

WD83C593 Micro Channel Bus Interface Controller Device

39

TABLE OF CONTENTS

1.0	Description and Application .																		39-1
	1.1 Features																		39-1
	1.2 Theory of Operation .	•	•	•	•	•	•	•	•		•	•	•			•		•	39-1
2.0	POS Registers and Decoding																		39-2
	2.1 Space Decodings																		39-2
	2.1.1 POS[2] Register																		39-2
	2.1.2 POS[3] Register .																		39-4
	2.1.3 POS[4] Register .																		39-4
	2.2 Other POS Functions - PC																		39-5
3.0	Programming the EEPROM Re	gist	ers		•														39-6
App	endix A Pin Designations .																	-	39-7
	endix B Register Designations																		
App	endix C Electrical Characteristi	cs																	39-14
App	endix D AC Operating Character	erist	ics	and	iT t	mir	ng [Diag	gra	ms		•		•				•	39-16
FIG	URES																		
2-1	General System Block Diagram	n																	39-3
3-1	Typical EEPROM Register Bit (Cell																	39-6
A-1	84-PLCC Pinout																		
D-1	Host-Memory Read/Write Timi	ng																	39-18
D-2	Set-up Timing	•	•	•		•		•	·		•				•	•	•	•	39-19
-																			
IA	BLES																		
A-1	Pin Descriptions																		39-8
B-1	Internal Register I/O Map .																		39-12
B-2	Register Descriptions																		39-12
C-1	DC Parameters			•															39-14
	Non-Operational Specifications																		
	Operational Specifications .																		
D-1	AC Operating Characteristics																		39-16

____ __.

1.0 DESCRIPTION AND APPLICATION

The WD83C593 is a Micro Channel bus interface controller designed for non-intelligent Ethernet or StarLAN boards. The device is used as an interface to the LAN controller, BIOS ROM, buffer RAM (which functions as shared memory), and the host Micro Channel bus.

1.1 FEATURES

- Direct interface between a non-intelligent Ethernet or StarLAN LAN controller and a Micro Channel bus
- Ten bytes of internal electrically erasable programmable read only memory (EEPROM)
- 84-pin ASIC, 2.0 micron CMOS technology
- Programmable BIOS ROM size (16, 32, or 64 Kbytes)
- Programmable RAM size (16 or 64 Kbytes)
- Single, 5V power supply
- Four Vcc, ground, and program-selectable IRQ pins
- Testable/programmable before and after assembly

1.2 THEORY OF OPERATION

The WD83C593 non-intelligent interface device connects the Micro Channel bus (as a non-DMA slave) to the LAN controller, BIOS ROM, and buffer RAM. The WD83C593 satisfies all necessary interface requirements, performs all decoding for local I/O and memory spaces, and generates the necessary chip select control and handshake signals. In order for the WD83C593 non-intelligent Micro Channel bus interface device to function properly, the mode select pin must be left open (internally pulled high).

This enables the WD83C593 to arbitrate between the host and WD83C690 LAN controller for the BD00-BD15 data bus. During local WD83C690 DMA bursts in and out of the buffer RAM, the device isolates the BD data bus from the Micro Channel via external buffering, and prevents the host from intervening until the process is complete. When a valid decode occurs, the device negates the CDCHRDY signal.

The remainder of the time, the device enables the external buffers so that the host can perform memory or I/O cycles (anywhere on the card). The host uses a 16-bit wide "move" string operation to transfer data to and from the buffer RAM. During this time, the WD83C593 generates the RAM control signals (tri-state during local RAM accesses).

2.0 POS REGISTERS AND DECODING

Designers of Micro Channel adapters are required by the Micro Channel architecture to use two readonly ID bytes and (up to) six read/write programmable option select (POS) registers. This arrangement accomplishes the following:

- · eliminates switches and jumpers
- permits the installation of multiple identical cards
- · allows the identification of any card by slot
- · resolves resource assignment conflicts

Designers are also required to provide an adapter description file (.ADF) that reports the contents of the ID bytes, the number of POS registers used on the card, their purpose and contents, and their "alternate contents."

