{'f TEXAS
INSTRUMENTS

TMS 34082

Designer’s Handbook

1991 Datapath VLS| Products

TMS 34082
Designer’s Handbook

2564007-9721 revision A
May 1991

Texas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue any
semiconductor product or service identified in this publication without notice. Tl advises its
customers to obtain the latest version of the relevant information to verity, before placing orders,
that the information being relied upon is current.

Ti warrants performance of its semiconductor products to current specifications in accordance
with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Unless mandated by government requirements,
specific testing of all parameters of each device is not necessarily performed.

Tl assumes no liability for Tl applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Texas Instruments products are not intended for use in life-support appliances, devices, or
systems. Use of a Tl product in such applications without the written consent of the appropriate
Tl officer is prohibited.

Copyright © 1991, Texas Instruments Incorporated

Preface

Read ThlS First

N R N R R e
A

/

'&M\ﬁw

How to Use This Manual

The purpose of this user’s guide is to provide the Tl customer with information on the
TMS34082 graphics floating-point processor. This manual can also be used as a
reference guide for developing hardware or software applications. The following list
summarizes the contents of the chapters and appendices in this user’s guide.

Chapter 1 Overview of the TMS34082
Introduces the TMS34082, its key features, typical applications, and support tools
available.

Chapter 2 Pinout and Pin Descriptions
lllustrates the TMS34082s package, identifies the interfaces that signals are associated
with, and provides an explanation of each signal.

Chapter 3 Data Formats
Discusses the integer and floating-point operand formats accepted by the TMS34082.

Chapter 4 Architecture
Describes the architectural elements of the TMS34082. Includes the bus interfaces,
sequence control, registers, internal floating-point unit core, and test logic.

Chapter 5 Coprocessor Mode

Describes using the TMS34082 as a coprocessor to the TMS34020, including the
hardware interface, recommended configurations, and example programs with timing
diagrams.

Chapter 6 Host-Independent Mode
Provides information on using the TMS34082 as a stand-alone processor or a
coprocessor to another host.

Chapter 7 Internal Instructions
Shows how to use internal instructions in both coprocessor and host-independent mode.
Explains the format and provides an alphabetical reference of the internal instruction set.

Chapter 8 External Instructions
Shows how to use external instructions in both coprocessor and host-independent mode.
Explains the format and provides an aiphabetical reference of the external instruction set.

Read This First

Appendix A System Design Considerations
Provides recommendations on logic design, bypass capacitors, PWB design, and thermal
considerations.

Appendix B TMS34082 Data Sheet
Contains the commercial data sheet for the TMS34082A.

Appendix C SMJ34082 Data Sheet
Contains the advance information military data sheet for the SMJ34082A.

Appendix D Maximizing Your MFLOPS with the TMS34082 and Motorola
MC68030

Contains an application note on interfacing the TMS34082 (in host-independent mode) to
the Motorola MC68030.

Appendix E A High-Performance Floating-Point Image Computing Workstation
for Medical Applications

Contains an application note on an imaging system using a TMS34020 with four
TMS34082 coprocessors.

Appendix F Parallel Signal and Matrix Processing with the TMS34082
Contains an application note outlining and analyzing a TMS34082-based parallel
architecture design.

Read This First

Read This First

Related Documentation

The following documents are available from Texas Instruments. To obtain a
copy of any ofthese Tl documents, please call the Customer Response Center
(CRC) at (800) 232-3200 unless otherwise noted. When ordering, please
identify the book by its title and corresponding literature number.

TMS34082A Data Sheet (literature number SCGS001) is included in
Appendix B of this book. It contains electrical specifications, timing
information, and mechanical data for the TMS34082A.

SMJ34082A Data Sheet (literature number SGUS012A) is included in
Appendix C of this book. It contains electrical specifications, timing
information, and mechanical data for the SMJ34082A.

TMS34020 User’s Guide (literature number SPVU019) discusses hardware
aspects of the TMS34020, such as pin functions, architecture, stack
operations, and interfaces. Contains the TMS34020 instruction set and
interface to the TMS34082.

TMS34020 Data Sheet (literature number SPVS004) contains electrical
specifications, timing information, and mechanical data for the
TMS34020.

TMS34082 Software Tool Kit User’s Guide describes the C compiler,
assembler, linker, librarian, and simulator that are available for developing
TMS34082 external instruction code. Call your Tl sales representative for
the demonstration version of the tool kit.

TMS340 Family Code-Generation Tools User’s Guide (literature number
SPVUO004) describes the C compiler, assembler, linker, archiver, and
auxiliary tools that are available for developing TMS34010, TMS34020, or
TMS34020/TMS34082 code.

TMS34082 Assembly Support for Code-Generation Tools User’s Guide
(literature number SPVU029) summarizes the instruction code used with
the TMS34082.

TIGA Interface User’s Guide (literature number SPVU015) describes the
Texas Instruments Graphics Architecture (TIGA), a software interface that
standardizes communication between application software and
TMS340-based hardware for IBM-compatible PCs.

TMS34082 3-D Graphics Library User’s Guide describes an extensive array
of C-callable functions including polygon clipping, shading, and vector and
matrix operations. This library is TIGA-compatible and can also be used
in non-TIGA applications. Call your Tl sales representative or the DVP
System Engineering Hotline for information on purchasing this product.

Read This First

You may also find the following documentation useful. Many of the complex
graphics instructions in the TMS34082 are based on algorithms found in this
book:

Foley, James, and Andries van Dam. Fundamentals of Interactive Computer
Graphics. Reading, Massachusetts: Addison-Wesley, 1982.

Style and Symbol Conventions

vi

This document uses the following conventions.

Program listings, program examples, filenames, and symbol names are
shown in a special typeface Similarto a typewriter’s. Examples use
abold vexsion of the special typeface for emphasis.

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

In syntax descriptions, the instruction is in a bold typeface font and
parameters are in an talic typeface. Portions of a syntax that are in bold
should be entered as shown; portions of a syntax thatare in italics describe
the type of information that should be entered. Here is an example of an
instruction syntax:

NEGF CRs, CRd

This instruction has two parameters, indicated by CRsand CRd. When you
use NEGF, the parameters must be actual TMS34082 registers, such as
RA9 and RB1.

Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

MOVD -Rs+, CRd [, count}

The MOVD instruction has three parameters. The first two parameters, Rs
and CRd, are required. The third parameter, count, is optional. As this
syntax shows, if you use the optional third parameter, you must precede it
with a comma.

Inthe internal instruction set listings, Rs and Rd referto TMS34020 source
anddestination registers, respectively. CRs and CRd refer to coprocessor
or TMS34082 registers.

Read This First

Read This First

Trademarks
EPIC, SCOPE, and TIGA are trademarks of Texas Instruments Incorporated.

IBM, PC-DOS, and PC/AT are trademarks of International Business Machines,
Inc.

MS-DOS is a trademark of Microsoft Corporation.
NeXT is a trademark of NeXT, INC.
PAL is a registered trademark of Monolithic Memories, Inc.

X Windows Systems is a trademark of the Massachusetts Institute of
technology.

vii

Read This First

If You Need Assistance. ..

if you wantto... Do this...
Receive more information Call the CRC Hot Line:
about Tl floating-point products (800) 232-3200
Or write to:

Texas Instruments Incorporated
Datapath VLSI Products
Marketing Communications
P.O. Box 655303, M/S 8316
Dallas, Texas 75265

Order Tl documentation

Call the CRC Hot Line:
(800) 232-3200

Ask questions about product
operation or report suspected
problems -

Call DVP Systems Engineering
Hot Line:
(214) 997-3970

Inquiries related to this

document:

Write to:

Texas Instruments Incorporated
Datapath VLS| Products
Marketing Communications
P.O. Box 655303, M/S 8316
Dallas, Texas 75265

viii

Read This First

N A A A,
RO E RSO RN SO G NS RN ON RS G393 73593

Overview of the TMS34082v.. N . 1-1
1.1 TMS34082 Key Featurest aananes 1-2
1.2 Performance BENChMArKSottt eviiaeiiinaianenns 1-3
1.3 TMS34082 General Description ...t e 1-4
1.4 Typical Applicationso 1-9
1.5 Development TOOISt i ettt e 1-11
1.5.1 TMS34082 Software TOOI Kitcoviii i 1-11
1.5.2 TMS34082 3-D Graphics Library ...t 1-12
1.5.3 TMS34082 DemonstrationBoardo, 1-13
1.6 TMS34020 Graphics System Processorccovnieeniiiiiniiiinneeannn, 1-14
1.6.1 TMS34020 Key Featuresoovuneiiiiiiiiiiiiiiiiiiaeinanennnes 1-14
1.6.2 TMS34020 Software TOOIS v e et it e i eeeaiaaeas 1-17
1.6.3 TIGAGraphicsInterfacecoiiiiiiiii i 1-19
1.6.4 TMS34020 Software DevelopmentBoard ...t 1-20
1.7 TMS34082 Ordering Informationt 1-21
1.8 Technical Assistance ..ot i it e 1-22
Pinout and Pin Descriptions traeansas teessnesnenannsesEEssnsuanes ees 2-1
P2 N 4o T G 2-2
2.2 Pin Functional Descriptions oot 2-5
Data Formats NaevesssansuannsenrnnaerTean Crermsarssanesesisareanannnnny . 3
3.1 IntegerFormatso i e s 3-2
311 SignedIntegerso e 3-2
3.1.2 Unsigned Integer e e 3-2
3.2 Floating-Point FOrMatsoineimiiiii it e ess 3-3
3.2.1 Single-Precision Floating-Pointo i 3-3
3.2.2 Double-Precision Floating-Pointt 3-3
3.2.3 Denormal and Wrapped NUMbersc.coiiiiiiiiiiiennnnienn... 3-4
3.2.4 Special Floating-PointNumberst 3-5
3.25 Range of Floating-Point Numbers e 3-6
Architectureccoviniiannn crsessaensn Nesavseusess Ciresessessssannenunn 4-1
4.1 Functional Block Diagram ..ottt 4-2
42 OperatingMOGEScnvnii ittt 4-3
43 BUSIMEHECES ...ttt i 4-4

Contents

481 LAD BUS . oottt e e e 4-4

432 MSD BUS ..ottt e e e et 4-5

44 Sequence CoNrolo i i i et e, 4-7
T & (- 151 (=1 RO 4-8
451 RegisterFilessRAandRB e 4-11

452 FeedbackRegisters Cand CTt it 4-12

453 Configuration Register (CONFIG), 4-13

454 Status Registeroii i e e 4-19

455 Indirect Address Register e 4-22

B B - Ve G 4-22

457 Interrupt Vector Registero e 4-23

458 Interrupt Return Begistercoiiiiiiiiii it i i 4-23

459 COUNTX and COUNTY Registerscooviiiiiiiiinnnennnennnnn. 4-24

4.5.10 MIN-MAX/LOOPCT Register .. .ottt eiii e eieeeeeeans 4-24

T o o U (- 4-25
4.6.1 Operand SeleCtiont et i 4-25

4.6.2 Pipeline Registersot i e 4-27

483 ALU .. e e 4-29

4.6.4 MURIDREr ... e e 4-29

465 OUPUL CONIOl .. o ittt ettt s 4-31

47 RESET and RDY ...ttt ittt et i ittt e e 4-32
48 Emulation Control i i e e 4-33
4.9 JTAG TeSt POrt .. it i et 4-34
491 TestInStruCtions oottt . 4-34

4.9.2 Boundary Scan Registerviiiiii it e 4-35

5 CoprocessorMode vevneunnn cerarsens Shemssennersenaness Craaesesancuen vens 5-1
5.1 TMS34020/TMS34082 Interface Overviewciiiiiiinrrnianaaannn. 5-2
Lo [o (R 5-4
53 TMS34082 Initializationt i e 5-4
5.4 Configuration Register Settings for CoprocessorMode ...ttt 5-5
541 EXCeplion Maskscciiiiiiiiiiiiiiiiieie e eiannnaearaeenaas 5-5

542 Fastvs IEEEMOOEttt e 5-5

5.43 PipelineMode Settingsoconiiiiii i e e 5-5

5.5 TMS34020/TMS34082 LAD Bus Operationccoerriieieinnnnrrnneannannss 5-6
551 LADBUS ProtoCol ot e e 5-7

5.5.2 Enablingthe LADBusSDriverso i, 5-12

553 BusFaults e e 5-12

5.6 Polling the COproCESSOr ...ttt ettt e e e ettt aaaieaaaarsreenanaans 5-14
57 Interrupt Hanalingo i i i 5-15
5.7.1 Exception DetectInterruptso 5-15

5.7.2 Software Interrupls e 5-16

5.7.3 Interruptingthe TMS34020ttt e i eeeeanns 5-16

5.8 TMS34020/TMS34082 Code Exampleooiiiiiiiiiii i eiaaeann 5-18

X Table of Contents

Contents

5.9 TMS34020/TMS34082 Timing Examplesccooiiieviian...
5.10 MSD Bus Operation in CoprocessorModeoo oot
5.10.1 Connecting ExternalMemoryc.cciiiiiiiiiiiiinn..
5.10.2 TMS34082 External SRAM Timing Analysis
5.10.3 UsingExternalCode ...,
5.11 TMS34020/TMS34082/SRAM Code Example
512 Multiple TMS340825 i et e e
Host-Independent Modeciciinsiiinersnsncnsscsnsnnnnnanss -
6.1 Initialization e
B.1.1 PinConnectionsc.ciiiriiiii it riataaann..
6.1.2 BootstrapLoadero i
6.2 LAD BUS ... e
6.2.1 Control Signals...... ...t e
6.2.2 Immediate DataTransfers,
B.3 MOD BUS .. et e
6.3.1 MSDBusControl Signalscooiiiiiiiiii e,
6.3.2 MemoryModelsottt i i
B.4 RESE L it
6.5 Wait States ... e e
6.6 User Programmable Outputsoiiiiiiiiiiiiinininns,
6.7 Conditional Code INputo i i e e
B.8 IMeITUDIS ... e i
6.8.1 Hardwarelnterruptso i
6.8.2 SoftwarelInterrupts i
6.8.3 ExceptionDetectinterrupts,
Internal InsStructionsovveiiiiiiiii ittt i it i st e n e
7.1 Internal Instructions OVerviewt
7.2 Complex Graphics Instructions it
7.3 Internal Routine Addresses and Cycle Counts
7.4 Coprocessor Mode Internal Instruction Format
7.41 CoprocessorIDField i i
7.42 RegisterField
7.4.3 AddressingModeField L.
744 FPUOperationFieldoiiiiiiiiiiiiiiiiinnn,
7.5 Type,Size,and I Fields,
7.6 InternalInstructionOpcodest
External InStructionscceviiiiinnrncrvsnanisnanssssnnaesannnrsnsns
8.1 OVEIVIBW ..ot i e et
8.2 FPU Processing Instruction Format,
8.2.1 FPU Processing SequencerOpcodesccoiiivn..
8.2.2 OperandSelection...... ... il

.........
.........

.......... 6-1

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.........

.........

.........

..........
..........
.........

..........
..........

Contents

Xii

8.2.3 FPUProcessing Instruction Codescovvviriiiieininnerrennnnnn. 8-8

8.3 ExternalInstruction Cycle CouMSottt ittt i ieranenans 8-9
8.4 General Restrictions for External Instructionst 8-13
85 External Assembly INStructionsovi it i 8-14
System Design Considerations vernsans Neseseansasenas serersnaenna < A-1
L U S I To 1o DT o A-2
A2 BYpass Capactorsttt i e e et A-3
A3 PWB DSIgN L.t e e A-4
L 0 1o o7 g & T 11 {1 o A-5
A5 Thermal Considerationsottt i et einaaananns A-8
TMS34082A Data Sheet Cesseresraenans Cerersrrenan Meeeeranasearnsisnsnran wna B~
SMJ34082A Data Sheet........ Cerersssesannnns Phasenen Nrrersraesestraveenanan ves C-1
Maximizing Your MFLOPS with the TMS34082 and Motorola MC6803000u0. D-1
L0 =T D-3
Objectives ettt e, D-3
TMSB3B4082 OVEIVIEW . ..ottt ettt et e e aair e aeens D-3
System ArChiteCtUre e e D-4
SYSteM OVEIVIEBW .. i i i it D-4
Objectives and Trade-Offsttt it i i et eee e e D-5
Software DesCriptiON e e e e D-5
Overview of Code Development ittt i e e e D-5
BigEndian, Litle Endianco i e e D-6
TMS34082 Code Developmentt et s aree e ens D-8
Motorola MC68030 Code Developmentcoiiiiiiiiiiiii i iiiien e D-9

Intel 80286 Code Developmento i e D-10
Hardware Descriplion o i e e e i D-11
L0 T T D-11
0 B {41 T - - D-11

Host Processorinterfacecooi i e e et D-12
TMS34082 as a Parallel Processorottt i e e rienraraneanns D-12
Performance ANalY SISt i e e e e e, D-13
System Information — Parts Listt et e e D-14
Schematics — Hardware Design i i e e D-15
PAL® Code LiStNG .« ...\ttt ettt e e e et e e e e e e D-39
Memory Decode for TMS34082 Accelerator Boardcccvveuveneennnn.. D-39

1/0 Decode for TMS34082 AcceleratorBoard ... iivinnnnnnnn D-41

Status Control for TMS34082 AcceleratorBoardccciiiiineiennan.. D-42

Byte Enable Decode for TMS34082 AcceleratorBoardcooevveenn.... D-44
Pattern Decode for TMS34082 AcceleratorBoardt D-45
Software Listings ie i i e e e D-47
TC (=T =307 D-47
Table of Contents

Contents

E AHigh Performance Floating-Point Image Computing Workstation for Medical Application

Y o1 (=T (A E-3
INtrodUCHION .« .. e E-4
BaCKgrOUNG . .. i e E-5
System ArchiteCture it e E-6

NeXT ™ Host System and Interface Logico ... E-6
(o= To < T O E-8

1T =T 13T oA E-9

Video DiSplay . ..o e e E-9
Software Architecture e e E-10
APl At ON ATBaSttt e i e E-12
PACS WorKstation oot e e E-12
Electronic Alternator i e e et E-13

Image Processingand Graphicso it e e E-14

L0 o] 1 o 1311 T o E-16
ACKNOW A M NS . . o i ittt i ittt i ettt i e E-17
=T (= =74 Vo= E-17
F Parallel Signal and Matrix Processing with the TMS34082 Creeseeaas F-1
1207 11T (o 1 F-3
The HARP Architectureo i i i et e e eieeeeaes F-4
TMS34082 Host-Independent Mode Optimizationsoiiiiiie e F-8
o o] (1 12T F-10
Simulation Results and Performance Analysisoiiiiiiiiiniiiiininnnn.n. F-13
CONCIUSION .. e e e e e F-19
=TT o] oot 22T o] 11 F-20

Xiif

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.
Figure 1-10.
Figure 2—1.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3—4.
Figure 3-5.
Figure 4—1.
Figure 4-2.
Figure 4-3.
Figure 44,
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 4-10.

Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.

Xiv

TMS34082 High-Level Block Diagram oo e 1-4
Coprocessor Mode Bus Architecturescoviiiiiiiinniininnnenuns 1-7
Host-Independent Mode Bus Architecturest 1-8
Sample TMS34082 Architecturesttt i i 1-10
Overview of TMS34082 Code-GenerationToolscoviiunne.. 1-11
TMS34082 Demonstration Board Block Diagram0...0. 1213
TMS34020 High-Level Block Diagramooiiiiiii it 1-15
TMS34020 and TMS34082 Software TOOISvvvviririrnnnnnnnnnnnns 1-18
Graphics Processing Shared Between TMS340 and Host Processors 1-19
TMS34020 SDB Block Diagramovviin i renns 1-20
TMS34082 Pinout, 145-PiIn PGAPackagecoovvviiiiininrernnnnennns 2-2
IEEE Signed Integer Format it 3-2
IEEE Unsigned Integer Formato i i i 3-2
IEEE Single-Precision Format e 3-3
IEEE Double-Precision Formato i i i 3-4
Special Floating-Point Formatsovt i e 3-5
-Functional Block Diagramo 4-2
Register Usage ...t 4-8
TMS34082 Register Modelc oot 4-9
General-Purpose Registerst 4-11
Register Files with ONEFILE Highot 4-12
Host-Independent Mode LAD Bus Configuration for LADCFG High 4-15
MSD Bus Configuration for MEMCFG LOWco i 4-16
MSD Bus Configuration for MEMCFG Highccooiiiivnnn... 4-16
Indirect Address Register Formatt 4-22
Stack Register Format ...ttt i ittt et 4-23
Interrupt Vector Register Format i, 4-23
Interrupt Return Register Format oottt 4-23
COUNT Registers Format ...ttt ieees, 4-24
MIN-MAX/LOOPCT Regiister Formatcoiiiiiiiiiii i ininneess 4-24
Table of Contents

Figures

Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.

Figure 5-9.

Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.

Figure 5-14.
Figure 5-15.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 7-1.
Figure 7-2.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure A-1.
Figure A-2.
Figure A-3.
Figure D-1.
Figure D-2.

FPU Core Functional Block Diagram oiiiiiiiiiiiii it 4-26
Effects of Pipelining e e 4-28
Functional Diagram for ALU e 4-29
Functional Diagram for Multiplier oo i, 4-30
Instruction Register Orderof Scan ..ot e 4-34
Boundary Scan Register OrderofScan ..ottt iiiinianane, 4-36
TMS3402/TMS34082 Register Model i ieieeeanns 5-2
TMS34020/TMS34082 Interconnectionoeviiieneiiivnreenneennn. 5-3
Transferring a Command from the TMS34020 to the TMS34082 5-8
Transferring TMS34020 Registers tothe TMS34082cvtlt. 5-9
Transterring from the TMS34082 to a TMS34020 Register 5-10
Transferring Memory o the TMS34082 i 5-11
Transferring from the TMS34082t0 MemMOryo.vveeiniinneriannnnn. 5-12
Muttiply 2 Double-Precision Numbers in TMS34020 Registers and Store Back

to TMS34020 Registers (Mode 1) ... e 5-21
Add 2 Single-Precision Numbers from DRAM and Store Result Back to DRAM

(MOGB 2) ..ottt e e e e et e e e 5-22
Add 2 Single-Precision Numbers from DRAM and Store Result Back to DRAM

(Mode 2), Instructions Notin TMS34020Cacheciviirenneean. 5-23
TMS34020/TMS34082/SRAM with Minimal SRAM Code Space

(MEMCFG = L) - oottt et e et e et a s 5-24
TMS34020/TMS34082/SRAM with Maximum SRAM Code/Data Space

(MEMCFG = L) ittt ittt et e et 5-25
Memory Map for ExternalMemory ...t 5-26

Example Subroutine Usingthe Jump Tableooiiiiiiiiiit, 5-27

TMS34020 with Multiple TMS34082/SRAM Blocks (MEMCFG =L) 5-37
Bootstrap Loader ettt 6-3
UsingFIFOS onthe LAD BUS ivut i e eeaeeaaaas 6-4
Using COINT as a Device Select (LADCFG=H)cuvvrneeinaennnn.. 6-5
Source for Internal Instructions in CoprocessorMode 7-1
3-D Graphics Pipeline Using TMS34082 Complex Instructions 7-4
Source of Instructions for CoprocessorModeol 8-1
Instructions in Host-IndependentModet 8-1
Operand SeleCtioN e 8-4
Example of Using RAS and CAS Buffers in CoprocessorMode A-2
Recommended Bypass CapacitorPlacement00 A-3
Recommended Clock Routing Techniquest A-5
Motorola MC68030 Interface to the TMS34082 — Block Diagram D-4
Data Organization inMemory i D-7

XV

Figures

Figure D-3.
Figure D—4.
Figure D-5.
Figure D-6.
Figure D-7.

Figure D—8(a). Block Diagram
Figure D-8(b). Block Diagram

Figure D-9.

Figure D-10.
Figure D—11.
Figure D-12.
Figure D-13.
Figure D-14.
Figure D—-15.
Figure D~16.
Figure D-17.
Figure D~18.
Figure D-19.
Figure D-20.
Figure D-21.
Figure D-22.
Figure D-23.
Figure D-24.
Figure D-25.
Figure D-26.
Figure D-27.
Figure D-28.
Figure D-29.
Figure D--30.

Figure E-1.
Figure E-2.
Figure E-3.
Figure E—4.
Figure F—1.
Figure F-2.
Figure F-3.
Figure F-4.
Figure F-5.

xvi

Block Diagram — TMS34082 Codevvtiiiirniiiiiiiiiiaennnnnnn. D-8
Block Diagram — Motorola MC68030Codeccciiiiiiiiiiinnn.. D-9
Block Diagram — PC/AT Code ..ottt ittt it ee i eaeaaannnns D-10
PC/AC Interface: I/O and Memory Addressingccoovvveeiaeeeannnn.. D-11
Motorola MC68030 Interface: Memory Addressingccovvivin.. D-12
.. D-15
.. D-16

PC/AT I/F and Control, Details of U1, U5, U6, U7, andU8 D-17
PC/AT I/F and Control, Details of U29 i, D-18
PC/AT I/F and Control, Details of U2, U3, and U4 D-19
Motorola MC68030 and Address Buffers, Details of U31, U32,and U33 D-20
Motorola MC68030 and Address Buffers, Details of U10 D-21
Motorola MC68030 and Address Buffers, Details of Oscillatorand U30 D-22
Motorola MC68030 Decode/Control, Detailsof U11 D-22
Motorola MC68030 Decode/Control, Details of RP1, RP2, andRP3 D-23
Motorola MC68030 Decode/Control, Details of U11, U12,U13,and U30 D-24
8K x 8 SRAM, Details of U15, U16, U17,andU18cvviiinnn... D-25
Motorola MC68030 Decode/Control, Details of U3, and U37 D-27
8K x 8 DP-SRAM, Details of U14,and U19 o i, D-28
FIFO Logic, Details of U23, U24, U25,andU26 D-29
8K x8DP-SRAM, Details of U20 i D-31
FIFO Logic, Details of U21o i e aeens D-32
FIFO Logic DP-SRAM, Details of U22 oo e D-33
FIFO Logic, Details of U4 i i e ns D-34
TMS34082, Details 0T U38 ..ottt e e e e eiaieennnn D34
TMS34082, Details 0f U28 ..o oottt D-35
TMS34082, Details 0f U28 it i e i D-36
AT-Bus CONNECIOr oo i D-37
L0 T 1o (£ N D-38
UWGSP3 Software Architectureot i i iennn E-6
UWGSP3 Software Architecturet i i eennns E-10
Lowpass Filter Specification Windowttt E-11
Image Load (left) and Virtual Frame Buffer (right) Windows E-12
System ArChitECtUrettt i i e e tetee e reeeannannnenns F-5
SYStemM MEMOrY MaD ..ottt e e et F-6
PE ArChiteCtUret i i e ettt ettt e F-7
LAD Bus Controller ArchiteCtUreot iiii e reieianee s F-7
Parallel Jaccobi Updating on a Systolic Architecture F-12
Table of Contents

Figures

Figure F-6.
Figure F-7.
Figure F-8.
Figure F-9.
Figure F-10.
Figure F-11.

Matrix Multiplication Performance on 10-Processor Systems F-14
28 x 128 Matrix Multiplication on P-Processor Systems F-14
QRD Performance on 10-Processor Systemsoovieiiiiiinann F-16
28 x 128 QRD on P-Processor SYStemscciiriniiiirnnnnanannnnns F-16
SVD Performance on 8-Processor Systemsooiiiiiiiiiiiiiiina F-17
48 x 48 SVD 0n P-Processor SYStemsottt F-18

Xvii

Tables

Table 1-1.
Table 1-2.
Table 1-3.
Table 1-4.
Table 1-5.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 3—1.
Table 4—1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 4—13.
Table 4-14.
Table 5-1.
Table 5-2.
Table 5-3.

xviii

TMS34082 Integer Benchmark Timings ..o iiiiiiieennnnns 1-3
TMS34082 Floating-Point Benchmark Timingscoiveven.... 1-3
Description of the Benchmarks Usedt it 1-3
Applications forthe TMS34082ttt i ettt 1-9
TMS34082 Product Information i 1-21
Pin Assignments (PGAPackage)c...eeeiinniiiiiiiienennenns 2-3
Alphabetical Listing — Pin Assignments (PGA Package) 2-4
LAD BUS SIgNals . ..oovttt i i i e e e e e e 2-5
MSD BUS SIgNalsoovirii it e e e 2-7
Clockand Control Signalsiitiin ittt it et e e 2-9
Emulation Control Signals oo i i i e 2-9
Powerand N/C Signalsciiiiiiniiin it iiiinarenannnns 2-10
Floating-Point Number Representationsc.iiiiiiiiiiinnn., 3-6
MSD Bus Control Signals ...t e 4-5
Memory Operations onMSD it e e e e 4-5
Internal Registers ... it e e 4-10
Configuration Register Definitiont 4-14
Pipeling Settingst e 4-17
Handling Wrapped Multiplier Outputs, 4-18
Data Ordering for Loads/Storesc..oiiiii i i 4-18
RoundingMOdESt e 4-19
Status Register Definition 4-20
Signal States DuringReset ... i i e 4-32
TESt MOOES . . ittt i e e et 4-33
Test Pins for Normal Operationc.ouurriiiiiiiiiiiiiiiieennns 4-34
Instruction Register Opcodescoiiiiirriir i i 4-35
Boundary Scan RegisterEnable Bits o i, ... 4-35
Recommended TMS34082 Pin Connectionscveeiviiiinnenenen.ns 5-3
Bus Cycle Completion Conditions ...ttt 5-13
Bit Definitions for TMS34020 Status Check Command 5-14

Table of Contents

Tables

Table 5-4.
Table 6-1.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 8-1.
Table 8-2.
Table D-1.
Table D-2.
Table D-3.
Table D-4.
Table F-1.
Table F-2.

Parameters Used for Calculating SRAM Speedooiiiiiiiiiennn. s 5-25
Pin CONNECHIONS .« v uirnrt sttt iiie et e eaaaee e aansnaenanannnrrannaneeans 6-2
Internal ROM Routines (for Mode 0 FPU Operations)coovveinan. 7-8
COProCESSOr IDS - vttt e 7-14
AddressingMOdes ...t e 7-15
OPErand TYPES - ..ottt i ie i e e 7-16
Cycle Counts for External Instructionscooiiiiiiiiiiii s, 8-9
Bit Definitions for External Instructionso it 8-14
Performance Comparison Chartciiiiiiiiiiiiiiiieanennn, D-13
System Information —Parts List i D-14
8K x 8 SRAM DP-SRAM, Detail Pin Assignments for U15, U16, U17, and U18 . D-26
FIFO Logic, Details of Pin Assignments for U23, U24, U25,and U26........... D-30
Distributed FFT Performance Resultsot F-15

Pipelined FFT Performance Results for Real-Time Signal and Image Processing F-17

Xix

Examples

Example 5-1.
Example 5-2.
Example 5-3.
Example 5—4.
Example 5-5.
Example 5-6.
Example 5-7.
Example 5-8.
Example 5-9.

Using the Status Check Commandt 5-14
Saving and Restoring the TMS34082 Machine State 5-16
Multiplying TWo 3 x 3Matrices iiieiene, 5-18
Instructions fora3 x 3by 3 x 3 Matrix Multiplycociiiii L 5-19
Assembler Source for Double-Precision Multiply 5-20
Assembler Source for Single-Precision Add 5-20
TMS34020 Assembiler Listing for 3 x 3 by 3 x 3 Matrix Multiply 5-29
TMS34082 Assembiler Listing for 3 x 3 by 3 x 3 Matrix Multiply 5-30
Assembler Code for Multiple TMS34082scooviiiiiiiiinnnnnnnn.. 5-38

Table of Contents

Chapter 1

Overview of the TMS34082

N N A A B S D A A A N s A R A S S N R Y

The Texas Instruments TMS34082 Graphics Floating-Point Processor is
designed for your advanced numeric applications. This high-performance
device offers an outstanding price/performance ratio, flexibility, and ease of
use with TI’s development tools. The TMS34082 acts as either a tightly
coupled coprocessor for the TMS34020 Graphics System Processor (GSP),
as an independent processor, or as a coprocessor to another host.

By integrating a 64-bit IEEE Floating-Point Unit (FPU) with a modified Harvard
architecture microprocessor and multi-port register files onto a single device,
the TMS34082 can sustain exceptionally high internal throughput rates. All
internal data paths are 64 bits wide. The RISC-like basic instruction set
executes at a rate of one instruction per clock cycle. In addition, many popular
numeric and graphics routines are contained directly on-chip.

The TMS34082 offers an attractive cost/performance ratio and supports the
integration of graphics- and computation-intensive solutions in a single,
low-cost device. The cost per MFLOP performance achieved by the
TMS34082 makes it an ideal floating-point solution.

Texas Instruments supports the TMS34082 with a complete set of PC-based
hardware and software developmenttools, including an easy-to-use simulator,
a TMS34020/TMS34082 software development board, a TMS34082
demonstration board, a 3-D graphics library, an optimizing C compiler, a
macro-assembier, and software libraries.

1-1

TMS34082 Key Features

1.1 TMS34082 Key Features
High-performance floating-point RISC processor optimized for graphics

Two operating modes:

Floating-point coprocessor for the TMS34020 Graphics System
Processor
Independent floating-point processor

Direct connection to TMS34020 coprocessor interface

Direct extension to the TMS34020 instruction set
Multiple TMS34082 capability

Fast instruction cycle time:

TMS34082-40. . .50-ns coprocessor mode, 50-ns host-independent
mode

TMS834082-32. . .62.5-ns coprocessor mode, 60-ns
host-independent mode

Sustained data transfer rates of 160M bytes/second (TMS34082-40)
Sequencer executes internal or user-programmed instructions
Twenty-two 64-bit data registers

Comprehensive floating-point and integer instruction set

Internal programs for vector, matrix, and 3-D graphics operations

Full IEEE Std 754-1985 compatibility:

Addition, subtraction, multiplication, and comparison
Division and square root

Selectable data formats:
32-bit integer
32-bit single-precision floating-point
64-bit double-precision floating-point
External memory addressing capability:

Program storage (up to 64K words)
Data storage (up to 64K words)

0.8-um EPIC™ CMOS technology

High-performance
Low power (<1.5 W)

1-2 Overview of the TMS34082

Performance Benchmarks

1.2 Performance Benchmarks

Tables 1-1 and 1-2 show benchmark timings. Table 1-3 describes the
benchmarks selected to show TMS34082 performance.

Table 1-1. TMS34082 Integer Benchmark Timingst

Integer

Benchmark Units of Measure TMS34082A-32 TMS34082A-40
MIPS Equivalents | MIPS 32 40
Dhrystones Dhrystones/second 10,240 12,800
Table 1-2. TMS34082 Floating-Point Benchmark Timingst

Single-Precision Double-Precision

Benchmark Units of Measure TMS34082A-32 | TMS34082A40 | TMS34082A.32 | TMS34082A-40
Peak MFLOPS MFLOPS 32 40 16 20
Linpack MFLOPS 11.0 13.7 6.3 7.9
Whetstones MWhetstones/second 7.9 9.9 4.6 5.7

T Based on actual measured system performance.

Table 1--3. Description of the Benchmarks Used*

Benchmark Operations Tested Where Applicable

Floating-point and integer array manipulation, . . ;

Linpack including Gaussian elimination, vector dot products, glzr;?eufztsi(t;ms of linear equations with array
and matrix multiplication P
Mathematical operations: integer, floating-point, and . . - . e

Whetstones trigonometric operations Engineering and scientific computing applications
Enumeration, record and pointer manipulation, and . -

Dhrystones integer operations Systems programming applications

1 Reference: Hinnant, David F., “What Makes a Good Benchmark?”, MIPS, September, 1988, pp. 102-103.

1-3

TMS834082 General Description

1.3 TMS34082 General Description

The TMS34082 is a high-speed floating-point processor implemented in the
Texas Instruments advanced 0.8 pm CMOS technology. On a single chip, the
TMS34082 combines a 16-bit sequencer and a three-operand 64-bit FPU
(source A, source B, destination) with twenty-two 64-bit data registers. The
data registers are organized into two banks of 10 registers each, with two
registers for internal feedback. In addition, an instruction register to control
FPU execution, a status register to retain the most recent FPU status results,
eight control registers, and a two-register stack are provided. The key
architectural elements are shown in Figure 1-1.

The ALU and the multiplier are closely coupled and work in parallel to perform
sums of products and products of sums. During multiply/accumulate
operations, both the ALU and the multiplier are active, and the registers in the
FPU core can be used to feed back products and accumulate sums without
tying up locations in register banks A and B.

Data or code may be transferred between the LAD and MSD ports at the rate
of one 32-bit word per clock cycle with a one clock latency. That comes out to
1.28 billion bits/second. This provides sufficient bandwidth to quickly transfer
vector or scalar arrays into or out of external memories. Up to 512 words may
be transferred with a single memory move instruction.

Figure 1-1. TMS34082 High-Level Block Diagram

1-4

Local memory
Interface

Internal
Sequencer ROM

External memory
Interface

MSD

. Fi
Rgzg)l(séj rBitllse FPU Core

Overview of the TMS34082

TMS34082 General Description

The TMS34082 complies fully with IEEE Std 754-1985, the industry standard .
for binary floating-point formats. Floating-point operands can be either single-

or double-precision. In addition to floating-point operations, the TMS34082

performs 32-bit integer arithmetic, logical comparisons, and shifts. Integer

operations may be performed on 32-bit 2s complement or unsigned operands.

Floating-point to integer and integer to floating-point conversions are also

available.

The comprehensive RISC-like instruction set eliminates the need for complex
CISC-typeinstructions or wide microcoded instruction words. By programming
the TMS34082 at the simplest level, operations are customized for each
application and mostinstructions execute in one clock cycle. Divide and square
rootinstructions are ideal for numeric processing and graphics rendering, such
as ray tracing routines. Using dedicated hardware and patented algorithms,
the TMS34082 calculates a 64-bit double-precision divide or square rootresult
in only 13 or 16 clock cycles, respectively.

In a single clock cycle, two single-precision or integer operands may:
1) Be read from the register file

2) Be run through the ALU and/or multiplier

3) Have result placed back into the register file

This is accomplished with both the internal pipeline and output registers
disabled. Double-precision multiplies take two clock cycles to complete. Such
low latencies simplify writing assembly language code, eliminating the
problem of data coherency in a long pipeline. Refilling or flushing the
instruction pipeline is fast, also.

An internal ROM includes many commonly used matrix, graphics, and vector
routines as described below. With the exception of MIN-MAX and compare
operations, these routines are constructed directly from the TMS34082’s basic
instruction set. The internal routines include:

Matrix operations consisting of 1x3, 3x3, 1x4, and 4 x4 matrix
multiplies

Graphics routines such as backface testing, clipping, 2-D and 3-D
compares, linear interpolation, 1-D and 2-D MIN-MAX, viewport scaling
and conversion, cubic splines, and polygon elimination

Vector operations including add, subtract, magnitude, scaling, dot product,
cross product, normalization, and reflection

Additional routines for 3 x 3 convolution, multiply/accumulate, and
polynomial expansion

TMS34082 General Descriptioh

1-8

When used with the TMS34020, the TMS34082 operates in coprocessor
mode. The TMS34020 can control multiple TMS34082 coprocessors without
any additional glue logic or buffering. The clock and control signals are
generated directly by the TMS34020. You can use external memory to store
subroutines as well as data for those subroutines. See Chapter 5 for additional
information.

When used alone or with processors other thanthe TMS34020, the TMS34082
functions in host-independent mode. The TMS34082 is fully programmable
and can interface to other processors (such as a RISC, 80x86, or Motorola
MC680x0 processor) or floating-point subsystems through its two 32-bit
bidirectional buses. Chapter 6 covers this mode in greater detail.

Other features include:

Support of common microprocessor addressing modes (register, direct,
indirect, postincrement, immediate)

A fully synchronous, on-chip, direct memory interface to SRAMs/
EPROMSs with no glue logic and to DRAMs/VRAMs with minimal glue logic

Fully user-programmable hardware and software realtime interrupts.

The TMS34082 may implement a von Neumann architecture, a modified
Harvard architecture, or a mixture of both. In a von Neumann architecture, data
and instruction memories both reside on the same bus. However, a Harvard
architecture has separate data and instruction sources so that both may be
fetched in parallel. External data may originate from either the LAD or MSD
ports. External instructions may only come from the MSD port, butthe LAD port
can be used to input jump entries into the MSD port memory.

Figure 1-2 shows possible TMS34082 bus architectures for coprocessor
mode. In addition, Figure 1-3 shows several example architectures for
host-independent mode.

Overview of the TMS34082

TMS34082 General Description

Figure 1-2. Coprocessor Mode Bus Architectures

TMS34020 TMS34082

LAD LAD MsD

Internal Instructions

Data and Instructions from LAD Port

TMS34020 TMS34082

External

LAD LAD MSD

Internal Instructions
Data from LAD Port, Instructions from LAD and MSD Port

Data

TMS34020 TMS34082

MSD

LAD LAD

External
Instructions

Internal Instructions

Data from LAD and MSD Ports, Instructions from LAD and MSD Port

Instructions

TMS34082 General Description

Figure 1-3, Host-Independent Mode Bus Architectures

TMS34082 Data
LAD MSD

External Instructions

Data and Instructions from MSD Port

TMS34082
Data LAD MSD External Instructions

Data from LAD Port, Instructions from MSD Port

TMS34082 Data

Data LAD MSD

External Instructions

Data from LAD and MSD Ports, Instructions from MSD Port

Data TMS34082

LAD MSD External Instructions

Jump Vector
Data from LAD Port, Instructions from MSD Port
Data TMS34082 Data
LAD MSD
Jump Vector

Data from LAD and MSD Ports, Instruction from MSD Port

1-8 Overview of the TMS34082

Typical Applications

1.4 Typical Applications

The 64-bit power and exceptional flexibility of the TMS34082 meet system
computing requirements across the performance spectrum. These range from
workstations to personal computers to embedded controllers. Table 14 lists
typical end uses for this device. Figure 1—-4 shows several examples of
systems using the TMS34082.

Table 1-4. Applications for the TMS34082

Numeric Processor Graphics Processor
CAD/CAE workstations 3-D graphics processing
UNIX/DOS accelerator for RISC/CISC machines Graphics workstations/super workstations
Scientific computing Image processing
Personal computers |8 Laser printers
Vector processing Graphics rendering engines
Multiprocessing architectures Imaging compression/decompression, JPEG
Digital signal processing Flight simulators
High-speed protocol engines Electronic publishing
Array processing Computer animation

Typical Applications

Figure 1-4. Sample TMS34082 Architectures

LAD
TMS34020 |—<4—P—1 TMS34082
TMS34020 Coprocessor
LAD MSD
TMS34020 f4—>] TMS34082 f[4¢—»] SRAM

TMS34020 Coprocessor w/SRAM

Host
Processor

Dual
4—p-{ Port RAM

A

v MSD
LA,Q, TMS34082

<
<«

Coprocessor for 80x86, Motorola MC680x0,

or RISC Processor

LAD MSD
Common
Memory » TMS34082 |4 SRAM
LAD MSD L
TMS34082 SRAM Switching . .
<«—p| Host | Matrix ° PS
1F - . .
LAD MSD
TMS34082 SRAM 'ACT8841
Common LAD MSD SrAM
TMS34020 Memory > TMS34082 [4—M
LAD MSD
TMS34082 SRAM Multicomputer
LAD MSD
<> TMS34082 SRAM
TMS34020 with Multiple TMS34082s
Host Page
< IF » A -
Centronix Buffer .
MSD LAD [}
VRAM <LAD> TMS834082 MSD VRAM TMS34082 » L§ser
Printer
Ser Port Ser Port]
i I SRAM » En&;;ne >

Numerical/Graphics Engine

Laser Printer Engine

Overview of the TMS34082

Development Tools

1.5 Development Tools

1.5.1 TMS34082 Software Tool Kit

The TMS34082 Software Tool Kit can be used to develop code for
host-independent mode applications or for external subroutines in
coprocessor mode. The tool kit includes:

An ANSI standard, optimizing C compiler
A macro-assembler

A linker

An object code librarian

A functional simulator

The C compiler supports common subexpression elimination. A peephole
optimizer is also providedto further enhance the execution speed andthe code
size of the source program. Inline assembly code can be incorporated into the
C program for time-critical and hardware-dependent code sections. The object
librarian aliows the storage of frequently used functions in libraries for easy
access (see Figure 1--5).

Figure 1-5. Overview of TMS34082 Code-Generation Tools

ANSIC
Source Code

i

C Compiler
Code
Compactor

v

Assembly
Source Code

Librarian

Object Code I‘ R Macro-
Assembler

——-<4 Linker

Absolute Load
Module

Development Tools

included with the TMS34082 tool kit are highly optimized transcendental
assembly language routines for sine, cosine, tangent, arc sine, arc cosine, and
arc tangent. These are accurate to the least significant bit.

The TMS34082 tool kit will execute on an IBM PC/AT or compatible machine
with MS-DOS (or PC-DOS) 2.0 or higher, 640K of memory, one floppy drive,
and one hard drive. An 80287/80387 math coprocessor is required for the
simulator. A demonstration version of the Software Tool Kit is also available.

The interactive simulator displays the entire machine state of the TMS34082
(such as registers, address counter, stack, status register) and works with the
C compiler/assembler/linker object files. The simulator is menu driven. During
program execution, breakpoints may be set and the trace memory displayed.
The cycle counting feature is useful when evaluating performance of the
processor or during code optimization.

The TMS340 Family compiler and assembler, which support both the
TMS34020 and TMS34082, are described in subsection 1.6.3 of this
document.

1.5.2 TMS34082 3-D Graphics Library

The TMS34082 3-D Graphics Library contains an extensive array of C-callable
functions including polygon clipping, shading, and vector and matrix
operations. The library is TIGA-compatible and can also run as a non-TIGA
product, giving the user portability and flexibility. The task of porting graphics
standard to the TMS34020/TMS34082 is greatly simplified with the variety of
functions in the library. The library also includes a 3-D graphics pipeline that
can shorten the development time for application programs.

Overview of the TMS34082

Development Tools

1.5.3 TMS34082 Demonstration Board

The TMS34082 Demonstration Board is a 40-MFLOP parallel processor with
upto 3Mbytes ofon-board memory. This powerfulboard allows youto evaluate
performance and write code for the TMS34082 using the software tool kit,
develop algorithm implementations, and integrate the software modules with
the hardware. In addition, programs are executed directly on the TMS34082,
resulting in much faster execution times than a software simulator. The board
plugs into a PC/AT™ 32-bit card slot. Figure 1-86 is a block diagram of the
demonstration board.

Figure 1-6. TMS34062 Demonstration Board Block Diagram

LAD MSD
VRAM TMS34082 VRAM
Ser Port Ser Port
PC/AT PC/AT
Interface Interface
PC/AT Bus PC/AT Bus

Built on a PC/AT card occupying a single slot, the TMS34082 Demonstration
Board features:

TMS34082-40 Floating-Point Processor (operating in host-independent
mode)

20 MHz processor clock speed, 7.9 MFLOPs double-precision Linpack

Fully programmable: von Neumann or modified Harvard architectures or
both

2M-bytes VRAM memory on LAD port accessible though PC/AT bus
interface

256K-bytes VRAM memory on MSD port accessible through PC/AT bus
interface, expandable up to 1M bytes of VRAM memory

TMS34020 Graphics System Processor

1.6 TMS34020 Graphics System Processor

The TMS34020 Graphics System Processor (GSP) is an advanced 32-bit
microprocessor optimized for graphic display systems. The TMS34020 is a
member of the TMS340 family of computer graphics products from Texas
Instruments.

The TMS34020 provides high-performance cost-effective solutions for
applications that require efficient data manipulations in a graphics
environment. The TMS34020 can be configured to serve in a host-based,
standalone, or multiprocessing system. It has both host and multiprocessor
interfaces to facilitate implementation of multiple TMS34020 systems.

The TMS34020 is supported by a full set of hardware and software
development tools, including an optimizing C compiler, assembler, software
libraries, a PC-based development board on a PC-based emulator. The
TMS340 Family Code Generation Tools may be used to develop code for the
TMS34082 in coprocessor mode. In addition, the TMS34020 is fully
compatible with and supported by the Texas Instruments Graphics
Architecture (TIGA).

1.6.1 TMS34020 Key Features

Fully programmable 32-bit general-purpose processor with 512M-byte
linear address range (bit addressabie)

Second generation graphics system processor:
Object code compatible with the TMS34010
Enhanced instruction set
Optimized graphics instructions
Direct coprocessor interface to TMS34082 Floating-Point Processor
On-chip peripheral features include:
Programmable CRT control
Direct DRAM/VRAM interface
Direct communication with an external (host) processor
Communication with multiple TMS34020s
Functional expansion with the coprocessor interface
Automatic CRT display refresh

Instruction set supports special graphics functions such as pixel
processing, XY addressing, and window clip/hit detection

1-14 Overview of the TMS34082

TMS34020 Graphics System Processor

Programmable 1-,2-,4-,8-,16-, or 32-bit pixel size

16 Boolean and 6 arithmetic pixel processing options (raster-ops)
30 general-purpose 32-bit registers
512-byte LRU on-chip instruction cache
General Description

The TMS340 family from Texas Instruments combines the best features of
general-purpose microprocessors and graphics controllers to create a range
of cost-effective, flexible, powerful graphics systems. The key features of the
TMS340 family are speed, a high degree of programmability, and efficient
manipulation of hardware-supported data types such as pixels and
2-dimensional pixel arrays.

With a built-in instruction cache, the ability to simultaneously access memory
andregisters, and an instruction setthat enhances raster graphics operations,
the TMS34020 provides programmable control of the CRT interface as well as
the memory interface (both standard DRAM and multiport RAM). The 4G-bit
(512M-byte) physical address space is completely bit addressable on bit
boundaries using variable width data fields (1 to 32 bits). Figure 1~7 is a
TMS34020 high-level block diagram.

Figure 1-7. TMS34020 High-Level Block Diagram

Host Interface

Bus-

L.ocal-Memory
4 D Interface
HA
A
Cache LAD
Bus Interface 512 bytes
Register File
30 x 32 bits
DRAM/VRAM
Control

TMS34020 Graphics System Processor

1-16

The TMS34020 unique memory interface speeds performance of tasks such
as bit alignment and masking while supporting advanced DRAM access
modes. The 32-bit architectures supplies the large blocks of
contiguously-addressable memory that are necessary in graphics
applications.

Systems designed with the TMS34020 can utilize VRAM technology to
facilitate applications such as high-bandwidth frame buffers. This circumvents
the bottleneck often encountered when using conventional DRAMs ingraphics
systems.

The TMS34020 instruction set includes a full complement of general-purpose
instructions, as well as graphics functions, that can be used to construct
efficient high-level instructions. The instructions support arithmetic and
Boolean operations, data moves, conditional jumps, and subroutine calls and
returns.

The TMS34020 architecture supports a variety of pixel sizes, frame buffer
sizes, and screen sizes. On-chip functions have been carefully selected so that
no functions tie the TMS34020 to a particular display resolution. This enhances
the portability of graphics software and allows the TMS34020 to adapt to
graphics standards such as MIT’s X-Windows™, CGI/CGM, GKS, NAPLPS,
PHIGS, and evolving industry standards.

Texas Instruments offers a wide variety of system solutions. The simplest
TMS340 graphics system consists of the TMS34020 alone. Floating-point
computations are performed in software using |EEE floating-point libraries.
Adding a TMS34082 appears merely as an extension to the TMS34020
instruction set. The same calculations run much faster in dedicated hardware
rather than software.

Adding external memory to the TMS34082 allows user-programmed
subroutines, such as shading or contour fitting, to execute while the TMS34020
is performing other functions. Since the data for the subroutines is also in
external memory, the TMS34082 is effectively decoupled from the TMS34020.
The TMS34020 can poll the TMS34082 to see if the subroutine has finished.
The highest performance TMS340 graphics solutions contain one or more
TMS34020 along with muiltiple TMS34082s in a parallel processing
environment. The TMS34020 acts as the display manager and also
orchestrates tasks for the floating-point coprocessors. Jobs and/or data may
be loaded into external memory of one TMS34082 while other TMS34082s are
still executing.

Overview of the TMS34082

TMS34020 Graphics System Processor

1.6.2 TMS34020 Software Tools

Texas Instruments offers extensive development support for the TMS340
graphics family. Software tools for the TMS34020 also comprehend the
TMS34082. The TMS340 Family software tools include:

An optimizing C compiler

An assembler

An archiver for building object libraries

A linker

A loader for TMS34020 and TMS34082 absolute load modules
A C source debugger

The compiler accepts programs written in C language. It outputs assembly
language source code that is then processed by the assembler to convert the
mnemanics to object code. The compiler and assembler generate efficient
TMS34082 code in the form of internal instructions. The C compiler allows
time-critical routines written in assembly language to be called from within the
C program. The converse is also available; assembly routines may call C
functions.

If external TMS34082 memory is present, the TMS34082 Software Tool Kit
must be used to generate the subroutine code in the form of external
instructions. When the TMS34082 load module has been generated, the
TMS34020 loader can download both load modules as shown in Figure 1-8.

The TMS340 Family C Source Debugger supports both the TMS34020 and the
TMS34082 in coprocessor mode. Other debugging tools for the TMS34082 in
coprocessor and host-independent modes are available from third-party
vendors.

TMS34020 Graphics System Processor

Figure 1-8. TMS34020 and TMS34082 Software Tools

C Source
(TMS34020 and
TMS34082)

C Compiler

I

Macro-Assembler]

e !

C Source
(TMS34082)

C Compiler

'

Code Compactor

'

Macro-Assemble

Object
Library ‘ Linker <
Loader

Absolute
L.oad Module

TMS340 Family Software Code Generation
Tools (used for generating TMS34020 code
and TMS34082 internal instructions)

Linker l'._.___— Object
Library

TMS34082
Load Module

TMS34082 Software Tool Kit (generates
TMS34082 code for external memory)

Overview of the TMS34082

TMS34020 Graphics System Processor

1.6.3 TIGA™ Graphics Interface

The Texas Instruments Graphics Architecture (TIGA) is a software interface
standard for the TMS340 family of graphics system processors. TIGA
enhances the performance of MS-DOS-based PCs that contain a TMS34020
or TMS34020 (and an optional TMS34082) and an 8088/86 or 80286/80386
host microprocessor by optimizing communications between the graphics
processor and the host processor. The TIGA interface allows the host and
graphics processors to share execution of the application, as shown in
Figure 1-9.

Figure 1-9. Graphics Processing Shared Between TMS340 and Host Processors

Application
Interface

TMS340-Bast
TIGA Interface TIGA Rout?r?::
and

Drawing Primitives

Communications
Driver

Host System TMS340 Board

TMS34020 Graphics System Processor

1.6.4 TMS34020 Software Development Board

The TMS34020 Software Development Board (SDB20) is a high-performance
PC/AT bus graphics card. It allows you to write applications software for the
TMS34020 and its companion floating-point processor, the TMS34082. The
board also demonstrates the simplicity of hardware design using the
TMS34020 and TMS34082 for high-performance bit-mapped graphics
displays.

An optional upgrade kit, the TMS34082 SRAM Upgrade Kit, contains a
business card sized board with the TMS34082 and 32K bytes of SRAM, plus
software and documentation. The board plugs into the TMS34082 socket
presently existing on the SDB20.

Figure 1-10. TMS34020 SDB Block Diagram

TMS34082
(optional) TMS34020 32K-byte
| SRAM

Host Color
Interface Palette

1-20

Key features of the TMS34020 SDB include:
1M-byte VRAM organized as 256K x 32 bits
1M-byte DRAM organized as 256K x 32 bits
TMS34082 Floating-Point Coprocessor (optional)
VGA support for 640 x 480 pixel resolution
Software selectable resolutions:
1024 x 768 by 4 or 8 bits per pixel

640 x 480 by 4 or 8 bits per pixel
640 x 480 VGA mode

Software configurable base address over a full 16M-byte range

TMS34020 emulation support

Overview of the TMS34082

TMS34082 Ordering Information

1.7 TMS34082 Ordering Information

For the latest ordering and pricing information, please call your local Tl field
sales representative or authorized T! distributor. Table 1-5 summarizes the

products available for the TMS34082.

Table 1-5. TMS34082 Product Information

Type Description Part Number

Silicon Devices | TMS34082A device, 32 MHz, 145-pin ceramic PGA package TMS34082AGC-32
TMS34082A device, 40 MHz, 145-pin ceramic PGA package TMS34082AGC-40

Documentation | TMS34082A Data Sheet SCGS001
TMS34082 Designer's Handbook SCGU004

Software TMS34082 Demonstration Software Tool Kit Contact Tl
TMS34082 Software Tool Kit TMDS3440808201
TMS34082 3-D Graphics Library Contact Tl
TIGA Software Developer’s Kit TMS340SDK-PC
(includes the TMS340 Family Code Generation Tools and C Debugger for the PC)

Hardware TMS34020 Software Development Board (SDB20) TMS3460120000
TMS34082 SRAM Upgrade Kit TMDS3481800-02

1-21

Technical Assistance

1.8 Technical Assistance

1-22

The Texas Instruments Datapath VLS| Products Systems Engineering group
is a resource available to help you in the selection of TI’s high-performance
FPUs, such as the TMS34082 Graphics Floating-Point Processor. Located in
Dalias, the group works directly with designers to provide ready answers to
device-related questions and also prepares a variety of applications
information. The phone number for the DVP Systems Engineering hotline is
(214) 997-3970.

Overview of the TMS34082

Chapter 2

Pinout and Pin Descriptions

B e R R A R A R R R R R LA
GRBIIRIN

This chapter illustrates the TMS34082 pinouts and provides detailed
descriptions of the TMS34082 signals. For mechanical dimensions of the
TMS34082A packages, please refer to the data sheet in Appendix B. For
mechanical dimensions of the SMJ34082A packages, please refer to the data
sheet in Appendix C.

Pinout

2.1 Pinout

The TMS34082A and the SMJ34082A are offered in a ceramic, 145-pin grid
array (PGA) package (GC). Figure 2-1 shows the145-pin PGA pinout.

Figure 2-1. TMS34082 Pinout, 145-Pin PGA Package

(TOP VIEW)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O
A ®© 06006 006 0060 00 00 0 o0
B ® 0006 © 06 000 00 00 0 o0
C ®© 000 00 000 00 00 0 0
D ® 0o o 0 ® o o
E e o0 e e o
F o o0 e 0 o
G e o0 oo o
H e o0 o 0o 0
J e o0 [I)
K o o0 o o 0
L ¢ o 0 o e o0
M o o0 o e 0
N ®© 060 00 00 006 00 00 0 0
P ® © 0 006 060 00 00 00 0 0
R ® © 0 00 060 00 00 00 0 0

2.2 Pinout and Pin Descriptions

Pinout

Table 2-1. Pin Assignments (PGA Package)

Pin Pin Pin Pin Pin
GC# Name GC# Name GCHt Name GCit Name GC# Name
Al NC B15 LAD27 F1 MSD10 K15 RDY P2 NC
A2 LAD1 C1 MSD4 F2 MSD9 L1 MSD18 P3 MSD29
A3 LAD3 c2 MSD3 F3 Veo L2 MSD21 P4 MSD31
A4 LADS c3 MSDO F13 CORDY L3 MSD23 PS5 MSA1
A5 LADS C4 Vgsg F14 ALTCH L13 Vss P8 MSA3
A6 LAD9 C5 Vee F15 CAS L14 CIDO P7 MSAB
A7 LAD cé LADS G1 MSD13 115 ciD2 P8 MSAS8
A8 LAD12 c7 Vss G2 MSD12 M1 MSD20 P9 MSA10
A9 LAD13 c8 Veo G3 MSD11 M2 MSD24 P10 MSA13
A10 LAD15 c9 Vss G13 WE M3 Vss P11 MWR
ANl LAD17 c10 Voo G14 EC1 M13 Voo P12 MOE
A12 LAD19 cit LAD21 G15 ECO M14 LCLK1 P13 INTG
A13 LAD22 c12 Vss H1 MSD14 M15 LCLK2 P14 BUSFLT
A4 LAD24 ci3 LAD25 H2 TDO N1 MSD22 P15 RAS
At5 NC C14 LAD26 H3 Vss N2 MSD26 R1 NC
B1 MSD1 ci15 LAD29 H13 Vss N3 e R2 MSD27
B2 NC DA MSDS6 H14 LOE N4 MSD28 R3 MSD30
B3 LADO D2 MSD5 H15 DI N5 Vss R4 MSAQ
B4 LAD2 D3 MSD2 J1 MSD15 N8 Voo R5 MSA2
B5 LAD4 D4 NC J2 MSD16 N7 MSA5 R6 MSA4
B6 LAD7 D13 Voo J3 Veo N8 Vss R7 MSA7
B7 LAD10 D14 LAD28 J13 (o) N9 Voo R8 TCK
B8 ™S D15 LAD31 J14 MASTER |N10 MSA14 R9 MSA9
B9 LAD14 E1 MSD8 J15 CLK N11 Vss R10 MSAT11
B10 LAD16 E2 MSD7 K1 MSD17 N12 MAE R11 MSA12
B11 LAD18 E3 Vss K2 MSD1g N13 LRDY R12 MSA15
B12 LAD20 E13 Vss K3 Vss N14 SF R13 DS/CS
B13 LAD23 E14 LAD30 K13 CIDA N15 RESET R14 MCE
B14 NC E15 COINT K14 INTR P1 MSD25 R15 NC

Pinout

Table 2-2. Alphabetical Listing — Pin Assignments (PGA Package)

Pin Pin Pin Pin Pin
Name GCH# Name GCH# Name GC# Name GCit Name GC#
ALTCH F14 LAD14 B9 MSA3 P8 MSD16 J2 TCK R8
BUSFLT P14 LAD15 A10 MSA4 R6 MSD17 K1 TDI H15
CAS F15 LAD16 B10 MSAS N7 MSD18 L1 TDO H2
cc J13 LAD17 Al MSA6 P7 MSD19 K2 ™S B8
CiDO L14 LAD18 B11 MSA7 R7 MSD20 M1 Voo c5
CID1 K13 LAD19 A12 MSA8 P8 MsD21 L2 Voo cs
CiD2 L15 LAD20 B12 MSA9 R9 MSD22 N1 Veo c10
CLK J15 LAD21 Cti MSA10 PO MSD23 L3 Veo D13
COINT Ei5 LAD22 A13 MSA11 R10 MsD24 M2 VCC F3
CORDY F13 LAD23 B13 MSA12 R11 MSD25 P1 Voo J3
DS/CS R13 LAD24 Al4 MSA13 P10 MsSD26 N2 Voo M13
ECO G15 LAD25 ci13 MSA14 N10 MsD27 R2 Voo N3
EC1 G14 LAD26 c14 MSA15 R12 MsSD28 N4 Voo N6
INTG P13 LAD27 B15 MSDO c3 MSD29 P3 Voo N9
INTR K14 LAD28 D14 MsD1 B1 MSD30 R3 Vss c4
LADO B3 LAD29 cis MSD2 D3 MSD31 P4 Vss c7
LAD1 A2 LAD30 E14 MSD3 c2 MWR P11 Vss co
LAD2 B4 LAD31 D15 MSD4 c1 NC At Vss ci2
LAD3 A3 LCLK1 M14 MSD5 D2 NC A15 Vss E3
LAD4 BS LCLK2 M15 MSD6 D1 NC B2 Vss E13
LAD5 A4 LOE H14 MSD7 E2 NC B14 Vss H3
LAD6 c6 LRDY N13 MsD8 E1 NC D4 Vss H13
LAD7 B6 MAE N12 MsD9 F2 NG P2 Vss K3
LADS A5 MASTER J14 MSD10 F1 NC R1 Vss L13
LAD9 A6 MCE R4 MSD11 G3 NC R15 Vss M3
LAD10 B7 MOE P12 MSD12 G2 RAS P15 Vss N5
LAD11 A7 MSAQ R4 MsD13 Gi RDY K15 Vss N8
LAD12 A8 MSA1 P5 MsD14 H1 RESET N15 Vss N11
LAD13 A9 MSA2 R5 MSD15 J1 SF N14 WE G13
2-4 Pinout and Pin Descriptions

Pin Functional Descriptions

2.2 Pin Functional Descriptions

The following tables contain the TMS34082 signal descriptions grouped by
their functions.

Table 2-3. LAD Bus Signals

Name Pin No. 1Vo/Z Description
| Address Latch, active low. In coprocessor mode, falling edge of ALTCH latches instruction
and status present on the LAD bidirectional bus (LAD31-0).
ALTCH Fi14
o :?Arlljog:-igdependent mode, ALTCH is an address output write strobe for memory accesses on
Bus Fault. In coprocessor mode when high, indicates a data fault on the LAD bus (LAD31-0)
BUSFLT P14 I during current bus cycle which causes TMS34082 not to capture the current data on LAD bus.
Tied low if not used. Not used in host-independent mode.
Column Address Strobe, active low. In the coprocessor mode, causes TMS34082 to latch
. 1 LAD bus data on CAS low-to-high transition if LRDY was high and BUSFLT was low at the
CAS F15 previous LCLK2 rising edge.
O/Z | In host-independent mode, this signal is the read strobe output.
LADO B3
LAD1 A2
LAD2 B4
LAD3 A3
LAD4 BS
LADS A4
LAD6 C8
LAD7 B6
LAD8 A5
LAD9 A8
LAD10 B7
LAD1 A7 Local Address and Data Bus. In coprocessor mode, used by TMS34020 to input instructions
LAD12 A8 /O/Z |and data operands to TMS34082, and used by TMS34082 to output results. In
LAD13 AQ host-independent mode, used by the TMS34082 for address output and data I/O.
LAD14 B9
LAD1S A10
LAD16 B10
LAD17 Atl
LAD18 B11
LAD19 Al12
LAD20 B12
LAD21 ct1
LAD22 A13
LAD23 B13
LAD24 Ald

2-5

Pin Functional Descriptions

Table 2-3. LAD Bus Signals (Continued)

Pin
Name No. [[oJr4 Description
LAD25 C13
LAD26 Ci14
LAD27 B15 Local Address and Data Bus. In coprocessor mode, used by TMS34020 to input instructions
LAD28 D14 I/O/Z | and data operands to TMS34082, and used by TMS34082 to output results. In host-independent
LAD28 C15 mode, used by the TMS34082 for address output and data 1/O.
LAD30 Et14
LAD31 D15
Local Bus Output Enable, active low. Enables the local bus (LAD31-0) to be driven at the proper
iOE H14 I times when low. In addition, during the host-independent mode when LADCFG is low, does not
affect ALTCH, CAS, WE, CORDY, or COINT. When LADCFG is high, ALTCH, COINT, and
CORDY are not disabled by LOE high; CAS and WE are disabled.
Local Bus Data Ready. In coprocessor mode, LDRY highindicates that datais available on LAD
LRDY Ni3 | bus. LRDY low indicates that the TMS34082 should not load data from LAD31-0. In
host-independent mode, when LRDY goes low, the device is stalled until LRDY is set high again.
Tied high if not used.
BAS P15 I Row Address Strobe, active low. In coprocessor mode this signal is high during all coprocessor
instruction cycles. Not used in host-independent mode.
Special Function. When high, indicates the LAD bus input is an instruction or data from
SF N14 | TMS34020 registers. When low, indicates the LAD input is a data operand from memory. Not used
in host-independent mode.
e I Write Enable, active low. In coprocessor mode, the LAD bus write strobe from the TMS34020
WE G13 to enable a write to or from the TMS34082 LAD bus.
O/Z | In host-independent mode, WE is the TMS34082 data write strobe.

2-6

Pinout and Pin Descriptions

Pin Functional Descriptions

Table 2-4. MSD Bus Signals

Pin
Name No. 110/Z Description
. Data Space/Code Space Select. When MEMCF is low and DS/CS is low, selects program

Ds/ICsS R13 o memory on MSD port. When MEMCFG is low and DS/CS is high, selects data memory on MSD
port. When MEMCFG is high, DS/CS is memory chip select, active low.
External Memory Address and Data Output Enable, active low. When this signal is low, the

MAE N2 | TMS34082 can output an address on MSA15-0 and data on MSD31-0. MAE high does notdisable
DS/CS, MCE, MWR, or MOE.

VIGE R14 o Memory Chip Enable. When MEMCFG is low, active (low) indicates access to external memory
on MSD31-0. When MEMCFG is high, MCE low is external code memory chip select.

N3 Memory Output Enable, active low. When low, enables output from external memory onto the

MOE P12 o
MSD port.

MSAO0 R4 ~

MSA1 P5

MSA2 RS

MSA3 P&

MSA4 R6

MSAS5 N7

MSAS6 P7

MSA7 R7 oz |Memory Address Bus. Addresses up to 64K words of external program memory or up to 64K

MSAS8 P8 words of external data memory on the MSD port, depending on setting of DS/CS select.

MSAS R9

MSA10 PS

MSA11 R10

MSA12 RMH

MSA13 P10

MSA14 N10

MSA15 Ri12

Pin Functional Descriptions

Table 24. MSD Bus Signals (Continued)

Pin)
Name No. 1/0/Z Description
MSDO Cc3
MSD1 B1
MSD2 D3
MSD3 c2
MSD4 C1
MSD5 D2
MSDé D1
MSD7 E2
MSD8 E1
MSD9 F2
MSD10 Ft
MSD1t G383
MSD12 G2
MSD13 Gt1
MSD14 H1
mgg}g j; IVO/Z | External Memory Data Bus. Used to read from or write to external data or program memory.
MSD17 Kt
MSD18 L1
MSD19 K2
MSD20 Mt
MSD21 L2
MSD22 Nt
MSD23 L3
MSD24 M2
MSD25 Pt
MSD26 N2
MSD27 R2
MSD28 N4
MsSD29 P3
MSD30 R3
MSD31 P4
P Yy =T Memory Write Enable. When low, data on MSD31-0 can be written to external program or data
MWR P11 ¢]
memory.
2.8 Pinout and Pin Descriptions

Pin Functional Descriptions

Table 2-5. Clock and Control Signals

Pin
Name No. vo/z Description
CC J13 | Condition Code Input. May be used as an external conditional input for branch conditions.
CIDO L14 Coprocessor ID. Used to set a coprocessor ID so that TMS34020 Graphics System Processor
CID1 K13 | controlling multiple TMS34082s can designate which coprocessor is being selected by the current
CIb2 115 instruction. Tied low in host-independent mode.
CLK J15 | System Clock in host-independent mode. Tied low in coprocessor mode.
Coprocessor Interrupt Request, active low. In coprocessor mode, signals an exception not
TOINT E15 o masked out in the configuration register. Remains low until the status register is read. In
host-independent mode, user programmable I/O when LADCFG is low. Designates bus cycle
boundaries on LAD31-0 when LADCFG is high.
Coprocessor Ready. In coprocessor mode, if the TMS34020 sends an instruction before the
CORDY Fi3 0 TMS34082 has completed a previous instruction, this signal goes low to indicate that the
TMS34020 should wait. User-programmable in host-independent mode.
INTG P13 o Interrupt Grant. This signal is set high to acknowledge an interrupt request input in
host-independent mode.
NTR K14 | Interrupt Request, active low. Causes call to subroutine address in interrupt vector register in
host-independent mode. Tied high in coprocessor mode. _
LCLK1 M14 | Local Clock 1 and 2, generated by the TMS34020, 90 degrees out of phase, 1o provide timing
LCLK2 M15 inputs to TMS34082 in coprocessor mode. Tied low in host-independent mode.
MSTR J14 | Coprocessor/Host-independent Mode Select. When low, puts the TMS34082 in coprocessor
mode. When high, puts the TMS34082 in host-independent mode.
Ready. When RDY is low, causes a nondestructive stall of sequencer and floating-point
RDY K15 I operations. All internal registers and status in the FPU core are preserved. Also, no output lines
will change state.
AESET Ni5 I Reset, active low. Resets sequencer output and clears pipeline registers, internal states, status,

and exception disable registers in FPU core. Other registers are unaffected.

