FE6022 Address And Data Buffer Devices

- Provides Address and Data Buffers that interface to the Micro Channel *
- □ Low Power 1.25 Micron CMOS Technology
- Meets Micro Channel AC/DC Specifications
- 132-Lead JEDEC Plastic Quad Flat Pack
- Contains Peripheral Bus Address and Data Buf-

The FE6022 devices form part of Western Digital's ® innovative FE6500 chip set, which facilitates the design and implementation of Model 70/80-compatible system boards. It decreases design complexity and saves space by combining the functions of many discrete arrays and components, also reducing system cost and increasing system reliability.

The chip set contains two FE6022 devices, one configured as an Address Buffer device, and the other as a Data Buffer Device. Configuration is determined by a Mode pin. When this is zero, the device is configured as an address buffer; when it is one, the device is configured as a data buffer. The block diagram in Figure 1 illustrates a typical system using the FE6500 chip set, and shows the two FE6022 devices. Devices with bold outlines are available from Western Digital Corporation.

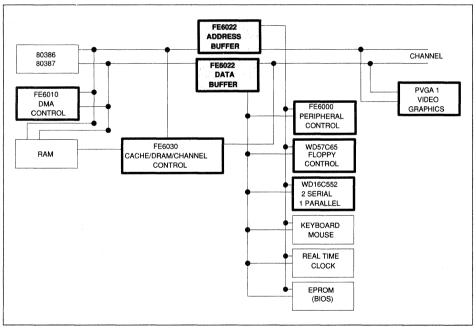


Figure 1. System Block Diagram

Western Digital is a registered trademark of Western Digital Corporation.
(*) Micro Channel is a trademark of International Business Machines Corporation.

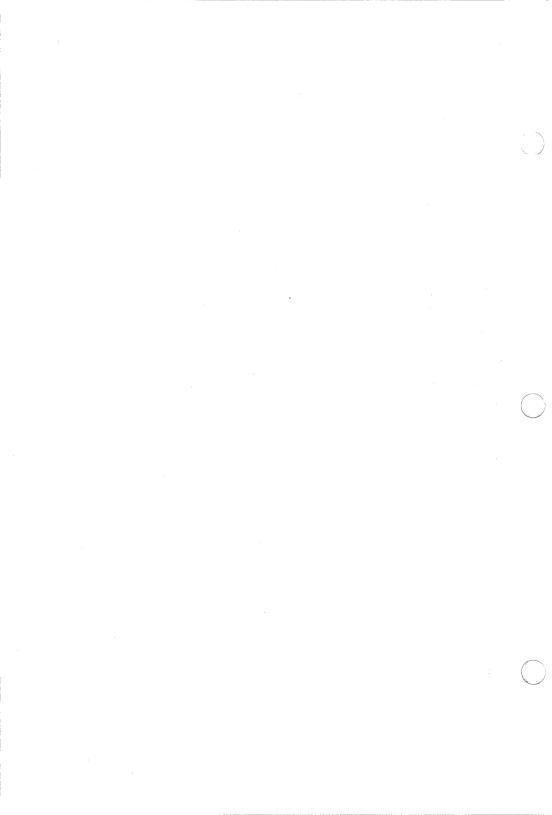
Additional References

IBM* PS/2* Model 70 Technical Reference Manual IBM PS/2 Model 80 Technical Reference Manual Intel* Microprocessor and Peripheral Handbook

Disclaimer

Western Digital makes no representation or warranty of any kind with regard to the hardware and documentation herein described, and especially discliams any implied warranties of merchantability or fitness for any particular purpose. Further, Western Digital reserves the right to revise this hardware and the associated documentation, and to make changes from time to time in the content, without obligation of Western Digital to notify any person of such revisions or changes.

Copyright


Copyright © 1988 Western Digital Corporation. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form and by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of Western Digital Corporation, 2445, McCabe Way, Irvine, California 92714.

(*) IBM and PS/2 are registered trademarks of International Business Machines Corporation. Intel is a registered trademark of Intel Corporation.

Western Digital

Table of Contents

1.0 PIN DE	SCRIPTION
1.1 AE	DRESS BUFFERS
	NTA BUFFERS
	NALS!
	IICAL SPECIFICATIONS
	SOLUTE MAXIMUM RATINGS
	DRMAL OPERATING CONDITIONS
	CHARACTERISTICS
	CLOAD SPECIFICATIONS
4.0 TIMING	i,
	List of Illustrations
Figure 1	System Block Diagram
Figure 2	Address Buffer Mode Functional Block Diagram
Figure 3	Data Buffer Mode Functional Block Diagram
Figure 4	Pin Diagram
Figure 5	Address Mode: Channel Master Accesses Translate Function
Figure 6	Address Mode: Channel Master Accesses
Figure 7	Address Mode: 80386/DMA Channel Accesses
Figure 8	Data Mode: 80386/DMA Reads from the Channel
Figure 9	Data Mode: 80386/DMA Reads from the Channel with Swap
Figure 10	Data Mode: 80386/DMA Writes to the Channel
Figure 11	Data Mode: 80386/DMA Writes to the Channel with Swap
Figure 12	Data Mode: Channel Master Word Swap
Figure 13	Address Buffer Mode: Propagation Delay Timings
Figure 14	Address Buffer Mode: Latch Timings
Figure 15	Address Buffer Mode: Float/Enable Timings
Figure 16	Data Buffer Mode: Propagation Delay Timings
Figure 17	Data Buffer Mode: Latch Timings
Figure 18	Address Mode Pin Layout Diagram
Figure 19	Data Mode Pin Layout Diagram
Figure 20	132-Pin JEDEC Flat Pack Packaging Diagram
Figure 21	Socket Diagram
	List of Tables
Table 1	Address Buffer Mode (Mode=0) Pinout
Table 2	Data Buffer Mode (Mode=1) Pinout
Table 3	Address Buffer Mode Timings (ns)
Table 4	Data Buffer Mode Timings (ns)

1.0 PIN DESCRIPTION

The signals assigned to the different pins are grouped according to their function, and discussed in more detail in Tables 1 and 2.

1.1 Address Buffers

To configure the FE6022 as an address buffer, the Mode pin is tied to GND. In this mode, the FE6022 buffers the processor address signals from the Channel address bus.

It also generates MADE24 signals, and PROM Chip Selects. In addition, the Address Buffer mode implements the Central Translator function for the Channel.

1.2 Data Buffers

To configure the FE6022 as data buffers, the Mode pin is tied to $V_{\rm DD}$. The data buffers buffer the processor data bus from the Channel data bus. In this mode, the FE6022 performs Micro Channel Data Steering, and data swaps for 80386 and DMA operations.

