
1990

~ TEXAS
INSTRUMENTS

Digital Signal Processing
Applications with the TAfS320 Familv

1990 Digital Signal Processor Products

DigHa/Signa/Processing
Applications with the TMS320 Family

Volume 2

Edited by
Panos Papam/challs, Ph.D.
Digital Signal Processing

Semiconductor Group
Texas Instruments

• TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without notice.
TI advises its customers to obtain the latest version of the relevant information
to verify, before placing orders, that the information being relied upon is current.

TI warrants performance of its semiconductor products to current specifications
in accordance with Tl's standard warranty. Testing and other quality control tech
niques are utilized to the extent TI deems necessary to support this warranty. Un
less mandated by government requirements, specific testing of all parameters of
each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or representthat license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.

TRADEMARKS

ADI and AutoCAD are trademarks of Autodesk, Inc.
Apollo and Domain are trademarks of Apollo Computer, Inc.
ATVista is a trademark of Truevision, Inc.
Code View, MS-Windows, MS, and MS-DOS are trademarks of Microsoft Corp.
DEC, DigitalDX, VAX, VMS, and Ultrix are trademarks of Digital Equipment Corp.
DGIS is a trademark of Graphic Software Systems, Inc.
EPIC, XDS, TlGA, and TlGA-340 are trademarks of Texas Instruments, Inc.
GEM is a trademark of Digital Research, Inc.
GSS*CGI is a trademark of Graphic Software Systems, Inc.
HPGL is a registered trademark of Hewlett-Packard Co.
Macintosh and MPWare trademarks of Apple Computer Corp.
NEC is a trademark of NEC Corp.
PC-DOS, PGA, and Micro Channel are trademarks of IBM Corp.
PEPPER is a registered trademark of Number Nine Computer Corp.
PM is a trademark of Microsoft Corp.
PostScript is a trademark of Adobe Systems, Inc.
RTF is a trademark of Microsoft Corp.
Sony is a trademark of Sony Corp.
Sun 3, Sun Workstation, Sun View, Sun Windows, and SPARC are trademarks of
Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1990, Texas Instruments Incorporated

CONTENTS

FOREWORD....... v

PREFACE.......................... ... vii

PART I. INTRODUCTION

1. The TMS320 Family and Book Overview . 3

2. The TMS320 Family of Digital Signal Processors
(Kun-Shan Lin, Gene A. Frantz, and Ray Simar, Jr., reprinted from PROCEEDINGS OF THE IEEE,
Vol. 75, No.9, September 1987) .. 11

3. The Texas Instruments TMS320C25 Digital Signal Microcomputer
(Gene A. Frantz, Kun-Shan Lin, Jay B. Reimer, and Jon Bradley, reprinted from IEEE Micro Magazine,
Vol. 6, No.6, December 1986) .. : . 29

PART II. DIGITAL SIGNAL PROCESSING INTERFACE TECHNIQUES

4. Hardware Interfacing to the TMS32OC2x
(George Troullinos and Jon Bradley) . 53

5. Interfacing the TMS320 Family to the TLC32040 Family
(Linear Products - Texas Instruments). 107

6. ICC Requirements of a TMS32OC25
(Dave Zalac) .. >. • •• 153

7. An Implementation of a Software UART Using the TMS32OC25
(Dave Zalac). 167

8. TMS32OC17 and TMS370c010 Serial Interface
(Peter Robinson). .. 189

PART m. DATA COMMUNICATIONS

9. Theory and Implementation of a Splitband Modem Using the TMS32010
(George Troullinos, Peter Ehlig, Raj Chirayil, Jon Bradley, and Domingo Garcia). 221

10. Implementation of an FSK Modem Using the TMS32OC17
(Phil Evans and Al Lovrich). 331

11. An AIl-Digital Automatic Gain Control
(AI Lovrich and Raj Chirayil) ... 389

PART IV. TELECOMMUNICATIONS

12. General-Purpose Tone Decoding and DTMF Detection
(Craig Marven) ... , 423

PART V. CONTROL

13. Implementation of PID and Deadbeat Controllers with the TMS320 Family
(lrfan Ahmed) .. 529

iii

PART VI. TOOLS

14. TMS320 Algorithm Debugging Techniques
(Peter Robinson). • .. 585

TMS320 BmLIOGRAPHY .. 597

INDEX ' .. 615

iv

Foreword

Much has happened in the TMS320 Family since Volume 1 of Digital Signal Processing
Applications with the TMS320 Family was published, and Volumes 2 and 3 are a timely update to
the family history.

The DSP microcomputers keep changing the perspective of the systems designers by offer
ing more computational power and better interfacing capabilities. The steps of change are coming
more quickly, and the potential impact is greater and greater. Because things change so rapidly in
this area, there is a pressing need for ways to quickly learn how to utilize the new technology. These
new volumes respond to that need.

As with Volume 1, the purpose of these books is to teach us about the issues and techniques
that are important in implementing digital signal processing systems using microprocessors in the
TMS320 Family. Volume 2 highlights the TMS320C25; and Volume 3, the TMS320C30 chip. A
large part of the books is devoted to such matters as characteristics of the TMS320C25 and
TMS320C30 chips, useful program code for implementing special DSP functions, and details on
interfacing the new chips to external devices. The remainder of the books illustrates how these
chips can be used in communications, control, and computer graphics applications.

What these two volumes make clear is how remarkably fast the field of DSP microcomputing
is evolving. IC technologists and designers are simply packing more and more of the right kind of
computing power into affordable microprocessor chips. The high-speed floating-point computing
power and huge address spaces of chips like the TMS320C30 open the door to a whole new class
of applications that were difficult or impractical with earlier generations offixed-point DSP chips.
The signal processing theorists and system designers are clearly being challenged to match the cre
ativity of the chip designers.

The present books differ from Volume 1 in the inclusion of a small section on tools. This is
a hopeful sign, because it is progress in this area that is likely to have the greatest impact on speeding
the widespread apprication of DSP microprocessors. While useful design tools are beginning to
emerge, much more can be done to help system designers manage the complexity of sophisticated
DSP systems, which often involve a unique combination of theory, numerical and symbolic pro
cessing algorithms, real-time programming, and mUltiprocessing. No doubt future volumes of Dig
ital Signal Processing Applications with the TMS320 Family will have more to say about this im
portant topic. Until then, Volumes 2 and 3 have much useful information to help system designers
keep up with the TMS320 Family.

Digital Signal Processing Applications with the TMS320 Family, Vol. 2

Ronald W. Schafer
Atlanta, Georgia

November 14, 1989

v

vi Digital Signal Processing Applications with the TMS320 Family, Vol. 2

Preface

With the advancement of DSP devices, the application of Digital Signal Processing has be
come more widespread. Areas that were considered outside the domain of DSP devices because
of cost, processing power, or peripheral capabilities (such as graphics, control, and consumer prod
ucts) have seen applications using digital signal processors. On the other hand, the diverse needs
of the designer have been addressed in the architectures and the performance of the newer devices.

Volume 2 of Digital Signal Processing Applications with the TMS320 F amity contains appli
cations on the first and second generations of the TMS320 Family (fixed-point devices). It is a con
tinuation of Volume 1 in the sense that it addresses the same needs of the designer. The designer
still has the task of selecting the DSP device with the appropriate cost, performance, and support,
developing the DSP algorithm that will solve his problem, and implementing the algorithm on the
processor. This volume tries to help the designer by bringing him up to date in the applications of
newer processors or in different applications of earlier processors.

The objectives remain the same as in Volume 1. First, the application reports can be used as
examples of device use. They can also serve as tutorials in programming the devices. Of course,
the same purpose is served on a more elementary basis by the software and hardware applications
sections of the corresponding user's guides. Second, since the source code of each application is
provided with the report, the designer can take it intact (or extract a portion of it) and place it in
his application.

It is assumed that the reader has exposure to the TMS320 devices or, at least, has the necessary
manuals (such as the appropriate TMS320 user's guides) that will help him understand the explana
tions in the reports. The reports themselves include as references the necessary background materi
al. Additionally, the Introduction gives a brief overview of the available devices at the time of the
writing, and points to sources of more information.

The reports are grouped by application area. The term report is used here in a broad sense,
since some articles from technical publications are also included. The authors of the reports are ei
ther the digital signal processing engineering staff of the Texas Instruments Semiconductor Group
(including both field and factory personnel, and summer students) or third parties.

The source code associated with the reports is also available in electronic form, and the reader
can download it from the TI DSP Electronic Bulletin Board (telephone (713) 274-2323). If more
information is needed, the DSP Hotline can be called at (713) 274-2320.

The editor wishes to thank all the authors and the reviewers for their contribution to this vol
ume of application reports.

Panos E. Papamichalis, Ph.D.
Senior Member of Technical Staff

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 vii

viii Digital Signal Processing Applications with the TMS320 Family, Vol. 2

Part I. Introduction
1. The TMS320 Family and Book Overview

2. The TMS320 Family of Digital Signal Processors
(Kun-Shan Lin, Gene A. Frantz, and Ray Simar, Jr., reprinted from
PROCEEDINGS OF THE IEEE, Vol. 75, No.9, September 1987)

3. The Texas Instruments TMS320C25 Digital Signal Microcomputer
(Gene A. Frantz, Kun-Shan Lin, Jay B. Reimer, and Jon Bradley, reprinted
from IEEE Micro Magazine, Vol. 6, No.6, December 1986)

1

2

TMS320 Family and Book Overview

Digital signal processors have found applications in areas where they were not even consid
ered a few years earlier. The two major reasons for such proliferation are an increase in processor
performance and a reduction in cost. Volume 2 of Digital Signal Processing Applications with the
TMS320 Family presents a set of application reports on the first- and second-generation TMS320
devices.

Organization of the Book

The application reports in this book are grouped by subject area:

• Introduction

• DSP Interface Techniques

• Data Communications

• Telecommunications

• Control

• Tools
• Bibliography

The Introduction contains this overview and two review articles. The first article gives a
general description of the TMS320 family and is reprinted from a special issue of the IEEE Pro
ceedings, while the second article discusses the TMS320C25 device and is reprinted from the IEEE
MicroMagazine. The overview points out how the TMS320 family has grown since the two articles
were published and also introduces newer devices.

The section on DSP Interface Techniques contains articles on interfacing first- and second
generation devices with external hardware, such as memories, NO and D/A converters, or micro
controller devices like the TMS370 series. Other articles cover. the implementation of a UART on
the TMS320C25 and the power dissipation of the TMS320C25.

The three articles in the Data Communications section deal with different aspects of modem
implementations. A V.22 design is presented in the first article, a 300-bps FSK modem in the sec
ond, and an Automatic Gain Control (AGC) in the third. In all cases, first-generation devices are
considered.

The following three sections contain one article each. In the Telecommunications section,
a generalized tone decoding and DTMF detection method is presented. The Control section article
gives insight into the relatively new application of digital signal processors in digital control. In
the Tools section, the article describes ways to debug the algorithms with the aid of spreadsheets
and other packages.

The Bibliography section contains a list of articles mentioning DSP implementations using
TMS320 devices. The different titles are listed chronologically and are grouped by subject. The
list is not exhaustive, but it gives enough pointers for pursuing practical implementations in repre
sentative application areas.

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 3

The TMS320 Family of Processors

The TMS320 Family of digital signal processors started with the TMS32010 in 1982, but it
has been expanded to encompass five generations (at the time of this writing) with devices in each
generation. Figure 1 shows this progression through the generations. The TMS320 devices can be
grouped in two broad categories: fixed-point and floating-point devices. As implied by Figure 1,
the first, second, and fifth generations are the fixed-point devices, while the third and the fourth
geAerations (the last one under development) support floating-point arithmetic.

4

Figure 1. TMS320 Family Roadmap

Floating-point DSP
. Fixed-point DSP ----,-.....,...,--,
* 1990 NEWTMS320

P m
e f
r I
f 0
0 p
r 5 TMS320C1x

/
a m TMS320C10, ·14

n i TMS320C10·25

C P
TMS320C15/E15
TMS320C15·25

e 5 TMS320C17/E17
TMS320C14/E14

TMS320C4x

*TMS320C40

TMS320C30
*TMS320C30·26~ __ ~ __

*TMS320C31 ---",---
TMS32020
TMS320C25
TMS320E25
TMS320C25·50
*TMS320C26

*TMS320C50
*TMS320C51

Generation

Digital Signal Processing Applications with the TMS320 Family, Vol. 2

.Gen

1st

2nd

3rd

5th

t

* •

The following article, "The TMS320 Family of Digital Signal Processors," by Lin, et. aI.,
is reprinted from the proceedings of the IEEE and gives an overview of the TMS320 family. Since
additional devices have been developed from the time the article was written, this section highlights
these newer devices. Table 1 shows a comprehensive list of the currently available TMS320 devices
and their salient characteristics.

Table 1. TMS320 Family Overview

Memory I/O

Data Cycle On· OlT. On·
Device

Type
Time RAM Chip EPROM

Chip
Parallel Serial DMA Chip Package

(ns) ROM Timers

TMS320ClO' Integer 200 144 1.5K 4K 8xl6 DlPIPLCC
TMS32OCIO·25 Integer 160 144 UK 4K 8xl6 DlPIPLCC
TMS320CIO·14 Integer 280 144 UK 4K 8xl6 DlPIPLCC
TMS320EI4 Integer 160 256 4K 4K 7xl6 1 4 CERQUAD
TMS320C15' Integer 200 . 256 4K 4K 8xl6 DlPIPLCC
TMS320C15·25 , Integer 160 256 4K 4K 8><16 DlPIPLCC
TMS320E15' Integer 200 256 4K 4K 8xl6 DlP/CERQUAD
TMS320EI5·25 Intcger 160 256 4K 4K 8xl6 DlP/CERQUAD
TMS320CI7 Integer 200 256 4K 4K 6xl6 2 1 DlPIPLCC
TMS320EI7 Integer 200 256 4K 4K 6xl6 2 I DlP/CERQUAD

TMS32020' Integer 200 544 128K 16xl6 I t I PGA
TMS32OC25~ Integer 100 544 4K 128K 16xl6 I t I PGAlPLCC
TMS320C2S·50. Integer 80 544 4K 128K 16xl6 I t I PGAlPLCC
TMS320E25 , Integer 100 544 4K 128K 16xl6 I t I CERQUAD
TMS320C26 Integer 100 I.5K 256 128K 1 t 1 PLCC

TMS320C30' Float Pt 60 2K 4K 16M 16Mx32 2 ~ 2 PGA

TMS320C50. Integer 50 8.5K 2K 128K 16x16 I t I CLCC

External DMA
External/lntemai DMA
For information on military versions of these devices, contact your local 11 sales office .

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 5

The additions to the first generation are the TMS320C14 and the TMS320E14; the latter is
identical with the former, except that the latter's on-chip program memory is EPROM. The
TMS320C141E14 devices have features that make them suitable for control applications. Figure
2 shows the components of these devices. The memory and the CPU are identical to those of the
TMS320C151E15, while the peripherals reflect the orientation of the devices toward control.

Figure 2. TMS320C14/E14 Key Features

32-bitALU

32-bitACC

0,1 ,4-bit Shift

16x16-bit
Multiply

32-bit P-Reg

2 Auxiliary Registers

4 level H/W Stack

Timer/Counter 2

Watchdog Timer

16 bit I/O

SERIAL PORT

Event Manager

Some of the key features of the TMS320C141E14 are:

• 160-ns instruction cycle time

• Object-code-compatible with the TMS320C15

• Four 16-bit timers
- Two general-purpose timers
- One watchdog timer
- One baud-rate generator

• 16 individual bit-selectable I/O pins

• Serial port/USART with codec-compatible mode

• Event manager with 6-channel PWM D/A

• CMOS technology, 68-pin CERQUAD

The additions to the second generation are the TMS320E25, the TMS320C25-50, and the
TMS320C26. The TMS320E25 is identical to the TMS320C25, except that the 4K-word on-chip

6 Digital Signal Processing Applications with the TMS320 Family, Vol. 2

program memory is EPROM. Since increased speed is very important for the real-time implemen
tation of certain applications, the TMS320C25-50 was designed as a faster version of the
TMS320C25 and has a clock frequency of 50 MHz instead of 40 MHz.

The TMS320C26 is a modification of the TMS320C25 in which the program ROM has been
exchanged for RAM. The memory space of the TMS320C26 has 1.SK words of on-chip RAM and
256 words of on-chip ROM, making it ideal for applications requiring larger RAM but minimal
external memory.

A new generation of higher-performance fixed-point processors has been introduced in the
TMS320 Family: the TMS320C5X devices. This generation shares many features with the first and
the second generations, but it also encompasses significant new features. Figure 3 shows the basic
components of the first device in the fifth generation, the TMS320C50.

Figure 3. TMS320C50 Key Features

Serial Port
Timer

S/WWaitsts
16x16
Inputs
16x16

Outputs

Some of the important features of the TMS320CSO are listed below:

• Source code is upward compatible with the TMS320Clx/C2x devices

• 50/3S-ns instruction cycle time

• 8K words of on-chip program/data RAM

• 2K words boot ROM

• 544 words of data/program RAM

• 128K words addressable total memory

• Enhanced general-purpose and DSP-specific instructions

• Static CMOS, 84-pin CERQUAD

• JTAG serial sClm path

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 7

The software and hardware development tools available for the TMS320 family make the
development of applications easy. Such tools include assemblers, linkers, simulators, and C com
pilers for software and evaluation modules, software development boards, and extended develop
ment systems for hardware. These tools are mentioned in the following paper by Lin, et. a1. The
interested reader can find much more information in additional literature that is published by Texas
Instruments and mentioned in the next section. In partiCular, the TMS320 Family Development Sup
port Reference Guide is an excellent source.

One important addition to the list of tools is the SPOX operating system, developed by Spec
tron Microsystems. SPOX permits you to write an application in a high-level language (C) and run
it on actual DSP hardware. The operating-system of SPOX hides the details of the interface from
you and lets you concentrate on your algorithm while running it at supercomputer speeds on the
TMS320C30.

References

Texas Instruments publishes an extensive bibliography to help designers use the TMS320 de
vices effectively. Besides user's guides for corresponding generations, there are manuals for the
software and the hardware tools. The Development Support Reference Guide is particularly useful
because it provides information not only on development tools offered by TI, but also on those pro
duced by third parties. Here is a partial list of the literature available (the literature number is in
parentheses):

• TMS320 Family Development Support Reference Guide (SPRUOllA)

• TMS320Clx User's Guide (SPRU013A)

• TMS320C2x User's Guide (SPRU014)

• TMS320C3x User's Guide (SPRU031)

• TMS320ClxlTMS320C2xAssembly Language Tools User's Guide (SPRU018)

• TMS320C30 Assembly Language Tools User's Guide (SPRU035)

• TMS320C25 C Compiler Reference Guide (SPRU024)

• TMS320C30 C Compiler Reference Guide (SPRU034)

• Digital Signal Processing Applications with the TMS320 Family, Volume 1 (SPRA012)

• Digital Signal Processing Applications with the TMS320 Family, Volume 3 (SPRA017)

You can request this literature by calling the Customer Response Center at 1-800-232-3200,
or the DSP Hotline at 1-713-274-2320.

Contents of Other Volumes of the Application Book

Volume 1

8

Part I. Digital Signal Processing and the TMS320 Family

• Introduction

• The TMS320 Family

Part II. Fundamental Digital Signal Processing Operations

• Digital Signal Processing Routines

Digital Signal Processing Applications with the TMS320 Family, Vol. 2

- Implementation of FIR/lIR Filters with the TMS32010{fMS32020
- Implementation of Fast Fourier Transform Algorithms with the TMS32020
- Companding Routines for the TMS32010{fMS32020
- Floating-Point Arithmetic with the TMS32010
- Floating-Point Arithmetic with the TMS32020
- Precision Digital Sine-Wave Generation with the TMS32010
- Matrix Multiplication with the TMS32010 and TMS32020

• DSP Interface Techniques
- Interfacing to Asynchronous Inputs with the TMS32010
- Interfacing External Memory to the TMS32010
- Hardware Interfacing to the TMS32020
- TMS32020 and MC68000 Interface

Part III. Digital Signal Processing Applications

• Telecommunications
- Telecommunications Interfacing to the TMS32010
- Digital Voice Echo Canceller with a TMS32020
- Implementation of the Data Encryption Standard Using the TMS32010
- 32K-bit/s ADPCM with the TMS32010
- A Real-Time Speech Subband Coder Using the TMS32010
- Add DTMF Generation and Decoding to DSP-~P Designs

• Computers and Peripherals

• Speech Coding/Recognition
- A single-Processor LPC Vocoder
- The Design of an Adaptive Predictive Coder Using a Single-Chip
- Digital Signal Processor
- Firmware-Programmable C Aids Speech Recognition

• Image/Graphics
- A Graphics Implementation Using the TMS32020 and TMS34061

• Digital Control
- Control System Compensation and Implementation with the TMS32010

Volume 3

Part I. Introduction

• Book Overview
• The TMS320 Family of DSP
• The TMS320C30 Floating-Point DSP

Part II. Digital Signal Processing Routines

• Implementation of FFT, DCT, and other Transforms on the TMS320C30
• Doublelength Floating-Point Arithmetic on the TMS320C30
• An 8 x 8 Discrete Cosine Transform Implementation on the TMS320C25 and the

TMS320C30
• Implementation of Adaptive Filters with the TMS320C25 and TMS320C30
• A Collection of Functions for the TMS320C30

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 9

Part III. DSP Interface Techniques

• Hardware Interfacing to the TMS320C30

• TMS320C30 - IEEE Floating-Point Format Converter

Part IV. Telecommunications

• Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX

Part V. Computers

• A Digital Signal Processor Based 3-D Graphics System

Part VI. Tools

• TMS320C30 Applications Board Functional Description

10 Digital Signal Processing Applications with the TMS320 Family, Vol. 2

The TMS320 Family
of

Digital Signal Processors

Kun-Shan Lin
Gene A. Frantz
Ray Simar, Jr.

Digital Signal Processor Products - Semiconductor Group
Texas Instruments

Reprinted from
PROCEEDINGS OF THE IEEE
Vol. 75, No.9, September 1987

11

12 The TMS320 Family of Digital Signal Processors

The TMS320 Family of Digital Signal
Processors

KUN-SHAN LIN, MEMBER, IEEE, GENE A. FRANTZ, SENIOR MEMBER, IEEE,
AND RAY SIMAR, JR.

This paper begins with a discussion of the characteristics of dig
ital signal processing, which are the driving force behind the design
of digital signal processors. The remainder of the paper describes
the three generations of the TMS320 family of digital signal proces
sors available from Texas Instruments. The evolution in architec
tural design of these processors and key features of each genera
tion of processors are discussed. More detailed information ;5
provided for the TMS320C25 and TMS320C30, the newest members
in the family. The benefits and cost-performance tradeoffs of these
processors become obvious when applied to digital Signal pro
cessing applications, such as telecommunications, data commu·
nications, graphics/image processing, etc.

DIGITAL SIGNAL PROCESSING CHARACTERISTICS

Digital signal processing (DSP) encompasses a broad
spectrum of applications. Some application examples
include digital filtering, speech vocoding, image process
ing, fast Fourier transforms, and digital audio [1]-[10]. These
applications and those considered digital Signal processing
have several characteristics in common:

mathematically intensive algorithms,
real-time operation,
sampled data implementation,
system flexibility.

To illustrate these characteristics in this section, we will use
the digital filter as an example. Specifically, we will use the
Finite Impulse Response (FIR) filter which in the time
domain takes the general form of

N

y(n) = :E ali) • x(n - i)
i"'"

(1)

where yIn) is the output sample at time n, ali) is the ith coef
ficient orweighting factor, and x(n - i) is the (n - i)th input
sample.

With this example in mind, we can discuss the various
characteristics of digital signal processing: mathematically
intensive algorithms, real-time processing, sampled data
implementation, and system flexibility. First, let us look at
the concept of mathematically intensive algorithms.

Manuscript received October 6, 1986; revised March 27, 1987.
The authors are with the Semiconductor Group, Texas Instru

ments Inc., Houston, TX 77521-1445, USA.
IEEE Log Number 871&214.

Mathematically Intensive Algorithms

From (1), we can see that to generate every y(n), we have
to compute N multiplications and additions or sums of
products. This computation makes it mathematically inten
sive, especially when N is large.

At this point it is worthwhile to give the FIR filter some
physical significance. An FIR filter is a common technique
used to eliminate the erratic nature of stock market prices.
When the day-to-day closing prices are plotted, it is some
times difficult to obtain thedesired information, such as the
trend of the stock, because of the large variations. A simple
way of smoothing the data is to calculate the average clos
ing values of the previous five days. For the new average
value each day, the oldest value is dropped and the newest
value added. Each daily average value (average (n)) would
be the sum of the weighted value of the latest five days,
where the weighting factors (a(i)'s) are 1/5.ln equation form,
the average is determined by

average (n) = ! • dIn - 1) + ! • dIn - 2)
S S

+ ! • dIn - 3) + ! • dIn - 4)
5 5

+!'d(n-S)
S

(2)

where dIn - i) is the daily stock closing price for the (n -
i)th day. Equation (2) assumes the same form as (1). This is
also the general form of the convolution of two sequences
of numbers, ali) and xli) [5], [6]. Both FIR filtering and con
volution are fundamental to digital signal processing.

Rea/-Time Processing

In addition to being mathematically intensive, DSP algo
rithms must be performed in real time. Real time can be
defined as a process that is accomplished by the DSP with
out creating a delay noticeabletothe user. In the stock mar
ket example, as long as the new average value can be com
puted prior to the next day when it is needed, it is considered
to be completed in real time. In digital signal processing
applications, processes happen fasterthan on adaily basis.
In the FIR filter example in (1), the sum of products must

©1989-IEEE. Reprinted, with pennission, from PROCEEDINGS OF THE IEEE; Vol. 75, No.9,

pp. 1143-1159; September 1989.

The TMS320 Family of Digital Signal Processors 13

be computed usually within hundreds of microseconds
before the next sample comes into the system. A second
example is in a speech recognition system where a notice
able delay between a word being spoken and being rec
ognized would be unacceptable and not considered real
time; Another example is in image processing, where it is
considered real-time if the processor finishes the process
ing within the !rame update period. If the pixel information
cannot be updat~d within the frame update period, prob
lems such as flicker, smearing, or missing information will
occur.

Sampled Data Implementation,

The application must be capable of being handled as a
sampled data system in order to be processed by digital
processors, such as digital Signal processors. The stock
market is an example of a sampled data system. That is, a
specific value (c!osing value) is assigned to each sample
period or day. Other periods may be chosen such as hourly
prices or weekly prices. In an FIR filter as shown in (1), the
output y(n) is calculated to be the weighted sum of the pre
vious N inputs. In other words, the input signal is sampled
at periodic intervals (lover the sample rate), multiplied by
weighting factor a(i), and, then added together to give the
output result of y(n). Examples of sampie rates for some typ
ical sampled data applications [2], [4] are shown in Table 1.

Table 1 Sample Rates versus Applications

Application

Control
Telecommunications
Speech processing
Audio processing
Video frame rate
Video pixel rate

Nominal
Sample Rate

1 kHz
8 kHz
8-10 kHz

40-48 kHz
30 Hz
14 MHz

In a typical DSP application, the processor-must be able
to effectively handle sampled data in large quantity and also
perform arithmetic computa'tions in realtime.

System Flexibility

The design of the digital Signal processing system must
be flexible enough to allow improvements in the state of
the art. We may find out after several weeks of using the
average stock price as a means of measuring a particular
stock's value that a different method of obtaining the daily
information is more suited to our needs, e.g., using dif
ferent daily weightings, a different number of periods over
which to average, or a different procedure for calculating
the result. Enough flexibility'in the system must be available
to allow for these variations. In 'many of the DSP applica
tions, techniques are still in the developmental phase, and
therefore the algorithms tend to change over time. As an
example, speech recognition is presently an inexact tech
nique requiring continual algorithmic modification. From
this example we can see the need for system flexibility so
that the DSP algorithm can be updated. A programmable
DSP system can provide this flexibility to the user.

14

HISTORICAL DSP SOLUTIONS

Over the past several decades, digital signal processing
machines have taken on several evolutions in order to
incorporate these characteristics. large mainframe com
puters were initially used to process signals in the digital
domain. Typically, because of state-of-the-art limitations,
this was done in nonreal time. As the state of the art
advanced, array processors were added to the processing
task. Because of their flexibility and speed, array processors
have become the accepted solution for the research lab
oratory, and have been extended to end-applications in
many instances. However, integrated circuittechnology has
matured, thus allowing for the design of faster micropro
cessors and microcomputers. As a result, many digital sig
nal processing applications have migrated from the array
processor to microprocessor subsystems (i.e., bit-slice
machines) to Single-chip integrated circuit solutions. This
migration has brought the cost of the DSP solution down
to a point that allows pervasive use of the technology. The
increased performance of these highly integrated circuits
has also expanded DSP applications from traditional tele
communications to graphics/image processing, then to
consumer audio processing.

A recent development in DSP technology is the single
chip digital signal processor, su~h as the TMS320 family of
processors. These processors give the designer a DSP solu
tion with its performance attainable only by the array pro
cessors a few years ago. Fig. 1 shows the TMS320 family in
graphical form with the y-axis indicating the hypothetical
performance and the x-axis being the evolution of the semi
conductor processing technology. The first member of the
family, the TMS32010, was disclosed to the market in 1982
[11], [12]. It gave the system deSigner the first microcom
puter capable of performing five million DSP operations
per second (5 MIPS), including the add and multiply func
tions [13] required in (1). Today there are a dozen spinoffs
from the TMS32010 in th~ first generation of the TMS320
family. Some of these devices are the TMS320Cl0,
TMS320C15, and TMS320C17 [14]. The second generation
of devices include the TMS32020 [15] and TMS320C25 [16].
The TMS320C25 can perform 10 MIPS [16]. In addition,
expanded memory space, combined single-cycle multiplyl
accumulate operation, multiprocessing capabilities, and
expanded 110 functions have given the TMS320C25 a
2 to 4 times performance improvement over its predeces
sors. The third generation of the TMS320 family of proces
sors, the TMS320C30 [26], [27], has a computational rate of
33 million DSP floating-point operations per second (33
MFlOPS). Its performance (speed, throughput, and pre
cision) has far exceeded the digital Signal processors avail
able today and has reached the level of a supercomputer.

It we look closely at the TMS320 family as shown in Fig.
1, we can see that devices in the same generation, such as
the TMS320Cl0, TMS320C15, and TMS320C17, are assembly
object-code compatible. Devices across generations, such
as the TMS320Cl0 and TMS320C25, are assembly source
code compatible. Software investment on DSP algorithms
therefore can be maintained during the system upgrade.
Another point is that since the introduction of the
TMS32010, semiconductor processing technology has
emerged from 3-l'm NMOS to 2-l'm CMOS'to I-I'm CMOS.

The TMS320 Family of Digital Signal Processors

t------ 2.4-l'm NMOS

Fig. 1. The TMS320 family of digital signal processors.

The TMS320 generations of processors have also taken the
same evolution in processing technology. Low power con
sumption, high performance, and high-density circuit inte
gration are some of the direct benefits of this semicon
ductor processing evolution.

From Fig. 1, it can be observed that various DSP building
blocks, such as the CPU, RAM, ROM, 110 configurations,
and processor speeds, have been designed as individual
modules and can be rearranged or combined with other
standard cells to meet the needs of specific applications.
Each of the three generations (and future generations) will
evolve in the same manner. As applications become more
sophisticated, semicustom solutions based on the core CPU
will become the solution of choice. An example of this
approach is the TMS320C17/E17, which consists of the
TMS320C10 core CPU, expanded 4K-word program ROM
(TMS320C17) or EPROM (TMS320E17), enlarged data RAM
of 256 words, dual serial ports, companding hardware, and
a coprocessor interface. Furthermore, as integrated circuit
layout rules move into smaller geometry (now at 2 I'm, rap
idly going to 1 I'm), not only will the TMS320 devices become
smaller in size, but also multiple CPUs will be incorporated
on the same device along with application-specific 1/0 to
achieve low-cost integrated system solutions.

BASIC TMS320 ARCHITECTURE

As noted previously, the underlying assumption regard
ing a digital signal processor is fast arithmetic operations
and high throughput to handle mathematically intensive
algorithms in real time. In the TMS320 family [11]-[17], [26],
[27], this is accomplished by using the following basic con
cepts:

Harvard architecture,
extensive pipelining,
dedicated hardware multiplier,
special DSP instructions,
fast instruction cycle.

The TMS320 Family of Digital Signal Processors

2.0-l'm CMOS

These concepts were designed inlO the TMS320 digital sig
nal processors to handle the vast amount of data charac~
teristic of DSP operations, and to allow most DSP opera
tions to be executed in a Single-cycle instruction.
Furthermore, the TMS320 processors are programmable
devices, providing the flexibility and ease of use of general
purpose microprocessors. The following paragraphs dis
cuss how each of the above concepts is used in Ihe TMS320
family of devices to make them useful in digital signal pro
cessing applications.

Harvard Architecture

The TMS320 utilizes a modified Harvard architecture for
speed and flexibility. In a strict Harvard architecture [18],
[19], the program and data memories lie in two separate
spaces, permitting a full overlap of instruction fetch and
execution. The TMS320 family's modification of the Har
vard architecture further allows transfer between program
and data spaces, thereby increasing the flexibility of the
device. This architectural modification eliminates the need
for a separate coefficient ROM and also maximizes the pro
cessing power by maintaining two separate bus structures
(program and data) for full-speed execution.

Extensive Pipelining

In conjunction with the Harvard architecture, pipelining
is used extensively to reduce the instruction cycle time to
its absolute minimum, and to increase the throughput of
the processor. The pipeline can be anywhere from two to
four levels deep, depending on which processor in the fam
ily is used. The TMS320 family architecture uses a two-level
pipeline for its first generation, a three-level pipeline for its
second generation, and a four-level pipeline for its third
generation of processors. This means that the device is pro
cessing from two to four instructions in parallel, and each
instruction is at a different stage in its execution. Fig. 2 shows
an example of a three-level pipeline operation.

15

CLKOUT1

prefetch

decode

execute N-2 .. N-l

Fig. 2. Three-level pipeline operation.

In pipeline operation, the prefetch, decode, and execute
operations can be handled independently, thus allowing
the execution of instructions to overlap. Duringany instruc
tion cycle, three different instructions are active, each at a
different stage of completion. For example, as the Nth
instruction is being prefetched, the previous (N - 1)th
instruction is being decoded, and the previous (N - 2)th
instruction is being executed. In general, the pipeline is
transparent to the user.

Dedicated Hardware Multiplier

As we saw in the general form of an FIR filter, multipli,
cation is an important part of digital signal processing. For
each filter tap (denoted by i), a multiplication and an addi
tion must take place. The faster a multiplication can be per
formed, the higher the performance of the digital signal
processor. In general-purpose microprocessors, the mul
tiplication instruction is constructed by a series of addi
tions, ther')fore taking many instruction cycles. In com
parison, tA<icharacteristic of every DSP device is adedicated
multiplier. In the TMS320 family, multiplication is a single
cycle instruction as a result of the dedicated hardware mul
tiplier. If we look at the arithmetic for each tap of the FIR
filter to be performed by the TMS32010, we see that each
tap of the filter requires a multiplication (MPY) instruction.

LT
DMOV
MPY
APAC

;LOAD MULTIPLICAND INTO T REGISTER
;MOVE DATA IN MEMORY TO DO DELAY
;MULTIPLY
;ADD MULTIPLICATION RESULT TO ACC

The other three instructions are used to load the multiplier
circuit with the multiplicand (LT), move the data through
the filter tap (DMOV), and add the result of the multipli
cation (stored in the product register) to the accumulator
(APAC). Specifically, the multiply instruction (MPY) loads
the multiplier into the dedicated multiplier and performs
the multiplication, placing the result in a product register.
Therefore, if a 256-tap FIR filter is used, these four instruc
tions are repeated 256 times. At each sample period, 256
multiplications must be performed. In a typical general
purpose microprocessor, this requires each tap to be 30 to
40 instruction cycles long, whereas in the TMS320C10, it is
only four instruction cycles. We will see in the next section
how special DSP instructions reduce the time required for
each FIR tap even further.

Special DSP Instructions

Another characteristic of DSP devices is the use of special
instructions. We were introduced to one olthem in the pre
vious example, the DMOV (data move) instruction. In dig
ital signal processing, the delay operator (z -') is very impor
tant. Recalling the stock market example, during each new
sample period (Le., each new day), the oldest piece of data

16

(the closing price five days ago) was dropped and a new one
(today's closing price) was added. Or, each piece of the old
data is delayed or moved one sample period to make room
for the incoming most current sample. This delay is the
function olthe DMOV instruction. Another special instruc
tion in the TMS32010 is the LTD instruction. It executes the
LT, DMOV, and APAC instructions in a single cycle. The LTD
and MPY instruction then reduce the number of instruction
cycles per FIR filter tap from four to two. In the second-gen
eration TMS320, such as the TMS320C25, two more special
instructions have been included (the RPT and MACD
instructions) to reduce the number of cycles per tap to one,
as shown in the follOWing:

RPTK 255 ;REPEAT THE NEXT INSTRUCTION 256 TIMES
(N + 1)

MACD ;LT, DMOV, MPY, AND APAC

Fast Instruction Cycle

The real-time processing capability is further enhanced
by the raw speed olthe processor in executing instructions.
The characteristics which we have discussed, combined
with optimization olthe integrated circuit design for speed,
give the DSP devices instruction cycle times less than 200
ns. The specific instruction cycle times for the TMS320 fam
ily are given in Table 2. These fast cycle times have made

Table 2 TMS320 Cycle Times

Device

TMS320C10'
TMS32020
TMS320C25
TMS320C30

Cycle Time
(ns)

160-200
160-200
100-125
60-75

·The same cycle time applies to all of the first-generation processors.

the TMS320 family of processors highly suited for many real
time DSP applications. Table 1 showed the sample rates for
some typical DSP applications. This table can be combined
with the cycle times indicated in Table 2 to show how many
instruction cycles per sample can be achieved by the var
ious generations of the TMS320 for real-time applications
(see Fig. 3).

As we can see from Fig. 3, many instruction cycles are
available to process the signal or to generate commands for
real-time control applications. Therefore, for simple ton
trol applications, the general-purpose microprocessors or
controllers would be adequate. However, for more math
ematically intensive control applications, such as robotics
and adaptive control, digital signal processors are much
better suited [241. The number of available instruction cycles
is reduced as we increase the sample rate from 8 kHz for
typical telecommunication applications to 40-48 kHz for
audio processing. Since most of these real-time applica
tions require only a few hundreds of instructions per sam
ple (such as ADPCM [41, and echo cancelation [4]), this is
within the reach of the TMS320. For higher sample rate
applications, such as video/image processing, digital signal
processors available today are not capable of handling the
processing of the real-time video data. Therefore, for these

The TMS320 Family of Digital Signal Processors

Third·O ' •• lon TMS320
&000

Sacond·G.,..,..1on TMS320

1 Flr.t·GanerMlon TMS320
C

ltiOO 0
N

u T T

I • •
0 L V

L • I
&0

I
c D
0 •
M H 0

I I I
• 0 1 kHz 10 kHz 100kHz 10 MHz

Fig. 3. Number of instruction cycles/sample versus sample rate for the TMS320 family.

types of applications, multiple digital signal processors and
frame buffers are usually required. From Fig. 3, it can also
be seen that for slower speed applications, such as control,
the first-generation TMS320 provides better cost-perfor
mance tradeoffs than the other processors. For high sample
rate applications, such as videolimage processing, the sec
ond and third generations of the TMS320 with their mul
tiprocessing capabilities and high throughput are better
suited.

Now that we have discussed the basic characteristics of
digital signal processors, we can concentrate on specific
details of each of the three generations of the TMS320 fam
ily devices.

THE FIRST GENERATION -OF THE TMS320 FAMILY

The first generation of the TMS320 family includes the
TMS32010 (13), and TMS32011 [17]. which are processed in
2.4-l'm NMOS technology, and the TMS320C10 (13),
TMS320C151E15 (14), and TMS320C17/E17 [14), processed in
1.8-l'm CMOS technology. Some of the key f!latu res of these
devices are (14) as follows:

Instruction cycle timing:
-160 ns
-200 ns
-280 ns.

On-chip data RAM:
-144 words
-256 words (TMS320C15/E15, TMS320C17/E17).

On-chip program ROM:
-1.5K words
-4K words (TMS320C15, TMS320C17).

4K words of on-chip program EPROM (TMS320E15,
TMS320E17).

External memory expansion up to 4K words at full
speed.

16 x 16-bit parallel multiplier with 32-bit result.
Barrel shifter for shifting data memory words into the

ALU.
Parallel shifter.
4 x 12-bit stack that allows context switching.
Two auxiliary registers for indirect addreSSing.

The TMS320 Family of Digital Signal Processors

Dual-channel serial port (TMS32011, TMS320C17,
TMS320E17).

On-chip companding hardware (TMS32011,
TMS320C17, TMS320E17).

Coprocessor interface (TMS320C17, TMS320E17).
Device packaging

-40-pin DIP
-44-pin PLCC.

TMS32OC10

The first generation of the TMS320 processors is based
on the architecture of the TMS32010 and its CMOS replica,
the TMS320C10. The TMS32010 was introduced in 1982 and
was the first microcomputer capable of performing 5 MIPS.
Since the TMS32010 has been covered extensively in the
literature [4), [11)-[14), we will only provide a cursory review
here. A functional block diagram of the TMS32OC10 is shown
in Fig. 4.

As shown in Fig. 4, the TMS320C10 utilizes the modified
Harvard architecture in which program memory and data
memory lie in two separate spaces. Program memory can
reside both on-chip (1.5K words) or off-chip (4K words). Data
memory is the 144 x 16-bit on-chip data RAM. There are four
basic arithmetic elements: the ALU, the accumulator, the
multiplier, and the shifters. All arithmetic operations are
performed using two's-complement arithmetic.

ALU: The ALU is a general-purpose arithmetic logic unit
that operates with a 32-bit data word. The unit can add, sub
tract, and perform logical operations.

Accumulator: The accumulator stores the output from the
ALU and is also often an input to the ALU. It operates with
a 32-bit word length. The accumulator is divided into a high
order word (bits 31 through 16) and a low-order word (bits
15through 0). Instructions are provided for storing the high
and low-order accumulator words in data memory (SACH
for store accumulator high and SACL for store accumulator
low).

Multiplier: The 16 x 16-bit parallel multiplier consists of
three units: the T register, the P register, and the multipler
array. The T register is a 16-bit register that stores the mul
tiplicand, while the P register is a 32-bit register that stores
the product. In order to use the multiplier, the multiplicand

17

WI
i5lIi t.
IImI
Iii!i

MclM'
INSTRUCTION

iIlT

I liS
PROGRAM

ROM
(1538 a: 161

DATA RAM
1144.111

LEGEND:

Ace .. Accumulator DATA

ARP.. Auxiliarv register pointer
ARO '" AUlCiliarv register 0
AR1", Au.marv ,egister 1
DP .. Data page pointer

PC '" Program counter
.. P register

T "" T register

Fig. 4. TMS32OC10 functional block diagram.

must first be loaded into the T register from the data RAM
by using one of the following instructions: L T, LTA, or LTD.
Then the MPY (multiply) or the MPYK (multiply immediate)
instruction is executed. The multiply and accumulate oper
ations can be accomplished in two instruction cycles with
the LTNLTD and MPY/MPYK instructions.

Shifters: Two shifters are available for manipulating data:
a barrel shifter and a parallel shifter. The barrel shifter per
forms a left-shift of 0 to 16 bits on all data memory words
that are to be loaded into, subtracted from, or added to the
accumulator. The parallel shifter, a.ctivated by the SACH
instruction, can execute a shift of 0,1, or 4 bits to take care
of the sign bits in two's<omplement arithmetic calcula
tions.

Based on the architecture of the TMS32010/C10, several
spinoffs have been generated offering different processor
speeds, expanded memory, and various I/O integration.
Currently, the newest members in this generation are the
TMS320C15/E15 and the TMS320C17/E17 [14].

18

t •

~----.32

t.

TMS32OC15/E15

The TMS320C15 and TMS320E15 are fully object<ode and
pin-for-pin compatible with the TMS32010 and offer
expanded on<hip RAM of 256 words and on<hip program
ROM (TMS320C15) or EPROM (TMS320E15) of 4K words. The
TMS32OC15 is available in either a 200-ns version or a 160-
ns version (TMS32OC15-25).

TMS320C17/E17

The TMS320C17/E17 is a dedicated microcomputer with
4K words of on<hip program ROM (TMS320Cl7) or EPROM
(TMS320El7), a dual<hannel serial port forfull-duplex serial
communication, on-chip companding ~ardware (u-Iawl
A-law), a serial port timer for stand-alone serial commu
nication, and a coprocessor interface for zero glue interface
between the processor and any 418/16-bit microprocessor.
The TMS320C17/E17 is also object<ode compatible with the
TMS32010 and can use the same development tools. The

The TMS320 Family of Digital Signal Processors

Table 3 TMS320 First-Generation Processors

Inst'ruction On-Chip
TMS320 Cycle Time ProgROM
Devices (ns) Process (words)

TMS32010 200 NMOS 1.5K
TMS32010-25 160 NMOS UK
TMS32010-14 280 NMOS UK
TMS32011 200 NMOS l.5K
TMS32OC10 200 CMOS 1.5K
TMS320C10-25 160 CMOS 1.5K
TMS32OC15 200 CMOS 4.0K
TMS32OC15-25 160 CMOS 4.0K
TMS320E15 200 CMOS
TMS320C17 200 CMOS 4.0K
TMS320C17-25 160 CMOS 4.0K
TMS320E17 200 CMOS

device is based on the TMS320Cl0 core CPU with added
peripheral memory and I/O modules added on-chip. The
TMS320C17/E17 can be regarded as a semicustom DSP solu
tion suited for high-volume telecommunication and con
sumer applications.

Table 3 provides a feature comparison of all members of
the first-generation TMS320 processors. References to more
detailed information on these processors are also provided.

THE SECOND GENERATION Of THE TMS320 FAMilY

The second-generation TMS320 digital signal processors
includes two members, the TMS32020 [15) and the
TMS320C25 [16). The architecture of these devices has been
evolved from the TMS32010, the first memberofthe TMS320
family. Key features of the second-generation TMS320 are
as follows: '

Instruction cycle timing:
-100 ns (TMS320C25)
-200 ns (TMS32020).

4K words of on-chip masked ROM (TMS320C25).
544 words of on-chip data RAM.
128K words of total program data memory space.
Eight auxiliary registers with a dedicated arithmetic
unit.
Eight-level hardware stack.
Fully static double-buffered serial port.
Wait states for communication to slower off-chip
memories.
Serial port for multiprocessing or interfacing tocodecs.
Concurrent DMA using an extended hold operation
(TMS320C25).
Bit-reversed addressing modes for fast Fourier trans
forms (TMS320C25).
Extended-precision arithmetic and adaptive filtering
support (TMS320C25).
Full-speed operation of MAClMACD instructions from
external memory (TMS320C25).
Accumulator carry bit and related instructions
(TMS320C25).
1.B-"m CMOS technology (TMS320C25):

-68-pin grid array (PGA) package.
-68-pin lead chip carrier (PlCC) package.

2.4-"m NMOS technology (TMS32020):
-6B-pin PGA package.

The TMS320 Family of Digital Signal Processors

On-Chip On-Chip Off-Chip
Prog EPROM Data RAM Prog

(words) (words) (words) Ref

144 4K [13J
144 4K [13J
144 4K [13J
144 [17]
144 4K [13J
144 4K [13J
256 4K [13J
256 4K [14J

4.0K 256 4K [14J
256 [14J
256 [14J

4.0K 256 [14J

TMS32OC25 Architecture

The TMS320C25 is the latest member in the second gen
eration of TMS320 digital signal processors. It is a pin-com
patible CMOS version of the TMS32020 microprocessor,
but with an instruction cycle time twice as fast and the inclu
sion of additional. hardware and software features. The
instruction set is a superset of both the TMS32010 and
TMS32020, maintaining source-code compatibility. In addi
tion, it is completely object-code compatible with the
TMS32020 so that TMS32020 programs run unmodified on
the TMS320C25.

The l00-ns instruction cycle time provides a Significant
throughput advantage for many existing applications. Since
most instructions are capable of executing in a single cycle,
the processor is capable of executing ten million instruc
tions per second (10 MIPS). Increased throughput on the
TMS320C25 for many DSP applications is attained by means
of single-cycle multiply/accumulate instructions with a data
move option (MAC/MACD), eight aUXiliary registers with a
dedicated arithmetic unit, instruction set support for adap
tive filtering and extended-precision arithmetic, bit-rever
sal addressing, and faster I/O necessary for data-intensive
signal processing.

I nstructions are included to provide data transfers
between the two memory spaces. Externally, the program
and data memory spaces are multiplexed over the same bus
so as to maximize the address range for both spaces while
minimizing the pin count of the device. Internally, the
TMS320C25 architecture maximizes processing power by
maintaining two separate bus structures, program and data,
for full-speed ~xecution.

Program execution in the device takes the form of a three
level instruction fetch-decade-execute pipeline (see Fig.
2). The pipeline is essentially invisible to the user, except
in some cases where it must be broken (such as for branch
instructions). In this case, the instruction timing takes into
account the fact that the pipeline must be emptied and
refilled. Two large on-chip data RAM blocks (a total of 544
words), one of which is configurable either as program or
data memory, provide increased flexibility in system design.
An off-chip 64K-word directly addressable data memory
address space is included to facilitate implementations of
DSP algorithms. The large on-chip 4K-word masked ROM
can be used for cost-reduced systems, thus providing for
a true single-chip DSP solution. The remainder of the 64K
word program memory space is located externally. large

19

programs can execute at full speed from this memory space.
Programs may also be downloaded from slow external
memory to on-chip RAM for full.speed operation. The VLSI
implementation of the TMS320C25 incorporates all of these

features as well as many others such as a hardware timer,
serial port, and block data transfer capabilities.

A functional block diagram of the TMS320C25, shown in
Fig. 5, outlines the principal blocks and data paths within

READY

MP/iR
ifl'i'12-01-T-''---'

A15·AO

, 015-00

LEGEND:
ACCH .• Accumulator high
ACCL "Ac:cumulalor low
ALU "Arithmetic logic unit
ARAU = Auxiliary regiSter arittlmetk: unit
ARB '" Auxiliary regiat ... pointer butf.,..
AftP '" AUldll.,y regist., INMnte!
OP " Osta memory page paintlit'
DAR ~ S.rial port da'e receive regist ...
DXn '" 5.-1. port uta transmit reglst ...

Fig. 5. TMS320C25 functional block diagram.

20

IFR Interrupt flag registe,
IMR _ Interrupt me. regilillf'
1ft - Instruction register
MeS - Mierocal staet
ClIft _ Queue Wlstruelion register
PA _ Product register
PAD _ hriod register 'or limltt'
TIM Tima,
TA _ Tempo'.y faglster

PC . Pro"am counte,
PFC _ Preteteh counter
RPTC _ Repeat instruction counter
GREG - GIoIMI memory IIoc:at6on retlRer
RSR _ S.rlal port receive sh/ft register
XSR _ Serial port tr mlt shih ,egiater
AAO-AR7 - AUlliliery reglste ...
STO.STt 51.1 ,.gl&t.r.

The TMS320 Family of Digital Signal Processors

the processor. Thediagram also shows all of the TMS320C25
interface pins.

In the following architectural discussions on the mem
ory, central arithmetic logic unit, hardware multiplier, con·
trol operations, serial port, and 110 interface, please refer
to the block diagram shown in Fig. 5.

Memory Allocation: The TMS320C25 provides a total of
4K 1f>..bit words of on-chip program ROM and 544 16-bit
words of on·chip data RAM. The RAM is divided into three
separate Blocks (BO, B1, and B2). Ofthe544words, 256words
(block BO) are configurable as either data or program memo
ory by CNFD (configure data memory) or CNFP (configure
program memory) instructions provided for that purpose;
288 words (blocks B1 and B2) are always data memory. A
data memory size of 544 words allows the TMS320C25 to
handle a data array of 512 words while still leaving 32 loca·
tions for intermediate storage. The TMS320C25 provides
64K words of off-chip directly addressable data memory
space as well as a 64K-word off-chip program memory space.

A register file containing eight Auxiliary Registers (ARO
AR7), which are used for indirect addressing of data mem
ory and for temporary storage, increase the flexibility and
efficiency of the device. These registers may be either
directly addressed by an instruction or indirectly addressed
by a 3·bit Auxiliary Register Pointer (ARP). The auxiliary reg
Isters and the ARP may be loaded from either data memory
or by an immediate operand defined in the instruction. The
contents of these registers may also be stored into data
memory. The auxiliary register file is connected to the Aux
iliary Register Arithmetic Unit (ARAU). Using the ARAU
accessing tables of information does not require the CALU
for address manipulation, thus freeing it for other opera
tions.

Central Arithmetic Logic Unit (CALU): The CALU contains
a 1f>..bit scaling shifter, a 16 x 1f>..bit parallel multiplier, a 32-
bit Arithmetic Logic Unit (AW), and a 32-bit accumulator.
The scaling shifter has a 1f>..bit input connected to the data
bus and a 32-bit output connected to the ALU. This shifter
produces a left-shift of 0 to 16 bits on the input data, as pro
grammed in the instruction. Additional shifters at the out
puts of both the accumulator and the multiplier are suitable
for numerical scaling, bit extraction, extended-precision
arithmetic, and overflow prevention.

The following steps occur in the implementation of a typo
ical ALU instruction:

1) Data are fetched from the RAM on the data bus.
2) Data are passed through the scaling shifter and the

ALU where the arithmetic is performed.
3) The result is moved into the accumulator.

The 32-bit accumulator is split into two 1f>..bit segments
for storage in data memory: ACCH (accumulator high) and
ACCL (accumulator low). The accumulator has a carry bit
to facilitate multiple-precision arithmetic for both addition
and subtract instructions.

Hardware Multiplier: The TMS320C25 utilizes a 16 x 1f>..
bit hardware multiplier, which is capable of computing a
32-bit product during every machine cycle. Two registers
are associated with the multiplier:

a 1f>..bit Temporary Register (TR) that holds one of the
operands for the multiplier, and
a 32-bit Product Register (PR) that holds the product.

The TMS;J20 Family of Digital Signal Processors

The output of the product register can be left-shifted 1 or
4 bits. This is useful for implementing fractional arithmetic
or justifying fractional prpducts. The output of the PR can
also be right-shifted 6 bits to enable the execution of up to
128 consecutive multiple/accumulates without overflow.
An unSigned multiply (MPYU) instruction facilitates
extended-precision multiplication.

I/O Interface: The TMS320C25 110 space consists of 16
input and 16 output ports. These ports provide the full 1f>..
bit parallel 110 interface via the data bus on tne device. A
single input (I N) or output (0 un operation typically takes
two cycles; however, when used with the repeat counter,
the operation becomes single-cycle. 110 devices are mapped
into the I/O address space using the processor's external
address and data buses in the same manner as memory
mapped devices. Interfacing to memory and 110 devices of
varying speeds is accomplished by using the READY line.

A Direct Memory Access (DMA) to external program/data
memory is also supported. Another processor can take
complete control of the TMS320C25's external memory by
asserting HOLD low, causing the TMS320C25 to place its
address, data, and control lines in the high-impedance state.
Signaling between tne external processor and the
TMS320C25 can be performed using interrupts. Two modes
of DMA are available on the device. In the first, execution
is suspended during assertion of HOLD. In the second
"concurrent DMA" mode, the TMS320C25 continues to
execute its program while operating from internal RAM or
ROM, thus greatly increasing throughput in data-intensive
applications.

TMS320C2S Software

The majorityol the TMS320C25 instructions (97 out of 133)
are executed in a single instruction cycle. Of the 36 instruc
tions that require additional cycles of execution, 21 involve
branches, calls, and returns that result in a reload of the
program counter and a break in the execution pipeline.
'Another seven of the instructions are two-word, long
immediate instructions. The remaining eight instructions
support I/O, transfers of data between memory spaces, or
provide for additional parallel operation in the processor.
Furthermore, these eight instructions (IN, OUT, BLKD,
8LKP, TBLR, TBLW, MAC, and MACD) become single-cycle
when used in conjunction with the repeat counter. The
functional performance of the instructions explOits the par
allelism of the processor, allowing complex and/or numer
ically intensive computations to be implemented in rela
tiveiy few instructions.

AddreSSing Modes: Since most of the instructions are
coded in a single 1f>..bit word, most instructions can be exe
cuted in a single cycle. Three memory addressing modes
are available with the instruction set: direct, indirect, and
immediate addreSSing. Both direct and indirect addreSSing
are used to access data memory. Immediate addressing uses
the contents of the memory addressed by the program
counter.

When using direct addressing, 7 bits of the instruction
word are concatenated with the 9 bits of the data memory
page pointer (DP) to form the 1f>..bit data memory address.
With a 128-word page length, the DP register points to one
of 512 possible data memory pages to obtain a 64K total data
memory space. Indirect addressing is provided by the aux-

21

iliary registers (ARO-AR7). The seven types of indirect
addressing are shown in Table 4. Bit-reversed indexed
addressing modes allow efficient 110 to be performed for
the resequencing of data points in a radix-2 FFT program.

Table 4 Addressing Modes of the TMS320C25

Addressing Mode

OPA
OP' (,NARP)
OP '+(.NARP)
OP ,-(,NARP)
OP 'O+(,NARP)
OP 'O-(,NARP)

OP 'BRO+(.NARP)

OP 'BRO~(.NARP)

Operation

direct addressing
indirect; no change to AR.
indirect; current AR is incremented.
indirect; current AR is decremented.
indirect; ARO is added to current AR.
indirect; ARO is subtracted from

current AR.
indirect; ARO is added to current AR

(with reverse carry propagation).
indirect; ARO is subtracted from

current AR (with reverse carry
propagation).

Note: The optional NARP field specifies a new value of the ARP.

TMS32OC25 System Configurations

The flexibility of the TMS320C25 allows systems config
urations to satisfy a wide range of application requirements
[16). The TMS320C25 can be used in the following config
urations:

a stand-alone system (a single processor using 4K
words of on-chip ROM and 544words of on -chip RAM),
parallel multiprocessing systems with shared global
data memory, or
host/peripheral coprocessing using interface control
Signals.

A minimal processing system is shown in Fig. 6 using
external data RAM and PROM/EPROM. Parallel multipro
cessing and host/peripheral coprocessing systems can be
designed by taking advantage of the TMS320C25's direct
memory access and global memory configuration capabil
ities.

In some digital processing tasks, the algorithm being
implemented can be divided into sections with a distinct
processor dedicated to each section. In this case, the first
and second processors may share global data memory, as
well as the second and third, the third and fourth, etc. Arbi
tration logic ';'ay be reqUired to determine which section
of the algorithm is executing and which processor has
accesstotheglobal memory. With multiple processors ded-

icated to distinct sections of the algorithm, throughput can
be increased via pipelined execution. The TMS320C25 is
capable of allocatjng up to 32K words of data memory as
global memory for multiprocessing applications. .

THE THIRD GENERATION Of THE TMS320 FAMllV

The TMS320C30 [26)-[27) is Texas Instruments third-gen
eration member of the TMS320 family of compatible digital
signal processors. With a computatiomil rate of 33 MFLOPS
(million floating-point operations per second), the
TMS320C30 far exceeds the performance of any program
mable DSP available today. Total system 'performance has
been maximized through internal parallelism, more than
twenty-fourthousand bytes of on -chip memory, single<ycle
floating-point operations, and concurrent 110. The total sys
tem cost is minimized with on-chip memory and on-chip
peripherals such as timers ~nd serial ports. Finally, the user's
system design time is dramatically reduced with the avail
ability of the floating-point operations, general-purpose
instructions and features, and quality development tools.

The TMS320C30 provides the user with a level of per
formance that, at one time, was the exclusive domain of
supercomputers. The stiong architectural emphasis of pro
viding a low-cost system solution to demanding arithmetic
algorithms has resulted in the architecture shown in Fig. 7.

The key features of the TMS320C30 [26), [27) are as fol-
lows: .

60-ns single-cycle execution time, 1-,.m CMOS.
Two 1 K x 32-bit single<ycle dual-access RAM blocks.
One 4K x 32-bit single-i:ycle dual-access ROM block.
64 x 32-bit instruction cache.
32-bit instruction and data words, 24-bit addresses.
32140-bit floating-point and integer multiplier.
32/40-bit floating-point, integer, and logical ALU.
32-bit barrel shifter.
Eight extended-precision registers.
Two address-generators with eight auxiliary registers.
On-chip Direct Memory Access (DMA) controller for
concur'rent 110 and CPU operation.
Peripheral bus and modules for easy customization.
High-level language support.
Interlocked instructions for multiprocessing support.
Zero overhead loops and single-cycle branches.

The architecture of the TMS320C30 is targeted at 6O-ns
and faster cycle times. To achieve such high-performance

FiB. 6. Minimal processing system with external data RAM and PROM/EPROM.

22 The TMS320 Family of Digital Signal Processors

PROQRAM RAM RAM ROM
CACHE BlOCK 0 ILOCK 1 BLOCK 0

184 X 321 11K X 321 ,'K X 32) 14K X 32)

lIIV
RlIl1!

R'IImA
tmIIi
./Vi

0131·0)
A123·01

1IHlT INTEGERI INT£OERJ
fLOATING-POINT FLOATING-POINT

lIITl , C
MULTtPLIER ·AlU

Iml D
N·

XF(1·01
T 32-IIT BARREL SHIFTER

Me/ill'

X, 0
EXTENDED·PRECISION

REGISTERS IAO-R7)
X2/elKIN

VCCf7-Oi ADORESS ADDRESS

VISll0-0J
GENERATOR 0 GENERATOR ,

VB8P AUXIUARY REGISTERS

SUBS fARO-AR?)

CONTROl "EOISTERS 1121

Fig. 7. TMS32OC30 functional block diagram.

goals while still providing low-cost system solutions, the
TMS320C30 is designed using Texas Instruments state-of·
the·art 1'l'm CMOS process. The TMS320C30 's high system
performance is achieved through a high degree of paral.
lelism, the accuracy and precision of its floating,point units,
its on·chip DMA controller that supports concurrent 110,
and its general·purpose features. At the heart of the archi·
tecture is the Central Processing Unit (CPU).

The CPU

The CPU consists of the following elements: floating·
pointlinteger multiplier; ALU for performing floating.point,
integer, and logical operations; aUXiliary register arithmetiC
units; supporting register file, and associated buses. The
multiplier of the CPU performs floating·point and integer
multiplication. When performing floating.point multipli·
cation, the inputs are 32·bit floating·point numbers, and the
result is a 4().bit floating·point number. When performing
integer multiplication, the input data is 24 bits and yields
a 32·bit result. The ALU performs 32·bit integer, 32·bit log.
ical, and 4().bit floating·point operations. Results ofthe mul·
tiplier and the ALU are always maintained in 32·bit integer
or 4().bit floating·point formats. The TMS320C30 has the
ability to perform, in a single cycle, parallel multiplies and
adds (subtracts) on integer or floating·point data. It is this
ability to perform floating·point multiplies and adds (sub·
tracts) in a single cycle which give the TMS320C30 its peak
computational rate of 33 MFLOPS.

Floating·point operations provide the use" with a con·
venient and virtually trouble·free means of performing
computations while maintaining accuracy and precision.
The TMS320C30 implementation of floating.point arith·

FSXa

DXO

SOURCE AND DESTINATION Cu<XO

ADDRESS GENeRATORS FaRO

DRO

CONTROL REGISTERS CU<RO

FIXl

DX,
eLKX'
FSR1

DR,

CLIR1

TCLKO

Tell'

metic allows for floating.point operations at integer speeds.
The floating·point capability allows the user to ignore, to
a large extent, problems with overflow, operand alignment,
and other burdensome tasks common to integer opera·
tions.

The register file contains 28 registers, which may be oper·
ated upon by the multiplier and ALU. The fi rst eight of these
registers (RO-R7) are the extended·precision registers,
which support operations on 4().bit floating·point numbers
and 32·bit integers.

The next eight registers (ARO-AR7) are the auxiliary reg·
isters, whose primary function is related to the generation
of addresses. However, they also may be used as general.
purpose 32·bit registers. Two auxiliary register arithmetic
units (ARAUO and ARAU1) can generate two addresses in
a single cycle. The ARAUs operate in parallel with the mul·
tiplier and ALU. They support addreSSing with displace
ments, index registers (IRO and IR1), and circular and bit·
reversed addressing.

The remaining registers support a variety of system func·
tions: addressing, stack management, processor status,
block repeat, and interrupts.

Data Organization

Two integer formats are supported on the TMS32OC30:
a 16-bit format used for immediate integer operands and
a 32·bit single-precision integer format.

Two unsigned.integer formats are available: a 16-bit for·
mat for immediate unsigned·integer operands and a 32·bit
single·precision unsigned·integer format.

The three floating.point formats are assumed to be nor·
malized, thus providing an extra bit of precision. The first

The TMS320 Family of Digital Signal Processors 23

is a 1&-bit short floating-point format for immediate float
ing-point operands, which consists of a 4-bit exponent, 1
sign bit, and an 11-bit fraction. The second is a single-pre
cision format consisting of an 8-bit exponent, 1 sign bit, and
a 23-bit fraction. The third is an extended-precision format
consisting of an 8-bit exponent, 1 sign bit, and a 31-bit frac
tion.

The total memory space of the TMS320C30 is 16M (mil
lion) X 32 bits. A machine word is 32 bits, and alf addressing
is performed byword. Program, data, and 110 space are con
tained within the 16M-word address space.

RAM blocks 0 and 1 are each 1 K x 32 bits. The ROM block
is 4K x 32 bits. Each RAM block and ROM block is capable
of supporting two data accesses in a single cycle. For exam
ple, the user may, in a single cycle, access a program word
and a data word from the ROM block.

The separate program data, and DMA buses allow for par
allel program fetches, data reads and writes, and DMAoper
ations. Management of memory resou rces and busing is
handled by the memory controller. For example, a typical
mode of operation could involve a program fetch from the
on<hip program cache, two data fetches from RAM block
0, and the DMA moving data from off-chip memory to RAM
block 1. All of this can be done in parallel with no impact
on the performance of the CPU.

A 64 x 32-bit instruction cache allows for maximum sys
tem performance with minimal system cost. The instruction
cache stores often repeated sections of code. The code may
then be fetched from the cache, thus greatly reducing the
numberof off-chip accesses necessary. Thisallows for code
to be stored off-chip in slower, lower cost memories. Also,
the external buses are freed, thus allowing for their use by
the DMA or other devices in the system.

DMA

The TMS320C30 processes an on<hip Direct Memory
Access (DMA) controller. The DMA controller is able to per
form reads from and writes to any location in the memory
map without interfering with the operation of the CPU. As
a consequence, it is possible to interface the TMS320C30
to slow external memories and peripherals (NOs, serial
ports, etc.) without affecting the computational throughput

·ofthe CPU. The result is improved system performance and
decreased system cost.

The DMA controller contains its own address generators,
source and destination registers, and transfer counter.
Dedicated DMA address and data buses allow for operation
with no conflicts between the CPU and DMA controller.

The DMA controller responds to interrupts in a similar
way to the CPU. This ability allows the DMA to transfer data
based upon the interrupts received. Thus 1/0 transfers that
would normally be performed by the CPU may instead be
performed by the DMA. Again, the CPU may continue pro
cessing data while the DMA receives or transmits data.

Peripherals

All peripheral modules are manipulated through mem
ory-mapped registers located on adedicated peripheral bus.
This peripheral bus allows for the straightforward addition,
removal, and creation of peripheral modules. The initial
TMS320C30 peripheral library will include timers and serial
ports. The peripheral library concept allows Texas Instru-

24

ments to create new modules to serve a wide variety of
applications. For example, the configuration of the
TMS320C30 in Fig. 7 includes two timers and two serial ports.

Timers: The two timer modules are general-purpose
timer/event counters, with two Signaling modes and inter
nal or external clocking.

Available to each timer is an 110 pin that can be used as
an input clock to the timer or as an output signal driven by
the timer. The pin may also be configured as a general-pur
pose 1/0 pin.

Serial Ports: The two serial ports are modular and totally
independent. Each serial port can be configured to transfer
8,16,24, or 32 bits of data perframe. The clock for each serial
port can originate either internally or externally. An Inter
nally generated divide-down clock is provided. The pins of
the serial ports are configurable as general,purpose 1/0
pins. A special handshake mode allows TMS320C30s to
communicate over their serial ports with guaranteed syn
chronization. The serial ports may also be configured to
operate as timers.

External Interfaces

The TMS32OC30 prOVides two external interfaces: the par
allel interface and the 1/0 interface. The parallel interface
consists of a 32-bit data bus, a 24-bit address bus, and a set
of control signals. The 1/0 interface consists of a 32-bit data
bus, a 13-bit address bus, and a set of control Signals. Both
ports support an external ready signal for wait,.tate gen
eration and the use of software<ontrolled wait states.

The TMS32OC30 supports four external interrupts, a num
ber of internal interru pts, and a non maskable external reset
signal. Two dedicated, general-purpose, external 110 flags,
XFO and XF1, may be configured as input or output pins
under software control. These pins are also used by the
interlocked instructions to support multiprocessor com
munication.

Pipelining In the TMS32OC30

The operation of the TMS32OC30 is controlled by five
major functional units. The five major units and their func
tion are as follows:

Fetch Unit (F) which controls the program counter
updates and fetches of the instruction words from
memory.
Decode Unit (D) which decodes the instruction word
and controls address generation.
Read Unit (R) which controls the operand reads from
memory.
Execute Unit (E) which reads operands from the reg
ister file, performs the necessary operation, and writes
results back to the register file and memory.
DMA Channel (DMA) which reads and writes memory
concurrently with CPU operation.

Each instruction is operated upon by four of these stages;
namely, fetch, decode, read, and execute. To provide for
maximum processor throughput these units can perform
in parallel with each unit operating on a different instruc
tion. The overlapping of the fetch, decode, read, and exe
cute operations of different instructions is called pipelin
ing. The DMAcontrolier runs concu rrently with these units.
The pipelining of these operations is key to the high per-

The TMS320 Family of Digital Signal Processors

formanceofthe TMS320C30. The ability ofthe DMA to move
data within the processor's memory space results in an even
greater utilization of the CPU with fewer interruptions of
the pipeline which ineVitably yields greater performance.