Table 2-6. Emulation Control Signals

Pin
Name No. vo/z Description
Eg? g}g | Emulator Mode Control and Test. Tied high for normal operation.
TCK R8 | Test Clock for JTAG 4-wire boundary scan. Tied low for normal operation.
TDI H16 I Test Data Input for JTAG 4-wire boundary scan. May be left floating.
TDO H2 o Test Data Output for JTAG 4-wire boundary scan.
T™MS B8 I Test Mode Select for JTAG 4-wire boundary scan. May be left floating.

Pin Functional Descriptions

Table 2-7. Power and N/C Signals

Pin
Name No. Description
NC Al
NC A15
NC B2
NC B14 No internal connection. These pins should be left floating.
NC D4
NC P2
NC R1
NC R15
Voo Cc5
Vco (01:]
Vee Cc10
Voo D13
Voo F3
Vee J3
Voo M13 5-V power supply. All pins must be connected and used.
\ele} N3
Vco N8
Veco NS
Vss C4
Vss c7
Vss co
Vss c12
Vss E3
Vss E13
Vss H3 Ground pins. All pins must be connected and used.
Vss H13
Vss K3
Vss L13
Vss M3
Vss N5
Vss N8
Vss N11

2-10

Pinout and Pin Descriptions

Chapter 3

Data Formats

R R A AR R A AT SRR BEERLER

o

The TMS34082 accepts operands as either:
IEEE floating-point numbers (IEEE Standard 754-1985)
Unsigned 32-bit integers
32-bit 2s-complement signed integers

Floating-point operands may be either single-precision (32 bits) or
double-precision (64 bits). All internal integer instructions use signed integer
data formats.

Integer Formats .

3.1 Integer Formats

The TMS34082 recognizes two types of integers: signed and unsigned. Only
one type may be used in a single instruction. Internal instructions use only
signed integers.

3.1.1 Signed Integers

A signed integer is a 32-bit value in 2s-complement format, as shown below.
The most significant bit is the sign bit; a 1 signifies a negative number. Signed
integers can represent values from —2,147,438,648 to +2,147,438,647.

Figure 3-1. IEEE Signed Integer Format
31 30 1.0

_o31 530 21 20

-3.1.2 Unsigned Integer

An unsigned integer is also a 32-bit value, but can only represent positive
numbers. The range for unsigned integers is 0 t0 4,294,967,295.

Figure 3-2. IEEE Unsigned Integer Format
31 30 1 0

031 530 o1 20

3-2 Data Formats

Floating-Point Formats

3.2 Floating-Point Formats

IEEE formats for floating-point operands, both single- and double-precision,
consist of three fields; the sign (s), the exponent (e}, and the fraction (f}, in that
order. The most significantbit is the sign bit. The value ofthe mantissa contains
a hidden bit, an implicit leading 1, as shown below:

1.fraction
The representation of a normalized floating-point number is:
(=1)8 x 1.fx 2 (e-bias)

The bias is a number added to the true exponent to ensure that the
exponent (e) is always positive. The bias is 127 for single-precision or 1023 for
double-precision. Further details of IEEE formats and exceptions are covered
in the IEEE Standard for Binary Floating-Point Arithmetic,
IEEE Standard 754-1985.

3.2.1 Single-Precision Floating-Point

Single-precision floating-point numbers are 32 bits long; the exponent field is
8 bits, and the fraction field is 23 bits. The exponent is biased by 127. Single
precision can represent values from +2-126 to +2127 x (2-2-23). That is
approximately +1.2 x 1038 to +3.4 x 1038, The format for a single-precision
number is shown in Figure 3-3.

Figure 3-3. IEEE Single-Precision Format
31 30 23 22 0

s e f

s: sign of fraction
e: 8-bit exponent, biased by 127 (true exponent + 127)
f: 23-bit fraction

3.2.2 Double-Precision Floating-Point

A double-precision floating-point number is a 64-bit value. The exponent field
is 11 bits, biased by 1023, and the fraction field is 52 bits. The range for
double-precision is +2-1022 to +21023 x (2-2-52) or approximately
+2.2 x 10308 t0 +1.8 x 10308,

3-3

Floating-Point Formats

Figure 3-4. IEEE Double-Precision Format

63 62 52 51 0

s e f

s: sign of fraction
e: 11-bit exponent, biased by 1023 (true exponent + 1023)
f: 52-bit fraction

3.2.3 Denormal and Wrapped Numbers

3-4

The TMS34082 also handles two other data formats that permit operations on
very small floating-point numbers. Denormalized and wrapped floating-point
numbers represent the same values, but in different formats. If very small
values can be approximated by 0 in your application, you can set the Fast bit
in the configuration register to force all denormal and wrapped inputs and
outputs to 0.

The ALU accepts denormalized numbers, that is, floating-point numbers so
small that they cannot be normalized. A denormalized number results from
decrementing the biased exponent field to 0 before normalizationis complete.
A denormal has the form of a floating-point number with a 0 exponent, a
nonzero fraction, and a 0 in the leftmost (hidden) bit of a mantissa.

A single-precision denormalized number is equal to the following:
1) x (@)~ 16 %0t

For double-precision, a denormal is equal to the following:
(-1)% x (2)~1022 x 0.1

If denormalized numbers are input to the multiplier, they will cause status
exceptions. Denormals can be passedto the ALU to be wrapped. The wrapped
operand is then input to the multiplier.

A wrapped number is a number created by normalizing a denormalized
number’s fraction field and subtracting from the exponent the number of shift
positions (minus one) required to do so. The exponent is encoded as a
2s-complement negative number. When the mantissa of the denormal is
normalized by shifting it left, the exponent field decrements from all 0s (wraps
past 0) to a negative 2s-complement number (exceptinthecase of 0.1xxx . . .,
where the exponent is not decremented).

Data Formats

Floating-Point Formats

3.2.4 Special Floating-Point Numbers

There are three other special floating-point value representations (see
Figure 3-5):

Zero (positive or negative) is represented by the appropriate sign bit, a 0
exponent field, and a 0 fraction field.

Infinity (positive or negative) is represented by the appropriate sign bit, 1s
in the exponent field, and a 0 fraction field.

A Not a Number (NaN) designates data that has no mathematical value.
A NaN has 1s in the exponent field with a nonzero fraction.

A NaN is produced whenever an invalid operation (such as division by 0} is
executed. The TMS34082 treats all NaNs as signaling NaNs, setting the invalid
(1) flag in the status register. The TMS34082 outputs all NaNs (regardiess of
input form) with a 0 sign bit and all 1s in the exponent and fraction fields.

Figure 3-5. Special Floating-Point Formats

Zero

Infinity

NaN

Single-Precision Double-Precision
31 30 23 22 0 6362 52 51 0
s| 00...00 00.. ..l 00 s| 00...00 00. ... 00
31 30 23 22 0 63 62 52 51 0
s| 11..11 00... ...l 00 s{ 11..11 00. ... i 00
31 30 23 22 0 63 62 52 51 0
s| 11..11 (non-zero) s| 11..11 (non-zero)

Floating-Point Formats

3.2.5 Range of Floating-Point Numbers

Table 3-1 shows the range of possible single- and double-precision
floating-point numbers.

Table 3~1. Floating-Point Number Representations

Type Sign Exponent Hidden Bit Fraction
NaNs 0 1.1 1.1
Do 1 : :
0 1.1 10..00
0 1.1 01.. 11
o 1 [
0 1.1 00 .. 01
Positive Infinity 0 1.1 1 00..00
0 11 .10 1.1
Positive Normals T 1 oo
0 00 .. 01 00.. 00
0 00 ..00 1.1
Positive Denormals o 0 <
0 00..00 00..01
Zero (Positive) 0 00 ..00] 1 00..00
Zero (Negative) 1 00..00 1 00..00
1 00 ..00 00..01
Negative Denormals o 0 Do
1 00..00 11 .11
1 00 .. 01 00..00
Negative Normals M 1 v
1 11 .10 1.1
Negative Infinity 1 11 .11 1 00..00
NaNs 1 1 .11 00..01
o 1 o
1 1.1 0t.. 11
1 11 .11 10..00
T 1 S
1 11 .1 1n.H
Single: < 8 bits > <~ 23 bits = >
Double: < 11 bits > <~ 52 bits —>

3-6 Data Formats

Chapter 4

Architecture

R N N R R R R R R Y A R A R TR R Ry
K'/,\ <% 7

Because the sequencer, control and data registers, and FPU core are closely
coupled, the TMS34082 can execute a wide variety of complex floating-point
or integer calculations rapidly with a minimum of external data transfers. The
internal architecture of the FPU core supports concurrent operation of the
multiplier and the ALU, providing several options for storing or feeding back
intermediate results. Also, several special registers are available to support
calculations for graphics algorithms. Each of the main architectural elements
of the TMS34082 is discussed in this chapter.

Functional Block Diagram

4.1 Functional Block Diagram
The main architectural features of the TMS34082 are illustrated in Figure 4-—1.

Figure 4~1. Functional Block Diagram

CONFIG COUNTX | | COUNTY osoop MCADDR
MSTR e
COINT e :
LRDY eponneme [4 |
e r 16
RESET ewfpomsan— Stack Interrupt Interrupt l Program
TOE Vector _ Return Counter
CID2-0 oo 116 {1 1203 fi6
CORDY ~———t— |
BUSFLT wepee 1
S — | |
SF eefper
RDY ;)\ Seq MUX /
LOLK1 s 16 ,16
LoLKe o ” > MSA15-0
CLK 1 Sequence M&M—— —.‘.’.——
Control Complex ROM a2 MSD31-0
MSD
LADS1-0 - [0 B 3 Intt
32 | instructionReg | 32
1
L
;32
Register
—— Control
—— VAE
—~—p— MOE
TO OTHER REGISTERS — Reg C Regs Reg —— WMCE
File File —— WWR
A B —p— DS/CS
/l 64 64 }64 ——— CC
ot INTR
FPU Core e INTG
—4— EC1-0
PIN FUNCTION CHANGES W/OPERATING MODE 32 L_""" —ag— TMS
v ——— TCK
SIGNAL | HOST-INDEPENDENT | COPROCESSOR R ¢
NAME MODE MODE Status DI
&2 —p— D0
ALTCH Output Input *
WE Output Input
AS Output Input

4-2 _ Architecture

Operating Modes

4.2 Operating Modes

The TMS34082 has two operating modes: coprocessor mode and
host-independent mode.

In copracessor mode, the TMS34082 acts as a floating-point coprocessor to
the TMS34020 Graphics System Processor. The TMS34082 is a direct
extension of the TMS34020 and its instruction set. Operation in coprocessor
mode is signaled by tying the MSTR input low. Chapter 5 details this operating
mode.

In host-independent mode, the TMS34082 is a floating-point RISC processor.
It may be used as a coprocessor to another host processor, as a parallel
processor, or as a stand-alone processor. To operate in host-independent
mode, the MSTR input must be high. This mode is covered in Chapter 6.

Bus Interfaces

4.3 Bus lnterfaices

4.3.1

4-4

LAD Bus

The TMS34082 has two buses: the LAD (LAD31-0) and the MSD (MSD31-0).
Each is a 32-bit bidirectional bus which can be used to transfer instructions
and/or data.

One 32-bit operand can be input to the TMS34082 data registers each cycle.
A 64-bit double-precision floating-point operand is input in two cycles.
Transfers to and from the data registers can normally be programmed as block
moves (loading one or more sets of operands with a single move instruction
to minimize 1/O overhead). Block transters up to 512 words in length can be
programmed in either direction between the LAD and MSD buses.

Whenthe TMS34082 is used as a coprocessor to the TMS34020, the LAD bus
is the main interface between the two devices. Both data and instructions from
the TMS34020 are input on the LAD bus. The data can be stored in internal
registers or transferred to memory on the MSD port. In addition, data (from
registers or the MSD bus) can be sent to the TMS34020.

With a single TMS34020 instruction, the TM834020 can transfer both an
instruction and data to the TMS34082. Data may be from TMS34020 registers
or the local memory controlled by the TMS34020.

Inhost-independent mode, the LAD bus is used as adatabus. Instructions may
not be input on the LAD bus. However, data (an address) may be read from
the LAD port to an internal register, and a jump to that address performed.

To permit directinput to or output from the LAD bus, other options are available
for control of the bus in host-independent mode. When two 32-bit operands are
selected for input to the FPU core, one operand may come directly from the
LAD bus. A result from the FPU core may simultaneously be written to a data
register and the LAD bus.

The main control signals for the LAD bus are:

SF (coprocessor mode only).

The function of these signals depends upon the operating mode and
are discussed further in Chapters 5 — Coprocessor Mode — and Chapter 6
— Host-Independent Mode.

Architecture

Bus Interfaces

4.3.2 MSD Bus

The MSD bus (MSD31-0) and its associated address bus (MSA15-0) are the
external memory interface for the TMS34082. Control signals allow you to
have separate code and data storage onthe MSD port. Up to 64K 32-bit words
of code space and 64K words of data space are directly supported. The bus
and control signals are optimized for use with static RAM (SRAM) memory.
However, with some external logic, this bus may also be connected to DRAMs,
VRAMSs, or other system buses.

The MSD bus is the main instruction source in host-independent mode. Data
may also be accessed on this port. The TMS34082 can operate with the LAD
bus as its single data bus and the MSD bus as the instruction source, or with
data storage on both ports and the program memory on the MSD port.

In coprocessor mode, use of the MSD bus is optional. External user-generated
subroutines may be accessed via the MSD bus. In addition, data for these
routines may be stored in memory on the MSD port. The code and data for
these subroutines may be downloaded from the TMS34020 memory using an
LAD-t0-MSD move.

MSD bus control is the same in both coprocessor and host-independent
modes. Control signals are summarized in Table 4-1. Different combinations
of MCE, MWR, and MOE distinguish between memory reads and writes.
Table 4-2 lists the memory operation performed for each combination of
signals.

Table 4-1. MSD Bus Control Signals

Table 4-2. Memory Opera

memory or high to select data memory.
Memory Chip Enable. This signal goes low when reading from or writing to

Name Function
MSA15-0 | Memory Address Output
DS/ES Data Space/Code Space Select. This signal goes low to select program

MCE
memory.
' MOE Memory Output Enable. This signal goes low when reading from memory.
MWR Memory Write Enable. This signal goes low when writing to memory.
VIAE MSD Bus Enable. When this input is low, the TMS34082 can output data and

address on MSD and MSA.

tions on MSD
MCE MWR MOE Memory Operation
0 0 0 Invalid
0 0 1 Write to memory
0 1 0 Read from memory
0 1 1 Invalid
1 X X No memory access

Bus Interfaces

The DS/CS output acts as the most significant address bit selecting between
code and data memory. If a single block of memory is used for both code and
data space, this output may be ignored. Without DS/CS, only 64K words of
memory can be accessed.

An alternate control scheme is chosen by setting the MEMCFG bit in the
configuration register high. Then, DS/CS is the data space chip enable and
MCE is the code space chip enable. Refer to subsection 4.5.3.3 — MSD Bus
Configuration — for more information.

ifthe memory on the MSD port is shared with another processor, MAE may be
used to prevent bus conflicts. When memory on the MSD port is shared, the
host processor can monitor the state of the memory chip enable (MCE) to
determine when the TMS34082 is accessing memory.

Otherwise, MAE may be tied low. The TMS34082 will only drive the MSD bus
when writing to memory (signaled by MWR low).

Architecture

Sequence Control

4.4 Sequence Control

The sequencer selects the next program execution address either from
internal code or from external program memory. Nextaddress sources include:

Program counter
Instruction register
Stack

Interrupt vector register
Interrupt return register
Indirect address register

The two-deep stack is used to store return addresses for jump-to-subroutine
instructions. When the TMS34082 receives an interrupt, the sequencer jumps
1o the interrupt service routine at the address given by the interrupt vector
register. The interrupt return register stores the address where execution
resumes after the interrupt routine is completed. The indirect address register
is used for indirect branches and jumps to subroutines.

The sequencer allows many options for program execution control. Branches
on status, conditional and unconditional jumps to subroutines, counted loops,
and interrupt service routines may be programmed.

Registers

4.5 Registers

The TMS34082 contains:
Twenty 64-bit general-purpose registers
Two embedded 64-bit feedback registers
Ten control registers

Control registers are 17 to 32 bits long as shown in the register model in
Figure 4-3. The 32-bit control registers COUNTX, COUNTY, and
MIN-MAX/LOOPCT are used for internal graphics instructions. When you are
not using these instructions, the registers are available for temporary storage.

32-bit single-precision floating-point or integer data is stored in the upper half
(bits 63-32) of a register as shown in Figure 4-2. Double-precision data uses
the complete 64-bit register. If a double-precision number is loadedinto a 32-bit
register, both halves are written to the register. The first half of the data is lost
because it is overwritten by the second half.

Figure 4-2. Register Usage

4-8

63 32 31 0

32-bit data b & S— {unknown).......... XX

Integer or Single-Precision Numbers

63 32 31 0
MSH LSH

Double-Precision Numbers

Register files RA and RB can be written to or read from the external buses as
canthe control registers. Internal registers C and CT are embedded inthe FPU
core and can only be accessed by the FPU internal buses. The C and CT
registers cannot be used as sources or destinations for move instructions.
Several other registers are not available as sources for FPU operations as
listed in Table 4-3.

Block moves begin at the register address given in the instruction and
sequence through the registers in the order shown in the register model,
Figure 4-3. C and CT are omitted from the sequence because they cannot be
accessed by the external buses. After the last register address
(MIN-MAX/LOOPCT), the sequence starts again at address 0 (RAQ).

Architecture

Registers

00h

0th

0sh

0Ah

OBh

0Ch

0Dh

0Eh

OFh

10h

11h

16h

1Ah

1Bh

1Ch

1Dh

1Eh

1Fh

4-9

Registers

Table 4-3. Internal Registers

Address Register Restrictions on Use

00000 RAO

00001 RA1

00010 RA2

00011 RA3

00100 RA4

00101 RAS

00110 RAB

00111 RA7

01000 RA8

01001 RA9

01010 c Not a source or destiqation for extfamal mpves. C and CT cannot both

be used as operands in the same instruction.
01014 cT Not a source or destiqation for extfernal m?ves. C and CT cannot both
be used as operands in the same instruction.

011007 STATUS Not a source for FPU instructions

01101+ CONFIG Not a source for FPU instructions

01110+ COUNTX Not a source for FPU instructions

01111+ COUNTY Not a source for FPU instructions

10000 RBO

10001 RB1

10010 RB2

10011 RB3

10100 RB4

10101 RBS

10110 RB6

10111 RB7

11000 RB8

11001 RB9

11010 VECTOR Not a source for FPU instructions

11011 MCADDR Not a source for FPU instructions

111007 SUBADDO Not a source for FPU instructions

11101% SUBADD1 Not a source for FPU instructions

11110+ IRAREG Not a source for FPU instructions

11111#

MIN-MAX/LOOPCT

Not a source for FPU instructions

4-10

host-independent mode.
Using this address as a source register in external code inputs the value one of the appropriate format (integer, single-,
or double-precision) to the FPU.

T Using this address as a source register in external code inputs data directly from the LAD bus to the FPU. Only valid in

Architecture

Registers

4.5.1 Register Files RA and RB

The TMS34082 contains two register files, each with ten 64-bit registers. Most
instructions operate on one value from each ofthe RA and RB register files and
return the result to any register. Figure 4—4 illustrates the general-purpose
registers of the TMS34082.

Figure 4-4. General-Purpose Registers

63 (MSB) 0 (LSB) 63 (MSB) 0 (LSB)
RAO RBO
RA1 RB1
RA2 RB2
RA3 RB3
eqs- qu,
< &
RA4 & RB4 aﬁ“
& &S
RA5 < RB5 <
RAB RB6
RA7 RB7
RA8 RB8
RAS RBY
63 (MSB) 0(LsB)
S
<GP
s

When the ONEFILE control bit is set high in the configuration register, data
written to a register in RA file is simultaneously written to the corresponding
location in RB file. For example, the same data is written to both RA1 and RB1
at once. In this mode the two register files act as a ten-word,
two-read/one-write register file, as shown in Figure 4-5.

4-11

Registers

Figure 4-5. Register Files with ONEFILE High

64
ya »dA
/ »
- 64
d Register File FPU Core L
(10 word) 4
64
£ B
/ Ll

4.5.2 Feedback Registers C and CT

4-12

The two 64-bit feedback registers, C and CT, are embedded in the FPU core.
Data is stored in the C and CT registers in an unpacked format. Thatis, integer
and single-precision numbers are not stored in the upper 32-bits of the
registers, but aligned in fields throughout the 64 bits. For this reason, you
should always make sure the data type in the instruction matches the actual
data in the register.

C or CT can be used as one or both operands in an instruction, but may not
be used together in the same instruction. For example, C + CT is not valid, but
C + Cis. The feedback registers may not be accessed for external moves.

The CT feedback register is used in integer divide and square root operations
as a temporary holding register. Any data stored in CT will be lost during an
integer divide or square root.

Architecture

Registers

4.5.3 Configuration Register (CONFIG)

The configuration register (CONFIG) is a special 32-bit register which you load
to set up the following TMS34082 functions:

Exception handling

Bus configurations

Pipeline configurations
Denormalized number handling
Data transfer operations
Rounding modes

The configuration register is initialized to FFE00020h. Writing to this register
during a block move will not change the operation of LADCFG, MEMCFG, and
LOAD until the move is complete. There is a one-cycle delay from when a new
value is moved to the configuration register until that value takes effect. if the
instruction following a move to the configuration register requires the new
setting of the register to be valid, insert one nop (No Operation) instruction after
the move.

The format of the configuration register is given in Table 4—4.

4-13

Registers

Table 4-4. Configuration Register Definition
Bit No. Name Description

31 MIVAL Multiplier invalid operation (I) exception mask. Initialized to one (enabled).

30 MOVER Multiplier overflow (V) exception mask. Initialized to one (enabled).

29 MUNDER | Multiplier underflow (U) exception mask. Initialized to one (enabled).

28 MINEX Muttiplier inexact (X) exception mask. Initialized to one (enabled).

27 MDIVO Divide by zero (DIVO0) exception mask. Initialized to one (enabled).

26 MDENORM | Multiplier wrapped number output (DENORM) exception mask. Initialized to one (enabled).

25 AIVAL ALU invalid operation (I) exception mask. Initialized to one (enabled).

24 AOVER ALU overflow (V) exception mask. Initialized to one (enabled).

23 AUNDER | ALU underflow (U) exception mask. Initialized to one (enabled).

22 AINEX ALU inexact (X) exception mask. Initialized to one (enabled).

21 ADENORM | ALU denormal output (DENORM) exception mask. Initialized to one (enabled).

20-11 N/A Reserved for later use. Initialized to all zeros.

10 VERSION | Version number, read only. Set to one.

9 LADCFG LAD bus_ conﬁguratio'n for host~ir.1dependent moge. When high, COINT dgfil?es LAD bus cycle
boundaries. The setting of this bit has no effect in coprocessor mode. Initialized to zero.

8 MSD bus configuration. When high, MCE and DS/CS are code and data space chip enable,

MEMCFG respectively. Initialized to zero.

7 N/A Reserved for later use. Initialized to zero. Note: You must always write a zero to this bit.

(] ONEFILE | When high, causes simultaneous write to both register files. Initialized to zero.

5 PIPES2 When high, makes the FPU core output registers transparent. When low, the output registers
are enabled. Initialized to one.
When high, makes the FPU core internal pipeline registers transparent. When low, the FPU

4 PIPEST internal pipeline registers are enabled. Initialized to zero.

3 FAST When high, Fast_mode is sele(ft.ed. (all denormalized inputs and outputs are zeroed). When
low, IEEE mode is selected. Initialized to zero.

2 LOAD Load order. 0 = MSH, then LSH; 1= LSH, then MSH. Initialized to zero.

1 RND1 Rounding mode select 1. Initialized to zero.

0 RNDO Rounding mode select 0. Initialized to zero.

4-14

Architecture

Registers

4.5.3.1 Exception Mask

The mask bits (bits 31-21) serve as exception detect enables. Setting bits high
enables the detection of the specific exceptions. Exceptions that are
unimportant to your specific application may be masked to prevent unwanted
interrupts. When an enabled exception occurs, the ED bit in the status register
is set high and can be used to generate interrupts.

Whenthe exception mask has been loaded, the mask is applied to the contents
of the status register to disable unnecessary exceptions. Status results are
ORed together and, if true, the exception detect (ED) status bit is set high.
Individual status flags remain active and can be read independently of mask
operations.

Since inexact results are normal for floating-point operations, you should
usually mask out this exception for both the ALU (AINEX) and multiplier
(MINEX).

4.5.3.2 LAD Bus Configuration (Host-Independent Mode)

The LADCFG bit (bit 9) defines the LAD bus configuration for host-independent
mode. Two different configurations are possible.

When LADCFG is low, COINT is a user-programmable signal not associated
with the LAD bus. CAS and WE are not affected by LOE (LAD bus enable).

When LADCFG is high, COINT defines LAD bus cycle boundaries and is
controlled by bit 1 (C bit) of LAD move instructions. Also, CAS and WE are
disabled (placed in a high impedance state) when LOE is high.

With LADCFG high, a move instruction with the C bit high sets COINT low
before the first word is moved. COINT remains low until the move is complete.
You could use COINT to select between two devices on the LAD bus. COINT
becomes the chip enable for one of the devices as shown in Figure 4-6.

The setting of COINT has no effect in coprocessor mode.

Figure 4-6. Host-Independent Mode LAD Bus Configuration for LADCFG high

Memory TMS34082
D3¢ liAD310
WE
CAS
Processor
Interface ALTCH
D31-0
TE COINT

4-15

Registers

4.5.3.3 MSD Bus Configuration

The MEMCFG bit defines the function of control signals for the MSD bus. Two
different configurations are possible.

When MEMCFG is low, MCE is the memory chip enable signal. It goes low
when memory is being accessed. DS/CS functions as the most significant
address bit, selecting data memory when high or code memory when low. This
configuration is illustrated in Figure 4-7.

Figure 4-7. MSD Bus Configuration for MEMCFG low

MSA15-0 A15-0
TS A16
ps/es 128K x 32
TMS34082 SRAM
- GE
MSD31-0 D31-0

When MEMCFG is high, MCE becomes the code space chip enable and
DS/CSthe data space chip enable. Both are active low. This may eliminate the
need for an external inverter on DS/CS. Figure 4-8 show this configuration.

Figure 4-8. MSD Bus Configuration for MEMCFG high

MCE CE Code

MSD31-0 T D31-0 ggi‘;‘;
| 5.0 B4Kx 32
TMS34082
MSA15-0 A15-0 Data

. Space

_ D3t-0 Space
DS/CS CE 64K x 32

4-16 Architecture

Registers

4.5.3.4 Pipeline Settings

The PIPES2 and PIPESH1 bits (bits 5-4) of the configuration register define the
piepline register settings for the internal FPU core. PIPES2 is the enable for
the FPU core output registers; PIPES1 is for the FPU core internal pipeline
registers. Both are active low. When high, data flows through the registers.
Table 4-5 details the pipeline operation for each setting of PIPES.

Table 4-5. Pipeline Settings

PIPES2 PIPES1 Operation
0 0 Both pipeline registers enabled
0 1 Only FPU internal pipeline registers enabled
1 0 Only FPU output registers enabled
1 1 Both pipeline registers disabled (flowthrough)

For more information on pipeline registers, referto subsection 4.6.2 — Pipeline
Registers.

4.5.3.5 Fastand IEEE Modes

The FAST bit (bit 3) selects the mode for handling denormalized inputs and
outputs. For many applications, very small numbers may be treated as zero,
allowing the programmer to use Fast mode. In the Fast mode (FAST=1):

All denormalized or wrapped inputs and outputs are forced to zero and do
not cause any status exceptions.

The DENIN (denormal input) status exception is disabled.

Using Fast mode simplifies error handling because you do not have to wrap
and unwrap denormalized numbers. Forcing very small (denormalized)
numbers to zero causes & loss of accuracy, however. If you multiply a very large
number by a denormal, the result may be significantly larger than zero. Ifitis
important in your application to distinguish between very small numbers and
zero, use IEEE mode.

Setting FAST = 0 selects IEEE mode. In this mode, the ALU can operate on
denormalized inputs and return denormals. Denormals are not valid input to
the multiplier; they must be wrapped first. If you input a denormal to the
mutltiplier, the DENIN flag will be asserted and the result will be invalid (I flag
set). Exponent underflow is possible during multiplication of small operands
even when the operands are not wrapped numbers. |f the multiplier resuft
underflows, a wrapped number will be output. In IEEE mode, the wrapped
number is not forced to zero.

4-17

Registers

Table 4-6. Handling Wrapped Multiplier Outputs

When the multiplier produces a wrapped number as its result, it may be passed
to the ALU and unwrapped. A zero is output if the wrapped result is too small
to represent as a denormal (smaller then the minimum denormal). Table 4-6
describes how you should unwrap multiplier results and the status flags that
are set when wrapped numbers are output from the multiplier.

Type of Result

Status Bits

DENORM

X RND

Notes

Wrapped, exact

1

0 Unwrap with Wrapped, exact instruction

Wrapped, inexact

1

Wrapped, increased in magnitude 1

0
1 0 Unwrap with Wrapped, inexact instruction
1 1 Unwrap with Wrapped, rounded instruction

4.5.3.6 Load Order

Since 64-bit double-precision data must be transferred 32 bits at a time, the
TMS34082 must know which half of the word is loaded first. The LOAD bit (bit
2) defines the expected order. If LOAD = 0, the most significant half (MSH) is
transferred first, followed by the least significant half (LSH). When LOAD =1,
the LSH is transferred first. The LOAD bit also determines the order data is
read out of a register. Table 4-7 shows the load order for all data formats.

Table 4-7. Data Ordering for Loads/Stores

Words Accessed
Data Format Size CONFIG LOAD bit=0 CONFIG LOAD bit =1
Integer 32 bits
Single-precision 32 bits
Double-~precision 64 bits

4-18

Architecture

Registers

4.5.3.7 Rounding Modes
The TMS34082 supports the four IEEE standard rounding modes:
Round to nearest
Round towards zero (truncate)
Round towards positive infinity (round up)
Round towards minus infinity (round down)

The rounding function is selected by bits RND1 and RNDO as shown in
Table 4-8. The defautt setting is round to nearest.

Table 4-8. Rounding Modes

RND1 RNDO Rounding Modes
0 0 Round towards nearest
0 1 Round towards zero (truncate)
1 0 Round towards infinity (round up)
1 1 Round towards negative infinity (round down)

You should select the rounding mode which will minimize procedural errors.
Rounding to nearest introduces an error no more than half of the least
significant bit. Since rounding to nearest may involve rounding either up or
down in successive steps, rounding errors tend to cancel each other.

In contrast, directed rounding modes may introduce errors approaching one
bit for each rounding operation. Rounding errors may accumulate rapidly,
particularly with single-precision operations.

4.5.4 Status Register

The floating-point status register (STATUS) is a 32-bit register used for
reporting the exceptions that occur during TMS34082 operations and status
codes set by the results of implicitand explicit compare operations. The status
register is cleared upon reset, except for the INTENED flag which is setto one
in coprocessor mode.

The status register can be used by test-and-branch instructions to control
program flow. Because of the large number of FPU status outputs, branches
on status can be used to save program execution time. The status register
contents are also important when dealing with status exceptions including
such conditions as overflow, underflow, invalid operations, or illegal data
formats (such as infinity, Not a Number (NaN), or denormalized operands).

4-19

Registers

Table 4-9. Status Register Definition

Bit No. Name Description
31 N Sign bit. When high, the result is negative. (A < B for compare operations)
30 GT A > B (valid only for compare operations)
29 zero flag. (A = B for compare operations)
28 v IEEE Overflow flag. The result is greater than the largest allowable value for the specified
format.
IEEE Invalid Operation flag. A NaN has been input to the FPU or an invalid operation has been
27 l requested. If | goes high because a NaN was input, the STX flags indicate which port had the
NaN.
26 U | EEE pnderﬂow flag. The result is. inexac_t .and less than the minimum allowable value for the
specified format. In Fast mode, this condition causes a zero result.
25 X IEEE inexact flag. The result of an operation is inexact.
24 DIVO Divide by zero. An invalid operation involving a zero divisor has been detected by the multiplier.
The mantissa of a number has been increased in magnitude by rounding. If the number
23 RND generated was wrapped, then the unwrap, rounded instruction must be used to properly unwrap
the wrapped number (see Table 4-6).
The input to the multiplier is a denormal number. When DENIN goes high, the STX flags indicate
22 DENIN which port had the denormal input.
The multiplier output is a wrapped number or the ALU output is a denormal number. In the Fast
21 DENORM | mode, this condition causes the result to go to zero. It also indicates an invalid integer operation,
for example, PASS (—A) with unsigned integer operand.
20 STX1 A NaN or a denormal has been input on the A port.
19 STX0 A NaN or a denormal has been input on the B port.
18 ED E.xception detect status signal representing logical OR of all enabled exceptions in the exception
disable register.
17 UNORD Ll:\l fwo inputs of a comparison operation are unordered, that is, one or both of the inputs is a
16 INTFLG | Software interrupt flag. Set by external code to signal a software interrupt.
15 | INTENHW | Hardware interrupt (INTR) enable
14 NXOROV | N (negative) XOR V (overflow)
13 VANDZB V(overflow) AND NOTZ (not zero)
12 INTENED | ED interrupt enabile (initialized to zero in host-independent mode, one in coprocessor mode).
11 INTENSW | Software interrupt enable for INTFLG (bit 16)
10 ZGT Zn > Zmax (valid for 2-D MIN-MAX instructions)
9 ZLT Zn < Zmin (valid for 2-D MIN-MAX instructions)
8 YGT Yn > Ymax (valid for 1-D or 2-D MIN-MAX instructions)
7 YLT Yn < Ymin (valid for 1-D or 2-D MIN-MAX instructions)
6 XGT Xn > Xmax (valid for 1-D or 2-D MIN-MAX instructions)
5 XLT Xn < Xmin (valid for 1-D or 2-D MIN-MAX instructions)
4 HINT Hardware interrupt flag
3-0 n/a Reserved, set to zero

4-20

Architecture

Registers

Output exceptions may be due to either an illegal data format orto a procedural
error, such as:

Results too large or too small to be represented in the selected precision
are signaled by V (overflow) and U (underflow).

An ALU output which was increased in magnitude by rounding causes X
(inexact) to be set.

Wrapped outputs from the multiplier may be inexact and increased in
magnitude by rounding, which sets the X (inexact) and RND (rounded)
status flags high.

DENORM is set when the multiplier output is wrapped or the ALU output
is denormalized.

DENORM is also set high when an illegal integer operation is performed.

DIVO is set whenever the divisor is zero. The result of the operation is
infinity.

Invalid operations cause the | flag to be set. The | bit will also go high if a
NaN is input to the FPU.

The EDf{lagis alogical OR ofthe above exceptions. lf any ofthe exception flags
is high, ED will also be high. Exceptions can be masked out of ED by setting
the appropriate bits in the configuration register. I the ED interrupt (INTENED)
is enabled, an interrupt is generated when ED goes high.

Status flags are provided for both floating-point and integer results. Integer
status is provided using Z for zero detect, N for sign, and V for
overflow/carryout. Bits 14 and 13 are logical combinations of these three flags.

If the floating-point input to the multiplier is a denorm, DENIN will be set. If the
input to the FPU is a NaN, | (invalid operation) will be set. STX1-0 indicate
which operand is the source of the exception when either a denormal is input
to the multiplier (DENIN=1) or a NaN is input (I=1).

NaN inputs are all treated as |IEEE signaling NaNs causing the | flag to be set.
When the FPU outputs a NaN, it is always in the form of a signaling NaN with
the | and appropriate STX flags set high. The exponent and fraction fields of
the NaN are set to all 1s, regardless of the input fraction.

4-21

Registers

Invalid operations that set the | flag include:
Operations with NaN inputs
Zero divided by zero

Positive infinity minus positive infinity or negative infinity minus negative
infinity

Positive infinity plus negative infinity
Square root of a negative number
Zero multiplied by infinity

The resuit of these operations is a NaN.

Bits 15, 12, and 11 in the status register are used to enable interrupts. Interrupts
are enabled by setting INENHW (hardware interrupt), INTENSW (software
interrupt), or INTENED (ED interrupt) high. A software interrupt is generated
by writing to the status register with bit 16 (INTFLG) set to one.

4.5.5 Indirect Address Register

The indirect address register (MCADDR) can be set to point to a memory
location for indirect move or jump operations on the MSD port. MCADDR is
cleared upon reset. Alithough MCADDR cannot be used directly as an operand
for FPU instructions, you can do an arithmetic operation on the value in
MCADDR by first moving the contents to a register file location. Then perform
the operation, choosing MCADDR as the destination.

The function of bit 16 varies, depending on whether the instruction is a move
or jump. During a move instruction, bit 16 selects data space when set high or
code space when low. During a jump instruction, bit 16 selects an internal
instruction when set high or an external instruction when low (see Figure 4-9).

Figure 4-9. Indirect Address Register Format

4.5.6 Stack

4-22

31 16 15
l X X X X X XX X X X | \'} l Indirect Address 1

o

The stack contains two subroutine return address registers (SUBADDO and
SUBADD1) which serves as a two-deep last-in, first-out (LIFO) stack. A
subroutine jump causes the program counter to be pushed onto the stack, and
a return from subroutine pops the last address pushed onto the stack. More
than two pushes will overwrite the contents of SUBADD1.

Architecture

Registers

Bit 31 (Pointer) is set high in the stack location that was written last and reset
to zero in the other stack location. Setting bit 30 (Enable) high enables a write
into bit 31 (set or reset the pointer) in either stack location. If bit 31 is zero in
both SUBADDO and SUBADD1 (as when the stack has been saved externally
and later restored), SUBADDO can be designated as top of stack by setting
bit 31. The stack pointers are cleared upon reset.

Bit 16 (I) is set high when the address in a stack location points to an internal
routine or set low when the address is an external instruction.

Figure 4-10. Stack Register Format

31 30 16 15 0
X X X X X X X X X X | SUBADDO
X X X X X X X X X X | SUBADD1

4.5.7 Interrupt Vector Register

The interrupt vector register (VECTOR) serves as a pointer to an external
program to be executed upon receipt of an interrupt. Bit 16 (1) is always set low
to point to a routine in external code space. The interrupt vector is cleared on
reset. This register is only 17 bits wide (as shown in Figure 4-11) and should
not be used for temporary storage.

Figure 4~11. Interrupt Vector Register Format

31 16 15 0
r X X X X X X X X X X J ! l Interrupt Address]

4.5.8 Interrupt Return Register

The interrupt return register (IRAREG) retains a copy of the program counter
at the time of an external interrupt. This address is used as the next execution
address upon returning from the interrupt. Bit 16 () is set high when the
address points to an internal instruction or set low when the address is in an
external instruction. This register is not affected by the reset signal and, as
illustrated in Figure 4—12, is only 17 bits wide and should not be used for
temporary storage.

Figure 4-12. Interrupt Return Register Format
31 16 15 0

I X X X X X X X X X X I I L Interrupt Return Address J

4-23

Registers

4.5.9 COUNTX and COUNTY Registers

The counter registers (COUNTX, COUNTY) are used to store the current
counts of the minimum and maximum values when executing MIN-MAX
instructions. They may also serve as temporary storage for the user. COUNTX
and COUNTY are cleared on reset.

Figure 4-13. COUNT Registers Format

31 16 15 0
I Count for MAX value J Count for MIN value]

The COUNTX register is updated on both the 1-D and 2-D MIN-MAX
instruction such that the count of the current minimum value is in the lower 16
bits of the register and the count of the current maximum value is in the upper
16 bits. The COUNTY register is used only in the 2-D MIN-MAX instruction to
keep track of the counts of the minimum and maximum for the second value
of a pair.

4.5.10 MIN-MAX/LOOPCT Register

The MIN-MAX/LOOPCT register stores the current values of two separate
counters. The LSH contains the current loop counter and the MSH is used to
hold the current minimum or maximum value of a MIN-MAX operation. This
register may also serve as temporary storage for the user. The
MIN-MAX/LOOPCT register is cleared upon reset.

Figure 4-14. MIN-MAX/LOOPCT Register Format

4-24

31 16 15 0
{ MIN-MAX value | Loop Count |

Architecture

FPU Core

4.6 FPU Core

The FPU core consists of a multiplier and ALU, each with an intermediate
pipeline register and an output register. The multiplier and ALU may operate
independently or in parallel.

The major components include:
Operand multiplexers
Pipeline registers
ALU
Muttiplier
Output control

Figure 4-15 shows a functional block diagram of the FPU core.

4.6.1 Operand Selection

Four multiplexers select the multiplier and ALU operands. Possible operand
sources are:

RA and RB register files
Internal feedback registers C and CT
FPU core output registers

The FPU core output registers provide the previous multiplier or ALU result.
Note that if the output registers are used as operands, they must be enabled.
(See subsection 4.6.2 — Pipeline Registers — for additional details.)

For external instructions, immediate data from the LAD bus or the value 1 may
also be chosen as operands. These are selected by setting the appropriate
address bits (see section 4.5 — Registers) and selecting the RA or RBregister
file as operands.

The selection of operands also depends on the ALU or multiplier operation
chosen. Single-operandinstructions are generally performed only on registers
in the RA file. Exceptions to this are the PASS instruction and certain complex
internal instructions. Also in chained mode (the ALU and multiplier acting in
parallel) the RB operand may optionally be forced to 0 in the ALU or 1 in the
multiplier.

4-25

FPU Core

Figure 4-15. FPU Core Functional Block Diagram

toffrom LAD Bus <« 32

to/from Control Register

Data /O

—

v e |\

ALU Stage 1

Cofig | % o\ tofiromMSD Bus
Logic
Registers Registers C Reg
RA9-RAOQ RB8-RBO CT Reg
64
4 64 64

Multiplier Stage 1
Multiplier Pipeline 64 ALU Pipeline
Mutltiplier Stage 2 ALU Stage 2

L 64 64

Multiplier Output Reg ALU Output Reg
Output
; MUX C MUX
64

64

| |

4-26

Status Regester

32 |

Architecture

FPU Core

4.6.2 Pipeline Registers

Two levels of interal data registers are available to segment the internal data
paths of the TMS34082 FPU core. The registers are enabled by setting the
PIPES2-1 bits in the configuration register.The most basic choice is whether
to use the device in unpipelined mode (with no internal registers enabled) or
whether to enable one or more pipeline registers. When no internal registers
are enabled, the clock period is longest (the TMS34082 timing specifications
are contained in Appendix A) .

Enabling one or both sets of pipeline registers segments the data paths. When
the intermediate pipeline is enabled, the register-to-register delay inside the
device is minimized, allowing operation with the minimum cycle time. While
one FPU instruction is executing, the next instruction may be input so that
overlapping operations occur. This iscommonly known as pipelined execution.

The TMS34082 may also operate with both sets of pipeline registers disabled.
With this setting, two 32-bit operands are read from the register file, an
operation is performed by the ALU or multiplier, and the result is stored in the
register file, all in one clock cycle. A double-precision ALU operation takes one
clock cycle, but double-precision multiplies require two clock cycles to
complete. :

When the ALU and muiltiplier operate in paraliel (chained mode), two data
operands come from the register files while multiplier and ALU feedback
provide the other two operands. Therefore, in chained mode the FPU core
outputregisters mustbe enabled. After the chainedoperation is completed and
the results have been stored, the FPU core output registers may be disabled
again. Wait until all operations have completed to change pipeline settings to
avoid loosing any results.

The selection of pipeline registers determines the latency from input to output,
the number of cycles required for an instruction to be processed and the results
to appear. For each register level enabled in the data path, one clock cycle is
added to the latency from input to when the result is valid in the register file.
Figure 4-16 shows the latency of different pipeline settings. A result may be
used as input on the same cycle that it is clocked into the register file.

4-27

FPU Core

Figure 4-16. Effects of Pipelining

Clock Cycle
Instruction Register

Register File
(Destination)

Instruction Register
Pipeline Register

Register File
(Destination)

Instruction Register
Pipeline Register

Output Register

Register File
(Destination)

4-28

1 2 3 4 5 6 7
Instruction 1 Instruction2 § Instruction 3 | Instruction 4
Instruction 1 | Instruction2 | Instruction 3 | Instruction 4
Results Results Results Results
PIPES2-1=11
Instruction 1 Instruction2 | Instruction 3 | Instruction 4
Instruction 1 | Instruction2 | Instruction 3 | Instruction 4
Values Values Values Values
Instruction 1 | Instruction2 | Instruction 3 | Instruction 4
Results Resuits Resuits Resuits
PIPES2-1=10
Instruction 1 Instruction2] Instruction 3 | Instruction 4
Instruction 1 | Instruction2 | Instruction3 | Instruction 4
Values Values Values Values
Instruction 1 f Instruction 2 | Instruction 3 | Instruction 4
Results Resuits Results Results
Instruction 1 | Instruction2 | Instruction 3} Instruction 4
Results Results Results Results
PIPES2-1=00

Both sets of pipeline registers are controlled by the PIPES2 and PIPES1 bits
in the configuration register. When the device is powered up or reset, the
intermediate pipeline registers are enabled (PIPES1=0) and the output
registers are transparent (PIPES2=1). For internal instructions, control logic
sets the pipeline registers as needed and restores them to their previous
configuration after the instruction is completed.

Pipeline settings should be changed only when all instructions executing inthe
FPU core are completed and results are stored in the register file. Otherwise,
results will be lost. The nop (No Operation) instruction may be inserted to allow
timeforthe lastinstruction to finish before changing the pipeline configuration.

When using chained mode, the nop instruction may be used to adjust output
register timing. Each nop instruction keeps the results in the output registers
for one additional clock cycle. nop may be used in this manner only when the
output registers are enabled.

Architecture

FPU Core

46.3 ALV

The pipelined ALU contains a circuit for floating-point addition and/or
subtraction of aligned operands, a pipeline register, an exponent adjuster, and
a normalizer/rounder as shown in Figure 4-17. Exception logic is provided to
detect denormalized inputs; these can be flushed to zero if the FAST input is
set high. If the FAST input is low, the ALU accepts a denormal as input. The

“denormal exception flag (DENORM) goes high when the ALU output is a

denormal.

Figure 4-17. Functional Diagram for ALU

4.6.4 Multiplier

| Exponenf Subtracter |
| — |
| Integ'er ALU |
[Nor:alizer |
| Ro:nder |

v

Integer processing in the ALU includes both arithmetic and logical operations
in either 2s complement numbers or unsigned integers. The ALU performs
addition, subtraction, comparison, logical shifts, logical AND, logical OR, and
logical XOR. Format conversions and wrapping/unwrapping of denormals are
also done by the ALU.

The pipelined multiplier (see Figure 4-6) performs a basic multiply function,
division, and square root. The operands can be single- or double-precision
floating-point numbers and can be converted to absolute values before
multiplication takes place. Integer operands may also be used.

FPU Core

If the operands to the multiplier are double-precision or mixed precision
(i.e., one single-precision and one double-precision), then one extra clock
cycle is required to get the product through the multiplier pipeline. This means
that for PIPES1=1, one clock cycle is required for the multiplier pipeline; for
PIPES1=0, two clock cycles are required for the multiplier pipeline.

An exception circuit is provided to detect denormalized inputs; these are
indicated by a high on the DENIN signal. Denormalized inputs must be:
wrapped by the ALU before multiplication, division, or square root. If results are
wrapped (signaled by a high on the DENORM status pin), they must be
unwrapped by the ALU first.

The multiplier and ALU can be operated simultaneously. Division and square
root are each performed as an independent multiplier operation, even though
both multiplier and ALU are active during these operations.

Figure 4-18. Functional Diagram for Multiplier

4-39

A 4
I Recorder |

.
{ Multiplier/Divider |

v
| Converter I

I Rounder I

\ 4
I Normalizer I

Architecture

FPU Core

4.6.5 Output Control

An output MUX selects which result (ALU or multiplier) is written to the register.
The instruction specifies where the result is stored. Results may be directed
to the twenty registers in files RA and RB, the feedback registers (C and CT),
or the other temporary storage registers.

Although it is possible to direct the result to the CONFIG, STATUS, MCADDR,
VECTOR, IRAREG, SUBADDO, and SUBADD1 registers, it is not
recommended. These registers have dedicated functions as discussed in
section 4.5.

The COUNTX, COUNTY, and MIN-MAX/LOOPCT may be used as temporary
storage registers. Because they are only 32-bits wide, double-precision results
cannot be stored in these registers.

4-31

RESET and RDY

4.7 RESET and RDY

The RESET inputis an active low signal that asynchronously clears the internal
states and resets the configuration and status registers to the default values.
Internal pipeline registers are cleared, but the register files, C, and CT are not
affected.

Duringreset, controlinputs are in aninactive state as shown in Table 4-10. The
LAD and MSD buses are placed in a high-impedance state, and the MSA bus
outputs an address of 0.

Table 4-10. Signal States During Reset

4-32

Signal Name Logic Level
LAD31-0 high impedance
ALTCH! high

CAS! high
WE! high
MSD31-0 high impedance
MSA15-0 low
DS/CS high
MAE high
CE high
MOE high
MWR high
COINT high
CORDY high
INTG low

T Host-independent mode only.

Operation resumes on the rising edge of the clock after RESET is set high
again. In host-independent mode, MCE becomes active and causes a read
from code address 0. In coprocessor mode, the TMS34082 goes to an idle
state, waiting for an instruction from the TMS34020.

The TMS34082 can be nondestructively stalled by setting the RDY input low.
The next rising clock edge is inhibited. Normal operation resumes on the cycle
after the RDY input is set high again.

While halted, the registers and internal states are unaltered. Output pins
remain at their previous levels. The asynchronous inputs (LOE, MOE, and
RESET) are still active. If an interrupt is received while the device is stalled,
it will be queued and serviced after operation resumes.

Architecture

Emulation Control

4.8 Emulation Control

Two emulation mode control pins, EC1-0, support system testing. These may
be used, for example, to place all outputs in a high-impedance state, isolating
the TMS34082 from the rest of the system.

Table 4-11. Test Modes

Test modes are givenin Table 4—11 . Fornormal operation, EC1 and ECO must

both be high.
EC1-0 Operation
0 0 All output and /O pins are forced low
0 1 All output and IO pins are forced high
1 0 All output pins are placed in high-impedance state
1 1 Normal operation

4-33

JTAG Test Port

4.9 JTAG Test Port

The TMS34082 includes a 4-wire Test Access Port (TAP) interface that allows
serial scan access to test circuitry within the device. This TAP is compatible
with the IEEE 1149.1 (JTAG) specification. It was designed using the Tl
Scope™ (System Controllability, Observability, and Partitioning Environments)
guidelines. For normal operation, the input pins should be connected as shown
below.

Table 4-12. Test Pins for Normal Operation

Signal Name Logic Level
TCLK Tied low or high
TDI Tie high or leave floating
TMS Tie high or leave floating

4.9.1 TestInstructions

The TAP includes an 8-bit instruction register used to tell the device what
instruction is to be executed. The instruction register is loaded serially via the
TDI input. The order of scan is shown in Figure 4-19.

Figure 4~19. Instruction Register Order of Scan

TDI—p

BIT7
(MSB)

—¢l BIT6 |—» BITS ——’I BIT 4 BIT3 BIT 2 BIT1 |—p ?L"srl:) _» TDO

4-34

Fourtestinstructions are supported; Table 4-13 lists their binary opcodes. Any
instruction code not supported is interpreted as the Bypass instruction.

Bypass

A one-bit bypass register is selected in the scan path. Data input from TDI is
shifted into the bypass register, then out through TDO.

Extest

This is the 1149.1 Extestinstruction with the boundary scan registerinthe scan
path. Data appearing at the device inputs and outputs is captured. Data
previously loaded into the boundary scan register is applied to the device
inputs and through the device outputs.

Architecture

JTAG Test Port

Intest

This is the 1149.1 Intest instruction with the boundary scan register inthe scan
path. Data appearing at the device inputs and outputs is captured. Data
previously loaded into the boundary scan register is applied to the device
inputs and through the device outputs.

Sample

This instruction conforms to the 1149.1 Sample/Preload instruction. Data
appearing atthe device inputs and outputs is sampled without affecting normal
operation. The boundary scan register is selected in the scan path.

Table 4-13. Instruction Register Opcodes

Binary Opcode Opcode Description
00000000 BYPASS Bypass scan
00000011 INTEST Boundary scan in test mode
10000010 SAMPLE Sample boundary scan in normal mode
11111111 EXTEST Boundary scan in test mode

4.9.2 Boundary Scan Register

The boundary scan register contains 181 bits, one for each functional inputand
output on the TMS34082. Each I/O pin has both aninput and an outputregister
bit associated with it. In addition, some three-state outputs have an additional
bit in the scan register. These represent internal three-state enable registers,
not actual pins onthe package. Table 4-14 lists these scan bits and the outputs
they affect.

Table 4-14. Boundary Scan Register Enable Bits

Scan Name Affected Outputs
CO-EN COINT, CORDY
ALTCH-EN ALTCH (output)
CAS-EN CAS (output), WE (output)
LAD-EN LAD31-0 (outputs only)
MSD-EN MSD31-0 (outputs only)
MSA-EN MSA15-0
MWR-EN MWR, MOE, DS/CS, MCE, INTG

The boundary scan register is used to store test data that is to be applied
internally and/or externally to the TMS34082 and to capture and store data that
is applied to the functional inputs and outputs. The boundary scan register
order of scan is shown in Figure 4-20.

4-35

JTAG Test Port

Figure 4-20. Boundary Scan Register Order of Scan

DI _..I BUSFLT |l LROY | RAS | | sF | p| RESET ‘.l LCLK1
RDY |4_ INTR I‘— ciD2 |'7 ciD1]¢_ cioo l¢—| Lok J

L |y MsTR |p| ok _.I OE | p| coen | | casEN

CAS CAS WE WE ALTCH

COINT (Input) (Output) (Input) {Output) -EN

ALTCH ALTCH LAD31 LAD31

(Output) (nput)y || CORDY [—pi LAD-EN L—pf (Output) (Input)

LAD28 LAD28 LAD29 LAD29 LAD30 LAD30

(Input) (Output) (Input) (Output) (Input) (Output)

LAD27 LAD27 LAD26 LAD26 LAD25 LAD25

(Output) M (nput) =P} (Output) M (nput) P (Qutput) M (Input)

LAD22 LAD22 LAD23 LAD23 LAD24 LAD24

™1 (input) (Output) (Input) (Output) (input) {Output)

LAD21 LAD21 LAD20 LAD20 LAD19 LAD18

(Cutputy P (Input) P (Output) P (nput) [P (Output) P (input)

LAD16 LAD16 LAD17 LAD17 LAD18 LAD18

(Input) (Output) M—] (Input) (Output) (Input) &1 (Output)
4-36 Architecture

JTAG Test Port

Figure 4-20. Boundary Scan Register Order of Scan (Continued)

B

7 ot 7 ot 7t]

e

LAD15 LAD14 LAD14 LAD13 LAD13 LAD12
(Input) (Output) |1 (nput) (Outputy P4 (Input) (Output)
LAD9 LAD10 LAD10 LAD11 LAD11 LAD12
(Output) (Input) (Output) (Input) (Output) (Input)
LAD9 LAD8 LADS LAD7 LAD7 LAD6
(input) (Output) P (Input) (Output) P4 (Input) (Output)
LAD3 LAD4 LAD4 LADS LADS LAD6
{Output) (Input) ¢—| (Output) (Input) (Output) (Input)
LAD3 LAD2 LAD2 LAD1 LAD1 LADO
(nput)y |F—P (Output) }|—Pp| (input) P& (Ouiput) P (Input) {Output)
MSD2 MSD1 MSD1 MSDO MSDO LADO
(Output) (Input) (Output) {Input) (Output) (Input)
MSD2 MSD3 MSD3 MSD4 MSD4 MSD5
(Input) (Output) F—Pp| (Input) (Output) P (input) (Output)
MSD8 MSD7 MSD7 MSD6 MSD6 MSD5
(Output) (Input) {Output) (Input) (Output) (Input)
MSD8 MSD9 MSDg MSD10 MSD10 MSD11
(Input) (Output) }—Pp (Input) (Output) P4 (input) (Output)
MSD14 MSD13 MSD13 MSD12 MsSD12 MSD11
(Output) (Input) (Output) {Input) (Output) (Input)

JTAG Test Port

Figure 4-20. Boundary Scan Register Order of Scan (Continued)

MSD14 MSD15 MSD15 MSD16 MSD16 MSD17
~ o (nput (Outputy [~ (nput) ©Outpuy |9 (Input (Output)
MSD20 MSD19 MSD19 MSD18 MSD18 MSD17
(Output) (Input) {Output) (Input) {Output) (input)
MSD20 MSD21 MsD21 MSD22 MSD22 MSD23
(input) (Output) Pt (Input) (Output) P (Input) {Output)
MSD26 MSD25 MSD25 MSD24 MSD24 MSD23
| (Output) (Input) (Output) (Input) (Output) {Input)
MSD26 MsD27 MSD27 MsD28 MSD28 MSD29
{Input) (Output) P (Input) (Output) P (input) (Output)
MSD-EN MSD31 © MSD31 MSD30 MSD30 MSD29
(Output) (Input) (Output) {Input) (Output) (Input)
MSAO _’I MSA1 | 1 MSA2 ‘.I MSA3 | —p MSA4 _4 MSAS5

MSA11 I'__ MSA10 l‘_. MSA9 I‘, MSA8 |‘_ MSA7 |‘__ MSA6 l“
MSA12 __,l MSA13 | p] MSA14 A'l MSA15 | pi MSA-EN "l MWR
TDO 4—| MWR-EN |" MAE J‘, INTG |'. MCE “, MOE I“ DS/CS

4-38 Architecture

Chapter 5

Coprocessor Mode

The TMS34082 provides closely coupled floating-point support for the
TMS34020. The devices were designed with a direct-wire interface that
requires no additional external glue logic. Combinations of TMS34020 and
TMS34082 devices provide the performance to cover a broad range of graphic
applications. This family of solutions makes upgrading your design easy.

The TMS34082 is more than a simple coprocessor. It contains complex
instructions specifically tailored for graphics operations. The ability of the
TMS34020 and TMS34082 to operate in parallel, support for muitiple
TMS34082 devices, and the option of adding external user-generated
subroutines also increase system performance.

5-1

TMS34020/TMS34082 Interface Overview

5.1 TMS34020/TMS34082 Interface Overview

Operation in coprocessor mode assumes the MSTR input signal is setlow. In
this mode, the TMS34082 acts as a tightly coupled coprocessor to the
TMS34020. In terms of the instruction set and register resources, the
TMS34082 appears as an extension to the TMS34020 register and instruction
set.

Figure 5-1 shows the register allocation for the TMS34020/TMS34082
combination.

Figure 5-1. TMS3402/TMS34082 Register Model

TMS34020 Registers TMS34082 Registers

The TMS34082 executes two different instruction sets:

Internal instructions from the TMS34020 are input on the LAD port. They
include complex graphics, matrix, and vector routines. These are
described in Chapter 7.

External instructions are input on the MSD port. This is a RISC-like
instruction set. They are used to write user-defined subroutines. External
instruction are covered in Chapter 8.

The interface between the TMS34020 and the TMS34082 consists of direct
connections between pins. No glue logic is required otherthan gating the ready
signals into the TMS34020. Figure 5-2 shows the interconnection.

5.0 Coprocessor Mode

TMS34020/TMS34082 Interface Overview

The LAD interface includes the following signals: LAD31-0, LOE, ALTCH,
LRDY, BUSFLT, RAS, CAS, WE, SF, COINT, CORDY. These signals
communicate between TMS34020 and TMS34082 in coprocessor mode.
COINT and CORDY are the only signals that go from the TMS34082 to the
TMS34020; all other signals are inputs to the TMS34082. COINT should be
connected to one of the TMS34020 local interrupt requests, LINT1 or LINT2.

Figure 5-2. TMS34020/TMS34082 Interconnection

|

LADST-0 LOE

ALTCH
BUSFLT

RAS

CAS0

WE

TMS34020 SF TMS34082 ClDo

RESET CID1 } CoprcI)[c)essor
LCLK1 102
LCLK2

COINT

LRDY

CORDY]
PAL
j¢————— from memory control logic

CORDY from the TMS34082 is logically ORed with other ready signals from
the system to form the TMS34020 LRDY input ready signal. Note that LRDY
connects to both the TMS34020 and the TMS34082 inputs.

When operating in the coprocessor mode, connect the remaining TMS34082
pins as shown in Table 5-1.

Table 5-1. Recommended TMS34082 Pin Connections

Signal Name Description Logic Level
MSTR Coprocessor/Host-independent mode select tie low
CLK Host-independent mode clock tie low
CiD2-0 Coprocessor ID {(assembler defaultis 000) tie low
EC1-0 Emulator mode control tie high
TCK Test clock input tie low
LOE LAD output enable tie low
INTR interrupt request input tie high

5-3

Clocks / TMS34082 Initialization

5.2 Clocks

Local clock input signals LCLK1 and LCLK2 are generated by the TMS34020.
Internally, the TMS34082 generates arising clock edge from each LCLK1 edge
(rising or falling). In coprocessor mode, the TMS34082 actually operates at
twice the LCLK1 input clock frequency.

LCLK1 controls most of the TMS34082 internal logic while LCLK2 is used for
several simple functions such as synchronizing interrupt requests.

CLK is the system clock.input in host-independent mode. It should be tied low
for coprocessor mode.

5.3 TMS34082 Initialization

5-4

The TMS34082 uses the same RESET input signal that the TMS34020 uses.
Uponreset, the TMS34082 clears all pipeline registers and internal states. The
configuration register and status register return to their default values. When
RESET returns high in coprocessor mode, the TMS34082 is in an idle state
waiting for the next instruction from the TMS34020. The RESET signal is an
asynchronous signal and does not require specific setup or hold times to a
clock. However, the minimum pulse duration requirement must be met.

Coprocessor Mode

Configuration Register Settings for Coprocessor Mode

5.4 Configuration Register Settings for Coprocessor Mode

The configuration register (CONFIG) defines several selectable features ofthe
TMS34082. The following subsections recommend settings for this register in
coprocessor mode. Part of your system initialization program should set the
configuration register to the appropriate value.

5.4.1 Exception Masks

Since inexact operations are common in floating-point operations, you should
usually disable this exception for both the multiplier and ALU by setting the
MINEX and AINEX bits to 0.

5.4.2 Fastvs IEEE Mode

For most graphics applications where integer and single-precision
floating-pointnumber formats are used, operatingthe TMS34082 in Fast mode
is sufficient. This also holds true for most double-precision floating-point
applications. Because the internal instruction set does not include instructions
to wrap and unwrap denormalized numbers, you should use Fast mode if you
do not have memory on the MSD port for external instructions.

However, when working with very large or very small double-precision values,
IEEE mode can be used to operate on denormalized numbers. Possible uses
of IEEE mode include image processing and digital signal processing
applications where accuracy is critical. External instructions must be used to
wrap and unwrap denormalized numbers. See Chapter 8 for details on these
instruction.

5.4.3 Pipeline Mode Settings

For coprocessor mode, the TMS34082 pipeline mode settings (PIPES2-1 in
the CONFIG register) affect the performance of very few internal instructions.
Most simple instructions, such as adds or multiplies, finish executing before the
TMS34020 can issue the next instruction. Using the default setting allows you
to run the TMS34082 at the maximum clock rate. This setting (PIPES2 =1,
PIPES1 = 0) is recommended unless you are using chained mode external
instructions. While using chained mode instructions, PIPES2 should be setlow
to enable the FPU core output registers.

The complex instructions contained in internal ROM change the pipeline
setting as needed and restore the previous pipeline setting after the instruction
is completed.

TMS34020/TMS34082 LAD Bus Operation

5.5 TMS34020/TMS34082 LAD Bus Operation

The TMS34020 local memory interface is made up of a multiplexed
address/data bus and associated control signals. During a memory cycle, the
address and status are output on the LAD bus, and then the LAD bus is used
for the data transfer. The local memory and DRAM/VRAM interfaces are used
for transferring data or instructions between the TMS34020, memory, or the
TMS34082 in addition to generating refreshing cycles for DRAM/VRAM.

In coprocessor mode, the TMS34082 LAD bus connects directly to the
TMS34020 LAD bus. Coprocessor commands from the TMS34020 are input
on this bus. In addition, data transfers between the TMS34020 or its local
memory and the TMS34082 occur through the LAD bus. Transfers between
the LAD and MSD buses can also be programmed.

A single coprocessor instruction may be used to pass a command to the
TMS34082 andtransfer data to/from the TMS34020 or memory. There are five
general types of coprocessor instructions.

Command-only instructions transfer no data to the TMS34082.

TMS34020 to TMS34082 transfer instructions pass a command and data
1o the coprocessor. Three types of transfers are available:

move one 32-bit parameter
move two 32-bit parameters

move one 64-bit parameter

TMS34082 to TMS34020 transfer instructions pass a command to the
coprocessor and the TMS34082 outputs data to the LAD bus. Two types
of instructions are available:

move one 32-bit parameter

move one 64-bit parameter

Memory to TMS34082 transfer instructions pass a command from the
TMS34020 and data from memory to the coprocessor. Up to 32 32-bit
words may be transferred. Three types of memory moves are available:

move the number of words specified in the coprocessor instruction
using postincrement

move the number of words specified in the coprocessor instruction
using predecrement

move the number of words specified in a register using postincrement.

Coprocessor Mode

TMS34020/TMS34082 LAD Bus Operation

TMS34082 to memory transfer instructions pass a command to the
coprocessor and the TMS34082 outputs data to the LAD bus. Up to 32
32-bit words may be transferred. Two types of memory moves are
available:

move the number of words specified in the coprocessor instruction
using postincrement

move the number of words specified in the coprocessor instruction
using predecrement

5.5.1 LAD Bus Protocol

Both data and instructions are transferred over the bidirectional LAD bus in
coprocessor mode. A unique combination of signal inputs distinguishes an
instruction from data. SF, ALTCH, CAS, RAS, and WE are used to distinguish
coprocessor functions from other operations on the LAD bus.

The TMS34020 first fetches a coprocessor instruction from either internal
cache or from local memory on the LAD bus. A coprocessor command is then
issued to the TMS34082 from the TMS34020 by way of the following protocol:

A valid coprocessor ID (CID2-0) on LAD31-29
LAD3-0 = 0000,
RAS high

SF high during the falling edge of ALTCH
Note: When using one TMS34082 in a system, the assembler/compiler default for CID2-0 = 0005.

The command is then decoded and executed by the appropriate TMS34082.
iftacommand-only instructionis issued, the TMS34082 begins execution atthe
rising edge of LCLK1 after ALTCH falls. A timing diagram for command-only
instructions is shown in Figure 5-3.

TMS34020/TMS34082 LAD Bus Operation

Figure 5-3. Transferring a Command from the TMS34020 to the TMS34082

| |
[¢——————— Command Cycle —————————1

I
| | | I | | | I

Loy TRRXIRTT | KT | QR RRRKTRR
T T T

|
BUSFLT QRXXXXXXXQXIXUXXXXIXXON | £ XXXRRKXXXXIR
I I | | I | I | I I I
| | | I I I I | I | I

I
LCLK2 | P L
| I | I [| |
I S N A .
LAD [I)--—IT-(command == ——:—-—-{-——{-——-Il
R |

et [i w—
ALTCH ;/ I A
S ! I I | I I | ! | |
RAS 1 | | | M T T T 1
AREEEEREEE

X | ! | |
CAS | | | | | | ; I I | I

[! | [! I
— [] | T 1 T I]] I I
WE | [I |
1/ N R
} } + 4 |
P 1 o :“"'I
| | | |

I

|

If operands are required from DRAM/VRAM, the TMS34020 sets up the
appropriate DRAM/VRAM address and timing. The data is then transferred
directly between the TMS34082 and DRAM/VRAM.

Alltransfers to/from the TMS34082 are 32 bits wide. Therefore, the TMS34082
uses neither the TMS34020 SIZE16 signal nor all four individual byte enables
(CAS3-0). Also, the.even 32 TMS34020 assembler directive should be placed
before all blocks of DRAM/VRAM memory that are used to store data or
external code to be sent to the TMS34082. If the 32-bit words are not aligned
on long word boundaries, the data is not sent to the TMS34082 correctly.

Instructions that pass data and commands to the TMS34082 begin execution
on the rising edge of LCLK1 after CAS rises after the last data transfer. Timing
diagrams for instructions that transfer data and commands are given in
Figures 5—4 through 5-7.