The Micro Channel bus defines the architecture of the following bits:

POS[2] bit 0.....Card enable (address 102h)

POS[5] bit 7.....CH CK active indicator (105h)

POS[5] bit 6......CH CK status available indicator (105h)

The remaining POS registers are "free form" and can be used for space decoding, establishing arbitration levels, and so on. When the system is reset, each adapter must turn off the card enable bit, which in turn disables all outputs from the card, including the interrupt request lines.

The central configuration software checks all slots independently for ID bytes, and uses the ADF files provided to resolve conflicts and set up the POS registers. It is during this time <u>only</u> that the POS registers can be accessed, and they can be accessed only by the configuration software.

The CDSETUP line, together with the least significant three address lines, is used for decoding POS register accesses.

2.1 Space Decodings

Three POS registers, POS[2], POS[3], and POS[4], are used to decode the card I/O space, shared RAM space, and BIOS ROM space, respectively. The mode select pin, as indicated previously, must be left open.

2.1.1 POS[2] Register

Bit	Bit Assignment
7	LA11
6	LA10
6 5	LA09
4	LA08
3	LA07
2	LA06
1	LA05
0	CDEN

If a 29h is written in POS[2], the WD83C593 I/O space is placed in the range 280h - 029Fh. This is one of 128 possible 32-Kbyte ranges. For each of the primary and alternate choices, one or more interrupt levels are defined in the .ADF file.

Bit (7:1)

These bits are used to decode the I/O space for the application.

Bit 0

Card Enable.

Bit 0 wakes up low and, until it is set by the configuration routine, keeps the card in "sleep" mode.

FIGURE 2-1. GENERAL SYSTEM BLOCK DIAGRAM

2.1.2 POS[3] Register

Bit	Bit Assignment
7	LA19
6	LA18
5	LA17
4	LA16
3	LA15
2	LA14
1	PME
0	CLAIM

If a C2h is written in POS[3], the shared RAM space is placed in the range 0C0000h - 0C3FFFh. This is one of 64 possible 16-Kbyte ranges. It is intended to place shared RAM in the general range, 0C0000h - 0DFFFFh.

Bit (7:2)

These bits are used to set the shared RAM space for the application.

Bit (1:0)

Memory Enable; Claim.

Bit 1 wakes up low and, until it is set by the configuration routine, keeps the RAM buffer disabled. Bit 0 is provided for use by the driver software (to identify availability when multiple cards are used in the same system).

2.1.3 POS[4] Register

Bit	Bit Assignment
7	LA19
6	LA18
5	LA17
4	LA16
3	LA15
2	LA14
1	BE1
0	BE0

If a D0h is written in POS[4], the BIOS ROM space is placed in the range 0D0000h - 0D3FFFh. This is one of 64 possible 16-Kbyte ranges. It is intended to place the BIOS ROM in the general range, 0C0000h - 0DFFFFh.

Bit (7:2)

These bits are used to set the BIOS ROM location for the application.

Bit (1:0)

BIOS Size/Enable.

Bits 1 and 0 are used to set the size of the BIOS ROM and, when necessary, to disable it as follows:

BE1	BE0	FUNCTION
0	0	BIOS is 16 Kbytes
0	1	BIOS is 32 Kbytes
1	0	BIOS is Disabled
1	1	BIOS is 64 Kbytes

2.2 Other POS Functions ! POS[5] Register

POS[5] provides bits that increase memory size, divide the BSCK clock by "2" (for internal use), and enable /disable interrupts to the host.

Bit	Bit Assignment
7	СНСК
6	СНСК
5	N/A
4	N/A
3	MSE
2	CDIV
1	IEN1
0	IENO

Bit (7)

Active Indicator (Micro Channel defined).

Bit (6)

Status Available Indicator (Micro Channel defined).

Bit (5:4)

Not applicable.

Bit 3

Memory Size Enable.

When set to "1", this bit increases the memory size from 8×16 Kbytes to 32×16 Kbytes.

Bit 2

Clock Divider.

This bit, when reset, divides the BSCK clock by "2" for internal use. When the system is powered off, the bit is reset.

