
-1!1 TEXAS
INSTRUMENTS

TMS340B2

1991 Datapath VLSI Products

TMS340B2
Designer's Handbook

2564007-9721 revision A
May 1991

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue any
semiconductor product or service identified in this publication without notice. TI advises its
customers to obtain the latest version of the relevant information to verify, before placing orders,
that the information being relied upon is current.

TI warrants performance of its semiconductor products to current specifications in accordance
with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Unless mandated by government requirements,
specific testing of all parameters of each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Texas Instruments products are not intended for use in life-support appliances, devices, or
systems. Use of a TI product in such applications without the written consent of the appropriate
TI officer is prohibited.

Copyright © 1991, Texas Instruments Incorporated

Read This First

iv

Appendix A System Design Considerations
Provides recommendations on logic design, bypass capacitors, PWB design, and thermal
considerations.

Appendix B TMS34082 Data Sheet
Contains the commercial data sheet for the TMS34082A.

Appendix C SMJ34082 Data Sheet
Contains the advance information military data sheet for the SMJ34082A.

Appendix D Maximizing Your MFLOPS with the TMS34082 and Motorola
MC68030
Contains an application note on interfacing the TMS34082 (in host-independent mode) to
the Motorola MC68030.

Appendix E A High-Performance Floating-Point Image Computing Workstation
for Medical Applications
Contains an application note on an imaging system using a TMS34020 with four
TMS34082 coprocessors.

Appendix F Parallel Signal and Matrix Processing with the TMS34082
Contains an application note outlining and analyzing a TMS34082-based parallel
architecture design.

Read This First

Read This First

Related Documentation

The following documents are available from Texas Instruments. To obtain a
copy of any of these TI documents, please call the Customer Response Center
(CRC) at (800) 232-3200 unless otherwise noted. When ordering, please
identify the book by its title and corresponding literature number.

TMS34082A Data Sheet (literature number SCGS001) is included in
Appendix 8 of this book. It contains electrical specifications, timing
information, and mechanical data for the TMS34082A.

SMJ34082A Data Sheet (literature number SGUS012A) is included in
Appendix C of this book. It contains electrical specifications, timing
information, and mechanical data for the SMJ34082A.

TMS34020 User's Guide (literature number SPVU019) discusses hardware
aspects of the TMS34020, such as pin functions, architecture, stack
operations, and interfaces. Contains the TMS34020 instruction set and
interface to the TMS34082.

TMS34020 Data Sheet (literature number SPVS004) contains electrical
specifications, timing information, and mechanical data for the
TMS34020.

TMS34082 Software Tool Kit User's Guide describes the C compiler,
assembler, linker, librarian, and simulator that are available for developing
TMS34082 external instruction code. Call your TI sales representative for
the demonstration version of the tool kit.

TMS340 Family Code-Generation Tools User's Guide (literature number
SPVU004) describes the C compiler, assembler, linker, archiver, and
auxiliary tools that are available for developing TMS3401 0, TMS34020, or
TMS34020fTMS34082 code.

TMS34082 Assembly Support for Code-Generation Tools User's Guide
(literature number SPVU029) summarizes the instruction code used with
the TMS34082.

TIGA Interface User's Guide (literature number SPVU015) describes the
Texas Instruments Graphics Architecture (TIGA), a software interface that
standardizes communication between application software and
TMS340-based hardware for 18M-compatible PCs.

TMS34082 3-D Graphics Library User's Guide describes an extensive array
of C-callable functions including polygon clipping, shading, and vector and
matrix operations. This library is TIGA-compatible and can also be used
in non-TIGA applications. Call your TI sales representative or the DVP
System Engineering Hotline for information on purchasing this product.

v

Read This First

You may also find the following documentation useful. Many of the complex
graphics instructions in the TMS34082 are based on algorithms found in this
book:

Foley, James, and Andries van Dam. Fundamentals of Interactive Computer
Graphics. Reading, Massachusetts: Addison-Wesley, 1982.

Style and Symbol Conventions

vi

This document uses the following conventions.

Program listings, program examples, filenames, and symbol names are
shown in a special typeface similar to a typewriter's. Examples use
a bol.d version of the special typeface for emphasis.

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 . even

In syntax descriptions, the instruction is in a bold typeface font and
parameters are in an italic typeface. Portions of a syntax that are in bold
should be entered as shown; portions of a syntax that are in italicsdescribe
the type of information that should be entered. Here is an example of an
instruction syntax:

NEGF CRs, CRd

This instruction has two parameters, indicated by CRs and CRd. When you
use N EGF, the parameters must be actual TMS34082 registers, such as
RA9 and RB1.

Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don't enter the brackets themselves. Here's an example of an instruction
that has an optional parameter:

MOVO * Rs+, CRd [, count]

The MOVD instruction has three parameters. The first two parameters, Rs
and CRd, are required. The third parameter, count, is optional. As this
syntax shows, if you use the optional third parameter, you must precede it
with a comma.

In the internal instruction set listings, Rs and Rd refer to TMS34020 source
and destination registers, respectively. CRs and CRd refer to coprocessor
or TMS34082 registers.

Read This First

Trademarks

Read This First

EPIC, SCOPE, and TIGA are trademarks of Texas Instruments Incorporated.

IBM, PC-DOS, and PC/ATaretrademarks of International Business Machines,
Inc.

MS-DOS is a trademark of Microsoft Corporation.

NeXT is a trademark of NeXT, INC.

PAL is a registered trademark of Monolithic Memories, Inc.

X Windows Systems is a trademark of the Massachusetts Institute of
technology.

vii

Read This First

If You Need Assistance • ••

If you want to ••• Do this ••.

Receive more information Call the CRC Hot Line:
about TI floating-point products (BOO) 232-3200

Or write to:
Texas Instruments Incorporated
Datapath VLSI Products
Marketing Communications
P.O. Box 655303, MIS 8316
Dallas, Texas 75265

Order TI documentation Call the C RC Hot Line:
(BOO) 232-3200

Ask questions about product Call DVP Systems Engineering
operation or report suspected Hot Line:
problems (214) 997-3970

Inquiries related to this Write to:
document: Texas Instruments Incorporated

Datapath VLSI Products
Marketing Communications
P.O. Box 655303, MIS 8316
Dallas, Texas 75265

viii Read This First

Contents

4.3.1 LAD Bus. .. 4-4
4.3.2 MSD Bus ... 4-5

4.4 Sequence Control .. 4-7
4.5 Registers. .. 4-8

4.5.1 Register Files RA and RB .. 4-11
4.5.2 Feedback Registers C and CT .. 4 .. 12
4.5.3 Configuration Register (CON FIG) 4 .. 13
4.5.4 Status Register ... 4-19
4.5.5 Indirect Address Register .. 4-22
4.5.6 Stack ... 4 .. 22
4.5.7 Interrupt Vector Register ... 4 .. 23
4.5.8 Interrupt Return Register .. 4-23
4.5.9 COUNTX and COUNTY Registers 4-24
4.5.10 MIN-MAXILOOPCT Register ... 4 .. 24

4.6 FPU Core ... 4 .. 25
4.6.1 Operand Selection .. 4-25
4.6.2 Pipeline Registers .. 4-27
4.6.3 ALU ... 4-29
4.6.4 Multiplier .. 4-29
4.6.5 Output Control ... 4-31

4.7 RESET and RDY .. 4-32
4.8 Emulation Control .. 4-33
4.9 JTAG Test Port .. 4-34

4.9.1 Test Instructions .. 4-34
4.9.2 Boundary Scan Register ... 4-35

5 Coprocessor Mode .. 5 .. 1

x

5.1
5.2
5.3
5.4

5.5

5.6
5.7

5.8

TMS34020ffMS34082 Interface Overview 5-2
Clocks ... 5-4
TMS34082 Initialization .. 5-4
Configuration Register Settings for Coprocessor Mode .. 5-5
5.4.1 Exception Masks .. 5-5
5.4.2 Fast vs IEEE Mode .. 5-5
5.4.3 Pipeline Mode Settings ... 5-5
TMS34020ffMS34082 LAD Bus Operation .. 5-6
5.5.1 LAD Bus Protocol .. 5-7
5.5.2 Enabling the LAD Bus Drivers .. 5-12
5.5.3 Bus Faults ... 5-12
Polling the Coprocessor .. 5-14
I nterrupt Handling .. 5-15
5.7.1 Exception Detect Interrupts .. 5-15
5.7.2 Software Interrupts .. 5-16
5.7.3 Interrupting the TMS34020 .. 5-16
TMS34020ffMS34082 Code Example 5-18

Table of Contents

Contents

5.9 TMS34020ffMS340B2 liming Examples 5-20
5.10 MSD Bus Operation in Coprocessor Mode 5-24

5.10.1 Connecting External Memory .. 5-24
5.10.2 TMS340B2 External SRAM Timing Analysis. .. 5-25
5.10.3 Using External Code .. 5-26

5.11 TMS34020ffMS340B2/SRAM Code Example 5-2B
5.12 Multiple TMS340B2s ... 5-36

6 Host-Independent Mode ... 6-1
6.1 Initialization .. 6-2

6.1.1 Pin Connections. .. 6-2
6.1.2 Bootstrap Loader. .. 6-2

6.2 LAD Bus .. 6-4
6.2.1 Control Signals .. 6-4
6.2.2 Immediate Data Transfers .. 6-5

6.3 MSD Bus. .. 6-7
6.3.1 MSD Bus Control Signals. .. 6-7
6.3.2 Memory Models .. 6-B

6.4 Reset. .. 6-B
6.5 Wait States .. 6-9
6.6 User Programmable Outputs. .. 6-9
6.7 Conditional Code Input 6-9
6.B Interrupts ... 6-10

6 .B. 1 Hardware Interrupts .. 6-1 0
6.B.2 Software Interrupts ... 6-10
6.8.3 Exception Detect Interrupts .. 6-11

7 Internal Instructions ••.•.•.•••.•••.••.••••••••..••••••••••••.•••••.•••••.•••••••• 7-1
7.1 Internal Instructions Overview .. 7-2
7.2 Complex Graphics Instructions ... 7-4
7.3 Internal Routine Addresses and Cycle Counts 7-7
7.4 Coprocessor Mode Internal Instruction Format 7-14

7.4.1 Coprocessor 10 Field ... 7 -14
7.4.2 Register Field .. 7-14
7.4.3 Addressing Mode Field .. 7 -15
7.4.4 FPU Operation Field " .. 7 -15

7.5 Type, Size, and I Fields .. 7-16
7.6 Internal Instruction Opcodes .. 7 -17

8 External Instructions .. 8-1
8.1 Overview .. 8-2
8.2 FPU Processing Instruction Format ... 8-2

8.2.1 FPU Processing Sequencer Opcodes 8-3
8.2.2 Operand Selection ... 8-3

xi

Contents

8,2.3 FPU Processing Instruction Codes ", , , , , . , 8-8
8.3 External Instruction Cycle Counts , " ,., ... ", ... ,., .. 8-9
8.4 General Restrictions for External Instructions , , " .. , ,., ,. 8-13
8.5 External Assembly Instructions , , 8-14

A System Design Considerations ... A-1
A,1 Logic Design ." ", , , .. ,., ". A-2
A,2 Bypass Capacitors , , , , , , ... , , , , , , , , , .. , , , . , , , . , . , . A-3
A,3 PWB Design ., ", , ", , , A-4
A.4 Clock Routing , ,., , , .. ", A-5
A,5 Thermal Considerations ... ,., ,., , " .. ", ... , A-6

B TMS34082A Data Sheet .. B-1

C SMJ34082A Data Sheet ... C-1

o Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030 0 .. 1
Overview " , ... , , ... " " , .. " .. " ,. 0-3

Objectives ,., ", , ... "......... 0-3
TMS34082 Overview ... , .. , , , , , , , , 0-3

System Architecture , , , , ,. , .. " , .. , . 0-4
System Overview , ,., '"., ... , , , 0-4
Objectives and Trade-Ofts .,., ", , , ,......... 0-5

Software Oescription , ,., ,., " , " , .. ,. 0-5
Overview of Code Oevelopment ", " , ... " , 0-5
Big Endian, Little Endian , " , " 0-6
TMS34082 Code Development , ", , , , , .. 0-8
Motorola MC68030 Code Oevelopment ... , , , , , , 0-9
Intel 80286 Code Oevelopment , 0-10

Hardware Oescription , , ... , 0-11
Overview , " ,. 0-11
PC/AT Interface, " , , , .. " , . , , 0-11
Host Processor Interface ... , . , , , , , , , , , . , , 0-12
TMS34082 as a Parallel Processor , , , , 0-12

Performance Analysis , , ', " ",........ 0-13
System Information - Parts List , , , , 0-14
Schematics - Hardware Oesign ... , " , , , ... 0-15
PAL ® Code Listing .. " ", ", , , "., , 0-39

Memory Decode for TMS34082 Accelerator Board " , ".,., ... , 0-39
I/O Decode for TMS34082 Accelerator Board , , , , , , 0-41
Status Control for TMS34082 Accelerator Board , , .. " .. " 0-42
Byte Enable Decode for TMS34082 Accelerator Board , , , , , , .. , , ... 0-44
Pattern Oecode for TMS34082 Accelerator Board .. , , ... , , ... , , ... , 0-45

Software Listi ngs , , , 0-47
References , , , , ,. 0-47

xii Table of Contents

Contents

E A High Performance Floating-Point Image Computing Workstation for Medical Applications
.. , E-1

Abstract ... , E-3
Introduction ... , E-4
Background. .. E-5
System Architecture .. E-6
NeXT ™ Host System and Interface Logic E-6
Processors .. E-8
Memory ... E-9
Video Display .. E-9

Software Architecture .. E-10
Application Areas .. E-12

PACS Workstation ... E-12
Electronic Alternator ... E-13
Image Processing and Graphics ... E-14

Conclusion ... E-16
Acknowledgements .. E-17
References ... E-17

F Parallel Signal and Matrix Processing with the TMS34082•......... F-1
Introduction .. F-3
The HAR P Architecture ... F-4
TMS34082 Host-Independent Mode Optimizations .. F-8
Algorithms .. F-1 0
Simulation Results and Performance Analysis F-13
Conclusion ... F-19
Bibliography .. F-20

xiii

Figures
" .J § I $. H !§I .. I un

Figure 1-1.

Figure 1-2.

Figure 1-3.

Figure 1-4.

Figure 1-5.

Figure 1-6.

Figure 1-7.

Figure 1-8.

81 Ht

TMS34082 High-Level Block Diagram .. 1-4

Coprocessor Mode Bus Architectures 1-7

Host-Independent Mode Bus Architectures 1-8

Sample TMS34082 Architectures .. 1-10

Overview of TMS34082 Code-Generation Tools 1-11

TMS34082 Demonstration Board Block Diagram ;. 1-13

TMS34020 High-Level Block Diagram. .. 1-15

TMS34020 and TMS34082 Software Tools 1-18

Figure 1-9. Graphics Processing Shared Between TMS340 and Host Processors 1-19

Figure 1-10. TMS34020 SOB Block Diagram .. 1-20

Figure 2-1. TMS34082 Pinout, 145-Pin PGA Package .. 2-2

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 4-1.

Figure 4-2.

Figure 4-3.

Figure 4-4.

Figure 4-5.

Figure 4-6.

Figure 4-7.

Figure 4-8.

IEEE Signed Integer Format 3-2

IEEE Unsigned Integer Format .. 3-2

IEEE Single-Precision Format. .. 3-3

IEEE Double-Precision Format .. 3-4

Special Floating-Point Formats " .. 3-5

. Functional Block Diagram .. 4-2

Register Usage ... 4-8

TMS34082 Register Model ... 4-9

General-Purpose Registers .. 4-11

Register Files with ONEFILE High .. 4-12

Host-Independent Mode LAD Bus Configuration for LADCFG High 4-15

MSD Bus Configuration for MEMCFG Low 4-16

MSD Bus Configuration for MEMCFG High 4-16

Figure 4-9. Indirect Address Register Format ... 4-22

Figure 4-10. Stack Register Format .. 4-23

Figure 4-11. Interrupt Vector Register Format ... 4-23

Figure 4-12. Interrupt Return Register Format ... 4-23

Figure 4-13. COUNT Registers Format ... 4-24

Figure 4-14. MIN-MAX/LOOPCT Register Format 4-24

xiv Table of Contents

[Ill I

Figures
';~-:-"A'~-;':;':<-:~·~;':";-:·;·;':':OO;";';':';'~:·:;';·:",";O-:;:'OO;·;';':";-:·;-';'~~ .. ;.;.;.~.:--:;.:.;~ .. ;o.;;:~:~*:..;~.:-;~:-:-:-:;.: .. :-;' ... "9;.:-: .. ;."' : .. :-;..;-;..:.;.-;..;-:;.X-;'*~-:·:·:;:';-:·;·:;';":";·;-';':";-:·;-:;':'-:·;-"'''«--:·~ ... x-::,,",*:-:·r;M·:-:;':·~ ... '''''''''';... ,..;-:;.X~.,:0;"»:' ... ;.r ... :v:·;-~~ m·;.:;x~"'««~~ ... v,x~~...:-~ ~H..:«~ ,-:~;.:~

Figure 4-15. FPU Core Functional Block Diagram 4-26

Figure 4-16. Effects of Pipelining .. 4-28

Figure 4-17. Functional Diagram for ALU ... 4-29

Figure 4-18. Functional Diagram for Multiplier .. 4-30

Figure 4-19. Instruction Register Order of Scan 4-34

Figure 4-20. Boundary Scan Register Order of Scan 4-36

Figure 5-1. TMS3402ffMS34082 Register Model .. 5-2

Figure 5-2. TMS34020ITMS34082 Interconnection 5-3

Figure 5-3.

Figure 5-4.

Figure 5-5.

Figure 5-6.

Figure 5-7.

Figure 5-8.

Figure 5-9.

Transferring a Command from the TMS34020 to the TMS34082 5-8

Transferring TMS34020 Registers to the TMS34082 .. 5-9

Transferring from the TMS34082 to a TMS34020 Register 5-10

Transferring Memory to the TMS34082 5-11

Transferring from the TMS34082 to Memory 5-12

Multiply 2 Double-Precision Numbers in TMS34020 Registers and Store Back
to TMS34020 Registers (Mode 1) .. 5-21

Add 2 Single-Precision Numbers from DRAM and Store Result Back to DRAM
(Mode 2) .. 5-22

Figure 5-10. Add 2 Single-Precision Numbers from DRAM and Store Result Back to DRAM
(Mode 2), Instructions Not in TMS34020 Cache 5-23

Figure 5-11. TMS34020ITMS34082/SRAM with Minimal SRAM Code Space
(MEMCFG = L) .. 5-24

Figure 5-12. TMS34020ITMS34082/SRAM with Maximum SRAM Code/Data Space
(MEMCFG = L) .. 5-25

Figure 5-13. Memory Map for External Memory 5-26

Figure 5-14. Example Subroutine Using the Jump Table 5-27

Figure 5-15. TMS34020 with Multiple TMS34082/SRAM Blocks (MEMCFG = L) 5-37

Figure 6-1. Bootstrap Loader ... 6-3

Figure 6-2. Using FIFOs on the LAD Bus.. 6-4

Figure 6-3. Using COINT as a Device Select (LADCFG=H) 6-5

Figure 7-1.

Figure 7-2.

Figure 8-1.

Figure 8-2.

Figure 8-3.

FigureA-1.

FigureA-2.

FigureA-3.

Figure 0-1.

Figure D-2.

Source for Internal Instructions in Coprocessor Mode 7-1

3-D Graphics Pipeline Using TMS34082 Complex Instructions 7-4

Source of Instructions for Coprocessor Mode 8-1

Instructions in Host-Independent Mode 8-1

Operand Selection .. 8-4

Example of Using RAS and CAS Buffers in Coprocessor Mode A-2

Recommended Bypass Capacitor Placement A-3

Recommended Clock Routing Techniques A-5

Motorola MC68030 Interface to the TMS34082 - Block Diagram 0-4

Data Organization in Memory ... 0-7

xv

Figures
S:*~,"«,V""~~'VA~""-":~V "I(~VA~".,~'X«\.~~V",,,~:"'~A'~""='~~X-:-"""'''''~'''-:-»X~'>:«~'''«''..~'''''~::-''A~4,~v"":<*", ~""",-~v.,~ ~V -":<O\~'"«'".""" ~"'O\.~V ~V ~~"<~V ~~"'«".V"",,,,"=,""'~VA~'>.~v.,:<~:--"'A"""W -..:wA~V ~~~V""

Figure 0-3. Block Diagram - TMS34082 Code .. 0-8

Figure 0-4. Block Diagram - Motorola MC68030 Code D-9

Figure O-S. Block Diagram - PC/AT Code .. 0-10

Figure D-6. PC/AC Interface: I/O and Memory Addressing 0-11

Figure 0-7. Motorola MC68030 Interface: Memory Addressing D-12

Figure 0-8(a). Block Diagram .. 0-15

Figure D-8(b). Block Diagram .. 0-16

Figure D-9. PC/AT IIF and Control, Details of U1, U5, U6, U7, and U8 D-17

Figure D-10. PC/AT IIF and ContrOl, Details of U29 D-18

Figure 0-11. PC/AT IIF and Control, Details of U2, U3, and U4 D-19

Figure D-12. Motorola MC68030 and Address Buffers, Details of U31, U32, and U33 D-20

Figure D-13. Motorola MC68030 and Address Buffers, Details of U10 D-21

Figure 0-14. Motorola MC68030 and Address Buffers, Details of Oscillator and U30 D-22

Figure D-15. Motorola MC68030 Decode/Control, Details of U11 0-22

Figure D-16. Motorola MC68030 Decode/Control, Details of RP1, RP2, and RP3 D-23

Figure D-17. Motorola MC68030 Decode/Control, Details ofU11, U12, U13, and U30 0-24

Figure 0-18. 8K x 8 SRAM, Details of U1S, U16, U17, and U18 0-25

Figure 0-19. Motorola MC68030 Decode/Control, Deta~ls of U3, and U37 D-27

Figure 0-20. 8K x 8 OP-SRAM, Details of U14, and U19 D-28

Figure D-21. FIFO Logic, Details of U23, U24, U2S, and U26 D-29

Figure D-22. 8K x 8 DP-SRAM, Details of U20 .. D-31

Figure 0-23. FIFO Logic, Details of U21 ... 0-32

Figure 0-24. FIFO LogiC DP-SRAM, Details of U22 D-33

Figure 0-25. FIFO Logic, Details of U14 .. 0-34

Figure D-26. TMS34082, Details of U38 .. 034

Figure D-27. TMS34082, Details of U28 0-35

Figure D-28. TMS34082, Details of U28 .. D-36

Figure D-29. AT-Bus Connector. .. D-37

Figure D-30. Capacitors ... 0-38

Figure E-1. UWGSP3 Software Architecture ... E-6

Figure E-2.

Figure E-3.

Figure E-4.

Figure F-1.

Figure F-2.

Figure F-3.

Figure F-4.

Figure F-5~

xvi

UWGSP3 Software Architecture .. E-10

Lowpass Filter Specification Window. .. E-11

Image Load (left) and Virtual Frame Buffer (right) Windows E-12

System Architecture ... F-5

System Memory Map .. F-6

PE Architecture ... F-7

LAD Bus Controller Architecture ... F-7

Parallel Jaccobi Updating on a SystOliC Architecture F-12

Table of Contents

Figures
-:,:«.:---""~~"-:-~",~-:-"VA-";~A~V -":~»~V,,,,",,,*,">..",«,"-V.,.,~ ~~:w" -..:*,'\t)o..~~~»'~ V.(0~.,.,,»,~ "'(o(oo.,'VA'('o..v-"X":*:«-.. '""'(o,..v",.-..;~ :......;-:-..V.,.-..;~~A"(~V'"":-..~ :~;,~~v ~v "'(*'v ~ ~:.:..;*'v~y,."'«":-;,~v. ... v '''''=''».-..;~vA~v..~~·:-A~v..--..;.,...''''::

Figure F-6. Matrix Multiplication Performance on 1 O-Processor Systems. F-14

Figure F-7. 28 x 128 Matrix Multiplication on P-Processor Systems F-14

Figure F-8. ORO Performance on 10-Processor Systems F-16

Figure F-9. 28 x 128 ORO on P-Processor Systems F-16

Figure F-10. SVO Performance on 8-Processor Systems F-17

Figure F-11. 48 x 48 SVO on P-Processor Systems F-18

xvii

Tables

Table 1-1.

Table 1-2.

Table 1-3.

Table 1-4.

Table 1-5.

Table 2-1.

Table 2-2.

Table 2-3.

Table 2-4.

Table 2-5.

Table 2-6.

Table 2-7.

Table 3-1.

Table 4-1.

Table 4-2.

Table 4-3.

Table 4-4.

Table 4-5.

Table 4-6.

Table 4-7.

Table 4-8.

Table 4-9.

Table 4-10.

Table 4-11.

Table 4-12.

Table 4-13.

Table 4-14.

Table 5-1.

Table 5-2.

Table 5-3.

xviii

TMS34082 Integer Benchmark Timings 1-3

TMS34082 Floating-Point Benchmark Timings 1-3

Description of the Benchmarks Used .. 1-3

Applications for the TMS34082 .. 1-9

TMS34082 Product Information .. 1-21

Pin Assignments (PGA Package) .. 2-3

Alphabetical Listing - Pin Assignments (PGA Package) 2-4

LAD Bus Signals .. 2-5

MSD Bus Signals ... 2-7

Clock and Control Signals .. 2-9

Emulation Control Signals .. 2-9

Power and N/C Signals ... 2-10

Floating-Point Number Representations 3-6

MSD Bus Control Signals .. 4-5

Memory Operations on MSD .. 4-5

Internal Registers .. 4-10

Configuration Register Definition ... 4-14

Pipeline Settings ... 4-17

Handling Wrapped Multiplier Outputs 4-18

Data Ordering for Loads/Stores .. 4-18

Rounding Modes 4-19

Status Register Definition ... 4-20

Signal States During Reset . 4-32

Test Modes .. 4-33

Test Pins for Normal Operation .. 4-34

Instruction Register Opcodes .. 4-35

Boundary Scan Register Enable Bits 4-35

Recommended TMS34082 Pin Connections 5-3

Bus Cycle Completion Conditions .. 5-13

Bit Definitions for TMS34020 Status Check Command 5-14

Table of Contents

Table 5-4.
Table 6-1.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 8-1.
Table 8-2.

Table D-1.
Table D-2.

Table D-3.

Table 0-4.
Table F-1.
Table F-2.

Tables

Parameters Used for Calculating SRAM Speed 5-25
Pin Connections .. 6-2
Internal ROM Routines (for Mode 0 FPU Operations) 7-8
Coprocessor IDs .. 7 -14
Addressing Modes ... 7 -15
Operand Types .. 7 -16
Cycle Counts for External Instructions 8-9
Bit Definitions for External Instructions , 8-14

Performance Comparison Chart ... D-13
System Information - Parts List D-14

8K x 8 SRAM DP-SRAM, Detail Pin Assignments for U15, U16, U17, and U18 . D-26
FIFO Logic, Details of Pin Assignments for U23, U24, U25, and U26 D-30
Distributed FFT Performance Results.. F-15
Pipelined FFT Performance Results for Real-Time Signal and Image Processing F-17

xix

Examples

Example 5-1. Using the Status Check Command 5-14

Example 5-2. Saving and Restoring the TMS34082 Machine State 5-16

Example 5-3. Multiplying Two 3 x 3 Matrices ... 5-18

Example 5-4. Instructions for a 3 x 3 by 3 x 3 Matrix Multiply 5-19

Example 5-5. Assembler Source for Double-Precision Multiply " 5-20

Example 5-6. Assembler Source for Single-Precision Add .. 5-20

Example 5-7. TMS34020 Assembler Listing for 3 x 3 by 3 x 3 Matrix Multiply 5-29

Example 5-8. TMS34082 Assembler Listing for 3 x 3 by 3 x 3 Matrix Multiply 5-30

Example 5-9. Assembler Code for Multiple TMS34082s .. 5-38

xx Table of Contents

Chapter 1

Overview of the TMS34082
!$~=»~~~~:::~~~$:~;:$~l;~s:~-:t:~~*~~:::$.~~~*~~~~~~~~*~ ... ~$:~?~:::$~~~~~~~~:m:~;"~:::«*"::~~~$":::~~~~:::~*~~*:e:~:::~::**~~~*::~:::~:::~:::~*$"~~~::*~::::::~*::~:::f'::~:~~~:::~~~*$~*:~~~:;''f~~
~~~~~:'S'$:l(~~~~~~~~~"$$(~~-::~~~~;:;'Z(~S:*:~~=::-;-;:~~~='$'S~~~'X:~;'S~~~S*=::-;~~m:~~~~:-;~--;*,*:'S'S..~*:(~-:~::~~~'$X:::'S-;::(~'"'$~~~:~*~:::'Sm::'$?~~;~~-;:~::::;'~-;"~:::'S~~'S:"{::~-;~,::'S'$:~:::'S-;:~::~:~<~'S:~~ .~ 
"","«"-':"'-"':~V.,.'Wo.":;.,-.;.:.:-" .... ~ .... W.""''«-:--'VA~;''''''r.;~;w''''''''X"'''''''' .... ,,,,:-:-,,''' .... w..V ... ~~ .... ''<O;-:-;''~~VA'-; ___ :.x-:-.v..;~~x-=-:--:..."<~~;,.:...,;-;~;.-.;.;..;-:~""~;,.~",,=,,x-:--~...:«-:-,,,.,x-;~ ... -..;-:--:-, .... ~.,»;-"VA'X-;~;':"",,,~:.;:-;-:--:.:,«"';.-:-;~~ ... x-; ........ ;...,..;-~ .... ;";-:·:-;':"';~:-' .... :...,;o;":-;",-",:-;v;,,~v ... :-;,,",:a" .... '~:--;'X.-:-~".;.;-;·:-" ... ;",..;·:-;:..,;o;-;..-... »;~x"'~'" 

The Texas Instruments TMS34082 Graphics Floating-Point Processor is 
designed for your advanced numeric applications. This high-performance 
device offers an outstanding price/performance ratio, flexibility, and ease of 
use with TI's development tools. The TMS34082 acts as either a tightly 
coupled coprocessor for the TMS34020 Graphics System Processor (GSP), 
as an independent processor, or as a coprocessor to another host. 

By integrating a 64-bit IEEE Floating-Point Unit (FPU) with a modified Harvard 
architecture microprocessor and multi-port register files onto a single device, 
the TMS34082 can sustain exceptionally high internal throughput rates. All 
internal data paths are 64 bits wide. The RISC-like basic instruction set 
executes at a rate of one instruction per clock cycle. I n addition, many popular 
numeric and graphics routines are contained directly on-Chip. 

The TMS34082 offers an attractive cost/performance ratio and supports the 
integration of graphics- and computation-intensive solutions in a single, 
low-cost device. The cost per MFLOP performance achieved by the 
TMS34082 makes it an ideal floating-point solution. 

Texas Instruments supports the TMS34082 with a complete set of PC-based 
hardware and software developmenttools, including an easy-to-use simulator, 
a TMS34020ITMS34082 software development board, a TMS34082 
demonstration board, a 3-D graphics library, an optimizing C compiler, a 
macro-assembler, and software libraries. 

1-1 



TMSS4082 Key Features 
~~""'J'~~"""v.,X-:-O-~""'V""~'V"«~~~A""hJo..X~-»:«"~Vh;-"$~"'.~X«;*:«'.:«:~;':(~"''m~~*;':~·~;'X~ .... V~-»:t\',: ... v~;,x"' ...... VJ'X'. ... ~~ ...... Vh:~ ... '"'O:S->~J';o... .... ~~~*,X",·~;'X~~~~V~;';';.., .... AVA~~v'O:~: 

1.1 TMS34082 Key Features 

1-2 

High-performance floating-point RiSe processor optimized for graphics 

Two operating modes: 

Floating-point coprocessor for the TMS34020 Graphics System 
Processor 
I ndependent floating-poi nt processor 

Direct connection to TMS34020 coprocessor interface 

Direct extension to the TMS34020 instruction set 
Multiple TMS34082 capability 

Fast instruction cycle time: 

TMS34082-40 ... SO-ns coprocessor mode, SO-ns host-independent 
mode 
TMS34082-32 ... 62.5-ns coprocessor mode, 60-ns 
host-independent mode 

Sustained data transfer rates of 160M bytes/second (TMS34082-40) 

Sequencer executes internal or user-programmed instructions 

Twenty-two 64-bit data registers 

Comprehensive floating-point and integer instruction set 

Internal programs for vector, matrix, and 3-D graphics operations 

Full I EEE Std 754-1985 compatibility: 

Addition, subtraction, multiplication, and comparison 
Division and square root 

Selectable data formats: 

32-bit integer 
32-bit single-precision floating-point 
64-bit double-precision floating-point 

External memory addressing capability: 

Program storage (up to 64K words) 
Data storage (up to 64K words) 

O.8-/J.m EPICTM CMOS technology 

High-performance 
Low power «1.S W) 

Overview of the TMS34082 



Performance Benchmarks 

1.2 Performance Benchmarks 

Tables 1-1 and 1-2 show benchmark timings. Table 1-3 describes the 
benchmarks selected to show TMS34082 performance. 

Table -1-1. TMS34082 Integer Benchmark Timingst 

Benchmark Units of Measure 
Integer 

TMS34062A-32 TMS34082A-40 

MIPS Equivalents MIPS 32 40 

Dhrystones Dhrystones/second 10,240 12,800 

Table 1-2. TMS34082 Floating-Point Benchmark Timingst 
Single-Precision Double-Precision 

Benchmark Units of Measure 
TMS34082A-32 TMS34082A-40 TMS34082A-32 TMS34082A-40 

Peak MFLOPS MFLOPS 32 40 16 20 

Linpack MFLOPS 11.0 13.7 6.3 7.9 

Whetstones MWhetstones/second 7.9 9.9 4.6 5.7 

t Based on actual measured system performance. 

Table 1-3. Description of the Benchmarks Usecft 
Benchmark Operations Tested Where Applicable 

Floating-point and integer array manipulation, Dense systems of linear equations with array 
Linpack including Gaussian elimination, vector dot products, manipulation 

and matrix multiplication 

Whetstones 
Mathematical operations: integer, floating--point, and 

Engineering and scientific computing applications trigonometric operations 

Dhrystones 
Enumeration, record and pointer manipulation, and 

Systems programming applications integer operations 

t Reference: Hinnant, David F., 'What Makes a Good Benchmark?", MIPS, September, 1989, pp. 102-103. 

1-3 



TMSS4082 General Description 
)o..~;.rJt'ro:~:---~h"""'~~X~""'~A...,..~~~v~w.«<""',m-VA«~..<'~..«'h"~~V,.~<""'~VA~~V~~,.w..':«<~JX~V':'-;~~~"':-:"'''''''''':':-;'''''~;;''''~VJ'Xo'h;:..w..'''''''''~''''''A'~w.-..~~J'X?»~~V~'«:'?I..VA~V''; 

1.3 TMS34082 General Description 

The TMS34082 is a high-speed float.ng-point processor implemented in the 
Texas Instruments advanced 0.8 Jlm CMOS technology. On a single chip, the 
TMS34082 combines a 16-bit sequencer and a three-operand 64-bit FPU 
(source A, source B, destination) with twenty-two 64-bit data registers. The 
data registers are organized into two banks of 10 registers each, with two 
registers for internal feedback. In addition, an instruction register to control 
FPU execution, a status register to retain the most recent FPU status results, 
eight control registers, and a two-register stack are provided. The key 
architectural elements are shown in Figure 1-1. 

The ALU and the multiplier are closely coupled and work in parallel to perform 
sums of products and products of sums. During multiply/accumulate 
operations, both the ALU and the multiplier are active, and the registers in the 
FPU core can be used to feed back products and accumulate sums without 
tying up locations in register banks A and B. 

Data or code may be transferred between the LAD and MSD ports at the rate 
of one 32-bit word per clock cycle with a one clock latency. That comes out to 
1.28 billion bits/second. This provides sufficient bandwidth to quickly transfer 
vector or scalar arrays into or out of external memories. Up to 512 words may 
be transferred with a single memory move instruction. 

Figure 1-1. TMS34082 High·Level Block Diagram 

1-4 

Local memory 
Interface ¢:=D 

LAD 

External memory 
C==O Interface 

MSD 

Overview of the TMS34082 



TMS34082 General Description 
.~~.:-:;':':'-;-'''«« .. V'';«-~»''"-';*:'';:-::~»:'''h:;':';;-::~;':«-;-;'~'';-;':';;-::.~'''';o.:''>..~~,;--;..:.;;-::..;.:,.:«'-;-;"X~;':;:';-::-;-:;':~.;';';'YN;':";~·~:-:-::-;.;";';-:.;':'«~:-:":':-::.;-';;o.:-:.:-,»:.;.):-:-: .... :,.:.:-::-:--;,;«.:-;,:..;-::..;.;,:-:-::.;.:.« .... I\.~»:-;-"'"';.:">..v..« ........ v~·:-»:-::·:-;,~·:-)x-:·:o"' ... x-::-:·;,X"»h.;;-:·;.;;X-:·:-;,:.;;-::·:-"' .... :<O';·:·;,:-~:-: 

The TMS34082 complies fully with IEEE Std 754-1985, the industry standard 
for binary floating-point formats. Floating-point operands can be either single­
or double-precision. In addition to floating-point operations, the TMS34082 
performs 32-bit integer arithmetic, logical comparisons, and shifts. Integer 
operations may be performed on 32-bit 2s complement or unsigned operands. 
Floating-point to integer and integer to floating-point conversions are also 
available. 

The comprehensive RISC-like instruction set eliminates the need for complex 
CISe-type instructions or wide microcoded instruction words. By programming 
the TMS34082 at the simplest level, operations are customized for each 
application and most instructions execute in one clock cycle. Divide and square 
root instructions are ideal for numeric processing and graphics rendering, such 
as ray tracing routines. Using dedic~ted hardware and patented algorithms, 
the TMS34082 calculates a 64-bit double-precision divide or square root result 
in only 13 or 16 clock cycles, respectively. 

In a single clock cycle, two single-precision or integer operands may: 

1) Be read from the register file 

2) Be run through the ALU and/or multiplier 

3) Have result placed back into the register file 

This is accomplished with both the internal pipeline and output registers 
disabled. Double-precision multiplies take two clock cycles to complete. Such 
low latencies simplify writing assembly language code, eliminating the 
problem of data coherency in a long pipeline. Refilling or flushing the 
instruction pipeline is fast, also. 

An internal ROM includes many commonly used matrix, graphics, and vector 
routines as described below. With the exception of MIN-MAX and compare 
operations, these routines are constructed directly from the TMS34082's basic 
instruction set. The internal routines include: 

Matrix operations consisting of 1 x 3, 3 x 3, 1 x 4, and 4 x 4 matrix 
multiplies 

Graphics routines such as backface testing, clipping, 2-D and 3-D 
compares, linear interpolation, 1-D and 2-D MIN-MAX, viewport scaling 
and conversion, cubic splines, and polygon elimination 

Vector operations including add, subtract, magnitude, scaling, dot product, 
cross product, normalization, and reflection 

Additional routines for 3 x 3 convolution, multiply/accumulate, and 
polynomial expansion 

1-5 



TMS34082 General Description 
).,V~~X<''VA«~:.:-::",~ ...... .«~v~v.,:..:,-,VJlX¢l.V.r..~X'':~VA'"«''~A~~.«~v.,.,~v.,:«*~ .. »x-:-:-:r:«-»:..;:-:-»;«~;,:.;-:-:-:.:.:-:·:.-:.:.;-:·:;..:.:.;-:.:;..;.:«o.:-:.x-:.::-:.~-: .... ~:..:~ .... ;,:-:~»:v::-:--;,~-:·:;..;:.x-:·:;..;,x-:~:':';-:·»:V:·~;'=«~;'X-:~ ... :«-~A~V.,:«tI.v ... x-»:.:-:-: .. ::-:.~-:~~·::-:.:« 

1-6 

When used with the TMS34020, the TMS34082 operates in coprocessor 
mode. The TMS34020 can control multiple TMS34082 coprocessors without 
any additional glue logic or buffering. The clock and control signals are 
generated directly by the TMS34020. You can use external memory to store 
subroutines as well as data forthose subroutines. See Chapter 5 for additional 
information. 

When used alone or with processors other than the TMS34020, the TMS34082 
functions in host-independent mode. The TMS34082 is fully programmable 
and can interface to other processors (such as a RISC, 80x86, or Motorola 
MC680xO processor) or floating-point subsystems through its two 32-bit 
bidirectional buses. Chapter 6 covers this mode in greater detail. 

Other features include: 

Support of common microprocessor addressing modes (register, direct, 
indirect, postincrement, immediate) 

A fully synchronous, on-Chip, direct memory interface to SRAMs/ 
EPROMs with no glue logic and to DRAMsNRAMs with minimal glue logic 

Fully user-programmable hardware and software realtime interrupts. 

The TMS34082 may implement a von Neumann architecture, a modified 
Harvard architecture, or a mixture of both. In a von Neumann architecture, data 
and instruction memories both reside on the same bus. However, a Harvard 
architecture has separate data and instruction sources so that both may be 
fetched in parallel. External data may originate from either the LAD or MSD 
ports. External instructions may only come from the MSD port, butthe LAD port 
can be used to input jump entries into the MSD port memory. 

Figure 1-2 shows possible TMS34082 bus architectures for coprocessor 
mode. In addition, Figure 1-3 shows several example architectures for 
host-independent mode. 

Overview of the TMS34082 



TMS34082 General Description 
-c-~,,;.~:«.:--:r~~~;,:.;~~;,:Y" .. ;';':-:-;.:-;':"-:"~"":-:~-:-;'~-:-;';':-:.;';':-;-::.~:"-:-:-;'X-:·;':"':-:-::·:-;':";·W;':":-::·:-"'.J':,,-::·:-;.;..:::-::·:-:;.:,,-::·;.;;;.v.,-:-;:«·~,,~·:;.r ... :,,-::·:-;,x-::·:-".,x-::·:-;..:-:-::·:-;.:,,-::·:-;,x-::·:-;.:..;-::·:-:;:,,-::·:;.r~ .... ;,:q.:~x-::·»::-.:-::·:-;.:cv.·;."'..«-::-;.;..:.:-:: ...... ;.;.:-::·::-;,:-=-:: .. :-;;,.:,,-::·:-;,x-::·:;.r~·:-r.q..-:-»:-::o.:--,,:«-;.;,x-::·: 

Figure 1-2. Coprocessor Mode Bus Architectures 

TMS34020 ... Data ... TMS34082 ... ., 

LAD ~ ~ LAD MSD 
.. 
., 

Internal Instructions 

Data and Instructions from LAD Port 

TMS34020 
Data TMS34082 .. ... 

.... ... 
LAD ~ ~ LAD MSD .. 

Internal Instructions 

Data from LAD Port, Instructions from LAD and MSD Port 

TMS34020 
Data 

TMS34082 
~ 

~~ LAD 
... ... 

LAD MSD ., 

.,. 

Internal Instructions 

Data from LAD and MSD Ports, Instructions from LAD and MSD Port 

... 

.... External 
Instructions 

... Data .. 

H~ 
... 

External 
Instructions 

1-7 



TMS34082 General Description 
~.;.-,:~;,~",~~:-»:~-»x"""v~~~ ... ;,.~»~~~;o.:~""'''~''''''''''''»'J\~V~;':-:~h:',..;w''"~,,,,=,,:«-:-;,X"'hX«~....:«":-»y'·;;--"',:«:~x?,-v-,»",,,.-x,..~~~h:'N~c:w,:caQ,;,aw,;,.w.w~~~~~ 

Figure 1-3, Host-Independent Mode Bus Architectures 

... .. 
TMS34082 .. .. Data 

LAD MSD 
.... ... 
~ " 

.... ... 
.... ... External Instructions 

Data and Instructions from MSD Port 

TMS34082 

Data <~J=:====:::~)I LAD MSD 
.. 

External Instructions .. 

Data from LAD Port, Instructions from MSD Port 

TMS34082 ... .. 
Data - .. 

Data 
.... ... 

LAD MSD 
.. 

.c; ., .. ... ... 
.... =::. ... External Instructions 

Data from LAD and MSD Ports, Instructions from MSD Port 

Data 
.... ... TMS34082 .c; ... .. .. 

LAD MSD 
... ... .. ... External Instructions 

... 
Jump Vector .... 

Data from LAD Port, Instructions from MSD Port 

Data -- ~ ... .. 
""" ... TMS34082 .... ... Data 

~ LAD MSD ... " .. .... 
"Y ... Jump Vector 

Data from LAD and MSD Ports, Instruction from MSD Port 

1-8 Overview of the TMSS4082 



Typical Applications 
-;6~:;':'~~;.:-:;":*"":~-:;-~;;X~·~;:.:"':.~:;':-::-:.~;'X"':":--:;':o.:...:·:--;.x~»x-::·:--;.):-::-;-;,~ .. ;.;.:-::~»;.:...:-:--,,»:·:--;,x-::·:·:;.x-:: .... "';:.:...:-:-;~:...:·»x...:·»:<...:·:--;,x...:*:..;-:;·:--,,::-.:...:·:--.... :·:-:·:--;,:~-:-x...:-::·:--.... ;..:...:·:--;;x.,.~,;«·:-;x...:·:-;.x...:·~..«...:·:--;;:...:-:: ..... ;.x...:·;a;;x...:·:--x...:...:·:o-;,x-::·:-;,;.:-::~·;,:·:-::·:--~-::·:-",,:..;...: .... »:...:-::·:-:;.:,-::·~,,:« ....... ;,x-: 

1.4 Typical Applications 

The 64-bit power and exceptional flexibility of the TMS34082 meet system 
computing requirements across the performance spectrum. These range from 
workstations to personal computers to embedded controllers. Table 1--4 lists 
typical end uses for this device. Figure 1--4 shows several examples of 
systems using the TMS34082. 

Table 1-4. Applications for the TMS34082 
Numeric Processor Graphics Processor 

CAD/CAE workstations 3-D graphics processing 

UNIX/DOS accelerator for RISC/CISC machines Graphics workstations/super workstations 

Scientific computing Image processing 

Personal computers Laser printers 

Vector processing Graphics rendering engines 

Multiprocessing architectures Imaging compression/decompression, JPEG 

Digital signal processing Flight simulators 

High-speed protocol engines Electronic publishing 

Array processing Computer animation 

1-9 



Typical Applications 
~~ ... v ..... "«..y/.«oQo"~A"»..v,,,,~v~ ..... ~'V .... ~~v~v ..... ~i:q ...... v",*.~ ..... ""«~ ..... ~.,..v~~:-:~-»~»X<O\')o:«-»,-"':""~~,)X~V"""~):';"'~:<'-'V"':-\:~~:':'O(~:'-:«'IY ..... ~'=":«~"':""'VA."'«~:'-X"'~:«*:-;~~"'»:"'~:«~"""«~;"'~.:---01'»:-"VJ':..;-:~ .. :..;~,=,,:v:~:.: 

Figure 1-4. Sample TMS34082 Architectures 

... LAD .. 
TMS34020 1--........ 1---..-... -1 TMS34082 

TMS34020 Coprocessor 

TMS34020 
... LAD .. 

TMS34082 
... MSD .. 

SRAM ... ... ., ... 

TMS34020 Coprocessor w/SRAM 

MSD 
SRAM 

SRAM 

SRAM 

SRAM 

TMS34020 with Multiple TMS34082s 

VRAM LAD MSD VRAM ... .. TMS34082 ~ .. ... '" ... 
SerPort SerPort 

1 ~ 

Numerical/Graphics Engine 

1-10 

Common 
Memory 

Host 
ifF 

Common 
Memory 

Host 
IIF 

Centronix 

SRAM 

Dual 
Port RAM 

MSD 

Host 
Processor 

..... ---'-_LA-lD ....... TMS34082 

Coprocessor for 80x86, Motorola MC680xO, 
or RISC Processor 

LAD 
TMS34082 

Switching • 
Matrix • 

TI • 
'ACT8841 

LAD 

Multicomputer 

Laser Printer Engine 

MSD 
SRAM 

• 
• 
• 

MSD 
SRAM 

Page 
Buffer -+ 

To 
Laser 

.... __ Printer 

Engine 
ifF 

Overview of the TMS34082 



Development Tools 
«-"hJo;«·:--;':"':~V";';OO: ... V".x~*»: .. :~~",~·;,,% .... --::~;,:,;-:";y;«~:":«·"';:«·:--;':«·:--;;:.;-;~;:·:-:· ... ;:..:-:..;.;,:..:-;·~.,:..;-;-:-;,:.;-;·:-;,;..;-;·:--x·:-;·:-;:"-;·:-;':';-;·:-;':·:-;.:.;,;..;-;.;.;,:..;-;.:-~ .. :-;,~:-;.~:.:-;.:-;,;..;-;,«",:~;,;,:":o-;~;;,;":-;,,,,,;,:,,-;-:--;,~·:--:.x-::: ... '=":...:-;· ... ;,:".-; ..... ;,:« .... ;,:..; .......... ~:*»~ ... ,;,:..:~:,,-:::.;-"'.«-;·~:<Y" ........... /. 

1.5 Development Tools 

1.5.1 TMS34082 Software Tool Kit 

The TMS34082 Software Tool Kit can be used to develop code for 
host-independent mode applications or for external subroutines in 
coprocessor mode. The tool kit includes: 

An ANSI standard, optimizing C compiler 

A macro-assembler 

A linker 

An object code librarian 

A functional simulator 

The C compiler supports common subexpression elimination. A peephole 
optimizer is also provided to further enhance the execution speed andthecode 
size of the source program. Inline assembly code can be incorporated into the 
C program forti me-critical and hardware-dependent code sections. The object 
librarian allows the storage of frequently used functions in libraries for easy 
access (see Figure 1-5). 

Figure 1-5. Overview of TMS34082 Code-Generation Tools 

1-11 



Development Tools 
If.!(~~~~~VA''~V~'V'<<-:-''~~:<<<'A-..x,v ..... ~~'Vh:.~''':~V'<<<-''V ..... ,v. ......... ..:~ ...... .,.:.;-::..;-:.-~,,-:,v~:~;.:..:-:.~:...-..;~v ... :«..;-;,:--;~v ... x~v.,.x-:*~~,,:~;'X~V~V ... ~V~V"'~~A~;"'~XW~V ... ~v ..... .-.;..:~.r..w..v"x~v~~..x~v .... x~vN:-: .......... ~v. 

Included with the TMS34082 tool kit are highly optimized transcendental 
assembly language routines for sine, cosine, tangent, arc sine, arc cosine, and 
arc tangent. These are accurate to the least significant bit. 

The TMS34082 tool kit will execute on an IBM PC/AT or compatible machine 
with MS-DOS (or PC-DOS) 2.0 or higher, 640K of memory, one floppy drive, 
and one hard drive. An 80287/80387 math coprocessor is required for the 
simulator. A demonstration version of the Software Tool Kit is also available. 

The interactive simulator displays the entire machine state of the TMS34082 
(such as registers, address counter, stack, status register) and works with the 
C compiler/assembler/linker object files. The simulator is menu driven. During 
program execution, breakpoints may be set and the trace memory displayed. 
The cycle counting feature is useful when evaluating performance of the 
processor or during code optimization. 

The TMS340 Family compiler and assembler, which support both the 
TMS34020 and TMS34082, are described in subsection 1.6.3 of this 
document. 

1.5.2 TMS34082 3 ... 0 Graphics Library 

1-12 

The TMS34082 3-D Graphics Library contains an extensive array of C-callable 
functions including polygon clipping, shading, and vector and matrix 
operations. The library is TIGA-compatible and can also run as a non-TIGA 
product, giving the user portability and flexibility. The task of porting graphics 
standard to the TMS34020ITMS34082 is greatly simplified with the variety of 
functions in the library. The library also includes a 3-D graphics pipeline that 
can shorten the development time for application programs. 

OveIView of the TMSS4082 



Development Tools 
~..:¢o»;.oe.;;.r .... :«*X-:-~""''''.;«''A~V ..... ""«-»~;;.r''':«-~:'':~A"",~ ...... ~,~ .. :-:~:~V ..... ~Vh~V .... ~;':..:-:-:..'="x"',v ..... ~v .... '»»~v ..... ~;.~v ..... "~~ ..... ~v,,..,..;.~ .... ~:...~v ..... ~;...,<-..~x""'='~V ...... X~vA~-:-.. ......... ...:-:-..v .... ~~.A""~::---..... ~:r.."*"v ...... 'W..v,,:«-:-;,:«":-;.x~~ .... :x-:.»:«~ ..... 'X'\v. 

1.5.3 TMS34082 Demonstration Board 

The TMS34082 Demonstration Board is a 40-MFLOP parallel processor with 
up to 3M bytes of on-board memory. This powerful board allows you to evaluate 
performance and write code for the TMS34082 using the software tool kit, 
develop algorithm implementations, and integrate the software modules with 
the hardware. In addition, programs are executed directly on the TMS34082, 
resulting in much faster execution times than a software simulator. The board 
plugs into a PC/ATTM 32-bit card slot. Figure 1-6 is a block diagram of the 
demonstration board. 

Figure 1-6. TMS34082 Demonstration Board Block Diagram 

LAD MSD 
VRAM VRAM ... -~ TMS34082 .... .. 

~ ... "'II -p 

SerPort Ser Port 
~,. 

~ ~r 

• .~ 

~ ~Ir 

PC/AT PC/AT 
Interface Interface 

1 1 
PC/AT Bus PC/AT Bus 

Built on a PC/AT card occupying a single slot, the TMS34082 Demonstration 
Board features: 

TMS34082-40 Floating-Point Processor (operating in host-independent 
mode) 

20 MHz processor clock speed, 7.9 MFLOPs double-precision Linpack 

Fully programmable: von Neumann or modified Harvard architectures or 
both 

2M-bytes VRAM memory on LAD port accessible though PC/AT bus 
interface 

256K-bytes VRAM memory on MSD port accessible through PC/AT bus 
interface, expandable up to 1 M bytes of VRAM memory 

1-13 



TMS34020 Graphics System Processor 
~v.,.,w-..V-,~.,.,~"IQ..~v ..... ~v,..-";""V.«oC'l.v.....~,"'"t'I.~~"tO>..~~~~ ..... ~~V~VA~VA~V ..... ~V~V ..... ~~~v.r..~v ..... "-'v ..... ""*"v""'Wo.v ..... ~~~~v .... ~v.,.,~v~ .... ~~v ..... ""''C'\~~~~V~~~VA~~ 

1.6 TMS34020 Graphics System Processor 

The TMS34020 Graphics System Processor (GSP) is an advanced 32-bit 
microprocessor optimized for graphic display systems. The TMS34020 is a 
member of the TMS340 family of computer graphics products from Texas 
Instruments. 

The TMS34020 provides high-performance cost-effective solutions for 
applications that require efficient data manipulations in a graphics 
environment. The TMS34020 can be configured to serve in a host-based, 
standalone, or multiprocessing system. It has both host and multiprocessor 
interfaces to facilitate implementation of multiple TMS34020 systems. 

The TMS34020 is supported by a full set of hardware and software 
development tools, including an optimizing C compiler, assembler, software 
libraries, a PC-based development board on a PC-based emulator. The 
TMS340 Family Code Generation Tools may be used to develop code for the 
TMS34082 in coprocessor mode. In addition, the TMS34020 is fully 
compatible with and supported by the Texas Instruments Graphics 
Architecture (TIGA). 

1.6.1 TMS34020 Key Features 

1-14 

Fully program mabie 32-bit general-purpose processor with 512M-byte 
linear address range (bit addressable) 

Second generation graphics system processor: 

Object code compatible with the TMS34010 

Enhanced instruction set 

Optimized graphics instructions 

Direct coprocessor interface to TMS34082 Floating-Point Processor 

On-Chip peripheral features include: 

Programmable CRT control 

Direct DRAMNRAM interface 

Direct communication with an external (host) processor 

Communication with multiple TMS34020s 

Functional expansion with the coprocessor interface 

Automatic CRT display refresh 

Instruction set supports special graphics functions such as pixel 
processing, XY addressing, and window clip/hit detection 

Overview of the TMS34082 



TMS34020 Graphics System Processor 
«-::~,,:<O:~'jo~.~;:-,,~""",,«-::,,~;x,?,~;~~;-,;,~~<-»-:~.:;-,;x-;~:;:<-::,,~,x-;~:,,:oo;"'''''''h<-::~;;~-::·;-""....;~-; .. ;a:;x-:·:yxoo;-:-,:.;-:·:--.... : .. :-: .. :-»:-:·:-:;;o.:-:-:-;;o.:-::·:-,:·:-; .. ;a:;;o.:-::·;a:;xoo; .. ;.;:,-:: .. :-;..x-:: .. ;..;,x-:;·;.:;; .. :oo; .. :-:;:·:-:; .. :--:r:·:oo;·:-;,:'-::":-;:":·:-::";-;':';-::·;O-;:·:~;o"' .... :.;-::·:·;.;o.:-::·:-;:,,;-::·:--,,:"'~":-;h"'o:~ .... ;o.:~:-;x-::·;er";:....~",",:;'X:-::~;:«,,v....: 

Programmable 1-,2-,4-,8-,16-, or 32-bit pixel size 

16 Boolean and 6 arithmetic pixel processing options (raster-ops) 

30 general-purpose 32-bit registers 

512-byte LRU on-chip instruction cache 

General Description 

The TMS340 family from Texas Instruments combines the best features of 
general-purpose microprocessors and graphics controllers to create a range 
of cost-effective, flexible, powerful graphics systems. The key features of the 
TMS340 family are speed, a high degree of programmability, and efficient 
manipulation of hardware-supported data types such as pixels and 
2-dimensional pixel arrays. 

With a built-in instruction cache, the ability to simultaneously access memory 
and registers, and an instruction setthat enhances raster graphics operations, 
the TMS34020 provides programmable control of the CRT interface as well as 
the memory interface (both standard DRAM and multiport RAM). The 4G-bit 
(512M-byte) physical address space is completely bit addressable on bit 
boundaries using variable width data fields (1 to 32 bits). Figure 1-7 is a 
TMS34020 high-level block diagram. 

Figure 1-7. TMS34020 High-Level Block Diagram 

Host Interface 
Bus- ~---' ..... 

HA 

Local-Memory 
~--.I""'" Interface 

LAD 

DRAMIVRAM 
100""--.1...... Control 

1-15 



TMSS4020 Graphics System Processor 
Y",:«-»~v~~-:~~""" .... ~V"«-::.~'~~h:"""'VA~~Xo"",,'"Y~~~v.,~v~ ....... -.;,~~~?~~~v;.qR':";-';-:--'~"""A~ .. ;-" .... ;o...'"..;.~W"""~""".h»::?~m.~X-:*X,*"'-';':';"":-"'A~v~~v,~,»X";:«~~.»~v~,m."""A(«-"A-,..., ..... ,: .... ~'V,x~v..«« 

1-16 

The TMS34020 unique memory interface speeds performance of tasks such 
as bit alignment and masking while supporting advanced DRAM access 
modes. The 32-bit architectures supplies the large blocks of 
contiguously-addressable memory that are necessary in graphics 
applications. 

Systems designed with the TMS34020 can utilize VRAM technology to 
facilitate applications such as high-bandwidth frame buffers. This circumvents 
the bottleneck often encountered when using conventional D RAMs in graphics 
systems. 

The TMS34020 instruction set includes a full complement of general-purpose 
instructions, as well as graphics functions, that can be used to construct 
efficient high-level instructions. The instructions support arithmetic and 
Boolean operations, data moves, conditional jumps, and subroutine calls and 
returns. 

The TMS34020 architecture supports a variety of pixel sizes, frame buffer 
sizes, and screen sizes. On-chip functions have been carefully selected so that 
no functions tie the TMS34020 to a particular display resolution. This enhances 
the portability of graphics software and allows the TMS34020 to adapt to 
graphics standards such as MIT's X-WindowsTM, CGI/CGM, GKS, NAPLPS, 
PHIGS, and evolving industry standards. 

Texas Instruments offers a wide variety of system solutions. The simplest 
TMS340 graphics system consists of the TMS34020 alone. Floating-point 
computations are performed in software using I EEE floating-point libraries. 
Adding a TMS34082 appears merely as an extension to the TMS34020 
instruction set. The same calculations run much faster in dedicated hardware 
rather than software. 

Adding external memory to the TMS34082 allows user-programmed 
subroutines, such as shading or contour fitting, to execute while the TMS34020 
is performing other functions. Since the data for the subroutines is also in 
external memory, the TMS34082 is effectively decoupled from the TMS34020. 
The TMS34020 can poll the TMS34082 to see if the subroutine has finished. 
The highest performance TMS340 graphics solutions contain one or more 
TMS34020 along with multiple TMS34082s in a parallel processing 
environment. The TMS34020 acts as the display manager and also 
orchestrates tasks for the floating-point coprocessors. Jobs and/or data may 
be loaded into external memory of one TMS34082 while other TMS34082s are 
still executing. 

OveNiew of the TMS34082 



TMS34020 Graphics System Processor 
««<:*X'.I\~~~~~x«~~~~v/..««r:«"~.,x.-;-:o-;....~..«-:<-:;,:-.:", .. »:..;.: .. :--:.«:",~~~;,:..;-::.;o.;,:.;-:.:-;.:«·:·;":,;-::·;-,;":-:-:-,x",,,:",,,:·:-::·:,,;,;..;-::·»x-:: .. : .. ;.:..:-;·y..»:,,;;--,,:·:-::·:·:.:.;-::·:·;,:..;-:·;-.;,:-.:-:: ...... ;,~·~,.,-::·~:;x-:: ... ....,»:,·~:;x-::·;-"....:«,~;x ......... v .... »:·;r.x..;-;"":,..:..;~;,:«.;r.~ .. :-;,;.;-::""'.,..,-;-: 

1.6.2 TMS34020 Software Tools 

Texas Instruments offers extensive development support for the TMS340 
graphics family. Software tools for the TMS34020 also comprehend the 
TMS34082. The TMS340 Family software tools include: 

An optimizing C compiler 
An assembler 
An archiver for building object libraries 
A linker 
A loader for TMS34020 and TMS34082 absolute load modules 
A C source debugger 

The compiler accepts programs written in C language. It outputs assembly 
language source code that is then processed by the assembler to convert the 
mnemonics to object code. The compiler and assembler generate efficient 
TMS34082 code in the form of internal instructions. The C compiler allows 
time-critical routines written in assembly language to be called from within the 
C program. The converse is also available; assembly routines may call C 
functions. 

If external TMS34082 memory is present, the TMS34082 Software Tool Kit 
must be used to generate the subroutine code in the form of external 
instructions. When the TMS34082 load module has been generated, the 
TMS34020 loader can download both load modules as shown in Figure 1-8. 

The TMS340 Family C Source Debugger supports both the TMS34020 and the 
TMS34082 in coprocessor mode. Other debugging tools for the TMS34082 in 
coprocessor and host-independent modes are available from third-party 
vendors. 

1-17 



TMS34020 Graphics System Processor 
;:"~-:, ... :-:~.;'X":-::.;-"'~-:-:--:«o" ..... v,,:-:";";';'»:~;'»»;':«-:-Jo..,=~,v~..y.l'X'h;'-Uhv.,.: ... "".~,,:«~~~;,:,-::.:-x..:-::-;-;;: ... ~ .. :-,:-:-:: .. :.x,,-:: .. :-x..;-::.»x-::·:-;:..:..:~:-;,:.;~ .... ;,:"-::·~:.:"""-»»; ... ,»,:~:-;'x-::"";':-:-::";·;'x-::·:-;':-:-::';«« ... "'9x-::o.;-"'n;-:: .... ;..:.;-: .. :-;,:..::-::·:-;«'.. .... m~"W'j>;..:..;·:-;,:-.:-:<-»: .............. ,:«.;."';.·: ... hv .... ~« 

Figure 1-8. TMS34020 and TMS34082 Software Tools 

1-18 

TMS340 Family Software Code Generation 

Tools (used for generating TMS34020 code 

and TMS34082 internal instructions) 

TMS34082 Software Tool Kit (generates 

TMS34082 code for external memory) 

Overview of the TMS34082 



TMS34020 Graphics System Processor 
lA~v"",~v..~~~""«-.V~VA~V ...... ~V .... """"'V~V ..... ~W",~V~V ... ~')..~V ..... ~V .... X~VA~A."-«-""","",~V .... w..V .... "*yAw..V ..... w..V""w..v....~)r.~v .... w..V .... w-..Y.t..~A~VA-..:~A~Aw..VA"OOI.VA~ ...... "»t.VA""'-'~V ..... "0..VAw..V ..... ~~A'"0yA~VAw..V. 

1.6.3 TIGATM Graphics Interface 

The Texas Instruments Graphics Architecture (TIGA) is a software interface 
standard for the TMS340 family of graphics system processors. TIGA 
enhances the performance of MS-OOS-based pes that contain a TMS34020 
or TMS34020 (and an optional TMS34082) and an 8088/86 or 80286/80386 
host microprocessor by optimizing communications between the graphics 
processor and the host processor. The TIGA interface allows the host and 
graphics processors to share execution of the application, as shown in 
Figure 1-9. 

Figure 1-9. Graphics Processing Shared Between TMS340 and Host Processors 

Application 
• .. .. AppTIc~tTo~ ...... 

Interface 

Communications 
Driver 

Host System 

TIGA Interface 

TMS340 Board 

1-19 



TMSS4020 Graphics System Processor 
;a...v .... ~)o..-..:'-' .......... ~~'VA~~v'"'~v,..~-..:w ..... 'I(~v ..... ~~'"""-'Voll.~v .... w..""'A.~-..:~v""~ .... ~~~v ..... -.;«"A~v.r~¢'.,'VA-..;-e-..V""-,:.c.. ...... A""¢'.."'.7..-..:-e-:;.-.... '''"':''..VA''-:~X~''A-..:~;,~)r,.~vA~'')r..~V ..... ~v....''0..v.r~'>..~~~ ..... ~~ ..... '»..'V .... ~v ..... '»o.""""~ 

1.6.4 TMS34020 Software Development Board 

The TMS34020 Software Development Board (SDB20) is a high-performance 
PC/AT bus graphics card. It allows you to write applications software for the 
TMS34020 and its companion floating-point processor, the TMS34082. The 
board also demonstrates the simplicity of hardware design using the 
TMS34020 and TMS34082 for high-performance bit-mapped graphics 
displays. 

An optional upgrade kit, the TMS34082 SRAM Upgrade Kit, contains a 
business card sized board with the TMS34082 and 32K bytes of SRAM, plus 
software and documentation. The board plugs into the TMS34082 socket 
presently existing on the SDB20. 

Figure 1-10. TMS34020 SDB Block Diagram 

1-20 

, .....•... _-_ .. _-_ ... 
Optional TMS34082 SRAM Module 

Key features of the TMS34020 SOB include: 

1 M-byte VRAM organized as 256K x 32 bits 

1 M-byte DRAM organized as 256K x 32 bits 

TMS34082 Floating-Point Coprocessor (optional) 

VGA support for 640 x 480 pixel resolution 

Software selectable resolutions: 

1024 x 768 by 4 or 8 bits per pixel 

640 x 480 by 4 or 8 bits per pixel 

640 x 480 VGA mode 

Software configurable base address over a full 16M-byte range 

TMS34020 emulation support 

OveNiew of the TMS34082 



TMS34082 Ordering Information 
*:-;,.:y:...v ..... ""<-:--:-:.;o.;~~ ....... "tri:~:-A~~ .... :...'».. .... :.=..:..:~:--;,.:,,-:OO:-:...""<-:""'="x:*:.:-:-:·:-:.x-:O-:--..... -..:¢':-:.=«"..,="x-:~ ... ~:.:..;-:-:-:.:«--..v ... x~»:..;-::·:o-:.x~:-:...""<-:..;-:.x:~v ... :-:",,:--..... x~"":...x-e-..v..:« .. ;-"",:"-e-..v~"tri:-:v:,~:-:,:-;-:-"~x-:-",v ..... ""::-:-""":,:~"'V~~--»:--",~x",,v,,,,,"=~A.X,,*=«~""'A'X'\V""'~¢'Y ..... ~:-:"'-":-:-"VA-";~;"'-'; 

1.7 TMS34082 Ordering Information 

For the latest ordering and pricing information, please call your local TI field 
sales representative or authorized TI distributor. Table 1-5 summarizes the 
products available for the TMS34082. 

Table 1-5. TMS34082 Product Information 
Type Description Part Number 

Silicon Devices TMS34082A device, 32 MHz, 145-pin ceramic PGA package TMS34082AGC-32 

TMS34082A device, 40 MHz, 145-pin ceramic PGA package TMS34082AGC-40 

Docu mentation TMS34082A Data Sheet SCGSOO1 

TMS34082 Designer's Handbook SCGU004 

Software TMS34082 Demonstration Software Tool Kit ContactTI 

TMS34082 Software Tool Kit TMDS3440808201 

TMS34082 3-D Graphics Library ContactTI 

TIGA Software Developer's Kit TMS340SDK-PC 
(includes the TMS340 Family Code Generation Tools and C Debugger for the PC) 

Hardware TMS34020 Software Development Board (SOB20) TMS3460120000 

TMS34082 SRAM Upgrade Kit TMDS3481800-02 

1-21 



Technical Assistance 

1.8 Technical Assistance 

1-22 

The Texas Instruments Datapath VLSI Products Systems Engineering group 
is a resource available to help you in the selection of TI's high-performance 
FPUs, such as the TMS34082 Graphics Floating-Point Processor. Located in 
Dallas, the group works directly with designers to provide ready answers to 
device-related questions and also prepares a variety of applications 
information. The phone number for the DVP Systems Engineering hotline is 
(214) 997-3970. 

Overview of the TMS34082 





Pinout 
;":-;~««~;:..;oo"' .. »X~·;';':';-:<-~':9"",,"""~Y";"'~·:;-:;":-';~·»:·:-:":-"J':·:-:":-;:";~»;":-:·:-:-»:·~,:-:";·:-:,;,:";·;,;,~~""",,:.;-:·;.,x..;~:;..:-:-; .. ;.:,x,,,-:-;..:·:..;·;-:;.:·:-:·:·;.x,,,.:?»:*:.:"'.»:"..;,v"x"'·:a"' ..... x~:--;.;.:-: .. :-r .... :«·;.;.:..;"'·:·:-x-::·:;.;.;..."*' ........... ..«o»:«-:·:;.;:..~~;x-:-:-"~-vx..;....":.ox..;~ ... : .. ~·:-"~,'QOV..m.."?x 

2.1 Pinout 

The TMS34082A and the SMJ34082A are offered in a ceramic, 145-pin grid 
array (PGA) package (GC). Figure 2-1 shows the145-pin PGA pinout. 

Figure 2-1. TMS34082 Pinout, 145-Pin PGA Package 

(TOP VIEW) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 
A • • • • • • • • • • • • • • • 
B • • • • • • • • • • • • • • • 
C • • • • • • • • • • • • • • • 
0 • • • • • • • 
E • • • • • • 
F • • • • • • 
G • • • • • • 
H • • • • • • 
J • • • • • • 
K • • • • • • 
L • • • • • • 
M • • • • • • 
N • • • • • • • • • • • • • • • 
P • • • • • • • • • • • • • • • 
R • • • • • • • • • • • • • • • 

2-2 Pinout and Pin Descriptions 



Pinout 

Table 2-1. Pin Assignments (PGA Package) 
Pin Pin Pin Pin Pin 

GC# Name GC# Name GC# Name GC# Name GC# Name .. 
A1 NC 815 LA027 F1 MS010 K15 ROY P2 NC 
A2 LA01 C1 MS04 F2 MS09 L1 MS018 P3 MS029 
A3 LA03 C2 MS03 F3 VCC L2 MS021 P4 MS031 
A4 LA05 C3 MSOO F13 CORDY l3 MS023 P5 MSAl 
A5 LA08 C4 VSS F14 AlTCH L13 VSS P6 MSA3 
A6 LA 09 C5 VCC F15 CAS L14 CIOO P7 MSA6 
A7 LA011 C6 LA06 G1 MS013 L15 CI02 P8 MSA8 
A8 LAD12 C7 VSS G2 MS012 M1 MS020 P9 MSA10 
A9 LAD13 C8 VCC G3 MS011 M2 MS024 P10 MSA13 
Al0 LA015 C9 VSS G13 WE M3 VSS P11 MWR 
All LA017 C10 VCC G14 EC1 M13 VCC P12 MOE 
A12 LA019 C11 LA021 G15 ECO M14 lClK1 P13 INTG 
A13 LAD22 C12 VSS H1 MS014 M15 lClK2 P14 8USFlT 
A14 LA 024 C13 LA 025 H2 TOO N1 MS022 P15 RAS 
A15 NC C14 LA 026 H3 VSS N2 MS026 R1 NC 
81 MS01 C15 LA029 H13 VSS N3 VCC R2 MS027 
82 NC Dl MS06 H14 lOE N4 MS028 R3 MSD30 
83 LA DO 02 MS05 H15 TOI N5 VSS R4 MSAO 
84 LA 02 03 MS02 J1 MS015 N6 VCC R5 MSA2 
85 LA 04 D4 NC J2 MS016 N7 MSA5 R6 MSA4 
86 LA07 013 VCC J3 VCC N8 VSS R7 MSA7 
87 LAD10 D14 LAD28 J13 CC N9 VCC R8 TCK 
88 TMS 015 LA031 J14 MASTER N10 MSA14 R9 MSA9 
89 LA014 E1 MS08 J15 ClK N11 VSS R10 MSA11 
810 LAD16 E2 MS07 K1 MS017 N12 MAE R11 MSA12 
811 LA018 E3 VSS K2 MS019 N13 lROY R12 MSA15 
812 LA020 E13 VSS K3 VSS N14 SF R13 OS/CS 
813 LAD23 E14 LA030 K13 CIDl N15 RESET R14 MCE 
814 NC E15 COINT K14 INTR P1 MS025 R15 NC 

2-3 



Pinout 

Table 2-2. Alphabetical Listing - Pin Assignments (PGA Package) 
Pin Pin Pin Pin Pin 

Name GC# Name GC# Name GC# Name GC# Name GC# 

ALTCH F14 LAD14 B9 MSA3 P6 MSD16 J2 TCK R8 
BUSFLT P14 LAD15 A10 MSA4 R6 MSD17 K1 TDt H15 
CAS F15 LAD16 B10 MSA5 N7 MSD18 L1 TDO H2 
CC J13 LAD17 A11 MSA6 P7 MSD19 K2 TMS B8 
CIDO L14 LAD18 B11 MSA7 R7 MSD20 M1 VCC C5 
CID1 K13 LAD19 A12 MSA8 P8 MSD21 L2 VCC C8 
CtD2 U5 LAD20 B12 MSA9 R9 MSD22 N1 VCC C10 
CLK J15 LAD21 C11 MSA10 P9 MSD23 L3 VCC D13 
COINT E15 LAD22 A13 MSA11 RiO MSD24 M2 VCC F3 
CORDY F13 LAD23 B13 MSA12 R1i MSD25 Pi VCC J3 
DS/CS R13 LAD24 A14 MSAi3 P10 MSD26 N2 VCC M13 
ECO G15 LAD25 C13 MSA14 Ni0 MSD27 R2 VCC N3 
EC1 G14 LAD26 C14 MSA15 R12 MSD28 N4 VCC N6 
INTG Pi3 LAD27 B15 MSDO C3 MSD29 P3 VCC N9 
INTR Ki4 LAD28 D14 MSD1 B1 MSD30 R3 VSS C4 
LADO 83 LAD29 C15 MSD2 D3 MSD31 P4 VSS C7 
LAD1 A2 LAD30 E14 MSD3 C2 MWR P11 VSS C9 
LAD2 84 LAD31 D15 MSD4 C1 NC Ai VSS C12 
LAD3 A3 LCLK1 M14 MSD5 D2 NC A15 VSS E3 
LAD4 85 LCLK2 M15 MSD6 D1 NC B2 VSS Ei3 
LAD5 A4 LOE H14 MSD7 E2 NC B14 VSS H3 
LAD6 C6 LRDY N13 MSD8 E1 NC D4 VSS H13 
LAD7 86 MAE N12 MSD9 F2 NC P2 VSS K3 
LAD8 A5 MASTER J14 MSD10 F1 NC R1 VSS L13 
LAD9 A6 MCE R14 MSD11 G3 NC Ri5 VSS M3 
LAD10 87 MOE P12 MSD12 G2 RAS P15 VSS N5 
LAD11 A7 MSAO R4 MSD13 G1 RDY K15 VSS N8 
LAD12 AS MSA1 P5 MSD14 Hi RESET Ni5 VSS N11 
LAD13 A9 MSA2 RS MSDi5 J1 SF Ni4 WE Gi3 

2-4 Pinout and Pin Descriptions 



Pin Functional Descriptions 
~VA~""'~~A-';WA~~~VA~VNi:~'V.,.~VA~ .... ~V ...... ~V"':-':-:-"V"':<~:""~VA'~"";r:~VA-";~V,.,.~: .. ;o.:'-'~~VA~A,=~v~:,:,:;~'V ...... -":-:~~~V ..... ~~,AI(oO"»m»-"~:"'W»-~~'VA<W""~VM~""'''''~A~VA~V~V"",-<,-,v .... ", 

2.2 Pin Functional Descriptions 

The following tables contain the TMS34082 signal descriptions grouped by 
their functions. 

Table 2-3. LAD Bus Signals 
Pin 

Name No. 1I0/l Description 

I Address Latch, active low. In coprocessor mode, falling edge of ALTCH latches instruction 
and status present on the LAD bidirectional bus (LAD31-O). 

ALTCH F14 

0 In host-independent mode, ALTCH is an address output write strobe for memory accesses on 
LAD31-0. 

Bus Fault. In coprocessor mode when high, indicates a data fault on the LAD bus (LAD31-0) 
8USFLT P14 I during current bus cycle which causes TMS34082 not to capture the current data on LAD bus. 

Tied low if not used. Not used in host-independent mode. 

Column Address Strobe, active low. In the coprocessor mode, causes TMS34082 to latch 
I LAD bus data on CAS low-to-high transition if LRDY was high and BUSFLT was low at the 

CAS F1S previous LCLK2 rising edge. 

OIZ In host-independent mode, this signal is the read strobe output. 

LADO 83 

LAD1 A2 

LAD2 B4 
LAD3 A3 

LAD4 B5 
LADS A4 

LAD6 C6 

LAD7 B6 
LAD8 AS 

LAD9 A6 

LAD10 B7 

LAD11 A7 Local Address and Data Bus. In coprocessor mode, used by TMS34020 to input instructions 
LAD12 A8 I/O/Z and data operands to TMS34082, and used by TMS34082 to output results. In 

LAD13 A9 host-independent mode, used by the TMS34082 for address output and data I/O. 

LAD14 B9 

LAD1S A10 

LAD16 B10 

LAD17 A11 

LAD18 B11 

LAD19 A12 

LAD20 B12 

LAD21 C11 

LAD22 A13 

LAD23 B13 

LAD24 A14 

2-5 



Pin Functional Descriptions 
K..z...VJ\"~~~~~~~..yA~~~~"'CfX~"'»>" ...... v.,:.v.~A~~~~~..«~-:or....x"»~,,,:-:~-: .... VJ'X.,...~~,,=,,:«·»m~,,.:9".-: .. ;«oI""*~')~~Yh~"",""'~~~~-:-»»»:o-..~+",,«->,,V/.<Qo"N.h..""''''''~~''''''.JC 

Table 2-3. LAD Bus Signals (Continued) 
Pin 

Name No. 
IIOIl Description 

LAD25 C13 

LAD26 C14 

LAD27 815 Local Address and Data Bus. In coprocessor mode, used by TMS34020 to input instructions 
LAD28 D14 I/Oll and data operands to TMS34082, and used by TMS34082 to output results. In ho~-independent 

LAD29 CiS mode, used by the TMS34082 for address output and data I/O. 

LAD30 E14 

LAD31 DiS 

Local Bus Output Enable, active low. Enables the local bus (LAD31-0) to be driven at the proper 

LOE H14 I 
times when low. In addition, during the host-independent mode when LADCFG is low, does not 
affect ALTCH, CAS, WE, CORDY, or COINT. When LADCFG is high, ALTCH, COINT, and 
CORDY are not disabled by LOE high; CAS and WE are disabled. 

Local Bus Data Ready. In coprocessor mode, LDRY high indicates that data is available on LAD 

LRDY N13 I 
bus. LRDY low indicates that the TMS34082 should not load data from LAD31-0. In 
host-independent mode, when LRDY goes low, the device is stalled until LRDY is set high again. 
Tied high if not used. 

RAS P15 I 
Row Address Strobe, active low. I n coprocessor mode this signal is high during all coprocessor 
instruction cycles. Not used in host-independent mode. 

Special Function. When high, indicates the LAD bus input is an instruction or data from 
SF N14 I TMS34020 registers. When low, indicates the LA D input is a data operand from memory. Not used 

in host-independent mode. 

I 
Write Enable, active low. In coprocessor mode, the LAD bus write strobe from the TMS34020 

WE G13 to enable a write to or from the TMS34082 LAD bus. 

Oil In host-independent mode, WE is the TMS34082 data write strobe. 

2-6 Pinout and Pin Descriptions 



Pin Functional Descriptions 
<""' .... ~vA~V.A~~ .... .A""-' ........... ~;,.,~V ..... 'X""""A~~~ ...... ~V~A~'-"":...~:-:.~ ..... A'X~ ..... ~V ..... "-:«.»:«. .. ;..."<*;"'-";~VA-";-:~;O-:':«";":':"~""'~X~;.v~x-:":-""x~;o-:,:";oo:.:-:,;";-:";;"",,,,,-,:-:,·:-:,:~""',,,:,;-:--:-:«*;":";~:-:'=«":-:':';-:--:-:"'~V .... :";:~~:-':-:''':-:.x-::·;o-:r:-.:*:...~:-:...",",~:-;,.,~:-:...-..;« 

Table 2-4. MSD Bus Signals 
Pin 

Name No. I/O/Z Description 

Data Space/Code Space Select. When MEMCF is low and DS/CS is low, selects program 
DS/CS R13 0 memory on MSD port. When MEMCFG is low and DS/CS is high, selects data memory on MSD 

port. When MEMCFG is high, DS/CS is memory chip select, active low. 

External Memory Address and Data Output Enable, active low. When this signal is low, the 
MAE N12 I TMS34082 can output an address on MSA 1S-0 and data on MSD31-0. MAE high does not disable 

DS/CS, MCE, MWR, or MOE. 

MCE R14 0 Memory Chip Enable. When MEMCFG is low, active (low) indicates access to external memory 
on MSD31-O. When MEMCFG is high, MCE low is external code memory chip select. 

MOE P12 0 Memory Output Enable, active low. When low, enables output from external memory onto the 
MSD port. 

MSAO R4 u 

MSA1 PS 

MSA2 RS 

MSA3 P6 

MSA4 R6 

MSA5 N7 

MSA6 P7 

MSA7 R7 
O/Z 

Memory Address Bus. Addresses up to 64K words of external program mel"QQ!)' or up to 64K 
MSA8 P8 words of external data memory on the MSD port. depending on setting of DS/CS select. 

MSA9 R9 

MSA10 P9 

MSA11 R10 

MSA12 R11 

MSA13 P10 

MSA14 N10 

MSA15 R12 

2-7 



Pin Functional Descriptions 
»:..;-:.:-;.x-:.:--Jox-: .... -.g.~~:<fx-: ...... ,=-:-:';O;.~ .... ~,,:«-»:«·:«,,-:·;.;..;..:«";.x..;·:-»:-;-~....x~~»:~:-;.:-..v.·:-;;:..;-:..;~;..;-:-:-»..~.:-;.;.:..;*:..;-:·:-x.;-: .. :-;.m·y .... :-:-:·:-Jo:..;-:.;.;..x-:·~:·:-;·:-»:-: .. :-;..x?:-;.x9:-;.:-O»~~:vwh;.X..;~A'oo»y~-:..;aJo;.:-:*~~:«-~;a"'.,(<<~~VA"'O>.'X«·»>"v",,"««';: 

Table 2-4. MSD Bus Signals (Continued) 
Pin 

Name No. 
I/OIZ Description 

MSOO C3 
MS01 81 
MS02 03 
MS03 C2 
MS04 C1 
MS05 02 
MS06 01 
MS07 E2 
MS08 E1 
MS09 F2 
MS010 F1 
MS011 G3 
MS012 G2 
MS013 G1 
MS014 H1 
MS015 J1 I/O/z External Memory Data Bus. Used to read from or write to external data or program memory. 
MS016 J2 
MS017 K1 
MS018 L1 
MS019 K2 
MSD20 M1 
MS021 L2 
MS022 N1 
MS023 L3 
MS024 M2 
MSD25 P1 
MSD26 N2 
MS027 R2 
MS028 N4 
MS029 P3 
MS030 R3 
MS031 P4 

MWR P11 0 
Memory Write Enable. When low, data on MSD31-0 can be written to external program or data 
memory. 

2-8 Pinout and Pin Descriptions 



Pin Functional Descriptions 
~~:""X~Qo"A~V ..... X~V .... ~~:-;';~V ...... ""'oQo:--:'::';~V .... '»..VAo;~VA~:'~";-~X-:~ .. :..;-:·x,:«!I.-':';";-:-:-:':<~;':"'X-:~ ...... "'o.;f!~:"'~;':':";OO:-:-:'~~:':"«-:-"~~:-h«"-""""'X~:':«"':""~;"""«~:":.:-:·;." ..... ~v""~"'V"':«.:f' .... =«":-:"'~""'X"'VJ':«-.v .... ~:'.,.,~Y~v..:--:-:.:-:...~;:.;*:...-..;..:.: .. : 

Table 2-5. Clock and Control Signals 
Pin 

Name No. IIOIZ Description 

CC J13 I Condition Code Input. May be used as an external conditional input for branch conditions. 

CIDO L14 Coprocessor 10. Used to set a coprocessor ID so that TMS34020 Graphics System Processor 
CID1 K13 I controlling multiple TMS34082s can designate which coprocessor is being selected by the current 
CID2 L15 instruction. Tied low in host-independent mode. 

ClK J15 I System Clock in host~independent mode. Tied low in coprocessor mode. 

Coprocessor Interrupt Request, active low. In coprocessor mode, signals an exception not 

COINT E15 0 masked out in the configuration register. Remains low until the status register is read. In 
host-independent mode, user programmable 110 when LADCFG is low. Designates bus cycle 
boundaries on LAD31-0 when LADCFG is high. 

Coprocessor Ready. In coprocessor mode, if the TMS34020 sends an instruction before the 
CORDY F13 0 TMS34082 has completed a previous instruction, this signal goes low to indicate that the 

TMS34020 should wait. User-programmable in host-independent mode. 

INTG P13 0 
Interrupt Grant. This signal is set high to acknowledge an interrupt request input in 
host-independent mode. 

INTR K14 I 
Interrupt Request, active low. Causes call to subroutine address in interrupt vector register in 
host-independent mode. Tied high in coprocessor mode. 

LCLK1 M14 
I 

Local Clock 1 and 2, generated by the TMS34020, 90 degrees out of phase, to provide timing 
LClK2 M15 inputs to TMS34082 in coprocessor mode. Tied low in host-independent mode. 

MSTR J14 I 
CoprocessorlHost-lndependent Mode Select. When low, puts the TMS34082 in coprocessor 
mode. When high, puts the TMS34082 in host-independent mode. 

Ready. When RDY is low, causes a nondestructive stall of sequencer and floating-point 
RDY K15 I operations. All internal registers and status in the FPU core are preserved. Also, no output lines 

will change state. 

RESET N15 I 
Reset, active low. Resets sequencer output and clears pipeline registers, internal states, status, 
and exception disable registers in FPU core. Other registers are unaffected. 

Table 2-6. Emulation Control Signals 
Pin 

Name No. IIOIZ Description 

ECO G14 I Emulator Mode Control and Test. Tied high for normal operation. EC1 G15 

TCK R8 I Test Clock for JTAG 4-wire boundary scan. Tied low for normal operation. 

TDI H15 I Test Data Input for JTAG 4~wire boundary scan. May be left floating. 

TDO H2 0 Test Data Output for JTAG 4-wire boundary scan. 

TMS B8 I Test Mode Select for JTAG 4-wire boundary scan. May be left floating. 

2-9 



Pin Functional Descriptions 
;O"'v ...... ,~~~~~~~~~""*'v ...... ~VA.~v ...... w..'V....x~:....""'<-..V ...... ""'o(\.vA""'~ ... :...'»'..V ..... ,-:: ....... :...""«-..v ...... ""'''*:.x-::~:.-..~;....""'O(, .... ...:«~-..::-::-:-:.-.."'9:":-:....,'¢\v.,~':.x~v.".~'"wo).."*'v ... -..;¢'.v ... ""'-:-.. ... :...~v.,:<"*~v'"""~v"'"'<Oo)o..~:--.."-:~,.,.~v ... ~~v ...... ~~~'),.~'\Oo.."'«'"o."'Go..~v .... ~v ...... ~'VA""'-

Table 2-7. Power and NIC Signals 
Pin 

Name No. 
Description 

NC A1 

NC A15 

NC B2 

NC B14 No internal connection. These pins should be left floating. 

NC 04 

NC P2 

NC R1 

NC R15 

VCC C5 

VCC C8 

VCC C10 

VCC 013 

VCC F3 

VCC J3 

VCC M13 5-V power supply. All pins must be connected and used. 

VCC N3 

VCC N6 

VCC N9 

VSS C4 

VSS C7 

VSS C9 

VSS C12 

VSS E3 

VSS E13 

VSS H3 Ground pins. All pins must be connected and used. 

VSS H13 

VSS K3 

VSS L13 

VSS M3 

VSS N5 

VSS N8 

VSS N11 

2-10 Pinout and Pin Descriptions 





Integer Formats 
~~V~";"'~'VA~'-''''''''''«'~V''''''''«'''..V~.rXtt~vAl.''''-'~VA\:~''«"'..'>..~v.,x~~~~~-:~~ ...... ~~,"«~~v.«""--»»~",,,,''Itr;.<O\v~'>..~v.,:«-"'VA~~~'V""'~V~;"''I(''''~''''''~V~~VA'«\.V~~~~",,««< 

3.1 Integer Formats 

The TMS34082 recognizes two types of integers: signed and unsigned. Only 
one type may be used in a single instruction. Internal instructions use only 
signed integers. 

3.1.1 Signed Integers 

A signed integer is a 32-bit value in 2s-complement format, as shown below. 
The most significant bit is the sign bit; a 1 signifies a negative number. Signed 
integers can represent values from -2,147,438,648 to +2,147,438,647. 

Figure 3-1. IEEE Signed Integer Format 
31 30 

I I I 
1 0 

I I I 

·3.1.2 Unsigned Integer 

An unsigned integer is also a 32-bit value, but can only represent positive 
numbers. The range for unsigned integers is 0 to 4,294,967,295. 

Figure 3-2. IEEE Unsigned Integer Format 
31 30 

I I I 

3-2 

1 0 

I I I 

Data Formats 



Floating-Point Formats 
~v....:q ..... Vh:~~hVA"»':"~,x.o" ...... »;qH~*;"»"~;'h*:-»~..;o.-.,..;..;«"~:*"»>>>~x-:..;.~X\.""",,,,>>:,,;~ .. :-;.=,,:~"~A~: .. ;,: .. :",·:-",.,.;..;-:·»m·;.m..;:·:·;;.:·:-:·:·;,:·:..;:·:--':";-;·:·;":":-;.:;-:-:.:";:.:;'j.:";"Z.:-;":.;";":";":.:";:.:.;';";-;.:.;";-:-;:.:.;':--:"':";":;"~:-: .. :..;.:.;-;.:.;..:.:oo;:.:-;.: .. :-.:.:-;,.:.:..;.:.: .. :..;-:.:-;,:-:-.:-:-;,:.;-;:~;,:o.:~ 

3.2 Floating-Point Formats 

IEEE formats for floating-point operands t both single- and double-precision t 

consist of three fields; the sign (s), the exponent (e), and the fraction (f), in that 
order. The most significant bit is the sign bit. The value of the mantissa contains 
a hidden bit, an implicit leading 1, as shown below: 

1.fraction 

The representation of a normalized floating-point number is: 

(-1)5 x 1.f x 2 (e-bias) 

The bias is a number added to the true exponent to ensure that the 
exponent (e) is always positive. The bias is 127 for single-precision or 1 023 for 
double-precision. Further details of IEEE formats and exceptions are covered 
in the IEEE Standard for Binary Floating-Point Arithmetic t 

IEEE Standard 754-1985. 

3.2.1 Single-Precision Floating-Point 

Single-precision floating-point numbers are 32 bits long; the exponent field is 
8 bits, and the fraction field is 23 bits. The exponent is biased by 127. Single 
precision can represent values from ±2-126 to ±2127 x (2-2-23). That is 
approximately ±1.2 x 10-38 to ±3.4 x 1038. The format for a single-precision 
number is shown in Figure 3-3. 

Figure 3-3. IEEE Single-Precision Format 
31 30 

s: sign of fraction 

2322 

e: 8-bit exponent, biased by 127 (true exponent + 127) 
f: 23-bit fraction 

3.2.2 Double-Precision Floating-Point 

o 

A double-precision floating-paint number is a 64-bit value. The exponent field 
is 11 bits t biased by 1023, and the fraction field is 52 bits. The range for 
double-precision is ±2-1022 to ±21023 x (2-2-52), or approximately 
±2.2 x 10-308 to ±1 .8 x 10308. 

3-3 



Floating-Poin t Formats 
»-"~~V""'~""V"':·;-::":-:"'''..;->Yh~V ..... ''«~;'''X*A~;':»:~""''..;~v ..... '"..;-::-:-,, ..... ''..;-::·;-,~~oo:·:-;,x~v ... :x-:..;.;.x«·:.;«"; ......... ~;...."..;<.»:.;<~J\.""V»;.;-:->>>:..z->:-"' .... :.;*;.:"->~A-..;~X->)o"' ..... -.:,,~.,~;...-.;'-'v.,..~~;O;:-»"'~~V ..... ~v..~VA--.;~V ... ~."..~"""'''-:''-'v~~v~~«'"w.'VA~V ..... '''''''C".v..x 

Figure 3-4. IEEE Double-Precision Format 
63 62 52 51 

s: sign of fraction 
e: 11-bit exponent, biased by 1023 (true exponent + 1023) 
f: 52-bit fraction 

o 

3.2.3 Denormal and Wrapped Numbers 

3-4 

The TMS34082 also handles two other data formats that permit operations on 
very small floating-point numbers. Denormalized and wrapped floating-paint 
numbers represent the same values, but in different formats. If very small 
values can be approximated by 0 in your application, you can set the Fast bit 
in the configuration register to force all denormal and wrapped inputs and 
outputs to O. 

The ALU accepts denormalized numbers, that is, floating-point numbers so 
small that they cannot be normalized. A denormalized number results from 
decrementing the biased exponent field to 0 before normalization is complete. 
A denormal has the form of a floating-point number with a 0 exponent, a 
nonzero fraction, and a 0 in the leftmost (hidden) bit of a mantissa. 

A single-precision denormalized number is equal to the following: 

(-1)5 x (2)-126 x OJ 

For double-precision, a denormal is equal to the following: 

(-1)5 x (2)-1022 x 0.1 

If denormalized numbers are input to the multiplier, they will cause status 
exceptions. Denormals can be passed to the ALU to be wrapped. The wrapped 
operand is then input to the multiplier. 

A wrapped number is a number created by normalizing a denormalized 
number's fraction field and subtracting from the exponent the number of shift 
positions (minus one) required to do so. The exponent is encoded as a 
2s-complement negative number. When the mantissa of the denormal is 
normalized by shifting it left, the exponent field decrements from all Os (wraps 
past 0) to a negative2s-complement number (except inthecase of 0.1 xxx ... , 
where the exponent is not decremented). 

Data Formats 



Floating-Point Formats 
-:,x~·»x-:*;":-;,,:-~:-,:oo: .... v,,,;':*:«-::""""A"":-::":":':«-:-""":-:-:~;':-:-;":";""":";*x""':~X?:-;,:« .. :-r .... :-:-; .. :-x-;::-;·:--;,:..;-::-:--;,: .. x..;-.;,:..;..; .. ~:·:-:·y .... :.;-;·:-x·:-;·:-;,: .. :-; .. :·;..~:-;·;·;,:·:..;·: .. ;..: .. x .. :·:,.: .. :-::·:~:-:..;. .. :-;,x-::·:·:;.:·:-; .. :·;,:-:-; .. :·;..;..;..;·;·;;.: .. :..;·:-:.-:-:-::·:·;.:·:..;·:·;..:·:-; .. :·x .. :..;. .. ;·,:q.·: ........ :-.:..;.»:-.:..;.: .. :;.;.:..;.;.;,:.:-;..;-:.:9: .. ;.;..:0.:..;.;-:;:-:-::..;-;,.:0.:-::.:..; 

3.2.4 Special Floating-Point Numbers 

There are three other special floating-paint value representations (see 
Figure 3-5): 

Zero (positive or negative) is represented by the appropriate sign bit, a 0 
exponent field, and a 0 fraction field. 

Infinity (positive or negative) is represented by the appropriate sign bit, 1 s 
in the exponent field, and a 0 fraction field. 

A Not a Number (NaN) deSignates data that has no mathematical value. 
A NaN has 1 s in the exponent field with a nonzero fraction. 

A NaN is produced whenever an invalid operation (such as division by 0) is 
executed. The TMS34082 treats all NaNs as signaling NaNs, setting the invalid 
(I) flag in the status register. The TMS34082 outputs all NaNs (regardless of 
input form) with a 0 sign bit and all 1 s in the exponent and fraction fie\<js. 

Figure 3-5. Special Floating-Point Formats 

Single-Precision Double-Precision 

31 30 23 22 0 63 62 52 51 0 

Zero I 51 00 ... 00 I 00 .................... 00 I I 51 00 ... 00 I 00 .................... 00 ] 

31 30 23 22 0 63 62 52 51 0 

Infinity I 51 11...11 I 00 .................... 00 I I 51 11 ... 11 00 .................... 00 ] 

3 ;;-;1:..,.;;.;30~....;2_3'T2;;;;2~ ________ -,0 63 62 52 51 

NaN I 51 11..11 I (non-zero) I I 51 11. .. 11 I (non-zero) 

o 

] 

3-5 



Floating-Point Formats 
~":-;~VJ';";~"»X·:Y .. ~"''*':~-:~'''':'»»:-'''''«''X-:~ot''h'''9:''»;!>;'''';'~V .... ;":~",-,~",",,,:-~~~o\II"J':''~.:o-joo:-:,..:-;:ot"":-:';..;..:.:ork;..:..;-:;;o...""X";;o..~:Y....:-t' ...... ~ ... v....:.:-::-:~:-;o.x"~J'W,",~:-;:-"~~*~i.«'O"Av ..... V'~AO'>. .... ..:«:*-,~~~v:Q~gQ'a:=Q'l:Ii:I~ttlj=i:I~:,Q: 

3.2.5 Range of Floating-Point Numbers 

Table 3-1 shows the range of possible single- and double-precision 
floating-paint numbers. 

Table 3-1. Floating-Point Number Representations 
Type Sign Exponent Hidden Bit Fraction 

NaNs 0 11 .. 11 11 .. 11 

1 

0 11 .. 11 10 .. 00 

0 11 .. 11 01 .. 11 

1 

0 11 .. 11 00 .. 01 

Positive Infinity 0 11 .. 11 1 00 .. 00 

0 11 .. 10 11 .. 11 

Positive Normals 1 

0 00 .. 01 00 .. 00 

0 00 .. 00 11 .. 11 

Positive Denormals 0 

0 00 .. 00 00 .. 01 

Zero (Positive) 0 00 .. 00 1 00 .. 00 

Zero (Negative) 1 00 .. 00 1 00 .. 00 

1 00 .. 00 00 .. 01 

Negative Denormals 0 

1 00 .. 00 11 .. 11 

1 00 .. 01 00 .. 00 

Negative Normals 1 . 
1 11 .. 10 11 .. 11 

Negative Infinity 1 11 .. 11 1 00 .. 00 

NaNs 1 11 .. 11 00 .. 01 

1 

1 11 .. 11 01 .. 11 

1 11 .. 11 10 .. 00 

1 

1 11 .. 11 11 .. 11 

Single: <8bits> <-23 bits-> 

Double: < 11 bits> <-52 bits-> 

3-6 Data Formats 



Chapter 4 

Arch itecture 
~~:sa=::~;'~~:::~:~::X:~~~f~~:f~~~~~~:::~:~*~~*~:~;::~~:~:::~~:~:~~:$~3:::~:~~:::~:::~:::~~::X:::~~*~:~*~~~~~~;s:..~-:~~~~~~~~R'~~~~~:::~~~~:::~:~:::~:~~::::::~~~:~::*~:::::*~::%:~~*~:~~:~~:::::*~:~::~:::~:~~~*~:::~~~::~~~ 
':Ik~:-;:-::"»~~~~=f.~::f.~~:"~~";~~~~*~Ji.-;~~:::~~-;:~~z::;;::.-;~;,.;::-;::::~:;-;:::~:-;-;'K~;'$-;'K~'$-*>'~::;-;:;':~:<$-;:-::~%:::~:~o;~~=f.~m:~~""'~ .rvw.~:-:~~";'$f~:~~:~~-::::-;:;.:~:::-;:;.p;:'$-;'§;~-;:~~~-;:::~~W'$-;:::;;;$-;:::~:::-;::::::~~';o$-;:~~:-;:~~::'Y;;::~:::-;:::~~:;~ 

9;.y~~~v~<-",.~VA"",,;~,..;«<-~;\.~·»~-:·;orJ";-.:.o;~h:-::-;';":';-;~;':-"'~·~k:~·:-"'''':'';~·»:·;-:'~;:.:~.:-;':"»;--;:';-:.»;':-:.:--":';-:"'''''~;';-:';-;':~.~~'''''''':«-'V~.,.X~v"X'K~~ ...... ~..«-:·:---.,.:·~·;-;:*»:..;-:·;-;;-;~»;.:-:·:-;..:v:..;-" ... :..;-:.;.;x-:-:-~;;.:-:·:a;,:·:.o;.;.»:~,;":-:.;-~oo;.~,:,,:-:.:,,,",;"',,",=ot-;;.:-:.»;..:.: 

Because the sequencer, control and data registers, and FPU core are closely 
coupled, the TMS34082 can execute a wide variety of complex floating-point 
or integer calculations rapidly with a minimum of external data transfers. The 
internal architecture of the FPU core supports concurrent operation of the 
multiplier and the ALU, providing several options for storing or feeding back 
intermediate results. Also, several special registers are available to support 
calculations for graphics algorithms. Each of the main architectural elements 
of the TMS34082 is discussed in this chapter. 

4-1 



Functional Block Diagram 
*,~V""'~7..~"V ...... ~ .... ~,="~v.,..""W.h"l(~V""'~V""'''=~V'''''~''''''.A.~v,,,..~v .... ~v ..... ~~'»o.v....'»-.VA~~~V ..... ~v ..... "«'.V.rX.-:-..VA"'«'I..v.,..~V ..... ""~V ...... ~~~VA~~:>.:!'=Q~QgCQ=QQ.Q,Q-::~=~~~OQg .. QQQDCQa:Q'.QCi~"'X'C 

4.1 Functional Block Diagram 

The main architectural features ofthe TMS34082 are illustrated in Figure 4-1. 

Figure 4-1. Functional Block Diagram 

MSTR .. 
COINT l1li 
LRDY .. 

RESET .. 
LOE .. 

CID2-0 .. 
CORDY l1li 

BUSFLT .. 
RAS .. 

SF .. 
RDY .. 

LCLK1 .. 
LCLK2 .. 

ClK .. 

LAD31-O 

--4- MAE 
-+- MOE 

TO OTHER REGISTERS --+- MCE 

-+- MWR 

-+- DS/CS 
--4- CC 
--4- INTR 

FPU Core -+- INTG 
--4- EC1-0 

PIN FUNCTION CHANGES W/OPERATING MODE 32 --4- TMS 

SIGNAL HOST-INDEPENDENT COPROCESSOR 
NAME MODE MODE 

--4- TCK 
--4- TDI 

-+- TDO 
ALTCH Output Input 

WE Output Input 

CAS Output Input 

4-2 Architecture 



Operating Modes 
~~;..x.o;~""'Kh:"'H~~v..«~r;.~v~-:...."""'J',,'"'O"''''''v..-~~«"';..x~~x-::·:--;:,;«-..v~x«,,:--;:,~'V,,;..:-:,",X9';.:-:':;,,-::-:-;.x-:~,~*;.;-;.;a.;.x-:: .. :-r ... =« ..... ;;,x"" ... :-;,;.;-;·:--,;«·:·;,:,,-: .. ;o-;..;..:-;·:--:;:·:"''';-"'"';''-:.;';';''-:.:.')V''' ... :-V;.i;-;..;--~..;-::.:.,;.;-;..;.;,: .. :-; .. :-;..:«.;.;..: .. :-;.»:":-::·:~X";"»:"'l:-;'«-;";'~·»;":-;·:-; 

4.2 Operating Modes 

The TMS34082 has two operating modes: coprocessor mode and 
host-independent mode. 

In coprocessor mode, the TMS34082 acts as a floating-point coprocessor to 
the TMS34020 Graphics System Processor. The TMS34082 is a direct 
extension of the TMS34020 and its instruction set. Operation in coprocessor 
mode is signaled by tying the MSTR input low. Chapter 5 details this operating 
mode. 

In host-independent mode, the TMS34082 is a floating-point RISC processor. 
It may be used as a coprocessor to another host processor, as a parallel 
processor, or as a stand-alone processor. To operate in host-independent 
mode, the MSTR input must be high. This mode is covered in Chapter 6. 

4-3 



Bus Interfaces 

4.3 Bus Interfaces 

4.3.1 LAD Bus 

4-4 

The TMS34082 has two buses: the LAD (LAD31-0) and the MSD (MSD31-0). 
Each is a 32-bit bidirectional bus which can be used to transfer instructions 
and/or data. 

One 32-bit operand can be input to the TMS34082 data registers each cycle. 
A 64-bit double-precision floating-point operand is input in two cycles. 
Transfers to and from the data registers can normally be programmed as block 
moves (loading one or more sets of operands with a single move instruction 
to minimize I/O overhead). Block transfers up to 512 words in length can be 
programmed in either direction between the LAD and MSD buses. 

When the TMS34082 is used as a coprocessor to the TMS34020, the LAD bus 
is the main interface between the two devices. Both data and instructions from 
the TMS34020 are input on the LAD bus. The data can be stored in internal 
registers or transferred to memory on the MSD port. In addition, data (from 
registers or the MSD bus) can be sent to the TMS34020. 

With a single TMS34020 instruction, the TMS34020 can transfer both an 
instruction and data to the TMS34082. Data may be from TMS34020 registers 
or the local memory controlled by the TMS34020. 

In host-independent mode, the LAD bus is used as a data bus. Instructions may 
not be input on the LAD bus. However, data (an address) may be read from 
the LAD port to an internal register, and a jump to that address performed. 

To permit direct input to or output from the LAD bus, other options are available 
for control of the bus in host-i ndependent mode. When two 32-bit operands are 
selected for input to the FPU core, one operand may come directly from the 
LAD bus. A result from the FPU core may simultaneously be written to a data 
register and the LAD bus. 

The main control signals for the LAD bus are: 

ALTCH 

CAS 

WE 

LOE 

SF (coprocessor mode only). 

The function of these signals depends upon the operating mode and 
are discussed further in Chapters 5 - Coprocessor Mode - and Chapter 6 
- Host-Independent Mode. 

Architecture 



4.3.2 MSD Bus 

--------------------_._._--_._._--------

Bus Interfaces 

The MSD bus (MSD31-0) and its associated address bus (MSA15-0) are the 
external memory interface for the TMS34082. Control signals allow you to 
have separate code and data storage on the MS D port. Up to 64K 32-bit words 
of code space and 64K words of data space are directly supported. The bus 
and control signals are optimized for use with static RAM (SRAM) memory. 
However, with some external logic, this bus may also be connected to DRAMs, 
VRAMs, or other system buses. 

The MSD bus is the main instruction source in host-independent mode. Data 
may also be accessed on this port. The TMS34082 can operate with the LAD 
bus as its single data bus and the MSD bus as the instruction source, or with 
data storage on both ports and the program memory on the MSD port. 

In coprocessor mode, use of the MSD bus is optional. External user-generated 
subroutines may be accessed via the MSD bus. In addition, data for these 
routines may be stored in memory on the MSD port. The code and data for 
these subroutines may be downloaded from the TMS34020 memory using an 
LAD-to-MSD move. 

MSD bus control is the same in both coprocessor and host-independent 
modes. Control signals are sum marized in Table 4-1. Different combinations 
of MCE, MWR, and MOE distinguish between memory reads and writes. 
Table 4-2 lists the memory operation performed for each combination of 
signals. 

Table 4-1. MSD Bus Control Signals 
Name Function 

MSA15-0 Memory Address Output 

DS/CS 
Data Space/Code Space Select. This signal goes low to select program 
memory or high to select data memory. 

MCE 
Memory Chip Enable. This signal goes low when reading from or writing to 
memory. 

MOE Memory Output Enable. This signal goes low when reading from memory. 

MWR Memory Write Enable. This signal goes low when writing to memory. 

MAE 
MSD Bus Enable. When this input is low, the TMS34082 can output data and 
address on MSD and MSA. 

Table 4-2. Memory Operations on MSD 
MCE MWR MOE Memory Operation 

0 0 0 Invalid 

0 0 1 Write to memory 

0 1 0 Read from memory 

0 1 1 Invalid 

1 x x No memory access 

4-5 

,-------,--_._----",. ,--- .--"-.--... ~-.-,,--.. ,-,--.-----



Bus Interfaces 

4-6 

The DS/CS output acts as the most significant address bit selecting between 
code and data memory. If a single block of memory is used for both code and 
data space, this output may be ignored. Without DS/CS, only 64K words of 
memory can be accessed. 

An alternate control scheme is chosen by setting the MEMCFG bit in the 
configuration register high. Then, DS/CS is the data space chip enable and 
MCE is the code space chip enable. Refer to subsection 4.5.3.3 - MSD Bus 
Configuration - for more information. 

Ifthe memory on the MSD port is shared with another processor, MAE may be 
used to prevent bus conflicts. When memory on the MSD port is shared, the 
host processor can monitor the state of the memory chip enable (MCE) to 
determine when the TMS34082 is accessing memory. 

Otherwise, MAE may be tied low. The TMS34082 will only drive the MSD bus 
when writing to memory (signaled by MWR low). 

Architecture 



Sequence Control 
««-..v/."~;:-:o;: ..... m«",;x">..~:";~:;:-% ..... ;;,:-",,,:~:~~x",,,,"""...x?,YAl:O;:*x-:-~x,,;,,; ... ""'~ .... v ... : .. :O;:·:·jo: .. :-;·»: .. :o;:·:-;..:·:-: ..... ;..x-: ..... »:-:·;--:,.: .. =-:·;.:«-:·;-;;.x-:·»:-:-;·;.:;x?'y ... ;-x·;.»:-:·;.:,..:·:-: ...... ;x-::·y,x-:~;-x·»h-: .... ~x«"m-:-t'"",:...~~....:..;-:: .. v,:*~~h~~v':';'O;~~;.x-:-:--,,:(V ..... '= 

4.4 Sequence Control 

The sequencer selects the next program execution address either from 
internal codeorfrom external program memory. Next address sources include: 

Program counter 

Instruction register 

Stack 

Interrupt vector register 

Interrupt return register 

Indirect address register 

The two-deep stack is used to store return addresses for jump-to-subroutine 
instructions. When the TMS34082 receives an interrupt, the sequencer jumps 
to the interrupt service routine at the address given by the interrupt vector 
register. The interrupt return register stores the address where execution 
resumes after the interrupt routine is completed. The indirect address register 
is used for indirect branches and jumps to subroutines. 

The sequencer allows many options for program execution control. Branches 
on status, conditional and unconditional jumps to subroutines, counted loops, 
and interrupt service routines may be programmed. 

4-7 



Registers 
l~Q=~=~O=Q=I!OCQClUO=QCI O=Q=I!OCQO~CI.QClQCI .. QClQO.N"~~~~~A~~V~"«!'I.V~A~VA~""'''''~~:;'''''~v.,~v....~)~v....~V ..... "I(~""'A~VA~,=,~VA~):«-"VA~V~VA"«\.V ..... "I(W",~"A~"'"'A~~~""""~A~~ 

4.5 Registers 

The TMS34082 contains: 

Twenty 64-bit general-purpose registers 

Two embedded 64-bit feedback registers 

Ten control registers 

Control registers are 17 to 32 bits long as shown in the register model in 
Figure 4-3. The 32-bit control registers COUNTX, COUNTY, and 
MIN-MAX/LOOPCT are used for internal graphics instructions. When you are 
not using these instructions, the registers are available for temporary storage. 

32-bit single-precision floating-point or integer data is stored in the upper half 
(bits 63-32) of a register as shown in Figure 4-2. Double-precision data uses 
the complete 64-bit register. If a double-precision number is loaded into a 32-bit 
register, both halves are written to the register. The first half of the data is lost 
because it is overwritten by the second half. 

Figure 4-2. Register Usage 

4-8 

1

63 

32-bit data 
32 1 31 

xx ........•. (unknown) .......... xx 

Integer or Single-Precision Numbers 

MSH 
32 1 31 

LSH 

63 

Double-Precision Numbers 

Register files RA and RS can be written to or read from the external buses as 
can the control registers. Internal registers C and CT are embedded in the FP U 
core and can only be accessed by the FPU internal buses. The C and CT 
registers cannot be used as sources or destinations for move instructions. 
Several other registers are not available as sources for FPU operations as 
listed in Table 4-3. 

Block moves begin at the register address given in the instruction and 
sequence through the registers in the order shown in the register model, 
Figure 4-3. C and CT are omitted from the sequence because they cannot be 
accessed by the external buses. After the last register address 
(MIN-MAXILOOPCT), the sequence starts again at address 0 (RAO). 

Architecture 



Registers 
.,.,.v~:«-..v....x~<Qo~:"':~VJ':«.:«9"'h'jo~~,X~""":"':~:-~V"":.:''''~''''~'''V~'''''';'':'';*:-:-:-»:''~-:-;:« ... »~»x.-;·;-, .... :..~»:.; ............. ..:«-»»:--:-;:-:-:~,,:.:~~;:...,~·;-.;«.-;·»:.;-:..;o-;rx-::~:« ....... ....x-:0(01",:«<-""".,"'..;: ... N; ..... W .. ;.::-::·: .. :,. • ...:*;:,;.::-:· .. • .... x«":,. .. .;-::·:·:«"-; .. ;-"' .... :.;«-:,.;...--.;:·:·~;.x-:: .. »:-:-::.~,;..:~ 

Figure 4-3. TMS34082 Register Model 

OOh 

01h 

09h 

OAh 

OBh 

OCh 

OOh 

OEh 

OFh 

10h 

11h 

19h 

1Ah 

1Bh 

1Ch 

10h 

1Eh 

1Fh 

4-9 

"-----_._------------------- ,----, 



Registers 
~:,:o..v.-..'V..«<*~:.X<'>..'V~~v..:«-"V~V"':~V .... ~:"'~'V~Vh.»o.'V~V""~J\V~"'<'-"~~ ..... ~V~~"'<*X'~~~~Jt«\.~..«->.v,,*,~~~~v,w.~~X\.,,*,V~~V~V~A<~v~~:<-t« 

Table 4-3. Internal Registers 
Address Register Restrictions on Use 

00000 RAO 

00001 RA1 

00010 RA2 

00011 RA3 

00100 RA4 

00101 RAS 

00110 RA6 

00111 RA? 

01000 RA8 

01001 RA9 

01010 C 
Not a source or destination for external moves. C and CT cannot both 
be used as operands in the same instruction. 

01011 CT 
Not a source or destination for external moves. C and CT cannot both 
be used as operands in the same instruction. 

01100T STATUS Not a source for FPU instructions 

0110fl= CONFIG Not a source for FPU instructions 

01110+ COUNTX Not a source for FPU instructions 

0111fl: COUNTY Not a source for FPU instructions 

10000 RBO 

10001 RB1 

10010 RB2 

10011 RB3 

10100 RB4 

10101 RBS 

10110 RB6 

10111 RB? 

11000 RB8 

11001 RB9 

11010 VECTOR Not a source for FPU instructions 

11011 MCADDR Not a source for FPU instructions 

11100T SUBADDO Not a source for FPU instructions 

1110fl: SUBADD1 Not a source for FPU instructions 

11110+ IRAREG Not a source for FPU instructions 

11111+ MIN-MAXILOOPCT Not a source for FPU instructions 
1 .. 

USing this address as a source register In external code Inputs data directly from the LAD bus to the FPU. Only valid In 
host-independent mode. 

:f: Using this address as a source register in external code inputs the value one of the appropriate format (integer, single-, 
or double-precision) to the FPU. 

4-10 Architecture 



Registers 
~jo~":I>>>:o';·:--"":·:-:-;w"h:.,o;·:.;:..:.-...... "'jo:-:-:: .. :·:.«-:: .... :.:..;-::·:-,x-:: .. ;a.;:..;,«,,;:-:-:: .. ;a.:..:..;-=~ .. :;.:-:-:: .. : .. ,x-::·:·;.~-::.; .. ;.;..;-::..: .... "x-::.:-;,x..;: ... ":.;x-:: .... ;:..;-:: .. ;a.;..: .. :-:: .. :--;:..;~:y;«·»x-::"~m"»m~/JVA ... x« ........ ~»»:-»:«tt.Vh":--;"''=~V,x..-..... v~~m-..v ... ~~Y..«<-..''IVe''~-:«"»,,~~VAlYH~V~ 

4.5.1 Register Files RA and RB 

The TMS34082 contains two register files, each with ten 64-bit registers. Most 
instructions operate on one value from each ofthe RA and RS register files and 
return the result to any register. Figure 4-4 illustrates the general-purpose 
registers of the TMS34082. 

Figure 4-4. General-Purpose Registers 
63 (MSB) 

RAO 

RA1 

RA2 

RA3 

RA4 

o (LSB) 

~-«.~0 
.it-0\ 

«.rP RA5 

RA6 

RA7 

RA8 

RA9 

63 (MSB) 

63 (MSB) o (LSB) 

RBO 

RB1 

RB2 

<fl>_ 
~~0 

r$-
- 'Ii' ~rP 

RB3 

RB4 

RB5 

RB6 

RB7 

RB8 

RB9 

o (LSB) 

When the ONEFILE control bit is set high in the configuration register, data 
written to a register in RA file is simultaneously written to the corresponding 
location in RS file. For example, the same data is written to both RA 1 and RB1 
at once. In this mode the two register files act as a ten-word, 
two-read/one-write register file, as shown in Figure 4-5. 

4-11 



Registers 
»~V""'~""'~YA~ ......... ':«' ..... ""<~v .... ~)o.,~V ..... ~ ..... ~~".;~V""'~"Xoe\v....~v.,...w.. ........ w..VAw..v.....~VA~-v..~ ..... ~,:"'-:-...">..~v....~v ..... ""<-»" ..... "«-~"..~v ..... '"<,....v ..... ~:,..~v ..... w..v~~~v ...... ""'~v~~~v...."0.,,",,,,,~~«!o"~V ..... w..v ..... ~,=,~v....""<~'=« 

Figure 4-5. Register Files with ONEFILE High 

64 
/ .. A , ... 

64 
Register File / FPU Core 

(10 word) 
, 

64 
/ B , 

4.5.2 Feedback Registers C and CT 

4-12 

The two 64-bit feedback registers, C and CT, are embedded in the FPU core. 
Data is stored in the C and CT registers in an unpacked format. That is, integer 
and single-precision numbers are not stored in the upper 32-bits of the 
registers, but aligned in fields throughout the 64 bits. For this reason, you 
should always make sure the data type in the instruction matches the actual 
data in the register. 

Cor CT can be used as one or both operands in an instruction, but may not 
be used together in the same instruction. For example, C + CT is not valid, but 
C + C is. The feedback registers may not be accessed for external moves. 

The CT feedback register is used in integer divide and square root operations 
as a temporary holding register. Any data stored in CT will be lost during an 
integer divide or square root. 

Architecture 



- - - ---- -_._------

Registers 
{\'~~~VA~W~"",~VA.~'V~VA"OC'O'''''~~V.,.,~v .... ....:;.:...v ..... ~v....,=~:«~~:«''\.v .... ",*:-"' ..... 'X'\v .... ~'A.~~~~~-'';~V"",~""''»..VA'»..V ...... ~ ..... ~V ..... ~v....~v....~».~~~~~v.,.~~~~~~ .... ~~",« 

4.5.3 Configuration Register (CON FIG) 

The configuration register (CONFIG) is a special 32-bit register which you load 
to set up the following TMS34082 functions: 

Exception handling 

Bus configurations 

Pipeline configurations 

Denormalized number handling 

Data transfer operations 

Rounding modes 

The configuration register is initialized to FFE00020h. Writing to this register 
during a block move will not change the operation of LADCFG, MEMCFG, and 
LOAD until the move is complete. There is a one-cycle delay from when a new 
value is moved to the configuration register until that value takes effect. If the 
instruction following a move to the configuration register requires the new 
setting ofthe register to be valid, insert one nop (No Operation) instruction after 
the move. 

The format of the configuration register is given in Table 4-4. 

4-13 



Registers 
~~Qa=~a~:caaw::i:laa;agaa,acaa'::::a~~~~~A«'O"'A':';Q;;:::a=:;::~:;;.::l'V~VA~~~~"""",~v~:««-or~h»-.v~,~~,"",.:-"'~m-..V~;':«-''''';':'''*,-,Vh»''''''''~~*X~Vh.~XtrI."""'v~~..«,-,v..-X'h:i«l"" ... V"« 

Table 4-4. Configuration Register Definition 
Bit No. Name Description 

31 MIVAL Multiplier invalid operation (I) exception mask. Initialized to one (enabled). 

30 MOVER Multiplier overflow (V) exception mask. Initialized to one (enabled). 

29 MUNDER Multiplier underflow (U) exception mask. Initialized to one (enabled). 

28 MINEX Multiplier inexact (X) exception mask. Initialized to one (enabled). 

27 MDIVO Divide by zero (DIVO) exception mask. Initialized to one (enabled). 

26 MDENORM Multiplier wrapped number output (DENORM) exception mask. Initialized to one (enabled). 

25 AI VAL ALU invalid operation (I) exception mask. Initialized to one (enabled). 

24 AOVER ALU overflow (V) exception mask. Initialized to one (enabled). 

23 AUNDER ALU underflow (U) exception mask. Initialized to one (enabled). 

22 AINEX ALU inexact (X) exception mask. Initialized to one (enabled). 

21 ADENORM ALU denormal output (DENORM) exception mask. Initialized to one (enabled). 

20-11 N/A Reserved for later use. Initialized to all zeros. 

10 VERSION Version number, read only. Set to one. 

9 LADCFG 
LAD bus configuration for host-independent mode. When high, COINT defines LAD bus cycle 
boundaries. The setting ofthis bit has no effect in coprocessor mode. Initialized to zero. 

8 
MEMCFG 

MSD bus configuration. When high, MCE and DS/CS are code and data space chip enable, 
respectively. Initialized to zero. 

7 N/A Reserved for later use. Initialized to zero. Note: You must a/ways write a zero to this bit. 

6 ONEFILE When high, causes simultaneous write to both register files. Initialized to zero. 

S PIPES2 
When high, makes the FPU core output registers transparent. When low, the output registers 
are enabled. Initialized to one. 

4 PIPES1 
When high, makes the FPU core internal pipeline registers transparent. When low, the FPU 
internal pipeline registers are enabled. Initialized to zero. 

3 FAST 
When high, Fast mode is selected (all denormalized inputs and outputs are zeroed). When 
low, IEEE mode is selected. Initialized to zero. 

2 LOAD Load order. 0 = MSH, then LSH; 1= LSH, then MSH. Initialized to zero. 

1 RND1 Rounding mode select 1. Initialized to zero. 

0 RNDO Rounding mode select O. Initialized to zero. 

4-14 . Architecture 



Registers 
v:.;oo"' .... ~X-::*:~MOO::~...wJ\ ...... "O;-=-~ .... »>:O", .... ~;«-:;~»="'-;-xo.:oo::.~~'V..«o':.;·;:...~·:-:;~y...xr;·:-:.yJ":.;-::·:-:;J.:«",;i(·:"'-*:-.m;;..;,o;·:-jo:-:-::·:-:':·:~""":·:OO::-:-"'",~·:..joo;o.:-::·:-:;;...~·~ .... x""",,,,,,,,,:';-::·YofX,,*;X«';:";-::~:;';';Wh;-:: ..... ~-:oo::·:o"J':·:-::-;·;:«·:-Jo:«~x..;->-'VJ'X-::*=·:~~J'X*;~»"V~JOW'J\oV'~·X 

4.5.3.1 Exception Mask 

The mask bits (bits 31-21) serve as exception detect enables. Setting bits high 
enables the detection of the specific exceptions. Exceptions that are 
unimportant to your specific application may be masked to prevent unwanted 
interrupts. When an enabled exception occurs, the ED bit in the status register 
is set high and can be used to generate interrupts. 

When the exception mask has been loaded, the mask is applied to the contents 
of the status register to disable unnecessary exceptions. Status results are 
ORed together and, if true, the exception detect (ED) status bit is set high. 
Individual status flags remain active and can be read independently of mask 
operations. 

Since inexact results are normal for floating-point operations, you should 
usually mask out this exception for both the ALU (AINEX) and multiplier 
(MINEX). 

4.5.3.2 LAD Bus Configuration (Host-Independent Mode) 

The LADCFG bit (bit 9) defines the LAD bus configuration for host-independent 
mode. Two different configurations are possible. 

When LADCFG is low, COINT is a user-programmable signal not associated 
with the LAD bus. CAS and WE are not affected by LOE ( LAD bus enable). 

When LADCFG is high, COINT defines LAD bus cycle boundaries and is 
controlled by bit 1 (C bit) of LAD move instructions. Also, CAS and WE are 
disabled (placed in a high impedance state) when LOE is high. 

With LADCFG high, a move instruction with the C bit high sets COINT low 
before the first word is moved. COINT remains low until the move is complete. 
You could use COl NT to select between two devices on the LAD bus. COl NT 
becomes the chip enable for one of the devices as shown in Figure 4-6. 

The setting of COl NT has no effect in coprocessor mode. 

Figure 4-6. Host-Independent Mode LAD Bus Configuration for LADCFG high 

Memory TMS34082 

031-0 
LA031-O 

WE 

CAS 

Processor 
Interface ALTCH 

031-0 

CE COINT 

4-15 



Registers 
l\.V~""'~~""VJOOOo..~~"'~h:""~M-W .... ~~ .... :--..~ .... w ......... ..o.:«-»».~»:,,.«oo:-:,,-,««'. .. :-:-x'...;.x-:--.... v..-~"":;,,""-,:*»,,, ...... 'VAv ... m»-.v.r»"' ..... ~ ..... v~ .... 'X-»..~<O'~:-..vHJ"»" ..... ~"'<" .... ....g.x-:~~~~:-~ ..... h;r:« 

4.5.3.3 MSD Bus Configuration 

The MEMCFG bit defines the function of control signals for the MSD bus. Two 
different configurations are possible. 

When MEMCFG is low, MCE is the memory chip enable signal. It goes low 
when memory is being accessed. DS/CS functions as the most significant 
address bit, selecting data memory when high or code memory when low. This 
configuration is illustrated in Figure 4-7. 

Figure 4-7. MSD Bus Configuration for MEMCFG low 

MSA15-0 A1S-0 

o SICS A16 
128K x 32 

TMS34082 SRAM 

MCE 
CE 

MS031-0 
031-0 

When MEMCFG is high, MCE becomes the code space chip enable and 
DS/CS the data space chip enable. Both are active low. This may eliminate the 
need for an external inverter on DS/CS. Figure 4-8 show this configuration. 

Figure 4-8. MSD Bus Configuration for MEMCFG high 

MCE CE Code 

MS031-0 031-0 Space 
SRAM 

A15-0 64Kx 32 

TMS34082 

MSA15-O A15-0 Data 

D31-0 Space 
SRAM 

DS/CS CE 64Kx 32 

4-16 Architecture 



~~~-- - -- --------~-------------

Registers
..::-:~:--;,:v:~;..:..;-:·;--.... x-:-:-:.x-o-.~:,~~:«-:~ :..:.,....,v""«-:-" ... :..;«,,:.:..;-: ,:-:,,, v :*~jo:«-:--;,.:«·::-:.:,,,·:--;.:--:-:·:-;..:..;-:·:--%:..;:,,·::-:.:,,,~:.:,..;·~;.:,·:·~:.x-:",:,:o;-:·;.;.x~::-:·:« .. ,:..;.x-: .. :-:;:..:-:~:,·:",;,:-:~:-:.:,-:--:-;,:,~ ... ,.:v;..:.;":-::~Y' ... :-:-:·:-;,:« "'""':,-:-:-;,~:-:.x""';-X«.·:-" ... ; ... ~""X~~:i«..;... x-: .. ~x~v ""=,...:-;,: ...

4.5.3.4 Pipeline Settings

The PIPES2 and PIPES1 bits (bits 5-4) ofthe configuration register define the
piepline register settings for the internal FPU core. PIPES2 is the enable for
the FPU core output registers; PIPES1 is for the FPU core internal pipeline
registers. Both are active low. When high, data flows through the registers.
Table 4-5 details the pipeline operation for each setting of PIPES.

Table 4-5. Pipeline Settings
PIPES2 PIPES1 Operation

0 0 Both pipeline registers enabled

0 1 Only FPU internal pipeline registers enabled

1 0 Only FPU output registers enabled

1 1 Both pipeline registers disabled (fJowthrough)

For more information on pipeline registers, refer to subsection 4.6.2 - Pipeline
Registers.

4.5.3.5 Fast and IEEE Modes

The FAST bit (bit 3) selects the mode for handling denormalized inputs and
outputs. For many applications, very small numbers may be treated as zero,
allowing the programmer to use Fast mode. In the Fast mode (FAST =1):

All denormalized or wrapped inputs and outputs are forced to zero and do
not cause any status exceptions.

The DENIN (denormal input) status exception is disabled.

Using Fast mode simplifies error handling because you do not have to wrap
and unwrap denormalized numbers. Forcing very small (denormalized)
numbers to zero causes a loss of accuracy, however. If you multiply a very large
number by a denormal, the result may be significantly larger than zero. If it is
important in your application to distinguish between very small numbers and
zero, use IEEE mode.

Setting FAST = 0 selects IEEE mode. In this mode, the ALU can operate on
denormalized inputs and return denormals. Denormals are not valid input to
the multiplier; they must be wrapped first. If you input a denormal to the
multiplier, the DENIN flag will be asserted and the result will be invalid (I flag
set). Exponent underflow is possible during multiplication of small operands
even when the operands are not wrapped numbers. If the multiplier result
underflows, a wrapped number will be output. In IEEE mode, the wrapped
number is not forced to zero.

4-17

Registers
;"'~~~~~~~~~V~Y~~~"<-X'A ""'C-..v.o..~~~V ,*,,-";""X~"').,.'»o.V ~VA~:-:>"X-:--"V.h"-:-"V ~A.~V ~"'~~~~-e-..v ~"«\.v ~:..."",~v.,..~VA~~VA~V ~~V ~V""",~

When the multiplier produces a wrapped number as its result, it may be passed
to the ALU and unwrapped. A zero is output if the wrapped result is too small
to represent as a denormal (smaller then the minimum denormal). Table 4-6
describes how you should unwrap multiplier results and the status flags that
are set when wrapped numbers are output from the multiplier.

Table 4-6. Handling Wrapped Multiplier Outputs

Type of Result Status Bits
Notes

DENORM X RND

Wrapped, exact 1 0 0 Unwrap with Wrapped, exact instruction

Wrapped, inexact 1 1 0 Unwrap with Wrapped, inexact instruction

Wrapped, increased in magnitude 1 1 1 Unwrap with Wrapped, rounded instruction

4.5.3.6 Load Order

Since 64-bit double-precision data must be transferred 32 bits at a time, the
TMS34082 must know which half of the word is loaded first. The LOAD bit (bit
2) defines the expected order. If LOAD = 0, the most significant half (MSH) is
transferred first, followed by the least significant half (LSH). When LOAD = 1,
the LSH is transferred first. The LOAD bit also determines the order data is
read out of a register. Table 4-7 shows the load order for all data formats.

Table 4-7. Data Ordering for Loads/Stores
Words Accessed

Data Format Size CON FIG LOAD bit::O CONFIG LOAD bit =1

31 o 31 _____ 0,

Integer 32 bits

Single-precision 32 bits

Double-precision 64 bits

4-18 Architecture

Registers
~,.,.:«~.,:-;~:"X~oI'IX"'V'~h:W~:,~,.,.:-»"~~v":-»,v."",~~--»"v,,,,,~~-»~:-'''«-:-~X\.'X'''''''''':'«?'''«'''''VA~V-''''-:-..x~.:-:.x-: .. :oo:.:«oo:oo:-:«~ .. :-.;«":.:..;~ ~-:-;,.:-:~:-)~..,.:-;..: .. :-:--.. :-:~.y ""«~:.::-:-:--:-:·:-: :-:.x,,·:-:.:-:-:~)x-:·;.v :*;o.:-:q. :.:-:-:..;o.:...~,,~=«-:-:-:...,«

4.5.3.7 Rounding Modes

The TMS34082 supports the four IEEE standard rounding modes:

Round to nearest

Round towards zero (truncate)

Round towards positive infinity (round up)

Round towards minus infinity (round down)

The rounding function is selected by bits RND1 and RNDO as shown in
Table 4-8. The default setting is round to nearest.

Table 4-8. Rounding Modes
RND1 RNDO Rounding Modes

0 0 Round towards nearest

0 1 Round towards zero (truncate)

1 0 Round towards infinity (round up)

1 1 Round towards negative infinity (round down)

You should select the rounding mode which will minimize procedural errors.
Rounding to nearest introduces an error no more than half of the least
significant bit. Since rounding to nearest may involve rounding either up or
down in successive steps, rounding errors tend to cancel each other.

In contrast, directed rounding modes may introduce errors approaching one
bit for each rounding operation. Rounding errors may accumulate rapidly,
particularly with single-precision operations.

4.5.4 Status Register

The floating-point status register (STATUS) is a 32-bit register used for
reporting the exceptions that occur during TM'S34082 operations and status
codes set by the results of implicit-and explicit compare operations. The status
register is cleared upon reset, except for the I NTEN ED flag which is set to one
in coprocessor mode.

The status register can be used by test-and-branch instructions to control
program flow. Because of the large number of FPU status outputs, branches
on status can be used to save program execution time. The status register
contents are also important when dealing with status exceptions including
such conditions as overflow, underflow, invalid operations, or illegal data
formats (such as infinity, Not a Number (NaN), or denormalized operands).

4-19

'----------.-."'--.----~.-... , .. ".-,-~

Registers
~~w~~~~-..;,..~~"",.g.»»:-"'V~""'~""''».'''''h~~VJ'.''''~:-;'~~VA~~~'''-»»:--.h-..~~~V'''X'.'l.~~~A'«''»''...,..,"'V:«*X'.-:--;"~;,)Wo"A,*",,"».~-t-"A~~~~V ""».v~

Table 4-9, Status Register Definition
Bit No. Name Description

31 N Sign bit. When high, the result is negative. (A < B for compare operations)

30 GT A> B (valid only for compare operations)

29 Z zero flag. (A = B for compare operations)

28 V
IEEE Overflow flag. The result is greater than the largest allowable value for the specified
format.

IEEE Invalid Operation flag. A NaN has been input to the FPU or an invalid operation has been
27 I requested. If I goes high because a NaN was input, the STX flags indicate which port had the

NaN.

26 U
IEEE Underflow flag. The result is inexact and less than the minimum allowable value for the
specified format. In Fast mode, this condition causes a zero result.

25 X IEEE inexact flag. The result of an operation is inexact.

24 DIVO Divide by zero. An invalid operation involving a zero divisor has been detected by the multiplier.

The mantissa of a number has been increased in magnitude by rounding. If the number
23 RND generated was wrapped, then the unwrap, rounded instruction must be used to properly unwrap

the wrapped number (see Table 4-6).

22 DENIN
The input to the multiplier is a denormal number. When DENIN goes high, the STX flags indicate
which POrt had the denormal input.

The multiplier output is a wrapped number or the ALU output is a denormal number. In the Fast
21 DENORM mode, this condition causes the result to go to zero. It also indicates an invalid integer operation,

for example, PASS (-A) with unsigned integer operand.

20 STX1 A NaN or a denormal has been input on the A port.

19 STXO A NaN or a denormal has been input on the B port.

18 EO
Exception detect status signal representing logical OR of all enabled exceptions in the exception
disable register.

17 UNORO
The two inputs of a comparison operation are unordered, that is, one or both of the inputs is a
NaN.

16 INTFLG Software interrupt flag. Set by external code to signal a software interrupt.

15 INTENHW Hardware interrupt (INTR) enable

14 NXOROV N (negative) XOR V (overflow)

13 VANDZB V(overflow) AND NOTZ (not zero)

12 INTENED ED interrupt enable (initialized to zero in host-independent mode, one in coprocessor mode).

11 INTENSW Software interrupt enable for INTFLG (bit 16)

10 ZGT Zn > Zmax (valid for 2-0 MIN-MAX instructions)

9 ZLT Zn < Zmin (valid for 2-D MIN-MAX instructions)

8 YGT Yn > Ymax (valid for 1-D or 2-D MIN-MAX instructions)

7 YLT Yn < Ymin (valid for 1-0 or 2-D MIN-MAX instructions)

6 XGT Xn > Xmax (valid for 1-0 or 2-0 MIN-MAX instructions)

5 XLT Xn < Xmin (valid for 1-0 or 2-0 MIN-MAX instructions)

4 HINT Hardware interrupt flag

3-0 nla Reserved, set to zero

4-20 Architecture

Registers
·;;,;-;·:·:,:";~;,;;-,,,,:~,,;";m ... Vh""-":--;-';':--X·:-';"':«-:--;"~~";';'~~:--jo:-:~~.i':-;"·:-;,;"»:-;,;"Y~z..;.;.:?;.;;..;«.:-xoo;,.:«,:-~.;·;..:..;",·:..;.:..;", '~";"';·A·:",,,,,;,x""Ao.::"..;·':·:"·:O-;.:-:-:·;·;.:..;" x·:,,..; .. ;:·x·;.;,:..;~;.;:-:,,·:O;':·»»:.:".~;:..;"'.:-;.;.:-:O:;';:..;".:.;»"J\v".~~.;.: .. :~:~·;.."....:« ;:-:"'-;a;:?';·»;...v.-»x"' x-:oo;.;.c

Output exceptions may be due to either an illegal data format or to a procedural
error, such as:

Results too large or too small to be represented in the selected precision
are signaled by V (overflow) and U (underflow).

