
- ~ 

~TEXAS 
INSTRUMENTS 

The proLogic™ Compiler 

1989 



The proLogic™ Compiler 

User's Guide 

• TEXAS 
INSTRUMENTS 



IMPORTANT NOTICE 

Texas Instruments (TI) provides this software AS IS without warranty 
of any kind, either expressed or implied, including but not limited to the 
implied warranties of merchantability and fitness for a particular 
purpose. TI may discontinue, make improvements to and or change 
the program(s} described herein at any time and without notice. TI 
does not warrant that this software package will function properly in 
every softwarelhardware environment. 

Users are authorized to copy, duplicate, and distribute this product for 
internal use only without further permission from TI provided that the 
copyright is maintained on each copy. Selling of this product without 
prior consent in writing from TI is prohibited. 

proLogic™ Development Software, Release 1.97 

This logic compiler was prepared for distribution by Texas Instruments, 
Incorporated, expressly to support devices manufactured by them. A 
complete universal compiler, including Texas Instruments devices, is 
also available directly from Inlab, Inc. Contact Inlab Customer Service 
at (303) 460-0103 and ask for information or assistance regarding 
proLogic. 

Assistance on programming Texas Instruments Programmable Logic 
is also available, upon request, from the nearest TI field sales office, 
local authorized TI distributor, or by calling the Texas Instruments PLD 
Hotline (214) 997-5666. 

Copyright © 1988, Inlab, Inc. 

All Rights reserved. 

TRADEMARKS 

IBM is a registered trademark of International Business Machines 
Corporation. 
IMPACT is a trademark of Texas Instruments Incorporated. 
proLogic is a trademark of Inlab Incorporated. 