Bit (1:0)

Interrupt Enable.

Together, these bits enable/disable the interrupts to the host, and determine the level of the interrupt as follows.

IEN1	IEN0	FUNCTION
0	0	Interrupt level is IRQ0
0	1	Interrupt level is IRQ1
1	0	Interrupt level is IRQ2
1	1	Interrupt level is IRQ3

3.0 PROGRAMMING THE EEPROM REGISTERS

The WD83C593 contains ten, internal eight-bit registers implemented in EEPROM technology (see Table B-2). These registers contain random data when the device is shipped from the factory and must be programmed by you for your application. If they are not, the device will not function properly.

To initially program the EEPROM registers, you must write the data to be sorted to each register. Figure 3-1 illustrates a typical EEPROM register bit cell. Data is stored in the latch and its output is presented to the input of the EEPROM cell. Once the data is stored in the registers, you must write the following to the EEPROM control register: A5h (followed by) 00h. It is important that you write the numbers in the order given. This starts the programming process of all ten EEPROM registers with data stored in the latches. The program operation requires a maximum of 20 milliseconds to complete. During this time, it is important that you do not access any of the registers in the device. Refer to Appendix B for more information on the **EEPROM** registers.

APPENDIX A -- PIN DESIGNATIONS

Figure A-1 illustrates the 84-pin PLCC device. Table A-1 lists all pin designations.

PIN NO.	PIN NAME	SIGNAL NAME/ DESCRIPTION
Host N	licro Channel Bus Signa	ls
2-10 77-83	BD00-BDI5 (I/O)	HOST MICRO CHANNEL DATA BUS: This bus needs to be externally buffered.
11	REFRESH (I)	REFRESH CYCLE: Input from host system. Indicates when a system memory refresh cycle is taking place.
15-20 23-38	LA00-LA21 (I)	HOST MICRO CHANNEL ADDRESS LINES: These are the 20 bits of the host Micro Channel address lines.
39	CDCHRDY (O)	CHANNEL READY: This output, normally active, is pulled inactive to allow additional time to complete a channel operation. The maximum time that this line can be held inactive is $3.5 \ \mu$ sec.
40	CDDS16 (O)	CARD DATA SIZE 16: This output is used to indicate to the host Micro Channel that the current data transfer is 16 bits wide. It is derived from a valid address decode.
41	CDSFDBK (O)	CARD SELECTED FEEDBACK: This output is asserted as an acknowledgement when an I/O or memory device on the LAN card is selected.
45-48	IRQ0-3 (O)	INTERRUPT REQUEST: These outputs tell the host micro- processor that an interrupt has occurred and the LAN card needs attention.
50	CMD (I)	COMMAND: This input is used to define when data is valid on the data bus. The trailing edge of the signal indicates the end of the bus cycle.
67	CHRESET (I)	CHANNEL RESET: This signal is generated by the host when the host Micro Channel is powered up.
68	CDSETUP (I)	CARD SETUP: This input is generated by the host logic to individually select channel connectors during system configuration and error recovery procedures. This input, together with LAO-LA2, is used to access the POS registers. The CDSFDBK output is not asserted during configuration.

TABLE A-1. PIN DESCRIPTIONS

PIN NO.	PIN NAME	SIGNAL NAME/ DESCRIPTION				
Host N	licro Channel Bus Signals	s, Cont.				
71	ADL (I)	ADDRESS DECODE LATCH: This input is used to indicate that the Micro Channel addresses are to be latched. The trailing edge is used.				
72	MADE24 (I)	MEMORY ADDRESS ENABLE 24: This input, when active, indicates that an unextended address space equal to or less than 16M is present on the address bus.				
74, 73	<u>50, 51</u> (I)	STATUS BITS 0 AND 1: These inputs indicate the start of a channel cycle and also define the type of channel cycle as follows.				
		M/IO S0 S1 TYPE 0 0 0 Reserved A 0 0 1 I/O Write 0 1 0 I/O Read 0 1 1 Reserved B 1 0 0 Reserved C 1 0 1 Memory Write 1 1 0 Memory Read 1 1 1 Reserved D				
75	M/ IO (I)	MEMORY/INPUT OUTPUT: This input distinguishes a memory cycle from an I/O cycle.				
LAN C	ontroller Signals					
55	BACK/ABREQ (O)	LAN BUS ACKNOWLEDGE: This output is generated to acknowledge a LAN BUS REQUEST.				
56	BREQ/ABACK (I)	LAN BUS REQUEST: This input is generated by the LAN controller to indicate that a DMA transfer is needed. It is automatically generated when the LAN controller's FIFO buffers need servicing.				
58	ACK (I)	LAN SLAVE I/O ACKNOWLEDGE: This input is asserted by the LAN chip when it grants access to its internal registers. The input is used to insert wait states until the LAN is synchronized for a register read or write operation.				
59	IOW (O)	LAN I/O WRITE: This output, together with LANCS, is used to write to the internal LAN registers.				

