opmy sJ3sN 068SVYLINS/888SVYLINS

SIN74 ASSSS8
SIN74AS89(
Bit-Slice

Processor

User’s Guide

8-Bit Family

*

TeExAas
INSTRUMENTS

SIN74AS888/SN74AS890

Bit-Slice Processor

User’s Guide

Kip
TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. Tl advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

Tl warrants performance of its semiconductor products to current
specifications in accordance with Tl’s standard warranty. Testing and
other quality control techniques are utilized to the extent Tl deems
such testing necessary to support this warranty. Unless mandated
by government requirements, specific testing of all parameters of each
device is not necessarily performed.

In the absence of written agreement to the contrary, Tl assumes no
liability for Tl applications assistance, customer’s product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does Tl warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of Tl covering or relating to any combination, machine, or process in
which such semiconductor devices might be or are used.

First printed April 1985
Revised August 1985

Copyright © 1985, Texas Instruments Incorporated

TABLE OF CONTENTS

SECTION
1 INTRODUCTION ..ttt e e e e e e e e
1.1 Understanding Bit-Slice Architecturecccoiiiiiiiininnnn.n.
1.2 The ‘AS888 8-Bit Processor Slice e e
1.3 The 'AS890 MiCroseqUEeNCErueeire it i ere e,
1.4 SUPPOrt TOOIS .ttt
1.5 Design SUPPOIt ... e
1.6 Design EXPertisecuiriiii i e
2 ‘AS888 8-BIT PROCESSOR SLICEccvvviiviiiiinnnnn. e
2.1 o] 1 0= o3 1 X
21,1 Data Flow ..ot i i e e
2.1.2 Architectural Elements i e
2.1.21 Three-Port Register File oo,
2.1.22 Rand S Multiplexerscccviiiiiiiiiiiiiiinnnn.
2.1.2.3 DA and DB BUSEScoviiiiiiniiiiiii i,
2.1.24 ALU .. e e e
2125 ALUand MQ Shifterscooviiiiiiii i,
21.26 MQRegisteroiiiiiiiiii i
2.1.27 Y BUS it e e e e e,
2.1.2.8 StatUS ...ttt e e e
2.1.2.9 Package Position Pin i,
2.1.2.10 Special Shift Function Pin
2.1.2.11 Divide/BCD Flip-Flops ...t
2.2 Instruction Set Overview ..ottt i i e i e
2.2.1 Arithmetic/Logic Instructions with Shifts
2.2.2 Other Arithmetic Instructionso i,
2.2.3 Data Conversion Instructionscciiiiiii ...
2.24 Bitand Byte Instructions o i,
2.25 OtherInstructionsc.oiiiiiiiiiii it it e
2.3 Multiplication and Divisionc.o i i e
231 DIVISION .ottt i e e e
2.3.1.1 Signed Division i e e
2.3.1.2 Unsigned Division ...ttt
2.3.2 Multiplication ...t e
2.3.2.1 Signed Multiplication o i,
2.3.2.2 Unsigned Multiplicationccoivuiia...
2.3.2.3 Mixed Multiplicationcciiiiiiiiiii..
24 Decimal Arithmetic and Data Conversonc.cviiiiinenneiennnnn.
241 EXCess-6to EXCess-3t e
24.2 Binary to EXCeSS-3 ... ittt i e e
243 BCDtoBinaryo e
244 Excess-3to USASCH ... i it
25 InStruction Sett e
ABS e e e
2
Y
AN L e e e e i
ANDNR L e e it
BAD D .. e e e e et s
BAND . . e e e e e e e

BCDBI

N

BINCNS . . s

BINCS

BOR .

L R I R I R I R R B R R R R R R R R R R R R R)

110

SDIVO

...

2-36
2-38
2-40
2-42
2-44
2-46
2-48
2-50
2-52
2-53
2-54
2-56
2-58
2-60
2-62
2-64
2-66
2-68
2-70
2-72
2-74
2-76
2-78
2-80
2-82
2-84
2-86
2-88
2-89
2-90
2-91
2-92
2-93
2-94
2-96
2-98
2-100
2-102
2-104
2-106
2-108
2-110
2-111
2-112
2-114
2-116
2-118
2-120
2-122
2-124
2-126
2-128
2-130

L1 > 2-132

= 3 S e e e, 2-134

L8 1 2-136
L e 2-137

L0 15 PP 2-138

UMU L. i it ittt e s s s e ettt iaie s eeans 2-139

D 2-140

‘AS890 MICROSEQUENCERiiiiiiiiiiiiii it e et ettt eenans 3-1
3.1 L0 1Y - 3-1
3.2 o T3 (=Y o (U] 2 3-3
3.2.1 Y Output Multiplexerc.cciviiiiiiiiiiiiiiiiiiiii e ieennns 3-5

3.2.2 Microprogram CouNteroiiiirinriiiinnenrereeeennnnnns 3-5

3.2.3 Register/COUNtersuiuiiiit ittt ittt it iiiniee e nnnnns 3-5

3,24 StACK ..t e e e e 3-6

3.24.1 Stack Pointer ..ottt i i 3-6

3.24.2 Read Pointercoiiiiiiiiiiiininiiiiiiinnnnennans 3-6

3.2.4.3 Stack Warning/Read ErrorPinccvvvvenn, 3-6

3.2.5 Interrupt Return Registerccoiiiiiiiiiiiiiiiinnnnnnn. 3-6

3.3 Microprogramming the ‘AS890ttt iiiiiiiiiinieans 3-7
3.3.1 Address Selectionccciiiiiiiiiii i e e 3-7

3.3.2 Stack Controlscoviiiii ittt i et e e i e 3-8

3.3.3 Register Controlscoiiiiiiiiitiiiii ittt 3-9

3.3.4 Continue/Repeat Instructionsccciiiiiiiiriiriennnnn. 3-10

3.3.5 Branch Instructionsciiiiiiiiriiiiniiniriinnnnenes 3-11

3.3.6 Conditional Branch Instructionsc.ocoviiiiiiiininn., 3-11

3.3.7 Loop INStruCtionsccoiiiiiiiiiiiiii ittt e 3-13

3.3.8 SubroutineCallscoviiiiiiiii ittt i e i e 3-16

3.3.9 Subroutine Returnscoiiiiiiiiiiiiiii et e e 3-16

0 T T 1Y 3-16

3.3.11 Clear POIinters ...ttt iiiiiiiiiiitiniers e ninnnnnnenns 3-17

3.3.12 Read Stackoviiiiiiiii it i et e e e 3-18

3313 INteImUPES oottt e e e 3-18

3.4 3= 0.4 o 1= AP 3-18
3.4.1 Required Set-Upcoiiiiiiiiiiii ittt e 3-18

Clear POINtersc.iiiiiiie ittt i ettt ie it 3-19

100 4} 11 1 T 3-20

Branch ... i et e 3-22

Conditional Branch ...ttt iiiiiiaans 3-24

10T Yo J 3-26

Jump to Subroutine e 3-32

Return from Subroutinet i i 3-34

3 1= 3-36

32-BIT CPU DESIGN METHODOLOGYiiiiiiiiiiiiiiiiiiee s iiiaiananaanns 4-1
4.1 Designing a 32-Bit Systemt e i e 4-2
4.1.1 Constructionofthe ALU ...t 4-2

4.1.2 Constructionofthe CCU i ittt 4-3

4.2 Tracing through a 32-Bit Computeroiiiiiiiiiiiiininnenns 4-6
4.3 Defining the Macrocode Instruction Formatccovvvvinnns 4-11
4.4 Tracing a Macrocode Instructionc.ccoiiiiiiiiniiiiinnnn, 4-11
45 System Enhancementsciiiiiiiiiiiiiiiiiee it iiiniieaaaans 4-12
4.6 Timing and System Throughputc ittt 4-14
4.6.1 Fetch Analysis ...ttt i i i ittt e aneans 4-14

4.6.2 Multiplication Analysis ...ttt i it i e 4-14

5 FLOATING-POINT SYSTEM DESIGN ..ottt i ieeinnans 5-1
5.1 Choose a Floating-Point Number System 5-2

5.2 Choose an Algorithm for Sin{X)cciiivtiiiiiiiiiiiiiiiiiiiiiines 5-2

5.3 Make ‘AS888 Register Assignmentscovviiieiiienrinrrnnnrennnns 5-3

5.4 Substitute Registers for Variables in the Algorithm 5-4

5.5 Decompose Steps in the Algorithm into Simple Operations 5-4

5.6 Translate into ‘AS888/890 Instructions; Identify Subroutines 5-5

5.7 Expand Subroutines into ‘AS888/890 Operationscvvvvunn. 5-6

5.7.1 Floating-Point Multiplicationottt 5-7

5.7.2 Floating-Point Additiono it i 5-9

5.8 Evaluate Tradeoffs and Block Diagram the Hardware 5-11

5.9 Define Microinstruction Fields During Detailed Hardware Design 5-13

5.10 Assemble the Microprogramc.iiiiiniiiiiiiiiiie i, 5-13

LIST OF APPENDICES
APPENDIX PAGE
A 'AS888 and 'AS890 Pin Descriptions and Assignmentscooiiiiiiirinnnnn. A-1
LIST OF ILLUSTRATIONS

FIGURE PAGE
1-1 Bit-Slice System Block Diagram ... e 1-2
241 internal Data Flow for AAS888c. ittt i it ittt eaens 2-2
2-2 Functional Block Diagram of ‘AS888c.iiiiiiiiiiii i ittt 2-3
2-3 Essential ‘AS888 Interconnectionsciiiiiiiiiiiiinn i iiininarnanaaaan 2-4
2-4 ‘AS888 Package Connections for Bit and Byte Instructions 2-12
3-1 Typical Microprogrammed ProCessorviiiiiiiiin it iinneiinaneeennnn 3-2
3-2 Functional Block Diagram for ‘AS890ttt ittt 3-4
4-1 System Design Approach ...ttt et s 4-1
4-2 CCU Block Diagram e e 4-4
4-3 ALU Block Diagram ...ttt it e e e e et e 4-5
4-4 Cascaded AS888 Packagescoviiiiiiiiiiii i it it i e e 4-7
5-1 Block Diagram of Floating Point Processorccoiiiiiiiiiiiiininnnnnnnnns 5-12
A1l ASB88 Pin ASSIgNMIENTS ..ottt it e i e i e A-2
A2 ASBI0 Pin AsSigNMENTS ... iutitti ittt ettt i A-4

vi

LIST OF TABLES

TABLE PAGE
2-1 ALU Source Operand Selectscuiuiiiiiiiiii ittt et e it 2-3
2-2 Destination Operand Select/Enablescoi ittt e 2-5
2-3 Required ‘AS888 Shift Pin Connections (External)ccoviiiiiiinienennn, 2-6
2-4 Combined ‘AS888 Arithmetic-Logical Shift Operationsccvvinn.. 2-7
2-5 Other ‘ASB88 INStrUCtiONS iiiie ittt a e eee s ennnerraenens 2-8
2-6 ASB88 INStruction Setoiiiiiii i i e e e e 2-9
2-7 Shift DefinitioNsot i i e e e e i i 2-11
2-8 Signed Division Algorithm e e 2-16
2-9 Unsigned Division Algorithm ... it i 2-17
2-10 Excess-3 Representationcouuiiiiin it erniineeenrinnnanareeraenanaaaes 2-19
3-1 Response to Control INPULS ..ottt it i i et et ee i eans 3-3
3-2 Y Output Control ... i i it e 3-8
3-3 Stack Control ... i e e e 3-9
3-4 Register Controlo i e e 3-9
3-5 Continue/Repeat ENcodingscoiiiiiiiiiiiii i it it ee et et 3-10
3-6 Branch Encodingsiniiiii i it ettt it et e 3-12
3-7 Conditional Branch Encodings ...ttt ittt i e eenan s 3-14
3-8 Decrement and Branch on Non-Zero Encodingsciiiiiiinnnnns. 3-15
3-9 Call Encodings without Register Decrementscciiiiiininennn e 3-16
3-10 Call Encodings with Register Decrementscciiiiiiiiiiniieinnnenns 3-17
3-11 ReSet ENCOAING . ..iviiitiit ittt ittt ittt ettt e iia et tne e tae e enanean 3-17
3-12 Return Encodings without Register Decrementscciiviiiiiinnnnnn. 3-17
3-13 Return Encodings with Register Decrementscciiiiiiiii it iiinnennns 3-17
4-1 Microcode Definition i e et i e 4-8
4-2 Functional Listing of Fetch i it e 4-9
4-3 Assembler Listing of Fetch i i e 4-9
4-4 Microcode Listing of Fetch i it e it e 4-10
4-5 Possible Instruction Formatsottt i i et it e s 4-11
4-6 Functional Listing of Multiplyoo i i i et 4-12
4-7 Assembler Code of MUIIply ..o s et et e ens 4-13
4-8 Microcode Listing of MUlIply ... e i e 4-15
4-9 Fetch Timing Comparisonciiiiiititii ittt iiia e teaeeenereenneenn 4-16
4-10 Multiply Timing CompariSOnuitiiiiit ittt iie e iean e inaeeaaneenns 4-16
5-1 Floating Point Sin(x) Microprogramoiiiiiiitiiiiiiiiin et iinnareens 5-14
A1l ASB88 Pin DesCriptioNsu ittt it ittt ettt et e s A3
A2 AS8I0 Pin DesCriptioNS .. .vu ittt ittt ittt i e et A5

vii

1 Introduction

With the introduction of the 'AS888, Texas Instruments Incorporated offers an LSI
building block that can be cascaded to form an ALU of any word width with a
significant increase in efficiency and speed over older 4-bit-slice systems. The 8-bit
slice and its companion microsequencer, the ‘AS890, increase processing throughput
per unit area to an extent never before realized in bit-slice systems.

These innovations are the result of a new Texas Instruments technology called
IMPACT. The new processing technique reduced feature size to two microns, enabling
the development of about six to eight times the number of gates possible with Schottky
and low-power Schottky TTL. The increased gate density permitted expansion of the
slice to an 8-bit width and the development of special on-board circuitry for decoding
high-level operations into microoperations. The result is a flexible, multi-function chip
that provides rapid multiplication and division; supports sign-magnitude, BCD,
excess-3, single- or double-precision arithmetic; and offers additional specialized
features such as operations on selected bits or bytes.

This section of the User’'s Guide introduces the ‘AS888 and ‘AS890 and outlines the
support tools available for system development. Section 2 looks at the architecture and
instruction set of the 'AS888. The microsequencer is the subject of section 3, beginning
with a functional description of the chip and looking at its flexible instruction set.
Possible applications for the ‘AS888/'/AS890 are explored in sections 4 and 5. The first
approaches high-speed CPU design using the 8-bit slice; the second develops a design
for a floating point processor.

1.1 Understanding Bit-Slice Architecture

Figure 1.1 illustrates a simple bit-slice system. The three basic components are an
arithmetic/logic unit, a sequencer and a memory. The program that resides in this
memory is commonly called the microprogram, while the memory is referred to as
a micromemory or control store. The ALU performs all the required operations on data
brought in from the external environment (main memory or peripherals, for example),
while the sequencer is dedicated to generating the next address to the micromemory.
The ALU and sequencer operate in parallel so that data processing and next-address
generation are carried out concurrently.

The microprogram instruction, or microinstruction, consists of control information to
the ALU and sequencer. Unlike a microprocessor opcode, the microinstruction consists
of a number of fields of code that directly access and control the ALU, registers, bus
transceivers, multiplexers and other system components. This high degree of
parallelism offers greater speed and flexibility than a typical microprocessor, although
the microinstruction serves the same purpose as a microprocessor instruction: it
specifies control information by which the user is able to implement desired data
processing operations in a desired sequence. The microinstruction cycle is
synchronized to a system clock by latching the instruction in the microinstruction,
or pipeline, register once for each clock cycle. Status results are collected in a status
register which the sequencer samples to produce conditional branches within the
microprogram.

1.2 The '‘AS888 8-bit processor slice

The 'AS888 is engineered to support high-speed, high-level operations. The slice,
described in detail in section 2, contains an 8-bit ALU, a 16-word by 8-bit register
file, two shifters to support double-precision arithmetic and three independent,
bidirectional data ports.

1-1

At

AS890

MICROSEQUENCER MICROADDRESS BUS

FANVAN

MICROPROGRAM
MEMORY

MICROINSTRUCTION
REGISTER

SYSTEM INTERFACE

AS888
BIT-SLICE ALU

AN

ALU STATUS

MICROINSTRUCTION BUS

\/

TESTED STATUS

STATUS
MUX

SYSTEM STATUS

+

< STATUS ‘!’

Figure 1-1. Bit-Slice System Block Diagram

The slice’s thirteen basic arithmetic and logic instructions can be combined with a
single-or double-precision shift operation in one instruction cycle. Other instructions
support data conversions, bit and byte operations and other specialized functions.

The chip's configuration enhances processing throughout in arithmetic and radix
conversion. Internal generation and testing of status results in fast processing of
division and multiplication algorithms. This decision logic is transparent to the user; the
reduced overhead assures shorter microprograms, reduced hardware complexity and
shorter software development time.

1.3 'AS890 Microsequencer

To complement these innovations in bit-slice processor technology, Texas Instruments
also developed the "AS890. Implemented with Advanced Schottky and Schottky-
transistor logic, the microsequencer performs double-nested loops, multiway
branching, do-while loops, compound if...then...else expressions, interrupt processing
and other complex instructions. Fast memory devices and the high-speed
microsequencer make possible to construct from a handful of components a bit-slice
system executing high-level operations.

Like the "AS888, the ‘AS890 is expandable. The 9-word stack can be increased
externally using a stack status pin. Two register/counters can be read or loaded
externally to permit operations such as array indexing while looping in a microprogram.

Diagnostics are also supported. Conditions that cause stack overflow can be traced
by reading the stack, reducing software development time and monitoring runtime
errors.

1.4 Support Tools

Texas Instruments provides a low-cost, real-time development and evaluation module
(EVM) to aid initial hardware and software design. The 16-bit, self-contained system
provides a quick and easy way to test and debug simple microcode, allowing software
and hardware evaluation at or near rated execution speeds.

The EVM incorporates a single-chip 8-bit microcomputer to handle user interface and
communications. An EPROM-based monitor program gives the user complete control
over all important functions, registers and buses of the target system, as well as the
high-speed writable control store. Further information is given in the document, 74AS
EVM-1 Bit-Slice Evaluation System Users Guide.

1.5 Design Support

Texas Instruments Regional Technology Centers, staffed with systems-oriented
engineers, offer a training course to assist users of Tl’s LS| products and their
application to digital processor systems. Specific attention is given to the
understanding and generation of design techniques which implement efficient
algorithms designed to match high-performance hardware capabilities with desired
performance levels.

Information on courses for bit-slice design using the ‘AS888 and 'AS890 can be
obtained from the following Regional Technology Centers:

1.6 Design Expertise

Atlanta

Texas Instruments Incorporated
3300 N.E. Expressway, Building 8
Atlanta, GA 30341
404/452-4682

Boston

Texas Instruments Incorporated
400-2 Totten Pond Rd.
Waltham, MA 02154
617/890-6671

Northern California

Texas Instruments Incorporated
5353 Betsy Ross Drive

Santa Clara, CA 95054
408/748-2220

Chicago

Texas Instruments Incorporated
515 Algonquin

Arlington Heights, IL 60005
312/640-2909

Dallas

Texas Instruments Incorporated
10001 E. Campbell Road
Richardson, TX 75081
214/680-5066

Southern California

Texas Instruments Incorporated
17891 Cartwright Drive

Irvine, CA 92714
714/660-8140

The VLSI Systems Engineering Group maintains a computer bulletin board to assist
bit-slice users. The board can be accessed by dialing 214/995-4569.