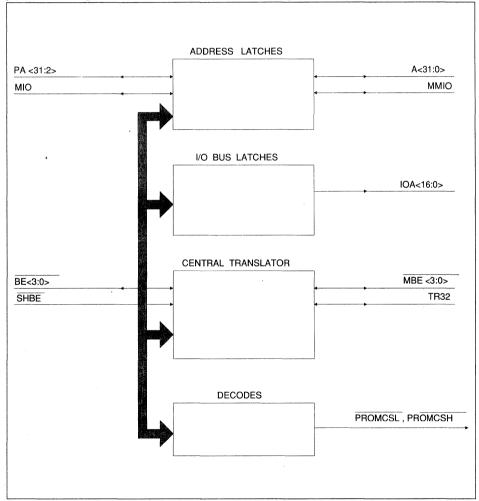


Figure 2 Address Buffer Mode Functional Block Diagram

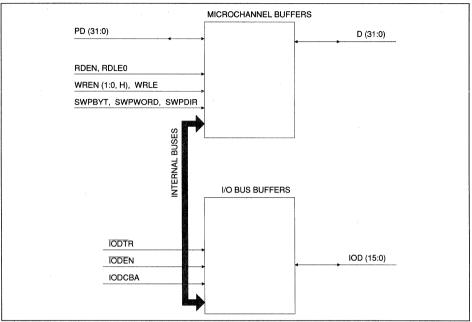


Figure 3 Data Buffer Mode Functional Block Diagram

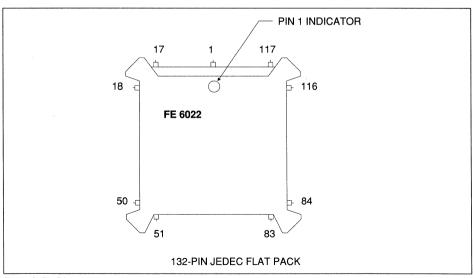


Figure 4. Pin Diagram

PIN	_	NAME	PIN	_	NAME	PIN	_	NAME	PIN	_	NAME
1	_	IOA9	34	_	A9	67	_	TEST	100	_	V_{DD}
2	-	IOA8	35	-	V_{DD}	68	_	MMIO	101	_	PA20
3	-	V_{DD}	36	_	A10	69	_	UCHCMD	102	_	PA19
4	_	IOA7	37	_	A11	70	_	EOT	103	_	PA18
5	_	IOA6	38	_	V _{SS}	71	_	PROMCSL	104	_	PA17
· 6	_	IOA5	39		A12	72	_	PROMCSH	105	_	PA16
7		IOA4	40	_	A13	73	_	MMC	106	_	PA15
8	_	IOA3	41	_	A14	74	_	BE2	107		PA14
9	_	IOA2	42	_	A15	75	_	BE3	108		PA13
10	_	IOA1	43	_	V _{SS}	76	_	V _{SS}	109	-	Vss
11	-	IOA0	44	_	A16	77	_	MBE0	110	_	PA12
12		MADE24	45	_	A17	78	_	MBE1	111	_	PA11
13	_	TR32	46	-	V_{DD}	79		MBE2	112	_	PA10
14	_	CMDBUF	47	_	A18	80	_	MBE3	113	_	PA9
15	_	A20GTX	48	_	A19	81	-	MIO	114	_	PA8
16	_	S1	49	_	A20	82		BIAS	115	_	PA7
17	_	Vss	50	-	V _{SS}	83	-	V_{DD}	116		V _{DD}
18	_	V _{SS}	51	-	V _{SS}	84	_	HLDA	117		Vss
19	_	SO	52	_	A21	85	-	MMCMD	118	-	PA6
20	_	CMD	53	-	A22	86	_	SBHE	119	-	PA5
21		UCHMSTR	54	-	A23	87	-	V _{SS}	120		PA4
22	-	A0	55		A24	88	-	PA31	121	-	PA3
23	-	A1	56	-	A25	89	-	PA30	122		PA2
24	-	V_{DD}	57	- '	V_{DD}	90	_	PA29	123	_	BE1
25	_	A2	58	_	A26	91	-	PA28	124	-	BE0
26	_	A3	59		A27	92	_	PA27	125	-	IOA16
27		V_{SS}	60	-	V _{SS}	93		PA26	126	-	IOA15
28	_	A4	61	_	A28	94	_	PA25	127		IOA14
29	_	A5	62	_	A29	95	-	PA24	128	-	IOA13
30	-	A6	63	_	A30	96		PA23	129	-	IOA12
31	-	A7	64	_	A31	97	_	PA22	130	-	IOA11
32	_	V _{SS}	65		V _{SS}	98		V _{SS}	131	-	IOA10
33	_	A8	66	-	MODE	99	-	PA21	132	-	Vss