The pipeline control of the TMS320C30 allows for
extremely high-speed execution rate by allowing an effec
tive rate of one execution per cycle. It also manages pipe
line conflicts in a way that makes them transparent to the
user.

While the pipelining of the different phases of an instruc
tion is key to the performance of the TMS32OC30, the
designers felt it essential to avoid pipelining the operation
of the multiplier or AlU. By ruling out this additional level
of pipelining it was possible to greatly improve the pra
cessor's useability.

Instructions

The TMS320C30 instruction set is exceptionally well
suited t6 digital Signal processing and other numerically
intensive applications. The TMS320C30 also possesses a full
complement of general-purpose instructions. The instruc
tion set is organized into the following groups:

load and store instructions;
two-operand arithmetic instructions;
two-operand logical instructions;
three-operand arithmetic instructions;
three-operand logic instructions;
parallel operation instructions;
arithmeticllogical instruction with store instructions;
program control instructions;
interlocked operations instructions.

The load and store instructions perform the movement
of a single word to and from the registers and memory.
Included is the ability to load a register conditionally. This
operation is particularly useful for locating the maximum
and minimum of a set of data.

The two-operand arithmetic and logical instructions con
sist of a complete set of arithmetic instructions. They have
two operands; src and dst for source and destination,
respectively. The src operand may come from memory, a
register, or be part of the instruction word. The dst operand
is always a register. This portion of the instruction set
includes floating-point integer and logical operations, sup
port of multi precision arithmetic, and 32-bit arithmetic and
logical shifts.

Thethree-operand arithmetic and logical instructions are
a subset of the two-operand arithmetic and logical instruc
tions. They have three operands: two src operands and a
dst operand. The src operands may come from memory or
a register. The dst operand is always a register. These
instructions allow for the reading of two operands from
memory andlor the CPU register file in a single cycle.

The parallel operation instructions allow for a high degree
of parallelism. They support very flexible, parallel floating
point and integer multiplies and adds. Theyalso include the
ability to load two registers in parallel.

The arithmetic/logical and store instructions support a
high degree of parallelism, thus complementing 'the par
alleloperation instructions. They allow forthe performance
of an arithmetic or logical instruction between a register
and an operand read from memory, in parallel with the stor-

The TMS320 Family of Digital Signal Processors

ing of a register to memory. They also provide for extremely
rapid operations on blocks of memory.

The program control instructions consist of all those
operations that affect the program flow. This section of the
instruction set includes a set of flexible and powerful con
structs that allow for software control of the program flow.
These fall into two main types: repeat modes and branch
ing.

For many algorithms, there is an inner kernel of code
where most ofthe execution time is spent. The repeat modes
of the TMS320C30 allow for the implementation of zero
overhead looping. Using the repeat modes allows these
time-critical sections of code to be executed in the shortest
pOSSible time. The instructions supporting the repeat
modes are RPTB (repeat a block of code) and RPTS (repeat
a single instruction). Through the useofthe dedicated stack
pointer, block repeats (RPTBs) may be nested.

The branching capabilities of the TMS320C30 include two
main subsets: standard and delayed branches. Standard
branches, as in any pipelined machine that comprehends
them, empty the pipeline to guarantee correct manage
ment of the program counter. This results in a branch
requiring, in the case of the TMS320C30, four cycles to exe
cute. Included in this subset are calls and returns. A stan
dard branch (BR) is illustrated below.

BR THREE
MPVF
ADDF
SUBF
AND

THREE MPYF

; standard branch.
; not executed.
; not executed.
; not executed.
; not executed.

'; fetched 3 cycles after BR
is fetched.

Delayed branches do not empty the pipe, but rather,
guarantee that the next three instructions will be fetched
before the program counter is modified by the branch. The
result is a branch that only requires a single cycle. Every
delayed branch has a standard branch counterpart. A
delayed branch (BRD) is illustrated below. '

BRD THREE
MPYF
ADDF
SUBF
AND

THREE MPYF

; delayed branch.
; executed.
; executed.
; executed.
; not executed.

; fetched after SUBF fetched.

Thecombination ofthe repeat modes, standard branches,
and delayed branches provides the user with a set of pro
gramming constructs which are well suited to a wide ra,nge
of performance requirements.

The program control instructions also include condi
tional calls and returns. The decrement and branch con
ditionally instruction allows for efficient loop control by
combining the comparison of a loop counter to zero with

25

the check of condition flags, i.e., floating-point overflow.
The condition codes available include unsigned and signed
comparisons, comparisons to zero, and comparisons based
upon the status of individual condition flags. These con
ditions may be used with any of the conditional instruc
tions.

The interlocked operations instructions support multi
processor communication. Through the use of external sig
nals, these instructions allow for powerful synchronization
mechanisms, such as semaphores, to be implemented. The
interlocked operations use the two external flag pins, XFO
and XF1. XFO signals an interlocked-operation request and
XF1 acts as an acknowledge signal for the requested inter
locked operation. The interlocked operations include inter
locked loads and stores. When an interlocked operation is
performed the external request and acknowledge signals
can be used to arbitrate between multiple processors shar
ing memory, semaphores, or counters.

DEVELOPMENT AND SUPPORT TOOLS

Digital signal processors are essentially application-spe
cific microprocessors (or microcomputers). like any other
microprocessor, no matter how impressive. the perfor
'mance of the processor or the ease of interfacing, without
good development tools and technical support, it is very
difficult to design it into the system. In developing an appli
cation, problems are encountered and questions are asked.
Oftentimes the tools and vendor support provided to the
designer are the difference between the success and failure
of the project.

The TMS320 family has a wide range of development tools
available [25]. These tools range from very inexpensive eval
uation modules for application evaluation and bench
marking purposes, assemblerllinkers, and software simu·
lators, to full-capability hardware emulators. A brief sum
mary of these support tools is provided in the succeeding
subsections.

Software Tools

Assemblerllinkers and software simulators are available
on PC and VAX for users to develop and debug TMS320 DSP
algorithms. Their features are described as follows:

Assembler/Linker: The Macro Assembler translates
assembly language source code into executable object
code. The linker permits a program to be designed and
implemented in separate modules that will later be linked
together to form the complete program.

Simulator: The Simulator simulates operations of the
device in software to allow program verification and debug.
The simulator uses the object code produced by the Macro
Assembler/Linker.

C Complier: The C Compiler is a full implementation of
the standard Kernighan and Ritchie C as defined in The C
Programming Language [28]. The compiler supports the
insertion of assembly language code into the C source code.
The user may also write functions in assembly language,
and then call these functions from the C source. Similarly,
C functions may be called from assembly language.
Variables defined in the C source may be accessed in
assembly language modules and vice versa. The result is a
complier that allows the user to tailor the amount of high
level programming versus the amount of assembly lan-

26

guage according to his application. The C compiler is sup
ported on the TMS320C25 and the TMS320C30.

Hardware Tools

Evaluation modules and emulation tools are available for
in-circuit emulation and hardware program debugging for
developing and testing DSP algorithms in a real product
environment.

Evaluation Module (EVM): The EVM is a stand-alone sin
gle-board module that contains all of the tools necessary
to evaluate the device as well as provide basic in-circuit
emulation. The EVM contains a debug monitor, editor,
assembler, reverse assembler, and software communica
tions to a host computer or a line printer.

SoftWare Development System (SWDS): The SoftWare
Development System is a PC plug-in card with similar func
tionality of the EVM.

Emulator (XDS): The eXtended Development System pro
vides full-speed in-circuit emulation with real-time hard
ware breakpoint/trace and program execution capability
from target memory. By setting breakpOints based on inter
nal cond itions or external events, execution of the program
can be suspended and the XDS placed into the debug mode.
In the debug mode, all registers and memory locations can
be inspected and modified. Full-trace capabilities at full
speed and a reverseassemblerthattranslates machine code
back into assembly instructions are included. The XDS sys
tem is designed to interface with either a terminal or a host
computer. In addition to the above design tools, other
development support is available [25]:

ApPLICATIONS

The TMS320 is designed for real-time DSP and other com
putation-intensive applications [4]. In these applications,
the TMS320 provides an excellent means for executing sig
nal processing algorithms such as fast Fourier transforms
(FFTs), digital filters, frequency syntheSiS, correlation, and
convolution. The TMS320 also provides for more general
purpose functions via bit-manipulation instructions, block
data move capabilities, large program and data memory
address spaces, and flexible memory mapping.

To introduce applications performed by the TMS320, dig
ital filters will be used as examples. The remaining portion
of this section will briefly cover applications, and conclude
by showing some benchmarks.

Digital Filtering

As discussed several times in this paper, the FIR filter is
simply the sum of products in a sampled data system. This
was shown in (1). A simple implementation of the FIR filter
uses the MACD instruction (multiply/accumulate and data
move) for each filter tap, with the RPT/RPTK instruction
repeating the MACD for each filter tap. As we saw earlier,
a 256-tap FIR filter can be implemented by using the fol
lowing two instructions:

RPTK 255
MACD *-,COEFFP

In this example, the coefficients may be stored anywhere
in program memory (reconfigurable on-chip RAM, on-chip
ROM, or external memories). When the coefficients are

The TMS320 Family of Digital Signal Processors

For this application, a large on-chip RAM of 544 words and
on-chip ROM of 4K words on the TMS320C25 provides for
a 256-tap adaptive filter (32-ms echo cancellation) to be exe
cuted in a single chip without external data or program
memory.

High-Speed Modems: The TMS320 can perform numer
ous functions such a modulation/demodulation, adaptive
equalization, and echo cancellation [21J, [22J. For lower
speed modems, such as Bell 212Aand V.22 bis modems, the
TMS320C17 provides the most cost-effective Single-chip
solution to these applications. For higher speed modems,
such as the V.32, requiring more processing power and
multiprocessing capabilities, the TMS320C25 and TMS-
320C30 are the designer's choice.

Voice Coding: VOice-coding techniques [3], [4J, such
as full-duplex 32-kbit/s ADPCM (CCIn G.721), CVSD,
16-kbit/s subband coders, and LPC, are frequently used in
voice transmission and storage. Arithmetic speed, nor
malization, and the bit-manipulation capability of the
TMS320 provide for implementation of these functions,
usually in a single chip. For example, the TMS320C17 can
be used as a Single-chip ADPCM [4J, subband [4J, or LPC [4J
coder. An application of voice coding is an ADPCM trans
coder implemented in half-duplex on a Single TMS320C17
or full-duplex on a TMS320C25 fortelecommunication mul
tiplexing applications. Another example is a secure-voice
communication system, requiring voice coding, as well as
data encryption and transmission over a public-switched
network via a modem; the TMS320C25 offers an ideal solu
tion.

Graphics/Image Processing Applications

In graphiCS and image processing applications [4J, the
ability to interface with a host processor is important. Both
the TMS320C30 and the TMS320C25 multiprocessor inter
face enable them to be used in a variety of host/coprocessor
configurations [4J. Graphics and image processing appli
cations can use the large directly addressable external data
space and global memory capability to allow graphical
images in memory to be shared with a host processor, thus
minimizing unnecessary data transfers. The indexed indi
rect addreSSing modes allow matrices to be processed row
by-row when performing matrix multiplication for three
dimensional image 'rotations, translations, and scaling.

The TMS320C30 has a number of features that support
graphics and image processing extremely well. The float
ing-point capabilities allow for extremely precise compu
tation of perspective transformations. They also support
more sophisticated algorithms such as shading and hidden
line removal, operations which are computationally inten
sive.

The large address space allows for straightforward
addreSSing of large images or displays. The flexible address
ing registers, coupled with the integer multiply, support
powerful addreSSing of multiple-dimensional arrays. Vec
tor-oriented instructions allow the user to efficiently
manipulate large blocks of memory. Finally, the on-chip
DMA controller allows the user to easily overlap the pro
cessing of data with its I/O.

High-Speed Control

High-speed control applications [4J, [24J use the
TMS320C17 and TMS320C25 general-purpose features for
bit-test and logical operations, timing synchronization, and

The TMS320 Family of Digital Signal Processors

high data-transfer rate (ten million 16-bit words per sec
ond). Both devices can be used in closed· loop systems for
control signal conditioning, filtering, high-speed comput
ing, and multichannel multiplexing capabilities. The fol
lowing demonstrates two typical control applications:

Disk Control: Digital filtering in a closed-loop actuation
mechanism positions the read/write heads over the disk
surface. Supplemented with many general-purpose fea
tures, the TMS320 can replace costly bit-slice/custom/ana
log solutions to perform such tasks as compensation, fil
tering, fine/coarse tuning, and other signal conditioning
algorithms.

Robotics: Digital signal processing and bit-manipulation
power, coupled with host interface, allow the TMS320C25
to be useful in robotics control [24J. The TMS320C25 can
replace both the digital controllers and analog signal pro
cessing hardware for communication to a central host pro
cessor and for the performance of numerically intensive
control functions.

Instrumentation

Instrumentation, such as spectrum analyzers and various
high-speed/high-precision instruments, often requires a
large data memory space and the high performance of a
digital signal processor. The TMS320C25 and TMS320C30
are capable of performing very long-length FFTs and gen
erating precision functions with minimal external hard
ware.

Numeric Processing

Numeric and array processing applications benefit from
TMS320 performance. High throughput resulting from fea
tures, such as a fast cycle time and an on-chip hardware
multipl ier, combined with multiprocessing capabilities and
data memory expansion, provide for a row-cost, easy-to-use
replacement for a typical bit-slice solution. The TMS-
320C30's floating-paint precision, high throughput, and
interface flexibility are excellent for this application.

TMS320 Benchmarks

To complete the discussion on the applications that the
TMS320 can perform, we will provide some benchmarks.
The TMS320 has demonstrated impressive benchmarks in
performing some of the common DSP routines and system
applications. Table 5 shows typical TMS320 benchmarks [4J.

Table 5 TMS320 Family Benchmarks

First Second Third
DSP Routines/Applications Generation Generation Generation

FIR filter tap 400 ns 100 ns 60 ns
256-tap FIR sample rate 9.25 kHz 37 kHz >60 kHz
LMS adaptive FIR filter tap 700 ns 400 ns 180 ns
256-tap adaptive FIR filter 5.4 kHz 9.5 kHz >20 kHz

sample rate
Bi-quad filter element (five 2 "s 1 "s 360 ns

multiplies)
Echo canceler (single 8 ms 32 ms >64 ms

chip)

SUMMARY

This paper has discussed characteristics of digital signal
processing and how these characteristics have influenced
the architectural design of the Texas Instruments TMS320
family of digital signal processors. Three generations ofthe

27

TMS320 family were covered, and their support tools nec
essary to develop end-applications were briefly reviewed.
The paper concluded with an overview of digital signal pro
cessing applications using these devices.

REFERENCES

[1J l. R. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing. Englewood'Cliffs, NJ: Prentice-Hall, 1975.

[2J A. V. Oppenheim, Ed., Applications of Digital Signal Process·
ing. Englewood Cliffs, NJ: Prentice-Hall, 1978.

[3] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, 1978.

[4J K. lin, Ed., Digital Signal Processing Applications with the
TMS320 Family. Englewood Cliffs, NJ: Prentice-Hall, 1987

[5J A. V. Oppenhiem and R. W. Schafer, Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

[&J C. Burrus and T. Parks, DFTIFFT and Convolution Algorithms.
New York, NY: Wiley, 1985.

[7] T. Parks and C. Burrus, Digital Filter Design. New York, NY:
Wiley, 1987.

[8J J. Treichler, C. Johnson, and M. larimore, A Practical Guide
to Adaptive Filter Design. New York, NY: Wiley, 1987.

[9J P. Papamichalis, Practical Approaches to Speech Coding.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

[10J R. Morris, Digital Signal Processing Software. Ottawa, Ont.,
Canada: DSPS Inc., 1983.

[11J K. McDonough, E. Caudel, S. Magar, and A. leigh, "Micro
computer with 32-bit arithmetic does high-precision number
crunching," Electronics, pp. 105-110, Feb. 24, 1982.

[12J S. Magar, E. Caudel, and A. leigh, "A Microcomputer with
digital signal processing capabHity," in 7982 Int. Solid State
Conf. Dig. Tech. Pap., pp. 32-33, 284, 285.

[131 First Generation TMS320 User's Guide. Houston, TX: Texas
Instruments Inc., 1987.

[14J TMS320 First-Generation Digital Signal Processors Data Sheet.
Houston, TX: Texas Instruments Inc., 1987.

[15J TMS32020 User's Guide. Houston, TX: Texas Instruments
Inc., 7985.

[1&J TMS320C25 User's Guide. Houston, TX: Texas Instruments
Inc., 198&.

[17] TMS32011 User's Guide. Houston, TX: Texas Instruments
Inc., 1985.

[18] H. Cragon, liThe elements of single-chip microcomputer
architecture," Comput. Mag., vol. 13, no. 10, pp. 27-41, Oct.
1980.

(191 S. Rosen, "Electronic computers: A historical survey," Com
put. Surv., vol. 1, no. 1, Mar. 1969.

[20J M. Honig and D. Messerschmitt, Adaptive Filters. Dor
drecht, The Netherlands: Kluwer, 1984.

(21] R. lucky et al., Principles of Data Communication. New York,
NY: MCGraw-Hili, 19&5.

(22] P. Van Gerwen et al., "Microprocessor implementation of
high speed data modems," IEEE Trans. Commun., vol. COM-
25, pp. 238-249, 1977.

[23J M. Bellanger, "New applications of digital signal processing
in communications," IEEE ASSP Mag., pp. &-11, July 198&.

(24] Y. Wang, M. Andrews, S. Butner, and G. Beni, "Robot-con
troller system," in Proc. Symp. on Incremental Motion Con
trol Systems and Devices, pp. 17-2&, June 198&.

[25J TMS320 Family Development Support Reference Guide.
Houston, TX: Texas Instruments Inc., 1986.

[2&J R. Simar, T. leigh, P. Koeppen, J. leach, J. Potts, and D. Bla
lock, "A 40 MFlOPS digital Signal processor: The first super
computer on a chip," in Proc. IEEE Int" Conf. on Acoustics,
Speech, and Signal Processing, Apr. 1987.

(27] TMS320C30 User's Guide. Houston, TX: Texas Instruments
Inc., 1987.

[28J B. Kernighan and D. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.

28 The TMS320 Family of Digital Signal Processors

The Texas Instruments
TMS320C25

Digital Signal Microcomputer

Gene A. Frantz
Kun-Shan Lin
Jay B. Reimer
Jon Bradley

Digital Signal Processor Products - Semiconductor Group
Texas Instruments

Reprinted from
IEEE MICRO MAGAZINE

Vol. 6, No.6, Dece,uber 1986

29

30 The Texas Instruments TMS320C25 Digital Signal Microcomputer

The Texas
Instruments
TMS320C25
Digital Signal
Microcomputer

Gene A. Frantz, Kun-Shan lin,
Jay B. Reimer, and Jon Bradley
Texas Instruments Incorporated

Capable of 10 million operations per
second, the newest member of the
TMS320 family can serve as an
inexpensive alternative to bit-slice
processors or custom ICs in digital
signal processing applications.

D igital signal processing encompasses a variety of
applications, including digital filtering, speech
vocoding, image processing, fast Fourier trans

forms, and digital audio. 1·5 All DSP applications have
several characteristics in common. First, they employ algo
rithms that are mathematically intensive. An example is the
finite-duration impulse response, or FIR, filter, which in the
time domain takes the form

N
y(n) = E a(i)· x(n-i), (1)

;=1

where y(n) is the output sample at time n, a(1) is the ith
coefficient or weighting factor, and x(n -I) is the (n -I)th
input sample. From this equation, we can see that the FIR
filter contains an abundance of multiplications and addi
tions (that is, sums of produCts). This equation is the
general form of an FIR filter 6 as well as the convolution of
two sequences of numbers a(1) and x(1). 7 Both operations
are fundamental to digital signal processing.

Second, DSP algorithms must be performed in real time;
. i.e., they must not produce a delay noticeable to the user. In
a speech recognition system, for example, the algorithms
must not produce a noticeable delay between a word being
spoken and that word being recognized. In an image pro
cessing system, processing needs to be completed within a
frame update period.

Third, all DSP applications involve the sampling of a
signal. Referring to Equation I, we can see that the output
y(n) is calculated to be the weighted sum of the previous N
inputs. In other words, the input signal is sampled at
periodic intervals, and the samples are multiplied by a
weighting factor a(i) and then added together to give the
output result y(n). In a typical DSP application, the pro
cessor must be able to perform arithmetic computations and
effectively handle sampled data in large quantities.

Last, DSP systems must be flexible enough to incorporate
improvements in the state of the art. Many DSP techniques
are still developing, and therefore their algorithms tend to
change. Speech recognition, for example, is presently an in
exact technique still undergoing algorithmic modification.
This implies that DSP systems need to be programmable so
that they can easily accommodate revised algorithms.

Over the past several decades, digital signal processing
machines have taken several forms in response to applica
tion need and available technology. Array processors have
long been the accepted solution for the research laboratory
and have been extended to end applications in some in
stances. However, as integrated circuit technology has
matured, digital signal processing has migrated from the ar
ray processor to the bit-slice processor to the single-chip
processor. This has brought the cost of DSP solutions down
to a point that allows pervasive use of the technology.

The members of the TMS320 family of devices are ex
amples of the single-chip digital signal processor. The first
member of the family, the TMS320IO, was introduced to
the market in 1983. 8•9 It can perform five miIlion DSP

©1989-IEEE. Reprinted, with permission, from IEEE Micro Magazine; Vol. 6, No.6, pp. 10-28; December 1986.

The Texas Instruments TMS320C25 Digital Signal Microcomputer 31

operations per second, including the add and mUltiply func
tions 10 required in Equation I. The newest member of the
family, the TMS320C25, can perform 10 million DSP
operations per second, II and it combines the multiply/
accumulate functions into one single-cycle operation.

Basic TMS320 architecture
The fundamental attribute of a digital signal processor is

fast arithmetic operations. The members of the TMS320
family, 10-12 like many other digital signal processors,
achieve fast arithmetic operations by employing

• a Harvard architecture,

• a dedicated hardware multiplier,

• special DSP instructions, and

• extensive pipelining.

Use of these concepts allows a digital signal processor to
handle a vast amount of data and execute most DSP opera
tions in a one-cycle instruction.

The TMS320 family utilizes a modified Harvard architec
ture for speed and flexibility. In a strict Harvard architec
ture, Il,I4 the program memory and data memory lie in two
separate spaces, permitting a full overlap of the instruction
fetch and execution. The TMS320 family's modification of
the Harvard architecture allows transfers between the pro
gram space and data space, thereby increasing the flexibility
of the devices in the family. This architectural modification
eliminates the need for a separate coefficient ROM and also
maximizes processing power by maintaining two separate
bus structures (program and data) for full-speed execution.

The TMS320 family's dedicated hardware multiplier em
ploys a 16 X 16-bit organization, which yields a 32-bit
result and allows multiplication to take place in a single
cycle. The special DSP instructions include DMOV (data
move) and RPT (repeat), which speed up DSP operations.
The extensive pipelining ensures maximum throughput for
real-time applications.

The TMS320C25 architecture
The TMS320C25 digital signal processor is a micro

computer with a 32-bit internal Harvard architecture and
a 16-bit external interface. It is a pin-compatible CMOS
version of the TMS32020 microprocessor but has an in
struction execution rate twice as fast and includes addi
tional hardware and software features. The TMS320C25's
instruction set is a superset of that of the TMS32010 and
that of the TMS32020, and it maintains source-code com
patibility with them. In addition, it is completely object-code
compatible with the TMS32020 so that TMS32020 programs
can run unmodified on the TMS32OC25. Some of the major
features of the TMS32OC25 are

• a 32-bit ALU and accumulator,
• an instruction cycle time of 100 ns,

• a single-cycle multiply/accumulate,

• use of low-power CMOS technology with a power-
down mode,

• 4K 16-bit words of on-chip masked ROM,

• 544 words of on-chip data RAM,

• 128K words of data/program memory space,

• eight auxiliary registers with a dedicated arithmetic unit,

• an eight-level hardware stack,

• a fully static double-buffered serial port,

• concurrent DMA that uses an extended hold operation,

• bit-reversed addressing modes for fast Fourier trans
forms,

• extended-precision arithmetic and adaptive filtering
support,

• full-speed operation of data move instructions from ex
ternal memory,

• an accumulator carry bit and related instructions, and

• fabrication in 1.8-l'm CMOS and packaging in a 68-pin
PLCC.

The lOO-ns instruction cycle time provides a significant
throughput advantage for many applications. Since most of
the TMS320C25's instructions can execute in a single cycle,
it can execute 10 million instructions per second. Most of
the other features listed above also contribute to the
TMS320C25's high throughput.

The TMS320C25 includes instructions to perform the
data transfers between program space and memory space
discussed earlier. Externally, the program and data memory
spaces are multiplexed over the same bus so as to maximize
the address range for both spaces and minimize the pin
count of the device. Internally, the TMS32OC25 architecture
maximizes processing power by maintaining two separate
bus structures, program and data, for full-speed execution.

Program execution in the device takes the form of a
three-level instruction fetch-decode-execute pipeline. This
pipeline is invisible to the user except in cases in which it
must be brokeri, such as for branch instructions. In this
case, the instruction timing takes into account the fact that
the pipeline must be emptied and refilled.

Two large, on-chip data RAM blocks (a total of 544
words), one of which is configurable either as program or
data memory, are provided. An off-chip, 64K-word,
directly addressable data memory address space is included
to facilitate implementations of DSP algorithms with large
data memory requirements. Four-K words of on-chip pro
gram ROM and 64K words of off-chip program address
space are available. Large programs can execute at full
speed from this memory space. Programs can also be

32 The Texas Instruments TMS320C25 Digital Signal Microcomputer

A/iiii
STRi

AEADY
OR
X,

'HMO
iWLDA

MSC
iil!
AS

lACK

MP/"W:
iN'f12-01--.L=-----J

A15-AO

015·00

LEGEND:
ACCH . Accumutetor high
ACCL - Accumuletor low
ALU - Arithmetic logic unit
ARAU ~ AUIlIllerV regis erithmetic unit
AR. .0 AulilHary register point ... buffet"
AAP - AUlilliery Hlgister pointer
DP - Date memory pege point ...
DRA - Serial port data receive regi.'er
DXR . Sarial port data transmit register

Figure 1.
TMS32OC25

block diagram.

IfA
'MA
'R
Me.
a'A
PR
PRD
TIM
TA

Int"",,,""'9 regllter PC Program co~ter
Interrupt m.lk register Pfe Prefetch counter
Instruction register RPTC Repeet in.truc,ion counter
Microcetlstack .M. Global i1\IImory eIIocedon Hlgiltet"
Queue inltruction register A.A Serial pori receive shit' ragister
Product regtst ... X.R Ser'-' port transmit shift register

- Period register tor timet" ARO·AR7 Auxiliary registe ..
. Tlmar. 5TO.ST1 Status registers

Temporary ragister

The Texas Instruments TMS320C25 Digital Signal Microcomputer 33

PROGRAM

01>00001
INTERRUPTS

AND RESERVED
IEXTERNALI

311>001FI
321>00201

EXTERNAL

65.2791>FEFFI. __________ _

65.2BOI > FFOOI
ON·CHIP

BLOCK 80*

01>00001

311>001FI
321>00201

40151>OFAFI
40161>OFBOI

409S(>OFFF)
40961 >10001

65.5351>FFFFI '-_____ ---1 65.5351>FFFFI

PROGRAM

INTERRUPTS
AND RESERVED
10N·CHIP RaMI

ON·CHIP
ROM

RESERVED

EXTERNAL

01>00001

51>00051
61>00061

951>005FI
961>00601

1271>007FI
1281>00801

511(>01FF)
512(>02001

767(>02FF)
7681>03001

10231 > 03FFI
1 024(>0400)

65,535(> FFFFI

DATA

ON·CHIP
MEMORY -MAPPED

REGISTERS

RESERVED PAGE 0

ON-CHIP
BLOCK B2

RESERVED PAGES 1-3

ON·CHIP
BLOCK BO· PAGES 4-5

ON·CHIP
BLOCK B1

PAGES 6-7

EXTERNAL PAGES 8-511

IF MPIMC ~ 1
IMICROPROCESSOR MODEl

IF MPIMl: ~ 0
IMICROCOMPUTER MODEl

·Block 80 is addressed as program memory after a CNFP Instruction, and as data memory after a CNFD Instruction.

Figure 2. TMS320C25 memory maps.

downloaded from slow external memory to on-chip RAM
for full-speed operation.

The TMS32OC25 also incorporates a hardware timer and
a block data transfer capability.

The diagram of the TMS32OC25 in Figure 1 shows the
principal blocks and data paths within the processor. It also
shows all of the TMS32OC25's interface pins.

The TMS32OC25's architecture is built around the pro
gram and data buses. The program bus carries the instruc
tion code and immediate operands from program memory.
The data bus interconnects elements such as.the central
arithmetic logic unit (CALU) and the auxiliary register file
to the data RAM. Together, the program and data buses can
carry data from on-chip data RAM and internal or external
program memory to the multiplier in a single cycle for mul
tiply laccumulate operations.

A high degree of parallelism exists in the device-for
example, while data are being operated on by the CALU,
arithmetic operations can be implemented in the auxiliary
register arithmetic unit (ARAU). Such parallelism results in
a powerful set of arithmetic, logical, and bit-manipulation
operations that can be performed in a single machine cycle.

Memory aUocation. As mentioned above, the TMS32OC25
provides 4K 16-bit words of on-chip program ROM and S44

16-bit words of on-chip data RAM. The RAM is divided
into three blocks, BO, BI, and B2. Of the 544 words, 256
words (block BO) are configurable as either data memory or
program memory; 288 words (blocks Bl and B2) are always
data memory. A data memory size of 544 words allows the
TMS32OC25 to handle a data array of 512 words but still
leaves 32 locations for intermediate storage.

The TMS32OC25 maintains separate address spaces for
program memory, data memory, and I/O. In addition to
blocks BO, BI, and B2, the on-chip data memory map (see
Figure 2) includes memory-mapped registers. Six peripheral
registers, the serial-port registers (ORR and OXR), timer
register (TIM), period register (PRO), interrupt mask
register (IMR), and global memory allocation register
(GREG), have been mapped into the data memory space so
they can be easily modified.

The TMS32OC25 has a register file containing eight aux
iliary registers that can be used for indirect addressing of
data memory or for temporary storage. These registers,
ARO-AR7, can be either directly addressed by an instruction
or indirectly addressed by a three-bit auxiliary register
pointer (ARP). The auxiliary registers and the ARP can be
loaded either from data memory or by an immediate
operand defined in the instruction. The contents of the
registers can also be stored in data memory_

34 The Texas Instruments TMS320C25 Digital Signal Microcomputer

r+ AUXI.IARV REGISTER T /ART 18
~ AUXILIARY REGI81ER II 1AR81(18
....... AiIV"-'AaVlH'GI9TER S IARSI 1181

... "N"""'" ~ ~ ~11181

... ~-"'&DlI\llII\ ..3

r+ AUXLIARY REGISTER 2 1AR21 1181 8 LBB

AUXlUARY
REQlBTER
POINTER
IARP) (3)

AUXLIARY
REBlSTER
BUFFER

lARS) (3) r+ AUXIUARY REQIBTER lUAlII18 OF IR

~ AUXlUARY REQlBTER 0 IARO) (18) 18 ¥"J.'
~1~ __ ~ ____ ~~A8______ MUX

-. 1

f'te AUXLIARY REQIBTER ARmiMETIC UNIT
IINB 0If INA'I

(ARAU) (18) 3

AUXIUARY REGISTER FILE BUB IAFRI 18

Figure 3.
Auxiliary

register file.

The auxiliary register file is connected to the auxiliary
register arithmetic unit as shown in Figure 3. The ARAU
can autoindex the current auxiliary register while the data
memory location is being addressed. The current auxiliary
register can also be indexed either by + 1/ - I or by the
contents of ARO. As a result, the accessing of tables of in
formation does not require the CALU for address manipu
lation, thereby freeing it for other operations.

Although the ARAU was designed to support address
manipulation in parallel with other operations, it can also
serve as an additional general-purpose arithmetic unit since
the auxiliary register file can communicate directly with data
memory. The ARAU implements l6-bit unsigned arithme
tic, whereas the CALU implements 32-bit two's-comple
ment arithmetic. The ARAU also provides branches depen
dent on the comparison of ARO to the auxiliary register
pointed to by the ARP.

Central arlthmetie logic unit. The CALU contains a
16-bit scaling shifter, a 16 x l6-bit parallel multiplier, a
32-bit ALU, and a 32-bit accumulator. The scaling shifter
has a l6-bit input connected to the data bus and a 32-bit
output connected to the ALU. This shifter produces a left
shift of 0 to 16 bits on the input data, as programmed in the
instruction. The least significant bits of the output are filled
with zeroes, and the most significant bits are either filled
with zeroes or sign-extended, depending upon the state of
the sign-extension mode bit of status register ST!. Addi
tional shifters at the outputs of both the accumulator and
the mUltiplier are suitable for numerical scaling, bit extrac
tion, extended-precision arithmetic, and overflow preven
tion. Due to the pipelining in the TMS32OC2S, shifting is
accomplished as part of an instruction and thus does not re
quire additional cycles for execution.

The 32-bit ALU and accumulator perform a wide range
of arithmetic and logical instructions. An overflow satura
tion mode permits the accumulator to be loaded with the
most positive or negative number (the choice depending on

SUBA

the direction of overflow), and it allows an overflow flag to
be set whenever an overflow occurs. One of the two inputs
to the ALU is always provided from the accumulator, and
the other may be transferred from the product register (PR)
of the mUltiplier or from the scaling shifter loaded from
data memory.

The implementation of a typical ALU instruction requires
these steps:

• data are fetched from the Rcarrn the data bus;
• data are passed through the scaling shifter and through

the ALU, where the arithmetic is performed; and
• the result is moved into the accumulator.

The 32-bit accumulator is split into two 16-bit segments
for storage in data memory: ACCH (accumulator high) and
ACCL (accumulator low). Shifters at the output of the ac
cumulator provide a shift of 0 to 7 places to the left. This
shift is performed while the data are being transferred to the
data bus for storage. The contents of the accumulator re
main unchanged. The accumulator also has an in-place one
bit shift to the left or right (SFL or SFR instruction) and a
rotate through carry (ROL or ROR instruction) for shifting
its contents.

A carry bit is provided to the accumulator, allowing more
efficient extended-precision computation. ADDC (add with
carry) and SUBB (subtract with borrow) are two instruc
tions using the carry bit. Branch instructions that use the
carry bit are also provided.

Hardware multipUer. The TMS32OC2S uses a 16 x l6-bit
hardware multiplier that can compute a 32-bit product dur
ing every machine cycle. Two registers are associated with
the multiplier: a l6-bit temporary register (TR) that holds
one of the operands for the multiplier, and a 32-bit product
register (PR) that holds the product.

The output of the product register can be left-shifted one
or four bits. This is useful for implementing fractional
arithmetic or justifying fractional products. The output of
the PR can also be right-shifted six bits to enable the execu-

The Texas Instruments TMS320C25 Digital Signal Microcomputer 35

tion of up to 128 consecutive multiply/accumulates without
overflow.

The multiplier performs both signed and unsigned opera
tions. Two signed instructions, MAC (multiply/accumulate)
and MACD (multiply/accumulate and data move), can pro
cess both operands simultaneously, thereby fully utilizing
the computational bandwidth of the multiplier. For MAC
and MACD, the two operands are transferred to the mul
tiplier at each cycle via the program and data buses. This
enables MAC and MACD to be performed in a single cycle
when they are used with repeat (RPT or RPTK) instruc
tions. The program bus can supply data from internal or ex
ternal memory (RAM or ROM) and still maintain single
cycle operation. An unsigned multiply (MPYU) instruction
facilitates extended-precision multiplication. It multiplies
the unsigned contents of the TR by the unsigned contents of
the addressed data memory location, and places the result in
thePR.

Control operations. Control operations are provided on
the TMS32OC25 by an on-chip timer, a repeat counter, three
external maskable user interrupts, and internal interrupts
generated by serial-port operations or by the timer.

A memory-mapped 16-bit timer (TIM) register (a down
counter) is continuously clocked by CLKOUTI. A timer in
terrupt (TINT) is generated whenever the timer decrements
to zero. The timer is reloaded with the value contained in
the period (PRO) register within the first cycle after it
reaches zero so that interrupts may be programmed to occur
at regular intervals of (PRO + I) • CLKOUTI cycles. This
feature is useful for control operations and for synchronous
sampling of or writing td peripherals.

The repeat counter (RPTC) is loaded with either a data
memory value (in the case of the RPT instruction) or an im
mediate value (in the case of the RPTK instruction). The
repeat feature enables a single instruction to be executed up
to 256 times. It can be used with instructions such as mul
tiply/accumulates, block moves, 110 transfers, and table
read/writes. Those instructions that are normally multicycle
are pipelined when the repeat feature is used and effectively
become single-cycle instructions. For example, the table
read (TBLR) instruction ordinarily takes three or more
cycles, but when it is repeated, it becomes a single-cycle
instruction.

The three external maskable user interrupts, INT2 to
INTO, enable external devices to interrupt the processor.
Internal interrupts are generated by either the serial port,
the timer, or the software interrupt instruction. Interrupts
are prioritized, with reset having the highest priority and the
serial-port transmit interrupt the lowest.

Serial port. An on-chip serial port provides direct com
munication with serial devices such as codecs and serial
A/D and 0/ A converters. The serial port's interface re
quires a minimum of external hardware. The port has two
memory-mapped registers-a data transmit register and a
data receive register-which can be operated in either an
eight-bit byte mode or a 16-bit word mode. The transmit

framing sync pulse can be generated internally or externalIy.
The serial port's inaximum speed is 5 MHz.

The primary enhancements of the TMS32OC25's serial
port are

• double buffering for both receive and transmit opera
tions,

• the elimination of a minimum CLKR/CLKX frequency
(fmin = 0 Hz), and

• the provision of a frame sync mode (FSM) bit, which
allows continuous operation with no frame sync pulses.

The FSM is useful for communicating on pulse-code
modulated telephone system highways. As a result the TMS-
32OC25can communicate directly on PCM highways such
as AT&T T-I and CCITT 0.7111712 by counting the trans
mitted and received bytes in software and performing the
instructions needed to set (SFSM) and reset (RFSM) the
FSMbit.

I/O interface. The TMS32OC25's I/O space consists of 16
input and 16 output ports. These ports provide a full I(i..bit
parallel 110 interface via the processor's data bus. A single
input (IN) or output (OUT) operation typically takes two
cycles; however, when executed in the repeat mode, such an
operation becomes single-cycle. The TMS32OC25 supports a
range of system interfacing requirements. As previously
mentioned, three separate address spaces-program, data,
and I/O-provide interfacing to memory and I/O, thereby
maximizing system throughput. The TMS32OC25 simplifies
I/O design by treating I/O the same way it treats memory.
It maps I/O devices into the I/O address space using its ex
ternal address and data buses in the same way as it uses
them for mapping memory devices into memory address
space.

The local memory interface consists of a I (i..bit paralIel
data bus (DIS-DO), a I(i..bit address bus (AIS-AO), three
pins for data memory, program memory, and I/O space
select (OS, PS, and is, respectively), and various system
control signals. The R/W signal controls the direction of a
data transfer, and STRB provides a timing signal to control
the transfer. When using on-chip program RAM, ROM, or
high-speed external program memory, the TMS32OC2S runs
at full speed without wait states. By using the READY
signal, it can generate wait states so it can communicate
with slower off-chip memories.

The TMS32OC2S supports direct memory access to exter
nal program and data memory. Another processor can take
complete control of the TMS32OC2S's external memory by
asserting HOLD low, causing the TMS32OC2S to place its
address, data, and control lines in the high-impedance state.
Two modes are available on the device. In the first mode,
execution is suspended during assertion of HOLD. In the
second mode-the "concurrent DMA mode"-the TMS-
32OC2S continues to execute its program while operating
from internal RAM or ROM, thereby greatly increasing
throughput in data-intensive applications. Signaling be
tween the external processor and the TMS320C25 can be
performed through interrupts.

36 The Texas Instruments TMS320C25 Digital Signal Microcomputer

MNEMONIC

"BS
"DO
Aobcl

"DOH
AiloKI '

"DDS

"DDT 1

"OLKt

"NO

CMPL!

LAC
LACK
!.ACT!
LALKI
NEG!,

IiIORMt

Of!
oRKt

ftPIli

~CH'

SACL,
SBLlCt
'Sflt'
SI'Rt
sU~
SUBIi*

,SUBC, '
'sueH
!3UsKf
SUBS:

SUIiT!'

ZAtH,
zA~RI

Ta17Ie'l; ,
TMS320C25 instructions.

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

DESCRIPTION

Absolute' value of accumulator
"dd to accumulator with shilt

Add to accumulator with carry

~dd to high accumulatOr

Add to accumulator short immediate

Add to low accumulator with sign

extension suppressed

Add to accumulator with shift specified by

T register
A~d to accumulator long immediate with shift

AND with accumulator

AND im"'ediat~ ~ith accumulator with :shift

Complement accumulator

Loao accumulator with'shift

Load accumulator fmmediate short

Load accumulat~ ~jth shift specified by T register

Load accumulator long immediate with shift

Negate accl:Jr:nuIStor

Normalize contents o'f accumulator

OR with accumulator

OR immediate with accumulator with shift

, -Rotate accumulator left

, ' ,

'Store high a"c"",al,ator With shift

Store low accumulator with shift

, Subtract fr6~ a~cumul8to, long 'immediate'. with shift

Shilt ,accumutator tait
Shilt 'accumulaiol ~9h;
'~btr8Ct nom acc~mulator with "hift

Subtract Jrom 8I?cumulator. with borrow

, Condltiol"l81 subtract

Subtract from high accumu!ator
Subtract from aecloimul8tor shan iI:n~diate

. 'SUbtraCt from low ,accumulator w~th slg~
extension suppressed
Subtract from accumulator With' shif't specified' by
T rGgister ' .
Exciusfve-OR with aCcumulator

'z.'ro ~u",ulator
Zero low accumulator and load high acc",m~tator
'Zero 16w accumulator and"oad high aceUA'lul~tor
~th ;ounding , ,
~ero a~muI8,tor .a.n,d lead tow accumulator-with .

"SiQf1 eXlen$i<!n ,Ullpr"'Od

NO.

WORDS
• OPERATION

II"CCII.,. "CC
IACCl + Iidma) x,28M'1 ,. "CC

I"CC) + Idma) + IC) ~ "CC
lAce) + Hdma) x 2'61 ~ ACC

IACCI + 8-bit constant ~ ACC
IACC) + Idmal ' .• ACC

IACCI <- Ild",alx 2ITrOg'1 ~ "Ct

I"CCI • 11S-bit constant x 2Shilt /. ~ "CC
IACCI15-OII,ANO.ldmal ~ ACCI15·01.

o ~ ACCI31·,6)

I"CCI30·01l,"NO,116-bit constant x 2shi',! -
"CCI30·0J. 0 ~ ACCI,30·01 '

IAre) - ACC
(dma) x 2shift - ACe

S-bit tonstant - Ace

Idma) x 2IT"9' ~ ACC
06-bit cOhsiant) x 216 ~ "CC

IACel '- ACC

I"CCI15·01l,OR,ldnlal- ACC115-01

IACCI30·011_0R'.116·bit coristant x 2""""1 ~
ACCI30,OI

I"CCI30-011 ~ ACCI31-11. ICI ~ "CCIOI.

I"CCI3111 .• C

IACC131·111 - "CCI3D·01.lel - ACCI31I.
I"CCIOll"; C

HACCI x 2shif, I ~ 'dma,

)lACCLI x 2shilt I .. dma
I"cel' - p 6-bit cOnstarit x 20hifiJ ~,"CC'
("CtlSO-OIi ~ACCI31-11, 0 -. "tCIOI

IActla1"lII ~ ACC130-01. IACCj31l1 - ACCI311 '
IACC) - i Idmal x' 2shilt l - Ace .

IACCI - Idmal - '1l!1 ~ ACC.

lACe) Iidmol 'x 2'61 ~ ACC
lACe) ,-S-b;! constant - "CC

I"CCI "Idnial, -. ACC

,("CCI - Iidma) x 2IT""I_ "CC

I"CCI15-CIll,XOR,ldmal - "CC05-~)
IACCISO-Oll.XOR,ll!1-bit constani 'x '2shU'1 -

ACCI30-0)

o -ACC

.Idmal' x 2'6 ~ "CC

idmal x 2'6. >aooo'-. ACC
" ,

fThese 11'II'truciio,no 'lit .. n"': ~irll"" TMS3'2Q10'i!l,j~iOii,set:
tri1He Insti1lUons iI'" Aot'llicjuiM';~ ,the l'MS3'2t)20 in_tiGnall!':;'

The Texas Instruments TMS320C25 Digital Signal Microcomputer 37

LAR
,U,R'"
LAfIP
LDP '
iOPIC
Uu.Kt

,MAR

SAft'

SBAK*

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS

DESCRIPTION

Add to auxiliary register short immediate .<i

Compare .~.ilisry ~egist.r with 'iN.mary l~e, ARO

Load au.iiiary register '

LOad, au.lUary r~gi.t.r shOrt Immadiate
Load iI\J;'illory register pointer

Loed data memory pogo poini ..
Load data memory page poinieritn_late

Load auxiliary register long immediate
,'Modify au.mary register

Store ""xlliary regiater
SUbtract from auxiliary regiater short immediate

NO,

WORDS

(dmal, ~ (AAnI ,

a·bit qamtant: . ..:.. A~n ',. '.
3-!Jjt c:Ohstant -': ARP, 1AAP\ ..;; MIl,

(dmill ~ DP "

9,blt constant ~,!>p

l6·bit con.t8ni' ~ AAn

IAAnI -i <1m.
.lAAnI -' 8-1>11 constant ,AAn

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS

MNEMONIC DESCRIPTION
NO,

WORDS
OPERATION

APAC
lPHt
LT

LTA'

LTD

LTI"
LTSt
MACt

!",ACDt
MPV

,MPVA*

Add P reglster to' accumulator
lo8d high P, regist ..

Load T register

.Load T register arid accumulate previous product

Load T regis.ter, accumulate previous product.

ai1d move data
L:oad T l:8Qister and store P register in aocu":lulator
Load T register and sUbtract previous product

Multiply and accumulate

Multiply and accumulate with -data move

Multiply Iwilh ,T register, store prequel In P register)

Multiply lAd '8ccumUtata previous product

,I

1

IACCI + (shift 1'r99! ,~ ACe
(dmal ~ pieg (3HlIi '

(dmol ..; Treg , ..

(dinal ~Tr.g" lACe. + Iilhlftad i>reui..:. ACC

(dma) -.T~~,.ftt.~a). =-+.dhia:f; ":'.
(ACel + (shifted P'Ofg),- AC<!;,

Icimal Treg, l$hiftad'Pr.gi~,A~:" "
'(dmol -< Treg, (ACCI -(,/lilted ~",Ifi.C¢
IACCI + (shlltiJdpfeg'l '" 'ACe; ',,'; "

(pmol ~ Id";'i :.. P";9

(ACCI + (shifted Pro9i AC,C"
Ipmal '~ I_I ~'I'r99. (dina" _,

,ftregl x fdm.l' ~ ~J19 " '...
(ACCI + (ahlftildPr.;gi ... ' ACii:;: '

ITrelilx (dmal~' ;.,..~ "
, ,'MPVK

MPVS'

Multiply immadlate
:'M~h1PIY a..daubt.eet previous prOduct

ITrogl' 13.~~ii const!mt':' Pr;g',
(ACCL-'!shift8c\ Pr8g) ... ,A(le,

38

, MPYUI '

PIIC
SPAC
SPH'
SPt'
$PMt

'~QRAt

t'SCIAst

Wtlply unsigned

Lcea "culnulator ,with P register

S!.ibtrdct P register fro~ accumulator

$tote high P register '

\ Stqr, low P regia ...

Set' P r.,gliter outPUt shift 'mode

.~u.re and accumulate'

. Squate aOd' s~titract previous pr~uet

, SYMBOL MEANING

Ace AccumulOllo,
ARB Au.,hOl'V ,eglsler pOlnle, buff~,
ARn AU~lha.y 1'111015111' n IARO Ihrough AR7 drll p'lIdlllmlul

assembler symbols equal 10 Olh'Ollgh 7 'IISp~<;I.vely I
ARP AUK.harv .ell,ste. pomte.
BIO Branch conlml mput
C Cllrry b,1

eM 2·blt I,eld spe<;IIYlng compare mode
CNf On ch,p RAM Conllgllral'on conuol bIt

Oaia memo.v add,~ss
Oaia pagepomter
Fo,malslalusbll
F.amesynchlonllat,onmodebll
Hold modeb,l
Inlerruplmodellagbll
Ind.calllSnn IS ,1 hexadeCImal number (All oth~rs a,e

(Tregl x idMjti-Plieg ",' ,

USgr'(Tregl' U~ idmal :..Ptitg:
Ishlfted ;;regj -<ACC ",

IACCI ~ (~hilt ... Pr"lJl'~ ,A<:~ ,
Ishitied Preg 131:;611'" ijmo

(shiftad Preg .i'S.()}1 "'dma

24?i~ constant -:-- ~
(ACCI + ($hiltiJd' Pr.g,':" 'A¢C,

(dmol x' idmol ~ Prll\i'
(ACel - (shifted Prll\il,':'ACC,

1dmol x (dmal ,-" l'1'eg

SYMBOL MEANING
POll address {PAO Ihrough PAIS d'e pr~dellned assembler
symbol, equal 10 0 Ihlough 15 'e,pe<;llvely I

PC P.og,am<;ounler
PM 2 b'I/'eldspllclfVmgP'B9'Sleroulpulsh,ltcodll
pma Program memo.y address
P.eg Product.eglster
~PTC Repeal counle.
STn SlalllS Re-g,sle.n (STOorSTlI
SXM S,gn extensIOn mode bll

T TemporOlryrB9'S1"
TC TeSI control bl!

TOS Top 01 slack
Tempo,arvreglsler
T.ansmllmodebl!
Uns'gned vOllu~
XFpmslalushI!
Is aSSIgned to
An absolulevalue

The Texas Instruments TMS320C25 Digital Signal Microcomputer

MNEMONIC DESCRIPTION

to edIIreIa specified. 1iV. accumulator
on ~~~lary register not ~ro

, .ir.lfTcIilI,oO
Ikliinl>hitfCbll '" 0
1It~!lri.~1IY
..... 0Ii If accumulator ~ 0
...... N~lIor>O·
...... ·onl/O.iatua" 0
'1IIii.lti If 8ck:umulaior :s6

··._If.,_<O
_1hCJI On no ciirry

.. ~ ~ .. ~ O • .,ilow
.. ~ jf lceumu18tor *0
. bati QII oVerflow
:~If~=O
.e.it~_

QiiI.~

If IARlAllPn.,. O.then,,",,*:~ PC: iI"li1I;i;~
PC '.' .,.t,'.' .~>'.~.;.: . :.~:.~".:' ... ' "', .. ,

If (TCl* l.tlNn"",*'" 1'It'.1I'tt ;-;~. 41i6.
" (TC) ,; 0: then _:"pc;.docl·+ ~.;.:. ..
Ii ICI.I.IMirp,n. :..PCV_iPeJ ·2..;
If (ACel ~ O.then _ ~ ~~,,*.O>t~' + .
" (ACC) > 6.11Wn .,..;a .;/'Cf· 11'C .. 1.: .
if (1IRJ1 =0; then pi,-i.:.':' PIf1: CPCI: .. 2,:",pc

If IACCI :$ O. theIIpme -~; • (Pc! + '2 ':"iIC
If IACC) < 0: then ~ .. Pc; II'I;I·~2.:... Pe
If Ie) ;'0. -then,.,...:'" PC:"':iPC) ~~ ~Pc :
" IOVI .,. O. then ""'" - PC,.1PCI + 2 .. PC
" (ACCI ~ O.then pme ... PC; eti8.I!'<:) + 2-
"roVI .. O.lhen_ -'PC; else fPCl ... 2- PC .
If f.ACCI ~ O. then ""'" -'Pc; "·fPCI +', .:..·.FIt.
(ACe(16·on - PC. CPCI + 1 4.T06· .

OPERATION

(dma). adilresaeq bv PC) ~2
fpma. addrossed.1iv PCI ..; _

IdRlII - dma + 1
1·bit con.tanl 1'0 . .
fdala bus. adcires86d1iy PAl."; ~
idma) ... datal>\li,:.dd,.i!'jj.j;i'~· , .'
O-<FSM· ...

<> -. T)(M
0'")cf
1":FSJ(

The Texas Instruments TMS320C25 Digital Signal Microcomputer 39

The TMS32OC2S's conditions and modes are stored in
two status registers, STO and ST!. Instructions are provided
to allow these registers to be stored in or loaded from data
memory. This capability allows the current status' of the
device to be saved during interrupts and subroutine calls.

TMS320C25 software
Earlier, we characterized digital signal processing as the

real-time processing of mathematically intensive algorithms.
This characterization equates to a requirement for high
speed, multiply/accumulate capability in a processor. The
performance of a signal processor is therefore measured in
terms appropriate to this requirement-that is, it is mea
sured in terms of the speed of execution of individual in
structions, the power of the instruction set, and the I/O
capabilities. The speed is given as the basic instruction cycle
time and the number of cycles required to complete any
instruction.

As we noted earlier, pipelining of instruction fetching,
decoding, and execution provides an instruction cycle time
of only 100 ns. The overwhelming majority of the
TMS32OC2S's instructions (97 out of 133) are executed in
a single instruction cycle. Of the 36 instructions requiring
additional cycles for execution, 21 involve branches, calls,
and returns that result in a reload of the program counter
and a break in the execution pipeline. Another seven of

the instructions are two-word, long immediate instruc
tions. The remaining eight-IN, OUT, BLKD, BLKP,
TBLR, TBLW, MAC, and MACD-support I/O and
transfers of data between memory spaces, or provide for
additional parallel operation in the processor. Further
more, these eight instructions become single-cycle when
used in conjunction with the repeat counter. The instruc
tion set of the TMS32OC2S exploits the parallelism of the
processor, allowing complex or numerically intensive com
putations to be implemented in relatively few instructions.
Table I lists the TMS32OC2S's instructions.

Addressing modes. Most TMS32OC2S instructions are
coded in a single l6-bit word-the reason most can be exe
cuted in a single cycle. The 16-bit word comprises an eight
bit opcode and an eight-bit address. Three memory address
ing modes are available: direct, indirect, and immediate
(Table 2). Both direct and indirect addressing are used to
access data memory. Immediate addressing uses the contents
of the memory addressed by the program counter. Figure 4
illustrates operand addressing in the direct, indirect, and im
mediate modes.

In direct addressing, seven bits of the instruction word
are concatenated with the nine-bit data memory page
pointer (OP) to form the 16-bit data memory address. The
DP register points to one of SI2 possible data memory
pages, each, 128 word in length, to obtain a 64K total data
memory space. The seven-bit address in the instruction

40 The Texas Instruments TMS320C25 Digital Signal Microcomputer

points to the specific location within the data memory page.
Indirect addressing is provided by the eight auxiliary

registers ARO-AR7. These registers can be used to indirectly
address data memory, as loop counters, or for temporary
data storage. Indirect auxiliary register addressing (Figure S)
allows placement of the data memory address of an instruc
tion operand into one of the eight auxiliary registers. These
registers are pointed to by a three-bit auxiliary register
pointer (ARP) that is loaded with a value from 0 through 7
designating ARO through AR 7, respectively. The auxiliary
registers and the ARP may be loaded either from data
memory or by an immediate operand defined in the instruc
tion. Furthermore, the contents of the auxiliary registers
may be stored in data memory.

There are seven types of indirect addressing (see Table 2
again):

o indexing with increment,
o indexing with decrement,
o indexing by adding the contents of ARO,
o indexing by subtracting the contents of ARO,
o indexing by adding the contents of ARO with the carry

propagation reversed (for bit-reversing an FFT),
• indexing by subtracting the contents of ARO with the

carry propagation reversed (also for bit-reversing an FFT),
and

o no indexing.

All indexing operations are performed on the current aux
iliary register in the same cycle as the original instruction,
with loading of a new ARP value available as an option.
The operations performed in the ARAU can even be per
formed during branch instruction execution, allowing effi
cient control with conditional looping.

Bit-reversed indexed addressing modes allow efficient 110
to be performed for the resequencing of data points in a
radix-2 FFT program. The direction of carry propagation in
the ARAU is reversed when this mode is selected, and ARO
is added to or subtracted from the current auxiliary register.

In immediate addressing, the instruction word contains
the value of the immediate operand. Both single-word (8-bit
and I3-bit constant) short immediate instructions and two
word (l6-bit constant) long immediate instructions are in
cluded in the instruction set. In the case of long immediate

instructions, the word following the instruction opcode is
used as the immediate operand. MPYK is an example of an
immediate instruction; it multiplies the contents of the T
register by a signed I3-bit constant. Seventeen immediate
operand instructions are included in the instruction set (see
Table 1 again).

Instruction set paraUelism-an example. The MACD
(multiply/accumulate and data move) instruction serves as
an informative example of the parallelism designed into the
TMS32OC2S instruction set as well as into the TMS32OC2S
architecture. As shown in Equation I, the requirement for
parallelism exists in common DSP operations such as con
volution and filtering. 6.7

Parallelism in the execution of instructions enables a
complete multiply/accumulate/data move operation to be
completed in a single lOO-ns instruction cycle. The execution
of the MACD involves the following steps:

I) The contents of the 32-bit P register are shifted (scaled)
by an output shifter.

2) The n-bit ALU accumulates the shifted result of the
n-bit P register with the current contents of the 32-bit
accumulator.

3)-The 16-bit contents of a data memory location (usually
addressed indirectly via one of the auxiliary registers) are
loaded into the T register.

4) The 16-bit contents of a program memory location
(addressed via the prefetch counter PFC) are introduced to
the multiplier and a 16 x 16-bit multiply is executed,
resulting in a new 32-bit product. The product is placed in
the P register to be accumulated during the next cycle.

S) The 16-bit contents of the data memory location are
copied to the next higher data memory address.

6) The carry and overflow status bits are set, as ap
propriate, in the status registers.

7) The 16-bit contents of the auxiliary register pointed to
by the ARP are modified (typically decremented) in
preparation for the use of the data memory address on the
next cycle.

8) The 16-bit contents of the PFC are incremented in
preparation for the use of the program memory address on
the next cycle.

9) The repeat counter is decremented.

As can be seen from the above, one of the data values is
taken from data memory while the other is taken from pro
gram memory. A single-cycle execution and data move is ac
complished when the data memory being addressed is the
on-chip data memory. The program memory location can
be either on or off chip and, if on chip, can come from
either ROM or the reconfl8urable memory block BO.

Parallel operation of certain subsets of TMS32OC2S func
tions is also available. These subsets include loading the T
register in combination with addition (LTA), subtraction
(LTS), or a move of the P register's contents to the ac
cumulator (LTP). The accumulation can be supplemented
by the data move function (LTD). Another combination
(MPYA/MPYS) provides the accumUlation of the previous

The Texas Instruments TMS320C25 Digital Signal Microcomputer 41

INSTRUCTION
DIRECT ADDRESSING IOPCCXE 1 en 1 DP

l/7 ttle .1 OPERAND

..... IN:I5IBIBII:~C T!.D/~I1N ...,

INDIRECT ADDRESBING 1 0PC<XlEI T,_I ,aL_+[=!E~~:::J
- .- .1 NI. (ARP) ~ OPERAND

INBTRUCTlON
IMMEDIATE OPERAND 1 OPCCXE kJPBWij ~~ ---tI NBTRUCTlON

pc.,4 OPERAND
Figure 4. Methods
of addressiI).g the
instruction operand.

product along with the execution of the multiplier to
generate a new product. This combination is par.ticularly
useful in adaptive filtering techniques such as those em·
bodied iq the least-mean-square (LMS) algorithm. 4,15 The
implementation of an adaptive filter by means of these in
structions will be described in detail in the section on
applications.

Block moves. The TMS32OC2S provides six instructions
for data and program block moves and transfers of data via
the 1/0 ports. When these instructions are pipelined by
means of the repeat instruction, significantly higher through
put is achieved-the pipelining results in a transfer rate of 160
million bits per second.

The BLKD instruction moves a block within data
memory, and the BLKP instruction moves a block from
program memory to data memory. Block transfers between
program and data memory spaces can also be implemented
with the TBLR and TBLW (table read and table write) in
structions. The advantages of TBLR and TBLW are that
they allow the source address as well as the destination ad
dress to be determined during programming and that they
permit the data to be transferred from data memory to pro
gram memory. The IN and OUT instructions permit data to
be transferred between the 110 and data memory spaces.
While the source address is determined by the prefetch
counter, which is incremented on every cycle, the destina
tion address is determined by an auxiliary register whose
contents can be modified in any of the previously specified
ways. This permits sequential and contiguous data place
ment (* +, * -), sequential but noncontiguous data place
ment (*0+, *0-), or scrambled data placement
(* BRO + , * BRO -). The value of these address modifica
tions during block data transfers becomes particularly ap
parent in the use of indexing with reverse-carry propagation
to set up the data block in an FFr. The result is not only a
savings in execution time but a savings in program memory
space as well.

Floating-point support. The TMS32OC2S supports
floating-point operations for applications requiring a large
dynamic range. The NORM (normalization) instruction
normalizes fIXed-point numbers contained in the accumulat-

or by performing left shifts. The LACT (load accumulator
with shift specified by the T register) instruction denor
malizes a floating-point number by arithmetically left
shifting the mantissa through the input scaling shifter. The
shift count, in this case, is the value of the exponent speci
fied by the four low-order bits of the T register. AODT and
SUBT instructions (add tolsubtract from accumulator with
shift specified by the T register) have been provided to allow
additional arithmetic operations.

TMS320C25 hardware
The most important task for a hardware designer is inter

facing the DSP device to the rest of the system as inexpen
sively as possible. Here, we will discuss the TMS32OC2S's
interfacing capabilities.

AUXILIARY
REGISTER
POINTER

AUXILIARY REGISTER FILE

MOD 0 1 I

AA1')-

AR2' "

LOCATION

DATA
MEMORY

MAP

(IN 8TOI

A, >OOOO~ ~c I := INTERNAL

_ tmIIII--+- I > F 6 1_ >FF311 ~
AR .. I " B I >FFFF

ARS'> Iii

M71)B4IDI

Figure 5. Example of indirect auxiliary register addressing.

42 The Texas Instruments TMS320C251Jigital Signal Microcomputer

TBP38L185

'-15-1<0 ~1 ADDRESS BUS A10-1<0
01S-D8 ~

PS G1

+
5VT G2

G3

TMS32OC25

TBP38L185

A10-1<0
07-00 ~

G1

"~il +
5VT G2

READV USC G~

W 18 DATA BUS

7..ALS32

Figure 6. Minimal configuration for external program
memory.

18

System configurations. The flexibility of the TMS32OC25
allows systems configurations that satisfy a broad range of
application requirements. The TMS32OC25 can be con
figured as

• a stand-alone system (that is, as a single processor using
4K words of on-chip ROM and 544 words of on-chip
RAM),

• part of a parallel multiprocessing system (two or more
TMS32OC25s) with shared global data memory, or

• a coprocessor for a host processor.

The stand-alone system interface consists of a 16-bit par
allel data bus, a 16-bit address bus, three pins for memory
space select, and various system control signals. In Figure 6,
an external data RAM and a PROM/EPROM have been
added to the basic stand-alone system. The READY signal
is used for wait-state generation for communicating with
slower off-chip memories. AU the memories and I/O
devices are directly controlled by the TMS32OC25, thus
minimizing external hardware requirements.

Parallel multiprocessing and host/coprocessor systems
take advantage of the TMS32OC25's direct memory access
and global memory configuration capabilities.

Direct memory access. The TMS32OC25 supports direct
memory access to its external program/data memory and
110 space through its HOLD and HOLDA signals. Direct
memory access can be used for multiprocessing: Execution
on one or more processors can be temporarily halted to
allow another processor to read from or write to the halted
processor's local off-chip memory. Here the multiprocessing
is typically performed in a master/slave configuration. The
master can initialize the slave by downloading a program
into its program memory space or provide the slave with the
data needed to complete a task.

In a direct memory access scheme, the master may be a
general-purpose CPU, a TMS32OC25, or perhaps even an
A/D converter. A master TMS320C25 takes complete con
trol of the slave's external memory by asserting HOLD low
through its externaillag (XF). This causes the slave to place
its address, data, and control lines in a high-impedance
state. By asserting RS in conjunction with HOLD, the
master processor can load the slave's local program memory
with the necessary initialization code on reset or power-up.
The two processors can be synchronized through use of the
SYNC pin to make the transfer over the memory bus faster
and more efficient.

After control of the slave's buses is given to the master
processor, the slave alerts the master by asserting HOLDA.
This signal can be tied to the master's BIO pin. The slave's
XF pin can be used to indicate to the master when the slave
has finished performing its task and needs to be repro
grammed or given additional data to continue processing.
In a multiple-slave configuration, the priority of each slave's
task can be determined by tying the slave's XF signals to the
appropriate INT pin on the master.

A PC environment provides an example of a direct
memory access scheme in which the system bus is used for
data transfer. In this configuration, either the master CPU
or a disk controller may place data on the system bus for
downloading into the local memory of the TMS32OC25.
Here the TMS32OC25 acts like a peripheral processor with
multifunction capability. In a speech application, for exam
ple, the master can load the TMS32OC25's program
memory with algorithms to perform tasks such as speech
analysis, synthesis, or recognition, and its data memory
with the required speech templates. In a graphics applica
tion, the TMS32OC25 can serve as a dedicated graphics
engine. programs can be stored in ROM or downloaded via
the system bus into program RAM. Again, data can come
from PC disk storage or be provided directly by the master
CPU. In this configuration, decode and arbitration logic is
used to control the direct memory access. When the address
on the system bus resides in the local memory of the periph
eral TMS32OC25, this logic asserts the HOLD signal While
sending the master a not -ready indication to allow wait
states. After the TMS32OC25 acknowledges the direct
memory access by asserting HOLDA, READY is asserted
and the information is transferred.

Global memory. In some digital signal processing tasks,
the algorithm being implemented can be divided into sec
tions and a processor dedicated to each. In this case, the

The Texas Instruments TMS320C25 Digital Signal Microcomputer 43

flTst and second processors can share global data memory,
as can the second and third, the third and fourth, and so
on. Arbitration logic may be required to determine which
section of the algorithm will execute and which processor
will have access to the global memory. The dedication of
each processor to a distinct section of the algorithm makes
pipelined execution-and thus higher throughput-possible.

External memory can be divided into global and local sec
tions. Special registers and pins on the TMS320C25 allow
multiple processors to share up to 32K words pf global data
memory. This facilitates efficient "shared data" multi
processing, in which data are transferred between two or
more processors. Unlike a direct memory access scheme,
reading or writing global memory does not require one of
the processors to be halted.

TMS320C25 development tools
and support

A digital signal processor is essentially an application
specific microprocessor or microcomputer. Like any micro
processor, it needs good development tools and technical
support-no matter how impressive its performance or how
easy its interfacing to other devices, it cannot be easily
designed into systems without such tools and support. In
developing an application, a designer encounters problems

can be executed by the simulator, emulator, or the TMS-
32OC25 processor. The macro assembler/linker is currently
available for the VAX/VMS, TI PC/MS-DOS, and IBM
PC/PC-DOS operating systems.

Simulator. The simulator is a software program that
simulates TMS320 operations to allow program verification.
Its debug mode enables the user to monitor the state of the
simulated TMS320 while his program is executing. The
simulator uses the object code produced by the macro
assemblerllinker. During program execution, the iilternal
registers and memory of the simulated TMS320 are modi
fied as each instruction is interpreted by the host computer.
Once program execution is suspended, the internal registers
and the program and data memories can be inspected and
modified. The simulator is currently available for the
VAX/VMS, TI PC/MS-DOS, and IBM PC/PC-DOS oper
ating systems.

Hardware tools. Toois are provided for in-circuit emula
tion and hardware program debugging such as breakpoint
ing and tracing so that DSP algorithms can be developed
and tested in a real-product environment.

Evaluation module. The evaluation module, or EVM, is a
stand-alone board that contains all the hardware tools

No matter how impressive its performance or how easy its interfacing to other
devices, a digital signal processor cannot be designed into systems without good

development tools and vendor support.

and needs to ask questions. Often the tools and vendor sup
port given him are the difference between the success and
failure of his project.

The TMS32OC25 is supported by many development
tools. 16 These tools range from inexpensive modules for ap
plication evaluation and benchmarking to an assembler/
linker and software simulator to a full-capabillty hardware
emulator.

Software tools. An assembler/linker and software simu
lator that enable users to develop and debug TMS320 DSP
algorithms are available for the TI PC, IBM PC, and VAX.

Assembler/linker. The macro aSsembler translates assem
bly language source code into executable object code. It
allows the programmer to work with mnemonics rather than
hexadecimal machine instructions and to reference memory
locations with symbolic addresses. It supports macro calls
and definitions along with conditional assembly. The linker
permits a program to be designed and implemented in
separate modules that are later linked to form the complete
program. The linker resolves external definitions and
references for relocatable code, creating an object file that

needed to evaluate the TMS32OC25 and that provides in
circuit emulation of it. The EVM's firmware package con
tains a debug monitor, an editor, an assembler, a reverse
assembler, and software communication to two EIA ports.
These ports allow the EVM to be connected to a terminal
and to either a host computer or a line printer. The EVM
accepts either source or object code downloaded from the
host computer. Its resident assembler converts incoming
source text into executable code in just oile pass by auto
matically resolving labels after the first assembly pass is
completed. When a session is finished, code is saved via the
host computer interface.

Software development system. The SWDS is a plug-in
card for the TI PC and IBM PC that provides the same
functionality as the EVM.

Emulator. The XDS (Extended Development System) is
an emulator providing full-speed in-circuit emulation with
real-time hardware breakpointing and tracing and program
execution capability from target memory. The XDS allows
integration of hardware and software modules in the debug
mode. By setting breakpoints based on internal conditions

44 The Texas Instruments TMS320C25 Digital Signal Microcomputer

or external events, the XDS user can suspend execution of
the program and give control to the debug mode. In the
debug mode, he can inspect and modify all registers and
memory locations. Single-step execution is available. Full
trace capabilities at full speed and a reverse assembler that
translates machine code back into assembly instructions also
increase debugging productivity. The XDS system is de
sighed to interface with either a terminal or a host com
puter. Object code generated by the assembler/linker can be
downloaded to the XDS and then controlled through a
terminal.