Texas Instruments can provide in-depth technical design assistance through
consultations with contract design services. Contact your local Field Sales Engineer
for current information or contact VLS| Systems Engineering at 214/995-4720.

2

"‘AS888 8-Bit Processor Slice

The 'AS888 is an 8-bit ALU/register slice designed for use in high-performance digital
computers or controllers. Slices can be cascaded to any word width 16 bits or greater.

Key elements include a 16-word by 8-bit register file and a high-speed ALU. Three
independent 4-bit port addresses allow a two-operand fetch and an operand write
to be performed at the register file simultaneously. The 8-bit ALU can perform seven
arithmetic and six logical instructions, followed by conditional arithmetic, logical or
circular shifts. The result can be returned to the register file or output through the
Y port.

The ALU also supports a wide range of arithmetic and logical functions, such as
multiplication, division, normalization, add and subtract immediate, cyclic redundancy
character accumulation, and data conversions such as BCD, excess-3, USASCIl and
sign magnitude. Double precision operations can be implemented using a multiplier-
quotient register and shifter designed to operate alone or in parallel with the register
file and ALU shifter.

An internal ALU bypass path increases the speeds of multiply, divide and normalize
instructions by eliminating many common types of test and branch instructions. The
path is also used by ‘AS888 instructions that permit bits and bytes to be manipulated.

2.1 Architecture

2.1.1 Data Flow

Data flow through the ‘AS888 is shown in Figure 2-1. Data enters the chip from three
primary sources: the bidirectional Y port, which is used in an input mode to pass data
to the register file; and the bidirectional DA and DB ports, used to input data to the
R and S buses serving the ALU. Data enters the ALU through two multiplexers: R MUX,
which selects the R bus operand from the DA port or the register file addressed by
A3-A0; and S MUX, which selects data from the DB port, the register file addressed
by B3-BO, or the multiplier-quotient (MQ) register.

The result of the ALU operation is passed on the F bus to the ALU shifter, where it
can be shifted or passed without shift to the Y bus for output from the 'AS888 and/or
storage in the internal register file. The MQ shifter, which operates in parallel with
the ALU shifter, can be loaded from the ALU via the F bus, or the MQ register. The
MQ shift result is passed to the MQ register, where it can be routed through the S MUX
to the ALU.

Data can be output from three bidirectional ports: the Y port and the DA and DB ports.
DA and DB can be used to read ALU input data on the R and S buses for debug or
other special purposes.

2.1.2 Architectural Elements

Figure 2-2 is a functional diagram of the 'AS888. Key elements of the slice are
discussed below.

J

16x8
REGISTER FILE

T

N
ALU

F
< U
ALU MQ
SHIFTER SHIFTER

1y

MQ
REGISTER

|

DA INPUT |

Figure 2-1. Internal Data Flow for ‘AS888

2.1.2.1 Three-Port Register File

Sixteen 8-bit registers are accessed by three address ports. C3-CO address the
destination register during write operations; A3-AO and B3-BO address any two
registers during read operations. Data is written into the register file when WE is low
and a low-to-high clock transition occurs. Under certain conditions, the address buses
are used to furnish immediate data to the ALU: A3-AO to provide constant data for
the add and subtract immediate instructions; A3-AO0 and C3-CO to provide masks for
set, reset and test bit operations.

2.1.2.2 R and S Multiplexers

ALU inputs are selected by the R and S multiplexers. Controls which affect operand
selection for instructions other than those using constants or masks are shown in
Table 2-1.

L -
E #—< C3-C0
16x8 ———<3WE
REGISTER FILE | —r—acx
A3-A0D—+~ #-1—<B3-B0
<1 OEB
d's
1—& , DB7-DBO
DA7-DA0 71— 8 =
OEA D—-l Y/J‘ r
— < EBO
AN Q
_EA D— \R MUX/ \.. MUX/ QEB1
G/IN O—
P/IOVR <+— R S
c
n+8 <F— __/ / ac,
ZERO ES— ALU-
F £3 Sioo
] 1
Sio7 & ALU [maQ €3 QI00
SHIFTER! r SHIFTER
QI07 &&— . I
PPP D— MO 4
L REGISTER T
SSF &— o
1710 DA
sEv X DIVIDE/
OEY B— { BCD FF'S
=
é —<aVeer
I v
SELY Y7-Y0 Q Yccz

[GND
2

Figure 2-2. Functional Block Diagram of ‘AS888

Table 2-1. ALU Source Operand Selects

R-BUS S-BUS
OPERAND | OPERAND RESULT
SELECT SELECT DESTINATION <~ SOURCE OPERAND
EA EB1-EBO
0 R bus < Register File addressed by A3-A0
1 R bus < DA port
00 S bus < Register File addressed by B3-B0
01 S bus < MQ Register
10 S bus < DB Port
11 S bus <~ MQ Register

¢

Vee
PPP PPP ‘OPEN PPP "OPEN PPP 1

ZERO SSF ZERO SSF ZERO SSF ZERO SSF ~

SI07 SIO0 SI07 SI00 SI07 SI00 SI07 SIO0

Qlo7 Ql00 Qlo7 QI00 Qlo7 QIoo 10107 QIO0}——

Cout Cn+s Cn+8 Cn+8 Cn+8
—P c"_'l —P cn_‘I —P cn'—'| —P Cn < Cin
—G —G —G —G
CONDITIONAL
ENABLE
CONDITIONAL

SHIFT

Figure 2-3. Essential "AS888 Interconnections

2.1.2.3 DA and DB Buses

2.1.2.4 ALU

The DA and DB buses can be used to read S bus or R bus inputs from the register
file or to load the S bus and/or R bus directly from an external source. See Tables 2-1
and 2-2 for the selects and enables which affect DA and DB.

Table 2-2. Destination Operand Select/Enables

REGISTER DA DB
| | | | o
ENABLE ENABLE | SELECT | ENABLE | ENABLE DESTINATION < SOURCE OPERAND
WE OEY SELY OEA OEB
0 0 X Y port and Register File <~ ALU Shifter
1 0 X Y port «<— ALU Shifter
0 1 0 Register File < ALU Shifter
0 1 1 Register File < Y port
1 DA port < R bus
0 DA port < Hi-Z
1 DB port < S bus
0 DB port « Hi-Z

The ALU can perform seven arithmetic and six logical instructions on two 8-bit
operands. It also supports multiplication, division, normalization, bit and byte
operations and data conversion, including excess-3 BCD arithmetic. The "AS888
instruction set is discussed in section 2.2 and presented in detail in section 2.5.

2.1.2.5 ALU and MQ Shifters

The ALU and MQ shifters are used in all of the shift, multiply, divide, and normalize
functions. They can be used exclusively for single precision or concurrently for double
precision shifts. Shifts can be made conditional, using the Special Shift Function (SSF)
pin.

The shifters of adjacent slices are connected by four bidirectional pins: SI00 and SI07,
QIO0 and QIO7. These pins allow serial data to be shifted between packages and
also serve to transfer data between the MQ and ALU shifters for double precision
and other operations. Figure 2-3 shows four interconnected packages. The shift pins
on all cascaded 'AS888s must be wired as shown in the figure and in Table 2-3.

Status connections will vary according to system design. The system shown uses
ripple carry. For large word widths (four or more slices), a look-ahead carry generator
may be desired. This can be implemented using the generate (G) and propagate (P)
signals. A schematic using carry look-ahead can be found in Section 4.

2.1.2.6 MQ Register

The MQ register and the MQ shifter function as a shift register and can be loaded
from the ALU, register file or external data buses. The register has specific functions
in multiplication, division, and data conversion and can also be used as a temporary
storage register.

2.1.2.7 Y Bus

2.1.2.8 Status

Table 2-3. Required '‘AS888 Shift Pin Connections (External)

INTERMEDIATE PACKAGES END PACKAGES

SI07 to SIO0 of next most significant package SIO7 on most significant package to SIO0 of
least significant package

Ql07 to QIO0 of next most significant package | QlIO7 on most significant package to QI00 of
least significant package

SI00 to SIO7 of next least significant package
QIOO0 to QIO7 of next least significant package

The Y bus contains the output of the ALU shifter if OEY is low and can be used as
an input if OEY is high. SELY controls the flow of data to the register file. If SELY
is low, ALU shifter output will be passed to the register file; if SELY is high, the Y
port becomes an input to the register file.

Four status signals are generated by the most significant slice: overflow (OVR), sign
(N), carry-out (Cph +8) and ZERO. Cp, + 8 indicates carry-out of the ALU, regardless
of shift. OVR, N and ZERO indicate status from the ALU shifter. ZERO must be wire-
ANDed as shown in Figure 2-3.

2.1.2.9 Package Position Pin

The package position pin (PPP) defines the position of the slice in the system.
Intermediate positions are selected by leaving the pin open. Tying the pin to Vcc
makes the slice the most significant package; tying the pin to GND makes it the least
significant.

2.1.2.10 Special Shift Function Pin

Conditional shifting algorithms may be implemented using the SSF pin under hardware
or firmware control. SSF is a bidirectional pin and is used in certain ’AS888 instructions
to transmit information between slices, eliminating many types of test and branch
instructions. During multiplication, for example, the least significant bit of the multiplier
determines whether an add/shift or shift operation is to be performed. In this case,
the SSF pin of the least significant package is used as an output pin, while all other
packages become input pins. Similarly, during normalization, the required operation
depends on whether the two most significant bits of the operand are the same or
different. Here, the SSF pin of the most significant package becomes an output pin
while those on all other packages become input pins.

During instructions that force the SSF pin during execution, SSF must be left in the
high-Z state, as shown in Figure 2-3. Use of SSF is discussed for individual instructions
in section 2.5.

2.1.2.71

Divide/BCD Flip-Flops

Internal multiply/divide flip-flops are used by certain multiply and divide instructions
to maintain status between instructions. Internal excess-3 BCD flip-flops preserve
the carry from each nibble in excess-3 BCD operations. The BCD flip-flops are affected
by all instructions except NOP and are cleared when a CLR instruction is executed.
These flip-flops are not directly accessible by the user.

2.2 Instruction Set Overview

Bits 17-10 are used as instruction inputs to the slice. Instructions are summarized in
Tables 2-4 and 2-5. Table 2-6 lists all instructions, divided into five groups, with their
opcodes and mnemonics. Group 1, a set of ALU arithmetic and logic operations, can
be combined with the user-selected shift operations in Group 2 in one instruction cycle.
The other groups contain instructions for bit and byte operations, division and
multiplication, data conversion, and other functions such as sorting, normalization
and polynomial code accumulation.

A brief overview of the instruction set follows. Details about individual instructions,
including operand, status and control information, can be found in section 2.5.

Table 2-4. Combined ‘AS888 Arithmetic-Logical/Shift Operations

GROUP 1 GROUP 2
Arithmetic Shift ALU Shift MQ Register
Add R+S +C, Arithmetic Right Arithmetic Right
Subtract R+S+ Ch Arithmetic Left Logical Right
R+S + C, |Logical Right Logical Left
Increment R + C, Circular Left Circular Left
S +C, Circular Right
R+ Cp : Load MQ Register
S + Cp, Shift ALU and MQ Register = Load MQ with ALU
Logical R AND S Arithmetic Right
RAND S Arithmetic Left Pass ALU Result Unshifted
RORS Logical Right Pass ALU to specified output
R XOR S Circular Left destination without shift
R NAND S Circular Right
RNOR S

2.2.1

Table 2-5. Other ‘AS888 Instructions

GROUPS 3-5

Arithmetic Operations

Add Immediate

Subtract Immediate

Signed Divide
Signed Divide Initialize
Signed Divide Overflow Check
Signed Divide Start
Signed Divide Iterate
Signed Divide Terminate
Signed Divide Quotient Fix
Divide Remainder Fix

Unsigned Divide
Unsigned Divide Start
Unsigned Divide Iterate
Unsigned Divide Terminate
Divide Remainder Fix

Multiply
Signed Multiply Iterate
Signed Multiply Terminate
Unsigned Multiply Iterate

Bit Operations
Set Bit

Reset Bit

Test Bit (One)

Test Bit (Zero)

Byte Operations
AddRto S

Subtract S from R
Subtract R from S
Increment S
Increment Negative S
XOR R and S

AND R and S
ORRand S

Data Conversion

Absolute Value

Sign Magnitude/Two’s Complement
Single Length Normalize

Double Length Normalize

BCD to Binary

Binary to Excess-3

Excess-3 Byte Correction

Excess-3 Word Correction

Other
Select S or R

Arithmetic/Logic Instructions with Shifts

The seven Group 1 arithmetic instructions operate on data from the R and/or S
multiplexers and the carry-in. Carry-out is evaluated after ALU operation; other status
pins are evaluated after the accompanying shift operation. Group 1 logic instructions
do not use carry-in; carry-out is forced to zero.

Fourteen single- and double-precision shifts can be specified, or the ALU result can
be passed unshifted to the MQ shifter or to the specified output destination by using
the LOADMAQ or PASS instructions. Table 2-7 summarizes possible shift instructions.
When using the shift registers for double-precision operations, the least significant
half should be placed in the MQ register and the most significant half in the register
file for passage to the ALU shifter.

All shift operations require that cascaded packages be wired as shown in Figure 2-3.

Table 2-6. 'AS888 Instruction Set

GROUP 1 INSTRUCTIONS

INSTRUCTION BITS (i3-10)

HEX CODE MNEMONIC FUNCTION
0 Used to access Group 4 instructions
1 ADD R+S+C,
2 SUBR R+S+C,
3 SUBS R+S +Cp
4 INCS S + C,
5 INCNS S + Cp
6 INCR R + C,
7 INCNR R + Cp
8 Used to access Group 3 instructions
9 XOR R XOR S
A AND RAND S
B OR RORS
C NAND R NAND S
D NOR R NOR S
E ANDNR RANDS
F Used to access Group 5 instructions

GROUP 2 INSTRUCTIONS

INSTRUCTION BITS (17-14)

HEX CODE MNEMONIC FUNCTION
0 SRA Arithmetic Right Single
1 SRAD Arithmetic Right Double
2 SRL Logical Right Single
3 SRLD Logical Right Double
4 SLA Arithmetic Left Single
5 SLAD Arithmetic Left Double
6 SLC Circular Left Single
7 SLCD Circular Left Double
8 SRC Circular Right Single
9 SRCD Circular Right Double
A MQSRA Pass (Y < F) and Arithmetic Right MQ
B MQSRL Pass (Y < F) and Logical Right MQ
C MQSLL Pass (Y < F) and Logical Left MQ
D MasLC Pass (Y < F) and Circular Left MQ
E LOADMQ Pass (Y « F) and Load MQ (MQ « F)
F PASS Pass (Y < F)

2-9

2-10

Table 2-6. 'AS888 Instruction Set (Continued)

GROUP 3 INSTRUCTIONS

INSTRUCTION BITS (I7-10)

HEX CODE MNEMONIC FUNCTION
08 SET1 Set Bit
18 SETO Reset Bit
28 TB1 Test Bit (ONE)
38 TBO Test Bit (ZERO)
48 ABS Absolute Value
58 SMTC Sign Magnitude/Two's Complement
68 ADDI Add Immediate
78 SUBI Subtract Immediate
88 BADD Byte Add Rto S
98 BSUBS Byte Subtract S from R
A8 BSUBR Byte Subtract R from S
B8 BINCS Byte increment S
Cc8 BINCNS Byte Increment Negative S
D8 BXOR Byte XOR R and S
E8 BAND Byte AND R and S
F8 BOR Byte ORR and S
GROUP 4 INSTRUCTIONS
00 Reserved
10 SEL Select S/R
20 SNORM Single Length Normalize
30 DNORM Double Length Normalize
40 DIVRF Divide Remainder Fix
50 SDIVQF Signed Divide Quotient Fix
60 SMULI Signed Multiply lterate
70 SMULT Signed Multiply Terminate
80 SDIVIN Signed Divide [nitialize
90 SDIVIS Signed Divide Start
A0 SDIvI Signed Divide Iterate
BO uDIVIS Unsigned Divide Start
co ubDIvI Unsigned Divide Iterate
DO UMULI Unsigned Multiply lterate
EO SDIVIT Signed Divide Terminate
Fo UDIVIT Unsigned Divide Terminate
GROUP 5 INSTRUCTIONS
OF CLR Clear
1F CLR Clear
2F CLR Clear
3F CLR Clear
4F CLR Clear
5F CLR Clear
6F CLR Clear
7F BCDBIN BCD to Binary
8F EX3BC Excess-3 Byte Correction
9F EX3C Excess-3 Word Correction
AF SDIVO Signed Divide Overflow Test
BF CLR Clear
CF CLR Clear
DF BINEX3 Binary to Excess-3
EF CLR Clear
FF NOP No Operation

Table 2-7. Shift Definitions

SHIFT TYPE NOTES

Left Moves a bit one position towards the most significant bit

Right Moves a bit one position towards the least significant bit

Arithmetic right Retains the sign

Arithmetic left May lose the sign bit if an overflow occurs. A zero is filled into the
least significant bit unless the bit is set externally

Circular right Fills the least significant bit in the most significant bit position

Circular left Fills the most significant bit in the least significant bit position

Logical right Fills a zero in the most significant bit position unless the bit is set
externally

Logical left Fills a zero in the least significant bit position unless the bit is set
externally

2.2.2 Other Arithmetic Instructions

The 'AS888 supports two immediate arithmetic operations. ADDI and SUBI (Group 3)
add or subtract a constant between the values of O and 15 from an operand on the
S bus. The constant value is specified in bits A3-AO.

Twelve Group 4 instructions support serial division and multiplication. Signed, unsigned
and mixed multiplication are implemented using three instructions: SMULI, which
performs a signed times unsigned iteration; SMULT, which provides negative weighting
of the sign bit of a negative multiplier in signed multiplication; and UMULI, which
performs an unsigned multiplication iteration. Algorithms using these instructions are
given in section 2.3.2 and include: signed multiplication, which performs an 8N+ 2
clock two’s complement multiplication; unsigned multiplication, which produces an
unsigned times unsigned product in 8N + 2 clocks; and mixed multiplication which
multiplies a signed multiplicand by an unsigned multiplier to produce a signed result
in 8N + 2 clocks, where N is the number of cascaded packages.

Instructions that support division include start, iterate and terminate instructions for
unsigned division routines (UDIVIS, UDIVI and UDIVIT); initialize, start, iterate and
terminate instructions for signed division (SDIVIN, SDIVIS, SDIVI and SDIVIT); and
correction instructions for these routines (DIVRF and SDIVQF). A Group 5 instruction,
SDIVO, is available for optional overflow testing. Algorithms for signed and unsigned
division are given in section 2.3.1. These use a nonrestoring technique to divide a
16N-bit integer dividend by an 8-bit integer divisor to produce an 8N-bit integer quotient
and remainder.