Table 1 . Address Buffer Mode (Mode = 0) Pinout

1 - IOD9	PIN	_	NAME	PIN		NAME	PIN	_	NAME	PIN		NAME
3 - V _{DD} 36 - D10 69 - RESERVED 102 - PD19 4 - IOD7 37 - D11 70 - RESERVED 103 - PD18 5 - IOD6 38 - V _{SS} 71 - RESERVED 104 - PD17 6 - IOD5 39 - D12 72 - RESERVED 105 - PD16 7 - IOD4 40 - D13 73 - RESERVED 105 - PD16 8 - IOD3 41 - D14 74 - RESERVED 107 - PD15 8 - IOD2 42 - D15 75 - RESERVED 108 - PD13 10 - IOD1 43 - V _{SS} 76 - V _{SS} 109 - V _{SS} 11 - IOD0 44 - D16 77 - RESERVED 110 - PD12 12 - IODEN 45 - D17 78 - RESERVED 110 - PD12 13 - IODEN 45 - D17 78 - RESERVED 110 - PD12 14 - WRLE 47 - D18 80 - RESERVED 111 - PD10 15 - WRENH 48 - D19 81 - RESERVED 113 - PD9 16 - WRENI 49 - D20 82 - BIAS 115 - PD7 17 - V _{SS} 50 - V _{SS} 83 - V _{DD} 116 - V _{DD} 18 - V _{SS} 51 - V _{SS} 84 - SWPDIR 117 - V _{SS} 19 - WRENO 52 - D21 85 - SWPWORD 118 - PD6 20 - RDLEO 53 - D24 88 - PD31 121 - PD5 21 - RDEN 54 - D23 87 - V _{SS} 120 - PD4 22 - D0 55 - D24 88 - PD31 121 - PD5 23 - D1 56 - D25 88 - D26 91 - PD22 123 - PD1 25 - D2 58 - D26 91 - PD25 127 - IOD14 29 - D5 62 - D29 95 - PD24 128 - IOD13 30 - D6 63 - D30 96 - PD23 129 - IOD11 32 - V _{SS} 65 - V _{SS} 98 - V _{SS} 131 - IOD10	1	_	IOD9	34		D9	67	_	TEST	100		V _{DD}
4 - IOD7 37 - D11 70 - RESERVED 103 - PD18 5 - IOD6 38 - Vss 71 - RESERVED 104 - PD17 6 - IOD5 39 - D12 72 - RESERVED 105 - PD16 7 - IOD4 40 - D13 73 - RESERVED 106 - PD15 8 - IOD3 41 - D14 74 - RESERVED 106 - PD15 8 - IOD2 42 - D15 75 - RESERVED 108 - PD13 10 - IOD1 43 - Vss 76 - Vss 109 - Vss 11 - IOD0 44 - D16 77 - RESERVED 110 - PD12 12 - IODEN 45 - D17 78 - RESERVED 111 - PD11 13 - IODTR 46 - VpD 79 - RESERVED 112 - PD10 14 - WRLE 47 - D18 80 - RESERVED 112 - PD10 15 - WRENH 48 - D19 81 - RESERVED 113 - PD9 16 - WRENI 49 - D20 82 - BIAS 115 - PD7 17 - Vss 50 - Vss 83 - VpD 116 - VpD 18 - Vss 51 - Vss 84 - SWPDIR 117 - Vss 19 - WRENO 52 - D21 85 - SWPWORD <td< td=""><td>2</td><td>_</td><td>IOD8</td><td>35</td><td>,</td><td>V_{DD}</td><td>68</td><td>_</td><td>RESERVED</td><td>101</td><td>-</td><td>PD20</td></td<>	2	_	IOD8	35	,	V_{DD}	68	_	RESERVED	101	-	PD20
5 - IOD6 38 - Vss 71 - RESERVED 104 - PD17 6 - IOD5 39 - D12 72 - RESERVED 105 - PD16 7 - IOD4 40 - D13 73 - RESERVED 106 - PD15 8 - IOD3 41 - D14 74 - RESERVED 107 - PD14 9 - IOD2 42 - D15 75 - RESERVED 108 - PD13 10 - IOD1 43 - Vss 76 - Vss 109 - Vss 11 - IOD0 44 - D16 77 - RESERVED 110 - PD12 12 - IODEN 45 - D17 78 - RESERVED 111 - PD11 13 - IODTR 46 - VDD 79 - RESERVED 111 - PD11 14 - WRILE 47 - D18 80 - RESERVED 113 - PD9 15 - WRENH 48 - D19 81 - RESERVED 114 - PD8 16 - WRENT 49 - D20 82 - BIAS 115 - PD7 17 - Vss 50 - Vss 83 - VDD 116 - VDD 18 - Vss 51 - Vss 84 - SWPDIR 117 - Vss 19 - WRENO 52 - D21 85 - SWPBVR 117 - PD3 21 - RDEN 54 - D23 87 - Vss 120 -	3	_	V_{DD}	36	_	D10	69	_	RESERVED	102	_	PD19
6 - IOD5	4	_	IOD7	37	_	D11	70	_	RESERVED	103	_	PD18
7 - IOD4 40 - D13 73 - RESERVED 106 - PD15 8 - IOD3 41 - D14 74 - RESERVED 107 - PD14 9 - IOD2 42 - D15 75 - RESERVED 108 - PD13 10 - IOD1 43 - Vss 76 - Vss 109 - Vss 11 - IOD0 44 - D16 77 - RESERVED 110 - PD12 12 - IODEN 45 - D17 78 - RESERVED 111 - PD11 13 - IODTR 46 - Vpd 79 - RESERVED 112 - PD10 14 - WRLE 47 - D18 80 - RESERVED 113 - PD9 15 - WRENH 48 - D19 81 - RESERVED 114 - PD8 16 - WRENI 49 - D20 82 - BIAS 115 - PD7 17 - Vss 50 - Vss 83 - Vpd 116 - Vpd 18 - Vss 51 - Vss 84 - SWPDIR 117 - Vss 19 - WRENO 52 - D21 85 - SWPWORD 118 - PD6 20 - RDLEO 53 - D22 86 - SWPBYT 119 - PD5 21 - RDEN 54 - D23 87 - Vss 120 - PD4 22 - D0 55 - D24 88 - PD31 121 - PD3 <td>5</td> <td>_</td> <td>IOD6</td> <td>38</td> <td>_</td> <td>Vss</td> <td>71</td> <td>_</td> <td>RESERVED</td> <td>104</td> <td></td> <td>PD17</td>	5	_	IOD6	38	_	Vss	71	_	RESERVED	104		PD17
8 - IOD3 41 - D14 74 - RESERVED 107 - PD14 9 - IOD2 42 - D15 75 - RESERVED 108 - PD13 10 - IOD1 43 - Vss 76 - Vss 109 - Vss 11 - IOD0 44 - D16 77 - RESERVED 110 - PD12 12 - IODEN 45 - D17 78 - RESERVED 111 - PD11 13 - IODTR 46 - VpD 79 - RESERVED 112 - PD10 14 - WRLE 47 - D18 80 - RESERVED 113 - PD9 15 - WRENI 48 - D19 81 - RESERVED 113 - PD9 16 - WRENI 49 - D20 82 - BIAS 115 - PD7 17 - Vss 50 - Vss 83 - VvpD 116 - VvpD 18 - Vss 51 <td>6</td> <td>_</td> <td>IOD5</td> <td>39</td> <td>-</td> <td>D12</td> <td>72</td> <td>_</td> <td>RESERVED</td> <td>105</td> <td></td> <td>PD16</td>	6	_	IOD5	39	-	D12	72	_	RESERVED	105		PD16
9 - IOD2	7	_	IOD4	40	_	D13	73	_	RESERVED	106	-	PD15
10 -	8	_	IOD3	41	-	D14	74	-	RESERVED	107	_	PD14
11 - IODO 44 - D16 77 - RESERVED 110 - PD12 12 - IODEN 45 - D17 78 - RESERVED 111 - PD11 13 - IODTR 46 - VDD 79 - RESERVED 112 - PD10 14 - WRLE 47 - D18 80 - RESERVED 113 - PD9 15 - WRENH 48 - D19 81 - RESERVED 114 - PD8 16 - WRENI 49 - D20 82 - BIAS 115 - PD7 17 - Vss 50 - Vss 83 - VDD 116 - VDD 18 - VSS 51 - VSS 84 - SWPDIR 117 - VSS 19 - WRENO 52 - D21 85 - SWPWORD 118 - PD6 20 - RDLEO 53 - D22 86 - SWPBYT 119 - PD5 21 - RDEN 54 - D23 87 - Vss 120 - PD4 22 - D0 55 - D24 88 - PD31 121 - PD3 23 - D1 56 - D25 89 - PD30 122 - PD2 24 - VbD 57 - VbD 90 - PD29 123 - PD1 25 - D2 58 - D26 91 - PD28 124 - PD0 26 - D3 59 - D27 92 - PD27 125 - IODCBA	9	_	IOD2	42	_	D15	75	_	RESERVED	108	-	PD13
12 -	10	_	IOD1	43	-	V _{SS}	76	-	V _{SS}	109	_	Vss
13 -	11	_	IOD0	44	_	D16	77	-	RESERVED	110	-	PD12
14 - WRLE 47 - D18 80 - RESERVED 113 - PD9 15 - WRENH 48 - D19 81 - RESERVED 114 - PD8 16 - WREN1 49 - D20 82 - BIAS 115 - PD7 17 - Vss 50 - Vss 83 - Vpd 116 - Vpd 18 - Vss 51 - Vss 84 - SWPDIR 117 - Vss 19 - WRENO 52 - D21 85 - SWPWORD 118 - PD6 20 - RDLEO 53 - D22 86 - SWPBYT 119 - PD5 21 - RDEN 54 - D23 87 - Vss 120 - PD4 22 - D0 55 - D24 88 - PD31 121 - PD3 23 - D1 56 - D25 89 - PD30 122 - PD2 24 - Vpp 57 - Vpp 90 - PD29 123 - PD1 25 - D2 58 - D26 91 - PD28 124 - PD0 26 - D3 59 - D27 92 - PD27 125 - IODCBA 27 - Vss 60 - Vss 93 - PD26 126 - IOD15 28 - D4 61 - D28 94 - PD25 127 - IOD14 29 - D5 62 - D29 95 - PD24 128 - IOD13 <	12	_	IODEN	45	_	D17	78	_	RESERVED	111	-	PD11
15 - WRENH	13	-	IODTR	46	-	V_{DD}	79	-	RESERVED	112	-	PD10
16 - WREN1 49 - D20 82 - BIAS 115 - PD7 17 - Vss 50 - Vss 83 - Vpd 116 - Vpd 18 - Vss 51 - Vss 84 - SWPDIR 117 - Vss 19 - WREN0 52 - D21 85 - SWPWORD 118 - PD6 20 - RDLE0 53 - D22 86 - SWPBYT 119 - PD5 21 - RDEN 54 - D23 87 - Vss 120 - PD4 22 - D0 55 - D24 88 - PD31 121 - PD3 23 - D1 56 - D25 89 - PD30 122 - PD2 24 - Vpd 57 - Vpd 90 - PD29 123 - PD1 25 - D2 58 - D26 91 - PD28 124 - PD0 26 - D3 59 - D27 92 - PD27 125 - IODCBA 27 - Vss 60 - Vss 93 - PD26 126 - IOD15 28 - D4 61 - D28 94 - PD25 127 - IOD14 29 - D5 62 - D29 95 - PD24 128 - IOD13 30 - D6 63 - D30 96 - PD23 129 - IOD12 31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - V	14	-	WRLE	47	-	D18	80	-	RESERVED	113	-	PD9
17 - Vss 50 - Vss 83 - Vpd 116 - Vpd 18 - Vss 51 - Vss 84 - SWPDIR 117 - Vss 19 - WRENO 52 - D21 85 - SWPWORD 118 - PD6 20 - RDLEO 53 - D22 86 - SWPBYT 119 - PD5 21 - RDEN 54 - D23 87 - Vss 120 - PD4 22 - D0 55 - D24 88 - PD31 121 - PD3 23 - D1 56 - D25 89 - PD30 122 - PD2 24 - Vpd 57 - Vpd 90 - PD29 123 - PD1 25 - D2 58 - D26 91 - PD28 124 - PD0 26 - D3 59 - D27 92 - PD27 125 - IODCBA 27 - Vss 60 - Vss 93 - PD26 126 - IOD15 28 - D4 61 - D28 94 - PD25 127 - IOD14 29 - D5 62 - D29 95 - PD24 128 - IOD13 30 - D6 63 - D30 96 - PD23 129 - IOD12 31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - Vss 65 - Vss 98 - Vss 131 - IOD10	15	-	WRENH	48	-	D19	81		RESERVED	114		PD8
18 - Vss 51 - Vss 84 - SWPDIR 117 - Vss 19 - WRENO 52 - D21 85 - SWPWORD 118 - PD6 20 - RDLEO 53 - D22 86 - SWPBYT 119 - PD5 21 - RDEN 54 - D23 87 - Vss 120 - PD4 22 - D0 55 - D24 88 - PD31 121 - PD3 23 - D1 56 - D25 89 - PD30 122 - PD2 24 - VbD 57 - VbD 90 - PD29 123 - PD1 25 - D2 58 - D26 91 - PD28 124 - PD0 26 - D3 59 - D27 92 - PD27 125 - IODCBA 27 - Vss 60 - Vss 93 - PD26 126 - IOD15 28 - D4 61 - D28 94 - PD25 127 - IOD14 29 - D5 62 - D29 95 - PD24 128 - IOD13 30 - D6 63 - D30 96 - PD23 129 - IOD12 31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - Vss 65 - Vss 98 - Vss 131 - IOD10	16	-	WREN1	49	-	D20	82	-	BIAS	115	-	PD7
19 - WRENO 52 - D21 85 - SWPWORD 118 - PD6 20 - RDLEO 53 - D22 86 - SWPBYT 119 - PD5 21 - RDEN 54 - D23 87 - Vss 120 - PD4 22 - D0 55 - D24 88 - PD31 121 - PD3 23 - D1 56 - D25 89 - PD30 122 - PD2 24 - VbD 57 - VbD 90 - PD29 123 - PD1 25 - D2 58 - D26 91 - PD28 124 - PD0 26 - D3 59 - D27 92 - PD27 125 - IODCBA 27 - Vss 60 - Vss 93 - PD26 126 - IOD15 28 - D4 61 - D28 94 - PD25 127 - IOD14 29 - D5 62 - D29 95 - PD24 128 - IOD13 30 - D6 63 - D30 96 - PD23 129 - IOD12 31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - Vss 65 - Vss 98 - Vss 131 - IOD10	17	-	Vss	50	_	Vss	83		V_{DD}	116	_	V _{DD}
20 RDLEO 53 D22 86 SWPBYT 119 PD5 21 RDEN 54 D23 87 Vss 120 PD4 22 D0 55 D24 88 PD31 121 PD3 23 D1 56 D25 89 PD30 122 PD2 24 VbD 57 VbD 90 PD29 123 PD1 25 D2 58 D26 91 PD28 124 PD0 26 D3 59 D27 92 PD27 125 IODCBA 27 Vss 60 Vss 93 PD26 126 IOD15 28 D4 61 D28 94 PD25 127 IOD14 29 D5 62 D29 95 PD24 128 IOD13 30 D6 63 D30 96 PD23 129 IOD112 31 D7 64 D31 97 PD22 130 IOD11 </td <td>18</td> <td>_</td> <td>V_{SS}</td> <td>51</td> <td>-</td> <td>Vss</td> <td>84</td> <td>-</td> <td>SWPDIR</td> <td>117</td> <td></td> <td>Vss</td>	18	_	V _{SS}	51	-	Vss	84	-	SWPDIR	117		Vss
21 - RDEN 54 - D23 87 - Vss 120 - PD4 22 - D0 55 - D24 88 - PD31 121 - PD3 23 - D1 56 - D25 89 - PD30 122 - PD2 24 - VDD 57 - VDD 90 - PD29 123 - PD1 25 - D2 58 - D26 91 - PD28 124 - PD0 26 - D3 59 - D27 92 - PD27 125 - IODCBA 27 - Vss 60 - Vss 93 - PD26 126 - IOD15 28 - D4 61 - D28 94 - PD25 127 - IOD14 29 - D5 62 - D29 95 - PD24 128 - IOD13 30 - D6 63 - D30 96 - PD23 129 - IOD12 31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - Vss 65 - Vss 98 - Vss 131 - IOD10	19		WREN0	52	-	D21	85	-	SWPWORD	118		PD6
22 D0 55 D24 88 PD31 121 PD3 23 D1 56 D25 89 PD30 122 PD2 24 VpD 57 VpD 90 PD29 123 PD1 25 D2 58 D26 91 PD28 124 PD0 26 D3 59 D27 92 PP27 125 IODCBA 27 Vss 60 Vss 93 PD26 126 IOD15 28 D4 61 D28 94 PD25 127 IOD14 29 D5 62 D29 95 PD24 128 IOD13 30 D6 63 D30 96 PD23 129 IOD12 31 D7 64 D31 97 PD22 130 IOD11 32 Vss 65 Vss 98 Vss 131 IOD10	20	-	RDLE0	53	-	D22	86	-	SWPBYT	119	-	PD5
23 D1 56 D25 89 PD30 122 PD2 24 VDD 57 VDD 90 PD29 123 PD1 25 D2 58 D26 91 PD28 124 PD0 26 D3 59 D27 92 PD27 125 IODCBA 27 VSS 60 VSS 93 PD26 126 IOD15 28 D4 61 D28 94 PD25 127 IOD14 29 D5 62 D29 95 PD24 128 IOD13 30 D6 63 D30 96 PD23 129 IOD12 31 D7 64 D31 97 PD22 130 IOD11 32 VSS 65 VSS 98 VSS 131 IOD10	21	-			-		87	-		120	, –	PD4
24 - V _{DD} 57 - V _{DD} 90 - PD29 123 - PD1 25 - D2 58 - D26 91 - PD28 124 - PD0 26 - D3 59 - D27 92 - PD27 125 - IODCBA 27 - Vss 60 - Vss 93 - PD26 126 - IOD15 28 - D4 61 - D28 94 - PD25 127 - IOD14 29 - D5 62 - D29 95 - PD24 128 - IOD13 30 - D6 63 - D30 96 - PD23 129 - IOD12 31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - Vss 65 - Vss 98 - Vss 131 - IOD10	22	_		55	-		88	_		121	-	,
25 D2 58 D26 91 PD28 124 PD0 26 D3 59 D27 92 PD27 125 IODCBA 27 Vss 60 Vss 93 PD26 126 IOD15 28 D4 61 D28 94 PD25 127 IOD14 29 D5 62 D29 95 PD24 128 IOD13 30 D6 63 D30 96 PD23 129 IOD12 31 D7 64 D31 97 PD22 130 IOD11 32 Vss 65 Vss 98 Vss 131 IOD10	23	_	D1		-	D25	89	-		122	_	
26 D3 59 D27 92 PD27 125 IODCBA 27 Vss 60 Vss 93 PD26 126 IOD15 28 D4 61 D28 94 PD25 127 IOD14 29 D5 62 D29 95 PD24 128 IOD13 30 D6 63 D30 96 PD23 129 IOD12 31 D7 64 D31 97 PD22 130 IOD11 32 Vss 65 Vss 98 Vss 131 IOD10	24	-			-	V_{DD}	90	-		123		1
27 - Vss 60 - Vss 93 - PD26 126 - IOD15 28 - D4 61 - D28 94 - PD25 127 - IOD14 29 - D5 62 - D29 95 - PD24 128 - IOD13 30 - D6 63 - D30 96 - PD23 129 - IOD12 31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - Vss 65 - Vss 98 - Vss 131 - IOD10	25	-		58	-		91	-		124	-	PD0
28 - D4 61 - D28 94 - PD25 127 - IOD14 29 - D5 62 - D29 95 - PD24 128 - IOD13 30 - D6 63 - D30 96 - PD23 129 - IOD12 31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - Vss 65 - Vss 98 - Vss 131 - IOD10	1				-		-	_			-	
29 - D5 62 - D29 95 - PD24 128 - IOD13 30 - D6 63 - D30 96 - PD23 129 - IOD12 31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - Vss 65 - Vss 98 - Vss 131 - IOD10	1	-			-			-			-	
30 - D6 63 - D30 96 - PD23 129 - IOD12 31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - Vss 65 - Vss 98 - Vss 131 - IOD10	1	_			-		-	-			-	
31 - D7 64 - D31 97 - PD22 130 - IOD11 32 - Vss 65 - Vss 98 - Vss 131 - IOD10	1	-			-						_	1
32 - Vss 65 - Vss 98 - Vss 131 - IOD10	1	-			-			-			-	
	1	-			-			-			-	1
33 - D8 66 - MODE 99 - PD21 132 - V _{SS}					-			-			-	1
	33	-	D8	66	-	MODE	99	-	PD21	132	-	Vss