Preface 

Read This First 
lSSIliiii!iiii!~~~:iiiiii!!ii!!.iJ!I!!I!!i.!i!i!ii~!:!!5!!!l!i~ 
~~~~~::::z::::::-m;::::::~:=m::~:.::t-~~-:::::W:*-":>~~~~~~~~ 

~O~~tO~~o~o~~o~oo~o~oooc~ooo~oo~~"~o:,,,,=~,~~-:..~~~o:cc::::~~:~o::~c::o:~o::~~::~~:~:oC::::::::C:::Q:ICQ:CCC:C:CQ::::::cC':::::::::I::::tl::::::::::O:cx~ 

This Preface contains a brief description of the contents of The proLogic Compiler 
User's Guide. 

How to Use this Manual 

Section 1 How to Begin ............................................................ 1 
Description of the package contents along with installation procedures. 

Section 2 Programmable Logic .................................•.•................. 3 
Basic overview of Programmable Logic Architecture. 

Section 3 PLD Design Implementation .............................................. 7 
Overview describing design implementation and simulation using PLD's 
including an example illustrating how proLogic accomplishes the task. 

Section 4 proLogic diagrams ...................................................... 13 
Introduction to the proLogic diagrams utilized in the guide. 

Section 5 Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15 
Explanation of reserved expressions used by proLogic compiler as well as the 
label assignment to signal names. 

Section 6 Expressions . ......................................................... .. 19 
Description of logical operators supported by pro Logic. 

Section 7 The Title Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 
Description of optional title block used to document the source and JEDEC files. 

Section 8 Truth Table Blocks ...................................................... 25 
Description of PLD design entry using the Truth Table format. Includes 7 segment 
LED display driver example. 

Section 9 State Diagrams ......................................................... 29 
Demonstration of proLogic state diagram language features for state 
machine designs. 

Section 10 Test Vector Blocks ...................................................... 37 
Illustration of design simulation using test vector blocks. 

Section 11 Include Files .. .......................................................... 41 
Overview of "include" and "reader" files and how to use them. 

Section 12 Signal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43 
Explanation of how to assign the proper signal name to a Boolean expression. 
(ie., active high or low, internal or external, set or reset, or output enable.) 

Appendix A DeSigner's Guide to TIBPSG507 .........................•................ Ai 

Appendix B Device Cross Reference List ............................................ B1 

Appendix C Logic Diagrams ........................................................ C1 

iii 



Preface 

iv 

The pro Logic compiler is a software development design tool used to program Texas 
Instrument Programmable Logic Devices (PLD). This development software pack
age quickly converts your logic design to a JEDEC fuse map that can be downloaded 
to a device programmer. proLogic allows you to describe your logic design in any 
of the following formats: 

o Truth Table 

o Boolean Equations 

o State Diagrams 

From your logic design, the proLogic compiler will create a standard JEDEC fuse 
map. The JEDEC file can be downloaded to a device programmer to produce a func
tional programmed device. Many Texas Instruments authorized distributors provide 
these programming services. 

The pro Logic compiler also serves as a functional test vector simulator. The simula
tor uses the fuse listportion from the JEDEC file to create a functional device model. 
It can then execute the simulation vectors against this model. The results are auto
matically placed in a file for evaluation. 

The proLogic compiler, when combined with a device programmer, will allow you to 
create integrated circuits to your own specifications. The advantages to this new de
sign methodology are numerous: 

o Lower chip count 

o Reduced board space 

o Lower power requirements 

o Higher reliability (fewer interconnects) 

o Proprietary design protection (fuse protection) 

o Fewer parts in inventory 

o Greater design flexibility 

The proLogic compiler is complete and ready for installation on your IBM® 
compatible PC. The following block diagram shows the steps from design to 
proLogic to a programmed device. 



START 

DESIGN ENTRY 

BOOLEAN 
EQUATIONS 

STATE 
MACHINES 

TRUTH 
TABLES 

(.PLD) 

OPTIONAL 
TEST 
VECTORS 

'" 
,. 

.... proLogic 

.. Compiler 

'" I,. 
Listing File (.LST) 

Reduced Logic 
Equations 

Fuse Plot 

Texas Instruments 
Device Library 

JEDEC 

" File 
I/" (.JED) 

'<...7 
... proLogic A 

I/" Simulator .... 

I I 
OPTIONAL 

{} 
Vector Simulation 

File 

(.TST) 

proLogic Block Diagram 

FINISH 

.... DEVICE 

.. PROGRAMMER 

v 



vi 



b "ml~H "e,'" mmrgS .. · 

The pro Logic Compiler Package contains: 

[J a pro Logic Compiler User's Guide 

[J three proLogic Diskettes 

The proLogic Diskette contains: 

[J the executable files 

[J a README file 

Section 1 

How To Begin 

[J Header files (.H) which apply to multiple Programmable Logic Devices 

[J the Texas Instruments PLD Architecture files 

Installation 

Step 1: On your IBM or IBM compatible PC, make a new directory on the hard disk 
and call it PROLOGIC. 

Step 2: Change directories into your new PROLOGIC directory and copy all of the 
files on the diskettes into the new directory. 

Step 3: The file, NAND3.PLD is a sample Application PLD (sample program 
source file) needed to describe the PLDs. 

Compile the sample device specification by entering the command. 

LC NAND3 

Compiling NAND3 produces the outputfiles NAND3.J ED and NAND3.LST. 
The J EDEC file can be downloaded to your device programmer. The listing 
file is a fuse plot showing the programmed device. 



2 

Step 4: Simulate device programming and testing by entering the command 

LS NAND3 

Logic Simulation uses NAND3.JEDto produce the output file NAND3.TST. 
All of these files including the source file, are text files so you can print, type, 
or edit them to see the results. 

The files on the Architecture Description diskettes may all be copied to your PRO
LOGIC directory if you have enough disk space. If not, you can selectively copy the 
files needed for your programmable devices. 

This is the time to look atthe README file on the Installation Diskette. This file con
tains last-minute information that may not be in the User's Guide. 

The proLogic Compiler 



Section 2 

Programmable Logic 
ISSSSIIBIII1ISIBSSSSI!I!llllIIl!!lm!I!!!1!3ISSSSIIIII!IIIS!I!S!!!IS!1!IISSIIISISIIS!I!!!!S!III!!I!I!mSISII!SIIISSISIIIII!1111!!!!!!!!!!!I!!!I!!!!!!I!!!!!!!I!!I!!!!!!!!!!!!I!!!!!!111!S!~!!Sllr!S!!I!!I!I!lli!I!IS!ISS!IIIIIII!I!IIISIIIB1111881!11 
n n "t,· , ,. , n n en rap" 

A Programmable Logic Device (PLD) is a type of integrated circuit whose function 
is fielcH:on1igured. These devices allow you to create integrated circuits to your own 
specifications at a reasonable cost, thus reducing the chip count. 

Programmable Logic Devices have the same basiC kinds of digital building blocks 
that 8mall 8cale Integration (881) devices have. The difference between 881 devices 
and PLDs is primarily the higher levels 01 integration in PLDs. 

There are more input signals per gate. Even a common PLD like the TIBPAL6R4 has 
32-input AND gates. 

There are more gates per device. The 16R4 has sixty-10ur 32-input AND gates. 
The size ofthese devices has required a new form 01 logic notation. This notation 
permits the semiconductor manufacturerto specify the function of a PLD in a conCise, 
tabular format. 

Conventional schematics tend to flow from left to right, with input signals on the left 
and output signals on the right. Thus a three input AND gate is drawn. 

Figure 1. 551 Three Input AND Gate 

The new PLD logic notation retains the convention that output signals are on the right. 
The change is that the input signals flow into a gate vertically 1rom the top or bottom. 
A PLD AND gate is drawn 

o 1 2 

~fH~1 )-A 
Figure 2. PL,D Three Input AND Gate 

These PLD AND gates are also called product terms. A product term refers to any 
n-input AND gate. The main reason for vertical inputs is that PLDs have a very regu
lar structure. In the 16R4, all 32 ofthe input signals are inputto each ofthe 64 AND 

3 



4 

gates. This permits the whole logic structure of the device to be concisely noted in 
tabular format. 

o 1 23 4567 8910U 12131415 16171819 20212223 24252627 28293131 

...... ~ Al 

~!lIII!III1I!IIII~IIII~IIII~IIII~IIIIIlIIIIIl-~ AO 

...... ~ A2 

...... ~ A3 

...... ~ A4 
~~ AS 
~~ A6 
::::~ A7 

Figure 3. Eight 32-lnput AND Gates 

The 16R4 PLD is a 20 pin device. When the power, ground, clock, and output enable 
pins are substracted, the total 110 pin count is 16. Figure 4 shows how the Sixty-four 
32-input AND gates are interfaced to the 110 pins. 

Figure 4 shows that the device in its unprogrammed state doesn't do anything. The 
output of all 64 AND gates is logic LOW because the input buffers feed both the true 
and the complement of all inputs into all the AND gates. In Boolean Logic notation: 

a & !a = 0 

for all AN D gate output. 

The basic difference between building a circuit using SSI devices and building a cir
cuit with PLDs is the way in which the gates form a circuit. With SSI devices the gates 
are connected with wires or traces. Within a PLD, the gates are connected by a pro
cess called programming. 

A circuit is built within a PLD by disconnecting inputs from gates. In this respect, 
building a PLD circuit is the exact opposite of building an SSI circuit. A PLD in its initial 
state has all possible gate connections already made. Programming consists of re
moving the connections that are not needed for your design. The connections that 
remain define function of the programmed device. 

The notation used to show a programmed device is to draw Xs where connections 
remain, and draw nothing where connections have been removed. (In most pro
grammed PLDs the number of connections remaining after programming is a lot less 
than the ones removed, so this convention results in a less cluttered diagram.) To 
further reduce the number of Xs, a gate with all connections intact is drawn with an 
X in the gate symbol itself rather than drawing individual Xs at each gate input. 

Semiconductor manufacturers ignore this convention when printing the logic dia
grams in PLD data books. It is assumed you know that an X is implied at all intersec
tions. Figure 5 shows the part of a 16R4 which has been program med to implement 
a 3-input NAND gate. The output is on pin 19. The inputs are on pin2, pin3, and pin4. 

The proLogic Compiler 



Inputs (0-31> 
1 

0 4 8 12 16 2ft 24 28 
0 

~ 

~ - 19 
;:::::; 

2 . .... 
"S" --"!;.t--.... ""'" 

8 -~ - 18 

L.::::: 
3 ... 

.... --"!;.t--
""'" 

16 

~~ 
4 ... ... 

-'" . 
""'" 

24 

~ ~ " n 16 

E r-
5 ... .... 

.<1: .. 
""'" 

:I? 

~ ~ ~ 

~ 
F= 

6 .. .... 
> <I: ... ... 

48 r-.-

~ 
.......-, 
::;:j-,.. -'iI\--. 

~ ---
7 .. ... 

> < ... -... 

48 
:>--[) 13 -. 

== 
8 .. ... 

> <t--.. -... 

~ ;:::::; 
~ 12 == 

9 .. l<}-ll > .t--... ""'" 

Figure 4.1SR4 Logic Diagram 

5 



2 ... 
> 

3 ::. 
> 

4 :: 
> ... 

6 

Figure 5 also illustrates one other PLD feature which you should know. The PLD 
gates are implemented so that when all gate inputs are disconnected, the gate output 
is asserted. Figure 5 shows the output buffer for pin 19 as always enabled. 

o 4 8 12 16 2t 24 28 

)----[) 19 

.... 
< -

Figure 5. A 3-input NAND Gate 

The proLogic Compiler 



Section 3 

PLD Design Implementation 
1!IIIIBIII1lI111IIII111IBII!iIIllll!!IBIIIIIIIIIIIIIIBBII!!!1BI1!!!I!llllllllllllilllllll!II!BB!!IIIBIIIII!IIIII!!III!111IIIIiiSlllllllllll!I!II!I!!!I!!liiill!III!!I!!!IIIII!!I!1!11!!!!!!!!II!IIIIIII!I!I!!!!II!II!II!!!!!I!!!II!I!!li!1lill!lmllllllllll!1 
fbI'" 'M"" 11 • t' " Anent" , re " tt' '7 
~1tIt~C~er~~HteUttttttt !ertMMttetttetttHtrtHtMetetUHMttMetettrtHtrN~eettetttntNMHHttttenUtttUUret"tMat~MHttttHntrtNlol .... ~lNINttrr'tnttHntttet'~ .. IN'«oI~ntrerntf'MNWtnettn!otII~ ___ " ,,~ ~ ~ ~ -_11<1-

Implementing a digital logic design using PLDs is about the same as implementing 
a design with SSI devices except you need a development tool called a device pro
grammer to remove the unwanted connections from the internal gates of the PLD. 

Device Programmers 

A device programmer is an electronic machine which programs the specified cells 
of a programmable device. PLDs are available in many technologies. A program
ming algorithm is defined for each type of device. These algorithms involve voltages 
and currents not used during normal device operation. As might be expected, the 
number of different programming algorithms is relatively large because algorithms 
can vary by both product technology and manufacturer. 

Texas Instruments continually evaluates new programming equipment. TI Program
mable Logic data books are a good reference source for device programmer ven
dors. 

JEDEC Files 

The device programmer vendors have made it as easy as possible for you to specify 
your requirements. All device programmers accept an input file in a standard format. 
This file is called a JEDEC file because its format was developed by the Joint Electron 
Device Engineering Council (JEDEC). JEDEC files, being comprised of ASCII char
acters, are also readable as text files. This example of a fuse list line of a JEDEC
standard file 

L040 10011001010101101111* 

is interpreted by the device programmer to mean: 

1. program cell 40. The string of 1 s and Os which follow the L040 define the value 
of consecutive cells after programming. 1 means program the cell. The L040 gives 
the decimal address of the first cell in the string defined by the line. 

2. do not program cell 41. The second digit in the string is a 0 which means do not 
program the cell. 

3. program cells 43, 44, 47, 49, 51, 53, 54 and 56 through 59. 

7 



8 

Another kind of JEDEC-standard line is this example of a test vector: 

VOl NNN010110N10LLLHHNNN* 

These lines are used by the device programmer to functionally test the programmed 
device. The V01 is a sequence number. The other characters are called test condi
tions. The first applies to device pin 1, the second to pin2, and so forth. This sample 
shows a 20-pin device. Testcondition N means do nothing, sothe first 0 means apply 
logic low voltage to pin 4. 1 applies logic high and Land H test for output level low 
and high. 

The proLogic Compiler 

The proLogic Compiler is an interface to a device programmer. It accepts your speci
fications in symbolic form, manages the task of specifying each of the thousands of 
cell states, and produces a JEDEC file to instruct the device programmer. 

To see how it works, let's take the example atthe end of Section 2. It shows a 16R4 
programmed to implement a 3-input NAND gate. The output is to be pin19. The in
puts are on pin2, pin3 and pin4. To make the J EDEC file control the device program
mer, we must prepare a PLD specification file. 

The PLD specification is a simple text file which tells pro Logic which cells to program 
in the PLD. proLogic takes its input from a source file in the same way that a compiler 
for microprocessors does. In order to program a 16R4 so that pin19 is a 3-input 
NAN D gate, we need a source file called NAN D3. PLD which has the following three 
lines: 

include p16r4; 
!pin19 = pin2 & pin3 & pin4; 
pin19.oe = 1; 

The first line specifies the PLD to be programmed. The other lines specify the two 
signals required to implement the circuit. 

Once NAND3.PLD is available, entering the DOS command 

LC NAND3 

executes the proLogic Compiler. The execution result is a JEDEC file named 
NAND3.JED which specifies the 61 unwanted connections to be programed by the 
device programmer. The following is the part of the file which has the fuse list lines. 

proLogic Compiler (JEDEC Object A100) V2.00 
Serial bxavO 
Copyright (C) 1988 INLAB, Inc. 

p16r4 revision 89.2.11 

*N_csidp16r4 
*QP20 
*QF2048 
*FO 
*LOOOO 11111111111111111111111111111111 
*L0032 01110111011111111111111111111111 
*C07E6 

The proLogic Compiler 



While preparing the JEDEC file, the compiler may find errors in your program. When 
it does, it describes what seems to be wrong on the computer display. The error text 
completely describes the problem, so there is no need for you to look up error codes 
in the manual. Another file called NAN D.LST is also created which allows you to read 
the NAND3.JED file. The part ofthe file which describes pin19 ofthe 16R4100ks like 
this: 

proLogic Compiler (Fuse Plot A100) V2.00 
Serial bxawO 
Copyright (C) 1988 INLAB, Inc. 

p16r4 revision 89.2.11 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

o ----
1 x--- x--- x---

2 XXXX XXXX xxxx XXXX xxxx XXXX xxxx XXXX 

3 XXXX XXXX xxxx xxxx XXXX XXXX xxxx XXXX 

4 XXXX XXXX xxxx xxxx xxxx xxxx xxxx XXXX 

5 XXXX XXXX XXXX XXXX Xxxx XXXX XXXX XXXX 

6 XXXX XXXX XXXX XXXX Xxxx Xxxx XXXX XXXX 

7 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 

I I 
pin2 I 

I 
pin1 

Legend: 

I I 
4 I 

I 
17 

I I 
5 I 

I 
16 

I I 
6 I 

I 
15 

X Cell intact (JEDEC 0) 
Cell programmed (JEDEC 1) 

X- True input term 
-x Complement input term 

I I 
7 I 

I 
14 

I I 
8 I 

I 
13 

I I 
9 I 

I 
11 

OE 
+ 
+ 
+ !pin19 
+ 
+ 
+ 
+ 

xx Any xx pair in a product term yields product term 
LOW. 

No input term (don't care). A product term com-
prised 

entirely of -- yields product term HIGH. 

Compare the NAND3.LST file to Figure 5. This format, called a fuse plot, is just a 
printer oriented version of the logic diagram. It has some new words in it - an input 
term is another word for a signal; a product term is another word for AND gate. Other 
than that, the fuse plot is about the same as a logic diagram. 

9 



10 

The proLogic Simulator 

The proLogic Simulator is a software version of a device program mer. To load it, en
terthe DOS command 

LS NAND3 

The simulator uses the fuse list lines from the JEOEC file (NAN03.JED) to create a 
functional device model. It then executes the test vectors against this model. The 
test results are placed in file NAN03.TST: 

proLogic Simulator V2.00 
Copyright (C) 1988 INLAB, Inc. 

Architecture Description: pl6r4.1xa 
JEDEC Fuse Information: nand3.jed 
JEDEC Test Vectors: nand3.jed 

Vl NOOO NNNN NNNN NNNN NNHN 
V2 NOOl NNNN NNNN NNNN NNHN 
V3 NOlO NNNN NNNN NNNN NNHN 
V4 NOll NNNN NNNN NNNN NNHN 
V5 NlOO NNNN NNNN NNNN NNHN 
V6 NlOl NNNN NNNN NNNN NNHN 
V7 NllO NNNN NNNN NNNN NNHN 
V8 Nlll NNNN NNNN NNNN NNLN 

No errors detected with 8 Test Vectors. 

You will find the same test vectors in NAN03.JED. The more readable source which 
created them is in NAN03.PLO. 

In the example, no errors were found by the simulator. When errors exist, the simula
tor notes them with a single character code. At the end of the test listing, it appends 
a legend to explain the meaning of the error codes. This puts all the information you 
need in one place. There is no need to refer to the manual for a description of the 
error codes. 

pro Logic Simulator Input Files 

When you run the Simulator, you will need to supply the name ofthe Test Vectors file. 
It is a text file in JEDEC 3-A format which contains the test vectors (JEOEC field V) 
to be executed against the compiled device model. The DOS path name of the test 
vector file is the first parameter of the DOS command as shown in these examples: 

LS VECTORS 
LS TEST.JED 
LS \TEST\VECTORS.VFl 

When no file extension is specified, proLogic defaults to (.JED). 

If your Test Vectors were created by the proLogic Compiler, thafs the only parameter 
required. If not, the following are other options which can be used. 

The proLogic Compiler 



The -j Option 

This option specifies the DOS path name of the Fuse Information file. It is also a text 
file in JEDEC 3-A format. It contains the programming information (JEDEC field F) 
which specifies the device function. Example: 

LS VECTORS -JFUSES.JED 

When no file extension is specified, proLogic defaults to (.JED). When the -j option 
is not supplied, pro Logic assumes the fuse information is contained in the Test Vec
tors file. 

The -a Option 

This option specifies the DOS path name of the Architecture Description file. This 
file contains a description of the programmable device to be simulated. proLogic 
uses this file and the Fuse Information file to compile an optimized device model prior 
to beginning actual simulation. Example: 

LS NAND3 -A\LXA\P16R4 

Architecture Description files always have a (.LXA) file extension. When the -a op
tion is not specified, pro Logic examines the Fuse Information file for a field beginning 
with the characters N_csid. If found, the remainder of the field characters identify 
the Architecture Description file. 

The pro Logic Simulation Algorithm 

The simulator behaves just like an electronic device tester. The next few paragraphs 
describes the device tester as a piece of hardware. These are the details you need 
to know to test your program. 

Before executing any test vectors, the simulator removes voltage from all device 
pins. It next applies test condition 0 to the device ground pin and 1 to the device vee 
pin to simulate power-on. All memory elements power-on clear unless the device 
manufacturer specifies that they power-on set. Note that power-on or -off may be 
simulated by a test vector which applies test conditions to the power and ground pins. 

After power-on, the simulator executes each test vector in the order encountered in 
the Test Vectors file. Execution consists of performing these four steps in order: 

1. Remove voltage from test pins (L,H,Z) in pin number sequence. 

2. Apply input and 1/0 pin voltage (O .. 9,F,X) in pin number sequence excepting 
clock (C,K). 

3. Apply clock pin voltage (C,K) in pin number sequence. 

4. Read test pin voltage (L,H,Z). 

Input pins with no voltage applied are assumed to float logic hign. Applied voltages 
persist from test vector to test vector when neither driven nor tested (N). 

11 



12 The proLogic Compiler 



Section 4 

!gggoum;ggm~~;;;DgGmgg;;~gg;Dg ODDD JgDgDmDJ gJmm.mDQggmnmggg:DgggQJgmggmggmgGgGH~~HQmJJJg.Jm~mnIDJu·mmg~tgmm:mggG;gJP:mJ;g;gm=;g:JDggg.Dggm;g:JJJgg;mmD;;~mngg;ggJg;ggggggmJ;gDgggmgggggg;g;g;gnl 

" W 11 

A 3-input NAND Gate 

The source file NAN 03. PLD which programs 16R4 pin 19 to be a 3-input NAND gate 
has these three lines: 

include p16r4i 
!pin19 = pin2 & pin3 & pin4i 
pin19.oe = 1; 

The first line names the the header file (.H) forthe PLD. The othertwo lines are called 
assignment statements. 

An assignment has an expression made up of signal names and gate operators. Sig
nal names identify signals internal tothe PLD to be programmed. The gate operators 
define signal relationships. Because each PLD is different, the signal names and 
gate operators also are different from one PLD to another. For example, a 24-pin 
PLD might have a signal named pin23, but a 20-pin PLD would not. The signal 
names for each PLD are documented by the pro logic diagrams. 

Look atthe proLogic diagram forthe 16R4. You'll find it in the Logic Diagram section. 
Each signal is labeled with its proLogic signal name. 

When you write an assignment statement, it must begin with an output signal name. 
Output signal names always end with the" =" character. They name gate output sig
nals. 

The remainder of the assignment is an expression comprised of any of the signal 
names which you want as circuit inputs. The signal names which directly feed an 
AND gate are written using an " & " gate operator as a separator, as in the expression 

pin2 & pin3 & pin4 

Similarly, signal names directly feeding an OR gate are written using the "I" gate 
operator as a separator. 

pt47 I pt46 /* device a167 */ 

When there's no signal name on a gate output, use the gate's input expression in 
place of the miSSing signal name. The expression 

!pin19 = ( pin2 & pin3 & pin4 ) 

represents an OR gate which has an output signal name in terms of one of it's un
named AND gate inputs. 

13 



Brackets 

14 

To program pin19 as an AND instead of a NAND, write 

! pin19 = ( ! pin2 ) ! ( ! pin3 ) ! ( ! pin4 ) 

where the parenthesized expressions denote the outputs of three of the AND gates 
feeding the OR gate. The parenthesis aren't required. The expression 

! pin19 = pin2 ! pin3! ! pin4 

means the same thing. 

Assignments allow a separation of the punctuation parts of a signal name from the 
rest using spaces, tabs or even new lines. Also, pairs of parenthesis can be used 
to group expressions. You can also use the symbols non and n 1 n as fixed gate 
inputs, as in 

pin19 . oe = 1 

When you find a name like 

[! ]pin16= 

in the prologic diagrams, the brackets indicate an optional part. In this case, either 

pin16= 

or 

!pin16= 

may be used as the output signal name. 

The proLogic Compiler 



Section 5 

Symbols 
1I!1111111II1111111111!1111!!II!!!!!!IIII!!!I!!III!!!!!I!!3IjIIIII!!!!I1!11!!~!!'II!!!IIII!III"'I!i!!!i!I!!!!II!III!'III!I!!!!~'I'1'II!II!'Ilmlllll!II!'!IIIIIIIII!!!~IIIII;1111 

d •• ", ••• 'W&.~ "'''''''''~H:m~:d~: U U~ ., , 'l:blim~ttc mm~ mmCC~Qm==~~c~ d!!Om!li:t~~~bbmG w' we n 
~ .. INoMIIfol~ ........ """IMC ...... " ...... IoM\ .. " .. ,I/IoiI/lo; ...... ~~,,\/'A ...... I/'M:~~~,e,e$te'et~et~ttttteet'tM: .... I!I<~~I6I~ 

Signal Names 

The prologic diagrams for each Programmable Logic Device specify the signal 
names you are required to use in your programs. These names are the ones used 
in the examples in the earlier sections. 

If you've looked atthe Texas Instruments application briefs, or at the sample Applica
tion PLD files, you've probably noticed that it's standard practice to assign application 
specific names to the various signals. There are a number of good reasons for dOing 
this: 

1. PLD specifications can be complex. Appropriate mnemonics are a big help 
to comprehension, not only during initial PLD specification writing, but also 
when trying to comprehend an existing specification. 

2. Certain signal names have conventional meaning, OE for Output Enable, 
CS for Chip Select, A7 for address line seven, and so forth. Also, some stan 
dard circuits have conventional names. To illustrate, if part of your PLD 
circuit is an SR latch, the inputs should be named Rand S. 

3. It saves extra documentation. If your PLD specification file uses the pin17.d 
signal name, then somewhere you must document that Signal's function. On 
the other hand, if you call it D3 and the programmed PLD is titled "An Up
down Counter", the name itself implies counter output bit three. 

4. Your programmed PLD is part of a circuit. It's convenient ifthe names used 
in the PLD specification are similar to those used by your schematic capture 
package. 

Application signal names are specified by define statements. The statement looks 
like this 

define cs = pin2; /*. chip select * / 

15 



Symbols 

16 

The define replaces the symbol to the left of the = with the symbols to the right of the 
= (except the ;). This example means "wherever cs is found, replace it with pin2". 
Thus the expression 

Ipin19=as 

becomes 

!pin19=pin2 

after define replacement. 

The define is a powerful tool. With it you can create application specific signal names 
such as 

define STATE2 
define STATE3 
define ERROR 

(!pin17 & pin16 & !pin15); 
(!pin17 & pin16 & pin15); 
I pin19; 

so that an expression for PLD pin 19 can be written as 

ERROR = STATE2 I STATE3 

Define statements don't take effect until they are encountered. For this reason, it's 
a good idea to group them all together near the start of the program. 

proLogic recognizes three kinds of symbols: 

1. A group of alphanumeric characters, such as 

as define 
pin2 DEFINE 
3725 8259_CS 

2. A group of characters, such as 

% 

except that 

( ) { } 

&! 
=! 

are always single character symbols and 

/* 

always begins a comment. 

3. Any characters within quotation marks 

"this is an unusual symbol" 
"/* and so is this */" 

A comment is any text enclosed by I" and */. Since characters like newline are text, 
you can write very large comment blocks. Comments can be written anywhere you 
can use a space or a tab, that is, they are symbol separators. 

The proLogic Compiler 



Do not use any of these reserved symbols as signal names. 

define 
include 
state 
title 

else if 
repeat signal 
state_diagram test vectors 
truth table 

Do not use any symbol beginning with an underscore _ character as a signal name. 

Upper and lowercase letters are different. That is, "define" isnotthesameas "DE
FINE", which is different from "Define". The define statement does not replace a 
variable's extension (a symbol after the dot). That is, if one of your variables is 

define d = pin19; 

the expression 

pin17.d d 

becomes 

pin17.d = pin19 

The define statement can be used to tailor the operator symbols to your preference. 
proLogic uses the" &" for AND, "I" for OR and "!" as the negation attribute. But 
they can be changed to ", + and I by these defines: 

define * = & ; define + = I ; define / = ! 

Notice that the spaces between the symbols are required. If we had written 

define *=&; 

pro Logic would see this as the symbol "define" followed by the symbol "* =&; " . 
If you want to change the operator symbols you also need 

define =/ 
define */ = & ! ; 
define +/ = I ! ; 

to be able to write a natural expression such as 

a=/b*/o+/d 

without being forced to put in spaces to separate symbols formed from punctuation 
characters, as in 

a= /b* /c+ /d 

The define statement rescans after it does a replacement. For instance, if you just 
finished inputing a program and realized you had the polarity of one of the signals 
wrong, you might be tempted to make a "temporary" fix with a define like 

define os = (!os); /* wrong */ 

This define might find an expression such as 

x=cs 

and replace it with 

x=( ! cs) 

17 



18 

but then it rescans yielding 

x= ( ! ( ! os» 
x= ( I ( ! ( 'os) ) ) 
x= ( ! ( ! ( , ( ! os) ) ) ) 

and so forth ... 

Things like 

define a=b; define b=a; 

present similar opportunities. 

In practice, these don't come up very often. When they do, you'll find that proLogic 
tells you what symbol it is seeing. A number of instances can be fixed just by adding 
parentheses. As a further aid, the first part of the listing (. LSn file shows you the sig
nal specifications after everything'S completed. 

The proLogic Compiler 



Section 6 

Expressions 
Ii E iii I IliIliillllllilliiiiliiiElllllllEiillllliEiiiiiiiiillilililll1 iiiEiillEiEEIEiiiiillElliiiEiiiiliiEiEiSiilliSiiSEEllili1IIIIIIIIIIIIilllilllllliliillii6liiilllilllllili!8iIIEElillElilllliiliEISlllillliillliiillllliiiEiSiiilElillllEiiiiiEllliSiiil 
a ~ 

aaaaaaDuaDllaaaaDDaaganaaaDDDDDaDCllnaallDcaaaacaaaaDDDllllCDDDDDDcaaaDDIIDDDIIDaaaaaaaaDDDDDDaaaDDaaaDDaaaaaaaaaUDaDDaaDanDaaDDaDDDDDDDaaDua~aDnDDDaDnDDDDDanDDD;DDDaDDDDDDDDDDDDDDDDDDDUDDDDDDDDDDDDDDDDDuaDDDDDDDDDDDDaDDDDDDaDDaaDaDDaDaDDDDDDDaDnDaDDa~ .. .. 

Operators 

In Section 4 we wrote a 3-input AND gate as 

! pin19 = ! pin2 I ! pin3 I ! pin4 

to make the pointthat an AND gate on an active low output cell requires the consump
tion of three product terms. That's also the form required to map onto the proLogic 
Diagram. We loosened up the strict version of signal names by writing 

!pin19= 

as 

! pin19 = 

Now we're going to take the next step away from the pro Logic Diagram and write 

! pin19 = !(pin2 & pin3 & pin4) 

When pro Logic sees this kind of an expression, it uses arithmetic rules to transform 
it internally back into the sum-of-products form which maps to the diagram. If you 
compile 

! pin19 = !(pin2 & pin3 & pin4) 

and look at the (.LST) file, you'll see that it has become 

!pin19= !pin2 I !pin3 I !pin4 

Expressions are evaluated according to priority. The 0 I 0 operator has a lower 
priority than the 0 &" operator. Both "I" and "&" have a lower priority than the 
" ! "attribute. I n the expression 

!a I b & c 

the highest priority things get evaluated first first the "!" 

(!a) & b I c 

then the "&0 

«!) & b) I c 

leaving the "I" for last. 

19 



20 

When the normal priorities work against you, there's another rule which says that par
enthetical expressions have a higher priority than operators and attributes so thatthe 
expression 

!«a I b) & c) 

becomes 

!a & !b I 10 

Similarly, 

(a I b) & (0 I d) 

becomes 

a & 0 I a & d I b & 0 I b & d 

You can even write expressions like 

! ( a = b & ! 0 ) 

which turns out to be 

!a = !b I 0 

The assignment operator = has a lower priority than most, so that in the expression 

a = b & 0 

the 

b & 0 

expression is evaluated before it is assigned to a. Conversely the. (dot) operator 
has a very high priority so that it applies even before the" ! " as in 

! pin27 . D = 1 

which pro Logic sees as 

! ( pin27 .d ) = 1 

The dot operator changes upper case letters in the extension to lower case. The 
equality operators "==" and "! =" provide a way of writing the equivalent of the 
logical Exclusive NOR/OR functions. That is, 

a == b 

is the same as the expression 

a & b I !a & !b 

The " ! =" operator is defined to be the inverse. This means 

a != b 

is the same as 

! ( a == b ) 

The proLogic Compiler 



or 

a & !b I !a & b 

As a general note, all operators are binary. They require an expression both before 
and after the operator. For example a attributes like "!" apply to a single expres
sion. 

Statements 

An assignment expression such as 

a = b & c 

becomes a statement when it is followed by a semicolon, as in 

a = b & c; 

You've already seen the define statement. It is also terminated by the semicolon. 
Syntactically, your program is a sequence of statements. 

There is another kind of statement called a block which is terminated by a " } ". The 
title block is the subject of the next section. 

21 



22 The proLogic Compiler 



Section 7 

The Title Block 
1!!!llm!IIII!!!IIIIIIIII!!!III!!m!II!!I!!IIII!!!!IIIII!!!111Ii!111!!II!!II!!!!I!!I!!!!I!I!!!!!!!I!!!!!I!!!I!!!!IIII!!!!!I!!!I!!!!!!!!!!I!!!!!!!!!!I!I!!!!I!!!!I!!!!!!!!!!!!!!!!!!!II!!11!!!IIIII!II!I!llm!!!III!!III!I!I!I!!IIII!I!IIIIIIIIIIII!!1111iI!SIIII 
n • n·... " amm~ M:~"''''W'''''~ . meg 

A title block 

title { 

} 

Function: Special Barrel Shifter. 
Designer: Acme Products. 
Date: 4 July 1988. 

defines textto be copied to the JEDEC outputfile as documentation. The title block 
is a statement. It may appear almost anywhere in your program, but you can only 
have one. The text enclosed by the braces { and} is copied to the JEDEC outputfile. 
Because the JEDEC file format uses an * character to delimit the documentation, 
your text may not contain this character. 

The semicolon is not required to terminate the title block (or any other block). Note 
that our style of block which has a separate line for the closing} and begins the text 
on the same line as the opening { may not be to your taste. Feel free to experiment 
to find a style that suits you. 

The text is also copied to the fuse map portion of the (.LST) file. 

23 



24 The proLogic Compiler 



Section 8 

Truth Table Blocks 

The Classic Seven-Segment Display 

The following is the truth table to program a PLD as a hex decoder driver for a seven-
segment display. 

truth table { /* aa 
+--------+ 
I I 

bbl Iff 
I gg I 
+--------+ 
I I 

eel lee 
I dd I 
+--------+ 

*/ 

q3 q2 ql qO aa bb ee dd ee ff gg; 

/* 0 */ 0 0 0 0 0 0 0 0 0 0 l' , 
/* 1 */ 0 0 0 1 1 0 0 1 1 1 l' , 
/* 2 */ 0 0 1 0 0 1 0 0 1 0 0; 
/* 3 */ 0 0 1 1 0 1 1 0 0 0 0; 
/* 4 */ 0 1 0 0 1 0 1 1 0 0 0; 
/* 5 */ 0 1 0 1 0 0 1 0 0 1 O' , 
/* 6 */ 0 1 1 0 0 0 0 0 0 1 0; 
/* 7 */ 0 1 1 1 0 1 1 1 0 0 l' , 
/* 8 */ 1 0 0 0 0 0 0 0 0 0 o· , 
/* 9 */ 1 0 0 1 .. 0 0 1 1 0 0 o· , 
/* A */ 1 0 1 0 0 0 0 1 0 0 0; 
/* B */ 1 0 1 1 1 0 0 0 0 1 0; 
/* c */ 1 1 0 0 0 0 0 0 1 1 l' , 
/* D */ 1 1 0 1 1 1 0 0 0 0 o· , 
/* E */ 1 1 1 0 0 0 0 0 1 1 o· , 
/* F */ 1 1 1 1 0 0 0 1 1 1 0 

} 

Each truth_table block creates a block of assignment statements, but is set up in tab-
ular form to save you writing time and to help you visualize all the cases. 

25 



26 

The table heading line 

q3 q2 ql qO aa bb cc dd ee ff gg 

lists the input and output expressions. The input expressions are listed first and are 
separated from the output expressions by the colon. The semicolon ends the 
heading line. 

Each other line of the table is a detail line. Detail lines follow the format set up by 
the heading line with respect to number of input and output expressions. These lines 
create assignment statements. If your truth table had only this single detail line 

/* 0 */ 0 0 0 0 0 0 0 0 0 0 1 i 

then only this one assignment statement would be created: 

gg = q3==O & q2==O & ql==O & qO==Oi 

These two detail lines 

/* o */ 0 0 0 0 0 0 0 0 0 0 1 
/* 1 */ 0 0 0 1 1 0 0 1 1 1 1 

would create all these: 

aa q3==O & q2==O & ql==O & qO==li 
dd q3==O & q2==O & ql==O & qO==li 
ee q3==O & q2==O & ql==O & qO==li 
ff q3==O & q2==O & ql==O & qO==li 
gg q3==O & q2==O & ql==O & qO==O 

q3==O & q2==O & ql==O & qO==li 

And these three 

/* 0 */ 0 0 0 0 0 0 0 0 0 0 1 
/* 1 */ 0 0 0 1 1 0 0 1 1 1 1 
/* 2 */ 0 0 1 0 0 1 0 0 1 0 0 

would create these: 

aa = q3==O & q2==O & ql==O & qO==li 
bb = q3==O & q2==O & ql==l & qO==Oi 
dd = q3==O & q2==O & ql==O & qO==li 