An ALU output which was increased in magnitude by rounding causes X
(inexact) to be set.

Wrapped outputs from the multiplier may be inexact and increased in
magnitude by rounding, which sets the X (inexact) and RND (rounded)
status flags high.

DENORM is set when the multiplier output is wrapped or the ALU output
is denormalized.

DENORM is also set high when an illegal integer operation is performed.

Dive is set whenever the divisor is zero. The result of the operation is
infinity.

Invalid operations cause the I flag to be set. The I bit will also go high if a
NaN is input to the FPU.

The ED flag is a logical OR ofthe above exceptions. If any ofthe exception flags
is high, ED will also be high. Exceptions can be masked out of ED by setting
the appropriate bits in the configuration register. Ifthe ED interrupt (INTENED)
is enabled, an interrupt is generated when ED goes high.

Status flags are provided for both floating-point and integer results. Integer
status is provided using Z for zero detect, N for sign, and V for
overflow/carryout. Bits 14 and 13 are logical combinations ofthese three flags.

If the floating-point input to the multiplier is a denorm, DENIN will be set. If the
input to the FPU is a NaN, I (invalid operation) will be set. STX1-0 indicate
which operand is the source of the exception when either a denormal is input
to the multiplier (DEN IN=1) or a NaN is input (1=1).

NaN inputs are a/l treated as I EEE signaling NaNs causing the I flag to be set.
When the FPU outputs a NaN, it is always in the form of a signaling NaN with
the I and appropriate STX flags set high. The exponent and fraction fields of
the NaN are set to all 1 s, regardless of the input fraction.

4-21

Registers
)' ~Ao:-:: .. y ;..:*;x~v~;;..;..;-::.»:o:«-;:*"'vn~·;-"' -.;-::, ,:v: ;;·;.""':·;:..;..z..:·;~:-::·;..;.:..;-;.;0."' : .. :-:.:.;:.:-::.:.;;.:«.;.;..:-:-;.;.;..:.:-:.:.;.: .. :-;.:.;.:..:-::.;-.;.: .. :-::.:.;:.:-:.:.;:.:-::.:.:;:..;oo:-:.;: .. :..;.:.;..:*-"'V: .. ~.:..;: .. :-:: ... »: .. :-::·:·x .. :.,o;o-:-;:";-::·:·»:?'Y"':·y'·;*"'..:·:~v..:·:..;..:·;;..»:-x..;-::·;.;:q »x-:~;x-::·:v:.;-::·:·;.;.:-::·:·;: .. x·:·;:..x-:·:«..;

Invalid operations that set the I flag include:

Operations with NaN inputs

Zero divided by zero

Positive infinity minus positive infinity or negative infinity minus negative
infinity

Positive infinity plus negative infinity

Square root of a negative number

Zero multiplied by infinity

The result of these operations is a NaN.

Bits 15, 12, and 11 in the status register are used to enable interrupts. Interrupts
are enabled by setting INENHW (hardware interrupt), INTENSW (software
interrupt), or INTENED (ED interrupt) high. A software interrupt is generated
by writing to the status register with bit 16 (INTFLG) set to one.

4.5.5 Indirect Address Register

The indirect address register (MeADOR) can be set to point to a memory
location for indirect move or jump operations on the MSD port. MeADOR is
cleared upon reset. Although MeADOR cannot be used directly as an operand
for FPU instructions, you can do an arithmetic operation on the value in
MeADOR by first moving the contents to a register file location. Then perform
the operation, choosing MeADDR as the destination.

The function of bit 16 varies, depending on whether the instruction is a move
or jump. During a move instruction, bit 16 selects data space when set high or
code space when low. During a jump instruction, bit 16 selects an internal
instruction when set high or an external instruction when low (see Figure 4-9).

Figure 4-9 .. Indirect Address Register Format

4.5.6 Stack

4-22

31 16 15 o
x xx x xxx x x x v I Indirect Address

The stack contains two subroutine return address registers (SUBADDO and
SUBADD1) which serves as a two-deep last-in, first-out (LIFO) stack. A
subroutine jump causes the program counter to be pushed onto the stack, and
a return from subroutine pops the last address pushed onto the stack. More
than two pushes will overwrite the contents of SUBADD1.

Architecture

Registers
" ;..:...:«.~:...:"!~;..."'..;«">:.::-::.~:~:..;-: .. »:..;oo:-;.:..:..;..;~.;..:.;..; .. : .. :.: .. :..;-:.;,:-;~""' :..;oo:-»:-:~ .. :--: .. ;..:..;·;o.:.:·:";":·J.:v:-:·~..;..;·:--.... :v: .. :·:-:..;..;~:.:..;-:--:.:.:--:..;·;-"' x..;·;-;..:..;~;..;*X·:..;·~h'»;.:.:x..;·: "x-:-:-:.:..;oo:-.. :a-:-:-..:..;~x..;«wo:v..~«-:~v ~;...~:-;.:~;...x*:-.""«-.."'=":..;*:-.""'»:.-:.:·».. ~v ~:.;-:.:....v xoo!<'..V X<

Bit 31 (Pointer) is set high in the stack location that was written last and reset
to zero in the other stack location. Setting bit 30 (Enable) high enables a write
into bit 31 (set or reset the pointer) in either stack location. If bit 31 is zero in
both SUBADDO and SUBADD1 (as when the stack has been saved externally
and later restored), SUBADDO can be designated as top of stack by setting
bit 31. The stack pointers are cleared upon reset.

Bit 16 (I) is set high when the address in a stack location points to an internal
routine or set low when the address is an external instruction.

Figure 4-10. Stack Register Format

31 30 16 15 o
P E x x x x x x x x x x I SUBADDO

p E x x x x x x x x x x I SUBADD1

4.5.7 Interrupt Vector Register

The interrupt vector register (VECTOR) serves as a pointer to an external
program to be executed upon receipt of an interrupt. Bit 16 (I) is always set low
to point to a routine in external code space. The interrupt vector is cleared on
reset. This register is only 17 bits wide (as shown in Figure 4-11) and should
not be used for temporary storage.

Figure 4-11. Interrupt Vector Register Format

31 16 15 o
x x x x x x x x x x Interrupt Address

4.5.8 Interrupt Return Register

The interrupt return register (lRAREG) retains a copy of the program counter
at the time of an external interrupt. This address is used as the next execution
address upon returning from the interrupt. Bit 16 (I) is set high when the
address points to an internal instruction or set low when the address is in an
external instruction. This register is not affected by the reset signal and. as
illustrated in Figure 4-12, is only 17 bits wide and should not be used for
temporary storage.

Figure 4-12. Interrupt Return Register Format
31

x x x x x x x x x x
16 15 o

Interrupt Return Address

4-23

Registers
~XoO-»:,,:-:a~>..~;...,,«<,,:.x-: ""~"«".v ... ,*:;.:«..;.:....-<-:~J'o.-";~:-:"'~»;';~)o:'X~:-:"'''''''~:':';*:'':o-..~:-"' -..;->:-:.x~: .. ~;...'=*;...~-:: .. :-:-;« .. :-;..:*:..:.x..:-: ... ~x~:-:..:-:OO:.:-x .. x .. :-;:,X-: V .. h"*:«""»:...:..:-»X*;...."»o.v -..;-::oQo"' "« ... v --=«-).-..:~;...--.;-:-:-rN:*>..-..;~;-"' -..;~v ~ :~:~v.,...;.:-:-»x~v.,:-:"»~

4.5.9 COUNTX and COUNTY Registers

The counter registers (COUNTX, COUNTY) are used to store the current
counts of the minimum and maximum values when executing MIN-MAX
instructions. They may also serve as temporary storage for the user. COUNTX
and COUNTY are cleared on reset.

Figure 4-13. COUNT Registers Format
31 16 15 o

Count for MAX value Count for MIN value

The COUNTX register is updated on both the 1-D and 2-D MIN-MAX
instruction such that the count of the current minimum value is in the lower 16
bits of the register and the count of the current maximum value is in the upper
16 bits. The COUNTY register is used only in the 2-D MIN-MAX instruction to
keep track of the counts of the minimum and maximum for the second value
of a pair.

4.5.10 MIN-MAXILOOPCT Register

The MIN-MAX/LOOPCT register stores the current values of two separate
counters. The LSH contains the current loop counter and the MSH is used to
hold the current minimum or maximum value of a MIN-MAX operation. This
register may also serve as temporary storage for the user. The
MIN-MAX/LOOPCT register is cleared upon reset.

Figure 4-14. MIN-MAX/LOOPCT Register Format
31 16 15 o

MIN-MAX value Loop Count

4-24 Architecture

4.6 FPU Core

FPUCore

The FPU core consists of a multiplier and ALU, each with an intermediate
pipeline register and an output register. The multiplier and ALU may operate
independently or in parallel.

The major components include:

Operand multiplexers

Pipeline registers

ALU

Multiplier

Output control

Figure 4-15 shows a functional block diagram of the FPU core.

4.6.1 Operand Selection

Four multiplexers select the multiplier and ALU operands. Possible operand
sources are:

RA and RS register files

Internal feedback registers C and CT

FPU core output registers

The FPU core output registers provide the previous multiplier or ALU result.
Note that if the output registers are used as operands, they must be enabled.
(See subsection 4.6.2 - Pipeline Registers - for additional details.)

For external instructions, immediate data from the LAD bus orthe value 1 may
also be chosen as operands. These are selected by setting the appropriate
address bits (see section 4.5 - Registers) and selecting the RA or RS register
file as operands.

The selection of operands also depends on the ALU or multiplier operation
chosen. Single-operand instructions are generally performed only on registers
in the RA file. Exceptions to this are the PASS instruction and certain complex
internal instructions. Also in chained mode (the ALU and multiplier acting in
parallel) the RS operand may optionally be forced to 0 in the ALU or 1 in the
multiplier.

4-25

, _________ • u ___ • ________ ,

FPUCore

Figure 4-15. FPU Core Functional Block Diagram
to/from Control Register

tolfrom LAD Bus .. 32 ~
r ,

I
Data I/O 32 Config to/from MSD Bu

Logic
, ~ ... s

I Registers I I Registers I C Reg
RA9-RAO RB9-RBO I CT Reg I

A" .IV 64 " 64
",.v 64

)' 64

A"

I I
~':Y ~':Y \::.uy \::.uy

A~

A~

Multiplier Stage 1 ALU Stage 1

Multiplier Pipeline
" 64

ALU Pipeline

Multiplier Stage 2 ALU Stage 2

I
v64 ~64

.I
,

I Multiplier Output Reg I ALU Output Reg

T

~ry "c;I MUX

v 64 64
.I /

A I Status Regester I
/32

4-26 Architecture

FPUCore

4.6.2 Pipeline Registers

Two levels of internal data registers are available to segment the internal data
paths of the TMS34082 FPU core. The registers are enabled by setting the
PIPES2-1 bits in the configuration register.The most basic choice is whether
to use the device in unpipelined mode (with no internal registers enabled) or
whether to enable one or more pipeline registers. When no internal registers
are enabled, the clock period is longest (the TMS34082 timing specifications
are contained in Appendix A) .

Enabling one or both sets of pipeline registers segments the data paths. When
the intermediate pipeline is enabled, the register-to-register delay inside the
device is minimized, allowing operation with the minimum cycle time. While
one FPU instruction is executing, the next instruction may be input so that
overlapping operations occur. This is commonly known as pipelined execution.

The TMS34082 may also operate with both sets of pipeline registers disabled.
With this setting, two 32-bit operands are read from the register file, an
operation is performed by the ALU or multiplier, and the result is stored in the
register file, all in one clock cycle. A double-precision ALU operation takes one
clock cycle, but double-precision multiplies require two clock cycles to
complete.

When the ALU and multiplier operate in parallel (chained mode), two data
operands come from the register files while multiplier and ALU feedback
provide the other two operands. Therefore, in chained mode the FPU core
oufputregisters must be enabled. After the chained operation is completed and
the results have been stored, the FPU core output registers may be disabled
again. Wait until all operations have completed to change pipeline settings to
avoid loosing any results.

The selection of pipeline registers determines the latency from inputto output,
the number of cycles required for an instruction to be processed and the results
to appear. For each register level enabled in the data path, one clock cycle is
added to the latency from input to when the result is valid in the register file.
Figure 4-16 shows the latency of different pipeline settings. A result may be
used as input on the same cycle that it is clocked into the register file.

4-27

FPUCore

Figure 4-16. Effects of Pipelining
Clock Cycle 2 3 4 5 6 7

Instruction Register

Register File
(Destination)

Instruction Register

Pipeline Register

Register File
(Destination)

Instruction Register

4-28

Pipeline Register

Output Register

Register File
(Destination)

I Instruction 1 Instruction 2 Instruction 3 Instruction 4

Instruction 1 Instruction 2 Instruction 3 Instruction 4 I Results Results Results Results

PIPES2-1=11

I Instruction 1 Instruction 2 Instruction 3 Instruction 4

Instruction 1 Instruction 2 Instruction 3 Instruction 4
Values Values Values Values

Instruction 1 Instruction 2 Instruction 3 Instruction 4 I Results Results Results Results

PIPES2-1=10

I Instruction 1 Instruction 2 Instruction 3 Instruction 4

Instruction 1 Instruction 2 Instruction 3 Instruction 4
Values Values Values Values

Instruction 1 Instruction 2 Instruction 3 Instruction 4
Results Results Results Results

Instruction 1 Instruction 2 Instruction 3 Instruction 4 I Results Results Results Results

PIPES2-1=OO

Both sets of pipeline registers are controlled by the PIPES2 and PIPES1 bits
in the configuration register. When the device is powered up or reset, the
intermediate pipeline registers are enabled (PI PES 1 =0) and the output
registers are transparent (PIPES2=1). For internal instructions, control logic
sets the pipeline registers as needed and restores them to their previous
configuration after the instruction is completed.

Pipeline settings should be changed only when all instructions executing in the
FPU core are completed and results are stored in the register file. Otherwise,
results will be lost. The nop (No Operation) instruction may be inserted to allow
time for the last instruction to finish before changing the pipeline configuration.

When using chained mode, the nop instruction may be used to adjust output
register timing. Each nop instruction keeps the results in the output registers
for one additional clock cycle. nop may be used in this manner only when the
output registers are enabled.

Architecture 'j

4.6.3 ALU

FPUCore

The pipelined ALU contains a circuit for floating-point addition and/or
subtraction of aligned operands, a pipeline register, an exponent adjuster, and
a normalizer/rounder as shown in Figure 4-17. Exception logic is provided to
detect denormalized inputs; these can be flushed to zero if the FAST input is
set high. If the FAST input is low, the ALU accepts a denormal as input. The
denormal exception flag (OENORM) goes high when the ALU output is a
denormal.

Figure 4-17. Functional Diagram for ALU

4.6.4 Multiplier

~~

I Exponent Subtracter I

~~

I Prealignment I

H

I Integer ALU J

H

I Normalizer I

~r

l Rounder J

~,

Integer processing in the ALU includes both arithmetic and logical operations
in either 2s complement numbers or unsigned integers. The ALU performs
addition, subtraction, comparison, logical shifts, logical AN 0, logical OR, and
logical XOR. Format conversions and wrapping/unwrapping of denormals are
also done by the ALU.

The pipelined multiplier (see Figure 4-6) performs a basic multiply function,
division, and square root. The operands can be single- or double-preciSion
floating-pOint numbers and can be converted to absolute values before
multiplication takes place. Integer operands may also be used.

4-29

FPUCore

If the operands to the multiplier are double-precision or mixed precision
(Le., one single-precision and one double-precision), then one extra clock
cycle is required to getthe product through the multiplier pipeline. This means
that for PIPES1 =1, one clock cycle is required for the multiplier pipeline; for
PIPES1=O, two clock cycles are required for the multiplier pipeline.

An exception circuit is provided to detect denormalized inputs; these are
indicated by a high on the DENIN signal. Denormalized inputs must be
wrapped by the ALU before multiplication, division, or square root. If results are
wrapped (signaled by a high on the DENORM status pin), they must be
unwrapped by the ALU first.

The multiplier and ALU can be operated simultaneously. Division and square
root are each performed as an independent multiplier operation, even though
both multiplier and ALU are active during these operations.

Figure 4-18. Functional Diagram for Multiplier

" I Recorder I

" I Mu Itiplier/Divider I

" I Converter I

" I Rounder I

" I Normalizer I

"

4-30 Architecture

FPUCore

4.6.5 Output Control

An output MUX selects which result (ALU or multiplier) is written to the register.
The instruction specifies where the result is stored. Results may be directed
to the twenty registers in files RA and RB, the feedback registers (C and CT),
or the other temporary storage registers.

Although it is possible to direct the result to the CONFIG, STATUS, MCADDR,
VECTOR, IRAREG, SUBADDO, and SUBADD1 registers, it is not
recommended. These registers have dedicated functions as discussed in
section 4.5.

The COUNTX, COUNTY, and MIN-MAx/LOOPCT may be used as temporary
storage registers. Because they are only 32-bits wide, double-precision results
cannot be stored in these registers.

4-31

RESET and ROY

,4.7 RESET and ROY

The RES ET input is an active low signal that asynch ronously clears the internal
states and resets the configuration and status registers to the default values.
Internal pipeline registers are cleared, but the register files, C, and CT are not
affected.

During reset, control inputs are in an inactive state as shown in Table 4-1 O. The
LAD and MSD buses are placed in a high-impedance state, and the MSA bus
outputs an address of O.

Table 4-10. Signal States During Reset

4-32

Signal Name Logic Level

LAD31-0 high impedance

ALTCHI high

CAS' high

WET high

MSD31-0 high impedance

MSA15-0 low

DS/CS high

MAE high

MCE high

MOE high

MWR high

COINT high

CORDY high

INTG low

t Host-independent mode only.

Operation resumes on the rising edge of the clock after RESET is set high
again. In host-independent mode, MCE becomes active and causes a read
from code address O. In coprocessor mode, the TMS34082 goes to an idle
state, waiting for an instruction from the TMS34020.

The TMS34082 can be nondestructively stalled by setting the RDY input low.
The next rising clock edge is inhibited. Normal operation resumes on the cycle
after the ROY input is set high again.

While halted, the registers and internal states are unaltered. Output pins
remain at their previous levels. The asynchronous inputs (LOE, MOE, and
RESET) are still active. If an interrupt is received while the device is stalled,
it will be queued and serviced after operation resumes.

Architecture

Emulation Control

4.8 Emulation Control

Table 4-11. Test Modes

Two emulation mode control pins, EC1-0, support system testing. These may
be used, for example, to place all outputs in a high-impedance state, isolating
the TMS34082 from the rest of the system.

Test modes are given in Table 4-11 . For normal operation, EC1 and ECO must
both be high.

EC1-0 Operation

0 0 All output and I/O pins are forced low

0 1 All output and I/O pins are forced high

1 0 All output pins are placed in high-impedance state

1 1 Normal operation

4-33

JTAG Test Port

4.9 JTAG Test Port

The TMS34082 includes a 4-wire Test Access Port (TAP) interface that allows
serial scan access to test circuitry within the device. This TAP is compatible
with the IEEE 1149.1 (JTAG) specification. It was designed using the TI
Scope™ (System Controllability, Observability, and Partitioning Environments)
guidelines. For normal operation, the input pins should be connected as shown
below.

Table 4-12. Test Pins for Normal Operation
Signal Name Logic Level

TCLK Tied low or high

TOI Tie high or leave floating

TMS Tie high or leave floating

4.9.1 Test Instructions

The TAP includes an 8-bit instruction register used to tell the device what
instruction is to be executed. The instruction register is loaded serially via the
TDI input. The order of scan is shown in Figure 4-19.

Figure 4-19. Instruction Register Order of Scan

TOI

4-34

BIT?

(MSB)
BIT6 BITS BIT4 BIT3 BIT 2 BIT 1

BITO
(LSB) -+ TOO

Four test instructions are supported; Table 4-13 lists their binary opcodes. Any
instruction code not supported is interpreted as the Bypass instruction.

Bypass

A one-bit bypass register is selected in the scan path. Data input from TOI is
shifted into the bypass register, then out through TOO.

Extest

This is the 1149.1 Extest instruction with the boundary scan register in the scan
path. Data appearing at the device inputs and outputs is captured. Data
previously loaded into the boundary scan register is applied to the device
inputs and through the device outputs.

