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SOFTWARE

Letter from the Publisher
Xciting Times Ahead with the Zynq MPSoC 

For those of you doing embedded software development, it’s imperative to 
know what system hardware resources are available to you to create opti-
mized embedded systems. For those of you specializing in developing appli-
cation software, knowing the nitty gritty details about the system resources 
isn’t so important, but knowing you have silicon that can give you options for 
improving code performance is certainly a plus. 

To this end, Xilinx® last quarter achieved a signi�cant silicon milestone. 
In late September, Xilinx announced it had shipped to customers the �rst 
samples of its Zynq® UltraScale+™ MPSoC (see video), the follow-up to its 
award-winning Zynq-7000 All Programmable SoC. Whereas the Zynq SoC fea-
tured an ARM® dual Cortex™ A-9 processing system connected to program-
mable logic and on-board peripheral controllers on a single system-on-chip, 
the Zynq UltraScale+ MPSoC ups the processing power available on an SoC to 
a total of seven processors (64-bit, quad-core ARM Cortex-A53 and  dual-core 
ARM Cortex-R5 real-time processors, and an ARM Mali™-400 MP GPU), an 
H.265/264 video codec, an advanced dynamic power management unit to op-
timize system power ef�ciency, a con�guration security unit, DDR4/LPDDR4 
memory interface support, and loads of on-chip programmable logic.

Since the release of the Zynq SoC in 2011, the innovations that Xilinx 
customers have been able to develop with the device have been truly re-
markable. Without delving too deeply into the silicon details, what makes the 
Zynq SoC device unique are the more than 3,000 connections between the 
processor and the on-chip programmable logic. Those connections enable 
the processor and functions implemented in FPGA logic to communicate far 
faster than would be achievable with any two-chip or even system-in-pack-
age con�guration. Customers thus have been able to create systems that sim-
ply weren’t possible before. And since the Zynq SoC’s launch, we have seen 
Zynq SoC-based innovations in just about every market Xilinx serves, from 
wireless communications to aerospace and defense.

Many of those innovations were created by FPGA engineering teams using 
the Xilinx Vivado® Design Suite of hardware design tools. Earlier this year,  
Xilinx took a bold leap forward by introducing the C, C++ and OpenCL™-based 
SDx™ development environments: SDSoC™ for Zynq SoC design, SDAccel™ 
for FPGA-accelerated processing and SDNet™ for software-de�ned net-
working system development. While relatively new, the SDSoC development 
environment is already opening up new possibilities to new users—embedded 
software developers—as well as traditional FPGA experts. Further opportuni-
ties for innovation arise from the ability to create a system-level representation 
of a system in C or C++ and then use the SDSoC environment to identify slow-
er-running code segments and of�oad them to the FPGA logic for acceleration.

Now, with the combination of the SDSoC environment and the silicon 
foundation of the Zynq UltraScale+ MPSoC, I’m betting that we will see even 
more truly remarkable system innovations created by an expanding number 
of Xilinx users. 

In this second issue of Xcell Software Journal, you will read how the 
SDSoC and SDNet environments are enabling new levels of innovation.  
I hope you enjoy reading the articles and are inspired to begin using the new 
development environments—and, of course, sharing your experiences with 
your peers by contributing technical articles to Xcell Software Journal. 

    —  Mike Santarini 
Publisher 

mailto:mike.santarini@xilinx.com
mailto:xcelladsales@aol.com
mailto:melissa.zhang@xilinx.com
mailto:christelle.moraga@xilinx.com
mailto:tomoko@xilinx.com
www.xilinx.com/xcell
https://www.youtube.com/watch?v=kkmVl9YJyLY
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SDSoC lets programmers  
build complete  
hardware-software  
systems without  
sacrificing performance.

by Olivier Tremois
DSP Specialist FAE
Xilinx, Inc.
olivier.tremois@xilinx.com
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The “standard” image processing sys-
tems found today in medical, industrial 
and a growing number of other applica-
tions are becoming ever more advanced. 
In many cases, the imaging process-
ing complexity has already exceeded 
the processing capabilities of PCs with 
GPU acceleration. Even as design teams 
raise their standards for image process-
ing quality and add product features, 
they must meet customer demand for 
more-compact, mobile, battery-powered 
end products.

Many existing platforms are struggling 
to meet such complex requirements. 
Luckily, design teams can leverage Xil-
inx® Zynq®-7000 All Programmable SoCs 
and the new Xilinx SDSoC™ develop-
ment environment to create compact, 
low-power, feature-rich products with 
advanced imaging systems using C/C++. 
Let’s examine how to do this by using the 
SDSoC environment to accelerate an im-
age pipeline processing system. I com-
pleted this project in less than a week 
and was able to accelerate the system 
example by orders of magnitude. 

T

mailto:olivier.tremois@xilinx.com


they are applied to large images because of the se-
quential nature of the processor, which will process  
1 pixel in a given time period.

A rank filter is a nonlinear filter that computes 
the output image pixel by pixel. It does so by taking 
the neighboring pixels of the input image pixel with-
in a specified shape called a structuring element, 
sorting them and picking the one that is at the pth 
rank. The erosion filter selects the minimum value 
(p = 1). Dilation selects the maximum value (p = N, 
where N is the number of pixels of the structuring 
element). Median filtering selects the median value 
(p = [N/2]). Classically, the structuring element is a 
square, a diamond or a cross (Figure 1).

Our batch image processing system will read im-
ages stored in an SD card and process them using 
different parameters for the noise level and for the 
shape used as a structuring element. The dual ARM® 
Cortex™-A9 cores of a Zynq-7000 SoC running at 
667 MHz will perform the computations.

SOFTWARE IMPLEMENTATION
As a starting point, we write the complete appli-
cation in C++ so that we can estimate the per-
formance of the computations on the Cortex-A9. 
The application contains a number of functions  
to read and write BMP images on the SD card, 
compute luminance, add noise and perform the 

BATCH IMAGE PROCESSING
Our example system acquires images using a specif-
ic camera and then processes the images in batch 
mode. The image size can be up to 3,000 x 2,000 
pixels (6 megapixels). Although the processed im-
age is not live video, the intent is to send the images 
through the image pipeline as quickly as possible. 
The pipeline here is pretty simple: transform an RGB  
image into grayscale; add salt-and-pepper noise;  
and �lter the noisy image with three �lters (dilate, 
median and erode).

Dilation, median and erosion filters belong to the 
family of rank filters, which are primarily but not 
exclusively applied to remove impulse noise for im-
age enhancement. These are nonlinear filters that 
involve absolutely no arithmetic operations and 
restrict their functions to data sorting and picking. 
Although the algorithms are not highly complex, 
they consume considerable processing time when 
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Figure 1 — Structuring elements within  
a 7 x 7 bounding box

     

 

 

 

#Size

Test 1

Test 2

Test 3

#Shape SW Latency

1,920 x 1,080 49 (square) 29 s

1,920 x 1,080 25 (diamond) 8.5 s

3,000 x 2,000 25 (diamond) 8.5 s

Figure 2 — Runtime for Zynq  
processing system only

Our batch image processing system will read images stored in 
an SD card and process them using different parameters for the 
noise level and for the shape used as a structuring element.



7 x 7-pixel bounding box. The parameters that have 
an impact on the pipeline latency (Figure 2) are the 
size of the image (#Size) and the number of active 
pixels in the structuring element (#Shape). Minimiz-
ing those latencies will improve system performance. 
FPGAs perform incredibly well on signal processing 
algorithms involving numerous additions and multi-
plications. Our system example will show that pro-
grammable logic is good not only at brute-force com-
putations, but also at more standard data processing.

various filter functions. Working within the SD-
SoC development environment’s SDDebug con-
figuration will enable rapid implementation on 
the Xilinx ZC702 evaluation platform under the 
Linux operating system.

To generate a truly operational executable file, 
we select option -O3 to turn on all compiler opti-
mization. The shape of the structuring element is a 
parameter of the application such that we can ap-
ply any kind of structuring element that fits within a  
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main
99.99%
(0.00%)

0.13%
1x

ref_rgb2y
0.13%

(0.13%)
1x

ref_median
92.33%
(4.65%)

1x

sort_array
87.69%

(87.69%)
2055636x

87.69%
2055636x

BMP_Write
6.47%

(1.25%)
8x

6.47%
8x

BMP_CreateBlank
5.22%

(5.22%)
8x

5.22%
8x

ref_PseudoCasuallnt
0.24%

(0.24%)
2073600x

0.24%
2073600x

SaveResults
7.08%

(0.61%)
8x

BMP_Read
0.12%

(0.12%)
1x

ref_ImpulsiveNoise
0.34%

(0.09%)
1x

92.33%
1x

7.08%
8x

0.12%
1x

0.34%
1x

Figure 3 — Profiling result on the initial software



contains subloops that go through the structuring 
element and sort all the elements. In this example, 
we use a standard bubble sort algorithm. Other re-
duced-complexity algorithms exist for microproces-
sor implementation, but the regularity of this one is 
more adapted to hardware implementation:

for ( i=0; i<HeightOfImage; i++)
for ( j=0; j<WidthOfImage; j++)
  {
  Some Code
  for ( s=0; s<NumberOfStages; s++)
  for ( k=0; k<HeightOfStructElem; k++)
  for ( l=0; l<WidthOfStructElem; l++)
  {
  Swap pixels if not correctly ordered
  }
  }

Because we want to be able to process 1 pixel of 
the output image per clock cycle, we must add a di-
rective to start a pixel vector sort with every clock 
tick. We pipeline the second loop that goes over the 
columns of the image with an initiation interval (II) 
of 1. (The II is the number of clock cycles required 
before a new iteration of the loop can launch.) Us-
ing this single directive, the SDSoC environment 
will automatically unroll the remaining inner loops, 

XCELL SOFTWARE JOURNAL: COVER STORY

10

A basic profiling (Figure 3) shows that comput-
ing luminance from RGB values (0.13 percent) and 
adding noise to the pixel (0.34 percent) run pretty 
fast in software. The main contributor to total time 
is the median filter (92.33 percent). Other functions 
contributing to total time are file reads and saves.