ee = q3==O & q2==O & ql==O & qO==l 

I q3==O & q2==O & ql==l & qO==Oi 
ff = q3==O & q2==O & ql==O & qO==li 
gg = q3==O & q2==O & ql==O & qO==o 

I q3==O & q2==O & ql==O & qO==l; 

All 16 of the detail lines would produce seven aSSignments and the aa assignment 
would be the sum of four products - one for each 1 in the aa column. Even though 
the final signal specifications which show up in the listing file can be reduced to their 
minimum logical equivalents, a truth table is certainly a way to generate a lot of logic 
with minimal work on your part. 

The reason inputs use the equality operator == is so that you can have more compli
cated things than Os and 1 s. In 

truth table {a b z 
c d 1 

} 

The proLogic Compiler 



the assignment is 

z = a==c & b==di 

You'll notice that we used the phrase input expression atthe start ofthis section. This 
means that not only can you negate inputs, as in 

truth table {!a!b z 
1!d 1 

} 

which creates the assignment 

z = (! a == 1) & (! b == ! d) i 

You can also write almost any valid expression, such as 

truth table { !(a & b) c : z 
c die: 1 

} 

which is 

z = (!(a & b» == c & c == (d I eli 

The only expression that you have to stay away from in the detail lines is a signal 
named X (in either upper or lowercase). That's because we picked this signal name 
to mean don't care. If you have to use it, put it in parenthesis. This table: 

truth table { a b x y 
1 x 1 0 
x (X) 0 1 

} 

yields 

x = a==1i 
y = b==Xi 

The output side of the truth tables is easier because there are only three characters 
permitted - 0, 1 and X (or x). These make menu selections from the output expres
sions in the header. 

The X is again a don't care. It means thatthis detail line doesn't affect the assignment 
for the output. The 1 (0) specifies that the output is logic high (low) for the case de
fined by the input. The output characters can be written together. That is, 

Ox01 

is the same as 

o x 0 1 

27 



28 

Output Polarity 

You should think of the polarity problem in exactly the same way that you do when 
you are about to write an assignment statement. Logic high (the 1 s) produce assign
ments which are true relative to the signal specification names. If we remove the ab
straction and show some real signal specification names for the 16R4 on this table: 

truth table { pin2 pin3 pin4 !pin19 /* 3-input NAND 
*/ 

0 X X 1 
1 0 X 1 
1 1 0 1 
1 1 1 0 

} 

it becomes clear that we've got it right. 

The pro Logie Compiler 



Section 9 

State Diagrams 
BIBBB!IBI!I!!II!BBISIIIIIISII!!II!SISISSII98II!II!!!!I!ISISSI!II!!111!!SI!!!!!!!!!I!!!!S!!!SS!!!!!!!SI!!II!!!I!I!!!!II!!II!!I!!!!I!II!!I!!!!!!!!!I!!II!I!!II!!!!!!!!I!I!!SI!I!!!!!!I!!!ssmSIIIIIISIIIIIIIIBSSII5S!!!!!BSBIIIBI!!SIIIIIIIIIIIII!111115151!111II1 
n ,. n' W ' , mm;Q t , 
r't",et!~ett!eeet~ttt 'ttettet~'t'tetttetttttttetttttttetttr~ttetetttttttt,MoMMoI1(IC"1M/IMtWw.:IMM/IoI~IMMoM .... ",, .. IN~ttttttt'ttttr~'tttttet't 

""""""-""""""""" .", " ---

A Module-3 Counter 

pro Logic can help you implement programmable logic state machines. Other names 
used for this general subject are finite state machines, sequencers, sequential cir
cuits, counters, Mealy model/machine/circuit, Moore model/machine/circuit, state 
diagram, ect .. 

If you want to create a circuit using clocked flip-flops with feedback, then you can 
use state blocks instead of aSSignments. 

Let's take a modulo-3 counter for an example. It uses two flip-flops as state vari
ables. Each of the three permitted combinations of Os and 1 s in the state variables 
is called a state. On power up it is in one of the states and on each clock a next state 
is established which depends, in part, on the current state. Figure 6 illustrates a mo
dul0-3 counter. 

FIGURE 6. Modul0-3 Counter 

The aSSignments for a 0 flip-flop implementation are determined by inspection to be 

v1.d 
vO.d 

VO.qi 
!v1.q & !VO.qi 

29 



30 

The same counter written as a state diagram appears as follows: 

state_diagram v1,vO { 

} 

/* modulo-3 counter */ 

state sO=OO 
sl; 

state sl==Ol 
s2; 

state s2=10 
sO; 

A state diagram appears different from the assignments. This is because each as
signment is a single statement but the state diagram has a hierarchical structure. 

First while the outermost state_diagram statement. 

state_diagram v1,vO { 

} 

It declares v1 and vO to be state variables. Their values are defined in the body of 
the diagram. The body is all of the statements enclosed by the braces { and }. 

In our counter example, the body consists of a state statement for each of the three 
states. 

The first state statement. 

state sO=OO 
sl; 

It declares the state name sO and its value combination (v1.q, vO.q)=(O,O). The state 
statement also has a body. The body can be a single statement without braces, as 
written above or it can be one or more statements enclosed by braces, as in 

state sO=OO { 
sl; 

} 

The transition statement 

sl; 

consists of a state name, as it appears in one of the state statements of this state dia
gram, followed by a semicolon. It specifies what state occurs on the next clock. 

The proLogic Compiler 



IF-ELSE 

The if-else statement is used to condition other statements. The general form is 

if (expression) 

statement-1 /* then part */ 

else 

statement-2 /* else part */ 

where the else part is optional. 

To show its use, let's make our modul0-3 counter stay low (in state sO) until triggered 
by an external signal (count) as shown in Figure 7. 

Figure 7. Modulo-3 Counter 

This is coded 

state_diagram v1,vO { 
state sO=OO 

} 

if (count) 
sO; 

else 
sl; 

state sl=Ol 
s2; 

state s2=10 
sO; 

The if-else statement conditions its then part with the expression in parenthesis and 
its else part with the expression'S complement. Because its then part (or else part) 
can be another if-else statement or a block (one or more statements enclosed by 
braces {and }), things can get as complex as necessary. 

31 



32 

The if-else and state statements can also condition assignments. 

You can add an output to state s2 by writing 

state s2=10 { 
overflow=l; 
sO; 

} 

or make it an up-down counter with 

state s2=10 
if (up) { 

} 

else 

overflow=l; 
sO; 

sl; 

Note that the style of one statement per line is Texas Instruments style. State state
ments can also be written as follows: 

state s2=10 if (up) {overflow=l; sO;} 
else sl; 

Choose a style that suits you. Also, an if-else can be used anywhere in your pro
gram- not just within a state diagram. 

Global Transitions 

Extend our modul0-3 counter so that instead of being triggered to count, it stays in 
state 00 unless enabled. 

state_diagram v1,vO { 
state sO=OO 

} 

if (count) 
sO; 

else 
sl; 

state sl=Ol 
if (count) 

sO; 
else 

s2; 
state s2=10 

sO; 

State machines often have some condition such as this which applies to every state. 
These global transitions can be factored out and written before the first state. 

The proLogic Compiler 



The diagram 

state_diagram vl,vO { 
if (count) 

sO; 
state sO=OO 

sl; 
state sl=OI 

s2; 
state s2=10 

sO; 
} 

looks more like what it really is - a modulo-3 counter with an active high reset. 

Illegal States 

Ifthe modulo-3 counter (shown in Figure 8) is implemented on flip-flops which power 
up to a random state the counter may be in trouble. It counts 

FIGURE 8. Modulo-3 Counter 

This may be acceptable. If it isn't, you can bring it into line by adding an additional 

state s3=11 
sO; 

/* illegal */ 

If your machine is something other than a counter you can also specify that a state 
has don't cares for some, but not all, of its values. Instead of adding a new state, the 
existing state s2 could be redefined as 

state s2=lx 
sO; 

The x, which can be either upper or lower case, means that either a 1 0 or a 11 identi
fies state s2. 

33 



34 

State Variables 

The state variables declared by the state_diagram statement must name a flip-flop 
with internal feedback. The extension may be omitted. For example 

state_diagram pin17,pin16 { 

} 

declares that the pin17.q signal holds the most significant state value for a 16R4 im
plementation. On this PLD, proLogic synthesizes assignment statements for 
pin17.d= and pin16.d=. 

You can also precede a state variable with a "I" which inverts all logic for that flip
flop. The modul0-3 counter example, if written for a 16R4 with active low outputs 
would be 

state_diagram Iv1.q, !vO.q { 

} 

/* p16r4 modu1o-3 counter */ 

state sO=OO 
Sli 

state s1=01 
S2i 

state s2=lx 
SOi 

which is equivalent to 

state_diagram (v1,vO) { 

} 

/* modu1o-3 counter */ 

state sO=ll 
Sli 

state sl=10 
S2i 

state s2=Ox 
sO; 

The proLogic Compiler 



Conditioning 

The statements which form the body of the state block are conditioned by the state. 
The following is a state which is the highest state of a modul0-5 counter 

state s4=lXX { 
Y=l; 
sO; 

} 

Because the expression Y=1 is contained within the body of state s4, it is conditioned 
by s4. This means the resulting expression is extended to be true only when state 
variable v2 (the most significant variable) is logic high and yields 

Y = v2.q; 

If Y is a combinatorial output, it becomes high shortly after clocking a 1 into v2. If Y 
is a registered output, it becomes high on the next clock which simultaneously causes 
v2 to go low as it transitions to state sO. What happens to Y after that depends on 
what is written in the state sO block. Conversely, if you wanted register Y high on the 
clock of 1 into v2 to enter state s4, Y would need to be set up in the prior state. For 
an up-counter, 

state s3=000 { 
Y=l; 
s4; 

} 

would do it, but in an up-down counter, both preceding states are required to set up 
Y. 

state sO=OOO 
if (up) 

sl; 
else { 

Y=l; 
s4; 

} 

state s3=011 
if (up) { 

Y=l; 
s4; 

} 

else 
s2; 

35 



36 

Default Transitions 

An unconditioned transition statement is called a default transition. In 

state sO=OO 
sl; 

the s1 is a default transition because it is not conditioned by an if-else statement. 
The state 

state sO=OO 
if (count) 

sO; 
else 

sl; 

could also have been written 

state sO=OO { 
if (count) 

sO; 
sl; 

} 

because the defaulttransition specifies the state change when none ofthe othertran
sitions apply. 

States which have no default transition remain in their current state when none ofthe 
other transitions apply. Thus 

state sO=OO 
if (!count) 

sl; 

also holds in sa while count is logic high. 

Each state block can have only one default transition statement. 

The proLogic Compiler 



Section 10 

Test Vector Blocks 
IS!!I!!IISIISSIISISS!I!!!SI!SSIIIIIII!S!IIII!!!!!!SmSS!11111!!!SII!!I!!SmSS!I!SSSS!SS!I!!!SII!!!!!!!I!!!!IS!!!!SIIISISIISm!I!S!!!!!II!!!!I!II!!!I!!!I!!!!!I!!!!!!!!!I!!!1ISII!m!!!!!II!!!!I!!!!!!I!!!!I!!II!!!!!I!!!!!!S!!!S!!!11!IIlSI!!!II!!!I!!!!!!!11 
n , •• m~~unm" t " • , w, n 
Wte~ettt'~tt~tttttl1>; .. ttettttM~Mr~~~"""""""~""iCtetteltM1\c,,~·.h.~,,1MIII1tM .... lMM/'tI'MttttttttetN\.:'.!\(\~\Mt.IWlt·~~tt$tttttr~ttetettttttttett'tetttt'tttttttttt e t tet 

" .... __ II .. II 

Test vectors are used by device programmers or logic simulators to verify that the 
logic functions defined for a PLD are correct. These vectors describe the inputs to 
the programmed PLD and specify the outputs expected after applying each set of in
puts. 

Each test_vectors block defines a sequence of vectors to be applied to a set of test 
condition variables. These blocks are written in tabular form with semicolons sepa
rating each line of the table. 

test vectors { 

pin3 !pinl pin18 pin19i 
1 1 H Li 
1 0 L Li 
0 0 L Hi 

} 

The first line of the table 

pin3 !pinl pin18 pin19i 

names the test condition variables. In your program you probably have some define 
statements to make the names more meaningful. Because test conditions are 
applied to the pins of the device, not internal signals, you don't necessarily need to 
adhere strictly to the proLogic Diagram signal names. Anything close will usually 
work. 

Each other line of the table is a test vector. The first vector 

1 1 H Li 

specifies the test conditions 1, 1, Hand L to be applied respectively to the test condi
tion variables pin3, !pin1, pin18 and pin19. Spaces aren't required. You can write 

1 1 H H ; 

or 

llHHi 

37 



38 

as long as there is one test condition for each test condition variable. Lower case 
letters can be used if you prefer. This table lists the allowable test conditions. 

0 drive input LOW 1 
1 drive input HIGH 0 
2 .. 9 - drive input to supervoltage #:2-9 2 .• 9 
C drive input LOW-HIGH-LOW K 
F float input or output F 
H test output HIGH L 
K drive input HIGH-LOW-HIGH C 
L test output LOW H 
N power pins and outputs not tested N 
p preload registers p 

X output not tested, input default level X 
Z test input or output for high impedance - Z 

The last column lists the inverse condition which is used when a test condition vari
able is negated. The block 

test vectors { !pinl; 
1; 
0; 
N } 

is equivalent to 

test vectors { pin1; 
0; 
1; 
N } 

There is also a special kind of a test vector which is used to create one or more JE
DEC buried register vectors. This one begins with the symbol internal and is followed 
by as many Os, 1s, Ls and Hs as there are internal registers in the PLD. 

Note: 

If you're newto PLD design, be aware that we've left out some very important practi
cal considerations. When a device programmer executes preload vectors, or vec
tors which have supervoltages, it may apply high voltages to pins. Refer to the data 
sheets for your exact PLD. Your device programmer manual also provides important 
cautions to observe when testing. 

The proLogic Compiler 



The Repeat Block 

A repeat block, written 

repeat N { 

} 

can be used anywhere in your program. Its function is to create N copies of the sym-
bols contained in the body. The following is a sample application. 

test_vectors { 
/* 4-bit counter partial test */ 

pinl pin17 pin16 pin15 pin14i 

p 0 0 0 Oi /* preload */ 

repeat 15 { 
C X X X Xi /* clock 15 times */ 

} 

0 H H H Hi /* OK if all high */ 

C L L L Li /* wraparound */ 

} 

The} which terminates the repeat block was placed on the line after 

c X X X Xi /* clock 15 times */ 

but could also have been placed on the same line after the semicolon. 

Repeat blocks are not statements. This means they can be used almost anywhere. 
Nesting is permitted, such as 

repeat 15 { C repeat 4 { X }i } 

39 



40 The pro Logic Compiler 



Section 11 

Include Files 
111!!!SI!!I!!!!!!!!smm!!!!IS!!!!881!111!!!!!!!!118111!1!1!!8SIIII111!!lliSIISIII!I!SII!IIIIIIIII!I!SlllliIISlllllll!iS!!IIII!!11!!881IS88SS!8E8SSS!!S!I!!SS!!!S!!I118!!1!!!!!!IIIIIII!111111!IIIIII!I!IIIIIIIS!lSSmSIIIIIIIIS!I2IIISIIIIB!!IIIIIII!I!111111I 

"WI50"O" Wet t' 'Wme""Q" 'wm" ocomw era en 
,., 

Exactly one 

include file-name; 

which identifies the Architecture Description file (.lXA) for the target device must be 
present somewhere in each program. file-name is a symbol string such as 

P16R4.LXA 

or 

\prologic\p22vlO.lxa 

When you don't specify a file extension of .LXA, the include has a different function. 
In this case, the include and its symbols are replaced by the contents of the identified 
file. 

You might want to use include files to define commonly used symbols like 

define LOW = 0; 

to save time and assure consistency over all of your PLD programs. 

Even though a semicolon terminates the file-name, the include is not a statement. 
Like the repeat block, it can be used almost anywhere. Included files may them
selves have includes. A repeat block may contain includes (and vice versa). 

When no file extension is supplied, the default is .H (for header). But if your file has 
spaces as an extension, make this clear. 

include myfile. ; 
include myfile." 
include "myfile. 

" . , 
" . , 

41 



42 

Header Files 

proLogic provides a library of header files (.H). These provide extra levels of informa
tion about each device to make it easier for you to write a program. You might think 
of them as a subroutine library. Header files answer questions like: 

how many pins? 
is register preload available? 
what pins have registers? 
how do states map to D flip-flops? 
to SR flip-flops? 
does if (C) x=aj mean x= (c & a)? 
does it mean x = (c & a) I (!c & x.q)? 
does the compiler drive output enables when you don't? 
what about logic minimization? 

The only logical operators which the compiler recognizes are the AND and OR. 
Header files may offer other operators such as XOR. 

When you select a header file such as 

include p16r4j 

at the beginning of your program, you do not need an 

include p16r4.lxaj 

because the header file will bring the Architecture Description in as part of itself. 

If your preference is for as little "help" as possible, use an include such as 

include p16r4.lxaj 

at the start of your program. This requires you to be very explicit when you write the 
program. Most ofthe higher level statements can't be used in this mode. We recom
mend you include the STDSYN.H file in addition to the LXA file. It has define state
ments which relax the operator symbols to make your expressions more natural. 

The proLogic Compiler 



Section 12 

Signal Specifications 
1lIIIIBIS!!ISllel!!!!~!I!!!!!!!!!!!!!!!!!!!m~lrtI!s!!I!!!!!!lmll1!!II!I!I!!!8!III~!iI!ri!!I!SS!!!;!!lm!!!III!!IIII!I!I!IS!!II!!I!!!!!!~~ 
A~Q"" :0,. 'N~mb~:!om;~ :::~~WH!We::¥o:'t*:r:~:!:! ::t'WS'ddWGmtdm~:~~tb~~bb~bbbM~b:bbbb .ere bt C "t$iM:"$U'&rhl't$&Q~~:lh"t*d~t,,*:o''tm~ 

Although proLogic has the ability to manipulate, optimize, and even synthesize Bool
ean equations. Everything gets put into the form which will map onto the proLogic 
Diagram signal names and gate operators. This form is called a signal specification. 

In the example 

!pin19 = pin2 & pin3 & pin4 

The signal specification is 

"!pin19=" pin2 & pin3 & pin4 

Quotes are used to write the seven-character symbol 

!pin19= 

because that is the exact name on the proLogic Diagram. Names such as 

!pin2 

would also need to be quoted. 

The rules for writing a signal specification are as follows: 

1. A signal specification always begins with an output signal name. These 
names always end with an = (equal) character. 

2. An input signal name must follow the output signal name. These names 
never end with an = character. 

3. After the first input signal name, more input signal names can be listed if they 
are separated by gate operators. 

43 



44 

Gate Operators 

The prologic diagrams implicitly use these operators: 

& Logical AND Gate 
I Logical OR Gate 
% Logical Exclusive OR Gate 

Other operators unique to the PLD may be specified by individual diagrams. 

The characters 

Logical Negation 
Assignment 
Dot 

are not gate operators. They are required to "spell" some signal names. 

Gate Operators Function 

There is always a conceptual "current gate". The importance of the current gate con
cept is that it provides the environment for interpreting the meaning of the input signal 
names. Input names always identify signals with respect to the current gate. 

The current gate becomes important in multi-level logic. The output name usually 
identifies a hierarchical logic structure of one, two, or more levels. For example, in 
a 16R4, the output name pin19.oe= identifies a one level product term. The output 
name !pin19= identifies a two level sum of product terms. The current gate is always 
one of the gates at the lowest level of the hierarchy. I n both of these examples, the 
current gates are AND gates. 

The initial current gate is identified by the output name. It is always the first (or top
most) of all of the possible current gates. The operator which identifies the current 
gate (in these examples, the n & "), has no effect on the current gate. It serves only 
as a separator between input names. An operator which identifies a gate at a higher 
level in the PLD logic structure (in ttJese examples, the n I n) changes the current 
gate to be the next of all possible current gates. 

In a one level structure such as the 16R4 pin19.oe=, there is only one possible current 
gate - the 32-input AND which drives the output enable for pin 19. It is the initial 
current gate identified by the pin19.oe= output name. In the signal specification for 
this signal only n & n operators may appear. 

In the two level structure identified by the !pin19= output name, there are seven AND 
gates at the lowest level. The output name identifies the first of these as the current 
gate. All input names identify connections to this AN D gate until an " I" operator is 
encountered. After the" In, all input names identify connections to the second AND 
gate, until the next n I n when they apply to the third, and so forth. 

The proLogic Compiler 



o And 1 

There are two special signal names which apply to the current gate of all devices. 
They are 1, which means the output ofthe current gate is logically true, and 0, which 
means the the output of the current gate is logically false. Since these names apply 
to the gate output, no other input names may apply to that gate. For example, 

"pin19.oe=" 1 & pin2 

is improper. 

The 0 and 1 signal names used in the signal specification are different from the 0 and 
1 symbols used in expressions. In an expression, they are gate input signals. That 
is, 

( pin19.oe = 1 & pin2 ) 

is transformed into 

( pin19.oe = pin2 ) 

In the first matrix of a 16R4 there are 256 programmable cells. These two signal 
specifications cause only the last cell to remain connected, while the first 255 are dis
connected (programmed). 

"pin19.oe=" 1 

"!pin19=" 1 I 1 I 1 I 1 I 1 I 1 I "!pin12" 

45 



46 

The Signal Statement 

Most PLD programs for most devices can be expressed entirely in terms of boolean 
equations using logical AND, OR and NOT. Thafs why the assignment statement 
such as 

a = .b & !Ci 

requires you to do the minimum amount of typing on your keyboard. But some PLDs 
have XOR gates or signature words. 

For these instances the signal statement always provides the ability to program at 
the signal specification level. Another way of writing 

a = b & ICi 

is 

signal "a=" b & "!C"i 

In this statement, everything between signal and the semicolon must be a signal 
specification. 

You also have the option of letting pro Logic do most ofthe work for you. In the signal 
statement, anything enclosed by parenthesis is an expression. Thus 

signal "a=" b & (!C)i 
signal "a=" (b & IC)i 
signal (a b & !C)i 

are all equivalent. 

To make it even easier, you can also write the =, ., and' symbols separately. 

pro Logic will translate 

signal a = ! b . Ci 

into 

signal "a=" "!b.c" i 

because it knows the rules for forming a signal name. 

The proLogic Compiler 



Appendix A 

A Designer's Guide to the TIBPSG507 
1II!l!!!I!m!!!I!!~I!!!!!i!mll!!!!~~ml!!!I!!!lII!~!!II!iSS!!!!!!!!!!I!~lm!!!I!!!II!l:!!!!!!!!!!!l:!I!!!!!!!!I!!!!II!!!S!!SSB!SISIIIISB!!SIS!!!S!II!!!!S!I!!!I!1!!I!ml!!!II!!!I!!!!!!II!BI~ 
~~':':':'~~~M'*"*"" ~m: 

Robert K. Breuninger and Loren Schiele 
with Contributions by 

Joshua K. Peprah 

A-1 



A-2 

IMPORTANT NOTICE 

Texas Instruments (Til reserves the right to make changes to or to 
discontinue any semiconductor product or service identified in this 
publication without notice. TI advises its customers to obtain the latest 
version of the relevant information to verify, before placing orders, 
that the information being relied upon is current. 

TI warrants performance of its semiconductor products to current 
specifications in accordance with Tl's standard warranty. Testing and 
other quality control techniques are utilized to the extent TI deems 
necessary to support this warranty. Unless mandated by government 
requirements, specific testing of all parameters of each device is not 
necessarily performed. 

TI assumes no liability for TI applications assistance, customer product 
design, software performance, or infringement of patents or services 
described herein. Nor does TI warrant or represent that any license, 
either express or implied, is granted under any patent right, copyright, 
mask work right, or other intellectual property right of TI covering or 
relating to any combination, machine, or process in which such 
semiconductor products or services might be or are used. 

Copyright © 1987, Texas Instruments Incorporated 



Contents 
Title Page 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 

FUNCTIONAL DESCRIPTION .................................................................. A-7 

THEORY OF OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 
Example 1: Waveform Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9 
Example 2: Refresh Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-12 
Example 3: Dynamic Memory Timing Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-IS 

DESIGNER NOTES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-21 
Obtaining Maximum Counter Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-21 
Expanding the 6-Bit Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-21 
Software Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . A-21 

'PSG-507 Example 1: Waveform Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-27 

'PSG-507 Example 2: Refresh Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-29 

'PSG-507 Example 3: Dynamic Memory Timing Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-31 

A-3 



A-4 



Figure 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

PSG Architecture 

List of Illustrations 
Title 

Clock Generator Timing Requirements .................................................... . 
SCLR at COUNT 11 .................................................................. . 
Waveform Generator .................................................................. . 
Refresh Timer Requirements ............................................................ . 
Expanding to 7-Bit Binary Counter ....................................................... . 
Refresh Timer ........................................................................ . 
Memory Timing Controller ............................................................. . 
Flow Chart: Dynamic Memory Timing Controller .......................................... . 
Access Cycle ......................................................................... . 
Refresh/Access Grant Cycle ............................................................ . 
Counter Control Logic ................................................................. . 
Memory Timing Controller ............................................................. . 
Registered SCLR Example .............................................................. . 
Expanding the 9-Bit Counter ............................................................ . 
Resetting after COUNT 383 ............................................................ . 
Holding the 9-Bit Counter at COUNT 383 ................................................ . 

Page 
A-8 
A-9 
A-1O 
A-11 
A-12 
A-13 
A-14 
A-15 
A-16 
A-17 
A-18 
A-19 
A-20 
A-22 
A-23 
A-24 
A-25 

A-5 



A-6 



INTRODUCTION 

The term PSG stands for Programmable Sequence Generator. 
The PSG is the newest member of the programmable logic 
family. It combines the powerful benefits of programmable 
array logic (PALs) with the specialized world of Field 
Programmable Logic Sequencers (FPLSs). 

Applications such as waveform generators, state 
machines, timers, and simple logic reduction are all possible 
with a PSG. By utilizing the built-in binary counter, the PSG 
is capable of generating complex timing controllers. In short, 
the PSG offers the system designer an extremely powerful 
building block. 

The purpose of this application report is to describe 
the functional operation of the PSG507 and demonstrate how 
it can be applied in real-world applications. Three design 
examples that highlight the features and flexibility of the PSG 
will be discussed. 

FUNCTIONAL DESCRIPTION 

Figure 1 shows the architecture of the PSG507. Major 
features include 13 inputs, eight programmable registered 
or nonregistered outputs, eight SIR state registers, and a 6-bit 
binary counter with control logic. The clock input is fuse
programmable for selection of positive or negative edge 
triggering. 

The binary counter, state registers, and output cells are 
synchronously clocked by the fuse-programmable clock 
input. The clock polarity fuse selects either positive or 
negative edge triggering. Negative edge triggering is selected 
by blowing the clock polarity fuse. Leaving this fuse intact 
selects positive edge triggering. 

Each output cell on the PSG can be configured for 
registered or nonregistered operation through the output 
multiplexer fuse. Nonregistered operation is selected by 
blowing the output multiplexer fuse. Leaving this fuse intact 
selects registered operation. 

The PSG507 has 13 inputs, each providing a true and 
complement input to the AND array. Pin 17 functions as 
either an input and/or an output enable. Blowing the output 
enable fuse lets pin 17 function as an output enable but does 
not disconnect pin 17 from the input array. When the output 
enable fuse is intact, pin 17 functions only as an input with 
the outputs being permanently enabled. 

The 6-bit binary counter is controlled by a synchronous 
clear and a count/hold function. Each control function has 
a nonregistered and registered option. When either SCLRO 
or SCLRI is taken active high, the counter resets to zero 

on the next active clock edge. When either CNT/HLDO or 
CNT/HLDI is taken active high, the counter is held at the 
present count and is not allowed to advance on each active 
clock edge. The SCLR feature overrides the CNT/HLD 
feature when both functions are simultaneously active high. 
The functional benefit of both these features will be further 
clarified in the examples shown later in this appliction report. 

The eight internal state registers feed back into the 
AND array. These registers can be used to store input data, 
to keep track of binary count sequences, or they can be used 
as output registers when connected to a nonregistered output 
cell. The state registers differ from the output registers in 
that they feed back into the input array. They can also be 
used to override an operating sequence such as demonstrated 
in the designer notes located at the end of this application 
report. By using extra state registers, the 6-bit counter can 
be expanded as shown in the second example. Other uses 
of the internal state registers will become apparent upon 
reading the examples shown. 

THEORY OF OPERATION 

The PSG architecture is capable of operating in many 
different modes. When comparing the operation of a PSG 
to a PAL, the outputs in both devices can be configured as 
an AND/OR function of the inputs. One major difference 
between a PSG and a PAL is that a programmable OR array 
is used in the PSG. This allows a selected number of AND 
terms to be connected to each output as compared to a fixed 
number of AND terms assigned to each output on a PAL. 
The programmable OR array is the more efficient in that it 
lets the user assign the exact number of AND terms to each 
output as required by the application. 

Another major difference between the PAL architecture 
and that of a PSG is that the output cells on a PSG are not 
fed back into the input array. Typically, output feedback is 
used for building a counter or for holding state information. 
Since the architecture of the PSG already includes state 
registers and a binary counter, the requirement for output 
feedback is eliminated in most applications. This is a benefit 
to the user because valuable output cells and AND terms are 
not wasted when generating these functions. 

When a Field Programmable Logic Sequencer is 
compared to a PSG, the most obvious difference is the 
addition of a binary counter. Most state machine designs can 
be simplified by referencing all or part of each sequence to 
a binary count. This technique is highlighted in the third 
example shown in this application note. A comparison will 
also reveal that the output cells on a PSG can be configured 

A-7 



A-S 

CLK~~ ____________________________________________________ ~ 

10 121 
I' 131 
12 141 
13 151 
14 161 
15 171 
16 1231 

17 1221 
18 1211 

-,r 

19 1201 

1'0 1'91 ~ 

PO 
PI 
P2 
P3 
P4 

:~II~ 

II ___ >---P> 
CO 
Cl 
C2 
C3 
C4 

4+~H-HH~-H~~~~~~~~~~~~~~~HH~~~+~~4~~~'OO:,", 
~ CNTIHLDO 

4+~H-t++l~-H~~~~~~~~~+-+~~~HH~HH~~~+-D~4~-S OOIHLDl 

::: R 

-D~ 
-DR 

-D~ 
-oQR 
--I>HS 
-Dr-FR 

-D-~ 
-D- R 

Figure 1. PSG507 Architecture 

PO 

P4 

P5 

M 
U 
X 

M 
U 
X 

181 QO 

191 Ql 

r 1'01 Q2 --y 

..r- 1161 
-v Q7 



for nonregistered operation. This permits the outputs to be 
directly fed from the counter, AND lOR array, or state 
registers. Example 1 highlights this feature. 

In short, the outputs of a PSG can be controlled by any 
or all of the following conditions: 

• Present state of the inputs 
• Present state of the binary counter 
• Present state of the state holding registers 

The key to understanding state machine design when 
using a PSG is to realize that different states can be assigned 
for each sequence. In other words, the assigned state 
determines which sequence is in operation. The length of 
each sequence is controlled by the SCLR function. Once the 
count sequence has been programmed to the desired length, 
each output can be easily decoded from the present state of 
the binary counter. The user will soon discover that complex 
state machines are easily developed when using this 
technique. This technique is demonstrated in Example 3. 

Example 1: Waveform Generator 

The first example demonstrates a design for a simple 
clock generator used for driving a microprocessor operating 
at 5 MHz (required duty cycle of 33.5% high, 66.5% low). 
In addition to the 5 MHz system clock (SYS CLK) , a 
reference clock (REF CLK) operating at 15 MHz (50% duty 
cycle) and a peripheral clock (PCLK) operating at 2.5 MHz 
(50% duty cycle) are required for other timing controllers 
and peripherals throughout the system. Both clocks must be 
in close phase with the SYS CLK to guarantee synchronous 
operation within the system. 

The above example demonstrates one of the many uses 
of the binary counter in the PSG. State registers are not used 
in this particular application, only the binary counter and 
three outputs. A 30 MHz clock, typically generated from 
a crystal, is used for driving the binary counter of the PSG. 
The three generated clock signals are decoded from the 
binary count. The unused inputs and outputs are still available 
for other sequential or combinational applications. 

Figure 2 shows the timing diagram for the above 
application. For reference, a decimal count has been assigned 

o 2 3 4 5 

PSG ClK 

REF ClK 

SYS ClK 

PClK 

6 

to the master clock (PSG CLK) of the PSG. As shown in 
the timing diagram, at count 11 (10112) the sequence is 
repeated. By using the SCLRO function, a logic equation can 
be defined to reset the counter at count 11. This concept is 
demonstrated in Figure 3. 

With the binary counter programmed to clear at 11, 
it is a simple matter to decode the outputs from the binary 
count. With the REF CLK equal to the inverse of binary 
count zero (CO), REF CLK can be directly generated from 
the binary counter. A product term is required to connect 
CO to the output cell. The output register is bypassed by 
blowing the output multiplexer fuse. Figure 4 shows how 
CO can be connected. 

SYS CLK and PCLK are decoded from the present state 
of the binary counter through the SIR outputs. Since the SIR 
register holds its present state until changed, product terms 
have to be used only during output transitions. For example, 
when the binary counter reaches one, a product term is used 
to reset the SYS CLK on the next clock transition. Below is a 
summary of the product terms required to control SYS CLK 
and PCLK. Note that the output transitions are set up in the 
previous clock cycle. Also note that only one product term 
is used regardless of how many output terms switch. This 
is demonstrated at count 5 and count 11. Figure 4 also shows 
how SYS CLK and PCLK are connected. 

CNT 1: 
CNT 5: 
CNT 7: 
CNT 11: 

Reset SYS CLK 
Set SYS CLK, reset PCLK 
Reset SYS CLK 
Set SYS CLK, set PCLK 

This simple application demonstrates the basic concept 
of building a waveform generator using the PSG. This 
concept will be expanded further in Example 3 when a 
memory timing controller is developed. The basic rules for 
building a waveform generator are summarized below. 

7 

• Program the counter to reset to zero after the 
desired count length is reached. 

• Generate the logic equations to control the 
outputs from the present state of the binary 
counter. 

8 9 10 11 o 

(30 MHzl 

___ ,(15 MHzl 

.... ____________ r (5 MHz) 

.... _________________ ~2.5 MHz) 

Figure 2. Clock Generator Timing Requirements 
(Example 1 - Waveform Generator) 

A-9 



A-10 

.prlU 

*C 

Figure 3. SCLR at COUNT 11 
(Example 1 - Waveform Generator) 

,-COUNT 11 

II~ 
~p. 

CO 
Cl 
C2 
C3 
C4 
C5 

~ SCLRO 

~ 

LJ 

~ ~ 

~ 
-CiiiT IHLDO 

LJ 

::::: ~ I CNTIHLDI 

~ 

::: 
-L>" 

H> 

~ --D 
--D-

::: H> 
~ 

:::. ~ ..... 

-£ ~ ..... 
--D-
-D-F1iJ 
--D ~ ~ 

LJ -J:;. .... tt.. 
.r-

~ 

:::' R> 
--V 

- .r 
:::. ffi 

-v 

..... 

..J 

:::. 
-L>" 
~ 

