
-:'!ITEXAS
INSTRUMENTS

TMS370 Family
Assembly Language Tools

1987 8·Bit Microcontrol/er Family
~--=============================

TNlS370 Family
Assembly Language Tools

User's Guide

~
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the devices or the
device specifications identified in this publication without notice. TI advises
its customers to obtain the latest version of device specifications to verify,
before placing orders, that the information being relied upon by the customer
is current.

In the absence of written agreement to the contrary, TI assumes no liability for
TI applications assistance, customer's product design, or infringement of pat
ents or copyrights of third parties by or arising from use of semiconductor
devices described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, or other
intellectual property right of TI covering or relating to any combination, ma
chine, or process in which such semiconductor devices might be or are used.

Copyright © 1987, Texas Instruments Incorporated

Contents

Section

1
1.1
1.2
1.3
1.4
1.5

2

3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.3.1
3.3.2

4
4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.4
4.5
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.7
4.8
4.9

Introduction
Software Development Tools Overview
Getting Started
Manual Organization
Related Documentation
Style and Symbol Conventions

Software Installation

Introduction to Common Object File Format
Sections
How the Assembler Handles Sections .

Uninitialized Sections
Initialized Sections .. :
Section Program Counters
An Example That Uses Sections Directives

How the Linker Handles Sections
Default Memory Allocation
Placing Sections in the Memory Map

Assembler Description
Invoking the Assembler .
Source Statement Format

Label Field
Mnemonic Field
Operand Field
Comment Field
Local Labels

Constants
Binary Integers
Octal Integers
Decimal Integers
Hexadecimal Integers
Characters
Assembly-Time Constants

Character Strings
Symbols
Expressions

Parentheses in Expressions
Operators
Expression Overflow or Underflow
Relocatable Symbols and Legal Expressions
Well-Defined Expressions
Conditional Expressions
Examples of Expressions

Addressing Modes
Source Listings
Cross- Reference Listings

Page

1-1
1-2
1-4
1-5
1-6
1-7

2-1

3-1
3-2
3-3
3-3
3-4
3-4
3-5
3-7
3-7
3-8

4-1
4-3
4-4
4-4
4-5
4-5
4-7
4-7
4-8
4-8
4-8
4-9
4-9
4-9
4-10
4-11
4-11
4-12
4-12
4-13
4-13
4-14
4-15
4-15
4-15
4-17
4-18
4-20

iii

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6

7
7.1
7.2
7.3
7.4
7.4.1
7.4.2
7.5
7.6
7.7

8
8.1
8.2

Assembler Directives
Directives Summary
Sections Directives
Directives that Initialize Constants
Directives that Define Symbols ..
Directives that Format the Output Listing
Conditional Assembly Directives
Directives that Reference Other Files
Directives Reference

TMS370 Instruction Set Summary

Macro Language
Macro Directives Summary
Macro Libraries
Defining Macros
Macro Variables

Variable Values
Qualifying Variables

Manipulating Strings
Conditional Blocks
Repeatable Blocks

Archiver Description
Invoking the Archiver
Archiver Examples

5-1
5-2
5-4
5-6
5-8
5-9
5-10
5-11
5-12

6-1

7-1
7-2
7-3
7-4
7-6
7-6
7-7
7-15
7-16
7-17

8-1
8-3
8-4

9 Linker Description 9-1
9.1 Invoking the Linker 9-3
9.2 Linker Options 9-4
9.2.1 Relocation Capability (-a and -r Options) 9-4
9.2.2 Defining an Entry Point (-e <global symbol> Option) 9-6
9.2.3 Set Default Fill Value (-f <cc> Option) 9-6
9.2.4 Make All Global Symbols Static (-H Option) 9-6
9.2.5 Specify a Directory and an Archive Library (-L <dir>, -I<filename>

Options) '............. 9-7
9.2.6 Create a Map File (-m <filename> Option) 9-7
9.2.7 Naming an Output Module (-0 <filename> Option) 9-8
9.2.8 Stripping Symbolic Information (-s Option) 9-8
9.2.9 Specifying a Silent Run (-S Option) 9-8
9.2.10 Introduce an Unresolved Symbol (-u <symbol> Option) 9-8
9.3 Linker Command Files 9-9
9.3.1 Command File Format 9-9
9.3.2 Names Reserved for the Linker 9-10
9.4 Archive Libraries 9-11
9.5 The MEMORY Directive 9-12
9.5.1 Default Memory Model 9-12
9.5.2 M EMORY Directive Syntax .. . 9-12
9.5.3 Checking the Results of the MEMORY Directive 9-14
9.6 The SECTIONS Directive 9-15
9.6.1 Default Sections Configuration 9-15
9.6.2 SECTIONS Directive Syntax 9-15
9.6.3 Specifying Input Sections 9-17

iv

9.6.4 Specifying the Address of Output Sections (Allocation)
9.6.5 Grouping Output Sections Together
9.6.6 Checking the Results of the SECTIONS Directive
9.7 Overlay Pages
9.7.1 Using the MEMORY Directive to Define Overlay Pages
9.7.2 Using Overlay Pages with the SECTIONS Directive
9.7.3 Syntax of Page Definitions
9.8 Default Allocation Algorithm and Special Section Types
9.8.1 Default Allocation Algorithm
9.8.2 General Rules for Output Sections
9.8.3 DSECT, COPY, and NOLOAD Sections
9.9 Assigning Symbols at Link Time
9.9.1 Syntax of Assignment Statements
9.9.2 Assigning the PC to a Symbol
9.9.3 Assignment Expressions
9.9.4 Symbols Defined by the Linker .
9.10 Creating and Filling Holes
9.10.1 Initialized and Uninitialized Sections
9.10.2 Creating Holes
9.10.3 Filling Holes
9.10.4 Explicit Initialization of .bss Sections
9.10.5 Examples of Using Initialized Holes
9.11 Partial (Incremental) Linking
9.12 Linker Example

10 Absolute Lister Description
10.1 Producing an Absolute Listing
10.2 Invoking the Absolute Lister
10.3 Absolute Lister Examples ...

11 Code Conversion Utility Description
11.1 Invoking the Code Conversion Utility
11.2 Code Conversion Utility Examples

A
8
C
o
E

Common Object File Format
Assembler Error Messages
Linker Error Messages
ASCII Character Set
Glossary

9-17
9-19
9-20
9-21
9-21
9-22
9-23
9-24
9-24
9-25
9-26
9-27
9-27
9-27
9-28
9-29
9-30
9-30
9-30
9-32
9-33
9-33
9-35
9-36

10-1
10-2
10-3
10-4

11-1
11~3

11-4

A-1
8-1
C-1
0-1
E-1

v

Illustrations

Figure

1 -1 .
3-1.
3-2.
3-3.
4-1,
4-2,
4-3.
5-1.
5-2.
5-3.
5-4.
8-1.
9-1.
9-2.
9-3.
9-4.
9-5.
10-1.
11 -1 .
A-1.
A-2.
A-3.
A-4.
A-5.
A-6.
A-7.
A-8.
A-9.

Table

TMS370 Assembly Language Development Flow ','
Partitioning Memory into Logical Blocks ": '
Using Sections Directives ,
Combining Input Sections to Form an Executable Object Module
Assembler Development Flow : ,
Sample Assembler Listing
Cross- Reference Listing Format
Sections Directives ,
An Example of the .block Directive '
Examples of Initialization Directives
Examples of the .reg and .regpair Directives
Archiver Development Flow ,
Linker Development Flow
Overlay Page Example .. .
Initialized Hole
Linker Command File, demo.cmd
Output Map File, demo.map
Absolute Lister Development Flow
Code Conversion Utility Development Flow
COFF File Structure .. .
Sample COFF Object File
An Example of Section Header Pointers for the .text Section
Line Number Blocks
Line Number Entries Example
Symbol Table Contents
Symbols for Blocks .. .
Symbols for Functions
Sample String Table

Tables

Page

1-2
3-2
3-6
3-7
4-2
4-19
4-20
5-5
5-6
5-7
5-32
8-2
9-2
9-22
9-33
9-37
9-38
10-2
11-2
A-2
A-3
A-7
A-9
A-10
A-11
A-13
A-13
A-14

Page

1 -1. Symbol and Abbreviation Definitions .. 1-7
4-1 . Operators ... 4-13
4-2. Expressions with Absolute and Relocatable Symbols 4-14
4-3. Addressing Modes .. 4-17
5-1. Directives Summary ... 5-2
6-1. Symbols and Abbreviations Used in the Instruction Set Summary 6-1
7-1. Macro Components .. 7-8
7-2. Symbol Components .. 7-10
7-3. Keywords .. 7-13
9-1 . Linker Options Summary 9-4
9-2. Operators in Assignment Expressions , 9-29
A-1. File Header Contents .. A-4

vi

A-2.
A3.
A-4.
A-5.
A-6.
A-7.
A-B.
A-9.
A-10.
A-11.
A-12.
A-13.
A-14.
A-15.
A-16.
A-17.
A-1B.
A-19.
A-20.
A-2·1.
A-22.
A-23.
A-24.
A-25.
A-26.

File Header Flags (Bytes 18 and 19)
Optional File Header Contents
Section Header Contents
Section Header Flags (Bytes 36 and 37)
Relocation Entry Contents
Relocation Types (Bytes 8 and 9)
Line Number Entry Format
Symbol Table Entry Contents
Special Symbols in the Symbol Table
Symbol Storage Classes
Special Symbols and Their Storage Classes
Symbol Values and Storage Classes
Section Numbers .. .
Basic Types .. .
Derived Types .. .
Auxiliary Symbol Table Entries Format
Section Format for Auxiliary Table Entries
Section Format for Auxiliary Table Entries
Tag Name Format for Auxiliary Table Entries
End of Structure Format for Auxiliary Table Entries
Function Format for Auxiliary Table Entries
Array Format for Auxiliary Table Entries
End of Blocks and Functions Format for Auxiliary Table Entries
Beginning of Blocks and Functions Format for Auxiliary Table Entries
Structure, Union, and Enumeration Names Format for Auxiliary Table Entries

A-4
A-5
A-6
A-6
A-8
A-8
A-9
A-12
A-12
A-15
A-16
A-16
A-17
A-18
A-18
A-19
A-19
A-20
A-20
A-20
A-21
A-21
A-21
A-22
A-22

vii

viii

1. Introduction

The TMS370 devices are well supported by a full set of hardware and software
development tools. This document discusses the software development tools
that are included with the TMS370 assembly language package:

• Assembler
• Archiver

• Linker
• Code Conversion Utility

These tools can be installed on the either of the following PC systems:

• IBM-PC with PC-DOS
• TI-PC with MS-DOS

The TMS370 assembly language tools create and use object files that are in
common object file format, or COFF. COFF object format encourages and
facilitates modular programming. Object files contain separate blocks (called
sections) of code and data that you can load into different TMS370 memory
spaces. You will be able to program the TMS370 more efficiently if you have
a basic understanding of COFF; Section 3, Introduction to Common Object
File Format, discusses this object format in detail.

Topics covered in this introductory section include:

Section Page
1.1 Software Development Tools Overview ... 1-2
1.2 Getting Started , ... 1 -4
1.3 Manual Organization .. 1 -5
1.4 Related Documentation .. 1 -6
1.5 Style and Symbol Conventions ... 1 -7

1-1

Introduction - Software Development Tools Overview

1.1 Software Development Tools Overview

1-2

Figure 1-1 shows the TMS370 assembly language development flow. The
center section of the illustration highlights the most common path; the other
portions are optional.

Macro
Source
Flies

Figure 1-1. TMS370 Assembly language Development Flow

Introduction - Software Development Tools Overview

• The assembler translates assembly language source files into machine
language object files. Source files can contain instructions (discussed
in the TMS370 Family User's Guide), assembler directives (discussed in
Section 4), and macro directives (discussed in Section 7). Assembler
directives control various aspects of the assembly process, such as the
source listing format, symbol definition, and how the source code is
placed into sections.

• The archiver allows you to collect a group of files into a single archive
library. For example, you could collect several macros together into a
macro library. The assembler can search through the library and use the
members that are called as macros by a source file. You can also use the
archiver to collect a group of object files into an object library. The linker
will include the library members that resolve external references during
the link.

• The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF object files
(created by the assembler) as input. It can also accept archive library
members and output modules created by a previous linker run. Linker
directives allow you to combine object file sections, bind sections or
symbols to specific addresses or within specific portions of TMS370
memory, and define or redefine global symbols.

• The main purpose of this development process is to produce a module
that can be executed in a system that contains a TMS370 device. You
can use one of several debugging tools to refine and correct your code
before downloading it to a TMS370 system.

The XDS/22 emulator with symbolic debugger is a realtime,
in-circuit emulator with a screen-oriented interface. It provides
symbolic debugging. The debugger is not shipped as part of the
TMS370 Assembly Language Package.

The absolute lister provides a listing of the absolute addresses
of an object file.

• Most EPROM programmers do not accept COFF object files as input.
The code conversion utility converts a COFF object file into Intel hex
object format. The converted file can be downloaded to an EPROM
programmer.

1-3

Introduction - Getting Started

1.2 Getting Started

1-4

The tools you will probably use most often are the assembler and the linker.
This section provides a quick walkthrough so that you can get started without
reading the entire user's guide. These examples show the most common
methods for invoking the assembler and linker.

1) First, create two short source files to use for the walkthrough; call them
f ile1. asm and f ile2. asm.

file1.asm file2.asm
.global incqw .global incqw

start clr r20 incqw incw #1,r23
clr r21 jnc skp
clr r22 incw #1,r21
clr r23 skp rts

loop call incqw ; loop .end
jnc loop
.end

2) Assemble f ile1. asm. Enter: asm370 f i1e1

This example creates an object file called f ilel. obj. The assembler al
ways creates an object file. You can specify a name for the object file,
but if you don't, the assembler will use the input filename appended to
the .obj extension. NoticE: that you didn't specify an extension for
f ilel. The assembler assumes that the input file has an extension of
.asm.

Now assemble f ile2. asm. Enter: asm370 f ile2 -1

This time, the assembler creates an object file called f ile2. obj. The-I
option told the assembler to create a listing file; the listing file for this
example is called file2 .lst.

3) Link f ilel. obj and f ile2. obj. Enter: 1nk370 fi1el fi1e2

The linker assumes that file1 and file2 have an extension of .obj. The
linker combines these two files to create an executable object module
with a default name of a. out.

You can find more information about invoking the tools in the following sec
tions:

Section Page
4.1 Invoking the Assembler .. 4-3
8.1 Invoking the Archiver ... 8-3
9.1 Invoking the Linker ... 9-3

10.1 Producing an Absolute Listing ... 10-2
11.1 Invoking the Code Conversion Utility .. 11 -3

Introduction - Manual Organization

1.3 Manual Organization

This document contains the following sections; it also contains several ap
pendices, an index, and a reference card.

Section 1 Introduction
This section provides an overview of the assembly language tools and the as
sembly language development process, provides quick examples for invoking
the assembly language tools, lists related documentation, and explains the
style and symbol conventions used throughout the document.

Section 2 Software Installation
This section contains instructions for installing the assembly language tools
on IBM-PC/PC-DOS and TI-PC/MS-DOS and systems.

Section 3 Introduction to Common Object File Format
Read Section 3 before using the assembler and linker. Common object file
format, or COFF, is the object file format that the TMS370 assembly language
tools use. This section discusses the basic COFF concept of sections and
how they can help you to use the assembler and linker more efficiently. (Ap
pendix A contains specific information about COFF object file structure; its
main purpose is to provide you with information about symbolic debugging.)

Section 4 Assembler Description
This section tells you how to invoke the assembler, and then discusses source
statement format, valid constants and expressions, and assembler output.

Section 5 Assembler Directives
This section is divided into two parts. The directives can be easily categorized
by function, and the first part of this section describes the directives according
to function. The second part of this section is a reference that presents the
directives in alphabetical order.

Section 6 Instruction Set Summary
This section summarizes the TMS370 instruction set.

Section 7 Macro Language
This section tells you how to create and use macros.

Section 8 Archiver Description
This section tells you how to invoke the archiver to create archive libraries.

Section 9 Linker Description
This section tells you how to invoke the linker, provides details of linker oper
ation, discusses linker directives, and presents a detailed linking example.

Section 10 Absolute Lister Description
This section tells you how to invoke the absolute lister so that you can obtain
a listing of the absolute addresses of an object file.

Section 11 Code Conversion Utility Description
This section tells you how to invoke the code conversion utility so that you
can convert a COFF object file into an Intel hex object file format.

1-5

Introduction - Related Documentation

1.4 Related Documentation

1-6

The following TMS370 documents are also available.

• The TMS370 Family User's Guide discusses hardware aspects of the
TMS370, such as pin functions, architecture, stack operation, and inter
faces, and contains the TMS370 instruction set. (If you received this
User's Guide with the TMS370 Assembly Language Tools package, you
should also have received a copy of the TMS370 User's Guide).

• The TMS370C050/TMS370C850 Data Sheet and the
TMS370C010/TMS370C810 Data Sheet contain the recommended
operating conditions, electrical specifications, and timing characteristics
for the following devices:

TMS370C050
TMS370C850
TMS370C010
TMS370C0810

• The TMS370 Family EEPROM Programmer User's Guide de
scribes the installation and operation of the EEPROM programmer,

• The TMS370 Family XDS Debugger User's Guide describes in
stallation and operation of the TMS370 XDS/22 emulator. The XDS
emulator provides symbolic debugging and a screen-oriented interface.

Introduction - Style and Symbol Conventions

1.5 Style and Symbol Conventions

Symbol

R0-R255

A

PC

LSB

H,h

Q,q

{ }

<text>

In this user's guide, interactive displays and programming examples are shown
in a special font. Table 1 -1 contains other style and symbol conventions
that are used throughout this document.

Table 1-1. Symbol and Abbreviation Definitions

Definition Symbol Definition

Extended registers 0 through 255 PO-P255 Peripheral registers 0 through 255

Accumulator A B Accumulator B

Program counter register SP Stack pointer register

Least significant bit MSB Most significant bit

Suffix - Hexadecimal number B,b Suffix - Binary integer

Suffix - Octal integer

List of parameters [] Optional parameter

Indicates a "fill in the blank" - replace the text enclosed in brackets with an appro-
priate substitute. For example, substitute an actual label for <label>; substitute an
actual destination expression for <expression>.

1-7

Introduction

1-8

2. Software Installation

This section contains step-by-step instructions for installing the TMS370 as
sembly language tools package. This package can be installed on the IBM
PC (running PC- DOS1) and the TI PC (running MS- DOS)2. Section 1.5
(page 1 -7) lists style and symbol conventions that are used in this section.

The TMS370 software package is shipped on one double-sided, dual-density
diskette. The tools execute in batch mode. At least 512K bytes of memory
space must be available in your system.

These instructions are for both hard disk systems and dual floppy drive sys
tems. On a dual-drive system, the PC/MS-DOS system diskette should be in
drive B. The instructions use these symbols for drive names:

A: Floppy disk drive for hard disk systems or source drive for dual-drive
systems.

B: Destination or system disk drive for dual-drive systems.
C: Winchester (hard disk) for hard disk systems. (E: on TI PCs.)

1) Make backups of the product diskettes. First format a blank diskette.
Insert a blank (destination) diskette in drive A. Enter:

FORMAT A: <CR>

When PC/MS-DOS prompts: FORMAT ANOTHER (YIN)?, respond with
N. Now copy the disks.

On hard disk systems, enter:

DISKCOPY A: A: <CR>

Follow the system prompts, removing and inserting the product and
blank diskettes as directed. When PC/MS- DOS prompts: COPY AN
OTHER (YIN)?, respond with N.

On dual-drive systems, place a product diskette in drive A: and a blank,
formatted diskette in drive A. Enter:

COPY A:*.* B:*.* <CR>

2) Create a directory to contain the TMS370 software.

On hard disk systems, enter: MD C: \3 70TOOLS <CR>

On dual-drive systems, enter: MD B: \370TOOLS <CR>

3) Copy the TMS370 tools onto the hard disk or the system disk.

On hard disk systems, enter: COPY A: \ * • * C: \3 70TOOLS\ *. * <CR>

On dual-drive systems, enter: COPY A: \ *. * B: \3 70TOOLS\ *. * <CR>

PC- DOS is a trademark of International Business Machines.

2 MS is a trademark of Microsoft Corporation.

2-1

Software Installation

2-2

3. Introduction to Common Object File Format

The assembler and linker create object files that can be executed by a TMS370
device. The format that these object files are in is called common object file
format, or COFF.

GOFF object format encourages and facilitates modular programming. When
you write a TMS370 assembly language program, you should think in terms
of blocks of code and data. These blocks are known as sections.

This chapter provides an overview of GOFF sections and includes the follow
ing topics:

Section Page
3.1 Sections .. 3-2
3.2 How the Assembler Handles Sections ... 3-3
3.3 How the Linker Handles Sections .. 3-7

Appendix A contains more advanced information about GOFF. It discusses
details about the actual object file structure, such as the fields in a file header
and the structure of a symbol table entry. Appendix A is mainly useful for
those of you who are interested in symbolic debugging.

3-1

Common Object File Format - Sections

3.1 Sections

3-2

The smallest relocatable unit of an object file is called a section. A section
is a relocatable block of code or data which will (ultimately) occupy contig
uous space in the TMS370 memory map. Each section of an object file is se
parate and distinct from the other sections. COFF object files always contain
four default sections:

.reg

.bss

.data

.text

Contains uninitialized space in the register file
Contains un initialized data
Contains initialized data variables
Contains executable code

In addition, the assembler and linker allow you' to create, name, and link
named sections that can be used similarly to the .data and .text sections.

It is important to note that there are two basic types of sections:

• Initialized sections contain data or code; the .text, .data, and named
sections are initialized.

• Uninitialized sections reserve space in the memory map for uninitial-
ized data; the .bss and .reg sections are uninitialized.

The assembler provides several directives that allow you to associate various
portions of code and data with the appropriate sections. The assembler builds
these sections during the assembly process, creating an object file that is or
ganized similarly to the object file shown in Figure 3-1.

One of the linker's functions is to place sections into the target memory map
(this is called allocation). Since most systems contain several different types
of memory, using sections can help you to use target memory more efficiently.
All sections are independently relocatable; you can place different sections
into various blocks of the target memory map. For example, you could define
a section that contains an initialization routine, and then use the linker to al
locate the routine to the portion of the mert:lory map that contains ROM.

Figure 3-1 shows the relationship between sections in an object file and a
hypothetical target memory.

Object File Target Memory

Figure 3-1. Partitioning Memory into Logical Blocks

Introduction to COFF - How the Assembler Handles Sections

3.2 How the Assembler Handles Sections
The assembler's main function in regard to sections is to identify the portions
of an assembly language program that belong in a particular section. The as
sembler has six directives that support this function:

• The .bss directive reserves a defined amount of space in uninitialized
RAM that can be used for storing data.

• The .reg and .regpair directives reserve a block of memory for relocat
able registers in the register file.

• The .text directive identifies the source statements that follows it as
executable code. The statements following a .text directive are assem
bled into the .text default section.

• The .data directive identifies the source statements that follows it as
initializable data. The statements following a .data directive are assem
bled into the .data default section.

• The .sect directive defines a named section, and identifies the source
statements that follow it as belonging to that named section. The
statements following a .sect directive are assembled into the appropriate
named section.

The .bss, .reg, and .regpair directives create uninitialized sections; the .text,
.data, and .sect directives create initialized sections. Section 3.2.1 and Section
3.2.2 discuss some of the details about these directives. Section 3.2.4 shows
an example of using the sections directives.

Note:

If you don't use any of the sections directives, the assembler will assemble
all code into the .text section.

3.2.1 Uninitialized Sections

Uninitialized sections reserve space. in the TMS370 memory map for creating
and storing uninitialized variables. These sections have no contents; they
simply reserve memory. Although these sections do not increase the size of
the object file, they do increase the amount of memory needed to run a pro
gram.

The TMS370 assembly language tools support two types of uninitialized sec
tions:

• The .bss section, which is built by using the .bss directive. The .bss
section reserves memory space for uninitialized data. It is referenced by
a 16-bit address, because the .bss section can be relocated anywhere in
the address space.

• The .reg section, which is built by using the .reg or .regpair directives.
The .reg section reserves memory space for relocatable registers. It is
referenced by an 8-bit address, and is always relocated in the first 256
bytes of memory (the register file).

3-3

Introduction to COFF - How the Assembler Handles Sections

The final .bss or .reg section that the assembler creates may consist of any
number of individually allocated data areas.

The syntax for these directives is:

.bss <symbol>,<size>

.reg (symbol>,<size>

.regpair <symbol>,<size>

The symbol points to the first byte reserved by the .bss or .reg directive; it
points to the last byte reserved by the .regpair directive. The symbol can be
referenced by any other section and can also be declared external (by the
.global or .globreg assembler directives}. A symbol that is declared with a .reg
or .regpair directive is called a relocatable-register symbol; you can use it like
any other register symbol (r1, r2, etc.), but the linker will determine its address
within the register file.

The size parameter is an absolute expression. The .bss directive reserves size
bytes in the .bss section; the .reg and .regpair directive reserve size bytes in
the .reg section.

3.2.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents
of these sections are stored in the object file and placed in the TMS370 me
mory map when the program is loaded. Each initialized section is separately
relocatable and may contain symbolic references to objects defined in any
other section. The linker automatically resolves these section-relative refer
ences.

There are three directives that tell the assembler to place code or data into a
section: .text., .data, and .sect. When the assembler encounters one of these
directives, it will stop assembling into the current section (acting as an implied
fIend current section" instruction). It will then assemble subsequent code into
the respective section until it encounters another .text, .data, or .sect directive.

The .sect directive allows you to create a new, named section that can be used
like the default .text and .data sections. You can use the .sect directive to
create up to 32,767 separate sections. (The name can only be 8 characters
long.)

3.2.3 Section Program Counters

3-4

The assembler maintains a separate program counter for each section. These
program counters are known as section program counters, or spes.
An SPC represents the current address within a section of code or data. Ini
tially, the assembler sets each SPC to O. As the assembler fills a section with
code and data, it increments the appropriate SPC. If you resume assembling
code into a section, the assembler will remember the appropriate SPC's pre
vious value and continue incrementing at that point.

When assembled, each section begins at address 0; the linker will relocate
sections according to their locations in the memory map.

Introduction to COFF - How the Assembler Handles Sections

3.2.4 An Example That Uses Sections Directives

Figure 3-2 (page 3-6) contains an example that shows how you can build
COFF sections incrementally, swapping back and forth between the different
sections. You can use sections directives:

• To begin assembling code into a section for the first time,

or

• To continue assembling into a section that already contains code. In this
case, the assembler simply appends the new code to the code that is
already in the section.

The format of this example is a list file. By using a list file, this example shows
how these counters are modified during assembly. A line in a list file has four
fields:

1) The first field contains the SPC value.

2) The second field contains the object code.

3) The third field contains the line counter.

4) The fourth field contains the original sourcestatement.

Note that a .bss, .reg, or .regpair directive can appear anywhere in an initialized
section without affecting the contents of the initialized section. Initialized
section directives end the current section and begin a new section. The .bss,
.reg, and .regpair directives do not end the current section and begin a new
one; they simply "escape" from-the current section temporarily.

3-5

Introduction to COFF - How the Assembler Handles Sections

0000
0000
0000
0000
0000 0102
0002 0304
0004
0004
0004
0004
0004
0000 070809
0003
0003
0003
0003
0003
0003
0000 OBOC
0002
0002
0002
0002
0002
0004 05
0000
0005 06
0006
0006
0006
0006
0006
0003 OA
0000
0004 OB
0005
0005
0005
0005
0005
0002 ODOE

3-6

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

.*** ;* Start assembling into the .text section *

.***
, .text

.byte 1,2

.byte 3,4

.*** ;* Start assemblinq into the .data section *

.***
, .data

.byte 7,8,9

.*** ;* Define a section named var_defs and begin *
;* assembling code into it *
;***

.sect "var-defs"

.byte 11,12

.*** ;* Continue assembling into .text *

.***
, .text

.byte 5

.bss sym,12 ; Reserve 12 bytes in .bss

.byte 6 ; Still in .text

.*** ;* Continue assembling into .data *

.***
, .data

.byte 10

.reg RRl,8 ; Reserve 8 bytes in .reg

.byte 11 ; Still in .data

.*** ;* Continue assembling into var-defs *

.***
, .sect "var-defs"

.byte 13,14

Figure 3-2. Using Sections Directives

After assembly, the sections will contain the following:

.text Contains bytes 1, 2, 3, 4, 5, and 6

.data Contains bytes 7, 8, 9, 10, and 11
var-defs Contains bytes 11, 12, 13, and 14
.bss Reserves 10 bytes for uninitialized data
.reg Reserves 8 bytes for relocatable register data

Introduction to COFF - How the Linker Handles Sections

3.3 How the Linker Handles Sections

The linker uses the sections in COFF object files as building blocks to create
output sections in an executable COFF output module. The linker can then
place the output sections into specified portions of the target memory. Usu
ally, the linker simply combines all input sections that have the same name into
one output section that has this same name. (For example, the linker would
combine the two .text sections from two input files to create one .text section
in the executable object module.)

3.3.1 Default Memory Allocation

Figure 3-3 shows a simple example of how two files might be linked together.

file1.o
Executable

Ob ect Module

flle1
Creg)

02h
Memo

Programmable
registers

treg)

100h 1111111 1FOOh

2000h
7000h

BOOOh

Figure 3-3. Combining Input Sections to Form an Executable Object Module

3-7

Introduction to COFF - How the Linker Handles Sections

In Figure 3-3, filel. obj and file2. obj are files that have been assembled
and are going to be used as linker input. . They each contain the .text, .data,
and .bss default sections; in addition, each contains a named section. The
executable output module shows the combined sections. The linker combines
f ilel .text with f ile2 .text to form one .text section, then combines the
.data sections, then the .bss sections, and finally places the named sections
at the end. The memory map shows how the sections are put into memory;
by default, the linker will begin at address 02h (after registers A and B) and
place the sections one after the other as shown.

3.3.2 Placing Sections in the Memory Map

3-8

Figure 3-3 (page 3-7) illustrates the linker's default methods for combining
sections. Sometimes you may not want to use the default setup. For example,
you may not want all of the .text sections to be combined into a single .text
section. Or, you might want a named section placed where the .data section
would normally be allocated. Most memory maps are comprised of various
types of memories (RAM, ROM, EPROM, etc.) in varying amounts; you may
want to place a section in a particular type of memory.

The linker provides two directives that support these functions:

• The M EMORY directive allows you to define the memory map for your
particular system.

• The SECTIONS directive lets you build sections and place them into
memory.

4. Assembler Description

The TMS370 assembler translates assembly language source files into ma
chine language object files. These object files are in common object file for
mat (COFF), discussed in Section 3. Figure 4-1 (page 4-2) illustrates the
assembler's role in the overall assembly language development flow. Source
files can contain these assembly language elements:

• Assembly language instructions (summarized in Section 6),
• Assembler directives (described in Section 5), and
• Macro directives (described in Section 7).

The assembler is a one-pass assembler. It performs the following operations
as it processes the source statements in a text file to produce an object code
file and an optional listing file:

• Reads the source file.
• Calculates the values of labels and symbols.
• Builds the symbol table.
• Maintains a section program counter (SPC) for each section of object

code generated. The SPC defines the virtual program memory addresses
assigned to the associated object code. The assembler uses the SPC
while it builds the symbol table.

• Prints error messages for invalid source lines.
• Generates the object file.
• Generates an optional listing file and an optional cross-reference file (if

requested).

Topics in this section include:

Section Page
4.1 Invoking the Assembler .. 4-3
4.2 Source Statement Format .. 4-4
4.3 Constants ... 4-8
4.4 Character Strings .. 4-11
4.5 Symbols ... 4-11
4.6 Expressions .. 4-12
4.7 Addressing Modes .. 4-17
4.8 Source Listings ... 4-18
4.9 Cross-Reference Listings ... 4-20

4-1

Assembler Description - Invoking the Assembler

Library of
Object
Flies

Figure 4-1. Assembler Development Flow

4-2

Assembler Description - Invoking the Assembler

4.1 Invoking the Assembler

To invoke the assembler, enter:

asm370 <input file> [<object file> [<listing file>]] [-<options>]

input file is the name of the assembler source file. If you do not supply
an extension, the assembler assumes that the input file has the
default extension .8sm. If you do not supply an input filename
when you invoke the assembler, the assembler will prompt you
for one.

object file is the name of the object file that the assembler creates. If you
do not supply an extension, the assembler will use .obj as a
default extension. If you do not supply an object file, the as
sembler will create a file that uses the input file name with the
.obj extension ..

listing file is the name of the listing file that the assembler creates. If you
do not supply an extension, the assembler will use .Ist as a de
fault extension. If you do not supply a name for a listing file, the
assembler will not create one, unless you use the -I option. In
this case, the assembler will use the input file name with the .1st
extension.

options indicate which assembler options you are using. Case is insig
nificant for assembler options. Options may appear anywhere
on the command line; precede each option with a hyphen (-).
You can string the options together; for example, -Ix is equiv
alent to -I -x. Valid assembler options include:

-I (lowercase "L") Produce a listing file. If you do not specify
a listing file name, the assembler will create one; the default
filename is the input file name with an extension of . 1st.

-x Produce a cross-reference table and append it to the end of
the listing file. If you did not request a listing file, the as
sembler will create one anyway, but the listing will only
contain the cross-reference table.

-q Quiet run. The assembler normally prints error messages on
the screen; if you specify the -q option, the assembler will
put the error messages in a disk file.

-a Create an absolute listing. When you use -a, the assembler
does not produce an object file. This absolute listing file is
used in conjunction with the absolute lister.

You may want to create a batch file for assembling and linking. The assembler
issues an exit code that equals the number of errors that occur during an as
sembly. In a batch file, you an use the MS/PC- DOS IF ERRORLEVEL com
mand to see if the exit code is greater than or equal to the specified number.
If there are more than a specified number of assembly errors, (1 in the fol
lowing example), the file won't be linked. Here is a sample batch file that you
might want to use:
asm370 %1 -1
IF ERRORLEVEL 1 GOTO ERR
Ink370 %1 -0 %l.out -m %l.map
:ERR

4-3

Assembler Description - Source Statement Format

4.2 Source Statement Format

TMS370 assembly language source programs consist of source statements
,that may contain assembler directives, assembly language instructions, macro
directives, and comments. The assembler accepts the ASCII character set (see
Appendix D). Source statement lines may be as long as the source file format
allows. The assembler reads up to 256 characters per line; any characters be
yond 256 are ignored.

The next several lines show"examples ~f source statements:

SYM
Begin:

.equ
ADD
MOV

DASh
#SYM+S,Rl
Rl,R2

; Symbol SYM = DASh
; Add (SYM+5) to the contents of Rl
; Move contents of Rl to R2

A source statement may contain fc;>ur ordered fields. The general syntax for
source statements is: '

[<label>[:]] <mnemonic> [<operand list>] [;<comment>]

where:

• Labels are optional; if used, they must begin in column 1.
• Comments are optional; if used, they must begin with a semicolon (;).
• One or more blanks must separate each field.
• Statements must begin with a label, a blank, or a comment indicator.

4.2.1 Label Field

4,-4

Labels are optional for all assembly language instructions and for most (but
not all) assembler directives. A label must begin in column 1 of a source
statement. A label can contain up to 32 alphanumeric characters (A-Z, a-z,
0-9, -, and $) and may be followed by a colon (:). Labels are case sensitive,
and the first character cannot be a number. If you don't use a label, then the
first character position must contain a blank or a comment indicator.

, When you use a label, its value is' the current. value of the section program
counter (the label points to the statement it's associated with). If, for example,
you use the .word directive to initialize several words, a label would point to
the first word. In the following example, the label Start has the value 102h .

0102 00AA016D64 0007 Start: . word OAAh, 365, "words"

A label on a line by itself is a valid statement. It assigns the current value of
the section program counter to the label - this is equivalent to the following
directive statement'

Label: .equ $; $ represents the current value of the SPC

When a label appears on a line by itself, it points to the instruction on the next
line (the SPC is not incremented):

0124
0124 OOOA

0011 Init:
0012 .word 10

Assembler Description - Source Statement Format

4.2.2 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start
in column 1, or it would be interpreted asa label. The mnemonic field can
contain one of the following opcodes:

• Machine-instruction mnemonic (such as ADC, MOV, POP)
• Assembler directive (such as .data, .equ, .Iist)
• Macro directive (such as .ASG, .MACRO, .VAR)
• A macro mnemonic (macro call)

4.2.3 Operand Field

The operand field is a list of operands that follows the mnemonic field. An
operand can be a constant (see Section 4.3), a symbol (see Section 4.5), or
a combination of constants and symbols in an expression (see Section 4.6).
You must separate operands with commas.