Ana/og interface board. The AlB is an analog-to-digital
(A/D) and digital-to-analog (D/ A) conversion board that
can be used in conjunction with the EYM or XDS. It can
also be used in an educational environment to help familiar
ize the user with real-world digital signal processing tech
niques. The AlB includes A/D and D/ A converters with
12-bit resolution as well as antialiasing lind smoothing filters
that have a cut-off frequency programmable from 4.7 kHz
to 20kHz.

In addition to the above design tools, development sup
port includes

• the Digital Filter Design Package, which runs on both
TI and IBM PCs and which allows the user to design digital
filters (low-pass, high-pass, band-pass, and band-stop types)
using a menu-driven approach,

• TI Regional Technology Centers staffed with qualified
engineers who provide technical support and design services,

• access to third parties with DSP expertise in various ap
plication areas,

• a series of DSP books covering DSP theory, algorithms,
and applications and TMS320 implementations, 4,5,7

• documentation such as user's guides, 1().12 data sheets, a
development support reference guide, 16 and comprehensive
application reports, 4 and

• a technical support hotline and a bulletin board service.

TMS320C25 applications
The TMS32OC25 is designed for real-time DSP and

other computation-intensive tasks in telecorninunications,
graphics, image processing, high-speed control, speech pro
cessing, instrumentation, and numeric processing. In these
applications, the TMS32OC25 provides an excellent means
for executing signal processing algorithms such as fast Four
ier transforms (FFfs), digital mters, frequency synthesizers,
correlators, and convolution routines. It can also execute
general-purpose functions since it includes bit-manipulation
instructions, block data move capabilities, large program
and data memory address spaces, and flexible memory
mapping.

Since digital filters are used in so many DSP applications,
let us examine them as a prelude to our discussion of
TMS32OC25 applications.

DighaJ filtering. Filters are often implemented in digital
signal processing systems. Such filters fall into two
categories: finite impulse response (FIR) filters and infinite
impulse response (I1R) filters. 4•6 For bolh types of filter, the
coefficients of the filter (weighting factors) may be fixed or
adapted during the course of the signal processing. The
TMS32OC2S reduces the execution time of all filters by vir
tue of its I()().ns instruction cycle time and optimized in·
structions for filter operations.

As we stated earlier, the FIR filter is simply the sum of
products in a sampled data system (see Equation I again).
A simple implementation of the FIR filter uses the MACD
instruction (multiply/accumulate and data move) for each
filter tap and the RPT /RPTK instruction to repeat the
MACD for each tap. Thus, a 256-tap FIR filter can be im
plemented as

RPT(255
HACD *-, COEFFP

Here, the coefficients can be stored anywhere in program
memory (in the reconfigurable on-<:hip RAM, in the on-<:hip
ROM, or in external memories). When the coemcients are
stored in on-<:hip ROM or externally, the entire on-<:hip data
RAM can be used to store the sample sequence. This allows
filters of up to 512 taps to be implemented. Execution of
the filter will be at full speed, or 100 ns per tap, as long as
the memory (either on-<:hip RAM or high-speed external
RAM) supports full-speed execution.

Up to this point, we have assumed that the filter coeffi
cients are fIXed from sample to sample. If the coefficients
are adapted or updated with time, as they are in adaptive
filters for echo cancellation, 4,15 the DSP algorithm requires
a greater computational capacity from the processor. To
adapt or update the coefficients, usually with each sample,
the TMS32OC25 uses three instructions-multiply and
add/substract previous product to/from accumulator
(MPYA/MPYS), zero-out low-order accumulator bits and
load high-order accumulator bits with data (ZALR), and
store high-order bits of accumulator to data memory
(SACH). The method it uses to adapt the coefficients is the
least-mean-square, or LMS, algorithm, which can be ex
pressed as

bk(i+ I) = bk(i) + 2B [e(i) . x(i-k)], (2)

where b k(i + I) is the weighting coefficient for the next sam
pie period, bk(i) is the weighting coefficient for the present
sample period, B is the gain factor or adaptation step size,
e(i) is the error function, and x(i-k) is the input ofthe
filter.

In an adaptive filter, the coefficients b k (i) must be up
dated to minimize the error function e{i), which is the dif
ference between the output of the filter and a reference
signal. Quantization errors arising during coefficient up
dating can strongly affect the performance of the filter, but
these errors can be minimized if the updated values are ob
tained by rounding rather than truncating. For each coeffi
cient in the filter at a given point in time, the factor

The Texas Instruments TMS320C25 Digital Signal Microcomputer 45

2*B*e(i) is a constant. This factor can be computed once
and stored in the T register for each of the updates. This
reduces the computational requirement to one mul
tiply/accumulate plus rounding. Without the new instruc
tions, the adaptation of ~ach coefficient would take five in
structions corresponding to five clock cycles, as the follow
ing instruction sequence shows:

LRLK
LiLl
LARP
LT

ZiLH
ADD
MPY
APAC

SACH

AR2,COEFFD
AR3,LASTAP
AR2
ERRF

*,AR3
ONE,15
*-,AR2

*+

LOAD ADDRESS OF COEFFICIENTS.
LOAD ADDRESS OF DATA SAMPLES.

errf • 2*B*e(i)

ACC - bk(i)*2·*16
ACC _ bk(1)*2**16 + 2*·15

ACC _ bk(1)*2**16
+ errf*x(i-k) + 2**15

SAVE bk(i+l).

When the MPYA and ZALR instructions are used, the
adaptation reduces to three instructions corresponding to
three clock cycles, as shown below:

LRLl
LRLl
LARP
LT

AR2,COEFFD
AR3,LASTAP
AR2
ERRF

ZALR *,AR3
HPYA *-.AR2'

SACH *+

LOAD ADDRESS OF COEFFICIENTS.
LOAD ADDRESS OF DATA SAMPLES.

errf • 2*B*e(i)

Ace. bk(1)*2 •• 16 + 2*.15
ACC _ bk(1)*2**16
+ errf*x(i-k) + 2**15

PREG • errf*x(i-k+l)
SAVE bk(i+l).

Note that the processing order has been slightly changed to
incorporate the use of the MPYA instruction. This is due to
the fact that the accumulation performed by the MPY A is
the accumulation of the previous product.

We have now seen the basic code for a FIR filter tap and
a coefficient update. Figure 7 shows a routine to filter a
signal and update the coefficients for a 2S6-tap adaptive
FIR filter. Note that for each tap one instruction cycle is
needed to perform the FIR filter (i.e., to execute a MACD),
three instruction cycles are needed to update the filter coef
ficients, alld 33 instruction cycles are needed for overhead.
Therefore, the total number of execution cycles needed for
the routine is 33 + 4n, where n is the filter length. Also,
note that data memory and program memory requirements
are 5 + 2n and 30 + 3n words, respectively. For adaptive
filters, the filter length is restricted by both execution time
and memory. There is obviously more processing to be com-

TITL 'ADAPTIVE FILTER I

DEF ADPFIR
DEF X, Y

* THIS 256-TAP ADAPTIVE FIR FILTER USES ON-CHIP MEMORY BLOCK
BO FOR COEFFICIENTS AND BLOCK Bl FOR DATA SAMPLES. THE
NEWEST ~NPUT SHOULD BE IN MEMORY LOCATION X WHEN CALLED •

• THE OUTPUT WILL BE IN MEMORY LOCATION Y WHEN RETURNED.
* ASSUME THAT THE DATA PAGE IS 0 WHEN THE ROUTINE IS CALLED.

COEFFP EQU)FFOO BO PROGRAM MEMORY ADDRESS
COEFFD EQU)0200 I 80 DATA MEMORY ADDRESS

ONE EQU)7A CONSTANT ONE (DP.O)
BETA EQU)7B ADAPTATION CONSTANT (DP_O)
ERR EQU)7C SIGNAL ERROR (DP_O)
ERRF EQU)70 ERROR FUNCTION (DP-O)
Y EQU)7E FILTER OUTPUT (DP.O)
X EQU)7F NEWEST DATA SAMPLE (Dr-O)
FRSTAP EQU)0300 NEXT NEWEST DATA SAMPLE
LASTAP EQU)03FF OLDEST DATA SAMPLE

.. FINITE IMPULSE RESPONSE (FIR) FILTER.
*
ADPFIR CNFP CONFIGURE BO AS PROGRAM:

MPH 0 Clear the .p register.
LAC ONE,14 Load output rounding bit.
LARP AR3
LRLl AR3,LASTAP Point to the oldeat S8l1.ple.

FIR QPTl 255
HACD COEFFP, .- 2S6-tap FIR filter.
CNFD CONFIGURE BO AS DATA:
APAC
SACH Y,I Store the filter output.
NEG
ADD X,15 Add the newest input.
SACH ERR,I orr(1) • x(1) - 1(1)

" LNS ADAPTATION OF FILTER COEFFICIENTS.

LT ERR
MPY QETA
PAC errf(!) • beta. err(i)
ADD ONE,14 ROUND THE RESULT.
SACH ERRF,l

MAR *.
LAC X INCLUDE NEWEST SAMPLE.
SACL *

LRLl AR2,COEFFD POINT TO THE COEFFICIENTS'
LRLl AR3, LASTAP POINT TO THE DATA SAMPLES.
LT ERRF
MPY ·-,AR2 P • 2*beta"err(i)"x(i-2SS)

ADAPT ZALR ",AR3 LOAD ACCH WITH b255(1) & ROUND.
MPH "-.AR2 b255(1.1) _ b255(1) + P

P • 2*beta.err(i)"x(1-254)
SACH *. STORE b255(1+1).

ZALR *,AR3 LOAD ACCH WITH b254(1) & QOUND.
MPH "-,AR2 b254(1.1) - b254(1) + P

P • 2"beta"err(i)"x(1-253)
SACH '+ STORE b254(1+1).

ZALR *,AR3 LOAD ACCH WITH b253(t) & ROUND.
MPH *-,AR2 b253(i+1) _ b253(1) + P

P • 2*beta*err(1)*x(1-252)
SACH *+ STORE b253(1+1).

ZALR *,AR3 LOAD ACCH WITH bl(1) & ROUND.
MPH. *-.AR2 bl(1.1) _ bl(1) • P

P • 2*beta*err(i)*x(1-0)
SACH '. STORE bl(1+1).

ZALR *,AR3 LOAD ACCH WITH bO(1) & ROUND.
APAC *-.AR2 bO(i+1) _ bO(i) + .P
SACH *. STOQE bO(1.1).

RET RETURN TO CALLING ROUTINE.

pleted per sample due to the adaptation, and the adaptation Figure 7. 256-tap adaptive FIR filter routine.

46 The Texas Instruments TMS320C25 Digital Signal Microcomputer

itself dictates that the coefficients be stored in the recon
figurable block of on-chip RAM. Thus, an adaptive filter
with no external data memory is limited to 256 taps.

Telecommunications applications. Digital signal process
ing will be more extensively used in telecommunications as it
evolves toward all-digital networks. 17 Below, we discuss
several typical uses of the TMS32OC2S in telecommunica
tions applications.

Echo cancellation. In echo cancellation, an adaptive FIR
filter performs the modeling routine and signal modifica
tions needed to adaptively cancel the echo caused by im
pedance mismatches in telephone transmission'lines. The
TMS32OC2S's large on-chip RAM of S44 words and on
chip ROM of 4K words allow it to execute a 2S6-tap adap
tive filter (32-ms echo cancellation) without external data or
program memory.

High-speed modems. For high-speed modems, the
TMS32OC25 can perform functions such as modulation
and demodulation, adaptive equalization, and echo
cancellation. 18.19

Voice coding. Voice-coding techniques such as full-duplex,
32,OOO-bit-per-second adaptive differential pulse-code
modulation (CCITT 0.721), CVSD, 16,OOO-bit-per-second
subband coding, and linear predictive coding are frequent
ly used in voice transmission and storage. The spted of the
TMS32OC25 in performing arithmetic and its normaliza
tion and bit-manipulation capabilities enable it to imple
ment these functions, usually within itself (i.e., with no ex
ternal devices).

Graphics and Image processing appHcatlons. In these ap
plications, a signal processor's ability to interface with a
host processor is important. The TMS32OC2S multi
processor interface enables it to be used in a variety of
host/coprocessor configurations. Oraphics and image pro
cessing applications can use the TMS32OC2S's large directly
ad!Jressable external data space and global memory capabil
ity to allow graphical images in memory to be shared with a
host processor, thus minimizing data transfers. The
TMS32OC2S's indexed indirect addressing modes allow ma
trices to be processed row by row when matrix multiplica
tion is performed for 3-D image rotation, translation, and
scaling. .

High-speed control applications. These applications use
the TMS32OC2S's general-purpose features for bit-test and
logical operations, timing synchronization, and fast data
transfers (10 million l6-bit words per second). They use the
TMS32OC2S in closed-loop systems for control signal condi
tioning, filtering, high-speed computing, and multichannel
multiplexing. The following examples demonstrate typical
control applications.

Disk control. In disk drives, a closed-loop actuation
mechanism positions the read/write heads over the disk
surface. Accurate positioning requires various signal con
ditioning tasks to be performed. The TMS320C2S can
replace costly bit-slice, custom, and analog solutions in
performing such tasks as compensation, filtering, and
fine/coarse tuning.

Robotics. The TMS32OC2S's digital signal processing and
bit-manipulation power, coupled with its host interface,
allow it to be useful in robotics control. The TMS32OC2S
can replace both the digital controllers and the analog signal
processing hardware a robot needs to communicate to a
central host processor, and it can perform the numerically
intensive control functions typical of robotic applications.

InStrumentation. Instruments such as spectrum analyzers
often require a large data memory space and a processor
capable of performing long-length FFTs and generating
high-precision functions with minimal external hardware.
The TMS32OC2S fulfills these requirements.

Numeric processing applications. Numeric and array pro
cessing applications benefit from the TMS320C2S's perfor
mance. The device's high throughput and its multi
processing and data memory expansion capabilities make it
a low-cost, easy-to-use replacement for a typical bit-slice ar
ray processor.

Benchmarks. The TMS32OC2S has demonstrated im
pressive performance of benchmarks representing common
DSP routines and applications. Table 3 shows this perfor
mance.

T he TMS32OC2S digital signal processor is the newest
member of the TMS320 family. It is a pin
compatible, CMOS version of the TMS32020 but

offers several enhancements of that device-a 1000ns in
struction cycle time, 4K words of on-chip masked ROM,
eight auxiliary registers, an ~ight-Ievel hardware stack, and a
double-buffered serial port. It also enhances the TMS32020
instruction set to support adaptive filtering, extended
precision arithmetic, bit-reversed addressing, and faster
I/O.

The TMS32OC2S's multiprocessor capability, large
memory spaces, and general-purpose features allow it to be
used in a variety of systems, including ones currently
employing costly bit-slice processors or cllStom ICs .•

The Texas Instruments TMS320C25 Digital Signal Microcomputer 47

References
I. L. R. Rabiner and B. Gold, Theory and Application of

Digital Signal Processing, Prentice-Hall, Englewood
aiffs, N.J., 1975.

2. A. V. Oppenheim, ed., Applications of Digital Signal
Processing, J>rentice-HaIl, Englewood Cliffs, N.J.,
1978.

3. L. R. Rabiner and R. W. Schafer, Digital Processing 0/
Speech Signals, Prentice-Hall, Englewood aiffs, N.J.,
1978.

4. Digital Signal Processing Applications with the TMS320
Family, Texas Instruments Inc., 1986.

5. R. Morris, Digital Signal Processing Software, DSPS
Inc., Ottawa, Ont., 1983.

6. A.V. Oppenheim and R.W. Schafer, Digital Signal Pro
cessing, Prentice-Hall, Englewood Cliffs, N.J., 1975.

7. C. Burrus and T. Parks, DFTIFFT and Convolution
Algorithms, John Wiley & Sons, New York, 1985.

8. K. McDonough, E. Ca:udel, S. Magar, and A. Leigh,
"Microcomputer with 32-bit Arithmetic Does High
Precision Number Crunching," Electronics, Feb. 24,
1982, pp. 105-110.

9. S. Magar, E. Ca:udel, and A. Leigh, "A Microcomputel
with Digital Signal Processing Capability," Digest of

Tech. Papers-1982 IEEE Int'l Solid-State Circuits
Con/., pp. 32-33 and 284-285.

10. TMS32010 User's Guide, Texas Instruments Inc., 1983.

II. TMS32OC25 User's Guide, Texas Instruments Inc., •
1986.

12. TMS32020 User's Guide, Texas Instruments Inc., 1985.
13. H. G. Cragon, "The Elements of Sjngle-Chip Micro

computer Architecture," Computer, Vol. 13, No. 10,
Oct. 1980, pp. 27-41. .

14. S. Rosen, "Electronic Computers: A Historical
Survey," Computing Surveys, Vol. I, No. I, Mar. 1969.

15. M. Honig and D. Messerschmitt, Adaptive Filters,
Kluwer Academic Publishers, Hingham, Mass., 1984.

16. TMS320 Family Development Support Reference
Guide, Texas Instruments Inc., 1986.

17. M. Bellanger, "New Applications of Digital Signal Pro
cessing in Communications," IEEE ASSP Magazine,
July 1986, pp. 6-11.

18. R. Lucky et aI., Principles of Data Communication,
McGraw-Hili, New York, 1965.

19. P. Van Gerwen et al., "Microprocessor Implementation
of High Speed Data Moderns," IEEE Trans. Com
munications, Vol. COM-25, 1977, pp. 238-249.

48 The Texas Instruments TMS320C25 Digital Signal Microcomputer

Gene A. Frantz has been Texas Instruments' applications
manager for digital signal processing products since 1984.
He is also a senior member of the Technical Staff at TI. He
joined TI in 1974 as a system design engineer and worked
on calculators in TI's Consumer Products Division. In 1976
he was assigned to the Li'l Professor design team. He was
next assigned to the Speak & Spell project, where he served
as program manager. Since then, he has been involved with
every speech·related consumer product developed at TI.

Frantz received a BSEE from the University of Central
Florida in 1971, an MSEE from Southern Methodist
University, and an MBA from Texas Tech University.

Jay Reimer, a member of the TI Technical Staff, handles
DSP applications engineering for the TMS320 family of
products. He joined TI in J 979 to work with speech prod
ucts in the company's Consumer Products Division. In
1984, he transferred to the Semiconductor Group to work
with digital signal processors. His responsibilities include
software development for the TMS320 family and applica
tions assistance for customers using the processors. Reimer
received a BS in physics from Fort Hays State University,
Kansas, in 1975 and an MS in physics from the University
of Kansas in 1977.

Kun...shan Lin has been involved in digital signal processing
applications in the TI Semiconductor Group since 1984. He
is a senior member of the TI Technical Staff. He joined
Texas Instruments in 1979 and was assigned to the Con
sumer Products Division, where he developed speech tech
niques for learning aids. Prior to joining TI, he was an
assistant professor of electrical engineering at Tennessee
State University and an adjunct assistant professor of EE at
the University of New Mexico. Lin received his PhD from
the University of New Mexico in 1976.

Jon Bradley is an applications engineer for the TMS320
family. He joined Texas Instruments in 1976 and has been
an applications engineer for most of TI's microprocessor
and peripheral products, starting with the TMS9900 family.
His responsibilities have included microprocessor system
design, digital and analog circuit design, integrated circuit
design, test engineering, and programming. Bradley received
a BSEE from Worcester Polytechnic Institute, Massachu
setts, in 1976.

The Texas Instruments TMS320C25 Digital Signal Microcomputer 49

50 The Texas Instruments TMS320C25 Digital Signal Microcomputer

Part II. Digital Signal Processing
Interface Techniques

4. Hardware Interfacing to the TMS32OC2x
(George Troullinos and Jon Bradley)

5. Interfacing the TMS320 Family to the TLC32040 Family
(Linear Products - Texas Instruments)

6. ICC Requirements of a TMS32OC25
(Dave Zalac)

7. An Implementation of a Software UART Using the TMS32OC25
(Dave Zalac)

8. TMS32OC17 and TMS37OCOlO Serial Interface
(Peter Robinson)

51

52

Hardware Interfacing
to the

TMS320C2x

George Troullinos
Jon Bradley

Digital Signal Processor Products - Semiconductor Group
Texas Instruments

53

54 Hardware Interfacing to the TMS320C2x

Introduction

Each member of the TMS320 Second-Generation Digital Signal Processors family has the
power and flexibility to satisfy a wide range of system requirements. The second-generation
TMS320 line includes the TMS32020, TMS320C25, TMS320C25-50, TMS320E25, and
TMS320C26. Please refer to the Second-Generation TMS320 User's Guide[l] for details on de
vice-to-device variation.

All TMS320 second-generation DSPs are pin-compatible and thus have the same set of exter
nal interface signals. For convenience, the following notation will be used throughout this report:
Second-generation TMS320 devices refer to all members of this family, TMS320C2x refers to all
members of the second-generation family except the TMS32020 (i.e., TMS320C25,
TMS320C25-50, TMS320E25, and TMS320C26). In other TI literature, TMS320C2x normally
refers to the entire second-generation family. This report will focus on TMS320C2x hardware in
terfacing.

All second-generation TMS320 devices can address 64K 16-bit words in data space, 64K
words in program space, and 16 16-bit wide I/O ports. The 128K-word address space for program
and data memory can be utilized in applications that require large amounts of memory by interfac
ing external memories using the control signals of second-generation TMS320 devices. In other
applications, the internal program and data resources of second-generation TMS320 devices can
be used to implement single-chip solutions. Peripheral devices can be interfaced to second-genera
tion TMS320 devices to perform analog signal acquisition at different levels of signal quality.

This report suggests hardware design techniques for interfacing memories and peripherals
to the TMS320C2x. Differences between the TMS320C2x and the TMS32020 are pointed out
when appropriate. The first section presents the design interfaces of PROMs, EPROMs, and static
RAMs (SRAM) to the TMS320C2x. Timing requirements of the processor and external memories
are considered. The second section discusses the interface of a combo-codec (PCM coder-decoder),
an analog-to-digital converter, and a digital-to-analog converter to the TMS320C2x. All interfaces
in this report have been built and tested to verify their operation.

Ready Generation Techniques

This section describes techniques for generating the READY input signal for the
TMS320C2x. READY can be used to extend external bus cycles by an integer number of machine
cycles. The READY input thereby provides a means of interfacing the TMS320C2x to external de
vices that cannot be accessed at full speed, such as memory devices having access times longer than
those required by the TMS320C2x.

The access time (ta) of a given device determines the number of dormant cycles (wait-states)
required for each access of that device. In general, N wait-states are required for a particular access
if

[te(C) * (N-I) + ta(A)] < ta < [te(C) * N + ta(A)] , N > 0

where te(C) is the period of CLKOUTl/2 (the reciprocal ofthe machine rate) and ta(A) is the access
time from address specified in the appropriate second-generation TMS320 device electrical speci
fication, Table 1 gives appropriate values ofN for several ranges ofta for a TMS320C25 operating

Hardware Interfacing to the TMS320C2x ss

with a 100 ns instruction cycle time and a TMS320C25-50 operating with a 80 ns instruction cycle
time.

Table 1. Number of Wait-States Required for a Memory or Peripheral Access

TMS320C2S TMS320C2S-S0

Access Time Number of Wait Access Time Number of Walt
States Required States Required

I. < 40 os 0 ta < 29 os 0

40 os < I. < 140 os 1 29 os < I. < 109 os 1

140 os < I. < 240 os 2 109" os < I. < 189 os 2

240 os < I. < 340 r.s 3 189 os < I. < 269 os 3

340 os < I. < 440 os 4 269 os < I. < 349 os 4

The timing requirements for generation of the READY signal are specified in the
TMS320C25 electrical specifications by tsu(A) and td(SL-R) or td(C2H-R)'

CLKOUT2

__ A1S-AJ1
RS,DS,LS,R/W

Figure 1. Ready Timing Requirement

--------------J;if \"-------'/

~
I

I
I

\l / ~I --------------"
t4- tSU(A)

\
~---)@(-

READY~

READY (see Figure 1) must be valid no later than tsu(A) + td(SL-R) after the address bus and
interface control signals (except STRB) become valid. This evaluates to

tsu(A) + td(SL-R) = (0-11) + (0-20) = 9 ns

for a TMS320C25-50 operating with an input clock frequency of 50.0 MHz, and

tsu(A) + td(SL-R) = (Q-12) + (Q-20) == 18 ns

for a TMS320C25 operating with an input clock frequency of 40.0 MHz. Note that for bus cycles
with wait-states, CLKOUT2 serves as'the timing reference, whereas for no-wait cycles either
STRB or CLKOUT2 can be used as the timing reference. Any skew between these two signals may
be disregarded as td(SL-R) and td(C2H-~) are guaranteed independently.

56 Hardware Interfacing to the TMS320C2x

If all external bus cycles are to occur with no wait-states, READY can simply be tied high
with a pull-up resistor. Extending all external bus cycles with one wait-state can easily be accom
plished by connecting the MSC output to READY as shown in Figure 2.

Figure 2. Connection for One Wait-State External Accesses

66
READY 1---.....,

TMS320C25-50

MSC 1---'
59

Similarly, MSC and the PS, DS, and IS signals can be used to generate wait-state mixes such
as that resulting from the circuit in Figure 3. With this circuit, all program space accesses are one
wait-state accesses while all data space and I/O accesses occur at full speed.

Figure 3. Ready Generation for One Wait-State Program Space Accesses

READY 1------,

TMS320C25-50

Hardware Interfacing to theTMS320C2x 57

Applications having sufficiently simple address partitioning can make use of one or more
levels of standard logic gates to generate READY. The circuit shown in Figure 4 has the following
wait-state map:

External Space Address Range Number of Walt-States

Program OOOOh-7FFFh 1

Program 8000h-FFFFh 0

Data OOOOh-FFFFh 0

I/O OOOOh-OOOFh 1

Figure 4. Ready Generator with Simple Address Partitioning

TMS320C25-50 1/374AS10

MSC 1-----1

OS 1--...... -------1

is 1-----1

A151--...J

REAOYI----------------~

Note that this circuit just meets the READY specification of the TMS320C2S-S0 with
READY guaranteed valid no later than 9 ns from address valid.

TMS320C2S-S0 applications requiring more extensive address decoding will in most cases
require the use of a high-speed programmable logic device to generate READY sufficiently fast.
Two such devices are listed in Table 2.

Table 2. High-Speed Programmable Logic Devices

Manufacturer Part Number tpd (ns)

TI TIBPAL16L8-7 7.S
.AMD PAL16L8-7 7.5

The wait-state generator shown in Figure 5 can be used to generate the READY signal for
a TMS320C25 interfaced to external devices requiring up to 2 wait-states. A timing diagram for
this circuit is shown in Figure 6.

58 Hardware Interfacing to the TMS320C2x

Figure 5. 1\\'0 Wait-State Generator Design
1 kQ

+5V-.~--~----------------------.

1/274ALS20A

FROM
TMS320C2x:

'1~9
2 K Q t-=6'---_-'

CLR
1/274ALS114A

CLKOUT2------~----r-------~

10 1/274ALS114A

PR~ 8 11
J Q r------'::'-<\

K Q 9
CLR §

RS-------~----------~

8 READY
TO
TMS320C2x

t Connections to other devices in the system that require two wait states. (Inputs not used by other devices should be
pulled up.)
Connections to other devices in the sysiem that require one wait state. (Inputs not used by other devices should be pulled
up.)

§ Connections to other devices in the system that require zero wait states. (Inputs not used by other devices should be
pulled up.)

Figure 6. Timing Diagram for 1\\'0 Wait-State Generator Design

CLKOUT1

CLKOUT2

ps~b~~I~ ~ : : VALID
I I I
! I I

==-=- -----I~\LI I MEMSEL I I I
I I

J J-l r- t3

READY t1 -l 't-/r-~-....... \. __ _

A15-A.Q., ~ VALID ~ PS, OS, IS/VY\ _______________ ~

MEMSEL \'~------------~I
READY ________ ---J1 \.'----

ONE WAIT
STATE

TWO WAIT
STATES

With this arrangement, READY is driven by a multiple-input NAND gate. This can be a stan
dard gate such as a 74AS30 or can be part of the logic implemented by a high-speed programmable
logic device. The output of this gate is low unless at least one of the inputs is low. The propagation
delay of READY decode logic selecting zero wait-state devices in addition to the NAND delay

Hardware Interfacing to the TMS320C2x 59

must be short enough to satisfy the READY specification discussed above. For zero wait-state
accesses, the flip-flop J inputs are low, the Q outputs are high and neither flip-flop switches state.

Now consider the circuit operation when a one or two wait-state device is selected. The Q
output of each JK flip-flop is high at the start of the access, which can be considered to begin with
the falling edge of CLKOUT2. All the inputs to the NAND gate generating READY are high and
thus READY is low during the first cycle and the TMS320C25 inserts one wait-state. If a one
wait-state device is decoded, the J input of the first flip-flop goes high. The 0 output goes low on
the next falling edge of CLKOUT2 and READY goes high.

If a two wait -state device is decoded, the J input of the second flip-flop goes high. Two cycles
are required for this signal to propagate to the READY line. For each cycle, one wait-state is in
serted.

Referring to Figure 6, the following two inequalities must be satisfied in order for the setup
time specification of the flip-flops to be met:

1) t(decode) + t(NAND) + tsu(74ALS114A) < tsu(A) + 20
2) tp(74ALS114A) + t(NAND) + tsu(74ALS114A) < 40

where t(decode) is the pr?pagation delay of the decode logic for the selected device, t(NAND) is the
delay associated with the NAND gate at the flip-flop input, tsu(74ALS114A) and tp(74ALS114A) are
the data setup time and prop delay of the 74ALS114A, respectively, and 0 = l/4tc(C). In Figure 6,

t1 = t(decode)
t2 = t(NAND) + tsu(74ALS114A) and
t3 = tp(74ALS114A) + t(NAND)'

A third inequality must be satisfied for the READY specification to be met:

3) tp(74ALS114A) + t(NAND) < td(C2H-R) + 20

For a TMS320C25-50 operating at 50 MHz, inequality (1) evaluates to
1) t(decode) + 5 ns + 22 ns < 9 ns + 40 ns

or

t(decode) < 22 ns

This inequality specifies the maximum decode time in order for the setup time specification
of the pertinent flip-flop to be met.

The remaining two inequalities are satisfied:
2) 19ns + 5ns + 22ns < 80ns
3) 19ns + 5ns < Ons + 40ns

All three of these inequalities should be considered if different flip-flops and/or gates are
used to implement the wait-state generator.

Note that special considerations should be made with respect to READY timing ifthe TI Ex
tended Development Support (XDS) in-circuit emulator is used. Please refer to TMS320 Sec
ond-Generation User's Guide[l] and/or Extended Development Support Products User's Guide
(literature number SPYF001) for further details on READY timing requirements.

60 Hardware Interfacing to the TMS320C2x

Interfacing Memories to the TMS320C25

This section describes interfaces of external memory devices to the 40 MHz speed version
of the TMS320C25. Interfaces to PROMS, EPROMs, and SRAMS are included. Aseparate section
is included in this document to describe memory interfaces to the TMS320C25-50.

The TMS320C2x offers 544 words of RAM and 4K words of masked ROM. For prototyping
and/or system expansion, however, external memories may be required. The speed, cost, and power
limitations imposed by a particular application determine the selection of a specific memory de
vice. If speed and maximum throughput are desired, the TMS320C2x can run with no wait-states.
In this case, memory accesses are performed in a single machine cycle. Alternatively, slower me
mories can be accessed by introducing an appropriate number of wait-states or by slowing down
the system clock. The latter approach is more appropriate when interfacing to memories with ac
cess times slightly longer than those required by the TMS320C2x at full speed.

When wait-states are required, the number of wait-states depends on the memory access time
(see Table Ion page 2). With no wait-states, the READY input to the TMS320C2x can be pulled
high. If one or more wait-states are required, the READY input must be driven low during the
cycles in which the TMS320C2x enters a wait-state.

The TMS320C2x implements two separate and distinct memory spaces: program space (64K
words) and data space (64K words). Distinction between the two spaces is made through the use
of the PS (program space) and DS (data space) pins. A third space, the I/O space, is also available
for interfacing with peripherals. This space is selected by the IS (I/O space) pin, and is discussed
in the Interfacing Peripherals section of this report.

The following brief discussion describes the TMS320C2x read and write cycles. A more
complete discussion is contained in the Second-Generation TMS320 User s Guide. [1] Throughout
this report, Q is used to indicate the duration of a quarter-phase of the output clock (CLKOUTI or
CLKOUT2). Memory interfaces discussed in this report assume that the TMS320C2x is running
at 40 MHz; i.e., Q = 25 ns. The memory read and write timings are shown in Figure 7. In a read
cycle, the following sequence occurs:

1) Nearthe beginning of the machine cycle (CLKOUTI goes low), the address bus and one
of the memory select signals (PS, DS, or IS) becomes valid. R/W goes high to indicate
a read cycle.

2) STRB goes low in not less than tsu(A) = (Q -12) ns after the address bus becomes valid.
3) Early in the second half of the cycle, the READY input is sampled. READY must be

stable (low or high) at the TMS320C2x no later than td(SL-R) = (Q - 20) ns after STRB
goes low.

4) With no wait-states (READY is high), data must be available no later than
ta(SL) = (2Q - 23) ns after STRB goes low.

The sequence of events that occurs during an external write cycle is the same as the above,
with the following differences:

1) R/W goes low to indicate a write cycle.
2) The data bus begins to be driven approximately concurrently with STRB going low.
3) The data bus enters a high-impedance state no later than tdis(D) = (Q + 15) ns after STRB

goes high.

Hardware Interfacing to the TMS320C2x 61

Figure 7. Read and Write Timings

CLKOUT1 \ ___ --'1 '--
_A15-A.Qz ~ VALID \.fX\l')0 PS, OS, IS ___ I\l:L/"\ ______________ ~

I loot-
--, I tSU(A)

STRB -------+--I X I:
I I I
I I I

RiW~1 1 ~ :-j I td(SL.R) :

READY~~
015-00

: J-- ta(SL) -l !
! 1 (DATA IN)..-------

I I
I I

RiW~i I Am
~--, :--td(LoR I .