Architecture j


~~~~~--~~~- -.-~~----

JTAG Test Port 

Intest 

This is the 1149.1 Intest instruction with the boundary scan register in the scan 
path. Data appearing at the device inputs and outputs is captured. Data 
previously loaded into the boundary scan register is applied to the device 
inputs and through the device outputs. 

Sample 

This instruction conforms to the 1149.1 Sample/Preload instruction. Data 
appearing atthe device inputs and outputs is sampled without affecting normal 
operation. The boundary scan register is selected in the scan path. 

Table 4-13. Instruction Register Opcodes 
Binary Opcode Opcode Description 

00000000 BYPASS Bypass scan 

00000011 INTEST Boundary scan in test mode 

10000010 SAMPLE Sample boundary scan in normal mode 

11111111 EXT EST Boundary scan in test mode 

4.9.2 Boundary Scan Register 

The boundary scan register contains 181 bits, one for each functional input and 
output on the TMS34082. Each I/O pin has both an input and an output register 
bit associated with it. In addition, some three-state outputs have an additional 
bit in the scan register. These represent internal three-state enable registers, 
not actual pins on the package. Table 4-14 lists these scan bits and the outputs 
they affect. 

Table 4-14. Boundary Scan Register Enable Bits 

Scan Name Affected Outputs 

CO-EN COINT, CORDY 

ALTCH-EN ALTCH (output) 

CAS-EN CAS (output), WE (output) 

LAD-EN LAD31-0 (outputs only) 

MSD-EN MSD31-0 (outputs only) 

MSA-EN MSA15-0 

MWR-EN MWR, MOE, DS/CS, MCE, INTG 

The boundary scan register is used to store test data that is to be applied 
internally and/or externally to the TMS34082 and to capture and store data that 
is applied to the functional inputs and outputs. The boundary scan register 
order of scan is shown in Figure 4-20. 

4-35 

,.,-... "-.. ~---.-.--------



JTAG Test Port 

Figure 4-20. Boundary Scan Register Order of Scan 

TDI -- BUSFLT -. LRDY ~ RAS r--- SF r---. RESET -. LCLK1 :---

- ROY .- INTR ~ CID2 ~ CID1 ~ CIDO .- LCLK2 ~ 

~ CC -. MSTR -+ CLK -. LOE -+ CO-EN r--- CAS-EN :---

COINT 
CAS ..- CAS WE 

t-
WE 

~ 
ALTCH 

~ - .- (Input) (Output) 4- (Input) (Output) -EN 

ALTCH ALTCH LAD31 LAD31 -- (Output) r--- (Input) ~ CORDY -. LAD-EN -. (Output) r--- (Input) f--

LAD28 LAD28 LAD29 LAD29 
t-

LAD30 LAD30 
~ - (Input) ~ (Output) 4- (Input) -- (Output) (Input) ~ (Output) 

y 
LA027 

~ 
LAD27 

~ 
LAD26 LAD26 

~ 
LAD25 

~ 
LAD25 

(Output) (Input) (Output) r--- (Input) (Output) (Input) f--

LAD22 LAD22 LAD23 LA 023 LA 024 LA 024 
:--- (Input) ~ (Output) ~ (Input) ~ (Output) ~ (Input) ~ (Output) ~ 

LAD21 LAD21 
~ 

LAD20 LAD20 LAD19 
~ 

LAD19 
4 (Output) ~ (Input) (Output) ~ (Input) ~ (Output) (Input) -

LAD16 LAD16 LAD17 LAD17 LAD18 LAD18 
r-- (Input) ~ (Output) ft- (Input) ~ (Output) ~ (Input) ~ (Output) .-

4 
LA015 K)-+ (Output) 

I 4-36 Architecture 



--~-.----.~~~~~~~-.. - .. __ ._ ........ _ ... _ ... _-----_ ..... _ ..... _------ ... . 

JTAG Test Port 

Figure 4-20. Boundary Scan Register Order of Scan (Continued) 

1)-) 
LAD15 LAD14 LAD14 LAD13 LAD13 LAD12 
(Input) --. (Output) --. (Input) f---t- (Output) ~ (Input) ~ (Output) r--

LAD9 LAD10 LAD10 LAD11 LAD11 LAD12 
.---- (Output) ~ (Input) ~ (Output) ~ (Input) ~ (Output) ~ (Input) 4-

LAD9 LAD8 LAD8 LAD? LAD? LAD6 
4 (Input) ~ (Output) ;-. (Input) r-- (Output) ~ (Input) ~ (Output) [-

LAD3 LAD4 LA 04 LAD5 LAD5 LAD6 
.---- (Output) 4- (Input) 4- (Output) ~ (Input) .- (Output) -.- (Input) -.-

LAD3 LAD2 LA 02 LAD1 LAD1 LADO 
4 (Input) y (Output) ~ (Input) y (Output) ~ (Input) ~ (Output) r--

MSD2 MSD1 MSD1 MSDO MSDO LADO 
.---- (Output) ~ (Input) ~ (Output) ~ (Input) .- (Output) ..- (Input) --

MSD2 MSD3 MSD3 MSD4 MSD4 MSD5 
4 (Input) f---t- (Output) ~ (Input) f---t- (Output) ~ (Input) ~ (Output) r--

MSD8 MSD? MSD? MSD6 MSD6 MSD5 
.---- (Output) ~ (Input) ~ (Output) ~ (Input) ~ (Output) ~ (Input) ~ 

MSD8 MSD9 MSD9 MSD10 MSD10 MSD11 

--- (Input) ~ (Output) ~ (Input) f---t- (Output) 4 (Input) 4 (Output) r--

1)-
MSD14 MSD13 MSD13 MSD12 MSD12 MSD11 
(Output) ~ (Input) ~ (Output) ~ (Input) ~ (Output) .- (Input) ~ 

4-37 

----_._,-_._-_ .. -



JTAG Test Port 

Figure 4-20. Boundary Scan Register Order of Scan (Continued) 

I~ 
MSD14 MSD15 MSD15 MSD16 MSD16 MSD17 
(Input) ~ (Output) -. (Input) ~ (Output) ~ (Input) --JI (Output) r---

MSD20 MSD19 MSD19 MSD18 MSD18 MSD17 
,---- (Output) -- (Input) ~ (Output) -- (Input) ~ (Output) ~ (Input) --

MSD20 MSD21 MSD21 MSD22 MSD22 MSD23 
4 (Input) --JI (Output) f-+ (Input) --JI (Output) f-+ (Input) ~ (Output) -

MSD26 MSD25 MSD25 MSD24 MSD24 MSD23 
r--- (Output) ~ (Input) ~ (Output) ~ (Input) ~ (Output) ~ (Input) --

MSD26 MSD27 MSD27 MSD28 MSD28 MSD29 
4 (Input) r--- (Output) f---+ (Input) r--- (Output) -. (Input) r---.. (Output) -

MSD-EN MSD31 - MSD31 MSD30 MSD30 MSD29 
- (Output) -- (Input) t- (Output) ~ (Input) f- (Output) ~ (Input) f-

4 MSAO -. MSA1 -. MSA2 ~ MSA3 r+ MSA4 --JI MSA5 r--

,---- MSA11 4- MSA10 ~ MSA9 H MSA8 r-I MSA7 H MSA6 fJ 
4 MSA12 r--- MSA13 f-+ MSA14 -. MSA15 f-+ MSA-EN r--. MWR -

TOO ~ MWR-EN H MAE r-I INTG H MCE r- MOE ~ DS/CS --
4-38 Architecture 





TMS34020ITMSS4082 Interface Overview 

5.1 TMS34020ITMS34082 Interface Overview 

Operation in coprocessor mode assumes the MSTR input signal is set low. In 
this mode, the TMS34082 acts as a tightly coupled coprocessor to the 
TMS34020. In terms of the instruction set and register resources, the 
TMS34082 appears as an extension to the TMS34020 register and instruction 
set. 

Figure 5-1 shows the register allocation for the TMS34020ITMS34082 
combination. 

Figure 5-1. TMS3402ITMS34082 Register Model 

5-2 

TMS34020 Registers TMS34082 Registers 

The TMS34082 executes two different instruction sets: 

Internal instructions from the TMS34020 are input on the LAD port. They 
include complex graphics, matrix, and vector routines. These are 
described in Chapter 7. 

External instructions are input on the MSD port. This is a RISC-like 
instruction set. They are used to write user-defined subroutines. External 
instruction are covered in Chapter 8. 

The interface between the TMS34020 and the TMS34082 consists of direct 
connections between pins. No glue logic is required otherthan gating the ready 
Signals into the TMS34020. Figure 5-2 shows the interconnection. 

Coprocessor Mode 



---_._--------

TMS34020ITMS34082 Interface Overview 

The LAD interface includes the following signals: LAD31-0, LOE, ALTCH, 
LRDY, BUSFLT, RAS, CAS, WE, SF, COINT, CORDY. These signals 
communicate between TMS34020 and TMS34082 in coprocessor mode. 
COINT and CORDY are the only signals that go from the TMS34082 to the 
TMS34020; all other signals are inputs to the TM834082. COINT should be 
connected to one of the TMS34020 local interrupt requests, LlNT1 or LlNT2. 

Figure 5-2. TMS34020ITMS340821nterconnection 

~ ""-LA031-0 
~ 

AlTCH 
/ .. 

BUSFlT 

RAS .. 
CASO 

y 

WE .. 
r 

TMS34020 SF 
y 

RESET .. 
p-

lClK1 .. 
p-

lClK2 .. 
p-

COINT 
I .... 

lROY 
I .... -L ... 

CORDY 

PAL 

-

~ 
lOE 

TMS34082 
~ CIOO 
.... 
.... CI01 
.... 
.... CID2 
.... 

from memory control logic 

} 

Coprocessor 
10 

CORDY from the TMS34082 is logically ORed with other ready signals from 
the system to form the TMS34020 LRDY input ready signal. Note that LRDY 
connects to both the TMS34020 and the TMS34082 inputs. 

When operating in the coprocessor mode, connect the remaining TMS34082 
pins as shown in Table 5-1. 

Table 5-1. Recommended TMS34082 Pin Connections 
Signal Name Description Logic Level 

MSTR Coprocessor/Host-independent mode select tie low 

ClK Host-independent mode clock tie low 

CI02-0 Coprocessor 10 (assembler default is 0002) tie low 

EC1-0 Emulator mode control tie high 

TCK Test clock input tie low 

LOE lAD output enable tie low 

INTR Interrupt request input tie high 

5-3 

",.----_ ..• _---,,---------------



Clocks / TMS34082 Initialization 

5.2 Clocks 

Local clock input signals LCLK1 and LCLK2 are generated by the TMS34020. 
Internally, the TMS34082 generates a rising clock edge from each LCLK1 edge 
(rising or falling). In coprocessor mode, the TMS34082 actually operates at 
twice the LCLK1 input clock frequency. 

LCLK1 controls most of the TMS34082 internal logic while LCLK2 is used for 
several simple functions such as synchronizing interrupt requests. 

CLK is the system clock.input in host-independent mode. It should be tied low 
for coprocessor mode. 

5.3 TMS34082 Initialization 

5-4 

The TMS34082 uses the same RESET input signal that the TMS34020 uses. 
Upon reset, the TMS34082 clears all pipeline registers and internal states. The 
configuration register and status register return to their default values. When 
RESET returns high in coprocessor mode, the TMS34082 is in an idle state 
waiting for the next instruction from the TMS34020. The RESET signal is an 
asynchronous signal and does not require specific setup or hold times to a 
clock. However, the minimum pulse duration requirement must be met. 

Coprocessor Mode 
.. ~ 



Configuration Register Settings for Coprocessor Mode 
~..:~:.;;o.x-;.:.~-:-::.»:..;-::.;.: .. :..;-::.:o-;..:.:-:.~.:.:"'X";..;o.»:.~.:-:--:.:oo::~:';'z";-;.:-:.o:·:-:-X-:·:-;':-:~»h-:·:-:-:·:~;-;":·:-:·:·:-:-:"»:-:·:-:·:·Jo:";-:·:·;.:oo:-:·; .. ;..:·:.;o.; .. ;..x-:-;.;.x-::e:-,:-:.o;: .. ;-;,.;o.:..;.;-;.:-:.; .. ;-:-: .. »:-"' .. :..;-:.;-»:o-:·;-:-: .. :«.;.:-:-::-:.:-:.:-:.:.:.:.:~;-:-:-:-::-:-.:,.:o-:-:.;-;.;.:-:.:.:-:":-:";.;,:.:-:-:.;':0-:'.-:-;':":-:.;-:":":';.;":':--:'-:.:.;':":-:.:-;':";":.:";':.:";.:-:-: 

5.4 Configuration Register Settings for Coprocessor Mode 

The configuration register (CON FIG) defines several selectable features ofthe 
TMS34082. The following subsections recommend settings for this register in 
coprocessor mode. Part of your system initialization program should set the 
configuration register to the appropriate value. 

5.4.1 Exception Masks 

Since inexact operations are common in floating-point operations, you should 
usually disable this exception for both the multiplier and ALU by setting the 
MINEX and AINEX bits to O. 

5.4.2 Fast vs IEEE Mode 

For most graphics applications where integer and single-precision 
floating-pointnumberformats are used, operating the TMS34082 in Fast mode 
is sufficient. This also holds true for most double-precision floating-point 
applications. Because the internal instruction set does not include instructions 
to wrap and unwrap denormalized numbers, you should use Fast mode if you 
do not have memory on the MSD port for external instructions. 

However, when working with very large or very small double-precision values, 
IEEE mode can be used to operate on denormalized numbers. Possible uses 
of IEEE mode include image processing and digital signal processing 
applications where accuracy is critical. External instructions must be used to 
wrap and unwrap denormalized numbers. See Chapter 8 for details on these 
instruction. 

5.4.3 Pipeline Mode Settings 

For coprocessor mode, the TMS34082 pipeline mode settings (PIPES2-1 in 
the CONFIG register) affect the performance of very few internal instructions. 
Mostsimple instructions, such as adds or multiplies, finish executing beforethe 
TMS34020 can issue the next instruction. Using the default setting allows you 
to run the TMS34082 at the maximum clock rate. This setting (PIPES2 = 1, 
PIPES1 = 0) is recommended unless you are using chained mode external 
instructions. While using chained mode instructions, PI PES2 should be set low 
to enable the FPU core output registers. 

The complex instructions contained in internal ROM change the pipeline 
setting as needed and restore the previous pipeline setting afterthe instruction 
is completed. 

5-5 



TMS34020ITMS34082 LAD Bus Operation 
»:·X·:-"~'"oo):')o:,*:;.:-:-;.:-;.:-:·;o.»:-:w.«·x<-:,-·»:o.:-:*Wh"'~:""h»Yk:-: .... ~:-:-:·»:*»;""~·:':--:0-»:-;,:.;.:..;.;..:.;.0;:.;-:0-:-:-:.»:«.:.;..:.:..;:.;.:.;..:-:-:-:-:.:-::« .... :.:-::.:..;.:..;.: .. »:-:?»xOO;·:·»:-::";O-;..;...--.;·:-»:..;:·:-=--:-)I' ... :-;x..;~;..:·:..;-:·:r:·:~:·x .. :-:·:;.»;..; .. ;.;..: ... """="':y .... x..;~: .. ;.:"'"':..;..:.:..;·:;.:r:ot9»:..;..;.:;.;..;O';..; .. :.x...:~;.;..:·:..;·: 

5.5 TMS34020ITMS34082 LAD Bus Operation 

5-6 

The TMS34020 local memory interface is made up of a multiplexed 
address/data bus and associated control signals. During a memory cycle, the 
address and status are output on the LAD bus, and then the LAD bus is used 
for the data transfer. The local memory and DRAM/V RAM interfaces are used 
for transferring data or instructions between the TMS34020, memory, or the 
TMS34082 in addition to generating refreshing cycles for DRAM/VRAM. 

In coprocessor mode, the TMS34082 LAD bus connects directly to the 
TMS34020 LAD bus. Coprocessor commands from the TMS34020 are input 
on this bus. In addition, data transfers between the TMS34020 or its local 
memory and the TMS34082 occur through the LAD bus. Transfers between 
the LAD and MSD buses can also be programmed. 

A single coprocessor instruction may be used to pass a command to the 
TMS34082 and transfer data to/from the TMS34020 or memory. There are five 
general types of coprocessor instructions. 

Command-only instructions transfer no data to the TMS34082. 

TMS34020 to TMS34082 transfer instructions pass a command and data 
to the coprocessor. Three types of transfers are available: 

move one 32-bit parameter 

move two 32-bit parameters 

move one 64-bit parameter 

TMS34082 to TMS34020 transfer instructions pass a command to the 
coprocessor and the TMS34082 outputs data to the LAD bus. Two types 
of instructions are available: 

move one 32-bit parameter 

move one 64-bit parameter 

Memory to TMS34082 transfer instructions pass a command from the 
TMS34020 and data from memory to the coprocessor. Up to 32 32-bit 
words may be transferred. Three types of memory moves are available: 

move the number of words specified in the coprocessor instruction 
using postincrement 

move the number of words specified in the coprocessor instruction 
using predecrement 

move the number of words specified in a register using postincrement. 

Coprocessor Mode 



----~---- ---

TMS34020ITMS34082 LAD Bus Operation 
«~»~:-:~v"""-.;~v ... :-,;-:--)o:o-x~;."'"":.:«-)o:-:*»:*;,,:.:*", ..... ~;....,,,,,,=~:-:>..-.:~v.-~v ...... "'.;~v .... ~X.X"",A."""=~v..:-:~;."'''':-:-:~~V: ... """,:a-'' .... :-X'\v ...... x«~ .... :-,:":--:-x,,;~:--,,,,,,",,,«'':;''-';~:-:-''-';~·:-'' ...... ,,,",~v .... ~x-..""'-»:-.-..:"'""'.,.:-:~<-;...-.:..;-...v .. :.:"':O-'v....:«.»:;.»..v..«<*:~ .... ~vA~:o-:-..'=~»:~v .. m-..x~"'<"':-"-" 

TMS34082 to memory transfer instructions pass a command to the 
coprocessor and the TMS34082 outputs data to the LAD bus. Up to 32 
32-bit words may be transferred. Two types of memory moves are 
available: 

move the number of words specified in the coprocessor instruction 
using postincrement 

move the number of words specified in the coprocessor instruction 
using predecrement 

5.5.1 LAD Bus Protocol 

Both data and instructions are transferred over the bidirectional LAD bus in 
coprocessor mode. A unique combination of signal inputs distinguishes an 
instruction from data. SF, ALTCH, CAS, RAS, and WE are used to distinguish 
coprocessor functions from other operations on the LAD bus. 

The TMS34020 first fetches a coprocessor instruction from either internal 
cache or from local memory on the LAD bus. A coprocessor command is then 
issued to the TMS34082 from the TMS34020 by way of the following protocol: 

A valid coprocessor 10 (CID2-0) on LA031-29 

LAD3-0 = 00002 

RAS high 

SF high during the falling edge of ALTCH 

Note: When using one TMS34082 in a system, the assembler/compiler default for C102-0 = 0002. 

The command is then decoded and executed by the appropriate TMS34082. 
If a command-only instruction is issued, the TMS34082 begins execution atthe 
rising edge of LCLK1 after ALTCH falls. A timing diagram for command-only 
instructions is shown in Figure 5-3. 

5-7 



TMS34020/TMS340B2 LAD Bus Operation 
~.:-:·;":«·)-:-X~~N:~(J' ... X-::<"'...:« ... ~:<"»",,,,:«<-;i-;o.»Yh:-;·:-:-X0X-»:-"' ... X-:-»:-:~-C"'''':-:",",:-:;.:-;-;.:-:..:v:-:-:":-:-;";":..:-;.»:.:-:.:.;.:.:..;:*;..:-:.:.;-:.:-:.:-:,.:.:~:.;.:-:--:--:--: .. :.:..; .. ;-:.:.;.;.:.;..;.;.;.;.;..:.:.;.:.,:-:-;,,=--:-:.:..;·:·,:.:-:·:-:;..x-;·:-:·:·:-:·:·,:·:-::-:..:~:-:..;-;..:·:-:·:-:;.:-:·:·: .. ,:·:-:·:·:,.:-:..;·»: .. :-;·:·;..:-:..; .. :-;.x-: .. ;.: .. :-»:·z.:-:·;",,:..;-:·:-: 

Figure 5-3. Transferring a Command from the TMS34020 to the TMS34082 

5-8 

WEV I " I, I I I 
, I I I I 
~I I I I I I 

SF L-.)'"-".1 I I, i ,'--, 
I I I I I I I I I 
I I I , I I I I I I I 

LRDY OOOOOOOOOO<XXXX I '@ill I '\000@000000@ 
I I I I I I : I I I I 

BUSFLT OOOOOOOOOOOO<X> I ~ 
I I I I I I I I I I I 
I I I I I I I I I I I 

If operands are required from DRAM/VRAM, the TMS34020 sets up the 
appropriate DRAMNRAM address and timing. The data is then transferred 
directly between the TMS34082 and DRAMNRAM. 

AI/transfers to/from the TMS34 082 are 32 bits wide. Therefore, the TMS34082 
uses neither the TMS34020 SIZE16 signal nor all four individual byte enables 
(CAS3-0). Also, the .even 32 TMS34020 assembler directive should be placed 
before aI/ blocks of DRAMNRAM memory that are used to store data or 
external code to be sent to the TMS34082. If the 32-bit words are not aligned 
on long word boundaries, the data is not sent to the TMS34082 correctly. 

Instructions that pass data and commands to the TMS34082 begin execution 
on the rising edge of LCLK1 after CAS rises after the last data transfer. Timing 
diagrams for instructions that transfer data and commands are given in 
Figures 5-4 through 5-7. 

Coprocessor Mode 



TMS34020ITMS34082 LAD Bus Operation 
.;..:-::..;..: .. :.;.: .. ~: .. :~.:--»:-:.:.:.:.:oo:-.:-:.:-:~.:v .. :-:..;..:--:.: .. :..: .. ;-:..;.;.: .. :.:.:.:«.:..:.:-:.:.:.:-:.:-;.-:.:-;,.;.:..;..:--:-:,,:.:.:.:.:.:.:.;.:.;":.:.:..;.;.:--:.:.»:.:.: .. :..;. .. :..:.-:.;.;.: .. :.:.:..;..:.;.: .. :-:.;.:.:.:.:.:.:':';":.:.:.:.:*;-:":.:.:.:.;':";.;.:':";-:';-:.:.:-:.»:--:.:0-:.x« .... "'-:·:--:-:.;y:·»:-;O';v:·;.;...~.,.... .... .".;·:·:-..v..:..;«O; .. ;..;~"10:-:0xO-:.;«-:.~ .... ".."'.;~v..~v..';O"--.::""h"":..:;.:-:~:«-;.:.: 

Figure 5-4. Transferring TMS34020 Registers to the TMS34082 

:.-- Command ~ • Data Transfer ~. Data Transfer --.: 

1 I I I 1 1 1 1 I 1 1 I 1 I 
1 04 1 01 I 02 1 03 1 04 I 01 1 02 1 03 1 04 I 01 1 02 I 03 I 04 1 01 I 
I 1 I 1 1 1 1 , 1 1 1 I I I --l 

LCLK1 I 1/ 1\ 1 1/ 1 1\ ___ ' _...,,1/ 1 1\ I 1/ I r--r 1 1 , 1 1 I I I I ill 

LCLK2 ~I I 11/ :, ____ : __ 1/ :\: 1/: i\: I 
1 1 I I I 1 I-"!-I--!'I I I I 
~ I 1 I 1 1 I I I I 1 I 

LAD L--)--r< Command X _____ O....,pe ... ra ... n-.,d ... 1 ___ X Operand 2 }--I 
I I I I I I I , --p! 1 1 I I ' ALTCH I 1 I ,\ I 1/' 

, 1 I , I I 

RAS l; I, I 1 I I I 
V I I , I I 
I I I I I I I 

CAS-I/--~II--~--~~--~II--~I\ 1/ 1\ II 
r 1 1 I I I 

WE t7 I 1 :,: \0-....... 1--+--...,\/ 
I 1 I 1 I 1 I I I 

P,- I I 1 I I I I I I I 
SF 1 

_

J 1 I " r I 1 I I I I 1-"" 
1 I I I 1 1 I I I I I I 
11111i~ 

LRDY X>OOOO<>OOO0OOW I '@Q9' 
, , I I I I I 'I" I I I 
, i , I 1 I 1 I' I I I , I 

BUSFLT I 
! I I I I I I I I I I I I I I 
I I I I I 1 I I I I I I I I 

5-9 



TMS340201TMS34082 LAD Bus Operation 
ltI:,-"~~~v,....;o.x.Yh:«-~~Vh»"~:':«-"Vh:' .... ~~~~:"Q •• ' .. "."""",,,,",«-:-»",";'X"";'»X",,""/.«·:-'" ... :<'-o.;o.:-: .. :-::·»;.:"'·;o.:-:.:-:-;.:-:.;" ..... ;.:,,~»;.:-:,,·x--;"'·:.:»:..;·:-»»»:o-..""«"" .. :,,'-v.«'-":-»:~-..:«-:-x~~~~m.~~,-,v,:.v....""'~:-:*: 

Figure 5-5. Transferring from the TMS34082 to a TMS34020 Register 

/4-- Command ./4 Data Transfer .\4 Data Transfer --I 
I I I I 

: 04 I Q1 : 02 I Q3 : Q4 I Q 1 I Q2 I 03 I Q4 II /Q1 : 02 I Q3 I Q4 II ~I 
LCLK1 i I / I 1\ I 1/ I 1\ I . I I \ I ! I 
~ I I II I I I I I I~""I--+"I I 

I I I I I I I I I I 
LCLK2!\. I I / i \ I I / i i \ I i / i i \ I 

I I I I I I I I i I I I i 
Ii: I i I I I I : I I I : 

LAD (TMS34020) t:::)--t< Command >--.1--"--,---+--r--'--T--I---, 
i I I I I I I I I I i I I I I 

LAD (TMS34082) ~--t--t---t--t--i--K Operand 1 >--i---t< Operand 2 }--~-~ 
--hi I I I I Iii Iii I I I 
ALTCH ii Iii \ I i I I i I I 1/ I I 
iii I I I I I I I I I I I i 

RAS 1] I I I I I I I I I I 
t' I I I I I I I I I I 

~ 
i I I I I ! I I I ! 

CAS r I 1\ I 1/ i\ I 1/ I 
I I I i I I I 

-I I I I I I I I I 
WE 1/ I I I I I I I 

I : i I I I i I I I 
~I II i III 

SF ~-t' I I I I I 1'---' 
I I I I I I I I I I LL===- IIIIII III 

LRDY~ ~I 
I I I I I: I I I I I I I 
I I I I I I I I I I I I I I I 

BUSFLT I 
I I I I I I 
I I I I I I I 

5-10 Coprocessor Mode 



TMS34020ITMS34082 LAD Bus Operation 
-X·:·:-';~:·:-::":-;·:·:~·:·:--:·:oo:·:·x·:-:·:·:-:·:-:":·:-:·:-::·:·:":..:-:: .. : .... h:·: .. :·;..: .. :..;·:-jo:·:...:·~jo:·:..;·:·:-::·:·:·:·x·: .. : .. :·;..:·:..;.;--;..:.;-:.:.:.:.:-:.;o.:'-:";.:.:--:.:.:-::':.Jo:.:.:.~:-=-:.:.»:.:";.;-':.:.:";.;':-:";.;.:.;':":-:.:«.:";.;.;":-:00;:.:.:.:.:";.:";';':";";-':-:·:",!:·;':-:-:-::":·;":,,% .. :-;..: .. :-::·;..;;x-:: .. :·:-: .. :..;..~ .... :·: .. :·:·jo:·:-:: .. :·=-: .. :-:: .. :;v ... :.:-:.;-;.;-:.:,,:--:.:<-:: .. ;-:-: .. :.;.;.:.:.:..; .. :.;..: .. :..;.;o-: .. : .. :.;.:.;.:.:-::.:.: .. : 

Figure 5-6. Transferring Memory to the TMS34082 

,~ Command Cycle .'~ Address ~-4-Data Transfe~ Data Transfer~ 
, ", 1 

, 04: 01 I 021 03 1 041 01' 02' 03' 04 : 011 021 031 04: 01' 021 031 Q4: Q1' Q21 031 04: 01 1 

LCLK1 Lv: :' I : I: : ': II: : ': ,I: :': 'I: : ': I rt 
,'\., I I I I I' I , I 1 I , 'I I , 'I I ' 1 

LCLK2 I' If 1 I' I If, " I I f 1 I' I I f 1 I' I 1 f 1 1 '-+---1 
LAD I I I I 1 1 I I I I 1 I 1 I I 1 I I 1 I 1 1 I 

(TMS34020) ~_L-< Command >--i--+-+-l..-< Address >--+--+-+-~-+--I--i_J._-I 
I I I I I I I I I I I I I I I I I I I I I I I 

LAD~~-'-~-T-~-~~-~-+-r-r~-~-~ @1~+-~ ~2~4-~ 
(memory) b 1 I 1 , I I 1 I I I I I I I I' I , ,_~ 

ALTCH 1 1\ I 1 I 1 II 1 I' 1 1 1 1 1 I 1 , 1/11 
_~ I I 'I I' I 1 I , I I 1 , I ,---1..-1 
RAS , 1 I 1 1 I' I I I , I I I'-r I -7 I I I I,!' I I" ,~ 
CAS, I' I I' II 1 1 ," ,I, " 1 ,'II 
-V I, '" "" I , " I WE 1 I 1 I I 1 I I I I I I I , 

J.......l I I I 1 I , I , I I I , , I I I I I , 1 
SF ~,., I' I I I 1'-" 1 I I I I I , I I I Ir-t 
11",1, '~ 

LRDY XXXXXXXXXXXXW ~ I ~ I _ 
I I I I " I I I I I I I I I I , I I I I I I I 
I I I I I 1 I I I I I I I I I I I I I I I I 

BUSFLT XXXXXXXXXXXXXXX I 4@XXXXXXXXXXXXX , e@XXXXXXXXXXXXX 
I I I I I I I I I I I I I I I I I I I I I I 

When the TMS34082 is transferring data to memory, the TMS34020 outputs 
the memory address on the LAD bus. An extra clock cycle, called a spacer, is 
then inserted before the TMS34082 outputs data. The spacer is added to allow 
time for the TMS34020 to stop driving the LAD bus and the TMS34082 to set 
up valid data on LAD. 

5-11 



TMS34020ITMS34082 LAD Bus Operation 
»..v .... :"»»:"i:..:--)" ... :-:-:-..v ..... '="»: .... "«<-:-..,~""'''t-:.:---...xoQo..v ...... ~:..:-.''«''' ...... "'*»:-..'v.'':-:-..'»..~ ......... ~~'"<OI.''«'O'~,~~ .............. ~'Y ...... ~~y .... ""«"o.-v.-:«->x..;~:;:.."' ...... ""'»:o->.-..:< ... x.: .. :..:-y .... :«-;-"' ... -...:«.:-:«« ...... "*»..-...:< .. ;.:...."*;.:.:,,««,,-:--..--..:-x-t'\v ...... -...:ot'\v ..... "9:-.. ... x·:*"'..:,,~~ ...... ~-v.-..;oQor ..... -...: 

Figure 5-7. Transferring from the TMS34082 to Memory 

~ Command ~ Address ~ Spacer ~oata TranSfe+oata TranSfer-! 

1041011021031041011021031041011021031041011 02103/041011021031041011021031041 
LCLK1 1 I 1 1 1 1 I 1 1 1 1 

1 1 1 1 1 1 1 1 1 I I I 1 
LCLK2 1 1 1 1 1----

1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 1 I 1 1 I 1 1 1 
LAD 1...-+_;-< Command >-J...-4-J..-r -r' . MdrnSS >-.L.-/-..1.-t-..l_.L...J_..,._L...l_1._

1 (TMS34020) 1 I L I 1 1 I 1 .L L 1 L 1 I I 1 1 I 1 
(TMS345~~ ,..,_l.._ ..1.-ri- T - r -r-.L--,- - -r- .,--4 Data 1 >-J.( Data 2 >-I 

I., I 1 I I I 1 I I 1 1 I I 1 I I I 1 1 1 
ALTCH;;: I I:: 1 k I I l' I I I II I I I I 1 1 I 1 

- l;: 1 I I 1 1 I 1 I 1 I 1 I 1 1 I I I I I 1r4 
RAS f 1 I I 1 1 1 I 1 I' I I I 1 I I I· I 
CAS 1 1 1 I 

I 1 

WE V I I I I I I I, I I I I 1M 
Ll 1 I 1 I I I 1 I I 1 1 1 1 1 I I I 1 I I I 1 1 

SF r::::::>-+' I : I I I I I'--n I I I I I I I 1 1 1 I 1 1 r-~ 
IIIIIIIIIIIIIIIIIII~ 

LROY O§(XXXXXXXXXXXX \D' 1_ 1"i&Y I ~""_MMMM.w.u~~~iUola 

BUSFLTI~:~:~ 
I I I I 1 I 1 I I I I I I I I I I I I I I I I I I I 

5.5.2 Enabling the LAD Bus Drivers 

5.5.3 Bus Faults 

5-12 

The LAD bus drivers are enabled only when LOE is low, the correct TMS34082 
coprocessor ID has been selected, and during the proper time slot within the 
execution cycle. Just bringing LOE low does not cause the LAD bus drivers to 
turn on. For most applications using a single TMS3020, TMS34082, and 
DRAMNRAM, LOE may be tied low. 

In a system with multiple TMS34082 coprocessors, only one coprocessor can 
drive the LAD bus at a time. The TMS34082 contains internal logic that only 
allows it to drive the LAD bus when its coprocessor I D is contained in the move 
instruction. A TMS34082 write instruction with the broadcast ID is ignored. 

The TMS34082 BUSFL T input Signal also ties directly to the TMS34020 
BUSFLT pin. The TMS34082 supports bus retries and bus fault conditions in 
conjunction with the TMS34020. The bus cycle conditions are defined in 
Table 5-2. 

Coprocessor Mode 



TMS34020134082 LAD Bus Operation 
-;..:..;'.~;,:--:..;.:"",:..;oo;.:..;..:« .. »:.:-:.:";";';";'V"",:«.:.jo;':-:";Y;i;-:--:--:<";-:.:.:-:.:,,"Jo~:--;";"Jo:..;-:.:.:<*»;o.:-: .. :.;..=«.:.:-:.:-:.:v..-";-:~Jo:-:-:.:-.;..:.:-:.:.;.j.,.~.:--;":.:-:.:;-':-:.:~:";':.:-:.:.Jo:.:-:.:-:-:":-:.;';":.:-:";.;":V:.:.Jo:.:-::.:.:-: .. :-:.:~~",,;..:.:,.o; .. :.: .. :.:-:.:-;..:.:.: .. :.;,.:.:.;.; .. ;":.:.:.:.jo:·:-:·:·;":o.:..;o.:-:.; .. :-: .. -":-:-% .. ;.;,:·x·:·;..:.;.;·:-:.-; .. :-:·;·;..;..;-:·:";,;,,:-:.:.;..:-:.;.~ 

Table 5-2. Bus Cycle Completion Conditions 
Completion Condition BUSFLT LRDY 

Wait 0 0 

Successful transfer 0 1 

Retry 1 0 

Bus fault 1 1 

In the event of a systems fault involving the TMS34082, the abort command 
allows the TMS34020 to regain control. The abort terminates all coprocessor 
activity, restoring the TMS34082 to a known state so that it is available for 
further commands from the TMS34020. Chapter 7 covers the abort command 
in greater detail. 

5-13 

----------------,,_._-,-,,----_ .... _._---_._---



Polling the Coprocessor 
l":o"A-»"V..<"-:.«o-..~X-»»,~V""~""*A~~:-Q\.~v.,.:.»..v.o.;o..~,~",,,,«,,-v.·~»:..;..."'0:-" ..... -":OO:-»»!~"":·:«-':-",,,*;";':-=-»:"':a:.:.:.;':"-:~:.:"»:»;':-:-''''''' ..... ''':-x.:<oo:-:.;-:~x..;w...V'''':''x.:--",:-:·:-:-:':*:-hX~~V..:·»X..;... ... ;.: .. ~A"'«":-;.:-.:~v.,.»:-:-"' .... v.-:o-:-"' .... ~:-:-:-e-.."'<»..""«"..v ..... "'0..vnX 

5.6 Polling the Coprocessor 
When the TMS34020 issues an instruction to the TMS34082, CORDY 
(coprocessor ready) is high. It remains high even while the TMS34082 is busy 
executing the instruction. However, if another instruction is sent by the 
TMS34020 before the previous instruction has completed, CORDY will go low 
immediately, indicating that the TMS34020 must wait. When the TMS34082 
is ready to accept the new instruction, CORDY returns high to Signal the 
TMS34020 that the coprocessor is ready to accept a command. Because 
CORDY is usually ORed with other terms to form LRDY, CORDY going low 
also sends LRDY low, halting the TMS34020. 

The instruction will still be valid on the LAD bus when CORDY (and LRDY) 
toggle, and the TMS34082 will latch the instruction. However, for longer 
TMS34082 operations, such as lengthy subroutines stored in SRAM, the 
TMS34020 may have to wait for a long period of time before the TMS34082 
is ready. This ties up the TMS34020 and keeps it from executing other code. 
Instead, the TMS34020 can check the coprocessor's operating condition 
before issuing an instruction by way of the check status command. The 
TMS34020 assembler pseudo-op for this command is CHECK. 

In response to the check status command, the TMS34082 outputs a status 
code to signal if it is busy or not. The TMS34082 returns a value of all 1 s if busy 
or all Os if idle, as shown in Table 5-3. This instruction is described further in 
Chapter 7. 

Table 5-3. Bit Definitions for TMS34020 Status Check Command 
Description LAD Output 

Coprocessor not busy oOOOOOOOh 

Coprocessor busy FFFF FFFFh 

The TMS34020 does not have to enter an extended wait state to obtain access 
to the selected coprocessor, but may continue with another task not requiring 
the TMS34082. This allows the two devices to execute instructions in parallel. 
See Example 5-1 for an example of code using the check status command. 

Example 5-1. Using the Status Check Command 

5-14 

CHECK Al 

CMPI D,Al 

JRNE busy 

busy: 

put output status in TMS34020 register Al 
compare with all zeros 

if busy, then execute more TMS34020 code 

start next TMS34082 routine 

execute more TMS34020 code while coprocessor is busy 

Coprocessor Mode 



Interrupt Handling 
"'iX";-:·;":V;·;·:-:":O-;·:O-:-X-;-:·:-:';-:-;o.:-:--:-: .. ;o.:;.:·»:·;.:..:-:-x-:-:..;..; .. :-;..;oo;·;..:.:.;'::.;':'-:0-:-:.;0.;":.:-:-;':.:.:.;.:.:.:-:-:-:";":-:-:.;0.:-:-:-:-;0.:-:-:";-:-:-:-:-»:-:-:-:·;.;..:-*;o.;..;..;.::·:-:·;..x·;o.;..~..;·»;..:..; .. :(·x--:-:-:·x" .. ;-):.:-:*: .. :" ... "'Y:..;-: ... ·:-:O':" ... ""'Ii>x«~:..;..:...~..;(.;.A .... V.""'X'i:-: ... '""=-:-:-:·:-"'~v...:..;-:«....:-:-:e;-:-x".»:..:~;o.:-:*;o.:«..;...~-:-:-:;.:~ 

5.7 Interrupt Handling 

The TMS34082 has two interrupt input sources in coprocessor mode: 

An exception detect (ED) interrupt used to signal the TMS34082 that a 
status exception occurred 

A software interrupt generated by an external instruction input on the MSD 
bus 

Each exception has its own interrupt enable flag in the status register. If 
external SRAM memory is not used, the software interrupt should be disabled. 
On reset, the exception detect (ED) interrupt is enabled and the software 
interrupt is disabled. 

Because hardware interrupts are not allowed in coprocessor mode, the 
hardware interrupt should be disabled. This is the default setting of the 
hardware interrupt enable flag in the status register. Also, I NTR should be tied 
high. 

5.7.1 Exception Detect Interrupts 

If the exception detect interrupt is enabled, COINT goes low when the ED flag 
in the status register is 1. The ED flag goes high when a status exception 
occurs (see subsection 4.5.3.1) COl NT signals the exception to the 
TMS34020. This exception does not cause the TMS34082 to branch to the 
interrupt vector register address. The TMS34082 aborts the current instruction 
and goes to an idle state. 

The COINTsignal may be connected to either the TMS34020 LlNT1 or LlNT2 
input. You can also combine COINT with other interrupt requests in the system 
to form LI NT1 or L1NT2. If its interrupts are enabled, the TMS34020 will branch 
to an interrupt vector to service the TMS34082 request. 

COINT and ED are reset by reading the STATUS register. You should do this 
as part of your interrupt service routine. 

In the interrupt service routine, saving the state of the TMS34082 may be 
desired. This is best accomplished by executing a block move of the 
TMS34082 registers to DRAM/VRAM memory. The TMS34020 assembly 
language instructions listed in Example 5-2 can be used for the desired 
preCision. These routines do not save or restore the C and CT register. 
Restoring the TMS34082 machine state consists of moving the registervalues 
from memory back to the TMS34082. Restoring the status register sets the ED 
flag high. However, writing a 1 to ED will not cause an interrupt. 

5-15 

-------~ .. _---------,. 



Interrupt Handling 
l«-:or ... :«.:--:-:...:~~--:'I.V"":~~·X-X~»;":-;o.;~:·:-:«*»", .. ;."' ... x~,""="x..:;·;v .... :-:..:;·:-:-;.»..",,,=,,:-:,,:;·:'":-).v.--:;o.:·;oo..~·:-;..:..:;..:;·;o.:·;o...""«·:-:":-: .. :-m«'O'=«~..:«·: .. :-:«·:-:,..;..:-:<Yx-:"~x":;·:-:-X-:·:-:-~"'"'X"X«~:-:~joo:-:-)-;,)..",-:,;":-;,:«"»x<?-:«o-..","",;';"""'-:":;·:-:-X"' ... :-rh~;""'"(-:~»:·","'):-;-"h:-~:-: 

Example 5-2. Saving and Restoring the TMS34082 Machine State 

5.7.2 

MOVE RAO, *Al+, 30 integer move, use TMS34020 register Al 
as the memory pointer 

MOVF RAO, *Al+, 30 single-precision move, use TMS34020 
register Al as memory pointer 

MOVD RAO, *Al+, 15 double-precision move, use TMS34020 
register Al as memory pointer, 

MOVD RBI, *Al+, 15 remainder of double-precision move 

restoring TMS34082 machine state 

MOVE *Al+, RAO, 30 integer move, use TMS34020 register Al 
as the memory pointer 

MOVF *Al+, RAO, 30 single-precision move, use TMS34020 
register Al as memory pointer 

MOVD *Al+, RAO, 15 double-precision move, use TMS34020 
register Al as memory pointer, 

MOVD *Al+, RBI, 15 remainder of double-precision move 

Software Interrupts 

If software interrupts are enabled, an interrupt may be generated by an 
external instruction fetched from the MSD port. The interrupt sets the interrupt 
grant output (I NTG) low, saves the current program counter in the interrupt 
return register (I RAR EG) and branches to the address in the interrupt vector 
register. Interrupts are also disabled. 

Your service routine should restore software interrupts at the end. The final 
instruction should be a return from interrupt that will branch to the value in the 
interrupt return register. 

5.7.3 Interrupting the TMS34020 

5-16 

For some applications using long external subroutines, it is desirable to 
interrupt the TMS34082 to Signal that the subroutine is finished. This relieves 
the TMS34020 from having to check the TMS34082 to see if it is ready for the 
next instruction. 

This may be accomplished by intentionally executing an instruction (in external 
code) that sets the ED flag high. This causes COINT to go low, signaling an 
interrupt to the TMS34020. Any instruction that generates an exception flag, 
such as invalid operation, will work. 

Coprocessor Mode 



Interrupt Handling 
':";~;"" .. :~.;..:a:"«.:.:-:oi;.:-:":-:OO::.:.;"'''''OO:--:.:-:.:.:.:-",'''';'':.:O-:oo:.:--:,,.~:-;.:-:-;0::.;,.=-:-:---.. :.:"";";-:"':-:-:-:-;"':0::.:-:':.:-:-:--:'-"-";":-;-:.:.:-:-:-:":":oo:-; .. ;..:.:oo:.:.:.:.; .. :.y .. ;..:-: .. :.;.:...:oo:.:.: .. :.:-:.;.: .. :-: .. :.:.:..;·:·:-:-;.:...:·:-:-):·:OO:--:·:.:-:O-:-;.:-:O;OO:-:-x-:*" .... -.;~vA-.:-:-)o"..«~:-~""!-K<7 ... :<-:--»:-:«-:«-:-:-~-'-:«·;.x~ ....... :O';~Jr' ...... x"'-:-»:-:--..v..:-..~y....:"'-: .... »: 

Possible instructions include: 

Divide using 0 as the dividend 

Use NaN as the operand for any instruction 

Unwrap the floating-point value one (unwrap ON E.f) 

In order to distinguish an intentional ED interrupt from one generated by a real 
exception, a register or memory location should first be loaded with a status 
code. Then the illegal operation is performed. The TMS34020 interrupt service 
routine should read the register or memory location to determine ifthe interrupt 
was intentional. The routine should also reset the register or memory location. 

Before causing the ED interrupt, the external routine should make sure the 
internal stack (registers SUBADDRO and SUBADDR1) is empty. This can be 
accomplished by clearing the stack pointers (bit 31) in both registers. You may 
wish to save the contents of these registers in external memory before clearing 
the stack pointers. 

5-17 

'-------""-.,."'."".,-------''' .. '''--.. --.,~""--~-~ 



TMS34020ffMSS40B2 Code Example 
~"'t,-,~ ...... ~»»»..~~v.....~....:«""..v~~»»..v.;:'X« .. ~»""':.:"'.:.~v..«oo-:"*-~v .... "\.~~""):~»;...""»-..~,,-:-.."»»,,v ...... ,»»m-.. .......... "'<~~hx-..*">..'»YU~:-;:'-'~~~:...-..:~:-"' ...... -.:"'v...:.:..;...v..~:-:-:--"' ..... ~:... ...... '"">~ .... v.-:0:-:... ... :"'.:..;.:«": 

5.8 TMS34020ITMS34082 Code Example 

Using combinations of the MMPYOF, MMPY1 F, MMPV2F,and MMPY3F 
single-precision floating-point multiply instructions allows for several matrix 
multiply operations: 1 x 3 by 3 x 3, 1 x 4 by 4 x 4, 3 x 3 by 3 x 3, and 4 x 4 by 
4 x 4.The following example shows the use of MMPYOF, MMPY1 F and 
MMPY2F in performing a single-precision floating-point 3 x 3 by 3 x 3 matrix 
multiply, giving a 3 x 3 matrix result. 

Example 5-3. Multiplying Two 3 x 3 Matrices 

Algorithm: 

Coo = Aoo x Boo + A01 x B10 + A02 x B20 
C01 = Aoo x B01 + A01 x B11 + A02 x B21 
C02 = Aoo x B02 + A01 x B12 + A02 x B22 

C10 = A10 x Boo + A11 X B10 + A12 x B20 
C11 = A10 x B01 + A11 x B11 + A12 x B21 

C12 = A10 x B02 + A11 x B12 + A12 x B22 

C20 = A20 x Boo + A21 x B10 + A22 x B20 
C21 = A20 x B01 + A21 x B11 + A22 x B21 
C22 = A20 x B02 + A21 x B12 + A22 x B22 

Matrix values: 

MATRIX A = 10 0 11 
-3 -1 -5 
13 1 6 

MATRIX B = 3 1 5 
2 1 3 
4 -1 1 

MATRIX C = 76 -1 61 
-32 1 -23 

65 8 74 

5-18 Coprocessor Mode 



TMS34020ITMS34082 Code Example 
«'O'~V ... :";~»:";oQoo..V":-;'»" ... "",«"'"X~~:"':";oQ-.v .... ",-:-:--~ ..... 'X*: .... ",,,",~ ..... 'X*:~v.-:--: ... -.:-:--;.x·»;:o."" ..... "«'-..vNx.:.:-..-.;-:-:--:«-:-.. .......... :.;:*:-..~;.;...~;.»:-;;oo"'..-.:..;-:--~;.:..;~:·X..;-:..;-.h·:-:·:-;.:..;,,·:-;..:·:-:--: .. :·:·:-:-:-:-:·:·~·:·:--:,,·;.:·;.:..;·:-;.:·:·: .. :·:-x·:·:·:·:·:,,·:·:·: .. :·:·: .. :«·:-:" .. :·:..;o... .. :·x~ .. :-;.:-:,,·:-:-:·:,,·:·:..;«-:·:-:·:«·:-.."'-:-: .. :-"' .... x-:-:-:·:.-: 

Example 5-4. Instructions for a 3 x 3 by 3 x 3 Matrix Multiply 

Code for multiplying one 3 X 3 by another 3 x 3 matrix 

.IEEEFL ; Force IEEE floating-point representations 

BEGIN; 

Move matrix B to the TMS34082 
MOVI MATRIXB,AO 
MOVF *AO+,RAO, 10 
MOVF *AO+,RBO,6 

Point AO to first row of matrix A 
MOVI MATRIXA,AO 

Point Al to first row of matrix C 
MOVI MATRIXC, Al 
MOVI 3, A2 

ROWLOOP; 
Loop through all three 
MOVF *AO+,RB9,1 
MMPYOF 

three rows 

rows 
Movefirst A value on row to the TMS34082 
Multiply down the B column 

MOVF *AO+, RB9, 1 
MMPYIF 
MOVF *AO+, RB9, 1 
MMPY2F 

Move second A value on row to the TMS34082 
Multiply and accumulate down the second B column 
Move third A value on row to the TMS34082 
Multiply and accumulate down the third B column 

Move the current C row into TMS34020 memory 
MOVF RB6, *Al+, 3 Get the three row values 
DEC A2 Done four rows yet? 
JRNZ ROWLOOP If no, then compute the next row 

HERE; JRUC HERE Done, endless loop 

; Matrix storage 
. SECT "DATA" 

MATRIXA 
. FLOAT 10, 0, 11 
. FLOAT -3, -1, -5 
. FLOAT 13, 1, 16 

MATRIXB 
. FLOAT 3, 1, 
. FLOAT 2, 1, 
. FLOAT 4, -1, 

5, 
3, 
1, 

a 
a 
a 

The zeros on the end of these rows are 
not necessary, but allow a memory-to­
register transfer for the matrix. 

. FLOAT 0, 0, 0, a This row of zeros is necessary 

MATRIXC 
. FLOAT 0, 0, a 
. FLOAT 0, 0, a 
. FLOAT 0, 0, a 

. SECT "TEXT" 

5-19 

-----,--------------------,.~---------



TMS34020ITMS34082 Timing Examples 
~~.r»"'-,"""'«<:o(o"~~~""'''''' .... ''''9'~V''«~~~'':--''':«.:-:''''''':~»:.:«.:o-:q .... Vh:~;'»:: ... ~:«·:'';';';-::·:-x·»"':«-:·:--;..: .. :-:-:-:·:-:",~:-;.:-:. .. :·:;..: .. :..;·:-;..:-:..; .. :-;.x-:.·:":":";,:",,v.":-:-:-X';,?,»)o:·:--:-;'X-:·:-;'X""':-;':-"~-:-:';":·hVh:·:';·;':·:",,"":-:o.:-:-:--:-:-:-:-: .. ;.»:: .. ;.x .. :-:·»:--:·:·;.:-: .. : 

5.9 TMS34020ITMS34082 Timing Examples 

The following timing diagrams illustrate the timing relationships between the 
TMS34020 and TMS34082. 

Figure 5-8 shows the multiplication of two double-precision numbers in 
TMS34020 registers and assumes that the TMS34020 instructions are 
contained in cache. The assembler source code is shown below. 

Example 5-5. Assembler Source for Double-Precision Multiply 

MOVD AO, AI, RAO 
MOVD A2, A3, RBO 
MPYD RAO, RBO, RA4 
MOVD RA4, A4, AS 

Figure 5-9 shows an add operation for two single-precision numbers from 
DRAM assuming that the TMS34020 instructions are contained in cache. The 
assembler source code is shown below. 

Example 5-6. Assembler Source for Single-Precision Add 

5-20 

ADDF *AO+, RAO, RBO, RA2 
MOVF RA2, *AI+ 

Figure 5-10 shows the same add operation (adding two single-precision 
numbers from DRAM). However, this time the TMS34020 instructions are not 
in cache. 

Coprocessor Mode 



<{' 
I\) ..... 

041010410104101041010410104101041010410104101 04101 04101 04101 04101 04101 04 101 

LCLK1 

LCLK2 

ALiOR \ n r-\ I \ r 
CORDY \ I 

CAS 

WE LJL...J LJL...J 
TMS34082 Opcode.--... TMS34082 Oocod9.---- ~MS34082 Opcode 

LAD Bus • • M~n • r ... ft • Men. rap r-.,ft - r .... ft .~- I PC _..-

SF }-T- \..J \..J \.J '-

Operation 
Send Send Send Mu"i~ ~rand I Send 

Opcode Transfer Operand 1 Opoode 
Transfer Operand 2 Opcode Opcode TransferMS TransferLS 

Fetch Instruction From ~~~m; ~~esuHFrom TMS34020 Cache From From From From MS34082to 
IrMS34020to Fe1ch Instruction From TMS3402010 Fetch Insfruction From TMS34020to Fe1ch Instruction From TMS34020tc TMS34020 TMS34020 

TMS34082 TMS34020 Cache TMS34082 TMS34020 Cache TMS34082 TMS34020 Cache TMS34082 

TMS34082 I Operand 1 
RAO 

TMS34082::::~=---------------------------------------1I-oo~~;r;'an~d~2~----------------------=== 
RBO 

TMS34082--------------------------------------------------------~~--~------------
RA4 I Result 

TMS34020 Result-=-;:y 
A4/A5 ~ 

Note: Assume instructions are in TMS34020 cache, TMS34082 pipeline registers turned on (PIPES1=O) and output registers turned off (PIPES2=1), 
TMS34082 load order is MSH, then LSH, 

Figure 5-8. Multiply 2 Double-Precision Numbers in fMS34020 Registers and 
Store Result Back to TMS34020 Register (Mode 0) 

~ 
~ 
~ 
~ 
:~ 

~ 
~ 
~ 
~ 
~ 
j 
* ~ If. 

~ 
~ ::: 

~ 
~ 

I 
* ~ 

I 
~:-i 
~~ 
~(J) 
:~ ~ 
~c 
~I\) 

~~ 
~> 

~~ 
~~ 
~~ 
~1\5 
~~ 
~ §, 
~ s· 
~(Q 
~o 
'.: Dr 
~~ 
~Il) 

*3 
1m 
~~ 
I~ 3 
."'tJ 
§(j) 
~C/) 



01 
K> 
I\) 

C) 
.g 
a 
~ 
(J) 
(J) 
Q -., 

~ 
ft 

04101 04101 04101 04101 04101 04101 04101 04101 04101 04101 04/01 04/01 04/01 04/01 

LCLK1 

AIiCH \ f\ I \ f\ I 
RAS \ I \ r 
CAS U \..J\.--1 U LJ 
WE L..J 

________ .,--.t:UMS34082 Opcode ~TMS34082 Opcode 

LAD Bus L-J ~ L-J E:!J_--.jEI:: 
SF )-I---~~ r '-, r 

RCA Bus E'llS1COL I 2ndCOL I (=:J 3rdCOL C 

Operation 
Fetch Send Output Transfer Send Output Transfer Transfer Instruction Opoode Address From Resul1From Felch Instruction From 

Operand Dead Cycle Address Operand 1 Operand 2 From From Dead Cycle lMS34020to DeadCyde 
TM=tc TMS34020 cache tolMS34082 to DRAM tolMS34082 tolMS34082 TMS34020 TMS34020 DRAM 

Cache toTMS34082 

TMS3~~~~ ____________________________________ 1 
Operand 1 

TMS34082 I Operand 2 RBO _________________________________ .~. _____ _ 

~~ I RA2 _______________________________________________ . Result 

Note: Assume instructions are in TMS34020 cache, TMS34082 pipeline registers turned on (PIPES1=O) and output registers turned off (PIPES2-1), 
DRAM page mode accesses . 

Figure 5-9. Add 2 Single-Precision Numbers from DRAM and Store Result Back to DRAM (Mode 2) 

~:-i 
~~ 
~(J) 
~~ 
~~ 
~o 
~~ 
~~ 
~(J) 
~(Al 

ili~ 
~~ 
~:-i 

~ §: 
1~<2 
:?tJ 

I~' 
='iQj 

~3 
~~ 
*s:u 
~3 
~"'O 
~(j) 
~(J) 
§ 

I 
3 

I 
~ 
~ 

~ 
~ 
~ 

~ 
~ ::: 
~ 
~ 

I 
~ § 

I 
~ 

~ 
~ 

I 



~ 
Vl 

Q41Q1 Q41Q1 Q41 IQ1 Q41Q1 Q4j01 Q41Q1 Q41Q1 Q41Q1 Q4j01 Q41Q1 Q41Q1 Q41Q1 Q41Q1 Q41Q1 Q41Q1 Q41Q1 Q41Q1 

LCLK1 LrLrU ... 
LCLK2 Ln..SL ... 
ALTCH ~ ••• ---1 \ n , \ n ,--

RCA Bus I ROW I ,., COL I ••• I ~'~CQ I-I~~]~'h~~l~~~~r--J---------I ROW I 11IhCQ I 

RAS \ ••• ---1 \ I \ r 
CAS 1I ... -V U LrU U V-
- ... ~ 
WE m Operand 1 Word 1 Word 4 TMS34082 Opcode Operand 2 

IAda·~rIT ••• :IT I j I Addr· .. O IT I I I I I [ LAD Bus 

SF :J, •.• r -'-, ,..,------- --, r 

Operation 
Ffll TMS34020 Cache From DRAM 

(Four 32-811 Words) 

TMS34082 ------- ••• RAO ______ _ 

--'I'~I InSlruclion From C\>Code 

TMS34020 Cache TM~::;'20 Dead 
Cycle 

(2 Cycles BaSI Case. 10 
3 Cycles Worsl Case) TMS340S2 

I~·I I I I~"'I Addr... Transler Transler Add Opcode 
From <=\lorand <=\loran" <=\lorand 1 From Dead 

TMS34020 110 210 10 TMS34020 Cycle 
10 Operan" 2 10 

TMS34082 TMS34082 TMS34082 TMS34082 

I Operand 1 

TMS3'kO:~ _______ ••• -] Operand 2 

TMS34082 RA2 ______ _ I ••• 

I ~~ Addr·"1 I Transfer From Dea" Resul1 From 
TMS34020 Cycl. 

TMS34082 
10 10 DRAM 

TMS34082 

Result 

Note: Assume instructions are not in TMS34020 cache, TMS34082 pipeline registers turned on (PIPES1=O) and output registers turned off 
(PIPES2=1) DRAM page mode accesses. 

Figure 5-10. Add 2 Single-Precision Numbers from DRAM and Store Result 
Back to DRAM (Mode 2), Instructions Not in TMS34020 Cache 

~ 
~ 
~ 
~ ::: 

~ 
~ 
~ 

I 
~ 

~ 

I 

II 
:~ I\) 

~~ 
~s:: 
~(Jj 
~~ 

Ii 
':'(0 

If 
~: ~ 
~[l) tg 
hi) 
~(I) 



MSD Bus Operation in Coprocessor Mode 
;.~~-v.,.x-»;..~"",-"-v ... :-:~:~""' ..... "'«"..,,*XV,,,""'~A-..:.:--: ...... -..~:~o.:-:«'~:-r''''''~'-'''A'=W ...... X~V ...... -'',"«,~v.-~: ... x-e-»-. ..... ---»;.:«·:-:-......: ...... v.-»:-.-..:-x~v ...... -...:..:-..v .... '».':«..;.;.:-..'»':--;..:.»..v .... :..:"' .... v.-:-:-:·):-..~:.x~:-:«(·);"'-"':"'-:*:":-""V'''':''»:·~:'''-'':O:·)1'' ... =-*)1'....xo(oo:or...:.~ ..... --»:-'' ... x..;-):-»»>:--:~:-: 

5.10 MSD Bus Operation in Coprocessor Mode 

Use of the MSD bus in coprocessor mode is optional. External memory on 
MSD31-0 can be used to store data, user-programmed subroutines, or both. 
External instructions for user-defined subroutines are covered in Chapter 8. 
Control signals for MSD and MSA buses, discussed in subsection 4.3.2, 
operate the same in host-independent and coprocessor modes. Different 
combinations of control signals distinguish between data memory and code 
memory. 

Data or program code can be downloaded to external memory from the LAD 
bus. The data (or code) can be stored in the TMS34020's DRAMNRAM 
memory and loaded by a LAD-to-MSD bus transfer. 

5.10.1 Connecting External Memory 

External coprocessor code space is added to the TMS34082 MSD port by 
adding external SRAM as shown in Figure 5-11. No external glue logic is 
necessary. 

Figure 5-f f. TMS34020fTMS340821SRAM with Minimal SRAM Code Space (MEMCFG = L) 

5-24 

~ 
v ... LOE V' " t-.... LAD31-0 ) MSD31-O "- D31-0 ~ /' .... 

ALTCH 
... v 

... .. " BUSFLT .. MSA12-0 ) A12-O · .. 
RAS .. DS/CS ~ CE SRAM .. 

CASO · MOE _ 8Kx32 

· .. OE 
WE 

.. .. MWR WE · ... 
TMS34020 SF .. TMS34082 . 

· RESET · .~ CIDO 

} .. ..... 
LCLK1 .. ~ CID1 

COPROCESSOR · ..... 
LCLK2 .. ~ CID2 

ID .. ..... 

L... COINT ....... 
"'" 
L... LRDY .. 
~ 

,.....LL... CORDY 
CC 

:""" 

"'" RDY ,.. 
PAL 

~ from memory control logic "'" ~ 

The maximum amount of external memory directly addressable by the 
TMS34082 is 64K words of program code and 64K words of data as shown in 
Figure 5-13. This comes out to 512K bytes total. When additional memory is 
necessary, segmentation or paging techniques can be utilized. 

Coprocessor Mode 



MSD Bus Operation in Coprocessor Mode 
~~x-:«·:",~""',,:":.:<,....x~";:.:...".X«-~:-:-:--;.;o.;,,-, ........ : .. :«·x .. ~;,.:..;~~ ..... ,,-;«·:·:-:«-:·;.:-:.:.:.:*»:.:-:-:-;.:-:..;.:-:-: .. ;.:o-:--:-:a:-:-:.,:.:-:-:.:..;.:«oo:.:.:.:.:.;.=-:-:·;·:-:-:-:-:·:·:r:·:«·:·:-:·:oo:-:.:-:-::..;·:·:..;-:..;·;..~o:--:·>w.,""' ... :·:..;o..x·:-:-:·:-" ... :-:-:-:-;..:·:«·:..:-:..:-:..:",:~:;.,:.:·:...;.:.;.x-:·:-"..,:.:-:·:»:-:-:-:-:-:-:~:-:,.:-:-:·:-" ... :-:~.:-:.:.:o:..:..; .. :v:.:-:«.:.:~ 

Figure 5-12~ TMS34020ITMS340821SRAM with Maximum SRAM Code/Data Space (MEMCFG = L) 

~ 
A "- LOE .A .... v LA031-0 ) ( MS031-0 ) 031-0 ~ 

ALTCH 
v 

'"' ... .. '" BUSFLT MSA15-0 ....... A15-0 ./ .. v 

RAS OS/CS .. A16 SRAM .... 
MCE 

... 
CASO .. ... CE 128K x 32 

r .. 
MOE WE .. .. OE .. ... 

TMS34020 SF .. TMS34082 MWR .. WE ... ... 
RESET .. .. CIOO 

" ... """ 
CID1 1 J LCLK1 .. ~ COPROCESSOR .... .... 
CI02 I LCLK2 .. 10 ... ~ -L 

..... COINT .. -, .. 
~. LROY .. ..... 
~ ... CORDY ~ . CC 

..... 
.... 

~ 
ROY 

~ 

PAL 

""" from memory control logic -
CC is a condition code input and may be used as an external input for branch 
conditions in external code. It is not used in internal instructions. 

5.10.2 TMS34082 External SRAM Timing Analysis 

When connecting external SRAM to the TMS34082 for code space and/or data 
space on the MSD port, the following calculations can be used in determining 
the total SRAM access time. These times must also include any chip select 
decode delays. The general formula for computing SRAM access times is: 

(1/2) x tc(LC1) - tsu(MSD) - tp(LC1-MSAV) = SRAM access speed 

A description of these parameters is provided in Table 5-4. 

Table 5-4. Parameters Used for Calculating SRAM Speed 
Parameter Description 

tc(LC1) Local clock LCLK1 period: 1/fclock 

tsu(MSO) Setup time: MSO data before LCLK1 high 

tp (LC1-MSAV) Propagation delay: LCLK1 to MSA valid 

5-25 

---= .. ~~-~~,-~-~~".~----------------------------



MSD Bus Operation in Coprocessor Mode 
:-.. ..... ...:«"I. ...... ...:"oto-:-" ..... -..:";O'Y ...... Vb~: .... ""(t>., .......... "«"..v ..... ~-..x«"..v..«'..:-" ...... ""'*:-..-.;.:.... .......... ~ ..... ...t0.. ........... ""«\.v .... ~~ .......... ,~ ..... ...x-:-.."Yx"*"""~v .......... ~v.-..""*"'''Y»»>..''''--::-:.:,..~ ... :-:''' .. »:«-:-..'''«<~~ ....... :-x--..v ..... -.:'';O';.»».v .......... ~~'''''>..''«'"..v .... ~'X~'«<-"~;"'~h:< 

The time delay incurred by inserting decode logic between the TMS34082 and 
external SRAM memory would be subtracted from the left side ofthe equation. 
For example, if an SN74AS32 (with a propagation delay of 6 ns maximum) is 
used in generating the SRAM chip enable (CE), then the SRAM access time 
requirements would subsequently be decreased by 6 ns. 

5.10.3 Using External Code 

Adding external memory to the MSD port allows you to write customized 
subroutines for your applications. External code is executed by performing a 
jump to subroutine command issued by the TMS34020. 

The memory space is divided into a jump table and general-purpose memory 
for code and data, as shown in Figure 5-13. There are 32 entries into the 
subroutine jump table. The jump entry points start at address 0 and increment 
by 2. This allows two instructions (in the jump table) per subroutine. Using this 
memory organization, the jump table is relatively small, leaving the remaining 
memory to be partitioned as best suits your application. 

Figure 5-13. Memory Map for External Memory 

5-26 

Routine#O { 

Routine #1 { 

" 
Routine#2 { 

" 

Routine #31 { 

31 

--

~-

--

r-- -

- - -

- - -

- - -

• • • 
- - -

User-Defined 
Subroutines 

and Data 

o 

--

--

--

--

0000 Hex 

0002 Hex 

0004 Hex 

003E Hex 

0040 Hex 

• • • 
FFFF Hex 

Jump Table 

Coprocessor Mode 



MSD Bus Operation in Coprocessor Mode 
~·:--:-:·:;..:-:·:-:-): .. :;..»:;;..;",;-:-:-r ... X-:-:V:O-:OO:·:;":-~Vh:«-:-)o»:-""':-:-:-:--"':';"'--=-:";":-:;":-'-"':-:-'" ........ :·:(60x .. :-:-:-;.r..:,,«-:.:·:«..:...~·;...v .... :·:"'=":.-:«-':-:v:-:~-:·~:-:-: .. :~:-:-:-:;..:-:·:-:.:;..»:-:-y ... :--»y .... :->:-: .. :.:;..:-:-:.:.:-:..; .. :<?:.:-:-:;..;,:;..:-:.:.X«-;.:-:.:-:-: .. ;,;..:..;-:-:.:·:~:.:oo;:..; .. :·:-x·:·:·;..:-:-:-»:;..:-:-»:-:~:-:-»x-: .. y.,.:..:..;-:-: .... -.:~~»»;.:-:-:-~ 

Figure 5-14 illustrates how an external subroutine would execute. The final 
instruction in the subroutine should be a return from subroutine (RTS). This 
puts the TMS34082 in an idle mode, waiting for the next instruction from the 
TMS34020. 

Note: Before executing the final return from subroutine, the stack (SUBADDR1-0) must be empty. You 
may wish to save the contents of these registers in external memory. Then clear the stack pointers 
(bit 31) in both registers. 

Figure 5-14. Example Subroutine Using the Jump Table 

31 

CJMP A, 0100 Hex 

• • • 

• • • 
Shading Routine 

RTS 

Other Routines 
and Data 

o 
0000 Hex 

0002 Hex 

0004 Hex 

003E Hex 

0100 Hex 

FFFF Hex 

5-27 



TMS34020ITMSS4082ISRAM Code Example 
l~;=:Q:::Q=:aCl:C:::M'Q.:: .. Q.~:Q:::QQ::~V..r»"AV"':~:«~.h»~'««'":-w.~'«~V"":«-:-O-... :-'~~~~-':<OC'A~V ..... "<<<-XV:-:--"<<~"'"t~~.:--..... '»..~~*--.;",~.>~.,.~~~~~v~~~JC<<<I.""JtIooXIrrt..~~~.A~ 

5.11 TMS340201TMS340821SRAM Code Example 

5-2B 

This example describes a 3 x 3 by 3 x 3 matrix multiply routine using a 
subroutine stored in TMS34082 external SRAM. Data values for both matrices 
are stored in DRAMNRAM. Therefore, they must be fetched from memory and 
transferred to RA8-0 and R88-0 (using the memory address pOinters 
contained in TMS34020 registers 81 and 82, respectively). 

Description of operation: 

Algorithm: 

Coo = Aoo x Boo + A01 X BlO + A02 x B20 

C01 = Aoo x B01 + A01 x B11 + A02 x B21 

C02 = Aoo X B02 + A01 X B12 + A02 X B22 

ClO = A10 x Boo + A11 X BlO + A12 x B20 

C11 =A10 xB01 +A11 xB11 +A12xB21 

C12 = A10 x B02 + A11 x B12 + A12 x B22 

C20 = A20 x Boo + A21 x B10 + A22 x B20 

C21 = A20 x B01 + A21 x B11 + A22 x B21 

C22 = A20 x B02 + A21 x B12 + A22 x B22 

The register file contents before the routine are: 

RAO =Aoo 
RA1 = A01 

RA2 =A02 
RA3 = A10 
RA4 = A11 
RA5 =A12 
RA6 = A20 
RA? = A21 
RAB =A22 

RBO = Boo 
RB1 = B01 
RB2 = B02 
RB3 = B10 
RB4 = B11 
RB5 = B12 
RB6 = B20 
RB? = B21 
RBB = B22 

Coprocessor Mode 



TMS34020ITMS340B21SRAM Code Example 
-:~.:.:-:..;-::..;.:.:.:..;.:~;.:...;.:.:.: .. :-=.:-;,.:..: .. : .. :.: .. :.:-:.:-:-:.:..;·; .. :·:·:-:·:-:-:·:oo; .. ; .. : .. :-:..;..;.:·:--:·;·:-:·;·:..;·:-:·:·: .. ;·:-:-x";":-:-:":";.;-':-:":";-:-:-:0-:';":-;":":';.;";":.:";.:";":-:-:";-:':.:..;..;.: .. ;-:..;.:-:--:.:..;.:-:-:...:..;.:.:.: .. :..; .. :.: .. :.:-:.;..»:-:.:-:-:-:",.:-:-:o.:..;·;-:-:-x-:--;..:..;..:,·:-:·:-:..;·»;..:-:·y....:-:-:-..-..~~·m~:«·:-"'....: .. x..;.»:..;·:-:-:-:"'·»x..;-;-»:-»",,:-.:-;«.««·;..:-:-:<-=« 

The register file contents after the routine are: 

RAO = Coo 
RA1 = C01 
RA2 = C02 
RA3 = C10 
RA4 = C11 
RA5 = C12 
RA6 = C20 
RA7 = C21 
RA8 = C22 
CT = unknown 

RBO = Boo 
RB1 = B01 
RB2 = B02 
RB3 = B10 
RB4 = B11 
RB5 = B12 
RB6 = B20 
RB7 = B21 
RB8 = B22 

Examples 5-7 and 5-8 are the assembly language source listings for both the 
TMS34020 and the TMS34082. The TMS34082 listing is for the TMS34082 
external matrix multiply instructions contained in SRAM. Assume that the 
matrix multiply routine begins at address 3Eh in SRAM andthatthe SRAM area 
for constants is from address FEh through FFh. The timing diagram for this 
example is shown in Figure 5-15. 

Example 5-7. TMS34020 Assembler Listing for 3 x 3 by 3 x 3 Matrix Multiply 

MOVEF *B1+, RAO, 9 

MOVEF *B2+, RBO, 9 

CEXEC 0, OOOOFFF 

move first matrix to coprocessor register file A, 
starting at memory address contained in 34030 
register B1 
move second matrix to coprocessor register file B, 
starting at register file B, memory address 
contained in 34020 register B2 
coprocessor jump to external routine #31 decimal, at 
SRAM address 3Eh 

5-29 



TMSS4020ITMS34082/SRAM Code Example 
~v.-..~~>."""Y~v.-~ ...... ~~m..~»"'~~....m.v....x~"«~""'''''''~A''''X.~j>~,"?;':~~''':'«·~jo~"",»"h:OO:-»X'''''~~'"'t-X«·j>>>"'hj>X-:~>>-:~:·:->)"'''':'~)y'«Io"'k:-=--r..«~x.o:: .. >>:o->>-..v....:qh'>>-X~~~<O-"'~'"««<'~~ 

Example 5-8. TMS34082 Assembler Listing for 3 x 3 by 3 x 3 Matrix Multiply 

5-30 

segment code,memtype=O 
cjmp A, MAT 

; jump to matrix multiply routine 
MAT: ld CONFIG.i, all_pipes, I 

; load CONFIG register to turn on output registers (PIPES2=O) 
mult RAO.f, RBO.f, CT 

; AOO * BOO 
mult RAO.f, RBI.f, C 

; AOO * BOI 
mult.pass RAI.f, MULFB, RB3.f, CT, MULT 

; AOI * BIO' (AOO * BOO) + 0 
mult.pass RAI.f, MULFB, RB4.f, CT, MULT 

; AOI * BII' (AOO * BOI) + 0 
mult.add RA2.f, MULFB, RB6.f, ALUFB, CT, ALU 

; A02 * B20, (AOI * BIO) + (AOO * BOO) 
mult.add RA2.f, MULFB, RB7.f, ALUFB, CT, ALU 

; A02 * B21' (AOI * BII) + (AOO * BOI) 
mult.add RAO.f, MULFB, RB2.f, ALUFB, RAO, ALU 

; AOO * B02' (A02 * B20) + «AOI * BIO) + (AOO * BOO» COO 
mult.add RA3.f, MULFB, RBO.f, ALUFB, RAI, ALU 

; AIO * BOO' (A02 "I< B21) + «AOI "I< Bll) + (AOO "I< BOI» COl 
mult.pass RAI.f, MULFB, RBS.f, CT, MULT 

; AOI * B12' (AOO * B02) + 0 
mUlt.pass RA4.f, MULFB, RB3.f, CT, MULT 

; All * BIO' (AIO * BOO) + 0 
mult.add RA2.f, MULFB, RBS.f, ALUFB, CT, ALU 

; A02 "I< B22' (AOI "I< B12) + (AOO * B02) 
mult.add RAS.f, MULFB, RB6.f, ALUFB, CT, ALU 

; Al2 * B20' (All * BIO) + (AIO * BOO) 
mult.add RA3.f, MULFB, RBI.f, ALUFB, RA2, ALU 

; AIO * BOIr (A12 * B22) + «AOI * B12) + (AOO * B02» C02 
mult.add RA3.f, MULFB, RB2.f, ALUFB, RA3, ALU 

; AIO * B02' (A12 * B20) + «All * BIO) + (AIO * BOO» CIO 
mult.pass RA4.f, MULFB, RB4.f, CT, MULT 

; All * BII' (AIO * BOI) + 0 
mult.pass RA4.f, MULFB, RBS.f, CT, MULT 

; All * B12' (AIO * B02) + 0 
mult.add RAS.f, MULFB, RB7.f, ALUFB, CT, ALU 

; Al2 * B21' (All * BII) + (AIO * BOI) 
mult.add RAS.f, MULFB, RBS.f, ALUFB, CT, ALU 

; Al2 * B22' (All * Bn) + (AIO * B02) 
mult.add RA6.f, MULFB, RBO.f, ALUFB, RA4, ALU 

; A20 * BOO, (A12 * B21) + «All * BII) + (AIO * BOI» CII 
mult.add RA6.f, MULFB, RBI.f, ALUFB, RAS, ALU 

; A20 * BOI' (A12 * B22) + «All * B12) + (AIO * B02» Cl2 
mult.pass RA7.f, MULFB, RB3.f, CT, MULT 

; A21 * BIO' (A20 * BOO) + 0 
mult.pass RA7.f, MULFB, RB4.f, CT, MULT 

; A21 * BIIr (A20 * BOI) + 0 
mult.add RAS.f, MULFB, RB6.f, ALUFB, CT, ALU 

; A22 * B20' (A21 * BIO) + (A20 * BOO) 

Coprocessor Mode 



---------------------

TMS34020ITMS34082ISRAM Code Example 
(oo..~""'...:v:-:-:'X·:-"'~:-"'':·:':'':«-~:-:~:':.:~~~~X·:-:~-'';~",",= .. ~:a-x ... ~:«-.-..;.:.;~:,.x-''~»'' ..... »»:·;-:,.x"'·»;.:-:·:.:.-:-:->:;.x-:-:a;-:-:--;;:..;o...v.,: • .::.: ....... :.:..;.:.»:..;-:.:--;.:-:~:;.:,.:-:~:-->!« .. »:o-:"..:-:.:·:,,~:,.!«·::o-:,.:,-:·:-X«·:-: .. :..; .. :*:.;-:·:;.:.x-: ... v ... :-:-:""";.»:.y~v ... x.:-:/>".«..;..,V":";':"»:«-;':':-;o(<-".,.»:-:-;":';-:-''''': 

Example 5-8. TMS34082 Assembler Listing for 3x3 by 3x3 Matrix Multiply (Continued) 

mult.add RAB.f, MULFB, RB7.f, ALUFB, CT, ALU 
; A22 * B2V (A2I * B1I) + (A20 * BOI) 

mult.add RA6.f, MULFB, RB2.f, ALUFB, RA6, ALU 
; A20 * B02, (A22 * B20) + «A2I * BI0) + (A20 * BOO» C20 

mult.add RA7.f, MULFB, RBS.f, ALUFB, RA7, ALU 
; A2I * B12, (A22 * B2I) + «A21 * BII) + (A20 * BOl» C2I 

mult.pass RAB.f, MULFB, RBB.f, CT, MULT 
; A22 * B22' (A20 * B02) + 0 

pass MULFB.f, RAB 
i (A2I * B12) + 0 

add MULFB.f, ALUFB.f, CT 
(A22 * B22) + (A20 * B02) 

nop 
no operation 

add RAB.f, ALUFB, RAB.f 
(A2I * B12) + «A22 * B22) + (A20 * B20» C22 

nop 
no operation 

nop 
no operation 

ld CONFIG.i, pipeline_only, 1 
load configuration register to turn off output registers (PIPES2=1) 

rts 
return from subroutine, go to internal TMS340B2 wait state 

.segment data,memtype=l 
all-pipes: .data OxFFC08 

; CONFIG register setting for all pipeline registers enabled 
pipeline_only: .data OxFFC28 

; CONFIG register setting to turn off output registers only 

5-31 



TMSS4020ffMS34082ISRAM Code Example 
»WH .... ""'~'V.~~:-"'A«.;.Q.c.c~Cg::Q:::O~c~::Cia· ~:CQ:~,:Q ... Q:::.iX9'~y~....,.;.~,,:«~ .. )..»y .. x-:-;.:.:«..;." .. :·:-:--:-:-X~-:-r'h:-:*:"»:Y:-:"'!·:--h:",·:-;..:·:~ ... *:-:·;,x·:~"':-;.:",,:-:.:o.:-:~:";':-"h=«";·:-X-:-:·;':-;':..;·:·:o-:·~·:o-x·:·:·:-;..x-:·»:-x·»x..;*: ... ~'Vh»;':«~X·~ 

Figure 5-15. 3 x 3 Matrix Multiply Using External SRAM for Data Space and Code Space 
(Mode 3) 

LCLK1 

LCLK2 

RCA Bus 

LAD Bus 

SF 

Operation 

MSA Bus 

MSDBus 

DS/CS 

MCE 

MOE 

MWR 

5-32 

04101 041 01 04101 04 I 01 04 101 04101 041 

/ \_---
X 

u 

X 
J TMS340820pcode 

; X 

\ 
1stColumn """"+ 

Row X ( 

\ 

Address 

Operand 1 

( 

-------')-1 
L,~ ____ _ 

Send Transfer 
Fetch Instruction Opcode Output Address Operand 1 

From From Dead Cycle From From 
TMS34020 Cache TMS34020 TMS34020 DRAM to 

to to DRAM TMS34082 
TMS34082 

) 

) 

7 
7 
7 
7 

Coprocessor Mode 



TMS34020ITMS340821SRAM Code Example 
·:-:.:«·Y..<.«·:-:,..:·:.;·;~·:-:·: .... v..:«·:-:..;o.:,..:--:-"'.«,,·:-:.:ov::..;-:.:·:-:·:-:,..:";·:'·;-':·X-:·:-;:":·:":·:-: .. ~:-:·X-:":·:·:-=":·:":":-:·:·:·:.X-:·:.;.: .. :-:. .. :.: .. :.:.: .. :--.... :-:.;.: .. : .. :-:.: .. :-:.:.:.: .. :-:.: .. :-: .. : .. :.:-;..; .. :·: .. :·: .. ;·;-;.x..;·;o:,..:·:-:·:·:,..:·:..; .. ;-.:·x .. :-,:.:...:·:·:·:·:·:-:-:.:.: .. ;.: .. :--..v ... :-;.:.:-: .. : .. :·:.;..: .. :v:.=-: .. :-:..;o...~;.:o.;,,-;-.h-";'::";';':·:~v..-~~:-»:-::·»,~'V .... ~"oO-X":-;-:';';-:·;-:·:«-: 

Figure 5-15. 3 x 3 Matrix Multiply Using External SRAM for Data Space and Code Space 
(Mode 3) (Continued) 

1 01 04 I 01 04101 04101 04101 04101 

LCLK1 ••• 

LCLK2 ••• 

ALTCH ••• I \ 
RCA Bus ••• l 9th Column X X 

10th Column -:;z. 
Row X 

RAS ••• I \ 
CAS ••• 

WE ••• ;£ Operand 9 

D 
~ TMS34082 Opcode 

LAD Bus ••• i X 

SF ••• ,-l L( 
Transfer Send Transfer 

Operation ••• 
Operand 9 Opcode Output Address Operand 10 

From From Dead Cycle From From 
DRAM to TMS34020 TMS34020 DRAM to 

TMS34082 to to TMS34082 TMS34082 
TMS34082 

MSA Bus 

MSD Bus 

DS/CS 

( 

5-33 



TMS34020ffMS34082/SRAM Code Example 
~,"""X«««.»X«"»."V~~»'V~:»:«-»:->"~:'-<'~~:QtiC!:e;~:ClQ:~:::·:::<-»-..V"",""'~oQo"b..""'dMv.-..v .... "'«oO"..<0»~ .. »»"'~ ...... ~ ..... v.-;.:-:·»:<'-":-",,;o.:-:.y...:~;.x·:o-" .. :·~:·:~~'=";.:*:-:-.v.--:--.... x..;.:-".h.·· ......... ~"'="'»" .. :....~~x-::~~·x 

Figure 5-15. 3 x 3 Matrix Multiply Using External SRAM for Data Space and Code Space 
(Mode 3) (Continued) 

I 01 04 I 01 04101 04 101 04 I 01 

LCLK1 ••• 

LCLK2 ••• 

ALTCH ••• I \ I 

1 i 
c= 18th Column 

RCA Bus ••• X 

RAS ••• I 
CAS ••• '---1 U 
WE ••• Operand 18 

LAD Bus ••• 
i:JC TMS34082 Opcode 

SF ••• ~ y 

Operation ••• 

Transfer Send Jump 
Operand 18 Opcode Jump to to 

Load 

From From Subroutine Matrix 
TMS34082 

DRAM to TMS34020 Table Multiply 
Configuration 

TMS34082 to Routine 
Register 

TMS34082 

04101 

I 
MSABus 1 X Address ~ 

MSDBus 

DS/CS 

\~-----------------

5-34 Coprocessor Mode 



TMS34020ITMS34082ISRAM Code Example 
«.:..:-."",«oo:-:."",=,,,:..;.;.X":~;o.:-:--:«~ .. X":--;;':«:"'=":":":':~;':~VAlY.«.:--:o:.*:.:-»:.;.:..:-..":-:.:",=~:-;o.:~v ...... '""'''''b:'''=·;': .. :·:~:·: .. : .. :.-: .. :·:·:o.:·:« .. :·:,,·=-= .. :·: .. :·:.:..:.:-:-:--;.:.:« .. :.:-:..:.:.;.: .. :..;.:--;.=--:-:.:.:.:-:.;-~.,:--:-:-:-:.:--:..:-..v ...... ,=-.:--: .. :-',"«·:--",,«o(tox.x~ ..... -.:-:-:..;.:a.~....: .. »:--..«o:.«·:·:·:-""";.xoo:-.v..:-..~« .. :-:~»: ... ~-:·:·x,,-:-:";'»;:."''«0:.« 

Figure 5-15 3 x 3 Matrix Multiply Using External SRAM for Data Space and Code Space 
(Mode 3) (Continued) 

04101 04 1 01 04101 041 01 02 

Store 2nd Result . ~ 

\ 
Store 1 st Reslt ~ \ 

\ 
\ \ 

Calculate 1 st Result I \ \ 
Calculate 2nd Result 

Addr 

Multi 
Add 

Load CONFIG Register 

Configuration Data 

Jump to '03FF'h 

1 01 04101 041 

... IU'---J 

... SLIL 
••• 

••• 

••• 

••• 

••• 
Store 9th Reslt ~ 

••• 

••• 

••• 

••• 

tt. 

••• 

••• 

••• 

••• 

Calculate 9th 
Result 

\ 
\ 
\ 

\ 

Load 
TMS34082 

CON FIG Reg. 

X Addr X Addr X Addr X Addr X 

I 
fVVVV 

-----~--.~-.-~ 

LCLK1 

LCLK2 

RCA Bus 

LAD Bus 

SF 

Operation 

MSA Bus 

MSD Bus 

DS/CS 

MCE 

MOE 

MWR 

5-35 



Multiple TMSS4082s 
»"~"'~'~VA'~~~~~~,,«, .... ~)o"' ..... ~,"«, ... "«-..V .... ~V"':*,,~)"N»'VU~~-:-", ..... ~·»»co-..v.«oQ>:O-:-:.»""'V:«-:":-""0..""=.:.»Y.r..~"'Vx.:o-..V"«oQ\,v ... :«,,:o-).'X.,..,"'V~ ........... -...~~..«~-...~)I'~ ..... ~ ..... ~~"«-."'V:.: 

5.12 Multiple TMS34082s 

5-36 

More than one coprocessor may be connected to the TMS34020 by setting the 
appropriate coprocessor 10 field (CID2-0). Up to seven TMS34082s may be 
used with each TMS34020. See Figure 5-16. Assuming that each TMS34082 
CORDY pin has a separate pull-up resistor, the TMS34020 can determine 
which coprocessors are present in the system by writing to and reading from 
TMS34082 register locations. 

Coprocessor Mode 



---~-.---.-~.--... --------. 

Multiple TMS34082s 
«.;.""b..--:-C-~«*:.':-»'~'«<"'''':-:-:'-'':-''h..,«":-:.:«""....:.y,:-»:«"",:..;.o: ... ''''V--:..;o..v....:~:-»: .. :--.«..;~,»,,, ... :·:-:.:«·X.:-:·;--h:-:-:-;.;O':-:-:;.;.x-:·;.:.; .. jo" .... :·:-:·=-:..;.:-:·;-:..;;·:--:·:«·;.x..;·:·:-:·:-:·;.:-:·»:·x .. :-:ot-"'..«-:·:--:·:o.:·:·:·,:,.:·:·;.:,..:·:~·;o.;:·:-:·;.;.;o.:«-:-:o.:·;·:-:o-:-:..;·:..;.;.:..;:·:..;.:-:-:·:·»:"",:-:-:·:-:·;.:.-:-.:-:·:·;,x-:..;-.:-:·:..;·;.:-:-: 

Figure 5-15. TMS34020 with Multiple TMS340821SRAM Blocks (MEMCFG = L) 

P= 
1< '" .... A031-0 ) LOE .... 

,/ MS031-0 ) 031-0 -.. 
ALTCH ..... "-~ .. 
BUSFLT: 

.... 
MSA12-0 ) A1S-0 _ .. 

OS/CS 
.. 

A16
SRAM RAS ... . .. 

v 
CASO -.:: MCE 

... 
v - .. 

MOE 
... CE 

WE ... .. 
OE v ..-

TMS34082 MWR 
... 

SF .. .. WE 
RESET: 

... 

LCLK1 : 
v ... 

LCLK2 .. ... CIOO 
v ..... COINT"- , 

CI01 .A .... 
V'" LROY -"" 

... } COPROCESSOR K lA031-O .> -.... 
... ... 

v COROYO 
... CI02 10 

ALTCH 
~ ... -== / .... 

BUSFLT 

RAS "-
CASO " P= 
WE " .... .... 

TMS34020 

" < LA031-0 ) LOE .A ... 
SF MS031-0 ) 031-0 ~ --" , 

"" ALTCH ... 
... .. 

RESET 
BUSFLT: 

LCLK1 " MSA12-0 ) A1S-0 
RAS : 

v 
SRAM " OS/CS ... 

LCLK2 
CASO : 

... A16 
... COINT "" MCE .... 

CE ... .. 
MOE .... 

" WE ... .. .... LROY ... ... 
MWR 

... OE 
n. .. "" SF .... TMS34082 ... WE 

...... RESET'" 
... 

.....- ... 
LCLK1 ... 

LCLK2 : ~ CIDO+5V} 
.... COINT 

: CI01 COPROCESSOR 
r LROY ... ~ CI02 J:. 10 ...... ... 

.... COROY1 -
-- ... COROYO ... 

... COROY1 .... 
PAL 

.. from memory control logic .... -
When CID2-0 = 1002. the TMS34020 broadcasts the instruction to all 
coprocessors. Broadcast reads by the TMS34082s are not permitted and are 
ignored. 

Using the TMS34020 assembler directive called .coproc, the coprocessor ID 
number (between 0 and 7) may be set for generic coprocessor instructions. 
This directive maintains the coprocessor ID until another directive is received. 
An example follows where the default coprocessor I D is set to 1 and then to O. 

5-37 



Multiple TMS34082s 
Y.o>;.:-;.:-: ... -:-:« .... v.,.:-:-: .. ;-:.X-:·;·joh-..: .. y .... '-:..;·:-;..:o.;-:·;·:-:-:-;·;.:-:-:-:·:-:-:;«·»>:~:·jo»:·y .... ;..;.:·:-r ... ;o.:-:·:-;..:..;-: ..... :«-:-: .... :·m ........ :-:-:·~ .... :-;-:o-:-:-:,,-:·»:-:-;~:-:-:-:·:·jox-::·:-:,.:..:-:-:·;,.='-:·;.:·:.;-; .. :-;.:..;-:~:·w.-:--:,:.;-::·:·;.:-;-:·: .. :·:-:-;-:--...:..;-;-:·~->x·x«.;.:-:..;.;.:->:..;.:-jo: .. x·:-»:*x·x..;or..«-::·:·:.: .. :-:·»:o::-:·:-r..ot"«,,,", ... >:-:·:-;,,:·:~y .... :-; 

Example 5-9. Assembler Code for Multiple TMS34082s 

5-38 

.coproc 1 

MPYF 
ADDF 
SQRTF 

.coproc 0 

SUB 

SUB 

; set the default coprocessor ID to 001 for the following 
; instructions 
RA2,RBO,RA8 
RA8,RB2,RA5 
RA5,RA5 
; set the default coprocessor ID to 000 for the following 
; instructions 
RAO,C,RAO 
RA1,C,RA1 

Thus, while coprocessor 1 is still calculating its floating-point square root, 
coprocessor 0 is performing integer subtracts.For additional details on the 
assembler directives, refer to the TMS340 Family Code Generation Tools 
User's Guide. 

Coprocessor Mode 



Chapter 6 

Operation in the host-independent mode assumes that the MSTR input signal 
is set high. The TMS34082 has several hardware control signals, as well as 
programmable features, which support system functions such as initialization, 
data transfer, or interrupts in host-independent mode. Details of initialization, 
LAD bus (LAD31-0) and MSD bus (MSD31-0) interface control, and interrupt 
handling are provided in this chapter. 

6-1 



Initialization 

6.1 Initialization 

The following sections detail pin connections and initialization in 
host-independent mode. 

6.1.1 Pin Connections 

When operating in host-independent mode, you should connect TMS34082 
pins as shown in Table 6-1. 

Table 6-1. Pin Connections 

Signal Name Description Logic Level 

SF Special function input; not used in host-independent mode tie low 

RAS Row Address Strobe; not used in host-independent mode tie low 

CID2-0 Coprocessor I D; not used in host-independent mode tie low 

LCLK1-2 Local clocks for coprocessor mode tie low 

MSTR Host-independent/coprocessor mode select tie high 

EC1-0 Emulator mode control tie high 

TCK Test Clock tie low 

6.1.2 Bootstrap Loader 

6-2 

To simplify initialization of external program memory, the TMS34082 provides 
a bootstrap loader. Once invoked, the loader causes the TMS34082 to read 
65 words from the LAD bus and write 64 words to the external program memory 
on the MSD bus. The first word read is used to initialize the configuration 
register. The remaining words are instructions written to the code space of 
external memory, starting at address o. 

To invoke the loader: 

1) Set RESET low 

2) Set INTR low 

3) After the minimum pulse duration, set RESET and INTR high again 

As shown in Figure 6-1, RESET must remain low while INTR is pulled low. 
During the initialization, the TMS34082 is reset. Internal states and status are 
cleared, but data registers are not affected; the control registers return to their 
default values. 

Host-Independent Mode 



----------~-

Initialization 

Figure 6-1. Bootstrap Loader 

elK 

lAD31-0 

MSD31-O 

••• 

••• 

••• 

••• config. data 

XXXXXXXXXXXXXXXXXXXXXXXXXX1stinstrword) ••• 

Loader operation begins on the second clock cycle after RESET and INTR 
return high. The first word is read into the configuration register on the rising 
edge ofthe third clock. Each successive rising edge loads an instruction word. 
The instruction word is output on the MSD bus one clock cycle after it is input 
on the LAD bus. 

Once the loader is activated, an external interrupt (signaled by iNfR low) is not 
granted until the load sequence is finished. However, RESET going low 
terminates the loader. When the load sequence is finished, program execution 
begins at external address O. 

6-3 



LAD Bus 

6.2 LAD Bus 

In host-independent mode, the LAD bus is used to transfer data or instructions 
to and from the TMS34082 or the MSD bus. Instruction words may be 
transferred from the LAD bus to the MSD bus, but instructions cannot be input 
to the TMS34082 from the LAD bus. Details of LAD bus control and data input 
are given in the following sections. 

6.2.1 Control Signals 

Data transfers on the LAD bus are controlled primarily by the following signals: 

ALTCH, the address write strobe 

CAS, the memory read strobe 

WE, the memory write enable 

The TMS34082 outputs an address during a cycle when ALTCH is low. The 
address may be latched externally on the rising edge of ALTCH. Because all 
32 bits of the LAD bus can be used for an address, the LAD bus accesses up 
to 4G 32-bit words of memory. 

When WE is low, data is output by the TMS34082 on the LAD bus. If multiple 
32-bit words are output, WE toggles high at each rising clock edge, then returns 
low. 

When CAS is low, the LAD bus is an input, reading data into the TMS34082. 
When multiple words are input, CAS toggles at each rising clock edge. 

If a bidirectional FIFO is used instead of memory, CAS can be directly 
connected to the read clock and WE to the write clock. The CC input can be 
used to signal the TMS34082 when data is ready for inputfrom the FIFO stack. 
(See Figures 6-2 and 6-3 for possible configurations.) 

Figure 6-2. Using FIFOs on the LAD Bus 

Read ClK L.. ~ CAS ~ 

TMS34082 
... Bidirectional ... Data 

Host .. 
FIFO LAD31-0 

Write ClK 
... -. WE ... --

6-4 Host-Independent Mode 



LAD Bus 

If LADCFG is set high in the configuration register, COINT defines bus cycle 
boundaries. If an indirect move to or from the LAD bus is coded with the 
C bit (bit 1) set high, COl NT goes low at the beginning ofthe move and remains 
low until the move is complete. COINT can be used to select a device on the 
LAD bus, as shown in Figure 6-2. In this case, COINT is the output enable for 
a FIFO. 

Figure 6-3. Using COINT as a Device Select (LADCFG=H) 

Unload ClK l'" 
,... 

CAS 

TMS34082 

..oil ~~ 
Data .. 

Host '" .. FIFO .. LAD31-0 

OE ~ COINT 

The TMS34082 only drives the LAD bus during instructions that output an 
address or data. The LAD bus drivers are disabled at any other time. 

LOE, the LAD bus output enable, enables and disables the LAD bus. The LAD 
bus is placed in a high-impedance state when LOE is high. However, bringing 
LOE low does not cause the LAD bus drivers to turn on. The instruction being 
executed must also enable the drivers. 

If no other processors share the LAD bus, LOE may be tied low. Other wise, 
LOE may be used to prevent bus conflicts between the TMS34082 and other 
system masters. 

LADCFG controls the signals affected by LOE. If LADCFG is high, setting LOE 
high also disables CAS and WE. When LADCFG is low, COINT is a 
user-programmable output. LOE does not affect CAS or WE. 

6.2.2 Immediate Data Transfers 

Data input on the LAD bus can be written to data registers, control registers, 
or passed through for output on the MSD bus. Alternatively, the LAD bus input 
can be selected directly as an FPU source operand without writing to a register. 

The clock period may be extended for immediate data inputthat does not meet 
the minimum data setup time. The clock is stretched by the data delay plus 
5 ns. Refer to TMS34082 data sheet timing diagrams for additional 
information. 

An FPU result can be written to a data register and passed out to the LAD bus. 
When this is done, the minimum clock period is extended by 15 ns 
(TMS34082-40) to allow for the propagation delay from the FPU core to the 
outputs. 

6-5 



LAD Bus 

6-6 

Depending on the specific system implementation, transferring data to and 
from the LAD bus without intervening register operations can significantly 
improve throughput. Data moves to and from internal registers can be 
minimized at the cost of adjusting the clock period to assure integrity of FPU 
results onto the LAD bus. 

Host-Independent Mode 



6.3 MSD Bus 

MSDBus 

The MSD bus can be used to access either external data memory or external 
code memory, depending on the combination of control signals required. In the 
host-independent mode, the MSO bus is the source for all instructions. Data 
can also be transferred to or from the TMS34082 over the MSO bus, and data 
transfers between the LAD and MSO buses are possible. 

6.3.1 MSD Bus Control Signals 

Up to 64K 32-bit data operands and 64K instructions may be directly 
addressed on the MSD bus. The address of memory is output on MSA15-0. 

External memory operations are controlled by: 

DS/CS, data space/code space select 

MCE, memory chip enable 

MOE, memory output enable 

MWR, memory write enable 

MAE, MSO bus output enable 

When memory configuration (MEMCFG) is low, OS/CS functions as the most 
significant address bit. DS/CS high selects data memory; OS/CS low selects 
code memory. MCE is the memory chip enable for both code and data memory. 

When MEMCFG is high, DS/CS is the chip select for data memory and MCE 
is the chip select for code memory. This may eliminate the need for an external 
inverter. 

The TMS34082 outputs data on the MSD bus when MWR and MAE are low. 
Otherwise, the device does not drive the MSO bus. If memory on the MSO bus 
is not shared, MAE can be tied low. 

If the memory on the MSD port is shared with a host processor, the MAE and 
ROY signals can be used to prevent conflicts between the TMS34082 and the 
host processor. The host processor can monitor the state of MCE (for 
MEMCFG low) to determine when the TMS34082 is not accessing memory. 
If MCE is not active, the host processor takes control of theMSD bus by 
asserting MAE and ROY low. Setting ROY low halts the TMS34082. 

6-7 



MSD Bus/Reset 

6.3.2 Memory Models 

6.4 Reset 

6-8 

The TMS34082 Software Tool Kit supports three memory models: small, 
medium, and large. 

The small memory model places the code and data inthe same memory space. 
DS/CS is unused. The maximum memory allowed is 64K 32-bit words, a 
combination of instructions and data. 

The medium memory model uses separate data and code spaces. Up to 64K 
of data words and 64K of instructions are accessed. 

The large memory model partitions the code space into banks, each containing 
64K words. External segment registers determine which bank is being 
accessed. Constants are stored in the same bank as the code that uses them. 
Variable data is stored in memory on the LAD bus. For more information on 
segment register requirements, see the TMS34082 Software Tool Kit User's 
Guide. 

The TMS34082 is reset when the RESET input is brought low. RESET is an 
asynchronous signal that requires no setup or hold times with respect to the 
clock~ However, the minimum pulse duration requirement must be met. Data 
registers are not affected by reset. 

Upon reset, all internal states and pipeline registers are cleared. Control 
registers return to their default values, except for the interrupt register which 
is unaffected. Data registers are also not affected by reset. The state of control 
signals during reset is listed in Chapter 4, Table 4-10. 

The TMS34082 ignores the first rising clock edge after RESET is returned high. 
Program execution begins on the second cycle at address O. RESET is also 
used in conjunction with the INTR signal to call a bootstrap loader~ This 
operation is detailed in subsection 6.1.2. 

Host-Independent Mode 



Wait States/User Programmable Outputs/Conditional Code Input 
-:-: .. ~:-:«..;.:-:-:-:.;;:.:-:-:-:.:.»:-:.:-: .. :-:-:.:--~:-:-:.:-: .. :~:.:...:.:-:..;.:.:o-;-:..;.:-::-:.:-:-:, .. :-:.;..;.;.:.:.:-:.;.:.: .. :..;-:.:-:.:-r ... ;.: .. :..:oo:..;.:-:.:..; .. :-:.:-:-: .. :..;.:.:..;.:-:-:0.:-: .. :..;.: ... ....:,.;.:.:.:-:.:.;,.:.:.:-:-:-:.:-: .. :---...:«·:«.:-;..:-:·;o.:-:·:":.:-»;':-:.:-:":·:-:-:-::·:--"':-:-:·:-:-:--:'X"»:f".,.;.;..:.:-:·:.-... x-:~"":.:",.:.:-:.:-:.:-:-:"""-;-:-:,,:.:-:--,v"":«'·:"'J"A~:·;':-:-:o.;."'hX«·X-:·:-,,...:-:-: .. :-:..:,,-:.:.:« 

6.5 Wait States 

Setting ROY low causes the TMS34082 to stall. This input can be used to 
create wait states for slow memory accesses. Stalling the device does not 
affect any internal states or registers and output lines do not change. 

In host-independent mode, LRDY can be used to stall the device. The function 
and timing are the same as ROY. 

ROY (or LRDY) must be set Iowa minimum setup time before the rising clock 
edge you wish to inhibit. Operation resumes on the next rising clock edge after 
ROY (or LRDY) is set high. Again, there is a minimum setup time requirement 
before that clock edge. 

6.6 User Programmable Outputs 

In the host-independent mode, CORDY is a user-programmable output. Ifthe 
LADCFG bit in the configuration register is low, COINT is also a 
user-programmable output. When LADCFG is high, cal NT is used in LAD bus 
moves and is not programmable. 

CORDY (or COINT) is set high or low using the set mask instruction. CORDY 
(or COINT) remains at that setting until it is changed by another set mask 
instruction. COINT and CORDY are seVreset independent of each other. 

6.7 Conditional Code Input 

The CC pin is an external condition code input. A conditional jump to subroutine 
or conditional branch can be performed based on the state of this pin. 

The CC input allows you to control program flow based on some external status 
from other devices in your system. By polling this input, you can determine, for 
example, if a host processor has an instruction queued for the TMS34082. 

6-9 



Interrupts 
~x«~~"'"'X'\.~-.v.-.."IO>..",,";'»)o.~ .... ,=«-:-"~oo)o,.~'»y .... ~:-..--v.~:-=«".V~·~-»~'.:«""A-":~V ..... ~-»:-:-:";-"'v.-:--:..;...v.-):~v .... :..;-:-»»:o.:v;:o.:*:o-.-..:·;a»):..;.):·: .. ».. .. :-~:-:-:-:.-..-..:*;..):-:~;..:·:*:««·;..:o.;<·»=««"x-:-:-:·:0:-;..:..;..;·:-:-)>»;..,~ ...... '"""'»."'«'".. ......... ~;..:«·): .. :--:.,...,v.-:;O':« 

6.8 Interrupts 

The TMS34082 supports three types of interrupts in host-independent mode: 
hardware, software, and exception detects. Each ofthese has its own interrupt 
enable. 

6.8.1 Hardware Interrupts 

Upon power up or reset, hardware interrupts are disabled. Before enabling 
interrupts, the address of the interrupt handling routine should be stored in the 
interrupt address register. Hardware interrupts are enabled by setting 
INTENHW (bit 15 of the status register) high using the set mask instruction. 
A hardware interrupt is then signaled by setting INTR low. 

When a hardware interrupt is received, the current program counter is pushed 
into the interrupt return register. The hardware interrupt flag, H I NT (bit 4 of the 
status register), and interrupt grant, INTG, are set high. The interrupt mask is 
saved and a" interrupts are disabled. The address in the interrupt vector is 
output to MSA 15-0, causing a branch to the interrupt service routine. 

After the interrupt service routine, the interrupts should be enabled again 
before a return from interrupt instruction is executed. Restoring the hardware 
interrupt clears the HINT flag and INTG. 

Only one hardware interrupt may be queued. If a hardware interrupt is received 
while the first interrupt is being processed, the interrupt is recorded and 
serviced after the first interrupt sequence is finished. If a third or subsequent 
hardware interrupt is signaled, it will be ignored. 

If a hardware interrupt is received during a multicycle instruction (such as 
divides, square roots, or moves), the interrupt is queued and serviced after the 
instruction is completed. 

6.8.2 Software Interrupts 

6-10 

Upon power up or reset, software interrupts are disabled. Before enabling 
interrupts, the address of the interrupt handling routine should be stored in the 
interrupt address register. Software interrupts are enabled by setting 
I NTENSW (bit 11 of the status register) high using the set mask instruction. An 
interrupt is then signaled by using the set mask instruction to send a software 
interrupt. 

When a software interrupt is received, the current program counter is pushed 
into the interrupt return register. The software interrupt flag, INTFLG (bit 16 of 
the status register), and INTG is set high. The address in the interrupt vector 
is output to MSA 15-0, causing a branch to the interrupt service routine. 

The interrupts should be re-enabled before a return from interrupt instruction 
is executed. Restoring the software interrupt clears the HINT flag. 

Host-Independent Mode 



Interrupts 
~..;o..."to>:--;o;;...:~x.:-.,. ......... -..;<.y",:"~~x<"':">x·:~x·:";'::·:""'"i:~""'x...:..z...:«""...:·;.:vx.,,,,~:·;a:·:":v:-:·:·:"-:-:·:·~:-;,:·»"";,»:·:-;,:,,,:~":--:·»:·x·;.:..;.:·»:..;·:-,, ... :·:·:O-:·»:,.:<-:·:--:<-:-;..:-::*:...-..:.,...., .......... ~-:--:·:...:..;..,.., ...... h""'<<<·: .. :·»;.~:·: .. :9X('O-: .. »»:..;-»: ... -..;OO!,,~..«-:...:-:-..-..;..:.:.»»:o-:-..-..;<~;.:;.<"....:~:-.,-:--:--:y:-=--v..:-:<...:<.:«*:...:...: .. :« 

Because hardware interrupts may be queued, a hardware interrupt received 
while a software interrupt is being processed is recorded and serviced after the 
software interrupt is complete. This assumes the hardware interrupt was 
enabled before the software interrupt was received. If another hardware 
interrupt is signaled, it will be ignored. 

6.8.3 Exception Detect Interrupts 

A third type of interrupt is the exception detect interrupt. In the event of an F PU 
status exception in host-independent mode, the internal ED signal (bit 18 ofthe 
status register) is set high, causing an exception detect interrupt. If interrupts 
based on specific exceptions are not desired, the exceptions can be masked 
from the error detect (ED) logic by using the appropriate bits in the 
configuration register. 

Upon power up or reset, exception detect interrupts are disabled. Before 
enabling interrupts, the address of the exception handling routine should be 
stored in the interrupt address register. Exception interrupts are enabled by 
setting INTENED (bit 12 of the status register) high using the set mask 
instruction. 

When an error is detected and ED interrupts are enabled, the current program 
counter is pushed into the interrupt return register. ED is set high. The address 
in the interrupt vector is output to MSA 15-0, causing a branch to the interrupt 
service routine. 

The interrupts should be restored before a return from interrupt instruction is 
executed. Restoring interrupts clears the ED flag. 

Because hardware interrupts may be queued, a hardware interrupt received 
while an exception interrupt is being processed is recorded and serviced after 
the first interrupt is finished. This assumes the hardware interrupt was enabled 
before the exception interrupt was received. If another hardware interrupt is 
signaled, it will be ignored. 

6-11 



6-12 Host-Independent Mode 



Chapter 7 

Internal Instructions 

The TMS34082 internal instruction set includes arithmetic and logical 
operations, as well as complex instructions stored in an internal program ROM. 
Several addressing modes are available for internal instructions in addition to 
data types for integer, single- and double-precision floating-point formats. 

In the coprocessor mode, the TMS34082 executes internal instructions 
through the LAD bus as shown in Figure 7-1. 

Figure 7-1. Source for Internal Instructions in Coprocessor Mode 

TMS34020 
Data and 

TMS34082 Internal Instructions 
.AI .... 

LAD .... ... LAD MSD 

In the host-independent mode, an internal instruction can be executed by 
jumping to the proper internal ROM address. Chapter 8 of this manual shows 
thecorrectsyntaxfortheJSR (jumptosubroutine) and CJSR (conditionaljump 
to subroutine) instructions. 

7-1 



Internal Instructions Overview 

7.1 Internal Instructions Overview 

7-2 

The TMS34082 FPU performs a wide range of internal arithmetic and logical 
operations, as we" as complex operations (flagged t), summarized below. 
Complex instructions are multicycle routines stored in the internal program 
ROM. These form a powerful set of primitives for graphics operations. 

One Operand Operations 

Absolute Value 
Square Root 
Reciprocal t 

Conversions 

Integer to Single-Precision 
Integer to Double-Precision 
Single- to Double-Precision 

Two Operand Operations 

Add 
Subtract 
Compare 

Matrix Operations 

4x4, 4x4 Multiply t 
1 x4, 4x4 Multiply t 

Graphics Operations 

Backface Testing t 
Polygon Clipping t 
2-D Linear Interpolation t 
2-D Window Compare t 
2-Plane Clipping (X, Y, X)t 
2-D Cubic Spline f 

Image Processing 

3x3 Convolution t 

Chained Operations 

Polynomial Expansion t 
1-0 MiniMax t 

Vector Operations 

Addt 
Subtractt 
Magnitudet 
Scalingt 

t Indicates complex instructions 

1 s Complement 
2s Complement 

Single-Precision to Integer 
Double-Precision to Integer 
Double- to Single-Precision 

Multiply 
Divide 

3x3, 3x3 MuJtiplyt 
1 x3, 3x3 Multiply t 

Polygon Elimination t 
Viewport Scaling and Conversion t 
3-D Linear Interpolation t 
3-D Volume Compare t 
2-Plane Color Clipping (R, B, G, I) t 
3-D Cubic Spline t 

Multiply/Accumulate t 
2-D Min/Max t 

Dot Product t 
Cross Product t 
Normalization t 
Reflection t 

Internal Instructions 



Internal Instructions Overview 

The internal routines can be used in either coprocessor or host-independent 
mode. In coprocessor mode, the internal routines are invoked by TMS34020 
instructions to its coprocessor{s). When the TMS34082 is used as a 
stand-alone processor, the internal microprograms can be called as 
subroutines by the externally stored code. 

7-3 



Complex Graphics Instructions 
~~""'":~~-,,:,:-,""«"X';':"'V~"""""'A,,",*:~;.»,, ..... ~:«-s.Vh»:-»»»..'"«-t."":-»:-..v..:«.:-;.:.;.:.:-r ... :...;~:"":«9':"':--:~:-:,....~·:..;·:-:.;.:-:-:-:..::~ .. :-;.~:..;·;o.:':";""=·*:--:';"X·~~:~";«~:«";":-»=-»'X"::-:-»:";~:-:-:«,,:-: .... "«·»;,,,'"<*:-:-: .... ~,",,-:--""';"'~:«·:-:-X0='''':«'':-:'''~OO»;':-'''»»:'';·:-:-''''''''oo:~;'=«·: 

7.2 Complex Graphics Instructions 

The internal complex instructions may be combined to form a 3-~ graphics 
pipeline. A typical 3-D graphics pipeline includes three major operations on the 
input object database. The object database is first manipulated to generate 
normal vectors, and then transformed. The color and intensity values are also 
calculated. The second step involves the clipping of the objects to the viewing 
volume. Finally, the objects are displayed according to the rendering style 
selected. Figure 7-2 shows a typical 3-D graphics pipeline using the complex 
instructions. 

Figure 7-2. 3-D Graphics Pipeline Using TMS34082 Complex Instructions 

VSUB,VSCL 

VRFLCT, VDOT, VCROS, VMAG, VNORM 

BACKF 

CUPFX, CLlPFY, CUPFZ, CUPRX, CUPRY, 

CUPRZ, OUTC3X, OUTC3Y, OUTC3Z 

CUPCF, CUPCR 

SCALE 

L _____________________________________________ ~ 

7-4 Internal Instructions 



Complex Graphics Instructions 
-:"'~;." .. :r-:-:. .. ;.:-;: ... -...;.:-:->:",.;.»:,,·:.»~·;.:o-..-..:~.;.:-x-:-:-:.:«.;.;-:« .... "':.ot~V"«'-:-»:-:-: .. )I"..c««.:«-;~ ... ,-:..;-:.x«·:..:o.:-:-:-;..:«-:.,.Jt-:-: .. :-:·:«·:-;..x-:·: .. :·:-:-:..;.:-;·:-:·:-:-X-:·:-:-:-:-:"'jo:·:-:«·:..;-:·:·~·:·:·:-x·:-:·:·:·:·:·:·:·;..: .. :",.:-;..:.:-:.:-:-: .. :-:.:O-jo;..;..:.:-:-:;.;..;.;.:-;..:.:.:.~.: .. ;.:.jo:.:-:.;';-;.:00;:.:-:.:.:-;.;.;.;.;..;..;.:-:.:-:-.:0-:-:-:-: ...... ; .. :0-: .. :.:-,: 

The complex instructions used in the polygon clipping mechanism can be 
organized into three functional groups. The first set consists of a single test 
(BACKF) to determine whether the polygon is forward or backward facing. The 
second set of instructions (CKVTXI , CKVTX) performs a test to trivially accept 
or reject a polygon as being visible by checking the vertex coordinates against 
the viewing volume. The third set of instructions (OUTC3X, OUTC3Y, 
OUTC3Z, CUPFX, CUPFY, CUPFZ, CUPRX, CUPRY, CUPRZ, CLlPCF, 
CUPCR) determines whether the polygon edge crosses the viewing volume 
boundary and generates the new vertices and color values for the clipped 
polygon. 

The complex instructions are implemented to make efficient use of the 
TMS34082 Registers and internal status is maintained throughoutthe clipping 
mechanism, thus allowing successive polygon edges to be clipped without 
repeated loading of vertex information. Figure 7-3 details the clipping portion 
of the pipeline. 

7-5 



Complex Graphics Instructions 
;.:.y ... :a;.:.:-;.: .. =-»:-:..;..;-:.;.=«":-:--..v.«-:.»!.~~Q''«-»:'''"*~''''''X-:ot-..~v.-:.:-::« .. ,,,-»,;.x«,,)1'' ...... -'';':'»:«".v ..... ~:...-.:,...~....:.;.: .... -..:.:.: .. :-»t«'l. ............ »:-:-:-:-:.:.:..;-:.;.:.;.:-:-::*;..."'..;~:.X«-:-:-:-:·:.:.:--:-;..;.;.:.:.:·:-:.:.:-:.·;.:.... .. :-:·:..:-:-:.·:·:·:-:-:-: .... »x«·;..:-:-:-->"' ... :-:.,.,,-..;..;.:-: .. :.:<~~ ... ~v..:-:-»"' ..... ",",.,."v~~""" 

Figure 7-3. 3-~ Polygon Clipping Flow Chart 

yes 

no 

7-6 

Initialize CKVTX 

Check polygon vertices 
for trivial accept/reject 

Internal Instructions 



Internal Routine Addresses and Cycle Counts 
~ .. :-:.x-:.: .. :-: .. :"= .. : .. ;..:.;-:.:-; .... "':-:.»:";~""" ... ;..:->:-:.~,,,,=,,:.»:-:.;.;.;.:.:.:--»x·;o.;":"'::';·:-:-:·:-:-:·:-;":"J':·:.;.;-:.; .. ;:.:..;-:·:·:..;·:·:~:-:-.: ...... ;"jo:-:-:*x·;..;-x·:-:·;..:-:·:-:·;..;..; .. :·:--: .. ;..:...::-:·;.:·:·:-:·;.:,.:·;.:·;..;..:-x·;..:-:·:-:·:·»:-:·~·;",,,-:-:·;,,;,;-:,,:",,,:-:-:--;-:-:-»,,"Io));oI;·~~-:"'»:":-:"~M"""':-:~:-;":"-:';·:-:-:";-:.;.:.;..;.;..:,;.v...;.;.o.....,...»:..;..;.;." .... :.:-: .. »:,,-: .. :.;,:-~ 

7.3 Internal Routine Addresses and Cycle Counts 

External programs can call internal routines by executing ajumpto subroutine 
with bit 16 (internal code select) set high and the address of the internal routine 
as the jump address. Internal routine addresses are given in Table 7-1. 

The following table lists internal routines, their addresses, and the number of 
machine states required to complete the routine. The number in parenthesis 
after the machine states is the number of cycles before the next operation may 
begin. For example, it takes five clock cycles to complete an integer CPW 
(compare point to window) instruction where the status and results are valid; 
it wou Id take 4 cycles after the C PW began executing before another operation 
to begin. In coprocessor mode, a machine state is half an LCLK1 period. 
Therefore, the number of LCLK1 cycles required is the number of machine 
states divided by 2. In host-independent mode, a machine state is one CLK 
period. 

These cycle counts are for mode 0 instructions only (no data transfers) after 
the instruction reaches the TMS34082. Only mode 0 instructions may be used 
in host-independent mode. In coprocessor mode, the time required to execute 
mode 1 and mode 2 instructions is the same as the related mode 1 instruction 
afterboth instruction and data have reached the TMS34082. The TMS34020 
takes one LCLK1 cycle to output a mode 0 instruction and two (one-operand) 
or three (two-operand) LCKL 1 cycles for a mode 1 instruction. A mode 2 
instruction requires three TMS34020 LCLK1 cycles, plus one cycle for each 
memory transfer. 

7-7 



Internal Routine Addresses and Cycle Counts 
j( .... h:-x""'-'"';..:·~;.;.."'b;.X.oto'''*;r.v.; .......... ~»:yh--.:-:·:-;.:*-... :..:·:-:·»X-:, .... ..«·;*;...''->::I''''~«-X~a"'Wh:-:·»:Yh:-:«<-'~~'«'.«->"""»""':«·:Yh)' .... "V»:·»:«-:-"bt.~;.o.:..:.».~~~ ........ ~~'Vh~AVK~~cgQCgQ.Qgg:CIQQ:Qa~~~ 

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) 
Hex Assembler 

Description Precision 
Machine 

Address Opcode States 

000 ADD Sum of ra and rb integer 2(1) 

001 SUB Subtract rb from ra integer 2(1) 

002 CMP Set status bits on result of ra minus rb integer 2(1) 

003 SUB Subtract ra from rb integer 2(1 ) 

004 reserved 

005 reserved 

006 MOVEr Load n FPU registers from TMS34020 GSP or its memory integer (see Note) 

007 MOVET Save n FPU register.s from TMS34020 GSP or its memory integer (see Note) 

008 MPYS Multiply ra and rb integer 2(1) 

009 DIVS Divide ra by rb integer 16(15) 

OOA INV Divide 1 by rb integer 16(15) 

OOB reserved 

OOC reserved 

000 MOVE Move ra to rd, multiple, for n registers integer (see Note) 

OOE MOVE Move rb to rd, multiple, for n registers integer (see Note) 

OOF reserved 

010 CPW Compare point to window integer 5(4) 

011 CPV Compare point to volume integer 7(6) 

012 BACKF Test polygon for facing direction (backface test) integer 16(15) 

013 INMNMX Setup FPU registers for MNMX1 or MNMX2 instruction 2(1) 

014 UNTX Linear interpolation, X plane integer 26(25) 

015 CUPFX Clip a line to an X plane pair boundary (start w/point 1) integer 34(33) 

016 CUPRX Clip a line to an X plane pair boundary (start w/point 2) integer 34(33) 

017 CUPC Clip color values to a plane pair boundary (start w/point 1) integer 27(26) 

018 SCALE Scale and convert coordinates for viewport integer 56(55) 

019 MTRAN Transpose a matrix integer 13(12) 

01A CKVTX Compare polygon vertex to a clipping volume integer 6(5) 

01B CONV 3x3 convolution integer 32(31) 

01C CUPCR Clip color values to a plane pair boundary (start w/point 2) integer 27(26) 

010 OUTC3X Compare a line to a clipping value, X plane integer 5(4) 

01E CSPLN Calculate cubic spline integer 22(21) 

01F reserved 

020 MOVE Copy ra to rd integer 2(1 ) 

021 NOT Place 1's complement of ra in rd integer 2(1) 

022 ABS Place absolute value of ra in rd integer 2(1) 

023 NEG Place negated value of ra in rd integer 2(1) 

024 reserved 

025 reserved 

t Cannot be used in host-independent mode. 

NOTE: Number of machine states varies, depending on the number of words moved. 

7-8 Internal Instructions 



Internal Routine Addresses and Cycle Counts 
.:~:.:--;.:-;..;-: ..... :.;.:~.: .. :..:.:-t.;~.:o-;~.:.:.:.:.:-»:..;oo:.~:.;o.:<,,:.:.:..:oo:.: ....... :..;~..;.:.:-:-:.:.: .. :.:-:.: .. :.:.:.: .. :.:.: .. :..;-.:.;..: .. :..;-.: .. :.:.:.: .. ;.:.:.:-:-:.: .. :.:-: .. :-: .. : .. : .. : .. :.:.:.:.:.:.:.:.:-:-:.: .. :.:.:..;-: .. :.:-:":.: .. : .. :-: .. :-:.: .. :-:..; .. :..: .. :-:.:.:-:-: .. : .. :--:«-:--:-: .. x-: .. :·:-:-:-: .. : .. :·:-:~:-:·;o.:-: .. :-:..: .. :-: .. :·: .. >:~:-;.:o-:-:·:-:·:-:..:o-:-:":":":":~:.:-:":-;':.:";':-:":":,,=",:.: .. :.:-:.:.;.: .. :-:-:-:.; .. :-: .. : .. :.;.:..;·:-:-: .. :-: .. :·:·: .. :-:·x .. : 

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued) 
Hex Assembler 

Description Precision 
Machine 

Address Opcode States 

026 reserved 

027 VSCLT Multiply vector by a scaling factor integer 4(3) 

028 SaAR Place (ra .. ra) in rd integer 4(3) 

029 SaRT Extract square root of ra integer 20(19) 

02A SaRTA Extract square root of absolute value of ra integer 20(19) 

026 ABORT Stop execution of any FPU instruction integer 2(1) 

02C CKVTX1 Initialize check vertex instruction 2(1) 

02D CHECK Check for previous instruction completion 2(1) 

02E MOVTSRAMT Move data from system memory to external memory 

02F MOVFSRAMT Move data to system memory from external memory 

030 POLyT Polynomial expansion integer 4(3) 

031 MACT Multiply and accumulate integer 4(3) 

032 MNMX1 T Determine 1-D minimum and maximum of a series integer 3(2) 

033 MNMX2T Determine 2-D minimum and maximum of a series of pairs integer 5(4) 

034 MMPYO Multiply matrix elements 3-0 by vector element 0 integer 6(5) 

035 MMPY1 Multiply matrix elements 7-4 by vector element 1 integer 10(9) 

036 MMPY2 Multiply matrix elements 11-8 by vector element 2 integer 12(11) 

037 MMPY3 Multiply matrix elements 15-12 by vector element 3 integer 12(11 ) 

038 MADD Add matrix elements 15-12 to vector integer integer 9(8) 

039 VADD Add two vectors integer 4(3) 

03A VSUB Subtract a vector from a vector integer 4(3) 

03B VDOT Compute scalar dot product of two vectors integer 7(6) 

03C VCROS Compute cross product of two vectors integer 9(8) 

03D VMAG Determine the magnitude of a vector integer 30(29) 

03E VNORM Normalize a vector to unit magnitude integer 50(49) 

03F VRFLCT Given normal and incident vectors, find the reflection integer 16(15) 

080 ADDF Sum of ra and rb single 2(1) 

081 SUBF Subtract rb from ra single 2(1) 

082 CMPF Set status bits on result of ra minus rb single 2(1) 

083 SUBF Subtract ra from rb single 2(1) 

084 ADDA Absolute value of sum of ra and rb single 2(1) 

085 SUBA Absolute value of (ra minus rb) single 2(1) 

086 MOVF Load n FPU registers from TMS34020 GSP or its memory single 

087 MOVF Save n FPU registers from TMS34020 GSP or its memory single 

088 MPYF Multiply ra and rb single 2(1) 

089 DIVF Divide ra by rb single 7(6) 

08A INVF Divide 1 by rb single 7(6) 

08B ASUBA Absolute value of ra minus absolute value of rb single 2(1) 

08C reserved 

t Cannot be used in host-independent mode. 

NOTE: Number of machine states varies, depending on the number of words moved. 

7-9 



Internal Routine Addresses and Cycle Counts 
!>;-:-..v ..... '»."'<oI.~-:-»..~:~O(OO"v~~x-:~~v.~)"h:-t*~ .......... -..:~ .... "<"'v ..... ~.«oQOaQQ·.CCi:il .. ~QQgQQ:;:"»'~'».~~-':-;':«"A-~x-:-.v ..... "«'\.'X~~~...:-:",v.-..""<-»",~vA"«I.~~"<'OI.""'JI.'Wo..V~~~~A~:»X-t.V~,,< 

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued) 
Hex Assembler 

Description Precision 
Machine 

Address Opcode States 

080 MOVEFT Move ra to rd, multiple, for n registers single (see Note) 

08E MOVEFT Move ra to rd, multiple, for n registers single (see Note) 

08F reserved 

090 CPWF Compare point to window single 5(4) 

091 CPVF Compare point to volume single 7(6) 

092 BACKFF Test polygon for facing direction (backface test) single 16(15) 

093 INMNMXF Setup FPU registers for MNMX1 and MNMX2 single 2(1) 

094 LlNTXF Linear interpolation, X plane single 17(16) 

095 CLlPFXF Clip a line to an X plane pair boundary (start w/point 1) single 25(24) 

096 CLlPRXF Clip a line to an X plane pair boundary (start w/point 2) single 25(24) 

097 CLlPCF Clip color values to a plane pair boundary (start w/point 1) single 18(17) 

098 SCALEF Scale and convert coordinates for viewport single 21 (20) 

099 MTRANF Transpose a matrix single 13(12) 

09A CKVTXF Compare polygon vertex to a clipping volume single 6(5) 

09B CONVF 3x3 convolution single 17(16) 

09C CLlPCRF Clip color values to a plane pair boundary (start w/point2) single 18(17) 

090 OUTC3XF Compare a line to a clipping value, X plane single 5(4) 

09E CSPLNF Calculate cubic spline single 22(21 ) 

09F reserved 

OAO MOVE copy ra to rd single 2(1 ) 

OA1 NOT Place 1 's complement of ra in rd single 2(1) 

0A2 ABS Place absolute value of ra in rd single 2(1) 

OA3 NEG Place negated value of ra in rd single 2(1) 

OA4 CVFO Convert single-precision to double-precision single 2(1) 

OA5 CVFI Convert single-precision to integer single 2(1 ) 

OA6 CVIF Convert integer to single-precision single 2(1) 

OA7 VSCLFT Multiply vector by a scaling factor single 4(3) 

OA8 SQARF Place (ra ... ra) in rd single 4(3) 

OA9 SQRTF Extract square root of ra single 10(9) 

OM SQRTAF Extract square root of absolute value of ra single 10(9) 

OAB ABORT Stop execution of any FPU instruction 2(1) 

OAC CKVTX1 Initialize check vertex instruction 2(1) 

OAO CHECK Check for previous instruction completion 2(1) 

OAE MOVTSRAMT Move data from system memory to external memory 

OAF MOVFSRAMT Move data to system memory from external memory 

OBO POLYFT Polynomial expansion single 4(3) 

OB1 MACFT Multiply and accumulate single 4(3) 

OB2 MNMX1FT Determine 1-D minimum and maximum of a series single 3(2) 

OB3 MNMX2FT Determine 2-D minimum and maximum of a series of pairs single 5(4) 

t Cannot be used in host-independent mode. 

NOTE: Number of machine states varies, depending on the number of words moved. 

7-10 Internal Instructions 



Internal Routine Addresses and Cycle Counts 
~:,;"»:,:-»»:";":""",,,, ... x-»~ ...... ~:«~ .... "'0..v...:..;~ .......... -';':.:-"' ..... "'ot";':-", ..... "'ot~-:-,, .... ~»: .. :-:-..~»~~:,..:..;.:..;-:«-:.:-:«-;";-;-::;.:-:.:--;':";.:.;."' ... :";.:.::;.:.;';0::"»:.:.:.:.:.:.:":«.:.:";.:-:.: .. :.;·: .. :.:·:-;·:-:..:·x·:-;.:-:-:·:·:-: .. :.x .. :.:-:-; ... v .... w.-.,v .... :-:..;.x·;.:.; .. :.,.:·:«y:-»:·;.:-:-:<i;..;.;.:-:..;o.:-.-.;-:.;yx..:-.. .......... :~...:-»..-..:-:.:tI!'>..v....:*-~:..:-.."'-: 

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued) 
Hex Assembler 

Description Precision 
Machine 

Address Opcode States 

OB4 MMPYOF Multiply matrix elements 3-0 by vector element 0 single 6(5) 

OB5 MMPY1F Multiply matrix elements 7-4 by vector element 1 single 10(9) 

OB6 MMPY2F Multiply matrix elements 11-S by vector element 2 single 12(11) 

OB7 MMPY3F Multiply matrix elements 15-12 by vector element 3 single 12(11) 

OBS MADDF Add matrix elements 15-12 to vector single 9(S) 

OB9 VADDF Add two vectors single 4(3) 

OBA VSUBF Subtract a vector from a vector single 4(3) 

OBB VDOTF Compute scalar dot product of two vectors single 7(6) 

OBC VCROSF Compute cross product of two vectors single 9(S) 

OBD VMAGF Determine the magnitude of a vector single 20(19) 

OBE VNORMF Normalize a vector to unit magnitude single 31 (30) 

OBF VRFLCTF Given normal and incident vectors, find the reflection single 16(15) 

OCO ADDD Sum of ra and rb double 2(1) 

OC1 SUBD Subtract rb from ra double 2(1) 

OC2 CMPD Set status bits on result of ra minus rb double 2(1) 

OC3 SUBD Subtract ra from rb double 2(1) 

OC4 ADDA Absolute value of sum of ra and rb double 2(1) 

OC5 SUBA Absolute value of (ra minus rb) double 2(1) 

OC6 MOVDT Load n FPU registers from TMS34020 GSP or its memory double (see Note) 

OC7 MOVDT Save n FPU registers from TMS34020 GSP or its memory double (see Note) 

OCS MPYD Multiply ra and rb double 3(2) 

OC9 DIVD Divide ra by rb double 13(12) 

OCA INVD Divide 1 by rb double 13(12) 

OCB ASUBA Absolute value of ra minus absolute value of rb double 2(1) 

OCC reserved 

OCD MOVDT Move ra to rd, multiple, for n registers double (see Note) 

OCE MOVDT Move rb to rd, multiple, for n registers double (see Note) 

OCF reserved 

ODO CPWD Compare point to window double 5(4) 

OD1 CPVD Compare point to volume double 7(6) 

OD2 BACKFD Test polygon for facing direction (backface test) double 25(24) 

OD3 INMNMXD Setup FPU registers for MNMX1 and MNMX2 double 2(1) 

OD4 LlNTXD Linear interpolation, X plane double 26(25) 

OD5 CLlPFXD Clip a line to an X plane pair boundary (start w/point 1) double 35(34) 

OD6 CLlPRXD Clip a line to an X plane pair boundary (start w/point 2) double 35(34) 

OD7 CLlPCD Clip color values to a plane pair boundary (start w/point 1) double 2S(27) 

ODS SCALED Scale and convert coordinates for viewport double 33(32) 

OD9 MTRAND Transpose a matrix double 13(12) 

ODA CKVTXD Compare polygon vertex to a clipping vol ume double 6(5) 

t Cannot be used in host-independent mode. 

NOTE: Number of machine states varies, depending on the number of words moved. 

7-11 

,-----, .. _-----_._ .. ,,. ..... __ ._.,,,,,._---_ .. _-----_. 



Internal Routine Addresses and Cycle Counts 
;";·:-:·:-;·:-;":<I:-:·~:·:.;-:·:..;,.:·:-:·:.;..:.;-::·:q....:-:o;·;..x~:-;..x-:.;.~:-x·;.:-;,,:-;·:-:-:·:·:·:":,:":-:·:·;..x~:·;: ... ~·»:·:-;·»:-:..;~;..::.;-;·;.;..:·:·;':~:·:";·~"":-:·:·»:":",·»x-;.;..;.:-:-:-;.;:·x":--;,:,,;:~;,:·:,;-: .. :·:-:-:·: .. :·;..:-:-:·:""':..;:-:·y ..... "'*:-" ... x«Y."'«·:-:,..:-: .... ·:·o«-;·:·;..-...;«~:·x-:-:-~/.,..;*:;.x-:·;..x·:-:·;.:-:-:-:·YhX·:-:o-:.;..;·;-:rx-:-:-"' ......... :--.... :-»X 

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued) 
Hex Assembler 

Description Precision 
Machine 

Address Opcode States 

ODB CONVD 3x3 convolution double 29(30) 

ODC CLlPCRD Clip color values to a plane pair boundary (start w/point 1) double 31 (30) 

ODD OUTC3XD Compare a line to a clipping value, X plane double 5(4) 

ODE CSPLND Calculate cubic spline double 31 (30) 

ODF reserved 

OEO MOVE Copy ra to rd double 2(1) 

OE1 NOT Place 1 's complement of ra in rd double 2(1) 

0E2 ABS Place absolute value of ra in rd double 2(1) 

OE3 NEG Place negated value of ra in rd double 2(1) 

OE4 CVDF Convert double-precision to single-precision double 2(1) 

OE5 CVDI Convert double-precision to integer double 2(1) 

OE6 CVID Convert integer to double-precision double 2(1) 

OE7 VSCLDT Multiply vector by a scaling factor double 7(6) 

OE8 SOARD Place (ra '" ra) in rd double 5(4) 

OE9 SORTO Extract square root of ra double 16(15) 

OEA SORTAD Extract square root of absolute value of ra double 16(15) 

OEB ABORT Stop execution of any FPU instruction 2(1) 

OEC CKVTX1 Initialize check vertex instruction 2(1) 

OED CHECK Check for previous instruction completion 2(1) 

OEE reserved 

OEF reserved 

OFO POLYDT Polynomial expansion double 5(4) 

OF1 MACDT Multiply and accumulate double 5(4) 

OF2 MNMX10T Determine 1-0 minimum and maximum of a series double 3(2) 

OF3 MNMX20t 
Determine 2-D minimum and maximum of a 

double 5(4) 
series of pairs 

OF4 MMPYOD Multiply matrix elements 3-0 by vector element 0 double 11 (1 0) 

OF5 MMPY1D Multiply matrix elements 7-4 by vector element 1 double 14(13) 

OF6 MMPY2D Multiply matrix elements 11-8 by vector element 2 double 16(15) 

OF7 MMPY3D Multiply matrix elements 15-12 by vector element 3 double 16(15) 

OF8 MADDD Add matrix elements 15-12 to vector double 9(8) 

OF9 VADDD Add two vectors double 4(3) 

OFA VSUBO Subtract a vector from a vector double 4(3) 

OFB VDOTD Compute scalar dot product of two vectors double 10(9) 

OFC VCROSD Compute cross product of two vectors double 15(14) 

OFD VMAGD Determine the magnitude of a vector double 29(28) 

OFE VNORMO Normalize a vector to unit magnitude double 49(48) 

OFF VRFLCTD Given normal and incident vectors, find the reflection double 23(22) 

114 LlNTY linear interpolation, Y plane integer 26(25) 

t Cannot be used in host-independent mode. 

NOTE: Numt)er of machine states varies, depending on the number of words moved. 

7-12 Internal Instructions 



Internal Routine Addresses and Cycle Counts 
~·:--Jo:·:-:"x«-:":-vmqh:oo:-: .. ;..:«":·;.:·~·;:."'.,.;.;,,,v.o-;';':·:"h»»;"'~*X<>:·;';':·»:.;':":"':-:.:";~;':-:«-Jo:.:";-:-:-:.:-;";';':":",.:"'J': .. ~.:--:-: .. :",,:-;.: .. :-:-;.;:.:...;,.: .. :-:·: .. :·: .. ;.:O:.;·;·;.:,..;OC·:·:·:..;·;·;,:-:..,.»:·:"=";O';.;.x·:f' ... :·!«V' ..... "»,;.;.;.:...:~:-:·»»x...:·»:-:..;·;;--... :-:"-:--h:«-;,,:-:«-=-~",«,,;,,,~«-,,'».vNX-:--~h;""'="»»:-: 

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued) 
Hex Assembler 

Description Precision 
Machine 

Address Opcode States 

115 CLlPFY Clip a line to an Y plane pair boundary (start w/point 1) integer 34(33) 

116 CLIPRY Clip a line to an Y plane pair boundary (start w/point 2) integer 34(33) 

11 D OUTC3Y Compare a line to a clipping value, Y plane integer 5(4) 

194 L1NTYF Linear interpolation, Y plane single 17(16) 

195 CLlPFYF Clip a line to an Y plane pair boundary (start w/point 1) single 25(24) 

196 CLIPRYF Clip a line to an Y plane pair boundary (start w/point 2) single 25(24) 

19D OUTC3YF Compare a line to a clipping value, Y plane single 5(4) 

1D4 L1NTYD Linear interpolation, Y plane double 17(16) 

1D5 CLlPFYD Clip a line to an Y plane pair boundary (start w/point 1) double 25(24) 

1D6 CLIPRYD Clip a line to an Y plane pair boundary (start w/point 2) double 25(24) 

1DD OUTC3YD Compare a line to a clipping value, Y plane double 5(4) 

214 LINTZ Linear interpolation, Z plane integer 26(25) 

215 CLlPFZ Clip a line to an Z plane pair boundary (start w/point 1) integer 34(33) 

216 CLlPRZ Clip a line to an Z plane pair boundary (start w/point 2) integer 34(33) 

21D OUTC3Z Compare a line to a clipping value, Z plane integer 5(4) 

294 L1NTZF Linear interpolation, Z plane single 17(16) 

295 CLlPFZF Clip a line to an Z plane pair boundary (start w/point 1) single 25(24) 

296 CLlPRZF Clip a line to an Z plane pair boundary (start w/point 2) single 25(24) 

29D OUTC3ZF Compare a line to a clipping value, Z plane single 5(4) 

2D4 L1NTZD Linear interpolation, Z plane double 17(16) 

205 CLlPFZD Clip a line to an Z plane pair boundary (start w/point 1) double 25(24) 

206 CLlPRZD Clip a line to an Z plane pair boundary (start w/point 2) double 25(24) 

20D OUTC3Z0 Compare a line to a clipping value, Z plane double 5(4) 

t Cannot be used in host-independent mode. 
NOTE: Number of machine states varies, depending on the number of words moved. 

7-13 



Coprocessor Mode Internal Instruction Format 
~.:-" ... :-"~,,",~~~:«o..~~--:,..~~~~~v.-»: .... V"":~A~:~:-::«~v.«-::oQo",,«<,,~)l;-:: .. :-:·:,,~:-:«-:·:·x--:(to~~:-:: .... x~»:-:~':-x-::·:--:-w.« .. :-:·:«·:-:-:·;o.: .. :-:-:-:-:.x"~: .. :«·;.:..)o;"->x,,,,.»!'Ir."'< ... v...:,,-:·y .... ~·;... .... >x<-..v...:«. .... '"""x-:·:x«: .... ...:·jox 

7.4 Coprocessor Mode Internal Instruction Format 

31 28 

ID 

The format of the TMS34082 instruction in coprocessor mode is shown below. 
The instruction is issued by the TMS34020 via the LAO bus. 

24 20 15 13 8 7 6 5 o 

00000 

7.4.1 Coprocessor 10 Field 

The 3-bit 10 field identifies which coprocessor the instruction is intended for. 
This coprocessor ID corresponds to the settings of the C102-0 pins. To 
broadcast an instruction to all coprocessors, the ID field is set to 4. The 
TMS34020 documentation recommends the coprocessor 10 assignments 
shown below. However, both the TMS34020 and TMS34082 support using up 
to seven TMS34082s per TMS34020. 

The assembler defaults to an 10 of 0002' To define another ID as the current 
10, use the coprocessor assembler directive. 

Table 7-2. Coprocessor IDs 
10 Coprocessor 10 Coprocessor 

000 FPU 0 100 FPU broadcast 

001 FPU 1 101 Reserved (or FPU 4) 

010 FPU 2 110 Reserved (or FPU 5) 

011 FPU3 111 User defined (or FPU 6) 

7.4.2 Register Field 

The ra, rb, and rd fields are forthetwo sources (A and B) and destination within 
the FPU. For most two-operand instructions, one operand must come from 
each register file. Register addresses were listed in Table 4-3. For the ra and 
rb fields, only the four least significant bits of the register address are used. 
Some multi-operand instructions redefine the ra, rb, and rd field. 

Valid values for registers operands are: 

ra: RAO-RA9 (also, C, and CT following rules below) 

rb: RBO-RB9 (also, C, and CT following rules below) 

rd: RAO-RA9 RBO-RB9, C, and CT 

NOTE: Although the TMS34020 assembler only allows the above registers as destinations, the 
TMS34082 will accept any register address as a destination. 

7-14 Internal Instructions 



Coprocessor Mode Internal Instruction Format 
-:.:.:-:.:.:.: .. :-: .. ;"~ .......... 'X .. :.; .. ;..:-.;--: .. y~: .. :-:-»:«*;..::~:-;..:.:..;.»: .. :,,.:-: .. :-:-:.:-: .. :".: ............ :*:-.: .. :..;.:.:-:«-:~: .. :.;-:.:-:-:.:-:.:-: .. :.;~:-:..:-.:~.:-:.:-.; .. : .. :.:.:-:.: .. :-;.:-: .. :.:-: .. :-:-:.:-: .. :.;.:~: .. :.;.:.:-:-:-:-:.: .. : .. :..;-:.:-:.:.;-: .. :.:-: .. :-:.:.;.:-:.:.:-:.: .. :-:.: .. : .. :.;-:.:.: .. : .. :.:~:.:.; .. : .. :-:.:-:-:o.:-:-:-:-:":·:-:.:-:":-:":";-:·:-:.;V:·:.;':':-:":-:":-:-:·Y ... X.:.:-: .. :-:-: .. :-" ...... .....::-:.;.;.: .... ~-:.: .. : .. :".:-:.~ 

The following is a list of rules for using the C and CT registers as operands: 

1) Do not use C or CT as source operands in any mode 1 or 2 ("Load and.") 
instructions. 

2) Do not use C or CT in any MOVE, MOVD, or MOVF instructions. If it is 
necessary to move a value to or from the C or CT register, use the PASS, 
PASSF, or PASSD instruction (depending on the type of number in C or 
CT). C and CT are legal operands for the PASSx instructions. However, 
the type of number in C or CT must match the type (integer single-, or 
double-precision) of the PASSx instruction. 

3) Do not use C or CT as source operands for integer divide (DIVS), integer 
inverse (INV), convert integer to single-precision (CVIF) or convert integer 
to double-precision (CVI D) instructions. 

4) For instructions requiring two source operands, C orCT can be used as 
both operands, but cannot be used together in the same instruction. 

7.4.3 Addressing Mode Field 

Four addressing modes are defined forthe TMS34082. The md field indicates 
the addressing mode. Each addressing mode corresponds to one or two 
general-purpose TMS34020 coprocessor commands. Specific TMS34082 
instructions are created by specifying the fields of the internal instruction as 
shown above. 

Table 7-3. Addressing Modes 
General 

Mode 
md 

Operation TMS34020 
Field Coprocessor 

Command 

0 00 FPU internal operations with no jumps or external moves CEXEC 

1 01 Transfer instruction and data to/from TMS34020 registers 
CMOVGC, 
CMOVCG 

2 10 
Transfer instruction and data to/from memory (controlled by CMOVMC, 
TMS34020) on LAD bus CMOVCM 

3 11 
Jump to external instructions in TMS34082 external CEXEC 
memory 

7.4.4 FPU Operation Field 

The fpuop field tells the TMS34082 which operation (such as addition or 
subtraction) or complex instructions (such as clipping) to perform. Sometimes 
the rb field is also used to specify the operation. A list of instructions and their 
associated fpuop field is given in the TMS34082A Data Sheet (Appendix 8). 

7-15 



Type, Size, and I Fields 
»"VA~~JOO'X'(~V"«~~~~~""II'Ia~QQ:aQQQ.OQQ::Q~ ... ~~"':-'~,"*Y~J'!*Y"«~~h~"«*:VX-:·»:-:~Y""' .... :~.;."N»:Y:":~V"««·~Y~Hh:-X«.:.;':-:-X";':·:-:·Y~X«*X«"'h~h:-:o«o"'''«:«''"'h~ 

7.5 Type, Size, and I Fields 

The type and size bits identify the type of operand, as shown in Table 7-4. The 
I bit is used to indicate to the coprocessor that this is a 'reissue' of a 
coprocessor instruction due to a bus interruption. The least significant four bits 
are the bus status bits, which will all be zero to indicate a coprocessor cycle. 

Table 7-4. Operand Types 
Type Size Operand Type 

0 0 32-bit Integer 

0 1 Reserved 

1 0 Single-precision floating-point (32-bit) 

1 1 Double-precision floating-point (64-bit) 

7-16 Interns/Instructions 



Internal Instruction Opcodes 
*»>;.:*:-...,ht("~:*:';·:--:"'~~~h..""'»'"'''«-::-:-:O-X-:·Y'«'~:-"'..-»'' ... VM'-''X(to..~« .. : .. ~·:-:-:«·y/.~ .... ""=·:':";·:--:"':·:«"~"""""'h:·:-:-::·:·:"':·:";·;':-:·~·»:-»:-:·X-::·YJ'X"":·;:-:-::·:-:,..:-:~·:-;..:-:..;·:-:,.:-~v..x"":-;':«««-::·:-X<"':-;':';";«·;':-:·»:-:-:·:-jo:·:~h:~:"':-:-::·::!""/..:-::·:·;.:·:.:·:-;.:·:-:·:--....:·x·:-:-:"..;~:,..;.:..:-:-r....:-:-;.:·;..:..: 

7.6 Internal Instruction Opcodes 

Details of each internal routine follow. The routines are listed alphabetically by 
their TMS34020 assembler opcodes. 

Sets of related instructions (same operation, different operand types) are listed 
together. Sets begin on a new page and may contain the following information. 

Syntax: Shows you how to enter an instruction. Each valid operand type 
is listed, along with its syntax. Bold text should be entered as shown. Italic 
text represents a symbol that tells what type of information should be 
entered. These symbols are further described in the operand section. 

Execution: Illustrates the effects of execution on TMS34020 and 
TMS34082 registers and memory. The shaded portion represents steps 
that are executed for double-precision instructions only. 

TMS34020 Instruction Words: Shows the object code generated for an 
instruction. This is the instruction to the TMS34020. In this instruction, 
transfers is the number of 32-bit words moved across the LAD bus. 
Transfers will generally be the number of operands for an integer or 
single-precision instruction. For a double-precision instruction, transfers 
is twice the number of operands. 

TMS34082 Instruction Word: Shows the command generated by the 
TMS34020 that is sent (via the LAD bus) to the TMS34082. In this word, 
t and s are used to specify the type and size bits, respectively. 

Operands: Explains the symbols used in the syntax section. Implied 
operands are values that must be in the appropriate register(s) before the 
instruction is executed. The following symbols are used as operands: 

Rs, RS1, RS2 TMS34020 source register(s) 

Rd, Rd1, Rd2 TMs34020 destination register(s) 

CRs, CRS1, CRS2 TMS34082 source register. Must be from the 
RA or RS register files, C, or CT. See the 
restrictions on the use of C and CT given in 
subsection 7.3.2. 

CRd Unless otherwise noted, C or CT may be 
substituted for RA or RS registers in any 
instruction which does not require data 
transfers to/from the TMS34020 or memory. 

Description: Discusses the purpose of the instruction and any other 
general information related to it. 

Algorithm: Illustrates the operations performed in a multicycle, complex 
instruction. The shaded portion represents steps that are executed for 
double-precision instructions only. 

7-17 

. ...,..",.",......,.,.,.."..,...". ______ ~, _________________ • _____________ e.". __ ........ . 





Syntax 

Execution 

'34020 
Instruction Words 

ABORT 

Halts TMS34082 

Instruction to '34082 31 29 0 

Description 

Instruction Type 

~I -ID~I-0----0-0-0-1----0-1-1-0---0-0-0-0-----0-0-0-1---1-1-1-0----0-0-0-0---0-0-0-0-, 

This instruction will cancel all activity within the TMS34082, returning the FPU 
to an inactive state. Any time this instruction is present on a coprocessor cycle 
with a valid coprocessor 10, the addressed TMS34082 will ABORT all internal 
processing activity immediately. Block moves will be aborted before 
completion of the last move. 

CEXEC, short 

7-19 



ABSx Absolute Value 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-20 

Type 
Integer 
Double-Precision 
Single-Precision 

I CRs I ---7 CRd 

Syntax 
ABS CRs, CRd 
ABSD CRs, CRd 
ABSF CRs, CRd 

31 29 28 2524 21 20 16 15 
ID I CRs I 001 0 I CRd I 0001 

o 
1 1 1 t 5000 0000 I 

CRs TMS34082 RA source register containing the operand 

CRd TMS34082 destination register 

ASSx takes the absolute value of the contents of CRs and stores the result in 
CRd. ' 

The source register, CRs, must be in the RA register file. 

CEXEC, short 

ABS RA6, RB7 

This example takes the absolute value of the integer contents of RA6 and 
stores the integer result in RS? 

Interna/lnstructions 



Load and Absolute Value ABSx 
{Io"bX·:-:-:"x"=·:-:"x« .. ~: .. :-: .. :->:-:-: .. :oo:·:-:-:-to.:·:-J-:-:-:"YhX .... --=-X.o:·: .. :-: .. :-:-:-:-: .. :~·:-:-: .. x·:-:-: .. ~·:-:-:·:.o:·»:":-::": .. ;..:·:..:·:-:·: .. :-: .. :.;.:.:.; .. : .. : .. : .. :-: .. : .. : .. : .. :-:: .. :-:-:.:-:.:-:.:.: .. :.:.:-: .. :-:: .. :-:a.:-:-:·:·:-:·:-:·:-;.:-:-::-:-:-:·~"="':-:·:-:·:·: .. :-:-:-:-:-=-=..; ... '=": .. :.;.:-): .. »:-:-x?';.:-x·:·:-:-:-:"'>Xr-:·x<": .. X->YhX·:,."Jt·X·:·:-:..;..;«-x..;.:..;:<'. .... ~:-»:·:;.:·x·: .. ;:.;-::..; 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

RS1 ~ CRs 

B.lii~r:M:lfeB.'~! 
ICRsl ~CRd 

Integer or Single-Precision: 

Syntax 
ABS RS1, CRs, CRd 
ABSD RSl R~, CRs, CRd 
ABSF RS1: CRs, CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

01 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I 
o 

RS1 

o I 1 I 0 1 I 1 I 1 I 1 type 0 0 0 01 0 I 0 I 0 I 0 

10 CRs 0 0 1 0 CRd 

Double-Precision: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

01 0 I 0 o I 0 I 1 I 1 0 0 1 0 R I RS1 

o I 1 I 0 1 I 1 I 1 I 1 1 1 0 0 R I RS2 

10 CRs 0 0 1 0 CRd 

31 29 28 2524 21 20 16 15 o 
10 I CRs I 001 0 I CRd I 01 0 1 1 1 1 t sOOO 0000 I 

TMS34020 source register for the integer or single-precision operand 
to the TMS34082 (or half of the 64-bit value for double-precision 
operands) 

RS2 TMS34020 source register for the remaining half of the 64-bit 
double-precision floating-paint value to TMS34082. 

CRs TMS34082 RA register to contain the 32-bit integer operand 

CRd TMS34082 destination register 

ASSx loads the contents of RS1 (and RS2 for double-precision values) into 
CRs, takes the absolute value of the contents of CRs, and stores the result in 
CRd. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVGC, one or two registers 

ABSF AS, RA6, RB7 

This example loads the single-precision contents of TMS34020 register A5 into 
TMS34082 register RA6, takes the absolute value ofthe contents of RA6, and 
stores the single-precision result in RS? 

7-21 



ABSx Load from Memory (Postincrement) and Absolute Value 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-22 

Type 
Integer 
Double-Precision 
Single-Precision 

*Rs - CRs 
Rs + 32 - Rs 
l1li_111 -ICRsl- CRd 

Syntax 
ABS *Rs+, CRs, CRd 
ABSD *Rs+, CRs, CRd 
ABSF *Rs+, CRs, CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 o I 0 I 1 I 1 0 1 0 0 010 I 0 I transfers 

1 I 0 I 0 1 I 1 I 1 I 1 type size 0 0 R I Rs 

10 CRs 0 0 1 0 CRd 

31 29 28 2524 21 20 16 15 0 
10 

1 
CRs 

1 
001 0 

1 
CRd 11 001 1 1 1 t sOOO 0000 I 

Rs TMS34020 register containing the memory address 

CRs TMS34082 RA register to contain the operand 

CRd TMS34082 destination register 

ABSx loads the contents of memory pointed to by Rs into CRs, takes the 
absolute value ofthe contents of CRs, and stores the result in CRd. After each 
load from memory, Rs is incremented by 32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, postincrement,· constant count 

ABSD *A5+, RA6, RB7 

This example loads the double-precision floating-point contents of memory at 
the address given by TMS34020 register A5 into TMS34082 register RA6, 
takes the absolute value of the contents of RA6, and stores the result in RB7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Dou ble-Precision 
Single-Precision 

Rs-32 - Rs 
*Rs - CRs 
II.:III_~ -ICRsl- CRd 

Syntax 
ABS - *Rs, CRs, CRd 
ABSD - *Rs, CRs, CRd 
ABSF -*Rs, CRs, CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 0 I 1 I 0 I 0 0 0 0 1 0 I o I 0 I transfers 

1 I 0 I 0 1 I 1 I 1 I 1 type size 0 0 R I Rs 

10 CRs 0 0 1 0 CRd 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 001 0 I CRd I 1 001 1 1 1 t 5000 0000 I 

Rs TMS34020 register containing the memory address 

CRs TMS34082 RA register to contain the operand 

CRd TMS34082 destination register 

ABSx loads the contents of memory pointed to by Rs into CRs, takes the 
absolute value of the contents of CRs, and stores the result in CRd. Before 
each load from memory, Rs is decremented by 32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, predecrement, constant count 

ABS -*AS, RA6, RB7 

This example loads the integer contents of memory at the address given by 
TMS34020 register A5 minus 32 into TMS34082 register RA6, takes the 
absolute value of the contents of RA6, and stores the integer result in RB7. 

7-23 



ADDx Add 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-24 

Type 
Integer 
Double-Precision 
Single-Precision 

CRs1 + CRs2 ~ CRd 

31 29 28 2524 
10 I CRs1 I 

Syntax 
ADD CRSt1 CR~, CRd 
ADDD CRst , CR~, CRd 
ADDF CRst , CRS21 CRd 

21 20 16 15 
CRs2 I CRd I 0000 000 t 

CRS1 TMS34082 register containing the first operand 

CRs2 TMS34082 register containing the second operand 

CRd TMS34082 destination register 

0 
5000 0000 

ADDx adds the contents of CRS1 and CRS2 and stores the result in CRd. 

The two source registers, CRS1 and CRS2, must be in opposite register files. 

CEXEC, short 

ADDD RAS, RB6, RB7 

I 

This example adds the double-precision floating-point contents of RA5 and 
RB6 and stores the result in RB7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Load and Add ADDx 

Type 
Integer 
Single-Precision 

RS1 -7 CRs1 
RS2 -7 CRs2 
CRs1 + CRs2 ~ CRd 

Syntax 
ADD Rst • Rs2 • CRst • CRs2• CRd 
ADDF Rst , Rs2 • CRst , CRs2 • CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

01 0 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1 

o I 1 I 0 o I 0 I 0 I 0 type I 0 I 0 I 0 R I RS2 

ID CRS1 CRS2 CRd 

31 29 28 2524 21 20 16 15 

ID I CRS1 CRd I 01 00 000 t 0000 

TMS34020 source register for the first value to TMS34082 

o 

o 
0000 I 

RS2 TMS34020 source register for the second value to TMS34082 

CRS1 TMS34082 register to contain the first operand 

CRS2 TMS34082 register to contain the second operand 

CRd TMS34082 destination register 

ADDx loads the contents of RS1 and RS2 into CRS1 and CRS2 respectively, 
adds the contents of CRS1 and CRS2, and stores the result in CRd. 

The two TMS34082 source registers, CRS1 and CRS2, must be in opposite 
register files. 

The double-precision floating-point form of this instruction is not supported. 

CMOVGC, two registers 

ADDF AS, A6, RAS, RB6, RB7 

This example loads TMS34020 registers A5 and A6 into TMS34082 registers 
RA5 and RB6 respectively, adds the single-precision floating-point values from 
RA5 and RB6, and stores the result in RA 7. 

7-25 



ADDx Load from Memory (Postincrement) and Add 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-26 

Type 
Integer 
Double-Precision 
Single· Precision 

*Rs -- CRs1 

Rs + 32 -- Rs 1-"._1 
*Rs -- CRs2 

Rs + 32 -- Rs --­lfll':_ 
CRs1 + CRs2 -- CRd 

Syntax 
ADD *Rs+, CRst , CRs2 , CRd 
ADDD *Rs+, CRst, CRs2, CRd 
ADDF *Rs+, CRst , CRs2, CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 o I 0 I 1 I 1 o I 1 I 0 I 0 o I o I transfers 

1 I 0 I 0 010 I 0 I 0 type I size I 0 I 0 R I Rs 

10 CRS1 CRS2 CRd 

31 29 28 2524 21 20 16 15 o 
10 I CRS1 CRd 11 000 OOOt sOOO 0000 1 

Rs TMS34020 register containing the memory address 

CRS1 TMS34082 register to contain the first operand 

CRS2 TMS34082 register to contain the second operand 

CRd TMS34082 destination register 

ADDx loads the contents of memory pOinted to by Rs into CRS1 and CRS2, 
adds the contents of CRS1 and CRS2, and stores the result in CRd. After each 
load from memory, Rs is incremented by 32. 

The two TMS34082 source registers, CRS1 and CRS2, must be in opposite 
register files. 

CMOVMC, postincrement, constant count 

ADD *A5+, RA5, RB6, RB7 

This example loads memory starting at the address given by TMS34020 
register AS into TMS34082 registers RAS and RS6, adds the integer values 
from RAS and RS6, and stores the result in RS7. 

Internal Instructions 



---. -~~----~~~----------

Load from Memory (Predecrement) and Add ADDx 
om:*~~~"""::;;c;,:-r_",,,_. _""""""' __ f~$"~«Hf::'::~<~~;;;:;'~:>';~~~~;;:;:;:::~:;::::::::**~:~::m:'~~. m*,"~ i$.m:::=::c!~~·'(.:11 w ~ '~f ~:Il':::::W . . . -.r l 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

Rs -32 -- Rs 
*Rs -- CRs1 

1t.1"1~.1;.1] 
1.I.ii •• lj~ 
Rs - 32 -- Rs 
*Rs -- CRs2 

JJ)~:tZll.i.1]BI1 

RI1.lllll~1 
CRs1 + CRs2 -- CRd 

Syntax 
ADD -*Rs, CRs1, CRs2 , CRd 
ADDD -*Rs, CRs1, CRs2 , CRd 
ADDF -*Rs, CRs1, CRs2 , CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a 
a 1 a 1 a a 1 1 1 a I a 010 1 0 1 1 a I a I transfers 

1 I a I a a I a I a 1 0 type I size I a I a R I Rs 

10 CRs1 CRs2 CRd 

31 29 28 2524 21 20 16 15 a 
10 I CRS1 CRd 

1
1000 000 t sao a 0000 I 

Rs TMS34020 register containing the memory address 

CRS1 TMS34082 register to contain the first operand 

CRS2 TMS34082 register to contain the second operand 

CRd TMS34082 destination register 

ADDx loads the contents of memory pointed to by Rs into CRS1 and CRS2' add 
the contents of CRs1 and CRS2, and stores the result in CRd. Before each load 
from memory, Rs is decremented by 32. 

The two TMS34082 source registers, CRS1 and CRs2, must be in opposite 
register files. 

CMOVMC, predecrement, constant count 

ADD -*A5, RA5, RB6, RB7 

This example loads memory starting at the address given by TMS34020 
register A5 minus 32 into TMS34082 registers RA5 and RB6, adds the integer 
contents of RA5 and RB6, and stores the result in RB7. 

7-27 

-------" ... ----------.--..... -.-.. --.-... --.-~---------



ADDAx Absolute Value of Sum 
~~",«,,»~~-« .. ~QQQ~aQQQQ~:3QCQQQ~~XoQo.~""' ... ~V""~)",",,=,,»X~V""'»..""":"'».."«.";«-"'A~-:-'"IO(O':«-)o.."'»..v ...... "'<~v .... ,~...:..;~»X<":-" ..... ""'»'x-..'»:««\.~"""'~~~"«*"'''I(-»>: 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-28 

Type 
Double-Precision 
Single-Precision 

ICRs1 + CRs21 ~ CRd 

Syntax 
ADDAD CRst1 CR~, CRd 
ADDAF CRst , CRs2, CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 

31 29 28 2524 21 20 16 15 

10 I CRS1 CRd I 0000 1 001 

CRS1 TMS34082 register containing the first operand 

CRS2 TMS34082 register containing the second operand 

CRd TMS34082 destination register 

2 0 

o I 1 I s 

CRd 

o 
sOOO 0000 I 

ADDAx takes the absolute value ofthe sum of CRs1 and CRs2, and places the 
result in CRd. 

CRs1 and CRs2, the two TMS34082 source registers, must be in opposite 
register files. 

The integer form of this instruction is not supported. 

CEXEC, short 

ADDAF RA3, RB9, RAl 

This example adds the Single-precision floating-point contents of RA3 and 
RB9, takes the absolute value, and stores the result in RA 1. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

ADDAF Rst , Rs2 , CRst, CRs2 , CRd 

RS1 ~ CRs1 
RS2 ~ CRs2 
ICRs1 + CRs21 ~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
a a a a a 1 1 a a 1 a R RS1 

a 1 a a 1 a a 1 a a a R RS2 

ID CRs1 CRs2 CRd 

31 29 28 2524 21 20 16 15 
ID I CRs1 CRd I a 1 a a 1 a a 1 0000 

a 

a 
a a a a I 

TMS34020 source register for first 32-bit single-precision floating­
point value to TMS34082 

RS2 TMS34020 source register for second 32-bit single-precision 
floating-point value to TMS34082 

CRS1 TMS34082 register to contain the first single-precision operand 

CRS2 TMS34082 register to contain the second single-precision operand 

CRd TMS34082 destination register 

ADDAF loads the contents or RS1 and RS2 into CRS1 and CRS2 respectively, 
takes the absolute value of the sum of CRS1 and CRS2, and stores the result 
inCRd. 

GRS1 and CRS2, the two TMS34082 source registers, must be in opposite 
register files. 

The integer and double-precision floating-pointforms ofthis instruction are not 
supported. 

CMOVGC, two registers 

ADDAF AS, A9, RA7, RB9, RBO 

This example loads the contents of TMS34020 registers AS and A9 into 
TMS34082 registers RA7 and RB9 respectively, adds the contents of RA7 and 
RB9, takes the absolute value, and stores the result in RBO. 

7-29 



ADDAx Load from Memory (Postincrement) and Absolute Value of Sum 
Sf' '*m~ll!g l' ~ ~~It~"""""'""""" __ """" _____ """""' __ """"_"""'''''''''''''''''_ 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-30 

Type 
Double-Precision 
Single-Precision 

*Rs -+ CRs1 
Rs + 32 -+ Rs --II 1I1111.1iI(~ 
*Rs -+ CRs2 

Rs + 32 -+ Rs 
~ . ., ... 
1\11 __ 
ICRs1 + CRs21 -+ CRd 

Syntax 
ADDAD*Rs+, CRst, CRs2 , CRd 
ADDAF *Rs+, CRst , CRs2 , CRd 

15 14 13 12 11 10 9 8, 7 6 5 4 3 2 o 
010 I 0 o I 0 I 1 I 1 o I 1 I 0 I 0 o I o I transfers 

1 I 0 I 0 01 1 I 0 I 0 1 I size I 0 I 0 R I Rs 

ID CRs1 CRs2 CRd 

31 29 28 2524 21 20 16 15 o 
ID 1 CRS1 CRd 11 000 1 001 sOOO 0000 1 

Rs TMS34020 register containing the memory address 

CRS1 TMS34082 register to contain the first operand 

CRS2 TMS34082 register to contain the second operand 

CRd TMS34082 destination register 

ADDAx loads the contents of memory pOinted to by Rs into CRs1 and CRs2, 
adds the contents of CRS1 and CRS2, takes the absolute value, and stores the 
result in CRd. After each load from memory, Rs is incremented by 32. 

CRS1 and CRS2, the two TMS34082 source registers, must be in opposite 
register files. 

The integer form of this operation is not supported. 

CMOVMC, postincrement, constant count 

ADDAD *A5+, RA7, RB9, RBO 

This example loads memory starting at the address given by TMS34020 
register AS into TMS34082 registers RA7 and RB9, adds the double-precision 
contents of RA7 and RB9, takes the absolute value, and stores the result in 
RBO. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Double-Precision 
Single-Precision 

Rs - 32 -- Rs 
*Rs -- CRs1 

111!ltlllJllll1l 
11I11111l11:1I1* 
Rs - 32 -- Rs 
*Rs -- CRs2 

11 •• lrl1 •• IJ 
il:l~K.iil'l.ll 
ICRs1 + CRs2 1 -- CRd 

Syntax 
ADDAD -*Rs, CRs1, CRs2 , CRd 
ADDAF - *Rs, CRs1, CRs2 , CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
o I 01 0 0/11 0 J 0 0/0101 1 o 1 0 I. transfers 

1 I 01 0 01 1 1 0 1 0 1 / size J 0 I 0 R 1 Rs 

ID CRS1 CRS2 CRd 

31 29 28 2524 21 20 16 15 o 
ID I CRS1 CRd /1 000 1 001 sOOO 0000 I 

Rs TMS34020 register containing the memory address 

CRS1 TMS34082 register to contain the first operand 

CRS2 TMS34082 register to contain the second operand 

CRd TMS34082 destination register 

ADDAx loads the contents of memory pointed to by Rs into CRS1 and CRs2' 
adds the contents of CRS1 and CRS2, takes the absolute value, and stores the 
result in CRd. Before each load from memory, Rs is decremented by 32. 

CRS1 and CRS2, the two TMS34082 source registers, must be in opposite 
register files. 

The integer form of this instruction is not supported. 

CMOVMC, predecrement, constant count 

ADDAD -*A5, RA7, RB9, RBO 

This example loads memory starting at the address given by TMS34020 
register AS minus 32 into TMS34082 registers RA7 and RB9, adds the 
double-precision floating-point contents of RA7 and RB9, takes the absolute 
value, and stores the result in RBO. 

7-31 



ASUBAx Subtract Absolute Values 

Syntax Type Syntax 
Double-Precision ASUBAD CRst , CRs2 , CRd 
Single-Precision ASUBAF CRst , CRs2 , CRd 

Execution ICRs11 - ICRs21 -+ CRd 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-32 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

11 
I 1 I 0 

11 
I 1 I 0 I 0 

1 0 
0 I 0 I 1 0 I 1 I 1 I 1 I size I 

ID CRS1 CRs2 CRd 

31 29 28 2524 21 20 16 15 0 
ID I CRS1 I CRS2 I CRd I 0001 o 1 1 1 sOOO 0000 I 

CRS1 TMS34082 register containing the first operand. Must be from RA reg­
ister file. 

CRS2 TMS34082 register containing the second operand. Must be from RS 
register file. 

CRd TMS34082 destination register. 

ASUSADx subtracts the absolute value of CRS2 from the absolute value of 
CRs1, placing the result in CRd. 

The integer form of this instruction is not supported. 

CEXEC, short 

ASUBAF RA7, RB2, C 

This example subtracts the absolute value of the single-precision contents of 
RS2 from the absolute value ofthe single-precision contents of RA7 and stores 
the result in the C register. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

ASUBAF Rs1, Rs2 , CRst , CRs2 , CRd 

RS1 - CRs1 

RS2 - CRs2 
ICRs11 - ICRs21 - CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
0 0 0 0 0 1 1 0 0 1 0 R RS1 

0 1 0 1 0 1 1 1 0 0 0 R RS2 

10 CRs1 CRs2 CRd 

31 29 28 2524 21 20 16 15 0 
10 I CRs1 I CRS2 I CRd I 01 01 o 1 1 1 0000 0000 I 

RS1 TMS34020 source register for first 32-bit single-precision 
floating-paint operand 

RS2 TMS34020 source register for second 32-bit single-precision 
floating-point operand 

CRS1 TMS34082 register to contain the first single-precision operand. 
Must be from RA register file 

CRs2 TMS34082 register to contain the second single-precision 
operand. Must be from RB register file 

CRd TMS34082 destination register 

ASUBAF loads the contents of RS1 and RS2 into CRS1 and CRs2, respectively, 
and subtracts the absolute value in CRs2 from the absolute value in CRs1' 
placing the result in CRd. 

The integer and double-precision forms of this instruction are not supported. 

CMOVGC, two registers 

ASUBAF A3, A2, RA5, RB3, RBI 

This example loads the contents of TMS34020 registers A3 and A2 into RA5 
and RB3 respectively, subtracts the absolute value of the contents of RB3 from 
the absolute value of RA5, and stores the result in RB1. 

7-33 



~SUBAx Load from Memory (Postincrement) and Subtract Absolute Values 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Double-Precision 
Single-Precision 

*Rs -+ CRs1 
Rs + 32 -+ Rs --
*Rs -+ CRs2 
Rs + 32 -+ Rs 

illwalllll 
..... f.J,1 
ICRs11-ICRs21 -+ CRd 

Syntax 
ASUBAD *Rs+, CRst , CRs2, CRd 
ASUBAF *Rs+, CRst , CRs2 , CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 o I 0 I 1 I 1 o I 1 I 0 I 0 010 I transfers 

1 I 0 I 0 1 I 0 I 1 I 1 1 I size I 0 I 0 R I Rs 

10 CRS1 CRs2 CRd 

31 29 28 2524 21 20 16 15 o 
10 1 CRS1 CRd 11 001 01 1 1 5000 0000 I 

Rs TMS34020 register containing the memory address 

CRS1 TMS34082 register to contain the first operand. Must be from RA 
register file. 

CRS2 TMS34082 register to contain the second operand. Must be from RB 
register file. 

CRd TMS34082 destination register 

ASUBAx loads the contents of memory pOinted to by Rs into CRs1 and CRs2 
and subtracts the absolute value in CRS2 from the absolute value in CRS1, 
placing the result in CRd. After each load from memory, Rs is incremented by 
32. 

The integer form of this instruction is not supported. 

CMOVMC, postincrement, constant count 

ASUBAD *A3+, RA7, RB3, RBI 

This example loads memory starting at the address given by TMS34020 
register A3 into TMS34082 registers RA7 and RB3, subtracts the absolute 
value of the contents of RB3 from the absolute value of RA7, and stores the 
result in RB1. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Load from Memo[¥. (,fredecrementl and Subtract Absolute Values ASU BAx 

Type 
Double-Precision 
Single-Precision 

Rs-32 - Rs 
*Rs - CRs1 

Ill· ... 
Rs-32 - Rs 

Syntax 
ASUBAD-*Rs, CRst, CRS21 CRd 
ASUBAF - *Rs, CRst1 CRS21 CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

01 0 I 0 o I 1 I 0 I 0 o I 0 I 0 I 1 0 I 0 I transfers 

1 I 0 I 0 1 I 0 I 1 I 1 1 I size I 0 I 0 R I Rs 

10 CRS1 CRS2 CRd 

31 29 28 2524 21 20 16 15 

o 

o 
10 1 CRSl CRd 

1
1001 01 1 1 sOOO 0000 1 

Rs TMS34020 register containing the memory address 

CRS1 TMS34082 register to contain the first operand. Must be from RA 
register file. 

CRs2 TMS34082 register to contain the second operand. Must be from RB 
register file. 

CRd TMS34082 destination register 

ASUBAx loads the contents of memory pointed to by Rs into CRS1 and CRS2 
and subtracts the absolute value in CRs2 from the absolute value in CRS1, 
placing the result in CRd. Before each load from memory, Rs is decremented 
by 32. 

The integer form of this instruction is not supported. 

CMOVMC, predecrement, constant count 

ASUBAF -*A3, RA7, RB3, RBI 

This example loads memory starting at the address given by TMS34020 
register A3 minus 32 into TMS34082 registers RA7 and RB3, subtracts the 
absolute values of the contents of RB3 and RB7, and stores the result in RB1. 

7-35 



Syntax 

'34020 
Instruction Words 

TXg~ 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

1 I 1 I 0 1 

ID I 0 

SXDta~ 
BACKF 
BACKFD 
BACKFF 

11 10 9 

1 I 0 I 0 

01 0 I 0 

8 7 6 5 4 3 2 0 
0 0 1 0 0 1 0 type size 

0 0 0 0 0 0 0 0 0 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

7-36 

I ID I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 t s 0 0 0 0 0 0 0 

A convex polygon is tested to determine whether it is facing the current view 
area or if it is facing away from the current view area. This allows the elimination 
of polygons that do not need to be drawn in the current image. The first three 
vertices of the polygon are entered and tested as to rotation direction. If the 
direction is clockwise (forward facing), the polygon is visible; if the direction is 
counterclockwise (backward facing), then the polygon is invisible. This 
instruction also detects the case where the plane defined by the three pOints 
passes through the viewing point (position) of the eye. In this case, the polygon 
may be drawn as a line or ignored. The algorithm assumes that all of the 
vertices of the polygon lie on the plane defined by the first three vertices. 

RAO=XO, 
RA4 =X1, 
RBO =X2, 

RA1 =YO, 
RA5 = Y1, 
RB1 = Y2, 

RA2 = ZO, 
RA6=Z1, 
RB2 = Z2, 

RA3 = WO 
RA7 = W1 
RB3=W2 

where Xn,Yn,Zn, Wn are the coordinates of vertex Vn, already stored in the 
coprocessor registers. 

C = RB1 x RA3 
C = C - (RA1 x RB3) 
RB8=C x RA4 
C = RAO x RB3 
C = C - (RBO x RA3) 
RB9 = C x RA5 
C=RBOx RA1 
C = C - (RAO x RB 1 ) 
RA8 = C x RA7 
RA8 = RA8 + RB9 

RA8 = RA8 + RB8 

if RA8 < 0 then N = 1 
else N = 0 

if RA8 = 0 then Z = 1 
else Z = 0 

; Y2 x WO 
; (Y2 x WO) - (YO x W2) 
; ((Y2 x WO) - (YO x W2)) x X1 
; XO x W2 
; (XO x W2) - (X2 - WO) 
; ((XO x W2) - (X2 x WO)) x Y1 
; X2 x YO 
; (X2 x YO) - (Y2 x YO) 
; ((X2 x YO) - (Y2 x XO» x W1 
; ((X2 x YO) - (Y2 x XO» x W1 
; + ((XO x W2) - (X2 x WO)) x Y1 
; ((Y2 x WO) - (YO x W2)) x X1 
; + ((XO x W2) - (X2 x WO)) x Y1 
; + ((X2 x YO) - (Y2 x XO» x W1 
; set N as appropriate 

; set Z as appropriate 

Internal Instructions 



Temporary Storage 

Outputs 

Instruction Type 

C,C~RA8,RB8,RB9 

The N and V status bits are set to indicate the following: 

N Z Description 
o 0 Polygon is forward facing 
o 1 Polygon is parallel to view (reject or draw as line) 
1 0 Polygon is backward facing 
1 1 Polygon is backward facing 

CEXEC, short 

7-37 



CHECK Check Coprocessor Status 
K-:a-:~»X":«-»:O-»:«o-"h:-»",....:«-t-:>:l>:«-:,.:o.:-:-)-»""""»:-"h)"J't«t>~"»:-:~V.';*>",h:-:-)-:-:a-»;.x·:::-:·)-:-:·:-:.;«·:"'>:-:" ........ :-:-x-:-:«·:-:-:ot-:--/.·»>:-:O-:-:--Yh:-:·:--.«-:·:-:·,.:""'-..:-: .. :-:·:O-;..:--»:-:" .... '""«-"'h:-:-:«O»>:-"' ..... ""'«-»»~'""="-v~h~~:yh:-;-.."'««·Y....: .... h»:«~»«<-:.x-»X9:'h:« 

Syntax 

Execution 

'34020 
Instruction Words 

CHECK Rd 

If coprocessor is busy 
FFFF FFFFh ~ Rd 

If coprocessor is idle 
0000 OOOOh ~ Rd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
01 0 I 0 0 0 1 1 0 0 1 1 R Rd 

o I 1 I 0 1 1 1 1 0 0 0 0 0 0 I 0 I 0 I 0 

ID 0 0 0 0 1 1 0 1 0 0 I 0 I 0 I 0 

ms~ucUonro~4082 ~3_1~2_9 ____________________________________________ 0-, 

I ID I 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 00 0 0 

Operands 

Description 

Instruction Type 

Example 

7-38 

Rd TMS34020 destination register for status information 

CH ECK checks the status of the coprocessor. If the TMS34082 coprocessor 
is busy, CH ECK sets all the bits in Rd to 1. If the TMS34082 coprocessor is idle, 
CHECK sets all the bits in Rd to O. 

This instruction allows polling of the TMS34082 prior to sending subsequent 
instructions to avoid halting the TMS34020 if the FPU is not ready to accept 
new commands. This polling may be required for user-defined instruction 
sequences that utilize the external program and data memory of the 
TMS34082. 

CMOVGC, one register 

CHECK A4 

If the TMS34082 coprocessor is busy, this example sets all the bits in register 
A4 to 1. If the TMs34082 coprocessor is idle, this example resets all the bits 
in register A4 to O. 

Internal Instructions 



Check Vertex CKVTXx 
~ .... ~-;.:..:-:-:~:-;o.~.:--:-;o.:-:.:~~,,«.:-:,\:~ .... v ... : .. ~.:.»:-:.:--:.;o.:-:-:.:-:->: .. : .. :.:-:-:.:.;.:.:-:.;--.... :.:-:.:.:-:.:-:.:.:-:.:-:.: .. ;..:0.:-:.:.;..: .. :-:-:-:0-: .. :·:·:·:·;·:-:·;·:;..:..;·;·: .. ;..:·:-:..: ...... :·:-: .. ;.:·:·:·;·»:·x·;·;·:..;·:·:·;..:·:-:·:·:·:o:-:·:·;..:·:..;·:·:·:·:-:·: .. ;..:·:..;·:·:·x·:.:.:.: .. :..;.;..;..;..:-:.:.:.:-:-:.:-:.:.:.:.: .. :-:-:-:..;.:.: .. :-: .. :.:.:.:-:.;..:,:.;.:.:.:-:-:-:.:.;..:.:-:.:-;..:.:.:~:.:.: .. : .. ;..;..:.:?;o.:-;..:-:.;..:-:..;.;-.; 

Syntax 

'34020 
Instruction Words 

Instruction to '34082 

Description 

Implied Operands 

Algorithm 

T~g~ ~~ntax 
Integer CKVTX 
Double-Precision CKVTXD 
Single-Precision CKVTXF 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a 
1 I 1 I a I 1 I 1 0 a I 0 I 0 1 I 1 o I 1 I 0 type size I 

10 I 0 I 0 0 a I 0 I a a I 0 a I a 0 0 a J 
31 29 a 

I 10 I 0 0 a 0 0 a 0 0 a a 0 a a a a 1 1 010t 5000 0000 

The CKVTXx instruction is used to compare polygon vertices to the viewing 
volume in a perspective display. It may be used with a list of vertices describing 
a polygon to determine if the entire polygon is totally within, totally outside, or 
partially within the clipping volume. The TMS34082 must be initialized with the 
CKVTXlx instruction before the first iteration. The vertices must be specified 
using homogeneous coordinates. 

RAO = Xn 
RA1 =Yn 
RA2 = Zn 
RA3 =Wn 

; vertex Vn [Xn, Yn, Zn, Wn] to check, 
; these are homogeneous coordinates 

RB9 = RA3 
If (RB9 -IRAOI) < 0 

setXLT 
else 

reset XGT 

If (RB9 - IRA 1 I) < 0 
setYLT 

else 
resetYGT 

If (RB9 -IRA21) < 0 
set ZLT 

else 
reset ZGT 

If «XGT OR YGT OR ZGT) = 1) 

; copy RA3 to RB9 

; X OR outcode, status bit 5 

; X AN D outcode, status bit 6 

; Y OR outcode, status bit 7 

; Y AN D outcode, status bit 8 

; Z OR outcode, status bit g 

; Z AN D outcode, status bit 1 0 

set V bit ; if AN 0 outcode = 1, then outside 
else 

reset V bit ; all AN D outcodes = 0, partially visible 

If ((XLT OR YLT OR ZLT) = 0) 
set Z bit ; if OR outcode = 0, then inside 

else 
reset Z bit ; all OR outcodes = 1, not entirely inside 

7-39 



Temporary Storage 

Outputs 

Instruction Type 

Example 

7-40 

You may now reload vertex V(n+1) and repeat the instruction for all vertices 
in a polygon. 

C, RB9 

The status is set (ZGT, ZLT, YGT, YLT, XGT, and XLT) according to position. 
V = 1 Vertex out 
Z = 1 Vertex in 

If repeated for all vertices in a polygon then: 
'i... Z. pescription 
o 0 The polygon crosses the boundary of the clipping volume 
o 1 The polygon is totally inside the clipping volume 
1 0 The polygon is totally outside the clipping volume 
1 1 Not valid 

The boundaries of the clipping volume that are crossed by the polygon may be 
determined by the ZLT (Z-plane), YLT (Y-plane), and XLT (X-plane) bits. 

CEXEC, short 

CKVTXI 
MOVF *A5+, RAO, 4 
CKVTXF 

This example first initializes the TMS34082 by executing the check vertex 
initialize instruction. Then the four homogeneous coordinates of the vertex are 
loaded, starting at the address given in TMS34020 register A5. Finally the 
status register is set according to the results of the check. 

Internal Instructions 



Syntax 

'34020 
Instruction Words 

Instruction to '34082 

Description 

Algorithm 

Instruction Type 

CKVTXI 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 I 0 

10 

31 29 o 
10 I 0 0001 1000 0000 0001 1100 0000 0000 

The CKVTXI instruction is used to initialize several bits in the status register 
before the first Check Vertex (CKVTX) instruction. 

reset XLT 
reset YLT 
reset ZLT 
setXGT 
setYGT 
set ZGT 

CEXEC, short 

;set starting X OR outcode to 0 
;set starting Y OR outcode to 0 
;set starting Z OR outcode to 0 
;set starting X AND outcode to 1 
;set starting Y AN D outcode to 1 
;set starting Z AND outcode to 1 

7-41 



Syntax 

'34020 
Instruction Words 

Type 
Integer 
Double-Precision 
Single-Precision 

Syntax 
CLlPCF 
CLlPCFD 
CLlPCFF 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

7-42 

I 10 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 t s 0 0 0 0 0 0 0 

The CLlPCFx instruction clips a color value of the first vertex of a Gouraud 
shaded line after the first vertex has been clipped to the viewing volume using 
the CLI PFx instruction. The clipped color value represents the color value (red, 
green, blue) for the endpoint of the line when the line is perspective-projected 
to the viewing surface. The interpolation factor (t) from the CLI PFx instruction 
is modified to take into account the color distortion caused by perspective 
transformation. 

RA3 = W1' (intensity) RB3 = W2 
RA4 = R1 (red) RB4 = R2 (red) 
RA5 = B1 (blue) RB5 = B2 (blue) 
RA6 = G1 (green) RB6 = G2 (green) 
C = t (interpolation factor) from CLlPFx instruction 

C =Cx RB3 
RB9 = RA3 
RA8 = RB4 - RA4 
C = C I RB9 
RAg = RB5 - RA5 
CT =RA8x C 
RA4=CT+ RA4 
CT = RAg x C 
RA5 = CT + RA5 
RA8 = RB6 - RA6 
CT =RA8x C 
RA6 = RA6 + CT 

CT, RA8, RAg 

RA4 = R1' (red) 
RA5 = B l' (blue) 
RA6 = G1' (green) 
CT =t' 

CEXEC, short 

;tx W2 

; R2 - R1 
; t' = t x W21 W1' 
; B2 - B1 
; (R2 - R1) x t' 
; R l' = R 1 + (R2 - R 1) x t' 
; (B2 - Bl) x l' 
; B1' = B1 + (B2 - B1) x t' 
; G2 - G1 
; (G2 - G 1) x t' 
; G1' = G1 + (G2 - G1) x t' 

Interna/lnstructions 



Syntax 

'34020 
Instruction Words 

Tll~ 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

1 I 1 I 0 1 

10 0 

Sllnm~ 
CLlPCR 
CLlPCRD 
CLlPCRF 

11 10 9 8 
1 0 0 0 

0 0 0 0 

7 6 5 4 3 2 0 
0 1 1 1 0 0 type size 

0 0 0 0 0 0 0 0 

Instruction to '34082 ...--31--r-_2_9 ______________________ 0--.. 

I 10 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 t s 0 0 0 0 0 0 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

The CLlPCRx instruction clips a color value ofthe second vertex 01a Gouraud 
shaded line after the second vertex has been clipped to the viewing volume 
using the CLlPRx instruction. The clipped color value represents the color 
value (red, green, blue) for the endpoint of the line when the line is 
perspective-projected to the viewing surface. The interpolation factor (t) 
distortion caused by perspective transformation. 

RA3 = W2' (intensity) RB4 = R2 (red) 
RA4 = R1 (red) RBS = B2 (blue) 
RAS = B1 (blue) RB6 = G2 (green) 
RA6 = G1 (green) RB? = W1 (intensity) 
C = t (interpolation factor) from CLlPRx instruction 

C =Cx RB? 
RB9 = RA3 
RA8 = RA4 - RB4 
C = C/ RB9 
RA9 = RAS - RBS 
CT = RA8xC 
RA4 = CT + RB4 
CT = RA9xC 
RAS = CT + RBS 
RA8 = RA6 - RB6 
CT = RA8 x C 
RA6 = RA6 + CT 

CT, RA8, RA9, RB9 

RA4 = R2' (red) 
RAS = B2' (blue) 
RA6 = G2' (green) 
CT =t' 

CEXEC, short 

; txW1 

; R1- R2 
; t' = t x W1 / W2' 
; B1 - B2 
; (R1 - R2) x f 
; R2' = R2 + (R1 - R2) x t' 
; (B 1 - 82) x t' 
; 82' = B2 + (B1 - 82) x t' 
; G1 - G2 
; (G1 - G2) x t' 
; G2' = G2 + (G 1 - G2) x t' 

7-43 



ell PFXx Clip a Line to the X Plane, Forward 
:-:.:«oo..v ... :«*:-.::~-:o-;.:-..~y ..... ~:.:..;..; ... v .... "(-:.;ot"'~Av.o;';·~ .... ~:-)OX«";';«:~-:oQooh"-;~~;":-VN:':-"V. .... v ... :..;-:·:,.;.:«a:-" .... :-x·;.;..x*;.x-:-..~~A>;~y..«..;~:,x-:--~x~""-)Q(-:~ ... :«O-"v...x-:-.~x~~x«->x.;~«-;.:~~X<' ..... '="~;.x.;~;.:..x~:.X":O"v.«,...»~~ ... xoQo.,v ..... --.;.<C*~;..~x~""t-.~: 

Syntax bg~ S~DmX 
Integer CLlPFX 
Double-Precision CLlPFXD 
Single-Precision CLlPFXF 

'34020 10 9 8 7 5 4 2 0 
InstructIon Words 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

7-44 

I 10 I 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 1 0 1 t s 0 0 0 0 0 0 0 

The CLlPFXx Instruction clips a line to the viewing volume when its first 
endpoint is outside the clipping (viewable) volume. Use CLlPFXx only if the X 
coordinate of the first endpoint of a line is outside ofthe viewing volume. It also 
provides an interpolation factor that is used by the CLlPCx instruction when 
performing Gouraud shading. The endpoints are described by the 
homogeneous coordinates P1 = [X1, Y1, Z1 , W1] and P2 = [X2, Y2, Z2, W2]. 

RAO = X1 
RA1 = Y1 
RA2 = Z1 
RA3 =W1 

C = RAO 
CT = RBO 

RBO = X2 
RB1 = Y2 
RB2 = Z2 
RB3 = W2 

If RAO < 0 then set (N=1) 
If N = 1 then 

RB8 = RB3 + CT . 
RA8 = RA3 + C 

else 
RB8 = RB3 -CT 
RA8 = RA3-C 

RB9 = RBO - RAO 
RB8 = RA8 - RB8 
RA9 = RB1 - RA1 
C = RA81 RB8 
RA8 = RB2 - RA2 
CT = RB9 x C 
RAO = CT + RAO 
CT = RA9 x C 
RA1 = CT + RA1 
RA9 = RB3 - RA3 
CT = RA8xC 
RA2 = CT + RA2 
CT = RA9xC 
RA3 = CT + RA3 

; b = W2 + X2 
; a = W1 + X1 

; b=W2-X2 
; a = W1 -X1 
; X2 - X1 
;a- b 
; Y2 - Y1 
; t = a I (a - b) 
; Z2 - Z1 
; (X2 - X1) x t 
; X 1 ' = X 1 + (X2 - X 1) x t 
; (Y2 - Y1) x t 
; Y1 ' = Y1 + (Y2 - Y1) x t 
;W2-W1 
; (Z2 - Z1) x t 
; Z l' = Z 1 + (Z2 - Z 1) x t 
; (W2 - W1) x t 
; W1' = W1 + (W2 - W1) x t 

Internal Instructions 



Temporary Storage 

Outputs 

Instruction Type 

CT, RA8, RA9, RB8, RB9 

RAO = X1' 
RA1 = Y1' 
RA2 = Z1' 
RA3 = W1' 
C =t 

CEXEC, short 

7-45 



CLIPFYx Clip a Line to the Y Plane, Forward 
~Y .... ~~JO«IOI"....mQ~QCD~:QQ:QQ:QtC:CQQQCQQ:Qw:.Q:QQ.::QQC::C· .Qec· .·~V .... "'-:«-"n.»Y ..... ~.:·»"""' ... »;OO~~'"tQo..Vh»')I" ... :-:-:..y ... :-:,-,,»;o.;«,;,,;,:", .... v. ... ~;-.:-:.~;.»:.:--:~...:-:-:~;':«--Yh««"·:-X«·»:o.:o-:-;.:,....,v ... =«".v ..... ~:-; .. :-»..v ...... ",«:~ .... x~:-»:-:·: 

Syntax Ixpg S3l ota x 
Integer CLlPFY 
Double-Precision CLlPFYD 
Single-Precision CLlPFYF 

'34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Instruction Words 1 I 1 I 0 I 1 1 I 0 I 0 0 0 1 I 0 1 I 0 1 I type size I 

ID I 0 0 I 0 I 0 0 0 01 0 01 0 01 0 1 I 
Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

7-46 

I ID I 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 t 5 0 0 0 0 0 0 0 

The CLlPFYx Instruction clips a line to the viewing volume when its first 
endpoint is outside the clipping (viewable) volume. Use CLlPFYx only if the Y 
coordinate of the first endpoint of a line is outside ofthe viewing volume. It also 
provides an interpolation factor that is used by the CLlPCx instruction when 
performing Gouraud shading. The endpoints are described by the 
homog~neouscoordinates Pl = [Xl, Yl, Z1, Wl] and P2 = [X2, Y2, Z2, W2]. 

RAO = Xl 
RAl = Yl 
RA2 = Zl 
RA3=Wl 

C = RAl 
CT = RBl 

RBO = X2 
RBl = Y2 
RB2 = Z2 
RB3 = W2 

If RAl < 0 then set (N=l) 
If N = 1 then 

RB8 = RB3 + CT 
RA8 = RA3 + C 

else 
RB8= RB3-CT 
RA8= RA3-C 

RB9 = RBO - RAO 
RB8 = RA8 - RB8 
RA9 = RBl - RAl 
C = RA8/ RB8 
RA8 = RB2 - RA2 
CT = RB9 xc. 
RAO = CT + RAO 
CT = RA9 x C 
RAl = CT + RAl 
RA9 = RB3 - RA3 
CT = RA8xC 
RA2=CT+ RA2 
CT =.RA9 x C 
RA3 = CT + RA3 

; b =W2 + Y2 
; a = Wl + Yl 

;b=W2-Y2 
; a = W1 - Yl 
; X2 - Xl 
; a-b 
; Y2 - Yl 
; t = a I (a - b) 
; Z2 - Zl 
; (X2 - Xl) x t 
; Xl' = Xl + (X2 - X 1) x t 
; (Y2 - Yl) x t 
; Y1' = Yl + (Y2 - Y1) x t 
;W2-W1 
; (Z2 - Z1) x t 
; Zl' = Zl + (Z2 - Zl) x t 
; (W2 - W1) xt 
; Wl' = Wl + (W2 - W1) x t 

Internal Instructions 



Temporary Storage 

Outputs 

Instruction Type 

CT, RAB,RA9, RBB, RB9 

RAO = X1' 
RA1 = Y1' 
RA2 = Z1' 
RA3 = W1' 
C=t 

CEXEC, short 

7-47 



Syntax 

'34020 
Instruction Words 

bg~ 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 
1 I 1 I 0 1 

10 0 

Sxnmx 
CLlPFZ 
CLlPFZD 
CLlPFZF 

11 10 9 
1 0 0 

0 a 0 

8 7 6 5 4 3 2 0 
0 0 1 0 1 a 1 type I size 

0 0 0 0 0 a 0 1 I 0 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

7-48 

I 10 I a 0 0 a 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 t sO 0 0 a 0 0 0 

The CLlPFZx Instruction clips a line to the viewing volume when its first 
endpoint is outside the clipping (viewable) volume. Use CLlPFZx only if the Z 
coordinate ofthe first endpoint of a line is outside ofthe viewing volume. It also 
provides an interpolation factor that is used by the CLlPCx instruction when 
performing Gouraud shading. The endpoints are described by the 
homogeneous coordinates P1 = [X1, Y1, Z1, W1] and P2 = [X2, Y2, Z2, W2]. 

RAO =X1 
RA1 = Y1 
RA2 =Z1 
RA3=W1 

C = RA2 
CT = RB2 

RBO = X2 
RB1 = Y2 
RB2 = Z2 
RB3 = W2 

If RA2 < 0 then set (N=1) 
If N = 1 then 

RB8= RB3 +CT 
RA8 = RA3 + C 

else 
RB8= RB3-CT 
RA8 = RA3-C 

RB9 = RBO - RAO 
RB8 = RA8 - RB8 
RA9 = RB1 - RA1 
C = RA8/RB8 
RA8 = RB2 - RA2 
CT = RB9xC 
RAO = CT + RAO 
CT = RA9 x C 
RA1 = CT + RA1 
RA9 = RB3 - RA3 
CT =RA8xC 
RA2 = CT + RA2 
CT = RA9xC 
RA3 = CT + RA3 

; b = W2 + Z2 
; a = W1 + Z1 

; b =W2-Z2 
; a = W1 -Z1 
; X2 -X1 
;a-b 
; Y2 - Y1 
;t=a/(a-b) 
; Z2 -Z1 
; (X2 - X1) x t 
; X1' = X1 + (X2 - X1) x t 
; (Y2 - Y1) xt 
; Y1 ' = Y1 + (Y2 - Y1) x t 
;W2-W1 
; (Z2 - Z1) x t 
; Z1' = Z1 + (Z2 - Z1) x t 
; (W2 - W1) x t 
; W1' = W1 + (W2 - W1) x t 

Internal Instructions 



Temporary Storage 

Outputs 

Instruction Type 

CT, RA8, RA9, RB8, RB9 

RAO = X1' 
RA1 = Y1' 
RA2 == Z1' 
RA3 = W1' 
C =t 

CEXEC, short 

7-49 



Syntax 

'34020 
Instruction Words 

bgg 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

1 I 1 I 0 1 

10 0 

SXDtax 
CLlPRX 
CLlPRXD 
CLlPRXF 

11 10 9 8 
1 0 0 0 

0 0 0 0 

7 6 5 4 3 2 0 
0 1 0 1 1 0 type size 

0 0 0 0 0 0 0 0 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

7-50 

110 I 0 0000 0000 001 0 001 0 1 1 0 t sO 0 0 0000 

The CLlPRXx Instruction clips a line to the viewing volume when its second 
endpoint is outside the clipping (viewable) volume. Use CLlPRXx only ifthe X 
coordinate of the second endpoint of a line is outside of the viewing volume. 
It also provides an interpolation factor that is used by the CLlPCRx instruction 
when performing Gouraud shading. The endpoints are described by the 
homogeneous coordinates P1 = [X1, Y1, Z1, W1] and P2 = [X2, Y2, Z2, W2]. 

RAO =X1 
RA1 = Y1 
RA2 = Z1 
RA3 =W1 

CT= RBO 
C = RAO 

RBO = X2 
RB1 = Y2 
RB2 = Z2 
RB3 = W2 

If RBO < 0 then set (N=1) 
If N = 1 then 

RB8= RA3+ C 
RA8 = RB3 + CT 

else 
RB8 = RA3-C 
RA8= RB3-CT 

RB9 = RAO - RBO 
RB8 = RA8 - RB8 
RA9 = RA1 - RB1 
C = RA8! RB8 
RA8 = RA2 - RB2 
CT = RB9 xC 
RAO = CT + RBO 
CT = RA9 xC 
RA1=CT+RB1 
RA9 = RA3 - RB3 
CT = RA8xC 
RA2 =CT + RB2 
CT = RA9xC 
RA3 = CT + RB3 

; b = W1 -X1 
;a=W2-X2 

; b = W1 + X1 
; a =W2 +X2 
; X1 -X2 
;a-b 
; Y1 - Y2 
; t = a! (a - b) 
; Z1 - Z2 
; (X1 - X2) x t 
; X2' = X2 + (X1 - X2) x t 
; (Y1 - Y2) x t 
; Y2' = Y2 + (Y1 - Y2) x t 
;W1-W2 
; (Z1 - Z2) x t 
; Z2' = Z2 + (Z1 - Z2) x t 
; (W1 - W2) xt 
; W2' = W2 + (W1 - W2) x t 

Internal Instructions 



Temporary Storage 

Outputs 

Instruction Type 

CT, RA8, RA9, RB8, RB9 

This writes [X2',Y2',Z2',W21 over [X1,Y1,Z1,W1]. 
RAO = X2' 
RA1 = Y2' 
RA3 = Z2' 
RA4 = W2' 
C=t 

CEXEC, short 

7-51 



Syntax 

'34020 
Instruction Words 

bR~ 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

S¥otax 
CLiPRY 
CLiPRYD 
CLiPRYF 

11 10 8 6 5 3 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

7-52 

I 10 I 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 t s 0 0 0 00 0 0 

The CLiPRYx Instruction clips a line to the viewing volume when its second 
endpoint is outside the clipping (viewable) volume. Use CLiPRYx only ifthe Y 
coordinate of the second endpoint of a line is outside of the viewing volume. 
It also provides an interpolation factor that is used by the CUPCRx instruction 
when performing Gouraud shading. The endpoints are described by 
homogeneous coordinates P1 = [X1, Y1, Z1, W1] and P2 = [X2, Y2, Z2, W2]. 

RAO=X1 RBO=X2 
RA 1 = Y1 RB1 = Y2 
RA2 = Z1 RB2 = Z2 
RA3 = W1 RB3 = W2 

CT = RB1 
C = RA1 
If RB1 < 0 then set (N = 1) 
If N = 1 then 

RB8 = RA3 +C 
RA8 = RB3 + CT 

else 
RB8 = RA3-C 
RA8 = RB3- CT 

RB9 = RAO - RBO 
RB8 = RA8 - RB8 
RA9 = RA1 - RB1 
C = RA8/RB8 
RA8 = RA2 - RB2 
CT = RB9 x C 
RAO = CT + RBO 
CT = RA9 x C 
RA1 =CT+RB1 
RA9 = RA3 - RS3 
CT = RA8xC 
RA2 = CT + RB2 
CT = RA9 x C 
RA3 = CT + RS3 

; b = W1 - Y1 
;a=W2-Y2 

; b = W1 + Y1 
;a=W2+Y2 
; X1 -X2 
;a-b 
; Y1 - Y2 
; t = a I (a - b) 
; Z1 - Z2 
; (X1 -X2) xt 
; X2' = X2 + (X1 - X2) x t 
; (Y1 - Y2) x t 
; Y2' = Y2 + (Y1 - Y2) x t 
;W1-W2 
; (Z1 - Z2) x t 
; Z2' = Z2 + (Z1 - Z2) x t 
; (W1- W2) xt 
; W2' = W2 + (W1 - W2) x t 

Internal Instructions 



Temporary Storage 

Outputs 

Instruction Type 

CT, RA8, RA9, RB8, RB9 

This writes [X2',Y2',Z2',W21 over [X1 ,Y1 ,Z1 ,W1]. 
RAO = X2' 
RA1 = Y2' 
RA3 = Z2' 
RA4 = W2' 
C =t 

CEXEC, short 

7-53 



Syntax 

'34020 
Instruction Words 

Ixg~ 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

1 I 1 I 0 1 

ID 0 

SllDta~ 
CLlPRZ 
CLlPRZD 
CLlPRZF 

11 10 9 
1 0 0 

0 0 0 

8 7 6 5 4 3 2 0 
0 0 1 0 1 1 0 type size 

0 0 0 0 0 0 0 1 0 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

7-54 

I ID I 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 t s 0 0 0 0 0 0 0 

The CLlPRZx Instruction clips a line to the viewing volume when its second 
endpoint is outside the clipping (viewable) volume. Use CLlPRZx only if the Z 
coordinate of the second endpoint of a line is outside of the viewing volume. 
It also provides an interpolation factor that is used by the CLlPCRx instruction 
when performing Gouraud shading. The endpoints are described by the 
homogeneous coordinates P1 = [X1, Y1, Z1, W1) and P2 = [X2, Y2, Z2, W2]. 

RAO = X1 RBO = X2 
RA 1 = Y1 RB1 = Y2 
RA2 = Z1 RB2 = Z2 
RAS = W1 RBS = W2 

CT= RB2 
C = RA2 
If RA2 < o then set (N = 1) 
If N = 1 then 

RB8 = RA3 + C 
RA8 = RB3 + CT 

else 
RB8= RAS-C 
RA8= RB3-CT 

RB9 = RAO - RBO 
RB8 = RA8- RB8 
RA9 = RA1 - RB1 
C = RA81 RB8 
RA8 = RA2 - RB2 
CT = RB9 xC 
RAO= CT + RBO 
CT = RA9 x C 
RA1=CT+RB1 
RA9 = RA3 - RB3 
CT =RA8xC 
RA2 = CT + RB2 
CT = RA9xC 
RAS = CT + RB3 

; b = W1 - Z1 
; a =W2-Z2 

; b = W1 + Z1 
; a = W2 + Z2 
; X1 - X2 
;a-b 
; Y1 - Y2 
; t = a I (a - b) 
; Z1 - Z2 
; (X1 - X2) x t 
; X2' = X2 + (X1 - X2) x t 
; (Y1 - Y2) x t 
; Y2' = Y2 + (Y1 - Y2) x t 
;W1-W2 
; (Z1 - Z2) x t 
; Z2' = Z2 + (Z1 - Z2) x t 
; (W1 - W2) xt 
; W2' = W2 + (W1 - W2) x t 

Internal Instructions 



Temporary Storage 

Outputs 

Instruction Type 

CT, RA8, RA9, RB8, RB9 

This writes [X2',Y2',Z2',W2'] over [X1,Y1,Z1,W1]. 
RAO = X2' 
RA1 = Y2' 
RA3 = Z2' 
RA4 = W2' 
C =t 

CEXEC, short 

7-55 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-56 

Integer 
Double-Precision 
Single-Precision 

O~CRd 

Syntax 
CLR CRd 
CLRD CRd 
CLRF CRd 

31 29 28 25 24 21 20 
10 I 1 1 0 1 I 1 1 0 1 I CRd 

CRd TMS34082 destination register. 

4 3 2 o 

16 15 o 
I 0000 001 t sOOO 0000 I 

CLRx loads a zero of the appropriate type in the register, CRd. The Z (zero) 
bit in the status register will be set also. 

CEXEC, short 

CLRF C 

This example loads a single-precision floating-point zero into TMS34082 
register C. 

Internsllnstructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

Syntax 
CMP CRSt, CRs2 
CMPD CRst, CRS2 
CMPF CRst, CRS2 

Flags (CRs1 - CRs2) -7 TMS34082 Status Register 

12 9 7 6 5 

31 29 28 25 24 21 20 
100000 0000 a 1 at 

3 

a 
sOOO 0000 

CRs1 TMS34082 register containing the first operand. Must be from RA 
register file. 

CRs2 TMS34082 register containing the second operand. Must be from RB 
register file. 

CMPx subtracts the contents of CRS2 from CRS1 and sets the appropriate 
status bits in the TMS34082 status register. 

CEXEC, short 

eMP RA5, RB6 

This example subtracts the integer contents of RB6 from RA5 and sets the 
status bits in the TMS34082 status register. 

7-57 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-58 

Syntax 
Integer 
Single-Precision 

CMP RSt, RS21 CRS11 CRS2 
CMPF RS1, R82, CRst, CRS2 

RS1 ~ CRs1 
RS2 ~ CRs2 
Flags (CRs1 - CRs2) ~ TMS34082 Status Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

010 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R 

o I 1 I 0 o I 0 I 1 I 0 t I 0 I 0 I 0 R 

o 
RS1 

RS2 

10 CRS1 CRs2 0 010 I 0 I 0 

31 29 28 25 24 21 20 o 
ID I CRs1 I CRs2 100000 0100 01 0 t 0000 0000 

TMS34020 source register for the first value to TMS34082 

RS2 TMS34020 source register for the second value to TMS34082 

CRs1 TMS34082 register to contain the first operand. Must be from RA 
register file. 

CRs2 TMS34082 register to contain the second operand. Must be from RS 
register file. 

CMPx loads the contents of RS1 and RS2 into CRS1 and CRS2 respectively, 
subtracts CRs2 from CRs1, and sets the appropriate status bits in the 
TMS34082 status register. 

The double-precision form of this instruction is not supported. 

CMOVGC, two registers 

CMPF AS, A6, RAS, RB6 

This example loads TMS34020 registers A5 and A6 into TMS34082 registers 
RA5 and RB6 respectively, subtracts the single-precision floating-point 
contents of RB6 from the contents of RA5, and sets the status bits in the 
TMS34082 status register. 

Interna/lnstructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

*Rs 4 CRs1 
Rs + 324 Rs 

f.~~J~&I~t! 
m~~.~~~~~lIm 
*Rs 4 CRs2 
Rs +32 4 Rs 

_~~BBli 

BI~ffif."liil§lIll 

Syntax 
CMP *Rs+, CRS1, CRS2 
CMPD *Rs+, CRS1, CR~ 
CMPF *Rs+, CRS1, CRS2 

Flags (CRs1 - CRS2) 4 TMS34082 Status Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
01 0 I 0 o I 0 I 1 I 1 o I 1 I 0 I 0 0 o I 
1 I 0 I 0 o I 0 I 1 I 0 tis I 0 I 0 R 

o 
transfers 
Rs 

10 CRS1 CRs2 0 010 I 0 I 0 

31 29 28 25 24 21 20 o 
100000 1000 01 0 t sOOO 0000 

Rs TMS34020 register containing the memory address 

CRs1 TMS34082 register to contain the first operand. Must be from RA 
register file. 

CRs2 TMS34082 register to contain the second operand. Must be from RB 
register file. 

CMPx loads the contents of memory pointed to by Rs into CRs1 and CRS2, 
subtracts CRS2 from CRS1, and sets the appropriate status bits in the 
TMS34082 status register. After each load from memory, Rs is incremented 
by 32. 

CMOVMC, postincrement, constant count 

eMP *A5+, RA5,RB6 

This example loads the contents of memory starting at the address given by 
TMS34020 register A5 into TMS34082 registers RA5 and RB6, subtracts the 
integer contents of RB6 from RA5, and sets the status bits in the TMS34082 
status register. 

7-59 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-60 

Type 
Integer 
Double-Precision 
Single-Precision 

Rs-32 ~ Rs 
*Rs ~ CRs1 

"l~.l~alfil~ 
:~RI~~D1~.61~~ 
Rs-32 ~ Rs 
*Rs ~ CRs2 
l811~Wl.~a~BI~ 
!81*Hl~f.QBIi1 

Syntax 
CMP - *Rs, CRS1, CRS2 
CMPD -*Rs, CRS1, CRS2 
CMPF -*Rs, CRS1, CRS2 

Flags (CRs1 - CRs2) -7 TMS34082 Status Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 o 1 1 J 0 .1 0 o I 0 I 0 I 1 0 o I transfers 

1 I 0 I 0 o I 0 I 1 I 0 tis 1 0 I 0 A As 

10 CRS1 CRS2 0 010 I 0 I 0 

31 29 28 25 24 21 20 o 
10 I CAS1 I CAs2 100000 1000 01 0 t 5000 0000 

Rs TMS34020 register containing the memory address 

CRs1 TMS34082 register to contain the first operand. Must be from RA 
register file. 

CRs2 TMS34082 register to contain the second operand. Must be from RB 
register file. 

CMPx loads the contents of memory pointed to by Rs into CRs1 and CRs2' 
subtracts CRS2 from CRs1, and sets the appropriate status bits in the 
TMS34082 status register. Before each load from memory, Rs is decremented 
by 32. 

CMOVMC, predecrement, constant count 

CMP -*A5, RA5, RB6 

This example loads the integer contents of memory starting at the address 
given by TMS34020 register A5 minus 32 into TMS34082 registers RA5 and 
RB6, subtracts the integer contents of RB6 from RA5, and sets the status bits 
in the TMS34082 status register. 

Internal Instructions 



Convolution CONVx 
*:"';"';·:·;";·:"·;'»:·:::·:·jo:·:";";-;";·:-:·:--X-:-:·~:";:-:·;w"J':::..;.t'J':-;":::";-:Yjo:·:·:·:·;~:";·:·;-:-:-:·:-jo:-:-:·;o.;o.:·:";·:-;":-X-:·:-:·:-:·:·jo:·:-::O;-:-:.:.:.:.;..:.:-:.;.z..: .. :.:;:.:.:.:-:.:.:.:.:-:.:.:-:.:-:.:-;.:..;".:.;..;·:O;·;O-:-:·:-:·:-;':-:-:?:-:::-:-:·:-;';V;·;';";.t";·:;-»:'-:·:;'X-::*:':-:-:·:-:·:·:";..;."'J'X..;·;.;.:-:-:·:·x~...cv:·;..::·:·;,:·:...:-;.r"':';-:";-jo~:·»X';'X·:"·:-;«~:-:':-:-:·:-h·X~ 

Syntax 

'34020 
Instruction Words 

Type 
Integer 
Double-Precision 
Single-Precision 

Syntax 
CONY 
CONVO 
CONVF 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

I ID I 0 00 0 0 0 0 0 0 00 0 0 0 0 1 1 0 1 1 t sO 00 0 0 0 0 

The CONVx instruction performs the multiplies and accumulates for a 3 x 3 
convolution assuming the constants (C9-C1) and the integer values (P9-P1) 
are in TMS34082 registers. The convolution divide constant (K) is maintained 
in register RA9for the integer instruction (CONV). For floating-point 
instructions (CONVD and CONVF), the inverse of the divide constant is 
maintained in RA9 to reduce the division to a single multiply. Note-that K is 
typically greater than zero. 

RAO = P1 RA3 = P4 
RA 1 = P2 RA4 = P5 
RA2 = P3 RA5 = P6 

RA6 = P7 
RA7 = P8 
RA8 = P9 

RA9 = K or 
RAg = 11K 

(for the integer instruction, CONV) 

RBO = C1 
RB1 = C2 
RB2 = C3 

(for floating-point instructions, CONVD and CONVF) 

RB3 =C4 
RB4 = C5 
RB5 = C6 

RB6 = C7 
RS7 = C8 
RB8= C9 

C = RAOx RBO ; determine influence due to points P9-P1 
CT = C + (RA1 x RB1) 
C = CT + (RA2 x RB2) 
CT = C + (RA3 x RB3) 
C = CT + (RA4 x RB4) 
CT = C + (RA5 x RB5) 
C = CT + (RA6 x RB6) 
CT = C + (RA7 x RB7) 
C = CT + (RA8 x RB8) 
If type = integer, then 

RB9 = C I RA9 
else 

RB9 = C x RA9 

C,CT 

; divide by the convolution divide constant 

; multiply the inverse of the divide constant 

C = [(C11) + (C2 x P2) + ... + (C9 x P9)] 
RB9 = [(C1 x P1) + (C2 x P2) + ... + (C9 x P9)] / K 

CEXEC, short 

7-61 



Syntax 

'34020 
Instruction Words 

~g~ 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

11 1 I 0 I 1 

10 I 0 

S~Dta! 
CPV 
CPVD 
CPVF 

11 10 9 

1 1 0 0 

I 0 0 0 

8 7 6 5 4 3 2 0 
0 0 1 0 0 0 1 type size 

0 0 0 0 0 0 0 0 0 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Status Bits 

Instruction Type 

7-62 

I 10 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 t s 0 0 0 00 0 0 

A point [Xn,Yn,Zn] is compared to the volume defined by Xmin,Ymin, Zmin and 
Xmax,Ymax, Zmax. Six comparison bits within the status register are set 
according to the comparison. The TMS34020 may read the status and perform 
a 64-way branch based on the six comparison bits. 

RAO = Xmin RA3 = Xmax RBO = Xn 
RA 1 = Ymin RA4 = Ymax RB1 = Yn 
RA2 = Zmin RA5 = Zmax RB2 = Zn 

If RBO - RAO < 0, set XLT 
else reset XL T 

; test for XLT (Xn - Xmin) 

If RA3 - RBO < 0, set XGT 
else reset XGT 

; test for XGT (Xmax - Xn) 

If RB1 - RA1 < 0, set YLT 
else reset YLT 

; test for YLT (Yn - Ymin) 

If RA4 - RB1 < 0, set YGT 
else reset YGT 

; test for YGT (Ymax - Yn) 

If RB2 - RA2 < 0, set ZLT 
else reset ZL T 

; test for ZLT (Zn - Zmin) 

If RA5 - RB2 < 0, set ZGT ; test for ZGT (Zmax - Zn) 
else reset ZGT 

CT 

Status register set 

XLT (bit 5) is set high if (Xn < Xmin) 
XGT (bit 6) is set high if (Xn > Xmax) 
YLT (bit 7) is set high if (Yn < Ymin) 
YGT (bit 8) is set high if (Yn > Ymax) 
ZLT (bit 9) is set high if (Zn < Zmin) 
ZGT (bit1'0) is set high if (Zn > Zmax) 

CEXEC, short 

Internal Instructions 



Syntax 

'34020 
Instruction Words 

Instruction to '34082 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Status Bits 

Instruction Type 

Tllg~ Sllntax 
Integer CPW 
Double-Precision CPWD 
Si ngle-Precision CPWF 

14 13 12 11 9 7 6 5 4 3 
0 0 0 

0 0 0 0 

31 29 0 

110 I 0 0000 0000 0000 0010 000 t sOOO 0000 

A point [Xn,Yn] is compared to the window defined by Xmin, Ymin and Xmax, 
Ymax. Four comparison bits within the status register are set according to the 
comparison. The TMS34020 may read the status and perform a 16-way 
branch based on the four comparison bits. 

RAO = Xmin RA2 = Xmax RBO = Xn 
RA1 = Ymin RA3 = Ymax RB1 = Yn 

If RBO - RAO < 0, set XLT 
else reset XLT 

If RA3 - RBO < 0, set XGT 
else reset XGT 

If RB1 - RA1 < 0, set YLT 
else reset YL T 

If RA4 - RB1 < 0, set YGT 
else reset YGT 

CT 

Status register set 

; test for XLT (Xn - Xmin) 

; test for XGT (Xmax - Xn) 

; test for YLT (Yn - Ymin) 

; test for YGT (Ymax - Yn) 

XLT (bit 5) is set high if (Xn < Xmin) 
XGT (bit 6) is set high if (Xn > Xmax) 
YLT (bit 7) is set high if (Yn < Ymin) 
Y.GT (bit 8) is set high if (Yn > Ymax) 

CEXEC, short 

7-63 



Syntax T~R~ S~nta~ 
Integer CSPLN 
Double-Precision CSPLND 
Single-Precision CSPLNF 

'34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Instruction Words 1 I 1 I 0 1 1 0 0 0 0 1 1 1 1 0 type size 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 

msuucNonro~4082 r-3_1~2_9 __________________________________________________________ 0~ 

I 10 I 0 0000 0000 0000 001 1 1 1 0 t sO 00 0000 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

7-64 

Given a cubic spline defined by: 
X = (A3 x T3) + (A2 x T2J + (A 1 x T) + AO 
Y = (B3 X T3) + (B2 x T ) + (B1 x T) + BO 
Z = (C3 x T3) + (C2 x T2) + (C1 x T) + CO 

This routine will calculate X,Y,Z for a series of values of T. The previous T value 
is incremented from 0 to 1 by an amount dT. Note this instruction may also be 
used to calculate X and Y for a 2-D cubic spline by ignoring the values of the 
Z coefficients and results. 

RBO = AO, RB1 = A1, RB2 = A2, 
RB4 = BO, RB5 ~ B1, RB6 = B2, 
RB8 = CO, RB9 = C1, RAO == C2, 
C = Previous T value (or 0 if first T value) 
RA4=dT 

C=C+ RA4 
RA7 = RB3 
RA7 = (RA7 x C) + RB2 
RA7 = (RA7 x C) + RB1 
RA7 = (RA7 x C) + RBO 
RA8= RB7 
RA8 = (RA8 x C) + RB6 
RA8 = (RA8 x C) + RB5 
RA8 = (RA8 x C) + RB4 
CT = RA1 xC 
RA9 == CT + RAO 
RA9 = (RA9 x C) + RB9 
RA9 = (RA9 x C) + RB8 

C,CT 

RA7=X 
RA8=Y 
RA9=Z 

CEXEC, short 

; T= T+dT 
;X=A3 
; X = (X x T) + A2 
; X = (X x T) + A 1 
; X = (X x T) + AO 
;Y= B3 
; Y = (Y x T) + B2 
; Y = (Y x T) + B1 
; Y = (Y x T) + BO 
; Z = C3 x T 
; Z== Z+C2 
; Z = (Z x T) + C1 
; Z = (Z x T) + CO 

RB3 = A3 
RB7 = B3 
RA1 = C3 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

InstrucUonto~4082 

Operands 

Description 

Instruction Type 

Example 

CVDF CRs, CRd 

(CRs)~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

11 I I~ I 0 11 I \l. 0 I 0 1 ~ 1 0 1 ~ 1 ~ 11 I 1 I c~) 1 I 1 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 01 00 I CRd I 0001 1 1 1 1 1000 0000 I 

CRs TMS34082 source register containing a 64-bit double-precision 
floating-point operand 

CRd TMS34082 destination register 

CVDF converts a 64-bit IEEE double-precision floating-point number to a 
32-bit IEEE single-precision floating-point number. The double-precision 
number resides in CRs, and the converted single-precision number is stored 
inCRd. 

The source register, CRs, must be in the RA register file. 

CEXEC, short 

CVDF RA5, RA 7 

This example converts the contents of RA5 to a single-precision floating-point 
number and stores the result in RA7. 

7-65 



CVDF Load and Convert, Double-Precision to Single-Precision 
l"' ..... ~v,,~**'-y ...... "9'»"...x~v .... ~"I.)..'»..'"«<~»Xo-»".,..:..:-:-..~v .. »:~..:~'V .... :-:..,..,v.,.:«<"" ...... "«~>~vb:,,~ ... x~~ .......... "I(ooX.:~v.,.:<~~:-"'X'\VA.~-:-"""' ... ~«.X~:-:-:-»~ ... »:~:«'''.~.X';'Y .... ,""..;...,,>:«*-~»:o:<.:-:.=-»~)x-;.Y'''':«--..v.,.x<-.:-:-~v~:-~v~:-x«-:.:...: 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-66 

CVDF RS1, R82, CRs, CRd 

Rs1, RS2 ~ CRs 
(CRs)~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

010 I 0 o I 0 I 1 I 1 0 0 1 0 R I RS1 

o I 1 I 0 1 I 1 I 1 I 1 1 1 0 0 R I RS2 

10 CRS1 0 1 0 0 CRd 

31 29 28 25 24 20 21 16 15 
10 I CRs I 01 00 I CRd I 01 01 1 1 1 1 1000 

o 

o 
0000 I 

TMS34020 source register for half the 64-bit double-precision 
floating-point value to TMS34082. 

RS2 TMS34020 source register for remaining half of the 64-bit 
double-precision floating-point operand. 

CRs TMS34082 source register to contain the double-precision 
floating-point operand 

CRd TMS34082 destination register 

CVDF loads the double-precision contents of RS1 and RS2 into CRs and 
converts the 64-bit IEEE double-precision floating-point number to a 32-bit 
IEEE single-precision floating-point number. The converted single-precision 
number is stored in CRd. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVGC, two registers 

CVDF RAS, RA7 

This example converts the contents of RA5to a single-precision floating-point 
number and stores the result in RA7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

---------_ .... _---

CVDF .. Rs+, CRs, CRd 

*Rs ~ CRs 
Rs + 32 ~ Rs 
*Rs ~ CRs 
Rs + 32 ~ Rs 
(CRs) ~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 o I 0 I 1 I 1 0 1 0 0 01 0 I 0 I 1 I 0 

1 I 0 I 0 1 I 1 I 1 I 1 1 1 0 0 R I Rs 

10 CRs1 0 1 0 0 CRd 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 01 00 I CRd 11 001 1 1 1 1 1 000 0000 1 

Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the 64-bit double-precision 
floating-point operand 

CRd TMS34082 destination register 

CVDF loads the double-precision contents of memory pOinted to by Rs into 
CRs and converts the 64-bit IEEE double-precision floating-point value to a 
32-bit IEEE single-precision floating-point value. The double-precision 
number is stored in CRs, and the converted single-precision number is stored 
in CRd. After each load from memory, Rs is incremented by 32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, postincrement, constant count 

CVDF *B5+, RA5, RA7 

This example toads the contents of memory starting at the address given by 
TMS34020 register 85 into TMS34082 register RA5, converts the contents of 
RA5 to a single-precision number, and stores the result in RA7. 

7-67 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Temporary 
Storage 
Example 

7-68 

CVDF - *Rs, CRs, CRd 

Rs-32 ~ Rs 
·Rs ~ CRs 
Rs-32 ~ Rs 
·Rs ~ CRs 
(CRs)~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
o I 0 1 0 01 1 1 0 I 0 0 0 0 1 01 0 I 0 J 1 I 0 

1 I 0 I 0 1 I 1 I 1 I 1 1 1 0 0 R I Rs 

10 CRs 0 1 0 0 CRd 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 01 00 1 CRd 11 001 1 1 1 1 1000 0000 I 

Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the 64-bit double-precision 
floating-point operand 

CRd TMS34082 destination register 

CVDF loads the double-precision contents of memory pointed to by Rs into 
CRs and converts the 64-bit IEEE double-precision floating-point value to a 
32-bit I EEE single-precision floating-point value. The double-precision 
number resides in CRs, and the converted single-precision number is stored 
in CRd. Before each load from memory, Rs is decremented by 32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, predecrement, constant cont 

CVDF -*B5, RA5, RA7 

This example loads the contents of memory starting at the address given by 
TMS34020 register 85 minus 32 into TMS34082 register RA5, converts the 
contents of RA5 to a single-precision number, and stores the result in RA7. 

Internsllnstructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

CVOI CRs, CRd 

(CRs)~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

11 II~ I 0 11 I 1 I 0 I 0 

1 

0 
1 0 1 

0 

I 
1 

1 

1 1 I 1 1 

CRs 0 0 CRd 

31 29 28 25 24 21 20 16 15 o 
ID I CRs I 01 01 I CRd I 0001 1 1 1 1 1000 0000 I 

CRs TMS34082 source register containing a 64-bit double-precision 
floating-point operand 

CRd TMS34082 destination register 

CVOI converts a 64-bit IEEE double-precision floating-point numberto a 32-bit 
integer number. The double-precision number resides in CRs, and the 
converted integer number is stored in CRd. 

The source register, CRs, must be in the RA register file. 

CEXEC, short 

CVDr HAS, RB7 

This example converts the contents of RA5 to an integer and stores the result 
in RS? 

7-69 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-70 

CVDI RS1, R5:! CRs, CRd 

(CRs)~CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

0 J 0 1 0 010J1J1 0 0 1 1 R I RS1 

0 I 1 I 0 1 I 1 I 1 I 1 1 1 0 0 R I RS2 

10 CRs 0 1 0 1 CRd 

31 29 28 25 24 21 20 16 15 
10 I CRs I 01 01 I CRd I 01 01 1 1 1 1 1000 

o 

o 
0000 I 

TMS34020 source register for half the 64-bit double-precision 
floating-point value to TMS34082 

RS2 TMS34020 source register for remaining half of the 64-bit 
double-precision floating-point operand 

CRs TMS34082 source register to contain the double-precision 
floating-point operand 

CRd TMS34082 destination register 

CVOI loads a 64-bit IEEE double-precision floating-point numberfrom RS1 and 
RS2 into CRs and converts it to a 32-bit integer number. The double-precision 
number resides in CRs, and the converted integer number is stored in CRd. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVGC, two registers 

CVDI A4, AS, RAS, RB7 

This example loads TMS34020 registers A4 and A5 into TMS34082 register 
RA5, converts the contents of RA5 to an integer, and stores the result in RB? 

Interns/Instructions 



--- ------ ---

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

CVDI .. Rs+, CRs, CRd 

·Rs ~ CRs 
Rs + 32 ~ Rs 
.Rs ~ CRs 
Rs + 32 ~ Rs 
(CRs) ~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 o I 0 I 1 I 1 0 1 0 0 010 I 0 I 1 I 0 

1 I 0 I 0 1 I 1 I 1 I 1 1 1 0 0 R I Rs 

10 CRs 0 1 0 1 CRd 

31 29 28 25 24 21 20 16 15 o 
10 1 CRs I 01 0 1 I CRd 11 a a 1 1 1 1 1 1000 0000 I 

Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the 64-bit double-precision 
floating-point operand 

CRd TMS34082 destination register 

CVDlloads the double-precision contents of memory pOinted to by Rs into CRs 
and converts the 64-bit I EEE double-precision floating-point value to an integer 
value. The double-precision number resides in CRs, and the converted integer 
number is stored in CRd. After each load from memory, Rs is incremented by 
32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, postincrement, constant count 

cvor *B5+, RA5, RA7 

This example loads the contents of memory starting at the address given by 
TMS34020 register 85 into TMS34082 register RA5, converts the contents of 
RA5 to an integer number, and stores the result in RA7. 

7-71 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-72 

CVOI - .,Rs, CRs, CRd 

Rs-32 ~ Rs 
.Rs ~ CRs 
Rs-32 ~ Rs 
.Rs ~ CRs 
(CRs)~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
01 0 I 0 o I 1 I 0 I 0 0 0 0 1 01 0 I 0 I 1 I 0 

1 I 0 I 0 1 I 1 I 1 I 1 1 1 0 0 R I Rs 

10 CRs 0 1 0 1 CRd 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 01 01 I CRd 11 001 1 1 1 1 1000 0000 I 

Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the 64-bit double-precision 
floating-point operand 

CRd TMS34082 destination register 

CVDI loads the double-precision contents of memory pointed to by the 
predecremented value of Rs into CRs and converts the 64-bit IEEE 
double-precision floating-point value to an integer value. The double-precision 
number resides in CRs, and the converted integer number is stored in CRd. 
Before each load from memory, Rs is decremented by 32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, predecrement, constant count 

CVDI -*BS, RA5, RA7 

This example loads the contents of memory starting at the address given by 
TMS34020 register 85 minus 32 into TMS34082 register RA5, converts the 
contents of RA5 to an integer number, and stores the result in RA7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

CVFD CRs, CRd 

(CRs)~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

11 I I~ I 0 11 I 1 cis 0 I 0 1 ~ 1 0 1 ~ 1 ~ 11 I 1 I C~d 
31 29 28 25 24 21 20 16 15 

10 I CRs I 0100 I CRd I 0 001 1 1 1 1 0000 

o 
I 0 

a 
a 0 a 0 I 

CRs TMS34082 source register containing a 32-bit single-precision 
floating-point operand 

CRd TMS34082 destination register 

CVFD converts a 32-bit IEEE single-precision floating-point value to a 64-bit 
IEEE double-precision floating-point value. The single-precision number 
resides in CRs, and the converted double-precision number is stored in CRd. 

The source register, CRs, must be in the RA register file. 

CEXEC, short 

CVFD RA5, RB7 

This example converts the contents of RA5 to a double-precision number and 
stores the result in RS? 

7-73 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-74 

CVFD Rs, CRs, CRd 

Rs ~ CRs 
(CRs) ~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

0 1 0 I 0 01 0 1 1 1 1 0 0 0 1 R 1 

o 
Rs 

0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 010101010 

10 CRs 0 1 0 0 CRd 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 01 00 I CRd I 01 0 1 1 1 1 1 0000 0000 I 

Rs TMS34020 source register containing the 32-bit single-precision 
floating-point value to TMS34082 

CRs TMS34082 register to contain the 32-bit single-precision 
floating-point operand 

CRd TMS34082 destination register 

CVFD loads the single-precision contents of Rs into CRs and converts the 
32-bit IEEE single-precision floating-point value to a 64-bit IEEE 
double-precision floating-point value. The single-precision number resides in 
CRs, and the converted double-precision number is stored in CRd. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVGC, one register 

CVFD B5, RA5, RA7 

This example loads TMS34020 register 85 into TMS34082 register RA5, 
converts the contents of RA5 to a double-precision number, and stores the 
result in RA7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

CVFD .. Rs+, CRs, CRd 

*As -7 CAs 
As + 32 -7 As 
(CRs) -7 CAd 

-------------------------- -----

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 o I 0 I 1 I 1 0 1 0 0 01 0 I 0 I 0 I 1 

1 I 0 I 0 1 I 1 I 1 I 1 1 0 0 0 R I Rs 
10 CRs 0 1 0 0 CRd 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 01 00 I CRd I 1 001 1 1 1 1 0000 0000 I 

As TMS34020 register containing the memory address 

CRs TMS34082 register to contain the 32-bit single-precision 
floating-point operand 

CRd TMS34082 destination register 

CVFD loads the single-precision contents of memory pointed to by As into CRs 
and converts the 32-bit IEEE single-precision floating-point value to a 64-bit 
IEEE double-precision floating-point value. The single-precision number 
resides in CAs, and the converted double-precision number is stored in CRd. 
After each load from memory, As is incremented by 32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, postincrement, constant count 

CVFD *B5+, RA5, RA7 

This example loads the contents of memory starting at the address given by 
TMS34020 register 85 into TMS34082 register AA5, converts the contents of 
RA5 to a double-precision number, and stores the result in RA7. 

7-75 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-76 

CVFD -*Rs+, CRs, CRd 

Rs-32 ~ Rs 
*Rs ~ CRs 
(CRs)~CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 o I 1 I 0 I 0 0 0 0 1 01 0 I 0 I 0 I 1 

1 I 0 I 0 1 I 1 I 1 I 1 1 0 0 0 R T Rs 

ID CRs 0 1 0 0 CRd 

31 2928 2524 2120 16 15 o 
I ID CRs I 01 00 I CRd 11 001 1 1 1 1 0000 0000 I 
Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the 32-bit single-precision 
floating-point operand 

CRd TMS34082 destination register 

CVFD loads the single-precision contents of memory pointed to by Rs into CRs 
and converts the 32-bit IEEE single-precision floating-point value to a 64-bit 
I EEE double-precision floating-point value. The single-precision number 
resides in CRs, and the converted double-precision number is stored in CRd. 
Before each load from memory, Rs is decremented by 32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, predecrement, constant count 

CVFD -*B5, RA5, RA7 

This example loads the contents of memory starting at the address given by 
TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the 
contents of RA5 to a double-precision number, and stores the result in RA 7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

- - ----- ------- ----_._-- -_._._-----------

CVFI CRs, CRd 

(CRs) -7 CRd 

15 14 13 12 11 10 9 8 7 6 5 4 

11 I I~ I a 11 I 1 ct a I a 1 ~ 1 ~ 1 ~ 11 11 

31 2928 25 24 21 20 16 15 

I 10 I CRs I 01 01 I CRd I 0001 1 1 1 1 

3 2 

1 1 

CRd 

0000 

o 
o 

o 
0000 I 

CRs TMS34082 source register containing a 32-bit single-precision 
floating-point operand 

CRd TMS34082 destination register 

CVFI converts a 32-bit IEEE single-precision floating-paint value to a 32-bit 
integer value. The single-precision number resides in CRs, and the converted 
integer number is stored in CRd. 

The source register, CRs, must be in the RA register file. 

CEXEC, short 

CVFI RA5, RA7 

This example converts the contents of RA5 to an integer and stores the result 
in RA7. 

7-77 

............. ---" ......... ---------------------------,---~--.. -,---------



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-78 

CVFI Rs, CRs, CRd 

Rs ~ CRs 
(CRs)~CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

o I 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I 
o 

Rs 

o I 1 I 0 1 I 1 I 1 I 1 1 0 0 0 010 I 0 I 0 I 0 

ID CRs 0 1 0 1 CRd 

31 29 28 25 24 21 20 16 15 o 
ID I CRs I 01 01 I CRd I 0 1 01 1 1 1 1 0000 0000 I 

Rs TMS34020 source register for the 32-bit single-precision floating­
point value to TMS34082 

CRs TMS34082 register to contain the 32-bit single-precision 
floating-point operand 

CRd TMS34082 destination register 

CVFlloads the single-precision contents of Rs into CRs and converts the 32-bit 
I EEE single-precision floating-point value to a 32-bit integer value. The 
single-precision number resides in CRs, and the converted integer number is 
stored in CRd. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVGC, one register 

CVFI B5, RA5, RB7 

This example loads TMS34020 register 85 into TMS34082 register RA5, 
converts the contents of RA5 to an integer, and stores the result in R87. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

CVFI *Rs+, CRs, CRd 

*Rs ~ CRs 
Rs + 32 ~ Rs 
(CRs) ~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a 
a I 0 I 0 a I 0 I 1 I 1 a 1 0 a a I a I a I a I 1 

1 I a I a 1 I 1 I 1 I 1 1 a a a R I Rs 
10 CRs a 1 a 1 CRd 

31 29 28 25 24 21 20 16 15 a 
10 I CRs I a 1 01 I CRd 1100 1 1 1 1 1 0000 a a a a I 

Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the 32-bit single-precision 
floating-point operand 

CRd TMS34082 destination register 

CVFlloads the single-precision contents of memory pOinted to by Rs into CRs 
and converts the 32-bit I EEE single-precision floating-point value to a 32-bit 
integer value. The single-precision number resides in CRs, and the converted 
integer number is stored in CRd. After each load from memory, Rs is 
incremented by 32. 
The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, postincrement, constant count 

CVFI *B5+, RA5, RA7 

This example loads the contents of memory starting at the address given by 
TMS34020 register 85 into TMS34082 register RA5, converts the contents of 
RA5 to an integer number, and stores the result in RA7. 

7-79 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-80 

CVFI - .. Rs, CRs, CRd 

Rs-32 ~ Rs 
.Rs ~ CRs 
(CRs)~CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 o I 1 I 0 I 0 0 0 0 1 010 I 0 I 0 I 1 

1 I 0 I 0 1 I 1 I 1 I 1 1 0 0 0 RI Rs 

10 CRs 0 1 0 1 CRd 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 01 01 1 CRd 11 001 1 1 1 1 0000 0000 I 

Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the 32-bit single-precision 
floating-point operand 

CRd TMS34082 destination register 

CVFlloads the single-precision contents of memory pointed to by Rs into CRs 
and converts the 32-bit IEEE single-precision floating-point value to a 32-bit 
integer value. The single-precision number resides in CRs, and the converted 
integer number resides in CRd. Before each load from memory, Rs is 
decremented by 32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, predecrement, constant count 

CVFI -*B5, RA5, RA7 

This example loads the contents of memory starting at the address given by 
TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the 
contents of RA5 to an integer number, and stores the result in RA7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

CVID CRs, CRd 

(CRs) ~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

11 II~ I 0 11 I 1 I 0 I 0 

1 

0 
1 0 1 

0 

1 

1 
11 

I 1 1 I 1 I 1 
CRs 0 0 CRd 

31 29 28 25 24 21 20 16 15 0 
10 I CRs I o 1 1 0 I CRd I 0001 1 1 1 1 1000 0000 I 

CRs TMS34082 source register containing the 32-bit integer operand 

CRd TMS34082 destination register 

CVID converts a 32-bit integer value to a 64-bit IEEE double-precision 
floating-point value. The integer resides in CRs, and the converted 
double-precision number is stored in CRd. 

The source register, CRs, must be in the RA register file. C and CT may not 
be used as operands for this instruction. 

CEXEC, short 

CVID RA5, RB7 

This example converts the contents of RA5 to a double-precision number and 
stores the result in RB7. 

7-81 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-82 

eVID Rs, CRs, CRd 

Rs ~ CRs 
(CRs)~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

o I 0 1 0 o I 0 J 1 I 1 0 0 1 0 R I Rs 

o I 1 I 0 1 I 1 I 1 I 1 1 1 0 0 R I Rs 

10 CRs 0 1 1 0 CRd 

31 29 28 25 24 21 20 16 15 
10 I CRs I 01 1 0 I CRd I 01 01 1 1 1 1 1000 

o 

o 
0000 I 

Rs TMS34020 source register containing the 32-bit integer value to 
TMS34082 

CRs TMS34082 source register to contain the 32-bit integer operand 

CRd TMS34082 destination register 

CVID loads the integer contents of Rs into CRs and converts a 32-bit integer 
value to a 64-bit IEEE double-precision floating-point value. The integer 
resides in CRs, and the converted double-precision number is stored in CRd. 
For this instruction, the integer in Rs must be sent as both words of a 54-bit 
transfer. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVGC, two registers 

CVID BS, RAS, RA7 

This example loads TMS34020 register 85 into TMS34082 register RA5, 
converts the contents of RA5 to a double-precision number, and stores the 
result in RA7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

CVIF CRs, CRd 

(CRs)~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

11 II~ I 0 11 
I 1 I 0 I 0 

1 

0 

1 

0 

1 

0 

1 

1 

1 

1 1 1 I 0 
CRs 0 1 0 CRd 

31 29 28 25 24 21 20 16 15 0 
10 I CRs I 01 1 0 I CRd I 0001 1 1 1 1 0000 0000 I 

CRs TMS34082 source register containing the 32-bit integer operand 

CRd TMS34082 destination register 

CVIF converts a 32-bit integer value to a 32-bit IEEE single-precision 
floating-point value. The integer resides in CRs, and the converted 
single-precision number is stored in CRd. 

The source register, CRs, must be in the RA register file. C and CT may not 
be used as operands for this instruction. 

CEXEC, short 

CVIF RA5, RA 7 

This example converts the contents of RA5 to a single-precision number and 
stores the result in RA7. 

7-83 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-84 

CVIF Rs, CRs, CRd 

Rs ~ CRs 
(CRs) ~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

01 0 I 0 01 0 I 1 I 1 0 0 0 1 R I 
o 

Rs 

o I 1 1 0 1 I 1 I 1 I 1 1 0 0 0 010 I 0 I 0 I 0 

10 CRs 0 1 1 0 CRd 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 01 1 0 I CRd I 0 1 01 1 1 1 1 0000 0000 I 

Rs TMS34020 source register for the 32-bit integer value to TMS34082 

CRs TMS34082 source register to contain the 32-bit integer operand 

CRd TMS34082 destination register 

CVIF loads the integer contents of Rs into CRs and converts a 32-bit integer 
value to a 32-bit I EEE single-precision floating-point value. The integer resides 
in CRs, and the converted single-precision number resides in CRd. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVGC, one register 

CVIF A3, RAS, RA7 

This example loads TMS34020 registers of A3 into TMS34082 register RA5, 
converts the contents of RA5 to a single-precision number, and stores the 
result in RA7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

CVIF *Rs+, CRs, CRd 

*Rs -. CRs 
Rs + 32 -. Rs 
(CRs) -. CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
0 I 0 I 0 o I 0 I 1 I 1 0 1 0 0 01 0 I 0 I 0 I 1 

1 I 01 0 1111111 1 0 0 0 R I Rs 

10 CRs 0 1 1 0 CRd 

31 29 28 25 24 21 20 16 15 0 
10 I CRs I 01 1 0 I CRd 11001 1 1 1 1 0000 0000 I 

Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the 32-bit integer operand 

CRd TMS34082 destination register 

CVIF loads the integer contents of memory pointed to by Rs into CRs and 
converts the 32-bit integer value to a 32-bit I EEE single-precision floating-point 
value. The integer number resides in CRs, and the converted single-precision 
number is stored in CRd. After each load from memory, Rs is incremented by 
32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, postincrement, constant count 

CVIF *BS+, RAS, RA7 

This example loads the contents of memory starting at the address given by 
TMS34020 register 85 into TMS34082 register RA5, converts the contents of 
RA5 to a single-precision number, and stores the result in RA 7. 

7-85 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-86 

CVI F ..... * Rs, CRst CRd 

Rs-32'" Rs 
·Rs "'CRs 
(CRs) -+ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
o 1 0 1 0 01 1 1 0 1 0 0 0 0 1 01 0 I 0 I 0 1 1 

1 I 0 I 0 1 I 1 I 1 I 1 1 0 0 0 R I Rs 

10 CRs 0 1 1 0 CRd 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 01 1 0 I CRd 11 001 1 1 1 1 0000 0000 1 

Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the 32-bit integer operand 

CRd TMS34082 destination register 

CVIF loads the integer contents of memory pointed to by Rs into CRs and 
converts the 32-bit integer value to a 32-bit lEE E single-precision floating-point 
value. The integer number resides in CRs, and the converted single-precision 
number is stored in CRd. Before each load from memory, Rs is decremented 
by 32. 

The TMS34082 source register, CRs, must be in the RA register file. 

CMOVMC, predecrement, constant count 

CVIF -*B5, RA5, RA7 

This example loads the contents of memory starting at the address given by 
TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the 
contents of RA5 to a single .... precision number, and stores the result in RA7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

CRs-1 ~ CRd 

Syntax 
DEC CRs [, CRd] 
DECO CRs [, CRd] 
DECF CRs [, CRd] 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 II~ I 0 11 I 1 cis 0 I 0 1 0 1 0 1 ~ 1 0 I 0 I 1 I ~RJ 1ype I size 1 

31 29 28 25 24 21 20 16 15 o 
ID I CRs I 1 101 I CRd I 0000 OO1t sOOO 0000 I 

CRs TMS34082 source register (also destination register if CRd is not 
specified). Must be from RA register file. 

CRd TMS34082 destination register. 

DECx subtracts one (of the appropriate type) from the value in CRs and stores 
the result in CRd. If CRd is not specified, the result is stored in CRs. 

CEXEC, short 

DEC CT 

This example subtracts an integer one from the value in TMS34082 register 
CT and stores the result in CT. 

7-87 



DECx Decrement a TMS34082 RB Register 
lQCa:I:lQQa:~c,c:aOQQ.QQI:lIj-=DI:I ~::'Q~g:Il:Q:DC:Qg:~~~v...:«««<-.~".:«~:"~:-"J't«Io.V~VhX-»h""»"h..~""""""'"'"'=·;:.x.:'.«-:««o-..,=-:-..~:«..;OC...'"«":-)O~'-»:.~"':":~"",",=-:*:r..~~: .. X-:«-:-=«-,)O;:..& .... ;m-:~""»'~-.V..<-"'J«OO:..;<O" .... ,,"*»X";': 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-88 

Txpe Syntax 
Integer DEC CRs £ CRd] 
Double-Precision DECD CRs £ CRd] 
Single-Precision DECF CRs £ CRd] 

CRs-1 ~ CRd 

15 14 13 7 6 

31 29 28 25 24 21 20 16 15 o 
10 I CRs I 1 1 01 I CRd I 0000 01 1 t 5000 0000 I 

CRs TMS34082 source register (also destination register if CRd is not 
specified). Must be from RS register file. 

CRd TMS34082 destination register. 

DECx subtracts one (ofthe appropriate type) from the value in CRs and stores 
the result in CRd. If CRd is not specified, the result is stored in CRs. 

CEXEC, short 

DECF RB2, C 

This example subtracts a single-precision one from the value in TMS34082 
register RS2 and stores the result in the C register. 

Internal Instructions 



Divide DIVx 
~)o"'~x«-;.;.r""X-:-; .... "'oV-*:';-:-:«*:-X«·Y,x-»" ..... -.:«-~~;.rHbY"':";..:.v~X«-».-..:-Y ..... ~:;.;-"...:·»:y:..y.,.~h;...,=,,:-:--..«ao:-:";':·:·»'XOO:·:~:·:-:""':-:';"'NJo:·:-:·;';":·:-:·;";';X«0:-:·:-;':-=«·1:.;'?».'""«-" .... :·X*'I:« .. : .. ;..=--»;.:«-:o-. ... ;,)tX?X«~:-r"..«-:*-,~~<oo:o......,.y....:« 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Type 
Integer 
Double-Precision 
Single-Precision 

( 
CRS,) -+ CRd 
CRs2 

Syntax 
DIVS CRst , CRs2 , CRd 
DIVD CRst , CR~, CRd 
DIVF CRst , CRs2 , CRd 

31 29 28 25 24 21 20 16 15 o 
ID CRd I 0001 001t sOOO 0000 I 

CRS1 TMS34082 register containing the first operand. Must be in RA 
register file. 

CRS2 TMS34082 register containing the second operand. Must be in RB 
register file. 

CRd TMS34082 destination register 

DIVx divides the contents of CRS1 by CRs2 and stores the result in CRd. For 
integer divides, the CT register is used for temporary storage. Any value stored 
in this register prior to DIVS will be corrupted. 

C and CT may not be used as operands for the integer form of this instruction, 
DIVS. 

CEXEC, short 

7-89 



DIVx Load and Divide 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-90 

Type 
Integer 
Single-Precision 

Rs1 .... CRs1 

Rs2 .... CRs2 

(
CRS1 ) .... CRd 
CRs2 

100 

Syntax 
DIVS Rst • Rs2• CRst• CRs2 • CRd 
DIVF Rst • Rs2• CRst• CRs2 • CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
0 I 0 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1 
0 I 1 I 0 1 I 0 I 0 I 1 type I 0 I 0 I 0 R I RS2 

10 CRS1 CRS2 CRd 

31 29 28 25 24 21 20 16 15 

o 

o 
10 CRd I 01 01 001 t 0000 0000 I 

TMS34020 source register for the first value to TMS34082 

RS2 TMS34020 source register for the second value to TMS34082 

CRS1 TMS34082 register to contain the first operand. Must be in RA 
register file. 

CRS2 TMS34082 register to contain the second operand. Must be in RB 
register file. 

CRd TMS34082 destination register 

DIVx loads the contents of RS1 and RS2 into CRs1 and CRS2 respectively, 
divides the contents of CRs1 by CRs2, and stores the result in CRd. For integer 
divides, the CT register is used for temporary storage. Any value stored in this 
register prior to DIVS will be corrupted. 

The double-precision form of this instruction is not supported. 

CMOVGC, two registers 

DIVF AS, A6, RAS, RB6, RA7 

This example loads TMS34020 registers AS and A6 into TMS34082 registers 
RA5 and RB6 respectively, divides the contents of RA5 by RB6, and stores the 
result in RA7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

*Rs --. CRs1 
Rs + 32 --. Rs 

ilm~~~l&ifllj 
6Jl~11~t3J~mfitj 
*Rs --. CRs2 
Rs + 32 --. Rs 

iJJIMlii§J.D.~ 
.J~M~R~~ef:~ 

( 
CRS1 ) --. CRd 
CRs2 

15 
o 

Syntax 
DIVS *Rs+, CRst, CRs2 , CRd 
DIVD * Rs+, CRst , CR~, CRd 
DIVF *Rs+, CRst , CRs2 , CRd 

31 29 28 25 24 21 20 16 15 
ID CRd 11 001 001t 

Rs TMS34020 register containing the memory address 

2 0 

transfers 

Rs 

o 
sOOO 0000 I 

CRS1 TMS34082 register to contain the first operand. Must be in RA register 
file. 

CRS2 TMS34082 register to contain the second operand. Must be in RB 
register file. 

CRd TMS34082 destination register 

DIVx loads the contents of memory pointed to by Rs into CRS1 and CRS2, 
divides the contents of CRs1 by CRS2, and stores the result in CRd. After each 
load from memory, Rs is incremented by 32. For integer divides, the CT 
register is used for temporary storage. Any value stored in this register prior 
to DIVS will be corrupted. 

CMOVMC, postincrement, constant count 

DIVS *AS+, RAS, RB6, RA7 

This example loads the contents of memory starting at the address given in 
TMS34020 register A5 into TMS34082 registers RA5 and RB6, divides the 
contents of RA5 by RB6, and stores the result in RA7. 

7-91 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-92 

Type 
Integer 
Double-Precision 
Single-Precision 

Rs-32-- Rs 
*Rs -+ CRS1 

IliiUt!!~~f.ltl 
IBllBlmlill 
Rs-32 -+ Rs 
*Rs -+ CRS2 

Syntax 
DIVS - *Rs, CRst, CRs2 , CRd 
DIVD - *Rs, CRst , CRs2 , CRd 
DIVF -*Rs, CRst , CR~, CRd 

15 '14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 0 I 1 I 0 I 0 o I 0 I 0 I 1 o I 0 I transfers 

1 I 0 I 0 1 I 0 I 0 I 1 type I size I 0 I 0 R I Rs 
ID CRs1 CRs2 CRd 

31 29 28 25 24 21 20 16 15 o 
1 CRd 11 001 001 t 5000 0000 I 

Rs TMS34020 register containing the memory address 

CRS1 TMS34082 register to contain the first operand. Must be in RA register 
file. 

CRs2 TMS34082 register to contain the second operand. Must be in RB 
register file. 

CRd TMS34082 destination register 

DIVx loads the contents of memory pointed to by Rs into CRs1 and CRs2, 
divides the contents of CRs1 by CRS2, and stores the result in CRd. Before 
each load from memory, Rs is decremented by 32. For integer divides, the CT 
register is used for temporary storage. Any value stored in this register prior 
to DIVS will be corrupted. 

CMOVMC, predecrement 

DIVF -*A5, RA5, RB6, RA7 

This example loads the single-precision floating-point contents of memory 
starting at the address given in TMS34020 register A5 minus 32 into 
TMS34082 registers RA5 and RB6, divides the Single-precision floating-point 
contents of RA5 by RB6, and stores the result in RA 7. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Description 

Instruction Type 

Example 

---.. ----~---.-. 

GETCST 

TMS34082 Status Register ~ ST register of TMS34020 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
01 0 I 0 0 0 1 1 0 0 1 1 0 0 0 0 0 

o I 1 I 0 0 1 1 1 0 0 0 0 0 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 1 1 0 0 

31 29 0 
I 10 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 

GETCST loads 4 MSBs of the TMS34082 status register (STATUS) into the 
TMS34020 status register (ST). 

CMOVCS 

GETCST 

This example sends the TMS34082 status register to the TMS34020. The 
TMS34020 takes the value and masks off the 4 MSBs; it then stuffs the values 
in the TMS34020 status register corresponding to the N, C, Z, V bits. 

7-93 



INCx Increment a TMS34082 RA Register 
»"~:-:-:-~~'"-A-..X-Y~~~-m-.."",,~~»..~~~*:-~X~Y:..:..):O.:-~V..:--:...~»..,",,»:,.;«-;.:;.»>)>"' ...... """~:·:'.*:--»»;'»»"'v.·:-:-:««<-»;":,,,~«-'X"" .. ,.yu.·YM""""»:~9»>'''''''''''''h..~~>>>>>y'-xoI'''H~>>:~>>>''''':''':«'O''H.-..'v.« 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-94 

Type 
Integer 
Double-Precision 
Single-Precision 

1 + CRs -7 CRd 

Syntax 
INC CRs l CRd] 
INCD CRs l CRd] 
INCF CRs l CRd] 

31 29 28 25 24 21 20 16 15 
ID I CRs I 1101 I CRd I 0000 

o 
000 t sOOO 0000 I 

CRs TMS34082 source register. (Also destination register if CRd is not 
specified.) 

CRd TMS34082 destination register. 

INCx adds one (of the appropriate type) to the value in RA register CRs and 
stores the result in CRd. If CRd is not specified, the result is stored in CRs. 

CEXEC, short 

INC RAO 

This example adds an integer one to the value in TMS34082 register RAO and 
stores the result in RAO. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

1 + CRs ~ CRd 

Syntax 
INC CRs [, CRd] 
INCD CRs [, CRd] 
INCF CRs [, CRd] 

31 29 28 25 24 21 20 16 15 
10 I CRs I 1 101 I CRd I 0000 

o 
000 t sOOO 0000 I 

CRs TMS34082 source register. (Also destination register if CRd is not 
specified.) 

CRd TMS34082 destination register. 

INCx adds one (of the appropriate type) to the value in RB register CRs and 
stores the result in CRd. If CRd is not specified, the result is stored in CRs. 

CEXEC, short 

INCD RBi, RA7 

This example adds a double-precision one to the value in TMS34082 register 
RB1 and stores the result in RA7. 

7-95 



Syntax 

'34020 
Instruction Words 

Instruction to '34082 

Description 

Algorithm 

Instruction Type 

7-96 

INMNMX 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 II~ I 0 I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I 
31 29 0 
I 10 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 00 0 0 0 0 0 

The IMNMX instruction configures the registers in preparation for either the 
MNMX1 or MNMX2 instruction. The following initializations occur (internal 
flags are set; register values are not altered): 

RBO = MAX 
RB1 = MIN 
RB2 = MAX 
RB3 = MIN 
COUNTX = 0 
COUNTY = 0 
Count = 0 

CEXEC, short 

; set to positive infinity (used to store minimum X values) 
; set to negative infinity (used to store maximum X values) 
; set to positive infinity (used to store minimum Y values) 
; set to negative infinity (used to store maximum Y values) 
; bits 15-0 for X minimums, bits 31-16 for X maximums 
; bits 15-0 for Y minimums, bits 31-16 for Y maximums 
; set count to zero (bits 31-16 of MIN-MAXILOOPCT register 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

1 
---+CRd 
CRs 

Syntax 
INV CRs, CRd 
INVD CRs, CRd 
INVF CRs, CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
I 1 I 1 I 0 1 1 0 0 o I 0 I 0 I 1 o I 1 I 0 I type I size 

I ID 0 0 0 0 CRs CRd 

31 29 28 25 24 21 20 16 15 o 
10 I 0 0 0 0 I CRs I CRd I 0001 01 0 t sOOO 0000 I 

CRs TMS34082 source register containing the operand. Must be from the 
RS register file. 

CRd TMS34082 destination register 

This instruction divides 1 by CRs, and places the result in CRd. For integer 
instructions, CT is used as a temporary register. Any value stored in CT prior 
to INV will be corrupted. 

C and CT may not be used as operands for the integer form if this instruction, 
INV. 

CEXEC, short 

INV RB9, RA7 

This example divides 1 by the contents of RB9 and stores the result in RA7. 

7-97 



INVx Load and Inverse 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-98 

T~pe 
Integer 
Double-Precision 
Single-Precision 

Integer or Single-Precision: 

Syntax 
INV Rs1, CRs, CRd 
INVC Rs1, Rs2, CRs, CRd 
IINVF Rs1, CRs, CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
0 0 0 0 0 1 1 0 0 0 1 R RS1 

0 1 0 1 0 1 0 type 0 0 0 0 01 0 I 0 I 0 

10 0 0 0 0 CRs CRd 

Double-Precision: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
0 0 0 0 0 1 1 0 0 1 0 R RS1 

0 1 0 1 0 1 0 1 1 0 0 R RS2 

10 0 0 0 0 CRs CRd 

31 29 28 25 24 21 20 16 15 o 
10 0000 I CRs CRd I 01 01 01 0 t sOOO 0000 

TMS34020 source register containing the operand (or half ofthe 64-bit 
double-precision floating-point operand.) 

RS2 TMS34020 source register containing the remaining half of the 
double-precision operand. 

CAs TMS34082 register to contain the operand. Must be in the RB register 
file. 

CRd TMS34082 destination register 

This instruction loads the contents of the RS1 (and RS2 for double-precision) 
into CRs, divides 1 by CRs, and places the result in CRd. For integer inverses, 
CT is used as a temporary storage register. Any value stored in CT prior to INV 
will be corrupted. 

CMOVGC, one or two registers 

INV A2, RB8, RB2 

This example loads the contents of TMS34020 register A2 into RBS, divides 
1 by RBS, and stores the integer result in RB2. 

Interna/lnstructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

*Rs ~ CRs 
Rs+32 ~ Rs 
i8.I;~eS.~~f 
81~~~~u.~iI~~fll 

1 
---'CRd 
CRs 

Syntax 
INV *Rs+, CRs, CRd 
INVD *Rs+, CRs, CRd 
INVF *Rs+, CRs, CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
01 0 I 0 0 0 1 1 o I 1 I 0 I 0 01 0 I 0 I transfers 

1 I 0 I 0 1 0 1 0 type I size I 0 I 0 R I Rs 

ID 0 0 0 0 CRs CRd 

31 29 28 25 24 21 20 16 15 o 
ID I 0 0 0 0 I CRs CRd I 1001 01 0 t sOOO 0000 

Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the operand. Must be in the RB 
register file. 

CRd TMS34082 destination register 

This instruction loads the contents of memory pointed to by Rs into CRs, 
divides 1 by CRs, and places the result in CRd. After each load from memory, 
Rs is incremented by 32. For integer inverses, CT is used as a temporary 
storage register. Any value stored in CT prior to INV will be corrupted. 

CMOVMC, postincrement, constant count 

INVD *A2+, RB8, RBi 

This example loads the double-precision contents of memory starting at the 
address given by TMS34020 register A2 into TMS34082 register RB8, divides 
1 by RB8, and stores the result in RB1. 

7-99 

---------.~-.----.---



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-100 

Type 
Integer 
Double-Precision 
Single-Precision 

Rs-32 -4 Rs 
·Rs -4 CRs 

BI~'.~mll 
~a~.lf~ 

1 
-- ... CRd 
CRs 

Syntax 
INV - .. Rs, CRs, CRd 
INVD - .. Rs, CRs, CRd 
INVF - .. Rs, CRs, CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
o I 01 0 0 1 0 0 010J o l1 o .1 0 1 0 I transfers 

1 I 0 I 0 1 0 1 0 type I size I 0 I 0 R I Rs 

10 0 0 0 0 CRs CRd 

31 29 28 25 24 21 20 16 15 o 
10 I 0 0 0 0 I CRs I CRd I 1001 01 Ot sOOO 0000 

Rs TMS34020 register containing the memory address 

CRs TMS34082 register to contain the operand. Must be from the RB 
register file. 

CRd TMS34082 destination register 

This instruction loads the contents of memory pointed to by Rs into CRs, 
divides 1 by CRs, and places the result in CRd. Before each load from memory, 
Rs is decremented by 32. For integer inverses, CT is used as a temporary 
storage register. Any value stored in CT prior to INV will be corrupted. 

CMOVMC, predecrement, constant count 

INVF -*A2, RB8, RBi 

This example loads the single-precision contents of memory at the address 
given by TMS34020 register A2 minus 32 into TMS34082 register RB8, divrdes 
1 by RB8, and stores the result in RB1. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

JUMPC n 

Execute external TMS34082 instructions found at address 2 x n 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
01 0 I 0 I 0 I 0 I 1 I 1 0 0 0 0 0 0 a 0 0 

1 I 1 I n 0 0 0 0 0 a a 0 0 

10 I 0 I a I 0 I a 0 a a a 0 a a 0 0 

31 29 28 25 24 21 20 16 15 14 13 9 8 4 3 a 
I 10 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I 1 1 I n I 00000 I 0000 

n Specifies the jump table entry to which the TMS34082 instruction 
execution is sent May be a number from 0 to 15. 

JUMPC begins execution of TMS34082 external instructions stored in 
TMS34082 external local memory. The starting address is specified as 
TMS34082 external memory address 2 x n. Usually, a jump table is stored in 
these locations to permit calling several complex subroutines. 

CEXEC, long 

JUMPC4 

This example executes TMS34082 instructions stored in the TMS34082's local 
memory on the MSD bus. Instruction execution begins at address 8. 

7-101 



Syntax 

'34020 
Instruction Words 

bR~ 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

1 I 1 I 0 1 

10 0 

SXDm~ 
LlNTX 
LlNTXD 
LlNTXF 

11 10 9 
1 0 0 

0 0 0 

8 7 6 5 4 3 2 0 
0 0 1 0 1 0 0 type size 

0 0 0 0 0 0 0 0 0 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

7-102 

I 10 I 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 t s 0 0 0 0 0 0 0 

Perform linear interpolation given two pOints and a plane (the plane is assumed 
perpendicular to one of the coordinate axes). 

NOTE: If the Z1 and Z2 values are ignored, this will perform the equivalent of 
a 2-D linear interpolation. 

RAO = X1 
RA1 = Y1 
RA2 = Z1 
RB9=X3 

RA3 = RB9 - RAO 
RB6 = RBO - RAO 
RB7 = RB1 - RA1 
RB8 = RB2 - RA2 
C = RA3/RB6 
RB6= Cx RB6 
RB7 = C x RB7 
RB8= C x RB8 
RAO = RB6 + RAO 
RA1 = RB7 + RA1 
RA2 = RB8 + RA2 

C, RA3, RB8-RB6 

RAO=X3 
RA1 =Y3 
RA2 =Z3 

CEXEC, short 

RBO = X2 
RB1 = Y2 
RB2 = Z2 

; X3 -X1 
; X2 - X1 
; Y2 - Y1 
; Z2 - Z1 
; t =(X3 - X1)/(X2 - X1) 
; t x (X2 - X1) 
; t x (Y2 - Y1) 
; t x (Z2 - Z1) 
; X3 = X 1 + (t x (X2 - X 1)) 
; Y3 = Y1 + (t x (Y2 - Y1)) 
; Z3 = Z 1 + (t x (Z2 - Z 1)) 

; interpolated values 

Internal Instructions 



Syntax 

'34020 
Instruction Words 

~~ 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

1 I 1 I 0 1 

10 0 

SllDm~ 
LlNTY 
LlNTYD 
LlNTYF 

11 10 9 
1 0 0 

0 0 0 

8 7 6 5 4 3 2 0 
0 0 1 0 1 0 0 type size I 
0 0 0 0 0 0 0 0 1 I 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

I 10 I 0 0 0 00 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 t s 0 0 0 0 0 0 0 

Perform linear interpolation given two points and a plane (the plane is assumed 
perpendicular to one of the coordinate axes). 

NOTE: If the Z1 and Z2 values are ignored, this will perform the equivalent of 
a 2-D linear interpolation. 

RAO = X1 
RA1 = Y1 
RA2 = Z1 
RB9=Y3 

RA3 = RB9 - RA1 
RB6 = RBO - RAO 
RB7 = RB1 - RA1 
RB8 = RB2 - RA2 
C = RA3/RB? 
RB6 = C x RB6 
RB? = C x RB7 
RB8 = C x RB8 
RAO = RB6 + RAO 
RA1 = RB? + RA1 
RA2 = RB8 + RA2 

C, RA3, RB8-RB6 

RAO = X3 
RA1 = Y3 
RA2 = Z3 

CEXEC, short 

RBO=X2 
RB1 = Y2 
RB2 = Z2 

; Y3- Y1 
; X2 -X1 
; Y2 - Y1 
; Z2 - Z1 
; t = (Y3 - Y1) I (Y2 - Y1) 
; t x (X2 - X1) 
; t x (Y2 - Y1) 
; t x (Z2 - Z1) 
; X3 = X 1 + (t x (X2 - X 1 )) 
; Y3 = Y1 + (t x (Y2 - Y1)) 
; Z3 = Z1 + (t x (Z2 - Z1)) 

; interpolated values 

7-103 



Syntax 

'34020 
Instruction Words 

T~gg 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

I 1 I 1 I 0 1 

I 10 0 

S~Dta~ 
LINTZ 
L1NTZD 
L1NTZF 

11 10 9 
1 I 0 0 

0 I 0 0 

8 7 6 5 4 3 2 0 
0 0 1 0 1 0 0 type size 

0 0 0 0 0 0 0 1 0 

Instruction to '34082 31 29 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

7-104 

I 10 I 0 0 0 0 0 0 0 00 00 1 0 0 0 1 0 1 0 0 t s 0 0 0 0 0 0 0 

Perform linear interpolation given two points and a plane (the plane is assumed 
perpendicular to one of the coordinate axes). 

RAO = Xl RBO = X2 
RAl =Yl RB1 =Y2 
RA2 = Zl RB2 = Z2 
RB9 =Z3 

RA3 = RB9 - RA2 
RB6 = RBO - RAO 
RB? = RBl - RA1 
RB8 = RB2 - RA2 
C = RA3/RB8 
RB6 = C x RB6 
RB? = C x RB? 
RB8=C x RB8 
RAO = RB6 + RAO 
RAl = RB8 + RAl 
RA2 = RB8 + RA2 

C, RA3, RB8-RB6 

RAO =X3 
RAl =Y3 
RA2 =Z3 

CEXEC, short 

; Z3 - Zl 
; X2 -Xl 
; Y2 - Yl 
; Z2 -Zl 
; t = (Z3 - Zl) I (Z2 - Zl) 
; t x (X2 - Xl) 
; t x (Y2 - Yl) 
; t x (Z2 - Zl) 
; X3 = Xl + (t x (X2 - Xl)) 
; Y3 = Yl + (t x Y2 - Yl)) 
; Z3 = Z 1 + (t x (Z2 - Z 1)) 

; interpolated values 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Implied Operands 

Description 

Outputs 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

Syntax 
MAC CRS1, CR52 
MACD CRS1, CR52 
MACF CRS1, CRS2 

654 3 
1 1 

o 

31 29 28 25 24 20 19 16 15 o 
ID I CRS1 I 0 0 0 1 1 I CRS2 I 0 0 1 1 1 1 1 t sOOO 0000 I 

CRS1 TMS34082 register containing an An operand. Must be in the RA 
register file. 

CRS2 TMS34082 register containing a Sn operand. Must be in the RS 
register file. 

C Register Previously accumulated sum 

MACx is used to perform multiply and accumulate operations of the form: 

The MAC x instruction performs one multiply and adds the result to the 
previously accumulated sum. 

The new accumulated sum is stored in the C Register. The next 
multiply/accumulate may now be performed. 

CEXEC, short 

CLRD C 
MACD RAO I RBO 

MACD RAI, RBI 

MACD RA2 I RB2 

This example performs a sum of three products. First, the C register is set to 
zero. Then, the double-precision contents of RAO and RBO are multiplied. The 
next instruction multiplies RA 1 by RS1 and adds this product to the previous 
result, storing the sum in the C register. The next instruction multiplies RA2 by 
RB2 and adds the product to the value in C. The sum of products is stored in 
C. 

7-105 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Implied Operands 

Description 

Outputs 

Instruction Type 

Example 

7-106 

Integer 
Single-Precision 

RS1 ~ CRS1 
RS2 ~ CRS2 

Syntax 
MAC Rs1, Rs2, CRs1, CRs2 
MACF RS1, RS21 CRS1, CRS2 

C + (CRS1 x CRS2) ~ C 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
0 0 0 0 0 1 1 0 0 1 0 R RS1 

0 1 1 1 1 1 1 type 0 0 0 R RS2 

10 CRS1 0 0 0 1 1 CRS2 

31 29 28 25 24 20 19 16 15 o 
10 I CRS1 I 0 0 0 1 1 I CRS2 I 0 1 1 1 1 1 1 t 0000 0000 I 

TMS34020 source register for the first (An) value to TMS34082 

RS2 TMS34020 source register for the second (8n) value to TMS34082 

CRS1 TMS34082 register to contain the An operand. Must be in the RA 
register file. 

CRS2 TMS34082 register to contain the Bn operand. Must be in the RB 
register file. 

C Register Previously accumulated sum 

MACx is used to perform multiply and accumulate operations of the form: 

This instruction loads two operands from RS1 and RS2 into CRs1 and CRs2 
respectively, performs one multiply, and adds the result to the previously 
accumulated sum. 

The double-precision form of this instruction is not supported. 

The new accumulated sum is stored in the C Register. The next 
multiply/accumulate may now be performed. 

CMOVGC, two registers 

MAC Ai, A2, RA1, RBi 

This instruction loads the integer contents of A 1 and A2 into RA 1 and RS 1 , 
respectively, and multiples the contents of RA 1 by RB1. The product is added 
to the value stored in the C register and the result is stored back in C. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

implied Operands 

Description 

Outputs 

Instruction Type 

Type 
Integer 
Single-Precision 

Repeat counttimes: 
*Rs ~ CRs1 
Rs +32 ~ Rs 
*Rs ~ CRs2 

Syntax 
MAC *Rs+, CRS1, CRS2 L count] 
MACF *Rs+, CRS1, CRS2 L count] 

C + (CRS1 x CRs2) ~ C 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
0 0 0 0 0 1 1 0 1 0 0 transfers 

1 0 1 1 1 1 1 type 0 0 0 R I Rs 

ID CRs1 0 a 0 1 1 I CRs2 

31 29 28 25 24 20 19 16 15 

o 

o 
ID I CRs1 I a 0 0 1 1 I CRs2 I 1 0 1 1 1 1 1 t 0000 0000 I 

Rs TMS34020 register containing the memory address 

CRS1 TMS34082 register to contain the An operand. Must be in the RA 
register file. 

CRS2 TMS34082 register to contain the Sn operand. Must be in the RS 
register file. 

count Number of times the instruction is executed; must be between 1-16 
(default is 1). The number of transfers is 2 x count 

C Register Previously accumulated sum 

MACx is used to perform multiply and accumulate operations of the form: 

This instruction loads two operands from memory starting atthe address given 
by TMS34020 register Rs into TMS34082 registers CRs1 and CRs2, performs 
one multiply, and adds the result to the previously accumulated sum. This 
sequence is repeated count times. After each load from memory, Rs is 
incremented by 32. 

The double-precision form of this instruction is not supported. 

The new accumulated sum is stored in the C register. The next 
multiply/accumulate may now be performed. 

CMOVMC, postincrement, constant count 

7-107 



Example 

7-108 

CLRF C 
MACF *Al+, RA9, RB9, 6 

This example performs a sum of six products. First, the TMS34082 C register 
is set to zero. Then, the single-precision contents of memory starting at 
TMS34020 register A 1 is loaded into TMS34082 registers RA9 and RB9. The 
contents of RA9 and RB9 are multiplied, the result is added to the C register, 
and the sum is stored in C. This process is repeated 5 more times. The end 
result is stored in C. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

InstrucUonto'34082 

Operands 

Implied Operands 

Description 

Outputs 

Instruction Type 

Type 
Integer 
Single-Precision 

Repeat counttimes: 
Rs-32 ~ Rs 
*Rs ~ CRS1 
Rs-32 ~ Rs 
*Rs ~ CRS2 

Syntax 
MAC -*Rs, CRst, CRS2 [, count] 
MACF - *Rs, CRst, CR~ [, count] 

C + (CRS1 x CRS2) ~ C 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
0 0 0 0 1 0 0 0 0 0 1 transfers 

1 0 1 1 1 1 1 type 0 0 0 R Rs 

10 CRS1 0 0 0 1 1 CRS2 

31 29 28 25 24 20 19 16 15 

o 

o 
10 I CRS1 I 0 0 0 1 1 I CRS2 I 1 0 1 1 1 1 1 t 0000 0000 I 

Rs TMS34020 register containing the memory address 

CRS1 TMS34082 register to contain the An operand. Must be in the RA 
register file. 

CRS2 TMS34082 register to contain the Bn operand. Must be in the RB 
register file. 

count Number of times the instruction is executed; must be between 1-16 
(default is 1). The number of transfers is 2 x count 

C Register Previously accumulated sum 

MAC x is used to perform multiply and accumulate operations of the form: 

This instruction loads two operands from memory starting atthe address given 
byTMS34020 register Rs (minus 32) into TMS34082 registers CRs1 and CRs2 
respectively, performs one multiply, and adds the result to the previously 
accumulated sum. This sequence is repeated counttimes. Before each load 
from memory, Rs is decremented by 32. 

The double-precision form of this instruction is not supported. 

The new accumulated sum is stored in the C register. The next 
multiply/accumulate may now be performed. 

CMOVMC, predecrement, constant count 

7-109 



MADDx Matrix Add to Vector 

Syntax 

'34020 
Instruction Words 

bg~ 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

1 I 1 I 0 I 1 

10 I 0 

S~llm~ 
MADD 
MADDD 
MADDF 

11 10 9 
1 0 0 

0 0 0 

8 7 6 5 4 3 2 0 
0 0 1 1 1 1 1 type size 

1 0 0 0 0 0 0 0 0 

Instruction to '34082 .....,;-3~1 ..,.--;;;2~9 _____________________ ...;.0--., 
I 10 I 0 00 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 t s 0 0 0 0 0 0 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

7-110 

This instruction is used with the matrix multiply instructions (MMPYO, MMPY1, 
and MMPY2) to expedite the multiplication of a 3 x 4 matrix by a vector where 
the fourth element of the vector is an implied 1 . 

A 4 x 4 matrix in FPU registers 
RAO = BOO RA1 = B01 
RA4 = B10 RA5 = B11 
RA8 = B20 RAg = B21 
RB2 = B30 RB3 = B31 

RA2 = B02 
RA6 = B12 
RBO = B22 
RB4 = B32 

RA3 = B03 
RA7 = B13 
RB1 = B23 
RB5 = B33 

The accumulated sums from MMPYO, MMPY1, and MMPY2 
RB6 = (AOO x BOO) + (A01 x B1 0) + (A02 x B20) 
RB7 = (AOO x B01) + (A01 x B11) + (A02 x B21) 
RB8 = (AOO x B02) + (A01 x B12) + (A02 x B22) 
RB9 = (AOO x B03) + (A01 x B13) + (A02 x B23) 

RB6 = RB6 + RB2 
RB7 = RB7 + RB3 
RB8 = RB8 + RB4 
RB9 = RB9 + RB5 

CT 

The resulting vector is stored in FPU registers. 
RB6 = (AOO x BOO) + (A01 x B10) + (A02 x B20) + B30 
RB7 = (AOO x B01) + (A01 x B11) + (A02 x B21) + B31 
RB8 = (AOO x B02) + (A01 x B12) + (A02 x B22) + B32 
RB9 = (AOO x B03) + (A01 x B13) + (A02 x B23) + B33 

CEXEC, short 

Internal Instructions 



Syntax 

'34020 
Instruction Words 

T~g~ 
Integer 
Double-Precision 
Single-Precision 

15 14 13 12 

1 I 1 I 0 1 

ID 0 

S~ntax 
MMPYO 
MMPYOD 
MMPYOF 

11 10 9 
1 0 0 

0 0 0 

8 7 6 5 4 3 2 0 
0 0 1 1 1 1 1 type size 

0 1 0 0 0 0 0 0 0 

Instruction to '34082 ,....-31---r-_2_9 ______________________ 0--.., 

I ID I 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 t sO 0 0 0 0 0 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

Example 

This instruction multiplies the matrix B by a vector element, AO. This instruction 
may be combined with MMPY1, MMPY2, and MMPY3 to multiply matrices of 
several sizes.1 x 4 by 4 x 4, 4 x 4 by 4 x 4, 1 x 3 by 3 x 3, and 3 x 3 by 3 x 3 
matrix multiplies may be implemented. 

A 4 x 4 matrix in the FPU registers 
RAO = BOO RA1 = B01 
RA4 = B10 RA5 = B11 
RA8 = B20 RA9 = B21 
RB2 = B30 RB3 = B31 

RA2 = B02 
RA6 = B12 
RBO = B22 
RB4 = B32 

RA3 = B03 
RA7 = B13 
RB1 = B23 
RB5 = B33 

The first element (AxO) of a row vector: RB9 = AxO 

RB6 = RB9 x RAO 
RB7 = RB9 x RA1 
RB8 = RB9 x RA2 
RB9 = RB9 x RA3 
CT= RB9 

C 

RB6 = AxO x BOO 
RB7 = AxO x B01 
RB8 = AxO x B02 
RB9 = CT = AxO x 803 

CEXEC, short 

; AxO x BOO 
; AxO x 801 
; AxO x B02 
; AxO x B03 
; CT is used to store (AxO x B03) value 
; since RB9 will be corrupted. 

See Example 5-4 for code for a 3 x 3 by 3 x 3 matrix multiply. 

7-111 



Syntax 

'34020 
Instruction Words 

Type 
Integer 
Double-Precision 
Single-Precision 

15 14 12 

Syntax 
MMPY1 
MMPY1D 
MMPY1F 

7 6 432 o 

Instruction to '34082 ~31.;...,-~29~ ____________________ ....;;..O~ 
I 10 I 0 00 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 t s 0 0 0 0 0 0 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Inputs 

Instruction Type 

Example 

7-112 

This instruction multiplies the matrix B by an vector element, A 1. This 
instruction may be combined with MMPYO, MMPY2, and MMPY3 to multiply 
matrices of several sizes. 1 x 4 by 4 x 4,4 x 4 by 4 x 4,1 x 3 by 3 x 3, and 
3 x 3 by 3 x 3 matrix multiplies may be implemented. 

A 4 x 4 matrix in the FPU registers: 
RAO = 800 RA1 = 801 
RA4 = 810 RA5 = B11 
RA8 = B20 RAg = B21 
R82 = 830 RB3 = B31 

RA2 = 802 
RA6 = 812 
R80 = B22 
RB4 = B32 

RA3 = 803 
RA7 = B13 
RB1 = B23 
RB5 = B33 

The initial products from MMPYO for the resulting matrix row: 
RB6 = AxO x BOO 
RB7 = AxO x B01 
RB8 = AxO x B02 
CT= AxO x 803 

The second element (Ax1) of a row vector: RB9 = Ax1 

RB6 = RB6, + (RB9 x RA4) ; (AxO x BOO) + (Ax1 x 810) 
RB7 = RB7 + (R89 x RA5) ; (AxO x 801) + (Ax1 x 811) 
RB8 = RB8 + (RB9 x RA6) ; (AxO x B02) + (Ax1 x B12) 
RB9 = CT + (RB9 x RA7) ; (AxO x B03) + (Ax1 x B13) 
CT = RB9 ; CT is used to store the fourth value since 

; RB9 will be corrupted. 

C 

RB6 = (AxO x BOO) + (Ax 1 x B10) 
RB7 = (AxO x B01) + (Ax1 x B11) 
R88 = (AxO x B02) + (Ax1 x 12) 
RB9 = CT = (AxO x B03) + (Ax1 x B13) 

CEXEC, short 

See Example 5-4 for code for a 3 x 3 by 3 x 3 matrix multiply. 

Internal Instructions 



Syntax TXg~ Sxnta~ 
Integer MMPY2 
Double-Precision MMPY2D 
Single-Precision MMPY2F 

'34020 13 12 10 8 7 
Instruction Words 

Instruction to '34082 ,--;;-31~_29_--,-___________________ --.;;.0--, 

I 10 I 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 t s 0 00 0 0 0 0 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

Example 

This instruction multiplies the matrix B by a vector element, A2. This instruction 
may be combined with MMPYO, MMPY1, and MMPY3 to multiply matrices of 
several sizes. 1 x 4 by 4 x 4, 4 x 4 by 4 x 4, 1 x 3 by 3 x 3, and 3 x 3 by 3 x 3 
matrix multiplies may be implemented. 

A 4 x 4 matrix in the FPU registers: 
RAO = BOO RA1 = B01 
RA4 = B10 RA5 = B11 
RAS = B20 RAg = B21 
RB2 = B30 RB3 = B31 

RA2 = B02 
RA6 = B12 
RBO = B22 
RB4 = B32 

RA3 = B03 
RA? = B13 
RB1 = 823 
R85 = B33 

The accumulated sums from MMPYO and MMPY1 for the resulting matrix: 
RB6 = (AxO x BOO) + (Ax1 x B10) 
RB? = (AxO x B01) + (Ax1 x B11) 
RBS = (AxO x B02) + (Ax1 x B12) 
CT = (AxO x B03) + (Ax1 x B13) 

The third element (Ax2) of a row vector: R89 = Ax2 

RB6 = RB6 + (C x RA8) ; (AxO x BOO + Ax1 x B10) + (Ax2 x B20) 
RB? = RB? + (C x RA9) ; (AxO x B01 + Ax1 x B11) + (Ax2 x B21) 
RBS = RBS + (C x RBO) ; (AxO x B02 + Ax1 x B12) + (Ax2 x B22) 
RB9 = CT + (C x RB1) ; (AxO x B03 + Ax1 x B13) + (Ax2 x B23) 
CT = R89 ; CT is used to store the fourth value since 

; RB9 will be corrupted. 

CT 

RB6 = (AxO x BOO) + (Ax1 x B10) + (Ax2 x B20) 
RB? = (AxO x B01) + (Ax1 x B11) + (Ax2 x B21) 
RBS = (AxO x B02) + (Ax1 x B12) + (Ax2 x 822) 
RB9 = CT = (AxO x B03) + (Ax1 x B13) + (Ax2 x B23) 

Note that the result of this operation is the completed row for a 1 x 3 by 3 x 3 
or 3 x 3 by 3 x 3 matrix multiply. 

CEXEG, short 

See Example 5-4 for code for a 3 x 3 by 3 x 3 matrix multiply. 

7-113 



Syntax TllRil SllDm~ 
Integer MMPY3 
Double-Precision MMPY3D 
Single-Precision MMPY3F 

'34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Instruction Words 1 I 1 I 0 1 1 0 0 0 0 1 1 1 1 1 type size 

10 0 0 0 0 0 1 1 1 0 0 0 0 0 

Instruction to '34082 ,......;..3~1 ~2..;..9 _____________________ ...;.0--, 
I ID I 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 t s 00 0 0 0 0 0 

Description 

Imp/ied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

7-114 

This instruction multiplies the matrix B by a vector element, A3. This instruction 
may be combined with MMPYO, MMPY1, and MMPY2 to multiply matrices of 
several sizes. 1 x 4 by 4 x 4, 4 x 4 by 4 x 4,1 x 3 by 3 x 3, and 3 x 3 by 3 x 3 
matrix multiplies may be implemented. 

A matrix in FPU registers: 
RAO = BOO RA1 = B01 
RA4 = B10 RA5 = B11 
RA8 = 820 RA9 = B21 
RB2 = B30 R83 = B31 

RA2 = B02 
RA6 = B12 
RBO = 822 
RB4 = 832 

RA3= 803 
RA? = 813 
RB1 = 823 
RB5 = 833 

The accumulated sums from MMPYO, MMPY1 and MMPY2 for the resulting 
matrix: 

R86 = (AxO x 800) + (Ax1 x B1 0) + (Ax2 x 820) 
RB7 = (AxO x B01) + (Ax1 x 811) + (Ax2 x B21) 
R88 = (AxO x 802) + (Ax1 x 812) + (Ax2 x 822) 
CT = (AxO x B03) + (Ax1 x 813) + (Ax2 x B23) 

The fourth element (Ax3) of a row vector: RB9 = Ax3 

C=RB9 
RB9 = CT 
R86 = R86 + (C x RB2) 

RB? = R8? + (C x R83) 

RB8 = R88 + (C x R84) 

RB9 = RB9 + (C x R85) 

C 

; (AxO x 800 + Ax1 x B10 + Ax2 x B20) 
; + (Ax3 x 830) 
; (AxO x B01 + Ax1 x B11 + Ax2 x B21) 
; + (Ax3 x 831) 
; (AxO x B02 + Ax1 x B12 + Ax2 x B22) 
; + (Ax3 x 832) 
; (AxO x 803 + Ax1-x B13 + Ax2 x B23) 
; + (Ax3 x 833) 

The output of this operation is the result matrix row. 
R86 = Result xO 
RB? = Result x1 
R88 = Result x2 
RB9 = Result x3 

CEXEC, short 

Internal Instructions 



Syntax 

'34020 
Instruction Words 

Instruction to '34082 

Description 

Operands 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

bg~ SY:l1m~ 
Integer MNMX1 CRs 
Double-Preci sion MNMX1D CRs 
Single-Precision MNMX1F CRs 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 I 1 I 0 1 I 1 I 0 I 0 0 0 1 1 1 I 1 1 type I size 

ID CRs 0 0 1 0 o I 0 0 o I 0 

31 29 28 25 24 o 
I ID I CRs I 0 0 1 00 0000 001 1 1 1 1 t sOOO 0000 I 
The 1-D MinIMax function compares the current data to a current minimum 
value and a current maxjmum value. If the current data is less than the 
minimum then the minimum is set to the current data; if the current data is 
greater than the current maximum then the maximum value is setto the current 
data. For each current data tested a counter is incremented and when the 
minimum or maximum values are updated the current counter value is put in 
a minimum count or maximum count register so that the count of the data 
responsible for the minimum or maximum is in the respective count register. 
The INMNMX instruction should be used to initialize the minImax registers 
before the first MNMX 1 instruction. 

CRs TMS34082 register containing the value to test for minimum/maxi­
mum. Must be in the RA register file. 

RBO = Current integer minimum 
RB1 = Current integer maximum 
COUNTX contains the counts for the current maximum and minimum values 

Bits 15-0 are the count value for the current minimum 
Bits 31-16 are the count value for the current maximum 

If CRs < RBO 
RBO = CRs ; RBO tracks current X minimum 
COU NTX bits 15-0 = Count 

If CRs > RB1 
RB1 = CRs ; RB1 tracks current X maximum 
COUNTX bits 31-16 = Count 

Count = Count + 1 

None 

RBO = minimum of (CRs and RBO) 
RB1 = maximum of (CRs and RB1) 
COUNTX 15-0 is updated to the current count if CRs is a minimum. 
COUNTX 31-16 is updated to the current count if CRs is a maximum. 

CEXEC, short 

7-115 



MNMX2x 2-D Minimum / Maximum 
Ql:l=Gl:la~gg~QgQ'QQ.QaQg:QgQQ.Q,aQ.'~<OOC'~«-"""''''':««*:-r''~N)'''J'~~~~·)",.«-Qo."""'«'-<~~»~Q.Q:lQ'QQQ.a .. QQQQQ:QQ':~~~~*,,~'""X«<.QQQQOQ'.Q.QQ:QQ.~~"«<¥~~.< 

Syntax 

'34020 
Instruction Words 

Instruction to '34082 

Description 

Operands 

Implied Operands 

7-116 

Integer 
Double-Precision 
Single-Precision 

Syntax 
MNMX2 CRSt t CR52 
MNMX2D CRSt t CR52 
MNMX2F CRSt t CRS2 

15 14 12 10 9 8 65432 

31 2928 2524 20 19 16 15 

ID I CRs1 I 0 0 1 1 0 I CRs2 11 0 1 1 1 1 1 t sOOO 
o 

0000 I 
The 2-D Min/Max function compares two current data values (X and Y) to a 
current minimum value and a current maximum value. Ifthe current data is less 
than the minimum then the minimum is set to the current data; if the current 
data is greater than the current maximum then the maximum value is setto the 
current data. For each current data tested a counter is incremented and when 
the minimum or maximum values are updated, the current counter value is put 
in a minimum count or maximum count register so that the count of the data 
responsible for the minimum or maximum is in the respective count register. 
The INMNMX instruction should be used to initialize the min/max registers 
before the first MNMX2 instruction. 

CRS1 TMS34082 register containing the value to test for X 
minimum/maximum. Must be in RA register file. 

CRS2 TMS34082 register containing the value to test for Y 
minimum/maximum. Must be in RA register file. 

RBO = current X minimum 
RB1 = current X maximum 
RB2 = current Y minimum 
RB3 = current Y maximum 
COUNTX contains the counts for the current maximum and minimum values 

Bits 15-0 are the count value for the current X minimum 
Bits 31-16 are the count value for the current X maximum 

COUNTY contains the counts for the currentY maximum and minimum values 
Bits 15-0 are the count value for the current Y minimum 
Bits 31-16 are the count value for the current Y maximum 

Internal Instructions 



Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

If CRS1 < RBO 
RBO = CRS1 ; RBO tracks current X minimum 
COUNTX bits 15-0 = Count 

If CRS1 > RB1 
RB1 = CRS1 ; RB1 tracks current X maximum 
COUNTX bits 31-16 = Count 

If CRS2 < RB2 
RB2 = CRS2 ; RB2 tracks current Y minimum 
COUNTY bits 15-0 = Count 

If CRS2 > RB3 
RB3 = CRS2 ; RB3 tracks current Y maximum 
COUNTY bits 31-16 = Count 

Count = Count + 1 

None 

RBO = minimum of (CRS1 and RBO) 
RB1 = maximum or (CRS1 and RB1) 
RB2 = minimum of (CRS2 and RB2) 
RB3 = maximum or (CRS2 and RB3) 
COUNTX 15-0 is updated to the current count if CRS1 is a X minimum. 
COUNTX 31-16 is updated to the current count if CRS1 is a X maximum. 
COUNTY 15-0 is updated to the current count if CRS2 is a Y minimum. 
COUNTY 31-16 is updated to the current count if CRS2 is a Y maximum. 

CEXEC, short 

7-117 

~------~~~------~-------------".,,-.. -.--------.. ------_. 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-118 

Type 
Integer 
Single-Precision 

Rs~CRd 

Syntax 
MOVE Rs, CRd 
MOVF Rs, CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
01 0 I 0 0 0 1 1 0 0 0 1 R I Rs 

o I 1 I 0 0 1 1 0 type 0 0 0 010 I 0 I 0 I 0 

10 0 0 0 0 0 0 0 0 CRd 

31 2928 21 20 1615 o 
I 10 I 0000 0000 I CRd I 01 00 1 1 Ot 0000 0000 I 
Rs TMS34020 source register for the 32-bit value to TMS34082 

CRd TMS34082 destination register to hold the 32-bit value 

MOVx moves the contents of Rs into CRd. 

CMOVGC, one register 

MOVF AS, RA7 

This example moves the single-precision floating-point contents ofTMS34020 
register AS into TMS34082 register RA7. 

Internsllnstructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

Syntax 
MOVE RS11 RS2 CRd 
MOVD RS11 RSi CRd 
MOVF RS11 RS2 CRd , 

Integer or Single-Precision: Double-Precision: 
RS1 --? CRd 
advance to next TMS34082 register 

RS 1 -7 CRd (MSH or LSH) 
RS2 -7 CRd (LSH or MSH) 

RS2 --? CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

01 0 I 0 0 0 1 1 0 0 1 0 R I RS1 

o I 1 I 0 0 1 1 0 type size 0 0 R I RS2 

ID 0 0 0 0 0 0 0 0 CRd 

31 2928 20 19 16 15 

o 

o 
I 10 I 0000 0000 I CRd I 01 00 1 1 0 t sOOO 0000 I 

TMS34020 source register for the first value (or half of a double-preci­
sion value) to TMS34082 

RS2 TMS34020 source register for the second value (orthe remaining half 
of the double-precision value) to TMS34082 

CRd TMS34082 destination register that holds the first value. For integer 
and single-precision moves, the second value will be placed in the next 
register in the TMS34082 register sequence list. 

MOVx moves the contents of RS1 and RS2 into CRd (and CRd+1 for integer 
and single-precision instructions). 

For double-precision moves, the TMS34082 configuration register LOAD bit 
determines whether the LSBs or the MSBs will be moved first: 

If the LOAD bit = 1, 

If the LOAD bit = 0, 

The LOAD bit default is O. 

CMOVGC, two registers 

MOVE AS, A6, RA7 

then the LSBs are moved first 
(32 LSBs of the fraction) 

then the MSBs are moved first 
(sign, exponent, and 20 MSBs ofthe fraction) 

This instruction moves the integer contents of TMS34020 registers AS and A6 
into TMS34082 registers, RA 7 and RA8, respectively. 

7-119 

-------_ .. _-,---_._,_ ... -------, 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-120 

Integer 
Single-Precision 

CRs~ Rd 

Syntax 
MOVE CRs, Rd 
MOVF CRs, Rd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 0 0 1 1 0 0 1 1 R I Rd 

o I 1 I 0 0 1 1 1 type 0 0 0 o I 0 1 01 0 1 0 

10 0 0 0 0 0 0 0 0 CRs 

31 2928 21 20 16 15 o 
I 10 I 0000 0000 I CRs I 01 00 1 1 1 t 0000 0000 I 
CRs TMS34082 source register holding the 32-bit value 

Rd TMS34020 destination register 

MOVx moves 32-bit value from TMS34082 register CRs to TMS34020 register 
Rd. 

CMOVCG, one register 

MOVE RA7, AS 

This example moves the integer contents of TMS34082 register RA 7 to 
TMS34020 register AS. 

Interna/lnstructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

MOVO eRs, Rd1, R~ 

CRs (MSH or LSH) ~ Rd1 
CRs (LSH or MSH) ~ Rd2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

0 I 0 I 0 0 0 1 1 0 0 1 1 R I Rd1 

0 1 11 0 0 1 1 1 1 1 0 0 R J Rd2 

ID 0 0 0 0 0 0 0 0 CRd 

31 2928 20 19 16 15 

o 

o 
I ID I 0000 0000 I CRd 10100 1111 1000 0000 I 
CRs TMS34082 source register holding the value to TMS34020 

Rd1 TMS34020 destination register for half the double-precision value 

Rd2 TMS34020 destination register for the remaining half of the 
double-precision value 

MOVD moves one 64-bit value from TMS34082 register CRs to TMS34020 
registers Rd1 and Rd2. 

The TMS34082 configuration register LOAD bit determines whether the LSBs 
or the MSBs will be moved first: 

If the LOAD bit = 1, 

If the LOAD bit = 0, 

The LOAD bit default is o. 

CMOVCG, two registers 

MOVD RA7, AS, A6 

then the LSBs are moved first 
(32 LSBs of the fraction) 

then the MSBs are moved first 
(sign, exponent, and 20 MSBs ofthe fraction) 

This example moves the double-precision floating-point contents of 
TMS34082 register RA 7 to TMS34020 registers A5 and A6. The order (MSBs 
or LSBs in A5) depends on the value of the LOAD bit in the configuration 
register. 

7-121 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

7-122 

Type 
Integer 
Double-Precision 
Single-Precision 

Syntax 
MOVE o,Rs+,CRd, Rd 
MOVD o,Rs+, CRd, Rd 
MOVF * Rs+, CRd, Rd 

Integer or Single-Precision: 
If Rd = 0 
Repeat 32 times 

*Rs ~ CRd 
Rs + 32 ~ Rs 

advance to next TMS34082 
register 

Double-Precision: 
If Rd = 0 
Repeat 16 times 

*Rs ~ CRd 
Rs + 32 ~ CRd 

*Rs ~ CRd 
Rs+32~CRd 

If Rd=1 ~ 31 
Repeat Rdtimes 

*Rs ~ CRd 
Rs + 32 ~ Rs 

advance to next TMS34082 
register 

If Rd = 1 ~ 31 
Repeat Rdl2times 

*Rs ~CRd 
Rs + 32 ~ CRd 

*Rs ~ CRd 
Rs + 32 ~ CRd advance to next TMS34082 

register advance to next TMS34082 
register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
010 I 0 0 0 1 1 0 1 1 1 R I Rd 

1 I 0 I 0 0 1 1 0 type size 0 0 R I Rs 

ID 0 0 0 0 0 0 0 0 CRd 

31 2928 20 19 16 15 o 
1 ID I 0000 0000 I CRd /1 000 1 1 0 t sOOO 0000 I 

Rs TMS34020 source register containing the address of the first 32-bit 
value (or half of the 64-bit value) to move to the TMS34082 

CRd TMS34082 destination register to hold the first value 

Rd TMS34020 register containing the number of 32-bit transfers to 
make. This value must be in the range 0 to 31 

If Rd = 0, 
If Rd = 1 ~ 31, 

then 32 32-bit transfers are made 
then Rd 32-bit transfers are made 

Note that because 64-bit floating-point values require two 32-bit moves, an odd 
number in Rd will give unpredictable results. 

Internal Instructions 



Description 

Instruction Type 

Example 

MOVx moves values from memory beginning at the address in Rs into 
TMS34082 registers beginning at CRd. Rs is incremented after each transfer. 
CRs is advanced to the next register in the sequence list after each 32-bit 
transfer for integer and single-precision moves, after every two 32-bit transfers 
for double-precision moves. The number of 32-bit transfers made is 
determined by the value of Rd. 

For double-precision moves, the TMS34082 configuration register LOAD bit 
determines whether the LSBs or the MSBs will be moved first: 

If the LOAD bit = 1, 

If the LOAD bit = 0, 

The LOAD bit default is o. 

then the LSBs are moved first 
(32 LSBs of the fraction) 

then the MSBs are moved first 
(sign, exponent, and 20 MSBs ofthe fraction) 

CMOVMC, postincrement, register count 

MOVE *A5+, RA7, B7 

This instruction moves integer values from TMS34020 memory location 
pOinted to by AS to TMS34082 registers beginning at RA 7. After each 32-bit 
transfer, register AS is incremented, and the TMS34082 destination is 
advanced to the next register in the TMS34082 register sequence list. B7 holds 
the number of 32-bit transfers to be made. 

7-123 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

7-124 

Type 
Integer 
Double-Precision 
Single-Precision 

Repeat count times 
*Rs ~ CRd 
Rs + 32 ~ Rs 

~~l~_l.l_i 
l~l~.~~t.tfil~B. 

Syntax 
MOVE *Rs+, CRd, [,countj 
MOVO *Rs+, CRd, f,countj 
MOVF *Rs+, CRd, [,countj 

advance to the next TMS34082 register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

010 I 0 0 0 1 1 0 1 0 0 transfers 

1 I 0 I 0 0 1 1 0 type size 0 0 R I Rs 

10 0 0 0 0 0 0 0 0 CRd 

31 2928 20 19 16 15 

I 10 I 0000 0000 I CRd 11 000 1 1 0 t sOOO 

o 

o 
0000 I 

Rs TMS34020 source register containing the address of the first 32-bit 
value (or half the first 64-bit value) to move to the TMS34082 

CRd TMS34082 destination register to hold the first operand 

count The number of 32-bit or 64-bit transfers to make. This value must be 
in the range 1 to 32 for integer and single-precision moves or 1 to 16 
for double-precision moves. The default value is 1. Count determines 
the value of transfers: 

Integer or Single-Precision: 
If count = 32, 
If count = 1 ~ 31, 

Double-Precision: 
If count = 16, 
If count = 1 ~ 15, 

then transfers = 0 
then transfers = count 

then transfers = 0 
then transfers = 2 x count 

MOVx moves values from memory beginning at the address in Rs into 
TMS34082 registers beginning at CRd. Rs is incremented after each transfer. 
CRs is advanced to the next register in the sequence list after each 32-bit 
transfer for integer and single-precision moves, after every two 32-bit transfers 
for double-precision moves. The number of 32-bit transfers made is 
determined by the value of count. 

Internal Instructions 



Instruction Type 

Example 

For double-precision moves, the TMS34082 configuration register LOAD bit 
determines whether the LSBs or the MSBs will be moved first: 

If the LOAD bit = 1, 

If the LOAD bit = 0, 

then the LSBs are moved first 
(32 LSBs of the fraction) 

then the MSBs are moved first 
(sign, exponent, and 20 MSBs of the fraction) 

The LOAD bit default is o. 

CMOVMC, postincrement, constant count 

MOVD *A5+, RB7, 4 

This example moves four 64-bit double-precision floating-point values from 
TMS34020 memory location pOinted to by A5 to TMS34082 registers 
beginning at RB7. After each 32-bit transfer, register A5 is incremented; after 
every two 32-bit transfers, the TMS34082 destination is advanced to the next 
register in the TMS34082 register sequence list. Count specifies that four 
64-bit transfers (eight 32-bit transfers) are made. 

7-125 

._---_._---_._-------------_._--



MOVx Move, Memory to TMS34082 Registers (Predecrement), Constant Count 
~~~~A~~""X«*~»'-v.·w.~:-:-: .. x .. :---.... : .. :«-:...",,*-v. .. ;o.:.; .. :->:-x-.v..: .. »»..~~~..;..:..;««,,-:*:·y'-: .. x .. :-:..; .. ;..;o.:-:'·:-»:-:·;':':"<*~"'«ot-.."«·:;.t""«-:";'A';"""A"'-:",,,,;,,,",,,",:~:-:«-,,"W;-:,,;-:,,~ ......... ~:;.t"~~~v.,..»Qo..v ..... "'«'r.~""'»»x 