Coprocessor Mode

TMS34020/TMS34082 LLAD Bus Operation

Figure 5-4. Transferring TMS34020 Registers to the TMS34082

:1— Command —?{4—— DataTransfer——ﬂlﬂ'—— Data Transfer ——D:

| ! | I I I | | I | | | ! I [

fl:

LOLK2 | | | | | | |
R R e
AL A N AN AU N AN AU AN A SN NS N
LAD |)——m<__Command __X_ Operand 1 X Operand 2)~
e e e e e
SO N T— Y N i S—
ALTCH {/ | | AN ! [] | | | | | | | l
e
BAS | T . | L 1 ! | f T T 1 '
| | | | i | | ! | | | [| l
I : 1 : | | t : I : | | | | |
CAS |] | | |
{/ N L : mo |
_— ! ; i l N bt
WE }/ ![| | i I\ | ! | I ! ! I |
I | | l | | [| |
Lt [] L |] | | ! | ! { | l
~ l | | | [| [| | | N e
I l | | ' | L | | | {

|
[| | | ! i I I I |
LRDY JOOXXXXX00000 | XX | \00000000000XXXXXXXXXX)

|

Foor 0T, T
|
|

1 | | i | | | | | | | ! |

BUSFLT 2Q0XXXMXXXIMODOCOOON | LOXKXXXXKIIXXRIOKHIXUOON
| | | | | I | | | | |

| i | | | | | i | [[) [I

TMS34020/TMS34082 LAD Bus Operation

Figure 5-5. Transferring from the TMS34082 to a TMS34020 Register

;‘—— Command ~'—>|4—— Data Transfer —»4— Data Transfer ""JI

|
|
| | | |
las 11 o2 'aa a4 | a1 | @2 IQ3IQ4]

| |
LoLKA Vs Van ! |] B a
] | | I |
N | N | e e
|.c:u<2l | l l ! ' I l [[|
| | | I I l

LAD (TWs34020 :>- I e

oo S N A R T A
S Y-, ST, S
l
|
|
]
|
|
I
|
1
|
|

ALTCH ir/ \

|
CAS ;/

/

]
1
|
|
my;
|
!
|
W7

SF

LI

- - ——

|
| |
| J
| |
| t 4
- | |
J |
L | l |
LRDY 2O000OO0OOXKY XK \OOOOOOOOOOOOOOOO
| l
|

|
!
|
|
f
|
|
|
|
]
[
|
t
|
[

(
I
S S B

|
|
l
L
i
I
I
|

3]
’4

b
>

o | o
I R

BUSFLT 000000000 OO0
| | | | | | 1 | ! | ! |

I i I f I ! I I { I { I I i

5-10 Coprocessor Mode

TMS34020/TMS34082 LAD Bus Operation

Figure 5-6. Transferring Memory to the TMS34082

:4——*— Command Cycle *—’:4-— Address ——’iC—Data Transfer—-’:4— Data Transfer—’]|

'o4l Ql] az| o3| a4] a1l oz'asi Q4} Qt] Q2| Q3| Q4{ atl @2l qal 04:
[| |
=S - P . . .
| | }
Loz [I L | |

S S T T T S T O A T T R B
(TMS34020) f-—{--—u—-T—+-—l|--}--+-+-J|--4-....._1_..[L....*
I 1 1| | |

LAD f“"l"Jr“'f'"':'-T‘—l""l"‘T-+"‘¥"‘":""l“'1"" (Data 1) -:-- Coata2 y—=t——

atl a2l @3l 04} Qil
|

{memory) |
| L [N R o | P
RCTeH | : |]\! I) N : [R | |
L T R T [b [l
RSV ; oo b N ! e ! el |
I e N I Y AN S U S PO A B |
AR A e e
T T T O B
W N I N SN [N [MU NN A N A (A A TN (R N B
S i U T T e v s s et S s s s e A
L] | Lo] 11 IR
LRDY XX AR X X X %

b 1 :
BUSFLT XXX, 1 LXXOQOOXXXRXXOCONOOON 1 LOCOOXXXXOONXXIN

N

When the TMS34082 is transferring data to memory, the TMS34020 outputs
the memory address on the LAD bus. An extra clock cycle, called a spacer, is
theninserted before the TMS34082 outputs data. The spacer is added to allow
time for the TMS34020 to stop driving the LAD bus and the TMS34082 to set
up valid data on LAD.

TMS34020/TMS34082 LAD Bus Operation

Figure 5-7. Transferring from the TMS34082 to Memory

:‘“— Command ————Pi— Address “.:‘— Spacer —*—Data Transfer*‘Data Transfer"}l

|
'Q4lo1|02103|cn4|01'02|03|04|Q1I02|Q3’Q4IQ1‘ozlosl Q4IQ1'Q2'03 aslat oz‘os o4|

LCLK1 / i\ I / '] ll\ ' :I ; 'I\ ; | | + |I l\ t lI I I\]
LCLK2 ll\ | ‘/ . /T N\
b |

[
I
| L
[I | N 1 |
| | P |
(TM334B’2‘8}—-4|—*@@-4-—|—J-—¢«:@D—4-++ e Rt e -r—J,--J,-, -]

(TMS34082) T™ 1
|]

S
J1-
i

BUSFLT |,m MWH R R BRI, LR TR g
L e e e e e e e O I A e e

5.5.2 Enabling the LAD Bus Drivers

The LAD bus drivers are enabled only when LOE is low, the correct TMS34082
coprocessor ID has been selected, and during the proper time slot within the
execution cycle. Just bringing LOE low does not cause the LAD bus drivers to
turn on. For most applications using a single TMS3020, TMS34082, and
DRAM/VRAM, LOE may be tied low.

In a system with multiple TMS34082 coprocessors, only one coprocessor can
drive the LAD bus at a time. The TMS34082 contains internal logic that only
allows it to drive the LAD bus when its coprocessor ID is contained in the move
instruction. A TMS34082 write instruction with the broadcast ID is ignored.

5.5.3 Bus Faults

The TMS34082 BUSFLT input signal also ties directly to the TMS34020
BUSFLT pin. The TMS34082 supports bus retries and bus fault conditions in
conjunction with the TMS34020. The bus cycle conditions are defined in
Table 5-2.

5-12 Coprocessor Mode

TMS34020/34082 LAD Bus Operation

Table 5-2. Bus Cycle Completion Conditions

Completion Condition BUSFLT LRDY
Wait 0 0
Successful transfer 0 1
Retry 1 0
Bus fault 1 1

In the event of a systems fault involving the TMS34082, the abort command
allows the TMS34020 to regain control. The abort terminates all coprocessor
activity, restoring the TMS34082 to a known state so that it is available for
further commands from the TMS34020. Chapter 7 covers the abort command

in greater detail.

5-13

Polling the Coprocessor

5.6 Polling the Coprocessor

When the TMS34020 issues an instruction to the TMS34082, CORDY
(coprocessor ready) is high. It remains high even while the TMS34082 is busy
executing the instruction. However, if another instruction is sent by the
TMS34020 before the previous instruction has completed, CORDY will go low
immediately, indicating that the TMS34020 must wait. When the TMS34082
is ready to accept the new instruction, CORDY returns high to signal the
TMS34020 that the coprocessor is ready to accept a command. Because
CORDY is usually ORed with other terms to form LRDY, CORDY going low
also sends LRDY low, halting the TMS34020.

The instruction will still be valid on the LAD bus when CORDY (and LRDY)
toggle, and the TMS34082 will latch the instruction. However, for longer
TMS34082 operations, such as lengthy subroutines stored in SRAM, the
TMS34020 may have to wait for a long period of time before the TMS34082
is ready. This ties up the TMS34020 and keeps it from executing other code.
Instead, the TMS34020 can check the coprocessor’s operating condition
before issuing an instruction by way of the check status command. The
TMS34020 assembler pseudo-op for this command is CHECK.

In response to the check status command, the TMS34082 outputs a status
code to signal if itis busy or not. The TMS34082 returns a value of all 1sifbusy
or all Os if idle, as shown in Table 5-3. This instruction is described further in
Chapter 7.

Table 5-3. Bit Definitions for TMS34020 Status Check Command

Description LAD Output
Coprocessor not busy 0000 0000h
Coprocessor busy FFFF FFFFh

The TMS34020 does not have to enter an extended wait state to obtain access
to the selected coprocessor, but may continue with another task not requiring
the TMS34082. This allows the two devices to execute instructions in parallel.
See Example 5—1 for an example of code using the check status command.

Example 5-1. Using the Status Check Command

CHECK Al
CMPI 0,Al
JRNE busy

not busy:

busy:

; put output status in TMS34020 register Al
; compare with all zeros
; 1f busy, then execute more TMS34020 code

; start next TMS34082 routine

; execute more TMS34020 code while coprocessor is busy

Coprocessor Mode

Interrupt Handling

5.7 Interrupt Handling
The TMS34082 has two interrupt input sources in coprocessor mode:

An exception detect (ED) interrupt used to signal the TMS34082 that a
status exception occurred

A software interrupt generated by an external instruction input on the MSD
bus '

Each exception has its own interrupt enable flag in the status register. If
external SRAM memory is not used, the software interrupt should be disabled.
On reset, the exception detect (ED) interrupt is enabled and the software
interrupt is disabled.

Because hardware interrupts are not allowed in coprocessor mode, the
hardware interrupt should be disabled. This is the default setting of the
hardware interrupt enable flag in the status register. Also, INTR shouid be tied
high.

5.7.1 Exception Detect Interrupts

If the exception detect interrupt is enabled, COINT goes low when the ED flag
in the status register is 1. The ED flag goes high when a status exception
occurs (see subsection 4.5.3.1) COINT signals the exception to the
TMS34020. This exception does not cause the TMS34082 to branch to the
interrupt vector register address. The TMS34082 aborts the currentinstruction
and goes to an idle state.

The COINT signal may be connected to either the TMS34020 LINT1 or LINT2
input. You can also combine COINT with other interruptrequests inthe system
to form LINT1 or LINT2. Ifits interrupts are enabled, the TMS34020 will branch
to an interrupt vector to service the TMS34082 request.

COINT and ED are reset by reading the STATUS register. You should do this
as part of your interrupt service routine.

In the interrupt service routine, saving the state of the TMS34082 may be
desired. This is best accomplished by executing a block move of the
TMS34082 registers to DRAM/VRAM memory. The TMS34020 assembly
language instructions listed in Example 5-2 can be used for the desired
precision. These routines do not save or restore the C and CT register.
Restoring the TMS34082 machine state consists of moving the register values
from memory back to the TMS34082. Restoring the status register sets the ED
flag high. However, writing a 1 to ED will not cause an interrupt.

5-156

Interrupt Handling

Example 5-2. Saving and Restoring the TMS34082 Machine State

MOVE RAOQ,

MOVFEF

MOVD

MOVD

MOVE

MOVE

MOVD

MOVD

*Al+, 30 ; integer move, use TMS34020 register Al
; as the memory pointer

*Al+, 30 ; single-precision move, use TMS34020
; register Al as memory pointer

*Al+, 15 ; double-precision move, use TMS34020
; register Al as memory pointer,
*Al+, 15 ; remainder of double-precision move

; restoring TMS34082 machine state

*Al+, RAO, 30 ; integer move, use TMS34020 register Al

; as the memory pointer

*Al+, RAO, 30 ; single-precision move, use TMS34020
; register Al as memory pointer

*Al+, RAO, 15 ; double-precision move, use TMS34020
; register Al as memory pointer,

*Al+, RB1l, 15 ; remainder of double-precision move

5.7.2 Software Interrupts

5.7.3

5-16

If software interrupts are enabled, an interrupt may be generated by an
external instruction fetched from the MSD port. The interrupt sets the interrupt
grant output (INTG) low, saves the current program counter in the interrupt
return register (IRAREG) and branches to the address in the interrupt vector
register. Interrupts are also disabled.

Your service routine should restore software interrupts at the end. The final
instruction should be a return from interrupt that will branch to the value in the
interrupt return register.

Interrupting the TMS34020

For some applications using long external subroutines, it is desirable to
interrupt the TMS34082 to signal that the subroutine is finished. This relieves
the TMS34020 from having to check the TMS34082 to see if it is ready for the
next instruction.

This may be accomplished by intentionally executing aninstruction (in external
code) that sets the ED flag high. This causes COINT to go low, signaling an
interrupt to the TMS34020. Any instruction that generates an exception flag,
such as invalid operation, will work.

Coprocessor Mode

Interrupt Handling

Possible instructions include:
Divide using 0 as the dividend
Use NaN as the operand for any instruction
Unwrap the floating-point value one (unwrap ONE.f)

In order to distinguish an intentional ED interrupt from one generated by a real
exception, a register or memory location shouid first be loaded with a status
code. Thentheillegal operation is performed. The TMS34020 interrupt service
routine should read the register or memory locationto determine if the interrupt
was intentional. The routine should also reset the register or memory location.

Before causing the ED interrupt, the external routine should make sure the
internal stack (registers SUBADDRO and SUBADDR1) is empty. This can be
accomplished by clearing the stack pointers (bit 31) in both registers. You may
wish to save the contents of these registers in external memory before clearing
the stack pointers.

517

TMS34020/TMS34082 Code Example

5.8 TMS34020/TMS34082 Code Example

Using combinations of the MMPYOF, MMPY1F, MMPY2F,and MMPY3F
single-precision floating-point multiply instructions allows for several matrix
multiply operations: 1 x 3by3x3,1x4by4x4,3x3by3x3,and4 x 4by
4 x 4.The following example shows the use of MMPYOF, MMPY1F and
MMPY2F in performing a single-precision floating-point 3 x 3 by 3 x 3 matrix
multiply, giving a 3 x 3 matrix result.

Example 5-3. Multiplying Two 3 x 3 Matrices

5-18

Aw Avr Ao Boo Bor Bo2 Co Cor Coz

Aw Ay A | X | By Byy Bio] = | Cyo Gyt Coz

20 Azt Ax By Bz Ba Cs Cor Co
Algorithm:

Coo = Aoo X Boo + Apt X B1p + Agz X Bog
Co1 =Ago X Bp1 + Agq X By1 + Ago X Boy
Co2 = Ago X Bp2 + Ag1 X Bia + Ag2 X Bop

C10=A10%xBgp + A11 xB1o+ A12xBgg
C11=A10xBo1 +A11 X By1 + A12 x By
C12=A10XxBp2 +A11 xB12 + A2 XBoo
C20 = A0 X Bog + A21 X B1g + Ag2 X Bgg
Co1 =Ag0 X Bgq + A1 X By + Aga X Boy
Cog = Agg X Bpg + A1 X By + Agp X Bp
Matrix values:

MATRIXA= 10 0 M
1

3 -1 -5

18 1 6

MATRIXB= 3 1 5
2 1 3

4 -1 1

MATRIXC= 76 -1 61
32 1 -23

65 8 74

Coprocessor Mode

TMS34020/TMS34082 Code Example

Example 5-4. Instructions for a 3 x 3 by 3 x 3 Matrix Multiply

; Code for multiplying one 3 X 3 by another 3 X 3 matrix

. IEEEFL ; Force IEEE floating-point representations
BEGIN;
; Move matrix B to the TMS34082
MOVI MATRIXB, AO
MOVF *A0+,RAO0, 10
MOVF *A0+,RBO, 6
; Point A0 to first row of matrix A
MOVI MATRIXA,AO0
; Point Al to first row of matrix C
MOVI MATRIXC, Al
MOVI 3, A2
; three rows
ROWLOOP;
; Loop through all three rows
MOVF *A0+,RB9,1 ; Movefirst A value on row to the TMS34082
MMPYOF ; Multiply down the B column
MOVF *A0+, RB9, 1 ; Move second A value on row to the TMS34082
MMPY1F ; Multiply and accumulate down the second B coclumn
MOVF *A0+, RB9, 1 ; Move third A value on row to the TMS34082
MMPY2F ; Multiply and accumulate down the third B column
; Move the current C row into TMS34020 memory
MOVF RB6, *Al+, 3 ; Get the three row values
DEC A2 ; Done four rows yet?
JRNZ ROWLOOP ; If no, then compute the next row
HERE; JRUC HERE ; Done, endless loop

;Matrix storage
.SECT "DATA”

MATRIXA
.FLOAT 10, 0, 11
.FLOAT -3, -1, -5
. FLOAT 13, 1, 16
MATRIXB
. FLOAT 3, 1, 5, 0 ; The zeros on the end of these rows are
.FLOAT 2, 1, 3, 0 ; not necessary, but allow a memory-to-
.FLOAT 4, -1, 1, O ; register transfer for the matrix.
.FLOAT 0, 0, 0, 0 ; This row of zeros is necessary
MATRIXC
.FLOAT 0, o, 0
.FLOAT 0, 0, 0
. FLOAT 0, 0, 0
.SECT "TEXT”

5-19

TMS34020/TMS34082 Timing Examples

5.9 TMS34020/TMS34082 Timing Examples

The following timing diagrams illustrate the timing relationships between the
TMS34020 and TMS34082.

Figure 5-8 shows the multiplication of two double-precision numbers in
TMS34020 registers and assumes that the TMS34020 instructions are
contained in cache. The assembler source code is shown below.

Example 5-5. Assembler Source for Double-Precision Multiply

MOVD AO0, Al, RAO
MOVD A2, A3, RBO
MPYD RAO, RBO, RA4
MOVD RA4, A4, AS

Figure 5-9 shows an add operation for two single-precision numbers from
DRAM assuming that the TMS34020 instructions are contained in cache. The
assembler source code is shown below.

Example 5-6. Assembler Source for Single-Precision Add

ADDF *A0+, RAO, RBO, RA2
MOVFE RA2, *Al+

Figure 5-10 shows the same add operation (adding two single-precision
numbers from DRAM). However, this time the TMS34020 instructions are not
in cache.

5-20 Coprocessor Mode

te-S

Q4|at a4jar a4|al a4jQl Q4jarl Q4]Ql Q4| Qt Q4 Qt Q4jal Q4|Ql Q4]al Q4]al Q4]al Q4jat Q4|at
LOLK1

ACTCH \ [\ [\ ' Y
CORDY \—.—l
s W e W o W e WY (W Wan
e AU e W A

TMS34082 Opcode—— TMS34082 Opcode—, TMS34082 Opcode
LAD Bus x ~ Opemndlxcpﬁgaﬂx x h) x Operandzx Operand’.’x x ’ l l x | n R&g&ﬂ x xnesun x
SF).J A . ™ | -
Send Send Send Muti rand Send
Transfer Operand 1 Transter Operand 2 Transfer MS] Transter LS
Operation | e | B pce opuoe | "HE T | e ST
[TMS34020tof ~ Fetch Instruction From §TMS3402010] Fetch Instruction From §TMS34020tof Fetch Instruction From JTMS34020 tof TMS34020 | TMS34020
TMS34082 TMS34020 Cache TMS34082 TMS34020 Cache TMS34082 TMS34020 Cache TMS34082
TMS34082
RAO 1 Operand 1
TMS34082
RBO Y Operand 2
TMS34082
RA4 x Result

Result
TMS34020 %
A4/A5
Note: Assume instructions are in TMS34020 cache, TMS34082 pipeline registers turned on (PIPES1=0) and output registers turned off (PIPES2=1),
TMS34082 load order is MSH, then LSH.

Figure 5-8. Multiply 2 Double-Precision Numbers in TMS34020 Registers and
Store Result Back to TMS34020 Register (Mode 0)

sejdwex3 weibeiq buiwil ZeorESWL/O0Z0PESNL

2e-S

a4lar a4lal

LI
LI

a4lal aslat aslat a4larl qalal adal aslal asalal aslat

| I S T S O I
RSS20 I N T I I I A I
[\ [\ [\
AAS \ [/

CAS _/ (S

Q4lQ1 aslal 4 lal

el L LI L1

|
1

ALTCH \

/

—

[
v/
J

WE
/~TMS34082 Opcode /~TMS34082 Opcode
LAD Bus) S) (e @ 66 B 5 | X) R Lo X
SF 1 — ’.J _| —
RCA Bus X row X stcor Y znacoL [Yrow] aaca 1
Fetch Send
. Fetch instruction F Send ouput | Transter | Transter | instruction | Opoode | L prenster
Operation TMSa020cache |, Opeend, | DeadCyde | Address | operand 1 | Operand2 TM% I T:::m) Doad Cycle 753402010 | Doad Oyce m&gg.,:g%m
TMS‘?"E{OA%‘ x Operand 1
TM334ROBSOZ 1 Operand?2
TMSSA‘R%Z Y Result

Note: Assume instructions are in TMS34020 cache, TMS34082 pipeline registers turned on (PIPES1=0) and output registers turned off (PIPES2-1),
DRAM page mode accesses.

Figure 5-9. Add 2 Single-Precision Numbers from DRAM and Store Result Back to DRAM (Mode 2)

8pow 10ss990.4doD

sejdwexg weibeiq bujwl| Z80reSNL/OZ0VESNL

Q4 lO1 O4IQ1 Q4| |Q1 04'01 O4IQ1 Q4 |Q1 O4l01 Q4|Q1 O4IO1 Q4 IQ1 04|O1 04l01 04]01 Q4|01 04!01 04l01 04] a1

LCLK1{ eoe

ALTCH \ oo | \] \ / \ [\ |

RCA Bus l Howx lsICOLl (XY I «hccxl Incwl 5|nc0Ll sm(;OLX l l aowl HihcoL l
RAS \ oo J I | I
(WA
U

as U U J (WA U/

WE e Operand 1

Word 1 — Word 4 /—TMS34082 Opcode /— ~/—Operand 2
LAD Bus Imm” i oo l'l l ! l l"“"”""’l l’x ! l l] l l
SF j—‘ LA X 2 '—‘ L'\ ‘—‘ ‘-\ ,

Decode/Execute Send Output Send Output
Instruction From Opcode Adsress Transter Transfar Add Opcode Address Transter
FH TMS34020 Cache From DRAM TMS34020 Cache From Dead From Operand Operand Operand § From Dead From Dead Resuh From|
Operation (Four 32-Bt Words) @ Gyl oo ms‘::aoen Cycle ms;mzo o o L msf:m Cycle TMs‘saozo e 4T s
X Opera 0
3 Gycles Worst Case) | TMS34082 Tusaaosz | TMSHOR2 | TMS34082 TMS34082 TMS34082 1o DR
TMS34082
RAO oss 1 Operand 1
TMS34082 Y Operand 2
RBO
TMS34082
RA2 eos 1 Result

Note: Assume instructions are not in TMS34020 cache, TMS34082 pipeline registers turned on (PIPES1=0} and output registers turned off
(PIPES2=1) DRAM page mode accesses.

Figure 5-10. Add 2 Single-Precision Numbers from DRAM and Store Result
Back to DRAM (Mode 2), Instructions Not in TMS34020 Cache

€29

ssjdwex3z weibeiq bujwil Z80¥ESWL/0Z08SS.L

MSD Bus Operation in Coprocessor Mode

5.10 MSD Bus Operation in Coprocessor Mode

Use of the MSD bus in coprocessor mode is optional. External memory on
MSD31-0 can be used to store data, user-programmed subroutines, or both.
External instructions for user-defined subroutines are covered in Chapter 8.
Control signals for MSD and MSA buses, discussed in subsection 4.3.2,
operate the same in host-independent and coprocessor modes. Different
combinations of control signals distinguish between data memory and code
memaory.

Data or program code can be downloaded to external memory from the LAD
bus. The data (or code) can be stored in the TMS34020's DRAM/VRAM
memory and loaded by a LAD-to-MSD bus transfer.

5.10.1 Connecting External Memory

External coprocessor code space is added to the TMS34082 MSD port by
adding external SRAM as shown in Figure 5-11. No external glue logic is
necessary.

Figure 5-11. TMS34020/TMS34082/SRAM with Minimal SRAM Code Space (MEMCFG =)

5-24

l'_—:é_

TOE PN
LAD310 MSD310 D31-0
ALTGH N v
BUSFLT MSABD > A12-0
—— v
RAS DS/CS oE SRAM
CASO MOE o BKx32
WE MWR WE
TMS34020 SF TMS34082
RESET CIDO
LCLK1 CID1 COPROCESSOR
LOLK2 cip2 o
COINT L
LRDY o
2 corDY i«
DY
PAL

[¢———— from memory control logic

The maximum amount of external memory directly addressable by the
TMS34082 is 64K words of program code and 64K words of data as shown in
Figure 5-13. This comes out to 512K bytes total. When additional memory is
necessary, segmentation or paging techniques can be utilized.

Coprocessor Mode

MSD Bus Operation in Coprocessor Mode

Figure 5~12. TMS34020/TMS34082/SRAM with Maximum SRAM Code/Data Space (MEMCFG = L)

TMS34020

=

r_;:_

LAD31-0
ALTCH

BUSFLT

Yyvy

=
m
Yy

RESET

LCLK1

LCLK2

COINT

A A

SYVY VYV VY

LRDY
A

_ COR

g

LOE
0310
MSATE0 | A15-0
DS/CS »| A16 SRAM
MCE »| oE 128K x 32
M »| oE
TMS34082 MWR Ll wE
L CIDo__
<« Ciot COPROCESSOR
. cip2 o
b £
. CC
¢ RDY

PAL

—

from memory control logic

CC is a condition code input and may be used as an external input for branch
conditions in external code. It is not used in internal instructions.

5.10.2 TMS34082 External SRAM Timing Analysis

When connecting external SRAM to the TMS34082 for code space and/or data
space on the MSD port, the following calculations can be used in determining
the total SRAM access time. These times must also include any chip select
decode delays. The general formula for computing SRAM access times is:

(1/2) x teLc1) — tsumsD) — tp(Lc1-MsAv) = SRAM access speed

A description of these parameters is provided in Table 5—4.

Table 5-4. Parameters Used for Calculating SRAM Speed

Parameter Description
fe(LC1) Local clock LCLK1 period: 1/¢lock
tsu(MSD) Setup time: MSD data before LCLK1 high
th(LC1-MSAV) Propagation delay: LCLK1 to MSA valid

5-25

MSD Bus Operation in Coprocessor Mode

The time delay incurred by inserting decode logic between the TMS34082 and
external SRAM memory would be subtracted from the left side of the equation.
For example, if an SN74AS32 (with a propagation delay of 6 ns maximum) is
used in generating the SRAM chip enable (CE), then the SRAM access time
requirements would subsequently be decreased by 6 ns.

5.10.3 Using External Code

Adding external memory to the MSD port allows you to write customized
subroutines for your applications. External code is executed by performing a
jump to subroutine command issued by the TMS34020.

The memory space is divided into a jump table and general-purpose memory
for code and data, as shown in Figure 5—13. There are 32 entries into the
subroutine jump table. The jump entry points start at address 0 and increment
by 2. This allows two instructions (in the jump table) per subroutine. Using this
memory organization, the jump table is relatively small, leaving the remaining
memory to be partitioned as best suits your application.

Figure 5-13. Memory Map for External Memory

5-26

31 0
Routine #0 { I] 0000 Hex
. 0002 Hex Jump Table
Routine #1 -
~
0004 Hex
Routine #2 e e]
~
[)
[]
[]
003E Hex
Routine #31 { -]
0040 Hex
User-Defined [
Subroutines []
and Data []
FFFF Hex

Coprocessor Mode

MSD Bus Operation in Coprocessor Mode

Figure 5-14 illustrates how an external subroutine would execute. The final
instruction in the subroutine should be a return from subroutine (RTS). This
puts the TMS34082 in an idle mode, waiting for the next instruction from the
TMS34020.

Note: Before executing the final return from subroutine, the stack (SUBADDR1-0) must be empty. You
may wish to save the contents of these registers in external memory. Then clear the stack pointers
(bit 31) in both registers.

Figure 5-14. Example Subroutine Using the Jump Table

31 0
Call Routine 0000 Hex
#2 (Decimal)
0002 Hex
CJMP A, 0100 Hex 0004 Hex
®
®
[)
Branch to
Subroutine 003E Hex
[]
[J
[]
0100 Hex
Shading Routine
Return from RTS
Subroutine
Other Routines
and Data
FFFF Hex

5-27

TMS34020/TMS34082/SRAM Code Example

5.11 TMS34020/TMS34082/SRAM Code Example

5-28

This example describes a 3x 3 by 3 x 3 matrix multiply routine using a
subroutine stored in TMS34082 external SRAM. Data values for both matrices
are stored in DRAM/VRAM. Therefore, they must be fetched from memory and
transferred to RA8-0 and RB8-0 (using the memory address pointers
contained in TMS34020 registers B1 and B2, respectively).

Description of operation:
AOO AOI A02 BOO BOl B02 COO COI C02
Ap Ay Ap | X | By By Bl = | Co Gy Cpp
A20 A21 A22 B20 B21 B22 C20 C21 CZZ
Algorithm:

Coo = Aoo X Boo + Apt X B1g + Aga X Boo
Co1 = Aoo X Bo1 + Apt X Byt + Ag2 X Bay
Co2 = Ago X B2 + Ag1 X B12 + Ag2 X B2

C10=A10XBgg + A1y XByg + A1a X Bgg
C11=Aq0XBg1 + A1y X By + Aja X Boy
Ci2=A10X B2 + A1 XByo + Ao X Bao

Cop = Agp X Bgo + A21 X B1g + Agp X Bog
Co1 =Ag0 X By + Ag1 X By + Ao X By
Coo =Agg X Bz + A21 XB12 + Agp X Bpo

The register file contents before the routine are:

RAO = Agg RBO = Bgg
RA1 = Agy RB1 = By
RA2 = Ago RB2 = Bgo
RA3 = Aqg RB3 =B1g
RA4 = Aqq RB4 = B4
RAS = Aqo RB5 = B4»o
RAG = Ay RB6 = Byg
RA7 = Agq RB7 = Boy
RA8 = Ago RB8 = Bos

Coprocessor Mode

TMS34020/TMS34082/SRAM Code Example

The register file contents after the routine are:

RAO = Cqg RBO = Bgg
RA1 = Cpy RB1 = Bg1
RA2 = Cgo RB2 = Bgo
RA3=Cqg RB3 =Bjg
RA4 = Cq4 RB4 = By
RA5=Cqo RB5 = Bjo
RA6 = Cp RB6 = Bsg
RA7 = Co RB7 = B4
RA8 = Cop RB8 = Boo

CT = unknown

Examples 5-7 and 5-8 are the assembly language source listings for both the
TMS34020 and the TMS34082. The TMS34082 listing is for the TMS34082
external matrix multiply instructions contained in SRAM. Assume that the
matrix multiply routine begins ataddress 3Ehin SRAM and thatthe SRAM area
for constants is from address FEh through FFh. The timing diagram for this
example is shown in Figure 5—15.

Example 5-7. TMS34020 Assembler Listing for 3x 3 by 3 x 3 Matrix Multiply

MOVEF *Bl+, RAO, 9 ; move first matrix to coprocessor register file A,
; starting at memory address contained in 34030
; register Bl
MOVEF *B2+, RBO, 9 ; move second matrix to coprocessor register file B,
; starting at register file B, memory address
; contained in 34020 register B2
CEXEC 0, OOOOFFF ; coprocessor jump to external routine #31 decimal, at
; SRAM address 3Eh

5-29

TMS34020/TMS34082/SRAM Code Example

Example 5-8. TMS34082 Assembler Listing for 3 x 3 by 3x 3 Matrix Multiply

5-30

segment code, memtype=0

MAT:

cjmp A, MAT
; jump to matrix multiply routine
1d CONFIG.i, all_pipes, 1
; load CONFIG register to turn on output registers (PIPES2=0)
mult RAO.f, RBO.f, CT
; Boo * Boo
mult RAO.f, RB1.f, C
; Apo * Boi
mult.pass RAl.f, MULFB, RB3.f, CT, MULT
; Apl * B1o, (Bpo * Bpo) * O
mult.pass RAl.f, MULFB, RB4.f, CT, MULT
; Aol * B11, (Roo * Bp1l) + O
mult.add RA2.f, MULFB, RB6.f, ALUFB, CT, ALU
i Bo2 * B0, (Aoi * Bio) + (Ago * Boo)
mult.add RA2.f, MULFB, RB7.f, ALUFB, CT, ALU
; Ap2 * B21, (Ap1 * B11) * (Ago * Bo1)
mult.add RAO.f, MULFB, RB2.f, ALUFB, RAO, ALU
; Apo * Bo2, (Ro2 * B20) * ((Ap1 * Bio) * (Boo * Boo)) = Coo
mult.add RA3.f, MULFB, RBO.f, ALUFB, RAl, ALU
; Ajpo * Bpor (Bpo2 * B21) * ((Ap1 * Bi1) * (Apo * Bo1)) = Co1
mult.pass RAl.f, MULFB, RBS5.f, CT, MULT
; Ap1l * B2, (BApo * Bo2) + 0
mult.pass RA4.f, MULFB, RB3.f, CT, MULT
; A1l * B1o. (B1o * Bpo) * O
mult.add RA2.f, MULFB, RB8.f, ALUFB, CT, ALU
i Ag2 * B2, (A1 * B1pa) * (Bpoo * Bo2)
mult.add RAS.f, MULFB, RB6.f, ALUFB, CT, ALU
; A12 * Bao. (A11 * Bi1g) t+ (Bi1o * Boo)
mult.add RA3.f, MULFB, RB1l.f, ALUFB, RA2, ALU
i A1o * Bol, (A12 * B22) + ((Bp1 * B12) + (Rpo * Bo2)) = Co2
mult.add RA3.f, MULFB, RB2.f, ALUFB, RA3, ALU
i Alo * Bp2, (A12 * B20) + ((A11 * Bio) + (Ao * Boo)) = Cio0
mult.pass RA4.f, MULFB, RB4.f, CT, MULT
; A1 * Bpi, (A1o * Boyp) + 0
mult.pass RA4.f, MULFB, RB5.f, CT, MULT
; B11 * B12, (A10 * Bp2) *+ O
mult.add RAS5.f, MULFB, RB7.f, ALUFB, CT, ALU
;i BAi2 * Bi. (A11 * B11) + (A1o * Bo1)
mult.add RAS5.f, MULFB, RB8.f, ALUFB, CT, ALU
i BA12 * Bag, (B11 * B1a) + (A10 * Bo2)
mult.add RA6.f, MULFB, RBO.f, ALUFB, RA4, ALU
; A20 * Bpor (R12 * B21) * ((A11 * B11) + (A10 * Bo1)) = Ci11
mult.add RA6.f, MULFB, RB1.f, ALUFB, RAS5, ALU
; Ao * Bpir (A1 * B22) * ((A11 * B12) * (R1o * Bp2)) = C12
mult.pass RA7.f, MULFB, RB3.f, CT, MULT
; BA21 * B1or (A0 * Bpg) + O
mult.pass RA7.f, MULFB, RB4.f, CT, MULT
i Ag1 * B11, (A20 * Bo1) * O
mult.add RA8.f, MULFB, RB6.f, ALUFB, CT, ALU
; Ag2 * Bpo., (A21 * Bio) * (A20 * Boo)

Coprocessor Mode

TMS34020/TMS34082/SRAM Code Example

Example 5-8. TMS34082 Assembler Listing for 3x3 by 3x3 Matrix Multiply (Continued)

mult.add RA8.f, MULFB, RB7.f, ALUFB, CT, ALU
; A2z * Bi, (A1 * Byi) + (A20 * Bol)
mult.add RA6.f, MULFB, RB2.f, ALUFB, RA6, ALU
; A0 * Bp2, (A2 * Bpo) t ((A21 * Byo) * (A20 * Bpo)) = C20
mult.add RA7.f, MULFB, RB5.f, ALUFB, RA7, ALU
; Ag1 * B12, (A2 * Bpi) + ((A21 * B11) * (A0 * Bo1)) = C21
mult.pass RA8.f, MULFB, RB8.f, CT, MULT
; B3 * Bz, (A20 * Bpa) + O
pass MULFB.f, RA8
; (B3 * B12) + O
add MULFB.f, ALUFB.f, CT
i (A2 * B22) + (A0 * Bp2)
nop
; no operation
add RA8.f, ALUFB, RA8.f
; (A1 * B12) * ((A22 * B22) * (A20 * B2p)) = C22
nop
; no operation
nop
; no operation
1d CONFIG.i, pipeline only, 1
; load configuration register to turn off output registers (PIPES2=1)
rts
; return from subroutine, go to internal TMS34082 wait state
.segmnent data,memtype=1

all pipes: .data OXFFCO08
; CONFIG register setting for all pipeline registers enabled
pipeline_only: .data 0xXFFC28

; CONFIG register setting to turn off output registers only

5-31

TMS34020/TMS34082/SRAM Code Example

Figure 5-15. 3x 3 Matrix Multiply Using External SRAM for Data Space and Code Space

(Mode 3)

a4 Q1 Q4] Qi

Q4| a1

Q4 | ot

o4 | a1

Q4| ot a4}

S I I I I

|

J

[1

e S B N

ALTCH \ , \
1st Column 7
RCA Bus Y row 7 x:
RAS \
CAS \ {’ | (—
WE Address
TMS34082 Opcode Operand 1
LAD Bus x 7 x x 7 D 7 x:
SF >._J _'l
Send Transfer
Fetch Instruction Opcode Output Address Operand 1
Operation From From Dead Cycle From From
TMS34020 Cache TMS34020 TMS34020 DRAM to
to to DRAM TMS234082
TMS34082
MSA Bus x
MSD Bus :x
DS/CS /
MCE /
MOE /
MWR /

5-32

Coprocessor Mode

TMS34020/TMS34082/SRAM Code Example

Figure 5-15. 3 x 3 Matrix Multiply Using External SRAM for Data Space and Code Space
(Mode 3) (Continued)

lat a4 a ealar a4 at Q4| a1 lo7% Ko}l
et eee [b L L d]
ewe eee [[L LT LT
ATCH see ___/__—'\

RCA Bus oo

10th Column

:xgth Column ¥ X Row X 4 x:
RAS Xy , \
T\ / /

CAS LR X

WE [R X

LAD Bus eee Ix 7 7
SF XX V'_I __(

Operand 9 / Address
Operand 10
/ /—x—— TMS34082 Opcode P <
X X2 X

Transfer Send Transfer
Operand 9 Opcode Output Address | Operand 10
Operation (X X From From Dead Cycle From From
DRAM to TMS34020 TMS34020 DRAM to
TMS34082 to to TMS34082 | Tms34082
TMS34082
MSA Bus
MSD Bus
DS/CS
MCE
MOE
MWR

5-33

TMS34020/TMS34082/SRAM Code Example

Figure 5-15. 3 x 3 Matrix Multiply Using External SRAM for Data Space and Code Space
(Mode 3) (Continued)

| at Q4| a1 a4l Q1 le?8 Nell ad | a1 Q4 | Qt

b b L I L1
-

LCLK1 eoe

LI—

LCLK2 oee

ALTCH [X X , \ ,
RCA Bus XX)] / x

RAS oo /
w e T _/

4 4

Operand 18
/ Yo TMS34082 Opcode

LAD Bus see

SF ece F_J _(

3

Transfer Send Jui
mp
" Operand 18 Opcode Jump to fo TMLS°384dOS2
Operation LX) From From Subroutine | Matrix | oonecoo
o | masiiao [SEE™ f M | corte
TMS34082 Routine

MSA Bus :X r Address XAddr XAddr x Add(x Addr x Addr x

Jump Muly
MSD Bus] pump ! x XMult Mut Y M dx

Load CONFIG
DSICE \ conrig Data
e \
m_é ;
MWR

5-34 Coprocessor Mode

TMS34020/TMS34082/SRAM Code Example

Figure 5-15 3 3 Matrix Multiply Using External SRAM for Data Space and Code Space

(Mode 3) (Continued)

Qsfal @4l ol Q4 Qi

[S I N
I I I

Q4] Q1 @2

L
—

Store 2nd Result ——\
\ see

Store 1st Reslt — \

| Q1

M
i I I

Qs |

Ql Q4]

LCLK1

LCLK2

Store oth Reslt —

\ ese \
\ \ \
Calculate 1st Result \ \ Calculate 9th \
alculate Ot
Y so0 Result Load
Calculate 2nd Result TMS34082
CONFIG Reg.
Addr x Addrx Addrx Addr x Addr x Addr x Addr x Addr x: eoe XAddr x Addr XAddr x Addrx
Muty ¥ Muly ¥ Muiy WMuy YMuly Y Moy Y maly Y Muty
Add R Add R Add R Add RAdd R Add g Add Add[oo xN"P‘ !I
Load CONFIG Register
Configuration Data LA
/
Jump to '03FF'h
XX
[X X J

ALTCH

RCA Bus

CAS

LAD Bus

SF

Operation

MSA Bus

MSD Bus

DS/ICS

£
0
m

5-35

Multiple TMS34082s

5.12 Multiple TMS34082s

More than one coprocessor may be connected to the TMS34020 by setting the
appropriate coprocessor 1D field (CID2-0). Up to seven TMS34082s may be
used with each TMS34020. See Figure 5-16. Assuming that each TMS34082
CORDY pin has a separate pull-up resistor, the TMS34020 can determine
which coprocessors are present in the system by writing to and reading from
TMS34082 register locations.

5-36 Coprocessor Mode

Multiple TMS34082s

Figure 5-15. TMS34020 with Multiple TMS34082/SRAM Blocks (MEMCFG = L)

L=

_ i SN
e LOE " MSD31-0_ 4 D31-0
L A
BUSFLT, MSAT2-0 _] A15-0
RAS DS/CS > A 16SRAM
SF TMS34082 MWR V?IE
RESET g
LCLK1
| LOLKT |
,%; CIDo
COINT ¢
s> [T ueov 20>t [COPROCESSOR
| LRDY . ciD2 D
ALTCH CORDY0 L
BUSFLT
RAS
TASO N =
—:—'—\ =
TMs34020 [—WE 1 < taosro Y ToE Py
SF 1 D31-0
RESET T b e iz
> - A15-0
tgtz RAS DS/CS { SRAM
o " TASO McE ., |16
L ——P] ——>|CE
2 S N Vs\,llf TMS34082 o> cE
< > MWR
" »{WE
RESET
LCLK1
LCLK2 CIDO, 5y
COINT cID1
A== < COPROCESSOR
LRDY < clD2 D
CORDY1 L
_ CORDYO (
_ CORDY1
PAL
-4——— from memory control logic

When CID2-0 = 1005, the TMS34020 broadcasts the instruction to all
coprocessors. Broadcast reads by the TMS34082s are not permitted and are

ignored.

Using the TMS34020 assembler directive called .coproc, the coprocessor iD
number (between 0 and 7) may be set for generic coprocessor instructions.
This directive maintains the coprocessor ID until another directive is received.
An example follows where the default coprocessor ID is setto 1 andthento 0.

5-37

Multiple TMS34082s

Example 5-9. Assembler Code for Multiple TMS34082s

5-38

.coproc 1 ; set the default coprocessor ID to 001 for the following
; instructions
MPYF RA2,RBO, RAS
ADDF RA8, RB2, RAS
SQRTF RAS5, RAS
.coproc 0 ; set the default coprocessor ID to 000 for the following
; instructions
SUB RAO, C,RAQ
SUB RALl,C,RAL

Thus, while coprocessor 1 is still calculating its floating-point square root,
coprocessor 0 is performing integer subtracts.For additional details on the
assembler directives, refer to the TMS340 Family Code Generation Tools
User’s Guide.

Coprocessor Mode

Chapter 6

Host-Independent Mode

SRR

Operation in the host-independent mode assumes that the MSTR input signal
is set high. The TMS34082 has several hardware control signals, as well as
programmable features, which support system functions such as initialization,
data transfer, or interrupts in host-independent mode. Details of initialization,
LAD bus (LAD31-0) and MSD bus (MSD31-0) interface control, and interrupt
handling are provided in this chapter.

Initialization

6.1 Initialization

The following sections detail pin connections and initialization in

host-independent mode.

6.1.1 Pin Connections

When operating in host-independent mode, you should connect TMS34082

pins as shown in Table 6-1.

Table 6~1. Pin Connections

Signal Name Description Logic Level
SF Special function input; not used in host-independent mode tie low
RAS Row Address Strobe; not used in host-independent mode tie low
CiD2-0 Coprocessor 1D; not used in host-independent mode tie low
LCLK1-2 Local clocks for coprocessor mode tie low
MSTR Host-independent/coprocessor mode select tie high
EC1-0 Emulator mode control tie high
TCK Test Clock tie low

6.1.2 Bootstrap Loader

To simplify initialization of external program memory, the TMS34082 provides
a bootstrap loader. Once invoked, the loader causes the TMS34082 to read
65 words from the LAD bus and write 64 words to the external program memory
on the MSD bus. The first word read is used to initialize the configuration
register. The remaining words are instructions written to the code space of
external memory, starting at address 0.

To invoke the loader:

1) Set RESET low

2) SetINTR low

3) After the minimum pulse duration, set RESET and INTR high again

As shown in Figure 6—1, RESET must remain low while INTR is pulled low.
During the initialization, the TMS34082 is reset. Internal states and status are
cleared, but data registers are not affected; the control registers return to their
default values.

Host-Independent Mode

Initialization

Figure 6-1. Bootstrap Loader

CLK _/____/—__/—_/—___/_-__/— eeo

RESET __/ coe
INTR __—__/ eoe

LAD31-0 XXXX X><><><><>O<><X><X config. data XJ st instr word XQnd instr word) oo

Mspat-0 - X X X X XXX X X XXX XX XXX XXX XX XXX X etrsrvers) eee

Loader operation begins on the second clock cycle after RESET and INTR
return high. The first word is read into the configuration register on the rising
edge of the third clock. Each successive rising edge loads an instruction word.
The instruction word is output on the MSD bus one clock cycle after it is input
on the LAD bus.

Once the loader is activated, an external interrupt (signaled by INTR low) is not
granted until the load sequence is finished. However, RESET going low
terminates the loader. When the load sequence is finished, program execution
begins at external address 0.

6-3

LAD Bus

6.2 LAD Bus

In host-independent mode, the LAD bus is used to transfer data or instructions
to and from the TMS34082 or the MSD bus. Instruction words may be
transferred from the LAD bus to the MSD bus, but instructions cannot be input
to the TMS34082 from the LAD bus. Details of LAD bus control and data input
are given in the following sections.

6.2.1 Control Signals

Data transfers on the LAD bus are controlled primarily by the following signals:
ALTCH, the address write strobe
CAS, the memory read strobe
WE, the memory write enable

The TMS34082 outputs an address during a cycle when ALTCH is low. The
address may be latched externally on the rising edge of ALTCH. Because all
32 bits of the LAD bus can be used for an address, the LAD bus accesses up
1o 4G 32-bit words of memory.

When WE is low, data is output by the TMS34082 on the LAD bus. If multiple
32-bitwords are output, WE toggles high ateachrising clock edge, thenreturns
low.

When CAS is low, the LAD bus is an input, reading data into the TMS34082.
When multiple words are input, CAS toggles at each rising clock edge.

If a bidirectional FIFO is used instead of memory, CAS can be directly
connected to the read clock and WE to the write clock. The CC input can be
used to signal the TMS34082 when data is ready for input from the FIFO stack.
(See Figures 6~2 and 6--3 for possible configurations.)

Figure 6-2. Using FIFOs on the LAD Bus

Read CLK 4——-—oq——— CAS

TMS34082
Data

ke » Bidirectional
Host EIFO LAD31-0

Write CLK <———Oq———— WE

Host-independent Mode

LAD Bus

If LADCFG is set high in the configuration register, COINT defines bus cycle
boundaries. If an indirect move to or from the LAD bus is coded with the
Cbit (bit 1) sethigh, COINT goes low at the beginning of the move and remains
low until the move is complete. COINT can be used to select a device on the
LAD bus, as shown in Figure 6-2. In this case, COINT is the output enable for
a FIFO.

Figure 6-3. Using COINT as a Device Select (LADCFG=H)

Unload CLK <—__-0< I——— CAS

Host FIFO » LAD31-0

TMS34082

OE COINT

The TMS34082 only drives the LAD bus during instructions that output an
address or data. The LAD bus drivers are disabled at any other time.

LOE, the LAD bus output enable, enables and disables the LAD bus. The LAD
bus is placed in a high-impedance state when LOE is high. However, bringing
LOE low does not cause the LAD bus drivers to turn on. The instruction being
executed must also enable the drivers.

If no other processors share the LAD bus, LOE may be tied low. Other wise,
LOE may be used to prevent bus conflicts between the TMS34082 and other
system masters.

LADCFG controls the signals affected by LOE. If LADCFGiis high, setting LOE
high also disables CAS and WE. When LADCFG is low, COINT is a
user-programmable output. LOE does not affect CAS or WE.

6.2.2 Immediate Data Transfers

Data input on the LAD bus can be written to data registers, control registers,
or passed through for output on the MSD bus. Alternatively, the LAD bus input
canbe selected directly as an FPU source operand without writing to a register.

The clock period may be extended forimmediate data input that does not meet
the minimum data setup time. The clock is stretched by the data delay plus
5ns. Refer to TMS34082 data sheet timing diagrams for additional
information.

An FPU result can be written to a data register and passed out to the LAD bus.
When this is done, the minimum clock period is extended by 15 ns
(TMS34082-40) to allow for the propagation delay from the FPU core to the

outputs.

6-5

LAD Bus

Depending on the specific system implementation, transferring data to and
from the LAD bus without intervening register operations can significantly
improve throughput. Data moves to and from internal registers can be
minimized at the cost of adjusting the clock period to assure integrity of FPU
results onto the LAD bus.

6-6 Host-Independent Mode

MSD Bus

6.3 MSD Bus

The MSD bus can be used to access either external data memory or external
code memory, depending on the combination of control signals required. in the
host-independent mode, the MSD bus is the source for all instructions. Data
can also be transferred to or from the TMS34082 over the MSD bus, and data
transfers between the LAD and MSD buses are possible.

6.3.1 MSD Bus Control Signals

Up to 64K 32-bit data operands and 64K instructions may be directly
addressed on the MSD bus. The address of memory is output on MSA15-0.

External memory operations are controlled by:
DS/CS, data space/code space select
MCE, memory chip enable
MOE, memory output enable
MWR, memory write enable
MAE, MSD bus output enable

When memory configuration (MEMCFG) is low, DS/CS functions as the most
significant address bit. DS/CS high selects data memory; DS/CS low selects
code memory. MCE is the memory chip enable for both code and data memory.

When MEMCFG is high, DS/CS is the chip select for data memory and MCE
is the chip select for code memory. This may eliminate the need for an external
inverter.

The TMS34082 outputs data on the MSD bus when MWR and MAE are low.
Otherwise, the device does not drive the MSD bus. If memory onthe MSD bus
is not shared, MAE can be tied low.

If the memory on the MSD port is shared with a host processor, the MAE and
RDY signals can be used to prevent conflicts between the TMS34082 and the
host processor. The host processor can monitor the state of MCE (for
MEMCFG iow) to determine when the TMS34082 is not accessing memory.
If MCE is not active, the host processor takes control of the MSD bus by
asserting MAE and RDY low. Setting RDY low halts the TMS34082.

6-7

MSD Bus/Reset

6.3.2 Memory Models

6.4 Reset

The TMS34082 Software Tool Kit supports three memory models: small,
medium, and large.

The small memory model places the code and data inthe same memory space.
DS/CS is unused. The maximum memory allowed is 64K 32-bit words, a
combination of instructions and data.

The medium memory model uses separate data and code spaces. Up to 64K
of data words and 64K of instructions are accessed.

Thelarge memory model partitions the code space into banks, each containing
64K words. External segment registers determine which bank is being
accessed. Constants are stored in the same bank as the code that uses them.
Variable data is stored in memory on the LAD bus. For more information on
segment register requirements, see the TMS34082 Software Tool Kit User’s
Guide.

The TMS34082 is reset when the RESET input is brought low. RESET is an
asynchronous signal that requires no setup or hold times with respect to the
clock. However, the minimum pulse duration requirement must be met. Data
registers are not affected by reset.

Upon reset, all internal states and pipeline registers are cleared. Control
registers return to their default values, except for the interrupt register which
is unaffected. Data registers are also not affected by reset. The state of control
signals during reset is listed in Chapter 4, Table 4-10.

The TMS34082 ignores the firstrising clock edge after RESET is returned high.
Program execution begins on the second cycle at address 0. RESET is also
used in conjunction with the INTR signal to call a bootstrap loader. This
operation is detailed in subsection 6.1.2.

Host-Independent Mode

Wait States/User Programmable Outputs/Conditional Code Input

6.5 Wait States

Setting RDY low causes the TMS34082 to stall. This input can be used to
create wait states for slow memory accesses. Stalling the device does not
affect any internal states or registers and output lines do not change.

In host-independent mode, LRDY can be used to stall the device. The function
and timing are the same as RDY.

RDY (or LRDY) must be set low a minimum setup time before the rising clock
edge you wish to inhibit. Operation resumes on the next rising clock edge after
RDY (or LRDY) is set high. Again, there is a minimum setup time requirement
before that clock edge.

6.6 User Programmable Outputs

In the host-independent mode, CORDY is a user-programmable output. If the
LADCFG bit in the configuration register is low, COINT is also a
user-programmable output. When LADCFG is high, COINT is usedin LAD bus
moves and is not programmable.

CORDY (or COINT) is set high or low using the set mask instruction. CORDY
{or COINT) remains at that setting until it is changed by another set mask
instruction. COINT and CORDY are set/reset independent of each other.

6.7 Conditional Code Input

The CC pinis an external condition code input. A conditional jump to subroutine
or conditional branch can be performed based on the state of this pin.

The CC input allows you to control program flow based on some external status
from other devices in your system. By polling this input, you can determine, for
example, if a host processor has an instruction queued for the TMS34082.

6-9

Interrupts

6.8 Interrupts

The TMS34082 supports three types of interrupts in host-independent mode:
hardware, software, and exception detects. Each of these has its own interrupt
enable.

6.8.1 Hardware Interrupts

Upon power up or reset, hardware interrupts are disabled. Before enabling
interrupts, the address of the interrupt handling routine should be storedin the
interrupt address register. Hardware interrupts are enabled by setting
INTENHW (bit 15 of the status register) high using the set mask instruction.
A hardware interrupt is then signaled by setting INTR low.

When a hardware interrupt is received, the current program counter is pushed
into the interrupt return register. The hardware interrupt flag, HINT (bit 4 ofthe
status register), and interrupt grant, INTG, are set high. The interrupt mask is
saved and all interrupts are disabled. The address in the interrupt vector is
output to MSA15-0, causing a branch to the interrupt service routine.

After the interrupt service routine, the interrupts should be enabled again
before a return from interrupt instruction is executed. Restoring the hardware
interrupt clears the HINT flag and INTG.

Only one hardware interrupt may be queued. if a hardware interruptis received
while the first interrupt is being processed, the interrupt is recorded and
serviced after the first interrupt sequence is finished. If a third or subsequent
hardware interrupt is signaled, it will be ignored.

If a hardware interrupt is received during a multicycle instruction (such as
divides, square roots, or moves), the interruptis queued and serviced after the
instruction is completed.

6.8.2 Software Interrupts

6-10

Upon power up or reset, software interrupts are disabled. Before enabling
interrupts, the address of the interrupt handling routine should be storedin the
interrupt address register. Software interrupts are enabled by setting
INTENSW (bit 11 of the status register) high using the set mask instruction. An
interrupt is then signaled by using the set mask instruction to send a software
interrupt.

When a software interrupt is received, the current program counter is pushed
into the interrupt return register. The software interrupt flag, INTFLG (bit 16 of
the status register), and INTG is set high. The address in the interrupt vector
is output to MSA15-0, causing a branch to the interrupt service routine.

The interrupts should be re-enabled before a return from interrupt instruction
is executed. Restoring the software interrupt clears the HINT flag.

Host-Independent Mode

Interrupts

Because hardware interrupts may be queued, a hardware interrupt received
white a software interruptis being processed is recorded and serviced afterthe
software interrupt is complete. This assumes the hardware interrupt was
enabled before the software interrupt was received. If another hardware
interrupt is signaled, it will be ignored.

6.8.3 Exception Detect Interrupts

Athird type of interrupt is the exception detect interrupt. In the event of an FPU
status exception in host-independent mode, the internal ED signal (bit 18 ofthe
status register) is set high, causing an exception detect interrupt. If interrupts
based on specific exceptions are not desired, the exceptions can be masked
from the error detect (ED) logic by using the appropriate bits in the
configuration register.

Upon power up or reset, exception detect interrupts are disabled. Before
enabling interrupts, the address of the exception handling routine should be
stored in the interrupt address register. Exception interrupts are enabled by
setting INTENED (bit 12 of the status register) high using the set mask
instruction.

When an error is detected and ED interrupts are enabled, the current program
counter is pushed into the interrupt return register. ED is set high. The address
in the interrupt vector is output to MSA15-0, causing a branch to the interrupt
service routine.

The interrupts should be restored before a return from interrupt instruction is
executed. Restoring interrupts clears the ED flag.

Because hardware interrupts may be queued, a hardware interrupt received
while an exception interrupt is being processed is recorded and serviced after
the firstinterrupt is finished. This assumes the hardware interrupt was enabled
before the exception interrupt was received. If another hardware interrupt is
signaled, it will be ignored.

6-11

6-12 Host-Independent Mode

Chapter 7

Integpal Instructions

[rr— —
feseaas: SRR

The TMS34082 internal instruction set includes arithmetic and logical
operations, as well as complex instructions storedin aninternal program ROM.
Several addressing modes are available for internal instructions in addition to
data types for integer, single- and double-precision floating-point formats.

In the coprocessor mode, the TMS34082 executes internal instructions
through the LAD bus as shown in Figure 7—-1.

Figure 7-1. Source for Internal Instructions in Coprocessor Mode

Data and

TMS34020 Internal Instructions

TMS34082

LAD

LAD MsSD

in the host-independent mode, an internal instruction can be executed by
jumping to the proper internal ROM address. Chapter 8 of this manual shows

the correct syntax forthe JSR (jump to subroutine) and CJSR (conditional jump
to subroutine) instructions.

Internal Instructions Overview

7.1 Internal Instructions Overview

The TMS34082 FPU performs a wide range of internal arithmetic and logical
operations, as well as complex operations (flagged T), summarized below.
Complex instructions are multicycle routines stored in the internal program
ROM. These form a powerful set of primitives for graphics operations.

One Operand Operations
Absolute Value 1s Complement
Square Root 2s Complement
Reciprocalt

Conversions

Integer to Single-Precision
Integer to Double-Precision
Single- to Double-Precision

Two Operand Operations

Add
Subtract
Compare

Matrix Operations

4x4, 4x4 MultiplyT
1x4, 4x4 Multiply

Graphics Operations

Backface Testingt
Polygon ClippingT

2-D Linear Interpolation’r
2-D Window Compare
2-Plane Clipping 1(;x, Y, Xyt
2-D Cubic Spline

Image Processing
3x3 ConvolutionT

Chained Operations
Polynomial Expansiont
1-D Min/Maxt

Vector Operations

AddT
Subtract’
MagnitudeT
Scaling’

T Indicates complex instructions

Single-Precision to Integer
Double-Precision to Integer
Double- to Single-Precision

Multiply
Divide

3x3, 3x3 MultiplyT
1x3, 3x3 Multiply

Polygon Elimination’

Viewport Scaling and Conversiont
3-D Linear Interpolation’

3-D Volume Compare’

2-Plane Color Cli?ping (R, B, G, i)t
3-D Cubic Spline

Multiply/AccumulateT
2-D Min/Max!

Dot Product!
Cross Product!
NormalizationT
ReflectionT

Internal Instructions

Internal Instructions Overview

The internal routines can be used in either coprocessor or host-independent
mode. In coprocessor maode, the internal routines are invoked by TMS34020
instructions to its coprocessor(s). When the TMS34082 is used as a
stand-alone processor, the internal microprograms can be called as
subroutines by the externally stored code.

7-3

Complex Graphics Instructions

7.2 Complex Graphics Instructions

The internal complex instructions may be combined to form a 3-D graphics
pipeline. A typical 3-D graphics pipeline includes three major operations onthe
input object database. The object database is first manipulated to generate
normal vectors, and then transformed. The color and intensity values are also
calculated. The second step involves the clipping of the objects to the viewing
volume. Finally, the objects are displayed according to the rendering style
selected. Figure 7-2 shows a typical 3-D graphics pipeline using the complex
instructions.

Figure 7-2. 3-D Graphics Pipeline Using TMS34082 Complex Instructions

o o e e e e e

I
|
|
|
|
|

Database Manipulation

—
3-D IEEE
Floating-Point
Database

Matrix Composition & | \1vipyo, MMPY1, MMPY2, MMPY3, VADD,

‘ VSUB, VSCL

Color and Intensity

Calculations VRFLCT, VDOT, VCROS, VMAG, VNORM

Polygon Trivial
Accept/Reject Test

v

Backface
Culling

v

Clip to Viewing
Volume

v

Clip Color
Vglues

v

Perspective
Transformation

CKVTXI, CKVTX

BACKF

CLIPFX, CLIPFY, CLIPFZ, CLIPRX, CLIPRY,
CLIPRZ, OUTC3X, OUTC3Y, OUTC3Z

CLIPCF, CLIPCR

Hidden Surface
Removal

Rendering

v

Display Polygon

Internal Instructions

Complex Graphics Instructions

The complex instructions used in the polygon clipping mechanism can be
organized into three functional groups. The first set consists of a single test
(BACKF) to determine whether the polygon is forward or backward facing. The
second set of instructions (CKVTXI, CKVTX) performs atest to trivially accept
or reject a polygon as being visible by checking the vertex coordinates against
the viewing volume. The third set of instructions (OUTC3X, OUTC3Y,
OUTC3Z, CLIPFX, CLIPFY, CLIPFZ, CLIPRX, CLIPRY, CLIPRZ, CLIPCF,
CLIPCR) determines whether the polygon edge crosses the viewing volume
boundary and generates the new vertices and color values for the clipped
polygon.

The complex instructions are implemented to make efficient use of the
TMS34082 Registers and internal status is maintained throughout the clipping
mechanism, thus allowing successive polygon edges to be clipped without
repeated loading of vertex information. Figure 7-3 details the clipping portion
of the pipeline.

Complex Graphics Instructions

Figure 7-3. 3-D Polygon Clipping Flow Chart

BACKF Backface Test
no
CKVTXI Initialize CKVTX
Check polygon vertices
CKVTX for trivial accept/reject

More
Vertices?
no
Polygon Totally
Out?

Polygon Totally
in?

QuUTC3Z

CLIPFZ o yoong Y8} CLIPRZ
CLIPCF Siip V2! CLIPCF

no no

F \

QUTC3Y

| CLIPFY CLIPRY
CLIPCF CLIPCF
CLIPFX | ¥ oy YOS, CLIPRX
CLIPCF Clip V23 CLIPCF
no
s
Finish

7-6 ‘ Internal Instructions

'

Internal Routine Addresses and Cycle Counts

7.3

Internal Routine Addresses and Cycle Counts

External programs can call internal routines by executing a jump to subroutine
with bit 16 (internal code select) set high and the address ofthe internal routine
as the jump address. Internal routine addresses are given in Table 7-1.

The following table lists internal routines, their addresses, and the number of
machine states required to complete the routine. The number in parenthesis
after the machine states is the number of cycles before the next operation may
begin. For example, it takes five clock cycles to complete an integer CPW
{compare point to window) instruction where the status and results are valid;
it would take 4 cycles after the CPW began executing before another operation
to begin. In coprocessor mode, a machine state is half an LCLK1 period.
Therefore, the number of LCLK1 cycles required is the number of machine
states divided by 2. In host-independent mode, a machine state is one CLK
period.

These cycle counts are for mode 0 instructions only (no data transfers) after
the instruction reaches the TMS34082. Only mode 0 instructions may be used
in host-independent mode. In coprocessor mode, the time required to execute
mode 1 and mode 2 instructions is the same as the related mode 1 instruction
afterboth instruction and data have reached the TMS34082. The TMS34020
takes one LCLK1 cycle to output a mode 0 instruction and two (one-operand)
or three (two-operand) LCKL1 cycles for a mode 1 instruction. A mode 2
instruction requires three TMS34020 LCLK1 cycles, plus one cycle for each
memory transfer. '

7-7

Internal Routine Addresses and Cycle Counts

Table 7-1. Internal ROM Routines (for Mode 0 FPU QOperations)

Hex Assembler Description Precision Machine
Address Opcode States
000 ADD Sum of ra and rb integer 2(1)
00t suB Subtract rb from ra integer 2(1)
002 CMP Set status bits on result of ra minus rb integer 2(1)
003 suB Subtract ra from rb integer 2(1)
004 reserved
005 reserved
006 MOVET Load n FPU registers from TMS34020 GSP or its memory integer (see Note)
007 MOVET Save n FPU registers from TMS34020 GSP or its memory integer (see Note)
008 MPYS Multiply ra and rb integer 2(1)
009 DIVS Divide ra by rb integer 16(15)
00A INV Divide 1 by rb integer 16(15)
00B reserved
00C reserved
00D MOVE Move ra to rd, muitiple, for n registers integer {see Note)
00E MOVE Move rb to rd, multiple, for n registers integer (see Note)
00F reserved
010 CcPW Compare point to window integer 5(4)
011 CPV Compare point to volume integer 7(6)
012 BACKF Test polygon for facing direction (backface test) integer 16(15)
013 INMNMX Setup FPU registers for MNMX1 or MNMX2 instruction 2(1)
014 LINTX Linear interpolation, X plane integer. 26(25)
015 CLIPFX Clip a line to an X plane pair boundary (start w/point 1) integer 34(33)
o016 CLIPRX Clip a line to an X plane pair boundary (start w/point 2) integer 34(33)
017 CLIPC Clip color values to a plane pair boundary (start w/point 1) integer 27(26)
018 SCALE Scale and convert coordinates for viewport integer 56(55)
019 MTRAN Transpose a matrix integer 13(12)
01A CKVTX Compare polygon vertex to a clipping volume integer 6(5)
01B CONV 3x3 convolution integer 32(31)
01C CLIPCR Clip color values to a plane pair boundary (start w/point 2) integer 27(26)
01D OUTC3X Compatre a line to a clipping value, X plane . integer 5(4)
O1E CSPLN Calculate cubic spline integer 22(21)
01F reserved
020 MOVE Copy rato rd integer 2(1)
021 NOT Place 1’s complement of ra in rd integer 2(1)
022 ABS Place absolute value of rain rd integer 2(1)
023 NEG Place negated value of rain rd integer 2(1)
024 reserved
025 reserved

1 Cannot be used in host-independent mode.

NOTE: Number of machine states varies, depending on the number of words moved.

7-8 Internal Instructions

Internal Routine Addresses and Cycle Counts

Table 7-1. Internal ROM Routines (for Mode 0 FPU QOperations) (Continued)

Hex Assembler Description Precision Machine
Address Opcode States
026 reserved
027 vscLT Multiply vector by a scaling factor integer 4(3)
028 SQAR Place (ra » ra) in rd integer 4(3)
029 SQRT Extract square root of ra integer 20(19)
02A SQRTA Extract square root of absolute value of ra integer 20(19)
02B ABORT Stop execution of any FPU instruction integer 2(1)
02C CKVTX1 Initialize check vertex instruction 2(1)
02D CHECK Check for previous instruction completion 2(1)
02E MOVTSRAM! | Move data from system memory to external memory
02F MOVFSRAMT | Move data to system memory from external memory
030 poLYT Polynomial expansion integer 4(3)
031 MACT Multiply and accumulate integer 4(3)
032 MNMX1T Determine 1-D minimum and maximum of a series integer 3(2)
033 MNMx2T Determine 2-D minimum and maximum of a series of pairs integer 5(4)
034 MMPYO Multiply matrix elements 3-0 by vector element 0 integer 6(5)
035 MMPY1 Multiply matrix elements 7-4 by vector element 1 integer 10(9)
036 MMPY2 Multiply matrix elements 11-8 by vector element 2 integer 12(11)
037 MMPY3 Multiply matrix elements 15-12 by vector element 3 integer 12(11)
038 MADD Add matrix elements 15-12 to vector integer integer 9(8)
039 VADD Add two vectors integer 4(3)
03A VSUB Subtract a vector from a vector integer 4(3)
03B VvDOT Compute scalar dot product of two vectors integer 7(6)
03C VCROS Compute cross product of two vectors integer 9(8)
03D VMAG Determine the magnitude of a vector integer 30(29)
03E VNORM Normalize a vector to unit magnitude integer 50(49)
03F VRFLCT Given normal and incident vectors, find the reflection integer 16(15)
080 ADDF Sum of ra and rb single 2(1)
081 SUBF Subtract rb from ra single 2(1)
082 CMPF Set status bits on result of ra minus rb single 2(1)
083 SUBF Subtract ra from rb single 2(1)
084 ADDA Absolute value of sum of ra and rb single 2(1)
085 SUBA Absolute value of (ra minus rb) single 2(1)
086 MOVF Load n FPU registers from TMS34020 GSP or its memory single
087 MOVF Save n FPU registers from TMS34020 GSP or its memory single
088 MPYF Mutltiply ra and rb single 2(1)
089 DIVF Divide ra by rb single 7(6)
08A INVF Divide 1 by rb single 7(8)
08B ASUBA Absolute value of ra minus absolute value of b single 2(1)
08C reserved

1 Cannot be used in host-independent mode.

NOTE: Number of machine states varies, depending on the number of words moved.

Internal Routine Addresses and Cycle Counts

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued)

Hex Assembler Description Precision Machine
Address Opcode States

08D MOVEFT Move ra to rd, multiple, for n registers single (see Note)
08E MOVEFT Move ra to rd, multiple, for n registers single (see Note)
08F reserved
090 CPWF Compare point to window single 5(4)
091 CPVF Compare point to volume single 7(6)
092 BACKFF Test polygon for facing direction (backface test) single 16(15)
093 INMNMXF Setup FPU registers for MNMX1 and MNMX2 single 2(1)
094 LINTXF Linear interpolation, X plane single 17(16)
095 CLIPFXF Clip aline to an X plane pair boundary (start w/point 1) single 25(24)
096 CLIPRXF Clip a line to an X plane pair boundary (start w/point 2) single 25(24)
097 CLIPCF Clip color values to a plane pair boundary (start w/point 1) single 18(17)
098 SCALEF Scale and convert coordinates for viewport single 21(20)
099 MTRANF Transpose a matrix single 13(12)
09A CKVTXF Compare polygon vertex to a clipping volume single 6(5)
0eB CONVF 3x3 convolution single 17(16)
08C CLIPCRF Clip color values to a plane pair boundary (start w/point2) single 18(17)
08D OUTC3XF Compare a line to a clipping value, X plane single 5(4)
0SE CSPLNF Calculate cubic spline single 22(21)
09F ‘ reserved
0AO MOVE copy ra to rd single 2(1)
0A1 NOT Place 1’s complement of ra in rd single 2(1)
0A2 ABS Place absolute value of ra in rd single 2(1)
0A3 NEG Place negated value of ra in rd single 2(1)
0A4 CVFD Convert single-precision to double-precision single 2(1)
0A5 CVFI Convert single-precision to integer single 2(1)
0AB CVIF Convert integer to single-precision single 2(1)
0A7 VSCLFT Multiply vector by a scaling factor single 4(3)
0A8 SQARF Place (ra*ra)inrd single 4(3)
0A9 SQRTF Extract square root of ra single 10(9)
0AA SQRTAF Extract square root of absolute value of ra single 10(9)
0AB ABORT Stop execution of any FPU instruction 2(1)
OAC CKVTX1 Initialize check vertex instruction 2(1)
O0AD CHECK Check for previous instruction completion 2(1)
O0AE MOVTSRAMT | Move data from system memory to external memory
0AF MOVFSRAMT | Move data to system memory from external memory
0BO POLYFT Polynomial expansion single 4(3)
0B1 MACFT Multiply and accumulate single 4(3)
0B2 MNMX1FT Determine 1-D minimum and maximum of a series single 3(2)
0B3 MNMX2F T Determine 2-D minimum and maximum of a series of pairs single 5(4)

1 Gannot be used in host-independent mode.

NOTE: Number of machine states varies, depending on the number of words moved.