4.2.3.1 Operand Prefixes for Instructions

The assembler allows you to specify that a constant, symbol, or expression
should be used as an address, an immediate value, or an indirect value. The
following rules apply to the operands of instructions.

• No prefix - operand is an address. If you do not use a prefix with
an operand, the assembler will treat the operand as an address. Here is
an example of an instruction that uses operands without prefixes:

ADD r123,B

The operands r123 and 8 are addresses (in this case, they're the ad
dresses of registers). The assembler will add the contents of r123 to the
contents of register B.

• # prefix - operand is an immediate value. If you use the # sign as
a prefix, the assembler will treat the operand as an immediate value. This
is true even when the operand is a register or an address; the assembler
will treat the address as a value instead of using the contents of the ad
dress. Here is an example of an instruction that uses an operand with
the # prefix:

ADD #123,B

The operand #123 is an immediate value. The assembler will add 123
to the contents of register B.

• @ prefix - operand is an indirect address. If you use the @ sign
as a prefix, the assembler will treat operand as an indirect address; that
is, it will use the contents of the operand as an address. Here is an ex
ample of an instruction that uses an operand with the @ prefix:

MOV @R4,A

The operand @R4 specifies an indirect address. The assembler will go
to the address specified by the contents of register pair R3:R4, and then
move the contents of that location to register A.

4-5

Assembler Description - Source Statement Format

4.2.3.2 Register Aliasing

Many instructions that use registers as operands have short forms that use
registers A and B. When you use register A or 8 as an operand for one of
these instructions, the assembler will use a different opcode and generate a
shorter instruction.

Register A is equivalent to register rO, and register 8 is equivalent to register
r1. If you specify rO or r1 , and the instruction allows you to use A or 8 instead,
the assembler will optimize the instruction and use the shorter form. If you
specify A or 8, and the instruction allows rn but does not allow A or 8, the
assembler will correct the instruction for you. These are the optimizing/cor
recting rules that the assembler follows:

• If A is illegal, the assembler will use rO
• If B is illegal, the assembler will use r1
• If rO is illegal or not optimal, the assembler will use A
• If r1 is illegal or not optimal, the assembler will use B

Here are some examples:

Code Opcode Equivalent
Generated Code

eMP r09,rl 3D 09 eMP r9,A
eMP r012,A ID 12 eMP r12,A
eMP A,rOll 4D 00 11 eMP rO,rll

In the first example, register r1 is specified as an operand. The assembler will
optimize this instruction by substituting register 8 for register r1, which allows
it to use the shorter opcode for the eMP rn1, B form. In the second example,
register A is specified and used correctly. The third example, however, uses
register A incorrectly; in this case, the assembler substitutes rO for A to correct
the error.

4.2.3.3 Immediate Addressing for Directives

4-6

The immediate addressing mode is genp.rally most useful when used with in
structions; in some cases, it can also be used with the operands of directives.

Usually, it is not necessary to use the immediate addressing mode for direc
tives. Compare the following statements:

ADD #10, A
.byte 10

In the first statement, immediate addressing mode is necessary to tell the as
sembler to add the value 10 to register A. If immediate addressing mode had
not been used, the assembler would have treated 10 as an address, and added
the contents of location 10 to register A. In the second statement, however,
immediate addressing is not used; the assembler expects the operand to be a
value, and initializes a byte with the value 10.

In some cases, you can use immediate addressing for directive operands. Here
is a legal example:

.byte #R1

R1 is an address (1); therefore, . byte R1 is not a legal statement. Using
immediate addressing in this statement causes the assembler to use the ad
dress of R1 as a value.

Assembler Description - Source Statement Format

4.2.4 Comment Field

A comment must begin with a semicolon (;).

A comment can begin in any column, and extends to the end of the source
line. A source statement that contains only a comment is valid. A comment
can contain any ASCII character, including blanks. Its contents are printed in
the assembly source listing but they do not affect the assembly.

4.2.5 Local Labels

Local labels are a special type of label whose scope and effect are only tem
porary. A local label has the form $n, where n is a decimal digit in the range
0-9. For example, $4 and $1 are valid local labels.

Normal labels must be unique (they can only be declared once) and lhey can
be used as constants in the operand field. Local labels, however, can be un
defined and defined again. If a local label is used as an operand, it can only
be used as an operand for an 8-bit jump instruction.

A local label can be undefined, or reset, in one of four ways:

1) By the .newblock directive
2) By changing sections (using a .sect, .text, or .data directive)
3) By entering or leaving an include file (specified by the .include directive)

Here is an example of code that declares and uses a local label legally:

Labell: mov r2,r3
jnz $1
mov #-1,r3

$1 cmp r3,A
.newblock Undefine $1 so it
jne $1
inc r3

$1 add r3,r4

The following code uses a local label illegally:

Labell:

$1

r2,r3
$1
#-1,r3
r3,A
$1
r3

can be used again

$1

mov
jnz
mov
cmp
jne
inc
add r3,r4 ; WRONG -- $1 is multiply defined

Local labels are especially useful in macros. If a macro contains a normal label
and is called more than once, the assembler will issue a multiple-definition
error. However, if you use a local label within a macro and then use .newblock
within the macro, the local label will be used and reset each time the macro
is expanded.

Up to ten local labels can be in effect at one time. After you undefine a local
label, you can define it and use it again. Local labels do not appear in the
object code symbol table.

4-7

Assembler Description - Constants

4.3 Constants

The assembler supports six types of constants:

• Binary integer constants,
• Octal integer constants,
• Decimal integer constants,
• Hexadecimal integer constants,
• Character constants, and
• Assembly-time constants.

The assembler maintains each constant internally as a 32-bit quantity.

Note that constants are not sign extended. For example, the constant
OFFFFH is equal to 0000FFFF16 or 65,53510; it does not equal -1.

4.3.1 Binary Integers

A binary integer constant is a string of up to 32 binary digits (Os and 1 s) fol
lowed by the suffix B (or b). If less than 32 digits are specified, the assembler
will right justify the bits. Examples of valid binary constants include:

OOOOOOOOB Constant equal to 0

0100000b Constant equal to 3210

01 b Constant equal to 110

11111000B Constant equal to 24810

4.3.2 Octal Integers

An octal integer constant is a string of octal digits (0 through 7) followed by
the suffix 0 (or q). Examples of valid. octal constants include:

100

1000000

2260

Constant equal to 810

Constant equal to 32,76810

Constant equal to 15010

4.3.3 Decimal Integers

4-8

A decimal integer constant is a string of decimal digits, ranging from
-2,147,483,647 to 4,294,967,295. Examples of valid decimal constants in
clude:

1000

-32768

25

Constant equal to 100010 or 3E816

Constant equal to -32,76810 or FFFF800016

Constant ~qual to 2510 or 1916

Assembler Description - Constants

4.3.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits
followed by the suffix H (or h). Hexadecimal digits include the decimal values
0-9 and the letters A-F and a-f. A hexadecimal constant must begin with a
decimal value (0-9). If less than eight hexadecimal digits are specified, the
assembler will right justify the bits. Examples of valid hexadecimal constants
include:

78h

OFh

37ACH

4.3.5 Characters

Constant equal to 12010 or 007816

Constant equal to 1510 or 000F16

Constant equal to 14,25210 or 37 AC16

A character constant is a string of one to four letters enclosed in single or
double quotes. The characters are represented internally as 8-bit ASCII char
acters. A character constant consisting only of two single quotes (no letter)
is valid and is assigned the value O. If less than four characters are specified,
the assembler will right justify the bits. Character constants may be used
anywhere a numerical constant is used; the assembler converts character
constants to numbers. Examples of valid character constants include:

'ab'

'C'

'abed'

Represented internally as 0000616216

Represented internally as 0000004316

Represented internally as 6162636416

4.3.6 Assembly-Time Constants

If you use the .equ directive to assign a constant value to a symbol, the symbol
becomes an assembly-time constant. In order to use this constant in ex
pressions, the value that is assigned to it must be absolute. For example,

sym .equ 3
MOV sym,RO

You can also use the .equ directive to assign symbolic constants for register
names. In this case, the symbol becomes a synonym for the register:

sym • equ R24
MOV lO,sym

4-9

A~sembler Description - Character Strings/Symbols

4.4 Character Strings
A character string is a string of characters enclosed in single or double quotes.
The maximum length of a string varies, and is defined for each directive that
requires a character string. Characters are represented internally as 8-bit ASCII
characters. Appendix D lists valid characters.

Examples of valid character strings include:

"sample program"

" P LA N " " C ''''''

Defines a 14-character string, sample program

Defines an 8-character string, PLAN "C"

4.5 Symbols

4-10

Symbols are used as labels and in operands. A symbol name is a string of al
phanumeric characters (A-Z, a-z, 0-9, $, and -). Only the first 32 characters
are significant. The first character in a symbol cannot be a number, and a
symbol name cannot contain embedded blanks. The symbols you define are
case sensitive; for example, the assembler will recognize ABC, Abc, and abc
as three unique symbols. (You can override this with the -c assembler op
tion.) User-defined symbols are valid only during the assembly in which they
are defined, unless you use the .global directive to declare them as external
symbols.

Symbols that are used as labels become symbolic addresses that are associ
ated with locations in the program. Labels should be unique names; do not
re-use them for other statements. Mnemonic opcodes and assembler directive
names (without the. prefix) are valid label names.

Symbols that are used in operands must be defined in the assembly by ap
pearing as labels or as operands of a .global, .globreg, .equ, .bss, .reg, or
.regpair directive. Note that declaring a symbol as external makes it a 16-bit
constant.

Symbols can be absolute or relocatable. An absolute symbol's value is a
number; a relocatable symbol's value is an address.

The assembler has several predefined symbols, including:

• $ (the dollar sign character) represents the current value of the section
program counter (SPC).

• Port names, which are of the form Pn or pn, where n is an expression
that evaluates in the range 0-255 (if the number is greater than 255, the
symbol is not considered a register symbol). The number may be deci
mal or hexadecimal; to specify a hexadecimal number for a register
symbol, precede the number with a O. For example, p010 and p16 are
equivalent (the first is hexadecimal, the second is decimal).

• Register symbols, which are of the form Rn or rn, where n is an ex
pression that evaluates in the range 0-255 (if the number is greater than
255, the symbol is not considered a register symbol). The number may
be decimal or hexadecimal; to specify a hexadecimal number for a reg
ister symbol, precede the number with a O. For example, r010 and r16
are equivalent (the first is hexadecimal, the second is decimal). Note
that A and B are valid register symbols; they represent rO and r1, re
spectively.

Assembler Description - Expressions

4.6 Expressions

An expression is a constant, a symbol, or a series of constants and symbols
separated by arithmetic operators. The range of valid expression values is
-2,147,483,647 to 4,294,967,295.

Three main factors influence the order of expression evaluation:

• Parenthesis: Expressions that are enclosed in parenthesis are always
evaluated first.

Example: 8/(4/2) = 4, but 8/4/2 = 1

• Precedence groups: Operators (listed in Table 4-1) are divided into
four precedence groups. When the order of expression evaluation is not
determined by parenthesis, the highest-precedence operation is evalu
ated first.

Example: 8 + 4/2 = 10 (4/2 is evaluated first)

• Left-to-right evaluation: When parenthesis and precedence groups
do not determine the order of of expression evaluation, the expressions
are evaluated from left to right. (Note that the highest precedence group
is evaluated from right to left.)

Example: 8/4*2 = 4, but 8/(4*2) = 1

4.6.1 Parentheses in Expressions

Parentheses alter the order of expression evaluation. Parentheses can be
nested; the portion of an expression within the innermost parentheses is
evaluated first, then the next most innermost pair is evaluated, etc. When all
parenthetical expressions have been evaluated, the expression is evaluated
from left to right. Parenthetical expressions at the same nesting level are
evaluated simultaneously.

The expression LAB1 +«4+3)*7) is evaluated as follows:

1) Add 4 to 3

2) Multiply 7 by 7

3) Add the value of LAB1 to 49

4-11

Assembler Description - Expressions

4.6.2 Operators

Table 4-1 lists the operators than can be used in expressions. They are listed
according to precedence group.

Table 4-1. Operators

Group 1 (Highest Precedence) Group 3
Right-to-Left Evaluation Left-to-Right Evaluation

+ Unary plus (positive expression) + Addition
- Unary minus (negative expression) - Subtraction

'"'" (COM) 1 s complement 1 (OR) Bitwise OR
! (NOT) Logical NOT (if expr. = 0, 1 (XOR) Bitwise exclusive OR

is returned, else ° is returned)
HI Right-shift MSbyte into LSbyte,

zero fill MSbyte
LO AN D with OFFh

Group 2 Group 4 (Relational Operators)
Left-to-Right Evaluation Left-to-Right Evaluation

* Multiplication < Less than

/ Division > Greater than

% (MOD) Modulo <= Less than or equal to

« (S H L) Shift left >= Greater than or equal to

» (SHR) Shift right = Equal to

& (AND) Bitwise AND <> Not equal to

Note: Operators in parenthesis indicate an alternate form.

4.6.3 Expression Overflow or Underflow

4-12

The assembler checks for overflow and underflow conditions when arithmetic
operations are performed at assembly time. The assembler will issue a Value
Truncated warning whenever an overflow or underflow occurs. The assem
bler does not check for overflow or underflow conditions when multipli
cation is used within an expression. Examples where a warning message is
issued include:

80000000 H - 1 2

4294967290 + 8

Assembler Description - Expressions

4.6.4 Relocatable Symbols and Legal Expressions

Table 4-2 summarizes valid operations on absolute and relocatable symbols.
An expression cannot multiply or divide by a relocatable or external symbol.
An expression cannot contain unresolved symbols that are relocatable with
respect to different sections.

Symbols or registers that have been defined as global with the .global or
.globreg directives can also be used in expressions; In Table 4-2, these sym
bols and registers are referred to as external. Relocatable registers can be used
in expressions; the addresses of these registers are relocatable with respect to
the .reg section unless they have been declared as external.

Table 4-2. Expressions with Absolute and Relocatable Symbols

A is ... B is ... Results of A+B are ... Results of A-B are ...

absolute absolute absolute absolute

absolute external external illegal

absolute relocatable relocatable illegal

relocatable absolute relocatable relocatable

relocatable relocatable illegal absolutet

relocatable external illegal illegal

external absolute external external

external relocatable illegal illegal

external external illegal illegal

t A and B must be in the same section, otherwise this is illegal.

Examples of legal expressions that use relocatable symbols include:

blue+l

GREEN-4

2*16+red

440/2-RED

The value of this expression is the sum of the value of symbol
blue plus 1. This value is legal and the same type as blue
(blue can be either an absolute or a relocatable symbol).

The value of this expression is the result of subtracting 4 from
the value of symbol GREEN. This value is legal and of the
same type as GREEN (GREEN can be an absolute or a relocat
able symbol).

The value of this expression is the sum of the value of symbol
red plus the product of 2 times 16. This value is legal and
of the same type as red (red can be an absolute or a relo
catable symbol).

The value of this expression is the result of dividing 440 by
2 and subtracting the value of symbol RED from the quotient
(RED must be absolute for this to be a legal expression).

labell-labe12The value of this expression is the difference between the
addresses of the two labels. This expressions is only legal if
labell and labe12 are defined in the same section; in this
case, the expression will be absolute.

4-13

Assembler Description - Expressions

4.6.5 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The evaluation
of a well-defined expression must be absolute.

An example of a well-defined expression is:

lOOOh+X Where X has been previously defined as an absolute symbol.

4.6.6 Conditional Expressions

The assembler supports three directives (.if, .else, and .endif) that provide
conditional assembly. The operand of the .if directive is an expression. Op
erators can be used in an .if expression include:

< Less than
> Greater than
= Equal
<> Not equal
!= Not equal
< = Less than or equal
> = Greater than or equal

These unsigned operations have the lowest precedence of any operations;
however, each has the same precedence within the group, so they are evalu
ated left to right.

The .if expression evaluates to 1 if true and 0 if false. If the expression evalu
ates to true, then one block of code is assembled; if the expression evaluates
to false, then another block of code may be assembled.

4.6.7 Examples of Expressions

4-14

These examples use five symbols that are defined as follows:

.global extern-1 Defined in an external module
intern_1: .word ' "D' Relocatable, defined in current module
LAB1: .equ 2 LAB1 = 2
intern-2: Relocatable, defined in current module
intern_3: Relocatable, defined in current module

• Example 1:

The first statement in this example puts the value 51 into register A. The sec
ond statement puts the value 27 into register A.

MOV
MOV

LAB1 + ((4+3) * 7), A
LAB1 + 4 + 3 * 7, A

; A 51
; A = 27

Assembler Description - Expressions

• Example 2:

All legal expressions can be reduced to one of two forms:

<relocatable symbol> <additive operator> <absolute symbol>

or

<absolute value>

An additive operator is + or -, but not / or *. Unary operators can only be
applied to absolute values; they cannot be applied to relocatable symbols.
Expressions that cannot be reduced to contain only one relocatable symbol are
illegal. The first statement in the following example is legal; the statements that
follow it are invalid.

MOV extern_1 - 10, A
MOV 10-extern_1, A
MOV -(intern_1), A
MOV extern_1/10, A
MOV intern_1 + extern_1, A

• Example 3:

Legal
Can't negate relocatable symbol
Can't negate relocatable symbol
I is not an additive operator
Multiple relocatables

In the following examples, the first statement is legal because although
intern-l and intern-2 are relocatable, their difference is absolute because
they're in the same section. Subtracting one relocatable symbol from another
reduces the expression to <relocatable symbol> + <absolute value>.

The second statement is illegal because the sum of two relocatable symbols is
not an absolute value.

MOV intern-1 - intern-2 + extern-1, A Legal
MOV intern-1 + intern-2 + extern-1, A Illegal

• Example 4:

An exten 'al symbol's placement in an expression is important to expression
evaluation. Although the statement below is similar to the first statement in
the previous example, it is illegal. This is because of left-to-right operator
precedence; the assembler attempts to add intern-l to extern-l.

MOV intern-1 + extern-2 - intern_2, A ; Illegal

4-15

Assembler Description - Addressing Modes

4.7 Addressing Modes

4-16

The TMS370 assembler supports seven addressing modes, which are grouped
into two classes:

• Direct addressing modes support 8-bit operands.

• Extended addressing modes support 16-bit operands.

Table 4-3 summarizes these addressing modes.

Table 4-3. Addressing Modes

Category Addressing Mode Example

Direct Single register label: DEC B
INC R45
CLR R23

Register/peripheral file label: MOV B,A
ADD A,r17
XOR A,P17
CMP r23,r73

Immediate label: AND #OC5h,R55
AND #VALUE,R32
BTJO #OD6h,r80,label

Program counter relative label: JMP label
DJNZ A, label
BTJO B,P7,label

Extended Direct memory label: MOV OF3D4h,A
CMP label,A

Register file indirect label: MOV @R255,A

Indexed label: BR label (B)

Assembler Description - Source Listings

4.8 Sou rce listi ngs

The source listing shows the source statements and the object code they
produce.

Each page of the source listing has a header line and a title line at the top.
Any title supplied by a .title directive is printed on the title line. If the .title
directive is not used, the title line is left blank. A page number is printed to
the right of the title. The printer inserts a blank line below the title line and
prints a line for each source statement listed.

Each line in the source file produces a line in the listing file that contains an
SPC value, the object code assembled, a source statement number, and the
source statement. A source statement may produce more than one byte of
object code.

1 2
0072 5201

3
0155

4
PWRITEO MOV #l,B ;UCR value = 1 (program Os)

Field 1 Section Program Counter. This field contains the section program
counter value (hexadecimal). Each section (.text, .data, .bss, .reg,
and named sections) maintains a separate section program counter.
Not all directives affect the section program counter; those direc
tives that do not affect it leave the SPC field unchanged.

On source lines that contain a .equ directive, this field contains the
equated value instead of the SPC value.

Field 2 Object Code. This field contains the hexadecimal representation of
the object code (520116 in this example). All machine instructions
use this field to list object code.

Field 3 Source Statement Number. The source statement number is a
four-digit decimal number. Source lines are numbered in the order
in which they appear in the source file, including those source lines
that are not listed (.title, .Iist, .nolist, and .page directives are not
listed; source lines between a .nolist directive and a .Iist directive are
not listed). The difference between two consecutive source line
numbers indicates the number of source lines entered but not listed.
Source lines generated by a macro call or a .copy directive, however,
are renumbered starting at 0001. The original sequence continues
after the copying or macro expansion is complete. The assembler
precedes the line number of included files with a letter code to
identify the level of nesting. An A indicates the first level, B indi
cates a second level, etc. Macro expansion lines are preceded by a
symbol.

Field 4 Source Statement Field. This field contains the characters of the
source statement as they were scanned by the assembler. The
maximum line length accepted by the assembler is 200 characters.
Spacing in this field is determined by the spacing in the source
statement.

4-17

Assembler Description - Cross-Reference Listings

common.asm TMS370 ASSEMBLER Version 3.00 Mon May 4 17:42:06 1987 Pg 1

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0002
0004
0006
0008
OOOA
OOOC
OOOE
0010
0010
0012
0012
0012
0012
0012
0015
0018
0018
001A

4-18

20**
02**
20**
02**
2020
02**
2051
02**

alEE

8B****
8A****

00E6

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033

;================ Common Routines =================
.**
; Get address from keyboard input.
, Return in INPUT+2,3
;**

getaddr:
CLR
CLR
CLR
CLR
CLR

GETCH: TRAP

GAEXIT:

CMP
JEQ
CMP
JEQ
CMP
JEQ
CMP
JEQ
TRAP
IN
INC
MOV
MOV
MOV
MOV
MOV
TRAP
JMP

TEMPI
INPUTBUF
INPUTBUF+1
INPUTBUF+2
INPUTBUF+3
RXCHAR
#SPACE,A
GAEXIT
#CR,A
GAEXIT
I_I ,A
GAEXIT
#IQI,A
GAEXIT
HEX
GETCH

;returns a 16 bit value
;temp 1 = number of chars
;clear the 4 address
;buffer bytes

;go fetch a character
;is it a space?
;if so exit the routine
;also exit on a CR

:is it a valid hex char

TEMPI
INPUTBUF+1,INPUTBUF
INPUTBUF+2,INPUTBUF+l
INPUTBUF+3,INPUTBUF+2
A,INPUTBUF+3
LastRX,A
TXCHAR
GETCH

Figure 4-2. Sample Assembler Listing

Assembler Description - Cross-Reference Listings

4.9 Cross- Reference Listi ngs

If you use the -x option when you invoke the assembler, it will print a cross
reference listing following the source listing.

LABEL

MAXADDR
MAXINT
MININT

DEFS

0009
0010
0011

REFS

0039
0008
0008

0043
0011
0043

Figure 4-3. Cross- Reference listing Format

PAGE 0003

• The label column contains each symbol that was defined or referenced
during the assembly.

• The definition column contains the statement number in which the
symbol is defined. This column is blank for undefined symbols.

• The reference column lists the line numbers of statements that refer
ence the symbol. A blank in this column indicates that the symbol was
never used.

4-19

Assembler Description

4-20

5. Assembler Directives

Assembler directives supply program data and control the assembly process.
Assembler directives allow you to:

• Assemble code and data into specified sections
• Control the appearance of listings
• Initialize constants
• Use conditional assembly
• Define global variables
• Specify libraries that the assembler can obtain macros from

This section is divided into two parts. The directives can be easily categorized
by function, and the first part of this section describes the directives according
to function. The second part of this section is a reference; the directives are
presented in alphabetical order. You will find the following topics in this
section:

Section Page
5.1 Directives Summary .. 5-2
5.2 Sections Directives ... 5-4
5.3 Directives that Initialize Constants : .. 5-6
5.4 Directives that Define Symbols ... 5-8
5.5 Directives that Format the Output Listing ... 5-9
5.6 Conditional Assembly Directives .. 5-10
5.7 Directives that Reference Other Files ; 5-11
5.8 Directives Reference ... 5-12

5-1

Assembler Directives - Directives Summary

5.1 Directives Summary

Table 5-1 summarizes the assembler directives. Note that all source state
ments that contain a directive may have a label and a comment. To improve
readability, they are not shown as part of the syntax of the directives.

Table 5-1. Directives Summary

Sections Directives

Mnemonic and Syntax Description

.bss name[,size] Assemble into the .bss (un initialized data) section

.reg name[,size] Assemble into the .reg section

.regpair name[,size] Assemble into the .reg section

.data [address] Assemble into the .data (initialized data) section

.sect "name"[,address] Assemble i,nto a named (initialized) section

.text [address] Assemble into the .text (executable code) section

Directives that Initialize Constants
Mnemonic and Syntax Description

.block size Reserve size amount of space in the current section

.byte value 1 [, ... , value n] Initialize 1 or more successive bytes in the current
section

.string "string" Initialize a text string

.word value 1[, ... , value n] Initialize 1 or more successive words in the current
section

Directives that Define Symbols

Mnemonic and Syntax Description

symbol.dbit bit number,register Associate a symbol with a specific bit in a register

symbol .equ value Initialize an assembly-time constant

.newblock "Undefine" local labels

Directives that Format the Output Listing

Mnemonic and Syntax Description

.Iength page length Set the page length of the source listing

.Iist Restart the source listing

.mlist Allow macro listings (default)

.mnolist Inhibit macro listings

.nolist Stop the source listing

.page Eject a page in the source listing

.title "string" Print a title in the listing page heading

.width width Set the page width of the source listing

5-2

Assembler Directives - Directives Summary

Table 5-1. Directives Summary (Concluded)

Conditional Assembly Directives

Mnemonic and Syntax Description

.if expression Begin conditional assembly

.else Optional conditional assembly

.endif End conditional assembly

Directives that Reference Other Files

Mnemonic and Syntax Description

.include "fNename" Include source statements from another file

.global symbol 1 [, ... ,symbol n] Declare one or more external symbols

.globreg relocatable register 1 Declare external relocatable register symbols
[, ... ,relocatable regIster n]

.mlib "filename" Supply a macro library name

Miscellaneous Directives

Mnemonic and Syntax Description

.end Program end

.setsect Produced by absolute lister - see Section 10

.setsym Produced by absolute list"er - see Section 10

5-3

Assembler Directives - Sections Directives

5.2 Sections Directives

Section 3 discusses COFF sections in detail. The assembler has six directives
that associate the various portions of an assembly language program with the
appropriate sections:

• The .bss directive reserves space in the .bss section for uninitialized data
(variables) .

• The .reg and .regpair directives reserve space in the .reg section for
relocatable registers. This is an uninitialized section; it must be allocated
into the first 256 locations of RAM (the register file).

• The .text directive identifies portions of code in the .text section. The
.text section usually contains executable code.

• The .data directive identifies portions of code in the .data section. The
.data section usually contains initialized data.

• The .sect directive names a special-purpose section, and associates
subsequent code or data with that section.

Figure 5-1 shows how you can use sections directives to associate code and
data with the proper sections. This is an output listing; column 1 shows the
section program counter (SPC) and column 3 shows the line numbers. The
SPC indicates the addresses of code and data in the current section. When
code is first assembled into a section, the address in the SPC is O. The .text,
.data, and .sect directives each have an optional address parameter that allows
you to specify a different starting address for a section. This parameter is only
useful for improving listing readability; it does not affect the final allocation
of a section. When you resume assembling into a section, its SPC will resume
counting as if there had been no intervening code.

Note that the .bss, .reg, and .regpair directives do not end the current section
and begin a new section; they reserve the specified amount of space, and then
the assembler returns control to the current section.

After the code in Figure 5:..1 is assembled, the sections will contain the fol
lowing:

.text

.data
var-defs
.bss
.reg

Contains bytes 1, 2, 3, 4, 5, and 6
Contains bytes 7, 8, 9, 10, and 11
Contains bytes 11, 1 2, 1 3 and 1 4
Reserves 12 bytes for uninitialized data
Reserves 8 bytes for relocatable register data

Assembler Directives - Sections Directives

0000
0000
0000
0000
0000 0102
0002 0304
0004
0004
0004
0004
0004
0000 070809
0003
0003
0003
0003
0003
0003
0000 OBOC
0002
0002
0002
0002
0002
0004 05
0000
0005 06
0006
0006
0006
0006
0006
0003 OA
0000
0004 OB
0005
0005
0005
0005
0005
0002 ODOE

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

.*** ;* Start assembling into the .text section *
;***

.text

.byte 1,2

.byte 3,4

.*** ;* Start assembling into the .data section *
;***

.data

.byte 7,8,9

;***
.* Define a section named var_defs and begin ;* assembling code into it *
;***

.sect

.byte
"var_defs"
11,12

.*** ;* Continue assembling into .text *
;***

.text

.byte

.bss

.byte

5
sym,12
6

; Reserve 12 bytes in .bss
; Still in . text

.*** ;* Continue assembling into .data *
;***

.data

.byte

.reg

.byte

10
RR1,8
11

; Reserve 8 bytes in .reg
; Still in . data

.*** ;* Continue assembling into var_defs *
;***

.sect

.byte
"var_defs"
13,14

Figure 5-1. Sections Directives

,

5-5

Assembler Directives - Directives that Initialize Constants

5.3 Directives that Initialize Constants

5-6

There are several directives that you can use to initialize constants:

• The .block directive reserves a specified number of bytes in the current
section. The assembler fills these reserved bytes with Os.

Figure 5-2 shows an example of the .block directive; assume the fol
lowing code has been assembled:

0154
0154 OOOAOOOB
0158 0000000000
0160 5374696C6C

0003 ;*
0004
0005
0006

Assembling code into .data
.word OAh,OBh
.block 8
.string "Still in .data"

r-- Current SPC = 158h

158h

(a) ~_J=========::\ .. -;

158h ~
ew SPC = 160h after executing

.block directive to reserve e bytes

160h

(b) .. ~4~mIIlImJE:}B::<B<::E::\E>:::B::::::B::::::B::::::§::::::§:::::::].=:::1===.::'''-;
'-v----'

8 bytes

Figure 5-2. An Example of the .block Directive

• The .byte directive places 8-bit values into consecutive words of the
current section. This directive is similar to .word, except that the width
of each value is restricted to 8 bits.

• The .word directive places 16-bit values into consecutive locations in
the current section.

• The .string directive places 8-bit characters from a character string into
the current section.

Assembler Directives - Directives that Initialize Constants

Figure 5-3 compares the .byte, .word, and .string directives. Note that
the listing file shows only the first five bytes that are initialized by any
of these directives. This example uses .word to reserve three words, but
only the most significant byte of the third word is displayed in the listing
file. For this example, assume the following code has been assembled:

0011 AA6l62630A
0017 AAAA003800
OOlD 5265736574
0024 OF

First Byte

0003
0004
0005
0006

.byte

.word

. string

.byte

OAAh,"abc",10,20
OAAAAh,56,73
"Reset 1"
15

Number Contents Code

11 rA/i{:lAfd{1)3{2?F:~t:a:::I?Q.{AJ 1 4 I .byte OMh, "abc", 10, 20

17 kA/I.{):}(it:lJtJt:?:~:)~}kQ.{q(4 9 I .word OMMh, 56, 73

1D k5:\2\k~L::srFt:::a:n::::e):~Lt:'t:A\1 2 0 I 3 1 I .string "Resat 1"

R a s a 1

Note: The shaded portion indicates the bytes that are shown in the listing file.

Figure 5-3. Examples of Initialization Directives

5-7

Assembler Directives - Directives that Define Symbols

5.4 Directives that Define Symbols

5-8

. The TMS370family assembler supports several directives that define symbols.

• The .equ directive equates a value with a symbol. This type of symbol
is known as an assembly-time constant; it can be used in the same
manner as a constant (for example, in expressions).

, . . . '. .

The following example defines a symbol named bval and assigns it the
value 4. The symbol bval can then be used as a constant.

0001 0001 bva1 .equ 4
0002 040810 0002 .by~e bval, bval*2, bval+12

Note that the .bss, .reg, and .regpair directives also define symbols, and
that labels are symbols; like symbols defined by the .equ directive, these
symbols can be used as constants.

• The .dbit directive defines a symbol that references a specific bit in a
peripheral register. This symbol can then be used as an operand for the
the following instructions:

CMPBIT
SBITO
SBIT1
JBITO
JBIT1

• The .newblock directive resets local labels. Local labels are symbols
of the form $n (n is a decimal digit); they are defined when they appear
in the label field. Local labels are temporary labels that can be used as
operands for jump instructions. The .newblock directive limits the scope
of local labels by "undefining" them after they're used.

Assembler Directives - Directives that Format the Output Listing

5.5 Directives that Format the Output Listing

There are eight directives that you can use to format the listing file:

• The .length directive controls the page length of the listing file. You
can use this directive to adjust listings for various output devices.

• The .width directive controls the page width of the listing file. You can
use this directive to adjust listings for various output devices.

• The .list and .nolist directives turn the output listing on and off. You
can use the .nolist directive to stop the assembler from printing selected
source statements in the listing file. Use the .Iist directive to turn the
listing back on.

• The .mlist and mnolist directives, respectively, allow and inhibit macro
expansion listings.

• The .page directive causes a page eject in the output listing.

• The .title directive supplies a title that the assembler will print on the
first line of each page.

5-9

Assembler Directives - Conditional Assembly Directives

5.6 Conditional Assembly Directives

5-10

Three directives allow you to assemble conditional blocks of code:

• The .if directive marks the beginning of a conditional block. The .if di
rective has one parameter, which is an expression. If this expression
evaluates to true (a nonzero value), then the assembler will assemble
the code that follows it (up to an .else or .endif). If this expression
evaluates to false (0), then the assembler will assemble code that fol
lows an .else (if present) or an .endif (if no .else is present).

• The .else directive indicates a block of code that the assembler will as
semble if the if-expression is false (0). This directive is optional in the
conditional block; if an expression is false and there is no .else statement,
then the assembler will continue with the code that follows the .endif.

• The .endif directive terminates a conditional block.

Four operators can be used in an .if expression:

= Equal
<> Not equal
< Less than
> Greater than

These operations are all unsigned. They have the lowest precedence of any
operations. However, they have the same precedence, and are evaluated left
to right. They evaluate to 1 if true and 0 if false.

Here is an example of conditional assembly:

0001 0001 sym1 .equ 1
0002 0002 sym2 .equ 2
0003 0003 sym3 .equ 3
0004 0004 sym4 .equ 4
0000 0005 If_I: .if syml < sym2
0000 01 0006 .byte sym1
0001 0007 .else
0001 0008 .byte sym2
0001 0009 .endif
0001 0010 If_2: .if syml + sym2 = sym3
0001 0102 0011 .byte sym1, sym2
0003 0012 .else
0003 0013 .byte sym3
0003 0014 .endif
0003 0015 If_3: .if sym3 <> sym4 - sym2
0003 03 0016 .byte sym3
0004 0017 .else
0004 0018 .byte sym4
0004 0019 .endif

Assembler Directives - Directives that Reference Other Files

5.7 Directives that Reference Other Files

These directives supply information for or about other files.

• The .include directive tells the assembler to begin reading source
statements from another file. When the assembler is done reading the
source statements in the .include file, it will resume reading source
statements from the current file.

• The .global and .globreg directives declare a symbol or a relocatable
register symbol, respectively, to be external. This makes the symbol (or
relocatable register symbol) available to other modules at link time. If
the symbol is defined in the current module, it can be used in other
modules. If the symbol is used but not defined in the current module,
the linker can look for its definition in another module.

This allows you to assemble program modules separately and link them
together to form a single executable program.

• The .mlib directive supplies the assembler with the name of an archive
library that contains macro definitions. When the assembler encounters
a macro that is not defined in the current module, it will then be able to
search for it in the specified macro library.

5-11

Assembler Directives - Directives Reference

5.8 Directives Reference

5-12

The remainder of this chapter is a reference. Generally, the directives are or
ganized alphabetically, one directive per page; however, related directives
(such as .if/.else/.endif) are 'presented together on one page. Here's an al
phabetical table of contents for the directives reference:

Directive Page
.block ... 5-13
.bss .. 5-14
.byte ... 5-15
.data ... 5-16
.dbit ... 5-17
.else .. 5-22
.end .. 5-18
.endif ... 5-22
.equ .. 5-19
.global ... 5-20
.globreg ... 5-21
.if .. 5-22
.include ... 5-23
.Iength ... 5-24
.Iist ... 5-25
.mlib ... 5-26
.mlist .. 5-27
.mnolist ... 5-27
.newblock ... 5-28
.nolist ... 5-25
.page .. 5-29
.reg ... 5-30
.regpair .. 5-30
.sect ... 5-32
.string .. 5-33
.text .. 5-34
.title .. 5-35
.width .. 5-24
.word ' ... 5-36

Reserve Space in the Current Section .block

Syntax

Description

Example

0000
0000
0000
0000
0000
0004
OOOE
OOOE
OOOE
OOOE
OOOE
0072
0072

.block <size>

The .block directive reserves size number of. bytes in the current section and
fills them with Os. The section program counter (SPC) is incremented to
point to the byte that follows the reserved block.