READY
~~~~~~~~ 

015-00 ~ DATA oU:-- tdIS(D) >@-
Interfacing with a PROM 

READ 
CYCLE 

WRITE 
CYCLE 

A convenient means of implementing program memory in a TMS320C2x system is provided 
through the use of PROMs. Two separate approaches for interfacing PROMs to the TMS320C2x 
are considered. The first approach does not require address decoding since the system contains only 
a small amount of one type of memory. The second approach illustrates an interface that utilizes 
address decoding to distinguish between two or more memory types with different access times. 

Direct PROM Interface 

An example of a no wait-state memory system is the direct PROM interface design shown 
in Figure 8. In this design, the TMS320C2x is interfaced with the Texas Instruments 
TBP38L165-35, a low-power, 2K x 8-bit PROM. The interface timing for the design of Figure 8 
is shown in Figure 9. 

62 Hardware Interfacing to the TMS320C2x 



Figure 8. Direct Interface of the TBP38L165-35 to the TMS320C2x 
TBP38L165-35 

AO 
8 

AO 00 
9 DO 
10 01 

A1 A1 01 
11 02 

A2 A2 02 
13 03 

A3 A3 03 14 04 
A4 A4 04 

15 05 
A5 05 

16 06 
AS 06 

17 07 
A7 07 
A8 
A9 

A10 
G2 G3 

x 74ALS04 20 18 19 
N PS 

J10 
U 
0 H10 N 

STRB M 
(/) 

H11 :::e RiW I- +5 V 
20 18 19 

1k Q G1 G2 G3 9 08 
READY AO 00 

10 09 
DO 

A1 01 
11010 

01 
A2 02 

13011 
02 

A3 03 14012 
03 

A4 04 
15013 

04 
A5 05 

16014 
05 

AS OS 
17015 

OS 
A7 07 

07 
A8 

08 
A9 

09 
A10 

010 TBP38L 1S5-35 
011 
012 
013 
014 
015 

Hardware Interfacing to the TMS320C2x 63 



Figure 9. Interface Timing of the TBP38L165-35 to the TMS320C2x 

CLKOUT1 \ I "----
STRB \ A 

-.,I :.- tsu 
1 

1 1 

A15-~ 

~ : 
VALID 

: ~ PS 

I" tats) .. ' I" .. I tdls I 1 

015-00 ( OATA'IN ) 
As discussed earlier, the TMS320C2x expects data to be valid no later than (20 - 23) ns after 

STRB goes low; this is 27 ns for a TMS320C2x operating at 40 MHz. The access times of the 
TBP38L165-35 are 35 ns maximum from address (ta(A», and 20 ns maximum from chip enable 
(taCS»· On the TMS320C2x, address becomes valid a minimum of tsu = (0 - 12) ns = 13 ns 
before STRB goes low (see Figure 1). The memory is not enabled, however until STRB goes low. 
Therefore, the data appears on the data bus within 27 ns after STRB goes low, as required by the 
TMS320C2x. 

Bus conflict may occur when a TMS320C2x write cycle is followed by a memory read cycle. 
In this case, the TMS320C2x data lines must enter a high-impedance state before the memory starts 
driving the data bus. In a write cycle, the TMS320C2x enters a high-impedance state no later than 
15 ns after the beginning of the next cycle. Since the design of Figure 8 utilizes STRB to enable 
the TBP38L165s, these memories cannot drive the data bus before STRB goes low, i.e., 0 ns after 
the beginning of the cycle. Therefore, bus conflict is avoided since 25 ns > 15 ns. 

Note that the TMS320C2x R/W line is connected to the G2 enable line on both TBP38L165s. 
Therefore, the PROMs are disabled whenever R/W goes low, even ifSTRB is active. This prevents 
the bus conflict that occurs if the PROMs are written to when using the TBLW instruction, which 
transfers data from the data memory space to the program memory space. [1] Such transfers, how
ever, were intended to be made only when RAMs are used in the program space. 

64 Hardware Interfacing to the TMS320C2x 



The most critical timing parameters of the TBP38L165-35 direct interface to the 
TMS320C2x are summarized in Table 3. 

Table 3. Timing Parameters of the TBP38L165-35 Direct Interface to the TMS320C2x 

Description Symbol Used In Figure 9 Value 

Address setup time tsu 13 ns (min) 
TBP38L165-35 access time from chip enable t.(S) 20 ns (max) 
TBP38L165-35 disable time tdis 15 ns (max) 

PROM Interface with Address Decoding 

The second design example considers the interface of PROMs to the TMS320C2x using ad
dress decoding. A major issue when designing an interface with address decoding is that the 
TMS320C2x requires the READY signal to be stable no later than (0 - 20)ns after STRB goes 
low. Since the setup time for the address is (0 -12) ns, the TMS320C2x requires (worst case) a 
stable READY at least (20 - 32) ns after the address has been stabilized. This is 18 ns at 40 MHz. 
Proper address decoding may require two levels of gating. A third level of gating is required when 
more than one type of memories or peripherals with different numbers of wait-states is used. Using 
'AS interface logic (the fastest currently available), these three levels of gating have a total propa
gation delay of 15 ns (worst case). Using a 74AS138 three-to-eight-line decoder to implement the 
first two levels of gating does will not result in any significant improvement in the propagation 
delay. (The 74AS138 has a maximum propagation delay of 9.5 ns for a high-to-low transition.) 

An approach that can be used to meet the READY timing requirements is shown in Figure 10. 
This design utilizes one address decoding scheme to generate READY, and a second address decod
ing scheme to enable the different memory banks. 

In this design, the memories with no wait-states are mapped at the upper half (upper 32K) 
of the program space. The lower half is used for memories with one or more wait-states. This decod
ing is implemented with the 74AS20 four-input NAND gate. The output of this gate is low when 
the following are true: 

1) Address line A15 is high; i.e., the upper 32K words are selected. 
2) DS and IS are high; i.e., an external program memory cycle is in progress. 

Hardware Interfacing to the TMS320C2x 65 



Figure 10. Interface of the TBP38L165-35 to the TMS320C2x 

TMS320C2X TBP38L 165-35 

AO K1 AO 00 9 DO 
10 01 A1 A1 01 11 02 

A2 A2 02 
13 03 

A3 A3 03 14 04 
A4 A4 04 15 05 
A5 A5 05 16 06 
A6 A6 06 17 07 
A7 A7 07 
A8 A8 
A9 K7 

A9 
A10 74AS138 A10 

A13 L9 1 A 5 G1 G2 G3 

A14 K9 2 B G2B 20 18 19 

A15 
L10 3 

C -: 

PS J10 4 
G2A Y4 11 MEMSE 

H11 6 
RiW G1 

1 kQ +5 V 
+5V 

KiO 1 kQ 
OS J11 is 

READY B8 

STRB 
H10 

DO 
20 18 19 

01 G1 G2 G3 9 08 
02 

AO 00 10 09 
03 

A1 01 11 010 
04 

A2 02 13 011 
05 

A3 03 14012 
06 

A4 04 15013 
07 

A5 05 16014 
08 

A6 06 17015 
09 

A7 07 

010 A8 

011 A9 

012 
A10 

013 TBP38L 165-35 
014 
015 

66 Hardware Interfacing to the TMS320C2x 



The timing of READY is shown in Figure 11. READY goes high 10 ns (worst case) after the 
address has become valid. 

CLKOUT1 

CLKOUT2 

MEMSTRB 

MEMSEL 

READY 

015-00 

Figure 11. Interface Timing of the TBP38L165-35 to the 
TMS320C2x (with Address Decoding) 

\ / 

/ \ 

\ I: 
I I 
I I 
I I: I \ I I 
I I 
I I I I 

"-

~ r4-t1 ~ t4-t1 

~ VALID 

: ~ I 
~t2 -., 

I X r I 
I 
I I 

-.j :--t3 I 

I 

/ I 
14- tdls \. 

I I I -.j I 
I+-- t4 ~ 

I 
I 

( DATA IN ) 
Address decoding is implemented by the 74AS138. This decoding separates the program 

space into eight segments of8K words each. The first four of these segments (lower 32K of address 
space) are enabled by the YO, Y1, Y2, and Y3 outputs of the 74AS138. These segments are used 
for memories with one or more wait-states. The other four segments select memories with no 
wait-states (the TBP38L165s are mapped in segment #5 starting at address 8000h). Note that in 
Figure 10, RIW is used to enable the 74AS138. This prevents a bus conflict from occurring if an 
attempt is made to write to the PROMs. 

In Figure 10, MEMSEL goes low no later than 10 ns (time t2 in Figure 11) after address is 
valid. The PROMs are not enabled, however, until MEMSTRB goes high, i.e., a minimum of 5 ns 
after STRB goes low (time t1 in Figure 11). Valid data appears on the data bus within 25 ns later. 
This meets the 27 ns or (20 - 23) ns access time required from STRB low by the TMS320C2x. Note 
that in the design of Figure 10, STRB is used to enable the PROMs so that no bus conflict occurs 

Hardware Interfacing to the TMS320C2x 67 



if the memory read cycle is followed by a write cycle. As seen in Figure 11, the memory enters a 
high-impedance state within (t1 + tdis) = 20 nsafter STRB goes high. Therefore, if a memory read 
cycle is followed by a write cycle, no bus conflict occurs since the TMS320C2x starts driving the 
data bus no earlier than Q ns after the beginning of the write cycle. 

The most critical timing parameters of the TBP38L165-35 interface with address decoding 
to the TMS320C2x are summarized in Table 4. 

Table 4. Timing Parameters of the TBP38L165·35 Interface with 
Address Decoding to the TMS320C2x 

Description Symbol Used in Figure 11 Value 

Propagation delay through the 74AS04 11 5 ns (max) 
Propagation delay through the 74AS138 t2 10 ns (max) 
Address valid to READY t3 10 ns (max) 
TBP38L165-35 disable time tdis 15 ns (max) 

In summary, when interfacing to PROM memories with the TMS320C2x, two different ap
proaches can be taken depending on whether or not any of the memories in the system require 
wait-states. When no wait-states are required for any of the memories, READY can be tied high, 
and the interface to the PROMs becomes a direct connection. When some of the system memories 
require wait-states, address decoding must be performed, and a valid READY signal that meets the 
TMS320C2x timing requirements must be provided. An efficient method of accomplishing this is 
to use one section of circuitry to generate the address decode, and a second, independent section 
to generate the READY signal. 

EPROM Interfacing 

EPROMs may be used to debug TMS320C2x algorithms. Three different EPROM interfaces 
to the TMS320C2x are presented in this subsection. First, the direct interface of an EPROM that 
requires no wait-states is discussed. This is followed by descriptions of EPROM interfaces that re
quire one and two wait-states. 

Direct EPROM Interface with No Wait·States 

A Texas Instruments TMS27C292-35 EPROM can interface directly to the TMS320C2x 
with no wait-states, as shown in Figure 12. The TMS27C292-35 is a CMOS EPROM with access 
times of 35 ns from valid address and 25 ns from chip select. The timing of the interface is shown 
in Figure 13. 

68 Hardware Interfacing to the TMS320C2x 



Figure 12. Direct Interface of the TMS27C292-35 to the TMS320C2x 

AO 
A1 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 

A10 

TBP38L 165-35 

00 
01 

A2 02 
A3 03 
A4 04 

05 
06 
07 

G2 G3 

STRB~H~1~0~ __________ +-____ -4 
20 18 19 

J10 74AS04 
PS~~------~ ~~+------+--~ 

R~~H~1~1 __________ -4~ ____ +-__ ~ __ ~ 
+5 V 

20 18 19 

1 kQ G1 G2 G3 
AO 00 
A1 01 
A2 02 
A3 03 
A4 04 
A5 05 
A6 06 
A7 07 
A8 
A9 
A10 

TBP38L 165-35 

Hardware Interfacing to the TMS320C2x 

9 DO 
10 01 
11 02 
13 03 
14 04 
15 05 
16 06 
17 07 

9 08 
10 09 
11010 
13011 
14012 
15013 
16014 
17015 

69 



Figure 13. Interface Timing of the TMS27C292-35 to the TMS320C2x 

CLKOUT1 \ / '-
STRB \ A 

-..,J I I 
I r4- tsu I 

A15-~ ~ : 
VAllO 

: ~ PS 

r-- ta(S) --+l !4- t dis ---: 

015-00 ( OATAIN ) 
As shown in Figure 13, the EPROMs are not enabled until STRB goes low. Since the address 

has been valid for at least tsu = 13 ns before STRB goes low, valid data appear on the data bus 
ta(S) = 25 ns (max) later. The EPROMs are disabled with STRB going high, and their output buffers 
enter a high-impedance state, tdis = 25 ns (max) later. Therefore, no bus conflict occurs even if the 
memory read cycle is followed by a write cycle. 

The most critical timing parameters of the TMS27C292-35 direct interface to the 
TMS320C2x are summarized in Table 5. 

Table 5. Timing Parameters of the TMS27C292-35 Direct Interface to the TMS320C2x 

Description Symbol Used in Figure 11 Value 

Address setup time tsu 13 ns (min) 
TMS27C292-35 access time from chip enable tatS) 25 ns (max) 
TMS27C292-35 disable time tdis 25 ns (max) 

EPROM Interface with One Wait-State 

The hardware interface of the Wafer Scale WS57C64F-12 (8K x 8-bit EPROMs) to the 
TMS320C2x is shown in Figure 14. The WS57C64F-12s are mapped at address 2000h. The inter
face timing diagram is provided in Figure 15. 

70 Hardware Interfacing to the TMS320C2x 



Figure 14. Interface of the WSS7C64F-12 to the TMS320C2x 

1 
2 
3 
4 
6 

Hardware Interfacing to the TMS320C2x 

74AS138 

A 
B 14 MEMSEL 
C Y1 

G2A G2B 5 

G1 

WAIT-STATE 
GENERATOR 
OF FIGURE8 

(ONE WAIT STATE) 

74AS30 

WS57C64F-12 

00 11 DO 
12 01 01 13 02 02 15 A3 03 03 
16 04 04 17 05 

05 18 06 06 19 07 
07 

+5V 

23 A10 1 kQ 
2 A11 PGM 27 A12 

CE OE 
20 22 

OTSTR 

08 
09 

13 010 
15 011 

04 16 012 
17 013 05 
18 014 

06 19 015 
07 

+5V 

1 kQ 

WS57C64F-12 

71 



Figure 15. Interface Timing of the WS57C64F-12 to the TMS320C2x 

CLKOUT1 \ / \ / "--
CLKOUT2 / \ / \' 

STRB \ I: 
I 

'-- t2 
I 

~ I 

OTSTR \J.. :1 
I 
I 

PS/RW. 

~ VALID : ~ A15-AO 
I 
~ '-- t1 I 

I 

\J.. 
I 

I I r MEMSEL I I 
I I 
I I 
I I 

READY I I i \ I I 
I I 

I. t3 ~' 
I --: I ...-- t4 

015-00 ( VALID )-

The WS57C64-12 access times from valid address, chip select, and output enable are 
ta(A) = 120 ns (max),ta(CE) = 120 ns (max), and ta(OE) = ~ns (maxh!espectively. As shown 
in Figure 14, the 74AS138 is used for address decoding. PS and R/W are used to drive the 
G2A and G 1 enable.inputs of the 74AS 138, respectively. The latter prevents any bus conflict re
sulting from an accidental write (using the TBLW instruction) to the program space. MEMSEL go
ing low t1 = 10 ns (max) after address valid (see Figure 15) is used for two purposes: 

1) to drive the wait-state generator, as discussed earlier; and 
2) to generate a strobe signal, DTSTR, that activates the output buffers of the 

WS57C64-12s. 

Time t3 in Figure 15, is the time from valid address to valid data on the data bus, i.e., t3 = t1 + ta(CE) 
= 130 ns (max). Since 40 ns < t3 < 140 ns, one wait-state is required. The wait-state generator of 
Figure 14 may be used to implement this wait-state. Also, note that the WS57CF64-12 is the slow
est member of the WS57C64F EPROM series, and still meets the specifications for one wait-state. 

With STRB going high, the read has been completed. DTSTR is then used to turn off the 
memory output buffers. The output disable time of the WS57C64F-12 is tdis = 35 ns (max). Time 
t4 in Figure 15 is used to indicate the time from STRB high to output entering a high-impedance 
state. With a propagation delay of tp = 5.8 ns (max) through the 74AS32, t4 = tp + tdis = 40.8 ns 
(max). Since this time is less than 50 ns (the earliest the TMS320C2x can start driving the data bus 
when the next instruction is a write). there is no bus conflict. 

72 Hardware Interfacing to the TMS320C2x 



Table 6 summarizes the most critical timing parameters of the WS57C64F-12 interface to 
the TMS320C2x. 

Table 6. Timing Parameters of the WSS7C64F-12 Interface to the TMS320C2x 

Description Symbol Used in Figure 11 Value 

Address valid to MEMSEL low t1 to.5 ns (max) 
STRB to DTSTR low t2 5.8 ns (max) 
TMS320C2x address valid to WS57C64F·12 data valid t3 130.0 ns (max) 
STRB high to WS57C64F-12 output disable t4 40.8 ns (max) 

Hardware Interfacing to the TMS320C2x 73 



EPROM Interface with Two Wait-States 

The interface of the TMS27C64-20 to the TMS320C2x is shown in Figure 16. The 
TMS27C64-20 is a CMOS 8K x 8-bit EPROM with an access time of 200 ns. The timing diagram 
is shown in Figure 17. 

Figure 16. Interface of the TMS27C64-20 to the TMS320C2x 

TMS320C2x TMS27C64-20 74ALS244A 

74 

AO ~ ~ AO 01 11 2 1 A 1 1Y1l-1:...;:8_..;;:0..;;:0 ..... 
A1 ~ ~ A1 02 12 4 1A2 1Y21--1:...=6'----::0:.-:,1 ....... 
A2 ~ ~ A2 03 13 6 1A3 1Y3l-1;..;4_...;;0...;;;2 ..... 
A3 ~ ~ A3 04 15 8 1A4 1Y4 .... 1c-2_...,:::0=3" 
A4 ~ ~ A4 05 16 11 2A 1 2Y11-:9:-----=O:-::4"" 
A5 ~ ~4 A5 06 1178 1135 2A2 2Y2~7_-.::0:.::5" 

L5 / I'. .. 2Y3 <.:5:-----=0:-::::6 ....... A6 -:-:---' I ---=-3 A6 07 19 17 2A3 r: 
~ I'. " 2Y4t-:3,-----=0:..:..7"" 

:~~ ~:~ 08 +5V 2:; 2G 
A9 .!::LJ ~ A9 I J 1 kQ ~F-~:...I 

A10 ~ r" ~; A10 PGM!if 
A11~ ~A11 
A12 ~ 74AS138 ~ A12 G ~ 
A 13WL~9~---11-fAA:--" E I-{:-
A14 L.:K,..::9=-:-_ ..... 2-iB _ 20 

'L1 0 3 C YO 1>-'-14-'--M~E~M....;S_E_L+-__ ~ 
A15 J10 
~ H11 4 G2A G2B r?-, 74AS32 

~R~~~~~c==:6~G~1~~~~ *~l--JL---J:~~c=:' DfSfR STRB H10 -..-/ 

DOS ~ 
~ 20 

01 "'E1' 
02 ~ WAIT-STATE E 

02 GENERATOR ~ AO 01 11 2 
03 D1'" OF FIGURE 8 ~ A1 02 12 4 
04 'C'2" (TWO WAIT ~ A2 03 13 6 
05 C1' STATES) i'----l. A3 04 15 8 
06 --e2' ~ A4 05 16 11 
07~A2 5 17 13 
08 ""B3' ~ A5 06 18 15 
09 ~ ~ A6 07 19 17 

010~ .0 .r>oo 0.0 ~ 25:~ 08 +5V 

011 A4' 74AS30 r-I ~ A9 J 1 kQ 
012"'B5'"' 'I 21--
013 ~A5 ~ A10 PGM 27 

~A11 
014 ~ ~ A12 G ~ __ 2 
015~ -:!:-

READY B8 TMS27C64-20 -

1G 
1A1 
1A2 
1A3 
1A4 
2A1 
2A2 
2A3 
2A4 

2G 
1Y1l-1;,.;;8_""0..;;,8,, 
1 Y21--1:...=6--::=:0,:;.9 ....... 
1Y31--1:...:4~0~1:.::0 ....... 
1Y41-:'1:=2-.::0~171 '" 
2Y1 ... 9_...;;0-,1=2, 
2Y21-'7_-::0~1.::,3, 
2Y3 ... 5'---..;;:0:...:1..;.4 ..... 
2Y 41-=3,----=0:,.:1.::,5, 

74ALS244A 

Hardware Interfacing to the TMS320C2x 



Figure 17. Interface Timing of the TMS27C64-20 to the TMS320C2x 

CLKOUT1\ I \ I \ I \ 

CLKOUT2\ I \ I \ I \ r 
STRB \ !: 

I 
.-; ~ 

I t2 

DTSTR ~ I 
PS/RW,~ 
A15-AO 

VALID ~ 
I 

~tl I .-; 

\l 
I 

I I I 
MEMSEL I I 

I I 
I I 
I I 

READY I I I \ I I 
I I 

i. t3 .. ' I t'- t4 I 
--, 

015·00 
, VALID ) 

With a 200-ns access time, two wait-states are needed. These can be implemented using the 
wait-state generator of Figure 14(a). Address decoding is similar to that used for the 
WS57C64F-12, and the TMS27C64 is mapped at address OOOOh. The memory cycle starts with ad
dress valid. MEMSEL becomes low tl = 10 ns (max) later, due to propagation delay through the 
74AS138. With MEMSEL active, valid data appear on the TMS27C64 data lines, ta = 200 ns (max) 
later. As shown in Figure 16, the 74ALS244A octal buffers are used to buffer the memories from 
the TMS320C2x. These buffers are enabled with DTSTR, which is a logical-QR signal of both 
MEMSEL and STRB. The maximum propagation delay through these buffers is tp = 10 ns. There
fore, valid data appear on the TMS320C2x data bus no later than t3 = t1 + ta + tp = 220 ns from valid 
address. This is the overall access time, and 140 ns < t3 < 240 ns, i.e., two wait-states are sufficient. 

With STRB going high, the TMS320C2x has completed the memory read. DTSTR follows 
STRB, and t2 = 5.8 ns (maximum propagation delay through the 74AS32) after STRB goes high; 
DTSTR also goes high. This forces the 74ALS244As to enter a high-impedance state 13 ns (max) 
later. Therefore, no later than t4 = (13 + 5.8) ns = 18.8 ns after STRB goes high, the outputs of the 
74ALS244As are in a high-impedance state (see Figure 12). Buffers were used because the disable 
time of the TMS27C64-20 is 60 ns, which will generate a conflict on the data bus. 

Hardware Interfacing to the TMS320C2x 75 



Table 7 summarizes the most critical timing parameters of the TMS27C64-20 interface to 
the TMS320C2x. 

Table 7. Timing Parameters of the TMS27C64-20 Interface to the TMS320C2x 

Description Symbol Used in Figure 11 Value 

Address Valid 10 MEMSEL low 11 10.5 ns (max) 
STRB low 10 DTSR low 12 5.8 . ns (max) 
TMS320C2x address valid 10 TMS27C64-20 13 220.0 ns (max) 

dala valid 
STRB high to TMS27C64-20 output disable t4 18.8 ns (max) 

In summary, EPROMs can be a valuable tool during the prototyping stages of a design, and 
may even be desirable for production. When EPROMs that are fast enough are used with the 
TMS320C2x, a direct interface similar to that used for PROMs may be used. When slower, less 
costly EPROMs are used, a simple flip-flop circuit can be used to generate one or more wait-states. 
With slower EPROMs, however, data output turnoff can be slow, and must be taken into consider
ation in the design. The same advantages are offered by the TMS320E25, which has an on-chip 
4K-word EPROM in place of the 4K-word on-chip ROM of the TMS320C25. 

Interfacing SRAMS 

The TMS320C2x can utilize SRAM as either program or data memory. When used as pro
gram memory, object code can be downloaded into the RAM and executed. SRAM can also be used 
as data memory to extend the TMS320C2x's 544 words of internal RAM. In the first case, the 
SRAM is mapped into the TMS320C2x program space, while the second case maps the SRAM into 
the data space. 

The SRAM chosen for this interface is the Cypress Semiconductor CY7C169-25 4K x 4-bit 
SRAM. This SRAM has a 25-ns access time from address (ta(A») and a 15-ns access time from chip 
enable (ta(CE»)' Note that these access times are fast enough that a wait-state generator is not re
quired for this interface. If, however, RAMs that require wait-states are used in the system,the 
wait-state genera'tor described in the Interfacing EPROMs subsection can be used. 

RAMs with a 4K x 4-bit organization are used in this application to minimize the package 
count for the desired number of words of memory being implemented. In this case, only four pack

ages are required. In contrast, if 16K x 1-bit memories had been used, 16 packages would have been 
required, and much of the memory might have gone unused. In general, the choice of memory orga
nization for a particular system should be based on the amount of memory required and the organi-
zation of the memories currently available in the industry. . 

The hardware interface to this RAM is shown in Figure 18, and a timing diagram of the inter
face is presented in Figure 19. 

76 Hardware Interfacing to the TMS320C2x 



Figure 18. Interface of the CY7C169·25 to the TMS320C2x 

TMS320C2x 

AO~ 
A1~ 
A2~ 
A3~ 
A4~ 
A5~ 
A6 ..!::L/ 
A7~ 
A8~ 
A9~ 
A10~ b 
A11~ ~ 

REAOy~B~8----~~~ 
74A~g 

OS K10 -
1 

- 74AS32 

74AS138 
A 15 L1 0 3 A Y11>-'-14,,--~ 
A14 K9 2 B 

AO 16 AO 
A1 17 A1 
A2 18 A2 
A3 19 A3 

A 13 L9 1 C lJ+5 V 
4-
~ G2A 1kQ 

STRB H10 5 G2B G1 
RNi H11 6 

OO~ 
01~ IE1 ~ 

02~ MEMSEL 
03~ 
04~ 
05 '"'C1"" 
06 "'B2' 
07 "A2" 
08 -s3' 
09~ 
010~ 
011~ 
012~ 
013~ 

AS " 
014 "i3"6"" 

L...-_....;;;0;..;.15;;;.!~ 

Hardware Interfacing to the TMS320C2x 

A4 1 A4 
AS 2 
A6 3 AS 

'-:":A7=-"':4~ A6 

A8 5 A7 
'"'A--9"----'6'-i A8 

'-A:..:1=-0----'7~ :~ 0 

A11 8 
9 ~~ 

'-------=1=<11 ~S 
W 

CY7C169·25 

1/01 15 
1/02 14 
1/03 13 
1/04 12 

..;:..;...;. 

15 
1/01 14 
1/02 13 
1/03 12 

11/04 

1/01 
15 
14 

1/02 13 
1/03 12 

JLQi 

1/01 
15 
14 

1/02 
13 

1/03 
12 

1/04 

DO 
01 
02 
03 

04 
05 
06 
07 

08 
09 

010 
011 

012 
013 
014 
015 

77 



Figure 19. Interface Timing of the CY7C169·25 to the TMS320C2x 

CLKOUT1 

OS, 
A15·AO 

READY 

STRB. 

Rm 

MEMSEL 

TMS320C25 
015·00 

CY7C169-25 
015·00 

Rm 

MEMSEL 

TMS320C25 
015-00 

CY7C169-25 
1/04-1/°1 

'" I \,---, 
I 

~ VALID ~--------------~ I I 
: ,...t1 --1 

/ '----I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Utt/ 
I 
I 
I 
I 
I 

l- t4 "1 

\ , 
I 

I: !I"-_______ J I 

I 
I 

-l :--t2 
I 

I 
I 
I 
I t3 ....., 

\l 
I 

I: ~-------,., I 
I 

) I 
I 

I 
I 

: I-lt;.....-I -l :--t7 

~------------)~----
, t-- I 

ts -to; I m 
~ M§?2 

\ 
I. ts I 

@&M 

I: '--------~""':ir__ tg 

'msm-
=> 

READ 
CYCLE 

WRITE 
CYCLE 

The design of Figure 18 utilizes a similar approach to the one described in the Interfacing 
PROMs and Interfacing EPROMs subsections; i.e., one address decoding scheme is used to gener
ate READY, and a second address decoding scheme is used to enable the SRAM. In this design, 
RAMs with no wait-states are mapped at the lower half (lower 32K words) of the TMS320C2x data 
space. The upper half is used for memories with one or more wait-states. This decoding is implem
ented with the 74AS32 two-input OR gate. The output of this gate is low (active) whenDS is low 
(i.e., access to external data space requested), and A15 is low (i.e., lower 32K words selected). Time 
tl in Figure 19 indicates the time from valid address to READY going high. The maximum value 
for tl is 

tl = 1p(74AS32) + tp(74AS30) = (5.8 + 5) ns = 10.8 ns 

where tp(X) denotes the maximum propagation delay through device X. 

78 Hardware Interfacing to the TMS320C2x 



As shown in Figure 18, address decoding that enables the RAM is implemented with the 
74AS138. This decoding separates the data space into eight segments with 8K words per segment. 
The first four segments are enabled by the YO, Y1, Y2, and Y3 outputs of the 74AS138. These seg
ments are used for memories with no wait-states. Note, in Figure 18, that the CY7C169s are en
abled by Y1; i.e., the memories are mapped at address 2000h. The rest of those segments, enabled 
by the other outputs ofthe 74AS138 decoder, are used for memories with one or more wait-states. 

Memory Read Cycle 

Figure 19 shows the timing for memory read and write cycles. In a read cycle, R/W goes high 
concurrently with valid address, indicating that a read rather than a write cycle has been initiated. 
With STRB used to enable the 74AS 138, MEMSEL goes low no later than t2 = 8.5 ns after STRB 
goes low. This is the maximum propagation delay of the 74AS138 before outputting a high-to-low 
transition from the G enable pin. The CY7C169s begin driving the data bus no earlier than ts = 5 ns 
after MEMSEL goes low. By then, all of the devices having access to the data bus must have entered 
a high-impedance state. Figure 19 shows the TMS320C2x data lines entering a high-impedance 
state no later than t4 = 15 ns after the beginning of the read cycle. This is the case when the present 
read cycle is preceded by a write cycle. 

The RAMs provide valid data no later than t6 = 15 ns after MEMSEL goes low. Therefore, 
the worst-case access time from STRB going low is t2 + t6 = 23.5 ns. This meets the 27-ns access 
time required by the TMS320C2x operating at 40 MHz. 

The TMS320C2x read cycle is concluded with STRB going high. MEMSEL follows STRB 
and goes high within t3 = 7.5 ns. This time is the maximum propagation delay through the 74AS138 
for a low-to-high transition. The CY7C169 data lines enter a high-impedance state no later than 
t7' = 15 ns after MEMSEL goes high. Therefore, no bus conflict occurs if the present read cycle is 
followed by a write cycle. 

Memory Write Cycle 

As shown in Figure 19, the memory write cycle is similar to the read cycle with the exception 
that RiW is low. The TMS320C2x begins driving the data bus as soon as STRB goes low, while 
MEMSEL follows STRB within 12 = 8.5 ns. Since R/W is low when MEMSEL goes low, the 
CY7C169s do not drive the data bus. 

Data is clocked into the CY7C169s on the rising edge of MEMSEL. Time t8 in Figure 19 is 
the time that data is valid before MEMSEL goes high. This time is no less than the TMS320C2x 
minimum data setup time before STRB goes high (t8 = (20 - 20) ns = 30 ns when operating at 
40 MHz) plus the 2-ns minimum propagation delay through the 74AS138. Therefore, t8 is equal 
to or greater than 32 ns. Note that this time meets the 10-ns minimum data setup time required by 
the CY7C169. 

Table 8 summarizes the most critical timing parameters that must be considered when inter
facing the CY7C169s with the TMS320C2x. 

Hardware Interfacing to the TMS320C2x 79 



,Table 8. Timing Parameters of the CY7C169-25 Interface to the TMS320C2x 

Description Symbol Used in Figure 11 Value 

Address valid to READY valid tl 10.8 ns (max) 
STRB low to MEMSEL low t2 8.5 ns (max) 
STRB high to MEMSEL high t) 7.5 ns (max) 
CLKOUTI low to TMS320C2x data bus t4 15.0 ns (max) 
entering the high-impedance state 

MEMSEL low to CY7C169-25 driving ts 5.0 ns (min) 
MEMSEL low to CY7C169-25 data valid t6 15.0 ns (max) 
MEMSEL high to CY7C169-25 entering t7 15.0 ns (max) 

the high-impedl!nce state 
Data setup time for a write ts 32.0 ns (min) 
Data hold time t9 7.5 ns (min) 

In summary, interfacing external RAM to the TMS320C2x is quite useful for expanding the 
internal data memory or implementing additional RAM program memory. In cases where RAMs 
of different execution times are used, separate schemes for address decoding and READY genera
tion can be used to meet READY timing requirements in a similar manner to that used for the 
PROM interface as described in this report. RAMs with similar access times may then be grouped 
together in one segment of memory. 

Interfacing Memories to the TMS320C2S-50 

TMS320C25-50 memory interfaces are similar or identical in form to those of the 40-MHZ 
version of the TMS320C25. In many cases, the interfacing techniques given in the preceding sec .. 
tion can be used, with higher-speed versions of the memory devices substituted. 

This section describes the memory interface timing requirements of the TMS320C25-50. 
Determining appropriate memory device speeds requires an understanding ofTMS320C25-50 ex
ternal bus cycles and the timing specification of the device. 

The following excerpt from the TMS320C25-50 Electrical Specification and Figure 20 
show the information necessary to determine the minimum memory device speed for a given appli
cation. 

Min Max Units 

t.(A) 3Q-31 ns 
tsu(A) 0-11 ns 
tsu(D)R 17 ns 1 

80 Hardware Interfacing to the TMS320C2x 



Figure 20 shows a TMS320C25-50 memory read and write cycle. Either of two timing re
quirements must be satisfied to guarantee a successful read operation. These two requirements are 
specified by ta(A) and tsu(D)R' Note that it is not necessary to satisfy both requirements, as each 
parameter is guaranteed independently. 

Figure 20. TMS320C2S·S0 Memory Read and Write Cycle 

CLKOUT1 \ / '---
_A15-A.Q. ~ VALID ~ PS, OS, IS I. 

--, 1 tsu(A) 

STRB ------~! X I: 
1 1 1 
1 1 1 

RfN~! ! ~ 
1-1 r- td(SL.R) I ' 

REAOY~~ 
I j-- ta(SL) -I i 
! ! ( DATA IN )>-------015-00 

1 1 
1 1 

_~II 
R/W~I 
-I I 

REAOY~ 
1 toe-- tdls(D) ---: 

015-00 -------@<OATAOUT)@_ 

Hardware Interfacing to the TMS320C2x 

READ 
CYCLE 

WRITE 
CYCLE 

81 



A timing requirement of special interest is the memory access time measured from the falling 
edge of STRB. The specification of this requirement is jointly implied by the device ta(A) and 
tsu(D)R specifications as shown in the following. 

or 

ta(A) is defined as follows: 

ta(A) = tsu(A)min + tw(SL) + tr(C) - tsu(D)Rmin 

For convenience, define tw(S) as follows: 

1w(S) = tw(SL) + tr(C) 

Then ta(A) is given by 

ta(A) = tsu(A)min + tw(S) - tsu(D)Rmin 

The ta(A) specification guarantees that 

ta(A) > ta(A)max 

tsu(A)min + tw(S) - tsu(O)Rmin > ta(A)max 

The above inequality is potentially confusing in that it guarantees a minimum on a parameter 
with a max subscript. As with any parameter specified as a maximum, the measured ta(A) value of 
a given device must be greater than the specified maximum in order for the device to pass the ta(A) 
test performed on the device. In this way, all values of ta(A) less than ta(A)max are guaranteed to 
meet the device ta(A) requirement. 

ta(A)max is specified as 

ta(A)max = 30-35 ns 
ta(A)max = 30-31 ns 

(40 MHz TMS320C25) 
(TMS320C25-50) 

Thus, the following inequalities are guaranteed: 

0-12 + tw(S) - 23> 30-35 
0-11 + tw(S)-17 > 30-31 

(40 MHz TMS320C25) 
(TMS320C25-50) 

which evaluate to 

tw(S) > 20 
tw(s) > 20-3 

(40 MHz TMS320C25) 
(TMS320C25-50) 

The ta(A) specification thus implies a minimum value for tw(S). 

On a memory read cycle, data must be valid no later than tsu(D)Rmin prior to STRB going 
high. The maximum access time from STRB low (define this as ta(SL») is thus 

ta(SL)max = tw(S)min - tsu(D)Rmin 

= 20 - 23 (40 MHz TMS320C25) 

or 
= (2Q-3) -17 = 2Q-20 (TMS320C25-50) 

The specification of ta(SL) typically determines the maximum access tim~ from chip select 
andlor output enable for a memory device, as discussed in the following sections. Note that the 

82 Hardware Interfacing to the TMS320C2x 



specification of the minimum value of tw(SL) (STRB -low pulse width) is in no way involved in 
assessing access time from address or from STRB going low. 

Full-Speed Interfaces 

The TMS320C25-50 can be interfaced to fast SRAM with no wait-states. Two key memory 
device specifications for such an interface are access time from address valid and access time from 
chip select and/or output enable. The key TMS320C25-50 timing requirements are specified by 

ta(SL) and ta(A)' 

If STRB is an input to logic that generates the chip select and/or output enable signal for a 
memory device, data must be guaranteed valid no later than ta(SL) - td from STRB falling, where 
td is the delay imposed by the logic used to generate the chip select or output enable signal. 

Typically, devices with both chip select and output enable signals can more easily accommo
date the ta(SL) requirement, as STRB can directly serve as the output enable signal (active low), 
resulting in the condition td = O. Logic internal to the memory device enables the device's input 
or output buffers (depending on the state ofR/W) only if the chip is selected via its chip select input. 

Interfaces to memory devices having a chip select input but no output enable input will in
clude chip select logic having STRB as one of its inputs. In these cases td is nonzero and thus the 
requirement on access time from chip select is tightened. 

Hardware Interfacing to the TMS320C2x 83 



Figure 21 shows a TMS320C25-50 interfaced to 8K-words of full-speed SRAM and 
8K-words of two wait-state EPROM. The operation of this circuit is discussed in the following sec
tion. 

Figure 21. TMS320C25-50 Interfaced to Full-Speed SRAM and Two Wait-State EPROM 

0 8 .. 
0 ,.:. • ,.:. 00 0 
0 

I~- 0 

~ 74AL5244A 

~ '" 11;-
0 l 0 

'" ,.:. 
I 0 

10 0 

ICl-<>-/> I~ 
N 

c-- W 
74ALSl14A Id U f--

TM527C64·15 MT5C6408·20 
IW I~ 18- .., " ~ 

!~ II ~ 0 

N ~ 0 <f ~ 
~ 

<l: N 
N ~ N Ij . ~ ::Ii 

a: 
<Jl 

0 ~ 
<f 

~ ~ ~ N 

< N 

< '----1 
ICl- I~ III 10 0 

I~ 
..... u 

74AL5114Ald TM 527C64·15 MT5C6408-20 f- -< 

Iw I~ 18 ...... 
.., A ~ 

{ .. I I .. 8 
I~ 

0 
,}, .. <Jl 

~ 
74AL5244A Ei !!t. 

It; ..... ~ 

~ I~ ,"""1 I '" ~ 

Q! --I-< ,}, 

Ei -

~ ~ ~""'J Q! '" co ~I 
0 

0 
co S <l: 0 

N 0 ,}, 

T 
--'-< 

~ 
,.:. 

Ei 0 
~ 

~ ~ I~ I~ I~ I~ ~I~ Ill! N >-t- o 
0 a: ::l ~ 
:b < 0 0 

~ a: 
1:1 

..J 
U 

0 

'" l:l 
::Ii 
t-

84 Hardware Interfacing to the TMS320C2x 



Full-Speed SRAM in Program Space 

The cost and/or availability of non-volatile memory devices able to support TMS320C25-50 
full-speed program execution may be prohibitive for some applications. (One such device is the 
Cypress Semiconductor 2K x 8 EPROM, part number CY7C291A-25.) The program code for 
Figure 21 can be stored in EPROM and self-booted into the SRAM devices at powerup for subse
quent full-speed execution. 

Table 9 shows the wait-state map for this circuit. Note that the READY generation logic for 
this arrangement is simple enough that inexpensive gates can be used for its implementation. Refer 
to the Ready Generation Techniques section earlier in this report for details of operation of the 
READY generation logic. 

Table 9. Wait-State Map for Circuit of Figure 21. 

External Space Address Range Number of Wait-States 

Program OOOOh-7FFFh 2 
Program 8000h-FFFFh 0 
Data OOOOh-FFFFh 0 
I/O OOOOh-OOOFh 1 

The TI TMS27C64 EPROM devices reside in the two wait-state portion of program space 
at locations 0000h-1FFFh; the Micron MT5C6408-20 SRAM devices reside in the zero-wait por
tion of program space at locations 8000h-9FFFh. 

Timing Analysis 

Figure 22 shows the interface timing for accesses of the TMS27C64 EPROMs. Key timings 
are listed in Table 10. The output disable time of the TMS27C64 is too long to guarantee that no 
bus conflict will occur if an external write cycle follows a TMS27C64 read cycle; this is solved by 
buffering the data lines with TMS74ALS244A octal buffer lCs. 

Figure 22. Interface Timing for Accesses ofTMS27C64-15 to the TMS320C25-50 

CLKOUT1 \ ! \ ! \ ! '--
CLKOUT2 ! \ ! \ ! \ 

STRB \ Ii 
I 

PS/RW.~ VALID 
: ~ A15-AO 

t1 --' te-
:\{ I ;-PROM 

I I 
READY I ! I '-I I 

I- t2 ~ --' te- t3 
015-00 { VALID }-

Hardware Interfacing to the TMS320C2x 85 



Table 10. TMS27C64 Interface Timing Parameters 

Parameter Name Designation in Figure 22 Time Duration 

Address valid to PROM valid tl 5.8 ns (max) 
PROM valid to TMS27C64 data valid 150 ns (max) 
Address valid to TMS320C25 data valid t2 165.8 ns (max) 
STRB high to TMS74ALS244A outputs high-Z t3 18.8 ns (max) 

As shown in Figure 11, data is valid on the TMS27C64 data lines 5.S ns + 150 ns (max) after 
address becomes valid. The delay through the TMS 74ALS 244A buffers is 10 ns (max). Data is val
id on the TMS320C25-50 data bus t1 + t2 +10 = 165.8 ns (max) after address valid. Thus the in
equality t1 + t2 + 10 (max) < ta(A) + Ntc(C) is satisfied; 165.8 ns < 29 ns + 2 * 80 ns. Note that tc(C) 
is assumed to equal 80 ns. The buffer outputs are set in the high-impedance state t3 = 5.S ns + 13 
ns = 18.8 ns (max) after STRB goes high. 

Figure 23 shows the interface timing for accesse.s of the MT5C640S SRAMs. Key interface 
timing parameters are given in Table 11. 

Figure 23. Interface Timing for Accesses of the MT5C6408-20 to the TMS320C25-50 

A15.A..Qz~ VALID we PS, OS, IS i 
,. t1 ~ 

READY ! '--
STRB \ I: 

I I 
I I 

1#1 
I I '@@ R/W I I 

-I :- t2 I 
I 

I I 

I: 
I 

\ SRM2 I 
I 
I 

I I READ 
I I CYCLE TMS320C25·50 ) I I 

015·00 I I 
I 

:-- t4 t- t3 -I ---.! 
I I I 

MTSC640a-20 ~ : ~ OQa·OQ1 
I 

~ 
I 

~ t--ts -R/W I 
I ~t4 ----: }WR~ I CYCLE 

TMS320C25-50 ~ ~ 015·00 

86 Hardware Interfacing to the TMS320C2x 



Table 11. MTSC6408-20 Interface Timing Parameters 

Read Cycle 

Parameter Name Designation in 23 Time Duration 

Address valid 10 READY valid II 9 os (max) 
Address valid 10 SRM2 valid 12 9 os (max) 
Address valid to SRMI valid 9 os (max) 
SRMl/SRM2 valid 10 dala valid 13 20 os (max) 
STRB high 10 data bus high-Z 14 15 os (max) 

Write Cycle 

Parameter Name Designation in Figure 23 Time Duration 

Address valid 10 READY valid 11 9 os (max) 
Address valid 10 SRM2 valid t2 9 os (max) 
Address valid 10 SRMI valid 9 os (max) 
Data valid before STRB high ts 23 os (max) 
STRB high to data bus high-Z t4 15 os (max) 

The SRAMs are enabled if CEl is low and CE2 is high. CE2 is high when IS, DS, and A15 
are high. (Making use of the fact that the 3 external spaces are mutually exclusive and exhaustive, 
1 gate delay is saved by using IS and DS rather than PS. This is crucial for satisfying the READY 
timing requirement.) CE1 is driven directly by STRB. 

The function of the DE input of the MT5C6408s is the inverse of that of the WE input. 

Read Cycle 

As shown in Table 11, both chip enable inputs are valid no later than 9 ns from address valid. 
Data is valid no later than 20 ns after CE1 and CE2 are valid, thus satisfying the condition 

ta(SL) :S ta(SL)max' The outputs are tristated no later than 15 ns from STRB high. 

Write Cycle 

As shown in Table 11, both chip enable inputs are valid no later than 9 ns from address valid. 
Data is valid 23 ns (min) prior to STRB going high, satisfying the MT5C6408 data setup time re
quirement of 12 ns (min). The outputs are tristated no later than 35 ns from STRB high. 

The complete electrical specifications and additional information pertaining to the 
TMS320C25-50 may be found in the Second-Generation TMS320 User's Guide. [1 ] 

System Control Circuitry 

A system control circuitry performs important functions in system initialization and opera
tion. A powerup reset circuit design and a crystal oscillator circuit design are presented in this sec
tion. 

Reset Circuit 

The reset circuit shown in Figure 24 performs a power-up restart operation; i.e., the 
TMS320C2x is reset when power is applied. Note that the switch circuit must contain debounce 

Hardware Interfacing to the TMS320C2x 87 



circuitry. Driving the RS signal low initializes the processor. Reset affects several registers and sta
filS bits. For a detailed description of the effect of reset on the processor status, refer to the Sec
ond-Generati9n 1'1.1S320 User's G~ide.[lJ 

Figure 24. Powerup Reset Circuit 
TMS320C2x 

+5V 

R1=100 kQ 

r 
lOGNO 

4.71!F T 
"::' 

For proper system initialization, the reset signal must be applied for at least three CLKOUT 
cycles; i.e., 300 ns for a TMS320C2x operating at 40 MHz. Upon powerup, however, it can take 
up to hundreds of milliseconds before the system osciUator reaches a stable operating state. There
fore, the powerup reset circuit should generate a low pulse on the reset line until the oscillator is 
stable (between 100 and 200 ms); Once a proper reset pulse has been applied, processor operation 
begins at program memory location 0 which normally contains a branch (B) statement to direct pro
gram execution to the system initialization routine. 

The voltage on node A is controlled by the Rl CI network (see Figure 24). After a reset, the 
voltage rises exponentially to the time constant RICI, as shown in Figure 25. 

Figure 25. Vo~tage on tbe ',fMS320C2x Reset Pin 

VOLTAGE 

I V=VeC<1- e-Itt) 

Vee ------------------------=-~~~-~~------~----

TIME 

88 Hardware Interfacing to the TMS320C2x 



The duration of the low pulse on the reset pin is approximately tl, which is the time it takes 
for the capacitor Cl to fully charge; i.e., 1.5 V. This is approximately the voltage at which the reset 
input switches from a logic level 0 to a logic level 1. The capacitor's voltage is given by 

V:: Vee [I-e-f] . (1) 
, 

where 1: :: R 1 Cl is the reset circuit time constant. 

Solving (1) for t gives: 

(2) 

Setting the following: 

RI :: 1 MQ 

CI = 0.47 flF 
V = VI = 1.5 V 
Vee = 5V 

gives t = tl = 167 ms. The Schmitt triggers shown in Figure 25 appropiately reshape the signal on 
node A.Therefore, the reset circuit of Figure 24 can generate a low pulse of an appropriate duration 
(167 ms) to ensure the stabilization of the system oscillator when most systems are powered. 

Crystal Oscillator Circuit 

The crystal oscillator circuit shown in Figure 26 is suitable for providing the input clock sig
nal to any TMS320C2x device except the TMS32020. Since crystals with fundamental oscillation 
frequencies of 30 MHz and above are not readily available, a parallel-resonant third-overtone oscil
lator is used. If a packed clock oscillator is used, oscillator design is of no concern. 

Figure 26. Crystal Oscillator Circuit 
TMS320C2x +5V fcrystal 

o 
4.7kQ 

74AS04 r I 0.1 !iF 
10 kQ C= . 

20 pF 
L 

- -- -

The 74AS04 inverter in Figure 26 provides the 180-degree phase shift that a parallel oscilla
tor requires. The 4.7-kQ resistor provides the negative feedback that keeps the oscillator in a stabre 

Hardware Interfacing to the TMS320C2x 89 



state; i.e., the poles of the system are constrained in a narrow region about the j axis of the s-plane 
(analog domain). The 10-kQ potentiometer is used to bias the 74AS04 in,the linear region. This 

, potentiometer is adjusted as follows: Before the crystal is placed on the system board, adjust the 
potentiometer so that the voltage at the input of the inverter is in the transition region between a 
logic level 0 and a logic level 1 (i.e., approximately 1.5 V). Then install the crystal. 

In a third-overtone oscillator, the crystal fundamental frequency must be attenuated so that 
oscillation is at the third harmonic. This is achieved with an LC circuit that filters out the fundamen
tal, thus allowing oscillation at the third harmonic. The impedance of the LC network must be in
ductive at the crystal fundamental frequency and capacitive at the third harmonic. The impedance 
of the LC circuit is given by: 

L 

Z(w) = C 

j[L- ':cl 
(3) 

Therefore, the LC circuit has a pole at: 

(4) 

At frequencies significantly lower than wP' the 1/(wC) term in (3) becomes the dominating 
term while wL can be neglected. This gives: 

z(w) = jwL, for w < < wp (5) 

In (5), the LC circuit appears inductive at frequencies lower than wp. On the other hand, at 
frequencies much higher than wp, the wL term is the dominant term in (3), and 1/( wC) can be ne
glected. This gives: 

1 
z(w) = -. -

JWC 
forw» wp (6) 

The LC circuit in (6) appears increasingly capacitive as frequency increases above wp. This 
is shown in Figure 27, which is a plot of the magnitude of the impedance of the LC circuit of 
Figure 26 versus frequency. 

Based on the discussion above, the design of the LC circuit proceeds as follows: Choose the 
pole frequency wp approximately halfway between the crystal fundamental and the third harmonic. 
The circuit now appears inductive at the fundamental frequency and capacitive at the third harmon~ 
ic. 

In the oscillator of Figure 26, choose wp = 166.5 rads/s for the 40.96 MHz design or 
wp = 223.6 for the 51.2 Mflz design. These angular frequencies lie approximately halfway be
tween the respective fundamentals and third harmonics. Choose C = 20 pF. The appropriate value 
ofL may then be computed using (4). Values ofL for three differentTMS320C2x devices operating 
at different frequencies are tabulated in Table 12. 

90 Hardware Interfacing to the TMS32OC2x 



Table 12. Values of fcrystal and L for TMS320C2x Devices 

fcrysta' (MHz) L (IlH) 

TMS320C25 40.96 1.8 
TMS320C25-50 51.20 1.0 
TMS320E25 40.96 1.8 

Figure 27. Magnitude of the Impedance of the Oscillator LC Network 

I Z (00) I 

INDUCTIVE 
REGION 

CAPACITIVE 
REGION 

00 
(rad/s) 

The 0.1 fA.F capacitor in series with the 1.8 fA.H inductor is a coupling capacitor, requiring no 
DC path to ground. The 74AS04 inverter is included to shorten the rise and fall times of the 
waveform generated by the oscillator. 

Consider the case where the TTL inverter goes low. In this case, the current flowing through 
the 10-kQ resistor is less than 5 VIlO-kQ = 0.5 rnA. This is an acceptable current level since the 
74AS04 inverter can sink up to 20 rnA. 

The output of the oscillator drives the CLKIN input of the TMS320C2x, thus providing the 
four phases required for each machine cycle. With a 40.96 MHz input clock frequency, the 
TMS320C2x machine cycle is 97.6 ns. 

In summary, the system control circuitry performs functions that, while often overlooked, 
are critical for proper system initialization and operation. The powerup reset circuit assures that 
a reset of the part occurs only after the oscillator is running and stabilized. The oscillator circuit 
described allows the use of third-overtone crystals that are more readily available at frequencies 
above 20 MHz. 

Interfacing Peripherals 

Most DSP systems implement some amount of I/O using peripherals in addition to any 
memory included in the system. Quite commonly this includes analog input and output, which can 

Hardware Interfacing to the TMS320C2x 91 



be performed through the parallel and serial I/O ports on the TMS320C2x. In this section, hardware 
interfaces of the TMS320C2x to a codec, an analog-lo-digital converter (AID), and a digital-to-ana
log converter (D/A) are described. Interfacing TMS320 devices to the Texas Instruments 
TLC32040 Analog Interface Chip is described in the applications report Interfacing the TMS320 
Family to the TLC32040 Family found in this book. 

Combo-Codec Interface 

In speech, telecommunications, and many other applications that require low-cost ana
log-to-digital and digital-to-analog converters, a combo-codec may be used. Combo-codecs are 
single-chip pulse-code-modulated encoders and decoders (PCM codecs). They are designed to per
form the encoding (AID conversion) and decoding (D/A conversion), as well as the anti aliasing 
and smoothing filtering functions. Since combo-codecs perform these functions in a single 300-mil 
DIP package at low cost, they are extremely economical for providing system data conversion func
tions. The design presented here uses a Texas Instruments TCM29C16 codec, interfaced using the 
serial port of the TMS320C2x. 

TMS320C2x Serial Port 

The TMS320C2x serial port provides direct synchronous communication with serial de
vices. The interface signals are compatible with codecs and other serial components so that mini
mum external hardware is required. Externally, the serial port interface is implemented using the 
following pins on the TMS320C2x: 

• DX (transmitted serial data) 

• CLKX (transmit clock) 

• FSX (transmit framing synchronization signal) 

• DR (received serial data) 

• CLKR (receive clock) 

• FSR (receive framing synchronization signal) 

Data on DX and DR are clocked by CLKX and CLKR, respectively. These clocks are only 
required during serial transfers. Note that this is different from the TMS32020 serial port in which 
the clocks must be present at all times if the serial port is being used. Also, the TMS320C2x serial 
port is double-buffered while that of the TMS32020 is not. 

Serial port transfers are initiated by framing pulses on the FSX and FSR pins for transmit and 
receive operations respectively. For transmit operations, the FSX pin can be configured as an input 
or output. This option is selected by the transmit mode (TXM) bit of status register STl. [1] In this 
design, FSX is assumed to be configured as an input; therefore, transmit operations are initiated 
by a framing pulse on the FSX pin. Upon completion of receive and transmit operations, an RINT 
(serial port receive interrupt) and an XINT (serial port transmit interrupt) are generated, respective
ly. 

The format (FO) bit of status register STl is used to select the format (8-bit byte or 16-bit 
word) of the data to be received or transmitted. For interfacing the TMS320C2x to a codec, the for
mat bit should be set to one, formatting the data inS-bit bytes.[l] 

92 Hardware Interfacing to the TMS320C2x 



After the information from the codec is received by the TMS320C2x, the f.A.- or A-law com
panded data must be converted back to a linear representation for use in the TMS320C2x. Software 
companding routines appropriate for use on the TMS320C2x are provided in the book, Digital Sig
nal Processing with the TMS320 Family Volume 1.[2] 

The software required to initialize the TMS320C2x-codec interface is shown next. The ini
tialization routine should include the following: 

INIT DINT Disable interrupts 
FORT 1 ; Set 8-bit data format 
LACK lOh 
LDPK 0 
SACL DMA4 Enable RINT (through IMR) 

* 

* 

* 
EINT ; Enable interrupts 

Note that since reset initializes the TXM (transmit mode) and FSM (frame synchronization 
mode) bits to the values required by this interface, it was not necessary to explicitly initialize these 
values in the routine shown above. However, in digital communications with peripherals!devices! 
ports (T 1 trunks) that do not require a framing pulse for every byte!word transmitted, the FSM bit 
must be set to 0 using the RFSM instruction. [1] 

The interrupt mask register (IMR) located at data memory location 4h of the TMS320C2x 
data memory is used to enable the serial port receive interrupts (RINT). To access that memory lo
cation, the data page pointer must be set to zero. Also, the data page pointer must be initialized after 
reset since its contents are random at powerup. A value of 10h in the IMR enables only the RINT; 
all other interrupt sources are disabled. 

Interrupts are disabled upon reset. Before exiting the initialization routine, interrupts are re
enabled with the EINT instruction. 

Hardware Interfacing to the TMS320C2x 93 



The hardware interface between the TMS320C2x and the TCM29C16 combo-codec is 
shown in Figure 28. 

Figure 28. Interface of the TMS320C2x to the TCM29C16 Codec 

+5V 

TMS320C2x ~~~~~T~C~M~2~9C~1~6 100kQ 
AIN- ... 1,,-,4..--.NIfI-_lt_-..-..-<. Vee 

DR :~1 11 PCMOUT 
DXt-7:~--_6'PCMIN 

ClKX A9 
FSXJ-'B::..:9"--4""';':':'4"o=t 

+5 V ClKIN J-'F-.:1..:.,1 _____ ....-..::3i> 

AS 
R1= A8 
1 MQ 

~ - ANALOG GROUND 

~- DIGITAL GROUND 

Clock Divider Circuit 

+5V 

GSX 
PWRD+ 
DClKR 

5 

-5V 

100kQ 
ANALOG 
OUTPUT 

74HC390 74A5869 

+5V 

11 CKA 1 OA!-=3:........<~14~ ClK RCO 
7 100 1 50 H 

74AS04 

2 51 G 
11 ENT 
23 ENP 7 

A B 
6 

10kO ic 1 0
.
,

•
F 

~ C=20 pF 1 l=1.8 IlH 

A combo-co dec configured in the fixed-data-rate mode requires the following external clock 
signals: . 

A 2.048-MHz clock to be used as the masterclock, and 

8-kHz framing pulses required to initialize the data transfers. 

Both of these signals can be derived from the 40.96 MHz system clock with appropriate di
vider circuitry. This is the primary justification for selecting 40.96 MHz as the system clock fre-

94 Hardware Interfacing to the TMS320C2x 



quency. The clock divider circuit consists of a 74AS74 D-type flip-flop, a 74HC390 decade count
er, and a 74AS869 8-bit up/down counter. The hardware connections between these devices are 
shown in Figure 28. 

To generate the 2.048-MHz master clock for the combo-codec, a division by 20 of the 
40.96-MHz system clock is required. The 74HC390 contains on-chip two divide-by-2 and two di
vide-by-5 counters. Since the 74HC390 cannot be clocked with frequencies above approximately 
27 MHz, a 74AS74 configured as a T-type flip-flop is used. This implements a divide-by-2 of the 
40.96-MHz clock, thus making the output of the 74AS74 slow enough (20.48 MHz) to properly 
clock the 74HC390. The to-kQ pullup resistor shown in Figure 28 is used to ensure the compatibili
ty between the logic levels of the TTL (74AS74) and HCMOS (74HC390) devices. 

The 74HC390 is first used to implement a divide-by-5, which appears at the output pin 10D 
(pin #7) of the 74HC390 (see Figure 28). This in turn drives the divide-by-2 counter, at the output 
of which (pin lOA) the 2.048 MHz clock appears. Note that the divide-by-5 precedes the di
vide-by-2 because the codec requires a clock with a minimum duty cycle of 40 percent, while the 
output of the divide-by-5 has a duty cycle of only 20 percent. By following the divide-by-5 counter 
with the divide-by-2, the duty cycle at the output of the 74HC390 is 50 percent. 

The 7'4AS869 is configured to count down (SO = 1 and Sl = 0 in Figure 28); therefore, the 
counting sequence is 255, 254, ... , 1, 0, 255, ... , and so on. The ripple carry output generates a 
low-level pulse while the count is zero. The duration of this pulse is one input clock cycle, i.e., 
488 ns. The frequency of the ripple carry output is 2.048 MHz/256 = 8 kHz. By inverting this signal, 
positive pulses at 8 kHz are generated. These pulses are used by the TMS320C2x and codec as fram
ing pulses to initiate data transfers. 

TMS320C2x-Codec Interface 

The TMS320C2x interfaces directly to the codec, as shown in Figure 28, with no additional 
logic required. The PCM fJ.-law data generated by the codec at the PCMOUT pin is read by the 
TMS320C2x from the data receive (DR) pin, which is internally connected to the receive serial reg
ister (RSR).[1] The data transmitted from the data transmit (DX) pin ofthe TMS320C2x is received 
by the PCMIN input of the codec. During the digital-to-analog conversion, this data is converted 

from fJ.-Iaw PCM to linear. The resulting analog waveform is 10wpass-fiItered by the codec's inter
nal smoothing filter. Therefore, no additional filtering is required at the codec output (PWRO+). 

Hardware Interfacing to the TMS320C2x 95 



The timing diagram of the TMS320C2x-codec interface is shown in Figure 29. 

Figure 29. Interface Timing of the TMS320C2x to the TCM29C16 Codec 

CLKX ' 
'I I I ' I 
v--"'Ii r-1-L1 . I, FSXJ., ~ , ___ ~~ __ -+ __ ~ __ ~ __ +-~~-+ __ ~ __ ~~. 
, , II I I '( ) ox I ' I ' ,8 

(FO -1) A1 AS, , B1 
I I II 
~I 

XINT I I I I I II I '-... I ..... ~lIi-I-l - .... - .... -
(8) DATA TRANSMITTED BY THE TMS320C25 

CLKR 

FSR 

DR -r---{E~DC][X2~CM[)GIDaOC!ASi}-+--+~+-KIDC (b) (FO -1) 

~, RINT~ __ ~ __ ~ __ ~ __ ~ __ ~~~~ __ ~ ___ II ~ __ ~~\~I~~~~_ 

(8) DATA RECEIVED BY THE TMS320C25 

As indicated in Figure 29, both the transmit and receive operations are initiated by a framing 
pulse on the FSX and FSR pins of the TMS320C2x and the codec. The receive and transmit inter
rupts shown in Figure 29 occur only if they are enabled. Note that Figure 29 corresponds to the 
burst-mode serial port operation of the TMS320C2x.[1] Continuous-mode operation using fram
ing pulses or without framing pulses is also available. 

Analog Input 

The level of the analog input signal is controlled using the TL072 opamp connected in the 
inverting configuration (see Figure 28). Using the 500-kQ potentiometer, the gain of this circuit 
can be varied from 0 to 5. The output of the O.01-J.l.F coupling capacitor drives the TCM29C16's 
internal opamp. This opamp is connected in the inverting configuration with unity gain (feedback 
and input imped;mces having the same value of 100 kQ). 

In summary, codecs, combo-codecs in particular, are most effective in serving DSP system 
data-conversion requirements. These inexpensive devices interface directly to the TMS320C2x, 

. occupy minimal board space, and perform both filtering and data conversion functions. Codecs in
terface to the TMS320C2x by means of the serial port and provide a companded, PCM -coded digi
tal representation of analog input samples. This PCM code is easily translated into a linear form 
by the TMS320C2x for use in processing. Interface to the codec on the serial port is initialized by 
a simple software routine in the TMS320C2x. 

Il)terfacing an Analog-to-Digital (AID) Converter 

Many digital signal processing applications require a higher level of signal quality than that 
offered by the eight companded bits of a combo-codec. For these applications, linear analog-to-dig- . 

96 Hardware Interfacing to the TMS320C2x 



ital converters with 10, 12, or 14 bits are commonly used. The improved signal quality obtained 
with these converters, however, is accompanied by increased system complexity and higher cost. 

The hardware interface of a 12-bit linear analog-to-digital (AID) converter to the 
TMS320C2x is discussed in this subsection. In this design, the AID is mapped into the input/output 
(I/O) space of the TMS320C2x. The distinction between the I/O space and the program and data 
spaces is made by using the IS pin. This pin goes active (low) when the I/O space is accessed. The 
TMS320C2x space contains 16 ports that can be read from or written to. These ports are accessed 
with the IN and OUT instructions.[l] 

The hardware design of this interface is shown in Figure 30. This design utilizes an antialias
ing (lowpass) filter, the Analog Devices' AD585 sample-and-hold and ADADC84 analog-to-digi
tal converter, two 74AS534 octal D-type flip-flops, plus additional logic to generate the READY 
signal. 

Figure 30. Interface of the ADADC84 to the TMS320C2x 

$ ANALOG GROUND = 

~ = DIGITAL GROUND 
~74AS30 TMS320C2x 

50kQ !-' ~ 
r 

74AS32 READY 

l 
O·U.tF 10 kQ 

500kQ 1\ 900 pF 74AL~ Hll RiW .1. 

~l 
EXTERNAL --1 G2A 5 H1C IS 

INPUT ~ f"'''': ~. :. STRB 

74AS321 G~ ~ L3 A3 
A2 

B 2 K2 Al 
.j.12V +12V A 1 K AO 

, ,us,. 
1 If 10M 50kQ ROAT l' 

111 A0585 ~ 
1\ r-" BIT 12 

10 2 01 
26 2B 123 122 BITll 4 10 QC 04 

20 5 2 05 AGNO +V 8;IP C2MP 12 v , BIT 0 7 20 C1 

IE 
+vs 

15 S FF I . BIT 9 3D 30 06 
RIN VIN ~ OGNO BIT 12 f!---..' 40 ~~ 

B2 
07 - ,Blr8~3 112 -.A2 HOLD RFB II ..!- ~ CLOCK BIT 11 ~ . BIT 7 1 50 ~~ 15 B3 
08 

REF 
2 .~ IN BIT10 4 BIT 6 17 60 ~!1 16 A3 D9 

NULL VIN+ M +5 V SHORT CYCLE BIT 9 ~ , BIT 5 18 70 7Q 
19 B4 

010 
GNO 14 V BIT8 ~ BO CLK 80 011 

CC BIT7 
11 NULL 1 !-1FT BIT6~ 

10kQ 
HOLt AOAOC84 BIT 5 ~ -Vs 1 

BIT 4 
BIT 4 QC 10 2 A4 4 12 20 STATUS BIT 3 1 

4 10 012 
t +12V BIT2[E BIT 3 20 B 

. BIT 2 7 20 Ai 013 
+12V 50, 2.2 M 27 GAIN SIT 1 BI·1 3D 30 B6 014 

kQ .::1 AOJ -Vs CONVERT 40 CLK 40 015 

1 V }:ti 211 111 01' - 2 0.01 !-IF 

r-i>74ALS04A 

I 
XF 

1 !-IF .,. 
87 BIO 

The design of Figure 30 consists of two sections: the analog-to-digital conversion and the 
interface to the TMS320C2x. Each of these sections is considered separately. 

Hardware Interfacing to the TMS320C2x 97 



Analog.to.Digital Conversion 

The analog-to-digital conversion section of this interface performs the function of sampling 
and coding the input waveform. This circuit consists of the antialiasing filter, the sample-and-hold, 
and the analog-to-digital converter. 

To avoid distortion during an analog-to-digital conversion, the sampling theorem states that 
the analog signal must contain no frequency components greater than half the sampling frequency. 
If this condition is not met, distortion occurs in the form of aliasing; i.e., high-frequency compo
nents are superimposed on the low frequencies of the signal spectrum. To avoId this phenomenon, 
an anti aliasing (lowpass) filter is used. 

In the design of Figure 30, the antialiasing filter is implemented using a TL072 opamp con
nected in the inverting configuration. The gain of the opamp is determined by the values of two 
fixed resistors (10 kQ and 50 kQ) and a 500-kQ potentiometer. The resistance of the potentiometer 
inversely varies the gain of the opamp. The minimum gain of 0.098 (50 kQ/51O kQ) is reached 
when the potentiometer is 500 kQ. The maximum gain of 5 (50 kQ/lOkQ) is achieved when the 
potentiometer is decreased to zero resistance. 

To satisfy the sampling theorem, the cutoff frequency of the antialiasing filter must be less 
than half the sampling rate. In the design of Figure 30, the 900 pF capacitor in the feedback path 
introduces a pole at the frequency f defined by: 

f=_I_= 1 =3.5kHz 
2nRC 2n(50kQ)(0.9)nF) 

A~ter 3.5 kHz, the frequency response of the filter drops by 6 dB per decade. This rejection, 
however, may not be adequate for some applications. In such cases, a lowpass filter of higher order 
is required. Such a filter is presented in the next subsection. 

The ~utput of the antialiasing filter is connected to the input of the AD585 sample-and-hold, 
which is configured for a gain of -1. The operation of this device is controlled by the HOLD input. 
When HOLD is low, the output of the sample-and-hold 01 OUT) follows the input (lowpass version 
of the external input). When HOLD is high, the output stays constant. The time from HOLD high 
to output stable is referred to as the aperture time, specified as 35 ns for the AD585. 

AID conversions are implemented by the ADADC84, a 12-bit linear AID converter in which 
data is represented in complementary two's-complement form. A conversion begins when the 
CONVERT input goes high. The XF (external flag) output of the TMS320C2x is used to drive the 
CONVERT input. Since the XF pin is software controlled, the TMS320C2x internal timer may be 
used to generate programmable sampling rates. This is discussed in more detail later. 

When CONVERT goes high, the ADADC84 begins the conversion and STATUS goes high. 
This puts the AD585 in the hold mode. The AID conversion lasts for 10 f.ts, with the MSB decision 
made approximately 820 ns after STATUS goes high. Note that the aperture time of the AD585 is 
only 35 ns, and as a result, the input to the AID converter is stable well before the time the MSB 
decision is made. The LSB decision is made at least 40 ns before STATUS goes low. When STATUS 
goes low, the AD585 enters the sample mode with again of-I; i.e., the output follows the inverted 

98 Hardware Interfacing to the TMS320C2x 



input waveform. As shown in Figure 30, the BIO pin ofthe TMS320C2x is connected to STATUS. 
By polling BIO, the TMS320C2x can detect when an AID conversion is completed. 

The falling edge of STATUS generates a rising edge at the clock inputs of the 74AS534s. This 
rising edge clocks the ADADC84 data into the 74AS534s. Since the LSB decision is made 40 ns 
before STATUS goes low, the 3 ns setup time for the 74AS534s is met. Since the 74AS534s are 
inverting-type flip-flops, the ADADC84 outputs are complemented to give data in two's~comple
ment form. This data, however, does not appear on the TMS320C2x data bus until the output buffers 
of the 74AS534s are enabled. 

Interface to the TMS320C2x 

The interface logic in Figure 30 is used to perform the following functions: 

• Generate READY, and 

• Enable the output buffers of the 74AS534s so that the TMS320C2x can read 
the data from the AID conversion 

To meet the TMS320C2x READY timing requirements, two separate address decoding 
schemes are used to implement these two functions. One decoding scheme is used for READY, and 
a second is used to enable the I/O-mapped devices. 

The address decoding for READY is implmented with the 74AS32 positive-OR gate. The 
output of the 74AS32 goes low when both IS and A3 go low; i.e., access to ports 0 through 7 is re
quested. This scheme generates READY for devices that do not require wait-states. I/O devices that 
generate one or more wait-states can utilize ports 8 through 15. 

To enable the I/O devices, a 74AS138 is used. Outputs YO through Y7 of the 74AS138 can 
be used to enable the devices 0 through 7, respectively. In Figure 30, YO is used to enable a read 
from the AID converter. Note that YO is ORed with the inverted R/W. This prevents the bus conflict 
that occurs if the TMS320C2x writes to port O. 

Hardware Interfacing to the TMS320C2x 99 



The timing diagram of a TMS320C2x read from port 0 is shown in Figure 31. 

CLKOUT1 

IS, R/W, 
A15-AO 

READY 

D15-D4 

Figure 31. Interface Timing of the ADADC84 to the TMS320C2x 

\ / \'---
~ VALID 

-------- 1 

-., t"- t1 

------~/~------------~~ 

\_------'1: 
-l r- t2 ~:-- t3 

--------------------~~~I __________________ -J~~I ----------
1 -., ~ --l *-1 t5 I t4 

---------------------------«~ _______ VA __ LI_D ______ ~)~------
Time t1 in Figure 31 indicates the time from valid address to READY high. This is less than 

10.8 ns, the maximum propagation delay through the READY generation logic. Therefore, the 
18-ns READY timing requirement (at 40 MHz) is met. 

RDAT in Figure 31 is used to enable the output buffers of the 74AS534s. RDAT goes active 
(low) no later than t2 = tp(74AS138) + tp(74AS32) = 14.3 ns after STRB goes low (STRB is used 
to enable the 74AS138). With a low level on the output control (OC) of the 74AS534s, valid data 
appears on the TMS320C2x data bus within t4 = 10 ns. The worst-case access time is 
t2 + t4 = 24.3 ns from STRB going low, which is less than the 27 ns required by the TMS320C2x. 

When STRB goes high, RDAT follows within t3 = 13.3 ns. With a high logic level on the out
put control (OC)' the output buffers of the 74AS534s enter a high-impedance state within ts = 6 ns. 
Since t3 + ts = 19.3 ns after STRB goes high, the 74AS534s have entered a high-impedance state, 
and no bus conflict will occur if a write cycle follows the present read cycle. 

Table 13 summarizes the most critical timing parameters of the ADADC84 interface to the 
TMS320C2x. 

Table 13. Timing Parameters of the ADADC84 Interface to the TMS320C2x 

Description Symbol Used in Figure 3 Value 

Address valid to READY valid tl 10.8 ns (max) 
STRB low to RDAT low t2 14.3 ns (max) 
STRB high to RDAT high t3 13.3 ns (max) 
Progagation delay through the 74AS534 (QC to Q) t4 10.0 ns (max) 
74AS534 disable time t5 6.0 ns (max) 

100 Hardware Interfacing to the TMS320C2x 



Controlling AID Conversions with the TMS320C2x Timer 

The TMS320C2x timer can generate periodic interrupts that may be used to set the NO sam
pling frequency. The TMS320C2x timer logic consists of a 16-bit timer register and a 16-bit period 
register. At every CLKOUTI cycle, the timer register is decremented by one. When the count 
reaches zero, a timer interrupt (TINT) is generated. In the next cycle, the contents of the period 
(PRD) register are loaded into the timer register. Therefore, a timer interrupt is generated every 
PRD + 1 cycle of CLKOUTl, and the frequency of these interrupts is CLKOUTl/(PRD + 1). 

As an example, consider a TMS320C2x operating at 40 MHz. The design of Figure 30 is uti
lized to interface the NO converter to the TMS320C2x. A sampling rate of 10 kHz is desired. 

To generate timer interrupts at the 10 KHz sampling rate, the value of the period register is 
calculated as follows: Since 

f = CLKOUTl 
s PRD + 1 

the period register is 

PRD= CLKOUT 
fs 

1 

With CLKOUTl = 10 MHz and fs = 10 kHz, the value of the period register is PRD = 999. 
By loading the period register (data memory location 3) with 999, timer interrupts (if enabled) oc
cur at a 10 kHz frequency. This can be implemented with the following TMS320C2x source code: 

LDPK 0 Point to Data Page #0 
LALK 999 ACC 999 
SACL DMA3 Period Register ACC 
LACL 8 Enable TINT 
OR DMA4 through 
SACL DMA4 the IMR 

To start the NO conversion, the interrupt service routine must generate a positive pulse on 
the XF output. This can be implemented with the following code: 

ISE SXF 
RXF 
EINT 
RET 

Set external flag (XF) 
Clear external flag (XF) 
Enable interrupts 

Note that upon entering the interrupt service routine, the interrupts are disabled. Interrupts 
are reenabled by the EINT instruction just before exiting the interrupt service routine. Also, the 
conversion pulse that this routine generates is 100 ns long, easily meeting the 50-ns minimum con
version pulse width required by the ADADC84. 

To summarize, lO-bit to more than 14-bit linear NO converters are often used to perform 
data conversions in DSP systems that require more resolution than is provided by codecs. The cir
cuit shown in Figure 30 describes the interface of an NO conversion subsystem to the 

Hardware Interfacing to the TMS320C2x 101 



TMS320C2x. This subsystem contains antialiasing filters, a sample-and-hold circuit, and a 12-bit 
NO converter. Communication with the TMS320C2x is provided via the I/O space. The NO con
verter is isolated from the processor's data bus by high-impedance buffers when data transfers are 
not being performed. The TMS320C2x's internal timer is used to establish the NO sample rates, 
thus reducing system logic requirements. 

Interfacing a Digital-to-Analog (D/A) Converter 

This subsection discusses the hardware interface of a lO-bit digital-to-analog converter to 
the TMS320C2x. The design, shown in Figure 32, utilizes the Analog Device's ADDACIOO digi
tal-to-analog converter, a 74AS8221O-bit flip-flop, a smoothing filter, plus additional logic to gen
erate READY. 

Figure 32. Interface of the ADDACIOO to the TMS320C2x 
TMS320C2x 

74AS30 

REAOYt=B""8-----« 

is J11 

STRBE-H;.::10::...--+-;::--~ 
A3 K3 

A2 L3 
A1 K2 
AO K1 Y1 14 

74AlS04 

74AS138 WRDAT 
14 v+ BIPOLAR 

2 10 
~--=:~_.::.I3 20 

F.:----=t4 3D 
E---.::.I5 40 
i=-' ___ .;;t6 5D 
~ ___ ::t7 6D 

1.;:::---.::.18 70 
9-

t:.::::---1~080 
E-----'~9D 
t-= __ --.,;1""!1 10D 

ClK 10 23 13 BIT 1 (MSB) REF 
20 22 12 BIT2 
30 21 11 BIT 3 
40 20 10 BIT4 

19 9 
5Q 18 8 BIT 5 

60 17 7 
7Q 16 6 
8Q 15 5 
9Q 

BIT 6 
BIT 7 
BIT 8 

10Q 14 4 
BIT 9 
BIT 10 

-v 
2 

-12V 

15 

2000 

AGND 
AOOAC100 

~ = ANALOG GROUND 

~ = DIGITAL GROUND 

This design consists of three sections: the interface to the TMS320C2x, the D/ A converter, 
and the smoothing filter. Each of these sections is considered separately. 

Interface to the TMS320C2x 