~~~ LJ '" 

--D 

~~~ ..... ~ .. 
~ 

'-' 

-~" -L> ... 
..... 

~~ -D 

o:~" 



COUNT 7 \ r COUNT 5 

PSG ClK~~ __________ CO_U_N_T_1_1_:=\--",,\_~ \,.--_____ /LI 2~y" .. " 
, 

~ 

Figure 4. Waveform Generator 
(Example 1) 

IlrYl 
r---- CO 

C1 
C2 
C3 
C4 
CS 

~ ;::. 
~ -=lR1 ~ 

""1....T 

... CNT/HlOO 

-'"' ~ CNT/HlD1 =-
;:- R 

~ ~ ~ 

~ 
;:: R 

;::' ~ 
~ R 

--£ ~ 
~ R 

~ ~ -L> R 

~ ~ --D R 
...., 
~ =- R 

-!? 

~ -
S ~..c -!? 

--D ~R X 

M or -p-S{ U 

-D- X 

, 
M .r 

~ 
U ;::,. X 

~ R 
, 

M ..c::: ...., 
K>~ U ;::- X R 

, 
M --C -D-~ 
U 

-'"""' X 
~ R 

, 
M .r -'"""' 

~ 
U ;:::. X 

~ R 
, 

M ...rC _r-. 

~ U 
~ X --u- R 

:::r~ U ~' S R X 

REF ClK 

SYS ClK 

PCl K 

A·11 



Example 2: Refresh Timer 

The second example demonstrates a design for a refresh 
timer used for signaling to a memory controller that it should 
execute a refresh cycle. As required by the dynamic memory, 
every row (256 on TMS4256) must be addressed once every 
4 ms. One method used to guarantee that this requirement 
is met is to refresh one row at least once every 15.6 p,s. With 
a 5 MHz system clock, the timer should be set for a division 
rate of approximately 77 clock cycles. This condition will 
generate a refresh request every 15.4 p,s. 

The memory controller executes the refresh request 
('::RC::E::F::R:":E:::-:Q;:::-) immediately if it is not involved in an access 
cycle. If the memory controller is executing an access cycle, 
then the refresh request will not be honored until the access 
cycle is completed. A refresh complete input (RFC) is 
required on the refresh timer to acknowledge when the 
refresh cycle has been completed by the memory controller. 
It is important that the timer does not stop, even though a 
refresh complete signal has not been received. This 
guarantees the refresh requirement is not violated. This also 
assumes the memory controller will complete the refresh 
request sometime in the next 77 clock cycles. 

Figure 5 shows the timing diagram for the above 
application. A decimal count has been assigned to the PSG's 
master clock (PSG CLK) for reference. The counter is held 
at zero until the reset input is taken inactive low. Once the 
counter reaches 76 (equal to 77 clock cycles) the REFREQ 
output is driven active (low). The REFREQ output returns 
inactive high on the first positive clock edge after RFC goes 

PSG ClK 

RESET 

active high. RFC is the signal from the memory controller 
that tells the refresh timer when the refresh operation has 
been completed. The REFREQ output remains low until the 
RFC signal has been received. 

In order to generate a refresh request every 77 clock 
cycles, a 7-bit counter is required. Since the i.nternal.count~r 
of the PSG is 6 bits, one of the state holdmg regIsters IS 
required to expand the counter to 7 bits. As shown in 
Figure 6, only two product terms are required to expand t? 
7 bits; one product term to set the register when the 6-bIt 
counter reaches its full count (63), and one product term to 
reset the register after count 76. Since both the binary counter 
and the added register need to be reset after count 76, a single 
product line can be used for both. (For additional details on 
expanding the 6-bit counter of the PSG, see the designer notes 
at the end of this application report.) 

Figure 7 shows the fuse map for the entire refresh 
timer. The refresh timer is initialized by taking the RESET 
input high. When RESET is taken high, a single product line 
is activated and all other product lines are disabled. On the 
next active clock edge, the binary counter and C6 are cleared 
and the REFREQoutput is set high. The refresh timer will 
begin counting when RESET returns low. When the 7-bit 
counter reaches 76, a product line goes active (high) and on 
the next clock edge forces C6 and the 6-bit counter to zero. 
Note that the output register holding REFREQ is also reset 
to zero. The RFC input is connected to a product line which 
in turn is connected to the set input of the REFREQ output 
register. On the next active clock edge after RFC is taken 
high the REFREQ output will return high. 

RFC ______________________________________________________ __ 

A·12 

Figure 5. Refresh Timer Requirements 
(Example 2 - Refresh Timer) 



~----

~ 

])I 

---" 

COUNT 76 

Ir~OUNT63 
I I 

C6'11~ 
---t> 

CO 
Cl 
C2 
C3 
C4 
C5 

~6 16 ~Ml\ o II rti 0 'nil 
SCLRO ~ 

--D-~ 
SCLRl 

~ 

...... CNT/HLDO 
<../ 

::-~ CNT/HLDl 

R 

:::: ~ ::: R 

--t./ ~ 
::- R 

::? FL 
~ S 

-D t::iR 
-D 
-D ~ 
:::: 

--t./ 
~ 

R 

--D 'S o-p --D ~ 
F-D 

~ 
--D 
-p S U..r-
~ x 

'-' R 

--D-
M .r 

~ U 

R X 

~ 

M .r --D-Etn U 

--D- x 
~ 

M .r 
-0 ~ 

U 
..... X 
<../ R 

~ 

M .r 
-0 ~ 

U 
x -D R 

~ 

M --c 
~ 

U ::::. x 
--t./ R 

~ 

M .r 
~ 

U 
;::. X 

--t./ R 
~ 

M .r ..... S U 

-D~ x 
~ 

Figure 6. Expanding to 7-Bit Binary Counter 
(Example 2 - Refresh Timer) 

A-13 



A-14 

PSG CLK 

RESET 

RFC 

~ 

~ 

RESET--;FC\ 

.\ \" 

Figure 7. Refresh Timer 
(Example 2) 

/CO~TC76 
63 

C611~ 
~t> 

CO 
Cl 
C2 
C3 
C4 
C5 

~ SCLRO 

~ 

'-' ~ 
~ 

CNT/HLDO 

~ 
~ 1 OO/HLDl ::. 

-L> KU 
~ 

-D ~ 
~ 

~ !::' 

-D-fi -D-
~ 

-D-~ 
~ 

!:::' ~ 

-~ -n 
~ l= -? 

L.:.:.-
~ 

::::: I C6 

~ 
-u-
- REFR 

-D-

-D-
-D-~ 
~ 

~ 
.r 

::::: -v 

~ 

~ .r 
~ Ri 

-v 

~ 

-D-~ ~ 

'--' 

-D- .r 
~ 

-... 
-D-

~~ -D-

~~r 



Example 3: Dynamic Memory Timing Controller 

The third and last example will demonstrate a state 
machine design using the PSG507. Figure 8 shows the circuit 
requirement for a memory timing controller used for 
interfacing an Intel 8086 to an 'ALS2967 dynamic memory 
controller. Note that the clock generator and refresh timer, 
developed in Examples I and 2, can be used in this circuit. 

The dynamic memory timing controller generates the 
control signals (RAS, CAS, MSEL, etc.) needed for 

REFRESH 
TIMER 

RFC """'-

REFREQ 

< t--
RESET 

t MEMORY 
TIMING 

CLOCK CONTROLLER 
GENERATOR PSG507 

S2S4 SYS 
CLK t---4 ---. REFREQ 

£" 
OSC RFC ~ 

REF REF 

=c.- CLK CLK 
RESET f---4 

RESET 

~ 

RESET 

SOS6 RAS 

< r-- CAS 

RDY RDY MSEl 

MIlO MIlO MC1 

RD )--

WR 

~ ALE 

ALE 

AO-A17 K 
A1S 

A19 

-.. 

f"" 

) , 

accessing and refreshing the dynamic memory. The memory 
timing controller must also be capable of arbitrating between 
refresh and access cycles. In other words, if a refresh request 
(REFREQ) occurs while the timing controller is performing 
an access cycle, the controller must finish the access cycle 
before granting the refresh request. Likewise, if an access 
cycle is requested during a refresh cycle, the controller must 
hold the processor while completing the refresh cycle. After 
the refresh cycle has been completed, the access cycle can 
be performed. 

DYNAMIC RAM 

DYNAMIC BANKO , 256K DYNAMIC RAMS 
MEMORY " TMS4256 (16) 

CONTROLLER r--/ 
AO-AS 

2967 
r- ~ RASO 

t- o. CASO · ,.. W 

I I 
- -~ 

BANK1 256K DYNAMIC RAMS 

QO·QS AO-AS TMS4256 (16) 
r- r-~ 
I-- · RAS1 ...... 
I-- ....... CAS1 

~ W 

I I 
RASI L-~ 

BANK2 256K DYNAMIC RAMS 

CASI 
AO-AS TMS4256 (16) 

~r7' 
MSEL t- · RAS2 

MC1 I-- .. CAS2 

MCO ~ W 

I 
L-~ 

BANK3 256K DYNAMIC RAMS 
LE TMS4256 (16) 

/ AO-AS 
-, 

ROW (AO-AS) 
COL (A9-A 17) -.- RAS3 

SELO 
....... CAS3 

SEL1 
~ W 

DO-15 QO-Q15 

f 
/"'t- SN74AS240 

(2) 

'-- " 

'" 
G 

Figure 8. Memory Timing Controller 
(Example 3) 

A-15 



Figure 9 shows a detailed flow chart for the intended 
application. Note that two sequences are executed and three 
states are used. State 0 (STO) provides an initalization and 
holding state, while state 1 (ST!) is assigned to the access 
sequence. The access sequence consists of 10 clock cycles 
as shown in Figure 10. State 2 (ST2) is assigned to the 

YES 

NO 

INITIALIZE 
RESET - H 

STATE 0 
CNT.PO.P1 - L 

RAS.ROY.MC1.CAS - H 
MSEL.RFC - L 

STATE 1 
SET PO - H. P1 - L 

EXECUTE ACCESS 
SEQUENCE (Figure 101 

NOTE: 
IF RESET - H 

GO TO STATE 0 

YES 

refresh/access grant sequence (Figure 11). This particular 
sequence takes 20 clock cycles, with a logical decision being 
made between count 9 and count 10. If at count 9 RDY is 
low, the counter will continue on and execute the access grant 
sequence. IfRDY is high, the controller will clear the counter 
and return to state O. 

STATE 2 
SET PO - L. P1 - H 

EXECUTE REFRESH 
SEQUENCE (Figure 111 

NOTE: 
IF ALE.M/IO - H 

THEN SET ROY - L 
IF RESET .. H 

GO TO STATE 0 

YES 

ACCESS GRANT 

NOTE: 
IF RESET .. H 

GO TO STATE 0 

NO 

Figure 9. Flow Chart: Dynamic Memory Timing Controller 

A-16 



.... --t1--.... ~- t2 --.... ~- t3--.... 14~- t4 ~ 

REF ClK 

\ 
MSEl __________________________ ~1 

I I 

\ 

~ DATA FROM MEMORY) C 
I 
I I 

WRITE DATA 

ST1 ST1 

4 5 
IST1 ST1 

16 7 

I 
I 
I 
I I 

\ 
~ta(cl~ 

CAS------------------------~\~ ______________________ ~I 

REFREQ - H. RESET - l 

MC1 - H. RFC - l. ROY - H 

Figure 10. Access Cycle 

Developing the logic equations for this application 
becomes a simple matter when referencing the sequences to 
a decimal count (Figures 10 and 11). It is important to realize 
that each sequence has been referenced to a state. This allows 
the same binary counter to be used for each sequence, even 
though each sequence is of a different length. 

The first step in implementing the above application 
is to define the logic equations which will make the binary 
counter perform as described in the flow chart of Figure 9. 
As will become evident, these equations fall directly from 
the flow chart. After the counter has been made to perform 
as described, the outputs can be easily decoded from the 
binary count and the present state of the state holding 
registers. 

Figure 12 shows a fuse map for step 1 as described 
above. Initalization is performed by taking the reset input 
high. When this condition occurs, all product lines except 
the reset product line are forced inactive. When the reset 
product line is active, the counter and state holding registers 
(PO and PI) are reset to zero on the first active clock edge. 

The CNT/HLDl register is set high, which places the counter 
in the hold mode. The RDY, MCI, RAS, and CAS outputs 
are driven high on the same active clock edge. Since the RDY 
output does not feed back to the AND array, a buried state 
register, BRD Y, is used to monitor the RD Y output and is 
also set high. MSEL and RFC are driven low. 

Controlling the binary counter is a simple matter and 
normally takes only a couple of logic equations. For each 
sequence, a start and stop condition must be defined. In the 
case of STl, when the condition RESET = L, ALE = H, 
MilO = H, REFREQ = H, PO = L, and PI = L occurs, 
STO (PI = L, PO = L) changes to STl (PI = L, PO = H), 
and the CNT IHLD I register is driven low to let the counter 
advance on the next active clock edge. When the counter 
reaches nine, STI returns to STO and the counter is cleared 
and put back into the hold condition. 

In the case of ST2, when the condition RESET = L, 
=== REFREQ = L, PO = L, and PI = L occurs, STO changes 
to ST2 (PI = H, PO = L) and the CNT/HLDI register is 
driven low to let the counter advance on the next active clock 

A-17 



edge. As shown in the flow chart, if MilO and ALE go high 
while in state 2, RDY and BRDY will be reset low on the 
next active clock edge. When the counter reaches nine, if 
RDY (BRDY) is high the state registers are returned to STO 
and the counter is cleared and placed back into the hold 
condition. If RDY (BRDY) is low, the counter advances on 
until it reaches 19. ST2 then returns to STO with the counter 
being cleared and placed back into the hold condition. 

Access Sequence 

STl CNT 0: Reset RAS 
ST 1 CNT 1: Set MSEL 
STl CNT 2: Reset CAS 
STl CNT 9: Set RAS, 

Refresh Sequence 

With the binary counter programmed to execute the 
flow chart in Figure 9, it is now a simple matter of decoding 
the outputs to perform as required in Figures 10 and 11. This 
is the same technique used in Example 1, except now a state 
has been assigned to each sequence. Below is a summary 
of the switching requirements for both the access (STl) and 
the refresh sequence (ST2). 

Reset 
MSEL, 
Set CAS 

ST2 CNT 0: 
ST2 CNT 1: 

ST2 CNT 5: 

ST2 CNT 6: 
ST2 CNT 7: 
ST2 CNT 10: 
ST2 CNT 11: 
ST2 CNT 12: 

ST2 CNT 19: 

Reset MCI 
Set RFC, 
Reset RAS 
Reset RFC 

Set RAS 
Set MCI 
Reset RAS 
Set MSEL 
Reset CAS, 
Set RDY, 
Set BRDY 
Set RAS, 
Reset MSEL, 
Set CAS 

Note that the transition changes are set up in the 
previous clock cycle, just as in Example 1. Figure 13 shows 
a complete fuse map for the memory controller . 

ClK 

... 14-----REFREsH CYClE----.. ~.,..I4I-------ACCESS CYCLE IF REQUIRED----~~1 

I I I 
I4--tw----- tw - ..... ..--t3--+14--t4~ 
I 1 

AlE __________ L-____ ~~ ____ ~~ ______ L_ ______________________ +_--------~,----

~LDX 
T WR--------+---~\r---------T,--------T,--------~\ I 
E .~--------~,--------~,--------~-~--------------------------. 

WRITE DATA I 