The .block directive is equivalent to size number of .byte 0 directives.

Reserve 100 O-filled bytes in the .text section. Note that the SPC equals
OEh before the .block directive is assembled; after the .block directive is
assembled, the SPC is incremented to equal 072h.

0001 .**
0002 ;* Begin assembling into .text *
0003 ;**
0004 .text

OOOAOOOB 0005 .word OAh,OBh
5265676973 0006 .string "Register A"

0007
0008 .**
0009 ;* Reserve a block of 100 bytes in .text *
0010 ;**

0000000000 0011 .block 100
0012

oooe 0013 .word Oeh ; Still in .text

5-13

.bss Assemble into .bss Section

Syntax .bss <name>,<size>

Description The .bss directive reserves space in the .bss section for variables. Use this
directive to allocate space into RAM.

Example

0000
0000
0000
0000
0000
0003
0003
0003
0003
0000
0003
0003
0006
0006
0006
0006
0064
0006
0006
0009
0009
0009
0009
0009

5-14

• The name isa required parameter. It defines a symbol that points to
the first location reserved by the directive.

• The size is a required parameter. It is an absolute expression that
specifies the number of bytes that will be allocated. There is no de
fault size for this directive.

Section directives for initialized sections (.text, .data, and .sect) end the
current section and begin assembling into another section. Section direc
tives for uninitialized sections (.bss, .reg, and .regpair), however, do not
affect the current section. The assembler will assemble the .bss, .reg, or
.regpair directive and then resume assembling code into the same section.

For more information about COFF sections, see Section 3.

This example uses the .bss directive to allocate space for two variables,
array and dflag. The symbol array points to 100 bytes of uninitialized
space (at .bss-SPC = 0). The symbol dflag points to 1 byte of uninitial
ized space (at .bss-SPC = 100). Note that symbols declared with the .bss
directive can be referenced in the same manner as other symbols and can
also be declared global.

420001

420102

8A0064

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024

.*** ;* Begin assembling into .text section *
;***

.text
MOV RO,R1

.*** ;* Allocate 100 bytes in .bss section *

.***
, .bss array, 100

MOV R1,R2 ; Assembled into .text

.*** ;* Allocate 1 byte in .bss section *

.***
, .bss df1ag, 1

MOV dflag,RO ; Assembled into .text

.*** ;* Declare external .bss symbol *

.***
, .global array ; Still in .text

Initialize Byte .byte

Syntax .byte <value 1> [, ... , <value n>]

Description The .byte directive places one or more 8-bit values into consecutive bytes
in the current section. Each value can be either:

Example

• An expression which the assembler will evaluate and treat as an 8-bit
signed number.

• A character string enclosed in double quotes. Each character repres-
ents a separate value.

The assembler will truncate values that are greater than 8 bits. Each char
acter in a string is counted as a separate operand. You can use as many
values as will fit on a line, but the assembler will only show a maximum of
five bytes per line in the listing file.

If you use a label, it will point to the location at which the assembler places
the first byte.

This example places the 8-bit values 10, -1, 97, 98, 99, and 97 into six
consecutive bytes in memory. The label strx has the value Oh, which is
the location of the first initialized byte.

0000 OAFF616263 0001 strx: .byte 10 , -1, "abc" , ' a '

5-15

.data Assemble into .data Section

Syntax .data [address]

Description The .data directive tells the assembler to begin assembling source code into
the .data section; .data becomes the current section. The .data section is
normally used to contain tables of data or preinitialized variables.

The address is an,optional' parameter that specifies a 16-bit address. It can
only be used the first time a .data directive is specified. Normally, the sec
tion program counter is set to 0 the first time the .data section is assembled;
you can use this parameter to assign an initial value to the .data section
program counter. This parameter has no effect on the final address of the
section; it simply m~kes the listing easier to read.

Section 3 provides a detailed explanation about COFF sections.

Note:

The assembler assumes that .text is the default section. Therefore, at
the beginning of an assembly, the assembler will assemble code into
the .text section unless you specify an explicit section control directive.

Example This example shows how you can use the .text and .data directives to swap
between sections .

5-16

0000
0000
0000
0000
0000 420001
0003
0003
0003
0003
0003
0000 FFFF
0002 FF
0003 420001
0006
0006
0006
0006
0006 .
0003 0038004E
0007
0007
0007
0007
0007
0006 FD

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025

. *** ;* Begin assembling into .text *
;***

.text
MOV RO,R1 ; Assembled into .text

.*** ;* Begin assembling into .data *

.***
table: .data

.word -1

.byte Offh
MOV RO,R1

; Assembled into .data
; Assembled into .data
; Assembled into .data

.*** ;* Resume assembling into .text at 03h *
;***

.text

.word 56,78

.*** ;* Resume assembling into .data at 06h *
;***

.data
LDSP

Name a Register Bit .dbit

Syntax

Description

Example

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

<symbol> .dbit <bit number>,<register>

The .dbit directive assigns a name to a specific bit in a register. The symbol
is the name that the assembler assigns to the bit; it must appear in the label
field. The register must be a RQ-R255, Po-P255, or a symbol that has been
equated to one of these registers. The bit number is a number in the range
O~ h and indicates· a particular bit in the specified register.

Note that register bits are numbered like this:

MSB LSB

1716151413121 101
The TMS370 assembler supports several instructions that operate on single
bits. Before you can execute these instructions, you must use the .dbit di
rective to name the bit that will be operated on. These instructions include:

eM PBIT Complement a specified bit.
J BITO Jump if a specified bit equals O.
J BIT1 Jump if a specified bit equals 1.
SBITO Set a specified bit to O.
SBIT1 Set a specified bit to 1.

This example sets up bits in the Serial Port Interface Configuration register,
which is denoted in this example by the symbol SPCF.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

.*** ;* Setup the bits in the Serial Port Interface *
; * Conf iguration register *
;***

SPCF_S_u:

CharO
CharI
Char2
SPBRO
SPBRI
SPBR2
CPOL
SWRST

.dbit

.dbit

.dbit

.dbit

.dbit

.dbit

.dbit

.dbit

O,SPCF
I,SPCF
2,SPCF
3,SPCF
4,SPCF
5,SPCF
6,SPCF
7,SPCF

* Setup char bits so that 8 bits are shifted *
* out per character *

SBIT1
SBIT1
SBIT1

CharO
CharI
Char2

* Setup the serial peripheral bit rate so that*
* the shift clock frequency = system clock/64 *

SBIT1
SBITO
SBITI

SPBRO
SPBR1
SPBR2

5-17

·end End Assembly

Syntax .end

Description The .end directive is an optional directive that terminates assembly. It
should be the last source statement of a program. The assembler will ignore
any source statements that follow the .end directive.

Example

5-18

Note:

This directive has the same effect as an end-of-file.

This example shows how the .end directive terminates assembly. If any
source statements followed the .end directive, they would not be assem
bled.

0000
0000 OA
0001 AAAA
0003 4141414141
OOOB

0001 Text-Start:
0002
0003
0004
0005

.text

.byte OAh

.word OAAAAh

. string "AAAAAAAA"

.end

Define Assembly-Time Constant .equ

Syntax

Description

Example

0000
0000
0000
0000
0003
0000 9A03
0002
0002
0002
0002
0002
0002
0035
0002 723500
0005
0005
0005
0005
0005
0005 OOOA
0006
0007 0006
0009
0009
0009
0009
0009
0009
0035
0009 723500

<symbol> .equ <value>

The .equ directive equates a value to a symbol. The symbol can then be
used in place of a value in assembly source. This allows you to equate
meaningful names with constants and other values.

The symbol must appear in the label field. The value must be a well-defined
expression; that is, all symbols in the expression must be previously defined
in the current source module or global and defined in another module.
Undefined external symbols and symbols that are defined later in the mod
ule cannot be used in the expression. If the expression is relocatable, the
symbol to which it is assigned is also relocatable.

The value of the expression appears in the SPC field of the listing. This
value is not part of the actual object code and is not written to the output
file.

This example shows how symbols can be assigned with .equ.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030

;***************************************
;** Equate symbol FP to register R3 **
;** and use it instead of R3 **
;***************************************
FP .equ R3

MOV @FP,RO

.***************************************
;** Set symbol count to an integer **
;** expression and use it as an **
;** immediate operand **
;***************************************
count .equ 100/2 + 3

MOV #count,RO

.***************************************
;** Set symbol symtab to relocatable **
;** expression **
;***************************************
label .word 10
symtab .equ 1abe1+1

.word symtab

.*************************************** ,
;** Set symbol nsyms equal to another **
;** symbol (count) and use it instead **
;** of count **
;***************************************
nsyms .equ count

MOV #nsyms,RO

5-19

·global Global Symbol Definition

Syntax .global <symbol 1> [, ... , <symbol n>]

Description The .global directive defines a symbol that can be referenced externally. A
global symbol is defined in the same manner as any other symbol; that is,
it appears as a label or is defined by the .equ or .bss directive. When a
symbol is declared as global, it becomes a 16-bit value. As with all sym
bols, if a global symbol is defined more than once, the linker will issue a
multiple-definition error. A symbol may be declared global for two reasons:

Example

0000
0000
0000
0000
0000
0000
0000
0000 C5
0001 8AOOOO
0004 3800
0006 8AOOOO
0009 3800
OOOB 8AOOOO
OOOE 3800

0000
0000
0000
0000 8AOOOO
0005
OOOA
OOOF

5-20

1) If the symbol is not defined in the current source module (this in-
. eludes macro and include files), then the .global directive tells the
assembler that the symbol is defined in an external module. This
prevents the assembler from issuing an unresolved reference error.
At link time, the linker will look for the symbol's definition in other
modules.

2) If the symbol is defined in the current module, then the .global direc
tive declares that the symbol and its definition can be used externally
in other modules. These types of references will be resolved at link
time.

A symbol can be equated to a global symbol only if the global symbol is
defined before the .equ statement is assembled:

x:
y:

.global x

.equ x ; Legal

A global symbol cannot be used as an operand in an .equ statement if the
global symbol has not been declared:

y:
x:

.global x

.equ x ; Illegal

filel. asm declares Init, X, Y, and z as global symbols. f ilel. asm
defines Init, and file2. asm uses it; file2. asm defines x, Y, and z, and
filel. asm uses them.

file1.asm:

File 1 0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

Global symbol defined in this file
.global Init

Global symbols defined in other files
.global X,Y,Z

Init: .equ

file2.asm:

CLR
MOV
ADD
MOV
ADD
MOV
ADD

0001 ; File 2

a
B
X,A
A,B
Y,A
A,B
Z,A
A,B

; Symbol definition

0002 ; Global symbol defined in another file
0003 .global Init
0004 MOV Init,A
0005 X .equ 5
0006 Y .equ 10
0007 Z .equ 15

Global Register Definition .globreg

Syntax .globreg <symbol 1> [, ... , <symbol n>]

Description The .globreg directive defines a register symbol that can be referenced ex
ternally. A register symbol is defined by the .reg directive. As with all
symbols, if a global register symbol is defined more than once, the linker
will issue a multiple-definition error.

Example

0000
0000
0000
0002
0004
0006
0006
0006
0000
0004
0006
0006
0006

A register symbol may be declared global for two reasons:

1) If the register symbol is not defined in the current source module (th'is
includes macro and include files), then the .globreg directive tells the
assembler that the register symbol is defined in an external module.
This prevents the assembler. from issuing an unresolved reference er
ror. At link time, the linker will look for the register symbol's definition
in other modules.

2) If the register symbol is defined in the current module, then the .glo
breg directive declares that the register symbol and its definition can

, be used externally in other modules. These types of references will
be resolved at link time.

The following example defines two register variables, RRO and RR1, and
then declares them global with the .globreg directive.

0001 . * Begin assembling into .text ,
0002 .text

223F 0003 MOV #63,A
521C 0004 MOV #28,B
3800 0005 ADD A,B

0006
0007 .* Declare two relocatable registers, ,
0008 . * RRO and RR1 ,
0009 .reg RRO,3
0010 .regpair RR1
0011
0012 .* Make RRO and RR1 global ,
0013 .glohreg RRO,RRl

5-21

. if / .else/ .end if Conditional Assembly

Syntax

Description

Example

5-22

.if <expression>

code to assemble if expression is true (¢ 0)

.else

code to assemble if expression is false (= 0)

.endif

Three directives provide conditional assembly:

• The .if directive identifies the beginning of a conditional block. Ex
pression is a required parameter. If this expression evaluates to true
(a nonzero value), then the assembler will assemble the code that
follows it (up to an .else or .endif). If this expression evaluates to
false (0), then the assembler will assemble code that follows an .else
(if present) or an .endif (if no .else is present).

• The .else directive identifies a block of code that the assembler will
assemble if the if-expression is false (0). This directive is optional in
the conditional block; if an expression is false and there is no .else
statement, then the assembler will continue with the code that follows
the .endif.

• The .endif directive terminates a conditional block.

Here are some examples of conditional assembly:

0001 0001 sym1 .equ 1
0002 0002 sym2 .equ 2
0003 0003 sym3 .equ 3
0004 0004 sym4 .equ 4
0000 0005 If_I: .if syml < sy~2
0000 01 0006 .byte sym1
0001 0007 .else
0001 0008 .byte sym2
0001 0009 .endif
0001 0010 If_2: .if syml + sym2 sym3
0001 0102 0011 .byte sym1,sym2
0003 0012 .else
0003 0013 .byte sym3
0003 0014 .endif
0003 0015 If_3: .if sym3 <> sym4 - sym2
0003 03 0016 .byte sym3
0004 0017 .else
0004 0018 .byte sym4
0004 0019 .endif

Include Source File .include

Syntax

Description

Example

.include "<filename>"

The .include directive tells the assembler to read source statements from a
different file. Filename is the name of a source file, enclosed in double
quotes. At the end-of-file for filename, the assembler will resume process
ing source statements from the file or device it was processing before the
.include was encountered.

An .include directive may be nested within a file being copied. The as
sembler limits nesting to eight levels; the host operating system may set
additional restrictions. The assembler precedes the line number of copied
files with a letter code to identify the source file. An A indicates the first
file, B indicates a second file, etc.

Note that you cannot use the .include directive within a macro definition.

Note that each include file requires additional file space. To do this, place
a FILES=nn command in the config.sys file; nn should be the number of
assembly language source files plus six.

This example reads and assembles source statements from the file
byte. asm, and then resumes assembling the current file. Note that the
lines that are assembled from the first include file are preceded by the letter
A, and lines from the second include file are preceded by the letter B.

include.8sm
(source file)

byte.8sm
(first include file)

word.85m
(second include file)

.block 20

.include "byte.asm"

Back in original file
.string "Done"

Listing file:

In byte.asm
.byte 32,1+'A' ,1+"A"
.include "word.asm"

Back in byte.asm
.byte 67h + 3

0000 0000000000 0001 .block
0014 0002 . include
0014 AOO01 In byte.asm
0014 204242 AOO02 .byte
0017 AOOO3 . include
0017 BOO01 In word.asm
0017 AABB002E BOO02 .word
001B AOO04 Back in byte.asm
001B 6A AOO05 .byte
001C 0003
001C 0004 Back in original
001C 446F6E65 0005 .string

In word.asm
.word OAABBh,56q

20
"byte.asm"

32,1+'A' ,1+"A"
"word.asm"

OAABBh,56q

67h + 3

file
"Done"

**************** SOURCE FILES ****************

ID FILENAME

include.asm
A byte.asm
B word.asm

5-23

.lengtf1/.width Set Listing Page Size

Syntax

Description

Example

.length <page length>

.width <page width>

The .length directive sets the page length of the output listing file. The
default page length is 60 lines. The maximum page length is 32,767 lines.

The .width directive sets the page width of the output listing file. The de
fault page width is 80 characters. The maximum page width is 200 char
acters. Comments and other portions of a source statement that extend
beyond the page width are truncated in the listing.

This example sets the page length and the page width to various values.

length.asm TMS370 ASSEMBLER Version 2.96 Wed Apr 29 17:40:49 Page 1
*** Length and Width ***

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

5-24

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

.title "*** Length and Width ***"

**
**
* The page length is limited to 60 *
* lines per page. The page width is *
* limited to 60 characters per line. *
**
**

. length 60

.width 60

**
**
* The page length is limited to 50 *
* lines per page. The page width is *
* limited to 150 characters per line. *
**
**

. length 50

.width 150

Start/Stop Source Listing .Iist/.nolist

Syntax .1 ist

.nolist

Description The .nolist directive suppresses the source listing output until a .list direc
tive is encountered. The .list directive tells the assembler to resume printing
the source listing after it has been stopped by a .nolist directive. The .nolist
directive can be used to reduce assembly time and the size of the source
listing.

Example

The assembler prints the .nolist directive, but it does not print the .Iist di
rective or the directives that appear after a .nolist directive. The assembler
continues to increment the line counter and the SPC for the source state
ments that are not listed.

By default, the assembler acts as if a .list directive was assembled at the
beginning of a program.

Note:

If you don't request a listing file when you invoke the assembler, the
assembler will ignore the .Iist directive.

This example uses the .include directive to insert source statements from
another file. The first time this directive is invoked, the assembler lists the
copied source lines in the listing file. The second time this directive is in
voked, the assembler does not list the copied source lines because a .nolist
directive was assembled.

Source file:

.include "filel.asrn"

.nolist

.include "filel.asrn"

.list
Back in originai file

.string "Done"

Listing file:

0000
0000
0000 OAFF6l6263
0006
OOOC
OOOC 446F6E65

0001 .include "filel.asrn"
AOOOl ;********** In filel.asrn ***********
A0002 .byte 10,-1,"abc",'a'

0002 .nolist
0005 ; Back in original file
0006 . string "Done"

5-25

.mlib

Syntax

Description

Example

5-26

Define Macro Library

.mlib "<filename>"

The .mlib directive provides the assembler with the name of a macro library.
A macro library is a collection of files that contain macro definitions. These
files are bound into a single file (called an archive) by the archiver. Each
file in a macro library may contain one macro definition that corresponds to
the name of the file.

Filename specifies a source file that is named according to host operating
system conventions. The name must be enclosed in double quotes.

When the assembler encounters an .mlib directive, it opens the library and
creates a table of its contents. The assembler enters the names of the indi
vidual files within the library into the opcode table as library entries; this
redefines any existing opcodes or macros that have the same name. If one
of these macros is called, the assembler extracts the entry from the library
and loads it into the macro table. Only macros that are actually called from
the library are extracted.

Macros that are defined in libraries are expanded in the same manner as
macros that are defined in a source module; however, such macro defi
nitions do not appear in the listing file because they aren't part of the source
file.

This example creates a macro library that defines two macros, incqw and
decqw. The file incqw. asm contains the definition of incqw, and
decqw. asm contains the definition of decqw.

incqw.asm
; Macro for incrementing
; 32-bit word
incqw . MACRO reg

.newblock

decqw.asm
Macro for decrementing

; 32-bit word
decqw . MACRO reg

.newblock
incw #1,:reg: incw #-1,:reg:
jnc $1 jc $1
incw #1,:reg:-2 incw #-1,:reg:-2

$1 $1
.endm .endm

Use the archiver to create a macro library:

ar370 -a mac incqw.asm decqw.asm

Now you can use the .mlib directive to reference the macro library and de
fine the incqw and decqw macros:

.mlib "mac. lib"
incqw r8
decqw r8

Macro call
Macro call

Control Macro Listing .mlist/.mnolist

Syntax .mlist

.mnolist

There are two directives that provide you with the ability to control the
listing of macro expansions in the listing file:

• The .mlist directive allows macro expansions in the listing file.

• The .mnolist directive inhibits macr~ expansions in the listing file.

By default, macro expansions are printed in the listing.

Example This example defines a macro named str-3. The first time str-3 is called,
the macro expansion is listed (by default). The second time the macro is
called, the macro expansion is not listed because a .mnolist directive was
assembled. The third time the macro is called, the expansion is again listed
because a .mlist directive was assembled (effectively cancelling the .mnol
ist) .

0000
0000
0000
0000
0000
0000
0000
0000
0003
0008
OOOC
OOOC
0022
0022
0022
0027
002F

Notice that the source statements generated by a macro expansion are pre
cede with a # character.

0001 str_3 . MACRO parm1,parm2,parm3
0002 :string :parm1 :
0003 .string :parm2 :
0004 .string :parm3 :
0005 .ENDM
0006
0007 str_3 "red" , "green", "blue"

726564 0001 # .string "red"
677265656E 0002 # .string "green"
626C7565 0003 # .string "blue"

0008 .mnolist
0009 str-3 "Socrates","Plato","Aristotle"
OC10 .mlist
00 '.1 str-3 "Huron", "Superior" , "Michigan"

4875726F6E 00u1 # .string "Huron"
5375706572 0002 # .string "Superior"
4D69636869 0003 # . string "Michigan"

5-27

.newblock Terminate Local Symbol Block

Syntax .newblock

Description The .newblock directive "undefines" any local labels that are currently de
fined. A local label, by nature, is temporary; the .newblock directive resets
local labels and terminates their scope.

Example

A local label is a label in the form $n, where n is a single decimal digit. A
local label, like other labels, points to an instruction word. Unlike other la
bels, local labels cannot be used in expressions; they can only be used as
the operand in 8-bit jump instructions.

After a local label has been defined and (perhaps) used, you should use the
.newblock directive to reset it. Note that the .text, .data, and named sec
tions also reset local labels, and that local labels that are defined within an
include file are not valid outside of the include file.

This example declares the local label $1, resets it, and then declares it again.

0000 420203 0001 Labell: roov r2,r3
0003 06** 0002 jnz $1
0005 72FF03 0003 roov #-1,r3
0008 1D03 0004 $1 crop r3,A
OOOA 0005 .newblock Undefine $1
OOOA 06** 0006 jne $1
oooe D303 0007 inc r3
OOOE 480304 0008 $1 add r3,r4

Page Eject .page

Syntax .page

Description The .page directive produces a page eject in the listing file. Using the .page
directive to divide the source listing into logical divisions makes the listing
easier to read.

Example This example causes the assembler to begin a new page of the source list
ing.

page.asm TMS370 ASSEMBLER Version 2.96 Wed Apr 29 17:48:00 Page 1
** The .title directive works **

0000 0001 .title "** The .title directive works **"

0000 0060 .page

page.asm TMS370 ASSEMBLER Version 2.96 Wed Apr 29 17:48:00 Page 2
** The .title directive works **

5-29

. reg / . reg pa i r Assemble into .reg Section

Syntax · reg < name> [, <size>]

.regpair <name> [, <size>]

Description The .reg and .regpair directives allocate a block of memory in the register file
that can be used for relocatable registers. There are two differences be
tween these directives:

5-30

• The register symbol defined by the .reg directive points to the first byte
reserved; the register symbol defined by the .regpair directive points
to the last byte reserved.

• The default size for .reg is one byte; the default size for .regpair is two
bytes.

Relocatable registers allow you to use registers whose addresses will be
determined at link time. The linker maps a register to the first available re
gister location, so you do not have to explicitly specify which register lo
cation you want to use. The linker begins allocating registers starting with
R2; registers A and B (RO and R1) cannot be used as relocatble registers.
Note that you can use the .globreg directive to make a relocatable register
symbol global; this allows you to refer to the same register in different
source modules.

• The name is a required parameter. It defines a relocatable register
symbol, which can be used like any other register symbol.

When you use the .reg directive, the symbol points to the first
byte that is reserved.

When you use the .regpair directive, the symbol points to the
last byte that is reserved.

• The size is an optional parameter. It is an absolute expression that
specifies the number of bytes that will be allocated.

If you do not specify a size for the .reg directive, it will reserve
one byte in the .reg section.

If you do not specify a size for the .regpair directive, it will re
serve two bytes in the .reg section.

Section directives for initialized sections (.text, .data, and .sect) end the
current section and begin assembling into another section. Section direc
tives for uninitialized sections (.bss, .reg, and .regpair), however, do not
affect the current section. The assembler will assemble the .bss, .reg, or
.regpair directive and then resume assembling code into the same section.

For more information about COFF sections, see Section 3.

Assemble into .reg Section .reg/ .regpair

Example This example uses the .reg and .regpair directives to allocate register space
for five relocatable registers (RRO, RR1, RR2, RR3, and RR4). Figure 5-4 il
lustrates the effects of these .reg and .regpair directives on the .reg section.
Note that these directives occur within a block of code that is assembled
into the .text section; however, they do not affect the .text section.

0000 0001 .***
0000 0002 ;* Begin assembling code into .text *
0000 0003 ;***
0000 0004
0000 0005 .text
0000 00040005 0006 .word 4,5 Assembled into .text
0004 06 0007 .byte 6 Assembled into .text
0005 00070008 0008 .word 7,8 Assembled into .text
0009 0009
0000 0010 .reg RRO Assembled into .reg
0002 0011 .regpair RRI Assembled into .reg
0003 0012 .reg RR2,3 Assembled into .reg
0008 0013 .regpair RR3,3 Assembled into .reg
0009 0014 .reg RR4 Assembled into .reg
0009 0015
0009 417578 0016 .string "Aux" Assembled into .text

RRO RR1 RR2 RR3 RR4

Byte i i i i i
number 0 2 3 4 5 6 7 8 1 9 1_-_-_-_-:_"'::»

v I'-.,r--'
one two three three one
byte bytes bytes bytes byte

reserved reserved reserved reserved reserved

Figure 5-4. Examples of the .reg and .regpair Directives

5-31

.sect

Syntax

Description

Example

0000
0000
0000
0000
0000 420102
0003 420304
0006
0006
0006
0006
0006
0000 013A
0002 OF
0003 420506
0006
0006
0006
0006
0006
001F
001C
001F
0010 221F
0012 521C
0014 3800
0016
0016
0016
0016
0016
0006 421415
0009 0304
OOOB
OOOB
OOOB
OOOB
OOOB
OOOB
0016 521F
0018 3800
001A
001A
001A
001A
001A
001A
0006 AABB
0008 CCDD

5-32 .

Assemble into Named Section

.sect "<name>" [,address]

The .sect directive defines a named section that can be used like the default
.text, and .data sections. The .sect directive begins assembling source code
into the named section.

• The name is a required parameter. It is significant to 8 characters and
must be enclosed in double quotes. When used, the label points to
the location in the section name.

• The address. is an optional parameter that specifies a 16-bit address.
It can only be used the first time a .sect directive is specified for a
particular section. Normally, the SPC is set to 0 the first time a named
section is assembled; you can use the address parameter to assign an
initial value to the SPC. This parameter has no effect on the final ad
dress of the section; it simply makes the listing easier to read.

Section 3 provides additional information about named sections.

This example defines two named sections and assembles code into them.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048

.**
;** Beqin assemblinq into .text section **
.********~************~****************************
, .text

Mav R1,R2; Assembled into .text
Mav R3,R4; Assembled into .text

.**
;** Beqin assemblinq into Svrn-Defs section **
.********~************~****************************
, . sect II Sym-Defs II

.word 314

.byte OFh
Mav R5,R6

.**
;** Beqin assemblinq into addi section **
.********~************~****************************
, .sect l a ddi",16
Jan: .equ 31
Feb: . equ 28
Mar: .equ 31

Mav #Jan,A
Mav #Feb,B
ADD A,B

.***
;** Resume assemblinq into .text section **
.**********************~**************************
, .text

Mav R20,R21
.byte 3,4

.***
; ** Resume assemblinq into addi section . **
;**********************~**************************

.sect
MaV
ADD

II addi II
#Mar,B
A,B

.***
;** Resume assemblinq into Svrn-Defs section **
;**********************~**************************

.sect

.word

.word

"Sym-Defs"
Oaabbh
Occddh

Initialize Text .string

Syntax .string "<string>"

Description The .string directive places 8-bit characters from a character string into the
current section. An operand must be a character string enclosed in double
quotes; each character in a string represents a separate byte. Values are
packed into words starting with the most significant byte of the word and
moving toward the least significant portion as more bytes are added.

Example

You may use only one operand per .string directive. Although the assem
bler will initialize all the bytes necessary to place the string into memory, it
will only, show the first five bytes in'the listing file. Note that the SPC is
incremented by the number of bytes that are initia,lized.

If you use a label, it will point to the location of the first byte that is initial
ized.

This example places several strings into memory .

0000 41424344
0004 3432
0006 68656C6C6F
OOOB 416D737465

0001 strptr
0002
0003
0004

. string

. string

. string

. string

"ABeD"
"42"
"hello"
"Amsterdam"

5-33

.text

Syntax

Description

Example

5-34

Assemble into .text Section

.text [address]

The .text directive tells the assembler to begin assembling into the .text
section, which contains executable code. The section program counter is
set to 0 if nothing has yet been assembled into the .text section. If code
has already been assembled into the .text section, the section program
counter is restored to its previous value in the section.

The address is an optional parameter that specifies a 16-bit address. It can
only be used the first time a .text directive is specified. Normally, the sec
tion program counter is set to 0 the first time the .text section is assembled;
you can use this parameter to assign an initial value to the .text section
program counter. This parameter has no effect on the final address of the
section; it simply makes the listing easier to read.

Note:

The assembler assumes that .text is the default section. Therefore, at
the beginning of an assembly, the assembler assembles code into the
.text section unless you specify one of the section directives (.text,
.data, or .sect).

For more information about COFF sections, see Section 3.

This example assembles code into the .text and .data sections .

0000 0001 . **
0000 0002 ;* Begin assembling into .data section *
0000 0003 ;**
0000 0004 .data
0000 0506 0005 .byte 5,6
0002 0006
0002 0007 .**
0002 0008 ;* Begin assembling into .text section *
0002 0009 ;**
0002 0010 .text
0000 01 0011 .byte 1
0001 0203 0012 .byte 2,3
0003 0013
0003 0014 .**
0003 0015 ;* Resume assembling into .data section *
0003 0016 ;**
0003 0017 .data
0002 0708 0018 .byte 7,8
0004 0019
0004 0020 .**
0004 0021 ;* Resume assembling into .text section *
0004 0022 ;**
0004 0023 .text
0003 04 0024 .byte 4

Define Page Title .title

Syntax

Description

Example

.title "<string>"

The .title directive supplies a title that is printed in the heading on each
listing page. String is a quote-enclosed title of up to 50 characters. If you
supply more than 50 characters, the assembler will truncate the string and
issue a warning. The assembler prints the title on the page that follows the
directive, 'and on subsequent pages until another .title directiv~ is proc
essed.

This example prints the title ** The .title directive works ** in the page
headings of the source listing.

Source statement:

.title "** The .title directive works**"

Listing file:

page.asm TMS370 ASSEMBLER version 2.96 Wed Apr 29 17:48:00 Page 1
** The .title directive works **

0000 0001 .title ,,** The .title directive works **"

0000 0060 .page

page.asm TMS370 ASSEMBLER Version 2.96 Wed Apr 29 17:48:00 Page 2
** The .title directive works **

5-35

.word Initialize 16-Bit Integer

Syntax .word <value 1> [, ... , <value n>]

Description The .word directive place one or more values into consecutive words in the
current section. Each operand is either an expression or a character string;
each character in a character string represents a separate value.

Example

5-36

The operand values can be either absolute or relocatable expressions. If an
expression is relocatable, the assembler generates a relocation entry that
refers to the appropriate symbol; the linker can then correctly patch (relo
cate) the reference. This allows you to initialize memory with pointers to
variables or with labels.

You can use up to 100 operands, but they must fit on a single source
statement line. Although the assembler will initialize as many bytes as in
dicated by the .word directive, it will only show up to five bytes in the list
ing file. The assembler increments the section program counter by the
number of bytes it initializes. If you use a label, it will point to the first word
that is initialized.

This example initializes five words. The symbol WordX points to the first
word that is initialized.

00000C804143BE 0001 WordX: .word 3200,1+'AB',-'AF',OF410h, 'A'

6. TMS370 Instruction Set Summary

This section summarizes the TMS370 family instruction set. Table 6-1 lists the
symbols and abbreviations that are used throughout this section.

Table 6-1. Symbols and Abbreviations Used in the Instruction Set Summary

Symbol

n1,n2,n3

#n1

Pn1

@

A

PC

PCh

SP

C

V

Description Symbol Description

8-bit integers in the range 0-255. n1n2 n1 and n2 are concatenated to form
When used without a prefix, they a 16-bit signed address.
specify an 8-bit signed address.

8-bit immediate value #n1n2 16-bit immediate value

Specifies the contents of peripheral Rn1 Specifies the contents of register
file location n1 (a memory location n1 (a memory location from OOOOh
from 1 OOOh to 10FFh); Pn2 and to OOFFh); Rn1 and Rn2 may also
Pn3 may also be used be used

A prefix that indicates a 16-bit @Rn1 A 16-bit address - register Rn1
address contains the LSB, register Rn1-1

contains the MS B

Contents of the A register (memory B Contents of the B register (memory
location OOOOh) location 0001 h)

Program Counter (contains the ad- UPC Updated Program Counter (points
dress of the current instruction) to the next instruction)

8 MSBs of the PC PCI 8 LSBs of the PC

Stack Pointer ST Status Register (contains the
interrupt enable bits and C, N,
Z, and V flags)

Carry flag N Sign flag

Overflow/borrow flag Z Zero flag

The instruction set summary tables show six types of information for each in
struction.

1) Column 1 shows the instruction syntax and lists the possible combina
tions of operands. If a note is referenced "for all," then the note applies
to all the combinations; otherwise, it applies to one combination only.

2) Column 2 lists opcodes as hexadecimal constants; each opcode repres
ents one byte. If the second byte of the field contains a value, then the
opcode is two bytes long; if this field is blank, then the opcode is one
byte long.

3) Column 3 lists the operands.
4) Column 4 shows how instruction execution affects the C, N, Z, and V

status flags.
5) Column 5 lists the number of cycles consumed by instruction execution.
6) Column 6 illustrates the result of instruction execution on the operands.

