
modules by providing stimulus (test vectors
or their equivalents) and verifying the result-
ing outputs. For algorithms that process large
quantities of data, such testing methods can
result in very long simulation times, or may
not adequately emulate real-world condi-
tions. Adding an in-system prototype test
environment bolsters simulation-based verifi-
cation and inserts more complex real-world
testing scenarios.

MicroBlaze and PowerPC Cores 
as Hardware Test Generators
MicroBlaze and PowerPC Cores 
as Hardware Test Generators
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Combining FPGA embedded processors with C-to-RTL compilation 
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Combining FPGA embedded processors with C-to-RTL compilation 
can accelerate the testing of complex hardware modules.
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Unit testing is most effective when it
focuses on unexpected or boundary condi-
tions that might be difficult to generate
when testing at the system level. For exam-
ple, in an image processing application that
performs multiple convolutions in sequence,
you may want to focus your efforts on one
specific filter by testing pixel combinations
that are outside the scope of what the filter
would normally encounter in a typical
image.

It may be impossible to test all permu-
tations from the system perspective, so the
unit test lets you build a suite to test spe-
cific areas of interest or test only the
boundary/corner cases. Performing these
tests with actual hardware (which may for
testing purposes be running at slower than
usual clock rates) obtains real, quantifiable
performance numbers for specific applica-
tion components.

Introducing C-to-RTL compilation into
the testing strategy can be an effective way to
increase testing productivity. For example,
to quickly generate mixed software/hard-
ware test routines that run on the both the
embedded processor and in dedicated hard-
ware, you can use tools such as CoDeveloper
(available from Impulse Accelerated
Technologies) to create prototype hardware
and custom test generation hardware that
operates within the FPGA to generate sam-
ple inputs and validate test outputs.

hardware modules – to be described and
interconnected using buffered communica-
tion channels called streams.

Impulse C also supports communica-
tion through signals and shared memories,
which are useful for testing hardware
processes that must access external or static
data such as coefficients.

Data Throughput and Processor Selection
When evaluating processors for in-system
testing, you must first consider the fact that
the MicroBlaze processor or any other soft
processor requires a certain amount of area
in the target FPGA device. If you are only
using the MicroBlaze processor as a test
generator for a relatively small element of
your complete application, this added
resource usage may be of no concern. If,
however, the unit under test already pushes
the limits in the FPGA, you may want to
target a bigger device during the testing
phase or consider the PowerPC core pro-
vided in the Virtex-II Pro and Virtex-4
platforms as an alternative.

Synthesis time can also be a factor.
Depending on the synthesis tool you use,
adding a MicroBlaze core to your complete
application may add substantially to the
time required to synthesize and map the
application to the FPGA, which can be a
factor if you are performing iterative com-
pile, test, and debug operations.

Again, the PowerPC core, being a hard
core that does not require synthesis, has an
advantage over the MicroBlaze core when
design iteration times are a concern. The
16 KB of data cache and 16 KB of instruc-
tions cache available in the PowerPC 405
processor also makes it possible to run
small test programs entirely within cache
memory, thereby increasing the perform-
ance of the test application.

If a high test data rate (the throughput
from the processor to the FPGA) is your
primary concern, using the MicroBlaze
core with the FSL bus or the PowerPC with
its on-chip-memory (OCM) interface will
provide the highest possible performance
for streaming data between software and
hardware components.

By using CoDeveloper and the Impulse
C libraries, you can make use of multiple

CoDeveloper generates FPGA hard-
ware from the C-language software
processes and automatically generates soft-
ware-to-hardware and hardware-to-soft-
ware interfaces. You can optimize these
generated interfaces for the MicroBlaze
processor and its FSL interface or the
PowerPC and its PLB interface. Other
approaches to data movement, including
shared memories, are also supported.

Desktop Simulation and Modeling Using C
Using C language for hardware unit testing
lets you create software/hardware models
(for the purpose of algorithm debugging)
in software, using Microsoft™ Visual
Studio™, GCC/GBD, or similar C devel-
opment and debugging environments.  For
the purpose of desktop simulation, the
complete application – the unit under test,
the producer and consumer test functions,
and any other needed test bench elements
– is described using C, compiled under a
standard desktop compiler, and executed.

Although you can do this using
SystemC, the complexity of SystemC
libraries (in particular their support for data-
flow abstractions through channels) makes
the process of creating such test benches
somewhat complex. CoDeveloper’s Impulse
C libraries take a simpler approach, provid-
ing a set of functions that allow multiple C
processes – representing parallel software or

Winter 2004 Xcell Journal 21

S/W
Process

H/W
Process

H/W
Process

H/W
Process

H/W
Process

H/W
Process

H/W
Process

H/W
Process

H/W
Process

MBlaze, PPC
or Other

Processor

OPB, FSL or Other Interface

Impulse C
Application

FPGA
Hardware

Resources

Virtex or Spartan FPGA

S/W
Process

Figure 1 – Hardware and software test components are mapped to the FPGA target and
communicate across the OPB or FSL bus to the MicroBlaze or Power PC processor.

E M B E D D E D  S Y S T E M S



streaming software/hardware interfaces
using a common set of stream read and
write functions. These stream read and
write functions provide an abstract pro-
gramming model for streaming communi-
cations. Figure 2 shows how the Impulse C
library functions support streams-based
communication on the software side of a
typical streaming interface.

Moving Test Generators to Hardware
To maximize the performance of test gen-
eration software routines, you can migrate
critical test functions such as stimulus gen-
erators into hardware. Rather than re-
implementing such functions in
VHDL or Verilog™, automated C-
to-RTL compilation quickly generates
hardware representing test producer
or consumer functions. These func-
tions interact with the unit under test,
using FIFO or other interfaces to
implement data streams and supply
other test inputs.

The CoDeveloper C-to-RTL com-
piler analyzes C processes (individual
functions that communicate via
streams, signals, and shared memories)
and generates synthesizable HDL
compatible with Xilinx Platform
Studio (EDK), Xilinx ISE, and third-
party synthesis tools including
Synplicity® (Figure 3). The generated
RTL is automatically parallelized at
the level of inner code loops to reduce
process latencies and increase data
rates for output data streams.

Automated compilation capability
with the ability to express system-
level parallelism (creating multiple

pipelined processes, for example) makes it
possible to generate hardware directly
from C language at orders of magnitude
faster than the equivalent algorithm as
implemented in software on the embed-
ded microprocessor. This creates hard-
ware test generators that generate outputs
at a high rate.

Does C-Based Testing Eliminate 
the Need for HDL Simulators?
C-based test methods such as those
described in this article are a useful addi-
tion to a designer’s bag of tricks, but they
are certainly not replacements for a com-
prehensive hardware simulation. HDL
simulation can be an effective way to deter-
mine cycle counts and explore hardware
interface issues. HDL simulators can also
help alleviate the typically long
compile/synthesize/map times required
before testing a given hardware module in-
system. Hardware simulators provide much
more visibility into a design under test, and
allow single-stepping and other methods to
be used to zero-in on errors.

If tests require very specific timing,
using an embedded processor to create
test data will most likely result in data
rates that are only a fraction of what is
needed to obtain timing closure. In fact, if
the test routine is implemented as a state
machine on the processor, the speed at
which the state machine can be made to
operate will be slower than the clock fre-
quency of the test logic in hardware.
Hence, for most cases, the hardware por-
tion would need to slow down so the CPU
can keep pace – providing test stimulus
and measuring expected responses.
Alternatively, you can create a buffered
interface – a software-to-hardware bridge
– to manage the test data using a stream-
ing programming model.

Given the performance differences
between a processor-based test bench and
the potential performance of an all-hard-
ware system, it should be clear that soft-
ware-based testing of such applications
cannot replace true hardware simulation, in
which you can observe, using post-route
simulation models, the design running at
any simulated clock speed.

Conclusion
In-system testing using embedded proces-
sors is an excellent complement to simula-
tion-based testing methods, allowing you
to test hardware elements at lower clock
rates efficiently using actual hardware
interfaces and potentially more accurate
real-world input stimulus. This helps to
augment simulation, because even at
reduced clock rates the hardware under
test will operate substantially faster than is
possible in RTL simulation. 

By combining this approach with C-
to-hardware compilation tools, you can
model large parts of the system (includ-
ing the hardware test bench) in C lan-
guage. The system can then be
iteratively ported to hand-coded HDL
or optimized from the level of C code to
create increasingly high-performance
system components and their accompa-
nying unit- and system-level tests.

For more information, visit
www.impulsec.com, e-mail info@
impulsec.com, or call (425) 576-4066. 
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by Darrell Wilburn
President
I.Q. Services, Inc.* 
darrell@iq-service.com or darrellw@nohau.com

Platform FPGAs can implement a com-
pletely configurable system-on-chip by
containing one or more microprocessors in
a tightly coupled fabric. This delivers very
flexible hardware and software, which can
change continuously throughout the
design and debug cycle.

A powerful set of software debug tools
that can properly support sophisticated
FPGAs is critical for successful project
completion. Debugging and verifying a
design from external pins is problematic at
best. Reliably measuring 200 to 300 MHz
signals (like Fast Simplex Links) over a 3-
foot logic cable to an external trace facility
is very difficult – and sometimes impossi-
ble – to make with sub-nanosecond preci-

sion. Furthermore, adding logic paths to
provide for external probing is greatly
intrusive, which may create new place and
route problems as well as timing differ-
ences in the final design.

Simulation can still help you overcome
the simpler roadblocks, but for real-time
or intermittent problems, observing in real
time through in-circuit methods quickly
becomes a necessity. On-board instrumen-
tation circuits can provide visibility to all
system signals as well as executing pro-
grams. 

The challenges of verification and
debug steps are:

• Instrumentation to provide correlated
hardware and software measurements

• Needing a broad range of engineering
skills

• Extreme flexibility with ever-changing
needs for both

Nohau Corporation has developed a
compact on-chip development system that
enables you to efficiently address these
debug issues. The Nohau solution includes
compact on-chip debug IP called
DebugTraceBlaze that is minimized for
size, connects directly to the on-chip
peripheral bus (OPB), and utilizes on-chip
block RAM for trace storage.

The debug facilities are implemented
two ways: through hardware or software.
The software-based solution uses a small
Xilinx® program called XMD-STUB that
resides in the first 1K block of memory.
The hardware solution uses programmable
logic in the hardware and is transparent to
the software. You may choose the solution
that is best for you.

Personally, I prefer the software solu-
tion because it has less impact on the hard-
ware and is more flexible for
customization. Also, the cost of 1K of

Nohau Shortens Debugging Time
for MicroBlaze and Virtex-II Pro
PowerPC Users

Nohau Shortens Debugging Time
for MicroBlaze and Virtex-II Pro
PowerPC Users
Nohau tools provide multiprocessor 
debug environments for embedded 
systems, resulting in increased design 
modification and debug efficiency.

Nohau tools provide multiprocessor 
debug environments for embedded 
systems, resulting in increased design 
modification and debug efficiency.
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memory is usually insignificant in systems
that often have 1 MB or more. A block
diagram for a typical small system is shown
in Figure 1, illustrating placement of the
Nohau DebugTraceBlaze module.

Please note that the Nohau solution
requires no external signal pins; all access is
through the JTAG port. Furthermore, it
does not impact timing because it only
interfaces through the OPB bus. The
resource utilization in the FPGA for the
Nohau IP is very small. Actual require-
ments are shown in Figure 2.

Design/ Debug Flow
The design flow with Nohau tools present
is illustrated in Figure 3. You may build an
initial system from scratch or use a plat-
form generator like Nohau BlazeGen or
Xilinx Platform Studio (XPS) Base System
Builder (BSB).

Simply specify your system with the

A second path for code development is
shown in Figure 3. BlazeGen generates
small pre-tested code snippets that fit
entirely in one on-board block RAM to
provide you with a solid starting place for
initial power-up check-out. These snippets
are treated just like user code for input to
the GNU compiler.

You can enter and compile C/C++ code
from inside XPS or from an external editor
and compiler using its own make files. For
large programs, I recommend using an
external GNU make facility. The output
from the compile process is an .elf file that
contains all code and symbolic information
to be loaded directly by Seehau.

As shown in Figure 3, the classic
edit/compile/debug loop familiar to
embedded system engineers centers around
the Seehau debugger. Additionally, a hard-
ware edit/compile/debug loop is now
included that loops back through new
builds in XPS.

Debugging with Seehau
Seehau provides an intuitive source-level
debugger that can be made aware of logic
signals in the fabric; RTOS state and vari-
ables; correlation of hardware signals to code
execution; and Ethernet performance char-
acteristics in Internet-aware applications.
Seehau is a full-featured source or assembly
debugger with an integral real-time trace
facility. It supports either PowerPC™ hard-
core or MicroBlaze™ soft-core processors.

.MHS, .MSS, .UCF, and project options
files, which are generated by the platform
builder or user-generated text files. To add
the Nohau DebugTraceBlaze IP to a proj-
ect, you first build it with BSB or BlazeGen
and add DebugTraceBlaze IP with a pass
through BlazeGen.

The output of the XPS build is a .bit file
that contains the bitstream required to pro-
gram the target FPGA with your system.
The Nohau Seehau debugger is a conven-
ient and easy-to-use GUI interface that
allows fast and easy updating of system
hardware and software as well as test and
check-out of software execution. Seehau
loads the bit file and programs the FPGA
in just a few seconds.
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You can look back in time from
any execution to follow the path
backward, or you can use the Seehau
event configuration system to specify
pre- and post-triggering, complex
breakpoints, triggers on register reads
and writes, and triggers on data from
the fabric. Figure 4 shows a typical
source-level debug display with
processor registers, memory data,
program data in source form, and
trace and breakpoint status. 

Nohau tools are sold as a system,
which includes the Seehau debugger, an
interface pod to the appropriate JTAG
connector, and the IP DebugTraceBlaze
configured with trace memory. As a sys-
tem, it may be ordered as EMUL-
MICROBLAZE-PC.

The Nohau EMUL-MICROB-
LAZE-PC provides a 512-frame or
2K-frame deep trace with a trigger,
post-trigger count, and break control.
Probe pins may be either 8 or 40 bits
wide. It will display data connected to
it as specified in the XPS .MHS file.

Figure 5 illustrates a trace display in
mixed mode with C source and assem-
bly source intermixed. On this single
display, you can correlate the frame at
capture time, the execution address,
the opcode of the instruction execut-
ed, the disassembled MicroBlaze
instruction, the C source line that gen-
erated that instruction, and 40 bits of
data from any logic in the system.
Data from logic can include signals
from your own logic design.

Multiprocessor System Support
Recently, Nohau completed a joint
project with Xilinx, expanding the
Seehau system to include support
for the hard-core PowerPC proces-
sor found in Virtex-II Pro™
devices. As Seehau is a robust,
source-level debugger, the user
interface and source-level feature set
are nearly identical. The only major
changes from an embedded system
engineer’s point of view are the
processor-level language on disas-
sembled screens and the register set

associated with the PowerPC archi-
tecture. Figure 6 shows a source-
level debug screen of a typical
PowerPC debug session.

Seehau has also been expanded to
include support for multiple processors
in the same fabric. The processors are
run independently. Figure 7 shows a set
of screens for a two-processor system.

The Nohau GUI provides a sim-
ple, easy-to-use interface that assigns
a complete set of control and status
windows to each processor. All
Seehau windows are available for
both processors, and show the name
given to each processor in the top
banner. In the case shown in Figure
7, the execution sites are named
MB1 and MB2.

When you select a command from
a pull-down list by clicking on it, the
command is directed to the processor
assigned to the window in focus. You
control the set of windows open for
each processor through a pull-down
menu. The choice of open windows is
controlled by your selection of new
windows to view. The result is an easy-
to-use, intuitive user interface.

Conclusion
Getting the right tool set and develop-
ment environment set up for a new
FPGA project is critical to the success
of the product development cycle. A
highly productive development and
debug environment based around
Nohau tools supports these new mul-
tiprocessor systems, with an extension
of the same powerful debug and test
tools the company has offered for the
last 20 years.

For more information, please visit
www.nohau.com, www.iq-service.com,
or e-mail darrell@iq-service.com or
darrellw@nohau.com. 

* I.Q. Services is under contract to sup-
port and market platform FPGA tools
for Nohau Corporation and performs
custom start-up engineering for plat-
form FPGA embedded system designs. 

Figure 4 – Full source with breakpoint 
at context switch in µC/OS-II

Figure 5 – Trace 40-bit mixed-mode display 
in binary logic signals from FPGA fabric

Figure 6 – PowerPC source-level debug with trace

Figure 7 – Multi-core display with two MicroBlaze processors
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by Flemming Christensen
Managing Director
Sundance
Flemming.C@sundance.com

There has been a strong push in the past
few years to replace analog radio systems
with digital radio systems. The
Department of Defense Joint Tactical
Radio System program shifted the empha-
sis on the development of software-defined
radio (SDR) to the forefront of research
and development efforts in the defense,
civilian, and commercial fields.

Although it has existed for many years,
SDR technology continues to evolve
through newly funded ventures. The “holy
grail” of SDR is its promise to solve incom-
patible wireless network issues by imple-
menting radio functionalities as software
modules running on generic hardware plat-
forms. Future SDR platforms will comprise
hardware and software technologies that
enable reconfigurable system architectures
for wireless networks and user terminals. 

Although new SDR-based systems are
purported to be highly reconfigurable and
reprogrammable right now, the truth is
that SDR hardware platforms are still in
their early development stages. Many issues
must still be resolved, including reconfig-
urable signal processing algorithms, hard-
ware and software co-design
methodologies, and dynamically reconfig-
urable hardware. Overall, the main key
issues for SDR embedded system platforms
are flexibility, expandability, scalability,
reconfigurability, and reprogrammability.

A Scalable Software-Defined 
Radio Development System
A Scalable Software-Defined 
Radio Development System
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Meeting the Challenge
SDR is characterized by a decoupling
between the heterogeneous execution plat-
form, based on hardware functions togeth-
er with DSP and MCU processors, and the
applications through abstraction layers. 

One of the approaches for meeting the
complexity demands of third-generation
systems is to use multi-core systems where
a DSP and a microcontroller work togeth-
er with an FPGA-based hardware co-
processor. With its embedded IBM™
PowerPC™, the Xilinx® Virtex-II Pro™
FPGA is rapidly becoming a solution that
embeds and tightly couples reconfigurable
logic and a processor in the same device.

Sundance, a developer of advanced sys-
tem architectures for high-performance sig-
nal processing applications, has focused on
designing FPGA-based development plat-
forms that address an SDR OEM’s wish
list. Our challenge was to design a system
that would provide the scalability SDR sys-
tems require. 

The Embedded System Controller
The SMT148 (Figure 1) is one of many
development systems Sundance has
launched recently. Aimed specifically at
SDR, the SMT148 is a fully configurable
and expandable waveform development
environment that meets the many require-
ments of SDR developers. This entry-level,
stand-alone system enables radio designers
to investigate and experiment with the

download software. The eight RocketIO™
transceivers on the Virtex-II Pro device
enable high-speed data transfer to additional
SMT148 or Virtex-II Pro add-on modules.

Downloads can leverage a powerful I/O
architecture that includes the popular
FireWire, USB interfaces, LVDS interfaces,
and JTAG for debugging and downloads.
Data flows into the FPGA and is managed
by a Sundance program written for the
embedded PowerPC before processing.
Figure 3 is the C code comprising the data
flow and RocketIO PowerPC program.

Scalable, Reconfigurable Embedded Processors
Scalability is addressed through four add-
on module sites, and you can partly resolve
the requirements of dynamic reconfigura-
tion by adding additional Xilinx-based
FPGA modules. All add-on modules com-
municate through the Virtex-II Pro device,
which also manages two 32-bit microcon-
trollers that enable communications with
most widely used standards.

With the RocketIO transceivers con-
nected to differential pair connectors, you
can connect FPGA systems directly

many configurations
of multi-channel soft-
ware programmable
and hardware-config-
urable digital radio.

The SMT148 has
at its heart a powerful
embedded system
controller that lever-
ages the Xilinx Virtex-
II Pro FPGA with its
embedded PowerPC
405 processor (Figure
2). As an embedded
system controller, the
role of the Virtex-II
Pro device is to man-
age the reconfigura-

tion of the add-on modules, especially
when downloading. Reconfiguration means
switching between modes or updating a
hardware/software component.

In the global functioning of the
SMT148, you can download many kinds of
software (high-level applications, protocol
stacks, low-level signal processing algo-
rithms) and employ several methods to
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through simple cable connections support-
ing more than 2 Gbps data rates.

The SMT148 leverages the Xilinx
Virtex-II Pro block RAM configuration to
generate FIFOs for the RocketIO trans-
ceivers, add-on modules communication
ports, and a high-speed bus, as well as the
embedded PowerPC code. The single high-
speed bus allows parallel data transfer to
and from a wide range of high-speed
ADC/DAC modules.

Data rates on this port are in excess of
100 MHz (400 Mbps), and are useful for
transferring sampled 16-bit I and Q.
Processing data streams can take place
either in the embedded PowerPC in the
Virtex-II Pro device or throughout an
array of other add-on Virtex-II Pro FPGA-
based modules with embedded PowerPC. 

The FPGA on the SMT148 carrier
card is connected to many different
devices and therefore has many internal
interfaces that allow it to exchange data or
commands with the external world. All
interfaces are reset at power on when
applying a manual reset. Figure 4 shows
the interconnections between the digital
modules inside the FPGA.

When we designed the SMT148, we
understood that one of the many chal-
lenges OEMs would face in developing
JTRS-compliant platforms was the avail-
ability of interchangeable and networked
processing nodes. The availability of pro-
cessing nodes aims to meet the expandabil-
ity and scalability requirements in complex
waveform applications. 

The SMT148 meets this availability chal-
lenge with a network of daughter sites that

you can use for additional resources such as
signal processors, reconfigurable computing
modules, and Sundance’s large family of add-
on modules. These add-on modules include
a variety of embedded system options such as
reconfigurable modules with tightly coupled
Virtex-II Pro FPGAs and DSPs, digital and
analog converters, data conversions, trans-
ceivers, and I/Os of all types. 

Designed for Developers
Powered by an external supply, the
SMT148 platform has an impressive topol-
ogy that accepts input signals from various
sources through a network of multi-pin
connectors. High-speed I/O channels sup-
port the additional nodes in a network

topology neatly harmonized to the Xilinx
architecture.

Fully interconnected and configurable
through their communication ports, these
add-on sites are also connected to the
embedded Virtex-II Pro FPGA. The avail-
ability of a network of add-on sites removes
the main expandability restrictions often
associated with other platforms, and offers
the OEMs a highly compact design and
development tool.

More importantly, this scalable
system architecture makes the
SMT148 a perfect development plat-
form with which to resolve the many
issues related to the implementation
of multiple radio functionalities in a
single environment. These can be
addressed as multiple software mod-
ules running on Sundance’s reconfig-
urable hardware platform. 

IP Cores
Sundance takes advantage of the
high-performance DSP acceleration
capabilities and flexible connectivity
that the Virtex-II Pro FPGA provides
by supporting developers with a fam-
ily of software tools and IP cores.

The SMT148 I/O flexibility
enables you to rapidly investigate and
experiment with features of the
Virtex-II Pro FPGA as well as those of
developed IP cores from Sundance.
These include multi-tap complex fil-
ters, Viterbi decoders, encoders, a

complete transmitter, QAM mapper, multi-
phase pulse shaping filter, multi-phase  cas-
caded integrator comb (CIC) interpolation
filter with a fixed interpolation rate, multi-
phase numerical-controlled oscillator
(NCO), and multi-phase digital mixer.

Conclusion
Developing, testing, and implementing
SDR IP cores is simplified with the
Sundance SMT148 platform. You can
now focus on developing additional IPs
without worrying about peripheral pro-
cessing or I/O devices, as these are simply
off-the-shelf add-on IP blocks.

For more information, please visit
www.sundance.com. 
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by Sam Sanyal 
Solutions Marketing Manager
Xilinx, Inc.
sam.sanyal@xilinx.com 

Mrugendra Singhai
Research Engineer
MCNC Research and Development Institute
msinghai@anr.mcnc.org

Imagine a telecom network where an opti-
cal network can be set up and torn down in
an instant without any human interven-
tion. An optical burst switching (OBS)
protocol at work at the Microsystems
Computer North Carolina Research
Development Institute (MCNC-RDI) in
Research Triangle Park, North Carolina,
does just that.

OBS combines the best features of opti-
cal circuit switching and optical packet
switching. An OBS network can switch
variable-sized data bursts instead of indi-
vidual data packets. In an OBS network,
transmission of data bursts can begin even
before those bursts are completely formed.
These features of the OBS networks are
similar to an optical circuit-switched net-
work. Like an optical packet-switching net-
work, an OBS network can dynamically
control system resources, assigning wave-
lengths of optical fiber to individual data
bursts only when that user needs to trans-
mit data. Unlike some optical packet-
switched networks, an OBS network does
not require optical buffers.

Implementing High-Speed 
Optical Burst Switching 
with Virtex-II Pro FPGAs

Implementing High-Speed 
Optical Burst Switching 
with Virtex-II Pro FPGAs
The OBS protocol tested successfully 
with the Virtex-II Pro FPGA.
The OBS protocol tested successfully 
with the Virtex-II Pro FPGA.

Winter 2004 Xcell Journal 29

E M B E D D E D  S Y S T E M S



The MCNC-RDI has developed a
NASA-funded OBS protocol implemen-
tation, called JIT (Just-In-Time), which
recently achieved successful testing in an
ATDnet (Advanced Technology
Demonstration network) testbed.
Established by the Defense Advanced
Research Projects Agency (DARPA) for
demonstrating advanced networking tech-
nology, the all-optical ATDnet runs at 2.5
Gbps through six sites using eight wave-
lengths and wavelength division multi-
plexing (WDM) switches. The testbed
included applications in multiple areas
like optical networking, network security,
and networked information systems. 

Technology Overview
WDM is a method of transmitting data
from different sources over the same
fiber-optic link at the same time; each
data channel is carried on its own unique
wavelength. The result is a link with an
aggregate bandwidth that increases with
the number of wavelengths employed. In
this way, WDM technology can maximize
the use of the available fiber-optic infra-
structure – what would normally require
two or more fiber links will now require
only one.

WDM technologies primarily differ in
the number of available channels. Coarse
wave division multiplexing (CWDM)
combines as many as 16 wavelengths onto
a single fiber; dense wave division multi-
plexing (DWDM) combines as many as 64
wavelengths onto a single fiber.

With DWDM technology, the wave-
lengths are closer together than CWDM,
meaning that transponders are generally
more complex and expensive than
CWDM. However, with DWDM, the
advantage is a much higher density of
wavelengths, and also longer distance.
DWDM is emerging as a preferred solution
for providing scalable and efficient optical
networking technologies of the future. 

The key objective of the hardware-based
OBS protocol implementation is to
dynamically manage commercially avail-
able WDM switches. An OBS network
comprises OBS network controllers and
clients with OBS network interface cards

Because JIT is a one-way reservation proto-
col, buffering does not occur at the node
level, thus reducing any latency.
Implementation of JIT with an efficient
scheduling algorithm can further decrease
the probability of burst loss.

The JIT protocol uses a SETUP mes-
sage to announce a burst in the OBS net-
work. Each optical burst of data,
comprising some number of contiguous
packets destined for a specific destination,
is sent immediately after the node receives
a SETUP ACK from the ingress OBS
node. An out-of-band SETUP message is
sent across all switches before this step to
prepare all path switches for the burst data.
OBS does not use any optical buffering or
packet parsing. For a long burst, a
KEEPALIVE message may be required to
keep all switches in active state. The JIT
signaling scheme is shown in Figure 1.

The Role of the FPGA 
The development of the OBS NIC was
enabled by the availability of integrated
high-speed multi-gigabit RocketIO™

(NICs). OBS network controllers direct
the optical data bursts received from a
source-client OBS NIC to a destination-
client OBS NIC.

Advances in Xilinx FPGA technology
have made it possible for the MCNC-RDI
to build a NIC that implements the JIT
signaling protocol for an OBS network.
The OBS NIC uses DWDM technology to
transmit and receive data optically on spe-
cific wavelengths and is capable of handling
data rates as high as 1.25 Gbps. The NIC
card can be tuned dynamically to as many
as eight different DWDM wavelengths.

In the JIT protocol, a control packet
reserves a wavelength channel in the net-
work for a period of time L equal to the
burst length, starting at the expected arrival
time R (this can be adjusted by the number
of hops that a burst needs to travel and the
processing time at each intermediate node).

If the reservation is successful, the con-
trol packet adjusts the offset time for the
next hop and forwards it on.  If the reser-
vation is not successful, the burst will be
blocked and the packet will be discarded.

CALLING HOST CALLED HOSTCALLING SWITCH CALLED SWITCH

SETUP

SETUP 
ACK

SETUP

SETUP

RELEASE

CONNECT

CONNECT

CONNECT RELEASE

OPTICAL 
BURST

CROSSCONNECT
CONFIGURED
FOR EXPLICIT

RELEASE

Figure 1 – JIT signaling scheme

30 Xcell Journal      Winter 2004

E M B E D D E D  S Y S T E M S



Winter 2004 Xcell Journal 31

E M B E D D E D  S Y S T E M S

transceivers in the Virtex-II Pro™ FPGA,
allowing high-speed data streams (1-10
Gbps) to directly reach the core of the
FPGA for processing. Dense FPGA logic
available in the Virtex-II Pro FPGA facili-
tates implementation of complex state
machines of the JIT protocol.  The avail-
ability of embedded IBM™ PowerPC™
405 processors in the Virtex-II Pro FPGA
allows implementation of complex sched-

uling algorithms and timers associated with
the JIT protocol.

