
Third-Generation 
TMS320 
User's Guide 

,If 
TEXAS 

INSTRUMENTS 

SPRU031 



Third-Generation 
TMS320 User's Guide 

• TEXAS 
INSTRUMENTS 



IMPORTANT NOTICE 

Texas Instruments (TI) reserves the right to make changes to or to discontinue 
any semiconductor product or service identified in this publication without 
notice. TI advises its customers to obtain the latest version of the relevant in
formation to verify, before placing orders, that the information being relied 
upon is current. 

TI warrants performance of its semiconductor products to current specifica
tions in accordance with Tl's standard warranty. Testing and other quality 
control techniques are utilized to the extent TI deems necessary to support this 
warranty. Unless mandated by government requirements, specific testing of 
all parameters of each device is not necessarily performed. 

TI assumes no liability for TI applications assistance, customer product design, 
software performance, or infringement of patents or services described herein. 
Nor does TI warrant or represent that license, either express or implied, is 
granted under any patent right. copyright, mask work right, or other intellec
tual property right of TI covering or relating to any combination, machine, or 
process in which such semiconductor products or services might be or are 
used. 

Copyright © 1988, Texas Instruments Incorporated 



_Manual Update ___ _ 
Oocument Title: Third-Generation TMS320 User's Guide, SPRU031 

Oocument Number: SPRZ048 ECN Number: 526635 

This Manual Update should be appended to the Third-Generation TMS320 User's Guide. Changes 
should be made as indicated on the designated pages. 

Paga 

2-2 

2-6 

7-9 

A-5 

A-6 

A-6 

A-7 

A-8 

A-9 

A-9 

Change or Add 

Table 2-1: 
Line Function (Now) Function (Should Be) 

1 X11 XA11 
2 X12 XA12 
5 X002 X02 

20 IOA5 XA5 
26 10023 X023 
27 10024 X024 
28 10025 X025 
28 VSUBS SUBS 
29 10026 X026 
30 10027 X027 
31 10028 X028 
32 10029 X029 
33 10030 X030 
34 10031 X031 
35 10ROY XROY 

Table 2-2. Insert the following at the end of the table. 

LOCATOR (1 PlNl 

Reserved. See Table 2-1 and Figure 2·1. 

Line 7: src should be dst. 

Table A-5: Characteristics (13), (14), (15), (16), (17), and (18) change (10) to (X) 
in name and description. 

Figure A-4: Change (lO)R/1N to (X)R/W, (lOlA to (X)A, (10)0 to (X)O, and 
(lO)ROY to (X)ROY. 

Table A-6: All characteristics change (10) to (X) in name and description. 

Figure A-5: Change (lO)R/W to (X)R/W, (lO)A to (X)A, (10)0 to (X)O, and 
(lO)ROY to (X)ROY. 

Figure A-6: Change lOR/IN to XR/IN, lOA to XA, 100 to XO, and 10ROY to 
XROY. Change (M)STRB in title to 10STRB. 

Table A-7: Characteristics (22), (14.1), (15.1), (16.1), (17.1), and (18.1) change 10 
to X in name and description. 

Table A-8: All characteristics change 10 to X in name and description. 

The changes shown in this Manual Update will be included in the next revision of the Third-Generation 
TMS320 User's Guide. 

TEXAS ." 
INSTRUMENTS SPRZ048 









Contents 

Section 

1 Introduction 
1.1 General Description 
1.2 Key Features 
1.3 Typical Applications 
1.4 How To Use This Manual 
1.5 References ...... . 

2 
2.1 

Pinout and Signal Descriptions 

3 
3.1 
3.1.1 
3.1.2 
3.1.3 
3.1.4 
3.2 
3.2.1 
3.2.2 
3.2.3 
3.2.4 
3.3 
3.4 
3.5 
3.5.1 
3.5.2 
3.6 

Signal Descriptions ........ . 

Architectural Overview 
Central Processing Unit (CPU) ........ . 

Multiplier ................. . 
Arithmetic Logic Unit (ALU) ....... . 
Auxiliary Register Arithmetic Units (ARAUs) 
CPU Register File ..... 

Memory Organization . . . . . 
RAM, ROM, and Cache 
Memory Maps ..... . 
Memory Addressing Modes 
Instruction Set Summary 

Internal Bus Operation 
External Bus Operation 
Peripherals ..... . 

Timers ...... . 
Serial Ports . 

Direct Memory Access (DMA) 

4 CPU Registers, Memory, and Cache 
4.1 CPU Register File ............ . 
4.1.1 Extended-Precision Registers (RO-R7) 
4.1.2 Auxiliary Registers (ARO-AR7) 
4.1.3 Data Page Pointer (DP) 
4.1.4 Index Registers (IRO, IR1) 
4.1.5 Block Size Register (BK) 
4.1.6 System Stack Pointer (SP) 
4.1.7 Status Register (ST) . . . . . . . 
4.1.8 CPU/DMA Interrupt Enable Register (IE) 
4.1.9 CPU Interrupt Flag Register (IF) 
4.1.10 I/O Flags Register (IOF) ................ . 
4.1.11 Repeat Counter (RC) and Block Repeat Registers (RS, RE) 
4.1 .12 Program Counter (PC) ..... 
4.1.13 Reserved Bits and Compatibility 
4.2 Memory .............. . 
4.2.1 Memory Maps ........ . 
4.2.2 Peripheral Bus Map ...... . 
4.2.3 Reset/Interrupt/Trap Vector Map 
4.3 Instruction Cache ......... . 

Page 

1-1 
1-3 
1-4 
1-5 
1-6 
1-8 

2-1 
2-3 

3-1 
3-3 
3-5 
3-5 
3-5 
3-5 
3-8 
3-8 
3-10 
3-12 
3-12 
3-20 
3-21 
3-22 
3-23 
3-23 
3-24 

4-1 
4-2 
4-3 
4-3 
4-3 
4-4 
4-4 
4-4 
4-4 
4-7 
4-8 
4-9 
4-10 
4-10 
4-10 
4-11 
4-11 
4-13 
4-13 
4-15 

iii 



4.3.1 
4.3.2 
4.3.3 

5 
5.1 
5.1.1 
5.1.2 
5.2 
5.2.1 
5.2.2 
5.3 
5.3.1 
5.3.2 
5.3.3 
5.3.4 
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 

6 
6.1 
6.1.1 
6.1.2 
6.1.3 
6.1.4 
6.1.5 
6.1.6 
6.2 
6.2.1 
6.2.2 
6.2.3 
6.2.4 
6.2.5 
6.3 
6.4 
6.5 
6.5.1 
6.5.2 

7 
7.1 
7.1.1 
7.1.2 
7.1.3 
7.1.4 
7.2 
7.3 
7.4 
7.5 

iv 

Cache Architecture 
Cache Algorithm 
Cache Control Bits 

Data Formats and Floating-Point Operation 
Integer Formats ......... . 

Short Integer Format .... . 
Single- Precision Integer Format 

Unsigned-Integer Formats 
Short Unsigned-Integer Format 
Single-Precision Unsigned-Integer Format 

Floating-Point Formats ........... . 
Short Floating-Point Format ...... . 
Single-Precision Floating-Point Format 
Extended-Precision Floating-Point Format 
Conversion Between Floating-Point Formats 

Floating-Point Multiplication ....... . 
Floating-Point Addition and Subtraction 
Normalization Using the NORM Instruction 
Rounding: The RND Instruction ..... . 
Floating-Point to Integer Conversion 
Integer to Floating-Point Conversion Using the FLOAT Instruction 

Addressing 
Types of Addressing 

Register Addressing 
Direct Addressing . 
Indirect Addressing 
Short-Immediate Addressing 
Long-Immediate Addressing 
PC-Relative Addressing 

Groups of Addressing Modes 
General Addressing Modes 
Three-Operand Addressing Modes 
Parallel Addressing Modes 
Long-Immediate Addressing Mode 
Conditional-Branch Addressing Modes 

Circular Addressing ........ . 
Bit-Reversed Addressing ..... . 
System and User Stack Management 

Stacks ...... . 
Queues and Deques ..... . 

Program Flow Control 
Repeat Modes ..... 

Repeat Mode Initialization 
RPTB Initialization 
RPTS Initialization 
Repeat Mode Operation 

Delayed Branches 
Interlocked Operations 
Reset Operation 
Interrupts ...... . 

4-15 
4-16 
4-17 

5-1 
5-2 
5-2 
5-2 
5-3 
5-3 
5-3 
5-4 
5-4 
5-5 
5-6 
5-7 
5-9 
5-13 
5-17 
5-20 
5-22 
5-24 

6-1 
6-2 
6-2 
6-3 
6-4 
6-16 
6-17 
6-17 
6-18 
6-18 
6-19 
6-20 
6-21 
6-21 
6-22 
6-27 
6-28 
6-28 
6-30 

7-1 
7-2 
7-2 
7-3 
7-3 
7-4 
7-7 
7-8 
7 -13 
7-16 



8 
8.1 
8.1.1 
8.1.2 
8.2 
8.2.1 
8.2.2 
8.3 
8.4 

9 
9.1 
9.1.1 
9.1.2 
9.1.3 
9.1.4 
9.2 
9.2.1 
9.2.2 
9.2.3 
9.2.4 
9.2.5 
9.2.6 
9.2.7 
9.2.8 
9.2.9 
9.2.10 
9.2.11 
9.2.12 
9.3 
9.3.1 
9.3.2 
9.3.3 
9.3.4 
9.3.5 
9.3.6 

External Bus Operation 
External Interface Control Registers 

Primary Bus Control Register . 
Expansion Bus Control Register 

External Interface Timing 
Primary Bus Cycles 
Expansion Bus I/O Cycles 

Programmable Wait States 
Programmable Bank Switching 

Peripherals 
Timers ................ . 

Timer Global Control Register 
Timer Period and Counter Registers 
Timer Pulse Generation 
Timer Operation Modes . . . . . . 

Serial Ports ............. . 
Serial Port Global Control Register 
FSX/DX/CLKX Port Control Register 
FSR/DR/CLKR Port Control Register 
Receive/Transmit Timer Control Register 
Receive/Transmit Timer Counter Register 
Receive/Transmit Timer Period Register 
Data Transmit Register ...... . 
Data Receive Register ...... . 
Serial Port Operation Configurations 
Serial Port Timing . . . . . . . . 
Serial Port Interrupt Sources 
Serial Port Functional Operation 

DMA Controller .......... . 
DMA Global Control Register 
Destination and Source Address Registers 
Transfer Counter Register . . . . . . 
CPU/DMA Interrupt Enable Register 
DMA Memory Transfer Operation 
Synchronization of DMA Channels 

10 Pipeline Operation 
10.1 Pipeline Structure . 
10.2 Pipeline Conflicts .. 
10.2.1 Branch Conflicts 
10.2.2 Register Conflicts 
10.2.3 Memory Conflicts 
10.3 Resolving Memory Conflicts 
10.4 Clocking Of Memory Accesses 
10.4.1 Program Fetches 
10.4.2 Data Loads and Stores 

8-1 
8-2 
8-3 
8-4 
8-5 
8-5 
8-10 
8-19 
8-21 

9-1 
9-2 
9-3 
9-5 
9-6 
9-7 
9-9 
9-11 
9-14 
9-15 
9-16 
9-18 
9-19 
9-19 
9-19 
9-20 
9-23 
9-26 
9-26 
9-33 
9-34 
9-36 
9-36 
9-36 
9-38 
9-42 

10-1 
10-2 
10-4 
10-4 
10-6 
10-8 
10-14 
10-16 
10-16 
10-16 

v 



11 Assembly language Instructions 
11.1 Instruction Set ....... . 
11.1.1 Load and Store Instructions 
11.1.2 Two-Operand Instructions 
11.1.3 Three-Operand Instructions 
11.1.4 Program Control Instructions .. 
11.1.5 Interlocked Operations Instructions 
11.1.6 Parallel Operations Instructions 
11.2 Condition Codes and Flags . . . 
11.3 Individual Instructions ..... . 
11.3.1 Symbols and Abbreviations . . 
11 .3.2 Optional Assembler Syntaxes .. 
11.3.3 Individual Instruction Descriptions 

12 Software Applications 
12.1 Processor Initialization 
12.2 Program Control 
12.2.1 Subroutines..... 
12.2.2 Software Stack . . 
12.2.3 Interrupt Service Routines 
12.2.4 Delayed branches ... . 
12.2.5 Repeat Modes .... . 
12.2.6 Computed GOTO's . . 
12.3 Logical and Arithmetic Operations 
12.3.1 Bit Manipulation ...... . 
12.3.2 Block Moves ........ . 
12.3.3 Bit-Reversed Addressing .. 
12.3.4 Integer and Floating-point Division 
12.3.5 Square Root .......... . 
12.3.6 Extended- Precision Arithmetic . . . . . . . . . . . . . . 
12.3.7 Floating-point Format Conversion: IEEE to/from TMS320C30 
12.4 Application-Oriented Operations 
12.4.1 Companding ....... . 
12.4.2 FIR, ItR, and Adaptive Filters 
12.4.3 Matrix-Vector Multiplication 
12.4.4 Fast Fourier Transforms (FFT) 
12.4.5 Lattice Filters ...... . 
12.5 Programming Tips ..... . 
1 ~.5.1 C-Callable Routines 
12.5.2 Hints for Assembly Coding 

13 Hardware Applications 
13.1 System Configuration Options Overview 
13.1.1 Categories of Interfaces on the TMS320C30 
13.1.2 Typical System Block Diagram 
13.2 Primary Bus Interface .. . . . . . . . 
13.2.1 Zero Wait-State Interface To RAMs 
13.2.2 Ready Generation ..... 
13.2.3 Bank Switching Techniques 
13.3 Expansion Bus Interface 
13.4 System Control Functions 
13.4.1 Clock Oscillator Circuitry 
13.4.2 Reset Signal Generation ... . 
13.5 XDS1000 Target Design Considerations 

vi 

11-1 
11-2 
11-2 
11-3 
11-4 
11-4 
11-5 
11-5 
11-8 
11-11 
11-11 
11-13 
11-15 

12-1 
12-3 
12-7 
12-7 
12-9 
12-10 
12-15 
12-16 
12-18 
12-20 
12-20 
12-22 
12-22 
12-23 
12-29 
12-32 
12-35 
12-45 
12-45 
12-49 
12-60 
12-63 
12-79 
12-86 
12-86 
12-86 

13-1 
13-2 
13-2 
13-3 
13-4 
13-4 
13-10 
13-14 
13-17 
13-21 
13-21 
13-23 
13-26 



A 
8 
C 
o 

TMS320C30 Timing Specifications 8- Dimensions 
Development Support/Part Order Information 
Instruction Opcodes 
Quality and Reliability 

A-1 
8-1 
C-1 
0-1 

vii 



III ustrations 

Figure 

1-1 
2-1 
3-1 
3-2 
3-3 
3-4 
3-5 
3-6 
4-1 
4-2 
4-3 
4-4 
4-5 
4-6 
4-7 
4-8 
4-9 
4-10 
4-11 
5-1 
5-2 
5-3 
5-4 
5-5 
5-6 
5-7 
5-8 
5-9 
5-10 
5-11 
5-12 
5-13 
5-14 

6-1 
6-2 
6-3 
6-4 
6-5 
6-6 
6-7 
6-8 
6-9 
6-10 
6-11 
6-12 
6-13 
6-14 
6-15 

viii 

TMS320 Device Evolution .................................... . 
TMS320C30 Pin Assignments ................................. . 
TMS320C30 Block Diagram ................................... . 
Central Processing Unit (CPU) ................................. . 
Memory Organization ........................................ . 
Memory Maps .............................................. . 
Peripheral Modules .......................................... . 
DMA Controller ............................................. . 
Extended-Precision Register Floating-Point Format ................. . 
Extended- Precision Register Integer Format ....................... . 
Status Register ............................................. . 
CPU/DMA Interrupt Enable Register (IE) ......................... . 
CPU Interrupt Flag Register (IF) ................................ . 
I/O Flag Register (!OF) ....................................... . 
Memory Maps .............................................. . 
Peripheral Bus Memory Map .. ~ ................................ . 
Reset, Interrupt, and Trap Vector Locations ....................... . 
Instruction Cache Architecture ................................. . 
Address Partitioning for Cache Control Algorithm .................. . 
Short Integer Format and Sign Extension of Short Integer ............ . 
Single-Precision Integer Format ................................ . 
Short Unsigned-Integer Format and Zero Fill ...................... . 
Single-Precision Unsigned-Integer Format ........................ . 
Generic Floating-Point Format ................................. . 
Short Floating-Point Format ................................... . 
Single-Precision Floating-Point Format .......................... . 
Extended-Precision Floating-Point Format ........................ . 
Flowchart for Floating-Point Multiplication ....................... . 
Flowchart for Floating-Point Addition ........................... . 
Flowchart for NORM Instruction Operation ....................... . 
Flowchart for Floating-Point Rounding by the RND Instruction ....... . 
Flowchart for Floating-Point to Integer Conversion by FIX Instructions 
Flowchart for Integer to Floating-Point Conversion Using the FLOAT In-
struction ................................................... . 
Direct Addressing ........................................... . 
Encoding for General Addressing Modes ......................... . 
Encoding for Three-Operand Addressing Modes ................... . 
Encoding for Parallel Addressing Modes ......................... . 
Encoding for Long-Immediate Addressing Mode ................... . 
Encoding for Conditional- Branch Addressing Modes ................ . 
Flowchart for Circular Addressing ................................ . 
Circular Buffer Implementation ................................. . 
Circular Addressing Example ................................... . 
Data Structure for FIR Filters .................................. . 
FIR Filter Code Using Circular Addressing ........................ . 
Bit-Reversed Addressing Example ............................... . 
System Stack Configuration ................................... . 
Implementions of High-to-Low Memory Stacks .................... . 
Implementipns of Low-to-High Memory Stacks .................... . 

Page 

1-1 
2-1 
3-2 
3-4 
3-9 
3-11 
3-22 
3-24 
4-3 
4-3 
4-5 
4-7 
4-9 
4-9 
4-12 
4-13 
4-14 
4-15 
4-16 
5-2 
5-2 
5-3 
5-3 
5-4 
5-4 
5-5 
5-6 
5-10 
5-14 
5-18 
5-21 
5-23 

5-24 
6-4 
6-18 
6-19 
6-20 
6-21 
6-21 
6-23 
6-24 
6-25 
6-25 
6-26 
6-27 
6-28 
6-29 
6-29 



7-1 
7-2 
7-3 
7-4 
7-5 
8-1 
8-2 
8-3 
8-4 
8-5 
8-6 
8-7 
8-8 
8-9 
8-10 
8-11 
8-12 
8-13 
8-14 
8-15 
8-16 
8-17 
8-18 
9-1 
9-2 
9-3 
9-4 
9-5 
9-6 
9-7 
9-8 
9-9 
9-10 
9-11 
9-12 
9-13 
9-14 
9-15 
9-16 
9-17 
9-18 
9-19 
9-20 
9-21 
9-22 
9-23 
9-24 
9-25 
9-26 
9-27 
9-28 
9-29 
9-30 
9-31 
9-32 

Repeat Mode Control Algorithm ................................ . 
Multiple TMS320C30s Sharing Global Memory .................... . 
Zero-Logic Interconnect of TMS320C30s ........................ . 
Interrupt Logic Functional Diagram ............................. . 
Interrupt Processing ......................................... . 
Memory-Mapped External Interface Control Registers ............... . 
Primary Bus Control Register .................................. . 
Expansion Bus .Control R1-ister _ ................................ . 
Read-Read-Wnte for (M) TRB - 0 ............................. . 
Write-Write-Read for (M)STRB = 0 ............................. . 
Use of Wait States for Read for (M)STRB = 0 ..................... . 
Use of Wait States for Write for (M)STRB = 0 ..................... . 
Read and Write for laSTRB = 0 ................................ . 
Read with One Wait-State for 10STRB = 0 ....................... . 
Write with One Wait-State for 10STRB = 0 ....................... . 
Memory Read and I/O Write for Expansion Bus .................... . 
I/O Write and Memory Read for Expansion Bus .................... . 
Memory Write and I/O Read for Expansion Bus .................... . 
Inactive Bus States for 10STRB ................................ . 
Inactive Bus States for STRB and MSTRB ........................ . 
HOLD and HOLDA Timing .................................... . 
BNKCMP Example .......................................... . 
Bank Switching Example ...................................... . 
Timer Block Diagram ......................................... . 
Memory- Mapped Timer Locations .............................. . 
Timer Global Control Register .................................. . 
Timer Timing ............................................... . 
Timer I/O Port Configurations .................................. . 
Timer Modes as Defined by CLKSRC and FUNC ................... . 
Serial Port Block Diagram ..................................... . 
Memory-Mapped Locations for the Serial Port ..................... . 
Serial Port Global Control Register .............................. . 
FSX/DX/CLKX Port Control Register ............................ . 
FSR/DR/CLKR Port Control Register ............................ . 
Receive/Transmit Timer Control Register ......................... . 
Receive/Transmit Timer Counter Register ......................... . 
Receive/Transmit Timer Period Register .......................... . 
Transmit Buffer Shift Operation ................................ . 
Receive Buffer Shift Operation ................................. . 
Serial Port Clocking in I/O Mode ............................... . 
Serial Port Clocking in Serial Port Mode .......................... . 
Data Word Format in Handshake Mode .......................... . 
Single Zero Sent as an Acknowledge ............................ . 
Direct Connection Using Handshake Mode ....................... . 
Fixed Burst Mode ........................................... . 
Fixed Continuous Mode With Frame Synch ....................... . 
Fixed Continuous Mode Without Frame Synch .................... . 
Exiting Fixed Continuous Mode Without Frame Synch, FSX Internal 
Variable Burst Mode ......................................... . 
Variable Continuous Mode With Frame Synch .... '" ................ . 
Variable Continuous Mode Without Frame Synch .................. . 
Memory-Mapped Locations for a DMA Channel ................... . 
DMA Global Control Register .................................. . 
CPU/DMA Interrupt Enable Register ............................ . 
Timing and Number of Cycles for DMA Transfers When Destination is On-
Chip ....................................................... . 

7-4 
7-10 
7-11 
7-16 
7-19 
8-2 
8-3 
8-4 
8-6 
8-7 
8-8 
8-9 
8-10 
8-11 
8-12 
8-13 
8-14 
8-15 
8-16 
8-17 
8-18 
8-21 
8-23 
9-2 
9-3 
9-5 
9-6 
9-7 
9-8 
9-10 
9-11 
9-14 
9-15 
9-16 
9-18 
9-18 
9-19 
9-19 
9-20 
9-21 
9-22 
9-25 
9-25 
9-26 
9-27 
9-28 
9-29 
9-30 
9-30 
9-31 
9-32 
9-33 
9-34 
9-37 

9-39 

ix 



9-33 DMA Timing When Destination is a Primary Bus ................... . 
9-34 DMA Timing When Destination is an Expansion Bus ................ . 
9-35 No DMA Synchronization ..................................... . 
9-36 DMA Source Synchronization .................................. . 
9-37 DMA Destination Synchronization .............................. . 
9-38 DMA Source and Destination Synchronization ..................... . 
10-1 TMS320C30 Pipeline Structure ................................ . 
10-2 Two-Operand Instruction Word ................................ . 
10-3 Three-Operand Instruction Word ............................... . 
10-4 A Multiply or CPU Operation with a Parallel Store .................. . 
10-5 Two Parallel Stores .......................................... . 
10-6 Parallel Multiplies and Adds ................................... . 
12-1 Data Memory Organization For a FIR Filter ....................... . 
12-2 Data Memory Organization For a Single Biquad .................... . 
12-3 Data Memory Organization For N Biquads ........................ . 
12-4 Data Memory Organization for Matrix-Vector Multiplication .......... . 
12-5 Structure of the Inverse Lattice Filter ............................ . 
12-6 Data Memory Organization for Lattice Filters ...................... . 
12-7 Structure of the (Forward) Lattice Filter .......................... . 
13-1 External Interfaces on the TMS320C30 .......................... . 
13-2 Possible System CO!!.f!gurations ................................ . 
13-3 Ram Interface - No OE ....................................... . 
13-4 Interface Read Timing ........................................ . 
13-5 Interface Write Timing ........................................ . 
13-6 RAM Interface - OE .......................................... . 
13-7 Read Operations Timing ...................................... . 
13-8 Write Operations Timing ...................................... . 
13-9 Circuit For Generation of 0, 1, or 2 Wait States For Multiple Devices 
13-10 Bank Switching For Cyprus Semiconductors CY7C185 .............. . 
13-11 Timing For Read Operations Using Bank Switching ................. . 
13-12 Expansion Bus Interface to A/D Converter ........................ . 
13-13 Timing of Expansion Bus Interface .............................. . 
13-14 Crystal Oscillator Circuit ...................................... . 
13-15 Magnitude of the Impedance of the Oscillator LC Network ........... . 
13-16 Reset Circuit ............................................... . 
13-17 Voltage on the TMS320C30 Reset Pin ........................... . 
13-18 12 Pin Header Signals ........................................ . 
13-19 Typical Setup For Using the Emulation Connection of the XDS1 000 
A-1 Test Load Circuit ............................................ . 
A-2 X2/CLKIN Timing ........................................... . 
A-3 H1/H3 Timing .............................................. . 
A-4 Memory «M)STRB = 0) Read ................................. . 
A-5 Memory ( M STRB = 0) Write ................................. . 
A-6 Memory M STRB = 0) Read ................................. . 
A-7 Memory (lOSTRB = 0) Write " ................................ . 
A-8 Timing for XFO and XF1 When Executing a LDFI or LDII ............. . 
A-9 Timing for XFO When Executing a STFI or STII .................... . 
A-10 Timing for XFO and XF1 When Executing SIGI ...................... . 
A-11 Timing for Loading XF Register When Configured as an Output Pin 
A-12 Change of XF From Output to Input Mode ........................ . 
A-13 Change of XF From Input to Output Mode ........................ . 
A-14 RESET Timi~ .............................................. . 
A-15 RESET and INT(3-0) Response Timing .......................... . 
A-16 lACK Timing ............................................... . 
A-17 TRAP Response Timing ...................................... . 
A-18 Fixed Data Rate Mode ....................................... . 

x 

9-39 
9-40 
9-43 
9-44 
9-45 
9-46 
10-2 
10-17 
10-17 
10-18 
10-18 
10-19 
12-50 
12-52 
12-55 
12-61 
12-80 
12-80 
12-83 
13"2 
13-3 
13-5 
13-6 
13-6 
13-7 
13-8 
13-9 
13-13 
13-15 
13-16 
13-18 
13-19 
13-21 
13-22 
13-23 
13-24 
13-26 
13-27 
A-3 
A-4 
A-4 
A-6 
A-7 
A-8 
A-10 
A-11 
A-12 
A-13 
A-14 
A-15 
A-16 
A-17 
A-19 
A-20 
A-21 
A-22 



A-19 
A-20 
A-21 
B-1 
B-2 
B-3 
B-4 

Table 

Variable Data Rate Mode ..................................... . 
HOLD/HOLDA Timing ....................................... . 
TMS320C30 180 Pin PGA Dimensions .......................... . 
TMS320C30 Development Environment .......................... . 
TMS320C30 Simulator User Interface ........................... . 
TMS320C30 XDS1 000 Development Environment ................. . 
TMS320 Device Nomenclature ................................. . 

Tables 

Typical Applications of the TMS320 Family ....................... . 
TMS320C30 Pin Function Assignments .......................... . 
TMS320C30 Signal Descriptions ............................... . 
CPU Registers .............................................. . 
Instruction Set Summary ...................................... . 
CPU Registers .............................................. . 
Status Register Bits Summary .................................. . 
IE Register Bits Summary ..................................... . 
IF Register Bits Summary ..................................... . 
10F Register Bits Summary .................................... . 
Combined Effect of the CE and CF Bits .......................... . 
CPU Register/Assembler Syntax and Function ..................... . 
Indirect Addressing .......................................... . 
Index Steps and Bit-Reversed Addressing ........................ . 
Repeat Mode Registers ....................................... . 
Interlocked Operations ....................................... . 
Pin Operation at Reset ....................................... . 
Reset and Interrupt Vector Locations ............................ . 
Primary Bus Control Register Bits Summary ....................... . 
Expansion Bus Control Register Bits Summary ..................... . 
Wait-State Generation When SWW = 00 ........................ . 
Wait-State Generation When SWW = 0 1 ........................ . 
Wait-State Generation When SWW = 1 0 ........................ . 
Wait-State Generation When SWW = 1 1 ........................ . 
BNKCMP and Bank Size ...................................... . 

1 -1 
2-1 
2-2 
3-1 
3-2 
4-1 
4-2 
4-3 
4-4 
4-5 
4-6 
6-1 
6-2 
6-3 
7-1 
7-2 
7-3 
7-4 
8-1 
8-2 
8-3 
8-4 
8-5 
8-6 
8-7 
9-1 
9-2 
9-3 
9-4 
9-5 
9-6 
9-7 
9-8 
9-9 
9-10 
9-11 
9-12 
9-13 
9-14 
10-1 
10-2 

Timer Global Control Register Bits Summary ...................... . 
Result of a Write of Specified Values of GO and HLD ............... . 
Serial Port Global Control Register Bits Summary .................. . 
FSX/DX/CLKX Port Control Register Bits Summary ................. . 
FSR/DR/CLKR Port Control Register Bits Summary ................ . 
Receive/Transmit Timer Control Register ......................... . 
Global Control Register Bits ................................... . 
START Bits and Operation of the DMA .......................... . 
STAT Bits and Status of the DMA .............................. . 
SYNCH Bits and Synchronization of the DMA ..................... . 
CPU/DMA Interrupt Enable Register Bits ......................... . 
Maximum DMA Transfer Rates When C, = Cw = 0 ................. . 
Maximum DMA Transfer Rates When C, = 1, Cw = 0 ............... . 
Maximum DMA Transfer Rates When C, = 1, Cw = 1 ............... . 
One Program Fetch and One- Data Access for Maximum Performance 
One Program Fetch and Two Data Accesses for Maximum Performance 

A-23 
A-25 
A-26 
B-2 
B-8 
B-10 
B-15 

Page 

1-5 
2-2 
2-3 
3-6 
3-13 
4-2 
4-6 
4-8 
4-9 
4-10 
4-18 
6-3 
6-5 
6-27 
7-2 
7-8 
7-13 
7-18 
8-3 
8-4 
8-20 
8-20 
8-20 
8-20 
8-21 
9-4 
9-5 
9-12 
9-14 
9-15 
9-17 
9-34 
9-35 
9-35 
9-35 
9-37 
9-41 
9-41 
9-41 
10-14 
10-15 

xi 



11-1 
11-2 
11-3 
11-4 
11-5 
11-6 
11-7 
11-8 
11-9 
12-1 
13-1 
A-1 
A-2 
A-3 
A-4 
A-5 
A-6 
A-7 
A-8 
A-9 
A-10 
A-11 
A-12 
A-13 
A-14 
A-15 
A-16 
A-17 
A-18 
A-19 
B-1 
B-2 
C-1 
0-1 
0-2 

xii 

load and Store Instructions ................................... . 
Two-Operand Instructions .................................... . 
Three-Operand Instructions ................................... . 
Program Control Instructions .................................. . 
Interlocked Operations Instructions .............................. . 
Parallel Instructions .......................................... . 
Output Value Formats ........................................ . 
Condition Codes and Flags .................................... . 
Instruction Symbols ......................................... . 
TMS320C30 FFT Timing Benchmarks ........................... . 
Bank Switching Interface Timing ............................... . 
Absolute Maximum Ratings Over Specified Temperature Range ....... . 
Recommended Operating Conditions ............................ . 
Electrical Characteristics Over Specified Free-Air Temperature Range 
Switching Characteristics for ClKIN, H1, and H3 .................. . 
Switching Characteristics for a memory «M)STRB = 0) read ......... . 
Switching Characteristics for a memory ( M STRB = 0) Write ........ . 
Switching Characteristics for a Memory (10 TRB = 0) Read ......... . 
Switching Characteristics for a Memory (IOSTRB = 0) Write ......... . 
Information for Figure A-8 .................................... . 
Information for Figure A-9 .................................... . 
Information for Figure A-1 0 ................................... . 
Information for Figure A-11 ................................... . 
Information for Figure A-12 ................................... . 
Information for Figure A-13 ................................... . 
Information for Figure A-14 ................................... . 
Information for Figure A-15 ................................... . 
Information for Figure A-16 ................................... . 
Serial Port Timing as Shown in Figures A-18 and A-19 .............. . 
Information for Figure A-20 ................................... . 
TMS320C30 Digital Signal Processor Part Numbers ................ . 
TMS320C30 Support Tool Part Numbers ......................... . 
TMS320C30 Instruction Opcodes ............................... . 
Microprocessor and Microcontroller Tests ........................ . 
TMS320C30 Transistors ...................................... . 

11-2 
11-3 
11-4 
11-5 
11-5 
11-6 
11-8 
11-10 
11-12 
12-79 
13-16 
A-2 
A-2 
A-3 
A-5 
A-5 
A-6 
A-9 
A-9 
A-11 
A-12 
A-13 
A-14 
A-15 
A-16 
A-18 
A-19 
A-20 
A-24 
A-25 
B-13 
B-13 
C-1 
0-5 
0-5 



Introduction 





Section 1 

Introduction 

The TMS320C30 (third-generation) Digital Signal Processor (DSP) is a 
high-performance CMOS 32-bit device in the TMS320 family of single-chip 
digital signal processors. Since 1982 when the TMS3201 0 was introduced, 
the TMS320 family has established itself as the industry standard for digital 
signal processing. Powerful instruction sets, high-speed number-crunching 
capabilities, and innovative architectures have made this high-performance 
family of processors ideal for DSP applications. 

The TMS320 family consists of three generations of processors: TMS320C1 x, 
TMS320C2x, and TMS320C3x (see Figure 1-1). The family has expanded to 
include enhancements of earlier generations and more powerful new gener
ations of digital signal processors. 

TMS320C3x 

32OC30 • 32·bIt fIoet-pt CPU 
• 8O·ns hurtr cycl. 
• ZKWRAM 
.4KWROM 

TM320C2x • 84 W innr cache 
• 18MWtota!mem 
• 32 x 32m4O-blt mull 

32020 • 18/32·bh CPU • 2 HIt._ ports 

I 
320C25 • 100-nslnstfcycte • 2 timers 

• 644W data RAM 
• DMA TMS320C1x • 4K W Pf09 ROM · 128K W totllimem 

32010 • 18J3Z·bh CPU • '8 )( 11-3Z·bIt mutt 

3201' • '80-,. Instr cycle • Sert.I port and timer 
32OC10 • 268 W datil RAM • Block move/repeat 
320C1& • 4K W ROMIEPROM • MuttiproceNOf IIF 
320£1& • 4K W UI prog mem 
32OC17 • 18 x 18-32-bh: mutt 
320£17 • 2 .. rIeI portS 

• Compendlng H/W 
• Coproce •• or IIF 

T1ME 

Figure 1-1. TMS320 Device Evolution 

1-1 



Introduction 

1-2 

This document discusses the third-generation device, TMS320C30, within the 
TMS320 family. The 60-ns cycle time of the TMS320C30 allows it to execute 
operations at a performance rate previously available only on a supercomputer. 
Even higher performance is gained through its large on-chip memories, con
current DMA controller, and instruction cache. 

This section presents the following major topics: 

• General Description (Section 1.1 on page 1-3) 

• Key Features (Section 1.2 on page 1-4) 

• Typical Applications (Section 1.3 on page 1 -5) 

• How To Use This Manual (Section 1.4 on page 1-6) 

• References (Section 1.5 on page 1-8) 



Introduction - General Description 

1.1 General Description 

The TMS320's internal busing and special digital signal processing (DSP) 
instruction set provide speed and flexibility. This combination produces a pro
cessor family capable of executing up to 33 MFLOPS (million floating-point 
operations per second). The TMS320 family optimizes speed by implementing 
functions in hardware that other processors implement through software or 
microcode. This hardware-intensive approach provides the design engineer 
with power previously unavailable on a single chip. 

The TMS320C30, the third-generation device in the TMS320 family, can 
perform parallel multiply and ALU operations on integer or floating-point data 
in a single cycle. The processor also possesses a general-purpose register file, 
program cache, dedicated auxiliary register arithmetic units (ARAU), internal 
dual-access memories, one DMA channel supporting concurrent I/O, and a 
short machine-cycle time. High performance and ease of use are achieved 
through greater parallelism, greater accuracy, and general-purpose features. 

General-purpose applications are greatly enhanced by the large address space, 
multiprocessor interface, internally and externally generated wait states, two 
timers, two serial ports, and multiple interrupt structure. The TMS320C30 
supports a wide variety of system applications from host processor to dedi
cated coprocessor. 

The emphasis on total system cost has resulted in a less-expensive processor 
that can be designed into systems currently using costly bit-slice processors. 
High-level language is more easily supported through a register-based archi
tecture, large address space, powerful addressing modes, flexible instruction 
set, and support of floating-point arithmetic. 

1-3 

• 



Introduction - Key Features 

1.2 Key Features 

1-4 

Some key features of the TMS320C30 are listed below. 

• 60-ns single-cycle instruction execution time 
33.3 MFLOPS (million floating-point operations per second) 
16.7 MIPS (million instructions per second) 

• One 4K x 32-bit single-cycle dual-access on-chip ROM block 
• Two 1 K x 32-bit single-cycle dual-access on-chip RAM blocks 
• 64 x 32-bit instruction cache 
• 32-bit instruction and data words, 24-bit addresses 
• 40/32-bit floating-point/integer multiplier and ALU 
• 32-bit barrel shifter 
• Eight extended-precision registers (accumulators) 
• Two address generators with eight auxiliary registers and two auxiliary 

register arithmetic units 
• On-chip Direct Memory Access (DMA) controller for concurrent I/O and 

CPU operation 
• Integer, floating-point. and logical operations 
• Two- and three-operand instructions 
• Parallel ALU and multiplier instructions in a single cycle 
• Block repeat capability 
• Zero-overhead loops with single-cycle branches 
• Conditional calls and returns 
• Interlocked instructions for multiprocessing support 
• Two serial ports to support B/16/32-bit transfers 
• Two 32-bit timers 
• Two general-purpose external flags, four external interrupts 
• 1BO-pin grid array (PGA) package; 1 /.I m CMOS 



Introduction - Typical Applications 

1.3 Typical Applications • 

The TMS320 family's unique versatility and realtime performance offer flexible 
design approaches in a variety of applications. In addition, TMS320 devices 
can simultaneously provide the multiple functions often required in those 
complex applications. Table 1-1 lists typical TMS320 family applications. 

Table 1-1. Typical Applications of the TMS320 Family 

GENERA~PURPOSEDSP GRAPHICS/IMAGING INSTRUMENTATION 

Digital Filtering 3- D Rotation Spectrum Analysis 
Convolution Robot Vision Function Generation 
Correlation Image Transmission/ Pattern Matching 
Hilbert Transforms Compression Seismic Processing 
Fast Fourier Transforms Pattern Recognition Transient Analysis 
Adaptive Filtering Image Enhancement Digital Filtering 
Windowing Homomorphic Processing Phase-Locked Loops 
Waveform Generation Workstations 

Animation/Digital Map 

VOICE/SPEECH CONTROL MILITARY 

Voice Mail Disk Control Secure Communications 
Speech Vocoding Servo Control Radar Processing 
Speech Recognition Robot Control Sonar ·Processing 
Speaker Verification Laser Printer Control Image Processing 
Speech Enhancement Engine Control Navigation 
Speech Synthesis Motor Control Missile Guidance 
Text-to-Speech Kalman Filtering Radio Frequency Modems 
Neural Networks Sensor Fusion 

TElECOMMUNICATIONS AUTOMOTIVE 

Echo Cancellation FAX Engine Control 
ADPCM Transcoders Cellular Telephones Vibration Analysis 
Digital PBXs Speaker Phones Antiskid Brakes 
Line Repeaters Digital Speech Adaptive Ride Control 
Channel Multiplexing Interpolation (DSI) Global Positioning 
1200 to 19200-bps Modems X.25 Packet Switching Navigation 
Adaptive Equalizers Video Conferencing Voice Commands 
DTMF Encoding/Decoding Spread Spectrum Digital Radio 
Data Encryption Communications Cellular Telephones 

CONSUMER INDUSTRIAL MEDICAL 

Radar Detectors Robotics Hearing Aids 
Power Tools Numeric Control Patient Monitoring 
Digital Audio/TV Security Access Ultrasound Equipment 
Music Synthesizer Power Line Monitors Diagnostic Tools 
Toys and Games Visual Inspection Prosthetics 
Solid-State Answering Lathe Control Fetal Monitors 
Machines CAM MR Imaging 

1-5 



Introduction - How To Use This Manual 

1.4 How To Use This Manual 

1-6 

The purpose of this user's guide is to serve as a reference book for the 
TMS320C30 digital signal processor. This document is designed to provide 
information that assists managers and hardware/software engineers in appli
cation development. The first group of sections provides specific information 
about the architecture and hardware operation of the device. later sections 
describe the software operation. Specific software and hardware applications 
are provided in Sections 12 and 13, respectively. Electrical specifications and 
mechanical data can be found in the data sheet (Appendix A). 

The following table lists each section and briefly describes the section con
tents. 

Section 2. 

Section 3. 

Section 4. 

Section 5. 

Section 6. 

Section 7. 

Section 8. 

Section 9. 

Section 10. 

Section 11. 

Section 12. 

Pinout and Signal Descriptions. Drawing of the PGA 
package for the TMS320C30. Functional listing of the 
signals, their pin locations, and descriptions. 

Architectural Overview. Functional block diagram. 
TMS320C30 design description, hardware components, 
and device operation. Instruction set summary. 

CPU Registers. Memorv. and Cache. Description of the 
registers in the CPU register file. Memory maps provided 
and instruction cache architecture, algorithm, and control 
bits explained. 

Data Formats and Floating-Point Operations. Description 
of signed and unsigned integer and floating-point formats. 
Discussion of floating-point multiplication, addition, sub
traction, normalization, rounding, and conversions. 

Addressing. Operation, encoding, and implementation of 
addressing modes. Format descriptions. System stack 
management. 

Program Flow Control. Software control of program flow 
with repeat modes and branching. Interlocked operations. 
Reset and interrupts. 

External Bus Operation. Description of primary and expan
sion interfaces. External interface timing diagrams. Pro
grammable wait-states and bank switching. 

Peripherals. Description of the DMA controller, timers, and 
serial ports. 

Pipeline Operation. Discussion of the pipelining of oper
ations on the TMS320C30. 

Assembly language Instructions. Functional listing of in
structions. Condition codes defined. Alphabetized indi
vidual instruction descriptions with examples. 

Software Applications. Software application examples for 
the use of various TMS320C30 instruction set features. 



Introduction - How To Use This Manual 

Section 13. Hardware Applications. Hardware design techniques and • 
application examples for interfacing to memories, periph-
erals, or other microcomputers/microprocessors. 

Four appendices are included to provide additional information. 

Appendix A. 

Appendix '8. 

Appendix C. 

Appendix D. 

TMS320C30 Data Sheet. Electrical specifications, timing, 
and mechanical data. 

Development Support/Part Order Information. Listings of 
the hardware and software available to support the 
TMS320C30 device. 

Instruction Opcodes. List of the opcode fields for all the 
TMS320C30 instructions. 

Quality and Reliability. Discussion of Texas Instruments 
quality and reliability criteria for evaluating performance. 

1-7 



Introduction - References 

.1.5 

1-8 

References 

The following reference list contains useful information regarding functions, 
operations, and applications of digital signal processing. These books also 
provide other references to many useful technical papers. The reference list is 
organized into categories of general DSP, speech, image processing, and di
gital control theory, and alphabetized by author. 

General Digital Signal Processing: 

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY: 
McGraw- Hill Company, Inc., 1979. 

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ: 
Prentice- Hall, Inc., 1974. 

Burrus, C.S. and Parks, T.W., DFT/FFT and Convolution Algorithms. 
New York, NY: John Wiley and Sons, Inc., 1984. 

Digital Signal Processing Applications with the TMS320 Family, Texas 
Instruments, 1986; Prentice- Hall, Inc., 1987. 

Gold, Bernard and Rader, C.M., Digital Processing of Signals. New 
York, NY: McGraw- Hill Company, Inc., 1969. 

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, 
Inc., 1977. 

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Pro
cessing. New York, NY: IEEE Press, 1979. 

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA: 
Kluwer Academic Publishers, 1986. 

Jones, D.L. and Parks, T.W., A Digital Signal Processing Laboratory 
Using the TMS32010. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987. 

Lim, Jae and Oppenheim, Alan V. (Editors), Advanced Topics in Signal 
Processing. Englewood Cliffs, NJ: Prentice- Hall, Inc., 1988. 

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada: 
Carleton University, 1983. 

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978. 

Oppenheim, Alan V. and Schafer, R.W., Digital Signal Processing. En
glewood Cliffs, NJ: Prentice-Hall, Inc., 1975. 

Oppenheim, Alan V. and Willsky, A.N. with Young, LT., Signals and 
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983. 

Parks, T.W. and Burrus, C.S., Digital Filter Design. New York, NY: John 
Wiley and Sons, Inc., 1987. 

Rabiner, Lawrence R., Gold and Bernard Theory and Application of 
Digital Signal ProceSSing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 
1975. 



Introduction - References 

Treichler, J.R., Johnson, Jr., C.R., and Larimore, M.G., Theory and De- • 
sign of Adaptive Filters. New York, NY: John Wiley and Sons, Inc., 
1987. 

Speech: 

Gray, A.H. and Markel, J.D., Linear Prediction of Speech. New York, 
NY: Springer-Verlag, 1976. 

Jayant, N.S. and Noll, Peter, Digital Coding of Waveforms. Englewood 
Cliffs, NJ: Prentice- Hall, Inc., 1984. 

Papamichalis, Panos, Practical Approaches to Speech Coding. Engle
wood Cliffs, NJ: Prentice-Hall, Inc., 1987. 

Rabiner, Lawrence R. and Schafer, R.W., Digital Processing of Speech 
Signals. Englewood Cliffs, NJ: Prentice- Hall, Inc., 1978. 

Image Processing: 

Andrews, H.C. and Hunt, B.R., Digital Image Restoration. Englewood 
Cliffs, NJ: Prentice-Hall, Inc., 1977. 

Gonzales, Rafael C. and Wintz, Paul, Digital Image Processing. Reading, 
MA: Addison-Wesley Publishing Company, Inc., 1977. 

Pratt, William K., Digital Image Processing. New York, NY: John Wiley 
and Sons, 1978. 

Digital Control Theory: 

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel 
Dekker, Inc., 1981. 

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ: 
Prentice- Hall, Inc., 1981. 

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and 
Winston, Inc., 1980. 

Moroney, P., Issues in the Implementation of Digital Feedback Com
pensators. Cambridge, MA: The MIT Press, 1983. 

Phillips, C. and Nagle, H., Digital Control System Analysis and Design. 
Englewood Cliffs, NJ: Prentice- Hall, Inc., 1984. 

1-9 



Introduction - References 

• 

1-10 



Pinout and Signal Descriptions 





Section 2 

Pinout and Signal Descriptions 

The TMS320C30 (third-generation TMS320) digital signal processor is 
available in a 180-pin grid array (PGA) package. The pinout of this package 
(Figure 2-1), and a functional listing of the signals, pin locations, and de
scriptions are provided in this section. Electrical specifications and mechanical 
data are given in the data sheet (Appendix A). 

1 234 567 8 9101112131415 

A ••••••••••••••• 
B ••••••••••••••• 
C ••••••••••••••• 
D ••••••••••••••• E..... . . .. . F.... • .. . 
G •••• • ••• 
H ••••• • •••• 
J •••• • ••• 
K •••• • ••• L.... . •..• 
M ••••••••••••••• 
N ••••••••••••••• 
p ••••••••••••••• 
Q ••••••••••••••• 

Figure 2-1. TMS320C30 Pin Assignments 

2-1 



• 
Pinout and Signal Descriptions 

Table 2-1. TMS320C30 Pin Function Assignments 

Function Pin Function Pin Function Pin Function Pin Function Pin 
AO F15 EMUO F14 019 A9 lACK G1 X11 014 
A1 G12 EMU1 E15 020 B9 INTO H2 X12 E13 
A2 G13 CLKRO N4 021 C9 INT1 H1 XOO 04 
A3 G14 CLKR1 L4 022 A10 INT2 J1 X01 P5 
A4 G15 CLKXO M5 023 09 iNT3 J2 X002 N6 
A5 H15 CLKX1 N2 024 B10 RSVO J3 X03 05 
A6 H14 DO C4 025 A11 RSV1 J4 X04 P6 
A7 J15 01 05 026 C10 RSV2 K1 X05 M7 
A8 J14 02 A2 027 B11 RSV3 K2 X06 06 
A9 J13 03 A3 028 A12 RSV4 L1 X07 N7 
A10 K15 04 B4 029 010 RSV5 K3 X08 P7 
A11 J12 05 C5 030 C11 RSV7 K4 X09 Q7 

A12 K14 06 06 031 B12 RSV9 L3 X010 P8 
A13 L15 07 A4 ORO 01 RSV10 M2 X011 as 
A14 K13 08 B5 OR1 N1 XAO A13 X012 09 
A15 L14 09 C6 OXO 03 XA1 A14 X013 P9 
A16 M15 010 A5 OX1 P2 XA2 011 X014 N9 
A17 K12 011 B6 FSRO P3 XA3 C12 X015 010 
A18 L13 012 07 FSR1 M3 XA4 B13 X016 M9 
A19 M14 013 A6 FSXO 02 IOA5 A15 X017 P10 
A20 N15 014 C7 FSX1 P1 XA6 B15 X018 011 
A21 M13 015 B7 H1 B3 XA7 C14 X019 N10 
A22 L12 016 A7 H3 A1 XA8 E12 X020 P11 
A23 N14 017 A8 HOLD F3 XA9 013 X021 012 
EMU5 C1 018 B8 HOLDA E2 XA10 C15 X022 M10 
10023 N11 LOCATOR E5 TCLK1 N5 AOVOO 012 VSS N8 
10024 P12 EMU4 F12 VBBP 03 AOVOO H11 
10025 013 ~C(MP 015 VSUBS E4 OOVOO 04 CVSS B2 
10026 014 STRB E3 X1 C2 OOVOO E8 CVSS P14 
10027 M11 EMU6 M6 X2 B1 100VOO L8 OVSS C3 
10028 N12 ROY E1 XFO G2 100VOO M12 OVSS C13 
10029 P13 RESET F1 XF1 G3 MOVOO H5 OVSS N3 
10030 015 R(W G4 POVOO M4 OVSS N13 
10031 P15 EMU2 F13 VOO 08 IVSS B14 
i'OR15Y 02 EMU3 E14 VOO H4 VSS C8 

18~(WB 01 ~ F2 VOO H12 VSS H3 RSV6 L2 
I TR F4 TCLKO P4 VOO M8 VSS H13 RSV8 M1 

NOTE: 

1) AOVOO, OOVOO, 100VOO, MOVOO, and POVOO pins (04, 012, E8, H5, H11, L8, M4, and M12) 
are on a common plane internal to the device. 

2) VOO pins (08, H4, H12, and M8) are on a common plane internal to the device. 

3) VSS, CVSS, and INSS pins (B2, B14, C8, H3, H13, N8, and P14) are on a common plane internal 
to the device. 

4) OVSS pins (C3, C13, N3, and N13) are on a common plane internal to the device. 

2-2 



Pinout and Signal Descriptions 

2.1 Signal Descriptions 

SIGNAL 

0(31-0) 

A (23-0) 

R/W 

S'i'im 
ii15V 

HOi:i5 

HOIiSA 

XO (31-0) 

XA (12-0) 

XR/W 

MSTRB 

IOSTRB 

XRDY 

The signal descriptions for the TMS320C30 device in the microprocessor 
mode are provided in this section. Table 2-2 lists each signal, the number of • 
pins, function, and operating mode(s), i.e., input, output, or high-impedance 
state as indicated by I, 0, or Z. All pins labelled 'NC' are not to be connected 
by the user. A line over a signal name (e.g., RESET) indicates that the signal 
is active low true at a logic '0' level. The signals in Table 2-2 are grouped 
according to function. 

Table 2-2. TMS320C30 Signal Descriptions 

# PINS I/O/zt DESCRIPTION 

PRIMARY BUS INTERFACE (61 PINS) 

32 I/O/Z 32-bit data port of the primary bus interface. 

24 O/Z 24-bit address port of the primary bus interface. 

1 O/Z Read/write signal for primary bus interface. This pin is high 
when a read is performed and low when a write is performed 
over the parallel interface. 

1 O/Z External access strobe for the primary bus interface. 

1 I Ready signal. This pin indicates that the external device is 
prepared fOmrimary bus interface transaction to complete. 
As long as R is a logic high, the data and address buses 
of the primary bus interface remain valid. 

1 I Hold signal for primary bus interface. When m:rrl) is a logic 
low, any 0i-gOing transa~ion is completed. The A(23-0), 
0(31-0), S RB" and R/W signals are placed in a high-im-
pedance state, and all transactions over the primary bus in-
terface are held until HOLD becomes a logic high. 

1 0 Hold acknowledge signal for primary bus interface. This 
signal is generated in response to a logic low on "R"rnJ5. It 
signals that A(23-0), 0(31-0), S'i'im, and R/W are placed 
in a high-impedance state and all transactions over the bus 
will be held. HOl.DA will be high in response to a logic 
high of HOl.D. 

EXPANSION BUS INTERFACE (49 PINS) 

32 I/O/Z 32-bit data port of the expansion bus interface. 

13 O/Z 13-bit address port of the expansion bus interface. 

1 O/Z Read/write signal for expansion bus interface. When a read 
is performed, this pin is held high; when a write is per-
formed, this pin is low. 

1 O/Z External memory access strobe for the expansion bus inter-
face. 

1 O/Z External I/O access strobe for the expansion bus interface. 

1 I Ready signal. This pin indicates that the external device is 
prepared for an expansion bus interface transaction to 
complete. As long as )(R15V is high, the data and address 
buses of the expansion bus interface remain valid. 

t Input, Output, High-impedance state. 

2-3 



Pinout and Signal Descriptions 

Table 2-2. TMS320C30 Signal Descriptions (Continued) 

SIGNAL # PINS I/O/zt DESCRIPTION 

• CONTROL SIGNALS (9 PINS) 

RESET 1 I Reset. When this pin is a logic low. the device is placed in 
the reset condition. When reset becomes a logic high, exe-
cution begins from the location specified by the reset vector. 

Tm'(3-0) 4 I External interrupts. 

lACK 1 0 Interrupt acknowledge signal. 'iACR goes low during exe-
cution of an lACK instruction. This can be used to indicate 
the beginning or end of an interrupt service routine. 

MC/m.>" 1 I Microcomputer/microprocessor mode pin. 

XF(1-0) 2 I/O External flag pins. These pins are formatted as I/O through 
a program instruction, and latched internally when used as 
output pins. They are used as general-purpose I/O pins or 
to support interlocked processor instructions. 

SERIAL PORT 0 SIGNALS (6 PINS) 

CLKXO 1 I/O Serial port 0 transmit clock. This pin serves as the serial shift 
clock for the serial port 0 transmitter. 

DXO 1 O/Z Data transmit output. Serial port 0 transmits serial data on 
this pin. 

FSXO 1 I/O Frame synchronization pulse for transmit. The FSXO pulse 
initiates the transmit data process over pin DXO. 

CLKRO 1 I/O Serial port 0 receive clock.This pin serves as the serial shift 
clock for the serial port 0 receiver. 

ORO 1 I Data receive. Serial port 0 receives serial data via the ORO 
pin. 

FSRO 1 I Frame sychronization pulse for receive. The FSRO pulse ini-
tiates the receive data process over ORO. 

SERIAL PORT 1 SIGNALS (6 PINS) 

CLKX1 1 I/O Serial port 1 transmit clock. This pin serves as the serial shift 
clock for the serial port 1 transmitter. 

DX1 1 O/Z Data transmit output. Serial port 1 transmits serial data on 
this pin. 

FSX1 1 I/O Frame synchronization pulse for transmit. The FSX1 pulse 
initiates the transmit data process over pin OX1. 

CLKR1 1 I/O Serial port 1 receive clock. This pin serves as the serial shift 
clock for the serial port 1 receiver. 

DR1 1 I Data receive. Serial port 1 receives serial data via the DR1 
pin. 

FSR1 1 I Frame sychronization pulse for receive. The FSR1 pulse ini-
tiates the receive data process over DR1. 

t Input, Output, High-impedance state. 

2-4 



Pinout and Signal Descriptions 

Table 2-2. TMS320C30 Signal Descriptions (Continued) 

SIGNAL I # PINS I/O/zt DESCRIPTION 

TIMER 0 SIGNALS (1 PIN) 

TClKO 1 I/O Timer clock. As an input, TClKO is used by timer 0 to count 
external pulses. As an output pin, TClKO outputs pulses • generated by timer O. 

TIMER 1 SIGNALS (1 PIN) 

TClK1 1 I/O Timer clock. As an input, TClK1 is used by timer 1 to count 
external pulses. As an output pin, TClK1 outputs pulses 
generated by timer 1. 

SUPPLY AND OSCillATOR SIGNALS (29 PINS) 

Voo(3-0) 4 I Four +5 V supply pins. 

10DVoo(1,0) 2 I Two +5 V supply pins. 

ADVoo(1,O) 2 I Two +5 V supply pins. 

PDVOO 1 I One +5 V supply pin. 

DDVoO(1,O) 2 I Two +5 V supply pins. 

MDVOO 1 I One +5 V supply pin. 

VSS(3-0) 4 I Four ground pins. 

DVSS(3-0) 4 I Four ground pins. 

CVSS(1,0) 2 I Two ground pins. 

IVSS 1 I One ground pin. 

VBBP 1 NC VBB pump oscillator output. 

SUBS 1 I Substrate pin. Tie to ground. 

X1 1 0 Output pin from the internal oscillator for the crystal. If a 
crystal is not used, this pin should be left unconnected. 

X2/ClKIN 1 I Input pin to the internal oscillator from the crystal or a clock. 

H1 1 0 External H1 clock. This clock has a period equal to twice 
ClKIN. 

H3 1 0 External H3 clock. This clock has a period equal to twice 
ClKIN. 

t Input, Output, High-Impedance state. 

2-5 



• 
Pinout and Signal Descriptions 

Table 2-2. TMS320C30 Signal Descriptions (Concluded) 

SIGNAL # PINS I/O/Zt DESCRIPTION 

RESERVED (18 PINS) 

EMU(0-2) 3 I Reserved. Use pull-ups to +5 volts. See Section 13.5 

EMU3 1 0 Reserved. See Section 13.5 

EMU4 1 I Reserved. Tie to +5 volts. 

EMU(5,6) 2 NC Reserved. 

RSV(0-10) 11 I Reserved. Tie to +5 volts. 

t Input, Output, High-impedance state. 

The user must follow the connections specified for the reserved pins. All pull-up resistors must be 20 k 
ohms. All +5 volt supply pins must be connected to a common supply plane and all ground pins must 
be connected to a common ground plane. 

2-6 



Architectural Overview 





Section 3 

Architectural Overview 

Emphasis on hardware and software system solutions to demanding arithmetic 
algorithms has resulted in the TMS320C30 architecture shown in Figure 3-1. 
High system performance is achieved through the accuracy and precision of 
the floating-point units, large on-chip memory, a high degree of parallelism, 
and the DMA controller. 

This section provides an architectural overview of the TMS320C30 processor. 
Major areas of discussion are listed below. 

• Central Processing Unit (CPU) (Section 3.1 on page 3-3) 
Floating-point/integer multiplier 
ALU for floating-point, integer, and logical operations 
Auxiliary register arithmetic units (ARAUs) 
CPU register file 

• Memory Organization (Section 3.2 on page 3-7) 
RAM, ROM, and cache 
Memory maps 
Memory addressing modes 
Instruction set summary 

• Internal Bus Operation (Section 3.3 on page 3-18) 

• External Bus Operation (Section 3.4 on page 3-19) 

• Peripherals (Section 3.5 on page 3-20) 
Timers 
Serial ports 

• Direct Memory Access (DMA) (Section 3.6 on page 3-21) 

3-1 



Architectural Overview 

I ... 
II ... c .. ... I .. ... , .... u, 

,/ ut ~t { i { 
.;.4T.t.iP:;:: :.;. ;.;.: : : :.;.;. . .. f ... f.,. . .f .. ~ 

---iiiDv =;::;: 
~,.w 
__ XD431-01 

XAlU • ..o1 

Figure 3-1. TMS320C30 Block Diagram 

3-2 



Architectural Overview - Central Processing Unit (CPU) 

3.1 Central Processing Unit (CPU) 

The TMS320C30 has a register-based CPU architecture. The CPU consists 
of the following components: 

• Floating-point/integer multiplier 

• ALU for performing arithmetic (floating-point, integer)and logical oper- 3 
at ions 

• 
• 

32-bit barrel shifter 

Internal buses (CPU1/CPU2 and REG1/REG2) 

• Auxiliary register arithmetic units (ARAUs) 

• CPU register file. 

Figure 3-2 shows the various CPU components that are discussed in the 
succeeding subsections. 

3-3 



• 

Architectural Overview - Central Processing Unit (CPU) 

3-4 

\::::::::::::::: :DADD1::::::::::::::::::::::::::::::: \ 

:: 3 
\::::::::::::: ~::::: ~~DP~::::::::::::::::::::::::::::\ 

D: :D: 
A: :A: 
D: :D D:D 
1: 2 

\.::::::: DDATABUS ::::::\. .... (I ... 

/ MUX \ 

40 

. ::" '40-

-(~~::- ~: 
32 

EXTENDED ~ 
PRECISION 
REGISTERS 40 

IRO·R7) 

'.' 

I .~~ 
~K ARAU1 

'.' 1" 1" 

~ 4 ~ AUXILIARY 
~ 32 REGISTERS 

(ARO·AR7) 32 
32 

32 

I 
OTHER 32 

REGISTERS 
32 (12) 

Figure 3-2. Central Processing Unit (CPU) 

32 



Architectural Overview - Central Processing Unit (CPU) 

3.1.1 Multiplier 

The multiplier performs single-cycle multiplications on 24-bit integer and 
32-bit floating-point values. The TMS320C30 implementation of floating
point arithmetic allows for floating-point operations at fixed-point speeds via 
a 60-ns instruction cycle and a high degree of parallelism. To gain even higher 
throughput, a multiply and ALU operation can be performed in a single cycle 
by using parallel instructions. 

When performing floating-point multiplication, the inputs are 32-bit float
ing-point numbers, and the result is a 40-bit floating-point number. When 
performing integer multiplication, the input data is 24 bits and yields a 32-bit 
result. Refer to Section 5 for detailed information on data formats and float
ing-point operation. 

3.1.2 Arithmetic Logic Unit (ALU) 

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical, 
and 40-bit floating-point data, including single-cycle integer and floating
point conversions. Results of the ALU are always maintained in 32-bit integer 
or 40-bit floating-point formats. The barrel shifter is used to shift up to 32 
bits left or right in a single cycle. 

Internal buses, CPU1/CPU2 and REG1 /REG2, carry two operands from me
mory and two operands from the register file, thus allowing parallel multiplies 
and adds/subtracts on four integer or floating-point operands in a single cycle. 

3.1.3 Auxiliary Register Arithmetic Units (ARAUs) 

Two auxiliary register arithmetic units (ARAUO and ARAU1 ) can generate two 
addresses in a single cycle. The ARAUs operate in parallel with the multiplier 
and ALU. They support addressing with displacements, index registers (IRO 
and IR1), and circular and bit-reversed addressing. Refer to Section 6 for a 
description of addressing modes. 

3.1.4 CPU Register File 

The TMS320C30 provides 28 registers in a multiport register file that is tightly 
coupled to the CPU. All of these\ registers can be operated upon by the mul
tiplier and ALU, and can be used as general-purpose registers. However, the 
registers also have some special functions for which they are more suited than 
others. For example, the eight extended-precision registers are especially 
suited for maintaining extended-precision floating-point results. The eight 
auxiliary registers support a variety of indirect addressing modes and can be 
used as general-purpose 32-bit integer and logical registers. The remaining 
registers provide system functions such as addressing, stack management, 
processor status, interrupts, and block repeat. Refer to Section 6 for detailed 
information and examples of stack management and register usage. 

The registers names and assigned functions are listed in Table 3-1. Following 
the table, the function of each register or group of registers will be briefly de
scribed. Refer to Section 4 for detailed information on each of the CPU reg
isters. 

3-5 



Architectural Overview - Central Processing Unit (CPU) 

3-6 

Table 3-1. CPU Registers 

REGISTER ASSIGNED FUNCTION 
NAME 

RO Extended-precision register 0 
R1 Extended-precision register 1 
R2 Extended-precision register 2 
R3 Extended-precision register 3 
R4 Extended-precision register 4 
R5 Extended-precision register 5 
R6 Extended-precision register 6 
R7 Extended-precision register 7 

ARO Auxiliary register 0 
AR1 Auxiliary register 1 
AR2 Auxiliary register 2 
AR3 Auxiliary register 3 
AR4 Auxiliary register 4 
AR5 Auxiliary register 5 
AR6 Auxiliary register 6 
AR7 Auxiliary register 7 

DP Data page pointer 
IRO Index register 0 
IR1 Index register 1 
BK Block size 
SP System stack pointer 

ST Status register 
IE CPU/DMA interrupt enable 
IF CPU interrupt flags 

10F I/O flags 

RS Repeat start address 
RE Repeat end address 
RC Repeat counter 

PC Program Counter 

The extended-precision registers (RO-R7) are capable of storing and 
supporting operations on 32-bit integer and 40-bit floating-point numbers. 
Any instruction that assumes the operands are floating-point numbers uses 
bits 39-0. If the operands are either signed or unsigned integers, only bits 
31 -0 are used, bits 39-32 remain unchanged. This is true for all shift oper
ations. Refer to Section 4 for extended-precision register formats for float
ing-point and integer numbers. 

The 32-bit auxiliary registers (ARO-AR7) can be accessed by the CPU and 
modified by the two Auxiliary Register Arithmetic Units (ARAUs). The primary 
function of the auxiliary registers is the generation of 24-bit addresses. They 
can also be used to perform a variety of functions, such as loop counters or 
as 32-bit general-purpose registers that can be modified by the multiplier and 
ALU. Refer to Section 6 for detailed information and examples of the use of 
auxiliary registers in addressing. 

The data page pointer (OP) is a 32-bit register. The eight LSBs of the data 
page pointer are used by the direct addressing mode as a pointer to the page 
of data being addressed. Data pages are 64 k words long with a total of 256 
pages. 



Architectural Overview - Central Processing Unit (CPU) 

The 32-bit index registers (IRO and IR1) are used by the Auxiliary Register 
Arithmetic Unit (ARAU) for indexing the address. Refer to Section 6 for ex
amples of the use of index registers in addressing. 

The 32-bit block size register (BK) is used by the ARAU in circular ad
dressing to specify the data block size. 

The system stack pointer (SP) is a 32-bit register that contains the address 
of the top of the system stack. The SP always points to the last element 
pushed onto the stack. A push performs a preincrement and a pop, a postde
crement of the system stack pointer. The SP is manipulated by interrupts, 
traps, calls, returns, and the PUSH and POP instructions. Refer to Section 6.5 
for information about system stack management. 

The status register (ST) contains global information relating to the state 
of the CPU. Typica:ly, operations set the condition flags of the status register 
according to whether the result is zero, negative, etc. This includes register 
load and store operations as well as arithmetic and logical functions. When 
the status register is loaded, however, a bit-for-bit replacement is performed 
on the current contents with the contents of the source operand regardless of 
the state of any bits in the source operand. Therefore, following a load, the 
contents of the status register are identically equal to the contents of the 
source operand. This allows the status register to be easily saved and restored. 
See Table 4.2 for a list and definitions of the status register bits. 

The CPU/DMA interrupt enable register (IE) is a 32-bit register. The 
CPU interrupt enable bits are in locations 10-0. The DMA interrupt enable 
bits are in locations 26-16. A 1 in a CPU/DMA interrupt enable register bit 
enables the corresponding interrupt. A 0 disables the corresponding interrupt. 
Refer to Section 4.1 for bit definitions. 

The CPU interrupt flag register (IF) is also a 32-bit register (see Section 
4.1). A 1 in a CPU interrupt flag register bit indicates that the corresponding 
interrupt is set. A 0 indicates that the corresponding interrupt is not set. 

The I/O flags register (IOF) controls the function of the dedicated external 
pins, XFO and XF1. These pins may be configured for input or output. and 
they may also be read from and written to. See Section 4.1 for detailed infor
mation. 

The repeat counter (RC) is a 32-bit register used to specify the number of 
times a block of code is to be repeated when performing a block repeat. When 
operating in the repeat mode, the 32-bit repeat start address register 
(RS) contains the starting address of the block of program memory to be re
peated and the 32-bit repeat end address register (RE) contains the 
ending address of the block to be repeated. 

The program counter (PC) is a 32-bit register containing the address of the 
next instruction to be fetched. Although the PC is not part of the CPU register 
file, it is a register that can be modified by instructions that modify the program 
flow. 

3-7 

II 



Architectural Overview - Memory Organization 

-. 

3.2 Memory Organization 

The total memory space of the TMS320C30 is 16M (million) 32-bit words. 
Program, data, and I/O space are contained within this 16M-word address 
space, thus allowing tables, coefficients, program code, or data to be stored 
in either RAM or ROM. In this way, memory usage can be maximized and 
memory space allocated as desired. 

3.2.1 RAM. ROM. and Cache 

3-8 

Figure 3-3 shows how the memory is organized on the TMS320C30. RAM 
blocks 0 and 1 are each 1 K x 32 bits. The ROM block is 4K x 32 bits. Each 
RAM and ROM block is capable of supporting two.accesses in a single cycle. 
The separate program buses, data buses, and DMA buses allow for parallel 
program fetches, data reads and writes, and 0 MA operations. For example: 
the CPU can access two data values in one RAM block and perform an ex
ternal program fetch in parallel with the DMA loading another RAM block, all 
within a single cycle. 

A 64 x 32-bit instruction cache is provided to store often repeated sections 
of code, thus greatly reducing the number of off-chip accesses necessary. This 
allows for code to be stored off-chip in slower, lower-cost memories. The 
external buses are also freed for use by the DMA, external memory fetches, or 
other devices in the system. 

Refer to Section 4 for detailed information about the memory and instruction 
cache. 



Architectural Overview - Memory Organization 

1:~H:21 II I~~~~~I I aL::~ 1 II a~g~K I 
11K x 321 14K x 321 

32 24 244 32 24t 32 24 32 

~ T·f T" 
'PDATAaUS':':-: . :. -: :.:.:-::. -:-:.: .. : . :. -:-:-: .. : :-:-:-::. -::. :-:.:. : . .: 

Rl5V_ 
RM5 __ 

HOLDA -!--\ M 

mI_'_J U 
RJW_..----r X 

DI31-01_ 

AI23-01_ 

PADDR BUS :::: : .. :::.: .:::: .. : .::: .. ::::: .. : ::: : .. 

DDATA BUS -:.:. : . :. -:-:-:.:: :-:-:-:.:. : .. ::-:-:-: .. :.:::::. :. -:-:.:: .. :-
M 

DADDR1 BUS·:-: .:-: .: :-:-:-:-:- .:-: :-:-:-:- : .:-:-:-:-: :-:-:-:-:-:-: : :-:-:-:-:- -: U 
x 

.~~!>.l!~~.a~s::. :-:.o.o. -:-:-:-:-: :-:. -:-:. :-:. :-:.o.o-:. -:.o-:.o-:::: :.:-:.:: :. 

DMADATA BUS :.o.o.o . .o.o.o.o:.o.o . .o.o . .o:. : . .o.o:.o.o.o::.o:: .. .o::::: 

DMAADDR BUS .o.o.o.o.o.o::::.o: .:: .:::.o . .o.o:.o:.o.o.o . .o.o.o:.o.o:.o.o.o 
,····'··'~;f' .~~ ..... ;; ..... ~~.~.~~ .. ~~. ··t~~···'/ 

PROGRAM COUNTER! ~ DMA 
INSTRUCTION REGISTER CPU CONTROLLER 

Figure 3-3. Memory Organization 

-XRDY 

_MS'i'Rii 

A:- ••••• "'"' -IOSTRa 

~·:::·4-XR/W 
.R, _XDI31-01 

·1, _XA(12-01 
.,p, 
·,H' 
·E 
·R 
·,A' 

L 

'.a: 
'U' 
.'S· 
~ 

3-9 

• 



Architectural Overview - Memory Organization 

3.2.2 Memory Maps 

3-10 

The memory map is dependent upon whether the processor is running in the 
microprocessor mode (MC/MP = 0) or the microcomputer mode (MC/MP = 
1). The memory maps for these modes are very similar (see Figure 3-4). Lo
cations 800000h through 801 FFFh are mapped to the expansion bus. When 
this region is accessed, MSTRB is active. Locations 802000h through 
803FFFh are reserved. Locations 804000h through 805FFFh are mapped to 
the expansion bus. When this region is accessed, IOSTRB is active. Locations 
806000h through 807FFFh are reserved. All of the memory-mapped periph
eral registers are in locations 808000h through 8097FFh. In both modes, 
RAM block 0 is located at addresses 809800h through 809BFFh, and RAM 
block 1 is located at addresses 809COOh through 809FFFh. Locations 
80AOOOh through OFFFFFFh are accessed over the external memory port 
(STRB active). 

In microprocessor mode, the 4K on-chip ROM is not mapped into the 
TMS320C30 memory map. Locations Oh through 3Fh consist of interrupt 
vector, trap vector, and reserved locations, all of which are accessed over the 
external memory port (STRB active). Locations 40h through 7FFFFFh are also 
accessed over the external memory port. 

In microcomputer mode, the 4K on-chip ROM is mapped into locations Oh 
through OFFFh. There are 192 locations (Oh through BFh) within this block 
for interrupt vectors, trap vectors, and a reserved space. Locations 1000h 
through 7FFFFFh are accessed over the external memory port (STRB active). 

Section 4.2 describes the memory maps in greater detail. The peripheral bus 
map and the vector locations for reset, interrupts, and traps are also given. 



Architectural Overview - Memory Organization 

Oh 

BFh 
COh 

7FFFFFh 
SOOOOOh 

S01FFFh 
S02000h 

S03FFFh 
S04000h 

S05FFFh 
S06000h 

S07FFFh 
SOSOOOh 

S097FFh 
S09S00h 

S09BFFh 
S09COOh 

S09FFFh 
SOAOOOh 

OFFFFFFh 

INTERRUPT LOCATIONS 
AND RESERVED (192) 

EXTERNAL !'i'RI ACTIVE 

EXTERNAL 
STRB ACTIVE 

EXPANSION BUS 
MSTRB ACTIVE (SK) 

RESERVED 
(SK) 

EXPANSION BUS 
iOfiRII ACTIVE (SK) 

RESERVED 
(SK) 

PERIPHERAL BUS 
MEMORY-MAPPED 

REGISTERS 
(INTERNAl) (6K) 

RAM BLOCK 0 (1 K) 
(INTERNAl) 

RAM BLOCK 1 (1 K) 
(INTERNAl) 

EXTERNAL 
!'i'RI ACTIVE 

MICROPROCESSOR MODE 

Oh 

BFh 
COh 

OFFFh 
1000h 

7FFFFFh 
SOOOOOh 

S01 FFFh 
S02000h 

S03FFFh 
S04000h 

S05FFFh 
S06000h 

S07FFFh 
SOSOOOh 

S097FFh 
S09S00h 

S09BFFH 
S09COOh 

S09FFFh 
SOAOOOh 

OFFFFFFh 

INTERRUPT LOCATIONS 
AND RESERVED (192) 

1------------ROM 
(INTERNAL) 

EXTERNAL 
STRB ACTIVE 

EXPANSION BUS 
MSTRB ACTIVE (SK) 

RESERVED 
(SK) 

EXPANSION BUS 
IOSTRB ACTIVE (SK) 

RESERVED 
(SK) 

PERIPHERAL BUS 
MEMORY-MAPPED 

REGISTERS 
(INTERNAl) (6K) 

RAM BLOCK 0 (1 K) 
(INTERNAl) 

RAM BLOCK 1 (1K) 
(INTERNAL) 

EXTERNAL 
STRB ACTIVE 

MICROPROCESSOR MODE 

Figure 3-4. Memory Maps 

• 

3-11 



Architectural Overview - Memory Organization 

3.2.3 Memory Addressing Modes 

The TMS320C30 supports a base set of general-purpose instructions as well 
as arithmetic-intensive instructions that are particularly suited for digital signal 
processing and other numeric-intensive applications. Refer to Section 6 for 
detailed information on addressing. 

Five groups of addressing modes are provided on the TMS320C30. Six types 
of addressing may be used within the groups, as shown in the following list: 

• General addressing modes: 
Register. The operand is a CPU register. 
Short immediate. The operand is a 16-bit immediate value. 
Direct. The operand is the contents of a 24-bit address. 
Indirect. An auxiliary register indicates the address of the operand. 

• Three-operand addressing modes: 
Register. Same as for general addressing mode. 
Indirect. Same as for general addressing mode. 

• Parallel addressing modes: 
Register. The operand is an extended-precision register. 
Indirect. Same as for general addressing mode. 

• Long-immediate addressing mode. 
Long immediate. The operand is a 24-bit immediate value. 

• Conditional branch addressing modes: 
Register. Same as for general addressing mode. 
PC-relative. A signed 16-bit displacement is added to the PC. 

3.2.4 Instruction Set Summary 

3-12 

Table 3-2 lists the TMS320C30 instruction set in alphabetical order. Each 
table entry shows the instruction mnemonic, description, and operation. Refer 
to Section 11 for a functional listing of the instructions and individual in
struction descriptions. 



Architectural Overview - Memory Organization 

Table 3-2. Instruction Set Summary 

MNEMONIC DESCRIPTION 

ABSF Absolute value of a floating-point 
number 

ABSI Absolute value of an integer 

ADDC Add integers with carry 

ADDC3 Add integers with carry (3-operand) 

ADDF Add floating-point values 

ADDF3 Add floating-point values (3-operand) 

ADDI Add integers 

ADDI3 Add integers (3-operand) 

AND Bitwise logical-AND 

AND3 Bitwise logical-AND (3-operand) 

ANON Bitwise logical-AND with complement 

ANDN3 Bitwise logical-ANON (3-operand) 

ASH Arithmetic shift 

ASH3 Arithmetic shift (3-operand) 

Bcond Branch conditionally (standard) 

BcondD Branch conditionally (delayed) 

LEGEND: 
src - general addresSing modes 
src1 - three-operand addressing modes 
src2 - three-operand addressing modes 
Csrc - conditional-branch addressing modes 
Sreg - register address (any register) 
count - shift value (general addressing modes) 
SP - stack pointer 
GIE - global interrupt enable register 
RM - repeat mode bit 
TOS - top of stack 

OPERATION 

Isrcl -+ Rn 

Isrcl -+ Dreg 

src + Dreg + C -+ Dreg 

src1 + src2 + C -+ Dreg 

src + Rn -+ Rn 

src1 + src2 -+ Rn 

src + Dreg -+ Dreg 

src1 + src2 + -+ Dreg 

Dreg AND src -+ Dreg 

src1 AND src2 -+ Dreg 

Dreg AND src -+ Dreg 

src1 AN 0 ~ -+ Dreg 

If count> 0: 
(Shift Dreg left by count) -+ Dreg 

Else: 
(Shift Dreg right by Icount!) -+ Dreg 

If count .2: 0: 
(Shift src left by count) -+ Dreg 

Else: 
(Shift src right by Icount!) -+ Dreg 

If cond = true: 
If Csrc is a register. Csrc -+ PC 
If Csrc is a value. Csrc + PC -+ PC 

Else, PC + 1 -+ PC 

If cond = true: 
If Csrc is a register, Csrc -+ PC 
If Csrc is a value, Csrc + PC + 3 -+ PC 

Else, PC + 1 -+ PC 

Dreg - register address (any register) 
Rn - register address (RO-R7) 
Daddr - destination memory address 
ARn - auxiliary register n (ARO-AR7) 
addr - 24-bit immediate address (label) 
cond - condition code (see Section 11) 
ST - status register 
RE - repeat interrupt register 
R S - repeat start reg ister 
PC - program counter 

3-13 



Architectural Overview - Memory Organization 

Table 3-2. Instruction Set Summary (Continued) 

MNEMONIC DESCRIPTION 

BR Branch unconditionally (standard) 

BRD Branch unconditionally (delayed) 

CALL Call subroutine 

CALLcond Call subroutine conditionally 

CMPF Compare floating-point values 

CMPF3 Compare floating-point values 
(3-operand) 

CMPI Compare integers 

CMPI3 Compare integers (3-operand) 

o Bcond Decrement and branch conditionally 
(standard) 

o BcondD Decrement and branch conditionally 
(delayed) 

, 
FIX Convert floating-point value to integer 

FLOAT Convert integer to floating-point value 

IDLE Idle until interrupt 

LDE Load floating-point exponent 

LDF Load floating-point value 

LEGEND: 
src - general addressing modes 
src1 - three-operand addressing modes 
src2 - three-operand addressing modes 
Csrc - conditional-branch addressing modes 
Sreg - register address (any register) 
count - shift value (general addressing modes) 
SP - stack pointer 
GIE - global interrupt enable register 
RM - repeat mode bit 
TOS - top of stack 

3-14 

OPERATION 

Value ~ PC 

Value ~ PC 

PC + 1 ~ TOS 
Value -+ PC 

If cond = true: 
PC + 1 -+ TOS 
If Csrc is a register. Csrc -+ PC 
If Csrc is a value. Csrc + PC -+ PC 

Else. PC + 1 -+ PC 

Set flags on Rn - src 

Set flags on src1 - src2 

Set flags on Dreg - src 

Set flags on src1 - src2 

ARn - 1 ~ ARn 
If cond = true and ARn 2: 0: 

If Csrc is a register. Csrc -+ PC 
If Csrc is a value. Csrc + PC -+ PC 

Else. PC + 1 -+ PC 

ARn - 1 -+ ARn 
If cond = true and ARn 2: 0: 

If Csrc is a register. Csrc -+ PC 
If Csrc is a value. Csrc + PC + 3 -+ PC 

Else. PC + 1 -+ PC 

Fix (src) -+ Dreg 

Float(src) -+ Rn 

PC + 1 -+ PC 
Idle until next interrupt 

src(exponent) -+ Rn(exponent) 

src -+ Rn 

Dreg - register address (any register) 
Rn - register address (RO-R7) 
Daddr - destination memory address 
ARn - auxiliary register n (ARO-AR7) 
addr - 24-bit immediate address (label) 
cond - condition code (see Section 11) 
ST - status register 
RE - repeat interrupt register 
RS - repeat start register 
PC - program counter 



Architectural Overview - Memory Organization 

Table 3-2. Instruction Set Summary (Continued) 

MNEMONIC DESCRIPTION 

lDFcond load floating-point value 
conditionally 

lDFI load floating-point value, 
interlocked 

lDI load integer 

lDlcond load integer conditionally 

lDIl load integer, interlocked 

lDM load floating-point mantissa 

lSH logical shift 

lSH3 logical shift (3-operand) 

MPYF Multiply floating-point values 

MPYF3 Multiply floating-point values 
(3-operand) 

MPYI Multiply integers 

MPYI3 Multiply integers (3-operand) 

NEGB Negate integer with borrow 

NEGF Negate floating-point value 

NEGI Negate integer 

NOP No operation 

NORM Normalize floating-point value 

NOT Bitwise logical-complement 

OR Bitwise logical-OR 

OR3 Bitwise logical-OR (3-operand) 

LEGEND: 
sre - general addressing modes 
sre1 - three-operand addressing modes 
sre2 - three-operand addressing modes 
Csre - conditional-branch addressing modes 
Sreg - register address (any register) 
count - shift value (general addressing modes) 
SP - stack pointer 
GIE - global interrupt enable register 
RM - repeat mode bit 
TOS - top of stack 

OPERATION 

If cond = true. src .... Rn 
Else, Rn is not changed 

Signal interlocked operation 
src .... Rn 

src .... Dreg 

If cond = true, src .... Dreg 
Else, Dreg is not changed 

Signal interlocked operation 
src .... Dreg 

src(mantissa) .... Rn(mantissa) 

If count.::. 0: 
(Dreg left-shifted by count) .... Dreg 

Else: 
(Dreg right-shifted by Icount!) .... Dreg 

If count.::. 0: 
(src left-shifted by count) .... Dreg 

Else: 
(src right-shifted by Icount!) -+ Dreg 

src x Rn .... Rn 

src1 x src2 .... Rn 

src x Dreg -+ Dreg 

src1 x src2 .... Dreg 

o - src - C .... Dreg 

0- src .... Rn 

0- src .... Dreg 

Modify src if specified 

Normalize (src) -+Rn 

src .... Dreg 

Dreg OR src .... Dreg 

src1 OR src2 .... Dreg 

Dreg - register address (any register) 
Rn - register address (RO-R7) 
Daddr - destination memory address 
ARn - auxiliary register n (ARO-AR7) 
addr - 24-bit immediate address (label) 
eond - condition code (see Section 11) 
ST - status register 
RE - repeat interrupt register 
RS - repeat start register 
PC - program counter 

3-15 

• 



Architectural Overview - Memory Organization 

Table 3-2. Instruction Set Summary (Continued) 

MNEMONIC DESCRIPTION 

POP Pop integer from stack 

POPF Pop floating-point value from stack 

PUSH Push integer on stack 

PUSHF Push floating-point value on stack 

RETlcond Return from interrupt conditionally 

RETScond Return from subroutine conditionally 

RND Round floating-point value 

ROL Rotate left 

ROLC Rotate left through carry 

ROR Rotate right 

RORC Rotate right through carry 

RPTB Repeat block of instructions 

RPTS Repeat single instruction 

SIGI Signal, interlocked 

STF Store floating-point value 

STFI Store floating-point value, interlocked 

STI Store integer 

STII Store integer, interlocked 

LEGEND: 
src - general addressing modes 
sre1 - three-operand addressing modes 
sre2 - three-operand addressing modes 
Csre - conditional-branch addressing modes 
Sreg - register address (any register) 
count - shift value (general addressing modes) 
SP - stack pointer 
GIE - global interrupt enable register 
RM - repeat mode bit 
TOS - top of stack 

3-16 

OPERATION 

'SP--'" Dreg 

'SP--'" Rn 

Sreg .... ++ SP 

Rn'" *++ SP 

If cond = true or missing: 
·SP-_'" PC 
1 ... ST (GIE) 

Else, continue 

If cond = true or missing: 
·SP-- ... PC 

Else, continue 

Round (src) ... Rn 

Dreg rotated left 1 bit ... Dreg 

Dreg rotated left 1 bit through carry ... Dreg 

Dreg rotated right 1 bit ... Dreg 

Dreg rotated right 1 bit thru carry'" Dreg 

src'" RE 
1 ... ST (RM) 
Next PC'" RS 

src'" RC 
1 ... ST (RM) 
Next PC'" RS 
Next PC ... RE 

Signal interlocked operation 
Wait for interlock acknowledge 
Clear interlock 

Rn ... Daddr 

Rn ... Daddr 
Signal end of interlocked operation 

Sreg ... Daddr 

Sreg ... Daddr 
Signal end of interlocked operation 

Dreg - register address (any register) 
Rn - register address (RO-R7) 
Daddr - destination memory address 
ARn - auxiliary register n (ARO-AR7) 
addr - 24-bit immediate address (label) 
eond - condition code (see Section 11) 
ST - status register 
RE - repeat interrupt register 
RS - repeat start register 
PC - program counter 



Architectural Overview - Memory Organization 

Table 3-2. Instruction Set Summary (Continued) 

MNEMONIC DESCRIPTION 

SUBB Subtract integers with borrow 

SUBB3 Subtract integers with borrow 
(3-operand) 

SUBC Subtract integers conditionally 

SUBF Subtract floating-point values 

SUBF3 Subtract floating-point values 
(3-operand) 

SUBI Subtract integers 

SUBI3 Subtract integers (3-operand) 

SUBRB Subtract reverse integer with borrow 

SUBRF Subtract reverse floating-point value 

SUBRI Subtract reverse integer 

SWI Software i nterru pt 

TRAPcond Trap conditionally 

TSTB Test bit fields 

TSTB3 Test bit fields (3-operand) 

XOR Bitwise exclusive-OR 

XOR3 Bitwise exclusive-OR (3-operand) 

LEGEND: 
src - general addressing modes 
src1 - three-operand addressing modes 
src2 - three-operand addressing modes 
Csrc - conditional-branch addressing modes 
Sreg - register address (any register) 
count - shift value (general addressing modes) 
SP - stack pointer 
GIE - global interrupt enable register 
RM - repeat mode bit 
TOS - top of stack 

OPERATION 

Dreg - src - C ..... Dreg 

src1 - src2 - C -+ Dreg 

If Dreg - src 2: 0: 
[(Dreg-src) « 1] OR 1 -+ Dreg 

Else, Dreg < < 1 -+ Dreg 

Rn - src ..... Rn 

src1 - src2 -+ Rn 

Dreg - src -+ Dreg 

src1 - src2 -+ Dreg 

src - Dreg - C -+ Dreg 

src - Rn -+ Rn 

src - Dreg -+ Dreg 

Perform emulator interrupt sequence 

If cond = true or missing: 
Next PC ...... ++ SP 
Trap vector N -+ PC 
0-+ ST (GIE) 

Else, continue 

Dreg AND src 

src1 AND src2 

Dreg XOR src -+ Dreg 

src1 XOR src2 ..... Dreg 

Dreg - register address (any register) 
Rn - register address (RO-R7) 
Daddr - destination memory address 
ARn - auxiliary register n (ARO-AR7) 
addr - 24-bit immediate address (label) 
cond - condition code (see Section 11 ) 
ST - status register 
R E - repeat i nterru pt reg ister 
RS - repeat start register 
PC - program counter 

3-17 



Architectural Overview - Memory Organization 

3-18 

Table 3-2. Instruction Set Summary (Continued) 

MNEMONIC DESCRIPTION OPERATION 

PARALLEL ARITHMETIC WITH STORE INSTRUCTIONS 

ABSF Absolute value of a floating-point Isrc21 -+ dst1 
II STF II src3 -+ dst2 

ABSI Absolute value of an integer I src21 -+ dst1 
II STI II src3 -+ dst2 

ADDF3 Add floating-point src1 + src2 -+ dst1 
II STF II src3 -+ dst2 

ADDI3 Add integer src1 + src2 -+ dst1 
II STI II src3 -+ dst2 

AND3 Bitwise logical-AND src1 AN D src2 -+ dst1 
II STI II src3 -+ dst2 

ASH3 Arithmetic shift If count.::. 0: 
II STI src2 < < count -+ dst1 

II src3 -+ dst2 
Else: 

src2 > > Icountl -+ dst1 
II src3 -+ dst2 

FIX Convert floating-point to integer Fix(src2) -+ dst1 
II STI II src3 -+ dst2 

FLOAT Convert integer to floating-point Float(src2) -+ dst1 
II STF II src3 -+ dst2 

LDF Load floating-point src2 -+ dst1 
II STF II src3 -+dst2 

LDI Load integer src2 -+ dst1 
II STI II src3 -+ dst2 

LSH3 Logical shift If count.::. 0: 
II STI src2 < < count -+ dst1 

II src3 -+ dst2 
Else: 

src2 » Icountl -+ dst1 
II src3 -+ dst2 

MPYF3 Multiply floating-point src1 x src2 -+ dst1 
II STF II src3 -+ dst2 

MPYI3 Multiply integer src1 x src2 -+ dst1 
II STI II src3 -+ dst2 

NEGF Negate floating-point 0- src2 -+ dst1 
II STF II src3 -+ dst2 

LEGEND: 
src1 - register addr (RO- R7) 
src3 - register addr (RO-R7) 
dst1 - register addr (RO- R7) 

src2- indirect addr (disp = 0, 1, I RO, I R1 ) 
src4 - indirect addr (disp = 0, 1, I RO, I R1 ) 
dst2 - indirect addr (disp = 0, 1, I RO, I R1 ) 



Architectural Overview - Memory Organization 

Table 3-2. Instruction Set Summary (Concluded) 

MNEMONIC DESCRIPTION OPERATION 

PARALLEL ARITHMETIC WITH STORE INSTRUCTIONS (Concluded) 

NEGI Negate integer o - src2 .... dst1 
II STI II src3 .... dst2 

NOT3 Complement src1 .... dst1 
II STI II src3 .... dst2 

OR3 Bitwise logical-OR src1 0 R src2 .... dst1 
II STI IIsrc3 .... dst2 

STF Store floating-point src1 .... dst1 
II STF IIsrc3 .... dst2 

STI Store integer src1 .... dst1 
II STI II src3 .... dst2 

SUBF3 Subtract floating-point src1 - src2 .... dst1 
II STF II src3 .... dst2 

SUBI3 Subtract integer src1 - src2 .... dst1 
II STI II src3 .... dst2 

XOR3 Bitwise exclusive-OR src1 XOR src2 .... dst1 
II STI II src3 .... dst2 

PARALLEL LOAD INSTRUCTIONS 

LDF Load floating-point src2 .... dst1 
II LDF II src4 .... dst2 

LDI Load integer src2 .... dst1 
II LDI II src4 .... dst2 

PARALLEL MULTIPLY AND ADD/SUBTRACT INSTRUCTIONS 

MPYF3 Multiply and add floating-point op1 x op2 .... op3 
II ADDF3 II op4 + op5 .... op6 

MPYF3 Multiply and subtract floating-point op1 x op2 .... op3 
II SUBF3 II op4 - op5 .... op6 

MPYI3 Multiply and add integer op1 x op2 .... op3 
II ADDI3 II op4 + op5 .... op6 

MPYI3 Multiply and subtract integer op1 x op2 .... op3 
II SUBI3 II op4 - op5 .... op6 

LEGEND: 
src1 - register addr (RO- R7) 
src3 - register addr (RO-R7) 
dst1 - register addr (RO-R7) 
op3 - register addr (RO or R1 ) 

src2 - indirect addr (disp = O. 1. I RO. I R1 ) 
src4 - indirect addr (disp = O. 1. I RO. I R1 ) 
dst2 - indirect addr (disp = O. 1. I RO. I R1) 
op6 - register addr (R2 or R3) 

op1.op2.op4.op5 - Two of these operands must be specified using register addr. 
and two must be specified using indirect 

3-19 



Architectural Overview - Internal Bus Operation 

3.3 Internal Bus Operation 

3-20 

A large portion of the TMS320C30's high performance is due to the internal 
busing and the parallelism possible because of this busing. The separate 
program buses (PADDR and PDATA), data buses (DADDR1, DADDR2, and 
DDATA), and DMA buses (DMAADDR and DMADATA) allow for parallel 
program fetches, data accesses, and DMA accesses. These buses connect all 
of the physical spaces (on-chip memory, off-chip memory, and on-chip pe
ripherals) supported by the TMS320C30. 

The program counter (PC) is connected to the 24-bit program address bus 
(PADDR). The instruction register (IR) is connected to the 32-bit program 
data bus (PDATA). These buses can fetch a single instruction word every 
machine cycle. 

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data 
data bus (DDATA) support two data memory accesses every machine cycle. 
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The 
CPU1 and CPU2 buses can carry two data memory operands to the multiplier, 
ALU, and register file every machine cycle. Also internal to the CPU are reg
ister buses REG1 and REG2 that can carry two data values from the register 
file to the multiplier and ALU every machine cycle. 

The DMA controller is supported with a 24-bit address bus (DMAADDR) and 
a 32-bit data bus (DMADATA). These buses allow the DMA to perform me
mory accesses in parallel with the memory accesses occurring from the data 
and program buses. 



Architectural Overview - External Bus Operation 

3.4 External Bus Operation 
The TMS320C30 provides two external interfaces: the primary bus and ex
pansion bus. Both consist of a 32-bit data bus and a set of control signals. 
The primary bus has a 24-bit address bus, whereas the expansion bus has a 
13-bit address bus. Both buses can be used to address external program/data 
memory or I/O space. The buses also have an external ROY signal for wait-
state generation. Additional wait states may be inserted under software con- • 
trol. Refer to Section 8 for detailed information on external bus operation. 

The TMS320C30 supports four external interrupts (INT3-INTO), a number of 
internal interrupts, and a nonmaskable external RESET signal. Two external I/O 
flags, XFO and XF1, can be configured as input or output pins under software 
control. These pins are also used by the interlocked operations of the 
TMS320C30. The interlocked-operations instruction group supports multi
processor communication (see Section 7 for examples of the use of inter-
locked instructions). 

3-21 



Architectural Overview - Peripherals 

3.5 Peripherals 

3-22 

All TMS320C30 peripherals are controlled through memory mapped registers 
on a dedicated peripheral bus, composed of a 32-bit data bus and a 24-bit 
address bus. This peripheral bus permits straightforward communication to 
the peripherals. The TMS320C30 peripherals include two timers and two se
rial ports. Figure 3-5 shows the peripherals with associated buses and signals. 
Refer to Section 9 for detailed information on the peripherals. 

M S 
E P 
M A 
o C 
R E 
y 

~ ~ SERIAL PORT 0 .. ~ ... (::) .:: : .. --- PORT 
". .. CONTROL REGISTER · .. .. 

R/X TIMER ... .. ... REGISTER ... · . .. 
~ 

· .. 
DATA TRANSMIT · . 

I ... 
.J ::. REGISTER ... r DATA RECEIVE .p 'p': REGISTER 

'E E. 
'R' r--- R. :::: SERIAL PORT 1 
'I' I· 
P p. PORT 

:H: 'H' CONTROL REGISTER 

,E. 'E' R/X TIMER 
,R, R REGISTER 
,A. A DATA TRANSMIT 
'L' ,L. REGISTER 

DATA RECEIVE 
'D' A. REGISTER 
'A' D· 
'T' r- D' :::: TIMER 0 
A R' 

GLOBAL 'E' 
CONTROL REGISTER ,B, S' 

.U, S TIMER PERIOD 

·S· ~EGISTER 
.. 

TIMER COUNTER ... B, .. ... U, REGISTER .. .. . 
,S· ..... l: TIMER 1 

.. , .. GLOBAL .. . . . .. ." CONTROL REGISTER ... · . .. ... ... .. TIMER PERIOD .. · .. .. . .. REGISTER .. . .. ... . . .. ... TIMER COUNTER . " . . .. · , . REGISTER 
.:.::: ~ 

Figure 3-5. Peripheral Modules 

-...-

'---
r---
r---
r---
f---

~ 
r-
~ 
~ 

~ 

FSXO 

DXO 

CUOCO 

FSRO 

DRO 

CLKRO 

FSX1 

DX1 

CLKX1 

FSR1 

DR1 

CLKR1 

TCLKO 

TCLK1 



Architectural Overview - Peripherals 

3.5.1 Timers 

The two timer modules are general-purpose 32-bit timer/event counters, with 
two signaling modes and internal or external clocking. Each timer has an I/O 
pin that can be used as an input clock to the timer or as an output signal dri
ven by the timer. The pin may also be configured as a general-purpose I/O 
pin. 

3.5.2 Serial Ports 

The two serial ports are totally independent. They are identical with a com
plementary set of control registers controlling each one. Each serial port can 
be configured to transfer 8, 16, 24, or 32 bits of data per word. The clock for 
each serial port can originate either internally or externally. An internally 
generated divide-down clock is provided. The serial port pins are configurable 
as general-purpose I/O pins. The serial ports can also be configured as timers. 
A special handshake mode allows TMS320C30s to communicate over their 
serial ports with guaranteed synchronization. 

3-23 



Architectural Overview - Direct Memory Access COMA) 

3,6 Direct Memory Access (DMA) 

3-24 

The on-chip Direct Memory Access (DMA) controller can read from or write 
to any location in the memory map without interfering with the operation of 
the CPU. Therefore, the TMS320C30 can interface to slow external memories 
and peripherals without reducing throughput to the CPU. The DMA controller 
contains its own address generators, source and destination registers, and 
transfer counter. Dedicated DMA address and data buses allow for minimi
zation of conflicts between the CPU and the DMA controller. A DMA opera
tion consists of a block or single-word transfer to or from memory. Refer to 
Section 9 for detailed information on the DMA. Figure 3-6 shows the DMA 
controller with associated buses. 

~ r45 
I::,DMADATA BUS::,! P 

'E· E' • 'R R 
/' , 'DMAADbR 'BUS ' '/ 'I· I •••• I •• ,P 

f I 
,H p. 
,E H 

~ ~ ,R E, 
A R 

DMA CONTROLLER ' L 
A' 

GLOBAL CONTROL ,D L' 
REGISTER 

,A , 
T 

SOURCE ADDRESS ""---' 'A A' 

REGISTER 's D 

DESTINATION ADDRESS 
,,-y 'u D, 

's 
REGISTER V" R. 

TRANSFER COUNTER " E. 

REGISTER 
S 
S 

B' 
U· 
S 
:;; 

Figure 3-6. DMA Controller 

In summary, the TMS320C30 is a powerful DSP system because of its inte
gration of a powerful CPU, large memories, and sufficient buses to support its 
speed. These along with peripherals such as a DMA controller, two serial 



Architectural Overview - Direct Memory Access (DMA) 

ports, and two timers are all contained on a single chip. The total system real 
estate and price have been reduced, providing the user with a true single-chip 
solution. 

3-25 

• 



Architectural Overview - Direct Memory Access (DMA) 

3-26 



CPU Registers, Memory, and Cache 





Section 4 

CPU Registers, Memory, and Cache 

The CPU register file contains 28 registers that can be operated upon by the 
multiplier and ALU (arithmetic logic unit). Included in the register file are the 
auxiliary registers, extended-precision registers, and index registers. The reg
isters in the CPU register file support addressing, floating-point/integer oper
ations, stack management, processor status, block repeats, and interrupts. 