MOVING A FUNCTION TO HARDWARE
The �rst goal for this acceleration is to be able to 
process one new sample every clock cycle. Some 
code rewriting and a rethinking of the interface can 
yield greater acceleration. Even if the clock rate of 
the on-chip programmable logic (PL) is much lower 
than that of the processing system (PS), being able 
to process one input pixel per clock should provide 
great acceleration.

The median filter is the only function that will 
shift to the hardware. Although the SDSoC environ-
ment makes it easy to shift functions into the PL 
with a simple right click in the environment’s Proj-
ect Explorer, it will not add any directive (except 
at the interface) or change a single line of code for 
performance purposes. Those modifications are the 
embedded programmer’s responsibility, which ex-
plains why the initial acceleration generally will not 
be that dramatic.

The function specified above contains two nest-
ed loops to go through the entire image. It also 

Line N-4 Line N-5

Line N-3 Line N-4

Line N-2 Line N-3

Line N-1 Line N-2

Current Line - N

Current pixel introduction
shifts the other pixels in corresponding column

by 1 position up to the first line buffer

Line N-1

Current Pixel

Figure 4 — Data motion in line buffers when receiving a new pixel



achieve this 1-pixel/clock objective, all data move-
ment must be performed with a throughput of one 
clock cycle. 

Moreover, all the pixels belonging to the pixel 
neighborhood and the structuring element must 
likewise be accessed in one clock cycle. That is why 
we also define an analysis window that contains 
the specific pixels in question (and which varies 
from pixel to pixel). In the SDSoC environment and 
VHLS, the code is not timed in any way; the tool will 
parallelize anything that can be parallelized with  
respect to the resource used and our directives. In 
our sample batch image processing system code, 
we add the line buffer and analysis window to the 
code just by declaring two arrays with the right 

allowing the hardware to process all the iterations 
in parallel.

Image processing algorithms implemented in sin-
gle-core processors are fairly easy to code because 
various processor features allow smooth data move-
ment between external memory and the processor 
itself. Memory caches L1 and L2 will temporarily 
store data that may be reused later, improving data 
access latency. 

Such a mechanism does not exist by default in 
FPGAs. Although this prevents us from using the 
same C/C++ source code to create a hardware accel-
erator, it is a chance for us to design a memory cache 
that will have the right performance and size for our 
application. This is a good example of an instance in 
which we have to change the C/C++ source code not 
to keep the same functionality, but to improve the 
performance to a level that suits our requirements. 
Xilinx’s Vivado® High-Level Synthesis (HLS), which 
is the SDSoC engine that generates register trans-
fer level (RTL) IP from C/C++ code, will generate a 
hardware architecture that is adapted to our code, 
taking into account our directives. That’s why line 
buffers and analysis windows are not automatical-
ly generated when analyzing the image processing 
code; Vivado HLS adheres to the code as written, 
which prevents the tool from hiding optimizations 
that could be done without the developer’s consent.

Designers who are familiar with image processing 
in hardware know all about line buffers and anal-
ysis windows. In order to avoid multiple reads of 
the same pixel from the external memory, pixels are 
temporarily stored in internal memory (block RAM) 
and then overwritten when they are no longer useful 
for the remaining execution. The block RAMs have 
two ports that can be used as memory reads, memo-
ry writes or both. When the accelerator accepts the 
pixel corresponding to line L and column C, all the 
pixels corresponding to column C and line (L-1 … 
L-6) are read from the line buffer and rewritten to
another location, as Figure 4 illustrates. In order to
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pix_ t  line_buf f er[ KMED] [ MAX_WIDTH] ; 
# pragma  HLS ARRAY_PARTITION variable=line_buf f er complet e 
dim=1  

pix_ t  window[ KMED*KMED] ; 
# pragma  HLS ARRAY_PARTITION variable=window complet e dim=0 

/ /  Line Buf f er fill  
if (col < widt h)  
Buf f erFill:f or ( int  ii = 0 ; ii < KMED-1 ; ii++)  

pixel[ ii] = line_buf fer[ ii] [ col] =line_buf fer[ ii+1 ] [ col] ; 
 
/ / There is an of fset  t o accommodat e t he act ive pixel region 
if ( (col < widt h)  && (row < height ) )  
{  

pix = in_pix[ index_in++] ; 
pixel[ KMED-1 ]  = line_buf f er[ KMED-1 ] [ col]  = pix; 

}  

/ /  Line Buf f er fill  
if (col < widt h)  
Buf f erFill:f or ( int  ii = 0 ; ii < KMED-1 ; ii++)  
 pixel[ ii] = line_buf fer[ ii] [ col] =line_buf fer[ ii+1 ] [ col] ; 

/ / There is an of fset  t o accommodat e t he act ive pixel region 
if ( (col < widt h)  && (row < height ) )  
{  

pix = in_pix[ index_in++] ; 
pixel[ KMED-1 ]  = line_buf f er[ KMED-1 ] [ col]  = pix; 

}  

The first goal for this acceleration is to be able to process 
one new sample every clock cycle. Some code rewriting and 

a rethinking of the interface can yield greater acceleration. 

Figure 5 — Array declaration for the line buffer, 
analysis window and structuring element

Figure 6 — Data motion between the line buffers
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partitioning directives (Figure 5). We then describe 
data motion as read/write accesses to those arrays 
(Figure 6).

Because it relies on data access in an array, the 
pixel-value sorting procedure can be complex to im-
plement in the hardware architecture. The C code 
for software implementation takes the vector of the 
pixel that has been validated through the structuring 
element and sorts it using a standard bubble sort. 
More-efficient algorithms exist but provide a signif-
icant benefit only on larger vectors. The complexity 
of this algorithm is proportional to the square of the 
number of pixels of the structuring element—up to 
(7 x 7)2 for our sample design. 

In hardware, the architecture must be dimen-
sioned for the worst case. If we want to achieve 
our 1-pixel/clock goal, we need to implement a 
very regular structure. To this aim, we specify that 
the input vector will always have the maximum 
size (7 x 7) and that all nonvalidated pixels will 

have the value 0 so that they will be at the bot-
tom of the sorted vector. We also dimension the 
number of stages for the worst case, even if the 
number of stages could be lower for a structuring 
element with fewer active pixels. Parallelization 
of the different stages can occur only if the same 
vector is not reused at each stage. The result is an 
array into which the initial vector enters at col-
umn index 0 and exits at column index 7 x 7 = 49 
(Figures 7 and 8).

SDSOC SYSTEM COMPILER
SDSoC is not a simple full-system compiler. It per-
forms an extensive code analysis in order to decide 
what kind of data mover would best suit the func-
tions that are required to be in hardware, and to 
which port to connect the data mover. For each pa-
rameter of the function, we must determine wheth-
er it is best to use an ARM® AMBA® AXI4-Lite, AXI4-
Full memory-mapped or AXI4-Stream data mover. 

Sort(In[2],Out[2])
{
     Out[0] = min(In[0],In[1]);
     Out[1] = max(In[0],In[1]);
} Sorted

Vector
Input

Vector

Nonactivated 
Pixel

Activated 
Pixel

Highest 
Value

Lowest 
Value

Sort(In[2],Out[2])
{
     Out[0] = min(In[0],In[1]);
     Out[1] = max(In[0],In[1]);
} Sorted

Vector
Input

Vector

Nonactivated 
Pixel

Activated 
Pixel

Highest 
Value

Lowest 
Value

Figure 7 — Sorting network for a 10-element vector
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void sort ing_ net work(pix_ t  window[ KMED*KMED] ,mask_t  shape[ KMED*KMED] , 
  kmed2_ t  NShape,kmed2_ t  CompNShape, 
  pix_ t  *pixmin,pix_ t  *pixmed,pix_ t  *pixmax)  
{  
st at ic  const  int  N = KMED*KMED; 
pix_ t  t min,t max,t 0 ,t 1 ; 
 
st at ic pix_ t  z[ N] [ N+1] ; / /  Array t hat  cont ains t he sort ing net work 
# pragma  HLS ARRAY_PARTITION variable=z complet e dim=0 
 
unsigned int  i, k, st age; 
 
/ /  Init ializat ion of  t he f irst  row of  t he net work 
/ /  pixels t hat  do not  belong t o t he mask are set  t o 0  
L1 :f or  ( i=0; i<N; i++)  
 if (shape[ i] )  z[ i] [ 0 ]  = window[ i] ; 
 else  z[ i] [ 0 ]  = 0 ; 
 
/ / sort ing_net work: This descript ion is correct  f or KMED odd 
L2 :f or  (st age = 1 ; st age <= N; st age++)  
{  
 k = (st age&1)^ 1; / /  st age odd -> k=0       st age even -> k=1  
 L3 :f or  ( i = k; i<N-1 ; i= i+2 )  
 {  
  t 0   = z[ ( i) ] [ st age-1 ] ; 
  t 1   = z[ ( i+1 ) ] [ st age-1 ] ; 
  t min = MIN(t 0 ,t 1 ) ; 
  t max = MAX(t 0 ,t 1 ) ; 
  z[ ( i  ) ] [ st age]  = t min; 
  z[ ( i+1 ) ] [ st age]  = t max; 
 }  
 / /  Copy t he value t hat  has not  been sort ed t o t he next  st age 
 if (k==0) z[ N-1 ] [ st age]  = z[ N-1 ] [ st age-1 ] ; 
 else  z[ 0 ] [ st age]  = z[ 0 ] [ st age-1 ] ; 
}  
*pixmin = z[ CompNShape] [ N] ; 
*pixmed = z[ CompNShape+NShape/ 2 ] [ N] ; 
*pixmax = z[ N-1 ] [ N] ; 
ret urn; 
}  

SDSoC is not a simple full-system compiler. It performs an 
extensive code analysis in order to decide what kind of data 

mover would best suit the functions that are required to be in 
hardware, and to which port to connect the data mover. 

Figure 8 — Sorting network described in C
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We also have to determine which connector to use: 
the AXI4 High Performance (HP), General Pur-
pose (GP) or Accelerator Coherency Port (ACP), 
or even ports from other accelerators, either built 
from within the SDSoC environment or contained 
in the board support package (BSP).