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

7-126

Type
Integer
Double-Precision
Single-Precision

Repeat count times
Rs-32 ~ Rs
*Rs ~ CRd

~11Bl11mlI11~5111B.lf~11~
~r:~I~iir:BB11il~

. Syntax
MOVE - *Rs, CRd, [, count]
MOVD - *Rs, CRd [, count]
MOVF -*Rs, CRd [, count]

advance to the next TMS34082 register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o I 0 I 0 0 1 0 0 0 0 0 1 transfers

1 I 0 1 0 0 1 1 0 type size 0 0 R I Rs

10 0 0 0 0 0 0 0 0 CRd

31 2928 20 19 16 15

o

o
I 10 I 0000 0000 I CRd 1

1000 1 1 0 t sOOO 0000 I
Rs TMS34020 source register containing the address of the bit

im mediately after the first 32- or 64-bit value to move to the TMS34082

CRd TMS34082 destination register to hold the first value

count The number of 32- or 64-bit transfers to make. This value must be in
the range 1 to 32 for integer and Single-precision moves or 1 to 16 for
double-precision moves; the default value is 1. Count determines the
value of transfers:

Integer or Single-Precision:
If count = 32,
If count = 1 ~ 31,

Double-Precision:
If count= 16,
If count = 1 ~ 15,

then transfers = 0
then transfers = count

then transfers = 0
then transfers = 2 x count

MOVx moves values from memory beginning at the address in (Rs - 32) into
TMS34082 registers beginning at CRd. Before each transfer, the contents of
Rs are decremented; after each transfer (or every two transfers for
double-precision moves), the TMS34082 destination is advanced to the next
register in the TMS34082 register sequence list. The number oftransfers made
is determined by the value of count.

For double-precision moves, the TMS34082 configuration register LOAD bit
determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Internal Instructions

Instruction Type

Example

If the LOAD bit = 0, then the MSSs are moved first
(sign, exponent, and20 MSSsofthefraction)

The LOAD bit default is O.

CMOVMC, predecrement, constant count

MOVF -*A5, RB7, 4

This example moves four 32-bit single-precision floating-point values from
TMS34020 memory location pointed to by (A5-32) to TMS34082 registers
beginning at RS7. Before each 32-bit transfer, register A5 is decremented;
after each transfer, TMS34082 destination is advanced to the next register in
the TMS34082 register sequence list. Count specifies that four 32-bit transfers
are made.

7-127

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

7-128

Type
Integer
Double-Precision
Single-Precision

Repeat count times
CRs ~ ·Rd
Rd +32 ~ Rd

~11t.1B.a§~1!'mJJM
~1~1II~f:~"$1~!I1~Wj

Syntax
MOVE CRd, *Rd+ [, count]
MOVD CRd, *Rd+ I, count]
MOVF CRd, *Rd+ [, count]

advance to the next TMS34082 register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o 1 0 J 0 0 0 1 1 0 1 0 1 R I Rd

1 I 0 I 0 0 1 1 1 type size 0 0 transfers

ID 0 0 0 0 0 0 0 0 CRd

31 2928 20 19 16 15
1 ID 1 0000 0000 1 CRd 11 000 1 1 1 t sOOO

o

o
0000 I

CRs TMS34082 source register for the first 32-bit value (or half of the first
64-bit value) to TMS34020 memory

Rd TMS34020 register containing the address for the first value
transferred

count The number of 32- or 64-bit transfers to make. This value must be in
the range 1 to 32 for integer and single-precision moves or 1 to 16 for
double-precision moves. The default value is 1. Count determines the
value of transfers:

Integer or Single-Precision:
If count = 32,
If count = 1 ~ 31,

Double-Precision:
If count = 16,
If count = 1 ~ 15,

then transfers = 0
then transfers = count

then transfers = 0
then transfers = 2 x count

MOVx moves the values from TMS34082 registers beginning at CRd to
memory beginning at the address in Rd. After each 32-bit transfer, Rd is
incremented. The TMS34082 register is advanced to the next register in the
TMS34082 register sequence after every 32-bit transfer for integer and
single-precision moves or after every second 32-bit transfer for
double-precision moves. The number of transfers made is determined by the
value of count.

Internal Instructions

Instruction Type

Example

For double-precision moves, the TMS34082 configuration register LOAD bit
determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit = 1,

If the LOAD bit = 0,

The LOAD bit default is O.

then the LSBs are moved first
(32 LSBs of the fraction)

then the MSBs are moved first
(sign, exponent, and20 MSBsofthefraction)

CMOVCM, postincrement, constant count

MOVE RB7, *A5+, 4

This example moves four 32-bit integer values from TMS34082 registers
beginning at RS7 to TMS34020 memory pOinted to by AS. After each 32-bit
transfer, register AS is incremented, and the TMS34082 destination is
advanced to the next register in the TMS34082 register sequence list. Count
specifies that four 32-bit transfers are made.

7-129

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

7-130

Type
Integer
Double-Precision
Single-Precision

Repeat count times
Rd-32~Rd

CRs ~ .Rd

~a_l.1.1li1l

1I".lItt~1r~~

Syntax
MOVE eRs, - .. Rd l count]
MOVO CRs, - • Rd [, count]
MOVF CRs, - .. Rd l count]

advance to the next TMS34082 register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 1 1 R I Rd

1 I 0 I 0 0 1 1 1 type size 0 0 transfers

10 0 0 0 0 0 0 0 0 CRd

31 2928 20 19 16 15

o

o
10 I 0000 0000 I CRd 11 000 1 1 1 t sOOO 0000 I

CRd TMS34082 source register for the first value to TMS34020 memory

Rd TMS34020 register containing the address of the bit immediately
following the 32 bits (or 64 bits for double-precision moves) used to
store the first value transferred.

count The number of 32- or 64-bit transfers to make. This value must
be in the range 1 to 32 for integer and single-precision moves or 1 to
16 for double-precision moves. The default value is 1. Count
determines the value of transfers:

Integer or Single-Precision:
If count = 32,
If count = 1 ~ 31,

Double-Precision:
If count = 16,
If count = 1 ~ 15,

then transfers = 0
then transfers = count

then transfers = 0
then transfers = 2 x count

MOVx moves the values from TMS34082 registers beginning at CRd to
memory beginning at the address (Rd - 32). Before each 32-bit transfer, Rd
is decremented; after each 32-bit transfer (or every two transfers for
double-precision moves), the TMS34082 register is advanced to the next
register in the TMS34082 register sequence. The number of 32-bit transfers
made is determined by the value of count.

Interns/Instructions

Instruction Type

Example

For double-precision moves, the TMS34082 configuration register LOAD bit
determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit = 1,

If the LOAD bit = 0,

The LOAD bit default is O.

then the LSBs are moved first
(32 LSBs of the fraction)

then the MSBs are moved first
(sign, exponent, and 20 MSBs ofthe fraction)

CMOVCM, predecrement, constant count

MOVO RB7, -*A5, 2

This example moves two 64-bit double-precision values from TMS34082
registers beginning at RB7 to TMS34020 memory pointed to by (AS - 32).
Before each 32-bit transfer, register AS is decremented; after every two 32-bit
transfers, the TMS34082 destination is advanced to the next register in the
TMS34082 register sequence list. Countspecifies that two 64-bittransfers are
made (four 32-bit transfers).

7-131

,----~-------- -".","""",,-_._._ .. _--_. __ .. - -----

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-132

Type
Integer
Double-Precision
Single-Precision

Repeat count times:
CRs ~CRd

Syntax
MOVE CRs, CRd [. count}
MOVO CRs, CRd [. count]
MOVF CRs, CRd [. count]

advance to the next TMS34082 CRs and CRd registers

31 2928 2524 20 19 16 15

I ID I CRs I count I CRd I 0001 1 01 t

CRs Source register RA that holds the first value to move

CRd Destination register to hold the first value moved

o
sOOO 0000 I

count The number of registers to move. This value must be
in the range of 1 to 15; the default is 1.

MOVx moves count values from registers starting with CRs to registers
starting with CRd. Both source and destination registers are advanced to the
next register in the TMS34082 register sequence after each move.

The first source register, CRs, must be in the RA register file.

CEXEC, short

MOVF RA7, RB4, 3

This example moves three 32-bit Single-precision floating-point values from
TMS34082 register RA7, RA8, and RAg to TMS34082 registers RS4, RSS,
and RB6, respectively.

Interna/lnstructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type
Integer
Double-Precision
Single-Precision

Repeat count times:
CRs~CRd

Syntax
MOVE CRs, CRd [, count]
MOVO CRs, CRd [, count]
MOVF CRs, CRd [, count]

advance to the next TMS34082 CRs and CRd registers

31 29 28 25 24 20 19 16 15

I 10 I 0000 I count I CRd I 0001 1 1 0 t
o

sOOO 0000 I
CRs TMS34082 source register RB that holds the first value to move

CRd Destination register to hold the first value moved

count The number of registers to move. This value must be in the range of
1 to 1S; the default is 1.

MOVx moves count values from registers starting with CRs to registers
starting with CRd. Both source and destination registers are advanced to the
next registers in the TMS34082 register sequence after each move.

The first source register, CRs, must be in the RB register file.

CEXEC, short

MOVD RB3, RA7, 3

This example moves the 64-bit double-precision values from TMS34082
registers RB3, RB4, and RBS to TMS34082 registers RA7, RA8, RAg,
respectively.

7-133

~~------------------------ ... , .. ,-_.,---,-"."

Syntsx

Execution

'34020
Instruction Words

MOVFSRAM • Rd+ [, count]

Repeat count times
*MCADDR ~ *Rd
Rd + 32 ~ Rd
MCADDR + 32 ~ MCADDR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 0 0 1 1 0 1 0 1 R I Rd

1 I 0 I 0 1 1 1 1 0 0 0 0 transfers

10 0 0 0 0 1 1 1 0 010 I 0 I 0 I 0

msuucUonro~4082 ~3~1 __ ~2~9~2~8 __ ~0

I 10 leo 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 I
Opersnds

Implied Operands

Description

Instruction Type

7-134

Rd TMS34020 register (indirect postincrement) containing the address of
the first 32-bit integer value transferred

count The number of 32-bit transfers to make. This value must be in the
range 1 to 32; the default value is 1. Count determines the value of
transfers:

If count = 32,
If count = 1 ~ 31,

MCADDR

then transfers = 0
then transfers = count

TMS34082 indirect address register containing the first address in
memory on the MSD port for the first 32-bit value to move

MOVFSRAM moves the 32-bit values from memory on the MSD point
beginning with the address in MCADDR to memory beginning at the address
in Rd. After each 32-bit transfer, Rd and MCADDR are incremented. The
number of 32-bit transfers made is determined by the value of count.

NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit
addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is
incremented by 32 (one 32-bit word).

CMOVCM, postincrement, constant count

Internal Instructions

Syntax

Execution

'34020
Instruction Words

MOVFSRAM -*Rd £ count]

Repeat count times
Rd-32 ~ Rd
.MeADDR ~ .Rd
MeADDR + 32 ~ MeADOR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
0 I 0 I 0 0 0 1 1 0 1 1 1 R I Rd
1 I 0 I 0 1 1 1 1 0 0 0 0 transfers

10 0 0 0 0 1 1 1 1 o J 0 J 0 I 0 J 0

Instruction to '34082 r-3_1_..;...2-r9_28~ ____________________ --.;.....,0

I 10 I 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 I
Operands

Implied Operands

Description

Instruction Type

Rd TMS34020 register (indirect predecrement) containing the address
of the bit immediately following the 32-bits used to store the first
32-bit integer value transferred

count The number of 32-bit transfers to make. This value must
be in the range 1 to 32; the default value is 1. Count determines the
value of transfers:

If count = 32,
If count = 1 ~ 31,

MCADDR

then transfers = 0
then transfers = count

TMS34082 indirect address register containing the first address in
memory on the MSD port for the first 32-bit value to move

MOVFSRAM moves the 32-bit values from memory on the MSD port beginning
at the address in MADDR to memory beginning at the address (Rd - 32).
Before each 32-bit transfer, Rd is decremented; after each 32-bit transfer,
MCADDR is incremented. The number of 32-bit transfers made is determined
by the value of count.

NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit
addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is
decremented by 32 (one 32-bit word).

CMOVCM, predecrement, constant count

7-135
o •• _____ • ____ 0. _____ _

Syntax

Execution

'34020
Instruction Words

MOVTSRAM *Rs+, Rd

IfRd=O
Repeat 32 times

·Rs ~ .MCADDR
Rs+32 ~ Rs

MCADDR + 32 ~ MeADDR

If Rd = 1 ~ 31
Repeat Rdtimes

.Rs ~ .MCADDR
Rs + 32 ~ Rs

MCADDR + 32 ~ MCADDR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 0 0 1 1 0 1 1 1 R Rd
1 I 0 I 0 1 1 1 1 0 0 0 0 R Rs

1O 0 0 0 0 1 1 1 1 0 o I 0 I 0 I 0

msuucNonro~4082 ~3~1 ___ 2T9~28~ __ ~O

I 10 I 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 I
Operands

Implied Operands

Description

Instruction Type

7-136

Rs TMS34020 source register (indirect postincrement) containing the
address of the first 32-'"bit value to move

Rd TMS34020 register containing the number of 32-bit transfers
to make. This value must be in the range 0 to 31

If Rd = 0,
If Rd = 1 ~ 31,

MCADDR

then 32 32-bit transfers are made
then Rd 32-bit transfers are made.

TMS34082 indirect address register containing the first address in
memory on the MSD port where the 32-bit values are to be stored

MOVTSRAM moves 32-bit values from memory beginning at the address in
Rs into memory on the MSD port beginning at the address in MCADDR. After
each transfer, Rs and MCADDR are incremented. The number of 32-bit
transfers made is determined by the contents of Rd.

NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit
addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is
incremented by 32 (one 32-bit word). .

CMOVMC, postincrement, register count

Internsllnstructions

Syntax

Execution

'34020
Instruction Words

MOVTSRAM ",Rs+ l count]

Repeat count times
",Rs ~ ",MCADDR
Rs +32 ~ Rs
MCADOR + 32 ~ MCAOOR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 0 0 1 1 0 1 0 0 transfers

1 I 0 J 0 1 1 1 1 0 0 0 0 R I Rs

10 0 0 0 0 1 1 1 0 010 I 0 I 0 I 0

mstrucUonro'34082 ~3_1 ___ 2T9_28~ __ o-,
I 10 I 0 0 0 0 1 1 1 0 0 0 00 0 1 0 0 1 1 1 1 0 0 0 0 0 00 00 I

Operands

Implied Operands

Description

Instruction Type

Rs TMS34020 source register (indirect postincrement) containing the
address of the first 32-bit value to move

count The number of 32-bit transfers to make. This value must be in the
range 1 to 32; the default value is 1. Count determines the value of
transfers:

If count = 32,
If count= 1 ~ 31,

MCADDR

then transfers = 0
then transfers = count

TMS34082 indirect address register containing the first address in
memory on the MSD port where the 32-bit values are to be stored

MOVTSRAM moves the 32-bit values from memory beginning at the address
in Rs into memory on the MSD port beginning atthe address in MCADD R. After
each transfer, Rs and MCADDR are incremented. The number of 32-bit
transfers made is determined by the value of count.

NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit
addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is
incremented by 32 (one 32-bit word).

CMOVMC, postincrement, constant count

7-137

Syntax

Execution

'34020
Instruction Words

MOVTSRAM - *Rs [, count]

Repeat count times
Rs-32 ~ Rs
*Rs ~ *MCAOOR
MCADDR + 32 ~ MCADOR

15 14 13 12 11 10 9 8 "7 6 5 4 3 2 o
01 0 I 0 0 1 0 0 0 0 0 1 transfers

1 J 0 I 0 1 1 1 0 0 0 0 0 R I Rs
10 0 0 0 0 1 1 1 0 010 I 0 I 0 I 0

ms"ucUonro~4082 ~3_1 ___ 2~9_28 __ 0~

I 10 I 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 I
Operands

Implied Operands

Description

Instruction Type

7-138

Rs TMS34020 source register (indirect predecrement) containing the
address of the bit immediately after first 32-bit integer to move to
the coprocessor

count The number of 32-bit transfers to make. This value must be in the
range 1 to 32; the default value is 1. Count determines the value of
transfers:

If count = 32,
If count = 1 ~ 31,

MCADOR

then transfers = 0
then transfers = count

TMS34082 indirect address register containing the first address in
memory on the MSD port where the 32-bit values are to be stored

MOVTSRAM moves the 32-bit values from memory beginning at the address
in (Rs - 32) into memory on the MSO port beginning at the address in
MCADOR. Before each transfer, the contents of Rs are decremented; after
each transfer, the contents of the MCAOOR register are incremented. The
number of 32-bit transfers made is determined by the value of count.

NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit
addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is
decremented by 32 (one 32-bit word).

CMOVMC, predecrement, constant count

Interna/lnstructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type
Integer
Double-Precision
Single-Precision

Syntax
MPYS CRS1, CR~, CRd
MPYD CRS1, CR~, CRd
MPYF CRS1, CRS2, CRd

31 29 28 25 24 21 20 16 15
CRd I 0001 000 t sOOO

CRS1 Coprocessor register containing the first operand

CRS2 Coprocessor register containing the second operand

CRd Coprocessor destination register

o
0000 I

MPYx multiplies the contents of CRS1 by the contents of CRS2 and stores the
result in CRd. The two operands, CRS1 and CRS2, must be in opposite register
files.

CEXEC, short

MPYD RA5, RB6, RA7

This example multiplies the double-precision floating-point contents of RA5 by
RB6 and stores the double-precision-point result in RA7.

7-139

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-140

Integer
Single-Precision

RS1 ~ CRs1
RS2 ~ CRS2
CRS1 x CRs2 ~ CRd

Syntax
MPYS RS1, R~, CRS1, CR~, CRd
MPYF RS1, R~, CRS1, CR~, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 I 0 I 1 I 1 o I 0 I 1 I 0 A I RS1

o I 1 I 0 1 I 0 I 0 I 0 type I 0 I 0 I 0 A I RS2

10 CAs1 CAs2 CAd

31 29 28 25 24 21 20 16 15
10 CAd I 01 01 OOOt 0000

TMS34020 source register for the first value to coprocessor

o

o
0000 I

RS2 TMS34020 source register for the second value to coprocessor

CRS1 Coprocessor register to contain the first operand

CRS2 Coprocessor register to contain the second operand

CRd Coprocessor destination register

MPYx loads the contents of RS1 and RS2 into CRs1 and CRS2 respectively,
multiplies CRs1 x CRs2, and stores the result in CRd. The two operands, CRs1
and CRS2, must be in opposite register files.

The double-precision form of this instruction is not supported.

CMOVGC, two registers

MPYS AS, A6, RAS, RB6, RA7

This example loads TMS34020 registers AS and A6 into TMS34082 registers
RA5 and RB6 respectively, multiplies the contents of RA5 by RB6, and stores
the integer result in RA7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Insuucffonto~4082

Operands

Description

Instruction Type

Example

Type
Integer
Double-Precision
Single-Precision

·Rs ~ CRs1
Rs + 32 ~ Rs

ia'lij~~mmI1~
BI~m~lg~~M~~Ulll
·Rs ~ CRs2
Rs + 32 ~ Rs

iR'-gij~~mml~
8I~1IJgi;iM11imm
CRs1 x CRS2 ~ CRd

Syntax
MPYS *Rs+, CRst, CRS2, CRd
MPYD *Rs+, CRst, CR~, CRd
MPYF *Rs+, CRst, CR~, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 01011J1 o I 1 I 0 I 0 o I 0 I count

1 I 0 I 0 1 I 0 I 0 I 0 type I size I 0 I 0 R I Rs

1D CRS1 CRS2 CRd

31 29 28 25 24 21 20 16 15 o
1D I CRS1 1 CRS2 CRd

1
1001 000 t sOOO 0000 I

Rs TMS34020 source register containing the memory address

CRS1 Coprocessor register to contain the first operand

CRS2 Coprocessor register to contain the second operand

CRd Coprocessor destination register

MPYx loads the contents of memory pointed to by Rs into CRs1 and CRs2,
multiplies CRs1 by CRS2 and stores the result in CRd. After each load from
memory, Rs is incremented by 32. The two operands, CRs1 and CRs2, must
be in opposite register files.

CMOVMC, postincrement, constant count

MPYS *A5+, RA5, RB6, RA7

This example loads memory starting at the address given by TMS34020
register A5 into coprocessor registers RA5 and RB6, multiplies the contents
of RA5 by RB6 and stores the result in RA7.

7-141

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-142

Integer
Double-Precision
Single-Precision

Rs-32 -7 Rs
*Rs -7 CRS1
Rs - 32 -7 Rs
iRaau
"i~ ••
*Rs -7 CRS2
•• ~DiI1.1
RlfjlR.
CRS1 x CRS2 -7 CRd

Syntax
MPYS - *Rs+, CRSt, CR~, CRd
MPYD - *Rs, CRSt, CRSz, CRd
MPYF -*Rs+, CRS1, CR~, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 1 I 0 I 0 oJolol1 o I o I count

1 I 0 I 0 1 I 0 I 0 , 0 type I size I 0 I 0 A 1 Rs

10 CRS1 CRS2 CRd

31 29 28 25 24 21 20 16 15 o
10 I CRs1 1 CRs2 I CRd 11 001 OOOt sOOO 0000 1

Rs TMS34020 source register containing the memory address

CRS1 Coprocessor register to contain the first operand

CRS2 Coprocessor register to contain the second operand

CRd Coprocessor destination register

MPYx loads the contents of memory pointed to by Rs into CRS1 and CRS2J
multiplies CRS1 by CRS2 and stores the result in CRd. Before each load from
memory, Rsis decremented by 32. The two operands, CRS1 and CRS2J must
be in oPPosite register files.

CMOVMC, predecrement, constant count

MPYD -*AS, RAS, RB6, RA7

This example loads memory starting at the address given by TMS34020
register AS minus 32 into coprocessor registers RAS and RB6, multiplies the
contents of RA5 by RB6 and stores the result in RA7.

Internal Instructions

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Temporary Storage

Outputs

Instruction Type

Type
Integer
Double-Precision
Single-Precision

31 29 28

Syntax
MTRAN
MTRAND
MTRANF

-- ---_ .. _ .. _._._ .. ~~~~~~

o
10 I 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 1 1 001t sOOO 0000 I

This instruction transposes a matrix. (Interchanges the row and column
elements of the matrix.)

RAO = BOO, RA1 =B01,
RA4 = B10, RA5 = B11,
RA8= B20, RAg = B21,
RB2 = B30, RB3 = 831,

None

RAO = BOO, RA1 = B10,
RA4 = B01, RA5 = B11,
RA8 = B02, RAg = 812,
RB2 = B03, RS3 == 813,

CEXEC, short

RA2 = 802,
RA6 = 812,
RBO = 822,
RB4 = 832,

RA2 = B20,
RA6 = B21,
RBO = 822,
RB4 = 823,

RA3 = 803,
RA7 == B13,
RB1 == B23,
RS5 = B33

RA3 == B30,
RA7 == B31,
RS1 == B32,
RS5 == B33

7-143

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-144

Type
Integer
Double-Precision
Single-Precision

-CRs --7 CRd

Syntax
NEG CRSt CRd
NEGD CRSt CRd
NEGF CRSt CRd

31 29 28 25 24 20 19 16 15
10 I CRs I 0 0 1 1 I CRd I 0001

CRs TMS34082 register containing the operand

CRd TMS34082 destination register

o
1 1 1 t sOOO 0000 I

NEGx negates the contents of register CRs and stores the result in CRd.
The integer instruction (NEG) takes the 2s complement ofthe contents of CRs
and stores the result in CRd.

The source register, CRs, must be in the RA register file.

CEXEC, short

NEGD RA5, RB7

This example negates the double-precision floating-point value in RA5 and
stores the result in RS7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type
Integer
Double-Precision
Single-Precision

RS1 ~ CRs

BJjlfiR*!iDBfi~
-CRs~'CRd

Integer or Single-Precision:

Syntax
NEG RS1, CRs, CRd
NEGD RS1, R~, CRs, CRd
NEGF RS1, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o Jo 111 1 I 0 0 0 1 R

o
RS1

o I 1 I 0 1 I 1 I 1 I 1 I type 0 0 0 0 o I 0 I 0 I 0

10 CRs 0 0 1 1 CRd

Double-Precision:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

01 0 1 0 o 1 0 1 1 1 1 0 0 1 0 R 1 RS1

o I 1 I 0 1 I 1 I 1 I 1 1 1 0 0 R I RS2

10 CRs 0 0 1 1 CRd

31 29 28 25 24 20 19 16 15 o
10 I CRs I 001 1 I CRd I 01 01 1 1 1 t sooo 0000 I

TMS34020 source register for the value (or half the value for double­
precision) to TMS34082

RS2 TMS34020 source register for the remainder of the 64-bit double­
precision floating-point value to TMS34082

CRs TMS34082 register containing the operand

CRd TMS34082 destination register

NEGx loads the contents of RS1 (and RS2 for double-precision) into register
CRs, negates CRs, and stores the result in CRd. The integer instruction (NEG)
takes the 2s complement of the value.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVGC, one or two registers

NEGD AS, A6, RAS, RB7

This example loads the double-precision floating-point contents of TMS34020
registers A5 and A6 into RA5, negates the contents of RA5 and stores the
result in RB7.

7-145

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-146

Integer
Double-Precision
Single-Precision

*Rs -7 CRs
Rs + 32 -7 Rs

VB ••• ~f~
~5.lt.i~~li.~;I1~
-CRs -7 CRd

Syntax
NEG *Rs+, CRs, CRd
NEGD *Rs+, CRs, CRd
NEGF *Rs+, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 0 I 1 I 1 0 1 0 0 01 0 I 0 I transfers

1 I 0 I 0 1 I 1 I 1 I 1 type size 0 0 R I Rs

ID CRs 0 0 1 1 CRd

31 29 28 25 24 20 19 16 15 o
10 1 CRs 1 0 0 1 1 1 CRd 1 1001 1 1 1 t sOOO 0000 I

Rs TMS34020 register containing the memory address

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

NEGx loads the contents of memory pointed to by Rs into CRs, negates the
contents of CRs, and stores the result in CRd. The integer instruction (NEG)
takes the 2s complement of the value. After each load from memory, Rs is
incremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVMC, postincrement, constant count

NEGF *AS+, RAS, RB7

This example loads memory at the address given by TMS34020 register AS
into TMS34082 register RAS, negates the contents of RAS, and stores the
result in RS?

Internsllnstructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type
Integer
Double-Precision
Single-Precision

Rs-32 -? Rs
·Rs -? CRs

"i!fllltiilKt~11~1!
i.lliil~.RJ.l~lll
-CRs -? CRd

Syntax
NEG - .. Rs, CRs, CRd
NEGD -*Rs, CRs, CRd
NEGF - *Rs, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 1 I 0 I 0 0 0 0 1 010 I 0 I 1 I 0

1 I 0 I 0 1 I 1 I 1 I 1 type size 0 0 R I
10 CRs 0 0 1 1

31 29 28 25 24 20 19 16 15

10 \ CRs \ 001 1 \ CRd \1 001 1 1 1 t

Rs TMS34020 register containing the memory address

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

Rs

CRd

o
sOOO 0000 I

NEGx loads the contents of memory pointed to by Rs into CRs, negates the
contents of CRs, and stores the result in CRd. The integer instruction (NEG)
takes the 2s complement of the value. Before each load from memory, Rs is
decremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVMC, predecrement, constant count

NEGD -*A5, RA5, RB7

This example loads memory starting at the address given by TMS34020
register A5 minus 32 into TMS34082 register RA5 negates the contents of
RA5, and stores the result in RB7.

7-147

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-148

NOT CRs, CRd

NOTCRs~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 II~ I 0 11 I 1 I 0 I 0

1
0

1
0

1
0

I
1

I
1 I 1 1 0 0

CRs 0 0 0 CRd

31 29 28 25 24 20 19 16 15 0
10 CRs I 0001 I CRd I 0001 1 1 1 0 0000 0000 I

CRs TMS34082 source register containing the 32-bit integer operand

CRd TMS34082 destination register

NOT takes the 1 s complement of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.

CEXEC, short

NOT RA5, RA7

This example takes the 1 s complement of the contents of RA5 and stores the
result in RA7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

NOT Rs, CRs, CRd

Rs ~ CRs
NOTCRs~ CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 R J
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 0 0 0 0 010 I 0 I 0 I 0

10 CRs 0 0 0 1 CRd

31 29 28 25 24 20 19 16 15 o
10 I CRs I 0 0 0 1 I CRd I 01 01 1 1 1 0 0000 0000 I

Rs TMS34020 source register for the 32-bit integer value to TMS34082

CRs TMS34082 register to contain the 32-bit integer operand

CRd TMS34082 destination register

NOT loads the contents (integer) of Rs into the CRs, takes the 1 s complement
of the contents of register CRs, and stores the result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVGC, one register

NOT AS, RAS, RA7

This example loads TMS34020 register A5 into TMS34082 register RA5, takes
the 1 s complement of the contents of RA5, and stores the result in RA7.

7-149

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-150

NOT *Rs+, eRs, CRd

... Rs ~ CRs
Rs+32 ~ Rs
NOTCRs~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 0 I 1 I 1 0 1 0 0 010 I 0 I 0 I 1

1 I 0 I 0 1 I 1 I 1 I 1 0 0 0 0 R I Rs

ID CRs 0 0 0 1 CRd

31 29 28 25 24 20 19 16 15 0
ID I CRs I 0001 I CRd I 01 01 1 1 1 0 0000 0000

Rs TMS34020 register containing the memory address

CRs TMS34082 register to contain the 32-bit integer operand

CRd TMS34082 destination register

NOT loads the integer contents of memory pointed to by Rs into the CRs, takes
the 1 s complement of the contents of register CRs, and stores the result in
CRd. After each load from memory, Rs is incremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVMC, postincrement, constant count

NOT *A5+, RA5, RA7

This example loads memory at the address given by TMS34020 register A5
into TMS34082 register RA5, takes the 1 s complement ofthe,contents of RA5,
and stores the result in RA 7.

Internal Instructions

I

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

NOT - *Rs, eRs, CRd

Rs-32 ~ Rs
*Rs ~ CRs
NOTCRs~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 o I 1 I 0 I 0 0 '0 0 1 01 0 I 0 I 0 I 1

1 I 0 I 0 1 I 1 I 1 I 1 0 0 0 0 R I Rs

ID CRs 0 0 0 1 CRd

31 29 28 25 24 20 19 1615 o
ID I CRs I 000 1 I CRd I 01 01 1 1 1 0 0000 0000 I

Rs TMS34020 register containing the memory address

CRs TMS34082 register to contain the 32-bit integer operand

CRd TMS34082 destination register

NOT loads the contents (integer) of memory pointed to by Rs into the CRs,
takes the 1 s complement of the contents of register CRs, and stores the result
in CRd. Before each load from memory, Rs is decremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVMC, predecrement, constant count

NOT -*AS, RAS, RA7

This example loads memory at the address given by TMS34020 register A5
minus 32 into TMS34082 register RA5 takes the 1 s complement of the
contents of RA5, and stores the result in RA7.

7-151

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-152

Type
Integer
Double-Precision
Single-Precision

1 ~CRd

Syntax
ONE CRd
ONED CRd
ONEF CRd

31 29 28 25 24 21 20
ID I 1 1 0 1 I 1 1 0 1 I CRd

CRd TMS34082 destination register.

16 15 o
I 0001 000 t sOOO 0000 I

ONEx loads the value one (of the appropriate type) in the CRd register.

CEXEC, short

ONED RA3

This example loads RA3 with a double-precision one.

Internal Instructions

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

T)!g~ S)!ntax
Integer OUTC3X
Double-Precision OUTC3XD
Single-Precision OUTC3XF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 J 1 J 0 1 1 0 0 0 0 1 1 I 1 I 0 1 type size

I ID 0 0 0 0 0 0 0 01 0 I 0 0 0 0

31 29 28 o
ID I 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 1 101t sOOO 0000 I

The OUTC3Xx algorithm compares the given endpoints of a line to the clipping
volume in the X-axis. The instruction sets three status register bits based on
the location ofthetwo endpoints with respect to the clipping volume. OUTC3Xx
is used before the clipping instructions to determine which ends ofthe line need
to be clipped.

RAO = X1 RBO = X2
RA1 = Y1 RB1 = Y2
RA2 = Z1 RB2 = Z2
RA3=W1 RB3=W2

CT = RS3 ; CT = W2
C = RA3 ; C = W1
CT = CT -IRBOI ; set V = 1 if (W2 -IX21) < 0
C = C -IRAOI ; set N = 1 if (W1 -IX11) < 0
If N = 1 and V = 1 and (sign X1 = sign X2), then set Z = 1

C,CT

Status bits set:

Z N Y.. Description
1 1 1 both points outside on same side of volume in X-axis
o 1 1 both pOints outSide on opposite sides of the volume in X-axis
o 1 0 only point P1 [X1 ,Y1 ,Z1 ,W1] outside of volume in X-axis
o 0 1 only point P2 [X2,Y2,Z2, W2] outside of volume in X-axis
o 0 0 both pOints P1 and P2 inside the volume in X-axis

CEXEC, short

7-153

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-154

Ixge S~max
Integer OUTC3Y
Double-Precision OUTC3YD
Single-Precision OUTC3YF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 1 I 0 1 1 0 0 0 0 1 1 1 0 1 type size

ID 0 0 0 0 0 0 0 0 0 0 0 0 1

31 29 28 o
ID I 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 101t 8000 0000 I

The OUTC3Yx algorithm compares the given endpoints of a line to the clipping
volume in the Y-axis. The instruction sets three status register bits based on
the location ofthe two endpoints with respectto the clipping volume. OUTC3Yx
is used before the clipping instructions to determine which ends ofthe line need
to be clipped.

RAO = X1 RBO = X2
RA1 = Y1 RB1 = Y2
RA2 = Z1 RB2 = Z2
RA3 = W1 RB3 = W2

CT = RS3 ; CT = W2
C = RA3 ; C = W1
CT = CT -IRB1 r ; set V = 1 if (W2 -IY21) < 0
C = C -IRA11 ; set N = 1 if (W1 -IY1j) < 0
If N = 1 and V = 1 and (sign Y1 = sign Y2), then set Z = 1

C,CT

Status bits set:

Z N Y... Description
1 1 1 both points outside on same side of volume in Y-axis
o 1 1 both pOints outside on opposite sides of the volume in Y-axis
o 1 0 only paint P1 [X1 ,Y1 ,Z1 ,W1] outside of volume in Y-axis
o 0 1 only point P2 [X2,Y2,Z2,W2] outside of volume in Y-axis
o 0 0 both points P1 and P2 inside the volume in Y-axis

CEXEC, short

Internal Instructions

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

Type
Integer
Double-Precision
Single-Precision

15

31 29 28

Syntax
OUTC3Z
OUTC3ZD
OUTC3ZF

8 7 654 2 o

o
10 I 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 101t sOOO 0000 I

The OUTC3Zx algorithm compares the given endpoints of a line to the clipping
volume in the Z-axis. The instruction sets three status register bits based on
the location ofthe two endpoints with respect to the clipping volume. OUTC3Zx
is used before the clipping instructions to determine which ends of the line need
to be clipped.

RAO = X1 RBO = X2
RA1 = Y1 RB1 = Y2
RA2 = Z1 RB2 = Z2
RA3 = W1 RB3 = W2

CT = RB3 ; CT = W2
C = RA3 ; C = W1
CT = CT -IRB21 ; set V = 1 if (W2 -IZ2i) < 0
C = C -IRA21 ; set N = 1 if (W1 -IZ11) < 0
If N = 1 and V = 1 and (sign Z1 = sign Z2), then set Z = 1

C,CT

Status bits set:

Z N Y.. Description
1 1 1 both points outside on same side of volume in Z-axis
o 1 1 both points outside on oppOSite sides of the volume in Z-axis
o 1 0 only point P1 [X1 ,Y1 ,Z1 ,W1) outside of volume in Z-axis
o 0 1 only point P2 [X2,Y2,Z2,W2) outside of volume in Z-axis
o 0 0 both points P1 and P2 inside the volume in Z-axis

CEXEC, short

7-155

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-156

Integer
Double-Precision
Single-Precision

CRs -7 CRd

15

Syntax
PASS CRs, CRd
PASSD CRs, CRd
PASSF CRs, CRd

31 29 28 25 24 21 20 16 15
10 I CRs I 0000 I CRd I 0001

o
1 1 1 t sOOO 0000 I

CRs TMS34082 source register containing the operand. Must be from RA
register file

CRd TMS34082 destination register

PASSx moves a value from CRs to CRd. PASSx may be used to move values
into and out of the C and CT feedback registers.

CEXEC, short

PASSD CT, RBO

This example moves the 54-bit double-precision value from feedback register
CT to TMS34082 register RBO.

Internal Instructions

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

~~ Sxniax
Integer POLY CRS1, CR~
Double-Precision POL YO CRS1, CR~
Single-Precision POLYF CRst, CRS2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
1 I 1 I 0 1 I 1 I 0 I 0 0 0 1 1 1 1 I 1 J type I size I

10 CRS1 0 0 0 0 1 CRs2 I
31 29 28 25 24 20 19 16 15 o

10 I CRS1 I 0 0 00 1 I CRS2 I 00 11 1 1 1 t sOOO 0.000 I
POLYx performs a multiply and accumulate of the form:

An x xn + An-1 x Xn-1 + An-2 X Xn-2 + ...) + Ao
which can also be represented as:

(. .. ((An x X + An-1) x X + An-2) x X + ...) + Ao

where the value X is assumed present in the TMS34082 C register and the
coefficients An through A1 are to be multiplied by X and accumulated. This
instruction multiplies CRS1 by C, adds the result to CRS2, and stores the sum
in CRS1.

CRS1 TMS34082 register containing An or accumulated value. Must be in
the RA register file.

CRS2 TMS34082 register containing An-1 or next coefficient in series.
Must be in the RB register file.

CT = C x CRS1 ; An x X
CRS1 = CT + CRS2 ; (An x X) + An-1

CT

The new accumulated value in CRS1

CEXEC, short

7-157

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary StorBge

Outputs

Instruction Type

7-158

T~g~ Sxomx
Integer SCALE
Double-Precision SCALED
Single-Precision SCALEF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 1 I 0 1 1 0 0 0 0 1 1 0 0 0 type size

10 0 0 0 0 0 0 0 0 0 0 0 0 0

31 29 28 o
10 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 OOOt sOOO 0000 I

This instruction is used to scale and translate screen coordinates. Sn is the
viewport scaling constant, Cn is the center of viewport constant, and V1 (X1,
Y1, Z1, W1) is the vertex to scale and convert.

RAO = X1
RA1 = Y1
RA2 = Z1
RA3 = W1
RA7 = Sx
RA8 = Sy
RA9 = Sz

CT= RA3
C = RAO/CT
RAO = (C x RA7) + RS7
C = RA1! CT
RA1 = (C x RA8) + RB8
RA2 = RA2!CT
RA3 = CT
RA2 = RA2 x RA9
RA2 = RA2 + RB9

C,CT

RAO = X1'
RA1 = Y1'
RA2 = Z1'
RA3 = W1

CEXEC, short

; Vertex to scale and convert,
; these are homogeneous coordinates

RB7 = Cx
RB8=Cy
RB9 = Cz

;W1

; X1 = ((X1! W1) x Sx) + Cx

; Y1 = ((y1! W1) x Sy) + Cy

; Z1 = ((Z1 ! W1) x Sz) + Cz

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type
Integer
Double-Precision
Single-Precision

CRs x CRs ~ CRd

Syntax
SQR CRs, CRd
SQRD CRs, CRd
SQRF CRs, CRd

31 29 28 25 24 21 20 16 15
10 I CRs I 1 000 I CRd I 0001 1 1 1 t

CRs TMS34082 source register containing the operand

CRd TMS34082 destination register

sOOO

SQRx squares the contents of CRs and stores the result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.

CEXEC, short

SQR RAS, RA7

o
0000 I

This example squares the contents of RA5 and stores the result in register
RA7.

7-159

SQRx Load and Square
~QGQ';QcaQ~tQQgg UQQ:Og~::Q::~~~""~~~»X«««-",~X"·~~~;"'v.«·:.-:-;·:«"~~:-:~"'(co..,,,«~.;.o.:~·;-:,,).;.:,,·;..: .. :"';·:·»:"»"' :-:-:-w.·:~:~~»o)o."t-w.oQo».~"'-»"'A»>;-.x·X«-;.»..~~:--... :«<'t*.'»»:««.;.:-:«v..(..:..;

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-160

Type
Integer
Double-Precision
Single-Precision

RS1 ~ CRs

BIi\mmRI~l
CRs x CRs ~ CRd

Integer or Single-Precision:

Syntax
SQR RS1, CRs, CRd
SQRD RS1, RS2, CRs, CRd
SQRF RS1, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

RS1

o I 1 I 0 1 I 1 I 1 I 1 type 0 0 0 01 0 I 0 I 0 I 0

10 CRs 1 0 0 0 CRd

Double-Preclslon:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

010 I 0 o I 0 I 1 I 1 0 0 1 0 R RS1

o I 1 I 0 1 I 1 I 1 I 1 1 1 0 0 R RS2

10 CRs 1 0 0 0 0 CRd

31 29 28 25 24 21 20 16 15 o
10 CRs I 1 0 0 0 I CRd I 01 01 1 1 1 t 5000 0000 I

TMS34020 source register for the value (or half the value for double­
precision operands) to TMS34082

RS2 TMS34020 source register for the remaining half ofthe 64-bit operand
to the TMS34082

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRx loads the contents of Rs into CRs, squares the contents of CRs, and
stores the result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVGC, one register

SQR AS, RAS, RB7

This example loads TMS34020 register A5 into TMS34082 register RA5,
squares the contents of RA5, and stores the result in RS7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type
Integer
Double-Precision
Single-Precision

*Rs ~ CRs
Rs+32 ~ Rs
j~il~~l

~a.~'l
CRs x CRs ~ CRd

Syntax
SQR *Rs+, CRs, CRd
SQRD *Rs+, CRs, CRd
SQRF *Rs+, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 0 I 1 I 1 0 1 0 0 01 0 I 0 I transfers

1 1 0 I 0 11 1 J11 1 type size 0 0 R I Rs

10 CRs 1 0 0 0 CRd

31 29 28 25 24 21 20 16 15 o
10 I CRs I 1 000 I CRd I 1 001 1 1 1 t sOOO 0000 I

Rs TMS34020 source register containing the memory address

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRx loads the contents of memory pointed to by Rs into CRs, squares the
contents of CRs, and stores the result in CRd. After each load from memory,
As is incremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVMC, postincrement, constant count

saR *AS+, RAS, RB7

This example loads memory starting at the address given by TMS34020
register AS into TMS34082 register RAS, squares the contents of RAS, and
stores the result in RS7. .

7-161

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-162

Integer
Double-Precision
Single-Precision

Rs-324 Rs
.Rs 4 CRs

BI1$1Uli!~"
e~lijJ.~~11
CRs x CRs 4 CRd

Syntax
SQR -*Rs1 CRs1 CRd
SQRD - * RS1 CRs1 CRd
SQRF -*Rs, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 1 I 0 I 0 0 0 0 1 01 0 I 0 I transfers

1 I 0 I 0 1 I 1 I 1 I 1 type size 0 0 R I Rs

10 CRs 1 0 0 0 CRd

31 29 28 25 24 21 20 16 15 o
10 CRs 1 1 0 0 0 1 CRd 11 001 1 1 1 t sOOO 0000 I

Rs TMS34020 source register containing the memory address

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRx loads the contents of memory pOinted to by Rs minus 32 into CRs,
squares the contents of CRs, and stores the result in CRd. Before each load
from memory, Rs is decremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVMC, predecrement, constant count

SQR -* A5, RA5, RS7

This example loads memory starting at the address given by TMS34020
register A5 minus 32 into TMS34082 register RA5, squares the contents of
RA5, and stores the result in RS7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

Type
Integer
Double-Precision
Single-Precision

')CRs ~ CRd

Syntax
SQRT CRs, CRd
SQRTO CRs, CRd
SQRTF CRs, CRd

31 29 28 25 24 21 20 16 15
10 I CRs I 1001 I CRd I 0001 1 1 1 t

CRs TMS34082 source register containing the operand

CRd TMS34082 destination register

o
sOOO 0000 I

SQRTx takes the square root of the contents of CRs and stores the result in
CRd.

The source register, CRs, must be in the RA TMS34082 register file.

CEXEC, short

SQRTD RA5, RA7

This example takes the square root of the contents of RA5 and stores the result
in RA7.

7-163

Syntax

Execution

Type
Integer
Double-Precision
Single-Precision

RS1 ~ CRs

BBi1."~
vlCRs ~ CRd

Syntax
SQRT RS1 ~ CRs~ CRd
SQRTD RS1 ~ R~~ CRs, CRd
SQRTF RS11 CRs~ CRd

'34082 Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

7-164

Integer or Single-Preclslon:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

010 I 0 o I 0 I 1 I 1 0 0 0 1 R I RS1

o I 1 1 0 1 I 1 I 1 I 1 type 0 0 0 010 I 0 I 0 I 0

ID CRs 1 0 0 1 CRd

Double-Preclsion:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o I 0 I 0 0 I 0 I 11 1 0 0 1 0 R I RS1

o J 1 1 0 1 J 1 I 1 I 1 1 1 0 0 R I RS2

ID CRs 1 0 0 1 CRd

31 29 28 25 24 21 20 16 15 o
I ID I CRs I 1001 I CRd I 01 0 1 1 1 1 t sOOO 0000 I

TMS34020 source register for the value (or halfthe double-precision
value) to the TMS34082

RS2 TMS34020 source register for the value for the remaining half of the
double-precision value to the TMS34082

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRTx loads the contents of Rs into CRs, takes the square root of the contents
of CRs, and stores the result in CRd.

The source register,CRs, must be in the RA TMS34082 register file.

CMOVGC, one register

SQRTF A5, RA5, RA7

This example loads TMS34020 register A5 into TMS34082 register RA5, takes
the square root of the single-precision floating-point value in RA5, and stores
the result in RA7.

Internsllnstructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

Type
Integer
Double-Precision
Single-Precision

... Rs ~ CRs
Rs + 32 ~ Rs

iBI1~~~§.!.~~
8I~f:r"~~\11'11j
..jCRs~ CRd

Syntax
SQRT ... Rs+, CRs, CRd
SQRTO ... Rs+, CRs, CRd
SQRTF .. Rs+, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 o I 0 I 1 I 1 0 1 0 0 o I o I 0 I transfers

1 I 0 I 0 1 l 1 I 1 I 1 type size 0 0 R I Rs

10 CRs 1 0 0 1 CRd

31 29 28 25 24 21 20 16 15 o
10 1 CRs 1 1 001 1 CRd 11 001 1 1 1 t sOOO 0000 I

Rs TMS34020 source register containing the memory address

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRTx loads the contents of memory pointed to by Rs into CRs, takes the
square root of the contents of CRs, and stores the resultin CRd. After each
load from memory, Rs is incremented by 32.

CMOVMC, postincrement, constant count

SQRTD*AS+,RAS,RA7

This example loads memory starting at the address given by TMS34020
register AS into TMS34082 register RAS, takes the square root of the
double-precision floating-point value in HAS, and stores the result in RA 7.

7-165

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

7-166

Type
Integer
Double-Precision
Single-Precision

Rs-32~ Rs
·Rs ~ CRs
filil ••• 1BI
u.jra~IB.Wj
-.lCRs ~ CRd

Syntax
SQRT - ·Rs, eRs, CRd
SQRTO -·Rs, CRs, CRd
SQRTF -·Rs, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 o I 1 I 0 I 0 0 0 0 1 o I 0 I 0 I transfers

1 I 0 I 0 1 I 1 I 1 I 1 type size 0 0 R I Rs

10 CRs 1 0 0 1 CRd

31 29 28 25 24 21 20 16 15 0
10 1 CRs 1 1001 ·1 CRd 11 001 1 1 1 t sOOO 0000 I

Rs TMS34020 source register containing the memory address

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRTx loads the contents of memory pointed to by Rs minus 32 into CRs,
takes the square root of the contents of CRs, and stores the result in CRd.
Before each load from memory, Rs is decremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVMC, predecrement, constant count

SQRTF -*A5, RA5, RA7

This example loads memory starting at the address given by TMS34020
register A5 minus 32 into TMS34082 register RAS, takes the square root of the
single-precision floating-point value in RAS, and stores the result in RA7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

Type
Integer
Double-Precision
Single-Precision

-VCRs ~ CRd

Syntax
SQRTA CRs, CRd
SQRTAD CRs, CRd
SQRTAF CRs, CRd

31 2928 2524 21 20 16 15

ID I CRs I 1 01 0 I CRd I 0001

CRs TMS34082 register containing the operand

CRd TMS34082 destination register

o
1 1 1 t sOOO 0000 I

SQRTAx takes the square root ofthe absolute value ofthe contents of CRs and
stores the result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.

CEXEC, short

SQRTA RA5, RS?

This example takes the square root of the absolute value of RA5 and stores
the result in RS?

7-167

Syntax

Execution

'34082 Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

7-168

Type
Integer
Double-Precision
Single-Precision

RS1 -) CRs
BSJii~BI~f~l
-VCRs -) CRd

Integer or Single-Precision:

Syntax
SQRTA RS1, CRs, CRd
SQRTAD RS1, R82, CRs, CRd
SQRTAF RS1, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o I 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I RS1

o I 1 I 0 1 I 1 I 1 I 1 type 0 0 0 010 I 0 I 0 I 0

10 CRs 1 0 1 0 CRd

Double-Preclsion:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o I 0 I 0 o I 0 I 1 I 1 0 0 0 0 R I RS1

o I 1 I 0 1 I 1 I 1 I 1 1 1 0 0 R I RS2

10 CRs 1 0 1 0 CRd

31 2928 2524 21 20 16 15 o
I 10 I CRs I 1 0 1 0 I CRd I 01 01 1 1 1 t sOOO 0000 I

TMS34020 source register for the value (or half of the 64-bit double­
precision value) to TMS34082

RS2 TMS34020 source register for remaining half of the double-precision
value to TMS34082

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRTAx loads the contents of Rs into CRs, takes the square root of the
absolute value of the contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVGC, one register

SQRTAD A3, A5, RA5, RA7

This example loads TMS34020 register A5 and A3 into TMS34082
register RA5, takes the square root of the absolute value of the contents
of RA5, and stores the result in RA7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

Type
Integer
Double-Precision
Single-Precision

.. Rs -7 CRs
Rs + 32 -7 Rs

i.mI~~:SIit.~m
BI~Il.:e.~lNt.~~lml~
~CRs -7 CRd

Syntax
SQRTA .,Rs+, CRs, CRd
SQRTAD .,Rs+, CRs, CRd
SQRTAF *Rs+, eRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 o I 0 I 1 I 1 0 1 0 0 o I 0 I 0 I transfers

1 I 0 I 0 1 I 1 I 1 I 1 type size 0 0 R I Rs

10 CRs 1 0 1 0 CRd

31 2928 2524 21 20 16 15 o
1 10 I CRs I 1 01 0 I CRd 11 001 1 1 1 t sOOO 0000 I
Rs TMS34020 source register containing the memory address

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRTAx loads the contents of memory pointed to by Rs into CRs, takes the
square root of the absolute value of the contents of CRs, and stores the result
in CRd. After each load from memory, Rs is incremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVMC, postincrement, constant count

SQRTA*A5+,RA5,RA7

This example loads memory starting at the address given by TMS34020
register A5 into TMS34082 register RA5, takes the square root of the absolute
value of the contents of RA5, and stores the result in RA7.

7-169

--------_ .. __ ...

SQRTAx Load from Memory (Predecrement) and Square Root of Absolute Value
i'Vh~",«..;«--;.»", .. :-"h»':-»:o-::,,** VM"",;"'..:< ,.......x-: .. :-~:.;-: .. ;'j>;':~XOO:-:-';«·»="X·»"..v:..;..;.:-);"~·:-:-w.«*:-»»X"':":;:';-::";'jo~"~""N:;:·~-:-"'A~ -'*'v.-~ ... :<~;-"',~"","m..V..«o"'~N~ v~vhX"O""..«W"~"~oI'O:: .. ~::W .. lQ~ c~w:t~ .. :«.

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

7-170

Type
Integer
Double-Precision
Single-Precision

Rs-32 ~ Rs
·Rs ~ CRs

iHltjEII11~;
S.'Jt:iR1;W1*il
·Rs ~ CRs
~CRs ~ CRd

Syntax
SQRTA - *Rs, CRs, CRd
SQRTAD -*Rs, CRs, CRd
SQRTAF -*Rs, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 o I 1 I 0 I 0 0 0 0 1 010 I 0 I transfers

1 I 0 I 0 1 I 1 I 1 I 1 type size 0 0 R I Rs

10 CRs 1 a 1 0 CRd

31 2928 2524 21 20 16 15 o
I 10 I CRs I 101 0 I CRd 11 001 1 1 1 t sOOO 0000 1

Rs TMS34020 source register containing the memory address

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRTAx loads the contents of memory pointed to by Rs minus 32 into CRs,
takes the square root of the absolute value of the contents of CRs, and stores
the result in CRd. Before each load from memory, Rs is decremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVMC, predecrement, constant count

SQRTA -*A5, RA5, RA7

This example loads memory starting at the address given by TMS34020
register AS minus 32 into TMS34082 register RAS, takes the square root ofthe
absolute value of the contents of RA5, and stores the result in RA7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

Type
Integer
Double-Precision
Single-Precision

Syntax
SUB CRS1, CRf>2, CRd
SUBD CRS1, CRS2, CRd
SUBF CRS1, CRS2, CRd

31 29 28 25 24 21 20 16 15
CRd I 00 00 001 t sOOO

CRS1 TMS34082 RA register containing the minuend operand

CRS2 TMS34082 RB register containing the subtrahend operand

CRd TMS34082 destination register

o
0000 I

SUBx subtracts the contents of CRS2 from CRS1 and stores the result in CRd.

The syntax for this instruction and the next instruction for subtract
(RB register - RA register) is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, this instruction is used.
If an R8 register is first, the other instruction is used.

CEXEC, short

SUBD RA5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the result in
RA7.

7-171

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

7-172

Type
Integer
Double-Precision
Single-Precision

Syntax
SUB CR52, CRS1, CRd
SUBD CR52, CRS1, CRd
SUBF CR52, CRS1, CRd

31 2928 2524 21 20 16 15

I 10 I CRS1 I CRS2 CRd I 0000 01 1 t sOOO

CRS1 TMS34082 RA register containing the subtrahend operand

CRS2 TMS34082 RB register containing the minuend operand

CRd TMS34082 destination register

o
0000 I

SUBx subtracts the contents of CRS1 from CRS2 and stores the result in CRd.
Notice in the syntax that the CRS2 operand is listed first.

The syntax for this instruction and the previous instruction, subtract
(RA register - RS register), is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, the previous instruction
is used. If an RB register is first, this instruction is used.

CEXEC, short

SUB RB5, RA3, RA7

This example subtracts the contents of RA3 from RS5 and stores the result in
RA7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

Type
Integer
Single-Precision

RS1 ~ CRS1
RS2 ~ CRs2
CRs1 - CRs2 ~ CRd

Syntax
SUB RS1, R52, CRS1, CRS2, CRd
SUBF RS1, RS2, CRS1, CR52, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o I 0 I 0 0 I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 0 I 0 I 0 I 1 type I 0 I 0 1 0 R J RS2

ID CRs1 CRs2 CRd

31 29 28 25 24 21 20 16 15

I ID I CRS1 I CRS2 CRd I 01 00 001 t 0000

o

o
0000 I

TMS34020 source register for the first (minuend) value to TMS34082

RS2 TMS34020 source register for the second (subtrahend) value to
TMS34082

CRS1 TMS34082 RA register to contain the minuend operand

CRS2 TMS34082 RS register to contain the subtrahend operand

CRd TMS34082 destination register

SUSx loads the contents of RS1 and RS2 into CRs1 and CRs2 respectively,
subtracts the contents of CRs2 from CRs1, and stores the result in CRd.

The syntax for this instruction and the next instruction for subtract
(RB register - RA register) is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, this instruction is used.
If an RB register is first, the other instruction is used.

The double-precision form of this instruction is not supported.

CMOVGC, two registers

SUBF AO, A3, RA5, RB3, RA7

This example loads TMS34020 registers AO and A3 into TMS34082 registers
RA5 and RS3, subtracts the contents of RB3 from RA5, and stores the result
in RA7.

7-173

----"-------"-------------

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

7-174

Type
Integer
Single-Precision

RS1 ~ CRs1
RS2 ~ CRs2
CRs2 - CRS1 ~ CRd

Syntax
SUB RS2, RS1, CR~, CRS1, CRd
SUBF R~, RS1, CRS2, CRS1, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o lor 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 o I 0 I 1 I 1 typelololo R I RS2

ID CRS1 CRS2 CRd

31 29 28 25 24 21 20 16 15

I ID I CRS1 CRS2 I CRd I 01 00 01 1 t 0000

o

o
0000 I

TMS34020 source register for the first (subtrahend) value to
TMS34082

RS2 TMS34020 source register for the second (minuend) value to
TMS34082

CRS1 TMS34082 RA register to contain the subtrahend operand

CRS2 TMS34082 RB register to contain the minuend operand

CRd TMS34082 destination register

SUSx loads the contents of RS1 and RS2 into CRs1 and CRs2 respectively,
subtracts the contents of CRs1 from CRs2' and stores the result in CRd. Note
that in the syntax, RS2 and CRs2 are listed before RS1 and CRS1.

The syntax for this instruction and the previous instruction, subtract
(RA register - RB register), is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, the previous instruction
is used. If an RS register is first, this instruction is used.

The double-precision form of this instruction is not supported.

CMOVGC, two registers

SUB A3, AO, RSS, RA3, RA7

This example loads TMS34020 registers B6 and AO into TMS34082 registers
RBS and RA3, subtracts the contents of RA3 from RB5, and stores the result
in RA7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

Type
Integer
Double-Precision
Single-Precision

*Rs ~ CRS1
Rs + 32 ~ Rs

Rll;li~lQIWjl;~;lil~
.l~mlami!~B.1
*Rs ~ CRS2
Rs +32 ~ Rs

iUllM~fiBIi~il;l
.l;mlDl~I!i~B.1
CRS1 - CRS2 ~ CRd

Syntax
SUB *Rs+, CRS1, CRS2, CRd
SUBD *Rs+, CRS1, CRS2, CRd
SUBF *Rs+, CRS1, CRS2, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 o I 0 I 1 I 1 o I 1 I 0 I 0 0 I o I
1 I 0 I 0 o I 0 I 0 I 1 type I size I 0 I 0 R I

ID CRs1 CRs2

31 2928 2524 21 20 16 15

ID 1 CRs1 I CRs2 CRd 11 000 001 t sOOO

Rs TMS34020 register containing the memory address

CRS1 TMS34082 RAregister to contain the minuend operand

CRS2 TMS34082 RB register to contain the subtrahend operand

CRd TMS34082 destination register

o
transfers

Rs

CRd

o
0000 I

SUBx loads the contents of memory pointed to by Rs into CRs1 and CRS2,
subtracts the contents of CRs2 from CRS1 ' and stores the result in CRd. After
each load from memory, Rs is incremented by 32.

The syntax for this instruction and the next instruction for subtract
(RS register - RA register) is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, this instruction is used.
If an RB register is first, the other instruction is used.

CMOVMC, postincrement, constant count

SUSF*AO+,RA5,RS3,RA7

This example loads memory starting at the address given by TMS34020
register AO into TMS34082 registers RA5 and RB3, subtracts the contents of
RSS from RA5, and stores the result in RA7.

7-175

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

7-176

Type
Integer
Double-Precision
Single-Precision

.Rs -7 CRs1
Rs + 32 -7 Rs

~D.e~§ •• ~~l
:1.l100IWjil1~ •
• Rs -7 CRS2
Rs + 32 -7 Rs

~t:"la1t.e1l~1
:1110011 ••
CRs2 - CRS1 -7 CRd

Syntax
SUB *Rs+, CRS2, CRst, CRd
SUBD *Rs+, CR52, CRS1, CRd
SUBF *Rs+, CR~, CRS1, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 o I 0 I 1 I 1 o I 1 I 0 I 0 0 I 0 I transfers

1 I 0) 0 0)0)1J1 type I size) 0 I 0 R) Rs

10 CRS1 CRs2 CRd

31 29 28 25 21 20 16 15 o
1 10 I· CRs1 1 CRS2 1 CRd 1 1000 01 1 t sOOO 0000 I
Rs TMS34020 register containing the memory address

CRS1 TMS34082 RA register to contain the subtrahend operand

CRS2 TMS34082 RB register to contain the minuend operand

CRd TMS34082 destination register

SUBx loads the contents of memory pointed to by Rs into CRS1 and CRS2,
subtracts the contents of CRS1 from CRS2, and stores the result in CRd. After
each load from memory, Rs is incremented by 32. Note in the syntax that CRS2
is listed before CRS1'

The syntax for this instruction and the previous instruction, subtract
(RA register- RS register), is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, the previous instruction
is used. If an RS register is first, this instruction is used.

CMOVMC, postincrement, constant count

SUSF*S6+,RS5,RA3,RA7

This example loads memory starting at the address given by TMS34020
register B6 into TMS34082 registers RS5 and RA3, subtracts the contents of
RA3 from RS5, and stores the result in RA7.

Internal Instructions

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

Type
Integer
Double-Precision
Single-Precision

Rs-S2 ~ Rs
*Rs ~ CRS1
Rs-S2 ~ Rs

l5f:i~3:I~~II~~BJ.
*Rs ~ CRS2
Rf~l~tU.;~tI~1B1j
f.~~1_f:~1~~j
CRS1 - CRS2 ~ CRd

Syntax
SUB - *Rs, CRS1, CRS2, CRd
SUBD - ·Rs, CRS1, CR52, CRd
SUBF - *Rs, CRS1, CR52, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 1 I 0 I 0 o I 0 I 0 I 1 o I 0 I transfers

1 I 0 I 0 o I 0 I 0 I 1 type I size I 0 I 0 R I Rs

10 CRS1 CRs2 CRd

31 29 28 2524 21 20 1615 o
10 I CRs1 I CRS2 I CRd 1 1000 001 t sooo 0000 1

Rs TMSS4020 register containing the memory address

CRS1 TMSS4082 RA register to contain the minuend operand

CRS2 TMSS4082 RB register to contain the subtrahend operand

CRd TMSS4082 destination register

SUBx loads the contents of memory pOinted to by Rs into CRs1 and CRs2,
subtracts the contents of CRS2 from CRs1' and stores the result in CRd. Before
each load from memory, Rs is decremented by 32.

The syntax for this instruction and the next instruction for subtract
(RB register - RA register) is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, this instruction is used.
If an RB register is first, the other instruction is used.

CMOVMC, predecrement, constant count

SUBF -* AD, RA5, RSS, RA7

This example loads memory starting at the address given by TMSS4020
register AO minus S2 into TMSS4082 registers RA5 and RSS, subtracts the
contents of RBS from RAS, and stores the result in RA7.

7-177

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Transparency

Example

7-178

Integer
Double-Precision
Single-Precision

Rs-32 ~ Rs
*Rs ~ CRS1
Rs-32 ~ Rs
_.l.~f~l~

8.fl=i.GllB.B.f.
*Rs ~ CRS1

IJt.~lJR.1ellm

Syntax
SUB - *Rs, CR~, CRS1, CRd
SUBD - *Rs, CR~, CRS1, CRd
SUBF. - *Rs, CRS21 CRS1, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 1 I 0 I 0 o I 0 I 0 I 1 01 0 I transfers

1 I 0 I 0 01 0 I 1 I 1 type I size I 0 I 0 R I Rs

10 CRs1 CRs2 CRd

31 29 28 25 24 21 20 16 15 o
10 I CRs1 I ·CRS2 I CRd 11 000 o 1 1 t sOOO 0000 I

Rs TMS34020 register containing the memory address

CRS1 TMS34082 RA register to contain the subtrahend operand

CRs2 TMS34082 RB register to contain the minuend operand

CRd TMS34082 destination register

SUBx loads the contents of memory pointed to by Rs minus 32 into CRS1 and
CRS2. subtracts the contents of CRs1from CRS2, and stores the result in CRd.
Before each load from memory, Rs is decremented by 32. Note in the syntax
that CRS2 is listed before CRS1.

The syntax for this instruction and the previous instruction, subtract
(RA register- RB register), is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, the previous instruction
is used. If an RS register is first, this instruction is used.

CMOVMC, postincrement, constant count

SUBF*B6+,RB5,RA3,RA7

This example loads memory starting at the address given by TMS34020
register 86 minus 32 into TMS34082 registers RS5 and RA3, subtracts the
contents of RA3 from RS5, and stores the result in RA7.

Internal Instructions

Absolute Value of Subtraction SUBAx
~.,.,oo.w~QC~QQ;Cg~Q:CCQ~~v..:-.xoQ'~",:~~Y~ .. :;Q~.;;:CJ:QQ"Q»-W V~~V....:-;~V,~~:«-..~:--..~'h"'9»~v...:*"v ~~.«."'"IoQo:<"" m-..~~:-".««"-~:.."'«·:·:,..,w:-X<"'v,..:.v...~-..:-:«o..vh:<-. ~:.x~'="~ ~

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type
Double-Precision
Single-Precision

ICRs1 - CRS21 ~ CRd

15 14 13 12 11

I 1

Syntax
SUBAD CRS1, CR52, CRd
SUBAF CRS1, CRS2, CRd

10 9 8 7 6 5

I 0 I 0 I 0 I 0 I 0
11 II~ I 0 11

CRS1
1 0

CRs2

31 2928 2524 21 20 16 15

4 3
1 I 0

I 10 I CRS1 CRS2 I CRd I 0000 1 01 1

2 0

I 1 I 1 Is~e 1
CRd

0
sOOO 0000 I

CRS1 Coprocessor register containing the first operand. Must be from RA
register file.

CRS2 Coprocessor register containing the second operand. Must be from
RS register file.

CRd Coprocessor destination register

This instruction subtracts CRs2 from CRS1, placing the absolute value of the
result in CRd.

The integer form of this instruction is not supported.

CEXEC, short

SUBAD RA8, RB3, RB1

This example subtracts the double-precision floating-point contents of RS3
from the contents of RA8, takes the absolute value of the difference, and stores
the result in RS 1.

7-179

SUBAx Load and Absolute Value of Subtraction
~~~:QDQQGQGCQ:~Q::Q:QCCQ:::CtQQgC:::Q:::·~~~ .... ~ ...... ~X~~~~~~,:~v .... "«..y .... :-i:.,..,v ... ':-:« .. :·»r.«<-..v.-~...,..Y"....:«·»:-:~:-:-x~,,«~""'''««-" ... ~~,,,~:-»>>>;,x,,;,:'.«-:o-..~v.-XoQo..,""",,~"'-».v. 

Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-180 

SUBAF RS1, RS2, CRS1, CR52, CRd 

RS1 ~ CRs1 
RS2 ~ CRs2 
ICRs1 - CRS21 ~ CRd 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
0 0 0 0 0 1 1 0 0 1 0 R RS1 

0 1 0 0 1 0 1 1 0 0 0 R RS2 

10 CRs1 CRs2 CRd 

31 2928 2524 21 20 16 15 a 
I 10 I CRd I 01 0 a 1 0 11 0000 o a a a I 

TMS34020 source register for first 32-bit single-pre~!sion 
floating-point value to coprocessor 

RS2 TMS34020 source register for second 32-bit single-precision 
floating-point value to coprocessor 

CRS1 Coprocessor RA register to contain the first single-precision operand 

CRS2 Coprocessor RB register to contain the second single-precision 
operand 

CRd Coprocessor destination register 

This instruction loads the contents of RS1 and RS2 into CRs1 and CRs2 
respectively and subtracts CRS2 from CRs1, placing the absolute value of the 
result in CRd. 

The integer and double-precision forms of this instruction are not supported. 

CMOVGC, two registers 

SUBAF A9, A3, RA9, RB3, RB1 

This instruction loads the contents of TMS34020 registers A9 and A3 into 
coprocessor registers RAg and RB3 respectively, subtracts RB3 from RAg, 
takes the absolute value of the difference, and stores the result in RB1. 

Internal Instructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Double-Precision 
Single-Precision 

*Rs -) CRS1 
Rs + 32 -) Rs 
i.~m~mr.«~f~1~1~1~ 
IDlmflltil11B.1 
*Rs --7 CRs2 
Rs + 32 -) Rs 
i.~~il¥ilifm@ 
JlUII.~ill1B.1 
ICRS1 - CRs21 -) CRd 

15 

o 

Syntax 
SUBAD *Rs+, CRS1, CRS2, CRd 
SUBAF *Rs+, CRS1, CR52, CRd 

31 29 28 25 24 21 20 1615 
CRd 11 000 1 01 1 

Rs TMS34020 register containing the memory address 

CRS1 Coprocessor RA register to contain the first operand 

2 0 
transfers 

o 
sOOO 0000 I 

CRS2 Coprocessor RS register to contain the second operand 

CRd Coprocessor destination register 

This instruction loads the contents of memory pOinted to by Rs into CRS1 and 
CRS2 and subtracts CRS2 from CRS1 , placing the absolute value of the result 
in CRd. After each load from memory, Rs is incremented by 32. 

The integer form of this instruction is not supported. 

CMOVMC, postincrement, constant count 

SUSAD*A9+, RA9, RS3,RS1 

This instruction loads the contents memory starting at the address given by 
TMS34020 register A9 into coprocessor registers RA9 and RS3 respectively, 
subtracts RS3 from RA9, takes the absolute value ofthe difference, and stores 
the result in RS1. 

7-181 

------"._--_._------



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

7-182 

Double-Precision 
Single-Precision 

Rs-32 ~ Rs 
.. Rs ~ CRs1 
11~~lJla~~R~ 
_.!:fBI.f~~1j 
Rs-32 ~ Rs 
·Rs ~ CRS2 

al~11J!a~R~ 
i811.BlB11~ 
ICRs1 - CRS21 ~ CRd 

15 
o 

Syntax 
SUBAD - .. Rs, CRS1, CRS2, CRd 
SUBAF - .. Rs, CRS1, CRS2, CRd 

31 2928 2524 21 20 16 15 
CRd 11 000 1 01 1 

Rs TMS34020 register containing the memory address 

CRs1 Coprocessor RA register to contain the first operand 

2 0 
transfers 

Rs 

CRd 

o 
sOOO 0000 I 

CRS2 Coprocessor RB register to contain the second operand 

CRd Coprocesor destination register 

This instruction loads the contents of memory pointed to by Rs into CRS1 and 
CRS2 and subtracts C RS2 from CRs 1, placing the absolute value of the result 
in GRd. Before each load from memory, Rs is decremented by 32. 

The integer form of this instruction is not supported. 

CMOVMC, predecrement, constant count 

SUBAD -* A9, RA9, RB3, RS1 

This instruction loads the contents memory starting at the address given by 
TMS34020 register A9 minus 32 into coprocessor registers RA9 and RB3 
respectively, subtracts RS3 from RA9, takes the absolute value of the 
difference, and stores the result in RB1. 

Interna/lnstructions 



Syntax 

Execution 

'34020 
Instruction Words 

Instruction to '34082 

Operands 

Description 

Instruction Type 

Example 

Type 
Integer 
Double-Precision 
Single-Precision 

2~CRd 

Syntax 
TWO CRd 
TWOD CRd 
TWOF CRd 

31 29 28 2524 21 2a 1615 a 
I 10 I 1 1 a 1 I 1 1 a 1 I CRd loa 00 a a at sOOO a a a a I 
CRd TMS34082 destination register. 

TWOx loads the value two (of the appropriate type) into register CRd. 

CEXEC, short 

TWO RB6 

This example loads an integer two into TMS34082 register RB6. 

7-183 



VADDx Vector Add 

Syntax 

'34020 
Instruction Words 

Instruction to '34082 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Outputs 

Instruction Type 

7-184 

bl2~ S~Dtax 
Integer VADD 
Double-Precision VADDD 
Single-Precision VADDF 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 I 1 I 0 1 1 I 0 . 0 0 0 1 1 1 1 1 type size 

10 0 01 0 0 1 0 0 1 0 0 0 0 0 

31 2928 o 
I 10 I 0 0 0 0 1 0 0 1 0 00 0 0 0 0 1 1 111t sOOO 0000 I 
Adds the X, Y and Z components of a vector in RB2-RBO to the X, Y, and Z 
components of a vector in RA2-RAO. 

RAO = X1 
RA1 = Y1 
RA2 = Z1 

RAO = RAO + RBO 
RA1 = RA1 + RB1 
RA2 = RA2 + RB2 

None 

RBO = X2 
RB1 = Y2 
RB2 = Z2 

; X1 + X2 
; Y1 + Y2 
; Z1 + Z2 

The sum of the vectors is stored in RA2-RAO. 

CEXEC, short 

Internal Instructions 



Syntax 

'34020 
Instruction Words 

Instruction to '34082 

Description 

Implied Operands 

Algorithm 

Temporary Storage 

Temporary Storage 

Temporary Storage 

Outputs 

Instruction Type 

TllR~ S~Dtax 
Integer VCROS 
Double-Precision VCROSD 
Single-Precision VCROSF 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 I 1 I 0 1 1 0 0 0 0 1 1 1 1 1 type size 

10 0 0 0 0 1 1 0 0 0 0 0 0 0 

31 2928 o 
I 10 I 0 0001 1000 0000 0011 1 1 1 t sOOO 0000 I 
Given two vectors V1 in (RA2-RAO) and V2 (RB2-RBO), find their vector cross 
product (V1 x V2). 

RAO = X1 
RA1 = Y1 
RA2 = Z1 

C= RA1 x RB2 
RAO = C - (RB1 x RA2) 
C= RA2x RBO 
RA1 = C - (RB2 x RAO) 
C = RAO x RB1 
RA2 = C - (RBO x RA1) 

C 

C,RB9 

C 

RBO = X2 
RB1 = Y2 
RB2 = Z2 

; Y1 x Z2 
; (Y1 x Z2) - (Y2 x Z1 ) 
; Z1 x X2 
; (Z1 x X2) - (Z2 x X1) 
; X1 x Y2 
; (X1 x Y2) - (X2 x Y1) 

The vector cross product V3 is stored in registers RA2-RAO. 
RAO =X3 
RA1 =Y3 
RA2 =Z3 

CEXEC, short 

7-185 



VDOTx Scalar Dot Product 
~~~~~~QQC::ClGQQQQQ~CI::Q:::«'oI»Xo\.~~.QClCQ=::Q:CI::QQQQCI:C1::C~:QQQ::=::~:QQ:CI·Q~:CI:::Q:Qo.~'\Q>.."«Io.Vh.""«-A~~""''«':-''''''''''''»o.''''~''<-.""«-y~''''~~~"",.,.'"«"..~~ 

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-186

bg~ S~Dtax
Integer VDOT
Double-Precision VDOTD
Single-Precision VDOTF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 1 I 0 1 1 0 0 0 0 1 1 1 1 1 type size

10 0 0 0 0 1 0 1 1 0 0 0 0 0

31 2928 o
I 10 I 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 111t sOOO 0000 I
Given two vectors V1 in RA2-RAO and V2 in RB2-RBO,: calculate the dot
product.

Vector V1 in RA2-RAO and vector V2 in RB2-RBO
RAO = X1 RBO = X2
RA 1 = Y1 RB1 = Y2
RA2 = Z1 RB2 = Z2

C = RAOx RBO
C = C + (RA 1 x RB1)
RA4 = C + (RA2 x RB2)

C

; X1 x X2
; (X1 x X2) + (Y1 x Y2)
; (X1 x X2) + (Y1 x Y2) + (Z1 x Z2)

The scalar dot product of the two vectors is stored in RA4.

CEXEC, short

Internal Instructions

Syntax

'34020
Instruction Words

T~gil
Integer
Double-Precision
Single-Precision

15 14 13 12

1 I 1 I 0 1

10 0

S~nm!
VMAG
VMAGD
VMAGF

11 10 9
1 0 0

0 0 0

8 7 6 5 4 3 2 0
0 0 1 1 1 1 1 I type size

1 1 0 1 0 0 o I 0 0

Instruction to '34082 r-3_1_2_9"T"2_8 _____________________ ~O

I 10 I 0 0 0 0 1 1 0 1 0 00 0 0 0 0 1 1 1 1 1 t s 0 0 0 0 0 0 0 I
Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

Given a vector in RA2-RAO, compute the length of the vector.

RAO = X1
RA1 = Y1
RA2 = Z1

C = RAO
RA3=CxC
CT = RA1
CT =CTxCT
RA3 = CT + RA3
C =RA2
CT =CxC
RA3 = CT + RA3
RA3 = SQRT(RA3)

C,CT

; (X x X)

; (Y xV)
; (X x X) + (Y x Y)

; (Z x Z)
; (X x X) + (Y x Y) + (Z x Z)
; SQRT (X2 + y2 + Z2)

The scalar magnitude of the vector is stored in RA3.

CEXEC, short

7-187

VNORMx Normalize a Vector
.~=CQaQQQ:QCQc.a·:QQCQQC:~'Ci:l:C':Q::QQg:QC:QCQg:w .. :ccc=CC:Q .. c~x-.-':~~h..~~::gcc.c,:g:;':ccC:C:Cg:<-»,~~~~Q:cc:::cc:c::g:Q.c~cc::g:ccc;oc::cc;:g:C::CCCCQGC::cccc:cc~

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-188

bg~ Sxom~
Double-Precision VNORMD
Single-Precision VNORMF

12 11 10 9 8 7 6 5 4
1 0 0 0 0 1 1 1

0 0 o. 0 0 0

31 2928 0

I ID I 0 0001 11 00 0000 001 1 1 1 1 1 sOOO 0000 I
Given a vector in RA2-RAO, find the unit length vector that is in the same
direction as the given vector.

The integer form of this instruction is not supported.

RAO =XO
RA1 =YO
RA2 = ZO

C = RAO
C =CxC
CT = RA1
RAg = CTxCT
RAg =C+ RAg
C = RA2
C =CxC

; XO x XO

; YO x YO
; (XO x XO) + (YO x YO)

; ZO x ZO
RAg = C + RAg
C = SQRT(RA9)

; (XO x XO) + (YO x YO) + (ZO x ZO)
: SQRT (X02 + y02 + Z02)

RA3=C
C = 1 IC
RAO = C x RAO
RA1 = C x RA1

; save the magnitude in RA3
; 1 I magnitude

RA2 =Cx RA2

C, CT, RAg

The unit length vector is stored in registers RA2-RAO.

RAO = XO I (SQRT(X02 + Y02 + Z02»
RA1 = YO I (SQRT(X02 + Y02 + Z02»
RA2 = ZO I (SQRT(X02 + Y02 + Z02»
RA3 = SQRT(X02 + Y02 + Z02)
c = 11 (SQRT (X02 + Y02 + Z02»

CEXEC, short

Internal Instructions

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

T~g~ S~Dtax
Integer VRFLCT
Double-Precision VRFLCTD
Single-Precision VRFLCTF

15 14 13 12 9 8 7 5 4 3 2 o
size

o

31 2928 o
I ID I 0 0001 1 1 1 0 0000 001 1 1 1 1 t sOOO 0000 I
The VRFLCT instruction calculates the vector reflection of a vector incident on
a surface defined by a normal vector. The normal vector should be normalized
before issuing the VRFLCT instruction.

Vector in RA2-RAO is the normal vector (Xni + Y nj + Znk». Vector in
RB2-RBO is the incident vector (Xii + Yjj + Zjk»
RAO=Xn RBO=Xi
RA 1 = Yn RB1 = Yi
RA2 = Zn RB2 = Zi

C = RAO x RBO
C =C+(RA1xRB1)
C = C + (RA2 x RB2)
C =C+C
CT = C x RAO
RBO= CT - RBO
CT = C x RA1
RB1= CT - RB1
CT = C x RA2
RB2= CT - RB2

C,CT,RA9

; scalar dot product in C (cos(Theta»
; C = 2 x cos(Theta)

; Xr = Xn x (2 x cos (Theta» - Xi

; Yr = Yn x (2 x cos (Theta» - Yi

; Zr = Zn x (2 x cos (Theta» - Zi

The reflected vector components x, y and z are stored in RB2-RBO.

RBO = Xr = Xn x (2 x ((Xn x Xr) + (Yn x Yr) + (Zn x Zrn) -Xi
RB1 = Yr = Yn x (2 x ((Xn x Xr) + (Yn x Yr) + (Zn x Zr))) - Yi
RB2 = Zr = Zn x (2 x ((Xn x Xr) + (Yn x Yr) + (Zn x Zrn) - Zi

CEXEC, short

7-189

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Operands

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-190

~g~ S~Dtax
Integer VSCL CRs
Double-Precision VSCLD CRs
Single-Precision VSCLF CRs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 1 I 0 1 1 0 0 0 0 0 1 1 1 I 1 I type l size

ID 0 0 0 0 0 1 1 1 1 CRs

31 2928 2524 o
ID I CRs I 0 1 1 1 0 0000 0001 1 1 1 t sOOO 0000 I

The X, Y, and Z components of a vector in registers RA2-RAO are multiplied
by a scalar in CRs.

CRs RB register containing the seating factor. Must be in the RS register
file.

RAO = X1
RA1 = Y1
RA2 = Z1

RAO = RAO x CRs
RA1 = RA1 x CRs
RA2 = RA2 x CRs

None

The scaled vector is stored in RA2-RAO.
RAO =X1'
RA1 = Y1'
RA2 =Z1'

CEXEC, short

Internal Instructions

Syntax

'34082 Instruction Words

Instruction to '34082

Description

Operands

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

Type
Integer
Double-Precision
Single-Precision

Integer or Single-Precision:

Syntax
VSCL RS11 CRs
VSCLD RS11 RS21 CRs
VSCLF RS11 CRs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
0 0 0 0 0 1 1 0 0 0 1 R RS1

0 1 0 1 1 1 1 type 0 0 0 0 o I 0 I 0 I 0

10 0 0 0 0 0 1 1 1 1 CRs

DOUble-Precision:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
0 0 0 0 0 1 1 0 0 1 0 R RS1

0 1 0 1 1 1 1 1 1 0 0 R RS2

10 0 0 0 0 0 1 1 1 1 CRs

31 2928 2524 o
I 10 I CRs I 0 1 1 1 0 0000 01 01 1 1 1 t sOOO 0000 I
The X, Y, and Z components of a vector in registers RA2-RAO are multiplied
by a scalar in CRs (loaded from Rs).

TMS34020 source register for the operand (or half of the 64-bit
double-precision floating-point operand) to TMS34082

RS2 TMS34020 source register for rest of the double-precision
operand to TMS34082

CRs Coprocessor RS register to contain the scaling factor. Must be in the
RS register file.

RAO = Xl
RAl = Yl
RA2 = Zl

RS1 ~ CRs

"5.~~l~~l~~
RAO = RAO x CRs
RAl = RAl x CRs
RA2 = RA2 x CRs

None

The scaled vector is stored in RA2-RAO.
RAO = Xl'
RAl = Yl'
RA2 = Zl'

CMOVGC, one or two registers

7-191

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Operands

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-192

T~p~ S~ntax
Integer VSCL *Rs+, CRs
Double-Precision VSCLD *Rs+, CRs
Single-Precision VSCLF *Rs+, CRs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
0 0 0 0 0 1 1 0 1 0 0 0 o I o I transfers

1 0 0 1 1 1 1 type size 0 0 R Rs

ID 0 0 0 0 0 1 1 1 1 CRs

31 2928 2524 o
I ID I CRs I 0 1 1 1 0 0000 1001 1 1 1 t sooo 0000 I
The X, Y, and Z components of a vector in registers RA2-RAO are multiplied
by a scalar in CRs (loaded from memory pointed to by Rs). After each load from
memory, Rs is incremented by 32.

Rs TMS34020 register containing the memory address

CRs Coprocessor RS register to contain the scaling factor. Must be in the
RS register file.

RAO = X1
RA1 = Y1
RA2 =Z1

*Rs ~ CRs
Rs+32 ~ Rs

!"~i5.%&I1I.~!~il
~B.~~5~'R19111m
RAO = RAO x CRs
RA1 = RA1 x CRs
RA2 = RA2 x CRs

None

The scaled vector is stored in HA2-RAO.
RAO =X1'
RA1 = Y1'
RA2 = Z1'

CMOVMC, postincrement, constant count

Internal Instructions

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Operands

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

T~g~ ~Dmx
Integer VSCL - ... Rs, CRs
Double-Precision VSCLD - ... Rs, CRs
Single-Precision VSCLF - ... Rs, CRs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
0 0 0 0 1 0 0 0 0 0 1 0 o I 0 I transfers

1 0 0 1 1 1 1 type size 0 0 R Rs

10 0 0 0 0 0 1 1 1 1 CRs

31 2928 2524 o
I 10 I CRs 1 1 1 0 0000 1001 1 1 1 t sOOO 0000 I
The X, Y, and Z components of a vector in registers RA2-RAO are multiplied
by a scalar in CRs (loaded from memory pOinted to by Rs). Before each load
from memory, Rs is decremented by 32.

Rs TMS34020 register containing the memory address

CRs Coprocessor RB register to contain the scaling factor. Must be in the
RB register file.

RAO = X1
RA1 = Y1
RA2 = Z1

Rs-32 -7 Rs
... Rs -7 CRs

.~R~WilRt~
iUBil~§.~l1*l~l~i
RAO = RAO x CRs
RA1 = RA1 x CRs
RA2 = RA2 x CRs

None

The scaled vector is stored in RA2-RAO.
RAO = X1'
RA1 = Y1'
RA2 = Z1'

CMOVMC, predecrement, constant count

7-193

VSUBx Subtract Vectors
1Oo»'~-:-O»:~~X": "a'!-:-""';":-:-:";":-''''''':-»x.:«""",,,,,,,,''':-:«-'''':-:«..;-'' '''«-..v ... w.-:-»X.~»:0:l"»:-:<.~'='';'''~~V~~~~~~""'~'V",-»:·»:\,~""""l(-..-,:-:*:",~~"""""",~""»Xo;..:«v'Av.-..v~">~;...-..;~~~..-.»x

Syntax

'34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-194

bg~ S~nta~
Integer VSUB
Double-Precision VSUBD
Single-Precision VSUBF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 1 I 0 1 1 0 0 0 I 0 1 1 1 1 1 type size

10 0 0 0 0 1 I 0 1 0 0 0 0 0 0

31 2928 o
10 I 0 0 0 0 1 0 1 0 0 0 0 0 0 0,0 1 1 111t sOOO 0000 I

Subtract a vector in RB2-RBO from a vector in RA2-RAO.

RAO =X1
RA1 = Y1
RA2 =Z1

RAO = RAO - RBO
RA1 = RA1 - RB1
RA2 = RA2 - RB2

None

RBO =X2
RB1 = Y2
RB2 = Z2

; X1 -X2
; Y1 - Y2
; Z1 - Z2

The resulting vector is stored in RA2-RAO.
RAO = X1'
RA1 = Y1'
RA2 = Z1'

CEXEC, short

Internal Instructions

Overview / FPU Processing Instruction Format
l~g=C'wQt:'::t:tgCt:Q~:Q::::tQ.:::i:I::Q~~~~VAX<-"V ... '"«o\.~»'~-:o-:o..""'X«~ .. *,~Q6:.:C:i:I: .. Ii::::t::t:'.C:Q:C:. QQQ::::Q.:Q:::::C::::::::Cl:lg.:IiC:.~=:::=:~ ~~~

8.1 Overview

Extemal instructions are 32 bits long and their formats (number, length, and
function of fields) depend upon the operations being selected. Separate
formats are provided for data transfers to and from the TMS34082, FPU
processing, test and branch operations, and subroutine calls.

In the host-independent mode, the TMS34082 is controlled by extemal
instructions input on the MSD bus. In the coprocessor mode, the TMS34082
executes user-defined routines (extemal instructions stored in memory on the
MSD bus) by executing a jump to extemal code. Up to 32 routines may be
defined by the user using external instructions in coprocessor mode.

To cause a jump to the external routine, the TMS34020 sends the TMS34082
an instruction with the md field (bits 15-14) set high. The fpuop is the routine
number (0-31). The TMS34082 multiplies the routine number by two to getthe
jump address. This creates a compact jump table where every other address
is the starting address of a routine. The remaining memory can then be
allocated according to user need. Using every other address as a starting
address allows a single-instruction subroutine to be implemented without
another jump. For more complex routines, the first instruction in the routine will
be a jump to another memory location. In either case, the last instruction should
be a return from subroutine or jumpto internal instruction address 1 OFFF (hex).
This puts the TMS34082 in an idle state, waiting for the next instruction from
the TMS34020. Before the last return from subroutine or jump to internal
address 10FFF, the stack (SUBADDR1-0) must be cleared. This can be
accomplished by setting the stack pointer (bit 31) in both registers to O. You
may wish to save the contents of these registers in extemal memory before
clearing the stack pointers.

8.2 FPU Processing Instruction Format

8-2

The largest group of external instructions control FPU operations. These
instructions can select operands from input registers, internal feedback, or
from the LAD bus (32-bit operations only). Independent ALU or multiplier
operations and chained-mode operations (ALU and multiplier acting in
parallel) can be coded.

The format for an FPU processing instruction is shown below:

31 28 27 2322 2019 15 14 11 10 0

I sequencer op I ra rb rd seC op I FPU operation I

External Instructions

FPU Processing Instruction Format
W~0..v v.v....m.~~""'~""'~A~x««~~...ov.<-~~~»"~»»»»-,,')o..,,,<",:--;,»»:<OtI.""*):«-"'X*:-"h::';-"V -,:<"..v "'~:~'>X-»"hY..·:--..... "v."~~"':':~~-';«-:"'X<Qo,.V.A.».. "«"CtI' ""t(t>:-:..;,.:o.:.;... v.-...v »:.;." ~.«< ... v.v.."""':<oo..,=,<

8.2.1 FPU Processing Sequencer Opcodes

Valid sequencer opcodes for this instruction format:

0000 continue

0001 continue with LAD enable for output (ALTCH strobe)

0010 continue with LAD enable for output WE strobe) t
t Permits simultaneous write to a register and to the LAD bus. Writing to the LAD bus

during FPU operation requires a 15-ns extension (TMS34082-40) of the clock period
when the write is performed.

8.2.2 Operand Selection

Instructions that control FPU operations can select operands from internal
registers, internal feedback, or the LAD bus (32-bit operations only). When
register addresses are used as sources (ra or rb field), only the lower four bits
are used. Most instructions use three operands:

ra is the operand A source address (RA9-0, C, CT)

rb is the operand B source address (RB9-0, C, CT)

rd is the result destination address

When ra (or rb) is set to 11002, the A (or 8) operand comes from the LAD bus
without first being written into a register.

When the CONFIG, COUNTX, or COUNTY register (address 13, 14, or 15) is
selected as the ra operand, a one is input to the FPU.

When the SUBADD1, IRAREG, or MIN-MAXILOOPCT register (address 29,
30, or 31) is selected as the rb operand, a one is input to the FPU.

The seLopfield chooses the operands. When low, seLop bits 14-11 selectthe
following feedback operands:

bit 14 for ALUfeedback to multiplier A input

bit 13 for multiplier feedback to multiplier B input

bit 12 for multiplier feedback to ALU A input

bit 11 for ALU feedback to ALU B input

The sel_op bits allow many different combinations of operands from the
register file and feedback registers. Figure 8-1 shows the operands selected
for each combination of sel_op bits.

Note: If feedback operands are used, the FPU core output registers must be enabled (PIPES2=0).

