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SOFTWARE

Letter from the Publisher
Welcome to Xcell Software Journal
Earlier this year, Xilinx® released its SDx™ line of development environments, 
which enable non-FPGA experts to program Xilinx device logic using C/C++ 
and OpenCL™. The goal of the SDx environments is to let software develop-
ers and embedded system architects program our devices as easily as they 
program GPUs or CPUs. Xilinx’s FPGA hardware technology has long been 
able to accelerate algorithms, but it was only recently that the underlying soft-
ware technology and hardware platforms reached a level where it was feasible 
to create these development environments for the broader software- and sys-
tem-architect communities of C/C++ and OpenCL users.  

The hardware platforms have evolved rapidly during this millennium. In the 
early 2000s, the semiconductor industry changed the game on software develop-
ers. To avoid a future in which chips reached the energy density of the sun, MPU 
vendors switched from monolithic MPUs to homogeneous multicore, distrib-
uted processing architectures. This switch enabled the semiconductor indus-
try to continue to introduce successive generations of devices in cadence with 
Moore’s Law and even to innovate heterogeneous multicore processing systems, 
which we know today as systems-on-chip (SoCs). But the move to multicore 
has placed a heavy burden on software developers to design software that runs 
efficiently on these new distributed processing architectures. Xilinx has stepped 
in to help software developers by introducing its SDx line of development en-
vironments. The environments let developers dramatically speed their C/C++ 
and OpenCL code running on systems powered by next-generation processing 
architectures, which today are increasingly accelerated by FPGAs. 

Indeed, FPGA-accelerated processing architectures, pairing MPUs with 
FPGAs, are fast replacing power-hungry CPU/GPU architectures in data cen-
ter and other compute-intensive markets. Likewise, in the embedded systems 
space, new heterogeneous multicore processors such as Xilinx’s Zynq®-7000 
All Programmable SoC and upcoming Xilinx UltraScale+™ MPSoC  integrate 
multiple processors with FPGA logic on the same chip, enabling companies 
to create next-generation systems with unmatched performance and differ-
entiation. FPGAs have traditionally been squarely in the domain of hardware 
engineers, but no longer.

Now that Xilinx has released its SDx line of development environments to use 
on its hardware platforms, the software world has the ability to unlock the acceler-
ation power of the FPGA using C/C++ or OpenCL within environments that should 
be familiar to embedded-software and -system developers. This convergence of 
strong underlying compilation technology for our high-level synthesis (HLS) tool 
flow with programming languages and tools designed for heterogeneous architec-
tures brings the final pieces together for software and system designers to create 
custom hardware accelerators in their own heterogeneous SoCs.

Xcell Software Journal is dedicated to helping you leverage the SDx envi-
ronments and those from Xilinx Alliance members such as National Instru-
ments and MathWorks®. The quarterly journal will focus on software trends, 
case studies, how-to tutorials, updates and outlooks for this rapidly growing 
user base. I’m confident that as you read the articles you will be inspired to 
explore Xilinx’s resources further, testing out the SDx development environ-
ments accessible through the Xilinx Software Developer Zone. I encourage 
you to read the Xcell Daily Blog, especially Adam Taylor’s chronicles of using 
the SDSoC development environment. And I invite you to contribute articles 
to the new journal to share your experiences with your colleagues in the van-
guard of programming FPGA-accelerated systems.

    —  Mike Santarini 
Publisher 

There is a new bass player  
for the blues jam in the sky . . .
This issue is dedicated to analyst and  
ESL visionary Gary Smith, 1941 – 2015.

mailto:mike.santarini@xilinx.com
mailto:xcelladsales@aol.com
mailto:melissa.zhang@xilinx.com
mailto:christelle.moraga@xilinx.com
mailto:tomoko@xilinx.com
www.xilinx.com/xcell
http://www.xilinx.com/products/design-tools/software-zone.html
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Adam-Taylor-s-MicroZed-Chronicles-Part-85-SDSoC-the-first/ba-p/633707
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New environments  
allow you to maximize 
code performance.

by Mike Santarini
Publisher, Xcell Publications
Xilinx, Inc.
mike.santarini@xilinx.com

Lawrence Getman
Vice President, Corporate Strategy and Marketing
Xilinx, Inc.
larryg@xilinx.com
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Ever since Xilinx® invented and brought 
to market the world’s first FPGAs in the 
early 1980s, these extraordinarily ver-
satile programmable logic devices have 
been the MacGyver multipurpose tool 
of hardware engineers. With Xilinx’s 
recent releases of the SDx™ line of de-
velopment environments—SDAccel™, 
SDSoC™ and SDNet™—Xilinx is em-
powering a greater number of creative 
minds to bring remarkable innovations 
to the world by enabling software devel-
opers and systems engineers (non-FPGA 
designers) to create their own custom 
software-defined hardware easily with 
Xilinx devices.  

Before we take a look at these new 
environments and other software devel-
opment resources from Xilinx and its Al-
liance members, let’s consider the evolu-
tion of processing architectures and their 
impact on software development.

IT’S A SOFTWARE PROBLEM …
Prior to 2000, the typical microprocessor 
largely comprised one giant monolithic 
processor core with onboard memory and 

E
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up the clock on each new monolithic MPU archi-
tecture, given the silicon process technology road 
map and worsening transistor leakage, MPUs would 
soon have the same power density as the sun. 

It was for this reason that the MPU industry quick-
ly transitioned to a homogeneous multiprocessing 
architecture, in which computing was distributed to 
multiple smaller cores running at lower clock rates. 
The new processing model let MPU and semiconduc-
tor vendors continue to produce new generations of 
higher-capacity devices and reap more performance 
mainly from integrating more functions together in a 
single piece of silicon. Existing programs could not 
take advantage of the new distributed architectures, 
however, leaving software developers to figure out 
ways to develop programs that would run efficiently 
across multiple processor cores. 

a few other odds and ends, making MPUs relatively 
straightforward platforms on which to develop next-gen-
eration apps. For three decades leading up to that point, 
every 22 months—in step with Moore’s Law—micropro-
cessor vendors would introduce devices with great-
er capacity and higher performance. To increase the 
performance, they would simply crank up the clock 
rate. The fastest monolithic MPU of the time, Intel’s 
Pentium 4 Pro, topped out at just over 4 GHz. For 
developers, this evolution was great; with every gen-
eration, their programs could become more intricate 
and perform more elaborate functions, and their pro-
grams would run faster.  

But in the early 2000s, the semiconductor indus-
try changed the game, forcing developers to adjust 
to a new set of rules.  The shift started with the real-
ization that if the MPU industry continued to crank 
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Figure 1 — The Zynq UltraScale+ MPSoC



But to make these FPGA-accelerated heteroge-
neous architectures practical for mass deployment 
and accessible to software developers, FPGA ven-
dors have had to develop novel environments. In 
Xilinx’s case, the company offers three development 
platforms: SDAccel for data center developers,  
SDSoC for embedded systems developers, and 
SDNet for network line card architects and develop-
ers. The new Xilinx environments give developers 
the tools to accelerate their programs by easily pro-
gramming slow portions of their code onto program-
mable logic to create optimized systems.

SDACCEL FOR OPENCL, C/C++ PROGRAMMING 
OF FPGA-ACCELERATED PROCESSING
The new Xilinx SDAccel development environment 
gives data center application developers a complete 
FPGA-based hardware and software solution (Fig-
ure 2). The SDAccel environment includes a fast, 
architecturally optimizing compiler that makes ef-
ficient use of on-chip FPGA resources. The environ-
ment provides developers with a familiar CPU/GPU-
like work environment and software-development 
flow, featuring an Eclipse-based integrated design 
environment (IDE) for code development, profiling 
and debugging. With the environment, developers 
can create dynamically reconfigurable accelerators 
optimized for different data center applications that 
can be swapped in and out on the fly. Developers 
can use the environment to create applications that 
swap many kernels in and out of the FPGA during 
run time without disrupting the interface between 
the server CPU and the FPGA, for nonstop applica-
tion acceleration. The SDAccel environment targets 
host systems based on x86 server processors and 
provides commercial off-the-shelf (COTS), plug-in 
PCIe cards that add FPGA functionality.  

With the SDAccel environment, developers with 
no prior FPGA experience can leverage SDAccel’s 
familiar workflow to optimize their applications and 
take advantage of FPGA platforms. The IDE provides 

Meanwhile, as these subsequent generations of 
silicon process technologies continued to double 
transistor counts, they enabled semiconductor com-
panies to take another innovative step and integrate 
different types of cores on the same piece of silicon 
to create SoCs. These heterogeneous multiprocessor 
architectures posed additional challenges for embed-
ded software developers, who now had to develop 
custom software stacks to get applications to run op-
timally on their targeted systems. 

Today, the semiconductor industry is chang-
ing the game yet again—but this time software 
developers are welcoming the transition. Faced 
with another power dilemma, semiconductor 
and systems companies are turning to FPGA-ac-
celerated heterogeneous processing architec-
tures, which closely pair MPUs with FPGAs to 
increase system performance at a minimal power 
cost. This emerging architecture has been most 
notably leveraged in new data center processing 
architectures. In a now-famous paper, Microsoft 
researchers showed that the architectural pair-
ing of an MPU and FPGA produced a 90 percent 
performance improvement with only a 10 per-
cent power increase, producing far superior per-
formance per watt than architectures that paired 
MPUs with power-hungry GPUs. 

The advantages of FPGA-accelerated heteroge-
neous multiprocessing extend beyond data center 
applications. Numerous embedded systems using 
Xilinx’s Zynq®-7000 All Programmable SoC have 
greatly benefited from the devices’ on-chip marriage 
of ARM processors and programmable logic. Sys-
tems created with the upcoming Zynq UltraScale+™ 
MPSoC are bound to be even more impressive.  
Zynq UltraScale+ MPSoC integrates into one device 
multiple ARM® cores (quad Cortex™-A53 applica-
tions processors, dual Cortex-R5 real-time proces-
sors and a Mali™-400MP GPU), programmable logic, 
and multiple levels of security, increased safety and 
advanced power management (Figure 1).
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The SDAccel environment includes a fast, 
architecturally optimizing compiler that makes 

efficient use of on-chip FPGA resources.

http://research.microsoft.com/en-us/events/catapult-fs2015/
http://research.microsoft.com/en-us/events/catapult-fs2015/
http://www.xilinx.com/products/silicon-devices/soc.html


ten in C++ (as opposed to RTL) so developers can 
use them exactly as written during all development 
and debugging phases. Early in a project, all devel-
opment will be done on the CPU host. Because the 
SDAccel libraries are written in C++, they can sim-
ply be compiled along with the application code for 
a CPU target—creating a virtual prototype—which 
permits all testing, debugging and initial profiling 
to occur initially on the host. During this phase, no 
FPGA is needed.

SDSOC FOR EMBEDDED DEVELOPMENT  
OF ZYNQ SOC- AND MPSOC-BASED SYSTEMS
Xilinx designed the SDSoC development environ-
ment for embedded systems developers program-
ming the Xilinx Zynq SoCs and soon-to-arrive Zynq 
UltraScale+ MPSoCs. The SDSoC environment pro-
vides a greatly simplified embedded C/C++ application 
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coding templates and software libraries, and it en-
ables compiling, debugging and profiling against 
the full range of development targets, including 
emulation on the x86, performance validation us-
ing fast simulation, and native execution on FPGA 
processors. The environment executes the applica-
tion on data-center-ready FPGA platforms complete  
with automatic instrumentation insertion for all 
supported development targets. Xilinx designed 
the SDAccel environment to enable CPU and GPU  
developers to migrate their applications to FP-
GAs easily while maintaining and reusing their  
OpenCL™, C and C++ code in a familiar workflow.  