The 74AS822 is used to latch the data from the TMS320C2x. Since the output control (OC) 
of the 74AS822 is always active (grounded), the latched data is available at the inputs of the D/A 
converter immediately following a write from the TMS320C2x. In bipolar mode; the ADDACIOO 
accepts data in complementary offset binary form. By inverting the MSB of the two's-complement 

102 Hardware Interfacing to the TMS320C2x 



data from the TMS320C2x, the data input to the 74AS822 is converted to offset binary form. This 
data is inverted by the 74AS822 so that the input to the ADDACI00 becomes complementary offset 
binary form. 

The circuit shown in Figure 32 utilizes the same address decoding technique used for the ana-
. log-to-digital converter interface. This technique maps devices that require no wait -states into ports 
o through 7. Ports 8 through 15 are used for devices that require one or more wait-states. In this 
design, the D/Aconverter is mapped into port 1 of the TMS320C2x I/O space. The timing diagram 
for a write to the D/A is shown in Figure 33. 

Figure 33. Interface Timing of the ADDACIOO to the TMS320C2x 

CLKOUT1 

is,RW, 
A15-AO 

READY 

015-06 

\ 
)@( 

I 
:- t1 ~ 

I 
\ 

\ 
: .. 
( 

/ "---
VALID ~ 

\. 

Jf 
~ 104- t2 

I I 
I ! I 
I 

t3 --:! 104- t4 
I 

VALID i 
When port 1 is addressed, WRDAT goes low. No later than t2 = 7.5 ns after STRB goes 

high, WRDAT follows. This rising edge of WRDAT clocks the data into the 74AS822. The 
minimum setup time for the data before WRDAT goes high is t3 min + t2 min (see Figure 33). 
Time t3 min is the minimum setup time for the TMS320C2x data before STRB goes high (30 
ns), minus the maximum propagation delay through the 74ALS04 (11 ns). Time t2 min is the 
minimum propagation delay through the 74AS138 (2 ns). Therefore, the minimum setup time 
for the data before WRDAT goes high is 21 ns, which is greater than the 6-ns minimum setup 
time required by the 74AS822. 

Hardware Interfacing to the TMS320C2x 103 



Table 14 summarizes the most critical timing parameters of the ADDAClOO interface to the 
TMS320C2x. 

Table 14. Timing Parameters of the ADDACI00 Interface to the TMS320C2x 

Description Symbol Used in Figure 3 Value 

Address valid to READY valid t1 10.8 ns (max) 
STRB high to WRDAT J:!!.&h... t2 7.5 ns (max) 
Data setup time before STRB high t3 19.0 ns (min) 
Data setup time before WRDAT high t3 + t2 21.0 ns (min) 
Data hold time from STRB high 14 15.0 ns (min) 
Dala hold time from WRDAT high 14 - 12 7.5 ns (min) 

D/A Converter 

The ADDAC100 lO-bit digital-to-analog converter converts a digital input to an output cur
rent. The standard current-to-voltage conversion is implemented using the TLOn opamp. This is 
the opamp closest to the ADDACIOO in Figure 32. The offset and gain ajustments are implemented 
with the 500-Q and 200-Q potentiometers, respectively. 

Smoothing Filter 

The output of the ADDAClOO contains high-frequency components to be removed by the 
smoothing filter. In the design of Figure 32, this filter is implemented with the TLOn opamp confi
gured to implement a second-order lowpass filter with a cutoff frequency around 1.7 KHz. For 
some applications, however, a rejection of 12 dB per decade is not adequate. A design that imple
ments a sixth-order lowpass filter is shown in Figure 34. This design is a cascade of three opamps, 
each implementing a second-order section. 

Figure 34. Sixth-Order Lowpass Filter Used for AntiaJiasing and 
Smoothing Filter Operations 

- V 

TL072l 0"' 

~ = Analog Ground 

104 Hardware Interfacing to the TMS320C2x 



The design of Figure 34 is used to implement the antialiasing and smoothing filtering opera
tions in the TMS32010 Analog Interface Board. The cutoff frequency of this filter depends on the 
values of the passive components. The values of these components for several cutoff frequencies. 
are shown in Table 15.[3] 

Table 15. Lowpass Filter Component Values for Various Frequencies 

r 1.7 kHz 4.7 kHz 

Rl 2.588 2.588 
Cl 0.280 0.101 
R2 1.294 1.294 
R3 2.588 2.588 
C2 0.00936 0.00339 
R4 7.071 7.071 
C3 0.0375 0.0136 
R5 3.536 3.536 
R6 7.071 7.071 
C4 0.00936 0.00339 
R7 9.659 9.659 
C5 0.0201 0.00726 
R8 4.830 4.830 
R9 9.659 9.659 
C6 0.00936 0.00339 

Note: The unit for resistance is kQ 
The unit for capacitance is f.lF 

7.7 kHz 

2.588 
0.0617 
1.294 
2.588 
0.00207 
7.071 
0.00827 
3.536 
7.071 
0.00207 
9.659 
0.00443 
4.830 
9.659 
0.00207 

The above values are not industry-standard values 

10kHz 12kHz 16kHz 20kHz 

2.588 2.588 2.588 2.588 
0.0475 0.0396 0.0297 0.0238 
1.294 1.294 1.294 1.294 
2.588 2.588 2.588 2.588 
0.00160 o.oom 0.000995 0.000796 
7.071 7.071 7.071 7.071 
0.00637 0.00531 0.00398 0.00318 
3.536 3.536 3.536 2.536 
7.071 7.071 7.071 7.071 
0.00160 0.00133 0.000995 0.000796 
9.659 9.659 9.659 9.659 
0.00341 0.00284 0.00213 0.00171 
4.830 4.830 4.830 4.830 
9.659 9.659 9.659 9.659 
0.00160 0.00133 0.000995 0.000796 

In summary, the lO-bit linear D/A converter provides analog output for the TMS320C2x. The D/A 
converter is interfaced to the processor through the I/O space and is driven by latches that store the 
digital data for the current sample until the next sample period. A smoothing filter provides final 
analog signal reconstruction by eliminating extraneous high-frequency components in the output 
waveform. 

Summary 

The interface of memories and peripherals to the TMS320C2x has been described in this 
application report. Both direct interfaces and interfaces that utilize address decoding have been 
considered, with special attention given to READY timing requirements. The design techniques 
used in these interfaces can be extended to encompass interface of other devices to the 
TMS320C2x. 

Hardware Interfacing to the TMS320C2x 105 



· References 

106 

1) Second-Generation TMS320 User's Guide (literature number SPRU014A), Texas In-
struments (1989). . 

2) Digital Signal Processing Applications with the TMS320 Family, Volume 1 (literature 
number SPRA012A), Texas Instruments (1986). 

3) TMS32010Analog interface Board User's Guide (literature number SPRU006), Texas 
Instruments (1983). 

4) The TTL Data Book Volume ~ (literature number SDLDOO1), Texas Instruments (1985). 
5) The TTL Data Book Volume 3 (literature number SDAD001A), Texas Instruments 

(1984). 
6) MOS Data Book, Micron Technology, Inc. (1990). 
7) CMOS/BiCMOS Data Book, Cypress Semiconductor (1989). 

Hardware Interfacing to the TMS320C2x 



Interfacing the 
TMS320 Family to the 

TLC32040 Family 

Linear Products - Semiconductor Group 
Texas Instruments 

107 



108 Interfacing the TMS320 Family to the TLC32040 Family 



1 Introduction 
The TLC32040 and TLC32041 analog interface circuits are designed to provide a 
high level of system integration and performance. The analog interface circuits combine 
high resolution AID and DIA converters, programmable filters, digital control and timing 
circuits as well as programmable input amplifiers and multiplexers. Emphasis is placed 
on making the interface to digital signal processors (the TMS320 family) and most 
microprocessors as simple as possible. This user's guide describes the software and 
circuits necessary to interface to numerous members of the TMS320 family. It 
presents three circuits for interfacing the TLC32040 Analog Interface Circuit to the 
TMS320 family of digital Signal processors. Details of the hardware and software 
necessary for these interfaces are provided. 

To facilitate the discussion of the software, the following definitions and naming 
conventions are used: 

1. > nnnn - a number represented in hexadecimal. 

2. Interrupt service routine - a subroutine called in direct response to a processor 
interrupt. 

3. Interrupt subroutine - any routine called by the interrupt service routine. 

4. Application program (application routine) - the user's application dependent 
software (e.g. digital filtering routines, Signal generation routines, etc.) 

Interfacing the TMS320 Family to the TLC32040 Family 109 



110 Interfacing the TMS320 Family to the TLC32040 Family 



2 TLC32040 Interface to the TMS32010/E15 

2.1 Hardware 

Because the TlC32040 (Analog Interface Circuit) is a serial-IIO device, the interface 
to the TMS32010, which has no serial port, requires a small amount of glue-logic. 
The circuit shown in Figure 2-1 accomplishes the serial-to-parallel conversion for the 
AIC operating in synchronous mode, 

2.1.1 Parts list 

The interface circuit for the TMS32010 uses the following standard logic circuits: 

1, One SN74lS138 3-to-8-line address decoder 
2, One SN74lS02 Quad NOR-Gate 
3, One SN74lS00 Quad NAND-Gate 
4, One SN74lS04 Hex Inverter 
5, One SN74lS74 Dual D-Flip-Flop 
6, Two SN74LS299 8-bit Shift Registers 

·74LS299 TLC32040 
TMS32010/C15 

~ S1 FIX 
OEN G2 

OH' ox 
74lS138 

U2 
L....- G1 YO - 1 

so < to--
Yf - lIT 

h r---
SHIFT 

U1 • SR t-

~ 
ClK 

• AO/PAO f--A • 
AlIPA1 f--- 8 • 
A2/PA2 f-- C 

,~ 

74lS299 
8 

S1 

~- f---< - iff OH' -
l1 so 

lIT .r 
016 16 U3 7--h • / 8 • • 0f'4 • / • SR 0 OR 
00 

~ ~ 
• • U4 

74Lsi4 

-WI 

~ 
~ 

ClKOUT MSTRClK 

INT mt5X 

FIgure 2·1. Ale Interface to TMS32010/E16 

Interfacing the TMS320 Family to the TLC32040 Family 111 



2.1.2 Hardware Description 

2.2 Software 

The 74LS138 is used to decode the addresses of the ports to which the TLC32040 
and the interface logic have been mapped. If no other ports are needed in the 
development system, this device may be eliminated and the address lines of the 
TMS32010 used directly in place of Y1 and YO (see Figure 2-1). 

Since the interface circuits are only addressed when the TMS32010 executes an IN 
or an OUT instruction, gates L1, L2, L3, L4, and L5 are required to enable. reading 
and writing to the shift registers only on these instructions. The TBLW instruction 
is prohibited because it has the same timing as the OUT instruction. Flip-flop U4 
ensures that the setup and hold times of 74LS299 shift registers are met. 

o Although not shown in the circuit diagram, it is recommended that the CLR pins of 
the 74LS299 shift registers as well as the RESET pin of the AIC be tied to the power
up reset circuit shown in the AIC data sheet. This ensures that the registers are clear 
when the AIC begins to transfer data and decrease the possibility that the AIC will 
shift in bad data which could cause the AIC to shut down or behave in an unexpected 
manner. 

The flowcharts for the communication program along with the TMS3201 0 program 
listing are presented in Appendix A. If this software is to be used, an application 
program that moves data into and out of the transmit and receive registers must be 
supplied. 

2.2.1 Initializing the TMS32010/E15 

As shown in the flowcharts in Appendix A, the program begins with an initialization 
routine which clears both the transmit/receive-end flag and the secondary 
communication flag, and stores the addresses of the interrupt subroutines. The 
program uses the MPYK .. PAC instruction sequence to load data memory locations 
with the 12-bit address of the subroutines. This sequence is only necessary if the 
subroutines are to reside in program memory locations larger than >OOFF. Otherwise, 
the instructions LACK and SACL may be used to initialize the subroutine-address 
storage locations. 

2.2.2 Communicating with the TLC32040 

112 

After the storage registers and status register have been initialized, the interrupt is 
enabled and control is passed to the user's application routine (i.e. the system
dependent software that processes received data and prepares data for transmission). 
The program ignores the first interrupt that occurs after interrupts are enabled (page 
A-6, line 206, IGINT routine), allowing the AIC to stabilize after a reset. The application 
routine should not write to the shift registers while data is moving into (and out of) 
them. In addition, it should ensure that no primary data is written to the shift registers 
between a primary and secondary data-communication pair. The first objective can 
be accomplished by writing to the 74LS299 shift registers as quickly as possible after 
the receive interrupt. The number of instruction cycles between the data transfers 
can be calculated from the conversion frequency. By counting instruction cycles in 
the application program, it is possible to determine whether the data transfer will 
conflict with the OUT instruction to the shift register. The second objective can be 
accomplished by monitoring SNDFLG in the application program. If SNDFLG is true 
(>OOFF), secondary communication has not been completed. 

Interfacing the TMS320 Family to the TLC32040 Family 



When the processor receives an interrupt, the program counter is pushed onto the 
hardware stack and then the program counter is set to >0002, the location of the 
interrupt service routine, INTSVC (page A-3, line 46). The interrupt service routine 
then saves the contents of the accumulator and the status register and calls the 
interrupt subroutine to which XVECT points. If secondary communication is to follow 
the upcoming primary communication, XVECT, is set by the application program to 
refer to SINT1, otherwise, XVECT defaults to NINT (i.e the normal interrupt routine). 

Because the interrupt subroutine makes one subroutine call and uses two levels of 
the hardware stack, the application program can only use two levels of nesting (i.e., 
if stack extension is not used). This means that any subroutine called by the application 
program can only call subroutines containing no instructions that use the hardware 
stack (e.g. TBLW) and that make no other subroutine calls. In addition, if the application 
program and communication program are being implemented on an XDS series 
emulator, the emulator consumes one level of the hardware stack and allows the 
application program only one level of nesting (i.e., one level of subroutine calls). 

As shown in the flowcharts in Appendix A, the normal interrupt routine reads the 
A/D data from the shift registers and then sets the receive/transmit end-flag (RXEFLG). 
The application program must write the outgoing D/A data word to the shift registers 
at a time convenient to the application routine. It should have the restriction that the 
data be written before the next data transfer. 

2.2.3 TLC32040 Secondary Communication 

If it is necessary to write to the control register of the AIC or configure any of the 
AIC internal counters, the application program must initiate a primary/secondary 
communication pair. This can be accomplished by placing a data word in which bits 
o and 1 are both high into DXMT, placing the secondary control word (see program 
listing page A-3) in D2ND, and placing the address of the secondary communication 
subroutine, SINT1, in XVECT. When the next interrupt occurs, the interrupt subroutine 
will call routine SINn. SINn reads the A/D information from the shift registers and 
writes the secondary communication word to the shift registers. 

Interfacing the TMS320 Family to the TLC32040 Family 113 



114 Inferfacing the TMS320 Family to the TLC32040 Family 



3 TLC32040 Interface to the TMS32020 

3.1 Hardware Description 

3.2 Software 

8ecause the TlC32040 is designed specifically to interface with the serial port of 
the TMS32020/C25, the interface requires no external hardware. Except for ClKR 
and ClKX, there is a one-to-one correspondence between the serial port control and 
data pins of TMS32020 and TlC32040. CLKR and CLKX are tied together since both 
the transmit and the receive operations are synchronized with SHIFT ClK of the 
TLC32040. The interface circuit, along with the communication program (page 8-5), 
allow the AIC to communicate with the TMS32020/C25 in both synchronous and 
asynchronous modes. See Figures 3-1, 3-2, and 3-4. 

The program listed in Appendix 8 allows the AIC to communicate with the TMS32020 
in synchronous or asynchronous mode. Although originally written for the TMS32020, 
it will work just as well for the TMS320C25. 

TMS32020/C25 TLC32040 

5L 
WORD/BYTE 

ClKOUT MSTR ClK 

FSX m 
ox ox 

FSR FIR 
DR DR 

ClKX 
~ 

SHIFT ClK 

ClKR 

Figure 3-1. AIC Interface to TMS32020/C25 

Interfacing the TMS320 Family to the TLC32040 Family 115 



SHIFT ClK 

I 
I 

FSR. m ~L __ :-_-il:-_-i-__ -f I 
- I I I I f-1------oJ 

DR D15 ~1~~D-l----D-O----------------------
I I 

DX DO 

-------------~II~----------~ r-----
meR. EODX L---' 
The sequence of operation is: 
1. The ffi or FSA pin is brought low. 
2. One 16-bit word is transmitted or one 16-bit byte is received. 
3. The ffi or FSA pin is brought high. 
4. The EO OX or EOOA pin emits a low-going pulse as shown. 

Figure 3-2. Operating Sequence for AIC-TMC32020/C25 Interface 

LJ LJ LJ LJ 

LJ LJ 
Figure 3-3. Asynchronous Communication AIC-TMS32020/C25 Interface 

3.2.1 Initializing the TMS32020/C25 

116 

This program starts by calling the initialization routine. The working storage registers 
for the communication program and the transmit and receive registers of the DSP 
are cleared, and the status registers and interrupt mask register of the TMS32020/C25 
are set (see program flow charts in Appendix B). The addresses of the transmit and 
receive interrupt subroutines are placed in their storage locations, and the addresses 
of the routines which ignore the first transmit and receive interrupts are placed in 
the transmit and receive subroutine pointers (XVECT and RVECT). The 
TMS32020/C25 serial port is configured to allow transmission of 16-bit data words 
(FO, the serial port format bit of the TMS32020/C25 must be set to zero) with an 
externally generated frame synchronization (FSX and FXR are inputs, TXM bit is set 
to 0). 

Interfacing the TMS320 Family to the TLC32040 Family 



3.2.2 Communicating with the TLC32040 

After the TMS32020/C25 has been initialized, interrupts are enabled and the program 
calls subroutine IGR. The processor is instructed to wait for the first transmit and 
receive interrupts (XINT and RINT) and ignore them. After the TMS32020 has received 
both a receive and a transmit interrupt, the IGR routine will transfer control back to 
the main program and IGR will nQt be called again. 

If the transmit interrupt is enabled, the processor branches to location 28 in program 
memory at the end of a serial transmission. This is the location of the transmit interrupt 
service routine. The program context is saved by storing the status registers and the 
contents of the accumulator. Then the interrupt service routine calls the interrupt 
subroutine whose address is stored in the transmit interrupt pointer (XVECT). 

A similar procedure occurs on completion of a serial receive. If the receive interrupt 
is enabled, the processor branches to location 26 in program memory. As with the 
transmit interrupt service routine (XI NT, page B-B, line 223), the 'receive interrupt 
service routine (page B-8,line 191) saves context and then calls the interrupt subroutine 
whose address is stored in the receive interrupt pointer (RVECT). It is important that 
during the execution of either the receive or transmit interrupt service routines, all 
interrupts are disabled and must be re-enabled when the interrupt service routine ends. 

The main program is the application program. Procedures such as digital filtering, tone
generation and detection,and secondary communication judgment can be placed in 
the application program. In the program listing shown in Appendix B, a subroutine 
(C2ND) is provided which will prepare for secondary communication. If secondary 
communication is required, the user must first write the data with the secondary code 
to the DXMT register. This data word should have the two least significant bits set 
high (e.g. > 0003). The first 14 bits transmitted will go to the D/A converter and the 
last two bits indicate to the AIC that secondary communication will follow. After 
writing to the DXMT register, the secondary communication word should be written 
to the D2ND register. 

This data may be used to program the AIC internal counters or to reconfigure the 
AIC (e.g. to change from synchronous to asynchronous mode or to bypass the 
bandpass filter). After both data words are stored in their respective registers, the 
application program can then call the subroutine C2ND which will prepare the 
TMS32020 to transmit the secondary communication word immediately after primary 
communication. 

3.2.3 Secondary Communications - Special Considerations 

This communication program disables the receive interrupt (RINT) when secondary 
communication is requested. Because of the critical timing between the primary and 
secondary communication words and because RINT carries a higher priority than the 
transmit interrupt, the receive interrupt cannot be allowed to interrupt the processor 
before the secondary data word can be written to the data-transmit register. If this 
situation were to occur, the AIC would not receive the correct secondary control word 
and the AIC could be shut down. 

In many applications, the AIC internal registers need only be set at the beginning of 
operation, (i.e, just after initialization). Thereafter, the DSP only communicates with 
the AIC using primary communication. In cases such as these, the communication 
program can be greatly simplified. 

Interfacing the TMS320 Family to the TLC32040 Family 117 



118 Interfacing the TMS320 Family to the TLC32040 Family 



4 Interfacing the TLC32040 to the TMS320C 17 

4. 1 Hardware Description 

As shown in Figure 4-1, the TMS320C 17 interfaces directly with the TLC32040. 
However, because the TMS320C17 responds more slowly to interrupts than the 
TMS3201 O/E15 or the TMS32020/C25, additional circuit connections are necessary 
to ensure that-the TMS320C 17 can respond to the interrupt, accomplish the context
switching that is required when an interrupt is serviced, and proceed with the interrupt 
vector. This must all be accomplished within the strict timing requirements imposed 
by the TLC32040. To meet these requirements, FSX of the TLC32040 is connected 
to the EXINT pin of the TMS320C 17. This allows the TMS320C 17 to recognize the 
transmit interrupt before the transmission is complete. This allows the interrupt service 
routine to complete its context-switching while the data is being transferred. The 
interrupt service routine branches to the interrupt subroutines only after the FSX flag 
bit has been set. This signals the end of data transmission. 

The other hardware modification involves connecting the EODX pin of the TLC32040 
to the BIO pin of the TMS320C 17. Because the TMS320C 17 serial port accepts data 
in 8-bit bytes (see Figure 4-2) and the TLC32040 controls the byte sequence (i.e. 
which byte is transmitted first, the high-order byte or the low-order byte) it is important 
that the TMS320C 17 be able to distinguish between the two transmitted bytes. The 
EODX signal is asserted only once during each transmission pair, making it useful for 
marking the end of a transmission pair and synchronizing the TMS320C17 with the 
AIC byte sequence. After synchronism has been established, the BIO line is no longer 
needed by the interface program and may be used elsewhere. 

Because the TMS320C 17 serial port operates only in byte mode, 16-bit transmit data 
should be separated into two 8-bit bytes and stored in separate registers before a 
transmit interrupt is acknowledged. Alternatively, the data can be prepared inside the 
interrupt service routine before the interrupt subroutine is called. From the time that 
the interrupt is recognized to the end of the data transmission is equivalent to 28 
TMS320C17 instruction cycles. 

TMS320C17 TLC32040 

EXINT h .f'" WORD/BYTE 

FSX FSX 
ClK OUT MSTR CLK 

DXO OX 

FSR FSR 
ORO DR 

SCLK SHIFT CLK 

liiO EODX 

Figure 4-1. Ale Interlace to TMS320C 17 

Interfacing the TMS320 Family to the TLC32040 Family 119 



SHIFT CLK 
I I I 

. I I I 

m.m' I \ I 
I I i II I I ., 

OR--~0~'~:5~~~~~-------=0~8--------~~jC]§C\~0~, __ '0~O ________ __ 

~.' I 
OX ---"1f?15I014 t2i! 09 08 07 06 ~ 

., I II 

The sequence of operation is: 
1. The ffi or m pin is brought low. 
2. One B-bit word is transmitted or one B-bit byte is received. 
3. The rnox or EOi5R pins are brought low. 
4. The ffi or m emit a positive frame-sync pulse that is four shift clock cycles wide. 
5. One B-bit byte is transmitted and one B-bit byte is received. 
6. The EOOX and EO DR pins are brought high. 
7. The m and m pins are broul!ht high 

4.2 Software 

Figure 4-2. Operating Sequence for AIC-TMS320C 17 

The software listed in Appendix C only allows the AIC to communicate with the 
TMS320C17 in synchronous mode. This communication program is supplied with an 
application routine, OLB (Appendix C, program listing line 236), which returns the 
most recently received data word back to the AIC (digitalloopback). 

4.2.1 Initializing the TMS320C 17 

The program begins with an initialization routine (lNIT, page C-5, line 122). Interrupts 
are disabled and all the working storage registers used by the communication program 
are cleared. Both transmit registers are cleared, the constants used by the program 
are initialized and the addresses of the subroutines called by the program are placed 
in data memory. This enables the interrupt service routine to call subroutines located 
in program-memory addresses higher than 255. After the initialization is complete, 
the program monitors the BIO line of the TMS320C17 and waits for the end of the 
first interrupt pair (the AIC is in byte mode). Afterwards, interrupts are enabled and 
control is passed to the main program. 

4.2.2 AIC Communications and Interrupt Management 

120 

Because the AIC FSX pin is tied to the EXINT line of the TMS320C17 and the delay 
through the interrupt multiplexer, the interrupt service routine is called four instruction 
cycles after the falling edge of FSX. The interrupt service routine (lNTSVC, 
Appendix C, program listing, line 91) completes its context switching and then 
monitors the lower control register, polling the FSX flag bit that indicates the end 
of the a-bit serial data transfer. If the FSX flag bit is set, the transfer is complete. 
After this bit is set, control is transferred to the interrupt subroutine whose address 
is stored in VECT. The serial communication must be complete before data is read 
from the data receive register. 

Interfacing the TMS320 Family to the TLC32040 Family 



When no secondary communication is to follow, the interrupt subroutines, NINTl and 
NINT2, are called. If data has been stored in DXMT2 (the low-order eight bits of the 
transmit data word), which does not indicate that secondary communication is to 
follow, the interrupt service routine calls NINTl when the first 8-bit serial transfer 
is complete. NINT1 immediately writes the second byte of transmit data, (i.e., the 
contents of DXMT2) to transmit data register 0 (TRO). It then moves the first byte 
of the received data (i.e. the high-order byte cif the AID conversion result) into DRCV1. 
NINTl then stores in VECT the address of NINT2. NINT2 is called at the end of the 
next 8-bit data transfer and resets the FSX interrupt flag bit by writing a logic high 
to it. The next interrupt (a falling edge on EXINT) occurs before the interrupt service 
routine returns control to the main program. This is an acceptable situation since the 
TMS320C17, on leaving the interrupt service routine, recognizes that an interrupt 
has occurred and immediately responds by servicing the interrupt. 

The interrupt subroutine NINT2 is similar in operation to NINT1. It stores the low
order byte of receive data (bits 7 through 0 of the AID conversion result) and stores 
the address of the next interrupt subroutine in VECT. NINT2 does not write to the 
transmit data register, TRO. This task has been left to the application program. After 
the transmit data has been prepared by the main program and the data has been stored' 
in DXMT1 and DXMT2, the main program stores the first byte of the transmit data 
in transmit data register 0 (TRO). 

4.2.3 Secondary Communications 

The interrupt subroutines SINT1 through SINT4 are called when secondary 
communication is required. For secondary communication, DXMT1 and DXMT2 will 
hold the primary communication word. DXMT3 and DXMT4 will hold the secondary 
communication word. VECT, the subroutine pointer should then be initialized to the 
address of SINT1. As with the normal (primary' communication only) interrupt 
subroutines (i.e., NINTl and NINT2), the secondary communication routines will 
change VECT to point to the succeeding routine (e.g~, SINT1 will point to SINT2, SINT2 
will point to SINT3, etc.). 

Interfacing the TMS320 Family to the TLC32040 Family 121 



122 Interfacing the TMS320 Family to the TLC32040 Family 



5 Summary 
The TLC32040 is an excellent choice for many digital signal processing applications 
such as speech recognition/storage systems and industrial process control. The 
different serial modes of the AIC (synchronous, asynchronous, 8- and 16-bit) allow 
it to interface easily with all of the serial port members of the TMS320 family' as well 
as other processors. 

Interfacing the TMS320 Family to the TLC32040 Family 123 



124 Interfacing the TMS320 Family to the TLC32040 Family 



A TLC32040 and TMS3201 0 Flowcharts and 
Communication Program 

A.1 Flowcharts 

•• 'Modified to call NINT. 

a. MAIN b. PRIMARY INTERRUPT ROUTINE 

Interfacing the TMS320 Family to the TLC32040 Family 125 



·Set, if need secondary. 
"Modify to call SINT2. 

"'Modify to call NINT . 
••• *Must execute before transfer beginning. 

c. SECONDARY DATA COMMUNICATIONS 1 d. SECONDARY DATA COMMUNICATION 2 

A.2 Communication Program List 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 

0002 
0003 
00'04 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOC 
OOOD 
OOOE 
OOOF 

OOFF 
0001 

0029 0000 
0030 0000 F900 

0001 OOOD 

126 

**********************************************************~* * When using this program. the circuit in the TLC32040 * 
* data sheet or its equivalent circuit must be used. 
* TMS32010 port 0 and port 1 are reserved for data 
* receiving and .data transmitting. TBLW command is 
* prohibited because it has the same timing as the OUT 
* command. TLC32040 is used only in synchronous mode. 
************************************************************ 
* RXEFLG EQU 
SNDFLG EQU 
DRCV EQU 
DXMT EQU 
D2ND EQU 
XVECT EQU 
ACHSTK EQU 
ACLSTK EQU 
SSTSTK EQU 
ANINT EQU 
ASINTl EQU 
ASINT2 EQU 
TMPO EQU 

* SET 
ONE 

EQU 
EQU 

>02 
>03 
>04 
>05 
>06 
>07 
>08 
>09 
>OA 
>OC 
>OD 
>OE 
>OF 

>FF 
>01 

* ================= 
* 
* 

Reset vector. 
================= 

AORG 
B 

>0000 
EPH 

receive & xmit end flag. 
secondary communication flag. 
receive data storage. 
xmit data storage. 
secondary data storage. 
interrupt address storage. 
ACCH stack. 
ACCL stack. 
Status stack. 
interrupt address 1 
interrupt address 2 
interrupt address 3 
temporary register. 

program start address. 
jump to Initialization. 

Interfacing the TMS320 Family to the TLC32040 Family 



0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 

0002 
0002 
0002 7COA 
0003 6EOI 
0004 5808 
0005 5009 
0006 2007 
0007 7F8C 
0008 6508 
0009 7A09 
OOOA 7BOA 
OOOB 7F82 
OOOC 7F8D 

DODD 
OOOD 
OOOD 6EOI 
OOOE 
OOOE 7EOI 
OOOF 500F 
0010 6AOF 
0011 802C 
0012 7F8E 
0013 500C 
0014 
0014 8030 
0015 7F8E 
0016 500D 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• ================== • 
• • • • • • 
• 
• • 

Interrupt vector. • 
================== • 

For secondary communication,modify the contents • 
of XVECT to the address of secondary communication • 
and store secondary data in D2ND. • 

ex. • 
LAC 
SACL 

I 

ASINTl,O modify XVECT. 
XVECT ,0 

• • 
• 

• LAC D2ND,0 store secondary data. • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

AORG >0002 interrupt vector. 

INTSVC SST 
LDPK 
SACH 
SACl 
LAC 

SSTSTK 
ONE 
ACHSTK 
ACLSTK 
XVECT,O 

push status register. 
set data pointer one. 
push ACCH. 
push ACCL. 
load interrupt address. 

CALA branch to interrupt routine. 
ZALH ACHSTK pop ACCH 
OR ACLSTK pop ACCl. 
LST SSTSTK pop stack register. 
EINT enable interrupt. 
RET return from interrupt routine. 

•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • • • • 
• 
• 
• 

============================= 
Initialization after reset. 

==========~================== 

• 
• 
• 
• 

Data RAM locations 82H(130) through 8FH(143), • 
12 words of Page l,are reserved for this program .• 
The user must set the status register by adding • 
the SST command at the end of the initial routine. 

•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• 

AORG 

EPIl LDPK 

LACK 
SACl 
LT 
MPYK 
PAC 
SACl 

MPYK 
PAC 
SACL 

$ 

ONE 

ONE 
TMPO 
TMPO 
NINT 

ANINT 

SINTl 

ASINTl 

initial program. 

set Data page pointer one. 

save normal communication address 
to its storage. 

save secondary communication addressl 
to its storage. 

Interfacing the TMS320 Family to the TLC32040 Family 127 



0084 0017 
0085 0017 8037 
0086 0018 7F8E 
0087 0019 500E 
0088 001A 
0089 001A 803E 
0090 001B 7F8E 
0091 ODIC 5007 
0092 0010 
0093 0010 7F89 
0094 ODIE 5002 
0095 POIF 
0096 001F 5003 
0097 0020 
0098 0020 
0099 0020 
0100 0020 7F82 

MPYK SINT2 
PAC 
SACL ASINT2 

MPYK IGINT 
Pj\C 
SACL XVECT 

ZAC 
SACL RXEFLG,O 

SACL SNDFLG,O 

EINT 

save sepondary communication address2 
to its storage. 

ignore interrupt once after master 
reset: 

clear flags. 

enable interrupt. 
0101 l! 

0102 
QI03 
0104 
0~0!i 
0106 
0107 
0108 
0109 
0110 
DIll 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 0021 
0122 0021 2002 
0123 0022 FFOO 

0023 0021 
0124 0024 
0125 0024 2003 
0126 0025 FEOQ 

0026 0028 
0127 0027 
0128 d027 4905 
0129 0028 

l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l! 

l! ==================== l! 
l( Mai n program. IE 

l! User can mod; fy. , l! 

IE ==================== IE 
IE 

l! This program allows the user 2 levels of nesting, since IE 

¥ two levels are used as stack for the interrupt. IE 
IE 'When the RXEFLG flag is false; no data transfer has IE 

l! occurr~d; if true then' data transf~r has finished. ¥ 
l! User routines such as digital fflter, secon~ary-data- IE 

l! communication judgement etc. must be placed in this ~ 
IE location. Depending on the sampling rate, ~conversion 
l( rate), these, user routines must ;"rite the xmit'data to 

IE 
IE 

l! the shift registers within approximateiy 500 instruction IE 

IE cycles. If ~he user reqJire~ secondary comm~nication, it l! 

l! will be necessary to delay the OUT'instruction until the l! 
l! secondary data transfer has fin'i~hed. ' l! 
l!l!l!l!l!l!l!l!l!l!l!l!l!l!l(l!l(l!l!l!l(l!l!l!l!l!l(l!IEl!l!IEl!IEl!l!IEl!l!l!l!l!IEl!l!l!l!l!l!l(l!l!l!1E1E1El!1El!l! 

MAIN LAC 
BZ 

LAC 
BNZ 

our 

RXEFLG,O wait for interrupt, 
MAIN 

SNDFLG,O skip qUT instruction during secondary 
MAINI communication. 

DXMT,PAI write xmit dat~ to shift register. 

0130 0028 7F89 MAINI 
0131 0029 5002 

ZAC 
SACL 

clear flags. 
RXEFLG 

0132 002A 
0133 002A F~OO 

0021 0021 

128 

B MAIN , loop. 

Interlacing the TMS320 Family to the TLC32040 Family 



002C 
002C 4004 
0020 

0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 
0148 
0149 
0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 
0163 
0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 

0020 7EFF 
~02E 5002 
002F 
002F 7F80 

0030 
0030 4004 
0031 
0031 4906 

0032 200E 
0033 5007 
0034 
0034 7EFF 
0035 5003 
0036 
0036 7F8D 
0037 

0184 0037 

II 

111111111111111111111111111111111111.11 •• 11 ••••• * ••••••• 1111 •• 11 •• 11 •• 1111111111 •• 11111111. 

• 
II 

II 

II 

II 

II 

II 

NiNT 

• 

============================ 
normal interrupt routine. 

===============~============ 

destroy ACC.DP. 

Write the contents of DXMT to the LS299's, receive 
OAC data in ORCV, and set RXEFLG flag. 

IN DRCV,PAO Receive data from shift register. 

LACK SET set receive and xmit ended flag. 
SACL RXEFlG 

RET return. 

• 
• 
II 

• 
• 
II 

• 

11 ••• 11 •••• 11 •• * •• * •••• * ••••••••• 11 •••••••••••• 11 ••••• *.*.*** •• 

• 
* 
* 
* 
* 

=============================================== 
secondary communication interrupt routine 1. 

destroy ACC,OP 

• 
* 
II 

• 
* 

* Write the contents of 02NO to the 'LS299s, receive * 
* data in DRCV, and modify XVECT for secondary communi * 
• -cati on interrupt. * 
*********.**********11.*****.* •• **.** ••• 11** •• ************** 

SINTI iN DRCV,PAO receive data from shift register. 

OUT D2ND,PAl write secondary data to shift 
* register. 

LAC ASINT2,0 modify interrupt location. 
SACL XVECT secondary communication 2 

LACK SET set secondary communication flag. 
SACL SNDFLG,O 

RET return. 

*****11*11***11.*************.*.*************11*************** 
II 

II 

* 
II 

* 
* 
* 

=============================================== 
secondary communication interrupt routine 2. 

=============================================== 

II 

* 
* destroy ACC, DP * 
II 

Modify XVECT for normal communication, and set RXEFLG* 
flag. 

Oi85 0037 20DC SINT2 
0186 0038 5007 

LAC ANI NT 
SACL XVECT 

modify interrupt location 
normal communication. 

Interfacing the TMS320 Family to the TLC32040 Family 129 



130 

0187 0039 
0188 0039 7EFF 
0189 003A 5002 
0190 0038 
0191 0038 7F89 
0192 003C 5003 
0193 003D 
0194 003D 7F8D 
0195 003E 
0196 
0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 

003E 
003E 
003F 
0040 
0040 
0041 

200C 
5007 

7F8D 

LACK SET set receive and xmit ended flag. 
SACL RXEFLG 

ZAC Clear secondary communication flag. 
SACL SNDFLG,O 

RET return. 

........... _ ....... _ ............. __ ._----------------------- ====================================== -
- ignoring first interrupt after reset. _ 

- ====================================== -
- destroy ACC,DP. -
- Ignore first interrupt after reset. TLC32040 receives -
- zero as DAC data but no ADC data,in DRCV. -

-
IGINT LAC ANINT modify interrupt location 

SACL XVECT normal communication. 

RET return. 

END 
NO ERRORS, NO WARNINGS 

Interfacing the TMS320 Family to the TLC32040 Family 



B TLC32040 and TMS32020 Flowcharts and 
Communication Program 

B.1 Flowcharts 

2 
~------_r------~ 

3 
~------_r------~ 
..... ____ .,..-____ ... 4 

~------_r------~ 

1 - Alterable AR pointer and OVM. 
2 - Alterable CNF, SXM and XF. 

5 

3 - Must clear at least 10S'through 127, 19 of internal RAM. 
4 - If IMR is changed by user program, INST must be changed. 
5 - Their contents will be changed by their·routine locations. 
6 - IGNR~ is executed only once after reset. 

~------~------~ 
6 

a. INITIALIZATION b. RECEIVE INTERRUPT SERVICE ROUTINE 

c. RECEIVE SUBROUTINE d. IGNORE INTERRUPT 

Interfacing the TMS320 Family to the TLC32040 Family 131 



7 
~------~------~ 

7 - IGNRX is executed only once after reset. 

e. TRANSMIT INTERRUPT SERVICE ROUTINE f. PRIMARY TRANSMISSION ROUTINE 

8 
~-------,--------~ 

9 
~----------~----------~ 

8 - Modify to 52 address. 
9 - Modify to NRM address. 

g. PRIMARY-SECONDARY COMMUNICATIONS 1 h. PRIMARY-SECONDARY COMMUNICATIONS 2 

132 Interfacing the TMS320 Family to the TLC32040 Family 



~-------r------~ 

1 0 ~ Modify to NRM address. 
11 ~ Modify to 51 address. 

i. IGNORE TRANSMIT INTERRUPT 

10 

j. SECONDARY COMMUNICATION JUDGMENT 

k. IGNORE FIRST INTERRUPTS 

Interfacing the TMS320 Family to the TLC32040 Family 133 



B.2 Communication Program List 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 

134 

0000 
0001 

============================================ 
TLC32040 & TMS32020 communication program. 

by H.Okubo & W.Rowand 
version 1.0 7/15/87. 

* * * This is a TMS32020 - TLC32040 communication program * 
* that can can be used in many systems. To use this * 
* program, the TMS32020 and the TlC32040 (AIC) must be * 
* connected as shown in Volume 3 of linear and Interface * 
* Applications. The program reserves TMS32020 internal * 
* data memory 108 through 127 (82) as flags and data * 
* storage. When secondary communication is needed, every ~ 

* maskab1e interrupt except XINT interrupt is disabled * 
* until that communication finishes. This means that XINT * 
* will be valid only during one DAC conversion time. * 
* If you have any questions, please let us know. * 
************************************************************ 
* 
* * ========================== 
* Memory mapped register. 
* ========================== 
* 
DRR 
DXR 

EQU 
EQU 

o 
1 

* data receive register address. 
* data xmit register address. 

0004 IMR 

* 
EQU 4 * interrupt mask register address. 

006C 
006D 
006F 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
007A 
0078 
007C 
007D 
007E 
007F 

* ============================================ 

TMPO 
ACCHST 
ACClST 
SSTST 
INTST 
RVECT 
XVECT 
VRCV 
VNRM 
VS1 
VS2 
DRCV 
DXMT 
D2ND 
FRCV 
FXMT 
F2ND 

* 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

108 
109 
III 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

* temporary register. 
* stack for ACCH. 
* stack for ACCl. 
* stack for STO register. 
* stack for IMR register. 
* vector for RINT. 
* vector for XINT. 
* RINT vector storage. 
* XINT vector storage. 
* secondary vector storage1. 
* secondary vector storage2. 
* receive data storage. 
* xmit data storage. 
* secondary data storage. 
* receive flag. 
* xmit flag. 
* secondary communication flag. 

Interfacing the TMS320 Family to the TLC32040 Family 



0055 
0056 

.................................................. ~ ........ . 
• Processor starts at this address after reset. • 

0057 • • • • 
0058 0000 
0059 0000 FF80 

0001 0020 
0060 
0061 
0062 
0063 
0064 
0065 OOlA 
0066 OOlA FF80 

0018 004A 
0067 
0068 
0069 
0070 
0071 
0072 OOlC 
0073 OOlC FF80 

OOlD 005A 
0074 
0075 
0076 0020 
0077 
0078 
0079 
0080 
0081 
0082 
0083 0020 

AORG 0 
B STRT 

• program start address. 
• jump to Initialization routine. 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
IE 

1E1E1E.1E1E1E1E1E1E1E1E •• IEIEIEIEIEIEIEIEIEIEIEIEIEIE.IEIEIEIEIEIEIEIEIEIEIEIEIEIEIE.IEIEIE •• IEIE •• IE IE II IE IE IE 

IE Receive interrupt location. IE 

IE 

AORG 26 
B RINT 

IE 

IE Rint vector. IE 

IE jump to receive interrupt routine. IE 

1E1E1E1E1E1l1E1E1E1E1E1E.1E1E1E.1E1I.1E1E1E •• IEIE.IEIE •• IE.IEIlIEIlIlIE.IlIlIEIEIEIlIEIE.1l1E1E1EIE IE IE IE IE IE 

• 
1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E.1E1E1E1E1E1E1E1E1E •• IE •••••• IE •••••••••• 

IE Transmit interrupt location. • 
IE 

AORG 28 
B XINT 

• Xint vector. 
• jump to xmit interrupt routine. 

• 
IE 

• 
•••••• IE ••••••• IE •••••••••••••••••••••••• IE.IE •• IE •••••• IIIIIIII II II II II IE 

IE 

AORG 32 IE start initial program. 
IE 

IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE 

IE User must initialize DSP with the routine INIT. The IE 

IE user may modify this routine to suit his system require- IE 

IE ments as he likes. IE 

IE IE IE IE IE 1E.1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE 

0084 0020 FE80 STRT 
0021 0025 

CALL INIT 

0085 0022 CEOO 
0086 0023 FE80 

0024 0088 

EINT 
CALL IGR 

IE enable interrupt. 

Interfacing the TMS320 Family to the TLC32040 Family 135 



0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
Oil7 
0118 
0119 
0120 
9121 
0122 
0123 0025 C800 
0124 0026 0001 

0027 OEOO 
0125 0028 606F 
0126 0029 506F 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 

0135 
0136 
0137 

i36 

002A 0001 
002B 03FO 
002C 606f' 
002D 516F 

II 
.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII*IIIIIIIIIIIIIIII.II~IIIIIIIIIIIIIIII.IIIIIIIIIIIIIIII*IIIIIIIIIIIIII111111111111 

II ============== II 
II User area II 
II 
II 

============== II 
II 

II This program allows th& user 2 levels of nesting, si~ce II 
II 2 levels are used as stack for the interrupt. When the II 
II FXMT flag is false'no data transmit has occurred. When II 
II the FRCVfiag is false no data has been received. A~ II 
II those flags are not reset by any routin~ in this program II 
II the user must reset the flag to read or write new data II 
II and note that >OOFF mea~s true, >0000 means false. II 
II User routines such as digital filtering, secondary-data- II 
II communication judgement etc. must be plac&d in this II 
II location. Depending on the sampling rate (conversion II 
II rate), these user routines must write the xmit data to II 
II DXMT registe'rs wi thin approximately 500 instruction II 
II cycles. If the user r~quires secondary communication, II 
II first write data with secondary code to DXMT, then write II 
II secondary data to D2ND and, call C2ND routine to set F2ND * 
II and modify XVECT for secondary communication. Note that II 
~ every maskable interrupt except XINT is disabled during II 
II this conversion cycle including secondary communication. II' 
IIIIKIIIIIIIIIIIIIIII~IIIIIIIIIIIIIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIII*IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII111111111111 
II 
~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~ 

II ======================= II 
II Initializing routine. II 
II ======================= II 
II This routine initializes the status, registers, flags, II 
II vector storage contents and internal data locations II 
~ 96 through 107. Note that the User can modify these II 
II registers (i.e. STO ST} IMR), as long as the contents do II 
II not conflict with the operation the AIC. II 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

INIT LDPK 0 II set statusO register. 

II 
II 

II 

II 
II 
II 
II 

II 

LALK >OEOO,O II 0000 1110 0000 OOOOB 

SACL TMPO,O 
LST TMPO 

LALK >03FO 

SACL TMPO,O 
lSTl TMPO 

II ARP=O AR pointer 0 
I( OV =0 (Overflowreg.c}ear) 
II OVM=} (Overflow mode set to 
II ! =1 Not affected. 
I( INTM=} Not affected 
I( DP 000000000 page, ti, 

I( set statusl register. 
I( 

II 0000 0011 1111 OOOOB 

II APB=O 
II CNF=O (Set BO data memory) 
II TC =0 

U 

Interfacing the TMS320 Family to the TLC32040 F(lmily 



0138 • • SXM=l Cenable sign extend ~ode.) 
0139 • • D9-D5=111111 not affected. 
0140 • • XF=l CXF pin status.) 
0141 • • FO=O C16bit data transfer mode.j 
0142 • • TXM=O CFSX input) 
0143 • 
0144 • • 
0145 • 
0146 002E CAOO ZAC • clear registers 
0147 002F 6001 SACL DXR.O • 
0148 0030 6000 SACL DRR.O • 
0149 0031 C060 LARK ARO.96 • clear Block B2. 
0150 0032 CBIF RPTK 31 • 
0151 0033 60AO SACL .+.0 • 
0152 • 
0153 • Interrupt masking 
0154 • 
0155 0034 CA30 LACK >30 • 0000 0000 0011 OOIiOB 
0156 0035 6004 SACL IMR.O • XINT II 1I11 
0157 0036 6073 SACL INTST.O • RINT I 1111 
0158 • • TINT 1111 
0159 • • INT2 III 
0160 • • INTl Ii 
0161 • • INTO I 
0162 • 
0163 0037 D001 LAlK NRM.O • normal xint routine address. 

0038 0065 
0164 0039 6077 SACL VNRM.O • 
0165 • 
0166 003A DOOI LALK S1. 0 • secondary xint routine address 1. 

003B 006A 
0167 003C 6078 SACL VSl, 0 • 
0168 • 
0169 D03D DOOI LALK S2.0 • secondary xint routine address 2. 

003E 006 F 
0170 003F 6079 SACL VS2.0 • 
0171 lE 

0172 0040 DOOI LALK RCV.O lE rint routine address. 
0041 0055 

0173 0042 6076 SACL VRCV.O 
0174 lE 

0175 0043 DOOI LALK IGNRR.O lE set ignore first rint address. 
0044 0092 

0176 0045 6074 SACL RVECT.O 
0177 lE 

0178 00·46 DOOI LALK IGNRX.O • set ignore first xint address. 
0047 0097 

0179 0048 6075 SACL XVECT.O 
0180 0049 CE26 RET • return. 

Interfacing the TMS320 Family to the TLC32040 Family 137 



0181 
0182 
0183 
0184 
018S 
0186 
0187 
DIU 
0189 
0190 
0191 
0192 
0193 
0194 
019S 
0196 
0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
020S 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
021S 
0216 
0217 
0218 
0219 
0220 
0221 
0222 

004A 7872 
004B C800 
004C 607i 
004D 6870 
004E 2074 
004F CE24 
OOSO 4171 
OOSI 4870 
00S2 S072 
00S3 CEOO 
00S4 CE26 

DOSS 2000 
00S6 607A 
00S7 CAFF 
00S8 607D 
00S9 CE26 

0223 OOSA 7872 
0224 OOSB C800 
022S OOSC 6071 
0226 OOSD 6870 
0227 DOSE 207S 
0228 OOSF CE24 
0229 0060 4171 
0230 0061 4870 
0231 0062 S072 
0232 0063 CEOO 
0233 0064 CE26 

138 

II 
lIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlI 

II ================================= II 
II Receive interrupt routine. II 

II ================================= II 
II This routine stores receive data in its storage II 
II DRCV (112 pageD) and sets receive flag FRCV (12S pageD). II 
II As 2 levels nesting are used. this routine allows the II 
II user 2 levels nesting. without stack extension. II 
lIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlI 

RINT SST SSTST II push STO register. 

II 
RCV 

II 

LDPK 0 II data pointer page O. 
SACL ACCLST.O II push ACCL. 
SACH ACCHST.O II push ACCH. 
LAC RVECT.O II load ACC vector address. 
CALA 
ZALS ACCLST 
ADDH ACCHST 
LST SSTST 
EINT 
RET 

LAC DRR.O 
SACL DRCV,O 
LACK >FF 
SACL FRCV 
RET 

II pop ACC 

II pop ST register. 
II enable interrupts. 
II return. 

II load data from DRR. 
II save it to its storage. 
II set receive flag. 
II 
II return. 

lIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlI 

II =================================== II 
II Xmit interrupt routine. 
II =================================== 
II This routine writes xmit data (the contents of DXMT 

II 

II 
II 

II (123 pageD» to DXR register according to communication II 
II condition. i.e. normal communication or secondary II 
II communication. For normal communication call normal com- II 
II munication routine (NRM). For secondary. call secondary II 
II communication routines (Sl and S2). Because these II 
II routines use 2 levels of nesting. the user is allowed 2 II 
II levels of nesting if stack extension is not used. II 
II II 
lIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlIlI 

XINT SST SSTST II push ST register. 
LDPK 0 II data pointer page O. 
SACL ACCLST.O II push ACCL. 
SACH ACCHST.O II push ACCH. 
LAC XVECT.O II load vector address. 
CALA II call xmit routine. 
ZALS ACCLST II pop ACC 
ADDH·ACCHST 
LST SSTST II pop ST register. 
EINT II enable interrupt. 
RET II return. 

Interfacing the TMS320 Family to the TLC32040 Family 



0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 0065 2078 
0244 0066 6001 
0245 0067 CAFF 
0246 0068 607 E 
0247 0069 CE26 
0248 
0249 
0250 
0251 
0252 
0253 
0254 
0255 

l! 
l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l! 

l! =================================== l! 
l! Normal data writing routine. l! 

=================================== 
l! This routine is called when normal communication occurs.l! 
l! this routine writes'xmit data to DXR, and sets xmit flag l! 
l! C126 pageO). l! 
l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l! 
NRM LAC DXMT,O l! write DXR data. 

SACL'DXR,O 
LACK >FF 
SACL FXMT 
RET 

l! set flag. 

l! return. 
l! 
l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l! 
l! ====================================== l! 
l! 
l! 

Secondary data writing routine 1. l! 
l! 

l! This routine is called when secondary communication l! 
l! occurs. This routine writes secondary data 'to DXR, and l! 
l! modifies the content of XVECTCl17 pageO) for continuing l! 

0256 l! the secondary communication. l! 
0257 l! l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l! 
0258 006A 207C Sl LAC D2ND,0 l! write DXR 2nd data. 
0259 0068 6001 
0260 006C 2079 
0261 006D 6075 
0262 006E CE26 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 
0271 
0272 
0273 
0274 
0275 
0276 
0277 
0278 
0279 
0280 
0281 
0282 
0283 
0284 

006F 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 

CAOO 
6001 
601F 
CAFF 
607E 
2077 
6075 
2073 
6004 
CE26 

SACL DXR,O 
LAC VS2,0 
SACL XVECT, 0 
RET 

l! modify for next XINT. 

l! return. 
l! 
l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l! 
l! ====================================== l! 
l! Secondary data writing routine 2. l! 
l! 
l! 

l! 
l! 

l! This routine is called when secondary communication l! 
l! occurs. This routine writes dummy data to DXR to clear l! 
l! the secondary code for the protection of double writing l! 
l! the secondary code and reset secondary flagC127 pageD), l! 
l! modify the content of XVECTCl17 pageO) for normal XINT. l! 
l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l!l! 
S2 ZAC l! clear data for protection. 

SACL DXR,O l! of double secondary communication. 
SACl F2ND l! clear secondary flag. 
LACK >FF l! set xmi t end flag. 
SACL FXMT,O 
LAC VNRM,O l! set normal communication vector. 
SACL XVECT,O 
LAC INTST,O l! enable all interrupts. 
SACl IMR,O 
RET l! return. 

Interfacing the TMS320 Family to the TLC32040 Family 139 



0285 
0286 
0287 
0288 
0289 
0290 
0291 
0292 
0293 
0294 
0295 
0296 
0297 
0298 
0299 
0300 
0301 
0302 
0303 
0304 

0305 
0306 
0307 
0308 
0309 
0310 
0311 
0312 
0313 
0314 
0315 
0316 
0317 
0318 
0319 
0320 
0321 
0322 
0323 
0324 
0325 
0326 

0079 C800 
007A CA03 
007B 606F 
007C 207B 
007D 4E6F 
007E 106F 
007F F680 
0080 0082 
0081 CE26 

0082 CAFF 
0083 607F 
0084 CA20 
0085 6004 
0086 2078 
0087 6075 
0088 207B 
0089 6001 
008A CE26 

0327 008B 206D 
0328 008C F680 

008D 008B 
0329 008E 206C 
0330 008F F680 

0090 008B 
0331 0091 CE26 

140 

IE 

IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE 

IE ======================= IE 

IE Check secondary code. destory DP pointer. IE 

IE ======================= ACC. IE 

IE IE 

IE This routine checks whether the data in DXMT (123 pageO)1E 
IE has secondary code or not. If secondary code exists, IE 

IE then disable maskab1e interrupts except XINT, modify the IE 

IE contents of XVECT(117 pageD) for secondary communication,1E 
IE and set secondary flag. Note that we recommend calling IE 

IE this routine to send control words to AIC. IE 

IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE 

C2ND LDPK 0 IE data page pointer o. 
LACK 03 
SACL TMPO 
LAC DXMT,O IE is this data secondary code 
AND TMPO 
SUB TMPO,O IE 

BZ C2NDI IE if yes, then next. 

RET IE else return. 
IE 

C2ND1 LACK >FF IE set secondary flag. 
SACL F2ND,0 
LACK >20 IE enable only XINT. 
SACL IMR,O 
LAC VSl, 0 
SACL XVECT,O 

IEmodify vector address for secondary 
IE communication. 

LAC DXMT,O IE write primary data to DXR. 
SACL DXR,O 
RET IE return. 

IE 

IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE 

IE IE 
IE ======================= IE 

IE 

IE 

IE 

Check first interrupt 
======================= 

IE 

IE 

IE 

IE This routine check whether both first interrupts have IE 

IE occurred. If this routine is called after reset, this IE 

IE routine waits for both interrupts then returns. 
IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE 

IGR LAC FRE,O IE check first interrupt after 
BZ IGR IE master reset. 

LAC FXE,O 
BZ IGR 

RET 

Interfacing the TMS320 Family to the TLC32040 Family 



0332 
0333 
0334 
0335 
0336 
0337 
0338 
0339 
0340 
0341 
0342 

II 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

II 

II 

II 

Ignore interrupt routine. 
============================== 

II These routines are for the purpose of ignoring the firstll 
II RINT and XINT after the DSP reset. The routines only set II 

II flags and modify each vector address to normal interrupt II 

II address but do not read or write to serial ports. 
II Note that first data that the first data that the AIC 
II will receive after the DSP reset is OOOOH. 

II 

II 

II 

0343 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

0344 0092 CAFF IGNRR LACK >FF 
0345 0093 606D SACL FRE,O 
0346 0094 2076 
0347 0095 6074 
0348 0096 CE26 
0349 II 

0350 0097 CAFF IGNRX 
0351 0098 606C 
0352 0099 2077 
0353 009A 6075 
0354 0098 CE26 
0355 II 

0356 
NO ERRORS, NO WARNINGS 

LAC VRCV,O 
SACL RVECT,O 
RET 

LACK >FF 
SACL FXE, 0 
LAC VNRM,O 
SACL XVECT,O 
RET 

END 

II set normal 
II 

II return. 

II set normal 
II 

II return. 

Interfacing the TMS320 Family to the TLC32040 Family 

receive address. 

xmit address. 

141 



142 Interfacing the TMS320 Family to the TLC32040 Family 



C TLC32040 and TMS320C 17 Flowcharts and 
Communication Program 

C.1 Flowcharts 

•. MAIN b. INTERRUPT SERVICE ROUTINE 

Interfacing the TMS320 Family to the TLC32040 Family 143 



c. PRIMARY COMMUNICATION 1 d. PRIMARY COMMUNICATION 2 

e. PRIMARY-SECONDARY COMMUNICATION 1 f. PRIMARY-SECONDAiw COMMUNICATION 2 

g. PRIMARY-SECONDARY COMMUNICATION:3 h .. PRIMARY-SECONDARY· COMMUNICATION 4 

144 Interfacing theTMS320 Family to the TLC32040 Family 



DIGITAL LOOPI!ACK 

Interfacing the TMS320 Family to the TLC32040 Family 145 



C.2 Communication Program List 

0001 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0002 ~ ~ 

0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 

146 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
OOOC 
DODD 

~ ====================================================== ~ 
~ TlC32040 to TMS320C17 Communication Program ~ 

~ version 1.1 ~ 

~ ~ 

~ by Hironori Okubo and Woody Rowand ~ 

~ Texas Instruments ~ 

~ ~ 

~ ====================================================== ~ 
~ ~ 

~ This program uses the circuit published in the vol. 3 ~ 

~ of linear and Interface Circuit Applications with the ~ 

~ following modifications: ~ 

~ 1. BIO- of the TMS320C17 must be connected to EODX- ~ 

~ of the TlC32040. ~ 

~ 2. INT- of the TMS320Cl7 must be connected to FSX- ~ 

~ of the TLC32040. ~ 

~ 

~ In this configuration, the program will allow the 
~ TLC32040 to communicate with the TLC320C17 with the 
~ with the restriction that all interrupts except INT
~ are prohibited and only synchronous communication 
~ can occur. The progr,am allows the user 2 levels of 
~ nesting in the main program; the remaining 2 levels 
~ being reserved for the interrupt vector and sub-
~ routines. 
~ 

~ If desired, this program may be used with the 
~ TMS32011 Digital Signal Processor with the following 
~ change. Since the TMS320ll has only sixteen words of 
~ data RAM on data page 1, all of the registers used by 
~ this program should be moved to data page 0, except 
~ for SSTSTK (the temporary storage location for the 
~ status register) which must remain on page 1 (since 
~ the SST instruction always addresses page 1). 
~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SSTSTK EQU >00 stack for status (SST) register.
ACHSTK EQU >01 stack for accumulator high (ACCH).
AClSTK EQU >02 stack for accumulator low (ACCL).
RXEFLG EQU >03 xmit/receive in progress.
DRCVl EQU >04 storage for high byte receive data.
DRCV2 EQU >05 storage for low byte receive data.
DXMTI EQU >06 storage for high byte xmit data.
DXMT2 EQU >07 storage for low byte xmit data.
DXMT3 EQU >08 storage for high byte secndry data.
DXMT4 EQU >09 storage for low byte secndry data.
VECT EQU >OA storage for interrupt vector addr.
ANINTI EQU >OB storage for normal xmit/rcv vect 1.
ANINT2 EQU >OC storage for normal xmit/rcv vect 2.
ASINTI EQU >OD storage for secndry xmit/rcv vect 1.

lnterfacmg.the TMS320 Family to the TLC32040 Family

0053
0054
0055
0056
0057
0058
0059
0060
0061 0000
0062
0063
0064
0065 0000

OOOE
OOOF
0010
0011
0012
0013
0014
OOFF

0066 0000 F900
0001 0013

0067 0002
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088 0002

ASINT2 EQU
ASINT3 EQU
ASINT4 EQU
CNTREG EQU
MXINT EQU
CLRX EQU
TEMP EQU
flAG EQU

>OE
>OF
>10
>11
>12
>13
>14
>FF

storage for secndry xmit/rcv vect 2.
storage for secndry xmit/rcv vect 3.
storage for secndry xmit/rcv vect 4.
storage for control register.
storage for xmit interrupt mask.
storage for xmit interrupt clear.
temporary register.
flag set.

=======================================
Branch to Initialization Routine.

=======================================
AORG >0000
B INIT branch to initialization routine.

*-**
* ================================= *
* Interrupt Service Routine.
* =================================

* To initiate secondary communications, change the
* contents of VECT ~o the address of the secondary
* communications subroutine and store the secondary
* communication information in DXMT3 and DXMT4.

* * e.g.
* LAC ASINTl

*
*

SACL VECT

LAC HI
SACL DXMT3
LAC H2
SACL DXMT4

modify VECT.

store high-byte of secondary
information in DXMT3.
store low-byte in DXMT4.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

0089 0002 AORG >0002 interrupt vector.
0090 0002
0091 0002 6EOI INTSVC LDPK 1
0092 0003 7COO SST SSTSTK
0093 0004 5801 SACH ACHSTK
0094 0005 5002 SACL ACLSTK
0095 0006 4813 OUT CLRX,PAO
0096 0007

push status register.
push accumulator high.
push accumulator low.
make sure FSX-flag is clear.

0097 0007 4011 HAITI IN CNTREG,PAO read control register.
0098 0008 2011 LAC CNTREG,PAO load accumulator with control reg.
0099 0009 7912 AND
0100 OOOA FFOO

OOOB 0007
BZ

MXINT mask-off xmit interrupt flag.
HAITI loop until xmit interrupt flag is

Interfacing the TMS320 Family to the TLC32040 Family 147

0101 - recognized.
0102 OOOC 200A
0103 0000 7F8C
0104 OOOE 6501
0105 OOOF 7A02
0106 0010 7800
0107 0011 7F82
0108 0012 7F80
0109 0013
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121 0013

LAC
CALA

VECT

ZALH ACHSTK
OR ACLSTK
LST SSTSTK
EINT
RET

load acc with interrupt vector.
call appropriate xmit/rcv routines.
pop accumulator high.
pop accumulator low.
pop status register.
enable interrupts.
return to main program.

- ====================================
_ .Initialization after Reset.

- ====================================
- Data RAM locations >80 through >92 are reserved by -
- this program. The user must set the status register -
_ at the end of this program with the SST command or -
_ a combination of SOVM, LOPK etc. -

- -
0122 0013 7F8l IN IT
0123 0014 6EOl

DINT
LOPK

disable interrupts.
set nata page pointer one.

0124 0015
0125 0015 7F89
0126 0016 6880
0127 0017 7083
0128 0018 50A8
0129 0019 50A8
0130 OOlA 50A8
0131 0018 50A8
0132 ODIC 50A8
0133 OOln 50A8
0134 ODIE 50A8
0135 001F 5088
0136 0020
0137 0020 4906
0138 0021 4906
0139 0022
0140 0022 7E04
0141 0023 5012
0142 0024
0143 0024 7EOl
0144 0025 5014
0145 0026 6A14
0146 0027
0147 0027 8094
0148 0028 7F8E
0149 0029 6713
0150 002A 4813
0151 0028
0152 0028 806E
0153 002C 7F8E

148

ZAC
LARP 0

clear registers.

LARK 0,RXEFLG+>80
SACL H

SACL H

SACL H

SACL H

SACL H

SACL H

SACL H

SACL IE

OUT
OUT

DXMTl,PAI G~ear transmit registers.
DXMTl,PAl

LACK
SACL

LACK
SACL
LT

MPYK
PAC
TBLR
OUT

MPYK
PAC

100000100
MXINT

1
TEMP
TEMP

CLXl

CLRX
CLRX,PAO

NINTl

initialize xmit-int mask.

prepare for serial port initial
ization and initialization of regis
ters containing l6-bit constants.

initialize interrupt flag clear.

configure serial port.

save normal communication address
to its storage.

Interfacing the TMS320 Family to the TLC32040 Family

0154 002D 50 DB
0155 002E SODA
0156 002F
0157 002F 8074
0158 0030 7F8E
0159 0031 500C
0160 0032
0161 0032 807B
0162 0033 7F8E
0163 0034 500D
0164 0035
0165 0035 8081
0166 0036 7F8E
0167 0037 500E
0168 0038
0169 0038 8087
0170 0039 7F8E
0171 003A 500F
0172 003B
0173 003B 808C
0174 003C 7F8E
0175 003D 5010
0176 003E
0177 003E F600

003F 0042
0178 0040 F900

0041 003E

SACl ANINTl
SACl VECT

MPYK NINT2
PAC
SACl ANINT2

MPYK SINTl
PAC
SACl ASINTl

MPYK SINT2
PAC
SACl ASINT2

MPYK SINT3
PAC
SACl ASINT3

MPYK SINT4
PAC
SACl ASINT4

IGNORI BIOZ IGNOR2

B IGNORI

preset interrupt address.

save normal communication address 2
to its storage.

save secondary communication
address I to its storage.

save secondary communication
address 2 to its storage.

save secondary communication
address 3 to its storage.

save secondary communication
address 4 to its storage.

ignore first FSX pair after reset.

0179 0042 F600 IGNOR2 BIOZ IGNOR2
0043 0042

0180 0044
0181 0044 7F82
0182 0045
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202 0045

EINT enable interrupt.

* ••••••••••••••• M •• MMM •••• M •••••••••••• M •• M •• M.M •••• M •••••••
M ================================= M
M Main Program (user area)

• =================================
* * This program allows the user 2 levels nesting, since
* one level is used as stack for the interrupt and the

*
*
*
*
* * interrupt service routine makes one subroutine call. •

* User routines such as digital filtering and secondary- •
* communication judgement. Depending on the sampling rate.
M the user's routines must write the data to the transmit *
* registers within approximately 500 instruction cycles. *
* *
• In the example below, the first two transmissions send *
* secondary information "to the AIC. The first configures *
• the TB and RB registers. The second configures the *
• control register. *
* * *.M.M.M.* •••••• ** ••••• * ••• ***.*.* ••• * ••• * ••• * ••••• *** •• *.*.*

Interfacing the TMS320 Family to the TLC32040 Family 149

150

0203 0045 7F89 MAIN
0204 0046 5006
0205 0047 7E03
0206 0048 5007
0207 0049 7E24
0208 004A 5008
0209 004B 7E92
0210 004C 5009
0211 004D 200D
0212 004E 500A
0213 004F 4906
0214 ~

0215 0050 7F89
0216 0051 5003
0217 0052

lAC
SACL DXMTl
LACK >03
SACL DXMT2
LACK >24
SACL DXMT3
LACK
SACL
LAC
SACL
OUT

lAC

>92
DXMT4
ASINTl
VECT
DXMTl,PAI

SACL RXEFLG

0218 0052 2003 MAINI LAC RXEFLG
MAINI 0219 0053 FFOO

0054 0052
0220 0055
0221 0055 7F89
0222 0056 5006
0223 0057 7E03
0224 0058 5007
0225 0059 7EOO
0226 005A S008
0227 005B 7E67
0228 005C 5009
0229 005D 200D
0230 005E 500A
0231 005F 4906
0232 0060
0233 0060 7F89
0234 0061 5003
0235 0062

Bl

lAC
SACL
LACK
SACL
LACK
SACL
LACK
SACL
LAC
SACL
OUT

lAC

DXMTl
>03
DXMT2
>00
DXMT3
>67
DXMT4
ASINTl
VECT
DXMTl,PAI

SACL RXEFLG

prepare first control word.

should be xxxx xxII.

set VECT for secondary
communications.
store first transmit byte in
transmit buffer.

clear xmit/rcv end flag.

wait for data transfer to complete.

prepare second control word.

clear xmit/rcv end flag.

0236
0237
0238

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ...... ~ ..... ~ .. ~ 
0239 
0240 
0241 
0242 
0243 
0244 
0245 0062 

• ================================== ~ 

Digital LoopBack Program 
~ ================================== 
~ 

~ This program serves as an example of what can be done 
~ in the user area. 

~ 

~ 

~ 

• 
~ 

• 
.~~~~.~~ ... ~.~~ .... ~ ... ~.~.~~~~~~~~~~~~~~~~~.~~.~~~~.*~~~~~~ 

0246 0062 2003 DLB LAC 
Bl 

RXEFLG 
DLB 

wait for data transfer to complete. 
0247 0063 FFOO 

0064 0062 
0248 0065 2004 
0249 0066 5006 
0250 0067 2005 
0251 0068 5007 
0252 0069 4906 
0253 ~ 

LAC DRCVl 
SACL DXMTl 
LAC DRCV2 
SACL DXMT2 

move receive data to transit 
registers. 

OUT DXMTI,PAI write first transmit byte to 
transmit buffer. 

Interfacing the TMS320 Family to the TLC32040 Family 



0254 006A 7F89 
0255 006B 5003 
0256 006C F900 

006D 0062 
0257 006E 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 
0271 006E 

ZAC 
SACL RXEFLG clear rcv/xmit-end flag. 
B DLB 

***********************************************M****M******* 
* ==================~================ * 
* Normal Interrupt Routines. * 
* =================================== * 
* * * These routines destroy the contents of the accumulator * 
* and the data page pointer. making it necessary to save * 
* these before the routines begin. * 
* * * Write the contents of DXMT2 to the transmit buffer and * 
* read the receive buffer into DRCVl. * 
* * 
************************************************************ 

0272 006E 4907 NINT1 OUT DXMT2.PA1 write xmit-Iow to xmit register. 
DRCV1.PAI read rcv-data-high from rcv reg. 0273 006F 4104 

0274 0070 200C 
0275 0071 500A 
0276 0072 4813 
0277 0073 7F8D 
0278 0074 

IN 
LAC ANINT2 prepare next interrupt vector. 
SACL VECT 
OUT 
RET 

CLRX.PAO clear xmit interrupt flag. 

0279 0074 4105 NINT2 IN DRCV2.PAl 
ANINTl 
VECT 

read receive-data-low from rcv reg. 
prepare next interrupt vector. 0280 0075 200B LAC 

0281 0076 500A SACL 
0282 0077 4813 
0283 0078 7EFF 
0284 0079 5003 
0285 007A 7F8D 
0286 007B 
0287 
0288 
0289 
0290 
0291 
0292 
0293 
0294 
0295 
0296 
0297 
0298 
0299 007B 

OUT CLRX.PAO 
LACK FLAG 
SACL RXEFLG 
RET 

clear xmit interrupt flag. 

set xmit/rcv end flag. 

* ======================================== * 
* Secondary Interrupt Routines * 
* ======================================== * 
* These routines destroy the contents of the accumulator * 
* and the data page pointer. * 
* * * The following routines write the low byte of primary * 
* communications and the high and low byte of secondary * 
* communication. They also read the A/D information from * 
* the receive registers. * 
************************************************************ 

0300 007B 4907 SINT1 
0301 007C 4104 

OUT 
IN 
LAC 
SACL 
OUT 
RET 

DXMT2.PAl 
DRCV1.PAl 
ASINT2 
VECT 
CLRX.PAO 

write xmit-data-low to xmit reg. 
read receive-data-high from rcv reg. 
prepare next interrupt vector. 0302 007D 200E 

0303 007E 500A 
0304 007F 4813 clear xmit interrupt flag. 
0305 0080 7F8D 

Interfacing the TMS320 Family to the TLC32040 Family 151 



0306 
0307 
030S 
0309 
0310 
0311 
0312 
0313 
0314 
0315 
0316 
0317 
031S 
03i9 
0320 
0321 
0322 
0323 
0324 
0325 
0326 
0327 
0328 
0329 
0330 
0331 
0332 
03~3 
0334 
0335 
0336 
0337 
033S 
0339 
0340 
0341 
0342 
0343 

OOSl 
OOSl 490S 
00S2 4105 
00S3 200F 
00S4 500A 
00S5 4S13 
OOSli 7FSD 
00S7 
00S7 4909 
OOSS 2010 
0089 500A 
OOSA 4S13 
OOSB 7F8D 
OOSC 
008C 200B 
OOSD 500A 
008E 4813 
008F 7fS9 
0090 5007 
0091 7EFF 
0092 5003 
0093 7F8D 

SINTZ OUT DXMT3,PAl write secondary-data-high to xmit. 
IN DRCV2,PAl read. receive-data-Iow from rcv. 
LAC ASINT3 prepare next interrupt vector. 
SACL VECT 
OUT CLRX,PAO clear xmit interrupt flag. 
RET 

SINT3 OUT DXMT4,PAl write secondary-data-Iow to xmit. 
LAC ASINT4 prepare next interrupt vector. 
SACL VECT 
OUT CLRX,P~O clear xmit interrupt flag. 
RET 

SINT4 LAC A~INTl prepare next interrupt vector. 
SACL VECT 
OUT Cq~X,PAO clear xmit interrupt flag. 
lAC 
SACL DXMT2 clear DXMT2 immediately to eliminate 
LACK FLAG unnexpected secondary communications. 
SAC( RXEFLG set xmit/rcv end flag. 
RET ........ ~~ ......... ~ ....................................... . 

• • 
• CONTRq~ ~EGISTER INFORMATION • 

• • 
• • 
• 
• • 
• • • 

SERIAL-PORT CONFIG. 
I 1 0 0 R·I· 1 1 
IS 1~ 13 12 11 10 9 

. I 

INT. MASK 
01 0 0 0 11 
87654 

LXF status 

INT. flAG 
o 1 0 0 I 
3 2 1 0 
I I I LINT 
I I I __ FSR 

I ___ FSX 
____ FR 

(write l's to clear) 

• • • • • • 
• 
• • 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
0094 8E14 CLXl DAtA >SE14 

END 
NO ERRORS, NO WARNINGS 

lS2 Interfacing the TMS320 Family to the TLC32040 Family 



Icc Requirements 
ofa 

TMS320C25 

DaveZalac 

Digital Signal Processor Products - Semicon~uctor Group 
Texas Instruments 

. IS3 



154 ICC Requirements ala TMS320C25 



Introduction 

Minimization of total power dissipation of an electronic system is often an important design 
objective. Iftight contraints on supply current are imposed on a design (such as in battery-powered 
systems), considerations relating to supply current are especially critical. Optimization of such de