6-1

TMS370 Instruction Set Summary

Operands
Status

Opcode Flagst
Instruction Format

1 2 1 2 3 CNZV
Cycles Action Description

ADC B,A 69 x x x x 8 A:= B+A+C
Rn1,A 19 n1 x x x x 7 A:= Rn1 + A + C
Rn1,B 39 n1 x x x x 7 B:= Rn1 + B + C
Rn1,Rn2 49 n1 n2 x x x x 9 Rn2:= Rn1 + Rn2 + C
#n1,Rn2 79 n1 n2 x x x x 8 Rn2:= n1 + Rn2 + C
#n1,A 29 n1 x x x x 6 A:= n1 + A + C
#n1,B 59 n1 x x x x 6 B:= n1 + B + C

ADD B,A 68 x x x x 8 A:= B+A
Rn1,A 18 n1 x x x x 7 A:= Rn1 + A
Rn1,B 38 n1 x x x x 7 B:= Rn1 + B
Rn1,Rn2 48 n1 n2 x x x x 9 Rn2:= Rn1 + Rn2
#n1,Rn2 78 n1 n2 x x x x 8 Rn2:= n1 + Rn2
#n1,A 28 n1 x x x x 6 A:= n1 + A
#n1,B 58 n1 x x x x 6 B:= n1 + B

AND B,A 63 o x x 0 8 A:= BANDA
A,Pn1 83 n1 o x x 0 9 Pn1 := Pn1 AND A
Rn1,A 13 n1 o x x 0 7 A:= Rn1 AND A
#n1,A 23 n1 o x x 0 6 A:= n1 AND A
B,Pn1 93 n1 o x x 0 9 Pn1 := Pn1 AND A
Rn1,B 33 n1 o x x 0 7 B:= Rn1 ANDB
#n1,B 53 n1 o x x 0 6 B:= n1 AND B
Rn1,Rn2 43 n1 n2 o x x 0 9 Rn2:= Rn1 AND Rn2
#n1,Pn2 A3 n1 n2 o x x 0 10 Pn2 := Pn2 AND n2
#n1,Rn2 73 n1 n2 o x x 0 8 Rn2:= n1 AND Rn2

BR n1n2 8C n1 n2 - - - - 9 PC:= n1:n2
@Rn1 9C n1 - - - - 8 PC:= Rn1-1:Rn1
n1n2(B) AC n1 n2 - - -- 11 PC:= n1:n2 + B

(B = 8-bit unsigned index)
n1 (Rn2) F4 EC n1 n2 - - - - 16 PC:= n1 + Rn2-1 :Rn2
(See Note 1) (n1 = 8-bit signed offset)

BTJO B,A,n1 66 n1 o x x 0 10/12 If B AND A :;l:0,
PC:= UPC + n1

#n1,A,n2 26 n1 n2 o x x 0 8/10 If n1 AND A :;l: 0,
PC:= UPC + n2

A,Pn1,n2 86 n1 n2 o x x 0 10/12 If A AND Pn1 :;l: 0,
PC:= UPC + n2

Rn1,A,n2 16 n1 n2 o x x 0 9/11 If Rn1 AND A :;l: 0,
PC:= UPC + n2

#n1,B,n2 56 n1 n2 o x x 0 8/10 If n1 AND B :;l: 0,
PC:= UPC + n2

B,Pn1,n2 96 n1 n2 o x x 0 10/12 If BAND Pn1 :;l: 0,
PC:= UPC + n2

Rn1,B,n2 36 n1 n2 o x x 0 9/11 If Rn1 AN D B :;l: 0,
PC:= UPC + n2

Rn1,Rn2,n3 46 n1 n2 n3 o x x 0 11/13 If Rn1 AND Rn2 :;l: 0,
PC:= UPC + n3

#n1,Pn2,n3 A6 n1 n2 n3 o x x 0 11/13 If n1 AND Pn2 :;l: 0,
PC:= UPC + n3

#n1,Rn2,n3 76 n1 n2 n3 o x x 0 10/12 If n1 AND Rn2 :;l: 0,
(See Notes 6,8 for all) PC:= UPC + n3

t x = don't care, - = not applicable

6-2

TMS370 Instruction Set Summary

Operands
Status

Opcode Flagst
Instruction Format

1 2 1 2 3 CNZV
Cycles Action Description

BTJZ B,A,n1 67 n1 o x x 0 10/12 If B AND NOT A ¢ 0,
PC:= UPC + n1

#n1,A,n2 27 n1 n2 o x x 0 8/10 If n1 AND NOT A ¢ 0,
PC:= UPC + n2

A,Pn1,n2 87 n1 n2 o x x 0 10/12 If A AND NOT Pn1 ¢ 0,
PC:= UPC + n2

Rn1,A,n2 17 n1 n2 o x x 0 9/11 If Rn1 AND NOT A ¢ 0,
PC:= UPC + n2

#n1,B,n2 57 n1 n2 o x x 0 8/10 If n1 AND NOT B ¢ 0,
PC:= UPC + n2

B,Pn1,n2 97 n1 n2 o x x 0 10/12 If B AND NOT Pn1 ¢ 0,
PC:= UPC + n2

Rn1,B;n2 37 n1 n2 o x x 0 9/11 If Rn1 AND NOT B ¢ 0,
PC:= UPC + n2

Rn1,Rn2,n3 47 n1 n2 n3 o x x 0 11/13 If Rn1 AND NOT Rn2 ¢ 0,
PC:= UPC + n3

#n1,Pn2,n3 A7 n1 n2 n3 o x x 0 11/13 If n1 AND NOT Pn2 ¢ 0,
PC:= UPC + n3

#n1,Rn2,n3 77 n1 n2 n3 o x x 0 10/12 If n1 AND NOT Rn2 ¢ 0,
(See Notes 6,8 for all) PC:= UPC + n3

CALL n1n2 8E n1 n2 - - - - 13 Push PC; PC := n1 :n2
@Rn1 9E n1 - - - - 12 Push PC; PC := Rn1-1 :Rn1
n1n2(B) AE n1 n2 - - -- 15 Push PC; PC:= n1 :n2 + B

(B = 8-bit unsigned index)
n1 (Rn2) F4 EE n1 n2 - - -- 20 Push PC; PC:= n1 + Rn2-1:Rn2
(see Note 1) (n1 = 8-bit signed offset)

CALLR n1n2 8F n1 n2 - - - - 15 Push PC; PC := n1 :n2 + JPC
@Rn1 9F n1 - - - - 14 Push PC; PC:= Rn1-1 :Rn1 + UPC
n1n2(B) AF n1 n2 - - - - 17 Push PC; PC := n1 :n2 + B + UPC

(B = 8-bit unsigned index)
n1 (Rn2) F4 EF n1 n2 - - -- 22 Push PC; PC := n1 + Rn2-1 :Rn2 + UPC

(See Note 1 for all) (n1 = 8-bit signed offset)

CLR A B5 o 0 1 0 8 A:= 00
B C5 o 0 1 0 8 B:= 00
Rn1 D5 n1 o 0 1 0 8 Rn1 := 00

CLRC BO o x x 0 9 CNZV:= OxxO

CMP B,A 6D x x x x 8 A-B
#n1.A 2D n1 x x x x 6 A - n1
Rn1,A 1D n1 x x x x 7 A - Rn1
n1 n2,A 8D n1 n2 x x x x 11 A - @(n1:n2)
@Rn1,A 9D n1 x x x x 10 A - @(Rn1-1:Rn1)
n1 (SP),A F3 n1 x x x x 8 A - @(SP) + n1)
(See Note 1) (n1 = 8-bit signed offset)
n1 n2(B),A AD n1 n2 x x x x 13 A - @(n1 :n2 + B)

(B = 8-bit unsigned index)
n1 (Rn2),A F4 ED n1 n2 x x x x 18 A - @(n1 + Rn2-11:Rn2)
(See Note 1) (n1 = 8-bit signed offset)
#n1,B 5D n1 x x x x 6 B - n1
Rn1,B 3D n1 x x x x 7 B - Rn1
Rn1,Rn2 4D n1 n2 x x x x 9 Rn2 - Rn1
#n1,Rn2 7D n1 n2 x x x x 8 Rn2 - n1

t x = don't care, - = not applicable

6-3

TMS370 Instruction Set Summary

Opcode Operands
Instruction Format

1 2 1

COMPL A 88
8 C8
Rn1 D8 n1

(See Note 1 for all)

DAC 8,A 6E
Rn1,A 1E n1
Rn1,8 3E n1
Rn1,Rn2 4E n1
#n1,Rn2 7E n1
#n1,A 2E n1
#n1,8 5E n1

DEC A 82
8 C2
Rn1 D2 n1

DI NT (See Note 2) FO 00

DIV Rn1,A F4 F8 n1

(See Notes 1,3)

DJNZ A,n1 8A n1

8,n1 CA n1

Rn1,n2 DA n1

(See Note 8 for all)

DS8 8,A 6F
Rn1,A 1F n1
Rn1,8 3F n1
Rn1,Rn2 4F n1
#n1,Rn2 7F n1
#n1,A 2F n1
#n1,8 5F n1

EINT (See Note 2) FO OC

EINTH (See Note 2) FO 04

EINTL (See Notes 1,2) FO 08

IDLE F6
(See Note 5)

INC A 83
8 C3
Rn1 D3 n1

t x = don't care, - = not applicable
:j: Form 2's complement
§ Operands are in 8CD

6-4

2 3

n2
n2

n2

n2
n2

Status
Flagst

CNZV

x x x 0
x x x 0
x x x 0

x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x

x x x x
x x x x
x x x x

o 000

o x x 0
1 1 1 1

- - - -
- - --
- - --

x x x x
x x x x
x x x x
x x x x
x x x x
x x x x
x x x x

o 000

o 0 0 0

o 0 0 0

- - - -
x x x x
x x x x
x x x x

Cycles Action Description

8 A:= 100h - A :j:

8 8:= 100h - 8 :j:

10 Rn1 := 100h - Rn1 :j:

10 A:= 8+A+C §

9 A:= Rn1 + A + C §

9 8:= Rn1 + 8 + C §

11 Rn2:= Rn1 + C §

10 Rn2:= n1 + Rn2 + C §

8 A:= n1 + A + C §

8 8:= n1 + 8 + C §

8 A:= A -1
8 8:= 8 - 1
6 Rn1 := Rn1 - 1

6 ST·:= 00

47-63 A,8 := A:8 / Rn1 If no overflow
14 else: A, 8, Rn1 unaffected.

A = quotient; 8 = remainder

10/12 A:= A - 1;
If A ¢ 0 then PC := PC + n1 +2

10/12 8:= 8 - 1;
If 8 ¢ 0 then PC := PC + n1 +2

8/10 Rn1 - 1;
If Rn1 ¢ 0 then
-PC := PC + n2 + 3
(n1 = 8-bit signed offset)

10 A:= A - 8 - C §

9 A:= A - Rn1 - C §

9 8:= 8 - Rn1 - C §

11 Rn2:= Rn2 - Rn1 - C §

10 Rn2:= Rn2 - n1 - C §

8 A:= A - n1 - C §

8 8:= 8 - n1 - C §

6 ST:= OC

6 ST:= 04
' 6' 'ST := 08

6 stop instruction execution until
interrupt

8 A:= A + 1
8 8:= 8 + 1
6 Rn1 := Rn1 +1

TMS370 Instruction Set Summary

Opcode Operands
Instruction Format

1 2 1

INCW #n1,Rn2 70 n1
(See Notes 1,4)

-
I'.N A B4

B C4
Rn1 04 n1

JMP n1 00 n1
(See Note 6)

JMPL n1n2 89 n1
@Rn1 99 n1
n1 n2(B) A9 n1

n1 (Rn2) F4 E9 n1
(See Notes 1,7 for all)

IN n1 (Note 6,8) 01 n1

JZ/JEQ n1 (Note 6,8) 02 n1

JC n1 (Note 6,8) 03 n1

JP n1 (Note 6,8) 04 n1

JPZ n1 (Note 6,8) 05 n1

JNZ n1 (Note 6,8) 06 n1
JNE (Note 6,8)

JNC n1 (Note 6,8) 07 n1

JV n1 (Note 1,6,8) 08 n1

JNV n1 (Note 1,6,8) OC n1

JGE n1 (Note 1,6,8) 00 n1

JL n1 (Note 1,6,8) 09 n1

JG n1 (Note 1,6,8) OE n1

JLE n1 (Note 1,6,8) OA n1

JLO n1 (Note 1,6,8) OF n1

JHS n1 (Note 1,6,8) OB n1

LOSP FO

LOST #n1 FO n1

t x = don't care, - = not applicable
:I: Unconditional

2 3

n2

n2

n2

n2

Status
Flagst

CNZV

x x x x

o x x 0
o x x 0
o x x 0

- - --

- - --- - --
- - --
- - --

- - --
- - --
- - --
- - --
- - --
- - - -

- - --
- - - -
- - - -
- - - -

- - --

- - - -

- - --

- - --
- - - -

- - - -
x x x x

Cycles Action Description

11 Rn2-1:Rn2:= Rn2-1:Rn2 + n1
(signed 2's complement,
n1 = 8-bit signed offset)

8 A:= NOTA
8 B:= NOT B
6 Rn1 := NOT Rn1

7 PC:= n1 + UPC :I:

9 PC:= n1 :n2 + UPC :I:
8 PC:= Rn1-1 :Rn1 + UPC :I:

11 PC:= n1 :n2 + B + UPC :I:
(B = 8-bit unsigned index)

16 PC:= n1 + Rn2-1 :Rn2 + UPC :I:
(n1 = 8-bit signed offset)

5/7 If N = 1, PC := UPC + n1

5/7 If Z = 1, PC := UPC + n1

5/7 If C = 1, PC := UPC + n1

5/7 If N = 0 AND Z = 0, PC := UPC + n1

5/7 If N = 0, PC := UPC + n1

5/7 If Z = 0, PC := UPC + n1

5/7 If C = 0, PC := UPC + n1

5/7 If V = 0, PC := UPC + n1

5/7 If V = 0, PC := UPC + n1

5/7 If N XOR V = 0,
PC:= UPC + n1

5/7 If N XOR V = 1,
PC:= UPC + n1

5/7 If Z OR (N XOR V) = 0,
PC:= UPC + n1

5/7 If Z OR (N XOR V) = 1,
PC:= UPC + n1

5/7 If C = 0 AND Z = 0, PC := UPC + n1

5/7 If C = 1 OR Z = 1 ,PC := UPC + n1
(n1 = 8-bit signed offset)

7 SP:= B

6 ST:= n1

6-5

TM S370 Instruction Set Summary

Operands
Status

Opcode Flagst
Instruction· Format

1 2 1 2 3 CNZV
Cycles Action Description

MOV A,B CO o x x 0 9 B:= A
A,Pn1 21 n1 o x x 0 8 Pn1 := A
A,Rn1 DO n1 o x x 0 7 Rn1 := A
A,@Rn1 9B n1 o x x 0 9 @(Rn1-1 :Rn1) := A
A,n1 (SP) F2 n1 o x x 0 7 @(SP) + n1 := A
(See Note 1) (n1 = 8-bit signed offset)
A,n1 n2 8B n1 n2 o x x 0 10 @(n1 :n2) := A
A,n1 n2(B) AB n1 n2 o x x 0 12 @(B + n1 :n2) := A

(B has 8-bit unsigned index)
A,n1 (Rn2) F4 EB n1 n2 o x x 0 17 @(n1 + Rn2-1:Rn2) := A
(See Note 1) (n1 = 8-bit signed offset)
#n1,A 22 n1 o x x 0 6 A:= n1
Pn1,A 80 n1 o x x 0 8 A:= Pn1
Pn1,Rn2 A2 n2 n1 o x x 0 10 Rn2:= Pn1 (reversed operand order)
Rn1,A 12 n1 o x x 0 7 A:= Rn1
Rn1,Pn2 71 n2 n1 o x x 0 10 Pn2:= Rn1 (reversed operand order)
@Rn1,A 9A n1 o x x 0 9 A:= @(Rn1-1 :Rn1)
n1 n2,A 8A n1 n2 o x x 0 10 A:= @(n1 :n2)
n1 n2(B),A AA n1 n2 o x x 0 12 A:= @(B + n1 :n2)

(B has an 8-bit unsigned index)
n1 (Rn2),A F4 EA n1 n2 o x x 0 17 A:= @(n1 + Rn2-1 :Rn2)
(See Note 1) (n1 = 8-bit signed offset)
n1 (SP),A F1 n1 o x x 0 7 A:= @(SP + n1)
(See Note 1) (n1 = 8-bit signed offset)
B,A 62 o x x 0 8 A:= B
B,Pn1 51 n1 o x x 0 8 Pn1 := B
B,Rn1 D1 n1 o x x 0 7 Rn1 := B
#n1,B 52 n1 o x x 0 6 B:= n1
Pn1,B 91 n1 o x x 0 8 B:= B
Rn1,B 32 n1 o x x 0 7 B:= Rn1
Rn1,Rn2 42 n1 n2 o x x 0 9 Rn2:= Rn1
#n1,Rn2 72 n1 n2 o x x 0 8 Rn2:= n1
#n1,Pn2 F7 n1 n2 o x x 0 10 Pn2:= n1

MOVW #n1 n2,Rn3 88 n1 n2 n3 o x x 0 13 Rn3-1 :Rn3 := n1 :n2
Rn1,Rn2 98 n1 n2 o x x 0 12 Rn2-1:Rn2 :=Rn1-1:Rn1
#n1 (Rn2),Rn3 F4 E8 n1 n2 n3 o x x 0 20 Rn3-1 :Rn3 := n1 + Rn2-1 :Rn2
(See Note 1) (n1 = 8-bit signed offset)
#n1 n2(B),Rn3 A8 n1 n2 n3 o x x 0 15 Rn3-1 :Rn3 := n1 :n2 + B

MPY B,A 6C o x x 0 47 A:B := BxA
Rn1,A 1C n1 o x x 0 46 A:B := Rn1 x A
Rn1,B 3C n1 o x x 0 46 A:B := Rn1 x B
Rn1,Rn2 4C n1 n2 o x x 0 48 A:B := Rn1 x Rn2
#n1,Rn2 7C n1 n2 o x x 0 47 A:B := n1 x Rn2
#n1,A 2C n1 o x x 0 45 A:B := n1 x A
#n1,B 5C n1 o x x 0 45 A:B := n1 x B

NOP FF - - - - 7 PC:= PC + 1

t x = don't care, - = not applicable

6-6

TMS370 Instruction Set Summary

Operands
Status

Opcode Flagst
Instruction Format

1 2 1 2 3 CNZV
Cycles Action Description

OR B,A 64 o x x 0 8 A:= B OR A
A,Pn1 84 n1 o x x 0 9 Pn1 := Pn1 OR A
Rn1,A 14 n1 o x x 0 7 A:= Rn1 OR A
#n1,A 24 n1 o x x 0 6 A:= n1 OR A
B,Pn1 94 n1 o x x 0 9 Pn1 := Pn1 OR B
Rn1,B 34 n1 o x x 0 7 B:= Rn1 OR B
#n1,B 54 n1 o x x 0 6 B:= n1 OR B
Rn1,Rn2 44 n1 n2 o x x 0 9 Rn2:= Rn1 OR Rn2
#n1,Pn2 A4 n1 n2 o x x 0 10 Pn2:= Pn1 OR n2
#n1,Rn2 74 n1 n2 o x x 0 8 Rn2:= n1 OR Rn2

POP A B9 o x x 0 9 A:= @SP; SP := SP - 1
B C9 o x x 0 9 B:= @SP; SP := SP - 1
Rn1 09 n1 o x x 0 7 Rn1 := @SP; SP := SP - 1
ST FC o x x 0 8 ST:= @SP; SP := SP -1

PUSH A B8 o x x 0 9 SP := SP + 1; @SP:= A
B C8 o x x 0 9 SP := SP + 1; @SP:= B
Rn1 08 n1 o x x 0 7 SP := SP + 1; @SP := Rn1
ST FB n1 - - - - 8 SP:= SP + 1; @SP:= ST

RL A BE x x x 0 8 C:= A(7); A:= A(6,5,4,3,2,1,O,7)
B CE x x x 0 8 C:= B(7); B := B(6,5,4,3,2,1,O,7)
Rn1 DE n1 x x x 0 6 C:= Rn1 (7);

Rn1 := B(6,5,4,3,2,1,O,7)

RLC A BF x x x 0 8 C:= A(7); A := A(6,5,4,3,2,1,O,C)
B CF x x x 0 8 C:= B(7); B := B(6,5,4,3,2,1,O,C)
Rn1 OF n1 x x x 0 6 C:= Rn1 (7);

Rn1 : = Rn1 (6,5,4,3,2,1,O,C)

RR A BC x x x 0 8 C:= A(O); A : = A(O,7,6,5,4,3,2,1)
B CC x x x 0 8 C:= B(O); B := B(O,7,6,5,4,3,2,1)
Rn1 DC n1 x x x 0 6 C:= Rn1 (0);

Rn1 := Rn1 (0,7,6,5,4,3,2,1)

RRC ·'A BO x x x 0 8 C:= A(O); A : = A(C,7,6,5,4,3,2, 1)
B CD x x x 0 8 C:= B(O); B := B(C,7,6,5,4,3,2,1)
Rn1 DO x x x 0 6 C:= Rn1 (0);

Rn1 := Rn1 (C,7,6,5,4,3,2,1)

RTI FA x x x x 12 Pop PCI; Pop PCh; Pop ST

RTS F9 - - - - 9 Pop PCI; Pop PCh

SETC F8 1 0 1 0 7 CNZV:= 1010

SBB B,A 6B x x x x 8 A:= A-B-C
Rn1,A 1B n1 x x x x 7 A:= A - Rn1 - C
#n1,A 2B n1 x x x x 6 A:= A - n1 - C
Rn1,B 3B n1 x x x x 7 B:= B - Rn1 - C
#n1,B 5B n1 x x x x 6 B:= B - n1 - C
Rn1,Rn2 4B n1 n2 x x x x 9 Rn2:= Rn2 - Rn1 - C
#n1,Rn2 7B n1 n2 x x x x 8 Rn2:= Rn2 - n1 - C

t x = don't care, - = not applicable

6-7

TMS370 Instruction Set Summary

Operands
Status

Opcode Flagst
Instruction Format

1 2 1 2 3 CNZV
Cycles Action Description

STSP FE - - -- B B:= SP

SUB B,A 6A x x x x B A:= A-B
Rn1,A 1A n1 x x x x 7 A:= A - Rn1
#n1,A 2A n1 x x x x 6 A:= A - n1
Rn1,B 3A n1 x x x x 7 B:= B - Rn1
#n1,B SA n1 x x x x 6 B:= B - n1
Rn1,Rn2 4A n1 n2){ x x x 9 Rn2:= Rn2 - Rn1
#n1,Rn2 7A n1 n2 x x x x B Rn2:= Rn2 - n1

SWAP A B7 o x x 0 11 A{7:4,3:0) := A{3:0,7:4)
B C7 o x x 0 11 B{7:4,3:0) := B(3:0,7:4)
Rn1 07 n1 o x x 0 9 Rn1 (7:4,3:0) := Rn1 (3:0,7:4)

TRAP 0 EF - - - - 14 Push PC;
PCh := @(7FDEh); PCI := @(7FDFh)

1 EE - - -- 14 Push PC;
PCh := @(7FDCh); PCI := @(7FDDh)

2 ED - - -- 14 Push PC;
PCh := @(7FDAh); PCI := @(7FDBh)

3 EC - - -- 14 Push PC;
PCh := @(7FDBh); PCI := @(7FD9h)

4 EB - - - - 14 Push PC;
PCh := @(7FD6h); PCI := @(7FD7h)

S EA - - - - 14 Push PC;
PCh := @(7FD4h); PCI := @(7FDSh)

6 E9 - - - - 14 Push PC;
PCh := @(7FD2h); PCI := @(7FD3h)

7 EB - - -- 14 Push PC;
PCh := @(7FDOh); PCI := @(7FD1 h)

B E7 - - -- 14 Push PC;
PCh := @(7FCEh); PCI := @(7FCFh)

9 E6 - - -- 14 Push PC;
PCh := @(7FCCh); PCI := @(7FCDh)

10 ES - - - - 14 Push PC;
PCh := @(7FCAh); PCI := @(7FCBh)

11 E4 - - -- 14 Push PC;
PCh := @(7FCBh); PCI := @(7FC9h)

12 E3 - - - - 14 Push PC;
PCh := @(7FC6h); PCI := @(7FC7h)

13 E2 - - - - 14 Push PC;
PCh := @(7FC4h); PCI := @(7FCSh)

14 E1 - - -- 14 Push PC;
PCh := @(7FC2h); PCI := @(7FC3h)

1S EO - - -- 14 Push PC;
PCh := @(7FCOh); PCI := @(7FC1h)

t x = don't care, - = not applicable

6-B

TMS370 Instruction Set Summary

Operands
Status

Opcode Flagst
Instruction Format

1 2 1 2 3 CNZV
Cycles Action Description

TST A 80 0 x x 0 9 A-O
8 C6 o x x 0 10 8 - 0

XCH8 A 86 o x x 0 10 A:= 8; 8:= A
8 C6 o x x 0 10 8:= 8
Rn1 06 n1 0 x x 0 8 Rn1 := 8; 8 := Rn1

XOR 8,A 65 0 x x 0 8 A:= 8 XOR A
A.Pn1 85 n1 o x x 0 9 Pn1 := Pn1 XOR A
Rn1,A 15 n1 0 x x 0 7 A:= Rn1 XOR A
#n1,A 25 n1 0 x x 0 6 A:= n1 XOR A
8,Pn1 95 n1 0 x x 0 9 Pn1 := Pn1 XOR 8
Rn1,8 35 n1 0 x x 0 7 8:= Rn1 XOR 8
#n1,8 55 n1 o x x 0 6 8:= n1 XOR 8
Rn1,Rn2 45 n1 n2 0 x x 0 9 Rn2:= Rn1 XOR Rn2
#n1.Pn2 A5 n1 n2 0 x x 0 10 Pn2:= Pn1 XOR n2
#n1,Rn2 75 n1 n2 0 x x 0 8 Rn2:= n1 XOR Rn2

t x = don't care, - = not applicable

Note that PC denotes the address of the current instruction. The value used at execution
time for program-counter-relative operand and branch addresses is the UPC. Thus, the
symbolic instruction JMP $ (where $ is the address of the instruction) has an object code
of 00 FEh. This effectively subtracts 2 from the contents of the UPC and causes a refetch
of the current instruction.

Notes: 1. No equivalent instruction in TMS7000 processors.
2. These instructions transfer the second byte of the opcode into the Status

Register.
3. A 16-bit dividend (A:8) divided by an 8-bit divisor (Rn1) yields an 8-bit

quotient (A) and an 8-bit remainder (8). all unsigned. Execution time is
related to the number of ones in the quotient with a base level of 47 cycles
and a maximum of 63 cycles. Overflow conditions are checked explicitly
prior to actual division; if detected, the operands are left unchanged, the
C, N, Z, and V bits of the status register are all set and the instruction is
aborted after 14 cycles.

4. INCW algebraically adds the signed 8-bit immediate operand to the content
of the specified register pair.

5. Stops execution and opcode fetches; activates system STAND8Y or HALT
mode based on content of Configuration Control Registers.

6. Operand generates 8-bit signed offset to Program Counter.
7. Operand generates 16-bit signed offset to Program Counter.
8. Execution cycles of conditional jumps is the lesser of the two values given

if the jump is not taken.

6-9

Instruction Set Summary

6-10

7. Macro Language

The assembler supports a macro language that allows you to create your own
"commands." This is especially useful when a program executes a particular
task several times.

The macro language allows you to:

• Define your own macros
• Redefine existing opcodes and macros
• Access macro libraries created with the archiver
• Manipulate strings within a macro
• Define conditional and repeatable blocks within a macro
• Control macro expansion listing

There are three phases of macro use:

• Macro definition. Macros must be defined before they can be in
voked. There are two methods for defining macros:

1) Macros can be defined in the source file where they are used (or
in a separate text file that is included with a .include directive).
Since macros must be defined before they are called, it is a good
practice to place all the definitions at the beginning of the file.

2) Macros can also be defined in a macro library. A macro library
is a collection of files in archive format, created by the archiver.
Each member of the archive file (macro library) may contain one
macro definition that corresponds to the name of the member. You
can access a macro library by using the .mlib directive. Since
macros must be defined before they can be called, the .mlib direc
tive must appear in the source code before any of the macros in the
library are called.

• Macro invocation. Once a macro has been defined, the macro name
can be used as an opcode in a source program. This is referred to as a
macro call.

• Macro expansion. When the source program calls a macro, the as
sembler substitutes the statements within the macro definition for the
macro call statement.

This section discusses the following topics:

Section Page
7.1 Macro Directives Summary .. 7-2
7.2 Macro Libraries .. 7-3
7.3 Defining Macros .. 7-4
7.4 Macro Variables ... 7-6
7.5 Manipulating Strings .. 7-15
7.6 Conditional Blocks ... 7-16
7.7 Repeatable Blocks .. 7-17

7-1

Macro Language - Macro Directives Summary

7.1 Macro Directives Summary

7-2

Directive

.MACRO

.VAR

,.ASG

Description
Macro Definition .Directive

Syntax:<macro name> .MACRO [<parm 1>][. ... ,<parm n>]

The .MACRO directive begins a macro definition. It must be the first statement in
a macro definition .. MACRO'assigns a name to the macro. and declares the macro
parameters.

Macro name is the name of the macro. A macro name may be 1 to 32 alphanumeric
characters;· it must· begin with a ietter. Parms are optional parameters. When a
macro is called, the assembler will associate the first operand in the macro call with
the first parameter of the macro definition, and ~o on.

Variable Declaration Directive

Syntax: .VAR <vai' 1 >[, ... ,<var n>]

The .VAR directive declares variables that can be used within a macro definition .
.vAR is only necessary for declaring variables that are not parameters. Up to 128
variables can be declared within one macro. You can use more than one .vAR
statement per macro; each .VAR statement may declare several variables. Only the
first 8 characters of a variable name are significant.

Assign Value to Variable Directive

Syntax: .ASG <expression or string> , <var>

The .ASG directive assigns values to variables that have been declared with the
.VAR directive or passed as parameters .

.I F Begin Conditional Block Directive

.ELSE

. ENDIF

.ENDM

.LOOP

. ENDLOOP

Syntax: .IF <expression>

The .IF directive begins a conditional block. If the expression evaluates to a non
zero value, then the code following the .IF directive (up to an .ELSE or .ENDIF di
rective) will be assembled.

Alternate Conditional Block Directive

Syntax: .ELSE

The .ELSE directive may be used within a conditional block. If the expression in
an .1 F directive evaluates to 0, then code following a corresponding .ELSE directive
(up to an .ENDIF directive) will be assembled .

Terminate Conditional Block Directive

Syntax: .ENDIF

The .ENDIF directive terminates a conditional block.

Terminate Macro Definition Directive

Syntax: .ENDM

The .ENDM directive terminates a macro definition.

Begin Repeatable Block Directive

Syntax: .LOOP <expression>

The .LOOP directive begins a repeatable block. The expression is evaluated only
once; the expression should evaluate to a value in the range 0-32767 ..

Terminate Repeatable Block Directive

Syntax: .ENDLOOP

The .ENDLOOP directive terminates a repeatable block.

Macro Language - Macro Libraries

7.2 Macro Libraries

A macro library is a collection of files that contain macro definitions. These
files,or members, are bound into a single file (called an archive) by the ar
chiver. Each member of a macro library may contain one macro definition; the
macro name and the member name must be the same. You can access the
macro library by using the .mlib assembler directive:

.mlib "<macro library filename>"

When the assembler encounters an .mlib directive, it opens the library and
creates a table of its contents. The assembler enters the names of the indi
vidual members within the library into the opcode table as library entries; this
redefines any existing opcodes or macros that have the same name. If one of
these macros is called, the assembler extracts the entry from the library and
loads it into the macro table. The assembler expands the library entry in the
same manner as other macros, but it does not place the source code into the
listing. Only macros that are actually called from the library are extracted, and
they are only extracted once.

You can create a macro library with the archiver by simply including the de
sired files in an archive. A macro library is no different from any other archive,
except that the assembler expects the macro library to contain macro defi
nitions.

The following example creates a macro library called maclib .lib:

370ar -a maclib.lib macl.asm mac2.asm mac3.asm mac4.asm

This example adds four macro files (macl. asm, mac2. asm, mac3. asm, and
mac4. asm) to the library maclib . lib. Note that this could be a new or an
existing library; if the library already existed, this example would simply ap
pend the macros to the end of the library.

Now you can specify maclib.lib to the assembler with an .mlib directive,
and call any of the macros that it contains:

.mlib
macl

"maclib.lib"
i Macro call

The assembler assumes that the files in the archive contain macro definitions
with the same names as the members. The assembler expects only macro
definitions in a macro library; putting object code or miscellaneous source files
into the library may produce undesirable effects.

7-3

Macro Language - Defining Macros

7.3 Defining Macros

7-4

A macro definition is a series of source statements in the following format.

<macname> .MACRO [<parml>] [,<parm2>] ... [,<parmn>]

where:

<model statements>
or
<macro directives>

.ENDM

macname names the macro. It must be placed in the source statement's
label field. Macro names are significant to 32 characters. The
assembler places this name in the internal opcode table, replac
ing any instruction or previous macro definition with the same
name .

. MACRO identifies this source statement as the first line of a macro defi
nition; it must be placed in the opcode field.

parms are optional parameters which may appear as operands for the
.MACRO directive. Parameters are not required by all macros.

model statements
are instructions or assembler directives that are used each time
the macro is invoked.

macro directives

. ENDM

control the expansion of the macro or manipulate macro vari
ables.

terminates the macro definition .

The contents of a single macro definition must be contained in the same file.
Macro definitions cannot be nested, but other directives, instructions, and
macro calls may be used in a macro definition. The assembler performs only
limited error checking of macro definitions (during the definition phase), so
mUltiple expansions of a macro may produce duplicate error messages.

When a macro is called, the assembler will substitute the model statements
and macro directives within the definition for' the macro call in the source
code. Example 7-1 shows an example of a macro definition, how it could be
called, and how it would be expanded in the source code.

Macro Language - Defining Macros

Example 7-1. Macro Definition and Expansion

Macro Definition: The following code defines a macro, MOVREG, that has three
parameters.

0000
0000
0000
0000
0000
0000
0000
0000
0000

0001
0002
0003
0004
0005
0006
0007
0008
0009

;***
MOVREG . MACRO p1,p2,pN

mav :p1:, :p2:
mav :p2:, :pN:
.LOOP 2
nap
.ENDLOOP
.ENDM

;***

Macro Call: The MOVREG macro is invoked in the source code.

0000
0000
0000

0010 ;***
0011
0012 MOVREG RO,R1,R5

Macro Expansion: The assembler substitutes the functional lines of the macro de
finition for the macro call. The macro parameters are replaced with the operands sup
plied in the macro call.

0000 420001
0003 420105
0006 FF
0007 FF

0001 #
0002 #
0003 #
0004 #

mav
mav
nap
nap

RO,R1
R1,R5

When the assembler encounters a macro definition, it places the macro name
in the opcode table .. This redefines any previously defined macro, library entry,
directive, or instruction mnemonic that has the same name as the encountered
macro. This allows you to expand the functions of directives and instructions,
as well as to add new instructions.

Caution:

When you specify a macro library with the .mlib directive, the
assembler places all the entries in the specified library into the
opcode table - not just the macros that are called. Make sure
that the macros and instructions you want to use are not rede
fined by macros in a macro library.

7-5

Macro Language - Macro Variables

7.4 Macro Variables

Macros can declare local variables whose scope is limited to the defining ma
cro. These variables do not conflict with symbols defined outside the macro.
Only the first eight characters of a variable name are significant. A single
macro can declare a maximum of 128 variables.

A variable can be defined in one of two ways:

• As a parameter defined by the .MACRO directive. The assembler assigns
initial values to macro parameters when the macro is called.

As an example, consider the following macro definition line:

ADDUP . MACRO vall,vaI2,sum

This example defines three variables (vall, val2, and sum). The as
sembler assigns values to these variables when it expands the macro;
each parameter corresponds to. an operand in the macro call. .

• As a local variable that appears as the operand of a .VAR directive. These
variables have initial values of 0; you can assign values to them with the
.ASG directive.

The following macro line:

.VAR colorl,border

defines two local variables, colorl and border, which have initial va
lues of O.

The macro language provides a string substitution facility that allows you to
build instructions out of strings that are stored in the variables. These string
values can be assigned, operated on, concatenated, and substituted into mo
del statements.

7.4.1 Variable Values

7-6

Values are assigned to:

• Parameters during a macro call.
• Local variables with the .ASG directive.

The .ASG directive assigns a value to a variable. The syntax of the .ASG di
rective is:

.ASG <macro expression> , <macro variable[.component]>

The macro expression can contain a string, a constant, or an expression. The
main use of .ASG is to assign values to local macro variables which have no
useful value; it can also be used to put values in the assembler symbol table.

Example 7 -2 shows a macro that has two variables. The variable defrost is
a parameter; the variable temp-control is a local variable.

Macro language - Macro Variables

Example 7-2. Assigning Values to Variables

0000
0000
0000
0000
0000
0000
0000
004E
0000
0000 03
0001 4E

0001 climate
0002
0003
0004
0005
0006
0007
0008 setting
0009
0001 #
0002 #

. MACRO

.VAR

.ASG

.byte

.byte

.ENDM

.equ
climate

.byte

.byte

defrost
temp-control
3 , temp_control
:temp-control:
:defrost:

4Eh
setting

3
setting

In this example, the variable defrost automatically has the same value as the
constant setting, because setting was passed as a parameter. The variable
temp-control has a value that was assigned to it with an .ASG directive.

The value that is assigned to a macro variable is called a string value. The
assembler will substitute a variable's string value into a model statement when
you enclose the variable in colons. Variables can be used this way anywhere
in a model statement (as a label, an operand, etc.). Model statements are only
scanned once, and expanded strings are not rescanned by the assembler. Note
that qualified macro variables can also appear between colons.

7.4.2 Qualifying Variables

In addition to the value assigned through macro calls or .ASG statements (the
string value), each macro variable has up to seven components. A variable
component provides additional information about the variable. It is accessed
through the use of 1 - or 2-letter suffixes in the following format:

name.suffix

There are two types of components:

• Macro components, which provide information about macro variables.

• Symbol components, which provide information about symbols that are
defined in the assembly language program.

Any variable component can be used in an expression and assigned to a
component of a variable or to a component of a symbol. Components of one
variable can be assigned to components of another variable. If you assign a
value to one component of a variable, only that component is assigned a va
lue.

7-7

Macro Language - Macro Variables

7.4.2.1 Macro Components

7-8

Macro components provide information about macro variables. The compo
nents of parameters are set when the macro is invoked. The components of
local variables are initially set to 0. Table 7 -1 lists the four macro variable
components.

Table 7-1. Macro Components

Component Description

S String component. This is the default component when no suffix is pro-
vided. It is equivalent to :variable:. For a macro parameter, the string
component is a copy of the string that passes to variable.

V Value component. This component contains the variable's value. If the
string represents a number or an expression, this component contains a
binary equivalent of the value.