TABLE A-1. PIN DESCRIPTIONS (Continued)

PIN NO.	PIN NAME	SIGNAL NAME/ DESCRIPTION
LAN C	ontroller Signals, Cont.	
60	IOR (O)	LAN I/O READ: This output, together with LANCS, is used to read the internal LAN registers.
61	RST (O)	LAN RESET: This output places the LAN in reset mode immediately. No packets are received or transmitted by the LAN until the STA bit in the LAN is set.
62	LANCS (O)	LAN CHIP SELECT: This output places the LAN device in slave mode for access to internal registers.
70	INT (I)	LAN INTERRUPT: This input indicates that the LAN controller needs host attention (at the end of an operation, when an error occurs, etc.).
76	BSCK (I)	CLOCK: This input is the 40-MHz clock.
69	MODE (I)	ALTERNATE MODE SELECT: This input must be left open (internally pulled high). It signifies that the WD83C593 is being used on a non-intelligent board, directly interfacing the WD83C690 LAN controller to the buffer memory.
RAM S	bignals	
51	RAMWE (O)	RAM WRITE ENABLE: This output is used to write host data into the buffer RAM.
53	RAMOE/AREADY (O)	RAM OUTPUT ENABLE: This output is used to gate the buffer RAM onto the data bus, BD00-BD15.
ROM S	Signal	
54	BOE (O)	BIOS ROM OUTPUT ENABLE: This output is the chip select for the BIOS ROM. It gates data onto BD0-BD7.
Buffer	Control Signals	· · · ·
42	MREQ (O)	MEMORY REQUEST: This output is provided for use in a possible memory mapped scheme. This is an unlatched memory decode indicator.
49	DEN (O)	DATA BUFFER ENABLE: This output is generated to enable or disable the external bidirectional data buffers.

TABLE A-1. PIN DESCRIPTIONS (Continued)

٠

.

.

PIN NO.	PIN NAME	SIGNAL NAME/ DESCRIPTION
52	DDIR (O)	DATA DIRECTION: This output is generated to control the direction of the external bidirectional buffers between the host data bus and DB00-DB15 (local data bus).
Power	.	
21,43, 64,84	Vcc	+5V dc
1,22, 44,65	GND	GROUND.
No Cor	nection	
11,12	N/C	Pins 11, 12 must be left open. They are used for factory testing.

TABLE A-1. PIN DESCRIPTIONS (Continued)

APPENDIX B -- REGISTER DESIGNATIONS

This appendix provides information on the WD83C593's internal registers. Table B-1 sum-

marizes the I/O mapping, and the remainder of the appendix describes each register in detail.