The TMS320C30 provides a total memory space of 16M (million) 32-bit 
words. Program, data, and I/O space are contained within this 16M-word 
address space. Two RAM blocks of 1 K x 32 bits each and a ROM block of 4K 
x 32 bits permit two accesses in a single cycle. The memory maps for the 
microcomputer and microprocessor modes are similar, except that the on-chip 
ROM is not used in microprocessor mode. 

A 64 x 32-bit instruction cache stores often repeated sections of code. This 
greatly reduces the number of off-chip accesses necessary and allows code to 
be stored off-chip in slower, lower-cost memories. Three bits are provided in 
the CPU status register to control the clear, enable, or freeze of the cache. 

This section describes in detail each of the CPU registers, the memory maps, 
and the instruction cache. Major topics in this section are as follows: 

• CPU Register File (Section 4.1 on page 4-2) 
Extended-precision registers (RO-R7) 
Auxiliary registers (ARO-AR7) 
Index registers (IRO, IR1) 
Block size register (BK) 
Data page pointer (DP) 
System stack pointer (SP) 
Status register (ST) 
CPU/DMA interrupt enable register (IE) 
CPU interrupt flag register (IF) 
I/O flags register (IOF)· 
Repeat counter (RC) and block repeat registers (RS, RE) 
Program counter (PC) 

• Memory (Section 4.2 on page 4-11) 
Memory maps 
Peripheral bus map 
Reset/interrupt/trap map 

• Instruction Cache (Section 4.3 on page 4-15) 
Cache architecture 
Cache algorithm 
Cache control bits 

4-1 



CPU Registers - CPU Register File 

4.1 CPU Register File 

4-2 

The TMS320C30 provides 28 registers in a multiport register file that is tightly 
coupled to the CPU. The PC is not included in the 28 registers. All of these 
registers can be operated upon by the multiplier and ALU, and can be used 
as general-purpose 32-bit registers. However, the registers also have some 
special functions for which they are more suited than others. For example, the 
eight extended-precision registers are especially suited for maintaining ex
tended-precision floating-point results. The eight auxiliary registers support 
a variety of indirect addressing modes and can be used as general-purpose 
32-bit integer and logical registers. The remaining registers provide system 
functions such as addressing, stack management, processor status, interrupts, 
and block repeat. Refer to Section 6 for detailed information and examples 
of the use of CPU registers in addressing. 

The registers names and assigned function are listed in Table 4-1. 

Table 4-1. CPU Registers 

REGISTER ASSIGNED FUNCTION 
NAME 

RO Extended-precision register 0 
R1 Extended-precision register 1 
R2 Extended-precision register 2 
R3 Extended-precision register 3 
R4 Extended-precision register 4 
R5 Extended-precision register 5 
R6 Extended-precision register 6 
R7 Extended-precision register 7 

ARO Auxiliary register 0 
AR1 Auxiliary register 1 
AR2 Auxiliary register 2 
AR3 Auxiliary register 3 
AR4 Auxiliary register 4 
AR5 Auxiliary register 5 
AR6 Auxiliary register 6 
AR7 Auxiliary register 7 

DP Data page pointer 
IRO Index register 0 
IR1 Index register 1 
BK Block size 
SP System stack pointer 

ST Status register 
IE CPU/DMA interrupt enable 
IF CPU interrupt flags 

10F I/O flags 

RS Repeat start address 
RE Repeat end address 
RC Repeat counter 

PC Program counter 



CPU Registers - CPU Register File 

4.1.1 Extended-Precision Registers (RO-R7) 

The eight extended-precision registers (RO-R7) are capable of storing and 
supporting operations on 32-bit integer and 40-bit floating-point numbers. 
These registers consist of two separate and distinct regions. Bits 39-32 of the 
extended-precision registers are dedicated to the storage of the exponent (e) 
of the floating-point number. Bits 31 -0 store the mantissa of the floating
point number. Bit 31 is the sign (s) bit, bits 30 - 0 are the fraction (t). Any 
instruction that assumes the operands are floating-point numbers uses bits 
39-0. Figure 4-1 illustrates the storage of 40-bit floating-point numbers in the 
extended-precision registers. 

39 32 3130 

e f 

mantissa -+1 

Figure 4-1. Extended-Precision Register Floating-Point Format 

For integer operations, bits 31 -0 of the extended-precision registers contain 
the integer (signed or unsigned). Any instruction that assumes the operands 
are either signed or unsigned integers uses only bits 31-0. Bits 39-32 remain 
unchanged. This is true for all shift operations. The storage of 32-bit integers 
in the extended-precision registers is shown in Figure 4-2. 

39 32 31 o 
unchanged I signed or unsigned integer 

Figure 4-2. Extended-Precision Register Integer Format 

4.1.2 Auxiliary Registers (ARO-AR7) 

The eight 32-bit auxiliary registers (ARO-AR7) can be accessed by the CPU 
and modified by the two Auxiliary Register Arithmetic Units (ARAUs). The 
primary function of the auxiliary registers is the generation of 24-bit addresses. 
However, they can also be used to perform a variety of functions, such as loop 
counters in indirect addressing or as 32-bit general-purpose registers that can 
be modified by the multiplier and ALU. Refer to Section 6 for detailed infor
mation and examples of the use of auxiliary registers in addressing. 

4-3 



CPU Registers - CPU Register File 

4.1.3 Data Page Pointer (OP) 

The data page pointer (DP) is a 32-bit register. The eight LSBs of the data 
page pointer are used by the direct addressing mode as a pointer to the page 
of data being addressed. Data pages are 64 k words long with a total of 256 
pages. Bits 31 - 8 are reserved and should always be kept zero by the user. 

4.1.4 Index Registers (IRO, IR1) 

The 32-bit index registers (IRO and IR1) are used by the Auxiliary Register 
Arithmetic Unit (ARAU) for indexing the address. Refer to Section 6 for de-

• tailed information and examples of the use of index registers in addressing. 

~ 4.1.5 Block Size Register (BK) 

The 32-bit block size register (BK) is used by the ARAU in circular addressing 
to specify the data block size (see Section 6.3). 

4.1.6 System Stack Pointer (SP) 

The system stack pointer (SP) is a 32-bit register that contains the address of 
the top of the system stack. The SP always points to the last element pushed 
onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and 
the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the 
stack perform pre-increment and post-decrement on all 32 bits of the stack 
pointer. However, only the 24 LSBs are used as an address. Refer to Section 
6.5 for information about system stack management. 

4.1.7 Status Register (ST) 

4-4 

The status register (ST) contains global information relating to the state of the 
CPU. Typically, operations set the condition flags of the status register ac
cording to whether the result is zero, negative, etc. This includes register load 
and store operations as well as arithmetic and logical functions. When the 
status register is loaded, however,a bit-for-bit replacement is performed of the 
current contents with the contents of the source operand regardless of the 
state of any bits in the source operand. Therefore, following a load, the con
tents of the status register are identically equal to the contents of the source 
operand. This allows the status register to be easily saved and restored. At 
system reset, 0 is written to this register. 

The format of the status register is shown in Figure 4-3. Table 4-2 defines the 
status register bits, their names and functions. 



CPU Registers - CPU Register File 

31 30 29 28 27 26 25 

xx 

15 14 13 12 11 10 9 
xx , xx , GIE , CC , CE , CF , xx 

R/W R/W R/W R/W 

NOTE: xx = reserved bit. 
R = read, W = write. 

24 23 22 21 20 19 18 17 16 

xx I xx xx xx xx 

8765432 0 
, RM 'OVM' LUF , LV , UF , N Z V, C , 

R/W R/W R/W R/W R/W R/W R/W R/W R/W 

Figure 4-3. Status Register 

4-5 

• 



CPU Registers - CPU Register File 

Table 4-2. Status Register Bits Summary 

BIT NAME FUNCTION 

0 C Carry flag 

1 V Overflow flag 

2 Z Zero flag 

3 N Negative flag 

4 UF Floating-point underflow flag 

5 LV Latched overflow flag 

6 LUF Latched floating-point underflow flag 

7 OVM Overflow mode flag. This flag affects only the integer operations. If 
OVM = 0, the overflow mode is turned off; integer results that over-
flow are treated in no special way. If OVM = 1, integer results over-
flowing in the positive direction are set to the most positive 32-bit 
two's-complement number (7FFFFFFFh). If OVM = 1, integer results 
overflowing in the negative direction are set to the most negative 
32-bit two's-complement number (80000000h). Note that the func-
tion of V and LV is independent of the setting of OVM. 

8 RM Repeat mode flag. If RM = 1, the PC is being modified in either the 
repeat block or repeat-single mode. 

9 Reserved Read as O. 

10 CF Cache Freeze. When CF = 1, the cache is frozen. If the cache is en-
ab�ed (CE = 1), fetches from the cache are allowed, but no modifica-
tion of the state of the cache is performed. This function can be used 
to save frequently used code resident in the cache. At reset. 0 is writ-
ten to this bit. Cache clearing (CC=1) is allowed when CF=O. 

11 CE Cache Enable. CE = 1 enables the cache, allowing the cache to be 
used according to the LRU cache algorithm. CE = 0 disables the 
cache; no update or modification of the cache can be performed. No 
fetches are made from the cache. This function is useful for system 
debug. At system reset, 0 is written to this bit. Cache clearing (CC 
= 1) is allowed when CE=O. 

12 CC Cache Clear. CC = 1 invalidates all entries in the cache. This bit is 
always cleared after it is written to and thus always read as O. At reset, 
o is written to this bit. 

13 GIE Global interrupt enable. If GIE = 1, the CPU responds to an enabled 
interrupt. If GIE = 0, the CPU does not respond to an enabled inter-
rupt. 

14-15 Reserved Read as O. 

16-31 Reserved Value undefined. 

4-6 



CPU Registers - CPU Register File 

4.1.8 CPU/DMA Interrupt Enable Register (IE) 

15 14 

NOTE: 

13 

The CPU/DMA interrupt enable register (IE) is a 32-bit register (see Figure 
4-4). The CPU interrupt enable bits are in locations 10-0. The DMA interrupt 
enable bits are in locations 26-16. A 1 in a CPU/DMA interrupt enable reg
ister bit enables the corresponding interrupt. A 0 disables the corresponding 
interrupt. At reset. 0 is written to this register. Table 4-3 defines the register 
bits, the bit names, and the bit functions. 

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 

12 11 10 9 8 7 6 5 4 3 2 0 

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 

xx = reserved bit, read as o. 
R = read, W = write. 

Figure 4-4. CPU/DMA Interrupt Enable Register (IE) 

4-7 

• 



• 

CPU Registers - CPU Register File 

Table 4-3. IE Register Bits Summary 

BIT NAME FUNCTION 

0 EINTO Enable external interrupt 0 (CPU) 

1 EINT1 Enable external interrupt 1 (CPU) 

2 EINT2 Enable external interrupt 2 (CPU) 

3 EINT3 Enable external interrupt 3 (CPU) 

4 EXINTO Enable serial port 0 transmit interrupt (CPU) 

5 ERINTO Enable serial port 0 receive interrupt (CPU) 

6 EXINT1 Enable serial port 1 transmit interrupt (CPU) 

7 ERINT1 Enable serial port 1 receive interrupt (CPU) 

8 ETINTO Enable timer 0 interrupt (CPU) 

9 ETINT1 Enable timer 1 interrupt (CPU) 

10 EDINT Enable DMA controller interrupt (CPU) 

11-15 Reserved Value undefined 

16 EINTO Enable external interrupt 0 (OMA) 

17 EINT1 Enable external interrupt 1 (OMA) 

18 EINT2 Enable external interrupt 2 (OMA) 

19 EINT3 Enable external interrupt 3 (OMA) 

20 EXINTO Enable serial port 0 transmit interrupt (OMA) 

21 ERINTO Enable serial port 0 receive interrupt (OMA) 

22 EXINT1 Enable serial port 1 transmit interrupt (OMA) 

23 ERINT1 Enable serial port 1 receive interrupt (OMA) 

24 ETINTO Enable timer 0 interrupt (OMA) 

25 ETINT1 Enable timer 1 interrupt (OMA) 

26 EOINT Enable OMA controller interrupt (OMA) 

27-32 Reserved Value undefined 

4.1.9 CPU Interrupt Flag Register (IF) 

4-8 

The 32-bit CPU interrupt flag register (IF) is shown in Figure 4-5. A 1 in a 
CPU interrupt flag register bit indicates that the corresponding interrupt is set. 
The IF bits are set to 1 when an interrupt occurs. They may also be set to 1 
through software to cause an interrupt. A 0 indicates that the corresponding 
interrupt is not set. If a 0 is written to an interrupt flag register bit, the corre
sponding interrupt is cleared. At reset, 0 is written to this register. Table 4-4 
lists the bit fields, bit field names, and bit field functions of the CPU interrupt 
flag register. 



CPU Registers - CPU Register File 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Ixxlxxlxxlxxlxxl xx I xx xx xx xx xx xx I xx I xx I xx I xx I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I xx I xx I xx I xx I xx IOINTI TlNT11 TINTOI RINT11 XINT11 RINTOI XINTOIINT31INT21INT1IINTOI 

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 

NOTE: xx ~ reserved bit, read as O. 
R ~ read, W ~ write. 

Figure 4-5. CPU Interrupt Flag Register (IF) 

Table 4-4. IF Register Bits Summary 

BIT NAME FUNCTION 

0 INTO External interrupt 0 flag 

1 INT1 External interrupt 1 flag 

2 INT2 External interrupt 2 flag 

3 INT3 External interrupt 3 flag 

4 XINTO Serial port 0 transmit interrupt flag 

5 RINTO Serial port 0 receive interrupt flag 

6 XINT1 Serial port 1 transmit interrupt flag 

7 RINT1 Serial port 1 receive interrupt flag 

8 TINTO Timer 0 interrupt flag 

9 TINT1 Timer 1 interrupt flag 

10 DINTO DMA channel interrupt flag 

11-31 Reserved Value undefined 

4.1.10 I/O Flags Register (lOF) 

The I/O flags register (IOF) controls the function of the dedicated external 
pins, XFO and XF1. These pins may be configured for input or output (see 
Table 4-5). They may also be read from and written to. At reset, 0 is written 
to this register. The bit fields, bit field names, and bit field functions are shown 
in Table 4-5. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx Ixxl xx xx xx I xx I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I xx I xx I xx I xx I xx I xx I xx I xx IINXF1 I OUTXFl IT/oXF11 xx IINXFO I OUTXFO I T!oxFol xx I 
R RjW R/W R R/W R/W 

NOTE: xx ~ reserved bit, read as O. 
R ~ read, W ~ write. 

Figure 4-6. I/O Flag Register (IOF) 

4-9 



CPU Registers - CPU Register File 

Table 4-5. IOF Register Bits Summary 

BIT NAME FUNCTION 

0 Reserved Re,ad as O. 

1 i/OXFO If T/OXFO = 0, XFO is configured as a general-purpose input pin. 
If T;OXFO = 1, XFO is configured as a general-purpose output pin. 

2 OUTXFO Data output on XFO. 

3 INXFO Data input on XFO. A write has no effect. 

4 Reserved Read as O. 

5 T/OXF1 If i/OXF1 = 0, XF1 is configured as a general-purpose input pin. 
If i/OXF1 = 1, XF1 is configured as a general-purpose output pin. 

S OUTXF1 Data output on XF1 . 

7 INXF1 Data input on XF1. A write has no effect. 

8-31 Reserved Read as O. 

4.1.11 Repeat Counter (RC) and Block Repeat Registers (RS, RE) 

The repeat counter (RC) is a 32-bit register used to specify the number of 
times a block of code is to be repeated when performing a block repeat. 

The repeat start address register (RS) is a 32-bit register containing the start
ing address of the block of program memory to be repeated when operating 
in the repeat mode. 

The 32-bit repeat end address register (RE) contains the ending address of the 
block of program memory to be repeated when operating in the repeat mode. 

4.1.12 Program Counter (PC) 

The program counter (PC) is a 32-bit register containing the address of the 
next instruction to be fetched. While the program counter is not part of the 
CPU register file, it is a register that can be modified via instructions that mo
dify the program flow. 

4.1.13 Reserved Bits and Compatibility 

4-10 

In order to retain compatibility with future members of the TMS320C3X family 
of microprocessors, reserved bits that are read as zero must be written as zero. 
Reserved bits that have an undefined value must not have their current value 
modified. In other cases, the user should maintain the reserved bits as speci
fied. 



Memory - Memory Maps 

4.2 Memory 

The total memory space of the TMS320C30 is 16M (million) 32-bit words. 
Program, data, and I/O space are contained within this, allowing tables, co
efficients, program code, or data to be stored in either RAM or ROM. In this 
way, memory usage can be maximized and memory space allocated as desired. 

RAM blocks 0 and 1 are each 1 K x 32 bits. The ROM block is 4K x 32 bits. 
Each RAM and ROM block is capable of supporting two accesses in a single 
cycle. The separate program buses, data buses, and D MA buses allow for 

ered in detail in Section 10.3. • 
parallel program fetches, data reads/writes, and DMA operations. This is cov- • 

4.2.1 Memory Maps 

The memory map is dependent upon whether the processor is running in the 
microprocessor mode (MC/MP = 0) or the microcomputer mode (MC/MP = 
1). The memory maps for these modes are very similar (see Figure 4-7). Lo
cations 800000h through 801 FFFh are mapped to the expansion bus. When 
this region is accessed, MSTRB is active. Locations 802000h through 
803FFFh are reserved. Locations 804000h through 805FFFh are mapped to 
the expansion bus. When this region is accessed, IOSTRB is active. Locations 
806000h through 807FFFh are reserved. All of the memory-mapped periph
eral registers are in locations 808000h through 8097FFh. In both modes, 
RAM block 0 is located at addresses 809800h through 809BFFh, and RAM 
block 1 is located at addresses 809COOh through 809FFFh. Memory locations 
80AOOOh through OFFFFFFh are accessed over the external memory port 
(STRB active). 

In microprocessor mode, the 4K on-chip ROM is not mapped into the 
TMS320C30 memory map. Locations Oh through 3Fh consist of interrupt 
vector, trap vector, and reserved locations, all of which are accessed over the 
external memory port (STRB active). Locations 40h through 7FFFFFh are also 
accessed over the external memory port. 

In microcomputer mode, the 4K on-chip ROM is mapped into locations Oh 
through OFFFh. There are 192 locations (Oh through BFh) within this block 
for interrupt vectors, trap vectors, and a reserved space. Locations 1000h 
through 7FFFFFh are accessed over the external memory port (STRB active). 

Reserved portions of the TMS320C30 memory space and reserved peripheral 
bus addresses should not be read and written by the user. Doing so may 
cause the TMS320C30 to halt operation and require a system reset to restart. 

4-11 



Memory - Memory Maps 

Oh 

BFh 
COh 

7FFFFFh 
800000h 

S01FFFh 
S02000h 

S03FFFh 
804000h 

S05FFFh 
806000h 

807FFFh 
808000h 

8097FFh 
809800h 

809BFFh 
809COOh 

809FFFh 
80AOOOh 

OFFFFFFh 

INTERRUPT LOCATIONS 
AND RESERVED 11921 

EXTERNAL fiJ!iIi ACTIVE 

EXTERNAL 
STRB ACTIVE 

EXPANSION BUS 
MSTRB ACTIVE 18KI 

RESERVED 
(8K) 

EXPANSION BUS 
laSTRB ACTIVE (SK) 

RESERVED 
(SK) 

PERIPHERAL BUS 
MEMORY-MAPPED 

REGISTERS 
(INTERNAL) 16K) 

RAM BLOCK 0 (1 K) 
(INTERNAL) 

RAM BLOCK 1 11 K) 
(INTERNAL) 

EXTERNAL 
STRB ACTIVE 

MICROPROCESSOR MODE 

Oh 

BFh 
COh 

OFFFh 
1000h 

7FFFFFh 
SOOOOOh 

S01FFFh 
S02000h 

S03FFFh 
S04000h 

S05FFFh 
S06000h 

S07FFFh 
S08000h 

S097FFh 
S09S00h 

S09BFFH 
809COOh 

S09FFFh 
SOAOOOh 

OFFFFFFh 

Figure 4-7. Memory Maps 

4-12 

INTERRUPT LOCATIONS 
AND RESERVED (192) 

1-------------
ROM 

(INTERNAL) 

EXTERNAL 
STRB ACTIVE 

EXPANSION BUS 
MSTRB ACTIVE (SK) 

RESERVED 
(SK) 

EXPANSION BUS 
iOS'i'iiB ACTIVE (SK) 

RESERVED 
(SK) 

PERIPHERAL BUS 
MEMORY-MAPPED 

REGISTERS 
(INTERNAL) (6K) 

RAM BLOCK 0 (1 K) 
(INTERNAL) 

RAM BLOCK 1 (1 K) 
(INTERNAL) 

EXTERNAL 
'STJii ACTIVE 

MICROPROCESSOR MODE 



Memory - Memory Maps 

4.2.2 Peripheral Bus Map 

The memory-mapped peripheral registers are located starting at address 
808000h. The peripheral bus memory map is shown in Figure 4-8. Each pe
ripheral occupies a 16-word region of the memory map. Locations 808010h 
through 80801 Fh and locations 808070h through 8097FFh are reserved. 

808000h 
80800Fh 

808010h 
80801Fh 

808020h 
80802Fh 

808030h 
80803Fh 

808040h 
80804Fh 

808050h 
80805Fh 

808060h 
80806Fh 

808070h 

8097FFh 

DMA CONTROLLER REGISTERS 
(16) 

RESERVED 
(16) 

TIMER 0 REGISTERS 
(16) 

TIMER 1 REGISTERS 
(16) 

SERIAL PORT 0 REGISTERS 
(16) 

SERIAL PORT 1 REGISTERS 
(16) 

PRIMARY AND EXPANSION PORT 
REGISTERS (16) 

RESERVED 

Figure 4-8. Peripheral Bus Memory Map 

4.2.3 Reset/Interrupt/Trap Vector Map 

The addresses for the reset. interrupt, and trap vectors are Oh through 3Fh, as 
shown in Figure 4-9. The vectors stored in these locations are the addresses 
of the start of the respective reset, interrupt, and trap routines. For example, 
at reset, the contents of memory location Oh (the reset vector) are loaded into 
the PC and execution begins from that address. 

Traps 28-31 are reserved and should not be used by the user. 

4-13 

• 



Memory - Memory Maps 

OOh 

01h 

02h 

03h 

04h 

05h 

06h 

07h 

08h 

09h 

OAh 

OBh 

OCh 

1 Fh 

20h 

3Bh 

3Ch 

3Dh 

3Eh 

3Fh 

RESET 

INTO 

INT1 

INT2 

INT3 

XINTO 

RINTO 

XINTO 

RINT1 

TINTO 

TINT1 

DINT 

RESERVED 

TRAP 0 

TRAP 27 

TRAP 28 (Reserved) 

TRAP 29 (Reserved) 

TRAP 30 (Reserved) 

TRAP 31 (Reserved) 

Figure 4-9. Reset, Interrupt, and Trap Vector Locations 

4-14 



Instruction Cache - Cache Architecture/Algorithm 

4.3 Instruction Cache 

A 64 x 32-bit instruction cache allows for maximum system performance with 
minimal system cost. The instruction cache stores sections of code that can 
be fetched when repeatedly accessing time-critical code. This greatly reduces 
the number of off-chip accesses necessary and allows for code to be stored 
off-chip in slower, lower-cost memories. The external buses are also freed 
from program fetches, so they can be used by the DMA or other system ele
ments. 

The cache can operate in a completely automatic fashion without the need for 

gorithm is used (see Section 4.3.2). • 
user intervention. A form of the LRU (Ieast-recently-used) cache update al- • 

4.3.1 Cache Architecture 

I. 

The instruction cache (see Figure 4-10) contains 64 32-bit words of RAM. 
The cache is divided into two 32-word segments. Associated with each seg
ment is a 19-bit segment start address (SSA) register. For each word in the 
cache, there is a corresponding single-bit: Present (P) flag. 

SEGMENT START 
ADDRESS REGISTERS P SEGMENT WORDS LRU 

" , FLAGS " STACK MOST RECENTLY USED 

SSA REGISTER 0 I E8 SEGMENT WORD 0 

}.-~, 
~ SEGMENT NUMBER 

19 .1 SEGMENT WORD 1 
LEAST RECENTLY USED 
SEGMENT NUMBER 

BE SEGMENT WORD 30 

31 SEGMENT WORD 31 

I. 32 .1 
SSA REGISTER 1 EB SEGMENT WORD 0 

}~-, SEGMENT WORD 1 

BE SEGMENT WORD 30 

31 SEGMENT WORD 31 

Figure 4-10. Instruction Cache Architecture 

When the CPU requests an instruction word from external memory, a check 
is made to determine if the word is already contained in the instruction cache. 
The partitioning of an instruction address as used by the cache control algo
rithm is shown in Figure 4-11. The 19 most-significant bits of the instruction 
address are used to select the segment and the 5 least-significant bits define 
the address of the instruction word within the pertinent segment. The 19 
MSBs of the instruction address are compared with the two segment start 

4-15 



Instruction Cache - Cache Architecture/Algorithm 

address (SSA) registers. If a match is found, a check is made of the relevant 
P flag. The P flag indicates whether or not the word within a particular seg
ment is already present in cache memory. 

23 
segment start address 

(SSA) 

54 

instruction word 
address within segment 

Figure 4-11. Address Partitioning for Cache Control Algorithm 

o 

If there is no match, one of the segments must be replaced by the new data. 
The segment replaced in this circumstance is determined by the LRU (Ieast
recently-used) algorithm. The LRU stack (see Figure 4-10) is maintained for 
this purpose. 

The LRU stack tracks which of the two segments qualifies as the least-re
cently-used after each access to the cache, therefore the stack contains either 
0,1 or 1,0. Each time a segment is accessed, its segment number is removed 
from the LRU stack and pushed on the top of the LRU stack. Therefore, the 
number at the top of the stack is the most-recently-used segment number and 
the number at the bottom of the stack is the least-recently-used segment 
number. 

At system reset the LRU stack is initialized with ° at the top, 1 at the bottom, 
and all P flags in the instruction cache are cleared. If both SSA registers are 
equal (due to system reset conditions) and a cache hit occurs, the instruction 
word is fetched from the most recently used segment. 

When a replacement is necessary, the least-recently-used segment is selected 
for replacement. Also, the 32 P flags for the segment to be replaced are set 
to 0, and the segment's SSA register is replaced with the 19 MSBs of the in
struction address. • 

4.3.2 Cache Algorithm 

4-16 

When the TMS320C30 requests an instruction word from external memory, 
two possible actions occur: a cache hit or a cache miss. These are described 
in the following list: 

• Cache Hit. The requested instruction is contained within the cache 
and the following actions occur: 
1 ) The instruction word is read from the cache. 
2) The segment number of the segment within which the word is 

contained is removed from the LRU stack and pushed to the top 
of the LRU stack, thus moving the other segment number to the 
bottom of the stack. 

• Cache Miss. The instruction is not contained in the cache. Types of 
cache miss are: 
1) Word Miss. The segment address register matches the instruction 

address, but the relevant P flag is not set. The following actions 
occur in parallel: 



Instruction Cache - Cache Architecture/Algorithm 

The instruction word is read from memory and copied into 
the cache. 
The segment number of the segment within which the word 
is contained is removed from the LRU stack and pushed to 
the top of the LR U stack, thus moving the other segment 
number to the bottom of the stack. 
The relevant P flag is set. 

2) Segment Miss. Neither of the segment addresses matches the in-
struction address. The following actions occur in parallel: 

The least-recently-used segment is selected for replacement. 
The P flags for all 32 words are cleared. 
The SSA register for the selected segment is loaded with the • 
19 MSBs of the address of the requested instruction word. ~ 
The instruction word is fetched and copied into the cache. 
It goes into the appropriate word of the least-recently-used 
segment. The P flag for that word is set 1 . 
The segment number of the segment containing the instruc
tion word is removed from the LRU stack and pushed to the 
top of the LRU stack, thus moving the other segment number 
to the bottom of the stack. 

Only instructions may be fetched from the program cache. All reads and writes 
of data in memory bypass the cache. Program fetches from internal memory 
do not modify the cache and will not generate cache hits or misses. The pro
gram cache is a single-access memory block. Dummy program fetches (i.e., 
following a branch) are treated by the cache as valid program fetches and can 
generate cache misses and cache updates. 

Care should be taken when using self-modifying code. If an instruction re
sides in cache and the corresponding location in primary memory is modified, 
the copy of the instruction in cache is not modified. 

More efficient use of the cache can be made by aligning program code on 32 
word address boundaries. This can be done using the ALIGN directive when 
coding assembly language. 

4.3.3 Cache Control Bits 

Three cache control bits are located in the CPU status register: the cache clear 
bit (CC), cache enable bit (CE), and the cache freeze bit (CF). 

Cache Clear Bit (CC). Writing a 1 to the cache clear bit (CC) invalidates 
all entries in the cache. All P flags in the cache are cleared. The CC bit is al
ways cleared after the cache is cleared. It is therefore always read as a O. At 
reset the cache is cleared and 0 is written to this bit. 

Cache Enable Bit (CE). Writing a 1 to this bit enables the cache. When 
enabled, the cache is used according to the previously described cache algo
rithm. Writing a 0 to the cache enable bit disables the cache; no updates or 
modification of the cache can be performed. Specifically, no SSA register 
updates are performed, no P flags are modified (unless CC = 1), and the LRU 
stack is not modified. Writing a 1 to CC when the cache is disabled will clear 
the cache, and thus the P flags. No fetches are made from the cache when the 
cache is disabled. At reset, 0 is written to this bit. 

4-17 



Instruction Cache - Cache Architecture/Algorithm 

4-18 

Cache Freeze Bit (CF). When CF = 1, the cache is frozen. If, in addition, 
the cache is enabled, fetches from the cache are allowed, but no modification 
of the state of the cache is performed. Specifically, no SSA register updates 
are performed, no P flags are modified (unless CC = 1), and the LRU stack is 
not modified. This function can be used to keep frequently used code resident 
in the cache. Writing a 1 to CC when the cache is frozen will clear the cache, 
and thus the P flags. At reset, 0 is written to this bit. 



Instruction Cache - Cache Architecture/Algorithm 

Table 4-6 defines the effect of the CE and CF bits used in combination. 

Table 4-6. Combined Effect of the CE and CF Bits 

CE CF EFFECT 
0 0 Cache not enabled 
0 1 Cache not enabled 
1 0 Cache enabled and not frozen 
1 1 Cache enabled and frozen 

4-19 



Instruction Cache - Cache Architecture/Algorithm 

4-20 



Data Formats and Floating-Point Operation 





Section 5 

Data Formats and Floating-Point Operation 

Data is organized in the TMS320C30 architecture to provide three funda
mental data types: integer, unsigned-integer, and floating-point. Note that the 
terms, integer and signed-integer, are considered to be equivalent. The 
TMS320C30 supports short and single-precision formats for signed and un
signed integers. It also supports short, single-precision and extended
precision formats for floating-point data. 

Floating-point operations provide convenient and trouble-free computations 
while maintaining accuracy and precision. The TMS320C30 implementation 
of floating-point arithmetic allows for floating-point operations at integer 
speeds. The floating-point capability can prevent problems with overflow, 
operand alignment, and other burdensome tasks common in integer oper
ations. 

This section discusses in detail the data formats and floating-point operations 
supported on the TMS320C30. Major topics in this section are as follows: 

• Integer Formats (Section 5.1 on page 5-2) 

• Unsigned-Integer Formats (Section 5.2 on page 5-3) 

• Floating-Point Formats (Section 5.3 on page 5-4) 

• Floating-Point Multiplication (Section 5.4 on page 5-9) 

• Floating-Point Addition and Subtraction (Section 5.5 on page 5-13) 

• Normalization (Section 5.6 on page 5-17) 

• Rounding (Section 5.7 on page 5-20) 

• Floating-Point to Integer Conversions (Section 5.8 on page 5-22) 

• Integer to Floating-Point Conversions (Section 5.9 on page 5-24) 

5-1 



Data Formats - Integer Formats 

5.1 Integer Formats 
The TMS320C30 supports two integer formats: a 16-bit short integer format 
and a 32-bit single-precision integer format. When extended-precision regis
ters are used as integer operands only bits 31-0 are used; bits 39-32 remain 
unchanged and unused. 

5.1.1 Short Integer Format 

The short integer format is a 16-bit two's-complement integer format, used for 
immediate integer operands. For those instructions that assume integer oper
ands, this format is sign-extended to 32 bits (see Figure 5-1). The range of 
an integer si, represented in the short integer format, is _215 :s si:s 21"5 -1. 
In Figure 5-1, s=signed bit. 

15 

Short Integer Format 

31 16 15 

Is ssssssssssssss sis 
Sign Extension of a Short Integer 

Figure 5-1. Short Integer Format and Sign Extension of Short 
Integer 

o 

o 

5.1.2 Single-Precision Integer Format 

5-2 

In the single-precision integer format, the integer is represented in two's
complement notation. The range of an integer sp, represented in the single
precision integer format, is _231 :s sp :s 231 -1. Figure 5-2 shows the 
single-precision integer format. 

31 o 

Figure 5-2. Single-Precision Integer Format 



Data Formats - Unsigned-Integer Formats 

5.2 Unsigned-Integer Formats 

Two unsigned-integer formats are supported on the TMS320C30: a 16-bit 
short format and a 32-bit single-precision format. In extended-precision reg
isters, the unsigned-integer operands use only bits 31-0; bits 39-32 remain 
unchanged. 

5.2.1 Short Unsigned-Integer Format 

Figure 5-3 shows the 16-bit short unsigned-integer format, used for immedi
ate unsigned-integer operands. For those instructions that assume un
signed-integer operands, this format is zero-filled to 32 bits. In Figure 5-3 
below, X = MSB (1 or 0). 

15 

Short Unsigned-Integer 
Format 

31 16 15 

I 0 00000000000000 0 I X 

Zero Fill of a Short Unsigned Integer 

Figure 5-3. Short Unsigned-Integer Format and Zero Fill 

5.2.2 Single-Precision Unsigned-Integer Format 

o 

o 

In the single-precision unsigned-integer format, the number is represented as 
a 32-bit value, as shown in Figure 5-4. 

31 o 

Figure 5-4. Single-Precision Unsigned-Integer Format 

5-3 



Data Formats - Floating-Point Formats 

5.3 Floating-Point Formats 

All TMS320C30 floating-point formats consist of three fields: an exponent 
field (e), a single sign-bit field (8), and a fraction field (f). These are stored 
as shown in Figure 5-5. The exponent field is a two's-complement number. 
The sign field and fraction field may be considered as one unit and referred to 
as the mantissa field (man). The mantissa is used to represent a normalized 
two's-complement number. In a normalized representation, a most-signifi
cant nonsign bit is implied, thus providing an additional bit of precision. The 
value of a floating-point number x as a function of the fields e, 8, and' is given 
as 

x = 01.' x 2e 
10.' x 2e 
o 

e 

if 8 = 0 
if 8 = 1 
if e = most negative two's-complement value 
for the specified exponent field width. 

I_I f I 

I ... ---- man Cmantissal--..... ootl 

Figure 5-5. Generic Floating-Point Format 

Three floating-point formats are supported on the TMS320C30. The first is a 
short floating-point format for immediate floating-point operands, consisting 
of a 4-bit exponent, 1 sign bit, and an 11 -bit fraction. The second is a sin
gle-precision format consisting of an 8-bit exponent, 1 sign bit, and a 23-bit 
fraction. The third is an extended-precision format consisting of an 8-bit ex
ponent, 1 sign bit, and a 31-bit fraction. 

5.3.1 Short Floating-Point Format 

5-4 

In the short floating-point format, floating-point numbers are represented by 
a two's-complement 4-bit exponent field (e) and a two's-complement 12-bit 
mantissa field (man) with an implied most-significant nonsign bit. 

15 12111110 o 

e Is f I 

Iool---- man ---.... ootl 

Figure 5-6. Short Floating-Point Format 



Data Formats - Floating-Point Formats 

Operations are performed with an implied binary point between bits 11 and 
10. When the implied most-significant nonsign bit is made explicit, it is lo
cated to the immediate left of the binary point. The floating-point two's
complement number x in the short floating-point format is given by 

x = 01.f x 2e if s = 0 
10.f x 2e if s = 1 
o if e = -8, s = 0, f = 0 

The following reserved values must be used to represent zero in the short 
floating-point format: 

e=-8 
s=O 
f= 0 

The following examples illustrate the range and precision of the short float
ing-point format: 

Most Positive: 

Least Positive: 

Least Negative: 

Most Negative: 

x = (2 - 2-11 ) x 27 = 2.5594 x 102 

x = 1 x 2-7 = 7.8125 x 10-3 

x = (_1_2-11 ) x 2 -7 = -7.8163 x 10-3 

x = -2 x 27 = -2.5600 x 10 2 

5.3.2 Single-Precision Floating-Point Format 

In the single-precision format, the floating-point number is represented by an 
8-bit exponent field (e) and a two's-complement 24-bit mantissa field (man) 
with an implied most-significant nonsign bit. 

Operations are performed with an implied binary point between bits 23 and 
22. When the implied most-significant nonsign bit is made explicit, it is lo
cated to the immediate left of the binary point. The floating-point number x 
is given by: 

x = 01.f x 2e 
10.fx 2e 
o 

31 

• 

if s = 0 
if s = 1 
if e = -128, s = 0, f = 0 

24123122 o 

I 8 f I 
~ ..... ---- man ------11 

Figure 5-7. Single-Precision Floating-Point Format 

The following reserved values must be used to represent zero in the single
precision floating-point format: 

e = - 128 
s=O 
f = 0 

5-5 

• 



Data Formats - Floating-Point Formats 

The following examples illustrate the range and precision of the single-preci
sion floating-point format. 

Most Positive: 

Least Positive: 

Least Negative: 

Most Negative: 

x = (2 - 2-23) )( 2 127 = 3.4028234 )( 1038 

x = 1 )( 2-127 = 5.8774717 )( 10 -39 

x = (_1_2-23) )( 2 -127 = -5.8774724 )( 10-39 

x = -2 )( 2127 = -3.4028236 )( 10 38 

5.3.3 Extended-Precision Floating-Point Format 

5-6 

In the extended-precision format, the floating-point number is represented by 
an 8-bit exponent field (e) and a 32-bit mantissa field (man) with an implied 
most-significant nonsign bit. 

Operations are performed with an implied binary point between bits 31 and 
30. When the implied most-significant nonsign bit is made explicit, it is lo
cated to the immediate left of the binary point. The floating-point number x 
is given by 

x= 01.1 )( 28 ifs = 0 
10.1 )( 28 if s = 1 
0 if e = -128, s = OJ = 0 

39 32/31130 0 

• I s f I 
I. man -I 

Figure 5-8. Extended-Precision Floating-Point Format 

The following reserved values must be used to represent zero in the extend
ed-precision floating-point format: 

e = - 128 
s=O 
1 = 0 

The following examples illustrate the range and precision of the extended
precision floating-point format: 

Most Positive: 

Least Positive: 

Least Negative: 

Most Negative: 

x = (2 - 2-31 ) )( 2 127 = 3.4028236683 x 1038 

x = 1 )( 2-127 = 5.8774717541 x 10 -39 

x = (_1_2-31 ) x 2 -127 = -5.8774717569 )( 10-39 

x = -2 x 2127 = -3.4028236691 x 1 <> 38 



Data Formats - Floating-Point Formats 

5.3.4 Conversion Between Floating-Point Formats 

Floating-point operations assume several different formats for inputs and 
outputs. These formats often require conversion from one floating-point for
mat to another (e.g., short floating-point format to extended-precision float
ing-point format). Format conversions automaticallv occur in hardware, with 
no overhead, as a part of the floating-point operations. The four conversions 
are shown below with examples of the conversion. When a floating-point 
format zero is converted to a greater-precision format, it is alwavs converted 
to a valid representation of zero in that format. In the below figures, S = sign 
bit of the exponent. 

• Short floating-point format conversion to single-precision 
floating-point format. 

15 12 11 10 0 

Is xx xlvlv vi 
Short Floating -Point Format 

31 27 24 23 22 12 11 0 

IS SSSxxx xlvlv vl o 01 

Single-Precision Floating- Point Format 

In this format the exponent field is sign -extended and the fraction field 
filled with zeros. 

• Short floating-point format conversion to extended-precision 
floating-point format. 

15 121110 o 
I S xx xl v Iv vi 

Short Floating- Point Format 

39 35 32 31 30 20 19 o 
IS SSSxxx 01 

Extended -Precision Floating- Point Format 

The exponent field in this format is sign-extended and the fraction field 
filled with zeros. 

5-7 

• 



Data Formats - Floating-Point Formats 

5-8 

• Single-precision floating-point format conversion to extend
ed-precision floating-point format. 

31 24 23 22 0 

Ix xlvlv vi 

39 

Ix 

• 
39 

Ix 

31 

Ix 

Single- Precision Floating- Point Format 

32 31 30 

xlvlv 
Extended-Precision Floating-Point Format 

The fraction field is filled with zeros. 

8 7 

vl o 

Extended-precision floating-point format conversion 
gle-precision floating-point format. 

32 31 30 

xlvlv 
Extended-Precision Floating-Point Format 

24 23 22 

xlvlv 
Single-Precision Floating-Point Format 

The fraction field is truncated. 

8 7 

viz 

o 
vi 

o 
01 

to sin-

0 

zl 



Floating-Point Operations - Multiplication 

5.4 Floating-Point Multiplication 
A floating-point number a can be written in floating-point format as the fol
lowing formula, where a( man) is the mantissa and a(exp) is the exponent. 

a = a(man) x 2a(exp) 

The product of a and b is c, defined as 

c = a x b = a(man) x b(man) x 2 (a(exp)+b (exp» 

c(man) = a(man) x b(man) 
c(exp) = a(exp) + b(exp) 

When performing floating-point multiplication, source operands are always 
assumed to be in the single-precision floating-point format. If the source of 
the operands is in short floating-point format. it is extended to the single
precision floating-point format. If the source of the operands is in extend
ed-precision floating-point format, it is truncated to single-precision format. 
These conversions automatically occur in hardware with no overhead. All re
sults of floating-point multiplications are in the extended-precision format. 
These multiplications occur in a single cycle. 

A flowchart for floating-point multiplication is shown in Figure 5-9. In step 
1, the 24-bit source operand mantissas are multiplied, producing a 50-bit re
sult c(man). (Note that input and output data are always represented as nor
malized numbers.) In step 2, the exponents are added, yielding c(exp). Steps 
3 through 6 check for special cases. Step 3 checks for whether c(man) in 
extended-precision format is equal to zero. If c(man) is zero, step 7 sets 
c(exp) to -128, thus yielding the representation for zero. 

Steps 4 and 5 normalize the result. If a right shift of one is necessary, then in 
step 8, c(man) is right-shifted one bit and one is added to c(exp). If a right 
shift of two is necessary, then in step 9, c(man) is right-shifted two bits and 
two is added to c(exp). Step 6 occurs when the result is normalized. 

In step 10, c(man) is set in the extended-precision floating-point format. 
Steps 11 through 18 check for special cases of c(exp). In step 14, if c(exp) 
has overflowed (step 11) in the positive direction, then c(exp) is set to the 
most-positive extended-precision format value. If c(exp) has overflowed in 
the negative direction, then c(exp) is set to the most-negative extended-pre
cision format value. If c(exp) has underflowed (step 12), then c is set to zero 
(step 15); i.e., c(man) = 0 and c(exp) = -128. 

5-9 



Floating-Point Operations - Multiplication 

.(man) b(man) .(exp) bI.xp) 

+ + (1) l + (2) 

Mulllply m.nt .... Add exponents 

c(man) = .(man) • blman) c(exp) = a(exp) + blexp) 
(50-bit result) 

+ + 
THI lor 8p8CIai ca ... 01 c(man) 

(3) 
(4) (5) (6) 

Right-ahlftl Rlght-sblft2 No shill c(men) = 0 to normalize to normalize to norm.nze 

+ (7) + (8) + (9) 

c(exp) = 1 
c(man»> 1 c(man) »2 

and and 
- 128 c(exp) = c(exp) = 

c(axp) + 1 c(axp) + 2 

~ t r-
Dispose 01 extra bits (10) 

Put c(men~ In extended 
Clslon Ioatlng-polnt 
ormst. 

+ 
THllor .paclal ca ... 01 c(axp) 

(11) (12) (13) 
c(exp) overflow c(exp) underflow c(exp) In range 

+ (14) + 
"c(man) > 0, 

1 c(axp) = - 1281 (15) 881 c to moat 
positive value. c(man) = 0 

"c(men) < 0, 
881 c to moat 
negative value. _L ~ 

I Set c to llnal ... ult 1(18) 

t 
c = a .. b 

Figure 5-9. Flowchart for Floating-Point Multiplication 

5-10 



Floating-Point Operations - Multiplication 

The following examples illustrate how floating-point multiplication is per
formed on the TMS320C30. For these examples, the implied most-significant 
nonsign bit is made explicit. 

Example 5-1. Floating-Point Multiply (Both Mantissas = -2.0) 

Let 

a = -2.0 x 2a(exp) = 10.00000000000000000000000 x 2 a(exp) 
b = -2.0 x 2b(exp) = 10.00000000000000000000000 x 2 b(exp) 

where a and b are both represented in binary form according to the normalized single-pre
cision floating-point format. Then 

10.00000000000000000000000 x 2a(exp) 
x 10.00000000000000000000000 x 2b(exp) 

0100.0000000000000000000000000000000000000000000000 x 2(a( exp) + b(exp» 

To place this number in the proper normalized format, it is necessary to shift the mantissa two 
places to the right and add two to'the exponent. This yields 

10.00000000000000000000000 x 2a(exp) 
x 10.00000000000000000000000 x 2b(exp) 

01.0000000000000000000000000000000000000000000000 x 2(a( exp) + b(exp)+2) 

In floating-point multiplication, the exponent of the result may overflow. This can occur 
when the exponents are initially added or when the exponent is modified during normaliza
tion. 

Example 5-2. Floating-Point Multiply (Both Mantissas = 1.5) 

Let 

a = 1.5 x 2a(exp) = 01.10000000000000000000000 x 2 a(exp) 
b = 1.5 x 2b(exp) = 01.10000000000000000000000 x 2 b(exp) 

where a and b are both represented in binary form according to the single-precision float
ing-point format. Then 

01.10000000000000000000000 x 2a(exp) 
x 01.10000000000000000000000 x 2 b(exp) 

0010.0100000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp» 

To place this number in the proper normalized format, it is necessary to shift the mantissa 
one place to the right and add one to the exponent. This yields 

01.10000000000000000000000 x 2a(exp) 
x 01.10000000000000000000000 x 2b(exp) 

01.00100000000000000000000000000000000000000000000 x 2 (a(exp) +b(exp) +1) 

5-11 

• 



Floating-Point Operations - Multiplication 

Example 5-3. Floating-Point Multiply (Both Mantissas = 1.0) 

Let 

a = 1.0 )( 2a(exp) = 01.00000000000000000000000 )( 2 a(exp) 
b = 1.0 )( 2b(exp) = 01.00000000000000000000000 )( 2 b(exp) 

where a and b are both represented in binary form according to the single-precision float
ing-point format. Then 

01.00000000000000000000000 )( 2a(exp) 
)( 01.00000000000000000000000)( 2b(exp) 

0001.0000000000000000000000000000000000000000000000)( 2 (a(exp) + b(exp» 

This number is in the proper normalized format. Therefore, no shift of the mantissa or mod
ification of the exponent is necessary. 

These examples have shown cases where the product of two normalized numbers can be 
normalized with a shift of zero, one, or two. For all normalized inputs with the floating-point 
format used by the TMS320C30, a normalized result can be produced by a shift of zero, one, 
or two. 

Example 5-4. Floating-Point Multiply Between Positive and Negative Numbers 

Let 

a = 1.0 )( 2a(exp) = 01.00000000000000000000000 )( 2 a(exp) 
b = 2.0 )( 2b(exp) = 10.00000000000000000000000 )( 2 b(exp) 

Then 

01.00000000000000000000000 )( 2a(exp) 
)( 10.00000000000000000000000 )( 2b(exp) 

1110.0000000000000000000000000000000000000000000000)( 2 (a(exp) + b(exp» 

The result is c = -2.0 )( 2(a(exp) + b(exp» 

Example 5-5. Floating-Point Multiply by Zero 

All multiplications by a floating-point zero yield a result of zero (f = 0, S = 0, and exp = 
-128). 

5-12 



Floating-Point Operations - Addition/Subtraction 

5.5 Floating-Point Addition and Subtraction 

In floating-point addition and subtraction, two floating-point numbers a and 
b can be defined as 

a = a(man) x 2a(exp) 
b = b(man) x 2b(exp) 

The sum (or difference) of a and b can be defined as 

c = a ± b 
= (a(man) ± (b(man) x 2 -(a(eXp)-b(eXp»» x 2 a(exp), 

if a(exp) ~ b(exp) 

= «a(man) x 2 -(b(exp)-a(exp») ± b( man» x 2 b(exp), 
if a(exp) < b(exp) 

The flowchart for floating-point addition is shown in Figure 5-10. Since this 5 
flowchart assumes signed data, it is also appropriate for floating-point sub
traction. In this figure, it is assumed that a(exp) S b(exp). In step 1, the 
source exponents are compared, and c(exp) is set equal to the largest of the 
two source exponents. In step 2, d is set to the difference of the two expo-
nents. In step 3, the mantissa with the smallest exponent, in this case 
a(man), is right-shifted d bits in order to align the mantissas. After the man-
tissas have been aligned, they are added (step 4). 

Steps 5 through 7 check for a special case of c(man). If c(man) is zero (step 
5), then c(exp) is set to its most-negative value (step 8) to yield the correct 
representation of zero. If c(man) has overflowed c (step 6), then in step 9, 
c(man) is right-shifted one bit and one is added to c(exp) In step 10, the 
result is normalized. In steps 11 and 12, special cases of c(exp) are tested. 
If c(exp) has overflowed, then c is set to the most-positive extended-precision 
value if it is positive; otherwise, it is set to the most-negative extended-preci
sion value. 

5-13 



Floating-Point Operations - Addition/Subtraction 

o( ... n) b( .... ) o(a.p) 

't 
b(.'p) 

l 
(1) compere exponents 

II a(.'p) < = b(.'p) 
c(.'p) - b(a.p) 

al .. 

(3 ) Align m.ntl .... 
c(a.p) = o(a.p) 

I(men) _ I,man) > > d ~--:::p~r<'~~I::'p)J 
Discord LSBo t t to keep .( .... ) In 
extendedoprecilion (2) Subtract exponents I 
flNtIng-polnt fonnld --L d - b(.'p) - a( •• p) I 

t 
(4)1 Add manti .... 

I o(men) - .( ... n) + b( ... n) 

Teet for apectal case. of c(man) 

(5) (8) (7) 
k -, I .. dlng 

c( .... ) - 0 Overflow of c(man) nclHlgnlllc.ln1 
lign bits 

t 
0( .... ) = c( .... »> 1 
c(exp) "" c(exp) + 1 
Discord LSBa to kHP In 
.xt.nded~precteton 

fIoIIHngapolnt format 

(8) (9) 

o( •• p) = -128 ,c( ... n)« k 

t 
c( •• p) = c(a.p) - k 

t 
I Teet for special CII" of c(exp) 

(11) (12) (13) 
c(exp) overflow c(exp) underflow c(exp) In range 

t t 
11c( .... ) > O. 

' ... 0.0 .. 10 
('5) 

set c to molt o( •• p) = -128 
positive value. e(man) z 0 

110( .... )<0. 

(14) 

set eta moat 
negative value. 

1 t 
Set c to final result ('6) I I 

t 
c=l+b 

Figure 5-10. Flowchart for Floating-Point Addition 

5-14 



Floating-Point Operations - Addition/Subtraction 

The following examples describe the floating-point addition and subtraction 
operations. It is assumed that the data is in the extended-precision floating
point format. 

Example 5-6. Floating-Point Addition 

In the case of two normalized numbers to be summed, let 

a = 1.5 = 01.1000000000000000000000000000000 x 20 
b = 0.5 = 01.0000000000000000000000000000000 x 2- 1 

It is necessary to shift b to the right by one so that a and b have the same 
exponent. This yields 

b = 0.5 = 00.1000000000000000000000000000000 x 2° 

Then 

01.1000000000000000000000000000000 x 20 
+ 00.1000000000000000000000000000000 x 2° 

010.0000000000000000000000000000000 x 20 

As in the case of multiplication, it is necessary to shift the binary point one 
place to the left and to add one to the exponent. This yields 

01.1000000000000000000000000000000 x 20 
+ 00.1000000000000000000000000000000 x 20 

01.0000000000000000000000000000000 x 21 

Example 5-7. Floating-Point Subtraction 

A subtraction is performed in this example. Let 

a = 01 .0000000000000000000000000000001 x 20 
b = 01 .0000000000000000000000000000000 x 2° 

The operation to be performed is a-b. The mantissas are already aligned since 
the two numbers have the same exponent. The result is a large cancellation 
of the upper bits, as shown below. 

01.0000000000000000000000000000001 x 20 
01.0000000000000000000000000000000 x 20 

00.0000000000000000000000000000001 x 2° 

The result must be normalized. In this case, a left-shift of 31 is required. The 
exponent of the result is modified accordingly. The result is 

01.0000000000000000000000000000001 x 20 
01.0000000000000000000000000000000 x 2° 

01.0000000000000000000000000000000 x 2-31 

5-15 

• 



Floating-Point Operations - Addition/Subtraction 

Example 5-8. Floating-Point Addition with a 32-Bit Shift 

This example illustrates a situation where a full 32-bit shift is necessary to 
normalize the result. Let 

a = 01 .1111111111111111111111111111111 )( 2127 
b = 10.0000000000000000000000000000000 x 2127 

The operation to be performed is a + b. 

01.1111111111111111111111111111111 x 2127 
+ 10.0000000000000000000000000000000 x 2127 

11.1111111111111111111111111111111 x 2127 

Normalizing the result requires a left-shift of 32 and a subtraction of 32 from 
the exponent. The result is 

01.1111111111111111111111111111111 )( 2127 
+ 10.0000000000000000000000000000000 x 2127 

1 0.0000000000000000000000000000000 )( 295 

Example 5-9. Floating-Point Addition/Subtraction and Zero 

5-16 

When floating-point addition and subtraction is performed with a floating
point 0, , the following identities are satisfied: 

a ± 0 = a (a ¢ 0) 
O±O=O 
0- a = -a (a ¢ 0) 



Floating-Point Operations - Normalization 

5.6 Normalization Using the NORM Instruction 

The NORM instruction takes an extended-precision floating-point number, 
assumed to be unnormalized, and normalizes it. Since the number is assumed 
to be unnormalized, no implied most-significant nonsign bit is assumed. The 
NORM instruction executes the following three steps: 

1) Locate the most-significant nonsign bit of the floating-point number. 
2) Left-shift to normalize the number. 
3) Adjust the exponent. 

Given the extended-precision floating-point value a to be normalized, the 
normalization (norm 0) is performed as shown in Figure 5-11. 

5-17 



Floating-Point Operations - Normalization 

a 

t 
Teat for special cases of a(man) 

(2) 
(1) Leading non-slgnlflcant 

B(man) = 0 81gn bits. 

k = II leading 
non-significant 
81gn bits 

(3) 
c(exp) = -128 I Sign-extended a(man) 1 bit 

c(man) = a(man) < < k 

(4) 

c(exp) = a(exp) - k 

Remove moat-8lgnlflcant non-8lgn bit 
(5) 

t 
Test for special cases of c(exp) 

(6) (7) 
c(exp) underflow c(exp) In range 

t 
(8) 

c(exp) = -128 
No change to c(man) 

1 
(9) I Set c to final result I 

t 
c = norm(a) 

Figure 5-11. Flowchart for NORM Instruction Operation 

5-18 



Floating-Point Operations - Normalization 

Example 5-10. NORM Instruction 

Assume that an extended-precision register contains the value 

man = 00000000000000000001000000000001, exp = 0 

When the normalization is performed on a number assumed to be unnormal
ized, the binary point is assumed to be 

man = 0.0000000000000000001 000000000001 , exp = 0 

This number is then sign-extended one bit so that the mantissa contains 33 
bits. 

man = 00.0000000000000000001 000000000001 , exp = 0 

The intermediate result after the most-significant nonsign bit is located and 
the shift performed is 

man = 01.0000000000010000000000000000000, exp = -19 

The final 32-bit value output after removing the redundant bit is 

man = 0000000000001 0000000000000000000, exp = -19 

The NORM instruction is useful for counting the number of leading zeros or 
leading ones in a 32-bit field. If the exponent is initially zero, the absolute 
value of the final value of the exponent is the number of leading ones or zeros. 
This instruction is also useful for manipulating unnormalized floating-point 
numbers. 

5-19 

• 



Floating-Point Operations - Rounding 

5.7 Rounding: The RND Instruction 

5-20 

The R N 0 instruction rounds a number from the extended -precision floating
point format to the single-precision floating-point format. Rounding is similar 
to floating-point addition. Given the number a to be rounded, the following 
operation is performed first. 

c = a(man) x 2a(exp) + (1 x 2 (a(exp)-24») 

Next a conversion from extended-precision floating-point to single-precision 
floating-point format is performed. Given the extended-precision floating
point value, the rounding (rndO) is performed as shown in Figure 5-12. 



Floating-Point Operations - Rounding 

a 1 x 2 a(e.p) -24 

t t 
Add a(man) and 1/2 an LSB 

elman) = alman) + - 24 

Test for special cases of e(man) 

e(man) = ° Overflow of e(man) No special case 

t 
e(e.p) = -1281 e(man) = e(man) > > 1 

e(e.p) = a(e.p) + 1 

Test for special cases of c(e.p) 

e(e.p) overflow e(e.p) In range 

t 
If e(man) > 0, 

set e to most-
positive single-
precision value. 

If e(man) < 0, 
set e to most-
negative single-
praelaion value. 

r--

I 
Set 8 LSBe of e(man) to zero 

1 
e = meI(a) 

Figure 5-12. Flowchart for Floating-Point Rounding by the RND 
Instruction 

5-21 

• 



Floating-Point Operations - Conversion to Integer 

5.8 Floating-Point to Integer Conversion 

5-22 

Floating-point to integer conversion, using the FIX instructions, allow ex
tended-precision floating-point numbers to be converted to single-precision 
integers in a single cycle. The floating-point to integer conversion of the value 
x will be referred to here as fix(x). The conversion will not overflow if a, the 
number to be converted, is in the range: 

_231 S a S 231 - 1 

First, it is necessary to be certain that 

a(exp) S 30 

If these bounds are not met, an overflow occurs. If an overflow occurs in the 
positive direction, the output is the most positive integer. If an overflow oc
curs in the negative direction, the output is the most negative integer. If 
a(exp) is within the valid range, then a(man), with implied bit included, is 
sign-extended and right-shifted (rs) by the amount 

rs = 31 - a(exp) 

This right-shift (rs) shifts out those bits corresponding to the fractional part 
of the mantissa. For example: 

If 0 S x < 1, then fix(x) = O. 
If -1 S x < 0, then fix(x) = -1. 

The flowchart for the floating-point to integer conversion is shown in Figure 
5-13. 



Floating-Point Operations - Conversion to Integer 

8 , 
Test for special cases of a(exp) 

a(exp) > 30 
a(exp) In range 

rs = 31 - a(exp) 

t 
Overflow Shift 

If a(man) > 0, 
c = most positive c = a(man) > > rs 

integer. 
If alman) < O. 

c = most negative 
Integer. 

I , , 
I Set c to final result I 

c = flx(a) 

Figure 5-13. Flowchart for Floating-Point to Integer Conversion 
by FIX Instructions 

5-23 

• 



Floating-Point Operations - Conversion to Floating-Point 

5.9 Integer to Floating-Point Conversion Using the FLOAT 
Instruction 

5-24 

Integer to floating-point conversion, using the FLOAT instruction, allows sin
gle-precision integers to be converted to extended-precision floating-point 
numbers. The flowchart for this conversion is shown in Figure 5-14. 

a 

t 
c(man) = a 
c(exp) = 30 

.t 
Test for special cases of c(man) 

Leading non-significant 
c(man) = 0 sign bits. 

k =# leadln g 
nt non-slgnlflca 

sign bits 

c(exp) = -128 I c(man) = c(man) < < k 
c(exp) = 30 - k 

Remove most significant 
non-sign bit. 

I Set c to final result J 
t 

c = float (a) 

Figure 5-14. Flowchart for Integer to Floating-Point Conversion 
Using the FLOAT Instruction 



Addressing 





Section 6 

Addressing 

The TMS320C30 supports five groups of powerful addressing modes. Six 
types of addressing may be used within the groups, which allow access of 
data from memory, registers, and the instruction word. This section details the 
operation, encoding, and implementation of the addressing modes. Also dis
cussed is the management of system stacks, queues, and deques in memory. 
The major topics in this section are: 

• Types of Addressing (Section 6.1 on page 6-2) 
Register 
Direct 
Indirect 
Short-immediate 
Long-immediate 
PC-relative 

• Groups of Addressing Modes (Section 6.2 on page 6-18) 
General addressing modes 
Three-operand addressing modes 
Parallel addressing modes 
Long-immediate addressing mode 
Conditional-branch addressing modes 

• Circular Addressing (Section 6.3 on page 6-22) 

• Bit-Reversed Addressing (Section 6.4 on page 6-26) 

• System Stack Management (Section 6.5 on page 6-27) 

6-1 



Addressing - Types of Addressing 

6.1 Types of Addressing 

Six types of addressing allow access of data from memory, registers, and the 
instruction word. They are: 

• Register 

• Direct 
' .. 

• Indirect 

• Short-immediate 

• Long - immediate 

• PC-relative 

Some types of addressing are appropriate for some instructions and not others. 
For this reason, the types of addressing are used in the five different groups 
of addressing modes as follows: 

• General addressing modes (G): 
Register 
Direct 
Indirect 
Short-immediate 

• Three-operand addressing modes (T): 
Register 
Indirect 

• Parallel addressing modes (P): 
Register 
Indirect 

• Long-immediate addressing mode 
Long-immediate 

• Conditional-branch addressing modes (8): 
Register 
PC-relative 

The six types of addressing will be discussed first. followed by the five groups 
of addressing modes. 

6.1.1 Register Addressing 

6-2 

In register addressing, the operand is contained in a CPU register, as shown 
in the example below. 

ABSF Rl ; Rl = IRll 

The syntax for the CPU registers, the assembler syntax, and the assigned 
function for those registers are listed in Table 6-1. 



Addressing - Types of Addressing 

Table 6-1. CPU Register/Assembler Syntax and Function 

CPU REGISTER ASSEMBLER ASSIGNED 
ADDRESS SYNTAX FUNCTION 

OOh RO Extended-precision register 
01h R1 Extended-precision register 
02h R2 Extended-precision register 
03h R3 Extended-precision register 
04h R4 Extended-precision register 
05h R5 Extended-precision register 
06h R6 Extended-precision register 
07h R7 Extended-precision register 

08h ARO Auxiliary register 
09h AR1 Auxiliary register 
OAh AR2 Auxiliary register 
OBh AR3 Auxiliary register 
OCh AR4 Auxiliary register 
ODh AR5 Auxiliary register 
OEh AR6 Auxiliary register 
OFh AR7 Auxiliary register 

10h DP Data page pointer 
11 h IRO Index register 0 
12h IR1 Index register 1 
13h BK Block size 
14h SP Active stack pointer 

15h ST Status register 
16h IE CPU/DMA interrupt enable 
17h IF CPU interrupt flags 
18h 10F I/O flags 

19h RS Repeat start address 
1Ah RE Repeat end address 
1 Bh RC Repeat counter 

6.1.2 Direct Addressing 

In direct addressing, the data address is formed by the concatenation of the 
eight least-significant bits of the data page pointer (OP) with the 16 least
significant bits of the instruction word (expr). This results in 256 pages (64 
K words per page), giving the programmer a large address space without 
needing to change the page pointer. The syntax and operation for direct ad
dressing are listed below. 

Syntax: @expr 

Operation: address = OP concatenated with expr 

Figure 6-1 shows the formation of the data address. Example 6-1 gives an 
instruction example with data before and after instruction execution. 

6-3 



Addressing - Types of Addressing 

DP 

Instruction 
Word 

31 

x 

31 16 15 

31 

operand 

Figure 6-1. Direct Addressing 

o 
expr 

o 

o 

Example 6-1. Direct Addressing 

ADD! @OBCDEh,R7 

Before Instruction: 

DP = 8Ah 
R7 = Oh 
Data at 8ABCDEh = 12345678h 

After Instruction: 

DP = 8Ah 
R7 = 12345678h 
Data at 8ABCDEh = 12345678h 

6.1.3 Indirect Addressing 

6-4 

Indirect addressing is used to specify the address of an operand in memory 
through the contents of an auxiliary register, optional displacements, and in
dex registers. Only the 24 least-significant bits of the auxiliary registers and 
index registers are used in indirect addressing. This arithmetic is performed 
by the auxiliary register arithmetic units (ARAUs) on these lower 24 bits and 
is unsigned. The upper eight bits are unmodified. 

The flexibility of indirect addressing is possible because the ARAUs on the 
TMS320C30 are used to modify auxiliary registers in parallel with operations 
within the main CPU. Indirect addressing is specified by a five-bit field in the 
instruction word, referred to as the mod field. A displacement is either an ex
plicit unsigned 8-bit integer contained in the instruction word or an implicit 
displacement of one. Two index registers, IRO and IR1, can also be used in 
indirect addressing. In some cases, an addressing scheme using circular or 
bit reversed addressing is optional. The mechanism for generating addresses 
in circular addressing is discussed in Section 6.3, bit reversed in Section 6.4. 

Table 6-2 lists the various kinds of indirect addressing, along with the value 
of the modification (mod) field, assembler syntax, operation, and function for 
each. The succeeding 18 examples show the operation for each kind of indi
rect addressing. 



Addressing - Types of Addressing 

Table 6-2. Indirect Addressing 

MOD FIELD SYNTAX OPERATION DESCRIPTION 

INDIRECT ADDRESSING WITH DISPLACEMENT 

00000 *+ARn(disp) addr = ARn + disp With pre-displacement add 

00001 *-ARn(disp) addr = ARn - disp With pre-displacement subtract 

00010 *++ARn(disp) addr = ARn + disp With pre-displacement add and modify 
ARn = ARn + disp 

00011 *--ARn(disp) addr = ARn - disp With pre-displacement subtract and 
ARn = ARn - disp modify 

00100 *ARn++(disp) addr = ARn With post-displacement add and 
ARn = ARn + disp modify 

00101 *ARn--(disp) addr = ARn With post-displacement subtract and 
ARn = ARn - disp modify 

00110 *ARn++(disp)% addr = ARn With post-displacement add and 
ARn = circ(ARn + disp) circular modify 

00111 *ARn--(disp)% addr + ARn With post-displacement subtract and 
ARn = circ(ARn - disp) circular modify 

INDIRECT ADDRESSING WITH INDEX REGISTER IRO 

01000 *+ARn(IRO) addr = ARn + IRO With pre-index (lRO) add 

01001 *-ARn(lRO) addr = ARn - IRO With pre-index (IRO) subtract 

01010 *++ARn(IRO) addr = ARn + IRO With pre-index (IRO) add and modify 
ARn = ARn + IRO 

01011 * --ARn(IRO) addr = ARn - IRO With pre-index (lRO) subtract and 
ARn = ARn - IRO modify 

01100 *ARn++(IRO) addr = ARn With post-index (IRO) add and modify 
ARn = ARn + IRO 

01101 *ARn--(IRO) addr = ARn With post-index (IRO) subtract and 
ARn = ARn - IRO modify 

01110 *ARn++(IRO)% addr = ARn With post-index (IRO) add and 
ARn = circ(ARn + I RO) circular modify 

01111 * ARn--(IRO)% addr = ARn With post-index (IRO) subtract and 
ARn = circ(ARn - I RO) circular modify 

LEGEND: 
addr = memory address 
ARn = auxiliary register ARO - AR7 
IRn = index register IRO or IR1 
disp = displacement 
+ + = add and modify 

= subtract and modify 
circO = address in circular addressing 
% = where circular addressing is performed 
B = where bit-reversed addressing is performed 

6-5 



Addressing - Types of Addressing 

Table 6-2. Indirect Addressing (Concluded) 

MOD FIELD SYNTAX OPERATION DESCRIPTION 
INDIRECT ADDRESSING WITH INDEX REGISTER IR1 

10000 *+ARn(IR1 ) addr = ARn + IR1 With pre-index (lR1) add 

10001 *-ARn(IR1 ) addr = ARn - IR1 With pre-index (IR1) subtract 

10010 *++ARn(lR1) addr = ARn + IR1 With pre-index (IR1) add and modify 
ARn = ARn + IR1 

10011 * --ARn(IR1 ) addr = ARn - IR1 With pre-index (IR1) subtract and 
ARn = ARn - IR1 modify 

10100 *ARn++(IR1) addr = AAn With post-index (IR1) add and modify 
ARn = ARn + IR1 

10101 *ARn--(IR1 ) addr = ARn With post-index (IR1) subtract and 
ARn = ARn - IR1 modify 

10110 *ARn++(IR1 )% addr = ARn With post-index (IR1) add and 
ARn = circ(ARn + IR1) circular modify 

10111 *ARn--(IR1)% addr = ARn With post-index (IR1) subtract and 
ARn = circ(ARn - I R1 ) circular modify 

INDIRECT ADDRESSING (SPECIAL CASES) 

11000 *ARn addr = ARn Indirect 

11001 *ARn++(IRO)B addr = ARn With post-index (IRO) add and 
ARn = B(ARn + IRO) bit-reversed modify 

LEGEND: 
addr = memory address 
ARn = auxiliary register ARO - AR7 
IRn = index register IRO or IR1 
disp = displacement 
+ + = add and modify 

= subtract and modify 
circO = address in circular addressing 
% = where circular addressing is performed 
B = where bit-reversed addressing is performed 

6-6 



Addressing - Types of Addressing 

Example 6-2. Auxiliary Register Indirect 

The address of the operand to be fetched is contained in an auxiliary register (ARn). 

Operation: 

Assembler Syntax: 

Modification Field: 

ARn 

operand address = ARn 

*ARn 

11000 

o 
address 

o 
operand 

6-7 



Addressing - Types of Addressing 

Example 6-3. Indirect with Pre-Displacement Add 

The address of the operand to be fetched is the sum of an auxiliary register (ARn) and the 
displacement (disp). The displacement is either an eight-bit unsigned integer contained in 
the instruction word or an implied value of 1. 

Operation: operand address = ARn+disp 

Assembler Syntax: *+ARn(disp) 

Modification Field: 00000 

31 2423 o 

ARn~~x _______ x~I _________ ad_d_r_es_s __ ~ ____ ~ 

31 8 7 0 I 
disp 10 0 ... 0 0 I ;nteger ~( +) 

~·---------3-1------·'--------~! - ~ 
o 

operand 

Example 6-4. Indirect with Pre-Displacement Subtract 

The address of the operand to be fetched is the contents of an auxiliary register (ARn) minus 
the displacement (disp). The displacement is either an eight-bit unsigned integer contained 
in the instruction word or an implied value of 1. 

6-8 

Operation: operand address = ARn-disp 

Assembler Syntax: 

Modification Field: 

*-ARn(disp) 

00001 

31 2423 0 

ARn~~x ________ x~I _________ a_dd_~ __ SS __ ~ ____ ~1 

r3_1 _______________ 8~7~------~0 I 
.... 10 0 ... 0., 01 -" t--T 

o 
operand 



Addressing - Types of Addressing 

Example 6-5. Indirect with Pre-Displacement Add and Modify 

The address of the operand to be fetched is the sum of an auxiliary register (ARn) and the 
displacement (disp). The displacement is either an eight-bit unsigned integer contained in 
the instruction word or an implied value of 1. After the data is fetched, the auxiliary register 
is updated with the address generated. 

Operation: operand address = ARn+disp 

ARn=ARn+disp 

Assembler Syntax: *++ARn(disp) 

Modification Field: 00010 

ARn address 

31 8 7 0 

disp 10 0 ... 0 o 1 Integer t--I + I 
31 o 

operand 

Example 6-6. Indirect with Pre-Displacement Subtract and Modify 

The address of the operand to be fetched is the contents of an auxiliary register (ARn) minus 
the displacement (disp). The displacement is either an eight-bit unsigned integer contained 
in the instruction word or an implied value of 1. After the data is fetched, the auxiliary reg
ister is updated with the address generated. 

Operation: 

Assembler Syntax: 

Modification Field: 

ARn 

31 

dlsp 10 0 ... 0 

31 

operand address = ARn-disp 
ARn=ARn+disp 

*--ARn(disp) 

00010 

o 
address 

870 

o I Integer r l - I 

operand 

6-9 

• 



Addressing - Types of Addressing 

Example 6-7, Indirect with Post-Displacement Add and Modify 

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After 
the operand is fetched, the displacement (disp) is added to the auxiliary register. The dis
placement is either an eight-bit unsigned integer contained in the instruction word or an 
implied value of 1. 

Operation: 

Assembler Syntax: 

Modification Field: 

ARn 

operand address = ARn 
ARn=ARn+disp 

"ARn++(disp) 

00100 

address 

31 8 7 ° 
disp ... 1_o ____ o_._ .. _o ____ o..&I __ in_teg_e_r_ ... t--' +) 

31 

operand 
° 

Example 6-8, Indirect with Post-Displacement Subtract and Modify 

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After 
the operand is fetched, the displacement (disp) is subtracted from the auxiliary register. The 
displacement is either an eight-bit unsigned integer contained in the instruction word or an 
implied value of 1. 

6-10 

Operation: 

Assembler Syntax: 

Modification Field: 

ARn 

operand address = ARn 
ARn=ARn-disp 

"ARn--(disp) 

00101 

address 

31 8 7 ° 
dlsp l ... o ____ o_,_ .. _o ____ o..&I __ i_n_te_g_e_r _ ... ~, -) 

31 

operand 

° 

° 



Addressing - Types of Addressing 

Example 6-9. Indirect with Post-Displacement Add and Circular Modify 

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After 
the operand is fetched, the displacement (disp) is added to the contents of the auxiliary re
gister using circular addressing. This result is used to update the auxiliary register. The 
displacement is either an eight-bit unsigned integer contained in the instruction word or an 
implied value of 1 . 

Operation: 

Assembler Syntax: 

Modification Field: 
31 

ARn 

operand address = ARn 
ARn=circ(ARn+disp) 

*ARn++(disp)% 

00110 

address 

31 8 (%) ~ ______________ ~7 ________ ~0 I 

disp I 0 0 ... 0 0 I integer ~ +) 

31 

operand 

o 

Example 6-10. Indirect with Post-Displacement Subtract and Circular Modify 

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After 
the operand is fetched, the displacement (disp) is subtracted from the contents of the auxil
iary register using circular addressing. This result is used to update the auxiliary register. 
The displacement is either an eight-bit unsigned integer contained in the instruction word 
or an implied value of 1. 

Operation: 

Assembler Syntax: 

Modification Field: 

31 

ARn 

2423 

operand address = ARn 
ARn=circ(ARn-disp) 

* ARn--(disp)% 

00111 

address 

(%) 
r3_1 _______________ 8T7 ________ ~0 I 

disp I 0 0 ... 0 0 I integer r' -) 
31 

operand 

o 

o 

6-11 

• 



Addressing - Types of Addressing 

Example 6-11. Indirect with Pre-Index Add 

The address of the operand to be fetched is the sum of an auxiliary register (ARn) and an 
index register (IRO or IR1). generated. 

Operation: operand address = ARn+IRm 

Assembler Syntax: *+ARn(IRm) 

Modification Field: 01000 if m=O 
10000 if m=1 

31 2423 0 

xl address 

I 0 

index r-1+1 

~ 0 

ARn---1Lx ________ ~--------------~----~ 

IRm---1LX ________ XLI ____________________ ~ 
31 2423 

31 

operand 

Example 6-12. Indirect with Pre-Index Subtract 

The address of the operand to be fetched is the difference of an auxiliary register (ARn) and 
an index register (IRO or IR1). 

6-12 

Operation: 

Assembler Syntax: 

Modification Field: 

operand address = ARn-IRm 

*-ARn(IRm) 

01001 
10001 

if m=O 
if m=1 

31 2423 o 

ARn~Lx ________ xLI ________ a_d_d_re_s_s __ _r----~ 

31 2423 0 I 
IRm--tL..X ___ x .... I_31 ___ i_nd_ex ___ ---'~r 

o 
operand 



Addressing - Types of Addressing 

Example 6-13. Indirect with Pre-Index Add and Modify 

The address of the operand to be fetched is the sum of an auxiliary register (ARn) and an 
index register (IRO or IR1). After the data is fetched, the auxiliary register is updated with 
the address generated. 

Operation: 

Assembler syntax: 

Modification Field: 

31 

ARn 

31 2423 

operand address = ARn+IRm 
ARn=ARn+IRm 

*++ARn(IRm) 

01010 
10010 

2423 

address 

o 

if m=O 
if m=1 

o 

IRm---1 x xl ~ ______ ~ _________ i_nd_e_x ________ ~~I+) 

31 o 
operand 

Example 6-14. Indirect with Pre-Index Subtract and Modify 

The address of the operand to be fetched is the difference of an auxiliary register (ARn) and 
an index register (IRO or IR1). The resulting address becomes the new contents of the 
auxiliary register. 

Operation: 

Assembler Syntax: 

Modification Field: 

31 

ARn 

operand address = ARn-IRm 
ARn=ARn-IRm 

*--ARn(IRm) 

01011 
10011 

2423 

address 

if m=O 
if m=1 

o 

31 2423 0 

IRm ---I ... x ________ x .... I _________ i_nd_e_x ________ --'r--'-) 
31 

operand 

6-13 



Addressing - Types of Addressing 

Example 6-15. Indirect with Post-Index Add and Modify 

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After 
the operand is fetched, the index register (IRO or IR1) is added to the auxiliary register. 

Operation: operand address = ARn 
ARn=ARn+IRm 

Assembler Syntax: "ARn++(IRm) 

Modification Field: 01100 if m=O 
10100 if m=1 

31 2423 0 

ARn address 

31 2423 0 

IRm--tx x I index ~(+I 

31 0 

operand 

Example 6-16. Indirect with Post-Index Subtract and Modify 

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After 
the operand is fetched, the index register (IRO or IR1) is subtracted from the auxiliary regis
ter. 

6-14 

Operation: 

Assembler Syntax: 

Modification Field: 

ARn 

operand address = ARn 
ARn=ARn-IRm 

"ARn--(IRm) 

01101 
10101 

address 

31 2423 0 

IRm---1~x ________ x~I _________ i_n_de_x ________ ~~(-1 

31 

operand 

if m=O 
if m=1 

o 

o 



Addressing - Types of Addressing 

Example 6-17. Indirect with Post-Index Add and Circular Modify 

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After 
the operand is fetched, the index register (IRO or IR1) is added to the auxiliary register. This 
value is evaluated using circular addressing and replaces the contents of the auxiliary register. 

Operation: 

Assembler Syntax: 

Modification Field: 

ARn 

operand address = ARn 
ARn=circ(ARn+1 Rm) 

*ARn++(IRm)% 

01110 
10110 

address 

31 2423 0 1%) 
~----~r~--------------, I 

IRm---jx xl index r l +) 

31 

operand 

if m=O 
if m=1 

Example 6-18. Indirect with Post-Index Subtract and Circular Modify 

o 

o 

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After 
the operand is fetched, the index register (IRO or IR1) is subtracted from the auxiliary regis
ter. This value is evaluated using circular addressing and replaces the contents of the auxil
iary register. 

Operation: 

Assembler Syntax: 

Modification Field: 

ARn 

operand address = ARn 
ARn=circ(ARn-1 Rm) 

*ARn--(IRm)% 

01111 
10111 

address 

31 2423 0 1%) 
~ ____ -,~ ______________ -, I 

IRm--1 x x I index r l -) 

31 

operand 

if m=O 
if m=1 

o 

6-15 



Addressing - Types of Addressing 

Example 6-19. Indirect with Post-Index Add and Bit-Reversed Modify 

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After 
the operand is fetched, the index register (IRO) is added to the auxiliary register. This addi
tion is performed with a reverse-carry propagation and can be used to yield a bit-reversed 
(8) address. This value replaces the contents of the auxiliary register. 

Operation: 

Assembler Syntax: 

Modification Field: 

ARn 

operand address = ARn 
ARn=B(ARn+IRO) 

'ARn++(IRO)B 

11001 

address 

31 2423 0 (B) ~ ______ ~~ __________________ ~ I 

IRm---t x x I index r( +) 

31 

operand 

o 

o 

6.1.4 Short-Immediate Addressing 

In short-immediate addressing, the operand is a 16-bit immediate value con
tained in the 16 least-significant bits of the instruction word (expr). De
pending upon the data types assumed for the instruction, the short-immediate 
operand may be a two's-complement integer, an unsigned integer, or a float
ing-point number. The syntax for this mode is listed below. 

Syntax: expr 

Example 6-20 gives an instruction example with before and after instruction 
data. 

Example 6-20. Short-Immediate Addressing 

SUBI 1/RO 

Before Instruction: After Instruction: 

RO = Oh RO = OFFFFFFFFh 

6-16 



Addressing - Types of Addressing 

6.1.5 Long-Immediate Addressing 

In long-immediate addressing, the operand is a 24-bit immediate value con
tained in the 24 least-significant bits of the instruction word (expr). The syn
tax for this mode is listed below. 

Syntax: expr 

Example 6-21 gives an instruction example with before and after instruction 
data. 

Example 6-21. Long-Immediate Addressing 

BR BOOOh 

Before Instruction: After Instruction: 

PC = Oh PC = BOOOh 

6.1.6 PC-Relative Addressing 

PC-relative addressing is used for branching. It replaces the value of the PC 
based upon the contents of the 16 least significant bit of the instruction word. 
The assembler takes the src (a label or address) specified by the user and 
generates a displacement. If the branch is a standard branch, this displace
ment is equal to the label - (PC+1). If the branch is a delayed branch, this 
displacement is equal to the label - (PC+3). 

The displacement is stored as a 16-bit signed integer in the least significant 
bits of the instruction word. 

Syntax: expr 

Example 6-22 gives an instruction example with before and after instruction 
data. 

Example 6-22. PC-Relative Addressing 

BU NEWPC ; pc=l, NEWPC=5, displacement=3 

Before Instruction: After Instruction: 

PC = 1h PC = 5h 

6-17 



Addressing - Groups of Addressing Modes 

6.2 Groups of Addressing Modes 

The types of addressing are used to form the following five groups of ad
dressing modes: 

• General addressing modes (G) 
• Three-operand addressing modes (T) 
• Parallel addressing modes (P) 
• Long-immediate addressing mode 
• Conditional-branch addressing modes (B) 

These groups of addressing modes are discussed in the following sections. 

6.2.1 General Addressing Modes 

31 2928 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

6-18 

Instructions that use the general addressing modes are general-purpose in
structions, such as ADD!. MPYF, and LSH. Such instructions are usually of 
the form: 

dst operation src -+ dst 

where the destination operand is signified by dst, the source operand by src, 
and 'operation' defines an operation to be performed using the general ad
dressing modes to specify certain operands. Bits 31-29 are zero, indicating 
general addressing mode instructions. Bits 22 and 21 specify the general ad
dressing mode (G) field, which defines how bits 15 through 0 are to be in
terpreted for addressing the src operand. 

Options for bits 22 and 21 (G field) are as follows: 
o 0 register (all CPU registers unless specified otherwise) 
01 direct 
1 0 indirect 
1 1 immediate 

If the src and dst fields contain register specifications, the value in these fields 
contains the CPU register addresses as defined by Table 6-1. For the general 
addressing modes, the following values of ARn are valid: 

ARn, 0 ~ n ~ 7 

Figure 6-2 shows the encoding for the general addressing modes. The nota
tion 'modn' indicates the modification field that goes with the ARn field. Refer 
to Table 6-2 for further information. 

2322 21 20 1615 11 10 87 54 o 
operation 0 0 dst 0 0 0 0 0 0 0 0 0 0 01 src 

operation 0 1 dst direct 

operation 1 0 dst modn I ARn I disp 

operation 1 1 dst immediate 

I G I Destination Source Operands 

Figure 6-2. Encoding for General Addressing Modes 



Addressing - Groups of Addressing Modes 

6.2.2 Three-Operand Addressing Modes 

31 2928 

0 0 1 

0 0 1 

0 0 1 

0 0 1 

Instructions that use the three-operand addressing modes, such as ADDI3, 
LSH3, CMPF3. or XOR3, are usually of the form: 

SRC1 operation SRC2 -+ dst 

where the destination operand is signified by dst. the source operands by 
SRC1 and SRC2, and 'operation' defines an operation to be performed. Note 
that the '3' can be omitted from three-operand instructions. 

Bits 31 -29 are set to the value of 001, indicating three-operand addressing 
mode instructions. Bits 22 and 21 specify the three-operand addressing mode 
(T) field, which defines how bits 15-0 are to be interpreted for addressing the 
SRC operands. Bits 15-8 are used to define the SRC1 address, and bits 7-0 
to define the SRC2 address. Options for bits 22 and 21 (T) are as follows: 

T SRC1 SRC2 

00 Register Register 
01 Indirect Register 
1 0 Register Indirect 
1 1 Indirect Indirect 

Figure 6-3 shows the encoding for three-operand addressing. If the SRC1 
and SRC2 fields use the same auxiliary register. both addresses are correctly 
generated. However, only the value created by the SRC1 field is saved in the 
auxiliary register specified. The assembler issues a warning if this condition 
is specified by the user. 

The following values of ARn and ARm are valid: 

ARn,O :s n :s 7 
ARm,O :s m :s 7 

The notation "modm" or "modn" indicates the modification field goes with the 
ARm or ARn field respectively. Refer to Table 6-2 for further information. 

In indirect addressing of the three-operand addressing mode, displacements 
(if used) are allowed of 0 or 1, and the index registers (IRO and IR1) can be 
used. The displacement of 1 is implied and is not explicitly coded in the in
struction word. 

2322 21 20 1615 1312 1110 87 54 32 o 
operation 0 0 dst 0 0 01 src1 0 0 01 src2 

operation 0 1 dst modn I ARn 0 0 01 src2 

operation 1 0 dst 0 0 01 src1 modn 1 ARn 

operation 1 1 dst modn 1 ARn modm 1 ARm 

1 T 1 SRC1 SRC2 

Figure 6-3. Encoding for Three-Operand Addressing Modes 

6-19 

• 



• 

Addressing - Groups of Addressing Modes 

6.2.3 Parallel Addressing Modes 

6-20 

Instructions that use parallel addressing (indicated by II (two vertical bars» 
allow for the greatest amount of parallelism possible. The destination oper
ands are indicated as d1 and d2, signifying dst1 and dst2, respectively (see 
Figure 6-4). The source operands, signified by sre1 and sre2, use the ex
tended-precision registers. The parallel operation to be performed is notated 
as 'operation'. 

modn modm 

sre3 sre4 

Figure 6-4. Encoding for Parallel Addressing Modes 

The parallel addressing mode (P) field specifies how the operands are to be 
used, i.e., whether they are source or destination. The specific relationship 
between the P field and the operands is detailed in the description of the in
dividual parallel instructions (see Section 11). However, the operands are al
ways encoded in the same way. Bits 31 and 30 are set to the value of 10, 
indicating parallel addressing mode instructions. Bits 25 and 24 specify the 
parallel addressing mode (P) field, which defines how bits 21-0 are to be in
terpreted for addressing the sre operands. Bits 21 -1 9 are used to define the 
sre1 address, bits 18-16 to define the sTe2 address, bits 15-8 the sre3 address, 
and bits 7 -0 the sTe4 address. The notation 'modn' and 'modm' indicate 
which modification field goes with which ARn or ARm (auxiliary register) 
field, respectively. The parallel addressing operands are listed below. 

STeT 0 S STeT S 7 (extended-precision registers RO-R7) 
sre2 0 S sre2 S 7 (extended-precision registers RO-R7) 
d1 If 0, dstT is RO. If 1, dst1 is R1. 
d2 If 0, dst2 is R2. If 1, dst2 is R3. 
P OsPs3 
sTe3 indirect (disp = 0, 1, IRO, IR1) 

sTe4 indirect (disp = 0, 1, IRO, IR1) 

As in the three-operand addressing mode, indirect addressing in the parallel 
addressing mode allows for displacements of 0 or 1 and the use of the index 
registers (IRO and IR1). The displacement of 1 is implied and is not explicitly 
coded in the instruction word. 

In the encoding shown for this mode in Figure 6-4, if the sTe3 and sre4 fields 
use the same auxiliary register, both addresses are correctly generated, but 
only the value created by the sre3 field is saved in the auxiliary register speci
fied. The assembler issues a warning if this condition is specified by the user. 



Addressing - Groups of Addressing Modes 

6.2.4 Long-Immediate Addressing Mode 

31 

I 0 1 1 

The long-immediate addressing mode is used to encode the program control 
instructions (BR, BRD, and CALL). for which it is useful to have a 24-bit ab
solute address contained in the instruction word. The unconditional branches, 
BR (standard) and BRD (delayed), use the long-immediate addressing mode. 
Bits 31-25 are set to the value of 0110000, indicating long-immediate ad
dressing mode instructions. Selection of bit 24 determines the type of branch: 
D = 0 for a standard branch or D = 1 for a delayed branch. The long-immed
iate operand is the 24-bit src. These instructions are encoded as shown in 
Figure 6-5. 

252423 o 
o 0 0 olDI src 

Figure 6-5. Encoding for Long-Immediate Addressing Mode 

6.2.5 Conditional-Branch Addressing Modes • 

Instructions using the conditional-branch addressing modes (Bcond, • 
BcondD, CALLcond, DBcond, and DBcondD) can perform a variety of con-

DBcond(D): 
31 

1 0 1 1 0 

Bcond(D): 

1 0 1 1 0 

ditional operations. Bits 31 -27 are set to the value of 01101, indicating con
ditional-branch addressing mode instructions. Bit 26 is set to 0 or 1, the 
former selects DBcond, the latter Bcond. Selection of bit 25 determines the 
conditional-branch addressing mode (B). If B = 0, register addressing is 
used; if B = 1, PC-relative addressing is used. Selection of bit 21 sets the type 
of branch: D = 0 for a standard branch or D = 1 for a delayed branch. The 
condition field (cond) specifies the condition checked to determine what ac-
tion to take, i.e., whether or not to branch (see Section 11 for a list of condi-
tion codes). Figure 6-6 shows the encoding for conditional-branch 
addressing. 

2726 2524 22 21 20 1615 54 0 

11 01 B 1 ARn 1 D 1 cond 10 0 0 0 0 0 0 0 0 0 01 src reg. I 
I I 

1 1 1 1 B 1 0 0 OIDI cond 1 immediate 1 

src I 

Figure 6-6. Encoding for Conditional-Branch Addressing Modes 

6-21 



Addressing - Circular Addressing 

6.3 Circular Addressing 

6-22 

Many algorithms, such as convolution and correlation, require the implemen
tation of a circular buffer in memory. In convolution and correlation, the cir
cular buffer is used to implement a sliding window which contains the most 
recent data to be processed. As new data is brought in, the new data over
writes the oldest data. Key to the implemention of a circular buffer is the im
plementation of a circular addressing mode. This section describes the circular 
addressing mode of the TMS320C30. 

The blocksize register (BK) specifies the size of the circular buffer. Informa
tion concerning the lower 16 bits of the BK register plus a user-selected aux
iliary register (ARn) are used to specify the bottom of the circular buffer. The 
information concerning the BK register is the location of the the first 1 bit, 
counting from the most-significant bit to the least-significant bit, in the lower 
16 bits. With the location of the first 1 bit specified as bit N, the address at 
the top of the buffer is referred to as the effective base (EB) and is equal to 
bits 31 through (N+1) of ARn with bits N through 0 of EB being zero. 

Figure 6-7 illustrates the relationships between the blocksize register (BK), the 
auxiliary registers (ARn), the bottom of the circular buffer, the top of the cir
cular buffer, and the index into the circular buffer. 



Addressing - Circular Addressing 

ARn 

FIRST 1 AT LOCATION N 

CIRCULAR 
ADDRESSING 
ALGORITHM 

LOGIC 

+ N+1 N 

NEW r-----.--....L---, 
INDEX '----~--r_-..... 

ARn'--_____ '--______ ~ 

LEGEND: 
ARn = auxiliary register n 
BK = blocksize register 
E F = effective base 
H = high-order bits 

L = low-order bits 
L' = new low-order bits 
LSB = least-significant bit 
N = bit value 

Figure 6-7. Flowchart for Circular Addressing 

In circular addressing, 'index' refers to the N LSBs of the auxiliary register se
lected, and 'step' is the quantity being added to or subtracted from the auxil
iary register. The following two rules must be followed when using circular 
addressing: 

• The step used must be less than or equal to the blocksize. 

• The first time the circular queue is addressed, the auxiliary register must 
be pointing to an element in the circular queue. 

6-23 

• 



• 

Addressing - Circular Addressing 

6-24 

The algorithm for circular addressing is as follows: 

If 0 ~ index + step < BK: 
index = index + step. 

Else if index + step ~ BK: 
index = index + step - BK. 

Else if index + step < 0: 
index = index + step + BK. 

Figure 6-8 shows how the circular buffer is implemented. It illustrates the re
lationship of the quantities generated and the elements in the circular buffer. 

Address Data 

31 N+1 N 0 Top of Circular Buffer 

Effective Base (EB) 1 H ... H 0 ... 0 1-+ Element 0 

Element 1 

31 N+1 N 0 

Aux. Register (ARn) 1 H ... H L...L 1-+ Element (N LSBs of ARn) 

31 N+1 N 0 Last Element 

H ... H I LSBs of BK 1-+ Last Element + 1 

Figure 6-8. Circular Buffer Implementation 

Figure 6-9 provides an example that shows the operation of circular address
ing. Assuming that all ARs are four bits, let ARO = OOOO,and BK = 0110 
(blocksize of 6). This example shows a sequence of modifications and the 
resulting value of ARO. It also shows how the pointer steps through the cir
cular queue, with a variety of step sizes (both incrementing and decrement
ing). 



Addressing - Circular Addressing 

*ARO 
*ARO++(5)% 
*ARO++(2)% 
*ARO--(3)% 
*ARO++(6)% 
*ARO--% 

Value 

Oth -+ 

2nd -+ 

ARO 
ARO 
ARO 
ARO 
ARO 
ARO 

Data 

Element 0 

Element 1 

Element 2 

Element 3 

Element 4 

o (Oth value) 
5 (1st value) 
1 (2nd value) 
4 (3rd value) 
4 (4th value) 
3 (5th value) 

Address 

o 
1 

2 

3 

4 

5th -+ 

4th, 3rd -+ 

1 st -+ Element 5 (Last Element) 5 

Last Element + 1 6 

Figure 6-9. Circular Addressing Example 

Circular addressing is especially useful for the implementation of FIR filters. 
Figure 6-10 shows one possible data structure for FI R filters. Note that the 
initial value of ARO points to h(N-1), and the initial value of AR1 points to 
x(O). Circular addressing is used in the TMS320C30 code for the FIR filter 
shown in Figure 6-11. 

Impulse Response Input Samples 

ARO -+ h{N-1) x(N-1) 

h{N-2) x(N-2) 

h(2) x(2) 

h(1 ) x(1) 

h(O) x(O) ~AR1 

Figure 6-10. Data Structure for FIR Filters 

6-25 

• 



Addressing - Circular Addressing 

6-26 

* Initialization 
* 

* 
* 
TOP 

* 
* 
* 

II 

* 

LDI 
LDI 
LDI 

LDF 
STF 

LDF 
LDF 

Filter 

RPTS 
MPYF3 
ADDF3 
ADDF 

STF 
B 

N,BK 
H,ARO 
X,ARl 

IN, R3 
R3,*ARl++% 

O,RO 
O,R2 

Load block size. 
Load pointer to impulse response. 
Load pointer to bottom of input 
sample buffer. 

Read input sample. 
Store with other samples. 
and point to top of buffer. 
Initialize RO. 
Initialize R2. 

N-l ; Repeat next instruction. 
*ARO++%,*ARl++%,RO 
RO,R2,R2 Multiply and accumulate. 
RO,R2 Last product accumulated. 

R2,Y 
TOP 

Save result. 
Repeat. 

Figure 6-11. FIR Filter Code Using Circular Addressing 



Addressing - Bit-Reversed Addressing 

6.4 Bit-Reversed Addressing 

Bit-reversed addressing on the TMS320C30 is useful in FFT algorithms using 
a variety of radices. One auxiliary register is used as a pointer to the physical 
location of a data value. IRO is used to specify the size of the FFT; e.g., the 
value contained in IRO must be equal to 2n where n is an integer. By adding 
IRO to the auxiliary register using bit-reversed addressing, addresses are gen
erated in a bit-reversed fashion. 

To illustrate this kind of addressing, assume eight-bit auxiliary registers. Let 
AR2 contain the value 0110 0000 (96). This is the base address of the data 
in memory. Let IRO contain the value 0000 1000 (8). Figure 6-12 shows a 
sequence of modifications of AR2 and the resulting values of AR2. 

*AR2 AR2 0110 0000 (Oth value) 
*AR2++(IRO)B AR2 OllO 1000 (1st value) 
*AR2++(IRO)B AR2 OllO 0100 (2nd value) 
*AR2++(IRO)B AR2 OllO llOO (3rd value) 
*AR2++(IRO)B AR2 OllO 0010 (4th value) 
*AR2++(IRO)B AR2 OllO 1010 (5th value) 
*AR2++(IRO)B AR2 OllO OllO (6th value) 
*AR2++(IRO)B AR2 OllO 1110 (7th value) 

Figure 6-12. Bit- Reversed Addressing Example 

Table 6-3 shows the relationship of the index steps and the four LSBs of AR2. 
It can be seen that the four LSBs can be found by reversing the bit pattern of 
the steps. 

Table 6-3. Index Steps and Bit-Reversed Addressing 

STEP BIT PATTERN BIT-REVERSED PATTERN BIT-REVERSED STEP 

0 0000 0000 0 
1 0001 1000 8 
2 0010 0100 4 
3 0011 1100 12 
4 0100 0010 2 
5 0101 1010 10 
6 0110 0110 6 
7 0111 1110 14 

6-27 

• 



Addressing - System Stack Management 

6.5 System and User Stack Management 

The TMS320C30 provides a dedicated system stack pointer (SP) for building 
stacks in memory. The auxiliary registers can also be used to build a variety 
of more general linear lists. This section discusses the implementation of the 
following types ot.linear lists: 

Stack A linear list for which all insertions and deletions are made at one 
end of the list. 

Queue A linear list for which all insertions are made at one end of the list, 
and all deletions are made at the other end. 

Deque A 'double-ended queue' linear list for which insertions and deletions 
are made at the either end of the list. 

The system stack pointer (SP) is a 32-bit register that contains the address of 
the top of the system stack. The system stack fills from low-memory address 
to high-memory address (see Figure 6-13). The SP always points to the last 
element pushed onto the stack. A push performs a preincrement; and a pop, 
a postdecrement of the system stack pointer. 

The program counter is pushed on the system stack on subroutine calls, traps, 
and interrupts. It is popped from the system stack on returns. The system stack 
can be pushed and popped using the PUSH, POP, PUSHF, and POPF in
structions. 

LOW MEMORY 

BOTTOM OF STACK 

SP -+ TOP OF STACK 

(FREE) 

HIGH MEMORY 

Figure 6-13. System Stack Configuration 

6.5.1 Stacks 

6-28 

Stacks can be built from low to high memory or high to low memory. Two 
cases for each type of stack are shown. Stacks can be built using the 
preincrement/decrement and post increment/decrement modes of modifying 
the auxiliary registers (AR). Stack growth from high-to-Iow memory can be 
implemented in two ways: 

CASE 1: Stores to memory using * --ARn to push data on the stack and reads 
from memory using * ARn + + to pop data off the stack. 

CASE 2: Stores to memory using *ARn-- to push data on the stack and reads 
from memory using * + +ARn to pop data off the stack. 



Addressing - System Stack Management 

Figure 6-14 illustrates these two cases. The only difference is that in using 
case 1, the AR always points to the top of the stack, and in case 2, the AR 
always points to the next free location on the stack. 

ARn .... 

CASE 1 

LOW MEMORY 

(FREE) 

TOP OF STACK 

BOTTOM OF STACK 

HIGH MEMORY 

ARn .... 

CASE 2 

LOW MEMORY 

(FREE) 

TOP OF STACK 

BOTTOM OF STACK 

HIGH MEMORY 

Figure 6-14. Implementions of High-to-Low Memory Stacks 

Stack growth from low-to-high memory can be implemented in two ways: 

CASE 3: Stores to memory using '++ARn to push data on the stack and 
reads from memory using' ARn-- to pop data off the stack. 

CASE 4: Stores to memory using • ARn + + to push data on the stack and 
reads from memory using '--ARn to pop data off the stack. 

Figure 6-15 shows these two cases. In the case 3, the AR always points to 
the top of the stack. In case 4, the AR always points to the next free location 
on the stack. 

ARn .... 

CASE 3 
LOW MEMORY 

BOTTOM OF STACK 

TOP OF STACK 

(FREE) 

HIGH MEMORY 

ARn .... 