L Length component. This component contains the number of characters
that make up the string component.

A Attribute component. This component contains information about the
variable, such as:

Was the parameter passed to the macro? 0 or missing parameters
are legal.}
Was it an operand list?
Was it of a particular format (register, indirect, indexed,
symbolic, etc.)?

Example 7 -3 illustrates the use of macro components. In this example, sym
is a constant that is passed to the macro mac. The variable parm is defined
as a parameter; local variables varl and var2 are defined with the .VAR di
rective.

• Lines 1-4 of the macro expansion show how values are substituted for
the following components of the variable parm:

:parm: specifies the string component of parameter parm, which is
sym.

parm. s also specifies the string component of parm.
parm. v specifies the value component of parm, which is 5.
parm.1 specifies the length component of parm, which is 3 (there are

three characters in the string component).
parm. a specifies the attribute component of parm; if used, it would

indicate that parm was passed to the macro as a parameter.

• Lines 5-7 of the macro expansion show that you can enclose a variable
and a component in colons. This causes the assembler to use a string
representation of the string or value; this is especially useful for concat
enating strings and values.

. • Lines 8-10 of the macro expansion show the values of the symbol varl
and its components. The string component of parm is assigned to the
string component of varl with an .ASG directive. The string component
of varl is sym and the length component of varl is 3. However, the
value component is 0, because no value was assigned to it.

Macro Language - Macro Variables

• Lines 11-13 of the macro expansion show the values of the symbol var2
and its components. The value component of parm is assigned to the
value component of var2 with an .ASG directive. The value component
of var2 is 5. However, the string component is empty, because no
string was assigned to it; the length component is 0, because there is
no string component.

Example 7-3. Using Macro Components

0000 0001 mac . MACRO parm
0000 0002 .var var1,var2
0000 0003
0000 0004 .word :parm:
0000 0005
0000 0006 .word parm.s
0000 0007 .word parm.v
0000 0008 .word parm.l
0000 0009
0000 0010 .word :parm. s:
0000 0011 .word :parm.v:
0000 0012 .word :parm.l:
0000 0013
0000 0014 .ASG parm.s , var1.s
0000 0015 .word var1.s
0000 0016 .word var1.v
0000 0017 .word var1.1
0000 0018
0000 0019 .ASG parm.v , var2.v
0000 0020 .word var2.s
0000 0021 .word var2.v
0000 0022 .word var2.1
0000 0023
0000 0024 .ENDM
0000 0025
0000 0026 ;**************************************
0000 0027
0005 0028 sym .equ 5
0000 0029 mac sym
0000 0005 0001 # .word sym
0002 0005 0002 # .word sym
0004 0005 0003 # .word 5
0006 0003 0004 # .word 3
0008 0005 0005 # .word sym
OOOA 0005 0006 # .word 5
OOOC 0003 0007 # .word 3
OOOE 0005 0008 # .word sym
0010 0000 0009 # .word a
0012 0003 0010 # .word 3

E 0014 0011 # .word
0014 0005 0012 # .word 5
0016 0000 0013 # .word a

7-9

Macro Language - Macro Variables

7.4.2.2 Symbol Components

7-10

All symbols that are defined in an assembly language program have four
symbol components that are similar to the macro variable components de
scribed in Section 7.4.2.1. The only way you can access these symbol com
ponents is by assigning the symbol's name to macro variables in a macro. To
accomplish this, you must use an .ASG statement or pass the symbol name
as a parameter to assign the symbol name to the string component of a macro
variable.

Table 7-2. Symbol Components

Component Description

SS String component. This is similar to the macro string component; it is the
string name of the symbol. Initially, the string component is empty. It
may contain any string assigned to it via an .ASG statement.

SV Value component. This component contains the value of the symbol in
the symbol table. This could be a relocatable address or a value which
the symbol was equated to.

SL Length component. This component contains the length of the string (if
any) that has been assigned to the symbol string component of the
symbol.

SA Attribute component. This component contains information about the
symbol, such as:

Is the symbol relocatable?
Is the symbol global?
Has a string component been assigned to the symbol?
Is the symbol defined?
Is the symbol a macro name?

Example 7 -4 illustrates the use of symbol components. This example contains
three macros:

• inc_const has two parameters; the first should be a symbol, the second
is a looping variable. This macro increments the symbol's value com
ponent in the symbol table the specified number of times.

• s-bool has two parameters; the first is a flag, and the second is a value
(true or false). This macro sets the flag's string component in the symbol
table to true or false.

• q-bool has one parameter, a flag. This macro prints the contents of the
flag's string component in the symbol table by means of a .string direc
tive.

Macro Language - Macro Variables

Example 7-4. Using Symbol Components

0000 0001 .*************************************
0000 0002 ;** macro inc_canst **
0000 0003 ;*************************************
0000 0004 inc-canst . MACRO p1,ntimes
0000 0005
0000 0006 .LOOP ntimes.v
0000 0007 .ASG pl. sv+1, p1.sv
0000 0008 .ENDLOOP
0000 0009
0000 0010 .ENDM
0000 0011
0000 0012 .*************************************
0000 0013 ;** macro s_bool **
0000 0014 ~*************************************
0000 0015 ~_bool . MACRO p,val
0000 0016
0000 0017 .ASG va1.s , p.ss
0000 0018
0000 0019 .ENDM
0000 0020
0000 0021 .*************************************
0000 0022 ; ** macro q-bool **
0000 0023 .*************************************
0000 0024 q_bool . MACRO tfflag
0000 0025
0000 0026 .string tfflag. ss
0000 0027
0000 0028 .ENDM
0000 0029
0000 0030 ;*************************************
0000 0031 ;** main **
0000 0032 ;*************************************
0000 0033 inner .equ a
0005 0034 outer .equ 5
0000 0035 iflag .equ a
0000 0036
0000 0037 inc-canst inner,S
0000 as 0038 .byte inner
0001 0039
0001 0040 inc-canst outer,8
0001 aD 0041 .byte outer
0002 0042
0002 0043 .if inner > outer
0002 0044 s_bool iflag, "true"
0002 0045 .else
0002 0046 s_bool iflag,"false"
0002 0047 .endif
0002 0048
0002 0049 q-bool iflag
0002 66616C7365 0001 # .string "false"

Note that if a symbol component is accessed and the variable's string com
ponent is not a symbol in the symbol table, the result will be 0 and the as
sembler will issue an error.

7-11

Macro Language - Macro Variables

7.4.2.3 Using Qualified Macro Variables

When a variable and its component are enclosed in· colons, the value of the
component is formatted into a string, and the string is substituted into the line.
For example, assume the macro variable xxx has the following components:

ASSEMBLER
9999

string:
value:
length: 9 (length of the string ASSEMBLER)

The following statements would be translated as shown:

Source
mov :xxx:,A
mov :xxx.s:,A
mov : xxx. v: , A
mov :xxx.l:,A

Translation
mov ASSEMBLER,A
mov ASSEMBLER,A
mov 9999,A
mov 9,A

Note that the string component is always the default component. The as
sembler expands macro yariables in model statements by using the string re
presentation of the component. Thus, binary values such as the length and
value components are formatted into strings and placed into the line. Colons
are only necessary when no suffix is specified, or to delimit adjacent macro
variable expansions.

In macro directive lines where a macro variable may appear in an arithmetic
expression (.LOOP, .ASG, or .IF), the colons become significant. For example,
the following two statements use the same macro variable xxx but produce
different results .

. IF xxx.v == 9999

.IF :xxX.v: == 9999

The first statement evaluates to true, since the binary value of the value com
ponent is used. In the second example, the string value of the value compo
nent (9999) is used. This is equivalent to the hex value 03939393916, or four
ASCII 9s.

7.4.2.4 Attribute Components

7-12

The assembler symbol table stores various types of information about symbols
and variables (has it been defined, is it global, etc.). Each of these attributes
is associated with a keyword. Two components allow you to use this attribute
information:

• The .A component describes attributes of a macro variable.
• The .SA component provides information about a symbol in the assem

bler symbol table.

These components can be used in a macro expression in two ways (& is AND,
I is OR):

var.a & keyword
var.a I keyword

Reads a value of the attribute
Sets a value in the attribute

These expressions return 1 for true and 0 for false, and must always appear in
this exact format.

Macro Language - Macro Variables

Note that setting an attribute in a symbol attribute does not change the real
attributes of that symbol as they appear to the rest of the assembler. For ex
ample, you cannot change a symbol to a global symbol by setting its $def at
tribute. However, they can be used as flags between macros, if desired. Table
7 -3 lists the valid keywords.

Table 7-3. Keywords

Macro Variable Attribute (.a Component) Keywords

$pa Set if the operand is register A $paddr Set if the operand is an address

$pb Set if the operand is register B $pp Set if the operand is a peripheral
register

$pr Set if the operand is a register $psp Set if the operand is the stack
pointer

$pst Set if the operand is the status $psub Set if the operand is a subscript
register

$pstr Set if the operand is a string $pval Set if the operand is a value

$pw Set if the operand is a work $pcall Set if the variable was passed as
regIster an argument to the macro

$popl Set if the parameter is an operand list (op, op, ...), note that when a list is
passed to a macro, the value component contains the number of operands in
the list

Symbol Attribute (.sa Component) Keywords

$def Set if the symbol is global and $rel Set if the symbol is relocatable
defined

$str Set if the symbol has been $undef Set if the symbol is undefined
assigned a string component

Example 7 -5 (page 7 -14) shows an example that uses variable attributes.

Using tl. e attribute component in a model statement has no effect - it is only
useful ifi macro directive lines. Note that whenever the attribute component
of a variable is accessed in an expression, it must appear in an expression as
in the examples above, with one of the two legal operators and an appropriate
keyword. Any other use is illegal and will be flagged as an error.

7-13

Macro Language - Macro Variables

Example 7-5. Using Variable Attributes

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0056
0000
0000
0014
002B
003C

7-14

4043414C4C
4043414C4C
4043414C4C
4043414C4C

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0001 #
0002 #
0003 #.
0004 #

keys

,
CALL

pitch
msg

. MACRO

.VAR

.ASG "" :pitch.s: , pitch.s

.IF pitch.a & $PCALL

.ASG 'is a parameter"' , msg.s

.ELSE

.ASG 'is not a parameter"' , msg.s

.ENDIF
· string :pitch. s: :msg. s:

.IF pitch.a & $PR

.ASG 'is a register"' , msg.s

.ELSE

.ASG 'is not a register"' , msg.s

.ENDIF

.string :pitch.s: :msg.s:

.IF pitch.sa & $REL

.ASG 'is relocatable", , msg.s

.ELSE

.ASG 'is absolute"' , msg.s

.ENDIF

.string :pitch.s: :msg.s:

.IF pitch.sa & $DEF

.ASG 'is defined in this module"', msg.s

.ELSE

.ASG 'is not defined in this module" ',msg.s

.ENDIF
· string :pitch. s: :msg. s:

.ENDM

· equ 56h
keys @CALL

.string "@CALL

.string "@CALL

.string "@CALL

.string "@CALL

s a parameter"
s not a register"
s absolute"
s defined in this module"

Macro Language - Manipulating Strings

7.5 Manipulating Strings

When a model line is expanded, after all macro variables have been replaced,
adjacent strings are concatenated. Example 7 -6 shows an example that ma
nipulates strings.

Example 7-6. Manipulating Strings

str-3 . MACRO
.VAR
.ASG
.string
.ENDM

parml,parm2,parm3
quote
'''' quote
:quofe.s: :parml: :parm2: :parm3: :quote.s:

str_3 Great Lakes:, (Huron, Superior,) ,(Michigan, Erie, Ontario)
.string "Great Lakes: Huron, Superior, Michigan, Erie, Ontario"

This example concatenates three parameters:

• Parameter 1 is Great Lakes:.

• Parameter 2 is an operand list, (Huron, Superior).

• Parameter 3 is an operand list, (Michigan, Erie, Ontario).

7-15

Macro Language - Conditional Blocks

7.6 Conditional Blocks

7-16

The .IF, .ELSE, and .ENDIF directives are used to construct conditional blocks
within macro definitions. Conditional blocks may be nested up to ten levels
deep. Blocks at all nesting levels must always be terminated with an .ENDIF.
The general format of a conditional block is:

.IF expression

code to assemble if expression is true (¢ O)

.ELSE

code to assemble if expression is false (= O)

.ENDIF

The relational operators that can be used in an .IF expression include:

< Less than

> Greater than

= Equal

<> Not equal

!= Not equal

<= Less than or equal

>= Greater than or equal

These operations are all unsigned. They have the lowest precedence of any
operations, but have equal precedence with each other and thus are evaluated
from left to right. They evaluate to 1 if true and 0 if false, and the result of a
relational expression can be used with any of the operators.

If the expression in the .IF statement evaluates to a nonzero value, then the
code that follows it (up to an .ELSE or .ENDIF) will be assembled. If the ex
pression evaluates to 0, then the assembler will not assemble the code that
follows the .IF statement; if an .ELSE directive is present, the assembler will
assemble the code that follows it (up to the .ENDIF).

All directives (.IF, .ELSE, and .ENDIF) in a single conditional block must ap
pear in the same source module. For example, the .ENDIF cannot appear in
an included file. A conditional block not terminated by the end of a source file
(or upon encountering an .ENDM directive) will produce an error.

In a block of code that is not being assembled, include files and macro defi
nitions are not scanned. Conditional assembly directives that appear in a
macro definition are evaluated each time the macro is expanded, not as it is
defined.

Example 7-5 (page 7-14) contains an example of conditional blocks.

Macro Language - Repeatable Blocks

7.7 Repeatable Blocks

Repeatable blocks allow a section of code (or a section of a macro definition)
to be repeatedly expanded. This is particularly useful for table generation. The
format of a repeatable block is:

.LOOP expression

model statements
or
macro directives

.ENDLOOP

The assembler evaluates the expression once when it enters the loop, and then
it repeats the block expression number of times. The expression may be any
legal expression or macro expression.

The same restrictions apply to the declaration of a repeatable block as apply
to conditional blocks. Blocks (regardless of block type) may be nested up to
10 deep. Improper nesting of blocks is checked by the assembler, and all er
rors are flagged. The following example shows improper nesting:

.LOOP expression 1

.IF expression 2

.ENDLOOP

.ENDIF

Note that the two blocks overlap rather than nest properly. This is an error,
and the macro definition will be ignored.

Example 7 -4 (page 7 -11) shows an example of a repeatable block.

7-17

Macro Language

7-18

8. Archiver Description

The TMS370 archiver lets you combine several individual files into a single file
called an archive or a library. Each file within the archive is called a mem
ber. Once you have created an archive file, you can use the archiver to add
more files to it, delete or replace existing members, or extract members.

You can use the archiver to build libraries out of any type of files. Both the
assembler and the linker can use archive libraries; the assembler can use li
braries that contain individual source files, and the linker can use libraries that
contain individual object files.

One of the most useful applications of the archiver is to build a library of ob
ject modules. For example, you could write several arithmetic routines, as
semble them, and then use the archiver to collect the object files into a single,
logical group. You can then specify the object library as linker input. The
linker will search through the library and include any members that resolve
external references.

You can also use the archiver to build macro libraries. You can create several
separate source files, each of which contains a single macro, and then use the
archiver to collect these macros into a single, functional group. The .mlib as
sembler directive lets you specify the name of a macro library to the assembler;
during the assembly process, the assembler will search the specified library for
the macros that you call. Section 7 discusses macros and macro libraries in
detail.

This section contains the following topics.

Section Page
8.1 Invoking the Archiver ... 8-3
8.2 Archiver Examples .. 8-4

Figure 8-1 (page 8-2) shows the archiver's role in the assembly language
development process.

8-1

Archiver Description

Assembler
Source

Figure 8-1. Archiver Development Flow

8-2

Archiver Description - Invoking the Archiver

8.1 Invoking the Archiver

To invoke the archiver, enter:

ar370 [-]<command> <libname> <file 1> ... <file n>

Libname is the name of the archive library. If you don't specify an extension,
the archiver will use the default extension .lib. The members are the names
of the individual member files contained in the library.

The command tells the archiver how to manipulate the members in the library.
You must use only one command per invocation. A command can be pre
ceded by an optional hyphen. Valid archiver commands include:

a Add the specified files to the library. Note that this command does not
replace existing members that have the same name as an added file; it
simply appends new members to the end of the archive. If you want to
replace existing members, use the r command.

d Delete the specified members from the library.

r Replace the specified members in the library. If you don't specify any
member names, the archiver will replace the members with files of the
same name in the current directory. If the specified file is not found in
the archiver, it is added instead of replaced.

t Print a table of contents of the library. If no names are given, all files in
the archive are listed. If names are given, only those files are listed.

x Extract the specified files. If you don't specify any member names, the
archiver will extract all the files in the library. When the archiver extracts
a file, it simply puts a copy of it in the current directory; it doesn't alter
the library.

In addition to the commands listed above, you can specify one or both of the
following options:

5 Print a list of the symbols that are defined in the library.

v (verbose) The archiver will provide a file-by-file description of the cre
ation of a new library from an old library and its constituent members.

8-3

Archiver Description - Examples

8.2 Archiver Examples
~

8-4

Here are some examples of using the archiver.

• Example 1:

If you wanted to create an archive file, you could specify:

ar370 -a function sine.obj cos.obj flt.obj

This would create a library called function.lib. It would contain the files
sine.obj, cos.obj, and flt.obj.

• Example 2:

Since no extension was specified for the libname in first example, the
archiver used the default extension .Iib. You can, however specify a
different extension:

ar370 -a function.fn sine.obj cos.obj flt.obj

This creates a library called function.fn that contains the files sine.obi,
cos.obj, and flt.obj.

• Example 3:

If you wanted to add some new members to a library, you would specify:

ar370 -a function tan.obj arctan.obj area.obj

Since this example doesn't specify an extension for the libname, the ar
chiver adds the files to the file called function.lib. If function.lib didn't
exist, the archiver would create it. In this example, the library function.lib
contains the files tan.obi, arctan.obi, and area.obi, as well as sine.obj,
cos.obj, and flt.obj (which were put in the library in the first example).

• Example 4:

If you want to modify a member of a library, you can extract it, edit it,
and replace it. In this example, assume there's a library named macros.lib
that contains the members push.asm, pop.asm, and swap.asm.

ar370 -x macros push.asm

The archiver will make a copy of push.asm and place it in the current
directory; it doesn't remove push.asm from the library, though. Now you
can edit the extracted file. To replace the copy of push.asm that's in the
library with the copy that was changed, enter:

ar370 -r macros push.asm

9. Linker Description

The TMS370 linker creates executable modules by combining COFF object
files. The concept of COFF sections is basic to linker operation; Section 3
discusses COFF sections in detail. The linker accepts several types of files as
input:

• Relocatable COFF object files produced by the TMS370 assembler,

• Command files"
• Archive object libraries, and
• Output modules created by a previous linker run (these are referred to

as partially linked files).

Figure 9-1 illustrates the linker's role in the assembly language development
process. As the linker combines object files, it performs the following tasks:,

• It allocates sections into the target system's configured memory.
• It relocates symbols and sections to assign them to.tinal addresses.
• It resolves undefined external references between input files.

The linker supports a C-like command language that controls memory con
figuration, section definition, and address binding. The language supports
expression assignment and evaluation, and provides two powerful directives,
MEMORY and SECTIONS, that allow you to:

• Define a memory model that conforms to target system memory,
• Combine object file sections,
• Allocate sections into specific areas of memory, and
• Define or redefine global symbols at link time.

Topics in this section include:

Section Page
9.1 Invoking the Linker ... 9-3
9.2 Linker Options ... 9-4
9.3 Linker Command Files .. 9-9
9.4 Archive Libraries .. ' ... 9-11
9.5 The MEMORY Directive .. 9-12
9.6 The SECTIONS Directive ... 9-15
9.7 Overlay Pages .. 9-21
9.8 Default Allocation Algorithm and Special Section Types 9-24
9.9 Assigning Symbols at Link Time .. 9-27

9.10 Creating and Filling Holes ... 9-30
9.11 Partial (Incremental) Linking .. 9"-35
9.12 Linker Example .. 9-36.

9-1

Linker Description - Linker Development Flow

9-2

Macro
Source
Files

Assembler
Source

Figure 9-1. Linker Development Flow

Linker Description - Invoking the Linker

9.1 Invoking the Linker
The general syntax for invoking the linker is:

lnk370 [-<options>] <filenames>

where options (discussed in Section 9.2) can appear anywhere on the com
mand line or in a linker command file. The filenames can be object files, linker
command files, or object libraries. The default extension for all input files is
.obj; any other extension must be explicitly specified. The linker can deter
mine whether the input file is an object file or an ASCII file that contains linker
commands. The default output module name is a.out.

There are three methods for invoking the linker:

• Specify options and filenames on the command line. This example links two
files, filel. obj and file2. obj, and creates an output module named
link.out.

lnk370 -0 link. out filel.obj file2.obj.

• Enter the Ink370 command with no filenames or options; the linker will prompt
for them:

Command files :
Object files [.obj]
Output files [] :
Opt10ns :

For command files, enter one or more command file names.

For object files, enter one or more object file names. The default extension is
.obj. Separate the filenames with spaces or commas; if the last character is a
comma, the linker will prompt for an additional line of object file names.

The output file is the name of the linker output module. This overrides any -0
options entered with any of the other prompts. If there are no -0 options and
you do not answer this prompt, the linker will create a default filename con
sisting of the first object file name with the extension .out.

The options prompt is for additional options, although you can also enter them
in a command file. Enter them with hyphens, just as you would on the com
mand line.

• Put filenames and options in a linker command file. For example, assume the
file linker.cmd contains the following lines:

-0 link. out
filel. obj
file2.obJ

Now you can invoke the linker from the command line; specify the command
file name as an input file: Ink370 linker. cmd.

When you use a command file, you can also specify other options and files that
are not listed in the command file. For example, you could enter: Ink370
-m link.map linker.cmd file3.obj.

The linker reads and processes a command file as soon as it encounters it on
the command line, so it links the files in this order: f ilel. obj, f ile2. obj,
and f ile3. obj. This example creates an output file called link. out and a
map file called link. map.

9-3

Linker Description - Linker Options

9.2 Linker Options

Option

-a

Linker options control linking operations. Options can be placed on the
command line or in a command file. All options must be preceded by a hy
phen (-). The order in which options are specified is unimportant, except for
the -I and -L options. Options are separated from arguments (if they have
them) by a space (except, again, for· -I and -l). Table 9-1 summarizes the
linker options. ..'

Table 9-1. Linker Options Summary

Description

Produce an absolute, executable module. This is the default; if neither -a nor
-r is specified, the linker acts as if -a was specified.

-e global symbol Define an entry point (named by global symbol) that specifies the primary entry
point for the output module.

-f fill value Set the default fill value for holes within output sections. Fill value is a 2-byte
constant.

-H Make all global symbols static.

-Ifilenamet Name an archive library file as linker input. Filename is an archive library name.

-Ldir Alter the library-search algorithm to look in dir before looking in the default lo-
cation. This option must appear before the -I option.

-m filenamet Produce a map or listing of the input and output sections, including holes, and
place the listing in filename.

-0 filenamet Name the executable output module. The default filename is a.out.

-r Retain relocation entries in the output module.

-s Strip symbol table information and line number entries from the output modules.

-5 Request a "silent" run; that is, -S suppresses all error messages that do not halt
linker execution.

-u symbol Place an unresolved external symbol, symbol, into the output module's symbol
table.

t Filename is a filename that follows operating system conventions.

9.2.1 Relocation Capability (-a and -r Options)

9-4

One of the tasks the linker performs is relocation. Relocation is the process
of adjusting all the references to a symbol when the symbol's address changes.

For example, a program may contain an instruction that jumps to address x.
Assume that when the program was assembled, x had a value of 5; thus, the
assembler created an instruction to "jump to 5." The assembler also put a re
location entry in the object file that identified the fact that the jump is actually
to symbol x. When the program is linked, assume that x's end location is now
100. The linker uses the relocation entry to change the "jump to 5" to "jump
to 1 00."

Linker Description - Linker Options

The linker supports two options (-a and -r) that allow you to choose whether
you will produce an absolute or a relocatable output module.

• Producing a Relocatable Output Module

The -r option tells the linker to retain relocation entries and produce a
relocatable output module. If the output module will be relocated (at
load time) or relinked (by another linker execution), use -r to retain the
relocation entries. When -r is used, unresolved references do not prevent
creation of the output module.

This example links f ilel. obj and f ile2. obj and creates a relocata
ble output module called a. out:

Ink370 -r filel.obj file2.obj

The output file a. out can be relinked with other object files, or relocated
at load time. (Linking a file that will be relinked with other files is called
partial linking. For more information about partial linking, see Section
9.11, page 9-35.)

• Producing an Absolute Output Module

The -a option produces an absolute executable output module. Relo
cation entries are stripped from absolute files; thus, absolute files can
only be relocated (at load time) or relinked (by the linker) under special
circumstances.

This example links f ilel. obj and f ile2. obj and creates an absolute
output module called a. out:

Ink370 -a filel.obj file2.obj

• Relocating or Relinking an Absolute Output Module

The linker issues a warning message (but continues executing) when it
encounters a file that contains no relocation or symbol table information.
Relinking an absolute file can only be successful if each input file con
tains no information that needs to relocated (that is, each file has no
unresolved references and is bound to the same virtual address that it
was bound to when the linker created it).

Note:

If neither the -a nor the -r option are specified, the linker acts as if -a is
specified.

9-5

Linker Description - Linker Options

9.2.2 Defining an Entry Point (-e <global symbol> Option)

An output module contains a field that identifies the beginning execution ad
dress in target memory. This address (called the entry point) is used when
the file is loaded to initialize the program counter to point to the beginning of
a program. The linker can assign one of four possible values to the entry point.
These values are listed below in the order in which the linker tries to use them.
Note that the first three values require a symbol to be placed in the symbol
table by 'the .global assembler directive. These symbols are case sensitive.

Possible entry point values include:

1} The value specified by the -e option. The syntax is:

-e <global symbol>

where global symbol defines the entry point, and must appear as an ex
ternal symbol in one of the input files to be linked.

2} The value of symbol -Inain (if present).

3} Zero (default value).

This example links file 1. obj and f ile2 .obj and sets the entry point to the
value of the symbol begin. This symbol must be defined as external in file1
or file2.

lnk370 -e begin filel.obj file2.obj

9.2.3 Set Default Fill Value (-f <cc> Option)

The -f option fills the holes formed within output sections or initializes .bss
sections when they are combined with non-.bss sections. This allows you to
initialize memory areas during link time without reassembling a source file.

The argument cc is a 2-byte constant (up to four hexadecimal digits). When
-f is not used, the default fill value is O.

This example fills holes with the hexadecimal value ABeD:

lnk370 -f OABCDh filel.obj file2.obj

9.2.4 Make All Global Symbols Static (-H Option)

9-6

The - H option makes all global symbols static. This "hides" symbols, because
static symbols are not visible to externally linked modules. This allows ex
ternal symbols with the same name (in different files) to be treated as unique.

The -H option effectively nullifies all .global assembler directives. All symbols
become local to the module in which they were defined, so no external refer
ences are possible.

For example, assume f ilel. obj and f ile2. obj both define global symbols
called ext. By using the - H option, these files can be linked without conflict.
The symbol ext defined in f ilel. obj is treated separately from the symbol
ext defined in f ile2. obj.

Ink370 -H filel.obj file2.obj

Linker Description - Linker Options

9.2.5 Specify a Directory and an Archive Library (-L <dir>, -I <filename>
Options)

The - L option alters the library search algorithm. When the linker is searching
for library members, it will search the directory dir before it searches the cur
rent directory. The -I (lowercase "L") option names a specific library that
should be taken from directory dir. The filename is an archive library filename.
It is not always necessary to use the -I option when specifying a library as
linker input; -I is only useful when you specify a library that is in a directory
named with - L. Note that no space separates the - L or -I options and their
arguments. If the -L option is used with the -I option, -L must be specified
first.

As an example, assume that an archive library called rts .lib resides in a
directory called \libdir. Assume that another library called lib2 .lib re
sides in a directory called \libdir2. You can use both libraries during a link
by specifying the following: '

lnk370 filel.obj file2.obj -L\libdir -L\libdir2 -lrts.lib -11ib2.lib

(This example is for a PC/MS-DOS system.)

9.2.6 Create a Map File (-m <filename> Option)

The -m option writes a link map or listing to filename. This map describes:

• Memory configuration,
• Input and output section allocation, and
• The address of external symbols after they have been relocated.

The map file contains the name of the output module, the entry point, and
may also contain up to three tables:

• A table showing the new memory configuration, if any nondefault me
mory is specified.

• A table showing the linked addresses of each output section, and the
input sections which comprise the output sections.

• A table showing each external symbol and its address. This table has
two columns. The left column contains the symbols sorted by name, the
right column contains the symbols sorted by address.

This example links filel. obj and f ile2. obj and creates a map file called
map.out:

lnk370 filel.obj file2.obj -m map. out

Section 9.12 (page 9-36) contains an example of a map file.

9-7

Linker Description - Linker Options

9.2.7 Naming an' Output Module (-0 <filename> Option)

The linker always creates an executable output module. If you do not specify
a filename for the output module, the linker assigns it the default name of
a.out.

If you want to write the output module to another file, use the -0 option. The
argument filename is the new output module name.

This example links f ilel. obj and f ile2 .obj and writes the resulting out
put module to the file run. out:

lnk370 -0 run.out filel.obj file2.obj

9.2.8 Stripping Symbolic Information (-s Option)

The -s option creates a smaller output module by omitting symbol table in
formation and line number entries. The -s option is useful for production ap
plications, when you must create the smallest possible output module.

This example links f ilel. obj and f ile2 .obj and places the output module,
stripped of line numbers and symbol table information, in the file
nolink.out:

lnk370 -0 nolink.out -s filel.obj file2.obj

Note that using the -s option limits later use of a symbolic debugger, and also
prevents the file from being relinked.

9.2.9 Specifying a Silent Run (-S Option)

The -S option suppresses all messages caused by diagnostic warnings and
by errors that are not fatal; that is, they do not halt linker execution.

9.2.10 Introduce an Unresolved Symbol (-u <symbol> Option)

9-8

The -u option introduces an unresolved symbol into the linker's symbol table.
This is useful for forcing the linker to search a library in order to resolve a
symbol.

For example, suppose a symbol syrntab is defined in a module in an archive
library named rts. lib. None of the other object files being linked refer to
syrntab. However, suppose this file will be relinked, and you would like to
include the module that defines syrntab. By using the -u option, as shown
below, the linker is forced to search rts .lib for the module that defines
syrntab and to include the module.

lnk370 -u symtab filel.obj file2.obj rts.lib

If you did not use -u, this module would not be included since there is no
explicit reference to it in f ilel. obj or f ile2. obj.

Linker Description - Command Files

9.3 Linker Command Files

Linker command files allow you to specify the linking parameters in a file; this
is useful when you often invoke the linker with the same information. Linker
command files are also useful because they allow you to use the MEMORY
and ,SECTIO,NS directives to customize your application. These directives
must be used in a.. commarid file; there is no way to specify them from the
command line. Command files can contain one or more of the following:

• Input filenames, which specify. object files, archive files, or other com
mand files.

• Options, which can be used in the command file in the same manner that
they are used on the command line. ...

• Linker directives, which include the MEMORY and SECTIONS direc
tives. The MEMORY directive. allows you to specify the target memory
configuration. The SECTIONS directive controls how sections are built
and allocated.

• Assignment statements, which define and assign values to global sym
bols.

9.3.1 Command File Format

Command files are ASCII files that contain filenames, options, and linker di
rectives. You can supply a command file to the linker by specifying it on the
command line in the same manner that you would specify an object file. The
linker processes input files in the order that they are encountered. If the linker
recognizes a file as an object file, it links it. Otherwise, it assumes a file is a
command file, and begins reading an.d processing commands from it.

Here is a sample linker command file called link. crnd:

/**/
/* Sample Linker Command File */
/**/
a.obj /* First input filename */
b.obj /* Second input filename */
-0 prog.out /* Option to specify output file */
-m prog.map /* Option to specify map file */

This sample file contains only filenames and options. (Note that you can place
comments in a command file by delimiting them with j* and * /.) To invoke
the linker using this command file, enter:

lnk370 link.crnd

You can also place other parameters on the command line when you specify
a command file:

lnk370 -r link.crnd c.obj d.obj

9-9

linker Description - Command Files

The linker processes the command file as soon as it encounters it, so a. obj
and b. obj are linked into the output module before c. obj and d. obj.

You can also specify multiple command files. If, for example, you have a file
called names .1st that contains filenames and another file called dir. cmd
that contains linker directives, you could enter:

1nk370 names. 1st dir.cmd

One command file can also call another command file; this type of nesting is
limited to 1.6 levels.

Blanks and blank lines that appear in a command file are insignificant except
as delimiters. This applies to the format of linker directives in a command file,
also. Here is a sample command file that contains linker directives:

/**/
/* Sample Linker Command File with Directives */
/**/
a.obj b.obj c.obj /* Input filenames */
-0 prog.out -m prog.map /* Options */

MEMORY /* MEMORY Directive */
{

RAM: o = lOOh 1 OlOOh
ROM: o = OlOOOh 1 OlOOh

}
SECTIONS /* SECTIONS Directive */
{

.text: {} > ROM

.data: {} > ROM

.bss: {} > RAM

(Linker directive formats are discussed in later sections.)

9.3.2 Names Reserved for the linker

9-10

The linker directives use the following names, so these names are reserved.
Do not use them as symbol or section names in a command file.

align len origin
ALIGN length ORIGIN
block LENGTH page
BLOCK MEMORY PAGE
DSECT NOLOAD range
group 0 SECTIONS
GROUP org spare
I

Linker Description - Archive Libraries

9.4 Archive Libraries
An archive library is a partitioned file that contains complete object files as
members. Usually, a group of related modules are grouped together into an
archive library. When you specify an archive library as linker input, the linker
will include any members of the library that define existing undefined symbol
references. You can use the TMS370 archiver to build and maintain archive
libraries; Section 8 discusses the archiver.

Libraries can be useful for reducing link time and reducing the size of the ex
ecutable module. If a normal object file that contains a function is specified
at link time, it will be linked whether it is used or not; however, if that same
function is placed in a library, it will only be included if it is referenced.

The order in which archive libraries are specified is important because the
linker includes only those members that resolve symbols that are undefined
when the library is searched. The same library can be specified as often as
necessary; it will be searched each time it is included. An archive file has a
symbol table that contains all external symbols that are resolved in the library;
the linker searches through the table until it determines it cannot use the li
brary to resolve any more references.

Assume the following:

• Input files flo obj and f2. obj both reference an external function
clrscr.

• Input file flo obj references the symbol origin.
• Input file f2. obj references the symbol f illclr.
• Library liba .lib, member 0, contains a definition of or igin.
• Library libc . lib, member 3, contains a definition of f illclr.
• Both libraries have a member 1 that defines clrscr.

Ifyouenter:lnk370 f1.obj liba.lib f2.obj libc.lib

then:

• Member 1 of liba .lib satisfies both references to clrscr, because
the library is searched and clrscr is defined before f2. obj references
it.

• Member 0 of liba.lib satisfies the reference to origin.
• Member 3 of libc .lib satisfies the reference to fillclr.

If, however, you enter: lnk370 f1.obj f2.obj libc.lib liba.lib

then the. references to clrscr are satisfied by member 1 of libc . lib.

If none of the files being linked reference symbols defined in a library, you can
use the -u linker option to force the linker to include a library member. The
next example creates an undefined symbol rout1 in the linker's global symbol
table:

lnk370 -u rout1 libc.lib

If any members of libc. lib define rout 1, then the linker will include those
members. Note that there is no method for identifying specific members in
an archive library. As a result, the sections of an archive member are allocated
into the output module using the default allocation rules; there is no method
for overriding this allocation with the SECTIONS directive.

9-11

Linker Description - The MEMORY Directive

9.5 The MEMORY Directive

One of the linker's tasks is to decide where in physical memory each section
of the output module will be loaded. This process is called allocation. To
perform allocation, the linker must comprehend the target system's memory
configurati9~·

The TMS370 architecture supports 'multiple address spaces; the system mem
ory configuration can change at run time in response to I/O signals in the
device. As a result, different banks of physical memory may be mapped into
a single address range at different times. :To the linker, each possible memory
configuration represents a separate address space. Each address space is
called a page and must be configured separately.