SDAccel libraries contribute substantially to the 
SDAccel environment’s CPU/GPU-like develop-
ment experience. They include low-level math li-
braries and higher-productivity ones such as BLAS, 
OpenCV and DSP libraries. The libraries are writ-

Compiler Debugger Profiler Libraries

SDAccel — CPU/GPU Development Experience on FPGAs

OpenCL, C, C++ Application Code

x86-Based Server FPGA-Based Accelerator BoardsPCIe

Environment

Figure 2 — The SDAccel development environment for OpenCL, C and C++ enables up to 25x better  
performance/watt for data-center-application acceleration leveraging FPGAs.



integration and verification of smarter heteroge-
neous systems. 

SDNET FOR DESIGN AND PROGRAMMING  
OF FPGA-ACCELERATED LINE CARDS
SDNet is a software-defined specification environ-
ment using an intuitive, C-like high-level language 
to design the requirements and create a specifica-
tion for a network line card (Figure 4). The envi-
ronment enables network architects and develop-
ers to create “Softly” Defined Networks, expanding 
programmability and intelligence from the control 
to the data plane.  

In contrast to traditional software-defined net-
work architectures, which employ fixed data plane 
hardware with a narrow southbound API connection 
to the control plane, Softly Defined Networks are 
based on a programmable data plane with content 
intelligence and a rich southbound API control plane 
connection. This enables multiple disruptive capabil-
ities, including support of wire-speed services that 
are independent of protocol complexity, provisioning 

programming experience, including an easy-to-use 
Eclipse IDE running on bare metal or operating sys-
tems such as Linux and FreeRTOS as its input. It is a 
comprehensive development platform for heteroge-
neous Zynq SoC and Zynq MPSoC platform deploy-
ment (Figure 3). Complete with the industry’s first 
C/C++ full-system optimizing compiler, the SDSoC 
environment delivers system-level profiling, auto-
mated software acceleration in programmable log-
ic, automated system connectivity generation and 
libraries to speed programming. It also provides a 
flow for customer and third-party platform devel-
opers to enable platforms to be used in the SDSoC 
development environment.  

SDSoC provides board support packages (BSPs) 
for Zynq All Programmable SoC-based development 
boards including the ZC702 and ZC706, as well as 
third-party and market-specific platforms includ-
ing the ZedBoard, MicroZed, ZYBO, and video and 
imaging development kits. The BSPs include meta-
data abstracting the platform from software devel-
opers and system architects to ease the creation, 
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Compiler Debugger Profiler Libraries

x86-Based Server FPGA-Based Accelerator BoardsPCIe

Environment

Rapid
system-level
performance
estimation

C/C++ Development

System-level Profiling

Specify C/C++ Functions
for Acceleration

Full System
Optimizing Compiler

The SDSoC Development Environment

• Embedded C/C++ application development experience
• System-level profiling
• Full system optimizing compiler
• Expert use model for platform developers & system architects

SoC MPSoC

Figure 3— The SDSoC development environment provides a familiar embedded C/C++ application  
development experience, including an easy-to-use Eclipse IDE and a comprehensive design environment  

for heterogeneous Zynq All Programmable SoC and MPSoC deployment.
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of per-flow and flexible services, and support for rev-
olutionary in-service “hitless” upgrades while operat-
ing at 100 percent line rates.

These unique capabilities enable carriers and mul-
tiservice system operators (MSOs) to provision differ-
entiated services dynamically without any interrup-
tion to the existing service or the need for hardware 
requalification or truck rolls. The environment’s dy-

namic service provisioning enables service providers 
to increase revenue and speed time to market while 
lowering capex and opex. Network equipment pro-
viders realize similar benefits from the Softly Defined 
Network platform, which allows for extensive differ-
entiation through the deployment of content-aware 
data plane hardware that is programmed with the 
SDNet environment.

Compiler Debugger Profiler Libraries

x86-Based Server FPGA-Based Accelerator BoardsPCIe

Environment

Rapid
system-level
performance
estimation

C/C++ Development

System-level Profiling

Specify C/C++ Functions
for Acceleration

Full System
Optimizing Compiler

The SDSoC Development Environment

• Embedded C/C++ application development experience
• System-level profiling
• Full system optimizing compiler
• Expert use model for platform developers & system architects

SoC MPSoC

SDNet — Software Defined Specification Environment for Networking

SDNet Specifications

SDNet Compiler

HW/SW Implementation

SDK/API Executable Image

• LogiCORE
• SmartCORE
• Custom Core
• SW Function

System
Architect

Implementation
Engineer

“Softly” Defined Line Card

FPGA or SoCFPGA or SoC

Figure 4 — The SDNet environment enables network architects to create a specification  
in a C-like language. After a hardware team completes the design, developers can use  

SDNet to update or add protocols to the card in the field.
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EMBEDDED DEVELOPMENT ENVIRONMENTS
To further help embedded software engineers with 
programming, Xilinx offers a comprehensive set 
of embedded tools and run-time environments de-
signed to enable embedded software developers to 
move efficiently from concept to production. Xil-
inx offers developers an Eclipse-based IDE called 
the Xilinx Software Development Kit (SDK), which 
includes editors, compilers, debuggers, drivers 
and libraries targeting Zynq SoCs or FPGAs with 
Xilinx’s 32-bit MicroBlaze™ soft core embedded 
in them. The environment provides out-of-the-box 
support for advanced features such as security and 
virtualization software drivers built on Xilinx’s 
unique Zynq SoCs and MPSoCs. This allows devel-
opers to innovate truly differentiated connected 
systems that are both smarter and secure.  

Xilinx offers a comprehensive suite of open-
source resources to develop, boot, run, debug and 
maintain Linux-based applications running on a  
Xilinx SoC or emulation platform. Xilinx provides 
example applications, kernel construction, Yocto 
recipes, multiprocessing and real-time solutions, 
drivers and forums, as well as many community 
links. Linux open-source developers will find a very 
comfortable environment in which to learn, develop 
and interact with others of like interests and needs.

A POWERFUL AND GROWING ALLIANCE  
OF PROGRAMMING ENVIRONMENTS
In addition to offering developers the new SDx de-
velopment environments and SDK, Xilinx has built 
strong alliances over the past decade with compa-
nies that already have well-established develop-
ment environments serving developers in specific 
market segments.  

National Instruments (Austin, Texas) offers hard-
ware development platforms fanatically embraced by 
control and test system innovators. Xilinx’s FPGAs 
and Zynq SoCs power the NI RIO platforms. Nation-
al Instruments’ LabVIEW development environment 

is a user-friendly graphics-based program that runs 
Xilinx’s Vivado® Design Suite under the hood so that 
National Instruments’ customers need not know any 
of the details of FPGA design; indeed, some perhaps 
don’t even know a Xilinx device is at the heart of 
the RIO platforms. They can simply program their 
systems in the LabVIEW environment and let NI’s 
hardware speed the performance of designs they 
are developing. 

MathWorks® (Natick, Mass.), for its part, add-
ed FPGA support more than a decade ago to its  
MATLAB®, Simulink®, HDL Coder™ and Embedded 
Coder® with Xilinx’s ISE® and Vivado tools running 
under the hood and completely automated. As a re-
sult, the users—who are mainly mathematician al-
gorithm developers—could develop algorithms and 
speed algorithm performance exponentially by run-
ning the algorithms succinctly on an FPGA fabric. 

Xilinx added an FPGA-architecture-level tool 
called System Generator to its ISE development 
environment more than a decade ago and, more 
recently, added the tool to the Vivado Design Suite 
to enable teams with FPGA knowledge to tweak 
designs for further algorithm performance gains. 
This combination of MathWorks and Xilinx tech-
nologies has helped customer companies produce 
thousands of innovative products.

A number of members in Xilinx’s Alliance eco-
system offer development tools in support of the 
SDx and Alliance environments; they include 
ARM, Lauterbach, Yokogawa Digital Comput-
er Corp. and Kyoto Microcomputer Corp. As for 
OS and middleware support, Xilinx and its eco-
system of Alliance members provide customers 
with multiple software options, including Linux, 
RTOS, bare-metal, and even hypervisor and Trust-
Zone-enabled solutions for safety and security. 

For more information on the SDx environ-
ments and Xilinx’s extensive and growing devel-
oper solutions, visit Xilinx’s new Software De-
veloper Zone. n

This combination of MathWorks and Xilinx 
technologies has helped customer companies 

produce thousands of innovative products.

http://www.xilinx.com/tools/sdk.htm
http://www.ni.com/
http://www.mathworks.com
http://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html#os
http://www.xilinx.com/products/design-tools/software-zone.html
http://www.xilinx.com/products/design-tools/software-zone.html


SDSoC,
Step by Step:
Build a Sample
Design

A ZedBoard example proves  
quick to build and optimize  
using the seamless environment. 

by Adam Taylor
Chief Engineer
e2v
aptaylor@theiet.org
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Until the release of the Xilinx® SDSoC™ de-
velopment environment, the standard SoC 
design methodology involved a mix of dis-
parate engineering skills. Typically, once the 
system architect had generated a system 
architecture and subsystem segmentation 
from the requirement, the solution would 
be split between functions implemented 
in hardware (the logic side) and functions 
implemented in software (the processor 
side). FPGA and software engineers would 
separately develop their respective func-
tions and then combine and test them in ac-
cordance with the integration test plan. The 
approach worked for years, but the advent 
of more-capable SoCs, such as the Xilinx 
Zynq®-7000 All Programmable SoC and the 
upcoming Xilinx Zynq UltraScale+™ MP-
SoC, mandated a new design methodology. 

The SDSoC methodology enables a 
wider user base of engineers to develop 
extremely high-performing systems. Engi-
neers new to developing in the SDSoC de-
velopment environment will discover that 
it’s easy to get a system up and running 
quickly and just as easy to optimize it. 

A simple, representative example will 
illustrate how to accomplish those tasks 
and reap the resultant benefits. We will tar-
get a ZedBoard running Linux and using  
one of the built-in examples: the Matrix 
Multiplier and Addition Template.

SDSoC,
Step by Step:
Build a Sample
Design
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A BRIEF HISTORY   
OF DESIGN METHODOLOGIES
The programmable logic device segment has 
been fast-moving since the devices’ intro-
duction in the 1980s. At first engineers pro-
grammed the devices via schematic entry (al-
though the earlier PLDs, such as the 22v10, 
were programmed via logic equations). This 
required that electronics engineers perform 
most PLD development, as logic design and 
optimization are typically the EE degree’s 
domain. As device size and capability in-
creased, however, schematic entry naturally 
began to hit boundaries, as both design time 
and verification time rose in tandem with de-
sign complexity. Engineers needed the capa-
bility to work at a higher level of abstraction. 

Enter VHDL and Verilog. Both started 
as languages to describe and simulate log-
ic designs, particularly ASICs. VHDL even 
had its own military standard. It is a logical 
step that if we are describing logic behav-
ior within a hardware description language 
(HDL), it would be great to synthesize the 
logic circuits required. The development of 
synthesis tools let engineers describe logic 
behavior typically at a register transfer lev-
el. HDLs also provided a significant boost 
in verification approach, allowing the de-
velopment of behavioral test benches that 
enabled structured verification. For the 
first time, HDLs also enabled modularity 
and vendor independence. 

Again, the inherent concurrency of HDLs, 
the register transfer level design approach 
and the implementation flow, which re-
quired knowledge of optimization and tim-
ing closures, ensured that the PLD devel-
opment task would largely fall to EEs. 