signs is facilitated by an understanding of the tradeoffs involved in the behavior of the supply cur
rent requirement of each component of the system. 

The supply current (ICc) requirement of the TMS320C25 digital signal processor varies sig
nificantly under different sets of user-imposed conditions. The purpose of this report is to present 
a characterization of that requirement with respect to operating frequency, supply voltage, output 
loading, and temperature. Given an understanding of the variations of TMS320C25 ICC, the sys
tem designer can make appropriate design tradeoffs. 

In this report, a description of supply current as time-averaged capacitor-charging will be de
veloped by considering the supply current requirement of a CMOS inverter. Characterization data 
describing the behavior of the Icc requirement of the TMS320C25 in normal and low-current 
modes will be presented. The effects on ICC of output loading and temperature variation are dis
cussed. Finally, some low frequency considerations are made. 

Supply Current Requirement of a CMOS Inverter 

Some insight into the behavior of supply requirement under varying conditions can be gained 
through consideration of the basic CMOS converter shown in Figure 1. The capacitor shown in the 
figure represents the total load capacitance presented by the capacitances of gates connected to the 
output node, capacitances associated with the inverter structure itself, and interconnect capaci
tance. 

ICC Requirements of a TMS320C25 155 



Figure 1. Basic CMOS Inverter 

Vcc 

i CMOS- ----, 
S I 

I I 
I I 
I I 
I I 
I I 
I 0 I 
I I 

VI .1. I 
0 I ! Vo I I 

I I C 
I I 
I I 
I I 
I I L ___ ..§ ___ -.1 

'::" '::" 

If the input voltage is fixed at a logic high or logic low level, one ofthe two inverter transistors 
will be nop-conducting (off) while the other has a highly conductive channel (on). Under this condi
tion, the supply current is equal to the negligibly small P-N junction leakage current through the 
off device. 

If the input makes a transition from a logic high to a logic low level (or vice-versa), there will 
be a short interval of time during which both transistors conduct as the inverter is switching. The 
supply current during this interval is much larger than that under DC-input conditions. 

Thus, appreciable current is drawn from the supply only when the inverter is switching. This 
is in contrast to NMOS logic inverters, in which both the load and driver transistors are always con
ducting. The absence of a current path under DC-input conditions is thus responsible for the strong 
dependence of power consumption on operating frequency in CMOS logic circuitry. 

Let us assume a transition of the input signal is possible every T seconds. The average supply 
current can be computed by taking into account the supply currents associated with each of three 
possible events of the output signal (no transition, high-to-Iow transition, low-to-high transition). 

As already stated, the supply current is negligibly small under static input conditions. Thus 
we will take the average current to be zero for an interval T wide during which the inverter does 
not switch. 

If the input voltage makes a high-to-Iow transition, the N-channel transistor will tum off and 
the capacitor C will be charged through the conducting P-channel device to the output high level 
of V OH volts. The total charge Q delivered to C is given by 

156 ICC Requirement of a TMS320C25 



(1) 

The output levels for a typical CMOS inverter approach V OH = Vee and VOL = 0 V. Thus 
C x Vee coulombs are transferred to C each time the output makes a low-to-high transition. The 
average charging current during the interval is given by 

where f = Iff. 

Q 
Ie = - = C X Vee X f 

T 
(2) 

When the output makes a high-to-Iow transition, C discharges through the N -channel device. 
The energy stored on the capacitance C is dissipated primarily in the N-type channel. The current 
sourced by the supply for high-to-Iow transitions of the output is zero as the P-channel device is 
off. 

Given this description of supply current, low-to-high transitions of the output are the only 
events during which current is sourced by the power supply. The average supply current is thus giv
en by: 

lAVE = k X C X Vee X f (3) 

where k is equal to the normalized number of transitions that are from a low to a high output level. 
Thus the average supply current is linearlyrelated to output capacitance, supply voltage, and oper
ating frequency. The average power delivered by the supply is the average product of supply volt
age and current and is given by: 

PAVE = (V X I)AVE = Vee X lAVE = k X C X Vee 2 X f (4) 

Similar variations with operating frequericy, supply voltage, and node capacitances can be 
expected of the behavior of the supply current of a complex CMOS integrated circuit. Each time 
the machine is clocked, charge is transferred to some nodes from either the power supply or from 
previously charged nodes. Some of the charge on nodes previously at a logic high is lost due to leak
age. Additional supply current may be required to replenish the charge on these nodes. 

The total charge requirement for a given machine cycle depends, as in the case of the inverter, 
on the product of V CC and the total capacitance charged during that machine cycle. The total capac
itance of the IC is directly related to the area of the die. Thus we expect the IC's supply current re
quirement to be proportional to supply voltage, operating frequency, and die size. 

Recall that both lAVE and PAVE for the CMOS inverter are proportional to k. The implication 
this has for a complex CMOS integrated circuit is that of a relationship between power dissipation 
and the binary representation of the code being executed by the device and data driven on the exter
nal bus. Execution of different pieces of code can result in different supply current requirements 
under otherwise equal conditions. 

Given this information, let us now look specifically at the TMS320C25 with respect to supply 
current requirement. It is important for the reader to understand that the data presented in the fol
lowing sections are used only to characterize the way in which ICC varies as externally imposed 

ICC Requirement of a TMS320C25 157 



conditions are varied. The data should not be taken to supersede the TMS320C25 electrical specifi
cation. Furthermore, as a result of process variations and enhancements, the relationship between 
ICC and external conditions can itself vary. For example, the slopes of the lines in the graphs shown 
in Figure 2 may increase or decrease somewhat with process parameter variations. In all cases, 
however, the supply current specification is met by every TMS320C25 device. 

Shown in Figure 2 are plots of supply current vs. frequency for five values of supply voltage 
for the TMS320C25. 

170 

160 

150 

140 

130 

120 

110 

< 100 
E - 90 0 
0 

80 

70 

60 

50 

40 

30 

20 

10 

Figure 2. TMS320C25 Supply Current Versus Frequency Plots 

~ 
~ ~ 

..... ~ ~ 

Icc VS. fCLKIN AND Vee 
(NORMAL OPERATING MODE) 

./ 
./ ~ 

-"l V~ 

./. 
~ 
V ........ 
", ......... 

V/ r.... ~ ........... i""" 
lh % ~i""" 

h ~ ~ 
~ ~ 
~ 

V 
/. V .... 
~ V~ 
/ ... V .... 
"'.,.. i-" , 

Vee = 5.50 V 

Vee = 5.25 V 

Vee = 5.00 V 

Vee = 4.75 V 

Vee = 4.50 V 

~ 
~ 

I I. 

4 8 12 16 20 24 28 32 36 40 44 48 52 
feLKIN. MHz 

For a fixed value of supply voltage V ceo, Icc increases linearly with the frequency of the 
eLKIN signal with a slope m given by 

m = 0.37 X Vcco - 0.71 milliamperes per megahertz (5) 

Note that m = 1.1 mNMHz at Veeo = 5.0 V. For a fixed operating frequency to, ICC in
creases linearly with supply voltage with a slope m given by 

m = 0.37 X fa + 0.14 milliamperes per megahertz (6) 

Note that m = 15 mNV at fO = 40 MHz. Full loading of the device outputs was imposed in 
the measurement of the values given. This is explained in detail in the following section. The same 
data is given in tabular form in Table 1. 

158 ICC Requirement of a TMS320C25 



Table 1. ICC vs. fCLKIN (MHz) and V CC (V) in Normal Operating Mode 

flVee 4.50 4.75 5.00 5.25 5.50 

4 13 15 17 19 21 
8 22 25 28 30 33 

12 32 35 38 41 45 
16 41 45 49 52 56 
20 50 54 59 64 68 
24, 59 64 69 75 80 
28 68 74 80 86 92 
32 77 84 90 97 103 
36 87 94 101 108 115 
40 96 103 111 119 127 
44 105 113 122 130 138 
48 114 123 132 141 150 
52 123 133 143 152 162 

Variation of ICC with Output Loading 

The TMS320C25 has two modes in which the device's supply current requirement is signifi
cantly reduced. These modes are referred to as the POWERDOWN and HOLD modes. When in 
HOLD mode, the address, data, and control lines of the TMS320C25 are put into a high-impedance 
state. The HOLD mode is invoked by lowering the HOLD input on the device. If the HOLD mode 
is invoked with the HM status bit set to zero and program execution is from internal memory, execu
tion will continue until an attempt to access external resources is made. Concurrent DMA is possi
ble in this mode. If the HOLD mode is invoked with HM set to one, program execution ceases until 
the HOLD mode is exited by raising HOLD. POWERDOWN mode is identical to HOLD mode 
with HM = 1 if it is entered by driving HOLD low. However, POWERDOWN mode may also be 
invoked in software by executing an IDLE instruction. In this case, only the data lines are placed 

. in the high-impedance state. Please refer to the Second-Generation TMS320 User s Guide for fur-
ther details on these modes of operation. 

Shown in Figure 3 are plots of supply current vs. CLKIN frequency for five values of supply 
voltage with the TMS320C25 in POWERDOWN mode. 

ICC Requirement of a TMS320C25 159 



~ 

Figure 3. TMS320C25 POWERDOWN Mode Plots of Supply Current 
Versus. CLKIN Frequency 

Icc vs. feLKIN AND Vee 
(POWERDOWN MODE) 

80~~~--~--~--~~--r-~r---~--~--~--~--'---~ 

70 -+----I---+--_�_--I----+--I---+---+---+---+----I.....,,~ Vee = 5.50 V 
Vee = 5.25 V 
Vee = 5.00 V 

60 -+--+---+----+---If---~--+--+----I----+-'"""""q."."c:...+~4 Vee = 4.75 V 

50-+--+---+---+---I~--~-+---+-~~~~~~~~~4 
Vee = 4.50V 

o40-+---+---+---+----I---~~~~~~~~~--+----I---~ 
o 

10 

o -+--+--+-~-~---r-~r_-r---+--+---;--~-~ 
4 8 12 16 20 24 28 32 36 40 44 48 52 

feLKIN. Mhz 

Note that relative to normal operating conditions, the supply current is reduced by approxi
mately 50%. Table 2 shows the same information in tabular form. 

Table 2. ICC vs. fCLKIN (MHz) and V CC (V) in POWERDOWN Mode 

fNee 4.50 4.75 5.00 5.25 5.50 

4 8 8 8 9 9 
8 11 12 13 14 15 

12 15 16 18 19 20 
16 19 21 22 24 25 
20 23 25 27 28 30 
24 27 29 31 33 36 
28 30 33 36 38 41 
32 34 37 40 43 46 
36 38 41 45 48 51 
40 42 45 49 53 57 
44 45 50 54 58 62 
48 49 54 58 63 67 
52 53 58 63 67 72 

The above shows that a significant percentage of ICC is spent on driving the device outputs. 
These include the address, data, and control lines. A typical load is shown in Figure 4. The capaci-

160 ICC Requirement of ~ TMS320C25 



tance Ct is made up of capacitances associated with the output buffer itself, capacitance of the out
put conductor to ground, and input capacitances of other connected devices. The DC current load 
(such as that presented by TIT.. inputs) is represented by the current sink. 

Figure 4. Device Output Typical Load 

-----, 
I 

TMS320C25I 
OUTPUT ~I ----~~--------~ 

I 
____ -I 

An equivalent load connected to each device output during the TMS320C25 ICC measure
ment is shown in Figure 5. Note that when the output is high, the device sOilrces (VOH - 2.15)/825 
= 303 !LA at V OH = 2.4 V. The device sinks (2.15-V 01)/825 :::r 2.12 rnA at VOL = 0.4 V when the 
output is low. When the output is switching, the output buffer drives 100 pF of capacitance in addi
tion to the resistor current. 

Figure S. Device Output Equivalent Load 

2.15V 

-------, 
TMS320C25 

OUTPUT 
(UNDER TEST) 

I 
I 
I 
I 
I 
I _______ J T 100pF 

The user can estimate the TMS320C25 supply current (rnA) for a particular set of conditions 
using the following relationship: 

Icc (normal operating mode) 
C = (IpWRDwN + 30) + -- X [INoRM-(/PWRDWN + 30) - 11] + IDc 
Co 

ICC Requirement of a TMS320C25 

(7) 

161 



where IpWRDWN is the supply current in POWERDOWN mode taken from Figure 3, Inoim is the 
supply current in normal operation with full output loading taken from Figure 2, C is the average 
load capacitance imposed on a device output by the user (in pF), and Co = 100 pF, as shown in Figure 
5. 

The above expression can be derived as follows. The total supply current is given by 

Icc = IcoRE + lAC + I DC 
(8) 

where ICORE is the supply current with the outputs in the high impedance state and with ac
tive internal program execution, lAC is the capacitive load current, and loc is the DC load current. 

ICORE depends on supply voltage and operating frequency, but does not, depend on output 
loading. ICORE is giveri by 

ICORE = I pwRDWN + 30 mA (9) 

IpWRDWN can be taken directly from Figure 3. The supply current with the outputs in the 
high-impedance state when the device is executing code internally is approximately 30 rnA greater 
than when the device is in POWERDOWN mode at fCLKIN = 40 MHz. This value (30 rnA) isfre
quency-dependent, but for simplicity is given as a constant. 

lAC for a given capacitive loading is a scaled version of the maximum AC load current 
sourced under the condition C = Co = 100 pF. INORM (taken directly from Figure 2) is related to 
the maximum AC load current as follows: 

Thus lAC for a given capacitive load is given by 

C 
lAC = - X IAC(max) 

Co 
C 

= - X [INoRM-IcoRE-IDC(max)l 
Co 

(10) 

(11) 

Since Figures 2 and 3 provide the values for INORM and IpWRDWN, IOC(max) is the only 
quantity still needed t9 evaluate lAC. IOC(max) is given by 

I DC(mox) = N X IOH(max) 
(12) 

where N is the number of device outputs driving IOH milliamperes of current and IOH(max) = 300 
!lA, as given in the device electrical specification. For the TMS320C25, an appropriate value of 
N is 36. Thus IOC(max) is approximately 11 rnA. 

Finally, IDC is the total DC load current under the user's loading conditions. Plugging this 
and the results of expressions (9) through (12) into (8) yields the relationship given in (7). 

As in the case of a simple inverter, the current requirement of a given output depends on the 
average number of low-to-high transitions per second, the value of Cb and the magnitude of the 
output voltage swing. 

162 ICC Requirement of a TMS320C25 



Variation of ICC with Ambient Temperature 

The behavior of supply current with temperature is complex in that there are several tempera
ture-dependent quantities involved that affect ICC' (See References [2] and [4] for a detailed dis
cussion.) Variations in MOS transistor threshold voltages and other MOS device parameters, in
creases in leakage currents, and other variations typically result in a slight decrease in supply cur
rent with increasing temperature. However, the supply current of the TMS320C25 exhibits no ,sig
nificant variation with temperature over the ODC - 70DC range specified in the recommended oper
ating conditions for the device. The TMS320C25 ICC vs. temperature characteristic exhibits a 
slight downward taper outside this range. The value of IcC at either military temperature range 
(-55DC to 125DC) endpoint is approximately 10 rnA less than that at commercial temperature 
(ODC to 70DC). 

Low-Frequency Considerations 
There are some mechanisms in dynamic logic circuitry that are of issue if the device is oper

ated at a very low clock frequency (less than 100 kHz) that give rise to dramatic increases in supply 
current. Since the TMS320C25 has dynamic logic circuitry, let us briefly examine a simple dynam
ic circuit to understand one of these mechanisms. 

Shown in Figure 6 is a CMOS inverter, identical to that in Figure 1, being driven by a second 
inverter. When the clock signal Q1 goes high, node A is pre-charged to a logic 1 level through tran
sistor Tl. Note that no current path exists through T2 and T3 during this interval, as Q2 is low and 
therefore T2 is off. When Q2 goes high, node A is conditionally discharged through T2 and T3. 
Suppose the input X is low. In this case node A will not go low when Q2 goes high because T3 will 
be off. During the interval bounded by the falling edge of Q1 and the next rising edge of Q1, the 
input to the CMOS inverter is held high only by the charge on C; i.e., high impedance is seen looking 
into the output node A. Under this high-impedance condition, node A is said to be floating. In con
trast, recall that if the input to the inverter in Figure 1 is high or low, a current path exists between 
the output node and a supply node. The output node is thus always driven, as is always the case in 
conventional static logic. Node A is referred to as a dynamic logic node. The distinguishing feature 
of dynamic logic is the storage oflogic information on high-impedance nodes. While Q1 is low, 
some of the charge on C is lost due to leakage. If the low interval of Q1 is long enough for the poten
tial at A to drop by one transistor threshold voltage, the P-channel device driven from node A will 
begin to conduct. If Vtn :S Va :S Vee -IVtpl, both T4 and T5 will conduct, and the current drawn 
from the supply will be much larger than the quiescent current required when Va (voltage on node 
A) is fixed high or low. 

ICC Requirement of a TMS320C25 163 



Figure 6. CMOS In!erter Driven by a Second Inverter 

Vee 

r---- ---I 
I I 

y-1 
T1 I T41 vlhreshold = VIp 

I I 
01 I I 

I I 
A I I 

I I 1 Vo I I 

y-1 I I 
02 I I 

T2 I T51 V threshold = V In 

L~~s __ I ___ ...1 

c 

X 0---1 
1 

T3 

'::" 

'::" '::" '::" 

02 n'-------JIL 
Again, this high-current condition is not of concern in static logic circuits, and is only of con

cern in dynamic logic circuits at very low clock frequency. The minimum input clock frequency 
of the TMS320C25 is specified at 6.7 MHz. This lower limit is orders of magnitude higher than 
the frequency at which adverse mechanisms in dynamic logic come into play; its choice was driven 
by other practical considerations such as test time minimization . . 

Thus the TMS320C25 must be always be clocked at a sufficiently high rate when under 
power. 

164 ICC Requirement of a TMS320C25 



Summary 

It has been shown that the TMS320C25 supply current increases approximately linearly with 
operating frequency and supply voltage. Loading of the device outputs also has a significant effect 
on the magnitude of ICC' The TMS320C25 supply current does not vary significantly with temper
ature over the O°C - 70°C commercial temperature range. The device must be clocked at a suffi
ciently high rate when biased. 

The ICC specification for the TMS320C25 is given in Table 3. Also given are several "typi
cal" values. (These values assume 50% output loading, rather than the 100% output loading im
posed in the measurement of the data presented in Figure 2 and Table 2.) Note that careful consider
ation of the behavior of ICC can result in a supply current requirement significantly less than the 
specified maximum. 

Table 3. Icc Specification and Typical Values 

Vee Ta r(CLKIN) Icc t MAxtrYP NORMAL/POWERDOWN 

5.25 0 40.96 185 MAX NORMAL 
5.25 0 40.96 100 MAX POWERDOWN 

4.75 t 40 89 TYP NORMAL 
5.00 t 40 95 TYP NORMAL 
5.25 t 40 101 TYP NORMAL 
4.75 t 20 55 TYP NORMAL 
5.00 t 20 58 TYP NORMAL 
5.25 t 20 61 TYP NORMAL 

t ICC is approximately constant over O°C - 70°C range. 

References 
1) Hodges, David A. and Jackson, Horace G., Analysis and Design of Digital Integrated 

Circuits, McGraw-Hill, 1983. 
2) Mavor, J., Jack, M.A., and Denyer, P.B., Introduction to MOS LSI Design, Addi

son-Wesley, 1983. 
3) Pierret, Robert E, FieldEffect Devices, (Modular Series on Solid State Devices, Volume 

4), Addison Wesley, 1983. 
4) Streetman, Ben G., Solid State Electronic Devices, Prentice-Hall, 1980. 
5) Texas Instruments, Second-Generation TMS320 User's Guide (literature number 

SPRU014), Texas Instruments, 1989. 

ICC Requirement of a TMS320C25 165 



166 ICC Requirements of a TMS320C25 



An Implementation 
ofa 

Software UART 
Using the 

TMS320C25 

Dave Zalac 

Digital Signal Processor Products - Semiconductor Group 
Texas Instruments 

167 



168 An Implementation of a SoftwareUART Using the TMS320C25 



Introduction 
Interfacing to asynchronous devices is a common problem in transmitting to and 

receiving data from a processing engine such as the TMS32OC25 digital signal processor. 
This report describes a software implementation of a Universal Asynchronous Receiver 
& Transmitter (UART) that provides the ability to communicate with asynchronous serial 
devices -in a system with a minimum of external hardware. 

Asynchronous communications are characterized by the absence of a timing reference 
such as a clock or framing signal. Various tradeoffs arise from this distinction from syn
chronous communications in terms of hardware and software requirements and data 
throughput capacity. Synchronous communications require a timing reference, but other
wise have minimal hardware and software requirements. Asynchronous communications 
require a mechanism for deriving a timing reference from the received signal. Additional
ly, various error-checking functions are typically implemented. These requirements im
pose hardware and/or software overhead that is not imposed in the synchronous case. 
Moreover, synchronous interfaces can typically support much higher data throughput rates 
than asynchronous interfaces. 

Implementing a UART in software imposes CPU overhead whose acceptability is 
application-dependent. In applications where the overall data throughput rate is sufficiently 
low, or in cases in which a UART is to be used only for booting system memory at powerup, 
use of a software UART may be justifiable. A hardware solution (i.e., a UART IC) may 
be more appropriate in high data rate applications and in applications requiring low 110 
overhead. A detailed analysis of overhead imposed by the TMS320C25 software UART 
is given later in this report. 

A high-speed synchronous serial interface is provided by the on-chip serial port of 
the TMS320C25. A full description and specification of the serial port may be found in 
the Second-Generation TMS320 User's Guide. [4] 

Overview 
The functions provided by a UART are simply the transmission and reception of 

serial data and the checking and signalling of various error conditions. These functions 
are described in detail in the following sections. 

Data Format 

Shown in Figure 1 is the layout of a word in a format assumed by the UART. Bit 
o is a space Oogic low) and is referred to as the start bit. Bits 1 through N are the N 
data bits of the word with the LSB occupying bit position 1. Typically, N has a value 
of 5,6,7, or 8. The maximum value ofN is given by Nmax = 14-M, where M is the 

An Implementation of a Software UART Using the TMS320C25 169 



number of stop bits. Bit N + 1 is referred to as the parity bit and has a value such that 
the total number of ones in the word (bits 1 through N + 1) is odd if odd parity is selected 
and even if even parity is selected. Bits N + 2 through N + M + 1 are referred to as stop 
bits, and each has a value of one. The total word length WORD-LEN is thus given by 
WORD---LEN = N + M +2. 

Bit N+M+1 Bit N+2 Bit N+ 1 Bit N Bit 1 Bit 0 .. ... 
Stop .. Stop ... 
bit bit 

Parity 
MSB LSB 

Start 

(last) (first) bit bit .. ... .. ... 
'~--------~v~--------~I '~--------~v~--------~I 

M stop bits N data bits 

Figure 1. UART Word Format 

Data Reception 

Reception of a data word starts with detection of the staq bit. One way of perform
ing start bit detection is to sample the input data signal at a rate that is large compared 
to the bit rate, then testing each sample for a space (logic low). An optional check can 
be performed to verify that the first logic low detected represents a valid start bit and 
not just noise. This check is performed by testing that the input signal is low one-half-bit 
duration after the start bit has been detected. 

Once the start bit has been detected, the UART simply recovers the data from .the 
input signal and keeps track of the data parity. The parity is checked against the received 
parity bit after all the data bits have been received. Finally, the integrity of the word fram
ing is checked by testing that the input signal is high when the first stop bit is expected. 

Data Transmission 

Transmission is considerably simpler than reception in that timing information does 
not have to be recovered from an asynchronous signal. Furthermore, no error checking 
is performed by the UART transmitter. Transmitting a data word is preceded by appropriate
ly formatting the data to be transmitted; i.e., adding start, stop and parity bits. Formatting 
is do~e in TMS32OC25 software. The output signal is generated from the data and ap
pears on the UART's output signal line. 

Implementation 

The UART implementation described in this report makes use of two TMS32OC25 
general-purpose 110 pins (XF arid BIOI) and the timer interrupt. The input signal is reCeived 
on the BIO pin via the TMS32OC25 BIOZ instruction. The output signal appears on 
the general-purpose flag pin XF. The state of XF is controlled in software via the SXF 
and RXF instructions. The TMS32OC25 serial port is not used. As shown if Figure 2, 

170 An Implementation of a Software UART Using the TMS320C25 



the transmitter and receiver are "serviced" each time a timer interrupt is generated. The 
timer interrupt rate is an integer multiple (K) of the bit rate. 

Figure 2. Timer Interrupt Service Routine 

Several pieces of code comprise the UART software: 

1. Timer interrupt service routine 

2. UART--INIT initialization routine 

3. XMT routine 

4. RCV routine 

5. PUT~ATA 

6. GET~ATA 

7. XCOMPOSE 

The UART transmitter and receiver are located in the timer interrupt service routine. 
(No context save/restore is included in this interrupt service routine. Refer to the "Precau
tions" section for details.) UART--INIT initializes the UART with the values appearing 
in the assembly-time constants section of the source listing. XMT and RCV are user-written 
routines that interface the UART to the user's program. XCOMPOSE, PUT ~AT A and 
GET~ATA are auxiliary routines available to the user for executing UART interface 
housekeeping tasks. Each of these seven routines is described in detail later in this report. 

An Implementation of a Software UART Using the TMS320C25 171 



Figure 3 shows the UART structure and the transmit and receive data p~ths. The 
transmit and receive buffers TDATA and RDATA are 16-bit wide TMS32OC25 on-chip 
data memory locations. The transmit and receive software shift registers TSHF and RSHF 
are also located in data memory. The UART status word USTAT maintains UART status 
and error information. USTAT will be discussed in detail later in this report. The value 
of US TAT is written to 110 port UARTPORT each time USTAT is updated, thus allow
ing the capability of externally monitoring the UART status. The input and output pins 
(BIO andXF) may be interfaced to RS-232-compatible transmit and receive lines. Final
ly, the locations in data memory for transmit and receive data are pointed at by two 
TMS320C25 auxiliary registers AR(OPTJTR) and AR(INP_PTR), respectively. 

AR(OPT _PTR) 

A ddress t 16 

Data 16 ~ ~ Memory TDATA TSHF 
Data 

Error (Load) (Load) (Shift) 

....J- Checking 1 
1 1 1 4 RS-232 r--USTAT 

-l- r-- Interface I--
Timing 

and 
Load 1 

TIN T 
1 Control BIO 

(Load) 1 (Shift) 1 

Data 
\ 16 ~ Memory RDATA RSHF I--

Data 

A ddressJ16 

AR(INP _PTR) 

Figure 3. UART Architecture 

All UART variables are mapped into TMS320C25 on-chip RAM block B2. The 
code size is 332 words and can be executed from on-chip ROM, EPROM (TMS320E25), 
or off-chip program memory. The maximum bit rate supported is 19.2 kilobits per second 
(full duplex). 

172 An Implementation of a Software UART Using the TMS320C25 



Transmitter 

Figure 4 shows a flowchart of the transmitter routine. When the transmitter com
pletes transmission of the current word, a new word (TDATA) is loaded into the transmitter 
software shift register if the TDA (Transmit Data Available) flag is set. 

Output next bit 
AR(OPT_PTR)-K-1. 

TBE-1 
Reinitialize 
transmitter 

Call 
XMT 

TSHF-TDATA 
TBE-O 
TDA-O " 

Decrement 
AR(OPT _PTR) 

Figure 4. Transmitter Routine 

An Implementation of a Software UART Using the TMS320C25 173 



TDA is one of 6 flags residing in the UART status word (see Figure 5). The word 
to be transmitted is shifted out on the XF pin at the user-specified bit rate. 

Bit 7 

Not 
used 

Bit 6 

Not 
used 

Bit 5 Bit 4 Bit3 Bit 2 Bit 1 BitO ' 

TDA ROE RDA ROR 'FRM RPE 

Figure 5. UART Status Word 

Feeding data to the transmitter consists of three steps: appropriately reformatting 
the data to be transmitted (Le., adding start, parity, and stop bits), loading the data into 
the UART variable TDATA, and indicating to the UART that valid transmit data is pre
sent in TDATA by setting the TDA flag. The first step can be accomplished by pointing 
AR(OPT-YTR) at the data to be transmitted and calling auxiliary routine XCOMPOSE. 
XCOMPOSE does an in-place reformatting of the data per the values in the UART 
parameter variables (see source listing). Routine PUT~ATA may be called to load 
TDAT A and set TDA. 

Each time the transmit shift register empties, a call to XMT is made. Management 
of AR(OPT-YTR) and calls to XCOMP'OSE and PUT~ATA may be made from XMT. 
Alternatively, these functions can be executed from the user's program. This is the preferred 
approach, because all code in XMT adds to the maximum path length through the timer 
interrupt routine and thus decreases the maximum bit rate. However, calls to PUT~ATA 
from the user's program should be made only ifTDA = O. If this condition is not satisfied, 
the current word to be transmitted will be overwritten. (The condition TDA = 0 is 
guaranteed if PUT~ATA calls are made from XMT and needn't be checked.) 

Initiation of transmission of the first word in a string of words (string = one or 
more words) must be made from the user's program by calling XCOMPOSE and 
PUT~ATA, as no XMT calls can be made until the transmitter is started. 

The status of the transmitter can be ascertained by reading bit 5 of the UART status 
word, as shown in Figure 5: 

USTAT 

BIT 5 

174 

Transmit Data Available TDA = 1 indicates to the UART that valid 
transmit data is present in TDATA. 

An Implementation of a Software UART Using the TMS320C25 



Receiver 

Shown in Figure 6 is a flowchart of the receiver routine. The state of the receiver 
is indicated by the value of RST AT and bits 0 - 4 of the UART status word as shown below. 

N 

N 

Figure 6. Receiver Routine 

An impiementation'oj a Software UART Using the TMS320C25 

Set 
RSTAT-1 

175 



RSTAT 

o 
1 
2 
3 

Receiver Status 

Waiting for start bit 
Waiting for start bit center 
Waiting for data bit 
Waiting for parity bit 

4 W lliting for stop bit 

USTAT 

BIT 0 

BIT 1 

BIT 2 

BIT 3 

BIT 4 

Receive Parity Error 

Framing Error 

Receiver Overrun 

If receive parity checking is active (RPACTIVE = 
1), RPE is set if a parity error is detected. 

This bit is set if a logic low is sensed on BIO when 
the first stop bit is expected. 

This bit is set if RDA is not cleared before reception 
of the next word is completed. 

Receive Data Available This bit is set when reception of a word is completed 
and indicates the presence of valid data in RDATA. 

Receive Data Enable The receiver routine is bypassed if this bit is a zero. 

Reception is initiated by setting RDE. Each time a complete word is received, a 
call to RCV is made. RCV can call GET~ATA to copy the new data to the location 
pointed at by AR(INP ~R) and to clear RDA. If RDA is indeed cleared by every call 
to RCV, some overhead can be eliminated by deleting the setting, clearing, and checking 
of RDA because the overrun detect function is superfluous in this case. 

The received data in RDATA is right-justified with the LSB in the zero'th bit posi
tion and with start, stop, and parity bits stripped. 

Overhead and Optimization 

The overhead imposed by the UART is primarily determined by the length of the 
timer interrupt service routine and the timer interrupt rate (K * bit rate). An expression 
for overhead is given below: 

overhead (%) = K X (bit rate) X (T + R) X Tc(C) x 100% 

K = (timer interrupt rate)/(bit rate). Tc(C) is the period of CLKOUTl and 
CLKOUT2. In the timer interrupt service routine shown in the source listing, T and R 
are given by 

176 

T = (8 X WORD~EN X K + 14 x WORD_LEN + 15)/(WORD_LEN x K) 

R = (17 x WORD_LEN x K + 36 x WORD_LEN + 169)/(WORD_LEN 
x K) 

An Implementation of a Software UART Using the TMS320C25 



The values of T and R at WORD~EN = 10 and K = 16 are t = 9 cycles per 
timer interrupt and R = 20 cycles per timer interrupt. (These are the correct values when 
the timer interrupt service routine is in zero-waitstate external program memory. T and 
R have smaller values if the service routine is in internal program memory.) 

T and R represent the average path lengths (in processor cycles) through the transmit
ter and receiver routines, respectively, in continuous full-duplex operation. Values of 
overhead for several bit rates and values of K are tabulated in Table 1. Overhead associated 
with XMT, RCV, GET~ATA, PUT~ATA, and XCOMPOSE code is not included. 
Note that continuous full-duplex operation constitutes worst-case scenario, a scenario unlike
ly in applications using asynchronous 110. 

Table 1. UART Overhead (%) vs. Bit Rate (r in bps) and K fo~ WORD-LEN=10t 

K/r 300 1200 2400 4800 9600 19.200 

6 1 3 5 10 21 

8 1 3 6 13 26 

10 1 4 8 15 31 

12 1 4 9 18 35 

14 1 5 10 20 40 

16 1 6 11 22 45 

tOverhead imposed by the UART is relatively insensitive to 
WORD_LEN. 

42 

51 

-
-
-
-

There are several ways the user can modify the UART code to reduce the values 
of T and/or R. SQme of these involve eliminating the setting, clearing, and checking of 
flags in the UST A T register that are not necessary in a fixed configuration. Others· in
volve streamlining of the interface between the UART software and the user's program. 

UART Configuration 

The initial values of the UART parameters (e.g., bit rate and parity type) appear 
in the assembly-time constants section of the source listing given in the appendix of this 
report. Note that an initial-value constant exists for each UART parameter and has the 
same name as its corresponding parameter, but with an "I" prefix. If the UART is to 
be run in a fixed configuration, the user needs only to modify the initial value parameters 
and re-assemble and link the program. However, if the configuration is to be modified 
"on the fly", the following measures need to be taken: 

An Implementation of a Software UART Using the TMS320C25 177 



To Res"pecify 

RPACTIVE 
K 

N 
WORD.-LEN 
ODD 
TINTPER 
# of stop bits 

Modify 

RPACTIVE (0 or 1) 
KM1, K2M1, and TINTPER 

(KM1 = K-1; K2M1 = K/2-1) 
Nand 'YORDLEN, CALL PARINIT 
WORD.-LEN 
ODD, CALL PARINIT (initialize parity templates) 
TINTPER 
WORD.-LEN (# of stop bits = WORD_LEN-N-2) , 

Precautions 

No context save/restore is provided in the timer interrupt service routine as the user 
will want to write and optimize this part of the routine for his own application. The timer 
interrupt routine affects the following registers and memory locations: 

CPU Registers Memory Locations 

Accumulator 60h-77h (RAM block 82) 

T register dma<ARIINP_PTR)> 

P register TIM register 

Auxiliary registers 1-7 PRO register 

Status regs STO & ST1 

The timer interrupt routine uses two levels of stack plus as many levels as are re
quired to accommodate subroutine calls from XMT and RCV. 

If the PRD register contains a value less than 64 (19.2 kbps @ K = 8 or 9.6 kbps 
@ K = 16), the sampling of some receive bits may be significantly delayed from bit inter
val centers and some transmit signal edges may be delayed. 

The actual transmit and receiver-sampling bit rate r is given by 

r = lI[P x K x Tc(C)] , 

where P is the SUQl. of the contents of the PRO register and one. If no integer value of 
P exists for a specified r, K, and Tc(C)' the receiv~r should typically be allowed to run 
at the rate closest to but greater than the ideal bit rate. 

If the receiver bit rate is exactly equal to the transmit bit rate of the external transmit
ting equipment, the sampling of incoming bits will occur at times close to the centers of 
the corresponding bit intervals. Some error is introduced by the latency between the fall
ing edge of the start bit and the time at which the start bit is detected. The maximum value 
of that error (et) is equal to one period of the timer interrupt. 

178 An Implementation of a Software UART Using the TMS320C25 



Additional error is introduced if the receiver bit rate differs from the bit 'rate of the 
incoming data stream. Let the bit duration dictated by the timer interrupt rate be denoted 
by T 1 and let the bit duration of the incoming data be denoted by T 2. The error intro
duced by the inequality of TI and T2 (e2) for the n'th bit is given by 

(1) 

The start bit corresponds to n = 1. The cumulative error for one word is equal to 
e2 evaluated at n = WORD_LEN. 

Still another source of error is the latency associated with multicycle instructions. 
Should a timer interrupt occur during execution of a multicycle instruction or repeat loop, 
an error e3 will delay the sampling of BIO by a minimum of zero and a maximum of 
I -1 cycles, where I is the length (in cycles) of the longest instruction or repeat loop. 

The total difference between the sampling time and a corresponding bit interval center 
is the sum of e}, e2, and e3' In general, the absolute value of the sum of el, ~, and e3 
must be less than one-half the duration of one bit in the incoming data stream in order 
that all sampling instants fall in corresponding bit intervals; i.e., 

(2) 

The above constraint is appropriate for a receive signal having negligible rise and 
fall times and equal space and mark durations. If either of these conditions is not satisfied, 
the constraint expression should be modified accordingly. 

Worst-Case Error Analysis 

Following are descriptions of the two worst-case scenarios in terms of the three er
ror components. The results of this analysis are then plugged in the constraint expression 
given in (2) to yield a description of the error constraint in terms of rate difference, K and I. 

If the incoming data rate is higher than the receiver bit rate, el, e2, and e3 are all 
greater than or equal to zero. The worst-case value of el is its maximum value given by 

el(max) = tc(C) X [< PRD reg > + 1] 
= TI/K 

The e2 contribution is the cumulative error resulting from the inequality of T 1 and 
T 2 and is given by 

e2(max) = (T 1 - T 2) X (WORD~EN - 112) 

The worst-case value of e3 is given by 

e3(max) = (Imax - 1) X tc(C) 

An Implementation of a Software UART Using the TMS320C25 179 



If the incoming data rate is lower than the receiver bit rate, elo e2, and e3 are all 
less than or equal to zero. The worst-case value of el is its minimum value given by 

el(min) = 0 

The e2 contribution is the cumulative error resulting from the inequality of T 1 and 
T 2 and is given by 

~(min) = (Tl - T2) x (WORD_LEN - 112) 

The worst-case value of e3 is given by 

e3(min) = 0 

The error constraint (2) is thus satisfied if the following pair of inequalities is satisfied: 

el(min) + e2(min) + e3(min) > - T2/2 

el(max) + e2(max) + e3(max) < T2/2 

(3) 

where expressions for the extreme values of each error component are given above. 

The inequalities in (3) specify the overall constraint on maximum rate difference, 
minimum value of K and maximum value of I. For example, suppose 

or 

= 0.100 ms 
= 0.103 ms 
= 20 

tc(C) = lOOns 
WORD_LEN = 10 

Since T 1 is sufficiently close to T2, the first inequality in (3) is satisfied: 

o + [(l03xlO-6) - (lOOxlO- 6)] x (10-0.5) + 0 > (-lOOxlO-6)/2 

Evaluation of the second inequality in (3) yields 

(103 x 10-6)/K + [(103 X 10-6) - (100 X 10-6)] X (10 - 0.5) + (20 - 1) 

X (lOOxlO-9) < (100xlO- 6)/2 

K~6 

Thus (2) translates into a specification for the minimum value of K for a given T 1, 

T2, I, tc(C)' and WORD~EN .. 

In summary, considerations must be made with respect to the data rate of the exter
nal transmitting equipment, the data rate resulting from the timer interrupt rate, and the 
latencies associated with start bit detection and multicycle instructions. The two inequalities 
in (2) must be satisfied for all bits for proper UART operation . 

180 .An Implementation of a Software UART Using the TMS320C25 



• 
Loopback Test 

In the source code given, the XMT and RCV routines are structured to implement 
a loopback test at 9600 bps, 7 data bits, 1 stop bit and odd parity. The circuit shown in 
Figure 7 can be used to interface to RS-232-compatible transmit and receive lines. No 
other RS-232 signals are supported. 

+5V 

2kQ 

XF ;1;12 V 
Transmit line 

TMS320C25 75189 

BIO Receive line TTL level ;1;12 V 

Figure 7. RS-232 Interface 

References 

[1] TMS7000 Family Data Manual, literature number SPNDOO1C, Texas Instruments, 
1989. 

[2] McNamara, John, Technical Aspects of Data Communications, Digital Equipment 
Corporation, 1982. 

[3] Data Communications Standards, McGraw-Hill, 1982. 

[4] Second-Generation TMS320 User's Guide, literature number SPRU014A, Texas 
Instruments, 1989. 

An Implementation of a Software UART Using the TMS320C25 181 



-~ 

).. 
:::r 

~ 

I 
~ 
i:) ... 
g' 
.Q, 
I:a 
V, 

~ 
I:a 
~ 

.~ 
'"'l 

~ s· 
OQ 

So .,. 
~ 
~ 
~ 
Q 
v, 

HHHHHHHHlHHHtIHIHIHHf.fttHHHfHff-lHfff.I-HHHfHHfHIHH 

SlFTIiIRE UART USINl TIE TIIS32OC25 

IfIITTEN BY' IWI£ ZALAC 
TEXAS INSTRlI'IENTS, INC. 
1131189 

PROGRAN IEIlmY REllUIREIIElIr: 332 I«JRDS 
DATA IEIlmY REllUIREI1ENT. 23 I«JRDS 
MAXI .... BIT RITE. 19.2 KIIPS 

fotHHfHHfHfHHfHHtHHHfHHHHHfHHftHlfH*fHftHHHffHH.fHf 

ASSEII8I. Y-TillE CIl'lSTANTS SECTION 

*HffHl-fHHHHHHHHHHHffHfHHHfHHHffffHHHHHHfffHtHHHf 

• 
STATUS BIT IIASKS 

HHtHltfHHHffHHfHfHHfHHHHflHffffffHfHfHfHHHH*HflfHfH .. 

• 
RPE.J1SK ••• t OOlh ; RECEIVE PARITY ERROR 

• 
RPE..5ET • SIt OOlh 
RPE-Q.R .set OFEh 

• 
FllllERR..IISK ••• t 002h ; RECEIVE FRAIIINl ERROR 
FRtERfLSET .Stt 00211 
FllllERR..ClR ••• t OFDh 

• 
R!ILIISK .Stt 004h ; RECEIVE DATA ~ 
1U..5ET ... t 004h 
RIILClR .stt OFBh 

• 
RIIA..IISK ... t 008h , RECEIVE DATA AVAILAIIlE 
RDA..5ET .Sft 008h 
RDA..ClR .set OF7h 

RlE.1ISK .set OIOh ; RECEIVER EllABLE 
RlE..5ET .stt OIOh 
RlIE..ClR ... t OEFh 

• 
TDAJISI( .stt O2Oh , TRANSIIIT DATA AVAlLAIIlE , 
TIlA..5ET .set 020h 
TIlA-ClR .s.t O1t'h 

1IIIIIIIIIIIIIIIIIIIIIIIIIIItHHHHfHtHHHHHttHHHHHHHHHffUHf 

USTAT REGISTER 

BIT I 5 4 3 2 I 0 
FLM TIlA RlE RIIA IU FRII RPE 
INlTlAL IIt'ILI£ 0 0 0 0 0 0 

Iff.HHHHHfHfffHfHfHHfHfHfHfHttfHfH*tHHHfHHHHfHfHHfH 

• 
UARTPIIlT • ,.t ; PORT ADIlRESS OF LlART STATUS REGISTER 

HI*ftHHffHtHHfHHfHHHffffHHffffHHftfffffffHHtHHHHHHHtH 

INITIAl VIU£S OF UART PARAllETEIlS 

HHfHffHHHfHHHHffHfHfHfffHHHfHffHofffHHHtHHftHHHfHIH 

• 
I"'ACTIVE ••• t 
• 
IKIII .,.t 
IK2IIl ••• t 
IN'll ••• t 
I_..lEN ••• t 
IODD .,.t 
ITlNTPER , •• t 

15 
7 
I> 
10 
I 

259 

RPACTlVE = I INDICATES ReV PMITY 
CHECKINlIl'l 

f1NT RATE = K4BIT RATE; KIll = K-I 
K2II1 = KI2-1 
IUI1IER OF DATA BITS/10m 
TOTAL I OF BITS/_ 
ODD = I SELECTS ODD PMITY 
OlIO = 0 SELECTS E1JEII PMITY 
TINTPER = TIllER INTERRlf'T PERIOD 1M 
CI.KOOTl CYU.ES. TINTPER SIQ.lI) lIE SET TO 
C1I (K<R<TC(C)) H, ROlNIED ROlNE) OOWII 
TO TIE NEAREST INTEGER. R IS TI£ BIT RITE 
IN BPS. 

fHHfHttflHHHHftffHHHtfHHfHtHtftltHHIHfHHHtfHHHHHHtH 

REGISTER ASSIGNI1ENTS 

HHftHHffHHHHHHHHHIHH*fHfHfHHHHfHfHHHHHtffHffHtH+ 

• 
T1Il ••• t 
RWG .set 
X8lTs..REG • ,';t 
RBITS ••• t 
XBREG .,.t 
IMP.PTR ••• t 
Il'LPTR ••• t 

DIYIDES TINT RATE BY K !lIlT) 
DIVIDES TINT RITE BY K (ilCV) 

USED BY TRANSIIlTTER TO CWNT DATA BITS 
USED BY RECEIVER TO CWNT DATA BITS 
USED BY XCCII'OSE TO CWNT DATA BITS 
POINTS AT LOCATI(Ij TO PUT RECEIYE1I DATA 
POINTS AT DATA TO BE TRANSIIITTED 

HHfHffHHHtHHHMHHHfHfffHffHHHtlfHfHftHHfHHHHfHHHH 

END ASSEIIBLY-TlIIE CIl'lSTANTS SECTION 

ffffHHHtfHffHtHHHHffHlHHftfHHfHHtHHHHfHfHHHHHHHfH 

DATA IIEIIORY SPACE RESER'lATI(Ij 

HiffHHHfHfHt*fHfHHfHHfHffH*HlfHIHHlfHfHfHHHHHHtHffH 

VARIABlES 

fHffHHH+HHHHHftfHHfHfHfHfHffHHHHftffHHff4HHi.fHfHHflf 

~ 
"C 
~ 

~ ..... 
~ 



,bss RSTAT, I , RECEIVER STAM 

~ .bss USTAT, I , lIART STAM REGISTER 
;: ,bss *,1 , SHIFT FACTI)! 

3' .bss INP,I , RECEIVED BIT 

'ti ,bss MIlD,1 , RECEIVER SHIFT REGISTER 

~ ,bss _,I , LOCAI.J.Y-GElERATED PARIT'i 

:! ,bss RPARI,I , INITIAL VALIJE OF RPAR 

'" .bss XSTOP,I , STOP BIT STRING 
;: ,bss XPARI, I , INITIAL VALI£ OF XSTOf' 
~ g. .b55 XPAR,I , TRANSIIIT APRITY 

.DSS RDATA, I , RECEIVE BlfFER 
;: .bss XPARTOO, I , TRANSIIIT PARITY TOGGLE IIASK 

.Q, .bss !DATA,1 , TRIWSI1IT DATA 
I:l .bss T*,I , TRANSIIIT SHIFT REGISTER 
V) .bss TEIf', I , SCRATCH VARIABLE 

i .bss RPACTlVE,1 , RECEIVE PARITY ACTIVE 10/1) 
.b55 KIII,1 , K-I 

I:l .bss K21t1,1 , K/2-1 

~ ,bss ~I,I , N-I 

~ 
.bss WORD-LEN, I , D\'ERAL.L WORD LENGTH 
.bss 000,1 , SELECTS ODD/EVEN PARITY 11/01 

;:.;, .bss TlNTPER, I , TlI£R INTERRlf'T PERIOD ..., .bss TIIE,1 , TRANSIIIT BlfFER EJf'TY 

~ ffHHU+HunfHHfHfHHHfffHnHUUfH+HfffHffffffHUHUHfUfH* 

~. 
PROGRAII SECTION 

S. 
'" fHtHfffHUfHHHHffH+tfHIHfHtHHfUHfHftHffHffflff**fHfftHffH 

~ 
~ 

.sect "vectors· 

tv RS MIN a 

0 .Sf/iU IIRS+24-$iflbl , POSITIIlII TINT VECTOR 
V, 

* 
TlMINT XMIT , BRANCH TO XIfT IRe\' ROUTlI£ 

• text 

• 
MIN LDPK , INITIALIZE 

ZAC 
SACL , NO GLOBSL rIEIIlRY 
SIMI , SET 0YfRFL1II r10IIE 
SSXM , SET SllJHlT. r10IIE 
$PM , P-REG SHIFT • 0 BITS 
CNFD , CON'IGIJlE IIlOCK BO AS DATA /£l1ORY 
CALL lIARLINIT , INITIALIZE IJART 

LACK 10h 
SACL USTAT , ENAIII.E RECEIVER -00 HHfHfHffHfffHfHffHHHfHHHfffHffHfHHffUHfffHHHfHff**f**ff 

IJ,) 

THE USER'S PROGRAM SIIlULD APPEAR HERE. 

SELF SELF 

END PROGRAM SECTION 

IffftfffHfHHfHIfHffffffHftHffHfHfffUffffffHfffffHHHHfHffHffH 

lIART INITIALIZATION ROUTINE 

THE FOLLIIIING COIlE INITIALIZES THE lIART PER THE VALI£S IN THE ASSEMIll.Y
TIlE CONSTANTS SECTION ABOVE. ROUTINE PARINIT IS A SUIlSET OF lIARLINIT 
AND MY BE CALLED INDEPENDENTLY. 

flfffffffH+ffffnUfffflHfHffHfttHfffHffffH+fHfHffHfffHHHt+f4Hff 

• 
UARLINIT LDPK 

LALK 
SACL 
LALK 
SACL 
LALK 
SACL 
LALK 
SAtL 
LALK 
SACL 
LACK 
SACL 
LALK 
SACL 

LACK 
SACL 
ZALS 
SACL 
SAtL 
LALK 
SACL 
ZAC 
SACL 
SACL 
OOT 
LAR 
LAR 
lAC 
SACL 
LRI.J( 

LRLK 

IRPACTIVE 
RPACTIVE 
IKIII 
KIll 
IK21'11 
K2MI 
Itlll 
NMI 
IIiORILLEN 
WIlRD-LEN 
IODD 
ODD 
ITINTPER 
TlNTPER 

I 
TBE 
TlNTPER 
2 
3 
OFFCSh 
4 

, INITIALIZE lIART PARAMETER VARIABlES 

INITIALIZE TIMER PERIOD 

, ENAIII.E TINT ONLY 

RSTAT , RSTAT: • 0 
USTAT , USTAT: • 0 
USTAT. liARTPORT 
TWO, KMI , lIfT WAIT: • lIR 
XSITS_REG, WORD-LEN , INITIALIZE XBITS..REG 

MIlD , !IIORD' • 0 
INP ..PTR, 0200. , INITIALIZE DATA POINTERS 
DPT..PTR. 0200. 

HfffHfffHHfHfffffffHlfffffHffHffHfffffffHfffffffffHffHtfHffHffff 

WNFIGlIlE PARITY-RELATED CONSTANTS 

fHfUfffffffHHfffffHffHUffHfffffflfffffflHfHff+tHffffHffHfHlffH* 



... I 

~ PMINIT ZALS OOD 
S4ICL -S4ICL XPMI 
U¥:K I 
S4ICL XPMTOO I INITIALIZE llIGGI.E l1l\5I( TO BIT 0 
LIILJ( OFFFFh 
S4ICL XSTOP I INITIALIZE STOP l1l\5I( TO BIT 0 
LARI' 0 
LAR 0,1111 
IIIIR 1+ 

SHIFX LAC XPMI,I I SHIFT PMITY BIT LOCATION BY N + I BITS 
S4ICL XPMI 
LAC XPMTOO,I I SHIFT llIGGI.E l1l\5I( BY N+ I BITS 
S4ICL XPMTOO 
LAC XSTOP,I I SHIFT STOP BIT STRIIil BY N + I BITS 
S4ICL XSTOP 
BAIIZ SHIFX 

~ 
LAC lSTOP,1 I TOTAL • IF SHIFTS Fa! XSTOP • N + 2 :! 

~ S4ICL XSTOP 

"6 EIN! ~ 
~ RET I END UART INITIALIZIITION 

§ 
1IIIIIIIIIIIIIIIHHHHlHHHHfHfHHHHHIHHHHHHfHfHHHflfHlH 

~ 
gO 00 UART_INIT 

~ HtHHIIIIIIIIIIIIIIIIIIIIIIIHfMlIHf.fHHHIHu.HHlHfHHHfHtHHHf 

~ 

~ _ImR 

l' I 

HHlllllllllIlllllllIllHHtHlllllIllllIIllllHHHfHtHHHHIHtHtHfHf 

~ • 

~ 
XlIIT ZIILS TBE 

BZ NOT.BI'TY I IF NOT ZEfilHI£N EII'TY 
I 

""! ElPTY ZIILS USTAT 

~ 
IIIIIK TDA.JISI( 

S· 
BZ RCV I IF TIIA = 0, 11£11 SKIP TO RECEIVER 

Oq ZIILS TIlATA I TSIF' • TIlATA 
So S4ICL TSIF 
1\ 

~ ZIILS USTAT I Cl£AR TIIA AND TBE 
AJIl( TDA...ClJI 

~ S4ICL USTAT 

~ WI USTAT, UARTPIIIT 

0 lIM: 
S4ICL TBE 

V, I 

NOT-Bf'TY LARI' 00 I IF )IImlll, SKIP TO RECEIVER 

BANI RCV 

IIILS TSIF ~ I IlJTPUT NEXT BIT 
RIll 
II: lONE 
NOP I TIlE- ClllfENSATION 
RXF 
B XZERO 

XONE SXF 
'XIERO : S4ICL TSIF 

LAR 00,1<111 I )lilT I BIT INTERVAl. IIEFOlE OOTPUTTIIil 
NEXT BIT 

LARI' XBIT5..REG I IF lAST BIT, SET TBE 
BANI RCV 

LACK I I SET TBE 
S4ICL TBE 

LAR XBIT5..REG, IQID-LfH 

CALL XftT I SIGNAl. ENIHF-tIIJID 

HffUHHHlHfHHfflltHHlfHfHf.HHfHlHflHlfHHHflHHHHfHfHHf 

OO_ImR 

1HIIIIIIIIIIIIIIIIIIIIIIIIHHfHHHHfHHtfHHftHHHHfHfHHHfIHfH 

• 
RECEIVER 

HIHH ...... fHHMt.HHHttHftH.IHHHHHIHHIHHHfffIHHHHlHHH 

RCV ZIILS USTAT I SKIP RECEIVE RMINE IF RII£ • 0 
ANI»( RIIEJIS1( 

8HZ CONT 
B RETIRI 

CONT ZIILS RSTAT I RSTAT • 0 III'I.IES )IImlil Fa! START BIT 
8HI NOTSTART 

HHHHHHlllllIlllllllllllllllllHHlHfHHNHlHHHfHHlHHHlHltHl 

RSTAT = 0 

HIHH.lHlHHfHfHHtHHttHfHHHHHHHHH •••• IIIIIIIIIII.IIIIHtHH 

I 

BIOI STARTBIT I UJ(I( Fa! START BIT ON BIOI 
B RETIRI 

STARTBIT U¥:K I I lI'DATE RSTAT 
S4ICL RSTAT 
LAR RIIl,1C2II1 I )lilT 112 INIUD IHTERYAL AFTER START BIT 



~ 8 fIETIRI IETEtTiOl DAUfRO LT SIF , SHIFT INPUT BIT TO _lATE POSITIOI ::s II'Y III' AND APPEND TO IIf'UT STRING 

~ 
HHIIIIIIIIIIIIII.IIIIIIIIHHtIHHHHfHtHtHHHlHHHfHfHHftH*fHt 

PAC 
'6 • III IlIOlIl 

1f 
RSTAT 0 0 SAC/.. -• 

S 1IIIIIIIIIIIIIIffHfHHlHHHlfHHHfIHHHfiH.HfHHIHHlHHfHHlfH 
lAlS III' 

S- • 81 - , NG PARITY C/iNlE IF SPACE 

g' 
NGTSTART LARP RIll I IF I.i\ITING, fIETIRI 

BANI IEMli IAlS RPAR , ·TOOOl£ PARITY-GEN BIT IF I1ARK 
X(R( I 

~ .ZAlS RSTAT , RSTAT = 1 INDICATES START BIT SAC/.. RPAR 
~ X(R( 1 IaIFICATIOI PENDING 
c" IINZ NGTVER II1CHIINGE LAC SIF,I , lI'IlATE SHIFT FACTIIl 

t SAC/.. SHF 
HHHHMtI-HHHfHHfHHMfHHffHHHHHHHHHHl+HfHMIt*,",,**,,"" 

~ • LAR RlIG, KIt! I I.i\IT 1 BAUD INTERVAL· IIEFlIlE SNfLING r.EXT 
~ RSTAT • 1 BIT 

~ HHHlH*HHHHHHllllllllllllllllliHtflHHHftfHtHfHHtHHtIfHHH LARP RBITS ; ENJKIf-wRD !£TEeT 
• BllNZ SKP3 

""i BIOZ VlLllLSTART , IF I~ID START BIT, START OVER 

~ ZAC LACK 3 , lI'IlATE RSTAT loi£ii fUU. 111m IS RECEIIIEII 
SACl RSTAT SAC/.. RSTAT S· 8 IEMli OQ 

S- • SKP3 RETURN 

"' 
VALIILSTART LACK 1 , INITIALIZE BIT POSITIOI INDICATIIl • 

~ 
SACl SIF NOTDATA IALS RSTAT , RSTAT = 3 III't.IES I.i\ITJNG Fill PARITY BIT 

X(R( 3 

~ 
LACK 2 ; lI'IlATE RSTAT IINZ IiITPAR 
SACl RSTAT 

~ HffHlfHHHffffffHlfffHfHfHfHfllfHHHHHHHHHffHHHffHf.HHH 

(") lAR ABITS, 1111 , N BITS/CHARACTER 

~ .LAR RIll, IOU , !/AIT 1 BAUD INTERVAl IlEFIIlE SNfLING DATA RSTAT = 3 

IETIRi ffffHHfHfHfHfHHHHHfHfft*,flHfHflfHHffflHtHltHHHlfHffHHff 

• 
NOTVER ZAlS RSTAT lAC ; PRfSET PARITY TO IfRO 

XIR( 2 SACl III' 
lINZ NOTDATA 

BIOI PIERO , SAll'LE PARITY BIT 
IHUIHHfII.IIIIIIIIIII.llHHtHH+fHHHHIffHHfftHfHHfIHHHffHH LACK 1 
• SAC/.. III' 

RSTAT = 2 • 
PIERO IAlS IN' , C1£CK AGAINST lllCALlHOIREATED PARITY 

UHHlfHfHlllllllllllllllllflHHffHtHHHHffflfHHlIHUHfHHHfHlf llll RPAR 
• 

lAC ; PRESET DATA TO IfRO AND RPACTIYE ; 1_ IF RECEIVE PARITY-cJ£CKING IS 
SAC/.. III' 81 RtVPAR..(J( If:-ACTiYATED 
8101 DALlfRO .... ZAlS USTAT , REPIIlT PARITY EAROR 

~ LACK 1 , SET DATA TO 1 IF I!ARI( IR( RPE_SET 
SACl INP SACl USTAT 

ruT USTAT ,UARTI'II!T 



.-
RCVPlIIUJ: LJIR RIIG,IIIU ; WAIT I IIAUD INTERWIL 00 

0'1 
lJIIl( 4 
!WJ. RSTAT 

RETI.IIII 

HHHfHHHHHHfHHHHH-IHHIIHIIIIIIIIIIIIIIIIIIIHHfHfHfHHHIH 

RSTAT • 4 

IHHfHHfHlIIIIIIIIIIIIIIIIIIIIIIIIIHHfIHft 

M1TPt1R BIOI 5111'0 I 1NVll.ID STOP BIT 

STOP-tIC 

;J:. STII'O ZALS USTAT ; REPOIT FRAI1ING ERROR 

;: III( FIftIIl.5ET 
...... !WJ. USTAT 

~ M USTAT,I.IARTI'OfI 

• 1b STOP-tIC ZALS USTAT ; OYEIR.IN IETECT 
~ 

"' - -;: Bl IIIJlIIERRlII 
i:i • 
§" 6'/ERRIIII !f4lS USTAT , REPOIT OYEIR.IN 

III( RlILSET 

.Q, !WJ. USTAT 

"'" 
M USTAT,I.IARTI'OfI 

t.:l • 
t MLIMRRtIi lALS - , CIFI DATA TD RDATA 

!WJ. RDATA 

"'" lAlS USTAT , SET RDA ~ III( RIIILSET 

~ !WJ. USTAT 
M USTAT,I.IARTI'OfI 

""l 

~ 
lAC 
!WJ. RSTAT 

S· !WJ. -Oq 

So ZALS _I 

"' !WJ. -~ tAU. RECV 

~ • 
tv RETURN EINT 
~ RET 
0 
V, 

END m:EIYER 

ffHfHHHtHHfHfHtfHHlHfttHH.fftHHHfHHfHfHfIHHHHHHtffH. 

TMIISItITTER DATA FEED R!lUTIIE 

TI£ RLL(IIIIIG X"T/ReV R!lUTIIES III'lEIIENT A LOOPIW:K TEST, 

HffHHHffHfHHHHHHHHHHfHHlHHHHHHHtHHfMfHfHHfHHH 

XftT RET 

HHHHHtfHfHHffHfHfHfHlHfHHfHHfHfHIIIIIIIIIIIII.llllllllllfH 

END XftT 

HHHHfHtlHHHtfHtHfHf+HHtHHlHfHHHflIIIIIIIJIIIIIIIIIIIII*HH 

RECEIVER DATA RECOVERY R!lUTIIE 

litiS SET tF XftT IRCV IWTlIES IIIPLEI1ENTS A UO'BACK TEST. 

• 
HlfHflfHHfHlHfHfHHfHHtHHfHfHftHHHHfHHflffHHHHHHtfH 

RECV CALL 
tAU. 
tAU. 
RET 

GET..IIATA 
XcatPOSE 
PUT..IIATA 

GET m:E11'EII DATA 
REFORI'AT 
TMIISItIT SAlE DATA 

HHfHfHfHHHHfHfHHHHtHHffHHHHHHHHHHHHHHHtHHffH4 

END ReV 

HHfHfHfHfHHfHHfHf4fHHHHHHHHHHfIHIHHHHHfHfNHHHH 

_ITTER INTERFACE R!lUTIIE 

PUT-DATA Clf'IES <AR((I'T .. PTRl) TO TDATA AND SET TDA 

HIHlHHHHffli4HHHHfHtfIfUHfHfHHfHHtHfHfHHltHfffHfHHH 

• 
PUT..IIATA LARP (J>T.PTR , CIf'Y DATA TOTIIATA 

!f4lS 
!WJ. TDATA 

ZALS USTAT , SET AND REPOIT TDA 
III( TDA..SET 
!WJ. USTAT 
M USTAT,UARTPORT 

RET 

HHHffHHf+HHflHffHfHHfHHffHHHff.fHfHfHHIHHIHHfHHHlH 



). 
::s 

~ 

l 
~ 
S' 
§" 
~ 
1:0 
V) 
.g, 
~ 
~ 

~ 
""i 

s: 
~" 

So .... 

~ 
~ 
~ o ...., 

-00 
'I 

END I'UT-MTA 

ftHlHft.HHtffHHHflHffHHHfHHfHfHHfHfffHHffffttHffHUlHffH 

RECEI~ INTERFACE ROUTINE 

GET-MTA COPIES RDATA TO LIlCATlItl POINTED AT BY ARlIIf'_PTRl AND CLEMS 
RDA, ROO, FRI!, AND RPE 

HHffHlHHHffHffHHHffH+lHHfUHfHHHIfHHfffftHffffHfHffHHt 

GET-MTA LARP INP_PTR • ; copy DATA 
IALS RDATA 
SACL 

IALS USTAT 
ANDK RDILClR , CLEAR RDA 
ANDK OFFF8h ; CLEAR ERROR FLAGS 
SACL USTAT 
OUT USTAT, UARTPORT 

RET 

HflHHfHfHffHHHnHHfHffUltHfHHHfHHfffffHHfHHffH*HtfHt* 

END GET_DATA 

fH-ftHHHfIHftHftHfHlfHtfl-tHHHttHfHUH*HIfHHfHHHHHH*4flf 

_IT DATA COtIPOSE ROUTINE 

XCOtIPOSE ADDS START, STOP, AND PARITY BITS TO DATA POINTED AT BY 
AR(OPT..PTRI 

fHHHHH'iHHHtfH*HHHHH**fIHHHfHfHHHt*fHfHfHfltflHtHfHf 

XCOIIPOSE ZALS 
SACL 

LARP 
ZALS 
SACL 

LAR 
LARP 

c..PAR ZALS 
ROR 
SACL 
Ill«: 

IALS 
xm 

XPARI 
XPAR 

OPT..PTR 

TEMP 

XBREG, NIt! 
XBREO 

TEIIP 

TEIIP 
XNOCHAIIGE 

XPAR 
XPARTOG 

COIfOSE TRAIISItIT IOlD 
INPUT IS <AR(OPUTR» 
WTl'UT IS <AR(OPUTR)} 

; ItJ1BER Cf T_IT DATA BITS 

; ilEl!RIIINE PARITY BIT VALUE 

; NO PARITY CHMGE IF SPACE 

; TOGOLE PARITY-Gfli BIT IF ItARI( 

SACL XPAR 

XNOCHMGE BANI c..PAR 

LARP WT..PTR 
LAC ',1 ADD START BIT 
m XPAR ADD PARITY BIT 
m XSTW ADD SW BITS 
SACl 

REi 

HfHHffH+HHfffH·HHfffftHHfHtUtHfffffHt-fHHfUfHHHtfH*HtHff 

END XCO/IPOSE 

ffffHffHfffHffHfHffHHfHffHHHffHffHfHIHffffUftHfHHfffHfHf* 



188 An lmp/ementatlon of a Software UART Using the TMS320C25 



TMS320C17 
and TMS320COIO 

Serial Interface 

Peter Robinson 

Regional Technology Center - Waltham, Massachusetts 
Texas Instruments 

189 



190 TMS320C17 and TMS370C010 Serial Interface 



Introduction 

Knowledge-based digital signal processing (DSP) systems, in which the processor 
learns its environment (adapts) and saves what it has learned in memory, have become 
increasingly desirable to designers. These systems can utilize anyone of the many TMS320 
DSPs. The TMS320 family is well-suited for high-speed realtime processing in knowledge
based control systems, where adaptation and retention of a learned environment is important. 

These intelligent DSP systems need memory backup in order to save acquired 
knowledge in the event of a power failure. This report shows how the problems encountered 
with power failure can be remedied. 

DSP systems also need a variety of real-world interactions. Host microcontrollers 
can facilitate these interactions by interfacing to real-world elements such as reading 
keyboards, UART interface, general-purpose system 110, and power failure detection. 

Data retention can be provided by battery backed-up RAM or by electrically-erasable 
programmable read-only memory (EEPROM). Since the present line of TMS320 does 
not have integrated on-chip EEPROM, its internal data RAM must be stored off-chip to 
guard against power failure. A typical host processor interface with a DSP uses a memory
mapped approach in which the DSP and microcontroller are defined as peripherals to one 
another and must be physically close, due to the extensive interconnections required. 

This application report shows how to connect 

• One serial port of the TMS32OC17/E17 to a serial analog interface IC (in 
our example, a CODEC), and 

• The other serial port of the TMS32OC17/E17 to the serial peripheral inter
face module of the TMS370COlO (a member ofTI's advanced EEPROM
based microeontroller family). 

This system approach addresses the need for both battery back-up and host processor 
interface by presenting 

1) A seven-wire serial communications interface between a TMS320C17/E17 and 
a TMS370COI0 (the TMS37OCOI0 data EEPROM provides the nonvolatile data 
storage for the TMS320C17/E17) 

2) The required arbitration logic for the interface 

3) A communications protocol 

4) Associated TMS320/TMS370 assembly code to implement the transfer protocol 

'IMS320C17 and TMS370COIO Serial Interface 191 



System Configuration 

Figure 1 shows a block diagram of the TMS32OCI7/EI7 communicating with the 
TMS370COlO via a seven-wire serial communications interface. This configuration has 
the following features: 

r---

0 .,... 
d 

~ 
C') 
en 
::!: 
l-

'---

• The ability to transmit coinmands and! or system data to a remote processor 
or to receive them from the processor. 

• The ability to interface to a CODEC or other serial A/Ds. 

SEVEN WIRE 
SPECIAL INTERFACE 

(\' r--- ,-------------------- .. , , 
, , 

I I 
~ 

, 
, 

::!:O 
, 

, 
~8 

, 
, , 

,... , , 
.,... , Z.....I , 
w , 0.....1 

~ 
, 

I I j:::: , W;2 , 
.,... , za: RAM 

, 
V 

() , ~w "",-' 0 AND/OR N , 
r;s~ INTERFACE 

C') ., 
ROM 

, 
en , , 

LOGIC :::! , 
I- , - - , 

, , ..... , , 
OPTIONAL EXTERNAL 

COMBO , , 
DATA RAM , , 

CODEC ~ _______ ~ ______ ~-----J 
-

Figure I. Block Diagram of TMS32OCI7lEI7ITMS37OCOIO System 

The TMS37OCOlO can, via the serial interface, provide the TMS32OCI7/EI7 with 
nonvolatile storage of up to 256 bytes of memory. This can be 128 16-bit words of the 
TMS32OCI7/EI7 memory and/or processor status. 

You can use such an interface to implement the following DSP/microcontroller 
systems: 

1) Voice pattern recognition/security access 

2) Speech synthesis/recognition 

3) Intelligent motion control 

4) Intelligent vibration monitoring 

5) Intelligent adaptive filter 

6) Adaptive MODEM/FAX 

192 TMS320C17 and TMS370C010 Serial Interface 



TMS320Cl71E17 Overview 

The TMS320C17/E17 is a low-cost stand-alone single-chip digital signal processor 
that combines the flexibility of a high-speed controller with the numerical capability of 
an array processor. It offers an inexpensive alternative to custom VLSI and multichip bit
slice processors. The TMS320C17/El7's powerful instruction set, high-speed number
crunching capabilities, and innovative architecture have made this high-performance, cost
effective processor the ideal solution to many telecommunication, computer, commercial, 
and industrial control applications. The TMS320C17/E17 employs a Harvard architec
ture (separate program and data busses) and highly pipelined data structure to obtain a 
5-MIPS throughput (200 ns per instruction). The TMS320C17/El7's instruction set com
prises data control, program control, and 10gicaJ. and digital signal processing instructions, 
making this DSP's code development process typical of most 16-bit microcontrollers. 

The TMS320C17 and TMS320E17, shown in Figure 2, are dedicated microcom
puters with 256 words of on-chip RAM and 4K words of on-chip ROM (TMS320C17) 
or EPROM (TMS320E17). The TMS320C 17/E17 features a dual-channel serial interface, 
on-chip companding hardware (p.-Iaw/A-Iaw), the TMS32OC1X core processor, and a 16-bit 
latched 110 or coprocessor interface. The TMS320C17/E17 is also available in a 160-ns 
version capable of a 6.25-MIPS throughput. 

TMS320C17 and TMS370COIO Serial Interface 193 



MC 

MCIPM 

WR/WE 
RD/DEN 

BIO 

RS 

HlILO 

ABL!= 

TBlE 

PA2-PAO 

DATA 
(256 WORDS) 

DATA 

16 

18 

INSTRUCTION 

CIl PROGRAM 
f3 ROMI 
a: EPROM 
C (4K Si WORDS) 

32 32 

ACC32 

32 

32 

16 
DATA BUS 

---------------------~ lEGEND: 
ACC. ACCUMULATOR PC • PROGRAM COUNTER 
ARP a AUXilIARY REGISTER POINTER P a PREGISTER 
ARO • AUXILIARY REGISTER 0 T • TREGISTER 
AR1 z AUXilIARY REGISTER 1 TR z TRANSMIT REGISTER 
DP . DATA PAGE POINTER RR • RECEIVE REGISTER 

8 

Figure 2. TMS320C17/E17· Block Diagram 

18 

8 

ORO 

DR1 

194 TMS320C17 and TMS370COIO Serial Interface 



TMS32OCl71E17 Serial Port 

Two of the memory-mapped 110 ports on the TMS32OC17/E17 are dedicated to 
the serial ports and associated companding hardware (the ,,-law/A-law, decoder/encoder). 
I/O port 0 is dedicated to control register 0, which controls the serial port, interrupts, 
and companding hardware. I/O port 1 accesses control register 1, as well as the two 8-bit 
serial port channels and the companding hardware. The six remaining I/O ports are available 
forexternal16-bit parallel interface. 

The two serial ports support a frame-type serial transfer scheme that serves as a 
zero-glue logic interface to industry standard COOECs. Figure 3 shows the timing 
associated with the two serial ports. You can use the framing pulse of this interface to 
set the transfer time of the eight data bits. The transfer of data is accomplished by means 
of three signals: the transfer clock (SCLK), the transmit or receive pins (OXO/DXl and 
ORO/DRl), and the transmit or receive frame pins (FSR and FSX). A fourth signal, frame 
request (FRF), is provided for arbitration. 

TMS320C17 and TMS370COIO Serial Interface 195 



ORO 

OR1 

X2/CLKIN 

196 

PAO 
PA1 
PA2 
WE 

DEN 
CRa 

CR13 

a a a 
r-------~ r---~--~ 

RECEIVE 
REGISTER RRO 

RECEIVE 
REGISTER RR1 

Serial Port and Companding Hardware 

CR27·CR24 CR15 
CR23· 

FSRFSX CR16 

SCLK ... -----11 .. 
SERIAL·PORT 

TIMING 
CONTROL 

SXLDt 

RCLK* 

tSXLO = Load transmit shift registers (TSO, TS1) from transmit registers (TAO, TR1) 
*RCLK = Load receive registers (RRO, RR1) from receive shift registers (RSO, RS1) 

Serial Port Timing and Framing Control 

Figure 3. TMS32OC17/E17 Serial Interface Logic 

CR12 

OXO 

CR11 

OX1 

FR 

CR2a 

TMS320C17 and TMS370COIO Serial Interface 



The TMS32OC17/E17 serial ports are provided with six interface lines: 

DXO/DXl 
DRO/DRI 
SCLK 
FR 
FSR 
FSX 

Transmit shift register output pins 
Receive shift register input pins 
Serial port timing control pin (hi-directional) 
Frame request output pin 
External frame receive 
External frame transmit 

These six lines provide a full-duplex serial communications interface and direct in
terface to combo-CODECs (I.E.TMS29CIX series CODECs), PCM systems, serial AID 
converters (such as the TLC3204X, TLC54X, and TLC154X), and most microcontrollers 
with a programmable serial interface. 

Interfacing a TMS320C17/E17 to a CODEC 

The system configuration utilizes the serial ports of the TMS320C17/E17 for two 
distinct purposes: 

• Interfacing to CODECs (which provide the analog interface for the system) 

• Interfacing the DSP with the host microcontroller. 

To clarify the two interface techniques, the simple CODEC interface is described 
first; then the serial-communications interface of the TMS370COlO is discussed in detail. 

As noted earlier, the TMS32OC17/E17 is equipped with a hardware serial 110 module 
designed specifically to interface with two CODECs. The interface is straightforward and 
requires only that 

• The transmit and receive lines of the TMS32OC17/E17 and the CODEC 
be connected and that 

• The frame request line (FR) be connected to the CODEC frame transmit 
and receive lines (FSX/FSR). 

The timing clock is provided by the TMS32OC17/El7's SCLK pin, which is con
nected to the CODEC's CLK/X pin. 

The interface, shown in Figure 4, is described on page 6-7 in the First-Generation 
TMS320 User's Guide (literature number SPRU013B). 

TMS320C17 and TMS370COIO Serial Interface 197 



+5V 

TMS320C17/E17 

VSS OXO 

ORO 

SCLK 

VCC FR 
MC 
MC/PM 

OX1 

OR1 

TCM29C13 

PCMIN 

PCM OUT 

CLKR/X 
FSX 

FSR 

TCM29C13 

PCM IN 
PCM OUT 

CLKR/X 

FSX 
FSR 

ANALOG OUT 

ANALOG IN 

ANALOG OUT 

ANALOG IN 

Figure 4. Simple TMS320C171E17/CODEC Interface 

Interfacing the TMS320C17lE17 to the TMS370COIO SPI Module 

. To implement a bi-directional communications interface with the lines used by the 
protocol presented in this report, the connections shown in Figure 5 are required. 

TMS370C010 74HC32 TMS320C17/E17 

1 OR FSX 

~ FSR 

SPISOMI 
XMT 

OX1 

SPISIMO 
REC OR1 

SPISCLK 
CLOCK 

SCLK 

03 
READY 

XF 

05 RTS370 
EXINT 

O~ 
OATAEN 

810 

A PAO 
• 

B PA1 

C . PA2 
74HC74 G2A WE 

RTS_320 
Q CK Y4 G28 U 04 

°l 74HC138 

DO 

Figure s. Stand-Alone TMS32OC171E17/TMS370 Serial Interface 

198 TMS320C17 and TMS370C010 Serial Interface 



This part of the design (showing only the serial peripheral interface, no CODEC 
interface) uses the transmit and receive pins of both the TMS32OCI7/EI7 and TMS37OCOlO 
connected directly. To handle the frame timing (the TMS32OCI7/I7 is slave to the 
TMS37OCOIO), the following handshaking scheme is used. 

1) When the TMS320CI7/EI7 wants to transmit to the TMS37OCOIO, it writes to 
port 4, asserting a request to send signal RTS-320. 

2) When the TMS370COIO is ready to receive the packet (packet is used to describe 
the 8-bit transfer), it asserts READY low, which, when ORed with the RTS-320 
line, asserts FSX low and starts the transfer. 

The TMS320's receive sequence is similar to the TMS370's as noted below. 

1) The TMS370COlO asserts RTS_370 (TMS370COIO request to send line). 

2) When the TMS320CI7/EI7 is ready to receive, it asserts the READY line with 
its XF output, which, via the OR gate, generates the FSR frame signal. 

Assembly code examples in the appendices present a system flow showing exactly 
how this interface operates. It is recommended that Section 3.9 of the First-Generation 
TMS320 User's Guide (literature number SPRUOI3B) be reviewed to fully comprehend 
the workings of the TMS320CI7/EI7's serial ports. 

TMS370COIO Overview 

The TMS370 family consists of several VLSI, 8-bit, CMOS microcontrollers with 
on-chip EEPROM storage and peripheral-support functions. These microcontrollers give 
superior performance in complex realtime control applications in demanding environments. 
Since TMS370 devices are available in mask-programmable read-only memory (ROM) 
or programmable EPROM and EEPROM, you have a significant range of processor op
tions from which to choose. 

This report explains how to interface the TMS370COIO, shown in Figure 6, to the 
TMS320C 17 IE 17 serial port by using the serial peripheral interface (SPI) module. It should 
be noted that other TMS370 devices can also be used because many of the TMS370 fami
ly members contain the SPI module. 

TMS320C17 and TMS370COIO Serial Interface 199 



XTAL21 
INT1 INT2 iNT3 CLKIN 

CpU 

XTAL1 MC 

------------1 
~--------~ I 

SYSTEM 
CONTROL 

I 
I 
I 
I 
I 
I 

')..,r-.....J-------,..~I~ ___ SPISOMI 

H-I--- SPISIMO 
.f""L-;'-l. ______ .Hr---- SPICLK 

h......,.~-------,..-i---- T11C/CR 
~_I--_T1EVT 

/r.L..L-t __ ,.;,.-_Ji---- T1PWM 

I-I---Vcc 
I 
j-I __ - VSS 

I 
------ 8 ------------ 5 ------------------------

Figure 6. TMS37OCOIO Block Diagram 

TMS370COIO SPI Module 

The SPI module, shown in Figure 7, is a high-speed user-configurable synchronous 
serial 1/0 unit that allows a serial bit stream of programmed length (8 bits in this case) 
to be shifted into and out of the device at a programmed bit~transfer rate. The SPI is nor
mally used for communications between the microcontroller and an external peripheral 
(the TMS320C17/E17 in this case). 

200 TMS320C17 and TMS370COIO Serial/mer/ace 



SPIBUF Buffer 
Register 

SPI INTERRUPT 

SPIDAT 
Data Register 

31.7 

31.1 

TALK 

Levei lint 

1 
3F.60--0-- Level 2 Int 

M 

1'O-=-f-4..-fc8>l SPISIMO 
Pin 

:, ..... O-.... --K"::5I SPISOMI 
, Pin 
, 
I MASTER/SLAVE 

___ -I 31.2 

POLARITY 

30.6 

SPICLK 

Figure 7. TMS370COIO SPI Module 

The SPI module has a single 8-bit register used for both transmitting and receiving 
serial data. In this system, the serial data is clOCked into the SPISOMI pin and clocked 
out of the SPISIMO pin. The SPICLK is used for counting and timing the data. Because 
the TMS37OCOIO is the master processor, the SPICLK is used by the TMS320C17/E17 
for timing transmission and reception of all data transfers. 

For more information on the TMS370COIO's SPI module, refer to Section 10 of 
the TMS370 Family Data Manual (literature number SPNS014). There is also an applica
tion report for serial communication entitled Using the TMS370 SPI and SCI Modules 
(literature number SPNAOO6). 

TMS320C17 and TMS370COIO Serial Interface 201 



TMS320C17/E17/TMS370COIO Tr~mission/Reception Protocol 
The TMS32OC17/E17 and the TMS370C010 are connected by the seven wires shown 

in Table 1. 

Table I. Serial Intedace Connections 

TMS370C010 TMS320C17/E17 Name Function 

D3 XF READY READY line 

D4 (DO@PA4) RTS_320 Request to send (TMS320C 17/E 17) 

D5 EXINT RTS_370 Request to send (TMS370C010) -
D6 BIO DATA EN Signals 320 - clk 9 sent 

SPISCLK SCLK CLOCK Data clock 

SPISIMO DR1 REC Data receive line 

SPISOMI DX1 XMT Data transmit line 

Sections 5.1 and 5.2 describe how the TMS32OC17/E17 and TMS37OCOlO com
municate over the serial interface. A timing diagram is illustrated for both transmission 
and reception of data, and signal sequencing steps (data flow and handshaking) are outlin
ed for each case. In each example, the TMS370C010 is assumed to be the master of the 
system. 

TMS370COIO Transmits Data to the TMS320C17/E17 

T9 

CLOCK 

FSR ~~:_ ....... ~_ ....... .....;+-~_ ....... --'! . 

DATAJ:N ---~--i-~-"';"'-+-~' '-"';"'--:J1 :. .. 

Figure 8. Timing Diagram for TMS37OCOIO to TMS320CI71E17 Transmission 

The signal sequencing in Figure 8 is defined in the following steps: 

1) The TMS370COlO interrupts the TMS32OC17/E17 by asserting RTS 370 low. 

202 TMS320C17 and TMS370COIO Serial Interface 