The OBS NIC contains a Virtex-II Pro
XC2VP20 FPGA. Three Gigabit Ethernet
channels are used in this implementation
of the OBS NIC. The first channel on the
OBS NIC connects to an off-the-shelf
Gigabit Ethernet card plugged into the
host. This channel carries data and host
messages between the OBS NIC and the

host. The second channel is for
signaling and connects to the
OBS network controller; it
carries the JIT OBS signaling
messages. The third channel is
used as the data channel and is
connected to the optical front-
end card.

The optical front-end card
consists of an optical tunable
transmitter and receiver. The
OBS NIC generates the tuning
commands for the laser and
optical receivers on the optical
front-end card. Figure 2 illus-
trates the architecture of the
OBS NIC.

The Virtex-II Pro FPGA on
the OBS NIC uses a PCS/PMA
core and a MAC layer to con-
nect the external gigabit chan-
nels to the JIT engine. 

The JIT engine implements
the JIT OBS protocol in the
OBS NIC. Functionalities for
both the source and destination

state machines of the JIT OBS client are
implemented in the JIT engine. The JIT
engine processes three kinds of messages –
messages from the host, signaling messages
from the network, and internally generat-
ed timing messages. 

The JIT engine uses two functional
state machines (FSM): the scheduling
FSM, using a round-robin scheme, picks
up a message from one of the three mes-
sage queues (for different types of mes-
sages) and dispatches them for further
processing, while the processing FSM is
responsible for taking a message and pro-
cessing that message. Several processing
sub-modules can be activated by process-
ing FSM as needed, such as a hashing
module or a state machine module.
Figure 3 diagrams the processing of mes-
sages in the JIT engine.

Conclusion
We believe that communications will be
bi-modal within the next 25 years. All
land lines will be optically based, with
optical access to the user or device that is
a client of the network. All backbone con-
nections will be across optical trunks.
Networking will be predominantly imple-
mented in the “optical layer,” with little or
no additional layering above it. Optical
networks will be mostly a transparent
transport media for applications.

To meet the increasing demands of
bandwidth and cost reduction, several
technologies in the optical communica-
tions paradigm have been under inten-
sive research. 

Just-In-Time signaling applied to the
optical burst switching paradigm has the
promise of being able to provide either cir-
cuit- or packet-switched services. JIT OBS
implements the best of optical circuit
switching and optical packet switching but
avoids their shortcomings. JIT signaling
aims to better utilize the variable parame-
ters that can exist within both an optical
and a wireless network, such as frequency
availability and data-rate differences.

For more information on the 
research conducted by MCNC-RDI in
the field of optical networks, visit
www.mcnc-rdi.org. 
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The hard work is done!  Now ASIC and FPGA designers can prototype
logic designs for a fraction of the cost of existing solutions.  Here are 6+ million gates
(measured the ASIC way) on an easy to use, stand-alone, USB2.0-hosted board (a PCI/PCI-
X interface is coming soon).  The DN6000k10 supports up to 9, 2vp100 VirtexII-Pro FPGA’s,
with an incredible amount of FPGA to FPGA interconnect for easy logic partitioning.  FPGA’s
are interconnected with rocket I/O’s, enabling the movement of data between them at
100’s of GB/s.  In addition to 6M+ gates, the DN6000k10 also packs on-board:

• 2 PowerPC cores per FPGA (400MHz)

• Up to 8MB embedded RAM, 444, 18x18 multipliers — per FPGA

• 12 external 133MHz 32M x 16 DDR SDRAM’s, 5 4Mx16 FLASH

• 480+ connections for daughter card and logic analyzer interfaces

Configuration is fast, easy, and robust using a SmartMedia-based FLASH card or, via the
USB interface.  Every tool, utility, driver, and support application that The Dini Group could
imagine you might need is included.  Please contact us for complete specifications, we are
eager to show you how our hard work can make your job easier.

1010 Pearl Street, Suite 6  •  La Jolla, CA 92037  •  (858) 454-3419  •  Email: sales@dinigroup.com

So Many GatesSo Many Gates

So Few Dollars



by Greg Lara
Product Marketing Manager – Virtex Solutions
Xilinx, Inc.
greg.lara@xilinx.com

As Xilinx® began to define the capabilities of
the fourth-generation of Virtex™ devices,
we set out to address the performance, func-
tionality, and cost requirements of next-gen-
eration electronic systems, and to increase
our customers’ productivity by easing sys-
tem design challenges. We interviewed more
than 800 customers, including system archi-
tects and experts in logic design, embedded
processing, high-performance DSP, and
high-speed connectivity.

Despite the differences in their end
products, these high-end FPGA users had a
number of common key requirements.
They asked for higher system performance
to meet the demands of their leading-edge
products; lower power consumption to
meet stringent power budgets driven by sys-
tem cost and reliability requirements; help
in reducing system cost to enable them to
thrive in a competitive marketplace; and
solutions to simplify complex design chal-
lenges, such as building source-synchronous
interfaces to the latest high-speed memories
and advanced components. 

We achieved these goals by enhancing
the features proven popular in earlier Virtex
devices and developing new capabilities
never before available in FPGAs.
Combining advanced processing technology
with greater integrated functionality, Virtex-
4™ FPGAs provide 2x more density, and
boost performance as much as 2x, while
reducing power consumption by as much as
50% compared with previous-generation
FPGAs (see sidebar, “Features at a Glance”).
At the same time, Virtex-4 FPGAs cut the
cost of programmable system platforms by
more than 50%, enabling developers to
adopt high-performance FPGAs in an
extraordinary range of products. 

Higher Performance
Viretx-4 FPGAs attack the requirements
for higher performance on several fronts.
First, designers can improve system per-
formance, thanks to the advanced 90 nm
process and optimized FPGA fabric. 

Virtex-4:
Breakthrough 
Performance at 
the Lowest Cost

Virtex-4:
Breakthrough 
Performance at 
the Lowest Cost
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The second approach is to include dedicat-
ed, performance-tuned circuitry for imple-
menting key system functions, such as
integrated processors, DSP slices, Ethernet
MACs, and serial transceivers. For exam-
ple, the embedded Virtex-4 XtremeDSP™
slice delivers up to 500 MHz performance
and the RocketIO™ serial transceiver
ranges from 0.6 to 11.1 Gbps – unprece-
dented in the industry. 

The third approach is the incorporation
of powerful clock management capability,
enabling engineers to extract the maximum
performance from the programmable logic
fabric. Xesium clocking technology
addresses designers’ demands for more flex-
ible clocking with abundant resources – up
to 32 global clocks in each device and up to
20 digital clock manager (DCM) circuits.

Xesium DCM circuits enable flexible
generation of multiple clock domains with
differential signaling supporting frequencies
of up to 500 MHz performance and 40%
less jitter than previous circuitry. In addi-
tion, Virtex-4 devices are the only FPGAs
to provide differential clocking networks, a
key advantage in implementing precision
clocks with minimal skew and jitter.

Virtex-4 FPGAs further enhance clock
management with phase-matched clock
dividers (PMCD) that provide improved
handling of multiple synchronous clock
domains. These circuits, together with
enhanced software support, give designers
precise edge control and frequency synthe-
sis capabilities, enabling the generation of
high-quality clock networks. 

Power Advantage
Virtex-4 FPGAs reduce
power with a combination
of techniques. By using a
triple oxide technology,
Xilinx can make trade-offs
between speed and leakage
that reduce static power
consumption by 40% as we
build transistors with differ-
ent gate oxide thicknesses
for configuration, intercon-
nect, and I/O. This technol-
ogy enables us to offset, and
even reverse, the increase in

many die per wafer, compared to build-
ing an equivalent chip with 130 nm
process on 200 mm (8 inch) wafers.
This lowers cost per die significantly. 

• Multiple platforms deliver cost-opti-
mized feature sets.

With each generation of Virtex
FPGAs, Xilinx has taken advantage of
the latest process node to fabricate
devices that offer greater capacity,
higher performance, and lower price.
For the Virtex-4 family, we went even
further to achieve cost reduction.

As we strive to expand the use of
Virtex FPGAs into new markets and
geographies, we see that our customers
have different requirements that vary
with the complexity and target price
for the systems they are creating. Using
our propriety ASMBL (pronounced
“assemble”) architecture (see Figure 1
and sidebar, “ASMBL Architecture
Enables Cost-Optimized Platforms”),

leakage current inherent in the migration to
finer geometry nodes and is exclusive to
Xilinx in the FPGA industry.

In addition, dynamic power consumption
decreases by 50% because of lower supply
voltage and lower capacitance in the 90 nm
process. Finally, extensive use of abundant
embedded IP provides valuable functionality
in circuits optimized to consume as little as
one-tenth the power of an equivalent imple-
mentation in programmable logic fabric. 

Lower System Cost
Xilinx addressed the requirements for lower
system cost on three fronts:

• 90 nm, 300 mm process leadership
produces the lowest FPGA price.

Xilinx manufactures Virtex-4 FPGAs
using the same 90 nm, 300 mm pro-
cessing technology we use to build the
world’s lowest-cost FPGAs, Spartan-3™
devices. The combination of finer
geometries and larger 12 inch wafers
produces approximately five times as

Figure 1 – ASMBL architecture

ASMBL Architecture Enables Cost-Optimized Platforms
With traditional FPGA architectures, increasing the size of the devices to meet the
demands for greater logic capacity and more memory typically results in parallel
scaling of all the advanced features on the die, rapidly increasing cost.

To solve this inefficiency, Xilinx introduced a radical new architecture that enables
us to offer a new generation of Virtex FPGAs providing the broadest range of capa-
bilities in three unique platforms with feature mixes optimized to meet the require-
ments of different application domains. The ASMBL (Advanced Silicon Modular
Block) architecture enables Xilinx to scale the capabilities and capacity of Virtex
FPGAs independently of one another and rapidly assemble multiple platforms. 
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we have assembled three different plat-
forms (Figure 2) with an initial offer-
ing of 17 devices that deliver
cost-optimized solutions for the widest
range of high-performance electronic
systems.

• Integrated IP reduces the customer’s
bill of materials and saves FPGA
resources.

Virtex-4 FPGAs reduce system cost
with abundant integrated IP. By incor-
porating many functions that find use
in a broad range of applications, Virtex-
4 FPGAs replace a number of discrete
components commonly found on sys-
tem boards.

Designers can take advantage of
embedded PowerPC™ processors, up
to 10 Mb of embedded dual-port
RAM/FIFO, integrated Ethernet
MACs, sophisticated DSP circuitry,
and on-board serial transceivers,
among other features. This helps our
customers lower system cost in several
ways: by reducing component count
and streamlining logistics with a small-
er bill of materials; by simplifying the
design and manufacturing of system
hardware; by easing PCB design and
manufacturing; and by improved sys-
tem reliability through the reduction
of solder joints.

In addition, building dedicated cir-
cuits on the FPGA provides required
functionality efficiently, while pre-

serving the programmable logic fabric
for customers to add the value of their
proprietary designs. The result is more
capability within a single package at a
given price point.

Up to 80% Additional 
Cost Reduction with EasyPath
The EasyPath™ program further lowers
system cost for customers who are ready to
take their finished design to volume pro-
duction. Xilinx creates customized test pro-
grams for EasyPath customers that exercise
only the device resources used in the specif-
ic design. This approach shortens test time
and increases yield to reduce FPGA unit
price up to 80%.

Source Synchronous Interfacing
To ensure reliable data transfer between a
new generation of high-speed devices, hard-
ware designers are turning to source-syn-
chronous design techniques, in which the
component sending the data generates and
issues its own clock signal along with the
data that it transmits. This technique elim-
inates one set of problems associated with
parallel interfaces, but introduces its own
circuit design challenges. ChipSync tech-
nology significantly simplifies component
interface design with critical built-in cir-
cuitry that is available in every Virtex-4 I/O
(see sidebar, “Virtex-4 Solves Source-
Synchronous Design Challenges”).

Embedded Processing 
Embedded developers have already used
Xilinx processor solutions to create thou-
sands of designs. As we talked to these
developers about the requirements for their
next-generation systems, several common
themes emerged.

A Full Range of Processing Solutions
Engineers need a range of processing solu-
tions to match the requirements of different
tasks, ranging from simple control func-
tions to advanced algorithms and high-
speed calculation. In addition, they want
the different solutions to share a common
design environment.

Xilinx satisfies these requirements with
a range of processors that includes the

Features at a Glance

■ Largest logic capacity

• Up to 200,000 logic cells

■ Largest memory capacity

• Up to 10 Mb block RAM

■ Highest performance

• 500 MHz Xesium clocking 
technology

• Expanded clocking resources

• Enhanced clock precision

• Reduced clock jitter and skew

■ Simplified source-synchronous
interfacing

• ChipSync technology

■ Complete serial connectivity
solution

• 622 Mbps – 11.1 Gbps
RocketIO transceivers

■ Higher performance, 
low-power DSP

• 500 MHz XtremeDSP slice

■ Simplified processor acceleration

• PowerPC 405 processor with
auxiliary processor unit (APU)
controller interface

■ Integrated Ethernet MAC

■ Fourth-generation design security

Figure 2 – One family, multiple platforms



PicoBlaze™ eight-bit microcontroller soft
core, the MicroBlaze™ 32-bit general
purpose processor soft core, and the
industry-standard PowerPC architecture,
in the form of a performance-optimized
hard core. 

Efficient Hardware Acceleration
Using an FPGA with an embedded proces-
sor as a platform for programmable system
design enables flexible partitioning of func-
tionality into hardware and software.
Immersing the processor in the FPGA logic
fabric opens the door to the additional flex-
ibility of creating custom hardware to accel-
erate the execution of critical software.
Hardware acceleration enables designers to
apply logic resources to achieve perform-
ance exactly where needed.

Creating hardware (tightly coupled to
the CPU) to act on a set of operands can
accelerate the execution of key software by
performing in a single cycle calculations
that take many cycles on a processor. This
performance boost is achieved by tuning
the hardware design to provide the degree
of parallelism required by the algorithm. 

High Performance, 
Flexible Hardware Acceleration 
Creating accelerators for FPGA-based
processors requires three elements: pro-
grammable logic fabric for building the
custom hardware; unassigned address space
for the new instruction; and a low-latency
path between the processor and the acceler-
ation hardware. Xilinx provides the most
efficient integration of microprocessor and
FPGA fabric with dedicated interfaces that
save clock cycles by eliminating bus over-
head; are decoupled from the CPU to
enable implementation of multiple acceler-
ators; and do not stall the pipeline crucial
to RISC performance.

All Virtex FPGAs have abundant pro-
grammable logic resources suitable for
building acceleration hardware. Xilinx
enables efficient accelerator integration for
the MicroBlaze soft processor core with the
Fast Simplex Link (FSL). The MicroBlaze
processor supports up to 32 input and 32
output FSL, and code development is easy
with simple programming for blocking and
non-blocking instructions.

Virtex-4 FX devices include up to two
PowerPC hard processor cores. Xilinx first
introduced the immersed PowerPC 405
core in the Virtex-II Pro™ family. For the
Virtex-4 family, Xilinx has increased
processor performance to 680 DMIPS at
450 MHz and reduced power consump-
tion to 0.44 mW/MHz while maintaining
compatibility with all software and IP cre-
ated for the first-generation core. 

A new auxiliary processor unit (APU)
controller simplifies the integration of
acceleration hardware for the PowerPC
core by providing a direct interface
between the CPU pipeline and the FPGA
logic fabric. This ultra-low-latency archi-
tecture enhances performance by reducing,
by a factor of ten, the number of bus cycles
needed to access the accelerator hardware.
The net result is a 20-fold increase in
processor-accelerator efficiency. 

High-Speed Connectivity
When we asked system developers to
describe their connectivity requirements,
they highlighted the need for performance
to support emerging standards and flexi-
bility to upgrade today’s designs to meet
future bandwidth requirements. They are
looking for solutions that offer bandwidth
greater than 3.125 Gbps, provide com-
plete support for multiple communication
standards, and maintain the highest possi-
ble signal integrity. 

Our third-generation RocketIO multi-
gigabit transceiver satisfies these require-
ments with the industry’s broadest
operating range and other enhancements.
Virtex-4 FX FPGAs enable bridging
between just about any serial or parallel
connectivity standard. For example, the
third-generation RocketIO multi-gigabit
transceivers provide compliance with the
PCI Express standard, with support for
out-of-band signaling (electrical idle and
beaconing) and spread-spectrum clocking. 

To address the challenges of backplane
and other high-speed connectivity designs,
RocketIO multi-gigabit transceivers pro-

vide comprehensive equalization tech-
niques to ensure signal integrity in a wide
variety of applications (Table 1). These
advanced equalization techniques enable
engineers to give new life to old systems by
upgrading legacy backplanes.

In addition, Virtex-4 FX devices
include built-in Ethernet connectivity,
enabling seamless chip-to-chip connec-
tions without consuming programmable
logic resources. The Ethernet MAC core
supports 10/100/1000 Mbps data rates
with UNH-verified standards compliance
and interoperability.

• Third-generation multi-gigabit transceivers

• Operating range: 622 Mbps — 11.1 Gbps

• Channels: up to 24

• Transmit pre-emphasis

• Receive linear and decision feedback 
equalization (DFE)

• 8b/10b and 64b/66b encode/decode

• Sonet jitter compliant at OC-12 
and OC-48 line rates

Table 1 – RocketIO features at a glance

Virtex-4 FX devices include built-in Ethernet connectivity,
enabling seamless chip-to-chip connections without 

consuming programmable logic resources.
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High-Performance DSP
Developers told us they need to achieve
higher DSP performance targets to imple-
ment next-generation applications such as
MPEG-4 video compression/decompres-
sion and multi-channel mobile commu-
nications. Scaling existing DSP
implementations to meet these targets
with multiple programmable DSPs or
dedicated ASIC hardware can be prohib-
itively expensive. Designers also need to
control system power consumption as
they squeeze more functionality into
smaller form factors.

To address new DSP performance
requirements, Xilinx crafted the versatile
XtremeDSP slice, providing twice the
DSP performance of previous implemen-
tations while drawing less than 1/7th of
the power. Although all Virtex-4 FPGAs
contain XtremeDSP slices, the Virtex-4
SX platform provides the highest ratio of
XtremeDSP slices to other resources.

The largest SX device, the
XC4VSX55, has 512 slices. Using these
500 MHz XtremeDSP slices with 18 x
18-bit multiplier and 48-bit accumulator
exclusively, this device can achieve 256
GMAC/s performance at a very aggres-
sive price point, providing the most pow-
erful DSP capabilities of any FPGA in
the industry. Demonstrating the revolu-
tionary flexibility of the multi-platform
approach enabled by the ASMBL archi-
tecture, the DSP-optimized SX55 offers
ten times the DSP value, as measured in
GMACs/dollar, compared with previous-
generation FPGAs.

Xilinx is helping DSP developers close
the gap between the performance of pro-
grammable single-MAC DSPs and the
requirements of advanced algorithms with
Virtex-4 SX platform FPGAs. Virtex-4
FPGAs can serve alongside programmable
DSPs as pre-processors or co-processors to
offload compute-intensive tasks. 

Conclusion
To learn more about how you can take
advantage of the breakthrough capabili-
ties and performance of Virtex-4 FPGAs
in your next system, please visit our web-
site at www.xilinx.com/virtex4/. 

Virtex-4 Solves Source-Synchronous Design Challenges
Source-synchronous interfaces typically send signals at bandwidths of up to

1 Gbps or higher on each channel. FPGA logic circuitry has difficulty pro-

cessing incoming signals at that speed, so the frequency must be reduced by

converting serial data on each channel to parallel data as it enters the device.

Conversely, transmission requires converting parallel data to serial format.

Traditionally, this process involves multiple stages of dividing down or mul-

tiplying up the speed. The steps required to meet the setup and hold require-

ments are laborious and time-consuming. 

ChipSync technology simplifies design and boosts performance with an

embedded SERDES that serializes and de-serializes parallel bus interfaces to

match the data rate to the speed of the internal FPGA circuits. ChipSync

technology enables data rates greater than 1 Gbps for differential I/O, and

over 600 Mbps for single-ended I/O. This ability simplifies the design of

interfaces such as SPI-4.2, XSBI, and SFI-4, as well as RapidIO™ and

HyperTransport™.

Each channel and clock follows a slightly different route through the printed

circuit board. Ensuring reliable data capture requires satisfying the setup and

hold times of each channel. With communication interfaces of eight channels

and higher, and with memory buses up to 144 bits wide, this can be an

extremely challenging task. 

ChipSync technology simplifies the implementation of communication and

high-speed memory interfaces (including DDR 2 SDRAM, QDR II SRAM,

FCRAM II, and RLDRAM II) by compensating routing issues that produce

skew between data and clock signals. Built-in circuitry enables the delay of

each data and clock channel within the SelectIO™ block, in 78 ps incre-

ments, to meet the setup and hold requirements for reliable data capture. 

For extreme levels of skew, the misalignment might be greater than a bit

interval. Aligning bits helps read the data reliably, but some channels might

be out of step with others. To address extreme levels of skew, greater than a

bit interval, ChipSync technology provides a bitslip capability. An optional

training pattern simplifies the task of aligning data words across all channels.

With source-synchronous design, each interface has its own clock. As multi-

ple interfaces and memories are connected to the same FPGA, the need for

numerous flexible clock resources grows. With clock-aware I/Os, ChipSync

technology enables simultaneous implementation of multiple source-syn-

chronous interfaces.

Xesium clocking makes this possible with up to 24 clock regions per device.

Each region can have up to six I/Os acting as clock sources for data capture.

Up to 95 I/Os can be clocked by a single I/O clock, providing great clock

flexibility and a large number of clocks. 
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Programmable DSP processors are growing tremendously and are being implemented in
a variety of applications. To keep pace with this explosive growth, Xilinx® is expanding
and enhancing its XtremeDSP™ processing solution. We’ve added dedicated DSP ele-
ments into our FPGAs to make it easier and more cost- and power-efficient to achieve
performance levels previously only possible in custom ASICs. 

The Xilinx solution is the perfect match with programmable DSP processors. 
The Xilinx tool suite allows you to very easily develop massively parallel digital signal
processing engines that can do the “heavy lifting” in a complementary fashion to 
programmable DSPs.

Providing extremely high-performance DSP solutions has become so important at
Xilinx that we have recently created a DSP division. We are consolidating our DSP
resources and creating focused development platforms and reference designs to help
designers of high-performance DSPs get up to speed on our solution quickly and cost
effectively. 

In the following series, you will find articles on prototyping, developing, imple-
menting, and analyzing in the context of real-world, high-performance DSP applica-
tions, using tools from Xilinx and our partners.
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by Wilson C. Chung
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H.264/AVC is the latest international
video coding standard in a series of such
standards: H.261, MPEG-1, MPEG-2,
H.263, and MPEG-4 visual, or part 2. It
was approved by the ITU-T (International
Telecommunications Union Telecommun-
ication Standardization Sector) as recom-
mendation H.264 and by ISO/IEC as
International Standard 14 496-10 (MPEG-
4 part 10) Advanced Video Coding (AVC)
in May 2003.

Despite H.264/AVC’s promises of
improved coding efficiency over existing
video coding standards, it still presents
tremendous engineering challenges to sys-
tem architects, DSP engineers, and hard-
ware designers. The H.264/AVC standard
brought in the most significant changes

and algorithmic discontinuities in the evo-
lution of video coding standards since the
introduction of H.261 in 1990.

The algorithmic computational com-
plexity, data locality, and algorithm and
data parallelism required to implement the
H.264/AVC coding standard often direct-
ly influences the overall architectural deci-
sion at the system level. In turn, this
determines the ultimate cost of developing
any commercially viable H.264/AVC sys-
tem solution in the broadcasting, video
editing, teleconferencing, and consumer
electronics fields.

Complexity Analysis
To achieve a real-time H.264/AVC stan-
dard definition (SD) or high definition
(HD) resolution encoding solution, sys-
tem architects often employ multiple
FPGAs and programmable DSPs. To illus-
trate the enormous computational com-
plexity required, let’s explore the typical

run-time cycle requirements of the
H.264/AVC encoder based on the software
model provided by the Joint Video Team
(JVT), comprising experts from ITU-T’s
Video Coding Experts Group (VCEG) and
ISO/IEC’s Moving Picture Experts Group
(MPEG).

Using Intel™ VTune™ software run-
ning on an Intel Pentium™ III 1.0 GHz
general-purpose CPU with 512 MB of
memory, achieving H.264/AVC SD with a
main profile encoding solution would
require approximately 1,600 BOPS (bil-
lions of operations per second).

Table 1 illustrates a typical profile of
the H.264/AVC encoder complexity
based on the Pentium III general-purpose
processor architecture. Notice that in
Table 1, motion estimation, mac-
roblock/block processing (including
mode decision), and motion compensa-
tion modules are the primary candidates
for hardware acceleration.

Implementing the H.264/AVC 
Video Coding Standard on FPGAs
Implementing the H.264/AVC 
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However, computation complexity
alone does not determine if a functional
module should be mapped to hardware or
remain in software. To evaluate the viability
of software and hardware partitioning of the
H.264/AVC coding standard implementa-
tion on a platform that consists of a mixture
of FPGAs, programmable DSPs, or general-
purpose host processors, we need to look at
a number of architectural issues that influ-
ence the overall design decision.

• Data locality. In a synchronous design,
the ability to access memory in a par-
ticular order and granularity while min-
imizing the number of clock cycles due
to latency, bus contention, alignment,
DMA transfer rate, and the types of
memory used (such as ZBT memory,
SDRAM, and SRAM) is very impor-
tant. The data locality issue is primarily
dictated by the physical interfaces
between the data unit and the arith-
metic unit (or the processing engine).

• Data parallelism. Most signal process-
ing algorithms operate on data that is
highly parallelizable (such as FIR filter-
ing). Single instruction multiple data
(SIMD) and vector processors are par-
ticularly efficient for data that can be
parallelized or made into a vector for-
mat (or long data width).

absolute difference (SAD) engine in
motion estimation and video scaling.

By mapping these modules onto the
FPGA fabric, the host processor or the
programmable DSP has the extra cycles
for other algorithms. Furthermore,
FPGAs can have multiple clock
domains in the fabric, so selective hard-
ware blocks can thus have separate
clock speeds based on their computa-
tional requirements.

• Theoretic optimality in quality. Any
theoretic optimal solution based on
the rate-distortion curve can be
achieved if and only if the complexity
is unbounded. In a programmable
DSP or general-purpose processor, the
computational complexity is always
bounded by the clock cycles available.
FPGAs, on the other hand, offer much
more flexibility by exploiting data and
algorithm parallelism by means of
multiple instantiations of the hardware
engines, or increased use of block
RAM and register banks in the fabric.

A programmable DSP or general-pur-
pose processor is often limited by the
number of instruction issues per cycle,
the level of pipeline in the execution
unit, or the maximum data width to
fully feed the execution units. Video
quality is often compromised as a result
of the limited cycles available per task
in a programmable DSP, whereas hard-
ware resources are fully allocated in
FPGA fabric (three-step vs. full-search
motion estimation).

Implementing Functional Modules onto FPGAs
Figure 1 shows the overall H.264/AVC
macroblock level encoder with major func-
tional blocks and data flows defined. One
of the primary successes of the H.264/AVC
standard is its ability to predict the values
of the content of a picture to be encoded by
exploiting the pixel redundancy in different
ways and directions not exploited previous-
ly in other standards. Unfortunately, when
comparing to previous standards, this
increases the complexity and memory
access bandwidth approximately four-fold.

FPGA fabric exploits this by providing
a large amount of block RAM to sup-
port numerous very high aggregate
bandwidth requirements. In the new
Xilinx Virtex-4™ SX device family, the
amount of block RAM matches closely
with the number of Xtreme DSP™
slices (SX25 – 128 block RAM, 128
DSP slices; SX35 – 192 block RAM,
192 DSP slices; SX55 – 320 block
RAM, 512 DSP slices).

• Signal processing algorithm paral-
lelism. In a typical programmable DSP
or a general-purpose processor, signal
processing algorithm parallelism is
often referred to as instruction level
parallelism (ILP). A very long instruc-
tion word (VLIW) processor is an
example of such a machine that
exploits ILP by grouping multiple
instructions (ADD, MULT, and BRA)
to be executed in a single cycle. A
heavily pipelined execution unit in the
processor is also an excellent example
of hardware that exploits the paral-
lelism. Modern programmable DSPs
have adopted this architecture (includ-
ing the Texas Instruments™
TMS320C64x).

However, not all algorithms can
exploit such parallelism. Recursive
algorithms like IIR filtering, variable-
length coding (VLC) in MPEG1/2/4,
context-adaptive variable length coding
(CAVLC), and context-adaptive binary
arithmetic coding (CABAC) in
H.264/AVC are particularly sub-opti-
mal and inefficient when mapped to
these programmable DSPs. This is
because data recursion prevents ILP
from being used effectively. Instead,
dedicated hardware engines can be
built efficiently in the FPGA fabric.