U



FAMILIAR ENVIRONMENT
The SDSoC development environ-
ment is based on Eclipse, which 
should be familiar to most software  
developers (Figure 1). The environ-
ment seamlessly enables acceleration 
of functions within the PL side of the 
device. It achieves this by using the 
new SDSoC compiler, which can han-
dle C or C++ programs. 

 The development cycle at the 
highest abstraction level used in the 
SDSoC environment is as follows: 

1.  We develop our application in C or C++.

2.  We profile the application to determine the perfor-
mance bottlenecks.

3.  Using the profiling information, we identify func-
tions to accelerate within the PL side of the device. 

4.  We can then build the system and generate the SD 
card image.

5.  Once the hardware is on the board, we can analyze 
the performance further and optimize the accelera-
tion functions as required.

We can develop applications in the SDSoC environ-
ment that function variously on bare metal, FreeRTOS 
or Linux operating systems. The environment comes 
with built-in support for most of the Zynq SoC devel-
opment boards, including the ZedBoard, the MicroZed 
and the Digilent ZYBO Zynq SoC development board. 
Not only can we develop our applications faster as a 
result, but we can use this capability to define our own 
underlying hardware platform for use when our custom 
hardware platform is ready for integration. 

When we compile a program within the SDSoC  
environment, the output of the build process provides 
the suite of files required to configure the Zynq SoC 
from an SD card. This suite includes first- and sec-
ond-stage boot loaders, along with the application 
and images as required for the operating system.

HDLs have long been the de facto standard for PLD 
development but have evolved over the years to take 
industry needs into account. VHDL alone underwent 
revisions in 1987 (the first year of IEEE adoption), 
1993, 2000, 2002, 2007 and 2008. As happened with 
schematic design entry, however, HDLs are hitting 
up against the buffers of increases in development 
time, verification time and device capability. 

As the PLD’s role has expanded from glue logic to 
acceleration peripheral and ultimately to the heart 
of the system, the industry has needed a new design 
methodology to capitalize on that evolution. In re-
cent years, high-level synthesis (HLS) has become 
increasingly popular; here, the design is entered in 
C/C++ (using Xilinx’s Vivado® HLS) or tools such 
as MathWorks®’ MATLAB® or National Instruments’ 
LabVIEW. Such approaches begin to move the de-
sign and implementation out from the EE domain 
into the software realm, markedly widening the user 
base of potential PLD designers and cementing the 
PLD’s place at the heart of the system as new design 
methodologies unlock the devices’ capabilities.

It is therefore only natural that SoC-based de-
signs would use HLS to generate tightly integrat-
ed development environments in which engineers 
could seamlessly accelerate functions in the logic 
side of the design. Enter the SDSoC environment.
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Figure 1 — SDSoC Welcome page



SDSOC EXAMPLE
Let’s look at how the SDSoC environment works and see 
how quickly we can get an example up and running. We 
will target a ZedBoard running Linux and using the built-
in Matrix Multiplier and Addition Template. 

The first task, as always, is to create a project. We can 
do so either from the Welcome screen (Figure 1) or by 
selecting File ->  New -> SDSoC project from the menu. 
Selecting either option will open a dialog box that will let 
us name the project and select the board and the operat-
ing system (Figure 2). 

 This will create a project under the Project Explorer 
on the left-hand side of the SDSoC GUI. Under this proj-
ect, we will see the following folders, each with its own, 
graphically unique symbol:

•  SDSoC Hardware Functions: Here we will see the func-
tions we have moved into the hardware. Initially, as we 
have yet to move functions, this folder will be empty.

•  Includes: Expanding this folder will show all of the  
C/C++ header files used in the build. 

•  src: This will contain the source code for the 
demonstration. 

To ensure that we have everything correctly con-
figured not only with our SDSoC installation and  
environment, but also with our development board, 
we will  build the demo so that it will run on only the 
on-chip processing system (PS) side of the device.

Of course, the next step is to build the project. With the 
project selected on the menu, we choose Project->Build 
Project. It should not take too long to build, and when we 
are done we will see folders as shown in Figure 3 appear 
under our project within the Project Explorer.  In addi-
tion to the folders described above, we will have:

•  Binaries: Here we will find the Executable and Linkable 
Format (ELF) files created from the software compi-
lation process.

•  Archives: The object files that are linked to create the 
binaries reside here.

•  SDRelease: This contains our boot files and reports. 
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Figure 2  — Creating the project



C O V E R  S T O R Y

With the first demo built such that it will run only on the 
Zynq SoC’s PS, let’s explore how we know it is working 
as desired. Recall that SDSoC acceleration works by pro-
filing the application; the engineer then uses the profiled 
information to determine which functions to move. 

We achieve profiling at the basic level by using a pro-
vided library called sds_lib.h. This provides a basic time-
stamp API, based on the 64-bit global counter, that lets us 
measure how long each function takes. With the API, we 
simply record the function start and stop times, and the 
difference constitutes the process execution time. 

The source code contains two versions of the algo-
rithm for matrix multiply and add. The so-called golden 
version is not intended for offloading to the on-chip pro-
grammable logic (PL); the other version is. By building 
and running these just within the PS, we can ensure that 
we are comparing eggs with eggs and that both process-
es take roughly the same time to execute.

With the build complete, we can copy all of the files in 
the SDRelease -> sd_card folder under the Project Explor-
er onto our SD card and insert the card into the ZedBoard  
(with the mode pins correctly set for SD card configuration). 
With a terminal program connected, once the boot sequence 
has been completed we need to run the program. We type  
/mnt/mult_add.elf (where mult_add is the name of the proj-
ect we have created). When I ran this on my ZedBoard, I 
got the result shown in Figure 4, which demonstrates that 
the two functions take roughly the same time to execute. 

Having confirmed the similar execution times, we 
will  move the multiply function into the PL side of the 
SoC. This is simple to achieve. 

Looking at the file structure within the src directory 
of the example, we will see:

•  main.cpp, which contains the main function, golden 
calculation, timestamping, and calls to the mult and 
add functions used in the hardware side of the device; 

•  mmult.cpp, which contains the multiplication func-
tion to be offloaded into the hardware; and 

•  madd.cpp, which contains the addition function to be 
offloaded into the hardware.
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Figure 3 — Project Explorer view when built

Figure 5 — Moving the multiplier kernel to  
the PL side using the Project Explorer

Figure 4 — Execution time of both functions in the PS 

mult_add.elf
main.cpp
mmult.cpp
madd.cpp


The next step is to offload just one of these functions 
to the PL side of the SoC. We can achieve this by one of two 
methods:

1.  Within the Project Explorer, we can expand the file such 
that we can see the functions within that file, select the 
function of interest, right click and select Toggle HW/SW 
[H] (Figure 5).

2.  We can open the file and perform the same option under 
the outline tab on the right, which shows the functions as 
well (Figure 6). 

Toggling the mmult() function to be accelerated within 
the hardware will result in an [H] being added to the back 
of the function (Figure 7).

We will also see the function we have selected un-
der SDSoC Hardware Functions (beneath our project 
within the Project Explorer tab; Figure 8). This pro-
vides an easy way to see all of the functions that we 
have accelerated within our design.

Once we have taken the steps described here, the next 
time we build the project the SDSoC linker will automat-
ically call Vivado HLS and the rest of the Vivado Design 
Suite to implement the functions within the PL side of the 
SoC. As it does so, it will create the relevant software driv-
ers to support function acceleration. From our perspec-
tive, offloading the function to the PL side of the device be-
comes seamless, except for the increase in performance. 

I moved the mmult() function into the hardware  
after compilation and SD card image generation, running 
it on my ZedBoard. As Figure 9 shows, the execution time 
(in processor cycles) was only 52,444 / 183,289 = 0.28,  
or 28 percent of the previous execution time of 183,289  
processor cycles when executed within the PS side of the 
device (Figure 4). When we consider the performance of 
the same function when executed within the PS side of 
the device, we see that we achieve this considerable in-
crease in execution time by a simple click of the mouse. 

The straightforward example presented here demon-
strates the power and seamlessness of the SDSoC envi-
ronment and the tightly integrated HLS functions. n
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Figure 6 — Moving the multiplier kernel to  
the PL side using the outline window

Figure 7 — The mmult() function in hardware 

Figure 8 — Identifying our accelerated functions 

Figure 9 — The accelerated results 

Once we have taken the steps described here,  
the next time we build the project the SDSoC linker will  

automatically call Xilinx Vivado HLS and Vivado to  
implement the functions within the PL side of the SoC.
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A Choleksy matrix  
decomposition example 
yields an acceleration 
estimate in minutes.
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T
he Xilinx® Zynq®-7000 All Programmable 
SoC family represents a new dimension 
in embedded design, delivering unprec-
edented performance and flexibility 
to the embedded systems engineering 

community. These products integrate a feature-rich, 
dual-core ARM® Cortex™-A9 MPCore™-based pro-
cessing system and Xilinx programmable logic in a 
single device. More than 3,000 interconnects link the 
on-chip processing system (PS) to on-chip program-
mable logic (PL), enabling performance between the 
two on-chip systems that simply can’t be matched 
with any two-chip processor-FPGA combination. 
When Xilinx released the device in 2011, the Zynq 
SoC gained an instant following among a subset of 
embedded systems engineers and architects well-
versed in hardware design languages and methodol-
ogies as well as in embedded software development. 
The first-of-its-kind Zynq SoC today is deployed in 
embedded applications ranging from wireless infra-
structure to smart factories and smart video/vision, 
and it is quickly becoming the de facto standard plat-
form for advanced driver assistance systems.  

To make this remarkable device available to em-
bedded engineers who have a strong software back-
ground but no HDL experience, Xilinx earlier this year 
introduced the Eclipse-based SDSoC™ integrated de-
velopment environment, which enables software en-
gineers to program the programmable logic as well as 
the ARM processing system of the Zynq SoC.

Let’s take a closer look at the features of the  
Zynq SoC [1] and at how software engineers can 
leverage the SDSoC environment to create system  
designs not possible with any other processor-plus- 
FPGA system. For our investigation, we will use 
the Xilinx ZC702 evaluation board [2], containing a  
Zynq Z-7020-1 device, as the hardware platform.

As shown in Figure 1, the Zynq SoC comprises two ma-
jor functional blocks: the PS (composed of the applica-
tion processor unit, memory interfaces, peripherals and 
interconnect) and the PL (the traditional FPGA fabric). 



Verilog using Vivado, in C/C++ using Vivado High 
Level Synthesis (HLS) [3] or in model-based design 
using Vivado System Generator for DSP [4]. 

3.  Engineers then use Vivado IP Integrator [5] to 
create a block-based design of the whole embed-
ded system. The full system needs to be developed 
with different data movers (AXI-DMA, AXI Memory 
Master, AXI-FIFO, etc.) and AXI interfaces (GP, HP 
and ACP) connecting the PL IP with the PS. Once 
all design rules checks are passed within IP Inte-
grator, the project can be exported to the Xilinx 
Software Development Kit (SDK) [6]. 

4.  Software engineers develop drivers and applica-
tions targeting the ARM processors in the PS using 
the Xilinx SDK. 

In recent years, Xilinx made substantial ease-of-use 
improvements to the Vivado Design Suite that enabled 
engineers to shorten the duration of the IP develop-
ment and IP block connection steps (step 2 and part of 
step 3 above). For IP development, the adoption of such  
new design technologies as C/C++ high-level synthesis  
in the Vivado HLS tool and model-based design with  
Vivado System Generator for DSP cut development 

The PS and PL are tightly coupled via interconnects 
compliant with the ARM® AMBA® AXI4 interface. 
Four high-performance (HP) AXI4 interface ports 
connect the PL to asynchronous FIFO interface (AFI) 
blocks in the PS, thereby providing a high-throughput 
data path between the PL and the PS memory system 
(DDR and on-chip memory). The AXI4 Accelerator 
Coherency Port (ACP) allows low-latency cache-co-
herent access to L1 and L2 cache directly from the PL 
masters. The General Purpose (GP) port comprises 
low-performance, general-purpose ports accessible 
from both the PS and PL. 