2.2.3 Data Conversion Instructions

Conversion of binary data to one’s and two’s complement can be implemented using
the INCNR instruction (Group 1). SMTC (Group 3) permits conversion from two’s
complement representation to sign magnitude representation, or vice versa. Two’s
complement numbers can be converted to their positive value, using ABS (Group 3).

SNORM and DNORM (Group 4) provide for normalization of signed, single- and double-
precision data. The operand is placed in the MQ register and shifted toward the most
significant bit until the two most significant bits are of opposite value. Zeros are shifted
into the least significant bit. SNORM allows the number of shifts to be counted and
stored in one of the register files to provide the exponent.

2-1

[ARA

BYTE 3 BYTE 2 BYTE 1 BYTE 0
BYTE
INSTRUCTION
PPP PPPlosenl PPPlssen PPP _l
ZERO SSF ZERO SSF ZERO SSF ZERO il
SI07 SICo SI07 SIO0}- S107 SI00 Si07 SI00
c Qi07 QI00 Qlo7 QIo0 'Qi07 Ql00 QI07 QI00
Out‘ 'cn+8 _J Ch+8 J Cn+8 Cn+s8
—P Cn —P Cn —P c,.—l —P Cn { Cin
e [—G —G —G

CONDITIONAL
ENABLE

CONDITIONAL
SHIFT

Figure 2-4. ‘AS888 Package Connections for Bit and Byte Instructions

Data stored in binary-coded decimal form can be converted to binary using BCDBIN
(Group 5). A routine for this conversion, which accompanies the discussion of BCDBIN
in section 2.5, allows the user to convert an N-digit BCD number to a 4N-bit binary
number in 4N+ 8 clock cycles.

BINEX3, EX3BC and EX3C assist binary to excess-3 conversion. Using BINEX3, an
N-bit binary number can be converted to an N/4-digit excess-3 number in 2N + 3 clocks;
N is the number of cascaded packages. For an algorithm, see the BINEX3 entry in
section 2.5.

2.2.4 Bit and Byte Instructions

Four Group 3 instructions allow the user to test or set selected bits within a byte.
SET1 and SETO force selected bits of a selected byte (or bytes) to one and zero,
respectively. TB1 and TBO test selected bits of a selected byte (or bytes) for ones
and zeros. The bits to be set or tested are specified by an 8-bit mask formed by the
concatenation of register file address ports C3-CO and A3-AO. The register file
addressed by B3-BO is used as the source and destination for the test bit instructions
and as the destination operand for the set bit instructions. Bytes to be operated on
are selected by forcing SIO0 low.

Individual bytes of data can also be manipulated using eight Group 3 byte
arithmetic/logic instructions. Bytes can be added, subtracted, incremented, ORed,
ANDed and exclusive ORed. Like the bit instructions, bytes are selected by forcing
SI00 low, but multiple bytes can be operated on only if they are adjacent to one
another; at least one byte must be non-selected.

To implement bit and byte instructions, tri-state drivers must be connected to the
slices, as shown in Figure 2.4.

2.2.5 Other Instructions

SEL (Group 4) selects one of the ALU’s two operands, depending on the state of the
SSF pin. This instruction could be used in sort routines to select the larger or smaller
of two operands by performing a subtraction and sending the status result to SSF.

CLR (Group 5) forces the ALU output to zero and clears the internal BCD flip-flops
used in excess-3 BCD operations. NOP forces the ALU output to zero, but does not
affect the flip-flops.

2-13

2.3 Divison and Multiplication

2.3.1

2-14

Ten 'AS888 instructions support binary division of signed or unsigned integers:

Instruction Code

(17-10) Instruction
(hex)
BO Unsigned Divide Start (UDIVIS)
Cco Unsigned Divide Iterate (UDIVI)
FO Unsigned Divide Terminate (UDIVIT)
80 Signed Divide Initialize (SDIVIN)
AF Signed Divide Overflow Test (SDIVO)
20 Signed Divide Start (SDIVIS)
AO Signed Divide Iterate (SDIVI)
EO Signed Divide Terminate (SDIVIT)
40 Divide Remainder Fix (DIVRF)
50 Signed Divide Quotient Fix (SDIVQF)

These are designed for use with an efficient division algorithm known as nonrestoring
division:
1. Subtract the divisor from the dividend.
2. If the result is positive, then
a. Set the quotient bit
b. Shift the result
c. Goto Step 1.
3. If the result is negative, then
a. Clear the quotient bit
b. Shift the result
c. Add the divisor to the dividend
d. Go to Step 2.

The iteration proceeds until the desired number of quotient bits is obtained. Whenever
a result is negative, the dividend must be restored by the amount subtracted. Since
another shift and subtract must be performed anyway, the restore, shift and subtract
can be combined efficiently into a single shift and add operation. These are equivalent,
since restore, shift and subtract are identical to add, multiply by two and subtract,
which is identical to a single addition.

The division instructions preclude the need to test and branch in the microprogram;
whether addition or subtraction is to be carried out is decided by an internal flag which
indicates whether or not the previous operation gave a negative result.

Overflow will occur during division whenever the divisor is zero or greater than the
dividend. Overflow detection is also built into the division instructions and does not
require special test and branch or normalizing instructions in the microprogram.

The following algorithms for signed and unsigned division produce an 8N-bit integer
quotient and remainder, given a 16N-bit integer dividend and an 8N-bit integer divisor,
where N is the number of cascaded packages.

All algorithms begin with a LOADMAQ instruction. This must be implemented even if the
proper value is already in the MQ register. The LOADMQ instruction initializes internal
flip-flops used by the multiplication and division routines.

2.3.1.1

Signed Division
LOADMQ LSHDIV

SDIVIN DIVSOR, DIVMSH, REM

SDIVO DIVSOR, REM

SDIVIS DIVSOR, REM, REM

REPEAT 8N -2 TIMES:
SDIVI DIVSOR, REM, REM

(END REPEAT)
SDIVIT DIVSOR, REM, REM

DIVRF DIVSOR, REM, REM

SDIVQF DIVSOR, MQ

Load MQ register with the least significant
half of the dividend.

Shift dividend and store sign.
R bus = Divisor
S bus = Most significant half of dividend

Optional test for overflow (may be omitted if
OVR pin is ignored; WE must be high to
avoid writing back to the register file if used).
R bus = Divisor
S bus = Result of SDIVIN

Calculate difference between divisor and
most significant half of the dividend to
compute first quotient bit.

R bus = Divisor

S bus = Result of SDIVIN

Calculate difference between divisor and
most significant half of the dividend to
compute subsequent quotient bits.

R bus Divisor

S bus Result of SDIVIS (or SDIVI)

Generate last quotient bit. Test for remainder
equal to zero.

R bus = Divisor

S bus = Result of SDIVI

Correct remainder if needed.
R bus = Divisor
S bus Result of SDIVIT
Correct quotient if needed. Test for overflow.
R bus = Divisor
S bus = MQ register

The remainder is correct at the end of the DIVRF instruction. The quotient is correct

after the SDIVQF instruction.

The quotient is stored in the MQ register; the remainder is stored in REM. Inputs,
outputs and number of cycles required for this algorithm are shown in Table 2.8.

2-15

Table 2-8. Signed Division Algorithm

oP CLOCK INPUT INPUT OUTPUT
CODE MNEMONIC CYCLES S PORT R PORT Y PORT

E4 LOADMQ 1 Dividend (LS Half) — Dividend (LS Half)

80 SDIVIN 1 Dividend (MS Half) Divisor Remainder (N)

AF SDIVO 1 Remainder (N) Divisor Test Result

90 SDIVIS 1 Remainder (N) Divisor Remainder (N)

A0 SDIVI 8N - 2% Remainder (N) Divisor Remainder (N)

EO SDIVIT 1 Remainder (N) Divisor Remainder (Unfixed)

40 DIVRF 1 Remainder (Unfixed) Divisor Remainder

50 SDIVQF 1 MQ Register Divisor Quotient

* N = Number of cascaded packages.

2.3.1.2 Unsigned Division

LOADMQ LSHDIV Load MQ with least significant half of
dividend.

UDIVIS DIVSOR, MSHDIV, REM Begin iterate procedure; test for quotient
overflow and division by zero.
R bus = Divisor
S bus = Most significant half of dividend.

REPEAT 8N -1 TIMES:

UDIVI DIVSOR, REM, REM Generates one quotient bit through iterative
subtract/shift or add/shift operations of the
divisor and dividend.

R bus = Divisor
S bus = Result of UDIVIS (or UDIVI)

(END REPEAT)

UDIVIT DIVSOR, REM, REM Generate last quotient bit.

R bus = Divisor

S bus = Result of UDIVI
DIVRF DIVSOR, REM, REM Correct the remainder.

R bus = Divisor

S bus Result of UDIVIT

The remainder is correct following the DIVRF instruction. The quotient is stored in
the MQ register at the completion of the routine and does not require correction.

Inputs, outputs and number of cycles required for this algorithm are shown in
Table 2.9.

2-16

Table 2-9. Unsigned Division Algorithm

oP CLOCK INPUT INPUT OUTPUT
CODE MNEMONIC CYCLES S PORT R PORT Y PORT
E4 LOADMQ 1 Dividend (LS Half) — Dividend (LS Half)
. BO UDIVIS 1 Dividend (MS Half) Divisor Remainder (N)
co UDIVI 8N - 1* Remainder (N) Divisor Remainder (N)
FO UDIVIT 1 Remainder (N) Divisor Remainder (Unfixed)
40 DIVRF 1 Remainder (Unfixed) Divisor Remainder

* N = Number of cascaded packages.

2.3.2 Multiplication

The ALU performs three types of N by N multiplication by repeated addition: signed
times signed, unsigned times unsigned, and mixed (signed times unsigned). Each
produces a 2N-bit result, where N is the number of cascaded 'AS888 packages.

All three types of multiplication proceed by the following recursion:
P(J+1) = 2[P(J) + Multiplicand x M(8N —J)]
where
P(J + 1) = partial product at iteration number J +1;
J =0to 8N — 1, depending on iteration number.

(N = 2 for a 16 by 16 multiplication);
2 = some type of shift (unique to multiplication instructions);

P(J) = partial product at iteration number J;
M(8N —J) = mode bit, depending on multiplication type;
N = number of 'AS888 packages that are cascaded.

Multiplication instructions are listed below, followed by algorithms for signed, unsigned
and mixed multiplication.

Instruction Code

(17-10) Instruction

(hex)
60 Signed Multiply Iterate (SMULI)
70 Signed Multiply Terminate (SMULT)
DO Unsigned Multiply Iterate (UMULI)

2-17

2.3.2.1 Signed Multiplication
Signed multiplication performs an 8N + 2 clock, two’s complement multiplication.
XOR ACC, ACC, ACC Zero register to be used for accumulator
LOADMQ MUL Load MQ with multiplier

REPEAT 8N -1 TIMES:
SMULI, MULT, ACC, ACC Perform a signed times signed iteration.

R bus = Multiplicand
S bus = Accumulator
(END REPEAT)
SMULT MULT, ACC, ACC Perform a signed times signed iteration.

R bus = Multiplicand
S bus = Accumulator

The accumulator now contains the 8N most significant bits of the product, and the
MQ the 8N least significant bits.

2.3.2.2 Unsigned Multiplication
Unsigned multiplication produces an unsigned times unsigned product in 8N + 2 clocks.
XOR ACC, ACC, ACC Zero the register to be used for accumulator.
LOADMQ MUL Load MQ register with multiplier.

REPEAT 8N TIMES:
UMULI MULT, ACC, ACC Perform an unsigned multiplication iteration.
R bus = Multiplicand
S bus = Accumulator

(END REPEAT)

The accumulator now contains the 8N most significant bits of the product. The MQ
register contains the 8N least significant bits.

2.3.2.3 Mixed Multiplication

Mixed multiplication computes a signed multiplicand times an unsigned multiplier,
producing a signed result in 8N + 2 clocks.

XOR ACC, ACC, ACC Zero the register to be used for accumulator.
LOADMQ MUL Load MQ with unsigned muiltiplier.
REPEAT 8N TIMES:

SMULI MULT, ACC, ACC Perform a signed times signed iteration.
R bus = Multiplicand
S bus = Accumulator

(END REPEAT)

The accumulator now contains the 8N most significant bits of the product. The MQ
register contains the 8N least significant bits.

2-18

2.4 Decimal Arithmetic and Data Conversion

Excess-3 is a binary decimal code in which each digit (0—9) is represented by adding
three to its NBCD (natural binary coded decimal) representation, as shown in
Table 2.10. Excess-3 code has the useful property that it allows decimal arithmetic
to be carried out in binary hardware. Carries from one digit to another during addition
in BCD occur when the sum of the two digits plus the carry-in is greater than or equal
to ten. If both numbers are excess-3, the sum will be excess-6, which will produce
the proper carries. Therefore, every addition or subtraction operation may use the
binary adder.

Table 2-10. Excess-3 Representation

DECIMAL NBCD EXCESS-3

0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

2.4.1 Excess-6 to Excess-3

To convert the result from excess-6 to excess-3, one must consider two cases
resulting from a BCD digit add: one where a carry-out is produced, and one where
a carry-out is not produced. If a carry-out is not produced, three must be subtracted
from the resulting digit. If a carry is produced, the digit is correct as a BCD number.
For example, if BCD 5 is added to BCD 6, the excess-3 result would be 8 + 9 = 1
(with a carry). A carry rolls the number through the illegal BCD representations into
a correct BCD representation. A binary 3 must be added to digit positions that produce
a carry-out to correct the result to an excess-3 representation.

Every addition and subtraction instruction stores the carry generated from each 4-bit
digit location for use by the excess-3 correction functions. These correction
instructions (EX3BC for byte corrections and EX3C for word corrections) must be
executed in the clock cycle immediately after the addition or subtraction operation.

Signed numbers may be represented in ten’s complement form by complementing
the excess-3 number. An example is given with the BINEX3 instruction in section 2.5.
Complements of excess-3 numbers may be generated by subtracting the excess-3
number from an excess-3 zero followed by an excess-3 correct (EX3C).

2.4.2 Binary to Excess-3

Binary numbers can be converted to excess-3 representation using the BINEX3
instruction. An algorithm for this conversion accompanies the discussion of BINEX3
in section 2.5.

2-19

2.4.3 BCD to Binary

2.4.4 Excess-3 to USASCII

2-20

Binary decimal code can be coverted to binary using BCDBIN. For an algorithm, see
BCDBIN in section 2.5.

Input/output devices or files represent numbers differently than high-speed central
processing units. I/O devices handle all alphanumeric data similarly. CPUs handie more
numeric data than alphabetic data and store numeric data in packed form to minimize
calculation throughput and reduce memory requirements.

To represent the amount 1096, the I/O device would handle the four USASCII
characters ("*1'", 0", '“9"" and '’6’’) separately, requiring four bytes of storage. In
packed BCD, the number could be stored in two bytes of data as 1096 (0001 0000,
1001 0110). The ‘AS888 can be programmed to perform data format conversions
such as excess-3 BCD to USASCII.

An algorithm to convert a packed word of excess-3 BCD to two unpacked words of
USASCII code is given below.

ALGORITHM:

Main 1 READ NUM

Main 2 XOR OFFSET, OFFSET,
OFFSET

Main 3 SET1 OFFSET, Mask(2D),
OFFSET MSH, LSH

Main 4 MOVE NUM, TEMP1,
JSR UNPACK

Main 5 MOVE TEMP1, TEMP2

Main 6 ADD NUM, NUM, NUM,
SLC

Main 7 ADD NUM, NUM, NUM,
SLC

Main 8 ADD NUM, NUM, NUM,
SLC

Main 9 ADD NUM, NUM,
NUM(0), SLC, JSR
(UNPACK)

Main 10 STORE TEMP2

Main 11 STORE TEMP1

Unpack 1 SETO, TEMP1, Mask(FF),
MSH

Unpack 2 ADD TEMP1, TEMP1,
TEMP3, SLC

Unpack 3 ADD TEMP3, TEMP3,
TEMP3, SLC

Unpack 4 OR TEMP1, TEMP3,
TEMP1

Unpack 5 SETO TEMP1, Mask(FO),
LSH, MSH

Unpack 6 ADD TEMP1, OFFSET,

TEMP1, RTS

Read packed excess-3 number (1096) into
NUM.

Clear register to hold offset constant
2D2D (Hex) to convert excess-3 numbers
to USASCII.

Store 2D (Hex) in both bytes of offset.

Copy NUM into TEMP1 to set up
subroutine parameters; call Unpack
procedure.

Store TEMP1 in TEMP2.

Rotate NUM two places.

Rotate NUM two places.
Rotate NUM two places.

Rotate NUM two places; call Unpack
procedure.

Store two USASCII characters in TEMP2.
Store two USASCII characters in TEMP1.
Clear upper byte of TEMP1, leaving
0CO09 (Hex).

Rotate TEMP1 two places; Store result in
TEMP3.

Rotate TEMP3 two places.

OR TEMP1 and TEMP2; Store result
(OCD9 Hex) in TEMP1.

Clear most significant four bits in each
byte leaving 0CO9 (Hex).

Add 2D2D (Hex) to TEMP1 to produce
3936 (Hex), the USASCII representation of
96. Return to Main 5.

2.5 Instruction Set

The 'AS888’s instruction set is presented in alphabetical order on the following pages.
The discussion of each instruction includes a functional description, list of possible
operands, data flow schematic and notes on status and control bits affected by the
instruction. Microcoded examples or algorithms are also shown.

Mnemonics and op codes are given at the top of each page. An asterisk (*) in the
left side of an op code box means that an op code can be selected from the Group 2
instructions on page 2-9; an asterisk in the right side indicates a Group 1 instruction.

2-21

ABS

Absolute Value

FUNCTION

Computes the absolute value of two’s complement data

on the S bus.

DATA FLOW

Cn

—

REGISTER
FILE

ALU SHIFTER

DESCRIPTION

Two’s complement data on the S bus is converted to its
absolute value. The carry must be set by the user for
proper conversion. ABS causes S + Cj, to be computed;
the state of the sign bit determines whether Sor S + Cp
will be selected as the result. SSF is used to transmit the

sign of S to each slice.

2-22

SELECT

C3-Co

(e —

SSF

REGISTER

Ma

L

Available R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate

A3-A0

DA Port| C3-CO Mask

Available S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register

Available Destination Operands

Shift Operations

RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
°] None None
Control/Data Signals
User
Signal | Programmable | Use
SSF | No Carries result of sign bit test from
MSP
SIO0 | No Inactive
SI07 | No Inactive
QI00 | No Inactive
Qlo7 | No Inactive
Ch Yes Should be programmed high for

proper conversion.

Status Signals

ZERO
N
OVR

Cn+s

o

1ifresult =0
1if MSB (input) = 1
1 if input of most-significant package is 804¢

and inputs in all other packages are 004¢.

1ifS=0

Absolute Value

ABS

EXAMPLES (assume a 24-bit cascaded system)

Convert the two's complement number in register 1 to its positive value and store the result in register 4.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
7-10 A3-A0 B3-BO EA EB1-EBO C3-Co WE SELY OEY Cn
0100 1000 XXXX 0001 X 00 0100 0 0 1 1
Example 1: Assume register file 1 holds F6D8404g.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 1111 0110 1101 1000 0100 0000 S < RF(1)
Most Next Most Least
Significant Significant Significant
Package Package Package
Destination 0000 1001 0010 0111 1100 0000 RF(4) «<~S + C,
Example 2: Assume register file 1 holds 0927C04¢.
Source 0000 1001 0010 0111 1100 0000 S < RF(1)
Destination 0000 1001 0010 0111 1100 0000 RF(4) < S

2-23

ADD

Add with Carry (R + S + Cy)

FUNCTION
Adds data on the R and S buses to the carry-in.