Table 2. Data Buffer Mode (Mode=1) Pinout

PIN NO.	NAME	TYPE		FUNCTIO	ON		
				FE6022 ADDRE	SS BUFFER	MODE	
16	A20GTX	1	ADDR	ESS BIT 20 GA	TE SIGNAL		
			A20G	X gates Addres	s Bit 20 of PA	20 from the p	rocessor. The signal is generated by
			the FE	6010, and has i	no effect on th	e address whe	en the DMA or Micro Channel master
				ating the addres			
			HLDA	UCHMSTR	A20GTX	A20	SOURCE DEVICE
			0	0	0	0	80386
			0	0	1	PA20	80386
			1	0	x	PA20	DMA
			1 1		X	PA20	Micro Channel Master
		-			X	PAZU	micro Channel master
20	UCHMSTR	1		NEL MASTER			
					•		10. When active, it indicates that a
					ontrol of the b	us. It is used t	to control the direction of the address
			buffers	5.			
84	HLDA	1	HOLD	ACKNOWLED	GE		
			The 80	386 generates	this signal in r	esponse to a H	HOLD signal from the DMA controller
			When	active, it indicat	es that the 80	386 has relinqı	uished control of the local bus.
19	CMD		CHAN	NEL COMMAN	D		
	05					erates the latch	signal that latches the Channel ad-
				s when a Chan			r signar that lateries the charmer ad
	D404	110				o tric bus.	
88	PA31	1/0		ESSOR ADDRI			
89	PA30						herboard, and interfaces directly with
90	PA29		the 80	386 address bu	s. It is an inpu	t for 80386/DN	A cycles and output for master cycle
91	PA28						
92	PA27	1					
93	PA26						
94	PA25						
95	PA24						
96	PA23						
97	PA22						
99	PA21						
101	PA20						
102	PA19						
103	PA18						
104	PA17						
105	PA16						
106	PA15						
107	PA14						
108	PA13						
110	PA12						
111	PA11						
112	PA10						
113	PA9						
114	PA8						
115	PA7						
118	PA6						
119	PA5						
120	PA4						
121	PA3	1					

PIN NO.	NAME	TYPE	FUNCTION
122	PA2	I/O	PROCESSOR ADDRESS BUS (CONT)
123	PA1		
124	PA0		
64	A31	1/0	CHANNEL ADDRESS BUS
63	A30		This Channel address bus interfaces directly to the Channel. It is an input during
62	A29		80386/DMA cycles. Note that A0 is always an input, and is generated by the FE6030
61	A28		during 80386/DMA cycles.
59	A27		during 00000/DMI// 0y0100.
58	A26		
56	A25		
55	A24		
54	A23		
53	A22		
52	A21		
49	A20		
48	A19		
47	A18		
45	A17		
44	A16		
42	A15		
41	A14		
40	A13		
39	A12		
37	A12		
36	A10		
34	A9	-	
33	A8		
31	A7		
30	A6		
29	A5		
28	A4		
26	A3		
25	A2		
23	A1		
22	A0		
			DVTC ENADI CO
75 74	BE3 BE2	1/0	BYTE ENABLES These buts problem on the level bug interfered discrete with the 20000 buts such level.
123	BE2 BE1		These byte enables on the local bus interface directly with the 80386 byte enables. When the address flow is from the processor address bus to the Channel address bus,
123	BE0		these signals generate Address Bit 1 (A1). A0 is generated in the FE6030. When the ad-
124	. BEU		
			dress flow is from the Channel address bus to the processor address bus, these signals
			are generated by a 32-bit master on the Channel or the central translator for a 16-bit master.
80	MBE3	I/O	CHANNEL BYTE ENABLES
79	MBE2		These Channel byte enable signals interface directly to the BE (3:0) on the Micro Chan-
78	MBE1		nel. During an 80386/DMA cycle, these signals are outputs. For a master cycle they are
77	MBE0		input signals.
14	TR32	1/0	TRANSLATE 32
17	11102	"	The Translate 32 signal on the Channel is used in the central translator logic. When it is
}			active, the central translator translates A0, A1, and SBHE to BE (3:0). TR32 is used for a
			16-bit master communi-cating with a 32-bit slave.