The MEMORY directive allows you to specify a model of target memory, so
you can specify the particular sections that should be loaded into various
banks of physical memory. The linker maintains the model as it allocates
output sections, and uses it to determine which locations in the target system
can be used for the linked program. '

9.5.1 Default Memory Model

The linker's default memory model is based on the TMS370 architecture. This
model, assumes that the following memory is available:

• 254 bytes of RAM, beginning at location 02h (the register file)
• .256,bytes of EEPROM, beginning at location 1 FOOh
• 4K bytes of ROM, beginning at location 7000h

If you do 'not use the M EMORY directive,' the linker will use this default me-
mory model. '

9~5.2 MEMORY Directive Syntax

9-12

The MEMORY directive identifies ranges of memory that are physically present
in the target system and can be used' by a program. Each range of memory
has several characteristics:

• A name
• A starting address
• A length
• An optional set of attributes

When you use the MEMORY directive, be sure to identify all the memory
ranges that are available to load code into. Any memory that you do not ex
plicitly account for with the MEMORY directive is unconfigured. The linker
will not place any part of a program into unconfigured memory. You can re
present nonexistent memory spaces by simply not including an address range
in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY
(uppercase), followed by a list of memory range specifications enclosed in
braces. For example, you could use the MEMORY directive to specify a me
mory configuration as follows:

Linker Description - The M EMORY Directive

/***/
/* Sample command file with MEMORY directive */
/***/
filel.obj file2.obj /* Input files */
-0 prog.out /* Options */

MEMORY
{

RFILE: origin 02h length = OFEh
EEPROM: origin = lFOOh length = lOOh
ROM: origin 7000h length = lOOOh

You could then use the SECTIONS directive to link the .reg section into the
memory area named RFILE, .text into ROM, and .data into EEPROM.

The general syntax for the MEMORY directive is:

MEMORY r-
namel [±attr±] _
name2 [attr]

origin
origin

constant
constant

length
length

constant
constant

1

(Underscored items must be entered as shown.)

name Names a memory range. A memory name may be 1 to 8 characters;
valid characters include A-Z, a-z, $, ., and -. The names have no
special significance to the linker; they simply identify memory ranges.
Memory range names are internal to the linker and are not retained
in the output file or in the symbol table.

attr Specifies 1 to 4 attributes that are associated with the named range.
Attributes are optional; when used, they must be enclosed in paren
thesis. Attributes can restrict the allocation of output sections into
certain memory ranges. If you do not use any attributes, you can al
locate any output section into any range with no restrictions. Any
memory for which no attributes are specified (including all memory
in the default model) has all four attributes. Valid attributes include:

R Specifies that the memory can be read.
W Specifies that the memory can be written to.
X Specifies that the memory can contain executable code.
I Specifies that the memory can be initialized.

origin Specifies the starting address of a memory range. It may be abbrevi
ated as org or o. The value, specified in bits, is a long integer con
stant, and may be decimal, octal, or hexadecimal.

length Specifies the length of a memory range. It may be abbreviated as len
or I. The value, specified in bits, is a long integer constant, and may
be decimal, octal, or hexadecimal.

Here is an example that specifies a memory range with the Rand Wattributes:

MEMORY
(

RFILE (RW) o = 02h,1 OFEh

9-13

Linker Description - The MEMORY Directive

You will usually use the MEMORY directive in conjunction with the SEC
TIONS directive to control allocation of output sections. After you use the
MEMORY directive to specify the target system's memory model, you can use
the SECTIONS directive to allocate output sections into specific named me
mory ranges or into memory that has specific attributes.

9.5.3 Checking the Results of the MEMORY Directive

9-14

The linker builds a table of the memory model as specified by the MEMORY
directive. It puts this table in the map file, providing you with an easy method
to check the results of the MEMORY directive. To obtain a map file, invoke
the linker with the -m option:

Ink370 -m <map file name>

Section 9.12 (page 9-36) contains an example of a mr.:lp file.

Linker Description - The SECTIONS Directive

9.6 The SECTIONS Directive

The SECTIONS directive tells the linker how to combine sections in input files
into sections in the output module, and where to place the output sections in
memory. In summary, the SECTIONS directive:

• Describes how input sections wi" be combined into output sections,
• Defines output sections in the executable program,
• Specifies where output sections wi" be placed in memory (in relation to

each other and to the entire memory space), and
• Permits renaming of output sections.

9.6.1 Default Sections Configuration

If you do not specify a SECTIONS directive, the linker uses a default algorithm
for combining and allocating the sections. Section 9.8 describes this algo
rithm in detail.

9.6.2 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SEC
TIONS (uppercase), followed by a list of output section specifications en
closed in braces.

Here is an example of the SECTIONS directive:

/***/
/* Sample command file with SECTIONS directive */
/***/
filel.obj file2.obj /* Input files */
-0 prog.out /* Options */

SECTIONS
{

.text 07000h : { }

.data

init

filel. obj (. data)

filel. obj (init)
file2.obj(.data)

.bss ALIGN(16) : { }

This example defines four output sections, .text, .data, init, and .bss:

• The .text output section is composed of the .text sections from
f ilel. obj and f ile2. obj. Notice that the braces ({ }) are empty in
this section specification; that tells the linker to include a" input sections
that have the same name as the output section.

Binding was specified for this output section; so, the .text output section
wi" begin at address 07000h in the target memory.

9-15

Linker Description - The SECTIONS Directive

9-16

• The .data output section contains the .data section from f ilel. obj.

• The init section is composed of the init (named) section in f ilel. obj
and the .data section in f ile2 . obj.

• The .bss output section is composed of the .bss sections from
f ilel. obj and f ile2. obj. This output section will be aligned on the
next available 16-byte boundary.

The general syntax of the SECTIONS directive is:

SECTIONS
1

1

section specification 1
section specification 2
section specification n

Each section specification defines an output section. (An output section is
simply a section in the final executable output file.) The syntax for a section
specification is:

name
!

1

[binding or align(nl] ...:..

input sections
assignments

= fill value] [~ named memory]

(Underscored portions must be entered as shown.)

name

binding

alignment

input
sections

Specifies the name of the section in the output file. A name
may have up to eight characters.

Is optional, and assigns the section to a specific physical ad
dress in the target memory. Section 9.6.4 discusses assigning
an address to an output section.

Is optional, and specifies that the section should be aligned on
an address boundary (the actual address is determined by the
linker). Section 9.6.4 discusses aligning an output section. .

Is a list of input sections that are combined to form the output
section. The list is enclosed in braces. Section 9.6.3 discusses
specifying input sections in detail.

assignment Is optional, and defines the value of symbols at link time or
creates uninitialized spaces (called holes) between input sec
tions within the output section. See Section 9.10 for more in
formation about holes.

fill value

>named
memory

Is optional, and specifies a value for filling holes in the section.
See Section 9.10 for more information about fill values for
holes.

Is optional, and specifies that an output section should be al
located into a memory range that was named by the MEMORY
directive. Section 9.6.4 discusses named memory.

Linker Description - The SECTIONS Directive

9.6.3 Specifying Input Sections

The input sections specifications in the SECTIONS directive specify which
sections from input files are combined to form an output section. The linker
combines input sections by concatenating them in the order in which they are
specified. The size of an output section is the sum of the sizes of the input
sections that make up the output section.

Normally, an output section specification lists no input sections:

. text : { }

In this case, the linker takes all the .text sections from the input files and
combines them into the .text output section. It concatenates them in the order
in which the input files were specified to the linker. You can, however, ex
plicitly specify the input sections that will form an output section. Each input
section is identified by its filename and section name:

SECTIONS
{

.text :
{

fl.obj (.text)
f2.obj(secl)
f3.obj
f4.obj(.text, sec2)

/* Link .text section from fl.obj */
/* Link secl section from f2.obj */
/* Link ALL sections from f3.obj */
/* Link .text and sec2 from f4.obj */

Note that it is not necessary for input sections to have the same name as each
other, or of the output section they become part of. If a file is listed with no
sections, all of its sections are included in the output section. If there are any
additional input sections that have the same name as the output section, but
are not explicitly specified by the SECTIONS directive, they will automatically
be linked in at the end of the output section. For example, if the linker found
more .text sections in the preceding example, and these .text sections were
not specified anywhere in the SECTIONS directive, then the linker would
concatenate these extra sections after file4.obj(sec2).

9.6.4 Specifying the Address of Output Sections (Allocation)

After the linker has determined the composition of each output section, it must
determine where in physical memory the section will be loaded. Each section
has an address field in its section header that tells the loader where the linker
decided the section should go. The process of calculating the address of the
output sections is called allocation.

If you do not specify an explicit starting address for an output section, the
linker will use a default algorithm to allocate the section. Generally, the linker
puts sections where ever they will fit into configured memory.

You can override this default allocation by telling the linker where the section
should be loaded. You can use three methods to control section allocation:

9-17

Linker Description - The SECTIONS Directive

9-18

• Binding

You can specify a specific address for an output section by following the
section name with an address:

.text OlOOOh : { ... }

This example specifies that the .text section must begin at location
1000h. The binding address must be a 16-bit decimal, octal, or hexa
decimal constant.

Output sections can be bound anywhere in configured memory (as
suming there is enough space), but they cannot overlap. If there is not
enough space to bind a section to a specified address, the linker will is
sue an error message.

Note that you cannot use the binding method if you also use alignment
or named memory. If you try to do this, the linker will issue an error
message.

• Alignment

You can tell the linker to place an output section at an address that falls
on an n-byte boundary, where n is a power of 2. For example,

SECTIONS
{

.d~ta ALIGN(32} : { ... }

In this example, the .data output section is not bound to a specific ad
dress; it is linked at the next available address in configured memory that
is a multiple of 32 bytes.

• Named Memory

A section can be linked into a memory range that has been named by the
MEMORY directive. This example names ranges and links sections into
them.

MEMORY
{

ROM (RIX) : origin
RAM (RWIX): origin

SECTIONS
(

.text

.data ALIGN(64)

.bss

7000h, length
BOOOh, length

> ROM
> RAM
> RAM

lOOOh
lOOOh

In this example, the linker places .text into the area called ROM, between
locations 7000h and 7FFFh. The .data and .bss sections are placed into
RAM. It is possible to align a section within named memory; the .data
section is aligned on a 64-byte boundary.

Linker Description - The SECTIONS Directive

Similarly, you can specify that a section be linked into an area of memory
that has particular attributes. To do this, specify a set of attributes (en
closed in parenthesis) instead of a memory name. Assuming you used
the same MEMORY directive declaration, you could specify:

SECTIONS
(

.text: (. .. } > (X) /* .text --> executable memory */

.data: (. .. } > (RI) /* .data --> read and init memory */

.bss : (. .. } > (RW) /* .bss --> read and write memory */

In this example, the .text section can be linked into either the ROM or
RAM area, since both were declared with the X attribute. The .data sec
tion can also go into either ROM or RAM, since both have the R and I at
tributes. The .bss section, however, must go into the RAM area, because
only RAM was declared with the W attribute.

You cannot control where in the memory range the section will be allo
cated, although the linker uses lower memory addresses first, and avoids
fragmentation when possible. In the preceding examples, assuming no
other sections had been bound to addresses that would interfere with
this allocation process, the .text section would start at address 7000h.
If a section must start on a specific address, use binding instead.

9.6.5 Grouping Output Sections Together

The SECTIONS directive has a GROUP option that forces specified output
sections to be allocated contiguously. This prevents an output section from
being fragmented when it is loaded.

For example, assume there is a section named terIn-rec that contains a ter
mination record for a table in the .data section. You can force the linker to
allocate terIn-rec next to .data as follows:

SECTIONS
(

. text : (}

.bss : (}
GROUP lOOOh
(

. data : (}
terITl--rec : (

/* Normal output section
/* Normal output section
/* Specify a group of sections

*/
*/
*/

/* First section in the group */
/* Allocated immediately after .data */

You can specify the allocation process for a GROUP in the same way as an
output section. In the preceding example, the GROUP was bound to address
1000h. This means that .data will be allocated at 1000h, and terffi-rec will
immediately follow it in memory. You can also use alignment and named
memory with the GROUP option.

Note:

When you use the GROUP option, binding, alignment, or assignment to
named memory can be specified for the group only. You cannot specify
addresses for sections within a group.

9-19

Linker Description - The SECTIONS Directive

9.6.6 Checking the Results of the SECTIONS Directive

9-20

The linker builds a table of all the output sections, their final allocated ad
dresses, their sizes, and the address and size of each input section within the
output section .. It puts this table in the map file, providing you with an easy
method to check the results of the SECTIONS directive. To obtain a map file,
invoke the linker with the -m option:

lnk370 -m <map file name>·

Section 9.12 (page 9-36) contains an example of a map file.

Linker Description - Overlay Pages

9.7 Overlay Pages

In some TMS370 applications, the memory architecture of the system can
change at run time in response to I/O signals on the device. As a result, dif
ferent banks of memory may be mapped into a single address range at different
times. This means that multiple areas of physical memory overlay each other
at one address space. You may want the linker to load various output sections
into each of these areas.

The linker supports this feature by providing overlay pages, allowing you to
define a memory model that has multiple address spaces. Each address range
is treated as a separate page, and must be configured separately with the
MEMORY directive. You can then use the SECTIONS directive to specify
which sections will be mapped into various pages.

9.7.1 Using the MEMORY Directive to Define Overlay Pages

Each separately configured address space is called a page. To the linker, each
page represents a completely separate memory. This allows you to link two
or more sections at the same (or overlapping) addresses if they are on different
pages.

Pages are numbered sequentially, beginning with o. Page 0 represents the
"normal" address space of the TMS370. The default memory model resides
entirely on page O. If a memory range is specified without a page number, the
linker assumes it is on page O. This allows you to ignore the page feature for
normal cases; everything can be linked in page 0 with no overlays.

For example, suppose you are running the TMS370 in expanded microcom
puter mode and using the address map hardware to select from four banks of
external expansion memory. Suppose that there are four different output
sections called sectO, sectl, sect2, and sect3, that must be linked into the
four banks of memory. Expansion memory occupies 32K bytes of the address
space, beginning at location 8000h. This is how you would use the MEMORY
directive to obtain this configuration:

/**/
/*** Example of MEMORY directive with overlay pages ***/
/**/
MEMORY
{

PAGE 0: RFILE origin 02h length OFEh
EEPROM origin lFOOh length lOOh
ROM origin 7000h length lOOOh
EXP origin 8000h length 8000h

PAGE 1: EXP origin 8000h length 8000h
PAGE 2 : EXP origin 8000h length 8000h
PAGE 3 : EXP origin 8000h length 8000h

Figure 9-2 (page 9-22) illustrates this configuration; it shows each available
block of physical memory in the system and the section that must be loaded
into it.

9-21

Linker Description - Overlay Pages

02h

OFFh

1FOOh

1FFFh

7000h

7FFFh

BOOOh

FFFFh

Page 0

Figure 9-2. Overlay Page Example

This example defines four separate address spaces. Page 0 is the "normal"
address space of the TMS370. It contains the memory ranges RFILE,
EEPROM, ROM, and the first bank of expansion memory (EXP). The other three
address spaces contain only the additional banks of overlay memory, all la
beled EXP. Note that all four EXP ranges cover the same address range. This
is possible because each range is on a different page, and therefore represents
a different memory space.

9.7.2 Using Overlay Pages with the SECTIONS Directive

9-22

The SECTIONS directive allows you to tell the linker which page an output
section should be linked into. Each output section of the program is assigned
a page as well as an address. You can assign an output section to an overlay
page by following the section specification with the PAGE option and a page
number. Continuing the example from the previous discussion, the SEC
TIONS directive would be written as follows:

SECTIONS
(

.reg : (} > RFILE /* Link .reg at 0 in Rage 0 */

.data: () > EEPROM /* Link .data at IFOO 1n page 0 */

.text: (} > ROM /* Link .text at 7000h in page 0 */
sectO: () > EXP PAGE 0 /* Link sectO into bank 0 (page 0) */
sectl: () > EXP PAGE 1 /* Link sectl into bank 1 */
sect2: (} > PAGE 2 /* Link sect2 into bank 2 */
sect3: () > PAGE 3 /* Link sect3 into bank 3 */

If you don't specify a page number for an output section, the linker assumes
page O. In this example, .reg, .text, and .data are all linked into the named
memory areas on page O. (The PAGE 0 could have been omitted from the
sectO definition, and the same effect would be achieved.)

The PAGE specification for sectO, sectl, and sect2 tell the linker to link
these output sections into the corresponding overlay pages. As a result, they
all are linked to address 8000h, but in different memory spaces. When the
program is loaded, the loader can configure hardware in such a way that each
of these sections is loaded into the appropriate bank of memory.

Linker Description - Overlay Pages

Within a page, you can bind output sections to addresses or memory areas in
the usual way. In the preceding example, notice how sectl is bound to the
memory range called EXP. This allows you to define the allocation of sections
within a page, just as you can in a single memory space. For example:

sectl 8FOOh: {} PAGE 1

links sectl at address 8FOOh in page 1. If you do not specify any binding
or named memory range for the section, the linker allocates the section where
ever it can into the page (just as it normally does with a single memory space).
The definitions of sect2 and sect3 in the example illustrate this. Since EXP
is the only memory on pages 2 and 3, it is not necessary (but acceptable) to
specify> EXP for these sections.

9.7.3 Syntax of Page Definitions

As illustrated in the preceding examples, overlay pages are specified in the
MEMORY directive by using the following syntax:

MEMORY
r-

PAGE 0 - memory range
memory range

PAGE n - memory range

1
memory range

Each page is introduced by the keyword PAGE and a page number, followed
by a colon and a list of memory ranges that comprise the page. Underscored
portions must be entered as shown. Memory ranges are specified in the nor
mal way. You can define up to 255 overlay pages.

Since each page represents a completely independent address space, memory
ranges on different pages can have the same name. Configured memory on
any page can overlap configured memory on any other page. Within a single
page, however, all memory ranges must have unique names and must not
overlap.

Any men ory ranges listed outside the scope of a PAGE specification default
to page O. Consider the following example:

MEMORY
(

RFILE org 02h len OFEh
EEPROM: org IFOOh len lOOh
ROM org 7000h len 9000h

PAGE 1: XRAM org 2000h len 2000h
XROM org 8000h len 8000h

The memory ranges RFILE, EEPROM, and ROM are all on page 0 (since no page
is specified). XRAM and XROM are on page 1. Note that XROM on page 1 ov
erlays ROM on page O.

In the output link map (obtained with the -m linker option), the listing of the
memory model is keyed by pages. This provides you with an easy method of
verifying that you specified the memory model correctly. Also, the listing of
output sections has a PAGE column that identifies the memory space into
which each section will be loaded.

9-23

Linker Description - Default Allocation Algorithm

9.8 Default Allocation Algorithm and Special Section Types

Using the MEMORY and SECTIONS directives provides you with a great deal
of flexibility in specifying how sections will be built and combined. However,
anything that you choose not to specify must still be handled by the linker.
The linker has default algorithms that it uses to build and allocate sections,
within the specifications you supply. Section 9.8.1 and Section 9.8.2 describe
default allocation algorithms.

The linker also has the ability to create sections that are handled differently
than the normal allocation algorithm specifies; Section 9.8.3 describes these
sections.

9.S.1 Default Allocation Algorithm

9-24

If you do not use any MEMORY or SECTIONS directives, the linker acts as
though the following definitions were specified:

MEMORY
{

RFILE origin 0OO2h length OFEh
EEPROM origin lFOOh length lOOh
ROM origin 7000h length lOOOh

}
SECTIONS
{

.reg > RFILE

.bss > RFILE

.text > EEPROM

.data > ROM

All .reg (relocatable register) input sections are concatenated to form one .reg
output section, and all .bss input sections are concatenated to form one .bss
output section. The .reg section is then linked into the register file, starting
at location 02h (register R2), followed by the .bss section. All .data input
sections are combined to form a .data output section, which is linked into
EEPROM starting at location 1 FOOh. All .text input sections are concatenated
to form a .text output section, which is linked into program memory starting
at location 7000h.

Unless you specify otherwise with a MEMORY directive, the linker assumes
the configuration specified above. That is, the only memory that the linker
will use to build you program is:

• 254 bytes starting at location 02h
• 256 bytes starting at location 1 FOOh
• 4K bytes starting at location 7000h

If there are additional input sections in the input files (specifically, named
sections), the linker will link them in after the default sections have been
linked. Input sections that have the same name are combined into a single
output section with this name. The linker allocates these additional output
sections into memory where ever there is room. Usually it is desirable to use
explicitSECTIONS directives to tell the linker where to place named sections.

Linker Description - Default Allocation Algorithm

Note:

If a SECTIONS directive is specified, the linker performs no part of the
default allocation. Allocation is performed according to the rules specified
by the SECTIONS directive and the general algorithm described below.

9.8.2 General Rules for Output Sections

An output section can be formed in one of two ways:

1} As the result of a SECTIONS directive definition.

2} By combining input sections with the same names into output sections
that are not defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive (rule 1), its
specification in the directive completely determines its contents. The contents
of an output section in the SECTIONS directive is given by the information
within the inner braces after the section name. (See Section 9.6 for examples
of how to specify the contents of output sections.)

An output section can also be formed when input sections are encountered
that are not specified by any SECTIONS directive (rule 2). In this case, the
linker combines all such input sections with the same name into an output
section with this name. For example, suppose the files f 1. obj and f 2. obj
both contain named sections called Vectors and that the SECTIONS direc
tive does not define an output section called Vectors. The linker will com
bine the two Vectors sections from the input files into a single output section
named Vectors, allocate it into memory, and include it in the output file.

After the linker determines the composition of all the output sections, it must
allocate them into configured memory. The MEMORY directive specifies
which portions of memory are configured, or if there is no MEMORY directive,
the default configuration is used.

The linker uses an allocation algorithm that attempts to minimize memory
fragmentation, which allows memory to be used more efficiently and increases
the probability that your program will fit into memory. This is the algorithm:

1} Output sections for which you have listed a specific binding address are
placed in memory at that address.

2} Output sections that are included in a specific named memory range or
that have memory attribute restrictions are allocated. Each output sec
tion is placed into the first available space within the named area, con
sidering alignment where necessary.

3} Any remaining sections are allocated in the order in which they were
defined. Sections not defined in a SECTIONS directive are allocated in
the order in which they were encountered. Each output section is placed
in to the first available memory space, considering alignment where ne
cessary.

9-25

linker Description - Default Allocation Algorithm

Note:

If you do not use the PAGE option to explicitly specify a memory space
for an output section, the linker will allocate the section into page O. This
will occur even if there is no room on page 0 but there is space on other
pages. To use a page other than page 0, you must specify the page with
the SECTIONS directive.

9.8.3 DSECT, COPY, and NOlOAD Sections

9-26

There are three special types that you can assign to output sections. These
types affect the way that the program is treated when it is linked and loaded.
These types are DSECT, COPY, and NOLOAD. A type may be assigned to a
section by placing the type (enclosed in parenthesis) after the section defi
nition. For example,

SECTIONS
{

secl 2000h (DSECT)
sec2 4000h (COPY)
sec3 6000h (NOLOAD)

{flo obj}
{flo obj}
{flo obj}

• The DSECT type creates a "dummy section" that has the following
qualities:

It is not included in the output section memory allocation. It takes
up no memory and is not included in the memory map listing.

It can overlay other output sections, other DSECTs, and unconfig
ured memory.

Global symbols defined in a dummy section are relocated normally.
They appear in the output module's symbol table with the same
value they would have if the DSECT had actually been loaded.
These symbols can be referenced by other input sections.

Undefined external symbols found in a DSECT cause specified ar
chive libraries to be searched.

The section's contents, relocation information, and line number
information are not placed in the output module.

In the preceding example, none of the sections from fl.obj are allo
cated, but all the symbols are relocated as though the sections were
linked at address 2000h. The other sections can refer to any of the glo
bal symbols in secl.

• A COpy section is identical to a DSECT section, except that its contents
and associated information are written to the output module.

• A NOLOAD section differs from a normal output section in one respect:
it is not written to the output module. It is allocated space, appears in
the memory map listing, etc. .

Linker Description - Assigning Symbols at Link Time

9.9 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols
and assign values to them at link time. You can use this feature to initialize a
variable or pointer to an allocation-dependent value.

9.9.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assign
ment statements in the C language:

symbol
symbol
symbol
symbol
symbol

expression;
+ = expression;

expression;
* = expression;
/ = expression;

Assigns the value of expression to symbol
Adds the value of expression to symbol
Subtracts the value of expression to symbol
Multiplies symbol by expression
Divides symbol by expression

The symbol should be an externally defined symbol in your program. If it is
not, the linker will define a new symbol and enters it into the symbol table.
The expression must be a valid expression that follows the rules defined in
Section 9.9.3. Assignment statements must be terminated with a semicolon.

The linker processes assignment statements after it allocates all the output
sections. This means that if the expression assigned to a symbol contains a
second symbol name, the address used for the second symbol in the ex
pression reflects the symbol's address in the executable output module.

For example, suppose you have a program that can read data from one of two
tables identified by the symbols Tablel and Table2. Your program uses the
symbol cur-tab as the address of the current table to read. Assume all these
symbols are external (declared with the .global assembler directive). You must
assign cur_tab to point to either Tablel or Table2. You could do this in
the assembly code, but this requires you to reassemble the program in order
to change tables. Instead, you can use an assignment statement to assign
cur-tab at link time with the following command file:

prog.obj /* Input file */
cur-tab = Tablel; /* Assign cur-tab to one of the tables */

9.9.2 Assigning the PC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the PC
during allocation. The linker's "." symbol is analogous to the assembler's $
symbol The "." symbol can only be used in assignment statements within a
SECTIONS directive, since "." is only meaningful during allocation and the
allocation process is controlled by the SECTIONS directive.

For example, suppose your program needs to know the address of the begin
ning of the .data section. You can create an external undefined variable
Dstart in your program by using the .global assembler directive. Then, assign
Dstart the value of "." in the SECTIONS directive as follows:

9-27

Linker Description - Assigning Symbols at Link Time

SECTIONS
{

.text: {}

.data: { Dstart = .,

.bss : {}

This defines the symbol Dstart to be the ultimate· linked address of the .data
section. All references to this symbol in the program will then be correctly
relocated to refer to this address.

A special type of assignment assigns a value to the "." symbol. This has the
effect of adjusting the program counter within an output section and creating
a hole between two input sections. Any value assigned to "." to create a hole
is assumed to be relative to the beginning of the section and not the address
actually represented by".". Assignments to "." and holes are described in
Section 9.10.

9.9.3 Assignment Expressions

9-28

These rules apply to linker expressions:

• Expressions can contain global symbols, constants, and the C language
operators listed in Table 9-2.

• All numbers are treated as long (32-bit) integers.

• Constants are identified in the same manner as they are by the assembler.
That is, numbers are recognized as decimal unless they have a suffix (H
or h for hexadecimal and Q or q for octal). C language prefixes are also
recognized (0 for octal and Ox for hex). No binary constants are al
lowed.

• Symbols within an expression have only the value of the symbol's ad
dress. No type checking is performed.

• Linker expressions can be absolute or relocatable. If an expression
contains any relocatable symbols (and zero or more constants or abso
lute symbols), it is relocatable. Otherwise, the expression is absolute.
If a symbol is assigned the value of a relocatable expression, the symbol
is relocatable; if assigned the value of an absolute expression, the symbol
is absolute.

The linker supports the C language operators listed in Table 9-2 in order of
precedence .. Operators in the same group have the same precedence.

Besides the operators listed in Table 9-2, the linker also has an align operator
that allows a symbol to be aligned on an n-byte boundary within an output
section (n is a power of 2). For example, the expression:

. = align(16)i

aligns the PC within the current section on the next 16-byte boundary. Since
the align operator is a function of the current PC, it can only be used in the
same context as "." - that is, within a SECTIONS directive.

Linker Description - Assigning Symbols at Link Time

Table 9-2. Operators in Assignment Expressions

Group 1 (Highest Precedence) Group 6

I Logical Not
'" Bitwise Not & Bitwise AND
- Negative

Group 2 Group 7

* Multiplication
/ Division I Bitwise OR
% Mod

Group 3 Group 8

+ Addition
- Minus && Logical AND

Group 4 Group 9
» Arithmetic right shift
« Arithmetic left shift "

Logical OR

Group 5 Group 10 (lowest Precedence)

-- Equal to
1= Not equal to = Assignment
> Greater than += A+=B -. A=A+B
< Less than - = A-=B -. A=A-B

<= Less than or equal to * = A*=B -. A=A*B
>= Greater than or equal to / = A/=B -. A=A/B

9.9.4 Symbols Defined by the Linker

The linker automatically defines three symbols than can be used by a program
to determine at run time where a section has been linked. These symbols are
calledetext, edata, and end. These symbols are external, so they appear in
the link map. They can be accessed in any assembly language module if they
are declared with a .global assembler directive.

Values are assigned to these symbols as follows:

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

9-29

Linker Description - Creating and Filling Holes

9.10 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections
that have nothing linked into them. These areas are called holes. In special
cases, .bss sections can also be treated as holes. This section describes how
the linker handles such holes and how you can fill holes (and .bss sections)
with a specified value.

9.10.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of an output section. An
output section will contain:

Rule 1 Raw data for the entire section or
Rule 2 No raw data (un initialized)

A section that has raw data is referred to as initialized. This means that the
object file contains the actual memory image contents of the section. When
the section is loaded, this image is loaded into memory at the section's speci
fied starting address. The .text and .data sections always have raw data if
anything was assembled into them. All named sections (defined with the .sect
assembler directive) also have raw data in the object file.

By default, the .bss section has no raw data (it is uninitialized). It simply oc
cupies space in the. memory map, but has no actual contents. This type of
section is typically used to reserve space in RAM for variables. In the object
file, an uninitialized section has a normal section header and may have sym
bols defined in it. However, no memory image is stored in the file.

9.10.2 Creating Holes

9-30

You can create a hole in an initialized output section. A hole is created when
you force the linker to leave extra space between input sections when building
an output section. When such a hole is created, the linker must follow rule 1
(above) and supply raw data for the hole.

Holes can only be created within output sections. There can also be space
between output sections, but such spaces are not considered to be holes.
Space between output sections cannot be filled or initialized.

To create a hole in an output section, you must use a special type of linker
assignment statement within a SECTIONS definition. The assignment state
ment modifies the SPC (denoted by the "." symbol), by either adding to it,
assigning a new (greater) value to it, or aligning it at an address boundary.
The operators, expressions, and syntax of assignment statements are described
in Section 9.9 (page 9-27).

Linker Description - Creating and Filling Holes

The following example shows how holes can be created in output sections
using assignment statements:

SECTIONS
{

outsect:
{

filel.obj (.text)
. += lOOh;
file2.obj (.text)
. = align(16)i
file3.obj

/* Create a hole with size lOOh */

/* Create a hole to align the SPC */

In this example, the output section outsect is built as foil! vs:

• The .text section from f ilel. obj is linked in.
• The linker creates a 256-byte hole.
• The .text section from f ile2. obj is linked in after the hole.
• The linker creates another hole that aligns the SPC on a 16-byte boun-

dary.
• Finally, the .text section from f ile3. obj is included.

All values assigned to the "." symbol within a section refer to the relative ad
dress within the section. The linker handles assignments to the "." symbol as
if the section started at address 0 (even if you have specified a binding ad
dress). Consider the statement that aligns "." in the preceding example, which
aligns .text in file3. obj to start on a 16-byte boundary within outsect. If
outsect is ultimately allocated to start on an address that is not aligned, then
.text in f ile3 will also not be aligned. Assignments and alignments are rela
tive to the beginning of the section.

Expressions that decrement "." are illegal. For example, it is invalid to use the
-= operator in an assignment to ".". The most common operators used in as
signments to "." are += and align.

Another way to create a hole in an output section is to combine an uninitial
ized section (.bss) with initialized sections to form a single output section. In
this case, the linker treats the .bss section as a hole and supplies data for it.
An example of creating a hole in this way is:

SECTIONS
{

outsect:
{

f ile1. obj (. text)
f i 1 e 1. ob j (. b s s) /* This becomes a hole */

Since the .text section has r::3W data, all of outsect must also contain raw
data (rule 1). Therefore, the uninitialized .bss section becomes a hole.

Note that uninitialized (.bss) sections only become holes when they are
combined with initialized sections. If mUltiple .bss sections are linked to
gether, and all are uninitialized, the resulting output section will also be unin
itialized.

9-31

Linker Description - Creating and Filling Holes

9.10.3 Filling Holes

9-32

Whenever there is a hole in an initialized output section, the linker must supply
raw data to fill it. The linker fills holes with a 2-byte fill value that is replicated
through memory until it fills the hole. The linker determines the fill value as
follows:

1) If the hole was formed by combining a .bss section with an initialized
section, you can specify a fill value for that specific .bss section. The
value is specified with an = symbol and a 2-byte constant following the
section name within a SECTIONS directive. For example,

SECTIONS
{

outsect:
(

filel.obj (.text)
file2.obj(.bss) = OFFh /* Fill this hole */

/* with OOFFh */

2) You can also specify a fill value for all the holes in an output section by
supplying the fill value after the section definition. For example,
SECTIONS
{

I outsect:
(

• += lOh;
filel.obj (.text)
filel.obj (.bss)

} = OFFOOh

/* This creates a hole */

/* This creates another hole */
/* This fills both holes with */
/* OFFOOh */

3) If no explicit initialization is specified for a hole, the hole is filled with the
value specified with the -f linker option. For example, suppose the
command file link. cmd contains the following SECTIONS directive:

SECTIONS
(

.text: (.= 100;) /* Create a 100-byte hole */

Now invoke the linker with the -f option:

lnk370 -f OFFFFh link.cmd

This fills the hole with OFFFFh.

4) If no -f option is specified when the linker is invoked, then holes are
filled with Os.

Whenever a hole is created and filled in an initialized output section, the hole
is identified in the link map (use the -m linker option to produce a map file)
along with the value the linker used to fill it.

Linker Description - Creating and Filling Holes

9.10.4 Explicit Initialization of .bss Sections

A .bss section only becomes a hole when it is combined with an initialized
section. When .bss sections are combined with each other, the resulting out
put section is still uninitialized and has no raw data in the output file.

However, you can force an uninitialized section to be initialized simply by
specifying an explicit fill value for it in the SECTIONS directive. This causes
the entire section to have raw data (the fill value). For example,

SECTIONS
(

.bss: {} = l234h /* Fills .bss with 1234h */

Note:

Since filling a section (even with Os) causes raw data to be generated for
the entire section in the output file, your output file will be very large if
you specify fill values for large .bss sections or holes.

9.10.5 Examples of Using Initialized Holes

The TMS370 has 4K bytes of program memory starting at location 7000h.
The top bytes of this area are reserved for interrupt vectors. Suppose you want
to link the .text sections from three object files into a .text output section that
will begin at address 7000h. Suppose also that you have a section of initial
ized interrupt vectors called int-vecs that you want to link at address 7FFOh.
You could fill the space between the end of the .text section and the begin
ning of the interruptvectors; this example fills the space with a 1 -byte fill value
of OEFh (a trap instruction).· Figure 9-3 illustrates the desired memory map
for program memory.

7000h =I~~II

7FFOh
7FFFh

Figure 9-3. Initialized Hole

9-33

Linker Description - Creating and Filling Holes

Remember, you cannot fill the space between two output sections. To obtain
the configuration shown in Figure 9-3, you must create one large output
section that has .text at the beginning, int-vecs at the end, and a hole filled
with OEFh in between:

SECTIONS
{

9-34

prog 07000h
{

filel.obj (.text)
f ile2 . obj (. text)
file3.obj (.text)
• = OFFOh;
filel.obj(int_vecs)

OEFEFh

/*

/*

/*
/*
/*

Define prog and bind it to start at 7000h */

Link in the .text sections from each file */

Create a hole up to OFFOh (7FFOh absolute */
Link in the vectors section */
Specify a fill value */

The fill value must be a 2-byte constant. To have the value OEFh in each byte,
the fill value was specified as OEFEFh.

Notice that the value OFFOh, which is assigned to the section program counter
(.), is relative to beginning of the section. Since the section begins at 7000h,
the hole is actually created from the end of the .text section to address 7FFOh.

Linker Description - Partial (Incremental) Linking

9.11 Partial (Incremental) Linking
An output file that has been linked can be linked again with additional mod
ules. This is known as incremental or partial linking. Partial linking allows
you to partition large applications, link each part separately, and then link all
the parts together to create a final executable program.

Follow these guidelines for producing a file that will be relinked:

• Intermediate files must have relocation information. Use the -r option
when you invoke the linker to link the file the first time.

• Intermediate files must have symbolic information. By default, the linker
retains symbolic information in its output. Do not use the -s option, or
it will be removed.

• Intermediate link steps should only be concerned with the formation of
output sections, and not with allocation. All allocation, binding, and
MEMORY directives should be performed in the final link.