DATA FLOW

I A

— _C3-co

REGISTER

A3-A0 >— FILE

-

DB

DA

ALU MaQ
SHIFTER SHIFTER

MQ
REGISTER

—

DESCRIPTION

Data on the R and S buses is added with carry. The sum
appears at the ALU and MQ shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-24

Available R Bus Source Operands

A3-A0
A3-A0 H

RF (A3-A0)| Immediate |DA Port|C3-CO Mask
° .

Available S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register
. ° .

Available Destination Operands Shift Operations

RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
° ° ° .

Control/Data Signals

User
Signal | Programmable | Use
SSF | No Affect shift instructions programmed
in bits 17-14 of instruction field.
SIO0 | No
SI07 | No
Qlo0 | No
QIO07 | No
Ch Yes Increments sum if set to one.

Status Signalst

ZERO = 1ifresult =0

N = 1ifMSB = 1

OVR = 1 if signed arithmetic overflow
Ch+g = 1lifcarry-out =1

t Cp+gis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

[+[1]

Add with Carry (R + S + Cp)

ADD

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 1 to data on the DB bus with carry-in and pass the result to the MQ register.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address . Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO C3-Co WE SELY OEY Ch
1110 0001 0001 XXXX 0 10 XXXX 1 X 1 0
Assume register file 1 holds 08C6181 and DB bus holds 0075301¢.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 0000 1000 1100 0110 0001 1000 R < RF(1)
Source 0000 0000 0111 0101 0011 0000 S« DBbus
Destination 0000 1001 0011 1011 0100 1000 MQ register < R+S+G,

2-25

ADDI

Add Immediate

FUNCTION

Adds four-bit immediate data on A3-A0 with carry to S-

bus data.

DATA FLOW

N

Available R Bus Source Operands

A3-A0

RF (A3-A0)| Immediate |DA Port

A3-A0

C3-CO Mask

Available S Bus Source Operands

RF (B3-B0)| DB Port | MQ Register
. e °

| |

—

A3-A0

REGISTER
FILE

C3-C0o

B3-BO

NG
Cn—k\

DESCRIPTION

Immediate data in the range 0 to 15, supplied by the user

on A3-AQ, is added with carry to S.

2-26

d

Y

MQ
REGISTER

Available Destination Operands

Shift Operations

RF (C3-C0)

RF (B3-B0)

Y Port

ALU

MQ

1HE

L]

None

None

Control/Data Signals

User

Signal | Programmable | Use

SSF | No
SIO0 | No
SI07 | No
QIO0 | No
Ql07 | No
Ch Yes

Inactive
Inactive
Inactive
Inactive
Inactive

Increments sum if set to one.

Status Signals

ZERO
N
OVR

if result = 0
1ifMSB =1

Ch+s 1if carry-out = 1

1 if signed arithmetic overflow

Add Immediate

ADDI

EXAMPLE (assumes a 24-bit cascaded system)

Add the value 12 to data on the DB bus with carry-in and store the result to register file 1.

Instruction Operand Operand Operand Destination Destination
Code Address Address . Select Address . Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO C3-Co WE SELY OEY Ch
0110 1000 1100 XXXX X 10 0001 0 0 1 0
Assume bits A3-A0 hold C1g and DB bus holds 0001004¢.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 0000 0000 0000 0000 0000 1100 R« A3-A0
Source 0000 0000 0000 0001 0000 0000 S < DB bus
Destination 0000 0000 0000 0001 0000 1100 RF(1) <~ R+S+GC,

2-27

AND Logical AND (R AND S)

FUNCTION
Evaluates the logical expression R AND S.

DATA FLOW

A

— _C3-Co
REGISTER
A3-A0 FILE
— _B3-BO

DB

{ 8

_E.

I

N s
AND S

5

4

ALU MQ
IFTER SHIFTER
MQ
REGISTER

L— |

DESCRIPTION

Data on the R bus is ANDed with data on the S bus. The
result appears at the ALU and MQ shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-28

Available R Bus Source Operands

A3-A0

RF (A3-A0)| Immediate |DA Port|C3-CO Mask

A3-A0

Available S Bus Source Operands

RF (B3-B0)| DB Port | MQ Register

° . °
Available Destination Operands Shift Operations
RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
[] [] [J [J
Control/Data Signals
User
Signal | Programmable | Use

SSF | No

SIO0 | No
SI07 | No
Qlo0 | No

107 | No
Cnh No

Affect shift instructions programmed
in bits 17-14 of instruction field.

Inactive

Status Signalst

ZERO = 1ifresult =0
N = 1ifMSB =1
OVR =0
Chig = 0

t Cn+gis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift

operation.

Logical AND (R AND) AND

EXAMPLE (assumes a 24-bit cascaded system)

Logically AND the contents of register 3 and register 5 and store the result in register 5.

Instruction Operand Operand Operand Destination Destination
Code Address Address o Select Address Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO C3-C0 WE SELY OEY Cn
1111 1010 0011 0101 0 00 0101 0 0 1 X
Assume register file 3 holds F6D840+1g and register file 5 holds F6D8424¢.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 1111 0110 1101 1000 0100 0000 R < RF(3)
Source 1111 0110 1101 1000 0100 0010 S < RF(5)
Destination 1111 0110 1101 1000 0100 0000 RF(5) <~ RAND S

2-29

ANDNR

Logical AND Negative R (R AND S)

FUNCTION
Computes the logical expression S AND NOT R.

DATA FLOW
‘ ™ (' c3co
REGISTER
A3A0 > FILE
- (5380
DB
DA
4
R MUX $ MUX
ALU MaQ
SHIFTER SHIFTER
Ma
REGISTER
[— |
Y
DESCRIPTION

The logical expression S AND NOT R is computed. The
result appears at the ALU and MQ shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-30

Available R Bus Source Operands

A3-A0
A3-A0 Do
RF (A3-A0)| Immediate |DA Port|C3-CO Mask
. °

Available S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register
° . .

Available Destination Operands Shift Operations

RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
. . ° °

Control/Data Signals

User
Signal | Programmable | Use
SSF | No Affect shift instructions programmed
in bits 17-14 of instruction field.
SIO0 | No
SIO7 | No
QlO0 | No
Qlo7 | No
Ch No Inactive

Status Signalst

ZERO = 1ifresult =0
N = 1ifMSB =1
OVR =0
Chig = 0

t Cn+gis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

[+ [E]

Logical AND Negative R (R AND S)

ANDNR

EXAMPLE (assumes a 24-bit cascaded system)

Invert the contents of register 3, logically AND the result with data in register 5 and store the result in register 10.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO C3-Co WE SELY OEY Cn
1111 1110 0011 0101 0 00 0101 0 0 1 X
Assume register file 3 holds F6D840+g and register file 5 holds F6D8424¢.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 1111 0110 1101 1000 0100 0000 R <« RF(3)
Source 1111 0110 1101 1000 0100 0010 S « RF(5)
Destination 0000 0000 0000 0000 0000 0010 RF(5) <R AND S

2-31

BADD

Byte Add R to S with Carry

FUNCTION

Adds S with carry-in to a selected slice or selected

adjacent slices of R.

DATA FLOW

> C3-C0
- REGISTER
FILE :33-3 <
— DA DB
4
R MUX S MUX

Slo0

ALU SHIFTER

DESCRIPTION

Ma
REGISTER

Ll

Available R Bus Source Operands

A3-A0
A3-A0 Do

RF (A3-A0)| Immediate |DA Port|C3-CO Mask

. °
Available S Bus Source Operands
RF (B3-B0) | DB Port | MQ Register

. ° .
Available Destination Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ

. ° None None

Control/Data Signals

User
Signal | Programmable | Use
SSF | No Passes overflow from most-
significant selected byte
SIO0 | Yes Byte select
SIO7 | No Senses most-significant selected
byte
Ql00 | No Inactive
QlO07 | No Inactive
Cn Yes Propagates through non-selected
packages; increments selected
byte(s) if programmed high.
Status Signals
ZERO = 1 if result (selected bytes) = 0
N = 1 if MSB of most-significant selected byte = 1
OVR = 1if signed arithmetic overflow (selected bytes)
Ch+g = 1if carry-out (most-significant selected byte) = 1

Slices with SIO0 programmed low compute R + S + Cp,.
Slices with SIO0 programmed high or floating pass S
unaltered. Multiple slices can be selected only if they are
adjacent to one another. At least one slice must be non-

selected.

2-32

Byte Add R to S with Carry

BADD

EXAMPLE (assumes a 24-bit cascaded system)

Add bytes 1 and 2 of register 3 with carry to bytes 0, 1 and 2 of register 1; store the result in register 11.

Instruction Operand Operand Operand Byte | Destination Destination
Code Address Address . Select Select| Address Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO SI00 C3-Co WE SELY OEY Cn
0100 1000 0011 0001 00 001 1011 0 0 1 1
Assume register file 3 holds 01818115 and register file 1 holds 8FBE3E;g.
Most Next Most Least
Significant Significant Significant
Package Package Package
Byte 2 Byte 1 Byte 0
(selected) (selected) (not selected)
Source 0000 0001 1000 0001 1000 0001 Rn < RF(1),
Source 1000 1111 1011 1110 0011 1110 Sh < RF(1),
ALU 1001 0001 0100 0000 1011 1111 Fn<R,+Sh+Cp
Destination 1001 0001 0011 1111 0011 1110 RF(11), < F, or Spt

t F = ALU result
n = nth package

Register file 11 gets F if byte selected, S if byte not selected.

2-33

BAND

Byte AND R and S (Byte Logical AND R and S)

FUNCTION

Evaluates the logical AND of selected slices of R-bus and

S-bus data.

DATA FLOW

A

A

—

REGISTER
FILE

B3-BO

DA

- AU

U

\RMUX/

S MU

=

R AND S

S

L/_

DESCRIPTION

Slices with SIO0 programmed low compute R AND S.
Slices with SIO0 programmed high or floating pass S
unaltered. Multiple slices can be selected only if they are
adjacent to one another. At least one slice must be non-
selected.

2-34

SI00 ALU SHIFTER
REGISTER
L
Y

Ma

’—(C3-Co

ﬂ

DB
X

Available R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate

A3-AO
DA Port|C3-CO Mask

Available S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register
° ° .
Available Destination Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
(] [None None
Control/Data Signals
User
Signal [Programmable | Use
SSF | No Forced low
SIO0 | Yes Byte select
SI07 | No Senses most-significant selected
byte
QlO0 | No Inactive
QIO07 | No Inactive
Cn No Inactive
Status Signals
ZERO = 1 if result (selected bytes) = 0
N =0
OVR =0
Chig =0

Byte AND R and S (Byte Logical AND R and S)

BAND

EXAMPLE (assumes a 24-bit cascaded system)

Logically AND bytes 1 and 2 of register 3 with bytes 0, 1 and 2 on the DB bus; store the result in register 3.

Instruction Operand Operand Operand Byte | Destination Destination
Code Address Address Select Select | Address Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO SI00 C3-Co WE SELY OEY Cn
1110 1000 0011 XXXX 0 10 001 0011 0 0 1 X
Assume register file 3 holds 8FBEBE g and the DB bus holds 90BFBFg.
Most Next Most Least
Significant Significant Significant
Package Package Package
Byte 2 Byte 1 Byte 0
(selected) (selected) (not selected)
Source 1000 1111 1011 1110 1011 1110 Rp < RF(3),
Source 1001 0000 1011 1M1 1011 1111 S, < DB,
Destination 1000 0000 1011 1110 1011 1111 RF(3), < F, or St

t F = ALU result
n = nth package

Register file 3 gets F if byte selected, S if byte not selected.

2-35

BCDBIN

BCD to Binary

FUNCTION
Converts a BCD number to binary.

DESCRIPTION

This instruction allows the user to convert an N-digit BCD
number to a 4N-bit binary number in 4(N—1) + 8 clocks.
The instruction sums the R and S buses with carry.

An arithmetic left shift is performed on the ALU result. The
contents of the ALU are shifted one bit to the left. A zero is

Recommended R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate

A3-A0

DA Port|C3-CO Mask

Recommended S Bus Source Operands

RF (B3-B0)

DB Port | MQ Register

Recommended Destination

filled into bit 0 of the least significant package unless SIO0
is set to zero; this will force bit 0 to one. Bit 7 is passed
through SI07-SIO0 to bit 0 of the next-most-significant
package. Bit 7 of the most-significant package is dropped.

Simultaneously, the contents of the MQ register are
rotated one bit to the left. Bit 7 of the least-significant
package is passed through QI07-QIOO0 to bit 0 of the next-
most-significant package. Bit 7 of the most-significant
package is passed through SI07-SI00 to bit 0 of the least-
significant package.

DATA FLOW

Operands Shift Operations
RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
L Left Left
Control/Data Signals
User
Signal | Programmable | Use
SSF Inactive
SI00 Link cascaded ALU shifters. SIOO fills
Sio7 a zero in LSB of ALU shifter if high or
floating; sets MSB to one if low.
Qlog Link cascaded MQ shifters. Output of
Qlo7 MSP's Q107 is MSB of MQ shifter
(inverted).
Ch Should be programmed low for
proper conversion.
Status Signals
ZERO = 1ifresult =0
N = 1ifMSB =1
OVR = 1 if signed arithmetic overflow
Ch+g = 1lifcarry-out = 1

SERIAL DATAIN

CRF
mMao
ma7

= [piple

sio7

Q8T
MQF
ALU7

Qioo Qo7

2-36

[71F]

BCD to Binary BCDBIN

The following code converts an N-digit BCD number to a 4N-bit binary number in 4(N—1) + 8 clocks. It employs the
standard conversion formula for a BCD number (shown here for 32 bits):

ABCD = [(A x 10 + B) x 10 + C] x 10 + D.

The conversion begins with the most-significant BCD digit. Addition is performed in radix 2.

LOADMQ NUM
SUBR ACC, ACC, ACC, MQSLC

SUB MSK, MSK, MSK, MQSLC

MQSLC
MQSLC
ADDI ACC, MSK, 1519

Repeat N—1 times:
(N = number of BCD digits)
AND MQ, MSK, R1, MQSLC
ADD, ACC, R1, R1, MQSLC
BCDBIN R1, R1, ACC

BCDBIN ACC, R1, ACC

(END REPEAT)
AND MQ, MSK, R1
ADD ACC, R1, ACC

Load MQ with BCD number.

Clear accumulator;
Circular left shift MQ.

Clear mask register;
Circular left shift MQ.

Circular left shift MQ.
Circular left shift MQ.

Store 151g in mask register.

Extract one digit;
Circular left shift MQ.

Add extracted digit to accumulator, and store result in R1;
Circular left shift MQ.

Perform BCDBIN instruction, and store result in accumulator [4 x (ACC + digit)];
Circular left shift MQ.

Perform BCDBIN instruction, and store resultin accumulator [10 x (ACC + digit)];
Circular left shift MQ.

Fetch last digit.

Add in last digit and store result in accumulator.

2-37

BINCNS Byte Increment Negative S with Carry

FUNCTION

Computes S + C, for selected slices of S.

DATA FLOW

REGISTER
FILE

Ssl00 ALU SHIFTER

C3-Co

B3-B0O

ik

REGISTER

Ma

.

DESCRIPTION

Slices with SIO0 programmed low compute S + Cj,. Slices
with SIO0 programmed high or floating pass S unaltered.
Multiple slices can be selected only if they are adjacent to
one another. At least one slice must be non-selected.

2-38

L —

Available R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate | DA Port|C3-CO Mask

A3-A0

Available S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register
° ° °
Available Destination Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
° . None None
Control/Data Signals
User
Signal | Programmable | Use
SSF | No Passes overflow from most-
significant selected byte
SIO0 | Yes Byte select
SIO7 | No Inactive
Ql0o0 | No Inactive
Ql07 [No Inactive
Ch Yes Propagates through non-selected
packages; increments selected
byte(s) if programmed high.
Status Signals
ZERO = 1 if result (selected bytes) = 0
N = 1 if MSB of most-significant selected byte = 1
OVR = 1if signed arithmetic overflow (selected bytes)
Ch+s = 1if carry-out (most-significant selected byte) = 1

Byte Increment Negative S with Carry

BINCNS

EXAMPLE (assumes a 24-bit cascaded system)

Invert bytes 0 and 1 of register 3 and add them to the carry. Store the result in register 3 (byte 2 is not changed).

Instruction Operand Operand Operand Byte | Destination Destination
Code Address Address . Select Select | Address Select Carry-in
17-10 A3-A0 B3-BO EA EB1-EBO S100 C3-Co WE SELY OEY Cn
1100 1000 XXXX 0011 X 00 100 0011 0 0 1 1
Example 1: Assume register file 3 holds 0181814.
Most Next Most Least
Significant Significant Significant
Package Package Package
Byte 2 Byte 1 Byte 0
(not selected) (selected) (selected)
Source 0000 0001 1000 0001 1000 0001 S, < RF(3),
ALU 1111 1M1 0111 1110 0111 1M Fn<—§n+Cn
Destination 0000 0001 0111 1110 0111 1111 RF(3), < F, or St

1t F = ALU result
n = nth package

Register file 3 gets F if byte selected, S if byte not selected.

2-39

BINCS

Byte Increment S with Carry

FUNCTION
Increments selected slices of S if the carry is set.

DATA FLOW

I\

—_—

—__C3-C0

REGISTER
FILE
B3-BO
DB
c N\ S
n S + Cn
Si00 ALU SHIFTER
MQ
REGISTER
T
Y
DESCRIPTION

Available R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate

A3-A0
DA Port|C3-CO Mask

Available S Bus Source Operands

RF (B3-B0)

DB Port

MQ Register

Available Destination Operands

Shift Operations

RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
° ° None None
Control/Data Signals
User
Signal | Programmable | Use
SSF | No Passes overflow from most-
significant selected byte
SIO0 | Yes Byte select
SIO7 | No Senses most-significant selected
byte
QIO0 | No Inactive
QlO07 | No Inactive
Ch Yes Propagates through non-selected
packages; increments selected
byte(s) if programmed high.
Status Signals
ZERO = 1 if result (selected bytes) = 0
N = 1 if MSB of most-significant selected byte = 1
OVR = 1 if signed arithmetic overflow (selected bytes)
Ch+g = 1if carry-out (most-significant selected byte) = 1

Slices with SIO0 programmed low compute S + Cp,. Slices
with SIO0 programmed high or floating pass S unaltered.
Multiple slices can be selected only if they are adjacent to
one another. At least one slice must be non-selected.

2-40

Byte Increment S with Carry

BINCS

EXAMPLE (assumes a 24-bit cascaded system)

Add bytes 1 and 2 of register 7 to the carry; store the result in register 2 (byte 0 is not changed).