• Computational complexity.
Programmable DSP is bounded in
computational complexity, as measured
by the clock rate of the processor.
Signal processing algorithms imple-
mented in the FPGA fabric are typical-
ly computationally intensive. Some
examples of these are the sum of
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Functional % of Run-Time 
Blocks Total Cycles

mv_search.c 67.31 %
block.c 8.19 %
refbuf.c 6.95 %
macroblock.c 3.48 %
rdopt.c 3.37 %
biariencode.c 3.21 %
cabac.c 2.98 %
memcpy.asm* 2.91 %
abs.c* 0.57 %
image.c 0.54 %
rdopt_coding_state.c 0.46 %
loopFilter.c 0.03 %

Table 1 – H.264/AVC encoder 
complexity profile by files

DIGITAL SIGNAL PROCESSING



Improved Prediction Methods
Let’s highlight some of the main features of
the H.264/AVC video coding standard
design that enable its enhanced coding effi-
ciency, evaluating these functional modules
based on the design criteria discussed in the
previous section. 

• Quarter-pixel-accurate motion compen-
sation. Prior standards use half-pixel
motion vector accuracy. The new design
improves on this by providing quarter-
pixel motion vector accuracy. The pre-
diction values at half-pixel positions are
calculated by applying a one-dimension-
al six-tap FIR filter [1, -5, 20, 20, -5,
1]/32 horizontally and vertically.

Prediction values at quarter-pixel posi-
tions are generated by averaging sam-
ples at the full- and half-pixel positions.
These sub-sampling interpolation oper-
ations can be efficiently implemented
in hardware inside the FPGA fabric.

• Variable block-sized motion compensa-
tion with small block size. The stan-
dard provides more flexibility for the
tiling structure in a macroblock size of
16 x 16 pixels. It allows the use of 16 x
16, 16 x 8, 8 x 16, 8 x 8, 8 x 4, 4 x 8,
and 4 x 4 sub-macroblock sizes.

Because of the increasing combina-
tions of tiling geometry with a given

16 x 16 macroblock, to find a rate
distortion optimal tiling solution is
extremely computationally intensive.
This additional feature places an
enormous burden on the computa-
tional engines used in motion estima-
tion, refinement, and mode decision
process. 

• In-the-loop adaptive deblocking filter-
ing. The deblocking filter has been suc-
cessfully applied in H.263+ and
MPEG-4 part 2 implementations as a
post-processing filter. In H.264/AVC,
the deblocking filter is moved inside
the motion-compensated loop to filter
block edges resulting from the predic-
tion and residual difference coding
stages of the decoding process. The fil-
tering is applied on both 4 x 4 block
and 16 x 16 macroblock boundaries, in
which two pixels on either side of the
boundary may be updated using a
three-tap filter. The filter coefficients or
“strength” are governed by a content-
adaptive non-linear filtering scheme.

• Directional spatial prediction for intra
coding. In cases where motion estima-
tion cannot be exploited, intra-direc-
tional spatial prediction is used to
eliminate spatial redundancies. This
technique attempts to predict the cur-
rent block by extrapolating the neigh-

boring pixels from adjacent blocks in a
defined set of directions. The differ-
ence between the predicted block and
the actual block is then coded.

This approach is particularly useful in
flat backgrounds where spatial redun-
dancies exist. There are a total of nine
prediction directions for Intra_4x4
prediction, and four prediction direc-
tions for Intra_16x16 prediction.
Note that the data causality imposes
quick memory access to the neighbor-
ing 13 pixel values to the above and
left of the current block in the case of
Intra_4x4. For the Intra_16x16, 16
neighboring pixels on each side are
used to predict a 16 x 16 block.

• Multiple reference picture motion com-
pensation. The H.264/AVC standard
offers the option for multiple reference
frames in the inter-frame coding. Unless
the number of the referenced pictures is
one, the index at which the reference
picture is located inside the multi-pic-
ture buffer has to be signaled. The
multi-picture buffer size determines the
memory usage in the encoder and
decoder. These reference frame buffers
must be addressed correspondingly dur-
ing the motion estimation and compen-
sation stages in the encoder.

• Weighted prediction. The JVT recog-
nizes that in encoding certain video
scenes that involve fades, having a
weighted motion-compensated predic-
tion dramatically improves the coding
efficiency.

Improved Coding Efficiency
In addition to improved prediction meth-
ods, other parts of the standard design were
also enhanced for improved coding efficien-
cy. Two additional features are most likely to
impact the overall system architecture based
on our design criteria for software and hard-
ware partitioning:

• Small block size, hierarchical, exact-
match inverse, and short word-length
transform. The H.264/AVC, like other
standards, also applies transform coding
to the motion-compensated prediction
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residual. But, unlike previous standards
that use an 8 x 8 discrete cosine trans-
form (DCT), this transform is applied
to 4 x 4 blocks, and is exactly invertible
in a 16-bit integer format. The small
block helps reduce blocking and ring-
ing artifacts, while the precise integer
specification eliminates any mismatch

issues between the encoder and decoder
in the inverse transform.

Furthermore, an additional transform
based on the Hadamard matrix is also
used to exploit the redundancy of 16
DC coefficients of the already trans-
formed blocks. Compared to a DCT, all
applied integer transforms have only
integer numbers ranging from -2 to 2 in
the transform matrix. This allows you to
compute the transform and the inverse
transform in 16-bit arithmetic using
only low-complexity shifters and adders.

• Arithmetic and context-adaptive
entropy coding. Two methods of
entropy coding exist: a low-complexity
technique based on the use of context-
adaptively switched sets of variable
length codes (CAVLC) and the com-
putationally more demanding algo-
rithm of context-based adaptive binary
arithmetic coding (CABAC). CAVLC

is the baseline entropy coding method
of H.264/AVC. Its basic coding tool
consists of a single VLC of structured
Exp-Golomb codes, which by means of
individually customized mappings are
applied to all syntax elements except
those related to the quantized trans-
form coefficients. For the CABAC, 

a more sophisticated coding scheme is
applied. The transform coefficients are
first mapped into a 1-D array based on
a predefined scan pattern. After quanti-
zation, a block contains only a few sig-
nificant non-zero coefficients.

Based on this statistical behavior, five
data elements are used to convey infor-
mation of the quantized transform coef-
ficients for a luminance 4 x 4 block.
The efficiency of entropy coding can be
improved further if using CABAC.

There are two parts in CABAC. The
arithmetic coding core engine and its
associated probability estimation are
specified as multiplication-free low-
complexity methods using only shifts
and table look-ups. The use of adaptive
codes allows it to adapt to non-station-
ary symbol statistics. By using context
modeling based on switching between
conditional probability models that are

estimated from previous coded syntax
elements, CABAC can achieve a reduc-
tion in bit rate between 5-15% com-
pared to CAVLC.

Figure 2 depicts a typical system-level
functional block partition of the
H.264/AVC SD video codec. The solution
is implemented based on the Spectrum
Digital EVM DM642 evaluation module
for the Texas Instruments TMS320DM642
DSP, together with the Xilinx XEVM642-
2VP20 Virtex-II Pro™ or XEVM642-
4VSX25 Virtex-4™ daughtercard.

Conclusion
When used in an optimized fashion, the
coding tools of the H.264/AVC standard
increase coding efficiency by about 50%
compared to previous video coding stan-
dards (like MPEG-4 part 2 and MPEG-2)
for a wide range of bit rates and resolu-
tions. Currently, it is the most likely suc-
cessor to the widely used MPEG-2.
However, the algorithm is quite complex,
at a resolution greater than source input
format (SIF).

The DVD-Forum, with its HD-DVD
initiatives, has selected H.264/AVC togeth-
er with WMV-9 and MPEG-2 as the stan-
dard video coding formats. The European
DVB consortium has also selected
H.264/AVC as the next format after
MPEG-2. These announcements, plus
endorsements from Hollywood studios,
content distributors, and broadcast infra-
structures, have further validated the
importance of the H.264/AVC video cod-
ing standard for the next few years.

For more comprehensive studies 
and technical details of the H.264/AVC
video coding standard, please see the
References. 
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by Louis Belanger
Product Development Manager
Lyrtech Signal Processing, Inc.
louis.belanger@lyrtech.com

GSM (Global System for Mobile) is the
most widely-used cellular phone technology.
Having begun mostly as a European stan-
dard, it has spread throughout the world to
become ubiquitous.

GSM was one of the first digital cellular
systems, and as such, represented another
level of magnitude in terms of complexity,
with support for growth features such as
GPRS (General Packet Radio Service),
which provides data capabilities to GSM
phones. In this context, designing a GSM
system is a complex task and could benefit
from advanced design flow techniques
where initial system simulation phases can
be seamlessly carried over to the implemen-
tation phases.

In this article, we’ll describe such a
design flow for GSM development, start-
ing from research and model
simulation/implementation in The
MathWorks MATLAB® to FPGA imple-
mentation through simulation phases in
The MathWorks Simulink® and Xilinx®

System Generator.

Project Context
Our implementation is in the general con-
text of wireless application development
examples to showcase our DSP/FPGA
platforms. A previous project, the imple-
mentation of a SSB (single side band) AM
radio (also with The MathWorks) featured
a simpler analog radio and was showcased
at Xilinx Programmable World 2003.

We wanted to implement a much more
complex radio, and so we selected the
GSM digital cellular standard. In doing so,
we are getting closer to our goal to design

ever-more-complex wireless systems for our
customers.

We wanted to have a simplified system
that still operates as a GSM system, while
demonstrating a Model-Based (also known
as system-level) Design flow. The target plat-
form is our SignalMaster DSP-FPGA, with
high-speed sampling boards to sample the
intermediate frequency (IF) coming from a
special-purpose radio frequency (RF) front
end. We performed IF processing in the
Xilinx Virtex-II™ FPGA and developed the
design using System Generator.

In a complementary manner, baseband
processing implementation occurs in the
DSP, using a similar Simulink design flow
with the The MathWorks Real-Time
Workshop™ C-code generator, Embedded
Target for TI DSP toolbox, and LYRtech’s
GSM DSP libraries.

We designed protocol-oriented transac-
tions using The MathWorks Stateflow™, a

Developing a GSM Modem 
on a DSP/FPGA Architecture 
Developing a GSM Modem 
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tool that allows the graphical design of
states and transitions, as well as the pro-
duction of associated code. This event-
driven code can run on the DSP itself or on
a companion RISC processor. 

GSM Processing
Figure 1 depicts a GSM physical channel.
There are 124 200-kHz channels that are
frequency multiplexed in a 25-MHz-wide
RF spectrum, one for each downlink and
uplink path. Figure 1 also shows in more
detail how the “bursts” of each GSM chan-
nel are constructed.

Basically, each burst is part of an 8-slot
time division multiplex frame, forming a
200-kHz-wide spectrum. Each one has tail
bits and an extended guard interval to
avoid interference, as long as the mobile
station (MS) is within 35 km of the base
station (BS). Some fixed training-bit
sequences allow synchronization between
the MS and the BS.

Using the GSM as a design example
corresponds very well to our platform’s seg-
mented architecture. The main uplink
physical layer elements of a GSM speech
and data transmission chain are shown in
Figure 2. Figure 2 also illustrates how to
partition the processing.

We performed IF processing on the
FPGA with functions such as polyphase
DDC (digital down converter), DDS
(direct digital synthesis), and GMSK
(Gaussian Minimum Shift Keying) modu-
lation. DSP-based baseband processing can
tackle the tasks of encoding, encrypting,
and interleaving, as well as burst building
functions. Finally, communication proto-
col handling occurs at the RISC processor
level (or in the DSP for simplified proto-
cols, such as in our case).

Simulink DSP Model
The DSP section of the GSM model con-
tains the following elements:

• All higher level protocol layers

• Baseband processing modules

• Data transfer protocol for mapping
data onto 32-bit frames, before sending
to the FPGA through the parallel bus
interface

bit GSM frames from the DSP as input,
modulates them to get a GMSK burst, and
then frequency-shifts the resulting signal in
the 70 MHz IF band through SSB modu-
lation, using the Xilinx direct digital syn-
thesizer (DDS) block.

Two FDM transmit channels are simu-
lated in this model. These two signals are
then mixed together on the same physical
channel and sent to the digital-to-analog
converter (DAC); that block is located in
the Signal I/O and Mixer subsystem.

On the receiver side, signals feeding the
FPGA come from the analog-to-digital
converter (ADC). Because the digitized sig-
nal is 25 MHz wide and can contain as
many as 124 GSM channels, channel selec-
tion is required. This is performed by a

Figure 3 displays the DSP model, which
contains the baseband processing block
and Stateflow diagrams. This figure shows
a combination of The MathWorks’ MAT-
LAB off-the-shelf functions and target-spe-
cific library blocks.

This is very typical of a Model-Based
Design flow, in which target-specific block
performance is compared with pure simula-
tion blocks. At target compilation time, the
associated DSP library of these last blocks
can build the DSP code, providing very effi-
cient code generation and performance.

FPGA Processing Model-Based Design
Figure 4 illustrates the main FPGA-based
Simulink model for the base station. On
the transmit side, the FPGA receives 148-
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DDS in the IF demodulator subsystem;
that frequency is dictated by a value com-
ing from the DSP. The baseband signal can
now be GMSK demodulated and sent for
further processing. 

This model runs in one of three differ-
ent ways:

• Normal mode (simulation)

• Co-simulation mode (hardware-
in-the-loop)

• Real-time mode (100% hardware)

In normal mode, the data comes from the
block located in the DSP section. This block
contains the DSP functions shown in Figure
2, in order to provide frames to the transmit-
ter (the same applies for the receiver side).

Simulink performs all processing during
simulation. The gateway blocks have no
effect, except for converting the signal from
one format to another (such as from double
to fixed-point). The Signal I/O and Mixer
subsystem then produces a loopback of the IF
signal and adds white Gaussian noise to it. 

The co-simulation mode basically per-
forms in the same way as the normal mode,
except that the processing function between
the gateways will be executed in the FPGA
as a hardware-in-the-loop simulation.

In real-time mode, all the blocks outside
the gateways are ignored. These gateways
establish the communication between the

different hardware entities. In the case of
our GSM model, the frames travel from
DSP to FPGA and vice-versa through the
parallel 32-bit data bus.

The IF signal now travels through the

DAC and can either be in loopback mode,
if the output of the DAC is connected to
the input of the ADC, or fed to the front-
end to produce an RF signal.

Co-Simulation Benefits
We designed the first version using only
standard communication and DSP block-
sets from Simulink, running in double
precision from start to end. As a second
step, we gradually replaced Simulink
blocks with ones from Xilinx, and tested
the model in normal mode, which result-
ed in hybrid models and simulations that
were easier to debug.

After producing the Xilinx model, we
could test it in co-simulation to verify that
hardware computation was as expected. As
a final step, we targeted the whole process
to hardware.

Demodulator Subsystem Complexities
The subsystem presented in Figure 5 is the
IF-to-baseband demodulator, which is the
most complex part of the design. Before
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the GMSK demodulator receives the signal,
the receiver has more to do than just blind-
ly shift and down-sample the signal from IF
to baseband. It must compensate for the
effects of the channel on the signal, which
means it has to perform the following: 

• Carrier frequency recovery

• Carrier phase recovery

• Amplitude adjustment

• Timing recovery

We created low-pass filters using the
digital filter design block from the MAT-
LAB DSP blockset, which were later
replaced by the Xilinx FIR filters that use
the same taps generated by the Simulink
block. Once the demodulator was func-
tional for ideal signals, we added correc-
tion blocks to cope with non-ideal
signals.

You can see in Figure 5 that a
squaring loop deals with carrier recov-
ery, while the magnitude/phase cor-
rection block takes care of the
remaining amplitude and phase errors
with trigonometric properties of a
quadrature signal. We performed a
cross-correlation with the expected
training sequence to recover the tim-
ing and send a complete frame to the
GMSK demodulator.

Hybrid FPGA/Simulink model-
ing was very useful in the development of
this subsystem, because it was possible to
visualize the signals at every step of the
processing, both in time and frequency.
Figure 6 displays the spectra of the two
FDMA channels before demodulation and
channel selection, while Figure 7 shows
the waveform obtained before and after
the magnitude/phase correction block.

FPGA Resource Estimation
Table 1 shows the resources used in the
Virtex-II FPGA.

The IF-baseband demodulation is based
mainly on a three-stage decimation and fil-
tering applied to both I and Q signals, each
using three 10-tap FIR filters.

Basically, the implementation of the

GMSK demodulator brings together
three major components: the phase
recovery module, the timing recovery
module, and the MLSE (maximum
likelihood sequence estimation). The
phase recovery module uses some
dividing and square-root operators,
which are costly to implement. The
timing recovery is based mostly on
the correlation of large data
sequences that demand many embed-
ded multipliers, and also some large
data buffers made out of block RAM. 

The implementation of an MLSE
comprises a modified version of the Viterbi
algorithm and demands considerable
resources. This full-feature demodulator
can be optimized, simplified, or targeted at
an ASIC, but as a first-pass iteration, it pro-
vides a good estimation of the resources
needed for its implementation.

Conclusion
A Model-Based Design approach in the
development of a complex wireless applica-
tion for a DSP/FPGA architecture is very
effective for thoroughly testing a design
while implementing it for target hardware.
Nonetheless, the use of FPGA cores and
DSP libraries also allows the implementation
to be quite efficient, even with a high-level
design approach. Combined with flexible
platforms such as the SignalMaster, these
tools and approaches really help today’s
designers tackle the difficult challenges of
designing state-of-the art wireless systems.

For additional information on this proj-
ect and our SignalMaster line of
DSP/FPGA development platforms, visit
www.lyrtech.com. 
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Slices Total Slices (%) 
Virtex-II XC2V3000

GMSK modulator 190 1.33 %

IF-baseband 
modulation/demodulation 6,567 45.80 %

GMSK demodulator 4,775 33.30 %

BUS gateway and protocol 382 2.67 %

TOTAL : 11,914 83.10 %

Figure 5 – IF FPGA model/demodulator subsystem

Figure 6 – Spectrum scope displaying 
the two GSM FDMA channels

Figure 7 – Time scope displaying I/Q 
signals before and after the 

magnitude/phase correction operation

Table 1 – Resources used in the FPGA
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Traditionally, designs for a variety of appli-
cations used dedicated digital signal process-
ing (DSP) chips or application-specific
standard products (ASSPs) to process digital
information using signal processing algo-
rithms. Filtering, video processing, and
audio processing were just a few of the many
applications using digital signal processors.

Now, with performance and capacity
improvements to FPGAs, as well as the
improved efficiency of common arithmetic
operations usually found in most DSP

applications, FPGAs doing DSP functions
are becoming more common. In many cases
both processors and FPGAs are used in the
same application, in a co-processing archi-
tecture where the FPGA does pre- or post-
processing to accelerate processing speed.

DSP applications are usually difficult to
verify via software simulation because of
the enormous number of cycles required to
process a meaningful data stream; thus, it
is usually better to use a hardware develop-
ment platform to prove out the key parts
of a new design. The new DSP design kits
from Avnet provide a powerful, flexible,
and expandable platform to validate even
the most complex signal processing designs
that use both FPGAs and DSPs.  

Avnet DSP Design Kits
Avnet Design Services has created a variety
of DSP-oriented design kits for use with
Xilinx® FPGAs and Texas Instruments™
(TI) DSPs. The Spartan-3™-based design
kit is optimized for simple video applica-
tions, while the Spartan-IIE™-based kit is
targeted at audio applications.

The Virtex-II Pro™ kit features an adap-
tor card that interfaces to TI DSPs and is
meant for co-processing applications where
the FPGA is offloading significant processing
and control functions from the digital signal
processor. Each of these design kits also
includes a variety of software tools from
Xilinx, The MathWorks, and TI. Let’s
describe these kit components in more detail.

Hardware Design Kits Turbo-Charge 
DSP Co-Processing Applications
Hardware Design Kits Turbo-Charge 
DSP Co-Processing Applications
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DSP Co-Processing Design Kit
The DSP Co-Processing Design Kit fea-
tures a Virtex-II Pro evaluation board,
shown in Figure 1. This board contains a
Xilinx XC2VP7-FF896 FPGA, eight SMA
connectors for high-speed I/O, on-board
DDR SDRAM (64 MB), up to 30 LVDS
pairs, user I/O switches/LEDs, and several
expansion connectors.

Two of the expansion connectors are
compatible with the TI adaptor daughter-
card (shown in Figure 2) and can connect
to TI DSPs. Example designs show how to
interface directly with the TI processor
using the Xilinx EDK toolset and a direct
memory interface approach. 

A co-processing-oriented application
can use the hardware platform, demonstra-
tion designs, and included tools as a great
starting point for prototype design and
algorithm development. DSP applications
are often very difficult to simulate in soft-
ware, so the ability to quickly create a hard-
ware/firmware/software platform can cut
development time significantly. Using the
co-simulation tools available in the Xilinx
tool suite through The MathWorks
Simulink™ and the target hardware is one
technique that can dramatically reduce
design time.

Additionally, deciding what portions of
the algorithm to process in the DSP and
which portion to process in the FPGA can
often best be done with a trial-and-error

The DSP Co-Processing Design Kit also
includes the following software tools, as
evaluation versions, from the Xilinx
XtremeDSP™ Software Evaluation CD
Kit: Xilinx ISE 6.2 Foundation™,
ChipScope™ Pro, Xilinx System Generator
for ISE 6.2, The MathWorks MATLAB™,
and Simulink. 

Video DSP Design Kit
The Video DSP Design Kit targets simple
DSP-oriented video applications in the
industrial security, consumer, and automo-
tive markets. Algorithms for video process-
ing like image recognition, video encode,
video decode, and video image enhance-
ment are all very difficult to prototype and
evaluate without actual hardware on which
to run the software or firmware. Using a
DSP Design Kit, with some simple video
capabilities, can make it much easier and
quicker to prototype and evaluate various
algorithms and architecture alternatives. 

The Video DSP Design Kit features a
Xilinx Spartan-3 XC3S400-FG456 or
XC3S1500-FG456 FPGA, Platform Flash
configuration PROM, expansion connec-
tors, 32-bit PCI edge connector, 10/100
Ethernet port, video DAC, RS-232 con-
sole, PS2 keyboard and mouse ports, sim-
ple analog I/O, 1 MB SRAM, 256 Kb
serial EEPROM, and a variety of user
switches and LEDs.

approach, using real hardware to quickly
evaluate the performance of various
options. For example, the number of data
streams that can be pre-processed by an
FPGA before post-processing by a DSP will
depend on many factors – the “burstiness”
of the incoming data, the “accept”
response rate of the DSP, the size of the
buffer memories, the bandwidth of the sys-
tem bus, and the amount of pre-processing
allocated to the FPGA. These are all diffi-
cult decisions to make without doing
some detailed hardware prototype-based
analysis.
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Figure 1 – DSP Co-Processing Design Kit hardware platform

Figure 2 –  DSP processor adaptor module



The kit also includes example designs
and user documentation to make it easy to
get started on a new video DSP design.
Several Xilinx application notes and refer-
ence designs (some using Xilinx IP cores
available from the DSP System Generator
tool) are available online to provide even
more of a head start (see Table 1). The Xilinx
DSP Central website (www.xilinx.com/
products/design_resources/dsp_central/
grouping/index.htm) has a complete list.

Audio DSP Design Kit
The Audio DSP Design Kit is similar to
the Video DSP Kit, but is optimized for
audio processing applications. The kit fea-
tures a Spartan-IIE hardware board with
an XC2S200E-6FT256 FPGA, a TI
TLV320AIC23 16-bit audio CODEC,
RS-232 port, LEDs and switches, and sev-
eral expansion connectors.

Customize Your Platform 
If the Audio and Video DSP Design Kits
are not quite what you need for your
design, you can add more hardware,
firmware, or software to create a custom
platform. Avnet has a variety of hardware
add-in modules that can serve as extensions
to the basic platform.

Audio/Video Add-in Module
The Audio/Video Module provides addi-
tional functionality for DSP applications
targeting audio and video processing appli-
cations. It interfaces to a host through a
standard AvBus connector and provides
multiple video interfaces to accommodate
RGB monitors, LCD panels, and standard
definition television monitors. The module
also captures composite video and includes
a CODEC to facilitate audio processing. A
PS2 keyboard/mouse interface is included
as well as a touchscreen controller.

Key elements of the module are:

• Philips™ SAA7113H video input
processor 

• Philips UCB1400 stereo 20-bit audio
CODEC 

• Philips SAA7121H digital video
encoder 

• Analog Devices ADV7123 140 MHz
triple video DAC 

• Interface for OmniVision™
OV6630AA CMOS color digital camera 

• Interface for Fujitsu™ MB86S02A
CMOS color digital camera 

• AvBus expansion connector interface
for Sharp™ LQ057Q3DC02 color
TFT LCD module 

• X/Y touchscreen controller 

• PS2 keyboard and mouse interfaces 

Communications/Memory Add-in Module
The Communications/Memory Module
is an expansion daughtercard for use with
Avnet Avenue Solutions offerings. The
daughtercard interfaces through AvBus
connectors and provides general-purpose
resources to complement Avnet Avenue
Solutions-based modules. The daughter-
card provides all necessary resources for
implementation of Xilinx MicroBlaze™
processor core designs.

Key elements of the module include:

• 64 MB SDRAM 

• 16 MB Flash 

• 1 MB SRAM 

• IrDA 

• 10/100/1,000 Ethernet PHY 

• USB 2.0 

• PC card interface  

Conclusion
For a wide variety of DSP applications, it
makes sense to start your design with a hard-
ware-based development platform. You can
pick and chose from three main platforms
and customize by mixing and matching a
variety of IP cores, daughtercards, firmware,
and software. Visit www.em.avnet.com/
dspstartingline/ for current information on all
Xilinx DSP-related tools from Avnet.

You can order any of the kits described
in this article from your local Avnet sales
office, or obtain additional information
from the Avnet DSP Startingline website at
www.em.avnet.com/dspstartingline/. 
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Digital Communications • 16.QAM demodulator for software-defined radio 
• A QAM system with packet framing and FEC for telemetry channels 
• Concatenated FEC codec for DVB standard 
• Costas loop carrier recovery 
• Digital down converter for GSM applications 

Signal Processing • A/D and delta-sigma D/A conversion 
• FFT/IFFT in streaming mode 
• LMS-based adaptive equalization 
• Custom FIR filter reference library 
• Polyphase 1:8 MAC-based FIR using SRL16ES 
• IIR filtering: multi-channel, folded implementation 
• IIR filtering: 2nd-order Direct Form I implementation 

Image Processing • 2D DWT filter 
• 2D filtering using a 5 x 5 operator 
• Color space converter 

Mathematical Operators • CORDIC-based rectangular-to-polar coordinate converter 
• CORDIC-based divider circuit 
• CORDIC-based sine and cosine function 

Control Logic • Debugging a PicoBlaze™ microcontroller design 

Table 1 – DSP demos in Xilinx System Generator
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The increased capability and capacity of
video, audio, data, and interactive services
through cable distribution has spurred
much interest. Applications such as video-
on-demand and cable telephony are natural
extensions of these services.

The ITU-T (International Telecommun-
ications Union – Telecommunication
Standardization Sector) has established the
J.83 specification to standardize the physical
layer transmission of audio, video, and data
services over cable networks. These cable
transmission networks as they apply to
Europe, North America, and Japan are
detailed in Annex A, B,  and C of this stan-
dard, respectively.

Xilinx addresses this interest with the
J.83 Cable Modulator IP, a flexible, scala-
ble, and cost-effective solution. In this
article, we’ll discuss the use of Xilinx J.83
cores in the downstream modulator at the
head-end (Figure 1), while focusing on
the physical layer implementation.

The Xilinx J.83 IP solution provides
flexibility to parameterize the modulator;
scalability to allow you to select any num-
ber of channels on a single FPGA; and ease
of use in the System Generator for DSP
visual programming environment as the
design and delivery mechanism. 

Using System Generator for DSP 
to Create the J.83 Cable Modulator
Using System Generator for DSP 
to Create the J.83 Cable Modulator
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System Generator enables the rapid development of multi-channel cable head-end 
modulators to provide a true low-cost solution.
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modulators to provide a true low-cost solution.
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System Generator for DSP 
The Xilinx System Generator tool suite
was employed to implement a majority of
the J.83 modulator design. System
Generator is a visual dataflow design
environment based on The MathWorks
Simulink® visual modeling tool set. This
programming interface allows you to
work at a suitable level of abstraction
from the target hardware platform and
use the same model – not only for simu-
lation and verification but also for FPGA
implementation.

System Generator blocks are bit- and
cycle-true behavioral models of FPGA

J.83 in System Generator for DSP 
The J.83 specification defines the forward
error correction (FEC) and baseband modu-
lation with pulse-shaping characteristics. The
J.83 Annex B FEC section (Figure 2) uses a
concatenated coding technique with four
processing layers, comprising an RS encoder,
convolutional interleaver, randomizer fol-
lowed by a frame sync insertion block, and
trellis-coded modulation (TCM). The J.83
Annex A and Annex C (Figure 3) have iden-
tical FEC processing stages, comprising an
RS encoder, convolutional interleaver, and a
byte-to-symbol differential encoder, followed
by a symbol mapper.  

The System Generator Xilinx library, or
block set, is abundantly populated with IP
that enables rapid design and simulation of
such a system. The tokens required to con-
struct the J.83 FEC section – as well as the
filter blocks required to construct pulse-
shaping filters – are available within the
library browser. The underlying circuit of
each of these tokens is optimized in area and
speed to suit the Xilinx family of devices.

Each of these elements is conveniently
customizable to be compatible with the
precise specification of the J.83 standard. It
is then a simple matter of using these cus-
tomized library elements to build out the
circuit required.