FPU Processing Instruction Format
~~".'Wt.Y~·~~CQ~=QQCw=:a:Qga:QCQDD~Q:Q:QQQ·CQQQweQCQQeQQC:D:QQQQ=:V~~~~~~~~ ~~~~V ~-..x-..v."x.o...Y ~~~~"",,~'V~"'OC

Figure 8-3. Operand Selection

Multiplier seLop= 0000

Multiplier seLop=0001

RA9-O, C or CT

Multiplier seLop=0010

RA9-O, C or CT

Multiplier saLop = 0011

8-4 External Instructions

FPU Processing Instruction Format
WO' ... vJ'»>.. JCIO"',.JW"N~~~~Hoo"'X'.N'hX.~It'«VN~..«-: J'X'H..«W~~~:-r ~~~QQQ:Q~~Q,Q, ... gQ~~HM'''~A...,.., ~ ~vJOO'''~ ... "\(o''NA<'''''~:-'' ''<~''''

Figure 8-3. Operand Selection (Continued)

RB9-O, C or CT

A B
Multiplier seLop = 0100

RB9-0, C or CT

A B
Multiplier seL op = 01 01

RB9-0, C or CT
RA9-0, C or CT

A B
Multiplier seLop = 0110

RB9-O, C or CT
RA9-O, C or CT

B
Multiplier seLop = 0111

8-5

FPU Processing Instruction Format
.. aaQc=:c:C.:Q:Q .. ~ ~"'~V .. ~~"" ,,««<-:«-;.m..~,~'V.«-»>..~~ ~~v~»..,"« .. :o" ~~V~ ~ ~~~~~~Cia~Q:c.:cQ·a:a:QQQo~:g.~CI::= :::,acoc:

Figure 8-3. Operand Selection (Continued)

RA9-O, C or CT

Multiplier
seL op = 1000

RB9-0, C or CT

saLop = 1001

RA9-O, Cor CT

saLop = 1010

RA9-0, C or CT
RB9-0, C or CT

A
Multiplier

saLop = 1011

8-6 Extemallnstructions

FPU Processing Instruction Format
(io,.~~.·.Q:Q~Qo:gQQ.QI:i~~"'Oo.""'~~-';*~:":':':""~"'''''''''''' ''C:oo:o-.v..«cN>;'':;'';':-''V.".,-'::~'''''~)I'''«'''''''",,»,*X-:«*:*:-:« ... v.-:*~ -..;-:-..v...:«·~x*:-:-: .. :~A-..~V ~""'~~~~:-"'~V ""=,,,»,,~....x~"«!o..')o..~~»'~»"~VJ\.~~ -..x«(to..~

Figure 8-3. Operand Selection (Continued)

RA9-0, C or CT

RB9-0, Cor CT

A B
Multiplier

RA9-0, C or CT

A B
Multiplier

RB9-D, Cor CT

A B
Multiplier

RA9-0, C or CT

A B

seLop = 1100

RB9-0, C or CT

seLop = 1101

RA9-0, C or CT

seLop = 1110

RB9-D, C or CT

Multiplier seLop = 1111

8-7

FPU Processing Instruction Format
~~~C:;:Q.:CI:O.:QQ::~~v~~~~~~~ ...... "~~V~~h""~h».~Y:QO.:Q::::QOQJQ:OQJQQ:CIQ.CiCiJG:Q~DGa:Q:::::QQ:aQCI~JaQQQ.o co loa:gOGt::oc:aa:::::C:i::c:ceo .. :t 

8.2.3 FPU Processing Instruction Codes 

8-8 

Instruction bits 10-0 select the multiplier or ALU operation. When the FPU core 
is busy with multicycle operations (division, square root, or double-precision 
floating-point multiplication), the FPU stops the sequencer until the FPU is 
ready for the next operation. 

External Instructions 



External Instruction Cycle Counts 
-co".rQ(-:-'~""'"X'"""'''oQ«oo;-"'A~.;or'~-,,, .... ,,:-''''':..;.''h~Xoo;: .. ».:: ... ~v....:ovJ\,*~V'''»'' .... »)Om-''Al.v. .. ;.»:-»"'..«:-:-~...:~:~b'.»"'....x" .. ;.:«.~»»»~k:-;.~»="' .. :O->~:-..""'';O'»:-:-:-'''h:-x-''...:*:-;..~:~ ......... »x .. ~·:-:-;*x~»:« .. w...:·;.;o."..,:....-..: .. »:-:«·!Io:« .. »)o:-;.:-;..:0»:-..-.:-. ..... ....:~;.:«Vk...,.»:«" 

8.3 External Instruction Cycle Counts 

Table 8-1 lists external instructions, pipeline settings, and the number of cycles 
required to complete each routine. The number in parenthesis after each cycle 
count is the number of cycles before the next operation may begin. For block 
move operations, n specifies the number of words transferred. 

Table 8-1. Cycle Counts for External Instructions 

Assembler Description 
Cycle Counts 

Opcode of Routine PIPES2·1 PIPES2·1 PIPES2·1 PIPES2·1 

11 10 01 00 

ADD Add A+ B 1 (1) 2(1) 2(1) 3(1 ) 

AND Logical AND A, B 1 (1) 2(1) 2(1) 3(1) 

ANONA Logical AND not A, B 1 (1) 2(1) 2(1) 3(1) 

ANDNB Logical AND A, not B 1 (1) 2(1) 2(1) 3(1) 

CJMP Conditional jump 1 (1) 1 (1) 1 (1) 1 (1) 

CSJR Conditional jump to subroutine 1 (1) 1 (1) 1 (1) 1 (1) 

CMP Compare A, B 1 (1) 2(1) 2(1) 3(1 ) 

COMPL Pass 1's complement of A 1 (1) 2(1) 2(1) 3(1) 

DIV Divide AI B 

single-precision 8(8) 8(7) 9(7) 9(7) 

double-precision 13(13) 13(12) 15(12) 15(12) 

integer 16(16) 16(15) 17(15) 17(15) 

DTOF Convert from DP to SP 1 (1) 2(1) 2(1) 3(1) 

DTOI Convert from DP to integer 1 (1) 2(1) 2(1) 3(1) 

DTOU Convert from DP to unsigned integer 1 (1) 2(1) 2(1) 3(1) 

FTOD Convert from SP to DP 1 (1) 2(1) 2(1) 3(1 ) 

FTOI Convert from SP to integer 1 (1) 2(1) 2(1) 3(1) 

FTOU Convert from SP to unsigned integer 1 (1) 2(1) 2(1) 3(1) 

ITOD Convert from integer to DP 1 (1) 2(1) 2(1) 3(1 ) 

ITOF Convert from integer to SP 1 (1) 2(1) 2(1) 3(1) 

LD Load n words into register 

single-precision n + 1 n + 1 n + 1 n+1 

double-precision 2n + 1 2n + 1 2n + 1 2n + 1 

integer n + 1 n + 1 n + 1 n+1 

LDLCT Load loop counter with value 1 (1) 1 (1) 1 (1) 1 (1) 

MASK Set programmable mask 1 (1) 1 (1) 1 (1) 1 (1) 

MOVA Move A 1 (1) 2(1) 2(1) 3(1) 

MOVLM Move n words from LAD bus to MSD bus 

single-precision n + 1 n + 1 n + 1 n+1 

double-precision 2n + 1 2n + 1 2n + 1 2n + 1 

integer n + 1 n + 1 n + 1 n+1 

8-9 



External Instruction Cycle Counts 
K««-~~~~~>>>>>:0>>X«""~:·:-'~«~~h..""'>>X,,""~~~:o..~"<Oo~·:«<';<-"N~-""'~-"'~"':->>:">>:->>X"'~""~-:~v.-x.;..~~)~m-."'0:-;<-"~~ 

Table 8-1. Cycle Counts for External Instructions (Continued) 

Cycle Counts 
Assembler Description PIPES2-1 PIPES2-1 PIPES2-1 PIPES2-1 

Opcode of Routine 
11 10 01 00 

MOVML . Move n words from MSD bus to LAD bus 

single-precision n+l n+l n+l n+l 

double-precision 2n + 1 2n + 1 2n + 1 2n + 1 

integer n+l n+l n+l n+l 

MOVRR Multiple move, register to register 

single-precision n+l n+l n+l n+l 

double-precision 2n + 1 ?n + 1 2n + 1 2n + 1 

integer n+l n+l n+l n+l 

MULT Multiply A ... B 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

MULT.ADD Multiply A 1 ... Bl, Add A2 + B2 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

MULT.NEG Multiply Al ... Bl, Subtract 0 - A2 

single-precision 1(1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

MULT.PASS Multiply Al ... Bl, Add A2 + 0 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

MULT.SUB Multiply Al ... Bl, Subtract A2 - B2 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

MULT.2SUBA Multiply Al ... Bl, Subtract 2-A2 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

MULT.SUBRL Multiply A1 ... Bl, Subtract B2 - A2 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

8-10 External Instructions 



Extemallnstruction Cycle Counts 
~:--.. .. ~~:.:·;·:-: ..... ~:oo:o-:-:,:o-;-::·»:"xa~:"Y"":-:--:·~;':.;o.:-:: .. :.:.x~"'.)o.",=«~:';~X·X-::·»:*~h .. :.;.:.: .. m~:««"h--t-::-:-;..~:«--:~"':'X<".."",:,,;-::,,:-:,,:,,;-::~:,,:,,:~"'(o>XOO:--:--: ....... ""X":-~h:«-:·:«-;--h:-;O-"V."..;·:...;.;..: .. :~x«.;-:-:-:-:: .. »»»' ..... ~-::·;..:-.:«'.«.:-;..:-~»:-".,..;«..;.:-.-.;<-.. .... .,..;..;-:-.. ... :.:«oo~:-"~y....:~»:« 

Table 8-1. Cycle Counts for External Instructions (Continued) 
Cycle Counts 

Assembler Description PIPES2-1 PIPES2-1 PIPES2-1 PIPES2-1 
Opcode of Routine 

11 10 01 00 

NEG Pass -A 1 (1) 2(1) 2(1) 3(1) 

NOR Logical NOR A, B 1 (1) 2(1) 2(1) 3(1) 

OR Logical OR A, B 1 (1) 2(1) 2(1) 3(1) 

PASS Pass A 1 (1) 2(1) 2(1) 3(1) 

PASS Pass B 1 (1) 2(1) 2(1) 3(1) 

PASS.ADD Multiply A 1 ... 1, Add A2 + B2 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

PASS.NEG Multiply A1 '" 1, Subtract O-A2 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

PASS. PASS Multiply A1 ... 1, Add A2 + 0 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

PASS.SUB Multiply A1 ... 1, Subtract A2 - B2 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

PASS.2SUBA Multiply A1 ... 1, Subtract 2-A2 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

PASS.SUBRL Multiply A 1 ... 1, Subtract B2 - A2 

single-precision 1 (1) 2(1) 2(1) 3(1) 

double-precision 2(2) 3(2) 3(2) 4(2) 

integer 1 (1) 2(1) 2(1) 3(1) 

RTI Return from interrupt 1 (1) 1 (1) 1 (1) 1 (1) 

RTS Return from subroutine 1 (1) 1 (1) 1 (1) 1 (1) 

SLL Logical shift left A by B bits 1 (1) 2(1) 2(1) 3(1) 

SQRT Square root of A 

single-precision 11 (11) 11 (10) 12(10) 12(10) 

double-precision 16(16) 16(15) 17(15) 17(15) 

integer 20(20) 20(19) 21(19) 21 (19) 

SRA Arithmetic shift right A by B bits 1 (1) 2(1) 2(1) 3(1) 

SRL Logical shift right A by B bits 1 (1) 2(1) 2(1) 3(1) 

8-11 



External Instruction Cycle Counts 
~»"~~'~~oI)o..~~~X«oQQ:QQCQ~C!Q .. QaC!Q .. Q Q'QQ:Qc.QQ:Qa:ilQ:·.i:! ... ~~Y~v.-.~~~~x,*,-"«<"""""~ ...... ~vhX.g."' ..... ,,,,,,-, ..... ~>..~~~~...xoo..'Ool."'«-.."""~:««oo..~w.-»..,"" 

Table 8-1. Cycle Counts for External Instructions (Continued) 
Cycle Counts 

Assembler Description PIPES2·1 PIPES2·1 PIPES2·1 PIPES2·1 
Opcode of Routine 11 10 01 00 

ST Store n words from register 

single-precision n+1 n+1 n + 1 n+1 

double-precision 2n + 1 2n + 1 2n + 1 2n + 1 

integer n+1 n+1 n + 1 n+1 

SUB Subtract A-B 1 (1) 2(1) 2(1) 3(1) 

SUBRL Subtract B-A 1 (1) 2(1 ) 2(1) 3(1) 

UTOD Convert from unsigned integer to DP 1 (1) 2(1) 2(1) 3(1) 

UTOF Convert from unsigned integer to SP 1 (1) 2(1) 2(1) 3(1) 

UWRAPI Unwrap inexact operand 1 (1) 2(1) 2(1) 3(1) 

UWRAPR Unwrap rounded operand 1 (1) 2(1 ) 2(1) 3(1) 

UWRAPX Unwrap exact operand 1 (1) 2(1) 2(1) 3(1) 

WRAP Wrap denormalized operand 1 (1) 2(1) 2(1) 3(1) 

XOR Logical exclusive OR A, B 1 (1) 2(1) 2(1) 3(1) 

8-12 External Instructions 



General Restrictions for External Instructions 

8.4 General Restrictions for External Instructions 

Restrictions that apply to all external instructions are as follows: 

Registers C and CT cannot both be used as operands in the same 
instruction. 

Absolute value modifiers are permitted with floating-point operations only. 

Integer and floating-point operand types cannot be used in the same 
operation (except conversions). 

Signed and unsigned integer operand types cannot be used in the same 
operation. 

Operands with the LAD bus as the source cannot be specified with a 
double-precision operand type. 

Multiplier and ALU feedback (MU LFB and ALU FB) cannot be specified as 
operands unless the FPU core output registers are turned on 
(PIPES2 = 1). 

Results from chained-mode operations are always ofthe same type. If one 
result is double-precision, the other is forced to be also. For example, a 
multiply/pass operation with double-precision multiplier inputs and a 
single-precision input for the pass operation will result in two 
double-precision outputs. Be careful that subsequent instructions have the 
correct data types when these results are used as input. 

8-13 

' ___ ..... ,.".'_" .......... ""''''" ... " .. , ... '''' .. " . ...,-,.~ .. ~--y,---



External Assembly Instructions 
lQ.QCQ·.Q:Q:.Q:QCQQcca.Q~:*=,~~~QClQa.Q:QQ.a:Q:.Q~'»..~-';"'~Y.«~-.;...--«..".~;..,~~~ ...... -':«-:«-»",A~ .... ,"",~~~: ........ "",»~""'!""'V...xoQ>..~VA«'\.v.«oc-..v..:«-..vJ'.,"*-V"'"'"»..'"ot-:-:-:-)" ...... -,:';"'~»"v...: 

8.5 External Assembly Instructions 

A detailed explanation of each external instruction is provided on the following 
pages of this chapter. The instructions are in alphabetical order by their 
TMS34082 assembler opcode. Table 8-2 is a list of the selectable bit 
definitions used in this chapter. 

Table 8-2. Bit Definitions for External Instructions 
Bit Number Mnemonic Description 

29 e o = normal operation, 
1 = send output to LAD bus with WE strobe 

28 h o = normal operation, 
1 = send output to LAD bus with ALTCH strobe 

27-24 ra operand A source address 

23-20 rb operand B source address 

19-15 rd result destination address 

14-11 seLop operand selection (see subsection 8.2.2) 

9-7 type or t operand format: 
000 = single-precision on ra and single-precision on rb 
001 = single-precision on ra and double-precision on rb 
010 = double-precision on ra and single-precision on rb 
011 = double-precision on ra and double-precision on rb 
1 00 = integer (2's complement) on both ra and rb 
101 = unsigned integer on both ra and rb 

8 pa precision of ra: 
0= single-precision, 1 = double-precision 

7 pb precision of rb: 
o = single-precision, 1 = double-precision . 

6 s output sou rce: 
o = ALU result, 1 = multiplier result 

5 a negate ALU result: 
o = normal ALU result, 1 = negated ALU result 

4 va absolute value of ra: 
o = ra, 1 = I ral 

3 vb absolute value of rb: 
o = rb, 1 = I rbl 

2 vy absolute value of rd: 
o = rd, 1 = I rdl 

2 m negate multiplier result: 
o = normal multiplier result, 1 = negated multiplier result 

2 ny negate output result: 
o = normal output result, 1 = negated output result 

1 wa wrapped number on ra: 
o = normal format, 1 = wrapped number 

0 wb wrapped number on rb: 
o = normal format, 1 = wrapped number 

8-14 External Instructions 



. AddA+B add 
"'..«««<fm-;w"...wN~~~,=,,;.:;.rdA~...x~~-,,:o(-"....: ... "'o::~;"~='-'''''''h;V ...... ''v..X***:<I.~~;'';'':-;oQo''/.«'';';''''X''''':-''J':.:«--;":-':~";'jo:(.-;'~»:'hX«·Y~V"":~·~J'X«-:"~·»:*:-,, .... :·Y ..... v'«oo:":-rM';:oV ... :-:~:·x,«-jo: .. yh;,... ...... V. .. :«",...:-r ......... v.~~·:--:;~..«-; ... -.:-x""vA«.*;..x ..... ».....,..~..: 

Syntax add ra.[modifierjtype, rb.[modifierjtype, rd[.modifiersj 

Execution ra + rb --7 rd 

Instruction Words 31 30 29 28 27 2423 20 19 

0 0 e h ra rb 

14 11 10 9 8 7 6 5 4 3 2 1 

I selop I 0 I t pa I pb I 0 I 0 va vb Ivy 0 

Description This instruction places the sum of the values in ra and rb in rd. 

Sources for ra RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb v (absolute value, not valid for integer types) 

Destinations for rd RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

Modifiers for rd· v (absolute value, not valid for integer types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Example add RA7. vd, RB9. vd, C 

15 

rd 

0 

0 

8-15 



Syntax and ra.type, rb.type, rd[.modifierJ 

Execution ra AND rb -7 rd 

Instruction Words 31 30 29 28 27 2423 2019 15 

0 0 e h ra rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I sel op I 0 I 1 0 I t I 0 I 0 0 I 1 I 0 I 0 I 0 

Description This instruction takes the logical AN D of ra with rb and places the result in rd. 

Sources for ra RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
C or CT Register 
ALU FB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb none 

Destinations for rd RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

Modifiers for rd e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Restrictions The types for ra and rb must be the same. 

Exampk and LAD.if ONE.i f CT 

8-16 Extemallnstructions 



Syntax andna ra.type, rb.type, rd{.modifier] 

Execution (NOT ra) AN D rb ~ rd 

Instruction Words 31 30 29 28 27 2423 20 19 15 

0 0 e h ra rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I selop I 0 I 1 0 I t I 0 I 0 0 I 1 I 0 I 1 I 0 

Description This instruction takes the logical AND operation of (NOT ra) with rb and places 
the result in rd. 

Sources for ra RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb none 

Destinations for rd RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

Modifiers for rd e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Restrictions The types for ra and rb must be the same. 

Example andna RAO. U I RBB. U Ie. h 

8-17 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Sources for rb 

Types for ra and rb 

Destinations for rd 

Modifiers for rd 

Restrictions 

Example 

8-18 

andnb ra.type, rb.type, rd[.modifier] 

ra AND (NOT rb) 4rd 

31 30 29 28 27 2423 2019 15 

0 0 e h ra rb rd 

14 11- 10 9 8 7 6 5 4 3 2 1 0 

I selop I 0 I 1 0 I t I 0 I 0 I 0 I 1 I 0 I 0 I 1 

This instruction takes the logical AND operation of ra with (NOT rb) and places 
the result in rd. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

RB9-RBO 
C or CT Register 
ALU FB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

i (signed integer) 
u (unsigned integer) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

The types for ra and rb must be the same. 

andnb C.i, ONE.i, RB1.h 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Conditions for 
cond_masks 

Range for address 

cjmp cond_masks, address 

If condition is true, 
jump address 4 Program Count 

If condition is false, 
1 + Program Count 4 Program Count 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

11 ololOIAINIGIZIVIElclp DlolMll1 
15 o 

jump address 

Jump conditional to the specified branch address. During a jump instruction, 
no FPU operations are performed. 

Listed below are the jump instruction condition mask bits (enabled when high): 

A Always C CC pin 
N Negative P Change polarity (for N,G,Z,V,E,C, and D) 
G Greater than o Decrement LOOPCT, Jump not zero 
Z Zero M Jump indirect using MCADDR 
V Overflow I Jump to internal ROM routine 
E ED bit 

An unconditional jump may be done by setting the A mask bit high. If C is 
enabled, all other jump condition enables except P, M, and I are turned off. 
Multiple jump conditions are separated by vertical bar, I, and are logically 
ORed together. The condition mask P changes polarity for each individual bit 
before the logical OR operation. 

OxO-OxFFFF 

8-19 



Alternate Opcodes 

Example 

8-20 

The following are alternative opcodes recognized by the TMS34082 
Software Tool Kit that perform the same instruction as cjrnp. 

Opcode 

beq address 
bge address 
bgt address 
ble address 
bit address 
bne address 
boh address 
bol address 
br address 
brloop address 
bucch address 
buccl address 

jmpind 
jmpindcch 
jmpindccl 
jmpindeq 
jmpindge 
jmpindgt 
jmpindle 
jmpindlt 
jmpindne 
jmpindoh 
jmpindol 

Description 

Branch on equal 
Branch on greater than or equal 
Branch on greater than 
Branch on less than or equal 
Branch on less than 
Branch on not equal 
Branch on overf~ow high 
Branch on overflow low 
Branch unconditional 
Branch on loop count 
Branch on CC pin high 
Branch on CC pin low 

Jump indirect unconditional 
Jump indirect on CC pin high 
Jump indirect on CC pin low 
Jump indirect on equal 
Jump indirect on greater than or equal 
Jump indirect on greater than 
Jump indirect on less than or equal 
Jump indirect on less than 
Jump indirect not equal 
Jump indirect on overflow high 
Jump indirect on overflow low 

cjmp D I P, Ox030 

ThiS example decrements the value in the LOOPCT register, then checks to 
see if it is zero. If it is, the jump is taken (since P is set to change polarity). The 
address output on MSA 15-MSAO is 30 hex. 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Conditions for 
cond_masks 

Range for address 

cjsr cond_masks, address 

If condition is true, 
Program Counter ~ SABADDRx 
jump address ~ Program Counter 

If condition is false, 
Program Counter +1 ~ Program Counter 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I 1 o 0 1 I A I N I G I z I v I E I c 

15 o 
jump address 

Jump conditional to the specified subroutine address. During a jump 
instruction, no FPU operations are performed. 

Listed below are the jump instruction condition mask bits (enabled when high): 

A Always C CC pin 
N Negative P Change polarity (for N,G,Z,V,E,C, and D) 
G Greater than o Decrement LOOPCT, Jump not zero 
Z Zero M Jump indirect using MCADDR 
V Overflow I Jump to internal ROM routine 
E ED bit 

An unconditional jump may be done by setting the A mask bit high. If C is 
enabled and the CC bit is high, all other jump condition enables except P, M, 
and I are turned off. Multiple jump conditions are separated by vertical bar' I' 
and are logically ORed together. The condition mask P changes polarity for 
each individual bit before the logical OR operation. 

OxO-OxFFFF 

8-21 



Alternate Opcodes 

Example 

8-22 

The following are alternative opcodes recognized by the TMS34082 Software 
Tool Kit that perform the same instruction as cjsr. 

Opcode 

call address 
callcch address 
callccl address 
calleq address 
callge address 
call1gt address 
callie address 
callit address 
callne address 
calloh address 
callol address 

callind 
callindcch 
callindccl 
callindeq 
callindge 
callindgt 
callindle 
callindlt 
callindne 
callindoh 
callindol 

intcall address 

cjsr I C J M 

Description 

Call unconditional 
Call on CC pin high 
Call on CC pin low 
Call on equal 
Call on greater than or equal 
Call on greater than 
Call on less than or equal 
Call on less than 
Call on not equal 
Call on overflow high 
Call on overflow 

Call indirect unconditional 
Call indirect on CC pin high 
Call indirect on CC pin low 
Call indirect on equal 
Call indirect on greater than or equal 
Call indirect on greater than 
Call indirect on less than or equal 
Call indirect on less than 
Call indirect on not equal 
Call indirect on overflow high 
Call indirect on overflow low 

I nternal call unconditional 

This instruction checks the CC input and jumps to the address in the MCADDR 
register if CC is high. 

Note: 'cjsr A. address' is equivalent to 'call address' 

External Instructions 



Syntax cmp ra.[modifier]type, rb.[modifier]type 

Execution status flags (ra - rb) ~ status register 

Instruction Words 31 30 29 28 27 2423 20 19 18 17 16 15 

I 0 I 0 I e I h ra rb a I 0 I 0 0 0 

14 11 10 9 8 7 6 5 4 3 2 0 

I sel op I 0 I t pa I pb I 0 I 0 I va I vb I 0 I 1 I 0 

Description This instruction subtracts the value in rb from the value in ra, and sets the status 
register accordingly. 

Sources for ra RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb f (single-precision floating-paint) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb v (absolute value, not valid for integer types) 

Example cmp RA9. vf , CT. vf 

8-23 



Syntax 

Execution 

Instruction Words 

Description 

Sources for rs 

Types forrs 

Modifiers for rs 

Destinations for rd 

Modifiers for rd 

Example 

8-24 

compl ra.type, rd[.modifier] 

(NOT ra) ~ rd 

31 30 29 28 27 24 23 22 21 20 

I 0 I 0 I e I h ra I 0 I 0 0 0 

14 11 10 9 8 7 6 5 4 3 2 1 

I seLop I 0 I I type I 0 I 1 I 0 I 0 I 0 I 1 

This instruction takes the 1 s complement of ra and places it in rd. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

i (signed integer) 
u (unsigned integer) 

none 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADOR, SUBADDO, SUBAD01, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

compl RA7.i, C.h 

19 15 

I rd 

0 

I 0 

External Instructions 



Divide A / B dlv 
{!o"v.~ ..... ,"",",X9."""":"~""';':<'J'Xf~""''''''''':'''9»X·:·;':«·»:-YH'':V:'';':«'.:''~:-=·:'''~J':'''''·:·;-:"..;..;o-):"oo:.;-:.:--:..;..:-:«-:..;.:-:"..;.:.;.:.:..;.»:-:-;.:.x-.'""'oO-:-;. ...... :--;.:..;::..;.;.;.: ... ~:--h% .. vh».",O(.>..~»X-»"h..v.-..vh: ..... 'V....:«V.".;«~;.~~J'X'-'~..<*)o"' .... .(..;""~'X*~~ .. :r-;....'X~,;« 

Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Sources for rb 

Types for ra and rb 

Modifiers for ra 

Modifiers for rb 

Destinations for rd 

Modifiers for rd 

Restrictions 

Example 

div ra.[modifier]type, rb.[modifierjtype, rd[.modifiersj 

ra I rb ~ rd 

31 30 29 28 27 2423 20 19 15 

0 0 e h ra rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I seLop I 0 I t pa I pb I 1 I 1 va I 0 I ny I wa Iwb 
This instruction takes the result of dividing ra by rb and places it in rd. 

RA9-RAO 
C or CT Register 
ONE (the value one) 

RB9-RBO 
C or CT Register 
ONE (the value one) 

f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

v (absolute value, not valid for integer types) 
w (wrapped, not valid for integer types) 

w (wrapped, not valid for integer types) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

n (negated, not valid for integer types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Absolute value modifiers, negated result, and wrapped numbers are only 
permitted with floating-point operations. 

div ONE.d, CT.f, RAO.e 

8-25 



Syntax 

Execution 

Instruction Words 

Description 

Sources for m 

Types form 

Modifiers for m 

Destinations for rd 

Modifiers for rd 

Example 

8-26 

dtof ra{.modifier), rd[.modifier) 

ra (double-precision) -4 rd (single-precision) 

31 30 29 28 27 24 23 22 21 20 19 15 

I 0 I 0 I e I h ra I 0 0 0 0 I rd 

14 11 10 9 8 7 6 5 4 .3 2 1 0 

I sel_op I 0 I 0 I 1 I I 0 I 1 va I 0 I 1 I 1 I 0 

This instruction takes the double-precision floating-point formatted number in 
ra and converts it to a single-precision floating-point formatted number in rd. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
ONE (the value one) 

type is implicit in the opcode 

v (absolute value) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

dtof RAS.v, C.e 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Types forra 

Modifiers for ra 

Destinations for rd 

Modifiers for rd 

Example 

dtoi ra[.modifier], rd[.modifier] 

ra (double-precision) ~ rd (integer) 

31 30 29 28 27 24 23 22 21 20 19 15 

I 0 I 0 I e I h ra I 0 I 0 0 0 I rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I sel op I 0 I 0 I 1 I 1 I 0 I 1 va I 0 I 0 I 1 I 1 

This instruction converts the value in ra from double-precision floating-point 
format to its integer form and places the result in rd. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
ONE (the value one) 

type is implicit in the opcode 

v (absolute value) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CON FIG, COUNTX, COUNTY 
VECTOR, MCADOR, SUBAODO, SUBA001, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

dtoi RA4. V, RA2 

8-27 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Types forra 

Modifiers for ra 

Destinations for rd 

Modifiers for rd 

Example 

8-28 

dtou ra[.modifier], rd[.modifier] 

ra (double-precision ~ rd (unsigned integer) 

31 30 29 28 27 24 23 22 21 20 19 15 

0 0 e h ra I 0 0 0 I 0 I rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I selop I 0 I 0 I 1 I 1 I 0 I 1 va I 0 I 1 I 1 I 1 

This instruction takes a double-precision floating-paint formatted value in ra 
and converts it to an unsigned integer. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
ONE (the value one) 

type is implicit in the opcode 

v (absolute value) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

dtou RA7.v, C 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Types forra 

Modifiers for ra 

Destinations for rd 

Modifiers for rd 

Example 

ftod ra[.modifier), rd[.modifier) 

ra (Single-precision) ~ rd (double-precision) 

31 30 29 28 27 24 23 22 21 20 19 15 

0 0 I e I h ra I 0 0 0 0 I rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I selop I 0 0 I 0 I 0 I 0 I 1 va I 0 I 1 I 1 I 0 

This instruction converts the value in ra from single-precision floating-point to 
double-precision floating-point and places it in rd. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
ONE (the value one) 

type is implicit in the opcode 

v (absolute value) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CON FIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ftod LAD, CT.h 

8-29 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Types forra 

Modifiers for ra 

Destinations for rei 

Modifiers for rd 

Example 

8-30 

ftoi ra[.modifier], rd[.modifier] 

ra (single-precision) -4 rd (integer) 

31 30 29 28 27 24 23 22 21 20 19 15 

0 0 e h ra I o· 0 0 0 I rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I seLop I 0 I 0 I 0 I 0 I 0 I 1 va I 0 I 0 I 1 I 1 

This instruction converts from a single-precision floating-point format in ra into 
the integer format and places the result in rd. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
ONE (the value one) 

type is implicit in the opcode 

v (absolute value) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS,CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LA D bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ftoi MULFB, C.h 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Types forrs 

Modifiers for rs 

Destinations for rd 

Modifiers for rd 

Example 

ftou ra[.modifier], rd[.modifier] 

ra (single-precision) ~ rd (unsigned integer) 

31 30 29 28 27 24 23 22 21 20 19 15 

I 0 I 0 I a I h ra I 0 0 0 0 I rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I saLop I 0 I 0 I 0 I 0 I 0 I 1 va I 0 I 1 I 1 I 1 

This instruction take a value in single-precision floating-point format and 
converts it to an unsigned integer, placing it in rd. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
ONE (the value one) 

type is implicit in the opcode 

v (absolute value) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CON FIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ftou CT, RBS.h 

8-31 



Syntax 

Execution 

Instruction Words 

Description 

Sources for rs 

Types forrs 

Modifiers for rs 

Destinations for rd 

Modifiers for rd 

Example 

8-32 

itod ra, rd[.modifier] 

ra (integer) ~ rd (double-precision) 

31 30 29 28 27 24 23 22 21 20 19 15 

I 0 I 0 I e I h ra I 0 I 0 0 I 0 I rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I sel op I 0 I 0 I 1 I 1 I 0 I 1 I 0 I 0 I 0 I 1 I 0 

This instruction takes the integer value in ra and places it in rd in 
double-precision floating-point format. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
ONE (the value one) 

type is implicit in the opcode 

none 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CON FIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

itod RA2, RA6.e 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Types forra 

Modifiers for ra 

Destinations for rd 

Modifiers for rd 

Example 

itof ra, rd[.modifier] 

ra (integer) ~ rd (single-precision) 

31 30 29 28 27 24 23 22 21 20 19 15 

I 0 I 0 I e I h ra I 0 I 0 I 0 0 I rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I salop I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 1 I 0 

This instruction converts the value in ra from integer form to single-precision 
floating-integer and places the result in rd. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
ONE (the value one) 

type is implicit in the opcode 

none 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

itof ONE, RBO.h 

8-33 



Syntax 

Instruction Words 

Description 

Destinations for reg 

Types for reg 

Sources for address 

Range for count 

Example 

8-34 

Id reg.type1 address1 count 

31 30 29 28 27 26 25 21 20 16 

L I M 0 T S word count register 

15 2 1 0 

I start address I Cf 

t for LAD moves only. 

During a move instruction no FPU operation is performed. Register control 
logic for move instructions counts sequentially from the beginning register 
address, with the exception that the C and CT registers are omitted from the 
count. The entire register file acts like a ring buffer during the move instruction. 
The C and CT registers are not accessible to moves. It is illegal to use the C 
or CT register address as the starting address for a move instruction. 

T (Type) and S (Size) give the format of the numbers 
T 0 = integer, 1 = floating point 
S 0 = 32 bits 1 = 64 bits 
Note: Setting TS = 01 is reserved 

Word count is the number of operands to be moved (n). A count of 0 will move 
256 items. The beginning register address is stored in the register field, and 
the beginning memory address is the start address field (bits 15-0). 

An indirect move is designated by selecting MCADDR as the address. The M 
bit will be set low and the 16 low-order bits are then disregarded. The starting 
address in memory comes from the MCADDR register. 

To move data from the LAD bus, LAD is selected as the address. The L bit will 
be set high, and the low-order 16 bits are set to o. An address of 'COINT' will 
load data from the LAD bus and set COINT low for the cycles the load is 
executing. (C will be set high in the instruction word.) This option is valid for 
host-independent mode only. 

RA9-RAO 
RB9-RBO 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG. LOOPCT 

f (Single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

OxO-OxFFFF 
MCADDR, LAD, COINT 

0-31 

Id CONFIG.i, OxIOO, I 
Id RAO.i, MCADDR, 3 
Id RBI.i, LAD, 3 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Range for count 

Example 

Idlct count 

count ---j LOOPCT 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

1110 1 0100101010100 0001 0 1 0 1 

15 o 
count 

This instruction loads the LOOPCT register with the value specified by count. 
If the register is loaded with 0, the loop would execute 64K times. 

OxO-OxFFFF 

Idlct OxOA 

This example loads the LOOPCT register with 10 (A hex). 

8-35 

"-------------,~,..,."..,.------~~-~---- -----,._. 



Syntax 

Execution 

Instruction Words 

Description 

Range for address 

Example 

8-36 

Idmcaddr address 

address ~ MeADOR 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 

11101101010110101010 o 1 0 o 1 0 I 

16 o 
address 

This instruction loads the indirect address (MeADOR) register with the value 
specified by count. This is a 17 -bit value; the most significant bit selects 
between code and data space. 

OxO-Ox1 FFFF 

Idmcaddr OxOA 

This example loads the MeADOR register with 10 (A hex). 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Functions for 
prog_mask 

Restrictions 

Example 

mask prog_mask 

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 

100 1 1 I 0 I E I D I S I c I H I L I I I EH I DH I ES I DS I EE I DE I 
13 0 

I 0 0 0 0 0 0 0 000 0 0 0 0 I 
This instruction enables/disables interrupts, sets/clears programmable bits, 
and forces software interrupts. Multiple bits may be set by plaCing a vertical bar 
'I' between each symbol. 

When high, the bits below perform the functions described: 

E Restore interrupt mask (INTENED, INTENSW, INTENHW) 
D Save interrupt mask and disable interrupts 
S Set COINT high (set interrupt output to host) 
C Set COl NT low (clear interrupt output to host) 
H Set CORDY high (host-independent mode only) 
L Set CORDY low (host-independent mode only) 
I Force software interrupt 
EH Enable hardware interrupt (INTR input) 
DH Disable hardware interrupt (INTR input) 
ES Enable software interrupt 
DES Disable software interrupt 
EE Enable ED interrupt 
DE Disable ED interrupt 

E and D, Sand C, Hand L, EH and DH, ES and DS, EE and DE may not be 
used in pairs. 

E and D may not be used with I, EH, DH, ES, DS, EE, and DE. 

I may not be used with EH, DH, ES, DS, EE and DE. 

mask EH I ES 

8-37 



mova MoveA 
;;«oQo"' ...... "IQO>.~:YhX~'=''''''''~~..«~'"''''y ... ' .... h>X'-''Y'~X~~~--a...~»»''~~ ... ~:,.X~~X<~:O-",..«~:o-: .... ""«-:-"'~ ... :«-..y .. XO:--:--:-.. .... v.-:O-:·X.:;-:-~:.:«"»X~X*: .. :« .. ~:...-.:-::~~.«-:·:-"h:*:;:...~"":-»:-..v..:«««-;...'»t~ ........... ""'otoI.':rX,,·~h:..;.:--: 

Syntax 

Execution 

Instruction Words 

Description 

Sources for rs 

Types forrs 

Modifiers for rs 

Destinations for rd 

Modifiers for rd 

Example 

8-38 

mova ra.[modifier]type, rd[.modifierj 

ra ~ rd (no status flag set) 

31 30 29 28 27 24 23 22 21 20 19 15 

I 0 I 0 I e I h ra I 0 I 0 0 0 rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I seLop I 0 I 0 I type I 0 I 1 I va 0 I 1 I 0 I 0 

This instruction copies the value in ra and places it in rd without setting status 
flags. NANs are not detected or changed to the standard format. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

f (single-precision floating-point) 
d (double-precision floating-point) 

v (absolute value) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADOR, SUBAOOO, SUBAOD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

mova CT.vf, RA7.e 

External Instructions 



Move N Words from LAD Bus to MSD Bus movlm 
""-"'«'"..,=",X'<-,V"';~~;';«-:~;«0..~:--"","*"'««-:~:'A..;«.~~»:·:·:-»x*;.«..;t&""X-~...x,,,~»:«·:w" .... X07 ..... ~x..;..,v,.«-:·x.:..;-:.;.:.»"'h ......... X..;-:-;,:« .. ;.;.x-:-:-;.:.;·:..;..:.x..;.;.;,:-:"'·:-j-:·:-:·:-:·:--:-:·:-xo.;..;·:·:·:--:-:o-:·;.:-:-:·:-:·:""'-;':-:*:-;·:-:·:·:--.<';·:·:-:-:--:-:·:-:«",,:--:·~~·:-:·:,..;·:-:-:..;-: ...... ;..:«-:-;.:y:..:-;·x..;-:--: 

Syntax 

Instruction Words 

Description 

movlm address.type, count£ memory_type] 

31 30 29 28 27 26 25 18 17 16 

o o T S word count I M D 

15 2 o 
start address cT 

t for indirect moves only. 

Each instruction can transfer up to 256 items that are 1 or 2 words long. During 
a move instruction, no FPU operation is performed. 

T (Type) and S (Size) determine the number format. 
T 0 = integer, 1 = floating point 
S 0 = 32 bits, 1 = 64 bits 
Note: Setting TS = 01 is reserved 

Word count is the number of operands to be moved (n). A word count of 0 will 
move 256 items. 512 32-bit values may be moved by setting count=O and 
specifying double-precision format. The beginning memory address (for MSD) 
is the start address field. 

An indirect MOVE is selected by using 'MCAODR' for the address. Bit 17 (M) 
will be set high. The starting address is found in the indirect address register 
(MCAOOR). When M is high, the 16 low-order bits are disregarded, with the 
exception of bit 1. Choosing 'COINT' as the address will set the C bit high. The 
COINT output will be low during the cycles the move is executing. The 
MCADDR register stores the starting address. This option is only valid for 
host-independent mode. 

If bit 16 (D) is high, data space is used as the destination. If the bit is low, code 
space is used. 

Valid memory types are CODE (0=0) and DATA (0=1). The default value, if 
none is specified, is CODE. If 'MCADOR' or 'COINT' is the address, the 
memory type must NOT be specified (bit 16 of the MCADOR register selects 
the memory type). 

Destination addresses OxO-OxFFFF 
MCADOR, COINT 

Types for reg f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

Range for count 0-255 

Types for CODE 
memory_type DATA 

8-39 



movlm Move N Words from LAD Bus to MSD Bus 

Example 

8-40 

movlm _vecl.i, 2, DATA 
movlm MCADDR.f, 2 
movlm COINT.i, 2 

External Instructions 



Move N Words from MSD Bus to LAD Bus movml 
~jo;o.:~-:««-:--.... .,:~ ... 'V.,..:..:-: .. V"":«-..V .... :-X~h:~;.:-:~»:..::'.«--:«otw'x-.:-::·:--.oOO';·»X";·;')o:-:-:9X«oo.. .... :-: ... ~ .. ;w" ... X..; .. ~X0:-:-:-:-:·y ... :O:-:·:«·x~;.:·:OtIj>:-;..:«-:-;..:·:-::·:-:;:O-:-:..;~»:·:-jo:*:-x*:-jo:-».'x·»:-:<·:-:·;.jo:-.v.·:·;.x-::·:-;.:·:"' .. : .... AX"'·~hX ........ ~·»:-:·>:Y.«-" ... ~X-::~:;:«·:";":";-:0..~"' .... :-;,.·:,-",:-x~jo:·:« 

Syntax 

Instruction Word 

Description 

Sources for address 

Types for reg 

Range for count 

movml address.type, count£, count£, memory_type] 

31 30 29 28 27 26 25 21 20 16 

0 0 I T S word count I M 0 

15 2 0 
start address Cf 

t for icdirect moves only_ 

Each instruction can transfer up to 256 items that are 1 or 2 32-bit words long. 
During a move instruction, no FPU operation is performed. 

Valid sequencer opcode for this instruction format 1101 move n words from 
MSDto LAD. 

T (Type) and S (Size) determine the number format 
T 0 = integer, 1 = floating point 
S 0 = 32 bits, 1 = 64 bits 
Note: Setting TS = 01 is reserved 

Word count is the number of operands to be moved (n). A word count of 0 will 
move 256 items. 512 32-bit values may be moved by setting count=O and 
specifying double-precision format. The beginning memory address (for MSD) 
is the start address field. 

An indirect MOVE is selected by using 'MCADOR' for the address. Bit 17 (M) 
will be set high. The starting address is found in the indirect address register 
(MCADDR). When M is high, the 16 low-order bits are disregarded, with the 
exception of bit 1. Choosing 'COINT' as the address will setthe C bit high. The 
COINT output will be low during the cycles the move is executing. The 
MCADDR register stores the starting address. This option is only valid for 
host-independent mode. 

If bit 16 (D) is high, data space is used as the source.lf-thebiUsJo~code space 
is used. 

Valid memory types are CODE (D=O) and DATA (D=1). The default value, if 
none is specified, is CODE. If 'MCADDRl or 'COINT' is the address, the 
memory type must NOT be specified (bit 16 of the MCADDR register selects 
the memory type). 

OxO-OxFFFF 
MCADDR, COINT 

f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

0-255 

8-41 



rnovml Move N Words from MSD Bus to LAD Bus 

Types for 
memory_ type 

Example 

8-42 

CODE 
DATA 

mov.ml _vec2.f, 3, DATA 
movrnl MCADDR.f, 3 
movrnl COINT.i, 3 

External Instructions 



Syntax 

Instruction Word 

Description 

movrr srscreg.typef dstregf count 

31 30 29 28 27 26 25 21 20 16 
1 0 T S word count I source 

15 54 0 

I 0 0 0 0 0 0 0 0 0 0 0 I destination 

During a move, no FPU operations are performed. Register control logic for 
move instructions counts sequentially from the' beginning register address, 
with the exception that the C and CT registers are omitted from the count. The 
entire register file acts like a ring buffer during the move instruction. The C and 
CT registers are not accessible to moves. It is illegal to use the C or CT register 
address as the starting address for a move instruction. 

T (Type) and S (Size) give the format of the numbers 
T 0 = integer, 1 = floating point 
S 0 = 32 bits, 1 = 64 bits 
Note: Setting TS = 01 is reserved 

Word count is the number of operands (n) to be moved. A count of 0 will move 
256 registers. The source and destination fields are the beginning register 
addresses. The source is the starting source register and destination is the 
starting destination address. 

Sources for srcreg RA9-RAO 
RB9-RBO 
STATUS,CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

Types for srcreg f (single-precision floating-point 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

Destinations for dstreg RA9-RAO 
RB9-RBO 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

Range for count 0-31 

Example movrr RA3. f f RBO f 3 

8-43 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Sources for rb 

Types for ra and rb 

Destinations for rd 

Modifiers for rd 

Restrictions 

Example 

8-44 

mult ra.[modifierjtype, rb.[modifier]type, rd[.modifier] 

ra x rb --? rd 

31 30 29 28 27 24 23 20 19 15 

o o e h ra rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I sel op I 0 I t I pa I pb I 1 I 0 va vb I ny I wa I wb 

This instruction takes the product of ra and rb and places it in rd. 

RA9-RAO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

RB9-RBO 
Cor CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CON FIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

n (negated, not valid for integer types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Feedback registers (ALUFB or MULFB) may not be used as operands for 
double-precision multiplies. 

mult RAO.f,C.f, CT 

External Instructions 



Syntax mult.add ra.type, ra2, rb.type, rb2, rd[.modifier}, outpuLsource 

Execution ra x rb ~ rd or MULFB; ra2 + rb2 ~ rd or ALUFB 

Instruction Words 31 30 29 28 27 2423 20 19 15 

0 0 e h ra or ra2 I rb or rb2 I rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I sel op I 1 I t pa I pb I s I 0 I 0 I a I m I 0 I 0 

Description This chained-mode instruction places the product of the values of ra and rb in 
either rd or MULFB, and concurrently places the sum of the next values from 
ra and rb into rd or ALU FB. 

Sources for ra RA9-RAO 
Cor CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb f (single-precision floating-paint) 
d (double-precision floating-paint) 
i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb none 

Sources for ra2 RA9-RAO 
C or CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ONE (the value one) 

Sources for rb2 RB9-RBO 
C or CT register 
ALUFB (ALU feedback) 
LAD (immediate) 
ONE (the value one) 

Destinations for rd RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CON FIG, COUNTX, COUNTY 
VECTOR, MeADOR, SUBADDO, SUBADM, IRAREG, LOOPCT 

8-45 



Modifiers for rd 

Output sources 

Restrictions 

Example 

8-46 

a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode noninteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ALU 
MULT 

If ra2 is specified, then at least one feedback source must be used (either ra 
or ra2). If rb2 is specified, then at least one feedback source must be used 
(either rb or rb2). 

Feedback registers (ALUFB or MULFB) may not be used as operands for 
double-precision multiplies. 

mult.add RA2.f, lad2, RB7.u. ALUFB2, CT.a, ALU 

External Instructions 



Syntax mult.neg ra.type, ra2. rb.type, rd[.modifier},outpuf_source 

Execution ra x rb ~ rd or MULFB; 0 - ra2 ~ rd or ALUFB 

Instruction Words 31 30 29 28 27 2423 20 19 15 

0 0 e h ra or ra2 rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I sel op I 1 I t pa Ipb I s I 1 I 0 I a I m I 1 I 1 

Description The chained-mode instruction places the product of values of ra and rb in either 
rd or the multiplier feedback, and concurrently subtracts the value of ra2 from 
o and places the result into either rd or the ALU feedback. 

Sources for ra 

Sources for rb 

RA9-RAO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

RB9-RBO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ON E (the value one) 

Types for ra and rb f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb none 

Sources for ra2 RA9-RAO 

Sources for rb2 

Destinations for rd 

C or CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ON E (the value one) 

RB9-RBO 
C or CT register 
ALUFB (ALU feedback) 
LAD (immediate) 
ONE (the value one) 

RA9-RAO 
RB9-RBO 
CorCT 

8-47 



Modifiers for rei 

Output sources 

Restrictions 

Example 

8-48 

a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode noninteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ALU 
MULT 

If ra2 is specified then at least one feedback source must be used (either ra 
or ra2). If rb2 is specified then at least one feedback source must be used 
(either rb or rb2). 

Feedback registers (ALUFB or MULFB) may not be used as operands for 
double-precision multiplies. 

mult.neg RAl.f, LAD 2 , RB6d, RBO, MULT 

External Instructions 



Syntax 

Execution 

Instruction Words 

mult.pass ra.type, ra2, rb.type, rd[.modifier], output_source 

ra x rb ~ rd or MULFB; ra2 + 0 ~ rd or ALUFB 

31 30 29 28 27 2423 

a a a a ra or ra2 rb 

20 19 

rd 

14 11 10 9 8 7 6 5 4 3 2 1 a 
I salop I 1 I t pa I pb I s I 1 I a I a I m I a I a 

15 

Description This chained-mode instruction places the product of a value of ra and rb in rd 
or the multiplier feedback, and concurrently places the su m of the value of ra2 
and 0 into either rd of the ALU feedback. 

Sources for ra RA9-RAO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ON E (the value one) 

Sources for rb RB9-RBO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Modifiers for ra and rb none 

Sources for ra2 RA9-RAO 
C or CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ONE (the value one) 

Sources for rb2 RB9-RBO 
C or CT register 
ALUFB (ALU feedback) 
LAD (immediate) 
ONE (the value one) 

Destinations for rd RA9-RAO 
RB9-RBO 
CorCT 

Modifiers for rd a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode noninteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Outputsources ALU 
MULT 

8-49 



Restrictions 

Example 

8-50 

If ra2 is specified then at least one feedback source must be used (either ra 
or ra2). If rb2 is specified then at least one feedback source must be used 
(either rb or rb2). 

Feedback registers (ALUFB or MULFB) may not be used as operands for 
double-precision multiplies. 

mUlt.pass RA4.f, C2, RB6.d, CT.a, ALU 

External Instructions 



Syntax mult.sub ra.type, ra2, rb.type, rb2, rd[.modifierj, output_source 

Execution ra x rb -7 rd or MULFB; ra2 - rb2 -7 rd or ALUFB 

Instruction Words 31 30 29 28 27 2423 20 19 15 

0 0 e h ra or ra2 I rb or rb2 I rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I seLop I 1 I t pa pb I s I 0 I 0 I a I m I 0 I 1 

Description This chained-mode instruction places the product of the values of ra and rb in 
either rd or MULFB, and concurrently places the difference of the values from 
ra2 and rb2 into rd or ALU FB. 

Sources for ra RA9-RAO 
Cor CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb none 

Sources for ra2 RA9-RAO 

Sources for rb2 

Destinations for rd 

Cor CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ONE (the value one) 

RB9-RBO 
C or CT register 
ALUFB (ALU feedback) 
LAD (immediate) 
ONE (the value one) 

RA9-RAO 
RB9-RBO 
CorCT 

8-51 



Modifiers for rd 

Out puC sources 

Restrictions 

Example 

8-52 

a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode non-nteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ALU 
MULT 

If ra2 is specified then at least one feedback source must be used (either ra 
or ra2). If rb2 is specified then at least one feedback source must be used 
(either rb or rb2). 

Feedback registers (ALUFB or MULFB) may not be used as operands for 
double-precision multiplies. 

mult.sub RA8.d, MULFB2, RB4.d, ALUFB2, RA9.m,MULT 

External Instructions 



Syntax mult.2suba ra.type, ra2. rb.type, rd[.modifier], outpuLsource 

Execution ra x rb -7 rd or MULFB; 2 - ra2 -7 rd or ALUFB 

Instruction Words 31 30 29 28 27 2423 2019 15 

0 0 e h ra or ra2 rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I seLop I 0 I t pa pb I s I 0 I 0 I a I m I 1 I 0 

Description This chained-mode instruction places the product of ra and rb in rd or in MUL 
feedback, and concurrently subtracts the value of ra2 from 2 and places the 
result in rd or in the ALU feedback. 

Sources for ra 

Sources for rb 

RA9-RAO 
Cor CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

RB9-RBO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb f (single-precision floating-paint) 
d (double-precision floating-paint) 
i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb none 

Sources for ra2 RA9-RAO 

Sources for rb2 

Destinations for rd 

C or CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ONE (the value one) 

RB9-RBO 
C or CT register 
ALUFB (ALU feedback) 
LAD (immediate) 
ONE (the value one) 

RA9-RAO 
RB9-RBO 
CorCT 

8-53 



Modifiers for rd 

Output_sources 

Restrictions 

Example 

8-54 

a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode noninteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ALU 
MULT 

If ra2 is specified then at least one feedback source must be used (either ra 
or ra2). If rb2 is specified then at least one feedback source must be used 
(either rb or rb2). 

Feedback registers (ALUFB or MULFB) may not be used as operands for 
double-precision multiplies. 

mult.2suba RA3.i, LAD 2 , RBl.u, RAO.e, ALU 

External Instructions 



Syntax mult.subrl ra.type, ra2. rb.type, rb2j rd[.modifier), outpuLsource 

Execution ra x rb ~ rd or MULFB; rb2 - ra2 ~ rd or ALUFB 

Instruction Words 31 30 29 28 27 2423 20 19 15 

0 0 e h ra or ra2 I rb orrb2 I rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I seLop I 1 I t pa pb I s I 0 I 0 I a I m I 1 I 1 

Description This instruction places the product of a value in ra and rb in either rd or multiplier 
feedback and concurrently subtracts the value of ra2 from rb2 and places the 
result in either rd or the ALU feedback. 

Sources for ra RA9-RAO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
Cor CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb f {single-precision floating-point} 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb none 

Sources for ra2 RA9-RAO 

Sources for rb2 

Destinations for rd 

C or CT register 
MULFB {Multiplier feedback} 
LAD {immediate data from LAD bus} 
ONE {the value one} 

RB9-RBO 
C or CT register 
ALU FB (ALU feedback) 
LAD (immediate) 
ON E {the value one} 

RA9-RAO 
RB9-RBO 
CorCT 

8-55 



Modifiers for rd 

Output_ sources 

Restrictions 

Example 

8-56 

a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode noninteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ALU 
MULT 

If ra2 is specified then at least one feedback source must be used (either ra 
or ra2). If rb2 is specified then at least one feedback source must be used 
(either rb or rb2). 

Feedback registers (ALUFB or MULFB) may not be used as operands for 
double-precision multiplies. 

mult.subrl MULFB.d, LAD2, R6.d, ONE2, C.a, MULT 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Types forra 

Modifiers for ra 

Destinations for rd 

Modifiers for rd 

Example 

neg ra.[modifier}type, rd[.modifierj 

-ra -7 rd 

31 30 29 28 27 24 23 22 21 

I 0 I 0 I e h I ra I 0 I 0 0 

14 11 10 9 7 6 5 4 3 2 

I seLop I 0 I type I 0 I 1 I va I 0 I 0 

This instruction negates the value in ra and places it in rd. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

v (absolute value, not valid for integer types) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 

20 

I 0 

1 

I 0 

VECTOR, MCADDR, SUBADDO, SUBADD1 , IRAREG, LOOPCT 

e (send output to LAD bus, VilE strobe) 
h (send output to LAD bus, ALTCH strobe) 

neg RA4.vd, CT.e 

19 15 

I rd 

o· 

I 1 

8-57 



Syntax 

Instruction Words 

Description 

8-58 

nop 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I 0 I 0 I 0 I 0 I 0 I 0 100 0 0 0 0 I 0 000 

15 14 13 12 11 10 9 8 7 654 3 2 o 
o I 0 I 0 o I 0 o o 

This instruction performs no operation. If FPU core output registers are 
enabled (PIPES2=O), the output registers hold their previous value. 

This instruction may be used if the TMS34082 is idle, or to wait for a previous 
instruction to finish. 

External Instructions 



Syntax nor ra.type, rb.type, rd[.modifier] 

Execution ra NOR rb -7 rd 

Instruction Words 31 30 29 28 27 2423 20 19 15 

0 0 e h ra rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I sel op I 0 I 1 0 I t I 0 I 0 I 0 I 1 I 0 I 1 I 1 

Description 

Sources for ra 

This instruction takes the logical NOR of ra with rb and places the result in rd. 

RA9-RAO 

Sources for rb 

C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

RB9-RBO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb none 

Destinations for rd RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

Modifiers for rd e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Restrictions The types for ra and rb must be the same. 

Example nor CT. u, LAD. u, RB9. e 

8-59 



Syntax or ra.type, rb.type, rdE.modifier] 

Execution ra OR rb ~ rd 

Instruction Words 31 30 29 28 27 2423 20 19 15 

0 0 e h ra rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I selop I a I 1 0 I t I 0 I 0 I a I 1 I 1 I a I a 

Description This instruction takes the logical OR of ra with rb and places the result in rd. 

Sources for fa RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for fa and rb i (signed integer) 
u (unsigned integer) 

Modifiers for fa and rb none 

Destinations for rd RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADOR, SUBAODO, SUBAD01, IRAREG, LOOPCT 

Modifiers for rd e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Restrictions The types for ra and rb must be the same. 

Example or MULFB. i, LAD. i, CT. e 

8-60 External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Sources for rs 

Types forrs 

Modifiers for rs 

Destinations for rd 

Modifiers for rd 

Example 

pass ra.[modifierjtype, rd[.modifierj 

ra~ rd 

31 30 29 28 27 24 23 22 21 20 19 15 

I 0 o I e h I ra I 0 o o I 0 I rd 

14 11 10 9 7 6 5 4 3 2 0 

I seLop I 0 I type I 0 I 1 I va I 0 I 0 I 0 I 0 

This instruction copies the value in ra to rd. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

v (absolute value, not valid for integer types) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1 , IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

pass RAS.vf, CT 

8-61 



Syntax 

Execution 

Instruction Words 

Description 

Sources for rb 

Types forrb 

Modifiers for rb 

Destinations for rd 

Modifiers for rd 

Execution 

8-62 

pass rb.[modifier]type, rd[.modifier] 

rb ~ rd 

31 30 29 28 27 26 

I 0 o I e I h I 0 I 0 

14 11 10 9 765 4 

I seLop I 0 I type I 0 I 1 I va 

This instruction copies the value in rb to rd. 

RB9-RBO 
Cor CT Register 
ALU FB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

v (absolute value, not valid for integer types) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 

25 24 23 2019 15 

0 0 rb I rd 

3 2 1 0 
0 I 1 0 I 1 

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

pass RB2.i, CT 

External Instructions 



Syntax pass.add ra.type, ra2. rb.type, rd[.modifier}, outpuCsource 

Execution ra x 1 ~ rd or MULFB; ra2 + rb ~ rd or ALUFB 

Instruction Words 31 30 29 28 27 2423 20 19 15 

0 0 e h ra or ra2 rb rd 

14 11 10 9 ·8 7 6 5 4 3 2 1 0 

I sel_op I 1 I t pa I pb I s I 0 I 1 I a I m I 0 I 0 

Description This chained-mode instruction places the product of the values of ra and 1 in 
either rd or MULFB, and concurrently places the sum of the values from ra2 
and rb into rd or ALUFB. 

Sources for ra RA9-RAO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb 'f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb none 

Sources for ra2 RA9-RAO 
Cor CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ONE (the value one) 

Sources for rb2 RB9-RBO 
C or CT register 
ALUFB (ALU feedback) 
LAD (immediate) 
ONE (the value one) 

Destinations for rd RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

8-63 



Modifiers for rd 

Output sources 

Restrictions 

Example 

8-64 

a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode noninteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ALU 
MULT 

If ra2 is specified then at least one feedback source must be used (either ra 
or ra2). 

If rb2 is specified then at least one feedback source must be used (either rb 
or rb2). 

pass.add RA.d, MULFB2, RB9.f, CT,ALU 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Types forra 

Modifiers for ra 

Sources for ra2 

Destinations for rd 

Modifiers for rd 

Outpul sources 

Restrictions 

Example 

pass. neg ra.type, ra2. rd[.modifier], outpuCsource 

ra x 1 ~ rd or MULFB; 0 - ra2 ~ rd or ALUFB 

31 30 29 28 27 24 23 22 

I 0 I 0 I e h I ra or ra2 I 0 I 0 

14 11 10 9 8 7 6 5 4 

I sel op I 1 I t I pa I pb I s I 1 I 1 I 

21 20 19 15 

I 0 I 0 I rd 

3 2 1 0 

This chained-mode instruction places the product of values of ra and 1 in either 
rd or the multiplier feedback, and concurrently subtracts the value of ra2 from 
o and places the result into either rd or the ALU feedback. 

RA9-RAO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ON E (the value one) 

f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

none 

RA9-RAO 
Cor CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ON E (the value one) 

RA9-RAO 
RB9-RBO 
CorCT 

a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode noninteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ALU 
MULT 

If ra2 is specified then at least one feedback source must be used (either ra 
or ra2). 

pass.neg CT,d, LAD2, RB1,a, MULT 

8-65 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Types forra 

Modifiers for ra 

Sources for ra2 

Destinations for rd 

Modifiers for rd 

Output sources 

Restrictions 

Example 

8-66 

pass.pass ra.type, ra2. rd{.modifierl, outpuLsource 

ra x 1 -4 rd or MULFB; ra2 + 0 -4 rd or ALUFB 

31 30 29 28 27 24 23 22 

0 0 I e h I ra or ra2 I 0 0 

14 11 10 9 8 7 6 5 4 

I sel op I 1 I t I pa I pb I s I 1 I 1 I 

21 20 19 15 

0 0 I rd 

3 2 1 0 

a I m I 0 I 0 

This chained-mode instruction places the product of a value of ra and 1 in rd 
or the multiplier feedback, and concurrently places the sum of the value of ra2 
and 0 into either rd of the ALU feedback. 

RA9-RAO 
C or CT Register 
ALU FB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

none 

RA9-RAO 
Cor CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ONE (the value one) 

RA9-RAO 
RB9-RBO 
CorCT 

a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode noninteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ALU 
MULT 

If rb2 is specified then at least one feedback source must be used (either rb 
or rb2). 

pass.pass RA7.f, C2, RBO, ALU 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Sources for rb 

Types for ra and rb 

Types for ra and rb 

Sources for ra2 

Destinations for rd 

Modifiers for rd 

pass.sub ra.type, ra2. rb.type, rd[.modifier), output_source 

ra x 1 ~ rd or MULFB; ra2 - rb ~ rd or ALUFB 

31 30 29 28 27 2423 20 19 15 

0 0 0 0 ra or ra2 rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I sel op I 1 I t pa I pb I s I 0 I 1 I a I m I 0 I 1 

This chained-mode instruction places the product of the values of ra and 1 in 
either rd or MULFB, and concurrently places the difference of the values from 
ra2 and rb into rd or ALU FB. 

RA9-RAO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

RB9-RBO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

none 

RA9-RAO 
Cor CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ONE (the value one) 

RA9-RAO 
RB9-RBO 
CorCT 

a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode non integer types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

8-67 



Output sources 

Restrictions 

Example 

8-68 

ALU 
MULT 

If ra2 is specified then at least one feedback source must be used (either ra 
or ra2). 

pass.sub RAl.i, LAD 2 , RB7.u, CT, ALU 

External Instructions 



Syntax pass.subrl ra2. rb.type, rd[.modifierJ, output_source 

Execution ra x 1 ~ rd or MULFB; rb - ra2 ~ rd or ALUFB 

Instruction Words 31 30 29 28 27 2423 20 19 15 

0 0 e h ra or ra2 rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I sel op I 1 I t I pa Ipb I s I 0 I 1 I a I m I 1 I 1 

Description This instruction places the product of a value in ra and 1 in either rd or multiplier 
feedback and concurrently the value of ra2 and rb and places the result in either 
rd or the ALU feedback. 

Sources for ra RA9-RAO 
C or CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
C or CT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb f (single-precision floating-paint) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb none 

Sources for ra2 RA9-RAO 
C or CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ONE (the value one) 

Destinations for rd RA9-RAO 
RB9-RBO 
CorCT 

Modifiers for rd a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode noninteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Output sources ALU 
MULT 

8-69 



Restrictions 

Example 

8-70 

If ra2 is specified then at least one feedback source must be used (either ra 
or ra2). 

If rb2 is specified then at least one feedback source must be used (either rb 
or rb2). 

pass.subrl C.d, MULFB2, RB9.d, RAD.m, ALU 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Sources for ra 

Types forra 

Modifiers for ra 

Sources for ra2 

Destinations for rd 

Modifiers for rd 

Output sources 

Restrictions 

Example 

pass.2suba ra.type, ra2, rd[.modifier), outpuLsource 

ra x 1 ~ rd or MULFB; 2 - ra2 ~ rd or ALUFB 

31 30 29 28 27 2423 20 19 15 

0 0 e h ra or ra2 rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I seLop I 1 I t pa Ipb I s I 0 I 1 I a I m I 1 I 0 

This chained-mode instruction places the product of ra and 1 in rd or in MUL 
feedback, and concurrently subtracts the value of ra2 from 2 and places the 
result in rd or in the ALU feedback. 

RA9-RAO 
Cor CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

none 

RA9-RAO 
C or CT register 
MULFB (Multiplier feedback) 
LAD (immediate data from LAD bus) 
ONE (the value one) 

RA9-RAO 
RB9-RBO 
CorCT 

a (negate ALU result, valid only for chained mode noninteger types) 
m (negate multiplier result, valid only for chained mode noninteger types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

ALU 
MULT 

If ra2 is specified then at least one feedback source must be used (either ra 
or ra2). 

pass.2suba RA2.f, ONE2, RB9.f, eTa, MULT 

8-71 



Syntax 

Execution 

Instruction Words 

Description 

Alternate Opcodes 

8-72 

rti 

IRAREG ~ Program Counter 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I 0 0 I 0 0 I 0 0 I 0 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 0 

This instruction causes a jump to the address stored in the interrupt return 
register (IRAREG). It does not affect the INTG signal, which remains active 
until interrupts are re-enabled. 

reti is an equivalent opcode for this instruction. 

External Instructions 



Return from Subroutine rts 
~ .... -..:·~:-:«-:-:-rh-..:..;...v .... );OO:·:-:':-:-:-..""=.·:0..--..:·:«·x«<*»:~:-x-:·:-m,,«·:-:~»;«·:-):<~"=-;;":~""' .... »:-*:..:<·:-;..:-:<·:w-..... x-:.·:·:.:.;-:~:.:-,;.-:.·:-"..:«~,,:..:.: ... v..:«·~ ......... ..,...:-x«·:-):-:-»:-:-..~·:w-.... x-:««-:-:-;.:«-.:-:..:««o:«-:a:-:-:-»:·:«oQoh'!*:":"'~~:-~~:'-"'"-e"':':~:'-;"'"<",»X":'~'«:'-'''''-:.:«,,YAO< 

Syntax 

Execution 

Instruction Words 

Description 

Alternate Opcodes 

rts 

SUBADDRO or SUBADDR1 ~ Program Counter 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

o 0 0 100 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 0 I 0 I 0 1 0 1 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 0 0 I 0 

This instruction causes a jump to the address stored in the top of the stack. 
Note: ret is also valid 

ret is an equivalent opcode for this instruction. 

8-73 



Syntax 511 ra.type, rb.type, rd[.modifierj 

Instruction Words 31 30 29 28 27 2423 20 19 15 

0 0 e h ra rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I seLop I 0 I 1 I type I 0 1 I 0 I 1 I 0 I 0 I 0 

Description This instruction shifts the value in ra to the left by the number of bit positions 
indicated in rb. Zeros are shifted into the least significant bit location. 

Sources for fa RA9-RAO 
C or CT Register 
M U LFB (Multiplier feedback) 
ONE (the value one) 

Sources for rb (see RB9-RBO 
restrictions) 

Types for fa and rb i (signed integer) 
u (unsigned integer) 

Modifiers for fa and rb none 

Destinations for rd RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

Modifiers for rd e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Restrictions The shift count is input as a five-bit positive number right-aligned in the 
exponent field of a single-precision floating pOint number. All other bits in the 
32-bit word should be set to zero. For example OxOO 8000 00 = shift count of 
1. 

Example This example shows how to shift using a variable shift value stored in RAO and 
the operand to be shifted in RA 1 . 

8-74 

ld RBO. u, shift_const, 1 

s11 RAO.u, RBO.u, RBl 

s11 RA1.u, RB1.u, C 

load RBO with shift count 
of 23 
prepare run-time shift 
value (in RAO). 
actual shift of RAl with 
the shift value in RAO 

shift const: data OxOb 8000 00 
; equivalent shift count of 23 

External Instructions 



Syntax 

Execution 

Instruction Words 

Description 

Sources for rs 

Types forrs 

Modifiers for rs 

Destinations for rd 

Modifiers for rd 

Restrictions 

Example 

sqrt ra.[modifierjtype, rd[.modifier] 

-rra -7 rd 

31 30 29 28 27 24 23 22 21 20 19 15 

I 0 I 0 I e h ra I 0 I 0 0 0 rd 

14 11 10 9 7 6 5 4 3 2 0 

I seLop I a I type I 1 I 1 I va I 1 ny wa wb 

This instruction takes the square root of the value in ra and places it in rd. 

RA9-RAO 
C or CT Register 
ALUFB (ALU feedback) 
ON E (the value one) 

f (single-precision floating-paint) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

v (absolute value, not valid for integer types) 
w (wrapped, not valid for integer types) 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

n (negated, not valid for integer types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Absolute value modifiers, negated result and wrapped numbers are only 
permitted with floating-paint operations. 

sqrt RA7.u, C.n 

8-75 



Syntax 

Instruction Words 

Description 

Sources forrs 

Sources for rb (see 
restrictions) 

Types for rs and rb 

Modifiers for rs and rb 

Destinations for rd 

Modifiers for rd 

Restrictions 

Example 

8-76 

sra ra.type, rb.type, rd[.modifierJ 

31 30 29 28 27 2423 20 19 15 

0 0 e h ra rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 0 

I seLop I 0 1 I type I 0 1 I 0 I 1 I 1 I 0 I 1 

This instruction shifts the value in ra to the right by the number of bit positions 
indicated in rb. The sign bit is not affected. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
ONE (the value one) 

RB9-RBO 

i (signed integer) 
u (unsigned integer) 

none 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CON FIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

The shift count is input as a five-bit positive number right-aligned in the 
exponent field of a single-precision floating point number. All other bits in the 
32-bit word should be set to zero. 

The types for ra and rb must be the same. 

sra MULFB.i, LAD.i, C.e 

External Instructions 



Syntax 

Instruction Words 

Description 

Sources for ra 

Sources for rb (see 
restrictions) 

Types for ra and rb 

Modifiers for ra and rb 

Destinations for rd 

Modifiers for rd 

Restrictions 

Example 

sri ra.type, rb,type, rd[.modifier] 

31 30 29 28 27 2423 20 19 15 

a a e h ra rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 a 
I seLop I a I 1 I type I a 1 I 0 I 1 I a I a I 1 

This instruction shifts the value in ra to the right by the number of bit positions 
indicated in rb. Zeros are shifted into the most significant bit location. 

RA9-RAO 
C or CT Register 
MULFB (Multiplier feedback) 
ONE (the value one) 

RB9-RBO 

i (signed integer) 
u (unsigned integer) 

none 

RA9-RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

The shift count is input as a five-bit positive number right-aligned in the 
exponent field of a single-precision floating pOint number. All other bits in the 
32-bit word should be set to zero. 

The types for ra and rb must be the same. 

srI CT.i, LAD.i t RA3 

8-77 



Syntax 

Instruction Word 

Description 

Sources for reg 

8-78 

st reg.type, address, count 

31 30 29 28 27 26 25 21 20 16 

L M T S word count I register 

15 2 o 
start address c1 

t For LAD moves only. 

During a move instruction, no FPU operation is performed. Register control 
logic for move instructions counts sequentially from the beginning register 
address, with the exception that the C and CT registers are omitted from the 
count. The entire register file acts like a ring buffer during the move instruction. 
The C and CT registers are not accessible to moves. It is illegal to use the C 
or CT register address as the starting address for a move instruction. 

T (Type) and S (Size) give the format of the numbers 
T 0 = integer 1 ~ floating point 
S 0 = 32 bits 1 = 64 bits 

Note: Setting TS = 01 is reserved 

Word count is the number of operands to be moved (n). A count of ° will move 
256 items 1 or 2 32-bit words long. The beginning register address is stored 
in the register field, and the beginning memory address is the start address 
field (bits 15-0). 

An indirect move is designated by selecting MCADDR as the address. The M 
bit will be set low, and the 16 low-order bits are then disregarded. The starting 
address in memory comes from the MCADDR register. 

To move data to the LAD bus, 'LAD' is selected as the address. The L bit will 
be set high, and the low-order 16 bits are set to 0. An address of 
LAD _A will write data to the LAD bus with an AL TCH strobe (instead of the 
normal WE). The A bit will be set high in the instruction word. 

An address of 'COINT' will write data to the LAD bus and set COINT low for 
the cycles the store is executing. (C will be sethigh in the instruction word.) An 
address of 'COl NT _A' will store to the LAD bus with COINT enabled and an 
ALTCH strobe (instead of the normal WE). C and A will be set high in the 
instruction word. The COINT and COINT _A options are only valid for 
host-independent mode. 

RA9-RAO 
RB9-RBO 
STATUS, CONFIG, COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

External Instructions 



Types for reg f (single-precision floating-point) 
d (double-precision floating-point) 
i (signed integer) 
u (unsigned integer) 

Destination addresses OxO-OxFFFF 
MCADDR, LAD, COINT, COINT_A, LAD_A 

Range for count 0-31 

Example st RAO. f, MeADDR, 3 
st RB1.i, LAD, 5 

8-79 



sub Subtract A - B 
»"-"':~h--';'~.oQoo»YAO>XV~VA«~~.g.~:C"Q .. :~~gQ~I:lQ~Q~ .... »).."«""~·:--;m~..«~x"~;."'..«-: .. ~X~~:-r,m..~~"'-;·:~"'X0;.;.m*x-:~~»,,»*~v,>:«-;':"~X«·YJ'Wh"'-,-« .. ""',,:-"""' ...... '=«--:~h"'·~«-"'~v;..:.o"' ........... /.< ... KJ'X'A"'IX--:..; 

Syntax sub ra.[modifierjtype, rb.[modifier]type, rd[.modifierj 

Execution ra - rb ~ rd 

Instruction Words 31 30 29 28 27 2423 20 19 

0 0 e h ra rb rd 

14 11 10 9 8 7 6 5 4 3 2 1 

I sel op I 0 I t pa I pb I 0 I 0 va vb Ivy I 0 I 
Description This instruction places the difference in the values in ra and rb in rd. 

Sources for ra RA9-RAO 
C orCT Register 
MULFB (Multiplier feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Sources for rb RB9-RBO 
Cor CT Register 
ALUFB (ALU feedback) 
LAD (Immediate data from LAD bus) 
ONE (the value one) 

Types for ra and rb f (single-precision floating-point) 
d (double-precision floating-paint) 
i (signed integer) 
u (unsigned integer) 

Modifiers for ra and rb v (abslute value, not valid for integer types) 

Destinations for rd RA-9 RAO 
RB9-RBO 
CorCT 
STATUS, CONFIG,COUNTX, COUNTY 
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT 

Modifiers for rd v (absolute value, not valid for integer types) 
e (send output to LAD bus, WE strobe) 
h (send output to LAD bus, ALTCH strobe) 

Example sub LAD. vd, ONE. vf, RAO. h 

15 

0 

1 

8-80 External Instructions 



Subtract B - A subrl 
~~~;."A"<o'h~~~~"""n:-:~..<VH~""~V.-;-"'A""''''''""««:~~;-~''''''v..ox", ...... ...:«-:-;,;y;.y...:«..:.....~-;.>;«-:-;.~~>x-:-or"':«·Y.f:·:-: ... v/..~-:-;..:..;-:.:-;..;..:-:.:-;x",.y~-:oo;.;.;,.t"-;.:.;.:.:-:..;.;..:-:«-:-:,,-::·Y"':-:-:·Yh:-::·:·»:-:~:-:-"~"""Jo:-:"'·Y",:·x·:-;"x",·:-)X"'·:-""»"'"",~x-;,: 

Syntax subrl ra.[modifierjtype, rb.[modifierjtype, rd[.modifierj

Execution rb- ra ~ rd

Instruction Words 31 30 29 28 27 2423 20 19 15

0 0 e h ra rb rd

14 11 10 9 8 7 6 5 4 3 2 1 0

I selop I 0 I t I pa Ipb I 0 I 0 va vb I vy I 1 I 1

Description This instruction takes the difference in the value in rb from the value in ra and
places it in rd.

Sources for ra RA9-RAO
C or CT Register
MULFB (Multiplier feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

Sources for rb RB9-RBO
C or CT Register
ALUFB (ALU feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

Types for fa and rb f (single-precision floating-paint)
d (double-precision floating-point)
i (signed integer)
u (unsigned integer)

Modifiers for fa and rb v (absolute value, not valid for integer types)

Destinations for rd RA9-RAO
RB9-RBO
CorCT
STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

Examp~ subrl RA.f, RB2.vf, RAO

8-81

Syntax

Execution

Instruction Words

Description

Sources for ra

Types forra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

8-82

utod ra, rd{.modifier]

ra (unsigned integer) ~ rd (double-precision)

31 30 29 28 27 24 23 22 21 20 19 15

I 0 I 0 I e I h ra I 0 o I 0 0 I rd

14 11 10 9 8 7 6 5 4 3 2 1 0

I selop 10 10 11 11 10 11 0 I 1 I 0 I 1 I 0

This instruction converts an unsigned integer value in ra to a double-precision
floating-paint format and places the result in rd.

RA9-RAO
C or CT Register
MULFB (Multiplier feedback)
ONE (the value one)

type is implicit in the opcode

none

RA9-RAO
RB9-RBO
CorCT
STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADOR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

utod MULFB, CT.e

External Instructions

Syntax

Execution

Instruction Words

Description

Sources for ro

Types forro

Modifiers for ro

Destinations for rd

Modifiers for rd

Example

utof ra, rd[.modifierj

ra (unsigned integer) -7 rd (single-precision)

31 30 29 28 27 24 23 22 21 20 19 15

I 0 I 0 I e I h ra I 0 0 0 0 I rd

14 11 10 9 8 7 6 5 4 3 2 1 0

I sel op I 0 I 0 I 0 I 0 I 0 I 1 0 I 1 I 0 I 1 I 0

This instruction converts an unsigned integer in ra to single-precision
floating-point format and places it in rd.

RA9-RAO
C or CT Register
MULFB (Multiplier feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

type is implicit in the opcode

none

RA9-RAO
RB9-RBO
CorCT
STATUS, CON FIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

utof LAD, RA9.e

8-83

Syntax

Execution

Instruction Words

Description

Sources for rs

Types forrs

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

8-84

uwrapi ra.[modifier]type, rd[.modifierJ

wrapped in ra ~ denormal in rd

31 30 29 28 27 24 23 22 21 20 19 15

I 0 I 0 o o o I rd

14 11 10 9 8 76 54 321 0

I seL op I 0 I 0 I type I 0 I 1 I va I 1 I 1 I 0 I 1

This instruction unwraps the inexact operand in ra and places it in rd as a
denormalized number.

RA9-RAO
C or CT Register
MULFB (Multiplier feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-paint)

v (absolute value)

RA9-RAO
RB9-RBO
CorCT
STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

unwrapi RA9.vf, C.h

External Instructions

Syntax

Execution

Instruction Words

Description

Sources for rs

Types forrs

Modifiers for rs

Destinations for rd

Modifiers for rd

Example

uwrapr ra.[modifierjtype, rd[.modifierj

wrapped in ra ~ denormal in rd

31 30 29 28 27 24 23 22 21 20 19 15

I a I a I e h I ra I a I a a a I rd

14 11 10 9 8 7 6 5 4 3 2 1 0

I seLop I a I a I type I 0 I 1 I va I 1 I 1 I 1 I a

This instruction converts a wrapped rounded number in ra to a denormalized
number in rd.

RA9-RAO
C or CT Register
MULFB (Multiplier feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)

v (absolute value)

RA9-RAO
RB9-RBO
CorCT
STATUS, CONFIG, COUNTX, CONTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG,LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

uwrapr RA3.d, CT.h

8-85

Syntax

Execution

Instruction Words

Description

Sources for rs

Types forrs

Modifiers for rs

Destinations for rd

Modifiers for rd

Example

8-86

uwrapx ra.[modifier]type, rd[.modifier]

wrapped in ra ~ denormal in rd

31 30 29 28 27 24 23 22 21 20 19 15

I 0 I 0 I e h I ra 0 0 0 0 I rd

14 11 10 9 8 7 6 5 4 3 2 1 0

I seLop I 0 I 0 I type I 0 I 1 I va I 1 I 1 I 0 I 0

This instruction takes the exact, wrapped operand in ra and converts it to a
denormalized number in rd.

RA9-RAO
C or CT Register
MULFB (Multiplier feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)

v (absolute value)

RA9-RAO
RB9-RBO
CorCT
STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

uwrapx C.vf, RAS.e

External Instructions

Syntax

Execution

Instruction Words

Description

Sources for ra

Types forra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

wrap ra.[modifier]type, rd[.modifierj

denormal in ra ~ wrapped in rd

31 30 29 28 27 24 23 22 21 20 19 15

I 0 I 0 I e I h I ra 0 0 0 o I rd

14 11 10 9 8 7 6 5 4 3 2 1 0

I seLop I 0 I 0 I type I 0 I 1 I va I 1 I 0 I 0 I 0

This instruction takes a denormalized number in ra and converts itto a wrapped
number in rd.

RA9-RAO
C or CT Register
MULFB (Multiplier feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)

v (absolute value)

RA9-RAO
RB9-RBO
Cor'CT
STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1 , IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

wrap RAO.d, RB1.h

8-87

Syntax

Execution

xor ra.type, rb.tpye, rd[.modifier]

ra XOR rb -7 rd

Instruction Words 31 30 29 28 27 24 23 20 19 15

o o e h ra rb rd

14 11 10 9 8 7 6 5 4 3 2 1 0

I seL op I 0 I 1 0 I t I 0 I 0 I 0 I 1 I 1 I 0 I 1

Description This instruction takes the logical exclusive OR of ra with rb and places the result
in rd.

Sources for fa RA9-RAO
C or CT Register
MULFB (Multiplier feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

Types for fa and rb i (signed integer)
u (unsigned integer)

Modifiers for rs and rb none

Destinations for rd RA9-RAO
RB9-RBO
CorCT
STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

Modifiers for rd e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

Restrictions The types for ra and rb must be the same.

Example xor RA7. u, RB2. u, CT. h

8-88 External Instructions

111 1 n [! I
m

Appendix A

System Design Considerations
nIT L ! 'lim aUf J

Using high-performance CMOS logic devices, such as the TMS34082, requires careful
attention to high-speed logic design and PWB design practices. A few simple design
techniques can reduce check-out time during the development phase and, more
importantly, improve system reliability as your product enters production. The following
sections are general recommendations to reduce your chances of intermittent
problems.

A-1

Logic Design

A.1 Logic Design

Check to make sure that the drive capability of each TMS34082 output driver is not
exceeded, particularly with the clock drivers. This can affect the output signal quality as
well as driver supply demands.

When operating in coprocessor mode, do not use buffers on the following signals between
the TMS34020 and TMS34082 (unless a critical path timing analysis between the two
devices has been completed):

Q LCLK1 and LCLK2 (local clocks)

Q ALTCH (address latch)

Q CAS (column address strobe)

Q SF (special function)

Figure A-1 shows how RAS and CAS buffers can be added for DRAMNRAM memory.
These buffers effectively isolate the DRAMNRAM devices from the TMS34020.

Figure A-1. Example of Using RAS and CAS Buffers in Coprocessor Mode

LCLK1

LCLK2

ALTCH
TMS34020 TMS34082

RAS

CASO

DRAM/
VRAM

Memory
Array

A-2 System Design Considerations

Bypass Capacitors
~@:~~:«~~~..::x~~~~<'~:~';;':~<~:~~-::;:'&~~~7'«>:~~~:::::::;"-::'-::'<<<.;~~':::<<.:cw.<<-m.~~:'«::'~~~~~~m~~ ~rJlll:'~~.~~:::-:·'$;1~~m«f« ... f~

A.2 Bypass Capacitors

The TMS34082 is a high-speed CMOS device containing two 32-bit data buses and one
16-bit address bus. As a result, a constant voltage source must be maintained for the
device during signal transitions. The TMS34082 contains 10 Vee pins and 14 GND pins
for internal power requirements.

External bypass capacitors must also be used for decoupling the switching transitions.
Use two or more 0.1-f!F low-leakage high-quality capacitors around the perimeter of the
TMS34082 package or under the device. Place the capacitors as close to the TMS34082
as possible. These are used to filter out unwanted switching noise caused by the CMOS
output drivers, one of the major sources of noise. Also, use one 470-pF low-leakage
high-quality capacitor to reduce the very high frequency noise (such as clock frequencies)
and at least one 1 O-f!F solid tantalum filter capacitor to take care of low frequency noise
(such as power supply surges). The 10-f!F filter capacitor smooths out voltage spikes
during switching transitions. The capacitance values are approximate and should have
a working voltage of at least 10 V. By using three capacitor sizes, three different frequency
bands of noise are filtered as opposed to just one narrow band for one bypass capacitor
size.

Figure A-2. Recommended Bypass Capacitor Placement

B

TMS34082

A-3

PWBDesign

A.3 PWB Design

A-4

The TMS34082 should be designed into a PC board environment with an embedded Vee
or GND plane. For any production high-speed logic board, power planes are an absolute
necessity. Each Vee and GND pin on the TMS34082 must be connected to the
appropriate supply pin. Use the shortest amount of PWB etch possible. This effectively
forms a common reference point throughout the PC board as well as the device substrate.

As with most complex CMOS devices, extra care must be used when distributing CMOS
logic over more than one GND plane. An example of this is when a TMS34020 is on one
board and multiple TMS34082s (running in coprocessor mode) are located on a
daughtercard. The common ground connection between the two power planes behaves
like an inductor according to transmission line theory. The greater the current, the greater
the inductance. Here, the solution is to use many GND connections and to make them as
short as possible. In addition, even more bypass capacitors should be used.

When using a PGA socket, use gold-plated contacts where the TMS34082 pins mate into
the socket to lower the inductance and resistance. A gold plating thickness of 10
microinches is sufficient.

System Design Considerations

Clock Routing
____________ g:#...,3:E"~ 'r ',,?r:·'··~~m::~~~~~~-:;:::.~A~;W';::O~~~$>~~ 1;rml·T .. t\)w=~ ~

A.4 Clock Routing

Clocks are the heart of a high-performance system, so a little extra care will payoff many
times over. Many of these ideas not only apply to the TMS34082, but to most high-speed
CMOS logic devices.

PC board layout must take into account transmission-line theory. It is generally accepted
that any clock line over 7 inches long should be considered as a transmission line. Use
a daisy-chained clock distribution system and avoid using a 'T' (where three lines of etch
come into a common vertex) or stubs. Avoid the use of 90° angles within the clock trace;
use arcs or smooth lines instead, as shown in Figure A-3. This reduces the number of
signal reflections within the clock trace.

Figure A-3. Recommended Clock Routing Techniques

/'

'0
~ .-/

TMS34082
Clock
Source

"

When routing your PC board, route the clock signals first (they may even be hand routed).
To help reduce cross talk and radiated RF interference, keep the length of clock
interconnections as short as possible and place the majority of clock routing next to one
ofthe Vee or GND power planes. Cross talk is where one signal gets coupled onto another
signal; one trace behaves like a transmitter antenna and the other trace acts as a
receiver. To further reduce cross talk, make certain that the clock trace does not run parallel
to data or control lines for more than three inches if they are spaced within 100 mils of each
other. Traces adjacent to the clock lines that are connected to GND also may be used.

Since many clock interconnections behave like transmission lines, impedance
mismatches can generate reflections. From a time-domain point of view, these can result
in ringing, undershoot, and overshoot. If the clock drivers generate excessive amounts
of ringing and undershoot at their destinations, it will be necessary to put either an
impedance matching termination network at the farthest signal point from the driver or a
series resistor (22 Q to 39 Q) between the clock driver output and the receiving input.
Using a series resistor also slows down the signal response times slightly. The amount
of undershoot or ringing may be difficult to predict before hand, but there are many good
articles on transmission line theory for PC board design.

A-5

Thermal Considerations

A.S Thermal Considerations

A-6

Because the TMS34082 is implemented in CMOS, its power consumption requirements
are low and generate little heat. You must make certain that the operating temperature
of the surrounding environments is within TMS34082 operating specifications.

System Design Considerations

Appendix B

TMS34082A
Data Sheet

The pinout, electrical specifications, timing diagrams, and mechanical
specifications are contained within the TMS34082 Data Sheet and appear in
this appendix.

9-1

8-2 TMS34082A Data Sheet

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

• High-Performance Floating-Point RISC • 22 64-Bit Data Registers
Processor Optimized for Graphics • Comprehensive Floating-Point and Integer

• Two Operating Modes Instruction Set
- Floating-Point Coprocessor for • Internal Programs for Vector, Matrix, and TMS34020 Graphics System Processor
- Independent Floating-Point Processor 3-D Graphics Operations

• Direct Connection to TMS34020 • Full IEEE Standard 754-1985 Compatibility

Coprocessor Interface - Addition, Subtraction, Multiplication, and

- Direct Extension to the TMS34020 Comparison

Instruction Set - Division and Square Root

- Multiple TMS34082A Capability • Selectable Data Formats

• Fast Pipeline Instruction Cycle Time - 32-Bit Integer

- TMS34082A-40 •.. 50-ns Coprocessor - 32-Bit Single-Precision Floating-Point

Mode ..• 50-ns Host-Independent Mode - 64-Bit Double-Precision Floating-Point

- TMS34082A-32 ... 62.5-ns Coprocessor • External Memory Addressing Capability
Mode ..• 60-ns Host-Independent Mode - Program Storage (up to 64K Words)

• Sustained Data Transfer Rates of 160 - Data Storage (up to 64K Words)

MBytes/s (TMS34082-40) • 0.8-llm EPICTM CMOS Technology

• Sequencer Executes Internal or - High-Performance

User-Programmed Instructions - Low Power « 1.5 W)

description

The TMS34082A is a high-speed graphics floating-point processor implemented in Texas Instruments advanced
O.8-llm CMOS technology. The TMS34082A combines a 16-bit sequencer and a 3-operand (source A, source
B, and destination) 64-bit Floating-Point Unit (FPU) with 22 64-bit data registers on a single chip. The data
registers are organized into two files of ten registers each, with two registers for internal feedback. In addition,
it provides an instruction register to control FPU execution, a status register to retain the most recent FPU status
outputs, eight control registers, and a two-deep stack (see functional block diagram).

The TMS34082A is fully compatible with IEEE Standard 754-1985 for binary floating-point addition, subtraction,
multiplication, division, square root, and comparison. Floating-point operands can be either in single- or
double-precision IEEE format.

In addition to floating-point operations, the TMS34082A performs 32-bit integer arithmetic, logical comparisons,
and shifts. Integer operations may be performed on 32-bit 2s complement or unsigned operands. Integer results
are 32-bits long (even for 32 x 32 integer multiplication). Absolute value conversions, floating-point to integer
conversions, and integer to floating-point conversions are available.

The ALU and the multiplier are closely coupled and can be operated in parallel to perform sums of products or
products of sums. During multiply/accumulate operations, both the ALU and the multiplier are active and the
registers in the FPU core can be used to feedback products and accumulate sums without tying up locations
in register files A and B.

When used with the TMS34020, the TMS34082A operates in the coprocessor mode. The TMS34020 can control
multiple TMS34082A coprocessors. When used as a stand-alone or with processors other than the TMS34020,
the TMS34082A operates in the host-independent mode. The TMS34082A is fully programmable by the user
and can interface to other processors or floating-point subsystems through its two 32-bit bidirectional buses. In

EPIC is a trademark of Texas Instruments Incorporated.

ADVANCE INFORMATION documlllb con .. ln Information on ""
~oduCIIln III, .. mpHnl or preproduction pili .. 01 dmlopmenL
==dlllind oilier lpedllcatlone I,. subject 10 chlnll TEXAS .If

INSJRUMENIS

Copyright © 1991, Texas Instruments Incorporated

POST OFFICE BOX 655303 • DAlLAS, TEXAS 75265 8-3

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

the coprocessor mode, the TMS340 family tools may be used to develop code for the TMS34082A. The
TMS34082A software tool kit is used to develop code for host-independent mode applications or for external
routines in the coprocessor mode.

pin descriptions

Pin descriptions and grid assignments for the TMS34082A are given on the following pages. The pin at location
D4 has been added for indexing purposes.

145·PIN GC PACKAGE
(TOP VIEW)

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
A • • • • • • • • • • • • • • •
B • • • • • • • • • • • • • • •
C • • • • • • • • • • • • • • •
D • • • • • • •
E • • • • • •
F • • • • • •
G • • • • • •
H • • • • • •
J • • • • • •
K • • • • • •
L • • • • • •
M • • • • • •
N • • • • • • • • • • • • • • •
P • • • • • • • • • • • '. • • •
R • • • • • • • • • • • • • • •

TEXAS ."
INSlRUMENTS

8-4 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

PIN PIN
NO. NAME NO. NAME

A1 NC 815 LAD27

A2 LAD1 C1 MSD4

A3 LAD3 C2 MSD3

A4 LAD5 C3 MSDO

A5 LAD8 C4 VSS

A6 LAD9 C5 VCC

A7 LAD11 C6 LAD6

A8 LAD12 C7 VSS

A9 LAD13 C8 VCC

A10 LAD15 C9 VSS

A11 LAD17 C10 VCC

A12 LAD19 C11 LAD21

A13 LAD22 C12 VSS

A14 LAD24 C13 LAD25

A15 NC C14 LAD26

B1 MSD1 C15 LAD29

B2 NC D1 MSD6

B3 LADO D2 MSD5

B4 LAD2 D3 MSD2

B5 LAD4 D4 NC

B6 LAD7 D13 VCC

B7 LAD10 D14 LAD28

B8 TMS D15 LAD31

B9 LAD14 E1 MSD8

B10 LAD16 E2 MSD7

B11 LAD18 E3 VSS

B12 LAD20 E13 VSS

B13 LAD23 E14 LAD30

B14 NC E15 COINT

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

PIN GRID ASSIGNMENTS

PIN
NO. NAME NO.

F1 MSD10 K15

F2 MSD9 L1

F3 VCC L2

F13 CORDY L3

F14 ALTCH L13

F15 CAS L14

G1 MSD13 L15

G2 MSD12 M1

G3 MSD11 M2

G13 WE M3

G14 EC1 M13

G15 ECO M14

H1 MSD14 M15

H2 TDO N1

H3 VSS N2

H13 VSS N3

H14 LOE N4

H15 TDI N5

J1 MSD15 N6

J2 MSD16 N7

J3 VCC N8

J13 CC N9

J14 MSTR N10

J15 CLK N11

K1 MSD17 N12

K2 MSD19 N13

K3 VSS N14

K13 CID1 N15

K14 INTR P1

TEXAS •
INSlRUMENTS

PIN
NAME

RDY

MSD18

MSD21

MSD23

VSS

CIDO

CID2

MSD20

MSD24

VSS

VCC

LCLK1

LCLK2

MSD22

MSD26

VCC

MSD28

VSS

VCC

MSA5

VSS

VCC
MSA14

VSS

MAE

LRDY

SF

RESET

MSD25

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PIN
NO. NAME

P2 NC

P3 MSD29

P4 MSD31

P5 MSA1

P6 MSA3

P7 MSA6

P8 MSAB

P9 MSA10

P10 MSA13

P11 MWR

P12 MOE

P13 INTG

P14 BUSFLT

P15 RAS

R1 NC

R2 MSD27

R3 MSD30

R4 MSAO

R5 MSA2

R6 MSA4

R7 MSA7

R8 TCK

R9 MSA9

R10 MSA11

R11 MSA12

R12 MSA15

R13 DS/CS

R14 MCE

R15 NC

8-5

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

logic symbolt

CLK

LCLK1

LCLK2

MSTR

CID2-O

RESET

BUSFLT

LRDY

CORDY

LOE

RAS

SF

ALTCH

CAS

WE

LADO

• • •
LAD31

<I>
TMS34082A

FLOATING POINT PROCESSOR

HOST·INDEPENDENT CLOCK COPROCESSOR INTERRUPT

LOCAL CLOCK 1 I COPROCESSOR INTERRUPT REQUEST

LOCAL CLOCK 2 CLOCKS INTERRUPT GRANT

HOST·INDEPENDENT MODE ADDRESS EN

COPROCESSOR MODE SELECT CHIP EN

COPROCESSORID
EXTERNAL

OUTPUT EN

MEMORY BUS WRITE EN

PROCESSOR RESET DATA SPACE EN

CODE SPACE EN

BUS FAULT

LOCAL BUS READY EMULATOR CONTROL

COPROCESSOR READY

LOCAL OUTPUT EN CLOCK

ROW ADDRESS STROBE MODE SELECT

LOCAL BUS TEST
SPECIAL FUNCTION DATA IN

ADDRESS LATCH DATA OUT
ADDRESS STROBE

COLUMN ADDRESS STROBE

READ STROBE CONDITION CODE

WRITE ENABLE

WRITE STROBE

~ ~ 0

• • • • •
IINSTRUCTION > < INSTRUCTION I •

31 31

0

I ADDRESS>
• • •
15

t This symbol is in accordance with ANSI/IEEE Std 91-1984.

TEXAS.
INSTRUMENTS

8-6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

COINT

INTR

INTG

MAE

MCE

MOE

MWR

DS/CS

EC1-G

TCK

TMS

TDI

TDO

CC

RDY

MSDO

• • • MSD31

MSAO

• • •
MSA15

functional block diagram

MSTR --+-
COINT ~
lRDY --+-
RESET --+-
lOE --+-
CID2-0 --+-
CORDY ~
BUSFlT --+-
RAS --+-
SF ~
ROY --+-
lClK1 --+-
lClK2 ~
ClK --+-

LAD31-D

TO OTHER REGISTERS

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001- 03150, SEPTEMBER 1988 - REVISED MAY 1991

~ MAE

--+- MOE

--+- MCE

--+- MWR

--+- DS/CS

~ CC
~ INTR

--+- INTG

--+- EC1-0

PIN FUNCTION CHANGES W/OPERATING MODE --+- TMS

SIGNAL HOST-INDEPENDENT
NAME MODE

AlTCH OUTPUT -
WE OUTPUT

CAS OUTPUT

COPROCESSOR
MODE

INPUT

INPUT

INPUT

TEXAS ..If
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

--+- TCK

--+- TDI

--+- TOO

B-7

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

TERMINAL FUNCTIONS

PIN
1I0t

NAME NO.
DESCRIPTION

I
Address Latch, active low. In the coprocessor mode, falling edge of ALTCH latches instruction and status

ALTCH F14 present on the LAD bidirectional bus (LAD31-0). In the host-independent mode, ALTCH is address
[0]

output strobe for memory accesses on LAD31-0.

Bus Fault. In the coprocessor mode, BUSFLT high indicates a data fault on the LAD bus (LAD31-0) during

BUSFLT P14 I current bus cycle, which in turn causes TMS34082A not to capture current data on LAD bus. Tied low
if not used or in the host-independent mode.

I
Column Address Strobe, active low. In the coprocessor mode, causes TMS34082A to latch LAD bus data

CAS F15 [0] when CAS has a low-to-high transition if LRDY was high and BUSFLT was low at the previous LCLK2
rising edge. In the host-independent mode, this signal is the read strobe output.

CC J13 I Condition Code Input. In both modes, may be used as an external conditional inputfor branch conditions.

CIDO L14 Coprocessor 10. In the coprocessor mode, used to set a coprocessor 10 so that a TMS34020 Graphics
CID1 K13 I System Processor controlling multiple TMS34082A coprocessors can designate which coprocessor is
CID2 L15 being selected by the current instruction. Tied low in the host-independent mode.

CLK J15 I
System Clock. In the coprocessor mode, tied low. In the host-independent mode, input is the system
clock.

Coprocessor Interrupt Request, active low. In the coprocessor mode, signals an exception not masked

COINT E15 0
out in the configuration register. Remains low until the status register is read. In the host-independent
mode, user programmable I/O when LADCFG is low. When LADCFG is high, designates bus cycle
boundaries on LAD31-0.

Coprocessor Ready. In the coprocessor mode, if the TMS34020 sends an instruction before the

CORDY F13 0 TMS34082A has completed a previous instruction, this signal goes low to indicate that the TMS34020
should wait. In the host-independent mode, user programmable.

Data Space/Code Space. In both modes, when MEMCFG is low and DS/CS is low, selects program
DS/CS R13 0 memory on MSD port. When MEMCFG is low and DS/CS is high, selects data memory on MSD

port. When MEMCFG is high, DS/CS is memory chip select, active low.

ECO G15
I Emulator Mode Control and Test. In both modes, tied high for normal operation. EC1 G14

INTG P13 0
Interrupt Grant Output. In the coprocessor mode, INTG is low. In the host-independent mode, this signal
is set high to acknowledge an interrupt request input.

INTR K14 I
Interrupt Request Input, active low. In the coprocessor mode, INTR is tied high. In the host-independent
mode, causes call to subroutine address in interrupt vector register.

t The []'s denote the type of buffer utilized in the host-independent mode. If no []'s appear, the buffer type is identical for both modes of operation.

B-8

TEXAS •
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PIN

NAME NO.

LADO B3
LAD 1 A2
LAD2 B4
LAD3 A3
LAD4 85
LAD5 A4
LAD6 C6
LAD7 86
LAD8 A5
LAD9 A6
LAD10 B7
LAD11 A7
LAD12 A8
LAD13 A9
LAD14 B9
LAD15 A10
LAD16 B10
LAD17 A11
LAD18 B11
LAD19 A12
LAD20 B12
LAD21 C11
LAD22 A13
LAD23 B13
LAD24 A14
LAD25 C13
LAD26 C14
LAD27 815
LAD28 D14
LAD29 C15
LAD30 E14
LAD31 D15

LCLK1 M14
LCLK2 M15

LOE H14

LRDY N13

MAE N12

MCE R14

MOE P12

1/0

1/0

I

I

I

I

0

0

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

TERMINAL FUNCTIONS (Continued)

DESCRIPTION

Local Address and Data Bus. In the coprocessor mode, used by TMS34020 to input instructions and
data operands to TMS34082A, and used by TMS34082A to output results. In the host-independent
mode, used by the TMS34082A for address output and data 1/0.

Local Clocks 1 and 2.lnthe coprocessor mode, two local clocks generated by the TMS34020, 90 degrees
out of phase, to provide timing inputs to TMS34082A. In the host-independent mode, tied low.

Local Bus Output Enable, active low. In both modes, enables the local bus (LAD31-0) to be driven at the
proper times when low. In addition during the host-independent mode when LADCFG is low, does not
affect ALTCH, CAS, WE, CORDY, or COl NT. When LADCFG is high, ALTCH, COINT, and CORDY are
not disabled by LOE high; CAS and WE are disabled.

Local Bus Data Ready. In the coprocessor mode, when LRDY is high, indicates that data is available
on LAD bus. When LRDY is low, indicates that the TMS34082A should not load data from LAD31-0 and
may also be used in conjunction with BUSFLT. In the host-independent mode, when LRDY is low, the
device is stalled until LRDY is set high again and tied high if not used.

Memory Address and Data Output Enable, active low. In both modes, with MAE low, the
TMS34082A can output an address on MSA 15-0 and data on MSD31-0. MAE high does not disable
DS/CS, MCE, MWR, or MOE.

Memory Chip Enable. In both modes, when MEMCFG low, active (low) indicates access to external
memory on MSD31-0. When MEMCFG is high, MCE low is external code memory chip select.

Memory Output Enable, active low. In both modes when low, enables output from external memory
on to MSD port.

TEXAS •
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 B-9

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGSOO1

PIN
NAME NO.

MSAO R4
MSA1 P5
MSA2 R5
MSA3 P6
MSA4 R6
MSA5 N7
MSA6 P7
MSA7 R7
MSA8 P8
MSA9 R9
MSA10 P9
MSA11 R10
MSA12 R11
MSA13 P10
MSA14 N10
MSA15 R12

MSDO C3
MSD1 81
MSD2 D3
MSD3 C2
MSD4 C1
MSD5 D2
MSD6 D1
MSD7 E2
MSD8 E1
MSD9 F2
MSD10 F1
MSD11 G3
MSD12 G2
MSD13 G1
MSD14 H1
MSD15 J1
MSD16 J2
MSD17 K1
MSD18 L1
MSD19 K2
MSD20 M1
MSD21 L2
MSD22 N1
MSD23 L3
MSD24 M2
MSD25 P1
MSD26 N2
MSD27 R2
MSD28 N4
MSD29 P3
MSD30 R3
MSD31 P4

MSTR J14

MWR P11

8·10

1/0

0

I/O

I

0

TERMINAL FUNCTIONS (Continued)

DESCRIPTION

Memory Address output. In both modes, addresses upto 64K words of external program memory andlor
up to 64K words of data memory on the MSD port, depending on setting of DS/CS select.

External Memory Data. In both modes, lIDs to external memory. Used to read from or write to external
data or program memory on the MSD port.

Host-lndependenVCoprocessor Mode Select. In the coprocessor mode, MSTR must be tied low to
operate properly. In the host-independent mode, MSTR must be tied high to operate properly.

Memory Write Enable. In both modes, when low, data on MSD31-0 can be written to external program
or data memory.

TEXAS ,If
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PIN

NAME NO.
A1
A15
82

NC
814
04
P2
R1
R15

RAS P15

ROY K15

RESET N15

SF N14

TCK R8

TOI H15

TOO H2

TMS 88

C5
C8
C10
013
F3

VCC J3
M13
N3
N6
N9

C4
C7
C9
C12
E3
E13

VSS
H3
H13
K3
L13
M3
N5
N8
N11

WE G13

IIOt

I

I

I

I

I

I

0

I

I

I

I
[0]

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150. SEPTEMBER 1988 - REVISED MAY 1991

TERMINAL FUNCTIONS (Continued)

DESCRIPTION

No Internal Connection. These pins should be left floating.

Row Address Strobe. active low. In the coprocessor mode. RAS is high during all of coprocessor
instruction cycle. In the host·independent mode, it is not used.

Ready. In both modes, when ROY is low, it causes a nondestructive stall of sequencer and floating-point
operations. All internal registers and status in the FPU core are preserved. Also, no output lines will
change state.

Reset, active low. In both modes, resets sequencer output and clears pipeline registers, internal states,
status, and exception disable registers in FPU core. Other registers are unaffected.

Special Function Input. In the coprocessor mode when SF is high, indicates the LAO bus input is an
instruction or data from TMS34020 registers. When SF is low, indicates the LAO input is a data operand
from memory. In the host-independent mode, not used.

Test Clock for JTAG four-wire boundary scan. In both modes, TCK is low for normal operation.

Test Data Input for JTAG four-wire boundary scan. In both modes, TDI may be left floating.

Test Data Output for JTAG four-wire boundary scan

Test Mode Select for JTAG four-wire boundary scan. In both modes, TMS may be left floating.

5-V Power Supply. All pins must be connected and used.

Ground Pins. All pins must be connected and used.

Write Enable, active low. In the coprocessor mode, the write strobe from the TMS34020 to enable a write
to orfrom the TMS34082A LAO bus. In the host-independent mode, the TMS34082A write strobe output.

t The []·s denote the type of buffer utilized in the host-independent mode. If no []·s appear, the buffer type is identical for both modes of operation.

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8-11

' .. "." .. ","." .• ""' =e,.......,..,.,.., ".....,, ,.,..... _ ________ _

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150. SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

data flow

The TMS34082A has two bidirectional 32-bit buses, LAD31-0 and MSD31-0. Each bus can be used to pass
instructions and data operands to the FPU core and to output results. A separate 16-bit bus, MSA 15-0, provides
memory addressing capability on the MSD bus.

When the TMS34082A is used as a coprocessor for the TMS34020 Graphics System Processor (GSP), data
for the TMS34082A can be transferred through the 32-bit bidirectional data bus (LAD31-0) and may be passed
to any internal registers or to external memory on the memory expansion interface (MSD31-0). When the
TMS34082A is used as a standalone FPU, it can use both the LAD bus (LAD31-0) and the MSD bus (MSD31-0)
to interface with external data memory or system buses.

In the host-independent mode, the TMS34082A can be operated with the LAD bus as its single data bus and
the MSD bus as the instruction source, or with data storage on either port and the program memory on the MSD
bus.

The data space/code space (DS/CS) output can be used to control access either to data memory or program
memory on the MSD port. Up to 64K words of code space and 64K words of data space are directly supported.
In the coprocessor mode, both instructions and data are transferred on the LAD bus with the option of
accessing external user-generated programs on the MSD port.

One 32-bit operand can be input to the data registers each clock cycle. A 64-bit double-precision floating-point
operand is input in two cycles. Transfers to or from the data registers can normally be programmed as block
moves, loading one or more sets of operands with a single move instruction to minimize I/O overhead. Several
modes for moving operands and instructions are available. Block transfers up to 512 words between the LAD
and MSD buses can be programmed in either direction.

To permit direct input to or output from the LAD bus in the host-independent mode, other options for controlling
the LAD bus have been implemented. When two 32-bit operands are being selected for input to the FPU core,
one operand may be selected from LAD. On output from the FPU, a result may simultaneously be written to a
register and to the LAD bus.

During initialization in the host-independent mode, a bootstrap loader can bring 65 32-bit words from the LAD
bus and write them out to external program memory on the MSD bus, after which the device begins executing
from the first memory location (zero). The first word is loaded into the configuration register. This option facilitates
the initial loading of program memory on the MSD port upon power-up.

architecture

8-12

Because the sequencer, control and data registers, and FPU core are closely coupled, the TMS34082A can
execute a variety of complex floating-point or integer calculations rapidly, with a minimum of external data
transfers. The internal architecture ofthe FPU core supports concurrent operation ofthe multiplier and the ALU,
providing several options for storing or feeding back intermediate results. Also, several special registers are
available to support specific calculations for graphics algorithms. Each of the main architectural elements of the
TMS34082A is discussed below.

The control functions ofthe TMS34082A are provided by sequence control logic, register control logic, and bus
interface control logic, together with user-programmed configuration settings stored in the configuration register.
The on-board sequencer selects the next program execution address, either from internal code or from external
program memory. Next-address sources include the program counter, stack, interrupt vector register, interrupt
return register, or address register (for indirect jumps).

COUNTX, COUNTY, and MIN-MAX/LOOPCT registers are used for temporary storage by internal graphics
routines. They may also serve as temporary storage for the user.

TEXAS •
INSIRUMENlS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265'

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001- 03150, SEPTEMBER 1988 - REVISED MAY 1991

A separate FPU status register is provided, which can be used by test-and-branch instructions to control program
execution, Because of the large number of status outputs, branches on status can be easily programmed. The
status register contents are also important when dealing with status exceptions including such conditions as
overflow, underflow, invalid operations (divide by zero), or illegal data formats such as infinity, Not a
Number (NaN), or denormalized operands.

Register control logic permits all data and control registers to be accessed in accordance with applicable
architectural restrictions. Register files A and B can be written to or read from the external buses, as can the
control registers. Internal registers C and CT are embedded in the FPU core and can only be accessed by the
FPU internal buses. The C and CT registers cannot be used as sources or destinations for MOVE instructions,
and several registers (listed in Table 1) are not available as sources for FPU operations.

TABLE 1. INTERNAL REGISTERS

REGISTER ADDRESS REGISTER NAME RESTRICTIONS ON USE

00000 RAO

00001 RA1

00010 RA2

00011 RA3

00100 RA4

00101 RA5

00110 RA6

00111 RA?

01000 RA8

01001 RA9

01010 ct Not a source or destination for moves

01011 CTt Not a source or destination for moves

01100 STATUS Not a source for FPU instructions

01101 CONFIG Not a source for FPU instructions

01110 COUNTX Not a source for FPU instructions

01111 COUNTY Not a source for FPU instructions

10000 RBO

10001 RB1

10010 RB2

10011 RB3

10100 RB4

10101 RB5

10110 RB6

10111 RB?

11000 RB8

11001 RB9

11010 VECTOR Not a source for FPU instructions

11011 MCADDR Not a source for FPU instructions

11100 SUBADDO Not a source for FPU instructions

11101 SUBADD1 Not a source for FPU instructions

11110 IRAREG Not a source for FPU instructions

11111 MIN-MAX/LOOPCT Not a source for FPU instructions

t C and CT registers cannot both be used for FPU operand sources in the same instruction.

TEXAS •
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

"1"_-____ "...,.._ __ __________________ _
B-13

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

register files A and B, feedback registers C and CT

TMS34082A contains two register files, each with ten 64-bit registers and two 64-bit feedback registers. Most
instructions will operate on one value from each of the AA and AB register files and return the result to either
the AA or RS files or one of the feedback registers.

When the ONEFILE control bit is high in the configuration register, data written to a register in file AA is
simultaneously written to the corresponding location in file AB. In this mode, the two register files act as a
ten-word, two-read/one-write register file.

REGISTER FILE RA

RAO
RA1
RA2
RA3
RA4
RA5
RA6
RA7
RAB
RAg

63(MSB) O(LSB)

FEEDBACK REGISTERS

63(MSB) O(LSB)

gTE:j

REGISTER FILE RB

RBO
RB1
RB2
RB3
RB4
RB5
RB6
RB7
RBB
RB9

63(MSB) O(LSB)

FIGURE 1. DATA REGISTERS

Two 64-bit feedback registers, C and CT, are embedded in the FPU core. FPU instructions may use the feedback
registers as one of the operands, but the registers cannot be accessed for external moves. The C and CT
registers can be used as either the A or B operand, but both cannot be used as operands during the same
instruction. However, C (or CT) may be used for more than one operand in the same instruction. For example,
C + CT is not a valid instruction, but C + Cis.

The CT feedback register is used in integer divide operations as a temporary holding register. Any data stored
in CT will be lost during an integer divide.

internal control/status register definitions

configuration register definition

8-14

The configuration register (CON FIG) is a special 32-bit register that the user loads to configure the TMS34082A
for exception handling, IEEE mode (vs. fast mode), rounding modes, and data-fetch operations. The
configuration register is initialized to 'FFE00420' hex.

TEXAS ,.
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

BIT NO. NAME

31 MIVAL

30 MOVER

29 MUNDER

28 MINEX

27 MDIVO

26 MDENORM

25 AIVAL

24 AOVER

23 AUNDER

22 AINEX

21 ADENORM

11-20 N/A

10 REVISION

9 LADCFG

8 MEMCFG

7 N/A

6 ONEFILE

5 PIPES2

4 PIPESl

3 FAST

2 LOAD

1 RNDl

0 RNDO

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150. SEPTEMBER 1988 - REVISED MAY 1991

TABLE 2. CONFIGURATION REGISTER DEFINITION

DESCRIPTION

Multiplier invalid operation (I) exception mask. Initialized to 1 (enabled).

Multiplier overflow M exception mask. Initialized to 1 (enabled).

Multiplier underflow (U) exception mask. Initialized to 1 (enabled).

Multiplier inexact (X) exception mask. Initialized to 1 (enabled).

Divide by zero (DIVO) exception mask. Il')itialized to 1 (enabled).

Multiplier denormal (DENORM) exception mask. Initialized to 1 (enabled).

ALU invalid operation (I) exception mask. Initialized to 1 (enabled).

ALU overflow M exception mask. Initialized to 1 (enabled).

ALU underflow (U) exception mask. Initialized to 1 (enabled).

ALU inexact (X) exception mask. Initialized to 1 (enabled).

ALU denormal (DENORM) exception mask. Initialized to 1 (enabled).

Reserved, set to a" Os.

Revision number, read only. Set to 1 .

When low, CAS, WE, CORDY, COl NT, and ALTCH are active signals not affected by LOE. When high, LOE high
places CAS and WE in high impedance, as we" as the LAD bus. COINT, which defines the LAD cycle boundaries,
is controlled by bit 1 ofthe LAD move instruction instead ofthe set mask instruction. COINTwill remain high unless
a LAD move instruction (with bit 1 high) is in progress. The setting of this bit has no effect in the coprocessor mode.
Initialized to O.

When high, MCE becomes code space chip enable and DS/CS becomes data space chip enable (eliminates need
for external inverter). When low, MCE is chip select for external code and data space. DS/CS functions as an
address bit which selects code space (when low) or data space (when high). Initialized to O.

Reserved for later use. Initialized to O. Must be loaded with O.

When high. causes simultaneous write to both register files (for example, to both RAO and RBO at once). The
register files act as a single two-read, one-write register file. Initialized to O.

When high, makes FPU output registers transparent. When low, registers are enabled. Initialized to 1.

When high, makes FPU internal pipeline registers transparent. When low, registers are enabled. Initialized to O.

When high,fast mode is selected (a" denormalized inputs and outputs are 0). When low, IEEE mode is selected.
Initialized to O.

Load order. 0 = MSH, then LSH; 1 = LSH, then MSH. Initialized to O.

Rounding mode select 1. Initialized to O.

Rounding mode select O. Initialized to O.

LSH denotes least-significant half of a 64-bit word, MSH denotes most-significant half of a 64-bit word.

The mask bits serve as exception detect enables for the exception masks listed above. Setting the bit high
(logic '1') enables the detection of the specific exception. When an enabled exception occurs, the ED bit in the
status register will be set high and can be used to generate interrupts. The fast bit allows the TMS34082A to
control the handling of denormalized numbers. When the fast bit is set high, all denormalized numbers input to
the device are flushed to zero, and all denormalized results are also flushed to zero (this is also called 'sudden
underflow'). When the fast bit is low, IEEE mode is selected. Denormalized numbers may be generated by (or
input to) the ALU. Denormalized numbers must first be wrapped before being used as operands for multiply or
divide instructions.

The LOAD bit defines the expected order of double-precision operands. At reset, this bit will default to 0 indicating
that the most significant 32 bits are transferred first. If the bit is set to a 1, then the expected order of 64-bit data
transfers starts with the least significant 32 bits.

The RNDO and RND1 bits select the IEEE rounding mode, as shown in Table 3.

TEXAS .If
INSlRUMENlS

POST OFFICE BOX 655303 • DALlAS. TEXAS 75265 8-15

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150. SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

TABLE 3. ROUNDING MODE

RND1-RNDO ROUNDING MODES

o 0 Round towards nearest

o 1 Round toward zero (truncated)

1 0 Round towards infinity (round up)

11 Round towards negative infinity (round down)

status register definition

The floating-point status register (STATUS) is a 32-bit register used for reporting the exceptions that occur during
TMS34082A operations and status codes set by the results of implicit and explicit compare operations. The
status register is cleared upon reset, except for the INTENED flag, which is set to 1 in the coprocessor mode.

TABLE 4. STATUS REGISTER DEFINITION

SIT NO. NAME DESCRPTION

31 N

30 GT

29 Z

28 V

27 I

26 U

25 X

24 DIVO

23 RND

22 DENIN

21 DENORM

20 STX1

19 STXO

18 ED

17 UN ORO

16 INTFLG

15 INTENHW

14 NXOROV

13 VANDZ8

12 INTENED

11 INTENSW

10 ZGT

9 ZLT

8 YGT

7 YLT

6 XGT

5 XLT

4 HINT

3-0 N/A

8-16

Sign bit (A < 8 flag for compare)

A > 8 (valid on compare)

Zero flag (A = 8 for compare)

IEEE overflow flag. The result is greater than the largest allowable value for the specified format.

IEEE invalid operation flag. A NaN has been input to the multiplier or the ALU, or an invalid operation [(0 * 1)
or(00-00) or (- 00+ 00)] has been requested. This Signal also goes high if an operation involves the square root
of a negative number. When IVAL hoes high, the STX pins indicate which port had the NaN.

IEEE underflow flag. The result is inexact and less than the minimum allowable value for the specified format.
In fast mode, this condition causes the result to go to zero.

IEEE inexact flag. The result of an operation is inexact.

Divide by zero. An invalid operation involving a zero divisor has been detected by the multiplier.

The mantissa of a number has been increased in magnitude by rounding. Ifthe number generated was wrapped,
then the 'unwrap rounded' instruction must be used to properly unwrap the wrapped number.

Input to the multiplier is a denormalized number. When DENIN goes high, the STX pins indicate which port has
the denormal input.

The multiplier output is wrapped number orthe ALU output is a denormalized number. In fast mode, this condition
causes the result to go to zero. It also indicates an invalid integer operation with a negative unsigned integer
result.

A NaN or a denormalized number has been input on the A port.

A NaN or a denormalized number has been input on the 8 port.

Exception detect status signal representing logical OR of all enabled exceptions in the configuration register.

The two inputs of a comparison operation are unordered, Le.; one or both of the inputs is an NaN.

Software interrupt flag. Set by external code to signal a software interrupt.

Hardware interrupt (INTR) enable, active high (initialized to zero)

N (negative) XOR V (overflow)

V (overflow) AND Z (NOT zero)

ED interrrupt enable, active high (initialized to zero inthe host-independent mode, one in the coprocessor mode)

Software interrupt (lNTFLG) enable, active high (initialized to zero)

Zn > Zmax (valid for 2-D MIN-MAX instruction)

Zn < Zmin (valid for 2-D MIN-MAX instruction)

Yn > Ymax (valid for 1-0 or 2-D MIN-MAX instruction)

Yn < Ymin (valid for 1-0 or 2-D MIN-MAX instruction)

Xn > Xmax (valid for 1-0 or 2-D MIN-MAX instruction)

Xn < Xmin (valid for 1-0 or 2-D MIN-MAX instruction)

Hardware interrupt flag

Reserved

TEXAS ~
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

indirect address register (MCADDR) definition

The indirect address register (MCADDR) can be set to point to a memory location for indirect move or jump
operations through the MSD port. MCADDR is cleared upon reset.

31 16 o
x XXXXXXXXXXXXXX v INDIRECT ADDRESS

FIGURE 2. INDIRECT ADDRESS DEFINITION

The function of bit 16 varies, depending on whether the instruction is a MOVE or JUMP. During a MOVE
instruction, bit 16 selects data space when set high, or code space when low. During a JUMP instruction, bit 16
selects an internal instruction when set high, or an external instruction when low.

stack registers (SUBADD1-SUBADDO) definition

31

The stack contains two subroutine return address registers, SUBADDO and SUBADD1, which serves as a
two-deep LIFO (last-in, first-out) stack. A subroutine jump causes the program counter to be pushed onto the
stack, and a return from subroutine pops the last address pushed on the stack. More than two pushes will
overwrite the contents of SUBADD1.

Bit 31 (POinter) is set high in the stack location that was written last and reset to zero in the other stack location.
Setting bit 30 (Enable) high enables a write into bit 31 (set or reset the pointer) in either stack location. If bit 31
is zero in both SUBADDO and SUBADD1 (as when the stack has been saved externally and later restored),
SUBADDO can be designated as top of stack by setting bit 31. The stack pointers (bit 31) are cleared upon reset.

Bit 16 (I) is set high when the address in a stack location pOints to an internal routine, or set low when the address
is for an external instruction.

16 o
P jE\X x x x x x x x x x x x x \ I \ SUBADDO

P IElx x x x x x x x x x x x x I I I SUBADD1

FIGURE 3. STACK DEFINITION

interrupt vector register (VECTOR) definition

The interrupt vector register (VECTOR) serves as a pointer to an external program to be executed upon receipt
of an interrupt. Bit 16 (I) is always set low to point to a routine in external code space. The interrupt vector is
cleared on reset.

31 16 o
x XXXXXXXXXXXXXX I INTERRUPT ADDRESS

FIGURE 4. INTERRUPT VECTOR DEFINITION

interrupt return register (IRAREG) definition

The interrupt return register (I RAREG) retains a copy of the program counter at the time of an external interrupt.
This address is used as the next execution address upon returning from the interrupt. Bit 16 (I) is set high when
the address in the stack location pOints to an internal instruction, or set low when the address is for an external
instruction. This register is not affected by the reset signal.

31 16

x XXXXXXXXXXXXXX INTERRUPT RETURN ADDRESS

FIGURE 5. INTERRUPT RETURN DEFINITION

TEXAS .Jf
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

o

8-17

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150. SEPTEMBER 1988 -REVISED MAY 1991 - SCGS001

COUNTX and COUNTY registers definition

31

The counter registers (COUNTX, COUNTY) are used to store the current counts of the minimum and maximum
values when executing MIN-MAX instructions. COUNTX and COUNTY are cleared on reset.

16 o
COUNT FOR MAX VALUE COUNT FOR MIN VALUE

FIGURE 6. COUNTY AND COUNTX REGISTER DEFINITION

The COUNTX register is updated on both the 1-0 and 2-D MIN-MAX instruction such that the countofthe current
minimum value is in the lower 16 bits of the register and the count of the current maximum value is in the upper
16 bits. The COUNTY register is used only in the 2-D MIN-MAX instruction to keep track of the counts of the
minimum and maximum for the second value of a pair. The COUNTX and COUNTY registers may also be used
for temporary storage when not using the MIN-MAX instructions.

MIN-MAX/lOOPCT register

The MIN-MAX/LOOPCT register stores the current values of two separate counters. The LSH contains the
current loop counter, and the MSH is used to hold the current minimum or maximum value of a MIN-MAX
operation. The MIN-MAX/LOOPCT register is cleared upon reset. The MIN-MAX/LOOPCT register may also
be used for temporary storage when not using the MIN-MAX instructions.

16

COUNT FOR MIN·MAX VALUE LOOP COUNT

FIGURE 7. MIN-MAX/lOOPCT REGISTER DEFINITION

FPU core

8·18

The FPU core itself consists of a multiplier and an ALU, each with an intermediate pipeline register and an output
register (see Figure 8, FPU core functional block diagram). Four multiplexers select the multiplier and ALU
operands from the data registers, feedback registers, or previous multiplier or ALU result. Results are directed
either to the internal feedback registers (C or CT), the 20 data registers in register files RA and RB, or the ten
other miscellaneous registers.

Both the internal pipeline registers and the output registers can be enabled or made transparent (disabled) by
setting the PIPES2-PI PES 1 bits in the configuration register. When the device is powered up, the default settings
of the internal registers are PIPES2 high (output registers transparent) and PIPES1 low (internal pipeline
registers enabled).

When the FPU core is used for chained operations, the multiplier and ALU operate in parallel. Two data inputs
are provided from the RA and RB input registers, while multiplier and ALU feedback are used as the other two
operands. While in the chained mode, the output registers of the FPU must be enabled to latch feedback
operands. The appropriate registers must be enabled by setting the PIPES2-PIPES1 controls in the
configuration register at the beginning of chained operations, and the PIPES2-PIPES1 control should then be
reinitialized upon termination.

Fully pipelined operation (both pipeline and output registers enabled) affects timing when writing results back
to the RA and RB register files. To adjust writeback timing, it is possible to issue the NOP (no operation)
instruction to the FPU core when the results are to be retained in the output registers for one or more additional
cycles. The NOP instruction is only effective when the output registers are enabled, as each NOP causes the
output register contents to be retained for one additional cycle.

TEXAS ~
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - D3150. SEPTEMBER 1988 - REVISED MAY 1991

T O/FROM LAD BUS ,

I l

~

64

~

DATAI/O 32 CONFIG TO/FROM MSD
LOGIC

... ..

I REGISTERS I REGISTERS I CREG

RA9-RAO RB9-RBO I CTREG

64 64
64

I I
~ ~~ ~uy T I

~

MULTIPLIER STAGE 1 ALU STAGE 1

MULTIPLIER PIPELINE 64 ALU PIPELINE

MULTIPLIER STAGE 2 ALU STAGE 2

64 V 64

1 MULTIPLIER OUTPUT REG ,I ALU OUTPUT REG

I
1 I

~~ ~ MUX

64 64
I

~~ I STATUS REGISTER I
32

I

FIGURE 8. FPU CORE FUNCTIONAL BLOCK DIAGRAM

TEXAS •
INSTRUMENlS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

~

~~

BUS

8-19

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

TMS34082A operating modes

The TMS34082A can operate as a stand-alone floating-point processor or a graphics coprocessor to the
TMS34020 Graphics System Processor. Control of FPU operation is provided either from external program
memory or from the TMS34020. External instructions are addressed by address lines MSA 15-0 and are input
on MSD31-0. TMS34020 instructions are il")put on LAD31-0.

Both the MSD and LAD buses can be used for data transfers as well. Combinations of control signals distinguish
instruction fetches from data transfers. A single instruction may be used to transfer data and to perform an
operation within the FPU.

The TMS34082A supports external code and data storage with the memory expansion interface, MSD31-0. Up
to 64K 32-bit data operands and 64K instructions may be added externally to the TMS34082A. The signal DS/CS
controls whether data space or code space is being accessed, and read/write control is provided with the chip
enable (MCE), output enable (MOE), address enable (MAE), write enable (MWR), and address lines (MSA 15-0).

The TMS34082A also provides instructions that allow the TMS34020 to read/write directly from/to external
memory. The external code support permits full utilization of the TMS34082A features and instruction set.

coprocessor-mode operation

Operation in the coprocessor mode assumes MSTR is low. In this mode, the TMS34082A acts as a closely
coupled coprocessor to the TMS34020. The interface between the two devices consists of direct connections
between pins. More than one coprocessor may be connected to the TMS34020 by setting the appropriate
coprocessor 10 (CID2-CIDO). Up to four coprocessors executing in parallel may be used with a Single
TMS34020.

In the coprocessor mode, clock signals are provided by LCLK1 and LCLK2 from the TMS34020. Internally, the
FPU generates a rising clock edge from each LCLK1 edge (rising or falling). Thus, the TMS34082A actually
operates at twice the LCLK1 input clock frequency.

initialization (coprocessor mode)

On reset, the TMS34082A clears all pipeline registers and internal states. The configuration register and status
register return to their initialization values. When RESET returns high in the coprocessor mode, the TMS34082A
is in an idle state waiting for the next instruction from the TMS34020.

LAD bus control (coprocessor mode)

Both data and instructions are transferred over the bidirectional LAD bus in the coprocessor mode. A unique
combination of signal inputs distinguishes an instruction from data. SF, ALTCH, CAS, RAS, and WE are used
to deSignate coprocessor functions from other operations on the LAD bus.

Data may be transferred to or from TMS34020 registers or memory via LAD31-0. Transfers between the LAD
and MSD buses can also be programmed. A single coprocessor instruction may be used to transfer data to the
TMS34082A and then perform an FPU operation.

MSD bus control (coprocessor mode)

Use of the MSO bus in the coprocessor mode is optional. External memory on MSD31-0 can be used to store
data, user-programmed subroutines, or both. Different combinations of control signals distinguish between data
memory and code memory. Control signals for MSD and MSA buses operate the same in the host-independent
and coprocessor modes.

interrupt handling (coprocessor mode)

8-20

A software interrupt to the TMS34082A is generated by the set mask external instruction. When the interrupt
is granted, the current program counter is stored in the interrupt return register, and a branch to the interrupt
vector address is executed. Software interrupts may be disabled.

TEXAS ~
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150. SEPTEMBER 1988 - REVISED MAY 1991

If the exception detect interrupt (ED) is enabled, a TMS34082A exception causes COINT to go low, signalling
the exception to the TMS34020. This exception does not cause a branch to the interrupt vector. If its interrupts
are enabled, the TMS34020 will branch to an interrupt vector to service the TMS34082A request. Interrupts are
cleared by reading the TMS34082A status register.

host-independent mode operation

Operation in the host-independent mode assumes MSTR high. The TMS34082A has several hardware control
signals, as well as programmable features, which support system functions such as initialization, data transfer,
or interrupts in the host-independent mode. ClK provides the input clock to the TMS34082A. Details of
initialization, LAD and MSD bus interface control, and interrupt handling are provided in the following sections.

initialization (host-independent mode)

To simplify initialization of external program memory, the TMS34082A provides a bootstrap loader to perform
an initial program load of 64 instructions. Once invoked, the loader causes the TMS34082A to read 65 words
from the LAD bus and write 64 words out to the external program memory on the MSD bus, beginning with
location O. The first word read is used to initialize the configuration register.

This loader is invoked by first setting RESET low, and then INTR low. A separate timing diagram for using the
bootstrap loader is provided (see Figure 34). INTR should be taken low after RESET is already low, as shown
in the diagram. When the bootstrap loader is started, the FPU core is reset (internal states and status are cleared,
but not data registers) and the stack pointer, program counter, and interrupt vector register are all set to zero.

RESET must be set high again before the loader operation can start (see Figure 34). Once the loader is active,
an external interrupt (signalled by INTR low) will not be granted until the load sequence is finished. However,
RESET going low terminates the load sequence, regardless of whether the sequence is complete. When the
load sequence is finished, the device begins program execution at external address O.

LAD bus control (host-independent mode)

Data transfer from the LAD bus (LAD31-0) is controlled primarily by output Signals, AlTCH, WE, and CAS.
AlTCH is the address write strobe that signals an address is being output on the LAD bus. The CAS signal is
the read strobe, and WE is the write enable output to memory.

If a bidirectional FIFO is used instead of memory, CAS can be directly connected to the read clock and WE to
the write clock. The CC input can be used to signal the TMS34082A when data is ready for input from the FIFO
stack.

Data input on the LAD bus can be written to data registers, control registers, or passed through for output on
the MSD bus. Alternatively, the LAD bus input can be selected directly as an FPU source operand without writing
to a register.

An FPU result can be written to a data register and at the same time be passed out on the LAD bus. When this
is done, the clock period may need to be extended up to 15 ns (TMS34082A-40) to allow for the propagation
delay from the FPU core to the outputs.

Depending on the specific system implementation, transferring data to and from the LAD bus without intervening
register operations may significantly improve throughput. In the host-independent mode, data moves to and from
internal registers can be minimized at the cost of adjusting the clock period to assure integrity of FPU inputs to
and output from the LAD bus.

TEXAS •
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8-21

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150. SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

MSD bus control (host-independent mode)

The MSO bus can be used to access either external data memory or external code memory, depending on the
combination of control signals required. If the memory on the MSO port is shared with a host processor, the MAE
and ROY signals can be used to prevent conflicts between the host and the TMS34082A. When memory on the
MSO port is shared, the host processor can monitor the state of the TMS34082A memory chip enable (MCE)
to determine when the TMS34082A is not accessing the memory.

Otherwise, the MAE signal may be tied low (if unused), and the TMS34082A can use MOE, MCE, MWR, and
OS/CS to control external memory operations into either data space or code space, as selected by OS/CS.

interrupt handling (host-independent mode)

8-22

Interrupts to the TMS34082A can be s.igna"ed by setting the interrupt request input (INTR) low. INTR is
associated with the vector in the interrupt vector register. Software interrupts are signalled by setting the software
interrupt flag in the status register.

In the event of an FPU status exception in the host-independent mode, an interrupt is generated that causes
a branch to an exception handler routine. The address of the exception handler is stored in the interrupt vector
register by the user prior to execution ofthe FPU program. Interrupts may be disabled by setting the appropriate
bits in the status register.

TEXAS ."
INSJRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150. SEPTEMBER 1988 - REVISED MAY 1991

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)t

Supply voltage, Vee (see Note 1) .. 6 V
Input voltage range, VI ... - 0.3 V to 6 V
Off-state output voltage range ... - 2 V to 6 V
Operating free-air temperature range ... - O°C to 70°C
Storage temperature range ... - 10°C to 150°C

t Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage levels are with respect to ground (VSS).

recommended operating conditions
MIN NOM MAX UNIT

vee Supply voltage 4.75 5 5.25 V

VSS Supply voltage (see Note 2) .0 0 0 V

VIH High-level input voltage 2 Vee+0.3 V

VIL Low-level input voltage -0.3 O.B V

10H High-level output current -B mA

10L Low-level output current B mA

TMS340B2A-32 B
Coprocessor mode

TMS340B2A-40 10
fclock Clock frequency MHz

TMS340B2A-32 16.7
Host-independent mode

TMS340B2A-40 20

TA Operating free-air temperature 0 70 °e

NOTE 2: In orderto minimize noise on VSS, care should betaken to provide a minimum-inductance path between the VSS pins and system ground.

electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)

PARAMETER TEST CONDITIONS MIN TVP; MAX UNIT

VOH High-level output voltage Vee = 4.75 V, 10H=-BmA 2.6 V

VOL Low-level output voltage Vee =4.75 V, 10L=BmA 0.6 V

Vee = 4.75 V, Va = 2.B V 10
~ 10 High-impedance bidirectional pins output current

Vee = 4.75 V, Va = 0.6V -10

II Input current VI = VSS to Vee ±5 ~
Dynamic Vee = 5.25 V 300 mA

lee§ Supply current VI = VILmax or VIHmin, 10H = 10L= 0 50
Quiescent mA

VI = 0.2 Vor Vee - 0.2 V, 10H = 10L=0 50

ei Input capacitance 10 pF

:j: All typical values are at Vee = 5 V and T A = 25°C.
§ ICC is measured at maximum clock frequency. Inputs are presented with random logic highs and lows to assure the toggling of internal nodes.