CASE 4 
LOW MEMORY 

BOTTOM OF STACK 

TOP OF STACK 

(FREE) 

HIGH MEMORY 

Figure 6-15. Implementions of Low-to-High Memory Stacks 

6-29 

• 



Addressing - System Stack Management 

6.5.2 Queues and Deques 

6-30 

The implementations of queues and deques is based upon the manipulation 
of the auxiliary registers for user stacks. For queues, two auxiliary registers 
are used, one to mark the front of the queue from which data is popped and 
the other to mark the rear of the queue where data is pushed. 

For deques, two auxiliary registers are also necessary. One is used to mark 
one end of the deque, and the other is used to mark the other end. Data can 
be popped or pushed from either end. 



Program Flow Control 





.. 

Section 7 

Program Flow Control 

The TMS320C30 provides a complete set of flexible and powerful constructs 
that allow for software control of the program flow. These consist of two main 
types: repeat modes and branching (standard and delayed). When program
ming includes a combination of repeat modes, standard branches, and delayed 
branches, the type best suited for a particular application can be selected. 

Several interlocked operations instructions provide a flexible means of multi
processor support. Through the use of external signals, these instructions al
low for powerful synchronization mechanisms. They also guarantee the 
integrity of the communication and result in a high-speed operation. 

The TMS320C30 supports a nonmaskable external reset signal and a number 
of internal and external interrupts. These functions can be programmed for a 
particular application. 

Major topics discussed in this section include: 

• Repeat Modes (Section 7.1 on page 7-2) 
Initialization 
Operation 

• Delayed Branches (Section 7.2 on page 7-7) 

• Interlocked Operations (Section 7.3 on page 7-8) 

• Reset Operation (Section 7.4 on page 7 -12) 

• Interrupts (Section 7.5 on page 7-15) 

7-1 



Program Flow Control - Repeat Modes 

7.1 Repeat Modes 

The repeat modes of the TMS320C30 allow for the implementation of zero
overhead looping. For many algorithms, there is an inner kernel of code where 
most of the execution time is spent. Using the repeat modes allows these 
time-critical sections of code to be executed in the shortest possible time. 

The TMS320C30 provides two instructions to support zero-overhead looping: 
RPTB (repeat a block of code) and RPTS (repeat a single instruction). RPTB 
allows for a block of code to be repeated a specified number of times. RPTS 
allows a single instruction to be repeated a number of times and redj.ces the 
bus traffic by fetching the instruction only once. ' 

Three registers (RS, RE, and RC) are associated with the updating of the 
program counter when updated in a repeat mode. Table 7-1 describes these 
registers. 

Table 7-1. Repeat Mode Registers 

REGISTER FUNCTION 

RS Repeat Start Address Register, Holds the address of the first instruction 
of the block of code to be repeated.> 

RE Repeat End Address Register, Holds the address of the last instruction 
of the block of code to be repeated, 

RC Repeat Count Register, Contains one less than the number of times the 
block remains to be repeated, 

7.1.1 Repeat Mode Initialization 

7-2 

There are two bits that are very important to the operation of RPTB and RPTS, 
the RM and S bits. 

The RM (repeat mode flag) bit in the status register specifies if the processor 
is running in the repeat mode. If RM = 0, fetches are not made in repeat 
mode, if RM = 1, fetches are made in repeat mode, 

The S bit is hidden from the user, but is necessary to fully describe the oper
ation of RPTB and RPTS. If S = 0, the CPU is not performing fetches in the 
repeat-single mode. If S = 1 and RM = 1, the CPU is performing fetches in 
the repeat-single mode. 

The correct operation of the repeat modes requires that all of the above regis
ters and status register fields be initialized correctly. The RPTB and RPTS in
structions perform this initialization in slightly different ways (see Sections 
7,1.2 and 7.1.3). 



Program Flow Control - Repeat Modes 

7.1.2 RPTB Initialization 

When RPTB src is executed, the following operations take place: 

1) PC + 1 -+ RS 
2) src -+ RE 
3) 1 -+ RM status register bit 
4) 0 -+ S bit. 

Step 1 loads the start address of the block into RS. Step 2 loads the src into 
the RE (end address of the block). The src operand is a 24-bit value con
tained in the instruction word. Step 3 sets the status register to indicate the 
repeat mode of operation. Step 4 indicates that this is the repeat block mode 
of operation. 

The last bit of information required is the number of times to repeat the block. 
The value is determined by properly initializing the RC (repeat count) register. 
Since the execution of RPTB does not load the RC, this register must be 
loaded explicitly by the user. The typical setup of the block repeat operation 
is shown below. 

LDI 15,RC; 15 -+ RC 
RPTB LOOP ; LOOP -+ RE, PC + 1 -+ RS, 1 -+ RM, 0 -+ S 

The repeat modes repeat a block of code at least once in a typical operation. • 
The repeat counter should be loaded with one less than the number of times 
to repeat the block; i.e., a value of 0 in RC repeats the block of code one time. 
All block repeats initiated by RPTB can be interru·pted. 

7.1.3 RPTS Initialization 

When RPTS src is executed, the following sequence of operations occurs: 

1) PC + 1 -+ RS 
2) PC + 1 -+ RE 
3) 1 -+ RM status register bit 
4) 1 -+ S bit 
5) src -+ RC 

The RPTS instuction loads all registers and mode bits necessary for the oper
ation of the single instruction repeat mode. Step 1 loads the start address of 
the block into RS. Step 2 loads the end address into the RE (end address of 
the block). Since this is a repeat of a single instruction, the start address and 
the end address are the same. Step 3 sets the status register to indicate the 
repeat mode of operation. Step 4 indicates that this is the repeat single-in
struction mode of operation. The operand src is loaded into RC. 

Repeats of a single instruction initiated by RPTS are not interruptible, since 
the RPTS fetches the instruction word only once and then keeps it in the in
struction register for reuse. An interrupt would cause the instruction word to 
be lost. The refetching of the instruction word from the instruction register 
reduces memory accesses and, in effect, acts as a one-word program cache. 
If it is necessary to have a single instruction that is repeatable and interruptible, 
the RPTB instruction may be used on this single instruction. 

7-3 



Program Flow Control - Repeat Modes 

7.1.4 Repeat Mode Operation 

if RM == 1 

The information in the repeat mode registers and associated control bits is 
used to control the modification of the PC when the fetches are being made 
in repeat mode. The repeat modes compare the contents of the RE register 
with the program counter (PC). If they match and the repeat counter is non
negative, the repeat counter is decremented, the PC is loaded with the repeat 
start address, and the processing continues. The fetches and appropriate sta
tus bits are modified as necessary. Note that the repeat counter (RC) is never 
modified when RM is O. The maximum number of repeats occurs when RC = 
080000000h. This will result in 080000001 h repetitions. The detailed algo
rithm for the update of the PC is described in Figure 7-1. 

if 5 == 1 
if first time through 

fetch instruction from memory 
else 

fetch instruction from I R 

RC - 1 -+ RC 
if RC < 0 

0-+ 5T(RM) 
O-+S 
PC + 1 -+ PC 

else if S == 0 
fetch instruction from memory 
ifPC==RE 

RC - 1 -+ RC 
if RC > 0 

RS -+ PC 
else if RC < 0 

0-+ 5T(RM) 
0-+5 
PC + 1 -+ PC 

; If in repeat mode (RPTB or RPTS) 
; If RPTS 
; If this is the first fetch 
; Fetch instruction from memory 
; If not the first fetch 
; Fetch instruction from I R 

; Decrement RC 
; If RC is negative 
; Repeat single mode completed 
; Turn off repeat mode bit 
; Clear S 
; Increment PC 

; If RPTB 
; Fetch instruction from memory 
; If this is the end of the block 
; Decrement RC 
; If RC is not negative 
; Set PC to start of block 
; If RC is negative 
; Turn off repeat mode bits 
; Clear 5 
; Increment PC 

Figure 7-1. Repeat Mode Control Algorithm 

The RPTB and RPTS are four-cycle instructions. These four cycles of over
head are only incurred on the first pass through the loop. All subsequent 
passes through the loop are accomplished with zero cycles of overhead. In 
Example 7-1, the block of code from STLOOP to ENDLOP is repeated sixteen 
times. 

Example 7-1. RPTB Operation 

LD 
RPTB 

lS,Re 
ENDLOP 

Load repeat counter with 15 
Execute the block of code 

STLOOP from STLOOP to ENDLOP 16 times 

END LOP 

7-4 



Program Flow Control - Repeat Modes 

Using this mode of modifying the PC allows for a straightforward analysis of 
what would happen in the case of branches within the block. It is best to look 
at the operation from the point of view that the next value of the PC will be 
either PC + 1 or the contents of the RS register. It is thus apparent that this 
method of block repeat allows for any amount of branching within the re
peated block. Execution can go anywhere within the user's code via interrupts, 
subroutine calls, etc. For proper modification of the loop counter, the last in
struction of the loop must be fetched. The repeating of the loop can be 
stopped prior to completion by writing a 0 into the repeat counter or writing 
o into the RM bit of the status register. 

Since the block repeat modes modify the program counter, other instructions 
cannot modify the program counter at the same time. Two rules apply here: 

1) The last instruction in the block (or the only instruction in a block of size 
one) cannot be a Bcond, BR, o Bcond, CALL, CALLcond, TRAPcond, 
RETIcond, RETScond, IDLE, RPTB, or RPTS. Example 7-2 shows an 
incorrectly placed standard branch. 

2) None of the last four instructions from the bottom of the block (or the 
only instruction in a block of size one) can be a BcondO, BRO, or 
o BcondO. Example 7-3 shows an incorrectly placed delayed branch. 

If either of these rules are violated. the PC will be undefined. 

Example 7-2. Incorrectly Placed Standard Branch 

LD lS,RC 
RPTB ENDLOP 

STLOOP 

JCS 

END LOP BR OOPS 

Load repeat counter with 15 
Execute block of code 
from STLOOP to ENDLOP 16 times 

i This branch violates rule 1 

Example 7-3. Incorrectly Placed Delayed Branch 

LD 
RPTB 

STLOOP 

GAF 

BRD 
ADDF 
MPYF 

END LOP SUBF 

1S,RC 
END LOP 

OOPS 

Load repeat counter with 15 
Execute block of code 
from STLOOP to ENDLOP 16 times 

This branch violates rule 2 

Block repeats (RPTB) are nestable. Since all of the control is defined by the 
RS, RE, RC, and ST registers, saving and restoring these registers allows for 
their nesting. The RM bit in the status register can be used to determine if the 
block repeat mode is active. For example, if an interrupt service routine is 
written which requires the use of RPTB, it is possible that the interrupt asso
ciated with the routine may occur during another block repeat. The interrupt 
service routine can check the RM bit. If this bit is set, the interrupt routine 
saves RS, RE, RC, and ST. The interrupt routine can then perform a block re
peat. Before returning to the interrupted routine, the interrupt routine restores 

7-5 



Program Flow Control - Repeat Modes 

7-6 

RS, RE, RC, and ST. If the RM bit is not set, the save and restore of these re
gisters is not necessary. 



Program Flow Control - Delayed Branches 

7.2 Delayed Branches 

The branching capabilities of the TMS320C30 include two main types: stan
dard and delayed branches. Standard branches empty the pipeline before 
performing the branch to guarantee correct management of the program 
counter. This results in a TMS320C30 branch taking four cycles. Included in 
this class are calls, returns, and traps. 

Delayed branches on the TMS320C30 do not empty the pipeline, but rather 
guarantee that the next three instructions will be executed before the program 
counter is modified by the branch. The result is a branch that only requires a 
single cycle, thus making the speed of the delayed branch very close to the 
optimal block repeat modes of the TMS320C30. However, unlike block repeat 
modes, delayed branches may be used in situations other than looping. Every 
delayed branch has a standard branch counterpart that is used when a delayed 
branch cannot be used. The delayed branches of the TMS320C30 are 
BcondD, BRO, and DBcondD. 

Conditional delayed branches use the conditions that exist at the end of the 
instruction immediately preceding the delayed branch. They do not depend 
upon the instructions following the delayed branch. Delayed branches are 
guaranteed to allow the three following instructions to be executed regardless 
of other pipeline conflicts. 

When a delayed branch is fetched, it remains pending until the three following 
instructions are executed. None of the three instructions that follow a delayed 
branch can be Bcond, BcondD, BR, BRD, DBcond, DBcondD, CALL, 
CALLcond, TRAPcond, RET/cond, RETScond, RPTB, RPTS, or IDLE. (see 
Example 7 -4). 

Delayed branches disable interrupts until the three instructions following the 
delayed branch are completed. This is independent of whether or not the 
branch is taken. 

If delayed branches are used incorrectly, the PC will be undefined. 

Example 7-4. Incorrectly Placed Delayed Branches 

Bl: BD Ll 
Nap 
Nap 

B2: B L2 This branch is incorrectly placed 
Nap 
MJH 
Nap 

7-7 



Program Flow Control - Interlocked Operations 

7.3 Interlocked Operations 

7-8 

One of the most common multiprocessing configurations is the sharing of 
global memory by multiple processors. In order to allow multiple processors 
to access this global memory and share data in a coherent manner, some sort 
of arbitration or handshaking is necessary. This requirement for arbitration is 
the purpose of the TMS320C30 interlocked operations. 

The TMS320C30 provides a flexible means of multiprocessor support with five 
instructions, referred to as interlocked operations. Through the use of external 
signals, these instructions allow for powerful synchronization mechanisms. 
They also guarantee the integrity of the communication and result in a high
speed operation. The interlocked-operation instruction group is listed in Table 
7-2. 

Table 7-2. Interlocked Operations 

MNEMONIC DESCRIPTION OPERATION 

LOFI Load floating-point value into a register. Signal interlocked 
interlocked src -+ dst 

LOll Load integer into a register. interlocked Signal interlocked 
src -+ dst 

SIGI Signal. interlocked Signal interlocked 
Clear interlock 

STFI Store floating-point value to memory. src -+ dst 
interlocked Clear interlock 

STII Store integer to memory. interlocked src -+ dst 
Clear interlock 

The interlocked operations use the two external flag pins, XFO and XF1. XFO 
must be configured as an output pin, and XF1 as an input pin. When config
ured in this manner, XFO signals an interlock operation request. and XF1 acts 
as an acknowledge signal for the requested interlocked operation. In this 
mode, XFO and XF1 are treated as active-low signals. 

The external timing for the interlocked loads and stores are the same as stan
dard load ard stores. The interlocked loads and stores may be extended like 
standard accesses, by using the appropriate ready signal (ROY or XROY). 

The LOFI and LOll instructions perform the following actions: 

1) Simultaneously set XFO to 0 and begin a read cycle. The timing of XFO 
is similar to that of the address bus during a read cycle. 

2) Execute an LOF or LOI instruction and extend the read cycle until XF1 
is set to 0 and a ready (ROY or XROY) is signalled. 

3) Leave XFO set to 0 and end the read cycle. 

The read/write operation is identical to any other read/write cycle except for 
the special use of XFO and XF1. The src operand for LOFI and LOll is always 
a direct or indirect memory address. XFO is set to 0 only if the src is located 
off-chip; i.e., (STRB, MSTRB or IOSTRB is active). or the src is one of the on
chip peripherals. If on-Chip memory is accessed, then XFO is not asserted, and 
the operation is as an LOF or LOI from internal memory. 



Program Flow Control - Interlocked Operations 

The STFI and STII instructions perform the following operations: 

1) Simultaneously set XFO to 1 and begin a write cycle. The timing of XFO 
is similar to that of the address bus during a write cycle. 

2) Execute an STF or STI instruction and extend the write cycle until a 
ready (ROY or XROY) is signalled. 

As in the case for LOFI and LOll, the dst of STFI and STII affects XFO if dst 
is located off-chip (STRB, MSTRB, or IOSTRB is active), or the src is one of the 
on-chip peripherals. If on-chip memory is accessed, then XFO is not asserted 
and the operations are as an STF or STI to internal memory. 

The SIGI instruction functions as follows: 

1 ) Sets XFO to O. 
2) Idles until XF1 is set to O. 
3) Sets XFO to 1 and ends the operation. 

While the LOFI, LOll, and SIGI instructions are waiting for XF1 to be set to 
0, they may be interrupted. LOFI and LOll require a ready signal in order to 
be interrupted. This allows the user to implement protection mechanisms 
against deadlock conditions by interrupting an interlocked load that has taken 
too long. Upon return from the interrupt, the next instruction is executed. The 
STFI and STii instructions are not interruptible. 

Interlocked operations can be used to implement a busy-waiting loop, to ma- • 
nipulate a multiprocessor counter, to implement a simple semaphore mech-
anism, or to perform synchronization between two TMS320C30s. The 
following examples illustrate the usefulness of the interlocked operations in
structions. Example 7-5 shows the implementation of a busy-waiting loop. If 
location LOCK is the interlock for a critical section of code, and a nonzero 
means the lock is busy, the algorithm for a busy-waiting loop can be used as 
shown in Example 7 -5. 

Example 7-5. Busy-Waiting loop 

LDI: 1,RO 
L1: LDII @LOCK,R1 

STII RO,@LOCK 

BNZ L1 

Put 1 in RO 
Interlocked operation begun 
Contents of LOCK -+ R1 
Put RO (= 1) into LOCK, XFO 
Interlocked operation ended 
Keep trying until LOCK = 0 

1 

Example 7-6 shows how a location COUNT may contain a count of the 
number of times a particular operation needs to be performed. This operation 
may be performed by any processor in the system. If the count is zero, the 
processor waits until it is nonzero before beginning processing. The algorithm 
for modifying COUNT correctly is shown in Example 7-6. 

7-9 



Program Flow Control - Interlocked Operations 

Example 7-6. Multiprocessor Counter Manipulation 

7-10 

CT: OR 

LDII 

BZ 
SUBI 
STII 

4,IOF 

@COUNT,Rl 

CT 
1,Rl 
Rl,@COUNT 

XFO = 1 
Interlocked operation ended 
Interlocked operation begun 
Contents of COUNT ~ Rl 
If COUNT = 0, keep trying 
Decrement Rl(= COUNT) 
Update COUNT, XFO = 1 
Interlocked operation ended 

Figure 7-2 illustrates multiple TMS320C30s sharing global memory and using 
the interlocked instructions as in Examples 7 -7, 7 -8, 7 -9, and 7 -10. 

Global 
Memory 

lie :! ... 
Q t Q C 
C Q 

Arbitration 
Logic 

Lock. Count. or S 

XFO XF1 (XIA (XIA XFO XF1 

(XID (XlD TMS320C30 TMS320C30 
CTRL CTRL 

#2 #1 

1 1 
Locel Locel 

Memory Memory 

Figure 7-2. Multiple TMS320C30s Sharing Global Memory 

Sometimes it may be necessary for several processors to access some shared 
data or other common resources. The portion of code which must access the 
shared data is called a critical section. 

To ease the programming of critical sections, semaphores may be used. Se
maphores are variables which can only take non-negative integer values. Two 
primitive, indivisible, operations are defined on semaphores, namely (with S 
being a semaphore): 



Program Flow Control - Interlocked Operations 

V(S) : S + 1 -+ S 
P(S): P: if (S == D), go to P 

else S - 1 -+ S 

Indivisibility of V(S) and peS) means that when these processes access and 
modify the semaphore S, they are the only processes accessing and modifying 
S. 

To enter a critical section, a P operation is performed on a common sema
phore. say S (S is initialized to 1). The first processor performing peS) will 
be able to enter its critical section. All other processors are blocked since S 
has become O. After leaving its critical section. the processor performs a V(S). 
thus allowing another processor to execute peS) successfully. 

The TMS320C30 code for V(S) is shown in Example 7-7. and code for peS) 
is shown in Example 7 -8. Compare the code in Example 7 -8 to the code in 
Example 7 -6. 

Example 7-7. Implementation of V(S) 

V: LDII @S,RD 

ADDI 1,RD 
STII RD,@S 

Interlocked read of S begins (XFD 
Contents of S -+ RD 
Increment RD (= S) 
Update S, end interlock (XFD = 0) 

Example 7-8. Implementation of peS) 

P: OR 
LDII 

BZ 
SUBI 
STII 

4,IOF 
@S,RD 

P 
1,RD 
RD,@S 

End interlock (XFO = 1) 
Interlocked read of S begins 
Contents of S -+ RO 
If S = 0, go to P and try again 
Decrement RD (= S) 
Update S, end interlock (XFO = 1) 

0) 

The SIGI operation may be used to synchronize. at an instruction level. multi
ple TMS320C30s. Consider two processors connected as shown in Figure 
7 -3 The code for the two processors is shown in Example 7-9 

TMS320C30 #1 TMS320C30 #2 

1 :::~~ -I::: 
Figure 7-3. Zero-Logic Interconnect of TMS320C30s 

7 -11 



Program Flow Control - Interlocked Operations 

Processor #1 runs until it executes the SIGI. It then waits until processor #2 
executes a SIGI. At this point, the two processors have synchronized and 
continue execution. 

Example 7-9. Code to Synchronize Two TMS320C30s at the Software Level 

TIme Code for TM8320C30 #1 Code for TM8320C30 #2 

0 • • 
• • 
• • 

81GI • 
1 

• 
• 
• 

(WAin • 
1 

• 
• • 

• 4-- Synchronization Occurs ____ 81GI 

• • 
+ • • 

• • 
N • • 

7-12 



Program Flow Control - Reset Operation 

7.4 Reset Operation 

The TMS320C30 supports a nonmaskable external reset signal (RESET), which 
is used to perform system reset. This section discusses the reset operation. 

At powerup, the state of the TMS320C30 processor is undefined. The RESET 
signal is used to place the processor in a known state. This signal must be 
asserted low for 10 or more H1 clock cycles to guarantee a system reset. H1 
is an output clock signal generated by the TMS320C30 (see Appendix A for 
more information). 

Reset affects the other pins on the device in either a synchronous or asyn
chronous manner. The synchronous reset is gated by the TMS320C30s in
ternal clocks. The asynchronous reset directly affects the pins, and is faster 
than the synchronous reset. Table 7 -3 shows the state of the TMS320C30s 
pins after RESET = O. Each pin is described according to whether the pin is 
reset synchronously or asynchronously. 

Table 7-3. Pin Operation at Reset 

SIGNAL # PINS OPERATION AT RESET 

PRIMARY INTERFACE (61 PINS) 

0(31-0) 32 Synchronous reset. Placed in high-impedance state. 

A(23-0) 24 Synchronous reset. Placed in high-impedance state. 

R/W 1 Synchronous reset. Oeasserted by going to a high level. 

STRB 1 Synchronous reset. Oeasserted by going to a high level. 

R15V 1 Reset has no effect. 
HQ[j) 1 Reset has no effect. 

HC5I15A 1 Reset has no effect. 

EXPANSION INTERFACE (49 PINS) 

XO(31-0) 32 Synchronous reset. Placed in high-impedance state. 

XA(12-0) 13 Synchronous reset. Placed in high-impedance state. 

XR/W 1 Synchronous reset. Oeasserted by going to a high level. 

1iii"S'i'"im' 1 Synchronous reset. Oeasserted by going to a high level. 
iO"§'fR8 1 Synchronous reset. Oeasserted by going to a high level. 

XRDV 1 Reset has no effect. 

CONTROL SIGNALS (9 PINS) 

RESET 1 Reset input pin 

00(3-0) 4 Reset has no effect. 
TACi( 1 Synchronous reset. Oeasserted by going to a high level. 

MC/MP 1 Reset has no effect. 

XF(1-0) 2 Asynchronous reset. Placed in high-impedance state. 

7-13 



Program Flow Control - Reset Operation 

Table 7-3. Pin Operation at Reset (Continued) 

SIGNAL # PINS OPERATION AT RESET 

SERIAL PORT 0 SIGNALS (6 PINS) 

CLKXO 1 Asynchronous reset. Placed in high-impedance state. 

OXO 1 Asynchronous reset. Placed in high-impedance state. 

FSXO 1 Asynchronous reset. Placed in high-impedance state. 

CLKRO 1 Asynchronous reset. Placed in high-impedance state. 

ORO 1 Asynchronous reset. Placed in high-impedance state. 

FSRO 1 Asynchronous reset. Placed in high-impedance state. 

SERIAL PORT 1 SIGNALS (6 PINS) 

CLKX1 1 Asynchronous reset. Placed in high-impedance state. 

OX1 1 Asynchronous reset. Placed in high-impedance state. 

FSX1 1 Asynchronous reset. Placed in high-impedance state. 

CLKR1 1 Asynchronous reset. Placed in high-impedance state. 

OR1 1 Asynchronous reset. Placed in high-impedance state. 

FSR1 1 Asynchronous reset. Placed in high-impedance state. 

TIMER 0 SIGNAL (1 PIN) 

TCLKO 1 Asynchronous reset. Placed in high-impedance state. 

TIMER 1 SIGNAL (1 PIN) 

TCLK1 1 I Asynchronous reset. Placed in high-impedance state. 

SUPPLY and OSCILLATOR SIGNALS (29 PINS) 

Voo(3-0) 4 Reset has no effect. 

IOOVoo(1,O 2 Reset has no effect. 

AOVoo(1,0) 2 Reset has no effect. 

POVOO 1 Reset has no effect. 

OOVoo(1,0) 2 Reset has no effect. 

MDVoO 1 Reset has no effect. 

VSS(3-0) 4 Reset has no effect. 

OVSS(3-0) 4 Reset has no effect. 

CVSS(1,0) 2 Reset has no effect. 

IVSS 1 Reset has no effect. 

VBBP 1 Reset has no effect. 

SUBS 1 Reset has no effect. 

X1 1 Reset has no effect. 

X2/CLKIN 1 Reset has no effect. 

H1 1 Synchronous reset. Will go to its initial state when RE'SE'i' 
makes a 1 to 0 transition. See Appendix A. 

H3 1 Synchronous reset. Will go to its initial state when RESET 
makes a 1 to 0 transition. See Appendix A. 

7-14 



Program Flow Control - Reset Operation 

Table 7-3. Pin Operation at Reset (Concluded) 

SIGNAL # PINS OPERATION AT RESET 

EMULATION, TEST, and RESERVED (18 PINS) 

EMUO F14 Undefined. 

EMU1 E15 Undefined. 

EMU2 F13 Undefined. 

EMU3 E14 Undefined. 

EMU4 F12 Undefined. 

EMU5 C1 Undefined. 

EMU6 M6 Undefined. 

RSVO J3 Undefined. 

RSV1 J4 Undefined. 

RSV2 K1 Undefined. 

RSV3 K2 Undefined. 

RSV4 L1 Undefined. 

RSV5 K3 Undefined. 

RSV6 L2 Undefined. 

RSV7 K4 Undefined. 

RSV8 M1 Undefined. 

RSV9 L3 Undefined. 

RSV10 M2 Undefined. 

At system reset, the following additional operations are performed: 

• The peripherals are reset. This is a synchronous operation. The periph
eral reset is described in Section 9. 

• The following CPU registers are loaded with zero: 

ST (CPU status register) 
IE (CPU/DMA interrupt enable flags) 
IF (CPU interrupt flags) 
10F (I/O flags) 

• The reset vector is read from memory location Oh and loaded into the 
PC. This vector contains the start address of the system reset routine 

• Execution begins. Refer to Section 12 an example of a processor in
itialization routine. 

Multiple TMS320C30s driven by the same system clock may be reset and 
synchronized. When the 1 to 0 transition of RESET occurs, the processor is 
placed on a well-defined internal phase, and all of the TMS320C30s will come 
up on the same internal phase. 

7-15 



Program Flow Control - Interrupts 

7.5 Interrupts 

lR'Tn D 0: 

H1 

7-16 

The TMS320C30 supports multiple internal and external interrupts, which can 
be used for a variety of applications. This section discusses the operation of 
these interrupts. 

A functional diagram of the logic used to implement the external interrupt in
puts is shown in Figure 7-4; the logic for internal interrupts is similar. Addi
tional information regarding internal interrupts can be found in Section 9. 

H3 

D Q 

H1 

Intemel 
Interrupt 

Set 
Signal Interrupt 

Fleg In) 

D Q.--~_ 

CLK RESET 

Intamal 
Interrupt 

Clear/Acknowledge 
Signal 

EINTnIDMA) 

Figure 7-4. Interrupt Logic Functional Diagram 

To 
Control 

Internal Section 
Interrupt 
Procassor 

External interrupts are synchronized internally as illustrated by the three flip
flops clocked by H1 and H3. Once synchronized, the interrupt input will set 
the corresponding Interrupt Flag register (IF) bit if the interrupt is active. 

External interrupts can be effectively either edge- or level-triggered, depending 
on the duration of the low level on the interrupt input. An external interrupt 
must be held low for at least one H1/H3 cycle to be recognized by the 
TMS320C30. If the interrupt is held low for between one and three cycles, 
then only one interrupt is recognized. If the interrupt is held low three or more 
cycles, more than one interrupt may be recognized depending on how rapidly 
interrupts are serviced. 

When a particular interrupt is processed by the CPU or DMA controller, the 
corresponding interrupt flag bit is cleared by the internal interrupt acknowl
edge signal. It should be noted, however, that if INTn is still low when the 
interrupt acknowledge signal occurs, the interrupt flag bit will only be cleared 
for one cycle and then set again since INTn is still low. Accordingly, it is the
oretically possible that, depending on when the IF register is read, this bit may 
be zero even though INTn is zero. When the TMS320C30 is reset, zero is 
written to the interrupt flag register, thereby clearing all pending interrupts. 



Program Flow Control - Interrupts 

The interrupt flag register bits may be read and written under software control. 
Writing a 1 to a IF register bit sets the associated interrupt flag to 1. Similiarly, 
writing a 0 resets the corresponding interrupt flag to O. In this way, all inter
rupts may be triggered and/or cleared through software. Since the interrupts 
flags may be read, the interrupt pins may be polled in software when an in
terrupt-driven interface is not required. 

Internal interrupts operate in a similar manner. The bit in the IF register corre
sponding to an internal interrupt may be read and written through software. 
Writing a 1 sets the interrupt latch, and writing a 0 clears it. All internal in
terrupts are one H1 /H3 cycle in length. 

The CPU global interrupt enable bit (GIE), located in the CPU status register 
(ST), controls all CPU interrupts. All DMA interrupts are controlled by the 
DMA globa! interrup~ enable bit, which is not dependent upon ST(GIE) and 
is local to the DMA. The DMA global interrupt enable bit is dependent, in 
part, upon the state of the DMA SYNCH bits. It is not directly accessible 
through software (see Section 9). The AND of the interrupt flag bit and the 
interrupt enables is then connected to the interrupt processor. 

To provide for maximum performance in servicing interrupts, the interrupt ac
knowledge (lACK) instruction is provided. lACK drives the lACK pin and 
performs a dummy read. The read is peformed from the address specified by 
the lACK instruction operand. When lACK is used, it typically is placed in the 
early portion of an interrupt service routine. For certain applications, it may 
be better suited at the end of the interrupt service routine or be totally unnec
essary. 

The CPU controls all prioritization of interrupts (see Table 7 -4 for reset and 
interrupt vector locations and priorities). If the DMA is not using interrupts 
for synchronization of transfers, it will not be affected by the processing of the 
CPU interrupts. If the CPU is involved in a pipeline conflict (branch, register, 
or memory), it will not respond to the interrupts until that conflict is resolved. 
It is therefore possible to interrupt the CPU and DMA simultaneously with the 
same or different interrupts and, in effect, synchronize their activities. For ex
ample, it may be necessary to cause a high-priority DMA transfer that avoids 
bus conflicts with the CPU, i.e., make the DMA higher priority than the CPU. 
This may be accomplished using an interrupt that causes the CPU to trap to 
an interrupt routine that contains an IDLE instruction. Then if the same in
terrupt is used to synchronize DMA transfers, the DMA transfer counter can 
be used to generate an interrupt, and thus return control to the CPU following 
the DMA transfer. 

Since the DMA and CPU share the same set of interrupt flags, the DMA may 
clear an interrupt flag before the CPU can respond to it. For example, if the 
CPU interrupts are disabled, the DMA can be responding to interrupts and 
thus clearing the associated interrupt flags. 

7-17 



Program Flow Control - Interrupts 

7-18 

Table 7-4. Reset and Interrupt Vector Locations 

RESET OR VECTOR PRIORITY FUNCTION 
INTERRUPT LOCATION 

RESET Oh 0 External reset signal input on the RESET 
pin. 

INTO 1h 1 External interrupt input on the INTO pin. 

ii\I'i'f 2h 2 External interrupt input on the ii\I'i'f pin. 

INT2 3h 3 External interrupt input on the INT2 pin. 

INT3 4h 4 External interrupt input on the TN'f3 pin. 

XINTO 5h 5 Internal interrupt generated when serial 
port 0 transmit buffer is empty. 

RINTO 6h 6 Internal interrupt generated when serial 
port 0 receive buffer is full. 

XINT1 7h 7 Internal interrupt generated when serial 
port 1 transmit buffer is empty. 

RINT1 8h 8 Internal interrupt generated when serial 
port 1 receive buffer is full. 

TINTO 9h 9 Internal interrupt generated by timer O. 

TINT1 OAh 10 Internal interrupt generated by timer 1. 

DINT OBh 11 Internal interrupt generated by DMA con-
troller O. 

If there is a delayed branch in the pipeline, interrupts are held pending until 
after the branch. If the interrupt occurs in the first cycle of the fetch of an in
struction, the fetched instruction is discarded (not executed), and the address 
of that instruction is pushed to the top of the system stack. If the interrupt 
occurs after the first cycle of the fetch, in the case of a multicycle fetch due to 
wait states, that instruction is executed and the address of the next instruction 
to be fetched is pushed to the top of the system stack. If no program fetch is 
occurring, then no new fetch is performed. After the address of the appropri
ate instruction has been pushed, the interrupt vector is fetched, loaded into the 
PC, and execution continues. 

The TMS320C30 allows the CPU and DMA to respond to and process inter
rupts in parallel. Figure 7-5 shows interrupt processing flow. The interrupts 
are polled and the CPU and DMA begin processing them. In the interrupt flow 
pertaining to the the CPU, the interrupt flag corresponding to the highest
priority enabled interrupt is cleared, and GIE is set to O. The CPU completes 
all fetched instructions. The interrupt vector is fetched and loaded into the PC, 
and the CPU continues execution. The DMA cycle is similar to that for the 
CPU. After the pertinent interrupt flag is cleared, the DMA proceeds based 
upon the status of the SYNCH bits in the DMA global control register. 



Program Flow Control - Interrupts 

NO 

IF ENABLED 
INTERRUPT IS 

A CPU INTERRUPT 

IF ENABLED 
INTERRUPT IS 

A DMA INTERRUPT 

Figure 7-5. Interrupt Processing 

• 

7-19 



Program Flow Control - Interrupts 

7-20 



External Bus Operation 





Section 8 

External Bus Operation 

Two external interfaces are provided on the TMS320C30: the primary bus and 
the expansion bus. These are used to access memories and external peripheral 
devices. Software controlled wait states and an external input signal provide 
for wait state generation. 

Major topics discussed in this hardware interface section are .Iisted below. 

• External Interface Control Registers (Section 8.1 on page 8-2) 

Primary bus 
Expansion bus 

• External Interface Timing (Section 8.2 on page 8-5) 

• Programmable Wait States (Section 8.3 on page 8-18) 

• Programmable Bank Switching (Section 8.4 on page 8-20) 

8-1 



External Bus Operation - External Interface Control Registers 

8.1 External Interface Control Registers 

8-2 

The TMS320C30 provides two external interfaces: the primary bus and the 
expansion bus. The primary bus consists of a 32-bit data bus, a 24-bit address 
bus, and a set of control signals. The expansion bus consists of a 32-bit data 
bus, a 13-bit address bus and a set of control signals. Both buses support 
software-controlled wait states and an external ready input signal. Both buses 
support data, program, and 1/0 accesses. 

When a primary bus access is performed, STRB is low. The expansion bus 
supports two types of accesses. One is used primarily for memory accesses 
that are signalled by MSTRB low. The timing for a MSTRB access is the same 
as that of the STRB access on the parallel interface. The other type of expan
sion bus access is commonly used for access of external peripheral devices 
and is signalled by IOSTRB low. 

The primary bus and the expansion bus each have an associated control reg
ister. These registers are memory-mapped as shown in Figure 8-1. 

REGISTER 

EXPANSION BUS CONTROL 
RESERVED 
RESERVED 
RESERVED 

PRIMARY BUS CONTROL 
RESERVED 
RESERVED 
RESERVED 
RESERVED 
RESERVED 
RESERVED 
RESERVED 
RESERVED \ 

RESERVED 
RESERVED 
RESERVED 

PERIPHERAL 
ADDRESS 

808060h 

808061h 

808062h 

808063h 

808064h 

808065h 

808066h 

808067h 

808068h 

808069h 

80806Ah 

80806Bh 

80806Ch 

80806Dh 

80806Eh 

80806Fh 

Figure 8-1. Memory-Mapped External Interface Control Registers 



External Bus Operation - External Interface Control Registers 

8.1.1 Primary Bus Control Register 

The primary bus control register is a 32-bit register that contains the control 
bits for the primary bus (see Figure 8-2). Table 8-1 lists the register bits with 
the bit names and functions. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

xx xx I xx BNKCMP WTCNT SWW I HIZ INOHOLOI HOLDSTI 

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R 

NOTE: xx ~ reserved bit, read as O. 
R ~ read, W = write. 

Figure 8-2. Primary Bus Control Register 

Table 8-1. Primary Bus Control Register Bits Summary 

BIT NAME FUNCTION 

0 HOLDST Hold status bit. This bit signals if the port is being held 
(HOLDST = 1) or is not being held (HOLDST = 0). This sta-
tus bit is valid whether the port has been held via hardware or 
software. 

1 NOHOLD Port hold signal. NOHOLD allows or disallows the port to be 
held by an external 'R'(5["[) signal. When NOHOLD = 1, the 
TMS320C30 takes over the external bus and controls it re-
gardless of requests by external devices. No hold acknowledge 
(HOLDA) is asserted when a'R'(5["[) is received. However, it 
is asserted if an internal hold is generated (HIZ = 1). NOHOLD 
is set to 0 at reset. 

2 HIZ Internal hold. When set (HIZ = 1), the port is put in hold 
mode. This equivalent to the external 'R'(5["[) signal. By forcing 
a three-state condition, the TMS320C30 can relinquish the 
external memory port through software. 'Fi'OIDA goes low 
when the port is three-stated. HIZ is set to 0 at reset. 

3-4 SWW Software wait-state generation. In conjunction with WTCNT, 
this 2-bit field defines the mode of wait-state generation. It is 
set to 1 1 at reset. 

5-7 WTCNT Software wait mode. This 3-bit field specifies the number of 
cycles to use when in software wait mode for the generation 
of internal wait states. The range is zero (WTCNT = 0 0 0) to 
seven (WTCNT = 1 1 1) H1/H3 cycles. It is set to 1 1 1 at 
reset. 

8-12 BNKCMP Bank compare. This 5-bit field specifies the number of MSBs 
of the address to be used to define the bank size. It is set to 1 
o 0 0 0 at reset. 

13-31 Reserved Read as O. 

8-3 

• 



External Bus Operation - External Interface Control Registers 

8.1.2 Expansion Bus Control Register 

8-4 

The expansion bus control register is a 32-bit register that contains control 
bits for the expansion bus (see Figure 8-3 and Table 8-2). 

31 30 29 28 27 26 25, 24 23 22 21 20 19 18 17 16 
xx I xx I xx I xx I xx I xx I xx I xx Ixxlxxlxxlxxlxxl xx xx xx 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
xx I xx I xx I xx I xx xx I xx xx WTCNT I SWW I xx xx xx 

R/W R/W R/W R/W R/W 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 

Figure 8-3. Expansion Bus Control Register 

Table 8-2. Expansion Bus Control Register Bits Summary 

BIT NAME FUNCTION 

0-2 Reserved Read as O. 

3-4 SWW Software wait-state generation. In conjunction with the 
WTCNT, this 2-bit field defines the mode of wait-state gener-
ation. It is set to 1 1 at reset. 

5-7 WTCNT Software wait mode. This 3-bit field specifies the number of 
cycles to use when in software wait mode for the generation 
of internal wait states. The range is zero (WTCNT = 0 0 0) to 
seven (WTCNT = 1 1 1) H1/H3 clock cycles. It is set to 1 1 
1 at reset. 

8-31 Reserved Read as O. 



External Bus Operation - External Interface Timing 

8.2 External Interface Timing 

This section discusses functional timing of operations on the primary bus and 
the expansion bus, the TMS320C30's two independent para"el buses. De
tailed timing specifications for a" TMS320C30 signals are contained in Ap
pendix A, the TMS320C30 Data Sheet. 

The para"el buses implement three mutually exclusive address spaces distin
quished through the use of three separate control signals: STRB,MSTRB, and 
iOSi'Rif The STRB signal controls accesses on the primary bus, and the MSTRB 
and IOSTRB control accesses on the expansion bus. Since the two buses are 
independent, two accesses may be made in para"el. 

With the exception of bank switching and the external HOLD function (dis
cussed later in this section), timing of primary bus cycles and MSTRB expan
sion bus cycles are identical, and wi" be discussed co"ectively. The acronym 
(M)STRB wi" be used in references which pertain equally to STRB and 
MSTRB. Similarly (X)R/W, (X)A, (X)D, and (X)RDY are used to symbolize the 
equivalent primary and expansion bus signals. The IOSTRB expansion bus 
cycles are timed differently and wi" be discussed independently. 

8.2.1 Primary Bus Cycles 

A" bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is 
defined to be from one falling edge of H1 to the next falling edge of H1. For • 
full speed (zero wait state) accesses, reads take one H1 cycle, while writes : 
take two cycles, unless the write follows a read, in which case the write takes 
three cycles. Reca" that internally (from the perspective of the CPU and 
DMA) writes require only one cycle if no accesses to that interface are in 
progress. The following discussions pertain to zero wait state accesses unless 
otherwise specified. 

The (M)STRB signal is low for the active portion of both reads and writes, 
which lasts one H1 cycle. Additiona"y before and after the active portion 
«MJSTRB low) of writes only, there is a transition cycle of H1. During this 
transition cycle, the following occur: 

1) (M)STRB is high. 

2) If required, (X) R/iiii changes state on H1 rising. 

3) If required, addresses changes on H1 rising if the previous H1 cycle was 
the active portion of a write. If the previous H1 cycle was a read, address 
changes on H1 falling. 

Figure 8-4 illustrates a read-read-write sequence for (M)STRB active and no 
wait states. The data is read as late in the cycle as possible to allow for the 
maximum access time from address valid. Note that although external writes 
take two cycles, internally (from the perspective of the CPU and DMA), they 
require only one cycle if no accesses to that interface are in progress. In the 
typical timing for a" external interfaces, the (X) R/iiii strobe does not change 
until (M)STRB or IOSTRB goes inactive. 

8-5 



External Bus Operation - External Interface Timing 

H3 

H1 

(M)STRB _3 __ ::..._-:-_____ +-_..11 \ 1 
(X)RJW \ r 

(X)A =:x~_--Jx\_ __ ....JX\--,.__------x= 
< (X)D ~--...;.~-40>--...;~~0~-....;.--~ write data >-

(XIRDY • \ j L:\ j / 
-----~~---~~u~----__ ---~~~----__ --\j/ 

• Figure 8-4. Read-Read-Write for (M)STRB = 0 

8-6 



External Bus Operation - External Interface Timing 

H3 

H1 

Figure 8-5 lIustrates a write-write-read sequence for (M)STRB active and no 
wait states. The address and data written are held valid approximately one
half cycle after (M)STRB changes. 

(MISTRB \\...~~I \\...--";"---.,JI \ _____ --J! 
(X)RJW \ A. / 

(X)A --------~* X~-----x= 
(X)D - ....... --.tk W,rlt8 data, )J-; --ck write data )J-: --+-.....;.~ 0-

oomw __ ~~\~;/~~~ __ ~\~l~/ ________ \~~/~ __ _ 

Figure 8-5. Write-Write-Read for (M)STRB = 0 

8-7 

• 



External Bus Operation - External Interface Timing 

Figure 8-6 illustrates a read cycle with one wait state. Since (X)RDY = 
1, the read cycle is extended. (M)STRB, (X) R/iN, and (X}A are also ex
tended one cycle. The next time (X)RDY is sampled, it is O. 

H3 

H1 

! (MISTRB \""-~"""'--+---i-_-J \ I 
(XIR/W \ r 

(XIA =x X X 
;0 < write data >---. . . . (XID --+--...... -~----!-( 

(XIIii5V 7 ~\ \ ~/ ~~L 0 

l--extra cycle ~ 

Figure 8-6. Use of Wait States for Read for (M)STRB = 0 

8-8 



External Bus Operation - External Interface Timing 

H3 

H1 

Figure 8-7 illustrates a write cycle with one wait state. Since initially 
(X)ROY = 1, the write cycle is extended. {MlSTRB, (X)R/W, and (X)A 
are extended one cycle. The next time {Xl ROY is sampled, it is O. 

\ __ ---:------1 

(XIR/W _--:-__ ...;.... __ ;.-_~--...;....--:.--~--...;....--;.----:--....JI 

~~ __ ~ __ ~ __ ~*~~ __ ~_x= 
--~--~<~-~--~w~ri-te-da-ta~-----J>~:--~K~--~w-rit-e-d_am __ --J~ 

(XIA 

(XID 

(XIImV _---.~7 : \'--.....----'\'_+_~ .£--/---:----.,-----:--\--lo...+-L: 1_--:-----:--_ 
I..-extra· cycle--! 

Figure 8-7. Use of Wait States for Write for (M)STRB = 0 

8-9 



• 

External Bus Operation - External Interface Timing 

8.2.2 Expansion Bus I/O Cycles 

H3 

H1 

iOSTRB 

In contrast to primary bus and MSTRB cycles, IOSTRB reads and writes are both 
two cycles in duration (with no wait states) and exhibit the same timing. 
During these cycles, address always changes on the falling edge of H1, and 
IOSTRB is low from the rising edge of the first H1 cycle to the rising edge of 
the second H1 cycle. The IOSTRB signal always goes inactive (high) between 
cycles, and XR/W is high for reads and low for writes. 

Figure 8-8 illustrates read and write cycles when IOSTRB is active and there 
are no wait states. For IOSTRB accesses, reads and writes require a minimum 
of two cycles. Some off-chip peripherals may change their status bits when 
read or written. Therefore, it is important that valid addresses be maintained 
when communicating with these peripherals. For reads and writes when 
'iOSTRB is active, IOSTRB is completely framed by the address. 

\ I \ / . 
(XIRIW J \ r 

(XIA=:)K X x= 
(XID ;8 < write data J 

(XIRDV ~ :1.. \~L. 

Figure 8-8. Read and Write for IOSTRB = 0 

8-10 



External Bus Operation - External Interface Timing 

H3 

H1 

Figure 8-9 illustrates a read with one wait state when IOSTRB is active. and 
Figure 8-10 illustrates a write with one wait state when IOSTRB is active. For 
each wait state added. IOSTRB. XR/W. and XA are extended one clock cycle. 
Writes hold the data on the bus one additional cycle. The sampling of XRDY 
is repeated each cycle. 

\-----0...--
(X)R/W J \ .... ______ --

(X)A ==><---,..-------:----..JX'----......,...--
(X)D --~~-~---------~--~~~~--~----~--~----

_--,-----.17 \ : \: / 
. . 
I--extra CYCle-"/ 

Figure 8-9. Read with One Wait-State for IOSTRB = 0 

8-11 

• 



External Bus Operation - External Interface Timing 

H3 

H1 

IOSTRB 

(XIW=-\ I 

(XIA =x---:-------..--------JX~--__:'-
(XID --------~K~----------~w-ri-w-d-a-w-----------J)~!----~-----------

I..-axtra CYCla--l 

Figure 8-10. Write with One Wait-State for IOSTRB = 0 

8-12 



External Bus Operation - External Interface Timing 

H3 

H1 

(X)JW 

Figure 8-11 through Figure 8-13 illustrate the various transitions between 
memory reads and writes, and I/O writes over the expansion bis. 

\'------!------i-----!--_L"--: 
(X)A ___ m_em_8_d_d __ ..J~,-__ ~ __ 1/_0_8_d_d __ ~ ___ ~ 

(X)O ---~0>---:..--~-~K 110 write >+-
\:/ 

Figure 8-11. Memory Read and I/O Write for Expansion Bus 

8-13 



External Bus Operation - External Interface Timing 

H3 

H1 

\ r 
IOSTRB \ ! 
(X)RtW \ T\ 

(X)A ~ I/O add ~ mem add 

(X)D K I/O write > K ~em writ~ 

(X)1U5V ~~ L ~: L 
Figure 8-12. 1/0 Write and Memory Read for Expansion Bus 

8-14 



External Bus Operation - External Interface Timing 

H3 

H1 

MSTRB \ ..... ____ 1 

(XIRIW __ ~_----Jl 
(XIA 

________ m __ em~~-d-d---------~---------I-/o~ad-d---------~ 
(XID ----< mem write )>.-: ----~----~---« 1/0 read )~; ----~-----"'--______________ .J i. 

(XllmV 

Figure 8-13. Memory Write and I/O Read for Expansion Bus 

8-15 



External Bus Operation - External Interface Timing 

H3 

H1 

Figure 8-14 and Figure 8-15 illustrate the signal states when a bus is inactive 
(after a IOSTRB or (M)STRB access respectively). The strobes (STRB, MSTRB, 
"Rrn'fRB) and (X)R/W go to 1. The address is undefined, and the ready signal 
(XROY or ROY) is ignored. 

mmB\ / 
XR,w I 

XA X address undeflnad 

XO-K write dete > 
XJmV \~ / XROY Ignored 

I- bus inactive 

Figure 8-14. Inactive Bus States for IOSTRB 

8-16 



External Bus Operation - External Interface Timing 

H3 

H1 

(MISTRB \ I 
(X)RiW { 

(X)A X address undefined 

(X)D < write data > 
OORDV \:/ (X)RDY ignored 

I .. bus inactive j 

Figure 8-15. Inactive Bus States for STRB and MSTRB 

8-17 



External Bus Operation - External Interface Timing 

H3 

H1 

RtW 

A 

o 

8-18 

Figure 8-16 illustrates the timing for HOLD and HOLDA. HOLD is an external 
asynchronous input. There is a minimum of one cycle delay from when the 
processor recognizes HOLD=O until HOLDA=O. When HOLDA=O, the address, 
data buses, and associated strobes are placed in a high-impedance state. All 
accesses occurring over an interface are completed before a hold is acknowl-
edged. , 

I I I I I I I 
I I I I I I I 
I I I I 

j I I 
~ 

I I I I I I I I I 
I I I I I I 

I I I I I I I 
I I I I \ j I I I 
I I I I I 
I I I I I I I 
I I I I I I I 

: : I{ I ~ V t I I I I I I I I I I I I I 

: : : : ~ k : I I I I I I I I ! 

: : : : ~ k 
I I I I I I I I 

:wrlte Data : 

: ~ 
I I 
I I 
I I 
I I . . 
I--- Bus Inactive ---I 

Figure 8-16. HOLD and HOLDA Timing 



External Bus Operation - Programmable Wait States 

8.3 Programmable Wait States 
Both the parallel and expansion interfaces allow the control of wait-state 
generation through the manipulation of their associated memory-mapped 
control registers. The SWW field is used to select the mode of wait-state 
generation, and the WTCNT field is used to load an internal timer used in the 
generation of wait states. The following four modes of wait-state generation 
can be used: 

• External ROY 
• WTCNT-generated ROYwtcnt 
• Logical-AND of ROY and ROYwtcnt 
• Logical-OR of ROY and ROYwtcnt 

These four modes are used in the generation of the internal ready signal that 
controls accesses, ROYint. As long as ROYint = 1, the current external access 
is delayed. When ROYint = 0, the current access completes. Since the use of 
programmable wait states for both external interfaces is identical, only the 
primary bus interface is described in the following paragraphs. 

ROYwtcnt is an internally generated ready signal. When an external access is 
begun, the value in WTCNT is loaded into a counter. WTCNT may be any 
value from 0 through 7. The counter is decremented every H1 /H3 clock cycle 
until it becomes O. Once the counter is set to 0, it remains set to 0 until the 
next access. While the counter is nonzero, ROYwtcnt = 1. While the counter 
is 0, ROYwtcnt = O. 

When SWW = 00, ROYint is only dependent upon ROY. ROYwtcnt is ignored. 
The truth table for this mode is shown in Table 8-3. 

8-19 



External Bus Operation - Programmable Wait States 

8-20 

Table 8-3. Wait-State Generation When SWW = 0 0 

ROY ROYwtcnt ROYint 
0 0 0 
0 1 0 
1 0 1 
1 1 1 

When SWW = 0 1, ROYint is only dependent upon ROYwtcnt. ROY is ignored. 
Table 8-4 shows the truth table for this mode. 

Table 8-4. Wait-State Generation When SWW = 0 1 

ROY ROYwtcnt ROYint 
0 0 0 
0 1 1 
1 0 0 
1 1 1 

When SWW = 1 0, ROYint is the logical-OR (electrical-AND, since these sig
nals are low true) of ROY and ROYwtcnt (see Table 8-5). 

Table 8-5. Wait-State Generation When SWW = 1 0 

ROY ROYwtcnt ROYint 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

When SWW = 1 1, ROYint is the logical-AN D (electrical-OR, since these sig
nals are low true) of ROY and ROYwtcnt The truth table for this mode is shown 
in Table 8-6. 

Table 8-6. Wait-State Generation When SWW = 1 1 

ROY RDYwtcnt ROYint 
0 0 0 
0 1 1 
1 0 1 
1 1 1 



Hardware Interface - Programmable Bank Switching 

8.4 Programmable Bank Switching 

Programmable bank switching provides the capability of switching between 
external memory banks without the need for externally inserting wait states 
due to memories requiring several cycles to turn off. Bank switching is im
plemented on the primary bus and not on the expansion bus. 

The size of a bank is determined by the number of bits specified to be exam
ined. For example (see Figure 8-17), if BNKCMP =16, the 16 MSBs of the 
address are used to define a bank. Since addresses are 24 bits, the bank size 
is specified by the 8 LSBs, yielding a bank size of 256 words in this case. If 
BNKCMP .:: 16, only the 16 MSBs are compared. Banksizes from 28 = 256 
to 224 = 16M are allowed. Table 8-7 summarizes the relationship between 
BNKCMP, the address bits used to define a bank, and the resulting bank size. 

BNKCMP 

00000 
00001 
00010 
00011 
00100 
00101 
00110 
00111 
01000 
01001 
01010 
01011 
01100 
01101 
01110 
01111 
10000 
10001 
through 
11111 

1 .... ------24-bit Addre88--------t1 

23 o 

I-N I Defines I umber of bits to compare-··+-·---'::":: ---t 
bank size 

Figure 8-17. BNKCMP Example 

Table 8-7. BNKCMP and Bank Size 

MSBs DEFINING A BANK BANK SIZE (32-BIT WORDS) 

None 224 =16M 
23 223 = 8M 

23-22 222 = 4M 
23-21 221 = 2M 
23-20 220 = 1 M 
23-19 219 =512K 
23-18 218 = 256K 
23-17 217 = 128K 
23-16 - 216 =64K 
23-15 215 =32K 
23-14 214 = 16K 
23-13 213 = 8K 
23-12 212 = 4K 
23-11 211 = 2K 
23-10 210 = 1 K 
23-9 29 = 512 
23-8 28 = 256 

Reserved Undefined 

8-21 



Hardware Interface - Programmable Bank Switching 

8-22 

Internai to the TMS320C30 is a register that contains the MSBs (as defined 
by the BNKCMP field) of the last address used for a read or write over the 
primary interface. At reset. the register bits are set to zero. If the MSBs of the 
address being used for the current primary interface read do not match those 
contained in this internal register, a read cycle is not asserted for one H1/H3 
clock cycle. During this extra clock cycle, the address bus switches over to the 
new address, but STRB is inactive (high). The contents of the internal register 
are replaced with the MSBs being used for the current read of the current ad
dress. If the MSBs of the address being used for the current read match the 
bits in the register, a normal read cycle takes place. 

If repeated reads are performed from the same memory bank, no extra cycles 
are inserted. When reading from a different memory bank, memory conflicts 
are avoided by the insertion of an extra cycle. This feature can be disabled 
by setting BNKCMP to O. The insertion of the extra cycle occurs only when a 
read is performed. The changing of the MSBs in the internal register occurs 
for all reads and writes over the primary interface. 

Figure 8-18 illustrates the addition of an inactive cycle when switches be
tween banks of memory occur. 



Hardware Interface - Programmable Bank Switching 

H3 

H1 

fiRi~ / '\ r 
RrN/ ~ 

A =x X"""'--___ r------JX x= 
D ~~:----------~----~~ ~ 

\./ \~/ 

I..-extra CYCle-J 

Figure 8-18. Bank Switching Example 

8-23 



Hardware Interface - Programmable Bank Switching 

8-24 



Peripherals 





Section 9 

Peripherals 

The TMS320C30 provides two timers, two serial ports, and an on-chip Direct 
Memory Access (DMA) controller. These peripheral modules are manipulated 
through memory-mapped registers located on the dedicated peripheral bus. 

The DMA controller is used to perform input/output operations without in
terfering with the operation of the CPU. Therefore, it is possible to interface 
the TMS320C30 to slow external memories and peripherals (A/D's, serial 
ports, etc.) without reducing the computational throughput of the CPU. The 
result is improved system performance and decreased system cost. 

Major topics discussed in this section on peripherals are listed below. 

• Timers (Section 9.1 on page 9-2) 
Registers 
Pulse generation 
Operation modes 

• Serial Ports (Section 9.2 on page 9-9) 
Registers 
Operation configurations 
Timing 

• DMA Controller (Section 9.3 on page 9-26) 
Registers 
VA memory transfer operation 

Synchronization of DMA channels 

9-1 



Peripherals - Timers 

9.1 Timers 

9-2 

The TMS320C30 timer modules are general-purpose 32-bit timer/event 
counters, with two signalling modes and internal or external clocking (see 
Figure 9-1). The timer modules can be used to signal to the TMS320C30 or 
the external world at specified intervals, or to count external events. With an 
internal clock, the timer can be used to signal an external A/D converter to 
start a conversion, or it can interrupt the TMS320C30 DMA controller to begin 
a data transfer. With an external input, the timer can count external events and 
interrupt the CPU after a specified number of events. Available to each timer 
is an I/O pin that can be used either as an input clock to the timer, an output 
clock signal, or a general-purpose I/O pin. 

,..-------""'L---INTERNAL CLOCK/2 

PERIOD REGISTER 
131·0) 

32 

COMPARATOR 

? 

COUNTER 132·BITS) 

COUNTER REGISTER 
(31·0) 

PERIOD = COUNTER 

PULSE GENERATOR 

INV 
._--.... TSTAT 

TIMER OUT 

Figure 9-1. Timer Block Diagram 

Three memory-mapped registers are used by each timer. They are: 

• Global control register 
• Period register 
• Counter register 

The global control register determines the operating mode of the timer, moni
tors the timer status, and controls the function of the I/O pin of the timer. The 
period register specifies the timer's signalling frequency. The counter register 



Peripherals - Timers 

contains the current value of the incrementing counter. The timer can be in
cremented on the rising edge or the falling edge of the input clock. The 
counter is zeroed whenever its value equals that in the period register. The 
pulse generator generates two types of external clock signals: pulse or clock. 
The memory map for the timer modules is shown in Figure 9-2. 

Register Peripheral Address 
Timer 0 Timer 1 

TIMER GLOBAL CONTROL REGISTER 808020h 808030h 

RESERVED 808021h 808031h 

RESERVED 808022h 808032h 

RESERVED 808023h 808033h 

TIMER COUNTER REGISTER 808024h 808034h 

RESERVED 808025h 808035h 

RESERVED 808026h 808036h 

RESERVED 808027h 808037h 

TIMER PERIOD REGISTER 808028h 808038h 

RESERVED 808029h 808039h 

RESERVED 80802Ah 80803Ah 

RESERVED 80802Bh 80803Bh 

RESERVED 80802Ch 80803Ch 

RESERVED 80802Dh 80803Dh 

RESERVED 80802Eh 80803Eh 

RESERVED 80802Fh 80803Fh 

Figure 9-2. Memory-Mapped Timer locations 

9.1.1 Timer Global Control Register 

The timer global control register is a 32-bit register that contains the global 
and port control bits for the timer module. Table 9-1 defines the register bits, 
names, and functions. Bits 3-0 are the port control bits. Bits 11-6 are the 
timer global control bits. Figure 9-3 shows the 32-bit register. Note that at 
reset, all bits are set to 0 except for DATIN (set to the value read on TCLK). 

9-3 



Peripherals - Timers 

Table 9-1. Timer Global Control Register Bits Summary 

BITS NAME FUNCTION 

0 FUNC FUNC controls the function of TCLK. If FUNC = 0, TCLK is con-
figured as a general-purpose digital 1/0 port. If FUNC = 1, TCLK 
is configured as a timer pin (see Figure 9-6) for a description of the 
relationship between FUNC and CLKSRC. 

1 T/O If FUNC = 0 and CLKSRC = 0, ICLK is configured as a general-
purpose I/O pin. In this case, if I/O = 0, TCLK is configured as a 
general-purpose input pin. If T/O = 1, TCLK is configured as a 
general-purpose output pin. 

2 DATOUT DATOUT drives TCLK when in I/O port mode. DATOUT can also 
be used as an input to the timer. 

3 DATIN Data input on TCLK or DATOUT. A write has no effect. 

4-5 Reserved Read as O. 

6 GO The GO bit resets and starts the timer counter. When GO = 1 and 
the timer is not held, the counter is zeroed and begins incrementing 
on the next rising edge of the timer input clock. The GO bit is 
cleared on the same rising edge. GO = 0 has no effect on the timer. 

7 HLD Counter hold signal. When this bit is zero, the counter is disabled 
and held in its current state. If the timer is driving TCLK, the state 
of TCLK is also held. The internal divide-by-two counter is also 
held so that the counter can continue where it left off when HLD 
is set to 1. The timer registers can be read and modified while the 
timer is being held. RESET has p'L0rity over 'FiTI5. Table 9-2 shows 
the effect of writing to GO and H D. 

8 C/P Clock/Pulse mode control. When C/j!j = 1, clock mode is chosen 
and the signalling of the status flag and external output will have a 
50 percent duty cycle. When c/fi = 0, the status flag and external 
output will be active for one H1 cycle during each timer period (see 
Figure 9-4). 

9 CLKSRC Specifies the source of the timer clock. When CLKSRC = 1, an in-
terna� clock with frequency equal to one-half the H1 frequency is 
used to increment the counter. The INV bit has no effect on the 
internal clock source. When CLKSRC = 0, an external signal from 
the TCLK pin can be used to increment the counter. The external 
clock is synchronized internally, thus allowing external asynchro-
nous clock sources not exceeding the specified maximum allowable 
external clock frequency. This will be less than f{H1 )/2. (See Fig-
ure 9-6 for a description of the relationship between FUNC and 
CLKSRC). 

10 INV Inverter control bit. If an external clock source is used and INV = 
1, the external clock is inverted as it goes into the counter. If the 
output of the pulse generator is routed to TCLK and I NV = 1, the 
output is inverted before it goes to TCLK {see Figure 9-1 l. If INV 
= 0, no inversion is performed on the input or output of the timer. 
The INV bit has no effect, regardless of its value, when TCLK is used 
in I/O port mode. 

11 TSTAT This bit indicates the status of the timer. It tracks the output of the 
uninverted TCLK pin. This flag sets a CPU interrupt on a 
transition from 0 to 1. A write has no effect. 

12-31 Reserved Read as O. 

9-4 



Peripherals - Timers 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Ixxlxxlxxlxxl xx I xx I xx I xx I xx xx I xx I xx I xx xx I xx I xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I xx I xxi xxi xxi TSTAT IINVI CLKSRC I c/pl HLD I GO I xx I xx I DATIN I DATOUTI i/oIFUNCI 
R/W R/W R/W R/W R/W R/W R R/W R/W R/W 

NOTE: xx = Reserved bit, read as O. 
R = read, W = write. 

Figure 9-3. Timer Global Control Register 

Table 9-2 shows the result of a write using specified values of the GO and HLD 
bits in the global control register. 

Table 9-2. Result of a Write of Specified Values of GO and HLD 

GO HLD RESULT 
0 0 A" timer operations are held. No reset is performed. 

0 1 Timer proceeds from state before write. 
1 0 A" timer operations are held, including zeroing of the counter. The GO 

bit is not cleared until the timer is taken out of hold. 
1 1 Timer reset and started. 

9.1.2 Timer Period and Counter Registers 

The 32-bit timer period register is used to specify the frequency of the timer 9 
signalling. The timer counter register is a 32-bit register, which is reset to zero 
whenever it increments to the value of the period register. Both registers are 
set to 0 at reset. 

Certain boundary conditions affect timer operation, such as a zero in the pe
riod register and overflowing the counter. These conditions are listed as fol
lows: 

• When the period and counter registers are zero, the operation of the 
timer is dependent upon the Clf> mode selected. In pulse mode (C/f> = 
0), TSTAT is set and remains set. In clock mode (Clf> = 1), the width 
of the cycle is 2/f(H1) and the external clocks are ignored. 

• When the counter register is not 0 and the period register = 0, the 
counter will count, roll over to 0, and then behave as described above. 

• When the counter register is set to a value greater than the period regis
ter, the counter may overflow when being incremented. Once the 
counter reaches its maximum 32-bit value (OFFFFFFFFh), it simply 
clocks over to 0 and continues. 

Writes from the peripheral bus override register updates from the counter or 
new status updates to the control register. 

9-5 



• 

Peripherals - Timers 

9.1.3 Timer Pulse Generation 

9-6 

The timer pulse generator (see Figure 9-1) can generate several different ex
ternal signals. These signals may be inverted with the INV bit. The two basic 
modes are pulse mode and clock mode, as shown in Figure 9-4. In both 
modes, an internal clock source has a frequency of f(H1 )/2, and an external 
clock source has a maximum frequency less than f(H1 )/2. Refer to timer 
timing in Appendix A. In pulse mode (e/f> = 0), the width of the pulse is 
1/f(H1). 

~1""'-----I.~Ir- 2/flH1 I 
-., ~1/f1H11 

I 1 I 

r ..I 1/flCLKSRCI I 

t---- period register/fICLKSRCI---I...I .... -

lal TSTAT AND TIMER OUTPUT IINV = 01 WHEN C/P = 0 IPULSE MODEl 

...1'-'1-----..... o+-1/fICLKSRCI 

...... t---... ~o+---!I-2/fIH11 
I ! I 

J 
. . 
~ period register/flCLKSRCl--I 

I.. 2 Ie period register/fICLKSRCI------t ... 1 

Ibl TSTAT AND TIMER OUPUT IINV = 01 WHEN C/P = 1 ICLOCK MODEl 

Figure 9-4. Timer Timing 



Peripherals - Timers 

The rate of timer signaling is determined by the frequency of the timer input 
clock and the period register. The following equations are valid with either 
an internal or an external timer clock: 

f(pulse mode) = f(timer clock)/period register 

f(clock mode) = f(timer clock)/(2 x period register) 

9.1.4 Timer Operation Modes 

The timer can receive its input and send its output in several different modes, 
depending upon the setting of CLKSRC, FUNC, and I/O. The four timer 
modes of operation are defined as follows: 

• If CLKSRC = 1 and FUNC = 0, the timer input comes from the internal 
clock. The internal clock is not affected by the INV bit. In this mode, 
TCLK is connected to the I/O port control and can be used as a gener
al-purpose I/O pin (see Figure 9-5). If I/O = 0, TCLK is configured as 
a general-purpose input pin whose state can be read in DATIN. DAT
OUT has no effect on TCLK or DATIN. If I/O = 1, TCLK is configured 
as a general-purpose output pin. DATOUT is placed on TCLK and can 
be read in DATIN. 

INTERNAL EXTERNAL 

DATDUTINCJ~ r! TaJI 

DATIN 

ito = 0 
la) 

I 
INTERNAL I EXTERNAL 

I DATOUTTTCL" 
DATIN 

itO = 1 
Ib) 

Figure 9-5. Timer I/O Port Configurations 

• If CLKSRC = 1 and FUNC = 1, the timer input comes from the internal 
clock and the timer output goes to TCLK. This value may be inverted 
using INV, and the value output on TCLK can be read in DATIN. 

• If CLKSRC = ° and FUNC = 0, the timer is driven according to the sta
tus of the T/O bit. If I/O = 0, the timer input comes from TCLK. This value 
can be inverted using INV, and the value of TCLK can be read in DATIN. 

9-7 

• 



• 

Peripherals - Timers 

9-8 

If i/O = 1, TCLK is an output pin. Then TCLK and the timer are both 
driven by DATOUT. All 0 to 1 transitions of DATOUT increment the 
counter. INV has no effect on DATOUT. The value of DATOUT can be 
read in DATIN. 

• If CLKSRC = 0 and FUNC = 1, TCLK drives the timer. If INV = 0, all 0 
to 1 transitions of TCLK increment the counter. If INV = 1, all 1 to 0 
transitions of TCLK increment the counter. The value of TCLK can be 
read in DATIN. 

Figure 9-6 shows the four timer modes of operation. 

INTERNAL I EXTERNAL 

INTERNAL I 
CLOCK I 

TCLK 

CLKSRC = 1 (INTERNAL) 
FUNC = 0 (I/O PIN) 

la) 

TIMER INTERNAL I EXTERNAL 
I 

TSTAT 

..... ~,....--t--TCLK 

CLKSRC = 0 IEXTERNAL) 
FUNC = 0 (I/O PIN) 

Ie) 

TIMER 
INTERNAL I EXTERNAL 

I 
I 
I 

L~~~J-~I---i, - TCLK 

TSTAT DATIN 

CLKSRC = 1 (INTERNAL) 
FUNC = 1 ITIMER PIN) 

Ib) 

I 

INTERNAL I EXTERNAL 

r~~iiNi1--e---+'1 .TCLK 

TSTAT DATIN 

CLKSRC = 0 IEXTERNAL) 
FUNC = 1 ITIMER PIN) 

Id) 

Fjgure 9-6. Timer Modes as Defined by CLKSRC and FUNC 



Peripherals - Serial Ports 

9.2 Serial Ports 

The two TMS320C30 serial ports are totally independent. Both serial ports 
are identical with a complementary set of control registers in each one. Each 
serial port can be configured to transfer 8, 16, 24, or 32 bits of data per word. 
The clock for each serial port can originate either internally or externally. An 
internally generated clock is a divide-down of the clockout frequency (H1). 
A continuous transfer mode is available which allows the serial port to transmit 
and receive any number of words without new synchronization pulses. 

Eight memory-mapped registers are provided for each serial port. They are: 

• Port global control register 
• Two port control registers for the six I/O pins 

• Three port receive/transmit timer registers 

• Data transmit register 

• Data receive register 

The global control register controls the global functions of the serial port and 
determines the serial port operating mode. Two port control registers control 
the functions of the six serial port pins. The transmit buffer contains the next 
complete word to be transmitted. The receive buffer contains the last com
plete word received. Three additional registers are associated with the 
transmit/receive sections of the serial port timer. A serial port block diagram 
is shown in Figure 9-7, and the memory map of a serial port is shown in Figure 
9-8. 

9-9 

• 



Peripherals - Serial Ports 

9-10 

iRECEIVESECTIONllTRANSMITSECTIONi 

RINT 

CLKR CLKX 
RECEIVE TSTAT CLKR ~ TSTAT TRANSMIT 

TIMER (16) TIMER (16) 

BIT COUNTER 
(8/16/24/32) 

RSR 
(32) 

XINT 

BIT COUNTER 
(8/16/24/32) 

XSR 
(32) 

DR 1m ¥DX 
DRR 
(32) 

LOAD 

DXR 
(32) 

Figure 9-7. Serial Port Block Diagram 



Peripherals - Serial Ports 

Register Peripheral Address 
Serial Serial 
Port 0 Port 1 

PORT GLOBAL CONTROL REGISTER 808040h 808050h 

RESERVED 808041h 808051h 

FSX/DX/CLKX PORT CONTROL REGISTER 808042h 808052h 

FSR/DR/CLKR PORT CONTROL REGISTER 808043h 808053h 

R/X TIMER CONTROL REGISTER 808044h 808054h 

R/X TIMER COUNTER REGISTER 808045h 808055h 

R/X TIMER PERIOD REGISTER 808046h 808056h 

RESERVED 808047h 808057h 

DATA TRANSMIT REGISTER 808048h 808058h 

RESERVED 808049h 808059h 

RESERVED 80804Ah 80805Ah 

RESERVED 80804Bh 80805Bh 

DATA RECEIVE REGISTER 80804Ch 80805Ch 

RESERVED 80804Dh 80805Dh 

RESERVED 80804Eh 80805Eh 

RESERVED 80804Fh 80805Fh 

Figure 9-8. Memory-Mapped Locations for the Serial Port 

9.2.1 Serial Port Global Control Register 

The serial port global control register is a 32-bit register that contains the 
global control bits for the serial port. Table 9-3 defines the register bits, bit 
names, and bit functions. The register is shown in Figure 9-9. 

9-11 



Peripherals - Serial Ports 

Table 9-3. Serial Port Global Control Register Bits Summary 

BIT NAME FUNCTION 

0 RRDY If RRDY = 1. the receive buffer has new data and is ready to be read. A three 
H1 /H3 cycle delay occurs from the reading of ORR to RRDY = 1. The rising edge 
of this signal sets RINT. If RRDY = 0, the receive buffer does not have new data 
since the last read. RRDY is set to 0 at reset and after the receive buffer is read. 

1 XRDY If XRDY = 1, the transmit buffer has written the last bit of data to the shifter and 
is ready for a new word. A three H1/H3 cycle delay occurs from the loading of 
the transmit shifter to XRDY being set to 1. The rising edge of this signal sets 
XINT. If XRDY = O. the transmit buffer has not written the last bit of data to the 
transmit shifter and is not ready for a new word. XRDY is set to 1 at reset. 

2 FSXOUT This bit configures the FSX pin as an input (FSXOUT = 0) or an output (FSXOUT 
= 1). 

3 XSREMPTY If XSREMPTY = O. the transmit shift register is empty. If XSREMPTY = 1. the 
transmit shift register is not empty. This bit is set to 0 at reset or by an XRESET. 

4 RSRFULL If RSRFULL = 1, an overrun of the receiver has occurred. In continuous mode. 
RSRFULL is set to 1 when both RSR and ORR are full. In noncontinuous mode, 
RSRFULL is set to 1 when RSR and DRR are full and a new FSR is received. A 
read causes this bit to be set to O. This bit can only be set to 0 by a system reset. 
a serial port receive reset (RRESET = 1), or a read. When the receiver tries to set 
RSRFULL to a 1 at the same time that the global register is read. the receiver will 
dominate and RSRFULL is set to 1. If RSRFULL = O. no overrun of the receiver 
has occurred. 

5 HS If HS = 1, the handshake mode is enabled. If HS = 0, the handshake mode is 
disabled. 

6 XCLKSRCE If XCLKSRCE = 1. the internal transmit clock is used. If XCLKSRCE = 0, the 
external transmit clock is used. 

7 RCLKSRCE If RCLKSRCE = 1. the internal receive clock is used. If RCLKSRCE = 0, the ex-
ternal receive clock is used. 

8 XVAREN This bit specifies fixed (XVAREN = 0) or variable (XVAREN = 1) data rate sig-
nalling when transmitting. With a fixed data rate, FSX is active for at least one 
XCLK cycle. and then goes inactive before transmission begins. With variable 
data rate. FSX is active while all bits are being transmitted. When using an ex-
ternal FSX and variable data rate signaling, the DX pin is driven by the transmitter 
when FSX is held active or when a word is being shifted out. 

9 RVAREN This bit specifies fixed (RVAREN = 0) or variable (RVAREN = 1) data rate sig-
nalling when receiving. With a fixed data rate. FSR is active for at least one RCLK 
cycle. and then goes inactive before the reception begins. With variable data rate. 
FSR is active while all bits are being received. 

10 XFSM Transmit frame sync mode. Configures the port for continuous mode operation 
(XFSM = 1) or standard mode (XFSM = 0). In continuous mode. only the first 
word of a block generates a sync pulse. and the rest are simply transmitted con-
tinuously to the end of the block. In standard mode. each word has an associated 
sync pulse. 

11 RFSM Receive frame sync mode. Configures the port for continuous mode (RFSM = 
1) or standard mode (RFSM = 0) operation. In continuous mode. only the first 
word of a block generates a sync pulse. and the rest are simply received contin-
uously without expectation of another sync pulse. In standard mode. each word 
received has an associated sync pulse. 

12 CLKXP CLKX polarity. If CLKXP = 0. CLKX is active high. If CLKXP = 1. CLKX is active 
low. 

9-12 



Peripherals - Serial Ports 

Table 9-3. Serial Port Global Control Register Bits Summary (Concluded) 

BIT NAME FUNCTION 

13 CLKRP CLKR polarity. If CLKRP = 0, CLKR is active high. If CLKRP = 1, CLKR is active 
low. 

14 OXP OX polarity. If OXP = 0, OX is active high. If OXP = 1, OX is active low. 

15 ORP DR polarity. If ORP = 0, DR is active high. If ORP = 1, DR is active low. 

16 FSXP FSX polarity. If FSXP = 0, FSX is active high. If FSXP = 1, FSX is active low. 

17 FSRP FSR polarity. If FSRP = 0, FSR is active high. If FSRP = 1, FSR is active low. 

18-19 XLEN This bit defines the word length of serial data transmitted. All data is assumed 
to be right-justified in the transmit buffer when fewer than 32 bits are specified. 

00 --- 8 bits 1 ° --- 24 bits 
01 ---16 bits 1 1 --- 32 bits 

20-21 RLEN This bit defines the word length of serial data received. All data is right-justified 
in the receive buffer. 

00 --- 8 bits 1 ° --- 24 bits 
01---16bits 1 1 --- 32 bits 

22 XTINT Transmit timer interrupt enable. If XTINT = 0, the transmit timer interrupt is dis-
abled. If XTINT = 1, the transmit timer interrupt is enabled. 

23 XINT Transmit interrupt enable. If XINT = 0, the transmit interrupt is disabled. If XINT 
= 1, the transmit interrupt is enabled. Note that the CPU transmit interrupt flag 
XINT is the logical OR of the enabled transmit timer interrupt and the enabled 
transmit interrupt. 

24 RTINT Receive timer interrupt enable. If RTINT = 0, the receive timer interrupt is disa-
bled. If RTI NT = 1, the receive timer interrupt is enabled. 

25 RINT Receive interrupt enable. If RINT = 0, the receive interrupt is disabled. If RINT 
= 1, the receive interrupt is enabled. Note that the CPU receive interrupt flag 
RINT is the OR of the enabled receive timer interrupt and the enabled receive 
interrupt • 26 XRESET Transmit reset. If XRESET = 0, the transmit side of the serial port is reset. To take 
the transmit side of the serial port out of reset, XRESET should be set to 1. 
However, XRESET should not be set to 1 until at least three cycles after XRESET 
goes inactive. This applies only to system reset. Setting XRESET to 0 does not 
change the contents of any of the serial port control registers. It places the 
transmitter in a state corresponding to the beginning of a frame of data. Resetting 
the transmitter generates a transmit interrupt. This bit should be set at the same 
time the mode of the transmitter is set. XFSM can be toggled without resetting 
the global control register. 

27 RRESET Receive reset. If RRESET = 0, the receive side of the serial port is reset. To take 
the transmit side of the serial port out of reset, XRESET should be set to 1. Set-
ting RRESET to 0 does not change the contents of any of the serial port control 
registers. It places the receiver in a state corresponding to the beginning of a 
frame of data. This bit should be set at the same time the mode of the receiver 
is set. RFSM can be toggled without resetting the global control register. 

28-31 Reserved Read as O. 

9-13 



Peripherals - Serial Ports 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Ixxlxxl xx xx IRREsETlxREsETI RINTIRTINTI XINT IXTINT 1 RLEN XLEN 1 FSRPI Fsxpi 

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 

R/W R/W R/W R/W R/W R/W R/W R/W R/W R R 

NOTE: xx =Reserved bit, read as O. 
R = read, W = write. 

Figure 9-9. Serial Port Global Control Register 

9.2.2 FSX/DX/CLKX Port Control Register 

9-14 

This 32-bit port control register controls the function of the serial port FSX, 
OX, and CLKX pins. At reset, all bits are set to O. Table 9-4 defines the register 
bits, bit names, and functions. Figure 9-10 shows this port control register. 

Table 9-4. FSX/DX/CLKX Port Control Register Bits Summary 

BIT NAME FUNCTION 

° CLKXFUNC CLKXFUNC controls the function of CLKX. If CLKXFUNC 
= 0, CLKX is configured as a general-purpose digital I/O 
port. If CLKXFUNC = 1, CLKX is a serial port pin. 

1 CLKXi/o If CLKXi/o = 0, CLKR is configured as a general-purpose 
input pin. If CLKXi/o = 1, CLKX is configured as a gener-
al-purpose output pin. 

2 CLKXOATOUT Data output on CLKX. 

3 CLKXOATIN Data input on CLKX. A write has no effect. 

4 OXFUNC OXFUNC controls the function of OX. If OXFUNC = 0, OX 
is configured as a general-purpose digital I/O port. If 
OXFUNC = 1, OX is a serial port pin. 

5 oxi/O If oxi/o = 0, OX is configured as a general-purpose input 
pin. If oxi/o = 1, OX is configured as a general-purpose 
output pin. 

6 OXOATOUT Data output on OX. 

7 OXOATIN Data input on OX. A write has no effect. 

S FSXFUNC FSXFUNC controls the function of FSX. If FSXFUNC = 0. 
FSX is configured as a general-purpose digital I/O port. If 
FSXFUNC = 1, FSX is a serial port pin. 

9 Fsxi/o If FSXT/O = 0, FSX is configured as a general-purpose input 
pin. If Fsxi/O = 1, FSX is configured as a general-purpose 
output pin. 

10 FSXOATOUT Data output on FSX. 

11 FSXOATIN Data input on FSX. A write has no effect. 

12-31 Reserved Read as 0. 



Peripherals - Serial Ports 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Ixxlxxlxxlxxl xx xx xx xx xx xx xx xx xx xx xx xx 

R R/W R/W R 

NOTE: xx = Reserved bit, read as 0, 
R = read, W = write, 

Figure 9-10. FSX/DX/CLKX Port Control Register 

9.2.3 FSR/DR/CLKR Port Control Register 

This 32-bit port control register is controlled by the function of the serial port 
FSR, DR, and CLKR pins. At reset, all bits are set to O. Table 9-5 defines the 
register bits, the bit names, and functions. Figure 9-11 illustrates this port 
control register. 

Table 9-5. FSR/DR/CLKR Port Control Register Bits Summary 

BIT NAME FUNCTION 

0 CLKRFUNC CLKRFUNC controls the function of CLKR. If CLKRFUNC 
= 0, CLKR is configured as a general-purpose digital I/O 
port. If CLKRFUNC = 1, CLKR is a serial port pin. 

1 CLKRI/O If CLKRI/O = 0. CLKR is configured as a general-purpose 
input pin. If CLKRI/O = 1, CLKR is configured as a gener-
al-purpose output pin. 

2 CLKRDATOUT Data output on CLKR. 

3 CLKRDATIN Data input on CLKR. A write has no effect. 

4 DRFUNC DRFUNC controls the function of DR, If DRFUNC = 0, DR 
is configured as a general-purpose digital I/O port. If 
DRFUNC = 1, DR is a serial port pin. 

5 DRi/O If DRi/O = 0, DR is configured as a general-purpose input 
pin. If DRI/O = 1, TCLK is configured as a general-purpose 
output pin. 

6 DRDATOUT Data output on 0 R. 

7 DRDATIN Data input on DR, A write has no~ffect. 

8 FSRFUNC FSRFUNC controls the function of FSR. If FSRFUNC = 0, 
FSR is configured as a general-purpose digital I/O port. If 
FSRFUNC = 1, FSR is a serial port pin. 

9 FSRi/O If FSRI/O = 0, FSR is configured as a general-purpose input 
pin. If FSRi/o = 1, FSR is configured as a general-purpose 
output pin. 

10 FSRDATOUT Data output on FSR, 

11 FSRDATIN Data input on FSR, A write has no effect, 

12-31 Reserved Read as 0. 

9-15 

• 



Peripherals - Serial Ports 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Ixxlxxlxxlxxl xx xx xx xx xx xx xx xx xx xx xx xx 

R/W R R/W R/W 

NOTE: xx =Reserved bit, read as O. 
R = read, W = write. 

Figure 9-11. FSRjDRjCLKR Port Control Register 

9.2.4 Receive/Transmit Timer Control Register 

A 32-bit receive/transmit timer control register contains the control bits for the 
timer module. At reset, all bits are set to O. Table 9-6 lists the register bits, bit 
names, and functions. Bits 5-0 control the transmitter timer. Bits 11 -6 control 
the receiver timer. Figure 9-12 shows the register. 

9-16 



Peripherals - Serial Ports 

Table 9-6. Receive/Transmit Timer Control Register 

BIT NAME FUNCTION 

° XGO The XGO bit resets and starts the transmit timer counter. When 
XGO is set to 1 and the timer is not held, the counter is zeroed 
and begins incrementing on the next rising edge of the timer 
input clock. The XGO bit is cleared on the same rising edge. 
Writing ° to XGO has no effect on the transmit timer. 

1 XHLD Transmit counter hold signal. When this bit is set to 0, the 
counter is disabled and held in its current state. The internal 
divide-by-two counter is also held so that the counter will 
continue where it left off when XHLD is set to 1. The timer 
registers may be read and modified while the timer is being 
held. RESET has priority over XHLD. 

2 XC/P XClock/Pulse mode control. When XC/P = 1, the clock mode 
is chosen. The signalling of the status fla.9. and external output 
has a 50-percent duty cycle. When XC/P = 0, the status flag 
and external output are active for one CLKOUT cycle during 
each timer period. 

3 XCLKSRC This bit specifies the source of the transmit timer clock. When 
XCLKSRC = 1, an internal clock with frequency equal to one-
half the CLKOUT frequency is used to increment the counter. 
When XCLKSRC = 0, an external signal from the CLKX pin can 
be used to increment the counter. The external clock source is 
synchronized internally, thus allowing for external asynchro-
nous clock sources that do not exceed the specified maximum 
allowable external clock frequency, i.e., less than f(H1 )/2.6. 

4 Reserved Read as zero. 

5 XTSTAT This bit indicates the status of the receive timer. It tracks what 
would be the output of the uninverted CLKX pin. This flag sets 
a CPU interrupt on a transition from ° to 1. A write has no 
effect. 

6 RGO The RGO bit resets and starts the receive timer counter. When 
RGO is set to 1 and the timer is not held, the counter is zeroed 
and begins incrementing on the next rising edge of the timer 
input clock. The RGO bit is cleared on the same rising edge. 
Writing ° to RGO has no effect on the receive timer. 

7 RHLD Receive counter hold signal. When this bit is set to 0, the 
counter is disabled and held in its current state. The internal 
divide-by-two counter is also held so that the counter will 
continue where it left off when RHLD is set to 1. The timer 
registers may be read and modified while the timer is being 
held. RESET has priority over RHLD. 

9-17 



Peripherals - Serial Ports 

Table 9-6. Receive/Transmit Timer Control Register (Concluded) 

BIT NAME FUNCTION 

8 RC/P RClock/Pulse mode control. When RC/J5' = 1, the clock mode 
is chosen. The signalling of the status fla~ and external output 
has a 50-percent duty cycle. When RC/ = 0, the status flag 
and external output are active for one CLKOUT cycle during 
each timer period. 

9 RCLKSRC This bit specifies the source of the receive timer clock. When 
RCLKSRC = 1, an internal clock with frequency equal to one-
half the CLKOUT frequency is used to increment the counter. 
When RCLKSRC = 0, an external signal from the CLKR pin can 
be used to increment the counter. The external clock source is 
synchronized internally, thus allowing for external asynchro-
nous clock sources that do not exceed the specified maximum 
allowable external clock frequency, i.e., less than f(H1 )/2.6. 

10 Reserved Read as zero. 

11 RTSTAT This bit indicates the status of the receive timer. It tracks what 
would be the output of the uninverted CLKR pin. This flag sets 
a CPU interrupt on a transition from 0 to 1. A write has no 
effect. 

12-31 Reserved Read as O. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Ixxlxxlxxlxxl xx Ixxl xx xx xx xx xx I xx I xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I xx I xx I xx I xx I RTSTAT I xx I RCLKSRC I Rc/pi RHLD I RGO I XTSTAT I xx I XCLKSRC Ixc/ 'PI XHLD I XGO I 

R R/W R/W R/W R/W R R/W R/W R/W R/W 

NOTE: xx =Reserved bit, read as O. 
R = read, W = write. 

Figure 9-12. Receive/Transmit Timer Control Register 

9.2.5 Receive/Transmit Timer Counter Register 

9-18 

The timer counter register is a 32-bit register (see Figure 9-13). Bits 15-0 are 
the transmit timer counter, and bits 31 -16 are the receive timer counter. Each 
counter is set to 0 whenever it increments to the value of the counter. It is also 
set to 0 at reset. 

31 16 

RECEIVE COUNTER 

15 o 
TRANSMIT COUNTER 

NOTE: All bits are read/write. 

Figure 9-13. Receive/Transmit Timer Counter Register 



Peripherals - Serial Ports 

9.2.6 Receive/Transmit Timer Period Register 

The timer period register is a 32-bit register (see Figure 9-14) Bits 15-0 are 
the timer transmit period, and bits 31 -16 are the receive period. Each register 
is used to specify the period of the timer. It is also set to 0 at reset. 

31 16 

RECEIVE PERIOD 

15 o 
TRANSMIT PERIOD 

NOTE: All bits are read/write. 

Figure 9-14. Receive/Transmit Timer Period Register 

9.2.7 Data Transmit Register 

When the data transmit register (OXR) is loaded, the transmitter loads the 
word into the transmit shift register (XSR), and the bits are shifted out. The 
delay from a write to OXR until an FSX occurs (or can be accepted) is two 
CLKX cycles. The word is not loaded into the shift register until the shifter is 
empty. When OXR is loaded into XSR, the XROY bit is set. specifying that the 
buffer is available to receive the next word. Four tap points within the transmit 
shift register are used to transmit the word. These tap points correspond to 
the four data word sizes and are illustrated in Figure 9-15. The shift is a left
shift (LSB to MSB) with the data shifted out of the MSB corresponding to the 
appropriate tap point. 

... shift direction ... 

31 24 23 16 15 8 7 0 

" 
" " 

" 

, 
32-bit 24-bit 16-bit 8-bit 
word tap word tap word tap word tap 

Figure 9-15. Transmit Buffer Shift Operation 

9.2.8 Data Receive Register 

When serial data is input. the receiver shifts the bits into the receive shift reg
ister (RSR). When the specified number of bits are shifted in, the data receive 
register (ORR) is loaded from RSR and the RROY status bit is set. The receiver 
is double-buffered. If the ORR has not been read and the RSR is full, the re
ceiver is frozen. New data coming into the DR pin is ignored. The receive 
shifter will not write over the ORR. The ORR must be read to allow new data 
in the RSR to be transferred to the ORR. When a write to ORR occurs at the 
same time that a RSR to ORR transfer takes place, the RSR to ORR transfer 
has priority. 

Data is shifted to the left (LSB to MSB). Figure 9-16 illustrates what happens 
when words less than 32 bits are shifted into the serial port. In this figure, it 

9-19 

• 



Peripherals - Serial Ports 

is assumed that an 8-bit word is being received and that the upper three bytes 
of the receive buffer are originally undefined. In the first portion of the figure, 
byte a has been shifted in. When byte b is shifted in, byte a is shifted to the 
left. When the data receive register is read, both bytes a and b are read . 

.... shift direction .... 

31 24 23 16 15 8 7 0 

After Byte a I x I x I x I a I 
After Byte b I x x a b 

Figure 9-16. Receive Buffer Shift Operation 

9.2.9 Serial Port Operation Configurations 

9-20 

Several configurations are provided for the operation of the serial port clocks 
and timer. The clocks for each serial port can originate either internally or ex
ternally. Figure 9-17 shows serial port clocking in the I/O mode (FUNC = 0) 
when CLKX is either an input or an output. Figure 9-18 shows clocking in the 
serial port mode (FUNC = 1). Both figures use a transmit section for an ex
ample. The same relationship holds for a receive section. 



Peripherals - Serial Ports 

INTERNAL I EXTERNAL 
I 

TSTAT INTERNAL I 
~ TIMER IN r--CLOCK I 

i XSR Ij 1 ,. ClKX 

DATOUT : ~ 
DATIN--_----' 

FUNC = 0 (1/0 MODE) 
ClKX1/0 = 1 (ClKX. AN INPUT) 

XClKSRC = 1 (INTERNAL ClK FOR TIMER) 

(a) 

INTERNAL I EXTERNAL 
I 

TSTAT I 
~ TIMER IN 1-.-INTERNAl I 
~ 1- CLOCK I 

XSR I ... T I ... ClKX 

DATOUT(NC)---O t 
DATIN _ ... _----1-

FUNC = 0 (110 MODE) 
ClKX1/0 = 1 (ClKX. AN INPUT) 

XClKSRC = 1 (INTERNAL ClK FOR TIMER) 

(e) 

INTERNAL I EXTERNAL 

I 
I 
I 

_ ......... ClKX 

DATOUT---...... 

DATIN -_-----I 
FUNC 

ClKX1/0 
XClKSRC 

0(110 MODE) 
1 (ClKX. AN OUTPUT) 
o (EXTERNAL ClK FOR TIMER) 

(b) 

INTERNAL i EXTERNAL 

I 
I 
I 

..... ~I-ClKX 

I 
I 

DATOUT (lNC)---O 

DATIN __ ---...J 
FUNC 

ClKX1/0 
XClKSRC 

0(110 MODE) 
o (ClKX. AN INPUT) 
o (EXTERNAL ClK FOR TIMER) 

(d) 

Figure 9-17. Serial Port Clocking in I/O Mode 

9-21 

• 



Peripherals - Serial Ports 

INTERNAL I EXTERNAL 

INTERNAL I 
CLOCK I 

I 

GClKX 

INTERNAL I EXTERNAL 

l-- INTERNAL I 
• CLOCK I 

TSTAT ------1 TIMER 

I 

I 
DATOUT(NC)---O INY 

C~xs~R~}-I"'''~HoH ClKX 

DATOUT (NC)--Q r '1 I 

9-22 

DATIN -_-----' DATIN'" INY 

FUNC 
XClKSRCE 

XClKSRC 

1 (SERIAL PORT MODE) 
FUNC = 1 (SERIAL PORT MODE) 

XClKSRCE = 0 (INPUT SERIAL PORT ClK) 
XClKSRC = 1 (INTERNAL ClK FOR TIMER) 

(b) 

1 (OUTPUT SERIAL PORT ClK) 
o OR 1 

(a) 

DATOUT (NC)---o 
DATIN-_------' 

FUNC = 1 (SERIAL PORT MODE) 
XClKSRCE = 0 (INPUT SERIAL PORT ClK) 
XClKSRC = 0 (EXTERNAL ClK FOR TIMER) 

(e) 

Figure 9-18. Serial Port Clocking in Serial Port Mode 



Peripherals - Serial Ports 

9.2.10 Serial Port Timing 

The formula for calculating the frequency of the serial port clock with an in
ternally generated clock is dependent upon the operation mode of the serial 
port timers, defined as: 

f (pulse mode) = f (timer clock)/period register 

f (clock mode) = f (timer clock)/(2 x period register) 

An externally generated serial port clock (CLKX or CLKR) has a maximum 
frequency less than f(H1 )/2.6. See serial port timing in Appendix A. 

Transmit data is clocked out on the rising edge of the selected serial port clock. 
Receive data is latched into the receive shift register on the falling edge of the 
serial port clock. All data is transmitted and loaded MSB first and right-justi
fied. If less than 32 bits are transferred, the data is right-justified in the 32-bit 
transmit and receive buffers. Therefore, the LSBs of the transmit buffer are the 
bits that are transmitted. 

The transmit ready (XRDY) signal specifies that the data transmit register 
(DXR) is available to be loaded with new data. XRDY goes active as soon 
as the data is loaded into the transmit shift register (XSR). The last word may 
still be shifting out when XRDY goes active. If DXR is loaded before the last 
word has completed transmission, the data bits transmitted will be consec
utive, i.e., the LSB of the first word immediately precedes the MSB of the 
second, with all signalling valid as in two separate transmits. XRDY goes in
active when DXR is loaded, and remains inactive until the data is loaded into 
the shifter. 

The receive ready (RRDY) signal is active as long as a new word of data is 
loaded into the data receive register and has not been read. As soon as the 
data is read, the RRDY bit is turned off. 

When FSX is specified as an output, the activity of the signal is determined 
solely by the internal state of the serial port. When a fixed data rate is speci
fied, FSX goes active when DXR is loaded into XSR to be transmitted out. 
One serial clock cycle later, FSX turns inactive and data transmission begins. 
When a variable data rate is specified, the FSX pin is activated when the data 
transmission begins, and remains active during the entire transmission of the 
word. Again, the data is transmitted one clock cycle after it is loaded into the 
data transmit register. 

An input FSX in the fixed data rate mode should go active for at least one se
rial clock cycle and then inactive to initiate the data transfer. The transmitter 
then transmits the number of bits specified by the LEN bits. In the variable 
data rate mode, the transmitter begins transmitting as soon as FSX goes active 
until the number of specified bits has been shifted out. In the variable data 
rate mode, when the FSX status changes prior to all the data bits being shifted 
out, the transmission completes and the DX pin is placed in a high impedance 
state. An FSR input is exactly complementary to the FSX. 

When using an external FSX, if DXR and XSR are empty, a write to DXR re
sults in a DXR to XSR transfer. This data is held in the XSR until an FSX oc
curs. When the external FSX is received, the XSR begins shifting the data. If 
XSR is waiting for the external FSX, a write to DXR will change DXR, but a 

9-23 

• 



Peripherals - Serial Ports 

9-24 

DXR to XSR transfer will not occur. XSR begins shifting when the external 
FSX is received, or when reset using XRESET. 

Continuous Transmit and Receive Modes 

When continuous mode is chosen, consecutive writes do not generate or ex
pect new sync pulse signalling. Only the first word of a block begins with an 
active synchronization. Thereafter, data continues to be transmitted as long 
as new data is loaded into DXR before the last word has been transmitted. 
As soon as TXR DY is active and all of the data has been transmitted out of the 
,shift register, the OX pin is placed in a high impedance state, and a subsequent 
write to DXR initiates a new block and a new FSX. 

Similarly with FSR, the receiver continues shifting in new data and loading 
ORR. If the data receive buffer is not read before the next word is shifted in, 
subsequent incoming data will be lost. The RFSM bit can be used to termi
nate the receive continuous mode. 



Peripherals - Serial Ports 

Handshake Mode 

The handshake mode (HS = 1) allows for direct connection between proces
sors. In this mode, all data words are transmitted with a leading 1 (see Figure 
9-19). For example, if an 8-bit word is to be transmitted, the first bit sent is 
a 1, followed by the 8-bit data word. 

In this mode, once the serial port transmits a word, it will not transmit another 
word until it receives a separately transmitted zero bit. Therefore, the 1 bit that 
precedes every data word is, in effect, a request bit. 

DX----< 

data word 
.... ------ IS-bits) ------... -40041 

""- leading one 

I 
I 

Figure 9-19. Data Word Format in Handshake Mode 

After a serial port receives a word (with the leading 1), and it has been read 
from the ORR. it sends a single 0 to the transmitting serial port. Thus, the 
single 0 bit acts as an acknowledge bit (see Figure 9-20). This single ac
knowledge bit is sent every time the ORR is read, even if the ORR does not. 
contain new data. • 

DX--8-

~Single zero 

Figure 9-20. Single Zero Sent as an Acknowledge 

When the serial port is placed in the handshake mode, the insertion and de
letion of a leading 1 for transmitted data, the sending of a 0 for acknowl
edgement of received data, and the waiting for this acknowledge bit are all 
performed automatically. Using this scheme, it is simple to connect processors 
with no external hardware and guarantee secure communication. A typical 
configuration is shown in Figure 9-21. 

In the handshake mode, FSX is automatically configured as an output. Con
tinuous mode is automatically disabled. After a system reset or XRESET, the 
transmitter is always permitted to transmit. The transmitter and receiver must 
be reset when entering the handshake mode. 

9-25 



Peripherals - Serial Ports 

TMS320C30 #1 TMS320C30 #2 

CLKX CLKR 
FSX FSR 
OX DR 

CLKR CLKX 
FSR FSX 
DR OX 

Figure 9-21. Direct Connection Using Handshake Mode 

9.2.11 Serial Port Interrupt Sources 

A serial port has four interrupt sources: 

1) The transmit timer interrupt: The rising edge of XTSTAT causes a single 
cycle interrupt pulse to occur. When XTINT is 0, this interrupt pulse is 
disabled. 

2) The receive timer interrupt: The rising edge of RTSTAT causes a single 
cycle interrupt pulse to occur. When RTINT is 0, this interrupt pulse is 
disabled. 

3) The transmitter interrupt: Occurs immediately following a OXR to XSR 
transfer. The transmitter interrupt is a single cycle pulse. When the 
global serial-port control register XINT is 0, this interrupt pulse is disa
bled. 

4) The receiver interrupt: Occurs immediately following a RSR to ORR 
transfer. The receiver interrupt is a single cycle pulse. When the global 
serial-port control register RINT is 0, this interrupt pulse is disabled. 

The transmit timer interrupt pulse is ORed with the transmitter interrupt pulse 
to create the CPU transmit interrupt flag XINT. The receive timer interrupt 
pulse is ORed with the receiver interrupt pulse to create the CPU receive in
terrupt flag RINT. 