For example, you can obtain the
(204,188) RS encoder required for J.83
Annex A/C by using the Xilinx Reed
Solomon encoder block, with the Code
Specification parameter set to DVB.
Similarly, the Xilinx interleaver deinter-
leaver block is directly used in the design,
with the mode set to Interleaver and the
Number of Branches and Length of
Branches set to 12 and 17, respectively.
This results in an exact match to the
requirements of the interleaver in the J.83
A/C specification. Using the visual graphic
means of design entry in System Generator,
these blocks are easily connected to each
other and to the control circuitry that is
part of the design. 

intellectual property components, or
library elements. A library-based approach
results in design cycle compression in
addition to generating area-efficient high-
performance circuits. Together with
model features such as data-type propaga-
tion and the extensive virtual instruments
that are part of the Simulink libraries, the
environment facilitates rapid design space
exploration, together with powerful
mechanisms for model debugging.

MATLAB® scripts from The
MathWorks programmatically generate
custom VHDL and project files based on
user-defined parameters.
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This programming interface allows you to work at a suitable level of
abstraction from the target hardware platform and use the same model. 

Figure 1 – Cable network (J.83 modulator fits in the cable head-end modulator/transmitter block)

Figure 2 – J.83 Annex B functional block diagram

Figure 3 – J.83 Annex A/C functional block diagram
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IP Simulation in Simulink
It takes a lot of time to simulate and test
the functionality of a complex system. You
can use the same J.83 circuit built in
System Generator for simulation and veri-
fication, as well as the FPGA implementa-
tion. Within the same environment, using
Simulink for simulation, the design is stim-
ulated with MPEG transport packets and
the appropriate QAM, reset, synchroniza-
tion, and other control inputs.

As shown in Figure 4, this stimulus is
shown in the block labeled “Stimuli.” The
source, inter-packet gap, and burst nature
of the MPEG transport packet may be
chosen at random at the top level, allow-
ing a test of the full suite of possibilities.
Figure 4 also shows a discrete time scatter
plot of the output of the baseband section
of the modulator.

Simulation of this complex system in an
HDL simulator for a meaningful number of
clock cycles (such that several frames of data
may be processed) imposes a huge penalty in
the time taken to complete a simulation.
This makes it an impractical choice, but
sometimes it is the only option when the
design source is in an HDL format.

This simulation time is drastically
reduced when simulating the model in
Simulink. What might take days to simu-
late in a gate-level simulator could be
accomplished in a matter of hours. This
savings in time is highly valuable – not only

do you benefit from superior sim-
ulation speed in Simulink but you
also reap the benefits of a short-
ened design cycle, allowing for
overall rapid IP delivery. 

Single and Multi-Channel Designs
The modulator is constructed out
of two primary footprints or gran-
ularity: a single-channel imple-
mentation and a four-channel
implementation. A block diagram
of the four-channel granularity
Annex B and A/C are shown in
Figure 5 and Figure 6, respectively. 

Each instance of the single-
channel footprint provides for
exactly one independent channel;
the four-channel footprint, how-

ever, is optimized to efficiently support
four channels at a time, using resource-
sharing techniques. You select the granular-
ity, and with that selection, make a
trade-off between resource utilization and
individual channel control.

The trade-off is essentially in the area
(resource) utilization; the optimized four-
channel group solution results in a very
efficient and compact design requiring
fewer FPGA resources. However, it impos-
es the restriction that the four channels
must share the same controls. The single-
channel solution imposes no such restric-
tion; the trade-off here is the linearly
increasing FPGA resources used, which is
directly proportional to the number of
channels required.  

Multi-channel modulators are automat-
ically constructed through the use of mul-
tiple copies (also referred to as groups) of
the single- or four-channel implementa-
tion. For example, a four-channel modula-
tor may be constructed with four copies of
single-channel granularity or a single copy
of the optimized 4-channel granularity
design. Similarly, a 12-channel modulator
may comprise 12 copies of the single-chan-
nel granularity design or 3 copies of the
optimized 4-channel design.

The ease of use is evident in that the
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Figure 4 – J.83 Annex A/C modulator with scatter plot

Figure 5 – J.83 Annex B four-channel granularity design

Figure 6 – J.83 Annex A/C four-channel granularity design



only requirement is for you to specify the
parameters; the multiple instantiations of
the basic footprints and the required con-
nections between them are automatically
generated, leaving you with a core design
tailored to those exact specifications.

Usage 
The Xilinx J.83 modulator implementa-
tion is available as a module that plugs into
Xilinx System Generator for DSP, or as a
netlist that may be directly referenced by
another design. The design of the J.83 core
in System Generator allows for generation
with a simple push button solution.

Through a GUI constructed in the famil-
iar Simulink environment, the core provides
you with a convenient means of supplying
design specifics such as the granularity
desired, the number of channels required,
and clock rates, as shown in Figure 7.

During parameterization and generation,
the core is automatically configured to the
specifications and deposited into the target
directory. Along with the netlist, the core
also includes behavioral and timing simula-
tion script files (.do) for Mentor Graphics®

ModelSim™ and an ISE Project Navigator
project file (.npl). From this point on, you
can bring the core into the ISE Project
Navigator environment for synthesis, place
and route, and bitstream generation.

Resource Sharing
The Xilinx FPGA implementation of the
J.83 modulator specification capitalizes
on a particular architectural feature to

construct efficient multi-channel imple-
mentations: the shift register logic 16
(SRL16) primitive, found in Virtex-II™,
Virtex-II Pro™, and Spartan-3™ devices.
You can think of SRL16 as a series con-
catenation of 16 flip-flops with a pro-
grammable tap point. This unique aspect
of Xilinx FPGAs is extremely powerful for
building very efficient time-division mul-
tiplexed (TDM) hardware that you can
use, for example, to process multiple
channels of data.

Because they run the design at a faster
rate, TDM processing structures save
resources. This has been notably exploited
during the design of an optimized multi-
channel group of modulators. For exam-
ple, in the design of the optimized
four-channel granularity of a group, all
channels share a common control struc-
ture in the MPEG framer, RS encoder,
interleaver, randomizer, and TCM. As the
interleaver controls are shared, the data
path into and out of the interleaver effec-
tively becomes wider.

Resource Utilization
Using the resource sharing techniques
we’ve described thus far, you can realize sig-
nificant savings in the implementation of
modulators constructed out of optimized
four-channel granularity designs compared
to the equivalent constructed out of single-
channel granularity designs.

Table 1 and Table 2 show a comparison
of the resources used in the design of various
sizes of J.83 modulators using single- and
four-channel granularity footprints. They
also show the resources used to implement 4,
8, and 12 channels of J.83 Annex B and J.83
Annex A/C solutions on a Spartan-3 device.

Although Table 1 details the resources
on an implementation that does not con-
tain the optional root-raised cosine filter,
the details in Table 2 are specific to an
implementation that contains the option.
Using the 12-channel case as an example,
the scales are favorably tipped towards a
four-channel granularity implementation
of the J.83 Annex B and J.83 Annex A/C,
as the savings achieved are significant.

Number 

J.83 Annex B J.83 Annex A/C

of Channels  
Slices/BRAM/External Memory Slices/BRAM

One Channel Four Channel One Channel Four Channel
Granularity Granularity Granularity Granularity

4 3372/8/1 1866/2/1 1574/4 1049/3

8 6764/16/2 3644/4/1 3130/8 2088/6

12 10049/24/2 5405/6/1 4683/12 3304/9

Number 

J.83 Annex B J.83 Annex A/C

of Channels  
Slices/BRAM/External Memory Slices/BRAM

One Channel Four Channel One Channel Four Channel
Granularity Granularity Granularity Granularity

4 8014/20/1 3748/7/1 4829/8 2444/4

8 16024/40/2 7402/14/1 9661/16 4877/8

12 23924/60/2 11057/21/1 14449/24 7483/12

Figure 7 – J.83 Annex B 
generator GUI screenshot

Table 1 – Resource utilization comparison between one- and four-channel granularity 
J.83 Annex A/B/C designs without RRC (Spartan-3 FPGAs)

Table 2 – Resource utilization comparison between one- and four-channel granularity 
J.83 annex A/B/C designs with RRC (Spartan-3 FPGAs)

DIGITAL SIGNAL PROCESSING

54 Xcell Journal      Winter 2004



Winter 2004 Xcell Journal 55

DIGITAL SIGNAL PROCESSING

Design Example Usage
The J.83 modulator design provides control
configuration that you can control using a
PowerPC™ or the MicroBlaze™ processor
in Virtex-II Pro FPGAs. The processor can
not only control the (J.83 Annex B) config-
urations such as QAM, interleaver control
word, and interleaver level, but also the reset
sequence of the design. It may be shared to
control other user logic such as the MAC
layer implementation for cable communica-
tion at the head end and baseband-to-IF dig-
ital upconversion. The functional block
diagram in Figure 8 depicts how you can
leverage the capabilities of the Virtex-II Pro
architecture for the J.83 design.

Conclusion
Xilinx System Generator enables the rapid
development and simulation of high-per-
formance systems on Xilinx FPGAs.
SRL16s allow you to design a 16-channel
granularity modulator without using 16
times the resources of a 1-channel granu-
larity modulator or 4 times the resources of
a 4-channel granularity modulator.

You can build various standard-compli-
ant modulators for video broadcast for
transmission over terrestrial links (DVB-T)
via satellite (DVB-S2) or to handheld
devices (DVB-H) quickly and efficiently
using System Generator for DSP and vari-
ous library blocks available from Xilinx.
SRL16s in Xilinx FPGAs allow efficient
time-multiplexed dataflow structures,
offering significant resource savings.

For more information about the Xilinx
J.83 Modulator IP, visit www.xilinx.com/
ipcenter/j83_mod/. 
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Figure 8 – J.83 single chip system design
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by Sabine Lam
DSP Technical Marketing Engineer
Xilinx, Inc.
sabine.lam@xilinx.com

Today, the role of FPGAs in the DSP mar-
ket is well understood – there simply is no
better way to create ultra-fast DSP applica-
tions. Yet combining these two technolo-
gies can be a challenge – DSP designers
primarily use The MathWorks MAT-
LAB™ or C/C++ to specify systems,
whereas FPGA designers use VHDL or
Verilog™. The only common approach
between these two is that they often start
with a block diagram.

DSP architects and FPGA designers
have two completely different back-
grounds, yet they must work together to
create an optimum product. Their focus
and expertise do not overlap, and as a
result, they often have difficulty communi-
cating. The team must verify that the
FPGA implementation does indeed match
the original specification given by the DSP
architect, and usually they must modify the
DSP algorithm to obtain the best possible
implementation in the FPGA. This
requires a constant exchange of informa-
tion about simulation results, design size,
design performance, DSP algorithm
changes, and implementation results
throughout the design process.

Implementing DSP 
Algorithms in FPGAs 
Implementing DSP 
Algorithms in FPGAs 
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Deciding on a single tool and a lan-
guage that meets the requirements of the
whole design team can be difficult, espe-
cially when budgets are low and turn-
around times are short. What could be
better than an environment understood by
the entire team, using a single source code? 

System Generator
Xilinx® System Generator is a system-level
modeling tool that facilitates FPGA hard-
ware design. It extends The MathWorks
Simulink™ in many ways to provide a
modeling environment well suited to hard-
ware design.

The tool provides high-level abstrac-
tions that are automatically compiled into
an FPGA at the push of a button. The tool
also provides access to underlying FPGA
resources through lower-level abstractions,
allowing the construction of highly effi-
cient FPGA designs. It is delivered along
with a predefined Xilinx blockset library,
but also allows access to other languages
with which most FPGA designers are
familiar. Finally, it offers the ability to
design at a system level, and allows simula-
tion, implementation, and verification
within the same environment, usually

A PicoBlaze™ microcontroller controls
the Reed-Solomon decoder, maintains frame
alignment of the received packets, and 
performs periodic adjustments of the de-
mapping QAM-16 quadrant reference. Both
the transmitter and the receiver are targeted to
the FPGA, whereas the channel is a Simulink
model used for simulation and verification.

Although not all System Generator fea-
tures are used in this design, it is a good
example showing a combination of power-
ful features, using Xilinx blockset elements,
legacy HDL code, a PicoBlaze processor,
and hardware verification, resulting in a
very elegant, efficient, and quick way to
implement a complex design and qualify it
in a single environment.

Design Implementation 
with System Generator
A System Generator design always starts

and finishes with gateways to convert the
Simulink double-precision data into a
Xilinx fixed-point format. These gateways
define the boundaries of your design; you
can convert them into I/O ports for top-
level designs or an I/O interface to import
into a higher-level system. Between these
gateways, you must use blocks from the
Xilinx library blockset or import your own
code through the black box interface.

The Xilinx blockset library comprises
basic elements, math functions, DSP func-
tions, communications blocks, control logic,
and other useful elements. Each block is fully
parameterizable, and a tight integration with
the MATLAB workspace allows you to enter
parameters based on complex equations or
variables defined in the workspace.

Equations such as this one: 

acc_nbits = ceil(log2(sum(abs(coef*2^coef_
width_bp)))) + data_width + 1 

define the precision required for a filter as a
function of the filter taps (coefficients), the
number of taps, and the coefficient width.
Because these are fixed at design time, it’s
possible to tailor the hardware resources to

without writing a single line of HDL code
or even looking at the Xilinx ISE tools.

To highlight the System Generator
design flow, we will use a Quadrature
Amplitude Modulator (QAM) system
design example (Figure 1), implemented
according to the specifications provided by

the Consultative Committee for Space
Data Systems for telemetry channel coding
specification (CCSDS 101.0 B-5).

Introduction to the QAM 
System Design Example
In our example, the overall QAM system
starts with the transmitter. This subsystem
accepts data from an input source, where
forward error correction (FEC) is applied
and an attached synchronization marker
(ASM) is inserted into the data before mod-
ulation. The modulated data is then driven
to the channel model, where inter-symbol
interference, Doppler content, and additive
white Gaussian noise are introduced into the
signal.  Finally, the receiver employs a 16-
QAM demodulator that performs adaptive
channel equalization and carrier recovery.
The ASM is stripped from the demodulated
data before applying error correction.
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The tool provides high-level abstractions that are automatically 
compiled into an FPGA at the push of a button. 

Figure 1 – QAM system (System Generator model)
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the filter specification. As you change coef-
ficients, no modification will be required to
the design, because the output precision
will automatically be recalculated. 

This capability is only available with
tools tightly integrated with MATLAB. 

The Xilinx blockset library will not
always meet your needs, and some functions
are better suited for HDL implementation,
such as complex state machines or complex
legacy code. The System Generator black
box allows you to bring VHDL, Verilog, and
EDIF netlists into a design. 

In the QAM design example, you can
imagine replacing one of the FEC blocks
(Reed-Solomon or Viterbi decoder) readily
available from the Xilinx blockset library
with your own HDL implementation
through a black box. The black box behaves
like other System Generator blocks – it is
wired into designs, participates in simula-
tions, and is compiled into hardware. 

When System Generator compiles a
black box, it automatically wires the
imported module and associated files into
the surrounding netlist. System Generator
simulates black boxes by automatically
launching an HDL simulator, generating
additional HDL as needed (analogous to
an HDL test bench), compiling HDL,
scheduling simulation events, and handling
the exchange of data between the Simulink
and the HDL simulator. This is called
“HDL co-simulation.”

At this point, you can also envision
bringing MATLAB or C-code previously
compiled with the appropriate MATLAB-
to-gate and C-to-gate tools into the Xilinx
black box.

Simulation and Verification
You can couple Simulink blocks with
System Generator models to produce
robust, flexible test bench environments.
The convenience of this capability is that
implementation and verification design
phases can take place in the same environ-
ment. Such is the case with the QAM sys-
tem design, where a mixture of Simulink
and System Generator blocks were used to
implement the design test bench.

This allows you to verify the functional-
ity of your design at any critical probing

points in a format well understood by the
DSP architect (such as sinewave or constel-
lation). You can also automatically generate
this exact same test bench and export it to
an HDL simulation tool, in this case in a
format well understood by the FPGA
designer (binary waveform). Also automat-
ically generated is “golden data” confirming
similar functionality in the Simulink and
HDL environments.

In the QAM example, we chose to dis-
play the distorted channel on the output of
the channel model (Figure 2) and the 16-
point constellation on the output of the
QAM demodulator (Figure 3).

Note that the automatic generation of
the test bench and golden data saves an
enormous amount of time over other
design flows. 

Proceeding with the design implemen-
tation, you can now generate the netlist
through the System Generator token
(Figure 4).

At the push of a button, you can decide
to generate a VHDL netlist, which will
then have to be synthesized and place and
routed, or you can decide to go straight to
a bitstream or even target a hardware
demonstration board. 

Selecting hardware co-simulation makes
it possible to incorporate a design running
in an FPGA directly into a Simulink simu-
lation. Hardware co-simulation compila-
tion targets automatically create bitstreams
and associate them with blocks. When the
design is simulated in Simulink, results for
the compiled portion are calculated in
hardware. This allows the compiled por-
tion to be tested in actual hardware, and
can speed up simulation dramatically. 

In addition to supporting specialized
interfaces such as the XtremeDSP™ kit,
System Generator provides a generic inter-
face that uses JTAG and the Parallel Cable
IV to communicate with FPGA hardware.
This takes advantage of the ubiquity of
JTAG to extend System Generator’s hard-
ware-in-the-simulation-loop capability to
numerous other FPGA platforms. 

System Generator also allows you to run
hardware co-simulation on your own
development board. You can make design
decisions and changes earlier in the design
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Figure 2 – Input (distorted channel) 
of the QAM demodulator 

Figure 3 – Output (constellation) of 
the QAM demodulator

Figure 4 – System Generator GUI interface

Figure 5 – Phase offset slider bar
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process and accelerate the design cycle
directly from the Simulink environment.  

Hardware Acceleration
The complexity and size of the QAM sys-
tem resulted in lengthy simulation times.
To accelerate the simulation and confirm
the functionality of this system, the trans-
mitter and the receiver were downloaded to
two separate FPGA boards and brought
back into Simulink using System
Generator’s hardware co-simulation fea-
ture. You are now simulating an entire sys-
tem from Simulink, with 10 to 100 times
faster simulation time, instantaneously val-
idating the functionality in the FPGA. 

Interactively Control Hardware 
You can also go one step further by access-
ing the FPGA while running the simula-
tion. In this QAM example, the amount of
Doppler content introduced by the chan-
nel can be controlled interactively during
simulation; a slider bar shifts the carrier
phase of the modulated signal (Figure 5). A
significant adjustment to the slider invari-
ably causes the receiver to lose lock.
Interactive control over Doppler provides a
simple yet powerful way to test the func-
tionality of the receiver’s control systems.

Designers now have a simple way to sim-
ulate complex designs that require millions
of samples that without hardware in the
loop would take months to simulate. This,
among other features, is something that only
System Generator can offer. With other
DSP design methodologies, you are required
to verify designs in multiple design environ-
ments – a complicated process resulting in
significantly slower simulation times.

Conclusion
System Generator is a mature tool that
allows algorithm development, imple-
mentation, simulation, and verification
in an environment understood by most
designers. Although there are other
design flows, no other tool offers features
such as HDL co-simulation, hardware co-
simulation, and integration with the
ChipScope™ Pro tool and EDK, which
are invaluable and only available in Xilinx
System Generator for DSP. 
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by Narinder Lall
Senior Manager – DSP Product and Solutions Marketing
Xilinx, Inc.
narinder.lall@xilinx.com

Xilinx® Virtex™ Series FPGAs have been
the preferred choice for high-performance
signal processing and DSP co-processing
in many digital communications and
video/imaging applications. With algorith-
mic complexity on the rise, the pervasive
need for flexibility, and increasing down-
ward pressures on price/power per chan-
nel, designers often face tough tradeoffs
and difficult choices to employ either
FPGA- or ASIC-centric systems for chal-
lenging signal processing applications.

New XtremeDSP™ slices on the
Virtex-4™ device family extend FPGA
signal processing capability beyond 256
GMACs, which represents DSP perform-
ance two times greater than previous 
generation Virtex-II Pro™ FPGAs.

New XtremeDSP Slices 
Deliver As Much As 10X 
More GMACs Per Dollar

New XtremeDSP Slices 
Deliver As Much As 10X 
More GMACs Per Dollar
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Even more revolutionary, Virtex-4 sys-
tem designers need not employ the largest
family member to achieve this perform-
ance, as has previously been the case.
Virtex-4 FPGAs now deliver this signal
processing capability in a medium-density

device, providing you with as much as a
staggering 10X increase in the available
GMACs per dollar (see Figure 1). This dra-
matically extends production volumes
where it makes economic sense to use an
FPGA for performance-centric signal pro-
cessing applications. The new DSP slices
also dramatically reduce power consump-
tion, allowing you to drive down both cost
and power per channel.

DSP to Logic Resources
At the heart of the Virtex-4 FPGA’s signal
processing resources are new highly inte-
grated XtremeDSP slices, sometimes
referred to as DSP48s (Figure 2).
Depending on the family member, you
can utilize as many as 512 XtremeDSP
slices, each capable of providing 500 MHz
throughput.

Each slice contains a dedicated 2’s com-
plement signed, 18 x 18 bit multiplier, and

for external logic slices, which can thus be
allocated to other tasks. XtremeDSP slices
can also be cascaded directly without
accessing logic fabric or any loss in speed.

Xilinx’s new ASMBL architecture
enables us to alter the mix of XtremeDSP
slices and logic slices. The SX platform
with in the Virtex-4 family offers the
highest ratio of XtremeDSP slices to logic
slices at one XtremeDSP slice for every
108 logic slices. The SX platform is ideal-
ly suited for multiplier or MAC-intensive
tasks such as software radios. The LX plat-
form offers the highest ratio of logic to
other features, and is suited for many tra-
ditional FPFA applications that may also
require some DSP capability.

Reduced Power Consumption
In today’s infrastructure applications, driv-
ing down cost per channel is not the only
goal diligently pursued. Wireless infra-
structure manufacturers are under increas-
ing pressure to stay within power limits
imposed by governing telecom standards

bodies. Power consumption is also becom-
ing a key concern for some military appli-
cations, such as Joint Tactical Radio
Systems radios.

The integrated XtremeDSP slices on
Virtex-4 FPGAs eliminate the need to use
logic slices for many signal processing and
arithmetic tasks, reducing the need for
power-consuming routing resources. Initial

a three-input adder/subtracter with feed-
back for accumulation modes. The addi-
tion of a seven-bit op mode multiplexer
allows you to dynamically configure the
XtremeDSP slice for one of more than 40
operating modes, such as addition, multi-

plication, accumulation, MACC func-
tions, MACC cascading, wide (48-bit)
addition, and wide multiplexing.
Configuration wizards in Xilinx ISE or
System Generator for DSP allow you to
simply apply the desired function.

The addition of new XtremeDSP slices
allows you to implement many such func-
tions within the slice and without the need
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• High Performance
   – 500 MHz, fully pipelined
• High Integration
   – 40+ DSP/arithmetic operation modes
   – Directly cascadeable
• Easy to implement
   – Software configuration wizards

The integrated XtremeDSP slices on Virtex-4 FPGAs minimize the need 
to use logic slices for many signal processing and arithmetic tasks ...

Figure 1 – The Virtex-4 FPGA offers breakthrough DSP performance at new low-cost points.

Figure 2 – New XtremeDSP slices feature 18 x 18 bit multiply, 48-bit accumulator
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power estimates show that XtremeDSP
slices consume only 57 µW/MMAC, repre-
senting one-seventh the power for an
equivalent function implemented using
Virtex-II Pro FPGAs. Although not the
ultimate goal, this reduction in power goes
some way in addressing the power concerns
of infrastructure equipment providers.

Another way to reduce system power
consumption in such applications is to use
the embedded processor capabilities avail-
able on the FX platform. You have the
option to trade gates for processor cycles for
sequential control tasks using FX platform
devices. Examples of such implementations
include software communication architec-
tures or real-time operating systems.

High Compute Density Using SRL16s
Shift Register Logic (SRL16) is a unique
feature in Xilinx FPGAs. A popular feature
for increasing compute density in multi-
channel implementations, SRL16s are
included in all Virtex-4 platforms. 

To demonstrate SRL16 usage, let’s take
a look at a simple Reed-Solomon encoder
example. Implementing a single-channel
Reed-Solomon encoder in a Virtex-4
device consumes 56 logic slices. For a 16-

channel implementation, one approach
would be to replicate this 16 times, result-
ing in a consumption of 16 x 56 slices.

Figure 3 shows another implementation
of the 16-channel solution using SRL16s.
This consumes only 86 logic slices, repre-
senting only 10% of the 16X replicated
version. SRL16s can substantially pack
more signal processing into a smaller area,
allowing you to potentially target a much
smaller device than is possible with other
FPGA architectures.

Serial/Parallel Connectivity
In addition to embedded processors, the
FX platform also includes 3.125 Gbps
multi-gigabit transceivers that are particu-
larly suited for interfacing to other DSP
processors. One such example is high-
speed serial connectivity using the serial
RapidIO™ interface, which is gaining
momentum with DSP vendors. With 1
Mbps LVDS interfaces for interfacing to
high-speed A/D converters and a host of
DRAM and SRAM memory interfaces for
hooking up to frame buffers, the Virtex-4
family is an ideal platform for interfacing
to other DSP devices that will form part of
the system data flow. 

Virtex-4 DSP Design Solutions
The Virtex-4 family includes a beefed-up
set of DSP design resources.

• System Generator for DSP allows
you to model your design in The
MathWorks Simulink® and, through
powerful capabilities like hardware-
in-the-loop, verify and debug that
design from the same environment.
System Generator also includes a
new block that allows you to instan-
tiate an XtremeDSP slice and config-
ure it for one of its many operating
modes. 

• Hardware-in-the-loop is supported for
any Virtex-4 development environ-
ment with a JTAG header. Other new
capabilities introduced in System
Generator 6.3 include the ability to
generate VHDL or Verilog™ netlists. 

• The Xilinx DSP library now supports
Virtex-4 FPGAs, allowing you to
develop designs faster. 

• A range of services are now available
as you implement your DSP design
onto Virtex-4 FPGAs. These include
DSP design services, education classes,
and platinum/technical support. 

Conclusion
FPGA-based DSP has always been associ-
ated with high performance when hun-
dreds of GMACs/s rates are needed.
Virtex-4 FPGAs bring a new revolutionary
era in the XtremeDSP initiative that pro-
vides you with economic incentives to use
FPGAs and get your design to market
faster than ever before. 

To understand how to use the new
XtremeDSP slices in your next design,
attend the Virtex-4 session in the DSP
track at Programmable World 2004, or
watch the demo-on-demand that will fol-
low the event at www.xilinx.com/dsp/. 
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Virtex-4 FPGAs bring a new revolutionary era in the XtremeDSP 
initiative that provides you with economic incentives to use FPGAs 

and get your design to market faster than ever before. 

Figure 3 – Efficient 16-channel Reed-Solomon encoder using SRL 16
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by Daniel E. Michek
Staff Field Applications Engineer
Xilinx, Inc.
daniel.michek@xilinx.com 

Converting image processing algorithms to
FPGA implementations can be tedious. The
algorithm may be proven in software but
with no direct link to actual implementa-
tion. Additionally, it can be difficult to sub-
jectively verify the implementation. 

Using a mathematical simulator to verify
and create HDL implementation files bridges
the gap from the algorithm architect to the
FPGA engineer. Xilinx® System Generator
for DSP allows for high-level mathematical
verification and converts the heart of the
algorithm into ready-to-use HDL.

Simulation inside of The MathWorks
Simulink® tool enables you to easily verify
the image algorithm qualitatively and subjec-
tively when used with the Image Processing
Toolbox, also from The MathWorks. Using
System Generator to develop and implement
image processing algorithms allows for a thor-
oughly verified and easily executed design;
plus, you save time on subjective analysis of
the HDL. The high-level block diagram
allows for easy communication between team
members, resulting in less time spent crossing
skill boundaries when determining imple-
mentation trade-offs.

The Basics
The Image Processing Toolbox is an excel-
lent starting point with which to develop
image processing algorithms for FPGAs. It
allows you to easily load and view many
image types. Although not directly usable
within System Generator, it can also
rotate, resize, filter, convert to and from
the frequency domain, and operate on the
image mathematically and morphological-
ly. You can use these latter functions as a
qualitative measure against the actual
System Generator implementation.

Exchanging Data
Images are often stored and manipulated
as two-dimensional arrays that can be
quite large. For example, a 1,024 x 1,024 x
8-bits-per-pixel image is 1 MB. Typically, a
portion of the image is moved into the
FPGA one pixel at a time and aggregated
into a larger unit (often a line), with
manipulations performed on these points. 

An example pre-processing MATLAB®

m-file script might contain:

• Reading in a source test image using
the IMREAD function in the Image
Processing Toolbox.

• Analyzing variables such as width,
height, and color depth of the image to
pass as arguments to Xilinx block set

tokens. This enables easy parameteriza-
tion and scaling of the application.

• Storage and creation of other variables
necessary to the application. Examples
include rotation angle, resizing per-
centages, and bit precision within the
algorithm.

• Converting the matrix data from an m
x n array to a 1 x (m*n) with “for
loops” and concatenation. This allows
The MathWorks DSP block set “Signal
From Workspace” token to pass ele-
ments as samples to the Xilinx block set
“Gateway In” token.

• Viewing the source test image for later
subjective analysis using the IMSHOW
function in the Image Processing
Toolbox. 