Instruction Operand Operand Operand Byte | Destination Destination
Code Address Address Select Select | Address Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO SI00 C3-C0 WE SELY OEY Ch
1011 1000 XXXX 0111 X 00 001 0010 0 0 1 1
Assume register file 3 holds 8FBEBEg.
Most Next Most Least
Significant Significant Significant
Package Package Package
Byte 2 Byte 1 Byte O
(selected) (selected) (not selected)
Source 1000 1111 1011 1110 1011 1110 Sn < RF(7),
ALU 1000 1111 1011 1111 1011 1111 Fhe<S, + Cq
Destination 1000 1111 1011 1M 10111110 RF(2), < R, or Syt

t F = ALU result
n = nth package

Register file (3) gets F if byte selected, S if byte not selected.

2-41

BINEX3

Binary to Excess-3

FUNCTION

Converts a binary number to excess-3 representation.

DESCRIPTION

This instruction allows the user to convert an N-bit binary
number to N/4 bit excess-3 number representation in
2N +3 clocks. The data on the R and S buses are added to
the carry-in, which contains bit 7 of the most-significant
package’s MQ register.

The contents of the MQ register are rotated one bit to the
left. Bit 7 of the least-significant package is passed
through QI07-QI00 to bit 0 of the next-most-significant
package. Bit 7 of the most-significant package is passed
through SIO7-SIO0 to bit 0 of the least-significant
package.

If this instruction is used with carry look-ahead, data on
the R and S buses should be the same, as in the
accompanying algorithm. Otherwise, incorrect carry look-
ahead will be generated.

Recommended R Bus Source Operands

A3-A0
RF (A3-A0)

Immediate

A3-A0

DA Port|C3-CO Mask

Recommended S Bus Source Operands

RF (B3-B0) | DB Port

MQ Register

Recommended Destination

Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
° None Left
Control/Data Signals
User
Signal | Programmable | Use
SSF | No Inactive
SIO0 | No Link cascaded ALU shifters. Ouput
SIO7 | No value of MSP’s SIO7 is MSB of MQ
shifter (inverted).
Ql00 | No Link cascaded MQ shifters. Output
Qi07 | No value of MSP’s QlO7 is MSB of MQ
shifter (inverted).
Ch No Holds MSB of MQ register.

Status Signals

ZERO = 1ifresult =0

N = 1ifMSB =1
OVR = 1if signed arit
Ch+g = 1ifcarry-out =1

hmetic overflow

wg ALU ALU o
é 7 6 5 4V 2 4 oJ &9 'é 7 6 5 4 3 2 § r7 6 5 4 3 1 o] &g
= T T l— =] =] A=
& 6 5 4 3 2 1 0 ; \7 6 5 a4 3 2 \7 6 5 4 3 2 1 0 ;
—r 1 r 1 111 LA S B SR S | T 1 T T T 1 1
° °
5 MQ S w5 mMa wB Ma E
§§§ 7 6 5 4 3 2 1 2 gg; Iv 6 5 4 3 2 §§§ l7 6 5 4 3 2 1 ;] 2
Qo7 ﬁ&)ﬁ &’ﬁ ﬁ lJr Q00 Qo7 &&ﬁ Qio? }}ﬁ&ﬁﬁ'} Q00
\7 6 5 4 3 2 1 0 ; \7 6 5 4 3 2 7 6 5 4 3 2 1 0 7
1 1T T 1 T 17T LA B R B B T 1 T T T 1 T 7T
MsP P LSP

2-42

Binary to Excess-3 BINEX3

The following code converts an N-bit binary number to an N/4 digit excess-3 number in 2N + 3 clocks. It employs the
standard conversion formula for a binary number:

an2n + an—12"~1+ an—22"-2 + ... + a5 = {[(2an + an—1) X 2 + ah—2] X 2 + ... + ag} X 2 + ao.

The conversion begins with the most-significant binary bit. Addition during the BINEX3 instruction is performed in radix 10
(excess-3).

LOADMQ NUM Load MQ with binary number.
SUB ACC, ACC, ACC Clear accumulator;
SET1 ACC, 331 Store 334 in all bytes of accimulator.

Repeat N times:
(N = number of bits in binary number)

BINEX3 ACC, ACC, ACC Double accumulator and add in most-significant bit of MQ register. Circular left
shift MQ.
EX3C ACC, ACC Perform excess-3 correction.

(END REPEAT)

2-43

BOR

Byte OR R and S (Byte Inclusive OR R and S)

FUNCTION

Evaluates R OR S of selected slices of a cascaded system.

DATA FLOW
N - (¢3¢0
m REGISTER
FILE :33-3 .
DA DB
4
R MUX
RN\ S
RORS
S0 ALU SHIFTER
MQ
REGISTER
L]
Y
DESCRIPTION

Slices with SI00 programmed low evaluate R OR S. Slices

with SIO0 programmed high or floating pass S unaitered.
Multiple slices can be selected only if they are adjacent to
one another. At least one slice must be non-selected.

Available R Bus Source Operands

A3-A0
A3-A0 HE
RF (A3-A0)| Immediate |DA Port|C3-CO Mask
. °
Available S Bus Source Operands
RF (B3-B0) | DB Port | MQ Register
° ° °
Available Destination Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
° ° None None
Control/Data Signals
User
Signal | Programmable | Use
SSF_ | No Forced low
SIO0 | Yes Byte select
SI07 [No Senses most-significant selected
byte
QI00 | No Inactive
QlO7 | No Inactive
Ch No Inactive
Status Signals
ZERO = 1 if result (selected bytes) = 0
N = 1 if MSB of most-significant selected byte = 1
OVR = 1ifsigned arithmetic overflow (selected bytes)
Ch+g = 1if carry-out (most-significant selected byte) = 1

Byte OR R and S (Byte Inclusive OR R and S)

BOR

EXAMPLE (assumes a 24-bit cascaded system)

Logically OR bytes 1 and 2 of register 12 with bytes 1 and 2 on the DB bus. Concatenate the result with DB byte 0 and store

in register 12.

Instruction Operand Operand Operand Byte | Destination Destination
Code Address Address Select Select | Address Select Carry-in
17-10 A3-A0 B3-BO EA EB1-EBO SI00 C3-Co WE SELY OEY Ch
1111 1000 1100 XXXX 0 10 001 1100 0 0 1 X
Assume register file 3 holds 8FBEBEjg and the DB bus holds 90BEBE .
Most Next Most Least
Significant Significant Significant
Package Package Package
Byte 2 Byte 1 Byte 0
(selected) (selected) (not selected)
Source 1000 1111 1011 1110 1011 1110 Rp < RF(12),
Source 1001 0000 1011 1110 1011 1110 S, < DB,
Destination 1001 1111 1011 1110 1011 1110 RF(12), < F, or St

1t F = ALU result
n = nth package

Register file 3 gets F if byte selected, S if byte not selected.

2-45

BSUBR

Byte Subtract R from S with Carry

FUNCTION

Subtracts R from S in selected slices of a cascaded

system.

DATA FLOW

A

A

—

REGISTER
FILE

— C3-C0o

B3-BO

DA DB
R MUX S MUX

J

L

Cn

4
M
R

U
+ 8 +

R Cn

S

SI00

ALU SHIFTER

DESCRIPTION

Slices with SIO0 programmed low compute R + S + Cp,.
Slices with SIO0 programmed high or floating pass S
unaltered. Multiple slices can be selected only if they are
adjacent to one another. At least one slice must be non-

selected.

2-46

Ma
REGISTER

L

Available R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate

A3-AO
DA Port|C3-CO Mask

Available S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register
° . °

Available Destination Operands Shift Operations

RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
° ° None None

Control/Data Signals

User
Signal | Programmable | Use
SSF | No Passes overflow from most-
significant selected byte
SIO0 | Yes Byte select
SI0O7 | No Senses most-significant selected
byte
100 | No Inactive
107 | No Inactive
Ch Yes Propagates through non-selected

packages; increments selected
bytes(s) if programmed high.

Status Signals

ZERO

p

OVR

Cn+g

{1 T

1 if result (selected bytes) = 0

1 if MSB of most-significant selected byte = 1

1 if signed arithmetic overflow (selected bytes)

1 if carry-out (most-significant selected byte) = 1

BSUBR

Byte Subtract R from S with Carry

EXAMPLE (assumes a 24-bit cascaded system)

Subtract bytes 1 and 2 of register 1 with carry from bytes 1and 2 of register 3. Concatenate the result with byte 0 of register

3, and store the result in register 11.

Instruction Operand Operand Operand Byte | Destination Destination
Code Address Address Select Select Address Select Carry-in
(7-10 A3-A0 B3-B0 EA EB1-EBO SI00 C3-Co WE SELY OEY Cn
1010 1000 0001 0011 0 00 001 1011 0 0 1 1
Assume register file 1 holds 1B585815 and register file 3 holds 3A98986.
Most Next Most Least
Significant Significant Significant
Package Package Package
Byte 2 Byte 1 Byte 0
(selected) (selected) (not selected)
Source 0001 1011 0101 1000 0101 1000 R, < RF(1),
Source 0011 1010 1001 1000 1001 1000 S, < RF(3),
ALU 0001 1111 00111111 0011 1111 Fr<Ry+Sn+Cn
Destination 0001 1111 0011 1111 1001 1000 RF(11), <— R, or St

T F = ALU result
n = nth package

Register file 11 gets F if byte selected, S if byte not selected.

2-47

BSUBS

Byte Subtract S from R with Carry

FUNCTION
Subtracts S from R in selected slices of a cascaded
system.
DATA FLOW
™ (' C3-co
m_ REGISTER
FILE \‘/‘:—33_30
DA
4
R MUX
R N S
Cn R+S +Cn
SI00 ALU SHIFTER
MQ
REGISTER
L
Y
DESCRIPTION

Slices with SIO0 programmed low compute R + S + Cp,.
Slices with SIO0 programmed high or floating pass S
unaltered. Multiple slices can be selected only if they are
adjacent to one another. At least one slice must be non-

selected.

2-48

Available R Bus Source Operands

A3-A0
A3-A0 H

RF (A3-A0)| Immediate |DA Port|C3-CO Mask

° °
Available S Bus Source Operands
RF (B3-B0) | DB Port | MQ Register

° ° .
Available Destination Operands Shift Operations
RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ

° ° None None

Control/Data Signals

User
Signal | Programmable | Use

SSF | No

SIO0 | Yes Byte select
SI07 | No

byte
QI00 | No Inactive
107 | No Inactive
Ch Yes Propagates

Passes overflow from most-
significant selected byte

Senses most-significant selected

packages; increments selected
byte(s) if programmed high.

through non-selected

Status Signals

ZERO = 1 if result (selected bytes) = 0

N = 1 if MSB of most-significant selected byte = 1
OVR = 1 if signed arithmetic overflow (selected bytes)
Ch+g = 1if carry-out (most-significant selected byte) = 1

Byte Subtract S from R with Carry

BSUBS

EXAMPLE (assumes a 24-bit cascaded system)

Subtract bytes 1and 2 of register 3 with carry from bytes 1and 2 of register 1. Concatenate the result with byte 0 of register 3

in register 11.

Instruction Operand Operand Operand Byte | Destination Destination
Code Address Address . Select Select | Address Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO SI00 C3-C0 WE SELY OEY Cn
1010 1000 0001 0011 0 00 001 1011 0 0 1 1
Assume register file 1 holds 88B8B8+g and register file 3 holds 3A98981¢.
Most Next Most Least
Significant Significant Significant
Package Package Package
Byte 2 Byte 1 Byte 0
(selected) (selected) (not selected)
Source 1000 1000 1011 1000 1011 1000 Rn < RF(1),
Source 0011 1010 1001 1000 1001 1000 S, < RF(3),
ALU 0100 1110 0001 1111 0001 1111 Fn<—Rn+—S—n+Cn
Destination 0100 1110 0001 1111 1001 1000 RF(11), < F, or Syt

T F = ALU result
= nth package

Register file 11 gets F if byte selected, S if byte not selected.

2-49

BXOR

Byte XOR R and S (Byte Exclusive OR R and S)

FUNCTION
Evaluates R exclusive OR S in selected slices of a cascaded
system. ,
DATA FLOW
D " C3-co
m REGISTER
FILE :33_3 0
DA DB
| —]
\ RMUX] \ S MUX /
‘\l
R V4 S
R XOR S
SI00 ALU SHIFTER
MQ
REGISTER
L
Y
DESCRIPTION

Slices with SIO0 programmed low evaluate R exclusive
OR S. Slices with SIO0 programmed high or floating pass
S unaltered. Multiple slices can be selected only if they are
adjacent to one another. At least one slice must be non-

selected.

2-50

Available R Bus Source Operands

A3-A0
RF (A3-A0)| Immediate |DA Port

A3-A0
CS-Cb Mask

Available S Bus Source Operands

RF (B3-B0)| DB Port | MQ Register
° ° °

Available Destination Operands

Shift Operations

RF (C3-C0) | RF (B3-B0) | Y Port

ALU MQ

None None

Control/Data Signals

User
Signal | Programmable | Use

SSF | No Forced low
SIO0 | Yes Byte select

byte

QI00 | No Inactive
QlO07 | No Inactive
Ch No Inactive

SIO7 | No Senses most-significant selected

Status Signals

ZERO
N
0

Cn+s 0

1 if result (selected bytes) = 0
1 if MSB of most-significant selected byte = 1

Byte XOR R and S (Byte Exclusive OR R and S) BXOR

EXAMPLE (assumes a 24-bit cascaded system)

Exclusive OR bytes 1and 2 of register 6 with bytes 1and 2 on the DB bus; concatenate the result with DB byte 0 and store the
result in register 10.

Instruction Operand Operand Operand Byte | Destination Destination
Code Address Address Select Select | Address Select Carry-in
7-10 A3-A0 B3-BO EA EB1-EBO | SIOO €3-Co WE SELY OEY Cn
1101 1000 0110 XXXX 0 10 001 1010 0 0 1 X
Assume register file 3 holds 8FBEBE g and the DB bus holds 90BEBE 4.
Most Next Most Least
Significant Significant Significant
Package Package Package
Byte 2 Byte 1 Byte 0
(selected) (selected) (not selected)
Source 1000 1111 1011 1110 1011 1110 Rn < RF(6),
Source 1001 0000 1011 1110 1011 1110 S, < DB,
' Destination 0001 1111 0000 0000 1011 1110 RF(10), < R, or St

1t F = ALU result
n = nth package
Register file 3 gets F if byte selected, S if byte not selected.

2-51

CLR Clear

FUNCTION Available R Bus Source Operands
Forces ALU output to zero and clears the BCD flip-flops. A3-A0
A3-A0 -
RF (A3-A0)| Immediate |DA Port|C3-CO Mask
DATA FLOW
Available S Bus Source Operands
™ 300 RF (B3-B0)] DB Port | MQ Register
REGISTER
A3-A0 > FILE
—@E—— Available Destination Operands Shift Operations
_ DB RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
DA ‘ . ° None None
4
Status Signals
\rmux /0 smux / T
N =0
; OVR =0
Chig =0
R A4 S/
Ma
REGISTER
% —
Y
DESCRIPTION
ALU output is forced to zero and the BCD flip-flops are
cleared.

Tt This instruction may also be coded with the following
opcodes:

[1T¢], [2]F] [3]F] [a]F],[sIF] [6]F] [B]F] [cTF] [ETF

2-52

Divide Remainder Fix

DIVRF

FUNCTION

Corrects the remainder of nonrestoring division routine if
correction is needed. A description of nonrestoring
division and an algorithm using this instruction are given
in section 2.3.1.

DATA FLOW

I\

) C3-C0
REGISTER
A3-A0 > FILE
B3-BO

= U=

\RMUX/ \SMUX/

ALU
SHIFTER

DESCRIPTION

DIVRF tests the result of the final step in nonrestoring
division iteration: SDIVIT (for signed division) or UDIVIT
(for unsigned division). An error in the remainder results
when it is non-zero and the signs of the remainder and
dividend are different. SSF is used to indicate that a fix is
required.

The R bus must be loaded with the divisor and the S bus
with the most-significant half of the previous resulit. The
least- significant halfis in the MQ register. The Y bus result
must be stored in the register file for use during the
subsequent SDIVQF instruction.

Recommended R Bus Source Operands

A3-A0
A3-A0 Do
Immediate

RF (A3-A0) DA Port|C3-CO Mask

Recommended S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register
[[]

Recommended Destination

Operands Shift Operations
RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
° None None

Control/Data Signals

User
Signal | Programmable | Use
SSF | No Indicates whether quotient fix is
required in next instruction.
SIO0 | No Inactive
SI07 | No Inactive
QI00 | No Inactive
QIO07 | No Inactive
Cn Yes Should be programmed high

Status Signals

ZERO = 1ifremainder = 0
N =0

OVR =0

Ch+g = 1lifcarry-out = 1

DIVRF tests SSF (used to signal whether a fix is required)
and evaluates:

Y<S+R+ Cpif SSF = 1
Y<S+R if SSF = 0.

Overflow is reported to OVF at the end of the division
routine (after SDIVQF).

I

2-53

DNORM Double-Length Normalize

FUNCTION

Tests the two most-significant bits of a double precision
number. If they are the same, shifts the number to the left.

DESCRIPTION

This instruction is used to normalize a two’s complement,
double precision number by shifting the number one bit
to the left and filling a zero into the LSB via the Q100 input.
The S bus holds the most-significant half; the MQ register
holds the least-significant half.

Normalization is complete when overflow occurs. The
SSF pin inhibits the shift whenever normalization is
attempted on a number already normalized.

Available R Bus Source Operands

A3-A0
A3-A0 H
RF (A3-A0)| Immediate |DA Port|C3-C0 Mask

Recommended S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register
[)

Recommended Destination

Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
° Left Left
Control/Data Signals
User
Signal | Programmable | Use
SSF | No Inhibits shift if normalization is
complete.
SIO0 | No Link cascaded ALU shifters. Output
SIO7 | No of MSP’s SIO7 is MSB of MQ shifter
(inverted).
QI00 | No Link cascaded MQ shifters. QIO0 of
QlO07 | No LSP fills a zero into LSB of MQ
shifter.
Ch No Inactive

Status Signals

ZERO = 1ifresult =0
N = 1ifMSB = 1
OVR = 1if MSB XOR 2nd MSB = 1
Cht+g = 1ifcarry-out =1
DATA FLOW
> >
§ § lw s s 43 2 1 o Eé § 7 s Y5 1 o] gg
= S el e e PR
\l 6 5 4 3 2 1 oj \L 6 5 4 3 2 10]
T T T T T T T T T T T T T
ggg gég Iv s aY 2 ol 3 §§§ I7 s s «Ma 2 j §

a7

= Ml

1A= W7§ﬁﬁﬁﬁﬁﬁﬁ&sg

2-54

Double-Length Normalize

DNORM

EXAMPLE (assumes a 24-bit cascaded system)

Normalize a double-precision number.

(This example assumes that the MSH of the number to be normalized is in register 3 and the LSH is in the MQ register. The
zero on the OVR pin at the end of the instruction cycle indicates that normalization is not complete and the instruction

should be repeated).

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address - Select Carry-in
17-10 A3-A0 B3-BO EA EB1-EBO C3-Co WE SELY OEY Ch
0011 0000 0011 XXXX 0 XX 0011 0 0 1 X

Assume register file 3 holds F6D84E1g and MQ register holds F6D843+g.

Source

Source

Destination

Destination

Most Next Most Least
Significant Significant Significant
Package Package Package
1111 0110 1101 1000 0100 1110
1111 0110 1101 1000 0100 0011
1110 1101 1011 0000 1001 1101
1110 1101 1011 0000 1000 0110

0

t Normalization not complete at the end of this instruction cycle.