PIN NO.	NAME	TYPE	FUNCTION
86	SBHE	ı	SYSTEM BYTE HIGH ENABLE
			The System Byte High Enable signal on the Channel interfaces directly to SBHE on the
			Channel. When the address flow is from the processor bus to the Channel bus, the
			FE6030 generates this signal as a decode of BE (3:0). When the address flow goes
			from the Channel bus to the processor bus, this signal is used in the central translator
			function.
82	MIO	1/0	LOCAL BUS MIO The MIO signal is on the local bus, and interfaces directly with the M/IO# signal on the
			80386. When a Channel master accesses the system board DRAM, this signal is a
			latched version of the MMIO signal.
68	MMIO	1/0	CHANNEL MIO
			This signal interfaces directly with the Channel MIO signal, a delayed version of the CMD
			signal generated by the FE6000. When the 80386 or the DMA accesses the Channel,
			this signal is the same as MIO.
14	CMDBUF	1	CHANNEL BUFFER
			This signal latches the Channel addresses for the IOA (16:0) address bus. It is
			generated by the FE6000, and is a delayed version of the CMD signal.
125	IOA16	0	I/O ADDRESS BUS
126	IOA15		This is the I/O address bus on the system board. It is the latched version of the addres-
127 .	IOA14		ses on the Channel. The I/O address bus supplies the addresses to all the Channel
128	IOA13		peripherals on the system board, such as the video, floppy, serial port, parallel port, timer
129	IOA12 IOA11		and interrupt controllers, and EPROM.
130 131	IOA11		
1	IOA10		
2	IOA8		
4	IOA7		
5	IOA6		
6	IOA5		
7	IOA4		
8	IOA3		
9	IOA2		•
10	IOA1		
11	IOA0	-	
16	S1	1	CHANNEL CONTROL SIGNALS
19	<u>S0</u>		These two signals interface directly to the Channel S(1:0) signals. Together with MADE24, MMIO, and the Channel address, it generates the PROM chip selects.
40	MADEO	1/0	
13	MADE24	1/0	CHANNEL MADE24 SIGNAL This signal directly interfaces with the Channel MADE24 signal. In combination with
			S(1:0) and MMIO, it generates the PROM chip selects. During 80386/DMA cycles, this
			signal is an output signal.
			ADDRESSES MADE24
			0-16 MBytes 1
			>16 MBytes 0
85	MMCMD	1	CHANNEL MATCHED MEMORY COMMAND
			This is the Matched Memory Command signal on the Channel. Together with $\overline{\text{CMD}},$ it
			generates the UCHCMD signal.
19	CMD	ı	CHANNEL COMMAND
			This is the Command signal on the Channel, which, together with $\overline{\text{MMCMD}}$, generates
			the UCHCMD signal.

PIN NO.	NAME	TYPE	FUNCTION
71	PROMCSL	0	PROM CHIP SELECT (Low)
72	PROMCSH	0	PROM CHIP SELECT (High)
			These signals select the two 64K x 8 (27512) PROMs which together form the 128K of
			PROM on the system board. The two PROMs are organized into even and odd banks,
			providing a 16-bit wide interface. PROMCSL selects the even banks and PROMCSH
			selects the odd banks.
,			Configurations with 8-bit wide, 1 M bit PROMs (27010) are also possible. In such a case, PROM Chip Select is generated by executing a logical OR of PROMCSL and
			PROMCSH. To get the BIOS to execute faster, the PROM can be mapped to the DRAM and executed from there.
			The PROMs are located at 000E0000H - 000FFFFFH and at FFFE0000 - FFFFFFFH.
			An access to either of these locations generates the chip selects for the PROM. How-
			ever, a Channel cycle to access the PROM will only be run if an access is made to
			FFFE0000 - FFFFFFFH, or if a read access is made to E0000 -FFFFF, and the PROM
			is not mapped to RAM. Writes to these addresses are ignored.
69	UCHCMD	0	COMMAND INDICATION
	COLICINIS		This signal is the logical OR of the CMD and MMCMD signals, and indicates that a com-
			mand is present on the Channel. It is used in the FE6010 diagnostic interface.
70	EOT	0	END-OF-CYCLE
70	EOI		This signal is activated when CMD and S(1:0) are inactive. The CACP controller inside
			the FE6010 uses this signal and BURST to detect an End-of-cycle condition.
		1	
67	TEST		TEST PIN
			This is an active low pin to facilitate board-level testing. When low, this signal tristates all
			outputs and bi-directional signal lines so that an ATE tester can drive these signals in-
			stead.
82	BIAS	1	. BIAS PIN
			This pin controls the biasing of the internal buffers, and should be pulled low with a 1.25K
			±1% resistor.
66	MODE	1	MODE PIN
			This pin determines the mode of operation for the FE6022 device. When tied to VDD, it
			puts the FE6022 into the data buffer mode; when it is tied to ground, it puts it into the ad-
			dress buffer mode.
3, 24, 35,	V _{DD}		+5 V Power Supply
46,57,	- 55		,
83, 100,			
116			
17, 18,	Vss	 	0 V Ground
27, 32,	vss	'	o v Glound
38, 43,			
50, 43, 50, 51,			
60, 65,			
76, 87,			
98, 109,			
117, 132			
111, 102			

oard pads d PD31 PD30	I/O	PD(31:0) SIGNAL DRIVER 80386/DMA DRAM Data Buffers FE6022	I lines connect directly to the 80386 data bus. D(31:0) SIGNAL DRIVER FE6022 FE6022 Channel Slave
eads d PD31 PD30	I/O	These processor data bus signal PD(31:0) SIGNAL DRIVER 80386/DMA DRAM Data Buffers FE6022	D(31:0) SIGNAL DRIVER FE6022 FE6022
eads d PD31 PD30		PD(31:0) SIGNAL DRIVER 80386/DMA DRAM Data Buffers FE6022	D(31:0) SIGNAL DRIVER FE6022 FE6022
eads d PD31 PD30		80386/DMA DRAM Data Buffers FE6022	FÉ6022 FE6022
PD31 PD30		FE6022	
PD31 PD30			Channel Slave
PD31 PD30		FF6000	
PD30		FE6022	Channel Master
	1/0	CHANNEL BUS LINES	
		These Channel data bus signal I	ines connect directly to the Channel data bus.
PD29			
PD28			
PD27			
PD26			
PD25			
PD24			
PD23			
PD22			
PD21			
PD20			
PD18			
PD17			
P1)1	1		
	PD27 PD26 PD26 PD25 PD24 PD23 PD22 PD21 PD20 PD19 PD18 PD17 PD16 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD7 PD6 PD5 PD4 PD3 PD2	PD27 PD26 PD25 PD24 PD23 PD22 PD21 PD20 PD19 PD18 PD17 PD16 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PD7 PD6 PD5 PD4 PD7 PD6 PD5 PD4 PD3	PD27 PD26 PD25 PD24 PD23 PD22 PD21 PD20 PD19 PD18 PD17 PD16 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PD7 PD6 PD5 PD4 PD7 PD6 PD5 PD4 PD7 PD6 PD5 PD4 PD3 PD2