7-10 Internal Instructions

Internal Routine Addresses and Cycle Counts

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued)

Hex Assembler Description Precision Machine
Address Opcode States
0B4 MMPYOF Multiply matrix elements 3-0 by vector element 0 single 6(5)
0B5 MMPY1F Mutltiply matrix elements 7-4 by vector element 1 single 10(9)
0B6 MMPY2F Multiply matrix elements 11-8 by vector element 2 single 12(11)
0B7 MMPY3F Multiply matrix elements 15-12 by vector element 3 single 12(11)
0B8 MADDF Add matrix elements 15-12 to vector single 9(8)
0B9 VADDF Add two vectors single 4(3)
0BA VSUBF Subtract a vector from a vector single 4(3)
0BB VDOTF Compute scalar dot product of two vectors single 7(6)
0BC VCROSF Compute cross product of two vectors single 9(8)
0BD VMAGF Determine the magnitude of a vector single 20(19)
0BE VNORMF Normalize a vector to unit magnitude single 31(30)
0BF VRFLCTF Given normal and incident vectors, find the reflection single 16(15)
0Co ADDD Sum of ra and rb double 2(1)
0C1 SUBD Subtract b from ra double 2(1)
0C2 CMPD Set status bits on result of ra minus rb double 2(1)
0C3 SUBD Subtract ra from rb double 2(1)
0C4 ADDA Absolute value of sum of ra and rb double 2(1)
0C5 SUBA Absolute value of (ra minus rb) double 2(1)
0C6 mMovDT Load n FPU registers from TMS34020 GSP or its memory double (see Note)
0C7 MovDT Save n FPU registers from TMS34020 GSP or its memory double (see Note)
0C8 MPYD Multiply ra and rb double 3(2)
0Ce DIVD Divide ra by rb double 13(12)
0CA INVD Divide 1 by rb double 13(12)
ocB ASUBA Absolute value of ra minus absolute value of rb double 2(1)
0CC reserved
0CD mMovpT Move ra to rd, multiple, for n registers double (see Note)
0CE movDT Move 1b to rd, multiple, for n registers double (see Note)
OCF reserved
0DO0 CPWD Compare point to window double 5(4)
0D1 CPVD Compare point to volume double 7(8)
0D2 BACKFD Test polygon for facing direction (backface test) double 25(24)
0D3 INMNMXD Setup FPU registers for MNMX1 and MNMX2 double 2(1)
0oD4 LINTXD Linear interpolation, X plane double 26(25)
0D5 CLIPFXD Clip a line to an X plane pair boundary (start w/point 1) double 35(34)
0D6 CLIPRXD Clip a line o an X plane pair boundary (start w/point 2) double 35(34)
on7 CLIPCD Clip color values to a plane pair boundary (start w/point 1) double 28(27)
0D8 SCALED Scale and convert coordinates for viewport double 33(32)
oDe MTRAND Transpose a matrix double 13(12)
ODA CKVTXD Compare polygon vertex to a clipping volume double 6(5)

1 Cannot be used in host-independent mode.

NOTE: Number of machine states varies, depending on the number of words moved.

7-11

Internal Routine Addresses and Cycle Counts

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued)

Hex Assembler Description Precision Machine
Address Opcode States
oDB CONVD 3x3 convolution double 29(30)
0DC CLIPCRD Clip color values to a plane pair boundary (start w/point 1) double 31(30)
obD OUTC3XD Compare a line to a clipping value, X plane double 5(4)
ODE CSPLND Calculate cubic spline double 31(30)
O0DF reserved
0EO MOVE Copy rato rd double 2(1)
OE1 NOT Place 1’s complement of rain rd double 2(1)
OE2 ABS Place absolute value of ra in rd double 2(1)
0E3 NEG Place negated value of rain rd double 2(1)
OE4 CVDF Convert double-precision to single-precision double 2(1)
OES CVDI Convert double-precision to integer double 2(1)
OE6 CVID Convert integer to double-precision double 2(1)
0E7 VSCLDT Multiply vector by a scaling factor double 7(6)
0E8 SQARD Place (ra*ra) in rd double 5(4)
OES SQRTD Extract square root of ra double 16(15)
0OEA SQRTAD Extract square root of absolute value of ra double 16(15)
0EB ABORT Stop execution of any FPU instruction 2(1)
O0EC CKVTX1 Initialize check vertex instruction 2(1)
0ED CHECK Check for previous instruction completion 2(1)
OEE reserved
0EF reserved
0F0 POLYDT Polynomial expansion double 5(4)
OFt MACDT Multiply and accumulate double 5(4)
0F2 MNMX1DT Determine 1-D minimum and maximum of a series double 3(2)
OF3 MNMX2DT Det.ermine ?—D minimum and maximum of a double 5(4)
series of pairs

0F4 MMPYOD Muttiply matrix elements 3-0 by vector element 0 double 11(10)
OF5 MMPY1D Multiply matrix elements 7-4 by vector element 1 double 14(13)
0F6 MMPY2D Multiply matrix elements 11-8 by vector element 2 double 16(15)
OF7 MMPY3D Multiply matrix elements 15-12 by vector element 3 double 16(15)
OF8 MADDD Add matrix elements 15-12 to vector double 9(8)
OF9 VADDD Add two vectors double 4(3)
OFA VsSuBD Subtract a vector from a vector double 4(3)
OFB VDOTD Compute scalar dot product of two vectors double 10(9)
OFC VCROSD Compute cross product of two vectors double 15(14)
OFD VMAGD Determine the magnitude of a vector double 29(28)
OFE VNORMD Normalize a vector to unit magnitude double 49(48)
OFF VRFLCTD Given normal and incident vectors, find the reflection double 23(22)
114 LINTY Linear interpolation, Y plane integer 26(25)

1 Cannotbe used in host-independent mode.

NOTE: Number of machine states varies, depending on the number of words moved.

7-12 Internal Instructions

Internal Routine Addresses and Cycle Counts

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued)

Hex Assembler Description Precision Machine
Address Opcode States
115 CLIPFY Clip aline to an Y plane pair boundary (start w/point 1) integer 34(33)
116 CLIPRY Clip aline to an Y plane pair boundary (start w/point 2) integer 34(33)
11D OuUTC3Y Compare a line to a clipping value, Y plane integer 5(4)
194 LINTYF Linear interpolation, Y plane single 17(16)
195 CLIPFYF Clip aline to an Y plane pair boundary (start w/point 1) single 25(24)
196 CLIPRYF Clip aline to an Y plane pair boundary (start w/point 2) single 25(24)
19D OUTC3YF Compare a line to a clipping value, Y plane single 5(4)
1D4 LINTYD Linear interpolation, Y plane double 17(16)
1D5 CLIPFYD Clip aline to an Y plane pair boundary (start w/point 1) double 25(24)
1D6 CLIPRYD Clip aline to an Y plane pair boundary (start w/point 2) double 25(24)
1DD OUTC3YD Compare a line to a clipping value, Y plane double 5(4)
214 LINTZ Linear interpolation, Z plane integer 26(25)
215 CLIPFZ Clip a line to an Z plane pair boundary (start w/point 1) integer 34(33)
216 CLIPRZ Clip aline to an Z plane pair boundary (start w/point 2) integer 34(33)
21D ouTC3z Compare a line to a clipping value, Z plane integer 5(4)
294 LINTZF Linear interpolation, Z plane single 17(16)
285 CLIPFZF Clip a line to an Z plane pair boundary (start w/point 1) single 25(24)
296 CLIPRZF Clip aline to an Z plane pair boundary (start w/point 2} single 25(24)
29D OUTCS3ZF Compatre a line to a clipping value, Z plane single 5(4)
2D4 LINTZD Linear interpolation, Z plane double 17(16)
2DS CLIPFZD Clip aline to an Z plane pair boundary (start w/point 1) double 25(24)
2D6 CLIPRZD Clip aline to an Z plane pair boundary (start w/point 2) double 25(24)
2DD OUTC3zZD Compare a line to a clipping value, Z plane double 5(4)

1 Cannot be used in host-independent mode.
NOTE: Number of machine states varies, depending on the number of words moved.

7-13

Coprocessor Mode Internal Instruction Format

7.4 Coprocessor Mode Internal Instruction Format

The format of the TMS34082 instruction in coprocessor mode is shown below.
The instruction is issued by the TMS34020 via the LAD bus.

31 28 24 20 15 13 8 7 6 5 0
D] ra I b I rd I md pruopl type I size I 0 l ! lOOOOO

7.4.1 Coprocessor ID Field

The 3-bit ID field identifies which coprocessor the instruction is intended for.
This coprocessor ID corresponds to the settings of the CID2-0 pins. To
broadcast an instruction to all coprocessors, the ID field is set to 4. The
TMS34020 documentation recommends the coprocessor 1D assignments
shown below. However, both the TMS34020 and TMS34082 support using up
to seven TMS34082s per TMS34020.

The assembler defaults to an ID of 0005. To define another ID as the current
ID, use the coprocessor assembler directive.

Table 7-2. Coprocessor IDs

ID Coprocessor ID Coprocessor
000 FPUO 100 FPU broadcast

001 FPU 1 101 Reserved (or FPU 4)
010 FPU 2 110 Reserved (or FPU 5)
011 FPU3 111 User defined (or FPU 6)

7.4.2 Register Field

Thera, rb, and rd fields are for the two sources (A and B) and destination within
the FPU. For most two-operand instructions, one operand must come from
each register file. Register addresses were listed in Table 4-3. For the ra and
tb fields, only the four least significant bits of the register address are used.
Some multi-operand instructions redefine the ra, rb, and rd field.

Valid values for registers operands are:
ra: RAO-RA9 (also, C, and CT following rules below)
rb: RBO-RB9 (also, C, and CT following rules below)

rd: RAO-RA9 RB0-RBS, C, and CT

NOTE: Although the TMS34020 assembler only allows the above registers as destinations, the
TMS34082 will accept any register address as a destination.

7-14 Internal Instructions

Coprocessor Mode Internal Instruction Format

The following is a list of rules for using the C and CT registers as operands:

1) Do notuse C or CT as source operands in any mode 1 or 2 (“Load and.”)
instructions.

2) Do notuse C or CT in any MOVE, MOVD, or MOVF instructions. If it is
necessary to move a value to or from the C or CT register, use the PASS,
PASSF, or PASSD instruction (depending on the type of number in C or
CT). C and CT are legal operands for the PASSx instructions. However,
the type of number in C or CT must match the type (integer single-, or
double-precision) of the PASSx instruction.

3) Do notuse C or CT as source operands for integer divide (DIVS), integer
inverse (INV), convert integer to single-precision (CVIF) or convertinteger
to double-precision (CVID) instructions.

4) For instructions requiring two source operands, C or CT can be used as
both operands, but cannot be used together in the same instruction.

7.4.3 Addressing Mode Field

Four addressing modes are defined for the TMS34082. The md field indicates
the addressing mode. Each addressing mode corresponds to one or two
general-purpose TMS34020 coprocessor commands. Specific TMS34082
instructions are created by specifying the fields of the internal instruction as
shown above.

Table 7-3. Addressing Modes

General
md . TMS34020
Mode Field Operation Coprocessor
Command
0 00 | FPU internal operations with no jumps or external moves CEXEC
1 01 | Transfer instruction and data to/from TMS34020 registers %,;\AA%\\,I?JCG:’
P 10 Transfer instruction and data to/from memory (controlled by | CMOVMC,
TMS34020) on LAD bus CMOVCM
3 11 Jump to external instructions in TMS34082 external CEXEC
memory

7.4.4 FPU Operation Field

The fpuop field tells the TMS34082 which operation (such as addition or
subtraction) or complex instructions (such as clipping) to perform. Sometimes
the rb field is also used to specify the operation. A list of instructions and their
associated fpuop field is given in the TMS34082A Data Sheet (Appendix B).

7-15

Type, Size, and | Fields

7.5 Type, Size, and | Fields

The type and size bits identify the type of operand, as shownin Table 7—4. The
| bit is used to indicate to the coprocessor that this is a ‘reissue’ of a
coprocessor instruction due o a bus interruption. The least significant four bits
are the bus status bits, which will all be zero to indicate a coprocessor cycle.

Table 7-4. Operand Types

Type | Size Operand Type
0 0 32-bit Integer
0 1 Reserved
1 0 Single-precision floating-point (32-bit)
1 1 Double-precision floating-point (64-bit)

7-16 Internal Instructions

Internal Instruction Opcodes

7.6 Internal Instruction Opcodes

Details of each internal routine follow. The routines are listed alphabetically by
their TMS34020 assembler opcodes.

Sets of related instructions (same operation, different operand types) are listed
together. Sets begin on a new page and may contain the following information.

Syntax: Shows you how to enter an instruction. Each valid operand type
is listed, along with its syntax. Bold text should be entered as shown. ltalic
text represents a symbol that tells what type of information should be
entered. These symbols are further described in the operand section.

Execution: lllustrates the effects of execution on TMS34020 and
TMS34082 registers and memory. The shaded portion represents steps
that are executed for double-precision instructions only.

TMS34020 Instruction Words: Shows the object code generated for an
instruction. This is the instruction to the TMS34020. In this instruction,
transfers is the number of 32-bit words moved across the LAD bus.
Transfers will generally be the number of operands for an integer or
single-precision instruction. For a double-precision instruction, transfers
is twice the number of operands.

TMS34082 Instruction Word: Shows the command generated by the
TMS34020 that is sent (via the LAD bus) to the TMS34082. In this word,
tand s are used to specify the type and size bits, respectively.

Operands: Explains the symbols used in the syntax section. Implied
operands are values that must be in the appropriate register(s) before the
instruction is executed. The following symbols are used as operands:

Rs, Rsq, Rso TMS34020 source register(s)
Rd, Rd¢, Rds TMs34020 destination register(s)

CRs, CRsq4, CRsp TMS34082 source register. Must be from the
RA or RB register files, C, or CT. See the
restrictions on the use of C and CT given in
subsection 7.3.2.

CRd Unless otherwise noted, C or CT may be
substituted for RA or RB registers in any
instruction which does not require data
transfers to/from the TMS34020 or memory.

Description: Discusses the purpose of the instruction and any other
general information related to it.

Algorithm: lllustrates the operations performed in a multicycle, complex
instruction. The shaded portion represents steps that are executed for
double-precision instructions only.

Internal Instruction Opcodes

Temporary Storage: Lists registers that are used in complex instructions.
Any value storedinthese registers priorto instruction execution will be lost.

Outputs: Lists the registers that contain the result(s) of the complex
instruction.

Instruction Type: Shows the type of TMS34020 coprocessor instruction.
The TMS34020 has several general-purpose coprocessor instructions
that are used to create the specific TMS34082 instructions.

Examples: lllustrates the correct syntax for a specific instruction and
describes the effects of the instruction on memory and registers using
various sets of data.

Not all topics are included for each instruction set. Each set contains at least
the Syntax, Execution or Algorithm, both Instruction Words, and the
Description sections.

7-18 Internal Instructions

Abort Coprocessor Operation ABORT

Syntax

Execution

’34020
Instruction Words

Instruction to ‘34082

Description

Instruction Type

ABORT

Halts TMS34082

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1t |1 [oj1]1folofoflo]o]H 11o]o
ID o JofojojtfJo[1]1]JofJo]Jofo]o

3129 0

||D]o 0001 0110 0000 0001 1110 0000 oooo]

This instruction will cancel all activity within the TMS34082, returning the FPU
1o aninactive state. Any time this instruction is present on a coprocessor cycle
with a valid coprocessor ID, the addressed TMS34082 will ABORT all internal
processing activity immediately. Block moves will be aborted before
completion of the last move.

CEXEC, short

7-19

ABSX Absolute Value

Syntax

Execution

734020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-20

Type

Integer
Double-Precision
Single-Precision

Syntax

ABS CRs, CRd
ABSD CRs, CRd
ABSF CRs, CRd

|CRs| — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1]1]ol1]1[ofjofofofo 1] 1] 1 [type|size

ID CRs oo |1]o CRd

31 29 28 2524 21 20 16 15 0
[D | crs | o010 [crRd |o001 111t s000 0000 |
CRs TMS34082 RA source register containing the operand
CRd TMS34082 destination register

ABSx takes the absolute value of the contents of CRs and stores the result in
CRd.

The source register, CRs, must be in the RA register file.
CEXEC, short
ABS RA6, RB7

This example takes the absolute value of the integer contents of RA6 and
stores the integer result in RB7.

Internal Instructions

Load and Absolute Value ABSX

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

Tvpe

Integer
Double-Precision
Single-Precision

RS1 — CRs
|CRs| — CRd

Syntax

ABS Rsy, CRs, CRd
ABSD Rs;, Rsp, CRs, CRd
ABSF Rs;, CRs, CRd

Integer or Single-Precision:

15 14 13 12 11 10 9 8 7 B 5 4 3 2 1 0
cjlofojJojo {1 |{1iolo]o]1 Rsq
of1 o1 1 {11 fweflo]oJofo]o]Jo]Jo]o
ID CRs o{o]1}o CRd
Double-Precision:
15 14 13 12 11 10 9 8 7 BH 5 4 3 2 1 0
cjoflofloto |1t |t1|ojo]1]|]o]R Rs1
o1 |lof|1 {11 |11]1]o]olRr Rs
ID CRs ofo]1]o CRd
31 29 28 25 24 21 20 16 15 0
| o | crRs | 0010 | ©Rd JO0101 111t s000 0000 |
Rs4 TMS34020 source register for the integer or single-precision operand
to the TMS34082 (or half of the 64-bit value for double-precision
operands)
Rso TMS34020 source register for the remaining half of the 64-bit
double-precision floating-point value to TMS34082.
CRs TMS34082 RA register to contain the 32-bit integer operand
CRd TMS34082 destination register

ABSx loads the contents of Rs¢ (and Rso for double-precision values) into
CRs, takes the absolute value of the contents of CRs, and stores the result in
CRd.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVGC, one or two registers
ABSF A5,

RA6, RB7

This example loads the single-precision contents of TMS34020 register A5 into

TMS34082 register RA6, takes the absolute value ofthe contents of RA6, and
stores the single-precision result in RB7.

7-21

ABSX Load from Memory (Postincrement) and Absolute Value

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-22

Type Syntax

Integer ABS +As+, CRs, CRd
Double-Precision ABSD «Rs+, CRs, CRd
Single-Precision ABSF «Rs+, CRs, CRd
*Rs — CRs

Rs + 32 - Rs

|CRs| — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofofojofJo|l1]1]of1]o]o]o}|o]o |tanshers
0 1 1 1 1 |type |size | O 0 Rs
D CRs o|o{1]o CRd
31 29 28 25 24 21 20 16 15 0
| ID | CRs | 0010 | CRd |1oo1 111t s000 0000

Rs TMS34020 register containing the memory address
CRs TMS34082 RA register to contain the operand
CRd TMS34082 destination register

ABSXx loads the contents of memory pointed to by Rs into CRs, takes the
absolute value of the contents of CRs, and stores the result in CRd. After each
load from memory, Rs is incremented by 32.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVMC, postincrement, constant count
ABSD *A5+, RA6, RB7

This example loads the double-precision floating-point contents of memory at
the address given by TMS34020 register A5 into TMS34082 register RAS,
takes the absolute value of the contents of RAB, and stores the resultin RB7.

Internal Instructions

Load from Memory (Predecrement) and Absolute Value ABSX

Syntax

Execution

‘34020
Instruction Words

Instruction to ‘34082

Operands

Description

Instruction Type

Example

Syntax

ABS —+Rs, CRs, CRd
ABSD —:Rs, CRs, CRd
ABSF - sRs, CRs, CRd

Tvpe

Integer
Double-Precision
Single-Precision

Rs—-32 — Rs
«Rs — CRs

3

|CRs| — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olof{ofolt1]ofofo o o]1]o]o]o |tanstrs
0 1 1 1 1 Jtype |size | O 0 R Rs
D CRs oo 110 CRd
31 29 28 25 24 21 20 16 15 0
] D [CRs | 0010 [CRd |1oo1 111t s000 ooooJ

Rs TMS34020 register containing the memory address
CRs TMS34082 RA register to contain the operand

CRd TMS34082 destination register

ABSx loads the contents of memory pointed to by Rs into CRs, takes the
absolute value of the contents of CRs, and stores the result in CRd. Before
each load from memory, Rs is decremented by 32.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVMC, predecrement, constant count
ABS —*A5, RA6, RB7

This example loads the integer contents of memory at the address given by
TMS34020 register A5 minus 32 into TMS34082 register RAS, takes the
absolute value of the contents of RA6, and stores the integer result in RB7.

7-23

ADDXx Add

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-24

Syntax

ADD CRsy, CRsz, CRd
ADDD CRsy, CARs,, CRd
ADDF CRS1, CRSQ, CRd

Type
Integer
Double-Precision
Single-Precision

CRsy + CRs,; — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
t]1]Jo]1]1[o]oJojoJo]o]o]o/[o[tye]sie

ID CRs4 CRsp CRd

31 29 28 25 24 21 20 16 15 0
[o [CRs1q | CRs; | CRd |oooo 000t s000 0000 |
CRsy TMS34082 register containing the first operand

CRso TMS34082 register containing the second operand

CRd TMS34082 destination register

ADDx adds the contents of CRsy and CRs» and stores the result in CRd.
The two source registers, CRs4 and CRs», must be in opposite register files.
CEXEC, short

ADDD RAS5, RB6, RB7

This example adds the double-precision floating-point contents of RA5 and
RB6 and stores the result in RB7.

Internal Instructions

Load and Add ADDX

Syntax Tvpe Syntax
Integer ADD Rs;, Rss, CRs;, CRsp, CRd
Single-Precision ADDF Rs;, Rs>, CRs;, CRs,, CRd
Execution Rsy — CRs;
Rss — CRs,
CRsy + CRsy, — CRd
’34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words olololo ol 1 0 o | 1 R Rs1
0fo]oftyelO O |O|R Rso
ID CRs1{ CRso CRd
Instruction to ’34082 31 29 28 25 24 2120 16 15 0
r ID] CRs4 | CRsp | CRd [o100 o000t 0000 0000—]
Operands Rs1 TMS34020 source register for the first value to TMS34082

Rso TMS34020 source register for the second value to TMS34082
CRsy TMS34082 register to contain the first operand
CRs» TMS34082 register to contain the second operand

CRd TMS34082 destination register

Description ADDx loads the contents of Rsq and Rs» into CRs¢ and CRs» respectively,
adds the contents of CRsy and CRso, and stores the result in CRd.

The two TMS34082 source registers, CRs{ and CRso, must be in opposite
register files.

The double-precision floating-point form of this instruction is not supported.
Instruction Type CMOVGC, two registers
Example ADDF A5, A6, RA5, RB6, RB7

This example loads TMS34020 registers A5 and A6 into TMS34082 registers
RAS5 and RB6 respectively, adds the single-precision floating-point values from
RA5 and RB6, and stores the result in RA7.

ADDX Load from Memory (Postincrement) and Add

Syntax

Execution

'34020
Instruction Words

Instruction to ‘34082

Operands

Description

" Instruction Type

Example

7-26

Type Syntax

Integer ADD +Rs+, CRs;, CRs,, CRd
Double-Precision ADDD «Rs+, CRsy, CRsp, CRd
Single-Precision ADDF «Rs+, CRs;, CRs,, CRd
*Rs — CRs;

Rs +32 —- Rs

*Rs — CRs,
Rs + 32 — Rs

CRS1 + CRSQ — CRd

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 1 0 0 0 0 transfers
1]0{0]0oj0}|0 |0 |tye|size|]O | O |R Rs
ID CRs CRs» CRd
31 29 28 25 24 21 20 16 15 0
| D | CRsy | CRs, | CRd [1000 000t s000 0000

Rs TMS34020 register containing the memory address
CRsy TMS34082 register to contain the first operand
CRsp, TMS34082 register to contain the second operand

CRd TMS34082 destination register

ADDx loads the contents of memory pointed to by Rs into CRsy and CRs,
adds the contents of CRs4 and CRs, and stores the result in CRd. After each
load from memory, Rs is incremented by 32.

The two TMS34082 source registers, CRs¢ and CRs», must be in opposite
register files.

CMOVMC, postincrement, constant count
ADD *A5+, RA5, RB6, RB7

This example loads memory starting at the address given by TMS34020
register A5 into TMS34082 registers RA5 and RB6, adds the integer values
from RAS and RB6, and stores the resuit in RB7.

Internal Instructions

Load from Memory (Predecrement) and Add

ADDx

Syntax

Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type Syntax
Integer ADD —xRs, CRs;, CRs,, CRd

Double-Precision
Single-Precision

ADDD -xRs, CRs;, CRsp, CRd
ADDF —«Rs, CRsy, CRs,, CRd

Rs-32 - Rs
*Rs — CRS1

i
Rs 32 - Rs
+Rs — CRs»,

CRS1 + CR32 — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o{ofojJol1]ofjofo]olo |1]o]o] tansfes
0 0 0 0 0 0 |[type |size | O 0 R Rs
ID CRs1 CRsp CRd
31 29 28 25 24 21 20 16 15 0
| 1D | CRs; | CRs; [CRd] 1000 000t s000 oooo]

Rs TMS34020 register containing the memory address

CRsqy TMS34082 register to contain the first operand
CRs, TMS34082 register to contain the second operand
CRd TMS34082 destination register

ADDx loads the contents of memory pointed to by Rs into CRs4 and CRs5, add
the contents of CRs4 and CRs», and stores the resultin CRd. Before each load
from memory, Rs is decremented by 32.

The two TMS34082 source registers, CRsy and CRsa, must be in opposite
register files.

CMOVMC, predecrement, constant count

ADD —-*A5, RA5, RB6, RB7

This example loads memory starting at the address given by TMS34020
register A5 minus 32 into TMS34082 registers RA5 and RB6, adds the integer
contents of RA5 and RB6, and stores the result in RB7.

7-27

ADDAX

Absolute Value of Sum

Syntax

Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-28

Type

Double-Precision
Single-Precision

ICRS1 + CR32I — CRd

Syntax
ADDAD CRs;, CRs,, CRd
ADDAF CRsy, CRsp CRd

15 14 13 12 11 10 ¢ 8 7 6 5 4 3 2 1 0
1|1|o1|1|0|o o|o|o|o1|o|o|1]s
iD CRs{ CRso CRd
31 29 28 25 24 2120 16 15 0
[© [CRsq | CRsy f CRd |oooo 1001 s000 oooo]
CRsy TMS34082 register containing the first operand

CRso TMS34082 register containing the second operand

CRd TMS34082 destination register

ADDAXx takes the absolute value ofthe sum of CRs{ and CRs,, and places the
result in CRd.

CRsy and CRso, the two TMS34082 source registers, must be in opposite
register files.

The integer form of this instruction is not supported.
CEXEC, short
ADDAF RA3, RB9, RAl

This example adds the single-precision floating-point contents of RA3 and
RB9, takes the absolute value, and stores the result in RA1.

Internal Instructions

Load and Absolute Value of Sum, Single-Precision ADDAF

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

ADDAF RSj, RSZ, CRS;, CRS2, CRd

Rsy — CRs;4
Rso, — CRs,
|CRs4 + CRs,| — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cfofjojJo |1 [1]o]Jof1]olR Rs4
1]lofof{1]|ofo|[1t]ofo]|o][R Rsy
ID CRs1 CRsa CRd

31 29 28 25 24 21 20 16 15 0

| D fcaa | CRs, | CRd iomo 1001 0000 0000 |

Rsq TMS34020 source register for first 32-bit single-precision floating-
point value to TMS34082

Rso TMS34020 source register for second 32-bit single-precision
floating-point value to TMS34082

CRsy TMS34082 register to contain the first single-precision operand
CRsy> TMS34082 register to contain the second single-precision operand

CRd TMS34082 destination register

ADDAF loads the contents or Rs4 and Rsp into CRs¢ and CRs» respectively,
takes the absolute value of the sum of CRs1 and CRso, and stores the result
in CRd.

CRs1 and CRso, the two TMS34082 source registers, must be in opposite
register files.

The integer and double-precision floating-point forms of this instruction are not
supported.

CMOVGC, two registers
ADDAF A5, A9, RA7, RB9, RBO

This example loads the contents of TMS34020 registers A5 and A9 into
TMS34082 registers RA7 and RB9 respectively, adds the contents of RA7 and
RB9, takes the absolute value, and stores the resultin RBO.

7-29

ADDAX Load from Memory (Postincrement) and Absolute Value of Sum

Syntax

Execution

’34020
Instruction Words

Instruction to ‘34082

Operands

Description

Instruction Type

Example

7-30

Syntax
ADDAD «Rs+, CRs;, CRs,, CRd
ADDAF +Rs+, CRs;, CRs,, CRd

Type
Double-Precision
Single-Precision

+Rs — CRs;
Rs + 32 — Rs
]

+*Rs — CRs;,
Rs +32 —Rs
R
|CRs4 + CRs,| — CRd

15 14 13 12 11 10 9 8. 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 1 0 0 0 transfers
11ofojo|1|o|o |1]|sizefo]|0]|R Rs
ID CRsy CRso CRd
3129 28 25 24 21 20 16 15 0
| D | CRs [CRs» | CRd [1000 1001 s000 0000

Rs TMS34020 register containing the memory address

CRsy TMS34082 register to contain the first operand
CRsp, TMS34082 register to contain the second operand
CRd TMS34082 destination register

ADDAX loads the contents of memory pointed to by Rs into CRs¢ and CRso,
adds the contents of CRsq and CRso, takes the absolute value, and stores the
result in CRd. After each load from memory, Rs is incremented by 32.

CRs4 and CRsy, the two TMS34082 source registers, must be in opposite
register files.

The integer form of this operation is not supported.
CMOVMC, postincrement, constant count
ADDAD *A5+, RA7, RB9, RBO

This example loads memory starting at the address given by TMS34020
register A5 into TMS34082 registers RA7 and RB9, adds the double-precision
contents of RA7 and RB9, takes the absolute value, and stores the result in
RBO.

Internal Instructions

Load from Memory (Predecrement) and Absolute Value of Sum ADDAX

Syntax

Execution

34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

Syntax
ADDAD -«Rs, CRSj, CRSQ, CRd
ADDAF —+Rs, CRs;, CRs,, CRd

Type
Double-Precision
Single-Precision

Rs - 32 — Rs
+Rs — CRs;

Rs-32 —Rs
*Rs — CRs,

ICRS1 + CRSZI — CRd

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 0 0 0 transfers
0 0 1 0 0 1 |size| O 0 R Rs
ID CRsq CRso CRd
31 29 28 25 24 21 20 16 15 0
on | CRsq [CRsy] CRd | 1000 1001 s000 0000

Rs TMS34020 register containing the memory address

CRsy TMS34082 register to contain the first operand
CRs, TMS34082 register to contain the second operand
CRd TMS34082 destination register

ADDAX loads the contents of memory pointed to by Rs into CRs¢ and CRsp,
adds the contents of CRs1 and CRs,, takes the absolute value, and stores the
result in CRd. Before each load from memory, Rs is decremented by 32.

CRsq and CRsy, the two TMS34082 source registers, must be in opposite
register files.

The integer form of this instruction is not supported.

CMOVMC, predecrement, constant count

ADDAD —*A5, RA7, RB9, RBO

This example loads memory starting at the address given by TMS34020
register A5 minus 32 into TMS34082 registers RA7 and RB9, adds the
double-precision floating-point contents of RA7 and RB9, takes the absolute
value, and stores the result in RBO.

7-31

ASUBAX Subtract Absolute Values

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-32

Syntax
ASUBAD CRs;, CRs,, CRd
ASUBAF CRs,;, CRs,, CRd

Type
Double-Precision
Single-Precision

ICRS1| - ICRSzI — CRd

7 6 5
1

15 14 13 12 11 10 9 8 4
1|1|o1|1]o|o o|o]o| o|1] |1lsize
ID CRst CRsp CRd
31 29 28 25 24 21 20 16 15 0
| 1D | CRs | CRsy | CRd]ooo1 0111 s000 oooo]
CRsy TMS34082register containing the first operand. Must be from RA reg-
ister file.
CRsp TMS34082 register containing the second operand. Must be from RB

register file.
CRd TMS34082 destination register.

ASUBADX subtracts the absolute value of CRs, from the absolute value of
CRs1, placing the result in CRd.

The integer form of this instruction is not supported.
CEXEC, short
ASUBAF RA7, RB2, C

This example subtracts the absolute value of the single-precision contents of
RB2 from the absolute value of the single-precision contents of RA7 and stores
the result in the C register.

Internal Instructions

Load and Subtract Absolute Values of Floating-Point, Single-Precision ASUBAF

Syntax

Execution

34020
Instruction Words

Instruction to ‘34082

Operands

Description

Instruction Type

Example

ASUBAF RS], RSz, CRS-], CHSQ, CRd

Rsy — CRs;
RS2 d CRSz
|CRs4]| — |CRs,| — CRd

oloJofJo]t [1 ool R Rs
tlo]1 o111 [o]lo]o]R Rs,
ID CRs1 CRs> CRd
31 29 28 25 24 21 20 16 15 0
[© | ©Rsy [CRsp | crRd Joto1 o111 0000 0000 |

Rs4 TMS34020 source register for first 32-bit single-precision
floating-point operand

Rsp TMS34020 source register for second 32-bit single-precision
floating-point operand

CRsqy TMS34082 register to contain the first single-precision operand.
Must be from RA register file

CRs, TMS34082 register to contain the second single-precision
operand. Must be from RB register file

CRd TMS34082 destination register

ASUBAF loads the contents of Rs4 and Rsp into CRs{ and CRsy, respectively,
and subtracts the absolute value in CRs, from the absolute value in CRsq,
placing the result in CRd.

The integer and double-precision forms of this instruction are not supported.
CMOVGC, two registers
ASUBAF A3, A2, RA5, RB3, RBl

This example loads the contents of TMS34020 registers A3 and A2 into RA5
and RB3 respectively, subtracts the absolute value of the contents of RB3 from
the absolute value of RA5, and stores the result in RB1.

ASUBAX Load from Memory (Postincrement) and Subtract Absolute Values

Syntax

Execution

‘34020
Instruction Words

Instruction to ‘34082

Operands

Description

Instruction Type

Example

7-34

Syntax
ASUBAD +As+, CRs;, CRs,, CRd
ASUBAF +Rs+, CRs;, CRs,, CRd

Type
Double-Precision
Single-Precision

*Rs — CRS1
Rs + 32 — Rs

+Rs — CRs,
Rs + 32 — Rs

ICRs; | — |CRs,| - CRd

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

olojojlolo|1]|1]o]|1|o|o]|o}]o transfers
1t lofof1 o |1]|1]|1]|size]o]|0]|R Rs
D CRs{ CRs» CRd
31 29 28 25 24 2120 16 15 0
| D | CRsy | CRs, | CRd [1001 0111 s000 0000 |

Rs TMS34020 register containing the memory address

CRsy TMS34082 register to contain the first operand. Must be from RA
register file.
CRs, TMS34082 register to contain the second operand. Must be from RB

register file.
CRd TMS34082 destination register

ASUBAX loads the contents of memory pointed to by Rs into CRs{ and CRs»
and subtracts the absolute value in CRso from the absolute value in CRs,
placing the result in CRd. After each load from memory, Rs is incremented by
32.

The integer form of this instruction is not supported.

CMOVMC, postincrement, constant count

ASUBAD *A3+, RA7, RB3, RBl

This example loads memory starting at the address given by TMS34020
register A3 into TMS34082 registers RA7 and RB3, subtracts the absolute

value of the contents of RB3 from the absolute value of RA7, and stores the
result in RB1.

Internal Instructions

Load from Memory (Predecrement) and Subtract Absolute Values ASUBAX

Syntax

Execution

34020
Instruction Words

Instruction to ‘34082

Operands

Description

Instruction Type

Example

Syntax
ASUBAD —«Rs, CRs;, CRs,, CRd
ASUBAF - «Rs, CRsy, CRs,, CRd

Type
Double-Precision
Single-Precision

Rs-32 — Rs
*Rs — CRs;

Rs —-32 — Rs
+Rs — CRs,

g ¢

|CRS1| - ICRSQI — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 1 0 0 transfers

0 1 0 1 1 1 |size| O 0 R Rs
ID CRs{ CRsp CRd
31 29 28 25 24 21 20 16 15 0
[ID | CRs4 | CRsp] CRd | 1001 0111 s000 0000 |

Rs TMS34020 register containing the memory address

CRsq TMS34082 register to contain the first operand. Must be from RA

register file.

CRs> TMS34082 register to contain the second operand. Must be from RB
register file.

CRd TMS34082 destination register

ASUBAX loads the contents of memory pointed to by Rs into CRs{ and CRso
and subtracts the absolute value in CRsy from the absolute value in CRsq,
placing the result in CRd. Before each load from memory, Rs is decremented
by 32.

The integer form of this instruction is not supported.
CMOVMC, predecrement, constant count
ASUBAF —*A3, RA7, RB3, RBl

This example loads memory starting at the address given by TMS34020
register A3 minus 32 into TMS34082 registers RA7 and RB3, subtracts the
absolute values of the contents of RB3 and RB7, and stores the resultin RB1.

7-35

BACKFX Backface Test

Syntax

34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

7-36

Type Syntax
Integer BACKF
Double-Precision BACKFD
Single-Precision BACKFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1|1|o11oooo1oo10typesize

ID ojlofloflo]lo]olojo]lo]o]o] o 0
31 29 0
| D | 0 0000 0000 0000 0010 010t s0GO 0000 l

A convex polygon is tested to determine whether it is facing the current view
area orifitis facing away fromthe currentview area. This allows the elimination
of polygons that do not need to be drawn in the current image. The first three
vertices of the polygon are entered and tested as to rotation direction. If the
direction is clockwise (forward facing), the polygon is visible; if the direction is
counterclockwise (backward facing), then the polygon is invisible. This
instruction also detects the case where the plane defined by the three points
passes through the viewing point (position) ofthe eye. In this case, the polygon
may be drawn as a line or ignored. The algorithm assumes that all of the
vertices of the polygon lie on the plane defined by the first three vertices.

RAQ = X0, RA1 =Y0, RA2 = 20, RA3 = W0
RA4 = X1, RAS =Y1, RA6 = 21, RA7 = W1
RBO = X2, RB1 =Y2, RB2 =72, RB3 = W2

where Xn,Yn,Zn,Wn are the coordinates of vertex Vn, already stored in the
COprocessor registers.

C =RB1 x RAS3 ;Y2 x WO

C=C-(RA1x RB3) 1 (Y2 x WO} — (YO x W2)

RB8 = C x RA4 s (Y2 x WO) - (YO x W2)) x X1
C =RA0 x RB3 ; X0 x W2

C=C - (RB0Ox RA3) ; (X0 x W2) - (X2 - W0)

RB9 = C x RAS ; (X0 x W2) — (X2 x W0)) x Y1
C =RB0 x RA1 1 X2x YO

C=C - (RAO x RB1) ; (X2 x YO) = (Y2 x YO)

RA8 = C x RA7 (X2 x Y0) ~ (Y2 x X0)) x W1

RAS8 = RA8 + RB9 (X2 x Y0) = (Y2 x X0)) x W1
© 4 ((XOx W2)— (X2 x WO)) x Y1
: (Y2 x WO0) = (YO x W2)) x X1
© + (X0 x W2) — (X2 x WO)) x Y1

; +((X2x Y0) - (Y2 x X0)) x W1

RA8 = RA8 + RB8

if RAB<Othen N =1 ; set N as appropriate
elseN=0

if RAB=0thenZ =1 ; set Z as appropriate
elseZ=0

Internal Instructions

Backface Test BACKFX

Temporary Storage C, CT, RA8, RB8, RB9
Oulputs The N and V status bits are set to indicate the following:

0 i
Polygon is forward facing

Polygon is paraliel to view (reject or draw as line)
Polygon is backward facing

Polygon is backward facing

—I-LOO'Z
_AO_LON

Instruction Type CEXEC, short

7-37

CHECK Check Coprocessor Status

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-38

CHECK Rd

If coprocessor is busy
FFFF FFFFh — Rd

If coprocessor is idle
0000 0000h — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 1 0 0 1 1 R Rd
1 1 1 0 0 0 0 0 0 0 o
1D 0 0 0 0 1 1 0 1 0 0 0
31 29 0

||D|o 0001 1010 0000 0001 1110 0000 ooool

Rd TMS34020 destination register for status information

CHECK checks the status of the coprocessor. If the TMS34082 coprocessor
is busy, CHECK sets all the bits in Rd to 1. If the TMS34082 coprocessor is idle,
CHECK sets all the bits in Rd to 0.

This instruction allows polling of the TMS34082 prior to sending subsequent
instructions to avoid halting the TMS34020 if the FPU is not ready to accept
new commands. This polling may be required for user-defined instruction
sequences that utilize the external program and data memory of the
TMS34082.

CMOVGC, one register
CHECK A4

If the TMS34082 coprocessor is busy, this example sets all the bits in register
A4 to 1. If the TMs34082 coprocessor is idle, this example resets all the bits
in register A4 to 0.

Internal Instructions

Check Vertex CKVTXX

Syntax

34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Type Syntax
Integer CKVTX
Double-Precision CKVTXD
Single-Precision CKVTXF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 A 0
1 l1 |o 1 ofofolo |1]|]1]0] 1] o0 |type]size
ID ofofofo ojJo]Jojo|o] oo

31 29 0
[ID | 6 0000 0000 0000 0011 010t s000 0000 |

The CKVTXx instruction is used to compare polygon vertices to the viewing
volume in a perspective display. It may be used with a list of vertices describing
a polygon to determine if the entire polygon is totally within, totally outside, or
partially within the clipping volume. The TMS34082 must be initialized with the
CKVTXIx instruction before the first iteration. The vertices must be specified
using homogeneous coordinates.

RAO = Xn
RA1=Yn
RA2 =Zn
RA3 =Wn

RB9 = RA3

If (RB9 — |RAQ|) <O
set XLT

else
reset XGT

If (RB9 — |RA1|) <0
set YLT

else
reset YGT

if (RB9 — |[RA2|) <0
set ZLT

else
reset ZGT

;vertex Vn [Xn, Yn, Zn, Wn] to check,
; these are homogeneous coordinates

; copy RAS3 to RB9
; X OR outcode, status bit 5

; X AND outcode, status bit 6

;'Y OR outcode, status bit 7

; Y AND outcode, status bit 8

; Z OR outcode, status bit 9

; Z AND outcode, status bit 10

If (XGT OR YGT OR ZGT) = 1)

set V bit
else
reset V bit

If (XLT OR YLT OR ZLT) = 0)

set Z bit
else
reset Z bit

; if AND outcode = 1, then outside

; all AND outcodes = 0, partially visible

; if OR outcode = 0, then inside

; all OR outcodes = 1, not entirely inside

7-39

CKVTXX Check Vertex

Temporary Storage

Outputs

Instruction Type

Example

7-40

You may now reload vertex V(n+1) and repeat the instruction for all vertices
in a polygon.

C, RB9

The status is set (ZGT, ZLT, YGT, YLT, XGT, and XLT) according to position.
V=1 Vertex out
Z=1 \Vertexin

If repeated for all vertices in a polygon then:

Vv 2 Description

0 0 The polygon crosses the boundary of the clipping volume
0 1 The polygon is totally inside the clipping volume
1
1

0 The polygon is totally outside the clipping volume
1 Not valid

The boundaries of the clipping volume that are crossed by the polygon may be
determined by the ZLT (Z-plane), YLT (Y-plane), and XLT (X-plane) bits.

CEXEC, short

CKVTXI
MOVF *A5+, RAO, 4
CKVTXF

This example first initializes the TMS34082 by executing the check vertex
initialize instruction. Then the four homogeneous coordinates of the vertex are
loaded, starting at the address given in TMS34020 register A5. Finally the
status register is set according to the results of the check.

Internal Instructions

Check Vertex, Initialize CKVTXI

Syntax

34020
Instruction Words

Instruction to 34082

Description

Algorithm

Instruction Type

CKVTXI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 | 1 1 ol1|1]olo]olo}lofj1}]1]1]11fo
ID

0 0 0 0 1 1 0 0 0 0 0

31 29 0
|ID| 0 0001 1000 0000 0001 1100 0000 OOOOJ

The CKVTXI instruction is used to initialize several bits in the status register
before the first Check Vertex (CKVTX) instruction.

reset XLT ;set starting X OR outcode to 0
reset YLT ;set starting Y OR outcode to 0
reset ZLT ;set starting Z OR outcode to 0
set XGT ;set starting X AND outcode to 1
set YGT ;set starting Y AND outcode to 1
set ZGT ;set starting Z AND outcode to 1
CEXEC, short

7-41

CLIPCFx cilip Color, Forward

Syntax

’34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-42

Type Syntax
Integer CLIPCF
Double-Precision CLIPCFD
Single-Precision CLIPCFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1|1|o11oooo1o111typesize

D o|lo|lo}loflo]o|loJoJoJolo] o 0
31 29 0
IID | 0 0000 06000 0000 0010 111t s000 0000 |

The CLIPCFx instruction clips a color value of the first vertex of a Gouraud
shaded line after the first vertex has been clipped to the viewing volume using
the CLIPFxinstruction. The clipped color value represents the color value (red,
green, blue) for the endpoint of the line when the line is perspective-projected
to the viewing surface. The interpolation factor (t) from the CLIPFx instruction
is modified to take into account the color distortion caused by perspective
transformation.

RA3 = W1’ (intensity)
RA4 = R1 (red)

RAS = B1 (blue) RB5 = B2 (blue)
RAB = G1(green) RB6 = G2 (green)
C =t (interpolation factor) from CLIPFx instruction

RB3 = W2
RB4 = R2 (red)

C =Cx RB3 (tx W2

RB9 = RA3

RA8 = RB4 — RA4 ; R2 — R1

C =C/RB9 P=tx W2/W?

RA9 = RB5 - RA5 ; B2 - B1

CT =RA8x C :(R2=R1) x
RA4 = CT + RA4 :R1’=R1+ (R2~R1)x 1’
CT =RA9x C (B2 -B1) x t

RA5 = CT + RAS ;B1’=B1+(B2-B1)x t
RA8 = RB6 — RA6 ; G2 - G1

CT =RA8x C (G2-Gl)x t

RA6 =RA6 +CT GV =G1+(G2-G1)x t
CT, RA8, RA9

RA4 = R1’ (red)
RAS = B1’ (blue)
RA6 = G1’ (green)
CT =t

CEXEGC, short

Internal Instructions

Clip Color, Reverse CLIPCRX

Syntax

34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

Tvpe Syntax
Integer CLIPCR
Double-Precision CLIPCRD
Single-Precision CLIPCRF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 {1 0
1|1]011oooo11100typesize

D 0ojojoj01]10]oO0 00} o0 oo 0 0

31 29 0
iIDlO 0000 0000 0000 0011 100t s000 oooo|

The CLIPCRXx instruction clips a color value of the second vertex of a Gouraud
shaded line after the second vertex has been clipped to the viewing volume
using the CLIPRx instruction. The clipped color value represents the color
value (red, green, blue) for the endpoint of the line when the line is
perspective-projected to the viewing surface. The interpolation factor (1)
distortion caused by perspective transformation.

RA3 = W2’ (intensity) RB4 = R2 (red)

RA4 = R1 (red) RB5 = B2 (blue)
RA5 = B1 (blue) RB6 = G2 (green)
RA6 = G1(green) RB7 = W1 (intensity)
C =t (interpolation factor) from CLIPRXx instruction

C =CxRB7 ; X W1

RB9Y = RA3 ;

RA8 = RA4 - RB4 ; R1- R2

C =C/RB9 P=tx W1 /W2

RA9 = RA5 - RB5 ;B1-B2

CT =RA8xC ;(R1-R2)x t

RA4 = CT + RB4 ;R2’=R2+ (R1-R2) x t’
CT =RA9xC ;(B1-B2)xt

RA5 = CT + RB5 ;B2=B2+ (B1-B2) xt
RA8 = RA6 — RB6 ;G1-G2

CT =RA8xC ;1 (G1-G2) x ¥

RA6 = RA6 + CT 1G2=06G2+(G1-G2) xt

CT, RA8, RA9, RB9

RA4 = R2’ (red)
RAS5 = B2’ (blue)
RA6 = G2’ (green)
CT =t

CEXEC, short

7-43

CLIPFXX Clip a Line to the X Plane, Forward

Syntax

34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

7-44

Type Syntax
Integer CLIPFX
Double-Precision CLIPFXD
Singie-Precision CLIPFXF

15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0
1|1|o11oooo101o1typesize

ID ojojo0ojojojofjoygo 0oj0}oO 0 0

31 29 0
||D|o 0000 0000 0000 0010 101t s000 oooo]

The CLIPFXx Instruction clips a line to the viewing volume when its first
endpoint is outside the clipping (viewable) volume. Use CLIPFXx only if the X
coordinate of the first endpoint of a line is outside of the viewing volume. it also
provides an interpolation factor that is used by the CLIPCx instruction when
performing Gouraud shading. The endpoints are described by the
homogeneous coordinates P1 =[X1, Y1, Z1, W1] and P2 = [X2, Y2, 22, W2].

RAO = X1 RBO = X2
RA1 =Y1 RB1=Y2
RA2 = Z1 RB2 =72
RA3 = W1 RB3 =W2
C =RA0
CT =RBO
If RAO < 0 then set (N=1)
IfN =1 then
RB8 =RB3 + CT’ ib=W2+ X2
RA8 =RA3+C ;a=W1+X1
else
RB8 = RB3-CT ib=W2-X2
RA8 = RA3 - C ;a=W1-X1
RB9 = RB0 — RAO ; X2 - X1
RB8 = RA8 — RB8 ;a-b
RA9 = RB1 — RA1 ;Y2 -Y1
C =RA8/RBS8 ;t=al/(a-b)
RA8 = RB2 — RA2 ;22 ~ 71
CT =RB9xC ; (X2 -X1) xt
RAO = CT + RAO XV =X1+(X2-X1)xt
CT =RA9%xC ; (Y2 -Y1) xt
RA1 =CT + RA1 ;YU =Y1+(Y2-Y1) xt
RA9 = RB3 — RA3 ; W2 — W1
CT =RA8xC (22 -Z1) x t
RA2 = CT + RA2 21 =21+ (22 -21) x t
CT =RA9xC ; (W2 -W1) xt
RA3 = CT + RA3 ;W1 =W1 + (W2 -W1) xt

Internal Instructions

Clip a Line to the X Plane, Forward CLIPFXx

Temporary Storage
Outputs

Instruction Type

CT, RA8, RA9, RB8, RB9

RAQ = X1’
RA1=Y7T
RA2 =Z71
RA3 = W7’
C=t

CEXEGC, short

7-45

CLIPFYX Clip a Line to the Y Plane, Forward

Syntax

34020
Instruction Words

Instruction to ‘34082

Description

Implied Operands

Algorithm

7-46

Tvpe Syntax

Integer CLIPFY

Double-Precision CLIPFYD

Single-Precision CLIPFYF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1|1|o1100001o1o1typesize
D ofojJojo[ojoflo]Jo}lo]oflo] o] 1

31 29 0

IID I 0 0000 0000 0001 0010 101t s000 0000 l

The CLIPFYx Instruction clips a line to the viewing volume when its first
endpoint is outside the clipping (viewable) volume. Use CLIPFYx only if the Y
coordinate of the first endpoint of a line is outside ofthe viewing volume. It also
provides an interpolation factor that is used by the CLIPCx instruction when
performing Gouraud shading. The endpoints are described by the
homogeneous coordinates P1 =[X1,Y1, Z1, W1l and P2 = [X2, Y2, Z2, W2].

RAO = X1 RBO = X2
RA1 =Y1 RB1=Y2
RA2 =71 RB2 =272
RA3 = W1 RB3 =W2
C =RA1
CT = RB1
1f RA1 < 0 then set (N=1)
IfN =1 then
RB8 = RB3 + CT ;b=W2+Y2
RA8 =RA3 +C ;a=W1+VY1
else
RB8 = RB3 - CT b=W2-Y2
RA8=RA3-C ;a=Wt-Y1
RB9 = RBO — RAO ; X2 = X1
RB8 = RA8 — RB8 ;a—-b
RA9 = RB1 — RA1 1 Y2 -Y1
C =RA8/RBS8 ;t=a/(a-h)
RA8 = RB2 — RA2 122 -71
CT =RB9xC (X2 -X1) xt
RAO = CT + RAO XP=X1+(X2-X1)xt
CT =RA9xC (Y2 -Y1) xt
RA1 =CT + RA1 YU =Y1+(Y2-Y1) xt
RA9 = RB3 — RA3 ; W2 - W1
CT =RA8xC ; (22 -Z1) xt
RA2 = CT + RA2 2V =21+ (Z2-71) xt
CT =RA9xC i (W2 -W1) xt
RA3 = CT + RA3 W =W1 + (W2 -W1) xt

Internal instructions

Clip a Line to the Y Plane, Forward CLIPFYX

Temporary Storage

Oulputs

Instruction Type

CT, RA8,RA9, RB8, RB9

RAO = X1’
RA1=YT
RA2 = Z7’
RA3 = W1’
C=t

CEXEC, short

7-47

CLIPFZX Clip a Line to the Z Plane, Forward

Syntax

34020
Instruction Words

Instruction to 34082

Description

Implied Operands

Algorithm

7-48

Type Syntax
Integer CLIPFZ
Double-Precision CLIPFZD
Single-Precision CLIPFZF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1|1|011000010101typesize

D ofojojojojojoyjoqo 0|0 1 0

31 29 0
||D|o 0000 0000 0010 0010 101t s000 oooo|

The CLIPFZx Instruction clips a line to the viewing volume when its first
endpoint is outside the clipping (viewable) volume. Use CLIPFZx only if the Z
coordinate of the first endpoint of a line is outside of the viewing volume. It also
provides an interpolation factor that is used by the CLIPCx instruction when
performing Gouraud shading. The endpoints are described by the
homogeneous coordinates P1 = [X1, Y1, Z1,W1] and P2 = [X2,Y2, Z2, W2].

RAO0 = X1 RBO = X2
RA1 =Y1 RB1=Y2
RA2 = Z1 RB2 =Z2
RA3 =W1 RB3 = W2
C =RA2
CT=RB2
If RA2 < 0 then set (N=1)
IfN =1 then
RB8 = RB3 +CT b=W2+72
RA8 =RA3 +C ;a=W1+2Z1
else
RB8=RB3-CT b=W2-22
RA8 = RA3-C ;a=W1-21
RB9 = RBO - RAO ; X2 — X1
RB8 = RA8 — RB8 ;a—-b
RA9 = RB1 - RA1 ;Y2 -Y1
C =RA8/RB8 ;t=a/(a-Db)
RA8 = RB2 - RA2 122 - 271
CT =RB9xC ; (X2 - X1) xt
RAO =CT + RAO X1 =X1+(X2-X1)xt
CT =RA9xC (Y2 -Y1) xt
RA1 =CT + RA1 YV =Y1+(Y2-Y1) xt
RA9 = RB3 - RA3 ; W2 - W1
CT =RA8xC (22 - Z1) xt
RA2 = CT + RA2 21V =271+ (22 -21) xt
CT =RA9xC (W2 -W1) xt
RA3 =CT + RA3 ;W1 =W1 + (W2 -W1) xt

Internal Instructions

Clip a Line to the Z Plane, Forward CLIPFZX

Teniporary Storage CT, RA8, RA9, RB8, RB9

Outputs RAO = X1’
RA1 =YY"
RA2 =271
RA3 = W71’
C=t

Instruction Type CEXEC, short

7-49

CLIPRXXx Clip a Line to the X Plane, Reverse

Syntax

’34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

7-50

Tvpe Syntax
Integer CLIPRX
Double-Precision CLIPRXD
Single-Precision CLIPRXF

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
1|1|o11oooo1o1101ypesize

ID ojojojojojojojo 0|0} O 0 0

31 29 , 0
|10|o 0000 0000 0010 0010 110t sOO0O oooo|

The CLIPRXx Instruction clips a line to the viewing volume when its second
endpoint is outside the clipping (viewable) volume. Use CLIPRXx only if the X
coordinate of the second endpoint of a line is outside of the viewing volume.
It also provides an interpolation factor that is used by the CLIPCRx instruction
when performing Gouraud shading. The endpoints are described by the
homogeneous coordinates P1 = [X1, Y1, Z1, W1l and P2 = [X2, Y2, Z2, W2].

RA0 =X1 RBO = X2
RA1=Y1 RB1 =Y2
RA2 =21 RB2 =22
RA3 = W1 RB3 =W2
CT=RBO
C =RA0
If RBO < 0 then set (N=1)
If N =1 then
RB8=RA3 +C ;b=W1-X1
RA8 =RB3 + CT ;a=W2-X2
else
RB8 =RA3 -C ;b=W1+X1
RA8 = RB3 - CT ;a=W2+ X2
RB9 = RAO — RBO ; X1 -X2
RB8 = RA8 — RB8 ;a-b
RA9 = RA1 — RB1 ;Y1-Y2
C =RA8/RB8 ;t=a/(a-b)
RA8 = RA2 — RB2 ;Z21-22
CT =RB9xC ; (X1 =X2) xt
RAO = CT + RBO 1 X2'=X2 + (X1 -X2) xt
CT =RA9xC ;(Y1=-Y2) xt
RA1 =CT + RB1 ;Y2 =Y2+ (Y1-Y2) xt
RA9 = RA3 — RB3 ;W1 -W2
CT =RA8xC ; (21 =22y xt
RA2 =CT + RB2 ;22 =22+ (Z1-2Z2) x t
CT =RA9xC s (W1 -W2) xt
RA3 = CT + RB3 ;W2 =W2 + (W1 -W2) xt

Internal Instructions

Clip a Line to the X Plane, Reverse CLIPRXX

Temporary Storage
Outputs

Instruction Type

CT, RA8, RA9, RBS8, RB9

This writes [X2°,Y2’,22°,W2'] over [X1,Y1,Z1,W1].
RAO = X2’

RA1 =Y2’

RA3 = Z2’

RA4 = W2’

C=t

CEXEC, short

CLIPRYX Clip a Line to the Y Plane, Reverse

Syntax

’34020
Instruction Words

Instruction to 34082

Description

Implied Operands

Algorithm

7-52

Tvpe Syntax
Integer CLIPRY
Double-Precision CLIPRYD
Single-Precision CLIPRYF

15 14 13 12 11 10 98 8
1|1|011000010110typesize

D ojojojojofotojojotfoyo 0 1

~
[]
[¢,]
E-N
(2]
N
—_
o

31 29 0
||D|o 0000 0000 0001 0010 110t s000 oooo]

The CLIPRYXx Instruction clips a line to the viewing volume when its second
endpoint is outside the clipping (viewable) volume. Use CLIPRYx only ifthe Y
coordinate of the second endpoint of a line is outside of the viewing volume.
It also provides an interpolation factor that is used by the CLIPCRx instruction
when performing Gouraud shading. The endpoints are described by
homogeneous coordinates P1 = [X1, Y1, Z1, W1]and P2 = [X2, Y2, Z2, W2].

RAO0=X1 RBO=X2
RA1=Y1 RB1=Y2
RA2=271 RB2=22
RA3=W1 RB3=W2

CT = RB1
C =RA1
l{RB1 <0thenset (N=1)
If N =1 then
RB8 = RA3 +C ;b=W1-Y1
RA8 =RB3 + CT ;a=W2-Y2
else
RB8 =RA3~C ib=W1+Y1
RA8 = RB3 - CT ;a=W2+Y2
RB9 = RAO - RBO s X1 -X2
RB8 = RA8 - RB8 ;a-b
RAS = RA1 - RB1 ;Y1-Y2
C =RA8/RBS8 ;t=al/(a-b)
RA8 = RA2 - RB2 ;21 -72
CT =RB9xC (X1 -X2) xt
RAO0 = CT + RBO ;X2 =X2+ (X1 -X2) xt
CT =RA9xC ; (Y1 =-Y2) xt
RA1 = CT + RB1 ;Y2 =Y2+(Y1-Y2) xt
RA9 = RA3 - RB3 ;W1 -wW2
CT =RA8xC i (21 -22) xt
RA2 = CT + RB2 122 =722+ (Z1-22) xt
CT =RA9xC 7 (W1 -W2) xt
RA3 = CT + RB3 ;W2 =W2 + (W1 -W2) xt

Internal Instructions

Clip a Line to the Y Plane, Reverse GCLIPFYX

Temporary Storage CT, RAS8, RA9, RB8, RB9

Outputs This writes [X2’,Y2’,22’,W2] over [X1,Y1,Z1,W1].
RAO0 = X2’
RA1=Y2
RA3 =22’
RA4 = W2’
C=t

Instruction Type CEXEC, short

CLIPRZX Clip a Line to the Z Plane, Reverse

Syntax

34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

7-54

Type Syntax
Integer CLIPRZ
Double-Precision CLIPRZD
Single-Precision CLIPRZF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 | 1 [o 1t l1]olofjoto|t+]o] 1] 11 o0 |tye]|sie
ID

0ojJ]o0fo0o} O 0 0]J]0}0 0 010 1 0

31 29 0
||D[o 0000 0000 0010 0010 110t s000 oooo]

The CLIPRZx Instruction clips a line to the viewing volume when its second
endpoint is outside the clipping (viewable) volume. Use CLIPRZx only if the Z
coordinate of the second endpoint of a line is outside of the viewing volume.
It also provides an interpolation factor that is used by the CLIPCRx instruction
when performing Gouraud shading. The endpoints are described by the
homogeneous coordinates P1 = [X1,Y1,Z1, W1l and P2 = [X2, Y2, Z2, W2].

RAO=X1 RBO =X2
RA1=Y1 RB1=Y2
RA2=271 RB2=22
RA3 =W1 RB3=W2

CT =RB2
C =RA2
HfRA2 <0thenset(N=1)
IfN =1 then :
RB8 = RA3 +C b=W1-271
RA8=RB3 +CT ;a=W2-22
else
RB8=RA3-C ;b=W1+2Z1
RA8=RB3 - CT ;a=W2+272
RB9 = RA0 — RBO ;X1 -X2
RB8 = RA8 — RB8 ;a-b
RA9 = RA1 - RB1 ;Y1-Y2
C =RA8/RB8 ;t=a/(a-b)
RA8 = RA2 - RB2 121 -22
CT =RB9xC ; (X1 =-X2) xt
RAO0=CT + RBO ;X2 =X2 + (X1 -X2) xt
CT =RA9xC ;1 (Y1-Y2) xt
RA1 = CT + RB1 Y2 =Y2+ (Y1-Y2) xt
RA9 = RA3 — RB3 ;W1 -W2
CT =RA8xC ; (21 -22) xt
RA2 = CT + RB2 122 =22+ (Z1-Z2) x t
CT =RA9xC ; (W1 -W2) xt
RA3 = CT + RB3 W2 =W2 + (W1 -W2) xt

Internal Instructions

Clip a Line to the Z Plane, Reverse CLIPRZX

Temporary Storage CT, RA8, RA9, RB8, RB9

Outputs This writes [X2',Y2',22°,W2’] over [X1,Y1,Z1,W1].
RAO = X2’
RA1=Y2
RA3 = 22’
RA4 = W2
C=t

Instruction Type CEXEC, short

7-55

CLR Cleara Register

Syntax Type Syntax
Integer CLR CRd
Double-Precision CLRD CRd
Single-Precision CLRF CRd
Execution 0 — CRd
’34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words 1]1]JoJ1]1]Jo]oJoJoJoJo]o]|o][1 |tye]sie
ID t 1o}t]1}1 o] CRd
Instruction to ’34082 31 29 28 25 24 2120 18 15 0
| ID | 1101 | 1101 | CRd |oooo 001t s000 oooﬂ
Operands CRd TMS34082 destination register.
Description CLRx loads a zero of the appropriate type in the register, CRd. The Z (zero)
bit in the status register will be set also.
Instruction Type CEXEC, short
Example CLRF C

This example loads a single-precision floating-point zero into TMS34082
register C.

7-56 v Internal Instructions

CMP

Compare

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

Syntax

CMP CRsy, CRso
CMPD CRsy, CRso
CMPF CRs;, CRsp

— CRsy) — TMS34082 Status Register

Type

Integer
Double-Precision
Single-Precision

Flags (CRs;

i5 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0

1t]1]Jo]1]1]oflofjo]o]o]o]o type | size
ID CRsq CRso olof[o}f o] o
31 29 28 25 24 21 20 0
| D | CRsy | CRsp |ooooo 0000 010t s000 0000 |
CRsy TMS34082 register containing the first operand. Must be from RA
register file.
CRs, TMS34082 register containing the second operand. Must be from RB

register file.

CMPx subtracts the contents of CRs, from CRs¢ and sets the appropriate
status bits in the TMS34082 status register.

CEXEC, short
CMP RA5, RB6

This example subtracts the integer contents of RB6 from RAS5 and sets the
status bits in the TMS34082 status register.

7-57

CMPX Loadand Compare

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-58

Type Syntax

Integer CMP Rsy, Rsp, CRsy, CRs2
Single-Precision CMPF Rsy, Rso, CRsy, CRsp
RS1 - CRS1

RSz ol CRS2

Flags (CRsy — CRsg) — TMS34082 Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ojofojo]Jof1]l1}o]of1]|o]R Rs1
ojl1{ololol1]ofjt}jofolo]R Rso
ID CRs{ CRsp ojojJo]o]o
31 20 28 25 24 21 20 0
[o | crsy | cRsp |ooooo 0100 010t 0000 0000 |

Rs; TMS34020 source register for the first value to TMS34082
Rs, TMS34020 source register for the second value to TMS34082

CRsy TMS34082 register to contain the first operand. Must be from RA
register file.

CRsy TMS34082 register to contain the second operand. Must be from RB
register file.

CMPx loads the contents of Rsy and Rs, into CRs¢ and CRsy respectively,
subtracts CRsy from CRs4, and sets the appropriate status bits in the
TMS34082 status register.

The double-precision form of this instruction is not supported.
CMOVGC, two registers

CMPF A5, A6, RA5, RB6
This example loads TMS34020 registers A5 and A6 into TMS34082 registers
RA5 and RB6 respectively, subtracts the single-precision floating-point

contents of RB6 from the contents of RA5, and sets the status bits in the
TMS34082 status register.

Internal instructions

Load from Memory (Postincrement) and Compare, Integer CMP

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type

Integer
Double-Precision
Single-Precision

+Rs — CRS1
Rs +32 - Rs

Syntax

CMP -Rs+, CRsy, CRs»
CMPD -Rs+, CRsy, CRsp
CMPF ~Rs+, CRsy, CRsp

*Rs — CRszm
Rs +32 - Rs

...... -

Flags (CRs1 - CRs») — TMS34082 Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o {ojofofo|1]1]o]1]o 0 [0| tansters
ojojo]t1]olt]s|o]o]R Rs
ID CRsq CRso 0 lo]Jo]o]o
31 20 28 25 24 21 20 0
| D | CRsy | CRsp |00000 1000 010t s000 0000 |

Rs TMS34020 register containing the memory address

CRs; TMS34082 register to contain the first operand. Must be from RA
register file.
CRsy, TMS34082 register to contain the second operand. Must be from RB

register file.

CMPx loads the contents of memory pointed to by Rs into CRs{ and CRso,
subtracts CRs, from CRs4, and sets the appropriate status bits in the
TMS34082 status register. After each load from memory, Rs is incremented
by 32.

CMOVMC, postincrement, constant count

CMP *A5+, RAS5,RB6
This example loads the contents of memory starting at the address given by
TMS34020 register A5 into TMS34082 registers RA5 and RB6, subtracts the

integer contents of RB6 from RA5, and sets the status bits in the TMS34082
status register.

7-59

CMPX Load from Memory (Predecrement) and Compare

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type
Example

7-60

Iype

Integer
Double-Precision
Single-Precision

Syntax

CMP —+Rs, CRsy, CRsp
CMPD -+Rs, CRsy, CRsp
CMPF —--Rs, CRsy, CRso

Rs-32 - Rs
+Rs —» CRS1

foctbin s w3
Rs-32 — Rs
*Rs — CRs»

Iglags (CRs'q.— CRsy) — TMS34082 Status Register

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
oJofofo]tfo]oJofo]o|1[o|o]| tanstrs
1 0 0 0 0 1 0 t s 0 0 R Rs
ID CRs1 CRsp oJofofo]o
31 20 28 25 24 21 20 0
{ D | CRsy | CRsp [00000 1000 010t s000 0000 |

Rs TMS34020 register containing the memory address

CRsy TMS34082 register to contain the first operand. Must be from RA
register file.
CRs, TMS34082 register to contain the second operand. Must be from RB

register file.

CMPx loads the contents of memory pointed to by Rs into CRs4 and CRso,
subtracts CRs» from CRsq, and sets the appropriate status bits in the
TMS34082 status register. Before each load from memory, Rs is decremented
by 32..

CMOVMC, predecrement, constant count

CMP -*A5, RA5, RB6
This example loads the integer contents of memory starting at the address
given by TMS34020 register A5 minus 32 into TMS34082 registers RAS5 and

RBS, subtracts the integer contents of RB6 from RAS5, and sets the status bits
in the TMS34082 status register.

Internal Instructions

Convolution CONVX

Syntax

34020
Instruction Words

Instruction to 34082

Description

Implied Operands

Algorithm

Temporary Storage
Outputs

Instruction Type

Type Syntax
Integer CONV
Double-Precision CONVD
Single-Precision CONVF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1|1|o11oooo11o11typesize

D 0cJ]o}o ojojojo0jojo}o 0 0 0

31 29 0
[|D|o 0000 0000 0000 0011 011t s000 ooooJ

The CONVx instruction performs the multiplies and accumulates for a 3x 3
convolution assuming the constants (C9-C1) and the integer values (P9-P1)
are in TMS34082 registers. The convolution divide constant (K) is maintained
in register RASfor the integer instruction (CONV). For floating-point
instructions (CONVD and CONVF), the inverse of the divide constant is
maintained in RA9 1o reduce the division to a single multiply. Note that K is
typically greater than zero.