In the traditional, hardware-design-centric flow, us-
ing Xilinx’s Vivado® Design Suite, designing an embed-
ded system on the Zynq SoC requires roughly four steps:  

1.  A system architect decides a hardware-software parti-
tioning scheme. Computationally intensive algorithms 
are the ideal candidates for hardware. Profiling re-
sults are used as the basis for identifying performance 
bottlenecks and running trade-off studies between 
data movement costs and acceleration benefits. 

2.  Hardware engineers take functions partitioned to 
hardware and convert/design them into intellectu-
al-property (IP) cores—for example, in VHDL or 
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Figure 1 — Zynq high-level architecture overview



synchronize hardware and software and to pre-
serve original program semantics, while enabling 
task-level parallelism and pipelined communication 
and computation to achieve high performance. The 
SDSoC environment automatically orchestrates all 
necessary Xilinx tools (Vivado, IP Integrator, HLS 
and SDK) to generate a full hardware-software sys-
tem targeting the Zynq SoC—and does so with min-
imum user intervention.

Assuming we have an application completely de-
scribed in C/C++ targeting the PS and we have already 
decided which functions to partition to the PL for ac-
celeration, the SDSoC development flow roughly pro-
ceeds as follows (Figure 2): 

1.  The SDSoC environment builds the application 
project using a rapid estimation flow (by calling 
Vivado HLS under the hood). This will provide the 
ballpark performance and resource estimation in 
minutes.

and verification time dramatically while letting design 
teams use high-level abstractions to explore a great-
er range of architectures. Designs that took weeks to 
accomplish with VHDL or Verilog could be completed 
in days using the new tools. 

Xilinx enhanced the flow further with Vivado IP  
Integrator. This feature of the Vivado Design Suite en-
ables the design of a complicated hardware system , 
embedded or not, simply by connecting IP blocks in a 
graphical user interface (GUI), thereby allowing rapid 
hardware system integration. 

The new Vivado Design Suite features made life a 
bit easier for design and development teams working 
with the Zynq SoC. But with a hardware-centric op-
timization workflow, not too much could be done to 
shorten the development time required to explore dif-
ferent data movers and PS-PL interfaces (part of step 3 
above) and to write and debug drivers and applications 
(step 4). If the whole system did not meet the design 
requirement in terms of throughput, latency or area, 
the team would have to revisit the hardware archi-
tecture by modifying the system connectivity during  
step 3; those modifications inevitably would lead to 
changes in the software application in step 4. In some 
cases, a lack of acceleration or a hardware utilization 
overflow would force the team to revisit the original 
hardware-software partitioning. Multiple hardware 
and software teams would have to create another iter-
ation of the system to explore other architectures that 
might meet the end requirement.

These examples show the time-to-market im-
pact of system optimization done manually. System 
optimization nonetheless is critical for a tightly 
integrated system such as the Zynq SoC because 
bottlenecks often occur in the system connectivity 
between the PS and the PL. 

The SDSoC environment  greatly simplifies the 
Zynq SoC development process, slashing total de-
velopment time by largely automating steps 2, 3 
and 4. The development environment generates 
necessary hardware and software components to 
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Rapid
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C/C++ Development

System-level Pro�ling

Specify C/C++ Functions
for Acceleration

Full System
Optimizing Compiler

Figure 2 — The main steps in the SDSoC design flow

The SDSoC environment automatically orchestrates  
all necessary Xilinx tools to generate a full  

hardware-software system targeting the Zynq SoC— 
and does so with minimum user intervention.



32-bit floating-point representa-
tion as an application example 
for hardware-software partition-
ing on the Zynq SoC. 

The Cholesky decomposition 
transforms a positive definite  
matrix into the product of a low-
er and upper triangular matrix 
with a strictly positive diagonal. 
The matrix B is decomposed in 
the triangular matrix L, so that 
B = L’ * L, with L’ the transposed 
version of L, as illustrated in the 
following MATLAB® code for the 
case of a 4 x 4 matrix size: 
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2.  If we deem it necessary, we optimize the C/C++ 
application and the hardware functions with prop-
er directives, and rerun the estimation until the 
desired performance and area are achieved.

3.  The SDSoC environment then builds the full sys-
tem. This process will generate the full Vivado De-
sign Suite project and the bitstream, along with a 
bootable run-time software image targeting Linux, 
FreeRTOS or bare metal.

PERFORMANCE ESTIMATION OF HARDWARE VS. 
SOFTWARE WITH THE SDSOC ENVIRONMENT
Linear algebra is a fundamental and powerful tool 
in almost every discipline of engineering, allowing 
whole systems of equations with multidimensional 
variables to be solved computationally. For exam-
ple, engineers can describe linear control theory 
systems as matrices of “states” and state changes. 
Digital signal processing of images is another 
classic example of linear algebra’s application.  
In particular, matrix inversion through the Cholesky 
decomposition is considered one of the most effi-
cient methods for solving a system of equations or 
inverting a matrix. Let’s look closely at a Cholesky 
matrix decomposition of 64 x 64 real data in a  

A = ceil(64*randn(4,4)) %  generate random 
data

B = A * A’              %  make the matrix to 
be symmetric 

L = chol(B)             %  compute cholesky 
decomposition

B2 = (L’ * L)           %  reconstruct the 
original matrix B

A =
   -13 53 41 20
 -19 98 12 9
 2 30 -65 33
 4 -13 61 17
B =
 5059 6113 -441 2100
 6113 10190 2419 -465
 -441 2419 6218 -3786
 2100 -465 -3786 4195
L =
 71.1266 85.9453 -6.2002 29.5248
 0 52.9472 55.7513 -56.7077
 0 0 55.4197 -7.9648
 0 0 0 6.6393
B2 =
 5059 6113 -441 2100
 6113 10190 2419 -465
 -441 2419 6218 -3786
 2100 -465 -3786 4195

Figure 3 — Structure of the C/C++ test bench for the SDSoC environment



noncontiguous pages in the Physical Address Space.  
The Simple DMA is cheaper than the Scatter-Gather 
DMA in terms of area and performance overheads, 
but it requires sds_alloc to obtain physically contig-
uous memory.

Selecting the candidate accelerator is easily accom-
plished with a mouse click on a specific function via 
the SDSoC environment’s GUI. As shown in Figure 4, 
the routine cholesky_alt_top is marked with an “H” to 
indicate that it will be promoted to a hardware accel-
erator. We can also select the clock frequency for the 
accelerator and for the data motion cores (100 MHz as 
illustrated in the SDSoC project page of Figure 4).

We can now launch the “estimate speedup” process. 
After a few minutes of compilation, we get all the cores 
and the data motion network generated in a Vivado 
project. The SDSoC environment also generates an  
SD card image that comprises a Linux boot image 

Let’s see how we can obtain an estimation of the 
performance and resource utilization that we can 
expect from our application, without going through 
the entire build cycle. 

Figure 3 shows the test bench structure suitable for 
the SDSoC environment. The main program allocates 
dynamic memory for all the empty matrices and fills 
them with data (either read from a file or generated 
randomly). It then calls the reference software func-
tion and the hardware candidate function. Finally, the 
main program checks the numerical results comput-
ed by both functions to test the effective correctness. 

Note the use of a special memory allocator called 
sds_alloc for each input/output array to let the SDSoC 
environment automatically insert a Simple DMA 
IP between each I/O port of the hardware accelera-
tor; in contrast, malloc instantiates a Scatter-Gather 
DMA, which can handle arrays spread across multiple 
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Selecting the candidate accelerator is easily 
accomplished with a mouse click on a specific 

function via the SDSoC environment’s GUI.

Figure 4 — Setting the hardware accelerator core and its clock frequency from the SDSoC project page
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including the FPGA bitstream and 
the application binary of the soft-
ware-only version. We boot from this 
SD card and run the application on 
the ZC702 target platform. 

Once Linux has booted on the 
board, we can execute the soft-
ware-only application, and the SD-
SoC environment then generates 
the performance estimation report 
of Figure 5. We see both the FPGA 
resources utilization (26 DSP, 80 
BRAM, 15,285 LUT, 17,094 FF) and 
the performance speedup (1.75) 
of the cholesky_alt_top function 
if executed in hardware instead of 
software. We can also see, from 
the main application point of view, 
that the overall speedup is lower 
(1.23) because of other software 
overhead such as malloc and data 
transfer. Our complete application 
is indeed small, focusing mainly on 
illustrating the SDSoC flow and de-
sign methodology; we would need 
more routines to be accelerated in 
the PL, but that is beyond the scope 
of this article.

Using the SDSoC environment, 
we have generated this information 
in a few minutes without requir-
ing synthesis and place-and-route 
FPGA compilation; those processes 
could take hours, depending on the 
complexity of the hardware system. 
Estimations like this one are often 
enough to analyze the system-level 
performance of hardware-software 
partitioning and let users very rap- 
idly iterate a design to create an  
optimized system.                                                                                   

Figure 5 — SDSoC-generated performance,  
speedup and resources estimation report

Figure 6: Vivado HLS synthesis estimation report
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UNDERSTANDING  
THE PERFORMANCE 
ESTIMATION RESULTS 
When the SDSoC environment  
compiles the application code for 
the estimate-speedup process, 
it generates an intermediate  
directory (_sds in Figure 5) in 
which it places all intermediate 
projects (Vivado HLS, Vivado IP 
Integrator, etc.). In particular, 
it inserts calls to a free-running 
ARM performance counter func-
tion, sds_clock_counter(), in 
the original code to measure the  
execution time of key parts of the program functions. 
That is why the target board needs to be connected 
with the SDSoC environment’s GUI during the esti-
mate-speedup process. All the numbers reported in 
Figure 5 are measured with those counters during 
run-time execution. The only exception is the hard-
ware-accelerated function, which does not exist 
until after the entire FPGA build (including place-
and-route implementation); therefore Vivado HLS 
computes the hardware-accelerated function’s es-
timated cycles—together with the resource utiliza-
tion estimates—under the hood, during the effective  
Vivado HLS Synthesis step. 

 Assuming the candidate hardware accelerator 
function runs at FHW

 MHz clock frequency and needs 
CK

HW
 clock cycles for the whole computation (this is 

the concept of latency), and assuming the function 
takes CK

ARM
 at a clock frequency of F

ARM
 MHz when 

executed on the ARM CPU, then the hardware acceler-
ator achieves the same performance as the ARM CPU 
if the computation time is the same, that is, CK

HW
 / F

HW
 

= CK
ARM

 / F
ARM

. From this equation, we get CK
ARM

 =  
CK

HW
*F

ARM
 / F

HW
. This represents the maximum amount 

of clock cycles the accelerator can offload from the 
processor to show any acceleration that results from 
migrating the function to hardware. 

In Figure 6, we report the Vivado HLS synthesis es-
timation results. Note that the hardware accelerator 
latency is CKHW

 = 83,652 cycles at F
HW 

= 100-MHz clock 
frequency. Since in the ZC702 board we have F

ARM 

= 666 MHz and therefore CK
ARM 

= CK
HW

*F
ARM

 / F
HW

 = 
83,653*666/100 = 557,128, the resultant hardware ac-
celeration is well aligned with the result of 565,554  
cycles reported by the SDSoC environment in Figure 5. 
This is why the SDSoC environment can estimate the 
number of clock cycles that the accelerator requires 
without actually building it via place-and-route.

