

WD33C95A, WD33C96A Enhanced Single-ended and Differential SCSI Bus Interface Controller

TABLE OF CONTENTS

Section	Title		Page
1.0	INTR		. 24-1
	1.1	Document Scope	
	1.2	Reference Documents	
	1.3	Features	
	1.4	General Description	
2.0	ARCH	HITECTURE	. 24-2
	2.1	Performance	. 24-2
	2.2	Flexibility	. 24-2
	2.3	Microprocessor Interface	
	2.4	DMA Interface	. 24-2
	2.5	Dual Port Registers	. 24-2
	2.6	Differential Driver Control	
	2.7	Power Management	
	2.8	Testability	
	2.9	Compatibility with WD33C93 Family	
3.0	SIGN	IAL DESCRIPTION	. 24-5
A.0	GLOS	SSARY AND CONVENTIONS	. 24-11
	A.1	Glossary	. 24-11
	A.2		. 24-11
	A.3	Reserved Registers	

LIST OF ILLUSTRATIONS

LIST OF TABLES

Table	Title	je
3-1	WD33C96A Pin Assignments	-5
3-1	WD33C95A Pin Assignments	-6
3-3	Signal Description	-7

1.0 INTRODUCTION

1.1 DOCUMENT SCOPE

This document describes two versions of a single chip VLSI SCSI bus controller. The WD33C96A is a 100-pin device that can act only as a singleended SCSI controller, and the WD33C95A is a 132-pin device that can act as both a singleended and a differential SCSI controller.

In this document, the term ESBC (Enhanced SCSI bus controller) is used as a term when referring to both parts.

The ESBC can perform both as an initiator and target. The data path for this device is programmable to be either 8- or 16-bits wide. All the features and timings described below are preliminary and subject to change without notice.

1.2 REFERENCE DOCUMENTS

The following reference documents may be of help:

- Draft proposed American National Standards for Information Systems-Small Computer System Interface-2 (SCSI-2), X3T9.2 Task Group number X3T9/89-042 revision 10c dated March 2, 1990.
- WD33C92A SCSI Protocol Chip Specification 96-105393.
- WD61C40A Series Intelligent Disk Controller and Buffer Manager Chip Specification.

1.3 FEATURES

- High speed (10MT/s) SCSI bus transfers, 8- or 16-bits wide
- Minimum SCSI bus latency/overhead
- Automatic response to a bus initiated selection/reselection
- Flexible combination commands through writeable control store
- Automatic decoding of the transfer length of commands
- 16-word FIFO to support synchronous offset up to 16-words or 32-bytes
- · Programmable synchronous transfer period
- Includes single-ended 48 mA drivers for SCSI interface
- Includes control signals to support external differential drivers and receivers
- · Supports low-level SCSI bus control
- Efficient interaction with the WD61C40A series with less microprocessor overhead
- Supports fast DMA transfers up to 10M transfers/second
- Supports host adapter application on the motherboard
- Flexibility to support most DMA controllers or buffer managers
- Dedicated 8-bit port for high speed microprocessor
- Pipelined 24-bit transfer counter (two-level)
- Transfers may be specified in bytes or logical blocks
- Minimum microprocessor intervention required
- Single +5 volt supply with low power mode
- 100-pin PQFP package for single-ended interface
- 132-pin package for differential interface
- Target-mode LRC generation/checking

1.4 GENERAL DESCRIPTION

The ESBC is a high performance CMOS VLSI device that controls data transfers between the SCSI bus and the local data buffer.

2.0 ARCHITECTURE

2.1 PERFORMANCE

The SCSI and DMA interfaces are independently programmable between 16- and 8-bits wide. The interface can transfer data at a rate up to 10M transfers/second, that is 20 MByte/s mode in 16-bit mode. The total time required to perform arbitration, selection, command transfer, and message transfer is less than 20 μ s. The ESBC includes a dedicated 8-bit port for a high performance microprocessor, such as 25 MHz 80C188/186 and 16 MHz 80C196. The ESBC requires supervision from the microprocessor only in exception conditions. The device includes a 16 by 18-bit FIFO to support an offset of 16-words or 32-bytes in a SCSI synchronous transfer.

2.2 FLEXIBILITY

The ESBC handles SCSI protocol and data transfer through a 128-word Writeable Control Store (WCS), allowing the user to program any sequence of bus phases on the SCSI bus. The ESBC can act as a target as well as an initiator. The WCS has enough capacity to fit both initiator and target instruction sequences. The device can interface with various buffer managers, such as the WD60C40, WD60C40A, WD61C40 series, and the WD42C22. It can also interface with various types of DMA controllers.