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8-23

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGSOO1

coprocessor mode (MSTR low)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)t
propagation delay times

TMS34082A-32 TMS34082A-40
PARAMETER FIGURE

MIN MAX MIN MAX
UNIT

tp(ATCL-COAv) Propagation delay time, ALTCH low to COADY valid 11 40 35

tp(ATCH-LADV) Propagation delay time, ALTCH high to LAD data valid 16 35 30

tp(CASL-LADV) Propagation delay time, CAS low to LAD data valid 14 30 25

tp(CASH-LADZ) Propagation delay time, CAS high to LAD disabled 14 30 25

tp(LC1-DCSL)ML
Propagation delay time, LCLK1 t or ~ to DS/CS low with

17,21,23 21 18
MEMCFG low

tp(LC1-DCSH)ML
Propagation delay time, LCLK1 t or ~ to DS/CS high with 17,19,21,

21 18
MEMCFGlow 23,24,26

tp(LC1-DCSL)MH
Propagation delay time, LCLK1 t or ~ to DS/CS low with 18,20,22,

3 26 3 18
MEMCFG high 25,27

tp(LC1-DCSH)ML
Propagation delay time, LCLK1 t or ~ to DS/CS high with 18,20,22,

3 13 3 11
MEMCFG high 25,27

tp(LC1-DCSH)ML Propagation delay time, LCK1 t or ~ to MCE low
17-19,

3 21 3 18
21-27

tp(LC1-DCSH)ML
Propagation delay time, LCLK1 t or ~ to MCE high with 17,19,21,

3 23 3 18
MEMCFG low 23

tp(LC1-MCEH)MH
Propagation delay time, LCLK1 t or ~ to MCE high with 18,22,25,

3 13 11
MEMCFG high 27

17,18, ns

tp(LC1-MOEL) Propagation delay time, LCLK1 t or ~ to MOE low 21-23,26, 10 30 25
27

17,18,

tp(LC1-MOEH) Propagation delay time, LCLK1 t or ~ to MOE high 21-23,26, 3 13 11
27

tp(LC1-MSDV)
Propagation delay time, LCLK1 t or ~ to MSA address

17-27 20 18
valid

tp(LC1-MSDV) Propagation delay time, LCLK1 t or ~ to MSD data valid
19,20-22,

38 36
24,25

tp(LC1-MWRL) Propagation delay time, LCLK1 t or ~ to MWR low
19-22,24,

10 30 10 25
25

tp(LC1-MWRH) Propagation delay time, LCLK1 t or ~ to MWR high
20-22,24,

3 13 3 11
25

tpiLC1 H-COIL) Propagation delay time, LCLK1 t to COINT low 12 23 15

tp(LC1 H-COIHl Propagation delay time, LCLK1 t to COINT high 12 23 15

tp(LC1 H-LADV) Propagation delay time, LCLK1 t to LAD data valid 16 28 23

tp(MSDV-LADV) Propagation delay time, MSD data valid to LAD data valid 26,27 30 25

tp(RASH-LADXz\ Propagation delay time, RAS high to LAD disabled 16 30 25

t See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

8-24

TEXAS •
INSlRUMENTS

POST OFFICE BOX 655303 • PALLAS, TEXAS 75265

coprocessor mode (MSTR low)

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted) (continued)t
enable and disable times

TMS34082A-32 TMS34082A-40
PARAMETER FIGURE MIN MAX MIN MAX UNIT

ten(LOEL-LADZX) Enable time, LOE low to LAD enabled 16 3 15 3 14

ten(MAEL-MSAZX) Enable time, MAE low to MSA enabled 21,22 3 15 3 12 ns

ten(MAEL-MSDZX) Enable time, MAE low to MSD enabled 22 3 15 3 12

tdis{LOEH-LADXZ) Disable time, LOE high to LAD disabled 16 3 15 3 12

tdisJMAEH-MSAXZ) Disable time, MAE high to MSA disabled 21,22 3 15 3 12 ns

tdi~LMAEH-MSDXZ) Disable time, MAE high to MSD disabled 21 3 15 3 12

valid times

TMS34082A-32 TMS34082A-40
PARAMETER FIGURE

MIN MAX MIN MAX
UNIT

tv(MWRH-MSA) Valid time, MSA address after MWR high 20-22, 24, 25 1 1

tv(MWRH-MSD) Valid time, MSD output data after MWR high 20-22, 24, 25 1 1 ns
tv(LC1-MSA) Valid time, MSA address valid after LCK t or ~ 17-22,24-27 3 3

tvlLC1 L-CORl Valid time, CORDY valid after LCLK1 low 11 0 0

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless
otherwise noted)t
clock period and pulse duration

PIPELINE
TMS34082A-32 TMS34082A-40

PARAMETER FIGURE CONTROLS UNIT
PIPES2-PIPES1 MIN MAX MIN MAX

tc(LC1) Clock period, LCLK1 (1/fclock) 10,17-22,24-27
XO 125 100
11 152 136

ns

tc(LC2) Clock period, LCLK2 (1/fclock) 10
XO 125 100
11 152 136

Pulse duration, LCLK1 high 10
XO 52.5 42.5

tw(LC1H) 11 66 61

Pulse duration, LCLK1 low 10
XO 52.5 42.5

tw(LC1L) 11 66 61

tw(LC2H) Pulse duration, LCLK2 high 10
XO 52.5 42.5
11 66 61

Pulse duration, LCLK2 low 10
XO 52.5 42.5 ns tw(LC2L) 11 66 61

tw(DCSH)MH
Pulse duration, DS/CS high with

20,25,27 XX 5 7
MEMCFG high

tw(RSTL) Pulse duration, RESET low 12 XX 30 30

tw(MCEH) Pulse duration, MCE high 18,25,27 XX 5 7

tw(MOEH) Pulse duration, MOE high 17,18,23,26,27 XX 8 8

tw(MWRH) Pulse duration, MWR high 20,24,25 XX 8 8

t See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

TEXAS ..
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-25

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

coprocessor mode (MSTR low)

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless
otherwise noted) (continued)t
transition times

TMS34082A-32 TMS34082A-40
PARAMETER FIGURE MIN MAX MIN MAX UNIT

tt(LC1) Transition time, LCLK1 10 15 13.5

ttlLC2) Transition time, LCLK2 10 15 13.5 ns

setup and hold times

TMS34082A-32 TMS34082A-40
PARAMETER FIGURE MIN MAX MIN MAX UNIT

tsu(BUS-LC2H) Setup time, BUSFLT valid before LCLK2 t 11 20 13

tsu (CC-LC1) Setup time, CC valid before LCLK1 t or ~ 12 7 5

tsu(LAD-ATCL) Setup time, LAD address valid before ALTCH low 13-16,23 15 12

tsu(LAD-CASH) Setup time, LAD address valid before cas high 13,15,24,25 13 10

tsu(LRD-LC2H) Setup time, LRDY valid before LCLK2 t 11 20 13

tsu(MSD-LC1) Setup time, MSD data valid before LCLK1 t or ~ 17,18,23 11 7 ns

tsu(RASH-ATCU Setup time, RAS high before ALTCH low 13-15,23 35 30

tsu(RDYL-LC1) Setup time, RDY low before LCLK1 t or ~ 12 20 10

tsu(RSTH-LC1) Setup time, RESET high before LCLK1 t or ~ 12 40 40

tsu(SF-ATCL) Setup time, SF valid before ALTCH low 13-16,23 15 10

tsu(INEL-CASL) Setup time, WE low for data write before CAS low 13,16 15 12

th(ATCH-SF) Hold time, SF valid after ALTCH high 13-15,23 15 12

th(ATCL-LAD) Hold time, LAD address valid after ALTCH low 13-16,23 21 13

th(CASH-LAD) Hold time, LAD data valid after CAS high 13,15,24,25 0 0

th(CASH-SF) Hold time, SF valid after CAS high 13-15,23 15 12

th(LC1-GC) Hold time, CC valid after LCLK1 t or ~ 12 3 3

th(LC1-MSD) Hold time, MSD input data valid after LCLK1 t or ~ 17,18,23 5 5 ns

th(LC1-RDY) Hold time, RDY valid after LCLK1 t or + 12 3 3

th(LC1 H-LC2L) Hold time, LCLK2 low after LCLK1 high 10 16 12

th(LC2H-BUS) Hold time, BUSFLT valid after LCLK2 high 11 0 0

th(LC2H-LC1 H) Hold time, LCLK1 high after LCLK2 high 10 16 12

th(LC2H-LRD) Hold time, LRDY valid after LCLK2 high 11 0 0

thIWEH-SF) Hold time, SF valid after WE high 13 15 12

t See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

B-26

TEXAS ,If
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

coprocessor mode (MSTR low)

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless
otherwise noted) (continued)t

de/aytimes

TMS34082A·32 TMS34082A-40
PARAMETER FIGURE MIN MAX MIN MAX UNIT

td(DCSL-MCEL)MH
Delay time, DS/CS high to MCE low with MEMCFG

18,22 4 4
high

td(DCSH-MWRLl Delay time, DS/CS high to MWR low 19,24 6 6

td(MCEH-DCSL)MH
Delay time, MCE high to DS/CS low with MEMCFG

20 4 4
high

td(MCEH-MWRLl Delay time, MCE high to MWR low 25 7 7

td(MOEH-MWRLl Delay time, MOE high to MWR low 19 7 7

20-22,24, ns
td(MSAV-MWRL) Delay time, MSA valid to MWR low

25
5 5

td_(MSDZ-MOEL) Delay time, MSD disabled to MOE low 21,22 3 3

tqfMWRH-MCEL)MH Delay time, MWR high to MCE low with MEMCFG high 25 4 4

td(MWRH-MOELl Delay time, MWR high to MOE low 19,21,22 7 7

td(MWRH-MSDVl) Delay time, MWR high to MSD disabled 21 1 9 1 9

td(MWRL-MSDZX\ Delay time, MWR low to MSD enabled 21,22 0 7 0 7

t See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

TEXAS .Jf
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-27

TMS34082A
GRAPHICS FLOATlNG·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

host-independent mode (MSTR high)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)t
propagation delay times

TMS34082A-32 TMS34082A-40
PARAMETER FIGURE MIN MAX MIN MAX UNIT

tp(ClKH-ATCH) Propagation delay time, ClK t to AlTCH high 29,30 10 8

tp(ClKH-ATCU Propagation delay time, ClK t to AlTCH low 29,30 23 20

tp(ClKH-CASH) Propagation delay time, ClK t to CAS high
29,31,32,

10 8
34-36

tp(ClKH-CASl) Propagation delay time, ClK t to CAS low
29,31,32,

23 20
34-36

tp(ClKH-COIH) Propagation delay time, ClK t to COINT high
29-31,33,35,

20 15
36,46

tp(ClKH-COll) Propagation delay time, ClK t to COINT low
29-31,33,35,

20 15
36,46

tp(ClKH-CORHl Propagation delay time, ClK t to CORDY high 46 20 15

tp(ClKH-CORll Propagation delay time, ClK t to CORDY low 46 20 15

tp(ClKH-DCSH) MH
Propagation delay time, ClK t to DS/CS high with 36,38,40,

1 10 1 10
MEMCFG high 42-44

tp(ClKH-DCSH)Ml
Propagation delay time, ClK t to DS/CS high with 35,37,39,41,

20 17
MEMCFG low 45,46

tp(ClKH-DCSl)MH
Propagation delay time, ClK t to DS/CS low with 36,38,40,

3 20 3 17
MEMCFG high 42-44

tp(ClKH-DCSl)Ml
Propagation delay time, ClK t to DS/CS low with

37,41,45-47 20 17
MEMCFG low ns

tp(ClKH-ITGHl Propagation delay time, ClK t to INTG highi 47 20 15

tp(ClKH-ITGl) Propagation delay time, ClK t to INTG low 47 25 15

tp(ClKH-LADV) Propagation delay time, ClK t to LAD valid
29, 30, 33-35,

30 25
43,44

tp(ClKH-MCEH) MH
Propagation delay time, ClK t to MCE high with

36, 38, 42-46 1 10 1 10
MEMCFG high

tp(ClKH-MCEH)Ml
Propagation delay time, ClK t to MCE high with 37,39,41,

2 20 2 17
MEMCFG low 45-47

tp(ClKH-MCEll Propagation delay time, ClK t to MCE low 35-39,41-47 3 20 3 17

tp(ClKH-MOEH) Propagation delay time, ClK t to MOE high 37,38,41-47 1 10 1 10

tp(ClKH-MOEl) Propagation delay time, ClK t to MOE low 37,38,41-47 10 28 10 25

tp(ClKH-MSAV)
Propagation delay time, ClK t to MSA address

35-47 20 17
valid

tp(ClKH-MSDV) Propagation delay time, ClK t to MSD data valid 35, 36, 39-42 35 33

tp(ClKH-MWRH) Propagation delay time, ClK t to MWR high 35, 36, 40-42 1 10 1 10

tp(ClKH-MWRl) Propagation delay time, ClK t to MWR low 35, 36, 39-42 10 28 10 25

tp(ClKH-WEHl Propagation delay time, ClK t to WE high 30, 33, 43, 44 10 8

tp(ClKH-WEU Propagation delay time, ClK t to WE low 30, 33, 43, 44 23 20

t See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

i Interrupts are not granted during multicycle instructions.

8-28

TEXAS ~
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001- D3150, SEPTEMBER 1988 - REVISED MAY 1991

host-independent mode (MSTR high)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted) (continued)t

enable and disable times

TMS34082A-32 TMS34082A-40
PARAMETER FIGURE MIN MAX MIN MAX UNIT

ten(ClKH-LADZX) Enable time, ClK high to LAD enabled 29,30 5 5

tenJlOEl-LADZXJ Enable time, lOE low to LAD enabled 33 5 18 5 14

ten(MAEl-MSAZX) Enable time, MAE low to MSA enabled 41,42 3 15 3 12 ns

ten(MAEl-MSDZX) Enable time, MAE low to MSD enabled 42 3 15 3 12

tdis(ClKH-LADXZj Disable time, ClK high to LAD disabled+ 29,30 25 23

tdis(lOEH-LADXZ) Disable time, lOE high to LAD disabled 33 5 15 5 12

tdis(MAEH-MSAXZ) Disable time, MAE high to MSA disabled 41,42 3 15 3 12 ns

tdislMAEH-MSD)(Z) Disable time, MAE high to MSD disabled 42 3 15 3 12

valid times

TMS34082A-32 TMS34082A-40
PARAMETER FIGURE

MIN MAX MIN MAX
UNIT

tv(ATCH-LAD) Valid time, LAD output data after AlTCH high 29,30 2 2

tv(ClKH-MSA) Valid time, MSA address valid after ClK high 35-47 3 3

tv(MWRH-MSD) Valid time, MSD data valid after MWR high 35, 36, 40-42 . 1 1 ns

tv(MWRH-MSA) Valid time, MSA address valid after MWR high 35, 36, 40-41 1 1

tv(WEH-LAD) Valid time, LAD data valid after WE 30, 33, 43, 44 2 2

t See Parameter Measurement Information for load cirCUIt, voltage waveforms, and timing diagrams. The device parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

:j: Valid only for last write in sesries. The LAD bus is not placed in high-impedance state between consecutive outputs.

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-29

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150. SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

host-independent mode (MSTR high)

timing requirements over recommended ranges of supply voltage and operating free-air temperatre (unless
otherwise noted) t
clock period and pulse duration

PIPELINE
TMS34082A·32 TMS34082A·40

PARAMETER FIGURE CONTROLS UNIT

PIPES2·PIPES1 MIN MAX MIN MAX

tc(ClK) Clock period time. ClK (l/fclock) 28-31.33-48
XO 60 50
11 66 61 ns

tw(ATCH) Pulse duration, AlTCH high 30 XX 7 7

tw(CASH) Pulse duration, CAS high 29, 31, 32, 35, 36 XX 7 7

twLClKH) Pulse duration, ClK high 28 XX 15 15

tw(ClKl) Pulse duration, ClK low 28 XX 15 15

tw(DCSH) Pulse duration, DS/CS high 36,40,44 XX 5 5

tw(ITRl) Pulse duration, INTR low 34,47 XX 20 15 ns

tw(MCEH) Pulse duration, MCE high 36, 38, 44-46 XX 5 5

tw(MOEH) Pulse duration, MOE high 37, 38, 43-46 XX 8 8

tw(MWRH) Pulse duration, MWR high 35,36, 40 XX 8 8

tw(RSTU Pulse duration, RESET low 34 XX 30 20

twIWEH) Pulse duration, WE high 30, 33, 43, 44 XX 7 7

transition time

TMS34082A·32 TMS34082A-40
PARAMETER FIGURE MIN MAX MIN MAX UNIT

tt(ClK) Transition time, ClK 28 15 15 ns

t See Parameter Measurement Information for load Circuit, voltage waveforms, and timing diagrams. The device parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

8-30

TEXAS .Jf
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

host-independent mode (MSTR high)

timing requirements over recommended ranges of supply voltage and operating free-air temperatre (unless
otherwise noted) (continued)t
setup and hold times

TMS34082A-32 TM534082A-40
PARAMETER FIGURE MIN MAX MIN MAX UNIT

tsu(CC-ClKH) Setup time, CC before ClK high 45 7 5

tsu(LADV-ClKl)
Setup time, LAD data valid before ClK low for

32 10 10 immediate data input;

tsu{lTRl-ClKH} Setup time, INTR before ClK high 47 20 10

tsu(LAD-ClKH) Setup time, LAD input data valid before ClK high
29,31,

9 9
34-36

ns
tsu(lRD-ClKH) Setup time, lRDY before ClK high 48 20 15

tsu(MSD-ClKH) Setup time, MSD data valid before ClK high
37,38,

10 8
43-47

tsu{RDYV-ClKH) Setup time, ROY valid before ClK high 48 20 10

tsuJRSTH-ClKH) Setup time, RESET high before ClK high 34 40 40

tsu(RSTl-ITRl)
Setup time, RESET low before INTR low for bootstrap

34 10 10 loader

th(ClKH-CC) Hold time, CC after ClK high 45 0 0

th(ClKH-ITR) Hold time, INTR after ClK high 47 0 0

th(ClKH-LAD) Hold time, LAD input data valid after ClK high
29,31,35,

3 3
36

th(ClKH-lRD) Hold time, lRDY after ClK high 48 0 0

37,38,
ns

th(ClKH-MSD) Hold time, MSD data valid after ClK high
43-47

2 2

th(ClKH-RDY) Hold time, ROY after ClK high 48 0 0

th(ClKl-LAD)
Hold time, LAD data after ClK low for immediate data

32 5 5 input;

th(ITRl-RSTH)
Hold time, RESET low after INTR low for bootstrap

34 10 10
loader

t See Parameter Measurement Information for load Circuit, voltage waveforms, and timing diagrams. The device parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

; This mode permits data input that does not meetthe minimum setup before ClK high. The clock period forthis mode must be extended according
to the equation:

Adjusted clock period = Normal clock period + Data delay + 5 ns

The data delay is the delay from ClK high to valid data. This mode may not be used to input data for divides or square roots.

TEXAS ."
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-31

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

host-Independent mode (MSTR high)

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless
otherwise noted) (continued)t
delay times

TMS34082A-32 TMS34082A-40
PARAMETER FIGURE MIN MAX MIN MAX UNIT

td(ATCH-CASL) Delay time, ALTCH high to CAS low 29 6 6

tdiATCH-WEL) Delay time, ALTCH high to WE low 30 5 5

td!CASH-ATCL) Delay time, CAS high to ALTCH low 29 5 5

td(CASH-WEL) Delay time, CAS high to WE low 33 5 5

td(COIL-ATCL) Delay time, COINT low to ALTCH low 29,30 0 0

td(COIL-CASL) Delay time, COINT low to CAS low 31,35,36 2 2

td{COIL-WEQ Delay time, COINT low to WE low 33 0 0

td(DCSH-MCEL)MH
Delay time, DS/CS high to MCE low with MEMCFG

38,42 4 4
high

td(DCSH-MWRL) Delay time, DS/CS high to MWR low 35,39 6 6

td(MCEH-DCSL)MH
Delay time, MCE high to DC/CS low with MEMCFG

40 4 4
high

td(MCEH-MWRL) Delay time, MCE high to MWR low 36 7 7 ns

td(MOEH-MWRL) Delay time, MOE high to MWR low 39 7 7

td(MSAV-MWRL) Delay time, MSA valid to MWR low
35,36,

5 5
40-42

td(MSDZ-MOEL) Delay time, MSD disabled to MOE low 41,42 3 3

td(MWRH-MCEL)MH Delay time, MWR high to MCE low with MEMCFG high 36 4 4

td(MWRH-MOEL) Delay time, MWR high to MOE low 41,42 7 7

td(MWRH-MSDXZ) Delay time, MWR high to MSD disabled 42 1 9 1 9

td!MWRL-MSDZXl Delay time, MWR low to MSD enabled 41,42 0 7 0 7

td(WEH-ATCL) Delay time, WE high to ALTCH low 29 5 5

td(WEH-CASL} Delay time, WE high to CAS low 31 5 5

t See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

TEXAS ."
INSlRUMENlS

8-32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - D3150. SEPTEMBER 1988 - REVISED MAY 1991

EXPLANATION OF LETTER SYMBOLS

This data sheet uses a type of letter symbol based on JEDEC Std-100 and IEC Publication 748-2, 1985, to
describe time intervals. The format is:

tA(BC-DE)F
Where:

Subscript A indicates the type of dynamic parameter being represented. One of the following is used:

Switching Characteristics:
p Propagation delay time
en = Enable time
dis = Disable time

Timing Requirements:
c Clock period
w Pulse duration
t Transition time
d Delay time
su Setup time
h Hold time
v Valid time

Subscript 8 indicates the name of the signal or terminal for which a change of state or level (or establishment
of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the
time interval.

Subscript C indicates the direction of the transistion and/or the final state or level of the signal represented by
B. One or two of the following are used:

H High or transition to high
L Low or transition to low
V A valid steady-state level
X Unknown, changing, or "don't care" level
Z High-impedance (off) state

Subscript 0 indicates the name of the signal or terminal for which a change of state or level (or establishment
of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time
interval.

Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by
D. One or two of the symbols described in Subscript C are used.

Subscript F indicates additional information such as mode of operation, test conditions, etc.

The hyphen between the C and D subscripts is omitted when no confusion is likely to occur. For these letter
symbols on this data sheet, the signal names are further abbreviated as follows:

SIGNAL B&D SIGNAL B&D SIGNAL B&D SIGNAL B&D SIGNAL B&D

NAME

ALTCH

8USFLT

CAS

CC

CIO(O:2)

CLK

COINT

SUBSCRIPT NAME

ATC COROY

8FT OC/CS

CAS EC(O:1)

CC INTG

CIO INTR

CLK LAO(O:31)

COl LCLK1

SUBSCRIPT

COR

OCS

EC

INT

ITR

LAO

LC1

NAME SUBSCRIPT

LCLK2 LC2

LOE LOE

LROY LRO

MAE MAE

MSTR MST

MCE MCE

MOE MOE

TEXAS ~
INSTRUMENTS

NAME

MSA(O:15)

MSO(O:31)

MWR

RAS

ROY

RESET

SF

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

SUBSCRIPT NAME SUBSCRIPT

MSA TCK TCK

MSO TOI TOI

MWR TOO TOO

RAS TMS TMS

ROY VccNss -
RST WE WE

SF MEMCFG M

8-33

--......-..-------------------......... ---,~""'""''''''''''''''''''''~'''''''"''-

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150. SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT PARAMETERS

TIMING CLOADt IOL IOH VLOAD
PARAMETERS (pF) (mA) (mA) (V)

ten
tpZH

-8
0

tpZL
65 8

3

tdls
tpHZ

-8
tpLZ

65 8 1.5

FROM OUTPUT _ __ _«
UNDER TEST VLOAD

tp 65 8 -8 :I:
t CLOAD Includes the typical load circuit and distributed capacitance.

:I: VLOAD - VOL = 50 Q. where VOL = 0.6 V. IOL = 8 mA.
IOL

TIMING
INPUT

3V

(See Note A)
OV

I+- tf

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT RISE AND FALL TIMES

3V

OV

---- 3V
INPUT L 15V \15V

(See Note A) --'l' I • 0 V

tp~ ~tp
1 Y 1 1-- VOH

IN-PHASE 1 1.5 vi \L 1.5 V
OUTPUT . "-=.

OUT-OF-PHASE
OUTPUT

- __ 1-- 1 VOL

I~ ~I ~tp
tp~ 1

{ v::-: VOH
\. 1.5V T 1.5V

. . - - VOL

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

HIGH-LEVEL
PULSE

LOW-LEVEL
PULSE

LOAD CIRCUIT

-- 3V
1.5 V 1.5 V

I I OV

*--tw--+'
I I

I 3V

1.5 V 1.5 V
____ OV

VOLTAGE WAVEFORMS
PULSE DURATION

OUTPUT~3V
CONTROL
(low-level 1.5 V 1.5 V
enabling) 1 Q.. ____ OV

tpZL -.I I+- 1

1 I tpLZ~ I+-
__ ~I r+1 ___ LI ___ - 3V

WAVEFORM 1 1 'J 1 1r--- 1.5V

(See Note B) 1 \ 1.5 V 1 L V.EL~ O~ VVOL

1 tPHZ-+i I+-
tpZH -+j I+- 1 oJ..

I J -- VOH

w~~;~~~:c~ ___ ..Ii ~~ __ ~~~5V
VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES: A. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by pulse generators having the following
characteristics: PRR = 1 MHz. Zo = 50 Q. tr s; 6 ns. tf s; 6 ns.

8-34

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
C. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. For tpLZ

and tpHZ. VOL and VOH are measured values.

FIGURE 9

TEXAS ,If
INSIRUMENlS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150. SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

~ tC(LC1) ., , ,
i+- tw(LC1H) ~ --.! ' , I I
, ~ tW(LC1L) ~I -+j ~ tt(LC1) -+j ~ tt(LC1)

LeLK1 J. \ 1,.-----"!~ H
" I '~----'I , , ,

LCLK2

II1II ~, th(LC1 H-LC2L) , , I
, , , , ,

th(LC2H-LC1 H) 14 ~ -- tw(LC2L) ----* , I
~ tw(LC2H) ~ I
1 ' I

----t 1 t
14 tc(LC2) ~

, , , ,
tt(LC2)~ j4- tt(LC2) ~ j4-

N X-, ,"------', ,

FIGURE 10. COPROCESSOR MODE, INPUT CLOCKS

Q4t Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

t 01. 02, 03, and 04 represent the first. second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

FIGURE 11. COPROCESSOR MODE, BUS CONTROL SIGNALS

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8-35

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

8-36

PARAMETER MEASUREMENT INFORMATION

LCLK1 --_Yo ~ ___ ,r ~ __ r
1 I 1

I.~-.~r-I tsu(RSTH-LC1) 1
I 1 1

------~--~I-----' 1 1 AUCH I '~ ____ ~I ______ ~I __________ _

I 1 1

CC

ROY

I
I

1 1 1
I 1 1

I 1 I

~I~---''---~ tw(RSTL)

1

1

1

I
II.. I bll t

1 .. w(RSTL)

~ 4'
: ~ th(LC1-CC)

~ tsu(CC-LC1)

1

1

: 7' : \J
/1 1 1'" ---

: !+-+t- th(LC1-CC)

~ tsu(CC-LC1)

1

1

1

1

1

1

1
I I I 1 1
I l4-+t- th(LC1-RDy) I ~ th(LC1-RDy)
II! ~ _I 1

i+-+T- tsu(RDYL-LC1) ~ tsu(RDYL-L~1)
1 "J. IJI'~I----
1 i' 1 '1 1
I 1 I I
1 ~ ~ 1 tp(LC1 H-COIL) i~ ~I tp(LC1 H-COIH)
1

FIGURE 12. COPROCESSOR MODE, CONTROL SIGNALS

TEXAS •
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001- D3150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

LCLK1 -=-1 ,Q1-+_Q_2---i...; 3 __ Q4--rV,Q1-+_Q_2--j,.1~3 04 /,Q1 ___ Q2 ~ 3-+_Q_4--rL;-L

LCLK2 "--+_-!'V

. I 'k~ ______ -+-________ ...;..-____ _ I I

I i~: -I: 1h(A~CL-LAI) th(,::ATCH-S,:.:.F) ~I' I
tSU(LAD-J}TCL) ~ : : :

LAD31-0 __ +-') JjNSTRIUCTION~': ~DATA IN? i.' Ii < DATA IN ~-
I tsU(LAD-C~SH) -t!I---+I, I : I
I ~ tl:l(CASH7LAD)

--JV I i
14II,f----+----<--~~'I....; tSU(R~SH-ATqL)

I I
I I

I , SF

t 01 , 02. 03, and 04 represent the first. secone!. third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

FIGURE 13. COPROCESSOR MODE, TMS34020 GSP TO TMS34082A

TEXAS ~
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

I

B-37

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150. SEPTEMBER 1988 - REVISED MAY 1991 - SCGSOO1

PARAMETER MEASUREMENT INFORMATION

04t 01 02 03 04 01 02 03 04 01 02 I 03 04 01

LCLK1 / I" "
!r!-

-

LCLK2 ,-,+--r/

~. . . II
' .. : ~I !; th(•. ,• ATCH.~F) ~"' , II tsu LAD.AT,CL) ""'H : I i th(A CL.LAt?) , : , I

LAD31.0 .>' (lNSTRUCTION'~:)-: --+----i----i-,-<{DATAOUT) : I {DATA OUT}
-....., I :1 ',! I Ii,

'I tp(C~,,' SL·LADV) 1,4:
1

! ~I 1,4.:.' * .. 1 tp(CASH.LADZ) Ii'
I : I :1

SF

t 01. 02, 03, and 04 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

B-38

FIGURE 14. COPROCESSOR MODE, TMS34082A TO TMS34020 GSP
INCLUDING COPROCESSOR INTERNAL CYCLE

TEXAS ..
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Q4t Q1

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

Q2 Q3 Q4 I Q1 Q2 Q3 Q4
i

Q1 i Q2 Q3 Q4, Q1 !

LCLK1 _' .",--+_~Irl-

LCLK2 "'--_--'v

{ " ,~
: :. ~II,""'" th(A+CL-LA6) th~ATCH-~F) ~

tsu LAD-A1;CL) --t~ : ,! , '"',
LAD31-0)' "- ADDRESS ">' ---+--!---<.-' DATA IN '">-+--+--</ DATA IN~-

--;.....I !'" -' I
I, ! ,I ,
, tsu(LAD-CASH) +-+'''-I~ t I

" " h(CAS~-LAD) /' --'-,I _
'V, I I" ;

:1
14--:---i---t ~!+- tsU(RASH-ATCL) i !

: "jI----+---'A' " I: :
, th(CASH-~F) ~ , ' , , ,

WE --Y jl I i
l.. I
, "I ,tsu(SF;ATCL) I
, I

! SF '" -' .,.

t 01, 02, 03, and 04 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

FIGURE 15. COPROCESSOR MODE, DRAMNRAM MEMORY TO TMS34082A

TEXAS ."
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-39

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

Q2t! Q3 Q4 I
LCLK1 -'"
LCLK2

PARAMETER MEASUREMENT INFORMATION

Q1 i Q2 Q3

I
Q4 Q1 J Q2 Q3 Q4! Q1 I Q2 Q3 Q4 Q1 Q2

""-+-----rV "~-"'r'1
I
I

" : 1/ l I

i : -,-I
ALTCH , I!'"' ----f------!--- _---+-I .. ~I t I I: .,i .. 1 ',t :.:

H tsu(t.AD-ATPL) I - Jl"i
l
1~(ATC1.,.,-LAD'1 .. : ~ , I tP .. , .. (LC1 ~ ,-LAD~ ... ,. ,

LAD31-0

SF

i I I~ "I th~ATCL-~D) I
ADDRESS ~>--+---!--+--+-<~)< X ~AJ: Xx)< XX ~~: XX X)<

i I I' ip(RAS~.LAD~ 11 I~
-+--""d' -" I .A i

Ii i I

!! I I :

:1 I I ~ i " / :
II II H tSU(W~L-CASL) I
I! , I ! i l

! II i , 1'-, i /'---..." /
, I; ! , --!--i-'

H tSU(S~-ATCq
I!

I

I
, I '
~ ten(LOEI-LADZ>q

,...._..,......' iii

t 01, 02, 03, and 04 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

8-40

FIGURE 16. COPROCESSOR MODE, TMS34082A TO DRAMNRAM MEMORY

TEXAS ..If
INSJRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001 - D3150. SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

LCLK1

MSA15-0 XZ>%Z~ ADDRESS O~l$X ADDRESS + ><><ZZZZ
I I I th(LC1-MSD) I

I tsu(MSD-LC1) ~ I I

MSD31-O X~X%oATA:IN%><><XXX INSf·IN XXXxXXx
___ ...,..; __ 7 'elLC1-DCSHIML i

/ DS/CSt
I ~ I
i4i~-~~1- tp(LC1-DCSL)ML I

4-:~---I~~I- tp(LC1-MCEL) I i4:~---.!~11- tp(LC1-MCEH)ML

---:~-t: y
I I
I I

------~~ !

MOE§

"'I~--~~II- tp(LC1-MOEL) I
: I+-+t- tp(LC1-MOEH)

----------~---------~--------_/'
~tW(MOEH)

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:j: MCE dos not toggle at each clock edge.
§ MOE goes high at each clock edge.
NOTE: This example shows a data read followed by an instruction read.

FIGURE 17. COPROCESSOR MODE MSD BUS TIMING, MEMORY TO TMS34082A WITH MEMCFG LOW

TEXAS •
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8-41

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

LCLK1

14 tc(LC1) ~ 1 _____ X ~ X--------------
14 ~I tp(LC1-MSAV) I 1

1 I 1+---+1- tv(LC1-MSA) 1 zXX¥zZ% ADDRESS O~ ADDRESS O~T xx ADDRESS OUT MSA15-0

MSD31-o

DS/CS

1 ~ tp(LC1-MOEH)

i4 ~I tp(LC1-MOEL) I

-----------~ ~-------~--------
tw(MOEH) '!4--+1

NOTE: This example shows a data read followed by an instruction read followed by an instruction read. This option for using oS/es as data space
chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG
is high, OS/CS and MCE rise after every clock edge. In this mode, OS/CS and MCE may not both be active (low) at the same time.

FIGURE 18. COPROCESSOR MODE MSD BUS TIMING, MEMORY TO TMS34082A WITH MEMCFG HIGH

8-42

TEXAS •
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001- 03150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

LCLK1

MSD31~ xxx5<xxx>k DATA OUT Vvx DATA IN:
, j ~ XXxXXx
, , tp(LC1.DCSH)ML -l++' :
, ~ { : ~-------DS/CSt

MOE§

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:; MCE does not toggle at each clock edge.
§ MWR goes high at each clock edge.
NOTE: This example shows a data write followed by a code read.

FIGURE 19. COPROCESSOR MODE MSD BUS TIMING, TMS34082A TO MEMORY WITH MEMCFG LOW

TEXAS •
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-43

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

LCLK1

II1II tc(LC1) .-1 _--J4' ~ X,..------
1" hi 1l1li ~I tp(LC1-MSAV) 1"

• • Ip(LC1-MSAV) ! I I----I~~I- tv(LC1-MSA)

x~xX>k ADDRESSO~T ~ ADDRESSO~T %><ADDRESSOUT

1 1 1 1 -+I II1II- tv(MWRH-MSA)

1l1li .1 tp(LC1-MSDV)' 1 1 I

MSA15-0

MSD31-O z><><$><><><% DATA D~ $ DATA O~T....l ~z DATA OUT

I ~ ~ tp(LP1-DCSH)MH I ~ ~ tv(MWRH.MSD) --_ ... : IIII--i 'p(LC1-DCSL)MH N : A
I I I II I 1'------
I !+---+r td(MCEH.DCSL)MH j4-+r- ~w(DCSH)MH I :

~ 1 I

DS/CS

1 I I

----"1 1 I I

1l1li ~ tp(LC1-MWRL) 1 1 ~tp(LC1-MWRH)
1 -+11+ td(MSAV-MWRL) :

----------~-------~ ~-------I 1

~tW(MWRH)

___ 7
NOTE: This example shows multiple data writes. Timing for multiple code writes would be similar. This option for using OS/CS as data space chip

enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is
high: OS/CS and MCE rise after every clock edge. In this mode, OS/CS and MCE may not both be active (low) at the same time.

FIGURE 20. COPROCESSOR MODE MSD BUS TIMING, TMS34082A TO MEMORY WITH MEMCFG HIGH

8-44

TEXAS ~
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150. SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

I~ tc(LC1) ~I _--.JX ~ X,--------
I~ ~I tp(LC1-MSAV) I I

LCLK1

:: j+--*- tv(LC1-MSA) :

MSA15-0 ----I -~ ADDRESSO~T $X ADDREssoiuT Xf>-------
I r+' ten(fV!AEL-MSAZX) , -+I !4- tv(MWRH-MSA)' ~ tdls(MAEH-MSAXZ)

MSD31-O

:~ I :!: tP(LC1-M~~' , ,

1: i ~>R DATA~ui *>-<XINST':IN~XX)>-----
I I ~ I I I i+t tv(MWRH-MSD) I I

td(MWR -MSDZX) r i j+" I I ~ tdls(MAEH-MSD~ I
II II I I, I -------
I I
I II I I I I
I I I I I I tp(LC1-DCSH)ML I~ ~I
I II I I ,"! I j,;.-----
I II I I I'! I /[
I I I I~ I ~I I tp(LC1-DCSL)ML I

___I.~ ___ ~: : : tp(LC1-MCEL) ::: ~ tp(LC1-MCEH)ML

I ""II I I I I Y
I III I I I I'
I I I I4+t- tp(LC~-MWRH) I
I -+I ~ td(MSAV-MWryL) : I I
~ ~: I H td(MWRH-MSD~

------__ I tp(LC1-MWRL) I I I I
~ 1/ I I

I I -+t ~ td(MSDZ-MOE~)
I I I 14--+1-

td(MWRH-MOEL) I~ ~, I tp(LC1-MOEH)

: 'l {
I~ ~I tp(LC1-MOEL)

DS/CSt

MOE§

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:j: MCE does not toggle at each clock edge.
§ MOE goes high at each clock edge.
NOTE: This example shows a data write followed by an instruction read.

FIGURE 1. COPROCESSOR MODE, MSD ENABLE/DISABLE TIMING WITH MEMCFG LOW

TEXAS •
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8-45

~ __ """"""",,"~_"""""'''''''''_'''''''''''''''_'':''''I~ '_",1.1".'." ~'~I'_'~'~~I.J'~'_,!'!.~~I"!,,,,!'~"~'_' ~ .'.· •. -C.l"C. "."".,," """""'''''' """""",. "".,""'.,'"''"'''''''

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988- REVISED MAY 1991 -SCGS001

PARAMETER MEASUREMENT INFORMATION

:4 tc(LC1) -------~~I t ~ }-----------
--- ~ ~I tp(LC1-MSAV) I I

I I l1li1,-"," __ 1 _ I
I :.. P~~(LC1-MSA) i

MSA15-0 ----1-: -{X5I(ADDRESS OUT _ ADDRESS O~T X>>-------
ILooLao.l ' ~t I rrJ""" ten(MAEL-MSAZX) I -.I ~ t If"'""'· dls(MAEH-MSAXZ)

I
I I I I I ["" v(MWRH-MSA) I 1

!41 : :}P(LC1-MS~v): : d
MSD31-O ! I 1~ D,ATA O~T. ~}---<X INST. IN ~X>>-------

ten(MAEL-MSOZX) ! ~ I ~ I I I I I 1
td(MWRL,-Pt(1S0ZX) """ ~ I ..., 1+-1 tv(MWRH-MSO) I : __ ------

i,~,:1 I I I I %
II I I i I

1 I I 14 I ~I tp(LC1-0CSH)MH I

___ ...,..:4_.....,~ ,'r(LC'·OCSL)MH I I :~: -----+1 ---------
I 111 I 11 i !
1 I 1 I I ~ td(OCSH-MCE~)MH
I I 1 tp(LC1-MCEL) I j+--+r tp(LC1-MCEH)MH

LCLK1

OS/CS

i II I: I I I
td(MSAVjMWRL) ..., :+- ~ tp(LC~-MWRH)

____ 14II __,~1 tp(LC1-MWRL) I I _-...1 _____ -+1 ________ _

'h. : t -+l 1+ td(MSOZ-MOEt)
I I I I

Id(MWRH-MOEl.) 1~4II---..~1 ~ tp(LC1-MOEH)

i 'l A'
14 ~I tp(LC1-MOEL)

NOTE: This example shows a data write followed by an instruction read. Timing for multiple code writes would be Similar, This option for using
DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration
register. When MEMCFG is high, DS/CS and MCE rise after every clock edge. In this mode, DS/CS and MCE may not both be active (low)
at the same time.

8-46

FIGURE 2. COPROCESSOR MODE, MSD BUS ENABLE/DISABLE TIMING WITH MEMCFG HIGH

TEXAS'"
INSIRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LCLK1

LCLK2

LAD31-o

SF

DS/CS*

MCE§

Q4t Q1 Q2

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

I

Q3 Q4 Q1 Q4 Q1 Q2 Q3 Q4 Q1 i Q2
!

I I
14-ri-~'"'t'! th(AThH-SF)

iii I II :",11 II :,,' i,,' !"I II
! ! ! I

tSU,(SF-ATCJ.) ~ I~ ~h(CASiH-SF) i I
, I~----+---~---+--~----~--~'~I' ~'----~--+----+---+!~I---

ADDAESSOOT

JUMP ADDRESS IN

! I
! I
i I

i II Iii I
tp~LC1-MJEL) -+! J+- t~(LC1-MbEH) +I

! i I ~+---!--------+--'l

i I

tp(LC1-MCE~)ML ~ 1+
iii 1 . I :

t 01, 02, 03, and 04 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.
:j: The setting of DS/CS determines whether the value on the MSD bus in an instruction or data.
§ MCE does not toggle at each rising clock edge.
~ MOE goes hiigh at each rising clock edge.

FIGURE 3. COPROCESSOR MODE, JUMP TO EXTERNAL MEMORY SUBROUTINE WITH MEMCFG LOW

TEXAS ."
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-47

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150. SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

LCLK1

I~ tc(LC1) --~~I

----_%---~~~----;(~----,,~----{ ~----
I I
I I

: ~ :

Z>QQQQQQQkOATA:' fN ~X OATA21~ XX>Q<>QQ<X
~ th(CASH-LAD) I

LAD31-O

I I ~I ______________ __

" X:" /:

MSA15-0

MSD31-O

DS/CS

MCEt ---~/

___ ~7
t MCE does not toggle at each clock edge.
:j: MOE goes high at each clock edge.

I I
I I

FIGURE 4. COPROCESSOR MODE, LAD TO MSD BUS TRANSFER TIMING WITH MEMCFG LOW

8-48

TEXAS ,If
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TMS34082A
GRAPHICS FLOATlNG·POINT PROCESSOR

SCGSOOl - 03150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

LCLK1

LAD31-O xx><><XXX>d< DAT~ 1 :,. fXXXX DATA.:'.)QOOO<XXX
~ th(CASH-LAD) 1
I 1 1 , ___ -.JA': , /,.,.:-------

1 1

1 1
1 1 _____ 7
1 1
1 1

tp(LC1-MSAV) I~": ... 1"---I"~I-tV(LC1-MSA)
MSA15-0 XXXXXXXXXXX*X>q< ADDRESS 1 O~T %Xx a~~RESS 2

1 1 1 -.I 14- tV(MWRH-MSA)

tp(LC1-MSDV) I.. I .. I I:
MSD31-O XXXX XXXXX*~t DATA 1 of i

1 1 1 ~

~XXQ~TA2
!+" tV(MWRH-MSD)

1 tp(LC1-DCSL)MH -j+-+! tp(LC1-DCSH)MH ~
DS/CSt 1 1 1

'---+-------+"' 1 1 I '-------

t -l++!: 1 ~ tw(DCSH)MH
_________ P(_L_C1_-_M_CE_L..;.,)-+1 '"" I tp(LC1-MCEH)MH ~ ~

~ 1 17 1 1',-, ____ _
:: : ~: 1+ td(MWRH-MCEL)MH

I 1 I ~ tw(MCEH)
td(MSAV-~WRL) -+i r- j4-+t- tp(LC1-MWRH)

tp(LC1-MWRL) 10IIII"1 14 I "I td(MCEH-MWRL)

~ ~-----I I
tw(MWRH)~

____ 7

t DS/CS valid for moves to data space; MCE valid for moves to code space. Only one of these would be valid for each move instruction.
:t: This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the

configuration register.

FIGURE 5. COPROCESSOR MODE, LAD TO MSD BUS TRANSFER TIMING WITH MEMCFG HIGH

TEXAS .Jf
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-49

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150. SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

LCLK1

14 tc(LC1) ~I

--~{ / {~--~/
~ tp(LC1-MSAV) 1

1 1 ~tV(LC1-MSA)

gXX~(&% ADDRESS 1 our % ADDRESS 2 OUT

\.~--~/

MSA15-0 xxx
I 1 t i

DStCS

xxx X>Oa< DATA 1 IN XX% DATA 21N ><XXx
r~1-DCSH)ML i 1

1 : I 1 (MOVE FROM IDATA SPACE)

---~!"""'---<-'-1--lr-----(MOVEFROMtODESPACE)--------
14 .. I ___ ~I----..."'I tp(I.-C1-MCEL)

: ~~~:~------~----~-----------------1 I
I I
I

MSD31-o

MCEt

__ --+-": 7 :
.1'4-.... ""'1 - t~(LC1-MOEL)

II I !4---+1- tp(LC1-MOEH)
---- I !r"'xl ~

~ : If 1''+-·1---------/ '-
tp(MSDV-LADV) -t4+I tw(MOEH) ~ J...I

I tp(MSDV-LADV) 1-1

XXXXXXXX* DATA 1 OUT xx>d< DATA 2 OUT XXX LAD31-o
I I
I I
I I

--------------~~--_/-----~----~

'~_~r
t MCE does not toggle ateach clock edge. * MOE goes high at each clock edge.

FIGURE 6. COPROCESSOR MODE, MSD TO LAD BUS TRANSFER TIMING WITH MEMCFG LOW

TEXAS ."
INSTRUMENTS

8-50 POST OFFICE-BOX 655303 • DALLAS. TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001- D3150. SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

14 tC(LC1) .1

--~{ / { /
1 ~14=ii.l~t~V(LC1-MSA)
14 _I 'p(LC1.MSAV) ! :

MSA15-0 X~X>k ADDRESS 1 O~T >K

LCLK1

ADDRESS 2 OUT xxx
I I
I I

MCEt

MSD31-O XXX>;<><><>q< DATA 11~ XX*, DATA 21N XXX>
I ! ~ 14- tp(LC1-P' CSH)MH

----!r:---..... ~ t~(LC1-DCSL)MH ill
I ~ I I~~I-------~
14 ~i t~(LC1-MCEL) I 1+--+1- tW(?CSH)MH

: I I -+t 14- tp(LC1-ptlCEH)MH

----~I---~ I I~~I _______ ~
I I I 1 I I
i : i . j+-+t- tW(~CEH)

__,:7: i :
I I i+-+I- tp(LC1-MOEH)
14 .1 I tp(LC1-MOEL) II I

------.... 1
1

I "-I AI ~
I : tw(MOEH) ~ '1-: -----

tp(MSDV-LADV) ~ tp(MSDV-LADV) ~

DS/cst

LAD31-O XXXXXXX% DATA 1 OUT xXXX% DATA 2 OUT xXX
I I
I I
I I

--------------~~ ~~~~

, ____ r-
t DS/CS valid for moves to data space; MCE valid for moves to code space. Only one would be valid for each move instruction.
NOTE: This option for using OS/CS as data space chip enable and MCE as code space chip enable is involved by setting the MEMCFG bit high

in the configuration register.

FIGURE 7. COPROCESSOR MODE, MSD TO LAD BUS TRANSFER TIMING WITH MEMCFG HIGH

TEXAS ."
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8-51

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150. SEPTEMBER 1988 - REVISED MAY 1991 -SCGS001

PARAMETER MEASUREMENT INFORMATION

I~ tC(CLK) .1
1 I
14- tw(CLKH) ~ I I 1 1 1
1 i+- tw(CLKL) ~ -+j ~ tt(CLK) -+j j+- tt(CLK)

elK J " l,-----H ~
I 1'------'1 1

FIGURE 8. HOST-INDEPENDENT MODE, LAD BUS TIMING FOR MEMORY TO TMS34082A

~14--- tc(CLK) ~I

.--J '" }'--...... ")' 1 "--__ oJ I "-----' 1 "'-----ClK

___ ::4~~~':~oI-l tp(ClKH-ATCl) ~ tp(ClKH-ATCH) i I" 1)I I I 1'------... 1 .J 1 1
1 '4 ~I 1 I Ii tdls(CLKH-LADXZ)
ie:4--+-1 -...,.- tp(CLKH-y\DV) I

I i I -+I ~ tv(ATCH-LAD)
ten(CLKH-LADZX) JIIII 1 1 I I 1111114f---+'

I v--~~~~~D-~-TA-'-N-(D-B-~~P~RE~C-)
LAD31-Q

COINTt

__ --;."'-'v

14--+1- td(ATCH-CASL) I

'--+I_td~(C_A_S_H_-~_T_C_L~) -T--~ I tp(ClKH-CASH) ~ SINGLE-PRECISION

---+", II tp(CLKH-CASL) t '. ~ DouBLE-PRECiSiON'
w(CASH) ---....----r'I

I I~ ld(WEH-ATCL) I

:) i :
---+'1 ~ i+- td(COll-ATCl) I

~ tp(CLKH-COIL) I I
I tp(ClKH-COIH) 14 ~ SINGLE-PRECISION ------.1. X _________ _
'--------------------"" DOUBLE-PRECISION

t COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuratin register, COINT is controlled by bit 1 of the LAD move
instruction instead of the set mask instruction.

NOTE: This timing diagram assumes an external address latch to store address for external memory reads. Data input hold time on the latch is
zero; data (or address) output hold time is nonzero.

8-52

FIGURE 9. HOST-INDEPENDENT MODE, LAD BUS TIMING FOR MEMORY TO TMS340B2A

TEXAS .If
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

CLK

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150. SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

1414--- tc(CLK) ----+I
)I " },--........ ,)I

------~I I 1

14 ~I tp(CLKH.ATCL) ~ tp(CLKH.ATCH) :

IX :)1 I
___ -+-'1 I I -------!-I -J 1 1 I

I t... ~ ~ tdIS(CLKH.LADXZ)t
tw(ATCH) ~ I 1 1 I

tp(CLKH.LADV):4: :4 : 1 ~: tp(CL~H.LADV)

"--_/

1 I I -+j 1+-1 tV(ATCH.LAD) 1
ten(CLKH·LADXZ) 4 1 I I

LAD31-O ADDRESS OUT
I
I 1 1 l-+tl+-
I ! 1 1 1
I I I 1
I 14 "I I I.... I p ten(CLKH.LADZX}
1 I I I I

I 1 J4-+i td(ATCH.WEL) !....1
t ~14---I~~ ~ tp(CLKH.WEH) ____ ...;.-__ ""II __ P_(C_L_K_H_.W_E_L_} ___ I I I SINGLE·PRECISION

: ~ ! .(\~'------------
I -+I 14- td(COIL.ATCL) tw(WEH) -j+-+I DOUBLE·PRECISION
1 I ' 1
I~ tp(CLKH.COIL) tp(CLKH.COIH) ~I SINGLE·PRECISION

----.:..-~ f .. ···](___________ _

DOUBLE·PRECISION

t Valid only for last write in series. The LAD bus is not placed in high-impedance state between consecutive outputs.
:j: COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register. COINT is controlled by bit 1 of the LAD

move instruction instead of the set mask instruction.
NOTE: This timing diagram assumes an external address latch to store address for external memory reads. Data input hold time is zero. Data

(or address) output hold time is nonzero. Valid only for last write in series. The LAD bus is not placed in high impedance between consecutive
outputs.

FIGURE 10. HOST-INDEPENDENT MODE, LAD BUS TIMING FOR TMS34082A TO MEMORY

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8-53

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

CLK

14 tc(CLK) ----..~I 1

--~{---~,~----;(-----,,~----{~----,~----
1 1 1
1 1 1 ____ ~:~7 I I
1 I+-+t- th(CLKH-LAD) 1

1 I I' 1 ** 4 .! tsu(LAD-CLKH) :

tp(CLKH-COIH) ~

t COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD
move instruction instead of the set mask instruction.

FIGURE 11. HOST-INDEPENDENT MODE, LAD BUS TIMING INPUT TO TMS34082A

CLK

*-- ADJUSTED CLOCK PERIODt ---+I
--~{ ~ ;(~----,,'------

1 1 1
1 I 1

------~:/' I I
1 DELAY TIME 1 1

I VALl6~ATA 1 : >fxx>1 : "'(CLKLoLADJ

LAD31-O-,X~X~..f¥-..¥..x..~_DA_t_'A_IN_""t~~..x.~..¥.~~X~X~_D_AT._'A_IN_ XXXXX;.,.,¥~.¥-..... _

tSU(LADtCLKL) 14 ~I tp(CLKH-CASH) ~
I 'l i/""""'Il
1 I' I]' 1''---------
~ ~l tp(CLKH-CASL) tw(CASH) --14--+1

_____ ~7
t This mode permits data input which does not meet the minimum setup before ClK high. For immediate data input, ClK must be high for more

than 20 ns. This input mode cannot be used to input data for divides and square roots.

Adjusted clock period = Normal clock period + Data delay + 5 ns

FIGURE 12. HOST-INDEPENDENT MODE, LAD BUS TIMING INPUT OF IMMEDIATE DATA TO TMS34082A

8-54

TEXAS ,If
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

ClK

LAD31~

CAst

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

14--tc(ClK) --~
I ~----_

----'I
I
I

I I
I I

14 ~I tp(ClKH-LA~V)

: d< DATAOUT: XXXX DATAO~ %>>----
: II I -+t I+t- tv(WEH-LAD)
I I I I
: I I I I

t When the LADCFG bit is high, LOE high places CAS and WE (as well as the LAD bus) in high impedance.
:\: Valid only for LADCFG high. When the LADCFG bit is high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction

instead of the set mask instruction.
NOTE: If the instruction writes the result of an FPU operation to a register and outputs the result to the LAD bus, in the same cycle, the minimum

clock period must be extended.

.... "' ... ~-... -.. ~~. ".,,,,,,, ,.....,,.''"''

FIGURE 13. HOST-INDEPENDENT MODE, LAD BUS TIMING OUTPUT FROM TMS34082A

TEXAS •
INSlRUMENTS

POST OFFICE BOX 655303 • DALL4S, TEXAS 75265 B·55

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

~I 1,..-__ ,""

~--"t "''----% " r 14 .. \ tsu(RSTH-CLKH) 1 1
~----~~I 1 1

1 I 1

{ : :
1 I 1

14--..... ~11- th(ITRL-RSTH) 1 1

/.
I 1

~ _____ I ' I
.----.~t-I tW(ITRL) : th(CLKH-LAD) n

~U~XXX>k "I 1

, I , ,

1 tp(CLKH-CASH) 4
-------------------------------------:I--~ ,

14 ~ /,
tp(CLKH-CASL) ,.. ~I

t RESET is level sensitive. When RESET is set low, both LAD and MSD buses are placed in high-impedance state. When RESET is released,
the sequencer forces a jump to address O. If INTR goes low while RESET is low, the loader moves 64 words through to the external memory on
MSD. Timing for the LAD to MSD move is shown in a later diagram, with the exception that the first word on LAD loads the configuration register
and does not pass to the MSD bus.

:J: INTR may be low one or more cycles after RESET goes low. RESET is held low, and then INTR is taken low. The bootstrap loader starts when
RESET is set high, which may involve a delay of one or more cycles after INTR goes low.

NOTE: When the bootstrap loader is invoked, the first data word input on the LAD bus should be the configuration register settings, which will be
written into the configuration register. This allows the user to select the MEMCFG setting, for reading or writing memory on the MSD port,
as well as the LADCFG setting for the LAD bus interface.

8-56

FIGURE 14. HOST-INDEPENDENT MODE LAD BUS TIMING, BOOTSTRAP LOADER OPERATION

TEXAS •
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

ClK

I,.. tc(ClK) ~I

)I ")1----" / --~I 1 1 ,,---
1 1 1
1 1 1

: / : :
---~I -' j+-+I- th(ClKH-LAD) 1

1 Lo I 1 1

~ .. .! ',u(LAo.eLKH) :
LA031-O

----I~~ l.- td(COll-CASl) : :
1 I 1 1 1
~ tp(ClKH-COIL) 1 tp(ClKH-COIH) -iIIII---+I

COINTt -----~ : : X,.------
1 1

tp(ClKH-MSAV} '.. ~I "'~---I~~I - tv(ClKH-MSA)

XXXXXXXXXXX$X~ ADDRESS 1 ~UT %X><ADDRESS 20UT MSA15-0

MS031-O

OS/CS

-----'/

MOE§ ____ 7
t COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD

move instruction instead of the set mask instruction.
:t: MCE does not toggle at each rising clock edge.
§ MOE goes high at each rising clock edge.

FIGURE 15. HOST-INDEPENDENT MODE, LAD TO MSD BUS TRANSFER TIMING WITH MEMCFG LOW

TEXAS ,If
INSTRUMENTS

POST OFFICE BOX 655303 • DALIJ\S, TEXAS 75265 8-57

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988- REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

CLK

14-- tc(CLK) ~I 1

_--J{ " { " {---,, ___ _
1 1 1
1 1 1

: / I I
---~I oJ ~ th(CLKH-LAO) 1

1 tsu(LAO-CLKH) 14 ~I: I:

LAD3'''' X~ DATA':'N%ZXZX DATA"N XXXXXXXX
1 ~ tp(CLKH-CASH) 1
1 1 1 1

-----,..:-..... ~ 1 ~ I /
'4 ~I til 1
1 1 p(CLKH-CASL) i+-* tw(CASH) 1

! ' I __,...:7 I I
1 -, j+- td(COIL-CASL) I
~ tp(CLKH-COIL) tp(CLKH-COIH) ~'41----lli~1 ------..... ~ : ~---------COINTt

I I

MCE§

tp(CLKH-MSAV) 14~' ... 14f-----l~~1- ty(CLKH-MSA)

MSA15-0 XXXXXXXXXXX*xxt ADDRESS 1 OrT %Xx QurRESS
2

1 I I -.! l4- ty(MWRH-MSA)

tp(CLKH-MSDV) 14 I ~I I:

MSD3"" XX'NSTo'NXXXXXXX$:><><¥% DATA'O~T I ~ruTA'
I I I ~ !+- ty(MWRH-MSD)

tp(CLKH-OCSL)MH r tp(4LKH-OCSH)MH -+j M
I 'h I I· I I 1"------
~: I ~tW(DCSH)

______ ---:tp~(C_L_K_H_-M_C_E_L)~+_I 1 tp(C,LKH.MCEH)MH ~ ~
I ~ I I/" I 1' ____ _
I 1 : ~l 1+ td(MWRH-MCEL)MH

I I I ~ tw(MCEH)
td(MSAV.~WRL) ~ l+" ~ tp(CLKH.MWRH)

tp(CLKH-MWRL) 14 ~I 14 1 ~I td(MCEH.MWRL)

~ ~-------1 I
tw(MWRH) ~

_____ 7
t COINT timing is for LAOCFG high only. When the LAOCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD

move instruction instead of the set mask instruction.
:j: OS/CS valid for moves to data space; MCE valid for moves to code space. Only one of these would be valid for each move instruction.
§ This option for using OS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the

configuration register.

FIGURE 16. HOST-INDEPENDENT MODE, LAD TO MSD BUS TRANSFER TIMING WITH MEMCFG HIGH

B-58

TEXAS ..If
INSTRUMENTS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

CLK

14 tc(CLK) --~~I _____)r-----,, _____)l----~,, _____ ~
14 ~ tp(CLKH-MSAV) , I "---
~: KtV(CLKH-MSA) I

x~x>OK ADDRESS O~T >KX ADDRESS O~T XXXXXX

I * th(CLKH-MSD) I

MSA15-0

I tsu(MSD-CLKH) ~ I I

MSD31-O X~X%DATAIIN%XXXXX INSf·INXXXXXXX

I I I I

:

4 ~ tp(CLKH-DCSH)M, I.

___ .,... __ / I} I
14 ~ tp(CLKH-DCSL)ML

"'~--I~II-I tp(CLKH-MCEL) I ~ tp(CI,.KH.MCEH)ML

---It--""""'l 1 Y
I I

/ DS/CSt

I I

___ +,:7 !
.t4--~~11- tp(CLKH.MOEL), : ;.-.r- tp(CLKH.MOEH)

-------~~ ~------~/
!4-+t- tw(MOEH)

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:j: MCE does nottoggle at each rising clock edge.
§ MOE goes high at each rising clock edge.
NOTE; This example shows a data read followed by an instruction read.

FIGURE 17. HOST-INDEPENDENT MODE MSD BUS TIMING,
MEMORY TO TMS34082A WITH MEMCFG LOW

TEXAS .If
INSTRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-59

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

MS031-o X~XXX>kOATAiIN%XXXXXINST:IN XXXX>§NST.IN
~ .1 tp(CLKH-OCSL)MH tp(CLKH-OCSH)MH :

os/cs ---+-1 -~{ 1 /l'-----~I--------
1 ' 1 ,I ,

1 td(OCSH-MCEI,.)MH -i4+I ~ t (CLKH-MCEH)MH
1 tp(CLKH-MCEL) I~ .1 1 p
1 1 ~ MCE 1 \J. 1 l"'--___ ---J 1 1 "'--__ _
1 1 ~
1 1 tw(MCEH)
1 ,

MWR :7 :
I~ .' tp(CLKH-MOEL)!.o&........aJ. i r -, tp(CLKH-MOEH)

MOE -----.... 1 n ~ __ _
tw(MOEH) 14--+1

NOTE: This example shows a data read followed by an instruction read followed by an instruction read. This option for using DS/CS as data space
chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG
is high. DS/CS and MCE rise after every rising clock edge. In this mode. DS/CS and MCE may not both be active (low) atthe same time.

8-60

FIGURE 18_ HOST-INDEPENDENT MODE MSD BUS TIMING,
MEMORY TO TMS34082A WITH MEMCFG HIGH

TEXAS " INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

ClK ,----

XXXXXx

DS/CSt '\: _--

'k 1'------

td(MOEH-MWRl) --!4+1
I~ ____ -

, I(

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:j: MCE does not toggle at each rising clock edge.
§ MWR goes high at each rising clock edge.
NOTE: This example shows a data write followed by a code read.

FIGURE 19. HOST-INDEPENDENT MODE MSD BUS TIMING,
TMS34082A TO MEMORY WITH MEMCFG LOW

'TEXAS •
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-61

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988- REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

,~ tc(ClK) .,

____ ~ , ~----, 1
i ~ ., tp(ClKHoMSAV);

~ .1 tp(ClKHoMSAV)I, loiII"~--t.""I- tv(ClKHoMSA)

MSA' xmx>Ok ADDRESS DrT x%: ADDRESS D~T %><ADDRESS OUT

I I' I ~ *" tv(MWRHoMSA)

~ 1p(CLKH.MS~v) I I I

''---ClK

OS/CS

MSD31", X DATA ouf $ DATA 00 d 1Q<X DATA OUT

, -+i i+ tp(CLrKHoOCSH)MH ,:+j ~ tv(MWRHoMSO)

_____ :~ __ ~:::P(CLKH.DCSl)MHn : A
, , 'I I , '------
I ~ td(MCEHoOCSL)MH ~ tlN(OCSH) "

'7 I' ,
---------~:~ I I I

14 .: tp(ClKHoMWRl) ~ I+- td(MSAVoMW~l) I 1- ~ ~LKH.MWRHI

14-+1- tw(MWRH)

___ 7
NOTE: This example shows multiple data writes. Timing for multiple code writes would be similar. This option for using OS/CS as data space chip

enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is
high, OS/CS and MCE rise after every rising clock edge. In this mode, OS/CS and MCE may not both be active (low) at the same time.

8-62

FIGURE 20. HOST-INDEPENDENT MODE MSD BUS TIMING,
TMS34082A TO MEMORY WITH MEMCFG HIGH

TEXAS ,If
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - D3150. SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

CLK

MSA15-0

MSD31-O

OS/CSt

~tc(CLK) .:

--~y ~ ~----, %
~ .: tp(CLKH.MSAV). :

I I ~ tv(CLKH.MSA)

---~I--<9<* ADDRESSOr :$X ADDRESS+T z~>------
: ~ en(Pt/lAEL·MSAZX) ! -+! 14- tv(MWRH.MSA) I ,......,... ~ls(MAEH.MSAXZ)
1'411 1 : !to. tp(CLKH.MfD,() I I

I I : !)i(DATAOUT Z>--<XINST.:INVXX)>----
I I J.J ~ i~' ~

td(MWRL·MSDZX) Ii 14- 1 I j+-ltV(MWRH.MSD) I 1

___ -;.11 II 1 I I I 1_------
~ II I I I I Y
I II I I I
1 I I :: t~·(CLKH.OCSH)ML ~1.'4II-__fil.1
I II I I I
I II I I '\.1 Iy------
1 II I I I~ I 11
I I I 1'411 I .1 tp(CLKH.OCSL)ML
~ .1 I tp(CLKH.MCEL) I I I I

----fol-~ I I 1 I I tp(CLKH·MCEH)ML --j+--+I ,-_____ _
I 'J. II I I I IV
I]\1 I I I I I I[
I I I I4+t- tp(C,LKH.MWRH) I
I ~ 14- td(MSAV.MW~L) i I I
I I I I I
~ .1 tp(CLKH.MWR1-) i I I

----------~~ I~-~:~-------:~-----------
I I ~ r+- td(MSOZ.MOE,L)
I I I

td(MWRH.MOEL) j4 .1 ~ tp(CLKH.MOEH)

--------------~i-----'k),'
1'411 .1 tp(CLKH.MOEL) I

,,----

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:j: MCE does not toggle at each rising clock edge.
§ MOE goes high at each rising clock edge.
NOTE: This example shows a data write followed by an instruction read.

FIGURE 21. HOST-INDEPENDENT MODE, MSD ENABLE/DISABLE TIMING WITH MEMCFG LOW

TEXAS ."
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8·63

TMS34082A
GRAPHICS FLOATING .. POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

14 tc(CLK) ~I

)I ")'---""" % " ---- 14 ~I tp(CLKH-MSAV) I I -----
I I I I I
I I 14 ~ tv(CLKH-MSA) !

MSA15-0 ----:'---«>q< ADDRESS O~T $X ADDRESS O~T X> .
I ~ ten(MAEL-MSAZX) I -.I i4- t (MWRH-MSA) I I4-*- tdIS(MAEH-MSAXZ)
I I I I I v I I
!4:! I, ~~ tp(CLKH-MSD: I I
: i _ DATA OUT i" %}--<X INST.IN)(X~-----
I 14 I ~ t I I I i '4 f
I I I I en(MAEL-MSqZ>q I I 1!4-+t- tdls(MAEH-MSDXZ)

td(MWRL-MSDZX) ~ j+- I ,..! j4- td(MWRH-MSDXZ) I :
"-.1 II I I I I y,..-----
1"'\ II LL-I I .
I \1 ~ tp(CLKH-DCSH)MH :

~ ~I I tp(CLKH-DCSL)~H I : I I
----~I---~~: I I ~~-I----~I----------

I I). II'~ I
I I ! I I ro 1"-1 td(DCSH-MCEL)MH

I : tp(CLKH-MCEL) 14 : I ~I H tp(CLKH-MCEH)MH

: II : I:}. I t
td(MSAV7MWRL) -+I ~ ~ tp(C~KH-MWRH) :

~ ~I tp(CLKH-MWRI-) I I I
---------~ I~,..--I~------~:---------------

'-. ----II-'- I ~!4- td(MSDZ-MOr;L)
I I i I

td(MWRH-MOEly) 14 ~I ~ tp(CLKH-MOEH)

----------------------+:-----'k %

CLK

MSD31-Q

DSteS

4 ~I tp(CLKH-MOEL)

NOTE: This example shows a data write followed by an instruction read. Timing for multiple code writes would be similar. This option for using
DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration
register. When MEMCFG is high, DS/CS and MCE rise after every riSing clock edge. In this mode, DS/CS and MCE may not both be low
at the same time.

8-64

FIGURE 22. HOST-INDEPENDENT MODE, MSD BUS ENABLE/DISABLE TIMING WITH MEMCFG HIGH

TEXAS •
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

CLK

MSA15-0

MSD31-O

DS/CS

MCEt

LAD31-O

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - D3150. SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

"'----

X)4NST. ~X*DAT~ 11N XXXXXDATA:2IN>OO(XX><X

I tp(CLKH-DCSH)MH I I I: ! (MOVE FROM DATA SPACE) I~ ~: tp(CLKH-DCSL)MH

I ~ ~
---~:---"~ -~MoVEi=ROMCOoESPAcE)T---r:o......----

j.4 ~: tp(CLKH-MCEL) I I~ ~I tp(CLKH-MCEH)MH ----+-: --'l\. I I)/

I I
I I
I

xXX¥x>a< ADDRESS1?UT >kx ADDRESS2~UT xXXXX
I i+-+j'th(CLKH-MSD) !

~KH)"""'" 1 1

____ ~:7 :
14'~--.... JIlI*"- tp(CLKH-MOEL); I

: ~ tp(CLKH-MOEH) I
----------~ : ~ I /

I !4--+t- tw(MOEH) I
I I
I I ___ 7
I I
I I
I~ ~I tp(CLKH-~DV)
I I I

XXXXXXXXXX~X>K DATA 1 OUT >KXXXg~}A2

___ 7 I I I

: tp(CLKH-WEH) --/.-.I
1411111-___ ~ : tp(CLKH-WEL) I

------------------~ ~-----
~tw(WEH)

t MCE does not toggle at each rising clock edge. * MOE goes high at each rising clock edge.

FIGURE 23. HOST-INDEPENDENT MODE, MSD TO LAD BUS TRANSFER TIMING WITH MEMCFG HIGH

TEXAS .If
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8-65

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

~1~---tC(CLK) ~I ____ l , ~----, %
1 ~ tv(CLKH.MSA) 1

~ ~I tp(CLKH.MSAV) I: 1

MSA1&-O XX;;;;;:x>Ok ADDRESS 1 O~T >KX ADDRESS 2 ~UT XXXXXX

I i4--+I- th(CLKH·MSD) I

,----ClK

I tsu(MSD.CLKH) --1+--+1 I I

MCEt

MSD31-Q X>§NST.:1NXXXX X * DAT~ 11N XxXXXDATA:2INXXXX ><XXX

1 -+j l+ tp(ClKH.DCSH)MH 1
___ -!I. __ ""~ tp(ClKH.OCSl)MI"I 1 1

: ~ :~ :/
~ ~I tp(ClKH.MCEL) 1 I+-+t- tw(DCSH) 1

1
1 ~ ~ tp(ClKH.MCEH)MH :

---;---'l. 1 ~ 1 /
'-·------+-'1· 1 I. 1·

1 I 1
1 I+-+i- tw(MCEH) 1

OS/cst

1 1

---~~ IH- 1
~14---I~*"1 ,tp(CLKH.MOEH):

______ 1 tp(CLKH·MOEl)1 I 1

" 1 n 1/
I tW(M?EH) i4""-+t

1

1

-----/ 1
1 I
14 ~I tp(ClKH.LAPv)

LAD31-G XXXXXXXXX$Xx% DATA 1 +T >]<XXZDATA 2 OUT

1 1 -+\ j+- tv(WEH.LAD)
1 1

/ I 1 1
___ ..;. 1 I I

1 tp(CLKH.WEH) ~
14 ~I tp(CLKH.WEl) I -----------------------'l ~ ____ ___

I4-+t- tw(WEH)

t OS/CS valid for moves to data space; MCE valid for moves to code space. Only one would be valid for each move instruction.
NOTE: This option for using OS/CS as data space chip enable and MCE as code space chip enable is involved by setting the MEMCFG bit high

in the configuration register.

8.66

FIGURE 24. HOST-INDEPENDENT MODE, MSD TO LAD BUS TRANSFER TIMING WITH MEMCF HIGH

TEXAS ,If
IN~UMENTS

POST OFFICE BOX 855303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

ClK

14--- tC(ClK) ~I

,-----~~--~,,-----
... __ .~ I I.. tv(CLKH-MSA)

t1p(ClKH-MSAV) --jl1-----,.~
,----

MSD31-o X><>dp<XXX X %JUMP
i
IN%XXXXX INS~.IN XXXxXXX

DS/cst

~I"-~~~I- tp(ClKH-DCSl)ML ~ tp(CLKH-oCSH)ML

----~:--~4\------~-------- ::r
I tp(CLKH-MCEH)Ml h I
~:"---I~~: tp(ClKH-MCEl) 1 : l+--+t- tp(ClKH-MCEH)ML

__ --1..: --~ : 0'----..,.:--f
1 1 ~ tw(MCEH) 1 1
1 tp(CLKH-MCEH)MH ++1 I i4--+t- tp(CLKH-MCEH)MH
1

MCEt

=-./1 1
1 H tp(CLKH-MOEH)

:.. ~I tp(CLKH-MOELl i+--* tw(MOEH)

----~{ 1 n /
1 1 ~----------

~(CC-CLKH)
__________________ -J. I 1 I ~.----------------------------

~ j+- th(CLKH-CC)

CC*

t Dotted line shows oS/CS for MEMCFG high. * The CC input is registered on each rising edge of the clock, so the CC bit can be latched one cycle and tested during the next cycle.

FIGURE 25. HOST-INDEPENDENT MODE, MSD BUS TIMING TEST CONDITION (CC) AND BRANCH

TEXAS ,If
INSTRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-67

·'-'"·""---------~-.. ·'--'-.....-.---......,., "....... ___ _"""""' ___ ... a"""""'"""'_,.. + '-.... " ... "'''''' ... ,,: ••• '''' •• '''''''~'''''''''!'''''' ,,~,,:'""'''',..,.,.."., """""' ... " __ ,,.' ... ''''! ...

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PARAMETER MEASUREMENT INFORMATION

CLK

~--tc(CLK) ~I

'---~~~----" % ,-----14 tV(CLKH.MSA)!

.----I~*I tp(CLKH.MSAV) 14 ~ I tp(CLKH.MSAV) 4 ~ I tv(CLKH.MSA)

~ th(CLKH·MSO) r+-+t- th(CLKH·MSO)

I tsu(MSO.CLKH) -I+---+l 1 tsu(MSO CLKH) ~ 1
I 1 • I 1

MS031-O XX>q<XXXX X XMASK INXXXXXXRESET 1NXXXXXXX
I I

OS/cst

.:4---.t~1- tp(CLKH.OCSL)~L tp(CLKH.OCSH)ML 14 ~I
----~i--~t ----~-----------~- Ir~-----------

1 I I

: tp(CLKH·MCEH)ML ~ 1

.14-~~:- tp(CLKH'MCEL): : ~ tp(CLKH.MCEH)ML ----+-: --). : n : Y
: 1 ~ tw(MCEH) 14 ~: tp(CLKH.MCEH)MH
! 'p(CLKH-MCEH)MH --;+--+t I

---",'/ I :
14 j+--+j tp(CLKH.MOEH) I
I ~: tp(CLKH'MOEL~ 1+--+1- tw(MOEH) :

/ -----..... ~ 1 n II
i
I, iIIII4--"~""1 tp(CLKH.COIL)

tp(CLKH.COIH) 14 ~ I I
I I I

_____________ -+I_-J~ I ~~------

I 1 I
tp(CLKH·CORL) ,4 ~ 14'

1 141"--.~i!- tp(CLKH·CORH)

COROY§ ----------------------------~~ V l' /[

t Dotted line shows DS/CS for MEMCFG high.
:j: Valid for MEMCFG low only. When MEMCFG low, COINT is set high by the set mask instruction, and it remains high until reset with another set

mask instruction.
§ The CORDY output is set low by the set mask instruction, and it remains low until reset with another set mask instruction.

FIGURE 26. HOST-INDEPENDENT MODE MSD BUS TIMING, SET/RESET COINT AND CORDY

TEXAS ."
INSlRUMENlS

8-68 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

CLK

MSA15-0

MSD31-O

DS/cst

MCEt

INTG

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

14 tC(CLK) ~I 1

--~} , ~ ,y ~
1 tp(CLKH-MSAV) 1'41 ~I I 1
1 I: I '41 ~I tv(CLKH-MSA)

XXX~XXXX$X>a< VECTOR: OUT * -.r->q<XXXX~:--"-'W"'"'W"""
1 I 1+--+1- th(CLKH-MSDV) 1
I I tsu(MSD-CLKH) -.J I+- 1 1

X~XXXXX~X*I~ST.IN*X -.r-"'lX~~~~XXr"7
I I I I

I 1'41 ~~~~~~t!~--- --~------
1 I I, 1

I tp(CLKH-MCEL) 1'41 ~I I :
I I I 1'41 ~ II tp(CLKH-MCEH~ML
I I I I --~-------
I I). IT...:
I I I 4- 1

I 1 I I
I I I_-+-I ___ _

/1 I I I
--/ I I I

I 1'41 ~I tp(CLKH-MO~L) I

! I { irCLKH'MO_EH_)~i ___ _

~I 14- th(CLKH-ITR) I 1 I I
14 ~I: tsu(ITRL-CLKH) I I
~ y 1 _+1 __ _

f'---/I: I
1'41 ~I tw(ITRL) I tp(CLKH-ITGL) ~

1'41 ~I tp(CLKH-ITGH) I
------------.Jt ... ~

t Dotted lines show OS/CS and MCE for MEMCFG high.
~ INTR is negative-edged triggered.
NOTE: Interrupts are not granted during multi-cycle instructions. This example shows two interrupt requests. The first is granted immediately; the

second, after the first is finished. INTG remains high after an interrupt is granted until interrupts are reenabled or a return from interrupt
instruction is executed.

FIGURE 27. HOST-INDEPENDENT MODE, MSD BUS TIMING EXTERNAL INTERRUPT TO TMS34082A

TEXAS ~
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 B-69

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGSOO1

PARAMETER MEASUREMENT INFORMATION

1l1li tc(ClK) ~I I

/. " },...---" }---" ClK ____ 1 '-__ oJ. I ' ---. I ---

i+-+I- th(CLKH-ROy) I
tsu(ROVV-ClKH) ---IoiII:IIIII--.....,~1 I I

~ ~~-----ti-IIII-~I-----
....... -- I th(ClKH-lRO)

tsu(lRO-ClKH) 1l1li ~: :

~ {,..-----

ROY

lRDY

NOTE: When either RDY or LRDY is set low and the setup time before CLK high is observed, the device is stalled for one or more clock cycles,
until RDY or LRDY is set high again. During a wait state, internal states and status are preserved and output signals do not change. LRDY
can be used in this manner only in the host-independent mode.

FIGURE 28. HOST-INDEPENDENT MODE, MSD BUS TIMING WAIT STATE TIMING

PROGRAMMING INFORMATION

programming the TMS34082A

8-70

The TMS34082A is supported by a software development tool kit, including a C compiler and an assembler.
Program development using the tools is described in the TMS34082A tool kit documentation. Information on
internal instructions and listing of the external instructions are provided in the following sections.

In both the coprocessor and host-independent modes, the TMS34082A instruction word is 32 bits long. The
number, length, and arrangement of fields in the 32-bit word depends on the operating mode and operation
selected. Internal microcode to the TMS34082A is not restricted to the same 32-bit instruction formats so certain
internal programs may execute faster than the same operations written with external code can achieve.

In the coprocessor mode, the TMS34082A can execute instructions both from the TMS34020 and from the
program memory on the MSD bus (MSD31-0). In the host-independent mode the TMS34082A is controlled from
code input on the MSD bus. Internal instructions may be executed in the host-independent mode by performing
a jump to the internal address.

TEXAS .If
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

PROGRAMMING INFORMATION

internal instructions

The TMS34082A FPU performs a wide range of internal arithmetic and logical operations, as well as complex
operations (flagged 't'), summarized below. Complex instructions are multi-cycle routines stored in the internal
program ROM.

One-Operand Operations:

Conversions:

Absolute Value
Square Root
Reciprocalt

Integer to Single
Integer to Double
Single to Double

Two-Operand Operations:
Add
Subtract
Compare

Matrix Operations:
4X4,4x4Multiplyt
1 x4, 4x4 Multiplyt

Graphics Operations:
Backface Testingt
Polygon Clippingt
2-D Linear Interpolationt
2-D Window Compare t
2-Plane Clipping (X, V,Z) t
2-D Cubic Splinet

Image Processing:
3x3 Convolution t

Chained Operations :
Polynomial Expansiont
1-0 Min/Maxt

Vector Operations:
Addt
Subtractt
Magnitudet
Scalingt

1 s Complement
2s Complement

Single to Integer
Double to Integer
Double to Single

Multiply
Divide

3x3, 3x3 Multiplyt
1 x3, 3x3 Multiplyt

Polygon Elimination t
Viewport Scaling and Conversion t
3-D Linear Interpolationt
3-D Volume Comparet
2-Plane Color Clipping (R,B,G,I)t
3-D Cubic Spline t

Multiply/Accumulate t
2-D Min/Maxt

Dot Productt
Cross Productt
Normalization t
Reflection t

The internal ROM routines may be used in either the coprocessor or host-independent mode. In the coprocessor
mode, the internal routines are invoked by TMS34020 instructions to its coprocessor(s).

In the host-independent mode, the internal programs can be called as subroutines by the externally stored code.
External programs can call internal routines by executing a jump to subroutine with bit 16 (internal code select)
set high and the address of the internal routine as the jump address.

The format of the TMS34082A instruction in the coprocessor mode is shown in Figure 49. The instruction is
issued by the TMS34020 via the LAD bus.

t Indicates a complex instruction.

TEXAS ."
INS1RUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-71

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

8-72

PROGRAMMING INFORMATION

o
o 0 0 0 0

FIGURE 29. TMS34082A INSTRUCTION

The 3-bit ID field identifies the coprocessor for which the instruction is intended. This coprocessor ID
corresponds to the settings of the CID2-CIDO pins. To broadcast an instruction to all coprocessors, the ID is set
to 4h.

TABLES. COPROCESSORID

10 COPROCESSOR

000 FPUO

001 FPU1

010 FPU2

011 FPU3

100 FPU broadcast

101 Reserved

110 Reserved

111 User defined

Four coprocessor addressing modes are defined for the TMS34082A. The md field indicates the addressing
mode.

TABLE 6. ADDRESSING MODES

MODE MD FIELD OPERATION

0 00 FPU internal operations with no jump or external moves

1 01 Transfer data to/from TMS34020 registers

2 10 Transfer data to/from memory (controlled by TMS34020)

3 11 External instructions

The type and size bits identify the type of operand; as shown below in Table 7. The I bit is used to indicate to
the TMS34082A that this is a reissue of a coprocessor instruction due to a bus interruption. The least significant
four bits are the bus status bits, which will all be zero to indicate a coprocessor cycle.

TABLE 7. OPERAND TYPES

TYPE SIZE OPERAND TYPE

0 0 32-bit integer

0 1 Reserved

1 0 Single-precision floating-point (32-bit)

1 1 Double-precision floating-point (64-bit)

The ra, rb, and rd fields are for the two sources and destination within the FPU. Register addresses are listed
in Table 1. For the ra and rb fields, only the four least significant bits of the register address are used. The ra
field may only use the RA register file, C, and CT. The RS field may only use the RS register file, C and CT.

The Floating-Point Unit Operation (fpuop) field is the FPU opcode (5 bits) described in Tables 8, 9, and 10.

In the coprocessor mode, the TMS34082A executes user-defined routines (stored in external memory on the
MSD bus) by executing a jump to external code. For this instruction, the md field (bits 15-13) is set high and the
fpuop field gives the routine number (0-31). The TMS34082A multiplies the routine number by two to get the
jump address. For example, routine number 14 would have a jump address of 28 decimal or 1 C hex.

TEXAS ~
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - 03150, SEPTEMBER 1988 - REVISED MAY 1991

PROGRAMMING INFORMATION

The routines are coded using the external instruction format discussed in the next section, The last instruction
should be a jump to internal instruction address OFFFh with the I-bit(internal) set or a return from subroutine
instruction, This puts the FPU in an idle state, waiting for the next instruction from the TMS34020,

TABLE 8. COPROCESSOR MODE INSTRUCTIONS

FPUOP TMS34020 ASSEMBLER OPCODE DESCRIPTION

00000 ADDx Sum of ra and rb, place in rd

00001 SU8x Subtract rb from ra, place result in rd

00010 CMPx Set status bits on result of ra minus rb

00011 SU8x Subtract ra from rb, place result in rd

00100 ADDAx Absolute value of sum of ra and rb, place result in rd

00101 SUBAx Absolute value of (ra minus rb), place result in rd

00110 MOVE or MOVx Load multiple FPU registers from TMS34020 GSP or its memory

00111 MOVE or MOVx Save multiple FPU registers to TMS34020 GSP or its memory

01000 MPYx Multiply ra and rb, place result in rd

01001 DIVx Divide ra by rb, place result in rd

01010 INVx Divide 1 by rb, place result in rd

01011 ASUBAx Absolute value of ra minus absolute value of rb, place in rd

01100 reserved

01101 MOVEx Move ra to rd, multiple, for n registers

01110 MOVEx Move rb to rd, multiple, for n registers

01111 (see Table 10) Single operand instructions, rb field redefined

10000 CPWx Compare point to window (set XLT, XGT, YLT, TGT)

10001 CPVx Compare point to volume (set XLT, XGT, YLT, YGT, ZLT, ZGT)

10010 8ACKFx Test polygon for facing direction (backface test)

10011 INMNMXx Setup FPU registers for MNMX1 or MNMX2 instruction

10100 LlNTx Given [Xl, Yl, Zl], [X2, Y2, Z2], and a plane, find [X3, Y3, Z3]

10101 CLlPFx Clip a line to a plane pair boundary (start with point 1)

10110 CLlPRx Clip a line to a plane pair boundary (start with point 2)

10111 CLlPCFx Clip color values to a plane pair boundary (start with point 1)

11000 SCALEx Scale and convert coordinates for viewpoint

11001 MTRANx Transpose a matrix

11010 CKVTXx Compare a polygon vertex to a clipping volume

11011 CONVx 3x3 convolution

11100 CLlPCRx Clip color values to a plane pair boundary (start with point 2)

11101 OUTC3x Compare a line to a clipping value

11110 CSPLNx Calculate cubic spline for given coefficients

11111 (see Table 11) Vector and matrix instructions, rb field redefined

F denotes Single-precision, D denotes double-precision floating-point, X denotes operand type, and a blank designates signed integer

TEXAS •
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8-73

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PROGRAMMING INFORMATION

TABLE 9. COPROCESSOR MODE INSTRUCTIONS, FPUOP = 011112

RB TMS34020 ASSEMBLER OPCODE DESCRIPTION

0000 PASS Copy ra to rd

0001 NOT Place 1 s complement of ra in rd

0010 ABS Place absolute value of ra in rd

0011 NEG Place negated value of ra in rd

0100 CVDF Convert double in ra to single in rd (T and S define ra)

0100 CVFD Convert single in ra to double in rd (T and S define ra)

0101 CVDI Convert double in ra to integer in rd (T and S define ra)

0101 CVFI Convert single in ra to integer in rd (T and S define ra)

0110 CVID Convert integer in ra to double in rd (T and S define ra)

0110 CVIF Convert integer in ra to single in rd (T and S define ra)

0111 VSCLx Multiply each component of a velocity by a scaling factor

1000 SQARx Place (ra * ra) in rd

1001 SQRTx Extract square root or ra, place in rd

1010 SQRTAx Extract square root of absolute value of ra, place in rd

1011 ABORT Stop execution of any FPU instruction

1100 CKVTXI Initialize check vertex instruction

1101 CHECK Check for previous instruction completion

1110 MOVMEM Move data from system memory to external memory @ MCADDR

1111 MOVMEM Move data to system memory from external memory @ MCADDR

TABLE 10. COPROCESSOR MODE INSTRUCTIONS, FPUOP = 111112

RB TMS34020 ASSEMBLER OPCODE DESCRIPTION

0000 POLYx Polynomial expansion

0001 MACx Multiply and accumulate

0010 MNMX1x Determine 1-D minimum and maximum of a series

0011 MNMX2x Determine 2-D minimum and maximum of a series of pairs

0100 MMPYOx Multiply matrix elements 0, 1, 2, 3 by vector element 0

0101 MMPY1x Multiply matrix elements 4, 5, 6, 7 by vector element 1

0110 MMPY2x Multiply matrix elements 8, 9, 10, 11 by vector element 2

0111 MMPY3x Multiply matrix elements 12, 13, 14, 15 by vector element 3

1000 MADDx Add matrix elements 12, 13, 14, 15 to vector

1001 VADDx Add two vectors

1010 VSU8x Subtract a vector from a vector

1011 VDOTx Compute scalar dot product of two vectors

1100 VCROSx Compute cross product of two vectors

1101 VMAGx Determine the magnitude of a vector

1110 VNORMx Normalize a vector to unit magnitude

1111 VRFLCTx Given normal and incident vectors, find the reflection

F denotes single-precision, D denotes double-precision floating-point, x denotes operand type, and a blank deSignates signed integer

TEXAS ."
INSTRUMENTS

8-74 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

external instructions

TMS34082A
GRAPHICS FLOATING~POINT PROCESSOR

SCGS001- 03150. SEPTEMBER 1988 - REVISED MAY 1991

PROGRAMMING INFORMATION

External instructions are 32 bits long, and their formats (number, length, and function of fields) depend on the
operations being selected. Separate formats are provided for data transfers, FPU processing, test and branch
operations, and subroutine calls.

Instructions that control FPU operations can select operands from input registers, internal feedback, or from the
LAD bus (32-bit operations only). The format for an FPU processing instruction is shown in Figure 50.

15 11 o
SEL OP INSTRUCTION

FIGURE 30. FPU PROCESSING EXTERNAL INSTRUCTION FORMAT

The op field selects the sequencer operation. Three continue instructions are available to permit control of the
WE and ALTCH strobe outputs, which enable LAD output in the host-independent mode. The ra, rb, and rd fields
are for the two sources and destination in the TMS34082A register file. The sel_ op field_selects the source of
the operands: register file or feedback registers. The instruction field designates the operation to be performed.

External instructions and cycle counts are listed in Table 11. Absolute values of operands or results, negated
results, and wrapped number inputs are selectable options. Chained operations, using the multiplier and ALU
in parallel, and other instructions to control program flow and move data are included.

External instruction timing depends on the pipeline registers setting, controlled by the PIPES2-1 bits in the
configuration register. Most FPU processing instructions (with the exception of divide, square root, and
double-precision multiply) execute in one cycle per pipeline stage.

TEXAS ,If
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8-75

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PROGRAMMING INFORMATION

TABLE 11. EXTERNAL INSTRUCTIONS AND TIMING

TMS34082A DESCRIPTION PIPES2-1
ASSEMBLER OPCODE OF ROUTINE 11

ADD Add A+ B 1(1)

AND Logical AND A, B 1(1)

ANDNA Logical AND NOT A, B 1(1)

ANDNB Logical AND A, NOT B 1(1)

CJMP Conditional jump 1(1)

CSJR Conditional jump to subroutine 1(1)

CMP Compare A, B 1(1)

COMPL Pass 1 s complement of A 1(1)

Divide AI B

DIV
SP 8(8)
DP 13(13)
integer 16(16)

DTOF Convert from DP to SP 1(1)

DTOI Convert from DP to integer 1(1)

DTOU Convert from DP to unsigned integer 1(1)

FTOD Convert from SP to DP 1(1)

FTOI Convert from SP to integer 1(1)

FTOU Convert from SP to unsigned integer 1(1)

ITOD Convert from integer to DP 1(1)

ITOF Convert from integer to SP 1 (1)

LD Load n words into register
SP n+1
DP 2n + 1
integer n+1

LDLCT Load loop counter with value 1 (1)

LDMCADDR Load MCADDR with value 1(1)

MASK Set programmable mask 1 (1)

MOVA Move A (no status flags active) 1 (1)

MOVLM Move n words from LAD bus to MSD bus
SP n+1
DP 2n + 1
integer n+1

MOVML Move n words from MSD bus to LAD bus
SP n+1
DP 2n + 1
integer n+1

MOVRR Multiple move, register to register
SP n + 1
DP 2n + 1
integer n+1

MULT.ADD Multiply A1 >I< B1, Add A2 + B2
SP 1 (1)
DP 2(2)
integer 1 (1)

DP denotes double-precision, and SP denotes single-precision.

8-76

TEXAS .If
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PIPES2-1
10

2(1)

2(1)

2(1)

2(1)

1(1)

1(1)

2(1)

2(1)

8(7)
13(12)
16(15)

2(1)

2(1)

2(1)

2(1)

2(1)

2(1)

2(1)

2(1)

n+1
2n + 1
n+1

1 (1)

1 (1)

1 (1)

2(1)

n + 1
2n + 1
n+1

n+1
2n + 1
n+1

n+1
2n + 1
n+1

2(1)
3(2)
2(1)

PIPES2-1 PIPES2-1
01 00

2(1) 3(1)

2(1) 3(1)

2(1) 3(1)

2(1) 3(1)

1(1) 1(1)

1(1) 1(1)

2(1) 3(1)

2(1) 3(1)

9(7) 9(7)
15(12) 15(12)
17(15) 17(15)

2(1) 3(1)

2(1) 3(1)

2(1) 3(1)

2(1) 3(1)

2(1) 3(1)

2(1) 3(1)

2(1) 3(1)

2(1) 3(1)

n + 1 n + 1
2n + 1 2n + 1
n+1 n + 1

1(1) 1(1)

1(1) 1(1)

1(1) 1(1)

2(1) 3(1)

n + 1 n + 1
2n + 1 2n + 1
n + 1 n + 1

n+1 n + 1
2n + 1 2n + 1
n + 1 n + 1

n + 1 n + 1
2n + 1 2n + 1
n + 1 n + 1

2(1) 3(1)
3(2) 4(2)
2(1) 3(1)

TMS34082A
ASSEMBLER OPCODE

MULT.NEG

MULT

MULT.PASS

MULT.SUB

MULT.2SUBA

MULT.SUBRL

NEG

NOR

OR

PASS

PASS

PASS.ADD

PASS.NEG

PASS.PASS

PASS.SUB

PASS.2SUBA

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001 - 03150. SEPTEMBER 1988 - REVISED MAY 1991

PROGRAMMING INFORMATION

TABLE 11. EXTERNAL INSTRUCTIONS AND TIMING (Continued)

DESCRIPTION PIPES2-1 PIPES2-1 PIPES2-1 PIPES2-1
OF ROUTINE 11 10 01 00

Multiply A1 * B1 , Subtract 0 - A2
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1 (1) 2(1) 2(1) 3(1)

Multiply A * B
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 * B1 ' Add A2 + 0
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 * B1, Subtract A2 - B2
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 * B1, Subtract 2 - A2
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 * B1, Subtract B2 - A2
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Pass -A (2s Complement) 1(1) 2(1) 2(1) 3(1)

Logical NOR A, B 1(1) 2(1) 2(1) 3(1)

Logical OR A, B 1(1) 2(1) 2(1) 3(1)

Pass A 1(1) 2(1) 2(1) 3(1)

Pass B 1 (1) 2(1) 2(1) 3(1)

Multiply A1 * 1, Add A2 + B2
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 * 1, Subtract 0 - A2
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 * 1, Add A2 + 0
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 * 1, Subtract A2 - B2
SP 1(1) 2(1) 2(1) 3(1)

DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 * 1, Subtract 2 - A2
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

DP denotes double-precision, and SP denotes single-precision.

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 B-77

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

03150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

PROGRAMMING INFORMATION

TABLE 11. EXTERNAL INSTRUCTIONS AND TIMING (Continued)

TMS34082A DESCRIPTION
PIPES2-1

ASSEMBLER OPCODE OF ROUTINE
11

RTS Return from subroutine 1(1)

SLL Logical shift left A by B bits 1(1)

SQRT Square root of A
SP 11(11)
DP 16(16)
integer 20(20)

PASS.SUBRL Multiply A1 * 1, Subtract B2 - A2
SP 1(1)
DP 2(2)
integer 1(1)

SRA Arithmetic shift right A by B bits 1(1)

SRL Logical shift right A by B bits 1(1)

ST Store n words from register
SP n + 1
DP 2n + 1
integer n + 1

SUB Subtract A - B 1(1)

SUBRL Subtract B - A 1(1)

UTOD Convert from unsigned integer to DP 1(1)

UTOF Convert from unsigned integer to SP 1(1)

UWRAPI Unwrap inexact operand 1(1)

UWRAPR Unwrap rounded operand 1 (1)

UWRAPX Unwrap exact operand 1 (1)

WRAP Wrap denormalized operand 1(1)

XOR Logical exclusive OR A, B 1(1)

DP denotes double-precision, and SP denotes single-precision.

B-78

TEXAS •
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

CYCLE COUNTS

PIPES2-1 PIPES2-1
10 01

1(1) 1(1)

2(1) 2(1)

11(10) 12(10)
16(15) 17(15)
20(19) 21(19

2(1) 2(1)
3(2) 3(2)
2(1) 2(1)

2(1) 2(1)

2(1) 2(1)

n+1 n+1
2n + 1 2n + 1
n+1 n+1

2(1) 2(1)

2(1) 2(1)

2(1) 2(1)

2(1) 2(1)

2(1) 2(1)

2(1) 2(1)

2(1) 2(1)

2(1) 2(1)

2(1) 2(1)

PIPES2-1
00

1(1)

3(1)

12(10)
17(15)
21(19)

3(1)
4(2)
3(1)

3(1)

3(1)

n + 1
2n + 1
n+1

3(1)

3(1)

3(1)

3(1)

3(1)

3(1)

3(1)

3(1)

3(1)

GC pin-grid-array ceramic package

TMS34082A
GRAPHICS FLOATING·POINT PROCESSOR

SCGS001 - 03150. SEPTEMBER 1988 - REVISED MAY 1991

MECHANICAL DATA

This is a hermetically sealed package.

145-PIN GC

INDEX CORNER
MARK OR CHAMFER

1,27(0.05) X 45

(PIN A·1)

5,72(0.225)
2,54(0.100)

5,08(0.200)
2,54(0.100)

2,54(0.100) TYP

•

40,1 (1.580) ----.-t~
37,6(1.480) - I

(TOP VIEW)

1
40,1 (1.580)
37,6(1.480)

________ J
~t~~~~~n~~~~M~ ~ ::::~::~

0,508(0.020) II ~ ~ 1,27(0.050) NOM

0,406(0.016) -+! I+- DIA (4 PLACES)
DIA TYP (SEE NOTE E)

@@@@@@@@@@@@@@@
@O@@@@@@@@@@@O@
@@@@@@@@@@@@@@@
@@@ @@@
@@@ @@@
@@@ @@@
@@@ @@@
@ @ @ (BOTTOM VIEW) @ @ @
@@@ @@@
@@@ @@@
@@@ @@@
@@@@ @@@
@@@@@@@@@@@@@@@
@O@@@@@@@@@@@o@
@@@@@@@@@@@@@@@

1 2 3 4 5 6 7 8 9 101112131415

2,54(0.100) TYP
(SEE NOTED)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTES: A. Pins are located within 0,13 (0.005) radius of true position relative to each other at maximum mete rial condition and within
0,457 (0.018) radius of the center of the ceramic.

B. Dimensions do not include solder finish.

TEXAS ~
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8·79

8-80 TMS34082A Data Sheet

Appendix C

SMJ34082A
Data Sheet

The pinout, electrical specifications timing diagrams, and mechanical
specifications are contained within the SMJ34082A Data Sheet and appear in
this appendix.

The SMJ34082A is fully characterized over military temperature range.

C-1

C-2 SMJ34082 Data Sheet

• Military Temperature Range (-55°C to
125°C)

• Class B, High-Reliability Processing

• High-Performance Floating-Point RISC
Processor Optimized for Graphics

• Two Operating Modes
- Floating-Point Coprocessor for

SMJ34020 Graphics System Processor
- Independent Floating-Point Processor

• Direct Connection to SMJ34020
Coprocessor Interface
- Direct Extension to the SMJ34020

Instruction Set
- Multiple SMJ34082A Capability

• Fast Pipelined Instruction Cycle Time
- SMJ34082A-30 ••• 66-ns Coprocessor

Mode ••• 65-ns Host-Independent Mode
- SMJ34082A-28 ••• 70-ns Coprocessor

Mode ••. 70-ns Host-Independent Mode

• Sustained Data Transfer Rates of
120 Mbytes/s (SMJ34082A-30)

description

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592, SEPTEMBER 1990 - REVISED MAY 1991

• Sequencer Executes Internal or
User-Programmed Instructions

• 22 64-Bit Data Registers

• Comprehensive Floating-Point and Integer
Instruction Set

• Internal Programs for Vector, Matrix, and
3-D Graphics Operations

• Full IEEE Standard 754-1985 Compatibility
- Addition, Subtration, Multiplication, and

Comparison
- Division and Square Root

• Selectable Data Formats
- 32-Bit Integer
- 32-Bit Single-Precision Floating-Point
- 64-Bit Double-Precision Floating-Point

• External Memory Addressing Capability
- Program Storage (up to 64K Words)
- Data Storage (up to 64K Words)

• 0.8-/lm EPICTM CMOS Technology
- High-Performance
- low Power « 2 W)

The SMJ34082A is a high-speed graphics floating-point processor implemented in Texas Instruments advanced
O.8-/lm CMOS technology. The SMJ34082A combines a 16-bit sequencer and a 3-operand (source A, source
B, and destination) 64-bit Floating-Point Unit (FPU) with 22 64-bit data registers on a single chip. The data
registers are organized into two files often registers each, with two registers for internal feedback. In addition,
it provides an instruction register to control FPU execution, a status registerto retain the most recent FPU status
outputs, eight control registers, and a two-deep stack (see functional block diagram).

The SMJ34082A is fully compatible with I EEE Standard 754-1985 for binary floating-point addition, subtraction,
multiplication, division, square root, and comparison. Floating-point operands can be either in single- or
double-precision IEEE format.

In addition to floating-point operations, the SMJ34082A performs 32-bit integer arithmetic, logical comparisons,
and shifts. Integer operations may be performed on 32-bit 2s complement or unsigned operands. Integer results
are 32-bits long (even for 32 x 32 integer multiplication). Absolute value conversions, floating-point to integer
converSions, and integer to floating-point conversions are available.

The ALU and the multiplier are closely coupled and can be operated in parallel to perform sums of products or
products of sums. During multiply/accumulate operations, both the ALU and the multiplier are active and the
registers in the FPU core can be used to feedback products and accumulate sums without tying up locations
in register files A and B.

When used with the SMJ34020, the SMJ34082A operates in the coprocessor mode. The SMJ34020 can control
multiple SMJ34082A coprocessors. When used as a stand-alone or with processors other than the SMJ34020,
the SMJ34082A operates in the host-independent mode. The SMJ34082A is fully programmable by the user

EPIC is a trademark of Texas Instruments Incorporated.

ADVANCE INFORMATION documents contain Information on MW
products In the sampling or preproduction phase 01 development
Chanlc:1lrlatlc dIIta and other speclllQIIJons are subject to change
without notice. TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1991, Texas Instruments Incorporated

C-3

'--..,. ___,..,..,."""""'''''''''''' _.'''''HM'''''.9Ea'''''._ .. ''''' , 1E i_' _ ____,-....... ..,..,... :s;:;a::''''!'.~IIII'''''''ll''''.'I.I"J!l!l~1 ~~II ...

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990- REVISED MAY 1991 - SGUS012A

and can interface to other processors or floating-point subsystems through its two 32-bit bidirectional buses. In
the coprocessor mode, the TMS340 family tools may be used to develop code for the SMJ34082A. The
TMS34082A Software Tool Kit is used to develop code for host-independent mode applications or for external
routines in the coprocessor mode.

pin descriptions

Pin descriptions and grid assignments for the SMJ34082A are given on the following pages. The pin at location
D4 has been added for indexing purposes.

145-PIN GB PACKAGE
(TOP VIEW)

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
A • • • • • • • • • • • • • • •
B • • • • • • • • • • • • • • •
C • • • • • • • • • • • • • • •
D • • • • • • •
E • • • • • •
F • • • • • •
G • • • • • •
H • • • • • •
J • • • • • •
K • • • • • •
L • • • • • •
M • • • • • •
N • • • • • • • • • • • • • • •
P • • • • • • • • • • • • • • •
R • • • • • • • • • • • • • • •

TEXAS ."
INSlRUMENTS

C-4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PIN PIN
NO. NAME NO. NAME

A1 NC B15 LAD27

A2 LAD1 C1 MSD4

A3 LAD3 C2 MSD3

M LAD5 C3 MSDO

A5 LAD8 C4 VSS

A6 LAD9 C5 VCC
A7 LAD11 C6 LAD6

A8 LAD12 C7 VSS

A9 LAD13 C8 VCC
A10 LAD15 C9 VSS

A11 LAD17 C10 VCC

A12 LAD19 C11 LAD21

A13 LAD22 C12 VSS

A14 LAD24 C13 LAD25

A15 NC C14 LAD26

B1 MSD1 C15 LAD29

B2 NC D1 MSD6

B3 LADO D2 MSD5

B4 LAD2 D3 MSD2

B5 LAD4 D4 NC

B6 LAD7 D13 VCC

B7 LAD10 D14 LAD28

B8 TMS D15 LAD31

B9 LAD14 E1 MSD8

B10 LAD16 E2 MSD7

B11 LAD18 E3 VSS
B12 LAD20 E13 VSS

B13 LAD23 E14 LAD30

B14 NC E15 COINT

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990 - REVISED MAY 1991

Pin Grid Assignments
PIN PIN PIN

NO. NAME NO, NAME NO, NAME
F1 MSD10 K15 RDY P2 NC

F2 MSD9 l1 MSD18 P3 MSD29

F3 VCC L2 MSD21 P4 MSD31

F13 CORDY l3 MSD23 P5 MSA1

F14 AlTCH l13 VSS P6 MSA3

F15 CAS L14 CIDO P7 MSA6

G1 MSD13 l15 CID2 P8 MSA8

G2 MSD12 M1 MSD20 P9 MSA10

G3 MSD11 M2 MSD24 P10 MSA13

G13 WE M3 VSS P11 MWR

G14 EC1 M13 VCC P12 MOE

G15 ECO M14 LClK1 P13 INTG

H1 MSD14 M15 lClK2 P14 BUSFLT

H2 TDO N1 MSD22 P15 RAS

H3 VSS N2 MSD26 R1 NC

H13 VSS N3 VCC R2 MSD27

H14 LOE N4 MSD28 R3 MSD30

H15 TOI N5 VSS R4 MSAO

J1 MSD15 N6 VCC R5 MSA2

J2 MSD16 N7 MSA5 R6 MSM

J3 VCC N8 VSS R7 MSA7

J13 CC N9 VCC R8 TCK

J14 MSTR N10 MSA14 R9 MSA9

J15 ClK N11 VSS R10 MSA11

K1 MSD17 N12 MAE R11 MSA12

K2 MSD19 N13 LRDY R12 MSA15

K3 VSS N14 SF R13 DS/CS

K13 CID1 N15 RESET R14 MCE

K14 INTR P1 MSD25 R15 NC

TEXAS ."
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-5

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592. SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

logic symbolt

CLK

LCLK1

LCLK2

MSTR

CID2-O

RESET

BUSFLT

LRDY

CORDY

LOE

RAS

SF

ALTCH

CAS

WE

LADO

LAD31

<I>
SMJ34082A

FLOATING POINT PROCESSOR

HOST-INDEPENDENT CLOCK COPROCESSOR INTERRUPT

lOCAL CLOCK 1 I COPROCESSOR INTERRUPT REQUEST

LOCAL CLOCK 2 CLOCKS INTERRUPT GRANT

HOST-INDEPENDENT MODE ADDRESS EN

COPROCESSOR MODE SELECT CHIP EN

COPROCESSOR ID
EXTERNAL

MEMORY BUS

PROCESSOR RESET DATA SPACE EN

CODE SPACE EN

LOCAL BUS READY EMULATOR CONTROL

COPROCESSOR READY

LOCAL OUTPUT EN CLOCK

ROW ADDRESS STROBE MODE SELECT

LOCAL BUS TEST
SPECIAL FUNCTION DATA IN

ADDRESS LATCH DATA OUT
ADDRESS STROBE

COLUMN ADDRESS STROBE

READ STROBE CONDITION CODE

READY

0 ~ ~ 0

• • • • • I INSTRUCTION > <INSTRUCTION I •
31 31

0

I ADDRESS>
• • •
15

tThissymbol is in accordanql with ANSI/IEEE Std91-1984.

TEXAS ."
INSIRUMENTS

C-6 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

COl NT

INTR

INTG

MAE

MCE

MOE

MWR

DS/CS

EC1-O

TCK

TMS

TDI

TDO

CC

RDY

MSDO

• • • MSD31

MSAO

MSA15

functional block diagram

MSTR --+-
COINT ~
LRDY --+-
RESET --+-
LOE --+-
CID2-O --+-
CORDY ~

BUSFLT --+-
RAS --+-
SF --+-
ROY --+-
LCLK1 --+-
LCLK2 --+-
CLK --+-

LAD31-0

TO OTHER REGISTERS

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A-D3592, SEPTEMBER 1990- REVISED MAY 1991

~ MAE

--+- MOE

--+- MCE

--+- MWR

--+- DS/CS

~ CC

~ INTR

--+- INTG

~ EC1-0

PIN FUNCTION CHANGES W/OPERATING MODE ~ TMS

SIGNAL
NAME

ALTCH

WE

CAS

HOST-INDEPENDENT
MODE

OUTPUT -
OUTPUT

OUTPUT

COPROCESSOR
MODE

INPUT

INPUT

INPUT

TEXAS •
INSIRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

~ TCK

~ TDI

--+- TOO

C-7

--~....-----..,..,.,. -., -...,....-.,-.-,",,,,,,-,,",.",,",,",,-,,,,,,,, ,,,,,,,,,,,,,~,,,,,,.,,,.,,.,,,.-........... ,,,,,,,,,,,,

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGU5012A

Terminal Functions

PIN
IJOt

NAME NO.
DESCRIPTION

I
Address Latch, active low. In the coprocessor mode, falling edge of AL TCH latches instruction and status

ALTCH F14
[0]

present on the LAD bidirectional bus (LAD31-O). In the host-independent mode, ALTCH is address
output strobe for memory accesses on LAD31-0.

Bus Fault. In the coprocessor mode, BUSFLT high indicates a data faulton the LAD bus (lAD31-O) during
BUSFLT P14 I current bus cycle, which in turn causes SMJ34082A not to capture current data on LAD bus. Tied low

if not used or in the host-independent mode.

I
Column Address Strobe, active low. In the coprocessor mode, causes SMJ34082A to latch LAD bus data

CAS F15
[0]

when CAS has a low-te-high transition if LRDY was high and BUSFLT was low at the previous LClK2
rising edge. In the host-independent mode, this signal is the read strobe output.

CC J13 I Condition Code Input. In both modes, may be used as an external conditional inputfor branch conditions.

CIDO U4 Coprocessor 10. In the coprocessor mode, used to set a coprocessor 10 so that a SMJ34020 Graphics
CID1 K13 I System Processor controlling multiple SMJ34082A coprocessors can designate which coprocessor is
CID2 U5 being selected by the current instruction. Tied low in the host-independent mode.

ClK J15 I
System Clock. In the coprocessor mode, tied low. In the host-independent mode, input i~ the system
clock.

Coprocessor Interrupt Request, active low. In the coprocessor mode, signals an exception not masked

COINT E15 0
out in the configuration register. Remains low until the status register is read. In the host-independent
mode, user programmable I/O when LADCFG is low. When LADCFG is high, designates bus cycle
boundaries on LAD31-0.

Coprocessor Ready. In the coprocessor mode, if the SMJ34020 sends an instruction before the
CORDY F13 0 SMJ34082A has completed a previous instruction, this signal goes low to indicate that the SMJ34020

should wait. In the host-independent mode, user programmable.

Data Space/Code Space. In both modes, when MEMCFG is low and DS/CS is low, selects program
o SICS R13 0 memory on MSO port. When MEMCFG is low and OS/CS is high, selects data memory on MSO

port. When MEMCFG is high, OS/CS is memory chip select, active low.

ECO G15
I Emulator Mode Control and Test. In both modes, tied high for normal operation. EC1 G14

INTG P13 0
Interrupt Grant Output. In the coprocessor mode,lNTG is low. In the host-independent mode, this signal
is set high to acknowledge an interrupt request input.

INTR K14 I
Interrupt Request I nput, active low. In the coprocessor mode, INTR is tied high. In the host-independent
mode, causes call to subroutine address in interrupt vector register.

The [] S denote the type of buffer ut
ilized in the host-independent mode. If no []'s appear, the buffer type is identical for both modes of operation.

C-8

TEXAS •
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PIN
NAME NO.

LADO B3
LADl A2.
LAD2 B4
LAD3 A3
LAD4 B5
LAD5 A4
LAD6 C6
LAD7 B6
LAD8 A5
LAD9 A6
LAD10 B7
LADll A7
LAD12 A8
LAD13 A9
LAD14 B9
LAD15 Al0
LAD16 Bl0
LAD17 All
LAD18 Bll
LAD19 A12
LAD20 B12
LAD21 Cl1
LA 022 A13
LAD23 B13
LAD24 A14
LAD25 C13
LAD26 C14
LAD27 B15
LAD28 014
LAD29 C15
LAD30 E14
LADSl 015

LCLKl M14
LCLK2 M15

LOE H14

LRDY N13

MAE N12

MCE R14

MOE P12

I/ot

I/O

I

I

I

I

0

0

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- D3592, SEPTEMBER 1990- REVISED MAY 1991

Terminal Functions (Continued)

DESCRIPTION

Local Address and Data Bus. In the coprocessor mode, used by SMJ34020 to input instructions and
data operands to SMJ34082, and used by SMJ34082A to output results. In the host-independent mode,
used by the SMJ34082A for address output and data 1/0.

Local Clocks 1 and 2.ln the coprocessor mode, two local clocks generated bytheSMJ34020, 90 degrees
out of phase, to provide timing inputs to SMJ34082A. In the host-independent mode, tied low.

Local Bus Output Enable, active low. In both modes, enables the local bus (LAD31-0) to be driven at the
proper times when low. In addition during the host-independent mode when LADCFG is low, does not
affectALTCH, CAS, WE, CORDY, or COINT. When LADCFG is high, ALTCH, COl NT, and CORDY are
not disabled by LOE high; CAS and WE are disabled.

Local Bus Data Ready. In the coprocessor mode, when LRDY is high, indicates that data is available
on LAD bus. When LRDY is low, indicates that the SMJ34082A should not load data from LAD31-o and
may also be used in conjunction with BUSFLT.ln the host-independent mode, when LRDY is low, the
device is stalled until LRDY is set high again and tied high if not used.

Memory Address and Data Output Enable, active low. In both modes, with MAE low, the SMJ34082A
can output an address on MSA 1 s-o and data on MSD31-0. MAE high does not disable DS/CS,
MCE, MWR, or MOE.

Memory Chip Enable. In both modes, when MEMCFG low, active (low) indicates access to external
memory on MSD31-0. When MEMCFG is high, MCE low is external code memory chip select.

Memory Output Enable, active low. In both modes when low, enables output from external memory
on to MSD port.

TEXAS .Jf
INSlRUMENlS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265 C-9

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990- REVISED MAY 1991 - SGUS012A

Terminal Functions (Continued)
PIN

IIOt
NAME NO.

DESCRIPTION

MSAO R4
MSA1 PS
MSA2 RS
MSA3 P6
MSA4 R6
MSAS N7
MSA6 P7
MSA7 R7

0
Memory Address output. I n both modes, addresses upto 64K words of external program memory andlor

MSA8 P8 up to 64K words of data memory on the MSD port, depending on setting of DS/CS select.
MSA9 R9
MSA10 P9
MSA11 R10
MSA12 R11
MSA13 P10
MSA14 N10
MSA15 R12

MSDO C3
MSD1 B1
MSD2 D3
MSD3 C2
MSD4 C1
MSD5 D2
MSD6 D1
MSD7 E2
MSD8 E1
MSD9 F2
MSD10 F1
MSD11 G3
MSD12 G2
MSD13 G1
MSD14 H1
MSD15 J1

I/O
External Memory Data. In both modes, I/Os to external memory. Used to read from or write to external

MSD16 J2 data or program memory on the MSD port.
MSD17 K1
MSD18 L1
MSD19 K2
MSD20 M1
MSD21 L2
MSD22 N1
MSD23 L3
MSD24 M2
MSD25 P1
MSD26 N2
MSD27 R2
MSD28 N4
MSD29 P3
MSD30 R3
MSD31 P4

MSTR J14 I
Host-Independent/Coprocessor Mode Select. In the coprocessor mode, MSTR must be tied low to
operate properly. In the host-independent mode, MSTR must be tied high to operate properly.

MWR P11 0
Memory Write Enable. In both modes, when low, data on MSD31-0 can be written to external program
or data memory.

TEXAS ."
INSlRUMENlS

C-10 POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATlNG .. POINT PROCESSOR

SGUS012A - 03592, SEPTEMBER 1990 - REVISED MAY 1991

Terminal Functions (Continued)

PIN
IIOt DESCRIPTION

NAME NO.

A1
A15
B2

NC
B14

No Internal Connection. These pins should be left floating.
04
P2
R1
R15

RAS P15 I
Row Address Strobe, active low. In the coprocessor mode, RAS is high during all of coprocessor
instruction cycle. In the host-independent mode, it is not used.

Ready. In both modes, when ROY is low, it causes a nondestructive stall of sequencer and floating-point
ROY K15 I operations. All internal registers and status in the FPU core are preserved. Also, no output lines will

change state.

RESET N15 I
Reset, active low. In both modes, resets sequencer output and clears pipeline registers, internal states,
status, and exception disable registers in FPU core. Other registers are unaffected.

Special Function Input. In the coprocessor mode when SF is high, indicates the LAD bus input is an
SF N14 I instruction or data from SMJ34020 registers. When SF is low, indicates the LAD input is a data operand

from memory. In the host-independent mode, not used.

TCK R8 I Test Clock for JTAG four-wire boundary scan. In both modes, TCK is low for normal operation.

TOI H15 I Test Data Input for JTAG four-wire boundary scan. In both modes, TDI may be left floating.

TOO H2 0 Test Data Output for JTAG four-wire boundary scan

TMS B8 I Test Mode Select for JTAG four-wire boundary scan. In both modes, SMJ may be left floating.

C5
C8
C10
013

Vce
F3

I 5-V Power Supply. All pins must be connected and used.
J3
M13
N3
N6
N9

C4
C7
C9
C12
E3
E13

VSS
H3

I Ground Pins. All pions must be connected and used.
H13
K3
L13
M3
N5
N8
N11

WE G13
I Write Enable, active low. In the coprocessor mode, the write strobe from the SMJ34020 to enable a write

[0] to or from the SMJ34082A LAD bus. In the host-independent mode, the SMJ34082A write strobe output.

TTh 'S eno he 0 uff e[] d tet type fb eru tilized in the host-ind ep endent mode. If no 'sa ar the buffer [] ppe, type is identical for both modes of 0 eration. p

TEXAS ."
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-11

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

data flow

The SMJ34082A has two bidirectional 32-bit buses, LAD31-0 and MSD31-0. Each bus can be used to pass
instructions and data operands to the FPU core and to output results. A separate 16-bit bus, MSA 15-0, provides
memory addressing capability on the MSD bus.

When the SMJ34082A is used as a coprocessor for the SMJ34020 Graphics System Processor (GSP), data
for the SMJ34082A can be transferred through the 32-bit bidirectional data bus (LAD31-0) and may be passed
to any internal registers or to external memory on the memory expansion interface (MSD31-0). When the
SMJ34082A is used as a standalone FPU, it can use both the LAD bus (LAD31-0) and the MSD bus (MSD31-0)
to interface with external data memory or system buses.

In the host-independent mode, the SMJ34082A can be operated with the LAD bus as its single data bus and
the MSD bus as the instruction source, or with data storage on either port and the program memory on the MSD
bus.

The data space/code space (DS/CS) output can be used to control access either to data memory or program
memory on the MSD port. Up to 64K words of code space and 64K words of data space are directly supported.
In the coprocessor mode, both instructions and data are transferred on the LAD bus with the option of
accessing external user-generated programs on the MSD port.

One 32-bit operand can be input to the data registers each clock cycle. A 64-bit double-precision floating-point
operand is input in two cycles. Transfers to or from the data registers can normally be programmed as block
moves, loading one or more sets of operands with a single move instruction to minimize I/O overhead. Several
modes for moving operands and instructions are available. Block transfers up to 512 words between the LAD
and MSD buses can be programmed in either direction.

To permit direct input to or output from the LAD bus in the host-independent mode, other options for contrOlling
the LAD bus have been implemented. When two 32-bit operands are being selected for input to the FPU core,
one operand may be selected from LAD. On output from the FPU, a result may simultaneously be written to a
register and to the LAD bus.

During initialization in the host-independent mode, a bootstrap loader can bring 65 32-bit words from the LAD
bus and write them out to external program memory on the MSD bus, after which the device begins executing
from the first memory location (zero). The first word is loaded into the configuration register. This option faci litates
the initial loading of program memory on the MSD port upon power-up.

architecture

C-12

Because the sequencer, control and data registers, and FPU core are closely coupled, the SMJ34082A can
execute a variety of complex floating-point or integer calculations rapidly, with a minimum of external data
transfers. The internal architecture ofthe FPU core supports concurrent operation ofthe multiplier and the AlU,
providing several options for storing or feeding back intermediate results. Also, several special registers are
available to support specific calculations for graphics algorithms. Each ofthe main architectural elements ofthe
SMJ34082A is discussed below.

The control functions of the SMJ34082A are provided by sequence control logic, register control logic, and bus
interface control logic, together with user-programmed configuration settings stored in the configuration register.
The on-board sequencer selects the next program execution address, either from internal code or from external
program memory. Next-address sources include the program counter, stack, interrupt vector register, interrupt
return register, or address register (for indirect jumps).

COUNTX, COUNTY, and MIN-MAXIlOOPCT registers are used for temporary storage by internal graphics
routines. They may also serve as temporary storage for the user.

TEXAS ."
INSIRUMENTS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

- ---- --- -~--------- ---_._---_._---_ .. _------_._-- ._-_.- _.-•....•.

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592. SEPTEMBER 1990 - REVISED MAY 1991

A separate FPU status register is provided, which can be used by test-and-branch instructions to control program
execution. Because of the large number of status outputs, branches on status can be easily programmed. The
status register contents are also important when dealing with status exceptions including such conditions as
overflow, underflow, invalid operations (divide by zero), or illegal data formats such as infinity, Not a
Number (NaN), or denormalized operands.

Register control logic permits all data and control registers to be accessed in accordance with applicable
architectural restrictions. Register files A and B can be written to or read from the external buses, as can the
control registers. Internal registers C and CT are embedded in the FPU core and can only be accessed by the
FPU internal buses. The C and CT registers cannot be used as sources or destinations for MOVE instructions,
and several registers (listed in Table 1) are not available as sources for FPU operations.

Table 1. linternal Registers

REGISTER ADDRESS REGISTER NAME RESTRICTIONS ON USE

00000 RAO

00001 RA1

00010 RA2

00011 RA3

00100 RA4

00101 RAS

00110 RA6

00111 RA7

01000 RAS

01001 RAg

01010 cT Not a source or destination for moves

01011 CTT Not a source or destination for moves

01100 STATUS Not a source for FPU instructions

01101 CONFIG Not a source for FPU instructions

01110 COUNTX Not a source for FPU instructions

01111 COUNTY Not a source for FPU instructions

10000 RBO

10001 RB1

10010 RB2

10011 RB3

10100 RB4

10101 RBS

10110 RB6

10111 RB7

11000 RBS

11001 RB9

11010 VECTOR Not a source for FPU instructions

11011 MCADDR Not a source for FPU instructions

11100 SUBADDO Not a source for FPU instructions

11101 SUBADD1 Not a source for FPU instructions

11110 IRAREG Not a source for FPU instructions

11111 MIN-MAX/LOOPCT Not a source for FPU instructions

P ce i sam ins ruction. C and CT registers cannot both be used for F U operand sour s n the e

TEXAS ..If
INSTRUMENTS

POST OFFICE BOX 655303 • DALlAS. TEXAS 75265 C-13

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990- REVISED MAY 1991 - SGUS012A

reglst,r flies A and B, feedback registers C and CT

SMJ34082A contains two register files, each with ten 64-bit registers and two 64-bit feedback registers. Most
instructions will operate on one value from each of the RA and RB register files and return the result to either
the RA or RB files or one of the feedback registers.

When the ONEFILE control bit is high in the configuration register, data written to a register in file RA is
simultaneously written to the corresponding location in file RB. In this mode, the two register files act as a
ten-word, two-read/one-write register file.

REGISTER FILE RA

RAO
RA1
RA2
RA3
RA4
RA5
RA6
RA7
RA8
RA9

63(MSB) O(LSB)

FEEDBACK REGISTERS

63(MSB) O(LSB)

gTE:j

REGISTER FILE RB

RBO
RB1
RB2
RB3
RB4
RB5
RBG
RB7
RB8
RB9

63(MSB) O(LSB)

Figure 1. Data Registers

Two 64-bit feedback registers, C and CT, are embedded in the FPU core. FPU instructions may use the feedback
registers as one of the operands, but the registers cannot be accessed for external moves. The C and CT
registers can be used as either the A or B operand, but both cannot be used as operands during the same
instruction. However, C (or CT) may be used for more than one operand in the same instruction. For example,
C + CT is not a valid instruction, but C + Cis.

The CT feedback register is used in integer divide operations as a temporary holding register. Any data stored
in CT will be lost during an integer divide.

Internal control/status register definitions

configuration register definition

C-14

The configuration register (CON FIG) is a special 32-bit register that the user loads to configure the SMJ34082A
for exception handling, IEEE mode (vs. fast mode), rounding modes, and data-fetch operations. The
configuration register is initialized to 'FFE00420' hex.

TEXAS ."
INSIRUMENTS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

BIT NO. NAME

31 MIVAL

30 MOVER

29 MUNDER

28 MINEX

27 MDIVO

26 MDENORM

25 AIVAL

24 AOVER

23 AUNDER

22 AINEX

21 ADENORM

11-20 N/A

10 REVISION

9 LADCFG

8 MEMCFG

7 N/A

6 ONEFILE

5 PIPES2

4 PIPES1

3 FAST

2 LOAD

1 RND1

0 RNDO

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592. SEPTEMBER 1990 - REVISED MAY 1991

Table 2. Configuration Register Definition

DESCRIPTION

Multiplier invalid operation (I) exception mask. Initialized to 1 (enabled).

Multiplier overflow (V) exception mask. Initialized to 1 (enabled).

Multiplier underflow (U) exception mask. Initialized to 1 (enabled).

Multiplier inexact (X) exception mask. Initialized to 1 (enabled).

Divide by zero (DIVO) exception mask. Initialized to 1 (enabled).

Multiplier denormal (DENORM) exception mask. Initialized to 1 (enabled).

ALU invalid operation (I) exception mask. Initialized to 1 (enabled).

ALU overflow (V) exception mask. Initialized to 1 (enabled).

ALU underflow (U) exception mask. Initialized to 1 (enabled).

ALU inexact (X) exception mask. Initialized to 1 (enabled).

ALU denormal (DENORM) exception mask. Initialized to 1 (enabled).

Reserved, set to all Os.

Revision number, read only. Set to 1.

When low, CAS, WE, CORDY, COINT, and ALTCH are active signals not affected by LOE. When high. LOE high
places CAS and WE in high impedance, as well as the LAD bus. COl NT, which defines the LAD cycle boundaries,
is controlled by bit 1 ofthe LAD move instruction instead ofthe set mask instruction. COl NT will remain high unless
a LAD move instruction (with bit 1 high) is in progress. The setting ofthis bit has no effect in the coprocessor mode.
Initialized to O.

When high, MCE becomes code space chip enable and DS/CS becomes data space chip enable (eliminates need
for external inverter). When low, MCE is chip select for external code and data space. DS/CS functions as an
address bit which selects code space (when low) or data space (when high). Initialized to O.

Reserved for later use. Initialized to O. Must be loaded with O.

When high, causes simultaneous write to both register files (for example, to both RAO and RBO at once). The
register files act as a single two-read, one-write register file. Initialized to O.

When high, makes FPU output registers transparent. When low, registers are enabled. Initialized to 1.

When high, makes FPU internal pipeline registers transparent. When low, registers are enabled. Initialized to O.

When high,fast mode is selected (all denormalized inputs and outputs are 0). When low, IEEE mode is selected.
Initialized to O.

Load order. 0 = MSH, then LSH; 1 = LSH, then MSH. Initialized to O.

Rounding mode select 1. Initialized to O.

Rounding mode select O. Initialized to O.
..

LSH denotes least-significant half of a 64-blt.word, MSH denotes most-significant half of a 64-blt word .

The mask bits serve as exception detect enables for the exception masks listed above. Setting the bit high
(logic '1') enables the detection of the specific exception. When an enabled exception occurs, the ED bit in the
status register will be set high and can be used to generate interrupts. The fast bit allows the SMJ34082A to
control the handling of denormalized numbers. When the fast bit is set high, all denormalized numbers input to
the device are flushed to zero, and all denormalized results are also flushed to zero (this is also called 'sudden
underflow'). When the fast bit is low, IEEE mode is selected. Denormalized numbers may be generated by (or
input to) the ALU. Denormalized numbers must first be wrapped before being used as operands for multiply or
divide instructions.

The LOAD bit defines the expected order of double-precision operands. At reset, this bit will defaultto 0 indicating
that the most significant 32 bits are transferred first. If the bit is set to a 1 , then the expected order of 64-bit data
transfers starts with the least significant 32 bits.

The RNDO and RND1 bits select the IEEE rounding mode, as shown in Table 3.

TEXAS ,If
INSIRUMENIS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 0-15

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592. SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

Table 3. Rounding Mode

RND1 ~RNDO ROUNDING MODES

o 0 Round towards nearest

o 1 Round toward zero (truncated)

1 0 Round towards infinity (round up)

11 Round towards negative infinity (round down)

status register definition

The floating-point status register (STATUS) is a 32-bit register used for reporting the exceptions that occur during
SMJ34082A operations and status codes set by the results of implicit and explicit compare operations. The
status register is cleared upon reset, except for the INTENED flag, which is set to 1 in the coprocessor mode.

Table 4. Status Register Definition

BIT NO. NAME DESCRPTION

31 N

30 GT

29 Z

28 V

27 I

26 U

25 X

24 DIVO

23 RND

22 DENIN

21 DENORM

20 STX1

19 STXO

18 ED

17 UNORD

16 INTFLG

15 INTENHW

14 NXOROV

13 VANDZB

12 INTENED

11 INTENSW

10 ZGT

9 ZLT

8 YGT

7 YLT

6 XGT

5 XLT

4 HINT

3-0 NJA

C-16

Sign bit (A < 8 flag for compare)

A > 8 (valid on compare)

Zero flag (A '" 8 for compare)

IEEE overflow flag. The result is greater than the largest allowable value for the specified format.

IEEE invalid operation flag. A NaN has been input to the multiplier or the ALU, or an invalid operation [(0 * 1)
or (00-00) or (-00 +00)] has been requested. This signal also goes high if al1'operation involves the square root
of a negative number. When IVAL hoes high, the STX pins indicate which port had the NaN.

IEEE underflow flag. The result is inexact and less than the minimum allowable value for the specified format.
In fast mode, this condition causes the result to go to zero.

IEEE inexact flag. The result of an operation is inexact.

Divide by zero. An invalid operation involving a zero divisor has been detected by the multiplier.

The mantissa of a number has been increased in magnitude by rounding. If the number generated was wrapped,
then the 'unwrap rounded' instruction must be used to properly unwrap the wrapped number.

Input to the multiplier is a denormalized number. When DENIN goes high, the STX pins indicate which port has
the denormal input.

The multiplier output is wrapped number or the ALU output is a denormalized number. In fast mode, this condition
causes the result to go to zero. It also indicates an invalid integer operation with a negative unsigned integer
result.

A NaN or a denormalized number has been input on the A port.

A NaN or a denormalized number has been input on the 8 port.

Exception detect status signal representing logical OR of all enabled exceptions in the configuration register.

The two inputs of a comparison operation are unordered, i.e.; one or both of the inputs is an NaN.

Software interrupt flag. Set by external code to signal a software interrupt.

Hardware interrupt (INTR) enable, active high (initialized to zero)

N (negative) XOR V (overflow)

V (overflow) AND Z (NOT zero)

ED interrrupt enable, active high (initialized to zero in the host-independent mode, one in the coprocessor mode)

Software interrupt (INTFLG) enable, active high (initialized to zero)

Zn > Zmax (valid for 2-D MIN-MAX instruction)

Zn < Zmin (valid for 2-D MI~-MAX instruction)

Yn > Ymax (valid for 1-D or 2-D MIN-MAX instruction)

Yn < Ymin (valid for 1-D or 2-D MIN-MAX instruction)

Xn > Xmax (valid for 1-D or 2-D MIN-MAX instruction)

Xn < Xmin (valid for 1-D or 2-D MIN-MAX instruction)

Hardware interrupt flag

Reserved

TEXAS .Jf
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

c.-LI.'_" ~._44H? ?\ _ 'It

indirect address register (MCADDR) definition

SMJ34082A
GRAPHICS FLOATlNG .. POINT PROCESSOR

SGUS012A - 03592, SEPTEMBER 1990 - REVISED MAY 1991

The indirect address register (MCADDR) can be set to point to a memory location for indirect move or jump
operations through the MSD port. MCADDR is cleared upon reset.

31 16 o
x xxxxxxxxxxxxxx v INDIRECT ADDRESS

Figure 2. Indirect Address Definition

The function of bit 16 varies, depending on whether the instruction is a MOVE or JUMP. During a MOVE
instruction, bit 16 selects data space when set high, or code space when low. During a JUMP instruction, bit 16
selects an internal instruction when set high, or an external instruction when low.

stack registers (SUBADD1-SUBADDO) definition

31

The stack contains two subroutine return address registers, SUBADDO and SUBADD1, which serves as a
two-deep LI FO (last-in, first-out) stack. A subroutine jump causes the program counter to be pushed onto the
stack, and a return from subroutine pops the last address pushed on the stack. More than two pushes will
overwrite the contents of SUBADD1.

Bit 31 (Pointer) is set high in the stack location that was written last and reset to zero in the other stack location.
Setting bit 30 (Enable) high enables a write into bit 31 (set or reset the pOinter) in either stack location. If bit 31
is zero in both SUBADDO and SUBADD1 (as when the stack has been saved externally and later restored),
SUBADDO can be designated as top of stack by setting bit 31. The stack pointers (bit 31) are cleared upon reset.

Bit 16 (I) is set high when the address in a stack location points to an internal routine, or set low when the address
is for an external instruction.

16 o
P jE I X x x x x x x x x x x x x I I I SUBADDO

pIE Ix x x x x x x x x x x x x I I I SUBADD1

Figure 3. Stack Definition

interrupt vector register (VECTOR) definition

The interrupt vector register (VECTOR) serves as a pointer to an external program to be executed upon receipt
of an interrupt. Bit 16 (I) is always set low to point to a routine in external code space. The interrupt vector is
cleared on reset.

31 16 o
x XXXXXXXXXXXXXX I INTERRUPT ADDRESS

Figure 4. Interrupt Vector Definition

interrupt return register (IRA REG) definition

The interrupt return register (lRAREG) retains a copy ofthe program counter atthetime of an external interrupt.
This address is used as the next execution address upon returning from the interrupt. Bit 16 (I) is set high when'
the address in the stack location pOints to an internal instruction, or set low when the address is for an external
instruction. This register is not affected by the reset signal.

31 16
x XXXXXXXXXXXXXX INTERRUPT RETURN ADDRESS

Figure 5. Interrupt Return Definition

TEXAS -If
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

o

C-17

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

COUNTX and COUNTY registers definition

31

The counter registers (COUNTX, COUNTY) are used to store the current counts of the minimum and maximum
values when executing MIN-MAX instructions. COUNTX and COUNTY are cleared on reset.

16 o
COUNT FOR MAX VALUE COUNT FOR MIN VALUE

Figure 6. COUNTY and COUNTX Register Definition

The COUNTX register is updated on both the 1-0 and 2-D MI N-MAX instruction such that the count of the current
minimum value is in the lower 16 bits of the register and the count of the current maximum value is in the upper
16 bits. The COUNTY register is used only in the 2-D MIN-MAX instruction to keep track of the counts of the
minimum and maximum forthe second value of a pair. The COUNTX and COUNTY registers may also be used
for temporary storage when not using the MIN-MAX instructions.

MIN-MAx/LOOPCr register

31

The MIN-MAX/LOOPCT register stores the current values of two separate counters. The LSH contains the
current loop counter, and the MSH is used to hold the current minimum or maximum value of a MIN-MAX
operation. The MIN-MAX/LOOPCT register is cleared upon reset. The MIN-MAX/LOOPCT register may also
be used for temporary storage when not using the MIN-MAX instructions.

16 o
COUNT FOR MIN-MAX VALUE LOOP COUNT

Figure 7. MIN-MAx/LOOPCT Register Definition

FPU core

C-18

The FPU core itself consists of a multiplier and an ALU, each with an intermediate pipeline register and an output
register (see Figure 8, FPU core functional block diagram). Four multiplexers select the multiplier and ALU
operands from the data registers, feedback registers, or previous multiplier or ALU result. Results are directed
either to the internal feedback registers (C or CT), the 20 data registers in register files RA and RB, or the ten
other miscellaneous registers.

Both the internal pipeline registers and the output registers can be enabled or made transparent (disabled) by
setting the PIPES2-PI PES1 bits in the configuration register. When the device is powered up, the default settings
of the internal registers are PIPES2 high (output registers transparent) and PIPES1 low (internal pipeline
registers enabled).

When the FPU core is used for chained operations, the multiplier and ALU operate in parallel. Two data inputs
are provided from the RA and RB input registers, while multiplier and ALU feedback are used as the other two
operands. While in the chained mode, the output registers of the FPU must be enabled to latch feedback
operands. The appropriate registers must be enabled by setting the PIPES2-PIPES1 controls in the
configuration register at the beginning of chained operations, and the PIPES2-PIPES1 control should then be
reinitialized upon termination.

Fully pipelined operation (both pipeline and output registers enabled) affects timing when writing results back
to the RA and RB register files. To adjust writeback timing, it is possible to issue the NOP (no operation)
instruction to the FPU core when the results are to be retained in the output registers for one or more additional
cycles. The NOP instruction is only effective when the output registers are enabled, as each NOP causes the
output register contents to be retained for one additional cycle.

TEXAS ,If
INSTRUMENTS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATlNG .. POINT PROCESSOR

SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

TO/FROM CONTROL REGISTER

T O/FROM LAD BUS
32 t

~ - I

~

64

~~

DATA 110 32
CONFIG
LOGIC

, TO/FROM MSD B

I REGISTERS \ REGISTERS \ I CREG I
RA9-RAO RB9-RBO I CTREG

64 64
64

I I

T T T T
~~

MULTIPLIER STAGE 1 ALU STAGE 1

MULTIPLIER PIPELINE 64 ALU PIPELINE

MULTIPLIER STAGE 2 ALUSTAGE2

64 64
~

I MULTIPLIER OUTPUT REG I ALU OUTPUT REG

I

~~ ~ MUX

64 64
I

~ I STATUS REGISTER I
32

I

Figure 8. FPU Core Functional Block Diagram

TEXAS .If
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

~ ~

~

US

C-19

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

SMJ34082A operating modes

The SMJ34082A can operate as a stand-alone floating-point processor or a graphics coprocessor to the
SMJ34020 Graphics System Processor. Control of FPU operation is provided either from external program
memory or from the SMJ34020. External instructions are addressed by address lines MSA 15-0 and are input
on MSD31-0. SMJ34020 instructions are input on LAD31-0.

Both the MSD and LAD buses can be used for data transfers as well. Combinations of control signals distinguish
instruction fetches from data transfers. A single instruction may be used to transfer data and to perform an
operation within the FPU.

The SMJ34082A supports external code and data storage with the memory expansion interface, MSD31-0. Up
to 64K 32-bit data operands and 64K instructions may be added externally to the SMJ34082A. The signal DS/CS
controls whether data space or code space is being accessed, and read/write control is provided with the chip
enable (MCE), output enable (MOE), address enable (MAE), write enable (MWR), and address lines (MSA 15-0).

The SMJ34082A also provides instructions that allow the SMJ34020 to read/write directly from/to external
memory. The external code support permits full utilization of the SMJ34082A features and instruction set.

coprocessor-mode operation

Operation in the coprocessor mode assumes MSTR is low. In this mode, the SMJ34082A acts as a closely
coupled coprocessor to the SMJ34020. The interface between the two devices consists of direct connections
between pins. More than one coprocessor may be connected to the SMJ34020 by setting the appropriate
coprocessor ID (CID2-CIDO). Up to four coprocessors executing in parallel may be used with a single SMJ34020.