An example post-processing m-file
might contain:

• Conversion of “ToWorkspace” variables
from a 1 x (p*q) array to a p x q array for
easy manipulation by using “for loops.”

• Displaying the resulting matrices using
IMSHOW for subjective analysis.

• Computing qualitative analysis of the
results versus the original image or an
algorithm developed with the Image
Processing Toolbox.

Developing Image Processing 
Algorithms with System Generator
Developing Image Processing 
Algorithms with System Generator
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Using M-Files
You can use m-files to model the algorithm
before implementation with System
Generator. Although this step is optional, it
can be a highly effective aid in the slight
paradigm shift from matrix operations in
software to raster scan operations in a high-
ly parallel architecture.

Some of the key benefits include:

• Deconstruction proofs of Image
Processing Toolbox functions as an aid
to understand the algorithm.

• Creation of intermediate variables to
assist in debugging the System
Generator version of the design. Try to
set variables similar to how they will
appear in the design. Two-dimensional
matrices should be used as memory,
while raster order works better between
blocks.

• Making algorithm trade-offs. Ask your-
self if you should place the bi-linear
interpolation stage before or after the
sending of data to memory.

• A fast proof that the algorithm is on
the right track.

• Qualitative analysis from the decon-
struction m-file to the corresponding
Image Processing Toolbox function.

Design Considerations – An Example
Real-time image rotation has many chal-
lenges when going from the algorithm
architect at a high level to the FPGA engi-
neer at the HDL and board level. The algo-
rithm level choices that you will make
about how to implement the design in the
FPGA will affect device utilization.
Conversely, board and system requirements
may place limitations on your design, such
as number, width, and type of frame buffer
memories.

Design Choices
A key decision about the architectural style
of the rotation algorithm is quality. For
example, when moving the pixels of the
original image grid to fractional locations
on the rotated image grid, is a nearest
neighbor selection adequate? Should you
perform bi-linear interpolation on the

Because the data is stored to the frame
buffer in non-sequential order, you must
take care to ensure that all valid pixel loca-
tions are written to.

Also, if the rotation angle is changed,
you must clear artifacts in the corners from
the previous frame from the frame buffer. A
nearest neighbor rotation of 45 degrees
clockwise demonstrates the void artifacts,
as shown in Figure 1, that occur due to

multiple input pixels being written to the
same frame buffer address.

To avoid a complex control path and
concentrate mostly on the data path, our
example goes with the first choice previ-
ously described (place the rotation engine
after the frame buffer). The net effect will
be an increase in memory bandwidth of 4
or 16 times for bi-linear and bi-cubic inter-
polation, respectively. The choice of how to
deal with the increase in bandwidth
requirements is design- and memory-
dependent.

You can increase the number of read
accesses from the memory by a factor of
four to minimize the total amount of mem-
ory for bi-linear interpolation. This will
decrease the overall incoming pixel rate by
a factor of four unless the memory access
speed is sufficient to handle the offset.
Alternatively, you can store the four pixels
necessary for bi-linear interpolation at the

image to reduce shear (the tendency to see
discontinuities along object edges)? Is
bicubic interpolation (determining the
new pixel value based on weighting and
summing its closest 16 neighbors) the pre-
ferred method? Your choice of quality will
impact resources in both the FPGA and
the frame buffer.

Our example is based upon the Hotelling
transform to determine the original image
versus the rotated image pixel
addresses. You have two choices as to
where the rotation engine occurs
with respect to frame buffering:

1. Place the rotation engine after
the frame buffer. This has the
effect of sequential raster scan
address writes into the frame
buffer and allows for raster
scan format of the output data
by reading from the frame
buffer in non-sequential
address form. The Hotelling
transform with basis vectors
cos(t) and sin(t) for rotation
angle (t), {Sx,Sy} representing
source x and y coordinates, and
{Dx,Dy} representing destina-
tion x and y coordinates in the
2-D image are:

Sx = Dx * cos(t) + Dy * sin(t)

Sy = Dy * cos(t) – Dx * sin(t)

2. Place the rotation engine before the
frame buffer. In effect, this method
predetermines and weights the values
stored through non-sequential
addressing into the frame buffer. 
The output data is read in raster scan
format from the frame buffer. The
Hotelling transforms with similar 
representation as above are: 

Dx = Sx * cos(t) – Sy * sin(t)

Dy = Sy * cos(t) + Sx * sin(t)

In their paper, “Real Time Image
Rotation and Resizing, Algorithms and
Implementations” (www.xilinx.com/products/
logicore/dsp/rotation_resize.pdf), my Xilinx
colleagues Robert Turney and Chris Dick
showed that this approach is more eco-
nomical in terms of memory bandwidth.

Figure 1 – Void artifacts when rotation engine 
occurs before the frame buffer
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same address location, thus increasing the
total amount of memory by a factor of
four. This methodology can be mitigated
based on pixel bit width – that is, 8-bit-
wide pixels can use this approach to fit into
a 32-bit-wide memory footprint.

Design Implementation with System Generator
Our example will implement image rota-
tion with the following assumptions:

• Input image size and pixel widths are
known at the time of implementation 

• Use the Hotelling transform of the
form:

Sx = Dx * cos(t) + Dy * sin(t)

Sy = Dy * cos(t) – Dx * sin(t)

• Bi-linear interpolation

• Increased memory bandwidth is
accounted for by reading the data out
of the frame buffer four times faster
than the incoming pixel rate

Frame Buffer Read Address Generation
Because the data will be output in raster
scan format, you can create the destination
address with two counters representing the
two dimensions. These values must be cen-
ter-adjusted around zero before being
transformed. At this point, any adjustment
changes the center of rotation for the out-
put image.

The following two examples demon-
strate manipulating the output image by
using minimal extra logic:

• Two adders are all that are required to
add pan control for the output image.

• Using two multipliers, you can scale
the destination addresses to zoom in or
out from the center point.

As interpolation occurs at a later stage,
zooming and panning at this point will
result in an output image with each pixel
uniquely interpolated, versus a simple copy
or additional interpolation procedure later.
Figure 2 demonstrates a 45-degree counter-
clockwise rotation with 8x zoom.

Once the destination address is correct
for center, pan, and zoom, the transform is
applied. The resulting addresses are reverse-

corrected for the centering function. The
numbers are of the form integer with a dec-
imal portion. The integer portions are the
required source address locations to read
from the frame buffer. The decimal por-

tions are used to create weighting factors
used for the bi-linear interpolation.

Weighting the Data
Four pixels are fetched from the frame
buffer to create a 2 x 2 matrix containing
the source address pixel and its original
neighbors to the right, below, and below-
right, which we will identify as XY, XpY,
XYp, and XpYp, respectively. The  source
address transform uses the decimal portions
of {Sx,Sy} represented as {Rx,Ry} to create
the following weighting equations:

• Weighting(XY) = Wxy = (1 – Rx) (1– Ry)

• Weighting(XpY) = Wxpy = (Rx) (1 – Ry)

• Weighting(XYp) = Wxyp = (1 – Rx) (Ry)

• Weighting(XpYp) = Wxpyp = (Rx) (Ry)

These equations can be shown to be
equal to the following equations to reduce
the number of multipliers necessary from
four to one:

• Wxy = (1 – Rx) – Wxyp

• Wxpy = (Rx) – Wxpyp

• Wxyp = (Ry) – Wxpyp

• Wxpyp = (Rx) (Ry)

The interpolated pixel value is the sum-
mation of the 2 x 2 matrix pixels multiplied
by their respective weighting functions.

Compare the original image in Figure 3
with an image that was rotated through 7.5
degrees, followed by a -7.5 degree rotation
in Figure 4.

Conclusion
In this article, I’ve shown how to use System
Generator to explore and implement image
processing algorithms.

The use of a mathematical simulation
tool with image handling capabilities allows
you to easily investigate various options in
an intuitive capacity. Although this example
shows an image rotation implementation,
these same methodologies can help you
develop any image processing algorithm.

If you have any questions or sugges-
tions, call me, Daniel Michek, at (858)
431-5901, or send me an e-mail at
daniel.michek@xilinx.com. 

Figure 2 – Zoom and pan incorporated 
into the algorithm

Figure 3 – Original picture 
for subjective comparison

Figure 4 – Image rotated counter-clockwise 7.5
degrees, followed by rotation clockwise 7.5 degrees.



by Ken Karnofsky
Marketing Director, Signal Processing and Communications
The MathWorks, Inc. 
ken.karnofsky@mathworks.com

Many of today’s highly integrated embed-
ded hardware and software systems rely on
sophisticated signal processing and com-
munications. Dramatic increases in silicon
and algorithmic complexity in these sys-
tems have triggered a corresponding rise in
design and verification costs.

Several studies have noted the impact of
the complexity challenge. A Collett
International Research study reported by
Jack Horgan stated that only 39% of IC
designs were bug-free at first silicon in
20021. Embedded Market Forecasters
found that more than 50% of embedded
projects are behind schedule, and one-third
failed to achieve 50% of performance and
functional expectations2. Figure 1 shows
the typical patterns of early defect intro-
duction and late detection that are at the
root of these problems.

Simulink Brings Model-Based Design 
to Embedded Signal Processing 
Simulink Brings Model-Based Design 
to Embedded Signal Processing 
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Tacking new verification techniques or
language extensions onto traditional design
tools and flows is not enough to effectively
improve the development process. These
incremental improvements do not elimi-
nate the aspects of traditional flows –
ambiguous text-based specifications, man-
ual implementation, and after-the-fact test-
ing – that produce expensive errors and
jeopardize delivery timelines.

In contrast, The MathWorks has
demonstrated that Model-Based Design
with Simulink® produces dramatic reduc-
tions in development time, cost, and risk.
These benefits have been documented in
the aerospace, automotive, communica-
tions, and semiconductor industries –
wherever the application requires real-time
signal processing, communications, and
control logic.

Reinventing Development
The use of FPGAs for high-performance
DSP is a natural application for Model-
Based Design. Getting the most out of
FPGA hardware requires insight into algo-
rithmic and architectural complexities at
the same time. To do this, architects need
tools that offer direct access to hardware –
tools that hardware and software engineers
can also use to refine and implement the
designs. A design environment like
Simulink makes it possible to quickly and
accurately simulate system behavior, and
provides a direct path to implementation
using automatic code generation. 

Xilinx® recognized early on that
Simulink was a platform that could make

sion in these systems. In fact, automotive
companies and others facing the rapid
growth of software-intensive embedded
systems have turned to Model-Based
Design. Manually developing code in C is
no longer an option, because companies
cannot hire enough programmers or test
engineers to develop and verify the code. 

The Elements of Model-Based Design
With Model-Based Design, specification,
design, implementation, and verification
can be accomplished – and accelerated –
using a single Simulink model. Figure 2
depicts these elements, which are
described below.

Executable Specifications from Models
Simulink models serve as executable speci-
fications for system and component behav-
ior, replacing ambiguous text documents.
These models can span digital and analog

hardware as well as software, and
they facilitate clear, unam-

biguous communication
between engineering

teams. 

Design with
Simulation
Simulink is a plat-
form for multi-

domain simulation of
dynamic systems. The

Simulink product family
provides an interactive,

graphical block diagram envi-
ronment with a customizable
set of block libraries for signal
processing, communications,

and control. You can create comprehensive
system specifications, model channels, and
other environmental effects.

These tools also simplify system analysis
using quantitative measures such as signal-
to-noise ratio and bit-error rate. Simulink
is integrated with MATLAB®, providing
access to an extensive range of tools for
algorithm development and data analysis.

Simulink models are hierarchical; you
can partition them easily into subsystems
or components. This simplifies compre-
hension of the design and interaction of

FPGA-based DSP design practical. Today, a
complete design flow is available from The
MathWorks and Xilinx that includes third-
party development hardware for real-time
prototyping and deployment. Many organ-
izations now enjoy order-of-magnitude
returns on their investment in Model-Based
Design for Xilinx FPGAs.

Comprehensive, sys-
tem-level mathemati-
cal models form the
basis of Model-
Based Design.
Such modeling
was once only
in the realm of
t e c h n o l o g y
researchers, not
mainstream prod-
uct developers. But
facing the limitations
of traditional software
and hardware description lan-
guages for large-scale projects,
many design leaders recog-
nize that modeling and simulation is neces-
sary to handle the complexity of today’s
systems, not only for system design but for
hardware and software development as well. 

Hardware description languages, even
with “system-level” extensions, do not sup-
port the rapid modeling and design itera-
tion needed for algorithmically intensive,
large-scale embedded hardware systems –
that is, virtually all of today’s communica-
tions and multimedia systems.

Similarly, C-based tools and design
flows will not address the software explo-
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Figure 1 – Typical patterns of design defects using conventional flows, 
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Figure 2 – The elements 
of Model-Based Design
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subsystems, including software, digital
hardware, and RF/analog hardware. You
can rapidly simulate and iterate to identify
flaws, and refine the model to validate
behavior against the requirements. 

The Simulink model defines all the
information needed to implement the soft-
ware or hardware, including bit-true fixed-
point processing and cycle-accurate timing
and synchronization of multi-rate systems.
Simulation is used to show that the exe-
cutable specification defined by the model
is complete and works correctly. 

You can use model components to cre-
ate well-defined subsystem interfaces,
which simplify reuse in subsequent design

efforts, even when those projects employ
different target hardware or hardware/soft-
ware partitioning.

Implementation with 
Automatic Code Generation
Once you have refined and validated the
design, you can automatically generate code
from the model, eliminating the need for
hand-coding and the errors that manual cod-
ing can introduce. You can then use the code
for real-time prototyping and deployment in
the target system. The strategic partnership
between Xilinx and The MathWorks has
brought automatic hardware code generation
capabilities to Xilinx FPGAs.

Continuous Test and Verification
You can ensure quality throughout the
development process by integrating tests
into the models at any stage and quantify-
ing test coverage of the model. This con-
tinuous verification and simulation helps
identify errors early, when they are easier
and less expensive to fix, and streamlines
the final verification stage. 

The system model, or “golden refer-
ence,” can serve as the test bench for the
hardware or software implementation,
which you can verify through software or
hardware-in-the-loop co-simulation. 

Applications of Model-Based Design
Model-based design can accelerate and
simplify the development of many tech-
nologies. These examples are a small subset
of the many applications available on The
MathWorks website.

UWB Wireless
The range of ultra wideband (UWB) links
is limited by the requirements for low-
power, high-speed, and low-cost imple-
mentation. Fixed-point word length and
scaling have a direct impact on hardware
size, cost, and signal-to-noise ratio (SNR)
degradation.

Using Simulink, the 10-bit orthogonal
frequency division multiplexing (OFDM)
transceiver for UWB shown in Figure 3
was designed in a few days. The receiver
operates with a 0.5 dB degradation in sig-
nal-to-noise ratio, relative to a floating-
point reference model.

The optimal word length was deter-
mined through simulation over a range of
word lengths and channel conditions to
evaluate trade-offs between chip size and
wireless range. The results are shown in
Figure 4. The transceiver operates within a
complete end-to-end system model that
serves as both an executable specification
and a test harness for verifying downstream
implementation.

Digital Down Converter 
for Software-Defined Radio
FPGAs are being used to perform high-
data-rate signal processing in many emerg-
ing software-defined radio applications. A
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typical application is the digital down con-
verter (DDC), which is a sequence of
multi-rate filters that decimate the RF sig-
nal down to the baseband rate. The design
challenge is to design an architecture for
each filter stage that optimizes the trade-
offs among word length, computational
delays, and accuracy of the overall filter
response to avoid aliasing and other
unwanted numeric effects.

The Simulink model of the cascaded
integrator comb (CIC) filter used in the
DDC, shown in Figure 5, was automatical-
ly generated from the MATLAB filter spec-
ification. Models such as this can provide a
reference design for developing optimized
Xilinx FPGA implementations with Xilinx
System Generator.

Reconfigurable Encryption System
Nallatech, a provider of high-performance
FPGA systems, used Simulink and Xilinx
System Generator for DSP to design a
reconfigurable video encryption system in
less than two weeks. The system enables
their customers to re-verify an entire system
when changing components and interfaces
– without any knowledge of VHDL. “With
this design flow, we efficiently implemented
our system and algorithms with a signifi-
cant improvement on traditional design
times, without sacrificing performance,”
says Daniel Denning, a research engineer
with Nallatech. “Coding in VHDL would
have taken us three times as long.” 

Simulink 6
In June 2004, The MathWorks introduced
Simulink 6, which increases performance,
responsiveness, modeling fidelity, and work-
flow efficiency when modeling large sys-
tems. Simulink 6 also extends the scope of
Model-Based Design to new domains and
applications. These enhancements include:

• Component-based modeling for large-
scale systems, including the ability to
simulate, test, and implement each
design component independently  

• Unified data management for model
and signal parameters across compo-
nent models, including a graphical
model explorer tool

• Simulink Verification and Validation,
which links models to requirements
and test cases, and identifies untested
portions of models

• Ability to include a subset of the
MATLAB language in Simulink mod-
els, and automatically generate embed-
dable C code

• New products for Model-Based Design
of signal processing and communica-
tions systems, including:

– Filter Design HDL Coder, for gener-
ation of VHDL and Verilog™ code
for fixed-point filters

– Fixed-Point Toolbox, for design and
verification of fixed-point algorithms
and analysis of fixed-point data in
MATLAB

– RF Toolbox, for design and analysis
of networks of RF components

– RF Blockset, for design and simula-
tion of RF system and component
behavior in end-to-end Simulink
wireless system models

– Video and Image Processing Blockset,
for design and simulation of embed-
ded video and image processing 
systems

– Link for ModelSim™, for co-
simulation and verification of 
VHDL and Verilog using Mentor
Graphics® ModelSim

Conclusion
There is growing acceptance of Model-
Based Design as the way to handle com-
plexity in embedded hardware and software
systems. The MathWorks/Xilinx alliance
has enabled the design and implementation
of high-performance DSP systems within
the Simulink environment, reducing
design and schedule risk while capitalizing
on the potential of FPGAs for advanced
signal processing applications.

For more information, visit
www.mathworks.com/products/dsp_comm/
for technical literature, webinars, and
demonstrations. 
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Figure 5 – Frequency specification (top) and Simulink model of a fixed-point CIC filter (bottom) 
for a digital down converter (left) in a software-defined radio receiver front end.
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by Luc Langlois
DSP Specialist
Memec Insight
luc_langlois@ins.memec.com

If your product performs digital signal pro-
cessing, it probably must interface to real-
world analog signals. To avoid surprises, it’s
best to introduce analog I/O early in the
design process; the ideal point is in the
modeling phase with Xilinx® System
Generator for DSP, under Simulink® from
The MathWorks. 

Consider the development of a digital
QPSK demodulator in a software-defined
radio. The FPGA performs several signal
processing tasks, including carrier recovery
DPLL (digital phase-locked loop), down
conversion to baseband, down-sampling,
pulse-shaping, and symbol timing recovery.
You may wish to compare simulated
demodulator performance against the real
thing by injecting a heterodyned analog
signal with noise through an ADC (analog-
to-digital converter) to the FPGA running
at full clock speed.

We need a framework to receive digital-
ly sampled analog input signals from an
ADC as stimuli into the Simulink model,
either as real-time streaming data or as cap-
tured data for repeatable playback. We also
need our framework to deliver processed
data from the Simulink model to a DAC
(digital-to-analog converter) to produce an
analog output signal.

Interfacing Simulink 
to the Analog World
Interfacing Simulink 
to the Analog World
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The Memec™ P160 Analog Module is
a daughtercard to interface external analog
signals to Memec’s wide assortment of
Xilinx FPGA development boards. In this
article, we’ll present design techniques
using the Memec P160 Analog Module in
Simulink DSP models, making creative use
of several new blocks from Xilinx System
Generator version 6.3. If you are an FPGA
designer, these techniques offer practical
starting points, providing you with a head
start on your DSP development using
external analog signals.

Memec Simulink Library
The Memec P160 Analog Module is
shown in Figure 1. It provides two channels
of analog I/O through 12-bit data convert-
ers from Texas Instruments™:

• Two 165 megasamples per second
DAC902 DACs, driving single-ended
analog outputs.

• Two 53 megasamples per second
ADS807 ADCs. The digital data out
of the ADCs is latched into external
buffers and then passed to the FPGA
through the P160 interface.

The Memec P160 Analog Module DAC
and ADC blocks are delivered as a Simulink
library (shown in Figure 2). It offers the fol-
lowing features:

• Drag-and-drop P160 analog compo-
nents from the Simulink library browser

rather, it invokes the Mentor Graphics®

ModelSim™ HDL simulator, with which
it exchanges I/O data during simulation.

When the design is compiled to hard-
ware, the HDL code is included for syn-
thesis. This technique is invaluable if your
engineering staff wishes to preserve any
existing investment in proven, re-usable
HDL code.

System Generator blocks don’t expose
the system clock directly. Nevertheless, as
digital designers, we sometimes prefer to
see digital waveforms referenced to the
clock, especially for logic that drives signals
onto FPGA pins to off-chip. For this rea-
son, the Memec P160 analog DAC block is
built using a black box. 

Figure 3 shows a model in which we
drive the DAC block with a sinusoid sig-
nal stored in a ROM look-up table. The
ModelSim waveform window opens auto-
matically during simulation, displaying
all inputs and outputs of the black boxes
and all clock and clock enable signals sup-
plied by System Generator. The signal
display can be customized with an auxil-
iary Tcl script.

• Supports HDL co-simulation from
Simulink

• Supports common compilation types in
Xilinx System Generator for DSP 6.3

– Hardware co-simulation type: gener-
ates board-specific I/O ports to
FPGA pins connected to the P160
Analog Module

– HDL netlist type: generates top-level
FPGA I/O pins connected to the
P160 Analog Module

• Automatically detects target part/pack-
age from the System Generator token

• Supports all Memec FPGA development
boards with P160 expansion connector

• Installer for automatic Simulink library
creation

Interfacing to External Analog Signals
Let’s describe three design techniques using
various features of the P160 Analog
Module to interface to analog signals dur-
ing development of a DSP design in
Simulink.

Memec P160 Analog DAC 
in HDL Co-Simulation
Our first design technique uses HDL co-
simulation, a Xilinx System Generator fea-
ture that lets you incorporate your HDL
code into Simulink though a black box.
Simulink doesn’t interpret HDL directly;
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Hardware Co-Simulation with the ADC
You can synchronize a System Generator
hardware co-simulation block with its asso-
ciated FPGA hardware in one of two clock
modes. In single-step mode, the FPGA is
clocked from Simulink; in free-running
mode, the FPGA runs off an internal clock,
and is sampled asynchronously when
Simulink awakens the hardware co-simula-
tion block. Let’s examine a design that
demonstrates switching between free-run-
ning and single-step modes. 

The Memec P160 analog ADC con-
troller from the Simulink library is built
with gateway-ins defined as board-specif-
ic I/O ports. When used in a hardware
co-simulation block, the Xilinx imple-
mentation tools bring these gateways to
FPGA input pins, which connect to the
P160 analog daughtercard, according to
location constraints for the target device
on the board. Consequently, sampled
data from the P160 analog ADC can
reach the FPGA.

As Figure 4 illustrates, we first compile
the model on the left for hardware co-sim-
ulation and then connect it, as shown on
the right. We use the Xilinx pause simula-
tion block to switch clock modes of the
co-simulation block.

Hardware co-simulation starts in free-
running mode as we sample an analog
input signal through the P160 ADC at a
sampling rate derived from the system
clock on the Memec development board.
Sampled data fills a FIFO, while the
Simulink model polls the FIFO’s full flag
asynchronously. When the full flag goes
high, simulation pauses; the clock mode is
switched to single-step and captured data
samples are read out from the FIFO to
Simulink. The captured data can be saved
as stimuli for subsequent simulation.

ChipScope Validation of 
DAC-to-ADC Loopback
Our third design technique is useful to
validate P160 analog DAC and ADC

functionality in a loopback configura-
tion. As shown in Figure 5, we generate a
waveform that drives the P160 analog
DAC to produce a continuous analog
output signal. The waveform, stored 
in FPGA block RAM, is defined as 
an expression from The MathWorks
MATLAB®; either a periodic function
such as a sinusoid or arbitrary data from
a MATLAB array.

When compiling the model to a bit-
stream, the DAC and ADC output ports
are mapped to FPGA I/O that connects to
the P160 Analog Module, according to the
selected target FPGA. 

In operation, a loopback cable connects
the analog output signal from the P160
Analog Module DAC back into the ADC
input. The Xilinx ChipScope™ tool –
available as a block in System Generator –
captures both the generated waveform and
the sampled loopback version.

The design runs in the FPGA at the
system clock rate – 100 MHz on most
Memec development boards. The data-
sampling rate is set in the model to a con-
venient sub-multiple of the system clock
rate, as the ADC can operate at a maxi-
mum 53 megasamples per second.

Conclusion
The Memec P160 Analog Module is ideal
for interfacing FPGAs to external analog
signals. We have shown example tech-
niques to quickly get you started to cap-
ture, process, and produce analog signals
in your DSP applications under Simulink.

As your needs evolve to meet cus-
tomer demand for ever-increasing ana-
log I/O performance, expect Memec’s
next generation of its analog module to
deliver faster sampling rates and higher
resolution within a consistent support
framework in System Generator for DSP
and Simulink.

The P160 Analog Module specs,
Memec Xilinx DSP Simulink library, and
reference designs are available to all cur-
rent P160 analog customers. You can
obtain the free download through the
Memec Reference Design Center at
http://legacy.memec.com/solutions/reference/
xilinx/. 
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Figure 4 – Simulink model for data capture through the P160 ADC 

Figure 5 – ChipScope validation of P160 analog DAC-to-ADC loopback
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by John L. Smith
Principal Engineer
Titan Corp., AP&D Division
john.l.smith@titan.com

Visually guided tele-operation is becoming
ubiquitous in a variety of fields, including
medicine, defense, and industry. A key
requirement is low latency – there should
be minimum delay between capturing
video at the sensor and displaying it at the
remote viewer. With training, people can
get used to as much as a half-second of
delay, but often the result is vehicle oscil-
lation, as the operator over-corrects con-
trols without having the intuitive
immediate feedback. 

Titan Corporation’s Advanced
Products and Design Division works with
aerospace defense primary contractors,

who provide unmanned aerial vehicles
(UAVs) to the DoD. Figure 1 shows a
General Atomics™ Predator UAV, and
Figure 2 shows a ground station used for
UAV remote control. 

In surveillance missions, MPEG-2
encoded video from a pan-tilt-zoom
(PTZ) camera mounted on the UAV is
transmitted to a ground station. There the
imagery is presented on a console to the
operators. For the most effective control
of the camera and vehicle, we had to
reduce delay through the MPEG-2
decoder to less than 75 ms.

To accomplish this task, we used our
commercial off-the-shelf multimedia video
processing board, the VigraWATCH™.
VigraWATCH (VW) is equipped with a
Xilinx® Virtex-II™ FPGA and an IBM™
PowerPC™ 440GP (PPC) processor. This

Build Custom Real-Time Video
Applications Quickly and Easily
Build Custom Real-Time Video
Applications Quickly and Easily
You can use a board equipped with all required video I/O and 
a Virtex-II FPGA to rapidly develop custom video processing functions.
You can use a board equipped with all required video I/O and 
a Virtex-II FPGA to rapidly develop custom video processing functions.

Figure 1 – Predator UAV

Figure 2 – Ground station console
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provides more than enough processing
power to easily implement a customized
MPEG-2 I-frame decoder, which far sur-
passes the minimum latency requirement.

With the overhead of circuit board
development and a basic software frame-
work in place, and by taking advantage of
IP included in the Xilinx development
toolset, we were able to get the job done in
four months.

MPEG-2 
MPEG-2 is a widely used video compres-
sion standard rich with diverse encoding
methods. Its diversity includes three dis-
tinct techniques for coding individual
video frames as either intra (I-frames), pre-
dicted (P-frames), or bi-directionally inter-
polated (B-frames). P-frames and B-frames
introduce additional latency, both encod-
ing and decoding. To cut latency to the
absolute minimum, we used only I-frame
encoding and decoding. Intra-frame
encoding consists of a pipelined set of
functions.

Basics
The three MPEG-2 coding methods are:

• I-frame – Intra-frame encoding is
based solely on information within a
single frame. Furthermore, the I-frame
encoding and decoding process may
begin as soon as the first 16 lines of a
frame are received.

• P-frame – Predictive encoding uses a
previous frame and encodes only the
differences between that frame and the
current frame to be encoded.

• B-frame – Bi-directionally encoded
frames use both a previous (I or P)
frame and a future (I or P) frame,
forming a “best match” interpolation
between those two frames and the cur-
rent frame and encoding the resulting
differences.

B-Frames Impede Low 
Latency and P-Frames Don’t Help
Because B-frames use a future frame to
encode the current frame, B-frame encod-
ing and decoding impose a delay; the

The VigraWATCH Video Processor
The VW platform allows you to rapidly
develop high-performance audio, video,
and image processing functions using the
XC2V3000, the microprocessor, or both.
Figure 3 illustrates the VW’s primary com-
ponents, peripherals, and available I/O.

Primary Components
The VW contains five large ICs: an IBM
PPC440GP, a Xilinx XC2V3000 FPGA,
two Cirrus Logic™ MPEG-2 codecs, and
a PCI-PCI bus bridge.

The PPC provides general-purpose pro-
cessing. It has a dual-issue superscalar
RISC core with 64-way associative I- and
D-caches. It also manages PCI, RS-232,
IIC, and Ethernet I/O. Chain-controlled
DMA units are available in the PPC for

encoder (or decoder) must wait for the
future frame to arrive before coding the
current frame. Thus, B-frames must be
tossed in the quest for minimum latency.