RAQO = P1 RA3 = P4 RA6 = P7

RA1 =P2 RA4 = P5 RA7 = P8

RA2 =P3 RA5 = P6 RA8 = P9

RA9 =Kor (for the integer instruction, CONV)

RA9 = 1/K (for floating-point instructions, CONVD and CONVF)
RBO = C1 RB3 = C4 RB6 = C7

RB1 =C2 RB4 =C5 RB7 = C8

RB2 =C3 RB5 = (C6 RB8 = C9

C = RAO0 x RBO ; determine influence due to points P9-P1

CT =C + (RA1 x RB1)
C =CT + (RA2 x RB2)
CT =C + (RA3 x RB3)
C = CT + (RA4 x RB4)
CT =C + (RA5 x RB5)
C =CT + (RA6 x RB6)
CT =C + (RA7 x RB7)
C = CT + (RA8 x RB8)
If type = integer, then

RB9 = C/RA9 ; divide by the convolution divide constant
else

RB9 = C x RA9 ; multiply the inverse of the divide constant
C,CT

C=[C11) +(C2x P2) + ... + (C9 x P9)]
RB9 = [(C1 xP1) + (C2x P2) + ...+ (CY x P9)] /K

CEXEC, short

7-61

CPVX Compare Point to Volume

Syntax

'34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage
Outputs

Status Bits

Instruction Type

7-62

Type Syntax
Integer CPV
Double-Precision CPVD
Single-Precision CPVF
15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
1 | 1 [o1 0 1 0 type | size
ID olo 0 0 0 0 0
3129 0
[D [0 0000 0000 0000 0010 001t s000 0000 |

Apoint [Xn,Yn,Zn]is compared to the volume defined by Xmin,Ymin, Zmin and
Xmax,Ymax, Zmax. Six comparison bits within the status register are set
accordingto the comparison. The TMS34020 may read the status and perform

a 64-way branch based on the

RAO = Xmin RA3 = Xmax
RA1 =Ymin RA4 = Ymax
RA2 = Zmin RA5 = Zmax

lf RBO - RA0O <0, set XLT
else reset XLT

If RA3 - RB0 <0, set XGT
else reset XGT

If RB1 - RA1 <0, set YLT
else reset YLT

If RA4 - RB1 <0, setYGT
else reset YGT

if RB2 - RA2 <0, set ZLT
else reset ZLT

ifRA5 - RB2 <0, set ZGT
else reset ZGT

CT
Status register set

six comparison bits.

RBO = Xn
RB1=Yn
RB2 =Zn

; test for XLT (Xn — Xmin)
; test for XGT (Xmax — Xn)
; test for YLT (Yn — Ymin)
; test for YGT (Ymax - Yn)
; test for ZLT (Zn — Zmin)

; test for ZGT (Zmax — Zn)

XLT (bit 5) is set high if (Xn < Xmin)
XGT (bit 6} is set high if (Xn > Xmax)
YLT (bit 7) is set high if (Yn < Ymin)
YGT (bit 8) is set high if (Yn > Ymax)
ZLT (bit 9) is set high if (Zn < Zmin)

ZGT (bit10) is set high if (Zn >
CEXEC, short

Zmax)

Internal Instructions

Compare Point to Window CPWX

Syntax

‘34020
Instruction Words

Instruction to 34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Status Bits

Instruction Type

Type Syntax

Integer CPW

Double-Precision CPWD

Single-Precision CPWF

15 14 18 12 1110 9 8 7 1 0

1T1 To 1]1]o 0 type | size
ID

0 0 0 0 0 0 ofojof{o}to 0 0

31 29 0
||D|o 0000 0000 0000 0010 000t s00O oooo]

A point [Xn,Yn] is compared to the window defined by Xmin, Ymin and Xmax,
Ymax. Four comparison bits within the status register are set according to the
comparison. The TMS34020 may read the status and perform a 16-way
branch based on the four comparison bits.

RAO = Xmin RA2 = Xmax RBO = Xn
RA1 = Ymin RA3 = Ymax RB1=Yn

If RBO — RAO <0, set XLT ; test for XLT (Xn — Xmin)
elsereset XL T

If RA3 -~ RB0 <0, set XGT
else reset XGT

If RB1 - RA1<0, setYLT
elsereset YLT

If RA4 - RB1 <0, set YGT
else reset YGT

CT
Status register set

; test for XGT (Xmax — Xn)
; test for YLT (Yn — Ymin)

; test for YGT (Ymax - Yn)

XLT (bit 5) is set high if (Xn < Xmin)
XGT (bit 6) is set high if (Xn > Xmax)
YLT (bit 7) is set high if (Yn < Ymin)
YGT (bit 8) is set high if (Yn > Ymax)

CEXEC, short

7-63

CSPLNX Cubic Spline

Syntax Type Syntax
Integer CSPLN
Double-Precision CSPLND
Single-Precision CSPLNF
’34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 A 0
Instruction Words 1 J 1 L 0 110 111] 1] 1]0 |type]size
ID oo olo|o|o]oO 0 0
Instruction to '34082 3129 0
Wl 0 0000 0000 0000 0011 110t s00O ooooj
Description Given a cubic spline defmed by:
’ x (A3><T3)+ A2><T£+(A1><T)+A0
=(B3xT3) +(B2x T?) + (B1xT)+B0
=(C3xT3) +(C2xT3) +(C1x T)+CO
This routine will calculate X,Y,Z for a series of values of T. The previous T value
is incremented from 0 to 1 by an amount dT. Note this instruction may also be
used to calculate X and Y for a 2-D cubic spline by ignoring the values of the
Z coefficients and resuits.
Implied Operands RBO = A0, RB1 = Af1, RB2 = A2, RB3 = A3
RB4 = B0, RB5 = B1, RB6 = B2, RB7 =B3
RB8 = C0, RB9 = C1, RAO = C2, RA1=C3
C = Previous T value (or 0 if first T value)
RA4 =dT
Algorithm C=C+RA4 ;T=T+dT
RA7 = RB3 ; X=A3
RA7 = (RA7 x C) + RB2 X=X x T)+A2
RA7 = (RA7 x C) + RB1 =(X xT)+ A1
RA7 = (RA7 x C) + RBO X=XxT)+A0
RA8 = RB7 ;Y =B3
RA8 = (RA8 x C) + RB6 ;Y=(YxT)+B2
RA8 = (RA8 x C) + RB5 ;Y=(YxT)+B1
RA8 = (RA8 x C) + RB4 ;Y=(YxT)+B0
CT =RA1xC Z=C3xT
RA9 = CT + RAO ;Z=2+C2
RA9 = (RA9 x C) + RB9 ={ZxT)+C1
RA9 = (RA9 x C) + RB8 =(ZxT)+C0
Temporary Storage C,CT
Outputs RA7 = X
RA8 =Y
RA9 =Z
Instruction Type CEXEC, short
7-64 Internal Instructions

Convert, Double-Precision to Single-Precision GVDF

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

CVDF CRs, CRd
(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11]Jo]1 1]ofoJofoloft {1 [+]1][1]1

D CRs ol1]o]o CRd
31 29 28 25 24 21 20 16 15 0
| D | CRs] 0100 [CRd |ooo1 1111 1000 ooooJ

CRs TMS34082 source register containing a 64-bit double-precision
floating-point operand

CRd TMS34082 destination register

CVDF converts a 64-bit IEEE double-precision floating-point number to a
32-bit IEEE single-precision floating-point number. The double-precision
number resides in CRs, and the converted single-precision number is stored
in CRd.

The source register, CRs, must be in the RA register file.

CEXEC, short

CVDF RA5, RA7

This example converts the contents of RA5 to a single-precision floating-point
number and stores the result in RA7.

7-65

CVDF Loadand Convert, Double-Precision to Single-Precision

Syntax

Execution

’34020
Instruction Words

Instruction to ‘34082

Operands

Description

Instruction Type

Example

7-66

CVDF Rs;, Rsp, CRs, CRd
Rs4, Rso — CRs

(CRs) — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olojJo]Jojo|1]1]o}o]1]o]|R Rs1
o111 |11} 1]1]lo]o]R Rs
D CRs4 0o |1]oijo CRd
31 290 28 25 24 20 21 16 15 0
| ID | CRs | 0100) CRd |o101 1111 1000 oooo]

Rsy TMS34020 source register for half the 64-bit double-precision
floating-point value to TMS34082.

Rso TMS34020 source register for remaining half of the 64-bit
double-precision floating-point operand.

CRs TMS34082 source register to contain the double-precision
floating-point operand

CRd TMS34082 destination register

CVDF loads the double-precision contents of Rsy and Rs, into CRs and
converts the 64-bit IEEE double-precision floating-point number to a 32-bit
IEEE single-precision floating-point number. The converted single-precision
number is stored in CRd.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVGC, two registers

CVDF RA5, RA7

This example converts the contents of RA5 1o a single-precision floating-point
number and stores the result in RA7.

Internal Instructions

Load from Memory (Postincrement) and Convert, Double-Precision to Single-Precision CGVDF

Syntax

Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

CVDF -Rs+, CRs, CRd

+Rs — CRs
Rs +32 — Rs
+Rs - CRs
Rs + 32 — Rs
(CRs) — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofoflofofolt1ft1]lof1]ofofofofo]1]o
1t]lolol1 |1]t}l1]|1]|1]0o]o]|R Rs
ID CRsy o|1]ofo CRd
31 290 28 25 24 21 20 16 15 0
| 1D J CRs]0100] CRd |1oo1 1111 1000 oooo|

Rs TMS34020 register containing the memory address

CRs TMS34082 register
floating-point operand

to contain the 64-bit double-precision

CRd TMS34082 destination register

CVDF loads the double-precision contents of memory pointed to by Rs into
CRs and converts the 64-bit IEEE double-precision floating-point value 1o a
32-bit IEEE single-precision floating-point value. The double-precision
number is stored in CRs, and the converted single-precision number is stored
in CRd. After each load from memory, Rs is incremented by 32.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVMC, postincrement, constant count
CVDF *B5+, RAS5, RA7

This example loads the contents of memory starting at the address given by
TMS34020 register B5 into TMS34082 register RA5, converts the contents of
RAS5 to a single-precision number, and stores the resuit in RA7.

7-67

CVDF Load from Memory (Predecrement) and Convert, Double-Precision to Single-Precision)

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Temporary
Storage

Example

7-68

CVDF —+Rs, CRs, CRd

Rs-32 - Rs
+Rs — CRs
Rs-32 — Rs
«Rs — CRs
(CRs)— CRd

15 14 13 12 11 10 9
0 0 0 0 1 0ot(o0

1 0 0 1 1
ID CRs

43 10
0 [1]o0
Rs

CRd

o

(=4

O~ Ojm
—lalol~
ololojm

oloj—=in
ps

31 20 28
| iD | CRs

25 24 21 20 18 15 0
|o1oo| CRd |1oo1 1111 1000 oooo|

Rs TMS34020 register containing the memory address

CRs TMS34082 register
floating-point operand

to contain the 64-bit double-precision

CRd TMS34082 destination register

CVDF loads the double-precision contents of memory pointed to by Rs into
CRs and converts the 64-bit IEEE double-precision floating-point value to a
32-bit 1EEE single-precision floating-point value. The double-precision
number resides in CRs, and the converted single-precision number is stored
in CRd. Before each load from memory, Rs is decremented by 32.

The TMS34082 source register, CRs, must be in the RA register file.

CMOVMC, predecrement, constant cont
CVDF -*B5, RA5, RA7

This example loads the contents of memory starting at the address given by
TM834020 register B5 minus 32 into TMS34082 register RAS5, converts the
contents of RA5 1o a single-precision number, and stores the result in RA7.

Internal Instructions

Convert, Double-Precision to Integer CVvDI

Syntax
Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

CVDI CRs, CRd

(CRs) — CRd

15 14 13 42 11 10 9 8 7 6 5 4 3 2 { 0

11 Jol1s b1]ofjofofolol 1]t {11][1]1
1D CRs R ERE CRd

31 20 28 25 24 21 20 16 15 0

| D | CRs] 0101 | CRd |ooo1 1111 1000 oooo|

CRs TMS34082 source register containing a 64-bit double-precision
floating-point operand

CRd TMS34082 destination register

CVDl canverts a 64-bit IEEE double-precision fioating-point numberto a 32-bit
integer number. The double-precision number resides in CRs, and the
converted integer number is stored in CRd.

The source register, CRs, must be in the RA register file.
CEXEC, short
CVDI RA5, RB7

This example converts the contents of RA5 to an integer and stores the result
in RB7.

7-69

CVDI Load and Convert, Double-Precision to Integer

Syntax
Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-70

CVDI Rs;, Rsy CRs, CRd

(CRs) — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olofjojo|lt]|1|[ofjo]|l1]|1]R Rs4
0 0 1111]1}lo]ol|R Rsp
D CRs ol1}o07]1 CRd
31 29 28 25 24 21 20 16 15 0
| ID | CRs] 0101] CRd |o1o1 1111 1000 oooo|

Rs4 TMS34020 source register for half the 64-bit double-precision
floating-point value to TMS34082

Rso TMS34020 source register for remaining half of the 64-bit
double-precision floating-point operand

CRs TMS34082 source register to contain the double-precision
floating-point operand '

CRd TMS34082 destination register

CVDlloads a 64-bit IEEE double-precision floating-point number from Rs, and
Rs, into CRs and converts it to a 32-bit integer number. The double-precision
number resides in CRs, and the converted integer number is stored in CRd.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVGC, two registers
CVDI A4, A5, RA5, RB7

This example loads TMS34020 registers A4 and A5 into TMS34082 register
RA5, converts the contents of RAS5 to an integer, and stores the result in RB7.

Internal Instructions

Load from Memory (Postincrement) and Convert, Double-Precision to Integer CVDI

Syntax

Execution

’34020
Instruction Words

Instruction to ‘34082

Operands

Description

Instruction Type

Example

CVDI -Rs+, CRs, CRd

«Rs —» CRs

Rs +32 - Rs

+Rs — CRs

Rs + 32 —» Rs

(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 {1 0

ofofojJoJo|tr]tr]of1fofo]JojoJo]1]o
ojo |t |t |1 |1]1}1]0o}o Rs
ID CRs 0|1]o]1 CRd

31 20 28 25 24 21 20 16 15 0

| D | ©Ors [0101 | CRd [1001 1111 1000 0000 |

Rs TMS34020 register containing the memory address

CRs TMS34082 register to contain the 64-bit double-precision
floating-point operand

CRd TMS34082 destination register

CVDlloads the double-precision contents of memory pointed to by Rs into CRs
andconverts the 64-bit IEEE double-precision floating-point value to an integer
value. The double-precision number resides in CRs, and the converted integer
number is stored in CRd. After each load from memory, Rs is incremented by
32.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVMC, postincrement, constant count
CVDI *B5+, RAS5, RA7

This example loads the contents of memory starting at the address given by
TMS34020 register B5 into TMS34082 register RA5, converts the contents of
RAS5 to an integer number, and stores the result in RA7.

7-71

CVDI Load from Memory (Predecrement) and Convert, Double-Precision to Integer

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-72

CVDI —-+Rs, CRs, CRd

Rs-32 — Rs
+Rs - CRs
Rs-32 — Rs
+Rs — CRs
(CRs) — CRd

15 14 183 12 11 10 9
0 0 0 0 1 0 0

0 0 1 1 1 1
ID CRs

ol=lolw
afslolw
oclojojo
=Jo|=iln
o
olw
(o
_:—b
o]

31 20 28 25 24 21 20 16 15 0
[IDJ CRs |o1o1 | CRd |1oo1 1111 1000 ooooj

Rs TMS34020 register containing the memory address

CRs TMS34082 register to contain the 64-bit double-precision
floating-point operand

CRd TMS34082 destination register

CVDI loads the double-precision contents of memory pointed to by the
predecremented value of Rs into CRs and converts the 64-bit |IEEE
double-precision floating-point value to an integer value. The double-precision
number resides in CRs, and the converted integer number is stored in CRd.
Before each load from memory, Rs is decremented by 32.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVMC, predecrement, constant count
CVDI -*B5, RA5, RA7

This example loads the contents of memory starting at the address given by
TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the
contents of RA5 to an integer number, and stores the result in RA7.

Internal Instructions

Convert, Single-Precision to Double-Precision CVFD

Syntax
Execution

'34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

CVFD CRs, CRd

(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t {1 Jol1]1]ofjofo]JoJo]J1|J1]1]1]1]o
D CRs 0o Jt1joljo CRd

31 29 28 25 24 21 20 16 15 0

[iD l CRs To1oo [CRd ioom 1111 0000 ooooJ

CRs TMS34082 source register containing a 32-bit single-precision
floating-point operand

CRd TMS34082 destination register

CVFD converts a 32-bit IEEE single-precision floating-point value to a 64-bit
IEEE double-precision floating-point value. The single-precision number
resides in CRs, and the converted double-precision number is stored in CRd.

The source register, CRs, must be in the RA register file.
CEXEC, short
CVFD RA5, RB7

This example converts the contents of RA5 to a double-precision number and
stores the result in RB7.

7-73

CVFD Loadand Convent, Single-Precision to Double-Precision

Syntax

Execution

34020
Instruction Words

Instruction to ‘34082

Operands

Description

Instruction Type

Example

7-74

CVFD Rs, CRs, CRd

Rs — CRs

(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 { 0
oflofojolof|l1]1]ofo}|o]1 Rs
of{t1Jol+ |11]1]1]olo]Jojojo]ofolo

ID CRs ol1]ofo CRd

31 20 28 25 24 21 20 16 15 0
| ID 1 CRs l 0100 | CRd |o1o1 1111 0000 oooo|

Rs TMS34020 source register containing the 32-bit single-precision
floating-point value to TMS34082

CRs TMS34082 register to contain the 32-bit single-precision
floating-point operand

CRd TMS34082 destination register

CVFD loads the single-precision contents of Rs into CRs and converts the
32-bit IEEE single-precision floating-point value to a 64-bit IEEE
double-precision floating-point value. The single-precision number resides in
CRs, and the converted double-precision number is stored in CRd.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVGC, one register
CVFD B5, RA5, RA7

This example loads TMS34020 register B5 into TMS34082 register RA5,
converts the contents of RA5 to a double-precision number, and stores the
result in RA7.

Internal Instructions

Load from Memory (Postincrement) and Convert, Single—Precision to Double-Precision GCVFD

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

CVFD -Rs+, CRs, CRd

+Rs - CRs
Rs + 32 - Rs
(CRs) — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oo ofof1]1jo]1]Jo]oJojofo]o]t
1{1]1]loafo]o Rs
iD CRs o]1]o]o CRd
31 290 28 25 24 21 20 16 15 0
] ID | CRs | 0100 [CRd |1oo1 1111 0000 oooo]

Rs TMS34020 register containing the memory address

CRs TMS34082 register
floating-point operand

to contain the 32-bit single-precision

CRd TMS34082 destination register

CVFD loads the single-precision contents of memory pointed toby Rsinto CRs
and converts the 32-bit IEEE single-precision floating-point value to a 64-bit
IEEE double-precision floating-point value. The single-precision number
resides in CRs, and the converted double-precision number is stored in CRd.
After each load from memory, Rs is incremented by 32.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVMC, postincrement, constant count
CVFD *B5+, RA5, RA7

This example loads the contents of memory starting at the address given by
TMS34020 register B5 into TMS34082 register RA5, converts the contents of
RADS 1o a double-precision number, and stores the result in RA7.

7-75

CVFD Load from Memory (Predecrement) and Convert, Single-Precision to Double-Precision

Syntax

Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-76

CVFD --Rs+, CRs, CRd

Rs-32 - Rs
+Rs - CRs
(CRs) — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o o [1]JoJofJofJofJo[1]o]Jo]o]o]
0 tj1]l1|1]olo]lo}]R Rs
D CRs of1]o}]o CRd
31 2928 25 24 21 20 16 15 0
[D | CRs | 0100 | CRd |1oo1 1111 0000 oooo|

Rs TMS34020 register containing the memory address

CRs TMS34082 register
floating-point operand

to contain the 32-bit single-precision

CRd TMS34082 destination register

CVFDloads the single-precision contents of memory pointedto by Rsinto CRs
and converts the 32-bit IEEE single-precision floating-point value to a 64-bit
IEEE double-precision floating-point value. The single-precision number
resides in CRs, and the converted double-precision number is stored in CRd.
Before each load from memory, Rs is decremented by 32.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVMC, predecrement, constant count
CVFD -*B5, RA5, RA7

This example loads the contents of memory starting at the address given by
TMS34020 register B5S minus 32 into TMS34082 register RAS, converts the
contents of RA5 to a double-precision number, and stores the result in RA7.

Internal Instructions

Syntax
Execution

’34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

Convert, Single-Precision to Integer GVF

CVFI CRs, CRd
(CRs) - CRd

15 14 13 12 11 10 98 8 7 6 5 4
t 1 lof1 1 JofofoJo]o]1]

3 2 1 0
EEERENK

D CRs c|14}to0]1 CRd
31 2928 25 24 21 20 16 15 0
[iD | CRs | 0101 [CRd |ooo1 1111 0000 ooool

CRs TMS34082 source register containing a 32-bit single-precision
floating-point operand

CRd TMS34082 destination register

CVFI converts a 32-bit IEEE single-precision floating-point value to a 32-bit
integer value. The single-precision number resides in CRs, and the converted
integer number is stored in CRd.

The source register, CRs, must be in the RA register file.
CEXEC, short
CVFI RA5, RA7

This example converts the contents of RA5 to an integer and stores the result
in RA7.

7-77

CVFI Loadand Convert, Single-Precision to Integer

Syntax

Execution

34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

7-78

CVFI Rs, CRs, CRd

Rs — CRs
(CRs) - CRd
15 14 13 12 11 10 © 8 7 6 5 4 3 2 1 0
ojoJojJofo}1]t]o|o]o]1 Rs
1 111 {1]1]ofloflofofjofo}e]o
iD CRs o |1 |o]1 CRd
31 29 28 25 24 21 20 16 15 0
[ID] CRs [0101 | CRd]0101 1111 0000 oooo]

Rs TMS34020 source register for the 32-bit single-precision floating-
point value to TMS34082

CRs TMS34082 register to contain the 32-bit single-precision
floating-point operand

CRd TMS34082 destination register

CVFlloadsthe single-precision contents of Rsinto CRs and converts the 32-bit
IEEE single-precision floating-point value to a 32-bit integer value. The
single-precision number resides in CRs, and the converted integer number is
stored in CRd.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVGC, one register
CVFI B5, RA5, RB7

This example loads TMS34020 register B5 into TMS34082 register RA5,
converts the contents of RA5 to an integer, and stores the result in RB7.

Internal Instructions

Load from Memory (Postincrement) and Convert, Single-Precision to Integer CVFI

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

CVFl +Rs+, CRs, CRd

+Rs — CRs
Rs + 32 — Rs
(CRs) — CRd
15 14 13 12 11 10 9 8 7 B 5 4 3 2 1 0
ofofofofof[1[t1]o]1]{ofoJofofolo]t
1 111]1fololo Rs

D CRs o |1]of1 CRd
31 290 28 25 24 21 20 16 15 0
[ID | CRs [0101 | CRd T1oo1 1111 0000 oooo|
Rs TMS34020 register containing the memory address

CRs TMS34082 register to contain the 32-bit single-precision
floating-point operand
CRd TMS34082 destination register

CVFlloads the single-precision contents of memory pointed to by Rs into CRs
and converts the 32-bit IEEE single-precision floating-point value to a 32-bit
integer value. The single-precision number resides in CRs, and the converted
integer number is stored in CRd. After each load from memory, Rs is
incremented by 32.

The TMS34082 source register, CRs, must be in the RA register file.

CMOVMC, postincrement, constant count
RA7

CVFI *B5+, RAS5,

This example loads the contents of memory starting at the address given by
TMS34020 register BS into TMS34082 register RA5, converts the contents of
RAS 1o an integer number, and stores the result in RA7.

7-79

CVFI Load from Memory (Predecrement) and Convert, Single-Precision to Integer

Syntax CVFI - +Rs, CRs, CRd
Execution Rs-32 - Rs

+Rs — CRs

(CRs) — CRd
’34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words o foJoJof1fofoJoJofo[1fjo]Jofofol]H

1{o0lo 1|1 1{oflofo R Rs
iD CRs 0o]11]01]1 CRd
Instruction to ‘34082 31 29 28 25 24 21 20 16 15 0
iD | CRs | 0101 | CRd |1oo1 1111 0000 oooo|

Operands Rs TMS34020 register containing the memory address

CRs TMS34082 register to contain the 32-bit single-precision

floating-point operand

CRd TMS34082 destination register

Description CVFlloads the single-precision contents of memory pointed to by Rs into CRs
and converts the 32-bit IEEE single-precision floating-point value to a 32-bit
integer value. The single-precision number resides in CRs, and the converted
integer number resides in CRd. Before each load from memory, Rs is

decremented by 32.

The TMS34082 source register, CRs, must be in the RA register file.

Instruction Type CMOVMC, predecrement, constant count

Example CVFI -*B5, RA5, RA7

This example loads the contents of memory starting at the address given by
TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the
contents of RA5 to an integer number, and stores the result in RA7.

7-80

Internal Instructions

Convert, Integer to Double-Precision CVID

Syntax
Execution

34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

CVID CRs, CRd
(CRs) — CRd

15 14 18 12 11 10 9
11]Jo]1]1]ofo]ofo|olf]H1

8 7 6 5 4 3 2 1 0
1

ENENEN

D CRs 1]0 CRd
31 290 28 25 24 21 20 16 15 0
| D] CRs | 0110 | CRd |ooo1 1111 1000 oooo]

CRs TMS34082 source register containing the 32-bit integer operand

CRd TMS34082 destination register

CVID converts a 32-bit integer value to a 64-bit IEEE double-precision
floating-point value. The integer resides in CRs, and the converted
double-precision number is stored in CRd.

The source register, CRs, must be in the RA register file. C and CT may not
be used as operands for this instruction.

CEXEC, short
CVID RA5, RB7

This example converts the contents of RA5 to a double-precision number and
stores the result in RB7.

CVID Load and Convert, Integer to Double-Precision

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-82

CVID Rs, CRs, CRd

Rs — CRs
(CRs) — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oloJojofo|l1|{1]|lo]lo]|l1{o]|R Rs
111111 [o0ofjo}n Rs

D CRs o|l1]|11]o CRd
31 29 28 25 24 21 20 16 15 0
[D | CRs] 0110 | CRd Jo101 1111 1000 0000|

Rs TMS34020 source register containing the 32-bit integer value to
TMS34082

CRs TMS34082 source register to contain the 32-bit integer operand

CRd TMS34082 destination register

CVID loads the integer contents of Rs into CRs and converts a 32-bit integer
value to a 64-bit IEEE double-precision floating-point value. The integer
resides in CRs, and the converted double-precision number is stored in CRd.
For this instruction, the integer in Rs must be sent as both words of a 64-bit
transfer.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVGC, two registers
CVID B5, RA5, RA7

This example loads TMS34020 register B5 into TMS34082 register RAS5,
converts the contents of RA5 to a double-precision number, and stores the
result in RA7.

Internal Instructions

Convert, Integer to Single-Precision CVIF

Syntax
Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

CVIF CRs, CRd
(CRs) — CRd

16 14 13 12 11 8 7 6 5

109 4 3 2 1 0
1]t o1 1]oJoJoloJo|[t1[1[1]1]1]o0

D ~ CRs ol1]1]o CRd
31 20 28 25 24 21 20 16 15 0
iD l CRs | 0110 | CRd |ooo1 1111 0000 oooo]

CRs TMS34082 source register containing the 32-bit integer operand

CRd TMS34082 destination register

CVIF converts a 32-bit integer value to a 32-bit IEEE single-precision
floating-point value. The integer resides in CRs, and the converted
single-precision number is stored in CRd.

The source register, CRs, must be in the RA register file. C and CT may not
be used as operands for this instruction.

CEXEC, short
CVIF RA5, RA7

This example converts the contents of RAS5 to a single-precision number and
stores the result in RA7.

7-83

CVIF Load and Convert, Integer to Single-Precision

Syntax

Execution

’34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

7-84

CVIF Rs, CRs, CRd

Rs — CRs

(CRs) - CRd -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ofolololo|1]t1]o{o]ol}1 Rs

o |1 foft1 |11 1]1lofjo]ofo]lof]o]o]o
D CRs ol1 (110 CRd

31 29 28 25 24 21 20 16 15 0

| ID] CRs] 0110 | CRd |o101 1111 0000 oooo|

Rs TMS34020 source register for the 32-bit integer value to TMS34082
CRs TMS34082 source register to contain the 32-bit integer operand

CRd TMS34082 destination register

CVIF loads the integer contents of Rs into CRs and converts a 32-bit integer
value to a 32-bit IEEE single-precision floating-point vaiue. The integer resides
in CRs, and the converted single-precision number resides in CRd.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVGC, one register
CVIF A3, RA5, RA7

This example loads TMS34020 registers of A3 into TMS34082 register RAS,
converts the contents of RA5 1o a single-precision number, and stores the
result in RA7.

Internal Instructions

Load from Memory (Postincrement) and Convert, Integer to Single-Precision CVIF

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

CVIF <Rs+, CRs, CRd

«Rs — CRs
Rs +32 —» Rs
(CRs) — CRd
15 14 13 12 11 10 © 8 7 6 5 4 3 2 1 0
0 0 11 Jof1[ofjojofo]o]ol]H
0 1 1]11]1]ofo]o|R Rs
ID CRs o]1]11}o CRd
31 29 28 25 24 21 20 16 15 0
[D [CRs | 0110] CRd | 1001 1111 0000 0000

Rs TMS34020 register containing the memory address

CRs TMS34082 register to contain the 32-bit integer operand

CRd TMS34082 destination register

CVIF loads the integer contents of memory pointed to by Rs into CRs and
converts the 32-bitinteger value to a 32-bit IEEE single-precision floating-point
value. The integer number resides in CRs, and the converted single-precision
number is stored in CRd. After each load from memory, Rs is incremented by
32.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVMC, postincrement, constant count
RAS,

CVIF *B5+, RA7

This example loads the contents of memory starting at the address given by
TMS34020 register BS into TMS34082 register RA5, converts the contents of
RAS5 to a single-precision number, and stores the result in RA7.

7-85

CVIF Load from Memory (Predecrement) and Convert, Integer to Single-Precision

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-86

CVIF ~ «Rs, CRs, CRd

Rs-32 —* Rs
+Rs =+ CRs
(CRs) — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oloJoJo|1t|ofjo]ofjoJo]t1]o]ofofo]1
ool 11 1]1 1]o]olo{R Rs
1D CRs ol1]t]o CRd
31 20 28 25 24 21 20 16 15 0
| iD [CRs]o11o| CRd |1oo1 1111 0000 0000

Rs TMS34020 register containing the memory address
CRs TMS34082 register to contain the 32-bit integer operand

CRd TMS34082 destination register

CVIF loads the integer contents of memory pointed to by Rs into CRs and
converts the 32-bitinteger value to a 32-bit |IEEE single-precision floating-point
value. The integer number resides in CRs, and the converted single-precision
number is stored in CRd. Before each load from memory, Rs is decremented
by 32.

The TMS34082 source register, CRs, must be in the RA register file.
CMOVMC, predecrement, constant count
CVIF -*B5, RA5, RA7

This example loads the contents of memory starting at the address given by
TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the
contents of RA5 to a single-precision number, and stores the result in RA7.

Internal Instructions

Decrement a TMS34082 RA Register DECX

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Tvpe Syntax

Integer DEC CRs [, CRd]
Double-Precision DECD CRs [, CRd]
Single-Precision DECF CRs [, CRd]
CRs -1 — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1t {1 o1 {1 lofoflofofJofo]o]1 |1 [ype]sie
ID

CRs IRERERE CRd
31 20 28 25 24 21 20 16 15 0
[ID rcas] 1101 J CRd |oooo 001t s000 0000|

CRs TMS34082 source register (also destination register if CRd is not
specified). Must be from RA register file.

CRd TMS34082 destination register.

DECx subtracts one (of the appropriate type) from the value in CRs and stores
the result in CRd. If CRd is not specified, the result is stored in CRs.

CEXEQG, short
DEC CT

This example subtracts an integer one from the value in TMS34082 register
CT and stores the result in CT.

7-87

DECX Decrement a TMS34082 RB Register

Syntax

Execution

34020
Instruction Words

Instruction to ‘34082

Operands

Description

Instruction Type

Example

7-88

Type Syntax

Integer DEC CRs [, CRd]
Double-Precision DECD CRs [, CRd]
Single-Precision DECF CRs [, CRd]
CRs-1—- CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
1 {1]Jof1}l1]ojofo]ojojofol] 1] 1 [tye]sie
ID

CRs 111 o] CRd
31 20 28 25 24 21 20 16 15 0
[ID] CRs J 1101 | CRd |oooo 011t s000 oooo]

CRs TMS34082 source register (also destination register if CRd is not
specified). Must be from RB register file.

CRd TMS34082 destination register.

DECx subtracts one (of the appropriate type) from the value in CRs and stores
the result in CRd. If CRd is not specified, the result is stored in CRs.

CEXEC, short
DECF RB2, C

This example subtracts a single-precision one from the value in TMS34082
register RB2 and stores the resultin the C register.

Internal Instructions

Divide DIVX

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Syntax

DIVS CRs;, CRs,, CRd
DIVD CRs;, CRs,, CRd
DIVF CRs;, CRs,, CRd

Tyvpe

integer
Double-Precision
Single-Precision

CRs,

(CRSQ).*CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 {1 0

1t J1Jols 1 JofloJofJoJolt]ofol]1 [upesze
ID CRs{ CRso CRd

31 20 28 25 24 21 20 16 15 0

| D | CRsy | CRs; | CRd |[0001 001t s000 0000]

CRsqy TMS34082 register containing the first operand. Must be in RA
register file.

CRso TMS34082 register containing the second operand. Must be in RB
register file.

CRd TMS34082 destination register

DIVx divides the contents of CRsq by CRs, and stores the result in CRd. For
integer divides, the CT register is used fortemporary storage. Any value stored
in this register prior to DIVS will be corrupted.

C and CT may not be used as operands for the integer form of this instruction,
DIVS.

CEXEC, short

7-89

DIVX Load and Divide

Syntax JType Syntax

Integer DIVS Rs,, Rs,, CRs;, CRs», CRd

Single-Precision DIVF Rs;, Rs,, CRs;, CRs», CRd
Execution Rs, — CRs;

Rs, — CRs,

100
CRs,
CRd

(CRSZ) -
’34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words ololololol|1 9 0 ol 1 o | R Rs1

oftjo]1]o|o]|1|ype|lO|O]|O]|R Rsp

ID CRs1 CRs2 CRd

Instruction to ‘34082 31_29 28 25 24 21 20 1615 0

f D | CRsy | CRsp | CRd |0101 001t 0000 0000 |
Operands Rsy TMS34020 source register for the first value to TMS34082

Rso TMS34020 source register for the second value to TMS34082

CRsq TMS34082 register to contain the first operand. Must be in RA
register file.

CRso TMS34082 register to contain the second operand. Must be in RB
register file.

CRd TMS34082 destination register

Description DIVx loads the contents of Rsy and Rs, into CRs4 and CRs, respectively,
divides the contents of CRs 1 by CRs,, and stores the result in CRd. Forinteger
divides, the CT register is used for temporary storage. Any value stored in this
register prior to DIVS will be corrupted.

The double-precision form of this instruction is not supported.
Instruction Type CMOVGC, two registers
Example DIVF A5, A6, RAS5, RB6, RA7

This example loads TMS34020 registers A5 and A6 into TMS34082 registers
RAS and RB6 respectively, divides the contents of RA5 by RB6, and stores the
result in RA7.

7-90 Internal Instructions

Load from Memory (Postincrement) and Divide DIVX

Syntax

Execution

’34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

Type Syntax

Integer DIVS «Rs+, CRs;, CRsp, CRd
Double-Precision DIVD «Rs+, CRsy, CRs,, CRd
Single-Precision DIVF -Rs+, CRs;, CRs,, CRd
«Rs — CRS1

Rs +32 - Rs

.Rs — CRSQM
Rs+32 — Rs

i5 14 13 12 11 10 9 8 7 6 & 4 3 2 1 0

oJofofloloJ1][1]o]1]o 0 | 0 [transfers
tlojol|l1 oot |t]|s]|]o]o|R Rs
D CRs1 CRso CRd
31 20 28 25 24 21 20 1615 0
| D | CRsq [CRsp [CRd [1001 001t s000 0000 |

Rs TMS34020 register containing the memory address

CRsqy TMS34082 register to contain the firstoperand. Mustbe in RA register
file.

CRso TMS34082 register to contain the second operand. Must be in RB
register file.

CRd TMS34082 destination register

DIVx loads the contents of memory pointed to by Rs into CRsy and CRsy,
divides the contents of CRs{ by CRs,, and stores the resultin CRd. After each
load from memory, Rs is incremented by 32. For integer divides, the CT
register is used for temporary storage. Any value stored in this register prior
to DIVS will be corrupted.

CMOVMC, postincrement, constant count
DIVS *A5+, RA5, RB6, RA7

This example loads the contents of memory starting at the address given in
TMS34020 register A5 into TMS34082 registers RAS and RBS, divides the
contents of RA5 by RB6, and stores the result in RA7.

7-A

DIVX Load from Memory (Predecrement) and Divide

Syntax

Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-92

Type Syntax

Integer DIVS - -Rs, CRs;, CRs», CRd
Double-Precision DIVD - +Rs, CRsy, CRs», CRd
Single-Precision DIVF -+Rs, CRs;, CRs,, CRd
Rs-32— Rs

*RS i CRS1

Rs - 32 - Rs

*Rs - CRs2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

oJoJofo]t1joJojojo]Jo]1]o]o] tansfes
1 0 0 1 0 0 1 }jtype |size| O 0 R Rs

ID CRs{ CRsp CRd
3129 28 25 24 21 1615 0

[D | crsy | CRsp 1 CRd

Rs TMS34020 register containing the memory address

r1oo1 001t s000 oooo|

CRsy TMS34082 register to contain the first operand. Mustbe in RA register
file.

CRso TMS34082 register to contain the second operand. Must be in RB
register file.

CRd TMS34082 destination register

DIVx loads the contents of memory pointed to by Rs into CRs; and CRso,
divides the contents of CRs; by CRss, and stores the result in CRd. Before
each load from memory, Rs is decremented by 32. For integer divides, the CT
register is used for temporary storage. Any value stored in this register prior
to DIVS will be corrupted.

CMOVMC, predecrement
DIVF -*A5, RA5, RB6, RA7

This example loads the single-precision floating-point contents of memory
starting at the address given in TMS34020 register A5 minus 32 into
TMS34082 registers RA5 and RBS6, divides the single-precision floating-point
contents of RA5 by RB6, and stores the result in RA7.

Internal Instructions

Get TMS34082 Status Register GETCST

Syntax
Execution

34020
Instruction Words

Instruction to 34082

Description

Instruction Type

Example

GETCST
TMS34082 Status Register —» ST register of TMS34020

15 14 13 12 11 10 9 8 7 6 & 4 3 2 1 0
0 0 0 0 0 1 1 v 0 1 1 0 0 0 0 0
1 0 0 1 1 0 0 010 0 0 0 0 1
ID 0 0 0 0 0 0 010 0 1 1 0 0

31 29 0
Llo[o 0000 0000 0000 0100 1110 0000 oooo|

GETCST loads 4 MSBs of the TMS34082 status register (STATUS) into the
TMS34020 status register (ST).

CMOVCS
GETCST

This example sends the TMS34082 status register to the TMS34020. The
TMS34020 takes the value and masks off the 4 MSBs; it then stufts the values
in the TMS34020 status register corresponding to the N, C, Z, V bits.

7-93

INCX Increment a TMS34082 RA Register

Syntax Tvpe Syntax

Integer INC CRs [, CRd]

Double-Precision INCD CRs [, CRd]

Single-Precision INCF CRs [, CRd]
Execution 1+ CRs — CRd
’34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words t]1]o]1]1}joflo]oJo]o]o]o]o]o [type]|sie

[CRs IBERERE CRd

Instruction to '34082 31 29 28 25 24 21 20 16 15 0

flo] CRs]1101] CRd]oooo 000t s00O0 oooo|

Operands CRs TMS34082 source register. (Also destination register if CRd is not
specified.)

CRd TMS34082 destination register.

Description INCx adds one (of the appropriate type) to the value in RA register CRs and
stores the result in CRd. If CRd is not specified, the result is stored in CRs.

Instruction Type CEXEC, short

Example INC RAO

This example adds an integer one to the value in TMS34082 register RA0 and
stores the result in RAO.

7-94 Internal Instructions

Increment a TMS34082 RB Register INCx

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

Type Syntax

Integer INC CRs [, CRd]
Double-Precision INCD CRs [, CRd]
Single-Precision INCF CRs [, CRd]
1+ CRs - CRd

15 14 13 12 11 10 © 8 7 6 5 4 3 2 A 0
t{1Jolt1]1]oJofoJo]loflofJo]o]o [tye]sie
ID CRs 11110} 1 CRd
31 29 28 25 24 21 20 16 15 0
| D , CRs | 1101 | CRd Joooo 000t s000 oooo]

CRs TMS34082 source register. (Also destination register if CRd is not
specified.)

CRd TMS34082 destination register.

INCx adds one (of the appropriate type) to the value in RB register CRs and
stores the result in CRd. f CRd is not specified, the result is stored in CRs.

CEXEC, short
INCD RB1l, RA7

This example adds a double-precision one to the value in TMS34082 register
RB1 and stores the result in RA7.

7-95

INMNMX Min/Max Setup

Syntax INMNMX
134020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words 1 I 1 l 0 1 1 o[o oo 1 040 1

ID 0 0 0 0 0 0 0 0 0 0 0
Instruction to '34082 31 29 0

[lo]o 0000 0000 0000 0010 0110 0000 oooo|

Description The IMNMX instruction configures the registers in preparation for either the
MNMX1 or MNMX2 instruction. The following initializations occur (internal
flags are set; register values are not altered):

Algorithm RBO = MAX ; set to positive infinity (used to store minimum X values)
RB1 = MIN ; set to negative infinity (used to store maximum X values)
RB2 = MAX ; set to positive infinity (used to store minimum Y values)
RB3 = MIN ; set to negative infinity (used fo store maximum Y values)

COUNTX =0 ; bits 15-0 for X minimums, bits 31-16 for X maximums
COUNTY =0 ; bits 15-0 for Y minimums, bits 31-16 for Y maximums
Count=0 ; set count to zero (bits 31-16 of MIN-MAX/LOOPCT register

Instruction Type CEXEC, short

7-96 Internal Instructions

Inverse INVX

Syntax

Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type

Syntax

Integer
Double-Precision
Single-Precision

INV CRs, CRd
INVD CRs, CRd
INVF CRs, CRd

1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1|1]o i1]o0o]o o]o|o|1 o[1|o|type|size
1D olofotlo CRs CRd
31 20 28 25 24 21 20 16 15 0
| iD | 0000 1 CRs [CRd |ooo1 010t s000 oooo|

CRs TMS34082 source register containing the operand. Must be from the
RB register file.

CRd TMS34082 destination register

This instruction divides 1 by CRs, and places the result in CRd. For integer
instructions, CT is used as a temporary register. Any value stored in CT prior
to INV will be corrupted.

C and CT may not be used as operands for the integer form if this instruction,
INV.

CEXEC, short
INV RB9, RA7

This example divides 1 by the contents of RB9 and stores the result in RA7.

7-97

INVX Load and Inverse

Syntax

Execution

34020
Instruction Words

Instruction to ‘34082

Operands

Description

Instruction Type

Example

7-98

Type Syntax
Integer INV Rs;, CRs, CRd
Double-Precision INVD Rsy, Rs,, CRs, CRd
Single-Precision INVF Rs;, CRs, CRd
Rs; —» CRs
1 . CRd
CRs
Integer or Slngle-Precision:
15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
ojJoJofJofloj1]1]o]o 1 | R Rsq
of1 o]l 1]o]t1t]|o|twelo ooo|o|ojo
D o jJo|lofo CRs CRd
Double-Precision:
16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ojJoJofJoJo|1[1Jo]ol]1 R Rsy
ojl1]o o|]t{11]o R Rs,
ID ocolololo CRs CRd
31 29 28 25 24 21 20 16 15 0
| D]oooo] CRs | CRd |o1o1 010t s000 oooo]

Rs{ TMS34020 source register containing the operand (or half ofthe 64-bit
double-precision floating-point operand.)

Rso TMS34020 source register containing the remaining half of the
double-precision operand.

CRs TMS34082 register to contain the operand. Must be in the RB register
file.

CRd TMS34082 destination register

This instruction loads the contents of the Rs¢ (and Rs» for double-precision)
into CRs, divides 1 by CRs, and places the result in CRd. For integer inverses,
CTis used as atemporary storage register. Any value stored in CT prior to INV
will be corrupted.

CMOVGC, one or two registers
INV A2, RB8, RB2

This example loads the contents of TMS34020 register A2 into RB8, divides
1 by RB8, and stores the integer resutlt in RB2.

Internal Instructions

Load from Memory (Postincrement) and Inverse

INVx

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

Type Syntax
Integer INV -Rs+, CRs, CRd
Double-Precision INVD -Rs+, CRs, CRd

Single-Precision

+Rs — CRs
Rs + 32 — Rs

%

INVF «Rs+, CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 ofoJoJt1J1Jo]1]ofJofo]ol]o]uansers
0 0 1 0 |[type |size | O 0 R Rs
ID 0 0o CRs CRd
31 20 28 25 24 21 20 16 15 0
| ID | 0000 l CRs | CRd | 1001 010t s000 0000 |

Rs TMS34020 register containing the memory address

CRs

CRd

TMS34082 destination register

TMS34082 register to contain the operand. Must be in the RB
register file.

This instruction loads the contents of memory pointed to by Rs into CRs,
divides 1 by CRs, and places the result in CRd. After each load from memory,
Rs is incremented by 32. For integer inverses, CT is used as a temporary
storage register. Any value stored in CT prior to INV will be corrupted.

CMOVMC, postincrement, constant count

INVD *A2+, RBS,

RB1

This example loads the double-precision contents of memory starting at the
address given by TMS34020 register A2 into TMS34082 register RB8, divides
1 by RB8, and stores the result in RB1.

INVX Load from Memory (Predecrement) and Inverse

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-100

Tvpe Syntax
Integer INV - «Rs, CRs, CRd
Double-Precision INVD —+Rs, CRs, CRd
Single-Precision INVF —«Rs, CRs, CRd
Rs-32 - Rs
+Rs - CRs
BYBBTWRS
1
~——— CRd
CR
15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
oJofoJof1foJoJofJo[o]|1]o]o]o]uansters
110 1]0 0 |type|size] 0 [O | R Rs
iD ofojJo]o CRs CRd
31 29 28 25 24 21 20 16 15 0
| ID looool CRs | CRd |1oo1 010t s000 oooo|

Rs TMS34020 register containing the memory address

CRs

CRd

Al

TMS34082 destination register

TMS34082 register to contain the operand. Must be from the RB
register file.

This instruction loads the contents of memory pointed to by Rs into CRs,
divides 1 by CRs, and places the resultin CRd. Before each load from memory,
Rs is decremented by 32. For integer inverses, CT is used as a temporary
storage register. Any value stored in CT prior to INV will be corrupted.

CMOVMC, predecrement, constant count

INVF -*A2,

RB8,

RB1

This example loads the single-precision contents of memory at the address
givenby TMS34020 register A2 minus 32 into TMS34082 register RB8, divides
1 by RBB8, and stores the result in RB1.

Internal Instructions

Execute Coprocessor External Instructions JUMPGC

Syntax
Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

JUMPC n

Execute external TMS34082 instructions found at address 2 x n

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o fofolofjo[1{1]o]o]Jo]Jolofofofol]o
1] 1 n ofo]Jojo|lo]o]ojojo
ID loJoJoflojofofloflofjojofjolo]o
31 29 28 25 24 21 20 16 1514 13 9 8 4 3 0
[1o | 0000 [0000 | 0000 | 11 | n | ooooo | oooo0 |
n Specifies the jump table entry to which the TMS34082 instruction

execution is sent May be a number from 0 to 15.

JUMPC begins execution of TMS34082 external instructions stored in
TMS34082 external local memory. The starting address is specified as
TMS34082 external memory address 2 x n. Usually, a jump table is stored in
these locations to permit calling several complex subroutines.

CEXEGC, long
JUMPC 4

This example executes TMS34082 instructions stored inthe TMS34082’s local
memory on the MSD bus. Instruction execution begins at address 8.

7-101

LINTXX Linear Interpolation of X

Syntax

’34020
Instruction Words

Instruction to ‘34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-102

Type Syntax
Integer LINTX

Double-Precision LINTXD
Single-Precision LINTXF

11 10 9 8 7 6 5 4

3 2 1 0

15 14 13 12
0

1 [1 | 1 ololo]Jo]|l1]of}1 type | size
ID o]Jotoflo]lo|lo]o]o]o olo

31 29 0

||D | 0 0000 0000 0000 0010 100t s000 0000 |

Perform linear interpolation given two points and a plane (the planeis assumed
perpendicular to one of the coordinate axes).

NOTE: If the Z1 and Z2 values are ignored, this will perform the equivalent of
a 2-D linear interpolation.

RAO = X1
RA1 =Y1
RA2 =71
RB9 = X3

RA3 = RB9 - RAO
RB6 = RB0O —- RAO
RB7 = RB1 - RA1
RB8 = RB2 - RA2
C = RA3/RB6
RB6 = C x RB6
RB7 = C x RB7
RB8 = C x RB8
RAO = RB6 + RAO
RA1 =RB7 + RA1
RA2 = RB8 + RA2

C, RA3, RB8-RB6

RAO = X3
RA1=Y3
RA2 =273

CEXEC, short

RBO = X2
RB1=Y2
RB2 = 72

; X3 - X1
;X2 - X1
;Y2 -Y1
;22 -21

;1= (X3 = X1)/(X2 - X1)

;tx (X2 - X1)
;tx(Y2-Y1)
;tx (22 - 21)

;X3 =X1+ (tx (X2 -X1))
¥Y3=Y1+(tx (Y2-Y1))
1Z3=21+ (tx (Z2 - Z1))

; interpolated values

Internal Instructions

Linear Interpolation of Y

LINTYx

Syntax

34020
Instruction Words

Instruction to 34082

Description

Implied Operands

Algorithm

Temporary Storage
Outputs

Instruction Type

Type Syntax
Integer LINTY
Double-Precision LINTYD
Single-Precision LINTYF
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1|o1 1 lo]loJojoflt]o]1]o] o |tye]sze
ID oo 0 0 o |1
31 29 0
DD | 0 0000 0000 0001 0010 100t s000 0000 |

Perform linear interpolation given two points and aplane (the plane is assumed
perpendicular to one of the coordinate axes).

NOTE: Ifthe Z1 and Z2 values are ignored, this will perform the equivalent of
a 2-D linear interpolation.

RAO = X1
RA1 = Y1
RA2 = 71
RB9 =Y3

RA3 = RB9 - RA1
RB6 = RBO —~ RAO
RB7 = RB1 ~ RA1
RB8 = RB2 -~ RA2
C = RA3/RB7
RB6 = C x RB6
RB7 = C x RB7
RB8 = C x RB8
RAO = RB6 + RAO
RA1 = RB7 + RA1
RA2 = RB8 + RA2

C, RA3, RB8-RB6

RAO = X3
RA1=Y3
RA2 =73

CEXEC, short

RBO = X2
RB1=Y2
RB2 = Z2

;Y¥Y3-Y1

; X2 - X1

;Y2 -Y1

;22 -71
t=(Y3-Y1)/(Y2-Y1)
;tx (X2 -X1)
tx(Y2-Y1)

(tx (22 - Z1)

;X3 =X1+(tx(X2-X1))
;¥Y3=Y1+({tx(Y2-Y1))
;23 =21+ (X (22 - Z1))

; interpolated values

7-103

LINTZX Linear Interpoiation of Z

Syntax

34020
Instruction Words

Instruction to ‘34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-104

Type Syntax
Integer LINTZ
Double-Precision LINTZD
Single-Precision LINTZF
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 | 1101 0 0 1]o]1} o] o [tye]sie
ID c{oflofo o lo]o oft]o
31 29 0
|ID | 0 0000 0000 0010 0010 100t sO00 0000 |

Perform linear interpolation given two points and a plane (the plane is assumed
perpendicular to one of the coordinate axes).

RAO = X1
RA1 = Y1
RA2 = Z1
RB9 =23

RA3 = RB9 - RA2
RB6 = RBO - RAO
RB7 = RB1 - RA1
RB8 = RB2 - RA2
C = RA3/RB8
RB6 = C x RB6
RB7 = C x RB7
RB8 = C x RB8
RAO = RB6 + RAO
RA1 = RB8 + RA1
RA2 = RB8 + RA2

C, RA3, RB8-RB6

RAO = X3
RA1 =Y3
RA2 =Z3

CEXEC, short

RBO = X2
RB1=Y2
RB2 = 72

;23 -7Z1
;X2 -X1
;Y2 -Y1
;22 - 71

t=(23-21)/(22-121)
S tx (X2 = X1)
tx (Y2 = Y1)
tx (22 - Z1)

; X8 =X1+ (tx (X2 - X1))
;¥Y3=Y1+ (txY2-Y1))
;L3 =71+ (tx(Z2 - Z1))

; interpolated values

Internal Instructions

Multiply and Accumulate MACX

Syntax

Execution

’34020
Instruction Words

Instruction to 34082

Operands

Implied Operands

Description

Outputs

Instruction Type

Example

Tvpe Syntax
Integer MAC CRsy, CRsp
Double-Precision MACD CRsy, CRsp

Single-Precision MACF CRsy, CRs>

C +(CRsyxCRsp) - C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

|1|o 1]1]0]000 11] |1|type|size
ID CRs{ olo o1]1 CRs;
31 20 28 25 24 20 19 16 15 0
| D | CRsy | 00011 | CRsp]0011 111t 5000 0000 |
CRs{ TMS34082 register containing an Ay operand. Must be in the RA
register file.

CRspy TMS34082 register containing a By, operand. Must be in the RB
register file.

C Register Previously accumulated sum

MACx is used to perform multiply and accumulate operations of the form:

((Ag X Bg) + (A1 X 1) + (A2 X Ba) + ... (Ap x Bp)).
The MACx instruction performs one mumply and adds the result to the
previously accumulated sum.

The new accumulated sum is stored in the C Register. The next
multiply/accumulate may now be performed.

CEXEC, short

CLRD C

MACD RAO, RBO
MACD RAl, RB1l
MACD RA2, RB2

This example performs a sum of three products. First, the C register is set to
zero. Then, the double-precision contents of RAO and RBO are multiplied. The
next instruction multiplies RA1 by RB1 and adds this product to the previous
result, storing the sum in the C register. The next instruction multiplies RA2 by
RB2 and adds the product to the value in C. The sum of products is stored in
C.

7-105

MACX Load and Multiply and Accumulate

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Implied Operands

Description

Outputs

Instruction Type

Example

7-106

Type Syntax

Integer MAC Rs4, Rsy, CRsy, CRs;
Single-Precision MACF Rsy, Rsp, CRsy, CRs»
Rs1 — CRsy

Rso> — CRso

C+(CRsy{xCRsp) » C

15 14 13 12 1110 8 7 6 5 4 3 2 1 0
ofoJofJo 11 ofo]1]o]R Rsq
11111]1|we]o|lo]o]|R Rso
ID CRs{ o|lofo 1|1 CRs;

31 29 28 25 24 20 19 16 15 0
| D | CRsy | 00011 [CRs [0111 111t 0000 0000 |

Rs4 TMS34020 source register for the first (An) value to TMS34082
Rso TMS34020 source register for the second (Bn) value to TMS34082

CRsy TMS34082 register to contain the A, operand. Must be in the RA
register file.

CRsp TMS34082 register to contain the B, operand. Must be in the RB
register file.

C Register Previously accumulated sum

MACx is used to perform multiply and accumulate operations of the form:
((Ag x Bg) + (A1 xBy) + (A2 X Bo) + ... (A, X Bp))-

This instruction loads two operands from Rs; and Rs, into CRs4 and CRs,

respectively, performs one multiply, and adds the result to the previously

accumulated sum.

The double-precision form of this instruction is not supported.

The new accumulated sum is stored in the C Register. The next
multiply/accumulate may now be performed.

CMOVGC, two registers
MAC Al, A2, RAl, RB1

This instruction loads the integer contents of A1 and A2 into RA1 and RB1,
respectively, and multiples the contents of RA1 by RB1. The product is added
to the value stored in the C register and the result is stored back in C.

Internal Instructions

Load from Memory (Postincrement) and Multiply and Accumulate MACX

Syntax

Execution

’34020
Instruction Word's

Instruction to ’34082

Operands

implied Operands

Description

Outputs

Instruction Type

Type Syntax
Integer MAC +Rs+, CRsy, CRsp [, count]
Single-Precision MACF +Rs+, CRsy, CRss [, count]

Repeat counttimes:
+Rs — CRs;
Rs +32 —» Rs
+Rs — CRs»p
C+ (CRsyxCRsy) -»C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0] 0 0 1 1 0 1 0 0 transfers
tfoft i1]1]1]1]owefofo|o0]R Rs

ID CRs{ olofo[1]1 CRs,
31 29 28 25 24 20 19 16 15 0

[D [CRs4 J 00011] CRsp [1011 111t 0000 ooooJ

Rs TMS34020 register containing the memory address

CRsq TMS34082 register to contain the A, operand. Must be in the RA
register file.

CRso TMS34082 register to contain the B, operand. Must be in the RB
register file.

count Number of times the instruction is executed; must be between 1-16
(default is 1). The number of transfers is 2 x count

C Register Previously accumulated sum

MACx is used to perform multiply and accumulate operations of the form:
((Ag X Bg) + (A1 X 1) + (A2 X Bp) + ... (Ap XBp)).

This instruction loads two operands from memory starting atthe address given

by TMS34020 register Rs into TMS34082 registers CRs; and CRs,, performs

one multiply, and adds the result to the previously accumulated sum. This

sequence is repeated count times. After each load from memory, Rs is

incremented by 32.

The double-precision form of this instruction is not supported.

The new accumulated sum is stored in the C register. The next
multiply/accumulate may now be performed.

CMOVMC, postincrement, constant count

7-107

MACX Load from Memory (Postincrement) and Multiply and Accumulate

Example

7-108

CLRF C
MACF *Al+, RA9, RB9, 6

This example performs a sum of six products. First, the TMS34082 C register
is set to zero. Then, the single-precision contents of memory starting at
TMS34020 register A1 is loaded into TMS34082 registers RA9 and RB9. The
contents of RA9 and RB9 are multiplied, the result is added to the C register,
and the sum is stored in C. This process is repeated 5 more times. The end
result is stored in C.

Internal Instructions

Load from Memory (Predecrement) and Multiply and Accumulate MACX

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Implied Operands

Description

Outputs

Instruction Type

Tvpe Syntax
integer MAC - -Rs, CRsy, CRso [, count]
Single-Precision MACF - <Rs, CRsy, CRso [, count]

Repeat count times:
Rs-32 - Rs
«Rs — CRs4
Rs-32 - Rs
*Rs — CRs»o
C+(CRs1xCRsp) »C

15 14 13 12 11 10 © 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 1 transfers
t ol 1 [+]1]1]1t [twelo]o]o]|R Rs
1D CRs1 ojofJo 1|1 CRs;
31 290 28 25 24 20 19 16 15 0
| D | CRs J 00011 | CORsp [1011 111t 0000 oooo]

Rs TMS34020 register containing the memory address

CRsy TMS34082 register to contain the A, operand. Must be in the RA
register file.

CRso TMS34082 register to contain the By, operand. Must be in the RB
register file.

count Number of times the instruction is executed; must be between 1-16
(defaultis 1). The number of transfers is 2 x count

C Register Previously accumulated sum

MACx is used to perform multiply and accumulate operations of the form:
((Ag % Bg) + (A1 xBq) + (Ao x Bo) + ... (Ap X Bp)).

This instruction loads two operands from memory starting atthe address given
by TMS34020 register Rs (minus 32) into TMS34082 registers CRsy and CRs,
respectively, performs one multiply, and adds the result to the previously
accumulated sum. This sequence is repeated counttimes. Before each load
from memory, Rs is decremented by 32.

The double-precision form of this instruction is not supported.

The new accumulated sum is stored in the C register. The next
multiply/accumulate may now be performed.

CMOVMC, predecrement, constant count

7-109

MADDX Matrix Add to Vector

Syntax

’34020
Instruction Words

Instruction to 34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-110

Tvpe Syntax
Integer MADD
Double-Precision MADDD
Single-Precision MADDF

15 14 18 12 11 10 9 8 7 6 5 4 3 2 1 0
0

1 1] T 11 Jo0JoJoJo 11110171171 [typelse
D 0lololo]1]o]lolololololol]o
31 29 0

||D[o 0001 0000 0000 0011 111t s000 oooo]

This instruction is used with the matrix multiply instructions (MMPYO, MMPY1,

and MMPY2) to expedite the multiplication of a 3 x 4 matrix by a vector where
the fourth element of the vector is an implied 1.

A 4 x 4 matrix in FPU registers

RAO = B0O RA1 =BO01 RA2 = B02 RA3 = B03
RA4 =B10 RA5 =B11 RA6 =B12 RA7 =B13
RA8 = B20 RA9 = B21 RBO = B22 RB1 = B23
RB2 = B30 RB3 = B31 RB4 =B32 RBS = B33

The accumulated sums from MMPYO0, MMPY 1, and MMPY2
RB6 = (A00 x B00) + (A01 x B10) + (A02 x B20)
RB7 = (A00 x BO1) + (A01 x B11) + (A02 x B21)
RB8 = (A00 x B02) + (A01 x B12) + (A02 x B22)
RB9 = (A00 x B0O3) + (A01 x B13) + (A02 x B23)

RB6 = RB6 + RB2
RB7 = RB7 + RB3
RB8 = RB8 + RB4
RB9 = RB9 + RB5

CT

The resulting vector is stored in FPU registers.

RB6 = (A00 x B0OO) + (A01 x B10) + (A02 x B20) + B30
RB7 = (A00 x BO1) + (A01 x B11) + (A02 x B21) + B31
RB8 = (A00 x B02) + (A01 x B12) + (A02 x B22) + B32
RB9 = (A00 x BO3) + (A01 x B13) + (A02 x B23) + B33

CEXEC, short

Internal Instructions

Multiply Matrix by Vector Element 0 MMPYO0X

Syntax

34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage
Outputs

Instruction Type

Example

Type Syntax
Integer MMPYO0
Double-Precision MMPYOD
Single-Precision MMPYOF

16 14 13 12

1|1|o 1

11010]J0}o0)1 |1t 11] 1] 1 |type]size

ID ojloflo|lojJo|1t|o|]ojolo]o]o]o
31 29 0
[|D| 0 0000 1000 0000 0011 111t s000 0000 |

This instruction multiplies the matrix B by a vector element, AO. This instruction
may be combined with MMPY 1, MMPY2, and MMPY 3 to multiply matrices of
several sizes.1 x4by4x4,4x4by4dx4,1x3by3x3,and3 x3by3x3
matrix multiplies may be implemented.

A 4 x 4 matrix in the FPU registers

RAO = BOO
RA4 =B10
RA8 = B20
RB2 = B30

RA1 = BO1 RA2 = B02 RA3 = B03
RA5 = B11 RA6 = B12 RA7 = B13
RA9 = B21 RBO = B22 RB1 = B23
RB3 = B31 RB4 = B32 RBS5 = B33

The first element (Ax0) of a row vector: RB9 = Ax0

RB6 = RB9 x RAO
RB7 = RB9 x RA1
RB8 = RB9 x RA2
RBg = RB9 x RA3
CT=RB9

C

RB6 = Ax0 x B0OO
RB7 = Ax0 x BO1

-RB8 = Ax0 x B02

: AxO x BOO

; Ax0 x BO1

; AxO x B02

; AxO x B0O3

; CT is used to store (Ax0 x B03) value
; since RB9 will be corrupted.

RB9 = CT = Ax0 x B03

CEXEC, short

See Example 54 for code for a 3 x 3 by 3 x 3 matrix multiply.

7-111

MMPY1Xx Multiply Matrix by Vector Element 1

Syntax

’34020
Instruction Words

Instruction to 34082

Description

Implied Operands

Algorithm

Temporary Storage
Inputs

Instruction Type

Example

7-112

Tvpe Syntax
Integer MMPY1
Double-Precision MMPY1D
Single-Precision MMPY1F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 {1 0
1|1|o11oooo11111typesaze

D o|lofjofolo]1]Jo|[1]o]o]o]ol]o
31 29 0
|ID [0 0000 1010 0000 O0O011 111t s000 0000 |

This instruction multiplies the matrix B by an vector element, A1. This
instruction may be combined with MMPY0, MMPY2, and MMPY3 to multiply
matrices of several sizes. 1 x4by 4x4,4x4by4x4,1x3by3x3, and
3 x 3 by 3 x 3 matrix multiplies may be implemented.

A 4 x 4 matrix in the FPU registers:

RAO = B0O RA1 = BO1 RA2 = B02 RA3 = B03
RA4 =B10 RA5 = B11 RA6 =B12 RA7 = B13
. RA8 =B20 RA9 = B21 RBO = B22 RB1=B23
RB2 = B30 RB3 = B31 RB4 = B32 RB5 = B33

The initial products from MMPYO for the resulting matrix row:
RB6 = Ax0 x B0OO

RB7 = Ax0 x BO1

RB8 = Ax0 x B02

CT = Ax0 x B03

The second element (Ax1) of a row vector: RB9 = Ax1

RB6 = RB6 + (RB9 x RA4) ; (AxO x B0O) + (Ax1 x B10)

RB7 = RB7 + (RB9 x RA5) ; (Ax0 x BO1) + (Ax1 x B11)

RB8 = RB8 + (RB9 x RA6) ; (Ax0 x B02) + (Ax1 x B12)

RB9 = CT + (RB9 x RA7) ; (Ax0 x B03) + (Ax1 x B13)

CT=RB9 ; CT is used to store the fourth value since
; RB9 will be corrupted.

C

RB6 = (Ax0 x B00) + (Ax1 x B10)

RB7 = (Ax0 x B01) + (Ax1 x B11)

RBS = (Ax0 x B02) + (Ax1 x 12)

RBY = CT = (Ax0 x B03) + (Ax1 x B13)

CEXEC, short
See Example 54 for code for a 3 x 3 by 3 x 3 matrix multiply.

Internal Instructions

Multiply Matrix by Vector Element2 MMPY2x

Syntax

34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage
Outputs

Instruction Type

Example

Type Syntax
Integer MMPY2
Double-Precision MMPY2D
Single-Precision MMPY2F

15 14 13 12 11 10 ©® 8 7 6 5 4 3 2 1 0
1 l 1J o1 {1]Jo]JoJofo |t i1 1] 1] 1 [type|size
ID

0 (4] 0 0 0 1 1 0 0 0 0 0 0

31 29 0
||D|o 0000 1100 0000 0011 111t s000 oooo|

This instruction multiplies the matrix B by a vector element, A2. This instruction
may be combined with MMPY0, MMPY1, and MMPY 3 to multiply matrices of
several sizes. 1 x4by4x4,4x4by4x4,1x3by3x3,and3x3by3x3
matrix muttiplies may be implemented.

A 4 x 4 matrix in the FPU registers:

RAO = B0O RA1=B01 RA2 = B02 RA3 = B03
RA4 =B10 RAS5 = B11 RA6 = B12 RA7 =B13
RA8 = B20 RA9 = B21 RBO = B22 RB1 = B23
RB2 = B30 RB3 = B31 RB4 = B32 RB5 = B33

The accumulated sums from MMPYO0 and MMPY1 for the resulting matrix:
RB6 = (Ax0 x B00) + (Ax1 x B10)

RB7 = (Ax0 x B01) + (Ax1 x B11)

RB8 = (Ax0 x B02) + (Ax1 x B12)

CT = (Ax0 x B03) + (Ax1 x B13)

The third element (Ax2) of a row vector: RB9 = Ax2

RB6 = RB6 + (C x RA8) ; (AX0 x BOO + Ax1 x B10) + (Ax2 x B20)

RB7 = RB7 + (C x RA9) : (Ax0 x BO1 + Ax1 x B11) + (Ax2 x B21)

RB8 = RB8 + (C x RB0) : (AX0 x BO2 + Ax1 x B12) + (Ax2 x B22)

RB9=CT + (C x RB1) ; (Ax0 x BO3 + Ax1 x B13) + (Ax2 x B23)

CT=RB9 ; CT is used to store the fourth value since
; RBS will be corrupted.

CcT

RB6 = (Ax0 x B00) + (Ax1 x B10) + (Ax2 x B20)
RB7 = (Ax0 x B01) + (Ax1 x B11) + (Ax2 x B21)
RB8 = (Ax0 x B02) + (Ax1 x B12) + (Ax2 x B22)
RB9 = CT = (Ax0 x B03) + (Ax1 x B13) + (Ax2 x B23)

Note that the result of this operation is the completed row fora1 x3by 3 x 3
or 3 x 3 by 3 x 3 matrix multiply.

CEXEC, short
See Example 5-4 for code for a 3 x 3 by 3 x 3 matrix multiply.

7-113

MMPY3X Multiply Matrix by Vector Element 3

Syntax

’34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage
Outputs

Instruction Type

7-114

Type Syntax
Integer MMPY3
Double-Precision MMPY3D
Single-Precision MMPY3F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1|1|011000011111typesize

ID 0 0 0 0|0 |1 1 1 0jo0 0 0 0

31 29 0
[|D|o 0000 1110 0000 0011 111t s000 oooo|

This instruction multiplies the matrix B by a vector element, A3. This instruction
may be combined with MMPYO0, MMPY1, and MMPY2 to multiply matrices of
severalsizes. 1 x4by4 x4,4x4by4x4,1x3by3x3,and3x3by3x3
matrix multiplies may be implemented.