The SDSoC environment will then create a design, 
adding all necessary IP to make a fully functional 

system—a direct memory access (DMA) for AXI4 
Stream data movers, for example—and will modify 
the C source code (instead of the initial C++ code) in 
order to call the hardware. In our case, the interface 
is pretty simple: Two input arrays and three output 
arrays will be accessed through AXI4-Stream and 
DMAs, and a few scalars will be set through AXI4-Lite. 
We don’t have to think about setting the DMAs or 
look at the address at which the scalar registers are 
accessible; the SDSoC environment manages every-
thing automatically, under the hood. 

When I built the sample system, I first verified 
that the source code was Vivado HLS compliant 
and then added the VHLS directives. Using specific 
SDSoC directives, I specified that the data would 
be stored contiguously in the physical space (with 
memory allocated using the function sds_alloc) 
and that I wanted a DMA to access it (Figure 9). 

 I then switched the build configuration to 
SDEstimate in order to have a first rough estimate 
of the acceleration that was achievable (Figure 
10). I did not have to wait a long time for this step, 
because at this point no hardware had been built.

The SDSoC environment computes the speedup 
estimate from the processor runtime (computed 
using the hardware-adapted code, which is slower 
than the original, processor-adapted code, and with 
compiler optimization set to –O0) and the number of 
clock cycles (computed by VHLS as the latency of 
the hardware accelerator). This latency is the max-
imum latency of the hardware accelerator, so this 
estimation should be taken for what it is—a rough 

Figure 9 — Directives in the SDSoC environment to override default behavior

Figure 10 — Performance estimates obtained  
during the SDEstimate phase
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estimate. This acceleration is almost 700x for the 
hardware accelerator itself. There are many file ac-
cesses that take time at the “main” level; that’s why 
the overall acceleration is “only” 5x. In practice, we 
can choose the top-level function at which the glob-
al acceleration is computed so that we can obtain a 
more meaningful acceleration value.

The final step of the flow is to build the entire sys-
tem. In this phase, all the accelerators are built and 
connected to the processor. The C++ source code is 
then modified in order to start and control these ac-
celerators (instead of calling the original C function). 
At this stage, we are able to have an exact value of 
the acceleration obtained using the hardware accel-
erators, taking into account all the data transfers to 
and from DDR. This acceleration value also takes 
into account the time it takes to flush the cache, as 
our data is in a cacheable part of the memory. 

The time taken by the hardware accelerator is 
proportional to the size of the image and not to 
the size of the structuring element. That’s why the 
higher the number of active pixels in the structur-
ing element, the higher the acceleration ratio will 
be. The latency referred to in Figure 11 is that of 

the full image pipeline, containing the software 
and hardware elements.

 When I undertook this project, building the 
software application proved to be the longest 
phase. From there, it took less than 2 hours to mod-
ify the code so that I had fully compliant Vivado 
HLS code with the right directives in place to 
optimize the throughput. Given the size of the 
hardware part of this design (half the lookup ta-
ble of the chip), the last stage—synthesis, place 
and route, bitstream, SD card—took more than 
2 hours to complete.

The SDSoC environment’s integrated tools for 
system-level profiling, automated software accel-
eration in programmable logic and full-system-op-
timizing compilation—automatically generating 
the right connectivity to minimize memory access 
bottlenecks—allowed me to go through this ex-
ample project in less than a week. 

That short time frame wouldn’t have been pos-
sible using a standard RTL flow for the creation 
of the accelerator and my own programming abil-
ities to take advantage of the different drivers to 
modify the C code. n

 
  

 
 

  
  

 

 

 

Test 1

Test 2

Test 3

1,920 x 1,080 29.2 s 154.8 ms 189x
49

(square)

1,920 x 1,080 8.6 s 154.7 ms 56x
25

(diamond)

3,000 x 2,000 25 s 447 ms 56x
25

(diamond)

#Size #Shape Acceleration
Pure SW
Latency

SW + HW
Latency

Figure 11 — Runtime for Zynq Processing System with accelerated function in Programmable Logic

At this stage, we are able to have an exact value of the  
acceleration obtained using the hardware accelerators, 

taking into account all the data transfers to and from DDR.
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T he Advanced Encryption 
Standard (AES) has become 
an increasingly popular cryp-
tographic speci�cation in many 
applications, including those 
within embedded systems. 
Since the National Institute 
of Standards and Technology 
(NIST) selected the speci�-
cation as a standard in 2002, 

developers of processor, microcontroller, FPGA and SoC 
applications have turned to AES to secure data entering, 
leaving and residing within their systems. The algorithm is 
described very ef�ciently at a higher abstraction level, as is 
used in traditional software development; but because of 
the operations involved, it is most ef�ciently implemented 
in an FPGA. Indeed, developers can even get some opera-
tions “for free” in the routing.  

For those reasons, AES is an excellent example of how 
developers can benefit from the Xilinx® SDSoC™ devel-
opment environment by describing the algorithm in C and 
then accelerating the implementation in hardware. In this 
article we will do just that, first gaining familiarity with the 
AES algorithm and then implementing AES256 (256-bit 
key length) on the processing system (PS) side of a Xilinx 
Zynq®-7000 All Programmable SoC to establish a baseline 
of software performance before accelerating it in the on-
chip programmable logic (PL). To gain a thorough under-
standing of the benefits to be gained, we will perform the 
steps in all three operating systems the SDSoC environ-
ment supports: Linux, FreeRTOS and BareMetal.

THE ALGORITHM
AES is a symmetric block cipher that can be used with 
varying key lengths of 128, 192 and 256 bits. The key 
length determines the number of processing steps re-
quired to encrypt or decrypt data. As their name implies, 
block cipher algorithms work on blocks of data. The AES 
algorithm operates on a �xed block size of 16 bytes at a 
time. Thus, if we wish to encrypt fewer than 16 bytes, we 
must pad out the unused bytes.  

Describe the AES256 crypto algorithm in C,  
then speed performance in hardware. 
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Because AES is a symmetric cipher, the same 
actions and key are used to encrypt and decrypt 
information. In contrast, asymmetric algorithms 
such as RSA use different keys for data encryption 
and decryption.

Each of the four stages in the AES algorithm is applied 
to what is called the state. The combination of the four 
AES stages is called a round. The number of rounds re-
quired depends on the key length. 

Quite simply, the AES state starts out as the 16 bytes 
we wish to encrypt. Each new step updates the state. 
Before processing the state, we need to format the in-
put byte string correctly into the initial state as a 4 x 4 
matrix (Figure 1). 

Now that we have rearranged the initial 16 bytes into 
the initial state as a 4 x 4 grid, we can explore how each 
step manipulates its input state.

AddRoundKey: This is the only step that uses the 
encryption key. As we have already noted, the number 
of encryption algorithm rounds required depends on the 
key size (128, 192 or 256 bits). The encryption key must 
undergo key expansion to ensure that the bytes in the key 
are not reused during each round before use. Not surpris-
ingly, the expanded key length is different for each key 
size. The expanded key size will be: 

Expanded Key Size (bytes) = 16 * (Rounds + 1)

The operation within this step is simple. The input 
state bytes are exclusive-ORed with 16 bytes of the ex-
panded key. Each round uses a different section of the 
expanded key; round 0 uses bytes 0 to 15, round 1 uses 
bytes 16 to 31 and so on. For each round, byte 1 of the 
state is exclusive-ORed with the least significant byte 
of the expanded key, byte 2 is exclusive-ORed with 
least significant byte + 1 and so on.

SubBytes: This step uses byte substitution to 
swap out state values with another value. The val-
ues within the substitution box are predefined 
and have been designed to have low correlation 
between input bits and output bits. The substi-
tution box (S-box) is a 16 x 16 matrix. We use the 



upper and lower nibbles of the byte being sub-
stituted to index into the substitution table. For 
example, using the S-box encryption in Figure 2,  
if the first initial state byte is 0 x 69, then the 
substitution value 0 x F9 will replace it. The up-
per nibble of the state byte selects the row in 
the substitution box; the lower nibble selects 

Initial State – 4 x 4 Grid

16-byte Input
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Figure 1 — Initial state translation of the 16 bytes into a 4 x 4 grid

  0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 CB 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 

  0 1 2 3 4 5 6 7 8 9 A B C D E F
0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA 23 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D 

S-box for Encryption

S-box for Decryption

Figure 2 — AES S-box contents
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the column. Note in Figure 2 that there are sep-
arate substitution boxes for encryption and 
decryption and that their content differs.

ShiftRows: This step rearranges the input state 
matrix by performing a circular byte shift for each 
row. We rotate each row right by a different factor 
(Figure 3). We leave row 1 unchanged. We rotate row 
2 by 1 byte, row 3 by 2 bytes and row 4 by 3 bytes. 
When we decrypt, we perform the same operations, 
but we rotate left instead of right.

MixColumns: This is the most complicated step within 
a round, requiring 16 multiplications and 12 exclusive-OR 
operations. The operations are performed column by col-
umn on the input state matrix, which is multiplied against 
a �xed matrix to create a new state column (Figure 4). 
Each entry in the column is multiplied by a row in the ma-
trix. The results of each multiplication are XORed together 
to form the new state value. The �rst column and row to 
be multiplied are highlighted in Figure 4.

Here are the MixColumns equations for the �rst 
column:

B1’ = (B1 * 2) XOR (B2 * 3) XOR (B3 * 1) XOR (B4 * 1)
B2’ = (B1 * 1) XOR (B2 * 2) XOR (B3 * 3) XOR (B4 * 1)
B3’ = (B1 * 1) XOR (B2 * 1) XOR (B3 * 2) XOR (B4 * 3)
B4’ = (B1 * 3) XOR (B2 * 1) XOR (B3 * 1) XOR (B4 * 2)

This process is then repeated against the same multipli-
cation matrix for the next column in the input state until 
all of the input state columns have been addressed.