2.3 MICROPROCESSOR INTERFACE

The device has a dedicated microprocessor interface. This port supports 8-bit microprocessors with a multiplexed address/data AD[0-7] bus. The microprocessor can access the internal registers and FIFO through this port. The ESBC can interface with various high performance microprocessors, such as 80C196, 80C188, and 80C186. RE and WE control access through this port.

The ESBC has another access mode, where the microprocessor can access the internal registers through DMA bus pins BD[0-7]. This mode is useful in applications where a dedicated microprocessor is not available and the ESBC is controlled directly by the main processor. The microprocessor accesses the internal registers in 8-bit mode; only the lower DMA port is used. The register address is supplied into the AD bus (dedicated

microprocessor bus). DRE and DWE control the access. DACK must not be active.

2.4 DMA INTERFACE

The on-board DMA controller is programmable to act as bus master or slave. The polarity of DRQ and DACK is also programmable to be active high or low. The data can be transferred in 8- or 16-bit mode. The maximum transfer rate is 10M transfers/s. The ESBC automatically performs byte/word conversions.

2.5 DUAL PORT REGISTERS

The ESBC uses a 32-word by 9-bit (8-bit plus parity) Dual Port Register to store special information such as commands, messages and status. The information is transferred between the SCSI bus and the registers under control of the WCS sequence. The microprocessor can randomly access these registers like any other register. The dual port structure allows simultaneous accesses by the microprocessor and the WCS as long as they do not access the same address location. If both the microprocessor and the WCS simultaneously access the same location, the integrity of the data cannot be guaranteed. The microprocessor must keep track of which portion of the Dual Port Register is not accessible.

2.6 DIFFERENTIAL DRIVER CONTROL

One configuration of the ESBC, the WD33C95A, provides all signals needed for interface to a 8- or 16-bit differential SCSI bus. All commonly used SCSI interface devices are supported.

2.7 POWER MANAGEMENT

The ESBC automatically goes into a power-down mode when the WCS has not been active and the device has not been accessed for a period of time defined in the SLEEP register. A wakeup time of less than 200 ns is required to return to full operating speed.

FIGURE 2-1. ESBC BLOCK DIAGRAM

1

2.8 TESTABILITY

The ESBC includes several features to improve testability of the device:

- All registers are readable
- WCS RAM is readable and writeable by the microprocessor
- Hystersis test for the input buffers of the SCSI signals
- · Wire bond/pin solder checking
- · BIST for the WCS, DPR and FIFO register files

2.9 COMPATIBILITY with WD33C93 FAMILY

The architecture of the ESBC is substantially different from that of the WD33C93 family. However, the ESBC has the ability to emulate all the combination commands supported by the WD33C93. In addition, the firmware that controls the device may be adapted to support higher performance through pipelining.

3.0 SIGNAL DESCRIPTION

This section contains two figures and accompanying tables which describe the signal to pin locations.

In addition there is a detailed description of each signal.

FIGURE 3-1. 100-PIN PACKAGE

PIN-NAME	PIN-NAME	PIN-NAME	PIN-NAME
1-GND	26-N.C.	51-BD10	76-VCC
2-Ī/O	27-N.C.	52-BD11	77-SD11
3-MSG	28-VCC	53-BD12	78-N.C.
4- <u>C</u> /D	29-GND	54-BD13	79-SD10
5-GND	30-AD0	55-BD14	80-GND
6-ACK	31-AD1	56-BD15	81-SD9
7-REQ	32-AD2	57-BDPH	82-N.C.
8-GND	33-AD3	58-GND	83-SD8
9-RST	34-AD4	59-DRE	84-GND
10-ATN	35-AD5	60-DWE	85-SD7
11-BSY	36-AD6	61-DRQA	86-N.C.
12-SEL	37-AD7	62-DRQB	87-SD6
13-VCC	38-VCC	63-VCC	88-VCC
14-GND	39-GND	64-GND	89-GND
15-CLK	40-BD0	65-DACKA	90-SD5
16-MUX	41-BD1	66-DACKB	91-SD4
17-DIRECT	42-BD2	67-N.C.	92-GND
18- <u>CS</u>	43-BD3	68-N.C.	93-SD3
19-WE	44-BD4	69-SD15	94-SD2
20-RE	45-BD5	70-N.C.	95-GND
21-ALE	46-BD6	71-SD14	96-SD1
22-HRST	47-BD7	72-GND	97-SD0
23-RDY	48-BDPL	73-SD13	98-GND
24-RSTF	49-BD8	74-N.C.	99-SDP1
25-INT	50-BD9	75-SD12	100-SDP