The P-frame’s principal contribution to
MPEG-2 is in improving compression
ratios, as they are smaller than I-frames. A
greater compression ratio means reduced
transmission bandwidth. However, because
low latency is the primary concern, the
bandwidth needs to be enough to accom-
modate I-frames without buffering delays.
We also had another latency issue – devel-
opment time. Thus, we developed an I-
frame-only decoder.

(Without P- and B-frames, MPEG-2
video becomes essentially the same as motion
JPEG. In this case, we were constrained to
MPEG because that was the source format.)
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moving data between the PCI bus, the
external peripheral bus (EPB), the PPC
DRAM, and I/O registers.

The FPGA handles raw (uncompressed)
audio, raw video, and raw and compressed
I/O for the MPEG codecs. Part of the
FPGA fabric is dedicated to video genera-
tors and mixers, I/O multiplexers,
standard video processing such as scal-
ing, and RAM interfaces. About 10%
of the XC2V3000 is dedicated to a
basic 2-D graphics engine. You can
use the remainder of the FPGA fabric
for custom processing functions. The
default FPGA internal clock is 100
MHz, which matches the clock used
for the DRAMs.

Each of the two MPEG-2 codecs is
capable of encoding or decoding ele-
mentary streams. They are independ-
ent of each other. For example, in a
video application where the raw video
is enhanced by the FPGA, you can
compress both the original and the
enhanced video. In a communications
scenario, one codec may be compress-
ing local video for transmission, while
the other is de-compressing remote
video. Or you can use the two codecs
to decompress video from two distinct
remote sources.

The PCI-PCI bridge allows you to
install VW in either 3.3V PCI or 5V
PCI systems (the PPC is not 5V I/O
tolerant).

Peripherals
Inputs to the VW FPGA include:

• A stereo audio digitizer

• A video digitizer/decoder

The video decoder accepts standard-def-
inition NTSC and PAL format analog
video from one of four composite sources
or one of two S-video sources.

Outputs from the VW FPGA include:

• Two SVGA DACs, capable of driving
independent displays

• An audio DAC producing standard
line-level stereo audio output

The two DRAM banks attached to the

FPGA are independent; each is capable of
1.6 Gbps peak bandwidth. One is associat-
ed with the graphics engine in the FPGA;
the other is typically used by video process-
ing functions.

Digital I/O connectors 1 and 2 each
support 22 bi-directional LVTTL signals,

as well as a few auxiliary connections.
You can use the digital I/O to connect
another board directly to the FPGA, or
to connect two VW boards together.
Digital I/O connector 3 has 16 LVTTL
pins and can be used for a video interface
port or as a convenient place to bring out
de-bugging test points.

Software
The PPC runs MontaVista™ Linux™, an
embedded Linux supporting real-time
functionality, multi-processes, and multi-
threading. You can operate VW stand-
alone, independent of any host computer,

or as an add-in board driven by a host sys-
tem. On Sun™ Solaris™-, Microsoft™
Windows™-, Wind River Systems™
VxWorks™-, or Linux-based host systems,
graphic drivers allow VW to function as
primary or secondary display. An API pro-
vides control of basic VW functions.

Building the I-Frame Decoder
We had a “clean room” software
decoder developed from the MPEG
specification available in-house at the
start of the project. We partitioned the
I-frame decoding functions into mod-
ules and did software profiling and
hardware simulation to determine how
to distribute the modules across the
FPGA hardware and PPC software.

Integration with 
VW FPGA Internals 
We connected the I-frame decoder
inside the FPGA as a standard video
input. Figure 4 shows a portion of the
VW FPGA internals and how the
decoder’s two ports connect to the
pre-existing circuitry. The EPB port
carries encoded data, tables, and con-
trol register setup data from the PPC.
The CCIR-656 video out port con-
nects to a video multiplexer that
selects between all of the video inputs.
This allows us to re-use the existing
design’s video storage circuitry to
move frame data into video memory,
and ultimately to the display. Because
the I-frame is processed sequentially,
we can use internal block RAM to

assemble macro blocks; a port to connect
to external RAM is not required.

Decoding Modules
The pipeline layout of the decoder is
shown in Figure 5. Input on the left is fed
by the PPC. Output on the right is CCIR-
656 format 4:2:2 YCbCr 8-bit video. This
format matches the output from the VW
peripheral analog video decoders. The lay-
out was designed to allow progressive
incremental design, integration, and test-
ing of the modules.

The input buffer uses a 512-deep x 32-
bit-wide FIFO to receive all data from the
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PPC. This FIFO allows the relatively slow
66 MHz EPB bus to operate at full speed,
without having to implement low-level
hardware handshakes. A high-level hand-
shake is implemented by making the FIFO’s
fill level available for read-back by the PPC.

The PPC core can keep track internally
of the FIFO fill level and make decisions as
to whether to work on filling the FIFO or
perform other useful functions. The input
buffer also contains an auto-incrementing
register used to generate indirect addresses
for rapidly filling tables in other modules,
to keep the decoder’s I/O address range on
the EPB bus small.

The variable length (VL) decoder
decodes the Huffman-encoded block coef-
ficients according to MPEG-2 tables B-14
and B-15. State machines to traverse the
Huffman code trees and a look-up table to
extract run/level value pairs from the leafs
both fit into a single Virtex-II block RAM
configured as 1K deep x 16 bits wide.

We used some extra FPGA fabric for
shift registers to handle escape codes for
run/level values not included in the
Huffman code tables. The ISDSM block
handles the functions of inverting zigzag
scanning, dequantization, and scaling.

The iDCT was the easiest block to
design: it is included as a standard core in the
Xilinx ISE CORE Generator™ package.

The format converter assembles the Y,
Cb, and Cr sample blocks into slices in a
slice-assembly RAM buffer comprising 16
block RAMs. The slices are then scanned
out line by line and the lines are wrapped

in CCIR-656 start and end active video
(SAV/EAV) marker codes. We used an
address rotation technique so new blocks
can be assembled in the buffer as soon as a
single line is removed, allowing the pipeline
to run continuously without having to
double-buffer the slice assembly RAM.

Results
The original unoptimized MPEG-2 codec
chip external to the FPGA had a latency of
~1800 ms. Working with the codec chip
manufacturer, we reduced their latency to
45 ms. The I-frame decoder we developed
using the Xilinx FPGA and PPC has a
latency of less than 2 ms.

Conclusion
We saved a lot of time and effort using pre-
built boards and IP in the development
process. If we had to develop the board, all

of the associated software and all of the IP
that went into the low-latency decoder and
display system would have taken years
instead of months.

You can rapidly develop other video
processing functions, including:

• Other codecs – H.264, MPEG-4,
Motion JPEG2000

• Enhancement – linear and non-linear
filters, super-resolution, histogram
equalization/specification, de-convolu-
tion, warping

• Stabilization and mosaicing

For more information on MPEG-2, read
the book, “MPEG Video Compression
Standard,” edited by Joan L. Mitchell et al.
And for more information on the
VigraWATCH system, visit www.titan.com,
keyword search “VigraWATCH.” 
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Figure 5 – I-frame decoder block diagram
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by T. Justin Campbell
FPGA Programmer
UVM
tcampbel@uvm.edu

If you are a DSP circuit designer, you
should not feel restricted by the basic
Xilinx logic blocks when building your
design. Custom logic in a DSP circuit may
not seem possible within the abstract world
of Xilinx® System Generator, but on the
contrary, you can easily realize custom logic
by configuring a Xilinx MCode block.

A MATLAB® M-file from The
MathWorks configures the block to emu-
late the algorithm realized in the file. You
can attain custom control – and more
specifically, state machines – with System
Generator through configuration of a
Xilinx black box, with code generated from
Xilinx StateCAD. The VHDL code gener-
ated by StateCAD is emulated within the
Xilinx black box block.

With advanced design and control
logic, synchronization in DSP circuits also
becomes an issue. You can realize hand-
shaking (the exchange of control and status
information between two blocks) in
System Generator through delays and
enable signals. 

Let System Generator 
Do the Handshaking
Let System Generator 
Do the Handshaking
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You can use the state control capabilities of Xilinx 
System Generator for synchronous digital DSP realization.
You can use the state control capabilities of Xilinx 
System Generator for synchronous digital DSP realization.
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I would like to see Xilinx System
Generator offer more flexibility (with the
addition of output enables and other input
parameters) to offer dynamic configuration
of blocks. This flexibility comes at the
expense of maintaining abstraction if you
would prefer not to immerse yourself in the
details of digital VLSI design.

Using a Xilinx MCode Block
If you are implementing a straightforward
logic algorithm, configuring the MCode
block is an easier solution than building the
logic together through Xilinx blockset
logic. Let’s describe an example implemen-
tation of custom logic; in this case, a

enabled, when the counter reaches the value
of “BBRX_end,” filter_finish should go high
and stay high until enable goes low. The
state machine shown in Figure 4 was gener-
ated with StateCAD to emulate this logic.

Note that the default state in the VHDL
code must be changed manually to “start.”
This is because StateCAD’s default state in
terms of VHDL code is that whose name is
first alphabetically. Thus, to avoid compli-
cations, you should always create a default
state in which to start called “aaa.” 

You can then generate VHDL code
(bbrx.vhd) for this state machine. The
VHDL code can then be modified for con-
figuration of a Xilinx black box. If a blank

switching circuit used in a filter. The algo-
rithm in MCode is shown in Figure 1.

You must place the M-file in the same
directory as The MathWorks Simulink®

model file, followed by selection and place-
ment of the MCode block in the model file.
In the parameter listing for the MCode
block, a MATLAB function parameter
exists; here you would type “switch_cir”
(the name of the M-file). The block will
then configure itself and emulate the logic
of the file, as shown in Figure 2.

Currently, the Xilinx MCode block can-
not hold an internal state. But if you would
like to implement a state machine (capable
of holding an internal state), there are other
alternatives, such as generating VHDL
code to emulate the state machine and
implementation through a Xilinx black box
configuration.

Xilinx StateCAD Configuration
A simple state machine is given with the
algorithm shown in Figure 3. 

The requirements of the signal filter_
finish are described as follows: If the block is
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function [tone_q, noise_q, filter_finish] =
switch_cir(d, BBRX_Start, tone_bin, BBRX_End, enable, BBRX_Finish)

if(BBRX_Finish==false)
   if((d>=BBRX_Start) &(d <=tone_bin-8))
       tone_q = false; nooise_q = true;
   elseif((d>=tone_bin-7)&(d<=tone_bin+7))
       tone_q = true; noise_q = false;
   elseif((d>=tone_bin+8)&( d<=BBRX_End))
       tone_q = false; noise_q = true;
   else
       tone_q = false; noise_q = false;
   end
else
   tone_q = false;
   noise_q = false;
end
if(( d==BBRX_End)&(enable==true))
  filter_finish = true;
else
  filter_finish = false
end

old_filter_finish=filter_finish;

if (enable = false)

        filter_finish = false;

elseif BBRX_end

        filter_finish = true;

else

        filter_finish = old_filter_finish;

end

q[15:0]

BBRX_End[15:0]

(filter_enable = '1') AND(add_result=0)

filter_enable='1'

filter_enable='0'

filter_enable='0'

Filter_Complete

filter_finish = '1'

filter_finish = '0'

Start

filter_reset

filter_reset

BBRX_End[15:0]

q[15:0]

add_result[15:0]
D Q

Figure 5 – Implementation of state machine 
algorithm through Xilinx black box configuration

Figure 4 – StateCAD implementation for BBRX filter

Figure 3 – Pseudo code for 
the switching algorithm

Figure 2 – Configured MCode 
switching circuit block

Figure 1 – MCode for a switching circuit
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Xilinx black box is in a model file, and the
VHDL code to configure it resides in the
folder in which the model file is saved, then
the configuration wizard for the black box
will automatically generate an .m file to
describe the functionality of the black box.
With System Generator 3.1, you can con-
figure the black box manually. 

A problem exists when generating the .m
file through the wizard. The configuration
wizard for the black box cannot realize mul-
tiple entities in the .vhd file. The VHDL
file bbrx.vhd contained multiple entities
because of inefficient VHDL code genera-
tion through Xilinx StateCAD. Thus, you
must manually manipulate the code to
reduce it to one entity. You can then use the

modified VHDL code in conjunction with
the Xilinx black box wizard, creating a
block shown like that in Figure 5.

System Generator 6.1 Features
The Fast Fourier Transform (FFT) imple-
mentation through configuration of a
Xilinx black box block with M-file and
VHDL wrapper file had problems in the
past with execution in Simulink. These
problems arose from the fact that System
Generator did not appear to allow for mul-
tiple sampling rates (for instance, a clock
and its respective down-sampled version).

This problem has since been alleviated
with the addition of a clock enable probe sys-
tem generator block. This block lets you
effectively up- and down-sample a clock rate
such that multiple clock rates are allowed
within the same model. Figures 6 and 7 illus-
trate an example of the clock enable probe.

DSP Circuitry Synchronization 
Synchronous design goes hand in hand
with the development of DSP circuitry.
Therefore, it is important to be able to real-
ize synchronous design in the high-level
abstraction that System Generator provides.

Note that Xilinx delay blocks are used
for “delaying” enable signals for a duration
that matches computation effort time. You
can use the output of this delay as an effec-
tive “output enable,” as shown in Figure 8.
These delays are of such importance that
before enabling the second block in a
chain, you want to make sure the first
block has completed its computation. 

Exploring “FFT_power.mdl” demon-
strates that latency requirements increase

when the precision of the
inputs and output of the
multiplier block increase.
Thus, the delays need to be
modified when greater
computational effort and
thus greater time require-
ments in terms of Xilinx
block latency result from
overall design changes. 

You could add greater
flexibility to the Xilinx
blockset with the addition
of extra input parameters to

some of the blocks in the set. For instance,
the count-limited counter does not offer a
count-to value as a possible input parame-
ter. Therefore, dynamic configuration of
the counter threshold is unrealizable. 

Output enables allow one stage to sig-
nify it is complete, and thus for the next
stage to start. Currently, most of the blocks
in the blockset do not provide signals
telling you when the block is finished its
computation. This would be helpful in the
handshaking for several Xilinx blocks. 

However, you can realize output enable
signals and counter threshold input signals
by generating a VHDL file using the
Xilinx Core Generator™ tool, and then
configuring a Xilinx black box. But this
requires more time from the designer and
greater engineering effort as well.

We have to consider flexibility (the
addition of output enables and other input
parameters) to offer dynamic configuration
of blocks versus a trade-off in maintaining
the abstraction desired by DSP designers
lacking strong digital design skills. It is
therefore important to consider these ideas
in future versions of System Generator. 

Conclusion
A custom logic design may seem like a
daunting task, but with the flexibility
offered by Xilinx System Generator, it is
quite achievable. Xilinx MCode and black
box block configuration offer viable solu-
tions for implementing custom logic. 

System Generator is a very powerful and
abstract tool, but we would like to see greater
flexibility in terms of achieving synchronous
design within System Generator. 

80 Xcell Journal      Winter 2004

Figure 8 – Propagation of enable signal through delay blocks

Figure 7 – Scope output from 
clock enable probe example

Figure 6 – Example model demonstrating 
clock enable probe use
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by Steven Erck 
Director Technical Marketing 
Nu Horizons Electronics Corp.
serck@nuhorizons.com

Brian Seymour 
Chief Technical Officer
TechOnLine
brian.seymour@techonline.com

Today’s engineering environments are
fraught with limited resources, tight
schedules, and dramatic learning curves.
One of the most important customer
responsibilities we have as suppliers or
distributors is to help simplify or lessen
these constrictions.

Development boards, EDA software
tools, and reference designs have long been
the traditional tools for design engineers.
But compiling these configurations does not
relieve stress in critical areas, and more than
likely can intensify the problem. Reducing
time is the common critical element, and
accelerating the development cycle should
become an engineer’s prime objective.

Nu Horizons Electronics Corp. has
formed an exclusive partnership with
Xilinx® to provide a complete online evalu-
ation and development environment using
TechOnLine™ VirtuaLab™ technology.
Rather than waiting for parts and boards,
you can now can evaluate the latest Xilinx
technology, learn new tools, and take real
measurements at the click of a button. 

How VirtuaLab Works   
TechOnLine has served the educational
needs of the engineering community since
1995. Their solutions are designed to
build awareness, educate and train audi-
ences, and enable the real-time evaluation
of hardware and software products over
the Internet. 

VirtuaLab goes beyond the software
simulation usually associated with web-
based design; you can access hardware and
software with just a browser. From virtual-
ly anywhere in the world, design engineers
with an Internet connection can experi-
ence the advantages of designing Xilinx
DSP solutions with the Xilinx/Nu
Horizons VirtuaLab.

When you begin a VirtuaLab session,
you can be assured of a consistent experi-
ence and a controlled environment. You
can schedule time on VirtuaLab 24/7
according to your local time zone, and the
scheduled date can be integrated into your
Microsoft™ Outlook calendar. 

The first user interface is very famil-
iar: a Windows™ or Linux™ desktop
on which locally stored files can be
moved onto an LDAP (lightweight direc-
tory access protocol) environment on
TechOnLine’s servers. In this way, bench-
marks, applications under development,
and other proprietary software can be
run on the target board, within a person-
alized file structure. Security is always a
top priority. 

From the Windows desktop, you move
to the remote target control interface,
which provides remote control of the hard-
ware with the same capabilities you would
have as if the board was connected to your
local PC. Additional functionalities
include the ability to: 

• Reset the platform

• Power-cycle the platform

• View a Web-cam display of the
VirtuaLab

• Control voltage 

• View a component description 

• Observe LEDs 

• Utilize a virtual touch screen

The remote target control gives you the
ability to stimulate and observe the hard-
ware, and can best be described as providing
access to all the features of the hardware by
having it on the Windows desktop.  During
a VirtuaLab session, you will have exclusive
use of the evaluation platform and access to
a complete Integrated Development
Environment (IDE) that includes sample
Xilinx high-performance DSP application
software, as well as the ability to compile
and upload code or any other application.

An innovative support feature called
“shadowing” allows Nu Horizons’ field
applications engineers to log into your ses-
sion, providing you with technical assis-
tance if needed.

Early Access: The Designer’s EdgeEarly Access: The Designer’s Edge

Winter 2004 Xcell Journal 81

Nu Horizons and Xilinx provide high-performance DSP technology tools 
with the online Nu Horizons Spartan-3-2000 platform.
Nu Horizons and Xilinx provide high-performance DSP technology tools 
with the online Nu Horizons Spartan-3-2000 platform.
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The Nu Horizons/Xilinx VirtuaLab
Architects and designers can reserve exclu-
sive blocks of time by simply logging onto
VirtuaLab.TechOnLine.com to register. You
can select one of three types of interactive
VirtuaLab experiences:

1. New Xilinx user – Although techni-
cally astute, you have not been
exposed to either the development
tool flow or the Xilinx FPGA 
architecture. 

2. Xilinx-aware user – You have designed
with previous Xilinx products but may
not know about the latest solutions. 

3. Expert Xilinx user – You are profi-
cient in both standard and advanced
products architecture, and are licensed
in most or all of the EDA design tools
available for development.

The opportunity to return and contin-
ue your studies or design work is always
possible with VirtuaLabs’ LDAP environ-
ment, which provides secure storage; how-
ever, you can always transfer your files if
you prefer.

Once in the VirtuaLab environment,
you can compile code, measure board per-
formance, and set breakpoints – anything
that you could do if the evaluation board
was being controlled by your own PC.  

What Can I Evaluate?
Working with Xilinx, the Nu Horizons
engineering teams offer a full portfolio of
educational aids, as well as direct access to
Xilinx design flow tools and high-speed test
equipment. 

Our first laboratory consists of the Nu
Horizons Spartan-3™-2000 evaluation
platform (Figure 1), which is a very flexible
testing platform that allows you to evaluate
the Xilinx XC3S2000 FPGA and develop a
multitude of applications. One of the Nu
Horizons/Xilinx VirtuaLab applications is
focused on high-performance FPGA DSP
functionality. 

You can develop advanced algorithms
and perform complex measurements
through a full complement of test equip-
ment connected to the Spartan-3-2000
environment. Both a signal/pattern genera-

• Simple FFT with a 256-tap FIR filter
and interpolation by three. Ease of use
and reasonably high performance allow
you to evaluate the tool interface as well
as the hardware. The filter design is pro-
vided using the FDA tool to generate
the coefficients, allowing you to modify
the coefficients and view the results.
Simulation can be run in System
Generator, as well as live in hardware.

• Equalized 16-QAM demodulator,
including the adaptive filter. The
receiver architecture provides subsys-
tems that demonstrate adaptive chan-
nel equalization and carrier tracking on
a random QAM data source.

The Spartan-3-2000 platform delivers
acquisition/conversion  capability through
two high-performance plug-in modules
and two mid-range performance platform
solutions.

ADC Platform Solution
The Nu Horizons Spartan-3-2000 evalua-
tion platform includes a mid-range ADC

tor and high-speed oscilloscope are con-
nected to high-speed analog-to-digital con-
verter (ADC) and digital-to-analog
converter (DAC) modules, and each piece
of Agilent™ test equipment is placed in
the host mode so you can remotely manage
the equipment’s front panel controls. You
can save settings and scripts easily within
your I- or H-drive private folders to re-use
for future sessions.

Having real signal insertion and being
able to measure real output means that you
can validate your algorithms, transforms,
and functions, and simultaneously have
confidence that all results are both precise
and authentic. 

Reference DSP designs are provided
within the VirtuaLab. These designs allow
you to evaluate the Spartan-3-2000 FPGA
in a pre-verified environment. Reference
designs include:

• Existing System Generator tutorial to
introduce engineers to other features
such as the ChipScope™ tool, HDL
co-simulation, hardware co-simulation,
and the PicoBlaze™ processor.

Figure 1 – Nu Horizons Spartan-3-2000 evaluation platform
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on the main platform. You can use the
Linear Technology™ LTC1865L 16-bit
150 ksps ADC in ratio metric applications,
or with external references. The high-
impedance analog inputs and the ability to
operate with reduced spans down to 1V
full scale allow direct connection to signal

sources in many applications – eliminating
the need for external gain stages.

High-Performance 
A/D Acquisition Module
The high-performance ADC acquisition
modules interface directly to the Nu

Horizons Spartan-3-2000
evaluation platform also pro-
vided by Linear Technology.
These ADC development
boards offer 12-14 bits of
resolution, and sampling
rates from 25-40 MHz. 

The Linear Technology
ADC development boards
(see Table 1) are designed to
digitize high-frequency,
wide-dynamic range signals.
These boards target applica-
tions such as telecommuni-
cations, digital imaging,
spectrum analysis, and cel-
lular base stations.

DAC Platform Solution 
The Spartan-3-2000 evaluation platform
includes Linear Technology’s  LTC1654L
14-bit, 8 conversion rate DAC. The
LTC1654 is a dual rail-to-rail voltage out-
put 14-bit DAC that includes output
buffer amplifiers and a flexible serial inter-
face. The LTC1654L has two programma-
ble speeds: a fast and slow mode with ±1
LSB settling times of 3.5 ms or 8 ms,

respectively, and supply currents of 750 mA
and 450 mA in the two modes. The
LTC1654 also has shut-down capability,
power-on reset, and a clear function to 0V.

High-Performance DAC Module
The Spartan-3-2000 evaluation platform
includes an interface to Intersil™ high-speed
DAC ISL5x29EVAL1 evaluation modules
(see Table 2).

You can develop high-performance DSP
applications, such as quadrature transmit
with an IF range of 0-80 MHz and med-
ical/test instrumentation and equipment. You
can evaluate the Intersil technology in con-
junction with the Xilinx Spartan-3 FPGA in
high-performance DSP designs.

Figure 2 illustrates how you can load a
DSP application, provide signal insertion, and
measure output waveform.

Conclusion
Today’s semiconductor industry is largely
driven by new technologies that are barely
available, and aggressive development sched-
ules that utilize these new technologies.
Suppliers and distributors typically deliver
boxes of building blocks, and if the design
engineer works many extra hours assembling
the pieces, they may wonder if this new tech-
nology can even perform the task at hand.

Nu Horizons and Xilinx have looked close-
ly at the challenge of limited resources, tight
schedules, and dramatic learning curves and
built an approach with TechOnLine’s
VirtuaLab that provides you with a time-sav-
ing, innovative, and zero-cost solution to eval-
uating technology.

In addition to its primary use by engineers,
the VirtuaLab can help other departments as
well. Online product evaluation, sales demon-
strations, and internal training are example
applications of VirtuaLab technology. Each
VirtuaLab is delivered with a range of tools
including a product tutorial or quick start
script – enabling novices to exercise the hard-
ware without writing any code, or a complete
IDE for the expert expecting a full-featured
experience.  

For more information, visit the 
Nu Horizons/Xilinx VirtuaLab at VirtuaLab.
TechOnLine.com or contact your local 
Nu Horizons sales representative. 

520B-A LTC1748 14 bit 80 Msps Ain < 40 MHz

520B-B LTC1748 14 bit 80 Msps Ain > 40 MHz

520B-C LTC1745 12 bit 25 Msps Ain < 40 MHz

520B-D LTC1746 14 bit 25 Msps Ain < 40 MHz

520B-E LTC1747 12 bit 80 Msps Ain < 40 MHz

520B-F LTC1747 12 bit 65 Msps Ain > 40 MHz

520B-G LTC1742 14 bit 65 Msps Ain < 40 MHz

520B-H LTC1742 14 bit 65 Msps Ain > 40 MHz

520B-I LTC1741  12 bit 65 Msps Ain < 40 MHz

520B-J LTC1741 12 bit 65 Msps Ain > 40 MHz

520B-K LTC1743  12 bit 50 Msps Ain < 40 MHz

ISL5629EVAL1 2 x 8 210 MHz

ISL5729EVAL1 2 x 10 210 MHz

ISL5829EVAL1 2 x 12 210 MHz

ISL5929EVAL1 2 x 14 210 MHz

Agilent
Signal

250 Khz – 3Ghz

Agilent 4
1 GS/Sec

4 Ch
Intersil 125 MHz D/A

LTC1865L
16 bit 150ksps

Spartan-3-2000 Target
TechOnLine
VirtualLab

Target Server

LAB Control

Target

Parallel Cable IV

Programming Interface

 Drive Space –
Customer

 Drive Space –

 Drive Space –
Read Only

C

H

I

Figure 2 – TechOnLine VirtuaLab block diagram

Table 1 – Linear Technology high-speed 
acquisition modules 25-80 Msps

Table 2 – Intersil high-speed conversion modules
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by Jose C. Da Silva  
Design Engineer
LIP (Laboratorio Instrumentacao e Particulas) – Lisbon
jc.silva@cern.ch  

Adarsh Jain
Design Engineer
LIP (Laboratorio Instrumentacao e Particulas) – Lisbon
adarsh.jain@cern.ch

Implementing 70 high-speed differential
pairs on a 9U PCB using regular off-the-
shelf deserializers can be a nightmare; high-
speed PCB design, noise, clock jitter, and
signal integrity are the main challenges.
Even the smallest deserializer packages
would occupy roughly two-thirds of a 9U
board, on which you would still need space
for the logic – configuration, memories,
access interfaces, and local control.

Our design concerns a data concentrator
card (DCC), part of a large high-energy
physics experiment at the European
Organization for Nuclear Research
(CERN) in Geneva. A very large particle
accelerator called the Large Hadron
Collider (LHC) is being constructed near
the Franco-Swiss border west of Geneva. A
number of experiments will be conducted
to observe and measure the various proper-
ties of several existing, and possibly new,
fundamental particles.

Implementing 70 High-Speed 
Channels with 9 FPGAs
Implementing 70 High-Speed 
Channels with 9 FPGAs
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Using nine Xilinx XC2VP7 circuits on a data concentrator card greatly 
reduced costs and PCB design effort and increased board reliability.
Using nine Xilinx XC2VP7 circuits on a data concentrator card greatly 
reduced costs and PCB design effort and increased board reliability.



One such experiment is called the
Compact Muon Solenoid (CMS), which is
based on a large superconducting magnet
system. The CMS will have a number of sub-
detectors, including an Electromagnetic
Calorimeter (ECAL). The ECAL will use
about 80,000 crystals to capture the energy
of the photons and electrons. The data col-
lected from these crystals will be captured,
processed, and transmitted by the DCCs
(about 60 of them) for further analysis. 

Design Overview
The DCC includes 70 high-speed optical
receiver channels (6 blocks of 12 channels
each) implemented on a 9U VME board
(36 cm x 40 cm) working at 800 Mbps
using a 2-byte 8b/10b protocol.

For the implementation of the trans-
ceivers, we had two choices: 

1. As many as 70 discreet deserializers,
along with 35 FPGAs for the required
control (this number was based on
cost considerations), for a total device
count of 105. This would have given
us more granularity and a lower cost,
but more components and hence
higher debug and testing times.

2. Only nine Xilinx® Virtex-II Pro™
devices with eight embedded
RocketIO™ transceivers on each (only
the XC2VP7-FG456 part was available
at the time). We would lose some gran-
ularity, but the PCB would be much
less dense and easier to test.

We picked the second choice, as it meant
a significant savings in device count (from
105 to 9). And because the DCCs will be in
operation for four to five years, it will have a
huge impact on overall PCB design and the
final cost of production and maintenance
from a long-term perspective. 