ALU shifter < RF(3)

MQ shifter < MQ register

RF(3) <~ Result (MSH)

MQ register <— Result (LSH)

OVF < 0t

2-55

EX3BC ' Excess-3 Byte Correction

FUNCTION
Corrects the result of excess-3 addition or subtraction.

DATA FLOW

A

- "c3-co
BCD REGISTER
ssF— H FuP. FLE | (Eeme
FLOPS 3-80

I

}_[

SI00 ALU SHIFTER

DESCRIPTION

This instruction corrects excess-3 additions or
subtractions in the byte mode. For correct excess-3
arithmetic, this instruction must follow each add or
subtract. The operand must be on the S bus.

Data on the S bus is added to a constant on the R bus
determined by the state of the BCD flip flops and previous
overflow condition reported on the SSF pin. Slices with
SIO0 programmed low evaluate the correct excess-3
representation. Slices with SIO0 programmed high or
floating pass S unaltered.

2-56

Available R Bus Source Operands

A3-A0
A3-A0 -
RF (A3-A0)| Immediate |DA Port|C3-CO Mask

Recommended S Bus Source Operands

RF (B3-B0) [DB Port | MQ Register
°
Available Destination Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
° ° Left Left
Control/Data Signals
User
Signal | Programmable | Use
SSF | No Passes overflow from most-
significant selected byte.

SIO0 | Yes Byte select

SI07 | No Inactive

QIo0 | No Inactive

QI07 | No Inactive

Ch No Inactive
Status Signals

ZERO = 0

N = 1ifMSB =1

OVR = 1 if arithmetic signed overflow

Ch+g = 1lifcarry-out = 1

|

Excess-3 Byte Correction

EX3BC

EXAMPLE (assumes a 24-bit cascaded system)

Add selected BCD digits and store the sum in register 3. Assume data comes in on DB bus.

1) Clear accumulator (SUB ACC, ACC, ACC)
2) Store 331 in all bytes of register (SET1 R2, H/33/)
3) Add 334 to first BCD number (ADDI DB, R2, R1)

4) Add 3346 to second BCD number (ADDI DB, R2, R3)
5) Add selected bytes of registers 1 and 3 (BADD, R1, R3, R3)
6) Correct the result (EX3BC, R3, R3)

Instruction Operand Operand Operand Byte | Destination Destination

Code Address Address . Select Select | Address Select Carry-in

17-10 A3-A0 B3-BO EA EB1-EBO SI00 C3-C0o WE SELY OEeY Cn
1111 0010 0010 0010 0 00 XXX 0010 0 0 1 1
0000 1000 0010 XXXX 0 XX XXX 0010 0 0 1 X
1111 0001 0010 XXXX 0 10 XXX 0001 0 0 1 0
1111 0001 0010 XXXX 0 10 XXX 0011 0 0 1 0
1000 1000 0001 0011 0 00 100 0011 0 0 1 0
1000 1111 XXXX 0011 X 00 100 0011 1 0 1 0

Assume DB bus holds 3369121 at second instruction and 43716219 at fourth instruction.

Result of
Instruction
Cycle:

Most Next Most Least
Significant Significant Significant
Package Package Package
(not selected) (selected) (selected)
0000 0000 0000 0000 0000 0000 RF(2) <0
0011 0011 0011 0011 0011 0011 RF(2) <~ 33333346
0110 0110 1001 1100 0100 0101 RF(1) < RF(2)+DB
0111 0110 1010 0100 1001 0101 RF(3) < RF(2)+DB
0111 0110 0100 0000 1101 1010 RF(3),, < RF(1), + RF(3),
0111 0110 0100 0000 0111 0100

RF(3),, < Corrected RF(3),, result

2-57

EX3C

Excess-3 Word Correction

FUNCTION

Corrects the result of excess-3 addition or subtraction.

DATA FLOW
) (" c3.co
REGISTER
BCD
S Fue I ==
FLOPS
L
1) 4
\RMUX/ \SMUX/
\Z N7
R A4 S
R AND S
ALU
SHIFTER
Y
DESCRIPTION
This instruction corrects excess-3 additions or

subtractions in the word mode. For correct excess-3
arithmetic, this instruction must follow each add or
subtract. The operand must be on the S bus.

Data on the S bus is added to a constant on the R bus
determined by the state of the BCD flip flop and previous
overflow condition reported on the SSF pin.

2-58

Available R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate

A3-A0
DA Port|C3-CO Mask

Recommended S Bus Source Operands

RF (B3-B0)

DB Port

MQ Register

Available Destination Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
° ° Left Left
Control/Data Signals
User

Signal | Programmable | Use

SSF | No Passes overflow.

SIO0 | No Inactive

SIO7 | No Inactive

QIo0 | No Inactive

Ql07 | No Inactive

Ch No Inactive
Status Signals

ZERO = 0

N = 1ifMSB =1

OVR = 1 if arithmetic signed overflow

Cht+g = 1ifcarry-out =1

Excess-3 Word Correction

EX3C

EXAMPLE (assumes a 24-bit cascaded system)

Add selected BCD digits and store the sum in register 3. Assume data comes in on DB bus.

1) Clear accumulator (SUB ACC, ACC, ACC)

2) Store 331 in all bytes of register (SET1 R2, H/33/)
3) Add 334 to first BCD number (ADDI DB, R2, R1)
4) Add 3346 to second BCD number (ADDI DB, R2, R3)

5) Add the excess-3 data (ADD R1, R3, R3)

6) Correct the result (EX3C, R3, R3)

Instruction Operand Operand Operand Destination Destination
Code Address Address . Select Address Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO C3-C0o WE SELY OEY (o
1111 0010 0010 0010 0 00 0010 0 0 1 1
0000 1000 0011 0010 0 XX 0011 0 0 1 X
1111 0001 0010 XXXX 0 10 0001 0 0 1 0
1111 0001 0010 XXXX 0 10 0011 0 0 1 0
1111 0001 0001 0011 0 00 0011 0 0 1 0
1001 1111 XXXX 0011 X 00 0011 1 0 1 0
Assume DB bus holds 3369121 at second instruction and 4371621 at fourth instruction.
Result of Most Next Most Least
Instruction Significant Significant Significant
Cycle: Package Package Package
1 0000 0000 0000 0000 0000 0000 RF(2) <0
2 0011 0011 0011 0011 0011 0011 RF(2) <~ 3333334
3 0110 0110 1001 1100 0100 0101 RF(1) < RF(2) + DB
4 0111 0110 1010 0100 1001 0101 RF(3) < RF(2) + DB
5 1101 1101 0100 0000 1101 1010 RF(3) <~ RF(1) + RF(3)
6 1010 1010 0111 0011 1010 0111 RF(3) « Corrected RF(3) result
7 0111 0111 0100 0000 0111 0100 RF(4) < RF(3) — RF(2)

2-59

INCNR Increment Negative R using Carry (R + Cp) EIII

FUNCTION Available R Bus Source Operands
Evaluates R + C,. A3-A0
A3-A0 H-
RF (A3-A0)| Immediate |DA Port|C3-CO Mask
° .
DATA FLOW

Available S Bus Source Operands

- C3-co RF (B3-B0) | DB Port | MQ Register

REGISTER
A3-A0 >—‘ FILE

Available Destination Operands Shift Operations
RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ

DA [) ° °

4 Control/Data Signals
R MUX User
Signal | Programmable | Use
SSF | No Affect shift instructions programmed
SI0o0 | No in bits 17-14
SI07 | No
Qlo0 | No
Ql07 | No
Ch Yes Increments if programmed high.
\ ALU / Ma Status Signalst
SHIFTER SHIFTER ZERO = 1ifresult = 0

N = 1ifMSB =1
OVR = 1 if signed arithmetic overflow

Ch+s 1if carry-out = 1

t Ch+8is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

DESCRIPTION

Data on the R bus is inverted and added with carry. The
result appears at the ALU and MQ shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-60 -

[*]7] INCNR

Increment Negative R Using Carry (R + Cp)

EXAMPLE (assumes a 24-bit cascaded system)

Convert the data on the DA bus to two’s complement and store the result in register 4.

Instruction Operand Operand Operand Destination Destination

Code Address Address Select Address Select Carry-in

17-10 A3-A0 B3-B0 EA EB1-EBO C3-Co WE SELY OEY Cn
1111 0111 XXXX XXXX 1 XX 0100 0 0 1 1

Assume register file 1 holds 91FEF6+g.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 1001 0001 1111 1110 1111 0110 R < DA
Destination 0110 1110 0000 0001 0000 1010 RF(4) <—ﬁ+cn

2-61

INCNS

Increment Negative S using Carry (S + Cp)

FUNCTION
Evaluates S + C,.

Available R Bus Source Operands

A3-A0
A3-A0 -
RF (A3-A0)| Immediate |DA Port|C3-CO Mask
Available S Bus Source Operands
RF (B3-B0) | DB Port | MQ Register
° . °
Available Destination Operands Shift Operations
RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
. ° ° °
Control/Data Signals
User
Signal | Programmable | Use
SSF_ | No Affect shift instructions programmed
SIO0 | No in bits 17-14 of instruction field.
SIO7 | No
QI00 | No
Ql07 | No
Ch Yes Increments if programmed high.

Status Signalst

ZERO
N
OVR

Cn+s

1ifMSB =1

Tifresult =0

1 if signed arithmetic overflow
1 if carry-out = 1

DATA FLOW
> T3¢0
REGISTER
FILE
QL
DB
R N S
Cn S +Cn
ALU MQ
SHIFTER SHIFTER
MQ
REGISTER
L —
Y
DESCRIPTION

Data on the S bus is inverted and added to the carry. The
result appears at the ALU and MQ shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-62

t Cn+gis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

[+]5]

Increment Negative S Using Carry (S + Cp)

INCNS

EXAMPLE (assumes a 24-bit cascaded system)

Convert the data in the MQ register to one’s complement and store the result in register 4.

Instruction Operand Operand Operand Destination Destination

Code Address Address Select Address Select Carry-in

17-10 A3-A0 B3-B0 EA EB1-EBO C3-Co WE SELY OEY Cn
1111 0101 XXXX XXXX X 1" 0100 0 0 1 0

Assume MQ register holds 91FEF64g.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 1001 0001 1111 1110 1111 0110 S < MQ register
Destination 0110 1110 0000 0001 0000 1001 RF(4) <—§+Cn

2-63

INCR

Increment R using Carry (R + Cp)

FUNCTION

Increments R if the carry is set.

DATA FLOW
N C3:c0
REGISTER
A3- AO FILE

ﬁ\ R+Cn ;

ALU
SHIFTER SHIFTER

]

Data on the R bus is added to the carry. The sum appears
at the ALU and MQ shifters.

DESCRIPTION

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-64

Available R Bus Source Operands

RF (A3-A0)

A3-A0 -
Immediate |DA Port|C3-C0 Mask

A3-A0

Available S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register

Available Destination Operands Shift Operations
RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
° ° ° .
Control/Data Signals
User

Signal | Programmable | Use

SSF_ | No Affect shift instructions programmed
SI00 | No in bits 17-14 of instruction field.
SI07 | No

QlO0 | No

QlO07 | No

Cnh Yes Increments R if programmed high.

Status Signalst

ZERO = 1ifresult =0

N = 1if MSB =1

OVR = 1if signed arithmetic overflow
Ch+g = 1ifcarry-out = 1

t Cn+gis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR

(overflow) is evaluated after ALU operation and after shift
operation.

Increment R Using Carry (R + Cy)

INCR

EXAMPLE (assumes a 24-bit cascaded system)

Increment the data on the DA bus and store the result in register 4.

Instruction Operand Operand Operand Destination Destination
Code Address Address . Select Address _ Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO C3-Co WE SELY OEY Ch
1111 0110 XXXX XXXX 1 XX 0100 0 0 1 1
Assume register file 1 holds 91FEF6+g.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 1001 0001 1111 1110 1111 0110 R <« RF(1)
Destination 1001 0001 1111 1110 1111 0111 RF(4) <« R+G,

2-65

INCS

Increment S using Carry (S + Cp)

FUNCTION
Increments S if the carry is set.

DATA FLOW

—\

—)

REGISTER
FILE

C3-co

B

DB

R \V S

Cn S + Cn
ALU MQ

SHIFTER SHIFTER

MQ
REGISTER

L— |

DESCRIPTION

Data on the S bus is added to the carry. The sum appears
at the ALU and MQ shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-66

Available R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate

DA Port

A3-A0

C3-CO Mask

Available S Bus Source Operands

RF (B3-B0)

DB Port | MQ Register

Available Destination Operands

Shift Operations

RF (C3-C0)

RF (B3-B0)

Y Port

ALU

MQ

Control/Data Signals

Signal | Programmable

User

Use

SSF | No
SIO0 | No
SI07 | No
100 | No
107 | No
Ch Yes

Affect shift instructions programmed
in bits 17-14 of instruction field.

Increments S if programmed high.

Status Signalst

ZERO = 1ifresult =0

N = 1ifMSB = 1

OVR = 1if signed arithmetic overflow
Ch+g = 1lifcarry-out = 1

t Cnh+gis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift

operation.

Increment S Using Carry (S + Cy)

INCS

EXAMPLE (assumes a 24-bit cascaded system)

Increment the data in the MQ register and store the result in register 4.

Instruction Operand Operand Operand Destination Destination

Code Address Address Select Address Select Carry-in

17-10 A3-A0 B3-B0 EA EB1-EBO C3-Co WE SELY OEY Cn
1111 0010 XXXX XXXX X 11 0100 0 0 1 1

Assume MQ register holds FFOOFFy.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 1111 11N 0000 0000 1111 11N S < MQ register
Destination 1111 111 0000 0001 0000 0000 RF(4) < S+C,

2-67

LOADMQ Pass (Y < F) and Load MQ with F [E]*]

FUNCTION Shift Operations
Passes the result of the ALU instruction specified in the ALU Shifter MQ Shifter
lower nibble of the instruction field to Y and the MQ . None None
register.
Available Destination Operands
RF (C3-C0) | RF (B3-B0) | Y Port
DATA FLOW hd hd
N Control/Data Signals
D, — C3-C0 "
‘ ser
REGISTER Signal | Programmable | Use
A3 AO FILE
83 BO SSF | No Outputs MQO of LSP
SI00 | No Inactive
SIO7 | No Inactive
Ql00 | No Inactive
QlO07 | No Inactive
Cnh No Inactive

»
£
c
x
»
=
c
x

Status Signalst
! ! U If arithmetic instruction specified in [3-10:

ZERO 1ifresult =0
N

OVR

Cn +8

1if MSB of result = 1
0 if MSB of result = 0

ALU If logic instruction specified in 13-10:
SHIFTER SHIFTER

1 if signed arithmetic overflow
1 if carry-out = 1

1 I O

ZERO

Ma N
REGISTER
OVR
I — Cn+s
Tt Ch+gis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR

(overflow) is evaluated after ALU operation and after shift
operation.

Tifresult =0

1 if MSB of result
0 if MSB of result
0

[l
o -

0

* * Arithmetic/logic function specified in 13-10

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (I3-10) is passed
unshifted to Y and the MQ register.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

2-68

EEIEI Pass (Y <F) and Load MQ with F LOADMAQ

EXAMPLE (assumes a 24-bit cascaded system)
Load the MQ register with data from register 1, and pass the data to the Y port.

(In this example, data is passed to the ALU by an INCR instruction without carry-in).

Instruction Operand Operand Operand Destination Destination
Code Address Address . Select Address Select Carry-in
17-10 A3-AQ B3-B0 EA EB1-EBO C3-Co WE SELY OEY Cn
1110 0110 0001 XXXX 0 XX XXXX 1 0 1 0
Assume register file 1 holds 08C61846.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 0000 1000 1100 0110 0001 1000 R < RF(1)
Destination 0000 1000 1100 0110 0001 1000 MQ register < R+C,,

2-69

MQSLC

Pass (Y < F) with Circular Left MQ Shift

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y. Performs a
circular left shift on MQ.

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (I13-10) is passed
unshifted to Y.

The contents of the MQ register are rotated one bit to the
left. Bit 7 of the least-significant package is passed
through QIO7-QI00 to bit 0 of the next-most-significant
package. Bit 7 of the most-significant package is passed
through SIO7-SIO0 to bit 0 of the least-significant
package.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to the MQ register.
If SSF is low, the MQ register will not be altered.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations
ALU Shifter MQ Shifter
None Circular Left

Available Destination Operands

Control/Data Signals

User

Signal | Programmable | Use

SSF | Yes Passes shift result if high or floating;
retains MQ without shift if low.

SIO0 | No Link cascaded ALU shifters. Output

SIO7 | No value of MSP’s SIO7 is MSB of MQ
shifter (inverted).

QI00 | No Link cascaded MQ shifters. Output

QIO07 | No value of MSP’s QIO7 is MSB of MQ
shifter (inverted).

Cnh No Affects arithmetic operation
programmed in bits 13-10 of
instruction field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO = 1ifresult =0
N = 1if MSB of result = 1
= 0if MSB of result = 0
OVR = 1 if signed arithmetic overflow
Ch+g = 1lifcarry-out =1

If logic instruction specified in 13-10:

ZERO = 1ifresult =0

N = 1 if MSB of result = 1
= 0if MSB of result = 0

OVR =0

Chig =0

ifter: t Ch+gis ALU carry out and is evaluated befon:e shift operation.
ALU Shifter ZERO and N (negative) are evaluated after shift operation. OVR
RF (C3-C0)| RF (B3-B0) | Y-Port (overflow) is evaluated after ALU operation and after shift
° ° operation.
DATA FLOW
SERIAL DATA OUT
- \
g ;s s Vs 2 o] Eé é |7 6 5 Yy 1 ol 5? <;= 7 6 5
= [A l— = | [A A A At i l— =]
M 6 5 4 3 2 1 0 / \7 6 5 3 2 1 0 / & 6 5
T T T T T T T T T T T T T T Al T T T
5;’2 7 s oY% o] H é‘gg I7 5 MO o 2 éég [7 6 5
. phetplatelehl |-t plotplotplptel vt
\7 6 5 4 3 2 1 0 / \7 6 5 4 3 2 1 0 / \7 6 5
T T T T T T T T T 1 T T T 7 T T T T T
mMsp P LSP

2-70

Pass (Y <—F) with Circular Left MQ Shift

MQSLC

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 1 to data on the DB bus with carry-in and store the unshifted result in register 1. Circular shift the

contents of the MQ register one bit to the left.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-A0 B3-BO EA EB1-EBO C3-Co WE SELY OEY Cn
1101 0001 0001 XXXX 0 10 0001 0 0 1 1

Assume register file 1 holds 08C6184g, DB bus holds 0075304g, and MQ register holds AS9A0E1¢.

Source

Source

Destination

Source

Destination

Most Next Most Least
Significant Significant Significant
Package Package Package
0000 1000 1100 0110 0001 1000
0000 0000 0111 0101 0011 0000
0000 1001 0011 1011 0100 1001
1010 1001 1001 1010 0000 1110
0101 0011 0011 0100 0001 1101

R < RF(1)

S < DBbus

RF(1) <~ R+S+C,

MQ shifter < MQ register

MQ register <— MQ shifter

2-71

MQSLL

Pass (Y < F) with Logical Left MQ Shift

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y. Performs a left
shift on MQ.