1/

FIGURE 3-2. 132-PIN PACKAGE

PIN-NAME	PIN-NAME	PIN-NAME	PIN-NAME
1- <u>C</u> /D	34-SD1OE	67-BD9	100-SD11
2-GND	35-SD2OE	68-BD10	101-SD11OE
3-ACK	36-SD3OE	69-N.C.	102-SD10OE
4-REQ	37-SD4OE	70-BD11	103-SD10
5-GND	38-DIFFSENS	71-BD12	104-GND
6-RSTIN	39-VCC	72-GND	105-SD9
7-RST	40-GND	73-BD13	106-SD9OE
8-ATN	41-AD0	74-BD14	107-SD8OE
9-N.C.	42-AD1	75-N.C.	108-SD8
10-BSYIN	43-AD2	76-BD15	109-GND
11-BSY	44-AD3	77-BDPH	110-SD7
12-SELIN	45-N.C.	78-GND	111-N.C.
13-SEL	46-AD4	79-DRE	112-SD7OE
14-IGS	47-AD5	80-DWE	113-SD6OE
15-N.C.	48-AD6	81-DRQA	114-SD6
16-TGS	49-AD7	82-DRQB	115-SD5OE
17-VCC	50-VCC	83-VCC	116-VCC
18-GND	51-GND	84-GND	117-GND
19-CLK	52-BD0	85-N.C.	118-SD5
20-SE	53-BD1	86-DACKA	119-SD4
21-MUX	54-N.C.	87-DACKB	120-GND
22-DIRECT	55-BD2	88-N.C.	121-SD3
23- CS	56-BD3	89-SD15	122-SD2
24-WE	57-GND	90-SD15OE	123-GND
25-RE	58-BD4	91-SD14OE	124-SD1
26-ALE	59-BD5	92-SD14	125-SD0
27-HRST	60-N.C.	93-GND	126-GND
28-N.C.	61-BD6	94-SD13	127-SDP1
29-N.C.	62-BD7	95-SD13OE	128-SDP
30-RDY	63-GND	96-N.C.	129-SDPOE
31-RSTF	64-BDPL	97-SD12OE	130-GND
32-INT	65-BD8	98-SD12	131-Ī/O
33-SD0OE	66-N.C.	99-VCC	132-MSG

TABLE 3-2. WD33C95A PIN ASSIGNMENTS

PIN*	PIN**	MNEMONIC	I/O	DESCRIPTION		
MICROPROCESSOR INTERFACE						
30-37	41-44 46-49	AD[0-7]	1/0	Microprocessor Address/Data Bus		
21	26	ALE		Address Latch Enable The falling edge of ALE is used to latch the address of the desired register.		
18	23	CS	1	Chip Select \overline{CS} is active low and is used to qualify \overline{RE} and \overline{WE} when the microprocessor is accessing a register.		
17	22	DIRECT	1	Selects direct microprocessor access protocol.		
22	27	HRST	1	Hardware Reset		
25	32	INT	0	Interrupt Request INT is active high, and is asserted to indicate an error condition or completion of a command.		
16	21	MUX	I	Selects multiplexed microprocessor address/data protocol.		
23	30	RDY	0	Chip Ready RDY is an open-drain output. RDY will be pulled low whenever the device is being accessed and is not ready to end the bus access cycle.		
20	25	RE	1	Read Enable This signal is active low and is used with \overline{CS} to read the registers.		
24	31	RSTF	0	SCSI Reset Follower RSTF is a debounced version of $\overline{\text{RST}}$ /RSTIN. It is ac- tive high, and will be asserted as long as a valid SCSI reset is detected.		
N/A	20	SE	1	Single-ended SCSI select. (10K pullup)		
19	24	WE	1	Write Enable This signal is active low and is used with \overline{CS} to write the registers.		
DMA INTERFACE						
40-47	52,53,55, 56,58,59, 61,62	BD[0-7]	I/O	DMA Bus The lower 8 bits of the DMA bus.		
48	64	BDPL	I/O	Parity for BD[0-7].		

TABLE 3-3. SIGNAL DESCRIPTION

NOTE:

* Pin numbers are for the WD33C96A

** Pin numbers are for the WD33C95A.

PIN*	PIN**	MNEMONIC	I/O	DESCRIPTION
49-56	65,67,68 70, 71,73 74,76	BD[8-15]	1/0	DMA Bus DMA bus for upper 8 bits.
57	77	BDPH	I/O	Parity for BD[8-15].
65	86	DACKA	1/0	Port A DMA Acknowledge This pin is used to acknowledge DMA requests on port A.
66	87	DACKB	1/0	Port B DMA Acknowledge This pin is used to acknowledge DMA requests on port B.
59	79	DRE	1/0	DMA Read Enable This signal is active low, and is used to strobe on the DMA bus.
61	81	DRQA	1/0	Port A DMA Request This pin is used to request DMA transfers on port A.
62	82	DRQB	1/0	Port B DMA Request This pin is used to request DMA transfers on port B.
60	80	DWE	I/O	DMA Write Enable This signal is active low, and is used to strobe data on the DMA bus.
			SCS	I INTERFACE
6	3	ACK	I/O	Data Acknowledge
10	8	ATN	I/O	Attention
11	N/A	BSY	I/O	Busy Bidirectional busy signal.
N/A	11	BSY	0	Busy Output busy signal.
N/A	10	BSYIN	1/0	Busy Input busy signal.
4	1	C/D	I/O	Command/Data Command/data select.
N/A	38	DIFFSENS	Ι	Differential SCSI Sense (10K pullup)
2	131	Ī/O	I/O	Input/ Output Select input or output direction.
N/A	14	IGS	1/0	Initiator Group Select Asserted whenever the WD33C95A is connected as an initiator.