2) When acknowledged, the TMS320C17/E17 ensures that the serial port is set up 
appropriately for receiving data, sets the SCLK for input clock, and kills any 
transmissions pending or in progress (in agreement with the system's 
characteristics of the TMS370COlO being master). The TMS320Cl7 then signals 
the TMS370COlO that it is ready for reception by bringing its XF pin (READY) 
low, which, in turn, sets the TMS320C17 FSR low (via an external OR gate). 
This notifies the onboard serial logic that data is soon to follow. 

3) The TMS370COI0 then transmits the 8 data bits. When the last bit is sent, the 
TMS370COlO sets the RTS 370 line high. 

4) When the RTS 370 line goes high, the external OR gate asserts FSR high, caus
ing a TMS320C 17/E17 interrupt. The FSR interrupt indicates that the 8 data bits 
have been clocked into the receive shift register RSO. This puts the 
TMS320C17/E17 into a polling routine, waiting for the BIO (DATA EN) to go 
high. 

5) The TMS370COIO sends a ninth clock pulse to transfer the 8-bit value in the RSO 
register into the receive register, RRO. 

NOTE: This ninth clock pulse is required by the TMS32OCl7/El7 internal logic 
to transfer the contents of the RSO to RRO. If the clock were free run
ning, this ninth clock pulse would simply be the next clock pulse. 

6) The BIO (DATA EN) is brought high by the TMS37OCOIO to signify that the 
ninth clock pulse has been sent and that the data is ready to be read by the 
TMS320Cl7 IEI7. 

7) The TMS320C17/E17 reads the data, stores it, and sets an internal software flag, 
indicating a new data word has been received. The TMS320C17/E17 then ends 
the transmission by setting the XF (READY) line high. It also clears the inter
rupt and enables the EXINT interrupt for the next byte. 

TMS320C17/E17 Transmits Data to the TMS370COIO 

Figure 9 shows a timing diagram for transmission of data from the TMS320Cl71 
E17 to the TMS370COlO. 

TMS320C17 and TMS370COIO Serial Interface 203 



T1 : T2 : T3 : T4 : :T7:TS: T9 

CLOCK 

RTS_320 '''''-';'u - ............ - ............... t--...... - ...... ~---Jr 
READY ,"" ...... -_ ..... ___ : ... _ ............ __ :.,.J/ 

FSX ~'i-i - ............. -P---....~ ..... --i-_P--Jr: 

Figure 9. Timing Diagram for TMS320C17lE17 to TMS37OCOIO Transmission 

Signal Sequencing in Figure 9 is defined in the following steps: 

204 

I) The TMS320C 17 IE17 puts the 8-bit value to be transmitted into the serial transmis
sion register TRI. 

2) By sending a zero data value OUT to I/O port 4, the TMS32OCl7/El7 signals 
to the TMS370COlO that its serial port is configured and that data is ready to 
be transmitted. The TMS37OCOI0 sees this as a one-to-zero transition of the 
RTS...,320 line (TMS320C17/E17 request to send). 

3) The TMS37OCOIO sets READY low via the external OR gate, causing FSX to 
go low. The FSX transition causes the transfer of the 8-\:>it value in the TRO register 
to the TSO register, starting the transmission. 

4) When the eighth data bit is received from the TMS32OCI7/EI7, the TMS37OCOlO 
sets READY high, causing FSX to go high, which interrupts the TMS32OCl7 IEI7. 

5) When the FSX interrupt is received from the TMS37OCOIO, the TMS32OCl7/El7 
transmission is assumed complete. The TMS320Cl7/El7 sends a one data value 
OUT to I/O port 4 (asserting data line DO high), clearing the RTS...,320 line. 
This restores the port to the initial state and makes it ready for the next RTS...,370 
(TMS370COlO request to send). 

6) The last operation performed is the transmission of a ninth clock pulse by the 
TMS370COIO. The ninth clock pulse is sent to reset the TMS32OCl7/El7 TRI 
register to set up the TMS320C17 logic for the next transmission. 

TMS320C17 and TMS370COIO Serial Interface 



Interfacing the TMS320C17/Et7 to the TMS370 
and CODEC Simultaneously 

To allow the TMS32OC17/E17 to communicate with a TMC29CI3, the SCLK pin 
must be switched, under software control, between the SPICLK on the TMS370COlO and 
the CLK pin on the TMC29C13. The additional external logic needed to do this is shown 
in Figure 10. The logic consists of two AND gates (112 - SN74HCOO) and three buffers 
(2/3 - SN74HCI25). 

TMS320C17 and TMS370C010 Seriallnterface 205 



~ 

~ 
~ 
tv o 
'I 
~ 

E. 
~ 
~ 
~ g 
~ 

~ 
~ 
;;
~ 
~ 

~ 

.. 

ANAl 

ANALOG OUT 

R2 

'Ok 
R3 

r---------------------------------I 

! V~CC vfcc i 
I m ~ I 

DATA EN I 10k 704HCt2& 10t I 
, I I " ..... I 

DIGITAL 
OIIOUND 

ANALOG 
.... UND 

I 
I 
III 

DCUCRf!-, I I 3 ~ 
I 
I 
I 
I 
I 

V,.,-Sl 
!In 
olQ 

U&A 
74HC74 

PO 

CUt':.t! 
;;1' 

I 

I 
I 
I 
I 
I 
I 
I 

: ~DH20."-
jC1J..! ~C2 

i~~ 
I DIGITAl. 
I ....... 
I 
I 

I 
I I b L Vee I ______________ I 

________ ...J 

Figure 10. Full System Schematic 

Vee 

30 

VDO 

.. 22 DSl2' 
D3 23 
.. 20 
D,20 

00 21 

10 U1 

........ 
'"'"""" 

_17 

r \"" 
'OV 

DIGITAL 
OIlOUOlD 

SW'~ RESET J 



This additional logic adds to the system cost, board space, and power requirements. 
To reduce this burden, a TmPAL16L8 can be used to absorb the AND, OR, buffer, and 
address decoder, reducing the system to the circuit shown in Figure 11. 

TMS370C010 TMS320C17/E17 

SPISOMI 
XMI 

OX1 

SPISIMO 
REC 

OR1 

05 
RTS-.370 

EXINT 
08 

OATA...eN 
BIO 

TO ISET DO 
16lS8 PAL 

PR 
3/1 

XF 
XF 0,....-

QRTS 4/1 
PAO 

PAO 
RTS_320 

Q CK< ~ 17/0 511 PA1 
04 PA1 

8/1 
PA2 

PA2 
7/1 

WE 
WE 

1010 FSX FSi 
1/2·74HC74 

211 15/0 
FSR 

FSR 

03 
REAOY 

14/0 811 
SCLK 

SClK 
SPIClK T SPISCLK 1/1 19/0 

ClK 1010 

":" 

PCMOUT ORO 

PCMIN OXO 

FSX FR 
~ FSR 

TMC29C13 

Figure 11. Serial Interface with CODEC 

This brings the system chip count down to the following five ICs: 

1. TMS37OCOI0 - System microcontroller 

2. TMS320C17/E17 - System digital signal processor (DSP) 

3. TMC29C13 - CODEC (analog in and out) 

4. 112 of an SN74HC74 - D flip-flop 

5. TmPAL16L8-15 - 15 ns PAL 

TMS320C17 and TMS370COIO Serial Interface 207 



Design Example 
. Ali attractive fe8;ture of the approach shown in Figure 11 is the ability to isolate 

the DSP and CODEC from the microcontroller. The host controller can thus be placed 
2 to 5,yards from the DSP/CODEC and connected via seven wires (READY, RTS~20, 
RTS~70, DATA EN, CLOCK, REC, and XMT). Using line drivers and receivers, this 
distance can be increased substantially. 

An example of a system benefitting from the TMS370/TMS320 interface is a vibra
tion monitoring device used to monitor an in-service automated numerical control milling 
machine (refer to Figure 12). In such a system, ,the DSP performs a 64-point real DFT, 
compating its results to ~ DFT mask taken when the cutting tool in the milling machine 
was new. Such data can be used to predict when the cutting tool will go out of specifica
tion. A siInilar system could apply to almost any machine containing bearings or produc
ing vibration relating back to the machines performance; i.e., copiers, automobiles, steam 
or jet engines, etc. 

208 TMS320C17 and TMS370COlO SerialInterface 



ORIGINAL 
OFT MAP 

REAL TIME 
FFTMAP 

CUTTING 
TOOL 

I I 
2 3 4 5 8 2 3 4 5 8 

SEVEN WIRE INTERFACE TO PC Vibration 
Sensor 

Within the PC is an interface board that has the 
TMS370C010 on it. The TMS370 holds the 
original map in EEPRQM and compares it to each 
follow-on OFT map. 

Contains: -----I .. 
1) TheDSP 
2) The Analog to Digital Converter 
3) The Interface logic (PAL and Flip Flop) 
4) Une driver and Receiver 

The frequency responces of the milling 
operation or cutting operation is taken when 
the cutting tool is new (Original OFT map). 
This original response is compared to the 
frequency response for each follow-on cut. 
The difference between the two is used to 
determine if the cutting tool ne~ds to be 
changed before it produces bad product. 

Figure 12. Design Example 

TMS320C17 and TMS370COIO Serial Interface 209 



Conclusion 
You can see that the TMS320 and TMS370, when paired together, provide a low

cost, high-performance DSP system ideally suited for adaptive DSP tasks requiring pat
tery back-up. The TMS320C17/E17, with its serial interface logic, connects with zero
glue logic to combo-CODECs and, with the addition of only a PAL and one flip-flop, 
can communicate with the TMS370's SPI interface. The TMS37OCOIO is shown to be 
a powerful 8-bit microcontroller with onboard EEPROM. In the event of a power failure, 
the data EEPROM, in conjunction with the SPI serial peripheral interface, can be used 
as a means of preserving the TMS32OC17/ElTs and TMS37OCOlO's data RAM and pro
cessor status. In addition, the TMS37OCOlO has the power and flexibility to read a keyboard, 
interface to a display, and/or communicate with a serial communication device (SCI/UART 
interface). Note that the Texas Instruments integrated circuits presented in this applica
tion report are offered in two surface-mount packages, thus giving a small-end system 
form factor. 

Source Code Examples 
Source code examples are presented for both the TMS320 and TMS370 transmit 

. and receive routines. The TMS370COlO code in Appendix A presents SPI initialization 
source modules, plus transmit and receive 8-bit values for the TMS320C 17 IE17. As noted. 
earlier, the TMS370COlO is assumed to be the master while the TMS320C17/E17 is the 
slave. In the TMS320C17/E17 source code examples (Appendix B), the header presents 
a full narrative description, which closely follows the narrative presented within this report. 
Both the TMS320 and TMS370 source code examples are written in modular fashion so 
you can choose what you want to include to meet your unique system· needs. 

Appendix ,C gives the reduced equations and chip diagram for a PAL example. 

210 TMS320C17 and TMS370COIO Serial Interface 



~ 
~ 
~ o 
'I 

l 
~ 
~ 
~ g 
c::::. 

~ s· -:;-
~ 

i
!;l 

I'-) --

1IIIIIIIIIIIIIIIIIIIUHftHHfHIHHHHIHHHfHUIIIIJllllllllnHfUHH 

II'P£IIIIl A - TftS32OCI7IE17 SOURCE CODE EXAIIPLE 

1HHHIfH111111111111111111 •• IIHHHHHfIHfHHHHtHffHHHfflHHHH 

ClPYRIGHT Ie) 1988, TEXAS INSTRliIIEIITS li'I:!JRP(JlATED, 
AU. RIGHTS REl3ER'IEIl 

IUlllllllllllllllllllllllllllllllllllllllllllfHHHfHfHHfHofIffltHHHH 

• 
SI0370 

TlIIS SIFlI/IIRE 0006TRATES TIE USE IF TIE TIIS32OtI7 SERIAL INTEI1fACE TO 
aIIUIlCATE WITH A TilS370c010 CHIP, TIE T~OC010 IS ASSIJIED TO lIE, TIE 
IfI1STER IF TIE SYSTEII. 

THIS 0006TRATlIJI IS ACCOIIPLISI£D BY SIIf'LY ECHOIIil TO TIE T~OC010 
IllAlEVER IS RECEI~, TIE SCENARIO IS AS FlUJIiS' 

I. TIE TllS37OC010 INTERRlI'TS TI£ TIIS32OC17, INDICATlt«l A TIIS370c0I0 
REllEST TO SEIIll. 

2. TIE TIIS32Otl7 ENSUIES THAl TIE SERIAL POll IS Af'PR(fRIATELY SET II' FOR 
TIE TRANSIIISSIIJI, Will! EXTERNAL SCIJ( AND FRAIUt«l. TIE TftS32OCI7 TI£N 
SI6IIIFIES IT IS READY FOR TIE RECEPTlIJI BY BRIt«lIMl TIE IF PIN LOW. IT 
ALSO Klu.s ANY TRANSIIISSIIJiS PENlIINl III IN ~ TO 11£ TilS370c0IO, 
IN AIlIIEE/EHT WITH TIE SYSTEN'S CHMACTERISlIC IF TIE TItS37OCOIO BEINl 
MSTER, 

3. TIE TIIS32OCl7 RECEI'IES All FSR INTEIIRIPT INDICATlNl THAl TIE lII\lA lfAS 
IIEEN CI.OCKEO INTO TIE RECEIIJE SlfIFT IEGISTER. A NINTlI SCIJ( IS TI£N 
SENT FRIll TIE 11lS37OCOIO TO TRANSFER TIE DATA FRIll TIE SlfIFT IEGISlER 
TO TIE E£IIJE I£l1ISTER, AND TIlE BID PIN IS IIfrulHT HIGH TO SIGNIFY 
THAT TIE DATA IS READY. TIE TIIS32OC17 R£ADS TIE DATA, STOlES IT, lIND 
SETS A FU¥l INDICATl,., THAT A tEN DATA I/ORO HAS IIEEN RECEIVED. TIE 
TIIS32OCI7 TI£M ClEARS TIE INTERAlIPT AND EIWIl£S TIE tEXT TllS370c0I0 
RTS INTERAlIPT. 

4, TIE DIllY APPliCATION PW.S TIE DATA FU¥l·AND RESPONDS TO ITS BEINl 
SET, IT TI£M ENSUIES THAT TIlE SERIAL POll IS SET II' FlII TRANSIIISSIIJI 
lIND SEIIIS TIE IMIA (lIT TO TIE SERIAL lRAIISIIISSION IEGISTER. IT SI!IiALS 
THAT TIE CONFIIlIIATlIJI AND IMTA AI£ READY BY PERFlIIItIIlG All 001 
11ISTRUCT11iI (A ZEROI TO 110 POll 4, hlilCH IS SEEN BY TI£ TIIS37OCOI0 AS 
A TIIS32OCl1 REllEST TO SEND, FINIILl.Y, IT ENAIIlES B01H TIlE FSX AND 
TIIS37OC010 RTS INTERRlI'TS. 

5. WI£N TIE FSX (Ill TllS37OCOIO RTS) INTERAlIPTS ARE RECEI~, TI£ TRANS
MISSION IS ASSlIEII COFI.ETE, TIE TIIS32OC17 SENDS A I (lIT TO I/O POll 
4, CWRIIIG TIE TIIS32OCl1 REllEST 10 SEND, AND RESTOlES TIE POlT TO 
TIE INITIIIl STATE, READY FlII TIE tEXT TIIS37OCOIO RTS • 

• 11111111111111111111 ... 1111111111111111111.111111111111111111111111111111111. 

• Pig. 
.titl. 'TIIS37OCI7lT~OXX COIfUjlCATlIJI SlFTIIAR£' 

• text 

SI0370 , IIRAII.:H TO PROCESSOR RESET 

HfHftfHHtHfHHHHHfHtHHffHHHHfHfHHffllllllllll.IIIIII •• 1111 

INTERRUPT HANDlER 

TlIE INTERRUPT ENABlE BITS ARE AND'EO WITH TI£ INTERRUPT FU¥l BITS TO 
lIETERIlltE hlilCH INTERAlIPT TO SERVICE. 

HHHffHffHHHfHHHHtHffHHHfHfHHHfIII.'.II.IIIII'I.IHflfHlHf 

.. 

.sect code 

SST SAVEST SAVE STATUS 
LDf'I( PAGEl _PAGEl 
SAC!.. SAYEAL SAVE ACruWIlOl 
SACH SoWEAH 
SAl! ARO,SAYARO , SAVE AUXILIARY IEGISTERS 
SAl! ARl,SAYARI 

IN SCRACH, anGO , READ IN INTERAlIPT FU¥lS 

LAC SCRACH,I2 , !lET INTEllRlPTS EIIAIIlED 
III SCRACH , III IN IIITERRUPT FU¥lS 
SACH SCRACH , SAVE EIIAIIlED BITS 
AND SCRACH , _ FU¥lS WITH ENAIIlE BITS 

SAC!.. SCRACH , AND SAVE RESIl. T 

lJICI( 4 , CI£D( FlII RESf(JISE SENT 
AND SCRACH 
BIll RSPSNT 

lJICI( 2 , CI£D( FlII lII\TA RECEI~ 
AND SCRACH 
BIll lII\TREC 

lJICI( I , CI£D( FlII :J7O RTS 
AND SCRACH 
lINZ RTSREC 

NO VALID INTERAlIPT, RE-INITlIllIIE INTERRlI'TS 

lJICI( 

SAC!.. 
08Eh 
SCRACH 

I SCIJ( IN, NO alEC IXIlINl, 
, IF HIIJt, EXTERNAL FRIIIt[IIG, SERIIIl 

POll 1 

> 

i 
~. 

> 



N ..... 
N 

~ 
ei 
tv 

Q 
'I 
I:> 
;:s 
I:>.. 

~ 
ei 
~ 
9 ...... 
c;::, 

~ 
is' -S' 
~ 
~ c:; 
~ 

lACK 
ADD 
SNl. 
B 

OIFh 
SCRACH,B 
SCRACH 
INTRET 

, EJWII.£ 1lIS370c010 RTS INTERRlPT, 
, ClEAR Ill. INTERRIJPTS 

I IEFAlU TO RETIJ!II 

INTEMUPT I - 1lIS370c010 REQl£ST TO SEND RECEIVED 

TIE TltS37OC010 IllS ISSUED A REQI£ST TO SEND. EIISlIIE THAT HE seRiAl PmT 
IS aN'11llm COIIIEtTI. Y, KIll. ANY PENDIIIl TRflIISIIISSIOllS IX! 11tS32OC17 
REQI£STS TO SEND, AND t«lTlFY TIE 1lIS370c010 OF READlt£SS BY 5<TT1NG TtE 
If PIN LOW. 

1IIIIIUIUIIIIIIIIIUU".IIIIIIIIIUIIIIIIIIIII.llllfHfHfIIIlUUIIIIIIUI 

RTSREC IN SCRACH, CIFRGO 370 RTS RECEIVED 
lACK 040II ClECI( IF FSX ENAIlED, 
AND SCRACH EXPECTING TRflIISIIISSION 
BI NGFSI IIRAN:H IF NOT 

OOT IlEI,RTS320 , ClEAR 11tS32OC17 RTS, KIll. 
, TRflIISIIISSION 

NOFSX lAC!( OIIAb , 5ClJ( IN, NO COIEC CODIIIl, 
SNl. SCRACH , IF LOW, EXTEIINAL FIWIINO 
lAC!( 025h , EIIAIII.£ FSR INTERRIJPT, 
ADD SCRACH,B ; ClEAR FSI AND T1tS370c010 RTS 

, INTERRlI'TS 
SACl SCRACH , STIXlE I£W COIIFIGllIATlOIIS 

INTRET , IIRAN:H TO RETIJ!II ... ,. 
INTERRIJPT 2 - OATA RECEIYED 

TtE OATA IllS BEEN SHIFTED INTO TIE RECEIVE SHIFT ~GISTER FR()I TtE 
TItS370c0IO, AND TIE FSR L1t£ IllS GIlE HIGH, BUT TIE NINTH SCLK PUL5< IlAY 
NOT HAVE ARRIVED TO TRANSFER TtE OATA TO TIE 5<COO RECEIVE REGISTER. 
WAIT FIX! BIO TO GO HIGH, SIGNIFYINO NINTH CLOCK IllS BEEN SENT AND OATA IS 
READY • 

HHHHHHII"'I~llllllllftfHHfiHHHttHHHfH-HHfHHHHHHfHHfff 

OATR£C BIOZ OATREC ; WAIT FIX! BIO TO GO HIGH AFTER NINTH 
; CLOCK 

LlJP1( PAGEO , GET OATA INTO PAGE 0 
IN OATlN,SEAIAl , READ OATA TWICE TO GET FR()I &COO 
IN OATlN,seRIAl , RECEIVE REGISTER 

lACK I ; 5<T OATA FLAG 
SACl OATFLG 

LlJP1( 

lACK 
SNl. 
lACK 
ADD 
SNl. 

PAGEl 
08Eh 
SCRACH 
012h 
SCRACH,B 
SCRACH 

INTRET 

I£W aN'IGllIATlOII IN PIllE I 
5ClJ( IN, t«l roIEC COOIIll, 
IF HIGH, EXTEIINAL FIWIIIIl 
EJWII.£ TftS370c010 RTS INTERRlI'T, 
ClEAR FSR INTERRIYr 
ST(I£ I£W aN'IGllIATlIII 

; IIRAN:H TO RETIJ!II 

HHHHtHHfHHHHHIIII.I' •• I.,UI'U •• ,IUII.II'.II".If.IIII',IIHHfH 

INTERRUPT 4 - T_ISSIIII OF RESPONSE Wl'l.ETE 

TIE OATA IllS BEEN SHIFTED OOT OF TIE T_IT SHIFT REGISTER TO TIE 
1lIS37OCOIO, AND TIE 11tS32OC17 REMNS TO WAITIIIl FIX! TIE t£XT 11fUT. 

HHfHfHflttHHlHHff',IIJIIIII.IIIII.II.IIIUIJIIIUtHHfIHHHHHfIH 

RSPSNT OUT !l£I,RTS320 ; ClEAR 320 RTS 

lAC!( 08Eh ; 5ClJ( IN, NO COOEC CODINO, 
SACl SCRACH , IF HIGH, ElTEIINAL FIWIING 
lAC!( 014h , EJWII.£ 1lIS370c0IO RTS INTERRlJPT, 
ADD SCRACH,B , ClEAR FSX INTERRlI'T 
SACl SCRACH , ST(I£ I£W aN'IGllIATlON 
• page 

tHHHfHHHHtflHHIHHHHfHHHfHIIIIIIIII.I .. I"IIIIIIIIIII"'IIHH 

F1NIStED WITH TtE INTERRlI'T - RETlIlN . 
flUHHfHIII., •• IIIII •• llllllllllllllfflHtHlff+fHf*HfiHfHfHHfHHfH 

INTRET LlJP1( PAGEl ; FIXlCE PAGE I 
I.M ARQ,SAVARO , REST(I£ AUXILIARY REGISTERS 
I.M ARI,SAVARI 

IAlH SAVEAA ; RESTORE ACClIIJl.ATIX! 
ADOS SAYEAl 
OOT SCRACH, CIFRGO OOTPUT I£W CilNFIGllIATlIII 
LST SAVEST RESTIXlE STATUS 
EINT INTERRlJPTS 
RET RETIJ!II 

"**tHf"*IIIIIIIII •••••• III •• IIHHfffHHHHfIfffHlH-HtHHfIHHfHlIH 

RESET PROCESSOR AND Fill. _ TO APPLICATION 

HffHlIHflffffHHIfHHllHflHtlHIHfffllffHHHHfftHHtffHHftHttH 

• 
510370 lAC 

LARP 
LARK 

ARO 
ARO,Om 

ACCUIIULATOR 
SfLECT ARQ 
INITIAlIZE AODRESS/COONT 



~ CI.RItEII S4ICl. o,O,ARO ; llllJ' TO CLEAR !WI 
~ BANI CI.RItEII 
N 
C 

UIPK PlIGEI (") ...... I.JICI( I , INITIAlIZE (1£1 IN PlIGEI 
'I S4ICl. (1£1 
I:> ;:s 

UIPK PlIGEO 1:1. 

~ 
SACl (1£ ,ANDONEINPAGEO 

~ OUT ONE,RTS320 ; CLEAR 1lIS32OC17 RElII£ST TO SEND 

t:! I.JICI( OEIfh ; SClJ( IN, III COlEC CODIIIl, 

9 SACl TEll' ; IF HIGf, ElTEAoIA1. FRAIIIIIl, 
...... ; LI'PER CONTRCl. REGISTER 
C I.JICI( 0Fh ; DlSAIIlf IU INTERRUPTS, 

~ ADD TEIIP,8 ; CLEAR IU INTElRJPTS 
.... SACl TEIIP 

e: OUT TEII',CIFRGO 

S I.JICI( OCh , INITIAlIZE POOT I TO ocm 
1\ SACl TEll' 
~ I.JICI( CfEh 
I:> ADD TEII',8 I"l 
II> SACl TEll' 

OUT TEll' ,ClFRGI 

I.JICI( OSEh ; SClJ( IN, III COlEC CODIIIl, 
SACl TEll' ; XF HIGf, EXTEAoIA1. FRAIIIIIl, 

; SERIAlP!RT I 
I.JICI( OIFh ; ENAIILE 370 RTS INTERRUPT, 

<.ADD TEIIP,8 ; CLEAR IU INlEIiRIJ'TS 
SACl TEll' 
OUT TEII',CIFRGO 

EINT ; INIERRlI'TS 

HHflt.IIIII ..... IIIII .... IIII.,IIIIIIIII •• IIIIIIIIHffHlHHHHHHIHIffH 

• 
III'I'lIC - JUII'I III'I'lltATllI1l11lYER 

THIS IWTIIE PW.S TI£ DATA FlAG lDATFlG) TO DETERlIIE lIIAT TI£ NEW DATA 
HAS IIEI1 IEEII'ED All) lEEDS TO BE IETIRO TO TI£ DlS370c0IO. 

• --• 
III'I'lIC lAC DATFlG ; lID' OOll DATFlG SET 

BZ III'I'lIC 

t-.) 1K. I DATFlG .... SIICL DATFlG 
~ 

lAC!( 

SACl 
lAC!( 

ADD 
SACl 
OUT 

OUT 
OUT 

OUT 

top .BSS 
.BSS 
.BSS 
.BSS 

bott.. ,BSS 
I •• gth ,ElIl 

.BSS 

* • RESIlE .BSS 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

110 PORTS 

OSEh 
TEl'IP 
054h 
TEl'IP,8 
TEl'IP 
TEII',CNFRGO 

DATlN, SERiAl 
DATlN, SERiAl 

ZERO,RTS320 

APPLIC 

ONE,I 
ZERO,I 
TEl'IP,I 
DATlN,I 
DATFlG,I 
bott..-top 

SClJ( IN, III CODEC CODIIIl, 
IF HIGf, ElTEAoIA1. FRAIIIIIl 
ENAIILE FSX IVF ilIS37OCOIO RTS 
INIERRlI'TS, CLEAR FSX INTERRII'T 

; SEND DATA OUT TWICE TO GET 
; TO SECII1D _IT REGISTER 

; ASSERT ACTIVE UJI 1lIS32OC17 RTS 

; lID' BAa( TO III'I'lIC 

I aJlSTANT 1*16 
; COISTANT 0*16 
; SCRATCH lOCATiONtl6 
; DATA IN F1DI SERiAl P!RT016 
; FlAG SET FDR DATA 1EE11'ED*16 

SPACE,8Oh-II •• gth+1J;.bss POINTER TO TOP IE PAGE (1£ 

SECTlII1 AT DATA IEDY AIIMESS 080h TOP IE PAGE IIIE 

.IIIEI,I 
SAI'EAl,I 
_,I 
SAVARO,I 
SAYARl,I 
SAYEST,I 
SCRACH,I 

; INTERRII'T aJlSTANT 1016 
; INTERRUPT UJI ACWILATOR*I6 
; INTERRUPT HlGf ACWILATORol6 
; INTERRUPT _16 
I INTERRUPT ARlol6 
; INTERRII'T STATUSlI6 
; INTERRUPT SCRATCH lOCATlONtl6 

HHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ... IIIIIII •• IIII111111111111 

CNFRGO .SET 
CNFIIGI • SET 
SERIAl .SET 
RTS320 ,SET 

; COFllUlATlII1 REGISTER 0 
I COFllUlATlII1 REGISTER I 
; SERiAl 110 P!RT 
; 1lIS32OC17 REIIEST TO SEND PORT 



I I 

I 
~ ~~ ~ 

Ii<' i 
.Ii. 

214 TMS320C17 and TMS370C010 Serial Interface 



~ 
ti 

B 
'I 

§ 
!:l.. 

~ 
ti 
C:! 
Q 
..... 
c 

~ s· -;;-
~ 
.;t, 
I:> 

~ 

N -VI 

HHHHtHIHHHHHfHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.IIIIIIIIIIII 

APPEIIIIX B - TJtS37Oa)IO SOR:E COIlE EXAIRE 

fHHfHHHIIHHHHfIIHItHHHfHIIUI .. 11I1111I1111111I11111111I11I11111 

TI£ FOlLOIIING SOR:E COlE IS IIR(J(EN INTD FWI RWTIIES' 

SPI IIXlllE INlTlM.IZATION ROOTlIE (CIIU. AS SPINITl 
DIGITM. 110 PII/T INITIM.IZATlOII RWTIIE (CIIU. AS DINITl 
SEND DATA TO TI£ TIIS32OC17 RWTIIE (CIIU. AS TID) 
RECEIVE DATA FRO! TI£ TIIS32OCI7 RWTIIE ICIIU. AS RID) 

• list 

BlTO .tqu OIH ; BlUATES FDR BIT TEST All) SET WITH DR 
BIT! •• qa 02H 
BIT2 .equ 04H 
BIT3 .eqa 08H 
BIT4 •• qu lOti 
BIT5 .Iqu 20H 
81T6 •• qu 40H 
BIT7 ,'4V SOH 

NBITO •• qu OFEH ; BlUATES TO ClEAR A BIT WITH AND 
NBIT! .'ClU OfDH 
NBIT2 .equ 0f8H 
NBIT3 .equ 0f7H 
NBIT4 .tqu OEFH 
NBITS .equ OIFH 
NBIT6 .equ OIFH 
NBIT7 .equ 07FH 

HHHfIHllfHfHHIIIII •• IIIIIIIIIIIIIIIIIII.IIIIIIIHHHHlfHfIHHHHH 

VARIABLE ASSIGlllENTS IN BSS SECTION 

.bss 

.bS5 

.bss 

IlUFFER,4 
POINTERI,I 
POINTER2,1 

IElIIIY STalAIlf: FOR PASSED YALlE 
DATA POINTER OlE 
DATA POINTER TWO 

fHfHHHfHHfHfHHtHHHIIIIIIIIIIIIIIIIHlHHfHffHfII .. I .. IIIIIIIII. 

PERIMRM. ASSIIlt'ENTS 

• 
IfORTl ".tGU POll: 

DPORT2 ,'QU POW 

M.TERNATE EXPANSION IIlIE SElECT FOR 
CIIITR!l.BUS 
EXPANSION IIlIE SELEtT FOR CIlNTR!l. 

; BUS 
DllATA .tqu P02E ; 110 f'(RT OR EXPANSION CIJITR(I. BUS 
DDIR .tqu POlF ; 110 If(RT DIRECTION 
INTI •• qa POI7 ; EXTERNAL INTEIIRWT A CIlITR!l. 

; REGISTER 
SPlctR .tqu POlO ; SPI CClFIOOIIATION mlTROL REGISTER 
SPICTL .tqu P03I ; SPI IFERATlOII CIJITR(I. REGISTER 
SPIBIF •• qu P037 ; RECEIVE DATA IIIFFER REGISTER 
SPIDAT .equ P039 , SERIM. DATA REGISTER 
SPIPCI .equ P03D ; SPI PIN CIJITR(I. I 
SPIPC2 •• qa P03E ;SPIPINCIJITR(I.2 
SPIPRI .equ P03f ; 51'1 PRIDRITY CIJITR(I. 

RAIl BlUATES 

11I1111111111.IIIIIIIIIIIIIIIIHfHHt+tlfIIIIIIIIIIIIIIII"111111IfHfffHfH 

DATA .equ R4 

• text 

51'1 INITIM.IZATlOII 

; DATA REGISTER TO SEND DATA TO TI£ 
, TIIS320 

~;::'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ....... t 

lIlY I8Oh,SPIctR ; RESET 51'1 
DR IOOlIIlIIb,SPICCR ; SET BIT RATE TO IlXINlI048, SET FOR 

; 8 DATA BITS, .SET SPI a.oac PIlARITV 
, FOR INACTIVE lOll, All) ClEAR SIN 
, RESET 

lIlY 1OOOOOI000, SPICTL , SET AS IIASTER, NO TlIANSIIISSIOll FOR 
; NOW, AND DISAILE 51'1 IIITElIIU'TS 

lIlY IOOOOOOlIb,SPIPCI ; SET 51'1 a.oac PIN AS 00Tl'UT a.oac 
lIlY IOOIIOOIOb, SPIPC2 ; SET DATA LIlES AS 51'1 Slltl AND SIIII 
lIlY 1OI0000000,SPIPRI , ClEAR 51'1 STEST BIT, SET 51'1 

I INTERRIPTS TO LE'IEL 2, DISAILE 

All) "IT7,SPlctR 
; BIlATDR SUIJ'SID BIT 
I ClEAR S/W RESET BIT TO LOCK IN 51'1 
I COf'IGlIIATlIfI 

DIGITM. I'OIT INlTlALIZATlIII 

:.111111111111111111111111111111111111111.,11111111 I!NIT 111111111111111 ....... _ 

lIlY 1OOOOOOOOb,lf(RTi I SET PDRT8 SELECTI AND SELECT2 BITS 

f 
Q. _. 
~ 

= 



N rtO\I IOOOOOOOOb, 1l'ORT2 ; TO DIGITAl( 1/0 FLN;TI(IN - .11IlV toll00100b,DDIR ; SET PUlTD AS FIllIlllS; RID (Jl IBITI,DIlATA ; PRESET Bl LINE HIGH F(Jl TllS320 0'1 
; DJ = READY (WTPUn ;_ISSI1ll 
; D4 = RTS 320 !INPUT! (Jl IlIITI,DDIR ; CHANGE 81 TO All 0UlPIIT READY LINE 
;OS = RTS 370 (OUTPUT! ; FIIOl TI£ TIIS37OCOlo 
;06 = DATA EN (OUTPUT) All) IIIBITI,DIlATA ; SET TI£ READY LINE LOW TO ENABLE TI£ 
;D7' OS = LNDEFINED (INPUTS) ; _ISSI1ll a.OCK (SPICUO 

rtO\I ''1OOOh,SPlDAT ; LDAD WITH _ DATA INlTlATE SPICLK 
'**fHHHflHHHfHHHHffHfffIHffHfHfHHHHHtfHH+HHHHHHHff ; TO RECEllE DATA FIIOl TI£ TItS32OC17 

RlDI BTJZ IBlT6,SPICTL,RlDI ; WAIT f(Jl _ISSI1ll TO CIlII'LETE 
SEND DATA TO THE TI!S32OC17 ROUTINE (Jl IBITI,DDATA ; SET TI£ READ'! LINE HIGH TO INDICATE 

; TlfIT TI£ DATA If\S BEEN RECEllIED 
fffHHffHffH***HfHfH+HHHHHfHH-tHHHfHH.ftu4HfHHHHHHHH rtO\I SPlBUF,A ; READ TI£ _ITIED DATA AIID a.EAR • ; TI£ 51'1 INTERRlI'T FLAG 
TXD rtO\I toO,A ; ZERO A REGISTER RXD2 BTJZ IBlT2,DDATA,RID2 ; WAITF(Jl TI£ RTS TItS32OC17 LINE TO 

lIlY A,BUFFER ; a.EAR THE DATA BUFFER F(Jl EACH ; GIl HIGH TO INDICATE TI£ END OF THIS 
rtO\I A,BUFFER-l ; TRAIISIIIT TllS370 DATA TO THE ; _ISSI1ll C'fa.E 
rtO\I A,BUFFER-2 ; TItS320C 17 rtO\I toOOh,SPlDAT ; LDAD WITH _DATA AGAIN TO SEND 
rtO\I A,BUFFER-3 ; -talE £LOCKS TO a.EAR TI£ TItS32OC17 
rtO\I I32,A ; 32 TO A REGISTER • ; _IT BUFFER 
rtO\I A,POINTERI ; INITIALIZE POINTER 1 All) POINTER 2 RID3 BTJl IBLT6,SPICTL,RXD3 ; IlAIT- f(Jl EITRA a.OCKS TO lIE SENT 
rtO\I A,POINIER2 ; TO TI£ Ttl' OF TI£ DATA POINTER rtO\I SPlBUF,B ; _ READ TO a.EAR 51'1 INTERIM'T 
BTJO B1T2,DDATA, TXDI ; CHECK TO SEE IF A TI!S32OC17 ; FLAG 

; _ISSI1ll IS IN PROGRESS, IF SO RlD4 AIID IIIBIT3,DDIR ; CHANGE D3 READY LINE TO IIH INPUT 
; GIl AIID RECEIVE DATA FIIOl TI£ RTS ; RETlJIN FRO! SUBROUTINE 

JIf' TlO6 ; TItS32OC17 
TXDI AIID IIIIBITO,DDATA ; PIll THE TllS370c0I0 RTS LINE LOW TO .end 

~ 
; START A TllS370c0I0 _IT CYa.E 

TXD2 BTJO IBIT1,DIlATA,TXD2 ; WAIT Fill READY LINE TO GIl LOW 

tl AIID 1IIIBlT3,DIlATA ; SET TI£ DATA EHAIILE LIIIE LOW 

N rtO\I DATA,SPlDAT ; SEND DATA TO TllS320 
<:;) TXDJ BTJl IBIT6,SPICTL, TIDJ ; WAIT Fill _ISSI1ll TO CIlII'LETE 
f) rtO\I SPlBUF,A ; READ TI£ SPIBUF REGISTER TO a.EAR ...... 

; 51'1 INTERIU'T FLAG '-l 
~ (Jl IBITO,DDATA ; SET 370 RTS LINE HIGH TO END THIS 
;:, ;_ISSI1ll 
1:1.. rtO\I toOh,SPlDAT ; ALLOW EXTRA a.OCKS TO LATCH DATA 

~ • ; INTO TI£ TI1S32O 
TlD4 BTJZ IBIT6,SPICTL, TXD4 ; WAIT Fill EXTRA a.OCKS TRAIISItlSSl1ll 

~ I TO END 

~ 
(Jl 1BlT3,DIlATA ; SET TI£ DATA EHAIILE LINE HIGH TO 

; SIGNAl. THAT EXTRA a.OCKS HAlE BEEN 
9 ; SENT 
...... TlOS BTJZ IBm,DDATA, TlD5 ; WAIT F(Jl REAllY LllIE TO GIl HIIJI 
<:;) 

rtO\I SPlBUF,A ; READ TI£ SPIBUF REGISTER TO a.EAR 
iJ> ; 51'1 INTERIU'T FLAG ~ ... TXD6 AIID 1NBlT7, INTI ; a.EAR INTI FLAG 
E' RT! ; RETUiM FIIOl INTERIU'T SERYIIl: -i1' 
~ 
~ 
~ RECEIYE DATA FIIOl TI£ TItS32OC17 ROUTINE 
(') 
~ 



Appendix C. PAL Reduced Equations and Chip Diagram 

Reduced Equations For Device U4 

SClK_O = ! ( ! SPICLK); 

enab I e SCl..IUl = (! TEMP) ; 

elK = !(!SClIU); 

enable CLK = (TEMP); 

Q_RTS_320 = ! (PAO " PAl " !PA2 " ! WE); 

FSX = ! ( ! READY 10 ! RT5..320) ; 

FSR = ! (!RTS_370 " !XF); 

READY = ! (! XFI; 

enable READY = (!RTS_370); 

TEl'IP = I (!READY # !XF); 

Chip aiagru for Device U4 

Plbl.8 

------\ 
SPICLK : 

RTS_370 : 2 

XF : 3 

PAO : 4 

PAl: 5 

PA2 : I> 

WE: 7 

SCLK-I : a 

RTS_320 : 9 

GND : 10 

/------

20 

19 

18 

17 

16 

15 

14 

13 

12 

11 

----------------

TMS320C17 and TMS370C010 Serial Interface 

Vee 

SCLK_O 

CLK 

Q_RTS_320 

FSX 

• FSR 

READY 

TEl'IP 

217 



218 TMS320C17 and TMS370COIOSerial Interface 



Part III. Data Communications 
9. Theory and Implementation of a Splitband Modem Using the TMS320lO 

(George Troullinos, Peter Ehlig, Raj Chirayil, Jon Bradley, 
and Domingo Garcia) 

lO. Implementation of an FSK Modem Using the TMS32OCI7 
(Phil Evans and AI Lovrich) 

11. An All-Digital Automatic Gain Control 
(AI Lovrich and Raj Chirayil) 

219 



220 



Theory an Implementation 
ofa 

Splitband Modem 
Using the 

TMS32010 

George Troullinos 
Peter Ehlig 

Raj Chirayil 
Jon Bradley 

Domingo Garcia 

Digital Signal Processor Products - Semiconductor Group 
Texas Instruments 

221 



222 Theory and Implementation of a Splitband Modem Using the TMS32010 



Introduction 

With the predominant usage of computers and especially PCs, data 
communications are of increasing importance. Communication between the various 
computer systems and terminals is frequently accomplished by means of the Public Switched 
Telephone Network (PSTN). The essential element for this data communication is the 
modem, which interfaces computer systems and terminals with the telephone network. 

In the past, modems have been traditionally implemented in the analog domain 
using discrete components. Recently, modem manufacturers have realized the flexibility 
and high performance offered by digital approaches. With the drastic reduction in the cost 
of digital signal processors, the power of Digital Signal Processing (DSP) becomes available 
for the implementation of medium-speed and high-speed modems. 

This application report discusses the digital implementation of a modem using 
the TMS32010 Digital Signal Processor. Attention is focused on splitband modems, a class 
of modems that splits the bandwidth of the communications channel (telephone network) 
so that full-duplex operation can occur. The splitband technique is mainly used for 
implementing modems with data rates up to 2400 bps (bits per second). This report describes 
the theory and implementation of the Bell 2I2A/V.22 Recommendation, a 1200-bps 
splitband modem. Note that in the remainder of this report, the designations Bell 2I2A 
and V.22 are used synonymously to refer to the modem implemented. This report is not 
intended to provide a commercial product, but to introduce the implementation 
considerations and merits of digital signal processing-based approaches. Some of the 
protocol requirements for the Bell 2I2A/V .22 Recommendation are not implemented: the 
answer mode, the 300-bps Frequency Shift Keying (FSK) modem, and the notch filter 
required to reject the guard tone from the received signal. 

Modems are sophisticated devices consisting of many functional blocks that must 
be correctly implemented. The interface of the functional blocks must also be appropriately 
adjusted for the overall structure to function properly. The different functional blocks can 
be implemented in many ways. For example, the receiver input bandpass filters can be 
recursive or. nonrecursive, and different algorithms can be used for the carrier recovery 
and clock recovery. In addition to the possibility of implementing different algorithms, 
new algorithms may need to be added to the already existing structure, such as an adaptive 
equalizer or a second loop within the carrier recovery for the suppression of carrier-phase 
jitter. These considerations indicate the advantage of the microprocessor-based over the 
analog-based approach. Using the microprocessor approach, the designer can test different 
algorithms by simply modifying the software. Additional functional blocks can be included 
by simply adding new code. Therefore, high-performance modems can be implemented 
in a very short period of time. 

Theory and Implementation of a Splitband Modem Using the TMS32010 223 



The computational burden. for digital modem implementation is very 
heavy. This implies the need of special features for the microprocessor to be used. The 
TMS3201O, with its 200-ns cycle time, ori~chip multiplier, and specialized instruction set 
is uniquely architected for digital signal processing. Because of this, the TMS32010 can 
implement the modem functional blocks using only a portion of its available processing 
power. Another major advantage of the microprocessor approach is the possibility of 
implementing variable-rate modems using the same hardware. Specifically, the' same 
hardware used for'the implementation of the Bell 212A/V.22 Recommendation can be 
used to implement 2400-bps splitband modems (CCITT V.22 bis Recommendation) by 
merely changing the software. Besides implementing various modems using the same 
hardware, additional functions can be included, such as speech store-and-forward and the 
Data Encryption Standard (DES)l for secure data communications. 

This,report is organized as follows: The first section, Modem Functional Blocks, 
is a description of the functional blocks required for implementation of the Bell 212A/V .22 
Recommendation. The second section, Modem Hardware Description, is a brief discussion 
of the hardware used for the modem implementation. The functions implemented within 
the TMS32010 are described in detail in the third section, while the fourth section contains 
an overview of the functions implemented in the modem controller (the Texas Instruments 
TMS7742 microcomputer). The performance of the TMS3201O-based modem is presented 
in the fifth section. Finally, the last section suggests alternative hardware configurations 
that can result in reduced system cost. 

The prerequisites for understanding and gaining maximum benefit from this report 
are the level of a Bachelor's degree in Electrical Engineering and a basic understanding 
of Digital Signal Processing and Data Communications. Background material can be found 
in Digital Signal Processing (Chapters 1 through 7) by A. V. Oppenheim and R. W. Schafer; 
, 'Implementation of FIR/IIR Filters with the TMS320 1 0/TMS32020, " an application report 
in the book, Digital Signal Processing Applications with the TMS320 Family, offered by 
Texas Instruments; and in Understanding Communications Systems and Understanding 
Data Communications, books published by Texas Instruments. 

Modem Functional Blocks 

A modem (MOdulator-DEModulator) is a device that modulates the baseband 
information at the transmitter, and demodulates the received signal to retrieve the baseband 
information at the receiver. The Bell 212A is a full-duplex modem with the receiver and 
transmitter sharing the available bandwidth of the communications channel. This type of 
modem is said to operate in either the originate or answer mode (see Figure 1). In the 
originate mode, it initiates the communication process, transmits with a carrier frequency 
of 1200 Hz, and receives at the frequency of 2400 Hz. At the. other end of the 
communications channel is a modem that operates in the answer mode, i.e., receives at 
1200 Hz and transmits at 2400 Hz. 

224 Theory and Implementation of a Splitband Modem Using the TMS32010 



DATA 2400 Hz DATA 
TERMINAL ORIGINATE ANSWER TERMINAL 

EQUIPMENT MODEM MODEM EQUIPMENT 
(DTE) 1200 Hz (DTE) 

Figure 1. Originate/Answer Configuration 

Table 1 shows the different functional blocks that comprize the modem transmitter 
and receiver. 

Table 1. Modem Functional Blocks 

Modem Transmitter Implemented 

Guard Tone Generator No 
Scrambler Yes 
Encoder Yes 
Digital Lowpass Filters Yes 
Originate Mode Modulator Yes 
Answer Mode Modulator No 

Modem Receiver Implemented 

Notch Filter No 
Originate Mode Bandpass Filters Yes 
Answer Mode Bandpass Filters No 
Automatic Gain Control Yes 
Demodulator Yes 
Decision Block Yes 
Decoder Yes 
Descrambler Yes 
Clock Recovery Yes 
Carrier Recovery Yes 

In the following two subsections, the operation of the modem transmitter and 
receiver are described. The transmitter accepts data (bits) from the Data Terminal 
Equipment (DTE). The DTE may be a dumb terminal, a PC, or a mainframe computer. 
The modem transmitter then performs the necessary processing to place this data in the 
proper form for transmission through the Public Switched Telephone Network. This 
processing basically consists of the modulation of the baseband information (logical ones 
and zeros (bits) sent by the DTE) into the passband of the communications channel for 
transmission. The receiver collects the information from the telephone network and 
transforms it back to its original form, i.e., the bits sent by the DTE. 

Theory and Implementation of a Splitband Modem Using the TMS32010 225 



Modem Transmitter 

The Bell 212A/v.22 is a 1200-bps modem that uses the Differential Phase Shift 
Keying (DPSK) modulation technique to transmit data through the communications channel. 
In the first part of this subsection, the equationthat describes the operation of Differential 
Phase Shift Keying modulation systems is derived from an intuitive approach. A rigorous 
derivation is given in Appendix A. The rest of this subsection discusses the functional 
blocks required to correctly implement this equation. 

In Differential Phase Shift Keying, the information is encoded as the phase change 
of the transmitter carrier. With q,(n) denoting the phase that contains the information to 
be transmitted, the transmitted signal s(n) is represented mathematically by 

s(n) = A cos(wn + q,(n» (1) 

where w is the carrier frequency. The parameter A determines the amplitude of the 
transmitted signal. Use of the trigonometric identity 

cos(X + Y) == cos(X) cos(Y) - sin (X) sin(Y) 

gives 

s(n) = A {cos(wn) cos[q,(n)] sin(wn) sin[q,(n)]} (2) 

The substitution of 

I(n) A cos[q,(n)] 

Q(n) - A sin[q,(n)l 

into (2) results in (3) used to describe DPSK modulation systems. 

s(n) = I(n) cos(wn) + Q(n) sin(wn) (3) 

From (3) it can be seen that the transmission of the baseband sequence {I(n),Q(n)} 
is accomplished by using two separate modulation carriers, a sine wave and a cosine wave. 
These waves are orthogonal; Le., the information in the direction of the one wave (cosine) 
is independent of the information in the direction of the other wave (sine), and therefore 
this information is recoverable. Each value of the {I(n),Q(n)} sequence corresponds to 
one signaling element (symbol) transmitted. The number of signaling elements transmitted 
per second is commonly referred to as the baud rate, which for the Bell 212A/V.22 is 
set by the protocol to 600. 

226 Theory and Implementation of a Splitband Modem Using the TMS32010 



Some widely used terminology becomes apparent from (3). The baseband sequence 
that modulates the cosine wave is called the In-phase sequence. The baseband sequence 
that modul!ltes the sine wave is called the Quadrature-phase sequence since the sine-wave 
carrier is 90 degrees (one Quadrant) out-of-phase from the cosine-wave carrier. The part 
of the transmitter/receiver that processes the In-phase sequence is commonly referred to 
as the I-channel, while the part of the transmitter/receiver that processes the Quadrature
phase sequence is referred to as the Q-channel. 

The derivation of (3) indicates that the incoming sequence ds(n) is encoded into 
the sequence {I(n),Q(n)}, and the latter is transmitted. The mapping rule used is unique 
for each system; i.e., the mapping rule used for the Bell 212A/V.22 is different from 
the mapping rules used for other modems (V.22 bis, V.27, V.29, etc.). For example, 
for the Bell 212A/V.22, the sequence {I(n),Q(n)} contains phase information, while for 
the V.22 bis, it contains phase and amplitude information. The set of possible values of 
the sequence {I(n),Q(n)} determines the signal constellation, which is given in a two
dimensional representation) The signal constellation, commonly referred to as the 
constellation diagram, is a geometric picture that emphasizes the fact that the two channels 
are 90 degrees (Quadrature) out-of-phase. 

The Bell 212A/V.22, with a 6OO-baud rate, accomplishes the transmission of 1200 
bps by encoding two incoming bits (dibit) in a single baud. Since there are four possible 
values for every dibit, the constellation diagram for the Bell 212A/V.22 contains four 
points. Each constellation point, i.e., each value of the {I(n),Q(n)} sequence, corresponds 
to a total phase value to be transmitted. The calculation of the total phase from the incoming 
dibits will be discussed later .. Figure 2 shows the constellation diagram for the Bell 
212A/V.22. The four constellation points, notated A, B, C, and D, lie on a circle. Since 
there is no amplitude information transmitted, the radius of this circle is normalized to 
unity. The total phase information represented by each constellation point is enclosed in 
parentheses. 

The encoding of the incoming sequence ds(n) into the values of the sequence 
{I(n),Q(n)} is implemented by the encoder. The encoder is a one-input, two-output 
functional block, whose function is to map every two incoming bits (dibit) of the incoming 
sequence ds(n) to a total phase. The total phase is then represented by the values of the 
sequence {I(n),Q(n)}, and the latter is transmitted. The mapping rule used to encode the 
total phase into the values of the coder outputs {I(n),Q(n)} is shown in Table 2. Each 
{I,Q} entry in this table corresponds to one point in the constellation diagram of Figure 
2. This is indicated in the third column of Table 2. 

Theory and Implementation of a Splitband Modem Using the TMS32010 227 



c 
(180 0 ) 

/-
/ 

-- .... 

Q 

(270 0 ) 0 -- -.... ......... 

/ 

I 
/ 

I 

I 

I 
I 

\ 
\ 
\ 
\ 
\ 
\ , 
' .... , ..... 

......... -- B (90 0 ) 

.... .... .,., , 
\ 
\ 
\ 
\ 
\ 

(0 0 ) 

A 

Figure 2. Signal Constellation for the Bell 212A/V.22 

Table 2. Total-Phase-to-Coder-Output Mapping Rule 

Total Phase 
Encoder Output Point in Constellation 

{ I. Q } Diagram of Figure 2 

o degrees { 1 , 0 } A 
90 degrees {0,-1} B 

180 degress {-1,0} C 
270 degrees { 0 , 1 } 0 

The calculation of the total phase from the incoming dibits is accomplished in two 
steps. First, each incoming dibit is mapped to a unique phase change. Second, this phase 
change is added to the previous total phase to obtain the new total phase. The mapping 
rule used to uniquely map each dibit to a phase change is shown in Table 3. ' 

Table 3. Dibit-to-Phase Change Correspondence 

Dlbit Phase Change 

00 90 degrees 
01 o degrees 
10 180 degrees 
11 270 degrees 

228 Theory and Implementation of a Splitband Modem Using the TMS32010 



To illustrate the two-step procedure used to calculate the total phase, consider the 
following example. The previous total phase is 90 degrees, and the incoming dibit is 10. 
From Table 3, the phase change corresponding to a 10 dibit is 180 degrees. Therefore, 
the new total phase is 

new total phase modulo 360 (previous total phase + phase change) 

= (90 degrees) + (180 degrees) = 270 degrees . 

Using Table 2, for this value of total phase (270 degrees), the encoder output is 
{I,Q} = {O,i}. For the next incoming dibit, the above procedure is repeated with a 
270-degree previous total phase. 

At the receiver, the total phase is determined from the received {I,Q} value. This 
total phase is subtracted from the previous total phase (the one transmitted during the 
previous baud), and the difference is the phase change. Since the phase-change-to-dibit 
mapping is unique, using the calculated value of the phase change results in the transmitted 
dibit being uniquely recovered at the receiver. 

This differential approach (Le., the calculation of the phase change instead of an 
absolute phase) is used because if the dibits were to correspond to an absolute phase, then 
a common-phase reference for both the receiver and the transmitter would be required. 
This in tum implies the need of a training sequence between the transmitter and the receiver 
so that a common-phase reference can be established. This training sequence, however, 
is not provided for the Bell 212AIV.22. 

An overall block diagram for the modem transmitter is shown in Figure 3.3 The 
basic structural blocks are the scrambler, encoder, digital lowpass filter, and digital 
modulator. 

COSINE 

IInTsl 

DIGITAL QlnT 51 
LOWPASS FILTER 

SINE 

Figure 3. Modem Transmitter Block Diagram 

Theory and Implementation of a Splitband Modem Using the TMS32010 

DATA 
ACCESS 

ARRANGEMENT 
IDAAI 

229 



Scrambler 

The scrambler scrambles the bits sent by the OTE. To understand the need for a 
scrambler, consider the situation where the OTE sends a series of 01 dibits. From Tabl~ 
3, each 1 dibit corresponds to a O-degree phase change. Therefore, the total phase 
transmitted is the same. From the geometrical point of view, this results in transmitting 
the same constellation point.(same total phase). At the receiver end, however, phase changes 
are required for correct clock recovery (see the clock recovery discussion in the Modem 
Receiver subsection). Therefore, the transmission of a series of 01 dibits generates problems 
for the receiving modem, such as losing carrier lock. To avoid this, the scrambler is 
introduced to minimize the probability that such 'ill-conditioned' dibits occur. With denT) 
input to the scrambler, the output ds(nT) is given by 

ds(nT) = denT) XOR ds«n -14)T) XOR ds«n -17)T) (4) 

where XOR indicates the exclusive-OR operation and T is the data period, i.e., the time 
between two successive bits sent by the Oata Terminal Equipment. The signal flowgraph 
of the modem transmitter scrambler is shown in Figure 4 in which z - n is used to indicated 
an n-sample delay. 

ds((n - 17)T) ds((n - 14)T) 
Z-3 Z-14 

dInT) ds(nT) 

Figure 4. Signal Flowgraph of Transmitter Scrambler 

Encoder 

The function of the encoder, i.e., the mapping of the incoming sequence ds(n) to 
the values ofthe sequence {1(n),Q(n)}, was discussed earlier. However, there is one more 
related issue associated with the encoder, i.e., the change of the sampling frequency at 
the encoder output. Every two bits that the modem transmitter accepts from the OTE 
correspond to a unique phase to be transmitted. Therefore, at the encoder output, the 
sampling period changes from T (sampling period of incoming data) to Tb, i.e., from 
1/1200 s to 1/600 s. The subscript b in Tb represents baud since the encoder output 
(I and Q channels) changes at the baud rate. The above discussion implies that Tb = 2T; 
i.e., the I and Q channels are updated after every pair of bits received from the OTE. 

230 Theory and Implementation of a Splitband Modem Using the TMS32010 



Digital Modulators and Lowpass Filters 

Since the telephone network behaves as a bandpass filter with the passband starting 
around 300 Hz and ending around 3200 Hz, the baseband encoder outputs, I(nTb) and 
Q(nTb), cannot be directly transmitted through the communications medium. They first 
must be modulated up in frequency. The modulation is not attempted directly on the encoder 
outputs for two reasons. First, as discussed at the end of this subsection, the sampling 
frequency must increase from lITb to l/Ts, with lITs being at leaSt 6.4 kHz. This increase 
in the sampling frequency is accomplished by interpolation. Second, if the modulation 
is attempted directly on the encoder outputs, the instantaneous changes of the I(nTb) and 
Q(nTb) generate higher-order harmonics. Some of these harmonics fall in the frequency 
region reserved for the receiver. To eliminate the harmonics and to also increase the 
sampling frequency by interpolation, the encoder outputs must be digitally lowpass-filtered. 
The characteristics and the implementation of the digital lowpass filters are discussed in 
detail in the Transmit Filters subsection of "Functions Implemented in the TMS3201O." 

At the output of the lowpass filters, the I-channel modulates a cosine wave and the 
Q-channel a sine wave. The modulating frequency is 1200 Hz for an originate modem 
and 2400 Hz for a answer modem. Finally, the two chaimels are summed before they 
are transformed into the analog signal transmitted through the telephone network. The 
output of the digital transmitter (before the D/A converter) is given by equation (3), repeated 
below for convenience. . 

s(nTs) = I(nTs) cos(wnTs) + Q(nTs) sin(wnTs) 

The sampling period T s is T s = lIfs where fs is the sampling frequency. This frequency 
must be at least twice the highest frequency component of the transmitted information 
(Nyquist rate) to satisfy the sampling theorem. Since the telephone network cuts off at 
approximately 3.2 kHz, the sampling frequency must be at least 6.4 kHz. Practical 
considerations (integer number of samples per baud, etc.) impose the necessity of higher 
sampling rates. For the present application, the sampling frequency used was 9.6 kHz. 
Since the baud frequency is 600 Hz, 16 (9600/600) samples correspond to each baud 
interval. 

Modem Receiver 

This subsection discusses the issues associated with the functional blocks required 
to implement a Bell 212A/V.22 modem receiver. The receiver structure is more 
sophisticated than that of the transmitter. For a low bit-error-rate performance (percentage 
of error bits received), an Automatic Gain Control (AGC) subsystem, adaptive equalization 
of the overall transmitting system, and a noise-independent carrier recovery and clock 
recovery are required. Since the issues associated with the carrier recovery and the clock 
recovery are critical in a modem design and difficult to understand, a good portion of 
this subsection is devoted to their discussion. 

Theory and Implementation of a Splitband Modem Using the TMS32010 231 



The adaptive equalizer is an adaptive filter that compensates for intersymbol 
interference and Doppler spread effects introduced during transmission over the telephone 
liiles.4 The magnitude of these effects depends on the bit rate and the quality of the 

, telephone line. The effects are more ~evere at high bit rates (2400 bps and above) and 
dver a worst~case telephone line, which is commonly represented by the 3002 line 
simulator.S The Bell 212A/V.22 protocol does not require the presence of an adaptive 
equalizer; therefore, this implementation does not include one. However, for increased 
performance on a 3002 line where even at medium speeds, such as 1200 bps, intersymbol 
interference and Doppler spread effects become severe, an adaptive equalizer is 
recommended. An important point here is that the addition of an adaptive equalizer in 
the ,current TMS32010 implementation of the Bell 2l2A/v .22 modem does not require 
any hardware changes. Increased performance results from an increase in the algorithmic 
sophistication. 

An overall block diagram of the modem receiver is shown in Figure 5. The basic 
structural blocks of the modem receiver are the input bandpass filters, the automatic gain 
control (AGC), the demodulator, the decision block, the decoder, the descrambler, the 
carrier recovery, and the clock recovery . 

. Figure 5., Modem Receiver Block Diagram 

Input Bandpass Filters 

The iricoming analog signal s(t) is digitized at the sampling frequency fs to obtain 
its digital counterpart s(nTs). This signal is then bandpass-filtered for three reasons: 

232 

1. Rejection of out-of-band noise, including the rejection of the transmit signal 
spectrum due to the near-end echo path, 

2. Introduction of 90-degree relative phase shift required for the I and Q channel 
separation (see Appendix A), and 

3. Fixed equalization for line distortion. 

Theory and Implementation of a Splitband Modem Using the TMS32010 



The second reason mentioned above implies the need of receiver bandpass filters 
that achieve a 90-degree relative phase shift. It is theoretically justified in Appendix B 
that if the two bandpass filters, denoted by BPF 1 and BPF 2 in Figure 5, achieve an 
exact 90-degree relative phase shift, there are no harmonics at the output of the receiver 
demodulator. If this condition is not met, harmonics appear at twice the carrier frequency. 
These harmonics were observed in the modem implementation when a set of bandpass 
filters not meeting the above condition was used. Elimination of the harmonics due to 
an inexact 90-degree relative phase shift involves the use of lowpass filters at the output 
of the demodulator. However, the group delay and the possible phase distortion introduced 
by the lowpass filters affect the carrier recovery and decision algorithms. Compensation 
for these side-effects of the lowpass filters results in a more complicated modem receiver 
design. 

In the analog domain, where component drift is due to aging and/or temperature, 
it is virtually impossible to design bandpass filters or Hilbert transformers that achieve 
an exact 90-degree relative phase shift. Hilbert transformers, a special class of filters, 
are discussed in Appendices A and B. In the digital domain, however, the design of bandpass 
filters or Hilbert transformers that achieve an exact 90-degree relative phase shift is 
relatively easy. Digital filter design packages, such as the Digital Filter Design Package 
(DFDP) offered by the Atlanta Signal Processors Incorporated (ASPI), can be used to 
design modem receiver input fllters on the TMS32010 that meet the exact 9O-degree relative 
phase shift requirement. The characteristics and implementation of the modem receiver 
input bandpass fllters are discussed in detail in the Receive Filters subsection of "Functions 
Implemented in the TMS3201O." 

Automatic Gain Control (AGC) 

Because of the attenuation introduced by the telephone lines, the peak-to-peak 
voltage of the incoming analog signal s( t) ra~ges between 2 m V and 700 m V. However, 
sigmd levels in the receiver must be independent of the attenuation introduced by the 
communications channel. This is of paramount importance because the carrier recovery 
and clock recovery algorithms use error signals and thresholds dependent on the I and 
Q channel values. Therefore, the Automatic Gain Control subsystem is required to adjust 
the envelope of the I and Q channels so that they are of the same magnitude. The AGC 
algorithm used and its implementation is discussed in the Automatic Gain Control 
Implementation subsection of "Functions Implemented in the TMS3201O." 

Demodulator 

The demodulator translates the passband information back to the baseband. With 
Ip(nTs) and Qp(nTs) inputs to the demodulator (see Figure 5), the outputs T(nTs) and 
Q'(nTs) are.given by (see derivation in Appendix A) 

Ip(nTs) cos(w'nTs) + Qp(nTs) sin(w'nTs) 

Ip(nTs) sin(w'nTs) - Qp(nTs) cos(w'nTs) 

Theory and Implementation of a Splitband Modem Using the TMS32010 

(5) 

(6) 

233 



where w' is the local carrier frequency. Figure 6 shows the demodulator structure that 
implements (5) and (6). 

sin(w'nTs) 

.----~ X J------, 

cos(w'nts) 

+ 
+ 

+ 
'p(nTs)---+-.... --i~ X )-__ ...J 

cos(w'nTs) 

Qp(nT s) ---.... --t---I~ X 1---..., 

"(nTs) 

sin(w'nTs) + 1---..... Q'(nT s) 

+ 
'--...-f X J-----I 

Figure 6. Demodulator Structure 

Even with an ideal receiver, the I'(nTs) and Q'(nTs) channels shown in Figure 
6 are 'noisy' replicas of the baseband I and Q channels at the output of the transmitter 
digitallowpass filters. The 'noise' has been injected by the telephone network as group 
delay, frequency jitter, and Gaussian noise.4 

Decision Block and Descrambler 

The decision block in Figure 5 calculates the total phase from the values of the 
baseband I and Q channels. By subtracting it from the previous total phase (the phase 
transmitted during the previous baud interval), the phase change is computed. Each phase 
change (total of four) has a corresponding unique dibit (see Modem Transmitter subsection). 
This dibit is fed into the descrambler (see Figure 5) to recover the originally transmitted 
dibit. The output of the descrambler is described by 

d(nT) = ds(nT) XOR ds«n -14)T) XOR ds«n -17)T) (7) 

234 Theory and Implementation of a Splitband Modem Using the TMS32010 



where T is the data period (1/1200 s for the Bell 212A). The signal flowgraph of the receiver 
descrambler is shown in Figure 7. 

ds(nTl-_ .... jz-14t--.... - ......... 

ds((n - 14)T) 

Figure 7. Signal Flowgraph of Receiver Descrambler 

Carrier Recovery 

A very important task of the modem receiver is the generation of a carrier that 
has the same frequency and phase with the incoming carrier. This receiver-generated carrier, 
called the local carrier, is used by the demodulator of Figure 6 to demodulate the incoming 
signal and therefore retrieve the baseband information. The process of generating this carrier 
is called carrier recovery. The standard approach to this is to use a phase-locked 100p.6 
Figure 8 shows the basic blocks of a phase-locked loop: the phase detector (PD), loop 
filter and Voltage Controlled Oscillator (VCO). 

INCOM ING CARRIER 

PHASE 
ERROR LOOP 

FILTER f--
DETECTOR 

DEMODULA TOR LOCAL CARRIER VOLTAGE 
CONTROLLED 
OSCILLATOR 

Figure 8. Carrier Recovery Phase-Locked Loop 

For a microprocessor implementation, the blocks in Figure 6 are implemented 
digitally. The digital implementation is discussed in the Carrier Recovery Implementation 
subsection of "Functions Implemented in the TMS3201O." Only the issues associated 
with the carrier recovery phase-locked loop are considered here. 

Theory and Implementation of a Splitband Modem Using the TMS32010 235 



The phase detector (PD) generates an error signal that is used to synchronize 
the local carrier to the incoming carrier. This error signal must contain the information 
about the phase and frequency difference between the local and the incoming carriers. 
To implement the correct carrier recovery algorithm, it is critical to know the exact 
dependence of the phase detector output on the frequency and phase difference between 
the two carriers (discussed later in this subsection). The phase detector output is of the 
form7,8 

(8) 

where I and Q are the I and Q channel decisions and Tb is the baud period (1/600 s). 
If the decisions are correct, then 

Q(nTb) = Q(nTb) 

I(nTb) = I(nTb) 

(9) 
(10) 

i.e., the outputs of the transmitter coder (see Figure 3) have been successfully recovered. 
The probability that these decisions are correct is maximum in the middle of each baud 
because the incoming signal energy is maximum here. Based on the error signal E(nTb), 
the local carrier is corrected once every baud, i.e., at a 6OO-Hz frequency. Geometrically, 
the error E(nTb) is a measure of the geometrical distance between the point used to make 
the decision and the optimum one. The optimum decision points are the constellation points. 
It is shown later that when the local carrier has the same phase and frequency with the 
incoming carrier, the error E(nTb) = O. In this case, the point used to make the decision 
coincides with a constellation point. The optimality of the receiver constellation points 
is discussed next. 

Optimality in the receiver, in terms of low probability of error, is determined 
only by the geometrical distance between the constellation points.9 The four constellation 
points of Figure 2, notated as A, B, C, and D, are optimum. The following intuitive 
argument helps to illustrate this. The four points lie on a circle of normalized unity radius. 
In the configuration of Figure 2, point A is equidistant from points Band D. This means 
that the probability of error p when deciding between points A or B, i.e., deciding point 
A when point B is correct and vice versa, is equal to the probability of error when deciding 
between points A or D. If point A moves counterclockwise, it moves away from point 
B but closer to point D. Since at the new location, point A is farther from point B, the 
probability of error PI when deciding between points A or B decreases, i.e., PI < p. 
However, at this new location, point A is closer to point D, and therefore, the probability 
of error P2 when deciding between points A or D increases, i.e., P2 > p. Using the 
analytical tools discussed in [9], it can be shown that PI + P2 > 2p. Since the overall 
probability of error increases (PI + P2 > 2p) if point A moves away from the location 
indicated in Figure 2, the resulting structure is no longer optimum. This is not true, however, 
if all four constellation points are equally rotated by an arbitrary amount in the clockwise 
or counterclockwise direction. Therefore, an infinite set of constellation points that preserve 
optimality in the receiver exist. The final choice depends on implementation considerations. 

236 Theory and Implementation of a Splitband Modem Using the TMS32010 



For the modem implementation described in this report, two considerations lead to a 
45-degree rotation (see Figure 9) of the transmitter constellation diagram of Figure 2. 

1. For the constellation points of Figure 9, the decision boundaries are the I and 
Q axes. That is, the decision region for point A is the first quadrant, the decision 
region for point D the second quadrant, and so on. Therefore, a decision 
can be made based only on the sign of the demodulated I ( I'(nT s) ) and 
Q ( Q'(nTs) ) channels. 

2. For this set of constellation points, the products Q(nTb) I'(nTb) and 
I(nTb) Q'(nTb), required to calculate the phase error E(nTb) (see equation (8», 
obtain on the average maximum values. Therefore, an optimum utilization of 
the dynamic range is achieved, and the error function calculated by (8) is the 
least-noise sensitive. 

(0,1) 

Q 

'J I '45° , 
, I 

--
, I 

, I 

Yo 
.,,/ 

(0, -1) 

Figure 9. Modem Receiver Decision Points 

The error E(nTb), the output of the phase detector, as given by (8) shows no 
apparent dependence on the phase or frequency difference between the local and incoming 
carriers. The discussion that follows shows the dependence of E(nTb) on the phase 
difference between the two carriers. This discussion is then extended to include the case 
of frequency as well as phase difference. 

The inputs Ip(nT s) and Qp(nT s) of the receiver demodulator (see Figure 6) are 
given by (see Appendix A) 

Ip(nTs) = I(nTs) cos(wnT s + Or) + Q(nTs) sin(wnTs + Or) 

Qp(nTs) = I(nTs) sin(wnTs+Or) - Q(nTs) cos(wnTs+Or) 

Theory and Implementation of a Splitband Modem Using the TMS32010 

(11) 

(12) 

237 



where wand Or are the incoming (received) carrier frequency and phase, respectively. 
The outputs I' (nT s) and Q' (nT s) of the demodulator are described by equations (5) and 
(6), respectively. Introducing an arbitrary phase 0\ in the local carrier, (5) and (6) can 
be rewritten as 

I'(nTs) = Ip(nTs) cos(w'nTs+OJ} + Qp(nTs) sin(w'nTs+O\) 

Q'(nTs) = Ip(nTs) sin(w'nTs + OJ} - Qp(nTs) cos(w'nTs +0\) 

where w' is the local carrier frequency. 

(13) 

. (14) 

Assuming no frequency difference (w' w), substitution of (11) and (12) into 
(13) and (14) gives 

I' (nTb) = I(nTb) cos(Oe) + Q(nTb) sin(Oe) (15) 

Q' (nTb) = Q(nTb) cos(Oe) - I(nTb) sin(Oe) (16) 

where Oe = Or - 0\ is the phase difference between the two carriers. Note that if 
Or = OJ, then Oe = O. From (15) and (16), 

I'(nTb) = I(nTb) 

Q' (nTb) = Q(nTb) 

i.e., the output of the receiver demodulator at the middle of the baud is the same as the 
output of the transmitter coder (baseband information). 

Assuming the decisions are correct, equations (9) and (10) hold. Substitution of 
(9), (10), (15), and (16) into the error signal defined by (8) gives 

E(nTb) = {I2(nTb) + Q2(nTb)} sin(Oe) (17) 

The quantity 12(nTb) + Q2(nTb) is a positive quantity (sum of squares). With 

12(nTb) + Q2(nTb) = K, 

(17) can be rewritten as 

where K > 0 (18) 

Equation (18) is the same as (8) under the assumption of correct decisions «9) 
and (10». However, the phase information is more apparent in (18) than in (8), and leads 
to the following algorithm for the carrier recovery: If the phase of the received carrier 
is greater than the phase of the local carrier (Or > OJ}, the phase error Oe is positive 
(Oe > 0). From (1-8), this implies that the output of the phase detector is also positive 
(E(nTb) > 0). Therefore, if E(nTb) > 0, the phase of the local carrier must be advanced, 
resulting in a smaller phase error. On the other hand, if the phase of the received carrier 
is less than the phase of the local carrier (Or < OJ), the phase error is negative 
(Oe < 0). From (18), this implies that the output of the phase detector is also negative 
(E(nTb) < 0). Therefore, if E(nTb) < 0, the phase of the local carrier must be delayed. 

238 Theory and Implementation of a Splitband Modem Using the TMS32010 



In the case of frequency as well as phase difference, a similar development leads to 

where K > 0 (19) 

where We = W - w' is the frequency difference between the incoming and local carriers. 
Since this frequency is very small (on the order of a few Hz) and the phase error correction 
is applied every baud (600 Hz), the term We nTb can be considered to be constant and 
the term We nTb + Be in (19) an overall phase error. Therefore, using the algorithm discussed 
earlier, the frequency difference is compensated for as phase difference. Also note that 
in (19), E(nTb) = 0 when We = 0 and Be = 0; i.e., the local carrier is completely 
synchronized with the incoming carrier. Therefore, the error signal E(nTb) generated by 
the phase detector contains the information about the frequency and phase difference 
between the incoming and local carriers. 

The error signal E(nTb) generated by the phase detector is processed by the loop 
filter as shown in Figure 8. Only the DC and low-frequency components of this signal 
must drive the Yoltage Controlled Oscillator (YCO).6 Therefore, the loop filter is basically 
a lowpass filter, whose most important characteristic is its bandwidth. 

A large bandwidth of the loop filter implies that high-frequency components pass 
through the filter. Since the high-frequency information is applied to the YCO, the local 
carrier quickly locks-on to the incoming carrier. However, noise also passes through the 
filter, and the Bit Error Rate (BER) of the receiver increases. A narrow bandwidth decreases 
the BER but the lock-on time increases. An intelligent solution consists of starting with 
a wide bandwidth and, after the receiver is locked-on to the incoming carrier, narrow 
it down. This approach is used in this implementation and is described further in the Carrier 
Recovery Implementation subsection of "Functions Implemented in the TMS3201O." 

Clock Recovery 

The purpose of the Clock Recovery block in Figure 5 is to detect the middle of 
each baud. O~ce this is known, the decision block can make decisions with minimum 
probability of error because the energy of the incoming signal is maximum at the middle 
of the baud. The following paragraphs discuss a robust clock recovery approach. 

As the demodulation point moves from one constellation point to another, at least 
one of the two channels is expected to cross zero (see Figure 9). This zero crossing indicates 
the beginning of a new baud interval. Therefore, one approach is to look at the zero 
crossings of the I'(nTs) and/or Q'(nTs) channels. However, there are two problems with 
that approach: 

1. From (15) and (16), it can be seen that the presence of a phase difference Be 

between the two carriers can cause severe distortion of the zero crossings. 
To illustate this point, consider the first of the two equations, repeated here 
for convenience. 

Theory and Implementation of a Splitband Modem Using the TMS32010 239 



The correct zero crossing information lies in I(nTb). Multiplication by cos(Oe) 
scales the I(nTb) curve, but does not change the location of the zero crossings. 
This is accomplished by the second additive term Q(nTb) sin(Oe), which moves 
the scaled curve up or down depending on theterm's sign. 

2. The quantization noise in a digital implementation may result in undesirable 
nonlinearities and mislocation of the zero crossings. This is because finding 
the z~ro crossings involves monitoring the change of the sign of a particular 
variable (I channel and/or Q channel). A zero crossing occurs when this variable 
changes from a small positive value to a small negative value, and vice versa. 
Since the quantization noise can seriously affect small quantities (numbers), 
inislocation of the zero crossings may result. 

The first of the above problems indicates that a clock recovery approach is required 
that is independent of the phase or frequency difference between the two carriers. This 
becomes clearer by considering the operation of the modem. The first task that the receiver 
must perform is to adjust the baud clock. During this adjustment, the two carriers are 
most likely to have a phase and/or frequency difference. Then, once the baud clock is 
adjusted, the carrier recovery algorithm places the local carrier in phase and in frequency 
with the incoming carrier. 

Consider the energy of the incoming signal 

Energy = I'2(nT s) + Q'2(nT s) 

Substitution of (15) and (16) into (20), and the use of the identity 

sin2(Oe) + cos2(Oe) = 1 

gives 

Energy = I2(nT s) + Q2(nT s) 

(20) 

(21) 

This is the energy sent out by the transmitting modem. Equation (21) shows that 
the energy is independent of any phase and/or frequency difference between the two carriers. 
Geometrically, the energy is the square of the length of the vector that has its beginning 
at the intersection of the I and Q axis of Figure 9 and its tip at the demodulation point 
plotted on the constellation diagram. The path traced by the tip of the energy vector for 
a series of four consecutive baud intervals, each corresponding to a 9O-degree phase change, 
is shown in Figure 10. 

240 Theory and Implementation of a Splitband Modem Using the TMS32010 



a 

Figure 10. Trace of Demodulation Point Plotted on the Constellation Diagram 

The plot shown in Figure 10 was obtained using a simulator. It can be seen that 
the signal energy (12 + Q2) achieves its maximum value at the middle of each baud. Before 
and after the middle of the baud, the length of this vector is less than maximum. If there 
is a transition from one quadrant to another, this vector goes through a minimum, thus 
indicating the beginning of a new baud interval. Only if the same constellation point is 
transmitted because of a zero-degree phase change does such a transition not occur. It 
is easy to explain now why a series of zero-degree phase changes can create problems 
for the receiver. Zero-degree phase changes imply that the transmitter keeps sending the 
same constellation point. Therefore, the energy vector at the receiver does not go through 
a minimum for a series of baud intervals; i.e., during these intervals the receiver cannot 
adjust the baud clock and therefore may lose lock. This situation is avoided with the inclusion 
of the scrambler in the transmitter structure. 

The frequency of the energy minima is discussed next. From Figure 9, it can 
be seen that there are four possible transitions for each constellation point. For example, 
consider constellation point A. The four possible transitions are: from point A to B, from 
A to C, from A to D, and from point A to A (i.e., receiving a zero-degree phase change). 
Three out of the four possible transitions result in a quadrant change (transitions from 
point A to points B, C, or D). For these transitions, the energy vector goes ,through a 
minimum. The fourth transition (from point A to itself), does not result in a quadrant change, 
but due to the presence of the scrambler, the probability of its occurrence is less than 
0.25 (one out of four). Therefore, the average frequency of these minima is greater than 
450 Hz for a 6OO-Hz baud frequency. 

For the baud clock adjustment, the advantages of the energy-based approach over 
the zero crossings-based approach are: 

1. The energy-based approach is independent of the phase and frequency 
difference between the two carriers, and therefore it gives the correct 
information about the incoming baud boundaries. 

Theory and Implementation of a Splitband Modem Using the TMS32010 241 



2. The average frequency of the energy minima is greater than 450 Hz while 
the average frequency of the zero crossings of the I or Q channels is between 
300 and 400 Hz. The explanation follows. In the four possible transitions for 
each constellation point, two of them result in a zero crossing for a particular 
channel. Considering, for example, the transitions of constellation point A of 
Figure 9, the transitions from point A to points C or D result in a zero crossing 
for channel I. The transitions from point A to points B or C result in a zero 
crossing for channel Q. This implies that for a baud frequency of 600 Hz, 
the frequency of the zero crossings of a particular channel (lor Q) is on the 