9.2.12 Serial Port Functional Operation 

9-26 

The following paragraphs and figures illustrate the functional timing of the 
various serial port modes of operation. The timing descriptions are presented 
assuming that all signal polarities are configured to be positive, i.e. 
CLKXP=CLKRP= OXP=ORP=FSXP=FSRP=O. Logical timing, in situations 
where one or more of these polarities are inverted, is the same but with respect 
to the opposite polarity reference points, i.e. rising vs. falling edges, etc. 

These discussions pertain to the numerous operating modes and configura
tions of the serial port logic. When it is necessary to switch operating modes 
or change configurations of the serial port, this should be done only when 
XRESET or or RRESET are asserted (low) as appropriate. Therefore, when 
transmit configurations are modified, XRESET should be low, and when re
ceive configurations are modified, RRESET should be low. When in handshake 



Peripherals - Serial Ports 

CLKXJR 

mode, however, since the transmitter and receiver are interrelated, any con
figuration changes should be made with XRESET and RRESET both low. 

All of the various serial port operating configurations can be broadly classified 
in two categories: fixed data rate timing and variable data rate timing. The 
following paragraphs discuss fixed and variable data rate operation and all of 
their variations. 

Fixed Data Rate Timing Operation 

Fixed data rate serial port transfers can occur in two varieties: burst mode and 
continuous mode. In burst mode operation, transfers of single words are se
parated by periods of inactivity on the serial port. In continuous mode, there 
are no gaps between successive word tranfers, i.e., the first bit of a new word 
is transferred on the next CLKX/R pulse following the last bit of the previous 
word. This occurs continuously until the process is terminated. 

In burst mode with fixed data rate timing, FSX/FSR pulses initiate transfers, 
and each transfer involves a single word. With an internally generated FSX 
(see Figure 9-22), transmission is initiated by loading DXR. In this mode, 
there is an approximately 2.5 CLKX cycle delay (depending on CLKX and H1 
frequencies) from DXR being loaded until FSX occurs. With an external FSX, 
the FSX pulse initiates the transfer and the 2.5 cycle delay effectively becomes 
a setup requirement for loading DXR with respect to FSX. Therefore, in this 
case, DXR must be loaded no later than 3 CLKX cycles before FSX occurs. 
Once the XSR is loaded from the DXR, an XINT is generated. 

(Ex~=~:~---------------------f----~~~~~~IIIl------------------------
FSX I I 

(INTERNAL) 1-----------------------------------
DX/DR----------------------~~--------------

t I I 
DXR XINT RINT 

LOADED 

Figure 9-22. Fixed Burst Mode 

In receive operations, once a transfer is initiated, FSR is ignored until the last 
bit. For burst mode transfers, FSR must be low during the last bit, or another 
transfer will be initiated. After a full word has been received and transfered to 
the DRR, an RINT is generated. 

In fixed data rate mode, continuous transfers may be performed even if 
R/XFSM=O as long as properly timed frame synchronization is provided, or if 
DXR is reloaded each cycle (with an internally generated FSX), see Figure 
9-23. 

9-27 



Peripherals - Serial Ports 

CLKXJR 

(lNTER~:~I _______ --,r--'II •• ~l!IIr--IBllijnl!lllaIl!IIBlllijliD.1~ •• r--'t!lli+I~II!~!!II*I*IQOo.4 
FSR/FSX ,,'----'. ,----, 

(EXTERNAL) '-----iI'1---' ~I----' '---

9-28 

D~DX-------------------~~~ 

I XltT t XI!T 1 XI!T 1 
DXR DXR RINT RINT 

LOADED LOADED LOAD DXR LOAD DXR 
READ DRR READ DRR 

Figure 9-23. Fixed Continuous Mode With Frame Synch 

For receive operations and with externally generated FSX, once transfers have 
begun, frame sync pulses are only required during the last bit transferred to 
initiate another contiguous transfer. Otherwise, frame sync inputs are ignored. 
Therefore, continuous transfers will occur if frame sync is held high. With an 
internally generated FSX, there is an approximately 2.5 CLKX cycle delay fol
lowing DXR being loaded before FSX occurs. This delay occurs each time 
DXR is loaded, therefore, during continuous transmission, the instruction 
which loads DXR must be executed by the N-3 bit, (for an N-bit trans
mission). Since delays due to pipelining may vary, a conservative margin of 
safety should be incorporated in accounting for this delay. 

Once the process begins, an XINT and an RINT are generated at the beginning 
of each transfer. The XINT indicates that the XSR has been loaded from DXR, 
and can be used to cause DXR to be reloaded. To maintain continuous trans
mission in this mode, especially with an interally generated FSX, DXR must 
be reloaded early in the ongoing transfer. 

The RINT indicates that a full word has been received and transferred into the 
DRR. RINT is therefore commonly used to indicate an appropriate time to read 
DRR. 

Continuous transfers are terminated by discontinuing frame sync pulses or, in 
the case of internally generated FSX, not reloading DXR. 

Continuous serial port transfers can be accomplished without the use of frame 
sync pulses if R/XFSM are set to one. In this mode, operation of the serial 
port is similar to continuous operation with frame sync except that a frame 
sync pulse is involved only in the first word transferred, and no further frame 
sync pulses are used. Following the first word transferred (see Figure 9-24), 
no internal frame sync pulses are generated, and frame sync inputs are ig
nored. Additionally, R/XFSM should be set prior to or during the first word 
transferred, and must be set no later than the transfer of the N-1 bit of the first 



Peripherals - Serial Ports 

word, except for transmit operations. For transmit operations in the fixed data 
rate mode, XFSM must be set no later than the N-2 bit. Clearing R/XFSM 
must be performed no later than the N-1 bit to be recognized in the current 
cycle. 

(lNTER;:~ "\1 \1 

D~DX -------------------~~~ 

D~ XI!T 1 JET XI!T 1 XltT 1 
LDADED ~XFSM RINT RINT 

DXR LDAD DXR LDAD DXR 
LDADED READ DRR READ DRR 

Figure 9-24. Fixed Continuous Mode Without Frame Synch 

Timing of RINT and XINT and data transfers to and from DXR and DRR, re- • 
spectively, are the same as in fixed data rate continuous mode with frame sync. • 
This mode of operation also exhibits the same 2.5 CLKX cycle delay following 
DXR being loaded before an internal FSX is generated. As in the case of 
continuous operation in fixed data rate mode with frame sync, DXR must be 
reloaded no later than transmission of the N-3 bit. 

When using continuous operation in fixed data rate mode, R/XFSM may be 
set and cleared as desired, even during active transfers, to enable or disable the 
use of frame sync pulses as dictated by system requirements. Under most 
conditions, the effect of changing the state of R/XFSM occurs during the 
transfer in which the R/XFSM change was made, provided the change was 
made early enough in the transfer. For transmit operations with internal FSX 
in fixed data rate mode, however, a one word delay occurs before frame sync 
pulse generation resumes when clearing XFSM to zero (see Figure 9-25). 
Therefore, one additional word is transferred in this case before the next FSX 
pulse is generated. Also note that, as discussed previously, clearing XFSM 
will be recognized during the current word being transmitted as long as XFSM 
is cleared no later than the N-1 bit. Setting XFSM is recognized as long as 
XFSM is set no later than the N-2 bit. 

9-29 



Peripherals - Serial Ports 

I I I I I I 

I 1ST WORD I 2ND WORD I 3RD WORD 14TH WORD 16TH WORD I 
ClK)( JL.JLJl..fl..hju-U-uu-U-uu-U-uu-U-uu-U-uUl... 

FSX rl i I I I I 
(lNTERNAll i I I '1 '1 '11-----11 
DX-----------@G~~~~~~ 

t t t 
lOAD SET RESET 
DXR XFSM XFSM 

Figure 9-25. Exiting Fixed Continuous Mode Without Frame Synch, FSX Internal 

ClKXJR 

Variable Data Rate Timing Operation 

Variable data rate timing also supports operation in either burst or continuous 
mode. Burst mode operation with variable data rate timing is similar to burst 
mode operation with fixed data rate timing. With variable data rate timing (see 
Figure 9-26) however, FSX/R and data timing differs slightly at the beginning 
and end of transfers. Specifically, there are three major differences between 
fixed and variable data rate timing. 

FSR/FSX r--... IIBI!III!IIIB!B ___________ _ (EXTERNAL) __________ ---' 

FSX .-----I~---__. (INTERNAL) L-__________ _ 

DXJDR.--------------------~~---------------------

9-30 

Itt 
DXR XINT RINT 

lOADED 

Figure 9-26. Variable Burst Mode 

First, FSX/R pulses typically last for the entire transfer interval, although FSR 
and external FSX are ignored after the first bit transferred. FSX/R pulses in 
fixed data rate mode typically last only one CLKX/R cycle, but can last longer. 

Second, data transfer begins during the CLKX/R cycle in which FSX/R occurs, 
rather than the CLKX/R cycle following FSX/R. as is the case with fixed data 
rate timing. 



Peripherals - Serial Ports 

CLKXJR 

Finally, with variable data rate timing, frame sync inputs are ignored until the 
end of the last bit transferred, rather than the beginning of the last bit trans
ferred as is the case with fixed data rate timing. 

When transmitting continuously in variable data rate mode with frame sync, 
timing is the same as for fixed data rate mode, besides the differences between 
these two modes as described under burst mode operation with variable data 
rate timing. The only exception to this is that when operating continuously 
in variable data rate mode (see Figure 9-27), DXR must be reloaded no later 
than the N-4 bit to maintain continuous operation, as opposed to the N-3 bit 
for fixed data rate mode. 

IEX~::=:~ __________ ~r-_,~~mmmmr--,.~~~IJl«i'*III*I*ljl!l!<JCBllfOe.lII*r* --lliUBIIUIUIU0I!I!UiUIIIUiU 
FSX ...----ii---------'\\\-', -----------IINTERNALI __________ --.J 

LOAD 
DXR 

LOAD DXR 
READ ORR 

LOAD DXR 
READ DRR 

Figure 9-27. Variable Continuous Mode With Frame Synch 

Cont;""o", ope,,,;on ;n v.,;,ble dot, "te mode w;thout h,me "no ;, ,1,0 II 
similar to continuous operation without frame sync in fixed data rate mode. 
As with variable data rate mode continuous operation with frame sync (see 
Figure 9-28), DXR must be reloaded no later than the N-4 bit to maintain 
continuous operation. Additionally, when R/XFSM is set or cleared in the 
variable data rate mode, the modification must be made no later than the N-1 
bit, for the result to be affected in the current transfer. 

9-31 



Peripherals - Serial Ports 

CLWR 

FSRiFSX IEXTERNALI ___________ -' 

~ ~ 
(lNTERNALI L..... __ ~III-I-----------_ 

D~DR.--------------------~~~ 

I XI!T I S!T XI!T 1 XltT 1 
DXR DXR R/XFSM RINT RINT 

LOADED LOADED LOAD DXR LOAD DXR 
READ DRR READ DRR 

Figure 9-28. Variable Continuous Mode Without Frame Synch 

9-32 



Peripherals - DMA Controller 

9.3 DMA Controller 

The TMS320C30 provides an on-chip Direct Memory Access (DMA) con
troller. The purpose of the DMA controller is to reduce the need for the CPU 
to perform input/output functions. The DMA controller can perform 
input/output operations without interfering with the operation of the CPU. 
Therefore, it is possible to interface the TMS320C30 to slow external memo
ries and peripherals (A/D's, serial ports, etc.) without reducing the computa
tional throughput of the CPU. The result is improved system performance and 
decreased system cost. 

A DMA transfer consists of two operations: a read from a memory location and 
a write to a memory location. The DMA controller can read from and write to 
any location in the TMS320C30 memory map. This includes all memory
mapped peripherals. The operation of the DMA is controlled with the fol
lowing set of memory-mapped registers: 

• DMA global control register 
• DMA source address register 
• DMA destination address register 

• DMA transfer counter register 

These registers, their memory-mapped addresses, and functions are shown in 
Figure 9-29. Each of these DMA registers will be discussed in the succeeding 
subsections. 

Register Peripheral 
Address 

DMA GLOBAL CONTROL 808000h 
RESERVED 808001h 
RESERVED 808002h 
RESERVED 808003h 

DMA SOURCE ADDRESS 808004h 
RESERVED 808005h 

DMA DESTINATION ADDRESS 808006h 
RESERVED 808007h 

DMA TRANSFER COUNTER 808008h 
RESERVED 808009h 
RESERVED 80800Ah 
RESERVED 80800Bh 
RESERVED 80800Ch 

RESERVED 80800Dh 
RESERVED 80800Eh 
RESERVED 80800Fh 

Figure 9-29. Memory-Mapped Locations for a DMA Channel 

9-33 

• 



Peripherals - DMA Controller 

9.3.1 DMA Global Control Register 

9-34 

The global control register controls the state in which the DMA controller 
operates. This register also indicates the status of the DMA, which changes 
every cycle. Source and destination addresses can be incremented, decre
mented, or synchronized using specified global control register bits. At system 
reset, all bits in the DMA control register are set to O. Table 9-7 lists the reg
ister bits, names, and functions. Figure 9-30 shows the bit configuration of 
the global control register. 

Table 9-7. Global Control Register Bits 

BIT NAME FUNCTION 

0-1 START These bits control the state in which the DMA starts and stops. 
The DMA may be stopped without any loss of data (see Table 9-8). 

2-3 STAT These bits indicate the status of the DMA. These status bits change 
every cycle (see Table 9-9). 

4 INCSRC If INCSRC = 1. the source address is incremented after every read. 

5 DECSRC If DECSRC = 1. the source address is decremented after every read. 
If INCSRC = DECSRC. the source address is not modified after a 
read. 

6 INCDST If I NCDST = 1, the destination address is incremented after every 
write. 

7 DECDST If DECDST = 1, the destination address is decremented after every 
read. If INCDST = DECDST. the destination address is not modi-
fied after a write. 

8-9 SYNCH The SYNCH bits determine the timing synchronization between the 
events initiating the source and the destination transfers. The in-
terpretation of the SYNCH bits is shown in Table 9-10. 

10 TC The TC bit affects the operation of the transfer counter. If TC = 0, 
transfers are not terminated when the transfer counter becomes 
zero. If TC = 1. transfers are terminated when the transfer counter 
becomes zero. 

11 TCINT If TCINT = 1,the DMA interrupt is set when the transfer counter 
makes a transition to zero. If TCINT = 0, the DMA interrupt is not 
set when the transfer counter makes a transition to zero. 

12 Reserved Read as zero. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Ixxlxxlxxlxxl xx xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I xx I xx I xx I xx ITCINTI TC I SYNCH I DECDSTIINCDST I DECSRCIINCSRC I STAT I START I 

R/W R/W R/W R/W R/W 

NOTE: xx = Reserved bit, read as O. 
R = read, W = write. 

R/W R/W R/W R R R/W R/W 

Figure 9-30. DMA Global Control Register 



Peripherals - DMA Controller 

Table 9-8. START Bits and Operation of the DMA 

START FUNCTION 

00 DMA read or write cycles in progress will be completed, any data read will 
be ignored. Any pending read or write will be cancelled. The DMA is reset 
so that when started, a new transaction is begun; i.e., a read is performed. 

01 If a read or write has begun, the read or write is completed before stopping, 
i.e. in the middle or at the end of a DMA transfer. If a read or write has 
not begun, no read or write is started. 

1 0 If a DMA transfer has begun, the entire transfer is completed (including 
both read and write operations) before stopping. If a transfer has not be-
gun, none is started. 

1 1 D MA starts from reset or restarts from the previous state. 

Table 9-9. STAT Bits and Status of the DMA 

STAT FUNCTION 

00 DMA is being held between DMA transfers (between a read and write). 
This is the value at reset. 

01 DMA is being held in the middle of a DMA transfer, i.e. between a read 
and a write. 

1 0 Reserved. 

1 1 DMA busy; i.e., DMA is performing a read or write. 

Table 9-10. SVNCH Bits and Synchronization of the DMA 

• SYNCH FUNCTION 

00 No synchronization. Enabled interrupts are ignored. 

01 Source synchronization. A read is performed when an enabled interrupt 
occurs. 

1 0 Destination synchronization. A write is performed when an enabled inter-
rupt occurs. 

1 1 Source and destination synchronization. A read is performed when an en-
abled interrupt occurs. A write is then performed when the next enabled 
interrupt occurs. 

9-35 



• 

Peripherals - DMA Controller 

9.3.2 Destination and Source Address Registers 

The DMA destination and source address registers are 24-bit registers. These 
registers are used when performing the increment and decrement as specified 
by control bits DECSRC,INCSRC, DECDST, and INCDST of the DMA global 
control register. The contents of these registers specify the destination and 
source addresses. The registers are incremented or decremented at the end 
of the corresponding memory access, i.e., source register for a read, destina
tion register for a write. On system reset, 0 is written to these registers. 

9.3.3 Transfer Counter Register 

The transfer counter register is a 24-bit register, controlled by a 24-bit counter 
that counts down. The counter decrements upon the completion of a DMA 
memory write. In this way, it can be used to control the size of a block of data 
transferred. The transfer counter register is set to 0 at system reset. 

9.3.4 CPU/DMA Interrupt Enable Register 

9-36 

The CPU/DMA interrupt enable register (IE) is a 32-bit register located in the 
CPU register file. The CPU interrupt enable bits are in locations 10-0. The 
DMA interrupt enable bits are in locations 26-16. A 1 in a CPU/DMA interrupt 
enable register bit enables the corresponding interrupt. A 0 disables the cor
responding interrupt. At reset, 0 is written to this register. 

Table 9-11 list the bits, names, and functions of the CPU/DMA interrupt en
able register. Figure 9-31 shows the IE register. The priority and decoding 
scheme of CPU and DMA interrupts is identical. Note that when the DMA 
receives an interrupt, this interrupt is acted upon based upon the SYNCH field 
of the DMA control register. Note that an interrupt may affect the DMA, but 
not the CPU and vice versa. Refer to Section 7. 



Peripherals - DMA Controller 

Table 9-11. CPU/DMA Interrupt Enable Register Bits 

BIT NAME FUNCTION 

0 EINTO Enable external interrupt 0 (CPU) 

1 EINT1 Enable external interrupt 1 (CPU) 

2 EINT2 Enable external interrupt 2 (CPU) 

3 EINT3 Enable external interrupt 3 (CPU) 

4 EXINTO Enable serial port 0 transmit interrupt (CPU) 

5 ERINTO Enable serial port 0 receive interrupt (CPU) 

6 EXINT1 Enable serial port 1 transmit interrupt (CPU) 

7 ERINT1 Enable serial port 1 receive interrupt (CPU) 

8 ETINTO Enable timer 0 interrupt (CPU) 

9 ETINT1 Enable timer 1 interrupt (CPU) 

10 EDINT Enable DMA controller interrupt (CPU) 

11-15 Reserved Read as 0 

16 EINTO Enable external interrupt 0 (DMA) 

17 EINT1 Enable external interrupt 1 (DMA) 

18 EINT2 Enable external interrupt 2 (DMA) 

19 EINT3 Enable external interrupt 3 (DMA) 

20 EXINTO Enable serial port 0 transmit interrupt (DMA) 

21 ERINTO Enable serial port 0 receive interrupt (DMA) 

22 EXINT1 Enable serial port 1 transmit interrupt (DMA) 

23 ERINT1 Enable serial port 1 receive interrupt (DMA) 

24 ETINTO Enable timer 0 interrupt (DMA) 

25 ETINT1 Enable timer 1 interrupt (DMA) • 26 EDINT Enable DMA controller interrupt (DMA) 

27-32 Reserved Read as 0 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

RjW R/W RjW RjW RjW RjW R/W RjW RjW RjW R/W 

151413121110 9 8 7 6 5 4 3 2 o 

NOTE: xx = Reserved bit, read as O. 
R = read, W = write. 

Figure 9-31. CPU/DMA Interrupt Enable Register 

9-37 



Peripherals - DMA Controller 

9.3.5 DMA Memory Transfer Operation 

9-38 

Each DMA memory transfer consists of two parts: 

1) Read data from the address specified by the DMA source register. 
2) Write data that has been read to the address specified by the DMA des-

tination register. 

A transfer is complete only when the read and write are complete. A transfer 
may be stopped by setting the START bits to the desired value. When the 
DMA is restarted (START = 1 1), it completes any pending transfer. 

At the end of a DMA read, the source address is modified as specified by the 
SRCINC and SRCDEC bits of the DMA global control register. At the end of 
a DMA write, the destination address is modified as specified by the OSTINC 
and DSTDEC bits of the DMA global control register. At the end of every 
DMA write, the DMA transfer counter is decremented. 

OMA on-chip reads and writes (reads and writes from on-chip memory and 
peripherals) are single cycle. DMA off-chip reads are two cycles. The first 
cycle is an internal setup with the external read beginning on the following 
cycle. The external read cycle is identifical to a CPU read cycle. OMA off-chip 
writes are identical to CPU off-chip writes. 

Through the 24-bit source and destination registers, the DMA is capable of 
accessing any memory-mapped location in the TMS320C30 memory map. 
Figure 9-32 through Figure 9-34 show the number of cycles a OMA transfer 
requires, depending upon whether the source and destination are on-chip 
memory and peripherals, the external port, or the 1/0 port. T represents the 
number of transfers to be performed. Cr represents the number of wait states 
for the source read. Cw represents the number of wait states for the destination 
write. Each entry in the table represents the total cycles required to do the T 
transfers, assuming no pipeline conflicts. 

Accompanying each table is a figure illustrating the timing of the DMA trans
fer. IRI and IWI represent single-cycle reads and writes, respectively. IR.RI 
and IW.WI represent multicycle reads and writes. ICrl and ICwl show the 
number of wait cycles for a read and write. H represents the cycle used as 
an internal setup for DMA external reads. 



Peripherals - DMA Controller 

CYCLE 1 12 I 3141 5 I 6 I 71819 110111112113114115116117118119 
Source On-Chip R I I R I I R I : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : : 
Dest On-Chip IWI IWI IWI : : : : : : : : : : : : 

Source Primary Bus - .R .R .R I 1- .R .R .R I 1- .R .R .R I : : : 
: I Cr I : : I Cr I : : I C r I : : : : 

: : : : : : : : : : : : : : : : 
Dest On-Chip : : : IWI : : : IWI : : IWI : : : 

Source Expansion Bus - .R .R .R I 1- .R .R .R I 1- .R .R .R I : : : : 
: I Cr I : : I Cr I : I C r I : : : : 
: : : : : : : : : : : : : : : : : 

Dest On-Chip : : IWI : : : IWI : : : IWI : : : 

SOURCE DESTINATION ON-CHIP 

On-Chip (1+1) T 

Primary Bus (2+Cr+l)T 

Expansion Bus (2+C +l)T 

Figure 9-32. Timing and Number of Cycles for DMA Transfers When Destination 
is On-Chip 

CYCLE 1 1213141516 I 71 819110111112113114115116117118119 
Source On-Chip R I I R I : : I R I : : I R I : : : : : : : 

: : : : : : : : : : : : : : : : : .. 
Dest Primary bus IW.W.W.WIW.W.W.WIW.W.W.W: : : : : : 

: : I Cw I : I Cw I : I C w I : : : : : 

Source Primary Bus - .R .R .R I : : 1- .R .R .R I : : : : : 
: I Cr I : : : : I Cr I : : : : : : 
: : : : : : : : : : : : : : : : : 

Dest Primary Bus : : : IW.W.W.WI : : : IW.W.W.WI : : 
: : : : : I Cw I : : : : : I C w I : : 

Source Expansion Bus - .R .R .R I 1- .R .R .R I 1- .R .R .R I : : : 
: I Cr I : : I Cr I : : I C r I : : : : 

: : : : : : : : : : : : : : : 
Dest Primary Bus : : : IW.W.W.W[ [W.W.W.W[ [W.W.W.W[ 

: : : : : I Cw [ I Cw I I Cw [ : : : : 

SOURCE DESTINATION PRIMARY BUS 
On-Chip 1 +(2+Cw )T 

Primary Bus (2+C +2+Cw )T 

Expansion Bus (2+Cr+2Cw) 
+ (2+Cw+max(O,Cr-C w+1 )(T-l) 

Figure 9-33. DMA Timing When Destination is a Primary Bus 

9-39 

• 



Peripherals - DMA Controller 

CYCLE 1 1 2 J 3 1 4 1 5 J 6 1 7 1 8 1 9 J 10111112113114115116117118119 
Source On-Chip R I I R I : : I R I : : : : : : : : : : : 

: : : : : : : : : : : : : : : : : : 
Dest Expansion Bus IW.W.W.WIW.W.W.WIW.W.W.WI : : : : : 

: : I Cw I : I Cw I : I C w I : : : : : 

Source Primary Bus - .R.R .R I 1- .R.R .R I 1- .R.R.R I : : : : 
: I Cr I : : I Cr I : : I C r I : : : : 
: : : : : : : : : : : : : : : : : : 

Dest Expansion Bus : : : IW.W.W.WI IW.W.W.WI IW.W.W.WI 
: : : : : I Cw I : : I C w I : : I Cw I 

Source Expansion Bus - .R .R.R I : : : 1- .R.R.R I : : : : 
: I Cr I : : : : : I C r I : : : : 
: : : : : : : : : : : : : : : : 

Dest Expansion Bus : : : IW.W.W.WI : : : IW.W.W.WI 
: : : : : I Cw I : : : : : I C w I 

SOURCE DESTINATION EXPANSION BUS 

On-Chip 1 +(2+Cw)T 
Primary Bus (2+Cr+2+Cw ) 

+(2+Cw+max(O,C,- Cw+1»(T-1) 

Expansion Bus (2+Cr+2+C w)T 

Figure 9-34. DMA Timing When Destination is an Expansion Bus 

• 

9-40 



Peripherals - DMA Controller 

Table 9-12 shows the maximum DMA transfer-rates assuming no wait states 
(Cr=Cw= 0). Table 9-13 shows the maximum DMA transfer-rates assuming 
one wait state for the read (Cr=1) and no wait states for the write (Cw=O). 
Table 9-14 shows the maximum DMA transfer-rates assuming one wait state 
for the read (Cr =1) and one wait state for the write (Cw ). 

In each table, the complete transfer is considered (i.e., the time to do the read 
and the write). Since one bus access is required for the read and another for 
the write, bus transfer-rates will be twice the transfer-rate. It is also assumed 
that no conflicts with the CPU exist. 

Table 9-12. Maximum DMA Transfer Rates When C, = Cw = 0 

DESTINATION 
SOURCE 

INTERNAL PRIMARY EXPANSION 

INTERNAL 33.3 Mbytes/sec 33.3 Mbytes/sec 33.3 Mbytes/sec 

PRIMARY 22.2 Mbytes/sec 16.7 Mbytes/sec 22.2 Mbytes/sec 

EXPANSION 22.2 Mbytes/sec 22.2 Mbytes/sec 16.7 Mbytes/sec 

Table 9-13. Maximum DMA Transfer Rates When C, = 1. Cw = 0 

DESTINATION 
SOURCE 

INTERNAL PRIMARY EXPANSION 

INTERNAL 33.3 Mbytes/sec 33.3 Mbytes/sec 33.3 Mbytes/sec 

PRIMARY 16.7 Mbytes/sec 13.3 Mbytes/sec 16.7 Mbytes/sec 

EXPANSION 16.7 Mbytes/sec 16.7 Mbytes/sec 13.3 Mbytes/sec 

Table 9-14. Maximum DMA Transfer Rates When C, = 1. Cw = 1 

DESTINATION 
SOURCE 

INTERNAL PRIMARY EXPANSION 

INTERNAL 33.3 Mbytes/sec 22.2 Mbytes/sec 22.2 Mbytes/sec 

PRIMARY 16.7 Mbytes/sec 11.1 Mbytes/sec 16.7 Mbytes/sec 

EXPANSION 16.7 Mbytes/sec 16.7 Mbytes/sec 11.1 Mbytes/sec 

9-41 

• 



Peripherals - DMA Controller 

9.3.6 Synchronization of DMA Channels 

9-42 

A DMA channel may be synchronized through the use of interrupts. Refer to 
Table 9-10 for the relationship between the SYNCH bits of the DMA global 
control register and the synchronization performed. This section describes the 
following four synchronization mechanisms: 

• No synchronization (SYNCH = 00) 
• Source synchronization (SYNCH = 0 1) 
• Destination synchronization (SYNCH = 1 0) 
• Source and destination synchronization (SYNCH = 1 1) 



Peripherals - DMA Controller 

No Synchronization 

When SYNCH = 0 O. no synchronization is performed. The DMA will perform reads and 
writes whenever there are no conflicts. All interrupts are ignored. and therefore can be 
considered to be globally disabled. However. no bits in the DMA interrupt enable register 
are changed. Figure 9-35 shows the synchronization mechanism when SYNCH = 0 O. 

Figure 9-35. No DMA Synchronization 

9-43 

• 



Peripherals - DMA Controller 

9-44 

Source Synchronization 

When SYNCH = 0 1, the DMA is synchronized to the source (see Figure 9-36). A read 
will not be performed until an interrupt is received by the DMA. Then, all DMA interrupts 
are disabled globally. However, no bits in the DMA interrupt enable register are changed. 

Figure 9-36. DMA Source Synchronization 



Peripherals - DMA Controller 

Destination Synchronization 

When SYNCH = 1 0, the DMA is synchronized to the destination. First. all interrupts are 
ignored until the read is complete. Though the DMA interrupts may be considered to be 
globally disabled, no bits in the DMA interrupt enable register are changed. A write will 
not be performed until an interrupt is received by the DMA. Figure 9-37 shows the syn
chronization mechanism when SYNCH = 1 0. 

IDLE UNTIL ENABLED INTERRUPT IS RECEIVED 

Figure 9-37. DMA Destination Synchronization 

9-45 

• 



• 

Peripherals - DMA Controller 

9-46 

Source and Destination Synchronization 

When SYNCH = 1 1, all interrupts are ignored, and therefore can be considered to be 
globally disabled. However, no bits in the DMA interrupt enable register are changed. A 
read is performed when an interrupt is received. A write is performed on the following 
interrupt. Source and destination synchronization when SYNCH = 1 1 is shown in Figure 
9-38 . 

Figure 9-38. DMA Source and Destination Synchronization 



Pipeline Operation 





Section 10 

Pipeline Operation 

TMS320C30 operation is controlled by five major functional units: fetch, de
code, read, execute, and DMA. To provide for maximum processor through
put, these units can perform in parallel, with each unit operating on a different 
instruction. The overlapping of the fetch, decode, read, and execute oper
ations of different instructions is called pipelining. The pipelining of these 
operations results in the high performance of the TMS320C30. The ability of 
the DMA to move data within the processor memory space results in an even 
greater utilization of the CPU with fewer interruptions of the pipeline, thus 
yielding greater performance. 

Major topics discussed in this section are as follows: 

• Pipeline Structure (Section 10.1 on page 10-2) 

• Pipeline Conflicts (Section 10.2 on page 10-4) 
Branch conflicts 
Register conflicts 
Memory conflicts 

• Resolving Memory Conflicts (Section 10.3 on page 10-14) 

• Clocking of Memory Accesses (Section 10.4 on page 10-16) 
Program fetches 
Data loads and stores 
DMA accesses 

10-1 



• 

Pipeline Operation - Pipeline Structure 

10.1 Pipeline Structure 

10-2 

The five major units of the TMS320C30 pipeline structure and their function 
are as follows: 

Fetch Unit (F) Fetches the instruction words from memory and 
updates the program counter (PC). 

Decode Unit (D) Decodes the instruction word and performs ad
dress generation. Any modification of the auxiliary 
registers and the stack pointer is controlled by this 
unit. 

Read Unit (R) If required, reads the operands from memory. 

Execute Unit (E) If required, reads the operands from the register 
file, performs the necessary operation, and if 
needed writes results to the register file. If re
quired, results of previous operations are written 
to memory. 

DMA Channel (DMA) Reads and writes memory. 

The basic instruction has four levels: fetch, decode, read, and execute. Figure 
10-1 illustrates these four levels of the pipeline structure. The levels are in
dexed according to instruction and execution cycle. Also indicated is a place 
in the pipeline where all four units operate in parallel; the perfect overlap oc
curs at cycle (m). Those levels about to be executed are at m+1, and those 
just executed are at m-1. The TMS320C30 pipeline control allows for an ex
tremely high-speed execution rate by aI/owing an effective rate of. one exe
cution per cycle. It also manages pipeline conflicts in a way that makes them 
transparent to the user. The user does not need to take any special precautions 
to guarantee correct operation. 

CYCLE 
INSTRUCTION I m-3 I m-2 I m-1 I m I m+1 I m+2 I 

F 0 R E 

J F 0 R E 

K F 0 R E 

J f 0 R E 

PERFECT 
OVERLAP 

Figure 10-1. TMS320C30 Pipeline Structure 



Pipeline Operation - Pipeline Structure 

Priorities have been assigned to each of the functional units. The priorities 
from highest to lowest are: 

• Execute (highest) 

• Read 

• Decode 

• Fetch 

• DMA (lowest). 

When processing of an instruction is ready to pass to the next higher pipeline 
level, but that level is not ready to accept a new input, a pipeline conflict oc
curs. In this case, the lower priority unit waits until the higher priority unit 
completes its currently executing function. 

Despite the DMA controllers low priority, conflicts with the CPU can be min
imized or even eliminated by suitable data structuring since the DMA con
troller has its own data and address buses. 

10-3 

• 



Pipeline Operation - Pipeline Conflicts 

10.2 Pipeline Conflicts 

The pipeline conflicts of the TMS320C30 can be grouped into the following 
main categories: 

Branch Conflicts Involve most of those instructions or operations which 
read and/or modify the PC. 

Register Conflicts Involve delays that can occur when reading or writing 
registers used for address generation. 

Memory Conflicts Occur when the internal units of the TMS320C30 
compete for memory resources. 

Each of these three types is discussed in the following sections. Examples are 
included. Note in these examples, when data is refetched or an operation is 
repeated, the symbol representing the stage of the pipeline is appended with 
a number. For example, if a fetch is performed again, the initial fetch is labeled 
F1 and the refetch is labeled F2. When an access is detained multiple cycles 
due to a 'not ready: the symbols RDY and ROY are used to indicate not ready 
and ready, respectively. 

10.2.1 Branch Conflicts 

10-4 

The first class of pipeline conflicts is that which occurs with standard (non
delayed) branches, i.e., SR, Bcond, o Bcond, CALL, IDLE, RPTB, RPTS, 
RETlcond, RETScond, interrupts, and reset. Conflicts arise with these in
structions and operations since during their execution, the pipeline is used 
only for the completion of the operation; other information fetched into the 
pipeline is discarded or refetched, or the pipeline is inactive. This is referred 
to as flushing the pipeline. Flushing the pipeline is necessary in these cases 
to guarantee that portions of succeeding instructions do not inadvertantly get 
partially executed. TRAPcond and CALLcond are classified somewhat differ
ently from the other types of branches and are considered later. 

Example 10-1 shows the code and pipeline operation for a standard branch. 
Note that one dummy fetch is performed (F1), and then after the branch ad
dress is available, a new fetch (F2) is performed. This dummy fetch will affect 
the cache. 



Pipeline Operation - Pipeline Conflicts 

Example 10-1. Standard Branch 

BR THREE 
MPYF 
ADDF 
SUBF 
AND 

THREE OR 
STI 

Unconditional branch 
Not executed 
Not executed 
Not executed 
Not executed 

Fetched after BR is fetched 

PIPELINE OPERATION 

THREE ..... PC 

BR THREE F o R I E I 

OR F1 I (nop) I (nop) F2 o 

STI F 

I··· 

I··· 

RPTS and RPTB both flush the pipeline, thus allowing for the RS, RE, and 
RC registers to be loaded at the proper time relative to the flow of the pipeline. 
If these registers are loaded without the use of RPTS or RPTB, no flushing of 
the pipeline occurs. If none of the repeat modes are being used, RS, RE, and 
RC may be used as general-purpose 32-bit registers without any pipeline 
conflicts occurring. In cases such as the nesting of RPTB due to nested in
terrupts, it may be necessary to load and store these registers directly while 
using the repeat modes. Since up to four instructions can be fetched before 
entering the repeat mode, loads should be followed by a branch to flush the 
pipeline. If the RC is changing when an instruction is loading it, the direct load 
takes priority over the modification made by the repeat mode logic. 

Delayed branches are implemented to guarantee the fetching of the next three 
instructions. The delayed branches include BRO, BcondO, and OBcondO. 
Example 10-2 shows the code and pipeline operation for a delayed branch. 

10-5 

• 



• 

Pipeline Operation - Pipeline Conflicts 

Example 10-2. Delayed Branch 

BRD THREE 
MPYF 

Unconditional delayed branch 
Executed 

10.2.2 

10-6 

ADDF Executed 
SUBF Executed 
AND Not executed 

THREE MPYF Fetched after SUBF fetched 

PIPELINE OPERATION 

THREE .... PC 

BRD THREE F D R 1 E 1 

MPYF F D R 1 E 

ADDF F D R E 

SUBF F D R I ... 

MPYF F D I .. · 

Register Conflicts 

Register conflicts involve the reading or writing of registers used for address
ing purposes. These conflicts occur when the pertinent register is not ready 
to be used. The registers comprise the following three functional groups: 

Group 1 Auxiliary registers (ARO-AR7), index registers (IRO, IR1), and 
block size register (BK) 

Group 2 Data page pointer (DP) 

Group 3 System stack pointer (SP) 

If an instruction writes to one of these three groups, the use of any register 
within that particular group by the decode unit is delayed until the write is 
complete, i.e. instruction execution is completed. In Example 10-3, an auxil
iary register is loaded, and a different auxiliary register is used on the next in
struction. Since the decode stage needs the result of the write to the auxiliary 
register, the decode of this second instruction is delayed two cycles. Every 
time the decode is delayed, a refetch of the program word is performed; i.e., 
the first fetch of ADDF is at F1, followed by F2 and F3 (the final fetch). Since 
these are actual refetches, they can cause conflicts with the DMA controller 
and cache hits and misses. 



Pipeline Operation - Pipeline Conflicts 

Example 10-3. Write to an AR Followed by an AR for Address Generation 

LDI 
NEXT MPYF 

ADDF 
FLOAT 

LDI 7,ARl 

MPYF *AR2,RO 

ADDF 

FLOAT 

i 7 -+ ARI 7,ARl 
*AR2,RO i Decode delayed 2 cycles 

PIPELINE OPERATION 

7-+ARl 

F D R E 

F D1 D2 D3 

F1 F2 F3 

R 

D 

F 

I .. · 

I .. · 

I .. · 

The case for reads of these groups is similar to the case for writes. If an in
struction must read a member of one of these groups, the use of that particular 
group by the decode for the following instruction is delayed until the read is 
complete. The registers are read at the start of the execute cycle and therefore 
require only a one cycle delay of the following decode. For four registers (IRO, 
IR1, BK, or DP) no delay is incurred. In all other cases, including the SP, the 
delay occurs. In Example 10-4, two auxiliary registers are added together with 
the result going to an extended-precision register. The next instruction uses 
a different auxiliary register as an address register. 

Example 10-4. A Read of ARs Followed by ARs for Address Generation 

ADDI 
NEXT MPYF 

ADDF 
FLOAT 

ADDI 

ARO,ARl,Rl i ARO + ARI -+ Rl 
*++AR2,RO i Decode delayed 1 cycle 

PIPELINE OPERATION 

ARO+AR1-+Rl 

F D R E 

MPYF* ++AR2,RO F D1 D2 R 

ADDF F1 F2 D 

FLOAT F 

E 

R 

D 

I ... 

I ... 

Note that while the DBR (decrement and branch) instruction does not use the 
auxiliary registers for addressing, its use of them as loop counters is treated 
as if it did. Therefore, the operation shown in the two previous examples can 
also occur for this instruction. 

10-7 

II 



• 

Pipeline Operation...; Pipeline Conflicts 

10.2.3 Memory Conflicts 

10-8 

Possible memory conflicts occur when the memory bandwidth of a physical 
memory space is exceeded. For example, RAM blocks 0 and 1 and the ROM 
block can support only two accesses every cycle. The external interface can 
support only one access per cycle. Some conditions under which memory 
conflicts can be easily avoided are discussed in Section 10.3. 

Memory pipeline conflicts consist of the following four types: 

Program Wait A program fetch is prevented from begin
ning. 

Program Fetch Incomplete A program fetch has begun, but is not yet 
complete. 

Execute Only An instruction sequence requires three 
CPU-data accesses in a single cycle. 

Hold Everything A primary or expansion bus operation must 
complete before another one can proceed. 

These four types of memory conflicts are discussed in the succeeding para
graphs and examples provided. 

Program Wait 

Two conditions can prevent the program fetch from beginning: 

• The start of a CPU-data access when: 
Two CPU-data accesses are made to an internal RAM or ROM 
block, and a program fetch from the same block is necessary. 
One of the external ports is starting a CPU-data access, and a 
program fetch from the same port is necessary. 

• A multicycle CPU-data access or DMA-data access over the external bus 
is needed . 



Pipeline Operation - Pipeline Conflicts 

An example of program wait until a CPU-data access completes is illustrated 
in Example 10-5. In this case, • ARO and' AR1 are both pointing to data in 
RAM block 0, and the MPYF instruction will be fetched from RAM block O. 
This results in the conflict shown in Example 10-5. Since no more than two 
accesses can be made to RAM block 0 in a single cycle, the program fetch 
cannot begin, and must wait until the CPU-data accesses are complete. 

Example 10-5. Program Wait Until CPU-Data Access Completes 

ADDF3 *ARO,*AR1,RO 
FIX 
MPYF 
ADDF3 
NEGB 

PIPELINE OPERATION 

ADDF3 *ARO,*AR1,RO 

FIX 

MPYF 

ADDF 

NEGB 

'ARO MEMORY READ 
*AR1 ME~ORY READ 

I FlO I R I E 

I FlO I R 
(wait) 

I F F 

E 

o 

F 

R 

o 

F 

E 

R 

o 

Example 10-6 shows an example of a program wait due to a multicycle data-
data access or a multicycle DMA access. The ADDF, MPYF, and SUBF are 
fetched from some portion in memory other than the external port the DMA 
requires. The DMA begins a multicycle access. The program fetch corre
sponding to the CALL is made to the same external port the DMA is using .• 
Even though the DMA has the lowest priority, multi-cycle access cannot be I 
aborted. The program fetch must therefore wait until the DMA access com-
pletes. 

Example 10-6. Program Wait Due to Multicycle Access 

ADDF F 0 R E 

MPYF F 0 R E 

SUBF F 0 R E 

(wait) 
CALL F F 0 

I 2 cycle DMA access 

10-9 



• 

Pipeline Operation - Pipeline Conflicts 

Program Fetch Incomplete 

A program fetch incomplete occurs when a program fetch takes more than one 
cycle to complete due to wait states. In Example 10-7, the MPYF and AOOF 
are fetched from memory that supports single-cycle accesses. The SUBF is 
fetched from memory requiring one wait state. 

Example 10-7. Multicycle Program Memory Fetches 

10-10 

MPYF F 

ADDF 

SUBF 

ADDI 

Execute Only 

o 

F 

R 

o 
ROY 

F 

E 

R 

ROY 

F 

E 

o 

F 

R 

o 

E 

R 

The Execute Only type of memory pipeline conflicts occurs when a sequence 
of instructions requires three CPU-data accesses in a single cycle or when 
performing an interlocked load. The three cases where this occurs are: 

• An instruction that performs a store, followed by an instruction that does 
two memory reads. 

• An instruction that performs two stores, followed by an instruction that 
performs at least one memory read. 

• An interlocked load (LOll or LOFI) instruction is performed, and XF1 
1 . 



Pipeline Operation - Pipeline Conflicts 

The first case is shown in Example 10-8. Since this sequence requires three 
data memory accesses and only two are available, only the execute phase of 
the pipeline is allowed to proceed. The dual reads required by the LOF II LOF 
will be delayed one cycle. Note that a refetch of the next instruction can oc
cur. 

Example 10-8. Single Store Followed by Two Reads 

II 

STF 
LDF 
LDF 

STF RO,*ARl 

LDFIILDF 

RO, *ARl 
*AR2,Rl 
*AR3,R2 

RO -+ *ARl 
*AR2 -+ Rl in parallel with 
*AR3 -+ R2 

PIPELINE OPERATION 

RO-+'ARl 

I F 0 R I E 

'AR2-+Rl 
'AR3-+R2 

F 0 R1 I R2 I E 

F 01 02 R 

F1 F2 0 

I··· 

I··· 

Example 10-9 shows a parallel store followed by a single load or read. Since 
the two parallel stores are required, the next CPU-data memory read must wait 
a cycle before beginning. One program memory refetch may occur. 

Example 10-9. Parallel Store Followed by Single Read 

STF RO,*ARO RO -+ *ARO in parallel with 
I I STF R2, *ARl R2 -+ *ARl 

ADDF @SUM,Rl Rl + @SUM -+ Rl 
lACK 
ASH 

PIPELINE OPERATION 

RO-+'ARO 
R2-+'ARl 

STF RO,*ARl 
IISTF R2,*ARl F 0 R E 

(wait) @SUM 
ADDF @SUM,Rl F 0 R R E I 

lACK F 01 02 R I··· 

ASH F1 F2 0 I··· 

10-11 

• 



• 

Pipeline Operation - Pipeline Conflicts 

The final case involves an interlocked load (LOll or LOFI) instruction and XF1 
= 1. Since the interlocked loads use the XF1 pin as an acknowledge that the 
read can complete, they may need to extend the read cycle, as shown in Ex
ample 10-10. Note that a program refetch may occur. 

Example 10-10. Interlocked Load 

NOT F 0 R E 

XF1 =1 XF1=O 

LDII F 0 R R E 

ADDI F 01 02 R I··· 
eMPI F1 F2 0 I··· 

Hold Everything 

The three types of Hold Everything memory pipeline conflicts are: 

• A CPU-data load or store cannot be performed because an external port 
is busy. 

• An external load that takes more than one cycle. 

• Conditional calls and traps. 

The first type of Hold Everything conflict occurs when one of the external 
ports is busy due to an access that has started but is not complete. In Example 
10-11, the first store is a two-cycle store. The CPU writes the data to an ex
ternal port. The port control then takes two cycles to complete the data-data 
write. The LOF is a read over the same external port. Since the store is not 
complete, the LOF will continue to be attempted until the port is available. 
For this case, the first dummy fetch occurs at the same time as 02. 

Example 10-11. Busy External Port 

STF RO,@DMAl 
LDF @DMA2,RO 

PIPELINE OPERATION 

I 2-cycle DMA access 
STF F 0 I R I E 

LDF F 0 nop R E 

F 01 02 R I ... 

F1 F2 0 I··· 
F \ ... 

10-12 



Pipeline Operation - Pipeline Conflicts 

The second type of Hold Everything conflict involves multicycle data reads. 
The read has begun and continues until completed. In Example 10-12, the 
LDF is performed from an external memory that requires several cycles to 
complete. 

Example 10-12. Multicycle Data Reads 

F D R E 

2-cycle read 
LDF @DMA,RO F D R I R E I 

F D1 D2 R I··· 

F nop D I··· 

F1 F2 I··· 

The final type of Hold Everything conflict deals with conditional calls and 
traps, which are different from the other branch instructions. Whereas the 
other branch instructions are conditional loads, the conditional calls and traps 
are conditional stores, which take one cycle more than a standard branch (see 
Example 10-13). 

Example 10-13. Conditional Calls and Traps 

CALLcond I F D 

F1 

R E 

(nop) I (nop) 

(store) 
E 

F2 F3 D 

F 

10-13 

• 



• 

Pipeline Operation - Resolving Memory Conflicts 

10.3 Resolving Memory Conflicts 

10-14 

If program fetches and data accesses are performed in such a manner that the 
resources being used cannot provide the necessary bandwidth, the program 
fetch is delayed until the data access is complete. Certain configurations of 
program fetch and data accesses yield conditions under which the 
TMS320C30 can achieve maximum throughput. Table 10-1 shows how many 
accesses can be performed from the different memory spaces when it is nec
essary to do a program fetch and a single data access, and still achieve maxi
mum performance (one cycle). There are four cases that achieve one cycle 
maximization (see Table 10-1). Table 10-2 shows how many accesses can 
be performed from the different memory spaces when it is necessary to do a 
program fetch and two data accesses, still achieving maximum performance 
(one cycle). There are six cases that achieve this maximization (see Table 
10-2). 

Table 10-1. One Program Fetch and One-Data Access for Maximum 
Performance 

CASE # PRIMARY BUS ACCESSES FROM EXPANSION BUS 
ACCESSES DUAL-ACCESS OR PERIPHERAL 

INTERNAL MEMORY ACCESSES 

1 1 1 -
2 1 - 1 

3 - 2 from any -
combination 

of internal memory 

4 - 1 1 



Pipeline Operation - Resolving Memory Conflicts 

Table 10-2. One Program Fetch and Two Data Accesses for 
Maximum Performance 

CASE # PRIMARY BUS ACCESSES FROM EXPANSION OR 
ACCESSES DUAL-ACCESS PERIPHERAL BUS 

INTERNAL MEMORY ACCESSES 

1 1 2 from any -
combination 

of internal memory 

2 1 Program 1 Data 1 Data 

3 1 Data 1 Data 1 Program 

4 - 2 from same internal -
memory block and 
1 from a different 
internal memory 

block 

5 - 3 from different -
internal memory 

blocks 

6 - 2 from any 1 
combination 

of internal memory 

10-15 

• 



a 

Pipeline Operation - Clocking Memory Accesses 

10.4 Clocking Of Memory Accesses 

Internal clock phases (H1 and H3) and their relationship to memory accesses 
are discussed in this section to show how the TMS320C30 handles mUltiple 
memory accesses. Whereas the previous section discussed the interaction 
between sequences of instructions, this section discusses the flow of data on 
an individual instruction basis. 

Each major clock period of 60 ns is composed of two minor clock periods of 
30 ns, labeled as H3 and H1. 

j... Major Clock Period .... 1 

H1 

H3 

The precise operation of memory reads and writes can be defined, based upon 
these minor clock periods. The types of memory operations which can occur 
are program fetches, data loads and stores, and DMA accesses. 

10.4.1 Program Fetches 

Internal program fetches are always performed during H3 unless a single data 
store must occur at the same time, due to another instruction in the pipeline. 
In this case, the program fetch occurs during H1 and the data store during 
H3. 

External program fetches always start at the beginning of H3 with the address 
being presented on the external bus. At the end of H1, they are completed 
with the latching of the instruction word. 

10.4.2 Data Loads and Stores 

10-16 

Four types of instructions perform loads, memory reads, and stores: two-ope
rand instructions, three-operand instructions, multiplier/ALU operation with 
store instructions, and parallel multiply and add instructions. See Section 6 for 
detailed information on addressing modes. 

Two-Operand Instruction Memory Accesses 

Two-operand instructions include all those instructions with bits 31 -29 being 
000 or 010 (see Figure 10-2). In the case of a data read, bits 15-0 represent 
the src operand. Internal data reads are always performed during H1. External 
data reads always start at the beginning of H3 with the address being pre
sented on the external bus, and complete with the latching of the instruction 
word at the end of H 1 . 



Pipeline Operation - Clocking Memory Accesses 

31 

31 

In the case of a data store, bits 15-0 represent the dst operand. Internal data 
stores are performed during H3. External data stores always start at the be
ginning of H3 with the address and data being presented on the external bus. 

2423 1615 87 
iii 

src(dst) 

Figure 10-2. Two-Operand Instruction Word 

Three-Operand Instruction Memory Reads 

o 

Three-operand instructions include all instructions with bits 31 -29 being 001 
(see Figure 10-3). The source operands, sre1 and sre2, come from either reg
isters or memory. When one or more of the source operands are from memory, 
these instructions are always memory reads. 

If only one of the source operands is from memory (either sreT or sre2) and 
is located in internal memory, the data is read during H1. If the single memory 
source operand is in external memory, the read starts at the beginning of H3, 
with the address being presented on the external bus, and completes with the 
latching of the data word at the end of H1. 

If both source operands are to be fetched from memory, then several cases 
occur. If both operands are located in internal memory, the sre1 is performed 
during H3 and sre2 during H1, thus completing two memory reads in a single 
cycle. 

If sreT is in internal memory and sre2 in external memory, the sre2 access is 
begun at the start of H3 and latched at the end of H1. At the same time, the 
sreT access to internal memory is performed during H3. Again, two memory 
reads are completed in a single cycle. 

If sreT is in external memory and sre2 in internal memory, two cycles are nec
essary to complete the two reads. In the first cycle, the internal sre2 access 
is performed. The sreT is also performed, but not latched until the next H3. 

If sreT and sre2 are both from external memory, two cycles are required to 
complete the two reads. In the first cycle, the sreT access is performed and 
loaded on the next H3; in the second cycle, the sre2 access is performed and 
loaded on that cycle's H1 . 

2423 1615 

dst i I i 
src1 

87 

Figure 10-3. Three-Operand Instruction Word 

o 
i i 

src2 

10-17 

• 



• 

Pipeline Operation - Clocking Memory Accesses 

31 

31 

10-18 

Operations with Parallel Stores 

The next class of instructions includes all instructions that have a store, in 
parallel with another instruction. Bits 31 and 30 for these instruction are equal 
to 1 1. 

For those operations that perform a multiply or ALU operation in parallel with 
a store, the instruction word format is shown in Figure 10-4. If the store op
eration to dst2 is external or internal, it is performed during H3. 

If the memory read operation is external, it is started at the beginning of H3 
and latched at the end of H1. If the memory read operation is internal, it is 
performed during H1. Note that memory reads are ,performed by the CPU 
during the read (R) phase of the pipeline, and stores during the execute (E) 
phase. 

iii 

Operation 

2423 

I ~st~ i i 

src1 

1615 

~rc~ I i 

dst2 

87 
i 

src2 

Figure 10-4. A Multiply or CPU Operation with a Parallel Store 

o 

The instruction word format for those instructions that have parallel stores to 
memory is shown in Figure 10-5. If both destination operands, dstl and 
dst2, are located in internal memory, dst1 is stored during H3 and dst2 during 
H1, thus completing two memory stores in a single cycle. 

If dstl is in external memory and dst2 in internal memory, the dst1 store is 
begun at the start of H3. The dst2 store to internal memory is performed 
during H1. Again, two memory stores are completed in a single cycle. 

If dst1 is in internal memory and dst2 in external memory, two cycles are ne
cessary to complete the dst2 store. In the first cycle, the internal dst1 store is 
performed during H3. During the next cycle, the dst2 store is performed be
ginning in H3 . 

If dst1 and dst2 are both from external memory, two cycles are necessary to 
complete the dst2 store. In the first cycle, the dstl access is performed; in the 
second cycle, the dst2 access is performed. 

2423 1615 

dst1 

Figure 10-5. Two Parallel Stores 

87 
i 

dst2 

o 



Pipeline Operation - Clocking Memory Accesses 

Parallel Multiplies and Adds 

The considerations of memory addressing for parallel multiplies and adds is 
similar to that for three-operand instructions. The parallel multiplies and adds 
include all instructions with bits 31-30 equal to 10 (see Figure 10-6). 

For these operations, src3 and src4 are both located in memory. If both op
erands are located in internal memory, src3 is performed during H3 and src4 
during H1, thus completing two memory reads in a single cycle. 

If src3 is in internal memory and src4 in external memory, the src4 access is 
begun at the start of H3 and latched at the end of H1. At the same time, the 
src3 access to internal memory is performed during H3. Again, two memory 
reads are completed in a single cycle. 

If src3 is in external memory and src4 in internal memory, two cycles are nec
essary to complete the two reads. In the first cycle, the internal src4 access 
is performed. During the H3 of the next cycle, the src3 access is performed. 

If src3 and src4 are both from external memory, two cycles are necessary to 
complete the two reads. In the first cycle, the src3 access is performed; in the 
second cycle, the src4 access is performed. 

31 2423 1615 
i 

src3 

87 

Figure 10-6. Parallel Multiplies and Adds 

o 
i i 

src4 

10-19 

• 



Pipeline Operation - Clocking Memory Accesses 

• 

10-20 



Assembly Language Instructions 





Section 11 

Assembly Language Instructions 

The TMS320C30 assembly language instruction set supports numeric
intensive signal processing and general-purpose applications. The instructions 
are organized into major groups consisting of load and store. two- or three
operand arithmetic/logical. parallel. program control. and interlocked oper
ations instructions. The addressing modes used with the instructions are 
described in Section 6. 

An additional feature of the TMS320C30 instruction set is the capability of 
using one of 19 condition codes with any of the 10 conditional instructions. 
such as LDFcond. This section defines the condition codes and flags. 

The assembler allows optional syntax forms to simplify the assembly language 
for special-case instructions. These optional forms are listed and explained. 

Each of the individual instructions is described and listed in alphabetical order. 
An illustration showing an example instruction (see pages 11-15 through 
11 -17) is provided to show the special format used and explain its content. 

Major topics discussed in this section are as follows: 

• Instruction Set (Section 11.1 on page 11 -2) 
Load and store instructions 
Two-operand arithmetic/logical instructions 
Three-operand arithmetic/logical instructions 
Program control instructions 
Interlocked operations instructions 
Parallel operations instructions 

• Condition Codes and Flags (Section 11.2 on page 11 -8) 

• Individual Instructions (Section 11.3 on page 11-11) 
Symbols and abbreviations used in instructions 
Optional assembler syntaxes 
Individual instruction descriptions alphabetized and including: 

Syntax 
Operation 
Operands 
Encoding 
Description 
Cycles 
Status bits 
Mode bit 
Example(s) 

11-1 



• 

Assembly Language Instructions - Instruction Set 

11.1 Instruction Set 

The TMS320C30 instruction set is exceptionally well suited to digital signal 
processing and other numeric-intensive applications. All instructions are a 
single machine word long, and most instructions take a single cycle to exe
cute. In addition to multiply and accumulate instructions, the TMS320C30 
possesses a full complement of general-purpose instructions. 

The instruction set contains 114 instructions organized into the following 
functional groups: 

• Load and store 
• Two-operand arithmetic/logical 

• Three-operand arithmetic/logical 

• Program control 
• Interlocked operations 

• Parallel operations. 

Each of these groups is discussed in the succeeding subsections. 

11.1 .1 Load and Store Instructions 

The TMS320C30 supports 12 load and store instructions (see Table 11-1). 
These instructions can: 

• Load a word from memory into a register, 

• Store a word from a register into memory, or 

• Manipulate data on the system stack. 

Two of these instructions can load data conditionally. This is useful for locat
ing the maximum or minimum value in a data set. See Section 11.2 for detailed 
information on condition codes. 

Table 11-1. Load and Store Instructions 

INSTRUCTION DESCRIPTION INSTRUCTION DESCRIPTION 

LDE Load floating-point exponent POP Pop integer from stack 

LDF Load floating-point value POPF Pop floating-point value from 
stack 

LDFcond Load floating-point value PUSH Push integer on stack 
conditionally 

LDI Load integer PUSHF Push floating-point value on 
stack 

LDlcond Load integer conditionally STF Store floating-point value 

LDM Load floating-point mantissa STI Store i nteg er 

11-2 



Assembly Language Instructions - Instruction Set 

11.1.2 Two-Operand Instructions 

The TMS320C30 supports a complete set of two-operand arithmetic and 
logical instructions. The two operands are the source and destination. The 
source operand may be a memory word, a register, or a part of the instruction 
word. The destination operand is always a register. 

These instructions provide integer, floating-point. or logical operations, and 
multiprecision arithmetic. Table 11-2 lists these instructions. 

Table 11-2. Two-Operand Instructions 

INSTRUCTION DESCRIPTION INSTRUCTION DESCRIPTION 

ABSF Absolute value of a floating- NORM Normalize floating-point value 
point number 

ABSI Absolute value of an integer NOT Bitwise logical-complement 

ADDC t Add integers with carry OR t Bitwise logical-OR 

ADDF t Add floating-point values RND Round floating-point value 

ADDI t Add integers ROL Rotate left 

AND t Bitwise logical-AND ROLC Rotate left through carry 

ANON t Bitwise logical-AND with ROR Rotate right 
complement 

ASH t Arithmetic shift RORe Rotate right through carry 

CMPF t Compare floating-point values SUBB t Subtract integers with borrow 

CMPI t Compare integers SUBC Subtract integers conditionally 

FIX Convert floating-point value to SUBF Subtract floating-point values 
integer 

FLOAT Convert integer to floating-point SUBI Subtract integer 
value 

LSH t Logical shift SUBRB Subtract reverse integer with 
borrow 

MPYF t Multiply floating-point values SUBRF Subtract reverse floating-point 
value 

MPYI t Multiply integers SUBRI Subtract reverse integer 

NEGB Negate integer with borrow TSTB t Test bit fields 

NEGF Negate floating-point value XOR t Bitwise exclusive-OR 

NEGI Negate integer 

t Two- and three-operand versions 

11-3 

• 



Assembly Language Instructions - Instruction Set 

11.1.3 Three-Operand Instructions 

Most instructions have only two operands; however, some arithmetic and 
logical instructions have three-operand versions. Three-operand instructions 
allow the TMS320C30 to read two operands from memory or the CPU register 
file in a single cycle and store the results in a register. The following differ
entiates the two- and three-operand instructions: 

• Two-operand instructions have a single source operand (or shift count) 
and a destination operand. 

• Three-operand instructions may have two source operands (or one 
source operand and a count operand) and a destination operand. A 
source operand may be a memory word or a register. The destination 
of a three-operand instruction is always a register. 

Table 11 -3 lists the instructions that have three-operand versions. Note that 
the '3' in the mnemonic can be omitted from three-operand instructions (see 
Section 11.3.2). 

Table 11-3. Three-Operand Instructions 

INSTRUCTION DESCRIPTION INSTRUCTION DESCRIPTION 

ADDC3 Add with carry MPYF3 Multiply floating-point values 

ADDF3 Add floating-point values MPYI3 Multiply integers 

ADDI3 Add integers OR3 Bitwise logical-OR 

AND3 Bitwise logical-AND SUBB3 Subtract integers with borrow 

ANDN3 Bitwise logical-AND with SUBF3 Subtract floating-point values 
complement 

ASH3 Arithmetic shift SUBI3 Subtract integers 

CMPF3 Compare floating-point values TSTB3 Test bit fields 

CMPI3 Compare integers XOR3 Bitwise exclusive-OR 

LSH3 Logical shift 

• 11.1.4 Program Controllnstruct;ons 

11-4 

The program-control instruction group consists of all of those instructions 
which affect program flow. The repeat mode allows repetition of a block of 
code (RPTB) or of a single line of code (RPTS). Both standard and delayed 
(single-cycle) branching are supported. Several of the program control in
structions are capable of conditional operations (see Section 11.2 for detailed 
information on condition codes). Table 11-4 lists the program control in
structions. 



Assembly language Instructions - Instruction Set 

Table 11-4. Program Control Instructions 

INSTRUCTION DESCRIPTION INSTRUCTION DESCRIPTION 

Bcond Branch conditionally (standard) IDLE Idle until interrupt 

BcondD Branch conditionally (delayed) NOP No operation 

BR Branch unconditionally RETI cond Return from interrupt 
(standard) conditionally 

BRD Branch unconditionally RETS cond Return from subroutine 
(delayed) conditionally 

CALL Call subroutine RPTB Repeat block of instructions 

CALLcond Call subroutine conditionally RPTS Repeat single instruction 

DBcond Decrement and branch SWI Software interrupt 
conditionally (standard) 

DBcondD Decrement and branch TRAP cond Trap conditionally 
conditionally (delayed) 

11.1.5 Interlocked Operations Instructions 

The interlocked operations instructions support multiprocessor communi
cation. Through the use of external signals, these instructions allow for pow
erful synchronization mechanisms. They also guarantee the integrity of the 
communication and result in a high-speed operation. Refer to Section 7 for 
examples of the use of interlocked instructions. Table 11-5 lists the five in
terlocked operations instructions. 

Table 11-5. Interlocked Operations Instructions 

INSTRUCTION DESCRIPTION INSTRUCTION DESCRIPTION 

LDFI Load floating-point value, STFI Store floating-point value, 
interlocked interlocked 

LDII Load integer, interlocked STII Store integer, interlocked 

SIGI Signal, interlocked 

11 .1.6 Parallel Operations Instructions 

The parallel-operations instructions group allows for a high degree of paral
lelism. Some of the TMS320C30 instructions can occur in pairs that will be 
executed in parallel. These parallel instructions provide: 

• Parallel loading of registers, 
• Parallel arithmetic operations, or 
• Arithmetic/logical instructions used in parallel with a store instruction. 

Each instruction in a pair is entered as a separate source statement. The sec
ond instruction in the pair must be preceded by two vertical bars (II). Table 
11 -6 lists the valid instruction pairs. 

11-5 

• 



a 

Assembly Language Instructions - Instruction Set 

11-6 

Table 11-6. Parallel Instructions 

MNEMONIC DESCRIPTION OPERATION 

PARALLEL ARITHMETIC WITH STORE INSTRUCTIONS 

ABSF Absolute value of a floating-point Isrc21 -+ dst1 
II STF II src3 -+ dst2 

ABSI Absolute value of an integer Isrc21 -+ dst1 
II STI II src3 -+ dst2 

ADDF3 Add floating-point src1 + src2 -+ dst1 
II STF II src3 -+ dst2 

ADDI3 Add integer src1 + src2 -+ dst1 
II STI II src3 -+ dst2 

AND3 Bitwise logical-AND src1 AND src2 -+ dst1 
II STI II src3 -+ dst2 

ASH3 Arithmetic shift If count.::. 0: 
II STI src2 « count -+ dst1 

II src3 -+ dst2 
Else: 

src2 » Icountl -+ dst1 
II src3 -+ dst2 

FIX Convert floating-point to integer Fix(src2) -+ dst1 
II STI II src3 -+ dst2 

FLOAT Convert integer to floating-point Float(src2) -+ dst1 
II STF II src3 -+ dst2 

LDF Load floating-point src2 -+ dst1 
II STF II src3 -+ dst2 

LDI Load integer src2 -+ dst1 
II STI II src3 -+ dst2 

LSH3 Logical shift If count.::. 0: 
II STI src2 < < count -+ dst1 

II src3 -+ dst2 
Else: 

src2 » Icountl -+ dst1 
II src3 -+ dst2 

MPYF3 Multiply floating-point src1 x src2 -+ dst1 
II STF II src3 -+ dst2 

MPYI3 Multiply integer src1 x src2 -+ dst1 
II STI II src3 -+ dst2 

NEGF Negate floating-point 0- src2 -+ dst1 
II STF II src3 -+ dst2 

LEGEND: 
src1 - register addr (RO-R7) 
src3 - register addr (RO-R7) 
dst1 - register addr (RO-R7) 

src2 - indirect addr (disp = 0, 1, IRO, IR1) 
src4 - indirect addr (disp = 0, 1. IRO, IR1) 
dst2 - indirect addr (disp = 0, 1, I RO, I R1 ) 



Assembly Language Instructions - Instruction Set 

Table 11-6. Parallel Instructions (Concluded) 

MNEMONIC DESCRIPTION OPERATION 

PARALLEL ARITHMETIC WITH STORE INSTRUCTIONS (Concluded) 

NEGI Negate integer ° -src2 ..... dst1 
II STI II src3 ..... dst2 

NOT3 Complement src ..... dst1 
II STI II src3 ..... dst2 

OR3 Bitwise logical-OR src1 OR src2 ..... dst1 
II STI II src3 ..... dst2 

STF Store floating-point src1 ..... dst1 
II STF II src3 ..... dst2 

STI Store integer src1 ..... dst1 
II STI II src3 ..... dst2 

SUBF3 Subtract floating-point scr1 - src2 ..... dst1 
II STF II src3 ..... dst2 

SUBI3 Subtract integer src1 - src2 ..... dst1 
II STI II src3 ..... dst2 

XOR3 Bitwise exclusive-OR src1 XOR src2 ..... dst1 
II STI II src3 ..... dst2 

PARALLEL LOAD INSTRUCTIONS 

LDF Load floating-point src2 ..... dst1 
II LDF II src4 ..... dst2 

LDI Load integer src2 ..... dst1 
II LDI II src4 ..... dst2 

PARALLEL MULTIPLY AND ADD/SUBTRACT INSTRUCTIONS 

MPYF3 Multiply and add floating-point op1 x op2 ..... op3 
II ADDF3 II op4 + op5 ..... op6 

MPYF3 Multiply and subtract floating-point op1 x op2 ..... op3 
II SUBF3 II op4 - op5 ..... op6 

MPYI3 Multiply and add integer op1 x op2 ..... op3 
II ADDI3 II op4 + op5 ..... op6 

MPYI3 Multiply and subtract integer op1 x op2 ..... op3 
II SUBI3 II op4 - op5 ..... op6 

LEGEND: 
src1 - register addr (RO- R7) 
src3 - register addr (RO-R7) 
dst1 - register addr (RO-R7) 
op3 - register addr (RO or R1) 

src2 - indirect addr (disp = 0, 1, IRO, IR1) 
src4 - indirect addr (disp = 0, 1, I RO, I R1 ) 
dst2- indirect addr (disp = 0, 1, IRO, IR1) 
op6 - register addr (R2 or R3) 

op1 ,op2,op4,op5 - Two of these operands must be specified using register addr, 
and two must be specified using indirect addr. 

11-7 



• 

Assembly Language Instructions - Condition Codes and Flags 

11.2 Condition Codes and Flags 

11-8 

The TMS320C30 provides 20 condition codes that can be used with any of 
the conditional instructions, such as RETScond or LDFcond. The conditions 
include signed and unsigned comparisons, comparisons to zero, and compar
isons based on the status of individual condition flags. Note that all condi
tional instructions can accept the suffix 'U' to indicate unconditional 
operation. 

Seven condition flags provide information related to properties of the result 
of arithmetic and logical instructions. The condition flags are stored in the 
status register (ST). These flags are modified by the majority of instructions 
according to whether a result is generated when performing the specified op
eration to infinite precision or an output is written to the destination register. 
The formats for output values are shown in Table 11-7. 

Table 11-7. Output Value Formats 

TYPE OF OPERATION OUTPUT FORMAT 

Floating-point 8-bit exponent, 1 sign bit, 31-bit fraction 
Integer 32-bit integer 
Logical 32-bit unsigned integer 

The condition flags are affected by instructions in only the following cases: 

1) The destination register is one of the extended-precision registers (RO -
R7) 

2) The instruction is one of the compare instructions (CMPF, CMPF3, 
CMPI, CMPI3, TSTB, or TSTB3). 

Case 1 allows for modification of the registers used for addressing without 
affecting the condition flags during computation. Case 2 makes it possible to 
set the condition flags based upon the contents of any of the CPU registers. 

The following list defines the condition flags and describes how the flags are 
set by most instructions. For specific details of the effect of a particular in
struction on the condition flags, see the description of that instruction in 
Section 9.2 . 

N Negative Condition Flag. Logical operations assign N the state 
of the MSB of the output value. For integer and floating-point oper
ations, N is set if the result is negative, and cleared otherwise. Zero 
is considered to be positive. 

Z Zero Condition Flag. For logical, integer, and floating-point oper
ations, Z is set if the output is 0, and cleared otherwise. 

V Overflow Condition Flag. For integer operations, V is set if the 
result does not fit into the format specified for the destination (Le., 
_232 S result S 232 - 1). Otherwise, V is cleared. For floating-point 
operations, V is set if the exponent of the result is greater than 127, 
otherwise,V is cleared. Logical operations always clear V. 

C Carry Flag. When an integer addition is performed, C is set if a carry 
occurs out of the bit corresponding to the MSB of the output. When 



Assembly Language Instructions - Condition Codes and Flags 

an integer subtraction is performed. C is set if a borrow occurs into the 
bit corresponding to the MSB of the output. Otherwise. for integer 
operations. C is cleared. The carry flag is unaffected by floating-point 
and logical operations. 

UF Floating-Point Underflow Condition Flag. A floating-point 
underflow occurs whenever the exponent of the result is less than or 
equal to -128. If a floating-point underflow occurs. UF is set. and the 
output value is set to O. UF is cleared if a floating-point underflow 
does not occur. 

LV Latched Overflow Condition Flag. LV is set whenever V (over
flow condition flag) is set. Otherwise. it is unchanged. LV may only 
be cleared by a processor reset or by modifying it in the status register 
(ST). 

LUF Latched Underflow Condition Flag. LUF is set whenever UF 
(floating-point underflow flag) is set. LUF may only be cleared by a 
processor reset or by modifying it in the status register (ST). 

Table 11-8 lists the condition mnemonic. code. description. and flag for each 
of the 19 conditions. 

11-9 

• 



Assembly Language Instructions - Condition Codes and Flags 

Table 11-8. Condition Codes and Flags 

CONDITION CODE DESCRIPTION FLAG 

UNCONDITIONAL COMPARES 

U 00000 Unconditional Don't care 

UNSIGNED COMPARES 

LO 00001 Lower than C 
LS 00010 Lower or same COR Z 
HI 00011 Higher than -CAND -Z 
HS 00100 Higher or same -C 
EQ 00101 Equal Z 
NE 00110 Not Equal -Z 

SIGNED COMPARES 

LT 00111 Less than N 
LE 01000 Less than or equal NOR Z 
GT 01001 Greater than -N AND -Z 
GE 01010 Greater than or equal -N 
EQ 00101 Equal Z 
NE 00110 Not equal -Z 

COMPARE TO ZERO 

Z 00101 Zero Z 
NZ 00110 Not zero -Z 
P 01001 Positive -N AND -Z 
N 00111 Negative N 
NN 01010 Nonnegative -N 

COMPARE TO CONDITION FLAGS 

NN 01010 Nonnegative -N 
N 00111 Negative N 
NZ 00110 Nonzero -Z 
Z 00101 Zero Z 
NV 01100 No overflow -V 
V 01101 Overflow V 
NUF 01110 No underflow -UF 
UF 01111 Underflow UF 
NC 00100 No carry -C 
C 00001 Carry C 
NLV 10000 No latched overflow -LV 
LV 10001 Latched overflow LV 
NLUF 10010 No latched floating-point underflow -LUF 
LUF 10011 Latched floating-point underflow LUF 
ZUF 10100 Zero or floating-point underflow Z OR UF 

- Logical complement 

11-10 



Assembly Language Instructions - Individual Instructions 

11.3 Individual Instructions 

This section contains the individual assembly language instructions for the 
TMS320C30. The instructions are listed in alphabetical order. Information, 
such as assembler syntax, operation, operands, encoding, description, cycles, 
status bits, mode bit, and examples, is provided for each instruction. An ex
ample instruction precedes the individual instruction listings to show the 
special format used and explain its content. 

Preceding the individual instruction descriptions, the symbols and abbrevi
ations used in the individual instructions are defined. In addition, some op
tional syntax forms allowed by the assembler are described. 

A functional grouping of the instructions is provided in Section 1.6. A com
plete instruction set summary can be found in Section 1.6.8. Appendix B lists 
the opcodes for all the instructions. Refer to Section 6 for information on 
memory addressing. Code examples using many of the instructions are given 
in Section 12, Software Applications. 

11.3.1 Symbols and Abbreviations 

Table 11 -9 lists the symbols and abbreviations used in the individual instruc
tion descriptions. 

11-11 

• 



Assembly Language Instructions - Individual Instructions 

Table 11-9. Instruction Symbols 

SYMBOL MEANING 

src Source operand 
srct Source operand 1 
src2 Source operand 2 
src3 Source operand 3 
src4 Source operand 4 

dst Destination operand 
dstl Destination operand 1 
dst2 Destination operand 2 
disp Displacement 
cond Condition 
count Shift count 

G General addressing modes 
T Three-operand addressing modes 
P Parallel addressing modes 
B Conditional-branch addressing modes 

ARn Auxiliary register n 
IRn Index register n 
Rn Register address n 
RC Repeat count register 
RE Repeat end address register 
RS Repeat start address register 
ST Status register 

C Carry bit 
GIE Global interrupt enable bit 
N Trap vector 
PC Program counter 
RM Repeat mode flag 
SP System stack pointer 

Ixl Absolute value of x 
x-+y Assign the value of x to destination y 
x(man) Mantissa field (sign + fraction) of x 
x(exp) Exponent field of x 

op1 

• IIop2 Operation 1 performed in parallel with operation 2 

xAND y Bitwise logical-AND of x and y 
xORy Bitwise logical-OR of x and y 
x XOR y Bitwise logical-XOR of x and y 
-x Bitwise logical-complement of x 

x« y Shift x to the left y bits 
x» y Shift x to the right y bits 
"++SP Increment SP and use incremented SP as address 
"SP-- Use SP as address and decrement SP 

11-12 



Assembly Language Instructions - Individual Instructions 

11 .3.2 Optional Assembler Syntaxes 

The assembler allows a relaxed syntax form for some of the instructions. 
These optional forms simplify the assembly language so that special-case 
syntax can be ignored for some of the instructions. The following is a list of 
these optional syntax forms. 

• The destination register can be omitted on unary arithmetic and logical 
operations when the same register is used as a source. For example, 

ABS I RO , RO can be written as ABS I RO 

Instructions affected: ABSI, ABSF, FIX, FLOAT, NEGB, NEGF, NEGI, 
NORM, NOT, RND. 

• All 3-operand instructions can be written without the '3'. For example, 

ADDI3 RO,Rl,R2 can be written as ADDI RO,Rl,R2 

Instructions affected: ADDC3, ADDF3, ADDI3, AND3, ANDN3, ASH3, 
LSH3, MPYF3, MPYI3, OR3, SUBB3, SUBF3, SUBI3, XOR3. 

This also applies to all the pertinent parallel instructions. 

• All 3-operand comparison instructions can be written without the '3'. 
For example, 

CMPI3 RO,*ARO can be written as CMPI RO,*ARO 

Instructions affected: CMPI3, CMPF3, TSTB3. 

• Indirect operands with an explicit 0 displacement are allowed. In 
3-operand or parallel instructions, operands with 0 displacement are 
automatically converted to "no-displacement" mode. For example: 

LDI *+ARO(Ol,Rl 

is legal 

Also 

ADDI3 *+ARO(Ol,Rl,R2 is equivalent to ADDI3 *ARO,Rl,R2 

• Indirect operands can be written with no displacement, in which case a 
displacement of one is assumed. For example, 

LDI *ARO++(ll,RC can be written LDI *ARO++,RO 

• All conditional instructions accept the suffix 'U' to indicate uncondi
tional operation. Also, the U can be omitted from unconditional short 
branch instructions. For example: 

BU label can be written B label 

• Labels can be written with or without a trailing colon. For example: 
labelO: NOP 
labell NOP 
label2: 

NOP 

11 -13 



• 

Assembly Language Instructions - Individual Instructions 

11-14 

• Empty expressions are not allowed for the displacement in indirect 
mode: 

LDI *+ARO(),RO is not legal 

• Long immediate mode operands (destination of BR and CALL) can be 
written with an at-sign: 

BR label can be written BR @label 

• The LDP pseudo-op can be used to load a register (usually DP) with the 
8 MSBs of a relocatable address. The instruction is written: 

LOP addr,REG or LOP @addr,REG 

The at-sign is optional. 

If the destination REG is the DP, it can be omitted. LDP generates a LDI 
instruction with an immediate operand, and a special relocation type. 

• Parallel instructions can be written in either order. For example: 

ADDl 
II STl 

can be written as STl 
II ADDl 

• The parallel bars indicating part 2 of a parallel instruction can be written 
anywhere on the line, from column 0 to the mnemonic. For example: 

ADDl 
II STl 

can be written as ADDl 
II STl 

• If the second operand of a parallel instruction is the same as the third 
(destination register) operand, the third operand can be omitted. This 
allows the writing of 3-operand parallel instructions that 'look like' nor
mal 2-operand instruction. For example, 

• 

ADDl * ARO ,R2 ,R2 can be written as 
I I MPYl *AR1,RO,RO 

ADDI *ARO,R2 
II MPYl *AR1,RO 

Instructions (applies to all parallel instructions that have a register sec
ond operand) affected: ADDI, ADDF, AND, MPYI, MPYF, OR, SUBI, 
SUBF, XOR. 

All commutive operations in parallel instructions can be written in either 
order. For example, the ADDI part of a parallel instruction can be written 
in either of two ways: 

ADDl *ARO,Rl,R2 or ADDl Rl, *ARO,R2 

The instructions affected are parallel instructions containing any of the 
following: ADDI, ADDF, MPYI, MPYF, AND, OR, XOR. 



Assembly Language Instructions - Individual Instructions 

11.3.3 Individual Instruction Descriptions 

Each assembly language instruction for the TMS320C30 is described in this 
section. The instructions are listed in alphabetical order. An example instruc
tion precedes the individual instructions to show the special format used and 
explain its content. This example instruction describes the assembler syntax, 
operation, operands, encoding, description, cycles, status bits, mode bit, and 
examples. 

11-15 

• 



EXAM PLE Example Instruction 

Syntax INST <src>,<dst> 

or 

Operation 

Operands 

11-16 

INST1 
II1NST2 

<src2>,<dst1> 
<src3>,<dst2> 

Each instruction begins with an assembler syntax expression. Labels may 
be placed either preceding the command (instruction mnemonic) on the 
same line or on the preceding line in the first column. The optional com
ment field that concludes the syntax is not included in the syntax ex
pression. Space(s) are required between each field (label, command, 
operand, and comment fields). 

The syntax examples illustrate the common one-line syntax and the two
line syntax used in parallel addressing. Note that the two vertical bars II that 
indicate a parallel addressing pair can be placed anywhere before the mne
monic on the second line. The first instruction in the pair can have a label, 
but the second instruction cannot have a label. 

Isrcl ..... dst 

or 

Isrc21 ..... dstT 
II src3 ..... dst2 

The instruction operation sequence describes the processing that takes 
place when the instruction is executed. For parallel instructions, the opera
tion sequence is performed in parallel. Conditional effects of status register 
specified modes will be listed for conditional instructions such as Bcond. 

src general addressing modes (G): 
00 register (Rn, 0 S n S 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n :s 27) 

or 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 S n1 S 7) 
src3 register (Rn2, 0 S n2 S 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Operands are defined according to the addressing mode and/or the type of 
addressing used. Note that indirect addressing uses displacements and the 
index registers. Refer to Section 6 for detailed information on addressing. 



Example Instruction EXAMPLE 

Encoding 

31 

or 

2423 1615 87 0 

src I 
31 2423 1615 87 0 

i 

dst2 
i 

src2 
i I 

Encoding examples are shown using general addressing and parallel ad
dressing. The instruction pair for the parallel addressing example consists 
of INS1 and INS2. 

Description Instruction execution and its effect on the rest of the processor or memory 
contents are described. Any constraints on the operands imposed by the 
processor or the assembler are discussed. The description parallels and 
supplements the information given by the operation block. 

Cycles 

Status Bits 

Mode Bit 

The digit specifies the number of cycles required to execute the instruction. 

N Negative Condition Flag. 1 if a negative result is generated, 0 
otherwise. In some instructions, this flag is the MSB of the output. 
For other instructions, this flag is unaffected. 

Z Zero Condition Flag. 1 if a zero result is generated, 0 otherwise. 
For logical and shift instructions, 1 if a zero output is generated, 0 
otherwise. This flag may be unaffected. 

V Overflow Condition Flag. 1 if an integer or floating-point over
flow occurs, 0 otherwise. This flag may be unaffected. 

C Carry Flag. 1 if a carry or borrow occurs, 0 otherwise. For shift 
instructions, this flag is set to the value of the last bit shifted out; 0 
for a shift count of O. This flag may be unaffected. 

UF 

LV 

Floating-Point Underflow Condition Flag. If a floating-point 
underflow occurs, 0 otherwise. This flag may be unaffected. 

Latched Overflow Condition Flag. 1 if an integer or floating
point overflow occurs, unchanged otherwise. This flag may be un-
affected. 

LUF Latched Floating-Point Underflow Condition Flag. 1 if a 
floating-point underflow occurs, unchanged otherwise. This flag 
may be unaffected. 

The seven condition flags, stored in the status register (ST), are modified 
by the majority of instructions. They provide information as to the properties 
of the result or output of arithmetic or logical operations. 

OVM Overflow Mode Flag. In general, integer operations are affected 
by the DVM flag. 

11-17 

a 



EXAMPLE 

Example 

11-18 

INST @98AEh,R5 

Before Instruction: 

DP = 80h 
R5 = 0766900000h "" 2.30562500e+02 

Example Instruction 

Memory at 8098AEh = 5CDFh = 1.000011 07e+00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R5 = 0066900000h = 1.80126953e+00 
Memory at 8098AEh = 5CDFh = 1.000011 07e+00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

The sample code presented in the above format shows the effect of the 
code on system pointers (e.g., DP or SP), registers (e.g., R1 or R5), mem
ory at specific locations, and the seven status bits. The values given for the 
registers include the leading zeros to show the exponent in floating-point 
operations. Decimal conversions are provided for all register and memory 
locations. The seven status bits are listed in the order in which they appear 
in the assembler and simulator (see Table 11 -9 and Section 11.2 for further 
information on these seven status bits). 



Absolute Value of Floating-Point 

Syntax 

Operation 

Operands 

Encoding 

ABSF <src>, <dst> 

Isrcl ... dst 

src general addressing modes (G): 
o 0 register ( Rn, 0 :s n :s 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 7) 

31 2423 1615 
i i iii dst 

ABSF 

87 o 
sre 

Description The absolute value of the src operand is loaded into the dst register. The 
src and dst operands are assumed to be floating-point numbers. 

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The 
result is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh. 

Cycles 1 

Stetus Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

o 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
o 
1 if a floating-point overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation not affected by OVM. 

ABSF R4,R7 

Before Instruction: 

R4 = 05C8000F971 h = -9.90337307e+27 
R7 = 0702511 OOAEh = 5.48527255e+37 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 05C8000F971 h = -9.90337307e+27 
R7 = 05C7FFF068Fh = 9.90337307e+27 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-19 

a 



ABSFIISTF Parallel ABSF and STF 

Syntax ABSF <slc2> , <dst1 > 
II STF <slc3> , <dst2> 

Operation ISIc21 -+ dst1 
II sIc3 -+ dst2 

Operands sIc2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 S n1 S 7) 
sIc3 register (Rn2, 0 S n2 S 7) 
dst2 indirect (disp = 0, 1, I RO, I R1 ) 

Encoding 

31 2423 1615 87 o 
iii I I I 

dst2 src2 

Description A floating-point absolute value and a floating-point store are performed in 
parallel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one of the parallel operations (STF) reads 
from a register and the operation being performed in parallel (ABSF) writes 
to the same register, then STF accepts as input the contents of the register 
before it is modified by the ABSF. 

Cycles 

Status Bits 

• Mode Bit 

11-20 

If SIc2 and dst2 point to the same location, sIc2 is read before the write to 
dst2. 

An overflow occurs if SIC (man) = 80000000h and SIC (exp) = 7Fh. The 
result is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh. 

1 

N 
Z 
V 
C 
UF 
LV 
LUF 

o 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
o 
1 if a floating-point overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation not affected by OVM . 



Parallel ABSF and STF 

Example ABSF *++AR3(IR1),R4 
I I STF R4,*-AR7(1) 

Before Instruction: 

AR3 = B09BOOh 
IR1 = OAFh 
R4 = 733COOOOOh = 1.79750e+02 
AR7 = B09BC5h 
Data at B09BAFh = 5BB4000h = -6.11B750e+01 
Data at B09BC4h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = B09BAFh 
IR1 = OAFh 
R4 = 574COOOOOh = 6.11B750e+01 
AR7 = B09BC5h 
Data at B09BAFh = 58B4000h = -6.118750e+01 
Data at 8098C4h = 733COOOh = 1.79750e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ABSFIISTF 

• 

11-21 



• 

ABSI 

Syntax 

Operation 

Operands 

Encoding 

ASSI <src>,<dst> 

Isrcl -> dst 

src general addressing modes (G): 
00 register (Rn, 0 S n S 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 27) 

Absolute Value of Integer 

31 2423 1615 87 o 
src 

Description The absolute value of the src operand is loaded into the dst register. The 
src and dst operands are assumed to be signed integers. 

Cycles 

Status Bits 

Mode Bit 

11-22 

An overflow occurs if src = 80000000h. If ST(OVM) = 1, the result is dst 
= 7FFFFFFFh. If ST(OVM) = 0, the result is dst = OOOOOOOOh. 

N 
Z 
V 
C 
UF 
LV 
LUF 

o 
1 if a zero result is generated, 0 otherwise. 
1 if an integer overflow occurs, 0 otherwise. 
Unaffected. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 



Absolute Value of Integer 

Example 

Example 

ABSI RO,RO 
or ABSI RO 

Before Instruction: 

RO = OFFFFFFCBh = -53 

After Instruction: 

RO = 035h = 53 

ABSI *AR1,R3 

Before Instruction: 

AR1 = 20h 
R3 = Oh 
Data at 20h = OFFFFFFCBh = -53 

After Instruction: 

AR1 = 20h 
R3 = 35h = 53 
Data at 20h = OFFFFFFCBh = -53 

ABSI 

11-23 



ABSIIiSTI Parallel ABSI and STI 

Syntax ASS I <src2>,<dst1> 
II STI <src3>,<dst2> 

Operation Isrc21 -+ dst1 
II src3 -+ dst2 

Operands src2 indirect (disp = 0,1, IRO, IR1) 
dst1 register (Rn1, 0 !Ii: n1 !Ii: 7) 
src3 register (Rn2, 0 !Ii: n2 S; 7) 
dst2 indirect (disp = 0, 1, I RO, I R1 ) 

Encoding 

31 2423 1615 87 o 
11 i 1 1 0 i 0 i 1 i 0 i 1 1 ~st~ 1 0 i 0 i 0 1 ~rc~ 1 i 

i i iii 
dst2 src2 

Description An integer absolute value and an integer store are performed in parallel. 

Cycles 

Status Bits 

Mode Bit 

11-24 

All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (ASSI) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the ASSI. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

An overflow occurs if src = 80000000h. If ST(OVM) = 1, the result is dst 
= 7FFFFFFFh. If ST(OVM) = 0, the result is dst = OOOOOOOOh. 

N 
Z 
V 
C 
UF 
LV 
LUF 

o 
1 if a zero result is generated, 0 otherwise. 
1 if an integer overflow occurs, 0 otherwise. 
Unaffected. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 



Parallel ABSI and STI 

Example ABSl *-ARS(l),RS 
I I STl Rl,*AR2--(lRl) 

Before Instruction: 

AR5 = 8099E2h 
R5 = Oh 
R1 = 42h = 66 
AR2 = 8098FFh 
IR1 = OFh 
Data at 8099E1 h = OFFFFFFCBh = -53 
Data at 8098FFh = 2h = 2 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 8099E2h 
R5 = 35h = 53 
R1 = 42h = 66 
AR2 = 8098FOh 
IR1 = OFh 
Data at 8099E1 h = OFFFFFFCBh = -53 
Data at 8098FFh = 42h = 66 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ABSIIiSTI 

11-25 



ADDC Add Integer with Carry 

Syntax 

Operation 

Operands 

Encoding 

ADDC <src>,<dst> 

dst + src + C .... dst 

src general addressing modes (G): 
o 0 register (Rn, 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 27) 

31 2423 1616 

10'0'010'0' '0'1'01 G i i 
, 1 ~ dst 

87 o 
src 

Description The sum of the dst and src operands and the C (carry) flag is loaded into 
the dst register. The dst and src operands are assumed to be signed inte
gers. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-26 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if an integer overflow occurs, 0 otherwise. 
1 if a carry occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

AD DC Rl,R5 

Before Instruction: 

R1 = 00FFFF5C25h = -41,947 
R5 = 00FFFF019Eh = -65,122 
LUF LV UF N Z V C = 0 0 0 0 0 0 

After Instruction: 

R1 = 00FFFF5C25h = -41,947 
R5 = 00FFFE5DC4h = -107,068 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 



Add Integer With Carry, 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

ADDC3 <sre2>,<sreT>,<dst> 

sreT + sre2 + C .... dst 

sreT three-operand addressing modes (T): ° ° register ( Rn1, ° :s n1 :s 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 ° register (Rn1, ° :s n1 :s 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
00 register (Rn2, ° :s n2 :s 27) ° 1 register (Rn2, ° :s n2 :s 27) 
1 ° indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, ° :s n :s 27) 

31 2423 1615 

~s~ I I src1 

ADDC3 

87 o 
src2 

DescriPtion The sum of the sreT and sre2 operands and the C (carry) flag is loaded into 
the dst register. The sre1, sre2, and dst operands are assumed to be signed 
integers. 

Cycles 

Status Bits 

Mode Bit 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, ° otherwise. 
if a zero result is generated, ° otherwise. 
if an integer overflow occurs, ° otherwise. 

1 if a carry occurs, 0 otherwise. 

° 1 if an integer cNerflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

11-27 

• 



ADDC3 

Example 

Example 

• 

11-28 

Add Integer With Carry, 3-0perand 

ADDC3 *ARS++(IRO),RS,R2 
or 
ADDC3 RS,*ARS++(IRO),R2 

Before Instruction: 

AR5 = 809908h 
IRO = 10h 
R5 = 066h = 102 
R2 = Oh 
Data at 809908h = OFFFFFFCBh = -53 
LUF LV UF N Z V C = 0 0 0 0 0 0 

After Instruction: 

AR5 = 809918h 
IRO = 10h 
R5 = 066h = 102 
R2 = 032h = 50 
Data at 809908h = OFFFFFFCBh = -53 
LUF LV UF N Z V C = 0 0 0 0 0 0 

ADDC3 R2, R7, RO 

Before Instruction: 

R2 = 02BCh = 700 
R7 = OF82h = 3970 
RO = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 

After Instruction: 

R2 = 02BCh = 700 
R7 = OF82h = 3970 
RO = 0123Fh = 4671 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Add Floating-Point 

Syntax 

Operation 

Operands 

Encoding 

ADDF <src>,<dst> 

dst + src ~ dst 

src general addressing modes (G): 
o 0 register ( Rn, 0 :s n :s 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 7) 

31 2423 1615 
i i 

I I dst 

87 
I 

src 

ADDF 

o 

Description The sum of the dst and src operands is loaded into the dst register. The 
dst and src operands are assumed to be floating-point numbers. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

ADDF *AR4++(IR1),R5 

Before Instruction: 

AR4 = 809800h 
IR1 = 12Bh 
R5 = 0579800000h = 6.23750e+01 
Data at 80992Bh = 86B2800h = 4.7031250e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 80992Bh 
IR1 =12Bh 
R5 = 09052COOOOh = 5.3268750e+02 
Data at 80992Bh = 86B2800h = 4.7031250e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-29 

• 



• 

ADDF3 

Syntax 

Operation 

Operands 

Encoding 

31 

Add Floating-Point, 3-0perand 

ADDF3 <sre2>,<sreT>,<dst> 

sre T + sre2 -+ dst 

sreT three-operand addressing modes (T): 
00 register ( Rn1, 0 :s n1 :s 7) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register ( Rn1, 0 :s n1 :s 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
00 register (Rn2, 0 :s n2 :s 7) 
o 1 register (Rn2, 0 :s n2 :s 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 :s n :s 7) 

2423 1615 87 0 

10 '0'11 0 '0'0'0'0'11 
, , , , 

1 

, , , , 
1 

, , , 
1 

T dst src1 src2 

Description The sum of the sreT and sre2 operands is loaded into the dst register. The 
sreT, sre2, and dst operands are assumed to be floating-point numbers. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-30 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

ADDF3 R6,RS,Rl 
or 
ADDF3 RS,R6,Rl 

Before Instruction: 

R6 = 086B280000h = 4.7031250e+02 
R5 = 0579800000h = 6.23750e+01 
R1 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R6 = 086B280000h = 4.7031250e+02 
R5 = 0579800000h = 6.23750e+01 
R1 = 09052COOOOh = 5.3268750e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Add Floating-Point, 3-0perand 

Example ADDF3 *+AR1(1),*AR7++(IRO),R4 

Before Instruction: 

AR1 = 809820h 
AR7 = 8099FOh 
IRO = 8h 
R4 = Oh 
Data at 809821 h = 700FOOOh = 1.28940e+02 
Data at 8099FOh = 34C2000h = 1.27590e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 809820h 
AR7 = 8099F8h 
IRO = 8h 
R4 = 070DB20000h = 1.41695313e+02 
Data at 809821 h = 700FOOOh = 1.28940e+02 
Data at 8099FOh = 34C2000h = 1.27590e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ADDF3 

11-31 



• 

ADDF311STF Parallel ADDF3 and STF 

Syntax 

Operation 

Operands 

Encoding 

31 

ADDF3 <src2>,<src1>,<dst1> 
II STF <src3>,<dst2> 

src 1 + src2 -+ dstT 
II src3 -+ dst2 

src1 register (Rn1, 0 S n1 S 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, 0 S n2 S 7) 
src3 register (Rn3, 0 S n3 S 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

2423 1615 87 o 
11 i 1 1 0 i 0 i 1 i 1 i 0 1 ~st~ src1 ~rc~ 1 

i 

dst2 src2 

Description A floating-point addition and a floating-point store are performed in paral
lel. All registers are read at the beginning and loaded at the end of the ex
ecute cycle. This means that if one of the parallel operations (STF) reads 
from a ~egister and the operation being performed in parallel (ADDF3) 
writes to the same register, then STF accepts as input the contents of the 
register before it is modified by the ADDF3. 

Cycles 

Status Bits 

Mode Bit 

11-32 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM . 



Parallel ADDF3 and STF 

Example ADDF3 *+AR3(IR1),R2,RS 
I I STF R4,*AR2 

Before Instruction: 

AR3 = 809800h 
IR1 = OA5h 
R2 = 070C800000h = 1.4050e+02 
R5 = Oh 
R4 = 057B400000h = 6.281250e+01 
AR2 = 8098F3h 
Data at 8098A5h = 733COOOh = 1.79750e+02 
Data at 8098F3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809800h 
IR1 = OA5h 
R2 = 070C800000h = 1 .4050e+02 
R5 = 0820200000h = 3.20250e+02 
R4 = 057B400000h = 6.281250e+01 
AR2 = .8098F3h 
Data at 8098A5h = 733COOOh = 1.79750e+02 
Data at 8098F3h = 57B4000h = 6.28125e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ADDF311STF 

11-33 



a 

ADDI 

Syntax 

Operation 

Operands 

Encoding 

ADDI <src>,<dst> 

dst + src -+ dst 

src general addressing modes (G): 
00 register (Rn, 0 :s: n :s: 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s: n :s: 27) 

Add Integer 

31 2423 1615 87 
i 

o 
i i 

i I dst src 

Description The sum of the dst and src operands is loaded into the the dst register. The 
dst and src operands are assumed to be signed integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-34 

N 
Z 
v 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a carry occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

ADD! R3,R7 

Before Instruction: 

R3 = OFFFFFFCBh = -53 
R7 = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = OFFFFFFCBh = -53 
R7 = Oh 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 



Add Integer, 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

31 

10 '0'11 0 
, 

ADDI3 <sre2>,<sreT>,<dst> 

sre T + sre2 .... dst 

sreT three-operand addressing modes (T): 
00 register (Rn1, ° :s n1 :s 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 ° register (Rn1, ° :s n1 :s 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
00 register (Rn2, ° :s n2 :s 27) 
01 register (Rn2, ° :s n2 :s 27) 
1 ° indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, ° :s n :s 27) 

2423 1615 
0'0'0'1 '01 

, , , , 
1 

, , , 
T dst src1 

, 

ADDI3 

87 0 

1 

, , , 
1 

src2 

Description The sum of the sreT and sre2 operands is loaded into the dst register. The 
sret, sre2, and dst operands are assumed to be signed integers. 

Cycles 

Status Bits 

Mode Bit 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, ° otherwise. 
1 if a zero result is generated, ° otherwise. 
1 if an integer overflow occurs, ° otherwise. 
1 if a carry occurs, ° otherwise. 

° 1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

11-35 

II 



ADDI3 

Example 

Example 

11-36 

ADDI3 R4,R7,RS 

Before Instruction: 

R4 = ODCh = 220 
R7 = OAOh = 160 
R5 = 10h = 16 

Add Integer, 3-0perand 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = ODCh = 220 
R7 = OAOh = 160 
R5 = 017Ch = 380 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ADDI3 *-AR3+(1),*AR6--(IRO),R2 

Before Instruction: 

AR3 = 809802h 
AR6 = 809930h 
IRO = 18h 
R2 = 10h = 16 
Data at 809801 h = 2AF8h = 11 ,000 
Data at 809930h = 3A98h = 15,000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809852h 
AR6 = 809918h 
IRO = 18h 
R2 = 06598h = 26,000 
Data at 809801 h = 2AF8h = 11 ,000 
Data at 809930h = 3A98h = 15,000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel ADOl3 and STI AODI311STI 

Syntax 

Operation 

Operands 

Encoding 

ADDI3 <src2>,<src1>,<dst1> 
II STI <src3>,<dst2> 

src1 + src2 -+ dst1 
II src3 -+ dst2 

src1 register (Rn1, 0 S n1 S 7) 
src2 indirect (disp = 0, 1, I RO, I R1 ) 
dst1 register (Rn2, 0 S n2 S 7) 
src3 register (Rn3, 0 S n3 S 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 87 o 
11 i 1 I 0 i 0 i 1 i 1 i 1 1 ~st~ i i 

~rc~ I iii iii 

dst2 src2 src1 

Description An integer addition and an integer store are performed in parallel. All reg
isters are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STI) reads from a register 
and the operation being performed in parallel (ADDI3) writes to the same 
register, then STI accepts as input the contents of the register before it is 
modified by the ADDI3. 