Туре	Name
R/W	Memory Enable, Reset Register (MER)
W	EEPROM Control Register (EEC)
R (EEPROM)	Reserved (PID0)
R (EEPROM)	Reserved (PID1)
R/W	Internal Mask and Command Control Register (IMCCR)
R/W	General Purpose Register (GPR)
R (EEPROM)	LAN Address Registers (LAR)
R/W	LAN Controller Registers (LAN)
	W R (EEPROM) R (EEPROM) R/W R/W R (EEPROM)

TABLE B-1. INTERNAL REGISTER I/O MAP

Name: MEMORY ENABLE, RESET (MER)					Offset: 0x00			
	AN contro	ller, as well Micro Char	as the otl nel to sha	her register are the on-t	s (except L board buffe	AR, PID0,	PID1 and F	ter 1 μsec, EX). Setting cleared, RAM
	bit7 REST	bit6 MENB	bit5 N/A	bit4 N/A	bit3 N/A	bit2 N/A	bit1 N/A	bit0 N/A
Name: EE	PROM CO	NTROL (EI	EC)			Of	fset: 0x01	
EEPROM r	Description: Writing A5h first and then 00h to this register starts the program process for theEEPROM registers. See the EEPROM programming instructions for a detailed description on howthis register is used.bit7bit6bit5bit4bit2bit1bit0							
	1	0	1	0	0	1	0	1
Name: R	ESERVED	(PID0)				Off	iset: 0x02	<u> </u>
Descriptio numbers.	n: This wri	te-only regi	ster is use	ed only by r	nanufacturi	ing to set th	ne Micro Ch	annel POS ID
Name: R	ESERVED	(PID1)				Of	i set: 0x03	
Descriptio numbers.	n: This wri	te-only regi	ster is use	ed only by r	nanufacturi	ing to set th	ne Micro Ch	annel POS ID

TABLE B-2. REGISTER DESCRIPTIONS

Name: INT REG		MASK AND (IMCCR)	COMMAN	D CONTR	OL	Offset:	0x05	
Description	n: Bit 2 is	s cleared wl	nen the ho	st Micro Ch	annel is po	wered off o	r undergoe	es a soft reset.
	bit7 -	bit6 -	bit5 -	bit4 -	bit3 -	bit2 EIL	bit1 -	bit0 -
Note:								
bit2 (EIL)								oller to the host the interrupt.
Name: GE	NERALF	PURPOSE I	REGISTEF	(GPR)		Off	set: 0X07	
Description	n: This is	s an 8-bit wi	de genera	purpose re	egister.			· · · · · · · · · · · · · · · · · · ·
Name: LAN		ESS REGIS	TERS (LA	R)		Off	set: 0X08	- 0X0F
Description						permanentl	y stored in	the
Name: LAN		ROLLER RE	GISTERS	(LAN)		Off	set: 0X10	- 0X1F
Description decode and						he LAN coi	ntroller chip	o. Only the
		TABLE	B-2. REG	ISTER DE	SCRIPTION	IS (Contin	ued)	

APPENDIX C - ELECTRICAL CHARACTERISTICS

Table C-1 lists the dc electrical parameters for the WD83C593, Table C-2 lists the non-operational

specifications, and Table C-3 lists the operational specifications.

Ta = 0° C (32°F) to 70°C (158°F), Vcc = 5V % 10%

SYMBOL	CHARACTERISTIC	MIN	ТҮР	MAX	UNITS	CONDITIONS
IDD	V _{DD} Supply Current	-	8	10	mA	-
V _{DD}	Voltage Supply	4.5	5	5.5	V	-
VIH	Input High Voltage	2.0	-	-	V	-
VIL	Input Low Voltage	-	-	0.8	۷	-
Voн	Output High Voltage	2.4	-	-	V	note 1
Vol	Output Low Voltage	-	-	0.5	۷	note 2
ILH	Input Source Current	-	-	0.1	μA	V _{IN} = V _{DD}
ILL	Input Sink Current	-	-	-1.0	μA	V _{IN} = 0
lozh	Tri-state High Current	-10	-	10	μA	VIN = VDD
lozl	Tri-state Low Current	-10		10	μA	V _{IN} = 0
Vol	Output Low Voltage (Pins IRQ0, IRQ1, IRQ2, and IRQ3)	-	-	0.5	V	note 3
Vol	Output Low Voltage (All pins except IRQ0, IRQ1, IRQ2, and IRQ3)	-	-	0.4	V	note 4

TABLE C-1. DC PARAMETERS

NOTES

1. $I_{OH} = -24$ mA on IRQ0, IRQ1, IRQ2 and IRQ3.

 I_{OH} = -8 mA on all other outputs and I/O pins.