In the coprocessor mode, clock signals are provided by LCLK1 and LCLK2 from the SMJ34020. Internally, the
FPU generates a rising clock edge from each LCLK1 edge (rising or falling). Thus, the SMJ34082A actually
operates at twice the LCLK1 input clock frequency.

initialization (coprocessor mode)

On reset, the SMJ34082A clears all pipeline registers and internal states. The configuration register and status
register return to their initialization values. When RESET returns high in the coprocessor mode, the SMJ34082A
is in an idle state waiting for the next instruction from the SMJ34020.

LAD bus control (coprocessor mode)

Both data and instructions are transferred over the bidirectional LAD bus in the coprocessor mode. A unique
combination of signal inputs distinguishes an instruction from data. SF, ALTCH, CAS, RAS, and WE are used
to designate coprocessor functions from other operations on the LAD bus.

Data may be transferred to or from SMJ34020 registers or memory via LAD31-0. Transfers between the LAD
and MSD buses can also be programmed. A single coprocessor instruction may be used to transfer data to the
SMJ34082A and then perform an FPU operation.

MSD bus control (coprocessor mode)

Use of the MSD bus in the coprocessor mode is optional. External memory on MSD31-0 can be used to store
data, user-programmed subroutines, or both. Different combinations of control signals distinguish between data
memory and code memory. Control signals for MSD and MSA buses operate the same in the host-independent
and coprocessor modes.

interrupt handling (coprocessor mode)

C-20

A software interrupt to the SMJ34082A is generated by the set mask external instruction. When the interrupt
is granted, the current program counter is stored in the interrupt return register, and a branch to the interrupt
vector address is executed. Software interrupts may be disabled.

TEXAS ..
INSIRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592, SEPTEMBER 1990 - REVISED MAY 1991

If the exception detect interrupt (ED) is enabled, a SMJ34082A exception causes COl NT to go low, signalling
the exception to the SMJ34020. This exception does not cause a branch to the interrupt vector. If its interrupts
are enabled, the SMJ34020 will branch to an interrupt vector to service the SMJ34082A request. Interrupts are
cleared by reading the SMJ34082A status register.

host-Independent mode operation

Operation in the host-independent mode assumes MSTR high. The SMJ34082A has several hardware control
signals, as well as programmable features, which support system functions such as initialization, data transfer,
or interrupts in the host-independent mode. ClK provides the input clock to the SMJ34082A. Details of
initialization, LAD and MSD bus interface control, and interrupt handling are provided in the following sections.

initialization (host-independent mode)

To simplify initialization of external program memory, the SMJ34082A provides a bootstrap loader to perform
an initial program load of 64 instructions. Once invoked, the loader causes the SMJ34082A to read 65 words
from the LAD bus and write 64 words out to the external program memory on the MSD bus, beginning with

'location O. The first word read is used to initialize the configuration register.

This loader is invoked by first setting RESET low, and then INTR low. A separate timing diagram for using the
bootstrap loader is provided (see Figure 34). INTR should be taken low after RESET is already low, as shown
inthe diagram. When the bootstrap loader is started, the FPU core is reset (internal states and status are cleared,
but not data registers) and the stack pointer, program counter, and interrupt vector register are all set to zero.

RESET must be set high again before the loader operation can start (see Figure 34). Once the loader is active,
an external interrupt (signalled by INTR low) will not be granted until the load sequence is finished. However,
RESET going low terminates the load sequence, regardless of whether the sequence is complete. When the
load sequence is finished, the device begins program execution at external address o.

LAD bus control (host-independent mode)

Data transfer from the LAD bus (LAD31-0) is controlled primarily by output Signals, AlTCH, WE, and CAS.
AlTCH is the address write strobe that signals an address is being output on the lAD bus. The CAS signal is
the read strobe, and WE is the write enable output to memory.

If a bidirectional FIFO is used instead of memory, CAS can be directly connected to the read clock and WE to
the write clock. The CC input can be used to signal the SMJ34082A when data is ready for input from the FI FO
stack.

Data input on the LAD bus can be written to data registers, control registers, or passed through for output on
the MSD bus. Alternatively, the LAD bus input can be selected directly as an FPU source operand without writing
to a register.

An FPU result can be written to a data register and at the same time be passed out on the LAD bus. When this
is done, the clock period may need to be extended upto 15 ns (SMJ34082-30) to allow for the propagation delay
from the FPU core to the outputs.

Depending on the specific system implementation, transferring data to and from the LAD bus without intervening
register operations may significantly improve throughput. In the host-independent mode, data moves to and from
internal registers can be min.imized at the cost of adjusting the clock period to assure integrity of FPU inputs to
and output from the LAD bus.

TEXAS ..If
INSlRUMENlS

POST OFFice BOX 655303 • DALLAS, TeXAS 75265 C-21

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

MSD bus control (host-independent mode)

The MSO bus can be used to access either external data memory or external code memory, depending on the
combination of control signals required. lithe memory on the MSO port is shared with a host processor, the MAE
and ROY signals can be used to prevent conflicts between the host and the SMJ34082A. When memory on the
MSO port is shared, the host processor can monitor the state of the SMJ34082A memory chip enable (MCE)
to determine when the SMJ34082A is not accessing the memory.

Otherwise, the MAE signal may be tied low (if unused), and the SMJ34082A can use MOE, MCE, MWR. and
OS/CS to control external memory operations into either data space or code space, as selected by OS/CS.

interrupt handling (host-independent mode)

C-22

Interrupts to the SMJ34082A can be signalled by setting the interrupt request input (INTR) low. INTR is
associated with the vector in the interrupt vector register. Software interrupts are signalled by setting the software
interrupt flag in the status register.

In the event of an FPU status exception in the host-independent mode, an interrupt is generated that causes
a branch to an exception handler routine. The address of the exception handler is stored in the interrupt vector
register by the user prior to execution of the FPU program. Interrupts may be disabled by setting the appropriate
bits in the status register.

TEXAS ."
INSIRUMENTS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592, SEPTEMBER 1990 - REVISED MAY 1991

absolute maximum ratings over operating free-alr temperature range (unless otherwise noted)t

Supply voltage, V cc (see Note 1) .. 6 V
Input voltage range, VI -0.3 V to 6 V
Off-state output voltage range ... -2 V to 6 V
Operating free-air (minimum) and case (maximum) temperature range -55°C to 125°C
Storage temperature range ... -65°C to 150°C

t Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage levels are with respect to ground (VSS).

recommended operating conditions
PARAMETER MIN NOM MAX UNIT

VCC Supply voltage 4.5 5 5.5 V

VSS Supply voltage (see Note 2) 0 V

VIH High-level input voltage 2.4 VCC+0.3 V

VIL Low-level input voltage -0.3 0.6 V

10H High-level output current -8 mA

10L Low-level output current 8 mA

SMJ34082A-28 7.1
Coprocessor mode

SMJ34082A-30 7.6 MHz
fclock Clock frequency

SMJ34082A-28 14.3
Host-independent Mode

SMJ34082A-30 15.4

TA Operating free-air temperature -55 °c
TC Operating case temperature 125 °c

NOTE 2: In orderto minimize noiseon VSS. care should betaken to provide a minimum-inductance path between the VSS pins and system ground.

electrical characteristics over recommended operating free-alr (minimum) and case (maximum)
temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TY~ MAX UNIT

VOH High-level output voltage VCC=4.5V. 10H =-S mA 2.6 V

VOL Low-level output voltage VCC =4.5 V. 10L =8mA 0.6 V

High-impedance bidirectional pins output current
VCC=4.5V. VO=2.S V 10

10
VCC = 4.5 V. VO=0.6V -10

vA

II Input current VI = VSS to VCC ±10 vA
Dynamic VCC = 5.5 V 325 mA

ICC§ Supply current VI = VILmax or VIHmin. 10H = IOL = 0 50
Quiescent

VI = 0.2V or VCC - 0.2 V. 10H = IOL = 0 50
mA

Ci Input capacitance 10 pF

I = V = 0 AI typical values are at V CC 5 and T A 25 C.
§ ICC is measured at maximum clock frequency. Inputs are presented with random logic highs and lows to assure the toggling of internal nodes.

TEXAS ..
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-23

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

coprocessor mode (MSTR low)

switching characteristics over recommended ranges of supply
t
· voltage and operating free-air (minimum) and

case (maximum) temperature range (unless otherwise noted)
propagation delay times

SMJ34082A-28 SMJ34082A-30
PARAMETER FIGURE MIN MAX MIN MAX UNIT

tp(ATCL-CORV) Propagation delay time, ALTCH low to CORDY valid 11 40 40

tp(ATCH-LADV) Propagation delay time, ALTCH high to LAD data valid 16 35 35

tp(CASL -LADV) Propagation delay time, CAS low to LAD data valid 14 30 25

tp(CASH-LADZ) . Propagation delay time, CAS high to LAD disabled 14 30 25

tp(LC1-DCSL)ML
Propagation delay time, LCLK1 i or J, to DS/CS low

17,21,23 25 25
with MEMCFG low

tp(LC1-DCSH)ML
Propagation delay time, LCLK1 i or J, to DS/CS high 17,19,21,

25 25
with MEMCFG low 23,24; 26

tp(LC1-DCSL)MH
Propagation delay time, LCLK1 i or J, to DS/CS low 18,20,22,

30 2 22
with MEMCFG high 25,27

tp(LC1-DCSH)MH
Propagation delay time, LCLK1 i or J, to DS/CS high 18,20,22,

21 2 21
with MEMCFG high 25,27

tp(LC1-MCEL) Propagation delay time, LCK1 i or J, to MCE low
17-19,

21 2 21
21-27

tp(LC1-MCEH)ML
Propagation delay time, LCLK1 i or J, to MCE high 17,19,21,

23 2 23
with MEMCFG low 23

tp(LC1-MCEH)MH
Propagation delay time, LCLK1 i or J, to MCE high 18,22,25,

15 2 15
with MEMCFG high 27

17,18, ns
tp(LC1-MOEL) Propagation delay time, LCLK1 i or J, to MOE low 21-23,26, 10 35 10 35

27

17,18,

tp(LC1-MOEH) Propagation delay time, LCLK1 i or J, to MOE high 21-23,26, 3 13 3 13
27

tp(LC1-MSAV)
Propagation delay time, LCLK1 i or J, to MSA address

17-27 25 25
valid

tp(LC1-MSDV)
Propagation delay time, LCLK1 i or J, to MSD data 19,20-22,

40 40
valid 24,25

tp(LC1-MWRL) Propagation delay time, LCLK1 i or J, to MWR low
19-22,24,

10 35 10 35
25

tp(LC1-MWRH) Propagation delay time, LCLK1 i or J, to MWR high
20-22,24,

3 13 3 13
25

tp(LC1 H-COIL) Propagation delay time, LCLK1 ito COINT low 12 23 20

tp(LC1 H-COIH) Propagation delay time, LCLK1 ito COINT high 12 23 20

tp(LC1 H-LADVI Propagation delay time, LCLK1 i to LAD data valid 16 28 23

tp(MSDV-LADV)
Propagation delay time, MSD data valid to LAD data

26,27 30 25
valid

toIRASH-LADXZ) Propagation delay time, RAS high to LAD disabled 16 30 25

See Parameter Measurement Information for load CirCUit, voltage waveforms, and timing diagrams. The deVice parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

C-24

TEXAS ~
INSIRUMENlS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990 - REVISED MAY 1991

coprocessor mode (MSTR low)

switching characteristics over recommended ranges of supply voltage and pperating free-air (minimum) and
case (maximum) temperature range (unless otherwise noted) (continued)T
enable and disable times

SMJ34082A-28 SMJ34082A-30
PARAMETER FIGURE MIN MAX MIN MAX UNIT

ten(LOEL-LADZX) Enable time, LOE low to LAD enabled 16 2 17 2 17

terliMAEL-MSAZX) Enable time, MAE low to MSA enabled 21,22 2 17 2 17 ns

ten(MAEL-MSDZX) Enable time, MAE low to MSD enabled 22 2 17 2 17

idis(LOEH-LADXZ) Disable time, LOE high to LAD disabled 16 2 17 2 17

idis{MAEH-MSAXZ) Disable time, MAE high to MSA disabled 21,22 2 17 2 17 ns

idi$iMAEH-MSDXZ) Disable time, MAE high to MSD disabled 21 2 17 2 17

valid times
SMJ34082A-28 SMJ34082A-30

PARAMETER FIGURE MIN MAX MIN MAX UNIT

20-22,24,

tv(MWRH-MSA) Valid time, MSA address after MWR high 25 0 0

20-22,24,
tv(MWRH-MSD) Valid time, MSD data output after MWR high 25 0 0

ns

tv(LC1-MSA) Valid time, MSA address valid after LCK l' or J,
17-22,

3 3 24-27

t\ILLC1 L-COR) Valid time, CORDY valid after LCLKl low 11 0 0

timing requirements over recommended ranges of SUPply. voltage and operating free-air (minimum) and case
(maximum) temperature range (unless otherwise noted)T
clock period and pulse duration

SMJ34082A-28 SMJ34082A-30
PARAMETER FIGURE MIN MAX MIN MAX UNIT

10,17-22,
tc(LC1) Clock period, LCLKl (1/fclock) with PIPESl low 24-27 170 162

ns
tc(LC2) Clock period, LCLK2 (llfclock) with PIPESllow 10 170 162

ty.t(LC1H) Pulse duration, LCLKl high 10 76 72

twCLC1U Pulse duration, LCLKl low 10 76 72

tw(LC2H) Pulse duration, LCLK2 high 10 76 72

ty.t(LC2U Pulse duration, LCLK2 low 10 76 72

t\,@CSH)MH Pulse duration, DS/CS high with MEMCFG high 20,25,27 5 5

tw(RSTL) Pulse duration, RESET low 12 35 30
ns

tw(MCEH) Pulse duration, MCE high 18,25,27 5 5

17,18,23,
tw(MOEH) Pulse duration, MOE high 26,27 5 5

twlMWRH) Pulse duration, MWR high 20,24,25 5 5
.. as r See Parameter Measurement Information for load cirCUit, voltage waveforms, and timing diagrams. The deVice parameters are me u ed for

PIPES2 high and PIPES110w. No other pipeline settings are specified.

TEXAS •
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 G-25

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

coprocessor mode (MSTR low)

timing requirements over recommended ranges of sUPPlr voltage andtoperating free-air (minimum) and case
(maximum) temperature range (unless otherwise noted (continued)
transition times

SMJ34082A·28 SMJ34082A-30
PARAMETER FIGURE MIN MAX MIN MAX UNIT

tt(LC1) Transition time, LCLKl 10 15 15

ttCLC2) Transition time, LCLK2 10 15 15
ns

setup and hold times
SMJ34082A·28 SMJ34082A-30

PARAMETER FIGURE MIN MAX MIN MAX UNIT

tsu(BUS·LC2H) Setup time, BUSFLT valid before LCLK2 t 11 20 13

tsu(CC-LC1) Setup time, CC valid before LCLK1 t or .!. 12 7 7

tsu(LAD-ATCLl Setup time, LAD address valid before ALTCH low 1~16, 23 17 17

tsu(LAD-CASH) Setup time, LAD address valid before CAS high
13,15,24,

25 15 15

tsu(LRD-LC2H) Setup time, LRDY valid before LCLK2 t 11 20 20

tsu(MSD-LC1) Setup time, MSD data valid before LCLK1 t or .!. 17,18,23 12 12 ns

tsu(RASH-ATCL) Setup time, RAS high before ALTCH low 1~15, 23 35 30

tsu(RDYL-LCl) Setup time, RDY low before LCLKl t or .!. 12 20 15

tsu(RSTH-LC1l Setup time, RESET high before LCLK1 tor.J, 12 50 50

tsu(SF-ATCL) Setup time, SF valid before ALTCH low 1~16,23 15 15

tsu(WEL-CASL) Setup time, WE low for data write before CAS low 13,16 15 15

th(ATCH-SF) Hold time, SF valid after ALTCH high 1~15,23 15 12

th(ATCL-LAD) Hold time, LAD address valid after ALTCH low 1~16, 23 21 17

th(CASH-LAD) Hold time, LAD data valid after CAS high
13,15,24,

0 0 25

th(CASH-SF) Hold time, SF valid after CAS high 1~15,23 15 15

th(LC1-CC) Hold time, CC valid after LCLKl tor.J, 12 5 5

th(LC1-MSD) Hold time, MSD input data valid after LCLKl t or .!. 17,18,23 4 4 ns

th(LC1-RDY) Hold time, ROY valid after LCLK1 tor.J, 12 5 5

th(LC1 H-LC2L) Hold time, LCLK2 low after LCLKl high 10 20 20

th(LC2H-BUS) Hold time, BUSFLT valid after LCLK2 high 11 5 5

th(LC2H-LCl H) Hold time, LCLKl high after LCLK2 high 10 20 20

thLLC2H-LRD) Hold time, LRDY valid after LCLK2 high 11 5 5

thCWEH-SF) Hold time, SF valid after WE high 13 20 20

See Parameter Measurement Information for load Circuit, voltage waveforms, and timing diagrams. The deVice parameters are measu
PI PES2 high and PI PES 1 low. No other pipeline settings are specified.

red for

TEXAS ."
INSIRUMENTS

C-26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990- REVISED MAY 1991

coprocessor mode (MSTR low)

timing requirements over recommended ranges of supply voltage andtoperating free-air (minimum) and case
(maximum) temperature range (unless otherwise noted) (continued)

delayfimes
SMJ34082A-28 SMJ34082A-30

PARAMETER FIGURE MIN MAX MIN MAX UNIT

Delay time, DS/CS high to MCE low with MEMCFG
tcJ(DCSH-MCEL)MH high 18,22 4 4

tcJ(DCSH-MWRL) Delay time, DS/CS high to MWR low 19,24 5 5

Delay time, MCE high to DS/CS low with MEMCFG
tcJ(MCEH-DCSL)MH high 20 4 4

tcJ(MCEH-MWRL) Delay time, MCE high to MWR low 25 5 5

tcJ(MOEH-MWRLl Delay time, MOE high to MWR low 19 5 5

20-22,24, ns

tcJ(MSAV-MWRL) Delay time, MSA valid to MWR low 25 4 4

tcJ(MSDZ-MOEL) Delay time, MSD disabled to MOE low 21,22 2 2

tcJ(MWRH-MCEL1MH Delay time, MWR high to MCE low with MEMCFG high 25 5 5

tcJ(MWRH-MOEL) Delay time, MWR high to MOE low 19,21,22 5 5

tcJ(MWRH-MSDVZ) Delay time, MWR high to MSD disabled 21 1 12 1 9

tcJlMWRL-MSDZXl Delay time, MWR low to MSD enabled 21,22 1 13 1 13

arameter M as re '0 for load i r ti i i r See P e u ment Informatl n C rCUlt, voltage wavefo ms, and m ng diagrams. The dev ce pa ameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

TEXAS •
INSIRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

,--........... -. ..,.--............ ...,. , ""'-, ... , ... "' """""---..,..,-."'."'-." .. ~.~-~-.....-'

C-2?

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

host-Independent mode (MSTR high)

switching characteristics over recommended ranges of suPPIY.tvoltage and operating free-air (minimum) and
case (maximum) temperature range (unless otherwise noted) .
propagation delay times

SMJ34082A-28 SMJ34082A-30
PARAMETER FIGURE MIN MAX MIN MAX UNIT

tp(ClKH-ATCHl Propagation delay time, ClK i to AlTCH high 29,30 10 10

tp(ClKH-ATCl) Propagation delay time, ClK i to AlTCH low 29,30 28 28

tp(ClKH-CASH) Propagation delay time, ClK i to CAS high
29,31,32,

10 10 34-36

tp(ClKH-CASl) Propagation delay time, ClK i to CAS low
29,31,32,

28 28 34-36

tp(ClKH-COIH) Propagation delay time, ClK i to COINT high
29-31,33,

20 20 35,36,46

tp(ClKH-COll) Propagation delay time, ClK i to COINT low
29-31,33,

20 35,36,46 20

I tp(ClKH-CORH) Propagation delay time, ClK i to CORDY high 46 20 17

tp(ClKH-CORU Propagation delay time, ClK i to CORDY low 46 20 17

tp(ClKH-DCSH)MH
Propagation delay time, ClK ito Ds/CS high with 36,38,40,
MEMCFGhigh 42-44 1 10 1 10

tp(ClKH-DCSH)Ml
Propagation delay time, ClK i to Ds/CS high with 35,37,39,

23 20 MEMCFGlow 41,45,46

tp(ClKH-DCSl)MH
Propagation delay time, ClK ito DS/CS low with 36,38,40,

1 23 1 20 MEMCFGhigh 42-44

tp(ClKH-DCSl)Ml
Propagation delay time, ClK i to DS/CS low with 37,41,

23 MEMCFGlow 45-47 20

tp(ClKH-ITGH) Propagation delay time, ClK i to INTG high+ 47 20 15

tp(ClKH-ITGU Propagation delay time, ClK ito INTG low 47 25 20

29,30, ns

tp(ClKH-LADV) Propagation delay time, ClK i to LAD valid 33-35,43, 35 35

44

tp(ClKH-MCEH)MH
Propagation delay time, ClK ito MCE high with 36,38,
MEMCFG high 42-46 1 10 1 10

tp(ClKH-MCEH)Ml
Propagation delay time, ClK ito MCE high with 37,39,41,

1 20 1 MEMCFGlow 45-47 20

tp(ClKH-MCEl) Propagation delay time, ClK i to MCE low
35-39,
41-47 1 23 1 20

Propagation delay time, ClK i to MOE high
37,38,

tp(ClKH-MOEH) 41-47 1 11 1 11

Propagation delay time, ClK i to MOE low
37,38,

tp(ClKH-MOEl) 41-47 10 35 10 35

I 1p(ClKH-MSAV) Propagation delay time, ClK i to MSA address valid 35-47 20 20

tp(ClKH-MSDV) Propagation delay time, ClK i to MSD data valid
35,36,
39-42 40 40

tp(ClKH-MWRH) Propagation delay time, ClK i to MWR high
35,36,
40-42 1 10 1 10

tp(ClKH-MWRl) Propagation delay time, ClK i to MWR low·
35,36,
39-42 10 35 10 35

T ..
See Parameter Measurement Information for load CirCUIt, voltage waveforms, and timing diagrams. The deVice parameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

:j: Interrupts are not granted during multicycle instructions.

TEXAS ."
INSlRUMENTS

C-28 POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592, SEPTEMBER 1990 - REVISED MAY 1991

host-Independent mode (MSTR high)

switching characteristics over recommended ranges of supply voltage and operating free-air (minimum) and
case (maximum) temperature range (unless otherwise noted) (continued)T
propagation delay times (continued)

SMJ34082A-28 SMJ34082A-30
PARAMETER FIGURE MIN MAX MIN MAX UNIT

Propagation delay time, ClK i to WE high
30,33,43,

tp(ClKH-WEH) 44 10 10

30,33,43, ns

tp(ClKH-WEl) Propagation delay time, ClK i to WE low 44 30 30

enable and disable times
SMJ34082A-28 SMJ34082A-30

PARAMETER FIGURE MIN MAX MIN MAX UNIT

ten(ClKH-LADZX) Enable time, ClK high to LAD enabled 29,30 5 5

ten(lOEl-LADZX) Enable time, LOE low to LAD enabled 33 2 17 2 17

tentMAEl-MSAZX) Enable time, MAE low to MSA enabled 41,42 2 17 2 17 ns

ten(MAEl-MSDZX) Enable time, MAE low to MSD enabled 42 2 17 2 17

idis(CLKH-LADZX) Disable time, ClK high to LAD disabled+ 29,30 25 25

idisllOEH-LADXZ) Disable time, lOE high to LAD disabled 33 2 17 2 17

idis(MAEH-MSAXZ) Disable time, MAE high to MSA disabled 41,42 2 17 2 17 ns

idis(MAEH-MSDXZ) Disable time, MAE high to MSD disabled 42 2 17 2 17

valid times "()

SMJ34082A-28 SMJ34082A-30
PARAMETER FIGURE

MIN MAX MIN MAX
UNIT

tv(ATCH-LAD) Valid time, LAD output data after AlTCH high 29,30 2 2

tv(CLKH-MSA) Valid time, MSA address valid after ClK high 35-47 3 U 3

35,36,
tv(MWRH-MSD) Valid time, MSD data valid after MWR high 40-42 1 1 ns

tv(MWRH-MSA) Valid time, MSA address valid after MWR high
35,36,

1 1 40-41

tv(WEH-LAD) Valid time, LAD data valid after WE
30,33,43,

2 2
44

r m Inf rma' e v f i i a he ic r eer ar easured See Parameter Measure ent 0 tlon for load CirCUit, voltag wa e orms, and tim ng d agr ms. T dev e pa am t s e m for
PIPES2 high and PIPES110w. No other pipeline settings are specified.

+ Valid only for last write in series. The LAD bus is not placed in(hjgh-impedance state between consecutive outputs.

TEXAS''''
INSlRUMENTS

POST OfFICE BOX 655303 • DALLAS, TEXAS 75265 C-29

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

host-Independent mode (MSTR high)

timing requirements over recommended ranges of supplY.. voltage and operating free-air (minimum) and case
(maximum) temperature range (unless otherwise notedjT
clock period and pulse duration

SMJ34082A-28 SMJ34082A-30
PARAMETER FIGURE MIN MAX MIN MAX UNIT

fc(ClK) Clock period time, ClK (1/fclock) with PIPES1 low
28-31,

78 73 33-48 ns

tw(ATCH) Pulse duration, AlTCH high 30 5 5

tw(CASH) Pulse duration, CAS high
29,31,32,

35,36 5 5

tw(ClKH) Pulse duration, ClK high 28 17 17

tw(ClKl) Pulse duration, ClK low 28 22 22

tw(OCSH) Pulse duration, OS/CS high 36,40,44 5 5

tw{lTRl) Pulse duration, INTR low 34,47 30 30
ns

tw(MCEH) Pulse duration, MCE high
36,38,

5 5 44-46

tw(MOEH) Pulse duration, MOE high
37,38,

6 6 43-46

tw(MWRH) Pulse duration, MWR high 35,36, 40 6 6

tw(RSTl) Pulse duration, RESET low 34 40 40

30,33,43,
tw(WEH) Pulse duration, WE high 44 5 5

transition time
SMJ34082A-28 SMJ34082A-30

PARAMETER FIGURE MIN MAX MIN MAX UNIT

tt/ClK) Transition time, ClK 28 15 15 ns
..

See Parameter Measurement Information for load CircUit, voltage waveforms, and timing diagrams. The deVice parameters are measured for
PIPES2 high and PIPESllow. No other pipeline settings are specified.

C-30
TEXAS " INSIRUMENTS

POST OFFICE BOX 655303 • DAlLAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592. SEPTEMBER 1990 - REVISED MAY 1991

host-Independent mode (MSTR high)

timing requirements over recommended ranges of supply voltage andtoperating free-air (minimum) and case
(maximum) temperature range (unless otherwise noted) (continued)
setup and hold times

SMJ34082A-28 SMJ34082A-30
PARAMETER FIGURE MIN MAX MIN MAX UNIT

tsu(CC-ClKH) Setup time, CC before ClK high 45 7 7

tsu (LADV-C lKl)
Setup time, LAD data valid before ClK low for
immediate data inputt 32 15 15

tsu(lTRl-ClKH) Setup time, INTR before ClK high 47 20 15

tsu(LAD-ClKH) Setup time, LAD input data valid before ClK high
29,31,

15 13 34-36 ns
tsu(lRD-ClKH) Setup time, lRDY before ClK high 48 20 15

tsu(MSD-ClKH) Setup time, MSD data valid before ClK high
37,38,
43-47 13 13

tsu(RDYV-ClKH) Setup time, RDY valid before ClK high 48 20 12

tsu(RSTH-ClKH) Setup time, RESET high before ClK high 34 45 45

tsu(RSTl-ITRl)
Setup time, RESET low before INTR low for bootstrap

20 20 loader 34

th(ClKH-CC) Hold time, CC after ClK high 45 3 3

th(ClKH-ITR) Hold time, INTR after ClK high 47 3 3

th(ClKH-LAD) Hold time, LAD input data valid after ClK high
29,31,35,

5 5 36

th(ClKH-lRD) Hold time, lRDY after ClK high 48 0 0

37,38, ns

th(ClKH-MSD) Hold time, MSD input data valid after ClK high 43-47 4 4

th(ClKH-RDY) Hold time, ROY after ClK high 48 0 0

th(ClKl-LAD)
Hold time, LAD data after ClK low for immediate data

32 5 5
input:!:

th(lTRl-RSTH)
Hold time, RESET low after INTR low for bootstrap

34 15 15 loader

See Parameter Measurement Information for load circuit volta e waveforms and timin dia rams. The device , g , g g P arameters are measured for
PIPES2 high and PIPES1 low. No other pipeline settings are specified.

:j: This mode permits data input that does not meet the minimum setup before ClK high. The clock period for this mode must be extended according
to the equation:

Adjusted clock period - Normal clock period + Data delay + 5 ns

The data delay is the delay from CLK high to valid data. This mode may not be used to input data for divides or square roots.

TEXAS 'If
INSIRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 C-31

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

host-independent mode (MSTR high)

timing requirements over recommended ranges of supply voltage andtoperating free-air (minimum) and case
(maximum) temperature range (unless otherwise noted) (continued)
delayfimes

SMJ34082A-28 SMJ34082A-30
PARAMETER FIGURE MIN MAX MIN MAX UNIT

tciCATCH-CASLl Delay time, ALTCH high to CAS low 29 5 5

tci(ATCH-WEL) Delay time, AL TCH high to WE low 30 3 3

tci(CASH-ATCL) Delay time, CAS high to ALTCH low 29 3 3

tci(CASH-WEL) Delay time, CAS high to WE low 33 3 3

tciCCOIL-ATCL) Delay time, COINT low to ALTCH low 29,30 a 0

tci(COIL-CASL) Delay time, COINT low to CAS low 31,35,36 a a
tci(COIL-WEL) Delay time, COINT low to WE low 33 a a

tci(DCSH-MCEL)MH
Delay time, DS/CS high to MCE low with MEMCFG

38,42 5 5 high

tci(DCSH-MWRL) Delay time, DS/CS high to MWR low 35,39 4 4

tci(MCEH-DCSL)MH
Delay time, MCE high to DC/CS low with MEMCFG

40 5 5 high

tci(MCEH-MWRL) Delay time, MCE high to MWR low 36 5 5 ns

tci(MOEH-MWRL) Delay time, MOE high to MWR low 39 5 5

tci(MSAV-MWRL) Delay time, MSA valid to MWR low,
35,36,
40-42 4 4

tci(MSDZ-MOEL) Delay time, MSD disabled to MOE low 41,42 2 2

tci(MWRH-MCEL)MH Delay time, MWR high to MCE low with MEMCFG high 36 5 5

tciCMWRH-MOEL) Delay time, MWR high to MOE low 41,42 5 5

tci(MWRH-MSDXZ) Delay time, MWR high to MSD disabled 42 1 12 1 9

tci(MWRL-MSDZX) Delay time, MWR low to MSD enabled 41,42 1 13 1 13

idCWEH-ATCLl Delay time, WE high to ALTCH low 29 3 3

idlWEH-CASl) Delay time, WE high to CAS low 31 3 3
r ea ur me Inf a r i v I 'mi ia a ic ar meters are See Parameter M sent orm tlon for load CI cu t, 0 tage waveforms, and tl ng d gr ms The dev epa e su d ma re fo

PIPES2 high and PIPES1Iow. No other pipeline settings are specified.

C-32

TEXAS •
INSIRUMENTS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

r

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A-D3592, SEPTEMBER 1990- REVISED MAY 1991

EXPLANATION OF LETTER SYMBOLS

This data sheet uses a type of letter symbol based on JEDEC Std-100 and IEC Publication 748-2,1985, to
describe time intervals. The format is:

Where:

Subscript A

tA(BC-DE)F

indicates the type of dynamic parameter being represented. One of the following is used:

Switching Characteristics:
p Propagation delay time
en = Enable time
dis = Disable time

Timing Requirements:
c = Clock period
w = Pulse duration
t = Transition time
d = Delay time
su Setup time
h = Holdtime
v = Valid time

Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment
of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the
time interval.

Subscript C indicates the direction of the transistion and/or the final state or level of the signal represented by
B. One or two of the following are used:

H = High or transition to high
L = Low or transition to low
V = A valid steady-state level
X = Unknown, changing, or "don't care" level
Z = High-impedance (off) state

Subscript 0 indicates the name of the signal or terminal for which a change of state or level (or establishment
of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time
interval.

Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by
D. One or two of the symbols described in Subscript C are used.

Subscript F indicates additional information such as mode of operation, test conditions. etc.

The hyphen between the C and D subscripts is omitted when no confusion is likely to occur. For these letter
symbols on this data sheet, the signal names are further abbreviated as follows:

SIGNAL B&D SIGNAL B&D SIGNAL B&D SIGNAL B&D SIGNAL B&D
NAME SUBSCRIPT NAME

AlTCH ATC COADY

BUSFlT BFT OC/CS

CAS CAS EC(O:1)

CC CC INTG

CI0(O:2) CIO INTA

ClK ClK LAO(O:31)

COINT COl LClK1

SUBSCRIPT

COA

OCS

EC

INT

ITR

LAD

lC1

NAME SUBSCRIPT

lClK2 lC2

lOE lOE

LADY lAD

MAE MAE

MSTA MST

MCE MCE

MOE MOE

TEXAS ,If
INSlRUMENTS

NAME

MSA(O:15)

MSO(O:31)

MWA

AAS

ROY

RESET

SF

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SUBSCRIPT NAME SUBSCRIPT

MSA TCK TCK

MSO TOI TOI

MWA TOO TOO

AAS TMS TMS

ROY VccNss -
RST WE WE

SF MEMCFG M

C-33

SMJ34082A
GRAPHICS FLOA11NG-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT PARAMETERS

TIMING CLOADT IOL IOH VLOAD
PARAMETERS (pF) (rnA) (mA) M

ten
tpZH

-8
0

tpZL
65 8

3

tcfls
tpHZ

-8
tpLZ

65 8 1.5

FROM OUTPUT _-+ __ -«
UNDER TEST

tp 65 8 -8 :I:
CLOAD Includes the typical load circuit and dlstnbuted capacitance.

:j:: VLOAD - VOL = 50.0, where VOL = 0.6 V, IoL = 8 rnA.
IOL

TIMING

(~5~_s:..
3V

INPUT
(See Note A)

OV

tsu~th
3V

DATA 2.7VI

14- tf
OV

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT RISE AND FALL TIMES

INPUTJ(\----3V
(See Note A) 1.5 V 1.5 V

I I. OV

tp --l4---+I ~ tp

1 1 1 1-- VOH
IN-PHASE 1 1.5 V 1 \L 1.5 V
OUTPUT . ~ __ ~I-J 1 VOL

1_ ~I ~tp
tp~ 1

HIGH-LEVEL
PULSE

LOW-LEVEL
PULSE

LOAD CIRCUIT

~
--3V

1.5V 1.5V

I I OV

l4--- tw ---+I
I I

~
I 3V

1.5V 1.5 V ____ OV

VOLTAGE WAVEFORMS
PULSE DURATION

OUTPUT~3V
CONTROL
(low-level 1.5 V 1.5 V
enabling) 1 [l __ - - OV

tpZL~ ~ 1
1 I tpLZ~ I+-

__ 1-...+1 ___ LI ____ 3V

WAVEFORM 1 1 " 1 1,---"'1.5 V
(See Note B) 1 ""\ 1.5 V 1 L ~L!. O.:! VVOL

1 tPHZ--.l 14-
OUT -OF-PHASE

OUTPUT

I ~ VOH
\. 1.5V T 1.5V

tpZH ~ 1..- I..L
I J -- VQH

~:!~~~:C~ ___ -'I ~ _____ ~~;5V . . - - VOL

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES: A. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by pulse generators having the following
characteristics: PRR = 1 MHz, Zo = 50 n, tr ~ 6 ns, tf ~ 6 ns.

C-34

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
C. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. FortpLZ

and tpHZ. VOL and VOH are measured values.

Figure 9

TEXAS ."
INSIRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

14 tc(LC1) ., , ,
t4- tw(LC1H) ~ --a! ' , , ,
, ,... tw(LC1L) rl ~ J4- t t(LC1) ~ J4- tt(LC1)

LCLKl J. \)',..---~~ U
,I "'-----'" , ,
14 ~, th(LC1 H-LC2L)
I I I
I I I

I I
~(LC2H-LC1H) j4 ~ if- tw(LC2L)---

I I J4- tw(LC2H) -+! I
I ,

I I I I
tt(LC2) -+t J4- tt(LC2) -+t t+-

LCLK2 __ ~"-----1 t N Yr
~ tc (LC2) III

II'----~II

Figure 10. ~oprocessor Mode, Input Clocks

LCLK1

Q2 i Q3 Q4 i Q1 Q2! Q3 Q4 i Q1

.:i::.'-...;.----rV i~ V
i I I!

'~~~!:::::.V ~ ~: ~-----V:::: : : iii i I : i :tsu(LRP-LC2H) H ! Iii
: : : I~ 1r~th(LC2H-LRD)

~~~i~i ~~ j'k~i:~i~i~~~~~ 

Q4t i Q1 

----I" 
Q2 : Q3 

1'\.-"';' __ - ...,""r:._~I.:, 
~ ~ 

Q4 Q1 

LCLK2 

LRDY 

CORDY 

t Q1, 02, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period. 

Figure 11. Coprocessor Mode, Bus Control Signals 

TEXAS • 
INSlRUMENTS 

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-35 



SMJ34082A 
GRAPHICS FLOATING-POINT PROCESSOR 

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A 

LCLK1 

CC 

ROY 

C-36 

PARAMETER MEASUREMENT INFORMATION 

t ~ t ~ r 
I ~I I I 
I I~ I tsu(RSTH-LC1) I 
I I I I 
I I 

" I I 
I I I I 
I I I I 
I I I I 
I I I 

I I I I 
--_II..-~ .... I tw(RSTL) 

I I I 
I~ j ~ I tw(RSTL) 

l\: ,{ 
I I 
I j4-+t- th(LC1-CC) 

i4-+J- tsu(CC-LC1) 

I 
I 

I""------'-----~ 

I ~ ~(LC1-ROY) 
I I 
14-+r tsu(ROYL-LC1) 

I 
I ~ 

I 

;r : ).'----
: ~ th(LC1-CC) 

J4-+T- tsu(CC-LC1) 

I I 
I r+-+t- th(LC1-ROy) 
I t.-.t- tsu(ROYL-LC1) : r-------

I I 
:~ ~I tp(LC1H-COIL) 

:~ ~ tp(LC1 H-COIH) 

Figure 12. Coprocessor Mode, Control Signals 

TEXAS ,. 
INSTRUMENTS 

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 



LCLK1 

LCLK2 

Q4t : Q1 

--V 
"-

SMJ34082A 
GRAPHICS FLOATING-POINT PROCESSOR 

SGUS012A- 03592, SEPTEMBER 1990 - REVISED MAY 1991 

PARAMETER MEASUREMENT INFORMATION 

Q2 l Q3 Q4 i Q1 

i''--!-----?~-.....;-..---;".~'--!------?rr 
Q2 Q3 Q4 Q1 

:" i/ 
Q2 Q3 Q4 Q1 

~'--io_-II:v ,-....;.-----f/ 
iJ ~ 

/ ~ 

1
4; ., ; th(A1;CL-LAI:?) th(ATCH-~F) ~ , , . I: ,: . . . I 

tsU(LAD-~TCL) *.--t-i i ,: I: iii ! ! I 
LAD31-o -_ .... ! ') i ~NSTRiU~TION1 . . ~DATA I~ ~. . < DATA IN >r-

i i . Iii ts~(LAD-CASH) +-"*! I!! i 
~! I!! iii ~th(CASH~LAD) i 

~, ~ ! "'(R~SH-ATJLI ! i ! 

Ii i ; ~ ~:: '\ .?1! 
t~U(wEL-C"SL) *,-+I ! lh(PASH~F) ~ 

--.... -..;.--...... -01-
11 .... ! _-.;-:--.,. : :.. :.. . . l-i -+1....0-

I! 'N i ~:.i::. ':::.!::' ! ! Y I : Ii: i ; ; I i I 
: ~~SU(SF-~TCL) ~(WEH-~F) ~ 

---..->--+-1 i :: N-SF 

t Q1, 02, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period. 

Figure 13. Coprocessor Mode, SMJ34020 asp to SMJ34082 

TEXAS ." 
INSlRUMENlS 

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-37 



SMJ34082A 
GRAPHICS FLOATING-POINT PROCESSOR 

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A 

PARAMETER MEASUREMENT INFORMATION 

Q4t! Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 

LbLK1 J i'-..;----,,/ I' roo. I' Vj 
J\ r I r i~ r 

w--...... : ..... l __ ~ i th(ATCL-LA~) I i I "'rCT ~ 
'to---+--!o-~-< DATA OUT )-----io--I-< DATA OUT 

LCLK2 

LAD31-o 
~~~:-"'I : I 

I i tp(CASL~LA~V) -:~":----;.I."'.I !III, : --l.IJoio:I-tp(~.ASH-~. DZ) I
~ I : : : I : I : I

SF

t 01, 02, OS, and 04 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

C-38

Figure 14. Coprocessor Mode, SMJ34082A to SMJ34020 GSP Including Coprocessor Internal Cycle

TEXAS .If
INSIRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LCLK1

LCLK2

LAD31-O

SF

Q4t j Q1

J

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- D3592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

Q2 j Q3 Q4 j Q1 Q2 ! Q3

i"~-~i::.:./
I''-''''';'----'li/

I'
i/

Q4 j Q1 Q2 Q3 Q4 Q1

!::.:./~----;"'i' I::.:.n-

Ii ---+-....-.-~'N

1::: .. ''-....;.----'1
1

/ :, j

I i A1-~
Ii th~ATCH-~F) -*,--+j

11 : i I

DATA IN >--+---oi--< DATA IN --.....,

:=/:::::: : I: .. Ii : I: : : 11

!+t---+t-I :.: :.; tsU(SF~ATCL) :.1 I 1

Ii ____ >-t-\ ! : ! i {r

t 01,02,03, and 04 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

Figure 15. Cop,rocessor Mode, DRAMNRAM Memory to SMJ34082

TEXAS ."
INSJRUMENlS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265 C-39

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990- REVISED MAY 1991 -SGUS012A

PARAMETER MEASUREMENT INFORMATION

Q2tl Q3 i Q4 i Q1 i Q2 i Q3 Q4 l Q1 Q2 \ Q3 Q4 i Q1 i Q2 Q3 I::: Q4 Q1 Q2

t, i r:: I,' [:::: ~, :1 ~, '-i--?\/
LCLK1

LCLK2

::::::::::,

' ::':::: "::,'/ r' (i'-..... j ~/ "..' i'--""---ilr
AUCH ~~~'----.'----"'----~-~--+-.-I-!~' ----~!----~(~:----~: ----+i----~\----~\----~--

M tSU(L~D-ATPL), : ~ : I ~(ATC~-LAD~ ~ t' (Lcni-LADV> :

I' !~ ~ thIATCL~D) i ~"" I f , , , L
LAD31-o--<, ADDI~ESS] :: (A4~~T:XXX><X>K'~~T; $<XxX(

! : ! I' ! ! ! ! ! ! ! ! ,

SF

i : iii ::: ~(RAS~-LAD~Z) I~ ;.,

:: '\ ! i::: i :): :'

II I I Ii ,..

:1 : ~ ,rT\,!-i -+---J~::::: : i : r-+' ~U(W~L-CA$L)
:~ ~4:':::

! :i ! ! H tSU(S~-ATC~)

--LI : i I I! :

-~ -+-+-,(i

I l' / :,:, " : ---i----!-,.J~!
I !
I !
I !
I :

! : \ i :
~ lep(LOEL-LAD2;X)

~I : 1 :

t Q1, 02, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

Figure 16. Coprocessor Mode, SMJ34082A to DRAMNRAM Memory

TEXAS ..
INSIRUMENTS

C-40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990- REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

LCLK1

~ tc(LC1) ~I

_____)I ~ X~-----------
I~ ~I t p(LC1-MSAV) I I
I: 14 ~I tv(LC1-MSA) I

&><><$:~ ADDRESSO~~ ADDRESS+ XXXXXX MSA15-0

I I I tel(LC1-MSD) I
I t su(MSD-LC1) ~ I I

MSD31-o ~X%DATA:IN%XXXXX INSf·INXXXXXXX
I I I

---..,:r-~_..Jj; 'e
IlC1

-DCSH)ML! }, ________ I __ L _____ _
I~ ~ tp(LC1-DCSL)ML I

"~--I~""I-tp(LC1-MCEL) I iIII~~ ~I-tp(LC1-MCEH)ML
--....,i-~'k: ,v

I i

DS/CSt

I I

~ i

MOE§

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:j: MCE dos not toggle at each clock edge.
§ MOE goes high at each clock edge. NOTE: This example shows a data read followed by an instruction read.

Figure 17. Coprocessor Mode MSD Bus Timing, Memory to SMJ34082A with MEMCFG Low

TEXAS •
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-41

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

LCLK1

MSA15-0

MSD31-o

DS/CS

PARAMETER MEASUREMENT INFORMATION

1l1li tc(LC1) ~ I }' }. X,-------
--- II1II ~I tp(LC1-MSAV) 1 I

1 I ~ tv(LC1-MSA) I

~:8% ADDRESS OUt?R>< ADDRESS OfT XXADDRESS OUT

: ~ ~ 1 ~-------------I I~--------
1 tw(MCEH) 1l1li ~I

1
1 ----fV

1 ~ tp(LC1-MOEH)

~11111----.t~I- tp(LC1-MOEL) 1

--------~-------~-------~~----tw(MOEH) 14--+1

NOTE: This example shows a data read followed by an instruction read followed by an instruction reacl. This option for using OS/CS as data space
chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG
is high, OS/CS and MCE rise after every clock edge. In this mode, OS/CS and MCE may not both be active (low) at the same time.

C-42

Figure 18. Coprocessor Mode MSD Bus Timing, Memory to SMJ34082A with MEMCFG High

TEXAS ,If
INSIRUMENlS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592. SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

II1II tc(LC1) ------~~I } ~ X~----------
----~I ~14====i~~lt~p~(L:C1~-M:S:A:~~1

LCLK1

14 ~I tp(LC1-MSAV) \ 1 "'~---I~~: -tv(LC1-MSA)

MSA15-0 X~x><>k ADDRESS O~T ~. ADDRESS O~T)10(ADDRESS OUT

I I I I

~tp(LC1-MSD'1 I

XXxXXx

DS/CSt I t~ _______________ ~: 1 ,~ _______________ _

1 -+! 1+ td(DCSH-MWRL) 1 t p(LC1-MCEH)ML ~141--"'''1
~ t p'(LC1-MCEL) I 1 1

----------~:-----~: : Jr~---------------
1 1 I
14 ~ tp(LC1-MWRL) 14--~(MSAV-MWRL) ~

__________ ~ 1 I 1

~ % ~~------
1 I 1

I 1

----------------------------~I~I I~I-----------
1 ~ / I

I I I I
td(MWRH-MOEL) ~ !++f- ~(MOEH-MWRL)

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:j: MCE does not toggle at each clock edge.
§ MWR goes high at each clock edge.
NOTE: This example shows a data write followed by a code read.

Figure 19. Coprocessor Mode MSD Bus Timing, SMJ34082A to Memory with MEMCFG Low

TEXAS •
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 C-43

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUSQ12A

PARAMETER MEASUREMENT INFORMATION

LCLK1

II1II fc(LC1) 1)1

---}". 'j\ },-------
1,1 hi i~ I): tp(LC1-MSAV) L
~ • fp(LC'-IISAV) ! 14 .. ---IlII)If- tY(LC1-MSA)

x~xx>k ADDRESS O~T ~ ADDRESS O~T >kx:ADDRESS OUT

Iii I -+I l4- tY(MWRH-MSA)
I~ 1)1 t p(LC1-MSDV)' I I I

MSA15-O

MSD31-O x><><$:><><><% DATA ~ ~X DATA O~T.....J ~g DATA OUT

I -+i I+- tp(L~1-DCSH)MH I =+! rt- tY(MWRH-MSD)

---....I:-~-~i:: 'ptLC.-DCSLIMH hi : A
I I I II I "'-----
I ~ td(MCEH-DCSL)MH ~ 1W(DCSH)MH I P I I

DS/CS

____ ~ :: I

I~ .. : tp(LC1-MWRL) II ~tp(LC1-MWRH)
______ ""' I -+I * ld(MSAV-MWRL) I

). ~ ~----I I
~lw(MWRH)

__,,7

NOTE: This example shows multiple data writes. Timing for multiple code writes would be similar. This option for using DS/CS as data space chip
enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is
high, DS/CS and MCE rise after every clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

C-44

Figure 20. Coprocessor Mode MSD Bus Timing, SMJ34082A to Memory with MEMCFG High

TEXAS •
INSIRUMEN1S

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT fNFORMATION

'4 tc:(LC1) ~ _-,X ~ ,.r-------
'4 ~ tp(LC1-MSAV) , ,

" I4---+t- ,

LCLK1

I' ! tY(LC1-MSA) !
MSA15-0 -----I -<X* ADDRESS O~T ** ADDRESS O~T X~)-------

I t4+I ten(I\1AEL-MSAZX) I -+I j4- tY(MWRH-MSA) ~I tciis(MAEH-MSAXZ)

~: i ;:to; tP(LC1-M~D~'
! : i YR DATA~U! *}--<XINST':IN~XX>>-----
I I -.1' I I ~ tY(MWRH-MSD) I

tci{MWR -MSDZX) r i j+- I I ~ tciis(MAEH-MSDx,z)

I' 'I I I, I
I I
'II " ,
I , I I I tp(LC1-DCSH)ML '4 ~I
I Ii I ~I I j,;~---
I II I! , I 11
I , I 14 ~I I tp(LC1-DCSL)ML I

___ ... ~ __ ~: : : tp(LC1-MCEL) :: ~ tp(LC1-MCEH)ML

I ~II I I I Y
I Iii I I, II
I I I 14+1- tp(LC,1-MWRH) I
I -+t I+- tct(MSAV-MW~L) : I I
~ ~: I H tci{MWRH-MSDVZ,

_______ 1 tp(LC1-MWRL) I 1 1 I

'" 1/ I I 1 I -+j 14 tct(MSDZ-MOEI,.)
I II!4--*-

td(MWRH-MOEL) 1'4 ~I I tp(LC1-MOEH)

i 'l /.
1'4 ~I tp(LC1-MOEL) ,

MSD31-O

DS/CSt

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:t: MCE does not toggle at each clock edge.
§ MOE goes high at each clock edge.
NOTE: This example shows a data write followed by an instruction read.

Figure 21. Coprocessor Mode, MSD Enable/Disable Timing with MEMCFG Low

TEXAS •
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-45

'--....... -"~"'.-.'" .. ,-"~"."" .. ""' .. , ----

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

~ tc(LC1) "I
LCLK1,(~ X,.--------

14 '" tp(LC1-MSAV) , 1

1 i ~ 'Wt'~SA) :
MSA15-0 I Ook ADDRESS O~T ~ ADDRESS O~T X> -----

, \If+I. ten(MAEL MSAZX) I ~ ... I t4-*- tdls(MAEH-MSAXZ) , , I - r'" tY(MWRH-MSA) I ,

'i
41

: =I}P(LC1-MS~~ ~ :1 : ~
MSD31-0 . , . ~~ DATA O~T. V}--<x INST.INX)>------

I!. I" ~ 1 1en(MAEL-MSDZX) I r , 4 I 1 I 1 ,I
tci(MWRL,-f.t1SDZX) ~ j4- I ..., 1+-1 tY(MWRH-MSD)' I ,..-_____ _

MAE N II 1 I I 1 A'
, I' 1,\ I I I I .
I , 14 I '" tp(LC1-DCSH)MH I
114 '4~ I tp(LC1-DCSL)MH I I : : '

- --------~-- II I I f~I-------~I---------------
DS/CS , I ,1/1, !

: 1 : ~ td(DCSH-MCE~)MH
tp(LC1-MCEL)' j4---+!- tp(LC1-MCEH)MH

MCE 'II I 1 I 1

tci(MSAV~MWRL) ..., :-- H tp(LC1-~WRH) I

'4 ", tp(LC1-MWRL) I I: I

MWR -------~ 11~--~-I--~-tci-(-MS-D-Z-~-O-E~t----------
, I

tci(MWRH-MOEL) 14 '" ~ t p(LC1-MOEH)

MOE : 'l)'
14 "I tp(LC1-MOEL)

NOTE: This example shows a data write foliowed by an instruction read. Timing for multiple code writes would be similar. This option for using
DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration
register. WhenMEMCFG is high, Ds/CS and MCE rise after every clock edge. In this mode, DS/CS and MCE may not both be active (low)
at the same time.

C-46

Figure 22. Coprocessor Mode, MSD Bus Enable/Disable Timing with MEMCFG High

TEXAS ,If
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LCLK1

LCLK2

SF

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

::Y' ,I , :, , , :,

; : i: I : L.:,.: I, tJ,h(CASi,H_SF) I,. ,I
tSU~SF-ATC~) ~ : \ I -, I ~ I

~, :' i., I, '4-<., I., " " '.:,'! ~::i"i:' .
: i ~p(LC1""'SAV)~ 1+: i : ~ 14- tp(LC1-"'SAV) i i: 1

"SA1~~~ i ADDrESSOr !H~DROfXAD:RO~*D~R01¥
! i ' ! i , ' : 1 1", ~ lh(LQ1-MSD) i ' i : '

MSD31

DS/CS*

: : : I :
tp(~C1-DCS:L)ML"+, 14-:

iii ! i""'i!-~--oi--'!"'\"""--+--";---!""-,",,!,--~---i-'I
~p(LC1-~CEL) ~: I+-!
i i i'~i : : :, ... ;--.;.--+--....,..--;.---!--....;---+---.;.-----!-"

t~(LC1-M~EH) ~ 14- i i -+I ~ tw(~OEH)
j : ! (\~! -. . . '-i-. --/

, . ,', (\' I i,:'::,. i Ai,.

t Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.
:j: The setting of DS/CS determines whether the value on the MSD bus in an instruction or data.
§ MCE does not toggle at each rising clock edge.
~ MOE goes hiigh at each rising clock edge.

Figure 23. Coprocessor Mode, Jump to External Memory Subroutine with MEMCFG Low

TEXAS .If
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-47

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASiJREMENT INFORMATION

LCLK1

~ tc(LC1) ---..~I

-----%---~,-----,f---~,,-----{ ~-...----
I I
I I

: /:

LAD3H1 X><XXXXX><>RDATA:+~XDATA21~ XXXXXXXX
l4+-+i- th(CASH-LAD) I I I ~I ______________ __

, A':" /:
I I
I I

MSD31-0 XXXXXXXXXXX0X~% DATA10:UT! ~XXDATA20UT
I I I ~ ,.. tv(MWRH-MSD)

tp(LC1-DCSH)ML j4 ~I ~I I (~OVE TO DATA SPACE)
I Xi I I

----------------It---""'~-------+-..j.----------I I I I (tJ!OVE TO CODE SPACE)

tp(LC1-MCEL) t+\ : I I :
I ~I II I I
I I I I I
I t+I i+ td(MSAV-MWR1-) I

tp(LC1-MWRL) 14 I ~II ~ 1+ tp(LC1-MWRH)

----------~----~---h:, ~
I I I 1-----

td(DCSH-MWRL) ~ I+- tw(MWRH) --t+-+I

DS/CS

----_/

____ 7
t MCE does not toggle at each clock edge.
+ MOE goes high at each clock edge.

C-48

Figure 24. Coprocessor Mode, LAD to MSD Bus Transfer Timing with MEMCFG Low

TEXAS •
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LCLK1

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

-.14--tc(LC1) ~I

----% ,--------;(~----,,-----{ ,'----
I I
I I
I ~~i---------------------------

----------------------~I-------------- I
~ tSU(LAD-CASH) I

LAD31..., XXXXXX>OOk DAT~ 1 :'N ¥XXX DATA 2:'N XXXXXXXX
~ trt(CASH-LAD) I
I I I

, _________ A': " ~~:----------------------
I I
I I

__ .J7 I I

DS/CSi

_____ 7

t DS/CS valid for moves to data space; MCE valid for moves to code space. Only one of these would be valid for each move instruction.
1: This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the

configuration register.

Figure 25. Coprocessor Mode, LAD to MSD Bus Transfer Timing with MEMCFG High

TEXAS ."
INSIRUMENIS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 G-49

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

LCLK1

14 tc(LC1) ~I

--{ / {~---/
~ tp(LC1-MSAV) I I 1 1- ... ,

1 r--.r- tY(LC1-MSA)

MSA15-o X~>CK ADDRESS'OUT % ADDRESS 2 OUT xxx

MSD31-o :&xxv~ DATA "~ XX)K DATA 2 .. XXXX
~~1-DCSH)ML I i
I : I ! (MOVE FROM DATA SPACE)

----:1-' --4-"1 ,r-----(MOVEFROMCODESPAC"i}--------
,I I I
4 ~I tp(,"C1-MCEL)' I

-----~,--~, , ,
, ~ 1 I 1 , , , ,
, , , ,
, 'I

DS/CS

MCEt

___ ~:7' , ,
,4 ~ 1 t~(LC1-MOEL) : :

:' t4-* tp(LC1~MOEH)
----- ,~I ~

~ : :1 1"-'1-·1----/ "'-
tp(MSDV-LADV) -t4+i tw(MOEH) --r.--.\, 1

, tp(MSDV-LADV) -re+i

XXXXXXXX* DATA 1 OUT xx>d< DATA 2 OUT XXX LAD31-o , ,
I ,
I ,

--------------~~ ____ /~----~ ____ ;r

t MCE dos not toggle at each clock edge.
1: MOE goes high at each clock edge.

Figure 26. Coprocessor Mode, MSD to LAD Bus Transfer Timing wHh MEMCFG Low

TEXAS.
INSIRUMENTS

c-so POST OFFICE BOX 655303 • DAUAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - D3592. SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

I~ tc(LC1) ~I

----~ / ~ /
I ~1~~::;~l=1 ~tV(LC1-MSA)
!. .1 'p(LC1-MSAVj ! i

MSA15-0 xxxtx>k ADDRESS 1 O~T >K

,--....,,/ LCLK1

ADDRESS 2 OUT xxx
1 I
1 I

MSD31-O XXX*XX>QK DATA 11~ XXI DATA 21N XXX>
I ! ~ 14- tp(LC1-0CSH)MH
I~ ~tR(LC1-DCSL)MH. I 1

-~--40I-_ I ·1 I J.r-\l I ~

I I I /[i'",-,j.,1 -----/ "-
I~ ~: t~(LC1-MCEL) I I+--*- tW(~CSH)MH

___ -+: ____ 1 1 ~ l4- tp(LC1-~CEH)MH
I ~ I In~I ___ ~
1 : I 1 1 :

: I : ~ tw(~CEH)

DS/cst

__ --+": 7: : :
I 1 ~ tp(LC1-MOEH)
I~ ~I 1 tp(LC1-MOEL) II I

------_11 I 'I ~~I _____ ~
I : tw(MOEH)"14--+t :

1p(MSDV-LADV) ~ tp(MSDV-LADV) ~

LAD31-0 xXXXXXX% DATA 1 OUT xXXX% DATA 2 OUT xXX
1 1
I 1
I I

--------------~ 'k~ __ ~~

t DS/CS valid for moves to data space; MCE valid for moves to code space. Only one would be valid for each move instruction.
NOTE: This option for using DS/CS as data space chip enable and MCE as code space chip enable is involved by setting the MEMCFG bit high

in the configuration register.

Figure 27. Coprocessor Mode, MSD to LAD Bus Transfer Timing with MEMCFG High

TEXAS ."
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 C-51

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

14 tc(CLK) ~
1 I
I+- tw(CLKH) ~ I I I I I
1 14- tw(CLKL) -+j -+j j4- tt(CLK) -+j j4- tt(CLK)

CLK J \ ,-----'\IX U
11'-----..11 I

Figure 28. Host-Independent Mode, Input Clock

'-14--- tc(CLK) .1
CLK --Y " t---,)' I ~-----I ~----I ,~----

I I I
.14-.... 1-1 tp(CLKH-ATCL) ~ tp(CLKH-ATCH) I

--..,....-........ '} i { :
14 1 .1

1 I "I tdIS(CLKH-LAD~Z)
",---1-1 -.-+-tp(CLKH-L~DV~ I I

i I ~ !+r tv(ATCH-LAD) ~ tt.(CLKH-LAD)
ten(CLKH-LADZX) --liI:---+1 -eo! I: I 14 .' tsu(~AD-CLKH)
LAD31-0 DATA IN' I i.-.r"t.,.....------'---...;.w DATA IN (DBL-PREC)

~ td(ATCH-CASL) I
'--!I_ld..,:(_CA_S_H_-A_T_C_L-.) -;--~: tp(CLKH-CASH) --l+--t SINGLE-PRECISION

---.....1.-' II tp(CLKH-CASL) t ,J--! DouBLE-PRECiSioN'
w(CASH) ----...---,

I 1+-+1- td(WEH-ATCL) 1

I)' : : ---+'i -+t I4-ld(COIL-ATCL) I

i++ tp(CLKH-COIL) tp(CLKH-COIH) ~ .1 SINGLE-PRECISION

-----~ ~----------'------------------~ DOUBLE-PRECISION

t COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuratin register, COINT is controlled by bit 1 of the LAD move
instruction instead of the set mask instruction.

NOTE: This timing diagram assumes an external address latch to store address for external memory reads. Data input hold time on the latch is
zero; data (or address) output hold time is nonzero,

C-52

Figure 29. Host-Independent Mode, LAD Bus Timing for Memory to SMJ34082A

TEXAS ..If
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

CLK

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

~14---tc(CLK) --~~I

)r , /,..-~,)I
----' I '----- I I ,----/

14 ~I tp(CLKH-ATCL) /++'- tp(CLKH-ATCH) :

IX 1/ I
----+'1' I I II '

'L. ~ !+i'-'i- tciIS(CLKH-LADXZ)t
tw(ATCH) ~ I .

4 'I ~I tp(CLKH-LADV)
tp(CLKH-LADV) ~ I, I I I I I

1- II ~ l4- tv(ATCH-LAD)
L I I I I I II -en(CLKH-LADXZ) 4 I

LAD31-O ADDRESS OUT
I
I I I
I I
I : I
: 14 I ~I 1en(CLKH-LADZX)
I I I I I

I I ~ td(ATCH-~EL) K- tp(CLKH-WEH)
I tp(CLKH-WEL) --i414r---I~~1 I I SINGLE-PRECISION

I: ~ l l '1''-__________ _
I ~ t4- td(COIL-ATCL) tw(WI=H) -,4---+1 DOUBLE-PRECISION
I , 'r I

____ ..:.14_~ tp(CLKH-COIL) tp(CLKH-COIH) ~ SI:~~~~I:: ____ _
DOUBLE-PRECISION

t Valid onl¥for ~ast write in series. The LAD bus is not placed in high-impedance state between consecutive outputs.
:\: COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD

move instruction instead of the set mask instruction.
NOTE: This timing diagram assumes an external address latch to store address for external memory reads. Data input hold time is zero. Data

(or address) output hold time is nonzero. Valid only for last write in series. The LAD bus is not placed in high impedance between consecutive
outputs.

Figure 30. Host-Independent Mode, LAD Bus Timing for SMJ34082A to Memory

TEXAS •
INSTRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-53

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

CLK

14 tc(CLK) --"" .. I ,
/~--~, /~--~" /~--~,

----' 1 '-__ J 1 '-__ J , '----

1 1 ,
1 1 ,

:7 I 1
, ~th(CLKH-LAD) ,
1 L.. I' , $xx ~ -! ~(~~ ; LAD31-0~X.M..M.oij¥..~~~xxt~~~_D_AT._'A_IN,......oIII%>OO<~~;..¥~X~_D_A_:rA_I"'I"N.-III;XXXXXXX..&., .x..¥,,;x...ol~~_
1 tp(CLKH-CASH) -i4-+t

__ --;I~----. ' I

l ~ : 0'-------'-/
I.. ..I ,
14 P, tp(CLKH-CASL) ~ tw(CASH) •

1 ~I tci(WEH-CASL) " .,'

__ 1% I
1 ~ 14- tci(COIL-CASL)

___ +-14_~ tp(CLKH-COIL)

COINT' 'h. tp(CLKH-COIH) ~,..-----

t COl NT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD
move instruction instead of the set mask instruction.

Figure 31. Host-Independent Mode, LAD Bus Timing Input to SMJ34082A

14-- ADJUSTED CLOCK PERIODt ---+'
CLK _--..IX ~ /~---------.,'---______ ____

I I I ,;:"~t$
I 1 I

LAD31-0 ><><XXX
tsu(LAD)f-CLKL) 14 .. , t (CLKH-CASH) ~

1 p I
----~i---x ~

1 i' II 1''---------
~ .. I tp(CLKH-CASL) tw(CASH) ~

t This mode permits data input which does not meet the minimum setup before ClK high. For immediate data input, ClK must be high for more
than 20 ns. This input mode cannot be used to input data for divides and square roots.

Adjusted clock period - Normal clock period + Data delay + 5 ns

Figure 32. Host-Independent Mode, LAD Bus Timing Input of Immediate Data to SMJ34082A

TEXAS ."
INSlRUMENlS

C-54 POST OFFICE BOX 655303 • DAlLAS, TEXAS 75265

ClK

lAD31-0

CAst

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990- REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

:---- tc(ClK) -----'~I ___ I

--1 ,---~ ,,---{---,---
I I I
I I I
I I I
I I I

14 ~I tp(ClKH-lA~V) :

i d< DATA OUT: xXX>< DATA Of >10>-----
: II I I ~ I4+- tv(WEH-LAD)
I I I I I i I I I I

t When the LADCFG bit is high, LOEhigh places CAS and WE (as well as the LAD bus) in high impedance.
:1: Valid only for LADCFG high. When the LADCFG bit is high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction

instead of the set mask instruction.
NOTE: If the instruction writes the result of an FPU operation to a register and outputs the result to the LAD bus, in the same cycle, the minimum

clock period must be extended.

Figure 33. Host-Independent Mode, LAD Bus Timing Output from SMJ34082A

TEXAS ..
INSIRUMENTS

POST OFFICE BOX 655303 • DALU\S, TEXAS 75265 C-55

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

1 I
1 1

1 tp(CLKH-CASH) 4
--------------------------------------~:--~ 1 Id ~ If'

tp(CLKH-CASL) I'" "I

t RESET is level sensitive. When RESET is set low, both LAD and MSD buses are placed in high-impedance state. When RESET is released,
the sequencer forces a jump to address o. If INTR goes low while RESET is low, the loader moves 64 words through to the external memory on
MSD. Timing for the LAD to MSD move is shown in a later diagram, with the exception that the first word on LAD loads the configuration register
and does not pass to the MSD bus.

t INTR may be low one or more cycles after RESET goes low. RESET is held low, and then INTR is taken low. The bootstrap loader starts when
RESET is set high, which may involve a delay of one or more cycles after INTR goes low.

NOTE: When the bootstrap loader is invoked, the first data word input on the LAD bus should be the configuration register settings, which will be
written into the configuration register. This allows the user to select the MEMCFG setting, for reading or writing memory on the MSD port,
as well as the LADCFG setting for the LAD bus interface.

C-56

Figure 34. Host-Independent Mode LAD Bus Timing, Bootstrap Loader Operation

TEXAS " INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

ClK

I~ tc(ClK) ~I ·1

--...,{ " ,{ " {,----,'----
1 1 1
1 1 1

: / i i
-----'-I ..; j+-*- th(ClKH-lAD) 1

1 u ,I 1
~ .. ~: lsu(LAD-CLKH)

LAD31-0

MSA15-0

DStCS

XX'NST.'NXXXXXXX*X~% DATA1~UT: ~XXDATA20UT
I' 1 ~ ~ tY(MWRH-MSD)

tp(ClKH-DCSH)ML ~ ,:~I ~I I (~OVE TO DATA SPACE.)
I Xi I -------------li-...... ~I_t-------t-(~OvEiOcOOESPAcEi-

tp(ClKH-MCEL) -11 : i : i
1 '\., 1 I I 1
1 1 I 1 I
1 t+t 14- tci(MSAV-MWR.L) ,

tp(CLKH-MWRL) I~ 1 ~II ~ I+- tp(CLKH-MWRH)

:" n I I 1 ,'1--_____ _
tci(DCSH-MWRL) -+t ~ tw(MWRH) ~

I I I -+I 14- tY(MWRH-MSA)

tp(ClKH-MSDV) I~ I ~I I
MSD31-O

___ ..J/

___ ..J7
t COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD

move instruction instead of the set mask instruction.
:I: MCE does not toggle at each rising clock edge.
§ MOE goes high at each rising clock edge.

Figure 35. Host-Independent Mode, LAD to MSD Bus Timing with MEMCFG Low

TEXAS ..
INSJRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-57

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592. SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

ClK

:+-- tc(ClK) ~I 1
/ , } , /.I~~'

---I 1 '-----
1 1 1
1 1 1

____ ~:~/ I I
I ~ th(ClKH-lAD) I

~;I :

DS/CS:j:

____ 7
t COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD

move instruction instead of the set mask instruction.
:t: DSiCS valid for moves to data space; MCE valid for moves to code space. Only one of these would be valid for each move instruction.
§ This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the

configuration register.

Figure 36. Host-Independent Mode, LAD to MSD Bus Transfer Timing with MEMCFG High

TEXAS ."
INSIRUMENTS

C:'S8 POST OFFICE BOX 655303 • DAlLAS. TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

CLK

~14---tc(CLK) til _____ 1' ,, _____)r-----,,~ ___)I
14 ~I tp(CLKH-MSAV) I I
I I I~ ~I I ''---
~ I r---T'Y(ClKH-MSA) :

MSA15-0 xx xX>K ADDRESS O~T >KX ADDRESS OUT XXXXXX
I 14+1- Itl(CLKH-MSD) I
I tsu(MSD-CLKH) *-+! I I

MSD31-O X><><$><XXXx %DATAIN%XXXXX 'NSf·IN XXXXXXX
I.. "'1 I I

:

' ~ tp(CLKH-DCSH)ML, :

___ .,...._~/ : ~ I / DS/CSt

I 14 tJr tp(CLKH-DCSL)ML

.'4----tll-l tp(CLKH-MCEL) I ~ tp(CLKH-MCEH)ML

---:~-t I ,r
, 1

I I

------~!I' !

MOE§

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:j: MCE dos not toggle at each rising clock edge.
§ MOE goes high at each rising clock edge.
NOTE; This example shows a data read followed by an instruction read.

Figure 37. Host-Independent Mode MSD Bus Timing, Memory to SMJ34082A with MEMCFG Low

TEXAS ."
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 G-59

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

CLK

1111 tc(CLK) ~I

} " .,r,.--...... ")I
----- 1111 ~I tp(CLKH-MSAV) 1 1

1 I ~ tv(CLKH-MSA) 1

MSA15-O x~xX>K ADDRESS O~T >kX ADDRESS O~T
I ~ th(CLKH-MSD) I
I tsu(MSD-CLKH) ~ I I

,,---
xx ADDRESS OUT

MSD31-O XX~X%DATA:IN%XXXXX INST; IN XXXX~NST,IN
1111 ~I tp(CLKH-DCSL)MM tp(CLKH-DCSH)MH I

----+I-~{ 1 ~,....----....,..:-------
I 1 ~ I
1 tcI(DCSH-MCEI..)MH I ~ t (CLKH-MCEH)MH
I tp(CLKH-MCEL) 1111 ~I I p

: : ~ ~
I 1 i+-+t- ----
1 1 tw(MCEH)

DS/CS

1 I ____ ~:7 :
14 ~I tp(CLKH-MOEL)~ i r ~ .. tp(CLKH-MOEH)

---------~ ~~------~----
tW(MOEH)~

NOTE: This example shows a data read followed by an instruction read followed by an instruction read. This option for using DS/CS as data space
chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG
is high, DS/CS and MCE rise after every rising clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

Figure 38. Host-Independent Mode MSD Bus Timing, Memory to SMJ34082A with MEMCFG High

TEXAS ."
INSIRUMENTS

C-60 POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

ClK

1111 tc(ClK) ~, ____ X ,)~~,~ ___ t '---1 14 ~I tp(ClKH-MSAV)'

'III ~I tp(ClKH-MSAV) I I ~'111----~+-1 - tY(ClKH-MSA)

MSA15-0 x~xx>k ADDRESS O~T ><>!< ADDRESS O~T >kx ADDRESS OUT

I , I I I 1
1111 ~I tp(ClKH-MSDV) I I

MSD""" X~ DATA O~T ~X DATA IN: xxxxxx
1 t 14 ~I I
I tLKH-DCSHIML iE

I I

DS/CSt ,-----

\ ,------
td(MOEH-MWRL) --I4+i

1,.--____ -
MOE§ " ;{

t The setting of OS/CS determines whether the value on the MSO bus is an instruction or data.
:t: MCE dos not toggle at each rising clock edge.
§ MWR goes high at each rising clock edge.
NOTE: This example shows a data write followed by a code read.

Figure 39. Host-Independent Mode MSD Bus Timing, SMJ34082A to Memory with MEMCFG Low

TEXAS ~
INSlRUMEN1S

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-61

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

I~ tc(ClK) ~I ____ X ., ~~--~, t
1 14 ~I tp(ClKH-MSAV}'

14 ~ tp(ClKH-MSAV)1 I ~i4~--I~~I- tY(ClKH-MSA)

MSA'"" X$X>k ADDRESS O~T x:k ADDRESS O~T tx ADDRESS OUT

1 1 I 1 -+I '-- tY(MWRH-MSA)

~ Ip(CLK"'MS~v) I I I

,----ClK

DS/CS

MSDS'", ~ DATA 00{ $ DATA O~....J ~X DATA OUT

I -+i 14- tp(CI,.KH-DCSH)MH I ~ j+- tY(MWRH-MSD)

___ ~:4 __ ilp(CLKH-DCSL)MH n : A
1 I II I I -----
1 ~ tct(MCEH-DCSl)MH ~ t)N(DCSH) I I

1:7 I I 1
1 I I 1

---.... 1-1 I I I
14 ~i tp(ClKH-MWRl) -t-Il4-- tct(MSAV-MW~l) :), ri ~LK"'MWRH)

14--+1- fw(MWRH)

___ 7

NOTE: This example shows multiple data writes. Timing for multiple code writes would be similar. This option for using DS/CS as data space chip
enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is
high; DS/CS and MCE rise after every riSing clock edge. In this mode, DS/CS and MCE may not both be active (low) althe same time.

C-62

Figure 40. Host-Independent Mode MSD Bus Timing, SMJ34082A to Memory with MEMCFG High

TEXAS ,If
INSIRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

ClK

MSA15-0

MSD31-O

DS/CSt

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- D3592. SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

14--- tc(ClK) ~: __ ~/ , ~~-----~~ X , _____ _
14 ~I tp(CLKH-MSAV) I

:: 14--+1- tY(CLKH-MSA) !
---...,..1 -9<* ADDRESS O~T ** ADDRESS °IUT x~>-------

: ~ ten(t,1AEL-MSAZX) ! ~ 14- tY(MWRH-MSA} I t4-+t- tdls(MAEH-MSAXZ)

141 i ;:. tP(CLKH-M~~} I I : : : YR DATAOfY ~H><INST.:IN~XX>>----
td(MWRl-~SDZX) +: 14- I I j+ ItY(MWRH-MSD) I I

I I II I I I I I
----+-.~ II I I I I y,--------

I II I I I
I II I : : tp'(CLKH-DCSH)ML 11l1li ~I
I I I I
I Ii I I "-.1 Iy------
I II I I 1"1 I If
I I I 14 I ~I tp(CLKH-DCSL)ML
14 ~I I tp(CLKH-MCEL) I I I I

___ -+1_-.... I II I I tp(CLKH-MCEH)ML ~~
I "'-II I I I I.
I I'll I I I I
I I I ~ tp(C,LKH-MWRH) I
I -+I 1+-1d(MSAV-MW~L) :: I
I I I I
II1II ~I tp(CLKH-MWRH: I I

-----------------~ I~--~:---------+:--------------
I I -+j,.. fct(MSDZ-MO~L)
I I I I+---*-

1d(MWRH-MOEL) i4 ~I I tp(CLKH-MOEH)

----------~--~:~--'k ,r
II1II ~I tp(CLKH-MOEL) I

t The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.
:j: MCE dos not toggle at each rising clock edge.
§ MOE goes high at each rising clock edge.
NOTE: This example shows a data write followed by an instruction read.

Figure 41. Host-Independent Mode, MSD Enable/Disable Timing with MEMCFG Low

TEXAS ."
INSlRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-B3

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

l1li tc(CLK) ~I

J' " ~,..-~, J "
---- I~ ~I tp(CLKH-MSAV) I I "'-----

I I 'I I
I I ~~ ~ tv(CLKH-MSA) !

MSA15-0 ---..... : -~ ADDRESSO~T $X ADDRESSO~T X)>--t -----

I l++t- ten{MAEL-MSAZX) I ..., ~ t (MWRH-MSA) I ~ dls(MAEH-MSAXZ)
I I I I I v I I
I~ Iii I,::: tp(CLKH-MSDY) I I
: ! ,t~ DATA OUT i *>--<X INST. IN)(X\~----
I I~ I ~ t_ I I I '4 {
I I I I 'en(MAEL-MSqZX~ I ~ ldls(MAEH-MSDXZ)

td(MWRL-MSDZX) -"I j4- I -.! :.. Ict(MWRH-MSDXZ) :
"" II I I Iv,..-----
I" II LL-I ~
I : I ~ tp(CLKH-DCSH)MH

___ -+-:~ __ ~I I tp(CLKH-DCSL)Mti I : ,...1 ------i----------
I 'i-~: I II/.' I
I 1)1 I:.J.L
I I I I I ro 1"1 ld(DCSH-MCEL)MH

I : tp(CLKH-MCEL) I~: I ~I H tp(CLKH-MCEH)MH

: II : I:~ 1,(
td(MSAV,;,MWRL) -+I :+- i-+ tp(C~KH-MWRH) :

~ ~I tp(CLKH-MWRH I I I
--------~~ I~r-~I~------~:---------------

,"" ---~II-', I -.I ~ ld(MSDZ-MO~L)
I I I I

Id(MWRH-MOEL,) ~ ~I l+-+I- tp(CLKH-MOEH)

: ~)
~ ~I tp(CLKH-MOEL)

ClK

MSD31-0

DS/CS

NOTE: This example shows a data write followed by an instruction read. Timing for multiple code writes would be similar. This option for using
OS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration
register. When MEMCFG is high, OS/CS and MCE rise after every rising clock edge. In this mode, OS/CS and MCE may not both be low
at the same time.

Figure 42. Host-Independent Mode, MSD Bus Enable/Disable Timing with MEMCFG High

TEXAS ."
INSlRUMENTS

C-64 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

ClK

MSA15-O

MSD31-0

DS/CS

MCEt

lAD31-0

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592. SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

,"----
><><><¥X>OI(ADDRESS'?"T:b< ADDRESS2~UT ggxxx

I ~ th(CLKH-MSD) I

~LK~~ I I

_---+-'17
~14--"""~:~ tp(ClKH-MOEl);

_______ I ~ tp(CLKH-MOEH)

\ 1 n 1/
I !4--+t- tw(MOEH) I
I I
I I __;7 I I
I I
I~ ~ tp(ClKH-LADV)
I I I

xxXXXXXXX~Xx% DATA 1 OUT >KXXXgt;A2

__ ...J7

t MCE dos not toggle at each rising clock edge.
:j: MOE goes high at each rising clock edge.

Figure 43. Host-Independent Mode, MSD to LAD Bus Transfer Timing with MEMCFG High

TEXAS ."
INSlRUMEN1S

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 G-65

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592. SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

eLK

II1II tc(CLK) --~~I

----} , ~-----, !
I ~ tY(CLKH-MSA) I
I I I I I
~ • Ip(CLKH-MSAV) I 1

,,----

MSD31-O X~NST.:INXXXXX % DATA 11N XxXXXDATA 21NXXXXXXXX
I j

1 -+j 1+ tp(CLKH-DCSH)MH 1
___ -!tI __ ~ tp(CLKH-DCSL)Mtt 1 I

: ~ :~ :/
14 ~I tp(CLKH-MCEL) 1 14-+1- tw(DCSH) 1

I
: 1 -+! j4- tp(CLKH-MCEH)MH :

----;-I--..-.~ 1 ~ 1 /

I 1\" 1'1 I" 1
1 1 1 1
1 1 I4--+i- tw(MCEH) I

MSA15-0 X xX>k ADDRESS 1 01T >KX ADDRESS 2 OUT XXXXXX

I l4-++- t h(CLKH-MSD) I
I tsu(MSD-CLKH) ~ I 1

--~i7 :
14 ~I H- tp(CLKH-MOEH)

______ 1 tp(CLKH-MOEL) 1 I

" I n __i.--J/
1 tW(M?EH)~

1

1 ___ 7
I I
I
14 ~I tp(CLKH-L1DV)

LAD31-0 XXXXXXXXX v0vvXX% DATA 1 OUT)j(XXXDATA 2 OUT
~)1

I 1 -.: ~ tY(WEH-LAD)
1 1 I

__ ..J7 I I 1

I 1 1
I ~ tp(CLKH-WEH)
14 ~I tp(CLKH-WEL) 1 -----------------'l ~~ ____ __

~tw(WEH)

t DS/CS valid for moves to data space; MCE valid for moves to code space. Only one would be valid for each move instruction.
NOTE: This option for using DS/CS as data space chip enable and MCE as code space chip enable is involved by setting the MEMCFG bit high

in the configuration register.

Figure 44. Host-Independent Mode, MSD to LAD Bus Transfer Timing with MEMCF High

TEXAS ."
INSIRUMENTS

C-66 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

~-- tc(CLK) ~I

,~------,(-. ------,,~------
,"* __ .~ I I.. tv(CLKH-MSA)

~P(CLKH-MSAV) _I~_",-~
,------CLK

MSD31-O X~X*JUMPiIN%XXXXX INS~.IN xxx xXX X
I I4+r- th(CLKH-MSD) I
I tsu(MSD-CLKH) 14---+\ I I

,.. ~I tp(CLKH-DCSL)"ML I+--+t- tp(CLKH-DCSH)ML

-------~:---~~ -----~-----------i--;r
I tp(CLKH-MCEH)ML h I

i" ~: tp(CLKH-MCEL) I : ~ tp(CLKH-MCEH)ML ----1..: --~ In: r
I I l4-+!- tw(MCEH) I I
I tp(CLKH-MCEH)MH -14---+1 I ~ tp(CLKH-MCEH)MH
I

DS/cst

MWR =-./'1 I
I H tp(CLKH-MOEH)

I .. I ~ I ~ tp(CLKH-MOELr [""<-...., tw(MOEH)

--------------{ I n /
I I ~--------~

~(CC-CLKHJ

------------------~. I I I ~.-------------------------------.; j+- th(CLKH-CC)

CC*

t Dotted line shows OS/CS for MEMCFG high.
:f: The CC input is registered on each rising edge of the clock, so the CC bit can be latched one cycle and tested during the next cycle.

Figure 45. Host-Independent Mode, MSD Bus Timing Test Condition (CC) and Branch

TEXAS ..
INSJRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-67

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

ClK

OS/cst

COROY§

PARAMETER MEASUREMENT INFORMATION

~14--tc(CLK) ~I

--~~ ~ ~---~, %
I 14 ~I tY(CLKH-MSA) I

~ "-----
I I I I I xx? ~ fp(CLKH-MSAVI r I ., 'p(CLKH-MSAV] "4--I~~1- tY(ClKH-MSA)

______ ~II' I i
I ~I i+--+:- tp(ClKH-MOEH) I
14 I tp(ClKH-MOEL~ i4--+I- tw(MOEH) i

/ ----~~ I n II

i
I j41---~~'I-I ,... tp(CLKH-COll)

tp(CLKH-COIH) 14 ~i 1

i.(i).'-___ _
I

tp(ClKH-CORl) 114 ~II 1 I
tIII~f---"~o!-i tp(CLKH-CORH)

~ ________ A'
t Dotted line shows DS/CS for MEMCFG high.
:j: Valid for MEMCFG low only. When MEMCFG low, COINT is set high by the set mask instruction, and it remains high until reset with another set

mask instruction.
§ The CORDY output is set low by the set mask instruction, and it remains low until reset with another set mask instruction.

Figure 46. Host-Independent Mode MSD Bus Timing, SET/RESET COINT and CORDY

TEXAS ..
INSlRUMENlS

C-68 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

CLK

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- 03592, SEPTEMBER 1990 - REVISED MAY 1991

PARAMETER MEASUREMENT INFORMATION

1e11lll---tc(CLK) __ ~I ,
I
_
-__ I I T---\.,

----'Z ',-~,{ "y --./: '-
: tp(CLKH-MSAV) 1l1li ~: II ,

I , l1li ~ tv(CLKH-MSA)

MSA15-0 XXX~XXXXX*X)<>a< VECTOR: OUT % ~>qOO<XX~"X"""'::I~~'"
I I i+---+I- th(CLKH-MSDV) I
, I tsu(MSD-CLKH) -+I 1..- I I

MSD31-0 X~XXx>po6<xxX*I~ST.IN%X ""Ir'$><~I"t""'7'I~XX~
I 1l1li ~I tp(CLKH-DC~L)ML I
I I ~ 'f----- --~------
I I I· I -~----
I tp(CLKH-MCEL) 1l1li ~I I :
I I I I'" ~II tp(CLKH-MCEH\ML
I I I I C- --;----
I I "kl I·":
I I i I
I I I
Iii II :::7: I I --+-1----

I \.. ~I tp(CLKH-MO~L) I
: I: ~I tp(CLKH-MO_EH_)-;-.: ___ _

I :).: T i
-+l ~ th(CLKH-ITR) I I I

I I 1 I

DS/CSi'

~I"--~~i-!I tsu(ITRL-CLKH) I I

INTRt ~: --+-: ----
14 ~, tw(ITRL) 1 tp(CLKH-ITGL) ~

1l1li ~I tp(CLKH-ITGH) I

------------y, ... ~ INTG

t Dotted lines show DS/CS and MCE for MEMCFG high.
:f: INTR is negative-edged triggered.
NOTE: Interrupts are not granted during multi-cycle instructions. This example shows two interrupt requests. The first is granted immediately; the

second, after the first is finished. INTG remains high after an interrupt is granted until interrupts are reenabled or a return from interrupt
instruction is executed.

Figure 47. Host-Independent Mode, MSD Bus Timing External Interrupt to SMJ34082A

TEXAS ..
INSTRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-69

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PARAMETER MEASUREMENT INFORMATION

I.. tc(ClK) ----...' I

ClK /.11 " }---" /,...-~" ______ J ~ ____ -J I ~ ____ JI ~-----

ROY

lROY

~ th(ClKH-ROY) I
lsu(ROYV-ClKH) --IoiI1"1---"'~1 I I

~~----~-------------~l"---.I---------------­
I th(ClKH-lRO)

lsu(lRO-ClKH):" ~: :

~ {------
NOTE: When either ROY or lRDY is set low and the setup time before elK high is observed, the device is stalled for one or more clock cycles,

until RDY or lRDY is set high again. During a wait state, internal states and status are preserved and output signals do not change. lR DY
can be used in this manner only in the host-independent mode.

Figure 48. Host-Independent Mode, MSD Bus Timing Wait State Timing

PROGRAMMING INFORMATION

programming the SMJ34082A

C-70

The SMJ34082A is supported by a software development tool kit, including a C compiler and an assembler.
Program development using the tools is described in the TMS34082A tool kit documentation. Information on
internal instructions and listing of the external instructions are provided in the following sections.

In both the coprocessor and host-independent modes, the SMJ34082A instruction word is 32 bits long. The
number, length, and arrangement of fields in the 32-bit word depends on the operating mode and operation
selected. Internal microcode to the SMJ34082A is not restricted to the same 32-bit instruction formats so certain
internal programs may execute faster than the same operations written with external code can achieve.

In the coprocessor mode, the SMJ34082A can execute instructions both from the SMJ34020 and from the
program memory on the MSD bus (MSD31-0). In the host-independent mode the SMJ34082A is controlled from
code input on the MSD bus. Internal instructions may be executed in the host-independent mode by performing
a jump to the internal address.

TEXAS ..If
INSTRUMENTS

POST OFFICE BOX 655303 • DAUAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592, SEPTEMBER 1990 - REVISED MAY 1991

PROGRAMMING INFORMATION

internal instructions

The SMJ34082A FPU performs a wide range of internal arithmetic and logical operations, as well as complex
operations (flagged 't'), summarized below. Complex instructions are multi-cycle routines stored in the internal
program ROM,

One-Operand Operations:

Conversions:

Absolute Value
Square Root
Reciprocalt

Integer to Single
Integer to Double
Single to Double

Two-Operand Operations:
Add
Subtract
Compare

Matrix Operations:
4x4, 4x4 Multiply t
1 x4, 4x4 Multiply t

Graphics Operations:
8ackface Testing t
Polygon Clipping t
2-D Linear Interpolation t
2-D Window Compare t
2-Plane Clipping (X,Y,Z)t
2-D Cubic Spline t

I mage Processing:
3x3 Convolution t

Chained Operations:
Polynomial Expansion t
1-D MiniMax!

Vector Operations:
Addt
Subtractt
Magnitudet
Scalingt

1 s Complement
2s Complement

Single to Integer
Double to Integer
Double to Single

Multiply
Divide

3x3, 3x3 Multiply t
1 x3, 3x3 Multiply t

Polygon Elimination t
Viewport Scaling and Conversion t
3-D Linear Interpolation t
3-D Volume Compare t
2-Plane Color Clipping (R,B,G,l)t
3-D Cubic Spline t

Multiply/Accumulate t
2-D Min/Max t

Dot Productt
Cross Productt
Normalization t
Reflection t

The internal ROM routines may be used in either the coprocessor or host-independent mode. In the coprocessor
mode, the internal routines are invoked by SMJ34020 instructions to its coprocessor(s).

I n the host-independent mode, the internal programs can be called as subroutines by the externally stored code.
External programs can call internal routines by executing a jump to subroutine with bit 16 (internal code select)
set high and the address of the internal routine as the jump address.

The format of the SMJ34082A instruction in the coprocessor mode is shown in Figure 49. The instruction is
issued by the SMJ34020 via the LAD bus.

t Indicates a complex instruction.

TEXAS •
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-71

',... _44 ',..,...,.J ¥44I' _""', , &+-_,..,."."""""' ___ ____ -'--.,~ __ !!!I..,.rIII.~.~IIIII'~""!I~.II".~.,I_II"~II!IIII'!"'II-.......,,--.II'" '~"r

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

C-72

PROGRAMMING INFORMATION

o
00000

Figure 49. SMJ34082A Instruction

The 3-bit 10 field identifies the coprocessor for which the instruction is intended. This coprocessor ID
corresponds to the settings of the CI02-CIDO pins. To broadcast an instruction to all coprocessors, the 10 is set
to 4h.

Table 5. Coprocessor 10
10 COPROCESSOR

000 FPUO

001 FPU1

010 FPU2

011 FPU3

100 FPU broadcast

101 Reserved

110 Reserved

111 User defined

Four coprocessor addressing modes are defined for the SMJ34082A. The md field indicates the addressing
mode.

Table 6. Addressing Modes
MODE MOFIELD OPERATION

0 00 FPU internal operations with no jump or external moves

1 01 Transfer data tolfrom SMJ34020 registers

2 10 Transfer data to/from memory (controlled by SMJ34020)

3 11 External instructions

The type and size bits identify the type of operand; as shown below in Table 7. The I bit is used to indicate to
the SMJ34082A that this is a reissue of a coprocessor instruction due to a bus interruption. The least significant
four bits are the bus status bits, which will all be zero to indicate a coprocessor cycle.

Table 7. OPERAND Types
TYPE SIZE OPERAND TYPE

0 0 32-bit integer

0 1 Reserved

1 0 Single-precision floating-point (32-bit)

1 1 Double-precision floating-point (64-bit)

The ra, rb, and rd fields are for the two sources and destination within the FPU. Register addresses are listed
in Table 1. For the ra and rb fields, only the four least significant bits of the register address are used. The ra
field may only use the RA register file, C, and CT. The RS field may only use the RS register file, C and CT.

The Floating-Point Unit Operation (fpuop) field is the FPU opcode (5 bits) described in Tables 8, 9, and 10.

In the coprocessor mode, the SMJ34082A executes user-defined routines (stored in external memory on the
MSO bus) by executing a jump to external code. For this instruction, the md field (bits 15-13) is set high and the
fpuop field gives the routine number (0-31). The SMJ34082A multiplies the routine number by two to getthe jump
address. For example, routine number 14 would have a jump address of 28 decimal or 1 C hex.

TEXAS ."
INSlRUMENlS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- D3592, SEPTEMBER 1990 - REVISED MAY 1991

PROGRAMMING INFORMATION

The routines are coded using the external instruction format discussed in the next section. The last instruction
should be a jump to internal instruction address OFFFh with the I-bit(internal) set or a return from subroutine
instruction. This puts the FPU in an idle state, waiting for the next instruction from the SMJ34020.

Table 8. Coprocessor Mode Instructions
FPUOP TMS34020 ASSEMBLER OPCODE DESCRIPTION

00000 ADDx Sum of ra and rb, place in rd

00001 SUBx Subtract rb from ra, place result in rd

00010 CMPx Set status bits on result of ra minus rb

00011 SUBx Subtract ra from rb, place result in rd

00100 ADDAx Absolute value of sum of ra and rb, place result in rd

00101 SUBAx Absolute value of (ra minus rb), place result in rd

00110 MOVE or MOVx Load multiple FPU registers from SMJ34020 GSP or its memory

00111 MOVE or MOVx Save multiple FPU registers to SMJ34020 GSP or its memory

01000 MPYx Multiply ra and rb, place result in rd

01001 DIVx Divide ra by rb, place result in rd

01010 INVx Divide 1 by rb, place result in rd

01011 ASUBAx Absolute value of ra minus absolute value of rb, place in rd

01100 reserved

01101 MOVEx Move ra to rd, multiple, for n registers

01110 MOVEx Move rb to rd, multiple, for n registers

01111 (see Table 10) Single operand instructions, rb field redefined

10000 CPWx Compare point to window (set XLT, XGT, YLT, TGn

10001 CPVx Compare point to volume (set XLT, XGT, YLT, YGT, ZLT, ZGT)

10010 BACKFx Test polygon for facing direction (backface test)

10011 INMNMXx Setup FPU registers for MNMX1 or MNMX2 instruction

10100 L1NTx Given [X1, Y1, Z1], [X2, Y2, Z2], and a plane, find [X3, Y3, Z3]

10101 CLlPFx Clip a line to a plane pair boundary (start with point 1)

10110 CLlPRx Clip a line to a plane pair boundary (start with point 2)

10111 CLlPCFx Clip color values to a plane pair boundary (start with point 1)

11000 SCALEx Scale and convert coordinates for viewpoint

11001 MTRANx Transpose a matrix

11010 CKVTXx Compare a polygon vertex to a clipping volume

11011 CONVx 3x3 convolution

11100 CLlPCRx Clip color values to a plane pair boundary (start with point 2)

11101 OUTC3x Compare a line to a clipping value

11110 CSPLNx Calculate cubic spline for given coefficients

11111 (see Table 11) Vector and matrix instructions, rb field redefined
..

F denotes Single-preciSion, D denotes double-precision f1oatlng-pomt, x denotes operand type, and a blank deSignates signed mteger

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 G-73

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PROGRAMMING INFORMATION

Table 9. Coprocessor Mode Instructions, FPUOP = 011112
RB TMS34020 ASSEMBLER OPCODE DESCRIPTION

0000 PASS Copy ra to rd

0001 NOT Place 1 s complement of ra in rd

0010 ABS Place absolute value of ra in rd

0011 NEG Place negated value of ra in rd

0100 CVDF Convert double in ra to single in rd (T and S define ra)

0100 CVFD Convert single in ra to double in rd (T and S define raj

0101 CVDI Convert double in ra to integer in rd (T and S define ra)

0101 CVFI Convert single in ra to integer in rd (T and S define raj

0110 CVID Convert integer in ra to double in rd (T and S define raj

0110 CVIF Convert integer in ra to single in rd (T and S define raj

0111 VSCLx Multiply each component of a velocity by a scaling factor

1000 SQARx Place (ra ... raj in rd

1001 SQRTx Extract square root or ra, place in rd

1010 SQRTAx Extract square root of absolute value of ra, place in rd

1011 ABORT Stop execution of any FPU instruction

1100 CKVTXI Initialize check vertex instruction

1101 CHECK Check for previous instruction completion

1110 MOVMEM Move data from system memory to external memory @ MCADDR

1111 MOVMEM Move data to system memory from external memory @ MCADDR

Table 10. Coprocessor Mode Instructions, FPUOP = 111112
RB TMS34020 ASSEMBLER OPCODE DESCRIPTION

0000 POLYx Polynomial expansion

0001 MACx Multiply and accumulate

0010 MNMX1x Determine 1-0 minimum and maximum of a series

0011 MNMX2x Determine 2-D minimum and maximum of a series of pairs

0100 MMPYOx Multiply matrix elements 0, 1, 2, 3 by vector element 0

0101 MMPY1x Multiply matrix elements 4, 5, 6, 7 by vector element 1

0110 MMPY2x Multiply matrix elements 8, 9, 10, 11 by vector element 2

0111 MMPY3x Multiply matrix elements 12, 13, 14, 15 by vector element 3

1000 MADDx Add matrix elements 12,13,14, 15 to vector

1001 VADDx Add two vectors

1010 VSUBx Subtract a vector from a vector

1011 VDOTx Compute scalar dot product of two vectors

1100 VCROSx Compute cross product of two vectors

1101 VMAGx Determine the magnitude of a vector

1110 VNORMx Normalize a vector to unit magnitude

1111 VRFLCTx Given normal and incident vectors, find the reflection

F denotes single-precision, 0 denotes double-precision floating-point, x denotes operand type, and a blank designates signed integer

C-74

TEXAS •
INSlRUMENlS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

external instructions

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A- D3592, SEPTEMBER 1990 - REVISED MAY 1991

PROGRAMMING INFORMATION

External instructions are 32 bits long, and their formats (number, length, and function of fields) depend on the
operations being selected. Separate formats are provided for data transfers, FPU processing, test and branch
operations, and subroutine calls.

Instructions that control FPU operations can select operands from input registers, internal feedback, orfrom the
LAD bus (32-bit operations only). The format for an FPU processing instruction is shown in Figure 50.

15 11 o
INSTRUCTION

Figure 50. FPU Processing External Instruction Format

The op field selects the sequencer operation. Three continue instructions are available to permit control of the
WE and ALTCH strobe outputs, which enable LAD output in the host-independent mode. The ra, rb, and rd fields
are for the two sources and destination in the SMJ34082A register file. The seLop field selects the source of
the operands: register file or feedback registers. The instruction field designates the operation to be performed.

External instructions and cycle counts are listed in Table 11. Absolute values of operands or results, negated
results, and wrapped number inputs are selectable options. Chained operations, using the multiplier and ALU
in parallel, and other instructions to control program flow and move data are included.

External instruction timing depends on the pipeline registers setting, controlled by the PIPES2-1 bits in the
configuration register. Most FPU processing instructions (with the exception of divide, square root, and
double-precision multiply) execute in one cycle per pipeline stage.

TEXAS •
INSlRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

-------'--------------------""""'"

C-75

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990- REVISED MAY 1991 -SGUS012A

PROGRAMMING INFORMATION

Table 11. External Instructions and Timing
SMJ34082A ASSEM BLER DESCRIPTION PIPES2-1 PIPES2-1 PIPES2-1 PIPES2-1

OPCODE OF ROUTINE 11 10 01 00

ADD Add A + B 1(1) 2(1) 2(1) 3(1)

AND Logical AND A, B 1(1) 2(1) 2(1) 3(1)

ANDNA Logical AND NOT A, B 1(1) 2(1) 2(1) 3(1)

ANDNB Logical AND A, NOT B 1(1) 2(1) 2(1) 3(1)

CJMP Conditional jump 1(1) 1(1) 1(1) 1(1)

CSJR Conditional jump to subroutine 1(1) 1(1) 1 (1) 1(1)

CMP Compare A, B 1(1) 2(1) 2(1) 3(1)

COMPL Pass 1 s complement of A 1 (1) 2(1) 2(1) 3(1)

DIV Divide AI B
SP 8(8) 8(7) 9(7) 9(7)
DP 13(13) 13(12) 15(12) 15(12)
integer 16(16) 16(15) 17(15) 17(15)

DTOF Convert from DP to SP 1 (1) 2(1) 2(1) 3(1)

DTOI Convert from DP to integer 1(1) 2(1) 2(1) 3(1)

DTOU Convert from DP to unsigned integer 1(1) 2(1) 2(1) 3(1)

FTOD Convert from SP to DP 1 (1) 2(1) 2(1) 3(1)

FTOI Convert from SP to integer 1(1) 2(1) 2(1) 3(1)

FTOU Convert from SP to unsigned integer 1(1) 2(1) 2(1) 3(1)

ITOD Convert from integer to DP 1(1) 2(1) 2(1) 3(1)

ITOF Convert from integer to SP 1 (1) 2(1) 2(1) 3(1)

LD Load n words into register
SP n+1 n + 1 n + 1 n + 1
DP 2n+ 1 2n + 1 2n+ 1 2n + 1
integer n+1 n + 1 n+1 n+1

LDLCT Load loop counter with value 1(1) 1(1) 1 (1) 1(1)

LDMCADDR Load MCADDR with value 1(1) 1(1) 1 (1) 1(1)

MASK Set programmable mask 1(1) 1(1) 1 (1) 1 (1)

MOVA Move A (no status flags active) 1 (1) 2(1) 2(1) 3(1)

MOVLM Move n words from LAD bus to MSD bus
SP n+1 n+1 n+1 n+1
DP 2n+ 1 2n + 1 2n + 1 2n + 1
integer n+1 n + 1 n + 1 n+1

MOVML Move n words from MSD bus to LAD bus
SP n+1 n + 1 n+1 n+1
DP 2n + 1 2n + 1 2n + 1 2n + 1
integer n+1 n + 1 n+1 n+1

MOVRR Multiple move, register to register
SP n+1 n+1 n+1 n+1
DP 2n + 1 2n + 1 2n+ 1 2n + 1
integer n+1 n+1 n + 1 n+1

MULT.ADD Multiply A1 * B1, Add A2 + B2
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1 (1) 2(1) 2(1) 3(1)

DP denotes double-precision, and SP denotes single-precision.

TEXAS ."
INSTRUMENTS

C-76 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SMJ34082A ASSEMBLER
OPCODE

MULT.NEG

MULT

MULT.PASS

MULT.SUB

MULT.2SUBA

MULT.SUBRL

NEG

NOR

OR

PASS

PASS

PASS.ADD

PASS.NEG

PASS. PASS

PASS.SUB

PASS.2SUBA

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A-D3592. SEPTEMBER 1990- REVISED MAY 1991

PROGRAMMING INFORMATION

Tabale 11. External Instructions and Timing (Continued)
DESCRIPTION PIPES2-1 PIPES2-1 PIPES2-1 PIPES2-1
OF ROUTINE 11 10 01 00

Multiply A1 .. 81. Subtract 0 - A2
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A .. 8
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 .. 81. Add A2 + 0
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 .. 81. Subtract A2 - 82
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 .. 81. Subtract 2 - A2
SP 1 (1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 .. B1, Subtract 82 - A2
SP 1 (1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Pass -A (2s Complement) 1 (1) 2(1) 2(1) 3(1)

Logical NOR A, B 1 (1) 2(1) 2(1) 3(1)

Logical OR A, B 1 (1) 2(1) 2(1) 3(1)

Pass A 1 (1) 2(1) 2(1) 3(1)

Pass B 1 (1) 2(1) 2(1) 3(1)

Multiply A1 .. 1, Add A2 + B2
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1 (1) 2(1) 2(1) 3(1)

Multiply A1 .. 1, Subtract 0 - A2
SP 1 (1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1 (1) 2(1) 2(1) 3(1)

Multiply A1 .. 1, Add A2 + 0
SP 1(1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1(1) 2(1) 2(1) 3(1)

Multiply A1 .. 1, Subtract A2 - B2
SP 1 (1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1 (1) 2(1) 2(1) 3(1)

Multiply A1 .. 1, Subtract 2 - A2
SP 1 (1) 2(1) 2(1) 3(1)
DP 2(2) 3(2) 3(2) 4(2)
integer 1 (1) 2(1) 2(1) 3(1)

DP denotes double-precision, and SP denotes single-precision.

TEXAS ~
INSTRUMENlS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C-77

SMJ34082A
·GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

PROGRAMMING INFORMATION

Table 11. External Instructions and Timing (Continued)
CYCLE COUNTS

SMJ34082A ASSEMBLER DESCRIPTION
PIPES2-1 PIPES2-1 PIPES2-1 PIPES2-1

OPCODE OF ROUTINE
11 10 01 00

RTS Return from subroutine 1 (1) 1 (1) 1 (1) 1(1)

SLL Logical shift left A by B bits 1 (1) 2(1) 2(1) 3(1)

SQRT Square root of A
SP 11(11) 11(10) 12(10) 12(10)
DP 16(16) 16(15) 17(15) 17(15)

integer 20(20) 20(19) 21(19 21(19)

PASS.SUBAL Multiply A1 • 1, Subtract B2 - A2
SP 1 (1) 2(1) 2(1) 3(1)

DP 2(2) 3(2) 3(2) 4(2)

integer 1 (1) 2(1) 2(1) 3(1)

SRA Arithmetic shift right A by B bits 1(1) 2(1) 2(1) 3(1)

SAL Logical shift right A by B bits 1 (1) 2(1) 2(1) 3(1)

ST Store n words from register
SP n+1 n+.1 n+1 n+1
DP 2n + 1 2n+ 1 2n + 1 2n+ 1
integer n+1 n+1 n+1 n+1

SUB SubtractA-B 1(1) 2(1) 2(1) 3(1)

SUBRL Subtract B-A 1 (1) 2(1) 2(1) 3(1)

UTOD Convert from unsigned integer to DP 1 (1) 2(1) 2(1) 3(1)

UTOF Convert from unsigned integer to SP 1 (1) 2(1) 2(1) 3(1)

UWAAPI Unwrap inexact operand 1 (1) 2(1) 2(1) 3(1)

UWRAPA Unwrap rounded operand 1 (1) 2(1) 2(1) 3(1)

UWAAPX Unwrap exact operand 1 (1) 2(1) 2(1) 3(1)

WRAP Wrap denormalized operand 1 (1) 2(1) 2(1) 3(1)

XOR Logical exclusive OR A, B 1(1) 2(1) 2(1) 3(1)

DP denotes double-precision, and SP denotes single-precision.

TEXAS ."
INSlRUMENlS

C-78 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SMJ34082A
GRAPHICS FLOATING-POINT PROCESSOR

SGUS012A - 03592. SEPTEMBER 1990 - REVISED MAY 1991

MECHANICAL DATA

GB pin-grid-a~ray ceramic package

This is a hermetically sealed package.

145-PIN GB

INDEX CORNER
MARK OR CHAMFER
1,27(0.05) X 45
(PIN A-i)

~ 40, 1(1.580) ----41~
1- 37,6(1.480) - I

~. ~l

(TOP VIEW)
40,1(1.580)
37,6(1.480)

S,n(0.225) J
2,54(0.100) 1---c 1,78(0.070)

~ 11 · ~ J 1,02(0.040)

S,~0.200) ~ I ~f~o,~o~! ~ ~ ~ ~ ~=l ~o.OSO) NOM

2,54(0.100) 0,406(0.016) -+/14- DIA (4 PLACES)
DIA TYP (SEE NOTE E)

2,54(0.100) TYP

@@@@@@@@@@@@@@@
@O@@@@@@@@@@@O@
@@@@@@@@@@@@@@@
@@@ @@@
@@@ @@@
@@@ @@@
@@@ @@@
@ @ @ (BOnOM VIEW) @ @ @
@@@ @@@
@@@ @@@
@@@ @@@
@@@@ @@@
@@@@@@@@@@@@@@@
@O@@@@@@@@@@@o@
@@@@@@@@@@@@@@@

123456789101112131415

2,54(0.100) TYP
(SEE NOTE D)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTES: D. Pins are located within 0,13 (0.005) radius of true position relative to each other at maximum meterial condition and within
0,457 (0.018) radius of the center of the ceramic.

E. Dimensions do not include solder finish.

TEXAS ."
INSJRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 C-79

SMJ34082A·
GRAPHICS FLOATING-POINT PROCESSOR

03592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

C-80

TEXAS ,If
INSlRUMENTS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

Appendix D

Maximizing Your MFLOPS
with the TMS34082 and

Motorola MC68030

This application report demonstrates one way that the TMS34082
floating-point processor can be coupled to a Motorola MC68030
microprocessor for high-performance and cost-effective, IEEE 74-1985
compatible, floating-point solutions.

0-1

0-2 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

Overview

Objectives

The TMS34082 Floating-Point Processor from Texas Instruments is a cost-effective, high-performance
floating-point device. The objective of this application report is to demonstrate one way that the TMS34082
floating-point processor can be tightly coupled to a Motorola MC68030 micr oprocessorforhigh-performanceand
cost-effective, IEEE 754-1985 compatible, floating-point solutions. This application report is for Motorola
MC680xO users who interface to the VME/VSB bus, develop stand-alone systems, or who require fast
floating-point processor solutions.

This document will show the simplicity and efficiency with which the TMS34082 interfaces with the Motorola
MC68030 as a parallel floating-point processor. This report will also show the advanced floating-point capabilities
of the TMS34082 compared to the Motorola MC6888X family.

Direct comparisons have been made between Motorola's coprocessor family and the TMS34082 Floating-Point
Processor. Table 1 in the perfonnance analysis section details a comparison of the TMS34082 and the Motorola
MC68881. The results clearly show the increase in performance realized by choosing the TMS34082 as the host
floating-point processor. By operating the TMS34082 in parallel with the Motorola MC68030, multiple operations
can be processed simultaneously for enhanced perfonnance.

When running the TMS34082 floating-point processor in parallel with the Motorola MC68030 as a host, the host
processor must ensure the floating-point processor is always busy. In addition, the host processor must also have
access to the floating-point processor's outputs and complete control for immediate stalls or interrupts. Details of
the system architecture can be found in the System Architecture section.

TMS34082 Overview

The TMS34082 has features that are unique to floating-point processors. Some of these features are described
below.

• Dual buses for accessing both data space and code space: This design allows you to download data over
the LAD bus and transfer both instructions and data over the MSD bus, using the TMS34082's ability
to simultaneously load instructions and operands over its two buses.

• Dynamic bus-switching: The CC pin can be triggered to affect an immediate jump to a preloaded
address. Similar to an interrupt, this feature lets you jump straight to a routine in SRAM.

• Pipelining: The Harvard architecture within the TMS34082 allows pipelined data flow through the
internal TMS34082 FPU, maximizing sustained throughput.

• Dynamic pipeline settings: Dynamic pipelining allows flexibility with data flow and feedbacks. Pipeline
settings in the configuration register will direct feedback to registers, maximize throughput, or process
vectors.

• FAST vs IEEE mode: The TMS34082 can function in fully IEEE 754-1985 compatible mode as well
as in a mode that allows flushing all denonnalizezd nwnbers to zero (FAST mode).

• Exception handling: The internal structure of the TMS34082 allows detection of status exceptions via
software interrupts that generate address vectors to exception handling subroutines.

D-3

"~'_'!".""'4P&"1'! - - --------........ -------------____ HlM_M_iHiilMIIUI!'1_\1l11!'!1111~'JI!III!!IIUDr!'I"III'I'I"""'"' __ _

Internally, the TMS34082 has 22 onboard registers, which are well suited for matrix multiply graphic routines.
It also has selectable data formats such as 32-bit integer, 3 2-bit floating-point, and 64-bit floating-point processors.
In addition, there are internal programs for vector, matrix, and graphics operations.

The TMS34082s dual-bus structure gives you greater design flexibility. You can dynamically switch between the
LAD and MSD buses while downloading instructions and data. Results are output on either the LAD or MSD bus.

System Architectu re

System Overview

Memory mapping is chosen to interface the TMS3 4082 to the MotorolaMC68030 in this design because itis direct
and yields high-performance solutions. Furthermore, memory mapping allows the designer the flexibility to
develop the floating-point processing interface around system memory.

Parallel processing provides the greatest throughput when coupling the TMS34082 to the Motorola MC68030
processor. In this design, the parallel processing tasks use buffers for data, instructions, and output (see Figure 1).
The TMS34082 receives instructions and secondary data via the MSD bus from a dual-port SRAM (DP-SRAM).
The dual-port SRAM has been preloaded by the Motorola MC68030. Primary data is obtained over the LAD bus
through a FIFO buffer, which has also been preloaded by the Motorola MC68030.

Employing a FIFO buffer to download data to the LAD bus makes effective use of the Motorola MC68030's
blocking loading capability, thus freeing the host processor for other functions. The LAD bus FIFO buffer can
block load the TMS34082's internal registers with minimal overhead.

After receiving the data, the TMS34082 completes its calculations and writes its results into the dual-port SRAM
buffer. To communicate when the calculations have been completed, the TMS34082 can interrupt the Motorola
MC68030 and tell it to poll to the dual-port SRAM for output. Alternately, an optimizing compiler can set up
boundary limits indicating when the DP-SRAM is full.

Dual-Port
MSD Bus

........ TMS34082
SRAM ...

~~
~,

~

LAD Bus
PC/AT Motorola

~ ... Host ~ ... MC68030 Host ... FIFO r-, ...
SRAM

...
Interface Processor

Figure 1. Motorola MC68030 Interface to the TMS34082 - Block Diagram

The system is initialized through a bootstrap loader program. The TMS34082 reads its start-up data through the
LAD bus and transfers it via the MSD bus to the DP-SRAM. The fIrst word of data is used to load the confIguration
register. After 65 clock cycles, the onboard program counter resets itself to 0 and reads from that address in the
DP-SRAM.

The Motorola MC68030 receives its code and data from a dual-port, 8K x 32 SRAM. The SRAM information is
uploaded from an PC/AT supervisory host through address and data buffers. The bus arbitration handshaking
between the PC/AT bus and the Motorola MC68030 is accomplished by I/O mapping on the PC/AT.

D-4 Maximizing Your MFLOPS with the TMS34082 and Motorola MC680S0

Maximum throughput could be realized with an optimizing compiler by grouping functions and operands so that
calculations can be pipelined and the registers can be loaded as a block.

As a download host, the IBM PCI AT is accessible to most users, allowing the duplication of this design with
relative ease.

Objectives and Trade-Offs

The design objectives during the initial phases of the project were, in order of rank: perfonnance, cost, size, and
power. To maximize performance while keeping costs to a minimum, the following guidelines were used:

• Gain in performance should be commensurate with the gain in cost. In other words, a 10% increase in
perfonnance must be justified by no more than 10~ gain in cost.

• A primary objective was to demonstrate the TMS34082 's full capabilities by operating at maximum
speed without wait states. This is accomplished by using parts that sufficiently meet the TMS34082
throughput requirements for maximum perfonnance.

There are two schools of thought in processing floating-point operands. The first is to load all data from the
Motorola MC68030 host through the FIFOs onto the LAD bus. Instructions and other data are loaded into the
DP-SRAM, which the TMS34082 could access over the MSD bus. Results are then placed back into the DP-SRAM
and read by the Motorola MC68030. This method is slightly faster, but requires a more sophisticated compiler.

The other approach is to toggle the CC signal to the TMS34082. CC is activated by setting the appropriate mask
bit in the configuration register. Toggling CC signals the TMS34082 program loads an address vector over the
LAD bus that points to an MSD address in external memory. The TMS34082 then executes the routine at this
address. This example is useful when the DP-SRAM acts as a monitor and contains routines that are accessed
frequently. An optimizing compiler would load relevant operands to the DP-SRAM or to TMS34082 internal
registers and then point to a routine contained in DP-SRAM. The trade-off is that one clock cycle is lost in the jump
process, but the compiler would have less overhead.

Software Description

Overview of Code Development

The objective of the software programs is to demonstrate the full capabilities of the TMS34082. Operands to the
TMS34082 are represented in single-precision, double-precision, and integer formats.

Other features presented in these programs are:

• matrix operations,
• conversions between formats,
• arithmetic operations,
• vector processing,
• feedback operations,
• internal ROM routines,
• and block moves, making efficient use of the internal register set.

All of the resident software has been written in the processor's respective assembler language. Software driving
the PC/AT is primarily written in C or assembly language.

0-5

Code development necessarily begins with the 1MS34082. This then becomes the data code for the Motorola
MC68030. Routines are written in Motorola MC68030 assembly language to handle data uploads to the FIFO, both
uploads and downloads of data/instruction code to the DP~SRAM, and Motorola MC68030 host code resident in
the 8K x 32 host SRAMs.

The initial code supplied to host SRAMs is transferred from the PCI AT. The resident Motorola MC68030 assembly
language routines are translated from that fonnat to one that the PO AT recognizes.

The test software developed for this system writes and reads data from the host SRAM to test for correctness,
address range functionality, and setup time validity. In addition, it allows thorough testing of the PCI AT bus and
validation of host memory setup and hold times. The MS-DOS debugger is initially used for testing, while C code
is implemented for more thorough test capabilities. In addition, the C code allows for ready upload and download
of system software routines.

Big Endian, Little Endian

Programmers of this system must take into consideration the differences between Big Endian and Little Endian.
The Motorola MC68030 device memory can be addressed on a byte-by~byte basis. The data for each byte in a
32-bit word (long word) is in order from most significant to least significant bit. But, the bytes are arranged in order
of least significant to most significant (Little Endian). Intel microprocessors reverse their bytes as compared to
Motorola processors. Intel· arranges bytes from most significant to least significant (Big Endian). Figure 2
illustrates further details on byte arrangement. The hardware description, Appendix B, details more infonnation
on mixed implementation of Big Endian/Little Endian.

The PCI AT's backplane uses a different technique to address memory. A byte starts on an addressable byte
boundary. A word consisting of two bytes starts on an arbitrary boundary, and the high byte corresponds to a high
address (see Figure 2), while the low byte corresponds to a low address.

Code written for this design must take these data fonnats into consideration.

0-6 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

Motorola MC68030

Data

Long Word $ 0000 0000

Word $ 0000 0000 I Word $ 0000 0002

Byte $ 0000 0000 I Byte $ 0000 0001 J Byte $ 0000 0002 I Byte $ 0000 0003

Long Word $ 0000 0004

Word $ 0000 0004 I Word $ 0000 0006

Byte $ 0000 0004 I Byte $ 0000 0005 J Byte $ 0000 0006 I Byte $ 0000 0007

Intel 80286

Data

Word $00000

Byte $ 00001 I Byte $ 00000

Word $ 00002

Byte $ 00003 I Byte $ 00002

TMS34082

Data

Long Word $ 0000

Long Word $ 0001

Address

$0000 0000

$ 0000 0004

Address

$00000

$00002

Address

$0000

$0001

Figure 2. Data Organization in Memory

0-7

TMS34082 Code Development

Code for the TMS34082 includes a bootstrap loader, hardware test, and processorroutines. During startup,routines
confion proper operation of all supporting hardware such as the SRAMs and FIFOs, to ensure the functioning of
interfaces to the Motorola MC68030 host and to evaluate the accuracy of internal TMS34082 finnware.

A simple walking 1 s and Os is used to check the DP-SRAMs. The FIFOs can be checked with the bootstrap routine
to verify that the proper data is being clocked through the device. In addition, the bootstrap also confinns LAD
to MSD bus transfers. The bootstrap is enacted by the Motorola MC68030 by asserting the HALT and the INTR
pins. (Consult the TMS34082 data sheet for bootstrap timing characteristics.)

The main software routine will make use of all therelevantinternal instructions that demonstrate theTMS34082's
processing capabilities. 1\vo subprograms demonstrating the device's superior floating-point capabilities in
processing matrix-multiply and transcendental functions are also included. Further, the TMS34082 can be reset
either by the host processor, by the PC/AT, or manually_

0-8

Bootstrap

Load Data From
FIFO

and SRAM

Perform
Logic

Routines

No Send Flag
to Motorola

MC68030

Figure 3. Block Diagram - TM534082 Code

Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

Motorola MC68030 Code Development

The Motorola MC68030 software is divided into six sections:

1. test,
2. read data/code from host SRAM,
3. output code to FIFOs and DP-SRAMs,
4. retrieve code from DP-SRAM,
5. and write data back to host SRAM.

Transferring data is relatively simple and can be seen in detail under the Software Listing section. The fundamental
purpose of the test section is to check the DP-SRAM access and functionality from the Motorola MC68030 side.
Checkout of the FIFOs has already been completed by the TMS34082 software. The host SRAM needs to be
checked by the PC/AT before loading and by the Motorola MC68030 upon startup to verify correct dual access
after arbitration (see Figure 4).

Motorola MC68030
Test of HIW 1<l1li"'1-----,

(Status Toggle)

Motorola
MC68030

Jumps to Startup

Low

Retrieve Data
fromSRAM

Idle Until Interrupt

Figure 4. Block Diagram - Motorola MC68030 Code

0-9

Intel 80286 Code Development

The PCI AT code has five primary functions (see Figure 5):

1. to upload and download code to Motorola MC68030's host SRAM.
2. to test hardware,
3. to provide for a convenient development platfonn.
4. to perfonn as a supervisory controller,
5. and to establish communication with the host system.

Download
Test Code

To HostSRAM

PCIAT
Relinquishes Bus

Low

No

Download Main
Program Datal

Code

Read Host SRAM
from Output

Figure 5. Block Diagram - PC/AT Code

0-10 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

Hardware Description

Overview

The board is an add-on card that fits into a 16-bit PCI AT slot. The speed at which the PCI AT bus accesses the board
is not critical, since it acts as a supervisory host only. Its purpose is to transfer data to the 8K x 8 SRAM, control
bus arbitration, and to read status signals on the card. See the enclosed schematics section for details.

The hardware is best described by breaking the board down into two subsystems: the PCI AT interface and the
Motorola MC68030 subsystem.

PCIAT Interface

Two types of data are down loaded from the PCI AT to the Motorola MC68030: memory and I/O information. In
the PCIAT, main memory is established for addresses OOOOOOH to 07FFFFH (SI2K), I/O expansion ROM for
locations OCOOOOH-ODFFFFH, and prototype card I/O addresses for 300H-31FH. The software for this design
makes use of all three of these memory ranges. All system development software is written in the S12K bytes of
user memory space.

To down load data to the board's 8K words host SRAM an address in the middle of the PCI AT's I/O expansion
ROM memory is chosen, ODOOOOH. Thus, 8K words (32 bits wide) is placed in addresses ODOOOOH-OD8000H
(See Figure 6).

OOOOOOH - 7FFFFH - System Memory (512K)

00000 - 08000H - Memory Buffer (32K::8KX32)

318H I 31AH I 31CH - 110: Prototype Card

Figure 6. PCIAC Interface: 110 and Memory Addressing

Since the PCIAT system bus is 16 bits wide, it needs to match the 32-bit logic of the Motorola
MC68030/TMS34082 system. Interface decode logic handles this by way of an odd/even address toggle, i.e. an
even address indicates the lower 16 bits and an odd address indicates the upper 16 bits. Data must be loaded
sequentially for this to function properly. An alternative would be to use the dynamic bus sizing capabilities of
the Motorola MC68030, but this would require additional handshake logic and minimize real estate for future
expansion plans.

The PCI AT Technical Reference Manual reconnnends that prototype I/O addresses lie between 310H and 31FH.
Input/output data is configured to be read and written from address 318H. I/O is mainly used to control bus
arbitration, to read status infonnation, and to avoid address bus contention.

If you are only designing with the Motorola MC68030 and the TMS34082, then no design changes need to be made
to compensate for byte addressing. However, if you prefer to implement the design as it is described in this report,
byte addressing is of concern. While both Motorola's MC68030 and Intel's 80286 have their MSB at the leftmost
position, the order in. which the bytes are addressed is reversed, also known as a Big Endian/Little Endian format.

Two simple solutions present themselves. The first, a software solution, is to write code to reverse the byte order.
The second, a hardware solution, is to simply reverse the data bits to match the byte order. For a prototype system
such as this, a software solution is the preferred choice.

The PCI AT interface subsystem uses four PALs to handle address decoding for memory and I/O mapping, status
acquisitions, and bus arbitration (See Figure 1).

0-11

Host Processor Interface

This design operates in purely synchronous mode, reducing the overhead logic required to notify the Motorola
MC68030 of data size acknowledgements and reducing instruction overhead.

To assist the system designer in applying the TMS34082 to their Motorola MC68030-based system, the following
guidelines have been used:

• Interrupts to the Motorola MC68030 are disabled by pulling the signals IPLO, IPLl, IPL2 high. This
implies that AVEC is tied high, which also simplifies synchronous operations.

• Occasionally, the TMS34082 and the Motorola MC68030 may attempt to access the same address
location in the DP-SRAM, causing a collision. This contention is handled by having the DP-SRAM's
BUSY flag pull the BERR and the HALT signals low simultaneously to delay the current cycle.

• Because this application always uses 32-bit data fonnats, DSACKO and DSACKI are pulled high to
prevent assertion during synchronous operation with STERM.

• STERM is decoded as a synchronous bus cycle tenninator. This also reduces bus cycle delays due to
misaligned transfers as they are always 32 bits wide.

• Since this project employs relatively fast SRAMs, external cache is not needed and Motorola MC68030
internal cache is not used. Therefore, CIN, CDIS, and CBACK are tied high. This also assists in
stabilizing the setup and hold times during periods when AS is asserted during sychronous operations.

• The memory management features of the Motorola MC68030 are not used. Consequently, MMUDIS is
tied high.

• Arbitration between the PCI AT bus and the Motorola MC68030's bus is handled by onboard PAL logic.

Memory Addressing has been encoded as follows: host SRAM accesses at 00008000H, DP-SRAM accesses at
OOOlOOOOH, and FIFO accesses at location 00020000H. Thus, address bits 15, 16, and 17 can be used for each
individual memory access.

20000H FIFO

12000H t-C-'""'.-....'-'~'-"-~~"'-'I:...c...~.-....'""'.-...."""'"I

10000H Dual-Port SRAM

8000H
8KX32 HostSRAM

o

Figure 7. Motorola MC68030 Interface: Memory AddreSSing

TMS34082 as a Parallel Processor

Interfacing to the TMS34082 is simple and direct. This project emphasizes a design approach that requires minimal
support hardware. By coupling a FIFO buffer directly to the LAD bus, external address latching and decoding is
not required. From the MSD bus, the TMS34082 is directly coupled to the DP-SRAM, further reducing the decode
hardware.

The data/code space is directly linked to address locations OOOOH-07FFH and could be expanded to 64K words
as required. For further infonnation regarding pin definitions and electrical characteristics, please refer to the
TMS34082 data sheet.

0-12 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

Performance Analysis

To accurately compare the perfonnance of two coprocessors produced by two different manufacturers. it is
essential to incorporate commonalties. A preliminary analysis has been completed that compares execution times
of functions that are similar to the Motorola MC68881 and the TMS34082 (see Table 1).

The TMS34082 typically speeds execution by 30-40 times. This does not take into consideration effective
addressing, overlap, and pipelining, which widens the gap between the TMS34082 's execution times and those
of the Motorola coprocessor family. Detailed calculations are available upon request.

Table 1. Performance Comparison Chart

TMS34082 Motorola MC68881

Generic Format! TI
Execution

Motorola
Execution

Instruction Precision Instruction
Time

Instruction
Syntax Syntax Time

Integer ADD 2 80

Add Single ADDF 2 FADD 72

Double ADDD 2 78

Integer DIV 16 132

Divide Single DIVF 7 FDIV 124

Double DIVD 13 130

Integer 2 62

1 s Complement Single NOT 2 FCMP 54

Double 2 60

Integer 2 62

Absolute Value Single ABS 2 FABS 54

Double 2 60

Integer 2 62

Negate Single NEG 2 FNEG 54

Double 2 60

Integer MPY 2 100

Multiply Single MPYF 2 FMUL 92

Double MPYD 3 98

Integer SQRT 20 134

Square Root Single SQRTF 10 FSQRT 126

Double SQRTD 16 132

Integer SUB 2 80

Subtract Single SUBF 2 FSUB 72

Double SUBD 2 78

0-13

0-14

System Information - Parts List
Table 2. Parts List

Reference
Name Pins

Designation

U1, U2 PAL20L8 24

U3 PAL16RA8 20

U4 PAL16R4 20

US, U6, U7,U8 74BCT245 20

U9 74AS74 14

U10 Motorola MC68030 13 x 13

U11, U12 74F08 14

U13 PAL22V10 24

U14 74F08 14

U15,U16,U17,U18 7C185 28

U19 IOT7132 48

U20, U21 , U22 IOT7142 48

U23,U24,U25,U26 74ALS2232 24

U27 74AS74 14

U28 TMS34082 15 x 15

U29 74BCT244 20

U30 74F74 24

U31, U32, U33 74BCT244 20

U34 74F74 14

U35 74F08 14

U36 74F374 20

U37 74F08 14

U38 74FOO 14

RP1, RP2, RP3 10K Pull-up Resistor 9

HDR1 Platform 16

C1-41 0.01 J.l.F Capacitor

C42 1 0 J.l.F Capacitor

X1 25 MHZ Oscillator 14

X2 40 MHZ Oscillator 14

SW1 SPST Switch

SW2 SPOT Switch

SW3 8POS.0IPSW 16

WIDTH
(MilS)

300

300

300

300

300

PGA

300

300

300

300

600

600

300

300

PGA

300

300

300

300

300

300

300

300

SIP

300

300

300

300

Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

Schematics - Hardware Design

r-------------------~ I
I

Data I JA-- Buffers WE I 8Kx32SRAM PC/AT DA

Upp G RESET
I WE OE CE ADDR Data erWord I
I

I I I I I
Data DATA WE OE CE ADDR Data PC/AT

DATA - Buffers ~ r---

lowerWo rd

PC/AT
AD DR

PC/AT
MEM

PC/AT
ADDR

-

-

-

PC/AT
ADDR

,---

-PC/AT
CNTRl

G

I
lO HI

Memory
Control

PAL

BUSRQ

Address
Buffers

244 (9X2)

SYSCNTl

I/O
Control

PAL

CNTRlEN

STATUSRD

lOEN

HI EN

ADDREN

CE

ADDR

-l

I
!
i

;
I
I
I
I
I

~
I :
! .
I
I

PC/AT Interface I
~-------------------~

Data/Address Select

I 1 --
ADDR

HIW RESET
Reset

RESET

BUSACK I

'-- RESET
BUSACK

DATA
PROCHAlT

Data I/O BUSRQ

Controll __
latch HALT

I

DATA

Figure 8(a). Block Diagram

:-

i-

-

0-15

ADDR ADDR

BUSYL Dual-Port SRAM DATA

DATA 2K X8 (4X) BUSYR

HALT
CSL CSR

I READIWRITE

DATA

ADDR READ~RITE

RESET
~---+--~------~I

~-......... ---....
• DATA Decode Logic

ADDR HALT DATA MCE

FIFO WR - CAS

64 X 8 (X4)
LAD MC68030

Host Processor FF

- BUSACK HALT t------'

Bus Grant
Bus Request

BUSG
------------------~Dam

Smtus
PAL

------------------~RD

EF

I

-

CC

Synchronous
Clock

Figure 8(b}. Block Diagram

I
MWR LADY

TMS34082
FPU

MSDADDR

MSDBUS
RDY

-
-

D-16 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

0(31-0)

PC/ATDATA (31-0)

U5 U6
SN74F245 SN74F245

ATDT7 9
A8 B8

11 D7 .ATDT15 9
A8 B8

11 D15-
ATDT6 8 12 06 .ATOT14 8 12 014.-
ATDT5 7

A7 B7
13 05 .ATOT13 7

A7 B7
13 DiS.

ATOT4 6
A6 B6

14 04 .ATDT12 6
A6 B6

14 012.-
ATDT3 5

A5 B5
15 03 ~TOT11 5

A5 B5
15 011

ATDT2 4
A4 B4

16 02 .ATDT10 4 A4 B4
16 Din.