Now that we understand the detailed steps needed 
for the AES encryption and decryption algorithms, 
we need to know the order in which to apply the 
steps in a round and whether we must apply all of 



Let’s look at the algorithm we must use for expand-
ing the key so that we provide suf�cient key bits for the  
number of AddRoundKey steps to be performed  
(Figure 5). Key sizes of 16, 24 or 32 bytes will respec-
tively require 44, 52, or 60 rounds for key expansion. 
The �rst bytes of the expanded key are equal to the 
initial key. This means that for our AES256 example, 
the �rst 32 bytes of the expanded key are the key itself. 
Key expansion generates the 32 additional bits for the 
expanded key in each iteration.

The following are the key expansion steps.

RotateWord: Similar to ShiftRows, this step reorga-
nizes a 32-bit word such that the most signi�cant byte 
becomes the least signi�cant byte.

the steps for each round. Each AES encryption round 
comprises all four steps, in the following order:

1.  SubBytes;

2.  ShiftRows;

3.  MixColumns (for rounds 1 to N – 1 only); 

4.  AddRoundKey (using the expanded key).

Of course, we need to be able to reverse the pro-
cess and turn the unreadable cipher text back into 
plain text so that the encrypted information will be 
useful. To do so, we order the steps as follows:

1.  Invert ShiftRows;

2.  Invert SubBytes;

3.  AddRoundKey (using the expanded key);

4.  Invert MixColumns (for rounds 1 to N – 1 only).
 
Before executing the �rst round of encryption, we 

need to perform an initial AddRoundKey operation 
for both encryption and decryption.
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AES is described efficiently at a higher abstraction level, as in traditional 
software development, but is most efficiently implemented in an FPGA. 

Developers can even get some operations “for free” in the routing.  

ShiftRows Input State

Resultant Output State

B1 B5 B9 B13
B6 B10 B14 B2
B11 B15 B3 B7
B16 B4 B8 B12

B9

 Figure 3 — ShiftRows operation

Input State First Column to be Multiplied

Constant Multiplication Matrix

Decryption Constant Multiplication Matrix

E B D 9
9 E B D
D 9 E B
B D 9 E

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

B9

Figure 4 — MixColumns function  
for encryption and decryption 



CREATING THE CODE
To ensure we can accelerate the encryption part 
of the AES code within the PL side of the Zynq 
SoC, we must develop the code from day one 
with this objective in mind (see the coding rules 
here). The first thing to consider is the architec-
ture of the algorithm; we need to segment it prop-
erly. AES lends itself well to this approach because 
we can write functions for each of the stages and 
then call them as required.  We must also write 
the function to be accelerated within its own �le. 
Our software architecture will include the following. 

main.c: This �le contains the key expansion algorithm, 
the encryption key and the plain-text input, along with 
the call to the AES encryption function.
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SubWord: This step uses the same substitution box 
used to make byte substitutions in the encryption.

rcon: This stage performs the exponentiation of 2 to a 
user-de�ned value. As in the MixColumns stage, rcon is 
performed over the Galois �eld (28); therefore it is com-
mon to use a precalculated lookup table for this step.

EK: This returns 4 bytes from the expanded key.

K: Like EK, this returns 4 bytes from the key.

How will we know that we have correctly imple-
mented the encryption and key expansion algorithms? 
The NIST speci�cation for AES helpfully contains 
a number of worked examples that we can use for 
checking our own implementations.

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin

word temp

i = 0

while (i < Nk)
  w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
  i = i+1

end while

i = Nk

while (i < Nb * (Nr+1)]
  temp = w[i-l]
  if (i mod Nk = 0)

 temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
  else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)
  end if
  w[i] = w[i-Nk] xor temp
  i = i + 1

end while
end 

Figure 5 — Key expansion algorithm

The first bytes of the expanded key are equal to  
the initial key. This means that for our AES256 example, 
the first 32 bytes of the expanded key are the key itself.

https://forums.xilinx.com/t5/Xcell-Daily-Blog/Adam-Taylor-s-MicroZed-Chronicles-Part-91-More-on-High-Level/ba-p/642082


the execution of the function. To do this, we’ll use 
sds_clock_counter in sds_lib.h.

After I had written the source code (available on 
the github), I recorded a time of 36,662 processor cy-
cles when executing the AES algorithm in software 
running on a single ARM® Cortex™-A9 processor 
core in the Zynq SoC.

OPTIMIZATION FOR ACCELERATION
Accelerating the AES algorithm is slightly more compli-
cated than the matrix multiplication algorithm we exam-
ined in the previous issue. This is because the main loop 
of the AES algorithm consists of interdependent stages. 

I accelerated the AES algorithm by examining the 
loops to see where I could unroll them, optimizing the 
memory bandwidth, selecting the correct frequency 
for the data motion clock frequency and selecting the 
correct frequency for the hardware functions. 

The main loop of the AES encryption function com-
prises the functions that perform each AES step. Each 
function in the AES algorithm must be completed and 
the result computed before the next function can run. 
This interdependency requires us to focus our efforts 

aes_enc.c: This �le performs the encryption. We will 
code each of the stages as its own function so that 
it can be called as required for the AES round. To 
ensure the design is common to those implemented 
on processors, we use lookup tables for the mixed 
step’s multiplications.

aes_enc.h: This �le houses the de�nition of the  
aes_function and the parameters used to determine 
the size (e.g., mk, nb and nr).

sbox.h: This includes the substitution box used for 
the substitute bytes, the lookup table for the rcon 
function that performs key expansion, and the mul-
tiplication lookup tables for the MixColumns mul-
tiplications.

Within this structure, we can select the AES en-
cryption function (Figure 6) as the one we wish to ac-
celerate simply by right clicking on the function and 
selecting Toggle HW/SW. 

To ensure that we are able to determine the base-
line performance and the savings we get from the 
accelerating the function, we must be able to time 
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void aes_enc(uint8_t state[4][4],uint8_t cipher[4][4],uint8_t ekey[240])
{

 uint8_t iteration = 0;
 //uint8_t x,y;

 uint8_t sub[4][4];
 uint8_t shift[4][4];
 uint8_t mis[4][4];
 uint8_t round[4][4];

 addroundkey(state,Ø,sub,ekey);

 loop_main : for(iteration = 1; iteration < nr; iteration++)
  {
   subbytes(sub,shift);
   shift_row_enc(shift,mix);
   mixcolumn(mix,round);
   addroundkey(round,iteration,sub,ekey);
  }
  subbytes(sub,shift);
  shift_row_enc(shift,round);
  addroundkey(round,nr,cipher,ekey);

}

 Figure 6 — The function to be accelerated

https://github.com/ATaylorCEngFIET/MicroZed-Chronicles
http://issuu.com/xcelljournal/docs/xcell_software_journal_issue_1/14?e
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on the AES steps created as separate functions. There is 
plenty of potential for optimization within these steps. 

We can pipeline the AddRoundKey, SubBytes and 
MixColumns steps for increased performance. Within 
these functions, we execute the HLS Pipeline command 
by putting pragmas within the first loop. We should un-
roll the inner loop. Several of these functions read from 
lookup tables normally built from block RAM. We need 
to increase the memory bandwidth, so for this exam-
ple I have specified the pragma parameter “complete,” 
which implements the memory contents as discrete 
registers as opposed to BRAM.

The ability to transfer the data between the PS and 
the PL on the Zynq SoC is also of key importance in 
boosting performance. My first step was to set the data 
motion clock network at its highest possible clock fre-
quency: 200 MHz. My second approach was to ensure 
that direct memory access was used for data transfer 
between the PS and PL. To do this, I had to rewrite the 
interface slightly and use the sds_alloc function to en-
sure that the data was contiguous in memory, as DMA 
transfer requires (Figure 7).

My third and �nal optimization step was to set the 
hardware function’s clock rate at the highest frequency 
supported for this application: 166.67 MHz.

RESULTS ON THE SUPPORTED  
OPERATING SYSTEMS
When I �nally put these all together and built the exam-
ple, the PL-accelerated AES code ran on Linux in 16,544 
processor clock cycles, or 45 percent (16,544 / 36,662) 
of the cycles needed when running the AES code in 
software alone. That’s a massive 55 percent reduction 
in execution time for a fairly complex and interdepen-
dent algorithm.  

Of course, we can select the BareMetal or FreeRTOS 
operating system within the SDSoC environment as well. 
Creating BareMetal and FreeRTOS projects and reusing 
the code allows a comparison of performance among the 
three supported operating systems. For a given project, 
the OS selection will depend on the mission require-
ments, performance budgets and response times. 

Figure 8 reveals the three operating systems’ perfor-
mance in the Zynq SoC’s PS and PL (Figure 8). 

It is not surprising that FreeRTOS and BareMetal 
provide similar reductions, as both are much simpler 
implementations than the full Linux OS.

As our results show, using the SDSoC development 
environment to accelerate AES encryption provides a 
real performance improvement and is easy to achieve—
without in-depth FPGA design experience. n

Data Motion Network
Accelerator Argument IP Port Direction Declared Size(bytes) Pragmas Connection

aes_enc_0 state state_PORTA IN 16*1  S_AXI_ACP:AXIDMA_SIMPLE

 cipher cipher_PORTA OUT 16*1  S_AXI_ACP:AXIDMA_SIMPLE

 ekey ekey_PORTA IN 240*1  S_AXI_ACP:AXIDMA_SIMPLE

Figure 7 — The data motion network between the PS and PL

 Operating System PS Only PS with PL Acceleration Reduction

 BareMetal 28574 7102 75%

 FreeRTOS 28368 7104 75%

 Linux 36662 16544 54.8%

Figure 8 — OS performance in the Zynq PS and PL. FreeRTOS and BareMetal provide similar reductions.
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N
ippon Telegraph and 
Telephone Corp (NTT) 
is the holding company 
for a global telecom-
munications group 
that formulates man-
agement strategies and 
promotes research and 
development. We are 
researchers in NTT’s 
R&D division and are 

leading two innovative projects for software-de�ned 
networking (SDN) and network function virtualization 
(NFV). For one project, we have developed a high-per-
formance software SDN/OpenFlow switch called La-
gopus [1], which we believe to be the best OpenFlow 
1.3-compliant switch to have been released to date 
as open-source software. For our second project, we 
have developed a software-packet-processing-aware, 
40-Gbit/second (Gbps) FPGA network interface card 
(NIC) called Lagopus FPGA.  