The following example shows how you can build a program using incremental
linking:

Step 1: Link the file f ilel. com; use the -r option to retain relocation infor
mation in the output file tempoutl. obj.

lnk370 -r -0 tempoutl filel.com

f ilel. com contains:

SECTIONS
{

ssl:{
fl.obj
f2.obJ

fn.obj
}

Step 2: Link the file f ile2 . com; use the -r option to retain relocation infor
mation in the output file tempout2. obj.

lnk370 -r -0 tempout2 file2.com

f ile2. com contains:

SECTIONS
{

}

ss2:{
gl. obj
g2.obJ

gn.obj
}

Step 3: Link tempoutl. obj and tempout2. obj:

lnk370 -m final.map -0 final.out tempoutl tempout2

9-35

Linker Description - Example

9.12 Linker Example

9-36

This example links a program called demo. out. There are three object mod
ules, demo.obj, ctr1.obj, and tables.obj.

Assume the following memory configuration:

Address Range:
0002 to 0100
1 FOO to 1 FFF
2000 to 3FFF
7000 to 7FFF

Memory Contents:
Register file
Data EEPROM
8K external RAM
4K internal program ROM

The program will be built from the following elements:

• Register variables, declared with the .reg assembler directive, are in the
.reg sections of demo. obj and ctrl. obj.

• Executable code, contained in the .text sections of demo. obj and
ctr 1. obj, must be linked into program ROM. The symbol SETUP must
be defined as the program entry point.

• A set of interrupt vectors, contained in "the int-vecs section of ta
bles. obj, must be linked at address 7FFOh in program ROM.

• A table of coefficients, contained in the .data sections of tables. obj
and ctrl.obj, must be linked into EEPROM. The remainder of EEP
ROM must be initialized with the value OA26E.

• A set of variables, contained in the .bss section of ctr 1. obj must be
linked into the register file along with the .reg sections. These variables
must be preinitialized to OFFh.

• Another .bss section in demo. obj must be linked into external RAM.

Figure 9-4 illustrates the linker command file for this example; Figure 9-5 il
lustrates the map file.

Linker Description - Example

/**/
/**** Specify Linker Options ****/
/**/

-e SETUP
-0 demo.out
-m demo.map

/*
/*
/*

Define the entry point
Name the output file
Create a load map

*/
*/
*/

/**/
/**** Specify the Input Files ****/
/**/

derno.obj
ctrl. obj
tables.obj

/**, *********/
/**** Specify the Memory Configuration ****/
/**/

MEMORY
(

RFILE origin 0002h length OOFEh
EEPROM origin IFOOh length 100h
RAM origin 2000h length 2000h
ROM origin 7000h length 1000h

/**/
/**** Specify the Output Sections ****/
/**/

SECTIONS
(

.reg: {} > RFILE /* Link relocatable registers */

.text: (} > ROM /* Link all .text sections into ROM */

int-vecs 7FFOh: (} /* Link interrupts at 7FFOh */

.data: /* Link the .data sections */
(

tables.obj(.data)
+= 100; /* Create a hole to end of the block */

OA26Eh > EEPROM /* Fill and link into EEPROM */

ctrl_vars: /* Create a new section for ctrl vars */
(

ctrl.obj (.bss)
OFFFFh > RFILE /* Fill with OFFFFh and link to RFILE */

.bss: (} >RAM /* Link all remaining .bss sections */

/**/
/* *** End of Command File **** /
/**/

Figure 9-4. Linker Command File, demo.cmd

Now invoke the linker by entering the following command:

Ink370 demo.cmd

9-37

Linker Description - Example

9-38

This creates the map file shown in Figure 9-5 and an output file called
demo. out that can be run on the TMS370.

370 COFF Linker, Version 1.04,85.319

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: "SETUP" address: 00007000

MEMORY CONFIGURATION
name origin

-------- --------
RFILE 00000002
EEPROM 0000IFOO
RAM 00002000
ROM 00007000

SECTION ALLOCATION MAP

output
section page origin
------- ----------
.reg 0 00000002

00000002
00000023

ctrl_var 0 00000049
00000049

.data 0 0000IFOO
0000IFOO
00001FA5

.bss 0 00002000
00002000

.text 0 00007000
00007000
0000714E

int-vec 0 00007FFO
00007FFO

GLOBAL SYMBOLS
address name

00007000 SETUP
00000022 amp
OOOOOOOE aper
0000704A ctrl
00002000 edata
0000209A end
000071B2 etext
00002000 extvar
0000700A. start
000000IC time

[10 symbols]

length

OOOOOOOFE
000000100
000002000
000001000

length

00000047

00000021
00000026

0000002A
0000002A

00000100
OOOOOOA5
0000005B

0000009A
0000009A

000001B2
0000014E
00000064

000000010
000000010

attributes

RWIX
RWIX
RWIX
RWIX

attributes/
input sections

UNINITIALIZED
demo.obj (.reg)
ctrl.obj (.reg)

ctrl.obj (.bss) [fill

tables.obj (.data)
--HOLE-- [fill = A26E]

UNINITIALIZED
demo.obj (. bss)

demo.obj (.text)
ctrl.obj (.text)

tables.obj (int_vecs)

address name

OOOOOOOE aper
0000001C time
00000022 amp
00002000 edata
00002000 extvar
0000209A end
00007000 SETUP
0000700A start
0000704A ctrl
000071B2 etext

Figure 9-5. Output Map File, demo.map

ffff]

10. Absolute Lister Description

The TMS370 absolute lister is a debugging tool. This utility accepts linked
object files as input, and creates .abs files as output. These .abs files can be
assembled to produce a listing that shows the absolute addresses of object
code. Normally, this is a tedious process requiring many manual operations;
the absolute lister utility, however, performs these operations automatically.

Topics in this section include:

Section Page
10.1 'Producing an Absolute Listing ... 10-2
10.2 Invoking the Absolute Lister ... 10-3
10.3 Absolute Lister Examples ... 10-4

10-1

Absolute Lister Description ~ Producing an Absolute listing

10.1 Producing an Absolute Listing

10-2

Figure 10-1. Absolute Lister Development Flow

Figure 10-1 illustrates the steps required to produce an absolute listing.

1~
3)

4)

First, assemble a source file.
Link the resulting object file.
Invoke the absolute lister; use the linked object file as input. This creates
a file with a .abs extension.
Finally, assemble the .abs file; you must invoke the assembler with the
-a option. This produces a listing file that contains absolute addresses.

Absolute Lister Description - Invoking the Utility

10.2 Invoking the Absolute Lister

There are two methods for invoking the absolute lister:

• Method 1:

1) Invoke the absolute lister with the following command:

abs370 [filename]

where filename must baa linked object file. The absolute lister assumes
that this file has an extension of .out (this is the extension that the linker
produces for output files).

If you omit the filename when you invoke the absolute lister, the utility
will prompt you for a filename.

2) The absolute lister produces an output file for each file that was linked
to create filename.out. These files are named with the individual filen
ames and an extension of .abs.

To create the absolute listing, you must assemble this file and use the -a
assembler option:

asm370 filename.abs -a

• Method 2

When you want to produce absolute listings of several files, you can use a
batch file called abs .bat that is included with the assembly language tools
package. This file invokes the absolute lister, but allows you to specify as
many filenames as you wish:

abs <file 1> <file 2> [... <file n>]

These files must have been successfully linked together in the a. out file that
is produced by the linker. Do not specify extensions for the filenames when
you invoke the absolute lister in this way.

The abs.bat file automatically invokes the assembler; thus, abs.bat creates ab
solute listing files with the .Ist extension.

You can edit the abs. bat file to customize it. For example, the abs. bat file
specifies that the filenames are linked in the file a. out; you can change that
to another linker output file.

10-3

Absolute Lister Description - Examples

10.3 Absolute Lister Examples

10-4

This example uses three source files. Note that modulel. asm and
module2. asm both include the file globals. def.

module1.asm module2.asm globals.def
.include "globals.def" .include "globals.def" .globreg flags
.reg xflags,2 .text Gflag .dbit 3,flags
.reg flags .sbitl Gflag
.text
sbitO Gflag

The following steps will create absolute listings for the files modulel. asm
and module2. asm:

1) First, assemble modulel. asm and module2. asm:

asm370 modulel
asm370 module2

This creates two object files called modulel. obj and module2. obj.

2) Next, link modulel. obj and module2. obj. We'll use the following
linker command file, called bittest .lnk.

/**/
/* File bittest.lnk -- COFF linker control file */
/* for linking TMS3370 modules */
/**/

-0 BITTEST.OUT
-m BITTEST.MAP

/* executable output filename */
/* output map file */

/* input files */

MODULE1.OBJ
MODULE2.0BJ

/* define 370 memory map */

MEMORY
{

RFILE:
PFILE:
EEPROM:
ROM:
XROM:

origin=0002h
origin=lOOOh
origin=lFOOh
origin=7000h
origin=8000h

length=OOFEh
length=OlOOh
length=OlOOh
length=lOOOh
length=4000h

/* define the output sections */

SECTIONS
{

.reg:

.data:

.text

Invoke the linker:

{} >RFILE
{} >EEPROM
{} >ROM

Ink370 hittest.lnk

This creates an executable object file called bi ttest. out; we'll use this
new file as input for the absolute lister.

Absolute Lister Description - Examples

3) Now, invoke the absolute lister:

abs370 bittest.out

This will create two files called modulel. abs and module2. abs:

module1.abs:

flags . setsym
.setsect
.setsect
.setsect
.setsect
.text
. include

module2.abs:

flags .setsym
.setsect
.setsect
.setsect
.text
. include

04h .
".text"
" .data"
".bss"
".reg"

"modulel.asm"

04h
".text"
" .data"
".bss"

"module2.asm"

07000h
OlFOOh
05h
02h

07003h
OlFOOh
05h

These abs files have information that the assembler needs when you in
voke it in step 4:

a) The .abs files contain .setsym directives, which are equates for
global symbols. Both these .abs files contain global equates for
the symbol f lags. The symbol flags was defined in the file glo
bals. def, which was included in modulel. asm and
module2. asm.

b) The .abs files contain .setsect directives, which define the absolute
addresses for sections.

c) The .abs files contain .include directives, which tell the assembler
which assembly language source file to include.

Note that the .setsym and .setsect directives are not useful in normal
assembly; they are only useful for creating absolute listings.

4) Finally, assemble the .abs files created by the absolute lister (remember
that you must use the -a option when you invoke the assembler):

asm370 -a modulel.abs

asm370 -a module2.abs

This creates two listing files called modulel. 1st and module2.1st;
no object code is produced. These listing files are similar to normal
listing files; however, the addresses shown are absolute addresses. The
absolute listing files that we've created are shown on page 10-6.

10-5

Absolute Lister Description - Examples

10-6

module1.lst:

module1.abs TMS370 Assembler Version 3.00 Tue May 5 09:02:45 1987 Pg 1

0000 0001 flags .setsym 04h
0000 0002 .setsect " .text" 07000h
.7000 0003 .setsect ".data" 01FOOh
1FOO 0004 .setsect " .bss" 05h
0005 0005 .setsect ".reg" 02h
0002 0006 .text
7000 0007 . include "module1.asm"
7000 AOOOI . include :' globals. def" , ,
7DOO BOOOI .globreg flags '-
7000 BOO02 Gflag .dbit 3,flags
0002 AOO02 .reg xflags,2
0004 AOO03 . reg flags .
7000 AOO04 .text
7000 73F704 AOO05 sbitO Gflag

,There were no errors detected

module1.abs TMS370 Assembler Version 3.00 Tue May 5 09:02:45 1987 Pg 2

**************** SOURCE FILES ****************
ID FILENAME

module1.abs
A module1.asm
B GLOBALS.DEF

module2.lst:

module2.abs TMS370 Assembler Version 3.00 Tue May 5 09:02:59 1987 Pg 1

0000 0001 flags .setsym 04h
0000 0002 .setsect " .text" 07003h
7003 0003 .setsect " .data" 01FOOh
1FOO 0004 .setsect " .bss" 05h
0005 0005 .text
7003 0006 . include "module2.asm"
7003 AOOOI . include "globals.def"
7003 BOOOI .globreg flars
7003 BOO02 Gflag .dbit 3,f ags
7003 AOO02 .text
7003 740804 AOO03 sbit1 Gflag

There were no errors detected

module2.abs TMS370 Assembler Version 3.00 Tue May 5 09:02:59 1987 Pg 2

**************** SOURCE FILES ****************
ID FILENAME

module2.abs
A module2.asm
B GLOBALS.DEF

11. Code Conversion Utility Description

Most EPROM programmers do not accept COFF object files as input. The
code conversion utility converts a COFF object file into one an object format
that most EPROM programmers will accept as input; it converts it into Intel
hex object format.

The code conversion utility accepts one COFF object file as input, and pro
duces one output file.

This section contains the following topics:

Section Page
11.1 Invoking the Code Conversion Utility .. 11-3
11.2 Code Conversion Utility Examples ... 11 -4

Figure 11-1 illustrates the code conversion utility's role in the assembly lan
guage development process.

11-1

Code Conversion Utility Description

Macro
Source
Flies

Assembler
Source

Library of
Object
Files

Figure 11-1. Code Conversion Utility Development Flow

11-2

Code Conversion Utility Description - Invoking the Utility

11.1 Invoking the Code Conversion Utility
To invoke the code conversion utility, enter:

CFTOIN [<COFF input file» [<Intel hex output file>]

All the parameters are optional, but their order is significant; the first and sec
ond filenames (if used) are interpreted as the input file and the output file,
respectively.

If you do not specify an input filename, the code conversion utility will prompt
you for it. If you specify a filename without an extension, the utility will as
sume that the input filename has a defauit extension of .out.

If you do not specify a filename for the output file, the code conversion utility
will prompt you for one. There is no default filename or extension for the
output file.

When the utility finishes converting the input file, it will print the message
Translation complete.

11-3

Code Conversion Utility Description - Examples

11.2 Code Conversion Utility Examples

11-4

Here are some examples of using the code conversion utility.

• Example 1:

You can enter the names of the input file and the output file on the
command line:

CFTOIN file.tmp file.in

The code conversion utility will use file. tmp as the input file, and
place the Intel hex format output into the file file. in.

• Example 2:

You can invoke the code conversion utility with no parameters. The
utility will print the following prompts:
COFF Input File :
Output File :

If, for example, you responded to the first prompt with a filename of
graphic, the code conversion utility would use the file graphic. out
as an input file. If you responded to the second prompt with a filename
of iout, the code conversion utility would use the file iout as the
output file (notice that the utility will not supply a default extension for
the output file).

• Example 3:

You can invoke the code conversion utility with one parameter:

CFTOIN templ

The utility will use temple out as the input file, and then prompt for an
output filename:

Output File :

A. Common Object File Format

The TMS370 assembler and linker create object files that are in common ob
ject file format (COFF). COFF is an implementation of an object file format
of the same name that was developed by AT&T for use on UNIX-based sys
tems. This object file format was chosen because it encourages modular pro
gramming and provides more powerful and flexible methods for managing
code segments and target system memory.

One of the basic COFF concepts is sections. Section 3, Introduction to
Common Object File Format, discusses COFF sections in detail. If you un
derstand section theory, you will be able to use the TMS370 assembly lan
guage tools more efficiently.

This appendix contains technical details about COFF object file structure.
Most of this information pertains to the symbolic debugging information that
is produced by a C compiler. The main purpose of this appendix is to provide
supplementary information for those of you who are interested in symbolic
debugging.

Topics in this appendix include:

Section Page
A.1 File Structure ... A-2
A.2 File Header .. A-4
A.3 Optional File Header .. A-5
A.4 Section Headers .. A-6
A.5 Relocation Information .. A-8
A.6 Line Number Table ... A-9
A.7 Symbol Table .. A-11

A-1

Appendix A - COFF File Structure

A.1 File Structure

A-2

The elements of a COFF object file describe the file's sections and symbolic
debugging information. These eleme!1ts include:

• A file header,
• Optional header information,
• A table of section headers,
• Raw data for each section (except .bss),
• Relocation information for each section (except .bss),
• Line number entries for each section (except .bss),
• A symbol table, and
• A string table.

The assembler and linker produce object files with the same COFF structure;
however, a program that is linked for the final time will not contain relocation
entries. Figure A-1 illustrates the overall object file structure.

Symbol Table

Section Headers

Raw Data
(executable code
and Initialized data)

Relocation Information

Line Number
Entries

Figure A-1. COFF File Structure

Appendix A - COFF File Structure

Figure A-2 shows a typical example of a COFF object file that contain the
three default sections, .text, .data, .bss, .reg, and a named section (referred to
as <named». By default, the .text, .data, .bss, and .reg sections, respectively,
are placed in the object file, followed by any named sections in the order in
which they were encountered. Although the .bss section has a section header,
notice that there is no raw data, relocation information, or line number entries
for .bss. This is because the .bss directive simply reserves space for uninitial
ized data; the .bss section contains no actual code.

Symbol Table

Section
Headers

Raw
Data

Relocation
Information

Line Number
Entries

Figure A-2. Sample COFF Object File

A-3

Appendix A - File Header

A.2 File Header

A-4

The file header contains 20 bytes of information that describe the general for
mat of an object file. Table A-1 shows the structure of the file header.

Table A-1. File Header Contents

Byte
Type Description Number

0-1 Unsigned short integer Magic number (091 h) that indicates that the
file can be executed in a TMS370 system

2-3 Unsigned short integer Number of section headers
4-7 Long integer Time and date stamp; indicates when the file

was created
8-11 Long integer File pointer; contains the symbol table's

starting address

12-15 Long integer Number of entries in the symbol table

16-17 Unsigned short integer Number of bytes in the optional header.
This field is either 0 or 28; if it is 0, then
there is no optional file header

18-19 Unsigned short integer Flags (see Table A-2)

Table A-2 lists the flags that can appear in bytes 18 and 19 of the file header.
Any number and combination of these flags can be set at the same time (for
example, if bytes 18 and 19 are set to 0003h, then F-RELFLG and F-EXEC
are both set.)

Table A-2. File Header Flags (Bytes 18 and 19)

Mnemonic Flag Description

F-RELFLG 0001h Relocation information was stripped from
the file

F-EXEC 0002h The file is relocatable (it contains no unre-
solved external references)

F-LNNO 0004h Line numbers were stripped from the file

F-LSYMS 0010h Local symbols were stripped from the file

F-QR32WR 0040h The file has the byte ordering used by the
TMS370 (16 bits per word, least significant
byte first)

Appendix A - Optional File Header

A.3 Optional File Header

The linker creates the optional file header and uses it to perform relocation at
download time. Partially linked files do not contain optional file headers.
Table A-3 illustrates the optional file header format.

Table A-3. Optional File Header Contents

Byte
Type Description Number

0-1 Short integer Magic number (0108h)

2-3 Short integer Version stamp

4-7 Long integer Size (in bytes) of executable code

8-11 Long integer Size (in bytes) of initialized bytes

12-15 Long integer Size (in bytes) of uninitialized data

16-19 Long integer Beginning address of executable code

24-27 Long integer Beginning address of initialized data

A-5

Appendix A ~ Section Headers

A.4 Section Headers

A-6

COFF object files contain a table of section headers that specify where each
section begins in the object file. Each section of the file has its own section
header. A section is padded so that its size is a multiple of two bytes.

Table A-4. Section Header Contents

Byte
Type Description Number

0-7 Character Eight-character section name, padded with
nulls

8-11 Long integer Section's physical address

12-15 Long integer Section's virtual address

16-19 Long integer Section size in bytes

20-23 Long integer File pointer to raw data

24-27 Long integer File pointer to relocation entries

28-31 Long integer File pointer to line number entries

32-33 Unsigned short integer Number of relocation entries

34-35 Unsigned short integer Number of line number entries

36-37 Unsigned short integer Flags (see Table A-5)

38 Character Reserved

39 Character Memory page number

Table A-5 lists the flags that can appear in bytes 36 and 37 of the section
header.

Table A-S. Section Header Flags (Bytes 36 and 37)

Mnemonic Flag Description

STYP-REG OOOOh Regular section (allocated, relocated, loaded)

STYP-DSECT 0OO1h Dummy section (not allocated, relocated, not loaded)

STYP-NOLOAD 02h Noload section (allocated, relocated, not loaded)

STYP-GROUP 0OO4h Grouped section (formed from several input sections)

STYP-PAD 0OO8h Padding section (not allocated, not relocated, loaded)

STYP-COPY 0010h Copy section (for a decision function in updating fields;
not allocated, relocated, loaded; relocation and line
number entries are processed normally)

STY P-T EXT 0020h Section contains executable code

STYP-DATA 0040h Section contains initialized data

STYP-BSS 0080h Section contains uninitialized data

STYP-ALIGN 0100h Section is aligned on a cache boundary

Note: The term loaded means that the raw data for this section appears in the object file.

The flags listed in Table A-5 can be combined; for example, if bytes 36 and
37 are set to 024h, then STYP-GROUP and STYP-TEXT are both set.

Appendix A - Section Headers

Figure A-6 illustrates how the pointers in a section header would point to the
various elements in an object file that are associated with the .text section .

. text
Section Header '------'----'-----'----'-----+---1--t--'--r--'---.l-----'------1-~

Figure A-3. An Example of Section Header Pointers for the .text Section

As Figure A-2 (page A-3) shows, the .bss section varies from this format.
Although there is a section header for the .bss section, the .bss section has
no raw data, no relocation information, no line number information, and oc
cupies no actual space in the object file. Therefore, the number of relocation
entries, the number of line number entries, and the file pointers in a .bss sec
tion header are zero. The .bss section header simply tells the linker how much
space for variables it should reserve in the memory map.

A-7

Appendix A - Relocation Information

A.S Relocation Information

A-8

A COFF object file has one relocation entry for each relocatable reference. The
assembler automatically generates relocation entries. The linker reads the re
location entries as it reads each input section and performs relocation. The
relocation entries determine how references within the input section are
treated.

The relocation information entries use the 1 O-byte format shown in Table A-6.

Table A-G. Relocation Entry Contents

Byte
Type Description Number

0-3 Long integer Virtual address of the reference
4-5 Unsigned short integer Symbol table index (0-65535)
6-7 Unsigned short integer Reserved
8-9 Unsigned short integer Relocation type (see Table A-7)

Table A-7 lists the relocation types that can appear in bytes 8 and 9 of the
relocation entry.

Table A-7. Relocation Types (Bytes 8 and 9)

Mnemonic Flag Relocation Type

R-RELBYTE OFh 8-bit direct (relocatable register)

R-RELWORD 10h 16-bit direct

Appendix A - Line Number Table

A.6 Line Number Table
The object file contains a table of line number entries that are useful for sym
bolic debugging. When a C compiler produces several lines of assembly lan
guage code, it creates a line number entry that maps these lines back to the
original line of C source code that generated them.

Each single line number entry contains 6 bytes of information. Table A-8
shows the format of a line entry.

Table A-S. Line Number Entry Format

Byte
Type Description Number

0-3 Long integer This entry may have one of two values:
1) If it is the first entry in a block of line

number entries, it points to a symbol
entry in the symbol table

2) If it is not the first entry in a block, it is
the physical address of the line indi-
cated by bytes 4-5

4-5 Unsigned short integer This entry may have one of two values:
1) If this field is 0, then this is the first line

of a function entry
2) If this field is not 0, then this is the line

number of a line of C source code

The line entry table can contain many of these blocks.

Symbol Index 0
physical address line number
physical address line number

Symbol Index 0
physical address line number
physical address line number

Figure A-4. Line Number Blocks

As Figure A-4 shows, each entry is divided into halves:

• For the first line of a function,

Bytes 0-3 point to the name of a symbol or a function in the
symbol table.
Bytes 4-5 contain a 0, which indicates the beginning of a block.

• For the remaining lines in a function,

Bytes 0-3 show the physical address (the number of words created
by a line of C source).
Bytes 4-5 show the address of the original C source, relative to its
appearance in the C source program.

A-9

Appendix A - Line Number Table

A-10

Figure A-9 jIIustrates an example of line number entries for a function named
XYZ. As shown, the function name is entered as a symbol in the symbol table.
The first portion on XYZ'S block of line number entries points to the function
name in the symbol table. Assume that the original function in the C source
contained three lines of code. The first line of code produces 4 words, the
second line produces 3 words, and the third line produces 10 words. Figure
A-9 shows what the line number entries would look like for this example.

",~---~~,,------~~
.-----t-----"

----o----I----f----
4 I 2
71 3

--
I -- --

- XYZ

Line Number
Entries

Symbol Table

Figure A-5. Line Number Entries Example

(Note that the symbol table entry for XYZ has a field that points back to the
beginning of the line number block.)

Since line numbers are not often needed, the linker provides an option (-s)
that strips line number information from the object file, providing a more
compact object module.

Appendix A - Symbol Table

A.7 Symbol Table

The order of symbols in the symbol table is very important; they appear in the
sequence shown in Figure A-3.

File Name 1

Function 1

Local symbols
for Function 1

Function 2

Local symbols
for Function 2

File Name 2

Function 1

Local symbols
for Function 1

Static variables

Defined global symbols

Undefined global symbols

Figure A-S. Symbol Table Contents

Static variables refer to symbols defined in C that have storage class static
outside any function. If you have several modules that use symbols with the
same name, making them static confines the scope of each symbol to the
module that defines it (this eliminates multiple-definition conflicts).

The entry for each symbol in the symbol table contains the symbol's:

• Name (or a pointer into the string table)

• Type
• Value
• Section it was defined in

• Storage class
• Basic type (integer, character, etc.)
• Derived type (array, structure, etc.)

• Dimensions
• Line number of the source code that defined the symbol

A-11

Appendix A - Symbol Table

Section names are also defined in the symbol table.

All symbol entries, regardless of the symbol's class and type, have the same
format in the symbol table. Each symbol table entry contains the 18 bytes of
information listed in Table A-9. Some symbols may not have all the charac
teristics listed above; if a particular field is not set, it will be set to null.

Table A-g. Symbol Table Entry Contents

Byte
Type Description Number

0-7 Character This field contains one of the following:
1) An 8-character symbol name, padded

with nulls
2) A pointer into the string table if the

symbol name is longer than 8 charac-
ters

8-11 Long integer Symbol value; storage class dependent
12-13 Short integer Section number of the symbol
14-15 Unsigned short integer Basic and derived type specification

16 Character Storage class of the symbol
17 Character Number of auxiliary entries (always 0 or 1)

A.7.1 Special Symbols

A-12

The symbol table contains some special symbols that are generated by the
compiler, assembler, and linker. Table A-1 0 lists these symbols.

Table A-10. Special Symbols in the Symbol Table

Symbol Description
.file File name
.text Address of .text section
.data Address of .data section
.bss Address of .bss section
.bb Address of the beginning of a block
.eb Address of the end of a block
.bf Address of the beginning of a function
.ef Address of the end of a function
.target Pointer to a structure or union that is returned by a function
.nfake Dummy tag name for a structure, union, or enumeration
.eos End of a structure, union, or enumeration
-etext, etext Next available address after the end of the .text output section
-edata, edata Next available address after the end of the .data output section
-end, end Next available address after the end of the .bss output section

Several of these symbols appear in pairs:

• .bbj.eb indicate the beginning and ending of a block.
• .bf/.ef indicate the beginning and ending of a function.
• .nfake/.eos name and define the limits of structures, unions, and enu

merations that were not named.

Appendix A - Symbol Table

The .eos symbol is also paired with named structures, unions, and enumer
ations.

When a structure, union, or enumeration has no tag name, the compiler as
signs it a name so that it can be entered into the symbol table. These names
are of the form .nfake, where n is an integer. The compiler begins numbering
these symbol names at O.

Each special symbol contains ordinary symbol table information as well as an
auxiliary entry.

A.7.1.1 Symbols and Blocks

In C, a block is a compound statement that begins and ends with braces. A
block always contains symbols. The symbol definitions for any particular
block are grouped together in the symbol table, and are delineated by the
.bb/.eb special symbols. Note that blocks can be nested in C, and their symbol
table entries can also be nested correspondingly. Figure A-7 shows how
block symbols are grouped in the symbol table.

Symbol Table
Block 1: .bb

Symbols for
block 1

.eb
Block 2: .bb

Symbols for
block 2

.eb

Figure A-7. Symbols for Blocks

A.7.1.2 Symbols and Functions

The symbol definitions for a function appear in the symbol table as a group,
delineated by .bf/.ef special symbols. The symbol table entry for name of the
function precedes the .bf special symbol. Figure A-8 shows the format of
symbol table entries for a function.

Function Name
.bf

Symbols for
the function

.ef

Figure A-S. Symbols for Functions

If a function returns a structure or union, then a symbol table entry for the
special symbol .target will appear between the entries for the function name
and the .bf special symbol.

A-13

Appendix A - Symbol Table

A.7.2 Symbol Names

The first 8 bytes of a symbol table entry (bytes 0-7) indicate a symbol's name:

• If the symbol name is 8 characters or less, than this field has type char
acter. The name is padded with nulls (if necessary) and stored in bytes
0-7.

• If the symbol name is greater than 8 characters, then this field is treated
as two long integers. The entire symbol name is stored in the string ta
ble. Bytes 0-3 contain 0, and bytes 4-7 are an offset into the string table.

A.7.3 String Table

A-14

Symbol names that are longer than eight characters are stored in the string
table. The field in the symbol table entry that would normally contain the
symbol's name instead contains a pointer to the symbol's name in the string
table. Names are stored contiguously in the string table, delimited by a null
byte. The first four bytes of the string table contain the size of the string table
in bytes; thus, offsets into the string table are greater than or equal to four.

Figure A-5 shows an example of a string table that contains two symbol
names, Rotation-Coordinate and Shade-Pattern. The index in the string ta
ble is 4 for Rotation-Coordinate and 24 for the Shade-Pattern.

38
'R' '0' 't' 'a'
't' 'i' '0' 'n'
, - , 'e' '0' '0'

'r' 'd' 'i' 'n'
'a' 't' 'e' '\0'
's' 'h' 'a' 'd'
'e' - 'p' 'a'
't' 't' 'e' 'r'
'n' '\0'

Figure A-9. Sample String Table

Appendix A - Symbol Table

A.7.4 Storage Classes

Mnemonic

C-NULL

C-AUTO

C-EXT

C-STAT

C-REG

C-EXTDEF

C-LABEL

C-ULABEL

C-MOS

C-ARG

C-STRTAG

C-MOU

Byte 16 of the symbol table entry indicates the storage class of the symbol.
Storage classes refer to the method in which a C compiler accesses a symbol.
Table A-11 lists valid storage classes.

Table A-11. Symbol Storage Classes

Value Storage Class Mnemonic Value Storage Class

0 No storage class C-UNTAG 12 Union tag

1 Automatic variable C-TPDEF 13 Type definition

2 External symbol C-USTATIC 14 Uninitialized static

3 Static C-ENrAG 15 Enumeration tag

4 Register variable C-MOE 16 Member of an enumer-
ation

5 External definition C-REGPARM 17 Register parameter

6 Label C-FIELD 18 Bit field

7 Undefined label C-BLOCK 100 Beginning or end of a
block; used only for the
.bb and .eb special sym-
bols

8 Member of a structure C-FCN 101 Beginning or end of a
function; used only for
the .bf and .ef special
symbols

9 Function argument C-EOS 102 End of structure; used
only for the .eos special
symbol

10 Structure tag C-FILE 103 Filename; used only for
the .file special symbol

11 Member of a union C-LlNE 104 Used only by utility pro-
grams

Some special symbols are restricted to certain storage classes. Table A-12 lists
these symbols and their storage classes.

A-15

Appendix A - Symbol Table

Table A-12. Special Symbols and Their Storage Classes

Special Restricted to
this

Symbol Storage Class

.file C-FILE

.bb C-BLOCK

.eb C-BLOCK

.bf C-FCN

.ef C-FCN

.eos C-EOS

.text C-STAT

.data C-STAT

.bss C-STAT

A.7.S Symbol Values

A-16

Bytes 8-11 of a symbol table entry indicate a symbol's value. A symbol's value
depends on the symbol's storage class; Table A-13 summarizes the storage
classes and related values.

Table A-13. Symbol Values and Storage Classes

Storage Class Value Description

C-AUTO Stack offset in bits

C-EXT Relocatable address

C-STAT Relocatable address

C-REG Register number

C-LABEL Relocatable address

C-MOS Offset in bits

C-ARG Stack offset in bits

C-STRTAG 0

C-MOU Offset in bits

C-UNTAG 0

C-TPDEF 0

C-ENTAG 0

C-MOE Enumeration value

C-REGPARM Register number

C-FIELD Bit displacement

C-BLOCK Relocatable address

C-FCN Relocatable address

C-FILE 0

Appendix A - Symbol Table

If a symbol's storage class is C-FI LE, then the symbol's value is a pointer to
the next .file symbol. Thus, the .file symbols form a one-way linked list in the
symbol table. When there are no more .file symbols, the final .file symbol
points back to the first .file symbol in the symbol table.

The value of a relocatable symbol is its virtual address. When the linker relo
cates a section, the value of a relocatable symbol changes accordingly.

A.7.S Section Number

Bytes 12-13 of a symbol table entry contain a number that indicates which
section the symbol was defined in. Table A-14 lists these numbers and the
sections they indicate.

Table A-14. Section Numbers

Mnemonic
Section

Description Number

N-DEBUG -2 Special symbolic debugging symbol

N-ABS -1 Absolute symbol

N-UNDEF 0 Undefined external symbol

N-SCNUM 1 .text section

N-SCNUM 2 .data section

N-SCNUM 3 .bss section

N-SCNUM 4-77,777 Section number of a named section, in
the order in which the named sections
are encountered

Note that if there were no .text, .data, or .bss sections, the numbering of
named sections would begin with 1.

If a symbol has a section number of 0, -1, or -2, then it is not defined in a
section. A section number of -2 indicates a symbolic debugging symbol,
which includes structure, union, and enumeration tag names, type definitions,
and the filename. A section number of -1 indicates that the symbol has a va
lue but is not relocatable. A section number of 0 indicates a relocatable ex
ternal symbol that is not defined in the current file.

A.7.7 Type Entry

Bytes 14-15 of the symbol table entry define the symbol's type. Each symbol
symbol has:

• One basic type
• One to six derived types

The format for this 16-bit type entry is:

Size (in bits):

A-17

Appendix A - Symbol Table

A-18

Bits 0-3 of the type field indicate the basic type. Table A-15 lists valid basic
types.

Table A-15. Basic Types

Mnemonic Value Type

T-NULL 0 Type not assigned

T-CHAR 2 Character

T-SHORT 3 Short integer

T-INT 4 Integer

T-LONG 5 Long integer

T-FLOAT 6 Floating point

T-DOUBLE 7 Double word

T-STRUCT 8 Structure

T-UNION 9 Union

T-ENUM 10 Enumeration

T-MOE 11 Member of an enumeration

T-UCHAR 12 Unsigned character

T-USHORT 13 Unsigned short integer

T-UINT 14 Unsigned integer

T-ULONG 15 Unsigned long integer

Bits 4-15 of the type field are arranged as six 2-bit fields which can indicate
1 to 6 derived types. Table A-16 lists the possible derived types.

Table A-16. Derived Types

Mnemonic Value Type

DT-NON 0 No derived type

DT-PTR 1 Pointer

DT-FCN 2 Function

DT-ARY 3 Array

An example of a symbol with several derived types would be a symbol with a
type entry of 00000000110100112. This entry indicates that the symbol is
an array of pointers to short integers.

Appendix A - Symbol Table

A.7.S Auxiliary Entries

Name

.file

Each symbol table may have a one or no auxiliary entry. An auxiliary table
entry contains the same number of bytes as a symbol table entry (18), but the
format of an auxiliary entry depends on its type and storage class. Table A-17
summarizes these relationships.

Table A-17. Auxiliary Symbol Table Entries Format

Storage
Type Entry

Auxiliary
Class Derived Basic Entry Format

Type 1 Type
C-FILE DT-NON T-NULL Filename

.text, .data, .bss C-STAT DT-NON T-NULL Section
tagname C-STRTAG DT-NON T-NULL Tag name

C-UNTAG
C-ENTAG

.eos C-EOS DT-NON T-NULL End of structure
fcname C-EXT DT-FCN (See note 1) Function

C-STAT
arrname (See note 2) DT-ARY (See note 1) Array
.bb, .eb C-BLOCK DT-NON T-NULL Beginning and end of a block
.bf, .ef C-FCN DT-NON T-NULL Beginning and end of a function
Name related to a (See note 2) DT-PTR T-STRUCT Name related to a structure, union,
structure, union DT-ARR T-UNION or enumeration
or enumeration DT-NON T-ENUM

Notes: 1) Any except T-MOE.
2) C-AUTO, C-STAT, C-MOS, C-MOU, C-TPDEF.