Also, after deserialization, we will need
to verify the integrity of received data and
reformat it for downstream processing and
analysis. We found that the remaining
resources in the selected device were enough

possible to the central power pins of the
Xilinx FPGAs. Other capacitors were
placed nearby each FPGA.

• Each FPGA received one high-quality
reference clock (low jitter – 100 ps
peak-to-peak) differential pair from an
individual buffer. We recommend using
two independent reference clock sources
to ease the internal usage of this clock
on the FPGA if using all of the
RocketIO transceivers.

RocketIO Implementation and Issues
Virtex-II Pro devices provide the first stage
of processing for the front-end data
(received from the on-detector electronics)
on the DCC board. Each device receives
800 Mbps of serial data on each of its eight
channels from the optical receivers, for a
total of 6.4 Gbps per device. In a nutshell,
the purpose of the Xilinx FPGAs is to
process this data and prepare it for readout.

RocketIO transceivers are used to dese-
rialize the received data and perform
8b/10b decoding. The 16-bit data is then

for most purposes. Of the 72 transceivers
available, we use 70 and leave the other two
unconnected. The use of 800 Mbps per
channel is a system choice, but the design
could work at 1.6 Gbps or higher. 

PCB Design Issues
The DCC PCB is a 12-layer board with
four power planes and eight routing layers. 

We have mostly followed the main
rules for high-speed design and analog
considerations from Chapter 4 of the
Xilinx RocketIO™ Transceiver User
Guide, such as:

• All high-speed traces
are impedance con-
trolled and routed
manually in
“microstrip-edge couple
differential pair,” with
impedance matched to
50 Ohms and as close as
possible to the source
(respecting the crosstalk
rules). No other lines were
designed in the same area
as the high-speed layout,
where the immediate layer
was the ground power plane.

• All high-speed differential
pair signals were AC coupled
with 100 nf capacitors and
internally terminated to 50 Ohms.

• All of the transceivers’ power supply
pins were filtered with an individual
LC filter and a separate power plane
for the “analog” supply, also with spe-
cific filters. No transceiver power sup-
ply was left unconnected, regardless of
whether it was used or not.  We used
the same type of LC filters on the opti-
cal receivers.

• Approximately 350 power supply decou-
pling capacitors of three different values
(to match the main clock frequencies in
use on the board) were placed as close as

We picked [9 Xilinx Virtex-II Pro devices], as it meant 
a significant savings in device count (from 105 to 9).

Figure 1 – The DCC board fully assembled, 
with the nine Virtex-II Pro FPGAs on the left.
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written in a programmable latency buffer
to match the trigger latency. A number of
data verification checks are carried out. The
data is finally formatted into 64-bit words
and written into FIFOs. From there, it is
read out by the event builder on the board. 

Without going into the details of the
functionality, we will focus on the various
issues we faced (and solved) in making the
real hardware churn out correct data, with
a focus on the use of RocketIO trans-
ceivers. Much of what we learned was on a
trial-and-error basis. The main issue was
related to the reference clock, which we’ll
describe in detail in the next section.

The other significant issue that we
faced was the alignment of the K character
within the 2-byte data path of the received
data. We were initially using
the Gigabit_Ethernet primitive
in half-rate mode for a 2-byte
data path. But we observed that
not all of the channels were
putting the K character in the
same place within the 2-byte
word and there was no way to
force this alignment in the
Gigabit_Ethernet primitive
(the ALIGN_COMMA_MSB
parameter of this primitive is
set to FALSE by default).

Because our protocol expect-
ed the K to always appear on the
LSB of the word, we switched to
the GT_CUSTOM primitive,
where we could force the alignment and sub-
sequently swap the position of K to the LSB
of the data. The simulations showed perfect
alignment – but in real hardware, some of
the channels were getting misaligned.

A colleague of ours referred us to the
design note about 32-bit word comma
alignment in the RocketIO transceiver user
guide. Although this is usually needed only
for a 4-byte data path, we implemented a
similar scheme for our 2-byte data path and
this fixed our misalignment problem. 

Clock, Programming, and JTAG
We cannot over-emphasize the need for a
high-quality reference clock. Besides satis-
fying all of the criteria specified in the
RocketIO user manual, we made sure that

our reference clock was as clean as we could
possibly get (see Figure 2). 

We used a quartz-based phase-locked
loop (QPLL) circuit developed at CERN
for our system to provide the best jitter-free
clock source (100 ps peak-to-peak). We
found that a lot of problems in the per-
formance of the RocketIO devices could be
traced to a noisy/jittery reference clock. If
you are using RocketIO transceivers on
both halves of the chip, then it’s much bet-

ter to have two reference clocks. We believe
this helps even if you are running the
RocketIO transceivers in half-rate mode
(which is our case).

Another aspect of the clocking scheme
that we used was to pass the reference clock
through a global clock buffer after an input
global differential clock buffer. We
observed improved stability and a more
uniform distribution of the reference clock
with the FPGA editor.

Also, though not directly related to the
high-speed transceivers, we found that an
independent post-configuration DCM
reset logic (usually recommended if you
have an external feedback clock) is useful
even when using internal feedback. This
solved a problem we were having with the

DCMs where they were sometimes not
locking after reconfiguration. Xilinx
Technical Support helped us find the solu-
tion (Xilinx Answer Record 14425).

As for programming and JTAG, we
used the same group of EPROMs to con-
figure eight of the nine FPGAs. One of the
FPGAs is the master and provides the clock
for all the devices in the chain. The ninth
FPGA has a different pinout and a separate
EPROM for itself.

All circuits are connected in the same
JTAG chain, which improved reprogram-
ming time mainly during the “test” stages.
We found that a need exists for a pull-up
resistor on the TDO output of each Xilinx
device, something that we hope Xilinx will
add in future devices. The JTAG is used
also to check the board interconnections
after assembly.

Conclusion
In this article, we’ve shown the advantages
of using embedded deserializers instead of
discrete components on a large project. By
using nine 456-pin FPGAs to do the same
job as 105 TQFPs, we saved time, both in
the design and debugging phases. Plus, this
is a flexible approach, as the FPGAs are
reprogrammable and a more economical
solution in the long term.

We are currently considering migrating
to a bigger Xilinx device as our processing
requirements from the FPGAs increase.
Therefore, we are studying the new devices
available and how such a migration will
affect our PCB design in terms of the rout-
ing of the high-speed lines.

We believe that by following the design
rules concerning high-speed design, like
clean clock distribution, power supply 
filtering, and good routing of the internal
reference clocks, it is possible to obtain a
successful design in good time. For more
information, please write to us at
jc.silva@cern.ch or adarsh.jain@cern.ch. 

... this is a flexible approach, as the 
FPGAs are reprogrammable and a more

economical solution in the long term.

Figure 2 – Clock jitter measurement



by Karen Parnell
Automotive Product Marketing Manager
Xilinx, Inc.
Karen.parnell@xilinx.com

The automotive industry is constantly striv-
ing to reduce costs but at the same time
introduce new and innovative comfort and
convenience features to meet customer
demand. Almost all automotive companies
have adopted various busing systems to
reduce wiring complexity and weight, and
hence overall costs. This also results in
increased fuel efficiency.

Although flexible topologies are ideal,
the need exists for global standards to offer
better business cases to suppliers, which
would ultimately lead to greater competi-
tion and lower prices. J1850 (in the U.S.)
and the ubiquitous Bosch™-defined
Controller Area Network (CAN) (in
Europe) are the most popular standards to
date, but in some applications can be con-
sidered overkill.

In such applications you could consider
using LIN as an alternative. The Local
Interconnect Network (LIN) is a single-
wire UART-based networking architecture
originally developed for automotive sensor
and actuator networking applications. The
LIN master node connects the LIN net-
work to higher-level networks like CAN,
extending the benefits of networking all the
way to the individual sensors and actuators.

LIN Bus – A Cost-Effective 
Alternative to CAN
LIN Bus – A Cost-Effective 
Alternative to CAN

92 Xcell Journal      Winter 2004

PLDs are ideal for implementing
LIN buses, offering fast time 
to market, flexible design
options, low cost, and low
power consumption.



In addition to CAN, LIN also comple-
ments Media Oriented Systems Transport
(MOST) for high-speed data rates and
FlexRay for safety-critical applications such
as steer- and brake-by-wire. Figure 1 shows
the relative cost per node and speed of var-
ious automotive networks.

Conceived in 1998, the LIN consortium
comprises car manufacturers Audi™,
BMW™, DaimlerChrysler™, Volvo™,
and Volkswagen™.  LIN is an inexpensive
serial bus used for distributed body control
electronic systems in vehicles. It enables
effective communication for smart sensors
and actuators where the bandwidth and ver-
satility of CAN is not required. Typical
applications are door control (window lift,
lock, and mirror control), seats, climate reg-
ulation, lighting, and rain sensors. In these
units the cost-sensitive nature of LIN
enables the introduction of mechatronic ele-
ments such as smart sensors, actuators, or
illumination. They can be easily connected
to the car network and become accessible to
all types of diagnostics and services. Outside
the automotive sector, LIN is used for
machine control as a sub-bus for CAN. 

A LIN network comprises one master
node and one or more slave nodes. All
nodes include a slave communication task
that is split into a transmit and a receive
task, while the master node includes an
additional master transmit task. The com-
munication in an active LIN network is
always initiated by the master task: the
master sends out a message header that
comprises the synchronization break, syn-
chronization byte, and message identifier.

Exactly one slave task is activated upon
reception and filtering of the identifier,
which starts the transmission of the mes-
sage response. The response comprises two,
four, or eight data bytes and one checksum
byte. The header and the response part
form one message frame. 

The identifier of a message denotes the
content of a message but not the destina-

have developed robust and fully verified IP
cores aimed at FPGA and CPLD architec-
tures. One example is their LIN core, which
occupies a fraction of a low-cost FPGA (for
example, 13% of a 200,000 system-gate
device), thus leaving space for additional
LIN nodes, CAN nodes, UARTs, soft core
processors, or simply glue logic.

The LIN interface – whether imple-
mented in programmable logic, ASIC, or
ASSP – is approximately half the cost of a
CAN node.

LIN Bus Benefits
The reliability of LIN is high, but it does
not have to meet the same levels as CAN.
A LIN bus is designed to be a logical
extension to CAN. It is scalable and low-
ers the cost of satellite nodes. No crystal
oscillator or resonator is required. It is
easy to implement, has a low reaction
time (100 ms max), and predictable
worst-case timing.

The LIN bus can be implemented using
just a single wire, while CAN needs two
wires. This means that a LIN network can
also be lower in cost through simpler con-
nectors and wiring – thus also reducing the

tion. This communication concept enables
the exchange of data in various ways: from
the master node (using its slave task) to one
or more slave nodes, and from one slave
node to the master node and/or other slave
nodes. It is possible to communicate signals
directly from slave to slave without the
need for routing through the master node, or

broadcasting messages from the master to all
nodes in a network. The sequence of message
frames is controlled by the master and may
form cycles including branches.

Flexible LIN Solution
Programmable logic has long been accept-
ed as an effective way to bring designs to
market quickly and also allow design flexi-
bility right up to production and beyond.
Historically, this time-to-market advantage
and flexibility had to be balanced with
higher component costs.

But times have changed. PLDs cost
much less and can now be used in high-
volume, cost-sensitive applications such as
mobile phones, PDAs, and automotive info-
tainment systems. To enable designs to be
brought to market quickly, some Xilinx
AllianceCORE™ third-party IP providers
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Figure 1 – Relative cost per node of automotive networks

Programmable logic has long been accepted as an effective way to bring
designs to market quickly and also allow design flexibility...



weight of wiring, increasing fuel efficiency,
and reducing handling time and manufac-
turing costs. CAN also needs a 5V supply
for the bus, whereas LIN only requires 2V.
Table 1 shows the relative merits of LIN
versus CAN.

In summary, LIN offers these benefits:

• Complementary to CAN as an ultra-
low-cost sub-network

• Self-synchronization mechanism means
no quartz oscillator required

• Low-cost silicon implementation using
on-chip UART or SCI

• Single wire + low baud rate = reduced
harness cost

• No protocol license fee

Microcontroller Implementation
There are many ways to implement LIN in
semiconductors:

• Software: bit bashing

• Software: UART implementation

• Hardware: MCU with dedicated 
LIN port

• Hardware: PLD

Let’s look at each way and explore the
benefits and pitfalls of each.

Software: Bit Bashing
A LIN node can be implemented in many
microcontrollers (MCUs) with no addi-
tional hardware except for a physical layer
driver device. It can be implemented using
existing on-chip MCU resources such as
timers, GPIO, and interrupts – effectively
“bit bashing.”

This type of implementation does have
restrictions – designers must adhere to

strict real-time programming constraints to
meet the full LIN specification. This is
expensive with respect to MCU timing and
on-chip resources and leaves very little
bandwidth for other application code.

LIN nodes based purely on “bit bash-
ing” may also be complicated to test, par-
ticularly when integrated with existing
RTOSs. With this type of implementation,
it would be very difficult to achieve accu-
rate bit timing measurement and control
and may not be power efficient or practical.

Software: UART Implementation
LIN was originally conceived to make use
of existing UARTs within standard MCUs,
along with on-chip timers, GPIO, inter-
rupts, and serial ports. This is a better way

of implementing than simply “bit bashing”
but may have certain limitations in designs
that already use the on-chip serial port for
other tasks.

This implementation may also burden
the application code with LIN protocol
requirements and will complicate the
design and testability of the code. This
method also needs to be complemented
with GPIO functionality for error check-
ing and synchronization purposes and
requires CPU activity throughout LIN
message exchange. Therefore, it is not the
most power-efficient solution. 

Hardware: MCU 
with Dedicated LIN Port
An MCU with dedicated LIN port may
appeal to more designers, as it uses off-
the-shelf verified silicon. Thus, it will not
burden the software application with LIN
protocol processing, as shown in the pre-
vious examples. This type of micro is well
suited for CAN-to-LIN bus bridging
applications where a need exists to pass
data between the two networks. This
implementation also tends to be less
power hungry than the equivalent soft-
ware solution.

As with most emerging networks,
however, the availability of silicon and
relatively high cost may be an issue and
create long lead times – so forward plan-
ning is a must with respect to ordering
devices. One of the potential downfalls of
using these devices is when more than one
LIN is needed. For example, in an ECU
gateway, you may need to use more than
one MCU – which will impact part costs,
manufacturing costs, stocking costs, and
PCB complexity.

If your design requires something out-
side of the specification provided by the
silicon vendor, this may also cause issues,

as these fixed function parts allow little or
no flexibility for customization. The
devices still require an external bus trans-
ceiver chip and a degree of real-time pro-
cessing in the MCU.

Distributed MCU solutions can also
result in complex design and test issues
associated with software-based designs;
designers may need to explore all potential
fault and interrupt loop states so that no
strange indeterminate states occur.
Exhaustive testing is costly, however, and
the test vectors can take longer to write
than the design code itself.
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Automotive Speed Cost Requirements Size in Programmable Logic
Network Per Node

CAN Up to 1 Mbps $2 Crystal oscillator, 348 slices (FPGA) 
two wires, 5V bus supply

LIN 20 Kbps $1
Single wire 256 slices (FPGA) 

40M line length or 216 macrocells (CPLD)

Table 1 – CAN versus LIN

A LIN node can be implemented in many micro-
controllers (MCUs) with no additional hardware

except for a physical layer driver device.



Hardware: Programmable 
Logic Device (PLD)
LIN implemented in PLDs offers similar
benefits to LIN implemented in an MCU-
dedicated hardware peripheral. They do
benefit from being implemented in generic
devices that are off-the-shelf, low cost, and
low power. This means that time to market
is extremely quick and easy.

The LIN implemented in PLD hard-
ware does not suffer from complicated test
issues, as testing is much simpler and deter-
minant than software-based designs. PLD
LIN does not burden the software applica-
tion with LIN protocol processing. It
allows for accurate LIN timing control and
does not require a crystal oscillator in slave
mode, thus saving costs, board space, and
power consumption. 

PLDs are generic devices. They do not
incur non-recurring engineering charges
and can be used across many projects. One
of the key advantages is the ability of the
devices to be programmed in-system, so
changing the hardware from master to slave
is a breeze. As with MCU designs, the PLD
needs an external transceiver device to drive
the line.

The main downside to using PLDs?
You may not be conversant with the
design flow, so this may not be your most
natural design route – but it is certainly
worth trying. In more integrated higher
end designs you will still need some sort
of processor support, but this can be
achieved by using an embedded soft-core
processor such as MicroBlaze™, a low-
cost 32-bit RISC processor.

LIN System Development
Automotive designers have a dilemma
when adopting a new bus standard: Should
they wait for standard silicon devices or try
to develop an ASIC with a semiconductor
supplier in advance of a final agreed and
verified protocol specification? Some speci-
fications take years to be agreed upon, ver-
ified, and ratified, so many semiconductor

suppliers are loath to start designing
devices before the specification is frozen.

To take advantage of new busing net-
works in advance of fixed specifications,
designers are turning to soft IP cores
embedded within programmable logic
devices. This allows designers to try out
new ideas risk-free and add in customized
solutions within the bounds of the proto-
col.  This approach also allows cut-down
versions of the full interface if not all of the
features are required – thus saving even
more silicon area.

Now that programmable logic prices
have dramatically dropped, they can even
be considered a viable way of designing
production solutions as well as prototype
builds. A key benefit of having a LIN inter-
face embedded within a PLD in the form
of an IP core is that it can be reconfigured
remotely to be either a master or a slave
node, thus aiding greatly the test and
design phases. Even in field fault diagnosis
and vehicle maintenance, the ability to
make nodes either master or slave may be
beneficial.  In the case of a non-volatile
CPLD, reconfiguring the node is simply 
a matter of erasing the device and re-
programming it with a new personality.

The ability to switch between master
and slave in the same device means that
inventory and stocking costs are reduced –
plus there is only the need to qualify one
device rather than two, thus saving the
lengthy device qualification time and costs
associated with it. 

PLDs from Xilinx are offered in the
extended temperature range of -40°C to
+125°C for automotive applications. PLDs
come in two main types: the larger FPGAs
and simpler, low-power CPLDs.

Conclusion
The LIN bus can be used as a cost-effective
alternative to CAN in low-speed automo-
tive and industrial networks. To add even
more flexibility to the network, the LIN
interface can be implemented in reconfig-

urable logic, which is not only low power
but can be reconfigured remotely to be
either a master or slave in the device.

The ability to reconfigure the device to
either node can help with fault diagnosis in
the field, test in development, and also cut
down on inventory by only stocking one
device. This also reduces device qualifica-
tion time and costs.

For more information, visit these web-
sites: CAN – www.can.bosch.com; LIN –
www.lin-subbus.org; LIN IP core –
www.intelliga.co.uk; Xilinx automotive
devices – www.xilinx.com/automotive/. 
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LIN IP Cores and LIN 
Application Note

Xilinx currently has two
AllianceCore partners that offer
fully verified LIN IP cores:
Intelliga Integrated Design Ltd.
and CAST™ Inc. Further details
of these IP cores can be found at
www.xilinx.com/ipcenter/.

You can download Xilinx
application note XAPP432,
“Implementing a LIN Controller
on a CoolRunner-II CPLD,” to
use in an existing CoolRunner-II
design, or simply to understand
how to design your own LIN net-
work. The application note is
available at www.xilinx.com.

For more information, please
e-mail the automotive team at 
automotiveteam@xilinx.com.

Note: The LIN IP Core from Intelliga
Integrated Design Ltd. and CAST Inc.
are fully supported for use in automo-
tive designs. 

The LIN implementation in XAPP432
is a reference design and should be used
for evaluation purposes only.

The ability to switch between master and slave in the same device 
means that inventory and stocking costs are reduced ... 



by Cindy Andruss
Instructional Designer
Xilinx, Inc.
cindy.andruss@xilinx.com

Designers have a need for speed – not only
in their designs but also in their learning
curves. Keeping up with the latest infor-
mation about Xilinx products and services
is a critical part of getting your product
out of design and into the market. 

“Knowing what and how you need to
learn in order to increase performance is
vital in today’s global economy, where lack
of knowledge can spoil your competitive
edge,” said Patrice Anderson, Xilinx®

Education Services manager. “It’s no secret
that specialized training on Xilinx software
tools can help you reduce your time to
knowledge and gain an advantage over
your competitors.”

Education Services understands that
effective training is critical to a designer’s
improved productivity and performance.
Although our website already addressed

many customer training needs, we real-
ized that we could make improvements.
Xilinx formed a team of experts to ana-
lyze the website and as a result deter-
mined that a self-service portal was the
best solution. The “extreme makeover”
included features to reduce your time to
knowledge more than ever.

The new training catalog on the
Education Services website gives you a
speedy, personalized, low-cost, flexible,
and quality training solution at your fin-
gertips anytime, anywhere.*

Improved Navigation
The makeover team, which included web
developers and designers, programmers,
system administrators, usability experts,
instructional designers, and technical writ-
ers, put their heads together to increase the
usability of the aging and content-heavy
Education Services website. Since its last
redesign three years ago, the site was
beginning to show wrinkles, and the navi-
gation had become complicated.

The team wanted to create a quicker
route to course descriptions and registra-
tion. They also wanted to augment train-
ing services and course offerings to help
decrease knowledge gaps among Xilinx
designers.

In addition to streamlining the navi-
gation, the team also set out to redesign
the online enrollment process, changing
keywords in the search menus to provide
a more intuitive registration experience.
Now you can find instructor-led, live,
and recorded e-Learning courses more
easily by curriculum paths based on your
design specialty. From course description
to enrollment, fewer clicks get you where
you need to go faster (see Figure 1).

“Our usability studies showed us
where we could make a significant
impact on our customers’ training experi-
ence,” said Rohan Thompson, web
redesign project manager. “The subse-
quent overhaul to the Education Services
website reflects what our customers told
us they wanted.”

Education Services Trims 
Your Learning Curve
Education Services Trims 
Your Learning Curve
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Easy Payment Methods
The training catalog now
offers more payment meth-
ods to offer flexibility and
quicken the enrollment
process. Simply use your credit card
when registering for courses in the
training catalog, or apply your compa-
ny’s training credits or purchase order
number toward training services.

Be sure to check with your compa-
ny representative to find out whether
you have low-cost payment options
through a Xilinx Productivity
Advantage (XPA) agreement. The
XPA offers all Xilinx software, educa-
tion, support services, and IP cores in
one package customized to meet your
needs. Quite a number of training modules
in the training catalog require no payment
at all.

New Services
Education Services currently offers more
than 14 instructor-led courses, five live
online courses that together include 17
hands-on labs, and 14 recorded e-Learning
modules to help you maximize your pro-
ductivity and get your designs to market
faster. Register for any of these learning
opportunities in the training catalog or
take advantage of new online services such
as skills assessments, personalized learning
plans, and more free recorded e-Learning
modules.

You can preview classroom courses from
your desktop and meet the Xilinx instruc-
tors, all experts in their fields, via the
“Presenter’s Bio” link in the training cata-
log. Offered at no charge, these online serv-
ices are perfect for every budget and require
absolutely no travel at all.

Philip Nowe, a hardware designer and
consultant in Canada, said he is a big fan of
online services, especially recorded e-
Learning modules, because they maximize
his time. “The modules give me the ability
in one hour or less to get most of the infor-
mation I need about a particular tool or
software,” he said. “I usually get answers to
any very specific questions I might have
from my local FAE, or I register for a full
course on the subject.”

Zhou, a design engineer at
Juniper Networks™ in
Sunnyvale, California, recently
took the ChipScope™ Pro
free recorded e-Learning mod-
ule during a training break at
work.

“The ChipScope Pro
recorded e-Learning was very
helpful to me to catch up with
the tool,” Zhou said. “I was
able to apply the learning
immediately to gain field expe-
rience. When I have a prob-
lem, I look for e-Learning
courses for more in-depth
training on that tool.”

Empowerment
Managing your own training is like driving
a car. You have the freedom to go whenev-
er and wherever your wish. You get that
kind of power everytime you visit the
training catalog. 

You can take control of your training
with the self-directed features in the training
catalog, such as self-registration; self-paced,
recorded e-Learning; and self-managed
training plans. Feel vested in your training
by completing online course evaluations to
let Xilinx know how it can continue to
improve its services and products. 

Nowe said that he prefers self-registering
for courses online. “I like to search for
courses on my own without the help of a
registrar because it’s faster,” he said. “The
training catalog also makes it easier for me
to keep track of courses I’ve already taken
and find new ones that interest me.”

Conclusion
The training catalog is an empowering
solution that meets your needs for a per-
sonalized, speedy, flexible, low-cost, and
quality experience. Find out how Xilinx
training can trim your learning curve.
Contact Education Services at 877-XLX-
CLAS or registrar@xilinx.com, or visit
www.xilinx.com/education/. 

* The training catalog is available to all Xilinx
customers; however, registration for instructor-
led courses is currently available in the North
American region only.

Management and Business 
Workflow Processes
You can maximize your productivity and
time with a solution that lets you or your
engineers get Xilinx training right when
you need it for immediate application on
the job. The training catalog is open 24/7
and allows training to be an integral part of
the design process.

Education Services’ recorded e-Learning
fits especially well into the workflow learn-
ing model. The recorded modules are typi-
cally less than an hour in length and help to
familiarize you with Xilinx technologies
and short topics. In some cases, the mod-
ules offer you a preview of the content cov-
ered in multi-day, instructor-led courses.

Some recorded e-Learning modules
cover topics that simply did not fit within
the time constraints of an instructor-led
course provided in the classroom. Aibing
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Figure 1 - Xilinx Education Services redesigned its training 
catalog to reveal new online services and navigation features.

Reduce Time to Knowledge with 
the Xilinx Training Catalog

• Search courses by curriculum paths

• Maximize training expenses

• Assess your skills and take only the training
you need when you need it

• Redeem training credits purchased 
via the XPA program 

• Learn from Xilinx-certified instructors





by Craig J. Kief 
Graduate Student 
University of New Mexico
kiefc@ece.unm.edu

Both universities and corporations share a
desire for students and engineers who can
easily integrate into high-technology pro-
fessions after graduation. Collaborative
efforts are the key to developing the neces-
sary skill sets.

One such collaboration is the recent
Xilinx® University Program – University of
New Mexico (XUP-UNM) prototype
board project. When the XUP needed
someone to develop a prototype board for
donated Virtex™ 1000 devices, UNM
jumped at the chance. The quality of this
project clearly shows the high level of inter-
action between the local Xilinx facility, the
XUP, and the university.

UNM students had to meet several key
design criteria before beginning the proj-
ect. The most important was that they had
to design the board using donated Virtex
1000-BGA560 FPGAs. These million-
system-gate devices are ideal for university
projects. Their functionality and size make
them suitable for a wide range of projects
with the Xilinx Integrated Software
Environment (ISE), System Generator, or
Embedded Development Kit (EDK).

The UNM FPGA prototype project shows how the Xilinx University Program 
helps students learn about programmable logic.

Board of Education
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Project Requirements
As shown in Figure 1, the primary goal was
a platform on which students could com-
plete entire projects, as well as one that
would allow easy interfacing to multiple
external options for increased capability. 

Another requirement for the prototype
board was to allow a maximum number of
inputs and outputs; students need to be
able to get signals into and out of the
board. Where possible, it was beneficial to
interface with Digilent™ series circuit
cards already available.

Because Digilent input/output boards
are available to schools through the XUP
donation program, this allows students a
wide range of input and output options by
switching between plug-in modules.

The board provides a multitude of out-
put connectors:

• Standard 40-pin 0.1 inch connectors
on Digilent I/O boards, which make it
possible for students to obtain low-cost
push pins that allow interfaces to logic
analyzers and other test equipment.

• Hirose 140-pin con-
nectors that mate to
the new high-speed
bus series of Digilent
boards, featuring
memory and analog-
to-digital conversion.

• Standard 96-pin con-
nectors that allow
basic interfacing to a
6U-VME mounting
platform. 

• Standard 9-pin serial
and 25-pin parallel
connectors and their
associated interfacing devices.

A nice feature is the ability to switch the
25-pin connector between enhanced paral-
lel port and JTAG modes. By flipping a
switch, students can JTAG program the
board using a standard parallel printer
cable. This is a very useful feature in a stu-
dent environment because it allows profes-
sors to mount the boards in a stationary
position; students can program the board

Distribution System (PDS) Design: Using
Bypass/Decoupling Capacitors.”

Both students and professors are cur-
rently evaluating prototypes of these plat-
forms at the University of Texas (Austin),
University of Texas (El Paso), and West
Point. According to Colonel Bryan Goda,
an academy instructor at West Point, “This
board has great potential within an under-
graduate curriculum. We are looking for-
ward to seeing what it can do.”

Conclusion
The XUP-UNM prototype platform is a
tremendous example of how academia and
industry can work together to accomplish a
common goal. Experiences learned in these
types of endeavors pay great benefits by
allowing students to learn from both real-
world practice and theoretical classroom
experiences.

UNM has been a long-time supporter
of Xilinx software, hardware, and 
training, and the school has developed a
number of online tutorials on many topics.
One series includes ISE, VHDL,
Floorplanner, System Generator, 
and XPower (www.eece.unm.edu/vhdl/).
Another series includes EDK and System
Generator (www.eece.unm.edu/xup/ and
www.eece.unm.edu/signals/). And yet
another indication of the interactive
efforts between academia and industry
are the annual professors workshops
(www.eece.unm.edu/xup/workshops.htm). 