PIN NO.	NAME	TYPE	FUNCTION					
20	RDEN	ı	READ ENABLE					
			This read-enable signal enables Bits PD(31:0) in the buffer during data flow from the					
			Channel data processor data bus.	The signals are active	when the 80386 or the DMA			
			performs a read from the Channel, o	or when the Channel i	master writes to the system			
			board RAM.					
19	RDLE0	ı	READ LATCH ENABLE 0					
			This signal is the latch enable signal	for Byte 0 (7:0). Wh	en the 80386 or the DMA per-			
			forms a cycle to an 8-bit device on the	ne Channel, the cycle	is split in two. This signal			
			latches the data during the first cycle	э.				
15	WRENH	ı	WRITE ENABLE (HIGH, 1:0)					
17	WREN1		This signal enables the buffer during	a data flow from the	processor data bus to the Chan-			
19	WREN0		nel data bus D (31:0). The signals of	control Bytes 0 (7:0)	WREN0), 1 (15:8) (WREN1),			
			and the upper word (31:16) (WREN	H). They are valid wh	en the 80386 or the DMA per-			
			forms a write operation to the Chanr	nel or when a Channe	el master performs a read from			
			the motherboard RAM.					
14	WRLE	1	WRITE LATCH ENABLE					
			This write latch enable signal latches	s the write data during	g an 80386 or DMA write opera-			
			tion to the Channel. It also provides	the write-data-hold ti	me required by the Channel			
			during these operations. This signal	also latches the data	when the 80386 or the DMA			
			writes to an 8-bit port and the cycle I	has to be split in two.				
86	SWPBYT	1	BYTE SWAP					
			When the 80386 or the DMA access	ses an 8-bit port, this	signal is used to swap the data			
			to the correct byte:					
			Bits 7-0 are swapped to Bits 15-8 for	r a Read operation; B	its 15-8 are swapped to Bits 7-0			
			for a Write operation.					
85	SWPWORD	1	WORD SWAP					
			This signal swaps words when a 16-	-bit Channel master c	ommunicates with a 32-bit			
			slave. This function on the Channel	is called Data Steering	ng.			
84	SWPDIR	ı	SWAP DIRECTION					
	(COPRES)		At power-up, the state of this signal	is latched by the FE6	030 to determine the presence			
			of the numeric coprocessor.					
			In normal operation, this signal dete	rmines the direction o	of the byte-swap or word-swap			
			buffers.					
			SWPDIR	DIRECTION OF	TRANSFER			
				BYTE SWAP	WORD SWAP			
			0	(7:0) to (15:8)	(15:8) to (31:16)			
			1	(15:8) to (7:0)	(31:16) to (15:0)			
11, 9-3,	IOD (15:0)	I/O	16-BIT I/O DATA BUS					
1, 132,	to IOD (0:0)		This is the 16-bit I/O data bus, which	n provides support for	devices eight bits or sixteen			
130-125			bits wide.					
14	IODTR	1	I/O DATA TRANSMIT/RECEIVE					
			The I/O Data Transmit/Receive sign	al controls the directi	on of the I/O data buffers inside			
			the FE6022. The signal itself is gen	erated by the FE600	0 device.			
			IODTR	DIRECTION				
			1	D(15:0) to IOD(1	5:0)			
		1	0	IOD(15:0) to D(1	5:0)			

PIN NO.	NAME	TYPE	FUNCTION
13	IODEN	!	I/O DATA ENABLE The I/O Data Enable signal enables the I/O data buffers and is generated by the FE6000. When it is active, the FE6022 drives either D(15:0) or IOD(15:0), depending on the direction set by the IODR signal.
12	IODCBA		I/O DATA CLOCK The I/O Data Clock signal is used to latch the data during reads from the Channel peripherals on the I/O bus. The MEMRD, MEMWR, IORD, and IOWR commands to the peripherals are shorter than the Channel CMD signal. This signal ensures that the data being read meets the timings to the Channel CMD signal.
67	TEST	1	TEST PIN This is an active low pin to facilitate board-level testing. When low, this signal tristates all outputs and bi-directional signal lines so that an ATE tester can drive these signals instead.
66	MODE	-	MODE PIN This pin determines the mode of operation for the FE6022 device. When tied to V _{DD} , it puts the FE6022 into the data buffer mode; when it is tied to ground, it puts it into the address buffer mode.
82	BIAS	1	BIAS PIN This pin controls the biasing of the internal buffers, and should be pulled low with a 1.25K \pm 1% resistor.
3, 24, 35, 46,57, 83, 100, 116	V _{DD}	I	+5 V Power Supply
17, 18, 27, 32, 38, 43, 50, 51, 60, 65, 76, 87, 98, 109, 117, 132	Vss	I	0 V Ground
68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81	Reserved	-	RESERVED PINS These pins should not be connected.

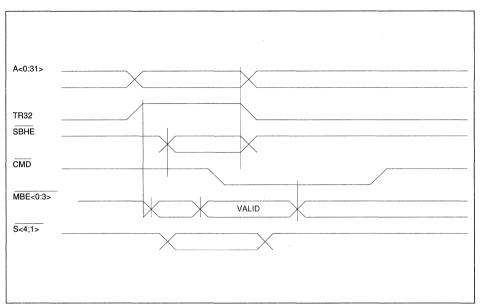


Figure 5. Address Chnl Master Accesses Translate Function

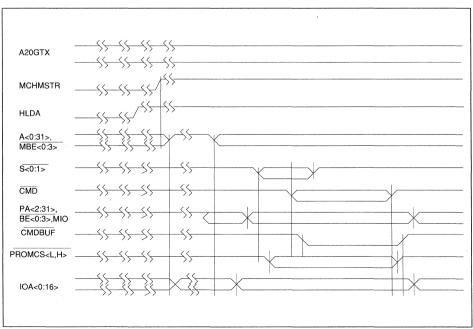


Figure 6. Address Mode Channel Master Accesses

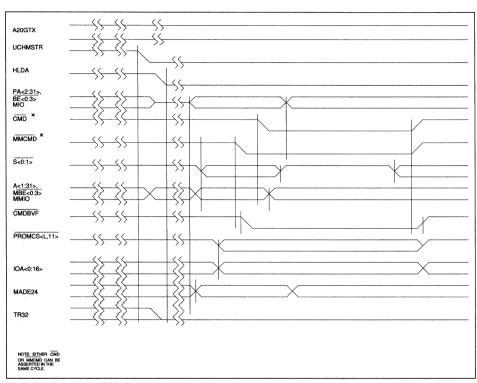


Figure 7. Address Mode: 80386/DMA Channel Accesses

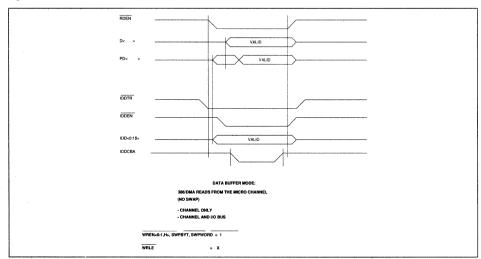


Figure 8. Data Mode: 80386/DMA Reads from the Channel

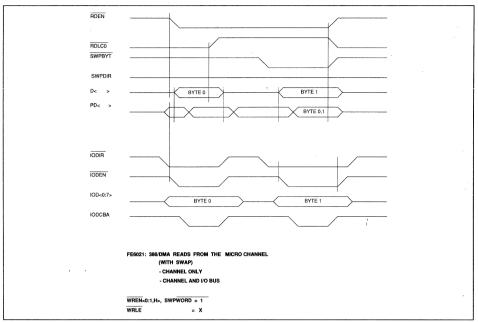


Figure 9. Data: 80386/DMA Reads from the Chnl with Swap

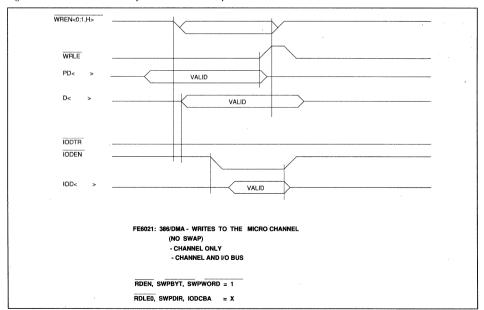


Figure 10. Data: 80386/DMA Writes to the Channel

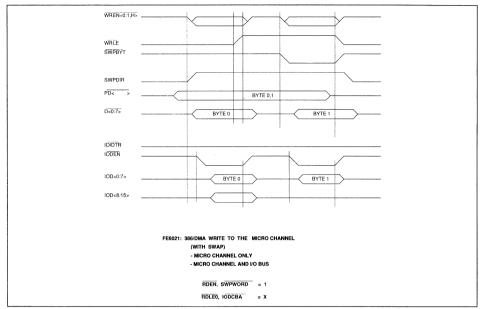


Figure 11. Data: 80386/DMA Writes to the Chnl with Swap

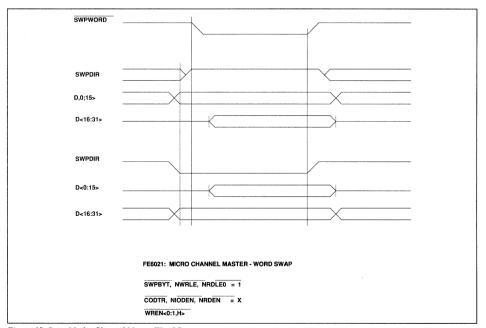


Figure 12. Data Mode: Channel Master Word Swap

Western Digital

3.0 TECHNICAL SPECIFICATIONS

3.1 ABSOLUTE MAXIMUM RATINGS

The absolute maximum stress ratings for the FE6022 devices are tabulated below. Permanent damage to the devices could result from exposing it to conditions exceeding these ratings.