Our early adoption of the Xilinx® SDNet™ Soft-
ware Defined Specification Environment for Net-
working was key to our ability to develop these 
technologies. Here’s how we used SDNet to meet 
our goals for the projects.

LAGOPUS FPGA FOR SDN/NFV EXCELLENCE
Cloud service providers and network service opera-
tors are turning to SDN as a key enabling technology 
for automated provisioning systems. NFV has a crit-
ical role in letting telecom operators reduce capex 
and opex by changing network systems from propri-
etary-hardware-based equipment to commodity-hard-
ware-based systems that leverage PC servers, mer-
chant silicon-based switches and software appliances. 
Many cloud service providers and telecom operators 
will deploy SDN and NFV for their next-generation 
commercial networks.  

NTT Group is a leader in SDN and NFV in both the 
commercial-services and research spheres. NTT has 



flexible architecture increases the Lagopus switch’s 
10-Gbps line rate as a pure software implementation to
a 40-Gbps line rate via FPGA acceleration. This perfor-
mance improvement comes at a cost of less than 10 per-
cent of the x86 CPU’s power dissipation. The architec-
ture also greatly enhances our network troubleshooting
ability, which is essential in a truly virtualized network.

Currently, we are co-designing an advanced soft-
ware-programmable data plane for Lagopus and original 
hardware intellectual property (IP) for network carriers 
using a leading-edge FPGA and design tools, in expecta-
tion not only of gaining higher system performance, but 
also of reducing power and cost. In collaboration with a 
Xilinx team, we have successfully integrated Lagopus and 
our IP within 80-Gbps NIC demo boards based on Xilinx 
Virtex®-7 All Programmable FPGAs. We demonstrated La-
gopus FPGA for the first time in February at NTT R&D 
Forum 2015 (Tokyo). We also presented our achievements 
[2] in August at Hot Chips 27 (Cupertino Calif.).

We leveraged the SDNet development environ-
ment to create the Lagopus FPGA system. The novel, 

Performance

Flexibility Availability
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(x86 CPU)
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Hardware
(FPGA)

NFV application

Network

SDN switch

FPGA
SDN/NFV
front-end

accelerator

NIC
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DPDK PMD API
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S
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Figure 1 — Concept and architecture of Lagopus FPGA
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launched an advanced SDN/NFV-related reearch en-
deavor called the O3 Project with funding from Japan’s 
Ministry of Internal Affairs and Communications.  
Lagopus is major deliverable of the O3 Project to 
achieve high-performance software-packet processing 
and flexible flow control using the Open Networking 
Foundation’s OpenFlow 1.3 protocol with commod-
ity Intel x86 servers and a commodity NIC. The key 
benefits with Lagopus are high-performance soft-
ware-packet processing at more than 10 Gbps on com-
modity servers; elastic network flow control for up to 
1 million flow entries; and a scalable flow dispatcher 
for NFV applications such as virtual Provider Edge 
(vPE), virtual Customer Premises Equipment (vCPE) 
and virtual Evolved Packet Core (vEPC) frameworks.

The Lagopus FPGA project aims to explore 
40/100-Gbps-capable, high-performance packet pro-
cessing with flexible partitioning between software 
and hardware-accelerated functions on an FPGA 
running on commodity servers. Figure 1 shows the 
concept and architecture of Lagopus FPGA. The 



cases in both cloud computing data centers and wide 
area networks. For NTT, the flexible, software-defined 
hardware design technology enables agile deployment 
of differentiated network services.

DESIGN BASICS WITH THE SDNET ENVIRONMENT
With competition on the rise in the emerging mar-
ket for SDN/NFV technology, one design challenge 
for the Lagopus FPGA project was to work within a 
tight development window in order to achieve time-
ly deployment and promotion. We started designing 
the Lagopus FPGA system in October 2014 and com-
pleted our �rst integration just three months later, 
in January 2015.  

dynamically reprogrammable data plane packet-pro-
cessing tool chain let us accelerate Lagopus and NFV 
applications by offloading high-intensity data plane op-
erations such as packet classification, editing, search, 
load balancing and statics metering—all realized over 
various multigigabit Ethernet line rates (10/40/100 
GbE)—to the FPGA NIC without compromising perfor-
mance. We believe this is the best solution for our proj-
ect to enforce the classification IP, a key component for 
SDN/NFV technology. The environment’s quick, recon-
figurable packet pipeline capability lets us quickly and 
easily update protocols and features for networking.

The SDNet environment broadens Lagopus FPGA’s 
potential utilization by covering a broad range of use 
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SDNet broadens Lagopus FPGA’s potential utilization: The 
flexible, software-defined hardware design technology  

enables agile deployment of differentiated network services.

Determine Packet Processing
Requirements and Functionality

$ ppp -pxFile class_sdnet.px -bus lbus -dw 256 optimizedRTL
Target optimizedRTL completed.

Write SDNet
Functional Specification

Compile SDNet
Functional Specification

Debug SDNet
Functional Specification

Verify Generated RTL

Integrate Packet Processor
in FPGA Design with Vivado

 class:: Tuple[out] { classVLAN :: Section[2] {
    struct{    ...
       DST_MAC  : 48,    method update ={
       SRC_MAC  : 48,       L2KEY.VLAN_ID         =vlan,
       VLAN_ID  : 16,    ...
       ETH_TYPE  : 16    }
   }    method increment_offset = size[];
 }L2KEY; }

Figure 2 — Design flow of the SDNet environment



and an example code snippet of the SDNet speci�ca-
tion. We decided to create a perfect-match �lter that 
uses key information from a virtual LAN. With this, we 
can accelerate Lagopus’ software data plane on the x86 
by of�oading hardware classi�cation to the FPGA NIC. 
We can con�gure the �lter entries via a DPDK �ow di-
rector API by injecting �ow entries with the OpenFlow 
protocol between Lagopus and the SDN controller.

To implement this strategy, we created a corre-
sponding SDNet functional description as shown in 
the Figure 2 code snippet. We then fed the code into 
the SDNet compiler, specifying options such as bus 
type, bus width and generated RTL type. The compila-
tion completed within a few seconds. The actual code 
size of the SDNet functional description was about 
250 lines of code. In contrast, the RTL equivalent com-
prised several tens of thousands of code lines. Consid-
ering that we were working under an intense schedule, 
we very much appreciated the simplicity of the SDNet 
speci�cation. It would have been impossible to design 
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That was quite an accomplishment, given the com-
plexity of the system design. Figure 1 shows the top-level 
architecture of the Lagopus FPGA system, which com-
prises four technical software layers, including a soft 
FPGA IP bundle: (1) NFV applications; (2) the Lagopus 
software switch; (3) a hardware abstraction layer, such 
as an application programming interface (API) and Intel’s 
Data Plane Development Kit (DPDK), a set of libraries 
and drivers for x86 fast packet processing; and (4) the 
FPGA NIC IP core suite. The multiple technical layers 
can make it dif�cult to trace the source of issues such as 
dropped packets and performance degradation, hamper-
ing the ability to debug and immediately isolate faults; 
indeed, this is a key challenge for all SDN/NFV architec-
tures. To overcome these dif�culties, we leveraged the 
SDNet environment and Xilinx’s Vivado® Design Suite. 

We started the design of Lagopus FPGA by deter-
mining our requirements for packet-processing func-
tionality and mapping out a development �ow. Figure 2 
shows a general description of the development �ow 
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Figure 3 — FPGA flow classification and dispatch



imize the feature set, optimize the performance 
and lower the power consumption of the Lago-
pus FPGA system. NTT R&D’s leadership in SDN/
NFV and our use of Xilinx’s SDNet development 
environment will enable us to bring revolutionary 
changes to the telecom and cloud infrastructure. 
Toward that end, we continue to refine our design 
technique by leveraging a softly defined, repro-
grammable SDNet load module. Dynamic and rapid 
modification of the SDNet specification, including 
the API, will provide further benefit for us when we 
define future platforms. n
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and verify such a complicated module in RTL from 
scratch given our development time constraints.

For the next step, we integrated the generated RTL 
with other peripheral IP on the Vivado Design Suite 
by employing a Tool Command Language (Tcl) shell. 
Figure 3 shows the integrated SDNet classi�er and our 
customized �ow dispatcher, which we targeted to pro-
gram a Xilinx Virtex-7 XC7VX690T FPGA.

Since the classi�ed packet �ow (targeting 32 receive 
[rx] DMA queues) can be dispatched ef�ciently with La-
gopus’ software data plane on an x86 multicore CPU, the 
integrated FPGA design enables the system not only to 
reduce the CPU cycles of the OpenFlow worker threads 
of Lagopus, but also to balance the workload on each 
core (Figure 3). As a result, we achieved higher-perfor-
mance, 40-Gbps wire-speed software packet processing 
with Lagopus FPGA, at a cost of less than 10 percent of 
the x86 CPU’s power dissipation, as Figure 4 shows.

The SDNet environment and the Vivado Design 
Suite facilitated our project launch, letting us max-
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We achieved 40-Gbps wire-speed software packet
 processing with Lagopus FPGA, at a cost of 

less than 10 percent of x86 power dissipation.



Delivering  
FPGA Vision  
to the Masses
NI’s Vision Development Module and  
Vision Assistant take machine vision from  
idea to prototype to application deployment.
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V
ision systems are going main-
stream. The cost/benefit analy-
sis and possible application of 
technology are now at a point 
where engineers are design-
ing vision into everything from 
autonomous vehicles to con-
sumer-electronics quality inspec-

tion systems. This mass adoption is driving vision out 
of the lab, into embedded systems and onto the facto-
ry �oor. The deployed systems often require advanced 
synchronization with I/O, many widely distributed 
cameras or vision in the control loop. As processes 
and applications become more complex, vision sys-
tems are requiring faster and more advanced process-
ing as well as tighter timing and synchronization.  

To meet those requirements, vision system designers 
are increasingly relying on heterogeneous processing 
platforms comprising a combination of real-time pro-
cessors and FPGA, GPU or DSP processing elements 
that can handle specialized tasks, I/O requirements and 
processing performance needs. Smart cameras, frame 
grabbers and vision systems are all leveraging heteroge-
neous architectures to meet application requirements. 