Cycles 

Status Bits 

Mode Bit 

Example 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a carry occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

ADDI3 *ARO--(IRO),R5,RO 
II STI R3,*AR7 

Before Instruction: 

ARO = 80992Ch 
IRO = OCh 
R5 = ODCh = 220 
RO = Oh 
R3 = 35h = 53 
AR7 = 80983Bh 
Data at 80992Ch = 12Ch = 300 
Data at 80983Bh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-37 

III 



ADDI311STI 

11-38 

After Instruction: 

ARO = 809920h 
IRO = OCh 
R5 = ODCh = 220 
RO = 208h = 520 
R3 = 35h = 53 
AR7 = 80983Bh 
Data at 80992Ch = 12Ch = 300 
Data at 80983Bh = 35h = 53 

Parallel ADDI3 and STI 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Bitwise Logical-AND 

Syntax 

Operation 

Operands 

Encoding 

AND <src>,<dst> 

dst AN D src -+ dst 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst register (Rn, 0 :s n :s 27) 

31 2423 1615 
i I iii dst 

AND 

87 o 
src 

Description The bitwise logical-AND between the dst and src operands is loaded into 
the dst register. The dst and src operands are assumed to be unsigned in
tegers. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

AND Rl,R2 

Before Instruction: 

R1 = BOh 
R2 = OAFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 

After Instruction: 

R1 = BOh 
R2 = BOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

11-39 

• 



AND3 Bitwise Logical-AND, 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

31 

AND <sre2>,<sreT>,<dst> 

sreT AND sre2 .... dst 

sreT three-operand addressing modes (T): 
00 register (Rn1, 0 S n1 S 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 S n1 S 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
00 register (Rn2, 0 S n2 S 27) 
01 register (Rn2, 0 S n2 S 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 s n S 27) 

2423 1615 

1010111010101011111 
1 1 1 1 

1 

1 1 1 
T dst src1 

87 0 

1 

1 1 1 

I src2 

Description The bitwise logical-AN D between the sreT and sre2 operands is loaded into 
the dst register. The sreT, sre2, and dst operands are assumed to be un
signed integers. 

Cycles 1 

Status Bits N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

Mode Bit OVM Operation not affected by OVM. 

11-40 



Bitwise Logical-AND, 3-0perand 

Example 

Example 

AND3 *ARO--(IRO),*+AR1,R4 

Before Instruction: 

ARO = 8098F4h 
IRO = 50h 
AR1 = 809951 h 
R4 = Oh 
Data at 8098A4h = 30h 
Data at 809952h = 123h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 8098A4h 
IRO = 50h 
AR1 = 809951 h 
R4 = 020h 
Data at 8098A4h = 30h 
Data at 809952h = 123h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

AND 3 *-ARS,R7,R4 

Before Instruction: 

AR5 = 80985Ch 
R7 = 2h 
R4 = Oh 
Data at 80985Bh = OAFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 80985Ch 
R7 = 2h 
R4 = 2h 
Data at 80985Bh = OAFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

AND3 

II 

11-41 



• 

AND311STI Parallel AND3 and STI 

Syntax AND <sre2>,<sreT>,<dst1> 
II STI <sre3>,<dst2> 

Operation sreT AND sre2 -+ dst1 

Operands 

Encoding 

II sre3 -+ dst2 

sreT register (Rn1, 0 S n1 S 7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, 0 S n2 S 7) 
sre3 register (Rn3, 0 S n3 S 7) 
dst2 indirect (disp = 0, 1, I RO, I R1 ) 

31 2423 1615 

11 I 1 1 0 I 1 I 0 I 0 I 0 1 ~st~ src1 ~rc~ 1 
I 

dst2 

87 o 
src2 

Description A bitwise logical-AND and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (AN 03) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the AN 03. 

Cycles 

Status Bits 

Mode Bit 

11-42 

If sre2 and dst2 point to the same location, sre2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by DVM. 



Parallel AND3 and STI 

Example AND3 *+AR1(IRO),R4,R7 
I I STl R3,*AR2 

Before Instruction: 

AR1 = 8099F1 h 
IRO = 8h 
R4 = OA323h 
R7 = Oh 
R3 = 35h = 53 
AR2 = 80983Fh 
Data at 8099F9h = 5C53h 
Data at 80983Fh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 8099F1 h 
IRO = 8h 
R4 = OA323h 
R7 = 03h 
R3 = 35h = 53 
AR2 = 80983Fh 
Data at 8099F9h = 5C53h 
Data at 80983Fh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

AND311STI 

• 

11-43 



• 

ANON Bitwise Logical-AND with Complement 

Syntax 

Operation 

Operands 

Encoding 

ANDN <src>,<dst> 

dst AND -src -+ dst 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst register (Rn, 0 :s n S 27) 

31 2423 1615 

10'0'010'0'0'1 '1 '01 ~ 
i i , I ' dst 

87 o 
src 

Description The bitwise logical-AND between the dst operand and the bitwise logical 
complement (-) of the src operand is loaded into the dst register. The dst 
and src operands are assumed to be unsigned integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-44 

N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

ANDN @980Ch,R2 

Before Instruction: 

DP = 80h 
R2 = OC2Fh 
Data at 80980Ch = OA02h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R2 = 042,.Dh 
Data at 80980Ch = OA02h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Bitwise Logical-AN ON, l-Operand 

Syntax 

Operation 

Operands 

Encoding 

31 

ANDN3 <sre2>,<sre1>,<dst> 

sre1 AND -sre2 ..... dst 

sre1 three-operand addressing modes (T): 
00 register (Rn1, 0 S n1 S 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 S n1 S 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
00 register (Rn2, 0 S n2 S 27) 
01 register (Rn2, 0 S n2 S 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, 100, IR1) 

dst register (Rn, 0 s n S 27) 

2423 1615 

1010111010101110101 
1 1 1 1 

1 

1 1 1 1 
T dst src1 

ANONl 

87 0 

I 
1 1 1 

I src2 

Description The bitwise logical-AND between the sre1 operand and the bitwise logical 
complement (-) of the sre2 operand is loaded into the dst register. The 
sre1, sre2, and dst operands are assumed to be unsigned integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

ANDN3 RS,R3,R7 

Before Instruction: 

R5 = OA02h 
R3 = OC2Fh 
R7 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = OA02h 
R3 = OC2Fh 
R7 = 042Dh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-45 

• 



ANON3 

Example 

11-46 

Bitwise Logical-ANON, 3-0perand 

ANDN3 Rl,*AR5++(IRO),RO 

Before Instruction: 

R1 = OCFh 
AR5 = 809825h 
IRO = 5h 
RO = Oh 
Data at 809825h = OFFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OCFh 
AR5 = 80982Ah 
IRO = 5h 
RO = OF30h 
Data at 809825h = OFFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Arithmetic Shift ASH 

Syntax 

Operation 

Operands 

Encoding 

ASH <count>,<dst> 

If (count .:::. 0): 
dst < < count -+ dst 

Else: 
dst > > Icountl -+ dst 

count general addressing modes (G): 
00 register (Rn, 0 :s; n :s; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (RN, 0 :s; n :s; 27) 

31 2423 1615 87 o 
I i 

i I dst count 

Description The seven least-significant bits of the count operand are used to generate 
the two's-complement shift count of up to 32 bits. 

Cycles 

Status Bits 

Mode Bit 

If the count operand is greater than zero, the dst operand is left-shifted by 
the value of the count operand. Low-order bits shifted in are zero-filled, 
and high-order bits are shifted out through the C (carry) bit. 

Arithmetic left-shift: 

C .... dst .... 0 

If the count operand is less than zero, the dst operand is right-shifted by the 
absolute value of the count operand. The high-order bits of the dst operand 
are sign-extended as it is right-shifted. Low-order bits are shifted out 
through the C (carry) bit. 

Arithmetic right-shift: 

-+ sign of dst -+ C 

If the count operand is zero, no shift is performed, and the C (carry) bit is 
set to O. The count and dst operands are assumed to be signed integers. 

N 
Z 
V 
C 

UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
1 if an integer overflow occurs, 0 otherwise. 
Set to the value of the last bit shifted out. 0 for a shift count of O. 
Unaffected if dst is not RO - R7. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation not affected by OVM. 

11·47 

II 



ASH 

Example 

Example 

• 

11-48 

ASH Rl,R3 

Before Instruction: 

R1 = 10h = 16 
R3 = OAEOOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 10h 
R3 = OEOOOOOOOOh 
LUF LV UF N Z V C = 0 1 0 1 0 1 0 

ASH @98C3h,RS 

Before Instruction: 

DP = 80h 
R5 = OAEC00001 h 
Data at 8098C3h = OFFE8 = -24 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R5 = OFFFFFFAEh 
Data at 8098C3h = OFFE8 = -24 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 

Arithmetic Shift 



Arithmetic Shift, 3-0perand ASH3 

Syntax 

Operation 

Operands 

Encoding 

ASH3 <count>, <src>, <dst> 

If (count .::: 0): 
src < < count ..... dst 

Else: 
src > > Icountl ..... dst 

count three-operand addressing modes (T): 
00 register (Rn1, ° S n1 S 27) 
01 direct (disp = 0, 1, IRO, IR1) 
1 ° register (Rn1, ° S n1 S 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src three-operand addressing modes (T): 
00 register (Rn2, ° S n2 S 27) 
01 register (Rn2, ° S n2 S 27) 
1 ° indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, 100, IR1) 

dst register (Rn, ° s n S 27) 

31 2423 1615 87 o 
~s~ i I src count 

Description The seven least-significant bits of the count operand are used to generate 
the two's-complement shift count of up to 32 bits. 

Cycles 

If the count operand is greater than zero, the src operand is left-shifted by 
the value of the count operand. Low-order bits shifted in are zero-filled, 
and high-order bits are shifted out through the C (carry) bit. 

Arithmetic left-shift: 

C +- src +- ° 
If the count operand is less than zero, the src operand is right-shifted by the 
absolute value of the count operand. The high-order bits of the src operand 
are sign-extended as it is right-shifted. Low-order bits are shifted out 
through the C (carry) bit. 

Arithmetic right-shift: 

..... sign of dst ..... C 

If the count operand is zero, no shift is performed, and the C (carry) bit is 
set to 0. The count, src, and dst operands are assumed to be signed inte
gers. 

11-49 

• 



• 

ASH3 Arithmetic Shift, 3-0perand 

Status Bits N MSB of the output. 

Mode Bit 

Example 

Example 

11-50 

Z 1 if a zero output is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

Unaffected if dst is not RO - R7. 
UF 0 
LV 1 if an integer overflow occurs, unchanged otherwise. 
LUF Unaffected. 

OVM Operation not affected by OVM. 

ASH3 *AR3--(1),R5,RO 

Before Instruction: 

AR3 = 809921 h 
R5 = 02BOh 
RO = Oh 
Data at 809921 h = 10h = 16 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809920h 
R5 = 000002BOh 
RO = 02BOOOOOh 
Data at 809921 h = 1 Oh = 16 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ASH3 Rl,R3,R5 

Before Instruction: 

R1 = OFFFFFFF8h = -8 
R3 = OFFFFCBOOh 
R5 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OFFFFFFF8h = -8 
R3 = OFFFFCBOOh 
R5 = OFFFFFFCBh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Parallel ASH3 and STI ASH311STI 

Syntax 

Operation 

Operands 

Encoding 

ASH3 <count>,<src2>,<dst1> 
II STI <src3>,<dst2> 

If (count ~ 0): 
src2 < < count -+ dst1 

Else: 
src2 > > Icountl -+ dst1 

II src3 -+ dst2 

count register (Rn1, 0 S n1 S 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, 0 S n2 S 7) 
src3 register (Rn3, 0 S n3 S 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 87 o 
iii Iii 

dst2 src2 

Description The seven least-significant bits of the count operand register are used to 
generate the two's-complement shift count of up to 32 bits. 

Cycles 

If the count operand is greater than zero, the dst operand is left-shifted by 
the value of the count operand. Low-order bits shifted in are zero-filled, 
and high-order bits are shifted out through the C (carry) bit. 

Arithmetic left-shift: 

C +- src2 +- 0 

If the count operand is less than zero, the dst operand is right-shifted by the 
absolute value of the count operand. The high-order bits of the dst operand 
are sign-extended as it is right-shifted. Low-order bits are shifted out 
through the C (carry) bit. 

Arithmetic right-shift: 

-+ sign of src2 -+ C 

If the count operand is zero, no shift is performed, and the C (carry) bit is 
set to O. The count and dst operands are assumed to be signed integers. 

All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (ASH3) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the ASH3. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

11-51 



ASH311STI Parallel ASH3 and STI 

Status Bits N MSB of the output. 

Mode Bit 

Example 

11-52 

Z 1 if a zero output is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 
UF 0 
LV 1 if an integer overflow occurs, unchanged otherwise. 
LU F Unaffected. 

OVM Operation not affected by OVM. 

ASH3 Rl,*AR6++(lRl),RO 
I I STl RS,*AR2 

Before Instruction: 

AR6 = 809900h 
IR1 = 8Ch 
R1 = OFFE8h = -24 
RO = Oh 
R5 = 35h = 53 
AR2 = 8098A2h 
Data at 809900h = OAEOOOOOOh 
Data at 8098A2h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR6 = 80998Ch 
IR1 = 8Ch 
R1 = OFFE8h = -24 
RO = OFFFFFFAEh 
R5 = 35h = 53 
AR2 = 8098A2h 
Data at 809900h = OAEOOOOOOh 
Data at 8098A2h = 35h = 53 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Branch Conditionally (Standard) Bcond 

Syntax 

Operation 

Operands 

Encoding 

31 

o 1 1 0 1 

Bcond <src> 

If cond is true: 
If src is in register addressing mode (Rn 0 S n S 27), 

src .... PC. 
If src is in PC-relative mode (label or address), 

displacement + PC + 1 .... PC. 
Else, continue. 

src conditional-branch addressing modes (B): 
o register 
1 PC-relative 

2423 1615 87 

cond register or displacement 

o 

Description Bcond signifies a standard branch that executes in four cycles. A branch 
is performed if the condition is true. If the src operand is expressed in reg
ister addressing mode, the contents of the specified register are loaded into 
the PC. If the src operand is expressed in PC-relative mode, the assembler 
generates a displacement: displacement = label - (PC of branch instruction 
+ 1). This displacement is stored as a 16 bit signed integer in the 16 least 
significant bits of the branch instruction word. This displacement is added 
to the PC of the branch instruction plus 1 to generate the new PC. 

The TMS320C30 provides 20 condition codes that can be used with this 
instruction (see Section 11.2 for a list of condition mnemonics, encoding, 
and flags). 

Cycles 4 

Status Bits N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 
U F Unaffected. 
l V Unaffected. 
lU F Unaffected. 

Mode Bit OVM Operation not affected by OVM. 

Example BZ RO 

Before Instruction: 

PC = 2BOOh 
RO = 0003FFOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 3FFOOh 
RO = 0003FFOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-53 

a 



BcondD 

Syntax 

Operation 

Operands 

Encoding 

31 

011010 

Branch Conditionally (Delayed) 

BcondD <src> 

If cond is true: 
If src is in register addressing mode (Rn Osns27), 

src -+ PC. 
If src is in PC-relative mode (label or address). 

displacement + PC + 3 -+ PC. 
Else, continue. 

src conditional-branch addressing modes (B): 
o register 
1 PC-relative 

1615 87 

cond register or displacement 

o 

Description BcondD signifies a delayed branch that allows the three instructions after 
the delayed branch to be fetched before the PC is modified. The effect is a 
single-cycle branch. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-54 

A branch is performed if the condition is true. If the src operand is ex
pressed in register addressing mode, the contents of the specified register 
are loaded into the PC. If the src operand is expressed in PC-relative mode, 
the assembler generates a displacement: displacement = label - (PC of 
branch instruction + 3). This displacement is stored as a 16 bit signed in
teger in the 16 least significant bits of the branch instruction. This dis
placement is added to the PC of the branch instruction plus 3 to generate· 
the new PC. The TMS320C30 provides 20 condition codes that can be 
used with this instruction (see Section 11.2 for a list of condition mne
monics, encoding, and flags). 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

BNZD 36 (36 = 24h) 

Before Instruction: 
PC = 50h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 
PC = 77h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Branch Unconditionally (Standard) 

BR <src> 

src -+ PC 

Syntax 

Operation 

Operands 

Encoding 

src long-immediate addressing mode 

31 2423 1615 
iii 

BR 

87 o 
src 

Description BR signifies a standard branch that executes in four cycles. An uncondi
tional branch is performed. The src operand is assumed to be a 24-bit un
signed integer. Note that bit 24 = 0 for a standard branch. 

Cycles 4 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

BR BOSCh 

Before Instruction: 

PC = 80h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 805Ch 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-55 

a 



• 

BRD 

Syntax 

Operation 

Operands 

Encoding 

Branch Unconditionally (Delayed) 

BRD <src> 

src -+ PC 

src long-immediate addressing mode 

31 2423 1615 87 
i 

o 
I I I 

src 

Description BRD signifies a delayed branch that allows the three instructions after the 
delayed branch to be fetched before the PC is modified. The effect is a 
single-cycle branch. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-56 

An unconditional branch is performed. The src operand is assumed to be a 
24-bit unsigned integer. Note that bit 24 = 1 for a delayed branch. 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

BRD 2Ch 

Before Instruction: 

PC = 1 Bh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 2Ch 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Call Subroutine 

Syntax 

Operation 

CALL <src> 

Next PC .... *++SP 
src .... PC 

Operands 

Encoding 

src long-immediate addressing mode 

31 2423 1615 
i r i 

CALL 

87 o 
i i 

src 

Description A call is performed. The next PC value is pushed onto the system stack. The 
src operand is loaded into the PC. The src operand is assumed to be a 
24-bit unsigned immediate operand. 

Cycles 4 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by DVM. 

CALL 123456h 

Before Instruction: 

PC = 5h 
SP = 809801 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 123456h 
SP = 809802h 
Data at 809802h = 6h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-57 



• 

CALLcond Call Subroutine Conditionally 

Syntax CALLcond <src> 

Operation If cond is true: 
Next PC -+ *++SP 
If src is in register addressing mode (Rn O:s n :s27), 

src -+ PC. 
If src is in PC-relative mode (label or address), 

displacement + PC + 1 -+ PC. 
Else, continue. 

Operands src conditional-branch addressing modes (8): 

Encoding 

31 

011100 

o register 
1 PC-relative 

cond 

1615 87 

register or displacement 

o 

Description A call is performed if the condition is true. If the condition is true, the next 
PC value is pushed onto the system stack. If the src operand is expressed 
in register addressing mode, the contents of the specified register are loaded 
into the PC. If the src operand is expressed in PC-relative mode, the as
sembler generates a displacement: displacement = label - (PC of call in
struction + 1). This displacement is stored as a 16-bit signed integer in the 
16 least significant bit of the call instruction word. This displacement is 
added to the PC of the call instruction plus 1 to generate the new PC. 

The TMS320C30 provides 20 condition codes that can be used with this 
instruction (see Section 11.2 for a list of condition mnemonics, encoding, 
and flags). 

Cycles 5 

Status Bits 

Mode Bit 

11-58 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 



Call Subroutine Conditionally 

Example CALLNZ R5 

Before Instruction: 

PC = 123h 
SP = 809835h 
R5 = 789h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 789h 
SP = 809836h 
R5 = 789h 
Data at 809836h = 124h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

CALLcond 

II 

11-59 



CMPF 

Syntax 

Operation 

Operands 

Encoding 

CMPF <src>,<dst> 

dst - src 

src general addressing modes (G): 
00 register (Rn, 0 S n S 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n S 7) 

Compare Floating-Point 

31 2423 1615 87 o iii I I 

dst src 

Description The src operand is subtracted from the dst operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The dst and 
src operands are assumed to be floating-point numbers. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-60 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

CMPF *+AR4,R6 

Before Instruction: 

AR4 = 8098F2h 
R6 = 070C800000h = 1.4050e+02 
Data at 8098F3h = 070C8000h = 1.4050e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8098F2h 
R6 = 070C800000h = 1.4050e+02 
Data at 8098F3h = 070C8000h = 1.4050e+02 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 



Compare Floating-Point, 3-0perand CMPF3 

Syntax 

Operation 

Operands 

Encoding 

CMPF3 <sre2>,<srel> 

srel - sre2 

srel three-operand addressing modes (T): 
00 register (Rn1, 0 S n1 S 7) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 S n1 S 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
00 register (Rn2, 0 S n2 S 7) 
o 1 register (Rn2, 0 S n2 S 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 
I I 

src1 

87 o 
i I 

src2 

Description The sre2 operand is subtracted from the sTeT operand. The result is not 
loaded into any register, thus allowing for nondestructive compares. The 
sreT and sre2 operands are assumed to be floating-point numbers. Al
though this instruction has only two operands, it is designated as a three 
operand instruction since operands are specified in the three operand for
mat. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a flaoting-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

CMPF3 *AR2,*AR3--(l) 

Before Instruction: 

AR2 = 809831 h 
AR3 = 809852h 
Data at 809831 h = 77A7000h = 2.5044e+02 
Data at 809852h = 57 A2000h = 6.253125e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809831 h 
AR3 = 809851 h 
Data at 809831 h = 77 A7000h = 2.5044e+02 
Data at 809852h = 57 A2000h = 6.253125e+01 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

11-61 

a 



• 

CMPI 

Syntax 

Operation 

Operands 

Encoding 

CMPI <src>,<dst> 

dst - src 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 27) 

Compare Integer 

31 2423 1615 87 o 
i i 

i I dst src 

Description The src operand is subtracted from the dst operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The dst and 
src operands are assumed to be signed integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-62 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation not affected by OVM. 

CMPI R3,R7 

Before Instruction: 

R3 = 898h = 2200 
R7 = 3E8h = 1000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 898h = 2200 
R7 = 3E8h = 1000 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Compare Integer, 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

CMPI3 <sre2>,<sre1> 

sre1 - sre2 

sre1 three-operand addressing modes (T): 
00 register (Rn1, ° S n1 S 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 ° register (Rn1, ° S n1 S 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
00 register (Rn2, ° S n2 S 27) 
01 register (Rn2, 0 S n2 S 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

src1 

87 
I 

src2 

CMPI3 

o 

Description The sre2 operand is subtracted from the sre1 operand. The result is not 
loaded into any register, thus allowing for nondestructive compares. The 
sre1 and sre2 operands are assumed to be signed integers. Although this 
instruction has only two operands, it is designated as a three operand in
struction since operands are specified in the three operand format. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation not affected by OVM. 

CMPI3 R7,R4 

Before Instruction: 

R7 = 03E8h = 1000 
R4 = 0898h = 2200 
LUF LV UF N Z V C = ° 0 0 0 0 0 0 

After Instruction: 

R7 = 03E8h = 1000 
R4 = 0898h = 2200 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-63 

• 



• 

DBcond 

Syntax 

Operation 

Operands 

Encoding 

31 

o , , 0 1 

Decrement and Branch Conditionally (Standard) 

DBcond <ARn>,<src> 

ARn - 1 -+ ARn 
If cond is true and ARn > 0 : 

If src is in register addressing mode (Rn Osns27) 
src -+ PC. 

If src is in PC-relative mode (label or address) 
displacement + PC + 1 -+ PC. 

Else, continue. 

src conditional-branch addressing modes (B): 
o register 
1 PC-relative 

ARn register (0 S n S 7) 

1615 87 

cond register or displacement 

o 

Description DBcond signifies a standard branch that executes in four cycles. The spe
cified auxiliary register is decremented and a branch is performed if the 
condition is true and the specified auxiliary register is greater than or equal 
to zero. 

Cycles 

Status Bits 

Mode Bit 

11-64 

The auxiliary register is treated as a 24-bit signed integer. The most-signi
ficant eight bits are unmodified by the decrement operation. The compar
ison of the auxiliary register uses only the 24 least-significant bits of the 
auxiliary register. Note that the branch condition does not depend on the 
auxiliary register decrement. 

If the src operand is expressed in register addressing mode, the contents of 
the specified register are loaded into the PC. If the src operand is expressed 
in PC-relative addressing mode, the assembler generates a displacement: 
displacement = label - (PC of branch instruction + 1). This integer is 
stored as a 16 bit signed integer in the 16 least significant bits of the branch 
instruction word. This displacement is added to the PC of the branch in
struction plus 1 to generate the new PC . 

The TMS320C30 provides 20 condition codes that can be used with this 
instruction (see Section 11.2 for a list of condition mnemonics, encoding, 
and flags). 

4 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 



Decrement and Branch Conditionally (Standard) 

Example DBLT AR3,R2 

Before Instruction: 

PC = 5Fh 
AR3 = 12h 
R2 = 9Fh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

After Instruction: 

PC = 9Fh 
AR3 = 11 h 
R2 = 9Fh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

DBcond 

II 

11-65 



• 

DBcondD Decrement and Branch Conditionally (Delayed) 

Syntax DBcondD <ARn>,<src> 

Operation ARn - 1 .... ARn 
If cond is true: 

If src is in register addressing mode (Rn 0:sn:s27) 
src .... PC 

If src is in PC-relative mode (label or address) 
displacement + PC + 3 -+ PC. 

Else, continue. 

Operands src conditional-branch addressing modes (8): 

Encoding 

31 

011011 

o register 
1 PC-relative 

ARn register (0 :s n :s 7) 

cond 

1615 87 o 
register or displacement 

Description DBcondD signifies a delayed branch that allows the three instructions after 
the delayed branch to be fetched before the PC is modified. The effect is a 
single-cycle branch. The specified auxiliary register is decremented and a 
branch is performed if the condition is true and the specified auxiliary reg
ister greater than or equal to zero. 

Cycles 

Status Bits 

Mode Bit 

11-66 

The auxiliary register is treated as a 24-bit signed integer. The most-signi
ficant eight bits are unmodified by the decrement operation. The compar
ison of the auxiliary register uses only the 24 least-significant bits of the 
auxiliary register. Note that the branch condition does not depend on the 
auxiliary register decrement. 

If the src operand is expressed in register addressing mode, the contents of 
the specified register are loaded into the PC. If the src is expressed in 
PC-relative addressing, the assembler generates a displacement: displace
ment = label - (PC of branch instruction + 3). This displacement is added 
to the PC of the branch instruction plus 3 to generate the new PC. Note 
that bit 21 = 1 for a delayed branch . 

The TMS320C30 provides 20 condition codes that can be used with this 
instruction (see Section 11.2 for a list of condition mnemonics, encoding, 
and flags). 

1 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by ~YM. 



Decrement and Branch Conditionally (Delayed) 

Example DBZD ARS,$+110h 

Before Instruction: 

PC = Oh 
AR5 = 67h 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

After Instruction: 

PC = 110h 
AR5 = 66h 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

DBcondD 

• 

11-67 



FIX 

Syntax 

Operation 

Operands 

Encoding 

FIX <src>. <dst> 

fix(src) ..... dst 

Floating-Point to Integer Conversion 

src general addressing modes (G): 
00 register (Rn. 0 S n S 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn. 0 S n S 27) 

31 2423 1615 87 o 
i i iii dst src 

Description The floating-point operand src is converted to the nearest integer less than 
or equal to it in absolute value. and the result is loaded into the dst register. 
The src operand is assumed to be a floating-point number and the dst op
erand a signed integer. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-68 

The exponent field of the result register (if it has one) is not modified. 

Integer overflow occurs when the floating-point number is too large to be 
represented as a 32-bit two's-complement integer. In the case of integer 
overflow. the result will be saturated in the direction of overflow. 

N 
Z 
v 
C 
UF 
LV 
LUF 

1 if a negative result is generated. 0 otherwise. 
1 if a zero result is generated. 0 otherwise. 
1 if an integer overflow occurs. 0 otherwise. 
Unaffected. 
o 
1 if an integer overflow occurs. unchanged otherwise. 
Unaffected. 

OVM Operation not affected by OVM. 

FIX Rl,R2 

Before Instruction: 

R1 = OA282CCCCCh = -1.3454e+3 
R2 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OA282CCCCCh = -13454e+3 
R2 = 541 h = 1345 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel FIX and STI FIXIISTI 

Syntax 

Operation 

Operands 

Encoding 

31 

FIX <src2>,<dst1> 
II STI <src3> , <dst2> 

fix(src2) ..... dstT 
II src3 ..... dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 S n1 S 7) 
src3 register (Rn2, 0 S n2 S 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

2423 1615 87 o 
iii iii 

dst2 src2 

Description A floating-point to integer conversion is performed. All registers are read 
at the beginning and loaded at the end of the execute cycle. This means 
that if one of the parallel operations (STI) reads from a register, and the 
operation being performed in parallel (FIX) writes to the same register, then 
STI accepts as input the contents of the register before it is modified by FIX. 

Cycles 

Status Bits 

Mode Bit 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Integer overflow occurs when the floating-point number is too large to be 
represented as a 32-bit two's-complement integer. In the case of integer 
overflow, the result will be saturated in the direction of overflow. 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if an integer overflow occurs, 0 otherwise. 
Unaffected. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

11-69 



FIXIISTI 

Example 

• 

11-70 

FIX *++AR4(1),Rl 
I I STI RO, * AR2 

Before Instruction: 

AR4 = 8098A2h 
R1 = Oh 
RO = ODCh = 220 
AR2 = 80983Ch 

Parallel FIX and STI 

Data at 8098A3h = 733COOOh = 1.7950e+02 
Data at 80983Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8098A3h 
R1 = OB3h = 179 
RO =; ODCh = 220 
AR2 = 80983Ch 
Data at 8098A3h = 733COOOh = 1.79750e+02 
Data at 80983Ch = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Integer to Floating-Point Conversion 

Syntax 

Operation 

Operands 

Encoding 

FLOAT <src>,<dst> 

float(src) -+ dst 

src general addressing modes (G): 
o 0 register (Rn, 0 S n S 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 7) 

31 2423 1615 

dst I I 

FLOAT 

87 o 
I 

src 

Description The integer operand src is converted to the floating-point value equal to it, 
and the result loaded into the dst register. The src operand is assumed to 
be a signed integer, and the dst operand a floating-point number. 

Cycles 

Status Bits 

Mode Bit 

N 
Z 
v 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

11 -71 



FLOAT 

Example 

• 

11-72 

Integer to Floating-Point Conversion 

FLOAT *++AR2(2),RS 

Before Instruction: 

AR2 = B09BOOh 
R5 = 034C2000h = 1.2757B125e+01 
Data at B09802h = OAEh = 174 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = B09B02h 
R5 = 072EOOOOOh = 1.74e+02 
Data at B09802h = OAEh = 174 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel FLOAT and STF FLOATIISTF 

Syntax 

Operation 

Operands 

Encoding 

FLOAT <src2>,<dst1> 
II STF <src3>,<dst2> 

float(src2) -+ dst1 
II src3 -+ dst2 

src2 indirect (disp = 0, 1, I RO, I R1 ) 
dst1 register (Rn1, 0 :s n1 :s 7) 
src3 register (Rn2, 0 :s n2 :s 7) 
dst2 register (disp = 0, 1, IRO, IR1) 

31 2423 1615 87 o 
I I I I i I 

dst2 src2 

Description An integer to floating-point conversion is performed. All registers are read 
at the beginning and loaded at the end of the execute cycle. This means that 
if one of the parallel operations (STF) reads from a register and the opera
tion being performed in parallel (FLOAT) writes to the same register, then 
STF accepts as input the contents of the register before it is. modified by 
FLOAT. 

Cycles 

Status Bits 

Mode Bit 

Example 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

FLOAT *+AR2(IRO),R6 
II STF R7,*ARl 

Before Instruction: 

AR2 = 8098C5h 
IRO = 8h 
R6 = Oh 
R7 = 034C200000h = 1.27578125e+01 
AR1 = 809933h 
Data at 8098CDh = OAEh = 174 
Data at 809933h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-73 



• 

FLOATIISTF Parallel FLOAT and STF 

11-74 

After Instruction: 

AR2 = B09BC5h 
IRO = Bh 
R6 = 072EOOOOOOh = 1.740e+02 
R7 = 034C200000h = 1.2757B125e+01 
AR1 = B09933h 
Data at B09BCDh = OAEh = 174 
Data at 809933h = 034C2000h = 1.2757B125e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Interrupt Acknowledge 

Syntax 

Operation 

Operands 

Encoding 

lACK <src> 

Perform a dummy read operation with lACK = O. 
At end of dummy read, set lACK to 1. 

src general addressing modes (G): 
01 direct 
1 0 indirect 

31 2423 1615 

lACK 

87 o 
src 

Description A dummy read operation is performed with lACK = O. At the end of the 
dummy read, lACK is set to 1. This instruction can be used to generate an 
external interrupt acknowledge. If the address specified is off-chip, a read 
operation from that address is performed. The lACK signal and the address 
can then be used to signal interrupt acknowledge to external devices. The 
data read by the processor is unused. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

lACK *ARS 

Before Instruction: 

lACK = 1 
PC = 300h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

lACK = 1 
PC = 301 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-75 



IDLE 

Syntax 

Operation 

Operands 

Encoding 

IDLE 

1 -+ ST(GIE} 
Next PC -+ PC 
Idle until interrupt. 

None 

Idle Until Interrupt 

3' 2423 '6'5 87 0 

10'0'01 0'0',','0'01 0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'01 

Description The global interrupt enable bit is set. the next PC value is loaded into the 
PC. and the CPU idles until an interrupt is received. When the interrupt is 
received. the contents of the PC are pushed on the active system stack. 

Cycles 

Status Bits 

Mode Bit 

11-76 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 



Load Floating-Point Exponent 

Syntax 

Operation 

Operands 

Encoding 

LDE <src>,<dst> 

src(exp) -+ dst(exp) 

src general addressing modes (G): 
00 register (Rn, 0 S n S 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 7) 

31 2423 1615 
I I 

I I dst 

LDE 

87 o 
src 

Description The exponent field of the src operand is loaded into the exponent field of 
the dst register. No modification of the dst register mantissa field is made 
unless the value of the exponent loaded is the reserved value of the expo
nent for zero in the precision of the src operand. Then the mantissa field 
of the dst register is set to zero. The src and dst operands are assumed to 
be floating-point numbers. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by DVM. 

LDE RO,RS 

Before Instruction: 

RO = 0200056F30h = 4.00066337e+OO 
R5 = OA056FE332h = 1.06749648e+03 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 0200056F30h = 4.00066337e+OO 
R5 = 02056FE332h = 4.16990814e+OO 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-77 

• 



LDF Load Floating-Point 

Syntax 

Operation 

Operands 

Encoding 

LDF <src>,<dst> 

src -+ dst 

src general addressing modes (G): 
00 register (Rn, 0 :s; n :s; 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s; n :s; 7) 

3' 2423 '6'5 

10'0'010'0',',','01 G i i , 1 dst 

87 o 
src 

Description The src operand is loaded into the dst register. The dst and src operands 
are assumed to be floating-point numbers. 

Cycles 1 

Status Bits 

Mode Bit 

Example 

11-78 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

LDF @9800h,R2 

Before Instruction: 

DP = SOh 
R2 = Oh 
Data at B09BOOh = 10C52AOOh = 2.19254303e+00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = SOh 
R2 = 010C52AOOOh = 2.19254303e+00 
Data at B09BOOh = 10C52AOOh = 2.19254303e+00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Load Floating-Point Conditionally LDFcond 

Syntax 

Operation 

Operands 

Encoding 

31 

LDFcond <src>,<dst> 

If cond is true: 
src ..... dst. 

Else: 
dst is unchanged. 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 7) 

2423 1615 

~on~ i I ~ I i iii dst 

87 o 
src 

Description If the condition is true, the src operand is loaded into the dst register. 

Cycles 

Status Bits 

Mode Bit 

Example 

Otherwise, the dst register is unchanged. The dst and src operands are 
assumed to be floating-point numbers. 

The TMS320C30 provides 20 condition codes that can be used with this 
instruction (see Section 11.2 for a list of condition mnemonics, encoding, 
and flags). Note that an LDFU (load floating-point unconditionally) in
struction is useful for loading RO-R7 without affecting condition flags. 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

LDFZ R3,R5 

Before Instruction: 

R3 = 2CFF2CD500h = 1.77055560e+13 
R5 = 5F0000003Eh = 3.96140824e+28 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

After Instruction: 

R3 = 2CFF2CD500h = 1.77055560e+13 
R5 = 2CFF2CD500h = 1.77055560e+13 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

11-79 

• 



• 

LDFI Load Floating-Point, Interlocked 

Syntax 

Operation 

Operands 

Encoding 

LDFI <src>,<dst> 

Signal interlocked operation. 
src -+ dst 

src general addressing modes (G): 
o 1 direct 
1 0 indirect 

dst register (Rn, 0 S n S 7) 

31 2423 1615 

10 '0'01 0 '0'1'1'1'11 ~ 
I I 

, 1 dst 

87 , 
src 

o 

Description The src operand is loaded into the dst register. An interlocked operation is 
signaled over XFO and XF1. The src and dst operands are assumed to be 
floating-point numbers. Note that only direct and indirect modes are al
lowed. Refer to Section 7.3 for detailed description. 

Cycles 1 if XF1 = 0 (see Section 7.3) 

Status Bits 

Mode Bit 

Example 

11-80 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

LDFI *+AR2,R7 

Before Instruction: 

AR2 = 8098F1 h 
R7 = Oh 
Data at 8098F2h = 584COOOh = -6.28125e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 8098F1 h 
R7 = 0584COOOOOh = -6.28125e+01 
Data at 8098F2h = 584COOOh = -6.28125e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 



Parallel LDF and LDF 

Syntax 

Operation 

Operands 

Encoding 

LDF <sre2>,<dst2> 
"LDF <srel>,<dstl> 

sre2 ..... dst2 
" sreT ..... dstT 

sreT indirect (disp = 0, 1, IRO, IR1) 
dstT register (Rn1, 0 :s n1 :s 7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dst2 register (Rn2, 0 :s n2 :s 7) 

31 2423 1615 

11 I 1 1 0 I 0 I 0 I 1 I 0 1 ~st2 i i 10 '0 '01 I dst1 

LDFIILDF 

87 o 
iii iii 

src1 src2 

Description Two floating-point loads are performed in parallel. If the LDFs load the 
same register, the assembler issues a warning. The result is that of LDF 
<sre2> , <dst2>. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

LDF *--AR1(IRO),R7 
I I LDF *AR7++(l),R3 

Before Instruction: 

AR1 = 80985Fh 
IRO = 8h 
R7 = Oh 
AR7 = 80988Ah 
R3 = Oh 
Data at 809857h = 70C8000h = 1.4050e+02 
Data at 80988Ah = 57B4000h = 6.281250e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 809857h 
IRO = 8h 
R7 = 070C800000h = 1.4050e+02 
AR7 = 80988Bh 
R3 = 057B400000h = 6.281250e+01 
Data at 809857h = 70C8000h = 1.4050e+02 
Data at 80988Ah = 57B4000h = 6.281250e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-81 

• 



• 

LDFIISTF Parallel LDF and STF 

Syntax LDF <src2>,<dst1> 
II STF <src3> , < dst2 > 

Operation src2 ... dst1 
II src3 ... dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 S n1 S 7) 
src3 register (Rn2, 0 S n2 S 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

31 2423 1615 87 
iii iii 

dst2 src2 

Description A floating-point load and a floating-point store are performed in parallel. 

o 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-82 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

DVM Operation not affected by OVM. 

LDF *AR2--(1),Rl 
I I STF R3,*AR4++(IR1) 

Before Instruction: 

AR2 = 8098E7h 
R1 = Oh 
R3 = 057B400000h = 6.28125e+01 
AR4 = 809900h 
IR1 =10h 
Data at 8098E7h = 70C8000h = 1.4050e+02 
Data at 809900h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel LDF and STF 

After Instruction: 

AR2 = B09BE6h 
R1 = 070CBOOOOOh = 1.4050e+02 
R3 = 0578400000h = 6.2B125e+01 
AR4 = B09910h 
IR1 = 10h 
Data at B09BE7h = 70CBOOOh = 1.4050e+02 
Data at B09900h = 5784000h = 6.2B125e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

LDFIISTF 

• 

11-83 



LOI 

Syntax 

Operation 

Operands 

Encoding 

LDI <src>,<dst> 

src -+ dst 

src general addressing modes (G): 
o 0 register (Rn, 0 :s; n :s; 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s; n :s; 27) 

31 2423 1615 
I i 

i I dst 

Load Integer 

87 o 
i 

src 

Description The src operand is loaded into the dst register. The dst and src operands 
are assumed to be signed integers. An alternate form of LDt LDP, is used 
to load the data page pointer register (DP), or any other register with the 
eight MSBs of a relocatable address. See Section 11.3.2. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-84 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

LDI *-AR1(IRO),RS 

Before Instruction: 

AR1 = 2Ch 
IRO = 5h 
R5 = 3C5h = 965 
Data at 27h = 26h = 38 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 2Ch 
IRO = 5h 
R5 = 26h = 38 
Data at 27h = 26h = 38 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Load Integer Conditionally LDlcond 

Syntax 

Operation 

Operands 

Encoding 

31 

LDlcond <src>,<dst> 

If cond is true: 
src ..... dst, 

Else: 
dst is unchanged. 

src general addressing modes (G): 
o 0 register (Rn, 0 :s n :s 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n ::s; 27) 

2423 1615 

~on~ I I ~ i i 
I I I dst 

87 o 
src 

Description If the condition is true, the src operand is loaded into the dst register. 
Otherwise, the dst register is unchanged. The dst and src operands are as
sumed to be signed integers. 

The TMS320C30 provides 20 condition codes that can be used with this 
instruction (see Section 11.2 for a list of condition mnemonics, encoding, 
and flags). Note that an LDIU (load integer unconditionally) instruction is 
useful for loading RO-R7 without affecting the condition flags. 

Cycles 1 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by DVM. 

LDIZ R4,R6 

Before Instruction: 

R4 = 027Ch = 636 
R6 = OFE2h = 4,066 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 027Ch = 636 
R6 = OFE2h = 4,066 

LUF LV UF N Z V C = ° ° ° ° ° ° ° 

11-85 

• 



• 

LOll Load Integer, Interlocked 

Syntax 

Operation 

Operands 

Encoding 

LDII <src>,<dst> 

Signal interlocked operation. 
src -+ dst 

src general addressing modes (G): 
o 1 direct 
1 0 indirect 

dst register (Rn, 0 :s n :s 27) 

31 2423 1615 

10 ' 0 ' 0 I 0 ' 1 ' 0 ' 0 '0 ' 1 I ~ ~st ' I 
87 o 
src 

Description The src operand is loaded into the dst register. An interlocked operation is 
signaled over XFO and XF1. The src and dst operands are assumed to be 
signed integers. Note that only the direct and indirect modes are allowed. 
Refer to Section 7.3 for detailed description. 

Cycles 1 if XF = 0 (see Section 7.3) 

Status Bits 

Mode Bit 

Example 

11-86 

N 
Z 
V 
C 
UF 
lV 
lUF 

1 if a negative result is generated,O otherwise. 
1 if a zero result is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected 
Unaffected. 

OVM Operation not affected by OVM. 

LDII @985Fh,R3 

Before Instruction: 

DP = 80 
R3 = Oh 
Data at 80985Fh = ODCh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80 
R3 = ODCh 
Data at 80985Fh = ODCh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel LOI and LOI 

Syntax 

Operation 

Operands 

Encoding 

LDI <sre2>,<dst2> 
II LDI <sreT>,<dstT> 

sre2 -+ dst2 
II sreT -+ dstT 

sreT indirect (disp = 0, 1, IRO, IR1) 
dstT register (Rn1, 0 S n1 S 7) 
sre2 indirect (disp = 0, 1, I RO, I R1 ) 
dst2 register (Rn2, 0 S n2 S 7) 

31 2423 1615 

11 I 1 1 0 I 0 I 0 I 1 I 1 1 Jst2 
i i 

10 '0 '01 I dst1 

LOlli LOI 

87 o 
iii iii 
src1 src2 

Description Two integer loads are performed in parallel. A warning is issued by the 
assembler if the LDls load the same register. The result is that of LDI 
< sre2 > ,<dst2>. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by DVM. 

LDI *-AR1(1),R7 
I I LDI *AR7++(IRO),Rl 

Before Instruction: 

AR1 = 809826h 
R7 = Oh 
AR7 = 8098C8h 
IRO = 10h 
R1 = Oh 
Data at 809825h = OFAh = 250 
Data at 8098C8h = 2EEh = 750 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 809826h 
R7 = OFAh = 250 
AR7 = 8098D8h 
IRO = 10h 
R1 = 02EEh = 750 
Data at 809825h = OFAh = 250 
Data at 8098C8h = 2EEh = 750 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-87 



• 

LDIIISTI 

Syntax 

Operation 

Operands 

Encoding 

LDI <src2>,<dst1> 
II STI <src3>,<dst2> 

src2 -+ dst1 
II src3 -+ dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, ° :s n1 :s 7) 
src3 register (Rn2, ° :s n2 :s7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Parallel LDI and STI 

31 2423 1615 87 o 
i I iii 

dst2 src2 

Description An integer load and an integer store are performed in parallel. 

Cycles 

Status Bits 

Mode Bit 

11-88 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM . 



Parallel LDI and STI 

Example LDI *-AR1(1),R2 
I I STI R7,*AR5++(IRO) 

Before Instruction: 

AR1 = 8098E7h 
R2 = Oh 
R7 = 35h = 53 
AR5 = 80982Ch 
IRO = 8h 
Data at 8098E6h = ODCh = 220 
Data at 80982Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 8098E7h 
R2 = ODCh = 220 
R7 = 35h = 53 
AR5 = 809834h 
IRO = 8h 
Data at 8098E6h = ODCh = 220 
Data at 80982Ch = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

LDIIISTI 

• 

11-89 



• 

LDM 

Syntax 

Operation 

Operands 

Encoding 

LDM <src>, <dst> 

src(man) -+ dst(man) 

Load Floating-Point Mantissa 

src general addressing modes (G): 
00 register (Rn, 0 S n S 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 7) 

31 2423 1615 87 o 
i i iii i i 

dst src 

Description The mantissa field of the src operand is loaded into the mantissa field of the 
dst register. The dst exponent field is not modified. The src and dst op
erands are assumed to be floating-point numbers. If immediate addressing 
mode is used, bits 1 5 - 12 of the instruction word are forced to 0 by the 
assembler. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-90 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

LDM 156.75,R2 (156.75 = 071CCOOOOOh) 

Before Instruction: 

R2 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R2 = 001 CCOOOOOh = 1.22460938e+00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Logical Shift LSH 

Syntax 

Operation 

Operands 

Encoding 

LSH <count>,<dst> 

If count> 0: 
dst < <count -+ dst 

Else: 
dst > > Icountl -+ dst 

src general addressing modes (G): 
00 register (Rn, 0 ~ n ~ 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 27) 

31 2423 1615 87 o 
i i 

I I I dst count 

Description The seven least-significant bits of the count operand are used to generate 
the two's-complement shift count. If the count operand is greater than zero, 
the dst operand is left- shifted by the value of the count operand. Low
order bits shifted in are zero-filled, and high-order bits are shifted out 
through the C (carry) bit. 

Cycles 

Status Bits 

Mode Bit 

Logical left-shift: 

C +- dst +- 0 

If the count operand is less than zero, the dst is right-shifted by the absolute 
value of the count operand. The high-order bits of the dst operand are 
zero-filled as shifted to the right. Low-order bits are shifted out through the 
C (carry) bit. 

Logical right-shift: 

0-+ dst -+ C 

If the count operand is 0, no shift is performed and the C (carry) bit is set 
to o. The count operand is assumed to be a signed integer and the dst 
~perand is assumed to be an unsigned integer. • 

N 
Z 
V 
C 

UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Set to the value of the last bit shifted out. 0 for a shift count of O. 
Unaffected if dst is not RO-R7. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

11·91 



LSH 

Example 

Example 

• 

11-92 

LSH R4,R7 

Before Instruction: 

R4 = 018h = 24 
R7 = 02ACh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 018h = 24 
R7 = OACOOOOOOh 
LUF LV UF N Z V C = 0 0 0 1 0 1 0 

LSH *-AR5(IR1),R5 

Before Instruction: 

AR5 = 809908h 
IRO = 4h 
R5 = 0012COOOOOh 
Data at 809904h = OFFFFFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 809908h 
IRO = 4h 
R5 = 0000012COOh 
Data at 809904h = OFFFFFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Logical Shift 



Logical Shift, 3-0perand LSH3 

Syntax 

Operation 

Operands 

Encoding 

31 

LSH3 <count>,<src>,<dst> 

If count ~ 0: 
src < < count ... dst 

Else: 
src > > Icountl ... dst 

src three-operand addressing modes (T): 
00 register (Rn1, 0 s n S 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 S n1 S 26) 
11 indirect (disp = 0, 1, IRO, IR1) 

count three-operand addressing modes (T): 
00 register (Rn2, 0 S n2 S 27) 
o 1 register (Rn2, 0 S n2 S 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 S n S 27) 

2423 1615 87 0 
10'0'11 0'0'1'0'0'01 

, , , , 
1 

, , 
1 

, , , 
1 T dst src count 

Description The seven least-significant bits of the count operand are used to generate 
the two's-complement shift count. 

Cycles 

If the count operand is greater than zero, the dst operand is left-shifted by 
the value of the count operand. Low-order bits shifted in are zero-filled, 
and high-order bits are shifted out through the C (carry) bit. 

Logical left-shift: 

C -- src -- 0 

If the count operand is less than zero, the src operand is right-shifted by the 
absolute value of the count operand. The high-order bits of the dst operand 
are zero-filled as shifted to the right. Low-order bits are shifted out through 
the C (carry) bit. 

Logical right-shift: 

0'" src'" C 

If the count operand is 0, no shift is performed and the C (carry) bit is set 
to O. The count operand is assumed to be a signed integer. The src and 
dst operands are assumed to be unsigned integers. 

11-93 

• 



LSH3 Logical Shift, 3-0perand 

Status Bits N MSB of the output. 

Mode Bit 

Example 

Example 

"·94 

Z 1 if a zero output is generated, 0 otherwise. 
V 0 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

Unaffected if dst is not RO-R7. 
UF 0 
LV Unaffected. 
LU F Unaffected. 

OVM Operation not affected by OVM. 

LSH3 R4,R7,R2 

Before Instruction: 

R4 = 018h = 24 
R7 = 02ACh 
R2 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 018h = 24 
R7 = 02ACh 
R2 = OACOOOOOOh 
LUF LV UF N Z V C = 0 0 0 1 0 1 0 

LSH3 *-AR4(IR1)R5,R3 

Before Instruction: 

AR4 = 809908h 
IR1 = 4h 
R5 = 012COOOOOh 
R3 = Oh 
Data at 809904h = OFFFFFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 809908h 
IR1 = 4h 
R5 = 012COOOOOh 
R3 = 0000012COOh 
Data at 809904h = OFFFFFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel LSH3 and STI LSH311STI 

Syntax 

Operation 

Operands 

Encoding 

LSH3 <count>,<src2>,<dst1> 
II STI <src3>,<dst2> 

If count> 0: 
src2 <"< count -+ dst1 

Else: 
src2 » Icountl -+ dst1 

II src3 -+ dst2 

count register (Rn1, 0 :s n1 :s 7) 
src1 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn3, 0 :s n3 :s 7) 
src2 register (Rn4, 0 :s n4 :s7) 
dst2 indirect (disp = 0, 1, I RO, I R1 ) 

31 2423 1615 87 o 
11 i 1 1 0 i 1 i 1 i 1 i 0 1 ~st~ iii I I I 

dst2 src2 

Description The seven least-significant bits of the count operand are used to generate 
the two's-complement shift count. 

Cycles 

If the count operand is greater than zero, the dst operand is left-shifted by 
the value of the count operand. Low- order bits shifted in are zero-filled 
and high-order bits are shifted out through the C (carry) bit. 

Logical left-shift: 

C .... dst2 .... 0 

If the count operand is less than zero, the dst operand is right-shifted by the 
absolute value of the count operand. The high-order bits of the dst operand 
are zero filled as shifted to the right. Low-order bits are shifted out through 
the C (carry bit). 

Logical right-shift: 

0-+ dst2 -+ C 

If the count operand is 0, no shift is performed and the carry bit is set to O. 

The count operand is assumed to be a 7-bit signed integer and the src2 and 
dst1 operands are assumed to be unsigned integers. All registers are read 
at the beginning and loaded at the end of the execute cycle. This means 
that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (LSH3) writes to the same register, 
then STI accepts as input the contents of the register before it is modified 
by the LSH3. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

11-95 



• 

LSH311STI Parallel LSH3 and STI 

Status Bits N MSB of the output. 

Mode Bit 

Example 

11-96 

Z 1 if a zero output is generated, 0 otherwise. 
V 0 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 
UF 0 
LV Unaffected. 
LUF Unaffected. 

OVM Operation not affected by DVM. 

LSH3 R2,*++AR3(1),RO 
I I STl R4, *-AR3 

Before Instruction: 

R2 = 1Sh = 24 
AR3 = S09SC2h 
RO = Oh 
R4 = ODCh = 220 
AR3 = S09SA3h 
Data at S09SC3h = OACh 
Data at S09SA2h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R2 = 1Sh = 24 
AR3 = 8098C3h 
RO = OACOOOOOOh 
R4 = ODCh = 220 
AR3 = 8098A3h 
Data at 8098C3h = OACh 
Data at 8098A2h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Parallel LSH3 and STI 

Example LSH3 R7,*AR2--(l),R2 
I I STI RO, *+ARO ( 1) 

Before Instruction: 

R7 = OFFFFFFF4h = -12 
AR2 = 809863h 
R2 = Oh 
RO = 12Ch = 300 
ARO = 8098B7h 
Data at 809863h = 2COOOOOOh 
Data at 8098B8h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = OFFFFFFF4h = -12 
AR2 = 809862h 
R2 = 2COOOh 
RO = 12Ch = 300 
ARO = 8098B7h 
Data at 809863h = 2COOOOOOh 
Data at 8098B8h = 12Ch = 300 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

LSH311STI 

II 

11-97 



MPYF 

Syntax 

Operation 

Operands 

Encoding 

MPYF <src>,<dst> 

dst x src -+ dst 

src general addressing modes (G): 
00 register (Rn, 0 S n S 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 7) 

Multipy Floating-Point 

31 2423 1615 87 
I 

o 
i i 

I I dst src 

Description The product of the dst and src operands is loaded into the dst register. The 
src operand is assumed to be a single-precision floating-point number, and 
the dst operand is an extended-precision floating-point number. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-98 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point is overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

MPYF RO,R2 

Before Instruction: 

RO = 070CBOOOOOh = 1.4050e+02 
R2 = 034C200000h = 1.2757B125e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 070CBOOOOOh = 1.4050e+02 
R2 = OA600F2000h = 1.79247266e+03 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Multiply Floating-Point, 3-0perand MPYF3 

Syntax 

Operation 

Operands 

Encoding 

MPYF3 <src2>,<src1>,<dst> 

src 1 x src2 .... dst 

src1 three-operand addressing modes (T): 
00 register (Rn1, 0 :5 n1 :5 7) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 :5 n1 :5 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
00 register (Rn2, 0 :5 n2 :5 7) 
01 register (Rn2, 0 :5 n2 :5 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 :5 n :5 7) 

31 2423 1615 87 o 
~s~ I I I 

src1 
I 

src2 

Description The product of the dst1 and src2 operands is loaded into the dst register. 

Cycles 

Status Bits 

Mode Bit 

The src1 and src2 operands are assumed to be single-precision floating
point numbers, and the dst operand is an extended-precision floating-point 
number. 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

11-99 

II 



MPYF3 

Example 

Example 

11-100 

MPYF3 RO,R7,Rl 

Before Instruction: 

Multiply Floating-Point, 3-0perand 

RO = 057B400000h = 6.281250e+01 
R7 = 0733COOOOOh = 1.79750e+02 
R1 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 057B400000h = 6.281250e+01 
R7 = 0733COOOOOh = 1.79750e+02 
R1 = OD306A3000h = 1.1290546ge+04 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

MPYF3 *+AR2(IRO),R7,R2 
or 
MPYF3 R7,*+AR2(IRO),R2 

Before Instruction: 

AR2 = 809800h 
IRO = 12Ah 
R7 = 057B400000h = 6.281250e+01 
R2 = Oh 
Data at 80992Ah = 70C8000h = 1.4050e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809800h 
IRO = 12Ah 
R7 = 057B400000h = 6.281250e+01 
R2 = OD09E4AOOOh = 8.82515625e+03 
Data at 80992Ah = 70C8000h = 1 .4050e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel MPYF3 and ADDF3 MPYF311ADDF3 

Syntax 

Operation 

Operands 

Encoding 

MPYF3 <srcA>,<srcB>,<dst1> 
II ADDF3 <srcC>,<srcD>,<dst2> 

srcA x srcB ~ dst1 
II srcC + srcD -+ dst2 

srcA] srcB 
srcC 
srcD 

dst1 

dst2 

src1 
src2 
src3 
src4 

Any two indirect (disp = 0,1 ,IRO,IR1) 
Any two register (0 :s ARn :s 7) 

register (dT): 
0= RO 
1 = R1 

register (d2): 
0= R2 
1 = R3 

register 
register 
indirect 
indirect 

(Rn, 0 :s n :s 7) 
(Rn, 0 :s n :s 7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (O:s P :s 3) 

OPERATION 

00 src3 x src4, src 1 + src2 
01 src3 x src 1, src4 + src2 
10 src1 x src2, src3 + src4 
11 src3 x src 1, src2 + src4 

31 2423 1615 87 0 

11 i 0 1 0 i 0 i 0 i 0 1 ~ Id11d21 ~rc~ 1 ~rc~ 1 iii sr~3 iii 1 iii sr~4 iii 1 
Description A floating-point multiplication and a floating-point addition are performed • 

in parallel. All registers are read at the beginning and loaded at the end of 
the execute cycle. This means that if one of the parallel operations (MPYF3) 
reads from a register and the operation being performed in parallel 
(ADDF3) writes to the same register, then MPYF3 accepts as input the 
contents of the register before it is modified by the ADDF3. 

Any combination of addressing modes may be coded for the four possible 
source operands as long as the two are coded as indirect and two are reg
ister. The assignment of the source operands srcA-srcD to the src1-src4 
fields varies depending on the combination of addressing modes used, and 
the P field is encoded accordingly. The assembler may, when not signif
icant, change the order of operands in commutative operations, in order to 
simplify processing. 

11 -101 



II 

MPYF311ADDF3 Parallel MPYF3 and ADDF3 

Cycles 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Status Bits N 0 

Mode Bit 

Example 

11-102 

Z 0 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
LV 1 if a floating-point overflow occurs, 0 unchanged otherwise. 
LUF 1 if a floating-point underflow occurs, 0 unchanged otherwise. 

OVM Operation not affected by OVM. 

MPYF3 *ARS++(1),*--AR1(IRO),RO 
I I ADDF3 RS,R7,R3 

Before Instruction: 

AR5 = S09SC5h 
AR1 = 809SASh 
IRO = 4h 
RO = Oh 
R5 = 0733COOOOOh = 1.79750e+02 
R7 = 070CSOOOOOh = 1.4050e+02 
R3 = Oh 
Data at 8098C5h = 34COOOOh = 1.2750e+01 
Data at S09SA4h = 111 OOOOh = 2.2500e+00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = S09SC6h 
AR1 = 8098A4h 
IRO = 4h 
RO = 04671S0000h = 2.SS86718Se+01 
R5 = 0733COOOOOh = 1.79750e+02 
R7 = 070CSOOOOOh = 1.4050e+02 
R3 = 0820200000h = 3.20250e+02 
Data at 8098C5h = 34COOOOh = 1 .2750e+01 
Data at S098A4h = 111 OOOOh = 2.2500e+00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel MPYF3 and STF MPYF311STF 

Syntax 

Operation 

Operands 

Encoding 

MPYF3 <sre2>,<sreT>,<dstT> 
II STF <sre3>,<dst2> 

sreT x sre2- dstT 
II sre3 - dst2 

sreT register (Rn1, 0 S n1 S 7) 
sre2 indirect (disp = 0, 1, I RO, I R1 ) 
dstT register (Rn3, 0 S n3 S 7) 
sre3 register (Rn4, 0 S n4 S7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 87 o 
11 i 1 1 0 i 1 i 1 i 1 i 1 1 ~st~ I I 

src1 ~rc~ 1 
i 

dst2 
i 

src2 

Description A floating-point multiplication and a floating-point store are performed in 
parallel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one of the parallel operations (MPYF3) 
reads from a register and the operation being performed in parallel (STF) 
writes to the same register, then MPYF3 accepts as input the contents of 
the register before it is modified by the STF. 

Cycles 

Status Bits 

Mode Bit 

If sre2 and dst2 point to the same location, then sre2 is read before the write 
to dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, 0 unchanged otherwise. 
1 if a floating-point underflow occurs, 0 unchanged otherwise. 

OVM Operation not affected by OVM. 

11-103 

• 



• 

MPYF311STF Parallel M PYF3 and STF 

Example 

11-104 

MPYF3 *-AR2(1),R7,RO 
I I STF R3,*ARO--(IRO) 

Before Instruction: 

AR2 = 809828h 
R7 = 0578400000h = 6.281250e+01 
RO = Oh 
R3 = 0868280000h = 4.7031250e+02 
ARO = 809860h 
IRO = 8h 
Data at 80982Ah = 70C8000h = 1.4050e+02 
Data at 809860h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809828h 
R7 = 0578400000h = 6.281250e+01 
RO = OD09E4AOOOh = 8.82515625e+03 
R3 = 0868280000h = 4.7031250e+02 
ARO = 809858h 
IRO = 8h 
Data at 80982Ah = 70C8000h = 1.4050e+02 
Data at 809860h = 868280000h = 4.7031250e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel MPYF3 and SUBF3 

Syntax 

Operation 

Operands 

Encoding 

31 

MPYF3 <sreA>,<sreB>,<dstT> 
"SUBF3 <sreC>,<sreD>,<dst2> 

sreA x sreB .... dst1 
II sreD - sreC .... dst2 

sreAJ sreB 
sreC 
sreD 

dstT 

dst2 

sre1 
sre2 
sre3 
sre4 

Any two indirect (disp = 0,1 ,IRO,IR1) 
Any two register (0 ::s; ARn ::s; 7) 

register (d1): 
0= RO 
1 = R1 

register (d2): 
0= R2 
1 = R3 

register 
register 
indirect 
indirect 

(Rn, 0 ::s; n ::s; 7) 
(Rn,O ::s; n ::s; 7) 
(disp = 0,1, IRO, IR1) 
(disp = 0,1, IRO, IR1) 

P parallel addressing modes (O::s; P ::s; 3) 

OPERATION 

00 sre3 x src4, src1 - sre2 
01 src3 x src 1, src4 - src2 
10 src1 x src2, src3 - src4 
11 src3 x src 1, src2 - sre4 

2423 1615 

src2 I i i 

src3 

MPYF311SUBF3 

87 o 
i I 

src4 

a 

11-105 



MPYF311SUBF3 Parallel MPYF3 and SUBF3 

Description A floating-point multiplication and a floating-point subtraction are per
formed in parallel. All registers are read at the beginning and loaded at the 
end of the execute cycle. This means that if one of the parallel operations 
(MPYF3) reads from a register, and the operation being performed in par
allel (SUBF3) writes to the same register, then MPYF3 accepts as input the 
contents of the register before it is modified by the SUBF3. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-106 

Any combination of addressing modes may be coded for the four possible 
source operands as long as the two are coded as indirect and two are reg
ister. The assignment of the source operands srcA-srcD to the src1-src4 
fields varies depending on the combination of addressing modes used, and 
the P field is encoded accordingly. The assembler may, when not signif
icant, change the order of operands in commutative operations, in order to 
simplify processing. 

N 
Z 
V 
C 
UF 
LV 
LUF 

o 
o 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

MPYF3 RS,*++AR7(IR1),RO 
I I SUBF3 R7,*AR3--(1),R2 
or 

MPYF3 RS,*++AR7(IR1),RS,RO 
I I SUBF3 R7,*AR3--(1),R2 

Before Instruction: 

R5 = 034COOOOOOh = 1.2750e+01 
AR7 = 809904h 
IR1 = 8h 
RO = Oh 
R7 = 0733COOOOOh = 1.79750e+02 
AR3 = 8098B2h 
R2 = Oh 
Data at 80990Ch = 111 OOOOh = 2.250e+00 
Data at 8098B2h = 70C8000h = 1.4050e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel MPYF3 and SUBF3 

After Instruction: 

R5 = 034COOOOOOh = 1.2750e+01 
AR7 = S0990Ch 
IR1 = Sh 
RO = 04671S0000h = 2.SSS671SSe+01 
R7 = 0733COOOOOh = 1.79750e+02 
AR3 = S09S81 h 
R2 = 05E3000000h = -3.9250e+01 
Data at S0990Ch = 111 OOOOh = 2.250e+00 
Data at S09S82h = 70CSOOOh = 1.4050e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

MPYF311SUBF3 

II 

11-107 



a 

MPYI 

Syntax 

Operation 

Operands 

Encoding 

MPYI <src>,<dst> 

dst )( src ~ dst 

src general addressing modes (G): 
00 register (Rn, 0 S n S 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 27) 

Multiply Integer 

31 2423 1615 87 o 
i i iii dst src 

Description The product of the dst and src operands is loaded into the dst register. The 
src and dst operands when read are assumed to be 24-bit signed integers. 
The result is assumed to be a 48-bit signed integer. The output to the dst 
register is the 32 least-significant bits of the result. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-108 

Integer overflow occurs when any of the most-significant 16 bits of the 
48-bit result differs from the most-significant bit of the 32-bit output value. 

N 
Z 
v 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if an integer overflow occurs, 0 otherwise. 
Unaffected. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unchanged. 

OVM Operation affected by OVM. 

MPYI Rl,RS 

Before Instruction: 

R1 = 000033C251 h = 3,392,081 
R5 = 000078B600h = 7,910,912 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 000033C251 h = 3,392,081 
R5 = 00E21 D9600h = -501,377,536 
LUF LV UF N Z V C = 0 1 0 1 0 1 0 



Multiply Integer, 3-0perand MPYI3 

Syntax 

Operation 

Operands 

Encoding 

M PYI3 < sre2 > ,<sre1 >, <dst> 

sre 1 x sre2 -+ dst 

sTe1 three-operand addressing modes (T): 
00 register (Rn1, :5 n1 :5 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
10 register (Rn1,:5 n1 :5 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): ° ° register (Rn2, :5 n2 :5 27) ° 1 register (Rn2, :5 n2 :5 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, ° :5 n :5 27) 

31 2423 1615 87 o 
~s~ I I I 

src1 
I 

src2 

Description The product of the sTe1 and sre2 operands is loaded into the dst register. 

Cycles 

Status Bits 

Mode Bit 

The sTe1 and sre2 operands are assumed to be 24-bit signed integers. The 
result is assumed to be a signed 48-bit integer. The output to the dst reg
ister is the 32 least-significant bits of the result. 

Integer overflow occurs when any of the most-significant 16 bits of the 
48-bit result differs from the most-significant bit of the 32-bit output value. 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, ° otherwise. 
1 if a zero result is generated, ° otherwise. 
1 if an integer overflow occurs, ° otherwise. 
Unaffected. 

° 1 if an integer overflow occurs, unchanged otherwise. 
Unchanged. 

OVM Operation affected by OVM. 

11 -109 

II 



MPYI3 

Example 

Example 

11-110 

MPYI3 *AR4,*-AR1(1),R2 

Before Instruction: 

AR4 = 809850h 
AR1 = 8098F3h 
R2 = Oh 
Data at 809850h = OADh = 173 
Data at 8098F2h = ODCh = 220 

Multiply Integer, 3-0perand 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 809850h 
AR1 = 8098F3h 
R2 = 094ACh = 38,060 
Data at 809850h = OADh = 173 
Data at 8098F2h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

MPYI3 *--AR4(IRO),R2,R7 

Before Instruction: 

AR4 = 8099F8h 
IRO = 8h 
R2 = OC8h = 200 
R7 = Oh 
Data at 8099FOh = 32h = 50 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8099FOh 
IRO = 8h 
R2 = OC8h = 200 
R7 = 02710h = 10,000 
Data at 8099FOh = 32h = 50 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel MPVI3 and ADDI3 

Syntax 

Operation 

Operands 

Encoding 

31 

MPYI3 <sreA>, <sreB>, <dstT > 
II ADDI3 <sreC>,<sreD>,<dst2> 

sreA x sreB -+ dstT 
II sreD + sreC -+ dst2 

sreAJ sreB 
sreC 
sreD 

dst1 

dst2 

sre1 
sre2 
sre3 
sre4 

Any two indirect (disp = 0,1,IRO,IR1) 
Any two register (0 :s ARn :s 7) 

register (d1): 
0= RO 
1 = R1 

register (d2): 
0= R2 
1 = R3 

register 
register 
indirect 
indirect 

(Rn,O :s n :s 7) 
(Rn, 0 :s n :s 7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (O:s P :s 3) 

OPERATION 

00 sre3 x sre4, sre1 + sre2 
01 sre3 x sre1, sre4 + sre2 
10 sre1 x sre2, sre3 + sre4 
11 sre3 x sre 1, sre2 + sre4 

2423 1615 
I i 

~rc~ I I I 

src3 src1 

MPVI311ADDI3 

87 o 
I i I 

src4 

• 

11-111 



• 

MPYI311ADDI3 Parallel M PYI3 and ADDI3 

Description An integer multiplication and an integer addition are performed in parallel. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-112 

All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (MPYI3) reads from 
a register and the operation being performed in parallel (ADDI3) writes to 
the same register, then MPYI3 accepts as input the contents of the register 
before it is modified by the ADDI3. 

Any combination of addressing modes may be coded for the four possible 
source operands as long as the two are coded as indirect and two are reg
ister. The assignment of the source operands srcA-srcD to the src1-src4 
fields varies depending on the combination of addressing modes used, and 
the P field is encoded accordingly. The assembler may, when not signif
icant, change the order of operands in commutative operations, in order to 
simplify processing. 

N 
Z 
V 
C 
UF 
LV 
LUF 

o 
o 
1 if an integer overflow occurs, 0 otherwise. 
Unaffected. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unchanged. 

OVM Operation affected by OVM. 

MPYI3 R7,R4,RO 
I I ADDI3 *-AR3,*AR5--(l),R3 

Before Instruction: 

R7 = 14h = 20 
R4 = 64h = 100 
RO = Oh 
AR3 = 80981 Fh 
AR5 = 80996Eh 
R3 = Oh 
Data at 80981 Eh = OFFFFFFCBh = -53 
Data at 80996Eh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 14h = 20 
R4 = 64h = 100 
RO = 07 DOh = 2000 
AR3 = 80981 Fh 
AR5 = 80996Dh 
R3 = Oh 
Data at 80981 Eh = OFFFFFFCBh = -53 
Data at 80996Eh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel MPYI3 and STI3 MPYI311STI 

Syntax 

Operation 

Operands 

Encoding 

MPYI3 <sre2>,<sre1>,<dst1> 
II STI <sre3>,<dst2> 

sre1 x sre2 .... dst1 
II sre3 .... dst2 

sre1 register (Rn1, 0 :s n1 :s 7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn3, 0 :s n3 :s 7) 
src3 register (Rn4, 0 :s n4 :s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 87 o 
11 i 1 11 i 0 i 0 i 0 i 0 1 ~st~ i i 

~rc~ 1 
iii Iii 

src2 src1 dst2 

Description An integer multiplication and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (MPYI3) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the MPYI3. 

Cycles 

Status Bits 

Mode Bit 

If sre2 and dst2 point to the same location, sre2 is read before the write to 
dst2. 

Integer overflow occurs when any of the most-significant 16 bits of the 
48-bit result differs from the most-significant bit of the 32-bit output value. 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if an integer overflow occurs, 0 otherwise. 
Unaffected. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

11-113 

II 



• 

MPVI311STI Parallel MPVI3 and STI3 

Exampm MPYI3 *++ARO(1),RS,R7 

11-114 

I I STI R2,*-AR3(1) 

Before Instruction: 

ARO = 80995Ah 
R5 = 32h = 50 
R7 = Oh 
R2 = ODCh = 220 
AR3 = 80982Fh 
Data at 80995Bh = OC8h = 200 
Data at 80982Eh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 80995Bh 
R5 = 32h = 50 
R7 = 2710h = 10000 
R2 = ODCh = 220 
AR3 = 80982Fh 
Data at 80995Bh = OC8h = 200 
Data at 80982Eh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel MPYI3 and SUBI3 MPYI311SUBI3 

Syntax 

Operation 

Operands 

Encoding 

31 

M PYI3 <srcA >, <srcB> , <dst1 > 
II SUBI3 <srcC>,<srcD>,<dst2> 

srcA x srcB -+ dst1 
II srcD - srcC -+ dst2 

srcA] srcB 
srcC 
srcD 

dstT 

dst2 

srcT 
src2 
src3 
src4 

Any two indirect (disp = 0,1 ,IRO,IR1) 
Any two register (0 S ARn S 7) 

register (d1): 
0= RO 
1 = R1 

register (d2): 
0= R2 
1 = R3 

register 
register 
indirect 
indirect 

(Rn,O S n S 7) 
(Rn,O S n S 7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 s P S 3) 

OPERATION 

00 src3 x src4, srcT - src2 
01 src3 x src 1, src4 - src2 
10 srcT x src2, src3 - src4 
11 src3 x src T, src2 - src4 

2423 1615 87 0 

111010 10 11111 
1 

Id11d21 
1 1 

1 

1 1 1 1 1 1 

I p sre1 sre2 sre3 sre4 

Description An integer multiplication and an integer subtraction are performed in par
allel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one of the parallel operations (MPYI3) 
reads from a register and the operation being performed in parallel (SUBI3) 
writes to the same register, then MPYI3 accepts as input the contents of the 
register before it is modified by the SUBI3. 

Any combination of addressing modes may be coded for the four possible 
source operands as long as the two are coded as indirect and two are reg
ister. The assignment of the source operands srcA-srcD to the srcT-src4 
fields varies depending on the combination of addressing modes used, and 
the P field is encoded accordingly. The assembler may, when not signif
icant, change the order of operands in commutative operations, in order to 
simplify processing. 

11-115 



MPYI311SUBI3 Parallel M PYI3 and SU BI3 

Cycles 

Integer overflow occurs when any of the most-significant 16 bits of the 
48-bit result differs from the most-significant bit of the 32-bit output value. 

Status Bits N 0 

Mode Bit 

Example 

11-116 

Z 0 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 
U F 1 if an integer underflow occurs, 0 otherwise. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
LU F Unchanged. 

OVM Operation affected by OVM. 

MPYI3 R2,*++ARO(1),RO 
I I SUBI3 *AR5--(IR1),R4,R2 
or 

MPYI3 *++ARO(1),R2,RO 
I I SUBI3 *AR5--(IR1),R4,R2 

Before Instruction: 

R2 = 32h = 50 
ARO = 8098E3h 
RO = Oh 
AR5 = 8099FCh 
IR1 = OCh 
R4 = 07 DOh = 2000 
Data at 8098E4h = 62h = 98 
Data at 8099FCh = 4BOh = 1200 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R2 = 320h = 800 
ARO = 8098E4h 
RO = 01 324h = 4900 
AR5 = 8099FOh 
IR1 = OCh 
R4 = 07 DOh = 2000 
Data at 8098E4h = 62h = 98 
Data at 8099FCh = 4BOh = 1200 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Negative Integer with Borrow 

Syntax 

Operation 

Operands 

Encoding 

NEGB <src>,<dst> 

o - src - C -+ dst 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 27) 

31 2423 1615 
I I 

I I I dst 

NEGB 

87 o 
sre 

Description The difference of the 0, src, and C operands is loaded into the dst register. 

Cycles 

Status Bits 

Mode Bit 

Example 

The dst and src are assumed to be signed integers. 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

NEGB RS,R7 

Before Instruction: 

R5 = OFFFFFFCBh = -53 
R7 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 

After Instruction: 

R5 = OFFFFFFCBh = -53 
R7 = 34h = 52 
LUF LV UF N Z V C == 0 0 0 0 0 0 

11-117 

• 



• 

NEGF 

Syntax 

Operation 

Operands 

Encoding 

NEGF <src>,<dst> 

0- src .... dst 

src general addressing modes (G): 
00 register (Rn, 0 S n S 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 7) 

Negate Floating-Point 

31 2423 1615 87 o 
dst I I src 

Description The difference of the 0 and src operands is loaded into the dst register. The 
dst and src operands are assumed to be floating-point numbers. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-118 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

NEGF *++AR3(2),Rl 

Before Instruction: 

AR3 = 809800h 
R1 = 057B400025h = 6.28125006e+01 
Data at 809802h = 70C8000h = 1.4050e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809802h 
R1 = 07F3800000h = -1.4050e+02 
Data at 809802h = 70C8000h = 1.4050e+02 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Parallel NEG F and STF NEGFIISTF 

Syntax 

Operation 

Operands 

Encoding 

NEGF <src2>,<dst1> 
II STF <src3>, <dst2> 

o - src2 ~ dst1 
II src3 ~ dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 ~ n1 ~ 7) 
src3 register (Rn2, 0 ~ n2 ~ 7) 
dst2 indirect (disp = 0, 1, I RO, I R1 ) 

31 2423 1615 87 o 
I i iii 

dst2 src2 

Description A floating-point negation and a floating-point store are performed in par
allel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one of the parallel operations (STF) reads 
from a register and the operation being performed in parallel (NEGF) writes 
to the same register, then STF accepts as input the contents of the register 
before it is modified by the NEGF. 

Cycles 

Status Bits 

Mode Bit 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

11-119 

• 



NEGFIISTF 

Example 

II 

11-120 

NEGF *AR4--(1),R7 
I I STF R2,*++AR5(1) 

Before Instruction: 

AR4 = 8098E1 h 
R7 = Oh 
R2 = 0733COOOOOh = 1.79750e+02 
AR5 = 809803h 

Parallel NEG F and STF 

Data at 8098E1 h = 57B400000h = 6.281250e+01 
Data at 809804h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8098EOh 
R7 = 0584COOOOOh = -6.281250e+01 
R2 = 0733COOOOOh = 1.79750e+02 
AR5 = 809804h 
Data at 8098E1 h = 57B4000h = 6.281250e+01 
Data at 809804h = 733COOOh = 1.79750e+02 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Negate Integer 

Syntax 

Operation 

Operands 

Encoding 

NEGI <src>,<dst> 

o - src -+ dst 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 27) 

31 2423 1615 
I i 

I I dst 

NEGI 

87 o 
src 

Description The difference of the 0 and src operands is loaded into the dst register. The 
dst and src operands are assumed to be signed integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

NEGI 174,RS (174 = OAEh) 

Before Instruction: 

R5 = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = OFFFFFF52 = -174 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 

11-121 



• 

NEGIIiSTI Parallel NEGI and STI 

Syntax NEGI <src2>,<dst1> 
II STI <src3>,<dst2> 

Operation 0 - src2 -+ dst1 
II src3 -+ dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, O:s n1 :s 7) 
src3 register (Rn2, 0 :s n2 :s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

31 2423 1616 87 o 
iii iii 

dst2 src2 

Description An integer negation and an integer store are performed in parallel. All reg
isters are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STI) reads from a register 
and the operation being performed in parallel (NEGI) writes to the same 
register, then STI accepts as input the contents of the register before it is 
modified by the NEG!. 

Cycles 

Status Bits 

Mode Bit 

11-122 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if an integer overflow occurs, 0 otherwise. 
1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM . 



Parallel NEGI and STI 

Example NEGI *-AR3,R2 
I I STI R2,*AR1++ 

Before Instruction: 

AR3 = 80982Fh 
R2 = 19h = 25 
AR1 = 8098A5h 
Data at 80982Eh = ODCh = 220 
Data at 8098A5h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 80982Fh 
R2 = OFFFFFF24h = -220 
AR1 = 8098A6h 
Data at 80982Eh = ODCh = 220 
Data at 8098A5h = 1 9h == 25 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 

NEGIIISTI 

11-123 



NOP 

Syntax 

Operation 

Operands 

Encoding 

NOP <src> 

No ALU or multiplier operations. 
ARn is modified if src is specified in indirect mode. 

src general addressing modes (G): 
00 register (no operation) 
1 0 indirect (modify ARn, 0 S n s7) 

31 2423 1615 87 

src 

No Operation 

o 

Description If the src operand is specified in the indirect mode, the specified addressing 
operation is performed and a dummy memory read occurs. If the src oper
and is omitted, no operation is performed. 

Cycles 

Status Bits 

Mode Bit 

Example 

• Example 

11-124 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

NOP 

Before Instruction: 

PC = 3Ah 

After Instruction: 

PC = 3Bh 

NOP *AR3--(1) 

Before Instruction: 

PC = 5h 
AR3 = 809900h 

After Instruction: 

PC = 6h 
AR3 = 8098FFh 



Normalize NORM 

Syntax NORM <src>,<dst> 

Operation norm (src) ..... dst 

Operands 

Encoding 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 7) 
01 direct 
1 0 indirect 
1 1 immediate 

31 2423 1615 87 o 
i i iii dst src 

Description The src operand is assumed to be an unnormalized floating-point number, 
i.e., the implied bit is set equal to the sign bit. The dst is set equal to the 
normalized src operand with the implied bit removed. The dst operand ex
ponent is set to the src operand exponent minus the size of the left-shift 
necessary to normalize the src. The dst operand is assumed to be a nor
malized floating-point number. 

If src(exp) = -128 and src(man) = 0, then dst = 0, Z = 1, and UF = O. If 
src(exp) = -128 and src(man) ¢ 0, then dst = 0, Z = 0, and UF = 1. For 
all other cases of the src, if a floating-point underflow occurs, then 
dst(man) is forced to 0 and dst(exp) = -128. If src(man) = 0, then 
dst(man) = 0 and dst(exp) = -128. Refer to Section 5.6. 

Cycles 1 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
o 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

NORM Rl,R2 

Before Instruction: 

R1 = 0400003AF5h 
R2 = 070C800000h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 0400003AF5h 
R2 = F26BD40000h = 1.12451613e-04 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-125 

• 



• 

NOT Bitwise Logical-Complement 

Syntax 

Operation 

Operands 

Encoding 

NOT <src>,<dst> 

-src'" dst 

src general addressing modes (G): 
00 register (Rn, 0 S n S 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 27) 

3' 2423 '6'5 

10'0'01 0',','0',',1 ~ i i 
, 1 ' dst 

87 o , 
src 

Description The bitwise logical-complement of the src operand is loaded into the dst 
register. The complement is formed by a logical-NOT of each bit of the src 
operand. The dst and src operands are assumed to be unsigned integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

11 -126 

N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

NOT @982Ch,R4 

Before Instruction: 

DP = 80h 
R4 = Oh 
Data at 80982Ch = 5E2Fh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R4 = OFFFFA1 DOh 
Data at 80982Ch = 5E2Fh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Parallel NOT and STI 

Syntax 

Operation 

Operands 

Encoding 

NOT <src2>,<dstl> 
II STI <src3>,<dst2> 

-src2 -+ dstl 
II src3 -+ dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 :s n1 :s 7) 
src3 register (Rn2, 0 :s n2 :s 7) 
dst2 indirect (disp = 0, 1, I RO, I R1 ) 

31 2423 1615 

NOTIISTI 

87 o 
i i iii 

dst2 src2 

Description A bitwise logical-NOT and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (NOT) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the NOT. 

Cycles 

Status Bits 

Mode Bit 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

11-127 

• 



NOTIISTI 

Example 

• 

11-128 

NOT *+AR2,R3 
I I STI R7,*--AR4(IR1) 

Before Instruction: 

AR2 = 8099CBh 
R3 = Oh 
R7 = ODCh = 220 
AR4 = 809850h 
IR1 = 10h 
Data at 8099CCh = OC2Fh 
Data at 809840h = Oh 

Parallel NOT and STI 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 8099CBh 
R3 = OFFFFF3DOh 
R7 = ODCh = 220 
AR4 = 809840h 
IR1 = 10h 
Data at 8099CCh = OC2Fh 
Data at 809840h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Bitwise Logical-OR 

Syntax 

Operation 

Operands 

Encoding 

OR <src>,<dst> 

dst OR src -+ dst 

src general addressing modes (G): 
o 0 register (Rn, 0 S n S 27) 
01 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst register (Rn, 0 S n S 27) 

31 2423 1615 
i i 

I I I dst 

OR 

87 o 
src 

Description The bitwise logical-OR between the src and dst operands is loaded into the 
dst register. The dst and src operands are assumed to be unsigned integers. 

Cycles 

Status Bits 

Mode Bit 

N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by DVM. 

11-129 



OR 

Example 

a 

11-130 

OR *++AR1(IR1),R2 

Before Instruction: 

AR1 = 809800h 
IR1 = 4h 
R2 = 012560000h 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 809804h 
IR1 = 4h 
R2 = 012562BCDh 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Bitwise Logical-OR 



Bitwise Logical-OR, 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

31 

OR3 <sre2>,<sreT>,<dst> 

sreT OR sre2 -+ dst 

sreT three-operand addressing modes (T): 
o 0 register (Rn1, 0 S n1 S 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 S n1 S 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
00 register (Rn2, 0 S n2 S 27) 
01 register (Rn2, 0 S n2 S 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 S n S 27) 

2423 1615 

1010111010111011111 
1 1 1 1 

1 

1 1 
T dst src1 

OR3 

87 0 
1 

1 

1 1 1 

1 
src2 

Description The bitwise logical-OR between the sreT and sre2 operands is loaded into 
the dst register. The sreT, sre2, and dst operands are assumed to be un
signed integers. 

Cycles 

Status Bits 

Mode Bit 

N 
Z 
V 
C 
UF 
LV 
LUF 

MS B of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

11-131 



OR3 

Example 

11-132 

Bitwise Logical-OR, 3-0perand 

OR3 *++AR1(IR1),R2,R7 

Before Instruction: 

AR1 = 809800h 
IR1 = 4h 
R2 = 01 2560000h 
R7 = Oh 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 809804h 
IR1 = 4h 
R2 = 012560000h 
R7 = 012562BCDh 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel OR3 and STI 

Syntax 

Operation 

Operands 

Encoding 

OR3 <sre2>,<sreT>,<dstT> 
II STI <sre3>,<dst2> 

sreT OR sre2 .... dstT 
II sre3 .... dst2 

sreT register (Rn1, 0 S n1 S 7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dstT register (Rn2, 0 S n2 S 7) 
sre3 register (Rn3, 0 S n3 S 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

11 i 1 11 i 0 i 1 i 0 i 0 1 ~st~ I i 

~rc~ 1 src1 

OR311STI 

87 o 
iii I I i 

dst2 src2 

Description A bitwise logical-OR and an integer store are performed in parallel. All re
gisters are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STI) reads from a register 
and the operation being performed in parallel (OR3) writes to the same re
gister, then STI accepts as input the contents of the register before it is 
modified by the OR3. 

Cycles 

Status Bits 

Mode Bit 

If sre2 and dst2 point to the same location, sre2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by DVM. 

11-133 

a 



OR311STI 

Example 

11 -134 

OR3 *++AR2,R5,R2 
I I STI R6,*AR1--

Before Instruction: 

AR2 = 809830h 
R5 = 800000h 
R2 = Oh 
R6 = ODCh = 220 
AR1 = 809883h 
Data at 809831 h = 9800h 
Data at 809883h = Oh 

Parallel OR3 and STI 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809831 h 
R5 = 800000h 
R2 = 809800h 
R6 = ODCh = 220 
AR1 = 809882h 
Data at 809831 h = 9800h 
Data at 809883h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



POP Integer 

Syntax 

Operation 

Operands 

Encoding 

POP <dst> 

'sp-- ~ dst 

dst register (Rn, 0 :s; n :s; 27) 

POP 

3' 2423 '6'5 87 0 

10 '0'01 0 ', " " '0'01 0 ',1 dst ' I 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 I 
Description The top of the current system stack is popped and loaded into the dst reg

ister. The top of the stack is assumed to be a signed integer. The POP is 
performed with a post decrement of the stack pointer. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by DVM. 

POP R3 

Before Instruction: 

SP = 809856h 
R3 = 012DAh = 4,826 
Data at 809856h = OFFFFODA4h = -62,044 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 809855h 
R3 = OFFFFODA4h = -62,044 
Data at 809856h = OFFFFODA4h = -62,044 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

11-135 

• 



• 

POPF 

Syntax 

Operation 

Operands 

Encoding 

POP Floating-Point 

POPF <dst> 

*sP-- -+ dst1 

dst register (Rn, 0 :s n :s 7) 

31 2423 1615 87 0 
I i 

dst 

Description The top of the current system stack is popped and loaded into the dst reg
ister. The top of the stack is assumed to be a floating-point number. The 
POP is performed with a post decrement of the stack pointer. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-136 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

POPF R4 

Before Instruction: 

SP = 80984Ah 
R4 = 025D2E0123h = 6.91186578e+00 
Data at 80984Ah = 5F2C1302h = 5.32544007e+28 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 809849h 
R4 = 5F2C130200h = 5.32544007e+28 
Data at 80984Ah = 5F2C1302h = 5.32544007e+28 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



PUSH Integer 

Syntax 

Operation 

Operands 

Encoding 

PUSH <src> 

src -+ *++SP 

src register (Rn, 0 :s n :s 27) 

PUSH 

31 2423 1615 87 0 
i i 

src 

Description The contents of the src register are pushed on the current system stack. The 
src is assumed to be a signed integer. The PUSH is performed with a pre
increment of the stack pointer. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

PUSH R6 

Before Instruction: 

SP = 8098AEh 
R6 = 815Bh = 33,115 
Data at 8098AFh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 8098AFh 
R6 = 815Bh = 33,115 
Data at 8098AFh = 815Bh = 33,115 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-137 



• 

PUSHF 

Syntax 

Operation 

Operands 

Encoding 

PUSH Floating-Point 

PUSHF <src> 

src -+ *++SP 

src register (Rn, 0 S n S 7) 

3' 2423 16'5 87 0 
I i 10'0'01 0 ', " " " ',1 0 ',1 src 

Description The contents of the src register are pushed on the current system stack. The 
src is assumed to be a floating-point number. The PUSH is performed with 
a preincrement of the stack pointer. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-138 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

PUSHF R2 

Before Instruction: 

SP = 809801 h 
R2 = 025C128081 h = 6.87725854e+00 
Data at 809802h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 809802h 
R2 = 025C128081 h = 6.87725854e+00 
Data at 809802h = 025C1280h = 6.87725830e+00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Return From Interrupt Conditionally RETlcond 

Syntax 

Operation 

Operands 

Encoding 

RETlcond 

If cond is true: 
*SP-- ..... PC 
1 ..... ST(GIE). 

Else, continue. 

None 

3' 2423 '615 87 0 

10',',',',10'0'0'01 0'01 
Description A conditional return is performed. If the condition is true, the top of the 

stack is popped to the PC, and 1 is written to the global interrupt enable 
(GIE) bit of the status register. This has the effect of enabling all interrupts 
for which the corresponding interrupt enable bit is a 1. 

The TMS320C30 provides 20 condition codes that can be used with this 
instruction (see Section 9.1 for a list of condition mnemonics, encoding, 
and flags). 

Cycles 4 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

RETINZ 

Before Instruction: 

PC = 456h 
SP = 809830h 
ST = Oh 
Data at 809830h = 123h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 123h 
SP = 80982Fh 
ST = 2000h 
Data at 809830h = 123h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-139 

• 



• 

RETScond Return From Subroutine Conditionally 

Syntax RETScond 

Operation If cond is true: 
'SP-- -+ PC. 

Else, continue. 

Operands None 

Encoding 

31 2423 1615 87 0 
don~ i I 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 I 

Description A conditional return is performed. If the condition is true, the top of the 
stack is popped to the PC, and 1 is written to the global interrupt enable 
(GIE) bit of the status register. This has the effect of enabling all interrupts 
for which the corresponding interrupt enable bit is a 1. 

The TMS320C30 provides 20 condition codes that can be used with this 
instruction (see Section 9.1 for a list of condition mnemonics, encoding, 
and flags). 

Cycles 4 

Status Bits 

Mode Bit 

Example 

11-140 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

RETSGE 

Before Instruction: 

PC = 123h 
SP = 80983Ch 
Data at 80983Ch = 456h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 456h 
SP = 80983Bh 
Data at 80983Ch = 456h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Round Floating-Point 

Syntax 

Operation 

Operands 

Encoding 

RND <src>,<dst> 

rnd(src) ~ dst 

src general addressing modes (G): 
00 register (Rn, 0 S n S 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 7) 

31 2423 1615 
i i 

I I I dst 

RND 

87 o 
sre 

Description The result of rounding the src operand is loaded into the dst register. The 
src operand is rounded to the nearest single-precision floating-point value. 
If the src operand is exactly half-way between two single-precision values, 
it is rounded to the most positive of those values. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise, 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

RND R5,R2 

Before Instruction: 

R5 = 0733C16EEFh = 1.7975559ge+02 
R2 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = 0733C16EEFh = 1.7975559ge+02 
R2 = 0733C16FOOh = 1.79755600e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-141 

• 



• 

ROL 

Syntax 

Operation 

Operands 

Encoding 

Rotate Left 

ROL <dst> 

dst left-rotated 1 bit ..... dst 

dst register (Rn, 0 :s n :s 27) 

31 2423 1615 87 0 
i i 

dst 

Description The contents of the dst operand are left-rotated one bit and loaded into the 
dst register. This rotate is a circular rotate with the MSB transferred into the 
LSB. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-142 

Rotate left: 

N 
Z 
V 
C 

UF 
LV 
LUF 

C~ 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Set to the value of the bit rotated out of the high-order bit. Unaf
fected if dst is not RO- R7. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by DVM. 

ROL R3 

Before Instruction: 

R3 = 80025CD4h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 0004B9A9h 
LUF LV UF N Z V C = 0 0 0 0 0 0 



Rotate Left Through Carry ROLC 

Syntax 

Operation 

Operands 

Encoding 

ROLe <dst> 

dst left-rotated 1 bit through carry bit -+ dst 

dst register (Rn, 0 S n S 27) 

31 2423 1615 87 0 

~s~ I I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 
Description The contents of the dst operand are left-rotated one bit through the carry 

bit and loaded into the dst register. The MSB is rotated to the carry bit, at 
the same time the carry bit is transferred to the LSB. 

Cycles 

Status Bits 

Mode Bit 

Example 

Example 

Rotate left through carry bit: 

N 
Z 
V 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 

C Set to the value of the bit rotated out of the high-order bit. If dst is 
not RO- R7, then e is shifted into the dst but not changed. 

UF 
LV 
LUF 

o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

ROLC R3 

Before Instruction: 

R3 = 00000420h 
LUF LV UF N Z V e = 0 0 0 0 0 0 

After Instruction: 

R3 = 000000841 h 
LUF LV UF N Z V e = 0 0 0 0 0 0 0 

ROLC R3 

Before Instruction: 

R3 = 80004281 h 
LUF LV UF N Z V e = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 00008502h 
LUF LV UF N Z V e = 0 0 0 0 0 0 1 

11-143 

• 



ROR 

Syntax 

Operation 

Operands 

Encoding 

Rotate Right 

ROR <dst> 

dst right-rotated 1 bit through carry bit -+ dst 

dst register (Rn. 0 ~ n ~ 27) 

3' 2423 '6'5 87 0 
i i , I,',',',',',',',',',',',',',',',1 dst 

Description The contents of the dst operand are right-rotated one bit and loaded into 
the dst register. The LSB is rotated into the carry bit and also transferred 
into the MSB. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-144 

Rotate right: 

N 
Z 
V 
C 

UF 
LV 
LUF 

~c 

MSB of the output. 
1 if a zero output is generated. 0 otherwise. 
o 
Set to the value of the bit rotated out of the low-order bit. Unaf
fected if dst is not RO-R7. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

ROR R7 

Before Instruction: 

R7 = 00000421 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 80000210h 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 



Rotate Right Through Carry RORe 

Syntax 

Operation 

Operands 

Encoding 

RORC <dst> 

dst right-rotated 1 bit through carry bit -+ dst 

dst register (Rn, 0 :s n :s 27) 

3' 2423 '6'5 87 o 
( I , I,',',',',',',',',',',',',',',',1 dst 

Description The contents of the dst operand are right-rotated one bit through the carry 
bit and loaded into the dst register. The LSB is rotated into the carry bit. 
At the same time, the carry bit is transferred into the MSB. 

Cycles 

Status Bits 

Mode Bit 

Example 

Rotate right through carry bit: 

N 
Z 
V 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 

C Set to the value of the bit rotated out of the low-order bit. If dst is 
not RO-R7, then C is shifted in but not changed. 

UF 
LV 
LUF 

o 
Unaffected. 
Unaffected. 

OVM Operation not affected by DVM. 

RORe R4 

Before Instruction: 

R4 = 00000081 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 

After Instruction: 

R4 = 80000040h 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 

11-145 



• 

RPTB 

Syntax 

Operation 

RPTB <src> 

src ~ RE 
1 ~ ST{RM) 
Next PC -+ RS 

Operands 

Encoding 

src long-immediate addressing mode 

31 2423 1615 

10'1 '1 '0'0'1 '0'01 ' iii 

Repeat Block 

87 o 
I i 

src 

Description RPTB allows a block of instructions to be repeated a number of times 
without any penalty for looping. This instruction activates the block repeat 
mode of updating the PC. The src operand is a 24-bit unsigned immediate 
value that is loaded into the repeat end address (RE) register. A 1 is written 
into the repeat mode bit of status register ST{RM) to indicate that the PC 
is being updated in the repeat mode. The address of the next instruction is 
loaded into the repeat start address (RS) register. 

Cycles 4 

Status Bits 

Mode Bit 

Example 

11-146 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

RPTB 127h 

Before Instruction: 

PC = 123h 
ST = Oh 
RE = Oh 
RS = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 124h 
ST = 100h 
RE=127h 
RS = 124h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Repeat Single RPTS 

Syntax 

Operation 

Operands 

Encoding 

RPTS <src> 

src -+ RC 
1 -+ ST(RM) 
1 -+ S 
Next PC -+ RS 
Next PC -+ RE 

src general addressing modes (G): 
00 register 
01 direct 
1 0 indirect 
1 1 immediate 

31 2423 1615 87 o 
src 

Description The RPTS instruction allows a single instruction to be repeated a number 
of times without any penalty for looping. Fetches can also be made from the 
instruction register (IR), thus avoiding repeated memory access. 

The src operand is loaded into the repeat counter (RC). A 1 is written into 
the repeat mode bit of the status register ST(RM). A 1 is also written into 
the repeat single bit (S). This indicates that the program fetches are to be 
performed only from the instruction register. the repeat single mode. The 
next PC is loaded into the repeat end address (RE) register and the repeat 
start address (RS) register. 

The src operand is assumed to be an unsigned integer and is not sign-ex
tended for immediate mode. 

Cycles 4 

Status Bits 

Mode Bit 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

11-147 



RPTS 

Example 

• 

11-148 

RPTS ARS 

Before Instruction: 

PC = 123h 
ST = Oh 
RS = Oh 
RE = Oh 
RC = Oh 
AR5 = OFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC =., 24h 
ST = 100h 
RS = 124h 
RE = 124h 
RC = OFFh 
AR5 = OFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Repeat Single 



Signal, Interlocked 

Syntax 

Operation 

Operands 

Encoding 

SIGI 

Signal interlocked operation. 
Wait for interlock acknowledge. 
Clear interlock. 

None 

SIGI 

~ 2423 '6'5 87 0 

10'0'01' '0" " '0'010'010'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'01 

Description An interlocked operation is signaled over XFO and XF1 . After the interlocked 
operation is acknowledged, the interlocked operation ends. SIGI ignores 
the external ready signals. Refer to Section 7.3 for detailed information. 

Cycles 

Status Bits 

Mode Bit 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

DVM Operation not affected by OVM. 

11 -149 

• 



STF Store Floating-Point 

Syntax 

Operation 

Operands 

Encoding 

STF <src>,<dst> 

src .... dst 

src register (Rn, 0 S n S 7) 

dst general addressing modes (G): 
01 direct 
1 0 indirect 

31 2423 1615 
i i iii src 

87 o 
i i 

dst 

Description The src register is loaded into the dst memory location. The src and dst 
operands are assumed to be floating-point numbers. 

Cycles 1 

Status Bits 

Mode Bit 

Example 

11-150 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

STF R2,@98Alh 

Before Instruction: 

DP = 80h 
R2 = 052C501900h = 4.30782204e+01 
Data at 8098A 1 h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R2 = 052C501900h = 4.30782204e+01 
Data at 8098A1 h = 52C5019h = 4.30782204e+01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Store Floating-Point, Interlocked 

Syntax 

Operation 

Operands 

Encoding 

STFI <src>,<dst> 

src .... dst 
Signal end of interlocked operation. 

src register (Rn, 0 S n S 7) 

dst general addressing modes (G): 
01 direct 
1 0 indirect 

31 2423 1615 
I I I 

i I 

src 

STFI 

87 o 
dst 

Description The src register is loaded into the dst memory location. An interlocked op
eration is signaled over pins XFO and XF1. The src and dst operands are 
assumed to be floating-point numbers. Refer to Section 7.3 for detailed 
information. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

STFI R3,*-AR4 

Before Instruction: 

R3 = 0733COOOOOh = 1.79750e+02 
AR4 = 80993Ch 
Data at 80993Bh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 0733COOOOOh = 1.79750e+02 
AR4 = 80993Ch 
Data at 80993Bh = 733COOOh = 1.79750e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-151 



a 

STFIISTF Parallel STF and STF 

Syntax STF <src2>,<dst2> 
II STF <src1>,<dst1 > 

Operation src2 -+ dst2 

Operands 

Encoding 

31 

II src 1 -+ dst1 

srcl register (Rn1, ° S n1 S 7) 
dst1 indirect (disp = 0, 1, IRO, IR1) 
src2 register (Rn2, ° S n2 S 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

2423 1615 87 o 
ii' iii 

dst1 dst2 

Description Two floating-point stores are performed in parallel. If both stores are exe
cuted to the same address, the value written is that of STF 
<src2> , <dst2>. 