PARAMETER	SYMBOL	MIN	MAX	UNITS
Supply Voltage	V _{DD} - V _{SS}	0	`7	٧
Input Voltage	VIABS	V _{SS} - 0.3	V _{DD} + 0.3	V
Bias on Output Pin	VOABS	V _{SS} - 0.3	V _{DD} + 0.3	٧
Storage Temperature	T _S	-40	125	°C

3.2 NORMAL OPERATING CONDITIONS

Exposing the FE6022 to conditions exceeding the normal operating conditions for extended periods of time can affect the long-term reliability of the device. VSS = 0 V

PARAMETER	SYMBOL	MIN	MAX	UNITS
Power Supply Voltage	V _{DD}	4.75	5.25	٧
Ambient Temperature	TA	0	70	°C
Input Voltage	Vin	-0.3	V _{DD} + 0.3	٧
Power Dissipation	Pw	-	TBD	mW
Supply Current	IDD	-	TBD	mA

3.3 DC CHARACTERISTICS (UNDER NORMAL OPERATING CONDITIONS)

PARAMETER	SYMBOL	MIN	MAX	UNITS			
Input Capacitance @ fc = 1 MHz	Cı	-	5	pF			
I/O Capacitance	C _{IO}	-	10	pF			
Logic High Input Voltage	VIH	2.0	-	V			
Logic Low Input Voltage	V _{IL}	-	0.8	V ·			
Input Leakage	l _{IL}	-	+-10	μА			
Tristate Output Leakage	loL	-	+-30	μА			
I/O Pin Leakage	lioL	-	+-40	μА			
FE	6022 ADDRESS BUFFER	MODE (MODE = 0)					
OUTPUTS PROMCSL, PROMCSH, EOT, UCHCMD, PA(2:31)*							
Source Current @ V _{OH} = 2.4 V	Іон	-	-	mA			
Sink Current @ VoL = 0.4 V	loL	4	-	mA			
	OUTPUTS BE(3:	:0), MIO*					
Source Current @ V _{OH} = 2.4 V	Іон	-	-	mA			
Sink Current @ V _{OL} = 0.4 V	loL	6	-	mA			
	OUTPUT IOA	(16:0)					
Source Current @ V _{OH} = 2.4 V	Іон	-	-	mA			
Sink Current @ V _{OL} = 0.4 V	loL	8	-	mA			
	ALL OTHER OU	TPUTS*					
Source Current @ V _{OH} = 2.4 V	Іон	-	-	mA			
Sink Current @ VoL = 0.4 V	lou	24		mA			

PARAMETER	SYMBOL	MIN	MAX	UNITS
F	E6022 DATA BUFFER MO	ODE (MODE = 1)		
	OUTPUTS PD(3	11:0)*		
Source Current @ V _{OH} = 2.4 V	Іон	-	-	mA
Sink Current @ V _{OL} = 0.4 V	I _{OL}	4	-	mA
	OUTPUTS IOD(15:0)*		
Source Current @ V _{OH} = 2.4 V	Іон	-	-	mA
Sink Current @ V _{OL} = 0.4 V	loL	6	-	mA
	OUTPUT D(3	1:0)		
Source Current @ V _{OH} = 2.4 V	IOH	-	-	mA
Sink Current @ V _{OL} = 0.4 V	loL	8	-	mA

^{*}The following signals are bi-directional: PA(31:2), BE(3:0), MIO, MADE24, TR32, MMIO, MBE(3:0), A(31:1), SBHE, PD(31:0), IOD(15:0), and D(31:0). NOTE

3.4 A.C. LOAD SPECIFICATIONS

SIGNAL	SYMBOL	MIN	MAX	UNITS
FE6	022 ADDRESS BUFFER	MODE (MODE = 0)		
PROMCSL, PROMCSH, EOT, UCHCMD	CL	50	•	pF
BE(3:0), MIO*	CL	120	-	pF
PA(31:2), IOA(16:0)*	CL	120	-	pF
MADE24, TR32, MMIO, MMC, MBE(3:0), A(31:1), SBHE*	CL	240	-	pF
. FI	E6022 DATA BUFFER M	ODE (MODE = 1)		
PD(31:0), IOD(15:0)*	CL	120	-	pF
D(31:0)*	CL	240	-	pF

^{*}The following signals are bi-directional: PA(31:2), BE(3:0), MIO, MADE24, TR32, MMIO, MBE(3:0), A(31:1), SBHE, PD(31:0), IOD(15:0), and D(31:0). NOTE

4.0 TIMING

PARAM	DESCRIPTION	MIN	MAX	UNITS
T1	Propagation Delay			ns
	A1, SBHE, MBE(3:0) to BE(3:0)		28	ns
	PA(31:2), to A(31:2)		26	ns
	A(31:0) to PA(31:2), BE(3:0)		26/28	ns
	A20GTX to A20		26	ns
	MIO to MMIO		25	ns
	MMIO to MIO		25	ns
TR32, A(1:0), SBHE to MBE(3:0) or	TR32, A(1:0), SBHE to MBE(3:0) or		28	ns
	BE(3:0)	-	28	ns
T2	CMD, MMCMD, to UCHCMD	-	20	ns
T3	S(1:0), CMD to EOT	-	25	ns

Table 3 Address Buffer Mode Timings (ns)

^{1.} The input pin "BIAS" is connected externally to ground through a 1% 1.25 K ohm resistor, and is part of an internal biasing circuit. Capicitance, leakage, and threshold measurements on this pin do not apply.

2. The following signals have internal pullups of 20K: BE(3:2), MBE(3:0), MMIO, MIO.

^{3.} When TEST = 0, all outputs and bi-directional signal lines are tristated.

^{1.} The following signals have internal pullups of 20K: BE(3:2), MBE(3:0), MMIO, MIO.

PARAM	DESCRIPTION	MIN	MAX	UNITS
T4A	MIO, S(1:0), MADE24, A(0, 31:17)	-	27	ns
	SBHE to PROMCSL, PROMCSH	-	27	ns
T4B	PA(17:13), A20GTX, HLDA, UCHMSTR to	-	54	ns
	PROMCSL, PROMCSH	-	54	ns
T5A	A(16:0), to IOA(16:0)	-	25	ns
T5B	PA(16:2), BE(3:0) to IOA(16:0)	-	50	ns
T6	HLDA to MMC or MADE24	-	25	ns
T7A	Setup to Falling Edge of CMD, MADE24, 5432, MIO,	10	-	ns
	MMIO, PA(31:2), BE(3:0), A(31:0), MBE(3:0),	10	-	ns
	SBHE, S(1:0)	10	-	ns
T7B	Setup to Falling Edge of CMD	40	-	ns
	A20GTX, UCHMSTR, HLDA	40		ns
T8A	Hold from Falling Edge of MCMD, MADE24, TR32,	10	-	ns
	MIO, MMIO, PA(31:2), BE(3:0), A(31:0),	10	-	ns
	MBE(3:0), SBHE, S(1:0)	10	-	ns
T8B	Hold from Falling Edge of CMD	15	-	ns
	A20GTX, UCHMSTR, HLDA	15	-	ns
T9	CMD Inactive Pulse Width	30	-	ns
T10A	Setup to Rising Edge of CMDBUF	10	-	ns
	PA(31:2), BE(3:0), A(15:0)	10	-	ns
T10B	Setup to Rising Edge of CMD	5	-	ns
T11	Hold from Rising Edge of CMDBUF	5	-	ns
	PA (31:2), BE(3:0), A(15:0)	5	-	ns
T12	CMDBUF Inactive Pulse Width	30	-	ns
T13A	Disable - from UCHMSTR	21	-	ns
	A(31:1), MBE(3:0), MMIO, MADE24,	21	-	ns
	TR32, SBHE, PA(31:2), BE(3:0), MIO	21	_	ns
T13B	Enable - from UCHMSTR	26	-	ns
	A(31:1), MBE(3:0), MMIO, MADE24,	26	-	ns
	TR32, SBHE, PA(31:2), BE(3:0), MIO	26	-	ns

Table 3 (Cont) Address Buffer Mode Timings (ns)