TABLE 3-3. SIGNAL DESCRIPTION (CONTINUED)

NOTE:

* Pin numbers are for the WD33C96A

** Pin numbers are for the WD33C95A.

PIN*	PIN**	MNEMONIC	I/O	DESCRIPTION
3	132	MSG	1/0	Message
				Selects message phase.
7	4	REQ	I/O	Data Request
9	N/A	RST	I/O	SCSI Reset
				Resets SCSI bidirectional signal.
N/A	7	RST	0	SCSI Reset
				Resets SCSI output only signal.
N/A	6	RSTIN		SCSI Reset
				Resets SCSI input only signal.
85, 87,	110,114,	SD[0-7]	I/O	SCSI Data
90, 91,	118, 119,			Lower byte (0-7) SCSI data signals.
93, 94, 96, 97	121, 122,			
100	124, 125 128	SDP	1/0	Derity for CDIO 71
			1/O 1/O	Parity for SD[0-7] SCSI Data
69, 71 73, 75	89, 92, 94, 98,	SD[8-15]	1/0	Upper byte (8-15) SCSI data signals.
73, 75	94, 98, 100, 103			opper byte (6-15) 3031 data signals.
81, 83	105, 108			
99	127	SDP1	1/0	Parity for SD[8-15]
N/A	33-37,	SDOE[0-15]	0	Output Enable
	90-91,	[]	-	These output enables are active high.
	95, 97,			
	101,102,			
	106,107,			
	112,113,			
	115	00005		
N/A	129	SDPOE	0	Output Enable
10			- 1/0	Output enable for SDP and SDP1
12	N/A	SEL	I/O	Select Bidirectional select.
N/A	13	SEL	0	Select
1N/ <i>P</i> A	15	JEL		Output only select.
N/A	12	SELIN	1	Select
	12		'	Input only select
N/A	16	TGS	0	Target Group Select
· •// \			Ŭ	High whenever a target.

TABLE 3-3. SIGNAL DESCRIPTION (CONTINUED)

NOTE:

* Pin numbers are for the WD33C96A

** Pin numbers are for the WD33C95A.

PIN*	PIN**	MNEMONIC	I/O	DESCRIPTION
			MISC	CELLANEOUS
15	19	CLK	1	INPUT CLOCK 20 MHz to 50 MHz
13, 28, 38, 63, 76, 88	17, 39, 50, 83, 99, 116	VCC		Power Supply +5V Power Supply Pins
1, 5, 8, 14, 29, 39, 58, 64, 72, 80, 84, 89, 92, 95, 98	2, 5, 18, 40, 51, 57, 63, 72, 78, 84, 93, 104, 109, 117, 120, 123, 126, 130	GND		GROUND PINS

TABLE 3-3. SIGNAL DESCRIPTION (CONTINUED)

NOTE:

* Pin numbers are for the WD33C96A

** Pin numbers are for the WD33C95A.

A.0 GLOSSARY AND CONVENTIONS

The following is a list of terms and conventions used throughout the ESBC data sheet.

A.1 GLOSSARY

TERM	MEANING
00x00	Hexadecimal number
CDB	Command Descriptor Block
DMA	Direct Memory Access
DPR	Dual Port Register
FIFO	First In First Out Memory
HLR	High Level Response bits (SELH, RSELH, AUTOR)
LLR	Low Level Response bits (SELL, RSELL)
LSB	Least Significant Bit
MSB	Most Significant Bit
RAM	Random Access Memory
SRS	Reselection Response Sequence
WCS	Writeable Control Store

A.2 CONVENTIONS

TERM	CONVENTION
asserted	the signal is driven active by the ESBC
negated	the signal is driven inactive by the ESBC
released	the signal is released by the ESBC; external bias circuitry will bring the signal to the inactive state
micro	refers to the microprocessor con- trolling the ESBC
DMAC	refers to the DMA controller con- nected to the DMA port

A.3 RESERVED REGISTERS

All registers marked as "Reserved" must not be written, and if read, will produce either 0's or 1's.

All bits marked as "Reserved" must only be written with 0's, and if read, will produce either 0's or 1's.