Cycles 

Status Bits 

Mode Bit 

11-152 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 



Parallel STF and STF 

Example STF R4,*AR3-
I I STF R3,*++AR5 

Before Instruction: 

R4 = 070C800000h = 1 .4050e+02 
AR3 = 809835h 
R3 = 0733COOOOOh = 1.79750e+02 
AR5 = 8099D2h 
Data at 809835h = Oh 
Data at 8099D3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 070C800000h = 1 .4050e+02 
AR3 = 809834h 
R3 = 0733COOOOOh = 1 .79750e+02 
AR5 = 8099D3h 
Data at 809835h = 070C8000h = 1.4050e+02 
Data at 8099D3h = 0733COOOh = 1.79750e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

STFIISTF 

• 

11-153 



• 

STI 

Syntax 

Operation 

Operands 

Encoding 

STI <slc>,<dst> 

SIC'" dst 

SIC register (Rn, 0 ~ n ~ 27) 

dst general addressing modes (G): 
01 direct 
1 0 indirect 

31 2423 1615 
j i iii src 

Store Integer 

87 o 
I i 

dst 

Description The SIC register is loaded into the dst memory location. The SIC and dst 
operands are assumed to be signed integers. 

Cycles 1 

Status Bits 

Mode Bit 

Example 

11-154 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

STI R4,@982Bh 

Before Instruction: 

DP = 80h 
R4 = 42BD7h = 273,367 
Data at 80982Bh = OE5FCh = 58,876 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R4 = 42BD7h = 273,367 
Data at 80982Bh = 42BD7h = 273,367 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Store Integer, Interlocked 

Syntax 

Operation 

Operands 

Encoding 

STII <src>, <dst> 

src ~ dst 
Signal end of interlocked operation. 

src register (Rn, 0 ~ n ~ 27) 

dst general addressing modes (G): 
01 direct 
1 0 indirect 

31 2423 1815 
i i 

I I I src 

STII 

87 o 
dst 

Description The src register is loaded into the dst memory location. An interlocked op
eration is signaled over pins XFO and XF1. The src and dst operands are 
assumed to be signed integers. Refer to Section 7.3 for detailed information. 

Cycles 1 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

STII Rl,@98AEh 

Before Instruction: 

DP = SOh 
R1 = 7SDh 
Data at S09SAEh = 25Ch 

After Instruction: 

DP = SOh 
R1 = 7SDh 
Data at S09SAEh = 7BDh 

11-155 



STIIISTI 

Syntax 

Operation 

Operands 

Encoding 

STI <sre2>,<dst2> 
II STI <sre1>,<dst1 > 

sre2 .... dst2 
II sre1 .... dst1 

sre1 register (Rn1, ° :s n1 :s 7) 
dst1 indirect (disp = 0, 1, IRO, IR1) 
sre2 register (Rn2, ° :s n2 :s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

Parallel STI and STI 

87 o 
iii iii 
dst1 dst2 

Description Two integer stores are performed in parallel. If both stores are executed to 
the same address, the value written is that of STI < sre2 > ,<dst2>. 

Cycles 

Status Bits 

Mode Bit 

11-156 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 



Parallel STI and STI 

Example STI RO,*++AR2(IRO) 
II STI RS,*ARO 

Before Instruction: 

RO = ODCh = 220 
AR2 = 809830h 
IRO = 8h 
R5 = 35h = 53 
ARO = 8098D3h 
Data at 809838h = Oh 
Data at 8098D3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = ODCh = 220 
AR2 = 809838h 
IRO = 8h 
R5 = 35h = 53 
ARO = 8098D3h 
Data at 809838h = ODCh = 220 
Data at 8098D3h = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

STIIISTI 

• 

11-157 



SUBB 

Syntax 

Operation 

Operands 

Encoding 

SUBB <src>,<dst> 

dst - src - C... dst 

Subtract Integer with Borrow 

src general addressing modes (G): 
00 register (Rn, 0 s n S 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 27) 

31 2423 1615 87 o 
i i 

i I dst src 

Description The difference of the dst, src, and C operands is loaded into the dst register. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-158 

The dst and src operands are assumed to be signed integers. 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

SUBB *AR5++(4),R5 

Before Instruction: 

AR5 = 809800h 
R5 = OFAh = 250 
Data at 809800h = OC7h = 199 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

AR5 = 809804h 
R5 = 032h = 50 
Data at 809800h = OC7h = 199 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Subtract Integer with Borrow, 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

3' 

SUBB3 <sre2>,<sre1>,<dst> 

sre1 - sre2 - C -+ dst 

sre1 three-operand addressing modes (T): 
00 register (Rn1, 0 S n1 S 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 S n1 S 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
00 register (Rn2, 0 S n2 S 27) 
o 1 register (Rn2, 0 S n2 S 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 S n S 27) 

2423 1615 

10 '0"1 0 '0','1'0'01 
, , , , 

1 

, , 
T dst src1 

SUBB3 

87 0 

1 

, , 
1 

src2 

Description The difference of the sre1 and sre2 operands and the C (carry) flag is 
loaded into the dst register. The sre1, sre2, and dst operands are assumed 
to be signed integers. 

Cycles 

Status Bits 

Mode Bit 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

11-159 



SUBB3 

Example 

• 

11-160 

Subtract Integer with Borrow, 3-0perand 

SUBB3 RS,*ARS++(IRO),RO 

Before Instruction: 

AR5 = 809800h 
IRO = 4h 
R5 = OC7h = 199 
RO = Oh 
Data at 809800h = OFAh = 250 
LUF LV UF N Z V C = 0 0 0 0 0 0 

After Instruction: 

AR5 = 809804h 
IRO = 4h 
R5 = OC7h = 199 
RO = 32h = 50 
Data at 809800h = OFAh = 250 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Subtract Integer Conditionally 

Syntax 

Operation 

Operands 

Encoding 

SUBC <src>,<dst> 

If (dst - src ~ 0): 
(dst - src < < 1) 0 R 1 ..... dst 

Else: 
dst « 1 ..... dst 

src general addressing modes (G): 
00 register (Rn, 0 :s; n :s; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s; n :s; 27) 

31 2423 1615 
i i iii dst 

87 
i 

src 

SUBC 

o 

Description A subtraction of the src operand from the dst operand is performed. The 
dst operand is loaded with a value dependent upon the result of the sub
traction. If (dst - src) is greater than or equal to zero, then (dst - src) is 
left-shifted one bit, the least-significant bit is set to 1, and the result is 
loaded into the dst register. If (dst - src) is less than zero, dst is left-shifted 
one bit and loaded into the dst register. The dst and src operands are as
sumed to be unsigned integers. 

Cycles 

Status Bits 

Mode Bit 

SUBC may be used to perform a single step of a multi-bit integer division. 
See Section 12.3.3 for a detailed description. 

N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 
U F Unaffected. 
LV Unaffected. 
LU F Unaffected. 

OVM Operation not affected by OVM. 

11-161 

• 



SUBC 

Exampla 

Example 

• 

11-162 

SUBC @98CSh,Rl 

Before Instruction: 

DP = 80h 
R1 = 04F6h = 1270 

Subtract Integer Conditionally 

Data at 8098C5h = 492h = 1170 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R1 = OC9h = 201 
Data at 8098C5h = 492h = 1170 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

SUBC 3000,RO (3000 = OBB8h) 

Before Instruction: 

RO = 07DOh = 2000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = OFAOh = 4000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Subtract Floating-Point SUBF 

Syntax 

Operation 

Operands 

Encoding 

SUBF <src>,<dst> 

dst - src -+ dst 

src general addressing modes (G): 
00 register (Rn, 0 S n S 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 7) 

31 2423 1615 
i , iii dst 

87 o 
i i 

src 

Description The dst operand minus the src operand is loaded into the dst register. The 
dst and src operands are assumed to be floating-point numbers. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if an floating-point overflow occurs, 0 otherwise. 
Unaffected 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if an floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

SUBF *ARO--(IRO),RS 

Before Instruction: 

ARO = 809888h 
IRO = 80h 
R5 = 0733COOOOOh = 1.79750000e+02 
Data at 809888h = 70C8000h = 1 .4050e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 809808h 
IRO = 80h 
R5 = 051 DOOOOOOh = 3.9250e+01 
Data at 809888h = 70C8000h = 1.4050e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-163 

• 



• 

SUBF3 

Syntax 

Operation 

Operands 

Encoding 

31 

Subtract Floating-Point, 3-0perand 

SUBF3 <sre2>,<sreT>,<dst> 

sre T - sre2 .... dst 

sreT three-operand addressing modes (T): 
00 register (Rn1, S n1 S 7) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, S n1 S 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
00 register (Rn2, S n2 S 7) 
o 1 register (Rn2, S n2 S 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 S n S 7) 

2423 '615 87 0 
10'0"1 0'0',','0"1 

, , , , 
1 

, , , 
1 

, , , 
1 T dst src' src2 

Description The difference of the sreT and sre2 operands is loaded into the dst register. 
The sreT, sre2, and dst operands are assumed to be floating-point numbers. 

Cycles 1 

Status Bits 

Mode Bit 

11-164 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 



Subtract Floating-Point, 3-0perand 

Example 

Example 

SUBF3 *ARO--(IRO),*AR1,R4 

Before Instruction: 

ARO = 809888h 
IRO = 80h 
AR1 = 809851 h 
R4 = Oh 
Data at 809888h = 70C8000h = 1 .4050e+02 
Data at 809851 h = 733COOOh = 1.79750e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 809808h 
IRO = 80h 
AR1 = 809851 h 
R4 = 51 DOOOOOOh = 3.9250e+01 
Data at 809888h = 70C8000h = 1.4050e+02 
Data at 809851 h = 733COOOh = 1.79750e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

SUBF3 R7,RO,R6 

Before Instruction: 

R7 = 57B400000h = 6.281250e+01 
RO = 34C200000h = 1.27578125e+01 
R6 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 57B400000h = 6.281250e+01 
RO = 34C200000h = 1.27578125e+01 
R6 = 5B7C80000h = -5.00546875e+01 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

SUBF3 

• 

11-165 



SUBF311STF Parallel SUBF3 and STF 

Syntax 

Operation 

Operands 

Encoding 

SUBF3 <src1 >,<src2>, <dst1 > 
II STF <src3>, <dst2> 

src2 - src 1 ... dst1 
II src3 ... dst2 

src1 register (Rn1, 0 :s n1 :s 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, 0 :s n2 :s 7) 
src3 register (Rn3, 0 :s n3 :s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 8 
i i 

~rc~ I i 
iii iii 

src2 src1 dst2 

Description A floating-point subtraction and a floating-point store are performed in 
parallel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one of the parallel operations (STF) reads 
from a register and the operation being performed in parallel (SUBF3) 
writes to the same register, then STF accepts as input the contents of the 
register before it is modified by the SUBF3. 

Cycles 

Status Bits 

Mode Bit 

11-166 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 



Parallel SUBF3 and STF 

Example SUBF3 Rl,*-AR4(IR1),RO 
I I STF R7,*+AR5(IRO) 

Before Instruction: 

R1 = 057B400000h = 6.2B125e+01 
AR4 = B09BBBh 
IR1 = Bh 
RO = Oh 
R7 = 0733COOOOOh = 1.79750e+02 
AR5 = B09B50h 
IRO = 10h 
Data at B09BBOh = 70CBOOOh = 1.4050e+02 
Data at B09B60h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 057B400000h = 6.2B125e+01 
AR4 = B09BBBh 
IR1 = Bh 
RO = 061 B600000h = 7.76B750e+01 
R7 = 0733COOOOOh = 1.79750e+02 
AR5 = B09B50h 
IRO = 10h 
Data at B09BBOh = 70CBOOOh = 1.4050e+02 
Data at B09B60h = 733COOOh = 1.79750e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

SUBF311STF 

• 

11-167 



• 

SUBI 

Syntax 

Operation 

Operands 

Encoding 

SUBI <src>,<dst> 

dst - src .... dst 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 27) 

Subtract Integer 

31 2423 1615 87 o 
i i iii dst src 

Description The dst operand minus the src operand is loaded into the dst register. The 
dst and src operands are assumed to be signed integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-168 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

SUBI 220,R7 

Before Instruction: 

R7 = 226h = 550 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 14Ah = 330 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Subtract Integer, 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

SUBI3 <sre2>,<sreT>,<dst> 

sre T - sre2 -+ dst 

sreT three-operand addressing modes (T): 
o 0 register (Rn1, 0 S n1 S 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 S n1 S 27) 
1 1 indirect (disp = 0, 1, IRa, IR1) 

sre2 three-operand addressing modes (T): 
a 0 register (Rn2, 0 S n2 S 27) 
a 1 register (Rn2, 0 S n2 S 27) 
1 a indirect (disp = 0, 1, IRa, IR1) 
1 1 indirect (disp = 0, 1, IRa, IR1) 

dst register (Rn, a s n S 27) 

31 2423 1615 

SUBI3 

87 o 
i i iii iii iii 

dst src1 src2 

Description The sreT operand minus the sre2 operand is loaded into the dst register. The 
sreT, sre2, and dst operands are assumed to be signed integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, a otherwise. 
if a zero result is generated, a otherwise. 
if an integer overflow occurs, a otherwise. 

1 if a borrow occurs, a otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

SUBI3 R7,R2,RO 

Before Instruction: 

R2 = 0866h = 21 50 
R7 = 0834h = 2100 
RO = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 a 

After Instruction: 

R2 = 0866h = 2150 
R7 = 0834h = 2100 
RO = 032h = 50 
LUF LV UF N Z V C = 0 a a 1 a a a 

11-169 



SUBI3 

Example 

• 

11-170 

SUBI3 *-AR2(1),R4,R3 

Before Instruction: 

AR2 = 80985Eh 
R4 = 0226h = 550 
R3 = Oh 

Subtract Integer, 3-0perand 

Data at 80985Dh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 80985Eh 
R4 = 0226h = 550 
R3 = 014Ah = 330 
Data at 80985Dh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Parallel SU BI3 and STI SUBI311STI 

Syntax 

Operation 

Operands 

Encoding 

SUBI3 <sreT>,<src2>,<dst1 > 
II STI <sre3>,<dst2> 

sre2 - sre T -+ dst1 
II sre3 -+ dst2 

sreT register (Rn1, ° S n1 S 7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dstT register (Rn2, ° S n2 S 7) 
sre3 register (Rn3, 0 S n3 S 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 87 o 
src1 ~rc~ I dst2 src2 

Description An integer subtraction and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (SUBI3) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the SUBI3. 

Cycles 

Status Bits 

Mode Bit 

If sre2 and dst2 point to the same location, sre2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

DVM Operation affected by OVM. 

11 -171 

• 



• 

SUBI311STI Parallel SUBI3 and STI 

Example SUBI3 R7, *+AR2 (IRO) ,Rl 

11-172 

I I STI R3,*++AR7 

Before Instruction: 

R7 = 14h = 20 
AR2 = 80982Fh 
IRO = 10h 
R1 = Oh 
R3 = 35h = 53 
AR7 = 80983Bh 
Data at 80983Fh = ODCh = 220 
Data at 80983Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 14h = 20 
AR2 = 80982Fh 
IRO = 10h 
R1 = OC8h = 200 
R3 = 35h = 53 
AR7 = 80983Ch 
Data at 80983Fh = ODCh = 220 
Data at 80983Ch = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Subtract Reverse Integer with Borrow 

Syntax 

Operation 

Operands 

Encoding 

SUBRB <src>,<dst> 

src - dst - C .... dst 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 27) 

31 2423 1615 
I i 

dst 

SUBRB 

87 o 
src 

Description The difference of the src, dst, and C operands is loaded into the dst register. 

Cycles 

Status Bits 

Mode Bit 

Example 

The dst and src operands are assumed to be signed integers. 

N 
Z 
V 
C 
UF 
LV 
LUF 

if a negative result is generated, 0 otherwise. 
if a zero result is generated, 0 otherwise. 
if an integer overflow occurs, 0 otherwise. 

1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

SUBRB R4,R6 

Before Instruction: 

R4 = 03CBh = 971 
R6 = 0258h = 600 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

R4 = 03CBh = 971 
R6 = 01 72h = 370 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-173 

• 



• 

SUBRF 

Syntax 

Operation 

Operands 

Encoding 

SUBRF <src>,<dst> 

src - dst -+ dst 

Subtract Reverse Floating-Point 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 7) 

31 2423 1615 87 o 
i i 

I I I dst src 

Description The src operand minus the dst operand is loaded into the dst register. The 
dst and src operands are assumed to be floating-point numbers. 

Cycles 

Status Bits 

Mode Bit 

Example 

11-174 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 
1 if a floating-point underflow occurs, 0 otherwise. 
1 if a floating-point overflow occurs, unchanged otherwise. 
1 if a floating-point underflow occurs, unchanged otherwise. 

OVM Operation not affected by OVM. 

SUBRF @990Sh,RS 

Before Instruction: 

DP = 80h 
R5 = 057B400000h = 6.281250e+01 
Data at 809905h = 733COOOh = 1.79750e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R5 = 0669EOOOOOh = 1.16937500e+02 
Data at 809905h = 733COOOh = 1.79750e+02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Subtract Reverse Integer 

Syntax 

Operation 

Operands 

Encoding 

SUBRI <src>,<dst> 

src - dst..... dst 

src general addressing modes (G): 
00 register (Rn, 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 27) 

31 2423 1615 
I i iii dst 

87 
i 

sre 

SUBRI 

o 

Description The src operand minus the dst operand is loaded into the dst register. The 
dst and src operands are assumed to be signed integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

1 if a negative result is generated, 0 otherwise. 
1 if a zero result is generated, 0 otherwise. 
1 if an integer overflow occurs, 0 otherwise. 
1 if a borrow occurs, 0 otherwise. 
o 
1 if an integer overflow occurs, unchanged otherwise. 
Unaffected. 

OVM Operation affected by OVM. 

SUBRI *AR5++(IRO),R3 

Before Instruction: 

AR5 = 809900h 
IRO = 8h 
R3 = ODCh = 220 
Data at 809900h = 226h = 550 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 809908h 
IRO = 8h 
R3 = 014Ah = 330 
Data at 809900h = 226h = 550 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-175 

• 



• 

SWI 

Syntax 

Operation 

Operands 

Encoding 

SWI 

Performs an emulation interrupt. 

None 

Software Interrupt 

31 2423 1615 87 0 

10'1'1'0'0'1'110'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'01 

Description The SWI instruction performs an emulator interrupt. This is a reserved in-
struction and should not be used in normal programming. 

Cycles 4 

Status Bits 

Mode Bit 

11-176 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 



Trap Conditionally TRAPcond 

Syntax 

Operation 

Operands 

Encoding 

TRAPcond N 

o -+ ST(GIE) 
If cond is true: 

Next PC -+ *++SP 
Trap vector N -+ PC 

Else: 
Set ST(GIE) to original state 
Continue. 

N (O:s N :s 31) 

31 2423 1615 87 o 
don~ i I 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 1 I i i 

N 

Description Interrupts are disabled globally when 0 is written to ST(GIE). If the con
dition is true, the contents of the PC are pushed on the system stack and 
the PC is loaded with the contents of the specified trap vector (N). If the 
condition is not true, ST(GIE) is set to its value before the TRAPcond in
struction changed it. 

The TMS320C30 provides 20 condition codes that can be used with this 
instruction (see Section 9.1 for a list of condition mnemonics, encoding, 
and flags). 

Cycles 5 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

TRAPZ 16 

Before Instruction: 

PC = 123h 
SP = 809870h 
ST = Oh 
Trap Vector 16 = 10h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 10h 
SP = 809871 h 
Data at 809871 h = 124h 
ST = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-177 



• 

TSTB 

Syntax 

Operation 

Operands 

Encoding 

T8TB <src>,<dst> 

dst AND src 

src general addressing modes (G): 
00 register (Rn, 0 S n S 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 S n S 27) 

31 2423 1615 
i i 
dst 

Test Bit Fields 

87 o 
i j 

sre 

Description The bitwise logical-AND of the dst and src operands is formed, but the re
sult is not loaded in any register. This allows for nondestructive compares. 
The dst and src operands are assumed to be unsigned integers. 

Cycles 1 

Status Bits 

Mode Bit 

Example 

11-178 

N 
Z 
V 
C 
UF 
LV 
LUF 

M8B of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

TSTB *-AR4{l),RS 

Before Instruction: 

AR4 = 8099C5h 
R5 = 898h = 2200 
Data at 8099C4h = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8099C5h 
R5 = 898h = 2200 
Data at 8099C4h = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 



Test Bit Fields. 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

TSTB3 <sTe2>,<STe1> 

sTe1 AND sTe2 

sTe1 three-operand addressing modes (T): 
o 0 register (Rn1, 0 ~ n1 ~ 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 ~ n1 ~ 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sTe2 three-operand addressing modes (T): 
00 register (Rn2, 0 ~ n2 ~ 27) 
o 1 register (Rn2, 0 ~ n2 ~ 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

+ 10'0'0'0'01 ' 
iii 

src1 

TSTB3 

87 o 
iii 
src2 

Description The bitwise logical-AND between the sTe1 and sTe2 operands is formed, 
but is not loaded into any register. This allows for nondestructive compares. 
The sTe1 and sTe2 operands are assumed to be unsigned integers. Although 
this instruction has only two operands, it is designated as a three operand 
instruction since operands are specified in the three operand format. 

Cycles 1 

Status Bits N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

Mode Bit OVM Operation not affected by OVM. 

11-179 



TSTB3 

Example 

Example 

• 

11-180 

Test Bit Fields, 3-0perand 

TSTB3 *ARS--(IRO),*+ARO(l) 

Before Instruction: 

AR5 = 809885h 
IRO = 80h 
ARO = 80992Ch 
Data at 809885h = 898h = 2200 
Data at 80992Dh = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 809805h 
IRO = 80h 
ARO = 80992Ch 
Data at 809885h = 898h = 2200 
Data at 80992Dh = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

TSTB3 R4,*AR6--(IRO) 

Before Instruction: 

R4 = OFBC4h 
AR6 = 8099F8h 
IRO = 8h 
Data at 8099F8h = 1568h. 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = OFBC4h 
AR6 = 8099FOh 
IRO = 8h 
Data at 8099F8h = 1568h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Bitwise Exclusive-OR 

Syntax 

Operation 

Operands 

Encoding 

XOR <src>,<dst> 

dst XOR src -+ dst 

src general addressing modes (G): 
o 0 register (Rn, 0 S n S 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n S 27) 

31 2423 1615 
i I 

I I I dst 

XOR 

87 o 
src 

Description The bitwise exclusive-OR of thesrc and dst operands is loaded into the 
dst register. The dst and src operands are assumed to be unsigned integers. 

Cycles 

Status Bits 

Mode Bit 

Example 

N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 

XOR Rl,R2 

Before Instruction: 

R1 = OFFA32h 
R2 = OFF5C1 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OFF3A2h 
R2 = OOOFF3h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-181 

II 



• 

XOR3 Bitwise Exclusive-OR, 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

XOR3 <sTe2>,<STe1>,<dst> 

sTe1 XOR sTe2 -- dst 

sTe1 three-operand addressing modes (T): 
00 register (Rn1, 0 :s n1 :s 27) 
01 indirect (disp = 0,1, IRO,IR1) 
1 0 register (Rn1, 0 :s n1 :s 27) 
1 1 indirect (disp = 0,1, IRO, IR1) 

sTe2 three-operand addressing modes (T): 
00 register (Rn2, 0 :s n2 :s 27) 
o 1 register (Rn2, 0 :s n2 :s 27) 
1 0 indirect (disp = 0,1, IRO, IR1) 
1 1 indirect (disp = 0,1, IRO, IR1) 

dst register (Rn, 0 :s n :s 27) 

31 2423 1615 
I i iii i i j 

dst src1 

87 o 
iii 

src2 

Description The bitwise exclusive-OR between the sTe1 and sTe2 operands is loaded 
into the dst register. The sTe1, sTe2, and dst operands are assumed to be 
unsigned integers. 

Cycle. 1 

Status Bits N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

Mode Bit OVM Operation not affected by OVM. 

11·182 



Bitwise Exclusive-OR, 3-0perand 

Example 

Example 

XOR3 *AR3++(IRO),R7,R4 

Before Instruction: 

AR3 = 809800h 
IRO=10h 
R7 = OFFFFh 
R4 = Oh 
Data at 809800h = 5AC3h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 80980Fh 
IRO = 10h 
R7 = OFFFFh 
R4 = OA53Ch 
Data at 809800h = 5AC3h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

XOR3 RS,*-AR1(1),Rl 

Before Instruction: 

R5 = OFFA32h 
AR1 = 809826h 
R1 = Oh 
Data at 809825h = OFF5C1 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = OFFA32h 
AR1 = 809826h 
R1 = OOOF33h 
Data at 809825h = OFF5C1 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

XOR3 

• 

11-183 



XOR311STI Parallel XOR3 and STI 

Syntax XOR3 <sre2>,<sreT>,<dstT> 
IISTI <sre3>,<dst2> 

Operation sreT XOR sre2 -+ dstT 

Operands 

II sre3 -+ dst2 

sreT register (Rn1, 0 :s n1 :s 7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dstT register (Rn2, :s n2 :s 7) 
sre3 register (Rn3, :s n3 :s 7) 
dst2 indirectO(disp = 0, 1, IRO, IR1) 

Encoding 

31 2423 

11 i 1 11 i 0 i 1 i 1 i 1 1 ~st~ i i 

src1 

1615 

~rc~ 1 
iii 

dst2 

87 o 
Iii 

src2 

Description A bitwise exclusive-XOR and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (XOR3) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the XOR3. 

Cycles 

Status Bits 

Mode Bit 

11-184 

If sre2 and dst2 point to the same location, sre2 is read before the write to 
dst2. 

N 
Z 
V 
C 
UF 
LV 
LUF 

MSB of the output. 
1 if a zero output is generated, 0 otherwise. 
o 
Unaffected. 
o 
Unaffected. 
Unaffected. 

OVM Operation not affected by OVM. 



Parallel XOR3 and STI 

Example XOR3 *AR1++,R3,R3 
I I STI R6,*-AR2{IRO) 

Before Instruction: 

AR1 = 80987Eh 
R3 = 85h 
R6 = ODCh = 220 
AR2 = 8098B4h 
IRO = 8h 
Data at 80987Eh = 85h 
Data at 8098ACh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 80987Fh 
R3 = Oh 
R6 = ODCh = 220 
AR2 = 8098B4h 
IRO = 8h 
Data at 80987Eh = 85h 
Data at 8098ACh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

XOR311STI 

II 

11-185 



Assembly Language Instructions - Individual Instructions 

11-186 



Software Applications 





Section 12 

Software Applications 

The TMS320C30 is a very powerful digital signal processor with architecture 
and instruction set designed to make easy system solutions to DSP problems. 
There are instructions specifically designed for efficient implementations of 
DSP algorithms, but also there are general-purpose instructions that make the 
device suitable for more general tasks, like any microprocessor. The floating 
point and integer arithmetic supported by the device permits the designer to 
concentrate on the algorithm with minimal concerns about scaling, dynamic 
range, and overflows. 

The purpose of this section is to explain how to use the instruction set, the 
architecture, and the interface of the TMS320C30 processor. This is done by 
presenting coding examples for very frequently used applications, and by dis
cussing more involved examples and applications. In all cases, besides ex
plaining the principles involved in the application, the corresponding 
assembly-language code is given for instructional purposes and for immediate 
use. Whenever the detailed explanation of the underlying theory is too ex
tensive to be included in this manual, appropriate references are given for 
further information. 

Major topics discussed in this section are listed below. 

• Processor Initialization (Section 12.1 on page 12-3) 

• Program Control (Section 12.2 on page 12-7) 
Subroutine calls 
Software stack 
Interrupt handling 
Delayed branches 
Repeat modes 
Computed GOTO's 

• Logical and Arithmetic Operations (Section 12.3 on page 12-20) 
Bit manipulation 
Block moves 
Bit-reversed addressing 
Division 
Square root 
Extended -precision arithmetic 
IEEE < = = > C30 floating point conversions 

• Application-oriented Operations (Section 12.4 on page 12-45) 
Companding (A-law, IJ-Iaw) 
FIR fllR filters (fixed and adaptive) 
Matrix math 
FFT 

12-1 



Software Applications 

Lattice filters 

• Programming Tips (Section 12.5 on page 12-87) 
C-ca"able Routines 
Code Optimization Check-list 

12-2 



Software Applications - Processor Initialization 

12.1 Processor Initialization 

Prior to the execution of a digital signal processing algorithm, it is necessary 
to initialize the processor. Generally, initialization takes place any time the 
processor is reset. 

When reset is activated by applying a low level to the RESET input for several 
cycles, the TMS320C30 terminates execution and puts the reset vector (Le., 
the contents of memory location 0) in the program counter. The reset vector 
normally contains the address of the system initialization routine. The hard
ware reset also initializes various registers and status bits. 

After reset, the processor should be initialized to meet the requirements of the 
system. Instructions should be executed that set up operational modes, me
mory pointers, interrupts, and the remaining functions needed to meet system 
requirements. 

To configure the processor at reset, the following internal functions should 
be initialized: 

• Memory-mapped registers 

• Interrupt structure 

Example 12-1 shows coding for initializing the TMS320C30 to the following 
machine state, in addition to the initialization performed during the hardware 
reset (for conditions after hardware reset, see section 13): 

• All interrupts are enabled. 

• The overflow mode is disabled. 

• The data memory page pointer is set to zero. 

• The internal memory is filled with zeros. 

Note that all constants larger than 16 bits should be placed in memory and 
accessed through direct or indirect addressing. 

12-3 

• 



• 

Software Applications - Processor Initialization 

Example 12-1. TMS320C30 Processor Initialization 

* * TITL 'PROCESSOR INITIALIZATION EXAMPLE' 
* 

* 

.global RESET,INIT,BEGIN 

.global INTO,INT1,INT2,INT3 

.global ISRO,ISR1,ISR2,ISR3 

.global DINT,DMA 

.global TINTO,TINT1,XINTO,RINTO,XINT1,RINT1 

.global TIMEO,TIME1,XMTO,RCVO,XMT1,RCV1 

.global TRAPO,TRAP1,TRAP2,TRPO,TRP1,TRP2 

* PROCESSOR INITIALIZATION FOR THE TMS320C30. 
* * RESET AND INTERRUPT VECTOR SPECIFICATION. THIS 
* ARRANGEMENT ASSUMES THAT DURING LINKING, THE FOLLOWING 
* TEXT SEGMENT WILL BE PLACED TO START AT MEMORY 
* LOCATION O. 
* 
RESET 
* 
INTO 
INT1 
INT2 
INT3 
* 
XINTO 
RINTO 
XINTO 
RINTO 
TINTO 
TINT1 
DINT 

TRAPO 
TRAP 1 
TRAP 2 

.sect 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

. word 

.word 

. word 

.word 

.word 

. space 

. word 

.word 

. word 

. space 

"init" 
INIT 

ISRO 
ISR1 
ISR2 
ISR3 

XMTO 
RCVO 
XMT1 
RCV1 
TIMEO 
TIME1 
DMA 
20 
TRPO 
TRP1 
TRP 
29 

Named section 
RS- loads address INIT to PC 

INTO- loads address INTO to PC 
INT1- loads address INT1 to PC 
INT2- loads address INT2 to PC 
INT3- loads address INT3 to PC 

Serial port 0 transmit processing 
Serial port 0 receive processing 
Serial port 1 transmit processing 
Serial port 1 receive processing 
Timer 0 interrupt processing 
Timer 1 interrupt processing 
DMA interrupt 
Reserved space 
Trap 0 vector processing begins 
Trap 1 vector processing begins 
Trap 2 vector processing begins 
Leave space for the other 29 traps 

* 
* 
* 

IN THIS SECTION, CONSTANTS THAT CANNOT 
IN THE SHORT FORMAT ARE INITIAlIZED. 

BE REPRESENTED 

MASK 
BLKO 
BLKO 
STCK 
CTRL 
DMACTL 
TIMOCTL 
TIM1CTL 
SERGLOBO 
SERPRTXO 
SERPRT1W 
SERTIMO 
SERGLOBl 
SERPRTX1 
SERPRTRl 
SERTIMl 
PARINT 
IOINT 

12-4 

.data 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

OFFFFFFFFH 
0809800H 
0809COOH 
0809FOOH 
0808000H 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 

Beginning address of RAM block 0 
Beginning address of RAM block 1 
Beginning of stack 
Pointer for peripheral-bus memory map 
Initialization for DMA control (0) 
Initialization of timer 0 control (32) 
Initialization of timer 1 control (48) 
Init of serial 0 glbl control (64) 
Init of serial 0 xmt port control (66) 
Init of serial 0 rcv port control (67) 
Init of serial 0 timer control (68) 
Init of serial 1 glbl control (80) 
Init of serial 1 xmt port control (82) 
Init of serial 1 rcv port control (83) 
Init of serial 1 timer control (84) 
Init parallel interface control (96) 
Init I/O interface control (100) 



Software Applications - Processor Initialization 

.text 
* 
* THE ADDRESS AT MEMORY LOCATION 0 DIRECTS EXECUTION TO BEGIN HERE 
* FOR RESET PROCESSING THAT INITIALIZES THE PROCESSOR. WHEN RESET 
* IS APPLIED, THE FOLLOWING REGISTERS ARE INITIALIZED TO ZERO: 
* 
* ST 
* IE 
* IF 
* IOF 
* 

CPU STATUS REGISTER 
CPU/DMA INTERRUPT ENABLE FLAGS 
CPU INTERRUPT FLAGS 
I/O FLAGS 

* THE STATUS REGISTER HAS THE FOLLOWING ARRANGEMENT: 
* BITS: 31-14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
* FUNCTION: RESRV GIE CC CE CF RES RM OVM LUF LV UF N Z V C 
* 
INIT LDP O,DP Point the DP register to page 0 

LDI 1800H,ST 
LDI @MASK,IE 

Clear and enable cache, and disable OVM 
Unmask all interrupts 

* 
INTERNAL DATA MEMORY INITIALIZATION TO FLOATING POINT ZERO 

* 
LDI @BLKO,ARO ARO points to block 0 
LDI @BLK1,AR1 AR1 points to block 1 
LDF O.O,RO Zero register RO 
RPTS 1023 Repeat 1024 times 
STF RO , * ARO++ ( 1) Zero out location in RAM block 0 and 

II STF RO,*ARI++(l) zero out location in RAM block 
* 
* THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION
* DEPENDENT PART OF THE SYSTEM (BOTH ON- AND OFF-CHIP SHOULD 
* NOW BE INITIALIZED. 
* 
* 
* 
* 
* 

FIRST, INITIALIZE THE CONTROL REGISTERS. IN THIS EXAMPLE, 
EVERYTHING IS INITIALIZED TO ZERO SINCE THE ACTUAL INITIAL
IZATION IS APPLICATION DEPENDENT. 

1. 

LDI @CTRL,ARO LOAD in ARO the pointer to control 
* registers 

LDI @DMACTL,RO 
STI RO,*+ARO(O) Init DMA control 
LDI @TIMOCTL,RO 
STI RO,*+ARO(32) Init timer 0 control 
LDI @TIM1CTL,RO 
STI RO,*+ARO(48) Init timer 1 control 
LDI @SERGLOBO,RO 
STI RO,*+ARO(64) Init serial 0 global control 
LDI @SERPRTXO,RO 
STI RO,*+ARO(66) Init serial 0 xmt control 
LDI @SERPRTRO,RO 
STI RO,*+ARO(67) Init serial 0 rcv control 
LDI @SERTIMO,RO 
STI RO,*+ARO(68) Init serial 0 timer control 
LDI @SERGLOBL,RO 
STI RO,*+ARO(80) Init serial 1 global control 
LDI @SERPRTXI,RO 
STI RO,*+ARO(82) Init serial 1 xmt control 
LDI @SERPRTR1,RO 
STI RO,*+ARO(83) Init serial 1 rcv control 

- - ---- -------

12-5 

• 



Software Applications - Processor Initialization 

LDI @SERTIM1,RO 
STI RO,*+ARO(84) Init serial timer control 
LDI @PARINT,RO 
STI RO,*+ARO(96) Init parallel interface control 
LDI @IOINT,RO 
STI RO, *+ARO (100) I Init I/O interface control 

* 
LDI @STCK,SP Initialize the stack pointer 
OR 2000H,ST Global interrupt enable 

* 
BR BEGIN Branch to the beginning of application. 

.end 

• 
12-6 



Software Applications - Program Control 

12.2 Program Control 

To facilitate the TMS320C30's use in general-purpose, high-speed process
ing, a variety of instructions are provided to handle the: 

• subroutine calls 

• software stack 

• interrupts 

• zero-overhead branches 

• single- and multiple-instruction loops without any overhead. 

This section describes how to use these features of the TMS320C30. 

12.2.1 Subroutines 

The TMS320C30 has a 24-bit program counter (PC) and a practically unlim
ited software stack. The CALL and CALLcond subroutine calls cause the stack 
pointer to increment, and store the contents of the next value of the PC 
counter on the stack. At the end of the subroutine, RETScond performs a 
conditional return. 

Example 12-2 illustrates the use of a subroutine to determine the dot product 
between two vectors. Given two vectors of length N, represented by the ar
rays a[O], a[1], ... , a[N-1] and b[O], b[1], ... , b[N-1], the dot product is com
puted from the expression 

d = a[O] b[O] + a[1] b[1] + .. , + a[N-1] b[N-1] 

Processing proceeds in the main routine to the point where the dot product 
is to be computed. It is assumed that the arguments of the subroutine have 
been appropriately initialized. At this point, a CALL is made to the subroutine, 
transferring control to that section of the program memory for execution, then 
returning to the calling routine via the RETS instruction when execution has 
completed. Note for this particular example, it would suffice to save the reg
ister R2. However, a larger number of registers are saved for demonstration 
purposes. The saved registers are stored on the system stack. This stack 
should be large enough to accommodate the maximum anticipated storage • 
requirements. Besides this way of saving registers, any other method could 
be used equally well. 

12-7 



Software Applications - Program Control 

Example 12-2. Subroutine Call (Dot Product) 

* 
* TITL SUBROUTINE CALL (DOT PRODUCT) 
* 
* 
* MAIN ROUTINE THAT CALLS THE SUBROUTINE 'DOT' TO COMPUTE THE 
* DOT PRODUCT OF TWO VECTORS. 

* 

LDI 
LDI 
LDI 

@blkO,ARO 
@blkl,ARl 
N,RC 

CALL DOT 

ARO points to vector a 
ARI points to vector b 
RC contains the number of elements 

* SUBROUTINE DOT 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
DOT 

EQUATION: d = a(O) * b(O) + a(l) * btl) + .•. + a(N-l) * b(N-l) 

THE DOT PRODUCT OF a AND b IS PLACED IN REGISTER RO. 
BE GREATER THAN OR EQUAL TO 2. 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+-----------------------
ARO I ADDRESS OF a(O) 
ARI I ADDRESS OF b(O) 
RC I LENGTH OF VECTORS (N) 

REGISTERS USED AS INPUT: ARO, ARl, RC 
REGISTER MODIFIED: RO 
REGISTER CONTAINING RESULT: RO 

.global DOT 

N MUST 

PUSHF 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

R2 
R2 
ST 
ARO 
ARI 
RC 

Use the stack to save R2'S 

MPYF3 
LDF 
SUBI 

*ARO,*ARl,RO 
O.O,R2 
2,RC 

bottom 32 and top 32 bits 
Save status register 
Save ARO 
Save ARI 
Save RC 
Initialize RO: 
a(O) * b(O) -) RO 
Initialize R2. 
Set RC = N-2 

12-8 



Software Applications - Program Control 

* 
* DOT PRODUCT (1 <= i < N) 
* 

II 
* 
* 
* 
* 

* 
* 
* 

RPTS 
MPYF3 
ADDF3 

ADDF3 

RC ; Setup the repeat single. 
*++ARO(1),*++AR1(1),RO; a(i) * b(i) -> RO 
RO,R2,R2 a(i-l)*b(i-l) + R2 -> R2 

RO,R2,RO a(N-l)*b(N-l) + R2 -> RO 

RETURN SEQUENCE 

POP RC Restore RC 
POP ARl Restore ARl 
POP ARO Restore ARO 
POP ST Restore ST 
POPF R2 Restore top 32 bits of R2 
POP R2 Restore bottom 32 bits of R2 
RETS Return 

end 

.end 

12.2.2 Software Stack 

The TMS320C30 has a software stack whose location is determined by the 
contents of the stack pointer register SP. The stack pointer increments from 
low to high values, and provisions should be made to accommodate the an
ticipated storage requirements. The stack can be used not only during the 
subroutine CALL and RETS, but also inside the subroutine as a place of tem
porary storage of the registers as shown in Example 12-2. SP always points 
to the last value pushed on the stack. 

The CALL and CALLcond instructions push the value of the program counter 
on the stack, as do the interrupt routines. Then, RETScond and RETlcond pop 
the stack and place the value in the program counter. The integer value of any 
register can be pushed on and popped off the stack using the PUSH and POP 
instructions. There are two additional instructions, PUSHF and POPF, for 
floating point numbers. These instructions can be used to pop and push 
floating point numbers to registers RO-R7. This feature is very useful if it is 
desired to save the extended precision registers (see Example 12-2). By using 
PUSH and PUSHF on the same register, the lower 32 and the upper 32 bits • 
are saved. PUSH saves the lower 32; PUSHF, the upper 32. To recover this 
extended precision number, a POPF can be done followed by POP. It is im-
portant to do the integer and floating-point PUSH and POP in the above or-
der. POPF forces the last eight bits of the extended-precision registers to zero. 

The stack pointer (SP) can be both read from, and written to. Multiple stacks 
for different program segments may be easily created. SP is not initialized by 
the hardware during reset. It is therefore important to remember to initialize 
its value so that SP points to a predetermined memory location. This avoids 
the problem of SP attempting to write into ROM or over other useful data. 

12-9 



• 

Software Applications - Program Control 

12.2.3 Interrupt Service Routines 

Interrupts on the TMS320C30 are prioritized and vectored. When an interrupt 
occurs, the corresponding flag is set in the Interrupt Flag Register IF. If the 
corresponding bit in the Interrupt Enable Register IE is set, and interrupts are 
enabled by having the GIE bit in the status register set to 1, interrupt proc
essing begins. The interrupt flag register can also be written to. This enables 
the user to force an interrupt by software, or to clear interrupts without proc
essing them. 

The Interrupt Flag Register IF can be read, and action taken based on whether 
the interrupt has occurred. This is true even when the interrupt is disabled. 
This can be useful when an interrupt-driven interface is not implemented. Ex
ample 12-3 shows the case where a subroutine is called when interrupt 1 has 
not occurred. 

Example 12-3. Use of Interrupts for Software Polling 

* TITL INTERRUPT POLLING 

12-10 

TSTB 
CALLZ 

2,IF 
SUBROUTINE 

Test if interrupt 1 has occurred 
If not, call subroutine 

When interrupt processing begins, the program counter is pushed on the 
stack, and the interrupt vector is loaded in the program counter. Interrupts are 
then disabled by setting the GIE=O, and the program continues from the ad
dress loaded in the program counter. Since all interrupts are disabled, inter
rupt processing may proceed without further interruption, unless the interrupt 
service routine re-enables interrupts. 

Except for very simple interrupt service routines, it is important to assure that 
the processor context is saved during execution of this routine. The context 
must be saved before executing the routine itself, and restored after the routine 
is finished. The procedure is called context switching. Context switching is 
also useful for subroutine calls, especially when extensive use is made of the 
auxiliary and the extended precision registers. Code examples of context 
switching and an interrupt service routine are provided in this section. 



Software Applications - Program Control 

12.2.3.1 Context Switching 

Context switching is commonly required when processing a subroutine call 
or interrupt. It may be quite extensive or simple, depending on system re
quirements. On the TMS320C30, the program counter is automatically 
pushed on the stack. If there is any important information in the other 
TMS320C30 registers, such as the status, auxiliary or extended-precision re
gisters, these must be saved by special commands. 

Examples 12-4 and 12-5 show saving and restoring of the TMS320C30 state. 
In both examples, the stack is used for saving the registers, and it expands 
towards higher addresses. If it is not desirable to use the stack pointed at by 
SP, a separate stack can be created using an auxiliary register as the stack 
pointer. The registers saved are: 

• Extended-precision registers RO through R7 

• Auxiliary registers ARO through AR7 

• Data page pointer D P 

• Index registers IRO and IR1 

• Block size register BK 

• Status register ST 

• Interrupt-related registers IE and IF 

• I/O flag 10F 

• Repeat-related registers RS, RE, and RC 

12-11 

• 



Software Applications - Program Control 

Example 12-4. Context Save For The TMS320C30 

* TITL CONTEXT-SAVE FOR THE TMS320C30 
* 
* 

.global SAVE 
* 
* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT. 
* 
SAVE: 
* 
* SAVE THE EXTENDED PRECISION REGISTERS 
* 

PUSH RO Save the lower 32 bits of RO 
PUSHF RO and the upper 32 bits 
PUSH Rl Save the lower 32 bits of Rl 
PUSHF Rl and the upper 32 bits 
PUSH R2 Save the lower 32 bits of R2 
PUSHF R2 and the upper 32 bits 
PUSH R3 Save the lower 32 bits of R3 
PUSHF R3 and the upper 32 bits 
PUSH R4 Save the lower 32 bits of R4 
PUSHF R4 and the upper 32 bits 
PUSH RS Save the lower 32 bits of RS 
PUSHF RS and the upper 32 bits 
PUSH R6 Save the lower 32 bits of R6 
PUSHF R6 and the upper 32 bits 
PUSH R7 Save the lower 32 bits of R7 
PUSHF R7 and the upper 32 bits 

* 
* SAVE THE AUXILIARY REGISTERS 
* 

PUSH ARO Save ARO 
PUSH ARl Save ARI 
PUSH AR2 Save AR2 
PUSH AR3 Save AR3 
PUSH AR4 Save AR4 
PUSH ARS Save ARS 
PUSH AR6 Save AR6 
PUSH AR7 Save AR7 

* 
* SAVE THE REST REGISTERS FROM THE REGISTER FILE 
* 

PUSH DP Save data page pointer 
PUSH IRO Save index register IRO 
PUSH IRI Save index register IRl 
PUSH BK Save block-size register 
PUSH ST Save status register 
PUSH IE Save interrupt enable register 
PUSH IF Save interrupt flag register 
PUSH IOF Save I/O flag register 
PUSH RS Save repeat start address 
PUSH RE Save repeat end address 
PUSH RC Save repeat counter 

* 
* SAVE IS COMPLETE 
* 

12-12 



Software Applications - Program Control 

Example 12-5. Context-Restore For The TMS320C30 

* * TITL CONTEXT-RESTORE FOR THE TMS320C30 
* 
* 

.GLOBAL RESTR 
* * CONTEXT RESTORE AT THE END OF A SUBROUTINE CALL OR INTERRUPT. 
* 
RESTR: 
* * RESTORE THE REST REGISTERS FROM THE REGISTER FILE 
* 

POP RC Restore repeat counter 
POP RE Restore repeat end address 
POP RS Restore repeat start address 
POP IOF Restore I/O flag register 
POP IF Restore interrupt flag register 
POP IE Restore interrupt enable register 
POP ST Restore status register 
POP BK Restore block-size register 
POP IRl Restore index register IRl 
POP IRO Restore index register IRO 
POP DP Restore data page pointer 

* 
* RESTORE THE AUXILIARY REGISTERS 
* 

POP AR7 Restore AR7 
POP AR6 Restore AR6 
POP AR5 Restore AR5 
POP AR4 Restore AR4 
POP AR3 Restore AR3 
POP AR2 Restore AR2 
POP ARl Restore ARl 
POP ARO Restore ARO 

* 
* RESTORE THE EXTENDED PRECISION REGISTERS 
* 

POPF R7 Restore the upper 32 bits and 
POP R7 the lower 32 bits of R7 
POPF R6 Restore the upper 32 bits and 
POP R6 the lower 32 bits of R6 
POPF R5 Restore the upper 32 bits and 
POP R5 the lower 32 bits of R5 
POPF R4 Restore the upper 32 bits and 
POP R4 the lower 32 bits of R4 
POPF R3 Restore the upper 32 bits and 
POP R3 the lower 32 bits of R3 
POPF R2 Restore the upper 32 bits and 
POP R2 the lower 32 bits of R2 
POPF Rl Restore the upper 32 bits and 
POP Rl the lower 32 bits of Rl 
POPF RO Restore the upper 32 bits and 
POP RO The lower 32 bits of RO 

* 
* RESTORE IS COMPLETE 
* 

• 
12-13 



Software Applications - Program Control 

12.2.3.2 Interrupt Priority 

Interrupts on the TMS320C30 are automatically prioritized. This allows in
terrupts that occur simultaneously to be serviced in a predefined order. Infre
quent, but lengthy, interrupt service routines may need to be interrupted by 
more frequently occurring interrupts. In Example 12-6, the interrupt service 
routine for INT2 temporarily modifies the interrupt enable register IE, to permit 
interrupt processing when an interrupt to INTO (but no other interrupt) occurs. 
When the routine has finished processing, the register IE is restored to its ori
ginal state. Notice that the RETI instruction not only pops the next program 
counter address from the stack, but also sets the G I E bit of the status register. 
This enables all interrupts which have their interrupt-enable bit set. 

Example 12-6. Interrupt Service Routine 

* TITL 
* 
ENABLE 
MASK 
* 

INTERRUPT SERVICE ROUTINE 
.global ISR2 
.set 2000h 
.set 1 

* INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT2-
* 
ISR2: 

* 

PUSH 
PUSH 
PUSH 
PUSH 
PUSHF 
PUSH 
PUSHF 
LDI 
OR 

ST 
DP 
IE 
RO 
RO 
Rl 
Rl 
MASK, IE 
ENABLE,ST 

Save status register 
Save data page pointer 
Save interrupt enable register 
Save lower 32 bits and 

upper 32 bits of RO 
Save lower 32 bits and 

upper 32 bits of Rl 
Unmask only INTO 
Enable all interrupts 

* MAIN PROCESSING SECTION FOR ISR2 

12-14 

XOR 
POPF 
POP 
POPF 
POP 
POP 
POP 
POP 

RETI 

ENABLE,ST 
Rl 
Rl 
RO 
RO 
IE 
DP 
ST 

Disable all interrupts 
Restore upper 32 bits and 

lower 32 bits of Rl 
Restore upper 32 bits and 

lower 32 bits of RO 
Restore interrupt enable register 
Restore data page register 
Restore status register 

Return and enable interrupts 



Software Applications - Program Control 

12.2.4 Delayed branches 

The TMS320C30 offers the capability of single-cycle branching through the 
use of the delayed branches. The delay branches operate like regular branches 
but do not flush the pipeline. Instead, the three instructions following a de
layed branch are also executed. As discussed in the section on program-flow 
control, the only limitation is that the three instructions following a delayed 
branch cannot be a: 

• Branch (standard or delayed) 

• Call to a subroutine 

• Return from a subroutine 

• Return from an interrupt 

• Repeat instructions 

• A TRAP instruction 

• An IDLE instruction 

Conditional delayed branches use the conditions that exist at the end of the 
instruction immediately preceding the delayed branch. Sometimes, a branch 
is necessary in the flow of a program, but less than three instructions can be 
placed after a delayed branch. For faster execution, it is still advantageous to 
use a delayed branch. This is shown in Example 12-7, with NOP's taking the 
place of the unused instructions. The trade-off is more instruction words for 
less execution time. 

Example 12-7. Delayed Branch Execution 

* TITL DELAYED BRANCH EXECUTION 

LDF *+ARl(5),R2 Load contents of memory to R2 
BGED SKIP If loaded number >=0, branch (delayed) 
LDFN R2,Rl If loaded number <0, load it to Rl 
SUBF 3.0,Rl Subtract 3 from Rl 
NOP Dummy operation to complete delayed 

* branch 
MPYF 1. 5,Rl Continue here if loaded number <0 

SKIP LDF Rl,R3 Continue here if loaded number >=0 

12-15 

• 



Software Applications - Program Control 

12.2.5 Repeat Modes 

The TMS320C30 supports looping without any overhead. For that purpose, 
there are two instructions: RPTB repeats a block of code, and RPTS repeats a 
single instruction. There are three control registers RS (repeat start address), 
RE (repeat end address), and RC (repeat counter). These contain the param
eters that specify loop execution (refer to Section 7.1 for a complete de
scription of RPTB and RPTS). RS and RE are automatically set from the code, 
while RC has to be set by the user, as shown in the examples below. 

12.2.5.1 Block Repeat 

Example 12-8 shows an application of the block repeat construct. In this ex
ample, an array of 64 elements is "flipped over" by exchanging the elements 
that are equidistant from the end of the array. In other words, if the original 
array is: 

a(1}, a(2}, ... , a(31}, a(32}, ... , a(64}; 

the final array after the rearrangement will be: 

a(64}, a(63}, ... , a(32}, a(31 }, ... , a(1}. 

Note that since the exchange operation is done on two elements at the same 
time, there is a need of 32 operations. The repeat counter RC is initialized to 
31. In general, if RC contains the number N, the loop will be executed N+1 
times. The loop is defined by the RPTB instruction and the EXCH label. 

Example 12-8. Loop Using Block Repeat 

* TITL LOOP USING BLOCK REPEAT 
* 
* THIS CODE SEGMENT EXCHANGES THE VALUES OF ARRAY ELEMENTS THAT ARE 
* SYMMETRIC AROUND THE MIDDLE OF THE ARRAY. 
* 

* 

* 

* 

II 
EXCH 
II 

12-16 

LDI @ADDR,ARO ARO points to the beginning of the array 
LDI ARO,ARl 
ADDI 63,ARl ARl points to the end of the 

64-element array 
LDI 31,RC Initialize repeat counter 

RPTB EXCH Repeat RC+l times between here and 

LDI 
LDI 
STI 
STI 

EXCH 
*ARO,RO Load one memory element in RO, 
*AR1,Rl and the other in Rl 
Rl,*ARO++(l) Then, exchange their locations 
RO,*AR1--(1) 

Section 7.1.2 specifies restrictions in the block-repeat construct. The basic 
rule is, since the program counter is modified at the end of the loop according 
to the contents of the registers RS, RE, and RC, no operation should attempt 



Software Applications - Program Control 

to modify the repeat counter or the program counter at the end of the loop in 
a different way. 

In principle, it is possible to nest repeat blocks. However, there is only one 
set of control registers RS, RE, and RC. It is therefore necessary to save these 
registers before entering an inside loop. It may be more economical to im
plement a nested loop by the more traditional method of a register serving as 
a counter and then using a delayed branch rather than applying the above 
approach. 

Example 12-9 shows another example of using the block repeat to find a 
maximum of 147 numbers. 

Example 12-9. Use of Block Repeat to Find a Maximum 

* 
* 
* TITL USE OF BLOCK REPEAT TO FIND A MAXIMUM 
* 
* THIS ROUTINE FINDS THE MAXIMUM OF N=147 NUMBERS 
* 

LDI 146,RC Initialize repeat counter to 147-1 
LDI @ADDR,ARO ARO points to the beginning of the array 
LDF *ARO++(1),RO Initialize MAX to the first value 

* 
RPTB LOOP 
CMPF *ARO++(1),RO Compare number to the maximum 

LOOP LDFLT *-ARO( 1) ,RO If greater, this is a new maximum 

12.2.5.2 Single-Instruction Repeat 

The single instruction repeat operates using the control registers RS, RE, and 
RC, in the same way as the block repeat. The advantage over the block repeat 
is that the instruction is fetched only once, and then the buses are available 
for moving operands. One difference to note is that the single-instruction re
peat construct is not interruptible, while block repeat is interruptible. 

Example 12-10 shows an application of the repeat-single construct. In this 
example, the sum of the products of two arrays is computed. The arrays are 
not necessarily different. If the arrays are a(i) and b(i), each of length N=512, 
register RO will contain, after computation, the quantity: 

a(1 )b(1) +a(2)b(2) + ... +a(N)b(N). 

The value of the repeat counter (RC) is specified to be 511 in the instruction. 
If RC contains the number N, the loop will be executed N+1 times. 

12-17 

II 



• 

Software Applications - Program Control 

Example 12-10. 

* TITL LOOP USING SINGLE REPEAT 

* 
* N 
* THIS CODE SEGMENT COMPUTES 
* 

l a(i)b(i) 
i=l 

* 

LDI @ADDR1,ARO ARO points to array a(i) 
LDI @ADDR2,AR1 AR1 points to array b(i) 

* 
LDF O.O,RO Initialize RO 

* 
MPYF3 *ARO++(1),*AR1++(1),R1 

* ; Compute first product 
RPTS 511 ; Repeat 512 times 

* 
MPYF3 *ARO++(1),*AR1++(1),R1,RO ; Compute next product 

II ADDF3 R1,RO,RO and accumulate the previous one 
* 

ADDF R1,RO One final addition 

12.2.6 Computed GOTO's 

12-18 

Occasionally, it is convenient to select during runtime, and not during assem
bly, what subroutine needs to be executed. The TMS320C30 offers the ca
pability of a computed GOTO that can satisfy such a need. The computed 
GOTO is implemented using the CALLcond instruction in the register ad
dressing mode. This instruction uses the contents of the register as the ad
dress of the call. Example 12-11 shows the case of a task controller . 



Software Applications - Program Control 

Example 12-11. Computed GOTO 

* TITL COMPUTED GO TO 
* 
* TASK CONTROLLER 
* 
* THIS MAIN ROUTINE CONTROLS THE ORDER OF TASK EXECUTION(6 TASKS 
* IN THE PRESENT EXAMPLE). TASKO THROUGH TASK5 ARE THE NAMES OF 
* SUBROUTINES TO BE CALLED. THEY ARE EXECUTED IN ORDER, TASKO, 
* TASKl, ... TASKS. WHEN AN INTERRUPT OCCURS, THE INTERRUPT 
* SERVICE ROUTINE IS EXECUTED, AND THE PROCESSOR CONTIMUES 
* WITH THE INSTRUCTION FOLLOWING THE IDLE INSTRUCTION. THIS 
* ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT CYCLE, 
* CALLS THE TASK AS A SUBROUTINE, AND BRANCHES BACK TO THE IDLE 
* TO WAIT FOR THE NEXT SAMPLE INTERRUPT WHEN THE SCHEDULED TASK 
* HAS COMPLETED EXECUTION. RO HOLDS THE OFFSET FROM THE BASE 
* ADDRESS OF THE TASK TO BE EXECUTED. 
* 
* 

LDI 5,RO Initialize RO 
LDI @ADDR,ARI ARl holds the base address of the 

WAIT IDLE Wait for the next interrupt 
ADDI *ARl,RO,Rl Add the base address to the table 

* Entry number 
SUBI l,RO Decrement RO 
LDILT 5,RO If RO<O, reinitialize it to 5 
CALLU Rl Execute appropriate task 
BR WAIT 

* 
TSKSEQ .word TASK5 Address of TASK5 

.word TASK4 Address of TASK4 

. word TASK3 Address of TASK3 

.word TASK2 Address of TASK2 

.word TASKl Address of TASKl 

. word TASKO Address of TASKO 
ADDR . WORD TSKSEQ 

table 

• 
12-19 



Software Applications - Logical and Arithmetic Operations 

12.3 Logical and Arithmetic Operations 

The TMS320C30 instruction set supports both integer and floating point 
arithmetic and logical operations. The basic functions of such instructions can 
be combined to form more complex operations. This section examines exam
ples of such operations, such as: 

• Bit manipulation 

• Block moves 

• Bit-reversed addressing 

• Integer and floating-point division 

• Square root 

• Extended precision arithmetic 

• Floating point format conversion between IEEE and TMS320C30 
formats. 

12.3.1 Bit Manipulation 

The instructions of the TMS320C30 for the usual logical operations, such as 
AND, OR, NOT, ANON, and XOR, can be used together with the shift in
structions for bit manipulation. In addition to these instructions, there is a 
special instruction, TSTB, for testing bits. TSTB does the same operation as 
AND, but the result of the logical AND is not written anywhere and is only 
used to set the condition flags. Examples 12 -12 and 1 2 -1 3 demonstrate the 
use of the several instructions for bit manipulation and testing. 

Example 12-12. Use of TSTB for Software-Controlled Interrupt 

* TITL USE OF TSTB FOR SOFTWARE-CONTROLLED INTERRUPT 
* 
* 
* 
* 
* 
* 

IN THIS EXAMPLE, ALL INTERRUPTS HAVE BEEN DISABLED BY 
RESETTING THE GIE BIT OF THE STATUS REGISTER. WHEN AN 
INTERRUPT ARRIVES, IT IS STORED IN THE IF REGISTER. THE 
PRESENT EXAMPLE ACTIVATES THE INTERRUPT SERVICE ROUTINE INTR 
WHEN IT DETECTS THAT INT2- HAS OCCURRED. 

TSTB 4,IF 
CALLNZ INTR 

Check if bit 2 of IF is set, 
and, if so, call subroutine INTR 

12-20 



Software Applications - Logical and Arithmetic Operations 

Example 12-13. Copy a Bit From One Location to Another 

* TITL COPY A BIT FROM ONE LOCATION TO ANOTHER 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

BIT I OF Rl NEEDS TO BE COPIED TO BIT J OF R2. 
ARO POINTS TO A LOCATION HOLDING I, AND IT IS ASSUMED THAT THE 

NEXT MEMORY LOCATION HOLDS THE VALUE J. 

LDI 
LSH 
TSTB 
BZD 
LDI 
LSH 
ANDN 
OR 

1,RO 
*ARO,RO 
Rl,RO 
CONT 
1,RO 
*+ARO(l),RO 
RO,R2 
RO,R2 

I 
l 

I I 

I 

J 

J 
l 

I I 

Rl 

R2 

*ARO 

* (ARO+l) 

Shift 1 to align it with bit I 
Test the I-th bit of Rl 
If bit = 0, branch delayed 

Align 1 with J-th location 
If bit 0, reset J-th bit of R2 
If bit = 1, set J-th bit of R2 

CONT 

• 
12-21 



• 

Software Applications - Logical and Arithmetic Operations 

12.3.2 Block Moves 

Since the TMS320C30 directly addresses a large amount of memory, blocks 
of data or program code can be stored off-chip in slow memories and then 
loaded on-chip for faster execution. Data can also be moved from on-chip to 
off-chip for storage or for multiprocessor data trasfers. 

Such data transfers can be accomplished very efficiently in parallel with CPU 
operations, using the DMA. The DMA operation is explained in detail in an 
earlier section of this manual. An alternative to DMA is to perform data 
transfers under program control using load and store instructions in a repeat 
mode. Example 12-14 shows the case where a block of 512 floating-point 
numbers are transferred from external memory to block 1 of the on-chip RAM. 

Example 12-14. Block Move Under Program Control 

* TITL BLOCK MOVE UNDER PROGRAM CONTROL 
* 
extern . word 
blockl .word 

01000H 
0809COOH 

LDI @extern,ARO Source address 
LDI @block1,AR1 Destination address 

LDF *ARO++,RO Load the first number 

RPTS 510 Repeat following instruction 511 times 
LDF *ARO++,RO Load the next number, and ... 

II STF RO,*AR1++ store the previous one 

STF RO,*AR1 Store the last number 

12.3.3 Bit-Reversed Addressing 

12-22 

For an efficient implementation of Fast Fourier Transforms (FFT), the 
TMS320C30 offers the capability of bit-reversed addressing. If the data to 
be transformed is in the correct order, the final result of the FFT is scrambled 
(in bit-reversed order). To recover the frequency-domain data in the correct 
order, certain memory locations have to be swapped. The bit-reversed ad
dressing mode offers the alternative of not doing this swapping. The next time 
data needs to be accessed, the access is done in a bit-reversed manner rather 
than sequentially. 

In bit-reversed addressing, IRO holds a value equal to one-half the size of the 
FFT, if real and imaginary data are stored in separate arrays. During accessing, 
the auxiliary register is indexed by IRO, but with reverse carry propagation. 
Example 12-15 illustrates a 512-point complex FFT being moved from the 
place of computation (pointed at by ARO) to a location pointed at by AR1. 
In this example, real and imaginary parts XR(i) and XI(i) of the data are not 
stored in separate arrays, but they are interleaved XR(O),XI (O),XR(1 ),XI (1 ), ... , 



Software Applications - Logical and Arithmetic Operations 

XR(N-1 ),XI(N-1). Because of this arrangement, the length of the array is 2N 
instead of N, and IRO is set to 512 instead of 256. 

Example 12-15. Bit-Reversed Addressing 

* * TITL BIT-REVERSED ADDRESSING 
* * THIS EXAMPLE MOVES THE RESULT OF THE 512-POINT FFT 
* COMPUTATION, POINTED AT BY ARO, TO A LOCATION POINTED AT 
* BY AR1. REAL AND IMAGINARY POINTS ARE ALTERNATING. 

LDI 
LDI 
LDI 
LDF 
RPTB 

* 
LDF 

II STF 
* 
LOOP LDF 
II STF 

512,IRO 
2,IR1 
S11,RC 
*+ARO(l),R1 
LOOP 

Repeat 511+1 times 
Load first imaginary point 

*ARO++(IRO)B,RO; Load real value (and point 
Rl,*+AR1(1) to next location) and store 

the imaginary value 
*+ARO(1),R1 ; Load next imaginary point and store 
RO,*AR1++(IR1) previous real value 

12.3.4 Integer and Floating-point Division 

Although division is not implemented as a single instruction in the 
TMS320C30, the instruction set provides the necessary capabilities for an ef
ficient division routine. Integer and floating-point division will be examined 
separately because different algorithms are used. 

12.3.4.1 Integer Division 

Division is implemented on the TMS320C30 by repeated subtractions using 
SUBC, a special conditional subtract instruction. Consider the case of a 32-bit 
positive dividend with i significant bits (and 32-i sign bits), and a 32-bit po
sitive divisor with j significant bits (and 32-j sign bits). The repetition of the 
SUBC command i-j+1 times produces a 32 bit result where the lower i-j+1 
bits are the quotient, and the upper 31-i+j bits, the remainder of the division. 

SUBC implements binary division in the same manner as in long division. The. 
divisor (assumed to be smaller than the dividend) is shifted left i-j times to be 
aligned with the dividend. Then, using SUBC, the shifted divisor is subtracted 
from the dividend. For each subtract that does not produce a negative answer, 
the dividend is replaced by the difference. It is then shifted to the left, and a 
one is put in the LSB. If the difference is negative, the dividend is simply 
shifted left by one. This operation is repeated i-j+1 times. 

As an example, consider the division of 33 by 5 using both long division and 
the SUBC method. In this case, i=6, j=3, and the SUBC operation is repeated 
6-3+1 =4 times. 

12-23 



• 

Software Applications - Logical and Arithmetic Operations 

LONG DIVISION: 

00000000000000000000000000000110 
00000000000000000000000000000101 00000000000000000000000000100001 

-101 

Quotient 

1101 
-101 

11 Remainder 

SUBC METHOD: 

00000000000000000000000000100001 
00000000000000000000000000101000 

Dividend 
Divisor (aligned) 

12-24 

Negative difference 
~ 

00000000000000000000000001000010 
00000000000000000000000000101000 
00000000000000000000000000011010 

~ 
00000000000000000000000000110101 
00000000000000000000000000101000 
00000000000000000000000000001101 

~ 
00000000000000000000000000011011 
00000000000000000000000000101000 

Negative difference 
~ 

00000000000000000000000000110110 

(1st SUBC command) 

New Dividend + Quotient 
Divisor 

Difference (>0) (2nd SUBC command) 

New Dividend + Quotient 
Divisor 

Difference (>0) (3rd SUBC command) 

New Dividend + Quotient 
Divisor 

(4th SUBC command) 

Final Result 

When using the SUBC command, both the dividend and the divisor must be 
positive. Example 12-16 shows a realization of the integer division. where the 
sign of the quotient is properly handled. The last instruction before returning 
modifies the condition flag, in case subsequent operations depend on the sign 
of the result. 



Software Applications - Logical and Arithmetic Operations 

Example 12-16. Integer Division 

* * TITL INTEGER DIVISION 
* 

SUBROUTINE DIVI 
* 
* 
* INPUTS: SIGNED INTEGER DIVIDEND IN RO, 
* SIGNED INTEGER DIVISOR IN Rl. 
* 
* OUTPUT: RO/Rl into RO. 
* 
* REGISTERS USED: RO-R3, IRO, IRl 
* 
* OPERATION: l. NORMALIZE DIVISOR WITH DIVIDEND 
* 2. REPEAT SUBC 
* 3. QUOTIENT IS IN LSBs OF RESULT 
* 
* CYCLES: 31-62 (DEPENDS ON AMOUNT OF NORMALIZATION) 
* 

.globl DIVI 

SIGN .set R2 
TEMPF .set R3 
TEMP .set IRO 
COUNT .set IRl 

* DIVI - SIGNED DIVISION 

DIVI: 
* * DETERMINE SIGN OF RESULT. GET ABSOLUTE VALUE OF OPERANDS. 
* 

* 

XOR 
ABSI 
ABSI 

CMPI 
BHID 

RO,Rl,SIGN 
RO 
Rl 

RO,Rl 
ZERO 

Get the sign 

Divisor > dividend ? 
If so, return ° 

* NORMALIZE OPERANDS. USE DIFFERENCE IN EXPONENTS AS SHIFT COUNT 
* FOR DIVISOR, AND AS REPEAT COUNT FOR 'SUBC'. 
* 

FLOAT 
PUSHF 
POP 
LSH 

FLOAT 
PUSHF 
POP 
LSH 
SUBI 
LSH 

RO,TEMP 
TEMPF 
COUNT 
-24,COUNT 

Rl,TEMPF 
TEMPF 
TEMP 
-24,TEMP 
TEMP,COUNT 
COUNT,Rl 

Normalize dividend 
PUSH as float 
POP as int 
Get dividend exponent 

Normalize divisor 
PUSH as float 
POP as int 
Get divisor exponent 
Get difference in exponents 
Align divisor with dividend 

• 
12-25 



• 

Software Applications - Logical and Arithmetic Operations 

* 
* DO COUNT+l SUBTRACT & SHIFTS. 
* 

RPTS COUNT 
SUBC Rl,RO 

* 
* MASK OFF THE LOWER COUNT+l BITS OF RO 
* 

SUBRI 3l,COUNT Shift count is (32 - (COUNT+l) ) 
LSH COUNT,RO Shift left 
NEGI COUNT 
LSH COUNT,RO Shift right to get result 

* 
* CHECK SIGN AND NEGATE RESULT IF NECESSARY. 
* 

NEG I RO,Rl Negate result 
ASH -3l,SIGN Check sign 
LDINZ Rl,RO If set, use negative result 
CMPI O,RO Set status from result 
RETS 

* 
* RETURN ZERO. 
* 
ZERO: 

LDI O,RO 
RETS 
.end 

If the dividend is less than the divisor and fractional division is desired, a di
vision can be performed after determining the desired accuracy of the quotient 
in bits. If the desired accuracy is k bits, start by shifting the dividend left by k 
positions. Then apply the algorithm described above, where i should now be 
replaced by i+k. It is assumed that i+k is less than 32. 

72.3.4.2 Computation of Floating-point Inverse and Division 

12-26 

This section presents a method of implementing floating-point division on the 
TMS320C30. Since the algorithm outlined here computes the inverse of a 
number v, to divide y/v, multiply y by the inverse of v. 

The computation of 1/v is based on the following iterative algorihm. At the 
i-th iteration, the estimate x[i] of 1/v is computed from v, and the previous 
estimate x[i-1] according to the formula: 

x[i] = x[i-1] * (2.0 - v * x[i-1]) 

To start the operation, an initial estimate x[O] is needed. If v=a*2e, a good 
initial estimate is: 

x[O] = 1.0 * 2-e-1 

Example 12-17 shows the implementation of this algorithm on the 
TMS320C30, where the iteration has been applied 5 times. The choice of the 
number of iterations was based on the desire to have maximum accuracy. The 
accuracy offered by the single-precision floating-point format is 
2-23 =1.192E-7. If more accuracy is desired, more iterations can be used. If 



Software Applications - Logical and Arithmetic Operations 

less accuracy is acceptable, the execution speed of this implementation can 
be increased by reducing the number of iterations. 

This algorithm properly treats the boundary conditions, when the input num
ber is either zero or it has a very large value. When the input is zero, the ex
ponent e= -128. Then the calculation of x[O] yields an exponent equal to 
-(-128)-1=127 and the algorithm will overflow and saturate. On the other 
hand, in the case of a very large number, e=127, the exponent of x[O] will be 
-127-1 =-128. This will cause the algorithm to yield zero, which is a reason
able handling of that boundary condition. 

12-27 

• 



Software Applications - Logical and Arithmetic Operations 

Example 12-17. Inverse of a Floating-Point Number 

* 
* TITL INVERSE OF A FLOATING-POINT NUMBER 
* 
* 
* SUBROUTINE INVF 

THE FLOATING-POINT NUMBER v IS STORED IN RO. AFTER THE 
COMPUTATION IS COMPLETED, ljv IS ALSO STORED IN RO. 

TYPICAL CALLING SEQUENCE: 
LDF v, RO 
CALL INVF 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+------------------

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

RO I v = NUMBER TO FIND THE RECIPROCAL OF (UPON THE CALL) 

* 

RO I ljv (UPON THE RETURN) 

REGISTER USED AS INPUT: RO 
REGISTERS MODIFIED: RO, Rl, R2, R3 
REGISTER CONTAINING RESULT: RO 

CYCLES: 35 WORDS: 32 

.global INVF 

INVF: LDF RO,R3 v is saved for later. 
ABSF RO The algorithm uses v = Ivl. 

* 
* EXTRACT THE EXPONENT OF v. 
* 

PUSHF RO 
POP Rl 

* 
* 

ASH -24,R The 8 LSBs of Rl contain the exponent 
of v. 

* x[O] FORMATION GIVEN THE EXPONENT OF v. 
* 

NEGI Rl 
SUBI l,Rl Now we have -e-l, the exponent of x[O]. 
ASH 24,Rl 
PUSH Rl 
POPF Rl Now Rl = x[O] = 1.0 * 2**(-e-l). 

* 

12-28 



Software Applications - Logical and Arithmetic Operations 

* NOW THE ITERATIONS BEGIN. 
* 

MPYF RI,RO,R2 R2 = v * x[O] 
SUBRF 2.0,R2 R2 = 2.0 - v * x[O] 
MPYF R2,RI RI x[l] = x[O] * (2.0 - v * x[O]) 

* 
MPYF RI,RO,R2 R2 v * x[l] 
SUBRF 2.0,R2 R2 2.0 - v * x[l] 
MPYF R2,RI RI x[2] = x[l] * (2.0 -v*x[I]) 

* 
MPYF RI,RO,R2 R2 v * x[2] 
SUBRF 2.0,R2 R2 2.0 - v * x[2] 
MPYF R2,Rl Rl x[3] = x[2] * (2.0 - v * x[2]) 

* 
MPYF Rl,RO,R2 R2 v * x[3] 
SUBRF 2.0,R2 R2 2.0 - v * x[3] 
MPYF R2,Rl Rl x[4] = x[3] * (2.0 - v * x[3]) 

* 
RND Rl This minimizes error in the LSBs. 

* 
* FOR THE LAST ITERATION WE USE THE FORMULATION: 
* x[S] = (x[4] * (1. 0 - (v * x[4]») + x[4] 
* 

MPYF RI,RO,R2 R2 v * x[4] = 1.0 .. 01.. => 1 
SUBRF 1. 0,R2 R2 1.0 - v * x[4] = 0.0 .. 01. .. => 0 
MPYF Rl,R2 R2 x[4] * (1.0 - v * x[4] ) 
ADDF R2,RI R2 x[S] = (x[4] * (1. 0- (v*x[4] » ) +x [4] 

* 
RND RI,RO Round since this is follow by a MPYF. 

* 
* NOW THE CASE OF v < 0 IS HANDLED.' 
* 

* 

* 
* END 
* 

12.3.5 

NEGF RO,R2 
LDF R3,R3 
LDFN R2,RO 

This sets condition flags. 
If v < 0, then RO = -RO 

RETS 

. end 

Square Root 

The implementation of the square root on the TMS320C30 is done by an it-
erative algorithm very similar to the one used for the computation of the in-
verse. This algorithm computes the inverse of the square root of a number v, 
1/SQRT(v). To derive SQRT(v), multiply this result by v. Since in many ap- • 
plications, division by the square root of a number is desirable, the output of 
the algorithm saves the effort to compute the inverse of the square root. 

At the i-th iteration, the estimate x[i] of 1/SQRT(v) is computed from v and 
the previous estimate x[i-1] according to the formula: 

x[i] = x[i-1] * (1.5 - (v/2) * x[i-1] * x[i-1]) 

To start the operation, an initial estimate x[O] is needed. If v=a*2e, a good 
initial estimate is: 

x[O] = 1.0 * 2-e/2 

12-29 



a 

Software Applications - Logical and Arithmetic Operations 

12-30 

Example 12-18 shows the implementation of this algorithm on the 
TMS320C30, where the iteration has been applied 5 times. The choice of the 
number of iterations was based on the desire to have maximum accuracy. If 
more accuracy is desired, more iterations can be used. If less accuracy is ac
ceptable, the execution speed of this implementation may be increased by re
ducing the number of iterations. 



Software Applications - Logical and Arithmetic Operations 

Example 12-18. Square Root of a Floating-Point Number 

* 
* 
* 
* 
* 
* 

TITL SQUARE ROOT OF A FLOATING-POINT NUMBER 

SUBROUTINE SQRT 

* THE FLOATING POINT NUMBER v IS STORED IN RO. AFTER THE 
* COMPUTATION IS COMPLETED, SQRT(v) IS ALSO STORED IN RO. NOTE 
* THAT THE ALGORITHM ACTUALLY COMPUTES l/SQRT(v). 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

TYPICAL CALLING SEQUENCE: 

LDF v, RO 
CALL SQRT 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+------------------
RO I v = NUMBER TO FIND THE SQUARE ROOT OF 

I (UPON THE CALL) 
RO I SQRT(v) (UPON THE RETURN) 

* REGISTER USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, R1, R2, R3 
* REGISTER CONTAINING RESULT: RO 
* 
* CYCLES: 39 WORDS: 33 
* .globa1 SQRT 
* 
* EXTRACT THE EXPONENT OF V. 
* 
SQRT: LDF RO,R3 Save v 

RETSLE Return if number non-positive 
PUSHF RO 
POP R1 

* 
* 

ASH -25,R1 The 8 LSBs of R1 contain 1/2 the exponent 
of v. 

* x[O] FORMATION GIVEN THE EXPONENT OF V. 
* 

* 
* 
* 
* 
* 
* 

* 

NEGI 
ASH 
PUSH 
POPF 

GENERATE V/2. 

MPYF 

R1 
24,R1 
R1 
R1 

0.5,RO 

NOW THE ITERATIONS BEGIN. 

MPYF 
MPYF 
SUBRF 
MPYF 

R1,R1,R2 
RO,R2 
1.5,R2 
R2,R1 

Now R1 x[O] 1.0 * 2**(-e/2). 

R2 x[O] * x[O] 
R2 (v/2) * x[O] * x[O] 
R2 1.5 - (v/2) * x[O] * x[O] 
R1 x[l] = x[O] * 

(1.5 - (v/2)*x[0]*x[0]) 

12-31 

• 



• 

Software Applications - Logical and Arithmetic Operations 

* 

* 
* 

* 
* 

* 
* 
* 

* 

* 

* 
* end 
* 

12.3.6 

12-32 

MPYF R1,R1,R2 R2 x[l] * x[l] 
MPYF RO,R2 R2 (v/2) * x[ 1] * x[ 1] 
SUBRF 1.S,R2 R2 1. S - (v/2) * x[l] * x[l] 
MPYF R2,R1 R1 x[2] = x[l] * 

(1. S - (v/2)*x[1]*x[1]) 
MPYF R1,R1,R2 R2 x[2] * x[2] 
MPYF RO,R2 R2 (v/2) * x[2] * x[2] 
SUBRF 1. S,R2 R2 1. S - (v/2) * x[2] * x[2] 
MPYF R2,R1 R1 x[3] x[2] 

* (1. S - (v/2)*x[2]*x[2]) 

MPYF R1,R1,R2 R2 x[3] * x[3] 
MPYF RO,R2 R2 (v/2) * x[3] * x[3] 
SUBRF 1.S,R2 R2 1. S - (v/2) * x[3] * x[3] 
MPYF R2,R1 R1 x[4] x[3] 

* (1. S - (v/2)*x[3]*x[3]) 

MPYF R1,R1,R2 R2 x[4] * x[4] 
MPYF RO,R2 R2 (v/2) * x[4] * x[4] 
SUBRF 1. S ,R2 R2 1. S - (v/2) * x[4] * x[4] 
MPYF R2,R1 R1 x[S] x[4] 

* (1. S - (v/2)*x[4]*x[4]) 

RND R1,RO Round 

MPYF R3,RO Sqrt(v) from sqrt(v**(-l» 

RETS 

.end 

Extended-Precision Arithmetic 

The TMS320C30 offers 32 bits of precision for integer arithmetic, and 24 bits 
of precision in the mantissa for floating point arithmetic. For higher precision 
in floating-point operations, the eight extended-precision registers RO to R7 
contain eight more bits of accuracy. Since no co rable extension is avail
able for fixed-point arithmetic, this section discusses ho ·xed-point double 
precision can be achieved using the capabilities of the processor. The tech
nique consists of performing the arithmetic by parts, similar to the way in 
which longhand arithmetic is done . 

The instruction set has operations ADDC (Add with Carry) and SUBB (Sub
tract with Borrow) which use the status carry bit for extended-precision 
arithmetic. The carry bit is affected by the arithmetic operations of the ALU, 
and the rotate and shift instructions. It can also be manipulated directly by 
setting the status register to certain values. For proper operation, the overflow 
mode bit should be reset (OVM = O) so the accumulator results will not be 
loaded with the saturation values. Example 12-19 and Example 12-20 show 
54-bit addition and 54-bit subtraction. The first operand is stored in the reg
isters RO (low word) and R1 (high word). The second operand is stored in 
R2 and R3 respectively. The result is stored in RO and R1. 



Software Applications - Logical and Arithmetic Operations 

Example 12-19. 64-Bit Addition 

* TITL 64-BIT ADDITION 
* * TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING A 64-BIT 
* RESULT. THE NUMBERS X (Rl,RO) AND Y (R3,R2) ARE ADDED, 
* RESULTING IN W (Rl,RO). 
* 
* Rl RO 
* + R3 R2 
* 
* 
* 

Rl RO 

ADD I R2,RO 
ADDC R3,Rl 

Example 12-20. 64-Bit Subtraction 

* TITL 64-BIT SUBTRACTION 
* 
* TWO 64-BIT NUMBERS ARE SUBTRACTED FROM EACH OTHER PRODUCING 
* A 64-BIT RESULT. THE NUMBERS X (Rl,RO) AND Y (R3,R2) ARE 
* SUBTRACTED, RESULTING IN W (Rl,RO). 
* 
* Rl RO 
* - R3 R2 
* 
* 
* 

Rl RO 

SUBI R2,RO 
SUBB R3,Rl 

When two 32-bit numbers are multiplied. a 64-bit product results. The pro
cedure for multiplication is to split the 32-bit magnitude values of the multi
plicand X and the multiplier Y into two parts (X1.XO) and (X3.X2) respectively 
with 16 bits each. The operation is done on unsigned numbers. and the pro
duct is adjusted for the sign bit. Example 12-21 shows the implementation 
of a 32 bit X 32 bit multiplication. 

12-33 

• 



• 

Software Applications - Logical and Arithmetic Operations 

Example 12-21.32 by 32 Bit Multiplication 

* * TITL 32 X 32 BIT MULTIPLICATION 
* 
* 
* SUBROUTINE EXTMPY 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

FUNCTION: TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT 
RESULT. THE TWO NUMBERS (x and y) ARE EACH SEPARATED INTO TWO 
PARTS (Xl XC) AND (Y1 YO), WHERE XC, Xl, YO, AND Y1 ARE 16 BITS. 
THE TOP BIT IN Xl AND Y1 IS THE SIGN BIT. THE PRODUCT IS 
IN TWO WORDS (WO AND WI). THE MULTIPLICATION IS PERFORMED ON 
POSITIVE NUMBERS, AND THE SIGN IS DETERMINED AT THE END. 

X 
Xl xo 
Y1 YO 

BITS OF PRODUCTS 
(NOT COUNTING SIGN) PRODUCT 

XO*YO 
XO*Y1 
X1*YO 

X1*Y1 

WI WO 

ARGUMENT ASSIGNMENTS 
ARGUMENT I FUNCTION 

16+16 
16+16 
16+16 

16+16 

---------+--------------------

PI 
P2 
P3 
P4 

RO I MULTIPLIER AND LOW WORD OF THE PRODUCT 
R1 I MULTIPLICAND AND UPPER WORD OF THE PRODUCT 

REGISTERS USED AS INPUT: RO, R1 
REGISTERS MODIFIED: RO, R1, R2, R3, R4, ARO, AR1, 
REGISTER CONTAINING.RESULT: RO,R1 

CYCLES: 28 (WORST CASE) 

.GLOBAL EXTMPY 
* 
EXTMPY XOR3 

ABSI 
ABSI 

* 

RO,R1,ARO 
RO 
R1 

WORDS: 25 

Store sign 
Absolute values of X 

and Y 

* SEPARATE MULTIPLIER AND MULTIPLICAND INTO TWO PARTS 
* 

LDI -16,AR1 
LSH3 AR1,RO,R2 R2 Xl Upper 16 bits 
AND OFFFFH,RO RO XO Lower 16 bits 
LSH3 AR1,R1,R3 R3 Y1 Upper 16 bits 
AND OFFFFH,R1 R1 YO Lower 16 bits 

12-34 

of 
of 
of 
of 

X 
X 
Y 
Y 



Software Applications - Logical and Arithmetic Operations 

* 
* CARRY OUT THE MULTIPLICATION 
* 

* 

* 

MPYI3 
MPYI 
MPYI 
ADDI 
MPYI 

LDI 
LSH 
CMPI 
BGED 
AND 
ADDI3 
ADDC3 

RO,Rl,R4 
R3,RO 
R2,Rl 
RO,Rl 
R2,R3 

Rl,R2 
l6,R2 
O,ARO 
DONE 
OFFFFH,Rl 
R4,R2,RO 
Rl,R3,Rl 

XO*YO 
XO*Yl 
Xl*YO 
P2+P3 
Xl*Yl 

PI 
P2 
P3 

P4 

Lower 16 bits of P2+P3 
Check the sign of the product 
If >0, multiplication complete (delayed) 
Upper 16 bits of P2+P3 
WO = RO = Lower word of the product 
WI = Rl = Upper word of the product 

* NEGATE THE PRODUCT IF THE NUMBERS ARE OF OPPOSITE SIGN 
* 

NOT RO 
ADDI l,RO 
NOT Rl 
ADDC O,Rl 

* 
DONE RETS 

.end 

12.3.7 Floating-point Format Conversion: IEEE to/from TMS320C30 

In fixed-point arithmetic, the binary point that separates the integer from the 
fractional part of the number is fixed at a certain location. For example, if it 
is chosen that a 32-bit number has the binary point after the most significant 
bit (which is also the sign bit), only fractional numbers (numbers with abso
lute values less that 1). can be represented. In this case, it is said that we have 
a 031 number, where 31 is the number of fractional bits. All operations as
sume that the binary point is fixed at this location. 

The fixed-point system, although simple to implement in hardware, imposes 
limitations in the dynamic range of the represented number, which causes 
scaling problems in many applications. The difficulty is avoided by using 
floating-point numbers. A floating-point number consists of a mantissa m 
multiplied by base b raised to an exponent e: 

In current hardware implementations, the mantissa is typically a normalized 
number with absolute value between 1 and 2, and the base is b=2. Although II 
the mantissa is represented as a fixed-point number, the actual value of the 
overall number floats the binary point because of the multiplication by be The 
exponent e is an integer whose value determines the position of the binary 
point in the number. I EEE has established a standard format for the repre
sentation of floating-point numbers. 

In order to achieve higher efficiency in the hardware implementation, the 
TMS320C30 uses a floating-point format that differs from the IEEE standard. 
This section describes briefly the two formats and presents software routines 
to convert between them. 

12-35 



• 

Software Applications - Logical and Arithmetic Operations 

12-36 

TMS320C30 floating-point format: 

8 23 

e lsi f 

In a 32-bit word representing a floating-point number, the first 8 bits corre
spond to the exponent, expressed in two's-complement format. There is one 
bit for sign, and 23 bits for the mantissa. The mantissa is expressed in two's
complement form with the binary point after the most significant non-sign bit. 
Since this bit is the complement of the sign bit s, it is suppressed. In other 
words, the mantissa actually has 24 bits. One special case occurs when 
e=-128. In this case, the number is interpreted as zero independent of the 
values of sand f (which are by default set to zero). To summarize, the values 
of the represented numbers in the TMS320C30 floating-point format are: 

2e • (01.1) 
2e • (10.1) 
o 

if s=O 
if s=1 
if e=-128 

IEEE floating-point format: 

8 

lsi e 

23 

f 

The IEEE floating-point format uses sign-magnitude notation for the mantissa, 
and offset by 127 for the exponent. In a 32-bit word representing a float
ing-point number, the first bit is the sign bit. The next 8 bits correspond to 
the exponent, expressed in an offset-by-127 format (the actual exponent is 
e-127). The following 23 bits represent the absolute value of the mantissa 
with the most significant 1 implied. The binary point is after this most signif
icant 1. In other words, the mantissa actually has 24 bits. There are several 
special cases, summarized below. 



Software Applications - logical and Arithmetic Operations 

The values of the represented numbers in the IEEE floating-point format are: 

(_1)5 • 2e-127 • (01.f) 

Special cases: 

(_1)5 • 0.0 
(_1)5' 2-126 • (O.f) 
(-1 )5 • infinity 
NaN 

if 0<e<255 

if e=O and f=O (zero) 
if e=O and f< >0 (denormalized) 
if e=255 and f=O (infinity) 
if e=255 and f< >0 (Not a Number) 

Based on these definitions of the formats, two versions of the conversion 
routines were developed. One version handles the complete definition of the 
formats. The other ignores some of the special cases (typically the ones that 
are very rarely used), but it has the benefit that it executes faster than the 
complete conversion. For this discussion, they are referred to as the complete 
version and the the fast version. 

12.3.7.1 IEEE to TMS320C30 Floating-Point Format Conversion 

The fast version of the IEEE-to-TMS320C30 conversion routine was originally 
developed by Keith Henry of Apollo Computer, Inc. The other routines were 
based on this initial input. Example 12-22 shows the fast conversion from 
IEEE to TMS320C30 floating-point format. It properly handles the general 
case when 0<e<255, and zeros (i.e., e=O and f=O). The other special cases 
(denormalized, infinity, and NaN) are not treated and, if present, will give er
roneous results. 

12-37 

• 



II 

Software Applications - Logical and Arithmetic Operations 

Example 12-22. TMS320C30 To IEEE Conversion (Fast Version) 

* TITL IEEE TO TMS320C30 CONVERSION (FAST VERSION) 
* 
* 
* SUBROUTINE 
* 

FMIEEE 

* FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE 
* 320C30 FLOATING POINT NUMBERS. THE NUMBER TO 
* BE CONVERTED IS IN THE LOWER 32 BITS OF RO. 
* THE RESULT IS STORED IN THE UPPER 32 BITS OF RO. 
* UPON ENTERING THE ROUTINE, ARl POINTS TO THE 
* FOLLOWING TABLE: 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

(0) 
(1) 
(2) 
(3 ) 
(4) 

OxFF800000 (-- ARl 
OxFFOOOOOO 
Ox7FOOOOOO 
Ox80000000 
Ox8l000000 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+-----------------------RO I NUMBER TO BE CONVERTED 
ARl I POINTER TO TABLE WITH CONSTANTS 

REGISTERS USED AS INPUT: RO, ARl 
REGISTERS MODIFIED: RO, Rl 
REGISTER CONTAINING RESULT: RO 

NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO 
INITIALIZE IT IN THE CALLING PROGRAM. 

* CYCLES: 12 (WORST CASE) WORDS: 12 
* 

.global FMIEEE 
* 
FMIEEE AND 3 RO,*AR1,Rl Replace fraction with 0 

BND NEG Test sign 
ADDI RO,Rl Shift sign and exponent inserting 
LDIZ *+AR1(1),Rl If all zero, generate C30 zero 
SUBI *+AR1(2),Rl Unbias exponent 
PUSH Rl 
POPF RO Load this as a fIt. pt. number 
RETS 

* 
NEG PUSH Rl 

POPF RO Load this as a fIt. pt. number 
NEGF RO,RO Negate if original sign negative 
RETS 

0 

Example 12·23 is the complete conversion between IEEE and TMS320C30 
formats. In addition to the general case and the zeros, it handles the special 
cases as follows: 

12·38 

• If NaN (e=255, f<>O), the number is returned intact. 
• If infinity (e=255, f=O); the output is saturated to the most positive or 

negative number respectively. 



Software Applications - Logical and Arithmetic Operations 

• If denormalized (e=O, f<>O), two cases are considered. If the MSB of 
f is 1, the number is converted to TMS320C30 format. Otherwise, an 
underflow occurs and the number is set to zero. 

12-39 

• 



Software Applications - Logical and Arithmetic Operations 

Example 12-23. IEEE to TMS320C30 conversion (complete version) 

• 
• TITL IEEE TO TMS320C30 CONVERSION (COMPLETE VERSION) 
• 
• 
• SUBROUTINE FMIEEE1 
• 
• FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE 320C30 
• FLOATING POINT NUMBERS. THE NUMBER TO BE CONVERTED 
• IS IN THE LOWER 32 BITS OF RO. THE RESULT IS STORED 
• IN THE UPPER 32 BITS OF RO. 
• 
• 
• 
• • 
• 
• 
• 
• 
• 
• 
• 
• • • 
• • • 
• • 

UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE: 

(a) 
( 1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

OxFF800000 <-- AR1 
OxFFOOOOOO 
Ox7FOOOOOO 
Ox80000000 
Ox81000000 
Ox7F800000 
Ox00400000 
Ox007FFFFF 
Ox7F7FFFFF 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+-----------------------
RO I NUMBER TO BE CONVERTED 
AR1 I POINTER TO TABLE WITH CONSTANTS 

• REGISTERS USED AS INPUT: RO, AR1 
• REGISTERS MODIFIED: RO, R1 
• REGISTER CONTAINING RESULT: RO 
• 
• 
• 
• 
• 

NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO INITIALIZE 
IT IN THE CALLING PROGRAM. 

• CYCLES: 23 (WORST CASE) 
• 

.global FMIEEE1 
• 
FMIEEE1 LDI 

AND 
BZ 

RO,R1 
·+AR1(5) ,R1 
UNNORM 

• 
XOR ·+AR1(5),R1 
BNZ NORMAL 

HANDLE NaN AND INFINITY 

12-40 

TSTB ·+AR1(7),RO 
RETSNZ 
LDI RO,RO 
LDFGT ·+AR1(8),RO 
LDFN 
·+AR1(5),RO 
RETS 

WORDS: 34 

If e=O, number is either 0 or 
unnormalized 

If e<255, use regular routine 

Return if NaN 

If positive, infinity= 
most positive number 

If negative, infinity= 
most negative number RETS 



Software Applications - Logical and Arithmetic Operations 

* HANDLE ZEROS AND UNNORMALIZED NUMBERS 

UNNORM TSTB *+AR1(6),RO Is the msb of f equal to 1? 
LDFZ *+AR1(3) ,RO If not, force the number to zero 
RETSZ and return 

XOR *+AR1(6),RO If (msb of f)=l, make it 0 
BND NEG1 
LSH 1,RO Eliminate sign bit and line up mantissa 
SUBI *+AR1(2),RO Make e=-127 
PUSH RO 
POPF RO Put number in floating point format 
RETS 

NEGI POPF RO 
NEGF RO,RO If negative, negate RO 
RETS 

* HANDLE THE REGULAR CASES 
* 
NORMAL AND 3 RO, *ARI,R1 Replace fraction with 0 

BND NEG Test sign 
ADDI RO,R1 Shift sign and exponent inserting 0 
SUBI *+AR1(2) ,R1 Unbias exponent 
PUSH R1 
POPF RO Load this as a flt. pt. number 
RETS 

NEG POPF RO Load this as a fIt. pt. number 
NEGF RO,RO Negate if original sign negative 
RETS 

12.3.7.2 TMS320C30 to IEEE Floating-Point Format conversion 

The vast majority of the numbers represented by the TMS320C30 format are 
covered by the general IEEE format and the representation of zeros. The only 
special case to consider is when e= -127 in the TMS320C30 format. This 
corresponds to an denormalized number in IEEE format. and it is ignored in the 
fast version. while it is treated properly in the complete version. Example 
12-24 shows the fast. and Example 12-25. the complete version of the 
TMS320C30-to-1 EEE conversion. 

12-41 

• 



• 

Software Applications - Logical and Arithmetic Operations 

Example 12-24. TMS320C30 to IEEE Conversion (Fast Version) 

* 
* TITL TMS320C30 TO IEEE CONVERSION (FAST VERSION) 
* 
* 
* SUBROUTINE TO IEEE 
* 
* FUNCTION: CONVERSION BETWEEN THE 320C30 FORMAT AND THE IEEE 
* FLOATING POINT NUMBERS. THE NUMBER TO BE CONVERTED 
* IS IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE IN 
* THE LOWER 32 BITS OF RO. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

UPON ENTERING THE ROUTINE, ARl POINTS TO THE FOLLOWING TABLE: 

(0) 
(1) 
(2) 
(3) 
(4) 

OxFF800000 <-- ARl 
OxFFOOOOOO 
Ox7FOOOOOO 
Ox80000000 
Ox8l000000 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+-----------------------
RO I NUMBER TO BE CONVERTED 
ARl I POINTER TO TABLE WITH CONSTANTS 

REGISTERS USED AS INPUT: RO, ARl 
REGISTERS MODIFIED: RO 
REGISTER CONTAINING RESULT: RO 

* NOTE: SINCE THE STACK POINTER 'SP' IS USED, MAKE SURE TO 
* INITIALIZE IT IN THE CALLING PROGRAM. 
* 
* * CYCLES: 14 (WORST CASE) WORDS: 15 
* 

.global TOIEEE 
* 
TOIEEE LDF RO,RO Determine the sign of the number 

LDFZ *+AR1(4) ,RO If zero, load appropriate number 
BND NEG Branch to NEG if negative (delayed) 
ABSF RO Take the absolute value of the number 
LSH 1,RO Eliminate the sign bit in RO 
PUSHF RO 
POP RO Place number in lower 32 bits of RO 
ADDI *+AR1(2) ,RO Add exponent bias (127) 
LSH -l,RO Add the positive sign 
RETS 

NEG POP RO Place number in lower 32 bits of RO 
ADDI *+ARl(2) ,RO Add exponent bias (127) 
LSH -l,RO Make space for the sign 
ADDI *+ARl (3) , RO Add the negative sign 
RETS 

12-42 



Software Applications - Logical and Arithmetic Operations 

Example 12-25. TMS320C30 to IEEE Conversion (Complete Version) 

* 
* TITL TMS320C30 TO IEEE CONVERSION (COMPLETE VERSION) 
* 
* 
* SUBROUTINE 
* 
* 

TOIEEE1 

* FUNCTION: CONVERSION BETWEEN THE 320C30 FORMAT AND THE IEEE 
* FLOATING POINT NUMBERS. THE NUMBER TO BE CONVERTED 
* IS IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE 
* IN THE LOWER 32 BITS OF RO. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

UPON 
(0) 

ENTERING THE ROUTINE, 
OxFF800000 <-- AR1 
OxFFOOOOOO 
Ox7FOOOOOO 
Ox80000000 
Ox81000000 
Ox7F800000 
Ox00400000 
Ox007FFFFF 
Ox7F7FFFFF 

AR1 POINTS TO THE FOLLOWING TABLE: 

* 
* 
* 
* 
* 
* 
* 

( 1) 
(2) 
( 3) 
(4) 
(5) 
(6) 
(7) 
(8) 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+-----------------------
RO I NUMBER TO BE CONVERTED 
AR1 I POINTER TO TABLE WITH CONSTANTS 

REGISTERS USED AS INPUT: RO, AR1 
REGISTERS MODIFIED: RO 
REGISTER CONTAINING RESULT: RO 

NOTE: SINCE THE STACK POINTER 'SP' IS USED, MAKE SURE TO 
INITIALIZE IT IN THE CALLING PROGRAM. 

CYCLES: 31 (WORST CASE) WORDS: 25 

. global TOIEEE1 

Determine the sign of the number TOIEEE1 LDF 
LDFZ 
BND 
ABSF 
LSH 
PUSHF 
POP 
ADDI 
LSH 

RO,RO 
*+AR1(4),RO 
NEG 
RO 
1,RO 

If zero, load appropriate number 
Branch to NEG if negative (delayed) 
Take the absolute value of the number 
Eliminate the sign bit in RO 

RO 
RO 
*+AR1(2) ,RO 
-l,RO 

Place number in lower 32 bits of RO 
Add exponent bias (127) 
Add the positive sign 

12-43 

II 



Software Applications - Logical and Arithmetic Operations 

CONT TSTB *+AR1(5) ,RO 
RETSNZ If E>O, return 
TSTB *+AR1(7),RO 
RETSZ If E=O & F=O, return 
PUSH RO 
POPF RO 
LSH -l,RO Move F right by one bit 
PUSHF RO 
POP RO 
ADDI *+ARl(6) ,RO Add to F a msb of 1 
RETS 

NEG POP RO Place number in lower 32 bits of RO 
BRD CONT 
ADDI *+ARI(2) ,RO Add exponent bias (127) 
LSH -l,RO Make space for the sign 
ADDI *+AR1(3) ,RO Add the negative sign 

• 
12-44 



Software Applications - Application-Oriented Operations 

12.4 Application-Oriented Operations 

The TMS320C30 has been designed to provide efficient implementations of 
digital signal processing algorithms. The architecture and the instruction set 
of the device include features that facilitate the solution of numerically inten
sive problems. This section presents examples of applications using these 
features, such as companding. filtering. Fast Fourier Transforms (FFT), and 
matrix arithmetic. 