~~~~~~~~*~~~~~~~~~~~ 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 0 

OSC 

MC1 \ 1 , 
~.----------------~ 1 

-----________ ..,_ - - - - T - - - - ., -1- _______ ',. _______________ _ 
ROY \" I 

RFC _______ ... 1 \ 

\ I \ , 
MSEl ______________________________________________ .J

' \ 

\ 1 

* IF ROY - H. RETURN STO 

Figure 11. Refreshl Access Grant Cycle 

A·18 



REF ClK 
~·-RESET-

,-------, 
RESET 

ALE 

MIlO 

~ 

ST2 CNT- ST1 CNT STO ROY 
C I r-----1 r-----1 r-l 

PO 
Pl 
P2 
P3 
P4 

::II~ 
>----

CO 
Cl 
C2 
C3 
C4 
C5 

SClRO 

;:. 
~ ::: SClRl 

.... R 

~ CrmHlOO 

-D-~ CNT/HlOl 

-D- R 

- ~ ::: PO 

'-- R 

-£-~ Pl 

:: R 

~ * 
P2 

'--' 

-D-

--D-~ 
P3 

-D-3f P4 

--D- ~ 
-D-~ P5 

--D- ~ 
-D-~ P6 

--D-
-D-~ BROY 

-D 

~r -p S U 
~ X 

'- R 

-D-

M .r 
~ 

u 

-D- X 

0 

-D-

M ..r 
~ 

u 

--b- X 

0 

-D-

M ..r 
~ 

u 

--D- X 
R 

0 

-D-
M ..r 

~ 
u 

--D- X 
R 

0 

-D-
M .r 

~ 
u 

--b- X 

0 

-D-e; 

M ..r u 
-D-R 

X 

-D-~ u ~r --D-- R X 

Figure 12. Counter Control Logic 
(Example 3 - Dynamic Memory Timing Controller) 

ROY 

MCl 

RFC 

RAS 

MSE 

CAS 

A·19 



REF CLK 

.f ~ 
RESET 

ALE 

M/ID 

REFREQ 

~ 

A-20 

~ ST2 Cl\il ~I..£!L~ 

Figure 13. Memory Timing Controller 
(Example 3) 

IPO 
IP1 

I~RD~I~ 
~ 

CO 
C1 
C2 

C4 
C6 

........ SCLRO 

;:: 
.,.... 
~ -

r- CNT/HLDO 

-l:> 
-D-

~ffi/HL01 

-'""' f--I:> PO .,.... 

~ P1 
~ ;::: 

L../ 

Fn -D 
-D 
-{>-
-D En 
-Q-
-D ~ 
--'"' ;::: ~ ;: 

;:::. 
1../ 
~ 

-Q-~ ~ -D 
,... ....c 

-D ~ 

-{>-~ 
.r .... 

-b-

.r 
;::: 

L../ ~ 

~ 
£ 

....... ~ 
~ 

~r ~ 
L../ 

1>-~. -tr 

Y L 
~ -
~~ -i5-::t 

ROY 

MC1 

RFC 

liAS 

MSEL 

CAS 



DESIGNER NOTES 

Obtaining Maximum Counter Performance 

As with any programmable logic device, there are 
usually several different methods for implementing anyone 
application. In some cases, device performance is affected. 
On the PSG, maximum counter frequency is affected by how 
the designer controls the 6-bit counter. 

For example, in the waveform generator example 
shown at the beginning of this application note, the counter 
was reset to zero after reaching count 11 by using the 
nonregistered SCLRO function. By using the registered 
SCLRI function, a higher operating frequency is obtainable. 

This method requires an additional "AND" term as 
shown in Figure 14, but does provide maximum 
performance. Note that during the 10th clock cycle the set 
input on the SCLRI register is high. On the next active clock 
edge, the counter advances to 11 and the SCLR1 register 
is set high. This causes the counter to be reset on the next 
active clock edge. At the same time, the SCLR1 register is 
reset low to allow the counter to advance past zero. 

In effect, the setup time requirement for SCLR1 is 
performed in the previous clock cycle. When using the 
SCLRO method, the setup time must be added to the fmax 
equation. This results in a lower fmax. The same tradeoffs 
apply with the CNT/HLD function. The PSG507 data sheet 
specifies fmax for both methods. 

Expanding the 6-Bit Counter 

In Example 2, the six bit counter had to be expanded 
to 7 bits. This was accomplished by adding one of the state 
registers to the most significant bit of the counter. It should 
be noted that the synchronous clear and count hold functions 
must be controlled through the set and reset inputs of the 
added bits. The designer must be aware of certain limitations 
when trying to perform this function. Figure 15 shows three 
additional bits being added to the 6-bit counter. Note that 
every bit added requires two additional "AND" terms. 

A problem can arise on certain counts when trying to 
generate a synchronous clear before reaching the full binary 
count (all outputs high). The designer must ensure that both 
Sand R are not high simultaneously. For example, let's say 
we want the 9-bit counter to return to zero at count 383 
(1011111112). At count 383, the SIR register used for C7 
is being told to set. Therefore, any reset command would 
result in both Sand R being high simultaneously. 

This problem, only seen on a few data words, can be 
solved by using another state register to control the counter 
reset. This method is similar to that used above to obtain 
maximum operating frequency. Figure 16 shows the 9-bit 
counter returning to zero after count 383. Notice that at 
count 382 the extra SIR register is being told to reset on the 

next ,,-ctive dock edge. At count 383 the six product lines 
controlling C6, C7, and C8 are disabled by the feedback from 
the extra register, in particular the S input on C7. At 
count 383, the 9-bit counter will return to zero and the extra 
register is set high. 

An extra register may also be needed to achieve the 
count/hold function when using an expanded counter. During 
certain counts the added bits will change state, even though 
the 6-bit counter is programmed to hold. For example, let's 
say we want the 9-bit counter to hold at count 383. Even 
though the 6-bit counter can be held at 111111, C6 and C7 
will advance on the next active clock edge. In order to hold 
C6 and C7 where they are, an extra register is used to disable 
the product lines responsible for the transition from count 
383 to 384. Since the counter is on hold, the extra hold 
register can only be reset from an input pin or a state 
register(s) transition (not on the next count). In this example, 
an input pin is used to reset the extra register and the 
CNT/HOLD register. When the CONTINUE input is taken 
low, the counter will continue to advance. The system must 
guarantee that the continue input will not be low during count 
382 to avoid the indeterminant set = H, reset = H state. 
Figure 17 shows this 9-bit counter. 

It is also important to note that when using extra 
registers a reset input may be necessary to set the extra 
registers high after powerup, since all SIR registers power
up clear. This requirement would not be necessary if the 
phase of the extra register was reversed. This is easily 
accomplished by using the inverted feedback from the extra 
register. However, it is good state machine design practice 
to include a reset input that forces all SIR registers to a known 
state. 

Software Support 

The PSG507 is supported by two software packages; 
CUPL, which was created by and is supported by Assisted 
Technologies, a division of Personal CAD Systems 
Incorporated, and ABEL, which was created by and is 
supported by FutureNet, a division of Data 1/0 Corporation. 
Each of these software packages can be used to reduce 
equations and to generate a fuse map necessary to program 
the PSG507. Appendices A and B show the ABEL and CUPL 
files for Examples 1, 2, and 3. In addition, a PSG507 
template is shown for each software package. These 
templates provide software information that will make it 
easier for the designer to create the source files. 

Test vectors are included with the ABEL and CUPL 
source files so software simulation can be performed on the 
computer. If the proper instruction is provided, the software 
will attach the test'vectors to the end of the fuse map. This 
allows programming equipment to run a functional test on 
each device immediately after programming. 

A·21 



.f~ 

~ 

~ '9 m 

A-22 

COUNT 11\ 

jljIj 'IWl \Ii' ( ;.n ;Q 9;Q; ;Qlrr;Q9 ;Q; 

Figure 14. Registered SCLR Example 
(Designer Notes) 

10 

IlrYl 
~ 

CO 
C1 
C2 
C3 
C4 
C5 

~ 

~ ::: 
::::: ~ --u-
r-.. CNT/HLDO 

~ ~CNT/HLD1 n 
~ 

-D-*J -D-

--? ~ 
~ ~ 

--l? -b- 'ii 
~ ~ 
~ 

;::: --u- 'ii 
-D Ftn ,..., ....., 

-E,> ~ ....., 
.c ~ v ;::: FTh ....., 

~ ~O :::::. ....., 

-D ~ -D-

,..., 
~ 

or-
.n. 
~ 

-D-~ -D-

-D- .r 
ffi --v 

-D-

.r 
:::. --u-~ 

--v 

-~" ::"'--J> 



COUNT 255 

COUNT 255 
COUNT 127 

COUNT 127 

~ 
COUNT 511 COUNT 63 

C6 

~J 
C7 
C8 

JI~ 
r----

CO 
C1 
C2 
C3 
C4 
C5 

ro SCLRO 

;:: 
~ SCLR1 ~ 

'-'" R 

CNT/HLDO 

;:: 
~ CNT/HLD1 ;:: - R 

c-J? ~ C6 

-D 
ro 

~ C7 ;::. 
'-'" R 

-D ~ C8 

-D R 
.- S ;::.. HR ~ 

~ ~ -D R 

-Q-Sf -D ~ 
c-J? 'S 

t-~ -D ~ 
-Q-

~r -D 

-y ~ ~ -D-

M .r ,...... 

~ 
U 

-D- X -
-!?-~r S U 

- ~ X ~ 
M .r -D-~ 
U 

-D- X 
R 

~ 

M L -D-~ 
U ...., X 

~ R 

-!?-
-D-~ ~ X 

M L ...., 
~ U ;::- X - R 

~~ . ...r;~ X 
~ R 

Figure 15. Expanding to 9-Bit Counter 

A-23 



A-24 

COUNT 255 

COUNT 511l riCOUNT 255 
COUNT 382 fOUNT 127 

COUNT 383 ~.tiCOUNT 127 
~_ --------------------------~--~~H_--44--- ~COUNT63 

,I. ,1,1 

~b 

Figure 16. Resetting after Count 383 
(Expanding the 6-Bit Counter) 

::: 
;:? 
-t...r 

~ 

-f> 
-D-
-D-
-D-
r-

:::-
-t...r 

" -n-
-D-
-1'>-

-D-
-D-
-D-
-D-
-D-
-D-

-!?-
-D-

-1'>-
-D-

,-.., 
;:::: 

1../ 

--D-
-n-

--D-...... 
~ 

C6 
C7 
C8 

II~ 
~ 

CO 
C1 
C2 
C3 
C4 
C5 

~~ ~ SCLR1 

CNT/HLOO 

~ CNTIHL01 

~ 
~ C6 

S 

~ 
C7 

~ C8 

~ 
~ 
~ 
~ 

EXTRA 

~" S U 
~ X 

M r 
~ u 

X R 

, 

M r 
~ 

U 
X 

, 
M r 

~ 
U 
X 

R 

". I 



~ 

*lJ 

COUNT 255- rCOUNT 255 

COUNT 511- rCOUN~; 127 COUNT 382- COUNT 127 
CONTINUE- rCOUNT 63 

.1 .1 

C6 

C8 

/lrYl 
>-----

CO 
Cl 
C2 
C3 
C4 
C5 

,.., SCLRO 

~ ;::: >---f:. 
""L/ 

,.., CNT/HLDO 

~ 
~ ~ /Ciiii'/HLDl 

~ 

~ ::::. C6 

~ ~ 
~ ~ C!7 
~ ~ 
? ~ C8 

~ 

-D-~ ..... 
~ ;:::: 

,.., ;::j:f :::-
-D- r -D- ~ EXTRA ,.., 

REGISTER ;:::: 

~~ 
""L/ 

-? 

-D-~" 
-£ ~ ~ 

-D-
.r 

..... :t 
~ 

r-. ~~ -n. 
~ 

~ ~ ~ 

-D-~ 
.r 

~ 

~~" -0-= 

Figure 17. Holding the 9-Bit Counter at Count 383 
(Expanding the 6-Bit Counter) 

A-25 



A-26 The proLog;c Compiler 



'PSG507 Example 1: Waveform Generator 

title { 

Device: TIBPSG507 

Application: PSG507 Example 1: Waveform Generator. 

Source: Breuninger, R. K. "A Designer's Guide to the 
TIBPSG507," Programmable Logic Data Book, 3-39, 
Texas Instruments, 1988. 

Transcription: INLAB Inc., 

} 

include a507; 

250-I West 6th Avenue 
Broomfield, CO 80020 
303-460-0103 

/* counter states of interest */ 
define COUNT1 =ptOO; 

ptOO = !c3 & !c2 & !c1 & cO; 
define COUNT5 =pt01; 

pt01 = !c3 & c2 & !c1 & 

define COUNT7 =pt02; 
pt02 = !c3 & c2 & c1 & 

define COUNT11=pt03; 

/* ref clk */ 

/* sys_clk */ 

/* pclk */ 

sclrO 

pt03 c3 & !c2 & c1 & 

pin8 pt04; 
pt04 = !cO; 

pin9.s COUNT5 
pin9.r COUNT1 

pin10.s= COUNT11; 
pin10.r= COUNT5; 

COUNT11; 

COUNT11; 
COUNT7; 

cO; 

cO; 

cO; 

/* synchronous clear on count 11 */ 

test vectors { /* psg_clk count ref clk sys_clk pclk */ 

pin1 pin8 pin9 pin10; 

0 /* 0 */ H L L 

C /* 1 */ L L L 
C /* 2 */ H L L 
C /* 3 */ L L L 

C /* 4 */ H L L 

C /* 5 */ L L L 

C /* 6 */ H H L 

A-27 



c /* 7 */ L H L 

C /* 8 */ H L L 

C /* 9 */ L L L 

C /* 10 */ H L L 

C /* 11 */ L L L 

C /* 0 */ H H H 

C /* 1 */ L H H 

C /* 2 */ H L H 

C /* 3 */ L L H 

C /* 4 */ H L H 

C /* 5 */ L L H 

C /* 6 */ H H L 

C /* 7 */ L H L 

C /* 8 */ H L L 

C /* 9 */ L L L 

C /* 10 */ H L L 

C /* 11 */ L L L 

C /* 0 */ H H H 
} 

A-28 The proLogic Compiler 



'PSG507 Example 2: Refresh Timer 

title { 

Device: TIBPSG507 

Application: PSGS07 Example 2: Refresh Timer. 

Source: Breuninger, R. K. HA Designer's Guide to the 
TIBPSGS07,H Programmable Logic Data Book, 3-42, 
Texas Instruments, 1988. 

Transcription: INLAB Inc., 

} 

include aS07i 

250-I West 6th Avenue 
Broomfield, CO 80020 
303-460-0103 

/* input signals */ 
define reset 
define RESET 

pin2; /* inactive low */ 
ptOO; 
ptOO = reset; 

define rfc 
define RFC 

pin3; /* active high refresh complete */ 
ptOl; 
ptOl rfc; 

/* the seventh counter bit */ 
define c6 pO; 

/* counter states of interest */ 
define COUNT63 pt02; 

pt02 = !c6.q & c5 & c4 & c3 
define COUNT 7 6 pt03; 

pt03 = c6.q & !cS & !c4 & c3 

/* counter 
c6.s 
c6.r 
sclrO 

control */ 
COUNT63; 

COUNT76 I 
COUNT76 I 

RESET; 
RESET; 

/* refreq */ 
define refreq 

test vectors { 

pin8 i refreq.s 
refreq.r 

& c2 & cl 

& c2 & !cl 

RFC I RESET; 
COUNT76; 

& cO & !reset; 

& !cO & !reset; 

pinl reset rfc refreqi 

repeat 4 { 
o 
C 

1 
1 

o 
o 

Li 

H; 
/* power on */ 

} /* reset */ 

A-29 



repeat 76 { C 0 0 H; } 

C 0 0 L; 
C 0 0 L; 
C 0 1 H; 

repeat 74 { C 0 0 H; } 

C 0 0 L; 
C 0 0 L; 
C 0 1 H; 

} 

A-30 The proLogic Compiler 



'PSG507 Example 3: Dynamic Memory Timing Controller 

title { 

Device: 

Application: 

Source: 

TIBPSGS07 

PSGS07 Example 3: Dynamic Memory Timing 
Controller. 

Breuninger, R. K. HA Designer's Guide to the 
TIBPSGS07,H Programmable Logic Data Book, 3-45, 

Texas Instruments, 1988. 

Transcription: INLAB Inc., 

} 

include a507; 

/* input signals 
define reset 
define ale 
define mio 
define refreq 

/* output signals 
define rdy 
define mc1 
define rfc 
define ras 
define msel 
define cas 

/* internal */ 
define brdy 

250-1 west 6th Avenue 
Broomfield, CO 80020 
303-460-0103 

*/ 
pin2; 
pin3; 
pin4; 
pinS; 

*/ 
pin8; 
pin9; 
pin10; 
pin11; 
pin13; 
pin14; 

p2; 

/* inactive low */ 
/* address latch enable */ 
/* memory I/O * / 
/* refresh request */ 

/* ready */ 
/* mode control */ 
/* refresh complete */ 
/* row address strobe */ 
/* multiplexer select */ 
/* column address strobe */ 

/* buried ready - always identical to 
output signal 'rdy'. Permits testing 

the output pin state. */ 

/* counter states of interest */ 
define COUNTO !c4 & !c3 & !c2 & !c1 & !cO; 
define COUNT1 !c4 & !c3 & !c2 & !c1 & cO; 
define COUNT2 !c4 & !c3 & !c2 & c1 & !cO; 
define COUNT 3 !c4 & !c3 & !c2 & c1 & cO; 
define COUNTS !c4 & !c3 & c2 & !c1 & cO; 
define COUNT 6 !c4 & !c3 & c2 & c1 & !cO; 
define COUNT 9 !c4 & c3 & !c2 & !c1 & cO; 
define COUNT 1 0 !c4 & c3 & !c2 & c1 & !cO; 
define COUNT11 !c4 & c3 & !c2 & c1 & cO; 
define COUNT12 !c4 & c3 & c2 & !c1 & !cO; 
define COUNT19 c4 & !c3 & !c2 & c1 & cO; 

A-31 



/* LOW and HIGH operations for clarity */ 
define LOW .r=l; /* usage: (rs LOW) -> (rs.r=l) */ 
define HIGH = .s=l; 

state_diagram (p1.q,pO.q) { 

if (reset) { 

} 

/* These are the levels of all output and control 
signals in the idle state. Other states return 

modified signals to these levels before resuming the 
idle state. */ 

mc1 HIGH; rdy HIGH; rfc LOW; ras HIGH; msel LOW; 
cas HIGH; brdy HIGH; 

sclrO=l; hld1 HIGH; /* counter cleared and holding */ 
idleState; 

state idleState=OO { 

} 

/* Wait for Request */ 
if (ale & mio & refreq) { 

} 

/* Memory Access Request */ 
hld1 LOW; 
accessCycle; 

if (! refreq) { 

} 

/* Memory Refresh Request */ 
hld1 LOW; 
refreshCycle; 

state accessCycle=Ol { 

} 

/* Generate the Memory Access Sequence. */ 
if 

if 

if 

if 

} 

(COUNTO) 
ras LOW; 

(COUNT1) 
msel HIGH; 

(COUNT2) 
cas LOW; 

(COUNT9) { 

/* Return modified control and output 
signals to their idle values. */ 

ras HIGH; msel LOW; cas HIGH; 
sclrO=l; hld1 HIGH; 
idleState; 

state refreshCycle=lx { 
/* Generate the Memory Refresh Sequence. */ 
if (ale & mio) { 

A-32 The proLogic Compiler 



} 

} 

} 

/* An Access Request occurs during refresh. Hold 
off the processor until refresh is complete (at 
COUNT9 below). */ 

rdy LOW; 
brdy LOW; 

if (COUNTO) 
mcl LOW; 

if (COUNT1) { 
rfc HIGH; ras LOW; 

} 

if (COUNT3) 
mcl HIGH; 

if (COUNTS) 
rfc LOW; 

if (COUNT6) 
ras HIGH; 

if (COUNT9) 
/* The Refresh Sequence is complete. */ 
if (brdy.q) { 

} 

/* The processor did NOT make a Memory Access 
request during the Refresh Sequence. 
Return to idle. */ 

sclrO=l; hldl HIGH; 
idleState; 