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (I3-10) is passed
unshifted to Y.

The contents of the MQ register are shifted one bit to the
left. A zero is filled into bit 0 of the least-significant
package unless SIO0 is programmed low; this will force
the least-significant bit to one. Bit 7 is passed through
Ql107-QIO00 to bit 0 of the next-most-significant package.
Bit 7 of the most-significant package is dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to the MQ register.
If SSF is low, the MQ register will not be altered.

* Alist of ALU operations that can be used with this instruction is
given on page 2-9.

Control/Data Signals

User

Signal | Programmable | Use

SSF | Yes Passes shift result if high or floating;
retains MQ without shift if low.

SI00 | Yes SIOO fills a zero in LSB of MQ shifter
if high or floating; sets LSB to one if
low.

107 | No Inactive

100 | No Link cascaded MQ shifters. Output of

107 | No MSP’s Ql07 is MSB of MQ shifter
(inverted).

Ch No Affects arithmetic operation
programmed in bits 13-10 of
instruction field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO = 1ifresult =10
N = 1if MSB of result = 1
= 0if MSB of result = 0
OVR = 1 if signed arithmetic overflow
Ch+g = 1ifcarry-out =1

If logic instruction specified in 13-10:

Shift Operations ZERO = 1ifresult =0
- , N = 1if MSB of result = 1
ALU Shifter MQ Shifter = 0if MSB of result = 0
None Logical Left OVR =10
Chvg = 0
Available Destination Operands
ALU Shifter: t Cnh+gis ALU carry out and is evaluated before shift operation.
RF (C3-C0)| RF (B3-B0) | Y-Port ZERO and N (negative) are evaluated after shift operation. OVR
. (overflow) is evaluated after ALU operation and after shift
hd operation.
DATA FLOW
SERIAL DATAIN
é I 7 ‘ALU 2 1 0] E§ § I 7 5 a 1 0 l ‘gg 'g

8107

= [A

g
=4
=)
=)
=)
=)

P |

g

ALUO

.,_~
1 4-
o 4o
N
ALUO El
[=]
g
Q8T
MQF
ALUT7

=
8

=1

=T

Qo7

Qo7

ﬂ'?l'Lﬁ'ﬂ'ﬂ"ﬂ'
/

=1
=Y
=1
Y
gl

MsSP

SERIAL DATA OUT

2-72

[CT+]

Pass (Y < F) with Logical Left MQ Shift

MQSLL

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 7 to data on the DB bus with carry-in and store the unshifted resultin register 7. Shift the contents of the
MQ register one bit to the left, filling a zero into the least-significant bit.

Instruction | Operand Operand Operand End Destination Destination
Code Address Address Select Fill Address ___ Select Carry-in
17-10 A3-A0 B3-BO C3-Co EA EB1-EBO SI00 WE SELY OEeY Cn
1100 0001 0111 XXXX 0 10 1 0111 0 0 1 1

Assume register file 1 holds 08C618;5, DB bus holds 0075301 and MQ register holds A99A0E;g.

Most Next Most Least
Significant Significant Significant
Package Package Package

Source 0000 1000 1100 0110 0001 1000 R < RF(7)

Source 0000 0000 0111 0101 0011 0000 S < DBbus
Destination 0000 1001 0011 1011 0100 1001 RF(7) < R+S+C,

Source 1010 1001 1001 1010 0000 1110
Destination 0101 0011 0011 0100 0001 1100

MQ shifter < MQ register

MQ register < MQ shifter

2-73

MQSRA

Pass (Y < F) with Arithmetic Right MQ Shift

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y. Performs a
arithmetic right shift on MQ.

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (13-10) is passed
unshifted to Y.

The contents of the MQ register are shifted one bit to the
right. The sign bit of the most-significant package is
retained. Bit 0 is passed through QI00-QIO7 to bit 7 of the
next-most-significant package. Bit 0 of the least-
significant package is dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to the MQ register.
If SSF is low, the MQ register will not be altered.

* Alist of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations
ALU Shifter MQ Shifter
None Arithmetic Right

Available Destination Operands

ALU Shifter:
RF (C3-C0)| RF (B3-B0) | Y-Port
° °
DATA FLOW

Control/Data Signals

User

Signal | Programmable | Use

SSF | Yes Passes shift result if high or floating;
retains MQ without shift if low.

SIO0 | No Output value of LSP’s SIO0 is LSB of
MQ shifter (inverted).

SI07 | No Inactive

QIO0 | No Link cascaded MQ shifters. Output

QlO07 | No value of LSP’s QI00 is LSB of MQ
shifter (inverted).

Ch No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO = 1ifresult =0
N = 1if MSB of result = 1
= 0if MSB of result = 0
OVR = 1ifsigned arithmetic overflow
Cht+g = Tifcarry-out = 1

If logic instruction specified in 13-10:

ZERO = 1ifresult =0

N = 1if MSB of result = 1
= 0if MSB of result = 0

OVR =0

Chyg =0

t Cn+gis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

SERIAL DATA OUT

~ ALY j %] ~ ALV] %8 ~ I ALU —J w8
g 7 6 5 4 3 2 10 &g g 7 s 4 3 2 1 0 g2 g 7 a3 10 &g
5107 [_‘Hﬁ"ﬂ"ﬂ‘lﬁ"ﬂ"ﬁll 556 si07 H"ﬂ"ﬂ"ﬁ“ﬂ" 5166 si07 ﬂ"ﬂ" ﬂ"ﬂ" 5100
\7 6 5 4 3 2 1 0 \7 6 5 4 2 10 ; \? 6 5 a4 3 2 1 o /
T AL 1 T 1 T T 1 T T 1 T T T 1 1 1 1 LI
— =] =3 =3
el Ma I E ol [Ma I E el I mMa I S
-] 2 1 2 g3 7 4 2
893 6 5 4 3 2 1 0 2 893 v 5 4 2 o 2 893 6 5 3 2 1 0 2
aio7 J ﬂ“ rr QI00 107 ’-‘r Qio0 Qo7 Ql00
7 6 5 4 3 2 1 0 / \7 6 5 4 2 1 0 / \7 6 5 4 3 2 1 0 /
1 1 11 1. 1T 71 T T T T T T 1 T T 1 T 11
mMsp IP LSP

2-74

MQSRA

Pass (Y < F) with Arithmetic Right MQ Shift

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 1 to data in register 10 with carry-in and store the unshifted result in register 1. Shift the contents of the
MQ register one bit to the right, retaining the sign bit.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-A0 B3-BO EA EB1-EBO C3-Co WE SELY OEY Cn
1010 0001 0001 1010 0 00 0001 0 0 1 1

Assume register file 1 holds 08C618¢g, DB bus holds 00753015, and MQ register holds A99A0E+g.

Most Next Most Least
Significant Significant Significant
Package Package Package

Source 0000 1000 1100 0110 0001 1000 R < RF(1)

Source 0000 0000 0111 0101 0011 0000 S < RF(10)
Destination 0000 1001 0011 1011 0100 1001 RF(1) <~ R+S+C,

Source 1010 1001 1001 1010 0000 1110 MQ shifter < MQ register
Destination 1101 0100 1100 1101 0000 0111 MQ register < MQ shifter

2-75

MQSRL

Pass (Y < F) with Logical Right MQ Shift

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y. Performs a right
shift on MQ.

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (I3-10) is passed
unshifted to V.

The contents of the MQ register are shifted one bit to the
right. A zerois placed in the sign bit of the most-significant
package unless QIO7 is set to zero; this will force the sign
bit to 1. Bit 0 is passed through QIO0-QIO7 to bit 7 of the
next-most-significant package. Bit 0 of the least-
significant package is dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to the MQ register.
If SSF is low, the MQ register will not be altered.

* Alist of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter
None

MQ Shifter
Logical Right

Available Destination Operands

ALU Shifter:

RF (C3-C0) | RF (B3-B0) | Y-Port |
° °

DATA FLOW

Control/Data Signals

User
Signal | Programmable | Use
SSF | Yes Passes shift result if high or floating;
retains MQ without shift if low.
SIO0 | No Output value of LSP’s SIO0 is LSB of
MQ shifter (inverted).
SIO7 | No Inactive
100 | No Link cascaded MQ shifters. QlO7 fills
107 | Yes a zero into MSB of MQ register if
high or floating; sets MSB to one if
low.
Ch No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO = 1lifresult =0
N = 1if MSB of result = 1
= 0if MSB of result = 0
OVR = 1 if signed arithmetic overflow
Cht+g = lifcarry-out = 1

If logic instruction specified in 13-10:

ZERO = 1lifresult =0

N = 1if MSB of result = 1
= 0if MSB of result = 0

OVR =0

Chyg =0

t Ch+8is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

SERIAL DATA OUT

ma7

o
CRF
MQo

°
L]
CRF
MQO

sio7

§ioo

Qo7

ax Qo7

9
9|
S|

N Y
I}mlluo

Y -(g
‘gﬁwo §l

SERIAL DATA IN

2-76

Pass (Y < F) with Logical Right MQ Shift

MQSRL

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 1to data on the DB bus with carry-in and store the unshifted result in register 1. Shift the contents of the
MQ register one bit to the left.

Instruction | Operand Operand Operand End Destination Destination
Code Address Address Select __ Fn Address Select Carry-in
7-10 A3-A0 B3-B0 C3-Co EA EB1-EBO SI00 WE SELY OEY Cn
1011 0001 0001 XXXX 0 10 1 0001 0 0 1 1

Assume register file 1 holds 08C61816, DB bus holds 00753016, and MQ register holds A99A0Eg.

Source

Source

Destination

Source

Destination

Most Next Most Least

Significant Significant Significant

Package Package Package

0000 1000 1100 0110 0001 1000 R < RF(1)

0000 0000 0111 0101 0011 0000 S < DBbus
0000 1001 0011 1011 0100 1001 RF(1) <~ R+S+C,

1010 1001 1001 1010 0000 1110 MQ shifter < MQ register
0101 0100 1100 1101 0000 0111 MQ register < MQ shifter

2-77

NAND

Logical NAND (R NAND S)

FUNCTION
Evaluates the logical expression R NAND S.

DATA FLOW

REGISTER

FILE

\

ALU
SHIFTER

DESCRIPTION

Data on the R bus is NANDed with data on the S bus. The

]

REGISTER

—

result appears at the ALU and MQ shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed

without shift. Possible instructions are listed on page 2-9.

2-78

Available R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate

A3-A0
DA Port|C3-CO Mask

Available S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register
[[] [)]
Available Destination Operands Shift Operations
RF (C3-C0)|RF (B3-B0) | Y Port ALU MQ
[] [] [] []
Control/Data Signals
User
Signal | Programmable | Use
SSF | No Affect shift instructions programmed
SI00 | No in bits 17-14 of instruction field.
SIO7 | No
QI00 | No
QIO07 | No
Cnh Inactive

Status Signalst

ZERO = 1ifresult =0
N = 1ifMSB =1
OVR =0
Chig =0

t Ch+sgis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift

ope

ration.

[+IC]

Logical NAND (R NAND S)

NAND

EXAMPLE (assumes a 24-bit cascaded system)

Logically NAND the contents of register 3 and register 5 and store the result in register 5.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-A0 B3-BO EA EB1-EBO C3-Co WE SELY OEY Cn
1111 1100 0011 0101 0 00 0101 0 0 1 X
Assume register file 3 holds F6D840,5 and register file 5 holds F6D8424¢.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 1111 0110 1101 1000 0100 0000 R < RF(3)
Source 1111 0110 1101 1000 0100 0010 S < RF(5)
Destination 0000 1001 0010 0111 1011 1111 RF(5) < R NAND S

2-79

NOP No Operation

FUNCTION
Forces ALU output to zero.

DATA FLOW
> (&3¢0
REGISTER
- 1
BR) |
DB
R MUX S MUX
"~
0
ALU
SHIFTER SHIFTER
MQ
REGISTER
— |

DESCRIPTION

This instruction forces the ALU output to zero. The BCD
flip-flops retain their old value. Note that the clear
instruction (CLR) forces the ALU output to zero and clears
the BCD flip-flops.

2-80

Available R Bus Source Operands

RF (A3-A0)

A3-A0
Immediate |DA Port

A3-A0
C3-CO Mask

Available S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register

Available Destination Operands

Shift Operations

RF (C3-C0) | RF (B3-B0) | Y Port

ALU

MQ

None

None

Status Signals

ZERO
N
OVR

Ch+s

[
coco=

[FF]

No Operation

NOP

EXAMPLE (assumes a 24-bit cascaded system)

Clear register 12.

Instruction Operand Operand Operand Destination Destination

Code Address Address Select Address Select Carry-in

17-10 A3-A0 B3-B0 EA EB1-EBO C3-C0 WE SELY OEY Cn
1111 111 XXXX XXXX X XX 1100 0 0 1 X

Most Next Most Least
Significant Significant Significant
Package Package Package
Destination 0000 0000 0000 0000 0000 0000 RF(12) <0

2-81

NOR

Logical NOR (R NOR S)

FUNCTION
Evaluates the logical expression R NOR S.

DATA FLOW

REGISTER
A3-A0 >J FILE
DA
R MUX

— _C3-Co

B3 BO

U

\ RNORS ;

ALU
SHIFTER

SHlFTER

DESCRIPTION

Data on the R bus is NORed with data on the S bus. The
result appears at the ALU and MQ shifters.

1

REGISTER

MaQ

L—

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-82

Available R Bus Source Operands

A3-A0
RF (A3-A0)

Immediate

A3-A0
DA Port|C3-CO Mask

Available S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register

Available Destination Operands

Shift Operations

RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
° ° ° °
Control/Data Signals
User

Signal | Programmable | Use

SSF | No Affect shift instructions programmed
SI00 | No in bits 17-14 of instruction field.
SI07 | No

Qlo0 | No

Qio7 | No

Ch No Inactive

Status Signalst

ZERO = 1ifresult =0
N = 1ifMSB =1
OVR =0
Chig =0

Tt Ch+gis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift

operation.

Logical NOR (R NOR S)

NOR

EXAMPLE (assumes a 24-bit cascaded system)

Logically NOR the contents of register 3 and register 5 and store the result in register 5.

Instruction Operand Operand Operand Destination Destination
Code Address Address . Select Address Select Carry-in
17-10 A3-A0 B3-BO EA EB1-EBO C3-Co WE SELY OEY Ch
1111 1011 0011 0101 0 00 0101 0 0 1 X
Assume register file 3 holds F6D840,4 and register file 5 holds F6D8424¢.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 1111 0110 1101 1000 0100 0000 R < RF(3)
Source 1111 0110 1101 1000 0100 0010 S < RF(5)
Destination 0000 1001 0010 0111 1011 1101 RF(5) <~ RNOR S

2-83

OR

Logical OR (R OR S)

FUNCTION
Evaluates the logical expression R OR S.

DATA FLOW
) (' c3co
REGISTER
A3A0 > FILE
- B380

__DA__ |

DB

\RMUX/ \SMU

K=

=
o

SHIFTER

MQ
REGISTER

—
x/

Available R Bus Source Operands

A3-A0
RF (A3-A0)

Immediate

A3-AO
DA Port|C3-CO Mask

Available S Bus Source Operands

RF (B3-B0)| DB Port | MQ Register

° ° .
Available Destination Operands Shift Operations

RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ

° ° ° °
Control/Data Signals
User

Signal | Programmable | Use

SSF | No Affect shift instructions programmed
SIO0 | No in bits 17-14 of instruction field.
SI07 [No

Ql00 | No

QlO07 | No

Cn No Inactive

Status Signalst

[—

ZERO = 1ifresult =0
N = 1ifMSB =1
OVR =0
Chig = 0

t Cnh+gis ALU carry out and is evaluated before shift operation.

ZERO and N (negative)

are evaluated after shift operation. OVR

(overflow) is evaluated after ALU operation and after shift

operation.

DESCRIPTION

Data on the R bus is ORed with data on the S bus. The
result appears at the ALU and MQ shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-84

Logical OR (R OR S)

OR

EXAMPLE (assumes a 24-bit cascaded system)

Logically OR the contents of register 5 and register 3 and store the result in register 3.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-A0 B3-B0 EA EB1-EBO C3-Co WE SELY OEY Cn
1111 1011 0101 0011 0 00 0011 0 0 1 X
Assume register file 3 holds F6D8401¢ and register file 5 holds FED842¢¢.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 1111 0110 1101 1000 0100 0010 R < RF(5)
Source 1111 0110 1101 1000 0100 0000 S < RF(3)
Destination 1111 0110 1101 1000 0100 0010 RF(3)«<RORS

2-85

PASS PASS (Y <F) [F*]

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y.

DATA FLOW

> C3-C0
REGISTER
A3-AO FILE
B3-BO

DB

ﬂ

ALU
SHIFTER

Ma
REGISTER

L —

* * Arithmetic/logic function specified in 13-10

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (13-10) is passed
unshifted to V.

* Alist of ALU operations that can be used with this instruction is
given on page 2-9.

2-86

Available Destination Operands Shift Operations
RF (C3-CO0) | RF (B3-B0) | Y Port ALU MQ
[[None None

Control/Data Signals

User

Signal | Programmable | Use

SSF | No Inactive

SIO0 | No Inactive

SI07 | No Inactive

QIO0 | No Inactive

QlO7 | No Inactive

Ch No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO = 1lifresult =0
N = 1if MSB of result = 1
= 0if MSB of result = 0
OVR = 1 if signed arithmetic overflow
Ch+g = 1if carry-out condition

If logic instruction specified in 13-10:

ZERO = 1ifresult =0

N = 1if MSB of result = 1
= 0if MSB of result = 0

OVR =0

Chtg = 0

t Cnh+gis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

[F1+]

Pass (Y<F)

PASS

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 1 to data on the DB bus with carry-in and store the unshifted result in register 10.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-A0 B3-B0O EA EB1-EBO C3-C0o WE SELY OEY Cn
1111 0001 0001 XXXX 0 10 1010 0 0 1 1
Assume register file 3 holds 08C61815 and DB bus holds 0075304¢.
Most Next Most Least
Significant Significant Significant
Package Package Package
Source 0000 1000 1100 0110 0001 1000 R« RF(1)
Source 0000 0000 0111 0101 0011 0000 S« DB bus
Destination 0000 1001 0011 1011 0100 1001 RF(10) < R+S+C,

2-87

SDIVI

Signed Divide Iterate

FUNCTION

Performs one of N-2 iterations of nonrestoring signed
division by a test subtraction of the N-bit divisor from the
2N-bit dividend. A description of nonrestoring signed
division and an algorithm using this instruction are given
in section 2.3.1.