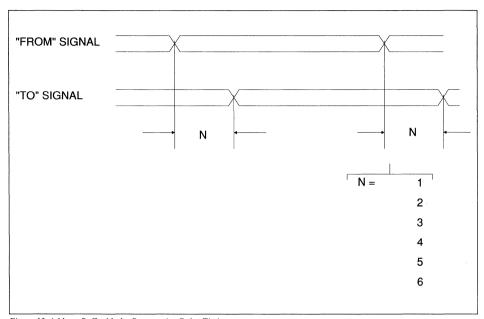


Figure 13. Address Buffer Mode: Propagation Delay Timings

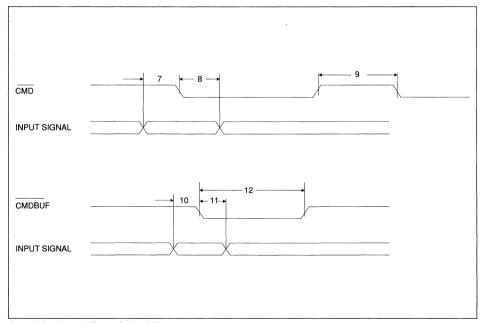


Figure 14. Address Buffer Mode: Latch Timings

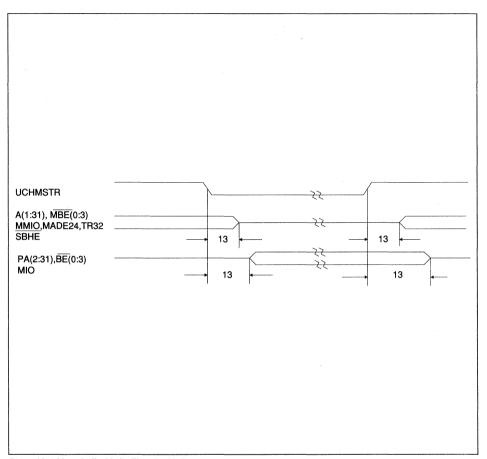


Figure 15. Address Buffer Mode: Float/Enable Timings

PARAM	DESCRIPTION	MIN	MAX	UNITS
T1	Output Enable/Disable	-	-	ns
	WREN0 to D(7:0)	-	26	ns
	WREN1 to D(15:8)	-	26	ns
	WRENH to D(31:16)	-	26	ns
	RDEN to PD(31:0)	-	28	ns
	IODEN or IODTR to D(15:0) or IOD(15:0)	-	25	ns
T2	Propagation Delay in Transparent Mode	-	-	ns
	PD(31:0) to D(31:0)	-	26	ns
	D(31:0) to PD(31:0)	-	26	ns
T3	Latch Enable to Data	-	-	ns
	WRLE to D(31:0) (WRENX active)	-	15	ns
	RDLE0 to PD(7:0) (RDENL active)	-	15	ns
T4A	Data Setup to Latch Enable	-	-	ns
	D(7:0) to RDLE0	10	-	ns
	IOD(15:0) to IODCBA	10	-	ns
T4B	Data Setup to Latch Enable	20	-	ns
	PD(31:0) to WRLE	20	-	ns
T5	Data Hold from Latch Enable	5	-	ns
	D(7:0) from RDLE0	5	-	ns
	IOD(15:0) from IODCBA	5	-	ns
	PD(31:0) from WRLE	5	-	ns
T6A	Latch Enable Active Pulse Width	15	-	ns
	WRLE, RDLEO, IODCBA	15	-	ns
T6B	Latch Enable Active Pulse Width	30	-	ns
	WRLE, RDLE0, IODCBA	30	-	ns
T7	Propagation Delay	-	• -	ns
	SWPDIR to D() or PD()	-	30/28	ns
	SWPBYT to D() or PD()	-	28/28	. ns
	SWPWORD to D() or PD()	-	28/28	ns

Table 4. Data Buffer Mode Timings (ns)

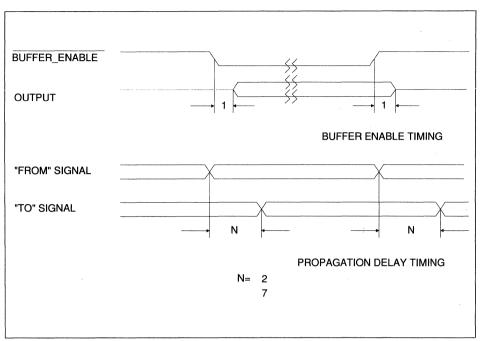


Figure 16. Data Buffer Mode: Propagation Delay Timings

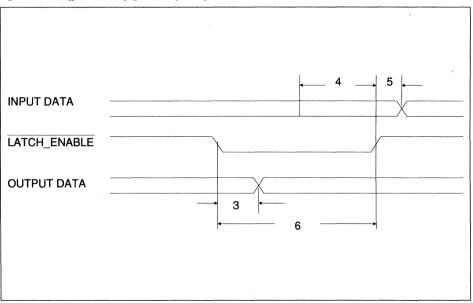


Figure 17. Data Buffer Mode: Latch Timings

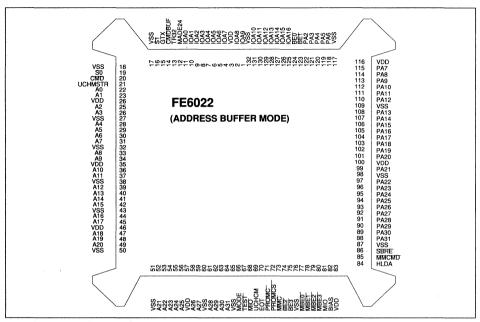


Figure 18. Address Buffer Mode Pin Layout Diagram

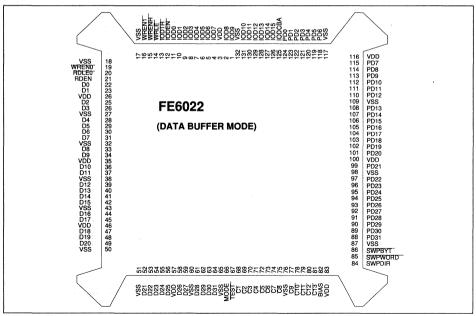


Figure 19. Data Buffer Mode Pin Layout Diagram

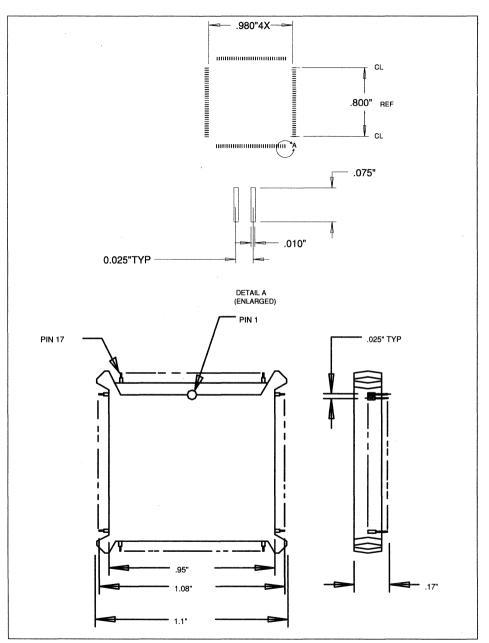


Figure 20. 132-Pin JEDEC Flat Pack Packaging Diagram

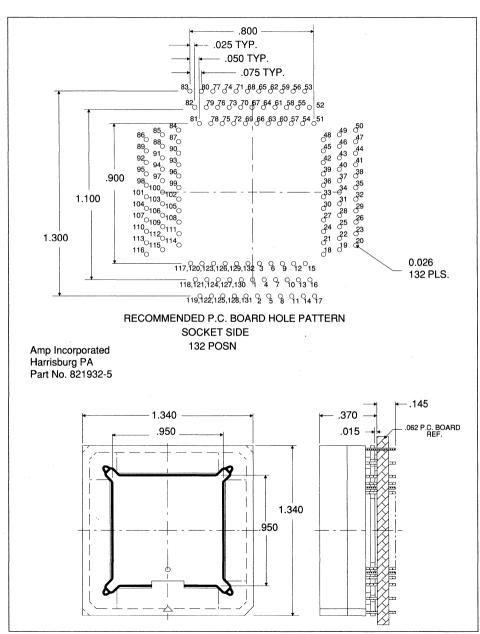
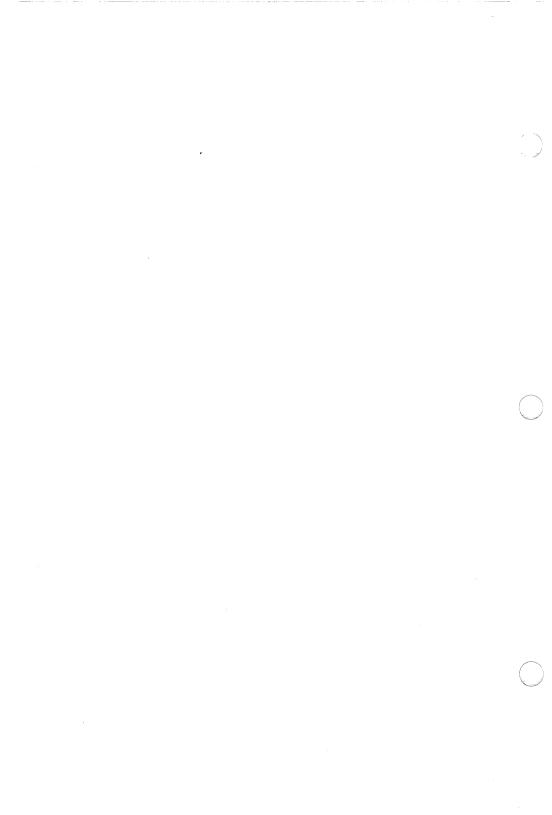



Figure 21. Socket Diagram