/* A Memory Access Request was received during the 
Refresh Sequence. Generate the Memory Access 
Sequence now. */ 

if (COUNT10) 
ras LOW; 

if (COUNTll ) 
msel HIGH; 

if (COUNT12) { 

} 

rdy HIGH; cas LOW; 
brdy HIGH; 

if (COUNT19) { 

} 

ras HIGH; msel LOW; cas HIGH; 
sclrO=l; hldl HIGH; 
idleState; 

test vectors { 

/* Access Cycle */ 

pinl reset ale mio refreq rdy mcl rfc ras msel cas; 

A-33 



o 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

o 

1 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 

o 
o 

o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 

o 
o 

o 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 

1 

1 
1 

1 

1 
1 

1 
1 
1 

1 

1 
1 

1 
1 
1 

1 
1 

L 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

/* Refresh Cycle 

L 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

L L 

L H 
L H 

L H 
L H 
L H 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L H 
L H 

L 

L 

L 

L 

L 

L 

L 

H 

H 

H 

H 

H 

H 

H 

H 

L 

L 

L 

H 

H 

H 

H 

/* power on*/ 

/* reset */ 

H /* 0 */ 
H /* 1 */ 
H /* 2 */ 
L /* 3 */ 
L /* 4 */ 
L /* 5 */ 
L /* 6 */ 
L /* 7 */ 
L /* 8 */ 
L /* 9 */ 
H /* 0 */ 
H /* 0 */ 

pinl reset ale mio refreq rdy mcl rfc ras msel cas */ 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
1 
1 
1 
1 

1 
1 
1 

1 
1 
1 

1 

o 
o 
o 
o 
o 
o 
1 

1 

1 
1 
1 

1 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H L 
L L 
L H 
L H 
H H 
H H 
H L 
H L 
H L 
H L 
H L 
H L 

H L 
H L 
L L 
L L 
L L 
L L 
L L 
H L 
H L 
H L 
H L 
H L 

/* Refresh/Access Grant Cycle 

H /* 0 */ 
H /* 1 */ 
H /* 2 */ 
H /* 3 */ 
H /* 4 */ 
H /* 5 */ 
H /* 6 */ 
H /* 7 */ 
H /* 8 */ 
H /* 9 */ 
H /* 0 */ 
H /* 0 */ 

pinl reset ale mio refreq rdy mcl rfc ras msel cas */ 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

A-34 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
1 

o 
o 
o 
o 
o 
o 
o 

o 
1 
1 

1 
1 
1 

1 
1 

1 

1 

1 

o 
o 
o 
o 
o 
o 
1 
1 

1 

1 
1 

H 

H 

H 

L 

L 

L 

L 

L 

L 

L 

L 

H L 
L L 
L H 
L H 
H H 
H H 
H 

H 

H 

H 

H 

L 

L 

L 

L 

L 

H 

H 

L 

L 

L 

L 

L 

H 

H 

H 

H 

L 

L 

L 

L 

L 

L 

L 

L 

L 

L 

L 

H /* 0 */ 
H /* 1 */ 
H /* 2 */ 
H /* 3 */ 
H /* 4 */ 
H /* 5 */ 
H 

H 

H 

H 

H 

/* 6 */ 
/* 7 */ 
/* 8 */ 
/* 9 */ 
/* 10 */ 

The proLogic Compiler 



c 0 0 1 1 L H L L L H /* 11 */ 
c 0 0 1 1 L H L L H H /* 12 */ 
C 0 0 1 1 H H L L H L /* 13 */ 
C 0 0 1 1 H H L L H L /* 14 */ 
C 0 0 1 1 H H L L H L /* 15 */ 
C 0 0 1 1 H H L L H L /* 16 */ 
C 0 0 1 1 H H L L H L /* 17 */ 
C 0 0 1 1 H H L L H L ; /* 18 */ 
C 0 0 1 1 H H L L H L /* 19 */ 
C 0 0 1 1 H H L H L H /* 0 */ 
c 0 0 1 1 H H L H L H /* 0 */ 

} 

A-35 



A-36 The proLogic Compiler 



Appendix B 

TI Device Cross Reference 
111!11111111!IIII!ISIIIII!III!II!m!~m!!II!mlllll!!!!!3I!!!!!!!!II!!SSII!!!!!!!IS!S!S!!!!!!III!I!!I!lmSIII!IIIS!!!IIIII!!llml!11111!!I!!!!!II!II!!IIII!IIII!!II!!III!!!I!Sm!llll!ml!il!III!~mm!1IIIIII!! 

~~teettere~.~ee,e!,e,etr~" .. ~ .. " .. ~ ........ ~IM! .. I..WII'ocI&N .......... Itoi .. ~teettetre'tell/'olltoMtltlC~~~eete,eee 
,~ " ~_ ""'" .",.","" .t.",.""",,, ... ", •• "".",,,,,,,,,,,,,1 ''''oW''''''_ """"""""""'''''''''''''''''''''' •• ,,''' __ '''''''' "It'" "'lfltl " •• 

11 DEVICE CROSS REFERENCE 

TI Device Name proLogic Name ~ 

PAL 16L8NA-2 
PAL 16R4NA-2 
PAL 16R6NA-2 
PAL 16R8NA-2 
PAL20 L8A 
PAL20R4A 
PAL20R6A 
PAL20R8A 
TIBPAD16N8-7 
TIBPAD1SN8-6 
TIBPAL16L8 
TIBPAL16R4 
TIBPAL16R6 
TIBPAL16R8 
TIBPAL20LS 
TIBPAL20R4 
TIBPAL20R6 
TIBPAL20R8 
TIBPAL20L 10 
TIBPAL20X4 
TIBPAL20X8 
TIBPAL20X10 
TIBPAL22V10 
TIBPAL22VP10 

P16LS 
P16R4 
P16R6 
P16RS 
P20LS 
P20R4 
P20R6 
P20RS 
P16N8 
P18NS 
P16LS 
P16R4 
P16R6 
P16RS 
P20LS 
P20R4 
P20R6 
P20R8 
P20L10 
P20X4 
P20X8 
P20X10 
P22V10 
P22VP10 

C-15 
C-19 
C-20 
C-21 
C-24 
C-26 
C-27 
C-2S 
C-16 
C-22 
C-15 
C-19 
C-20 
C-21 
C-24 
C-26 
C-27 
C-2S 
C-25 
C-29 
C-30 
C-31 
C-32 
C-34 

8-1 



B-2 

TI DEVICE CROSS REFERENCE (continued) 

TI Device Name 

TIB82S105B 
TIB82S167B 
TIBPLS506 
TIBPSG507 
TICPAL16L8 
TICPAL16R4 
TICPAL16R6 
TICPAL16R8 
TICPAL22V10 
TIEPAL 1 OH16P8 

proLogic Name 

A105B 
A167B 
A506 
A507 
P16L8 
P16R4 
P16R6 
P16R8 
P22V10 
P16P8E 

Page 

G-3 
C-5 
C-7 
C-11 
C-15 
C-19 
C-20 
C-21 
C-32 
G-34 

The proLogic Compiler 



Appendix C 

Logic Diagrams 
i!iiIi~!I!!!!!!mm;:;!llliillll;;;=~!!iiE!m~i!ii;mm!!illliiili!limil!!!:!il!~ill!iI!iimii!!!I!iii!!!I!Jii!iiil!!l!iliillliiii 

mm nmm :;e:::;:::m:;m:;;c::: 

C-1 



C-2 The proLogic Compiler 



o 
I 

(r,) 

P 
I--" 

o 
Ul 
<Y 
I 

I--" 

::. 

;!S 

~ 

!1! 

~ 

... 

pt471:=] 
pt46t=] 
pt4:5C=] 
pt44t=] 
pi4X-] 
pr0421:-] 
pr4l[-] 
pi41J[-] 
pt39[-] 
pi38[-] 
'pt37t-] 
pt36C-] 
pt35[-] 
pt3<l[-] 
pt33[-] 
pt3Z£=] 
pt31[=] 
pt3()[=] 
pt2'X=] 
pt29[-] 
pt27t-] 
pt26[-] 
pt2S[-] 
pt24t-] 
pt23t-] 
pt22[-] 
pt2l[-] 
pt2Ot=l 
ptl~-] 
ptl8[-] 
ptl7t=] 
ptl6C-] 
ptl:5l:=] 
ptI4[=] 
pil3[-] 
ptl2[-] 
ptm-] 
pilot-] 
pt09[-] 
pt08[.] 
pim-] 
pt06C-] 
ptf):5[=] 
pt04C-] 
piOX-] 
pt02t=] 
ptOlla] 
ptOll[-J 

I t , 11, t, t, 'q , t , 1 , 11 I '1 I' , t, 

Illl} ! 1111111111 lit 1!t lll> l> 1. 1. ~ ~ 'S 'S Un !!i1~~~rHl! 
A 1 , 1 1 , r ~ iii iii ~ i 1 , 1 1 1 , 1 , • • 1 , 

mmmmrH£lIHilmm rWlJdJdJrWlJ 

G~GGGGGGfff*fff~ 
111111 ~~ n 1111 ~~ 11 11 11 11 11 !! 11 11 

I l_I-J-I-J~-J~-J-I-J~-J~-ll , I I I I I I I I I I ' I I I I I rpr.H~~9J 
ro.-lpln19J 

~ -, 



DEFAULT STATES 
All unreferencecl go.tes reMo.in unprogro.MMecl. 

Unreferencecl AND go.tes clefo.ult to logiC O. Unreferencecl DR go.tes 
o.re uncleflnecl. 

Exo.Mple: 

ptOO = OJ 
preset = pin19J 

PRESET/DE OPTION 
PRESET 

....--preset=pln19 J 

(oe=1» 

I 
-

oJ05b-2 

C-4 

1 

1* clefo.ult AND go.te *1 
1* clefo.ult PRESET IDE OPTION *1 

DE 

19 (preset=OJ> 19 

I ioe= Ipln19J - 1 

The proLogic Compiler 



Lp:1= 
~pln7 
~lpln7 

6 __ r--- pln6 
~1p1n6 

~pln5 
~Ipms 

~pln4 
~lpln4 

~I= Lr--- pine 
~1P1n2 
~pln23 
~lpln23 

~pln22 
~lpln22 

~pln21 
~lpln21 

~pln20 
~lpln20 

~p1n19 
~IP1n19 

~plnIB 
~lplnlB 

~p1n17 
~lp1n17 

47 40 24 

I 

I 

I 

I 

I 

I 

I 

I 

I 

plnl4-.q 
plnl4.q 
pln15.q 
p.,l5.q 
p2.q 
p2.q 
p3.q 
p3.q 
p4.q 
p4.q 
p5.q 
p5.q 
p6.q 
p6.q 
p7.q 
p1.q 

;:: 

<J 
p2,s::: 

;:- p2.r- ~ -T~'---'T 

p3,s

p3.r= 

::: 
::: 

pAI.s= 

p4.r= 

p5.s= 

p:S.r= ;::: 
;:- p6.s= 

p6"'=---,-",,---,,-,--, ... 
... -.... 
;::. 
;::: 
;::: 
... 
-;::: ;::: 
~ 

-
;:::: -

p1.s= 
p1 .... 

o.167b-l 

C-5 



DEFAULT STATES 
All unreferenced go. tes reMo.in unprogro.MMecl. 

Unreferencecl AND go. tes clefo.ul t to logiC O. Unreferencecl OR go. tes 
o.re uncleflned. 

ptOO = 0; 
preset = pln16J 

PRESET/DE OPTION 
PRESET 

.--preset=pln16) -
(oe=l) 

I 
-

oJ67b-2 

/* clefo.ult AND go.te */ 
/* clefo.ult PRESET/DE OPTION */ 

DE 

16 (preset=O) 16 

I J. ioe= Ipln16) 

1 1 

C-6 The proLogic Compiler 



DEFAULT STATES 
All unreferencecl go. tes reMo.in unprogro.MMecl. 

Unreferencecl AND go. tes clefo.ul t to logiC 0. Unreferencecl DR go. tes 
o.re uncleflnecl. The Output Cells clefo.ult to reglsterecl opero.tlon. 
Registers o.re positive-eclge triggerecl. Outputs o.re perMo.nently 
eno.blecl. 

Exo.Mple' 
pt96 = 0; 
oe = 1J 
elk = pin1; 

1* clefo.ul t AND go. te *1 
1* output buffers o.lwo.ys eno.blecl *1 
1* registers positive-eclge triggerecl lIV 

OUTPUT ENABLE 
OUTPUTS PERMANENTLY ENABLED PIN 17 OUTPUT ENABLE 

17 i=D 
to DE;. o.ll output cells • 17 t=D 

to [](, o.tl output cells. 

oe = 1; I'M. clefo.ul t *1 oe = I pln17J 

CLOCK POLARITY 
POSITIVE -EDGE TRIGGERED NEGA TIVE -EDGE TRIGGERED 

1 ?D to o.ll registers. 1 ?D to a.ll registers. 

elk = plnl; 1* clefo.ult *1 elk = Ipln1; 

TYPICAL OUTPUT CELL OPERATION 
REGISTERED 

r----------------------~ I I 
I I 
I I 

-I-plnB,s= I 
I I 

-!-plnB,r= 8 
I 
I 

I OUTPUT CELLI 
~----------------------~ 

No slgno.l spec If leo. tlon for pln8= 
is perMittecl. 

Unprogro.MMed Sto.te 

.-----------------------------, 
COMBINA TDRIAL 

I----------------------~ I I 
I I 
I I 

-I-pInB= I 
I I 
I 8 
I 
I 
I 

I OUTPUT CELLI 
~----------------------~ 

Slgno.l speclflco.tlons for pln8.s= 
o.ncl pin8.r= o.re not perMittecl. 
All cells of the reset terM 
o.re progro.MMecl o.s if 

pln8.r = 0; 

ho.cI been specifiecl. 

0.506-1 

C-7 



- - - - - - _ID.J!. 

.a 
0\ 

(III 
(III 

0 
(III 

1\1 

" 

~ 
.a • 
.a 
III 

(III 
~ 

~ 

1\1 
M 

(III 

o 

1. ...... .... CD ..... 

0.506-2 

C-8 

- - -"'- - _'ilJ il 

to 1£ &II cutpu'I ails • 

_ D 

~ ~cm:== 
~== :m:== === gm:=== tm:== t;;:== :=== 
~=== ttn:== 
~~-ai: 
cm:== ~,.-

~== :m:== pt64o-

=:== 
~--
~== =-r.== i>ts6"-

=== ~-mr.== tsOo-p 

==== 
~== i>W5"-

=== W-== pwo-

=m:== PW--

=== =:== j>t32o-

~--=== ~== 
~== i>W"-

c::== ~-

~== i4:== Pt1"'-~ 

~ 
~ 
'4:== 30-
120-

~== =m:== =:== 
~== ==== =:== 

The proLogic Compiler 



-I'l96 -= ===== -jn9I 

===== -jr188 

====~ ====t= ====t= =====:. 
-ptn 

-a~ 
=====;~ 
=====-m 
-pt71 

====~~ 
e! 

===== 
===== -pt6! ====m; 
===== -pt;56 

====~ 
====~ 
-~ 

====~ -pt48 

-pt47 

====~ ====I:m 
====~ -pt-lll 

-pt39 

====~ 
-~ 

====~ 
====~ 
===== 
====~ 
====~ 
====~ 
-~ 

====~ 
====~ ====tw -ptId 

===== ===== ===== ===== 
====~ -pt8!i -= ====t::f -jrIGG 

~ I RRR,:Jn: JI: ~RRRR~RR~ ~~~~~~~~ 
~it~tl~i!!!1!lfl11ti~&lll!tiiltlli iililitt iii i ;, I II ~ ~ ~ 

0-506-3 

C-9 



C-10 The proLogic Compiler 



DEFAULT STATES 
All unref'erenced go. tes reMo.in unprogro.MMed. 

Unref'erencecl AND go. tes def'o.ul t to logic 0. Unreferenced OR go. tes 
o.re undefined. The Output Cells def'o.ul t to registered opero. tion. 
Registers o.re positive-edge triggered. Outputs o.re preManently 
enabled. 

EXo.Mplel 

pt79 = 0; 
oe = 1J 
elk = pln1; 

IlIE def'o.ul t AND go. te lIEl 
IlIE output buf'fers always eno.blecl lIEl 
IlIE registers positive-edge triggered lIEl 

OUTPUT ENABLE 
OUTPUTS PERMANENTLY ENABLED PIN 17 OUTPUT ENABLE 

17 C) to D~ o.ll output cells 17 t=e> 
to D~ o.ll output cells 

1 
.. .. 

oe = 1J 1* defo.ul t lIEl oe = I pln17J 

CLOCK POLARITY 
POSITIVE -EDGE TRIGGERED NEGA TIVE -EDGE TRIGGERED 

1 ?D to o.ll regIsters .. 1 t='D to o.ll regIsters .. 

elk = pinlJ IlIE defo.ul t lIEl elk :. !pin1; 

TYPICAL OUTPUT CELL OPERATION 
REGISTERED 

r----------------------~ 

i =u W -+-plnS.s= S Q I 

-+-Plns.r= R MUX : 8 
I I 
I I 

I OUTPUT CELLI 
~----------------------~ 

No signo.l speciflCo. tion f'or pin8= 
Is perMitted. 

Unprogro.MMeci Sto.te 

~------------------------------~ 
COMBINATORIAL 

r----------------------~ 

+Plns= S Q ! I -:0 W 
lOR MUX I 8 
I I 
I I 

I OUTPUT CELLI 
~----------------------~ 

Signo.l specifiCo. tions f'or pin8.s= 
o.nd pln8.r= o.re not perMitted. 
All cells of the reset terM 
o.re progro.MMed o.s If' 

pln8.r = OJ 

ho.d been specified. 

0.507-1 

C-11 



() 
I ...... 

N 

:;! 
(I) 

~ 
0 
t-
O 

~. 
() 
0 

~ 
~ .... 

p 
U1 
o 
'-.I 
I 

r\) 

II 1 --p- tcUc-lplnIl to .. u ragISt~rs 

2~pln2 
~lpln2 
3~pln3 
~lpln3 
4~pln4 
~lpln4 
5~plnS 
~lplnS 
6~pIn' 
~1p1n6 

7~1:; 
23~1:~ 
22~pln2: 
~lpln2: 

21~pln2 
~lpln2 

20_~pln21 
~lpln21 

19--D=1:~: 
1B--D=I::: 
17~1=; 

, 
~ 

It 
iii 
!!: 

t 
i 

o 8 16 24 32 40 48 56 64 72 79 
-

lllinn lnUln nnlnl 11111nlllnnn llllnlllllll1U llilUU nnlll1.11illll1 
11111111111111111111111111111111111111111111111111111111111111111111111111111111 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

pO.q 
'pO.q 

,=:~ 
.~~-------, 
~q~~---------. '~~ 

.p4.q~~--------'"i 'p4.q~ 

=~~~------. p6,q 
p6,q 

!:~:~ ::s::11-------, 

~§j 
c2 
c:3 
c:3 
c4 
c4 
cS~ 
cS 

n 
[:] 

~ 
~ 

l~ I~ 

II " 



,~ , ~ ,~ , ,~ I~ , ,~ I~ , )1 ,~ ,~ ,~ I ~ , ~ , ~ , I~ ~ , ~ ,~ ,~ 

0.507-3 

C-13 



C-14 The proLogic Compiler 



1 

~pln2 
~lpln2 

~pln3 
~lpln3 

~pln4 
~lpln4 

~pln5 
~lpln5 

~pln 
~Ipln 

6 
6 

7 ~pln 
~IPI n7 

~p 
~Ip 

~p 
~Ip 

In8 
InB 

In9 
In9 

o 4 8 12 16 20 24 28 

--

-

r--
-

-
pln1 

I pln1 

)--, 

>---' 
I-~ 

~ ~ 
pln18 

I pln18 -

~ 
pln17 

I pln17 
~ 

)--, 

~ 

~ .... 
pln16 

I pln16 -
t-f--
t-i---1 

.... 
pln15 

I pln15 
~ 

}--...: 

-
pln14 

I pln14 -

-
pln13 

I pln13 
..-

J ..... 
plnll 

t--Iplnll 

pln1 

Ipln 

pin 

Ipi 

pi 

Ipl 

pi 

I 

p 

I 

pln14.oe= 

pln14= I 

pln13.oe= 

I pln13= 

19 

18 

17 

16 

15 

14 

13 

pln12.oe= -:J 12 
Ipln12=~ 

____ «]1----1-1 

p16l8 

C-15 



1 

~Pln2 
~lpln2 

~Pln3 
~lpln3 

~pln4 
~lpln4 

~Pln5 
~lpln5 

~pln6 
~lpln6 

~Pln7 
~lpln7 

~plna 
~Iplna 

~pln9 
~lpln9 

C-16 

o 4 8 12 

--

16 20 24 28 

pln1 
Ipln1 

pln1a 
Ipln1a 

pln17 
Ipln17 

pln16 
Ipln16 

pln15 
Ipln15 

pln14 
Ipln14 

pln13 
Ipln13 

- plnll 
>-- Iplnll 

pln19.oe= 

Ipln19= 

pln1B.oe= --;:::] 

19 

18 
Ipln1B= -j...>O-+J--
~-----' 

pln17.oe= --;:::] 
17 

Ipln17= -j...>O-+r--
~r------'-

pln16.oe= --;:::] 16 
Ipln16= -j...>O 

~t------' 

pln15.oe= --;:::] 
15 

Ipln15= -j...>O>--+J--
~I-----

pln14.oe= --;:::] 
14 

Ipln14= -----t.,.>o-+l--
~t------'-

pln13.oe= --;:::] 
13 

Ipln13= -j...>O-+J--
~-----' 

pln12.oe= --;:::] 12 
Ipln12=~ 

~r-' ____ 1_1 

p16n8 

The proLogic Compiler 



1----~ 

2----~ 

3 ~ 

4 Cllpln4= ---G 
vee 

5 -- CIJpln5= ---G 
vee 

7 -- Cllpln7= ---G 
vee 

8 [Ilplne= ---G 
vee 

9-----1~ 

10 ---------1~ 

11-----1~ 

o 4 8 12 16 20 24 28 
pln1 -

Ipln1 -

pln2 
Ipln2 

pln3 
Ipln3 

pln4 
Ipln4 

pinS 
I pine 

pln9 
I pin') 

pintO 
Ipln10 

plnll 
Iplnll 

pln23 
Ipln23 

pln22 
Ipln22 

pln21 
Ipln21 

pln17 
Ipln1] 

pln16 
Ipln16 

plnt5 
Iplnt5 

plnt4 
Ipln14 

f--pln13 
~lpln13 

~1------23 

~1-----22 

D-mpIn21= 21 

Vee 

D-CI1PIn20=-- 20 

vee 

D- Dlplnt8= -- 18 

vee 

D- [llpln17= 17 

Vee 

~----16 

~'--------15 

~----14 

~,...-----13 

p16p8e-l 

C-17 



---D---1 21 
- iD-IPlnet=-.... j-

1(11------1---pln2l 
--Iplnet 

---D---1 21 
- ~D-Pln2l .. -1-

vee 
-- pln2l ___ /1_--1 
-lpln2l ~ 

Truth To.lole for pin2 pin21 Truth To.lole for pin2 pin21 

Ipin21 = pin2J 0 1 pin21 = pln2J 0 0 

1 0 1 1 

Active LOW' Active HIGH 

PROGRAMMABLE POLARITY 

p16p8e-2 

C-18 The proLogic Compiler 



2_ .. ~ pln2 
~lpln2 

~pln3 
~lpln3 

~pln4 
~lpln4 

~pln5 
~lpln5 

~pln6 
~lpln6 

~pln7 
~lpln7 

~pln8 
~lpln8 

~pln9 
~lpln9 

--

o 4 8 12 16 20 24 28 

pln19 
Ipln19 

pln1a 
Ipln1a 

'" ./ 

Ipln17.q 
pln17.q 

" ./ 

Ipln16.q 
pln16.q 

"\ 
./ 

I pln15.q 
pln15.q 

I pln14.q 
pln14.q 

pln13 
Ipln13 

f-- pln12 
r---lpln12 

pln19. oe= 

Ipln19 = 19 

pln1S. 