BUILDING THE HARDWARE-SOFTWARE SYSTEM 
WITH THE SDSOC ENVIRONMENT
Having determined that this hardware acceleration 
makes sense, we can implement the whole hardware 
and software system with the SDSoC environment. 
All we need to do is add the right directives (in the 
form of pragma commands) to specify, respectively, 
the FIFO interfaces (due to the sequential scan of 
the I/O arrays); the amount of data to be transferred 
at run time for any call to the accelerator; the types 
of AXI ports connected between the IP core in the 
PL and the PS; and, finally, the kind of data movers. 
The following C/C++ code illustrates the applica-
tions of those directives. Note that in reality the last 

Figure 7 — Makefile for the Release build
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directive is not needed, because the SDSoC environment 
will instantiate a Simple DMA due to the use of sds_alloc; 
we have included it here only for the sake of clarity.  

We can build the project in Release configura-
tion directly from the SDSoC environment’s GUI, 
or we can use the Makefile reported in Figure 7 and 
launched from the SDSoC Tool Command Language 
(Tcl) interpreter. As is the case with any tool in the 
Vivado Design Suite, designers can either adopt the 
GUI or Tcl scripting. To improve the speedup gain, 
we increase the clock frequency of the hardware 
accelerator to FHW

 =142 MHz (set by the -clkid 1 
makefile flag).

After less than half an hour of FPGA compilation, 
we get the bitstream to program the ZC702 board 
and the Executable Linkable Format (ELF) file to 
execute on the Linux OS. We then measure the per-
formance on the ZC702 board: 995,592 cycles for 
software-only and 402,529 cycles for hardware ac-
celeration. Thus, the effective performance gain for 
the cholesky_alt_top function is 2.47.

Figure 8 illustrates the block diagram of the whole 
embedded system created when the SDSoC environ-

ment calls Vivado IP Integrator in a process transpar-
ent to the user (for the sake of clarity, only the AXI4 
interfaces are shown). In addition, the SDSoC environ-

ment reports the Vivado IP Integrator block diagram 
as an HTML file to make it easy to read (Figure 9). This 
report clearly shows that the hardware accelerator is 
connected with the ACP port via a simple AXI4-DMA, 
whereas the GP port is used to set up the accelerator 
via an AXI4-Lite interface.

How much time did it take us to generate the SD 
card for the ZC702 board with the embedded system 
up and running? We needed one working day to write 
a C++ test bench suitable to both Vivado HLS and the 
SDSoC environment, and then we needed one hour of 
experimentation to get good results from the Linear 
Algebra HLS Library and one hour to create the embed-
ded system with the SDSoC environment (the FPGA 
compilation process). Altogether, the process took 10 
hours. We estimate that doing all this work manually 
(step 3 with Vivado IP Integrator and step 4 with Xilinx 
SDK) would have cost us at least two weeks of full-
time, hard work, not counting the experience needed 
to use those tools efficiently.
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Figure 8 — IP Integrator block-based design done by the SDSoC environment

#pragma SDS data access_pattern(A:SEQUENTIAL, L:SEQUENTIAL) //fifo interfaces
#pragma SDS data copy(A[0:BUF_SIZE], L[0:BUF_SIZE])         // amount of data transf
#pragma SDS data sys_port (A:ACP, L:ACP)                    // type of AXI ports
#pragma SDS data data_mover (A:AXI_DMA_SIMPLE, L:AXI_DMA_SIMPLE) // type of DMAs

int cholesky_alt_top(MATRIX_IN_T  A[ROWS_COLS_A*ROWS_COLS_A],
                     MATRIX_OUT_T L[ROWS_COLS_A*ROWS_COLS_A]);
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The SDSoC development environment enables the 
broader community of embedded system and soft-
ware developers to target the Zynq SoC with a familiar 
embedded C/C++ development experience. Complete 
with the industry’s first C/C++ full-system optimizing 
compiler, the SDSoC environment delivers system- 
level profiling, automated software acceleration in pro- 
grammable logic, automated system connectivity gen-
eration and libraries to speed development. For more in-
formation, including how to obtain the tool, visit http://
www.xilinx.com/products/design-tools/software- 
zone/sdsoc.html. n
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Figure 9 — SDSoC connectivity report

Data Motion Network
 Accelerator Argument IP Port Direction Declared Size (bytes) Pragmas Connection

 cholesky_alt_top_0 A A IN 4096*4 • length: 
      (BUF_SIZE) S_AXI_ACP:AXIDMA_SIMPLE
      • sys_port:ACP

  L L OUT 4096*4 • length:
      (BUF_SIZE) S_AXI_ACP:AXIDMA_SIMPLE
      • sys_port:ACP

  return AP_return OUT 4  M_AXI_GP0:AXILITE:0xC0

Accelerator Callsites

Accelerator Callsite IP Port Transfer Size (bytes) Paged or Contiguous Cacheable or  
      Non-cacheable

 cholesky_alt_top_0 cholesky_alt_tb.cpp:246:23 A (BUF_SIZE) * 4 contiguous cacheable
   
   L (BUF_SIZE) * 4 contiguous cacheable

   ap_return 4 paged cacheable

After less than half an hour of 
FPGA compilation, we get the 
bitstream to program the ZC702 
board and the Executable  
Linkable Format (ELF) file to  
execute on the Linux OS. 

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1165-zynq-embedded-design-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1165-zynq-embedded-design-tutorial.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-level-synthesis-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-level-synthesis-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug948-vivado-sysgen-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug948-vivado-sysgen-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/SDK_Doc/index.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/SDK_Doc/index.html
cholesky_alt_tb.cpp


Compile, Debug,  
Optimize

by Jayashree Rangarajan 
Senior Engineering Director, 
Interactive Design Tools
Xilinx, Inc.
jayr@xilinx.com

Fernando Martinez Vallina 
Software Development Manager, SDAccel 
Xilinx, Inc.
vallina@xilinx.com

Vinay Singh
Senior Product Marketing Manager, 
SDAccel
Xilinx, Inc.
singhj@xilinx.com

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDACCEL

30

mailto:jayr@xilinx.com
mailto:vallina@xilinx.com
mailto:singhj@xilinx.com


X
ilinx® FPGA devices mainly comprise a 
programmable logic fabric that lets appli-
cation designers exploit both spatial and 
temporal parallelism to maximize the per-

formance of an algorithm or a critical kernel in a large 
application. At the heart of this fabric are arrays of 
lookup-table-based logic elements, distributed memo-
ry cells and multiply-and-accumulate units. Designers 
can combine those elements in different ways to im-
plement the logic in an algorithm while achieving pow-
er consumption, throughput and latency design goals. 

The combination of FPGA fabric elements into 
logic functions has long been the realm of hardware 
engineers, involving a process that resembles assem-
bly-level coding more closely than it mimics modern 
software design practices. Whereas common software 
design procedures long ago moved beyond assembly 
coding, FPGA design practices have progressed at a 
slower pace because of the inherent differences be-
tween CPU and FPGA compilation. 

In the case of CPUs and GPUs, the hardware is 
fixed, and all programs are compiled against a static 
instruction set architecture (ISA). Although the ISAs 
differ between CPUs and GPUs, the basic underlying 
compilation techniques are the same. Those similar-
ities have enabled the evolution of design practices 
from handcrafted assembly code into compilation, de-
bug and optimization design procedures that leverage 
the OpenCL™ C, C and C++ programming languages 
common to software development. 

In the case of FPGA design, designers can create 
their own processing architecture to perform a specific 
workload. The ability to customize the architecture to a 
specific system need is a key advantage of FPGAs, but 
it has also acted as a barrier to adopting software devel-
opment practices for FPGA application development.

Six years ago, Xilinx began a diligent R&D effort 
to break down this barrier by creating a development 
environment that brought an intuitive software devel-
opment design loop to FPGAs. The Xilinx SDAccel™ 
development environment for OpenCL C, C and C++ 

Compile, Debug,  
Optimize

Xilinx’s SDAccel development environment 
enables software application design flows 
for FPGAs. 
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enables application compile, debug and optimization 
for FPGA devices in ways similar to the processes 
used for CPUs and GPUs, with the advantage of up to 
25x better performance/watt for data center applica-
tion acceleration.

Software designers can use the SDAccel develop-
ment environment to create and accelerate many func-
tions and applications. Let’s look at how the SDAccel 
environment enables a compile, debug and optimiza-
tion design loop on a median filter application. 

MEDIAN FILTER
The median filter is a spatial function commonly used 
in image processing for the purpose of noise reduction 
(Figure 1). The algorithm inside the median filter uses 
a 3 x 3 window of pixels around a center pixel to com-
pute the value of the center based on the median of all 
neighbors. The equation for this operation is:

outputPixel[i][j] = 
median(inputPixel[i-1][j-1],  inputPix-

el[i-1][j],  inputPixel[i-1][j+1], 
   inputPixel[i][j-1],     inputPixel[i]

[j],     inputPixel[i][j+1],    
   inputPixel[i+1][j-1], inputPixel[i+1]

[j], inputPixel[i+1][j+1]) ; 

COMPILE
After the functionality of the median filter has been 
captured in a programming language such as Open-
CL C, the first stage of development is compilation. 
On a CPU or GPU, compilation is a necessary and 
natural step in the software design flow. The target 
ISA is fixed and well known, leaving the program-
mer to worry only about the number of available 
processing cores and cache misses in the algorithm. 
FPGA compilation is more of an open question: At 
compilation time, the target ISA does not exist, the 
logic resources have yet to be combined into a pro-
cessing fabric and the system memory architecture 
is yet to be defined. 



The version of the algorithm in Figure 2 executes 
the getMedian function inside a “for” loop with a fixed 
bound. Depending on the performance target for the 
filter and the FPGA selected, the SDAccel environ-
ment can either reuse the compute resources across 
all three channels or allocate more logic to enable spa-
tial parallelism and run all channels at the same time. 
This decision, in turn, affects how memory storage for 
the array RGB is implemented. 

From an application programmer’s perspective, 
the steps described above are transparent and can be 
thought of as –O1 to –O3 optimizations in the GNU 
Compiler Collection (GCC). 

The compiler in the SDAccel development envi-
ronment provides three features that help program-
mers tackle those challenges: automatic extraction 
of parallelism among statements within a loop and 
across loop iterations, automatic memory archi-
tecture inference based on read and write patterns 
to arrays, and architectural awareness of the type 
and quantity of basic logic elements inside a giv-
en FPGA device. We can illustrate the importance of 
these three features with regard to source code for a 
median filter (Figure 2).

The median filter operation is expressed as a se-
ries of nested loops with two main sections. The 
first section fetches data from an array in external 
memory called input and stores the values into a lo-
cal array RGB. The second section of the algorithm 
is the “for” loop around the getMedian function;  
getMedian is where the computation takes place. 