The parallel processing capability of FPGAs, such 
as those in the Xilinx® All Programmable FPGA line-
up, is a natural fit for implementing many image pro-
cessing algorithms. FPGAs can be used for performing 
both data-intensive processing and high-speed sensor 
measurements. The devices also have incredibly low 
latency, which is critical for vision applications be-
cause latency accounts for the time that elapses until a 
decision is made based on the image data. FPGAs can 
help avoid jitter and thus serve as highly deterministic 
processing units.

Building a heterogeneous system that includes an 
FPGA, however, introduces serious programming 
challenges for system designers. As time-to-mar-
ket pressures mount, vision system designers need 
the ability to prototype a solution with complex 
features quickly. Programming on heterogeneous 
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parallel streams (for such tasks as latency balancing). 
VDM includes more than 50 FPGA image processing 
functions as well as functions to transfer images effi-
ciently between the processor and the FPGA. You can 
use Vision Assistant within VDM to rapidly prototype 
and develop FPGA vision applications.

CONFIGURATION-BASED PROTOTYPING
Vision Assistant is a con�guration-based prototyping 
tool that empowers you to iterate on image process-
ing algorithms and see how changes in parameters 
affect the image. With Vision Assistant, you can visu-
alize the output (processed image) after every vision 
block in an image pipeline (Figure 1). You can use 
the tool to test different algorithms and parameters 
on different sets of images without having to compile 
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systems requires a tool that can help the domain 
expert design intellectual property (IP) functions 
on multiple platforms and test the vision algorithm 
before compiling and running the algorithm on the 
target hardware. The tool should allow easy ac-
cess to throughput and resource usage information 
throughout the prototyping process. 

NI refers to this as algorithm engineering: the pro-
cess by which you, the domain expert, can focus on 
solving the problem at hand without being preoccu-
pied with the underlying hardware technology. NI’s 
Vision Development Module (VDM) with Vision Assis-
tant arms you with that capability.

VDM with Vision Assistant helps in fast prototyping 
and code generation, FPGA resources estimation, au-
tomatic code parallelization, and synchronization of 



code to ensure that your implementation yields the 
same results. 

One consideration is which kernel size to use for 
an image �ltering operation. The choice of kernel size 
affects resource usage and latency in the pipeline, 
with a larger kernel usually requiring more resources 
than a smaller one. 

To select the most appropriate kernel size for 
your application, you can use Vision Assistant  
to experiment until you achieve the best perfor-
mance in terms of minimal resource consumption 
and maximum performance. A real-time estimate of  

your IP, thereby greatly reducing the time required to 
design your vision algorithm.

NI has customized the tool to handle FPGA pro-
grammers’ requirements. The key concerns when 
building any algorithm on an FPGA are resource 
consumption on the FPGA fabric, the latency of the 
pipeline and the maximum frequency the algorithm 
can achieve on a specific fabric. Vision Assistant 
helps by providing an estimate of the resources 
consumed for each block in the image pipeline. You 
can use the tool to test the results of algorithms 
in the prototyping environment and the deployed               

ISSUE 2, FOURTH QUARTER 2015

33

You can use Vision Assistant to test the results of algorithms 
in the prototyping environment and the deployed code  

to ensure that your implementation yields the same results.

Figure 2 — Performance meter utility



and the host. The acquisition logic depends on whether 
the vision system is based on inline processing or co- 
processing. Vision Assistant also helps you create other 
VIs, such as the Host VI, which runs on the processor, 
and the FPGA VI. You would then compile the FPGA VI 
using Xilinx Vivado® tools to generate a bitstream for de-
ployment on the FPGA.

It is important to note that the system that houses the 
image processing pipeline can be broadly categorized as 
inline processing or coprocessing, depending on where 
the acquisition logic resides. In inline processing, the ac-
quisition logic resides on the FPGA; the camera is con�g-
ured using the acquisition logic and the image is processed 
on the FPGA. The results and the processed image are 
then sent back to the host for evaluation and further anal-
ysis. In coprocessing, the acquisition logic for the camera 
resides on the processor. Transferring the image from the 
processor to the FPGA and then sending the processed im-
age back from the FPGA to the processor require a �nite 
amount of time. You also can partition the processing of 
the image pipeline between the processor and the FPGA.

As a developer of a vision system that uses an FPGA, 
you need to be aware of the throughput that the FPGA 
can achieve. You can use throughput information and 
real-time resource estimation to determine how many 
functions (IP blocks) you can deploy to the FPGA. In a 
coprocessing scenario, the processor performance de-
termines the �nal throughput. This is true when using the 
FPGA IP functions that NI ships with the Vision Develop-
ment Module because those functions are fully pipelined 
and yield better performance than most processors.

PROTOTYPE TO DEPLOYMENT
The vision FPGA IP of the Vision Development Mod-
ule lets developers use massively parallel processing 
and the Xilinx Vivado High-Level Synthesis (HLS) tool 
to achieve fully pipelined, low-latency, architecture-op-
timized vision IP on the FPGA. Vision FPGA IP from 
NI currently targets three Xilinx FPGA families— 
Kintex®-7, Virtex®-5 and Spartan®-6—as well as the Xil-
inx Zynq®-7000  All Programmable SoCs.  
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The vision FPGA IP of the 
Vision Development Module 
lets developers use massively 
parallel processing and the 
Vivado High-Level Synthesis 
tool to achieve fully pipelined, 
low-latency, architecture- 
optimized vision functions 
on the FPGA.
vision IP functions, as in Figure 1, is a useful feature 
to have during prototyping.

Running multiple image pipelines in parallel is a 
common requirement. Such scenarios dictate that at 
the time the pipelines merge into a single pipeline, 
the latency of the parallel pipelines must be balanced.  
NI provides a synchronization buffer as part of its vi-
sion FPGA IP toolset. Vision Assistant automatically 
computes the latencies in the pipeline and ensures 
balanced latency at the time that the parallel pipelines 
merge to con�gure the synchronization buffer for you. 
This guarantees that the FIFOs in the synchronization 
buffers have suf�cient depth based on the maximum 
latency of the pipelines.

The performance meter utility in Vision Assistant 
estimates the maximum time taken for processing 
each frame (Figure 2), letting you know the collective 
latency of all the blocks in the pipeline. Most of the 
processors in NI’s hardware portfolio have a real-time 
operating system running on them, so using Vision  
Assistant makes it easy to estimate the time required 
to execute a vision function.

For those who are new to LabVIEW, it should be 
noted that Vision Assistant ensures the creation of a 
fully functional project, including all dependencies, 
such as transfer virtual instruments (VIs) and DMA  
FIFOs, and the image acquisition logic. A VI is similar 
to a function or subroutine in other programming lan-
guages. Transfer VIs are required to transfer the image 
data between the host/acquisition logic and the FPGA. 
DMA FIFOs do not involve the host processor; there-
fore, they are the fastest available method for transfer-
ring large amounts of data between the FPGA target 



a single-cycle timed loop (SCTL); using the SCTL 
ensures that the modules in the loop clock at a  
user-specified frequency. 

Figure 3 shows an FPGA VI that depicts the four-
wire protocol and the synchronization buffer to merge 
the pixel. The four-wire protocol is designed for algo-
rithms that run in parallel; it improves throughput by 
ensuring that the data is processed in a producer-con-
sumer architecture. Further, the four-wire handshake 
consumes minimal resources on the FPGA. This is 
critical because the protocol constitutes overhead for 
the underlying vision functionality.

Vision FPGA IP also gives you the flexibility of 
adding custom code within the pipeline to provide 
an open environment. The custom code requires a 
wrapper VI that has the four-wire handshake imple-
mentation. You can then insert custom code in the im-
age pipeline. You must ensure that the custom code 
is fully pipelined; otherwise it might affect the integ-
rity of the pipeline. You can implement your custom 

An image can be viewed as a two-dimensional ar-
ray, and operation on an image is mostly matrix-based.  
FPGAs’ inherent parallelism enables their high-speed 
performance. You can achieve the matrix operations on 
the image using loops; you can unroll the loops and take 
advantage of the parallelism feature of the FPGA to per-
form several tasks after unrolling. LabVIEW FPGA and 
the LabVIEW FPGA IP Builder are the primary tools  
developers use to create vision IP on FPGAs. 

Vision FPGA IP functions are single-pixel pro-
cessing, so they accept 1 pixel from a pixel stream 
and then output 1 pixel. The IP functions interact 
with one another using enable-based handshaking 
or a four-wire handshaking protocol. The primary 
reason for this implementation is that the complex-
ity of the control path increases with the number 
of functions in the image pipeline, thus requiring a 
seamless handover of data between the functions. 
The four-wire protocol ensures lossless data trans-
fer between vision FPGA IP functions placed in 
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Figure 3 — Internals of the FPGA VI with a synchronization node
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code using LabVIEW, or you can use existing code  
in VHDL through an HDL integration node in Lab-
VIEW FPGA.

The vision FPGA IP toolset provides preprocess-
ing functions such as edge detection filters, convo-
lution filters, lowpass filters, gray morphology, bina-
ry morphology and threshold. It also includes vision 
IP functions that perform arithmetic and logical 
operations, as well as functions that output results 
such as the centroid. Another function, the Simple 
Edge Tool, finds edges along a line and is useful for 
caliper applications. The Quantify function accepts 
a masked image as well as the image stream to be 
processed and returns a report that has information 
about the area, mean and standard deviation of the 
regions defined by the masked image. Linear Aver-
age computes the average pixel intensity (mean line 
profile) on all or part of the image. 

The latest addition to NI’s vision FPGA IP list is 
the Particle Analysis Report. You can perform par-
ticle analysis, or blob analysis, to detect connected 

regions or groupings of pixels in an image and then 
make selected measurements of those regions. With 
this information, you can detect flaws on silicon wa-
fers, detect soldering defects on electronic boards 
or locate objects in motion control applications. 