Dr. Howard Pollard, Dr. Marios
Pattichis, Alonzo Vera, and Jorge Parra of
UNM were essential to the success of this
project. Frank Wirtz and Reno Sanchez of
Xilinx Albuquerque, Rick Ballantyne of
Xilinx Canada, and Jeff Weintraub of XUP
were also a tremendous help. For more
information on any of these topics, e-mail
Craig Kief at kiefc@ece.unm.edu or Alonzo
Vera at alonzo@ece.unm.edu. 

without vertically mounting a program-
ming cable to the header pins, reducing the
possibility of the header pins breaking off.

From an academic standpoint, another
great benefit is the placement of dual
FPGAs on a single platform. The design
team connected 100 pins from one FPGA
directly into the second FPGA. The ability
to easily develop projects that process data
between dual FPGAs adds an entirely new
level of project capabilities.

Power Supply
Because the XUP-UNM board consists of
dual Virtex FPGAs, three XC18V04 in-sys-
tem programmable configuration PROMs,
and a wide variety of other parts, we need-
ed a power system that could provide sev-

eral amperes of filtered power over an
extended period of time. The heart of the
power system is a Texas Instruments™
TPS54616 buck switching power supply.
This supply provides a stable 3.3 volt out-
put to a maximum 6 amp range.

Because everything else on the board is
driven by this source, 6 amps was a good
supply level. Students designed a large por-
tion of the power filtering using Xilinx
application note XAPP623, “Power

“This board has great potential within an 
undergraduate curriculum. We are looking 

forward to seeing what it can do.”
– Colonel Bryan Goda, West Point

Figure 1 – XUP-UNM prototype platform
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by David Vant
VP of Marketing
Newport Networks
david.vant@newport-networks.com

IP transport has the potential to unlock an
enormous variety of communication
opportunities. Voice over Internet Protocol
(VoIP) is just the first in an avalanche of
powerful IP-based services. These will
include sophisticated messaging; storefront
and customer relationship management
applications; and complex and personal-
ized services for mobile workers, home
workers, and “hot deskers.”

To secure the critical mass of subscribers
that will allow this powerful new age to
take off, IP network owners need a cost-
effective and flexible interconnect that will
support the full diversity of IP services both
now and in the future. Carrier-class robust-
ness is also mandatory. 

Newport Networks chose the Xilinx
Virtex-II™ FPGA architecture to ensure
those qualities in its next-generation IP-IP
interconnect solution, the Newport
Networks 1460 session controller.

Newport Networks’ 1460 session controller enables direct IP-IP 
interconnection to support the full potential of IP services. 
Newport Networks’ 1460 session controller enables direct IP-IP 
interconnection to support the full potential of IP services. 

FPGAs Ensure Flexible and 
Adaptable IP Interconnection 
FPGAs Ensure Flexible and 
Adaptable IP Interconnection 
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Interconnecting IP Networks
The earliest all-IP networks relied on con-
ventional public switched telephone net-
work (PSTN) gateways to interconnect
with other networks, even those with simi-
lar IP infrastructures. But a PSTN gateway
cannot support cutting-edge IP services.
Carriers will depend on these services to
open new revenue streams, secure prof-
itability, and differentiate their offerings.

PSTN gateways are also quite expensive for
making IP interconnections.

The Newport Networks 1460 session
controller solves this challenge. It sits at the
edge of the carrier network to enable serv-
ice providers to interconnect at the IP level.
Figure 1 shows how the 1460 supports an
IP-IP interconnect, controlling signaling
and media streams as they enter and exit
the network. Benefits include broadband
multimedia interconnection and lower
peering costs. 

Any solution designed to enable direct
IP-IP interconnections must be extremely

network security, ensure the availability of
accounting information for accurate
billing, and control Quality of Service
(QoS) mapping and media translations.

Building the Next Generation
Choosing whether to implement the func-
tions of a device like the 1460 session con-
troller in software or hardware depends on
the carrier’s business model and future
plans.  For example, you can bring a soft-
ware-centric solution to market quickly,
which is also very flexible.  But drawbacks
include a relative lack of scalability, and
robustness also falls as subscriber numbers
increase.  These interconnects are also mis-
sion critical; because session controller
servers are located in-line with the call par-
ties, a software crash or other failure can
result in dropped calls.

On the other hand, a number of off-
the-shelf computing platforms are capable
of supporting cutting-edge services for a
reasonable number of subscribers. But
they lack the robustness required of a true
carrier-class solution.

For scalability and robustness, therefore,
Newport Networks decided to implement
a significant proportion of the functionali-
ty in custom hardware. But the new gate-
way also had to retain that crucial flexibility
to remain protocol-agile and easy to man-
age – key attributes in delivering a low
overall cost of ownership for IP carriers.

For a network to be easily managed,
operators must be able to perform routine
maintenance and apply periodic upgrades
without visiting on-site to change cards,
introduce additional logic, or implement
hardware links to support test functions. In
the IP world, new services emerge and
evolve quickly, calling for frequent func-
tional upgrades.

The imminent widespread adoption of
Internet Protocol version 6 (IPv6) will also

flexible. This flexibility will ensure maxi-
mum interoperability between network
owners while IP standards and protocols
continue to change quickly. Some proto-
cols, such as the SIP (Session Initiation
Protocol) family, are now quite well
defined. Others are more esoteric and con-
tinue to evolve. And as some standards
achieve de facto status, each new IP service
seems to precipitate a flood of competing

and complementary protocols. We expect
the many IP standards to consolidate in the
foreseeable future. Flexibility is therefore
paramount.

Scalability must also be built into the
infrastructure to support the subscriber
growth that IP carriers are targeting. Easy
management is also a prerequisite. This
includes 99.999% availability, fully resilient
operation, and the ability to modify key
functions remotely and apply upgrades
without powering down equipment.

Further basic requirements of an IP-IP
interconnect include features that preserve
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For scalability and robustness... Newport Networks
decided to implement a significant proportion of 

the functionality in custom hardware. 

Figure 1 – The 1460 session controller supports direct IP-IP network interconnection.
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bring great implications for IP system flex-
ibility. Adoption of IPv6 has already begun,
predominantly by carriers in the Far East.

Standard Processing Hardware
Newport Networks has introduced the
1460 session controller to enable network
operators to capitalize on the opportunities
presented by the IP services revolution. At
its heart are three distinct functional cards
that perform line interfaces, application
processing, and switching management
functions, respectively. 

Interestingly, a standard processing
block is implemented on each card type.
Around this hardware block, we can quick-
ly configure a line interface card (LIC) by
simply adding network processing blocks.
The LIC processor performs header and
packet stripping, packet analysis, traffic
classification, and other processing. The
session controller accommodates as many
as 12 LICs, allowing easy scaling to sup-
port rapid subscriber growth. The
Newport Networks 1460 is capable of sup-
porting as many as 100,000 simultaneous,
toll-quality VoIP calls.

Alternatively, by combining the process-
ing core with switching blocks instead of
network processing blocks, we can quickly
configure a switching card. These are dual
redundant cards that also include the
switching fabric on board.

The processing hardware is implemented
in an array of four PowerPC™ processors,
each accompanied by high-performance
FPGAs that deliver hardware acceleration
and provide the flexibility to react to future
changes in IP protocols, services, and busi-
ness models. Hardware-accelerated func-
tions implemented in the FPGAs include:

• Data plane integrity checking and sta-
tistical gathering

• Packet segmentation and reassembly on
either side of the switch fabric 

• Checksum assist

• Time-critical functions such as packet
analysis are unloaded to the FPGAs.
The power of this configuration means
that hardware assist, such as payload
string search, is also an option.

Virtex-II Benefits
When looking for a suitable FPGA to
take on these intensive processing tasks
for the 1460 session controller cards,
Newport Networks chose the Virtex-II
FPGA. Valuable features include high
I/O count, greater than 100 MHz bus
speed operation, plentiful on-board
RAM, digitally controlled impedance
(DCI), and I/O banking. In particular,
the internal RAM-based FIFOs enable a
convenient software interface. This allows
for smooth interaction between the
PowerPC and the hardware-accelerated
functions executed in the FPGA.

The Virtex-II on-chip delay-locked loop
(DLL) circuits also proved useful for gener-
ating low-skew internal and external clock
domains. These can be referenced to an
incoming clock signal such as the common
switch interface (CSIX), an open standard
commonly used to interface a network
processor with a physical switch fabric.

The DLLs also allow output clocks to
be phase-adjusted to meet setup and hold
times for devices such as SDRAM. Virtex
devices provide as many as eight fully digi-
tal dedicated DLLs on-chip.

Alongside the Virtex-II devices that add
raw processing power, Xilinx XC9500
CPLDs perform MAC layer functions and
other custom functions. These include pro-
prietary data, control, and alarm interfaces

to the backplane. The XC9500 CPLDs
provide plenty of gates to implement these
functions, with predictable routing and
high I/O.

In the future, Newport Networks may
move the 1460’s computing platform into
the Virtex-II Pro™ architecture, subject to
CPU bandwidth requirements. Virtex-II
Pro FPGAs integrate PowerPC processing
blocks directly on the chip, enabling cost
and real estate savings and easing manufac-
turing demands.

Conclusion
The IP protocol environment is unlikely to
settle down for some time. Quite apart
from competition among protocols sup-
porting IP services that we know of today,
new IP-based services are quickly emerg-
ing. These are supported by legions of new
protocols.

While the industry works toward
greater standardization among the applica-
ble protocols, equipment providers need to
deliver solutions that have the power to
meet today’s challenges as well as flexibility
for the future. The Newport Networks
1460 session controller exploits the high-
performance Virtex-II FPGA architecture
to achieve each of these goals.

For more information about the
Newport Networks 1460 session con-
troller, visit www.newportnetworks.com. 

The IP protocol environment 
is unlikely to settle down for 
some time. Quite apart from 
competition among protocols 

supporting IP services that we
know of today, new IP-based 

services are quickly emerging. 



by Craig Sanderson 
Systems Applications Engineer
Nallatech
c.sanderson@nallatech.com

Developing processing systems to imple-
ment high-performance applications is an
extremely demanding task for engineers
today. Increasingly, the demands of space,
weight, and power have led designers
away from traditional processor-based
systems to FPGA-based solutions. This
trend has led to significant advances in
design flows, tools, and awareness of
how to program FPGAs, which in turn
has made developing the algorithmic
portions of a design easier.

Designers must then begin to integrate
the various elements of the overall system
with one another and interface them to the
outside world. In a microprocessor system
this is generally simple, utilizing system-
level libraries and operating system features.
In an FPGA design flow it is generally
much more complicated, especially if you
are using more than one device.

Evidence suggests that developing this
inter-process communications structure
can consume as much as 80% of the
development time on a typical project.
This element of the design is generally
not addressed by algorithmic design tools.

Having experienced first-hand how
time-consuming implementing commu-
nications in FPGA applications can be,
at Nallatech we looked for a way to make
the process easier, developing design
tools that we used internally for a few
years. These early tools and principles
formed the basis of DIMEtalk™, which
is now available commercially.

DIMEtalk allows you to design cus-
tom inter-process communications net-
works within and between FPGAs at a
conceptual level and automatically gen-
erate synthesizable FPGA code to repre-
sent them. This significantly reduces the
time spent designing the communica-
tions element of an application, enabling
you to concentrate your efforts on the
parts of an application where your
expertise lies, delivering solutions to cus-
tomers faster.

Simplify FPGA 
Application Design 
with DIMEtalk 

Simplify FPGA 
Application Design 
with DIMEtalk 
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System Communications
Developing applications to run in FPGAs
has become easier, in part because of the
advances made in design flows, tools, and
general awareness of how to program
FPGAs. Tools such as Xilinx® System
Generator and other high-level implemen-
tation methodologies enable developers to
quickly translate their algorithms from
math-level functions into working FPGA
algorithm blocks.

Once developed, connecting these
algorithm blocks together is a complex
and error-prone task. Even more complex
is the connection of algorithms in multi-
ple FPGA applications and the communi-
cation with external interfaces and
backplanes.

This interconnectivity inside, the area
outside and between FPGAs is termed “sys-
tem communications” and can consume
the vast majority of design time in many
applications, distracting developers from
their key expertise in the application being
implemented. High-level algorithm design
tools do not generally make provisions for
implementation of system communica-
tions, so although the algorithm imple-
mentation has been made easier, system
communications remains complex, error
prone, and time consuming.

DIMEtalk: The Concept
Looking at the needs of FPGA application
developers, we established key require-
ments for a system communications tool:

• Scalability, catering to designs of all
sizes and designs distributed across
multiple FPGAs

• Flexibility, tailored to the needs of the
application

• Easy algorithm interfacing, comple-
menting algorithm implementation

• Easy implementation, ideally through a
software tool

• Resource-friendly, minimizing hard-
ware resource requirements

Looking beyond the FPGA world, the
majority of data communications take
place across some form of data network.

structure. The network elements used in
DIMEtalk are as follows:

• “Routers” direct data around the 
network

• “Nodes” are the user interface to the
network and can be connected to user
application designs

• “Bridges” move data between physical
devices across a defined physical media
(for example, between FPGAs)

• “Edges” are used for protocol conver-
sion to another data transfer standard
(such as PCI, VME, or USB on
Nallatech systems)

From a users’ perspective, nodes within
the network are the most important; these
are the points within the network where
you connect your algorithm blocks. The
available interfaces are block RAM, FIFO,
and memory map-based, which makes
developing compatible interfaces within
algorithm blocks and connecting these to
the network easy.

In runtime, packet-based transfers are
used across the network, enabling the trans-
fer of data between nodes within FPGAs and
also to backplane interfaces and host sys-
tems. Because of the highly optimized 
network protocol and low overhead imple-
mentation used in DIMEtalk, the efficiency
of data transfers is as high as 97%.

Data networks are appealing because of the
flexibility and scalability they provide.
When we developed the early DIMEtalk
tool at Nallatech, we intended it to be pri-
marily network-based for these reasons.

So in essence, DIMEtalk is network-
based and meets identified needs by 
providing:

• A high-level software tool to enable users
to develop communication networks 

• An intelligent packet-based network –
routing tables automatically defined by
software

• Easy user node interfaces – block
RAM, FIFO, memory map

• Automatic FPGA-synthesizable code to
represent the network

• “Small footprint” network elements for
efficient use of resources within Xilinx
FPGAs

Physical Communications Infrastructure 
We had to define the physical infrastruc-
ture of the tool – the network elements that
would exist within the FPGA. We analyzed
a number of data networking standards to
assess their viability for use within FPGAs,
but existing standards lacked the required
flexibility and resource efficiency. For this
reason, we developed a dedicated simpli-
fied network protocol and network infra-
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We are not suggesting that DIMEtalk
networks should completely replace other
types of data networks. However, within
FPGAs and going between FPGAs on the
same card, a low-resource, easy-to-imple-
ment network such as DIMEtalk makes
sense – as demonstrated by the resource
usage shown in Figure 1.

DIMEtalk is intended to be used along-
side other data network and backplane

types – that’s why the edge components are
so important. The edges enable you to use
low-resource DIMEtalk networks where it
is right to do so and interface directly to
other protocols off-card. 

Using DIMEtalk
DIMEtalk is designed to make life easier
for developers to deploy applications on an
FPGA computing platform. The intuitive

design flow shown in Figure 2 enables easy
network implementation and you can use
the design-entry tool of your choice for
algorithm blocks. The stages of the design
flow are:

• Network Definition – conceptually
design the network to provide commu-
nications links and interface points to
algorithms as required across the FPGAs

• Develop Algorithms – use HDL or
other tools to develop algorithm blocks
using HDL or other design flows con-
nected to the interface nodes of the
DIMEtalk network

• Connect Algorithms – connect the
completed algorithm blocks to the 
network; at this stage, the network and
application are functionally complete

• Assign to Devices – assign the whole
design to FPGAs using a drag-and-
drop feature

• Code Generation – automatic code
generation for design

• Synthesis – using standard synthesis
tools

• Implementation – using the Xilinx ISE
software tool flow
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Application Architecture Example 
Let’s look at DIMEtalk in an application
context. The easiest approach is a very high-
level one to avoid getting caught up in the
details of a potential system – the focus being
on the overall architecture rather than low-
level functionality. A typical application
might include the following:

• VME form-factor

• Multiple high-density platform FPGAs

• High-speed external analog interfaces

• High-speed synchronous SRAM memory

• Gigabit Ethernet interface

This relatively complex hardware config-
uration is shown in Figures 3 and 4. In this
case, the system comprises commercial off-
the-shelf hardware products. From a func-
tional perspective, the algorithm processing
blocks that would perform the function of
this application reside within the FPGAs.

You can develop these algorithm blocks
using the design entry flow of your choice,
including HDL, commercial IP cores, and
high-level languages and tools.

An example DIMEtalk network for this
system is shown conceptually and in the
DIMEtalk software tool in Figures 5 and 6.
The network spans across all five FPGAs in
the system, with router and bridge elements
in place as appropriate to enable the net-
work to operate. Each FPGA has algorithm
blocks(s) associated with it – these are con-
nected to the network at user nodes. The
user node type and location can be defined
to fit your application requirements.

In this example, the network is also
connected through a DIMEtalk edge to
the VMEbus host interface on the system
– enabling direct data communications
from the host to specific algorithm blocks
inside the FPGAs.

What is clear from this example is the
value DIMEtalk adds to the system. You

can take an off-the-shelf system along with
your algorithm blocks and rapidly connect
all of these together and to the VMEbus.

Conclusion
Using DIMEtalk, you can efficiently
implement the systems communications
infrastructure required for FPGA comput-
ing applications. The generated network is
flexible and provides a complete communi-
cations solution to connect together algo-
rithm blocks, interfaces, backplane links,
and host system. This type of infrastructure
would have taken significantly longer to
implement using traditional methods.

Forthcoming developments in future
releases of DIMEtalk will include addition-
al interface support and links directly into
algorithm development tools, making
application development even easier.

For further information about
DIMEtalk, visit www.nallatech.com/
dimetalk/. 
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by Mark Patton
Product Manager, FPGA Synthesis
Synopsys, Inc.
mpatton@synopsys.com

Today’s ASIC designers face a host of pro-
totyping challenges. Most ASIC prototypes
require the largest, most advanced FPGAs
available, such as Xilinx® Virtex-4™
devices. Many are required to run at full
speed, particularly for wireless designs.
Therefore, timing quality-of-results (QoR)
is critical. Plus, using incompatible synthe-
sis solutions involves a time-consuming and
error-prone manual effort to move designs
between the ASIC and the prototype.

To address these challenges, Synopsys®

has developed Design Compiler® FPGA
(DC FPGA). DC FPGA brings the
ASIC-strength synthesis technology of
Design Compiler with new Adaptive
Optimization™ (AO) technology to
achieve excellent timing in fast run times.
DC FPGA is part of a family of products
that work in conjunction with Xilinx ISE
to streamline the prototyping process –
enabling you to design once.

Designing Once for
ASIC Prototypes
Designing Once for
ASIC Prototypes
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Design Compiler FPGA offers 
an industry-standard ASIC-
strength solution and optimal
circuit timing results through a
common ASIC and FPGA flow.



Why Prototype?
The complexity associated with ASIC devel-
opment has led to a significant increase in the
number of design teams choosing to proto-
type their designs using an FPGA. According
to Gary Smith of Gartner/Dataquest User
Wants and Needs 2003, as well as our own
surveys (as part of the Galaxy Technical
Seminar), more than 40% of all ASIC
designs have been prototyped in an FPGA.
This trend is increasing over time. 

Prototyping provides several bene-
fits. Primarily, it offers a way to prove
the design before undertaking an
expensive ASIC manufacture. A physi-
cal prototype also enables the design to
be rigorously verified using real data.

Industry analyst data gathered from
the 2003 Synopsys Verification
Seminar indicated that a majority
(70%) of design re-spins still occur
because of functional errors. Rapid
verification of the programmable pro-
totype can go a long way toward ensur-
ing that the ASIC design is right the
first time. Additionally, a prototype
enables earlier integration of the com-
plete system, providing a platform for
software development that can contin-
ue in parallel with ASIC development
and manufacturing.

The benefits of FPGA prototyping
are clear – you will have more confi-
dence in your design, which ultimate-
ly enables the development of a
“right-first-time” ASIC in less time. 

Prototyping Challenges
Ideally, the source register transfer language
(RTL) for the design would be identical for
both ASIC and FPGA. But in practice, you
must make modifications to the RTL to get
the best results from FPGA synthesis, or, in
some cases, to even synthesize a design.

FPGA synthesis tools typically require
you to write code in a certain style, follow-
ing recommended coding guidelines, and
each synthesis tool will have its own subset
and variation of language support. Unless
the ASIC and FPGA synthesis tools use the
same compilers and directives, the RTL for
the FPGA and ASIC implementations will
likely be different. 

FPGAs will almost certainly demand a
team effort. Many existing tools restrict the
design process to a top-down flow guided
by a single user. FPGA designers want the
flexibility to choose the design flow – just
like their ASIC counterparts.

Although none of these flow differences
in isolation represent an insurmountable
challenge, collectively they can add up to a
major overhead in the time and effort
required to develop the prototype, affecting

the design integrity between the
FPGA and ASIC implementa-
tions. Unless you can easily
migrate your design between
FPGA and ASIC implementa-
tions, the benefits of prototyping
are lost.

A Unified ASIC/FPGA Design Flow
Clearly, a common design flow
that supports development of
both ASIC and FPGA, without
the manual intervention typical
in the current approach to proto-
typing, would provide major
advantages in ensuring design
integrity and minimizing devel-
opment time. 

Design Compiler FPGA is an
FPGA synthesis product intend-
ed for design teams who proto-
type ASICs using high-end
FPGAs. DC FPGA is built on
Design Compiler’s industry-
leading ASIC synthesis technol-
ogy and is then customized to
include FPGA-specific features.

DC FPGA inherits DC’s reliability –
proven through the development of more
than 125,000 ASIC designs. 

As shown in Figure 1, DC FPGA shares
the same compilers, scripting language, and
SDC (Synopsys Design Constraints) as
Design Compiler. Because they use the
same compilers, DC and DC FPGA will
interpret the RTL the same way. This elim-
inates the manual changes in the RTL
required when using different synthesis
tools for FPGA and ASIC design. 

Manually transforming gated clocks to
the FPGA equivalent is not only very time
consuming but also error prone. DC FPGA

Designers often use the Synopsys
DesignWare® Library building blocks in
the ASIC implementation of the design.
Using a synthesis tool that does not sup-
port DesignWare requires you to write the
specific elements yourself, which can
potentially introduce errors in the design. 

Meeting timing is often one of the most
challenging issues in prototyping the
design. Often designers are forced to use a
fixed optimization strategy in traditional

FPGA synthesis tools to try and meet tim-
ing. If the fixed method does not provide
the required results, your only option is to
make manual modifications to the RTL and
try again – often with the same poor result.

These manual modifications are time
consuming and error prone. They can lead
to RTL “drift,” where the two descriptions
become so diverse that the functional
equivalence is jeopardized. Even small dif-
ferences, such as a single signal being tied
high or low in the FPGA, can spell disaster
if carried through to ASIC manufacture.

The complexity of a typical design
implemented in devices such as Virtex-4
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Figure 1 – Design Compiler FPGA offers a fast path to prototype.



can automatically transform gated clocks in
the ASIC design to the FPGA equivalent.
This capability preserves clock gating func-
tionality while improving timing and elimi-
nates manual design modification. These
features, along with full DesignWare Library
building blocks support, allow you to easily
migrate designs between ASIC and FPGA
implementations.

To address the sheer complexity of
today’s FPGA designs, DC FPGA supports
top-down and bottom-up methodologies
for team-based designs, enabling you to
choose the appropriate methodology.

DC FPGA’s new AO technology auto-
matically selects the best synthesis algo-
rithm for the design. The algorithms are
dynamically controlled given the nature of
the design and the applied constraints. AO
technology will also reorder the sequence in
which the synthesis algorithms are run.
The result is that AO technology provides

the best timing in fast run times.
For designers who want even more flex-

ibility, DC FPGA allows you to fully con-
trol the synthesis process on a block level.
This level of control is very useful, particu-
larly when you are trying to gain the last bit
of performance from the design or want to
carefully control the implementation. 

Formal verification is a key part of a
unified design flow because it mathemati-

cally proves that the RTL matches the
implementation. DC FPGA supports for-
mal verification with our Formality® solu-
tion. Both DC FPGA and Xilinx ISE
output automatic setup files for Formality,
which greatly simplifies the formal verifica-
tion task. The formal verification flow with
Formality is shown in Figure 2.  

Conclusion
The goal of effective prototyping is to have
your design up and running at the desired
speed with the least possible effort, while
maintaining design integrity with the ASIC
implementation.

DC FPGA will help you reach this goal.
With DC FPGA, you can use common
RTL for both the FPGA and the ASIC
implementations to maintain design
integrity, allowing you to design once. The
timing performance of DC FPGA with AO
technology, combined with the flexibility

in synthesis, will help you meet your most
difficult design challenges, getting to pro-
totype quickly.

DC FPGA is just part of the complete
ASIC-strength prototyping solution from
Synopsys. Other tools supported in the
Xilinx flow are Formality for formal verifi-
cation, DesignWare Library IP, Leda®

for RTL design and code checking,
PrimeTime® for static timing analysis,

VCS® for simulation, Module Compiler™
for datapath synthesis, and HSPICE® for
analysis of multi-gigabit serial I/Os.

Although it is a new product, DC
FPGA has a rapidly growing base of more
than 80 customers. For more information
about Design Compiler FPGA, visit
www. s ynop s y s . c om/p roduc t s / d c f p ga /
dcfpga.html. 

FPGAFPGA

Golden
RTL

DC FPGA
Synthesis

DC 
Synthesis

Xilinx
ISE

Physical
Design

Design
Integrity
Assured

Formality Formality

ASICASIC

Auto
Setup Auto

Setup

Auto
Setup

“As a customer-centric designer and
manufacturer of microprocessors,
flash memory devices, and system-
on-chip solutions for the computer

and communications industry,
AMD is pushing the speed limits 

of today’s FPGA device technology.
Using DC FPGA from Synopsys, 

we were able to meet the 40 MHz
wireless LAN 802.11g ASIC proto-
typing chip performance target – 
a significant speed increase over

what we were able to achieve with
other FPGA synthesis tools. DC

FPGA’s compatibility with Design
Compiler and the flexibility to run
on a Linux™-based platform sig-
nificantly accelerates our design

flow process by giving us access to a
common design environment for
both ASIC and FPGA design.” 

– Dirk Haentzschel, Sr. Design Engineer,
AMD Dresden Design Center

“Design Compiler FPGA impressed
us because it was the only FPGA

synthesis solution that had a work-
ing formal verification flow. In

addition, DC FPGA was able to
handle gated-clock transformations
that are critical for our low-power
mobile products, as well as a 23%

timing improvement over our 
existing FPGA synthesis solution.”

– Dr. Michiel Lotter, Co-Founder and 
VP of Engineering, Zyray Wireless

Figure 2 – ASIC and FPGA formal verification flows with Formality
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TPS75003

IS1
SW1
FB1
IS2

FB2
SW2

OUT3
FB3

AGND
DGND

IN1
IN2
IN3
EN1

EN2
SS1

SS2
EN3
SS3
DGND

DGND

5 V_INPUT

VCCAUX

22 µF

10 nF 10 nF 10 nF

0.03 0.03

10 µH

10 µH
VCCINT
1.2 V @ 3 A

VCCO
3.3 V @ 3 A

VCCAUX
2.5 V @ 300 mA

120 µF

120 µF

10 µF62.5 k

20.5 k

20.5 k

12.1 k

Q1

Q2

D2

D1

3 A
BUCK1

3 A
BUCK2

300 mA
LDO

The TPS75003 is your one solution for 
Xilinx FPGA power management

—tested, endorsed, and preferred by Xilinx.

R E A L W O R L D S I G N A L P R O C E S S I N G
TM

Real World Signal Processing and the black/red banner are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. © 2004 TI

POWER MANAGEMENT

Applications:

• DSL modems

• Set-top boxes

• Plasma TV display panels

• DVD players 

Key Features:

• Two 95%-efficient, 3-A buck 
controllers and one 300-mA LDO

• Adjustable output voltages 
(1.20 V to 6.5 V) on all channels

• Input voltage range of 2.2 V to 6.5 V

• Independent soft-start for all three
power supplies

• LDO stable with small ceramic 
output capacitor

• Independent enable for each supply
for flexible sequencing

• 4.5 mm x 3.5 mm x 0.9 mm 20-pin,
QFN package

• 1 ku price: $1.90 

For  information on TI’s complete line of power management solutions for Xilinx FPGAs, visit www.ti.com/xilinxfpga. 
You’ll find a library of reference designs tested and endorsed by Xilinx, along with schematics and BOMs for all designs.

Questions? Need samples or an Evaluation Module? Contact us at: fpgasupport@list.ti.com

The TPS75003 power management IC
for Xilinx’s SpartanTM-II/IIE/3 series of
FPGAs integrates multiple functions
to significantly reduce the number 
of external components required and
simplify design. Combining increased
design flexibility with cost-effective
voltage conversion, the device
includes programmable soft-start 
for in-rush current control and 

independent enables for sequencing
the 3 channels. The TPS75003 meets
all Xilinx startup profile requirements
including monotonic ramp and 
minimum ramp times.

TI Power Solutions: Power Behind Your Designs

Highly-integrated, Triple Supply from TI

Powers SpartanTM-3 Core, I/O and VCCAUX Rails

PRODUCT PREVIEW
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