By analyzing the code in Figure 2, the SDAccel 
environment understands that there are no loop-car-

ried dependencies on the array RGB. Each loop iter-
ation has a private RGB copy, which can be stored on 
different  physical resources. The other main char-
acteristic that the SDAccel environment can derive 
from this code is the independent nature of calls to the  
getMedian function. 
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Figure 2 — Median filter code

Figure 1 — Median filter operation

for (int y=0; y < height; y++) {
    int offset = y * width;
    int prev = offset - width;
    int next = offset + width;
  
    for (int x=0; x < width; x++) {
      // Get pixels within 3x3 aperture
      uint rgb[SIZE];
      rgb[0] = input[prev + x - 1];
      rgb[1] = input[prev + x];
      rgb[2] = input[prev + x + 1];
  
      rgb[3] = input[offset + x - 1];
      rgb[4] = input[offset + x];
      rgb[5] = input[offset + x + 1];
  
      rgb[6] = input[next + x - 1];
      rgb[7] = input[next + x];
      rgb[8] = input[next + x + 1];
  
      uint result = 0;
  
      // Iterate over all color channels
       for (int channel = 0; channel < 3;    

channel++) {
        result |= getMedian(channel,  rgb);
      }
  
      // Store result into memory
      output[offset + x] = result;
    }



terms of hardware resources, the generation of data 
for printf consumes a few registers—a negligible cost 
in the register-rich FPGA fabric. Data decoding occurs 
in the driver to the FPGA. By leveraging the host CPU 
to execute the data decode and presentation layers for 
printf, a software programmer can use printf with vir-
tually zero cost in FPGA resources. 

The second technique for debugging borrowed from 
CPUs is the use of tools such as the GNU Project De-
bugger (GDB) to include breakpoints and single step-
ping through code. Programmers can use the SDAccel 
environment’s emulation modes to attach GDB to a 
running emulation process. The emulation process is 
a simulation of the application-specific hardware that 
the developer will execute on the FPGA device. Within 
the context of an emulation process, GDB can watch 
the state of variables, insert breakpoints and single step 
through code. From an application programmer’s per-
spective, this is identical to how GDB works on a CPU. 

OPTIMIZE
After compiling and debugging, the next step in the 
software development cycle is to optimize the appli-
cation. The principles behind application optimiza-
tion on an FPGA are the same as on a CPU; the differ-
ence is in the approach. For a CPU, application code 
is massaged to fit into the boundaries of the cache 
and arithmetic units of a processor. In an FPGA, the 
computation logic is custom assembled for the cur-
rent application. Therefore, the size of the FPGA and 
the application’s target performance dictate the opti-
mization constraints. 

DEBUG
An axiom of software development is that application 
compilation does not equal application correctness. It 
is only after the application starts to run on the tar-
get hardware that a programmer can start to discover, 
trace and correct errors in the application—in other 
words, debug.

CPU application debug is a well-understood prob-
lem, with a multitude of tools from both commercial 
vendors and the open-source community available to 
address it. Once again, FPGAs are another story. How 
does an application programmer debug something 
that was created to implement the functionality of a 
piece of code at a given performance target?

The SDAccel development environment address-
es this question by borrowing two concepts from the 
CPU world: printf and GDB debugging. 

The printf function is a fundamental tool in the soft-
ware programmer’s toolbox. It is available in every 
programming language and can be used to expose the 
state of key application variables during program exe-
cution. For CPU devices, this is as simple as monitor-
ing the status of registers. There is no cost in hardware 
for printf functionality. 

In the case of FPGAs, the implementation of printf 
can potentially consume logic resources that could 
otherwise be used for implementing algorithm func-
tionality. The printf implementation in the SDAccel 
environment provides the functionality without con-
suming additional logic resources. The environment 
achieves this by separating printf data generation 
from the decoding and user presentation layers. In 
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Figure 3 — Memory access transaction trace

The printf implementation in the SDAccel  
environment provides the functionality without  

consuming additional logic resources. 



C O V E R  S T O R Y

code of Figure 4, the async_work_group_copy function 
brings the contents of entire lines from the input image 
in DDR memory to memories inside the kernel data path.  

The memory transaction trace in Figure 5 shows the 
result of using async_work_group_copy. As Figure 5 
shows, the kernel involves a setup time before memo-
ry transactions occur that is not present in the original 
code for the median filter (Figure 2). 

The setup time difference has to do with the logic 
derived from the code. In the original code of Figure 2, 
the application immediately starts a single transac-
tion to memory and then waits for the data to be 
available. In contrast, the optimized code of Figure 4 
determines whether a memory transaction needs to 
occur or whether the data is already available in the 
kernel’s local memory. It also allows the generated 
logic to schedule memory transactions back-to-back 
and to overlap read and write transactions. 

The compiler in the SDAccel environment automat-
ically optimizes the compute logic. The programmer 
can assist the automatic optimizations by analyzing the 
data transfer patterns inferred from the code. Figure 3 
shows the read and write transactions from the median 
filter code to the memories for input and output. 

Each vertical line in the plot represents a transac-
tion to memory. The green bar shows the duration of 
media filter function activity. It can be seen from the 
plot that although the median filter is always active, 
there are large gaps between memory transactions. 
The gaps represent the time it takes the median filter 
to switch from one transaction to the next. Since each 
transaction to memory accesses only a single value, 
the gaps between transactions represent an import-
ant performance bottleneck for this application. 

One way to solve the performance problem is to state 
burst transactions from external memories to local memo- 
ries explicitly inside the application code. The code excerpt  
in Figure 4 shows the use of the async_work_group_copy 
function employed in OpenCL C kernels. The purpose of 
this function call is to tell the compiler that each transac-
tion to memory will be a burst containing multiple data 
values. This enables more efficient utilization of the avail-
able memory bandwidth on the target device and reduc-
es the overall number of transactions to memory. In the  
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Figure 4 — Median filter code with  
explicit burst memory transfers

for (int line = 0; line < height; line++) {

    local uint linebuf0[MAX_WIDTH];

    local uint linebuf1[MAX_WIDTH];

    local uint linebuf2[MAX_WIDTH];

    local uint lineres[MAX_WIDTH];

    // Fetch Lines

    if (line == 0) {

       async_work_group_copy(linebuf0, 

input, width, 0);

       async_work_group_copy(linebuf1, 

input, width, 0);

       async_work_group_copy(linebuf2, 

input + width, width, 0);

    }

…

}

Software programmers
who use SDAccel can
leverage the flexibility
of the logic fabric to
build high-performance,
low-power applications
without having to
understand all of the
details associated
with hardware design.



development flows. The SDAccel development envi-
ronment enables this design loop with tools and tech-
niques similar to the development environment on a 
CPU, with FPGA-based application acceleration of up 
to 25x better performance per watt and with a 50x to 
75x latency improvement. Software programmers who 
use SDAccel can leverage the flexibility of the logic 
fabric to build high-performance, low-power applica-
tions without having to understand all of the details 
associated with hardware design. n

Whether the final device is a CPU or an FPGA, 
profiling is an essential component of application 
development. The SDAccel environment’s visualiza-
tion and profiler capabilities let an application pro-
grammer characterize the impact of code changes 
and application requirements in terms of kernel oc-
cupancy, transactions to memory and memory band-
width utilization. 

The design loop created by the operations of com-
pile, debug and optimize is fundamental to software 
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Figure 5 — Memory access transaction trace after code optimization
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n   Regular Universal Electronic Control Unit tester for vehicles up and running in two months thanks to NI LabVIEW and LabVIEW FPGA

n  Radar looks deep into Arctic snow and ice to help develop sea-level climate models

n  Passive, Wi-Fi radar that sees people through walls prototyped with NI LabVIEW and two FPGA-based USRP-2921 SDR platforms

n  500-FPGA Seismic Supercomputer performs real-time acoustic measurements on its heart of stone to simulate earthquakes

Xilinx has extended its award-winning journal and added an exciting new Xcell Daily Blog.  
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I
maging applications have grown in both 
scale and ubiquity in recent years as online 
pictures and videos, robotics, and driver 
assistance applications have proliferated. 
Across these domains, the core algorithms 
are very similar and require a development 
methodology that lets application develop-

ers quickly retarget and differentiate products based 
on markets and deployment targets.  

As a result of those needs, imaging applications typ-
ically start as a software program targeting a CPU and 
employ library calls to standard functions. The com-
bination of software design techniques with readily 
available libraries makes it easy to get started and to 
create a functionally correct application on a desktop.

The challenge for the developer lies in optimiz-
ing the imaging application for an execution target.  
By leveraging technology from Xilinx® Vivado® HLS, 
Xilinx’s SDAccel™ development environment makes 
the use of C++ libraries straightforward for OpenCL™ 
application developers targeting FPGAs.

SET OF PARALLEL COMPUTATION TASKS
One key characteristic of imaging applications is that 
they are fundamentally a set of operations on a pixel 
with respect to a surrounding neighborhood of pix-
els in space and, for some applications, in time. We 
therefore can think of an imaging application as a set 
of parallel computation tasks that a developer can ex-
ecute on a CPU, GPU or FPGA.  

The CPU is always the easiest target device with 
which to start. The code typically already runs on 
the CPU before optimization is considered and can 
leverage the wealth of available libraries. The prob-
lem with executing imaging workloads on a CPU is 
the achievable sustained performance. The overall 
performance is limited by cache hits/misses and the 
nontrivial task of parallelization into multiple threads 
running across CPU cores. 

mailto:stephenn@xilinx.com
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OPENCL FRAMEWORK
The OpenCL framework provides a common program-
ming model for expressing data parallel programs. The 
framework, which has evolved into an industry standard, 
is based on a platform and a memory model that are con-
sistent across all device vendors supporting OpenCL. A 
device is defined as any hardware, be it a CPU, GPU or 
FPGA, capable of executing OpenCL kernels.  

The platform in an OpenCL application defines 
the hardware environment in which an application 
is executed. Figure 1 shows the main elements of an 
OpenCL platform.

A platform for OpenCL always contains one host, 
which is typically implemented on a processor. The 
host is responsible for launching tasks on the device 
and for explicitly coordinating all data transfers be-
tween the host and the device. 

In addition to the host, a platform contains at least 
one device. The device in the OpenCL platform is the 
hardware element capable of executing OpenCL ker-
nel code. In the context of an OpenCL application, 
the kernel code is the computationally intensive part 
of the algorithm that requires acceleration. 

In the case of CPU and GPU devices, the kernel 
code is executed on one or more cores in the device. 
Each core is exactly the same per the device specifi-
cation; this stricture forces the application developer 
to modify the code to maximize performance within 
a fixed architecture. 

GPUs hold the promise of much higher perfor-
mance than CPUs for imaging applications because 
GPU hardware was purposely built for imaging work-
loads. Until recent years, the drawback of GPUs for 
general imaging applications had been the program-
ming model. GPU programming differed from that 
for CPUs, and GPU models were not portable across 
GPU device families. That changed with the standard-
ization of programming for parallel systems such as 
GPUs under the OpenCL framework. 

FPGAs provide an alternative implementation 
choice for imaging workloads. Developers can cus-
tomize the FPGA logic fabric into workload-specific 
circuits. The flexibility of the FPGA fabric lets an appli-
cation developer leverage the performance and power 
consumption benefits of custom logic while avoiding 
the cost and effort associated with ASIC design. 

As it was for the GPU, one barrier for adoption 
of FPGA devices has been the programming model. 
Traditionally, FPGAs have been programmed with 
a register transfer language (RTL) such as Verilog 
or VHDL. Although those languages can express 
parallelism, the level of granularity is significantly 
lower than what is needed to program a CPU or a 
GPU. As in the case of GPUs, however, adoption 
of the OpenCL standard to express FPGA program-
ming in a way that is familiar to software applica-
tion developers has overcome the programming 
model hurdle.

DDR memory

DEVICEHOST
PCIe

DDR memory

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDACCEL

38

Figure 1 — The basic OpenCL platform contains one host and at least one device.



sible to both the host and the device and is typically  
implemented in DDR attached to the FPGA. Depend-
ing on the FPGA used on the acceleration board, a por-
tion of the global memory can also be implemented 
inside the FPGA fabric. The local and private memory 
spaces are visible only to the kernels executing inside 
the FPGA fabric and are built entirely inside that fab-
ric using block RAM (BRAM) and register resources. 