2. $I_{OL} = 0.5V$ (and 24 mA) on IRQ0, IRQ1, IRQ2, and IRQ3.

 I_{OL} = 0.4V (and 8 mA) on all other outputs and I/O pins.

- 3. $I_{OL} = 24$ mA on pins IRQ0, IRQ1, IRQ2, and IRQ3.
- 4. $I_{OL} = 8$ mA on all other outputs and I/O pins.

PARAMETER	MIN	ТҮР	МАХ	UNIT
Storage temperature	-65	-	150	Degrees Centigrade
Voltage on any pin with respect to V _{SS}	-0.6	-	Vcc + 0.3 (except Vpp)	Volts
Voltage on V_{CC} with respect to V_{SS}	-	-	7.0	Volts

TABLE C-2. NON-OPERATIONAL SPECIFICATIONS

PARAMETER	MIN	ТҮР	MAX	UNIT
Ambient temperature	0	25	70	Degrees Centigrade
Humidity	20	-	95	Percent
V _{CC} supply voltage with respect to V _{SS}	4.50	5.0	5.50	Volts
Icc supply current (full loading)	-	-	100	Milliamps
Power dissipation	-	-	500	Milliwatts

TABLE C-3. OPERATIONAL SPECIFICATIONS

APPENDIX D - AC OPERATING CHARACTERISTICS

This appendix provides information on the WD83C593's ac operating characteristics. Table

D-1 lists the ac operating characteristics. Figures D-1 and D-2 illustrate timing information.

SYMBOL	PARAMETER	MIN	MAX	UNITS
t1	Status active low from ADDRESS, M/IO, REFRESH valid	10	-	nsec
t ₂	CMD active low from status active low	55	-	nsec
t3	ADL active low from ADDRESS M/IO, REFRESH valid	45	-	nsec
t4	ADL active low to CMD active low	40	-	nsec
t5	CDDS16 active low from ADDRESS, M/IO, REFRESH valid	_	55	nsec
t ₆	CDSFDBK and CDCHRDY low from ADDRESS valid	-	60	nsec
t7	CMD active low from ADDRESS valid	85	-	nsec
t ₈	CMD pulse width	90	-	nsec
t9	Write data setup to CMD active low	0	-	nsec
t ₁₀	Write data hold time from CMD high (at the PS/2 bus)	30	-	nsec
t11	Read data setup time to CMD high (at the PS/2 bus)	60	-	nsec
t ₁₂	Read data hold time from CMD high (at the PS/2 bus)	5	-	nsec

TABLE D-1. AC OPERATING CHARACTERISTICS

SYMBOL	PARAMETER	MIN	MAX	UNITS
t13	CMD high to RAMOE or RAMWE high	0	-	nsec
t ₁₄ WRITE CYCLE	CMD high to DEN high (during WRITE)	15	-	nsec
t14 READ CYCLE	CMD high to DEN high (during READ)	-	25	nsec
t15	CMD high to DDIR low	0	-	nsec
t16	DDIR low to pulse* (read cycles only)	0	-	nsec
t17	BREQ active high to BACK active high	1 clk cyc time	-	
t18	BREQ low to BACK low	1 clk cyc time	3 clk cyc time + 25 nsec	
t19	LANCS active low to IOR or IOW active low	0	-	nsec
t20	$\overline{\text{ACK}}$ active low from $\overline{\text{IOR}}$ or $\overline{\text{IOW}}$ active low	0	-	nsec
t ₂₁	ACK high from IOR or IOW high	0	-	nsec
t22	CDSETUP active low to ADL active low	15	-	nsec
t23	CDSETUP hold from ADL high	25	-	nsec
t24	CDCHRDY inactive low from CDSETUP active low	-	100	nsec
t25	CDSETUP hold from CMD active low	30	-	nsec

TABLE D-1. AC OPERATING CHARACTERISTICS (Continued)

*The pulse occurs on the DEN line, when the DDIR signal goes low during read cycles.

FIGURE D-1. HOST-MEMORY READ/WRITE TIMING

FIGURE D-2. SET-UP TIMING