In Table A-17, tagname refers to any symbol name (including the special
symbol .nfake). Fcname and arrname refer to any symbol name.

Any symbol that satisfies more than one condition in Table A-17 should have
a union format in its auxiliary entry. Any symbol that does not satisfy any of
these conditions should not have an auxiliary entry.

A.7.S.1 File Names

Each of the auxiliary table entries for a file name contains a 14-character file
name in bytes 0-13. Bytes 14-17 are unused.

Table A-18. Section Format for Auxiliary Table Entries

Byte
Type Description Number

0-13 Character File name
14-17 - Unused

A-19

Appendix A - Symbol Table

A.7.S.2 Sections

The auxiliary table entries for sections have the format shown in Table A-18.

Table A-19. Section Format for Auxiliary Table Entries

Byte
Type Description Number

0-3 Long integer Section length
4-6 Unsigned short integer Number of relocation entries
7-8 Unsigned short integer Number of line number entries
9-17 - Not used (zero filled)

A.7.S.3 Tag Names

Table A-20 illustrates the format of auxiliary table entries for tag names.

Table A-20. Tag Name Format for Auxiliary Table Entries

Byte
Type Description Number

0-5 - Unused (zero filled)
6-7 Unsigned short integer Size of structure, union, or enumeration

8-11 - Unused (zero filled)
12-15 Long integer Index of next entry beyond this structure,

union, or enumeration
16-17 - Unused (zero filled)

A.7.S.4 End of Structure

A-20

Table A-21 illustrates the format of auxiliary table entries for ends of struc
tures.

Table A-21. End of Structure Format for Auxiliary Table Entries

Byte
Type Description Number

0-3 Long integer Tag index
4-5 - Unused (zero filled)
6-7 Unsigned short integer Size of structure, union, or enumeration

8-17 - Unused (zero filled)

Appendix A - Symbol Table

A.7.B.5 Functions

Table A-22 illustrates the format of auxiliary table entries for functions.

Table A-22. Function Format for Auxiliary Table Entries

Byte
Type Description Number

0-3 Long integer Tag index
4-7 Long integer Size of function (in bits)

8-11 Long integer File pointer to line number
12-15 Long integer Index of next entry beyond this function
16-17 - Unused (zero filled)

A.7.B.6 Arrays

Table A-23 illustrates the format of auxiliary table entries for arrays.

Table A-23. Array Format for Auxiliary Table Entries

Byte
Type Description Number

0-3 Long integer Tag index
4-5 Unsigned short integer Line number declaration
6-7 Unsigned short integer Size of array
8-9 Unsigned short integer First dimension

10-11 Unsigned short integer Second dimension
12-13 Unsigned short integer Third dimension
14-15 Unsigned short integer Fourth dimension
16-17 - Unused (zero filled)

A.7.B.7 End of Blocks and Functions

Table A-24 illustrates the format of auxiliary table entries for the ends of blocks
and functions.

Table A-24. End of Blocks and Functions Format for Auxiliary Table
Entries

Byte
Type Description Number

0-3 - Unused (zero filled)
4-5 Unsigned short integer C source line number

6-17 - Unused (zero filled)

A-21

Appendix A - Symbol Table

A.7.S.S Beginning of Blocks and Functions

Table A-25 illustrates the format of auxiliary table entries for the beginnings
of blocks and functions.

Table A-25. Beginning of Blocks and Functions Format for
Auxiliary Table Entries

Byte
Type Description Number

0-3 - Unused (zero filled)
4-5 Unsigned short integer C source line number
6-11 - Unused (zero filled)
12-15 Long integer Index of next entry past this block
16-17 - Unused (zero filled)

A.7.S.9 Names Related to Structures, Unions, and Enumerations

A-22

Table A-26 illustrates the format of auxiliary table entries for the names of
structures, unions, and enumerations.

Table A-26. Structure, Union, and Enumeration Names Format for
Auxiliary Table Entries

Byte
Type Description Number

0-3 Long integer Tag index
4-5 - Unused (zero filled)
6-7 Unsigned short integer Size of the structure, union, or enumeration
8-17 - Unused (zero filled)

16-17 - Unused (zero filled)

B. Assembler Error Messages

During the assembly process, the assembler issues messages about the errors
it encounters. These errors are printed on the screen. Within the listing file,
the assembler flags the lines that produced errors with the following letter
codes:

B Bit operation error
C Constant or conditional assembly error
E Invalid expression
I Instruction error
L Library or local label error
M Macro error
o Operand error
R Register error
S Syntax error
U Undefined symbol error
Z Zero operation error

Most of these errors are fatal; that is, they prevent the assembler from creating
an object file.

This remainder of this section lists the assembler error messages, listed in al
phabetical order according to error type.

• Error type B - bit operation errors

bit name must be defined before use: A bit name must be defined with
the .dbit directive before it can be used.

bit number out of range: Bit numbers are limited to the range 0-7.

name of bit expected: The operand of this instruction should be a bit
named with the .dbit directive.

• Error type C - constant errors

invalid constant format

• Error type C - conditional errors

else needs corresponding if An .else was specified without a preceding .if.

unexpected endif encountered: An .endif directive has been encountered
without a preceding .if directive.

• Error type E - invalid expression errors

')' expected: A parenthetical expression was not terminated.

attempt to redefine section address: You can only use the address pa
rameter of a sections directive one time.

bad type of expression

B-1

Appendix B - Assembler Error Messages

cannot redefine symbol to a register: This symbol cannot be defined as
a register.

can't open include file: The file specified with the .include directive cannot
be found.

end of conditional block missing: An .endif directive is needed.

end of string not found: A string must close with a " symbol.

expression not terminated properly

filename must be within quotes: A filename must be specified as a string
(enclosed in double quotes).

illegal operation in expression

include file nested too deep: Include files can only be nested to a maxi
mum of eight levels.

invalid expression

invalid listing length: The maximum length of a listing page is 100 lines.

invalid listing width: The maximum width of a listing page is 200 charac
ters.

invalid trap number

string expected The operand must be a string.

symbol mUltiply defined: A symbol (or label) has been defined more than
once.

too many include files: Only 26 files can be included in a single source file.

unexpected end encountered: An .end directive has been encountered
within a conditional block, a repeat block, or a macro definition.

• Error type I - instruction errors

bad instruction or directive: The specified instruction or directive is not
valid.

• Error type L -library errors

cannot open library: The library specified with the .mlib directive cannot
be found.

library not archive: The filename specified with the .mlib directive does not
name a file that is in archive format.

• Error type L - local label errors

B-2

illegal use of local label

local label mUltiply defined in block: A local label has been defined again
before it was reset.

Appendix B - Assembler Error Messages

local label not defined: A jump instruction has an undefined local label as
its operand.

• Error type M - macro errors

bad macro definition: The macro definition does not follow correct syntax .

. ENDM statement missing in macro: Macro definition is not ended .

. IF level exceeded: .if directives can only be nested to a maximum of eight
levels.

include files not allowed in macro: You cannot use the .include directive
in a macro definition.

incorrect macro definition: The macro definition does not conform to
correct syntax.

invalid if structure

invalid if/loop nesting

invalid macro library pathname: The specified macro library name cannot
be found or opened.

invalid macro qualifier: The macro is qualified with an invalid qualifier
suffix.

invalid macro verb: The specified macro directive is not recognized as valid.

label not defined: An instruction uses a label (as an operand) that has not
been defined.

long macro variable qualifier

loop nesting level exceeded The .Ioop directives can only be nested to a
maximum of eight levels.

macro line too long

macro nesting level exceeded

too many macro variables: Only 128 variables can be defined in a single
macro.

variable already defined: This macro redefines a variable that has already
been defined within the same macro.

• Error type 0 - operand errors

address is illegal operand: The specified address is not legal.

directive needs an absolute value: All expressions used as directive op
erands must be positive values.

illegal relative address

illegal use of global label

invalid operand or operand combination

8-3

Appendix B - Assembler Error Messages

undefined expression

value cannot be external: This instruction cannot use a global symbol as
an operand.

value must be positive: This instruction must have positive values as op
erands.

value out of range

• Error type R - register errors

cannot redefine register: A register cannot be redefined.

illegal peripheral number: The range of peripheral registers is Po-P255.

illegal register number: The range of registers is Ro-R255.

illegal use of A register: Register A cannot be used as an operand for this
instruction.

illegal use of B register: Register B cannot be used as an operand for this
instruction.

illegal work register

invalid register size

register or peripheral file expected: The operand must be a register or a
peripheral register.

relocatable registers larger than 255: Only 256 relocatable registers can
be defined in the .reg section.

• Error type S - syntax errors

comma expected: A comma is needed in the operand field.

identifier expected

label required: The .equ directive must have a symbol in the label field.

missing operand

syntax error: This statement does not conform to correct syntax.

unexpected trailing operands: M.ore operands have been used for this
instruction than are allowed.

• Error type U - undefined symbol errors

undefined symbol: A symbol that is used as an operand is not defined.

• Error type Z - zero operation errors

attempt to divide by zero: Dividing by zero is illegal.

8-4

c. Linker Error Messages

The linker issues several types of error messages:

• Corrupt input files

• Output errors

• Allocation errors

• Directives errors

• Incorrect expressions

• Options misuse

• Space misuse

This section discusses the following types of errors:

Section Page
C.1 Errors Caused by Corrupt Input Files ... C-2
C.2 Output Errors ... C-2
C.3 Allocation Errors ... C-3
C.4 Directives Errors .. C-4
C.5 Errors Caused by Incorrect Expressions .. C-5
C.6 Options Misuse Errors .. C-5
C.7 Space Errors .. C-6
C.B Miscellaneous Errors .. C-6

C-1

Appendix C - Linker Error Messages

C.1 Errors Caused by Corrupt Input Files

The following error messages indicate that the input file is corrupt, nonexist
ent, or unreadable. Make sure that the file is in the correct directory. If the file
is corrupt, try reassembling it.

Many of these errors can be categorized into the following groups. Instead
of "(...)", the linker will print the name of a particular object that it is at
tempting to interact with.

• Can't op~~ (...)

• Can't read (...)

• Can't seek (...)

• Fail to read (...)

• Fail to seek (...)

• Fail to skip (...)

• Seek to (...) failed

The following error messages are also caused by corrupt input files.

• File (...) has no relocation information
• File (...) is of unknown type
• Illegal relocation type (...) found in section(s) of file (...)
• Invalid archive size for file (...)
• Library (...) member has no relocation information
• Line number entry found for absolute symbol
• Relocation symbol not found: index (...), section (...), file (...)
• Relocation entries out of order in section (...) of file (...)

C.2 Output Errors

C-2

These errors occur because the linker cannot write to the output file. This
usually indicates that the file system is out of space. Instead of "(...)", the
linker will print the name of a particular object that it is attempting to interact
with.

• Cannot complete output file (...), write error

• Fail to write (...)
• Fail to copy (...)
• I/O error on output file (...)

Appendix C - Linker Error Messages

C.3 Allocation Errors

These error messages appear during the allocation phase of linking. They
generally appear if a section or group does not fit at a certain address or if the
MEMORY and SECTION directives conflict in some way. If you are using a
linker command file, check that MEMORY and SECTION directives allow
enough room to ensure that no sections overlap and that no sections are being
placed in unconfigured memory. Instead of "(...)", the linker will print the
name of a particular object that it is attempting to interact with.

o Bond address (...) for section (...) is outside all memory on page (...)

• Bond address (...) for section (...) overlays previously allocated section

• Can't allocate output section, (...) of size (...) on page (...)

• Default allocation failed: (...) is too large

• GROUP containing section (...) is too big

o Memory types (...) and (...) on page (...) overlap

• Section (...) at address (...) overlays previously allocated section (...) at
address

• Section (...), bonded at address (...), won't fit into page (...) of config
uredmemory

• Section (...) enters unconfigured memory at address (...)

• Section (...) in file (...) is too big

• Bond address (...) incompatible with alignment for section (...)

• Can't allocate section (...) with attribute (...) on page (...)

• No owner (...) for section (...) on page (...)

(Invalid or nonexistent memory range.)

• Section (...) enters unconfigure memory at address (...)

C-3

Appendix C - Linker Error Messages

C.4 Directives Errors

C-4

These errors are caused by incorrect use of linker directives. Check the input
directives for accuracy. Instead of "(... }", the linker will print the name of a
particular object that it is attempting to interact with.

• Adding name (...) to mUltiple output sections

(The input section is mentioned twice in the SECTION directive.)

• Bad attribute value in MEMORY directive: (...)

(An attribute must be R, W, X, or I.)

• Bad flag value in SECTIONS directive, option (...)

• Bad fill value

(The fill value must be a 2-byte constant.)

• Bonding excludes alignment

(The section will be bound at the given address regardless of the align
ment of that address.)

• Cannot align a section within GROUP - (...) not aligned

• .Cannot bond a section within a GROUP

• Cannot specify an owner for sections within a GROUP

(The entire group is treated as one unit, so the group may be aligned or
bound to an address, but the sections making up the group may not be
handled individually.)

• DSECT (...) can't be given an owner

(Since dummy sections do not participate in memory allocation, it is
meaningless for a dummy section to be given an owner or an attribute.)

• Section (...) not built

(The most likely cause of this is a syntax error in the SECTIONS direc
tive.)

• Semicolon required after expression

• Statement ignored

(Caused by a syntax error in a expression.)

• Fill value on -f flag truncated to (...) bytes

(Warning.)

• Syntax error: scanned line = (...)

Appendix C - Linker Error Messages

• Cannot specify a page for a section within a GROUP

C.S Errors Caused by Incorrect Expressions

These errors arise from the misuse of an input expression. Check the syntax
of all expressions. Instead of "(...)", the linker will print the name of a partic
ular object that it is attempting to interact with.

• Absolute symbol (...) being redefined

(An absolute symbol may not be redefined.)

• ALIGN illegal in this context

(Alignment of a symbol may only be done within a SECTIONS
directive.)

• Attempt to decrement "."

• Misuse of "." symbol in assignment instruction

(The dot symbol cannot be used in assignment statements that are out
side SECTIONS directives.)

• Symbol (...) from file (...) being redefined

(A defined symbol may not be redefined in an assignment statement.)

• Undefined symbol in expression

• Illegal operator in expression

• number (...) not a power of 2

(For the ALIGN operator.)

C.6 Options Misuse Errors

Review the various options you are using and check for conflicts. Instead of
"(...)", the linker will print the name of a particular object that it is attempting
to interact with.

• Both -r and -s flags are set; -s flag turned off.

(Since the -s option strips the relocation information and -r requests a
relocatable object file, these options are in conflict with each other.)

• -0 file name too large (>128 char), truncated to (string).

• Option flag does not specify a number.

• Option is invalid flag.

• -e flag does not specify a legal symbol name (...)

• -f flag does not specify a 2-byte number.

C-5

Appendix C - Linker Error Messages

• -0 flag does specify a valid file name: string.

• -c requires fill value of 0 in .cinit

«val> overridden.)

• Entry point other than -c-intOO specified

(For -c option only.)

• Entry point symbol (...) undefined

C.7 Space Errors

The following errors occur if the linker attempts to allocate more space than
is available in target system memory; try to decrease the amount of space used
by the linker. One way to accomplish this is by making the linker command
file less complex, or by using the -r option to create intermediate files.

• Internal error: aux table overflow
• Memory allocation failure
• No symbol map produced - not enough memory

C.S Miscellaneous Errors

C-6

Instead of "(... }", the linker will print the name of a particular object that it is
attempting to interact with.

• Cannot create output file (...)

• File (...) has no relocation information

• File (...) is of unknown type, magic number = (...)

• Ifile (comfile) nesting exceeded with file (...)

(Command file nesting is allowed up to 16 levels.)

• section (...) not found

(An input section specified in a SECTIONS directive was not found in
the input file.)

• Sections .text, .data, or .bss not found

(Optional header may be useless.)

• Undefined symbol (...) first referenced in file (...)

(Unless the '"r option is used, the linker requires that all referenced
symbols are defined.)

• Unexpected ·EOF(End Of File}

(Syntax error in the linker command file.)

Appendix C - Linker Error Messages

• Internal symbol (...) redefined in file (...)

(Ignored.)

• DSECT (...) can't be linked to an attribute

• DSECT (...) can't be given an owner

• No input files

• Could not create map file (...)

• Symbol referencing errors - (...) not built

• Errors in input - (...) not built

• Output file (...) not executable

(Warning.)

• PC-relative displacement overflow at address (...) in file (...)

C-7

Appendix C - Linker Error Messages

C-8

D. ASCII Character Set

Base
Char

Base
Char

Base
Char

Base
Char

10 16 10 16 10 16 10 16

0 00 NULL 32 29 SP 64 40 @ 96 60

1 01 SOH 33 21 ! 65 41 A 97 61 a

2 02 STX 34 22 " 66 41 B 98 62 b

3 03 ETX 35 23 # 67 43 C 99 63 c

4 04 EOT 36 24 $ 68 44 D 100 64 d

5 05 ENO 37 25 % 69 45 E 101 65 e

6 06 ACK 38 26 & 70 46 F 102 66 f

7 07 BEL 39 27 , 71 47 G 103 67 9

8 08 BS 40 28 (72 48 H 104 68 h

9 09 HT 41 29) 73 49 I 105 69 i

10 OA LF 42 2A * 74 4A J 106 6A j

11 OB VT 43 28 + 75 48 K 107 68 I<

12 OC FF 44 2C 76 4C L 108 6C I

13 OD CR 45 20 - 77 40 M 109 60 m

14 OE SO 46 2E 78 4E N 110 6E n

15 OF SI 47 2F / 79 4F 0 111 6F 0

16 10 DLE 48 30 0 80 50 P 112 70 p

17 11 DC1 49 31 1 81 51 0 113 71 q

18 12 DC2 50 32 2 82 52 R 114 72 r

19 13 DC3 51 33 3 83 53 S 115 73 s

20 14 DC4 52 34 4 84 54 T 116 74 t

21 15 NAK 53 35 5 85 55 U 117 75 u

22 16 SYN 54 36 6 86 56 V 118 76 v

23 17 ETB 55 37 7 87 57 W 119 77 w

24 18 CAN 56 38 8 88 58 X 120 78 x

25 19 EM 57 39 9 89 59 Y 121 79 Y
26 1A SUB 58 3A : 90 5A Z 122 7A z

27 18 ESC 59 38 ; 91 58 [123 78 {

28 1C FS 60 3C < 92 5C \ 124 7C I
29 10 GS 61 30 = 93 50] 125 70 }

30 1E RS 62 3E > 94 5E " 126 7E ,..,

31 1 F US 63 3F 7 95 5F - 127 7F DEL

0-1

Appendix D - ASCII Character Set

0-2

E. Glossary

absolute address: An address that is permanently assigned to a TMS370
memory location.

alignment: A process in which the linker places an output section at an
address that falls on an n-bit boundary, where n is a power of 2. You can
specify alignment with the SECTIONS linker directive.

allocation: A process in which the linker calculates the final memory ad
dresses of output sections.

archive library: A collection of individual files that have been grouped into
a single file.

archiver: A software program that allows you to collect several individual
files into a single file called an archive library. The archiver also allows you
to delete, extract, or replace members of the archive library, as well as add new
members.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, directives, and
macro directives. The assembler substitutes absolute operation codes for
symbolic operation codes, and absolute or relocatable addresses for symbolic
addresses.

assembly-time constant: A symbol that is assigned a constant value with
the .equ directive.

assignment statement: A statement that assigns a value to a variable.

attribute component: Provides information about the origin and structure
of a macro variable or macro symbol.

binding: A process in which you specify a distinct address for an output
section or a symbol.

.bss: This is one of the default COFF sections. You can use the .bss direc
tive to reserve a specified amount of space in the memory map that can later
be used for storing data. The .bss section is uninitialized.

code conversion utility: A program that converts COFF object files into
Intel-format object files.

command file: A file that contains linker options and names input files for
the linker.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comment are not
compiled, assembled, or linked; they have no effect on the object file.

Common object file format (COFF): An object file that promotes mo
dular programming by supporting the concept of sections.

conditional processing: A method of processing one block of source
code or an alternate block of source code, based upon the evaluation of a
specified expression.

E-1

Appendix E - Glossary

E-2

configured memory: Memory that the linker has specified for allocation.

constant: A numeric value that can be used as an operand.

cross-reference listing: An output file created by the assembler that lists
the symbols that were defined, what line they were defined on, which lines
referenced them, and their final values .

. data: This is one of the default COFF sections. The .data section is an ini
tialized section that contains initialized data. You can use the .data directive
to assemble code into the .data section.

directive: Special-purpose commands that control the actions and func
tions of a software tool (as opposed to assembly language instructions, which
control the actions of a device).

executable module: An object file that has been linked and can be exe
cuted in a TMS370 system.

expression: A constant, a symbol, or a -series of constants and symbols se
parated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
defined in a different program module.

field: For the TMS370, a software-configurable data type whose length can
be programmed to be any value in the range of 1-32 bits.

global: Describes a symbol that is either 1) defined in the current module
and accessed in another, or 2) accessed in the current module but defined in
another.

GROUP: An option of the SECTIONS directive that forces specified output
sections to be allocated contiguously (as a group).

hole: An area between the input sections that comprise an output section
which contains no actual code or data.

incremental linking: Linking files that have already been linked.

initialized section: A COFF section that contains executable code or ini
tialized data. These sections can be built up with the .data, .text, or .sect di
rective.

input section: A section from an object file that will be linked into an ex
ecutable module.

label: A symbol which begins in column 1 of a source statement.

length component: A component of a macro variable or macro symbol
that contains the number of characters that make up the string.

linker: A software tool that combines object files to form an object module
that can be allocated into TMS370 system memory and executed by the
TMS370.

listing file: An output file created by the assembler that lists source state
ments, their line numbers, and their effects on the SPC.

Appendix E - Glossary

loader: A device that loads an executable module into TMS370 system
memory.

macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The source statements that are substituted for the macro
call and subsequently assembled.

macro library: An archive library composed of macros. Each file in the li
brary must contain one macro; it's name must be the same as the macro name
it defines, and it must have an extension of .asm.

macro variable: A variable that is valid within a macro definition or during
a macro expansion.

map file: An output file created by the linker that shows the memory con
figuration, section composition and allocation, and symbols and the addresses
at which they were defined.

memory map: A map of TMS370 target system memory space, which is
partitioned into functional blocks.

mnemonic: An instruction name that the assembler translates into machine
code.

model statement: Instructions or assembler directives in a macro defi
nition that are assembled each time a macro is invoked

named section: An initialized section that is defined with a .sect directive.

object file: A file that has been assembled or linked and contains ma
chine-language object code.

object library: An archive library made up of individual object files.

operand: The arguments, or parameters, of an assembly language in
struction, assembler directive, or macro directive.

optional header: A portion of a COFF objet file that the linker uses to
perform relocation at download time.

options: Command parameters that allow you to request additional or spe
cific functions when you invoke a software tool.

output section: A final, allocated section in a linked, executable module.

overlay pages: Multiple areas of physical memory that overlay each other
at the same address space. TMS370 devices can map different pages into the
same address space in response to hardware select signals.

partial linking: Linking a file that will be linked again.

raw data: Executable code or initialized data in an output section.

E-3

Appendix E - Glossary

E-4

relocation: A process in which the linker adjusts all the references to a
symbol when the symbol's address changes.

section: A relocatable block of code or data that will ultimately occupy
contiguous space in the TMS370 memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header; the header points
to the section's starting address, contains the section's size, etc.

section program counter (SPC): An element of the assembler that keeps
track of the current location within a section; each section has its own SPC.

source file: A file that contains C code or TMS370 assembly language code
that will compiled or assembled to form an object file.

string component: A copy of a string that is passed to a macro variable
by a macro parameter or assigned to a macro symbol with an $ASG directive.

string table: Symbol names that are longer than 8 characters cannot be
stored in the symbol table; instead, they are stored in the string table. The
name portion of the symbol's entry points to the location of the string in the
string table.

storage class: Any entry in the symbol table that indicates how a symbol
should be accessed.

symbol: A string of alphanumeric characters that represents an address or
a value.

symbolic debugging: The ability of a software tool to retain symbolic in
formation so that it can be used by a debugging tool such as a simulator or
an emulator.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

target memory: Physical memory in a TMS370-based system into which
executable object code will be loaded .

. text: This is one of the default COFF sections. The .text section is an ini
tialized section that contains executable code. You can use the .text directive
to assemble code into the .text section.

unconfigured memory: Memory that is not defined as part of the
TMS370 memory map and cannot be loaded with code or data.

uninitialized section: A COFF section that reserves space in the TMS370
memory map but that has no actual contents. These sections are built up with
the .bss directive.

value component: A component of a macro variable or macro symbol that
specifies the value of the variable or symbol.

well-defined expression: An expression that contains only symbols or
assembly-time constants that have been defined before they appear in the
expression.

word: A 16-bit addressable location in target memqry.

Index

A

a command (archiver) 8-3
-a option (assembler) 4-3
-a option (linker) 9-4
absolute lister 1 -3, 10-1 -10-6

examples 10-4
invocation 10-3
producing a listing 10-2

absolute output module 9-5
alignment 9-18
allocation 9-17, 9-24
archive libraries 5-26, 8-1-8-4, 9-7, 9-8,

9-11
archiver 1-3, 8-1-8-4

examples 8-4
in the development flow 8-2
invocation 8-3
options 8-3

arithmetic operators 4-12, 9-29
array definitions A-21
ASCII character set D-1
.ASG (macro directive) 7-2,7-6
assembler 1 -3, 4-1 -4-1 9

constants 4-8
cross-reference listings 4-19
directives 5-1-5-36
error messages 8-1-8-4
expressions 4-11
invocation 4-3
output 4-17-4-18
overview 4-1
source listings 4-17-4-18
source statement format 4-4
symbols 4-10

assembler directives 5-1, 5-36
conditional assembly directives 5-10

.else 5-10, 5-22

.endif 5-10, 5-22

.if 5-10,5-22

miscellaneous directives
.end 5-18

sections directives 5-4
.bss 3-3-3-6, 5-4, 5-14
.data 3-3-3-6, 5-4, 5-16
.reg 3-3-3-6, 5-4, 5-30
.regpair 5-4, 5-30
.sect 3-3-3-6, 5-4, 5-32
.text 3-3-3-6, 5-4, 5-34

summary table 5-2
that define symbols 5-8

.bss 5-14

.dbit 5-8, 5-17

.equ 5-8, 5-19

.newblock 5-8, 5-28

.reg 5-30

.regpair 5-30
that format the output listing 5-9

length 5-9, 5-24
.Iist 5-9, 5-25
.mlist 5-9, 5-27
.mnolist 5-9, 5-27
.nolist 5-9, 5-25
.page 5-9, 5-29
.title 5-9, 5-35
width 5-9, 5-24

that initialize constants 5-6
.block 5-6,5-13
.byte 5-6, 5-15
.string 5-6, 5-33
.word 5-6, 5-36

that reference other files 5-11
.global 5-11, 5-20
.globreg 5-11, 5-21
.include 5-11, 5-23
.mlib 5-11, 5-26

assembler output 4-17 -4-19, 5-9
assembly language development

flow 1-2
assembly-time constants 4-9
assigning a value to a symbol 5-19
auxiliary entries A-19

Index-1

Index

B

binary integers 4-8
binding 9-17
.block (assembler directive) 5-6, 5-13
block definitions A-13, A-21, A-22
.bss (assembler directive) 3-3, 5-4, 5-14
.bss section 3-3, 5-4, 5-14, 9-30, A-3

initialization 9-33
.byte (assembler directive) 5-6, 5-15

c
character string 4-10
characters 4-9, D-1
CMP81T 5-17
code conversion utility 1 -3, 11 -1 -11 -4

examples 11 -4
in the development flow 11 -2
invocation 11 -3

COFF 1-1,3-1-3-8,9-1, A-1-A-22
auxiliary entries A-19
file headers A-4
file structure A-2
line number entries A-9
relocation information A-8
section headers A-6
special symbols A-12
string table A-14
symbol table A-11

command files (linker) 9-3, 9-9
example 9-37

comments (in source code) 4-7, 9-9
common object file format

See COFF
conditional blocks 5-10, 7-16

assembler directives 5-10, 5-22
macro directives 7-16

conditional expressions 4-14
configured memory 9-24
constants 4-8

assembly-time constants 4-9
binary integers 4-8
characters 4-9
decimal integers 4-8
hexadecimal integers 4-9
octal integers 4-8

COpy section 9-26
cross-reference listings 4-19

Index-2

D

d command (archiver) 8-3
.data (assembler directive) 3-3, 5-4,

5-16
.data section 3-3, 5-4, 5-16, 9-30, A-3
.dbit (assembler directive) 5-8, 5-17
debugger 1 -3
decimal integers 4-8
default fill value for holes 9-6
default sections 3-2
defining macros 7-4
development tools overview 1 -2
directives

See assembler directives
DSECT section 9-26
dummy section 9-26

E

-e option (linker) 9-6
EEPROM programmer 1-6
electrical specifications 1 -6
.else (assembler directive) 5-10, 5-22
.ELSE (macro directive) 7-2, 7 -16
emulator 1-3
.end (assembler directive) 5-18
.endif (assembler directive) 5-10, 5-22
.ENDIF (macro directive) 7-2,7-16
.ENDLOOP (macro directive) 7-2,7-17
.ENDM (macro directive) 7-2
entry points for the linker 9-6
EPROM programmers 1 -3, 11 -1
.equ (assembler directive) 5-8, 5-19
error messages

assembler 8-1-8-4
linker C-1-C-7

expressions 4-11, 9-27
conditional 4-14
examples 4-14
that are well defined 4-14
that contain arithmetic

operators 4-12
that contain parentheses 4-11
that contain relocatable

symbols 4-13
underflow/underflow 4-12

external symbols 4-10, 4-13, 5-11, 5-19,
5-20, 5-21

Index

F

-f option (linker) 9-6
file headers A-4
function definitions A-13, A-21, A-22

G

.global (assembler directive) 5-11, 5-20
global symbols 9-6
.globreg (assembler directive) 5-11,5-21
GROUP option (SECTIONS

directive) 9-19

H

- H option (linker) 9-6
hexadecimal integers 4-9
holes 9-6, 9-30
holes in output sections 9-30
how to use the manual 1 -5

.if (assembler directive) 5-10, 5-22

.IF (macro directive) 7-2, 7-16

.include (assembler directive) 5-11, 5-23
incremental linking 9-35
initialized sections 3-2, 3-4, 5-16, 5-32,

5-34, 9-30
instruction set 1-6, 6-1-6-9
I ntel object format 11 -1
invoking the ...

absolute lister 10-3
archiver 8-3
assembler 1 -4, 4-3
code conversion utility 11 -3
linker 1 -4, 9-3

J

JBITO 5-17
JBIT1 5-17

K

keywords 7 -13
macro parameter components 7 -13

Spa 7-13

L

$paddr 7-13
$pb 7-13
$pcall 7-13
$popl 7-13
$pp 7-13
$pr 7-13
$psp 7-13
$pst 7-13
$pstr 7-13
$psub 7-13
$pval 7-13
$pw 7-13

symbol attribute components 7 -13
$def 7-13
$rel 7-13
$str 7-13
$undef 7-13

-I option (assembler) 4-3
-I option (linker) 9-7
labels 4-4
.length (assembler directive) 5-9, 5-24
line number entries A-9
linker 1-3, 9-1-9-38

COFF 9-1
command files 9-3, 9-9
command options summary 9-4
development flow 9-2
error messages C-1-C-7
example 9-36
expressions 9-27
invocation 9-3
Ink370 command 9-3
operators 9-29
SECTIONS directive 9-15
unconfigured memory 9-12

linker command files 9-3

Index-3

Index

linker command options 9-4-9-8
.list (assembler directive) 5-9, 5-25
listing control 5-27
listing file 5-9
listing page size 5-24
Ink370 command· 9-3

-a option 9-4
command options summary 9-4
-e option 9-6
-f option 9-6
-H option 9-6
-I option 9-7
-m option 9-7
-0 option 9-8
-r option 9-4
-s option 9-8
-u option 9-8

local labels 4-7
.LOOP (macro directive) 7-2,7-17

M

-m option (linker) 9-7
MACLI B files 5-26, 7-3
.MACRO (macro directive) 7-2, 7-4
macro libraries 5-26, 7-3, 8-1
macros 7-1, 7-17

calls 7-1
conditional blocks 7 -16
definitions 7-4
directives summary 7-2
MACLIB files 5-26,7-3
macro libraries 5-26, 7-3
macros 7-1
.mlib directive 5-26, 7-3
redefining opcodes 7-5
repeatable blocks 7 -1 7
substitution 7-1
variables 7-6

manual organization 1 -5
map file 9-7, 9-14, 9-20

example 9-38
MEMORY (linker directive) 3-8, 9-12-

9-14
default model 9-12
overlay pages 9-21
syntax 9-12

.mlib (assembler directive) 5-11, 5-26,
7-3

.mlist (assembler directive) 5-9, 5-27

Index-4

mnemonics 4-1
.mnolist (assembler directive) 5-9, 5-27
MS-DOS software installation 2-1

N

named memory 9-18
named sections 3-2, 5-4, 5-32, A-3
naming an output module 9-8
.newblock (assembler directive) 5-8,

5-28
.nolist (assembler directive) 5-9, 5-25
NOLOAD section 9-26

o
-0 option (linker) 9-8
object file format

See COFF
object libraries 8-1,9-7,9-11
octal integers 4-8
operands 4-5

immediate addressing 4-6
prefixes 4-5
register aliasing 4-6

optional file header A-5
output listing 5-9
overflow 4-12
overlay pages 9-21-9-23

p

.page (assembler directive) 5-9, 5-29
parentheses in expressions 4-11
partially linked files 9-35
PC-DOS software installation 2-1
predefined symbols 4-10

Q

-q option (assembler) 4-3

Index

R

r command (archiver) 8-3
-r option (linker) 9-4, 9-35
redefining opcodes 7-5
.reg (assembler directive) 3-3, 5-4, 5-30
.reg section 3-3, 5-4, 5-30, A-3
register aliasing 4-6
.regpair (assembler directive) 5-4, 5-30
related documentation 1 -6
relocatable output module 9-5
relocatable symbols 4-13
relocation 4-9, 9-4, 9-5, A-8
repeatable blocks 7 -17

s
s option (archiver) 8-3
-s option (linker) 9-8
S81TO 5-17
S81T1 5-17
.sect (assembler directive) 3-3, 5-4, 5-32
.sect section 3-3, 5-4, 9-30
section headers A-6
section program counter

See SPC
section specifications 9-16
sections 1 -1, 3-1 -3-8, 5-14, 5-16, 5-30,

5-32,5-34
default sections 3-2,5-14,5-16,

5-30,5-34
named sections 3-2, 5-32

SECTIONS (linker directive) 3-8, 9-15-
9-20

alignment 9-18
allocation 9-17,9-24
binding 9-17
default allocation 9-24
GROUP option 9-19
named memory 9-18
overlay pages 9-22
section specifications 9-16
syntax 9-15

software installation 2-1
MS-DOS 2-1
PC-DOS 2-1

source listings 4-17 -4-18
source statement format 4-4

comment field 4-7
label field 4-4
mnemonic field 4-5

operand field 4-5
SPC 3-4,4-1,4-17

assembler symbol 4-4, 4-10
linker symbol 9-27,.9-30

special symbols in the symbol table A-12
static symbols 9-6
static variables A-11
storage classes A-15
.string (assembler directive) 5-6, 5-33
string table A-14
stripping line number entries 9-8
stripping symbolic information 9-8
structure definitions A-20
style and symbol conventions 1 -7
symbol names A-14
symbol table A-.11
symbolic debugging 9-8, A-9, A-11
symbols 4-10

T

character strings 4-10
predefined 4-10
relocatable symbols in

expressions 4-1 3

t comm'and (archiver) 8-3
.text (assembler directive) 3-3, 5-4, 5-34
.text section 3-3, 5-4, 5-34, 9-30, A-3
timing characteristics 1 -6
.title (assembler directive) 5-9, 5-35
TMS370 archiver

See archiver
TMS370 assembler

See assembler
TMS370 devices

definition 1-1
support tools 1 -2

TMS370 linker
See linker

u
-u Qption (linker) 9-8
unconfigured memory 9-12, 9-24
underflow 4-12
uninitialized sections 3-2, 3-3,5-14,

5-30,9-30

Index-5

Index

v
v option (archiver) 8-3
.VAR (macro directive) 7-2, 7-6

w
well-defined expressions 4-14
.width (assembler directive) 5-9, 5-24
.word (assembler directive) 5-6, 5-36

Index-6

x
x command (archiver) 8-3
-x option (assembler) 4-3
XDS debugger 1 -6
XDS/22 debugger 1-3