A matrix in FPU registers:

RAOQ = B0O RA1 = B01 RA2 = B02 RA3 = B03
RA4 = B10 RA5 = B11 RA6 = B12 RA7 = B13
RA8 = B20 RA9 = B21 RBO = B22 RB1 =B23
RB2 = B30 RB3 = B31 RB4 = B32 RB5 = B33

The accumulated sums from MMPY0, MMPY1 and MMPY?2 for the resulting
matrix:

RB86 = (Ax0 x B00) + (Ax1 x B10) + (Ax2 x B20)
RB7 = (Ax0 x BO1) + (Ax1 x B11) + (Ax2 x B21)
RB8 = (Ax0 x B02) + (Ax1 x B12) + (Ax2 x B22)
CT =(Ax0 x BO03) + (Ax1 x B13) + (Ax2 x B23)

The fourth element (Ax3) of a row vector: RB9 = Ax3

C=RB9

RB9 =CT

RB6 = RB6 + (C x RB2) ; (Ax0 x B0OO + Ax1 x B10 + Ax2 x B20)
; + (Ax3 x B30)

RB7 = RB7 + (C x RB3) ; (Ax0 x BO1 + Ax1 x B11 + Ax2 x B21)
; + (Ax3 x B31)

RB8 = RB8 + (C x RB4) ; (Ax0 x B02 + Ax1 x B12 + Ax2 x B22)
;+ (Ax3 x B32)

RB9 = RB9 + (C x RB5) ; (Ax0 x B0O3 + Ax1-x B13 + Ax2 x B23)
; + (Ax3 x B33)

C

The output of this operation is the result matrix row.

RB6 = Result x0

RB7 = Result x1
RB8 = Result x2
RB9 = Result x3

CEXEC, short

Internal Instructions

1-D Minimum / Maximum MNMX1x

Syntax

’34020
Instruction Words

Instruction to ’34082

Description

Operands

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

Tvpe Syntax
Integer MNMX1 CRs
Double-Precision MNMX1D CRs
Single-Precision MNMX1F CRs

15 14 13 12 11 10 88 8 7 6 5 4 3 2 1 0
1[0

1| 1 1|olo olo |t |11 1] 11} 1 |type]sie

D CRs o|Jolt1]oJololofo]o
31 29 28 25 24 0
[iD | CRs]00100 0000 0011 111t s000 oooo]

The 1-D Min/Max function compares the current data to a current minimum
value and a current maximum value. If the current data is less than the
minimum then the minimum is set to the current data; if the current data is
greaterthan the current maximum then the maximum value is setto the current
data. For each current data tested a counter is incremented and when the
minimum or maximum values are updated the current counter value is put.in
a minimum count or maximum count register so that the count of the data
responsible for the minimum or maximum is in the respective count register.
The INMNMX instruction should be used to initialize the min/max registers
before the first MNMX1 instruction.

CRs TMS34082 register containing the value to test for minimum/maxi-
mum. Must be in the RA register file.

RBO = Current integer minimum

RB1 = Current integer maximum

COUNTX contains the counts for the current maximum and minimum values
Bits 15-0 are the count value for the current minimum
Bits 31-16 are the count value for the current maximum

if CRs < RBO
RB0 = CRs ; RBO fracks current X minimum
COUNTX bits 15-0 = Count

If CRs > RB1
RB1=CRs ; RB1 tracks current X maximum

COUNTX bits 31-16 = Count
Count = Count + 1

None

RBO0 = minimum of (CRs and RBO)

RB1 = maximum of (CRs and RB1)

COUNTX 15-0 is updated to the current count if CRs is a minimum.
COUNTX 31-16 is updated to the current count if CRs is a maximum.

CEXEC, short

7-115

MNMX2x 2-D Minimum / Maximum

Syntax

’34020
Instruction Words

Instruction to ’34082

Description

Operands

Implied Operands

7-116

Tvpe Syntax
Integer MNMX2 CRs;, CRsp
Double-Precision MNMX2D CRs;, CRsp
Single-Precision MNMX2F CRsy, CRsp
15 14 18 12 11 10 9 8 7 6 5 4 3 2 1 0
1|1|o 1|1|o|o ojo |t]1]1 1|1Itypelsize
ID CRs{ ojJoJ1]t]o CRs2
31 2028 25 24 20 19 16 15 0
| D | CRsy | 00110 | CRsp [1011 111t s000 0000 |

The 2-D Min/Max function compares two current data values (X and Y) to a
current minimum value and a current maximum value. ifthe current datais less
than the minimum then the minimum is set to the current data; if the current
data is greater than the current maximum then the maximum value is setto the
current data. For each current data tested a counter is incremented and when
the minimum or maximum values are updated, the current counter value is put
in a minimum count or maximum count register so that the count of the data
responsible for the minimum or maximum is in the respective count register.
The INMNMX instruction should be used to initialize the min/max registers
before the first MNMX2 instruction.

CRsy TMS34082 register containing the value to test for X
minimum/maximum. Must be in RA register file.

CRso TMS34082 register containing the value to test for Y
minimum/maximum. Must be in RA register file.

RBO = current X minimum

RB1 = current X maximum

RB2 = current Y minimum

RBS3 = current Y maximum

COUNTX contains the counts for the current maximum and minimum values
Bits 15-0 are the count value for the current X minimum
Bits 31-16 are the count value for the current X maximum

COUNTY contains the counts for the current Y maximum and minimum values
Bits 15-0 are the count value for the current Y minimum
Bits 31-16 are the count value for the current Y maximum

Internal Instructions

2-D Minimum / Maximum MNMX2x

Algorithm

Temporary Storage

Outputs

Instruction Type

If CRs1 < RBO

RBO = CRs1

COUNTX bits 15-0 = Count
if CRsq > RB1

RB1 = CRs4

COUNTX bits 31-16 = Count
if CRso < RB2

RB2 = CRs»

COUNTY bits 15-0 = Count
If CRso > RB3

RB3 = CRsy

COUNTY bits 31-16 = Count
Count = Count + 1

None

; RBO tracks current X minimum

: RB1 tracks current X maximum

- RB2 tracks current Y minimum

: RB3 tracks current Y maximum

RBO = minimum of (CRs{ and RBO)

RB1 = maximum or (CRs{ and RB1)

RB2 = minimum of (CRs, and RB2)

RB3 = maximum or (CRs» and RB3)

COUNTX 15-0 is updated to the current count if CRs is a X minimum.
COUNTX 31-16 is updated to the current count if CRs4 is a X maximum.
COUNTY 15-0 is updated to the current count if CRsp is @ Y minimum.
COUNTY 31-16 is updated to the current count if CRsp is a Y maximum.

CEXEC, short

7-117

MOVX Move, One TMS34020 Register to a TMS34082 Register

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description
Instruction Type

Example

7-118

Ivpe Syntax

Integer MOVE Rs, CRd

Single-Precision MOVF Rs, CRd

Rs — CRd

15 14 13 12 11 10 9 8 7 B 5 4 3 2 {1 0
0 oloflt1j1]ofo]o]1 Rs
1{o]o 0 ftyefo [0 |o]ofo]ojo]o
ID olo|[o]o]lojo]|lo]lo CRd

31 2028 21 20 16 15 0

| iD | 0000 0000 | CRd |o100 110t 0000 0000 |

Rs TMS34020 source register for the 32-bit value to TMS34082

CRd TMS34082 destination register to hold the 32-bit value
MOVx moves the contents of Rs into CRd.

CMOVGC, one register

MOVF A5, RA7

This example moves the single-precision floating-point contents of TMS34020
register A5 into TMS34082 register RA7.

Internal Instructions

Move, Twa TMS34020 Registers to TMS34082 Register(s) MOVx

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

Type Syntax
Integer MOVE Rsy, Rsp cRd
Double-Precision MOVD Rsy, Asp cRy
Single-Precision MOVF Rsy, Rsp cRd
Integer or Single-Precision: Double-Precision:
Rs1 — CRd Rsy — CRd (MSH or LSH)

advance to next TMS34082 register Rsp, — CRd (LSH or MSH)
Rso — CRd

15 14 13 12 11 10 © 8 7 6 5 4 3 2 {1 Q0
ololJofjojo]t1t]lt1t]ofjo]1]|o0]|R Rsq
1 0 0 |jtype|size | O 0 | R Rso
iD clofojo|olojol]o CRd
31 2928 20 19 16 15 0
| ID [0000 0000] CRd 10100 110t s000 ooooj

Rsq TMS34020 source register for the first value (or half of a double-preci-
sion value) to TMS34082

Rso TMS34020 source register for the second value (or the remaining half
of the double-precision value) to TMS34082

CRd TMS34082 destination register that holds the first value. For integer
and single-precisionmoves, the second value will be placed in the next
register in the TMS34082 register sequence list.

MOVx moves the contents of Rsy and Rsy into CRd (and CRd+1 for integer
and single-precision instructions).

For double-precision moves, the TMS34082 configuration register LOAD bit
determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit =1, then the LSBs are moved first
(32 LSBs of the fraction)

If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.
CMOVGC, two registers
MOVE A5, A6, RA7

This instruction moves the integer contents of TMS34020 registers A5 and A6
into TMS34082 registers, RA7 and RAS, respectively.

7-119

MOVX Move, One TMS34082 Register to One TMS34020 Register

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-120

Type Syntax
Integer MOVE CRs, Rd
Single-Precision MOVF CRs, Rd
CRs — Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ctojJojof|of|t1{1|o]lo]1]1]|R Rd
1 |o 1 [ye] 0o JoJolo]ofofo]o
ID ojojlof[fofjo]ol}o]o CRs
31 2928 21 20 16 15 0
| D [0000 0000 | CRs [0100 111t 0000 0000]
CRs TMS34082 source register holding the 32-bit value

Rd TMS34020 destination register

MOVx moves 32-bit value from TMS34082 register CRs to TMS34020 register
Rd.

CMOVCG, one register
MOVE RA7, A5

This example moves the integer contents of TMS34082 register RA7 to
TMS34020 register A5.

Internal Instructions

Move, TMS34082 Register to Two TMS34020 Registers, Double-Precision MOVD

Syntax

Execution

’34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

MOVD CRs, Rd;, R

CRs (MSH or LSH) - Rd;
CRs (LSH or MSH) - Rds

15 14 13 12 11 10 9 8 7 6 5 4 3 2 {1 @
olojojof{oft1|1]o]o]1]1]|nR Rd
1 0 1t{1]1]o]o|R Rdo
ID ojololtojolo|lol]fo CRd
31 2928 20 19 16 15 0
| iD [0000 0000 [CRd |o1oo 1111 1000 oooo|

CRs TMS34082 source register holding the value to TMS34020
Rdy TMS34020 destination register for half the double-precision value

Rdo TMS34020 destination register for the remaining half of the
double-precision value

MOVD moves one 64-bit value from TMS34082 register CRs to TMS34020
registers Rd¢ and Rdo.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.
CMOVCG, two registers
MOVD RA7, A5, A6

This example moves the double-precision floating-point contents of
TMS34082 register RA7 to TMS34020 registers A5 and A8. The order (MSBs
or LSBs in A5) depends on the value of the LOAD bit in the configuration
register.

7-121

MOVxX Move, Memory to TMS34082 Registers (Postincrement), Register Count

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

7-122

Type Syntax
Integer MOVE -+Rs+ CRd, Rd
Double-Precision MOVD -+Rs+, CRd, Rd
Single-Precision MOVF -Rs+, CRd, Rd
Integer or Single-Precision:
fRd=0 . IfRd=1— 31
Repeat 32 times Repeat Rdtimes
+Rs — CRd .Rs — CRd
Rs +32 — Rs Rs + 32 — Rs
advance .t?[next TMS34082 advance to next TMS34082
register register
Double-Precision:
fRd=0) fRd=1— 31
Repeat 16 times Repeat Rd/2times
+Rs — CRd .Rs — CRd
Rs + 32 — CRd Rs + 32 — CRd
+*Rs — CRd «Rs — CRd
Rs + 32 - CRd Rs + 32 — CRd
advance to next TMS34082 advance to next TMS34082
register register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ojlojojlojol|1]1jo]t]1]1]R Rd
0 0 0 0 [type|size | O 0 R Rs
ID ololojlojololo]o CRd
31 2028 20 19 16 15 0
[D | oooo 0000 | CRd [1000 110t s000 0000 |

Rs TMS34020 source register containing the address of the first 32-bit
value (or half of the 64-bit value) to move to the TMS34082

CRd TMS34082 destination register to hold the first value

Rd TMS34020 register containing the number of 32-bit transfers to
make. This value must be in the range 0 to 31

fRd=0, then 32 32-bit transfers are made
fRd=1 — 31, then Rd 32-bit transfers are made

Note thatbecause 64-bit floating-point values require two 32-bit moves, an odd
number in Rd will give unpredictable results.

Internal Instructions

Move, Memory to TMS34082 Registers (Postincrement), Register Count MOVXx

Description

Instruction Type

Example

MOVx moves values from memory beginning at the address in Rs into
TMS34082 registers beginning at CRd. Rs is incremented after each transfer.
CRs is advanced to the next register in the sequence list after each 32-bit
transfer for integer and single-precision moves, after every two 32-bittransfers
for double-precision moves. The number of 32-bit transfers made is
determined by the value of Rd.

For double-precision moves, the TMS34082 configuration register LOAD bit
determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

if the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.
CMOVMC, postincrement, register count
MOVE *A5+, RA7, B7

This instruction moves integer values from TMS34020 memory location
pointed to by A5 to TMS34082 registers beginning at RA7. After each 32-bit
transfer, register A5 is incremented, and the TMS34082 destination is
advancedto the nextregisterin the TMS34082 register sequence list. B7 holds
the number of 32-bit transfers to be made.

7-123

MOVX Move, Memory to TMS34082 Registers (Postincrement), Constant Count

Syntax Tvpe Syntax
Integer MOVE -Rs+, CRd, [,count]
Double-Precision MOVD -Rs+, CRd, [,count]
Single-Precision MOVF -Rs+, CRd, [,count]
Execution Repeat count times
+Rs — CRd

RENBRLRY
advance to the next TMS34082 register

’34020 15 14 13 12 11 {10 9 8 7 6 5 4 3.2 {1 0
Instruction Words olololololt]1]o]lt]o]o transfers
1 0 0 0 1 0 |[type|size| O 0 R T Rs
ID oloflojojlolofjojo CRd
Instruction to ’34082 31 29 28 20 19 16 15 0
| ID [0000 0000 f CRd |1000 110t s000 0000]
Operands Rs TMS34020 source register containing the address of the first 32-bit

value (or half the first 64-bit value) to move to the TMS34082

CRd TMS34082 destination register to hold the first operand

count The number of 32-bit or 64-bit transfers to make. This value must be
in the range 1 to 32 for integer and single-precision moves or 1to 16
for double-precision moves. The default value is 1. Count determines

the value of transfers:
Integer or Single-Precision:
if count= 32, then transfers =0
If count=1 — 31, then transfers = count

Double-Precision:

If count= 16, then transfers =0
If count=1 — 15, then transfers = 2 x count
Description MOVx. moves values from memory beginning at the address in Rs into

TMS34082 registers beginning at CRd. Rs is incremented after each transfer.
CRs is advanced to the next register in the sequence list after each 32-bit
transfer for integer and single-precision moves, after every two 32-bit transfers
for double-precision moves. The number of 32-bit transfers made is

determined by the value of count.

7-124

Internal Instructions

Move, Memory to TMS34082 Registers (Postincrement), Constant Count MOVx

For double-precision moves, the TMS34082 configuration register LOAD bit
determines whether the LSBs or the MSBs will be moved first:

ifthe LOAD bit =1, then the LSBs are moved first
(32 LSBs of the fraction)

If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs ofthe fraction)

The LOAD bit default is 0.
Instruction Type CMOVMC, postincrement, constant count
Example MOVD *A5+, RB7, 4

This example moves four 64-bit double-precision floating-point values from
TMS34020 memory location pointed to by A5 to TMS34082 registers
beginning at RB7. After each 32-bit transfer, register AS is incremented; after
every two 32-bit transfers, the TMS34082 destination is advanced to the next
register in the TMS34082 register sequence list. Count specifies that four
64-bit transfers (eight 32-bit transfers) are made.

MOVX Move, Memory to TMS34082 Registers (Predecrement), Constant Count

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

7-126

Type ~_Syntax
Integer MOVE --Rs, CRd, [, count]
Double-Precision MOVD --Rs, CRd [, count]
Single-Precision MOVF --Rs, CRd [, count]
Repeat count times

Rs -32 - Rs

«Rs — CRd

Mgidvance to the next TMS34082 register

15 14 13 12 11 10 9 8 7 4 3 2 1 0

6 5
0 0 0 0 1 0 0 0 0 0 1 transfers
o Jolo 11 [0 [opelsize]l o]o]r] Rs
ID olo|ojJo]lo|o]o]o CRd
31 2028 20 19 16 15 0
| ID [0000 0000 | CRd |1ooo 110t s000 oooo]

Rs TMS34020 source register containing the address of the bit
immediately after the first 32- or 64-bit value to move to the TMS34082

CRd TMS34082 destination register to hold the first value

count The number of 32- or 64-bit transfers to make. This value must be in
the range 1 to 32 for integer and single-precision moves or 1 to 16 for
double-precision moves; the default value is 1. Count determines the
value of transfers:

Integer or Single-Precision:
If count = 32, then transfers =0
fcount=1 — 31, then transfers = count

Double-Precision:
if count= 186, then transfers =0
If count=1 — 15, then transfers = 2 x count

MOVx moves values from memory beginning at the address in (Rs — 32) into

. TMS34082 registers beginning at CRd. Before each transfer, the contents of

Rs are decremented; after each transfer (or every two transfers for
double-precision moves), the TMS34082 destination is advanced to the next
register inthe TMS34082 register sequence list. The number oftransfers made
is determined by the value of count.

For double-precision moves, the TMS34082 configuration register LOAD bit
determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit=1, then the LSBs are moved first
(32 LSBs of the fraction)

Internal Instructions

Move, Memory to TMS34082 Registers (Predecrement), Constant Count MOVXx

Instruction Type

Example

If the LOAD bit =0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.
CMOVMC, predecrement, constant count
MOVF -*A5, RB7, 4

This example moves four 32-bit single-precision floating-point values from
TMS34020 memory location pointed to by (A5-32) to TMS34082 registers
beginning at RB7. Before each 32-bit transfer, register AS is decremented,;
after each transfer, TMS34082 destination is advanced to the next register in
the TMS34082 register sequence list. Count specifies that four 32-bittransfers
are made.

7-127

MOVX Move, TMS34082 Registers to Memory (Postincrement), Constant Count

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

7-128

Type Syntax
Integer MOVE CRd, -Rd+ [, count]
Double-Precision MOVD CRd, -Rd+ [, count]
Single-Precision MOVF CRd, -Rd+ [, count]
Repeat count times

CRs — +Rd

Rd +32 - Rd

203D ..-:~:.{-:§:2 ; ..:
advance to the next TMS34082 register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 {1 0
cfojfolololt1{t1t{o]t1t]jo}j1t]|R Rd
0 0 1 |typelsize| O 0 transfers
D oJofo]Jolo|lo|o]o CRd
31 2928 20 19 16 15 0
| iD T 0000 0000 [CRd]1000 111t s000 0000 |

CRs TMS34082 source register for the first 32-bit value (or half of the first
64-bit value) to TMS34020 memory

Rd TMS34020 register containing the address for the first value
transterred

count The number of 32- or 64-bit transfers to make. This value must be in
the range 1 to 32 for integer and single-precision moves or 1 o 16 for
double-precision moves. The default value is 1. Count determines the
value of transfers:

Integer or Single-Precision:
if count= 32, then transfers =0
Hcount=1 — 31, then transfers = count

Double-Precision:
If count= 16, then transfers = 0
lfcount=1 — 15, then transfers = 2 x count

MOVx moves the values from TMS34082 registers beginning at CRd to
memory beginning at the address in Rd. After. each 32-bit transfer, Rd is
incremented. The TMS34082 register is advanced to the next register in the
TMS34082 register sequence after every 32-bit transfer for integer and
single-precision moves or after every second 32-bit transfer for
double-precision moves. The number of transfers made is determined by the
value of count.

Internal Instructions

Move, TMS34082 Registers to Memory (Postincrement), Constant Count MOVx

Instruction Type

Example

For double-precision moves, the TMS34082 configuration register LOAD bit
determines whether the 1L.SBs or the MSBs will be moved first:

if the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

if the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.
CMOVCM, postincrement, constant count
MOVE RB7, *A5+, 4

This example moves four 32-bit integer values from TMS34082 registers
beginning at RB7 to TMS34020 memory pointed to by A5. After each 32-bit
transfer, register A5 is incremented, and the TMS34082 destination is
advanced to the next register in the TMS34082 register sequence list. Count
specifies that four 32-bit transfers are made.

7-129

MOVx Move, TMS34082 Registers to Memory (Predecrement), Constant Count

Syntax

Execution

’34020
Instruction Words

Instruction to 34082

Operands

Description

7-130

Type Syntax
Integer MOVE CRs, —+«Rd [, count]
Double-Precision MOVD CRs, —+Rd [, count]
Single-Precision MOVF CRs, —+Rd [, count]
Repeat count times

Rd -32 — Rd

CRs — +Rd

eIy

advance to the next TMS34082 register

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olololoflo|lt]|]1fol1|1]1]R Rd
110 0 0 1 1 1 Jtype |size | O 0 transfers
D olofolojojojo]o CRd
31 2928 20 19 16 15 0
| iD | 0000 0000 | CRd |1ooo 111t s000 oooo|

CRd TMS34082 source register for the first value to TMS34020 memory

Rd TMS34020 register containing the address of the bit immediately
following the 32 bits (or 64 bits for double-precision moves) used to
store the first value transferred.

count The number of 32- or 64-bit transfers to make. This value must
be in the range 1 to 32 for integer and single-precision moves or 1 to
16 for double-precision moves. The default value is 1. Count
determines the value of transfers:

Integer or Single-Precision:
If count = 32, then transfers =0

If count=1 — 31, then transfers = count

Double-Precision:
If count= 186, then transfers =0
If count=1 — 15, then transfers = 2 x count

MOVx moves the values from TMS34082 registers beginning at CRd to
memory beginning at the address (Rd — 32). Before each 32-bit transfer, Rd
is decremented; after each 32-bit transfer (or every two transfers for
double-precision moves), the TMS34082 register is advanced to the next
register in the TMS34082 register sequence. The number of 32-bit transfers
made is determined by the value of count.

Internal Instructions

Move, TMS34082 Registers to Memory (Predecrement), Constant Count MOVX

Instruction Type

Example

For double-precision moves, the TMS34082 configuration register LOAD bit
determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit =1, then the LSBs are moved first
(32 LSBs of the fraction)

It the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.
CMOVCM, predecrement, constant count
MOVD RB7, -*A5, 2

This example moves two 64-bit double-precision values from TMS34082
registers beginning at RB7 to TMS34020 memory pointed to by (A5 — 32).
Before each 32-bit transfer, register A5 is decremented; after every two 32-bit
transters, the TMS34082 destination is advanced to the next register in the
TMS34082 register sequence list. Count specifies that two 64-bittransfers are
made (four 32-bit transfers).

7-131

MOVX Move, Multiple TMS34082 Registers, RA

Syntax

Execution

34020

Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-132

Jype

Integer
Double-Precision
Single-Precision

Syntax

MOVE CRs, CRd [, count]
MOVD CRs, CRd [, count]
MOVF CRs, CRd [, count]

Repeat count times:
CRs — CRd
advance to the next TMS34082 CRs and CRd registers

15 14 13 12 11 10 9 8
0

7 6 5 4 3 2 1 0
11 lol1]1fofo [o o111]o] 1 Jypelsie
1D CRs count CRd
31 2928 25 24 20 19 16 15 0
| iD | CRs [count | CRd | 0001 101t s000 0000]

CRs Source register RA that holds the first value to move

CRd Destination register to hold the first value moved

count The number of registers to move. This value must be

in the range of 1 to 15; the default is 1.

MOVx moves count values from registers starting with CRs to registers
starting with CRd. Both source and destination registers are advanced to the
next register in the TMS34082 register sequence after each move.

The first source register, CRs, must be in the RA register file.
CEXEG, short
MOVF RA7, RB4, 3

This example moves three 32-bit single-precision floating-point values from
TMS34082 register RA7, RA8, and RA9 to TMS34082 registers RB4, RB5,
and RBS, respectively.

Internal Instructions

Move, Multiple TMS34082 Registers, BB MOVX

Syntax

Execution

‘34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

Tvpe

Integer
Double-Precision
Single-Precision

Syntax

MOVE CRs, CRd [, count]
MOVD CRs, CRd [, count]
MOVF CRs, CRd [, count]

Repeat count times:
CRs —» CRd
advance to the next TMS34082 CRs and CRd registers

15 14 13 12 11 10 9 8 7 6 5 4 8 2 1 0
t 1]Jof1]1]o]JolofJoloJ1]1]1]o]tye]sie

ID CRs count CRd
31 2928 25 24 20 19 16 15 0
[ID | 0000 | count | CRd |0001 110t s000 oooT]

CRs TMS34082 source register RB that holds the first value to move
CRd Destination register to hold the first value moved

count The number of registers to move. This value must be in the range of
1 to 15; the defaultis 1.

MOVx moves count values from registers starting with CRs to registers
starting with CRd. Both source and destination registers are advanced to the
next registers in the TMS34082 register sequence after each move.

The first source register, CRs, must be in the RB register file.
CEXEC, short
MOVD RB3, RA7, 3

This example moves the 64-bit double-precision values from TMS34082
registers RB3, RB4, and RB5 to TMS34082 registers RA7, RA8, RA9,
respectively.

7-133

MOVFSRAM Move, MSD to Memory (LAD) (Postincrement), Constant Count

Syntax MOVFSRAM -Rd+ [, count]
Execution Repeat count times
+MCADDR - +Rd
Rd + 32 — Rd
MCADDR + 32 — MCADDR
34020 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
Instruction Words ololololol1l1loli1lol1lRm l Rd
1 0 0 1 0 0 0 0 transfers
ID ofoJofol1]1f1]o]of]o]ofofo
Instruction to ’34082 31 2928 0

[ID |00011 1100 0000 1001 1110 0000 0000 I

Operands Rd TMS34020 register (indirect postincrement) containing the address of
the first 32-bit integer value transferred

count The number of 32-bit transfers to make. This value must be in the
range 1 to 32; the default value is 1. Count determines the value of

transfers:

If count = 32, then transfers =0

If count=1 -5 31, then transfers = count
Implied Operands ~~ MCADDR

TMS34082 indirect address register containing the first address in
memory on the MSD port for the first 32-bit value to move

Description MOVFSRAM moves the 32-bit values from memory on the MSD point
beginning with the address in MCADDR to memory beginning at the address
in Rd. After each 32-bit transfer, Rd and MCADDR are incremented. The
number of 32-bit transfers made is determined by the value of count.

NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit
addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is
incremented by 32 {one 32-bit word).

Instruction Type CMOVCM, postincrement, constant count

7-134 Internal Instructions

Move, MSD to Memory (LAD) (Predecrement), Constant Count MOVFSRAM

Syntax MOVFSRAM —-Rd [, count]
Execution Repeat count times
Rd-32 - Rd
MCADDR - +Rd
MCADDR + 32 - MCADDR
34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words ololololol1 1 o |1 1 1 R | Rd
0 0 1 1 1 0 0 0 0 transfers
ID ofoJolofj1[1]1]1]lo]ofofolo
Instruction to ’34082 31 2928 0

I ID lO 6011 1100 0000 1001 1110 0000 0000 l

Operands Rd TMS34020 register (indirect predecrement) containing the address
of the bit immediately following the 32-bits used to store the first
32-bit integer value transferred

count The number of 32-bit transfers to make. This value must
be in the range 1 to 32; the default value is 1. Count determines the
value of transfers:

it count = 32, then transfers = 0
If count=1 — 31, then transters = count
Implied Operands MCADDR

TMS34082 indirect address register containing the first address in
memory on the MSD port for the first 32-bit value to move

Description MOVFSRAM moves the 32-bit values from memory onthe MSD portbeginning
at the address in MADDR to memory beginning at the address (Rd — 32).
Before each 32-bit transfer, Rd is decremented; after each 32-bit transfer,
MCADDR is incremented. The number of 32-bit transfers made is determined
by the value of count.

NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit
addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is
decremented by 32 (one 32-bit word).

Instruction Type CMOVCM, predecrement, constant count

7-135

MOVTSRAM Move, Memory (LAD) to MSD (Postincrement), Register Count

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Implied Operands

Description

Instruction Type

7-136

MOVTSRAM -Rs+, Rd

fRd=0 HfRd=1—- 31
Repeat 32 times Repeat Rdtimes
+Rs — -MCADDR +Rs — «+MCADDR
Rs +32 — Rs Rs +32 »>Rs
MCADDR + 32 — MCADDR MCADDR + 32 —- MCADDR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ojlojofofo 1|1 o1 [1][1]R Rd
1foflof1]1]1]1]o]o]o]o]R Rs
ID oJofofol1]1[1]1]o]ofofol]o
31 2028 0

[ID [00001 1100 0000 1001 1110 0000 oooo]

Rs TMS34020 source register (indirect postincrement) containing the
address of the first 32-bit value to move

Rd TMS34020 register containing the number of 32-bit transfers
to make. This value must be in the range 0 to 31

KRd=0, then 32 32-bit transfers are made
KRd=1 - 31, then Rd 32-bit transfers are made.
MCADDR

TMS34082 indirect address register containing the first address in
memory on the MSD port where the 32-bit values are to be stored

MOVTSRAM moves 32-bit values from memory beginning at the address in
Rs into memory on the MSD port beginning at the address in MCADDR. After
each transfer, Rs and MCADDR are incremented. The number of 32-bit
transfers made is determined by the contents of Rd.

NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit
addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is
incremented by 32 (one 32-bit word). .

CMOVMC, postincrement, register count

Internal Instructions

Move, Memory (LAD) to MSD (Postincrement), Constant Count MOVTSRAM

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Implied Operands

Description

Instruction Type

MOVTSRAM -Rs+ [, count]

Repeat count times
+Rs —» -MCADDR
Rs +32 - Rs
MCADDR + 32 —- MCADDR

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 1 0 0 transfers

oo 1]ofloflo]o]|R Rs

ID ofofofof1[1]1]ololofofo]o
31 2928 0

| D [00001 1100 0000 1001 1110 0000 oooo]

Rs TMS34020 source register (indirect postincrement) containing the
address of the first 32-bit value to move

count The number of 32-bit transfers to make. This value must be in the
range 1 to 32; the default value is 1. Count determines the value of

transfers:

If count= 32, then transfers =0

if count=1 — 31, then transfers = count
MCADDR

TMS34082 indirect address register containing the first address in
memory on the MSD port where the 32-bit values are to be stored

MOVTSRAM moves the 32-bit values from memory beginning at the address
in Rs into memory onthe MSD portbeginning atthe address in MCADDR. After
each fransfer, Rs and MCADDR are incremented. The number of 32-bit
transfers made is determined by the value of count.

NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit
addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is
incremented by 32 (one 32-bit word).

CMOVMC, postincrement, constant count

7-137

MOVTSRAM Move, MSD to Memory (LAD) (Predecrement), Constant Count

Syntax MOVTSRAM -+Rs [, count]
Execution Repeat count times
Rs-32 - Rs
«Rs — -MCADDR
MCADDR + 32 —- MCADDR
34020 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Instruction Words ololo]Jo|l1]o|lo|lof[o]ol]n1 transfers
1101}o0 ojlo|lo|o}jo Rs
ID oJoflofjolt1l1]1]ofofjoJo]o]o
Instruction to ’34082 31 29 28 0
[1D | oooo1 1100 0000 1001 1110 0000 0000 |
Operands Rs TMS34020 source register (indirect predecrement) containing the
address of the bit immediately after first 32-bit integer to move to
the coprocessor

count The number of 32-bit transfers to make. This value must be in the
range 1 to 32; the default value is 1. Count determines the value of

transfers:

If count = 32, then transfers = 0

it count=1— 31, then transfers = count
implied Operands MCADDR

TMS34082 indirect address register containing the first address in
memory on the MSD port where the 32-bit values are to be stored

Description MOVTSRAM moves the 32-hit values from memory beginning at the address
in (Rs — 32) into memory on the MSD port beginning at the address in
MCADDR. Before each transfer, the contents of Rs are decremented; after
each transfer, the contents of the MCADDR register are incremented. The
number of 32-bit transfers made is determined by the value of count.

NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit

addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is
decremented by 32 (one 32-bit word).

Instruction Type CMOVMC, predecrement, constant count

7.138 Internal Instructions

Multiply MPYX

Syntax

Execution

'34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

Type Syntax
Integer MPYS CRsy, CRsp, CRd
Double-Precision MPYD CRs;, CRsp, CRd

Single-Precision MPYF CRsy, CRso, CRd

CRsq x CRs; — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 o]t 1 [ofofojo]of1[o]o]o [type]sze
ID CRs4 CRsp CRd
31 20 28 25 24 21 20 1615 0
[D [CRsy [CRs; | CRd |ooo1 000t s000 ooo_oJ
CRsy Coprocessor register containing the first operand

CRso Coprocessor register containing the second operand

CRd Coprocessor destination register

MPYx multiplies the contents of CRs by the contents of CRss and stores the
resultin CRd. The two operands, CRs{ and CRso, mustbe in opposite register
files.

CEXEC, short
MPYD RAS5, RB6, RA7

This example multiplies the double-precision floating-point contents of RAS by
RB6 and stores the double-precision-point result in RA7.

7-139

MPYX Load and Multiply

Syntax

Execution

’34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

7-140

Type Syntax

Integer MPYS Rs;, Rsp, CRsy, CRsp, CRd
Single-Precision MPYF Rsj, Rsp, CRsy, CRsp, CRd
RS1 - CRS1

Rs, — CRs»o

CRs; x CRsy — CRd

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cJlojJojolo 11ofof1{o]R Rsq
o{1|of1]ofjo}o|tyelO]|O]|O]|R Rso
ID CRs{ CRs» CRd
31 20 28 25 24 21 20 16_15 0
{ D | CRsy | CRsp | CRd [0101 000t 0000 0000

Rs1 TMS34020 source register for the first value to coprocessor
Rso TMS34020 source register for the second value to coprocessor
CRs{ Coprocessor register to contain the first operand

CRso, Coprocessor register to contain the second operand

CRd Coprocessor destination register

MPYx loads the contents of Rs4 and Rsy into CRs¢ and CRs, respectively,
multiplies CRs4 x CRs», and stores the resultin CRd. The two operands, CRs4
and CRs», must be in opposite register files.

The double-precision form of this instruction is not supported.
CMOVGC, two registers
MPYS A5, A6, RA5, RB6, RA7

This example loads TMS34020 registers A5 and A6 into TMS34082 registers
RAS5 and RB6 respectively, multiplies the contents of RA5 by RB6, and stores
the integer result in RA7.

Internal Instructions

Load from Memory (Postincrement) and Multiply MPYX

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

Type Syntax

Integer MPYS -Rs+ CRsy, CRsp, CRd
Double-Precision MPYD -Rs+, CRsy, CRsp, CRd
Single-Precision MPYF -Rs+, CRsy, CRsp, CRd
«Rs — CRs;

Rs +32 — Rs

..........

*Rs — CRs»p

CRsy x CRsy — CRd

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 1 1 0 1

o
(=]
o
=]
c
3
=

1 0 0 1 0 0 0 |type | size | O 0 R Rs
ID CRs4 CRsp CRd
31 20 28 25 24 21 20 16 15 0
| ID | CRs [CRso | CRd] 1001 000t s000 0000

Rs TMS34020 source register containing the memory address
CRsy Coprocessor register to contain the first operand
CRso Coprocessor register to contain the second operand

CRd Coprocessor destination register

MPYx loads the contents of memory pointed to by Rs into CRsq and CRso,
multiplies CRs¢ by CRs» and stores the result in CRd. After each load from
memory, Rs is incremented by 32. The two operands, CRs4 and CRso, must
be in opposite register files.

CMOVMC, postincrement, constant count
MPYS *A5+, RA5, RB6, RA7

This example loads memory starting at the address given by TMS34020
register A5 into coprocessor registers RA5 and RB6, multiplies the contents
of RA5 by RB6 and stores the resuit in RA7.

7-141

MPYX Load from Memory (Predecrement) and Muitiply

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-142

Tvpe Syntax

Integer MPYS --Rs+, CRsy, CRsp, CRd
Double-Precision MPYD - *Rs, CRsy, CRso, CRd
Single-Precision MPYF --Rs+ CRs;, CRs;, CRd
Rs-32 - Rs

*Rs — CRsy4

CRsq x CRsy, — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 01010 1 01]0 0|0 (0

o
o
[}
o
<
=}
-

1 0 0 1 0 0 0 (type|size| O 0 R Rs
D CRs1 CRso CRd
31 29 28 25 24 21 20 16 15 0
D | CRsy | CRs; | CRd [1001 000t 000 0000

Rs TMS34020 source register containing the memory address
CRsy Coprocessor register to contain the first operand
CRso Coprocessor register to contain the second operand

CRd Coprocessor destination register

MPYx loads the contents of memory pointed to by Rs into CRsy and CRso,
multiplies CRs{ by CRs» and stores the result in CRd. Before each load from
memory, Rs is decremented by 32. The two operands, CRs1 and CRs», must
be in opposite register files.

CMOVMC, predecrement, constant count
MPYD -*A5, RA5, RB6, RA7

This example loads memory starting at the address given by TMS34020
register AS minus 32 into coprocessor registers RA5 and RB6, multiplies the
contents of RAS by RB6 and stores the result in RA7.

Internal Instructions

Transpose a Matrix MTRANX

Syntax Type Syntax

Integer MTRAN

Double-Precision MTRAND

Single-Precision MTRANF
’34020 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Instruction Words 1 {1 o1]1fofofjofoj1]1]ofol]1 [vpe]sze

ID cjJololo]Jo|Jojojo]Jo]Jojo]o]o

Instruction to ’34082 31 28 28 0

[ID | 00000 0000 0000 0011 001t s000 0000 |
Description This instruction transposes a matrix. (Interchanges the row and column

elements of the matrix.)
Implied Operands RAO = BOO, RA1 =B01, RA2 = B02, RA3 = B03,

RA4 = B10, RAS5 = B11, RA6 = B12, RA7 = B13,

RA8 = B20, RA9 = B21, RBO = B22, RB1 = B23,

RB2 = B30, RB3 = B31, RB4 = B32, RB5 = B33
Temporary Storage None
Outputs RAO = B00, RA1 =B10, RA2 = B20, RA3 = B30,

RA4 = B01, RAS5 = B11, RA6 = B21, RA7 = B31,

RA8 = B02, RA9 = B12, RBO = B22, RB1 =B32,

RB2 = B03, RB3 = B13, RB4 = B23, RBS5 = B33
Instruction Type CEXEC, short

7-143

NEGXx Negate

Syntax

Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-144

Type Syntax
Integer NEG CRs, CRd
Double-Precision NEGD CRs, CRd

Single-Precision
—CRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4
1

NEGF CRs, CRd

3 2 1 0
1

11]Jof1]1foJoJoJoJolH [1] 1 [type]sue
ID CRs ojo |1 |1 CRd

31 29 28 25 24 20 19 16 15 0

| D | CRs | 0011 [CRd |0001 111t s000 oooo|

CRs TMS34082 register containing the operand

CRd TMS34082 destination register

NEGx negates the contents of register CRs and stores the result in CRd.
The integer instruction (NEG) takes the 2s complement of the contents of CRs
and stores the result in CRd.

The source register, CRs, must be in the RA register file.
CEXEC, short
NEGD RA5, RB7

This example negates the double-precision floating-point value in RA5 and
stores the result in RB7.

Internal Instructions

Load and Negate NEGXx

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

Type Syntax
Integer NEG Rsy, CRs, CRd
Double-Precision NEGD Rsy, Rsp, CRs, CRd

Single-Precision NEGF Rs;, CRs, CRd

-CRs — CRd

Integer or Single-Precision:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olojojofjo|]1]|]t]o}lo]o|1]|R Rs1
o [+ ol 1111]welofloJoJo]ofo]o]o
D CRs oo {1 |1 CRd
Double-Precision:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 _0
ofojlojo|o]1l1]o|lo]|t]|o]|R Rs{
of1]o |1 {111]1]1]o0o]o]|R Rso
D CRs oo 1|1 CRd
31 20 28 25 24 20 19 16 15 0
g D l CRs] 0011 | CRd]0101 111t s000 oooo]

Rsy TMS34020 source register for the value (or half the value for double-
precision) to TMS34082

Rso TMS34020 source register for the remainder of the 64-bit double-
precision floating-point vaiue to TMS34082

CRs
CRd

TMS34082 register containing the operand
TMS34082 destination register

NEGx loads the contents of Rs{ (and Rso for double-precision}) into register
CRs, negates CRs, and stores the result in CRd. The integer instruction (NEG)
takes the 2s complement of the value.

The source register, CRs, must be in the RA TMS34082 register file.
CMOVGC, one or two registers
NEGD A5, A6, RA5, RB7

This example loads the double-precision floating-point contents of TMS34020
registers A5 and A6 into RA5, negates the contents of RA5 and stores the
result in RB7.

7-145

NEGX Load from Memory (Postincrement) and Negate

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-146

Tyvpe Syntax

Integer NEG -Rs+, CRs, CRd
Double-Precision NEGD -Rs+, CRs, CRd
Single-Precision NEGF -Rs+, CRs, CRd
+Rs — CRs

Rs +32 — Rs

3

RS i e S B A]
-CRs —» CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oJofoflofo |11 o1 [ofo]o|[o]o]tansfers
1 0 0 1 1 1 1 |type |size | O 0 Rs
D CRs oo 11 CRd
31 29 28 25 24 20 19 16 15 0
| ID] CRs | 0011 | CRd |1oo1 111t s000 0000

Rs TMS34020 register containing the memory address
CRs TMS34082 register to contain the operand
CRd TMS34082 destination register

NEGx loads the contents of memory pointed to by Rs into CRs, negates the
contents of CRs, and stores the result in CRd. The integer instruction (NEG)
takes the 2s complement of the value. After each load from memory, Rs is
incremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.
CMOVMC, postincrement, constant count
NEGF *A5+, RA5, RB7

This example loads memory at the address given by TMS34020 register A5
into TMS34082 register RA5, negates the contents of RA5, and stores the
result in RB7.

Internal Instructions

Load from Memory (Predecrement) and Negate NEGX

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

Type Syntax

Integer NEG --Rs, CRs, CRd
Double-Precision NEGD --+Rs, CRs, CRd
Single-Precision NEGF --+Rs, CRs, CRd
Rs-32 - Rs

Rs - CRs

-CRs — CRd
15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0
0lo o1]oloJoJofo|1]o]ofol]1 | 0
i 0 0 1 1 1 1 |type|size { O 0 Rs
D CRs oo |1 1]1 CRd
31 20 28 25 24 20 19 16 15 0
{ ID] CRs] 0011 [CRd |1oo1 111t s000 oooo—|

Rs TMS34020 register containing the memory address
CRs TMS34082 register to contain the operand
CRd TMS34082 destination register

NEGx loads the contents of memory pointed to by Rs into CRs, negates the
contents of CRs, and stores the result in CRd. The integer instruction (NEG)
takes the 2s complement of the value. Before each load from memory, Rs is
decremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.
CMOVMC, predecrement, constant count
NEGD -*A5, RA5, RB7

This example loads memory starting at the address given by TMS34020
register A5 minus 32 into TMS34082 register RA5 negates the contents of
RAS5, and stores the result in RB7.

7-147

NOT Not, 1s Complement, Integer

Syntax
Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-148

NOT CRs, CRd

NOT CRs — CRd

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0

t 1 fof1{1lololofofo{t1]1]ti1]o]o

ID CRs 0ojlojfo]1 CRd

31 20 28 25 24 20 19 1615 0
[o] crs [ooot | crd Jooo1 1110 0000 0000 |
CRs TMS34082 source register containing the 32-bit integer operand

CRd TMS34082 destination register

NOT takes the 1s complement of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.
CEXEG, short
NOT RAS5, RA7

This example takes the 1s complement of the contents of RA5 and stores the
result in RA7.

Internal Instructions

Load and Not, 1s Complement, Integer NOT

Syntax

Execution

34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

NOT Rs, CRs, CRd

Rs - CRs

NOT CRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 {1 0

oloflotololt1]1]o]lolo]l1]R Rs

ojt1 o1 1]1]1]o]oflo]Jolojo]ofo]o
ID CRs 0o |lo o1 CRd

31 20 28 25 24 20 19 16 15 0

l 1D [CRs | 0001 | CRd |01o1 1110 0000 oooo]

Rs TMS34020 source register for the 32-bit integer value to TMS34082
CRs TMS34082 register to contain the 32-bit integer operand
CRd TMS34082 destination register

NOT loads the contents (integer) of Rs into the CRs, takes the 1s complement
of the contents of register CRs, and stores the result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.
CMOVGC, one register
NOT A5, RA5, RA7

This example loads TMS34020 register A5 into TMS34082 register RA5, takes
the 1s complement of the contents of RA5, and stores the result in RA7.

7-149

NOT Load from Memory (Postincrement) and Not, 1s Complement, Integer

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-150

NOT «Rs+, CRs, CRd

*Rs — CRs

Rs + 32 — Rs

NOT CRs — CRd

15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
o foJoJofJo[t+J1 o1 JoJoJoJoJoJoTJu
1lofol1}1]1]1]lo]olo]o]R Rs

ID ~ CRs o|lo o1 CRd

31 20 28 25 24 20 19 16 15 0
| ID | CRs [0001 | CRd 10101 1110 0000 oooo_|

Rs TMS34020 register containing the memary address
CRs TMS34082 register to contain the 32-bit integer operand
CRd TMS34082 destination register

NOT loads the integer contents of memory pointed to by Rs into the CRs, takes
the 1s complement of the contents of register CRs, and stores the result in
CRd. After each load from memory, Rs is incremented by 32.

The source register, CRs, must be in the RA TMS834082 register file.
CMOVMC, postincrement, constant count
NOT *A5+, RA5, RA7

This example loads memory at the address given by TMS34020 register A5
into TMS34082 register RAS, takes the 1s complement of the contents of RAS,
and stores the result in RA7.

Internal Instructions

Load from Memory (Predecrement) and Not, 1s Complement, Integer NOT

Syntax

Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

NOT --Rs, CRs, CRd

Rs-32 -5 Rs
«Rs — CRs

NOT CRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 o {1 {ofofJo]oJo]1]o]ofofol]:1
1 1 olofolo|R Rs

) CRs ofojo |1 CRd

31 20 28 25 24 20 19 16 ‘15 0
[iD | CRs | 0001 | CRd io1o1 1110 0000 0000

Rs TMS34020 register containing the memory address
CRs TMS34082 register to contain the 32-bit integer operand
CRd TMS34082 destination register

NOT loads the contents (integer) of memory pointed to by Rs into the CRs,
takes the 1s complement of the contents of register CRs, and stores the result
in CRd. Before each load from memory, Rs is decremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.
CMOVMC, predecrement, constant count
NOT -*A5, RA5, RA7

This example loads memory at the address given by TMS34020 register A5
minus 32 into TMS34082 register RA5 takes the 1s complement of the
contents of RA5, and stores the result in RA7.

7-151

ONEX Load One into a TMS34082 Register

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-152

Type Syntax
Integer ONE CRd
Double-Precision ONED CRd
Single-Precision ONEF CRd
1 - CRd

15 14 13 12 11 10 98 8 7 6 5 4
t]1Jofj1]1folofofofo]|1]o]

D 111 to}lt1 {11110}t CRd
31 29 28 2524 21 20 16 15 0
| D | 1101 [1101 | CRd |0001 000t s000 oooo|

CRd TMS34082 destination register.

ONEX loads the value one (of the appropriate type) in the CRd register.
CEXEC, short

ONED RA3

This example loads RAS3 with a double-precision one.

Internal Instructions

Compare a Line to Two Planes of a Clipping Volume OUTC3Xx

Syntax

’34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

Type Syntax
Integer OUTC3X
Double-Precision OUTC3XD
Single-Precision OUTC3XF
15 13 12 11 10 9 8 7 6 5 4 3 2 {1 0

—_
o
-

type | size

14
1J1J0 11]olojfofo
ID

040 cojojof(fo}jojolojo 0 o|o

31 29 28 0
[D Lo 0000 0000 000G 0011 101t s000 oooo]

The OUTC3Xx algorithm compares the given endpoints of a line to the clipping
volume in the X-axis. The instruction sets three status register bits based on
the location of the two endpoints with respectto the clipping volume. OUTC3Xx
is used before the clipping instructions to determine which ends of the line need
to be clipped.

RAO = X1 RBO = X2

RA1=Y1 RB1=Y2

RA2 =71 RB2 =272

RA3 = W1 RB3 = W2

CT =RB3 ;CT=W2

C =RA3 ;C =W1

CT=CT - |RBO| ;setV=1if (W2-]X2|)<0
C =C~|RA0| ;setN=1if (W1-|X1])<0
fN=1andV =1 and (sign X1 = sign X2}, thensetZ = 1
C,CT

Status bits set:

v Description

1 both points outside on same side of volume in X-axis

1 both points outside on opposite sides of the volume in X-axis
0 only point P1 [X1,Y1,21,W1] outside of volume in X-axis

1 only point P2 [X2,Y2,22,W2] outside of volume in X-axis

0 both points P1 and P2 inside the volume in X-axis

CEXEC, short

OO OO =N

7-153

OUTC3YX Compare a Line to Two Planes of a Clipping Volume

Syntax

34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage
Outputs

Instruction Type

7-154

Type Syntax
Integer OUTC3Y
Double-Precision OUTC3YD
Single-Precision OUTC3YF

15 14 13 12 11 10 © 8 7 6 5 4 3 2 1 0
1 | 1 [0 ojlojoflo 1 [11 1o 1 [type]size
ID

0 0}10])]0 0 oo 0 0 0]o0 0 1

31 29 28 0
[D]ooooo 0000 0001 0011 101t s000 00001

The OUTC3Yx algorithm compares the given endpoints of a line to the clipping
volume in the Y-axis. The instruction sets three status register bits based on
the location of the two endpoints with respectto the clipping volume. OUTC3Yx
is used before the clippinginstructions to determine which ends of the line need
to be clipped.

RAO = X1 RBO = X2

RA1 =Y1 RB1=Y2

RA2 = Z1 RB2 = 72

RA3 = W1 RB3 = W2

CT =RB3 ; CT=W2

C =RA3 ;C =Wi1

CT =CT-|RB1| ;setV=1if(W2-1]Y2))<0

C =C-|RA1| ;SetN=1if (W1 ~|Y1])<0O
IfN=1and V= 1and (sign Y1 =sign Y2), thensetZ =1

C,CT

Status bits set:

Z NV Description

1 1 1 both points outside on same side of volume in Y-axis

0 1 1 both points outside on opposite sides of the volume in Y-axis
0 1 0 onlypoint P1[X1,Y1,Z21,W1] outside of volume in Y-axis
0 0 1 onlypoint P2 [X2,Y2,Z22,W2] outside of volume in Y-axis
0 0 0 both points P1 and P2 inside the volume in Y-axis

CEXEC, short

Internal Instructions

Compare a Line to Two Planes of a Clipping Volume OUTGC3Zx

Syntax

’34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

Jvpe Syntax
Integer OUTC3Z
Double-Precision OUTC3zD
Single-Precision OUTC3ZF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0

size

1]1T110000111 typg
ID ocloJolofjololJofjolo]lolol]1

0

31 29 28

0

| iD [0 0000 0000 0010 0011 101t s000

0000 J

The QUTC3Zx algorithm compares the given endpoints of aline tothe cli

pping

volume in the Z-axis. The instruction sets three status register bits based on
the location ofthe two endpoints with respect to the clipping volume. OUTC3Zx
is used before the clipping instructions to determine which ends of theline need

to be clipped.

RAO = X1 RBO = X2

RA1 =Y1 RB1=Y2

RA2 = Z1 RB2 =272

RA3 = W1 RB3 = W2

CT =RB3 ;CT=W2

C =RA3 ;C =Wi1

CT =CT - |RB2| ;setV=1if(W2-|22|)<0
C =C-|RA2| ;setN=1if (W1 -|Z1])<0

liN=1and V=1 and (sign Z1 = sign Z2), thensetZ = 1
C,CT
Status bits set:

Vv Description

1 both points outside on same side of volume in Z-axis.

1 both points outside on opposite sides of the volume in Z-axis
0 only point P1 [X1,Y1,Z1,W1] outside of volume in Z-axis

1 only point P2 [X2,Y2,72,W2] outside of volume in Z-axis

0 both points P1 and P2 inside the volume in Z-axis

CEXEC, short

COoOO0OO =N
0O ==z

7-155

PASSX Pass, Coprocessor to Coprocessor, One Fiegister

Syntax

Execution

‘34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-156

Type Syntax

Integer PASS CRs, CRd

Double-Precision PASSD CRs, CRd

Single-Precision PASSF CRs, CRd

CRs — CRd

15 14 13 12 {41 10 9 8 7 6 5 4 3 2 1 0
1[1]0 1|1|o|o ojo 1|1I1|type|size

1D CRs ofloflofo CRd

31 20 28 25 24 21 20 16 15 0
[o | crs [0000 T CRd | 0001 111t s000 0000 |
CRs TMS34082 source register containing the operand. Must be from RA

register file

CRd TMS34082 destination register

PASSx moves a value from CRs to CRd. PASSx may be used to move values

into and out of the C and CT feedback registers.

CEXEC, short
PASSD CT, RBO

This example moves the 64-bit double-precision value from feedback register
CT to TMS34082 register RBO.

Internal Instructions

Pglynomial Expansion POLYX

Syntax

34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage
Oulputs

Instruction Type

Syntax

POLY CRsy, CRs»

POLYD CRsy, CRsp
POLYF CRs;, CRso

15 14 13 12 11 10 9 8 7 6 & 4 3 2 1 0
0

Ivpe

Integer
Double-Precision
Single-Precision

111]o 1]1]o | o[t [1]1 1J_1 l"YPelsize
) CRs{ olofofof1 CRs»

31 29 28 25 24 20 19 16 15 0

[1D T CRsy | 0 0001 | CRsp 10011 111t 8000 o_ooo]

POLYx performs a multiply and accumulate of the form:
A x X0+ Ay x XM e A o x X2 4) + Ag
which can also be represented as:
(- (A XX+ Ap) X X+ A o) XX +..) + Ag

where the value X is assumed present in the TMS34082 C register and the
coefficients A, through A{ are to be multiplied by X and accumulated. This
instruction multiplies CRs4 by C, adds the result to CRsy, and stores the sum
in CRs1.

CRsy TMS34082 register containing A, or accumulated value. Must be in

the RA register file.

CRsy TMS34082 register containing Ap—1 or next coefficient in series.

Must be in the RB register file.

CT = C x CRs4 s Ap x X
CRs1=CT + CRs»o s (Ap x X) + Apeq

CT
The new accumulated value in CRs

CEXEGC, short

7-157

SCALEX Scale and Convert Coordinates for Viewport

Syntax

’34020
Instruction Words

Instruction to 34082

Description

Implied Operands

Algorithm

Temporary Storage
Outputs

Instruction Type

7-158

Type Syntax

Integer SCALE

Double-Precision SCALED

Single-Precision SCALEF
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 |1 Lo 1 ojJoJo]|1]1 0 [type [size

ID olo 0 ojojojofojojo

31 20 28 0

| iD Tooooo 0000 0000 0011 000t sO00 0000 |

This instruction is used to scale and translate screen coordinates. Sn is the
viewport scaling constant, Cn is the center of viewport constant, and V1 (X1,
Y1, Z1, W1) is the vertex to scale and convert.

RAO = X1
RA1 =Y1
RA2 = Z1
RA3 = W1
RA7 = Sx
RA8 = Sy
RA9 = Sz

CT = RA3

C =RA0/CT

RAO = (C x RA7) + RB7
C =RA1/CT

RA1 = (C x RA8) + RB8
RA2 = RA2/CT

RA3 =CT

RA2 = RA2 x RA9

RA2 = RA2 + RB9

C,CT

RAO = X1’
RA1 =Y71’
RA2 =27
RA3 = W1

CEXEC, short

; Vertex to scale and convert,
; these are homogeneous coordinates

RB7 = Cx
RB8 = Cy
RB9 =Cz

; W1
; X1 ={(X1/W1) x Sx) + Cx

;Y1 =((Y1/W1) xSy) +Cy

;21 =((Z1/W1)xSz)+Cz

Internal Instructions

Square SQRX

Syntax

Execution

34020
Instruction Words

Instruction to 34082

Operands

Description

Instruction Type

Example

Tvpe

Syntax

Integer
Double-Precision
Single-Precision

CRs x CRs — CRd

SQR CRs, CRd
SQRD CRs, CRd
SQRF CRs, CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 Jof1l1]JofofoJo]o] 1] 1] 1] 1 [tye]sie
ID CRs 1 0 CRd
31 20 28 25 24 21 20 1615 0
| ID] CRs] 1ooﬂ CRd | 0001 111t s000 oooo|
CRs TMS34082 source register containing the operand
CRd TMS34082 destination register

SQRx squares the contents of CRs and stores the result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.

CEXEC, short

SQR RA5, RA7

This example squares the contents of RAS and stores the result in register

RA7.

7-159

SQRX Load and Square

Synlax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-160

Type Syntax

Integer SQR Rsy, CRs, CRd
Double-Precision SQRD Rsy, Rso, CRs, CRd
Single-Precision SQRF Rsy, CRs, CRd

Rsq — CRs

CRs x CRs — CRd

Integer or Single-Precision:

15 14 18 12 11 10 9 8 7 6 5 4 3 2 1 0
ojlojo]lolojt1}t}ojo]o}1 Rs{
o {1 Jof1 1 [1]1|tye]lolof[ofo]ofjo[o]o
) CRs 1 Jojolo CRd
Double-Precision:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o|lojJojolol1}1]o]o|1]o]R Rsq
olt1fjo |11 |11}t }1]o]o]R Rso
ID CRs 1 lo]Jojolo CRd
31 29 28 25 24 21 20 16 15 0
| ID L CRs] 1000] CRd |o101 111t s000 oooo—l

Rs4 TMS34020 source register for the value (or half the value for double-
precision operands) to TMS34082

Rso TMS34020 source register for the remaining half of the 64-bit operand
to the TMS34082

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRXx loads the contents of Rs into CRs, squares the contents of CRs, and
stores the resutt in CRd.

The source register, CRs, must be in the RA TMS34082 register file.
CMOVGC, one register
SQR A5, RA5, RB7

This example loads TMS34020 register A5 into TMS34082 register RAS,
squares the contents of RA5, and stores the result in RB7.

Internal Instructions

Load from Memory (Postincrement) and Square SQRX

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Syntax

SQR -As+, CRs, CRd
SQRD +Rs+, CRs, CRd
SQRF ~Rs+ CRs, CRd

Type
Integer
Double-Precision
Single-Precision

*Rs —» CRs
Rs + 32 - Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofofoJofJo[11 lof1]ofo]o]o]o |tansfers
oo 11 [1]1 |tye|lszel 0|0 Rs
ID CRs 1{o]o}fo CRd
31 20 28 25 24 21 20 16 15 0
[o | crRs [1000 | CRd [1001 111t s000 0000

Rs TMS34020 source register containing the memory address
CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRx loads the contents of memory pointed to by Rs into CRs, squares the
contents of CRs, and stores the result in CRd. After each load from memory,
Rs is incremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.
CMOVMC, postincrement, constant count
SQR *A5+, RA5, RB7

This example loads memory starting at the address given by TMS34020
register A5 into TMS34082 register RAS, squares the contents of RAS, and
stores the result in RB7.

7-161

SQRX Load from Memory (Predecrement) and Square

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

7-162

Tvpe

Syntax

Integer

Double-Precision
Single-Precision

SQR -+Rs, CRs, CRd
SQRD -+Rs, CRs, CRd
SQRF --Rs, CRs, CRd

Rs-32 — Rs
+Rs — CRs
CRs x CRs — CRd
15 14 183 12 11 10 9 8 7 6 5 4 83 2 1 0
0o fo o {1]JoJoJofofo]1]o]o]o |tanstes
ofo 111 type [size] 0 [0 | R Rs
D CRs 1]Jojoijo CRd
31 29 28 25 24 21 20 16 15 ’ 0
[ID | CRs |1ooo| CRd]1001 111t s000 0000

Rs
CRs

CRd

TMS34020 source register containing the memory address
TMS34082 register to contain the operand

TMS34082 destination register

SQRXx loads the contents of memory pointed to by Rs minus 32 into CRs,
squares the contents of CRs, and stores the result in CRd. Before each load
from memory, Rs is decremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVMC, predecrement, constant count

SQR -*A5, RA5, RB7

This example loads memory starting at the address given by TMS34020
register A5 minus 32 into TMS34082 register RA5, squares the contents of
RAS5, and stores the resuit in RB7.

Internal Instructions

Square Root SQRTX

Synlax

Execution

34020
Instruction Words

Instruction to 34082

Operands

Description

Transparency

Example

Type

Syntax

Integer
Double-Precision
Single-Precision

VCRs — CRd

SQRT CRs, CRd
SQRTD CRs, CRd
SQRTF CRs, CRd

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
1t {1 fo]1]1]o]ofo 1] 1] 1] 1 [type]size
ID CRs 110 1 CRd
31 20 28 25 24 21 20 16 15 0
| o | ©ors | 1001 | CRd |0001 111t s000 0000 |
CRs TMS34082 source register containing the operand
CRd TMS34082 destination register

SQRTXx takes the square root of the contents of CRs and stores the result in

CRd.

The source register, CRs, must be in the RA TMS34082 register file.

CEXEC, short
SQRTD RA5, RA7

This example takes the square root of the contents of RA5 and stores the result

in RA7.

SQRTX Load and Square Root

Syntax

Execution

Type Syntax

integer SQRT Rs;, CRs, CRd
Double-Precision SQRTD Rsy, Rsy, CRs, CRd
Single-Precision SQRTF ARsy, CRs, CRd

RS1 - CRS

VCR —>CR

’34082 Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

7-164

Integer or Single-Precision:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofojJojJojJoJ1fj1fioflo}|o]|1]R Rsq
oj1Jol1J1]1]1]we]olojolo]lo]o]o]o

ID CRs 11001 CRd
Double-Precision:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofolojolofl1l1tolofj1|olnRm Rsq
o1 fjo |ttt]1]1 1 Jo|0]|R Rso
) CRs 1 |o o] CRd
31 29 28 25 24 21 20 16 15 0
| D] CRs | 1001] CRd 10101 111t s000 oooo]

Rsq TMS34020 source register for the value (or half the double-precision
value) to the TMS34082

Rso TMS34020 source register for the value for the remaining half of the
double-precision value to the TMS34082

CRs TMS34082 register to contain the operand
CRd TMS34082 destination register

SQRTx loads the contents of Rs into CRs, takes the square root of the contents
of CRs, and stores the result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.
CMOVGGC, one register

SQRTF A5, RA5, RA7

This example loads TMS34020 register A5 into TMS34082 register RA5, takes

the square root of the single-precision floating-point value in RA5, and stores
the resultin RA7.

Internal Instructions

Load from Memory (Postincrement) and Square Root SQRTX

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

Tvpe Syntax

Integer SQRT +As+, CRs, CRd
Double-Precision SQRTD -Rs+, CRs, CRd
Single-Precision SQRTF -As+, CARs, CRd
+Rs — CRs

Rs +32 — Rs

YCRs —» CRd
15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0
0 ojfoft]1]o[1]of[ofo]o]o |tansers
1 1 1 |type |size | O 0 Rs
iD CRs 110101 CRd
31 29 28 25 24 21 20 16 15 0
[ID | CRs] 1001 [CRd]1001 111t s000 oooo]

Rs TMS34020 source register containing the memory address
CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRTx loads the contents of memory pointed to by Rs into CRs, takes the
square root of the contents of CRs, and stores the result in CRd. After each
load from memory, Rs is incremented by 32.

CMOVMC, postincrement, constant count
SQRTD *A5+, RA5, RA7

This example loads memory starting at the address given by TMS34020
register AS into TMS34082 register RA5, takes the square root of the
double-precision floating-point value in RA5, and stores the result in RA7.

SQRTX Load from Memory (Predecrement) and Square Root

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

7-166

Type

Integer
Double-Precision
Single-Precision

Svntax

SQRT --+Rs, CRs, CRd
SQRTD --+Rs, CRs, CRd
SQRTF --Rs, CRs, CRd

Rs-32 — Rs
«Rs — CRs
i

VCRs — CRd
15 14 13 12 11 10 © 8 7 6 5 4 3 2 1 0
o JoJofof1]ofo]JofJo]o]|1]o]o]o|tansters
1 oot {1111 |type]sze{O [0 |R Rs
ID CRs 1101101 CRd
31 20 28 25 24 21 20 16 15 0
| ID | CRs | 1001] CRd |1oo1 111t s000 0000

Rs TMS34020 source register containing the memory address

CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

SQRTx loads the contents of memory pointed to by Rs minus 32 into CRs,
takes the square root of the contents of CRs, and stores the result in CRd.
Before each load from memory, Rs is decremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.
CMOVMC, predecrement, constant count
SQRTF ~*A5, RA5, RA7

This example loads memory starting at the address given by TMS34020
register A5 minus 32 into TMS34082 register RAS, takes the square root ofthe
single-precision floating-point value in RA5, and stores the result in RA7.

Internal Instructions

Square Root of Absolute Value SQRTAX

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

Tvpe

integer
Double-Precision
Single-Precision

VvCRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1]1]o]1][1]oJojofo]o 1 |1 | 1 |type|size

Syntax

SQRTA CRs, CRd
SQRTAD CRs, CRd
SQRTAF CRs, CRd

D CRs 1 lol11o CRd
31 2028 25 24 21 20 16 15 0
| iD | CRs | 1010 | CRd [ooo1 111t s000 oooo|

CRs TMS34082 register containing the operand

CRd TMS34082 destination register

SQRTAXx takes the square root of the absolute value of the contents of CRs and
stores the result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.
CEXEC, short
SQRTA RAS5, RB7

This example takes the square root of the absolute value of RA5 and stores
the result in RB7.

7-167

SQRTAX Load and Square Root of Absolute Value

Syntax

Execution

Type

Syntax

Integer

Double-Precision
Single-Precision

Rs; — CRs

z.z: s .fg.wf\' 23
vCRs — CRd

34082 Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

7-168

SQRTA Rs;, CAs, CRd

.
S

Integer or Single-Precision:

SQRTAD Rsy, Rsp, CRs, CRd
SQRTAF Rs;, CRs, CRd

15 14 13 121110 8 7 6 5 4 3 2 1 0
ofojJojo o] of{ofo]1 Rsy
o1 Jo]1]1]1 type] 0 [0 o]ofofo]ofo
ID CRs 1t Jo]1}o CRd
Double-Precision:
15 14 13 121110 8 7 6 5 4 3 2 1 0
olofjoJo]o]1 cJo|o|o|R Rs1
o1 o1]1]1 t11]1o0]o0o]fR Rs2
ID CRs 11of1]o CRd
312028 25 24 2120 16 15 0
[o | crs | 1010 | CRd [0101 111t s000 0000 |
Rsq TMS34020 source register for the value (or half of the 64-bit double-

Rso

CRs

CRd

precision value) to TMS34082

TMS34020 source register for remaining half of the double-precision

value to TMS34082

TMS34082 register to contain the operand

TMS34082 destination register

SQRTAX loads the contents of Rs into CRs, takes the square root of the
absolute value of the contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the RA TMS34082 register file.

CMOVGC, one register

SQRTAD A3, A5, RA5, RA7

This example loads TMS34020 register A5 and A3 into TMS34082
register RA5, takes the square root of the absolute value of the contents
of RA5, and stores the result in RA7.

Internal Instructions

Load from Memory (Postincrement) and Square Root of Absolute Value SQRTAX

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

Tvpe Syntax

Integer SQRTA -ARs+ CRs, CRd
Double-Precision SQRTAD +As+, CRs, CRd
Single-Precision SQRTAF <Rs+, CRs, CRd
«Rs — CRs

Rs +32 — Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o]o 0 1 1 Jof[1]o]ofo]o]o] tansfers
0 0 1 1 1 1 |type |size | O 0 Rs
D CRs 1t1o0f11]o CRd
31 2928 25 24 2120 16 15 0
[D | CRs [1010 | CRd |1001 111t s000 oooﬂ

Rs TMS34020 source register containing the memory address
CRs TMS34082 register to contain the operand

CRd TMS34082 destination register

| SQRTAX loads the contents of memory pointed to by Rs into CRs, takes the

square root of the absolute value of the contents of CRs, and stores the result
in CRd. After each load from memory, Rs is incremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.
CMOVMC, postincrement, constant count
SQRTA *A5+, RA5, RA7

This example loads memory starting at the address given by TMS34020
register A5 into TMS34082 register RA5, takes the square root of the absolute
value of the contents of RA5, and stores the result in RA7.

7-169

SQRTAX Load from Memory (Predecrement) and Square Root of Absolute Value

Syntax Type Syntax
' Integer SQRTA -+Rs, CRs, CRd
Double-Precision SQRTAD --Rs, CRs, CRd
Single-Precision SQRTAF --Rs, CRs, CRd
Execution Rs-32 - Rs

+Rs — CRs

.......

«.Rs——>CRs
YCRs — CRd
'34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1.0
Instruction Words ojoJojoft1fofoflofo]Jo|1]o]o]o |tansters
1 1o]loft |1 f1]1|tyelsize] O |0]|R Rs
ID CRs 1 {of1]o CRd
Instruction to ’34082 31 2928 2524 21 20 16 15 0
[o | crs | 1010 | CRd [1001 111t s000 0000
Operands Rs TMS34020 source register containing the memory address
CRs TMS34082 register to contain the operand
CRd TMS34082 destination register
Description SQRTAX loads the contents of memory pointed to by Rs minus 32 into CRs,

takes the square root of the absolute value of the contents of CRs, and stores
the result in CRd. Before each load from memory, Rs is decremented by 32.

The source register, CRs, must be in the RA TMS34082 register file.
Transparency CMOVMC, predecrement, constant count
Example SQRTA —*A5, RA5, RA7

This example loads memory starting at the address given by TMS34020
register A5 minus 32 into TMS34082 register RAS, takes the square root ofthe
absolute value of the contents of RA5, and stores the result in RA7.