Let’s see how the SDAccel environment leverages 
OpenCL and C++ libraries for a stereo imaging block 
matching application.

STEREO BLOCK MATCHING
Stereo block matching uses images from two cam-
eras to create a representation of the shape of an ob-
ject in the field of view of the cameras. As Figure 3 

For an FPGA, in contrast, the SDAccel development 
environment generates custom cores per the specific 
computation requirements of the application kernel. The 
application developer thus is free to explore implementa-
tion architectures based on the needs of the algorithm to 
reduce overall system latency and power consumption. 

The second OpenCL component is the memory 
model (Figure 2). This model, which is common to all 
vendors, defines a single memory hierarchy against 
which a developer can create a portable application.

The main components of the memory model are 
the host, global, local and private memories. The host 
memory refers to the memory space that is accessible 
only to the host processor. The memories visible to 
the FPGA (the device) are the global, local and private 
memory spaces. The global memory space is acces-
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For an FPGA,  the SDAccel development environment  
generates custom cores per the specific  

computation requirements of the application kernel.
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Figure 2 — The OpenCL memory model defines a single memory hierarchy for application development.



Vivado HLS provides image processing functions 
based on the popular OpenCV framework. The func-
tions are written in C++ and have been optimized to 
provide high performance in an FPGA. When synthe-
sized into an FPGA implementation, the equivalent of 
anywhere from tens to thousands of RISC processor in-
structions are executed concurrently every clock cycle. 

The code for the application uses Vivado HLS vid-
eo processing functions to create the application. 
The application code contains C++ function calls to 
Vivado HLS libraries as well as pragmas to guide the 
compilation process. The pragmas are divided into 
those for interface definition and those for perfor-
mance optimization. 

The interface definition pragmas determine how 
the stereo block matching accelerator connects to 
the rest of the system. Since this accelerator is ex-
pressed in C++ instead of OpenCL C code, the appli-
cation programmer must provide interface definition 
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shows, the algorithm uses the input images of a 
left and a right camera to search for the correspon-
dence between the images. Such multi-camera im-
age processing tasks can be applied to depth maps, 
image segmentation and foreground/background 
separation. These are, for example, all integral 
parts of pedestrian detection applications in driver 
assistance systems.

USING C++ LIBRARIES FOR VIDEO
The SDAccel development environment leverages tech-
nology from Xilinx’s Vivado HLS C-to-RTL compiler as 
part of the core kernel compiler, letting the SDAccel en-
vironment use kernels expressed in C and C++ in the 
same way as kernels expressed in OpenCL C. Applica-
tion developers thus can use C++ libraries and code pre-
viously optimized in Vivado HLS to increase productivity.  

The main code for the stereo block matching appli-
cation is shown on the next page.

Left camera
Viewing ray

Right camera

Figure 3 — Conceptual image of multi-camera processing

The SDAccel development environment leverages tech nology from 
Xilinx’s Vivado HLS C-to-RTL compiler as part of the core kernel  
compiler, letting the SDAccel environment use kernels expressed  
in C and C++ in the same way as kernels expressed in OpenCL C.



FindStereoCorrespondenceBM function to start 
operating as soon as the Split function produces 
pixels, without having to wait for a complete image 
to be produced. The net result is a more efficient 
architecture and reduced processing latency rela-
tive to sequential processing of each function with 
full frame buffers in between them. 

Imaging applications are a compute-intensive  
application domain with a rich set of available  
libraries; the devil is in optimizing the application for 
the execution target. The SDAccel environment lets 
developers leverage C++ libraries to accelerate the 
development of imaging applications for FPGAs pro-
grammed in OpenCL. n

pragmas that match the assumptions of the OpenCL 
model in the SDAccel environment. 

The pragmas marked with m_axi state that the 
contents of the buffer will be stored in device global 
memory. The pragmas marked with s_axilite are re-
quired for the accelerator to receive the base address 
of buffers in global memory from the host. 

The performance optimization pragma in this 
code is dataflow. The dataflow pragma yields an 
accelerator in which different subfunctions can 
also execute concurrently. 

In this accelerator, because of the underlying im-
plementation of the hls::Mat datatype, data is also 
streamed between each function. This allows the 
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void stereobm(
        unsigned short img_data_lr[MAX_HEIGHT*MAX_WIDTH],
        unsigned char img_data_d[MAX_HEIGHT*MAX_WIDTH],
        int rows,
        int cols)
{
#pragma HLS INTERFACE m_axi port=img_data_lr offset=slave bundle=gmem0
#pragma HLS INTERFACE m_axi port=img_data_d offset=slave bundle=gmem1
#pragma HLS INTERFACE s_axilite port=img_data_lr bundle=control
#pragma HLS INTERFACE s_axilite port=img_data_d bundle=control
#pragma HLS INTERFACE s_axilite port=rows bundle=control
#pragma HLS INTERFACE s_axilite port=cols bundle=control
#pragma HLS INTERFACE s_axilite port=return bundle=control

    hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC2>  img_lr(rows, cols);
    hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC1>  img_l(rows, cols);
    hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC1>  img_r(rows, cols);
    hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_16SC1> img_disp(rows, cols);
    hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC1>  img_d(rows, cols);

    hls::StereoBMState<15, 32, 32> state;

#pragma HLS dataflow
    hls::AXIM2Mat<MAX_WIDTH>(img_data_lr, img_lr);
    hls::Split(img_lr, img_l, img_r);
    hls::FindStereoCorrespondenceBM(img_l, img_r, img_disp, state);
    hls::SaveAsGray(img_disp, img_d);
    hls::Mat2AXIM<MAX_WIDTH>(img_d, img_data_d);
}
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The open question was how they would program the 
new devices. Designers imagining the potential of hard-
ware-software co-design sought integrated workflows 
that would intelligently partition designs between ARM 
processors and programmable logic. What they found, 
however, were distinct hardware and software work-
flows: conventional embedded software development 
flows targeting ARM cores, alongside a combination of 
IP assembly, traditional RTL and emerging high-level syn-
thesis tools for programmable logic.

INTEGRATED WORKFLOW
In September 2013, MathWorks introduced a hard-
ware-software workflow for Zynq-7000 SoCs using 
Model-Based Design. In this workflow (Figure 1), de-
signers could create models in Simulink that would 
represent a complete dynamic system—including a 
Simulink model for algorithms targeted for the Zynq 
SoC—and rapidly create hardware-software imple-
mentations for Zynq SoCs directly from the algorithm. 

System designers and algorithm developers used 
simulation in Simulink to create models for a com-
plete system (communications, electromechanical 
components and so forth) in order to evaluate design 
concepts, make high-level trade-offs, and partition al-
gorithms into software and hardware elements. HDL 
code generation from Simulink enabled the creation 
of IP cores and high-speed I/O processing on the Zynq 
SoC fabric. C/C++ code generation from Simulink en-
abled programming of the Zynq SoC’s Cortex-A9 cores, 
supporting rapid embedded software iteration.

The approach enabled automatic generation of the 
AMBA® AXI4 interfaces linking the ARM processing 
system and programmable logic with support for the 
Zynq SoC. Integration with downstream tasks—such 
as C/C++ compilation and building of the executable 
for the ARM processing system, bitstream generation 
using Xilinx implementation tools, and downloading to 
Zynq development boards—allowed for a rapid proto-
typing workflow.

Model-Based Design  
workflow lets engineers 
make design trade-offs  
at the desktop rather  
than the lab.

T
he introduction of the Xilinx® Zynq®-7000 
All Programmable SoC family in 2011 
brought groundbreaking innovation to 
the FPGA industry. These devices, with 

their combination of dual-core ARM® Cortex™-A9 
MPCore™ processors and ample programmable 
logic, offered advantages for a wealth of applica-
tions. By adopting Zynq SoCs, designers could reap 
the benefits of software application development 
on one of the industry’s most popular processors 
while gaining the flexibility and throughput poten-
tial provided via hardware acceleration on a high-
speed, programmable logic fabric. 

Using MATLAB® and Simulink® from Math-
Works®, innovators today can leverage a highly 
integrated hardware-software workflow to create 
highly optimized systems. The case study present-
ed here illustrates this model-based workflow.

When Xilinx released the first Zynq SoC in De-
cember 2011, designers seized on the idea that they 
could migrate their legacy, multichip solutions, 
built from discrete processors and FPGAs, to a sin-
gle-chip platform. They could create FPGA-based 
accelerators on the new platform to unclog soft-
ware execution bottlenecks and tap into an array 
of off-the-shelf, production-ready intellectual prop-
erty from Xilinx and its IP partners that would ad-
dress applications in digital signal processing, net-
working, communications and more.
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as the means for algorithm devel-
opers to work closely with hard-
ware designers and embedded 
software developers to acceler-
ate the implementation of algo-
rithms on programmable SoCs. 
Once the generated HDL and C 
code is prototyped in hardware, 
the design team can use Xilinx 
Vivado® IP Integrator to integrate 
the code with other design com-
ponents needed for production.

CASE STUDY: THREE-PHASE 
MOTOR CONTROL

For several reasons, custom 
motor controllers with efficient 
power conversion are one of the 
most popular applications to 
have emerged for programma-
ble SoCs. Higher-performance, 
higher-efficiency initiatives are 
one factor. With electric mo-
tor-driven systems accounting 

for as much as 46 percent of global electricity con-
sumption, attaining higher efficiency with novel con-
trol algorithms is an increasingly common motor drive 
design goal. Xilinx Zynq programmable logic enables 
precise timing, providing an ideal platform for imple-
menting low-latency, high-efficiency drives.

Another driver is multi-axis control. Ample pro-
grammable logic and DSP resources on programma-
ble SoCs open up possibilities for implementing multi-
ple motor controllers on a single programmable SoC, 
whether motors will operate independently or in com-
bination, as in an integrated motion control system.

Integration of industrial networking IP is a further 
factor. Xilinx and its IP partners offer IP for integra-
tion with EtherCAT, PROFINET and other industrial 
networking protocols that can be readily incorporated 
into programmable SoCs. 

Central to this workflow are two technologies: Embed-
ded Coder® and HDL Coder™. Embedded Coder gener-
ates production-quality C and C++ code from MATLAB, 
Simulink and Stateflow®, with target-specific optimiza-
tions for embedded systems. Embedded Coder has be-
come so widely adopted that when you drive a modern 
passenger car, take a high-speed train or fly on a commer-
cial airline, there’s a high probability that Embedded Cod-
er generated the real-time code guiding the vehicle. HDL 
Coder is the counterpart to Embedded Coder, generating 
VHDL or Verilog for FPGAs and ASICs, and is integrat-
ed tightly into Xilinx workflows. This mature C and HDL 
code generation technology forms the foundation of the 
Model-Based Design workflow for programmable SoCs. 

Design teams using Model-Based Design in applica-
tions such as communications, image processing, smart 
power and motor control have adopted this workflow 
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Figure 1 — Designers can create models in Simulink that represent  
a complete dynamic system and create hardware-software  
implementations for Zynq SoCs directly from the model.
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•  A Mode Select state machine running on the ARM 
core determines the motor controller operating 
mode (for example, open-loop operation or closed-
loop regulation). This state machine manages the 
transitions between the start-up, open-loop control 
and encoder calibration modes before switching to 
a closed-loop control mode.

•  The encoder sensor signal is passed via an external 
port to an Encoder Peripheral in the programmable 
logic and then to a Position/Velocity Estimate block 
that computes the motor’s state (shaft position and 
velocity).