DESCRIPTION

Available R Bus Source Operands

A3-A0
A3-A0 B
RF (A3-A0)| Immediate |DA Port

C3-CO Mask

Recommended S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register
° °

Recommended Destination

SDIVI performs a test subtraction of the divisor from the Operands Shift Operations
dividend to generate a quotient bit. The test subtraction RF (C3-CO)| RF (B3-B0) | Y Port ALU MaQ
passes if the remainder is positive and fails if negative. If it . Left Left
fails, the remainder will be corrected during the next
instruction. Control/Data Signals
SDIVItests SSF, which holds the pass/fail result of the test User
subtraction from the previous instruction, and evaluates Signal | Programmable | Use
F<R+S ifSSF =0 SSF [No Preserves result of test subtraction
F—R+ S + Cp, if SSF = 1. for next instruction.
A double precision left shift is performed; bit 7 of the SI00 | No Link cascaded ALU shifters. Output
most-significant package of the MQ shifter is transferred SI07 | No ‘S’ﬁ:;'tzr°(fim2ft:$'07 is MSB of MQ
through S107-S100 to bit 1 of the least-significant package ’
of the ALU shifter. Bit 7 of the most-significant package of Qloo | No Link cascaded MQ shifters. Output
the ALU shifter is lost. The unfixed quotient bit is QI07 | No value of MSP's Q107 is unfixed
circulated into the least-significant bit of MQ through quotient sign result.
Q107-QIoo. Ch Yes Should be programmed high.
The R bus must be loaded with the divisor, the S bus with
the most-significant half of the result of the previous Status Signals
lnstrucyon (S_DIV| _durlng lteratlor'\ or SDIVIS at the ZERO — 1if intermediate result = 0
beginning of iteration). The least-significant half of the N =0
previous result is in the MQ register. Carry-in should be OVR =0
programmed high. Overflow occurring during SDIVI is Ch+g = 1if carry-out
reported to OVF at the end of the signed divide routine
(after SDIVQF).
DATA FLOW
— -
E g I7 CALUJ 1 0] ggé % é l7 6 5 GALU 2 1 OI ggé % g l'/ 6 5 GALUB 2 1 0 ggg
& s LT e T T =
\7 6 5 4 3 2 1 0 / \7 6 5 2 1 07 \7 6 5 4 3 2 1 04/
= § T T T I_J T T T oo g g T 1 T T L gg 5 'é T T 1 T T T Ll 1 gg
ggcg 7 6 s a3 2 —0| K3 §§ l7 6 Ve 2 1 o0 Na %é 7 6 s a™3 2 4 o NG
Nt e/ N e 12/ N e o/
MsP IP LSP
- o

2-88

Signed Divide Initialize

SDIVIN

FUNCTION

Initializes 'AS888 for nonrestoring signed division by
shifting the dividend left and internally preserving the
sign bit. A description of nonrestoring signed division and
an algorithm using this instruction are given in section
2.3.1.

DESCRIPTION
This instruction prepares for signed divide iteration

Available R Bus Source Operands

A3-A0
A3-A0 H
Immediate

RF (A3-A0) €3-CO Mask

DA Port

Recommended S Bus Source Operands

RF (B3-B0) | DB Port | MQ Register
° °

Recommended Destination

. s et - . Operands Shift Operations
operations by shifting the dividend and storing the sign L
for future use. RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
L. . . [Left Left
The preceding instruction should load the MQ register
with the least-significant half of the dividend. During Control/Data Signals
SDIVIN, the S bus should be loaded with the most- T
significant half of the dividend, and the R bus with the Signal Prograzfr:nable Use
divisor. Y-output should be written back to the register file — - -
. . . SSF | No Preserves dividend's sign bit.
for use in the next instruction.
P : P < hi SIO0 | No Link cascaded ALU shifters. Output
A double precision logical left shift is performed; _blt 7 c_)f 2167 | No value of MSPs 5107 is MSB of MO
the most-significant package of the MQ shifter is shifter (inverted).
transferred through SI07-SI0O0 to bit 0 of the least-
significant package of the ALU shifter. Bit 7 of the most- Ql00 | No Link cascaded MQ shifters. Output
significant package of the ALU shifter is lost. The unfixed Ql07 | No value of MSP's QI07 is unfixed
: : : : : f s quotient sign (QBT).
quotient sign bit (QBT) is shifted into the least-significant
bit of MQ through QlO7-QIO0. SSF preserves the Cn No Inactive
dividend's sign bit.
Status Signals
ZERO = 1 ifdivisor =0
N =0
OVR =0
Chig =0
DATA FLOW
- >
'&79— ?r?r?r?#rﬁ ﬁ- A A R i— = [t e ﬁ—
\7 6 5 4 3 2 1 77 a 3 2 1 ?/ \7 6 5 4 3 2 i t:/

ALU7

ZERQ

ZERO
ALUO

2ZERQ.
MaF
>
@
IS
©
~
o
L

Qio7

I
i

2-89

SDIVIS

Signed Divide Start

FUNCTION

Computes the first quotient bit of nonrestoring signed
division. A description of nonrestoring signed division
and an algorithm using this instruction are given in
section 2.3.1.

DESCRIPTION

SDIVIS computes the first quotient bit during
nonrestoring signed division by subtracting the divisor
from the dividend, which was left-shifted during the prior
SDIVIN instruction. The resulting remainder due to
subtraction may be negative; SSF is used to signal the
subsequent SDIVI instruction to restore the remainder
during the next subtraction.

The R bus must be loaded with the divisor and the S bus
with the most-significant half of the remainder. The resuit
ontheY bus should be loaded back into the register file for
use in the next instruction. The least-significant half of the
remainder is in the MQ register. Carry-in should be
programmed high.

SDIVIS computes

F—R+S if SSF = 0
F—R + S + Cpif SSF = 1

A double precision left shift is performed; bit 7 of the
most-significant package of the MQ shifter is transferred
through SI07-SI00 to bit 0 of the least-significant package
of the ALU shifter. Bit 7 of the most-significant package of
the ALU shifter is lost. The unfixed quotient bit is
circulated into the least-significant bit of MQ through
QI07-Q100.

Overflow occurring during SDIVIS is reported to OVF at
the end of the signed division routine (after SDIVQF).

Available R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate

A3-A0

DA Port C3-Cb Mask

Recommended S Bus Source Operands

RF (B3-B0)

DB Port

MQ Register

Recommended Destination

Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
. Left Left
Control/Data Signals
User
Signal | Programmable | Use
SSF [No Preserves result of test subtraction
for next instruction.
SIO0 | No Link cascaded ALU shifters. Output
SIO7 | No value of MSP’s SIO7 is MSB of MQ
shifter (inverted).
QlO0 | No Link cascaded MQ shifters. Output
QIO7 | No value of MSP’s QIO7 is unfixed
quotient sign (QBT).
Ch Yes Should be programmed high.

Status Signals

ZERO
N
OVR

Ch+s

0
0
1 if carry out

I I T

1 if intermediate result = 0

DATA FLOW
-rf ';,
= ?r?r?r?rﬁ?r;-w% = R =T H iﬂ'r—&—m
M 6 5 4 3 2 1 o/ \7 6 5 4 3 2 07 \7 6 5 4 3 2 1 04]

:§ T T 1 1 1 T T 1 oo ;§ T T 1 L 1 T T T oo ;5 T T LEEER 1 1 T co
EO;‘ l7 6 5 4 M°3 2 1 —OI §§ Sal‘ I 7 6 4 ma 2 1 0] é; Ecé(l7 6 5) ma 3 2 1 0 é;
& A R R A A i ?r?r?r?r#?r r—-ﬂ'i
\J 6 5 a 3 2 1 O/ \7 6 5 4 3 2 1 D/ \7 6 5 4 3 2 1 0/

T T T T T T T T T T T LR T T T T T T T T A A
MSP IP LSP
> -

2-90

[E10]

Signed Divide Terminate

SDIVIT

FUNCTION

Solves the final quotient bit during nonrestoring signed
division. A description of nonrestoring signed division
and an algorithm using this instruction are given in
section 2.3.1.

DESCRIPTION
SDIVIT performs the final subtraction of the divisor from

Available R Bus Source Operands

A3-A0

RF (A3-A0)| Immediate

DA Port

A3-A0
C3-CO Mask

RF (B3-B0)| DB Port

Recommended Destination

Recommended S Bus Source Operands
MQ Register

the remainder during nonrestoring signed division. Operands Shift Operations
SDIVIT is preceded by N-2 iterations of SDIVI, where N is
the number of bits in the dividend. RF (C3-CO)| RF (B3-BO) | ¥ Port ALY Ma
) ° Left Left
The R bus must be loaded with the divisor, the S bus must
be loaded with the most-significant half of the result of the Control/Data Signals
last SDIVI instruction. The least-significant half lies in the User
MQ register. The Y bus result must be loaded back into the Signal | Programmable | Use
register file for use in the subsequent DIVRF instruction. SSF_ | No Indicates whether remainder fix is
Carry-in should be programmed high. required in next instruction.
SDIVIT tests SSF, which holds the pass/fail result of the —_— .
. . Lo, . SI00 | No Inactive
previous instruction’s test subtraction, and evaluates 3107 | No Inactive
veR+S SSPE=0 Q100 | N Link cascaded MQ shifters. Output
R H — [o] INK cascade shitters. Outpu

YR+ S+ Cnif SSF = 1. QI07 | No value of MSP's QIO7 is unfixed
The contents of the MQ register are shifted one bit to the quotient sign (QBT).
left; the unfixed quotient bit is circulated into the least- .

S . b d high
significant bit through QI07-QI00. Cn ves Should be programmed hig
SSFis used to indicate to all slices whether the remainder Status Signals
must be corrected in the subsequent instruction. ZERO = 1ifint diate result = 0
Overflow during this instruction is reported to OVF at the N -0 Hintermediate resutt =
end of the signed division routine (after SDIVQF). OVR =0

Ch+g = 1ifcarry-out
DATA FLOW
S S AR e A A
\r7 6 5 4 3 2 1 0] \7 6 5 a4 3 2 1 4] 7 \7;6 5 4 3 2 1 0 7
5 § 1 1 1 T T T L o 5 % 1 T T T T 1 L oo é ;é T T 1 1 1 T T T oo
g‘g’ ;) 6 s "3 2 o] Ng Eé [7 6 5 YOy o]__ NI §§ ;e s My 2, o.—l_ NZ
Qi07 }Hﬁ #ﬁﬁ i Q100 aio? hﬁ}ﬁﬁﬁﬁﬁ I Q00 Qio7 ?ﬁ#’ﬁ}?} l Q100
\J 6 5 a4 3 2 1 0 / \7 6 5 a 3 2 1 0 / \7 6 5 a4 3 2 1 0 /
T T

2-91

SDIVO Signed Divide Overflow Test

FUNCTION

Tests for overflow during nonrestoring signed division. A
description of nonrestoring signed division and an
algorithm using this instruction are given in section 2.3.1.

DATA FLOW

- C3-CO
REGISTER

A3-A FILE

AIAC - @ —

MQ
REGISTER

L — |

DESCRIPTION

This instruction performs an initial test subtraction of the
divisor from the dividend. If overflow is detected, it is
preserved internally and reported at the end of the divide
routine (after SDIVQF). If overflow status is ignored, the
SDIVO instruction may be omitted.

The divisor must be loaded onto the R bus; the most-
significant half of the previous SDIVIN result must be
loaded onto the S bus. The least-significant half is in the
MQ register. The instruction tests SSF (sign of dividend)
and then evaluates

Y<R+S if SSF = 0
Y<R + S + C,if SSF = 1.

The result on the Y bus should not be stored back into the
register file; WE should be programmed high.

Carry-in should also be programmed high. SSF is used to
preserve the sign bit.

2-92

Available R Bus Source Operands

RF (A3-A0)

A3-A0

Immediate | DA Port|C3-CO Mask

A3-A0

Recommended S Bus Source Operands

RF (B3-B0) [DB Port | MQ Register

Recommended Destination

Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
° None None

Control/Data Signals

n

User
Signal | Programmable | Use
SSF | No Preserves dividend’s sign bit from
previous instruction.
SIO0 | No Inactive
SIO7 | No Inactive
Qlo0 | No Inactive
Ql07 | No Inactive
C Yes Should be programmed high.

Status Signals

ZERO
N
OVR

Ch+8

1 if divisor =
0
0
1 if carry out

0

Signed Divide Quotient Fix

SDIVQF

FUNCTION

Tests the quotient result after nonrestoring signed
division and corrects it if necessary. A description of
nonrestoring signed division and an algorithm using this
instruction are given in section 2.3.1.

DATA FLOW

* (' ¢3co
REGISTER
A:3 A0 >— FILE
—< B3B0

gl
rwx / N\ smux /

ALU " [e}
SHIFTER SHIFTER
MQ.
REGISTER

S —

DESCRIPTION

SDIVQF is the final instruction required to compute the
quotient of a 2N-bit dividend by an N-bit divisor. It corrects
the quotient if the signs of the divisor and dividend are
different and the remainder is nonzero.

SSFis used to signal to all slices that correction is needed.
The fix is implemented by adding SSF to S:

Y<S + 1ifSSF =1
Y« S + 0if SSF = 0.

The R bus must be loaded with the divisor, and the S bus
with the most-significant half of the result of the
preceding DIVRF instruction. The least-significant half is
in the MQ register.

Available R Bus Source Operands

A3-A0
A3-A0 -
RF (A3-A0)| Immediate |DA Port|C3-CO Mask

Recommended S Bus Source Operands

RF (B3-B0) | DB Port [MQ Register
° °

Recommended Destination

Operands Shift Operations
RF (C3-C0) | RF (B3-B0) | Y Port ALU MQ
° . None None
Control/Data Signals
User
Signal | Programmable | Use
SSF | No Indicates whether quotient fix is
required in this instruction; inactive
at end of instruction cycle.
SI00 | No Inactive
SIO7 | No Inactive
Qlo0 | No Inactive
QI07 | No Inactive
Cnh No Inactive

Status Signals

ZERO = 1 if quotient = 0

N = 1 if sign of quotient = 1
= 0 if sign of quotient = 0

OVR = 1 if divide overflow

Ch+g = 1ifcarry-out

2-93

SEL Select S/R

FUNCTION Available R Bus Source Operands
Selects S if SSF is high; otherwise selects R. A3-A0
A3-A0 -
RF (A3-A0)| Immediate |DA Port|C3-CO Mask
° .
DATA FLOW

Available S Bus Source Operands

A

A RF (B3-B0) | DB Port | MQ Register
), C3-CO . . .

ASAD REGISTER
:> FILE _< B3-BO Available Destination Operands

Shift Operations

DA 5B RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
(] [J None None
4 Control/Data Signals
R MUX S MUX User
l Signal | Programmable | Use __ .
SSF | Yes Selects S if high, R if low.
SIO0 | No Inactive
SIO7 | No Inactive
c s Qloo | No Inactive
n QlO07 | No Inactive
Ch Yes Increments R if programmed high.
SSF ALU SHIFTER Status Signals
MQ ZERO = 1ifresult =0
REGISTER gVR = gif MSB = 1
L Chyg =0

DESCRIPTION

Data on the S bus is passed to Y if SSF is programmed
high orfloating; data onthe R busis passed withcarrytoY
if SSF is programmed low.

2-94 /

Select S/R

SEL

EXAMPLE (assumes a 24-bit cascaded system)

Compare the two's complement numbers in registers 1 and 3 and store the larger in register 5.
1) Subtract (SUBS) data in register 3 from data in register 1 and pass the result to the Y bus.

2) Perform Select S/R instruction and pass result to register 5.

(This example assumes that SSF is set by the negative status (N) from the previous instruction).

Instruction Operand Operand Operand Destination Destination
Code Address Address . Select Address Select Carry-in
17-10 A3-A0 B3-BO EA EB1-EBO C3-Co WE SELY OEY Cn
1111 0011 0001 0011 0 00 XXXX 1 X X 1
0001 0000 0001 0011 0 00 0101 0 0 1 0
Assume register file 1 holds 0084D0+g and register file 3 holds 01C35046.
Most Next Most Least
Significant Significant Significant
Package Package Package
Byte 2 Byte 1 Byte 0
(selected) (selected) (not selected)
Instruction
Cycle 1:
Source 0000 0000 1000 0100 1101 0000 R < RF(1)
Source 0000 0001 1100 0011 0101 0000 S < RF(3)
Destination 1111 1110 1100 0001 1000 0000 Y Bus<R +§+Cn
1 N1
Instruction
Cycle 2:
Source 0000 0000 1000 0100 1101 0000 R < RF(1)
1 SSF«1
Source 0000 0001 1100 0011 0101 0000 S < RF(3)
Destination 0000 0001 1100 0011 0101 0000 RF(5) «S

2-95

SETO Reset Bit

FUNCTION

Resets bits in selected bytes of S-bus data using mask in
C3-C0::A3-A0.

DATA FLOW
- L\ A
A3-A0 ‘/8 (‘
& REGISTER
o
50—t FILE C3.C0
» | —d- .
g i
b -
o SOURCE/
DESTINATION B3-BO
< x,
N\ PN
R _V s [}
R AND S i

SIoo—x\ ALU SHIFTER

DESCRIPTION

The register addressed by B3-B0 is both the source and
destination for this instruction. The source word is passed
on the S bus to the ALU, where it is compared to an 8-bit
mask, consisting of a concatenation of the C3-C0 and A3-
A0 address ports (C3-C0::A3-A0). The mask is input via
the R bus. All bits in the source word that are in the same
bit position as ones in the mask are reset. Slices with SIO0
programmed low perform the Reset Bit instruction. Slices
with SIO0 programmed high or floating pass S unaltered.

2-96

Available R Bus Source Operands

A3-A0

RF (A3-A0)| Immediate |DA Port|C3-CO Mask

A3-A0

Available S Bus Source Operands

RF (B3-B0)| DB Port | MQ Register

°
Available Destination Operands Shift Operations
RF (C3-C0)| RF (B3-B0) | Y Port ALU MQ
° ° None None
Control/Data Signals
User
Signal | Programmable | Use
SSF_ | No Inactive
SIO0 | No Byte-select
SI07 | No Inactive
QI00 | No Inactive
QI07 | No Inactive
Cnh No Inactive
Status Signals
ZERO = 1 if result (selected bytes) = 0
N =0
OVR =0
Chig =0

Reset Bit

SETO

EXAMPLE (assumes a 24-bit cascaded system)

Set bits 3-0 of bytes 1 and 2 of register file 8 to zero and store the result back in register 8.

Operand and
Instruction Mask Destination Mask Operand Byte Destination
Code (LSH) Address (MSH) . Select Select Select Carry-in
17-10 A3-A0 B3-B0O C3-Co EA EB1-EBO SI00 WE SELY OEY Cn
1001 1000 111 1000 0000 X 00 001 0 0 1 X
Assume register file 8 holds 83BEBEg.
Most Next Most Least
Significant Significant Significant
Package Package Package
Byte 2 Byte 1 Byte 0
(selected) (selected) (not selected)
Mask 0000 1111 0000 1111 0000 1111 Rj <~ C3-C0::A3-A0
Source 1000 0011 1011 1110 1011 1110 Sp < RF(3),
ALU 1000 0000 1011 0000 1011 0000 Fn,< S, AND R,
Destination 1000 0000 1011 0000 1011 1110 RF(8),, < F, or Syt

t F = ALU result
n = nth package

Register file 8 gets F if byte selected, S if byte not selected.

2-97

SET1

Set Bit

FUNCTION

Sets bits in selected bytes of S-bus data using mask in

C3-C0::A3-A0.

DATA FLOW

N

25\
A3 AOj/

N

OV-€V :: 03-€J

REGISTER

Available R Bus Source Operands

A3-A0
A3-A0 N
RF (A3-A0)| Immediate |DA Port|C3-C0O Mask
.

Available S Bus Source Operands

RF (B3-B0)

DB Port

MQ Register

Available Destination Operands

Shift Operations

C3-Co

SOURCE/
DESTINATION

e

9%

SHIFTER

DESCRIPTION

The register addresse<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>