ATDT1 3
A3 B3

17 01 ATDT9 3 A3 B3
17 D9

ATDTO 2
A2 B2

18 DO ATOT8 2 A2 B2 18 08
Ai B1 Ai B1

OIR A.B EN ~BEN

HI A>B WRITE 1 19 1 19
LO A<BREAD ATLOEN

ATREAD

U7 U8
SN74F245 SN74F245

ATDT7 9
A8 B8

11 D23 .ATOT15 9
A8 B8

11 D31
ATDT6 8 12D22 ,ATDT14 8 12 D30
ATDT5 7

A7 B7
13D21 ATDT13 7

A7 B7
13 D29

ATDT4 6
A6 B6

14020 ,ATDT12 6
A6 B6

14 D28
ATDT3 5

A5 B5
15D19 -ATDT11 5

A5 B5
15 D27

ATOT2 4
A4 B4

16018 .ATDT10 4
A4 B4

16 D26
ATOT1 3

A3 B3
17D17 ATDT9 3

A3 B3
17 D25

ATOTO 2
A2 B2

18D16 ATDT8 2
A2 B2

18 D24
Ai B1 Ai B1
k.8 EN 1A+8 EN

1 119
ATHIEN-

~ 1 119

U1
PAL20LB

AEN~ 114 MemO~

SMEMWR ---1!..
Contro

113
SMEMRD ~ 112

BALE --1L 111
ATA019 ~ 110
ATA018 ~ 19

22 ATLOEN
ATAAD17 ~ 18 08

15
ATAD16 ~ 17 07 ATHIEN

ATAD15 ~ 16 106
21

ATEN1
20

ATAD1 ~ 15 105 ATADDREN
19 LA23 ---.!.- 14 104
18

ATREAO
LA22~ 13 103

--1L-
ATWRITE

LA21 ----.L 12 102
LA20 --.L 11 101 ~

Figure 9. PCfAT IfF and Control, Details of U1, U5, U6, U7, and US

0-17

0-18

PU9

ATEN

ATMEMWR

ATMEMRD

ATBALE

ATiOWR

ATIORD

PU10

17

15

13

11

8

6

4

2

U29
SN74BCT244

2A4 2Y4

2A3 2Y3

2A2 2Y2

2A1 2Y1

1A4 1Y4

1A3 1Y3

1A2 1Y2

1A1 1Y1

1G 2G

11 ... 1 19

I

3

5

7

9

12

14

16

18

Co

AEN

SMEMWR

SMEMRD

BALE

IOWR

lORD

ntrol
ffer Bu

Figure 10. PC/AT I/F and Control, Details of U29

Maximizing Your MFLOPS with the TMSS4082 and Motorola MC680S0

BALE

10WR

lORD

ATDT1

ATDT9

ATDT8

ATDT7

ATOT6

ATDT5

ATDT4

ATDT3

ATDT2

ATDT

ATADO

0

1

23

14

13

11

10

9

8

7

6

5

4

3

2

1

1/0 Control

U2
PAL20L8

114

113

112

111

110

19

18 08

17 07

16 106

15 105

14 104

13 103

12 102

11 101

Status Reg ister
(110 READ)

68HALT

DPSTALL

FIFOSTALL

BG

22

15

21

20

19

18

17

16

18

17

14

13

8

7

4

3

1

Processor Control Register
(110 WRITE)

U4
PAL16R8

9 19
18 Q8

8 18
ATDT5 17 Q7

7 17
ATDT4 16 Q6

6 16
ATDE3 15 Q5

5 15
ATDT2 14 Q4

4 14
BG 13 Q3

3 13
12 Q2

2 12
11 Q1

1
...... CK

OE

]1
-

CNTRLEN

STATUSRD

U3
SN74F374

19
80 sa ATOT7

16
70 7Q ATOT6

15
60 6Q ATOT5

12
50 5Q ATOT4

9
40 4Q ATOT3

6
3D 3Q ATOT2

5
20 2Q ATOT1

2
10 1Q ATADO

pCK
OE

Y 11

Figure 11. PC/AT ifF and Control, Details of U2, U3, and U4

0-19

ATADDREN ATAD(23-0)
- -+-

24
17
15
13
11
8

~ ATAD20 6
~ ATAD19 4
~ ATAD18 2

~ ATAD17 17
~ ATAD16 15
~ ATAD15 13
~ ATAD14 11

~ ATAD13 8
~ ATAD12 6

" ATAD11 4

" ATAD10 2

" ATAD9 17

" ATAD8 15

" ATAD7 13

" ATAD6 11

" ATAD5 8

" ATAD4 6

" ATAD3 4

" ATAD2 2

At Address Buffer

U31
SN74BCT244

2A4 2Y4
2A3 2Y3
2A2 2Y2
2A1 2Y1
1A4 1Y4
1A3 1Y3
1A2 1Y2
1A1 1Y1

1G 2G

11 Y 19 -
U32

SN74BCT244

2A4 2Y4
2A3 2Y3
2A2 2Y2
2A1 2Y1
1A4 1Y4
1A3 1Y3
1A2 1Y2
1A1 1Y1

1G 2G

11 Y 19 -
U33

SN74BCT244

2A4 2Y4
2A3 2Y3
2A2 2Y2
2A1 2Y1
1A4 1Y4
1A3 1Y3
1A2 1Y2
1A1 1Y1

1G 2G

11 Y 19

AD (23-0)
-,"-

3
24

5
7
9

12
14 A20/
16 A19/
18 A18/

\

3 A17/
5 A16/
7 A15/
9 A14/

12 A13/
14 A12/
16 A11/
18 A10/

3 A9 /
5 A8 /
7 A7 /
9 A6 /

12 A5 /
14 A4 /
16 A3 /
18 A2 /

Figure 12. Motorola MC68030 and Address Buffers, Details of U31, U32, and U33

0-20 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

0(31-0)
U10

A (31-0)

--,"- MC68030 r"-
32 32

r-....o31 N1 B3 A31/
031 A31 68H

r-....03O l4 A3 A30
030 A30

029 M3 B4 A29/
029 A29

028 N2 A4 A28/
028 A28

,,027 M4 B5 A27/
027 A27

026 N3 A5 A26
026 A26

025 N4 B6 A25/
025 A25

024 M5 A6 A24
V 024 A24 CC

E1 MC68030 02
68CLK ClK FCO
68RW

l3
RiW

C1
FC1

,023 N5 A7 A23/
023 A23

022 M6 B7 A22
022 A22

021 N6 A8 A21/
021 A21

,020 M7 B8 A20/
020 A20

019 N7 A9 A19
019 A19

,,018 N8 C8 A18
018 A18

017 M8 A10 A17

BERR Hi 01
BERR FC2

68HAlT H2
HALT J2

68RST
F12

RESET AS AS
H12 OS

K2
PU1 COIS

ECS
M2

F1
OSACKO BR

Ai
BR

G2
OSACK1 BG

B2
BG

017 A17
,016 N9 B9 A16

016 A16

015 N10 A11 A15/
015 A15

,014 M9 B10 A14/
014 A14

,013 N11 A12 A13/
013 A13

012 M10 B11 A12/
012 A12

E13
IPENO

H13
OCS

03
PU3 IPlO

G13
RMC

B1
PU4 IPl1

G12 L2
PU5 IPL2 SIZO SIZO

E2
AVEC

K3
PU6 SIZ1 SIZ1

MMUOIS
F13

PU11
,011 M12 C10 A11/

011 A11
\.010 l10 A13 A10/

010 A10

BGACK
C3

BGACK
J12

STATUS
,09 M11

09 A9
C11 A9 /

STERM
G1

STERM
,08 l13 B12 A8 /

08 A8 CIIN
L1

PU8

\..07 l11 B13 A7 /
07 A7

D6 M12 011 A6 /
06 A6

\..05 K11 C12 A5 /
05 A5

04 l12 C13 A4 /
04 A4

,,03 M13 012 A3 /
03 A3

ClOUT
C2

CBREQ
K1

CBACK
J1

PU7

REFILL
J13

oBEN
M1

OBEN

\..02 L13 013 A2 /
02 A2

r-....01 K12 C4 Ai /
01 Ai

,DO K13 A2 AO /
DO AO

,~

Figure 13. Motorola MC68030 and Address Buffers, Details of U10

0-21

VCC

10
(~

12 PR 9
D Q 68ClK

25 MHz
U30

SN74F74

VCC
1 X1 4 ClKIN 11 8

- ~C Q -
Oscillator

Cl

2 I 3 113

-'-

VCC

Figure 14. Motorola MC68030 and Address Buffers, Details of Oscillator and U30

U11 SN74F08

BKCE 6
8KlOCE

ATlOEN
U11 SN74F08

9
8

10 8KHICE
ATHIEN

8K SRAM Enables
Upper/Lower 16 Bits Decode

Figure 15. Motorola MC68030 Decode/Control, Details of U11

0-22 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

RP2
1K

1 r-------,16
MANRST Vee

68HALT
2 1 115

3 14
PU14

4 1 113
PU13

5 12
PU12

6 111
PU11

7 10
PU10

8 1 19
PU9 L ______ .J

RP1
1K

1 r-------,16
PU8 Vee
PU7

2 1 115

3 14
PU6

4 113
PU5

5 12
PU4

6 1 111
PU3

7 10
PU2

8 1 19
PU1 L ______ .J

RP3
1K

1 r-------,16
DPSTALL

2 1 : 115 T Vee

3 I VV\ 114
4 I 113

PU19 1 VV\
112 5 I PU18 VV\ 1

6 1 111
PU17 I VV\ 110 7 I PU16 VV\ I

8 I 19
PU15 I VV\ I L ______ .J

Figure 16. Motorola MC68030 Decode/Control, Details of RP1, RP2, and RP3

0-23

U11 SN74F08

INDELY
U12 SN74F08

68CLK 11

VCC

OUTDLY

VCC U13

~ PAL22V10

4
13 14 8KWRCS

AS 110

AS
2 PR 5 DAS 11 15

0 Q 110 ATADO
10 16

U30 I/O ATEN1
SN74F74

COINT
9 17

6
110 UMCS

3 8 18
OUTDLY

C CL Q A14 110 LMCS
7 19

A15 110 LLCS
1 6 20

A1 110 COINT
5 21 8KADCS AO 110

68RW
4 22

110
3 23

SIZ1 110 TERM1

SIZO
2

68RST I/CP

U12 SN74F08

8KWREN
ATWRITE

U12 SN74F08

ATREAD
8KRDEN

U12 SN74F08

4[Y--5 8KCE
~--------------

Figure 17. Motorola MC68030 Decode/Control, Details of U11, U12, U13, and U30

0-24 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

D (31-0)

A(14-2) ... - ...
U15 U16 U17 U15

1 (see Table 3) 1
A12 NC A12 NC

27 27
A11 WE A11 WE

26 26
A10 CE2+ A10 CE2+

20 20
A9 CE1 A9 CE1

OE
22

OE
22

A8 A8
19

A7 1107 A7 1/07

A6 1/06 A6 1/06

A5 1/05 A5 1/05

A4 1/04 A4 1/04

A3 1/03 A3 1/03

A2 1/02 A2 1/02

A1 1/01 A1 1/01

AO 1/00 AO 1/00

8KX8 8KX8
SRAM SRAM

Figure 18. 8K x 8 SRAM DP-SRAM, Details of U15, U16, U17, and U18

0-25

Table 3. 8K x 8 SRAM DP-SRAM, Detail Pin Assignments for U15, U16, U17, and U18

Device 8Kx8SRAM

Block Number U15 U16 U17 U18

Pin

Name Number
External Connection Signal Name

AO 21 A2 A2 A2 A2

A1 23 A3 A3 A3 A3

A2 24 A4 A4 A4 A4

A3 25 A5 A5 A5 A5

A4 2 A6 A6 A6 A6

A5 3 A7 A7 A7 A7

A6 4 A8 A8 A8 A8 .
A7 5 A9 A9 A9 A9

A8 6 A10 A10 A10 A10

A9 7 A11 A11 A11 A11

A10 8 A12 A12 A12 A12

A11 9 A13 A13 A13 A13

A12 10 A14 A14 A14 A14

1/00 11 00 08 016 024

1/01 12 01 09 017 025

1/02 13 02 010 018 026

1/03 15 03 011 019 027

1/04 16 04 012 020 028

1/05 17 05 013 021 029

1/06 18 06 014 022 030

1/07 19 07 015 023 031

OE 22 8KROEN 8KROEN 8KROEN 8KROEN

CE1 20 LLCS LMCS UMCS UUCS

CE2+ 26 VCC VCC VCC VCC
WE 27 8KWREN 8KWREN 8KWREN 8KWREN

NC 1 No Connection

0-26 Maximizing Your MFLOPS with the TMS34082 and Motorola MC680S0

AS

DAS

A14

A15

A1

AO

SIZ1

SIZO

68RW

DBEN

~

~

~

--.!.L
10

9

8

7

6

5

4

3

2

1

U3
PAL20L8

114

113

112

111

110

19

18 08

17 07

16 106

15 105

14 104

13 103

12 102

11 101

~
15

21

20

19

18

17

16

DPWRUU

DPWRUM

DPWRLM

DPWRLL

DPRD

FIFOWR
TERM2

TERM1

U37
SN74F08

~-
~~STERM

Figure 19. Motorola MC68030 Decode/Control, Details of U3 and U37

0-27

1

1 2
OPWRll -

3
68HAlT -

5
OPROCS -

A (12-2)

, A12 4

, A11 15

, A10 14

, A9 13

, A8 12

, A7 11

, A6 10

, A5 9

, A4 8

, A3 7

A2 6

0(1-0)

, 07 23,

r'\. 06 22

r'\. 05 21

, 04 20

r'\. 03 19

r'\. 02 18

, 01 17

,00 16

CEl

RlWl

U19
10T7132

Master

CER

RlWR

BUSYl BUSYR

OEl OER

A10l A10R

A09l A09R

A08l A08R

A07l A07R

A06l A06R

A05l A05R

A04l A04R

A03l A03R

A02l A02R

A01l A01R

AOOl AOOR

II07l I/07R

II06l I/06R

II05l I/05R

II04l I/04R

II03l I/03R

1I00l I/02R

I/01l I/01R

I/OOl I/OOR

2K X 8 OP-SRAM

47
r----- TIMCE
46

r----- TIMWR U14 SN74F 08
45 OPSTAll 4 -- 6
43 5 TISTAll

r----- TIMOE

TIA (10-0)

44 TIA10/

33 TIA9/

34 TIA8/

35 TIA7/

36 TIA6/

37 TIA5/

38 TIA4/

39 TIA3/

40 TIA2/

41 TIA1/

42 TIAO

TID (7-0)

32 TI07/

31 T106/

30 TlOS /

29 T104/

28 T103/

27 Tl02/

26 T101/

25 TIDO /

Figure 20. 8K x8 SRAM DP-SRAM, Details of U14 and U19

D-28 Maximizing Your MFLOPS with the TMS34082 and Motorola MC680S0

32 LAD (31-0) ... - ...
0(31-0) 32 ... - ...

8 U23 U26
74ALS2232 U24 U25 74ALS2232

(see Table 4)
07 07 Q7

06 06 Q6

05 05 Q5

04 04 Q4

03 03 Q3

02 02 Q2

01 01 Q1

DO DO QO

1 24 1 24 -- RST OE -- RST OE
11 14 11 14 -- FULL EMPTY -- FULL EMPTY
12 13 12 13

-- LOCK UNCK -- LOCK UNCK

64X8 FIFO 64X8 FIFO

Figure 21. FIFO LogiC, Details of U23, U24, U25, and U26

0-29

Table 4. FIFO Logic, Detail Pin Assignments for U23, U24, U25, and U26

Device SN74ALS2232

Block Number U23 U24 U25 U26

Pin

Name Number
External Connection Signal Name

00 2 DO 08 016 024

01 3 D1 09 017 D25

02 4 D2 010 018 D26

03 5 D3 011 019 027

04 7 04 012 020 D28

05 8 D5 D13 021 029

06 9 D6 014 022 030

07 10 D7 015 023 D31

RST 1 RESET RESET RESET RESET

FULL 11 68HALT 68HALT 68HALT 68HALT

LOCK 12 FIFOWR FIFOWR FIFOWR FIFOWR

QO 23 LAOO LA08 LA016 LA024

Q1 22 LA01 LAD9 LA017 LA025

Q2 21 LAD2 LA010 LA018 LAD26

Q3 20 LA03 LA011 LA019 LA027

Q4 18 LAD4 LA012 LA020 LAD28

Q5 17 LAD5 LA013 LA021 LA029

Q6 16 LA 06 LA014 LA 022 LA 030

Q7 15 LAD7 LA015 LA023 LAD31

OE 24 COINT COINT COINT COINT

EMPTY 14 FIFOSTAL FIFOSTAL FIFOSTAL FIFOSTAL

UNCK 13 FIFORO FIFORO FIFORD FIFORO

D-30 Maximizing Your MFLOPS with the TMS34082 and Motorola MC680S0

PU19

1

1
. 2

OPWRll
3 - 68HAlT
5

OPROCS

A (~2-2)
, 11

f\... A12 4

f\... A11 15

t"-.A10 14

f\... A9 13

f\... A8 12

t"-. A7 11

t"-. A6 10

f\... A5 9

t"-. A4 8

t"-. A3 7

"" A2
6

0(15-8)

" /

8 t"-.015 23

t"-.014 22

f\... 013 21

t"-.012 20

t"-.011 19

f\... 010 18

f\... 09 17

08 16

CEl

RJWl

U20
10T7142
Slave

CER

RlWR

BUSYl BUSYR

OEl OER

A10l A10R

A09l A09R

A08l A08R

A07l A07R

A06l A06R

A05l A05R

A04l A04R

A03l A03R

A02l A02R

A01l A01R

AOOl AOOR

1I07l I/07R

1I06l I/06R

1I05l I/05R

1I04l I/04R

1I03l I/03R

1I02l I/02R

1I01l I/01R

1I00l I/OOR

2K X 8 OP-SRAM

47
TIMCE

46
TIMWR

45
OPSTAll

43
TIMOE

TIA ~10-0)

'11

44 TIA10/

33 TIA9/

34 TIA8/

35 TlA7/

36 TIA6/

37 TIA5/

38 TIA4/

39 TIA3/

40 TIA2/

41 TIA1/

42 TIAO

TID (15 -8)
, ,

32 T1015/ 8

31 T1014/

30 TI013/

29 Tl012/

28 T1011/

27 T1010/

26 T109/

25 TI08

Figure 22. 8K x 8 SRAM DP-SRAM, Details of U20

0-31

0-32

1

1 2
DPWRUM

3
68HALT

5
DPRDCS

A (12-2)

" A12 4

" A11 15

" A10 14

" A9
13

" A8 12

" A7 11

" A6
10

" A5
9

" A4 8

" A3 7

" A2
6

0(23-16)

" 023
23

" 022
22

" 021
21

" 020
20

" 019 19

" 018
18

" 017 17

" 016 16

CEL

RlWL

U21
IDT7142

Slave

CER

RlWR

BUSYL BUSYR

OEL OER

A10L A10R

A09L A09R

A08L A08R

A07L A07R

A06L A06R

A05L A05R

A04L A04R

A03L A03R

A02L A02R

A01L A01R

AOOL AOOR

1/07L 1/07R

1/06L 1/06R

1I05L 1I05R

1/04L 1/04R

1/03l 1/03R

1/02L 1/02R

1/01L 1/01R

1/00l I/OOR

47
TIMCE

46
TIMWR

45
DPSTALL

43
TIMOE

TIA (10-0)

44 TIA10/

33 TIA9/

34 TIA8/

35 TIA7/

36 TIA6/

37 TIA5/

38 TIA4/

39 TIA3/

40 TIA2/

41 TIA1/

42 TIAO

TID (23-16

32 TID23/

31 TID22/

30 TID21/

29 TID20/

28 TID19/

27 TID18/

26 TID17/

25 TID16

Figure 23. FIFO Logic, Details of U21

Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

1

1 OPWRUU
2

3
68HALT

5
OPROC5

A (1J-2)
,;

11
t\. A12 4

f'\. A11 15

t\.. A10 14

t\. A9 13

t\... A8 12

" A7 11

" A6
10

" A5
9

"'- A4 8

" A3
7

A2 6

0(31 ... -24)
,;

8
'" 031

23

" 030
22

" 029
21

" 028
20

t\.. 027 19

t\.. 026 18

t\. 025 17

024 16

CEL

RlWL

U22
IOT7142

51 ave

CER

RlWR

BU5YL BU5YR

OEL OER

A10L A10R

A09L A09R

A08L A08R

A07L A07R

A06L A06R

A05L A05R

A04L A04R

A03L A03R

A02L A02R

A01L A01R

AOOL AOOR

I/07L 1/07R

1/06L I/06R

1/05L 1/05R

1I04L 1/04R

I/03L 1/03R

1/02L 1I02R

l/01L 1/01R

I/OOL I/OOR

PU18

47
TlMCE

46
TIMWR

45
OP5TALL

43
TlMOE

TIA (10-0)
,-

/

11
44 TIA10/

33 TIA9/

34 TIA8/

35 TIA7/

36 TIA6/

37 TIA5/

38 TIA4/

39 TIA3/

40 TIA2/

41 TIA1/

42 TIAO

TID (31-24
,;

32 Tl031/ 8

31 T1030/

30 T1029/

29 T1028/

28 T1027/

27 Tl026/

26 T1025/

25 T1024/

Figure 24. FIFO Logic DP-SRAM, Details of U22

0-33

0-34

PU18

~ANRST

t I C1
0.01 pF

U14
SN74F08

12[Y-11

TIRST ----i
13

Figure 25. FIFO Logic, Details of U14

4

5

U38
SN74FOO

U38
SN74FOO

3

MANRST

6

PU19 ----iII..--------t

Figure 26. TMS34082, Details of U38

=TI="'RE="'S=-=E=T

Vec

1 C50
47pF

R100

1K

Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

lAD (31-0) U28 TID(31-0)
""'-

32 I 1-
TMS34082-40

I'.lAD31 015-1 lAD31

lAD30 E1o!.... lAD30

I'\.lAD29 C1~ lAD29

LAD28 D1.!. lAD28 "--
~lAD27 B1~ lAD27

"LAD26 c'!!. lAD26

I'.LAD25 C1~ lAD25

LAD24 A 1 ~ lAD24 '-

Ip4 TI~
MSD31 R3 TI~
MSD30 P3 TID2!J

MSD29 N4 TID2~
MSD28 R2 TI~
MSD27 N2 TID~
MSD26 P1 TID~
MSD25 M2 TI~
MSD24 r-

l3 TID~
rJ-AD23 B~ lAD23 MSD23 ~TID2~
,~D22 A1~ lAD22 MSD22~TI~
~ LAD21 C~ LAD21 MSD21 M1 TI~
,LAD20 ~ LAD20 MSD20 1<2 ~

LAD19 A£ LAD19 MSD19 Ll T~
LAD18 811 LAD18 MSD18'K1 TID17 , ."- ---/

~AD17 All LAD17 MSD17 J2 TID~
lAD16 B10 lAD16 MSD16 r--

lAD15 AHL lAD15

"lAD14 BIl. lAD14

I'. lAD13 Ai... lAD13 -
"lAD12~ lAD12

I'.LAD11 A7_ lAD11

t\. LAD10 I!L lAD10

I.......J:...AD9 A~ lAD9

l"-.h.AD8 .M... lAD8

J1 TID1G
MSD15 ~ TID1G

MSD14 r TID13 /
G1 -'

MSD13 ~2 TID12 J

MSD12 r;;-TID1.0

MSD11 1F1 TID10 I

MSD1
0

F2 TIDL/

MSD9 'E1 TID8 J
MSD8 r--

1=2 TID7J LAD7 ~ LAD7 MSD7 ~ TID6-"
"LAD6 CQ... LAD6 MSD6 '02 T!QL./

j.~DS -.M... LADS MSDS r
C1

TID0

I--r--32

I, lAD4 ~ lAD4 MSD4 72 ..I.lD3-/
,,-LAD3 ~ LAD3 MSD3 ~
"-LAD2 -'l!.. LAD2 MSD2 81 TID.iJ

J ~-LADl ~ LADl MSDl '(;3 TIDO
~ lADO ~ lADO MSD~r LL-____ _

. TMS34082, Details of U28 Figure 27.

D-35

0-36

VCC

I K14

P13

-b
R8 -
B8

-
H15

-
H2

G15
PU12

Gi4
PU13

Ji5
SYSClK

M14 -
~ M15
-

J14
PU14

l15

~ K13

li4

N15
TIRESET

P14

.b Ni3

I F13

U28
TMS34082-40

INTR MWR

INTG MAE

MCE
TCK MOE
TMS

TOI DS/es

TOO ROY

WE
ECO

AlTECH
EC1

CAS

ClK COINT

lClK1
MSA15

lClK2
MSA14

MASTER MSA13

CI02 MSA12

CIDi MSA11

CIDO MSAi0

RESET MSA9

MSA8
BUSFlT

LADY MSA7

CORDY MSA6

P11
TlMWR

N12

R14
TIMCE

P12
TIMOE

R13
VCC

K15 TlSTAll r
G13

F14

F15
FIFORO

E15

R12

Ni0

P10

R11
MSA(10-O)

RiO ~ ,
P9 TIA10/ 11

R9 TIA9/

P8 TIA8/

R7 TIA7/

P7 TIA6/

DPSTAll H14
lOE

N7 TIA5/
MSA5

P15
RAS

R6 TIA4/
MSA4

N14 P6 TIA3/
SF MSA3

J13 R5 TIA2/

I CC MSA2
P5 TIA1 /

FIFOSTAll MSA1
R4 TlAO /

MSAO

Figure 28. TMS34082, Details of U28

Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

J1

-
D18

831

819

81

D16

829

B3

A11

811

812

828

813

814

C18

C17

C16

C15

C14

C13

C12

C11

A2

A3

A4

A5
~

GND J1
~
A6

GND J1 A7
GND J1 A8
GND J1 A9

VCC J1 820

VCC J1 A12

VCC J1 A13
ATEN J1 A14
ATMEMWR J1 A15
ATMEMRD J1 A16
ATBALE J1 A17
ATIOWR J1 A18
ATIORD J1 A19
ATDT15 J1 A20
ATDT14 J1 A21
ATDT13 J1 A22
ATDT12 J1 A23
ATDT11 J1 A24
ATDT10 J1 A25
ATDT9 J1 A26
ATDT8 J1 A27
ATDT7 J1 A28
ATDT6 J1 A29
ATDT5 J1 A30
ATDT4 J1 A31

io..-.-

Figure 29. AT-Bus Connector

ATDT3

ATDT2

ATDT1

ATDTO

ATCLK

ATAD19

ATAD18

ATAD17

ATAD16

ATAD15

ATAD14

ATAD13

ATAD12

ATAD11

ATAD10

ATAD9

ATAD8

ATAD7

ATAD6

ATAD5

ATAD4

ATAD3

ATAD2

ATAD1

ATADO

0-37

Vcc

~

C1-C30: 0.01 JiF

C38-C50: 10 J1F

Figure 30. Capacitors

0-38 Maximizing Your MFLOPS with the TMSS4082 and Motorola MC680S0

PAL ® Code Listing
NOTE: All code is written using PAL ® ASM software.

Memory Decode for TMS34082 Accelerator Board
PATTERN MEMORY DECODE FUNCTIONS
REVISION 1A
AUTHOR MIKE ROBERTS
COMPANY TEXAS INSTRUMENTS
DATE OCTOBER 11,1989

; This PAL will decode memory functions from the PC/AT to the Motorola MC68030 host SRAM.

CH IP 2018 PAL20l8
; DEVICE U1

1 2 345 6 7 8 9
ATAD15 ATAD01 ATAD2 ATAD20 ATAD16 ATAD17 ATAD18 ATAD19 IIORD

10 11 12
IIOWR BALE GND

;PIN
13 14 15 16 17 18

ISMEMRD /SMEMWR lATH I EN ATAD23 ATAD22 ATEN1

19 20 21 22 23 24
ATCNTL IATADDREN ATEN2 IATLOEN AEN Vee

EQUATIONS

; ALWAYS ENABLED

ATlOEN.TRST = Vcc
ATHIEN.TRST = Vcc
ATADDREN.TRST = Vcc
ATCNTL.TRST = Vcc
ATEN1.TRST = Vcc
ATEN2.TRST = Vce

; ABOVE EQUATIONS NOT REQUIRED SINCE PAL ASM DEFAULTS TO THESE.
; THEY HAVE BEEN ADDED FOR CLARITY.

ATEN1 = IBAlE"it ATAD19"it ATAD18"it ATAD16"it IATAD17 "it IAEN
; USED AS A GATE TO ASSERT ACCESS TO HOST SRAM

ATEN2 = I(ATAD23 + ATAD22 + ATAD21 + ATAD20)
; INTERMEDIATE TERM DESELECTING ADDRESS LINES 23-20

ATlOEN = ATEN1 "it IATAD01 "it ISMEMRD * ATEN2
+ ATEN1 "it IATAD01 "it ISMEMWR "it ATEN2

; DECODES lOW BYTE IN EITHER READ OR WRITE MODE

ATHIEN = ATEN1 "it ATAD01 * ISMEMRD "it ATEN2
+ ATEN1 "it ATAD01 "it ISMEMWR "it ATEN2

; DECODES HIGH BYTE IN EITHER READ OR WRITE MODE
PAL is a registered trademark of Monolithic Memories Inc.

0-39

ATADDREN = ATEN1 * IATAD01 * ISMEMRD * ATEN2
+ ATEN1 * IATAD01 * ISMEMWR * ATEN2
+ ATEN1 * ATAD01 * ISMEMRD * ATEN2

; ENABLES THE ADDRESS BUFFERS FOR HIGH OR LOW BYTE

0-40 Maximizing Your MFLOPS with the TMS34082 and Motoro/aMC68030

I/O Decode for TMS34082 Accelerator Board

PATIERN DECODE CONTROL FUNCTIONS
REVISION 1A
AUTHOR MIKE ROBERTS
COMPANY TI
DATE 10/10/89

; This PAL will decode 110 functions to set 110 signals.

; DEVICE U2

CHIP 20L8 PAL20L8
;PIN

1 2 3 4 5 6
ATADO ATAD1 ATAD2 ATAD3 ATAD4 ATAD5

10 11 12 13 14
ATAD9 ATAD10 GND IIOAD IIOWA

; PIN
15 16 17 18 19

NC3 NC1 ISTATUSAD/CNTALENNC2
24

Vee

EQUATIONS
; ALWAYS ENABLED

/STATUSRD.TRST = Vcc
/CNTRLEN.TRST = VCC
SYSCNTL.TRST = Vcc
NC1.TRST = VCC
NC2.TRST = Vcc
NC3.TRST = VCC
NC4.TRST = VCC

20
NC4

7 8 9
ATAD6 ATAD7 ATAD8

21 22 23
NC5 SYSCNTL BALE

CNTRLEN = /BALE * ATAD9 * ATAD8 * ATAD4 * ATAD3 * /ATAD2 * /ATAD1* /lOWR
; USED TO ENABLE 110 WRITE REGISTER FOR PC/AT Motorola MC68030 ARBITRATION AND
CONTROL OF TMS34082 HALT FUNCTIONS

STATUSRD = 1I0RD * /BALE * ATAD9 * ATAD8 * ATAD4 * ATAD3 * /ATAD2 * ATAD1
; READ STATUS FROM ASYNCHRONOUS PAL
; USED TO READ STATUS FROM STATUS REGISTER

INVERT = ATADO
; USED TO INVERT PC/AT ADDRESS 0

D-41

Status Control for TMS34082 Accelerator Board

PATTERN STATUS CONTROL FUNCTIONS
REVISION 1A
AUTHOR MIKE ROBERTS
COMPANY TI
DATE 10/16/89

; This PAL will decode memory from the Motorola MC68030 to external DP-SRAM and the FIFO buffer.

CHIP 16RA8 PAL 16RA8

; DEVICE U3
;PIN

1 2 3 4 5 6 7 8 9
PRlO NC2 IRESET NC3 NC4 NC5 IBG ClK NC6

10
OBEN

; PIN
; 11 12 13 14 15 16 17 18 19
ISTATUSRD NC7 NC8 ATOT2 ATOT1 ATOTO NC9 NC10 NC11

20 21 22 23 24
OPRO ITERM IFIFOWR NC5 Vee

EQUATIONS

TERM = 68RW * A14 * IA15 * lAS
+ 168RW * A14 * IA15 * IDAS
+ 168RW * IA14 * IA15 * IDAS

; SYNCHRONOUS TERMINATION SIGNAL FOR FIFO AND DP-SRAM

IFIFOWR = 1(/68RW * IDBEN * AS * IA14 * A15)
; FIFO WRITE ENABLE. SINCE FIFO IS EDGE-TRIGGERED, THESE SIGNALS ARE
RECOMMENDED.

DPCE = 68R2 * A14 * IA15 * lAS
+ 168RW * A14 * IA15 * IDAS

; DUAL-PORT CHIP ENABLE

DPRD = 68RW * A14 * A15 * IAS\; 8K SRAM READ SELECT

DPWRUU = A14 * IA15 * IA1 * lAO * 168RW
; BYTE ENABLE SELECTS FOR UPPER-UPPER BYTE

DPWRUM = A14 * IA15 * IA1 * AO * 168RW
+ A14 * IA15 * IA1 * 168RW * ISllO
+ A14 * IA15 * IA1 * 168RW * SIl1

; BYTE ENABLE FOR UPPER-MIDDLE BYTE

DPWRLM = A14 * IA15 * A1 * lAO * 168RW
+ A14 * IA15 * IA1 * 168RW * ISIl1 * SilO

0-42 Maximizing Your MFLOPS with the TMSS4082 and Motorola MC68030

+ A14 * IA15 * IA1 * 168RW * SIZ1 * SIZO
+ A14 * IA15 * IA1 * lAO * 168RW * ISIZO

; BYTE ENABLE FOR UPPER-LOWER BYTE

DPWRLL = A14 * IA15 * A1 * AO * 168RW
+ A14 * IA15 * AO * 168RW * SIZ1 * SIZO
+ A14 * IA15 * 168RW * ISSIZ1 * ISIZO
+ A14 * IA15 * A1 * 168RW * SIZ1

; BYTE ENABLE FOR LOWER-LOWER BYTE

0-43

Byte Enable Decode for TMS34082 Accelerator Board

PATTERN DECODE CONTROL FUNCTION
REVISION 1A
AUTHOR MIKE ROBERTS
COMPANY TI
DATE 10/1211989

; This PAL will decode byte enables of the Motorola MC68030 and PC/AT bytes to the 8K-SRAM.

CHIP 16R4 PAL 16R4

; DEVICE U4
;PIN
; 1 2 3

NC2
4 5 6 7 8 9

CNTRLEN NC1 BG ATOT2 ATOT3 ATOT4 ATOT5 ATEN1
10

GNO

; 11 12
IOUTEN NC2

20
Vee

EQUATIONS

13 14 15
NC3 IBGACK IBR

; ALL FUNCTIONS ARE ALWAYS ENABLED

BR . : = ATDT3 * BG

16
NC4

17
NC5

18
NC6

19
NC7

; BUS REQUEST TO Motorola MC68030, ONLY ACTIVE WHEN Motorola MC68030 BUS GRANT
HIGH

BGACK : = ATDT2 * /BG
; BUS GRANT ACKNOWLEDGE SIGNAL FROM PC/AT, ACTIVE WHEN BUS GRANTED

68RST : = NATDT4
; THIS SIGNAL RESETS THE Motorola MC68030

TIRST : = ATDT5
; THIS SIGNAL RESETS THE TMS34082

0-44 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

Pattern Decode for TMS34082 Accelerator Board
PATIERN DECODE CONTROL FUNCTION
REVISION 1A
AUTHOR MIKE ROBERTS
COMPANY TI
DATE 1 0/12/1989

; This PAL will decode memory from the Motorola MC68030 to external devices.

CHIP 22V10 PAL22V10

;PIN
1 2 3 4 5 6 7 8 9

NC1 A19 A18 168RW AD A1 A15 A16 A17
10 11 12

A30 OAS GNO

13 14 15 16 17 18 19 20 21
IC1 18KWRCS IBOOT 168TIRS NC4 10PRDCS ISTERM NC2 18KRDCS
22 23 24

18KCE IFIFOWR Vee

; MYTHICAL PIN THPC/AT SETS THE REGISTERS ON BOOT-UP CALLED VAPOR
VAPOR

EQUATIONS

18KWRCS.TRST
IBOOT.TRST
168TI RST.TRST
IDPRDCS.TRST
ISTERM.TRST
18KRDCS.TRST
18KCE.TRST
IFIFOWR.TRST
VAPOR.SETF

= VCC
= VCC
= VCC
= VCC
= VCC
= VCC
= VCC
= VCC

= VCC

8KWRCS = 168RW * IA 14 * IA 15 * IDAS * lAS * RST
; 8K SRAM WRITE RE-SELECT

8KRDCS = 68RW * IA 14 * IA 15 * lAS * RST
; 8K SRAM READ PRE-SELECT

STERM = IA14 * IA15 * 68RW ;8KRDCS
+ fA14 * IA15 * 168RW * IDAS ;8KWRCS

; SYNCHRONOUS TERMINATION ENDING SYNCHRONOUS CYCLES
fUUCS = 19/A14 * IA15 * IA1 * 168RW * RST + 68RW * IA14 * IA15 * lAS * RST + ATEN1 * ATADO)

; BYTE ENABLE SELECTS FOR UPPER-UPPER BYTE

fUMCS = 1(/A14 * IA15 * fA1 * AO * 168RW * RST + IA14 * IA15 * IA1 * ISIZO * RST + IA14 * IA15
* IA1 * 168RW * SIZ1 * RST + IA14 * IA15 (68RW * RST + 68RW * IA14 * IA15 * lAS * RST * ATEN1
* ATADO)

0-45

; BYTE ENABLE FOR UPPER-MIDDLE BYTE

ILMCS = I(A14 * IA15 * A1 * AO 168RW * RST
+ IA14 * IA15 * IA1/68RW * ISIl1 * ISllO * RST
+ IA14 * IA15 * IA1 * 168RW * AIl1 * SilO * RST
+ IA14 * IA15 * IA1 * AO * 168RW * ISllO * RST
+ 68RW * IA14 * IA15 * lAS * RST ;8KREAD
+ ATEN1* ATADO)

; BYTE ENABLE FOR UPPER-MIDDLE BYTE

ILLCS = I(A14 * IA15 * A1 * AO * 168RW * RST
+ IA14 * IA15 * AO * 168RW * SIl1 * SilO * RST
+ IA14 * IA15 * 168RW * ISIZ1 * SilO * RST
+ IA14 * IA15 * A1 * 168RW SIl1 * RST
+ 68RW * IA14 * IA15 * lAS * RST ;8KREAD
+ ATEN1 * IATADO

; BYTE ENABLE FOR LOWER-LOWER BYTE

0-46 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

Software Listings
Software listings available upon request. Contact the DVP Systems Engineering group at (214) 997-3970.

References
TMS34082 Designer's Handbook, Texas Instnunents, 1990.

TMS34082 Data Sheet, Texas Instruments, 1990.

Motorola MC68030 User's Manual, Motorola, Inc., 1989.

680xO: Programming by Example, Stan Kelly-Bootie, Howard Sams and Company, 1988.

Motorola MC68881: Floating-Point Coprocessor User's Manual, Motorola, Inc., 1988.

The Motorola Motorola MC68020 and Motorola MC68030 Microprocessors: Assembly Language, Interfacing,
and Design, Thomas L. Harman, Prentice Hall, 1989.

80286 and 80287 Programmer's Reference Manual, Intel, Inc. 1987.

808618088/80286 Assembly Language, Leo 1. Scanlon, Brady Publishing Co., 1988.

Assembly Language Primer for the IBM PC & XT, Robert Lafore, Plume/Waite, 1984.

Technical Reference: Personal Computer AT, IBM, 1985.

80286 Hardware Reference Manual, Intel, Inc., 1987.

0-47

0-48 Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

Appendix E

A High Performance Floating-Point Image
Computing Workstation for Medical

This appendix describes the hardware and software architecture of a medium-cost floating-point image
processing and display subsystem forthe NeXTTM computer, and its applications as a medical imaging
workstation.

Karl S. Mills, Gilman K. Wong, and Yongmin Kim

Image Computing Systems Laboratory (ICSL)
Department of Electrical Engineering

University of Washington
Seattle, WA 98195

Reprinted with permission from
Medical Imaging IV: Image Capture and Display,

Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Proceedings

Yongman Kim, Editor
Volume 1232, Summer 1990

E-1

E-2 A High Performance Floating-Point Image Computing Workstation for Medical Applications

Abstract

The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with
needs similar to (or more stringent than) those of the military, industrial and scientific communities. However,
most image processing and graphics systems available for use in medical imaging today are either expensive,
specialized, or in most cases both. High performance imaging and graphics workstations which can provide
real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the
application of digital image computing techniques in many different areas.

This paper describes the hardware and software architecture of a medium-cost floating-point image processing
and display subsystem for the NeXT ™ computer, and its applications as a medical imaging workstation. Medical
imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS) ,
in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an
electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer.

The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit
gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color
palettes may be used for each of four 2K x IK x 8-bit image frames. Three of these image frames can be used
simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect
ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In
addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is
implemented on an add-in board occupying a single slotin the NeXT ™ computer. Up to three boards may be added
to the NeXT ™ for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame
buffer).

Each add-in board provides an expansion connector to which an optional image computing coprocessor board may
be added. Each coprocessor board supports up to four processors for a peak perfonnance of 160 MFLOP5. The
coprocessors can execute programs from external high-speed microcode memory as well as built-in internal
microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix
and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE
double-precision floating point.

In addition to providing a library ofC functions which links the NeXT TM computer to the add-in board and supports
its various operational modes, algorithms and medical imaging application programs are being developed and
implemented for image display and enhancement. As an extension to the built -in algorithms of the coprocessors,
2-D Fast Fourier Transform (PET), 2-D Inverse FFT, convolution, warping and other algorithms (e.g., Discrete
Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.

NeXT is a trademark of NeXT, Inc.

E-3

Introduction

The medical field relies increasingly on image computing in many applications areas. Current needs in the medical
field include the employment of image processing and graphics in medical image enhancement, simple
measurement, or scientific visualization of change, movement, and flow, as well as successive 2-D slices in 3-D
medical images. X-ray Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Positron Emission
Tomography (PET) all use computationally intensive reconstruction methods to produce detailed cross sections
of the structure. Other medical imaging modalities include digital radiography (digital X-rays), ultrasound and
nuclear medicine scanners. These imaging modalities are used to understand internal anatomical and functional
pathologies and to utilize that information in various clinical cases, for example during brain or orthopedic surgery.
Image processing techniques are necessary for picture enhancement, and computing various statistics in
applications like detecting suspicious cancer cells from pap smears. Picture Archiving and Communications
System (PACS) with filmless archiving for all the images is a powerful concept with vast untapped potential.
High-performance graphics and imaging workstations are essential for successful PACS.

This paper describes the most recent of a series of affordable, high-perfonnance image computing workstations,
the University of Washington Graphics System Processor #3 (UWGSP3) and its application to medical imaging.
The UWGSP3 image processing board set supports the following features:

• Single 2k x 2k x 32-bit (16 Mbytes) roamable video/frame memory implemented entirely with 1 Mbit
VRAMs

• 32 bits per pixel configured as 24-bit true-color system with 8 overlay bits, or up to four 8-bit pseudo-color
or gray-scale frames (or 3 frames with overlay)

• 160 MFLOPS peak performance for high-speed integer and floating-point image processing and graphics
functions

• 1280 x 1024 60-Hz noninterlaced color display with 1: 1 screen aspect ratio
• Hardware zoom, roam, and cursor support
• Up to 3 different color palettes, each driven by a different plane, can be displayed at once for region of

interest (ROI) operations
• Expansion port for digitizer, additional frame memory or other devices
• Improved system performance (4 to 8 times that of previous UWGSP systems)
• Support for window-oriented user interface
• NeXTTM host system

• Medium-cost

The UWGSP3 offers the powerful, yet flexible environment necessary for meeting the stringent needs of many
imaging applications. Applications other than those in medicine include scientific applications: astronomy, remote
sensing, geology, seismology, oceanography, and earth resources planning; industrial applications: machine vision
and robotics, tolerance verification, parts identification, optical character recognition, and thennography; military
applications: field-deployable military workstations for map analysis and processing, target identification and
tracking, and surveillance; forensics: fingerprint analysis and identification, signature verification and dental
records analysis; and graphics applications: computer image display and synthesis (for example, solid modeling,
ray tracing, object rendering and shading), image overlay, graphic arts, and ad preparation. Although some of these
applications may never be implemented, these are the types of applications which could be developed on
UWGSP3.

E-4 A High Performance Floating-Point Image Computing Workstation for Medical Applications

Background

Several image computing subsystems have been developed in the Image Computing Systems Laboratory (ICSL)
of the University of Washington. The University of Washington Graphics System Processor #1 (UWGSP1).
developed in 1987, was the first of these systems. It has been used as a 10w-endPACS medical imaging workstation
in the University of Washington PACS prototype system [Gee et al., 1989]. This first generation image computing
subsystem was implemented on 2 IBM ICI AT protyping cards, heavily utilizing the processing power of the
TMS34010Graphics System Processor (GSP) and TMS32020 Digital Signal Processor (DSP). In UWGSP1, the
screen and graphics functions are controlled by the GSP, and the DSP is used as a numeric coprocessor accessed
via First-In First-Out (FIFO) buffers from the GSP. The spatial resolution of the display is 512 x 512 pixels with
a contrast resolution of 8 bits per pixel. Hardware zoom, pan and scroll, one video frame buffer, and three
workspace buffers are incorporated in the system. Software developed for the UWGSPI includes point operations.
arithmetic and logical operations, Region of interest (ROI), convolution, geometric transformation, Fast Fourier
Transform (FFf) and Inverse (IFFT). Used in conjunction with a PCI AT host, UWGSPI provides a flexible three
processor low-cost medium performance workstation for fixed-point image processing applications.

While the UWGSPI has proven to be a viable performer in various image analysis and processing applications,
experience with the system exposed problem areas that required attention. UWGSPI suffered from the following
problems which somewhat limited its usefulness as a.Q image computing workstation:

• The DSP's 16-bit fixed-point arithmetic can cause serious problems in accuracy of some image
processing and graphics operations due to overflow, truncation, and other problems,

• Communication between the GSP and DSP through FIFO buffers is inefficient and difficult to manage.

• Some DSP operations are slow (e.g .• 2-D FFT on 512 x 512 images takes about 16 seconds).

• For many applications, 512 x 512 display resolution is not enough, and

• Because the screen aspect ratio is not 1: 1, warping of images is required for them to appear in proper
proportion.

Because of these limitations, a second generation image proceSSing subsystem was proposed (UWGSP2) and
implemented at the ICSL in 1988 [Chinn et al., 1988]. UWGSP2 utilizes the Texas Instruments' 74ACT8837
FIoating Point Processor (FPP) as a replacement for the TMS32020 DSP, to provide high-performance
floating-point implementation of computationally-intensive image processing and graphics algorithms. By
incorporating the FPP in the second generation design, most of the problems associated with the DSP's 16-bit
fixed-point arithmetic operations were alleviated, while still obtaining a performance increase of about 2 times
that of UWGSP1. However, the GSP to FPP FIFO interface continued to be a data flow bottleneck in the system,
the display resolution was still insufficient for many imaging applications, and the screen aspect ratio was still
other than 1: 1.

A third generation system (UWGSP3) has been designed and implemented at the ICSL in 1989, and overcomes
the limitations of the earlier systems by adding increased display resolution (from 512 x 512 to 1280 x 1024),
increased frame buffer storage (from 1 Mbyte to 16 Mbytes), support for 32-bit true-color as well as 8-bit gray
scale images or up to 24-bit gray scale images windowed and leveled into 8 bits, an intuitive graphical user
interface, and multiple floating-point coprocessors for 160 MFLOPS of peak processing performance. This system
and its application to medical imaging are described below.

E-5

The UWGSP3 is implemented on a single multilayer printed circuit board, with an expansion connector for an
optional coprocessor board. It is designed around two special purpose VLSI processors, the TMS34020 second
generation Graphics System Processor and the TMS34082 Floating-Point Processor. Figure 1 shows a block
diagram of the system with major components which include a NeXT ™ Host System and Interface Logic, the
TMS34020 Graphics System Processor, four TMS34082 Floating-Point Processors, Local Program Memory (1
Mbyte), and Video Display and Frame Buffer Memory (16 Mbytes). Each ofthese major design blocks is described
below.

System Architecture

NeXT ™ Host System and Interface Logic

The host system for UWGSP3, the NeXT ™ computer, was selected over other potential host systems (e.g., MAC
II, PC/AT compatibles, SUN, etc.) mainly for its flexibility and ease of use and progranuning. The NeXT 'STM
operating syste~ Mach (compatible with BSD 4.3 UNIX), provides a popular, portable, and flexible environment
for software development and maintenance. Although UNIX provides an extremely versatile development
environment, it is somewhat cryptic and cumbersome for the general user. However, the NeXT ™ provides a user
friendly "Macintosh-like" interface for the nonprogrammer, while still providing the excellent development
environment afforded by UNIX. Furthermore, the NeXT ™ architecture includes a high-speed 32-bit bus
(NextBus, an enhanced NuBus) providing burst transfer rates of up to 100 Mbytes per second, and the significant
board real estate necessary to support complex hardware designs. Another benefit afforded by the NeXT ™ is an
interactive interface development environment (Interface Builder) which can generate user interface code directly.
Because the user interface usually represents approximately 20% of the code, but requires as much as 80% of the
effort, this capability can provide a significant savings in the time to develop various medical imaging applications
by simplifying the generation and modification of application software interfaces [Jobs, 1989]. NeXT'sTM
object-oriented approach to software development makes it possible to develop image processing code modules
which could be integrated into applications and user interfaces by the end user.

The backplane of the NeXT ™ computer supplies three expansion slots. Thus, up to three UWGSP3 subsystems
can be inserted into the NeXT ™ for applications that require multiple displays. Interfacing of the NeXT TM host
to the UWGSP3 system is provided using a dedicated host interface port on the TMS34020. Executable programs,
operands, images, and commands are passed to the UWGSP3 and its local memory via this host interface, with
the NeXT ™ acting as the master and the UWGSP3 acting as a slave device. The host initializes the subsystem
by transferring a GSP executable command decoder into GSP program memory via the host interface port. With
the command decoder installed, image processing and graphics functions may be issued from the host. Once a
command has been issued to the GSP, the host is free to pursue other functions as may be required, while the GSP
decodes the command and executes the appropriate program on the UWGSP3 local bus.

E-6 A High Performance Floating-Point Image Computing Workstation for Medical Applications

m
~

XILNX

i • ~
roo-

N Host
e 1- .. IIF ~~ GSP X ~ ..

BUS 34020
T Buffer

i H
0
~ Host IIF PAL 14-!---J S

T
..

External OATABUS'"
Code &Oata
Memory 16kx

32 bits x 4
AOORESSBUS

I GSPMEM I 265K x 32 bits +
CONTROL A

AI.

VIOEO r,1 CLKGEN ~ LINES CONTROL

BUFFERS? TRANSCEIVERS 1
•• ~~

BUFFERS r-H RCA .. RAM .. - .. Video Buffer OAC ~
2Kx2K iH ~ '. .. x 32 bits PixelOata

f--t-

7.AO·
.. ~ .. VRAM

~ OLand •
TRANSCEIVERS

--4
ROI 4 H-· .. Logic RAM

~ OAC
~ 4~

f--H ...

4 H~
TM S34 082 4 r--- . FPPs RAM ::: OAC ::: 4~

f--H

L-+..-. f--

RAM ..
:::

4
OAC :::

1-----1 ~ ...

Figure 1. UWGSP Block Diagram

R
G
B

R
G
B

R
G
B

R
G
B

Processors
The two high-performance special purpose VLSI processors used in UWGSP3 represent state-of-the-art
performance and integration. Texas Instruments TMS34020 is the second generation of an advanced
high-performance CMOS 32-bit microprocessor optimized for graphics display systems [Texas Instruments,
1989]. Addressing is bit oriented and all data structures such as pixel size and frame size as well as display
characteristics are defined in internal GSP control registers, allowing the GSP to be configured to support a wide
variety of display devices and formats. The TMS34020 contains a built-in instruction cache, hardware support for
raster graphics instructions, video display timing generation hardware, as well as a memory controller and video
memory controller. Extensions to the basic architecture of the GSP are provided through its coprocessor interface.
Special instructions and cycles are available for enhancing data flow to coprocessors while maintaining a closely
coupled processor-coprocessor environment.

The TMS34082 is a high-speed (40 MFLOPS peak) floating-point processor combining on a single chip a 16-bit
sequencer, address generation and a three operand floating-point unit with twenty-two 64-bit data registers [Texas
Instruments, 1989]. Single and double precision IEEE floating-point operations are supported for addition,
subtraction, multiplication, division, square root, and comparison. In addition to floating-point operations, 32-bit
integer arithmetic, logic operations and shifts may be performed by the 34082. To allow integer pixels to be
manipulated in floating point, conversions are provided from integer to single or double precision formats and vice
versa. To make the FPP more useful in imaging and graphics applications, intern I micrcoode routines are provided
for vector and matrix operations and the following graphics and image processing functions:

• 3 x 3 variable kernel convolution
• Backface elimination
• Polygon, 2-Plane, and 2-Plane color clipping
• 2-D and 3-D cubic spline
• 2-D window compare and 3-D volume compare
• Viewport scaling and conversion
• 2-D and 3-D linear interpolation
• Polygon elimination

External microcode support is also available to allow custom algorithm implementation on the 34082 processors.
Additional image processing and graphics algorithms utilizing one to four 34082 processors are currently being
implemented on UWGSP3.

Using the Texas Instruments TMS34020 GSP and the Texas Instruments TMS34082 Floating-Point Processor as
a closely coupled processor pair alleviates much of the data transfer bottleneck experienced in the first and second
generation UWGSP subsystems. Images stored in frame buffer memory can be transferred directly to the FPP
rather than being read by the GSP and rewritten to FFO buffers as in the earlier UWGSP systems. But, with the
display area and pixel depth each more than four times that of UWGSPI or 2, additional processing capability is
required to overcome the added computational demands imposed. For this reason multiple (up to 4) FPPs can be
attached to the local GSP bus to provide this processing horsepower. As indicated In Figure 1, the FPPs connect
directly to the Local Address and Data (LAD) bus of the GSP. Each FPP is also attached to its own bank of high
speed 16K x 32 bit static memory for external microcode and data storage via the MicroStore Data (MSD) and
Address (MSA) buses. The static memory and the MSD and MSA buses operate independently from the GSP's
LAD bus, thus reducing GSP local bus activity. Transfers between the GSP memory and the FPP static memory
pass through the FPP via the LAD and MSD buses when data or programs are needed by the coprocessors.
Registers may also be transferred between the GSP and FPPs at any time.

E-8 A High Performance Floating-Point Image Computing Workstation for Medical Applications

Using the computing horsepower of the TMS34082's, UWGSP3 can outperform the UWGSP2 system by 4 to 8
times ~orcomputationally intensive operations requiring floating-point accuracy. By incorporating the TMS34020
as thd graphics engine, graphics and other imaging operations also see a performance increase of 4 to 8 times that
of the current UWGSP subsystems.

Memory

Memory on the GSP local bus is linear and can be partitioned in a user-defined manner. The video buffer on
UWGSP3 is configured nonnaJly as a single 2048 x 2048 x 32-bit buffer, but may be reconfigured as four 2048
x 2048 x 8-bit planes, four 4096 x 4096 x 4-bit planes, four 8K x 8K x 2-bit planes, or four 16K x 16K x I-bit
planes. The large video display buffer provides the ability to load large images into the buffer and roam through
them, or to load several different images (e.g., an entire CT or MR study) into the buffer at once. For graphics or
computer image generation applications, having a video buffer of more than two times the screen size allows
double buffering of the display for smooth image and graphics transitions. The video frame buffer is implemented
entirely in 1 Mbit multiport Video RAM (VRAM). The use of VRAM substantially increases the availability of
the local bus because screen refresh data moves over a separate path to the combined lookup tables and digital to
analog converters (RAMDACs).

The GSP program memory consists of256K x 32-bits of Dynamic RAM (DRAM). This memory is used to store
the local programs and data needed to control the display, manipulate images and graphics, and control the four
coprocessors. Because the GSP contains the necessary hardware to control both DRAM and VRAM directly, the
memory interface requires only the addition of buffers, transceivers and minimal control logic.

Video Display

UWGSP3 also provides a solution to the resolution and aspect ratio problems experienced in earlier UWGSP
systems. The aspect ratio for the subsystem is adjusted for 1: 1 in all display modes, providing a proportionally
correct image required for most graphics and image processing applications. Furthermore, the 1280 x 1024 display
resolution provides sufficient display resolution for most applications, while a roarnable video/frame buffer of2K
x 2K x 32-bits (16 Mbytes) provides an acceptable solution to all others. The GSP generates the video timing
signals; however, it cannot drive the display itself.

Four Brooktree RAMDACs are used to drive the monitor. Each RAMDAC has a 256 x 24 bit lookup table (LUT)
which drives 8 bits each of red, green and blue signals. The red, green and blue outputs of each RAMDAC are
summed together and the composite Signals are used to drive the monitor. For true color applications, one
RAMDAC will drive only red, one will drive only green and one will drive only blue. The fourth RAMDAC
provides 8 bits of overlay information. For gray scale or pseudo-color applications, a single RAMDA C drives red,
green and blue outputs concurrently while the other RAMDACs are disabled. While in this mode, it is possible
to do region-of-interest (ROI) (i.e., different portions of the screen are assigned different color mappings and/or
image data) by switching on and off different RAMDACs In specific regions of the display on a pixel-by-pixel
basis. Thus, by enabling different combinations of the RAMDACs, the frame buffer can be configured either as
a 24-bit true color buffer with 8-bit overlay or as four separate 8, 4, 2, or I-bit buffers. Bit-per-pixel selection of
8, 4, 2, or 1 is supported directly in hardware in the RAMDACs and augmented by appropriate clocking of the
VRAMs. Overlay is also available in the ROI or 8, 4, 2, or I-bit modes; however, one of the 8-bit planes must be
used for the overlay leaving only three available for image display. Images with contrast resolution ranging from
9 to 24 bits per pixel may also be windowed and leveled into 8 bit gray scale or pseudocolor images using the FPPs.
The RAMDACs also include support for a hardware cursor and integer zoom. The cursor shape, color and intensity
are stored in a 64 x 64 x 2-bit array within each RAMDAC. The hardware zoom feature requires the support of
an external state machine implemented in a Xilinx Logic Cell Array.

E-9

HN_~_ ;

Software Architecture

The overall software architecture for the UWGSP3 and NeXT ™ host system is shown in Figure 2. At the lowest
level, drivers local to the UWGSP3 board provide screen management functions as well as graphics and image
processing primitives. Commands and data are transferred from the host system to the UWDGSP3 over the
NextBus using NeXT ™ hardware specific drivers via the host interface. The NeXT ™ drivers use memory
mapped 110 to make the entire usable GSP address space available to the host. Implemented on top of this
functionality will be deviCe independent image processing and graphics functions which will provide a consistent
and portable software interface for applications.

The communication protocol between the (bost and UWGSP3 is administered by a command decoder running
locally on the UWGSP3. The command decoder pr~ides entry points to screen management functions as well
as entry points to FPP external microcode routines and FPP management functions.

USER USER USER
INTERFACE INTERFACE .. / INTERFACE

1 2 N

1 1 NextStep Graphical 1 UserllF

APPLICATIONS SOFTWARE

~
DEVICE INDEPENDENT

GRAPHICS AND IMAGE PROCESSING MODULES

~

I NeXl'M HARDWARE I SPECIFIC DRIVERS
~~

NextBus
Protocol

~,

UWGSP3 DRIVERS

~ ~ ~
SCREEN GRAPHICS

IMAGE
PROCESSING

MANAGEMENT PRIMITIVES PRIMITIVES

Figure 2. UWGSP3 Software Architecture

Microcoded routines are implemented as parallelized algorithms. Each FPP is assigned a different portion of the
image to process while the GSP is responsible for handling the data transfers to and from the FPPs. This is done
in such a way as to maintain the scalability of the coprocessor board; that is, the routines will be able to utilize any
number of FPPs up to the maximum of four. As long as the parallel algorithms maintain a ratio of 3: 1 or greater
for the amount of time spent processing relative to the amount of time spent transferring data, the power of all four
FFPs can be fully utilized. Code generation for both the TMS34020 and TMS34082 is being done in C with
assembly language and microcode mixed in as necessary for optimization.

E-10 A High Performance Floating-Point Image Computing Workstation for Medical Applications

Using the Interface Builder development tools available on the NeXT TM, different graphical user interfaces can
be quickly prototyped and implemented for applications. Figures 3 and 4 illustrate a prototype interface of an
interactive filtering package for UWGSP3 being developed. Figure 3 shows an example of the window used to
specify a filter's frequency response. The shape of the frequency response curve may he changed by either typing
in the desired parameters or by using the mouse to interactively drag one of the control points (identified as a solid
black dot). In this example, a lowpass filter is shown; but in addition, there are filter w;ndows for highpass,
bandpass, bandstop, and azimuthal filters. Once a desired filter is designed, the user can apply thefilter to the image
by performing a 2-D FFT operation on the image, multiplying the filter and image in the frequency domain,
peforrning a 2-D IFFf operation, and displaying the filtered image in its window. The UWGSP3 C@Jl complete the
entire process interactively (e.g., taking only a few seconds for a 256 x 256 image). Thus, trying filters with
different characteristics can be easily supported on UWGSP3 without undue delay to the user.

I] Low Pass Filter

X1: ~ Y1:[Q1§J

X2: [Q1§J Y2: ~

Figure 3. Lowpass Filter Specification Window

Besides allowing interactive filter specification for frequency domain filtering, the package supports image
loading and frame buffer roaming and zooming (Figure 4). The image load window (on the left) allows any size
image (up to 2048 x 2048) to be loaded anywhere within the 2048 x 2048 frame buffer. Control buttons are
provided for standard sized images from 64 x 64 to 2048 x 2048. Another set of control buttons determines which
channel the image will he loaded into: red, green, blue, or overlay. The frame buffer window is a scaled
representation of the entire frame buffer area. The rectangular black outline defines the boundaries of the current
display region. The mouse may be used to move the display to a different portion of the frame buffer by clicking
and dragging on the display outline. Zoom buttons on the right allow the display to be zoomed by any integer from
1 to 8. The size of the display outline shrinks to reflect the reduced display region as higher zoom levels are
employed. The position of previously loaded images are indicated by the shaded rectangles in the frame buffer
window. The interface development effort has been in progress for several months and is almQSt complete at the
time of this writing. The programmer attributes the short development time to the use of the Interface Builder tools.

E-11

Figure 4. Image Load (left) and Virtual Frame Buffer (right) Windows

Application Areas
The UWGSP3 board set and software libraries transfonn the NeXT ™ computer into an affordable image
processing and graphics workstation with processing perfonnance currently available only with much higher cost
workstations. Furthennore, the UWGSP3 board set is designed to be flexible enough to provide processing in a
wide range of imaging and graphics applications while most other systems are optimized for specific tasks.
Described below are a few ofthe application areas ofUWGSP3 in medical imaging, which show mainly the image
processing and display capabilities of the system; however, 2-D and 3-D graphics tools are also being developed.

PACS Workstation

Requirements for a PACSworkstation include the following:
• High-resolution image display
• Large image frame buffer and magnetic storage

• Text display
• Network to tie together workstations
• Archival storage
• Rapid image retrieval and display

E-12 A High Performance Floating-Point Image Computing Workstation for Medical Applications

Together, the UWGSP3 and the NeXT ™ computer provide a solution to each of these requirements. The 1280
x 1024 display satisfies the condition for high resolution display in most applications (with the possible exception
of digital radiography where resolutions of up to 2048 x 2048 are needed). In the arena of on-line storage, we have
16 Mbytes of frame buffer memory available for image storage. In tenns of 8-bit gray-scale images, this is enough
storage for 16 1k x 1k images, 64512 x 512 images, 256 256 x 256 images, or 1024128 x 128 images. In addition,
NeXT ™ offers a 660 Mbyte ESDI hard drive which rnay be used for temporary storage of a local image database
to hold a reasonable number of images downloaded from the central database. Furthennore, the UWGSF3 's
overlay channel meets the PACS workstation's textual (as well as graphical) annotation needs. As for network
capabilities, the NeXT ™ features a built-in thin wire Ethernet interface and its operating system supports the
TCP1IP protocol. This makes the UWGSP3 system suitable for use with other PACS systems, such as the UW
prototype PACS, which already use Ethernet and TCP/lP Kim et al., 1989]. Finally, the NeXT 'STM leading role
in using optical disk technology provides UWGSP3 with a high-capacity transportable storage media capable of
storing 256 Mbytes per disk at a cost of about $0.20 per Mbyte, or the UWGSP3 system can have access to a central
archival storage unit, e.g., a 5-114" optical disk jukebox at a lower cost per Mbyte.

One area in which UWGSP3 could use improvement is in the rapid transfer of data from storage to the display.
Currently, it takes ahout 3 seconds to load a512x 512x 8-bitimage and 38 seconds to load a 2048 x 2048 x 32-bit
true-color image. However, we are currently evaluating the feasibility of incorporating a parallel transfer disk to
improve the NeXT'sTM disk perfonnance. Furthermore, we are studying a hardware modification to allow
UWGSP3 to operate closer to the NextBus' 100 Mbytes second peak transfer rate.

Another benefit of UWGSP3 is derived directly from the NeXT ™ host system. O'Malley [1989] advocates an
iterative approach to PACS workstation development that involves a cycle of prototype evaluation and revision.
The NeXT 'STM Interface Builder tool and its use of the Objective-C object-oriented programming language,
provide the rapid prototyping ability needed for this type of development paradigm.

Electronic Alternator

The use of a digital system for emulating a conventional film alternator has been analyzed by several researchers
[McNeilletal., 1988][Beardetal., 1988][Choietal., 1990]. Analysis ofthese systems and their ability to emulate
the current film alternator configuration digitally, has revealed several problems which must be overcome before
workstations of this type can be used in radiology departments. Some of the problems include:

• Slow image loading rates for large images
• Inadequate number of image displays
• Resolution requirements (2k x 2k) are cost prohibitive
• Current systems do not address radiologists' needs beyond display and processing

Image loading rates for images as large as 2k x 2k vary from system to system, but may require as much as 1 minute
to load. Recent advances in disk technology such as the Parallel Transfer Disk (PJD) can reduce this to a few
seconds, but the ability to maintain as many images as possible resident in memory still remains important, to
provide as interactive a system as possible. The UWGSP3 can hold up to four 2k x 2k x 8 bit images in memory
at one time, any of which can be displayed instantaneously. In addition, up to three UWGSP3 may be installed in
a single NeXT ™ computer system allowing a total of up to twelve 2k x 2k x 8-bit images or six 2k x 2k x 16-bit
images to be resident in memory at anyone time. Coupled with a PTD this large number of image storage frames
would allow for acceptable speeds in displaying radiological studies.

E-13

'-----_ .. _---_ _--_ _-----------------,-_.,--_ .. _-

Viewing a large number of images at one time is important to the radiologist in that it better emulates the current
mechanical alternator configumtion and allows images to be compared side-by-side. As previously indicated,
currently up to 3 UWGSP3 boards can be installed in a single NeXT ™ computer. Thus 3 separate displays, in
addition to the NeXT ™ display are available for image viewing and manipulation. This limitation on the number
of displays is not limited by the design of the UWGSP3 itself, but in the number of backplane slots available on
the NeXT TM computer system. In later iterations of the board, multiple displays may be available on a single board,
further increasing the number of available displays.

Providing displays with resolution as high as 2k x 2k is at present cost prohibitive when a large number of displays
are required in UWGSP3, this issue was addressed by implementing a 1280 x 1024 display which is adequate for
display of most imaging modalities. Display of multiple images as large as 2k x 2k is also possible on UWGSP3
by using hardware pan and scroll of the 1280 x 1024 display in the 2k x 2k image frame. For multiple displays,
this roaming can be done on all images concurrently, providing the same positioning of the display in all images.
Or, if desired, the images can be panned and scrolled individually to view different areas of each image.

Many electronic alternator systems have addressed the display and processing needs of the radiologist. However,
the integration of verbal annotation and/or digital film annotation is not always addressed. Verbal annotation may
still be done using existing dictation hardware (e.g., a dictaphone system); however, the integration of this into
the electronic alternator system would allow the verbal annotation to be directly associated with the digital image
in a complex database. The NeXT ™ computer host provides the built-in capability for voice digitization, which
could be linked with the image in a database. Potential also exists for voice recognition of commands and for speech
to text conversion, using the Digital Signal Processor (DSP) available on the NeXT ™ computer host or some other
specialized hardware.

Image ProceSSing and Graphics
The optional 160 MFLOPS peak perfonnance coprocessor board makes the UWGSF3 an excellent platfonn for
image computing. The GSP supports many frame buffer manipulation functions (e.g., PIXBLT, FILL, and image
arithmetic) and the FPPs include many built-in microcode routines for both image processing and 2-D and 3-D
graphics operations (e.g., 3 x 3 convolution, matrix and vector operations, polygon clipping, and backface
elimination). Thus, the UWGSF3 serves as a platfonn suitable for both image processing and graphics
applications.

NxN Variable Size 2-D Convolution

NxN 2-D convolution can be used to implement a variety of image processing filtering operations such as lowpass,
highpass, edge enhancement and edge detection. The algorithm is parallelized by segmenting the image into
regions and assigning each locality to a different FPP. The predicted perfonnance for a 512 x 512 x 32-bit image
(using all four FPPs) is as follows:

• 5 x 5 kernel 0.7 seconds
• 11 x 11 kernel 3.0 seconds
• 15 x 15 kernel 5.5 seconds

FFTIIFFT
In some image analysis applications, FFT filtering techniques are often more convenient and intuitive than 2-D
convolution and therefore more desirable. Thus, UWGSP3 must provide efficient FFT and IFFT algorithms. The
FFT and IFFT will be implemented using the row and column method. Each of the four FPPs will be given an ~ntire
row or column to process, thereby parallelizing the operation. The predicted perfonnance for a 512 x 512 x 32-bit
image using all four FPPs is 4 seconds for either an FFT or an lFFT.

E-14 A High Performance Floating-Point Image Computing Workstation for Medical Applications

Geometric Transformations (warping)

Geometric transformations are utilized in correction of image distortion arising from deficiencies in the
acquisition apparatus, image registration for multimodal image analysis, and interpolated zooms for applications
in image magnification and minification. Each FPP is assigned a different region of the resultant image. For each
destination pixel, the FPPs calculate the coordinates of the source pixels. The GSP passes the source pixels to the
FPPs which then perform a bilinear interpolation using the pixel values. Predicted performance of a lower-order
warp using bilinear interpolation is 2.5 seconds for a 512 x 512 x 32-bit image.

Window and Level

In digital radiography and cr and MR images, pixel sizes of up to 12 bits are generated. Most systems do window
and leveling of these images by manipulating a 12-bit to 8-bit video output lookup table [Austin, et aI, 1988].
Because UWGSP3 utilizes 8-bit RAMDACs, this method cannot be used. Instead the coprocessor board is used
to perform a transformation of the 12-bit image into a window and leveled 8-bitimage. The FPPs are used to
calculate a transformation lookup table. Regions of the image are then sent to the FPPs which use the lookup tables
to produce the 8-bit image. One of the advantages of this method is that the window and level operation can be
limited to user defined regions and need not affect the entire display. Furthermore, this method may be used with
pixel sizes greater than 12 bits (up to 24 bits per pixel). A full screen (1280x 1024) transformation of a 24-bit image
to an 8-bit image is expected to take less than 0.3 seconds.

Graphics

As mentioned in previous sections of this paper, the TMS34082 FPP includes many built-in microcode routines
for 2-D and 3-D graphics which can be used to form the core functionality of a graphics library. In addition, the
relatively large external microcode and data storage (16K x 32-bit for each FPP) allows higher level operations
such as ray tracing and volume rendering to be added to the standard set of functions. Furthermore, the UWGSP3
architecture which couples the GSP with multiple FPPs, allows the computational workload to be distributed
among the processors. Thus, each FPP can be given a different portion of the object database or a different set of
tasks in the rendering process while the GSP is utilized to maintain the integrity of the frame buffer and transfer
blocks of data to and from the FPPs.

Since the design is centered around the TM53 4020, the availability of the Texas Instruments Graphics Architecture
TIGA-340 interface allows a UWGSP3 ported to an IBM AT-compatible (or MCA or EISA-based) architecture
to be immediately compatible with many graphics applications written for this standard. In addition, UWGSP3
can be made to emulate other widely accepted video adapters such as EGA and V GA to support a vast number of
different application programs.

For the current NeXT TM-based version ofUWGSF3, graphics standards including PRIGS, PHIGS+, GKS, and
Renderman are being evaluated for implementation. The use of one of these standardized graphical programming
interfaces, with the low level operations written to exploit the multiple FPP architecture, will further enhance
UWGSP3's utility for 2-D and 3-D graphics applications.

E-15

Conclusion

With its increased display resolution, enlarged frame buffer storage, multiple floating pOint processors and
intuitive graphical user interface, UWGSP3 represents an innovation in image computing workstation design and
a significant step towards providing affordable real-time display and processing for a variety of applications. It
provides an integrated platform for more acceptable and productive end-user environments for both image
processing and graphics in the future. In this paper, we have described the basic architecture of UWGSP3, and
several solutions to medical imaging applications including use as a PACS workstation, image processing and
graphics computational engine, and a multiple display electronic alternator. With the hardware implementation
and low-level software now completed, the task of creating the application software to achieve the UWGSP3 's
potential in these areas and others will extend into the months ahead.

E-16 A High Performance Floating-Point Image Computing Workstation for Medical Applications

Acknowledgements

We would like to acknowledge the efforts of Clark Haass of the ICSL for his work on the interactive filtering
package user interface. We would also like to acknowledge Texas Instruments for their help and the donation of
the prototype chips and development tools used in UWGSP3; in particular, we wish to thank Mike Asal of the GSP
Group in Houston and Ron Drafz of the VLSI Group in Dallas.

References

J. D. Austin and T. Van Hook, "Medical image processing on an enhanced workstation," SPIE Medical Imaging
II, 914:1317-1324,1988.

D. Beard, J. L. Creasy, J. Symon and R. Cromartie, "Experiment comparing film and the FilmPlane radiology
workstation," SPIE Medical Imaging II, 914:933-937, 1988.

P. Chinn, R. M. Pier, L. A. DeSoto, H. G. Zieber, D. A. Verheiden and Y. Kim, "PC-based floating point image
processing system," Electronic Imaging Spring '88, pp. 233-238, 1988.

H.S.Choi,H. W.Park,D.R. RaynorandY.Kim,"Developmentofaprotot ypeelectronicaltematorforDINIPACS
environment and its evaluation," SPIE Medical Imaging IV, 1234:in press, 1990.

S. Jobs, Keynote Address at the University of Washington Computer Fair, March, 1989.

Y. Kim, D. R. Raynor, O. Saarinen, A. R. Rowberg, and J. W. Loop, "Preliminary PACS experience at the
University of Washington," Electronic Imaging Spring '89, pp. 142-147, 1989.

J. C. Gee, L. A. DeSoto, D. R. Raynor, Y. Kim and J. W. Loop, "User interface design for a radiological imaging
workstation," SPIE Medical Imaging III, 1093:122-132, 1989.

K. McNeill, G. W. Seeley, K. Maloney, L. Fajardo, and M. Kozik, "Comparison of a digital workstation and a film
alternator," SPIE Medical Imaging II, 914:929-932, 1988.

K. G. O'Malley, "An iterative approach to development of a PACS display workstation," SPIE Medical Imaging
III, 1093:293-300, 1989.

Texas Instnunents TMS34020 User's Guide, 2nd Review Copy, August, 1989.

Texas Instruments TMS34082 Floating-Point Processor Product Preview, September, 1989.

E-17

E-18 A High Performance Floating-Point Image Computing Workstation for Medical Applications

Appendix F

Parallel Signal and Matrix Processing
with the TMS34082

~~~~:~';::;'$-:-:,::::::*:,::::::-;:=:::::::;:;s::::*=:::;o;~::$::::'S::$::$'S::':';;::~'S:::;'i-$:::,;;.s.'S:;::::::'$::':;::~'S:::;~;::;;$>~~$'S::'~"'S6:~(:''f.'J.<'j;:z:.,,:;:~~::.:~~~m~::::s::(~;;:;:;';':~:::(:'-:-;'$:~"iIS:;;=i-::(<<-'!-::-:-:~:::~::-:(:::f..~:::~;::':::::~;::::~::'i-::::-;:::~:~:::::::::JS.:::~::$:*:::*=i'.:::~::::::::~::::'::::$::::::::-;::::::::$-:;~::::'$--;~::::";:~'i$*:*:::~~::1-tf.: .• 
;a.;w;.:-. .............. : .. :..; .. =.;..:..;oo;oo:.jo:<<<.;.:.;-;.»;.;.-~*:-:~ .. : .. : .. :.;...;.;..:.:.:.:.:.:-:';''':-;-;';';'0;':--:':-:-;';'';.:-::.;0.:-:'';';'-:-;';-:-:-:.;'':'';'';'':«--:«.:«-,:«--,"",,«·jO.-':-:-»»X·~:""':-:.Y''''''~;':-:*X-:«--:'':-:-;''Y ... »:.:.:.:.:-:<-X .. :-: .. :.:-:.»»:«-:-"'....x..:.x.:-:-t-:-" ... ;.."-:: .. :.;..: .. :-:·:·: .. :-:·:·:-:·;.;..;·:·;.:.:..;·x,·:.:·»».'"":·:-;..: .. :-:~...;«.:·;..: .. x.:·:·:·:-::.:-:.:..:-:.:--:-: .. :..: .. :·;..:-:..;.:·:-:..:~~'-»:-: .. ;":-:";.:-:.;":~6)y'6:.o; .. 

This application note will discuss and analyze a TMS34082 based parallel architecture. 

E. M. Dowling and Z. Fu 
Erik Jonsson School of Engineering and Computer Science 

The University of Texas at Dallas 
Richardson, Texas 75083-0688 

R. S. Drafz 
Texas Instruments, Incorporated, MIS 8316 

Dallas,Texas 75265-5303 

F-1 



F-2 
Parallel Signal and Matrix Processing with the TMS34082 



Introduction 

VLSI floating-point processor technology is evolving to meet the increasing need to execute sophisticated 
algorithms at higher and higher rates. Architectural advances in floating-point pipelines and processor 
organization have led to the TMS34082's high speed arithmetic core and its RISC control structure. However, 
some applications require much higher speeds than provided by a single TMS34082. A parallel processing solution 
may be the answer. 

The goal of parallel processing is to speed computation by designing the appropriate number of processors into 
the system. These processors each work on pieces of the algorithm separately, and pass intennediate results among 
themselves. The simplest and most common fonn of parallel processing is to assign each processor a different 
tasks. For example, in a typical computer system, there may be a simple processor in the keyboard, a CPU, and 
coprocessors for memory management and floating-point operations. Of interest here are the parallel processing 
architectures that use many identical processors to solve a single numerical problem. 

Some common architectures that achieve this are shared memory machines. (Sequent and Multi -Max), distributed 
memory machines (Ncube, IPSC) and systolic arrays (WARP) [1]. They all use duplicate processors, but have 
different storage, communication, and programming schemes. Some parallel architectures require all processors 
to execute the same instructions, but to work on multiple data streams (SIMD = Single Instruction Multiple Data.) 
Others allow each processor to act independently by providing multiple instruction streams (MIMD = Multiple 
Instruction Multiple Data.) Many architectures exist to solve numerical problems such as those that arise in 
scientific computation and signal and image processing applications. Many experimental machines have been 
targeted to these structured computation intensive applications [1] [3] [4] [5]. 

In this application note we will design and analyze a TMS34082 based parallel architecture. The architecture will 
be a MIMD hybrid shared /distributed memory machine that supports message passing as well as systolic data 
streaming. This structure provides maximum flexibility ata relative low cost. In addition, the system can be scaled 
so that any number of processors can be added as the application requires. The system reaches a peak of 
40 MFLOPs per processor, and sustains a rate of 10 MFLOPs per processor on structured numerical algorithms. 
For example, if an algorithm must be executed in real time at 150 MFLOPs, a system with about fifteen or sixteen 
processors is needed. 

Parallel architectures are measured in terms of their speed increase over a sequential architecture using the same 
type basic cell. (A cell can be thought of as a processing unit that would be the CPU/memory/I/O system in a 
sequential machine). In the MIMD system, the I/O portion of a cell is generally connected to other cells as well 
as other conventional I/O devices such as disks, ND converters, etc. Parallel architectures perfonnance is limited 
by dependencies found in many algorithms, or, more fundamentally, found in many mathematical problems. These 
dependencies might cause the parallel architecture to perfonn less efficiently than a straight sequen tial architecture 
due to communication overhead. If the problem itself is not inherently serial, then a parallel algorithm must be 
designed to solve the problem. Often this parallel algorithm can be derived from the sequential algorithm by 
rescheduling the computations so that the algorithm dependencies are satisfied, but many independent calculations 
will be computed at each step. 

F-3 



At this stage of designt the algorithm becomes linked to the underlying. architecture. The most challenging part 
of the design is not to decide which computations can computed in parallelt but to minimize communication delays 
and waiting time. This requires the algorithm designer to match the dependence structure of the algorithm to the 
systems conununication structure and processor granUlarity. 

The parallel algorithm must be analyzed to see how it perfonned. The optimum is to use n processors for an n times 
speed increase (linear speed-up.) Howevert Amdahl predicted that most algorithms will have a logarithmic 
speed-up because their connnunication burden typically grows exponentially. FortunatelYt linear speed-ups can 
often be attained on modem architectures solving well structured practical numerical problernst due to their regular 
conununications requirements. 

As we seet there is a tight interplay between the algorithm and the architecture. In a senset the algorithm is mapped 
onto the architecture. It is our intent to design an architecture that can efficiently support many different algorithms. 
A hybrid approach as discussed in the next section was taken to achieve this level of flexibility. The architecture 
provides all point-to-pointand broadcast paths through a single bus. A bidirectional ring of FIFO buffers connects 
adjacent processors so that high throughput can be achieved. The architecture design was driven by the matrix 
multiplicationt FFft QRDt andSVD algorithms. Simulation was used to arrive at an architecture that could support 
all of these representative algorithms. 

Once the basic architecture is establishedt the cell must be carefully designed. As stated abovet the perfonnance 
of the parallel architecture is based on the speed increase over a single cell. If the cell is poorly designed and slowt 
the increase will be negligible. The cell designed here is based on the 1MS34082 acting in host -independent mode. 
The MSD bus is used for instructionst while the LAD bus is used for data. The 1MS34082 requires some sort of 
addressing assistance on the LAD sidet an address latch at the very least. With this assistancet the TMS34082 has 
a Harvard architecture so can be made to maintain a steady instruction stream while manipulating data on the LAD 
side. This capability is of paramount importance in a TMS34082 systemt and does not come without careful 
attention. The TMS34082 does not have any organic LAD addressing support. All LAD addresses must be 
computed in the floating-point core. Furthennoret when the C-compiler is usedt local variables are stored on the 
MSD side and are accessed through stack operations. Even the stack pointer manipulations are carried out in the 
floating-point pipet causing 'bubbles; and reducing perfonnance. To bring the perfonnance of the cell up to the 
full1MS3 4082 capabilities t a more sophisticated LAD bus controller will be specified. This controller will have 
its own register set and an integer unit to perfonn pointer manipulations under the control of an extended 
instruction field. The same LAD bus controller will be capable of routing data to more than one destination in a 
single bus cycle and will be able to move data while the TMS34082 is perfonning other functions such as 
floating-point loops. 

The HARP Architecture 

The design of the Hybrid Array Ring Processor (HARP) architecture was guided by a set of goals. Firstt the 
architecture was designed to perfonn a wide range scientific and DSP oriented algorithms. Secondt it was designed 
to be scalable and expandable so that applications specific systems could be easily configured to the user ts needs. 
It was also decided that the architecture should support both single- and double-precision IEEE standard 
floating-point arithmetic. The principle concern with the interconnection structure was that it had to support both 
high throughput and fast point-to-point paths. The interconnection topology was to be as simple as possiblet yet 
had to support the target algorithms cleanly and efficiently. From a software perspectivet the architecture had to 
be programmable in an extended version of Ct much like hypercubes. Also the architecture needed to support an 
operating system such as UNIX. Finally, a version had to be implemented that could be accurately simulated in 
software so that perfonnance measurements could be made. 

F-4 Parallel Signal and Matrix Processing with the TMS34082 



Matrix multiplication, FFT, QRD and SVD algorithms shaped the architecture. A simulator was built using the 
Rice Parallel Processing Testbed (RPPT) package along with the TMS34082 C-compiler and chip simulator. The 
RPPT simulator can run programs written in a superset of C, called Concurrent C (CC). An architecture model 
was written so that waiting time, date transfer delays, and the overall effects of the system topology could be 
measured. Profile information from the TMS34082 simulator is fed into the RPPT simulation so that the overall 
simulator measures the actual cycle counts of the parallel program executing on the architecture. Architectural 
modifications were made whenever limitations and bottlenecks were revealed by the simulation process. 

Host 

Shared Memory 

System Bus 

PE1 PE2 • • • 

Figure 1. System Architecture 

1/0 

The overall HARP architecture is depicted in Figure 1. The host can be any subsystem that can run the desired 
operating system. For purposes of simulation, the host was considered to be a 33 MHz MC68030 with associated 
support hardware. The system bus can be any high-performance bus, but for simulation purposes was taken to be 
the native MC68030 processor bus running in asynchronous mode. The architecture, however, can be readily 
implemented for an open bus standard such as VME, Future Bus, etc. for example. a VME based version would 
be built around an available single-board UNIX engine, memory boards, and I/O cards. PEs would be added in 
groups of four per card. Each card would have a ring port in and a ring port out connector on the front. Thus flexible 
systems can be configured to meet specific processing, memory and I/O requirements. Application programs are 
written in CC to run on P processors, so that the same program will run on systems with different numbers of 
processors. 

The hybrid aspects of the architecture are highlighted when looking at the system's programming models. From 
a global perspective, the host sees a conventional system that is augmented with smart memory segments as 
outlined in the memory map of Figure 2. The host must load these segments with code and data and read out the 
results. From the PElbus perspective, the system takes the shape of a shared memory machine. Using the shared 
memory mode, processes are forked to the various nodes and communication primarily takes place over the bus 
where synchronization is maintained using semaphores and join constructs. The system can also be viewed as a 
message passing machine. Here processes on the nodes communicate using the send- and receive-message 
commands. The messages can be routed through the ring or over the bus. Finally, the system can be programmed 
as a linear or ring systolic array (with broadcast.) The systolic mode is the fastest mode if local PE to PE 
communication is required by the application algorithm. In this mode a steady data stream flows through the ring 
network in lockstep with processing. The cell architecture is optimized so that systolic communication and 
computation overlap. 

F-5 



Shared Memory 

Main/Shared Memory 

Smart Memory/PE #1 

Smart Memory/PE #2 

• • • 
Smart Memory/PE #N 

1/0 and Storage Devices 

Figure 2. System Memory Map 

The PE is depicted in Figure 3. It consists of a TMS34082 floating-point RISe processor, a 30ns 512K word 
memory bank, a bus interface, a local bus controller, and a 35ns 32-bit BIFIFO that connects the PErk] to the 
PE[k+ 1]. A full system bus interface implementation includes a local bus arbitration protocol that allows any PE 
to directly access any other PEs' local memory. The PE is built around the TMS3 4082 's Harvard architecture. The 
program is stored on the Micro Store Datal Address (MDS & MSA buses) side while the data is stored on the Local 
Address and Data (LAD) side. The TMS34082 architecture consists of a high-performance FPU, a register file 
of twenty 32-bit (or ten 64-bit) registers, and a microsequencer. The TMS34082 does not have an address 
arithmetic unit nor does it have an address bus on the LAD side. In order for the system to reach high performance 
levels, an external LAD bus controller was designed to compute LAD addresses and provide low level timing and 
control signals to the devices attached to the LAD bus (FIFOs, SRAM, bus interface). 

F-6 Parallel Signal and Matrix Processing with the TMS34082 



r----------}--------------------, 
S I 

... MSD ... -LAD. 
512K 

TMS34082 64K 
SRAM 

~ MSA ... SRAM 

~ I LAD t LADM I Controller r I 
I 
I .. Out Port I j 
I 

In FIFO 
I 

I - I r I L ________________ ~ ______________ ~ 

Figure 3. PE Architecture 

The LAD controller provided over an order of magnitude perfonnance increase. With the controller, the 
TMS34082 is capable of performing an entire load or store operation and pointer update in a single clock cycle. 
The LAD controller can interleave accesses from the memory and the FIFO, as is often needed. The LAD bus 
controller also can be configured to accelerate systolic ring communication and local memory operations. Suppose 
the TMS34082 ofPE[k] is to read a word from the FIFO connected to PE[k-I]. In many applications it will be 
also necessary to pass the datum onto the FIFO that is connected to PE[k+ I] and possibly store the received datum 
in local memory. If both are required, the LAD controller will generate the signals for the FIFO[k-l] read, the 
FIFO [k+ I] write, and the memory write all in the same TMS34082 read cycle. The LAD controller's FFf address 
generator speeds FFfs by over a factor of IOO. 

r--~-----------------------~ 
LAD Bus 1 I 

Control Signals ~ LAD Signal I 

•
' Decoder & Instruction 

To LAD Timing Decoder 
Devices .-... 1------1 ..... ____ -' 

LABus 

Register 
File 

~--------------------------~ 
Figure 4. LAD Bus Controller Architecture 

MSD Extension Bus 

MSD Bus 

F-7 



Different LAD controller designs have been considered. Some are algorithm specific, like the FFT, and some are 
more general. The most general LAD controller, as depicted in Figure 3, can be configured and perfonns LAD 
addressing under program control. The architecture of the LAD controller is shown in Figure 4. It consists of a 
register file, and addressing AL U (complete with FFf instructions), a LAD bus timing and control signal decode 
section, and an instruction decoder. The LAD controller accepts an instruction stream from an extended microcode 
field on the MSD bus. The registers may be loaded from the MSD bus as immediate operands. In a sense, the 
TMS34082's instruction set is expanded to include LAD addressing modes. The LAD addressing related fields 
in the instructions are stored in a separate four-bit memory (LADM) whose address lines ire connected to the MSA 
bus. 

TMS34082 Host-Independent Mode Optimizations 

The TMS34082 operates in either the coprocessor or the host-independent mode. It is most commonly used as a 
floating-point accelerator for the TMS340 graphics processor and is less commonly used in the host -independent 
mode, where it acts as an autonomous floating-point RISe processor. While the HARP architecture does assume 
a host processor to run the operating system, it employs the TMS34082s as loosely coupled processors operating 
in the host-independent mode. In this section some of the more striking aspects of designing a system around the 
TMS34082 in host-independent mode are discussed. The TMS34082 is capable of achieving very high 
computational throughputs. 

The TMS34082 is truly a compact architecture, fitting somewhere between a conventional RISe and a dedicated 
floating-point unit. It lacks many common microprocessor features such as an on-board parallel address generator, 
while it provides an assortment of high-performance floating-point operations and subroutines such as division 
and square root. The key to success with the TMS34082 in host-independent mode is to keep it fed with data. If 
the TMS34082 is asked to manage the data stream into the chip, performance will be downgraded. Also, special 
care must be taken with loop management. 

The first thing to take into consideration when developing a system for the host-independent TMS34082 is its 
Harvard architecture. The chip is designed to accept an instruction stream from the MSD (microstore data) bus 
and a data stream from the LAD bus. In coprocessor mode, the TMS340 has no problem keeping the TMS34082 
fed with data because the LAD bus is directly connected to the TMS340 bus. However, in host-independent mode, 
special care must be taken to keep the data flowing on the LAD bus under the control of something other than the 
TMS34082. The reason for this is two fold. First of all, the TMS34082 LAD bus has both address and data 
multiplexed onto the same bus. Without external support, this means that an address must be first sent out to an 
external address latch prior to any LAD access, reducing the LAD bus bandwidth by 50%. A more sever problem 
arises if the TMS34082 is used to generate data addresses as would be done in a conventional architecture. Because 
the TMS34082 does not have a separate integer addressing unit, all pointer updates must be computed in the FPU 
core. This means that the floating-point pipeline must be broken every time an external access is required. It turns 
out that non-judicious use of the TMS34082 for pointer updating can easily downgrade performance by an order 
of magnitude or more. Thus it is recommended that an external bus controller be designed into the system that 
performs the pointer manipulations needed to support the algorithms that will run on the target system. 

F-8 Parallel Signal and Matrix Processing with the TMSS4082 



Once the hardware has been configured, it is important to optimize the software. The first rule of thumb is to make 
judicious use of registered variables. Often compilers will use frame pointers and related pOinter arithmetic to 
access local variables. As mentioned previously, if the TMS34082 is to perform pointer arithmetic, it will have 
to do it in the floating-point pipeline at great expense. The compiler will often place local variables on the stack 
which is located on the MSD side. This means load and store operations take two cycles each instead of the one 
cycle on the LAD side. More importantly, each local variable access will involve several external accesses to 
compute the stack pointer relative address of the local variable. Due to these considerations, it takes the TMS34082 
11 cycles to compute k = k + 1 if k is a local variable defined on the MSD stack. On the other hand, if k were 
declared as a registered variable, the same operation would require only one cycle. Thus great performance 
dividends will be paid to those who put as many of the most often used local variables of each routine into registers. 

The old axiom that 90% of a program's time is spent on 10% of the code is very true when it comes to numerical 
routines. In fact, most numerical routines spend 90% or more of their time in tight inner loops. For example, the 
inner loop of the routine to multiply two 256 x 256 matrices on a single TMS34082 would be entered and exited 
65,536 times. At each iteration, one multiplication and one addition is performed, which can be computed by the 
TMS34082 in a single cycle using the mult.add command. Now consider the overhead needed to run the loop. 
If the loop counter variable were located on the MSD stack it would take 11 cycles to increment the loop counter, 
it would take another 12 cycles to check to see if the loop terminated. In addition, using the FPU core to perform 
loop counter iterations and stack pointer manipulations forces the compiler to use separate multiply and add 
operations and store intermediate results. Thus while the TMS34082 provides the ability to compute a 
floating-point multiply-accumulate a single cycle, an un optimized loop might spend 30 cycles each iteration in 
loop overhead. If care is not taken, loop overhead alone can reduce the perfonnance to 3.33% efficiency. This 
figure does not even account for data accesses. The loop overhead can be reduced to about four cycles per iteration 
if registered variables are used. Even better, it can be reduced to one cycle through the use of the LOOPCf register 
and the cjmp.d instruction. The cjmp.d instruction is a decrement and branch instruction that decrements 
LOOPCT, compares it against zero, and takes the appropriate branch all within a single cycle. 

Now take data accesses into account. An inner-product loop is set up by initializing LOOPCf with the 
inner-product length, clearing the accumulator, and loading the base addresses of the two input data arrays. First 
consider the case where the pointers are loaded into an external LAD controller. '!\vo data loads are performed in 
two cycles while the LAD controller autoincrements the pointers for the next loop iteration. Next a mull.add 
instruction is used to perform the multiply accumulate in a single cycle. Finally, the cjmp.d is used to decrement 
the loop counter and branch to the beginning of the loop. This implementation required four cycles per loop 
iteration and a LAD controller that could interleave two increment pointer registers. Now consider an 
implementation that does not use an external LAD controller, but does use LOOPCT and registered variables for 
the loop pointers. The loop starts out by performing two pointer additions with the output sent to the LAD-bus and 
two loads; four cycles. Next the multiply and add are computed in two instructions because the FPU pipeline had 
been interrupted. The cjmp.d is the last instruction in the loop. This loop had a total count of nine cycles. 

The two above loops can sustain 10 MFLOPs and 4.44 MFLOPs respectively. Slightly enhanced perfonnance can 
be achieved many loop iterations are in-line coded into a single loop iteration. If the vector length is 100, then the 
inner product could be computed in ten loop iterations if ten multiply accumulates are performed in each loop 
iteration. With the external LAD controller, twenty loads are followed by ten mult.adds and one cjmp.d. This 
reduces the number of cjmps by nine, but adds additional loop end condition checking overhead if the number of 
loop iterations is not a multiple of ten. Anywhere between one and ten multiply accumulates can be performed 
in the inner loop depending on the divisors of the inner product length. Using this optimization technique, the 
sustained inner product performance can be raised from 10 MFLOPs to 15 MFLOPs. 

F-9 



Experience shows that one must recognize what the TMS34082 is and what it is not. It is a bigh-perfonnance 
floating-point unit that can execute floating-point code efficiently. It is not a general purpose processor with a full 
set of addressing modes and parallel on-board executions units. Great speed-ups in compiler generated code can 
be easily achieved through judicious use of registered variables. Hand optimized assembler level optimizations 
can be attained by using the LOOPCf register and the cjmp.d instruction. Further speed-ups come through the use 
of and external LAD side address generator. Once a system architecture is defined, systems level optimizations 
can be made to overlay various bus operations into the same cycle. 

Algorithms 

In this section several algorithms will be briefly discussed. First consider the problem of multiplying the matrices 
A E R m x rand B ERr x n to form the product C E R m x n on a system with P PEs. At the start of the algorithm, 
A and B are stored in the shared memory. At the end of the algorithm, the product matrix C is returned to the shared 
memory. The first step of the algorithm is for the host to move the columns of B into the PE s using the system 
bus. Column bj is moved to PE[j mod P]. This column will be used to compute 9 = Abj so that Cj will be accumulated 
on PE[j mod P]. The matrix A is moved into the array at PE[O] and PE[O],s right output buffer concurrently. The 
inner product of row a; and each residentbj is formed and stored as cij 'so PE[k] reads a word orrow a; fromPE[k-l], 
one word at a time, directly into the TSM34082's FPU pipeline and stores the row in memory for future use and 
transfers it to the FIFO connected to PE[k+ 1] all in the same cycle. The rows of A stream through the system until 
the trailing row cycles through. Due to the ordering of computations, PE[O] will finish first, then PE[I] etc. Once 
PE[O] finishes, it sends its results over the bus to the system memory. Then PEr 1] will follow suit, then PE[2] ... 
etc. on down the line. 

Next consider the radix-2 decimation in time (DIT) FFT algorithm. Assume that the number of PEs, P is a power 
of two. Also assume that the LAD bus controller is capable of performing FFT address generation in addition to 
the autoincrement mode used in the previous algorithm. For purposes of illustration, suppose that a N = 1024 point 
FFT is to PE performed on P = 8 processors. The algorithm is outlined as follows. First decimate the time series 
into eight l28-point subsequences and send the ith subsequence to PEri] over the system bus. Next each node 
computes a 128-point radix -2 DIT FFT on the local subsequence. These sequences are built back up using standard 
binary tree recombination with twiddling. The tree is viewed as having the root node in processor zero iog2(N) 
iterations into the future. At the first iteration, each PE is considered to be a leaf of the tree. At this iteration each 
PE[2k + 1] sends its results to PE[k] for k = O ... (NI2) - 1. The even PEs then perform the twiddle and 
recombination operations so that the even cells now have 256-point sequences. At the next iteration, PEr 4K + 2] 
sends its results to PE[4k] fork = 0 ... (N/4) - 1. Now the mod 4 PEs twiddle and recombine. NextPE[4] sends its 
result to PE[O] and PE[O] assembles the finall 024 point result. The communication of the algorithm is not local, 
but the algorithm permits the data to be routed through idle cells so that a negligible penalty is paid for the nonlocal 
communication. The nonlocal communication only costs one cycle of delay per route-through node; the data rate 
of the data stream is not effected. Simulation studies have shown that this extra cost has a negligible effect on 
perfonnance. The simulation studies did show that perfonnance was reduced due to the nonsequential access 
requirement within a given local vector computation. The nonsequential addressing forces one to send entire 
messages instead of single elements at a time transparently. Also, as the recombination process progresses, more 
and more processors become idle. 

F-10 Parallel Signal and Matrix Processing with the TMS34082 



Another version of the FFf was studied that was able realize the full potential of the system. Most applications 
that require an FFf actually require many FFrs. For example, a real-time processing system might require that 
1024 point frames of an incoming signal be computed continuously. In image processing~ a 512 x 512 pixel FFT 
can be computed by first perfonning 512 512-point column FFfs followed by 512 512-point row FFTs. Similarly, 
spectral based PDE solvers used in scientific application s require large numbers of I-D FFTs to compute a single 
3-D FFT. The course granularity of the system allows each separate PE to compute an FFT separately. This is a 
pure smart memory algorithm. The host loads the PEs with data and pulls out results. If enough processors are in 
the system, the overall computation rate is limited only by the amount of time it takes to load and unload a single 
smart memory segment with a complex data vector. 

The next algorithm considered was the QRD. The QRD provides an alternative way to solve linear systems. The 
standard algorithm used to solve linear systems is Gaussian elimination with partial pivoting. The pivoting portion 
of that algorithm degrades perfonnance in the HARP architecture, but a Householder QRD maps quite well. 
A E R m x n has a factorization A = QR where Q E R m x m is orthognal and R E R m x n is upper triangular [11]. 
Consider the case where m = nand rand(A) = n. Write Ax = bas QRx = b so that multiplying on both sides by Q T 

gives the triangular systemRx = QTb which can be solved by back substitution. Note that multiplying both sides 
by Q T is equivalent triangularizing A by a sequence of orthognal transformations and applying these same 
transformations to b. In the case where m>n, this procedure may also be applied to solve linear least squares 
problems. 

SupposeA E Rmx nis to be decomposed on aPprocessorsystem. Assign column flj to PE[jmodP]. IfPdoes not 
divide n, then some PEs will have extra columns. First set the iteration variable, k, and proceed as follows. At 
iteration k, the PE containing Ok; computes the vector ~ ER m-k+] such that the bottom (k - m)-element subvector 
of Gk, denoted Gk(k : m) satisfies H]Ok;«k : m) = 0.£1 where £1 is the k-order unit standard basis vector and 
a. = 1\ Gk (k: m) II. The kth transfonnation must be applied only to columns k through n. So vk is sent down the 
ring to the right from the PE where Ok; resides. When the head of the ~ data stream arrives, the remaining PEs 
perfonn the transformation, OJ ( k: m) = OJ ( k : m ) - ( vTk aj. ( k : m » ~ V j > k to the local columns. The 
algorithm is essentially a wavefonn algorithm where the computation wave propagates to the right and a trail of 
results (R) are left behind. If the matrix Q is desired, the v-vectors may be saved so that Q is available in factored 
form. If the algorithm is used to solve a linear or linear least squares system, the vector b is augmented as the last 
column of A and loaded accordingly. 

The final algorithm to be discussed is the SVD. Hestenes's method [6] [9] for computing the SVD has received 
much attention lately in the literature due to its parallel nature. The Hestense method is a one-sided Jaccobi 
algorithm that operates by applying orthognalizing plane rotations to all pairs of columns of the matrix A E Rm x n. 
A sequence of all pairs of such rotation is called a sweep. The algorithm can be shown to converge after a sufficient 
number of sweeps have been applied. Once the algorithm has converged, the matrix, A, will have been transformed 
via orthognal transfonnations to another matrix, B E R mx n, whose columns are orthognal to each other. If the 
product of the sequence of orthognal transformations is collected in V ERn x n, then we have AV = B. It is trivial 
to next factor Bas B = ur. gives A = V L V 1', which can be seen to be the SVD of A. We do note that this algorithm 
generated V E R m x nand L ERn x n instead of V E R m x m and L E R m x n but that no information was lost. 

F-11 

,iii'''', "'iMN'''_il~III''IIIII~IIII!IIIIII ____ ......................... ....,...,.....-""""""",,,,,,,,,, __ ,,,,,,,,,, ___ ,,,,,,,,,,,,,,,''"9.I~''''''. ,,...,...,......,,., .• ,.,,,.,.,,.. __ 



Several systolic array algorithms have been devised to perfonn the Hestenes SVD algorithm on a linear 
bidirectional systolic array [2] [8] [10]. The methods are based on a theorem that states that the order in which all 
the pairs columns are orthognalized does not affect the overall convergence of the Jaccobi algorithm [8]. 
Algorithms are designed by selecting an ordering where groups of P pairs can be computed at each time step on 
P processors. The key to a successful ordering is that the next group of P pairs in the ordering can be generated 
by local shifts of columns between processors. Figure 5 shows how columns are switched in order to generate such 
an ordering on a P-element bidirectional array. In the figure each PE is assumed to have two vector registers, VRa, 
and VRb which each hold a column of the matrix. If the columns are loaded into the vector registers, and pennuted 
as depicted in the figure, one sweep will be computed every N-2 update cycles. At the end of the sweep, the updated 
columns will return to their original position in the array, ready for the next sweep. 

I VRb VRb VRb .. 
VRa VRbl - VRa VRb VRa VRb - VRa VRb ... -r VRa - VRa - VRb 

PEO PE1 PE2 PE3 

Figure 5. Parallel Jaccobi Updating on a Systolic Architecture 

Iteration = t 
K 

Iteration = t+1 
K+1 

Communication 
Routing 

It is clear that this algorithm can be directly implemented on the HARP architecture. The bidirectional ring is 
sufficient for communication, and the vector registers can be implemented as buffer areas in the local SRAM. Each 
node must first compute the Jaccobi rotation matrix, apply it to the local columns stored on that node, and send 
the results to adjacent nodes as indicated in the figure. All nodes perfonn the same function except the end nodes. 
The shifting of data between the two data buffers on PE[N-l] can be accomplished by a single pointer swap. If 
the number of columns in the matrix exceeds 2P, then the algorithm is slightly more complicated. Now PEs will 
have to do the job of more than one PE. The complication comes in the form of pointer housekeeping and additional 
conditional statements. Only the computations that represent the boarder PEs of the sub-array need to 
communicate with the neighbor PEs, the internal nodes of the subarrays just exchange pointers. 

F-12 Parallel Signal and Matrix Processing with the TMS34082 



Simulation Results and Performance Analysis 

A simulator was constructed using the RPPT simulation package. The RPPT package consists of a CC compiler, 
an architecture modeling / analysis package, and a facility to bind CC programs to the architecture model. Once 
a program and architecture have been bound, RPPT runs a simulation of the program running on the architecture. 
While doing so, RPPT keeps track of time using a parallel time construct. It is able to account for delays caused 
by bus contentions, processes waiting for input, data transfers across a bus or communication channel, and 
processors executing code. The above mentioned delays can be caused by either the parallel program or the 
underlying architecture or both. In order to account for the time spent by processors executing code, RPPT converts 
the CC program into assembly code and assigns to each basic block a cycle count (a basic block has one entry, one 
exit, and each instruction in the block is performed exactly once.) It then inserts an instruction at the front of each 
basic block that increments a cycle counter variable by the number of cycles spent in that basic block. This act is 
called profiling, and is done to the native MC68020 assembly code generated for the execution of the simulation 
of a SUN3 platform. In order to make RPPT count TMS34082 cycles, the node program is recompiled on the 
TMS34082 C compiler, translated to assembly code, and profiled with using the TMS34028 simulator in.single 
step mode. The basic blocks of the MC68020 assembly code are then cross profiled by replacing the MC68020 
cycle counts with the TMS34082 cycle counts. The key is that both programs execute the same C code so are 
essentially the same. The architectural modifications of the LAD bus controller are brought into the simulation 
here by updating the cycle count numbers to reflect the elimination of the cycles that are actually performed in 
parallel by the LAD controller. 

The matrix multiplication was analyzed first. It showed us that the maximum sustainable throughput of a node was 
essentially limited to 10 MFLOPs. This is so because in the inner-loop of a long inner product required two loads, 
a mult.add, and a conditional jump. Thus two FLOPs are performed every four cycles, so that at 20 MHz, the 
TMS34082 can continuously compute data streams ata rate of 10 MFLOPs. This limit can be raised to up to 15.5 
MFLOPs if the exact number of elements in the inner product is known ahead of time. For example, if the inner 
product length were 100, the loop iterations consisting of 20 loads, ten mult.adds and one conditional jump would 
each perform 20 FLOPs every 31 cycles. The program used in the simulation was written for the general case so 
that the nodes were essentially limited to 10 MFLOPs sustained throughput rate. 

The simulator was used to measure the efficiency of the HARP and to study the effects of matrix size and the 
number of processors in the system. The simulation accounts for the time to move the inputs to the nodes from 
the shared memory, compute the results, and move the results from the individual nodes back into the shared 
memory. The simulator counts all cycles to include addressing, loop management, testing of conditions, etc. It 
gives an indication as to the amount of time spent performing FLOPs and the amount of time spent on 
communication and overhead. Figure 6 shows a plot of the average MFLOPs achieved by a ten element array 
running matrix multiplications. Note that as the size of the matrices increase, the overall performance ofthe system 
approaches the theoretical limit of 1 00 MFLOPs. The reason that perfonnance is not as close to the limit for smaller 
matrices, is that the 110 and program overhead becomes more significant. Figure 7 show a plot ofthe performance 
measured in average MFLOPs for systems running a 128 x 128 matrix multiplication using P processors. Note that 
for up to 32 processors (the largest array the simulator could handle) there is a linear speed-up as more processors 
are added. This violation of Amdahl's law is predictable because the communication overhead of the 
algorithm/architecture combination clearly does not mcrease exponentially as more processors are added. 

F-13 



100 

90 X X X X 
X 

80 X 

III 70 
0.. 

X 0 
..J 60 u.. 
::E 
"0 

50 ell c:: 

~ 40 ::J en 
30 

20 
X 

10 
0 50 100 150 200 250 300 350 

Dimension 

Figure 6. Matrix Multiplication Performance on 10-Processor Systems 

250 
X 

200 
X 

III 
0.. 
0 150 
..J 

X 
X 

u.. 
X ::E 

"0 
ell c:: 100 'co 
1ii X 
::J en 

X 
50 

X 

X 
0 

0 5 10 15 20 25 30 35 

Number of Processors 

Figure 7. 128 x 128 Matrix Multiplication on P-Processor Systems 

F-14 Parallel Signal and Matrix Processing with the TMS34082 



The next algorithm that was implemented was the FFf. The LAD controller provided hardware support for the 
radix-2 addressing scheme. In the frrst set of experiments, single FFTs of various lengths were computed on 
different sized arrays. The results are summarized in Table 1. We note that the sustained MFLOPS on a single 
processor is within 75% of the maximum sustainable throughput for a single node. The payoff for adding more 
processors, however, is less pronounced than in the matrix multiply algorithm. This is due to the fact that 
communication overhead can not be completely overlapped with computations. Thus, as more processors are 
added, the execution time of the algorithm decreases, but the efficiency of the system also decreases. 

The pipeline FFf algorithm was also analyzed. Here the number of processors was determined to form an FFf 
pipeline that maximized overall performance. Using this number of processors, performance was limited only by 
the system bus bandwidth. Table 2 shows the results ofthe second set of experiments for transform lengths from 
256 to 4096 that were performed on the optimum sized arrays. For each transform length! array size pair, the table 
lists several parameters. First the 1-D pipeline FFf effective computation time is listed followed by the maximum 
sampling rate that could be accommodated for the various transform lengths. The next column shows how much 
time it takes to compute an N x N 2-D FFT using the row/column algorithm. The sustained MFLOPs achieved for 
each 2-D FFT is listed last. The maximum attainable sustained computation rate can be taken to be 1 o*p MFLOPs, 
were P is the number of processors in the array. The efficiency is the measured sustained MFLOPS divided by the 
total attainable MFLOPs. The simulation shows the system efficiency ranges from 67.8% for the 256 x 256 
transform to 80.8% for the 4096 x 4096 transform. 

Table 1. Distributed FFT Performance Results. 

N=512 N=1024 N::2048 N::4096 

P=1 t=3.69 t=7.94 t=17.0 t=36.2 
SM=7.47 SM=7.74 SM=7.96 SM=8.14 

P=4 t=1.64 t=3.39 t=7.03 t=14.59 
SM=16.86 SM=18.12 SM=19.23 SM=20.22 

P=8 
t=1.40 t=2.82 t=5.74 t=11.72 

SM=19.79 SM=21.77 SM=23.55 SM=25.17 

P=16 t=1.31 t=2.59 t=5.18 t=10.43 
SM=21.15 SM=23.74 SM=26.09 SM=28.26 

P = # of processors. t = time in milliseconds and SM = sustained MFlOPS. 

The column-systolic Householder QRD was also executed on the simulator. Figure 8 shows the sustained MFLOP 
rating of the QRD as a function of matrix dimension on a ten processor system. Note that the algorithm approaches 
the 100 MFLOPs maximum sustainable capacity of the system nearly as fast as the matrix multiplication 
algorithm, but levels off to 90 MFLOPS due to additional serial threads in the QRD algorithm. Figure 9 indicates 
that for large matrix size, that the algorithm has linear speed-up as more processors are added. This is due to the 
fact that communications and computations are nearly full pipelined. It is also due to the modulo P wrapping of 
the columns to the array and the use of the external ring connection. This mapping strategy achieves nearly perfect 
load balancing and allows the inherent dependencies of QRD to be effectively eliminated by allowing the system 
to execute more than one iteration of the algorithm at a time. 

F-15 



100 

90 

80 X X X 
X 

70 X 
en 
n. 

X 0 
..J 60 LA. 
:I 

'2 50 X 
c 

~ 40 :::J 
fI) 

30 X 

20 

10 X 
0 20 40 60 80 100 120 140 160 

Dimension 

Figure 8. QRD Performance on 10-Processor Systems 

200 
X 

180 
X 

160 
X 

140 
en X n. 
0 120 

X ..J 
LA. 
:I 100 
"0 

X cv c 80 
~ X 
:::J 60 fI) 

40 X 

20 

0" 
0 5 10 15 20 25 30 35 

Number of Processors 

Figure 9. 128 x 128 QRD on P-Processor Systems 

F-16 Parallel Signal and Matrix Processing with the TMSS4082 



The last algorithm that was implemented to date was the modified Hestenes-Luk SVD. The algorithm was found 
to be efficient for large matrices especially if the number of processors was large. As Figure 10 indicates, as more 
and more columns are mapped to each processor, the efficiency of the algorithm diminishes slightly. This is due 
to the fact that more and more time must be spent on pointer operations and loop overhead since the array is actually 
emulating a large array. Memory constraints limited the range of the number of processors that could be used to 
implement the SVD, but Figure 11 shows the results of the system perfonning 48 x 48 SVDs on differing numbers 
of processors. We note that the number of processors must divide the dimensions of the matrix or some processors 
will need to be idle. The figure indicates a linear speed-up as more processors are added for large sized problems. 
This behavior is expected due to the fact that the communication overhead does not grow as more processors are 
added. Actually, as more processors are added, the communication delay remains constant while the pointer 
overhead and housekeeping diminishes. 

Table 2. Pipelined FFf Performance Results for Real-Time Signal and Image Processing 

Processors Time Per Maximum Data NxN FFT NxN FFT 
N Required Pipelined Rate Execution Sustained 

FFT Time MFLOPs 

256 18 94 5.45 MHz 51.5ms 122 

512 19 186 5.51 MHz 197ms 143 

1024 21 372 5.51 MHz 776ms 162 

2048 22 746 5.50 MHz 3.09sec 179 

4096 24 1468 5.43 MHz 12.43sec 194 

50 

45 X X 
40 

X X 

35 
X 

II) X X Il.. 
0 30 
..J 
LL. 
:e 25 

" Cl) 
c 20 
~ X 
::s 15 f/) 

10 X 

5 

0 
0 20 40 60 80 100 120 140 

Dimension 

Figure 10. SVD Performance on 8-Processor Systems 

F-17 



50 

45 X 

40 

35 
fI) 
a.. 
0 30 
..J 
L&- X ::I 25 
"C 
G> 
C 20 
~ 
::J 15 X en 

10 

5 X 
X 

0 
0 2 3 4 5 6 7 8 9 10 

Number of Processors 

Figure 11. 48 x 48 SVD on P-Processor Systems 

F-18 Parallel Signal and Matrix Processing with the TMS34082 



Conclusion 

In this paper a hybrid architecture for matrix, DSP, image, and scientific computations has been presented to 
harness the power of N TMS34082 floating-point processors. The architecture can be programmed using many 
different programming models and parallel processing paradigms so that efficient programs can be written for a 
broad range of algorithms. The machine may be programmed as a shared memory machine, a message passing 
distributed memory machine, or a systolic array. The architecture may dynamically switch between any of these 
modes under software control. 

The architecture is optimized to operate with multiple TMS3 4082s. To this end, a local bus controller is introduced 
to assist the TMS34082s in pointer manipulations and to provide a fast addressing capability on the LAD bus. The 
bus controller also provides the ability to perform multiple bus operations, such as a fetch and a send, in the same 
cycle. By allowing the bus controller to have its own instruction stream, a program controlled DMA mechanism 
makes it possible for the cell to send messages or pass systolic data streams while the processor was executes 
numerical loops. While a simple address latching scheme seems reasonable, use of the smart LAD bus controller 
leads to speed-ups of two to three orders of magnitude. 

The system was implemented using the TMS34082 Toolkit along with the RPPT simulation package. Matrix 
Multiplication, FFT, QRD and SVD algorithms were coded in Concurrent C and executed on the architecture 
model to provide detailed cycles counts which were converted into MFLOPs ratings for each algorithm. The 
simulations showed what must be done to make the system execute code efficiently. The main findings were that 
the TMS34082 must be freed from pointer manipulations whenever possible, that registered variables should be 
utilized to reduce costly stack operations, and that the LOOPCT register together with the cjmp.d instruction 
should be used to control loops. Hand optimizations to the assembly code generated by the C compiler were needed 
off-load LAD pointer manipulations to the bus controller hardware. The simulation showed that high performance 
can be achieved if the system is carefully designed and code is optimized. Algorithms can often sustain 
computation rates approaching MFLOPs per processor, where the MFLOPs rating account for program overhead 
and data 110 time. For example, the simulation showed the matrix multiplication algorithm could run at just under 
100 MFLOPs on a ten TMS34082 system. 

F-19 



Bibliography 
1. M. Annaratone, E. Arnould, R. Cohn, T. Gross, and H. T. Kung. Harp architecture: From prototype to 

production. In Proceedings of the 1987 National Computer Conference, Chicago, Illinois, June 1987. 
2. R. P. Brent and F. T. Luk. The solution of singular-value and symmetric eigenvalue problems on 

multiprocessor arrays. SIAM J. Sci. Stat. Compt., 6(1):69-84, January 1985. 
3. E. M. Dowling, M. Griffin, and F. J. Taylor. A multi-purpose VLSI floating-point array processor. 22nd 

Annual Asilomar Conference on Signals, Systems, and Computers, October, 1988. 
4. B. L. Drake, F. T. Luk, J. M. Speiser, and J. J. Symanski. Slapp: A systolic linear algebra parallel 

processor. Computer, 20(7):35-43, July, 1987. 
5. D. W. Foulser and R. Schreiber. The saxpy matrix-I: A general purpose systolic computer. Computer, 

2-(7):35-43, July, 1987. 
6. M. R., Hestenes. Inversion of matrices by biorthogonalization and related results. SIAM J. App. Math, 

6(1):51-90, March, 1958. 
7. H. T. Kung. Why systolic architectures? IEEE Computer Magazine, pages 37-46, January, 1982. 
8. F. T. Luk. On parallel Jaccobi orderings. SIAM J. Sci. Stat. Compt., 10(1), January, 1989 . 

. 9. J. C. Nash. A one sided transfonnation method of the singular value decomposition and algebraic 
eigenproblem. The Computer Journal, 18:74-76,1975. 

10. R. A. Whiteside, N. S. Ostlund, and P. G. Hibbard. a parallel diagonalization algorithm for a loop 
multiple processor system. IEEE Trans. on Computers, C-33(5):409-413, May 1984. 

11. G. H. Golub and C. F. Van Loan. Matrix Computations, 2nd Ed., John Hopkins University Press, 
Baltimore, MD, 1989. 

F-20 Parallel Signal and Matrix Processing with the TMSS4082 







''''''''''..,.."..-...... --....... -.. ''"''.,,..'''''''''''., .. ''"".~ .......... ,----









TI Worldwide 
Sales Offices 
ALABAMA: Huntsville: 4960 Corporate Drive, 
~~~~7~3~50, Huntsville, AL 35805-6202, (205) 

ARIZONA: Phoenix: 8825 N. 23rd Avenue,
Suite 100, Phoenix, AZ 85021, (602) 995-1007.
CALIFORNIA: Irvine: 1920 Main Street, Suite
900, Irvine, CA92714, (714) 660-1200;
Roseville: 1 Sierra Gate Plaza, Suite 255B,
Roseville, CA 95678, (916) 786-9208; San
Diego: 5625 Ruffin Road, Suite 100, San Diego,
CA 92123, (619) 278-9601; Santa Clara: 5353
Betsy Ross Drive, Santa Clara, CA 95054, (408)
980-9000; Woodland Hills: 21550 Oxnard
Street, Suite 700, Woodland Hills, CA 91367,
(818) 704-8100.
COLORADO: Aurora: 1400 S. Potomac Street,
Suite 101, Aurora, CO 80012, (303) 368-8000.
CONNECTICUT: Wallingford: 9 Barnes
Industrial Park So., Wallingford, CT 06492, (203)
269-0074.
FLORIDA: Altamonte Springs: 370 S. North
Lake Boulevard, Suite 1008, Altamonte Springs,
FL 32701, (407) 260-2116; Fort Lauderdale:
2950 NW. 62nd Street, Suite 100, Fort
Lauderdale, FL 33309, (305) 973-8502; Tampa:
4803 George Road, Suite 390, Tampa, FL
33634-6234, (813) 882-00',7.
GEORGIA: Norcross: 5515 Spalding Drive,
Norcross, GA 30092, (404) 662-7900.
ILLINOIS: Arlington Heights: 515 W.
Algonquin, Arlington Heights, IL 60005, (708)
640-3000.
INDIANA: Carmel: 550 Congressional Drive,
Suite 100, Carmel, IN 46032, (317) 573-6400;
Fort Wayne: 118 E. Ludwig Road, Suite 102,
Fort Wayne, IN 46825, (219) 482-3311.
IOWA: Cedar Rapids: 373 Collins Road N.E.,
Suite 201, Cedar Rapids, IA 52402, (319)
395-9551.
KANSAS: Overland Park: 7300 College
Boulevard, Lighton Plaza, Suite 150, Overland
Park, KS 66210, (913) 451-4511.
MARYLAND: Columbia: 8815 Centre Park
Drive, Suite 100, Columbia, MD 21045, (301)
964-2003.
MASSACHUSETTS: Waltham: 950 Winter
Street, Suite 2800, Waltham, MA 02154, (617)
895-9100.
MICHIGAN: Farmington Hills: 33737 W. 12
Mile Road, Farmington Hills, MI48331, (313)
553-1500; Grand Rapids: 3075 Orchard Vista
Drive S.E., Grand Rapids, M149506, (616)
957-4202.
MINNESOTA: Eden Prairie: 11000 w. 78th
Street, Suite 100, Eden Prairie, MN 55344, (612)
828-9300.
MISSOURI: St. Louis: 12412 Powerscourt
Drive, Suite 125, SI. Louis, MO 63131, (314)
821-8400.
NEW JERSEY: Iselin: Parkway Towers, 485E.
Route 1 South, Iselin, NJ 08830, (201) 750-1050.
NEW MEXICO: Albuquerque: 1224 Parsons
Court, N.E., Albuquerque, NM 87112, (505)
291-0495.
NEW YORK: East Syracuse: 6365 Collamer
Drive, East Syracuse, NY 13057, (315)
463-9291; Fishkill: 300 Westage Business
Center, Suite 140, Fishkill, NY 12524, (914)
897-2900; Melville: 1895 Walt Whitman Road,
P.O. Box 2936, Melville, NY 11747, (516)
454-6600; Pittsford: 2851 Clover Street,
Pittsford, NY 14534, (716) 385-6770.
NORTH CAROLINA: Charlotte: 8 Woodlawn
Green, Suite 100, Charlotte, NC 28217, (704)
527-0930; Raleigh: 2809 Highwoods Boulevard,
Suite 100, Raleigh, NC 27625, (919) 876-2725.
OHIO: Beachwood: 23775 Commerce Park
Road, Beachwood, OH 44122, (216) 464-6100;
Beavercreek: 4200 Colonel Glenn Highway,
Suite 600, Beavercreek, OH 45431, (513)
427-6200.

OREGON: Beaverton: 6700 SW. 105th Street,
Suite 110, Beaverton, OR 97005, (503) 643-6758.
PENNSYLVANIA: Blue Bell: 670 Sentry
Parkway, Blue Bell, PA 19422, (215) 825-9500.
PUERTO RICO: Hato Rey: 615 Merchanme
Plaza Building, Suite 505, Hato Rey, PR 00918,
(809) 753-8700.
TEXAS: Austin: 12501 Research Boulevard,
Austin, TX 78759, (512) 250-7655; Dallas: 7839
Churchill Way, Dallas, TX 75251, (214)
917-1264; Houston: 9301 Southwest Freeway,
Suite 360, Houston, TX 77074, (713) 778-6592.
UTAH: Salt Lake City: 1800 S. West Temple
Street, Suite 201, Salt Lake City, UT 84115,
(801) 466-8973.
WASHINGTON: Redmond: 5010 148th Avenue
N.E., Building B, Suite 107, Redmond, WA
98052, (206) 881-3080.
WISCONSIN: Waukesha: 20825 Swenson
~~~~'o~~i~e 900, Waukesha WI 53186, (414) 

CANADA: Nepean: 301 Moodie Drive, Mallom 
Center, Suite 102, Nepean, Ontario, Canada 
K2H 9C4, (613) 726-1970; Richmond Hill: 280 
Centre Street East, Richmond Hill, Ontario, 
Canada L4C 1B1, (416) 884-9181; St. Laurent: 
9460 Trans Canada Highway, SI. Laurent, 
Quebec, Canada H4S 1 R7, (514) 335-8392. 

ARGENTINA: Texas Instruments Argentina 
Viamonte 1119, 1053 Capital Federal, Buenos 
Aires, Argentina, 1/748-3699. 
AUSTRALIA (& NEW ZEALAND): Texas 
Instruments Australia Ltd., 6-10 Talavera Road, 
North Ryde (Sydney), New South Wales, 
Australia 2113, 2-878-9000; 5th Floor, 418 
Street, Kilda Road, Melbourne, Victoria, Australia 
3004,3267-4677; 171 Philip Highway, Elizabeth, 
South Australia 5112, 8255-2066. 
AUSTRIA: Texas Instruments GmbH., Hietzinger 
Kai 101-105, A-1130 Wien, (0222) 9100-0. 
BELGIUM: SA Texas Instruments Belgium 
N.V., 11,AvenueJulesBordetlaan 11, 1140 
Brussels, Belgium, (02) 2423080. 
BRAZIL: Texas Instruments Electronicos do 
Brasil Ltda., Rua Paes Leme, 524-7 Andar 
Pinheiros, 05424 Sao Paulo, Brazil, 0815-6166. 
DENMARK: Texas Instruments AlS, Borupvang 
2D, DK-2750 Ballerup, (44) 68 7400. 
FINLAND: Texas Instruments OY, P.O. Box 86, 
02321 Espoo, Finland, (0) 802 6517. 
FRANCE: Texas Instruments France, 8-10 
Avenue Morane Saulnier-B.P. 67, 78141 Velizy 
Villacoublay cedex, France, (1) 30701003. 
GERMANY: Texas Instruments Deutschland 
GmbH., Haggertystrasse 1, 8050 Freising, 
(08161) 80-0 od. Nbst; KurfOrstendamm 
195-196,1000 Berlin 15, (030) 8827365; 
DOsseldorfer Strasse 40, 6236 Eschbom 1, 
(06196) 80 70; Kirchhorster Strasse 2, 3000 
Hannover 51, (0511) 64 68-0; Maybachstrasse II, 
7302 Ostfildem 2 (Nellingen), (0711) 3403-0; 
Glldehofcenter, Hollestrasse 3, 4300 Essen 1, 
(0201) 24 25-0. 
HOLLAND: Texas Instruments Holland B.V., 
Hogehilweg 19, Postbus 12995, 1100 AZ 
Amsterdam-Zuidoost, Holland, (020) 5602911. 

• TEXAS 
INSTRUMENTS 

Primed in rhe U.S.A. 

HONG KONG: Texas Instruments Hong Kong 
Ltd., 8th Floor, World Shipping Center, 7 Canton 
Road, Kowloon, Hong Kong, 7351223. 
HUNGARY: Texas Instruments International, 
~~~~0~~.U.42, H-1112 Budapest, Hungary, (1) 1 

IRELAND: Texas Instruments Ireland Ltd., 7/8
Harcourt Street, Dublin 2, Ireland, (01) 755233.
ITALY: Texas Instruments Italia S.p.A., Centro
Direzionale Colleoni, Palazzo Perseo-Via
Paracelso, 12, 20041, Agrate Brianza (Mi), (039)
63221; Via Castello della Magliana, 38, 00148
Roma, (06) 5222651; Via Amendola, 17,40100
Bologna, (051) 554004.
JAPAN: Texas Instruments Japan Ltd., Aoyama
Fuji Building 3-6-12 Kita-aoyama Minato-ku,
Tokyo, Japan 107, 03-3498-2111; MS Shibaura
Building 9F, 4-13-23 Shibaura, Minato-ku, Tokyo,
Japan 108, 03-3769-8700; Nissho-iwai Building
5F, 2-5-8 Imabashi, Chuou-ku, Osaka, Japan
541, 06-204-1881; Dai-ni Toyota Building
Nishi-kan 7F, 4-10-27 Meieki, Nakamura-ku,
Nagoya, Japan 450, 052-583-8691; Kanazawa
Oyama-cho Daiichi Seimei Building 6F, 3-10
Oyama-cho, Kanazawa, Ishika.wa, Japan 920,
0762-23-5471; Matsumoto Showa Building 6F,
1-2-11 Fukashi, Matsumoto, Nagano, Japan 390,
0263-33-1060; Daiichi Olympic Tachikawa
Building 6F, 1-25-12, Akebono-cho, Tachikawa,
Tokyo, Japan 190, 0425-27-6760; Yokohama
Nishiguchi KN Building 6F, 2-8-4 Kita-Saiwai,
Nishi-Ku, Yokohama, Kanagawa, Japan 220,
045-322-6741; Nihon Seimei Kyoto Yasaka
Building 5F, 843-2, Higashi Shiokohjicho,
Higashi-inu, Nishinotoh-in, Shiokohji-dori,
Shimogyo-ku, Kyoto, Japan 600,075-341-7713;
Sumitomo Seimei Kumagaya Building 8F, 2-44
Yayoi, Kumagaya, Saitama, Japan 360,
0485-22-2440; 2597-1, Aza Harudai, Oaza
Yasaka, Kitsuki, Oita, Japan 873, 09786-3-3211.
KOREA: Texas Instruments Korea Ltd., 28th
Floor, Trade Tower, 159-1, Samsung-Dong,
Kangnam-ku Seoul, Korea, 2551 2800.
MEXICO: Texas Instruments de Mexico SA,
Alfonso Reyes 115, Col. Hipodromo Condesa,
Mexico, D.F., Mexico 06120,5/525-3860.
MIDDLE EAST: Texas Instruments, No. 13, 1st
Floor Mannai Building, Diplomatic Area, P.O. Box
26335, Manama Bahrain, Arabian Gulf, 973
274681.
NORWAY: Texas Instruments Norge AlS, PB
106, Refstad (Sinsenveien 53),0513 Oslo 5,
Norway, (02) 155090.
PEOPLE'S REPUBLIC OF CHINA: Texas
Instruments China Inc., Beijing Representative
Office, 7-05 CITIC Building, 19 Jianguomenwai
Dajie, Beijing, China, 500-2255, Ext. 3750.
PHILIPPINES: Texas Instruments Asia Ltd.,
Philippines Branch, 14th Floor, Ba-Lepanto
Building, Paseo de Roxas, Makati, Metro Manila,
Philippines, 2 817 6031.
PORTUGAL: Texas Instruments Equipamento
Electronico (Portugal) LDA., 2650 Moreira Da
Maia, 4470 Maia, Portugal (2) 948 1003.
SINGAPORE (& INDIA, INDONESIA,
MALAYSIA, THAILAND): Texas Instruments
Singapore (PTE) Ltd., Asia Pacific Division, 101
Thomson Road, #23-01, United Square,
Singapore 1130, 3508100.
SPAIN: Texas Instruments Espana SA,
c/Gobelas 43, Ctra de La Coruna km. 14, La
Florida, 28023 Madrid, Spain, (1) 372 8051;
(~~f1uja~~0~6~79-3-5, 08007 Barcelona, Spain,

SWEDEN: Texas Instruments Intemational Trade
Corporation (Sverigefilialen), Box 30, S-164 93
Kista, Sweden, (08) 75258 00.
SWITZERLAND: Texas Instruments Switzerland
AG, Riedstrafse 6, CH-8953 Dietikon,
Switzerland, (01) 74 42811.
TAIWAN: Texas Instruments Supply Company,
Taiwan Branch, Room 903, 9th Floor, Bank
Tower, 205 Tung Hua N. Road, Taipei, Taiwan,
Republic of China, 27139311.
UNITED KINGDOM: Texas Instruments Ltd.,
Manton Lane, Bedford,. England, MK41 7PA,
(0234) 270 111.

A0291

""""'-""""" '..."., ' ... "M ""'jij ... , __ ,iWN_hi ____ • ____ "'~III!I!IIIII" _____ - ______ ,.,... __ _____ 1. __ ____ ~mI'll

TINorth
American Sales
Offices
ALABAMA: Huntsville: (205) 837-7530
ARIZONA: Phoenix: (602) 995-1007
CALIFORNIA: Irvine: (714) 660-1200
Roseville: (916) 786-9208
San Diego: (619) 278-9601
Santa Clara: (408) 980-9000
Woodland Hills: (818) 704-8100
COLORADO: Aurora: (303) 368-8000
CONNECTICUT: Wallingford: (203) 269-0074
FLORIDA: Altamonte Springs: (407) 260-2116
Fort Lauderdale: (305) 973-8502
Tampa: (813) 882-0017
GEORGIA: Norcross: (404) 662-7900
ILLINOIS: Arlington Heights: (708) 640-3000
INDIANA: Carmel: (317) 573-6400
Fort Wayne: (219) 482-3311
IOWA: Cedar Rapids: (319) 395-9551
KANSAS: Overland Park: (913) 451-4511
MARYLAND: Columbia: (301) 964-2003
MASS~CHUSETTS: Waltham: (617) 895-9100
MICHIGAN: Farmington Hills: (313) 553-1500
Grand RapidS: (616) 957-4202
MINNESOTA: Eden Prairie: (612) 828-9300
MISSOURI: St. Louis: (314) 821-8400
NEW JERSEY: Iselin: (201) 750-1050
NEW.MEXICO: Albuquerque: (505) 291-0495
NEW YORK: East Syracuse: (315) 463-9291
Fishkill: (914) 897-2900
Melville: (516) 454-6600
Pittsford: (716) 385-6770
NORTH CAROLINA: Charlotte: (704) 527-0930
Raleigh: (919) 876-2725
OHIO: Beachwood: (216) 464-6100
Beavercreek: (513) 427-6200
OREGON: Beaverton: (503) 643-6758
PENNSYLVANIA: Blue Bell: (215) 825-9500
PUERTO RICO: Hato Rey: (809) 753-8700
TEXAS: Austin: (512) 250-7655
Da"as: (214) 917-1264
Houston: (713) 778-6592
UTAH: Salt Lake City: (801) 466-8973
WASHINGTON: Redmond: (206) 881-3080
WISCONSIN: Waukesha: (414) 798-1001
CANADA: Nepean: (613) 726-1970
Richmond Hill: (416) 884-9181
St. Laurent: (514) 335-8392

TI Re~onal
Technology
Centers
CALIFORNIA: Irvine: (714) 660-8140
Santa Clara: (408) 748-2220
GEORGIA: Norcross: (404) 662-7950
ILLINOIS: Arlington Heights: (708) 640-2909
INDIANA: Indianapolis: (317) 573-6400
MASSACHUSETTS: Waltham: (617) 895-9196
MEXICO: Mexico City: 491-70834
MINNESOTA: Minneapolis: (612) 828-9300
TEXAS: Dallas: (214) 917-3881
CANADA: Nepean: (613) 726-1970

Customer
Response Center
TOLL FREE: (800) 336-5236
OUTSIDE USA: (214) 995-6611

(8:00 a.m. - 5:00 p.m. CST)

© 1991 Texas Instruments Incorporated

TI Authorized
North American
Distributors
Alliance Electronics, Inc. (military product only)
Almac Electronics
ArrowlKierulff Electronics Group
Arrow (canada)
Future Electronics (Canada)
GRS Electronics Co., loc.
Hall-Mark Electronics
Lex Electronics
Marshall Industries
Newark Electronics
Wyle Laboratories
Zeus Components
Rochester ElectroniCS, Inc. (obsolete product
only (508) 462-9332)

TI Distributors
ALABAMA: Arrow/Kierulff (205) 837-6955;
Hall-Mark (205) 837-8700; Marshall (205)
881-9235; Lex (205) 895-0480.
ARIZONA: ArrowlKierulff (602) 437-0750;
HaJl.Mark (602) 437-1200; Marshall (602)
496-0290; Lex (602) 431-0030; Wyle (602)
437-2088.
CALIFORNIA: Los Angeles/Orange County:
ArrowlKierulff (818) 701-7500, (7r4) 838-5422;
Hall-Mark (818) 773-4500, (714) 727-6000;
Marshall (818) 407-4100, (714) 458-5301; Lex
(818) 880-9686, (714) 863-0200; Wyle (818)
880-9000, (714) 863-9953; Zeus (714) 921-9000,
(818) 889-3838;
Sacramento: Hall-Mark (916) 624-9781 ;
Marshall (916) 635-9700; Lex (916) 364-0230;
Wyle (916) 638-5282;
San Diego: Arrow/Kierulff (619) 565-4800;
Hall-Mark (619) 268-1201; Marshall (619)
578-9600; Lex (619) 495-0015; Wyle (619)
565-9171; Zeus (619) 277-9681;
San Francisco Bay Area: Arrow/Kierulff (408)
441-9700; Hall-Mark (408) 432-4000; Marshall
(408) 942-4600; Lex (408) 432-7171; Wyle (408)
727-2500; Zeus (408) 629-4789.
COLORADO: Arrow/Kierulff (303) 373-5616;
Hall-Mark (303) 790-1662; Marshall (303)
451-8383; Lex (303) 799-0258; Wyle (303)
457-9953.
CONNECnCUT: ArrowlKierulff (203) 265-7741;
Hall-Mark (203) 271-2844; Marshall (203)
265-3822; Lex (203) 264-4700.
FLORIDA: Fort Lauderdale: Arrow/Kierulff
(305) 429-8200; Hall-Mark (305) 971-9280;
Marshall (305) 977-4880; Lex (305) 977-7511;
Orlando: Arrow/Kierulff (407) 333-9300;
Hall-Mark (407) 830-5855; Marshall (407)
767-8585; Lex (407) 331-7555; Zeus (407)
365-3000;
Tampa: Hall-Mark (813) 541-7440; Marshall
(813) 573-1399; Lex (813) 541-5100.
GEORGIA: Arrow/Kierulff (404) 497-1300;
Hall-Mark (404) 623-4400; Marshall (404)
923-5750; Lex (404) 449-9170.
ILLINOIS: Arrow/Kierulff (708) 250-0500;
Hall-Mark (708) 860-3800; Marshall (708)
490-0155; Newark (312)784-5100; Lex (708)
330-2888.
INDIANA: Arrow/Kierulff (317) 299-2071;
Hall-Mark (317) 872-8875; Marshall (317)
297-0483; Lex (317) 843-1050.

• TEXAS
INSTRUMENTS

Printed in the U.S.A.

IOWA: Arrow/Kierulff (319) 395-7230; Lex (319)
373-1417.
KANSAS: Arrow/Kierulff (913) 541-9542;
Hall-Mark (913) 888-4747; Marshall (913)
492-3121; Lex (913) 492-2922.
MARYLAND: Arrow/Kierulff (301) 995-6002;
Hall-Mark (301) 988-9800; Marshall (301)
622-1118; Lex (301) 596-7800; Zeus (301)
997-1118.
MASSACHUSETTS: Arrow/Kierulff (508)
658-0900; Hall-Mark (508) 667-0902; Marshall
(508) 658-0810; Lex (508) 694-9100; Wyle (617)
272-7300; Zeus (617) 863-8800.
MICHIGAN: Detroit: ArrowlKierulff (313)
462-2290; Hall-Mark (313) 462-1205; Marshall
(313) 525-5850; Newark (313) 967-0600; Lex
(313) 525-8100;
Grand Rapids: ArrowlKierulff (616) 243-0912.
MINNESOTA: Arrow/Kierulff (612) 830-1800;
Hall-Mark (612) 941-2600; Marshall (612)
559-2211; Lex (612) 941-5280.
MISSOURI: Arrow/Kierulff (314) 567-6888;
Hall-Mark (314) 291-5350; Marshall (314)
291-4650; Lex (314) 739-0526.
NEW HAMPSHIRE: Lex (800) 833-3557.
NEW JERSEY: Arrow/Kierulff (201) 538-0900,
(609) 596-8000; GRS (609) 964-8560; Hall-Mark
(201) 515-3000, (609) 235-1900; Marshall (201)
882-0320, (609) 234-9100; Lex (201) 227-7880,
(609) 273-7900.
NEW MEXICO: Alliance (505) 292-3360.
NEW YORK: Long Island: Arrow/Kierulff (516)
231-1000; Hall-Mark (516) 737-0600; Marshall
(516) 273-2424; Lex (516) 231-2500; Zeus (914)
937-7400;
Rochester: ArrowlKierulff (716) 427-0300;
Hall-Mark (716) 425-3300; Marshall (716)
235-7620; Lex (716) 383-8020;
Syracuse: Marshall (607) 798-1611.
NORTH CAROLINA: Arrow/Kierulff (919)
876-3132; (919) 725-8711; Hall-Mark (919)
872-0712; Marsha" (919) 878-9882; Lex (919)
876-0000.
OHIO: Cleveland: ArrowlKierulff (216)
248-3990; Hall-Mark (216) 349-4632; Marshall
(216) 248-1788; Lex (216) 464-2970;
Columbus: Hall-Mark (614) 888-3313;
Dayton: Arrow/Kierulff (513) 435-5563; Marshall
(513) 898-4480; Lex (513) 439-1800; Zeus (513)
293-6162.
OKLAHOMA: ArrowlKierulff (918) 252-7537;
Hall-Mark (918) 254-6110; Lex (918) 622-8000.
OREGON: Almac (503) 629-8090; ArrowlKierulff
(503) 627-7667; Marshall (503) 644-5050; Wyle
(503) 643-7900.
PENNSYLVANIA: ArrowlKierulff (215) 928-1800;
GRS (215) 922-7037; Marshall (412) 788-0441;
Lex (412) 963-6804.
TEXAS: Austin: Arrow/Kierulff (512) 835-4180;
Hall-Mark (512) 258-8848; Lex (512) 339-0088;
Wyle (512) 345-8853;
Dallas: Arrow/Kierulff (214) 380-6464; Hall-Mark
(214) 553-4300; Marshall (214) 233-5200; Lex
(214) 247-6300; Wyle (214) 235-9953; Zeus
(214) 783-7010;
Houston: Arrow/Kierulff (713) 530-4700;
Hall-Mark (713) 781-6100; Marshall (713)
895-9200; Lex (713) 784-3600; Wyle (713)
879-9953:
UTAH: Arrow/Kierulfl (801) 973-6913; Marshall
(801) 485-1551; Wyle (801) 974-9953.
WASHINGTON: Almac (206) 643-9992, (509)
924-9500; ArrowlKierulff (206) 643-4800;
Marshall (206) 486-5747; Wyle (206) 881-1150.
WISCONSIN: Arrow/Kierulff (414) 792-0150;
Hall-Mark (414) 797-7844; Marshall (414)
797-8400; Lex (414) 784-9451.
CANADA: calgary: Future (403) 235-5325;
Edmonton: Future (403) 438-2858;
Montreal: Arrow Canada (514) 735-5511; Future
(514) 694-7710; Marshall (514) 694-8142;
Ottawa: Arrow Canada (613) 226-6903; Future
(613) 820-8313; Quebec City: Arrow canada
(418) 871-7500;
Toronto: Arrow Canada (416) 670-7769; Future
(416) 612-9200; Marshall (416)458-8046;
Vancouver: Arrow Canada (604) 421-2333;
Future (604) 294-1166.

00291

,.,.II_ liM I ~~.illlll,I'IIIII,... __ -

l Printed in U.S.A., May 1991
2564007-9761 revision'A

'._ •.••. ____ ".,.'-"._-".,,"-"."'''''0'' • • ·' •• N··.·'·.·.

• TEXAS
INSTRUMENTS

SCGU004