•  A sigma-delta analog-to-digital converter (ADC) 

To illustrate the use of this workflow on a common 
motor control example, consider the case of a field-ori-
ented control algorithm for a three-phase electric mo-
tor implemented on a Zynq-7020 SoC (details of this 
hardware prototyping platform are available at http://
www.mathworks.com/zidk). The motor control system 
model includes two primary subsystems (Figure 2): a 
motor controller targeting the Zynq SoC that has been 
partitioned between the Zynq processing system and 
programmable logic, and a motor controller FPGA mez-
zanine card (FMC) connected to a brushless DC motor 
equipped with an encoder to measure shaft angle.

We can look at hardware-software partitioning in 
terms of data flow:

•  We assign the Velocity Control and Mode Select 
blocks to the ARM Cortex-A9 processing system 
because those blocks can run at a slower rate than 
other parts of the model and because they are the 
portions of the design most likely to be modified 
and recompiled during development.
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Core controller (C)
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Velocity Control AX
I4

 In
te

rf
ac

e

Core controller(HDL)

Programmable Logic Motor FMC Card
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Figure 2 — The motor control system model includes two primary subsystems.
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with novel control algorithms  
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C O V E R  S T O R Y

•    a model of the motor control algorithm that will be 
targeted for the Zynq SoC;

•  a plant model, which includes the drive electronics 
of the FMC, a permanent-magnet synchronous ma-
chine (PMSM) model of the brushless DC motor, a 
model of an inertial load on the motor shaft and an 
encoder sensor model; and

•  an output-verification model, which includes 
post-processing and graphics to help the algorithm 
developer refine and validate the model.

In Simulink, we can test out the algorithm with 
simulation long before we start hardware testing. We 
can tune the PI controller gains, try various stimulus 
profiles and examine the effect of different process-
ing rates. As we use simulation, though, we face a fun-
damental issue: Because of the disparate processing 
rates typical of motor control—that is, overall me-
chanical response rates of 1 to 10 Hz, core controller 
algorithm rates of 1 to 25 kHz and programmable logic 
operating at 10 to 50 MHz or more—simulation times 
can run to many minutes or even hours. We can head 

senses the motor current, and a hand-coded ADC 
Peripheral block processes the current.

•  The Current Controller takes the motor state and cur-
rent, as well as the operating mode and velocity control 
commands passed from the ARM core over the AXI4 in-
terface, and computes the current controller command. 
When in its closed-loop mode, the Current Controller 
uses a proportional-integral (PI) control law, whose 
gains can be tuned using simulation and prototyping.

•  The current controller command goes through the 
Voltage Conversion block and is output to the mo-
tor control FMC via the PWM Peripheral, ultimately 
driving the motor.

Designers can model the complete system in Sim-
ulink (Figure 3).

 In Model-Based Design, the system increases to 
four components in the top-level Simulink model: 

•  an input model, which provides a commanded 
shaft velocity and on/off commands to the control-
ler as stimulus; 
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Figure 3 — This control-loop model for a motor control system with  
simulation results shows the response to a velocity pulse command.
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Figure 4(a) — Simulink model for testing prototype hardware
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cessing in MATLAB, but for now we can repeat the 
pulse test (Figure 3). 

Figure 4b shows the results of the shaft rotation-
al velocity and the phase current for the hardware 
prototype compared with the simulation results. The 
startup sequence for the hardware prototype differs 
noticeably from those for the two simulation models. 
This is to be expected, however, because the initial 
angle between the motor’s rotor and stator in the 
hardware test differs from the initial angle used in 
simulation, resulting in a different response as the 
current control algorithm drives the motor through 
its encoder calibration mode. When the pulse is ap-
plied at 2 seconds, the results from simulation and 
prototype hardware match almost exactly. 

Based on these results, we could continue with fur-
ther testing under different loading and operating con-
ditions, or we could move on to performing further C 
and HDL optimizations.

Engineers are turning to Model-Based Design work-
flows to enable hardware-software implementation of 
algorithms on Xilinx Zynq SoCs. Simulink simulation 
provides early evaluation of algorithms, letting designers 
evaluate the algorithms’ effectiveness and make design 
trade-offs at the desktop rather than in the lab, with a re-
sultant increase in productivity. Proven C and HDL code 
generation technology, along with hardware support for 
Xilinx All Programmable SoCs, provides a rapid and re-
peatable process for getting algorithms running on real 
hardware. Continuous verification between the simula-
tion and hardware environments lets designers identify 
and resolve issues early in the development process.

Workflow support for Zynq-based development 
boards, software-defined radio kits and motor control 
kits is available from MathWorks. To learn more about 
this workflow, visit http://www.mathworks.com/zynq. n

MATLAB and Simulink are registered trademarks of The 
MathWorks, Inc. See http://www.mathworks.com/trade-
marks for a list of additional trademarks. Other product 
or brand names may be trademarks or registered trade-
marks of their respective holders. 

off this issue with a control-loop model that uses be-
havioral models for the peripherals—the PWM, cur-
rent sensing and encoder processing—producing the 
time response shown in Figure 3. 

After we use the control-loop model to tune the control-
ler, our next step is to prove out the controller in simula-
tion using high-fidelity models that include the peripherals. 
We do this by incorporating timing-accurate specification 
models for the C and HDL components of the controller. 
These specification models have the necessary semantics 
for C and HDL code generation. With simulation, we then 
verify that the system with specification models tracks ex-
tremely closely to the control-loop model.

Once performance has been validated with the 
high-fidelity models, we move on to prototyping the 
controller in hardware. Following the workflow 
shown in Figure 1, we start by generating the IP core. 
The IP core generation workflow lets us choose the 
target development board and walks us through the 
process of mapping the core’s input and output ports 
to target interfaces, including the AXI4 interface and 
external ports.

Through integration with the Vivado Design Suite, 
the workflow builds the bitstream and programs the 
fabric of the Zynq-7020 SoC. 

With the IP core now loaded onto the target device, 
the next step is to generate embedded C code from the 
Simulink model targeting the ARM core. The process 
of generating C code, compiling it and building the ex-
ecutable with embedded Linux is fully automated, and 
the prototype is then ready to run.

To run the prototype hardware and verify that it 
gives us results consistent with our simulation models, 
we build a modified Simulink model (Figure 4a) that 
will serve as a high-level control panel. In this model, 
we removed the simulation model for the plant—that 
is, the drive electronics, motor, load and sensor—and 
replaced it with I/Os to the ZedBoard.

Using this model in a Simulink session, we can turn 
on the motor, choose different stimulus profiles, moni-
tor relevant signals and acquire data for later post-pro-
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SDSOC™ DEVELOPMENT ENVIRONMENT
The SDSoC environment provides a familiar embedded 
C/C++ application development experience, including 
an easy-to-use Eclipse IDE and a comprehensive design 
environment for heterogeneous Xilinx All Programma-
ble SoC and MPSoC deployment. Complete with the 
industry’s first C/C++ full-system optimizing compiler, 
SDSoC delivers system-level profiling, automated soft-
ware acceleration in programmable logic, automated 
system connectivity generation and libraries to speed 
programming. It lets end-user and third-party platform 
developers rapidly define, integrate and verify sys-
tem-level solutions and enable their end customers with 
a customized programming environment.

• SDSoC Backgrounder (PDF) 

• SDSoC User Guide (PDF) 

• SDSoC User Guide: Getting Started (PDF)

• SDSoC User Guide: Platforms and Libraries (PDF)

• SDSoC Release Notes (PDF)  

• Boards, Kits and Modules

• SDSoC Video Demo

• Buy/Download

SDACCEL™ DEVELOPMENT ENVIRONMENT 
The SDAccel environment for OpenCL™, C and C++ 
enables up to 25x better performance/watt for data 
center application acceleration leveraging FPGAs. A 
member of the SDx family, the SDAccel environment 
combines the industry’s first architecturally optimiz-
ing compiler supporting any combination of OpenCL, 

Xtra, Xtra
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C and C++ kernels, along with libraries, development 
boards, and the first complete CPU/GPU-like develop-
ment and run-time experience for FPGAs.

• SDAccel Backgrounder

• SDAccel Development Environment: User Guide 

• SDAccel Development Environment: Tutorial

• Xilinx Training: SDAccel Video Tutorials

• Boards and Kits

• SDAccel Demo

SDNET™ DEVELOPMENT ENVIRONMENT
The SDNet environment, in conjunction with Xilinx 
All Programmable FPGAs and SoCs, lets network engi-
neers define line card architectures, design line cards 
and update them with a C-like environment. It enables 
the creation of “Softly” Defined Networks, a technolo-
gy dislocation that goes well beyond today’s Software 
Defined Networking (SDN) architectures.

• SDNet Backgrounder — Xilinx

• SDNet Backgrounder — The Linley Group

• SDNet Demo

SOFTWARE DEVELOPMENT KIT (SDK) 
The SDK is Xilinx’s development environment for 
creating embedded applications on any of its micro-
processors for Zynq®-7000 All Programmable SoCs 
and the MicroBlaze™ soft processor. The SDK is the 
first application IDE to deliver true homogeneous- and  
heterogeneous-multiprocessor design and debug.

• Free SDK Evaluation and Download  n

Xilinx® is constantly refining its software and updating its 
training and resources to help software developers design 
innovations with the Xilinx SDx™ development environments 
and related FPGA and SoC hardware platforms. Here is list of 
additional resources and reading. Check for the newest  
quarterly updates in each issue.

http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug1027-intro-to-sdsoc.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CDIQFjADahUKEwivgNfe26THAhVQVogKHeNtAMg&url=http%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fsw_manuals%2Fxilinx2015_2%2Fug1028-sdsoc-getting-started.pdf&ei=QdnLVe_bNtCsoQTj24HADA&usg=AFQjCNHDUjd2MQOq6Etk8Wjmc_Gw8lpE5g&sig2=mdwSmuNMQjPtmtdVhwKmMg
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAAahUKEwivgNfe26THAhVQVogKHeNtAMg&url=http%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fsw_manuals%2Fxilinx2015_2%2Fug1146-sdsoc-platforms-and-libraries.pdf&ei=QdnLVe_bNtCsoQTj24HADA&usg=AFQjCNHat4P7zKUjvvgfYC8jx1L31jnJXA&sig2=-NgXI6QR8PbuBT6NRXZz4g
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug1185-sdsoc-release-notes.pdf
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#boardskits
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QtwIwAGoVChMI4ZK3w9-kxwIVi5aICh3ARwKF&url=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSiOXTJ8IkJA&ei=Ot3LVeGNHoutogTAj4moCA&usg=AFQjCNE6UzbgVHtr_M3xP_KEGb-xq2_fyw&sig2=Wc7H7Ava48xpUhrXsXEoaA
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#buy
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/publications/prod_mktg/sdx/sdaccel-backgrounder.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1023-sdaccel-user-guide.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCUQFjABahUKEwj9-bSt3aTHAhUPWYgKHTI3Axg&url=http%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fsw_manuals%2Fxilinx2015_1%2Fug1021-sdaccel-tutorial.pdf&ei=89rLVb20G4-yoQSy7ozAAQ&usg=AFQjCNGkFZXlkUes4LWkg6YC1R7FFCt_dg&sig2=Q0EyT6IZpSjK7v1iCDAP-Q
http://www.xilinx.com/training/sdaccel/
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html#boardskits
https://www.youtube.com/watch?v=h0EwiBycNss
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/publications/prod_mktg/sdnet/backgrounder.pdf
http://www.xilinx.com/publications/prod_mktg/linley-group-sdnet-wp.pdf
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/tools/sdk.htm
http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
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converts Simulink models and  
MATLAB algorithms directly into  
Verilog and VHDL code for FPGAs or 
ASIC designs. The code is bit-true, cycle-
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