12.4.1 Companding 

In the area of telecomm·unications. one of the primary concerns is the conser
vation of the channel bandwidth, while at the same time preserving high 
speech quality. This is achieved by quantizing the speech samples logarith
mically. It has been demonstrated that an 8-bit logarithmic quantizer produces 
speech quality equivalent to a 13-bit uniform quanitizer. The logarithmic 
quantization is achieved by companding (COMpress/exPANDing). Two in
ternational standards have been established for companding: the Il-Iaw (used 
in the United States and Japan), and the A-law (used in Europe). Detailed 
descriptions of Il-Iaw and A-law companding are presented in an application 
report on companding routines included in the book "Digital Signal Process
ing Applications with the TMS320 Family". 

During transmission, logarithmically compressed data in sign-magnitude form 
are transmitted along the communications channel. If any processing is nec
essary, these data should be expanded to a 14-bit (for Il-Iaw) or 13-bit (for 
A-law) linear format. This operation is done upon receiving the data at the 
digital signal processor. After processing, and in order to continue trans
mission. the result is compressed back to 8-bit format and transmitted through 
the channel. 

Examples 12-26 and 12-27 show Il-Iaw compression and expansion (Le., li
near to Il-Iaw and Il-Iaw to linear conversion), while examples 12-28 and 
12-29 show A-law compression and expansion. For expansion, using a 
look-up table offers an alternative approach. It trades memory space for speed 
of execution. Since the compressed data is 8-bits long, a table with 256 en
tries can be constructed containing the expanded data. If the compressed data 
is stored in the register ARO, the following two instructions will put the ex
panded data in register RO: 

ADDI 
LDI 

@TABL,ARO 
*ARO,RO 

@TABL = BASE ADDRESS OF TABLE 
PUT EXPANDED NUMBER IN RO 

The same look-up table approach could be used for compression, but the re
quired table length would then be 16,384 words for Il-Iaw or 8.192 words for 
A-law. If this memory size is not acceptable, the subroutines presented in 
Examples 12-26 or 12-28. should be used. 

12-45 

• 



Software Applications - Application-Oriented Operations 

Example 12-26. U-Law compression 

* 
* TITL U-LAW COMPRESSION 
* 
* 
* SUBROUTINE MUCMPR 
* 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

---------+-----------------------
RO I NUMBER TO BE CONVERTED 

REGISTERS USED AS INPUT: RO 
REGISTERS MODIFIED: RO, Rl, R2, SP 
REGISTER CONTAINING RESULT: RO 

* NOTE: SINCE THE STACK POINTER 'SP' IS USED IN THE COMPRESSION 
* ROUTINE 'MUCMPR', MAKE SURE TO INITIALIZE IT IN THE 
* THE CALLING PROGRAM. 
* 
* 
* CYCLES: 20 WORDS: 17 
* 
* 

. global MUCMPR 
* 
MUCMPR LDI RO,Rl Save sign of number 

ABSI RO,RO 
CMPI lFDEH,RO If RO)OxlFDE, 
LDIGT lFDEH,RO saturate the result 
ADDI 33,RO Add bias 

FLOAT RO Normalize: (seg+5)OWXYZx ..• x 
MPYF O.03l25,RO Adjust segment number by 2**(-5) 
LSH 1,RO (seg)WXYZx ... x 
PUSHF RO 
POP RO Treat number as integer 
LSH -20,RO Right-justify 

LDI O,R2 
LDI Rl,Rl If number is negative, 
LDILT 80H,R2 set sign bit 
ADDI R2,RO RO = compressed number 
NOT RO Reverse all bits for transmission 
RETS 

12-46 



Software Applications - Application-Oriented Operations 

Example 12-27. U-Law Expansion 

* * TITL 'U-LAW EXPANSION' 
* 
* * SUBROUTINE 
* 
* 

MUXPND 

* ARGUMENT ASSIGNMENTS: 
* 

ARGUMENT I FUNCTION * 
* 
* 
* 

---------+-----------------------
RO I NUMBER TO" BE CONVERTED 

* REGISTERS USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, Rl, R2, SP 
* REGISTER CONTAINING RESULT: RO 
* 
* * CYCLES: 20 (WORST CASE) 
* 
* 

• global MUXPND 
MUXPND NOT RO,RO 

LDI RO,RO 
AND OFH,Rl 
LSH 1,Rl 
ADD I 33,Rl 
LDI RO,R2 
LSH -4,RO 
AND 7,RO 
LSH3 RO,Rl,RO 
SUBI 33,RO 
TSTB 80H,R2 
RETSZ 
NEGI RO 
RETS 

WORDS: 14 

Complement bits 

Isolate quantization bin 

Add bias to introduce lxxxxl 
Store for sign bit 

Isolate segment code 
Shift and put result in RO 
Subtract bias 
Test sign bit 

Negate if a negative number 

• 
12-47 



Software Applications - Application-Oriented Operations 

Example 12-28. A-Law Compression 

* 
* TITL A-LAW COMPRESSION 
* 
* 
* SUBROUTINE ACMPR 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+-----------------------
RO I NUMBER TO BE CONVERTED 

REGISTERS USED AS INPUT: RO 
REGISTERS MODIFIED: RO, R1, R2, SP 
REGISTER CONTAINING RESULT: RO 

NOTE: SINCE THE STACK POINTER 'SP' IS USED IN THE COMPRESSION 
ROUTINE 'ACMPR', MAKE SURE TO INITIALIZE IT IN THE 
CALLING PROGRAM. 

* CYCLES: 22 
* 

WORDS: 19 

.glob1 
* 
ACMPR LDI 

ABSI 
CMPI 
BLED 
CMPI 
LDIGT 
LSH 

FLOAT 
MPYF 
LSH 
PUSHF 
POP 
LSH 

END LDI 
LDI 
LDILT 
ADDI 
XOR 
RETS 

12-48 

ACMPR 

RO,R1 
RO,RO 
1FH,RO 
END 
OFFFH,RO 
OFFFH,RO 
-l,RO 

RO 
O.125,RO 
l,RO 
RO 
RO 
-20,RO 

O,R2 
R1,R1 
80H,R2 
R2,RO 
OD5H,RO 

Save sign of number 

If RO<Ox20, 
Do linear coding 

If RO>OxFFF, 
saturate the result 

Eliminate rightmost bit 

Normalize: (seg+3)OWXYZx ... x 
Adjust segment number by 2**(-3) 
(seg)WXYZx ... x 

Treat number as integer 
Right-justify 

If number is negative, 
set sign bit 

RO = compressed number 
Invert even bits for transmission 



Software Applications - Application-Oriented Operations 

Example 12-29. A-Law Expansion 

* 
* TITL A-LAW EXPANSION 
* 
* 
* * SUBROUTINE AXPND 
* 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

---------+-----------------------

* 

RO I NUMBER TO BE CONVERTED 

REGISTERS USED AS INPUT: RO 
REGISTERS MODIFIED: RO, Rl, R2, SP 
REGISTER CONTAINING RESULT: RO 

CYCLES: 25 (WORST CASE) 

. global AXPND 

WORDS: 16 

AXPND XOR D5H,RO Invert even bits 
LDI 
AND 
LSH 
LDI 
LSH 
AND 
BZ 
SUB I 
ADDI 

SKIPl ADDI 
LSH3 
TSTB 
RETSZ 
NEGI 
RETS 

RO,Rl 
OFH,Rl 
1,Rl 
RO,R2 
-4,RO 
7,RO 
SKIPl 
1,RO 
32,Rl 
1,Rl 
RO,Rl,RO 
80H,R2 

RO 

Isolate quantization bin 

Store for bit sign 

Isolate segment code 

Create lxxxxl 
OR Oxxxxl 

Shift and put result in RO 
Test sign bit 

Negate if a negative number 

12.4.2 FIR, UR, and Adaptive Filters 

Digital filters are a common requirement for digital signal processing systems. 
There are two types of digital filters, Finite Impulse Response (FIR) and Infi
nite Impulse Response (IIR). Each of these types can have either fixed or 
adaptable coefficients. In this section, the fixed-coefficient filters are pre
sented first, and then the adaptive filters are discussed. 

12-49 

• 



• 

Software Applications - Application-Oriented Operations 

12.4.2.1 FIR Filters 

12-50 

If the FIR filter has an impulse response h[O]. h[1 ]. ... , h[N-1], and x[n] re
presents the input of the filter at time n, the output y[n] at time n is given by 
the equation: 

y[n] =h[O] x[n] + h[1] x [n-1] + ... + h[N-1] x[n-(N-1)] 

Two features of the TMS320C30 that facilitate the implementation of the FIR 
filters, are parallel multiply/add operations and the circular addressing. The 
first one permits the performance of a multiplication and an addition in a single 
machine cycle, while the second one makes a finite buffer of length N suffi
cient for the data x. 

Figure 12-1 shows the arrangement of the memory locations in order to im
plement the circular addressing, while Example 12-30 presents the 
TMS320C30 assembly code for an FIR filter. 

impulse initial final 

low raspon.e input samples Input samples 

add .... I hIN-1) oldest input x[n-IN-1)] xln) '1 hIN-2) x[n-IN-2)] x[n-!iii-1)] 

• • • • • • circular 
queue • • • J h(1) xln-11 I I xln-2) 

high hlO) newest Input xln) xln-1) 
addr ... 

Figure 12-1. Data Memory Organization For a FIR Filter 

In order to set up the circular addressing, the block-size register BK should 
be initialized to block length N. Also, the locations for signal x should start 
from a memory location whose address is a multiple of the smallest power of 
2 that is greater than or equal to N. For instance, if N =24, the first address for 
x should be a multiple of 32 (the lower 5 bits of the beginning address should 
be zero). To understand this requirement, look at the section describing cir
cular addressing. 



Software Applications - Application-Oriented Operations 

In Example 12-30, the pointer to the input sequence x, is incremented and 
assumed to be moving from an older input to a newer input. At the end of the 
subroutine, AR1 will be pointing to the position for the next input sample. 

Example 12-30. FIR Filter 

* 
* TITL FIR FILTER 
* 
* 
* SUBROUTINE FIR 
* 
* EQUATION: y(n) = h(O) * x(n) + h(l) * x(n-l) + 
* ... + h(N-l) * x(n- (N-l» 
* * TYPICAL CALLING SEQUENCE: 
* 
* LOAD ARO 
* LOAD ARI 
* LOAD RC 
* LOAD BK 
* CALL FIR 
* 
* 
* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* ---------+-----------------------
* ARO I ADDRESS OF h(N-l) 
* ARl I ADDRESS OF x(N-l) 
* RC I LENGTH OF FILTER - 2 (N-2) 
* BK I LENGTH OF FILTER (N) 
* 
* REGISTERS USED AS INPUT: ARO, ARl, RC, BK 
* REGISTERS MODIFIED: RO, R2, ARO, ARl, RC 
* REGISTER CONTAINING RESULT: RO 
* 
* 
* CYCLES: 11 + (N-l) WORDS: 6 
* 
* 

* 
FIR 
* 

* 

.global FIR 

MPYF3 

LDF 

; Initialize RO: 
*ARO++(l},*ARl++(l}%,RO 

h(N-l) * x(n-(N-l}) -> RO 
O.O,R2 Initialize R2. 

* FILTER ( 1 <= i < N) 
* 

RC ; Setup the repeat cycleE. RPTS 
MPYF3 
ADDF3 

*ARO++(l},*ARl++(l}%,RO ; h(N-l-i)*x(n-(N-l-i»->RO 
II RO,R2,R2 Multiply and add operation 
* 

* 
* 
* 

* 

ADDF RO,R2,RO 

RETURN SEQUENCE 

RETS 

* end 
* 

.end 

; Add last product 

Return 

12·51 

• 



• 

Software Applications - Application-Oriented Operations 

72.4.2.2 IIR Filters 

12-52 

The transfer function of the IIR filters has both poles and zeros. Its output 
depends on both the input and the past output. As a rule, they need less 
computation than an FIR with similar frequency response, but they have the 
drawback of being sensitive to coefficient quantization. Most often, the IIR 
filters are implemented as a cascade of second-order sections, called biquads. 
Examples 12-31 and 12-32 show the implementation for one biquad and for 
any number of biquads respectively. 

The equation for a single biquad is given by: 

y[n] = a1 y[n-1] + a2 y[n-2] + bO x[n] + b1 x[n-1] + b2 x[n-2] 

This equation can be implemented more conveniently by the following two 
equations which have less storage requirements: 

d[n] = a2 d[n-2] + a1 d[n-1] + x[n] 
y[n] = b2 d[n-2] + b1 d[n-1] + bO d[n] 

Figure 12-2 shows the memory organization for this approach, and Example 
12-31 is an implementation of a single biquad on the TMS320C30. 

filter initial delay final delay 

low coefficients node values noda values 

address a2 newest delay dIn) dln-1) 
b2 dln-1) dln-21 circular queue 
a1 oldest delay dln-21 dIn) 
b1 

high bO 
address 

Figure 12-2. Data Memory Organization For a Single Biquad 

As in the case of FIR filters, the address for the start of the values d must be 
a multiple of 4, i.e., the last two bits of the beginning address must be zero . 
The block-size register BK must be initialized to 3. 



Software Applications - Application-Oriented Operations 

Example 12-31. IIR Filter (One Biquad) 

* 
* TITL IIR f il ter 
* 
* 
* SUBROUTINE I I R I 
* 
* 
* 
* 

IIRI == IIR FILTER (ONE BIQUAD) 

* EQUATIONS: d(n) a2 * d(n-2) + al * d(n-I) + x(n) 
* y(n) b2 * d(n-2) + bl * d(n-I) + bO * d(n) 
* * OR y(n) al*y(n-l) + a2*y(n-2) + bO*x(n) 
* + bl*x(n-l) + b2*x(n-2) 
* 
* TYPICAL CALLING SEQUENCE: 

load 
load 
load 
load 
CALL 

R2 
ARO 
ARI 
BK 
IIRI 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+-----------------------
R2 I INPUT SAMPLE X(N) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

ARO I ADDRESS OF FILTER COEFFICIENTS (A2) 
ARI I ADDRESS OF DELAY MODE VALUES (D(N-2» 
BK I BK = 3 

REGISTERS USED AS INPUT: R2, ARO, ARI, BK 
REGISTERS MODIFIED: RO, RI, R2, ARO, ARI 
REGISTER CONTAINING RESULT: RO 

* CYCLES: 11 WORDS: 8 
* 
* 
* FILTER 
* 

. global IIRI 
* 
IIRI MPYF3 *ARO,*ARI,RO 
* ; a2 * d(n-2) 

MPYF3 *++ARO(I),*ARI--(I)%,RI 
* ; b2 * d(n-2) 
* 

-> 

-> 

RO 

RI 

MPYF3 *++ARO(I),*ARI,RO ; al * d(n-I) 
II ADDF3 RO,R2,R2 a2*d(n-2)+x(n) -> 
* 

-> RO 
R2 

MPYF3 *++ARO(I),*ARI--(I)%,RO ; bl * d(n-I) -> RO 
II ADDF3 RO,R2,R2 al*d(n-I)+a2*d(n-2)+x(n) -> R2 • 

12-53 



• 

Software Applications - Application-Oriented Operations 

* 
MPYF3 *++ARO(1),R2,R2; bO * d(n) -> R2 

II STF R2,*AR1++(1)% 
* Store d(n) and point to d(n-l). 
* 

ADDF 
ADDF 

RO,R2 
Rl,R2,RO 

bl*d(n-l)+bO*d(n) -> R2 
b2*d(n-2)+bl*d(n-l)+bO*d(n) -> RO 

* 
* 
* 

RETURN SEQUENCE 

RETS Return 
* 
* end 
* 

.end 

12-54 

In the more general case, the IIR filter will contain N>1 biquads. The 
equations for its implementation are given by the following pseudo-C lan
guage code: 

y[O,n] = x[n] 
for (i=O; i<N; i++){ 

} 

d[i,n] = a2[/1 d[i, n-2] + a1 [/1 d[ i,n-1] + y[ i-1,n] 
y[i,n] = b2[/1 d[i,n-2] + b1 [/1 d[i,n-1]+ bO[/1 d[i,n] 

y[n] = y[N-1, n] 

The corresponding memory organization is shown in Figure 12-3, while Ex
ample 12-32 is the TMS320C30 assembly-language code . 



Software Applications - Application-Oriented Operations 

fllter 

low coefficients 

addre.s a2(0) newest delay 
b2(0) 
a1(0) oldest delay 
b1(0) 
bOlO) 

• • 
• 

a2(N-1) 
b2(N-1) 
a1(N-1) 
b1fN-1) 

high bO(N-1) 
addres. 

Inltiel deley 
node value. 

d(O. n) 
d(O. n-1) 
d(O. n-2) 

empty 

• • • 
d(N-1. n) 

d(N-1. n-1) 
d(N-1. n-2) 

empty 

final delay 
node value. 
d(O. n-1) 
d(O. n-2) 

d(O. n) 
empty 

• 
• • 

d(N-1. n-1) 
d(N-1. n-2) 

d(N-1. n) 
empty 

8 ula, queue 

3 ular queue 

Figure 12-3. Data Memory Organization For N Biquads 

The block register BK should be initialized to 3, and the beginning of each set 
of d values (Le., d[i.n], ;=O ... N-1) should be at an address that is a multiple 
of 4 (the last two bits zero), as stated in the case of a single biquad . 

12-55 

• 



Software Applications - Application-Oriented Operations 

Example 12-32. IIR Filters (N > 1 Biquads) 

* 
* TITL IIR FILTERS (N > 1 BIQUADS) 
* 
* 
* SUBROUTINE IIR2 
* 
* 
* 
* EQUATIONS: 
* 

y{O,n) = x{n) 

* FOR (i = 0; i < N; i ++ ) 
* ( 
* d{i,n) = a2(i) * d{i,n-2) + a1{i) * d{i,n-1) + y{i-1,n) 
* y(i,n) = b2{i) * d{i,n-2) + b1{i) * d{i,n-1) + bO{i) * d{i,n) 
* } 
* y{n) = y(N-1,n) 
* * TYPICAL CALLING SEQUENCE: 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

load 
load 
load 
load 
load 
load 
load 
CALL 

R2 
ARO 
AR1 
IRO 
IR1 
BK 
RC 
IIR2 

* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* ---------+-----------------------
* R2 I INPUT SAMPLE x(n) 
* ARO I ADDRESS OF FILTER COEFFICIENTS (a2{O») 
* AR1 I ADDRESS OF DELAY NODE VALUES (d(O,n-2)) 
* BK I BK = 3 
* IRO I IRO = 4 
* IR1 I IR1 = 4*N-4 
* RC I NUMBER OF BIQUADS (N) - 2 
* 
* REGISTERS USED AS INPUT: R2, ARO, AR1, IRO, IR1, BK, RC 
* REGISTERS MODIFIED: RO, R1, R2, ARO, AR1, RC 
* REGISTER CONTAINING RESULT: RO 
* 
* CYCLES: 23 + 6{N-1) WORDS: 17 
* 
* 
* .: 
IIR2 
* 
* 

12-56 

.global IIR2 

MPYF3 

MPYF3 

*ARO, *AR1, RO 
; a2{O) * d{O,n-2) -> RO 

*++ARO{l), *AR1--(1)%, R1 
; b2{O) * d{O,n-2) -> R1 



Software Applications - Application-Oriented Operations 

* 
II 
* 

II 

II 
* 
* 
* 
II 
* 
II 
* 

II 
* 
II 
* 

* 
LOOP 
* 
* 

MPYF3 
ADDF3 

MPYF3 
ADDF3 
MPYF3 
STF 

RPTB 

MPYF3 
ADDF3 

MPYF3 
ADDF3 

MPYF3 
ADDF3 

MPYF3 
ADDF3 

*++ARO(1),*AR1,RO; a1(O) * D(O,n-1) -) RO 
RO, R2, R2 First sum term of d(O,n). 

*++ARO(1),*AR1--(1)%,RO ;b1(O) * d(O,n-1) -) RO 
RO, R2, R2 ; Second sum term of d(O,n). 
*++ARO(1),R2,R2 ;bO(O) * d(O,n) -> R2 
R2, * AR 1-- ( 1) % 

Store d(O,n); Point to d(O,n-2) 

LOOP ; Loop for 1 <= i < n 

*++ARO(1),*++AR1(IRO) ,RO ;a2(i) * d(i,n-2) -) RO 
RO,R2,R2 First sum term of y(i-1,n). 

*++ARO(1),*AR1--(1)%,R1 ;b2(i) * D(i,n-2) -) R1 
R1,R2,R2 Second sum term of y(i-1,n). 

*++ARO(1),*AR1,RO ;a1(i) * d(i,n-1) -) RO 
RO, R2, R2 First sum of d(i,n). 

*++ARO(1),*AR1--(1)%,RO ;b1(i) * d(i,n-1) -) RO 
RO, R2, R2 Second sum term of d(i,n). 

STF R2, *AR1--(1)% 

MPYF3 
, Store d(i,n); point to d(i,n-2) 

*++ARO(l) , R2, R2 
bO(i) * d(i,n) -) R2 

* FINAL SUMMATION 
* 

ADDF RO,R2 
ADDF3 R1,R2,RO 

* 
Nap *AR1-- (IR1) 
Nap *AR1--(1)% 

* 
* RETURN SEQUENCE 
* 

RETS 
* 
* end 
* 

.end 

First sum term of y(n-1,n) 
Second sum term of y(n-1,n) 

Return to first biquad 
Point to d(O,n-1) 

Return 

12.4.2.3 Adaptive Filters (LMS Algorithm) 

There are applications in digital signal processing where a filter must be 
adapted over time to keep track of changing conditions. The book "Theory • 
and Design of Adaptive Filters" by Treichler, Johnson, and Larimore (Wiley
Interscience, 1987) presents the theory of adaptive filters. Although in theory 
both FIR and IIR structures can be used as adaptive filters, the stability prob-
lems and the local optimum points that the IIR filters exhibit, make them less 
attractive for such an application. Hence, until further research makes IIR fil-
ters a better choice, only the FIR filter are used in adaptive algorithms of 
practical applications. 

In an adaptive FIR filter, the filtering equation takes the form: 

YEn] = h[n,O] x[n]+ h[n,1] x[n-1]+ ... + h[n,N-1] x[n-(N-1)] 

12-57 



Software Applications - Application-Oriented Operations 

12-68 

The filter coefficients are time-dependent. In a least-mean-squares (LMS) 
algorithm, the coefficients are updated by a formula of the form: 

h[n+1,/] =h[n,I] + 13 x[n-/], i=O,1, ... ,N-1 

13 is a constant for the computation. The updating of the filter coefficients can 
be interleaved with the computation of the filter output so that it takes 3 cycles 
per filter tap to do both. The updated coefficients are written over the old 
filter coefficients. Example 12-33 shows the implementation of an adaptive 
FIR filter on the TMS320C30. The memory organization and the positioning 
of the data in memory should follow the same rules as the above FIR filter with 
fixed coefficients. 



Software Applications - Application-Oriented Operations 

Example 12-33. Adaptive FIR Filter (lMS Algorithm) 

* TITL ADAPTIVE FIR FILTER (LMS ALGORITHM) 

* 
* SUBROUTINE L M S 

* LMS == LMS ADAPTIVE FILTER 
* 
* 
* 
* EQUATIONS: yen). = h(n,O)*x(n) + h(n,l)*x(n-l) + ... 
* + h(n,N-l)*x(n-(N-l» 
* FOR (i = 0; i < N; i++) 
* h(n+l,i) = h(n,i) + tmuerr * x(n-i) 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
& 

TYPICAL CALLING SEQUENCE: 

& 

* 

load 
load 
load 
load 
load 
CALL 

R4 
ARO 
ARI 
RC 
BK 
FIR 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+-----------------------

R4 I SCALE FACTOR (2 * mu * err) 
ARO I ADDRESS OF h(n,N-l) 
ARI I ADDRESS OF x(n-(N-l» 
RC I LENGTH OF FILTER - 2 (N-2) 
BK I LENGTH OF FILTER (N) 

* REGISTERS USED AS INPUT: R4, ARO, ARl, RC, BK 
* REGISTERS MODIFIED: RO, Rl, R2, ARO, ARl, RC 
* REGISTER CONTAINING RESULT: RO 
* 
* PROGRAM SIZE: 10 words 
* 
* EXECUTION CYCLES: 12 + 3(N-l) 
* 
* 
* SETUP (i = 0) 
* 

* 
LMS 
* 

* 
* 
* 

* 
* 
* 

.global LMS 

MPYF3 

LDF 

MPYF3 

ADDF3 

, 
*ARO, *ARl, RO 

0.O,R2 

Initialize RO: 

h(n,N-l) * x(n-(N-l» -> RO 
Initialize R2. 

; Initialize Rl: 
*ARl++(l)%, R4, Rl 

; x(n-(N-l» * tmuerr -> Rl 
*ARO++(l), Rl, Rl 

h(n,N-l) + x(n-(N-l» * 
tmuerr -> Rl 

• 
12-59 



a 

Software ~pplications - Application-Oriented Operations 

* FILTER AND UPDATE ( 1 <= I < N) 
* 
* 
* 

II 
* 
* 

II 
* 
LOOP 
* 
* 

RPTB 

MPYF3 
ADDF3 

MPYF3 
STF 

ADDF3 

ADDF3 
STF 

LOOP Setup the repeat block. 

; Filter: 
*ARO--(l),ARl,RO ; h(n,N-l-i) * x(n-(N-l-i» -) RO 

RO,R2,R2 Multiply and add operation. 

; UPDATE: 
*ARl++(1)%,R4,Rl ;x(n,N-(N-l-i» * tmuerr -) Rl 

Rl,*ARO++(l) ; Rl -) h(n+l,N-l-(i-l» 

*ARO++(l), Rl, Rl 

RO,R2,RO 
Rl,*-ARO(l) 

h(n,N-l-i) + x(n-(N-l-i»*tmuerr -) Rl 

Add last product. 
h(n,O) + x(n) * tmuerr -) h(n+l,O) 

* 
* 
* 

RETURN SEQUENCE 

RETS Return 
* 
* end 
* 

.end 

12.4.3 Matrix-Vector Multiplication 

12-60 

In matrix-vector multiplication, a K x N matrix of elements m(i,j) having K 
rows and N columns is multiplied by an N x 1 vector to produce a K x 1 result. 
The multiplier vector has elements v(j), and the product vector has elements 
p(i). Each one of the product-vector elements is computed by the expression: 

p(l) = m(;,O) v(O) + m(i,1) v(1) + ... + m(i,N-1) v(N-1) ; = 0,1, ... ,K-1 

This is essentially a dot product, and the matrix-vector multiplication contains 
as a special case the dot product presented in Example 12-2. In pseudo-C 
format, the computation of the matrix multiplication is expressed by: 

for (i=0; ;< K; i+ +) { 
p(l) = 0 
for U=O;j<N;j++) 

p(i) = p(l) + m(i,j1* v(j) 
} 

Figure 12-4 shows the data memory organization for matrix-vector multipli
cation, and Example 12-34 is the TMS320C30 assembly code to implement 
it. Note that in Example 12-34, K (number of rows) should be greater than 0 
and N (number of columns) should be greater than 1. 



Software Applications - Application-Oriented Operations 

input result 

low 
matrix storage vector storage vector storage 

address I mIO.O) I I viOl I I pial 
miO. ;1 vl1) p11) 

• • • • • • • • • 
miO. N-1) v1N-11 

m11. 01 p1K-11 
high m11.11 

address • 
• • 

Figure 12-4. Data Memory Organization for Matrix-Vector Multiplication 

• 
12-61 



Software Applications - Application-Oriented Operations 

Example 12-34. Matrix times a vector multiplication 

* 
* TITL MATRIX TIMES A VECTOR MULTIPLICATION 
* 
* * SUBROUTINE MAT 
* * MAT == MATRIX TIMES A VECTOR OPERATION 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

TYPICAL CALLING SEQUENCE: 

load 
load 
load 
load 
load 
CALL 

ARO 
ARI 
AR2 
AR3 
R1 
MAT 

ARGUMENT ASSIGNMENTS: 
argument I FUNCTION 
---------+-----------------------
ARO I ADDRESS OF M(O,O) 
AR1 I ADDRESS OF V(O) 
AR2 I ADDRESS OF P(O) 
AR3 I NUMBER OF ROWS - 1 (K-1) 
R1 I NUMBER OF COLUMNS - 2 (N-2) 

REGISTERS USED AS INPUT: ARO, AR1, AR2, AR3, R1 
REGISTERS MODIFIED: RO, R2, ARO, AR1, AR2, AR3, IRO, 

RC, RSA, REA 

* PROGRAM SIZE: 11 
* 
* EXECUTION CYCLES: 6 + 10 * K + K * (N - 1) 
* 
* 
* 

.global MAT 
* 
* SETUP 
* 
MAT 

* 

LDI 
ADDI 

R1,IRO 
2,IRO 

number of columns-2 -> IRO 
IRO = N 

* FOR (i = 0; i < K; i++) LOOP OVER THE ROWS. 
* 

• 
ROWS 

* 
* 

LDF 
MPYF3 

0.0,R2 ; initialize R2 
*ARO++(1),*AR1++(1),RO 

; m(i,O) * v(O) -> RO 

* FOR (j = 1; j < N; j++) DO DOT PRODUCT OVER COLUMNS 
* 
* 

" * 

12-62 

RPTS 

MPYF3 
ADDF3 

R1 multiply a row by a column. 

*ARO++(1),*AR1++(1),RO ;m(i,j) * v{j) -> RO 
RO,R2,R2 m(i,j-1) * v(j-1) + R2 -> R2. 



Software Applications - Application-Oriented Operations 

* 
* 

DBD AR3,ROWS counts the number of rows left. 

ADDF RO,R2 last accumulate. 
STF R2,*AR2++(1) result -> p(i) 
NOP *--ARl(IRO); set ARI to point to v(O). 

* I!! DELAYED BRANCH HAPPENS HERE I!! 

* 
* 
* 

* 

RETURN SEQUENCE 

RETS return 

* end 
* 

.end 

12.4.4 Fast Fourier Transforms (FFT) 

Fourier transforms are an important tool often used in digital signal processing 
systems. The purpose of the transform is to convert information from the time 
domain to the frequency domain. The inverse Fourier transform converts in
formation back to the time domain from the frequency domain. Implementa
tion of Fourier transforms that are computationally efficient are known as Fast 
Fourier Transforms (FFTs). The theory of FFTs can by found in books such 
as nDFT/FFT and Convolution Algorithms" by C.S. Burrus and T.W. Parks 
(John Wiley. 1985), and in the book "Digital Signal Processing Applications 
with the TMS320 Family". 

The TMS320C30 has many features that permit very efficient implementation 
of numerically intensive algorithms. Some of these features are particularly 
well suited for FFTs. The high speed of the device (60 ns cycle-time) makes 
easier the implementation of real-time algorithms, while the floating-point 
capability eliminates the problems associated with dynamic range. The pow
erful indexing scheme in indirect addressing facilitates the access of FFT but
terfly legs that have different spans. A construct that reduces the looping 
overhead in algorithms heavily dependent on loops (such as the FFTs), is the 
repeat block implemented by the RPTa instruction. This construct gives the 
efficiency of in-line coding. but has the form of a loop. Since the output of 
the FFT is in scrambled (bit-reversed) order when the input is in regular order. 
there is a need to restore it in the proper order. In the TMS320C30. there is 
no need to spend extra cycles for this rearrangement. The device has a special 
form of indirect addressing (bit-reversed addressing mode), that can be used 
when the FFT output is needed. This mode permits accessing the FFT output 
in the proper order. 

Fast Fourier Transform is a label for a collection of algorithms implementing 
efficient conversion from time to frequency domain. Different types of FFT 
are: 

• Radix-2 and radix-4 algorithms(depending on the size of the FFT but-
terfly) 

• Decimation in time or frequency (DIT or DIF) 

• Complex or real FFTs 
• FFTs of different lengths, etc. 

12-63 

II 



• 

Software Applications - Application-Oriented Operations 

12-64 

The present implementation of the FFT was based on programs contained in 
the book "DFT/FFT and Convolution Algorithms" by C.S. Burrus and T.W. 
Parks, and in the paper "Real-Valued Fast Fourier Transform Algorithms" by 
H.V. Sorensen et a!. (IEEE Trans. on ASSP, June 1987). 

Examples 12-35 and 12-36 show the implementation of a complex radix-2, 
DIF, FFT on the TMS320C30. Example 12-35 contains the generic code of 
the FFT that can be used with any length number. However, for the complete 
implementation of an FFT, a table of twiddle factors (sines/cosines) is needed, 
and this table depends on the size of the transform. To retain the generic form 
of Example 12-35, the table with the twiddle factors (containing 1 1/4 com
plete cycles of a sine) is presented separately in Example 12-36 for the case 
of a 64-point FFT. A full cycle of a sine should have a number of points equal 
to the FFT size. In Example 12-36, the FFT length Nand M, which is equal 
to the logarithm of N to base equal to the radix, are defined. M is the number 
of stages of the FFT. For a 64-point FFT, M=6 when using a radix-2 algo
rithm or M=3 when using a radix-4 algorithm. If the table with the twiddle 
factors and the FFT code are kept in separate files, they should be connected 
at link time . 



Software Applications - Application-Oriented Operations 

Example 12-35. Complex, Radix-2, DIF FFT 

* 
* TITL COMPLEX, RADIX-2, DIF FFT 
* 
* GENERIC PROGRAM FOR A LOOPED-CODE RADIX-2 FFT COMPUTATION IN 320C30 
* 
* THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 111. 
* THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION 
* IS DONE IN-PLACE, BUT THE RESULT IS MOVED TO ANOTHER MEMORY 
* SECTION TO DEMONSTRATE THE BIT-REVERSED ADDRESSING. 
* 
* THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA SECTION. 
* THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE GENERIC 
* NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF THE FFT 
* N AND LOG2{N) ARE DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED 
* DURING LINKING. 
* 
* 

.globl 

.globl 

.globl 

.globl 

FFT 
N 
M 
SINE 

INP .usect "IN",1024 
.BSS OUTP,1024 

.text 

* INITIALIZE 

FFTSIZ . word N 
LOGFFT .word M 
SINTAB .word SINE 
INPUT . word INP 
OUTPUT . word OUTP 

FFT: LDP FFTSIZ 

LDI @FFTSIZ,IRl 
LSH -2,IRl 
LDI O,AR6 
LDI @FFTSIZ,IRO 
LSH 1,IRO 
LDI @FFTSIZ,R7 
LDI 1,AR7 
LDI 1,AR5 

* OUTER LOOP 

LOOP: NOP *++AR6(1) 
LDI @INPUT,ARO 
ADDI R7,ARO,AR2 
LDI AR7,RC 
SUBI 1,RC 

Entry point for execution 
FFT size 
LOG2{N) 
Address of sine table 

Memory with input data 
Memory with output data 

Command to load data page pointer 

IR1=N/4, pointer for SIN/COS table 
AR6 holds the current stage number 

IRO=2*Nl (because of real/imag) 
R7=N2 
Initialize repeat counter of first loop 
Initialize IE index (AR5=IE) 

Current FFT stage 
ARO points to X{I) 
AR2 points to X{L) 

RC should be one less than desired # 

12-65 

• 



• 

Software Applications - Application-Oriented Operations 

* FIRST LOOP 

II 
BLKl 
II 

RPTB 
ADDF 
SUBF 
ADDF 
SUBF 
STF 
STF 
STF 
STF 

BLKl 
*ARO,*AR2,RO ; 
*AR2++,*ARO++,RiL 
*AR2,*ARO,R2 
*AR2,*ARO,R3 
R2, *ARO--
R3, *AR2--
RO, *ARO++ (IRO) 
Rl,*AR2++(IRO) 

RO=X(I)+X(L) 
Rl=X(I)-X(L) 
R2=Y(I)+Y(L) 
R3=Y(I)-Y(L) 
Y(I)=R2 and ... 
Y(L)=R3 
X(I)=RO and ... 
X(L)=Rl and ARO,2 ARO,2 + 2*n 

* IF THIS IS THE LAST STAGE, YOU ARE DONE 

CMPI @LOGFFT,AR6 
BZD END 

* MAIN INNER LOOP 

LDI 2,ARl Init loop counter for inner loop 
LDI @SINTAB,AR4 Initialize IA index (AR4=IA) 

INLOP: ADDI AR5,AR4 IA=IA+IE; AR4 points to cosine 
LDI ARl,ARO 
ADDI 2,ARl Increment inner loop counter 
ADDI @INPUT,ARO (X(I) ,Y(I» pointer 
ADDI R7,ARO,AR2 (X(L) ,Y(L» pointer 
LDI AR7,RC 
SUBI l,RC RC should be one less than desired # 
LDF 

* SECOND LOOP 

* 

II 
* 

II 

II 

II 
* 

BLK2 
II 

12-66 

RPTB 
SUBF 
SUBF 

MPYF 
ADDF 

MPYF 
STF 
SUBF 
MPYF 
ADDF 
MPYF 
STF 

ADDF 
STF 
STF 

CMPI 
BNE 

LSH 

*AR4,R6 

BLK2 
*AR2,*ARO,R2 
*+AR2,*+ARO,Rl 

R6=SIN 

R2=X(I)-X(L) 

; Rl=Y(I)-Y(L) 
R2,R6,RO ;RO=R2*SIN and ... 
*+AR2,*+ARO,R3 

R3=Y(I)+Y(L) 
Rl,*+AR4(IRl),R3 ;R3 = Rl * COS and 
R3,*+ARO Y(I)=Y(I)+Y(L) 
RO,R3,R4 R4=Rl*COS-R2*SIN 
Rl,R6,RO RO=Rl*SIN and ... 
*AR2,*ARO,R3 ; R3=X(I)+X(L) 
R2,*+AR4(IRl),R3 R3 = R2 * COS and ... 
R3,*ARO++(IRO) 

X(I)=X(I)+X(L) and ARO=ARO+2*Nl 
RO,R3,R5 R5=R2*COS+Rl*SIN 
R5,*AR2++(IRO) X(L)=R2*COS+Rl*SIN, incr AR2 and ... 
R4, *+AR2 Y(L)=Rl*COS-R2*SIN 

R7,ARl 
INLOP Loop back to the inner loop 

l,AR7 Increment loop counter for next time 



Software Applications - Application-Oriented Operations 

BRDP LOOP5 
LSH l,AR5 
LDI R7,IRO 
LSH -l,R7 

Next FFT stage (delayed) 
IE=2*IE 
Nl=N2 

* STORE RESULT OUT USING 
; N2=N2j2 

BIT-REVERSED ADDRESSING 

END: 

II 
BITRV 
II 

SELF 

LDI 
SUBI 
LDI 
LDI 
LDI 
LDI 

RPTB 
LDF 
LDF 
STF 
STF 

BR 
.end 

@FFTSIZ,RC 
l,RC 
@FFTSIZ,IRO 
2,IRI 
@INPUT,ARO 
@OUTPUT,ARI 

BITRV 
*+ARO(l),RO 
*ARO++(IRO)B,Rl 
RO,*+ARl(l) 
Rl,*ARl++(IRl) 

SELF 

RC=N 
RC should be one less than desired # 
IRO=size of FFT=N 

Branch to itself at the end 

12-67 

• 



Software Applications - Application-Oriented Operations 

Example 12-36. Table With Twiddle Factors For A 64-Point FFT 

* 
*TITL TABLE WITH TWIDDLE FACTORS FOR A 64-POINT FFT 
* 
* FILE TO BE LINKED WITH THE SOURCE CODE FOR A 64-POINT, RADIX-2 FFT. 
* 

.globl SINE 

.globl N 

.globl M 

N .set 64 
M .set 6 

.data 

SINE 
.float 0.000000 
.float 0.098017 
. float 0.195090 
.float 0.290285 
.float 0.382683 
.float 0.471397 
.float 0.555570 
.float 0.634393 
.float 0.707107 
.float 0.773010 
.float 0.831470 
.float 0.881921 
.float 0.923880 
.float 0.956940 
.float 0.980785 
.float 0.995185 

COSINE 
.float 1.000000 
.float 0.995185 
.float 0.980785 
.float 0.956940 
.float 0.923880 
.float 0.881921 
.float 0.831470 
.float 0.773010 
.float 0.707107 
.float 0.634393 
.float 0.555570 
.float 0.471397 
.float 0.382683 
.float 0.290285 
.float 0.195090 
.float 0.098017 
.float 0.000000 
.float -0.098017 
.float -0.195090 
.float -0.290285 
.float -0.382683 
.float -0.471397 
.float -0.555570 
.float -0.634393 
.float -0.707107 
.float -0.773010 

12-68 



Software Applications - Application-Oriented Operations 

.float 
• float 
.float 
.float 
.float 
.float 
.float 
. float 
. float 
.float 
. float 
.float 
.float 
. float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 
. float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 
.float 

-0.831470 
-0.881921 
-0.923880 
-0.956940 
-0.980785 
-0.995185 
-1. 000000 
-0.995185 
-0.980785 
-0.956940 
-0.923880 
-0.881921 
-0.831470 
-0.773010 
-0.707107 
-0.634393 
-0.555570 
-0.471397 
-0.382683 
-0.290285 
-0.195090 
-0.098017 

0.000000 
0.098017 
0.195090 
0.290285 
0.382683 
0.471397 
0.555570 
0.634393 
0.707107 
0.773010 
0.831470 
0.881921 
0.923880 
0.956940 
0.980785 
0.995185 

The radix-2 algorithm has a great tutorial value because it is relatively easy to 
understand how the FFT algorithm functions. However, radix-4 implementa
tions can increase the speed of the execution by reducing the overall arith
metic required. Example 12-37 shows the generic implementation of a 
complex, DIF FFT in radix-4. A companion table, like the one in Example 
12-36, should have a value of M equal to the 10gN, where the base of the lo
garithm is four. 

12-69 

• 



• 

Software Applications - Application-Oriented Operations 

Example 12-37. Complex, Radix-4, DIF FFT 

* * TITL COMPLEX, RADIX-4, DIF FFT 
* * GENERIC PROGRAM TO DO A LOOPED-CODE RADIX-4 FFT COMPUTATION IN 
* THE TMS320C30. 
* * THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 117. 
* THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY, AND THE COMPUTATION 
* IS DONE IN-PLACE. 
* * THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA SECTION. 
* THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE GENERIC 
* NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF THE 
* FFT NAND LOG4(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED 
* DURING LINKING. 
* * IN ORDER TO HAVE THE FINAL RESULT IN BIT-REVERSED ORDER, THE TWO 
* MIDDLE BRANCHES OF THE RADIX-4 BUTTERFLY ARE INTERCHANGED DURING 
* STORAGE. NOTE THIS DIFFERENCE WHEN COMPARING WITH THE PROGRAM IN 
* P. 117 OF THE BURRUS AND PARKS BOOK. 
* 
* 

.globl 

.glob1 

.globl 

.globl 

.usect 

.text 

* INITIALIZE 

TEMP .word 
STORE .word 

.word 

.word 

. word 

.word 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

12-70 

FFT 
N 
M 
SINE 

"IN",INP,1024; 

$+2 
FFTSIZ 
N 
M 
SINE 
INP 

FFTSIZ,1 
LOGFFT,1 
SINTAB,1 
INPUT, 1 
STAGE, 1 
RPTCNT,1 
IEINDX,1 
LPCNT,1 
JT,1 
IA1,1 

Entry point for execution 
FFT size 
LOG4(N) 
Address of sine table 

Memory with input data 

Beginning of temp storage area 

FFT size 
LOG4(FFTSIZ) 
Sine/cosine table base 
Area with input data to process 
FFT stage # 
Repeat counter 
IE index for sine/cosine 
Second-loop count 
JT counter ,in program, P. 117 
IA1 index in program, P. 117 



Software Applications - Application-Oriented Operations 

FFT: 

* INITIALIZE 
LDP 
LDI 
LDI 
LDI 
STI 
LDI 
STI 
LDI 
STI 
LDI 
STI 

LDP 
LDI 
LDI 
LDI 
LDI 
STI 
LSH 
LSH 
LDI 
STI 
LSH 
STI 
ADD I 
STI 
SUBI 
LSH 

* OUTER LOOP 

LOOP: 
LDI 
ADDI 
ADDI 
ADDI 
LDI 
SUBI 

* FIRST LOOP 

* 

* 

* 

II 

II 

RPTB 
ADDF 

ADDF 

ADDF 
SUBF 

STF 
SUBF 
LDF 
LDF 
ADDF 
ADDF 
STF 

DATA LOCATIONS 
TEMP 
@TEMP,ARO 
@STORE,ARI 
*ARO++,RO 
RO,*ARI++ 
*ARO++,RO 
RO,*ARI++ 
*ARO++,RO 
RO,*ARI++ 
*ARO,RO 
RO, *ARI 

FFTSIZ 
@FFTSIZ,RO 
@FFTSIZ,IRO 
@FFTSIZ,IRI 
O,AR7 
AR7,@STAGE 
I,IRO 
-2,IRI 
I,AR7 
AR7,@RPTCNT 
-2,RO 
AR7,@IEINDX 
2,RO 
RO,@JT 
2,RO 
I,RO 

@INPUT,ARO 
RO,ARO,ARI 
RO,ARI,AR2 
RO,AR2,AR3 
@RPTCNT,RC 
1,RC 

BLKI 
*+ARO,*+AR2,RI 

Command to load data page counter 

Xfer data from one memory to the other 

Command to load data page pointer 

@STAGE holds the current stage number 
IRO=2*NI (because of real/imag) 
IRI=N/4, pointer for SIN/COS table 

Initialize repeat counter of first loop 

Initialize IE index 

JT=RO/2+2 

RO=N2 

ARO points to X(I) 
ARI points to X(II) 
AR2 points to X(I2) 
AR3 points to X(I3) 

RC should be one less than desired # 

; RI=Y(I)+Y(I2) 
*+AR3,*+ARI,R3 

R3,RI,R6 ; 
*+AR2,*+ARO,R4 

R6,*+ARO 
R3,RI 
*AR2,RS 
*+ARI,R7 
*AR3,*ARI,R3 
RS,*ARO,RI 
RI, *+ARI 

R3=Y(Il)+Y(13) 
R6=R1+R3 

R4=Y(I)-Y(I2) 
Y(I)=R1+R3 
RI=RI-R3 
RS=X(I2) 
R7=Y(Il) 
R3=X(Il) +X( 13) 
Rl=X(I)+X(I2) 
Y(Il)=RI-R3 

12-71 

• 



Software Applications - Application-Oriented Operations 

II 

II 

II 

BLKI 
II 

ADDF 
SUBF 
STF 
SUBF 
SUBF 
SUBF 
STF 
SUBF 
ADDF 
STF 
STF 
SUBF 
ADDF 
STF 
STF 

R3,Rl,R6 
RS,*ARO,R2 ; 
R6,*ARO++(IRO) 
R3,Rl ; 
*AR3,*ARl,R6 ; 
R7, *+AR3 ,R3 ; 
Rl,*ARl++(IRO) 
R6,R4,RS 
R6,R4 
RS,*+AR2 
R4,*+AR3 
R3,R2,RS 
R3,R2 ; 
RS,*AR2++(IRO) 
R2,*AR3++(IRO) 

R6=Rl+R3 
R2=X(I)-X(I2) 

X(I)=Rl+R3 
Rl=Rl-R3 
R6=X(Il)-X(13) 
-R3=Y (Il}--Y (13) 
;X(Il)=Rl-R3 
RS=R4-R6 
R4=R4+R6 
Y(I2)=R4-R6 
Y(13)=R4+R6 
RS=R2-R3 
R2=R2+R3 

X(I2)=R2-R3 
X(13)=R2+R3 

* IF THIS IS THE LAST STAGE, YOU ARE DONE 

LDI 
ADDI 
CMPI 
BZD 
STI 

@STAGE,AR7 
1,AR7 
@LOGFFT,AR7 
END 
AR7,@STAGE 

* MAIN INNER LOOP 

INLOP: 

12-72 

LDI 
STI 
LDI 
STI 

LDI 
ADDI 
LDI 
LDI 
ADDI 
ADDI 
STI 
ADDI 
STI 
ADDI 
ADDI 
LDI 
SUBI 
CMPI 
BZD 
LDI 
LDI 
ADDI 
ADDI 
SUBI 
ADDI 
SUBI 

1,AR7 
AR7,@IAI 
2,AR7 
AR7,@LPCNT 

2,AR6 
@LPCNT,AR6 
@LPCNT,ARO 
@IAl,AR7 
@IEINDX,AR7 
@INPUT,ARO 
AR7,@IAI 
RO,ARO,ARI 
AR6,@LPCNT 
RO,ARl,AR2 
RO,AR2,AR3 
@RPTCNT,RC 
1,RC 
@JT,AR6 
SPCL 
@IAl,AR7 
@IAl,AR4 
@SINTAB,AR4 
AR4,AR7,ARS 
1,ARS 
AR7,ARS,AR6 
1,AR6 

Current FFT stage 

Init IAI index 
I 

Init loop counter for inner loop 

Increment inner loop counter 

IAl=IAl+IE 
(X(I),Y(I» pointer 

(X(Il),Y(Il» pointer 

(X(I2),Y(I2» pointer 
(X(I3),Y(I3» pointer 

RC should be one less than desired # 
If LPCNT=JT, go to 

special butterfly 

Create cosine index AR4 

IA2=IAl+IAl-l 

IA3=IA2+IAl-l 



Software Applications - Application-Oriented Operations 

* 

* 

* 

II 

II 

* 
II 

II 

II 

II 

II 

RPTB 
ADDF 

ADDF 

ADDF 
SUBF 

SUBF 
ADDF 
ADDF 
MPYF 
STF 
ADDF 
SUBF 
SUBF 
MPYF 
STF 
SUBF 
SUBF 

MPYF 
STF 
MPYF 
ADDF 
ADDF 
SUBF 
SUBF 
SUBF 
ADDF 
MPYF 
STF 
MPYF 
SUBF 
MPYF 
STF 
MPYF 
ADDF 
MPYF 
STF 
MPYF 
SUBF 
MPYF 
STF 
MPYF 
ADDF 

SECOND LOOP 

BLK2 
*+AR2,*+ARO,R3 

i R3=Y(I)+Y(I2) 
*+AR3,*+AR1,RS 

R5=Y(Il)+Y(I3) 
RS , R3 , R6 i R6=R3+R5 
*+AR2,*+ARO,R4 

R4=Y(I)-Y(I2) 
RS,R3 i R3=R3-R5 
*AR2,*ARO,Rl i Rl=X(I)+X(I2) 
*AR3,*AR1,RS i R5=X(Il)+X(I3) 
R3,*+ARS(IR1),R6 R6=R3*C02 
R6,*+ARO Y(I)=R3+RS 
RS,Rl,R7 i R7=Rl+R5 
*AR2,*ARO,R2 i R2=X(I)-X(I2) 
RS,Rl Rl=Rl-RS 
Rl,*ARS,R7 i R7=Rl*SI2 
R7, *ARO++ (IRO) i X(I)=Rl+RS 
R7,R6 i R6=R3*C02-Rl*SI2 
*+AR3,*+AR1,RS 

i RS=Y(Il)-Y(I3) 
Rl,*+ARS(IR1),R7 iR7=Rl*C02 
R6,*+ARl Y(Il)=R3*C02-Rl*SI2 
R3,*ARS,R6 R6=R3*SI2 
R7,R6 R6=Rl*C02+R3*SI2 
RS,R2,Rl Rl=R2+RS 
RS,R2 R2=R2-R5 
*AR3,*AR1,RS RS=X(Il)-X(I3) 
RS,R4,R3 R3=R4-RS 
RS,R4 i R4=R4+RS 
R3,*+AR4(IR1),R6 i R6=R3*COl 
R6, *AR1++ (IRO) i X(Il)=Rl*C02+R3*SI2 
Rl,*AR4,R7 R7=Rl*SIl 
R7,R6 i R6=R3*COI-Rl*SIl 
Rl,*+AR4(IR1),R6 i R6=Rl*COl 
R6,*+AR2 Y(i2)=R3*COI-Rl*SIl 
R3,*AR4,R7 R7=R3*SIl 
R7,R6 i R6=Rl*C01+R3*SIl 
R4,*+AR6(IR1),R6 i R6=R4*C03 
R6,*AR2++(IRO) i X(I2)=Rl*C01+R3*SIl 
R2,*AR6,R7 R7=R2*SI3 
R7,R6 i R6=R4*C03-R2*SI3 
R2,*+AR6(IR1) R6; R6=R2*C03 
R6,*+AR3 y(i3)=R4*C03-R2*SI3 
R4,*AR6,R7 R7=R4*SI3 
R7,R6 R6=R2*C03+R4*SI3 

• 
12-73 



Software Applications - Application-Oriented Operations 

BLK2 
* 

STF 

CMPI 
BP 
BR 

R6,*AR3++(IRO) 

@LPCNT,RO 
INLOP 
CONT 

x(i3)=R2*C03+R4*SI3 

LOOP BACK TO THE INNER LOOP 

* SPECIAL BUTTERFLY FOR W=J 

SPCL 

* 

* 

* 

II 

* 
II 

II 

II 

BLK3 
II 

12-74 

LDI 
LSH 
ADDI 

RPTB 
ADDF 
SUBF 
ADDF 

SUBF 

ADDF 
SUBF 
ADDF 
ADDF 

SUBF 
ADDF 
STF 
STF 
SUBF 
SUBF 

STF 
STF 
ADDF 
SUBF 
SUBF 
ADDF 
SUBF 
MPYF 
ADDF 
MPYF 
STF 
SUBF 
MPYF 
STF 
ADDF 
MPYF 
STF 
STF 

CMPI 
BPD 

IR1,AR4 
-1,AR4 
@SINTAB,AR4 

BLK3 

Point to SIN(45) 
Create cosine index AR4=C021 

*AR2,*ARO,Rl Rl=X(I)+X(I2) 
*AR2,*ARO,R2 ; R2=X(I)-X(I2) 
*+AR2,*+ARO,R3 

; 
*+AR2,*+ARO,R4 

; 
*AR3,*AR1,R5 ; 
Rl,R5,R6 
R5,Rl ; 
*+AR3,*+AR1,R5 

R5,R3,R7 
R5,R3 
R3,*+ARO ; 
Rl,*ARO++(IRO) 
*AR3,*AR1,Rl ; 
*+AR3,*+ARl,R3 

R6,*+ARl ; 
R7, *ARl++ (IRO) 
R3,R2,R5 
R2,R3,R2 
Rl,R4,R3 
Rl,R4 
RS,R3,Rl 
*AR4,Rl 
R5,R3 
*R4,R3 
Rl, *+AR2 
R4,R2,Rl 
*AR4,Rl ; 
R3,*AR2++(IRO) 
R4,R2 
*AR4,R2 
Rl, *+AR3 ; 
R2,*AR3++(IRO) 

@LPCNT,RO 
INLOP 

R3=Y(I)+Y(I2) 

R4=Y(I)-Y(I2) 
R5=X( Il) +X( 13) 
R6=R5-Rl 
Rl=Rl+R5 

R5=Y(Il)+Y(13) 
R7=R3-R5 
R3=R3+R5 
Y(I)=R3+R5 

; X(I)=Rl+R5 
Rl=X(Il)-X(13) 

R3=Y(Il)-Y(13) 
Y(Il)=R5-Rl 

; X(Il)=R3-R5 
R5=R2+R3 
R2=-R2+R3 
R3=R4-Rl 
R4=R4+Rl 
Rl=R3-R5 
Rl=Rl*C021 
R3=R3+R5 

R3=R3*C021 
Y(I2)=(R3-R5)*C021 
Rl=R2-R4 
Rl=Rl*C021 

; X(I2)=(R3+R5)*C021 
R2=R2+R4 
R2=R2*C021 
Y(I3)=-(R4-R2)*C021 

X(I3)=(R4+R2)*C021 

Loop back to the inner loop 



Software Applications - Application-Oriented Operations 

CaNT LDI @RPTCNT,AR7 
LDI @IEINDX,AR6 
LSH 2,AR7 Increment repeat counter for 

* next time 
STI AR7 ,@RPTCN'l' 
LSH 2,AR6 IE=4*IE 
STI AR6,@IEINDX 
LDI RO,IRO Nl=N2 
LSH -3,RO 
ADD I 2,RO 
STI RO,@JT JT=N2j2+2 
SUBI 2,RO 
LSH l,RO N2=N2j4 
BR LOOP Next FFT stage 

* STORE RESULT OUT USING BIT-REVERSED ADDRESSING 

END: 

II 
BITRV 
II 

SELF 

LDI 
SUBI 
LDI 
LDI 
LDI 
LDP 
LDI 

RPTB 
LDF 
LDF 
STF 
STF 

BR 
.end 

@FFTSIZ,RC 
l,RC 
@FFTSIZ,IRO 
2,IRl 
@INPUT,ARO 
STORE 
@STORE,ARl 

BITRV 
*+ARO(l),RO 
*ARO++(IRO)<,Rl 
RO,*+ARl(1) 
Rl, *ARl++ (IRl) 

SELF 

RC=N 
RC should be one less than desired # 
IRO=size of FFT=N 

Branch to itself at the end. 

Most often, the data to be transformed is a sequence of real numbers. In this 
case, the FFT demonstrates certain symmetries that permit the reduction of the 
computational load even further. Example 12-38 shows the generic imple
mentation of a real-valued, radix-2 FFT. For such an FFT, the total number 
of storage required for a length-N transform is only N locations instead of 2N 
that are necessary in a complex FFT. The rest of the points can be recovered 
based on the symmetry conditions. 

12-75 

• 



Software Applications - Application-Oriented Opera1;ions 

Example 12-38. Real, Radix-2 FFT 

* 
* TITL REAL, RADIX-2 FFT 
* 
* GENERIC PROGRAM TO DO A RADIX-2 REAL FFT COMPUTATION IN 320C30. 
* 
* THE PROGRAM IS TAKEN FROM THE PAPER BY SORENSEN ET AL., JUNE 1987 
* ISSUE OF THE TRANSACTIONS ON ASSP. 
* 
* THE REAL DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION IS 
* DONE IN-PLACE. THE BIT-REVERSAL IS DONE AT THE BEGINNING OF 
* THE PROGRAM. 
* 
* THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA 
* SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE 
* THE GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE 
* SIZE OF THE FFT NAND LOG2(N) ARE DEFINED IN A .GLOBL DIRECTIVE 
* AND SPECIFIED DURING LINKING. THE LENGTH OF THE TABLE IS 
* N/4 + N/4 = N/2. 
* 
* 

.globl FFT 

.globl N 

.globl M 

. globl SINE 

.bss INP,1024 

.text 

* INITIALIZE 

FFTSIZ .word N 
LOGFFT .word M 
SINTAB .word SINE 
INPUT .word INP 

FFT: LDP FFTSIZ 

Entry point for execution 
FFT size 
LOG2(N) 
Address of sine table 

Memory with input data 

Command to load data page printer 

* DO THE BIT-REVERSING AT THE BEGINNING 

LDI 
SUBI 
LDI 
LSH 
LDI 
LDI 

RPTB 
CMPI 
BGE 
LDF 

II LDF 
STF 

II STF 

12-76 

@FFTSIZ,RC 
1,RC 
@FFTSIZ,IRO 
-l,IRO 
@INPUT,ARO 
@INPUT,AR1 

BITRV 
AR1,ARO 
CONT 
*ARO,RO 
*AR1,R1 
RO, *AR1 
R1,*ARO 

RC=N 
RC should be one less than desired # 

IRO=half the size of FFT=N/2 

Exchange locations only 
if ARO<AR1 



Software Applications - Application-Oriented Operations 

CONT 
BITRV 

NOP 
NOP 

*ARO++ 
*ARl++ (IRO) B 

* LENGTH-TWO BUTTERFLIES 

LDI @INPUT,ARO 
LDI IRO,RC 

ARO points to XCI) 
Repeat N/2 times 

SUBI 1,RC RC should be one less than desired # 

RPTB BLKI 
ADDF *+ARO,*ARO++,RO 

* RO=X (I) +X (I+l) 
SUBF *ARO,*-ARO,Rl 

* Rl=X{I)-X{I+l) 
BLKI STF RO,*-ARO X{I)=X{I)+X(I+l) 
II STF Rl,*ARO++ X{I+l)=X{I)-X{I+l) 

* FIRST PASS OF THE DO-20 LOOP (STAGE K=2 IN 00-10 LOOP) 

LDI 
LDI 
LDI 
LSH 
SUBI 

RPTB 
ADDF 

* 
SUBF 

* 
NEGF 

II STF 
BLK2 STF 
* 
II STF 

* MAIN LOOP 

LDI 
LSH 
LDI 
LDI 
LDI 

LOOP LSH 
LSH 
LSH 

* INNER LOOP 

LDI 
INLOP LDI 

ADDI 
LDI 

LDI 
ADDI 
LDI 

@INPUT,ARO 
2,IRO 
@FFTSIZ,RC 
-2,RC 

ARO points to XCI) 
IRO=2=N2 

Repeat N/4 times 
1,RC RC should be one less than desired # 

BLK2 
*+ARO{IRO),*ARO++(IRO),RO 

; RO=X{I)+X(I+2) 
*ARO,*-ARO{IRO),Rl 

*+ARO,RO ; 
RO, *-ARO (IRO) ; 
Rl,*ARO++{IRO) 

RO,*+ARO 

(FFT STAGES) 

@FFTSIZ,IRO 
-2,IRO 
3,RS 
1,R4 
2,R3 
-l,IRO 
1,R4 
1,R3 

Rl=X(I)-X(I+2) 
RO=-X{I+3) 
X{I)=X{I)+X{I+2) 

X{I+2)=X{I)-X(I+2) 
X (I+3) =-X{I+3) 

IRO=index for E 
RS holds the current 
R4=N4 
R3=N2 
E=E/2 
N4=2*N4 
N2=2*N2 

(DO-20 LOOP IN THE PROGRAM) 

@INPUT,ARS ARS points to XCI) 
IRO,ARO 
@SINTAB,ARO ARO points to SIN/COS 
R4,IRI IRl=N4 

ARS,ARI 

stage number 

table 

1,ARl ARI points to X(Il)=X(I+J) 
ARl,AR3 

12-77 

• 



• 

Software Applications - Application-Oriented Operations 

* 

* 
* 
II 

* 
II 

* 

II 

* 

II 

II 

II 
BLK3 

END 

12-78 

ADDI 
LDI 
SUBI 
ADDI 

R3,AR3 
AR3,AR2 
2,AR2 
R3,AR2,AR4 

AR3 points to X{I3)=X{I+J+N2) 

AR2 points to X{I2)=X{I-J+N2) 
AR4 points to X{I4)=X{I-J+Nl) 

LDF *AR5++{IRl),RO 

ADDF 

SUBF 

STF 
NEGF 
NEGF 

STF 
STF 

i RO=X{I) 
*+AR5{IRl),RO,Rl 

i Rl=X{I)+X{I+N2) 
RO,*++AR5{IRl),RO 

i RO=-X{I)+X{I+N2) 
Rl,*-AR5{IRl) i X{I)=X{I)+X(I+N2) 
RO i RO=X{I)-X{I+N2) 
*++AR5{IRl),Rl 

RO, *AR5 
Rl,*AR5 

Rl=-X(I+N4+N2) 
X(I+N2)=X{I)-X{I+N2) 
X(I+N4+N2)=-X{I+N4+N2) 

*INNERMOST LOOP 

LDI 
LSH 
LDI 
SUBI 

RPTB 
MPYF 

MPYF 
MPYF 
ADDF 
MPYF 

SUBF 
SUBF 
ADDF 
STF 
ADDF 
STF 
SUBF 
STF 
STF 

SUBI 
ADDI 
CMPI 
BLED 
ADDI 
NOP 
NOP 

ADDI 
CMPI 
BLE 

BR 
. end 

@FFTSIZ,IRI 
-2,IRI 
R4,RC 
2,RC 

IRl=separation between SIN/COS tbIs 

Repeat N4-1 times 

BLK3 
*AR3,*+ARO{IRl),RO 

i RO=X (13) *COS 
*AR4,*ARO,Rl i Rl=X(I4)*SIN 
*AR4,*+ARO{IRl),Rl i Rl=X(I4)*COS 
RO,Rl,R2 i R2=X{I3)*COS+X{I4)*SIN 
*AR3,*ARO++(IRO),RO 

RO,Rl,RO 
*AR2,RO,Rl 
*AR2,RO,Rl 
Rl,*AR3++ 
*AR1,R2,Rl 
Rl,*AR4-
R2,*AR1,Rl 
Rl, *AR1++ 
Rl,*AR2--

@INPUT,AR5 
R3,AR5 
@FFTSIZ,AR5 
INLOP 
@INPUT,AR5 

1,R5 
@LOGFFT,R5 
LOOP 

END 

RO=X (13) *SIN 
RO=-X{I3)*SIN+X{I4)*COS 
Rl=-X{I2)+RO 
Rl=X(I2)+RO 
X{I3)=-X(I2)+RO 
Rl=X(Il)+R2 
X(I4)=X(I2)+RO 
Rl=X{Il)-R2 
X(Il)=X(Il)+R2 
X(I2)=X{Il)-R2 

AR5=i+Nl 

Loop back to the inner loop 

Branch to itself at the end. 



Software Applications - Application-Oriented Operations 

Table 12-1 summarizes the execution time required for FFT lengths between 
64 and 1024 points for the three algorithms in Examples 12-35, 12-37, and 
12-38. As can be seen, the TMS320C30 permits very fast execution of such 
transforms. FFT lengths up to 1024 points (complex) or 2048 points (real), 
covering the majority of applications, can be executed almost entirely in the 
on-chip memory. 

Table 12-1. TMS320C30 FFT Timing Benchmarks 

NUMBER FFTTIMING 
OF (in milliseconds) 

POINTS RADIX-2 RADIX-4 RADIX-2 
(complex) (complex) (real) 

64 0.167 0.123 0.075 
128 0.367 - 0.162 
256 0.801 0.624 0.354 
512 1.740 - 0.771 

1024 3.750 3.040 1.670 

12.4.5 Lattice Filters 

The lattice form is an alternative way of implementing digital filters, and it has 
found applications in speech processing, spectral estimation, and other areas. 
In the present discussion, the notation and the terminology from speech pro
cessing applications will be used. 

If H(z) is the transfer function of a digital filter that has only poles, A(z) = 

1/H(z) will be a filter having only zeros and it will be called the inverse filter. 
The inverse lattice filter is shown in Figure 12-5. In mathematical terms, it is 
described by the equations: 

f(i,n) = f(i-1 ,n) + k(i) b(i-1 ,n-1) 
b(i,n) = b(i-1,n-1)+ k(/) f(i-1,n) 

Initial conditions: 

f(O,n) = b(O,n) = x(n) 

Final conditions: 

yen) = f(p,n). 

f(i,n) is called the forward error, b(i,n) backward error, k(/) is the i-th re
flection coefficient, x(n) is the input, and yen) the output signal. The order 
of the filter (Le., the number of stages) is p. In the linear predictive coding 
(LPG) method of speech processing, the inverse lattice filter is used during 
analysis, and the (forward) lattice filter during speech synthesis. 

12-79 

• 



Software Applications - Application-Oriented Operations 

12-80 

Figure 12-5. Structure of the Inverse Lattice Filter 

Figure 12-6 shows the data memory organization of the inverse lattice-filter 
on the TMS320C30. 

reflection backward 

low r----------, 
RdnM·~I---~~--~ 

coafflclants propagation term. 

k11) blO. n-1) 

k12) bI1,n-1) 

• • • • • • 
kip) high I addra ..... _______ ---' blp-1, n-1) 

Figure 12-6. Data Memory Organization for Lattice Filters 



Software Applications - Application-Oriented Operations 

Example 12-39. Inverse Lattice Filter 

* TITL INVERSE LATTICE FILTER 
* 
* 
* SUBROUTINE L A TIN V 
* 
* LATINV == LATTICE FILTER (LPC INVERSE FILTER - ANALYSIS) 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

TYPICAL CALLING SEQUENCE: 

load 
load 
load 
load 
CALL 

R2 
ARO 
ARI 
RC 
LATINV 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+-----------------------
R2 I fIO,n) = x(n) 
ARO I ADDRESS OF FILTER COEFFICIENTS kIll) 
ARI I ADDRESS OF BACKWARD PROPAGATION 

I VALUES (b(O,n-l» 
RC I RC = P - 2 

REGISTERS USED AS INPUT: R2, ARO, ARl, RC 
REGISTERS MODIFIED: RO, Rl, R2, R3, RS, RE, RC , ARO, ARI 
REGISTER CONTAINING RESULT: R2 (f(p,n» 

* PROGRAM SIZE: 10 WORDS 
* 
* EXECUTION CYCLES: 13 + 3 * (p-l) 
* 
* 

* * i 1 
* 
LATINV 
* 
* 

* 
* 

.global LATINV 

MPYF3 

LDF 
MPYF3 

*ARO, *ARl, RO 
k(l) * b(O,n-l) -> RO 
Assume f(O,n) -> R2. 

R2 , R3 ; Put b (0, n) = f ( 0 , n) - > R3. 
*ARO++(1) ,R2,Rl 

k(l) * f(O,n) -> Rl 

----"---

• 
12-81 



Software Applications - Application-Oriented Operations 

* 2 <= 
* 

II 
* 
* 
* 
* 

i <= P 

RPTB LOOP 
MPYF3 *ARO,*++AR1(1),RO ; k(i) * b(i-l,n-l) -> RO 
ADDF3 R2,RO,R2 f(i-l-l,n)+k(i-l) 

*b(i-l-l,n-l) 
= f(i-l,n) -> R2 

; b(i-l-l,b-l)+k(i-l)*f(i-l-l,n) 
ADDF3 *-AR1(1), Rl, R3 ; = b(i-l,n) -> R3 

II STF R3, *-ARl(l) ; b(i-l-l,n) -> b(i-l-l,n-l) 

* 
LOOP 

* 
* 

MPYF3 *ARO++(1),R2,Rl 
; k(i) * f(i-l,n) -> Rl 

* I P+l (CLEANUP) 

* 
* 
* 

II 

ADDF3 R2,RO,R2 

ADDF35 AR1, Rl, R3 
STF R3, *ARl 

f(p-l,n)+k(p)*b(p-l,n-l) 
= f (p,n) -> R2 

b(p-l,n-l)+k(p)*f(p-l,n) 
= b(p,n) -> R3 

b(p-l,n) -> b(p-l,n-l) 
* 
* 
* 

RETURN SEQUENCE 

RETS RETURN 
* 
* end 
* 

.end 

12-82 

The (forward) lattice filter has a structure very similar to the inverse filter. as 
shown in Figure 12-7. The corresponding equations describing the lattice 
filter are: 

f(i-1.n) = f(i.n) - k(/) b(i-1.n-1) 
b(i.n) = b(i-1.n-1) + k(i) f( i-1.n) 

Initial conditions: 

f(p,n) = x( n). b(i,n-1) = 0 for i=1 •...• p 

Final conditions: 

yen) = f(O.n). 

The data memory organization is identical to the one of the inverse filter. as 
shown in Figure 12-6. Example 12-40 is the implementation of the lattice 
filter on the TMS320C30. 



Software Applications - Application-Oriented Operations 

xln) -flp. n) 

~ .'~'~: 
B bI2.n) 

fl1.n) yin) 

Figure 12-7. Structure of the (Forward) Lattice Filter 

• 
12-83 



Software Applications - Application-Oriented Operations 

Example 12-40. Lattice Filter 

* TITL LATTICE FILTER 
* 
* 
* SUBROUTINE L A TIC E 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

LOAD 
LOAD 
LOAD 
CALL 

ARO 
ARI 
RC 
LATICE 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTIONfunction 
---------+-----------------------
R2 I F(P,N) = E(N) = EXCITATION 
ARO I ADDRESS OF FILTER COEFFICIENTS (K(P» 
ARI I ADDRESS OF BACKWARD PROPAGATION VALUES (B(P-l,N-l» 
RC I RC = P - 2 

REGISTERS USED AS INPUT: R2, ARO, ARl, RC 
REGISTERS MODIFIED: RO, Rl, R2, R3, RS, RE, RC, ARO, ARI 
REGISTER CONTAINING RESULT: R2 (f(O,n» 

STACK USAGE: NONE 

* PROGRAM SIZE: 12 WORDS 
* 
* EXECUTION CYCLES: 13 + 5 * (P-l) 
* 
* 

.global LATICE 
* 
* 
LATICE MPYF3 
* 

* 
* 
* 

SUBF3 

* 2 <= I <= P 
* 

* 

* 
* 

• ~OOP 
* 
* 

12-84 

RPTB 
MPYF3 
MPYF3 

ADDF3 

STF 
SUBF3 

*ARO, *ARl, RO 
K(P) * B(P-l,N-l) -) RO 

RO,R2,R2 ASSUME F(P,N) -) R2. 
F(P,N)-K(P)*B(P-l,N-l) 

=F(P-l,N) -) R2 

LOOP 
*ARO,R2,Rl 
*--ARO(l), 

; K(I) * F(I-l,N) -) Rl 
*-ARl(l), RO 

; K(I-l) * B(I-l-l,N-l) -) R 
*ARl--(l), Rl, R3 

R3, *+ARl(2) 
RO,R2,R2 

B(I-l,N-l) + K(I) * F(I-l,N) 
= B(I,N) -) R3 
B(I,N) -) B(I,N-l) 
F(I-l,N)-K(I-l)*B(I-l-l,N-l) 

= F(I-l-l,N) -) R2 



Software Applications - Application-Oriented Operations 

* I 1 (CLEANUP) 
* 

* 
II 

MPYF3 
ADDF3 

STF 
STF 

*ARO, R2, Rl 
*ARl, Rl, R3 

R3, *+ARl(l) 
R2, *ARI 

* 
* 
* 

RETURN SEQUENCE 

RETS 
* * end 
* 

. end 

K(l) * F(O,N) -) Rl 
B(O,N-l) + K(l) * F(O,N) 

= B( 1,N) -) R3 
B( 1,N) -) B( 1,N-l) 
F(O,N) -) B(O,N-l) 

RETURN 

12-85 



• 

Software Applications - Programming Tips 

12.5 Programming Tips 

Programming style is highly personal, and reflects each individual's prefer
ences and experiences. The purpose of this section is not to impose any par
ticular style. Instead, it intends to emphasize some of the features of the 
TMS320C30 that can help in producing faster and/or shorter programs. The 
following covers both C compiler and assembly language programming. 

12.5.1 C-Callable Routines 

The TMS320C30 was designed with a high-level language (HLL) in mind. 
The large register file, the software stack and the large memory space makes 
implementation of a HLL compiler an easy task. The first such implementation 
supplied is a C compiler. Use of the C compiler increases the transportability 
of applications that have been tested on large, general-purpose computers, 
and decreases their porting time. 

For best usage of the compiler: 

1) Write the application in the high-level language. 
2) Debug the program. 
3) Estimate if it runs in real-time. 
4) If not, identify places where most of the execution time is spent. 
5) Optimize these areas by writing assembly language routines imple-

menting the functions. 
6) Call the routines from the C program as C functions. 

When writing a C program, a simple way to increase the execution speed is 
to maximize the use of register variables. For more information, refer to the 
TMS320C30 C Compiler Reference Guide. 

There are certain conventions that have to be observed in writing a C-callable 
routine. These conventions are outlined in the Runtime Environment chapter 
of the "TMS320C30 C Compiler Reference Guide". Certain registers are saved 
by the calling function and others need to be saved by the called function. 
The C compiler manual will help achieve a very clean interface. The end result 
is the readability and natural flow of a high-level language combined with the 
efficiency and special-feature use of assembly language. 

12.5.2 Hints for Assembly Coding 

12-86 

Each program will have its particular requirements. Not all possible optimiza
tions will make sense in every case. The suggestions presented in this section 
can be used as a checklist of available software tools . 

• Use delayed branches.. Delayed branches take a single cycle to ex
ecute, regular branches take four. The following three instructions are 
also executed no matter if the branch is taken or not. If there are less 
than three instructions that could be used, use the delayed branch and 
append NOPs. Machine cycles (time) are still being saved. 

• Apply the repeat single/block construct. In this way, loops are 
achieved with no overhead. Nesting such constructs normally will not 
increase efficiency, so try to use the repeat feature on the most often 
performed loop. Note that RPTS is not interruptible, and the executed 



Software Applications - Programming Tips 

instruction is not refetched for execution. This frees the buses for op
erands. 

• Use parallel instructions. It is possible to have a multiply in parallel 
with an add (or subtract), and stores in parallel with any multiply or 
ALU operation. This increases the number of operations executed in a 
single cycle. For maximum efficiency, observe the addressing modes 
used in parallel instructions and arrange the data appropriately. 

• Maximize the use of registers. The registers are a very efficient, 
easy way to access scratch-pad memory. Extensive use of the register 
file will also help when using parallel instructions and in avoiding the 
pipeline conflicts encountered using the registers in addressing modes. 

• Use the cache. Especially in conjunction with external slow memory. 
The cache is transparent to the user, so make sure that it is enabled. 

• Use internal memory instead of external memory. The internal 
memory (2K x 32 bits RAM and 4K x 32 bits ROM) is considerably 
faster to access. In a single cycle, two operands can be brought from 
internal memory. A way of maximizing performance is to use the DMA 
in parallel with the CPU to transfer data to internal memory before op
erating on them. 

• Avoid pipeline conflicts. If there is no problem with program speed, 
ignore this suggestion. For time-critical operations, make sure that cy
cles are not missed because of conflicts. The way to identify such 
conflicts is to run the trace function on the development tools (simula
tor, emulators) with the program tracing option enabled. The tracing 
will identify immediately the pipeline conflicts. Consulting the appro
priate section of this User's Guide will explain the reason for the con
flict. Steps can then be taken to correct the problem. 

The above checklist is not exhaustive, and it does not address the more de
tailed features outlined in the different sections of this manual. To exploit the 
full power of the TMS320C30 it is recommended that the architecture, hard
ware configuration, and instruction set of the device, described in earlier 
chapters, be carefully studied. 

12-87 

• 



Software Applications - Programming Tips 

12-88 



Hardware Applications 





Section 13 

Hardware Applications 

The TMS320C30's advanced interface design allows this device to be used to 
implement a wide variety of system configurations. Its two external buses and 
DMA capability provide a parallel 32-bit interface to byte- or word-wide de
vices, while the interrupt interface, dual serial ports, and general purpose dig
ital I/O provide communication with a multitude of peripherals. 

This section describes how to use the TMS320C30's interfaces to connect to 
various external devices. Specific discussions include implementation of par
allel interface to devices with and without wait states, use of DMA and general 
purpose I/O, and multiprocessing considerations. 

Major topics discussed in this section are as follows: 

• System Configuration Options Overview (Section 13.1 on page 13-2) 

• Primary Bus Interface (Section 13.2 on page 13-4) 
Zero Wait State Interface to RAMs 
Ready Generation 
Bank Switching Techniques 

• Expansion Bus Interface (Section 13.3 on page 13-14) 

• System Control Functions (Section 13.4 on page 13-18) 
Clock Oscillator Circuitry 
Reset Sig{lal Generator 

• User Target Design Considerations When Using the XDS1 000 (Section 
13.5 on page 13-22) 

13-1 



Hardware Applications - System Configuration Options Overview 

13.1 System Configuration Options Overview 

The various TMS320C30 interfaces allow connections to a wide variety of 
different device types. Each of these interfaces is tailored to a particular family 
of devices. 

13.1.1 Categories of Interfaces on the TMS320C30 

~{ Bus 

Systam 
Control 

13-2 

The interface types on the TMS320C30 fall into several different categories 
depending on the devices to which they were intended to be connected. Each 
interface comprises one or more signal lines which transfer information and 
control its operation. Shown in Figure 13-1 are the signal line groupings for 
each of these various interfaces. 

Data 
32 

Address 
24 

Control <[ 
Extarnal « 

DMA 
Intarface 

Intarrupt « 
Intarface 

4 

External 2 
Flags 

System Reset 

ROM Enable 

Master « 
Clock 

Clock « 
Outputs 

00-31 XDO-31 

AO-23 XAO-12 

RiW XR/W 

STRB XRDY 
ROY 10STRB 

HOLD 
MSTRB 

HOLDA TCLKO-1 

INTO-3 CLKXO-1 

lACK DXO-1 

FSXO-1 
XFO-1 

CLKRO-1 

RESET DRO-1 

MC/liiP FSRO-1 

X1 

X2/CLKIN 

H1 
TMS320C30 

H3 

32 

13" 

2 

2 

2" 

2 

2--'0. 

2 

2 

Data 

Addrass 

Timar IntarfaC8 

Dual 
Serial 
Ports 

Figure 13-1. External Interfaces on the TMS320C30 

Expansion 
Bus 

All of the interfaces are independent of one another and different operations 
may be performed simultaneously on each interface. 

The Primary and Expansion buses implement the memory mapped interface to 
the device. The external DMA interface allows external devices to cause the 
processor to relinquish the Primary bus and allow direct memory access. 



Hardware Applications - System Configuration Options Overview 

13.1.2 Typical System Block Diagram 

Memory 

Peripherals 

Peripherals 

Bit 1/0 

The devices which can be interfaced to the TMS320C30 include memory, 
DMA devices, and numerous parallel and serial peripherals and I/O devices. 
Figure 13-2 illustrates a typical configuration of a TMS320C30 system 
showing different types of external devices and the interfaces to which they 
are connected. 

DMA 
Devices 

,- Memory 

r-- External - Peripherals 

DMA 
Interface 

~ Primary Expansion r-Bus Bus 
TMS320C30 

Interrupt Timer 1/0 
Interface Interface Devices 

External 
r-- Flags 

Systam Serial 

Control Ports 

'---
4 TCM29C13 

CODEC 

Clock and TLC32040 
Reset AIC 

Generators. etc. Analog 1/0 

Figure 13-2. Possible System Configurations 

This block diagram constitutes more or less a fully expanded system. In an 
actual design any subset of the illustrated configuration may be used . 

13-3 

• 



• 

Hardware Applications - Primary Bus Interface 

13.2 Primary Bus Interface 

The primary bus is used by the TMS320C30 to access the majority of its me
mory mapped locations. Therefore, typically when a large amount of external 
memory is required in a system, it is interfaced to the primary bus. The ex
pansion bus (discussed in the next subsection) actually comprises two mu
tually exclusive interfaces, controlled by the MSTRB and rOSTRB signals 
respectively. Cycles on the expansion bus controlled by the MSTRB signal are 
identical in timing to cycles on the primary bus, with the exception that bank 
switching is not implemented on the expansion bus. Accordingly, the dis
cussion of primary bus cycles in this section applies equally to MSTRB cycles 
on the expansion bus. 

Although both the primary bus and the expansion bus may be used to inter
face to a wide variety of devices, the devices most commonly interfaced to 
these buses are memories. Therefore, detailed examples of memory interface 
will presented in this subsection. 

13.2.1 Zero Wait-State Interface To RAMs 

13-4 

For full speed, zero wait-state interface to any devices, the TMS320C30 re
quires a read access time of 35 ns from address stable to data valid. Since, for 
most memories, access time from chip select is the same as access time from 
address, it is theoretically possible to use 35 ns memories at full speed with 
the TMS320C30. This, however, dictates that there be no delays present be
tween the processor and the memories. This is usually not the case in practice, 
due to interconnection delays and the fact that typically some gating is re
quired for chip select generation. Therefore, slightly faster memories are gen
erally required in most systems. If one level of reasonably high-speed (below 
10 ns in propagation delay) gating is used to generate chip select for the me
mories, 25 ns devices may be used. 

Among currently available RAMs, there are two distinct categories of devices 
with different interface characteristics. These two categories are RAMs with
out output enable control lines (OE), which include the 1-bit wide organized 
RAMs and most of the 4-bit wide RAMs, and those with OE controls, which 
include the byte wide and a few of the 4-bit wide RAMs. Many of the fastest \ 
RAMs do not provide OE control, and use chip select (CS) controlled write 
cycles to insure that data outputs do not turn on for write operations. In cs 
controlled write cycles, the write control line (WE) goes low prior to CS going 
low, and internal logic holds the outputs disabled until the cycle is completed. 
Using CS controlled write cycles is an efficient way to interface fast RAMs 
without OE controls to the TMS320C30 at full speed . 

Figure 13-3 shows the TMS320C30 interfaced to Cypress Semiconductor's 
CY7C164 25 ns 16k x 4-bit CMOS static RAMs with zero wait states using 
CS controlled write cycles. These RAMs are arranged to implement 16k 32-bit 
words located at addresses OOOOOH thru 03FFFH, which are the first 16k 
words in external memory. Note that in Figure 13-3 the ROY input is tied low, 
selecting zero wait states for all accesses on the bus. 



Hardware Applications - Primary Bus Interface 

I 
I 

1 
I 

I 
I 

rA TMS320C30 I 
A23-0 ADDRESS ~ 

~ 
[A23 r- 4 

J'- CS 
4 

STRB 4 
74AS32 

4 
DATA 

RtW WE 4 

ROY 

~ 
, 

Cypress 
CY7C164-25 

DATA ~ 

, 32 

Figure 13-3. Ram Interface - No OE 

In this circuit, chip select is generated from STRB and A23 using a 74AS32, 
whose propagation delay is only 5.8 ns. Thus, the chip select delay added to 
the RAM's 25 ns chip select access time satisfies the TMS320C30's 35 ns read 
access time from address. This approach works well if only a single bank of 
external memory is implemented where the chip select decode can be accom
plished in only one level of gating. If more than one bank is required to im
plement very large memory spaces, bank switching can be used to provide for 
multiple bank select generation while still maintaining full speed accesses 
within each bank. Bank switching is discussed in detail in a later subsection. 

13-5 

III 



• 

Hardware Applications - Primary Bus Interface 

t- t1-1 

H1\ 

1 1 

\ 1 1 I 1 1 
1 1 
1 I 

A23-0 xi ! Valid X 
1 1 

STRB \l ! I 
1 
1 

'\ 
1 
1 
1 

~ 031-0 1 Valid 
1 
1 1 
!- t2 -I 

Figure 13-4. Interface Read Timing 

H1~~_.....JI / \\....----J \ / 
Valid X A23-0 X'--__________________ --J 

STRIJ __ -II 
RtW 

/ 
\'---___ ----J / 

1 
1 

;-

>-

~ 

\ 

031-0 

! \ if 
I; }-{ Void : )>-__ _ 

--------r---"1 I 1 1 
1 1 1 ---.I I-

t1 ---J r-- 1 1 t3 
I- t2 -I 

Figure 13-5. Interface Write Timing 

13-6 



Hardware Applications - Primary Bus Interface 

Figures 13-4 and 13-5 show the read and write timings of this interface, re
spectively. For read operations, WE (R/W) is inactive (high), and the device 
is selected whenever both STRB and A23 are low. The total time from address 
to data from the RAM is therefore: 

tacc = t1 + t2 = 5.8 + 25 = 30.8 ns 

This easily meets the TMS320C30's 35 ns access time requirement. For write 
operations, address and R/W change state far enough away in time from the 
low STRB pulse to allow this interface to easily meet specifications for most 
RAMs' CS controlled write cycles. In this case, the CY7C164s outputs disable 
at the beginning of the cycle well early enough (t1 =7 ns) to avoid bus con
tention with the TMS320C30. Data is then driven into the RAMs as STRB 
goes low. The RAMs require 13 ns of write data setup prior to CS going high, 
and this design provides around 65 ns (t2). A data hold time of 0 ns (t3) is 
required by the RAMs, and this design provides greater than 10 ns. Finally, 
the RAMs setup and hold times for address with respect to CS of 0 ns are also 
met with a clear margin. 

Some RAMs with OE controls can also use CS controlled write cycles and this 
interface may be used with some of these devices with OE tied low. There 
are, however, two requirements for the use of OE RAMs with this interface. 
First, the RAM's OE input must be gated with chip select and WE internally 
so that the device's outputs do not turn on unless a read is being performed. 
Secondly, the RAM must allow address inputs to change while WE is low, 
which some RAMs specifically prohibit. 

Many RAMs with OE controls that do not meet the design criteria for the cir
cuit shown in Figure 13-3 may be interfaced to the TMS320C30 using the 
approach shown in Figure 13-6 

I 
I 

I 
I 

I 
I 

TMS320C30 I 
A23·0 Add .... 

F~ A23L m 

r CS2 n 74AS32 4 
mIB ~ WE 4 

~1-J....J IiIiV 4 
Data 

RJW -{»-- O! 4 

IDT719B-25 

031-0 
32 

Figure 13-6. RAM Interface - OE 

13-7 

• 



Hardware Applications - Primary Bus Interface 

This design shows an interface to Integrated Device Technology's IDT7198 
25 ns 16k x 4-bit CMOS static RAMs using OE to enable and disable the data 
outputs. 

In this circuit, chip select is driven directly by a single address line, which lo
cates the RAM at addresses OOOOOH through 03FFFH in external memory. 
The RAM's WE input is generated by ANDing R/W and STRB, and therefore 
WE goes low after CS only during write cycles. This satisfies the RAM's re
quirement that address never changes when WE is low. 

The timing of read operations, shown in Figure 13-7, is very straightforward 
since CS is driven directly. The read access time of the circuit, t1, is therefore 
simply the RAM's chip select/address access time, which is 25 ns. This pro
vides 10 ns of margin over the TMS320C30's 35 ns requirement. 

H1\ / \ 
A23-0 ~ Valid X 

I 
I 

1 / 
I 
I 

D31-0 
I , > I Valid 

I 
I I 
I- t1 .1 

Figure 13-7. Read Operations Timing 

13-8 



Hardware Applications - Primary Bus Interface 

H1~'-_-J/ \~-----J/ \~-----J/ \----
A23-0 ______ ~)(~ ________________________________________ ~)(~ __________ _ 

RtW 

\'---------'/ 
\E..--____ ~/ 

\~-----Ili 
I 
I 

Figure 13-8. Write Operations Timing 

During write operations, as shown in Figure 13-8, the RAM's outputs are 
disabled after a delay of t1 following R/W going low. This delay comprises 
the inverter propagation delay and the RAM's turn-off delay, therefore t1 is 
given by: 

t1 = 5 + 1 5 = 20 ns 

which results in the outputs being disabled no later than the falling edge of 
H1, thereby avoiding bus contention with the TMS320C30. The circuit's data 
setup and hold times of approximately 65 and 10 ns, respectively also easily 
meet the RAM's timing requirements. 

As with the circuit of Figure 13-3, if more complex chip select decode is re
quired than can be accomplished in time to meet 2ero wait state timing, wait 
states or bank switching techniques (discussed in a later subsection) should 
be used. 

It should be noted that the IDT7198's OE control is gated with CS internally. 
therefore the RAM's outputs are not enabled unless the device is selected. 
This is critical if there are any other devices connected to the same bus; if there 
are no other devices connected to the bus, then OE need not be gated inter- • 
nally with chip select. 

13-9 



• 

Hardware Applications - Primary Bus Interface 

13.2.2 Ready Generation 

13-10 

The use of wait states can greatly increase system flexibility and reduce hard
ware requirements over systems without wait state capability. The 
TMS320C30 has the capability of generating wait states on either the primary 
bus or the expansion bus; both buses have independent sets of ready control 
logic. Ready generation is discussed in this subsection from the perspective 
of the primary bus interface, however, wait state operation on the expansion 
bus is identical to that of the primary bus, therefore these discussions pertain 
equally well to expansion bus operation. Ready generation will not be in
cluded in the specific discussions of the expansion bus interface. 

Wait states are generated on the basis of the internal wait state generator, the 
external ready input (ROY), or the logical AND or OR of the two (see Section 
8.3). When enabled, internally generated wait states effect all external cycles, 
regardless of the address accessed. If different numbers of wait states are re
quired for various external devices, the external ROY input may be used to 
tailor wait state generation to specific system requirements. 

If the logical OR (or electrical AND since the signals are low true) of the ex
ternal and wait count ready signals is selected, the earlier of either of the two 
signals will generate a ready condition and allow the cycle to be completed. 
It is not required that both signals be present. 

The OR of the two ready signals can be used to implement wait states for 
devices which require a greater number of wait states than are implemented 
with external logic (up to eight). This feature is useful, for example, if a sys
tem contains some fast and some slow devices. In this case, fast devices can 
generate ready externally with a minimum of logic, and slow devices can use 
the internal wait counter for larger numbers of wait states. Thus, when fast 
devices are accessed, the external hardware responds promptly with ready 
which terminates the cycle. When slow devices are accessed, the external 
hardware does not respond, and the cycle is appropriately terminated after the 
internal wait count. 

The OR of the two ready signals may also be used if conditions occur which 
require termination of bus cycles prior to the number of wait states imple
mented with external logic. In this case, a shorter wait count is specified in
ternally than the number of wait states implemented with the external ready 
logic, and the bus cycle is terminated after the wait count. This feature may 
also be used as a safeguard against inadvertent accesses to nonexistent me
mory which would never respond with ready and therefore lock up the 
TMS320C30. 

If the OR of the two ready signals is used, however, and the internal wait state 
count is less than the number of wait states implemented externally, the ex
ternal ready generation logic must have the ability to reset its sequencing to 
allow a new cycle to begin immediately following the end of the internal wait 
coun.t. This requires that, under these conditions, consecutive cycles must be 
from independently decoded areas of memory and that the external ready 
generation logic be capable of restarting its sequence as soon as a new cycle 
begins. Otherwise, the external ready generation logic may loose synchroni
zation with bus cycles and therefore generate improperly timed wait states. 



Hardware Applications - Primary Bus Interface 

If the logical AND (electrical OR) of the wait count and external ready signals 
is selected, the later of the two signals will control the internal ready signal, 
but both signals must occur. Accordingly, external ready control must be im
plemented for each wait state device in addition to the wait count ready signal 
being enabled. 

This feature is useful if there are devices in a system which are equipped to 
provide a ready signal but cannot respond quickly enough to meet the 
TMS320C30's timing requirements. In particular, if these devices normally 
indicate a ready condition and, when accessed, respond with a wait until they 
become ready, the logical AN D of the two ready signals can be used to save 
hardware in the system. In this case, the internal wait counter can be used to 
provide wait states initially, and become ready after the external device has 
had time to send a not ready indication. The internal wait counter then re
mains ready until the external device also becomes ready, which terminates the 
cycle. 

Additionally, the AN D of the two ready signals may be used for extending the 
number of wait states for devices which already have external ready logic im
plemented but require additional wait states under certain unique circum
stances. 

In the implementation of external ready generation hardware, the particular 
technique employed depends heavily on the specific characteristics of the 
system. The optimum approach to ready generation varies depending on the 
relative number of wait state and non-wait state devices in the system and the 
maximum number of wait states required for anyone device. The approaches 
discussed here are intended to be general enough for most applications, and 
are easily modifiable to comprehend many different system configurations. 

In general, ready generation involves the following three functions: 

1) Segmentation of the address space in some fashion to distinguish fast 
and slow devices. 

2) Generate properly timed ready indications. 

3) Logically DRing all of the separate ready timing signals together to 
connect to the physical ready input. 

Segmentation of the address space is required so that a unique indication of 
each of the particular areas within the address space that require wait states 
can be obtained. This segmentation is commonly implemented in a system in 
the form of chip select generation. Chip select signals may be used to initiate 
wait states in many cases, however, occasionally chip select decoding con
siderations may provide signals which will not allow ready input timing re
quirements to be met. In this case, coarse address space segmentation may 
be made on the basis of a small number of address lines, where simpler gating 
allows signals to be generated more quickly. In either case, the signal indi
cating that a particular area of memory is being addressed is normally used to 
initiate a ready or wait state indication. 

Once the region of address space being accessed has been established, a 
timing circuit of some sort is normally used to provide a ready indication to the 
processor at the appropriate point in the cycle to satisfy each device's unique 
requirements. 

13-11 

• 



II 

Hardware Applications - Primary Bus Interface 

13-12 

Finally, since indications of ready status from multiple devices are typically 
present, an OR gate is commonly used to combine the signals to drive the ROY 
input. 

One of two basic approaches may be taken in the implementation of ready 
control logic depending upon the state in which the ready input is to be be
tween accesses. If ROY is low between accesses, the processor is always 
ready unless a wait state is required; if ROY is high between accesses, the 
processor will always enter a wait state unless a ready indication is generated. 

If ROY is low between accesses, control of full speed devices is straightfor
ward; no action is necessary since ready is always active unless otherwise re
quired. Devices requiring wait states, however, must drive ready high fast 
enough to meet the input timing requirements. Then, after an appropriate de
lay, a ready indication must be generated. This can be quite difficult in many 
circumstances since wait state devices are inherently slow and often require 
complex select decoding. 

If ROY is high between accesses, zero wait state devices, which tend to be 
inherently fast, can usually respond immediately with a ready indication. Wait 
state devices may simply delay their select signals appropriately to generate a 
ready. Typically, this approach results in the most efficient implementation of 
ready control logic. Figure 13-9 shows a circuit of this type which can be used 
to generate 0, 1, or 2 wait states for multiple devices in a system. 



Hardware Applications - Primary Bus Interface 

2 Wait 
State Device. 

~ 

74ALS138 

TMS320C30 { A 
Addre.. B 

au. c 
mii----I~ 

PRE 
J 

74S114 

K~ 

G1 

1 Wait 
Stete 

Device. 

A 

0: 1-----0'-" 

H1-----~~---+_------~ 

Device 
Selects 

+5V 

~----------*-----------~ 

o Wait 
State Devices 

A 

Figure 13-9. Circuit For Generation of 0, 1, or 2 Wait States For 
Multiple Devices 

In this circuit, full speed devices drive ready directly through the 74AS21, and 
the two flip-flops delay wait state devices' select signals one or two H1 cycles 
to provide 1 or 2 wait states. 

Considering the TMS320C30's ready delay time of 8 ns following address, 
zero wait state devices must use ungated address lines directly to drive the 
input of the 74AS21, since this gate contributes a maximum propagation delay 
of 6 ns to the ROY signal. Thus, zero wait state devices should be grouped 
together within a coarse segmentation of address space if other devices in the 
system require wait states. 

With this circuit, devices requiring wait states may take up to 42 ns from a 
valid address on the TMS320C30 to provide inputs to the 74AS20's inputs. 
Typically, this allows sufficient time for any decoding required in generating 
select signals for slower devices in the system. For example, the 74ALS138 
driven by address and STRB, can generate select decodes in 22 ns, which ea
sily meets the TMS320C30's timing requirements. 

13-13 

II 



• 

Hardware Applications - Primary Bus Interface 

With this circuit, unused inputs to either the 74AS20s or the 74AS21 should 
be tied to a logic high level to prevent noise from generating spurious wait 
states. 

If more than 2 wait states are required by devices within a system, other ap
proaches may be employed for ready generation. If between three and eight 
wait states are required, additional flip-flops may be included, in the same 
manner as shown in Figure 13-9, or internally generated wait states may be 
used in conjunction with external hardware. If greater than eight wait states 
are required, an external circuit using a counter may be used to supplement the 
internal wait state generators capabilities. 

13.2.3 Bank Switching Techniques 

13-14 

The TMS320C30's programmable bank switching feature can greatly ease 
system design when large amounts of memory are required. This feature is 
used to provide a period of time during which all device selects are disabled 
that would not normally be present otherwise (refer to Section 8.4 for further 
information regarding bank switching). During this interval, slow devices are 
allowed time to turn off before other devices have the opportunity to drive the 
data bus, thus avoiding bus contention. 

When bank switching is enabled, any time a portion of the high order address 
lines change, as defined by the contents of the BNKCMPR register, STRB goes 
high for one full H1 cycle. Provided STRB is included in chip select decodes, 
this causes all devices to be disabled during this period. The next bank of 
devices is not enabled until STRB goes low again. 

Bank switching is not required during writes since these cycles always exhibit 
an inherent one-half H1 cycle setup of address information before STRB goes 
low. Thus, when using bank switching for read/write devices, a minimum of 
half of one H1 cycle of address setup is provided for all accesses. Therefore, 
large amounts of memory can be implemented without wait states or extra 
hardware required for isolation between banks. Also, note that access time for 
cycles during bank switching is the same as that of cycles without bank 
switching, and accordingly, full speed accesses may still be accomplished 
within each bank. 

The circuit shown in Figure 13-10 illustrates the use of bank switching with 
Cypress Semiconductor's CY7C185 25 ns 8kx8 CMOS static RAM. This cir
cujt implements 32k 32-bit words of memory with full speed zero wait state 
accesses within each bank . 



Hardware Applications - Primary Bus Interface 

TMS320C30 
BlInk 0 

A23-0 
r-----------------------------------------

D31-0 

R~j-t_----------t_--~~==t=~~~==~~=t==~ 

'-<./\I\1'"-+--I G1 

4.7 kIl G2B 
32 

Bank 1 
32 

32 
Bonk 2 

32 
Bank 3 

Figure 13-10. Bank Switching For Cyprus Semiconductors CY7C185 

Each of the four banks in this circuit is selected using a decode of A15-A13 
generated by the 74AS138. With the BNKCMPR register set to >OBh, the 
banks will be selected on even 8k word boundaries starting at location zero 
in external memory space. 