7-170 Internal Instructions

Subtract, (RA Register — RB Register) SUBX

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

Tvpe

Integer
Double-Precision
Single-Precision

Syntax

SUB CRs;, CRsy, CRd
SUBD CAsy, CRsp, CRd
SUBF CRsy, CRsy, CRd

CRS1 - CRS2 - CRd

15 14 13 12 11 10 9 8 3 2 1 0
1t {1]Jo]J1]1]o}fo]o | o | 1 [type|size
ID CRs4 CRsp CRd

7 6 5 4
0 0 0

31 2028
| 1D | CRsy

25 24
| CRsp

21 20 16 15 0
| CRd |oooo 001t s000 oooo|

CRsq1 TMS34082 RA register containing the minuend operand

CRso TMS34082 RB register containing the subtrahend operand

CRd TMS34082 destination register
SUBx subtracts the contents of CRso from CRsq and stores the resultin CRd.

The syntax for this instruction and the next instruction for subtract
(RB register — RA register) is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, this instruction is used.
If an RB register is first, the other instruction is used.

CEXEC, short
SUBD RA5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the resuiltin
RA7.

7-171

SUBX _Subtract, (RB Register - RA Register)

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

7-172

Tvpe Svntax

Integer SUB CRsp, CRsy, CRd
Double-Precision SUBD CRs,, CRs;, CRd
Single-Precision SUBF CRsp, CRsy, CRd

CRs, — CRs{ — CRd

15 14 13 12 11 10 9 8 7 6 5 4 38 2 1 0
11 o1 {1 JolofofofJofjojo]1]1 [yefsi
ID CRs CRso CRd
31 2028 25 24 2120 16 15 0
| ID] CRs4 | CRsp | CRd |oooo 011t s000 0000 |
CRsy TMS34082 RA register containing the subtrahend operand

CRso TMS34082 RB register containing the minuend operand

CRd TMS34082 destination register

SUBx subtracts the contents of CRs¢ from CRso and stores the result in CRd.
Notice in the syntax that the CRso operand is listed first.

The syntax for this instruction and the previous instruction, subtract
(RA register — RB register), is similar. The order of the operands determines
whichinstruction is used. if an RA register is listed first, the previous instruction
is used. If an RB register is first, this instruction is used.

CEXEC, short
SUB RBS5, RA3, RA7

This example subtracts the contents of RA3 from RB5 and stores the resultin
RA7.

Internal Instructions

Load and Subtract, (RA Register — RB Register) SUBX

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

Tvpe Syntax

Integer SUB Rsy, Rsp, CRsy, CRsp, CRA
Single-Precision SUBF Rsy, Rsp, CRsy, CRsp, CRd
Rs1 — CRsq

R82 - CRSQ

CRs{ — CRsy — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cjlojolo |t |1 |[ofoj]r1 R Rs{
0o j|ojo}1|tejOo}jo|O}R Rso
ID CRs1 CRsp CRd
31 2028 25 24 21 20 16 15 0
| D | CRsy | CRsp | CRd | 0100 001t 0000 ooou

Rs1 TMS34020 source register for the first (minuend) value to TMS34082

Rso TMS34020 source register for the second (subtrahend) value to

TMS34082
CRsq1 TMS34082 RA register to contain the minuend operand
CRso TMS34082 RB register to contain the subtrahend operand
CRd TMS34082 destination register

SUBXx loads the contents of Rs{ and Rs, into CRs¢ and CRs; respectively,
subtracts the contents of CRs, from CRs4, and stores the resuit in CRd.

The syntax for this instruction and the next instruction for subtract
(RB register — RA register) is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, this instruction is used.
If an RB register is first, the other instruction is used.

The double-precision form of this instruction is not supported.
CMOVGC, two registers
SUBF A0, A3, RA5, RB3, RA7

This example loads TMS34020 registers A0 and A3 into TMS34082 registers
RA5 and RB3, subtracts the contents of RB3 from RAS, and stores the result
in RA7.

7-173

SUBX Load and Subtract, (RB Register — RA Register)

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

7-174

Tvpe Syntax

Integer SUB Rsp, Rsy, CRsp, CRsy, CRd
Single-Precision SUBF Rsy, Rsy, CRsp, CARsy, CRd
Rsy — CRs4

Rsy — CRsy

CRs, — CRsy — CRd

15 14 13 12 11 10 9 8 7 6 5 4 32 1 0

ololojo]o}j1}t1}o}o R Rs{
ojJt1t]o]o}of1]1])tyyejool|o]R Rso
ID CRsq CRs» CRd
31 29928 25 24 21 20 16 15 0
| D | CRsy | CRsp | CRd |o1oo 011t 0000 0000 |

Rs1 TMS34020 source register for the first (subtrahend) value to
TMS34082

Rsp TMS34020 source register for the second (minuend) value to
TMS34082

CRsy TMS34082 RA register to contain the subtrahend operand
CRso> TMS34082 RB register to contain the minuend operand

CRd TMS34082 destination register

SUBKx loads the contents of Rsq and Rs, into CRsy and CRsy, respectively,
subtracts the contents of CRs4 from CRs», and stores the result in CRd. Note
that in the syntax, Rso and CRso are listed before Rs¢ and CRs;.

The syntax for this instruction and the previous instruction, subtract
(RA register — RB register), is similar. The order of the operands determines
whichinstruction is used. ifan RAregister is listed first, the previous instruction
is used. If an RB register is first, this instruction is used.

The double-precision form of this instruction is not supported.
CMOVGC, two registers
SUB A3, A0, RB5, RA3, RA7

This example loads TMS34020 registers B6 and A0 into TMS34082 registers
RB5 and RA3, subtracts the contents of RA3 from RB5, and stores the result
in RA7.

Internal Instructions

Load from Memory (Postincrement) and Subtract, (RA Regjster — RB Register) SUBXx

Syntax

Execution

'34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

Type

Integer
Double-Precision
Single-Precision

Syntax

SUB -Rs+, CRsy, CRsy, CRd
SUBD +Rs+, CRsy, CRss, CRd
SUBF +«Rs+, CRsy, CRsp, CRA

«Rs — CRs4
Rs +32 - Rs

*Rs — CRszw
Rs +32 — Rs

&

CRs{ - CRsy — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 1 0 0 0 0 transfers
1 0 0 0 0 0 1 Jtype |size | O 0 R Rs
ID CRs{ CRsp CRd
31 2028 25 24 2120 16 15 0
| D | CRsy | CRs;, | GRd | 1000 001t s000 0000 |

Rs TMS34020 register containing the memory address

CRsy TMS34082 RA register to contain the minuend operand
CRsy, TMS34082 RB register to contain the subtrahend operand
CRd TMS34082 destination register

SUBx loads the contents of memory pointed to by Rs into CRs1 and CRsp,
subtracts the contents of CRs, from CRs1, and stores the result in CRd. After
each load from memory, Rs is incremented by 32.

The syntax for this instruction and the next instruction for subtract
(RB register — RA register) is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, this instruction is used.
If an RB register is first, the other instruction is used.

CMOVMC, postincrement, constant count
SUBF *A0+, RA5, RB3, RA7

This example loads memory starting at the address given by TMS34020
register A0 into TMS34082 registers RA5 and RB3, subtracts the contents of
RB3 from RA5, and stores the result in RA7.

7-175

SUBX _Load from Memory (Postincrement) and Subtract, (RB Register — RA Register)

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

7-176

Type Syntax

Integer SUB -Rs+, CRsp, CRs;, CRd
Double-Precision SUBD -Rs+, CRsp, CRsy, CRd
Single-Precision SUBF +Rs+, CRsp, CRsy, CRd
+Rs — CRs4

Rs +32 — Rs

P

*Rs — CRso
Rs+32 - Rs

CRs — CRs; — CRd

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0ojo]o 0l0 1 1 0 1 0 0 0 transfers
ocjo|oO 0 1 1 |type |size] O 0 R Rs
1D CRs1 CRsp CRd
31 2028 25 21 20 16 15 0
D | CRsy | CRs; | ©ORd [1000 011t s000 0000

Rs TMS34020 register containing the memory address

CRsy TMS34082 RA register to contain the subtrahend operand

CRso TMS34082 RB register to contain the minuend operand

CRd TMS34082 destination register

SUBx loads the contents of memory pointed to by Rs into CRs¢ and CRso,
subtracts the contents of CRs from CRso, and stores the resultin CRd. After
each load from memory, Rs is incremented by 32. Note in the syntax that CRso
is listed before CRs1.

The syntax for this instruction and the previous instruction, subtract
(RA register — RB register), is similar. The order of the operands determines
whichinstructionis used. If an RA register is listed first, the previous instruction
is used. If an RB register is first, this instruction is used.

CMOVMC, postincrement, constant count
SUBF *B6+, RB5, RA3, RA7

This example loads memory starting at the address given by TMS34020
register B6 into TMS34082 registers RBS and RAS, subtracts the contents of
RAS3 from RB5, and stores the result in RA7.

Internal Instructions

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Transparency

Example

Load from Memory (Predecrement) and Subtract, (RA Register — RB Register) SUBX

Svyntax

SUB - -Rs, CRsy, CRsp, CRA
SUBD --Rs, CARsy, CRsp, CRd
SUBF - *Rs, CRsy, CRss, CRd

Type

Integer
Double-Precision
Single-Precision

Rs-32 — Rs
«Rs — CRs

Rs —-32 — Rs
2 e

»:
+Rs — CRs»o
CRs¢ — CRsp — CRd

15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 1 0 0 transfers

ojoflo]ojo] 1 |type|size]O |0]|R Rs
D CRs{ CRso CRd
31 2028 25 24 2120 16 15 0
| I | CRsy | CRs, | CORd |1000 001t s000 0000]

Rs TMS34020 register containing the memory address

CRsqy TMS34082 RA register to contain the minuend operand
CRso TMS34082 RB register to contain the subtrahend operand
CRd TMS34082 destination register

SUBXx loads the contents of memory pointed to by Rs into CRsy and CRs,,
subtracts the contents of CRs, from CRs1, and stores the resuitin CRd. Before
each load from memory, Rs is decremented by 32.

The syntax for this instruction and the next instruction for subtract
(RB register — RA register) is similar. The order of the operands determines
which instruction is used. If an RA register is listed first, this instruction is used.
If an RB register is first, the other instruction is used.

CMOVMC, predecrement, constant count
SUBF —*A0, RA5, RB3, RA7

This example loads memory starting at the address given by TMS34020
register A0 minus 32 into TMS34082 registers RA5 and RB3, subtracts the
contents of RB3 from RA5, and stores the result in RA7.

7-177

SUBX Load from Memory (Predecrement) and Subtract, (RB Register — RA Register)

Syntax

Execution

’34020
Instruction Words

Instruction to 34082

Operands

Description

Transparency

Example

7-178

Type Syntax

Integer SUB - «As, CRsp, CRsy, CRd
Double-Precision SUBD -+Rs, CRsp, CRsy, CRd
Single-Precision SUBF. - +Rs, CRsp, CRsy, CRd
Rs-32 -5 Rs

+Rs — CRs4

Rs —- 32 - Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ofoJojoft1]ofo]ofjojo|[1][o0o]o] tansters
1 0 0] 0 0 1 1 |type {size | O 0 R Rs
ID CRs1 CRsp CRd
31 2928 2524 2120 16 15 0
[© | CRsy | CRs; | CRd [1000 011t s000 oooo]

Rs TMS834020 register containing the memory address

CRsy TMS34082 RA register to contain the subtrahend operand
CRspy TMS34082 RB register to contain the minuend operand
CRd TMS34082 destination register

SUBKx loads the contents of memory pointed to by Rs minus 32 into CRs¢ and
CRso, subtracts the contents of CRs1 from CRs», and stores the resultin CRd.
Before each load from memory, Rs is decremented by 32. Note in the syntax
that CRs: is listed before CRs1.

The syntax for this instruction and the previous instruction, subtract
(RA register — RB register), is similar. The order of the operands determines
whichinstruction is used. If an RA register is listed first, the previous instruction
is used. If an RB register is first, this instruction is used.

CMOVMC, postincrement, constant count
SUBF +B6+, RB5, RA3, RA7

This example loads memory starting at the address given by TMS34020
register B6 minus 32 into TMS34082 registers RB5 and RA3, subtracts the
contents of RA3 from RB5, and stores the result in RA7.

Internal Instructions

Absolute Value of Subtraction SUBAX

Syntax

Execution

’34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

Syntax
SUBAD CRsy, CRsp, CRd
SUBAF CRsy, CRsp, CRd

Type
Double-Precision
Single-Precision

ICRsy — CRso| — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1|1|o 1l1lo|o olololo 1|o]1|1|size
ID CRst CRs2 CRd
31 2928 265 24 2120 16 15 0
[D | CRsy | CRs; | CRd | 0000 1011 s000 oooo]
CRsq Coprocessor register containing the first operand. Must be from RA
register file.
CRso Coprocessor register containing the second operand. Must be from
RB register file.
CRd Coprocessor destination register

This instruction subtracts CRs, from CRs4, placing the absolute value of the
resultin CRd.

The integer form of this instruction is not supported.
CEXEC, short
SUBAD RA8, RB3, RB1

This example subtracts the double-precision floating-point contents of RB3
fromthe contents of RA8, takes the absolute value of the difference, and stores
the result in RB1.

7-179

SUBAX Load and Absolute Value of Subtraction

Syntax SUBAF Rsj, Rsp, CRsy, CRsp, CRd
Execution Rs¢y — CRs4
Rso — CRso
|CRsy — CRsy| — CRd
’34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
Instruction Words ojoJololo]1 1 oo |1 R Rsq
1]Jofo]t]o]1{1]o]Jo]|]o]|R Rso
ID CRs{ CRsa CRd
Instruction to ’34082 31 2928 25 24 21 20 16 15 0
: L D | CRsy | CRs; | CRd | 0100 1011 0000 0000 |
Operands Rs;y TMS34020 source register for first 32-bit single-precision

floating-point value to coprocessor

Rso TMSB34020 source register for second 32-bit single-precision
floating-point value to coprocessor

CRsqy Coprocessor RA register to contain the first single-precision operand

CRs» Coprocessor RB register to contain the second single-precision
operand

CRd Coprocessor destination register

Description This instruction loads the contents of Rsqy and Rsy into CRsq and CRsy
respectively and subtracts CRs, from CRs+, placing the absolute value of the
result in CRd.

The integer and double-precision forms of this instruction are not supported.
Instruction Type CMOVGC, two registers
Example SUBAF A9, A3, RA9, RB3, RB1

This instruction loads the contents of TMS34020 registers A9 and A3 into
coprocessor registers RA9 and RB3 respectively, subtracts RB3 from RA9,
takes the absolute value of the difference, and stores the result in RB1.

7-180 Internal Instructions

SUBAX

Load from Memory (Postincrement) and Absolute Value of Subtraction

Syntax

Execution

34020
Instruction Words

Instruction to ’34082

Operands

Description

Instruction Type

Example

Type
Double-Precision
Single-Precision

Syntax
SUBAD -Rs+, CRs;, CRso, CRd
SUBAF -Rs+, CRsy, CRsp, CRd

*Rs —» CRS1
Rs +32 = Rs
35 :

-Rs — CRsp
Rs + 32 — Rs

|CRs{ ~ CRsy| — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 1 0 0 0 0 transfers
1 otofo |1 0|1 1 |size{ 0O |0 [|R Rs
D CRs{ CRss CRd
31 2928 25 24 2120 16 15 0
[ID [CRs1 i CRs; [CRd |1ooo 1011 s000 0000 l

Rs TMS34020 register containing the memory address

CRsy Coprocessor RA register to contain the first operand
CRso Coprocessor RB register to contain the second operand
CRd Coprocessor destination register

This instruction loads the contents of memory pointed to by Rs into CRs4 and
CRso and subtracts CRso from CRs1, placing the absolute value of the result
in CRd. After each load from memory, Rs is incremented by 32.

The integer form of this instruction is not supported.
CMOVMG, postincrement, constant count
SUBAD *A9+, RA9, RB3, RB1

This instruction loads the contents memory starting at the address given by
TMS34020 register A9 into coprocessor registers RA9 and RB3 respectively,
subtracts RB3 from RAZ, takes the absolute value ofthe difference, and stores
the result in RB1.

7-181

SUBAX Load from Memory (Predecrement) and Absolute Value of Subtraction

Syntax

Execution

’34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

7-182

Tvpe

Syntax

Double-Precision
Single-Precision

Rs-32 — Rs
*Rs — CRs;

&:-,3;.-.,%%.': A
Rs-32 — Rs
«Rs — CRs»o

7

SUBAD --Rs, CRs;, CRsp, CRd
SUBAF —Rs, CRs;, CRsp, CRd

ICRs{ — CRsp| — CRd

15 14 13 12 1110 9 7 6 5 4 3 2 1 0
ojojJoJoJ1]o]o o Jo|1]o]o | tansfers
1t Jojojol1]oij1 size| 0 | 0 | R Rs
ID CRsq CRso CRd
31 2928 2524 21 20 16 15 0
D | CRs4 CRsy | |1ooo 1011 s000 0000

Rs TMS34020 register containing the memory address

CRs;
CRso

CRd

Coprocessor RA register to contain the first operand
Coprocessor RB register to contain the second operand

Coprocesor destination register

This instruction loads the contents of memory pointed to by Rs into CRs and
CRsy and subtracts CRs» from CRs1, placing the absolute value of the result
in CRd. Before each load from memory, Rs is decremented by 32.

The integer form of this instruction is not supported.

CMOVMC, predecrement, constant count

SUBAD -*A9, RA9, RB3, RB1

This instruction loads the contents memory starting at the address given by
TMS34020 register A9 minus 32 into coprocessor registers RA9 and RB3
respectively, subtracts RB3 from RA9, takes the absolute value of the
difference, and stores the result in RB1.

Internal Instructions

Load Two into a TMS34082 Register TWOX

Syntax

Execution

34020
Instruction Words

Instruction to '34082

Operands

Description

Instruction Type

Example

Type Syntax
Integer TWO CRd
Double-Precision TWOD CRd
Single-Precision TWOF CRd
2 - CRd

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
t {1 Jol1]1]olololofolololol]o|typelsie
ID i lilola a1 [0 CRd

31 2028 25 24 21 20 16 15 0
| D 11101 | 1101J CRd [oooo 000t s000O oooo|

CRd TMS34082 destination registef.

TWOx loads the value two (of the appropriate type) into register CRd.
CEXEC, short

TWO RB6

This example loads an integer two into TMS34082 register RB6.

7-183

VADDX Vector Add

Syntax Type Syntax
Integer VADD
Double-Precision VADDD
Single-Precision VADDF
’34020 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words tfr o]t 1 fofJofofojt]t 11]1 [type]siee
D ojJololo|[1}lo]lo}lt1t]o]lolo]o]o
Instruction to ‘34082 31 2928 0

IID |o 0001 0010 0000 0011 111t s00O oooo|

Description Adds the X, Y and Z components of a vector in RB2-RB0 to the X, Y, and Z
components of a vector in RA2—-RAO.

Impiied Operands RAO = X1 RBO = X2
RA1 =Y1 RB1=Y2
RA2 = Z1 RB2 = Z2

Algorithm RAO = RAO + RBO ; X1+ X2
RA1 = RA1 + RB1 Y1 +Y2
RA2 = RA2 + RB2 121+ 72

Temporary Storage None

Outputs The sum of the vectors is stored in RA2—-RAO.

Instruction Type CEXEC, short

7-184 Internal Instructions

VCROSX

Vector Cross Product

Syntax

34020
Instruction Words

Instruction to ‘34082

Description

Implied Operands

Algorithm

Temporary Storage
Temporary Storage
Temporary Storage
Outputs

Instruction Type

Tvpe Syntax
Integer VCROS
Double-Precision VCROSD
Single-Precision VCROSF
15 14 13 12 11 10 © 8 7 6 5 4 3 2 1 0
1] 1] oftf1]ofJolololt 111] 1 type]size
D oloflolo 11 Jolololofo[o]o
31 2028 0
[D Lo 0001 1000 G000 0011 111t s000 oooﬂ

Giventwo vectors V1 in (RA2—-RA0) and V2 (RB2-RB0)}, find their vector cross
product (V1 x V2).

RAO = X1 RBO = X2

RA1 =Y1 RB1=Y2

RA2 =Z1 RB2 =272

C = RA1 x RB2 1 Y1 xZ2
RAO = C - (RB1 x RA2) (Y1 x2Z2)-(Y2x Z1)
C = RA2 x RBO ;21 x X2

RA1 = C — (RB2 x RA0) : (21 x X2) = (Z2 x X1)
C = RAO x RB1 ;X1 xY2

RA2 = C - (RBO x RA1) ; (X1xY2)-(X2x Y1)
C

C, RB9

C

The vector cross product V3 is stored in registers RA2-RAO.
RAO = X3
RA1 =Y3
RA2 =Z3

CEXEC, short

7-185

VDOTX Scalar Dot Product

Syntax

’34020
Instruction Words

Instruction to 34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-186

Type Syntax
Integer VDOT

Double-Precision VDOTD
Single-Precision VDOTF

15 14 13 12 11 10 8 8 7 6 5 4 83 2 1 0
1] 1 | ojt1 1]Jojolol]ol| 1t] 1] 1|1 |tywelsize
D

0 0 ctlo 1 0 1 1 01]0 0 o]0

31 2928 0
Lm Lo 0001 0110 0000 0011 111t s000 ooooJ

Given two vectors V1 in RA2—-RAO0 and V2 in RB2-RBO, calculate the dot
product.

Vector V1 in RA2-RAO0 and vector V2 in RB2-RB0O

RAO = X1 RBO = X2

RA1 =Y1 RB1 =Y2

RA2 = Z1 RB2 = 22

C =RA0XxRBO ; X1 x X2

C =C+(RA1xRB1) ; (X1 xX2)+ (Y1xY2)

RA4 = C + (RA2 x RB2) (X1 X X2) + (Y1xY2) + (Z1 x Z2)
C

The scalar dot product of the two vectors is stored in RA4.

CEXEC, short

Internal Instructions

Vector Magnitude VMAGX

Syntax

34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage
Outputs

Instruction Type

Type Syntax
Integer VMAG
Double-Precision VMAGD
Single-Precision VMAGF
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1|1|0 11 tolojolo 1t }1 111111 |typelsie
ID o loJo o1 {1 lofj1tfo}ofjojolo
31 2928 0
| ID | 00001 1010 0000 0011 111t s000 0000

Given a vector in RA2—-RAO0, compute the length of the vector.

RAO = X1

RA1 = Y1

RA2 = Z1

C =RA0

RA3=CxC ; (X% X)

CT =RA1

CT =CTxCT i (Y xY)

RA3 = CT + RA3 s (XxX) + (Y xY)

C =RA2

CT =CxC ;1 (Zx2)

RA3 = CT + RA3 ;(XxX)+(YxY)+gZxZ)
RA3 = SQRT(RA3) : SQRT (X2 + Y2 + 79)
C,CT

The scalar magnitude of the vector is stored in RA3.

CEXEC, short

7-187

VNORMX Normalize a Vector

Syntax

34020
Instruction Words

Instruction to '34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-188

15 14 13
1J1l0110000111111size
ID

Type Syntax
Double-Precision VNORMD
Single-Precision VNORMF

12 11 10 9 8 7 6 § 4 3 2 1 0

0 0 0.10 1 1 1 0 0 0 0 oo

31 2928 0
IID |o 0001 1100 0000 0011 1111 s000 oooo]

Given a vector in RA2-RAQO, find the unit length vector that is in the same
direction as the given vector.

The integer form of this instruction is not supported.

RAO = X0
RA1=Y0
RA2 = 20

C =RA0

C =CxC
CT =RAt1
RA9 = CTxCT
RA9 = C + RA9
C =RA2

C =CxC
RA9 = C + RA9
C =SQRT(RA9)
RA3=C

C =1/C
RAO =C x RAO
RA1 =C x RA1
RA2 = C x RA2

C, CT, RA9
The unit length vector is stored in registers RA2-RAO0.

: X0 x X0

;YO X YO0
; (X0 x X0) + (Y0 X Y0)

; Z0x Z0

; (X0 x X0) + (YO x YO) + (Z0 x Z0)
: SQRT (X02 + Y02 + Z02)

; save the magnitude in RA3

; 1/ magnitude

RAO = X0/ (SQRT(X02 + Y02 + Z02))
RA1 = Y0/ (SQRT(X02 + Y02 + Z02))
RA2 = 70/ (SQRT(X02 + Y02 + Z0?))
RA3 = SQRT(X02 + Y02 + Z09)

C =1/(SQRT (X02 + Y02 + 202))

CEXEC, short

Internal Instructions

Vector Reflection VRFLCTX

Syntax

34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage
Outputs

Instruction Type

Ivpe Syntax
Integer VRFLCT
Double-Precision VRFLCTD
Single-Precision VRFLCTF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i 11 | oft 1 Jofo]ojoj1}f1]1 type | size
D

0 0 0 0 1 1 1 1 0 0 0 010

—
—

31 2028 0
| ID]0 0001 1110 0000 0011 111t s000 oooo}

The VRFLCT instruction calculates the vector reflection of a vector incident on
a surface defined by a normal vector. The normal vector should be normalized
before issuing the VRFLCT instruction.

Vector in RA2—RAO is the normal vector (Xni + Y,j + Z,K)). Vector in
RB2-RB0 is the incident vector (Xii + Yjj + ZiK))

RAO = Xn RBO = Xi

RA1=Yn RB1=Yi

RA2 =Zn RB2 =Zi

C =RA0xRBO

C =C+(RA1xRB1)

C =C+(RA2xRB2) ; scalar dot product in C (cos(Theta))
C =C+C ; C =2 x cos(Theta)

CT =CxRAO

RBO= CT - RBO ; Xr=Xn x (2 xcos(Theta)) — Xi
CT =C xRA1

RB1=CT - RB1 ; Yr=Yn x (2 xcos(Theta)) - Yi
CT =C xRA2

RB2= CT - RB2 ; Zr = Zn x (2 x cos(Theta)) — Zi
C, CT, RA9

The reflected vector components x, y and z are stored in RB2-RBO.

RBO = Xr=Xnx (2 x ((Xn x Xr) + (Yn x Yr) + (Zn x Zn))) — Xi
RB1=Yr=Ynx (2 x{(Xnx Xr) + (Ynx Yr} + (Zn x Zn))) — Vi
RB2=Zr=Znx (2 x (Xn x Xr) + (Yn X Y1) + (Zn x Z1))) — Zi

CEXEC, short

7-189

VSCLX Muttiply a Vector by a Scaling Factor

Syntax

’34020
Instruction Words

Instruction to ’34082

Description

Operands

Implied Operands

Algorithm

Temporary Storage
Outputs

Instruction Type

7-190

Type Syntax
Integer VSCL CRs
Double-Precision VSCLD CRs
Single-Precision VSCLF CRs

15 14 13 12 11 10 © 8 7 6 5 4 3 2 {1 0

1 11 lo 11 JoJofJoJofJo 1171]TPYPe]size

D olololojo 1111]1 CRs

31 2928 25 24 0
[D] CRs |o 111t s000 oooo]

1110 0000 0001

The X, Y, and Z components of a vector in registers RA2—RAQ are multiplied
by a scalar in CRs.

CRs RB register containing the scaling factor. Must be in the RB register

file.

RAO = X1
RA1 =Y1
RA2 = 71

RAO = RAO0 x CRs
RA1 = RA1 x CRs
RA2 = RA2 x CRs

None

The scaled vector is stored in RA2—-RAQ.
RAO = X1’
RA1=Y?1
RA2=27

CEXEC, short

Internal Instructions

Load and Multiply a Vector by a Scaling Factor VSCLXx

Syntax Type Syntax
Integer VSCL Rsj, CRs
Double-Precision VSCLD ARsy, Rsp, CRs
Single-Precision VSCLF Rsy, CRs
’34082 Instruction Words
Integer or Single-Precision:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
otlofofojJofl1}t]o}o]Jo]1]R Rs{
o1o1111typeooooo|o|o|o
1D ocJojojJo]Jo]+t+ [1]11}1 CRs
Double-Precision:
15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 o0
o{ofjo]o]Jolt1t]|j1]o}o}1fo]R Rs1
o{1toftt 11111]1]ofolR Rso
1D clojlofofo |1 |11]1 CRs
Instruction to ’34082 31 2928 25 24 0
[| CRs |0 1110 0000 0101 111t s000 ooooJ
Description The X,Y, and Z components of a vector in registers RA2-RAO0 are multiplied
by a scalar in CRs (loaded from Rs).
Operands Rsy TMS34020 source register for the operand (or half of the 64-bit
double-precision floating-point operand) to TMS34082
Rsp TMS34020 source register for rest of the double-precision
operand to TMS34082
CRs Coprocessor RB register to contain the scaling factor. Must be in the
RB register file.
Implied Operands RAO = X1
RA1=Y1
RA2 = 71
Algorithm Rsy — CR
RAO = RAO x CRs
RA1 =RA1 xCRs
RA2 = RA2 x CRs
Temporary Storage None
Outputs The scaled vector is stored in RA2—-RAO.
RAO = X1’
RA1=Y?T
RA2 =27
Instruction Type CMOVGC, one or two registers

7-191

VSCLX Load from Memory (Postincrement) and Multiply a Vector by a Scaling Factor

Syntax

34020
Instruction Words

Instruction to '34082

Description

Operands

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-192

Type Syntax
Integer VSCL -Rs+ CRs
Double-Precision VSCLD +Rs+, CRs
Single-Precision VSCLF +<Rs+, CRs
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ojofJoloflol1]t1[o]1lololol]o | 0 | transfers
1 0 0 1 1 1 1 |type|size | O 0 R Rs
D oltojojJojol]+t 1t]1]1 CRs
31 2028 25 24 0
[D | CRs |o 1110 0000 1001 111t s000 0000]

The X, Y, and Z components of a vector in registers RA2-RAO are multiplied
by a scalarin CRs (loaded from memory pointed to by Rs). After eachload from
memory, Rs is incremented by 32.

Rs TMS34020 register containing the memory address

CRs Coprocessor RB register to contain the scaling factor. Must be in the
RB register file.

RAO = X1
RA1 = Y1
RA2 =21

+Rs — CRs
Rs + 32 - Rs

B B
RAOQ = RAO x CRs
RA1 = RA1 xCRs

RA2 = RA2 x CRs
None

The scaled vector is stored in RA2—RAO.
RAC = X1’
RA1=YT
RA2 =277V

CMOVMC, postincrement, constant count

Internal Instructions

Load from Memory (Predecrement) and Multiply a Vector by a Scaling Factor, Integer VSCL

Syntax

’34020
Instruction Words

Instruction to ’34082

Description

Operands

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

Tvpe Syntax
Integer VSCL --Rs, CRs
Double-Precision VSCLD -+Rs, CRs
Single-Precision VSCLF —+Rs, CRs
15 14 13 12 11 10 © 8 7 6 5 4 3 2 {1 0
0 oo ololojo]Jo|1]ofo | 0 ltransfers
1 0 0 1 1 1 |type [size | O 0 R Rs
D oJoloflo]o]J1t |1]1]1 CRs
31 2028 25 24 0

[lo l CRs |0 1110 0000 1001 111t s000 okooo|

The X, Y, and Z components of a vector in registers RA2—RAOQ are multiplied
by a scalar in CRs (loaded from memory pointed to by Rs). Before each load
from memory, Rs is decremented by 32.

Rs TMS34020 register containing the memory address

CRs Coprocessor RB register to contain the scaling factor. Must be in the
RB register file.

RAO = X1
RA1 = Y1
RA2 = Z1

Rs-32 - Rs

22

RAO = RAO x CRs
RA1 = RA1 x CRs
RA2 = RA2 x CRs

None

The scaled vector is stored in RA2—-RAOQ.
RAQO = X1’
RA1=YT7T
RA2 =271

CMOVMC, predecrement, constant count

7-193

VSUBX Subtract Vectors

Syntax

’34020
Instruction Words

Instruction to ’34082

Description

Implied Operands

Algorithm

Temporary Storage

Outputs

Instruction Type

7-194

Tvpe Syntax
Integer VSuB
Double-Precision VSUBD
Single-Precision VSUBF
15 14 13 12 11 10 9 8 7 3 2 1 0
1|1|o 1 o[o]o 1 [type | size
ID oo K oloflotfo
31 2928 0
[ID | 0 0001 0100 0000 0011 s000 0000
Subtract a vector in RB2—RBO0 from a vector in RA2—-RAO0.
RAO = X1 RBO = X2
RA1 =Y1 RB1=Y2
RA2 = Z1 RB2 =72
RAO = RAC - RBO ; X1 =-X2
RA1 = RA1 - RB1 ;Y1 =-Y2
RA2 = RA2 - RB2 ;21-22
None
The resulting vector is stored in RA2—-RAO.
RAO = X1’
RA1=Y1’
RA2 =271’
CEXEC, short
Internal Instructions

Chapter 8

External Instructions

R D D A N A N O A R O R ey S SR Y
RO

The external instruction set is executed through the MSD port of the
TMS34082. The multiplier and ALU may be operated in paraliel using these
RISC-like instructions. Integer, single-precision, and double-precision
floating-point formats are supported. In coprocessor mode, user-defined
subroutines constructed out of external instructions may be executed through
the MSD port. See Figure 8-1.

Figure 8-1. Source of Instructions for Coprocessor Mode

Dat
TMS34020 Data TMS34082 -
LAD LAD MSD z
External
Internal Instructions Instructions

in host-independent mode, the TMS34082 is controlled by external
instructions input on the MSD bus.

Figure 8-2. Instructions in Host-Independent Mode

TMS34082 Data

Data LAD MSD

External Instructions

8-1

Overview / FPU Processing Instruction Format

8.1 Overview

External instructions are 32 bits long and their formats (number, length, and
function of fields) depend upon the operations being selected. Separate
formats are provided for data transfers to and from the TMS34082, FPU
processing, test and branch operations, and subroutine calls.

In the host-independent mode, the TMS34082 is controlied by external
instructions input on the MSD bus. In the coprocessor mode, the TMS34082
executes user-defined routines (external instructions stored in memory on the
MSD bus) by executing a jump to external code. Up to 32 routines may be
defined by the user using external instructions in coprocessor mode.

To cause a jump to the external routine, the TMS34020 sends the TMS34082
an instruction with the md field (bits 15—14) set high. The fpuop is the routine
number (0-31). The TMS34082 multiplies the routine number by twoto getthe
jump address. This creates a compact jump table where every other address
is the starting address of a routine. The remaining memory can then be
allocated according to user need. Using every other address as a starting
address allows a single-instruction subroutine to be implemented without
another jump. For more complex routines, the firstinstruction in the routine will
be ajumpto another memory location. In either case, the lastinstruction should
be areturn from subroutine orjumptointernal instruction address 10FFF (hex).
This puts the TMS34082 in an idle state, waiting for the next instruction from
the TMS34020. Before the last return from subroutine or jump to internal
address 10FFF, the stack (SUBADDR1-0) must be cleared. This can be
accomplished by setting the stack pointer (bit 31) in both registers to 0. You
may wish to save the contents of these registers in external memory before
clearing the stack pointers.

8.2 FPU Processing Instruction Format

The largest group of external instructions control FPU operations. These
instructions can select operands from input registers, internal feedback, or
from the LAD bus (32-bit operations only). Independent ALU or multiplier
operations and chained-mode operations (ALU and multiplier acting in
parallel) can be coded.

The format for an FPU processing instruction is shown below:

31 28 27 23 22 2019 15 14 11 10 0
sequencer op ra b rd sel_op FPU operation
External Instructions

FPU Processing Instruction Format

8.2.1 FPU Processing Sequencer Opcodes

Valid sequencer opcodes for this instruction format:

0000 continue
0001 continue with LAD enable for output (ALTCH strobe)
0010 continue with LAD enable for output WE strobe)T

T Permits simultaneous write to a register and to the LAD bus. Writing to the LAD bus
during FPU operation requires a 15-ns extension (TMS34082-40) of the clock period
when the write is performed.

8.2.2 Operand Selection

Instructions that control FPU operations can select operands from internal
registers, internal feedback, or the LAD bus (32-bit operations only). When
register addresses are used as sources (ra or rb field), only the lower four bits
are used. Most instructions use three operands:

ra is the operand A source address (RA9-0, C, CT)
rb is the operand B source address (RBS-0, C, CT)
rd is the result destination address

When ra (or rb) is set to 11005, the A (or B) operand comes from the LAD bus
without first being written into a register.

When the CONFIG, COUNTX, or COUNTY register (address 13, 14, or 15) is
selected as the ra operand, a one is input to the FPU.

When the SUBADD1, IRAREG, or MIN-MAX/LOOPCT register (address 29,
30, or 31) is selected as the rb operand, a one is input to the FPU.

The sel_op field chooses the operands. When low, sel_op bits 14-11 selectthe
following feedback operands:

bit 14 for ALU feedback to multiplier A input

bit 13 for multiplier feedback to multiplier B input
bit 12 for multiplier feedback to ALU A input

bit 11 for ALU feedback to ALU B input

The sel_op bits allow many different combinations of operands from the
register file and feedback registers. Figure 8-1 shows the operands selected
for each combination of sel_op bits.

Note: If feedback operands are used, the FPU core output registers must be enabled (PIPES2=0).

8-3

FPU Processing Instruction Format

Figure 8-3. Operand Selection

84

B
Multiplier

e

A\/B

ALY

/ sel_op = 0000

B
Multiplier

=t

RB9-0,CorCT

Nel/

sel_op = 0001

RA8-0,Cor CT
2]
A B A \/ B
Multiplier ALU sel_op=0010
RA9-0,Cor CT
RB8-0, CorCT
A B A B
Multiplier ALU sel_op = 0011
<
External Instructions

FPU Processing Instruction Format

Figure 8-3. Operand Selection ‘(Oontinued)
RBY-0,CorCT

B

Muiltiplier

el

RB9-0,Cor CT

B
Multiplier

B!

RB9-0, Cor CT

B
Muttiplier

It

RA9-0,CorCT
I

N/

|

RBg-0, Cor CT

RAS-0, C or CT

B
Multiplier

It

Nt/

sel_op = 0100

sel_op= 0101

sel_op = 0110

sel_op = 0111

8-5

FPU Processing Instruction Format

Figure 8-3. Operand Selection (Continued)
) RA9-0,CorCT

|

A B
Multiptier

B sel_op = 1000
LU

RA9-0,CorCT RB9-0,CorCT

A B B
Multiplier sel_op = 1001

RA9-0,CorCT
A . B sel_op = 1010
Multiplier
e
RA8-0,CorCT :
RB9-0,C or CT
A Mt B A B sel_op = 1011
ultiplier ALU

8-6 External Instructions

FPU Processing Instruction Format

Figure 8-3. Operand Selection (Continued)

RAg-0,CorCT
RB8-0, Cor CT
l A
A B A \/ B
Multiplier ALU sel_op =1100
[

RB9-0,C or CT
RAS-0,C or CT

A B A\/B

Multiplier ALU sel_op = 1101

RB9-0, Cor CT
RA9-0, Cor CT

A . . B A B
Multiplier \E‘_L_J/_/ sel_op = 1110
| ‘

RAS-0,CorCT RB9-0,C or CT

|
A B B
Multiplier 4

ALU sel__op= 1111

8-7

FPU Processing Instruction Format

8.2.3 FPU Processing Instruction Codes

Instruction bits 10-0 select the multiplier or ALU operation. When the FPU core
is busy with multicycle operations (division, square root, or double-precision
floating-point multiplication), the FPU stops the sequencer until the FPU is
ready for the next operation.

8-8 External Instructions

External Instruction Cycle Counts

8.3 External Instruction Cycle Counts

Table 8-1 lists external instructions, pipeline settings, and the number of cycles
required to complete each routine. The number in parenthesis after each cycle
count is the number of cycles before the next operation may begin. For block
move operations, n specifies the number of words transferred.

Table 8-1. Cycle Counts for External Instructions

Cycle Counts
v Description PIPES2-1 | PIPES21 | PIPES2-1 | PIPES2-1
1 10 01 00

ADD AddA+B 1(1) 2(1) 2(1) 3(1)
AND Logical AND A, B 1(1) 2(1) 2(1) 3(1)
ANDNA Logical AND not A, B 1{1) 2(1) 2(1) 3(1)
ANDNB Logical AND A, not B 1(1) 2(1) 2(1) 3(1)
CIMP Conditional jump 1(1) 1(1) 1(1) 1(1)
CSJR Conditional jump to subroutine 1(1) 1(1) 1(1) 1(1)
CMP Compare A, B 1(1) 2(1) 2(1) 3(1)
COMPL Pass 1’s complement of A 1(1) 2(1) 2(1) 3(1)
DIV Divide A/B

single-precision 8(8) 8(7) 9(7) 9(7)

double-precision 13(13) 13(12) 15(12) 15(12)

integer 16(16) 16(15) 17(15) 17(15)
DTOF Convert from DP to SP 1(1) 2(1) 2(1) 3(1)
DTOl Convert from DP to integer 1(1) 2(1) 2(1) 3(1)
DTOU Convert from DP to unsigned integer 1(1) 2(1) 2(1) | 3(1)
FTOD Convert from SP to DP 1(1) 2(1) 2(1) 3(1)
FTOI Convert from SP to integer 1(1) 2(1) 2(1) 3(1)
FTOU Convert from SP to unsigned integer 1(1) 2(1) 2(1) 3(1)
ITOD Convert from integer to DP 1(1) 2(1) 2(1) 3(1)
ITOF Convert from integer to SP 1(1) 2(1) 2(1) 3(1)
LD Load n words into register

single-precision n+1 n+1 n+1 n+1

double-precision an+1 2n+1 2n+1 2n+1

integer n+t n+1 n+1 n+1
LDLCT Load loop counter with value 1(1) 1(1) 1(1) (1)
MASK Set programmable mask 1(1) 1(1) 1(1) 1(1)
MOVA Move A 1(1) 2(1) 2(1) 3(1)
MOVLM Move n words from LAD bus to MSD bus

single-precision n+1 n+1 n+1 n+1

double-precision 2n+1 2n+1 2n +1 2n+1

integer n+1 n+1 n+1 n+1

External Instruction Cycle Counts

Table 8-1. Cycle Counts for External Instructions (Continued)

Cycle Counts
Assembler Description PIPES2-1 | PIPES2-1 | PIPES2-1 | PIPES2-1
Opcode of Routine
11 10 01 00

MOVML | Move n words from MSD bus to LAD bus

single-precision n+1 n+1 n+1 n+1

double-precision 2n+1 2n +1 2n +1 2n+1

integer n+1 n+1 n+1 n+1
MOVRR Muitiple move, register to register]

single-precision n+1 n+1 n+1 n+1

double-precision 2n+1 2n+1 2n+1 2n+1

integer n+1 n+1 n+1 n+1
MULT Multiply A« B

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
MULT.ADD Multiply A{ » B1, Add Ao + B2

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
MULT.NEG Multiply A4 * B1, Subtract 0 — Ao

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
MULT.PASS Multiply A » B4, Add Ao + 0

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
MULT.SUB Multiply A{ * By, Subtract Ap ~ Ba

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
MULT.2SUBA Multiply A¢ » By, Subtract 2—-Ap

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
MULT.SUBRL Multiply Aq » By, Subtract Bo — Az

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)

8-10 External Instructions

External Instruction Cycle Counts

Table 8-1. Cycle Counts for External Instructions (Continued)

Cycle Counts
Assembler Description PIPES2-1 | PIPES2-1 | PIPES2-1 | PIPES2-1
Opcode of Routine 14 10 o1 00

NEG Pass —-A 1(1) 2(1) 2(1) 3(1)
NOR Logical NOR A, B 1(1) 2(1) 2(1) 3(1)
OR Logical OR A, B 1(1) 2(1) 2(1) 3(1)
PASS Pass A 1(1) 2(1) 2(1) 3(1)
PASS Pass B 1(1) 2(1) 2(1) 3(1)
PASS.ADD Muttiply A4 = 1, Add Ao + Bo

single~precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
PASS.NEG Multiply A1 « 1, Subtract 0-Ap

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer) 1(1) 2(1) 2(1) 3(1)
PASS.PASS Multiply A 1, Add Ao + 0

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
PASS.SUB Muitiply A1 ~ 1, Subtract Ap — B

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
PASS.2SUBA . Multiply Aq * 1, Subtract 2—-Ap

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
PASS.SUBRL Multiply A1 « 1, Subtract Bo — Ap

single-precision 1(1) 2(1) 2(1) 3(1)

double-precision 2(2) 3(2) 3(2) 4(2)

integer 1(1) 2(1) 2(1) 3(1)
RTI Return from interrupt 1(1) 1(1) 1(1) 1(1)
RTS Return from subroutine (1) (1) 1(1) 1(1).
SLL Logicat shift left A by B bits 1(1) 2(1) 2(1) 3(1)
SQRT Square root of A ‘

single-precision 11(11) 11(10) 12(10) 12(10)

double-precision 16(16) 16(15) 17(15) 17(15)

integer 20(20) 20(19) 21(19) 21(19)
SRA Arithmetic shift right A by B bits 1(1) 2(1) 2(1) 3(1)
SRL Logical shift right A by B bits 1(1) 2(1) 2(1) 3(1)

External Instruction Cycle Counts

Table 8-1. Cycle Counts for External Instructions (Continued)

Cycle Counts
Assembler Description PIPES2-1 PIPES2-1 PIPES2-1 PIPES2-1
Opcode of Routine 1 10 o1 00
ST Store n words from register
single-precision n+1 n+1 n+1 n+1
double-precision 2n+1 2n+1 2n+1 2n+1
integer n+1 n+1 n+1 n+1
suB Subtract A-B 1(1) 2(1) 2(1) 3(1)
SUBRL Subtract B-A 1(1) 2(1) 2(1) 3(1)
UuToD Convert from unsigned integer to DP 1(1) 2(1) ' 2(1) 3(1)
UTOF Convert from unsigned integer to SP 1(1) 2(1) 2(1) 3(1)
UWRAPI Unwrap inexact operand 1(1) 2(1) 2(1) 3(1)
UWRAPR Unwrap rounded operand 1(1) 2(1) 2(1) 3(1)
UWRAPX Unwrap exact operand 1(1) 2(1) 2(1) 3(1)
WRAP Wrap denormalized operand 1(1) 2(1) 2(1) 3(1)
XOR Logical exclusive OR A, B 1(1) 2(1) 2(1) 3(1)

8-12 External Instructions

General Restrictions for External Instructions

8.4 General Restrictions for External Instructions
Restrictions that apply to all external instructions are as follows:

Registers C and CT cannot both be used as operands in the same
instruction.

Absolute value modifiers are permitted with floating-point operations only.

Integer and floating-point operand types cannot be used in the same
operation (except conversions).

Signed and unsigned integer operand types cannot be used in the same
operation.

Operands with the LAD bus as the source cannot be specified with a
double-precision operand type.

Multiplier and ALU feedback (MULFB and ALUFB) cannot be specified as
operands unless the FPU core output registers are turned on
(PIPES2 = 1).

Results from chained-mode operations are always ofthe same type. Ifone
result is double-precision, the other is forced to be also. For example, a
multiply/pass operation with double-precision multiplier inputs and a
single-precision input for the pass operation will result in two
double-precision outputs. Be careful that subsequentinstructions havethe
correct data types when these results are used as input.

8-13

External Assembly Instructions

8.5 External Assembly Instructions

A detailed explanation of each external instruction is provided on the following
pages of this chapter. The instructions are in alphabetical order by their
TMS34082 assembler opcode. Table 8-2 is a list of the selectable bit
definitions used in this chapter.

Table 8-2. Bit Definitions for External Instructions

Bit Number Mnemonic Description
29 e 0 = normal operation, -
1 = send output to LAD bus with WE strobe
28 h 0 = normal operation,
1 = send output to LAD bus with ALTCH strobe
27-24 ra operand A source address
23-20 b operand B source address
19-15 rd result destination address
14-11 sel_op operand selection (see subsection 8.2.2)
97 type ort operand format:

000 = single-precision on ra and single-precision on rb
001 = single-precision on ra and double-precision on rb
010 = double-precision on ra and single-precision on b
011 = double-precision on ra and double-precision on rb
100 = integer (2’s complement) on both ra and rb

101 = unsigned integer on both ra and rb

8 pa precision of ra:
0 = single-precision, 1 = double-precision
7 pb precision of rb:
0 = single-precision, 1 = double-precision-
6 s output source:
0 = ALU result, 1 = multiplier result
5 a negate ALU result:
0 = normal ALU result, 1 = negated ALU result
4 va absolute value of ra:
O=ra,1=|ral
3 vb absolute value of tb:
0=r1b,1=]rb|
2 vy absolute value of rd:
O0=rd, 1=|rd|
2 m negate multiplier result:
0 = normal multiplier result, 1 = negated multiplier resuit
2 ny negate output result:
0 = normal output result, 1 = negated output result
1 wa wrapped number on ra:
0 = normal format, 1 = wrapped number
0 wb wrapped number on rb:

0 = normal format, 1 = wrapped number

8-14 External Instructions

AddA+B add

Syntax
Execution

Instruction Words

Description
Sources for ra

Sources for rb

Types for ra and rb

Modifiers for ra and rb

Destinations for rd

Modifiers forrd

Example

add ra.[modifier]type, rb.[modifierjtype, rd[.modifiers]

ra+rb— rd
31 30 29 28 27 24 23 20 19 15
| 0] 0 |. © | h | ra] rb | rd |

14 11 10 9 8 7 6 5 4 3 2 1 0
[selop J o[t [pa]p]o]ofva[w]w]o]o]

This instruction places the sum of the values in ra and rb in rd.

RA9-RAO

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT Register

ALUFB (ALU feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

1 (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

v (absolute value, not valid for integer types)

RA9-RAD

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

v (absolute value, not valid for integer types)
e (send output to LAD bus, WE strobe)
h {send output to LAD bus, ALTCH strobe)

add RA7.vd, RB9.vd, C

and Logical AND A, B

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources forrb

Types for ra and rb

Modifiers for ra and rb

Destinations for rd

Modifiers for rd’

Restrictions

Example

8-16

and ra.type, rb.type, rd[.modifier]

raAND b - rd
31 30 29 28 27 24 23 20 19 15
I 0] 0 I e I h I ra | b l d |

14 11 10 9o 8 7 6 5 4 3 2 1 0
[selop f O [1t JoJt]JoJoJo]1]Jo]o]o]

This instruction takes the logical AND of ra with rb and places the result in rd.

RAS-RA0

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT Register

ALUFB (ALU feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

i (signed integer)
u (unsigned integer)

none

RA9-RAO

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

The types for ra and rb must be the same.

and LAD.i, ONE.ic CT

External Instructions

Logical AND (NOTA), B _andna

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources forrb

Types for ra and rb

Modifiers for ra and rb

Destinations for rd

Modifiers for rd

Restrictions

Example

andna ra.type, rb.type, rd[.modifier]

(NOTra) AND b — rd
31 ’30 29 28 27 24 23 20 19 15
| 0 I 0 l e I h | ra | b I rd]

14 11 10 9 8 7 6 5 4 3 2 1 0
[selop [0 [+ Jo [t JoJoJo]Jt1Jol]jt o]

This instruction takes the logical AND operation of (NOT ra) with rb and places
the result in rd.

RA9-RAO

C or CT Register

MULFB (Muttiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT Register

ALUFB (ALU feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

i (signed integer)
u (unsigned integer)

none

RAS-RAO

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

The types for ra and rb must be the same.

andna RAO.u, RB8.u, C.h

andnb Logical AND A, NOT B

Syntax
Execution

Instruction Words

Description

Sources forra

Sources forrb

Types for ra and rb

Destinations for rd

Modifiers for rd

Restrictions

Example

8-18

andnb ra.type, rb.type, rd[.modifier]
ra AND (NOT rb) —» rd

31 30 29 28 27 24 23 20 19 15
l 0 I 0 I e l h l ra I b [rd I

14 1110 9o 8 7 6 5 4 3 2 1 0
tseop J ol 1t JoJtJoTJTolToTl 1+ To]o] 1]

This instruction takes the logical AND operation of ra with (NOT rb) and places
the result in rd.

RA9-RA0

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

i (signed integer)
u (unsigned integer)

RA9-RA0

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

The types for ra and rb must be the same.

andnb C.i, ONE.i, RB1l.h

External Instructions

Conditional Jump CjMpP

Syntax

Execution

Instruction Words

Description

Conditions for
cond_masks

Range for address

cjmp cond_masks, address

If condition is true,
jump address — Program Count
If condition is false,
1+ Program Count —» Program Count

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
[t fojojofaf~]elzjviE[c]P|Dfo[M]| 1]

15 0
L jump address]

Jump conditional to the specified branch address. During a jump instruction,
no FPU operations are performed.

Listed below are the jump instruction condition mask bits (enabled when high):

A Always C CCpin

N Negative P Change polarity (for N,G,Z,V,E,C, and D)
G Greaterthan D Decrement LOOPCT, Jump not zero

Z Zero M Jump indirect using MCADDR

V Overflow i Jump to internal ROM routine

E

ED bit

An unconditional jump may be done by setting the A mask bit high. i C is
enabled, all other jump condition enables except P, M, and | are turned off.
Multiple jump conditions are separated by vertical bar, |, and are logically
ORed together. The condition mask P changes polarity for each individual bit
before the logical OR operation.

0x0-OxFFFF

8-19

cjmp Conditional Jump

Alternate Opcodes The following are alternative opcodes recognized by the TMS34082
Software Tool Kit that perform the same instruction as cjmp.

Opcode Description

beq address Branch on equal

bge address Branch on greater than or equal

bgt address Branch on greater than

ble address Branch on less than or equal

blt address Branch on less than

bne address Branch on not equal

boh address Branch on overflow high

bol address Branch on overflow low

br address Branch unconditional

brioop address Branch on loop count

bucch address Branch on CC pin high

buccl address Branch on CC pin low

jmpind Jump indirect unconditional

jmpindcch Jump indirect on CC pin high

jmpindccl Jump indirect on CC pin low

jmpindeq Jump indirect on equal

jmpindge Jump indirect on greater than or equal

jmpindgt Jump indirect on greater than

jmpindie Jump indirect on less than or equal

jmpindit Jump indirect on less than

jmpindne Jump indirect not equal

jmpindoh Jump indirect on overflow high

jmpindol Jump indirect on overflow fow
Example cjmp D | P, 0x030

This example decrements the value in the LOOPCT register, then checks to
seeifitis zero. ifitis, the jump is taken (since P is set to change polarity). The
address output on MSA15-MSAQ is 30 hex.

8-20 External Instructions

Conditional Jump to Subroutine CjSI

Syntax

Execution

Instruction Words

Description

Conditions for
cond_masks

Range for address

cjsr cond_masks, address

If condition is true,
Program Counter — SABADDRx
jump address — Program Counter
if condition is false,
Program Counter +1 — Program Counter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 {7

[t fofoftjajn]afz]v eJcJrpjolm] 'I
156 0
r jump address l

Jump conditional to the specified subroutine address. During a jump
instruction, no FPU operations are performed.

Listed below are the jump instruction condition mask bits (enabled when high):

A Always C CCpin

N Negative P Change polarity (for N,G,Z,V,E,C, and D)
G Greater than D Decrement LOOPCT, Jump not zero

Z Zero M Jump indirect using MCADDR

V Overflow | Jump to internal ROM routine

E

ED bit

An unconditional jump may be done by setting the A mask bit high. If C is
enabled and the CC bit is high, all other jump condition enables except P, M,
and | are turned off. Multiple jump conditions are separated by vertical bar ’|’
and are logically ORed together. The condition mask P changes polarity for
each individual bit before the logical OR operation.

0x0-OxFFFF

8-21

CjSr Conditional Jump to Subroutine

Alternate Opcodes

The following are alternative opcodes recognized by the TMS34082 Software

Tool Kit that perform the same instruction as cjsr.

Opcode

Description

call address
callcch address
callccl address
calleq address
callge address
calligt address
callle address
callit address
caline address
calloh address
callol address

callind
callindcch
callindccl
callindeq
callindge
callindgt
callindie
callindit
callindne
callindoh
callindol

intcall address

Example cjsr | C I M

Call unconditional

Call on CC pin high

Call on CC pin low

Cail on equal

Call on greater than or equal
Cali on greater than

Call on less than or equal
Calt on less than

Call on not equal

Call on overflow high

Cali on overflow

Call indirect unconditional

Call indirect on CC pin high

Call indirect on CC pin low

Call indirect on equal

Cali indirect on greater than or equal
Call indirect on greater than

Call indirect on less than or equal
Call indirect on less than

Call indirect on not equal

Call indirect on overflow high

Call indirect on overflow low

Internal call unconditional

This instruction checks the CC input and jumps to the address inthe MCADDR

register if CC is high.

Note: ‘cjsr A, address’ is equivalent to ‘call address’

8-22

External Instructions

Compare A, B Cmp

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources for rb

Types for ra and rb

Modifiers forraand rb

Example

cmp ra.[modifierjtype, rb.[modifierjtype
status flags (ra — rb) — status register

31 30 29 28 27 24 23 20 18 18 17 186 15
[o|o]e‘h| ra | b]o]olo]o[o]

14 11 10 © 8 7 6 5 4 3 2 Ao 0
[selop [0] t ITpa]lpjo]ofva]w]ol] 1]o]

This instruction subtracts the valueinrb from the value in ra, and sets the status
register accordingly.

RA9-RAO

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

v (absolute value, not valid for integer types)

cmp RAS.vf, CT.vf

8-23

compl Pass 1s Complement of A

Syntax compl ra.type, rd].modifier]

Execution (NOT'ra) - rd

Instruction Words 31 30 29 28 27 24 23 22 21 20 19 15
[o] o J e nh | a|] o] o | o] o | x|

14 11 10 9 8 7 6 5 3 2

4 0
|se|_op|0|1|type[o|1|o]o|o|

[o |

1
1

Description This instruction takes the 1s complement of ra and places it in rd.
Sources forra RA9-RA0
C or CT Register

MULFB (Multiplier feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

Types for ra i (signed integer)
u (unsigned integer)

Modifiers for ra none

Destinations for rd RAS-RA0
RB9-RB0
CorCT
STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

Modifiers for rd e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

Example compl RA7.i, C.h

8-24 External Instructions

DivideA/B div

Syntax
Execution

Instruction Words

Description

Sources forra

Sources for rb

Types for ra and rb

Modifiers for ra

Modifiers for rb

Destinations for rd

Modifiers for rd

Restrictions

Example

div ra.[modifierJtype, rb.[modifier]type, raf. modifiers]

ra/tb > rd
31 30 29 28 27 24 23 20 19 15
[0 [0] e] h] ra | b | rd J

14 11 10 9 8 7 6 5 4 3 2 1 0
[seop | 0 [t [pa[po [1 [1 [va] 0 [ny[wa]|[w]

This instruction takes the result of dividing ra by rb and places it in rd.

RA9-RAO
C or CT Register
ONE (the value one)

RB9-RBO
C or CT Register
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

v (absolute value, not valid for integer types)
w (wrapped, not valid for integer types)

w (wrapped, not valid for integer types)

RAS-RAQ

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

n (negated, not valid for integer types)
e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

Absolute value modifiers, negated result, and wrapped numbers are only
permitted with floating-point operations.

div ONE.d, CT.f, RaQO.e

8-25

dtof Convert from Double-Precision FIoating—Point to Single-Precision FIoating—Point

Syntax dtof ral.modifier], rdf.modifier]

Execution ra (double-precision) — rd (single-precision)

Instruction Words 31 30 29 28 27 24 23 22 21 20 18 15
{ o] o] e [h | ma] o o] oo d |

14 11 10 g 8 7 6 5 4 3 2 1 0

' selop] o Jo [t] 1 JoJ 1t [valo] 1][1]0ol]

Description This instruction takes the double-precision floating-point formatted number in
ra and converts it to a single-precision floating-point formatted number in rd.
Sources forra RA9-RAD
C or CT Register
MULFB (Multiplier feedback)
ONE (the value one)
Types for ra type is implicit in the opcode
Modifiers for ra v (absolute value)
Destinations for rd RAS-RA0D
RB9-RBO
CorCT

STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

Modifiers for rd e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

Example dtof RA5.v, C.e

8-26 External Instructions

Convert from Double-Precision Floating-Point to Integer dtoi

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

dtoi ral.modifier], ral.modifier]
ra (double-precision) — rd (integer)

31 30 29 28 27 24 23 22 21 20 19 15
| 0 | 0] e] h | ra | 0 [0] 0 | 0] rd 1
14 11 10 9 8 7 6 5 4 3 2 0

1
{selop [O J o j 1+ 1 t]Jo |1 Jva]ol]lol 1]1]

This instruction converts the value in ra from double-precision floating-point
format to its integer form and places the result in rd.

RAS-RA0

C or CT Reqgister

MULFB (Multiplier feedback)
ONE (the value one)

type is implicit in the opcode

v (absolute value)

RA9-RA0O

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

dtoi RA4. v, RA2

8-27

dtou Convert from Double-Precision Floating-Point to Unsigned Integer

Syntax dtou raf.modifier], rdf.modifier]

Execution ra (double-precision — rd (unsigned integer)

Instruction Words 31 30 29 28 27 24 23 22 21 20 19 15
[o | o f e | h a0] o] o f o0 | d |
14 11 100 9 8 7 6 5 4 3 2 1 0
{seeop f O J o[1t [1 ol 1t Jvalo]+t] 1] 1]

Description This instruction takes a double-precision floating-point formatted value in ra
and converts it to an unsigned integer.

Sources forra RA9-RAOQ

C or CT Register
MULFB (Multiplier feedback)
ONE (the value one)

Types for ra type is implicit in the opcode
Modifiers for ra v (absolute value)
Destinations for rd RA9-RA0O

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

Modifiers for rd e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

Example dtou RA7.v, C

8-28 External Instructions

Convert from Single-Precision Floating-Point to Double-Precision Floating-Point ftod

Syntax
Execution

Instruction Words

Description

Sources forra

Types for ra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

ftod raf. modifier], rd[.modifier]
ra (single-precision) — rd (double-precision)

31 30 29 28 27 24 23 22 21 20 19 15
[0 | 0 | e 1 h] ra | 0 | 0 | 0 | 0 | rd |
14 11 10 9 8 7 6 5 4 3 2 1 0

[setop] 0 J O J oo o {1t [vafJoll1][1]ol}

This instruction converts the value in ra from single-precision floating-point to
double-precision floating-point and places it in rd.

RA9-RAQ

C or CT Register

MULFB (Multiplier feedback)
ONE (the value one)

type is implicit in the opcode

v (absolute value)

RA9-RA0

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

ftod LAD, CT.h

8-29

ftol Convert from Single-Precision Floating-Point to Integer

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

8-30

ftoi raf.modifier], rd[.modifier]
ra (single-precision) — rd (integer)

31 30 29 28 27 24 28 22 21 20 19 15
f o o | e | h | ma| o] o | o o] d |
14 1 10 9 8 7 6 5 4 3 2 1
[selop | 0 [0o Jof oot {valof{ol] 1] 1]

This instruction converts from a single-precision floating-point formatin ra into
the integer format and places the result in rd.

RA9-RAO

C or CT Register

MULFB (Multiplier feedback)
ONE (the value one)

type is implicit in the opcode

v (absolute value)

RA9-RAO

RB9-RB0O

CorCT

STATUS,CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

ftoi MULFB, C.h

External Instructions

Convert from Single—Precision FIoating—Point to Unsigned Inreger ftou

Syntax
Execution

Instruction Words

Description

Sources forra

Types for ra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

ftou raf.modifier], rdf.modifier]

ra (single-precision) - rd (unsigned integer)

31 30 29 28 27 24 23 22 21 20 19 15
[o | o [e | h | ra}| o] o oo [d|]
14 "1 10 9 8 7 6 5 4 3 2 1 0
[selop [O J o JoJoJo] 1t [valo]t 1] 1]

This instruction take a value in single-precision floating-point format and
converts it to an unsigned integer, placing it in rd.

RA9-RA0

C or CT Register

MULFB (Multiplier feedback)
ONE (the value one)

type is implicit in the opcode
v (absolute value)

RA9-RA0

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

ftou CT, RB5.h

8-31

itod cConvert from Integer to Double-Precision Floating-Point

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra
Modifiers for ra

Destlinations for rd

Modifiers for rd

Example

8-32

itod ra, rd[.modifier]
ra (integer) — rd (double-precision)

31 30 29 28 27 24 23 22 21 20 18 15
I—olo eTthalOIOJOIOlrdl
14 11 10 9 8 7 6 5 4 3 2 1 0
[selop [O J o 1+ [1+ JoTlT 1+]JofJo o] 1]o]
This instruction takes the integer value in ra and places it in rd in
double-precision floating-point format.

RA9-RA0

C or CT Register

MULFB (Muttiplier feedback)
ONE (the value one)

type is implicit in the opcode

none

RA9-RAOQ

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

itod RA2, RA6.e

External Instructions

Convert from /nteger fo Sing/e-Precision FIoa!ing-Point itof

Syntax
Execution

Instruction Words

Description

Sources for ra

Types forra
Modifiers for ra

Destinations for rd

Modifiers for rd

Example

itof ra, rd[. modifier]
ra (integer) — rd (single-precision)

31 30 29 28 27 24 23 20 21 20 19 15
|o|o|e|h|ra|o|o|o|o|rd|

14 11 10 9 8 7 6 5 4 3 2 1 0
[setop] O J 0 J]ojo o]t Jo]Jo]Jo]1{o]

This instruction converts the value in ra from integer form to single-precision
floating-integer and places the resuit in rd.

RA9-RAD

C or CT Register

MULFB (Multiplier feedback)
ONE (the value one)

type is implicit in the opcode

none

RA9-RA0

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

itof ONE, RBO.h

Id Load N Words into Register

Syntax

Instruction Words

Description

Destinations for reg

Types for reg

Sources for address

Range for count

Example

8-34

Id reg.type, address, count

31 30 29 28 27 26 25 2120 16
| L | 1 | M | 0 J T | S I word count I register I
15 2 1 0
I start address l ct l]

1 for LAD moves only.

During a move instruction no FPU operation is performed. Register control
logic for move instructions counts sequentiaily from the beginning register
address, with the exception that the C and CT registers are omitted from the
count. The entire register file acts like a ring buffer during the move instruction.
The C and CT registers are not accessible to moves. It is illegal to use the C
or CT register address as the starting address for a move instruction.

T (Type) and S (Size) give the format of the numbers
T O =integer, 1 = floating point
S 0=32bits 1 =64 bits
Note: Setting TS = 01 is reserved

Word count is the number of operands to be moved (n). A count of 0 will move
256 items. The beginning register address is stored in the register field, and
the beginning memory address is the start address field (bits 15-0).

An indirect move is designated by selecting MCADDR as the address. The M
bit will be set low and the 16 low-order bits are then disregarded. The starting
address in memory comes from the MCADDR register.

To move data from the LAD bus, LAD is selected as the address. The L bit will
be set high, and the low-order 16 bits are set to 0. An address of ‘COINT" will
load data from the LAD bus and set COINT low for the cycles the load is
executing. (C will be set high in the instruction word.) This option is valid for
host-independent mode only.

RA9-RAD

RB9-RBO

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT
f (single-precision floating-point)

d (double-precision floating-point)

i (signed integer)

u (unsigned integer)

0x0-0xFFFF

MCADDR, LAD, COINT

0-31

14 CONFIG.i, 0x100, 1
1d RAO.i, MCADDR, 3
1d RB1.i, LAD, 3

External Instructions

Load Loop Counter with Value ldict

Syntax
Execution

Instruction Words

Description

Range for count

Example

Idict count
count — LOOPCT

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
[rlofrjojojojojoJojojojofojojofo]

15 0
| count l

This instruction loads the LOOPCT register with the value specified by count.
If the register is loaded with 0, the loop would execute 64K times.

0x0-0xFFFF
ldlct 0xOA

This example loads the LOOPCT regis{er with 10 (A hex).

8-35

Idmecaddr (oad Indirect Address Register with Value

Syntax
Execution

Instruction Words

Description

Range for address

Example

8-36

ldmcaddr address
address —» MCADDR

31 30 29 28 27 26 25 24 23 22 21t 20 19 - 18
|‘|°|‘|°l°l°|‘|°|°l°|°|°|°f°|J
16 0
I address I

This instruction loads the indirect address (MCADDR) register with the value
specified by count. This is a 17-bit value; the most significant bit selects
between code and data space.

0x0-0x1FFFF
ldmcaddr 0xO0A

This example loads the MCADDR register with 10 (A hex).

External Instructions

Set Programmable Mask mask

Syntax
Execution

Instruction Words

Description

Functions for
prog_mask

Restrictions

Example

mask prog_mask

31 2827 26 25 24 23 22 21 20 19 18 17 16 15 14
!Lo 1 1IOIEIDISJCIHILllJEH]DHIESIDSIEE]DE'

13 0
[oooooooooooooo[

This instruction enables/disables interrupts, sets/clears programmable bits,
and forces software interrupts. Multiple bits may be set by placing a vertical bar
I between each symbol.

When high, the bits below perform the functions described:

E Restore interrupt mask (INTENED, INTENSW, INTENHW)
D Save interrupt mask and disable interrupts

S Set COINT high (set interrupt output to host)

C Set COINT low (clear interrupt output to host)

H Set CORDY high (host-independent mode only)
L Set CORDY low (host-independent mode only)
I Force software interrupt

EH Enable hardware interrupt (INTR input)

DH Disable hardware interrupt (INTR input)

ES Enable software interrupt

DES Disable software interrupt

EE Enable ED interrupt

DE Disable ED interrupt

Eand D, Sand C, H and L, EH and DH, ES and DS, EE and DE may notbe
used in pairs.

E and D may not be used with |, EH, DH, ES, DS, EE, and DE.

I may not be used with EH, DH, ES, DS, EE and DE.

mask EH | ES

8-37

mova MoveA

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

8-38

mova ra.[modifierjtype, rd[.modifier]
ra — rd (no status flag set)

31 30 29 28 27 24 23 22 21 20 19 15
|o|o|e|h|ra|o|o|o|o|rd|

14 M1 10 9 8 7 8 5 4 3 2 1 0
|se|_op|o|o|type|o|1|va|o[1|o|o|

This instruction copies the value in ra and places it in rd without setting status
flags. NANs are not detected or changed to the standard format.

RA9-RAO

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)

v (absolute value)

RA9-RAO

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

mova CT.vf, RA7.e

External Instructions

Move N Words from LAD Bus to MSD Bus movim

Syntax

Instruction Words

Description

Destination addresses

Types for reg

Range for count

Types for
memory_type

movlm address.type, count], memory_type]

31 30 29 28 27 26 25 18 17 16
I 1 | 1 I 0 | 0 I T | s l word count I M I D |
15 2 1 0
' start address I ct I |

T for indirect moves only.

Each instruction can transfer up to 256 items that are 1 or 2 words long. During
a move instruction, no FPU operation is performed.