Ipln1S 
18 

pln17.cI= 

pln16.cI= 

pln15.cI= 

pln14.cI= 

pln13. oe= 

Ipln13 
13 

pln12. oe= 

Ipln12 = 12 

p16r4 

C-19 



p16r6 

C-20 The proLogic Compiler 



0 4 8 12 16 20 24 28 

pln19.d= 

~Pln2 Ipln19.q 
Ipln2 pln19.q 

plnlB.d= 

~Pln3 
Ipln3 

IplnlB.q 
plnlB.q 

pln17.d= 

~Pln4 Ipln17.q 
Ipln4 pln17.q 

pln16.d= 

~Pln5 
I pinS 

Ipln16.q 
pln16.q 

pln15.d= 

~Pln6 I pln15.q 
I pinG pln15.q 

pln14.d= 

~Pln7 Ipln14.q 
Ipln7 pln14.q 

pln13.d= 

~PlnB I pln13.q 
IplnB pln13.q 

pln12.d= 

~Pln9 
Ipln9 

I pln12.q 
pln12.q 

p16r8 

C-21 



0 

~Pln2 
~lpln2 -

~pln 
~Ipln 

3 
3 

~PI 
~Ipi 

n4 
n4-

~p 
~Ip 

In5 
In5 

pln6 
Ipln6 

pln7 
Ipln7 

pinS 
IpinS 

pln9 
Ipln9 

plnll-
Iplnll 

C-22 

4 8 1 2 16 20 24 28 32 
II II 

:-

I I I 

-Pln1~ 
Ipln1 

1 

...r-[pln19.oe=1l 

19 
Iplnt9= 

1I1e MUXr 

+ [plnlS.oe=ll 

18 
Ipln1S= 

-;lIle MUXr 
J 
"r-[Pln17.oe=1l 

17 
Ipln17= 

JI/Cl MUXr 
.s 
J:""" [pln16.oe=ll 

16 
Ipln16= ~ 

1I1e Muxf 
J 
~[pln15.oe=1l 

15 
Ipln15= ~ 

1I1e MUXr 
J 
"r-[Pln14.oe=ll 

14 
Ipln14= 

JIIe MUXr 
J 
~[pln13.oe=1l 

13 
Ipln13= .-v-

.;fIle MUXr 
J ..r-[pln12.oe=ll 

12 
Ipln12= 

RIle MUXr 

p18n8-1 

The proLogic Compiler 



r [pln19.oe=1J ---: f

-D-1Pln19= 

+---ct I/O MUX L 

19 

If there is no signo.l specifico.tion for pin19.oe 
the Architecturo.l Fuse reMo.ins into.ct o.nd the 
output buffer is in high-iMpedence sto.te. 

I f there is 0. signo.l specifico. tion of 

pin19.oe = 1j 

the fuse is progro.MMed o.nd the output 
buffer is in output sto. teo 

TYPICAL OUTPUT BUFFER PROGRAMMING 

r [pln19.oe=lJ -; ~ 

......f'l- 19 -D- Ipln19= -r V~--.--
r-------------- -----~, 

4 i pln19 A i 
+---<r I pln19 MUX I 

I I 
I liD MUX I L _____________________ ~ 

I/O FEEDBACK 

r[pln19.oe=lJ ---: f-

......f'l- 19 -D-Ipln19= -r-v::x>---.--
r-------------- -----r, 

4 : pln19.pt MUX : 
+---<r Ipln19.pt I 

I I 
I liD MUX I L _____________________ ~ 

HIGH-SPEED FEEDBACK 

TYPICAL I/O MULTIPLEXER PROGRAMMING 

p18n8-2 

C-23 



1 

~pln2 
~lpln2 

~pln3 
~lpln3 

~pln4 
~lpln4 

~pln5 
~lpln5 

~pln6 
~lpln6 

LJ'...::-- pln7 
~lpln7 

~pln8 
~lpln8 

~pln9 
~lpln9 

~ pln10 
~lplnl0 
~ plnll 
~Iplnll 

C-24 

o 
--

4 8 12 16 20 24 28 32 36 

U 111111111111111111111111111111111111 
pln1 

Ipln1 

pln23 
Ipln23 

pln21 
Ipln21 

pln20 
Ipln20 

pln19 
Ipln19 

pln18 
Ipln18 

pln17 
I pln17 

pln16 
I pln16 

pln14 
I pln14 

I--- pln13 
r---lpln13 

pln22.oe= 

Ipln22= 

Ipln21= ~I<!J 

Ipln20= ~j 

I pln19= ~"0!J 

Ipln18= ~~ 

I pln17= ~7<!J 

pln16.oe= 

Ipln16= 

23 

22 

21 

20 

19 

18 

17 

16 

pln15.oe= -:J 15 
Ipln15=~ 

__ «]1---.....:1:....;.4 

__ «]1-----'1-3 

p20l8 

The proLogic Compiler 



1 

~pln2 
~lpln2 

~pln3 
~lpln3 

~pln 
~Ipln 

4 
4 

~p 
~Ip 

In5 
In5 

In6 ~IP pln6 

pln7 
Ipln7 

pinS 
IpinS 

pln9 
Ipln9 

pln10 
Ipln10 

plnll 

0 

--

= : 

Iplnll -

4 8 12 16 20 24 28 32 36 
II 

I I 

......, pln23.oe 
$--IPln23= 

23 

- plnl 
~ Iplnl 

~ pln22.oe 
---1 Ipln22= 

pln22 
Ipln22 

~ 
pln2l.o 

Ipln2l= 

- pln2l -
Ipln2l 

pln20. 
~IPln20 

pln20 
Ipln20 -

W=- Plnl9 
Ipln1 

plnl9 -
Iplnl9 -

~ pin! 
Iplnl 

pln1S 
Ipln1S 

-{ pin 
-t:E3 Ipl 

pln17 
Ipln17 

17~ n17= 
17 

-p 
~ Ip 
J~ 

pln16 
Ipln16 

.~O~ In16= 16 

~I 
pln1S 

Ipln1S 

PN5'O~ pln1S= 15 

= -
pln14.oe= r:L ~ 14 
Ipln14=~ 

pln13 - 13 
r-lpln13 

p20l10 

C-25 



~PIn2 
~lpln2 

~pln3 
~lpln3 

Lt-..:-- pln4 
~lpln4 

~plnS 
~lplnS 

~pln6 
~lpln6 

~pln7 
~lpln7 

~plnB 
~lpln8 

~pln9 
~lpln9 

~ plnl0 
~lplnl0 
~ plnll 
~lpln11 

C-26 

o 4 8 12 16 20 24 28 32 36 

-- pln23 
Iplll23 

pln22 
Ipln22 

pln21 
Iplll21 

Ipln20.q 
pln2o.q 

Ip1n19.q 
p1n19.q 

I plnlB.q 
plnlB.q 

Ip1n17.q 
plnl7.q 

pln16 
I pln16 

plniS 
IplnlS 

~ pln14 
f--lpln14 

P 1n22.oe= 

n22= Ipi 

p 1n21.oe" 

Ipi n21= 

pln20.c1= 

plnI9.c1= 

plnlB.cI= 

plnI7.c1= 

p 1n16.oe= 

Ipl n16= 

pi n1S.oe= 

Ipi n15= 

23 

22 

21 

16 

15 

14 

p20r4 

The proLogic Compiler 



~pln2 
---vcs:- I pin!! 

~pln3 
---vcs:- I pln3 

1~ pln4 ---vcs:- I pln4 

~pln5 
---vcs:- I pln5 

Lf'.:::- pinG 
---vcs:- I pln6 

~pln7 
---vcs:- I pln7 

~pln8 
---vcs:- I pln8 

~pln9 
---vcs:- I pln9 

~ plnlO 
---vcs:- I plnlO 
!1_-",",=- plnll ---vcs:- I plnll 

o 4 
--

8 12 16 20 24 28 32 36 
pln23 

Ipln23 

pln22 
I pln22 

I pm21.q 
pln21.q 

Ipln20.q 
pln20.q 

I pln19.q 
pln19.q 

I plnlS.q 
plnlS.q 

I plnl7.q 
plnl7.q 

I plnl6.q 
pln16.q 

pln15 
Iplnl5 

- pln14 
-lpln14 

23 

pi n22.oe= 

Ip In22= 
22 

pln21.d= 

pln20.d= 

pln19.c1= 

plnlB.d= 

plnl7.d= 

pln16.d= 

pi n15.ol1= 

Ip Inl5= 
15 

14 

p20r6 

C-27 



2_~ pln2 
~lpln2 

~pln3 
~lpln3 

Lf-...:- pln4 
~lpln4 

~pln5 
~lpln5 

~pln6 
~lpln6 

~pln7 
~lpln7 

~pln8 
~lpln8 

~pln9 
~lpln9 

~ plnlO 
~lplnlO 
~ plnll 
~Iplnll 

C-28 

o 4 8 12 16 20 24 28 32 36 

-- pln23 23 
Ipln23 

pIn22.d= 

Ipln22.q 
pln22.q 

pIn21.d= 

Ipln21.q 
pln2l.q 

pIn20.d= 

I pln2o.q 
pln20.q 

pln19.d= 

I plnl9.q 
pln19.q 

pln18.d= 

I pln18.q 
pln18.q 

pln17.d= 

I pln17.q 
pln17.q 

pln16.d= 

I pln16.q 
pln16.q 

pln15.d= 

I pln15.q 
pln15.q 

f--- pln14 
f---lpln14 

p20r8 

The proLogic Compiler 



~pln2 
~lpln2 

~pln3 
~lpln3 

~pln4 
~lpln4 

~pln5 
~lpln5 

~pln6 
~lpln6 

~pln7 
~lpln7 

Lf'.:::- pinS 
~lplnS 

~pln9 
~lpln9 

~pln10 
~lpln10 

~plnll 
~Iplnll 

o 4 8 12 16 20 24 28 32 36 

--

....... 

~ 

pln23 
Ipln23 

pln22 
Ipln22 

pln21 
Ipln21 

....... ~ ....... -
Ipln20.q 
pln20.q 

................ 

pJn2 
Ipln2 

pJn2 
Ipln2 

pJn2 
Ipln2 

3.oe= 
3= 

2.oe= 
2= 

1.oe= 
1= 

....... ;::... D---
Ipln19.q 
pln19.q 

....... ~D-

Ipln1S.q 
pln18.q 

~~D-
Ipln17.q 
pln17.q 

pln16 
Ipln16 

~ 

pln15 
Ipln15 

r-.. 

~ 

i----pln14 
f--lpln14 

pln1 6.oe= 
6= Ipln1 

pln1 
Ipln1 

5.oe= 
5= 

pln1 4.oe= 
4= Ipln1 

23 

22 

21 

16 

15 

14 

p20x4 

C-29 



~pln2 
~lpln2 

Lt-..:-- pln3 
~lpln3 

~PIn4 
~lpln4 

~pln5 
~lpln5 

~pln6 
~lpln6 

z __ ~ pln7 
~lpln7 

~p1n8 
~lpln8 

~pln9 
~lpln9 

~plnl0 
~lplnl0 

~p1nll 
~Iplnll 

C-30 

o 4 8 12 16 20 24 28 32 36 

-- pln23 
Ipln23 

~ 

-
Ip1n22.q 
pln22.q 

::: ...... .... 
Ipln21.q 
pln21.q 

~ ......., 
....., 

Ipln20.q 
p1n20.q 

:::~ 
....... 

Ipln19.q 
p1n19.q 

::.!::::: 
....., 

Ipln18.q 
pln18.q 

:::. ...... 
...... 

Ipln17.q 
pln17.q 

......., 

....... 
Ip1n16.q 
plnt6.q 

~~ 

....... 

Ip1n15.q 
p1n15.q 

~ 

I--pln14 
I---Ipln14 

pln2 3.ce= 
3= Ipln2 

pln22.d='---H 

pln2Ld= ---H 

pln20.d=--+I 

pln19.d= --+I 

p1n18.d= ---H 

pln17.d=---H 

pln16.d= --+I 

pln15.d= ---H 

pint 4.ce= 
4= Iplnt 

23 

14 

p20x8 

The proLogic Compiler 



4 
I 

8 12 16 
I 

2~ 24 ,28 32 36 o 

p20xl0 

C-31 



1 

plnl-
Iplnl-

pln2 
Ipln2 

pln3 
Ipln3 

~I pln4 
pln4 

~p 
~Ip 

InS 
InS 

~p 
~Ip 

In6-
In6 

~pln 
~Ipln 

~pln 
~Ipln 

7 
7 

8 
8 

~pln9 
~lpln9 

~plnl0 
~lplnl0 

~plnll 
~Iplnll 

C-32 

L 

l 

l 

l 

l 

L 

l 

l 

l 

o 4 8 12 16 20 2 4 28 32 
I 

36 40 to 0.11 Mo.c:roceu s 

reset= • to 0.11 Mo.c:rocell s 

OE+8 
23 

MACRO 
CELL 

OE+l0 MACRO 
22 

CELL 

-
OE+12 MACRO 

21 
CELL 

OE+14 MACRO 
20 

CELL 

OE+16 MACRO 
19 

CELL 

OE+16 MACRO 
18 

CELL 

OE+14 MACRO 
17 

CELL 

OE+12 MACRO 
16 

CELL 

OE+l0 MACRO 
15 

CELL 

OE+8 MACRO 
14 

CELL 

'-' -preset= ---. 
to all registers 

;- I--Pln13~ 
~lpln13 

p22vlO-l 

The proLogic Compiler 



CONFIGURATION OPTIONS 

REGISTERED, ACTIVE -LO\ol OUTPUT REGISTERED, ACTIVE -HIGH OUTPUT 

11:--0 pln23.oe= 11:--0 pIn23.oe'" ,.,.-~~ I.~"'· ~~ D Q 23 D Q 23 

plnl ll" plnl ll" 

preset= preset= 

--lpIn23.q " --lpIn23.q 
-- p1n23.q -- pln23.q 

Ipln23 = qJ 1* defo.ult *1 pln23 = qJ 

COMBINA TDRIAL, ACTIVE -LO\ol OUTPUT COMBINA TDRIAL, ACTIVE -HIGH OUTPUT 

IE--o pln23.oe= 11:--0 pln23.oe= 

,.'-- r-23 1.,- r-23 

--pIn23 .... --pIn23 
--lpIn23 --lpln23 

p22vl0-2 

C-33 



1 

I 
plnl-
Iplnl-

pln2 
Ipln2 

~I pln3 
pln3 

~p 
~Ip 

~p 
~Ip 

In4 
In4 

In5 
In5 

~pl 
~Ipl 

n6 
n6 

~pln 
~Ipln 

7 
7 

~pln8 
~lpln8 

~pln9 
~lpln9 

~plnl0 
~lplnl0 

~plnll 
~Iplnll 

C-34 

I 

L 

L 

L 

L 

l 

[ 

[ 

l 

o 4 B 12 16 20 24 2B 32 36 40 "to 0.11 Mo.c:roc:eii s 

rese1;= • "to o.ll Mo.c:roc:ell s 

OE+8 MACRO 
23 

CELL 

OE+l0 MACRO 
22 

..,. 
CELL 

OE+12 MACRO 
21 -

CELL 

OE+14 MACRO 
20 

CELL 

OE+16 MACRO 
19 

CELL 

OE+16 MACRO 
18 

CELL 

OE+14 MACRO 
17 

CELL 

OE+12 MACRO 
16 

.... 
CELL 

OE+l0 MACRO 
15 

CELL 

OE+8 MACRO 
14 

CELL 

prese1;= ____ 
"to 0.11 regls1;ers 

I-Pln13~ 
-lpln13 

p22vplO-l 

The proLogic Compiler 



CONFIGURATION OPTIONS 

REGISTER FEEDBACK, REGISTERED, ACTIVE -LOW' OUTPUT REGISTER FEEDBACK, REGISTERED, ACTIVE -HIGH OUTPUT 

1E-Q..----pln23.oe= -------, 1E-Q---pln23.oe= -------, 

I.~~~-----; 
plnl 

23 23 

-- I pln23.q ==~::J-----.J 
-- pln23.q 

-- Ipln23.q ==~::J-----.J 
-- pln23.q 

! pln23 = q J /l¥. default l¥./ pln23 = qJ 

lID FEEDBACK, REGISTERED, ACTIVE-LOV OUTPUT lID FEEDBACK, REGISTERED, ACTIVE-HIGH OUTPUT 

1E-Q---pln23.oe= -------, 1E-Q---pIn23.oe= -----, 

23 13Eh,.,... ----i 
~ plnl 

23 

--pln23 ===~f-------..J --lpIn23 -- pln23 ===~f--------.J --lpln23 

I pln23 = q J /l¥. default l¥./ pln23 = q J 

lID FEEDBACK, COMBINATORIAL, ACTIVE -LOV OUTPUT lID FEEDBACK, COMBINATORIAL, ACTIVE-HIGH OUTPUT 

1E-Q----pln23.oe= -----, 1E-Q---pIn23.oe= -----, 

23 23 

--pln23 ===~f-------..J --lpIn23 -- pln23 ===~f--------.J --lpln23 

p22vpl0-2 

C-35 



C-36 The proLogic Compiler 



TI Sales Offices TI Distributors 
ALABAMA: Huntsville (205) 837·7530. 

ARIZONA: Phoenix (602) 995·1007; 
Tucson (602) 292·2640. 

CALIFORNIA: Irvine (714) 660·1200; 
Roseville (916) 786·9208; 
San Diego (619) 278·9601; 
Santa Clara (408) 980-9000; 
Torrance (213) 217·7010; 
Woodland Hills (818) 704·7759. 

COLORADO: AUrora (303) 368-8000. 

CONNECTICUT: Wallingford (203) 269·0074. 

FLORIDA: Altamome Springs (305) 260-2116; 
Ft. Lauderdale (305) 973·8502; 
Tampa (813) 885-7411. 

GEORGIA: Norcross (404) 662·7900. 

ILLINOIS: Arlington Heights (312) 640·2925. 

INDIANA: Carmel (317) 573·6400; 
Ft. Wayne (219) 424-5174. 

IOWA: Cedar Rapids (319) 395·9550. 

KANSAS: Overland Park (913) 451·4511. 

MARYLAND: Columbia (301) 964·2003. 

MASSACHUSETTS: Waltham (617) 895·9100. 

MICHIGAN: Farmington Hills (313) 553·1569; 
Grand Rapids (616) 957·4200. 

MINNESOTA: Eden Prairie (612) 828·9300. 

MISSOURI: SL Louis (314) 569-7600. 

NEW JERSEY: Iselin (201) 750-1050. 

NEW MEXICO: Albuquerque (505) 345·2555. 

NEW YORK: East Syracuse (315) 463·9291; 
Melville (516) 454-6600; 
Pittsford (716) 385·6770; 
Poughkeepsie (914) 473·2900. 

NORTH CAROLINA: Charlotte (704) 527·0933; 
Raleigh (919) 876-2725. 

OHIO: Beachwood (216) 464·6100; 
Beaver Creek (513) 427·6200. 

OREGON: Beaverton (503) 643·6758. 

PENNSYLVANIA: Blue Bell (215) 825-9500. 

PUERTO RICO: Hato Rey (809) 753·8700. 

TENNESSEE: Johnson City (615) 461·2192. 

TEXAS: Austin (512) 250·7655; 
Houston (713) 778·6592; 
Richardson (214) 680·5082; 
San Antonio (512) 496.1779. 

UTAH: Murray (801) 266·8972. 

WASHINGTON: Redmond (206) 881·3080. 

WISCONSIN: Brook1leld (414) 782·2899. 

CANADA: Nepean, Ontario (613) 726.1970; 
Richmond Hili, Ontario (416) 884·9181; 
St. Laurent, Quebec (514) 336·1860. 

TI~onal 
Technology Centers 
CALIFORNIA: Irvine (714) 660-8105; 
Santa Clara (408) 748·2220; 

GEORGIA: Norcross (404) 662·7945. 

ILLINOIS Arlington Heights (312) 640-2909. 

MASSACHUSETTS: Waltham (617) 895·9196. 

TEXAS: Richardson (214) 680-5066. 

CANADA: Nepean, Ontario (613) 726-1970. 

TI AUTHORIZED DISTRIBUTORS 
Arrow/Klerulff Electronics Group 
Arrow (Canada) 
Future Electronics (Canada) 
GRS Electronics Co., Inc. 
Hall-Mark Electronics 
Marshall Industries 
Newark Electronics 
Schweber Electronics 
Time Electronics 
Wyle Laboratories 
Zeus Components 

- OBSOLETE PRODUCT ONLY -
Rochester Electronics, Inc. 
Newburyport, Massachusetts 
(508) 462·9332 

ALABAMA: Arrow/Kierulff (205) 837·6955; 
Hall·Mark (205) 837·8700; Marshall (205) 881·9235; 
Schweber (205) 895-0480. 