This circuit could not have been implemented without bank switching, since 
data output's turn-on and turn-off delays would have caused bus conflicts, • 
and full speed accesses do not allow enough time for chip select decoding for 
the four banks. Here, the propagation delay of the 74AS138 is only involved 
during bank switches, where there is sufficient time between cycles to allow 
new chip selects to be decoded. 

The timing of this circuit for read operations using bank switching is shown 
in Figure 13-11 With the BN KCM PR register set to >OBh, when a bank 

13-15 



Hardware Applications - Primary Bus Interface 

13-16 

switch occurs, the bank address on address lines A23-A13, is updated during 
the extra H1 cycle while STRB is high. Then, after chip select decodes have 
stabilized, and the previously selected bank has disabled its outputs, STRB 
goes low for the next read cycle. Further accesses occur at full speed with the 
normal bus timings, as long as another bank switch is not necessary. Write 
cycles do not require bank switching due to the inherent address setup pro
vided in their timings. 

-j t1 r_ -j l4 r-

H1 ~ I I '{,,---+I_.JI 
~~,---J _ I 

A23-13 --------'X : 
~l------------------T,---------------------------

A12-0 ______ ---JX~----------------V-al-ld.,..: ________________ .JX"-____ _ 
i I * \i'~' _________________ __ 

fiIij ---------J/1 ~ 
~~r_ I 

'{~' _______________ ~ ___ t_5~r_ ______________________ ___ 

Valid 

SELO 

I I 

~ ~ ~ ~' -------------------------
I Ii ________________ +I ______________ -J~ ~t6 

! I 

SEL1 

031-0 ----Ba--nk-0-o-n-B-U8-----j>---______________ ~'~--------B-an-k-l-0-n-B-u.-------

Figure 13-11. Timing For Read Operations Using Bank Switching 

This timing is summarized in Table 13-1. 

Table 13-1. Bank Switching Interface Timing 

Time Event Time 
Interval Period 

t1 H1 falling to address/STRB valid 10 ns 

t2 STRB to select delay 4.5 ns 

t3 Memory disable from select 15 ns 

t4 H1 falling to STRB 10 ns 

t5 STRB to select delay 4.5 ns 

t6 Memory output enable delay 3 ns 



Hardware Applications - Expansion Bus Interface 

13.3 Expansion Bus Interface 

The TMS320C30s expansion bus interface provides a second complete paral
lel bus which can be used to implement data transfers concurrently with, and 
independent of, operations on the primary bus. The expansion bus comprises 
two mutually exclusive interfaces controlled by the MSTRB and IOSTRB sig
nals, respectively. These two signals are activated depending on what section 
of the memory space is accessed. This subsection discusses interface to the 
expansion bus using IOSTRB ; MSTRB cycles are identical in timing to primary 
bus cycles, and are discussed in Section 13.2. 

Unlike thre primary bus, both read and write cycles on the I/O portion of the 
expansion bus are two H1 cycles in duration and exhibit the same timing. Thr 
XR/W signal is high for reads and low for writes. Since I/O accesses take two 
cycles, many peripherals that require wait states if interfaced either to the pri
mary bus or using MSTRB may be used in a system without the need for wait 
states. Specifically, any devices with address access times greater than the 
35 ns required by the primary bus but not less than 46 ns can be interfaced 
to the I/O bus without wait states. 

A/D converters are one common DSP system component which often falls 
into this category. These devices are available in many speed ranges and with 
a variety of features, and while some may require one or more wait states on 
the I/O bus, others may be used at full speed. 

One A/D converter that interfaces to the I/O bus without wait states and re
quires minimal additional logic is the ad 1332 from Analog Devices. Figure 
13-12 illustrates an interface to this device. 

13-17 

II 



• 

Hardware Applications - Expansion Bus Interface 

74ALS138 
XA10 

C 
XA9 

8 VO P-
XA8 

A 

4.7 kO 

TMS320C30 +5V--NV'-- G1 

.-- RESET 

I RESET I 
CIRCUIT 

13-18 

r--- G2A 

Ii 
~ G28 AD1332 

XA(12-0) .,. 
L..-c CS 

XAO 
AO 

XR/W 

'''''''y -LJ WR 

74AS32 

J J' RD 
IOSTRB --- RS'i' -

XDI31-0) D11-oo 
INTO IRQ 

.'wl 

Figure 13-12. Expansion Bus Interface to A/D Converter 

The interface uses a 74AlS138 to decode chip select for the converter. This 
configuration is shown assuming that other peripheral devices in the system 
also require chip select decodes. XA(8-10) are decoded to locate the con
verter at address 0804000h, which is the beginning of the I/O address space . 
Other peripherals may also use the outputs of the decoder, which generates 
chip selects in the I/O address space on 256 word boundaries. 

XAO is used to drive the single address line required in interfacing to the con
verter. This input selects between an internal 32-word FIFO buffer and the 
A/D's control/status register. Thus, the FIFO is located at address 0804000h 
and the control/status register is located at address 0804001 h. 



Hardware Applications - Expansion Bus Interface 

H1 

XA'12·01 

XRiW 

Since the converter requires RD and WR control signals rather than WE and 
OE, random logic is used to generate these signals from IOSTRB and XR/W. 
The converter's IRQ (Interrupt Request) output is used to alert the 
TMS320C30 to various conditions of converter status. 

Figure 13-13 shows the timing for read and write operations between the 
TMS320C30 and the AD1332. Both operations are shown on the same tim
ing diagram since, unlike the primary bus, only data bus timing and the state 
of XR/W differ between the two different types of cycles. 

~~--~I: \~--~/ \~----
: X,,--' --t-: ____ vA_LlD ___ ~X~ 
I I VALID 

: XT,,---' --r-: ____ ~X~ 
_ '1 I-- I 

I I 

i ~~~I-------------------------------------------L-- '2--1 1 
I 
I\~ ______________ ~A 
I ;- I 

--I '3 I--
--------------------~I ' 

li5/Wii 1\ : I 
I ~, --------------~I ~ 

READ DATA 

WRITE DATA 

-1'41-- I 

-------li-------------« VALID ;>-----
1001.--- '5 -----l. i 

-------«~ ___________ VA_L_ID ____________ _J)__ 

Figure 13-13. Timing of Expansion Bus Interface 

In both cases, address and R/w are valid t1 = 10 ns after the falling edge of 
H1. After t2 = 17 ns, the propagation delay of the 74ALS138, the A/D con
verter's chip select goes low, selecting the device. Then, t3 = 10 ns after the 
rising edge of H1, IOSTRB goes low, and t4 = 5.8 ns following this, the RD or • 
WR signal to the converter goes low, initiating either a read or write cyCle, re
spectively. 

For a read operation, the AID converter provides data back to the TMS320C30 
t4 + t5 = 30.8 ns after RD goes low. This satisfies the TMS320C30's re
quirement of having data valid 35 ns after IOSTRB. For write operations, the 
AID converter requires less than 5 ns of data setup and hold time with respect 

13-19 



• 

Hardware Applications - Expansion Bus Interface 

13-20 

to the rising edge of WR. This is met with a high degree of margin by the 
TMS320C30. 

It should be noted that for the AD1332's FIFO to be clocked properly, the RD 
signal must go high between accesses to the device. Therefore, although the 
AD1332 may be fast enough in some cases to be used at speeds approaching 
those of the primary bus, the STRB signal on the primary bus stays low for 
multiple consecutive read cycles. The I/O bus, therefore, is the preferable 
choice for interface to this device . 



Hardware Applications - System Control Functions 

13.4 System Control Functions 

There are several aspects of TMS320C30 system hardware design which are 
critical to overall system operation. These include such functions as clock and 
reset signal generation and interrupt control. 

13.4.1 Clock Oscillator Circuitry 

An input clock may be provided to the TMS320C30 either from an external 
clock input or by using the on-board oscillator. Unless special clock require
ments exist. using the on-board oscillator is generally a convenient method 
of clock generation. This method requires few external components and can 
provide stable, reliable clock generation for the device. 

Figure 13-14 shows a clock generator circuit using the internal oscillator. This 
circuit is designed to operate at 33.33 M Hz and since crystals with funda
mental oscillation frequencies of 30 MHz and above are not readily available, 
a parallel-resonant third-overtone circuit is used. 

TMS320C30 

X1 X2/CLKIN 

33.33 MHz o ..-....tt------, 

47 pF 20 pF 

Figure 13-14. Crystal Oscillator Circuit 

In a third-overtone oscillator, the crystal fundamental frequency must be at
tenuated so that oscillation is at the third harmonic. This is achieved with an 
LC circuit that filters out the fundamental, thus allowing oscillation at the third 
harmonic. The impedance of the LC network must be inductive at the crystal 
fundamental and capacitive at the third harmonic. The impedance of the LC • 
circuit is given by: 

L 
C 

z(w) (3) 

13-21 



Hardware Applications - System Control Functions 

\z ("')\ 

, 3-22 

Therefore, the LC circuit has a pole at: 

1 

wp = ,j LC (4) 

At frequencies significantly lower than wP' the 1/(wC) term in (3) becomes 
the dominating term, while wL call be neglected. This gives: 

z(w) =jwL for w « wp (5) 

In (5), the LC circuit appears inductive at frequencies lower than wp. On the 
other hand, at frequencies much higher than wp' the wL term is the dominant 
term in (3), and 1/(wC) can be neglected. This gives: 

z(w) = jwC for w »wp (6) 

The LC circuit in (6) appears increasingly capacitive as frequency increases 
above wp. This is shown in Figure 13-15, which is a plot of the magnitude 
of the impedance of the LC circuit of Figure 13-14 versus frequency. 

INDUCTIVE 
REGION 

1 
"'p - ./L.C 

CAPACITIVE 
REGION 

'" (rad/sl 

Figure 13-15. Magnitude of the Impedance of the Oscillator LC 
Network 



Hardware Applications - System Control Functions 

Based on the discussion above, the design of the LC circuit proceeds as fol
lows: 

1 ) Choose the pole frequency wp approximately halfway between the crys
tal fundamental and the third harmonic. 

2) The circuit now appears inductive at the fundamental frequency and 
capacitive at the third harmonic. 

In the oscillator of Figure 13-14, choose wp = 22.2 M Hz, which is approxi
mately halfway between the fundamental and the third harmonic. Choose C 
= 20 pF. Then, using (4), L = 2.6 jJH. 

13.4.2 Reset Signal Generation 

The reset input controls initialization of internal TMS320C30 logic and also 
causes execution of the system initialization software. For proper system in
itialization, the reset signal must be applied at least ten H1 cycles, i.e., 600 ns 
for a TMS320C30 operating at 33.33 M Hz. Upon powerup, however, it can 
take 20 ms or more before the system oscillator reaches a stable operating 
state. Therefore, the powerup reset circuit should generate a low pulse on the 
reset line for 100 to 200 ms. Once a proper reset pulse has been applied, the 
processor fetches the reset vector from location zero which contains the ad
dress of the system initialization routine. Figure 13-16 shows a circuit which 
will generate an appropriate powerup reset signal. 

TMS320C25 

13-23 



Hardware Applications - System Control Functions 

13-24 

The voltage on the reset pin (RESET) is controlled by the R, C, network. After 
a reset, this voltage rises exponentially according to the time constant R, C" 
as shown in Figure 13-17. 

VOLTAGE 

/V - Vee (' -e- tI1j 

~---....... -Vee 

V, 

TIME 

Figure 13-17. Voltage on the TMS320C30 Reset Pin 



Hardware Applications - System Control Functions 

The duration of the low pulse on the reset pin is approximately t1, which is the 
time it takes for the capacitor C1 to be charged to 1.5 V. This is approximately 
the voltage at which the reset input switches from a logic 0 to a logic 1. The 
capacitor voltage is given by: 

where T = R1 C1 is the reset circuit time constant. 

= -R1 C1 1n ~ -v~cJ 
Setting the following: 

R1 = 1 MC 

C1 = 0.47 IJF 

Vee = 5 V 

V = V1 = 1.5 V 

(7) 

Solving (7) for t gives: 

(8) 

gives t = 167 ms. Therefore, the reset circuit of Figure 13-16 provides a low 
pulse of long enough duration to ensure the stabilization of the system oscil
lator upon powerup. 

Note that if synchronization of multiple TMS320C30's is required, all proces
sors should be provided with the same input clock and the same reset signal. 
After powerup, when the clock has stabilized, all processors may then be 
synchonized by generating a falling edge on the common reset signal. Since 
it is in fact the falling edge of reset that establishes synchronization, reset must 
be high for a period of time (at least ten H1 cycles) initially. Following the 
falling edge, reset should remain low for at least ten H1 cycles and then be 
driven high. This sequencing of reset may be accomplished using additional 
circuitry, based on either RC time delays or counters. 

13-25 



• 

Hardware applications - Target Design Considerations 

13.5 XDS1000 Target Design Considerations 

The TMS320C30 Emulator is an Extended Development System (XDS1000), 
which has all the features necessary for full-speed emulation. The 
TMS320C30 uses a revolutionary technology to allow complete emulation via 
a serial scan path. If the user provides a 12 pin header on their target system, 
realtime emulation can be performed using the TMS320C30 device in their 
target system. Refer to Appendix B, Section B.1.4 for a complete description 
of the XDS1 000. 

To use the emulation connector of the XDS1 000, the signals shown in Figure 
13-18 should be provided to a 12 pin header (two rows of six pins) with pin 
8 cut out to provide keying. 

EMU1t 1 2 GND 

EMUOt 3 4 GND HEADER DIMENSIONS: 

EMU2t 5 6 GND PIN TO PIN SPACING 0.100 IN. (X,Y) 

PD (+5 V) 7 NO PIN (KEY) PIN WIDTH 0.025 IN. SQUARE POST 

EMU3 
PIN LENGTH 0.235 IN NOMINAL 

9 10 GND 

H3 11 12 GND 

TOP VIEW 

tThese signals should always be pulled up with separate 20 kD resistors to + 5 volts on the TMS320C30. 

13-26 

Figure 13-18. 12 Pin Header Signals 

Signal Description: 

EMUO Emulation pin O. 
EMU1 Emulation pin 1. 
EMU2 Emulation pin 2. 
EMU3 Emulation pin 3 . 
H3 TMS320C30 H3 
PD Presence detect. It indicates that the cable is connected 

and target system is powered up. It 
should be tied to +5 volts in the target 
system. 



Hardware applications - Target Design Considerations 

Figure 13-19 is a diagram of the typical setup when using the emulation 
connection of the XDS1 000. 

PC 

XDS1000 
CONTROLLER 

CARD 

CJ 

TMS320C30 

4" 
MINI 

COAX 
USER 

TARGET SYSTEM 

Figure 13-19. Typical Setup For Using the Emulation Connection of the 
XDS1000 

For unbuffered signals, the distance between the TMS320C30 emulation pins 
(EMUO, EMU1, EMU2, EMU3, and H3) and the 12 pin header should be less 
than two inches. If the distance between the header and the TMS320C30 
emulation pins is more than two inches but less than six inches, the EMU3 
and H3 signals should be buffered. The buffer should be noninverting with a 
worst case propagation delay of 6.0 ns. For TMS320C30 emulation pins to 
12 pin header distances greater than six inches, all emulation signals ShOUld. 
be buffered. Recall that EMUO, EMU1, and EMU2 are inputs and EMU3 and 
H3 are outputs. The buffer should have the same characteristics as given 
above. 

13-27 



Hardware applications - Target Design Considerations 

• 
13-28 



Appendices 





Appendix A 

TMS320C30 Timing Specifications & Dimensions 

This section provides timing specifications and dimensions for the 
TMS320C30 (third-generation TMS320) processor. In order to provide in
formation in advance of the complete data sheet, this section is included. 
Characterization data on the TMS320C30 is still being collected. A complete 
data sheet with additional information will be available in the future. Please 
contact the local TI field sales office to obtain these data sheets. 

A-1 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

Table A-1. Absolute Maximum Ratings Over Specified Temperature Range 

• 
A-2 

Condition/Characteristic Range 

Supply voltage range, Voo -0.3 V to 7 V 

Input voltage range -0.3 V to 7 V 

Output voltage range -0.3 V to 7 V 

Continuous power dissipation 2.0W 

Operating free-air temperature range O·C to 70·C 

Storage temperature range -55"C to 150"C 

Notes: 

1) Stresses beyond those listed under 'Absolute Maximum Ratings' may 
cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or any other conditions be
yond those indicated in the 'Recommended Operating Conditions' sec
tion of this specification is not implied. Exposure to 
absolute-maximum-rated conditions for extended periods may affect 
device reliability. 

2) All voltage values are with respect to VSS' 

Table A-2. Recommended Operating Conditions 

Operating Condition Min Nom Max Unit 
Voo Supply voltages (DVDD, etc.) 4.75 5 5.25 V 

Vss Supply voltages (CVSS, etc.) 0 V 

VIH High-level input voltage 2 Voo + 0.3 V 

VIL Low-level input voltage -0.3 0.8 V 

IOH High-level output current 300 IlA 

IOL Low-level output current 2 mA 

T Operating free-air temperature 0 70 "C 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

Table A-3. Electrical Characteristics Over Specified Free-Air Temperature 
Range 

Electrical Characteristic Min Nom Max 

VOH High-level output voltage (Voo = Min.1 OH = Max) 2.4 3 

VOL Low-level output voltage (Voo = Min.1 OL = Max) 0.3 0.6 

IZ Three-state current (Voo = Max) -20 20 

II Input current (VI = Vss toV 00) -10 10 

ICC Supply current (TA = 25'C.Voo= Max. f x = Max) 300 

CI Input capacitance 15 

Co Output capacitance 15 

Notes: 

1) All typical values are at Voo = 5 V. T A = 25°C. 

2) fx is the input clock frequency. The maximum value is 33.3 MHz. 

3) All input and output voltage levels are TIL compatible. 

2.15 V 

RL = 8250 

FROM OUT~UT ---_e 
UNDER TEST 

___ --- TEST POINT 

CL = 100 pF 

Figure A-1. Test load Circuit 

Unit 

V 

V 

!JA. 

!JA 

rnA 

pF 

pF 

II 
A-3 



Appendix A - TMS320C30 Timing Specifications 

X2/CLKIN 

Figure A-2. X2/elKIN Timing 

1-1-------(101--------1-1 
1 I 
1 .-.I 1---161 I --1 1--(9) I 1 I 

I ,ro' -----~I 1 Ir-_ 

H1 ---' I NE.~ _____ 1 
r (8) -1 ~ 171 _I 

-t :--19.21 -I j--19.11 

H3 ~ ;,---------"\"--

Figure A-3. H1 /H3 Timing 

A-4 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

Table A-4. Switching Characteristics for CLKIN, H1, and H3 

No. Name Description Min Typ Max Unit 

(1 ) tf(CI) ClKI N fall time 5 ns 

(2) tw(Cll) ClKIN low pulse duration 10 ns 
tc(CI) = 30 ns 

(3) tw(CIH) ClKIN high pulse duration 10 ns 
tC<CI) = 30 ns 

(4) tr(CI) ClKI N rise time 5 ns 

(5) tC<CI) ClKIN cycle time 30 ns 

(6) tf(H) H1 /H3 fall time 1 3 ns 

(7) tw(Hl) H1 /H3 low pulse duration P - 6 ns 

(8) tw(HH) H1/H3 high pulse duration P - 7 ns 

(9) tr(H) H1 /H3 rise time 2 4 ns 

(9.1 ) td(Hl - HH) Delay from H1 (H3) low to 5 ns 
H3(H1) high 

(9.2) td(HH - Hl) Delay from H1 (H3) high to 5 ns 
H3(H1) low 

(10) tc(H) H1 /H3 cycle time 60 ns 

Note: P = tdCI) 

Table A-5. Switching Characteristics for a memory «M)STRB = 0) read 

No. Name Description Min Typ Max Unit 

(11 ) td(H1 l - (M)Sl) H1 low to (M)STRi3 low 0 10 ns 

(12) td(H1 l - (M)SH) H1 low to (M)STRB high 0 10 ns 

(13) td(H1 H - (IO)RWl) H1 high to (IO)R/W low 0 10 ns 

(14) td(H1 l - (IO)A) H1 low to (IO)A valid 0 10 ns 

(15) tsu((lO)D)R (lO)D valid before H1 low 15 ns 
(read) 

(16) th«IO)D)R (10) D hold time after H1 0 ns 

(17) tsu((lO) RDY) (10) RDY valid before H1 8 ns 
high 

(18) th((lO(RDY) (10) RDY hold time after 0 ns 
H1 high 

II 
A-5 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

H3 

H1 

(M)S'i'Jiii 

! I I !'\~-----
-I r-11•4) I --I 1--(13) 

(lO)A ___ .JX I : X'-________ __ 
(15) -'5' i .... (16) 

(lO)D -----+, -~. I 110---------I 
(17)"'" t--+I t-;(1S) ---VI il/ -------

(lOIRDY ~ L 

(lOIRIW 

Figure A-4. Memory «M)STRB = 0) Read 

Table A-6. Switching Characteristics for a memory «M)STRB = 0) Write 

No. Name Description Min Typ Max Unit 

(19) td(H1 H - (IO)RWH) H1 high to (IO)R/VV high 10 ns 

(20) tv«IO)O)W (10) 0 valid after H1 low 20 ns 
(write) 

(21 ) th«(lO)O)W (10)0 hold time after H1 0 ns 
high (write) 

• 
A-6 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

H3 

H1 , I 
, I 

I (11)~ '--, I I 
• ,(12)--1 --: 

(M)S'i'Rii ---": ---.:...., --..... :I....o\t! L 
I (13)..... 1--, I (19)-t t-

IIO)R/W -~!---"""~! I, I /---
I ~-+I---~I-------I~ 

--r t-(14) 'I ' 

IIO)A----JXII:--I ___ : ----.-1--...,--: x= 
(20)--t E' 121>-1 t-

IIO)D------------c~~ _ ___.:...._----------J~-
(17)--t r---------------""\ -r 1-;.:(:.;.;18~) __________ _ 

IIOIRDY \J.. y 
Figure A-5. Memory «M)STRB = 0) Write 

A-7 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

• 
A-8 

H3 

H1 ~_: ---J/: \'----1: \'--__ ;-
I (11.1)--1 .,..- (12.11--t r-
: ~ !/iI----

1 

-=712~ I 
\'---10RiW I 

1 
--t 1"-114.1) 1 

lOA __ -,X~I-------~......I..----X== 
115.11~ 

1--(16.1) 

100 -------(-1-7.-1-) -... ---49 
1 I- -I (18.1) 

IOROY --------~\ L 

Figure A-6. Memory «M)STRB = 0) Read 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

Table A-7. Switching Characteristics for a Memory (lOSTRB = 0) Read 

No. Name Description Min Typ Max Unit 

(11.1 ) td(Hl H - 10SL) Hl high to 10STRB low 0 10 ns 

(12.1 ) td(H1 H - 10SH) H1 high to IOSTRB high 0 10 ns 

(22) td(Hl L - 10RWH) Hl low to lOR/iN high 0 10 ns 

(14.1 ) td(Hl L - lOA} Hl low to lOA valid 0 10 ns 

(15.1 ) tsu(lOO)R 100 valid before Hl high 15 ns 
(read) 

(16.1 ) th(IOO)R 100 hold time after Hl 0 ns 
high (read) 

(17.1 ) tsu(IOROY) 10ROY valid before Hl high 8 ns 

(18.1) th(IOROY) 10ROY hold time after Hl 0 ns 
high 

Table A-S. Switching Characteristics for a Memory (IOSTRB = 0) Write 

No. Name Description Min Typ Max Unit 

(23) td(Hl L - 10RWL) Hl low to (IO}R/W low 0 10 ns 

(20.1 ) ty(lOO)W 100 valid before Hl low 15 ns 
(write) 

(21.1 ) ty(IOO)W 100 hold time after Hl low 0 ns 
(write) 

.. 
A-9 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

H3 

H1 i 

:
i I i (12.1)-!I/~_--,-~i __ _ 

~--~----~~~ 

- I 
--t 1--123) I I 

IORNi -:v ! I / 
~ I /-
---f ~114.1) I / 

IOA-----JX'---_--r-: ~: x== 
I-- 120.1) --I --t ..... 121.1) 

IOD----<~ L })---
117. 1 )::;:j r:;::: 

~ 1--(18.1) \l y,-----
Figure A-7. Memory (IOSTRB = 0) Write 

.. 
A-l0 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

H3 

H1 

IX)R/W 

IX)A 

IX)D 

IX)RDY 

XFO PIN 

XF1 PIN 

FETCH 
LDFI or LOll DECODE READ EXECUTE 

I 
I 
I 
I 
I 
I 
I 
I 
I 

(2)--/ t--

~ r (3) 

='\ r 

1\ / 
I 
I 
I 

_--JX X~_ 
I 

I --c>-
I 

bc 
(1).....J t-

I 

~ 

Figure A-S. Timing for XFO and XF1 When Executing a LDFI or LOll 

Table A-9. Information for Figure A-8 

No. Name Description Min Typ Max Unit 

(1) td(H3H-XFOL) H3 high to XFO low 10 ns 

(2) tsu (XF1 ) XF1 valid before H1 low 8 ns 

(3) th(XF1 ) XF1 hold time after H1 low 0 ns 

II 
A-11 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

FETCH 
STFI or STII DECODE READ EXECUTE 

H3 

H1 

I 

mTfiIii !\ / 
I 
I 

\ 
I ;-(X)RIW I 
I 
I 
I 

(X)A ~ : >C 
I 

(X)D -<: >-
I 

(X)RDY ~/ 
7'" XFO PIN 

Figure A-9. Timing for XFO When Executing a STFI or STU 

Table A-10. Information for Figure A-9 

Description Min Typ Max 

H3 high to XFO high 10 

• 
A-12 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

H3 

H1 

I --i 1--111 1--121 I I I 

XFO 
I '{ / 131'"1 r-

~r-141 
XF1 \1J1 

Figure A-10. Timing for XFO and XF1 When Executing SIGI 

Table A-11. Information for Figure A-10 

No. Name Description Min Typ Max Unit 

(1 ) td(H3H-XFOL) H3 high to XFO low 10 ns 

(2) td(H3H-XFOH) H3 high to XFO high 10 ns 

(3) tsu (XF1 ) XF1 valid before H1 low 8 ns 

(4) th(XF1 ) XF1 hold time after H1 low 0 ns 

• 
A-13 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

H3 

H1 

OUTXF 
BIT 

FETCH LOAD 
INSTRUCTION DECODE READ EXECUTE 

I 
I 
I 
I 

I 
. I 
~10RO 

--I 1-(1) 

XF PIN -----------------------~>( __ _ 

Figure A-11. Timing for Loading XF Register When Configured as an Output 
Pin 

Table A-12. Information for Figure A-11 

Name Description Min Typ Max 

tv(H3H-XF) H3 high to XF valid 10 

A·14 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

H3 

H1 

mXF 
BIT 

XF PIN 

INXF BIT 

No. 

(1 ) 

(2) 

(3) 

BUFFERS GO 

I 
FROM OUTPUT ISYNCHRONIZERI VALUE ON PIN I 

TO INPUT DELAY SEEN IN 10F 

-! 1-111 
I 

OUTPUT 

Figure A-12. Change of XF From Output to Input Mode 

Table A-13. Information for Figure A-12 

Name Description Min Typ Max Unit 

td(H3H-XFOI) H3 high to XF switching 15 ns 
from output to input 

tsu(XF) XF setup before H1 low 10 ns 

th(XF) XF hold before H1 low 0 ns 

II 
A-15 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

No. 

(1 ) 

• 
A-16 

I EXECUTION OF I 
LOAD OF IOF 

H3 J---\ A-i ~\_--J 

H1 

JOXF 

I 
I 
I 

BIT ________ .... 
I 
I 
I 

XF PIN _______________ ---1_--<[''' 

Figure A-13. Change of XF From Input to Output Mode 

Table A-14. Information for Figure A-13 

Name Description Min Typ Max 

td(H3H-XFIO) H3 high to XF switching 10 
from input to output 

Unit 

ns 



~ 
~ 

-.J 

CLKIN 

CONTROL ..... -, " WWVWVWVWWWWWW\ 

SIGNALS (NOTE 3) --r----------..J 

lACK 

ASYNCHRONOUS--rc::;:---(1-2-)-------------J 

RESET SIGNALS ~ " 
(NOTE 41 

NOTES: 1. (X)D includes 0(31-01 and XD(31-01. 
2. X(A) includes A(23-0) and XA(12-0). 
3. Control signals include RIW, Si'RB, XRiW, ~, and KrnTRB. 
4. Asynchronously reset signals include XF1, XFO, CLKXO, OXO, FSXO, CLKRO, ORO, FSRO, CLKX1, OX1, FSX1, CLKR1, OR1, 

FSR1, TCLKO, and TCLK1. 
5. RESET is an asynchronous input. 

I 
Figure A-14. RESET Timing 

l> 
't:I 
't:I 
CD 
:::s 
Q. 
)C. 

l> 
I 

-t 
s: 
(I) 

~ o 
o 
Co! o 
c 
3 
CD 
:::s 
In o· 
:::s 
In 
G) 

:::s 
Q. 

:! 
3 
:::s 
IC 
(I) 
't:I 
CD 
n .... 
n' 
G) 

~. 
o 
:::s 
(II 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

Table A-15. Information for Figure A-14 

No. Name Description Min Typ Max Unit 

(1 ) tsu(RESET) Setup for "fi'E'SE'f 10 ns 
before ClKIN low 

(2) td(ClKINH-HIH) ClKIN high to H1 high 0 15 ns 

(3) tsu(RESETH-Hll) Setup for RESET high 10 ns 
before H1 low and after 10 
H1 clock cycles 

(5) td(ClKINH-H3l) ClKIN high to H3 low 0 15 ns 

(8) tdis(H1 H-XD) H1 high to (X) D three state 15 ns 

(9) tdis(H3H-XA) H3 high to (X)A three state 10 ns 

(10) td(H3H- H3 high to control signals 10 ns 
CONTROlH) high 

(11 ) td(H1 H-IACKH) H1 high to TAeK high 10 ns 

(12) tdis(RESETl- RESET low to 15 ns 
ASYNCH) asynchronously reset signals 

three state 

• 
A-18 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

H3 

Hl 

I 
--t _Ill 

iNTI3~~'1 ( 

-121----1 

INT13·01 
FLAG _____ ...J 

I 
I 

RESET OR 

V~~~~:~~D I 
FETCH FIRST 

I!~:~~~EC~~~T:I 

I I 
V, r--V"'E"'C"'TO""R"--"~ V FIRST ~ 

ADDR----------------~i\ ADDRESS ,..,)----~1\.IN~'f.~~WNAI---

DATA--------------_____ ~<===>~------~<===>_____ 

Figure A-15. RESET and INTe3-0) Response Timing 

Table A-16. Information for Figure A-15 

No. Name Description Min Typ Max Unit 

(1 ) tsu(INT) INT(3-0) setup before H1 low 10 ns 

(2) tw(lNT)Note 1 Interrupt pulse width to P 1.5P <2P ns 
guarantee one interrupt seen 

Note 1: Interrupt pulse width must be at least 1 P wide to guarantee it will be seen. It must be less than 
2 P wide to guarantee it will be responded to only once. The recommended pulse width is 1.5 P. 

II 
A-19 



Appendix A - TMS320C30 pimensions and Timing Specifications 

H3 

H1 

ADDR 

DATA 

No. 

(1 ) 

(2) 

A-20 

FETCH lACK 
INSTRUCTION I lACK DATA 

READ 

--------~(~--~)~---

----------~()~-

Figure A-16. lACK Timing 

Table A-17. Information for Figure A-16 

Name Description Min Typ Max 

td(H1 H-IACKL) H1 high to ~ low 10 

td(H1 H-IACKH) H1 high to ~ high during 10 
first cycle of lACK instruction 
data read 

Unit 

ns 

ns 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

FETCH FIRST 

I FETCH TRAP 
READ TRAP I INSTRUCTION OF1 VECTOR TRAP ROUTINE 

H3 

H1 

ADDR VECTOR ADDRESS FIRST INSTRUCTION 
ADDRESS 

DATA 0 0 

Figure A-17. TRAP Response Timing 

• 
A-21 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

1------121----_ 

Hl 

DX 

I-----131- r---- 131 ---t I I f I . , I 

--I: ~ ~ 1: ~~--I I --j 161 r- ---11-181 --I ~141 --! ~161 

I ! ! { -; : X'l.. ______ _ 
I I I 1-171 .... I 

CLKXlR 

DR 

I I I 
Itl. 

---+!---'/( I!~ 
1-191-1 !-ll01-J I -191-1 
I j' I I I I I '\ I 

--...,Ii--...J --i l-llll \: .... -----------------
I I 

FSR 

FSXIINTI 

FSXIEXTI 

NOTE: Timing diagrams show operation with CLKXP = CLKRP = FSXP = FSRP = O. 

Figure A-18. Fixed Data Rate Mode 

• 
A-22 



» 
N 
Co) 

CLKXJR 

FSXIINTI 

FSXIEXTI 

~)! \ /-~ 
-l :-'91 i '\ I 1/ I I \ ------il~. I I ----

---j 1-1121 --I, t--1141 I 

Il/!;!I//!/ ! ! I 

l> 
'C 
'C 
CD 
;, 
Co 
)C. 

l> 
I 

-I 
~ 
o 
w 
~ 
o 
~ . $ I I I 

I I I 
"--1131---1 I 1--161--1 

OX , : r' -----

--; ,"11 X X -----

c 
3 
CD 
;, 
fn o· 
;, 
fn 

III 
;, 
Co 

:! 
3 ~. FSR - _____ -:if II- ~ ~: 

-< 1101 " I'QQQQQQQQQQQQQ. • 

I:~ ~ D'~ . . ~ 
MMIIMMMIINll7I-l I 0" ~~~ i 

NOTES: 1. Timing diagrams show operation with CLKXP = CLKRP = FSXP = FSRP = O. 
2. Timings not expressly specified for variable data rate mode are the same as those for fixed data rate mode. 

I 
Figure A-19. Variable Data Rate Mode 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

Table A-18. Serial Port Timing as Shown in Figures A-18 and A-19 

No. Name Description Max Min Unit 

(1 ) td(H1-SCK) H1 high to internal CLKX/R. 15 ns 

(2) tc(SCK) CLKX/R cycle CLKX/R external t c(H)x2.6 ns 

time. CLKX/R internal tc(H)x234 t C<H)x2 

(3) tw(SCK) CLKX/R high/ CLKX/R external tC<H)+5 ns 

low pulsewidth CLKX/R internal tc(SCK)/2 [t C<SCK)/2]-15 

(4) tr(SCK) CLKX/R rise time. 8 ns 

(5) t,(SCK) CLKX/R fall time 8 ns 

(6) td(OX) CLKX to OX CLKX external 35 ns 

valid. CLKX internal 20 

(7) tsu(OR) DR setup before CLKR external 10 ns 

CLKR. CLKR internal 25 

(8) th(OR) DR hold from CLKR external 10 ns 

CLKR. CLKR internal -5 

(9) td(FSX) CLKX to internal CLKX external 32 ns 

FSX. CLKX internal 17 

(10) tsu(FSR) FSR setup CLKR external 10 ns 

before CLKR. CLKR internal 10 

(11 ) th(FS) FSX/R input CLKX/R external 10 ns 

hold from CLKX/R internal -5 
CLKX/R. 

(12) tsu(FSX) External FSX CLKX external [t C<CLKX)/2]-1 0 -[tc(H)-8] ns 

setu p before CLKX internal tc(CLKX)!2 - [t c(H)-21] 
CLKX. 

(13) td(CH-OX)V CLKX to first CLKX external 36 ns 

OX bit. FSX CLKX internal 21 
precedes CLKX. 

(14) td(FSX-OX)V FSX to first OX bit. CLKX precedes 36 ns 
FSX. 

III 
A-24 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

H3 

H1 

...... 1111- 1 1 11111-- ! 1 

~~~t'=============:~_~_I:~!_-___ -_-_-__ -~ri===~~~~~~.~1i ... ------------ri-----------+I----
I ~ _~ ~~~ I 

1 I 'i--�·-----161-----;.l~I"--' _____ --+1 __ _ 
~------------~I~--~l---~l '\ ~- i 

-l 171 H --1181_ -1 191 - 171-1 r-
I I I I I ... 1 ---------:i;',--------------------/-T-!I-------il-.j\ I t ~ 

I I 1 
1 --J1101~ ...... (11)_ 
I I 1 I 1 

R/W _________ ,: __ -.: ,-J) I ~~-----
I ~ ~ ....J(131~ I ,(121, ---. I 

I ,..------------
A _________ .-__ --J) ~~ ____ __ 

I 
--1 (161 ~ 

I 

D---------~)~I--------------------WRITE DATA .7 

Figure A-20. HOLD/HOLDA Timing 

Table A-19. Information for Figure A-20 

No. Name Description Min Max Unit 

(1 ) tsu(HOLD) HOiJ5 valid before H1 low 15 ns 

(3) tv(HOLD) HOLD valid after H1 low 0 10 ns 

(4) tw ('RO['[) HOLD low width 2 H1 cycles 

(6) tw(HOLDA) 'R'5I'DA low width 1 H1 cycle 

(7) td(H1 L-SH)H H1 low to STRB high for a 
HOiJ5 

0 10 n s 

(8) tdis(H1 L-S) H1 low to STRB three state 0 10 ns 

(9) ten (H1 L-S) H1 low to STRB active 0 10 ns 

(10) tdis(H1 L-RW) H1 low to R/W three state 0 10 ns 

(11 ) ten(H1L-RW) H1 low to R/W active 0 10 ns 

(12) tdis(H1 L-A) H1 low to address three state 0 10 ns 

(13) ten (H1 L-A) H1 low to address valid 0 10 ns 

(16) tdis(H1 H-D) H1 high to data three state 0 10 ns II 
A-25 



Appendix A - TMS320C30 Dimensions and Timing Specifications 

• 
A-26 

;-

INDEX CORNER / 

... 1------ 40.4 (1.590) ______ .. -11 
37.6 (1.460) 

TOP VIEW 

40.4 (1. 

37.6 (1 . 

590) 
460) 

1.40 (0.055) 

J..1----:-'----.:1 ======:....c=========:::1...-__ --.1 ~ 1.14 (0.045) 

~::~:~~.,~rf~ ~ ~ !:4J~U~ ~ ~~fL,.;,,,,~ ... 
2.54 (0.100) (160 places) 

SIDE VIEW 

DIA (4 PLACES) 

2.54 (0.100) T.P. 

I~ 
J 

35.6 (1.400) REF H 

Ll 

a • @ (i)(i)(!> (!)(i)(i)(!)(;)(!)(i)(i) • 
@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@ 
@@@@ @ @@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@@ @@@@@ 
@@@@ @@@@ 

rEXTRA PIN @@@@ , @@@@ 
@@@@@ @ @@@@ 
@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@ •• >+-__ ..I... 
.@@@@@@@@@@@@@ICi.ilH---,... 

~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
INDEX CORNER--..r 

80TTOMVIEW 

2.54 (0.1001 T.P. 

Figure A-21. TMS320C30 180 Pin PGA Dimensions 



Appendix B 

Development Support/Part Order Information 

This section provides development support information, device part numbers, 
and support tool ordering information for the TMS320C30 (third-generation 
TMS320) processor. Figure 8-1 shows the software and hardware develop
ment tools available and the development environment for the TMS320C30. 

8-1 



Appendix B - Development Support/Part Order Information 

II 
B-2 

Format 

Macro 
Source 
File. 

EPROM 
Programmer 

Simuletor 

A •• embler 
Source 

TMS320C30 

C Compiler 

Archiver 

XDS 
Emulator 

Figure 8-1. TMS320C30 Development Environment 



Appendix B - Development Support/Part Order Information 

Extensive documentation, including data sheets, user's guides, and application 
reports, is available to support DSP design. A series of DSP textbooks has 
been published both by Prentice-Hall and John Wiley and Sons to support 
research and education. Other support includes a technical support hotline 
(713-274-2320) and a bulletin board service (713-274-2323). TI's Regional 
Technology Centers (RTCs) provide hands-on workshops and design ser
vices. 

Many third-parties and consultants with DSP expertise can assist in various 
application areas. TMS320C30 Algorithm Development Packages will be 
available from multiple third-parties and consultants in the near future. Sub
scribe to the DSP newsletter "Details on Signal Processing" for up to date 
information on new products and services from third-parties and consultants. 
Call TI's Customer Response Center at (800) 232-3200 to subscribe to the 
newsletter. Contact the nearest TI field sales office for support tool availability 
or further details (see list of sales offices and distributors at end of book). 

The major topics discussed in this section are listed below. 

• TMS320C30 Development Support (Section B.1 on page B-4) 
Macro Assembler/Linker 
C Compiler 
Simulator 
Extended Development System (XDS1000) 
TMS320 DSP Hotline/Bulletin Board Service 

• TMS320C30 Part Order Information (Section B.2 on page B-12) 
Device part numbers 
Software and hardware support tools part numbers 
Device and support tool prefix designators 
Device nomenclature 

II 
B-3 



Appendix B - TMS320C30 Development Support 

B.1 TMS320C30 Development Support 

Texas Instruments offers extensive development support and complete doc
umentation with the TMS320C30 (third-generation) digital signal processor. 
Tools are provided for the TMS320C30 to evaluate the performance of the 
processor, develop algorithm implementations, and fully integrate the design's 
software and hardware modules. Development operations are performed with 
the TMS320C30 Macro Assembler/Linker, C Compiler, Simulator, and Emu
lator (Extended Development System - XDS1000). 

A description and key features for each TMS320C30 development support 
tool is provided in the following subsections. For ordering information, see 
Section B.2. 

B.1.1 Macro Assembler/Linker 

--
8-4 

The TMS320C30 Macro Assembler/Linker is a software tool that converts 
source mnemonics to executable object code. 

The following key features distinguish the TMS320C30 Macro 
Assembler/Linker: 

• Macro capabilities and library functions 
• Conditional assembly 
• Relocatable modules 
• Complete error diagnostics 
• Symbol table and cross reference 

The TMS320C30 Macro Assembler/Linker is shipped with four programs to 
address specific needs. They are: 

1 ) The assembler 
2) The archiver 
3) The linker 
4) The object format converter 

These programs and their functionality are described in the following para
graphs. 

• The assembler translates assembly language source files into machine 
language object files. Source files can contain instructions, assembler 
directives, and macro directives. Assembler directives can be used to 
control various aspects of the assembly process, such as the source list
ing format. data alignment. and section content. 

• The archiver allows collection of a group of files into a single archive 
file. For example, several macros can be collected together into a macro 
library. The assembler will search through the library and use the mem
bers that are called as macros by the source file. It is also possible to 
use the archiver to collect a group of object files into an object library. 
The linker will include the members in the library that resolve external 
references during the link. 



Appendix B - TMS320C30 Development Support 

• The linker combines object files into a single executable object module. 
As it creates the executable module, it performs relocation and resolves 
external references. The linker accepts relocatable object files (created 
by the assembler) as input. It also accepts archive library members and 
output modules created by a previous linker run. Linker directives allow 
combining of file sections, binding of sections or symbols to addresses, 
and defining of global symbols. 

• The main purpose of this development process is to produce a module 
that can be executed in a system that contains a TMS320C30 device 
or the software or hardware development tools. (Note that only 
linked files can be executed). 

• Most EPROM programmers do not accept assembler/linker files as input. 
The object format converter converts the object file into Intel, Tek
tronix, or TI-tagged object format. The converted file can be down
loaded to an EPROM programmer. This EPROM code can then be 
executed on the TMS320C30 device. 

Refer to Figure 8-1 for a diagram of the development environment when using 
the Assembler/Linker. 

The macro assembler/linker is currently available for PC/MS-DOS, VAX VMS, 
SUN-3 UNIX, and VAX ULTRIX operating systems. 

B.1.2 C Compiler 

The optimizing C compiler is a full implementation of the standard Kernighan 
and Ritchie C. The compiler accepts a digital signal processing program 
written in C language. It outputs TMS320C30 assembly language source 
code which is then processed by the assembler where the TMS320C30 mne
monics are converted to object code. 

This high-level language compiler allows time-critical routines written in as
sembly language to be called from within the C program. The converse is also 
available; assembly routines may call C functions. The output of the compiler 
can be edited prior to assembly/link to further optimize the performance of the 
code. The compiler supports the insertion of assembly language code into C 
source code. The result is a compiler that allows the relative amounts of 
high-level programming and assembly language code to be tailored according 
to the application. Refer back to Figure 8-1 for a diagram of the development 
environment when using the C compiler. 

The compiler is currently available for PC/MS-DOS, VAX VMS, SUN-3 UNIX, 
and VAX ULTRIX operating systems. The assembler/linker is included with the 
shipment of the TMS320C30 C compiler. The output of this assembler/linker 
can be downloaded and used with the simulator, XDS, or PROM programmer. 

6-5 



Appendix B - TMS320C30 Development Support 

B.1.3 Simulator 

• 
B-6 

The TMS320C30 Simulator is a software program that simulates operation of 
the TMS320C30. 

The following features highlight simulator capability for effective TMS320C30 
software development: 

• Simulates the entire TMS320C30 digital signal processor instruction set 
• Simulates the key TMS320C30 peripheral features (DMA, timers, and 

serial port) 
• Command entry from either menu-driven keystrokes (menu mode) or 

from a batch file (line mode) 

• Help menus for all screen modes 
• Standard interface can be user customized 
• Simulation parameters quickly stored/retrieved from files to facilitate 

preparation for individual sessions 
• Reverse assembly allows editing and re-assembly of source statements 
• Memory can be displayed (at same time) as: 

hexadecimal 32-bit values 
assembled source 

• Execution modes include: 
single/multiple instruction count 
single/multiple cycle count 
until condition is met 
while condition exists 
for set loop count 
unrestricted run with halt by key input 

• Easy to define trace expressions 
• Trace execution with display choices of: 

designated expression values 
cache registers 
instruction pipeline for easy optimization of code 

• Breakpoint conditions include: 
address read 
address write 
address read or write 
address execute 
expression valid 

• Simulates cache utilization 

• Cycle counting 
display the number of clock cycles in single step or run mode 
external memory can be configured with wait states for accurate 
cycle counting 

The simulator allows verification and monitoring of the state of the processor . 
Simulation speed is on the order of thousands of instructions per 
second (VAXNMS, VAX/ULTRIX, and SUN-3 UNIX) or hundreds of in
structions per second (PC/MS-DOS). 



Appendix B - TMS320C30 Development Support 

The simulators use TMS320C30 object code, produced by the Macro 
Assembler/Linker. Input and output files may be associated with the port 
addresses of the I/O instructions in order to simulate I/O devices connected 
to the processor. Before initiating program execution, breakpoints may be set, 
and the trace format defined. 

During program execution, the internal registers and memory of the simulated 
TMS320C30 are modified as each instruction is interpreted by the host com
puter. Execution is suspended when one of the following conditions exists: 

1 ) A breakpoint or error is encountered. 

2) Execution is halted. 

Once program execution is suspended, the internal registers and both program 
and data memories can be inspected and/or modified. The trace memory can 
also be displayed. A record of the simulation session can be maintained in a 
journal file, so that it can be re-executed to regain the same machine state 
during another simulation session. 

The user interface in the simulator is identical to that in the XDS. See Figure 
B-2 for an example of the user interface. 

II 
B-7 



Appendix B - TMS320C30 Development Support 

CODE WINDOW COMMAND LINE -----., 
Shows Bource code (LO command loads code from <filename» 

L-__ DISPLAY WINDOW 

Btl 
B-8 

Shows: Banner (DC command) 
expressions (DE commands) 
Flies (OF command) 
Memory (OM command) 
Symbols (OS command) 
(And other displays.) 

Figure 8-2. TMS320C30 Simulator User Interface 

The simulator is currently available from TI for PC/MS-DOS, VAX VMS, and 
VAX ULTRIX operating systems. A SUN-3 UNIX version of the simulator can 
be purchased from a third party: Spectron Microsystems Inc. This version is 
the same as TI's simulator for the PC/MS-DOS, VAX VMS, and VAX ULTRIX. 
Contact Spectron at (805967-0503) for more information. 



Appendix B - TMS320C30 Development Support 

B.1.4 TMS320C30 Emulator - Extended Development System (XDS1000) 

The TMS320C30 Emulator (XDS1000) is a user-friendly system that has all 
the features necessary for full-speed emulation to debug hardware, software, 
or integrate the software with the hardware. Some of the XDS1 OOO's features 
include: 

• Full-speed execution and monitoring out of the customers target system 
via a 12 pin target connector 

• Software breakpoint 
• Software trace 
• Software timing capabilities 
• Single-step execution 
• Inspect/modify registers and program/data memory 
• Upload/download capabilities to/from data/program memory 
• Windowed user interface similar to the TMS320C30 simulator 

Full-speed execution and monitoring of the customers target system via a 12 
pin target connector has the advantage of using a serial scan path to give ac
cess to the internal registers as well as internal and external memory of the 
device. Since execution is out of the TMS320C30 located in the target sys
tem, there is no timing difference during emulation. 

Software breakpoints means the program can be stopped on a specific ad
dress. When the program counter reaches the designated breakpoint address, 
the emulator will halt execution and allow the user to observe the status of the 
TMS320C30 (Le., inspect memory or registers). Software trace allows view
ing of the TMS320C30's state when a breakpoint is reached. This information 
can be saved to a file for future analysis. Software timing permits keeping 
track of clock ticks between breakpoints or while program single stepping. 

The XDS1000 consists of two full-size PC-XT /AT cards. One card is the 
TMS320C30 XDS1000 Controller Card, the other is the TMS320C30 
XDS1000 Development Board. 

The TMS320C30 XDS1000 Controller Card is responsible for interpreting 
commands sent from the PC and converting those commands into appropriate 
signal sequences to control the TMS320C30 in the user's target system. 

The TMS320C30 XDS1 000 Development Board is a predefined target system 
that contains: 

• A TMS320C30 device 
• 16K x 32-bits full-speed (zero wait state) SRAM on the primary bus 
• Two selectable banks of 8K x 32-bits full-speed (zero wait state) SRAM 

on the expansion bus 

See figure Figure B-3 for a visual representation of the TMS320C30 
XDS1000's development environment. 

III 
B-9 



Appendix B - TMS320C30 Development Support 

6-10 

TMS320C30 XDS1000 
Controller Card 

u .... Target System 

o TMS32OC30 

u .... Memory and I/O I 

Hardware/Software 
Development Environment 

TMS320C30 

Algorithm Development 
Environment 

Figure B-3. TMS320C30 XDS1000 Development Environment 

This figure shows the two environments in which the TMS320C30 XDS1 000 
can operate: 

1) The hardware/software development configures the TMS320C30 
XDS1000 and the user's target system in the emulator mode. Section 
13.5 of this document shows the 12-pin header or emulator connector 
necessary for the user's target system to work with the TMS320C30 
XDS1000. 

2) The algorithm development environment allows the user to debug his 
software before the user's target system is built. In this configuration, 
the TMS320C30 XDS1 000 Development Board can be used in place of 
the user's target system. In this mode, code can be downloaded into the 



Appendix B - TMS320C30 Development Support 

memory on the TMS320C30 XDS1 000 Development Board and execute 
at full speed. 

To use the TMS320C30 XDS1 000, the following equipment is required: 

• IBM PC-XT/AT compatible 
• Two and one-half eight-bit slots for the PC-AT, three full-size eight-bit 

slots for the PC-XT 
• A minimum of 640K bytes of memory in the PC 
• PC/MS DOS rev 2.0 or later 

In summary, the TMS320C30 XDS1000 is a full-speed emulator that comes 
with a pre built target system for early design development. The TMS320C30 
XDS1000 can help debug hardware in realtime, debug software in realtime, 
and integrate the hardware and software together. 

B.1.5 TMS320 DSP Hotline/Bulletin Board Service 

The TMS320 group at Texas Instruments provides a DSP Hotline to answer 
TMS320 technical questions such as device problems, development tools, 
documentation, upgrades, and new TMS320 products. The hotline is open 
five days a week from 8:00 AM to 6:00 PM Central Time. The phone number 
is (713) 274-2320. For pricing and availability of TMS320 devices and de
velopment tools, contact the nearest TI sales office. To order literature, call the 
Customer Response Center (CRC) at (800) 232-3200. 

The TMS320 DSP Bulletin Board Service is a telephone-line computer bulletin 
board that provides access to information pertaining to TMS320 devices. 
Specification updates for current or new TMS320 devices and development 
tools are communicated via the bulletin board as the information becomes 
available. The Bulletin Board Service can be accessed by dialing (713) 
274-2323 with a 300, 1200, or 2400-bps modem. 

The bulletin board contains TMS320C30 source code from Section 12 of the 
TMS320C30 Users Guide as well as development tool and silicon revisions 
and enhancements. The bulletin board also provides new DSP application 
software as it becomes available. See the TMS320 Family Development Sup
port Reference Guide for further information on how to access the bulletin 
board. 

.. 
B-11 



Appendix B - TMS320C30 Part Order Information 

B.2 TMS320C30 Part Order Information 

• 

This section provides the device and support tool part numbers. Table 8-1 
lists the part numbers for the TMS320C30, and Table 8-2 gives ordering in
formation for TMS320C30 hardware and software support tools. A discussion 
of the TMS320 family device and development support tool prefix designators 
is included to assist in understanding the TMS320 product numbering system. 

Table B-1. TMS320C30 Digital Signal Processor Part Numbers 

OPERATING PACKAGE TYPICAL 
DEVICE TECHNOLOGY FREQUENCY TYPE DISSIPATION 

tTMX320C30GBH 1.0-lIm CMOS 33 MHz Ceramic 180-pin PGA 1.5W 

tMilitary version planned; contact nearest sales office for availability. 

Table B-2. TMS320C30 Support Tool Part Numbers 

TOOL DESCRIPTION OPERATING SYSTEM PART NUMBER 

SOFTWARE 

Macro Assembler/Linker VAX VMS TMDX3243250-08 
PC/MS-DOS TMDX3243850-02 
SUN-3 UNIX' TMDX3243550-08 
VAX ULTRIX TMDX3243260-08 

C Compiler & Macro Assembler/ VAX VMS TMDX3243255-08 
Linker PCjMS DOS TMDX3243855-02 

SUN-3 UNIX' TMDX3243555-08 
VAX ULTRIX TM DX3243265-08 

Simulator VAX VMS TMDX3243251-08 
PC/MS-DOS TMDX3243851-02 
SUN-3 UNIX' Offered by 

Spectron Inc. 
(805) 967-0503 

VAX ULTRIX TMDX3243261-08 

HARDWARE 

XDS1000 PC/MS-DOS TMDX3261 030 

• Please note SUN UNIX support for TMS320C30 software tools is for the 68000 family 
based SUN-3 series workstations. These tools are NOT SUPPORTED on the SUN-4 
series machines that use the SPARC processor, or the SUN-386i series of workstations . 

8-12 



Appendix B - TMS320C30 Part Order Information 

B.2.1 Device and Development Support Tool Prefix Designators 

To assist the user in understanding the stages in the product development 
cycle, Texas Instruments assigns prefix designators in the part number no
menclature. A device prefix designator has three options: TMX, TMP, and 
TMS, and a development support tool prefix designator has two options: 
TMDX and TMDS. These prefixes are representative of the evolutionary stages 
of product development from engineering prototypes (TMX/TMDX) through 
fully qualified production devices (TMS/TMDS). This development flow is 
defined below. 

Device Development Evolutionary Flow: 

TMX Experimental device that is not necessarily representative of the final 
device's electrical specifications. 

TM P Final silicon die that conforms to the device's electrical specifications 
but has not completed quality and reliability verification. 

TMS Fully qualified production device. 

Support Tool Development Evolutionary Flow: 

TMDX Development support product that has not yet completed Texas In
struments internal qualification testing. 

TMDS Fully qualified development support product. 

TMX and TMP devices and TMDX development support tools are shipped 
with the following disclaimer: 

"Developmental product is intended for internal evaluation purposes." 

Note: 

Texas Instruments recommends that prototype devices (TMX or TMP) not 
be used in production systems since their expected end-use failure rate is 
undefined but predicted to be greater than standard qualified production 
devices. 

TMS devices and TMDS development support tools have been fully charac
terized and the quality and reliability of the device has been fully demon
strated. Texas Instruments standard warranty applies . .. 

6-13 



Appendix B - TMS320C30 Part Order Information 

B.2.2 Device Nomenclature 

• 
6-14 

In addition to. the prefix, the device nomenclature includes a suffix that follows 
the device family name. This suffix indicates the package type (e.g., N, FN, 
or G8) and temperature range (e.g., l). Figure 8-4 provides a legend for 
reading the complete device name for any TMS320 family member. 

TMX 320 C 30 GB H 

PREFIX ______ ......11 

TMX = experimental device 
TMP = prototype device 
TMS = qualified device 
SMJ = MIL-STO-883C 

DEVICE FAMILY -------' 
320 = TMS320 family 

TECHNOLOGY-------~ 
C = CMOS 
E = CMOS EPROM 
No letter = NMOS 

DEVICE-----------......I 
1st-gen. DSP: 

10 
15 
17 

2nd-gen. DSP: 
20 
25 

3rd-gen. DSP: 
30 

L TEMPERATURE R~NGE 
H = 0 to 50"C 
L = 0 to 70"C 
S = -55 to 100"C 
M = -55 to 125"C 
A = -40 to 85"C 

PACKAGE TYPE 
N = plastic DIP 
JD = ceramic DIP 

side-brazed 
FN = plastic leaded CC 
G6 = ceramic PGA 
FJ = ceramic leaded CC 
FD = leadless ceramic CC 

Figure 8-4. TMS320 Device Nomenclature 



Appendix C 

Instruction Opcodes 

The opcode fields for all the TMS320C30 instructions are shown in Table C-1. 
Bits in the table marked with a hyphen are defined in the individual instruction 
description (see Section 11). Table C-1 along with the instruction de
scriptions fully define the instruction words. The opcodes are listed in nu
merical order. 

Table C-1. TMS320C30 Instruction Opcodes 

INSTRUCTION 31 30 29 28 27 26 25 24 23 
ABSF 0 0 0 0 0 0 0 0 0 

ABSI 0 0 0 0 0 0 0 0 1 

ADDC 0 0 0 0 0 0 0 1 0 

ADDF 0 0 0 0 0 0 0 1 1 

ADD! 0 0 0 0 0 0 1 0 0 

AND 0 0 0 0 0 0 1 0 1 

ANON 0 0 0 0 0 0 1 1 0 

ASH 0 0 0 0 0 0 1 1 1 

CMPF 0 0 0 0 0 1 0 0 0 

CMPI 0 0 0 0 0 1 0 0 1 

FIX 0 0 0 0 0 1 0 1 0 

FLOAT 0 0 0 0 0 1 0 1 1 

IDLE 0 0 0 0 0 1 1 0 0 

LDE 0 0 0 0 0 1 1 0 1 

LDF 0 0 0 0 0 1 1 1 0 

LDFI 0 0 0 0 0 1 1 1 1 

LDI 0 0 0 0 1 0 0 0 0 

LOll 0 0 0 0 1 0 0 0 1 

LDM 0 0 0 0 1 0 0 1 0 
LSH 0 0 0 0 1 0 0 1 1 

MPYF 0 0 0 0 1 0 1 0 0 

MPYI 0 0 0 0 1 0 1 0 1 

NEGB 0 0 0 0 1 0 1 1 0 

NEGF 0 0 0 0 1 0 1 1 1 

NEGI 0 0 0 0 1 1 0 0 0 

NOP 0 0 0 0 1 1 0 0 1 

C-1 



Appendix C - Instruction Opcodes 

Table C-1. TMS320C30 Instruction Opcodes (Continued) 

INSTRUCTION 31 30 29 28 27 26 25 24 23 
NORM 0 0 0 0 1 1 0 1 0 

NOT ·0 0 0 0 1 1 0 1 1 

POP 0 0 0 0 1 1 1 0 0 

POPF 0 0 0 0 1 1 1 0 1 

PUSH 0 0 0 0 1 1 1 1 0 

PUSHF 0 0 0 0 1 1 1 1 1 

OR 0 0 0 1 0 0 0 0 0 

RND 0 0 0 1 0 0 0 1 0 

ROL 0 0 0 1 0 0 0 1 1 

ROLC 0 0 0 1 0 0 1 0 0 

ROR 0 0 0 1 0 0 1 0 1 

RORC 0 0 0 1 0 0 1 1 0 

RPTS 0 0 0 1 0 0 1 1 1 

STF 0 0 0 1 0 1 0 0 0 

STFI 0 0 0 1 0 1 0 0 1 

STI 0 0 0 1 0 1 0 1 0 

STII 0 0 0 1 0 1 0 1 1 

SIGI 0 0 0 1 0 1 1 0 0 

SUBB 0 0 0 1 0 1 1 0 1 

SUBC 0 0 0 1 0 1 1 1 0 

SUBF 0 0 0 1 0 1 1 1 1 

SUBI 0 0 0 1 1 0 0 0 0 

SUBRB 0 0 0 1 1 0 0 0 0 

SUBRF 0 0 0 1 1 0 0 1 0 

SUBRI 0 0 0 1 1 0 0 1 1 

TSTB 0 0 0 1 1 0 1 0 0 

XOR 0 0 0 1 1 0 1 0 1 

lACK 0 0 0 1 1 0 1 1 0 

ADDC3 0 0 1 0 0 0 0 0 0 

ADDF3 0 0 1 0 0 0 0 0 1 

ADDI3 0 0 1 0 0 0 0 1 0 

AND3 0 0 1 0 0 0 0 1 1 

ANDN3 0 0 1 0 0 0 1 0 0 

ASH3 0 0 1 0 0 0 1 0 1 

CMPF3 0 0 1 0 0 0 1 1 0 

CMPI3 0 0 1 0 0 0 1 1 1 

LSH3 0 0 1 0 0 1 0 0 0 

• 
C-2 



Appendix C - Instruction Opcodes 

Table C-1. TMS320C30 Instruction Opcodes (Continued) 

INSTRUCTION 31 30 29 28 27 26 25 24 23 
MPYF3 0 0 1 0 0 1 0 0 1 

MPYI3 0 0 1 0 0 1 0 1 0 

OR3 0 0 1 0 0 1 0 1 1 

SUBB3 0 0 1 0 0 1 1 0 0 

SUBF3 0 0 1 0 0 1 1 0 1 

SUBI3 0 0 1 0 0 1 1 1 0 

TSTB3 0 0 1 0 0 1 1 1 1 

XOR3 0 0 1 0 1 0 0 0 0 

LDFcond 0 1 0 0 - - - - -
LDlcond 0 1 0 1 - - - - -
BR(D)t 0 1 1 0 0 0 0 - -
CALL 0 1 1 0 0 0 1 - -
RPTB 0 1 1 0 0 1 0 - -
SWI 0 1 1 0 0 1 1 - -

Bcond(D)t 0 1 1 0 1 0 - - -

DBcond(D)t 0 1 1 0 1 1 - - -
CALLcond 0 1 1 1 0 0 - - -

TRAPcond 0 1 1 1 0 1 0 - -

RETlcond 0 1 1 1 1 0 0 0 0 

RETScond 0 1 1 1 1 0 0 0 1 

MPYF311ADDF3 1 0 0 0 0 0 0 0 -
1 0 0 0 0 0 0 1 -
1 0 0 0 0 0 1 0 -
1 0 0 0 0 0 1 1 -

MPYF311SUBF3 1 0 0 0 0 1 0 0 -
1 0 0 0 0 1 0 1 -
1 0 0 0 0 1 1 0 -
1 0 0 0 0 1 1 1 -

MPYI311ADDI3 1 0 0 0 1 0 0 0 -
1 0 0 0 1 0 0 1 -
1 0 0 0 1 0 1 0 -
1 0 0 0 1 0 1 1 -

MPYI311SUBI3 1 0 0 0 1 1 0 0 -
1 0 0 0 1 1 0 1 -
1 0 0 0 1 1 1 0 -
1 0 0 0 1 1 1 1 -

STFIISTF 1 1 0 0 0 0 0 - -
STIiISTI 1 1 0 0 0 0 1 - -

LDFIILDF 1 1 0 0 0 1 0 - -
t Opcode same for standard and delayed instructions. 

II 
C-3 



Appendix C - Instruction Opcodes 

Table C-1. TMS320C30 Instruction Opcodes (Concluded) 

INSTRUCTION 31 30 29 28 27 26 25 24 23 
LDIIILDI 1 1 0 0 0 1 1 - -

ABSFIISTF 1 1 0 0 1 0 0 - -
ABSlliSTI 1 1 0 0 1 0 1 - -

ADDF3/1STF 1 1 0 0 1 1 0 - -
ADDI3/1STI 1 1 0 0 1 1 1 - -
AND311STI 1 1 0 1 0 0 0 - -

ASH311STI 1 1 0 1 0 0 1 - -
FIX/ISTI 1 1 0 1 0 1 0 - -

FLOAT/lSTF 1 1 0 1 0 1 1 - -
LDF/lSTF 1 1 0 1 1 0 0 - -

LDI/ISTI 1 1 0 1 1 0 1 - -
LSH311STI 1 1 0 1 1 1 0 - -

MPYF3/1STF 1 1 0 1 1 1 1 - -
MPYI311STI 1 1 1 0- 0 0 0 - -
NEGF/lSTF 1 1 1 0 0 0 1 - -
NEGlliSTI 1 1 1 0 0 1 0 - -
NOTIISTI 1 1 1 0 0 1 1 - -
OR3/1STI 1 1 1 0 1 0 0 - -

SUBF3/1STF 1 1 1 0 1 0 1 - -
SUBI3/1STI 1 1 1 0 1 1 0 - -
XOR3/1STI 1 1 1 0 1 1 1 - -

Reserved for reset, 
traps, and interrupts 0 1 1 1 1 1 1 1 1 

.. 
C-4 



Appendix 0 

Quality and Reliability 

The quality and reliability performance of Texas Instruments Microprocessor 
and Microcontroller Products, which includes the three generations of 
TMS320 digital signal processors, relies on feedback from: 

• Our customers 

• Our total manufacturing operation from front-end wafer fabrication to 
final shipping inspection 

• Product quality and reliability monitoring. 

Our customer's perception of quality must be the governing criterion for 
judging performance. This concept is the basis for Texas Instruments Corpo
rate Quality Policy, which is as follows: 

"For every product or service we offer, we shall define the require
ments that solve the customer's problems, and we shall conform to 
those requirements without exception." 

Texas Instruments offers a leadership reliability qualification system, based on 
years of experience with leading-edge memory technology as well as years of 
research into customer requirements. Quality and reliability programs at TI are 
therefore based on customer input and internal information to achieve con
stant improvement in quality and reliability. 

0-1 



Reliability Stress Tests 

0.1 Reliability Stress Tests 

0-2 

Accelerated stress tests are performed on new semiconductor products and 
process changes to ensure product reliability excellence. The typical test en
vironments used to qualify new products or major changes in processing are: 

• High-temperature operating life 
• Storage life 
• Temperature cycling 
• Biased humidity 
• Autoclave 
• Electrostatic discharge 
• Package integrity 
• Electromigration 
• Channel-hot electrons (performed on geometries less than 2.0 lAm). 

Typical events or changes that require internal requalification of product in
clude: 

• New die design, shrink, or layout 
• Wafer process (baseline/control systems, flow, mask, chemicals, gases, 

dopants, passivation, or metal systems) 
• Packaging assembly (baseline control systems or critical assembly 

equipment) 
• Piece parts (such as lead frame, mold compound, mount material, bond 

wire, or lead finish) 
• Manufacturing site. 

TI reliability control systems extend beyond qualification. Total reliability 
controls and management include product reliabily monitor as well as final 
product release controls. MOS memories, utilizing high-density active ele
ments, serve as the leading indicator in wafer-process integrity at TI MOS fa
brication sites, enhancing all MOS logic device yields and reliability. TI places 
more than several thousand MOS devices per month on reliability test to en
sure and sustain built-in product excellence. 

Table 0-1 lists the microprocessor and microcontroller reliability tests, the 
duration of the test, and sample size. The following defines and describes 
those tests in the table. 

AOQ (Average Outgoing Quality) Amount of defective product in a pop
ulation, usually expressed in terms of 
parts per million (PPM). 

FIT (Failure In Time) 

Operating lifetest 

Estimated field failure rate in number 
of failures per billion power-on device 
hours; 1000 FITS equals 0.1 percent 
fail per 1000 device hours. 

Device dynamically exercised at a high 
ambient temperature (usually 125°C) 
to simulate field usuage that would 



Appendix D - Quality and Reliability 

High-temperature storage 

Biased humidity 

Autoclave (pressure cooker) 

Temperature cycle 

Thermal shock 

PIND 

Mechanical Sequence: 
Fine and gross leak 
Mechanical shock 

PIND (optional) 
Vibration, variable frequency 

Constant acceleration 

Fine and gross leak 

expose the device to a much lower 
ambient temperature (such as 55·C). 
Using a derived high temperature, a 
55·C ambient failure rate can be cal
culated. 

Device exposed to 150·C unbiased 
condition. Bond integrity is stressed in 
this environment. 

Moisture and bias used to accelerate 
corrosion-type failures in plastic 
packages. Conditions include 85·C 
ambient temperature with 85-percent 
relative humidity (RH). Typical bias 
voltage is +5 V and ground on alter
nating pins. 

Plastic-packaged devices exposed to 
moisture at 121·C using a pressure of 
one atmosphere above normal pres
sure. The pressure forces moisture 
permeation of the package and accel
erates corrosion mechanisms (if pres
ent) on the device. External package 
contaminates can also be activated 
and caused to generate inter-pin cur
rent leakage paths. 

Device exposed to severe temperature 
extremes in an alternating fashion 
(-65·C for 15 minutes and 150·C for 
15 minutes per cycle) for at least 1000 
cycles. Package strength, bond qual
ity, and consistency of assembly pro
cess are stressed in this environment. 

Test similar to the temperature cycle 
test, but involving a liquid-to-liquid 
transfer, per MIL-STD-883C, Method 
1011. 

Particle Impact Noise Detection test. 
A non-destructive test to detect loose 
particles inside a device cavity. 

Per MIL-STD-883C, Method 1014.5 
Per MIL-STD-883C, Method 2002.3, 
1500 g, 0.5 ms, Condition B 
Per MIL-STD-883C, Method 2020.4 
Per MIL-STD-883C, Method 2007.1, 
20 g, Condition A 
Per MIL-STD-883C, Method 2001.2, 
20 kg, Condition D, Y1 Plane min 
Per MIL-STD-883C, Method 1014.5 

D-3 



Appendix 0 - Quality and Reliability 

• 
0-4 

Electrical test 

Thermal Sequence: 
Fine and gross leak 
Solder heat (optional) 
Temperature cycle 
(10 cycles minimum) 

Thermal shock 
(10 cycles minimum) 

Moisture resistance 
Fine and gross leak 
Electrical test 

Thermal/Mechanical Sequence: 
Fine and gross leak 
Temperature cycle 
(10 cycles minimum) 

Constant acceleration 

Fine and gross leak 
Electrical test 

Electrostatic discharge 
Solderability 
Solder heat 

Salt atmosphere 

Lead pull 

Lead integrity 

Electromigration 

Resistance to solvents 

To data sheet limits 

Per MIL-STD-883C, Method 1014.5 
Per MIL-STD-750C, Method 1014.5 
Per MIL-STD-883C, Method 1010.5, 
-65 to +150·C, Condition C 
Per MIL-STD-883C, Method 1011.4, 
-55 to +125·C, Condition B 
Per MIL-STD-883C, Method 1004.4 
Per MIL-STD-883C, Method 1014.5 
To data sheet limits 

Per MIL-STD-883C, Method 1014.5 
Per MIL-STD-883C, Method 1010.5, 
-65 to +150·C, Condition C 
Per MIL-STD-883C, Method 2001.2, 
30 kg, Y1 Plane 
Per MIL-STD-883C, Method 1014.5 
To data sheet limits 

Per MIL-STD-883C, Method 3015 
Per MIL-STD-883C, Method 2003.3 
Per MIL-STD-750C, Method 2031, 
10 sec 
Per MIL-STD-883C, Method 1009.4, 
Condition A, 24 hrs min 
Per MIL-STD-883C, Method 2004.4, 
Condition A 
Per MIL-STD-883C, Method 2004.4, 
Condition B1 
Accelerated stress testing of con
ductor patterns to ensure acceptable 
lifetime of power-on operation 
Per MIL-STD-883C, Method 2015.4 



Reliability Stress Tests 

Table 0-1. Microprocessor and Microcontroller Tests 

TEST DURATION SAMPLE SIZE 
PLASTIC CERAMIC 

Operating life, 125·C, 5.0 V 1000 hrs 129 
Operating life, 150·C, 5.0 V 1000 hrs 77" 
Storage life, 150·C 1000 hrs 77 
Biased 85·C/85 percent RH, 5.0 V 1000 hrs 129 
Autoclave, 121·C, 1 ATM 240 hrs 77 
Temperature cycle, -65 to 150'C 1000 cyct 129 
Temperature cycle, 0 to 125·C 3000 cyc 129 
Thermal shock, -65 to 150·C 200 cyc 129 
Electrostatic discharge, ±2 kV 12 
Latch-up (CMOS devices only) 5 
Mechanical sequence -
Thermal sequence -
Thermal/mechanical sequence -
PINO -
Internal water vapor -
Solderability 22 
Solder heat 22 
Resistance to solvents 15 
Lead integrity 15 
Lead pull 22 
Lead finish adhesion 15 
Salt atmosphere 15 
Flammability (UL94-VO) 3 
Thermal impedance 5 

"If junction temperature does not exceed plasticity of package. 
tFor severe environments; reduced cycles for office environments. 

129 
77 
77 
-
-

129 
129 
129 
12 
5 

38 
38 
38 
45 
3 

22 
22 
15 
15 
-

15 
15 
-
5 

Table 0-2 lists the TMS320C30 device, the approximate number of transis
tors, and the equivalent gates. The numbers have been determined from design 
verification runs. 

Table 0-2. TMS320C30 Transistors 

DEVICE # TRANSISTORS # GATES 

CMOS: TMS320C30 600K-700K 200K 

TI Oualification test updates are available upon request at no charge. TI will 
consider performing any additional reliability test(s), if requested. For more 
information on TI quality and reliability programs, contact the nearest TI field 
sales office. 

• 
0-5 



Reliability Stress Tests 

• 
0-6 

Note: 

Texas Instruments reserves the right to make changes in MOS Semicon
ductor test limits, procedures, or processing without notice. Unless prior 
arrangements for notification have been made, TI advises all customers to 
reverify current test and manufacturing conditions prior to relying on 
published data . 



A 

addition (floating-point) 5-13 
addressing 6-1 

groups of addressing modes 6-18 
conditional-branch addressing 

modes 6-21 
general addressing modes 6-18 
long-immediate addressing 

modes 6-21 
parallel addressing modes 6-20 
three-operand addressing 

modes 6-19 
types of addressing 6-2 

direct 6-3 
indirect 6-4 
long-immediate 6-17 
PC-relative 6-17 
reg ister 6 -2 
short-immediate 6-16 

addressing modes -3-12 
ALU 3-5 

ALU 3-5 
application-oriented operations 12-45 

companding 12-45 
fast fourier transforms 12-63 
FIR,IIR, and adaptive filters 12-49 
lattice filters 12-79 
matrix-vector multiplication 12-60 

applications 1-5 
ARAUs 3-5 

ARAUs 3-5 
architectural overview 3-1 
assembler 8-4 
auxiliary registers 6-22 
auxiliary registers (ARO-AR7) 4-3 

Index 

B 

bank switching (programmable) 8-21 
bank switching techniques 13-14 
bit-reversed addressing 6-27 
block repeat registers (RS, RE) 4-10 
block size register (8K) 4-4 
blocksize register (8K) 6-22 
branch conflicts 10-4 
branches 7 -7 
bulletin board 8-11 
bus operation (external) 8-1 
buses (external) 3-21 
buses (internal) 3-20 

c 
C compiler 8-5 
Cache 3-8 
cache (instruction) 4-15 

algorithm 4-16 
architecture 4-15 
clear bit (CC) 4-17 
control bits 4-1 7 
enable bit (CE) 4-17 
freeze bit (CF) 4-17 

central processing unit (CPU) 3-3 
circular addressing 6-22 

algorithm 6-24 
auxiliary registers 6-22 
buffer 6-22 
FIR filters 6-25 
flowchart 6-23 
implementation 6-24 

circular buffer 6-22 
clock divide (serial port) 9-23 
clock oscillator circuitry 13-21 
clock phases 10-16 
clocking memory accesses 10-16 
condition codes 11 -8 
condition flags 11 -8 
conditional-branch addressing 

modes 6-21 
conflict resolution (memory) 10-14 

Index-1 



conflicts (pipeline) 10-4 
continuous modes (serial port 

transmit/receive) 9-24 
conversion 5-22 

floating-point to integer 5-22 
integer to floating-point 5-24 

conversions between floating-point for-
mats 5-7 

counter register (timer) 9-5 
CPU interrupt flag register (IF) 4-8 
CPU register file 4-2 

auxiliary registers (ARO-AR7) 4-3 
block repeat registers (RS, RE) 4-10 
block size register (BK) 4-4 
CPU interrupt flag register (IF) 4-8 
CPU/DMA interrupt enable register 

(IE) 4-7 
data page pointer (DP) 4-3 
extended-precision registers 

(RO-R7) 4-3 
I/O flags register (IOF) 4-9 
index registers (IRO, IR1) 4-4 
register file 4-2 
repeat counter (RC) 4-10 
status register (ST) 4-4 
system stack pointer (SP) 4-4 

CPU/DMA interrupt enable register 
(IE) 4-7 

D 

data formats 5-1 
floating-point 5-4 
integer 5-2 
unsigned integer 5-3 

data loads and stores 10-16 
data page pointer (DP) 4-3 
data receive register (serial port) 9-19 
data transmit register (serial port) 9-19 
delayed branches 7 -7 
deques 6-28,6-30 
development support B-1 

C compiler B-5 
macro assembler/linker B-4 
simulator B-6 
TMS320 DSP bulletin board 

service 8-11 
TMS320 DSP hotline B-11 
XDS1000 B-9 

direct addressing 6-3 
DMA 3-24 
DMA controller 9-33 

memory transfer operation 9-38 

Index-2 

registers 9-33 
destination/source address 9-36 
global control 9-34 
interrupt enable 9-36 
transfer counter 9-36 

synchronization of DMA 
channels 9-42 

documentation B-3 

E 

effective base (EB) of buffer 6-22 
execute only 10-10 
expansion bus control register 8-4 
expansion bus I/O cycles 8-10 
expansion bus interface 13-17 
extended-precision floating-point 5-6 
extended-precision registers 

(RO-R7) 4-3 
external bus operation 8-1 
external interface control registers 8-2 
external interface timing 8-5 

F 

expansion bus I/O cycles 8-10 
primary bus cycles 8-5 

FIR, IIR, and adaptive filters 12-49 
adaptive filters (lMS 

algorithm) 12-57 
FIR filters 12-50 
IIR filters 12-52 

FIX Instructions 5-22 
FLOAT instruction 5-24 
floating-point format conversion: IEEE 

to/from TMS320C30 12-35 
IEEE to TMS320C30 floating-point 

format conversion 12-37 
TMS320C30 to IEEE floating-point 

format conversion 12-41 
floating-point formats 5-4 

conversions between formats 5-7 
extended-precision 5-6 
short 5-4 
single-precision 5-5 

floating-point operations 5-1 
addition/subtraction 5-13 
conversion to floating-point 5-24 
conversion to integer 5-22 
multiplication 5-9 
normalization 5-17 



rounding 5-20 
FSR 9-24 
FSR/OR/CLKR control register (serial 

port) 9-15 
FSX 9-23 
FSX/OX/CLKX control register (serial 

port) 9-14 

G 

gates 0-5 
general addressing modes 6-18 
global control register (serial port) 9-11 
global control register (timer) 9-3 
groups of addressing modes 6-18 

H 

handshake mode (serial port) 9-25 
hardware applications 13-1 

expansion bus interface 13-17 
primary bus interface 13-4 
system configuration options 

overview 13-2 
system control functions 13-21 

Harvard architecture 1 -3 
hold everything conflicts 10-12 
hotline 8-11 

I/O flags register (IOF) 4-9 
id=file.CPU register file 3-5 

register file 3-5 
index registers (IRO, IR1) 4-4 
indirect addressing 6-4 
instruction cache 4-15 
instruction opcodes C-1 
instruction set 11 -2 

interlocked operations 11-5 
load and store 11-2 
parallel operations 11 -5 
program control 11 -4 
three-operand 11 -4 
two-operand 11 -3 

instruction set summary 3-12 
integer and floating-point division 12-23 

computation of floating-point inverse 
and division 12-26 

integer division 12-23 
integer formats 5-2 
interlocked loads 10-12 
interlocked operations 7-8 
interlocked operations instructions 11-5 
interrupt service routines 12-10 

context switching 12-11 
interrupt priority 12-14 

interrupt vectors 4-13 
interrupts 7 -16 

K 

key features 1 -4 

L 

linker 8-4 
load instructions 11 -2 
logical and arithmetic operations 12-20 

bit manipulation 12-20 
bit-reversed addressing 12-22 
block moves 12-22 
extended-precision arithmetic 12-32 
floating-point format conversion: IEEE 

to/from TMS320C30 12-35 
integer and floating-point 

division 12-23 
square root 12-29 

long-immediate addressing 6-17 
long-immediate addressing modes 6-21 

M 

macro assembler 8-4 
memory 3-8, 4-11 

maps 3-10 
memory maps 4-11 
peripheral bus map 4-13 
reset/interrupt/trap map 4-13 

memory access timing 10-16 
memory conflict resolution 10-14 
memory conflicts 10-8 
memory stacks 6-28 
memory transfer operation (OMA) 9-38 
multiplication (floating-point) 5-9 
multiplier 3-5 

multiplier 3-5 
multiprocessing 9-25 

Index-3 



N 

nomenclature 8-15 
normalization (floating-point) 5-17 

o 
opcodes (instruction) C-1 
operation configurations (serial 

port) 9-20 
operation modes (timer) 9-7 
ordering information 8-13 

p 

parallel addressing modes 6-20 
parallel multiplies/adds 10-19 
parallel operations 10-18 
parallel operations instructions 11-5 
part numbers 8-13 
PC-relative addressing 6-17 
period register (timer) 9-5 
peripheral bus map 4-13 
peripheral bus memory map 4-13 
peripherals 3-22,9-1 

DMA controller 9-33 
serial ports 9-9 
timers 9-2 

pipeline operation 10-1 
clocking memory accesses 10-1 6 
conflicts 10-4 

branch 10-4 
memory 10-8 
register 10-6 

resolving memory conflicts 10-14 
structure 10-2 

primary bus control register 8-3 
primary bus cycles 8-5 
primary bus interface 13-4 

bank switching techniques 13-14 
ready generation 13-10 
zero wait-state interface to 

RAMs 13-4 
product quality/reliability D-1 
program control 12-7 

computed GOTO's 12-18 
delayed branches 12 -1 5 
interrupt service routines 12 -10 
repeat modes 12-16 
software stack 12-9 

Index-4 

subroutines 12-7 
program control instructions 11 -4 
program counter (PC) 4-10 
program fetch incomplete 10-1 0 
program fetches 10-16 
program flow control 7-1 
program wait 10-8 
programmable bank switching 8-21 
programmable wait states 8-19 
programming tips 12-86 

C-callable routines 12-86 
hints for assembly coding 12-86 

pulse generation (timer) 9-6 

Q 

quality/reliability D-1 
queues 6-28,6-30 

R 

RAM 3-8 
ready generation 13-10 
receive/transmit timer control register (se

rial port) 9-16 
receive/transmit timer counter register (se

rial port) 9-18 
receive/transmit timer period register (serial 

port) 9-19 
register addressing 6-2 
register conflicts 10-6 
registers (DMA) 9-33 
reliability tests D-2 
repeat counter (RC) 4-10 
repeat end address (RE) 4-10 
repeat modes 7-2,12-16 

block repeat 12-16 
initialization 7-2, 7-3 
operation 7-4 
single-instruction repeat 12-17 

repeat start address (RS) 4-10 
reserved bits and compatibility 4-10 
reset operation 7 -1 3 
reset signal generation 13-23 
reset vectors 4-13 
resolving memory conflicts 10-14 
RND instruction 5-20 
ROM 3-8 
rounding (floating-point) 5-20 
RPT8 7-2 
RPTS 7-2 



RRDY 9-23 

s 
serial port functional operation 9-26 
serial port interrupt sources 9-26 
serial ports 3-23, 9-9 

data receive register 9-19 
data transmit register 9-19 
FSR/DR/CLKR control register 9-15 
FSX/DX/CLKX control register 9-14 
global control register 9-11 
operation configurations 9-20 
receive/transmit timer control 

register 9-16 
receive/transmit timer counter 

register 9-18 
receive/transmit timer period 

register 9-19 
timing 9-23 

short-immediate addressing 6-16 
signal descriptions 2-3 
simulator 8-6 
single-precision floating-po!nt 5-5 
software applications 12-1 

application-oriented 
operations 12-45 

logical and arithmetic 
operations 12-20 

processor initialization 12-3 
program control 12-7 
programming tips 12-86 

stacks 6-28 
status register (ST) 4-4 
store instructions 11-2 
subtraction (floating-point) 5-13 
synchronization of DMA channels 9-42 
system configuration options 

overview 13-2 
categories of interfaces on the 

TMS320C30 13-2 
typical system block diagram 13-3 

system control functions 13-21 
clock oscillator circuitry 13-21 
reset signal generation 13-23 

system stack management 6-28 
system stack pointer (SP) 4-4 

T 

three-operand addressing modes 6-19 
three-operand instructions 11 -4 
timers 9-2 

counter register 9-5 
global control register 9-3 
operation modes 9-7 
period register 9-5 
pulse generation 9-6 

timing (serial port) 9-23 
timing memory accesses 10-16 
TMS320 device nomenclature 8-15 
TMS320 DSP bulletin board 

service 8-11 
TMS320 DSP hotline 8-11 
TMS320C30 emulator - extended devel-

opment system (XDS1000) 8-9 
transistors D-5 
trap vectors 4-13 
two-operand instructions 11 -3 
types of addressing 6-2 

u 
unsigned-integer formats 5-3 

w 
wait states (programmable) 8-19 

x 
XDS1000 target design 

considerations 13-26 
XRDY 9-23 

z 
zero-glue multiprocessing 9-25 

Index-5 





TI Worldwide 
Sales Offices 
ALABAMA: Hunt.vln.: 500 Wynn Drive, Suite 514, 
Huntsville, Al 35805, (205) 837·7530. 

ARIZONA: Phu.nlx: 8825 N. 23rd Ave., Phoenix, 
AZ85021, (602) 995·1007. 

CALIFORNIA: 'rvin.: 17891 Cartwright Rd., Irvine, 
CA 92714, (714) 660-8187: s.cr.m.nlo: 1900 Point 
West Way, Suite 171, Sacramento, CA 95815, 
9t6) 929-1521; S ... 

COLORADO: AuronI: 1400 S. Potomac Ave., 
Suite 101, AUf"ra, CO 80012, (303) 36&8000. 

CONNECTICUT; Wallingford: 9 Barnes Industrial 
~~r~~~, ~~03)~9$O~~~ai Park, Wallingford, 

FLORIDA: FI. lIudMd.I.: 2765 N.W. 62nd St., 
Ft. Lauderdale, FL 33309, (305) 973-8502; 
M.ltland: 2601 Maitland Center Parkway, 
Maitland, FL 32751, (305) 680-4600; 
T.mpe: 5010 W. Kennedy Blvd., Suite 101. 
Tampa, FL 33609, (813) 870-6420. 

g~~=: (~~i~~~~5 Spalding Drive, Norcross, 

~r~l:g~~~: ~=~~LH~~~:(5~~) ~40-AJ8~~.qUin, 
:~D:8~~ (~~'9)W:14~;;~.F Inwood Dr .. Ft. Wayne. 

Indianapolll: 2346 S. lynhurst, Suite J-4OD, 
Indianapolis, IN 46241, (317) 248-8555. 

IOWA: Ceder Replds: 373 Collins Rd. NE, Suite 200. 
Cedar Rapids, IA 52402, (319) 395·9550. 

MARYLAND:: B.lllmore: 1 Rutherford Pl., 
7133 Rutherford Rd., Baltimore, MD 21207. 
(301) 944-8600. 

~:==,H~:w,t,~e~.~oJ.0tten Pond Rd .. 

~!~~~~:~ ~~~~I~t:80~~~I(~~7~3~sJ8. Mile Rd .. 

MINNESOTA: Edlin Pr.II'M: 11000 W. 78th St., 
Eden Prairie, MN 55344 (612) 828-9300. 

MISSOURI: Kiln ... City: 8080 Ward Pkwy .• Kansas 
City. MO 64114, (816) 523·2500: 
St. Louis: 11816 Borman Drive, St. louis. 
MO 63146, (314) 56!H600. 

NEW JERSEY: IHlln: 48SE U.S. Route 1 South, 
Parkway Towers, Iselin, NJ 08830 (201) 75(}.1050 

~r.vA:=~u!~b~~,~~;~ r=·g.~~~ent Pkwy 

NEW YORK: e..1 Syncu .. : 6365 Collamer Dr., East 
Syracuse, NY 13057, (315) 463·9291; 
endicott 112 Nanticoke Ave., P.O. Box 618, Endicott, 
NY 13760, (607) 754·3900; Melville: 1 Huntington 

~~~~;~~,1(5f6)i!'~:'~J&tp?"I~~~=-' ~~~~~~'St., 
Pittsford, NY 14534, (716) 3~770; 

~~':00s':l) ~3~~~ Rd .• Poughkeepsie, 

NORTH CAROLINA: Charlotte: 8 Woodlawn Green, 
Woodlawn Ad., Charlotte, NC 28210, (704) 527-{l930; 
~1e2f'sJ,~~~iBP;~~5~ Blvd .. Suite 100, Raleigh, 

OHIO: B .. chwood: 23408 Commerce Park Rd .. 
Beachwood, OH 44122, (216) 464-6100; 
ga..r:~J:(~~~jY2~~7:124 Linden Ave., Dayton, 

OREGON: 8enerton: 6700 SW 105th St., Suite 110. 
Beaverton, OR 97005, (503) 643-6758. 

~~NW~~~~~;~~~P~t'1:~~la"5r~~~w York Or_. 
COf'IIopolll: 420 Rouser Rd .. 3 Airport Office Park. 
Coraopolis, PA 15108. (412) 771·8550. 

PUERTO RICO: H.1a Rey: Mercantil Plaza Bldg., 
Suite 505, Hato Rey, PR 00919. (8091753-8700. 

TEXAS: AUltln: P.O. Box 2909, Austin, TX 78769, 
(512) 250-7655; RlcIwdson: 1001 E. Campbell Rd .. 
Richardson, TX 75080, 

Houlton: 9100 Southwest Frwy .• 
7036. (713) 778·6592; 

"'9,~~:'I~,:~.~Way South, X 96·1779. 

~~~r~,'t,rr~M,0(lJ,)u~ge7~~ SE, Suite 200, 

VIRGINIA: Fairfax: 2750 Prosperity, Fairfax. VA 
22031, (703) 849-1400. 

WASHINGTON: Redmond: 5010 148th NE, Bldg B, 
Suite 107, Redmond, WA 98052. (206) 881-3080. 

:~~~~~I:io~~~~~=l ~~: ~~~)~i!.~~40. 

AUSTRIA: Texas Instruments Ges.m.b.H.: 
~2~=~O~be BI16, A·2345 Brunn/Gebirge. 

BELGIUM: Texas Instruments N.V. Belgium S.A.: 
Mercure Centre, Raketstraat 100, Rue de la Fusee, 
1130 Brussels, Belgium. 21720.80.00. 

BRAZIL: Texas Instruments Electronicos do Brasil 
Ltda.: Rua PHs leme, 524·7 Andar Pinhelros. 05424 
Sao Paulo, Brazil. 0815-6166. 

DENMARK: Texas Instruments AlS, Mairelundvej 
46E, DK·2730 Herlev, Denmark, 2 . 91 7400. 

FINLAND: Texas Instruments Finland OY: 
Teomsuuskatu 19000511 Helsinki 51, Finland, (90) 
701·3133. 

• TEXAS 
INSTRUMENTS 

Hannover 51, 51 
0·73020enlide ; 

~~:~7~i~~:9, ~=t~:S~bu,r8, ~s:80+~~i:t~'; 
261 +35044. 

HONG KONG (+ PEOPLES REPUBLIC OF CHINA): 
Texas Instruments Asia L.td., 8th Floor, Wond 
Shipping Ctr., Harbour City, 7 canton Rd., Kowloon, 
Hong Kong, 3 ... 722·1223. 

IRELAND: Texas Instruments (Ireland) limited: 
Brewery Rd., StlIIorgan, County Dublin, Eire, 
1831311. 

ITALY: 
Viale 
Italy, 7 

T 

~:::~I~:U~i~~a, ~~~~i Nagoya 
Branch. 7F Oalnl Toyota West Bldg., 10·27, Meieki 
!~~~2.;sr:~ur.klJ Nagoya, Japan 

KOREA: Tex.slnstroments Supply Co.: 3rd Floor, 

~g~~:o~\~?<o;';.~r:4s~~fangnam.ku. 
MEXICO: Texas Instruments de Mexico S.A.: Mexico 
g~~: ~~fgr.!"5~~~~ - 10th Floor, Mexico, 

MIDDLE EAST: Texas Instruments: No. 13, 1st Floor 

~:~~aB~~ra?~~zn,;~~ ~~~: :7~'",~~~,~' 
NETHERLANDS: Texas Instruments Holland B.V., 
P.O. Box 12995, (Bullewijk) 1100 CS Amsterdam, 
Zuid·Oost, Holland 20+5602911. 

=~~::~~r~::d~~t~~7:;~ (~O~.fS: PB106, 

PHILIPPINES: Texas Instruments Asia ltd.: 14th 

~:!ti~:;e~~gM~i~,dahi~~:rn:~ g~:;r' 
PORTUGAL: Texas Instruments Equipamento 

~::~~= (~'!'~r.IBaL.~-a~:~:7~nt.f~~~~~~al. 
2·94&-1003. 

'~NA~t:3:: ~:x=~~~,~~~:E:~~ ~~~~s~:rong 
Bakar Batu, Unit 01"()2, Kolam Ayer Industrial Estate, 
Republic of Singapore, 747·2255. 

SPAIN: Texas Instruments Espana. S.A.: CIJose 
Lazaro Galdlano No.6, Madrid 16, 11458.14.58. 

SWEDEN: Texas Instruments International Trade 
Corporation (Sverigefilialen): Box 39103, 10054 
Stockholm, Sweden, 8 • 235480. 

SWITZERLAND: Texas Instruments, Inc., Reidstrasse 
6, CH·8953 Dletlkon (Zuerich) Switzerland, 
1·7402220. 

~~~~H~:sR~~WS~~:'~~:I~~~~ ~:,:,903. 
Taiwan, Republic of China, 2 + 521·9321 . 

UNITED KINGDOM: Texas Instrumenls limited: 
Manton lane, Bedford, MK41 7PA, England, 0234 
67466; St. James House, Wellington Road North. 
Stockport. SK4 2RT. England, 61 +442·7182. 

8M 



TI Sales Offices TI Distributors 
ALABAMA: HuntlvHI. (205) 837-7530. 

CONNEcnCUT: WoIIlngford (2031 269-0074. 

~o:;.,.,.-='=7= (3061280-.116; 
TemPi (813) 2ats.0420. 

GEORGIA: Norcrote (404) 862-7900. 

IUINOIS: ArI_ HO_ (3121640-3000. 

~ =-J~n:'73-e400; 
IOWA: Cod., R_ (3'9):JIl5.956O. 

KANSAS: 0vtrI1Iftd Pn {lt3) 451-4511. 

MARYLAND: .. 10m .. (301) !M4-B800. 

MASSACHUSETfS: WIIIlMm (817) 895-9100. 

==:=:..:;r:;G;' ... : (313) 553-1500: 

MINNESOTA: Eden PrIIM (812) 828-9300. 

MISSOURI: It. lallie (314)569-7600. 

NEW JERSEY: leelln (201) 75G-1050. 

NEW MEXICO: Albuquerque (505) 345-2555. 

NEW VORK: ~u .. ~) 463-9291; 
=':::~4 (914) 473.':0. (716) 385-8770; 

NORTH CAROUNA: Chllrlotte (704) 527..Q930; 
Re"'gh (919) 876-2725. 

=~==?,~6)464-6100; 
OREGON: BnverIon (503) 643-8758. 

PENNSYLVANIA: 81ue ... (215) 825-9500. 
PUERTO RICO: HItO..., (809) 753-8700. 

TENNESSEE: _C"'(615146'-2192. 

TEXAS: _n~25OH789; 
:::=g~3~~2) 49fJ.1~1I'fton (214) 680-5082; 

UTAH: M....., (80'1 -.s7,. 
VIRGINIA: Felrfu (703) 849-1400. 
WABHtNGTON: Redmond (206) 881-3080. 

WISCONSIN: a_o .. (4141711MB119. 

==:r=..o~8)(8:Uf:;~970; 
SL Laurent, a .... (S14) .'880. 

n Regional 
Technology Centers 
CALIFORNIA: 1m", (714) 880-8,40; 

==,~:~rF 
COLORADO: ....... (3001_8000. 
GIORGIA: ,..,.,.,.. (4041 ... ·7945. 

'WNO" ArlI_ HoIII'" (3131840-2909. 
MASSACHUSETTS: WeIttt .... (817) 895-9198. 

TEXAS: RIC_ (214168Q05066. 

CANADA: Nepnn. 0 ...... 10 (813) 728-1970. 

n AUTHORIZED DISTRIBUTORS 
Arrow/Klarul" Electronics Group 
Arrow Canada (Canada) 
Future Electronlca (Canada) 
GRS Electrcnici Co., Inc. 
HaIl·Mark Electronics 
MarshalllndultTlea 
Nawark Electronic. 
Scllweber Electrcnlc. 
Time Electronics 
Wyle Laboratories 
Zeus Components 
-OBSOLETE PRODUCT ONLY
Rochester Electrcnlcs, Inc. 

~~r=~:"I8Chusetts 

ALA8AMA: Arrow/Kierulll (2OS) 837-6955; 
Hall-Merk (205) 837-8700; MarSha" (205) 881-9235; 
Sch_ (2051Il5&<1460. 

ARIZONA: ArrOW/Klerulff ~37'()750; 

==~~~;WyIe~SS:=~; 

Tampa: HIIII (813)530-4543; 
Merahell (813) 578-1399. 

:~::I":"):~~~~~~~~3-5750: 
Schweber (404) 449-9170. 

'WNOIS: _1KleruIIf (3'21251).0500; 

=:nr~~~~=~g~~=~.; 
~rr.=~:~~~;~r;:=r,'ti~~~~~53; 
IOWA: Ar10wlKierulff (319) 395·7230; 
Schweber (319) 373-1417. 

KANSAS: _City: -_1'~54,.954': 
=~'1~):~.MetJhaft(91 4 -3121; 

MARYLAND: Arrow/Klerulfl (301) 996-6002; 

=c;l)~='=~~.u,~·~o: 

• TEXAS 
INSTRUMENTS 

Time (61 

:~~':3)o::""~:,w)':l.'=; 
_(3131525-8100; 
GrInd Aepkle: Arrow/Kierulff (816) 243-0912. 

MINNESOTA: ArrowJKlerulfl (812) iJ3O.1800; 
HaII·MartI: (812) 941..aE1DOt Mai'ah8H (812) 559-2211; 
Schwabe, (612) 941-5280. 

:~_="(~,~.~:so~~=,~}'~~=,; 
Schwebet (314) 739-0526. 

NEW HAMPSHIRE: Arrow'/KieruIff (803) 861J..8988; 
Schweber (603) 625-2250. 

NEW MEXICO: ArrowlKierulff (505) 243-4586. 

-0300; 
Hatl·Mark (718) 244-9290; Mllflhell (718) 235-7620; 
Schweber (718) 424-2222; 
Syntcuw. Marshall (607) 798-181" 

NORTH CAROUNA: ArrowIt<ierulfl (919) 876-3132, 
(919) 725-8711; HelI·Merk (919) 872-0712; 
Marshell (919) 67&9882: Schwebet (919) 87s.oooo. 

~ F~~~=; 
Schwaber 
CoIumbu 
Hall·Mark 
DIyIon: 
Matlhell 

0K1..AH0MA: AmMJKleruIlf (9181252·1537; 
SchWeber (918) 822-1003. 

~ ... ~~~:tJ~~. 
PENNSYLVANIA: Atrow/Kierullf (41~ 856-7000, 

fc':.::;k~::'~~~·7037; 
TEXAS: Auttfn: 
Hall-Merk (51 1; 
sa-oe 
00 ... : 
Hall-Mark 
Schweber 
Zeus (2141 -Hall-Mark sa-oe, 
UTAH: _JI(Jeru.III .!:'~'3; 
~,::,r:,~~; all (801) 485-1551; 

=~'4~=:::::.; 
WISCONSIN: ArrawJ'(Ierum (414) 792-0150; 
~~~,~)~= Meretlall (414) 797041400; 

=:~(~U1Ur8~~; 
MonItUl: NtfNi canede (514) 735-5511; 
Future 514) 814-7710; 

rrow C.,acte (813) 228-6903; 

(~W.ms~'; 

Customer 
Response Center 
TOLL FREE: (800) 232-3200 

OUTSIDE USA: ll:::J ~~~oo p.m. CST) 

au 



August 1988 
Printed In U.S.A . 

.. 
TEXAS 

INSTRUMENTS SPRU031 