T (Type) and S (Size) determine the number format.
T 0 =integer, 1 =floating point
S 0=232bits, 1==64Dhits
Note: Setting TS = 01 is reserved

Word count is the number of operands to be moved (n). A word count of 0 will
move 256 items. 512 32-bit values may be moved by setting count=0 and
specifying double-precision format. The beginning memory address (for MSD)
is the start address field.

An indirect MOVE is selected by using ‘MCADDR’ for the address. Bit 17 (M)
will be set high. The starting address is found in the indirect address register
(MCADDRY). When M is high, the 16 low-order bits are disregarded, with the
exception of bit 1. Choosing ‘COINT" as the address will set the C bit high. The
COINT output will be low during the cycles the move is executing. The
MCADDR register stores the starting address. This option is only valid for
host-independent mode.

If bit 16 (D) is high, data space is used as the destination. i the bit is low, code
space is used.

Valid memory types are CODE (D=0) and DATA (D=1). The default value, if
none is specified, is CODE. If ‘MCADDR" or ‘COINT® is the address, the
memory type must NOT be specified (bit 16 of the MCADDR register selects
the memory type).

0x0-OxFFFF

MCADDR, COINT

f (single-precision floating-point)
d (double-precision fioating-point)
i (signed integer)

u (unsigned integer)

0-255

CODE
DATA

8-39

movim Move N Words from LAD Bus to MSD Bus

Example movlm _vecl.i, 2, DATA
movlim MCADDR.f, 2
movlm COINT.i, 2

8-40 External Instructions

Move N Words from MSD Bus to LAD Bus movmil

Syntax

Instruction Word

Description

Sources for address’

Types for reg

Range for count

movml address.type, count[, count, memory_type]

31 30 29 28 27 26 25 21 20 16
| 1 | 1 [0 | 0] T | S [word count | M | D |
15 2 0
| start address | ct | I

T for indirect moves only.

Each instruction can transfer up to 256 items that are 1 or 2 32-bit words long.
During a move instruction, no FPU operation is performed.

Valid sequencer opcode for this instruction format 1101 move n words from
MSD to LAD.

T (Type) and S (Size) determine the number format
T 0 =integer, 1 =floating point
S 0=32bits, 1=64bits
Note: Setting TS = 01 is reserved

Word count is the number of operands to be moved (n). A word count of 0 will
move 256 items. 512 32-bit values may be moved by setting count=0 and
specifying double-precision format. The beginning memory address (for MSD)
is the start address field.

An indirect MOVE is selected by using ‘MCADDR' for the address. Bit 17 (M)
will be set high. The starting address is found in the indirect address register
(MCADDR). When M is high, the 16 low-order bits are disregarded, with the
exception of bit 1. Choosing ‘COINT" as the address will set the C bit high. The
COINT output will be low during the cycles the move is executing. The
MCADDR register stores the starting address. This option is only valid for
host-independent mode.

Ifbit 16 (D) is high, data space is used as the source. Hthe bitis low, code space
is used.

Valid memory types are CODE (D=0) and DATA (D=1). The default vaiue, if
none is specified, is CODE. If ‘MCADDR' or ‘COINT" is the address, the
memory type must NOT be specified (bit 16 of the MCADDR register selects
the memory type).

0x0-OxFFFF

MCADDR, COINT

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

0-255

8-41

movml! Move N Words from MSD Bus to LAD Bus

Types for
memory_type

Example

8-42

CODE
DATA

movml _vec2.f, 3, DATA
movml MCADDR.f, 3
movml COINT.i, 3

External Instructions

Muitiple Move, Register to Register movrr

Syntax

Instruction Word

Description

Sources for srcreg

Types for srcreg

Destinations for dstreg

Range for count

Example

movrr srscreg.type, dstreg, count

31 30 29 28 27 26 25 21 20 16
[1 I 0] 1 ' 1 I T l S [wordcountl source l

15 54 0
[o 0 0 0 0) 0 0 0 0 0|destination|

During a move, no FPU operations are performed. Register control logic for
move instructions counts sequentially from the beginning register address,
with the exception that the C and CT registers are omitted from the count. The
entire register file acts like a ring buffer during the move instruction. The C and
CTregisters are not accessible to moves. ltisillegal to use the C or CT register
address as the starting address for a move instruction.

T (Type) and S (Size) give the format of the numbers
T 0 =integer, 1 =floating point
S 0=232bits, 1 =64 bits
Note: Setting TS = 01 is reserved

Word count is the number of operands (n) to be moved. A count of 0 will move
256 registers. The source and destination fields are the beginning register
addresses. The source is the starting source register and destination is the
starting destination address.

RA9-RA0

RB9-RB0O

STATUS,CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

t (single-precision floating-point

d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

RA9-RAO

RB9-RBO

STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

0-31

movrxr RA3.f, RBO, 3

8-43

mult MuitiplyAx B

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources forrb

Types forraand rb

Destinations for rd

Modifiers for rd

Restrictions

Example

8-44

mult ra.[modifierjtype, rb.[modifierftype, rd[.modifier]

raxrb—rd
31 30 29 28 27 24 23 20 19 15
| 0 | 0 | e [h | ra | b] rd J

14 11 10 9 8 7 6 5 4 3 2 1 0
f selop] 0 [t [palpb|[1] O |va]wvw [ny]|wa]w]

This instruction takes the product of ra and rb and places it in rd.

RA9-RA0Q

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

RA9-RA0Q

RB9-RB0

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

n (negated, not valid for integer types)
e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

Feedback registers (ALUFB or MULFB) may not be used as operands for
double-precision multiplies.

mult RAO.f£,C.f, CT

External Instructions

Multiply A1 x B1, Add A2 + B2 mult.add

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources forrb

Types for ra and rb

Modifiers for ra and rb

Sources for ra2

Sources for rb2

Destinations for rd

mult.add ra.type, ra2, rb.type, rb2, rd[.modifier], output_source
rax rb — rd or MULFB; ra2 + rb2 — rd or ALUFB

31 30 29 28 27 24 28 20 19 15
I 0 I 0 J e | h l ra or ra2 I rb or rb2 | rd |

14 i1 10 9 8 7 6 5 4 3 2 1 0
lsel_op|1ltlpalpb|s|0|0|alm|0|0|

This chained-mode instruction places the product of the values of ra and rbin
either rd or MULFB, and concurrently places the sum of the next values from
ra and rb into rd or ALUFB.

RA9-RAOQ

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

none

RA9-RA0

C or CT register

MULFB (Muttiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT register
ALUFB (ALU feedback)
LAD (immediate)

ONE (the value one)

RA9-RAO

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADM, IRAREG, LOOPCT

8-45

mult.add Multiply A1 x B1, Add A2 + B2

Modifiers for rd

Output_sources

Restrictions

Example

8-46

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
e (send output to LAD bus, WE strobe)

h (send output to LAD bus, ALTCH strobe)

ALU
MULT

If ra2 is specified, then at least one feedback source must be used (either ra
or ra2). If rh2 is specified, then at least one feedback source must be used
(either rb or rb2).

Feedback registers (ALUFB or MULFB) may not be used as operands for
double-precision multiplies.

mult.add RA2.f, lad2, RB7.u. ALUFB2, CT.a, ALU

External Instructions

Multiply A1 x B1, Subtract 0- A2 mult.neg

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources forrb

Types for ra and rb

Modifiers for ra and rb

Sources for ra2

Sources for rb2

Destinations for rd

mult.neg ra.type, ra2. rb.type, rdf.modifier],output_source
ra x rb — rd or MULFB; 0 —ra2 — rd or ALUFB

31 30 29 28 27 24 23 20 19 15
l 0 | 0 l e I h I ra or ra2 | b I rd |

4 11 10 o 8 7 6 5 4 3 2 1 0
[selop [1 [t Jpa || s [t JTo]Jalm9ii1 |1]

The chained-mode instruction places the product of values of ra and rb in either
rd or the multiplier feedback, and concurrently subtracts the value of ra2 from
0 and places the result into either rd or the ALU feedback.

RA9-RA0

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u {unsigned integer)

none

RA9-RAO

C or CT register

MULFB (Multiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT register
ALUFB (ALU feedback)
LAD (immediate)

ONE (the value one)

RA9-RAD
RB9-RB0O
CorCT

8-47

mult.neg Multiply A1 x B1, Subiract 0 - A2

Modifiers for rd

Output_sources

Restrictions

Example

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
e (send output to LAD bus, WE strobe)

h (send output to LAD bus, ALTCH strobe)

ALU
MULT

If ra2 is specified then at least one feedback source must be used (either ra
or ra2). If rb2 is specified then at least one feedback source must be used
(either rb or rb2).

Feedback registers (ALUFB or MULFB) may not be used as operands for
double-precision multiplies.

mult.neg RAl.f, LAD2, RB6d4, RBO, MULT

External Instructions

Multiply A1 x B1, Add A2 + 0 _mult.pass

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources for rb

Modifiers for ra and rb

Sources for ra2

Sources for rb2

Destinations for rd

Modifiers for rd

Output_sources

mult.pass ra.type, ra2, rb.type, rd[.modifier], output_source
rax rb — rd or MULFB; ra2 + 0 — rd or ALUFB

31 30 29 28 27
L o | o | o | o
14 11 10 9 8 7 6 5 4 3 2 1 0
{selop | 1t [t Tpa]pw [s [1t Jo[a]m]o]o]

This chained-mode instruction places the product of a value ofraand rb in rd
or the multiplier feedback, and concurrently places the sum of the value of ra2
and 0 into either rd of the ALU feedback.

RA9-RAQ

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RBS-RBO

C or CT Register

MULFB (Muttiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

none

24 23 20 19 15
| ra or ra2 I b I rd]

RA9-RAO

C or CT register

MULFB (Multiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT register
ALUFB (ALU feedback)
LAD (immediate)

ONE (the value one)

RA9-RAO
RB9-RB0O
CorCT

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
e (send output to LAD bus, WE strobe)

h (send output to LAD bus, ALTCH strobe)

ALU
MULT

8-49

mult.pass Muitiply A1 x B1, Add A2 + 0

Restrictions If ra2 is specified then at least one feedback source must be used (either ra
or ra2). If 2 is specified then at least one feedback source must be used
(either rb or rb2).

Feedback registers (ALUFB or MULFB) may not be used as operands for
double-precision multiplies.

Example mult.pass RA4.f, C2, RB6.d, CT.a, ALU

8-50 External Instructions

Muiltiply A1 x B1, Subtract A2 - B2 mutl.sub

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources forrb

Types for ra and rb

Modifiers for ra and rb

Sources for ra2

Sources for rb2

Destinations for rd

mult.sub ra.type, ra2, rb.type, rb2, rd[.modifier], output_source
ra x rb — rd or MULFB; ra2 — rb2 — rd or ALUFB

31 30 29 28 27 24 23 20 19 15
I 0 I o] I e] h I ra or ra2 I rb or rb2 | rd I

14 11 10 9 8 7 6 5 4 3 2 1 0

[sel_opl1lt[pa|pb|s]0]0La|m]0]1]

This chained-mode instruction places the product of the values of raand rbin
either rd or MULFB, and concurrently places the difference of the values from
ra2 and rb2 into rd or ALUFB.

RA9-RAO

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

none

RA9-RAO

C or CT register

MULFB (Muttiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT register
ALUFB (ALU feedback)
LAD (immediate)

ONE (the value one)

RA9-RAO
RB9-RB0
CorCT

8-51

mult.sub Multiply A1 x B1, Subtract A2 — B2

Modifiers for rd

Output_sources

Restrictions

Example

8-52

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode non-nteger types)
e (send output to LAD bus, WE strobe)

h (send output to LAD bus, ALTCH strobe)

ALU
MULT

If ra2 is specified then at least one feedback source must be used (either ra
or ra2). If ib2 is specified then at least one feedback source must be used
(either rb or rb2).

Feedback registers (ALUFB or MULFB) may not be used as operands for
double-precision multiplies.

mult.sub RA8.d, MULFB2, RB4.d, ALUFB2, RAY9.m,MULT

External Instructions

Multiply A1 x B1, Subtract 2 - A2 mult.2suba

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources for rb

Types for ra and rb

Modifiers for ra and rb

Sources for ra2

Sources for rb2

Destinations for rd

mult.2suba ra.type, ra2. rb.type, rdf.modifier], output_source
raxrb — rd or MULFB; 2 —ra2 — rd or ALUFB

31 30 29 28 27 24 23 20 19 15
[0] 0 l e I h l ra or ra2 | b | rd j

14 11 10 9 8 7 6 5 4 3 2 1 0
[seLopIOlt]palpb|s|0|0|a‘m|1|0—|

This chained-mode instruction places the product of ra and rb in rd or in MUL
feedback, and concurrently subtracts the value of ra2 from 2 and places the
result in rd or in the ALU feedback.

RA9-RA0

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

none

RA9-RAD

C or CT register

MULFB (Multiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT register
ALUFB (ALU feedback)
LAD (immediate)

ONE (the value one)

RA9-RAO
RB9-RB0O
CorCT

mult.2suba Muitiply A1 x B1, Subtract 2 - A2

Modifiers for rd

Output_sources

Restrictions

Example

8-54

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
€ (send output to LAD bus, WE strobe)

h (send output to LAD bus, ALTCH strobe)

ALU
MULT

If ra2 is specified then at least one feedback source must be used (either ra
or ra2). if b2 is specified then at least one feedback source must be used
(either rb or rb2).

Feedback registers (ALUFB or MULFB) may not be used as operands for
double-precision multiplies.

mult.2suba RA3.i, LAD2, RB1l.u, RAO.e, ALU

External Instructions

Muitiply A1 x B1, Subtract B2 - A2 mult.subrl

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources for rb

Types for ra and rb

Modifiers for ra and rb

Sources for ra2

Sources for rb2

Destinations for rd

mult.subrl ra.type, ra2. rb.type, rb2, rd[.modifier], output_source
rax rb — rd or MULFB; rb2 — ra2 — rd or ALUFB

31 30 29 28 27 24 23 20 19 15
| 0] 0 | e I h | ra or ra2 l rb or th2 l rd |

14 11 10 9 8 7 6 5 4 3 2 1 0
Isel__op|1It]—pa]pbls|0|0|a|mi1|1|

This instruction places the product of a value inra and rbin either rd or multiplier
feedback and concurrently subtracts the value of ra2 from rb2 and places the
result in either rd or the ALU feedback.

RA9-RA0D

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT Register

MULFB (Muttiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

none

RAS-RAOQ

C or CT register

MULFB (Muttiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT register
ALUFB (ALU feedback)
LAD (immediate)

ONE (the value one)

RA9-RAO
RB9-RBO
CorCT

8-55

mult.subrl Muitiply A1 x B1, Subtract B2 - A2

Modifiers for rd

Output_sources

Restrictions

Example

8-56

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
e (send output to LAD bus, WE strobe)

h (send.output to LAD bus, ALTCH strobe)

ALU
MULT

If ra2 is specified then at least one feedback source must be used (either ra
or ra2). If rb2 is specified then at least one feedback source must be used
(either rb or rb2).

Feedback registers (ALUFB or MULFB) may not be used as operands for
double-precision multiplies.

mult.subrl MULFB.d, LAD2, R6.d, ONE2, C.a, MULT

External Instructions

Pass-A neg

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

neg ra.[modifier]type, ra[. modifier]

—-ra—rd

31 30 29 28 27 24 23 22 21 20 19 15
| 0 1 0 l e [h [ra | 0 J 0 | 0 J 0] rd |
14 1 10 9 7 6 5 4 3 2 1 0-
[sel_op] 0 | type] 0] 1 | va] 0 | 0] 0] 1 1

This instruction negates the value in ra and places it in rd.

RA9-RAOQ

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

v (absolute value, not valid for integer types)

RA9-RAO

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

neg RA4.vd, CT.e

8-57

NOP No Operation

Syntax

Instruction Words

Description

8-58

nop

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

[oJofofoJoJojoJoJofoJojofojojojol]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[[* [["[o[[i[o[ofo[ofofoo]0]
This instruction performs no operation. If FPU core output registers are
enabled (PIPES2=0), the output registers hold their previous value.

This instruction may be used if the TMS34082 is idle, or to wait for a previous
instruction to finish.

External Instructions

Logica/ NORA, B nor

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources for rb

Types for ra and rb

Modifiers for ra and rb

Destinations for rd

Modifiers for rd

Restrictions

Example

nor ra.type, rb.type, fd[.modiﬁer]
raNORrb - rd

31 30 29 28 27 24 23 20 19 15
I 0] 0 J e l h l ra | b [rd l
14 1 10 9 8 7 6 5 4 3 2 1 0
[seop O] 1 Jo]Jt]Jololo]+t o+t 1]
This instruction takes the logical NOR of ra with rb and places the result in rd.

RA9-RA0

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

i (signed integer)
u (unsigned integer)

none

RA9-RA0O

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

The types for ra and rb must be the same.

nor CT.u, LAD.u, RB9.e

8-59

or Logical orA, B

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources for rb

Types for ra and rb

Modifiers for ra and rb

Destinations for rd

Modifiers for rd

Restrictions

Example

8-60

or ra.type, rb.type, rd[.modifier]

raORrb—-rd
31 30 29 ’ 28 27 24 23 20 19 15
[0 I 0 T e | h T ra l b T rd I

14 11 10 9 8 7 6 5 4 3 2 1 0
['selop f 0o | 1t Jo |t JTo]Jojo]l1t][1][o0o]o]
This instruction takes the logical OR of ra with rb and places the result in rd.

RA9-RAQ

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RB0

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

i (signed integer)
u (unsigned integer)

none

RA9-RAO

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

The types for ra and rb must be the same.

or MULFB.1i, LAD.i, CT.e

External Instructions

Pass A pPass

Syntax
Execution

Instruction Words

Description

Sources for ra

Types forra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

pass ra.[modifierftype, rdf. modifier]

ra—rd
31 30 29 28 27 24 23 22 21 20 19 15
[0 | 0 | e | h L ra | 0] 0 | 0 | 0 | rd |

14 11 10 9 7 6 5 4 3 2 1
[sel_op [0] type 17 0] 1 1 va l 0] 0 l, 0 ' 0 l
This instruction copies the value in ra to rd.

RA9-RAO

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

v (absolute value, not valid for integer types)

RA9-RA0

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

pass RA5.vf, CT

8-61

pass PassB

Syntax
Execution

Instruction Words

Description

Sources for rb

Types for rb

Modifiers for rb

Destinations for rd

Modifiers for rd

Execution

8-62

pass rb.[modifierftype, rdf.modifier]

h—rd

31 30 29 28 27 28 25 24 23 2019 15
[o | o J e | h | o | o [o | o r b | rd]
14 1 10 9 7 6 5 4 3 2 1 0
l sel_op I 0 [type [0 l 1 l va l 0 l 1 [0 l 1 l

This instruction copies the value in rb to rd.

RB9-RBO

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

v (absolute value, not valid for integer types)

RA9-RAO

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

pass RB2.i, CT

External Instructions

Multiply A1 x 1, Add A2 + B2 _pass.add

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources for rb

Types for ra and rb

Modifiers for ra and rb

Sources for ra2

Sources for rb2

Destinations for rd

pass.add ra.type, ra2. rb.type, rd[.modifier], output_source

rax 1 —rdor MULFB; ra2 +rb — rd or ALUFB

31 30 29 28 27 24 23 20 19 15
I 0 f 0 l e [h I ra or ra2 r b l rd I
14 11 10 -8 7 6 5 4 3 2 1 0

9
[selop | 1]t Jpalpw]s o] 1]almfo]o]

This chained-mode instruction places the product of the values ofra and 1in
either rd or MULFB, and concurrently places the sum of the values from ra2
and rb into rd or ALUFB.

RA9-RAOD

C or CT Register

ALUFB (ALU feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT Register

MULFB (Muttiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u {unsigned integer)

none

RAS-RAO

C or CT register

MULFB (Multiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT register
ALUFB (ALU feedback)
LAD (immediate)

ONE (the value one)

RA9-RAQ

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

pass.add Muitiply A1 x 1, Add A2 + B2

Modifiers for rd

Output_sources

Restrictions

Example

8-64

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
e (send output to LAD bus, WE strobe)

h (send output to LAD bus, ALTCH strobe)

ALU
MULT

If ra2 is specified then at least one feedback source must be used (either ra
or ra2).

If rb2 is specified then at least one feedback source must be used (either rb
or rb2).

pass.add RA.d, MULFB2, RB9.f, CT,ALU

External Instructions

Multiply A1 x 1, Subtract 0~ A2 pass.neg

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra

Modifiers for ra

Sources for ra2

Destinations for rd

Modifiers for rd

Output_sources

Restrictions

Example

pass.neg ra.type, ra2. rd[. modifier], output_source
rax1-—rdor MULFB; 0-ra2 — rd or ALUFB

31 30 29 28 27 24 23 22 21 20 19 15
lOlOleIh|raorra2|0!0|0|0|rd]

14 11 10 9 8 7 [5 4 3 2 1 0
|se|_op|1|t[pa|pb—]s|1|1Ia[m|1|1|

This chained-mode instruction places the product of values of ra and 1 in either
rd or the multiplier feedback, and concurrently subtracts the value of ra2 from
0 and places the resutlt into either rd or the ALU feedback.

RA9-RAOD

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

none

RA9-RA0

C or CT register

MULFB (Multiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RA9-RAQ
RB9-RBO
CorCT

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
e (send output to LAD bus, WE strobe)

h (send output to LAD bus, ALTCH strobe)

ALU
MULT

If ra2 is specified then at least one feedback source must be used (either ra
or ra2).

pass.neg CT,d, LAD2, RBl,a, MULT

8-65

pass.pass Muitiply A1 x 1, Add A2 + 0

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra

Modifiers for ra

Sources for ra2

Destinations for rd

Modifiers for rd

Output_sources

Restrictions

Example

8-66

pass.pass ra.type, ra2. rdf.modifier], output_source
rax 11— rd or MULFB; ra2 + 0 — rd or ALUFB

31 30 29 28 27 24 23 22 21 20 19 15
i 0 | 0 l e l h lraorra2l 0 l 0 ‘ 0 | 0 I rd]
14 11 10 9 8 7 6 5 4 3 2 1 0
{fselop | 1 | t Jpa]pb} s | 1] 1] alm]o]ol]

This chained-mode instruction places the product of a value ofraand 1inrd
or the multiplier feedback, and concurrently places the sum of the value of ra2
and 0 into either rd of the ALU feedback.

RAS-RAO

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

t (single-precision floating-paint)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

none

RA9-RAO

C or CT register

MULFB (Multiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RAS-RAO
RB9-RB0O
CorCT

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
e (send output to LAD bus, WE strobe)

h (send output to LAD bus, ALTCH strobe)

ALU
MULT

If b2 is specified then at least one feedback source must be used (either rb
or rb2).

pass.pass RA7.f, C2, RBO, ALU

External Instructions

Multiply A1 x 1, Subtract A2 — B2 pass.sub

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources for rb

Types for ra and rb

Types for ra and rb

Sources for ra2

Destinations for rd

Modifiers for rd

pass.sub ra.type, ra2. rb.type, rdf.modifier], output_source
rax 1 — rd or MULFB; ra2 ~rb — rd or ALUFB

31 30 29 28 27 24 23 20 19 15
I 0 l 0 I 0 I 0 l ra or ra2 I b I rd |

14 11 10 9 8 7 6 5 4 3 2 1 0
[setop [1 [t Jpa[p | s [o]t [Ja]m]ol] 1]

This chained-mode instruction places the product of the values of ra and 1 in
either rd or MULFB, and concurrently places the difference of the values from
ra2 and rb into rd or ALUFB.

RA9-RAO

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RB0O

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

none

RA9-RAO

C or CT register

MULFB (Multiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RA9-RAO
RB9-RBO
CorCT

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
e (send output to LAD bus, WE strobe)

h {send output to LAD bus, ALTCH strobe)

8-67

pass.sub Multiply A1 x 1, Subtract A2 — B2

Output_sources

Restrictions

Example

ALU
MULT

If ra2 is specified then at least one feedback source must be used (either ra
or ra2).

pass.sub RAl.i, LAD2, RB7.u, CT, ALU

External Instructions

Multiply A1 x 1, Subtract B2 -A2 pass.subrl

Syntax
Execution

Instruction Words

Description

Sources forra

Sources for rb

Types for ra and rb

Modifiers for ra and rb

Sources for ra2

Destinations for rd

Modifiers for rd

Output_sources

pass.subrl ra2. rb.type, rdf. modifier], output_source

rax 1 - rd or MULFB; rb—-ra2 — rd or ALUFB

31 30 29 28 27 24 23 20 19 15
I 0 I 0 I e I h I ra of ra2 | b | rd |
14 11 10 9 8 7 6 5 4 3 2 1 0
[selop | 1+ [t Jpalpp | s O] 1t]afm{fit1 1]

This instruction places the product of a value in raand 1 in either rd or multiplier
feedback and concurrently the value ofra2 andrb and places the resultin either
rd or the ALU feedback.

RA9-RAO0

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RBO

C or CT Register

MULFB (Muttiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

none

RAS-RAO

C or CT register

MULFB (Multiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RA9-RAO
RB9-RBO
CorCT

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
e (send output to LAD bus, WE strobe)

h (send output to LAD bus, ALTCH strobe)

ALU
MULT

8-69

pass.subrl Muttiply A1 x 1, Subtract B2 ~ A2

Restrictions If ra2 is specified then at least one feedback source must be used (either ra
or ra2).
If rb2 is specified then at least one feedback source must be used (either rb
or rb2).

Example pass.subrl C.d, MULFB2, RB9.d, RAO.m, ALU

870 External Ins truct[ons

Multiply A1 x 1, Subtract 2- A2 passS.2suba

Syntax
Execution

Instruction Words

Description

Sources forra

Types for ra

Modifiers for ra

Sources for ra2

Destinations for rd

Modifiers for rd

Oulput sources

Restrictions

Example

pass.2suba ra.type, ra2, rdf. modifier], output_source
rax1—rdor MULFB; 2 —ra2 — rd or ALUFB

31 30 29 28 27 24 23 20 19 15
I 0 I 0 l e l h | ra or ra2 J b | rd ‘

14 11 10 9 8 7 6 5 4 3 2 1 0
Isel_op|1It|pa|pbls|0|1la|m|1|0|

This chained-mode instruction places the product of ra and 1 in rd or in MUL
feedback, and concurrently subtracts the value of ra2 from 2 and places the
result in rd or in the ALU feedback.

RA9-RAD

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

none

RA9-RA0

C or CT register

MULFB (Multiplier feedback)

LAD (immediate data from LAD bus)
ONE (the value one)

RA9-RA0Q
RB9-RBO
CorCT

a (negate ALU result, valid only for chained mode noninteger types)

m (negate multiplier result, valid only for chained mode noninteger types)
€ (send output to LAD bus, WE strobe)

h (send output to LAD bus, ALTCH strobe)

ALU
MULT

If ra2 is specified then at least one feedback source must be used (either ra
or ra2).

pass.2suba RA2.f, ONE2, RB9.f, CTa, MULT

8-71

rti Return from Interrupt

Syntax
Execution

Instruction Words

Description

Alternate Opcodes

8-72

rti
IRAREG — Program Counter

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
lel [T [T [iJoJoJofo]efo]o o o]0]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 {1 0
[o|o|o|o[o|o|o|o o|o|o]orojo]o|0]

This instruction causes a jump to the address stored in the interrupt return
register (IRAREG). It does not affect the INTG signal, which remains active
until interrupts are re-enabled.

reti is an equivalent opcode for this instruction.

External Instructions

Return from Subroutine ItS

Syntax
Execution

Instruction Words

Description

Alternate Opcodes

rts

SUBADDRO or SUBADDR1 — Program Counter

3 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
LefofrfrjrJofJoJoJoJoJojofofojojoj
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0fofoJoJoJoJoJoJoJojoJojojfoJojo|]

This instruction causes a jump to the address stored in the top of the stack.
Note: ret is also valid

ret is an equivalent opcode for this instruction.

8-73

sll Logical Shift Left A by B Bits

Syntax

Instruction Words

Description

Sources for ra

Sources forrb (see
restrictions)

Types for ra and rb

Modifiers for ra and rb

Destinations for rd

Modifiers for rd

Restrictions

Example

8-74

sl ra.type, rb.type, rdf.modifier]

31 30 29 28 27 24 23 20 19 15
l 0 I 0 I e l h J ra I b I rd]

14 11 10 8 8 7 6 5 4 3 2 1 0
Lsel__op|0|1]typel0l1'0]1|0|0l0_l

This instruction shifts the value in ra to the left by the number of bit positions
indicated in rb. Zeros are shifted into the least significant bit location.

RA9-RAO

C or CT Register

MULFB (Multiplier feedback)
ONE (the value one)

RB9-RBO

i (signed integer)
u (unsigned integer)

none

RA9-RAO

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

The shift count is input as a five-bit positive number right-aligned in the
exponent field of a single-precision floating point number. All other bits in the
32-bit word should be set to zero. For example 0x00 8000 00 = shift count of
1.

This example shows how to shift using a variable shift value stored in RA0 and
the operand to be shifted in RA1.

1ld RBO.u, shift const, 1 load RBO with shift count

; of 23
sl1ll RAO.u, RBO.u, RB1 ; prepare run-time shift
; value (in RAOQ).
sll RAl.u, RBl.u, C ; actual shift of RAl with

; the shift value in RAO
shift_const: data 0x0b 8000 00
; equivalent shift count of 23

External Instructions

Square Rootof A sqrt

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra

Modifiers for ra

Destinations for rd

Modifiers for rd

Restrictions

Example

sqrt ra.[modifier]type, rd[.modifier]

Vra — rd

31 30 29 28 27 24 23 22 21 20 19 15
[o] o | e [| ra o] o [o | o]|]
14 11 10 9 7 8 5 4 3 2 1 0
| sel_op | 0 I type] 1 I 1 | va I 1 | ny l wa | wb]

This instruction takes the square root of the value in ra and places it in rd.

RA9-RAO

C or CT Register
ALUFB (ALU feedback)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

v (absolute value, not valid for integer types)
w (wrapped, not valid for integer types)

RAS-RAQ

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

n (negated, not valid for integer types)
e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

Absolute value modifiers, negated result and wrapped numbers are only
permitted with floating-point operations.

sqrt RA7.u, C.n

8-75

sra Arthmetic Shift Right A by B Bits

Syntax

Instruction Words

Description

Sources forra

Sources for rb (see
restrictions)

Types for ra and rb

Modifiers for ra and rb

Destinations for rd

Modifiers for rd

Restrictions

Example

8-76

sra ra.type, rb.type, rd[.modifier]

31 30 29 28 27 24 23 20 18 15
| 0 I 0 I e | h I ra | b | rd |
14 11 10 9 8 7 6 5 4 3 2 1 0
[sel_op[o|1|type|o|1|o|1|1|0|1|

This instruction shifts the value in ra to the right by the number of bit positions
indicated in rb. The sign bit is not affected.

RA9-RA0

C or CT Register

MULFB (Multiplier feedback)
ONE (the value one)

RB9-RB0O

i (signed integer)

u (unsigned integer)
none

RA9-RAQ

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

The shift count is input as a five-bit positive number right-aligned in the
exponent field of a single-precision floating point number. All other bits in the
32-bit word should be set to zero.

The types for ra and rb must be the same.

sra MULFB.i, LAD.i, C.e

External Instructions

Logical Shift Right A by B Bits _srl

Syntax

Instruction Words

Description

Sources for ra

Sources for rb (see
restrictions)

Types for ra and rb

Modifiers for ra and rb

Destinations for rd

Modifiers for rd

Restrictions

Example

srl ra.type, rb,type, rd[.modifier]

31 30 29 28 27 24 23 20 19 15
| 0 | 0] e] h [a | b | rd |
14 1 10 9 8 7 6 5 4 3 2 1 0

[sel_op|0]1|type|o|1|ol1|o|o|1|

This instruction shifts the value in ra to the right by the number of bit positions
indicated in rb. Zeros are shifted into the most significant bit location.

RA9-RAOD

C or CT Register

MULFB (Multiplier feedback)
ONE (the value one)

RB9-RBO

i (signed integer)

u (unsigned integer)
none

RA9-RAO

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

The shift count is input as a five-bit positive number right-aligned in the
exponent field of a single-precision floating point number. All other bits in the
32-bit word should be set to zero.

The types for ra and rb must be the same.

srl CT.i, LAD.i, RA3

8-77

st Store N Words from Register

Syntax

Instruction Word

Description

Sources for reg

8-78

st reg.type, address, count

31 30 29 28 27 26 25 21 20 16
I L l 1 | M I 1] T | S l word count [register |
15 2 1 0

I start address | ct l AT l
1 For LAD moves only. '

During a move instruction, no FPU operation is performed. Register control
logic for move instructions counts sequentially from the beginning register
address, with the exception that the C and CT registers are omitted from the
count. The entire register file acts like a ring buffer during the move instruction.
The C and CT registers are not accessible to moves. It is illegal to use the C
or CT register address as the starting address for a move instruction.

T (Type) and S (Size) give the format of the numbers
T 0 =integer 1 = floating point
S 0=32bhits 1=64bhits

Note: Setting TS = 01 is reserved

Word count is the number of operands to be moved (n). A count of 0 will move
256 items 1 or 2 32-bit words long. The beginning register address is stored
in the register field, and the beginning memory address is the start address
field (bits 15-0).

An indirect move is designated by selecting MCADDR as the address. The M
bit will be set low, and the 16 low-order bits are then disregarded. The starting
address in memory comes from the MCADDR register.

To move data to the LAD bus, 'LAD’ is selected as the address. The L bit will
be set high, and the low-order 16 bits are set to 0. An address of
LAD_A will write data to the LAD bus with an ALTCH strobe (instead of the
normal WE). The A bit will be set high in the instruction word.

An address of '"COINT’ will write data to the LAD bus and set COINT low for
the cycles the store is executing. (C will be set high in the instruction word.) An
address of '"COINT_A’ will store to the LAD bus with COINT enabled and an
ALTCH strobe (instead of the normal WE). C and A will be set high in the
instruction word. The COINT and COINT_A options are only valid for
host-independent mode.

RA9-RAO

RB9-RBO

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

External Instructions

Store N Words from Register st

Types for reg 1 (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)
u (unsigned integer)

Destination addresses Qx0-0xFFFF
MCADDR, LAD, COINT, COINT_A, LAD_A

Range for count 0-31

Example st RAO.f, MCADDR, 3
st RB1.i, LAD, 5

8-79

sub SubtractA-B

Syntax sub ra.[modifier]type, rb.[modifierftype, rd[.modifier]

Execution ra—-rb—-rd
Instruction Words 31 30 29 28 27 24 23 20 19 15
[0 l 0 I e I h | ra] b | rd I

14 11 10 9 8 7 6 5 4 3 2 1 0
{ selop | 0 | t [pafp| 0} 0 [va|[w]|[w]o]| 1]

Description This instruction places the difference in the values in ra and rb in rd.
Sources for ra RA9-RA0
C or CT Register

MULFB (Multiplier feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

Sources for rb RB9-RB0
C or CT Register
ALUFB (ALU feedback)
LAD (Immediate data from LAD bus)
ONE (the value one)

Types for ra and rb f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)
u (unsigned integer)

Modifiers forraand rb v (abslute value, not valid for integer types)

Destinations for rd RA-9RA0
RB9-RB0O
CoCT
STATUS, CONFIG,COUNTX, COUNTY
VECTOR, MCADDR, SUBADDOQ, SUBADD1, IRAREG, LOOPCT

Modifiers for rd v (absolute value, not valid for integer types)
e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

Example sub LAD.vd, ONE.vf, RAO.h

8-80 External Instructions

Subtract B—-A subrl

Syntax
Execution

Instruction Words

Description

Sources for ra

Sources forrb

Types for ra and rb

Modifiers for ra and rb

Destinations for rd

Example

subrl ra.[modifierjtype, rb.[modifierjtype, rd[.modifier]

rb-ra-—-rd
31 30 29 28 27 24 23 20 19 15
|) | 0] e | h | ra | b | rd |

14 11 10 9 8 7 6 5 4 83 2 A 0
[selop [0 T t [pa[p o] o fva]wl|lw] 1 [1]

This instruction takes the difference in the value in rb from the value in ra and
places it in rd.

RA9-RA0

C or CT Register

MULFB (Muttiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

RB9-RB0

C or CT Register

ALUFB (ALU feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)
i (signed integer)

u (unsigned integer)

v (absolute value, not valid for integer types)

RA9-RAC

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

subrl RA.f, RB2.vf, RAQ

8-81

utod Convert from Unsigned Integer to Double-Precision Floating—Point

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra
Modifiers for ra

Destinations for rd

Modifiers for rd

Example

8-82

utod ra, rd[. modifier]
ra (unsigned integer) — rd (double-precision)

31 30 29 28 27 24 23 22 21 20 19 15
|0|0]e|hlra|0|0|0|0|rdl

14 1 10 9 8 7 6 5 4 3 2 1 0
[sekop] O J o J 1+]+ Jofj 1 o]+t]o

This instruction converts an unsigned integer value in ra 1o a double-precision
floating-point format and places the result in rd.

RA9-RAO

C or CT Register

MULFB (Multiplier feedback)
ONE (the value one)

type is implicit in the opcode
none

RA9-RAO

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

utod MULFB, CT.e

External Instructions

Convert from Unsigned Integer to Single-Precision Floating-Point utof

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra
Modifiers for ra

Destinations for rd

Modifiers for rd

Example

utof ra, rd[.modifier]
ra (unsigned integer) — rd (single-precision)

31 30 29 28 27 24 28 22 21 20 19 15
IOlOIeIhlraIOIOlOIO]rdl

14 1 10 9 8 7 6 5 4 3
[selop f 0 Jo Jo]Jo o[1]Jo] 1 o1] o]

This instruction converts an unsigned integer in ra to single-precision
floating-point format and places it in rd.

RA9-RA0

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

type is implicit in the opcode
none

RA9-RAO

RB9-RB0O

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

utof LAD, RA%9.e

8-83

uwrapi Unwrap Inexact Operand

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

8-84

uwrapi ra.[modifierjtype, rd[.modifier]
wrapped in ra — denormal in rd

31 30 29 28 27 24 28 22 21 20 19 15

|o|o|e|h|ra|o|o|o|o]rd|
14 11 10 9 8 7 6 5 4 3 2 1 0
|se|_op|o|o|type|0|1|va|1|1|o|1]

This instruction unwraps the inexact operand in ra and places it in rd as a
denormalized number.

RA9-RA0

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)

v (absolute value)

RA9-RA0

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

unwrapi RA9.vf, C.h

External Instructions

Unwrap Rounded Operand UWrapr

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

uwrapr ra.[modifierjtype, rd[.modifier]

wrapped in ra — denormalin rd

31 30 29 28 27 24 23 22 21 20 18 15
[0 [0 | e | h [ra] 0 i 0 J 0 r 0 | rd]
1110 9 8 7 6 5 2 1 0

bel_op[OJOltypeTO|1|val1|1!1‘0l

This instruction converts a wrapped rounded number in ra to a denormalized
number in rd.

RA9-RAO

C or CT Register

MULFB (Multiplier feedback)

LAD {Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)

v (absolute value)

RAS-RAO

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, CONTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG,LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

uwrapr RA3.d, CT.h

8-85

uwrapXx Unwrap Exact Operand

Syntax uwrapx ra.[modifier]type, rd[.modifier]

Execution wrapped in ra — denormal in rd

Instruction Word's 31 30 29 28 27 24 23 22 21 20 19 {5
f ol oJ e] nh Jwma] o] o] o] o]|
14 11 10 9 8 7 8 5 4 3 2 1 0

Lsel_oplOlOltype|0|1Iva|1|1|0|0j

Description This instruction takes the exact, wrapped operand in ra and converts it to a
denormalized number in rd.
Sources for ra RAS-RAO

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

Types for ra 1 (single-precision floating-point)
d (double-precision floating-point)

Modifiers for ra v (absolute value)

Destinations for rd RA9-RAO
RB9-RBO
CorCT

STATUS, CONFIG, COUNTX, COUNTY
VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

Modifiers for rd e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

Example uwrapx C.vf, RA8.e

8-86 External Instructions

Wrap Denormalized Operand Wrap

Syntax
Execution

Instruction Words

Description

Sources for ra

Types for ra

Modifiers for ra

Destinations for rd

Modifiers for rd

Example

wrap ra.[modifier]type, rd[.modifier]
denormal in ra — wrapped in rd

31 30 29 28 27 24 23 22 21 20 18 15
[o|o|e|h]ra|o|o|o|o|rd|

14 110 9 8 7 6 5 4 3 2 1 0
lsel_oplOlO!type ro|1|va]1|o|oTo|

This instruction takes adenormalized numberinra and converts itto a wrapped
number in rd.

RA9-RAO

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

f (single-precision floating-point)
d (double-precision floating-point)

v (absolute value)

RA9-RA0D

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

wrap RAO.d, RB1l.h

8-87

Xor Logical Exclusive ORA, B

Syntax
Execution

Instruction Words

Description

Sources forra

Types for raand rb

Modifiers for ra and rb

Destinations for rd

Modifiers for rd

Restrictions

Example

8-88

xor ra.type, rb.tpye, rd[.modifier]
ra XOR rb — rd

31 30 29 28 27 24 23 20 19 15
f 0 | 0 l e I h I ra | b | rd ‘
14 11 10 g 8 7 6 5 4 3 2 1 0

[selop [O T 1t ToJtJoJo|lo] 1+] 1]o] 1]

This instruction takes the logical exclusive OR of ra with rb and places the result
in rd.

RA9-RAO

C or CT Register

MULFB (Multiplier feedback)

LAD (Immediate data from LAD bus)
ONE (the value one)

i (signed integer)
u (unsigned integer)

none

RA9-RAO

RB9-RBO

CorCT

STATUS, CONFIG, COUNTX, COUNTY

VECTOR, MCADDR, SUBADDO, SUBADD1, IRAREG, LOOPCT

e (send output to LAD bus, WE strobe)
h (send output to LAD bus, ALTCH strobe)

The types for ra and rb must be the same.

xor RA7.u, RB2.u, CT.h

External Instructions

Appendix A

System Design Considerations

Using high-performance CMOS logic devices, such as the TMS34082, requires careful
attention to high-speed logic design and PWB design practices. A few simple design
techniques can reduce check-out time during the development phase and, more
importantly, improve system reliability as your product enters production. The following
sections are general recommendations to reduce your chances of intermittent
problems,

Logic Design

A.1 Logic Design

Check to make sure that the drive capability of each TMS34082 output driver is not
exceeded, particularly with the clock drivers. This can affect the output signal quality as
well as driver supply demands.

When operating in coprocessor mode, do not use buffers on the following signals between
the TMS34020 and TMS34082 (unless a critical path timing analysis between the two
devices has been completed):

Q2 LCLK1 and LCLK2 (local clocks)
(A ALTCH (address latch)

2 CAS (column address strobe)
(I SF (special function)

Figure A-1 shows how RAS and CAS buffers can be added for DRAM/VRAM memory.
These buffers effectively isolate the DRAM/VRAM devices from the TMS34020.

Figure A-1. Example of Using RAS and CAS Buffers in Coprocessor Mode

A-2

LCLK1

LCLK2

ALTCH
TMS34020 TMS34082

RAS N

CASo ,\V

Vv

DRAM/
VRAM
Memory
Array

System Design Considerations

Bypass Capacitors

A.2 Bypass Capacitors

The TMS34082 is a high-speed CMOS device containing two 32-bit data buses and one
16-bit address bus. As a result, a constant voltage source must be maintained for the
device during signal transitions. The TMS34082 contains 10 Vg pins and 14 GND pins
for internal power requirements.

External bypass capacitors must also be used for decoupling the switching transitions.
Use two or more 0.1-uF low-leakage high-quality capacitors around the perimeter of the
TMS34082 package or under the device. Place the capacitors as close to the TMS34082
as possible. These are used to filter out unwanted switching noise caused by the CMOS
output drivers, one of the major sources of noise. Also, use one 470-pF low-leakage
high-quality capacitor to reduce the very high frequency noise (such as clock frequencies)
and at least one 10-uF solid tantalum filter capacitor to take care of low frequency noise
(such as power supply surges). The 10-uF filter capacitor smooths out voltage spikes
during switching transitions. The capacitance values are approximate and should have
aworking voltage of at least 10 V. By using three capacitor sizes, three different frequency
bands of noise are filtered as opposed to just one narrow band for one bypass capacitor
size.

Figure A-2. Recommended Bypass Capacitor Placement

0.1 uF

470 pF TMS34082 10 uF

0.1 uF

A-3

PWB Design

A.3 PWB Design

A-4

The TMS34082 should be designed into a PC board environment with an embedded Vo
or GND plane. For any production high-speed logic board, power planes are an absolute
necessity. Each Vg and GND pin on the TMS34082 must be connected to the
appropriate supply pin. Use the shortest amount of PWB etch possible. This effectively
forms a common reference point throughout the PC board as well as the device substrate.

As with most complex CMOS devices, extra care must be used when distributing CMOS
logic over more than one GND plane. An example of this is when a TMS34020 is on one
board and muitiple TMS34082s (running in coprocessor mode) are located on a
daughtercard. The common ground connection between the two power planes behaves
like an inductor according to transmission line theory. The greater the current, the greater
the inductance. Here, the solution is to use many GND connections and to make them as
short as possible. In addition, even more bypass capacitors should be used.

When using a PGA socket, use gold-plated contacts where the TMS34082 pins mate into
the socket to lower the inductance and resistance. A gold plating thickness of 10
microinches is sufficient.

System Design Considerations

Clock Routing

A.4 Clock Routing

Clocks are the heart of a high-performance system, so a little extra care will pay off many
times over. Many of these ideas not only apply to the TMS34082, but to most high-speed
CMQOS logic devices.

PC board layout must take into account transmission-line theory. It is generally accepted
that any clock line over 7 inches long should be considered as a transmission line. Use
a daisy-chained clock distribution system and avoid using a ‘T’ (where three lines of etch
come into a common vertex) or stubs. Avoid the use of 90° angles within the clock trace;
use arcs or smooth lines instead, as shown in Figure A-3. This reduces the number of
signal reflections within the clock trace.

Figure A-3. Recommended Clock Routing Techniques

o

TMS34082

B

Clock
Source

When routing your PC board, route the clock signals first (they may even be hand routed).
To help reduce cross talk and radiated RF interference, keep the length of clock
interconnections as short as possible and place the majority of clock routing next to one
ofthe Vg or GND power planes. Cross talk is where one signal gets coupled onto another
signal; one trace behaves like a transmitter antenna and the other trace acts as a
receiver.To further reduce cross talk, make certain that the clock trace does notrun parallel
to data or control lines for more than three inches if they are spaced within 100 mils of each
other. Traces adjacent to the clock lines that are connected to GND also may be used.

Since many clock interconnections behave like transmission lines, impedance
mismatches can generate reflections. From a time-domain point of view, these can result
in ringing, undershoot, and overshoot. If the clock drivers generate excessive amounts
of ringing and undershoot at their destinations, it will be necessary to put either an
impedance matching termination network at the farthest signal point from the driver or a
series resistor (22 Q to 39 Q) between the clock driver output and the receiving input.
Using a series resistor also slows down the signal response times slightly. The amount
of undershoot or ringing may be difficult to predict before hand, but there are many good
articles on transmission line theory for PC board design.

A-5

Thermal Considerations

A.5 Thermal Considerations

Because the TMS34082 is implemented in CMOS, its power consumption requirements
are low and generate little heat. You must make certain that the operating temperature
of the surrounding environments is within TMS34082 operating specifications.

A-6 System Design Considerations

Appendix B

TMS34082A
Daa Sheet

The pinout, electrical specifications, timing diagrams, and mechanical
specifications are contained within the TMS34082 Data Sheet and appear in
this appendix.

B-2

TMS34082A Data Sheet

TMS34082A

GRAPHICS FLOATING-POINT PROCESSOR

SCGS00t - D3150, SEPTEMBER 1988 — REVISED MAY 1991

® High-Performance Floating-Point RISC
Processor Optimized for Graphics

¢ Two Operating Modes
- Floating-Point Coprocessor for
TMS34020 Graphics System Processor
- Independent Floating-Point Processor

* Direct Connection to TMS34020
Coprocessor Interface
- Direct Extension to the TMS34020
Instruction Set
- Multiple TMS34082A Capability

® Fast Pipeline Instruction Cycle Time
— TMS34082A-40 . . . 50-ns Coprocessor
Mode . . . 50-ns Host-Independent Mode
— TMS34082A-32. . . 62.5-ns Coprocessor
Mode . . . 60-ns Host-Independent Mode

¢ Sustained Data Transfer Rates of 160

22 64-Bit Data Registers

Comprehensive Floating-Point and Integer
Instruction Set

Internal Programs for Vector, Matrix, and
3-D Graphics Operations

Full IEEE Standard 754-1985 Compatibility

-~ Addition, Subtraction, Multiplication, and
Comparison

~ Division and Square Root

Selectable Data Formats

~ 32-Bit Integer

-~ 32-Bit Single-Precision Floating-Point
— 64-Bit Double-Precision Floating-Point

External Memory Addressing Capability
— Program Storage (up to 64K Words)
— Data Storage (up to 64K Words)

MBytes/s (TMS34082-40) * 0.8-um EPIC™ CMOS Technology

* Sequencer Executes Internal or ~ High-Performance
User-Programmed Instructions - Low Power (< 1.5 W)

description

The TMS34082A is a high-speed graphics floating-point processor implemented in Texas Instruments advanced
0.8-um CMOS technology. The TMS34082A combines a 16-bit sequencer and a 3-operand (source A, source
B, and destination) 64-bit Floating-Point Unit (FPU) with 22 64-bit data registers on a single chip. The data
registers are organized into two files of ten registers each, with two registers for internal feedback. In addition,
it provides an instruction register to control FPU execution, a status register to retain the most recent FPU status
outputs, eight control registers, and a two-deep stack (see functional block diagram).

The TMS34082A is fully compatible with IEEE Standard 754-1985 for binary floating-point addition, subtraction,
multiplication, division, square root, and comparison. Floating-point operands can be either in single- or
double-precision IEEE format.

In addition to floating-point operations, the TMS34082A performs 32-bit integer arithmetic, logicat comparisons,
and shifts. Integer operations may be performed on 32-bit 2s complement or unsigned operands. Integer results
are 32-bits long (even for 32 x 32 integer multiplication). Absolute value conversions, floating-point to integer
conversions, and integer to floating-point conversions are available.

The ALU and the multiplier are closely coupled and can be operated in parallel to perform sums of products or
products of sums. During multiply/accumulate operations, both the ALU and the multiplier are active and the
registers in the FPU core can be used to feedback products and accumulate sums without tying up locations
in register files A and B.

When used with the TMS34020, the TMS34082A operates in the coprocessor mode. The TMS34020 can control
multiple TMS34082A coprocessors. When used as a stand-alone or with processors other than the TMS34020,
the TMS34082A operates in the host-independent mode. The TMS34082A is fully programmable by the user
and can interface to other processors or floating-point subsystems through its two 32-bit bidirectional buses. In

EPIC is a trademark of Texas Instruments Incorporated.

s Instruments Incorporated
in the sampling or preproduction Copyright © 1991, Texa: D

ADVANCE INFORMATION documents contaln information on new

B aractoretic dete and ot Vecifioations °b';m e vars »
o 3 ns are sul an

without notice. ”

EXAS
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 B-3

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

D3150, SEPTEMBER 1988 — REVISED MAY 1991 — SCGS001

the coprocessor mode, the TMS340 family tools may be used to develop code for the TMS34082A. The
TMS34082A software tool kit is used to develop code for host-independent mode applications or for external
routines in the coprocessor mode.

pin descriptions

Pin descriptions and grid assignments for the TMS34082A are given on the following pages. The pin at location
D4 has been added for indexing purposes.

145-PIN GC PACKAGE

(TOP VIEW)

1 2 3 4 5 6 7 8 9 1011 12 13 14 15

O
A ®© 00 06 00 0060 00 00 0 0
B ® 000 006 0600 ¢ 0 00 0 0
c ® 00 0 006 000 00 00 0 0
D e o0 o o0 0
E o 0o 0 e o o
F o o0 e o o
G o o0 oo o
H o o0 o0 0
J o o0 e 0o 0
K o o0 o 0 0
L L o 0o 0
M e o0 e 0 0
N ® 60 00 00 00 006 00 0 0
P ® 006 006 00 00 00 00 0 0
R ® 060 00600 00 00 0000

*p

EXAS
INSTRUMENTS

B-4 POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 — D3150, SEPTEMBER 1988 ~ REVISED MAY 1891

PIN GRID ASSIGNMENTS

PIN PIN PIN PIN PIN

NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME
Al NC B15 LAD27 F1 MSD10 K15 RDY P2 NC
A2 LAD1 ct - MSD4 F2 MsD9 L1 MSD18 P3 MSD29
A3 LAD3 c2 MSD3 F3 \/e%o) L2 MSD21 P4 MSD31
A4 LAD5 c3 MSDo F13 CORDY L3 MSD23 P5 MSA1
A5 LADS c4 Vss Fl14 ALTCH L13 Vss P8 MSA3
A6 LAD9 cs5 vee Fi5 CAS L14 clpo P7 MSA6
A7 LAD11 c6 LADE G1 MSD13 L5 cip2 P8 MSA8
A8 LAD12 c7 Vss G2 MSD12 M1 MSD20 P9 MSA10
A9 LAD13 cs Ve G3 MSD11 M2 MSD24 P10 MSA13
A10 LAD15 c9 Vss G13 WE M3 Vss P11 MWR
A1 LAD17 c10 vee G14 ECH M13 Ve P12 MOE
Al12 LAD19 c11 LAD21 G15 ECO M14 LCLK1 P13 INTG
A13 LAD22 ci2 Vss H1 MSD14 M15 LCLK2 P14 BUSFLT
A14 LAD24 c13 LAD25 H2 TDO N1 MSD22 P15 RAS
A15 NC C14 LAD26 H3 Vss N2 MSD26 R1 NC
B1 MSD1 ci5 LAD29 H13 Vss N3 vee R2 MSD27
B2 NC D1 MSD6 H14 LCE N4 MSD28 R3 MSD30
B3 LADO D2 MSD5 H15 TDI N5 Vss R4 MSA0
B4 LAD2 D3 MSD2 J1 MSD15 N6 vVee R5 MSA2
B5 LAD4 D4 NC J2 MSD16 N7 MSAS5 R6 MSA4
B6 LAD7 D13 Ve J3 Ve N8 Vss R7 MSA7
B7 LAD10 D14 LAD28 J13 cc N9 vVee R8 TCK
B8 T™S D15 LAD31 J14 MSTR N10 MSA14 R9 MSA9
B9 LAD14 Et MsD8 Jis CLK N11 Vss R10 MSA11
B10 LAD16 E2 MSD7 K1 MSD17 N12 MAE R11 MSA12
B11 LAD18 E3 Vss K2 MSD19 N13 LRDY R12 MSA15
B12 LAD20 E13 Vss K3 Vss N14 SF R13 DS/CS
B13 LAD23 E14 LAD30 K13 CID1 N15 RESET R14 MCE
B14 NC E15 COINT K14 INTR P1 MSD25 R15 NC

ji
Texas ‘b
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 B-5

TMS34082A

GRAPHICS FLOATING-POINT PROCESSOR

D3150, SEPTEMBER 1988 - REVISED MAY 1991 — SCGS001

logic symbolt

CLK
LCLK1
LCLK2

CiD2-0 —e 3|
RESET ———

BUSFLT _____]
LRDY

P

TMS34082A

FLOATING POINT PROCESSOR

=

————1J> HOST-INDEPENDENT CLOCK COPROCESSOR INTERRUPT]|
—_—Tt LOCAL CLOCK 1 COPROCESSOR INTERRUPT REQUEST|
—— | LOCALCLOCK 2 | CLOCKS INTERRUPT GRANT
HOST-INDEPENDENT MODE ADDRESS EN
COPROCESSOR MODE SELECT CHIP EN
PROCE R PUT EN
COPROCESSOR ID EXTERNAL ouTPU
MEMORY BUS WRITE EN
PROCESSOR RESET DATA SPACE EN
CODE SPACE EN
BUS FAULT
LOCAL BUS READY EMULATOR CONTROL.
COPROCESSOR READY
LOCAL OUTPUT EN cLocKd
ROW ADDRESS STROBE MODE SELECT
LOCALBUS TEST
SPECIAL FUNCTION DATAIN
ADDRESS LATCH DATA OUT
ADDRESS STROBE
COLUMN ADDRESS STROBE
READ STROBE CONDITION CODE
WRITE ENABLE READY
WRITE STROBE

—

N
A

-
——
i

LADO

LN)

LAD31

e e O

W
pod

<= |
nstrveTion] |
boones> | :

LR J

T This symbol is in accordance

with ANSI/IEEE Std 91-1984.

EC1-0

TCK

™S

™I

TDO

cC

RDY

MSDO

MSD31

MSAO0

MSA15

Texas
INSTRUMENTS

*p

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

TMS34082A

GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 -~ D3150, SEPTEMBER 1988 — REVISED MAY 1991

functional block diagram

LOOP
CONFIG COUNTX COUNTY| MCADDR
MSTR —p— COUNTER
CONT —e— %
LRDY —p— Y [— |]
RESET —p— sTack | |INTERRUPTI [INTERRUPT |PROGRAM 16
ToE VECTOR RETURN || || COUNTER
CID20 —p— {'16 Jre 16 16
CORDY ——g— 32
BUSFLT ——p—
RAS —_— I [
SF —_—
RDY SEQ MUX
LCLK1 —p— 16 16 R MSATS-0
LCLK2 e AA 1 g
CLK —r __|SEQUENCE | MAPPING ROM | — ¢p—— MSD31-0
CONTROL COMPLEX ROM 32
32
' INT/EXT
_MUX
N MSD
LAD31-0 —ep-{ 102] 2 g INTF
’32 [INSTRUCTION REG] 32
A r'y
— e
\ v
32
A
REGISTER Y
—— CONTROL \
4 —<4— WAE
_’—— MOE
TO OTHER REGISTERS < REG pa— REG —»— TiCE
BANK ‘::' BANK —— WWAR
A 2 B —»— DS/CS
s & fes —e— oc_
—e— NTR
FPU CORE —>— INTG
—e— EC1-0
PIN FUNCTION CHANGES W/OPERATING MODE 32 L"—"'] —<4— TMS
- v —e— TCK
SIGNAL | HOST-INDEPENDENT [COPROCESSOR STATUS
NAME MODE MODE —<¢— DI
ALTCH OUTPUT - INPUT {32 > 00
WE OUTPUT INPUT
CAS OUTPUT INPUT
TExas ‘Q?
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

B-7

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

D3150, SEPTEMBER 1988 — REVISED MAY 1981 — SCGS001

TERMINAL FUNCTIONS
PIN ot DESCRIPTION
NAME NO.
Address Latch, active low. In the coprocessor mode, falling edge of ALTCH latches instruction and status
ALTCH F14 [é] present on the LAD bidirectional bus (LAD31-0). In the host-independent mode, ALTCH is address
output strobe for memory accesses on LAD31-0.
BusFault. Inthe coprocessor mode, BUSFLT high indicates a data fault onthe LAD bus (LAD31-0) during
BUSFLT P14 1 current bus cycle, which in turn causes TMS34082A not to capture current data on LAD bus. Tied low
if not used or in the host-independent mode.
| Column Address Strobe, active low. Inthe coprocessor mode, causes TMS34082A to latch LAD bus data
CAS F15 [0l when CAS has a low-to-high transition if LRDY was high and BUSFLT was low at the previous LCLK2
rising edge. In the host-independent mode, this signal is the read strobe output.
cCc J13 [Condition Code Input. Inboth modes, may be used as an external conditional input for branch conditions.
CiDO L14 Coprocessor ID, In the coprocessor mode, used to set a coprocessor ID so that a TMS34020 Graphics
CID1 K13 [System Processor controlling multiple TMS34082A coprocessors can designate which coprocessor is
Cib2 L15 being selected by the current instruction. Tied low in the host-independent mode.
CLK 15 . System Clock. In the coprocessor mode, tied low. In the host-independent mode, input is the system
clock.
Coprocessor Interrupt Request, active low. In the coprocessor mode, signals an exception not masked
out in the configuration register. Remains low until the status register is read. In the host-independent
COINT E15 0 mode, user programmable I/O when LADCFG is low. When LADCFG is high, designates bus cycle
boundaries on LAD31-0.
Coprocessor Ready. In the coprocessor mode, if the TMS34020 sends an instruction before the
CORDY Fi3 0 TMS34082A has completed a previous instruction, this signal goes low to indicate that the TMS34020
should wait. In the host-independent mode, user programmable.
. Data Space/Code Space. In both modes, when MEMCFG is low and DS/CS is low, selects program
DS/CS R13 o] memory on MSD port. When MEMCFG is low and DS/CS is high, selects data memory on MSD
port. When MEMCFG is high, DS/CS is memory chip select, active low.
gg? g}i | Emulator Mode Control and Test. In both modes, tied high for normal operation.
Interrupt Grant Output. In the coprocessor mode, INTG is low. In the host-independent mode, this signal
INTG P13 o is set high to acknowledge an interrupt request input.
TR Ki4 | Interrupt Request Input, active low. In the coprocessor mode, INTR is tied high. In the host-independent
mode, causes call to subroutine address in interrupt vector register.

T The [I's denote the type of buffer utilized in the host-independent mode. If no [I's appear, the buffer type is identical for both modes of operation.

B-8

*p

Texas
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 —D3150, SEPTEMBER 1988 — REVISED MAY 1991

TERMINAL FUNCTIONS (Continued)

PIN
NAME NO. 7o} DESCRIPTION

LADO B3

LAD1 A2

LAD2 B4

LAD3 A3

LAD4 B5

LAD5 A4

LAD6 o]

LAD7 B6

LAD8 AS

LAD9 A6

LAD10 B7

LAD11 A7

LAD12 A8

LAD13 A9

LAD14 B9

LAD{5 A0 Local Address and Data Bus. In the coprocessor mode, used by TMS34020 to input instructions and

LAD16 810 /0 data operands to TMS34082A, and used by TMS34082A to output resuits. In the host-independent

LAD17 A1 mode, used by the TMS34082A for address output and data I/O.

LAD18 B11

LAD19 A12

LAD20 B12

LAD21 Cc11

LAD22 A13

LAD23 B13

LAD24 Al4

LAD25 C13

LAD26 C14

LAD27 B15

LAD28 D14

LAD29 C15

LAD30 E14

LAD31 D15

LCLK1 M14 Local Clocks 1 and 2. inthe coprocessor mode, two local clocks generated by the TMS34020, 90 degrees

LCLK2 M15 ! out of phase, to provide timing inputs to TMS34082A. In the host-independent mode, tied low.
Local Bus Output Enable, active low. In both modes, enables the local bus (LAD31-0) to be driven at the

ioE H14 | proper times when low. | In addition during the host-independent mode when LADCFG is low, does not
affect ALTCH, CAS, WE, CORDY, or COINT. When LADCFG is high, ALTCH, COINT, and CORDY are
not disabled by LOE high; CAS and WE are disabled.
Local Bus Data Ready. In the coprocessor mode, when LRDY is high, indicates that data is available

LRDY N13 | on LAD bus. When LRDY is low, indicates that the TMS34082A should not load data from LAD31-0 and
may also be used in conjunction with BUSFLT. In the host-independent mode, when LRDY is low, the
device is stalled until LRDY is set high again and tied high if not used.
Memory Address and Data Output Enable, active low. In both modes, with MAE low, the

MAE Nt2 | TMS34082A can output an address on MSA15-0 and data on MSD31-0. MAE high does not disable
DS/CS, MCE, MWR, or MOE.

T Memory Chip Enable. In both modes, when MEMCFG low, active (low) indicates access to external

MCE R14 O | memory on MSD31-0. When MEMCFG is high, MCE low is external code memory chip select.

MOE P12 o Memory Output Enable, active low. In both modes when low, enables output from external memory

on to MSD port.

*p

Texas
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 B-9

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

D3150, SEPTEMBER 1988 — REVISED MAY 1991 — SCGS001

TERMINAL FUNCTIONS (Continued)

PIN
NAME NO. /0 DESCRIPTION
MSA0 R4
MSA1 P5
MSA2 RS
MSA3 P6
MSA4 R6
MSAS N7
MSA6 P7
MSA7 R7 o Memory Address output. Inboth modes, addresses upto 64Kwords of external program memory and/or
MSA8 P8 up to 64K words of data memory on the MSD port, depending on setting of DS/CS select.
MSA9 R9
MSA10 P9
MSAT11 R10
MSA12 R11
MSA13 P10
MSA14 N10
MSA15 R12
MSDO c3
MSD1 B1
MSD2 D3
MSD3 c2
MSD4 C1
MSD5 D2
MSD6 D1
MSD7 E2
MSD8 E1
MSD9 F2
MSD10 Fi
MSD11 G3
MSD12 G2
MSD13 G1
MSD14 H1
MSD15 J1 External Memory Data. In both modes, I/Os to external memory. Used to read from or write to external
MSD16 J2 /0 data or program memory on the MSD port.
MSD17 K1
MSD18 L1
MSD19 K2
MSD20 M1
MSD21 L2
MSD22 N1
MSD23 L3
MSD24 M2
MSD25 P1
MSD26 N2
MSD27 R2
MSD28 N4
MSD29 P3
MSD30 R3
MSD31 P4
MSTR 14 | Host-Independent/Coprocessor Mode Select. In the coprocessor mode, MSTR must be tied low to
operate properly. In the host-independent mode, MSTR must be tied high to operate properly.
VWA P11 0 Memory Write Enable. In both modes, when low, data on MSD31-0 can be written to external program
or data memory.
Texas
INSTRUMENTS
B-10 POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

SCGS001 - D3150, SEPTEMBER 1988 — REVISED MAY 1991

TERMINAL FUNCTIONS (Continued)

PIN

NAME NO. vot DESCRIPTION
At
A15
B2
B14 " . .
NC D4 No Internal Connection. These pins should be left floating.
P2
R1
R15
RAS P15 | Row Address Strobe, active low. In the coprocessor mode, RAS is high during all of coprocessor
instruction cycle. In the host-independent mode, it is not used.
Ready. Inboth modes, when RDY is low, it causes a nondestructive stall of sequencer and floating-point
RDY K15 | operations. All internal registers and status in the FPU core are preserved. Also, no output lines will
change state.
BESET N15 i Reset, active low. Inboth modes, resets sequencer outputand clears pipeline registers, internal states,
status, and exception disable registers in FPU core. Other registers are unaffected.
Special Function Input. In the coprocessor mode when SF is high, indicates the LAD bus input is an
SF Nt4 | instruction or data from TMS34020 registers. When SF is low, indicates the LAD input is a data operand
from memory. In the host-independent mode, not used.
TCK R8 | Test Clock for JTAG four-wire boundary scan. In both modes, TCK is low for normal operation.
TDI H15 | Test Data Input for JTAG four-wire boundary scan. In both modes, TDI may be left floating.
TDO H2 0 Test Data Output for JTAG four-wire boundary scan
T™™S B8 | Test Mode Select for JTAG four-wire boundary scan. in both modes, TMS may be left floating.
C5
[o::}
c10
D13
F3
Vee J3 | 5-V Power Supply. All pins must be connected and used.
M13
N3
N6
N9
C4
c7
Cc9
Ci2
E3
E13
H3 . .
Vss H13 1 Ground Pins. All pins must be connected and used.
K3
L13
M3
N5
N8
N11
WE G13 1 Write Enable, active low. Inthe coprocessor mode, the write strobe from the TMS34020to enable a write
[O] to or fromthe TMS34082A LAD bus. Inthe host-independent mode, the TMS34082A write strobe output.

T The [I's denote the type of buffer utilized in the host-independent mode. If no [J's appear, the buffer type is identical for both modes of operation.

ji
Texas ‘V
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 B-11

TMS34082A
GRAPHICS FLOATING-POINT PROCESSOR

D3150, SEPTEMBER 1988 — REVISED MAY 1991 — SCGS001

data flow

The TMS34082A has two bidirectional 32-bit buses, LAD31-0 and MSD31-0. Each bus can be used to pass
instructions and data operands to the FPU core and to outputresults. A separate 16-bit bus, MSA15-0, provides
memory addressing capability on the MSD bus.

When the TMS34082A is used as a coprocessor for the TMS34020 Graphics System Processor (GSP), data
for the TMS34082A can be transferred through the 32-bit bidirectional data bus (LAD31-0) and may be passed
to any internal registers or to external memory on the memory expansion interface (MSD31-0). When the
TMS34082A is used as a standalone FPU, it can use both the LAD bus (LAD31-0) and the MSD bus (MSD31-0)
to interface with external data memory or system buses.

In the host-independent mode, the TMS34082A can be operated with the LAD bus as its single data bus and
the MSD bus as the instruction source, or with data storage on either port and the program memory on the MSD
bus.

The data space/code space (DS/CS) output can be used to control access either to data memory or program
memory on the MSD port. Up to 64K words of code space and 64K words of data space are directly supported.
In the coprocessor mode, both instructions and data are transferred on the LAD bus with the option of
accessing external user-generated programs on the MSD port.

One 32-bit operand can be input to the data registers each clock cycle. A 64-bit double-precision floating-point
operand is input in two cycles. Transfers to or from the data registers can normally be programmed as block
moves, loading one or more sets of operands with a single move instruction to minimize 1/0O overhead. Several
modes for moving operands and instructions are available. Block transfers up to 512 words between the LAD
and MSD buses can be programmed in either direction.

To permit direct input to or output from the LAD bus in the host-independent mode, other options for controlling
the LAD bus have been implemented. When two 32-bit operands are being selected for input to the FPU core,
one operand may be selected from LAD. On output from the FPU, a result may simultaneously be written to a
register and to the LAD bus.

During initialization in the host-independent mode, a bootstrap loader can bring 65 32-bit words from the LAD
bus and write them out to external program memory on the MSD bus, after which the device begins executing
fromthe firstmemory location (zero). The first word is loaded into the configuration register. This option facilitates
the initial loading of program memory on the MSD port upon power-up.

architecture

Because the sequencer, control and data registers, and FPU core are closely coupled, the TMS34082A can
execute a variety of complex floating-point or integer calculations rapidly, with a minimum of external data
transfers. The internal architecture of the FPU core supports concurrent operation: of the multiplier and the ALU,
providing several options for storing or feeding back intermediate results. Also, several special registers are
available to support specific calculations for g