A unique feature of this IP is that it can detect par-
ticles when the particle information is spread across 
two frames. NI ships a Particle Analysis Report ex-
ample with VDM; Figure 4 shows the Host VI with 
the image display. This capability is needed in in-
spection systems, where you cannot always ensure 
that the objects under inspection are captured in a 
single frame. 

Nearly 70 percent of NI’s vision FPGA IP func-
tions were developed using the IP Builder, a utili-
ty in LabVIEW FPGA that allows you to code in 
graphical code using LabVIEW and then output RTL 
code using Vivado HLS. The major advantage of this  
approach is that users familiar with graphical cod-
ing can develop the application along with a di-
rective file that states their frequency and latency  

Figure 4 — Particle Analysis Report example with retain overlap enabled
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requirements. Using LabVIEW IP Builder with Viva-
do HLS generates the appropriate VHDL code. You 
can use array-based operations on images, and Viva-
do HLS ensures that, based on the directives set, the 
VI will achieve the required frequency of operation 
and minimum latency. 

Vivado HLS is a good fit for vision development 
because it helps abstract algorithmic descriptions 
and data-type specifications (integer, fixed-point) 
from the generated C code of the IP Builder. It also 
generates the necessary simulation models for ear-
ly testing of functionality. The generated architec-
ture-aware VHDL code yields high-quality, highly 
repeatable results. 

NI is committed to the concept of providing open, 
flexible systems with the right software tools to lever-
age them. Developers are designing vision systems 
based on heterogeneous architectures into a growing 
range of applications. The next frontier for the soft-

ware design of these heterogeneous systems could be 
for the compiler or application development engine to  
decide intelligently where to deploy the components  
of an algorithm, using the capabilities and resources  
of the various system components (CPU, GPU and 
FPGA) to make that determination. 

As more-advanced products and processes push 
the limits of what vision systems are asked to do, 
application developers will require an effective 
prototyping and algorithm development environ-
ment for vision functionality. Providing the right 
tools to developers and domain experts will fuel 
the next wave of innovation in vision system design 
for the masses. 

If you are interested in trying out NI’s vision 
FPGA IPs, you need to install LabVIEW FPGA and 
VDM. You can do so initially for a 30-day evaluation 
period and then extend or purchase the license at 
ni.com/vision. n

Vivado HLS is a good fit for vision development because it 
helps abstract algorithmic descriptions and data-type  
specifications from the generated C code of the IP Builder. 
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With the rise of the Internet of Things and Big Data pro-
cessing, the need for transferring and processing data 
has skyrocketed, and CPUs alone can no longer address 
the exponential increase. Adding more processors and 
more virtual machines to run a given application just 
doesn’t cut it, as there is only so much that can be 
parallelized on multiple CPUs for a given application. 
Field-programmable gate arrays, on the other hand, 
have the requisite I/O bandwidth and processing power, 
not only from a pure processing standpoint but, equal-
ly important, from a power standpoint. For data-center 
equipment manufacturers, the use of FPGAs has long 
been an appealing prospect. Intel’s recent acquisition 
of the second-largest FPGA vendor is further testament 
that a CPU-only solution no longer suf�ces.  

The major roadblock to more-widespread FPGA 
adoption has been the complexity of implementing 
them. Until now, the only way to develop an application 
on an FPGA-based platform has been to deal with some 
of the lowest levels of hardware implementation. This 
has kept a large potential customer base—software de-
velopers—away from the devices and has made life in-
creasingly complicated for traditional FPGA designers.

Recent methodologies for FPGA design, centered on 
high-level synthesis (HLS) tools and leveraging software 
programming languages such as OpenCL™, C and C++, 
have provided a sandbox for software developers to reap 
the benefits of FPGA-based hardware acceleration in 
numerous applications. But the methodologies often fall 
short in one essential respect: enabling software develop-
ers to define and configure, on their own, the hardware 
infrastructure best suited for their application. The indus-
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try has continued to pursue the holy grail of a high-level 
workflow for implementing applications on FPGA-based 
platforms that does not require specific FPGA expertise. 

Over the past five years, PLDA has developed just 
such a workflow. Called QuickPlay, it efficiently ad-
dresses the implementation complexity challenge and 
enables multiple use models for FPGA development. 
But one of its core sources of value is the way in which 
it lets software developers take applications intended 
for CPUs and implement them, partially or fully, on 
FPGA hardware. QuickPlay leverages all of the FPGA 
resources, turning these powerful but complex devices 
into software-defined platforms that yield the benefits 
of FPGAs without the pain of hardware design.

Consider a software algorithm that can be broken 
down into two functions: Data is processed into one 
function and is then sent to another for further process-
ing. From a software perspective, this implementation 
is as simple as a call to Function1() followed by a sep-
arate call to Function2(), using pointers to the location 
of the data to be processed.

Implementing such an algorithm on an FPGA-based 
hardware platform without the right hardware abstrac-
tion tool flow would require the software developer 
to come up with a hardware design resembling that in 
Figure 1 (where Kernel 1 and Kernel 2 are the respective  
hardware implementations of Function 1 and Function 2). 
The hardware design would need to include two elements: 
the control plane and the data plane. 

The control plane is the execution engine that gener-
ates clocks and resets, manages system startup, orches-
trates data plane operations, and performs all housekeep-
ing functions. The data plane instantiates and connects 
the processing elements, Kernel 1 and Kernel 2, as well 
as the necessary I/O interfaces required to read data in 
and write processed data out. In our example, those in-
terfaces are Ethernet and PCI Express (PCIe), as Figure 
1 shows, though different application requirements will 
call for different I/O interfaces.

A software developer could easily generate Kernel 1
and Kernel 2 using an HLS tool that compiles the

W



an experienced hardware designer weeks to achieve a 
working design on a new piece of FPGA hardware.

Thus, any tool that aims to enable software devel-
opers to augment their applications with custom hard-
ware must be able to: 

•  create functional hardware from pure software code; 

•  incorporate existing hardware IP blocks if needed; 

•  infer and create all of the support hardware (inter-
faces, control, clocks, etc.);

•  support the use of commercial, off-the-shelf boards 
and custom platforms;

•  ensure that the generated hardware is correct by 
construction so that it requires no hardware debug; 
and 

•  support debug of functional blocks using standard 
software debug tools only. 
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Figure 1 — A detailed hardware implementation of a two-function algorithm using traditional FPGA tools

QuickPlay leverages all of the FPGA resources, turning  
these powerful but complex devices into software-defined  
platforms that yield the benefits of FPGAs without the  
pain of hardware design.
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software functions Function1() and Function2(), typi-
cally written in C or C++, into FPGA hardware descrip-
tions in VHDL or Verilog, without requiring specific 
hardware expertise. Every other element in the design 
that is not algorithmic in nature (interfaces, control, 
clocks and resets), however, could not be generated 
with HLS tools, and hardware designers would have to 
design them as custom hardware description language 
functions or IP. The job of sourcing those elements and 
connecting them poses yet another challenge, as some 
elements may not be readily available or may have dif-
ferent interfaces (type and size), clocking requirements, 
specific startup sequences and so on.

Beyond the design work—and equally challenging—is 
the implementation work, which includes mapping the 
design onto the resources of the selected FPGA platform, 
generating the appropriate constraints, and confirming 
that those constraints are met after logic synthesis and 
implementation on the FPGA hardware. It can take even 



form level, and thus would defeat the purpose of a tool 
aimed at abstracting hardware to software developers.

QuickPlay uses an intuitive dataflow model that 
mathematically guarantees deterministic execution, re-
gardless of the execution engine. The model consists 
of concurrent functions, called kernels, communicating 
with streaming channels. It thus correlates well with 
how a software developer might sketch an application 
on a whiteboard. To guarantee deterministic behavior, 
the kernels must communicate with each other in a way 
that prevents data hazards, such as race conditions and 
deadlocks. This is achieved with streaming channels 
that are (1) FIFO-based, (2) blocking read and blocking 
write, and (3) point-to-point. 

Those are the characteristics of a Kahn Process Net-
work (KPN), the computation model on which PLDA 
built QuickPlay. Figure 2 shows a QuickPlay design ex-
ample illustrating the KPN model.

The contents of any kernel can be arbitrary C/C++ 
code, third-party IP or even HDL code (for the hard-
ware designers). QuickPlay then features a straightfor-
ward design �ow (Figure 3).

Let’s take a closer look at each step of the QuickPlay 
design process.

Step 1: Pure software design. At this stage you create 
your FPGA design by adding and connecting processing 
kernels in C and by specifying the communication chan-
nels with your host software. QuickPlay’s Eclipse-based 
integrated development environment (IDE) provides a C/
C++ library with a simple API to create kernels, streams, 
streaming ports and memory ports, and to read and write 
to and from streaming ports and memory ports.

PLDA engineered QuickPlay from the ground up to 
meet all of those requirements, thereby enabling pure soft-
ware developers to specify, build and integrate FPGAs into 
their software architectures with minimal effort.

SOFTWARE-CENTRIC METHODOLOGY
The overall process of implementing a design using 
QuickPlay is straightforward: 

1.  Develop a C/C++ functional model of the hardware 
engine.

2.  Verify the functional model with standard C/C++  
debug tools.

3.  Specify the target FPGA platform and I/O interfaces 
(PCIe, Ethernet, DDR, QDR, etc.).

4. Compile and build the hardware engine.

The process seems simple; but if it is to work seam-
lessly, it is critical that the generated hardware engine 
be guaranteed to function identically to the original 
software model. In other words, the functional model 
must be deterministic so that, no matter how fast the 
hardware implementation runs, both hardware and 
software executions will yield the exact same results. 

Unfortunately, most parallel systems suffer from 
nondeterministic execution. Multithreaded software 
execution, for example, depends on the CPU, on the OS 
and on nonrelated processes running on the same host. 
Multiple runs of the same multithreaded program can 
have different behaviors. Such nondeterminism in hard-
ware would be a nightmare, as it would require debug-
ging the hardware engine itself, at the electrical wave-
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Figure 2 — A design example in QuickPlay



you are done with this debug phase and have �xed 
all functional issues, you will not need any further 
debugging at the hardware level.