ARIZONA: Arrow/Klerulff (602) 437·0750; 
Hall·Mark (602) 437.1200; Marshall (602) 496·0290; 
Schweber (602) 431·0030; Wyle (602) 866·2888. 

CALIFORNIA: Los Angeles/Orange County: 
Arrow/Klerulff (818) 701·7500, (714) 838·5422; 
Hall·Mark (818) 773-4500, (714) 669·4100; 
Marshall (818) 407·0101, (818) 459·5500, 
(714) 458-5395; Schweber (818) 880·9686; 
(714) 863·0200, (213) 320·8090; Wyle (818) 880·9000, 
(714) 863·9953; Zeus (714) 921·9000; (818) 889·3838; 
Sacramento: Hall·Mark (916) 624.9781; 
Marshall (916) 635·9700; Schweber (916) 364·0222; 
Wyle (916) 638·5282; 
San Diego: Arrow/Kierulff (619) 565·4800; 
Hall·Mark (619) 268·1201; Marshall (619) 578·9600; 
Schweber (619) 450-0454; Wyle (619) 565·9171; 
San Francisco Bay Area: Arrow/Kierulff (408) 745-6600, 
Hall·Mark (408) 432·0900; Marshall (408) 942·4600; 
Schweber (408) 432.7171; Wyle (408) 727·2500; 
Zeus (408) 998·5121. 

COLORADO: Arrow/Kierulff (303) 790·4444; 
Hall·Mark (303) 790·1662; Marshall (303) 451·8383; 
Schweber (303) 799·0258; Wyle (303) 457·9953. 

CONNETICUT: Arrow/Kierulff (203) 265·7741; 
Hall·Mark (203) 271·2844; Marshall (203) 265·3822; 
Schweber (203) 264-4700. 

FLORIDA: Ft. Lauderdale: 
Arrow/Klerulff (305) 429·8200; Hall·Mark (305) 971·9280; 
Marshall (305) 977-4880; Schweber (305) 977·7511; 
Orlando: Arrow/Kierulff (407) 323·0252; 
Hall·Mark (407) 830·5855; Marshall (407) 767·8585; 
Schweber (407) 331·7555; Zeus (407) 365·3000; 
Tampa: Hall.Mark (813) 530-4543; 
Marshall (813) 576·1399; Schweber (813) 541·5100. 

GEORGIA: Arrow/Kierulff (404) 449·8252; 
Hall·Mark (404) 447·8000; Marshall (404) 923·5750; 
Schweber (404) 449-9170. 

ILLINOIS: Arrow/Klerulff (312) 250·0500; 
Hall·Mark (312) 860·3800; Marshall (312) 490·0155; 
Newark (312) 784·5100; Schweber (312) 364·3750. 

INDIANA: Indianapolis: Arrow/Klerulff (317) 243·9353; 
Hall·Mark (317) 872·8875; Marshall (317) 297·0483; 
Schweber (317) 843·1050. 

IOWA: Arrow/Kierulff (319) 395-7230; 
Schweber (319) 373·1417. 

KANSAS: Kansas City: Arrow/Klerulff (913) 541·9542; 
Hall·Mark (913) 888·4747; Marshall (913) 492·3121; 
Schweber (913) 492·2922. 

• TEXAS 
INSTRUMENTS 

MARYLAND: Arrow/Kierulff (301) 995·6002; 
Hall·Mark (301) 988·9800; Marshall (301) 235·9464; 
Schweber (301) 840-5900; Zeus (301) 997·1118. 

MASSACHUSETTS Arrow/Klerulff (508) 658·0900; 
Hall·Mark (508) 667·0902; Marshall (508) 658·0810; 
Schweber (617) 275-5100; Time (617) 532·6200; 
Wyle (617) 273-7300; Zeus (617) 863·8800. 

MICHIGAN: Detro": Arrow/Klerulff (313) 462·2290; 
Hall·Mark (313) 462·1205; Marshall (313) 525·5850; 
Newark (313) 967·0600; Schweber (313) 525·8100; 
Grand Rapids: Arrow/Klerulff (616) 243·0912. 

MINNESOTA: Arrow/Klerulff (612) 830·1800; 
Hall·Mark (612) 941·2600; Marshall (612) 559-2211; 
Schweber (612) 941·5280. 

MISSOURI: St. louis: Arrow/Klerulff (314) 567·6888; 
Hall·Mark (314) 291·5350; Marshall (314) 291·4650; 
Schweber (314) 739·0526. 

NEW HAMPSHIRE: Arrow/Klerulff (603) 668·6968; 
Schweber (603) 625·2250. 

NEW JERSEY: Arrow/Klerulff (201) 538·0900, 
(609) 596·8000; GRS Elec1ronlcs (609) 964·8560; 
Hall·Mark (201) 575-4415, (201) 882·9773, 
(609) 235-1900; Marshall (201) 882·0320, 
(609) 234·911)0; Schweber (201) 227·7880. 

NEW MEXICO: Arrow/Klerulff (505) 243·4566. 

NEW YORK: Long Island: 
Arrow/Kierulff (516) 231.1009; Hall·Mark (516) 737·0600; 
MarShall (516) 273·2424; Schweber (516) 334·7474; 
Zeus (914) 937·7400; 
Rochester: Arrow/Kierulff (716) 427·0300; 
Hall·Mark (716) 425·3300; Marshall (716) 235-7620; 
Schweber (716) 424.2222; 
Syracuse: Marshall (607) 798·1611. 

NORTH CAROLINA: Arrow/Klerulff (919) 876·3132, 
(919) 725-8711; Hall·Mark (919) 872·0712; 
Marshall (919) 878·9882; Schweber (919) 876·0000. 

OHIO: Cleveland: Arrow/Klerulff (216) 248·3990; 
Hall·Mark (216) 349-4632; Marshall (216) 248-1788; 
Schweber (216) 464·2970; 
Columbus: Hall·Mark (614) 888·3313; 
Daylon: Arrow/Klerulff (513) 435-5563; 
Marshall (513) 898-4480; Schweber (513) 439·1800. 

OKLAHOMA: Arrow/Kierulff (918) 252·7537; 
Schweber (918) 622·8003. 

OREGON: Arrow/Klerulff (503) 645-6456; 
Marshall (503) 644·5050; Wyle (503) 640·6000. 

PENNSYLVANIA: Arrow/Kierulff (412) 856.7000, 
(215) 928·1800; GRS Elec1ronlcs (215) 922·7037; 
Marshall (412) 963·0441; Schweber (215) 441·0600, 
(412) 963·6804. 

TEXAS: Austin: Arrow/Kierulff (512) 835·4180; 
Hall·Mark (512) 258·8848; Marshall (512) 837·1991; 
Schweber (512) 339·0088; Wyle (512) 834·9957; 
Dallas: Arrow/Klerulff (214) 380-6464; 
Hall·Mark (214) 553·4300; Marshall (214) 233·5200; 
Schweber (214) 661·5010; Wyle (214) 235·9953; 
Zeus (214) 783·7010; 
EI Paso: Marshall (915) 593-0706; 
Houston: Arrow/Kierulff (713) 530·4700; 
Hall·Mark (713) 781·6100; Marshall (713) 895·9200; 
Schweber (713) 784-3600; Wyle (713) 879·9953. 

UTAH: Arrow/Klerulff (801) 973-6913; 
Hall·Mark (801) 972·1008; Marshall (801) 485·1551; 
Wyle (801) 974·9953. 

WASHINGTON: Arrow/Klerulff (206) 575-4420; 
Marshall (206) 486·5747; Wyle (206) 881·1150. 

WISCONSIN: Arrow/Kierulff (414) 792·0150; 
Hall·Mark (414) 797·7844; Marshall (414) 797·8400; 
Schweber (414) 784-9020. 

CANADA: Calgary: Future (403) 235-5325; 
Edmonton: Future (403) 438-2858; 
Montreal: Arrow Canada (514) 735·5511; 
Future (514) 694·7710; 
Ottawa: Arrow Canada (613) 226·6903; 
Future (613) 820·8313; 
Quebec City: Arrow Canada (418) 871·7500; 
Toronto: Arrow Canada (416) 672·7769; 
Future (416) 638-4771; Marshall (416) 674·2161; 
Vancouver: Arrow Canada (604) 291.2986; 
Future (604) 294·1166. 

Customer 
Response Center 
TOLL FREE: (800) 232·3200 

OUTSIDE USA: (214) 995·6611 
(8:00 a.m. - 5:00 p.m. CST) 

A-la9 



TI Worldwide 
Sales Offices 
ALABAMA: HuntsvHle: 500 Wynn Drive, Suite 514, 
Huntsville, AL 36805, (205) 837-7530. 

ARIZONA: Phoenix: 8825 N. 23rd Ave., Phoenix, 
AZ 85021, (602) 995-1007;TUCSON: 818 W. Miracle 
Mile, Suite 43, Tucson, AZ 65705, (602) 292-2640. 

CAUFORNIA: Irvine: 17891 Cartwright Dr., Irvine, CA 
92714, (714) 660-1200; Rooevile: 1 Sierra Gate 
Plaza, Roseville, CA 95678, (916) 786-9208; 
San DIego: 4333 View Ridge Ave., Suite 100, 
San Diego, CA 92123<1619) 278-9601; 
Santa Cia .. : 5353 Betsy Ross Dr., Santa Clara, CA 

,95054, (408) 980-9000; Torrance: 690 Knox St_, 
Torrance, CA 90502, (213) 217-7010; 
Woodland Hili.: 21220 Erwin St., Woodland Hills, 
CA 91367, (818) 704-7759. 

COLORADO: Aurora: 1400 S. Potomac Ave., 
Suite 101, Aurora, CO 80012, (303) 368-8000. 

CONNECTICUT: WaDingford: 9 Barnes Industrial Park 
Rd., Barnes Industriel Park, Wallingford, 
CT 06492, (203) 269-0074. 

FLORIDA: Ahamonte Spring.: 370 S. North Lake Blvd, 
Altamonte Springs, FL 32701,1305) 260-2116; 
Ft_ Lauderdale: 2950 N.W. 62nd St., 
Ft. Lauderdale, FL 33309, (305) 973-8502; 
Tampa: 4803 George Rd., Suite 390, 
Tampa, FL 33634, (813) 885-7411. 

GEORGIA: Norcroa.: 5515 Spalding Drive, Norcross, 
GA 30092, (404) 662-7900 

ILUNOIS: Arlington Helghta: 515 W. Algonquin, 
Arlington Heights, IL 60005, (312) 640-2925. 

INDIANA: Ft. Wayne: 2020 Inwood Dr., 
Ft. Wayne, IN 46815, (219) 424-5174; 
Carmel: 550 Congressional Dr., Carmel, IN 46032, 
(317) 573-6400. 

IOWA: Cedar Rapid.: 373 Collins Rd. NE, Suite 201, 
Cedar Rapids, IA 52402, 1319) 395-9550. 

KANSAS: Overland Park: 7300 College Blvd., Lighton 
Plaza, Overland Park, KS 66210, 1913) 451-4511. 

MARYLAND: Columbia: 8815 Centre Park Dr .. 
Columbia MD 21045, (301) 964-2003. 

MASSACHUSETTS: Wahham: 950 Winter St., 
Waltham, MA 02154, (617) 895-9100. 

MICHIGAN: Farmington Hills: 33737 W. 12 Mile Rd., 
Farmington Hills, M)48018, (313) 553-1569. 
Grand Rapid.: 3075 Orchard Vista Dr. S.E., 
Grand Rapids, MI 49506, (616) 957-4200. 

MINNESOTA: Eden Pralrla: 11000 W. 78th St .. 
Eden Prairie, MN 55344 (612) 828-9300. 

MISSOURI: St. Loui.: 11816 Borman Drive, 
St. Louis, MO 63146, (314) 569-7600. 

NEW JERSEY: iselin: 485E U.S. Route 1 South, 
Parkway Towers, Iselin, NJ 08830 (201) 750-1050. 

NEW MEXICO: Albuquerque: 2820-0 Broadbent Pkwy 
NE, Albuquerque, NM 87107, (505) 345-2555. 

NEW YORK: Ea.t Syracuse: 6365 Collomer Dr., 
East Syracuse, NY 13057, (315) 463-9291; 
MelvHIe: 1895 Walt Whitman Rd., P.O. Box 2936, 
Melville, NY 11747, 1516) 454-6600; 
PIttsford: 2851 Clover St_, Pittsford, NY 14534, 
(716) 385-6770; 
Poughkeepsie: 385 South Rd., Poughkeepsie, 
NY 12601, (914) 473-2900. 

NORTH CAROLINA: Charlotte: 8 Woodlawn Green, 
Woodlawn Rd., Charlotte, NC 28210, (704) 
527-0933; Raleigh: 2809 Highwoods Blvd., Suite 100, 
Raleigh, NC 27625, (919) 876-2725. 

OHIO: Beachwood: 23775 Commerce Park Rd., 
Baachwood, OH 44122, (216) 464-6100; 
Beavercreek: 4200 Colonel Glenn Hwy .. 
Baavercreek, OH 45431, (513) 427-6200. 

OREGON: Beaverton: 6700 SW 105th St .. Suite 110, 
Beaverton, OR 97005, (503) 643-6758. 

PENNSYLVANIA: Blue Ball: 670 Sentry Pkwy, 
Blue Bell, PA 19422, (215) 825-9500. 

PUERTO RICO: Hato Rey: Mercantil Plaza Bldg .. 
Suite 505, Hato Rey, PR 00918, (809) 753-8700. 

TENNESSEE: Johnson City: Erwin Hwy, 
P.O. Drawer 1255, Johnson City, TN 37605 
(615)461-2192. 

TEXAS: Austin: 12501 Research Blvd., Austin, TX 
78759, (512) 250-7655; Richardson: 1001 E. 
Campbell Rd., Richardson, TX 75081, 
(214) 680-5082; Houston: 9100 Southwest Frwy., 
Suite 250, Houston, TX 77074, (713) 778-6592; 
San Antonio: 1000 Central Parkway South, 
San Antonio, TX 78232, (512)496-1779. 

UTAH: Murray: 5201 South Green St., Suite 200, 
Murray, UT 84123, (801) 266-8972. 

WASHINGTON: Redmond: 5010 148th NE, Bldg B, 
Suite 107, Redmond, WA 98052, (206) 881-3080. 

WISCONSIN: Brookfield: 450 N. Sunny Slope, Suite 
150, Brookfield, WI 53005, (414) 782-2899. 

CANADA: Nepaan: 301 Moodie Drive, Mallorn Center, 
Nepean, Ontario, Canada, K2H9C4, 
(613) 726-1970. Richmond HIli: 280 Centre St. E'., 
Richmond Hill L4C1Bl, Ontario, Canada 
(416) 884-9181; St. Laurant: Ville St. Laurent 
Quebec, 9460 Trans Canada Hwy., St. Laurent, 
Quebec, Canada H4S 1 R7, (514) 336-1860. 

ARGENTINA: Texas Instruments Argentina Viamonte 
1119, 1053 Capital Federal, Buenos Aires, Argentina, 
541/748-3699 

AUSTRALIA (& NEW ZEALAND): Texas Instruments 
Australia Ltd.: 6-10 Talavera Rd .. North Ryde 
(Sydney), New South Wales, Australia 2113, 
2 + 887-1122; 5th Floor, 418 St. Kilda Road, 
Melbourne, Victorie, Australia 3004, 3 + 267-4677; 
171 Philip Highway, Elizabeth, South Australia 5112, 
8 + 255-2066. 

AUSTRIA: Texas Instruments Ges.m.b.H.: 
Industriestrabe B/16, A-2345 Brunn/Gebirge, 
2236-846210. 

BELGIUM: Texas Instruments N. V. Belgium S.A.: 11, 
~;in~:t3~~080ndetlaan ", 1140 Brussels, Belgium, 

BRAZIL: Texas Instruments Electronicos do Brasil 
Ltda.: Rua Paes Leme, 524-7 Andar Pinheiros, 05424 
Sao Paulo, Brazil, 0815-6166. 

DENMARK: Texas Instruments A/S, Mairelundvej 46E, 
2730 Herlev, Denmark, 2 - 91 7400. 

FINLAND: Texas Instruments Finland OY: 
Ahertajantie 3, P.O. Box 81, ESPOO, Finland, (901 
0-461-422. 

FRANCE: Texas Instruments France: Paris Office, 8P 
678-10 Avenue Morane-Saulnier, 78141 Velizy
Villacoublay cedex (1) 30 70 1003. 

GERMANY (Fed_ Repubfic of Germany): Texas 
Instruments Deutschland GmbH: Haggertystrasse " 
8050 Freising, 8161 +80-4591; Kurfuerstendamm 
195/196,1000 Berlin 15, 30+882-7365; III, Hagen 
43/Kibbelstrasse, .19,4300 Essen, 201-24250; 
Kirchhorsterstrasse 2, 3000 Hannover 51, 
511 +648021; Maybachstrabe 1" 7302 Ostfildern 
2-Nelingen, 711 + 34030. 

• TEXAS 
INSTRUMENTS 

HONG KONG: Texas Instruments Hong Kong Ltd., 8th 
Floor, World Shipping Ctr., 7 Canton Rd., Kowloon, 
Hong Kong, 1852) 3-7351223. 

IRELAND: Texas Instruments (Ireland) Limited: 
7/8 Harcourt Street, Stillorgan, County Dublin, Eire, 
1 781677. 

ITALY: Texas Instruments Italia S.p.A. Divisione 
Semiconduttori: Viale Europa, 40, 20093 Cologne 
Monzese (Milano), (02) 253001; Via Castello della 
Magliana, 38, 00148 Roma, (06) 5222651;1 
Via Amendola, 17,40100 Bologna, 1051) 554004. 

JAPAN: Tokyo Marketing/Sales IHeadquarters): 
Texas Instruments Japan Ltd., MS Shibaura Bldg., 9F, 
4-13-23 Shibaura, Minato-ku, Tokyo 108, Japan, 
03-769-8700. Texas Instruments Japan Ltd.: Nissho
Iwai Bldg. 5F, 30 Imabashi 3-chome, Higashi-ku, 
Osaka 541, Japan, 06-294-1881; Daini Toyota West 
Bldg. 7F, 10-27 Meieki 4-chome, Nakamura-ku, 
Nagoya 450, 052-583-8691; Daiichi Seimei Bldg. 6F, 
3-10 Oyama-cho, Kanazawa 920, Ishikawa-ken, 
0762-23-5471; DaUchi Olympic Tachikawa 8ldg. 6F, 
1-25-12 Akebono-cho, Tachikawa 190, Tokyo, 
0425-27-6426; Matsumoto Showa Bldg. 6F, 2-11 
Fukashi l-chome, Matsumoto 390, Nagano-ken, 
0263-33-1060; Yokohama Nishiguchi KN 81d9. 6F, 
2-8-4 Kita-Saiwai-cho, Nishi-ku, Yokohama 220, 
045-322-6741; Nihon Seimei Kyoto Yasaka 8ldg. 5F, 
843-2 Higashi Shiokohjidori, Nishinotoh-in Higashi-iru, 
Shiokouji, Shimogyo-ku, Kyoto 600, 075-341-7713; 
2597-1, Aza Harudai, Oaza Yasaka, Kitsuki 873, Oita
ken, 09786-3-3211; Miho Plant, 2350 Kihara Miho
mura, Inashiki-gun 300-04, Ibaragi-ken, 
0298-85-2541. 

KOREA: Texas Instruments Korea Ltd., 28th FI., Trade 
Tower, #159, Samsung-Dong, Kangnam-ku, Seoul, 
Korea 2 + 551-2810. 

MEXICO: Texas Instruments de Mexico S.A.: Alfonso 
Reyes-115, Col. Hipodromo Condesa, Mexico, D.F., 
Mexico 06120, 525/525-3860. 

MIDDLE EAST: Texas Instruments: No. 13, 1st Floor 
Mannai Bldg., Diplomatic Area, P.O. Box 26335, 
Manama Bahrain, Arabian Gulf, 973 + 274681. 

NETHERLANDS: Texas Instruments Holland B.V., 
19 Hogehilweg, 1100 AZ Amsterdam-Zuidoost, 
Holland 20 + 5602911 . 

NORWAY: Texas Instruments Norway A/S: PB106, 
Refstad 0585, Oslo 5, Norway, 12) 155090. 

PEOPLES REPUBLIC OF CHINA: Texas Instruments 
China Inc .• Beijing Representative Office. 7-05 Citic 
Bldg., 19 Jianguomenwai Dajje, Beijing, China, (861) 
5002255, Ext. 3750. 

PHILIPPINES: Texas Instruments Asia Ltd.: 14th Floor, 
Ba- Lepanto Bldg., Paseo de Roxas, Makati, Metro 
Manila, Philippines, 817-60-31. 

PORTUGAL: Texas Instruments Equipamento 
Electronico (Portugal), Lda.: Rua Eng. Frederico Ulrich, 
2650 Moreira Da Maia, 4470 Maia, Portugal, 
2-948-1003. 

SINGAPORE I + INDIA, INDONESIA, MALAYSIA, 
THAILAND): Texas Instruments Singapore (PTE) Ltd .. 
Asia Pacific Division, 101 Thompson Rd. #23-01, 
United Square, Singapore 1130, 350-8100. 

SPAIN: Texas Instruments Espana, S.A_: C/Jose 
Lazaro Galdiano No.6, Madrid 28036, 1/458.14.58. 

SWEDEN: Texas Instruments International Trade 
Corporation (Sverigefilialen): S-164-93, Stockholm, 
Sweden, 8 - 752-5800. 

SWITZERLAND: Texas Instruments, Inc., Reidstrasse 
6, CH-8953 Dietikon (Zuerich) Switzerland, 
1-7402220. 

TAIWAN: Texas Instruments Supply Co., 9th Floor 
Bank Tower, 205 Tun Hwa N. Rd., Taipei, Taiwan, 
Republic of China, 2 + 713-9311. 

UNITED KINGDOM: Texas Instruments Limited: 
Manton Lane, Bedford, MK41 7PA, England, 0234 
270111. 

A-189 





Printed in U.S.A. 
0989-10 

~ 
TEXAS 

INSTRUMENTS 

SRPU001 