It’s important to remember that the functional 
model involves none of the hardware infrastruc-
ture elements. In the example above, the focus is 
on a simple, two-function model; none of the sys-
tem aspects added in Figure 1 (such as the commu-
nication components, the control plane, and clock-
ing and resets) are in play during this modeling and 
verification phase.

Step 3: Hardware generation. This step generates 
the FPGA hardware from your software model. It in-
volves three simple actions: 

1. Using a drop-down menu in the QuickPlay GUI,  
select the FPGA hardware into which you want to  
implement your design. QuickPlay can implement 
designs on a growing selection of off-the-shelf boards 
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In addition, the QuickPlay IDE provides an intuitive 
graphical editor that allows you to drag and drop ker-
nels and other design elements and to draw streams.

Step 2: Functional veri�cation. In this step, the fo-
cus is on making sure that the software model written 
in Step 1 works correctly. You do this by compiling the 
software model on the desktop, executing it with a test 
program that sends data to the inputs, and verifying 
the correctness of the outputs. The software model of 
the FPGA design is executed in parallel, with a distinct 
thread for each kernel to mimic the parallelism of the 
actual hardware implementation. 

You would then debug your software model using 
standard software debug techniques and tools such 
as breakpoints, watchpoints, step-by-step execution 
and printf. (You will probably want to run more tests 
once the implementation is in hardware; we’ll deal 
with that shortly.) From a design �ow standpoint, 
this is where you do all of your veri�cation. Once 

void Main (qplStream & data_in, qpOStream &data_out) {
    qpCreateStream(st1, st2, st3, st4, st5);
    qpCreateKernel( “kernel_1”, kernelFunction(function_1), data_in, st1);
    qpCreateKernel( “kernel_2”, kernelFunction(function_2), st1, st2, st3, void* mem);
    ...
}
void function_1 (qplStream & data_in, qpOStream &data_out) {
    double matrix[1024];
    unsigned int i;
    qpReadStream(data_in,matrix,1024);
    for (i=0; i<1024; i++)
       matrix[i] *= matrix[i-1];
    qpWriteStream(data_out,matrix, 1024,true);
}

QuickPlay Compilation and Execution Flow

User Code

Tool Chain

Executables

Hardware

Front End

FPGACPU

C/C++ Compiler

Kernel Kernel

Kernel

Kernel

Kernel

Memory

FPGA Bitstreamx86 Executable

Back End

VHDL Verilog

Figure 3 – QuickPlay features a straightforward design flow.



3. Launch the build process. This will run the HLS engine 
(creating hardware from C code), create the needed sys-
tem hardware functions (the control plane logic in our orig-
inal example) and run any other tools necessary (for ex-
ample, Xilinx’s Vivado® integrated design environment) to 
build the hardware images that the board will require. No 
manual intervention is required to complete this process. 

Step 4: System execution. This is similar to the exe-
cution of the functional model in Step 2 (functional veri-
�cation), except that now, while the host application still 
runs in software, the FPGA design runs on the selected 
FPGA board. This means that you can stream real data in 
and out of the FPGA board and thereby bene�t from ad-
ditional veri�cation coverage of your function. Because 

that feature leading-edge Xilinx® All Programmable 
FPGAs, PCIe 3.0, 10-Gbit Ethernet, DDR3 SDRAM, 
QDR2+ SRAM and more. 

2. Select the physical interfaces (and therefore the 
protocols) to map to the design input and output 
ports. These are also simple menu selections. The 
choice will depend on the interfaces that are avail-
able on the FPGA board you have selected, such as 
PCIe, TCP/IP over 10-Gbit Ethernet and UDP over 10-
Gbit Ethernet. Selecting the communication protocol 
automatically invokes not only the hardware IP block 
required to implement the connection, but also any 
software stacks layered over it, so that the complete 
system is created. 
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Figure 4 — The debug infrastructure is automatically created.

Once you are done with the software debug phase and 
have fixed all functional issues, you will not need any further

debugging at the hardware level.
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this will run so much faster, and because you can use live 
data sources, you are likely to run many more tests at 
this stage than you could during functional veri�cation.

Step 5: System debug. Because you’re running so 
many more tests now than you were doing during the 
functional veri�cation phase, you’re likely to uncover 
functional bugs that weren’t uncovered in Step 2. So 
how do you debug now? 

As already noted, you never have to debug at the 
hardware level, even if a bug is discovered after 
executing a function in hardware. Because Quick-
Play guarantees functional equivalence between 
the software model and the hardware implementa-
tion, any bug in the hardware version has to exist 
in the software version as well. This is why you 
don’t need to debug in hardware; you can debug 
exclusively in the software domain.

Once you have identi�ed the test sequence that 
failed in hardware, QuickPlay can capture the se-
quence of events at the input of the design that gen-
erated the faulty operation and replay it back into 
the software environment, where you can now do 
your debug and identify the source of the bug using 
the Eclipse debugger.

This is possible because QuickPlay automatically 
provisions hardware with infrastructure for observ-
ing all of the critical points of the design. You can 
disable this infrastructure to free up valuable hard-
ware real estate. Figure 4 shows the example sys-
tem with added debug circuitry. Without QuickPlay, 
some sort of debug infrastructure would have to be 
inserted and managed by hand; with QuickPlay, this 
all becomes automatic and transparent to the soft-
ware developer.

The overall process is to model in software, then 
build the system and test in hardware. If there are 
any bugs, import the failing test sequences back 
into the software environment, debug there, �x the 
source code and then repeat the process. This rep-
resents a dramatic productivity improvement over 
traditional �ows.

Step 6 (optional): System optimization. Once you 
have completed the debug phase, you have a functional 
design that operates on the FPGA board correctly. You 
may want to make some performance optimizations, 
however, and this is the proper time to do that, as you 
already know that your system is running correctly. 

The �rst optimization you should consider is to re�ne 
your functional model. There are probably additional 
concurrency opportunities available; for example, you 
might try decomposing or refactoring functions in a dif-
ferent way. At this level, optimizations can yield spec-
tacular performance improvements. Needless to say, 
doing so with a VHDL or Verilog design would require 
signi�cant time, whereas doing the modi�cations in C 
would be a quick and straightforward process.

Second, you may want to try a different FPGA board 
with a faster FPGA. Because the mapping from the func-
tional model to the board is so easy, it’s a simple matter to 
try a variety of boards in order to select the optimal one.

The third optimization has to do with the hard-
ware kernels that QuickPlay creates via high-level 
synthesis. While the resulting hardware is guaran-
teed to operate correctly and ef�ciently, it may not 
operate as ef�ciently as hardware handcrafted by 
a hardware engineer. At this stage, you have sev-
eral options: You can optimize your code and tune 
QuickPlay HLS settings to improve the generated 
hardware, use Vivado HLS to generate more-ef�-
cient hardware, or have a hardware designer hand-
craft the most critical blocks in HDL.

None of these optimization steps is mandatory, but 
they provide options when you need better-performing 
hardware and have limited hardware design resources 
available. A hardware engineer may be able to help with 
these optimizations. Once you have made any of these 
changes, simply repeat the build process.

A UNIVERSAL STREAMING CONDUIT
QuickPlay provides a universal streaming API that 
entirely abstracts away the underlying physical com-
munication protocol. Streaming data is received via 
the ReadStream() function and is sent out using the 

As a result of the abstraction that QuickPlay provides, the  
algorithms remain pure, focused solely on data manipulation 
and independent of the underlying communication details.
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WriteStream() function. Those functions can be used to 
send and receive data between kernels, to embedded or 
board-level memory, or to an embedded or external host 
CPU, thus providing broad architectural �exibility with 
no need for the developer to comprehend or manage the 
underlying low-level protocols.  

The selected protocol determines the hardware through 
which that data arrives and departs. At present, QuickPlay 
supports ARM® AMBA® AXI4-Stream, DDR3, PCIe (with 
DMA) and TCP/IP; more protocols are being added and 
will be added as demand dictates. Selecting the desired 
protocol sets up not only the hardware needed to imple-
ment the protocol, but also the software stacks required to 
support the higher protocol layers, as shown in Figure 5.

QuickPlay manages the exact implementation of these 
reads and writes (size, alignment, marshaling, etc.). The 
most important characteristic of the ReadStream() and 
WriteStream() statements is that they are blocking: When 
either statement is encountered, execution will not pass 
to the next statement until all of the expected data has 
been read or written. This is important for realizing the 
determinism of the algorithm.

The “binding” between the generic ReadStream() and 
WriteStream() statements and the actual underlying 
protocol hardware occurs at runtime via the QuickPlay 
Library. This not only prevents the communication de-
tails from cluttering up the software program, but also 
provides modularity and portability. The communication 
protocol can easily be changed without requiring any 

changes to the actual kernel code or host software. 
The ReadStream() and WriteStream() statements will 
automatically bind to whichever protocol has been se-
lected, with no effect on program semantics.

As a result of the abstraction that QuickPlay provides, 
the software algorithms remain pure, focusing solely on 
data manipulation in a manner that’s completely inde-
pendent of the underlying communication details.

PRODUCTION-QUALITY OUTPUT
Depending on the HLS tool being used, results might be 
improved by learning coding styles that result in more ef-
ficient hardware generation, but that is optional. 

While in other situations the hardware platform 
you use may be viewed simply as a prototyping vehi-
cle, the systems you create using QuickPlay are pro-
duction-worthy. Going from a purely software imple-
mentation to a hardware-assisted or hardware-only 
implementation traditionally takes months. QuickPlay 
reduces that time to days. 

The QuickPlay methodology achieves the long-
sought goal of allowing software engineers to cre-
ate hardware implementations of all or portions of 
their application. By working in their familiar do-
main, software engineers can make use of custom 
hardware as needed, automatically generating hard-
ware-augmented applications that operate more ef-
ficiently and can be production-ready months ahead 
of handcrafted designs. n

Universal Streaming C/C++ API - ReadStream() and WriteStream()

Software Stacks Hardware Stacks

TCP/IP SocketDMA API

Host NIC
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NIC Driver DDR3 Controller IP

AXI4-Streaming IP AXI4-Streaming IP AXI4-Streaming IP
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Figure 5 — Selecting the desired protocol sets up the required hardware and software stacks. 
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