average 300 Hz (two out of four). Because of the scrambler, the probability 
of retransmitting the same constellation point (zero-degree phase change) is 
minimized. This implies that on the average the frequency of the zero crossings 
of a particular channel increases. In the limit (no zero-degree phase changes), 
the average frequency of the zero crossings approaches 400 Hz (two out of 
three). Therefore, the average frequency of the zero crossings of a particular 
channel is between 300 and 400 Hz. To obtain more information from the 
zero crossings (greater average zero crossings frequency), the zero crossings 
of both the I and Q channels must be considered. However, this approach 
involves monitoring two quantities (I channel and Q channel) compared to 
monitoring only one (energy) if the energy-based approach is used. 

3. Using the energy-based clock recovery technique described in the Baud Clock 
Alignment Implementation subsection of "Functions Implemented in the 
TMS3201O," the quantization noise effects are less severe compared to those 
of a zero crossing-based approach. 

Modem Hardware Description 

A brief description of the hardware used for the implementation of the Bell 212A/V.22 
modem is covered in this section. Most of the signal processing required for the 
implementation of the modem functional blocks described in the previous section is 
performed digitally by the TMS32010 digital signal processor (see "Functions Implemented 
in the TMS3201O"). The DTE interface and the protocol are handled by the 
TMS774210, 11, an 8-bit EPROM microcomputer with an on-chip UART. Therefore, the 
hardware required for the system is minimal and consists primarily of the TMS32010 and 
TMS7742 processors, their memory, the AID and DI A converters, and the associated 
antialiasing and smoothing filters. 

To aid in the development and prototyping of this project, off-the~shelf 

development tools were used to build the modem hardware. The TMS32010 and the 
TMS7742 were emulated using Extended Development Systems (XDS) (part # 
TMDS3262211 for the TMS32010, and part # TMDS7062230 for the TMS7742). For 
the AID and D/A conversions, the TMS32010 Analog Interface Board (AlB) ( part # 
RTC/EVM32OC/06) was used. The Cermetek CH181O, Data Access Arrangement (DAA) 
approved by the Federal Communications Commission (FCC), is used for the telephone
line interface. A block diagram of the modem system hardware is shown in Figure 11. 

242 Theory and Implementation of a Splitband Modem Using the TMS32010 



XDS 

i 
I 
I 
I , 

TMS7742 

Analog Interface 

XDS 

I 
I ANALOG INTERFACE BOARD (AlB) .-----.,.------------------------1 

I I 
I I I SMOOTHING II 

FILTER 
I I 
I I 
I 
I 

ANTlALlASING 
FILTER 

I 
) 
I 
I 
I 
I 

- ----------______ 1 

Figure 11. Modem Hardware Block Diagram 

TELEPHONE 
LINE 

Compensative gain circuits have been placed between the DAA and the 
analog-to-digital converter. The gain circuit on the receiver side (see Figure 5) was added 
to match the peak amplitude of the signal from the phone line (- 9 dbm or 0.77 V 
peak-to-peak) with the maximum range of the analog-to-digital converter (10 V 
peak-to-peak). This allows as much as possible of the AID's dynamic range to be used 
without causing saturation. The gain circuit on the transmitter side,(see Figure 3) is designed 
to attenuate the output of the digital-to-analog converter (10 V peak-to-peak) to a level 
consistent with the phone system signal strength limits (-12 dbm or 0.55 V peak-to-peak). 

Filters 

The analog antialiasing and smoothing filters used by the AID, and DI A 
converters are sixth-order lowpass filters existing on the AlB, implemented using cascaded 
second-order opamp filter sections. These filters are designed with cutoff frequencies around 
4.7 kHz in order to satisfy the Nyquist criterion requirements of the system. 

Data Converters 

Analog Devices' AD565A and ADC80, monolithic AID and DIA converters on 
the AlB, are configured for a ± 10 V full-scale range and are interfaced to 110 port 2 
of the TMS3201O. The sampling rate for the conversions is determined by a set ofpresettable 
counters configured as frequency dividers. These counters are driven by the TMS3201O's 
CLKOUT signal and produce a periodic sampling clock that initiates AID and DI A 
conversions. The sampling frequency used is 9.6 kHz. 

TMS32010/TMS7742 Interface 

The TMS32010 interfaces to the TMS7742 in parallel as shown in Figure 12. 

Theory and Implementation of a Splitband Modem Using the TMS32010 243 



RNBIT O~ 
SN74lS32. a - r--p -

RACK '1' t- Y6 A' 
TMS32010 

TMS7742 
o~ 

Bt--

06 l-

F SN74lS32 CI- - DEN 
a -B6 ~ 

sN'7'4LSi3B 
'-- AO 

P 
o~ A1 

WAC 1 B7 - A2 
ClK ),OC 

WE 

DO a 0 DO 

01 01 

02 02 

03 03 

04 04 

05 a 0 05 

SN74lS374 

roc BID 
ClK ClKOUT 

V 
CO 0 a r---
C1 20 MHz 

C2 ~D~ 
C3 

C4 T T C5 0 a 

SN74lS374 
B5 

XTL2 

Figure 12. T:MS7742 and TMS32010 Interface 

The TMS7742 is mapped as an 110 device at Port 6 of the TMS3201O. When 
the TMS32010 writes to Port 6, the WNBIT line goes active (D7). The TMS7742 polls this 
line and when active, reads data and status bits from the buffer into Port D. It also resets 
the WNBIT by sending a low pulse to the write acknowledge (WACK) line. Similarly, 
when the TMS32010 reads from Port 6, the RNBIT line goes active. The TMS7742 
immediately writes the new data to Port C and resets the read acknowledge (RACK) line. 

Six bits are used to interface the TMS32010 to the TMS7742. Two of these are 
used to pass the dibit data, two are used to send. commands or status, and the other two 
are reserved to pass additional data if implementing the V.22 bis. The V.22 bis is a 2400-bps 
splitband modem that uses quad (four) bits instead of dibits. Table 4 lists the commands. 
The symbol X is used to indicate a don't care condition. 

244 Theory and Implementation of a Splitband Modem Using the TMS32010 



Table 4. Modem Controller Commands 

Bit5 Bit4 Bit3 Bit2 Bit1 BitO Command Description 

O· 0 X X X X Idle 

0 1 X X X X Run local digital loopback 

1 0 X X 01 00 Run modem 

1 1 03 02 01 00 Configure TMS32010 according to 
03-00 

In the idle mode, the TMS32010 continues to monitor the commands from the 
TMS7742. In the local digitalloopback mode, the TMS32010 reads the scrambled dibits 
from the TMS7742 and sends them back to the TMS7742. In the run mode, the TMS32010 
reads the scrambled dibits from the TMS7742 and does the required encoding and 
modulation for the transmission through the telephone network. It also decodes the 
demodulated data and sends it to the TMS7742 for descrambling. Bits DO and D1 are 
used to carry the dibit information. Bits D2 and D3 can be used when implementing the 
V.22 bis. In the configuration mode, the TMS32010 configures the transmit and receive 
filters for the originate or answer mode, depending on the data on D3-DO (see TMS7742 
source code provided in Appendix E). 

Functions Implemented in the TMS32010 

The functions discussed in this section include all of the functional blocks described 
in the Modem Transmitter and Modem Receiver subsections with the exception of the 
transmitter scrambler and the receiver descrambler, which are implemented in the 
TMS7742. Table 5 shows the modem functions that are implemented on each device. 

Theory and Implementation of a Splitband Modem Using the TMS32010 245 



Table 5. Modem Functions Implemented in the TMS32010 and TMS7742 

Modem Transmitter Implemented 

Guard Tone Generator No 

Scrambler TMS7742 

Encoder TMS32010 

Digital Lowpass Filters TMS32010 

Originate Mode Modulator TMS32010 

Answer Mode Modulator No 

DTE Interface TMS7742 

Modem Receiver Implemented 

Notch Filter No 

Originate Mode Bandpass Filters TMS32010 

Answer Mode Bandpass Filters No 

Automatic Gain Control TMS32010 

Demodulator TMS32010 

Decision Block TMS32010 

Decoder TMS32010 

Descrambler TMS7742 

Clock Recovery TMS32010 

Carrier Recovery TMS32010 

DTE Interface TMS7742 

Each variable used in this section is referred to ~y its name in the TMS32010 
program enclosed in parentheses (see Appendix D). 

Transmit Filters 

The transmit lowpass filters are implemented using 48-tap FIR structures, whose 
frequency responses exhibit a raised-cosine shape. A raised-cosine response is a filter 
response whose pass and stopbands are flat and whose rolloff characteristic is defined as 
a constant times a (l + cos) term. The (1 + cos) term results in the rolloff shape being 
a portion of a cosine wave raised above the X-axis by one, hence the term 'raised-cosine 
response'. The raised-cosine response is used since it has been shown that it minimizes 
the intersymbol. interference. 12 

The response shape of the transmit filters is actually defined by the square root 
of a raised-cosine response since the raised-cosine characteristic is split equally between 
the transmitter and receiver; i.e., both the transmitter and receiver filters are designed 
to exhibit the square root of the raised-cosine response. This results in the combined, 
end-to-end response of the path from transmitter to receiver being the full raised-cosine 
response. 

246 Theory and Implementation of a Splitband Modem Using the TMS32010 



The frequency-response characteristic of the transmit lowpass filters, as shown 
in Figure 13, rolls off smoothly to approximately -40 dB at 600 Hz. 

10 

8 

w 6 
c 
~ ..... 
2: 
CJ 

~ 4 

2 

o 
o 200 400 600 800 1000 

FREQUENCY 

Figure 13. Frequency Response Characteristics of Transmit Lowpass Filters 

The FIR structure is well suited to implementation of these filters, because FIR 
filters are stable, simple in structure, and can be designed to exhibit linear phase. These 
filters are easily implemented on the TMS32010 since the processor provides special 
instructions and architectural features that facilitate this type of algorithm. A signal 
flowgraph of the FIR filter structure is shown in Figure 14. 

z-1 x(n-1) z-1 x(n-2) z-1 x(n-N+ 1) 

a 

1°' }II }21 ~ 
x(n) 

h(N-2) h(N-1) 

.,.. -yIn) 

Figure 14. Signal Flowgraph of the FIR Filter Structure 

As the flowgraph illustrates, this type of filter uses no feedback, which accounts 
for its stable behavior. FIR filters implement a transfer function of the form 

H(z) = BO + Bl z-l + B2 z-2 + B3 z-3 + ... + Bn z-n (22) 

Theory and Implementation of a Splitband Modem Using the TMS320lO 247 



The parameters in (22) that determine the characteristics of the specific filter 
implemented are the B coefficients BO-Bn. In the. case of the motlem filters, the primary 
task in designing the filter is the determination of these coefficients so that the filter has 
the desired response shape, in this case, the raised-cosine response shape. For a detailed 
description of FIR and IIR filter design for the TMS3201O, refer to "Implementation of 
FIRIIIR Filters with the TMS3201O/TMS32020," an application report 13 , and to Digital 
Filter Design, a book by T.W. Parks and C.S. Burrus.14 

The raised-cosine response shape is defined by 

If I < fl 
2 Bt 

H(f) 
4 Bt 

{I + cos [11" ( If I - fl) ]} 
2 Bt - 2 fl 

fl < If I < 2 Bt - fl (23) 

0 If I > 2 Bt - fl 

where fl =(1 - p) Bt· 

For this design, Bt = 300 Hz and p = 0.75. Note that (23) describes the ideal zero
phase version of the raised-cosine response. 

The actual frequency response of the transmit filters, shown in Figure 13, is the 
square root of the raised-cosine response described by (16). 

To calculate the B coefficients required to implement this response in an FIR 
filter, the square root of (23) is first calculated. The Inverse Fourier Transform of the 
response is then used to generate the time-domain representation of the filter transfer 
function (the impulse response of the filter). In an FIR filter, the impulse response of the 
filter corresponds directly to the filter coefficients. Therefore, obtaining the coefficients 
requires merely shifting the impulse response in time to obtain a linear-phase version of 
the filter, and then sampling the impulse response at the system sampling rate. 

After the filter coefficients are obtained, implementation of the filter digitally 
in the TMS32010 is accomplished by directly translating the signal flowgraph of Figure 
14 into assembly language code. 

As shown in Figure 14, the output of the filter is defined to be the sum of each 
of the delayed versions of the input, mJ.lltiplied by the appropriate coefficient. In the 
TMS3201O, the delayed versions of the previous input samples are stored in a table with 
the oldest sample stored at the highest address and the newest sample stored at the lowest 
address. 

In the TMS32010 implementation, the transmit filters are arranged in a somewhat 
different manner from that which is commonly used for digital filters. In many digital 
filters, the input sample rate is the same as the output sample rate. In the transmit filters, 
however, the input sample rate is reduced because the rate of change of the information 

248 Theory and Implementation ofa Splitband Modem Using the TMS32010 



entering the filter is known to be slower than the filter sample rate. Filters of this type 
are known as interpolating filters, and the ratio of the output sample rate to the input sample 
rate is referred to as the interpolation factor. In the modem transmit filters, the input sample 
rate is 600 Hz (the baud rate), and the output sample rate is 9.6 kHz, resulting in an 
interpolation factor of 16. As a result, the input of the filter is updated only after every 
16 output samples, and is zero otherwise. Thus, the effective input a(nTs) to the transmit 
filters can be described for the I channel as 

for n 0, ± L, ± 2L, etc. 

(24) 

otherwise 

and for the Q channel as 

for n 0, ± L, ± 2L, etc. 

(25) 

otherwise 

This technique reduces the number of multiplications required to compute the 
filter output from N to NIL where N is the length of the filter and L is the interpolation 
factor. 

In both the transmit and receive filters, sampling of the nonzero portion of the 
filter impulse response at the system sample rate results in only 37 taps required for proper 
implementation of the filters. However, since the transmit filters are interpolating filters 
with an interpolation factor of 16, 16 taps are processed for each sample of the input. 
As a result, the number of taps in the filter must be an integer multiple of 16. In this 
case, 48 actual taps are used. 

With a 48-tap filter and an interpolation factor of 16, only three multiplies are 
required to calculate the output of the filter. Because of this, these filters are coded on 
the TMS32010 somewhat differently than FIR filters that are not interpolated. In most 
filters, the data is shifted each time a sample is processed. With interpolation, the data 
is shifted only when a new input is processed, i.e., every 16 samples. During the remaining 
samples (when a new input is not being received), instead of shifting the data, a pointer 
(XPTR) is shifted through the table of coefficients so that effectively the coefficients are 
shifted. Thus, the complete filter output can be calculated with the following short section 
of code: 

Theory and Implementation of a Splitband Modem Using the TMS32010 249 



ZAC * .CLEAR ACCUMULATOR 
LT XIBUF2 * LOAD OLDEST SAMPLE 
MPY CX2 * MPY BY COEFF 2 
LTD XIBUFl * LOAD NEXT SAMPLE 
MPY CXl * MPY BY COEFF 1 
LTD XIBUFO * LOAD NEWEST SAMP;LE 
MPY CXO * MPY BY COEFF 0 \ 

APAC * MAKE FINAL SUM 
SACH XIOUT,1 * STORE OUTPUT 

This code calculates the output of the I channel filter when a new input sample 
is being processed. The code that implements the filter output calculation when a new 
sample is not being input is similar to this code except that L T A instructions are used 
in place of LTD instructions. . 

During samples in which new inputs are being received, the inputs and the 
coefficients are shifted. This results in savings in data RAM space since only three data 
values must be stored. 

Receive Filters 

The receiver bandpass filters are implemented using 37-tap FIR structures, which 
also exhibit a raised-cosine frequency response characteristic. These filters are virtually 
identical in structure to the transmit lowpass filters, with the exceptions that the cutoff 
frequencies are different and the rec~ive bandpass filters do not interpolate since the input 
and ouput sample rates are the same. Like the transmit lowpass filters, the actual response 
implemented in these filters is the square root of the raised-cosine response since this 
response is split equally between the transmit and receive sections. The receive filters 
are centered around the carrier frequency fc (1200 Hz for originate and 2400 Hz for 
answer), and roll off smoothly to approximately - 40 dB at fc ± 600 Hz. The frequency 
response characteristic of these filters is shown in Figure 15. 

250 Theory and Implementation of a Splitband Modem Using the TMS32010 



12 

2 

-8 

-18 
1/1 .... 
w 

/ \ 
/ \ 
I , 

co 
(j 
w -28 0 

~ 
w 
0 
::I -38 I-
2 
CI 
c( 
:!: 

-48 

A-

I , If' 

1\/ AI (\ " ~ 1'1 1\ I I I, "A ~"I J 
I 

-58 

-68 
o 0.5 1.5 2 2.5 3 3.5 4 4.5 5 

FREQUENCY IN KILOHERTZ 

Figure 15. Frequency Response of Receiver Bandpass Filters 

Except for the difference in filter order (the number of taps in the filter), the 
signal flowgraph and transfer function equation for the receive filters are identical to those 
of the transmit lowpass filters shown in Figure 13 and described by equation (22), 
respectively. 

Besides being similar in structure to the transmit lowpass filters, the receive filters 
are actually designed directly from the transmit filters by simply shifting the filters' center 
frequencies. This is possible because the bandwidth of the transmit filters is the same as 
that required for the receive filters, and the transmit filters exhibit the raised-cosine response 
also required for the receive filters. 

In order to generate the proper coefficients to implement the receive filters, the 
coefficients of the transmit filter are mUltiplied by a sine wave to obtain the I channel 
coefficients and by a cosine wave to obtain the Q channel coefficients. Specifically, if 
h(nT s) are the transmit filter coefficients, the receive filter coefficients hI (nT s)and h2(nT s) 
are obtained by 

Theory and Implementation of a Splitband Modem Using the TMS32010 251 



2 h(nT s) cos(nwT s) (I channel) 
(26) 

2 h(nT s) sin(nwT s) (Q channel) 

where T s is the sampling period. Note that the factor of two must be included for the 
original frequency spectrum to be translated to the new frequency with the same magnitude. 

The result of multiplying the transmit filter coefficients by sine and cosine is to 
effectively modulate their frequency response characteristics by a carrier at the frequency 
of the sine and cosine waves. This translates the frequency spectrum of the resultant filter 
up in frequency to a point centered around the frequency ofthe modulating signal, which 
is precisely what is required for the receive bandpass filters. Accordingly, bandpass filters 
for the originate mode are multiplied by sine and cosine functions at 1200 Hz and those 
for the answer mode are multiplied by sine and cosine functions at 2400 Hz, thus yielding 
the exact filters required. 

In addition to shifting the frequency spectrum of the filters to the appropriate 
center frequencies, the fact that the I channel filter is multiplied by a sine function and 
the Q by a cosine function results in another important characteristic of these filters; the 
outputs of these filters are exactly 90 degrees out of phase with respect to each other. 
This provides a convenient method for implementing the phase shift required for proper 
demodulation of the I and Q channels. Also, since the filters are symmetric FIR structures, 
their phase response is linear, and the difference in phase shift between the two filters 
is precisely 90 degrees. This is beneficial because deviations from a precise 90-degree 
phase shift can cause serious distortion in other parts of the modem receiver. 

In a direct implementation of this type of filter on the TMS3201O, the filter output 
is calculated by repeatedly using the following two-instruction sequence: 

LTD 
MPY 

* LOAD T, ACCUMULATE, DATA SHIFT 
* MULTIPLY BY NEW COEFFICIENT 

This sequence performs the following four operations: 

1. Loads the T register with the input value, 

2. MUltiplies the input value by the appropriate coefficient, 

3. Adds the product to the accumulator, and 

4. Shifts the input data one place in the table, making room for the next input 
sample. 

For FIR filters, a sequence of pairs of the LTD and MPY instructions is all that 
is required to implement the complete filter. 

In the TMS3201O, the receive filters are implemented in a somewhat more 
conventional manner than the transmit filters. The receive filters do not interpolate;. 
however, due to careful choice of sample points on the impulse response, every second 

252 Theory and Implementation of a Splitband Modem Using the TMS32010 



coefficient in each filter is zero, reducing by a factor of two the number of LTD/MPY 
instruction pairs that must be executed to calculate the filter output. 

Another feature of the FIR structure, which simplifies the implementation of these 
filters, is that since there is no feedback, the delay path (x(n -1), x(n - 2), ... , in Figure 
14) for the two filters contains the same values for input samples in data RAM. Because 
of this, the same delay path can be used for both the I and the Q channel filters. This 
reduces by a factor of two the RAM required for data storage. As a result, the code that 
implements the I channel filter (processed first) uses L T A instructions instead of L TDs, 
performing no shift of the input data table within memory. A one-position shift of the 
data table is then performed when the Q channel filter output is calculated. 

Even though every other coefficient is zero, each sample in the delay table must 
still be shifted by one memory location during each pass through the filter. Since the Q 
channel filter performs this shifting but only operates on every second data point, an 
additional DMOV instruction is coded between each LTD/MPY instruction pair in order 
to shift the even-numbered data table entries. 

The assembly code that implements the Q channel bandpass filter is shown below. 

* 
* FIRST (Nth) TAP SETS UP FOR REST OF FILTER 

* 
ZAC * CLEAR ACCUMULATOR 
LT RBUF35 * LOAD T REGISTER 
DMOV RBUF35 * SHIFT OLD VALUE 
MPYK QCF35 * MPY BY COEFFICIENT 
DMOV RBUF34 * PERFORM EXTRA SHIFT 

* 
* SECOND TAP 

* 
LTD RBUF33 * LOAD T, ACCUMULATE, DATA SHIFT 
MPYK QCF33 * MULTIPLY BY COEFFICIENT 
DMOV RBUF32 * PERFORM EXTRA SHIFT 

* 
* LAST TAP 

* 

* 

LTD 
MPYK 
DMOV 

APAC 
SACH 

RBUFI 
QCFl 
RBUFO 

QSUM,4 

* LOAD T, ACCUMULATE, DATA SHIFT 
* MULTIPLY BY COEFFICIENT 
* PERFORM EXTRA SHIFT 

* ADD LAST SUM 
* STORE FILTER OUTPUT 

Theory and Implementation of a Splitband Modem Using the TMS320lO 253 



Automatic Gain Control Implementation 

To better control the signal strength of the receiver, a software Automatic Gain 
Control (AGe) algorithm was added. The need of an AGC stems from the use of thresholds 
in both the carrier recovery and clock recovery algorithms. For increased performance, 
these thresholds (discussed in the following two subsectiqns) must remain valid (unchanged) 
for different levels of the incoming signal. This is achieved with the use of the software 
AGC. 

The arrangement of the AGC with respect to the other functional blocks of the 
modem receiver was shown in Figure 5. The AGC monitors the I channel of the receiver 
and calculates a gail]. correction factor. Both the I and Q channels are then multiplied by 
this gain correction factor so that the signal maxima remain within a certain range. This 
range is narrow compared to the range of the incoming signal maxima. The peak-to-peak 
voltage of the incoming signal is between 2 mV and 700 mY. In 16-bit hexadecimal Q15 
format, 15 this range is from >5C to >5999. However, with the use of the software AGe, 
the signal maxima are in the range 780 mV (>6400) to 820 mV (>6900). 

The gain corr~ction factor is calculated once every three bauds by a two-step 
process. First, the three maximum values of the signal (BSMAX), each one corresponding 
to one baud (16 samples), are monitored and added to each other. A counter (AGCNT) 
is used to keep the count of the signal maxima. The previous running average is then added 
to this sum, and the result is divided by four to obtain the new running average (AGCRA). 
The division by four is accomplished by shifting the final sum, contained in the accumulator, 
two locations to the right before storing it in the memory as the new running average 

. (AGCRA). The section of code that implements this step is listed below. 

* 
* 
* 
* 

DETECT MAX SIGNAL STRENGTH OF I CHANNEL PER BAUD 
(THIS CODE IS EXECUTED EVERY CYCLE) 

AGCAL 

* 

EQU 
LAC 
ABS 
SUB 
BLZ 
ADD 
SACL 

$ 
ISUM 

BSMAX 
OVRMAX 
BSMAX 
BSMAX 

* AGC VALUE CALCULATED USING ISUM 
* GET MAGNITUDE OF SIGNAL 
* COMPARE TO PREVIOJjS MAX VALUE 
* IF LESS THAN, THEN SKIP UPDATE 
* RESTORE VALUE AND 
* STORE AS NEW MAX 

* MULTIPLY I AND Q CHANNELS BY AGC FACTOR 

* 
OVRMAX 

254 Theory and Implementation ola Splitband Modem Using the TMS32010 



* 
* UPDATE THE RUNNING AVERAGE ONCE EVERY THREE BAUDS 

* (THIS CODE IS EXECUTED ONCE EVERY BAUD) 

'" 
AGCUPT ZALH AGCRA * ADD THE NEW BSMAX VALUE 

ADD BSMAX,14 * TO THE RUNNING AVERAGE 
SACH AGCRA * AND SAVE IT 
LAC AGCNT * DECREMENT RUNNING AVERAGE 
SUB ONE * SAVE IT AND 
SACL AGCNT * CHECK FOR ZERO 
SACH BSMAX * ZERO OUT RUNNING SIGNAL MAX 
BZ OVROUT * IF ZERO, THEN UPDATE AGC 
RET * ELSE RETURN TO CALLING SEQUENCE 

OVROUT LACK 3 * RESET RUNNING AVERAGE COUNT 
SACL AGeNT * TO THREE 
LAC AGeRA * MOVE AGCRA 
SACL AGCLEV * TO THE CALCULATION LEVEL 
LAC AGCRA,14 * DIVIDE RUNNING AVERAGE SUM 
SACH AGCRA * BY 4 TO GET NEW RUNNING AVERAGE 

At the second step, the gain correction factor (AGC) is calculated, based on the 
running average. A brute force approach is to divide the maximum-allowed signal level 
by the running average and obtain the gain correction factor as the result of this division. 
The maximum value of the product of the signal times the gain correction factor should 
then remain close to the maximum-allowed signal level. However, since divisions are costly 
in processing time, the second step is implemented by using the running average as an 
index (AGCLEV) to a 32-word lookup table. The offset to this table (AGCOFF) is added 
to the index (AGCLEV) to calculate the table entry on which the gain correction factor 
(AGC) is located. The TBLR instruction is then used to transfer the gain correction factor 
from program memory to data memory. To lessen the code space required to handle the 
AGC lookup table, the code uses only the six most significant bits of the running average. 
This requires a 64-word lookup table. However, since the most significant bit of the six 
bits is always one, only 32 entries of the table are needed. The gain correction factor, 
obtained by the table lookup, is shifted so that the product of the gain correction factor 
times the incoming signal is in Q14 format (designer's choice). The shift factor is provided 
by the BASIC program used to generate the AGC lookup table (see Appendix C). The 
TMS32010 code that implements the calculation of the gain correction factor is shown 
below. 

LAC 
SUB 
BLZ 
LAC 
SACH 

AGCLEV 
ONE, 14 
ASHFI 
AGCLEV,7 
TEMP 

* GET AVERAGE MAX SIGNAL LEVEL 
* COMPARE TO 16384 
* IF LESS THAN SHIFT TABLE LOOKUP 
* GET LOOKUP VALUE 
* MOVE LOOKUP VALUE TO 

Theory and Implementation of a Splitband Modem Using the TMS32010 255 



ASHFI 

ASHF2 

ASHF6 

LAC 
ADD 
TBLR 
LAC 
SACH 
RET 
ADD 
BLZ 
LAC,· 
SACH 
LAC 
ADD 
TBLR 
RET 
ADD 
BLZ 
LAC 
SACH 
LAC 
ADD 
TBLR 
LAC 
SACL 
RET 

ADD 
BLZ 
LAC 
SACH 
LAC 
ADD 
TBLR 
LAC 
SACL 
RET 

TEMP 
AGCOFF 
AGC 
AGC,I5 
AGC 

ONE,13 
ASHF2 
AGCLEV,8 
TEMP 
TEMP 
AGCOFF 
AGC 

ONE,I2 
ASHF3 
AGCLEV,9 
TEMP 
TEMP 
AGCOFF 
AGC 
AGC,I 
AGC 

ONE,5 
NOEDT 
AGCLEV,13 
TEMP 
TEMP 
AGCOFF 
AGC 
AGC,5 
AGC 

* THE LOW HALF OF THE ACC 
* ADD IN TABLE OFFSET 
* AND GET AGC VALUE 
* DIVIDE THE. AGC VALUE 
* BY 2 TO FORCE TO QI4 MODE 
* RETURN TO CALLING SEQUENCE 
* COMPARE TO 8192 
* IF LESS THAN SHIFT TABLE LOOKUP 
* GET LOOKUP VALUE 
* MOVE LOOKUP VALUE TO 
* THE LOW HALF OF THE Ace 
* ADD IN TABLE OFFSET 
* AND GET AGC VALUE 
* RETURN TO CALLING SEQUENCE 
* COMPARE TO 4096 
* IF LESS THAN SHIFT TABLE LOOKUP 
* GET LOOKUP VALUE 
* MOVE LOOKUP VALUE TO 
* THE LOW HALF OF THE ACC 
* ADD IN TABLE OFFSET 
* AND GET AGC VALUE 
* AGC V ALUE*2 TO ADJUST 
* fOR LOWER SIGNAL STRENGTH 
* RETURN TO CALLING SEQUENCE 

* COMPARE TO 32 
* LOST MINIMUM ENERGY LEVEL 
* GET LOOKUP VALUE 
* MOVE LOOKUP VALUE TO 
* THE LOW HALF OF THE ACC 
* ADD IN TABLE OFFSET 
* AND GET AGC VALUE 
* AGC V ALUE*32 TO ADJUST 
* FOR LOWER SIGNAL STRENGTH 
* RETURN TO CALLING SEQUENCE 

The AGC table was generated by the BASIC program listed in Appendix C. This 
program is written to execute on any MS-DOS operating system. The program prompts 
the user for the table size and gain range factor, and then generates and stores the AGC 
table. The table is stored in a format that allows insertion directly into the user's code. 

256 Theory and Implementation of a Splirband Modem Using the TMS32010 



Carrier Recovery Implementation 

The carrier recovery is implemented with a phase-locked loop, as explained in 
the Modem Receiver subsection. In Figure 8, the functional blocks that must be digitally 
implemented are the phase detector, loop filter, and Voltage Controlled Oscillator (VCO). 

Phase Detector 

In the middle of each baud, the phase detector block calculates an equation 
equivalent to (8), repeated below for convenience, 

E(nTb) = Q(nTb) I'(nTb) - i(nTb) Q'(nTb) 

where I' (REel) and Q' (RECQ) are the baseband (demodulated) I and Q channels, and 
i and Q are the I and Q channel decisions. The derivation of the equivalent equation to 
(8) is discussed next. 

In Figure 9, the I channel decision for constellation point A is the length of the 
projection of the vector OA on the I axis. Similarly, the Q channel decision for constellation 
point A is the length of the projection of the vector OA on the Q axis. Since the four 
constellation points A, B, C, and D are located on the 45 and -45 degree lines, the lengths 
of these projections are the same. With this common length denoted by L, the I channel 
decisions can be expressed as 

A { + L for points A and B 
l(nTb) = 

- L for points C and D 
(27) 

The value of L depends on the radius of the cirCle on which the four constellation 
points are located. Equation (27) can equivalently be expressed as 

(28) 

where sgn is the sign function defined as 

{ 
+1 

sgn(I'(nTb» = 
-1 

if I'(nTb) > 0 (points A and B) 
(29) 

if {'(nTb) < 0 (points C and D) 

Similarly, 

Q(nTb) = sgn(Q'(nTb» L (30) 

Substitution of (28) and (30) into (8) gives 

E(nTb) = L {sgn(Q' (nTb» I' (nTb) - sgn(I'(nTb» Q' (nTb)} (31) 

Equations (31) and (8) are identical. However, (31) is the final step towards the equation, 
implemented in the TMS3201O. Since L in (31) is a positive constant, an equivalent error 
function that contains the phase and frequency information is 

(32) 

Theory and Implementation of a Splitband Modem Using the TMS32010 257 



Equation (32) is the one implemented in the TMS32010 as part of the carrier recovery 
algorithm. In this equation, sgn(I') (SIGNI) and sgn(Q') (SIGNQ) are the I and Q channel 
decisions, respectively. The TMS32010 code used to implement (32) is shown below. 

* 
* COMPUTE CARRIER ERROR SIGNAL 

* 
* e(t) = RECI*SIGNQ - RECQ*SIGNI 

* 
RECI 
SIGNQ 
RECQ 
SIGNI 

* T=RECI 
* P = RECI*SIGNQ 
* T = RECQ, ACC = RECI*SGNQ 
* P = RECQ*SIGNI 

COMERR LT 
MPY 
LTP 
MPY 
SPAC 
SACH ERROR,l 

* ACC = RECI*SIGNQ - RECQ*SIGNI 
* STORE IN ERROR 

Loop Filter 

The error signal E'(nTb) (ERROR), generated by the phase detector (equation 
(32», is filtered by the carrier recovery loop filter (see Figure 8). The filter was implemented 
as a first-order Infinite Impulse Response structure. In other words, the loop filter is just 
an integrator with transfer function 

BI 
HI(Z) = ---

I-AIZ-I 

where Al (PLLl) and BI (PLL2) are the filter coefficients. 

(33) 

A higher-order filter was not used, because high-order filter structures usually 
introduce more phase delay than first-order sections. Phase delaysl6 are critical in the 
operation of a phase-locked loop, and their effects are difficult to analyze. 

The time-domain equivalent of (33) is 

y(n) = BI x(n) + Al y(n - 1) (34) 

where x(n) is the input to the filter and y(n) the output. The signal flowgraph of the carrier 
recovery loop filter is shown in Figure 16. 

yIn) 

Figure 16, Carrier' Recovery Loop Filter 

258 Theory and Implementation of a Splitband Modem Using the TMS32010 



The TMS3201O, with a hardware on-chip multiplier, is most efficient in the 
implementation of such filter structures. 13 The code used to implement the carrier recovery 
loop filter (equation (34» is shown below. The filter's input x(n) is stored in ERROR, 
and the filter's outputy(n) is stored in ERRSIG. 

* 
* LOOP FILTER 

* 
LT 
MPY 
LTP 
MPY 
APAC 
SACH 

PLL2 
ERROR 
PLU 
ERRSIG 

ERRSIG,1 

* T=PLL2 
* P = PLL2*ERROR 
* ACC = PLL2 ERROR, T = PLU 
* P = PLU *ERRSIG 
* ACC = PLL2 *ERROR + PLU *ERRSIG 
* STORE IN ERRSIG 

The effect of the loop filter's bandwidth in the modem performance is considered 
in the following discussion where the bandwidth of the loop filter is defined as the frequency 
at which the magnitude of the filter's transfer function is 3 db below its maximum value. 
Therefore, the bandwidth of the loop filter is the frequency Wb at which 

(35) 

where IHIlmax is the maximum value of the magnitude of the filter's transfer function. 
Substituting z = ejw in (33) gives 

{ 1 + A 12 - 2A 1 cos( w) } % 
(36) 

Equation (36) is maximum when the denominator is minimum. This is true for 
w=O, i.e., at DC. Substituting w=O in (36) gives 

where 0 < Al < 1 (37) 
I-AI 

Substitution of (36) and (37) into (35) gives the following quadratic equation that 
relates the bandwidth of the loop filter Wb to the coefficient AI. 

(38) 

Therefore, the value of the coefficient A 1 determines the bandwidth of the loop 
filter. Figure 17 shows a plot of the values of Al versus the bandwidth Wb, i.e., a plot 
of (38) . 

.Theory and Implementation of a Splitband Modem Using the TMS3201Q 259 



" 
------------------~~--------------~A1=1 

", 
,.' " 0 • 

• ••• ,.,., • "0 •• 
--~~~~------~--~----------~~~---1~Wb 

11" 

BI 
Figure 17. Parameter Al vs. the Bandwidth of HI(z) = 

I-AI z-I 

The two curves in Figure 17 represent the solutions of the quadratic equation 
(38). From this figure, it can be seen that the closer Al is to unity, the narrower the 
bandwidth of the filter. If Al = 1; the magnitude response begins rolling off at zero 
frequency (w =0). However, this situation must be avoided since Al = 1 results in placing 
a pole on the unit circle in the z-domain, thereby causing the filter to oscillate. Since only 
values less than unity of the coefficient Al result in a stable filter structure, Q15 format I5 
was used to represent AI. 

The bandwidth Wb is expressed in radians. Since the sampling frequency fb 
corresponds to 21!' n;tdians, the bandwidth of the loop filter in Hz is given by 

Bandwidth = Hz (39) 

Since the loop filter runs once every baud, the sampling frequency fb is 

1 
fb=-=600Hz 

Tb 

with Tb as the baud interval. This frequency should not be confused with the AID and 
DIA sampling frequency designated by fs and having the value of 9600 Hz. 

The bandwidth of the loop filter affects the Bit Error Rate (BER) and the time 
it takes for the modem receiver to lock-on to the incoming carrier. Initially, a large 
bandwidth results in a fast lock-on while a narrow bandwidth provides a good BER. 
Therefore, the ability to switch from a large bandwidth to a narrow one results in a better 
modem design. With the TMS3201O, this is easily implemented using the TBLR instruction 
that transfers data from program memory to data memory,15 On startup, Al (PLLl) is 
0.539 or >4500 in Q15 format. This corresponds to a bandwidth of approximately 63 
Hz. Once locked-on with the use of the TBLR instruction, the value of Al (PLLl) is 
changed to 0.953 or >7AOO in Q15 format. This corresponds to a bandwidth of 
approximately 6 Hz. Lock-on criterion is based on the magnitude of the error function 

260 Theory and Implementation of a SplitbandModem Using the TMS32010 



calculated by (32) being less than a certain threshold. The need and calculation of this 
threshold is covered later in this subsection. The TMS32010 code used to switch the loop 
filter's bandwidth is given below. The fifth bit of RECST is used as a flag, which if set 
indicates that the local carrier is locked-on to the incoming carrier. 

LAC ONE,4 * CHECK IF LOCAL CARRIER 
AND RECST * IS LOCKED. IF SO, SWITCH 
BNZ CARLCK * PLL FILTERS' BANDWIDTH 
B NORMAL * EXECUTE NORMAL SEQUENCE 

* 
CARLCK LACK PLLC * CHANGE CARRIER PLL COEF. 1 

TBLR PLU 

Voltage-Controlled Oscillator 

Both the carrier used in the transmitter to modulate the data and the one used 
in the receiver for the demodulation (local carrier) were implemented in the TMS32010 
using a 128-point sine table and a routine to drive it. 17 The voltage-controlled oscillator 
in the phase-locked loop for the carrier recovery generates the local carrier using this 
128-point sine table. The frequency of this digital sine wave is 2400 Hz for an originate 
modem and 1200 Hz for an answer modem. 

Carrier Recovery Threshold 

The lowpass-filtered value of the error signal generated by the phase detector 
contains the information about the phase and frequency difference between the local and 
incoming carriers. If this value (ERRSIG) is positive, the local carrier must be advanced 
in phase. If negative, the local carrier must be delayed (see the Modem Receiver subsection). 
Since there are 128 points in the sine table, there is a 360/128 or 2.8125-degree jump 
going from one table entry to the next. This implies that corrections should not be made 
unless the magnitude of the error signal is greater than one table entry because redundant 
corrections introduce inaccuracies and noise. Therefore, the value of this threshold should 
correspond to the magnitude of the error signal when there is a 2. 8125-degree phase error. 

An estimate of the threshold can be obtained as described below. The relation 
of the phase error signal E(nTb) to the phase error Be is given by (18). Substituting 2.8125 
for Be in (18) and taking the magnitude of both sides gives 

I E(nTb) I = IK sin(2.8125)1 (40) 

K (12 + Q2) is the signal energy, i.e., the maximum value of the I and Q channels. This 
value is set by the Automatic Gain Control. Since the software AGC used in this 
implementation of the Bell 212AIV.22 limits the signal maxima between 0.78 and 0.82 
(see Automatic Gain Control Implementation in the Modem Receiver subsection), K is 
between 0.78 and 0.82. Using the average value of 0.80 for K, (40) gives 

I E(nTb) I = 0.039. 

Theory and Implementation of a Splitband Modem Using the TMS3201 a 261 



The threshold level should be at 0.039 if the gain of the loop filter given by (33) 
is unity. For DC, the gain GI of the loop filter is given by (37), repeated below for 
convenience. 

GI = IHllmax = BI 

I-AI 
where 0 < A I < 1 

The coefficient BI (PLL2) was chosen to be 0.0039 (or >50 in the Q15 format). 
As explained earlier, once the receiver is locked, the value of coefficient Al (PLLl) is 
0.953. From (37), the gain GI of the loop filter is GI = 0.082. Therefore, the threshold 
is scaled down to 

Effective Threshold = 0.039 x 0.082 = 0.0032. 

This corresponds to > D in Q12, the format used for the threshold (designer's 
choice). After this initial estimate of the threshold was obtained, the final value of the 
carrier recovery threshold (TRSHD 1), > 7, was determined by trial and error. The 
calculated threshold is greater than the one obtained by trial and error, because of the 
use of the maximum value of the loop filter's gain in the threshold calculation. 

To improve the lock-on characteristics of the modem, a two-level correction was 
used for the carrier recovery. If the 'magnitude of the error (ERRSIG) is less than the 
threshold (TRSHDI), no correction is applied. If the magnitude of the error is greater 
than the threshold but less than twice the threshold, one sine-table entry correction is applied 
by incrementing or decrementing the table entry pointer (RALPHA) by one. If the 
magnitude of the error is greater than twice the threshold value, then a two-table entry 
correction is applied by incrementing or decrementing the table entry pointer (RALPHA) 
by two. All of the corrections are applied to advance or delay the local carrier according 
to the algorithm described in the Modem Receiver subsection. 

Baud Clock Alignment Implementation 

The purpose of the clock recovery is to identify the baud boundaries and inform 
the decision block when the middle of each baud occurs and there fort< the optimum time 
to make an errore free decision (see Figure 5). As explained in the Modem Receiver 
subsection, one approach for clock recovery (adjustment of the baud clock) is to use the 
energy of the incoming signal. The energy is the sum of the squares of the demodulated 
I and Q channels (see equation (20)). As implied by (21), this quantity is independent 
of any phase and/or frequency difference between the incoming and local ~arriers. 

The minima of the signal energy indicate the beginning of a new baud. This can 
be seen in Figure 18 where the signal energy is plotted every sample for several consecutive 
baud intervals. 

262 .Theory and Implementation of a Splitband Modem Using the TM~32010 



Figure 18. Signal Energy Plotted Every Sample For Several Baud Intervals 

Each of the short vertical lines along the horizontal axis in Figure 18 corresponds 
to a sample time. This data was obtained using the XDS/22 emulator for the TMS3201O. 
The block diagram for the clock recovery algorithm is shown in Figure 19. The functional 
blocks to be implemented are the error signal generator, loop filter, and baud clock. 

DE 
B 

I' 

Q' 

...-

CISION 
LOCK 

ERROR 
SIGNAL 

GENERATOR 

eb LOOP e'b -FILTER 

BAUD 
CLOCK 

Figure 19. Baud Clock Alignment Block Diagram 

Error Signal Generator 

The error signal generator calculates the signal energy and from it generates an 
error signal eb. This error signal contains the information about how close the local baud 
boundaries are to the incoming baud boundariers. The error signal is then lowpass-filtered 
so that noise and high-frequency components are removed. The output of the loop filter 
corrects the local baud clock. 

The critical issue is how to calculate this error signal. Figure 20 shows the signal 
energy for a single baud interval. This figure was motivated from the realtime data of 
Figure 18. The 16 energy samples for this baud are indicated as E(0),E(1), ... ,E(15). 

Theory and Implementation of a Splitband Modem Using the TMS32010 263 



> 
C1 
II: 
w 
Z w 

EI61 EI71 EI81 
EI51 ... e,... -EI91 

EI41 ••.•. • e ..• E(101 

EI31 ••• •• t "', E(11) 

EI2I,"" \. EI121 

EI1 I II' 

EIOI .. •· 

". EI131 

.... EI141 

'. EI151 

'. TIME 

Figure 20. Signal Energy Samples over a Baud 

From Figure 20, it can be seen that the energy sample E(7) is located at the middle 
of the baud (top of the 'energy hill'), and the rest ofthe saniples are located symmetrically 
around it, i.e., E(6) = E(8), E(5) = E(9) , and so on. Therefore, E(7) is taken to be the 
middle of the local baud. Consider now the difference between the energy sample E(11) 
that is four samples after E(7) and the energy sample E(3) that is four samples before 
E(7). If the local baud clock is correctly aligned so that E(7) corresponds to the middle 
of the incoming baud, then 

E(ll) - E(3) = 0. 

If 

E(11) - E(3) > 0, 

then the sample E(7) is located to the left of the middle of the baud. This means that the 
middle of the local baud Occurred earlier than the middle of the incoming baud. Therefore, 
the local baud clock must be delayed. On the other hand, if 

E(11) - E(3) < 0, 

the middle of the local baud occurred later than the middle of the incoming baud. Therefore, 
the local baud dock must be advanced. 

In summary, the error signal generator computes the signal energy at sample 
points 3 (PENRGY) and 11 (ENRGY). The sample count information (SAMPLE) is 
provided by the baud clock shown in Figure 19. The error signal generator then calculates 
the error signal eb (BERROR) defined by 

eb = E(II) - E(3) (41) 

The subscript b represents baud since this signal is calculated once every baud. 

264 Theory and Implementation of a Splitband Modem Using the TMS32010 



Loop Filter 

Perturbations that may occur in the communications medium pass onto the 
demodulated I and Q channels. This can be seen from the data of Figure 18 where even 
with the presence of the automatic gain control, the energy levels are not exactly the same 
for every baud. Also, the duration of each baud in Figure 18 is not exactly sixteen samples 
(sixteen short vertical lines) as it theoretically should be. These perturbations result 'in 
abrupt changes of the signal generated by the error signal generator. Therefore, the error 
signal is not directly fed into the baud clock. Instead, it is lowpass-filtered by the loop 
filter. This removes noise and high-frequency components and results in a stable clock 
recovery. 

The loop filter was implemented as a first-order recursive filter. The 'transfer 
function is of the same form as (33). 

B2 
H2(z) = 

l-A2 z-l 
(42) 

Just as with the loop filter used for the carrier recovery, the most important 
characteristic of the loop filter used for the clock recovery is its bandwidth. A wide 
bandwidth results in a quick adjustment of the local baud boundaries to the incoming baud 
boundaries. A narrow bandwidth results ifi a more stable clock recovery. A good approach 
for this filter's design is to start with a wide bandwidth and then switch to a narrow one. 
All of the information provided in the Carrier Recovery Implementation subsection relating 
the coefficient Al to the loop filter's bandwidth apply here as well. With the use of the 
TBLR instruction, after the receiver is locked-on to the incoming carrier, the initial wide 
bandwidth is switched to a narrow one. The initial value of A2 is 0.5, which is >4000 
in Q15 format and corresponds to approximately a 70-Hz bandwidth. After the receiver 
is locked, this value changes to 0.91 (> 7500 in Q15 format), which corresponds to a 
bandwidth of approximately 10 Hz. The criterion used for the receiver being locked-on 
is the magnitude of the error function calculated by (32) being less than the threshold used 
for the carrier recovery (TRSHD 1). 

Baud Clock 

The output of the loop filter, designated by e'b in Figure 19, drives the local 
baud clock. The baud clock tracks the sample count (SAMPLE) and thus informs: 

1. The decision block when it is the middle of the baud (sample 7) and thus the 
optimum time for demodulation, and 

2. The error signal generator when the sample count is 3 and 11 so that the error 
signal eb can be calculated. 

Theory and Implementation of a Splitband Modem Using the TMS3Z010 265 



These two objectives are achieved with the use of a 16-entry table in the program 
memory. Each table entry contains the address of a subroutine task to be performed between 
two consecutive samples. The tasks are numbered 0, 1, ... , 15. Table 6 shows the memory 
map of the 16 tasks performed by the modem receiver. 

Table 6. Memory Map of Tasks Performed by the Modem Receiver 

* 
"* TASK MASTER SEQUENCE TABLE (RECEIVE) 
* TASKS ARE EXECUTED FROM BOTTOM TO TOP 

* 
TSKSEQ EQU $ 

DATA DUMMY * UNUSED CYCLE 15 
DATA DUMMY * UNUSED CYCLE 14 
DATA DUMMY * UNUSED CYCLE 13 
DATA DUMMY * UNUSED CYCLE 12 
DATA BDCLK2 * COMPUTE ENERGY E(11) 11 
DATA DUMMY * UNUSED CYCLE 10 
DATA OUT * COMMUNICATE WITH TMS7742 9 
DATA DECODE * DECODE/GET SCRAMBLED DIBIT 8 
DATA DEMODB * DEMODULATE IN MIDDLE OF BAUD 7 
DATA DUMMY * UNUSED CYCLE 6· 
DATA AGCUPT * UPDATE THE AGC EVERY 3RD BAUD 5 
DATA DUMMY * UNUSED CYCLE 4 
DATA BDCLK1 * COMPUTE ENERGY E(3) 3 
DATA DUMMY * UNUSED CYCLE 2 
DATA DUMMY * UNUSED CYCLE 1 
DATA DUMMY * UNUSED CYCLE 0 

Task 3 (BDCLK1) calculates the signal energy E(3) (PENRGY). Task 5 updates 
(once every three bauds) the automatic gain control value. Task 7 (DEMODB) implements 
the demodulation in the middle of the baud. Task 8 (DECODE) makes the channel decisions 
based on the demodulated (from Task 7) I and Q values, and decodes the decisions to 
obtain the scrambled dibits. Task 9 (OUT) performs the data exchange between the 
TMS32010 and the TMS7742. Task 11 calculates the signal energy E(ll) (ENRGY). The 
TMS32010 code used to drive the table of the modem receiver tasks is shown below. 

* 
* RECEIVER TASK SEQUENCE DRIVER ROUTINE 

* 

266 

LAC 
SUB 
BGEZ 
LACK 

SAMPLE 
ONE 
OVRSAM 
15 

* DECREMENT THE SAMPLE COUNT 
* TO CHECK FOR END OF BAUD 
* IF NOT, THEN SKIP COUNT RESET 
* RESTART THE SAMPLE COUNTER AT 15 

Iheory and Implementation of a Splitband Modem Using the TMS32010 



OVRSAM SACL SAMPLE * SAVE NEW COUNT VALUE 
LACK TSKSEQ * GET ADDRESS OF TOP OF TABLE 
ADD SAMPLE * ADD IN OFFSET 
TBLR TEMP * GET THE PROGRAM ADDRESS 
LAC TEMP * FOR THE TASK CALL 
CALA * EXECUTE THE APPROPRIATE TASK 

Initially, the sample count (SAMPLE) contains the task number of the previous 
task performed. This number is decremented so that the next task in the sequence is 
performed. If the sample count becomes negative, it is reset to 15. The sample count is 
then added to the address of the top of the task table (TSKSEQ). With the use of the TBLR 
instruction, the table entry is transferred to the data memory. Each table entry is the address 
of the subroutine task to be performed. Using the CALA instruction, the equivalent of 
the 'computed GOTO' used in FORTRAN, the program control transfers to the selected 
subroutine. For a 9.6-kHz sampling rate, the TMS32010 with a 200-ns cycle time has 
512 cycles available to implement each of these tasks. This number of cycles is more than 
enough since the worst-case task takes approximately 300 cycles. Also, since only 6 out 
of the 16 tasks are used, 10 more tasks are available for the designer to incorporate additional 
functions such as an adaptive equalizer, scrambling/descrambling, and synchronous-to
asynchronous and asynchronous-to-synchronous conversions. 

The algorithm of adjusting· the baud clock based on the filtered error signal 
e'b (BEROUT) is the same as the one described earlier for the unfiltered error signal 
eb (BERROR), and is summarized below. 

e'b > 0 

e'b < 0 

delay local baud clock 

advance local baud clock 
(43) 

The advance or delay of the baud clock is implemented by changing the sample 
count (SAMPLE) appropriately. In the case of delaying the clock, the middle of the local 
baud clock (sample 7) occurs earlier than the middle of the incoming baud. Geometrically, 
sample 7 is located on the left side of the 'energy hill' of Figure 20 instead of at the top. 
If the sample count does not change, then 16 samples later, sample 7 of the next local 
baud will again be located on the left side of the 'energy hill' of the next incoming baud. 
Therefore, the sample count must be decremented by one. Instead of 16 samples, the middle 
of the next baud is taken to be 17 samples later. Hopefully then, the middle of the local 
baud is on or at least closer to the top of the 'energy hill.' 

The case of advancing the clock is similar, except that the sample count is 
incremented by one, and thus the middle of the next baud is taken 15 samples after the 
middle of the current baud. 

Clock Recove~ ThreshoLd 

One more issue, the clock recovery threshold, is associated with the alignment 
of the baud clock. Since there is a finite number of samples in each baud interval, the 

Theory and Implementation of a Splitband Modem Using the TMS32010 267 



baud clock has a finite resolution. Therefore, if the middle of the local baud (sample 7) 
is within one sample of the middle of the incoming baud, no correction must be applied. 
A threshold can be used so that corrections are applied only if the magnitude of the filtered 
error signal is greater than the threshold value. An initial estimate of this threshold is 
obtained by computing the magnitude of the error signal that corresponds to a one-sample 
change in the local baud clock. Consider the effect of a one-sample change in Figure 20. 
The middle of the local baud clock E(7) is translated to E(6) (or E(8)); E(3) is translated 
to E(2) (or E(4)); and E(11) is to E(10) (or E(12)). Therefore, a one sample change results 
in an error signal eb given by (41) of magnitude () as indicated in Figure 20. Approximating 
the 'energy hill' with the positive half of a sine wave (see Figure 20), results in () = 0.12. 
This would be the threshold if the gain of the clock recovery loop filter were unity. For 
DC, the gain of this filter is (see equation (37)) 

G2 = IH21max = 
B2 

1-A2 
where 0 < A2 < 1 

The value chosen for the coefficient B2 (BPLL2) is 0.0024 or '>50 in Q15 format. 
After the receiver is locked-on to the incoming carrier, the coefficient A2 (BPLLl) is 0.91. 
The gain G2 of the loop filter is computed to be G2 = 0.026. 

The gain G2 results in an 'effective threshold' of () = 0.00312. This 
corresponds to >33 in Q14 format used for the clock recovery threshold by designer's 
choice. However, this is just an initial estimate since the mathematical model used is only 
an approximation. After this estimate was obtained, the final value of the clock recovery 
threshold (TRSHD2), > 8, was determined by trial and error. 

The calculation of the thresholds for both the clock and carrier recoveries was 
performed based on the DC gain of the loop filters. A reason why the calculated thresholds 
are greater than thoseobtained by trial and error is that the filter gain is maximum at DC. 

Just as in the carrier recovery, a two-level correction is used for the baud clock. 
If the magnitude of the error signal is less than the threshold, no correction is applied. 
If the magnitude of the error signal (BERROUT) is greater than the threshold (TRSHD2) 
but less than twice the threshold, the baud clock is advanced or delayed by one sample. 
If the magnitude of the error is greater than twice the threshold, then the baud clock is 
adjusted by two samples. 

Functions Implemented in the TMS7742 

The Texas Instruments TMS7742 is a microcomputer with an on-chip UART and 
4K bytes of internal EPROM. It was included in the modem design to increase its flexibility 
and upgradability. With the use of the TMS7742, both serial and parallel interfaces with 
the DTE can be efficiently implemented. The TMS7742 can also perform some of the 
modem functions, thus allowing the TMS32010 to do more complicated tasks. This 
flexibility allows the hardware design to be upgradable to 2400-bps splitband modems 

268 Theory and Implementation of a Splitband Modem Using the TMS32010 



(V.22 bis). The TMS7742 acts as a modem controller and performs the asynchronous-to
synchronous and synchronous-to-asynchronous data conversions. It also scrambles the data 
from the DTE and descrambles the decoded dibits received from the TMS32010 before 
sending them to the DTE. The TMS7742 code is given in Appendix E. 

Asynchronous-to-Synchronous and Synchronous-to-Asynchronous Conversions 

Asynchronous data received from the DTE may include a start bit, seven or eight 
data bits, and one or more stop bits. When the DTE is not sending any data, the modem 
must still continue to transmit scrambled marks. Even though the DTE can send faster 
than 1200 bits per second, the modem must transmit only 1200 bits per second to the 
teiephone line. This means that the modem must delete some of the bits received from 
the DTE. The Bell 212A protocol permits deleting one stop bit every nine characters. 
The data received from the TMS32010 demodulator may have characters with a deleted 
stop bit. The TMS7742 must detect the deleted stop bit and add it to the character before 
sending it to the DTE. The TMS7742 assembles the descrambled dibits into a character, 
checks for missing stop bits, and adds the missing stop bit if detected. The speed of the 
DART is set to enable inserting one stop bit in every nine characters; i.e., when transmitting 
10 bits per character, adding one bit in nine characters (a total of90 bits) should not change 
the speed. Thus, the DART is set to 1I90th of a bit interval faster. 

Scrambler/Descrambler 

The data that has been converted into synchronous dibits is scrambled using 
equation (2), which is repeated below. 

ds(n) = d(n) XOR ds(n - 14) XOR ds(n - 17) 

The TMS7742 holds the previous 17 scrambler outputs in its internal registers 
and uses the XOR instruction to exclusively-OR the proper bits to generate the new 
scrambled output. After scrambling each bit, these registers are shifted by one and saved 
to provide the (n - 7) outputs for the next bit. 

A similar routine is used to descramble the decoded data received from the 
TMS3201O. The descrambling is performed using equation (3) repeated below. 

d(n) = ds(n) XOR ds(n - 14) XOR ds(n - 17) 

Performance 

The performance of the modem implemented using the TMS32010 was evaluated 
using automatic modem testing equipment. A block diagram of this testing equipment is 
shown in Figure 21. 

Theory and Implementation of a Splitband Modem Using the TMS32010 269 



MODEM 
UNDER 
TEST 

,-------------------
AC LINE I 

DIGITAL DATA 

: 
I 
I 
I 

CENTRAL OFFICE SIMULATOR 

ATTENUATOR II ATTENUATOR 

AVERAGE 
"'-- LONG·HAUL r--

LINE 

f 
ATTENUATOR 

WHITE·NOISE GENERATOR 

PATTERN GENERATOR 
BLOCK ERROR COMPUTATION 

(TIPC) 

AC LINE REFERENCE 
MODEM 

(BELL 212A) 

DIGITAL DATA 

Figure 21. Modem Testing Equipment 

The testing environment in Figure 21 provides a Central Office simulator, an 
average long-haul line simulator, and a C-notched white-noise generator. The attenuators 
provide'signal-Ievel and noise-level attenuation. The testing is performed under full-duplex 
and maximum data throughput conditions. 

The average long-haul line effects are evident from the differences between the 
signal constellation diagrams of Figures 22(a) and 22(b). Figure 22(a) shows the signal 
constellation with the TMS32010 modem in the analog loop-back mode. Figure 22(b) shows 
the signal constellation with the TMS32910 modem operating over an average long-haul 
line at a 14-db signal-to-noise ratio. The presence of the average long-haul line results 
in a 'spreading' of the signal constellation points. this spreading implies a higher probability 
of error since the signal points used to make the decisions approach the decision boundaries. 

270 Theory and Implementation of a Splitband Modem Using the TMS32010 



Q 

la) SIGNAL CONSTELLATION IN ANALOG LOOP-BACK MODE 

Q 

•• 
Ib) SIGNAL CONSTELLATION OVER AVERAGE LONG-HAUL LINE 

Figure 22. Signal Constellation Diagrams 

Referring to Figure 21, the Texas Instruments Professional Computer generates 
random characters. These characters are sent to the reference modem and the modem under 
testing. The modems transmit the characters they receive to each other, and each modem 
sends the characters received to the Professional Computer. The computer then compares 
the received characters with the ones originally created to determine the error rate. The 
error rate is determined in terms of percent error-free blocks. Each block consists of 512 
characters (5120 bits) and is considered to be error-free only if all of the bits in the block 
are received with no error. 

In all the tests performed, the Bell 212A modem was the reference modem 
configured in the answer mode. The reason for this is that only an originate 

Theory and Implementation of a Splitband Modem Using the TMS32010 271 



TMS3201O-based modem is implemented. The answer mode is not included because, its 
mentioned in the "Introduction," this is beyond the purpose Of this report. To incorporate 
the answer mode, two tables must be added in the TMS32010 code presented in Appendix 
D. The first table should contain the coefficients of the two receiver input bandpass filters 
with a passband centered around 1200 Hz. The second table Should contain the increments 
used by the sine-table driver routine so that a 2400-Hz carrier is generated for the transmitter 
and a 1200-Hz carrier is generated for the receiver. When the TMS7742 configures the 
TMS32010 in the answer mode, the filter coefficients and the sine-table increments can 
be transferred from the program memory to the data memory with the use of the TBLR 
instruction. No performance difference is expected between the answer and originate modes. 

In Figure 23, the vertical axis indicates the percentage of blocks received 
error-free and the horizontal axis is the signal-to-noise ratio in db .. The percentage of 
error-free blocks is calculated at each signal-to-noise ratio level (30, 29, 28, ... ) based 
on the number of error-free blocks received out of 1024 transmitted. All tests were 
performed at a - 26 dbm (0.1 V) signal level. Figure 23(a) shows the test results with 
the TMS320 10-based modem as the modem under testing. The vertical axis of Figure 23( a) 
is the percentage of blocks received error-free by the Bell modem. Figure 23(b) shows 
the results when the AT&T Dataphone II is used instead of the TMS32010-based modem. 

Since the Bell modem is used as a reference modem, the above results indicate 
how well the transmitters of the TMS3201O-based modem and the AT&T modem are 
performing. From Figures 23(a) and 23(b), it can be seen that for both the TMS32010 
and AT&T modems, block errors start occurring at a signal-to-noise ratio of approximately 
13 db and that the curve corresponding to the TMS32010 modem falls slightly faster. 
Therefore, the performance of both modem transmitters is approximately the same with 
the AT&T transmitter performing slightly better than the TMS32010 transmitter. Figure 
24(a) shows the percentage of blocks received error-free by the TMS3201O-based modem. 
The·Bell modem (reference modem) is used to transmit these blocks. Figure 24(b) shows 
the percentage of blocks received error-free by the AT&T modem with the Bell modem 
transmitting. 

It can be seen that the AT&T receiver performs approximately 2 db better than 
the TMS32010 receiver. The performance of the TMS32010 modem receiver could be 
improved with the inclusion of more filter taps in the receiver input bandpass filters. 

272 Theory and Implementation of a Splitband Modem Using the TMS32010 



30 25 20 15 10 

III 

~ 90 
Ii: 
~ 80 OVER AVG LINE AT 1200 8PS 
II: -26 dBM 
III 

fil 70 
> 
iii 
1rl 60 
II: 

'" g 50 
.... 
'" u. 40 o 
III 

CI 30 

~ 
III ri! 20 
III ... 

10 

30 25 20 15 10 

SIGNAl/C-NOTCHEO· NOISE RATIO 

5 o 

90 

80 

70 

60 

50 

40 

30 

20 

10 

5 o 

(a) PERCENTAGE OF BLOCKS RECEIVED ERROR-FREE BY THE BELL 212A MODEM VS. SNR 
WITH THE TMS32010 MODEM ORIGINATING 

30 25 20 15 10 

~ IL 90 
Ii: 
~ 80 OVER A VG LINE AT 1200 BPS 
III -26 dBM 
Q 

~ 70 
III 
U 
::! 60 

:t.l 
u 50 
9 
'" :!i 40 
III 
CI 
;: 30 
2 
III 

ri! 20 
~ 

10 

30 25 20 15 10 

SIGNAl/C·NOTCHED NOISE RATIO 

5 o 

90 

80 

70 

60 

50 

40 

30 

20 

10 

5 o 

(b) PERCENTAGE OF BLOCKS RECEIVED ERROR-FREE BY THE BELL 212A MODEM VS. SNR WITH 
THE AT&T MODEM ORIGINATING 

Figure 23. Performance of TMS32010 and AT&T Modem Transmitters 

Theory and Implementation of a SplitbandModem Using the TMS3201Q 273 



30 

90 

80 

70 

60 

60 

40 

30 

20 

10 

30 

25 20 

OVER AVG LINE AT 1200 BPS 
-26 dBM 

25 20 

15 10 

15 10 

SIGNAL IC-NOTCHED NOISE RATIO 

5 o 

90 

80 

70 

60 

50 

40 

30 

20 

10 

5 o 

lal PERCENTAGE OF BLOCKS RECEIVED ERROR-FREE BY THE TMS32010 MODEM VS_ SNR WITH 
THE BELL MODEM TRANSMITTING 

30 

90 

BO 

70 

50 

40 

... 30 

I 20 
11:1 
~I 

30 

25 20 

OVER AVG LINE AT 1200 BPS 
-26 dBM 

26 20 

15 10 

15 10 

SIGNAL IC-NOTCHED NOISE RATIO 

5 o 

90 

80 

70 

60 

50 

40 

30 

20 

10 

6 o 

Ibl PERCENTAGE OF BLOCKS RECEIVED ERROR~FREE BY THE AT&T MODEM VS_ SNR WITH THE 
BELL MODEM TRANSMITTING 

Figure 24. Performance of TMS32010 and AT&T Modem Receivers 

274 Theory and Implementation of a Splitband Modem Using the TMS32010 



Other Implementation Considerations 

The implementation approach of the Bell 212AIV .22 modem presented in the 
previous sections is not unique. There are other and possibly more efficient ways of 
implementing the modem. 

Drastic reduction of the hardware cost results from the use of a codec for the 
AID and DIA conversions instead of the 12-bit linear AID and DIA converters used in 
this implementation. This approach becomes even more attractive with the use of the 
TMS32011 digital signal processor in place of the TMS3201O. The TMS32011 is a 
microcomputer (no external memory expansion) having the same architecture as the 
TMS32010 with the additional feature of containing the necessary logic for interfacing 
to a codec. In this implementation, the necessary input bandpass filtering for the modem 
receiver can be performed with an AMI S35212A analog filter chip. The modem hardware 
block diagram of this implementation is shown in Figure 25. 

I OSCILLATOR I 
-..... CONTROL 

~ ~ LOGIC 

r--

INT r--".... -'-- PCM -
w CS 'r- '---

CO DEC ANLGIN 
(.J ... < N r--. DATA r. ) ... 
u.. q-

0 II: 
,.... 
~ LATCH N w ,.... 

M I- DATA BUS !II !II SCLK DAA iiE :E CLKIN :E ANLGOUT 
!II 

l- I-
;:) CLKOUT ca 

'------ S35212A f----- FILTeR --- rr - q I 

CONTROL BUS L U CLOCK 
DIVIDER 

Figure 25. Modem Hardware Block Diagram Using a Codec for the AID and DIA 
Conversions 

If this approach is used, the receiver input has the configuration shown in 
Figure 26. The bandpass filtering is implemented in the analog domain and the Automatic 
Gain Control and Hilbert Transformer Pair implemented in the digital domain inside the 
TMS320 11. Implementing the bandpass filtering in the analog domain should save adequate 

. program memory, data memory, and processing power to allow the design to be upgraded 
to the V.22 bis specification. If only the Bell 212A is of interest, the bandpass filtering 
could be performed digitally within the TMS32011. 

Theory and Implementation of a Splitband Modem Using the TMS32010 275 



slnT s) BANDPASS 

FILTER 

Figure 26. Alternative Modem Receiver Input Configuration 

Conclusions 

This application report discussed the digital implementation of splitband modems 
using the TMS32010 general-purpose high-speed digital signal processor. The theory and 
implementation of the Bell 212AIV.22 full-duplex modem was covered in detail. With 
a modification of some of the functional blocks of the Bell 212AIV.22, 24oo-bps splitband 
modems (V.22 bis) can be implemented. 

Modems are sophisticated devices, consisting of many functional blocks. This 
implies the need of special features for the microprocessor to be used. The TMS32010 
with a 2oo-ns cycle, an on-board single-cycle multiplier, and a special instruction set tailored 
for digital signal processing is able to implement the modem functional blocks (see Table 
5) with approximately 60-percent use of the available processing power. The modem 
program utilizes 103 words of data memory out of the 144 words available. This 
corresponds to approximately 71 percent ofthe data memory. The program also utilizes 
954 words of program memory out of the 1536 words available, corresponding to 
approximately 62 percent of the on-chip program memory. Therefore, the use of the 
full-speed off-chip memory feature of the TMS32010 was not utilized. Since a large portion 
ofthe power ofthe TMS32010 is still available, additional functions, such as an adaptive 
equalizer and the Data Encryption Standard (DES)l, can be implemented with the inclusion 
of new code. With a 6-percent loading of the TMS3201O, the DES can provide secure 
communication between 1200-bps full-duplex modems. 

The TMS32010 is one of many digital signal processors in the TMS320 family. 
The flexibility and processing power of the TMS320 family provide high performance, 
high reliability, and cost-effective solutions for medium-.and high-speed modems. 

276 Theory and Implementation of a Splitband Modem Using the TMS32010 



References 

1. P. E. Papamichalis and J. Reimer, "Implementation of the Data Encryption Standard 
with the TMS3201O," Digital Signal Processing Applications with the TMS320 
Family, Texas Instruments (1986). 

2. C.F. Foschini, R.D. Gitlin, and S.B. Weinstein, "On the Selection of a 
Two-Dimensional Signal Constellation in the Presence of Phase Jitter and Gaussian 
Noise," Bell System Technical Journal, Vol. 52, 927-965 (July-August 1973). 

3. P.J. Van Gerwen, N.A.M. Verhoeckx, H.A. Van Essen, and F.A.M. Snijders, 
"Microprocessor Implementation of High Speed Data Modems," IEEE Trans. on 
Communications, Vol. COM-25, No.2, 238-250 (February 1977). 

4. M.J. Di Toro, "Communication in Time Frequency Spread Using Adaptive 
Equalization," Proceedings of the IEEE, Vol. 56, No. 10, 1653-1679 (October 1968). 

5. "Data Communications Using Voice Band Private Line Channels," Bell Systems 
Technical Reference, No. 41004 (1973). 

6. F.M. Gardner, Phaselock Techniques, John Wiley & Sons (1979). 

7. M.K. Simon and J.D. Smith, "Carrier Synchronization and Detection of QASK 
Signal Sets," IEEE Trans. on Communications, Vol. COM-22, 98-106 (February 
1974). 

8. W.C. Lindsey and M.K. Simon, "Carrier Synchronization and Detection of 
Polyphase Signals," IEEE Trans. on Communications, Vol. COM-20, 441-454 (June 
1972). 

9. H.L. Van Trees, Detection, Estimation and Modulation Theory, John Wiley and 
Sons (1968). 

10. TMS7742 Data Sheet, Texas Instruments (1985). 

11. TMS7000 Family Data Manual, Texas Instruments (1986). 

12. M. Schwartz, Information Transmission, Modulation, and Noise, McGraw-Hill 
(1970). 

13. A. Lovrich and R. Simar, "Implementation of FIRIIIR Filters with the 
TMS3201O/TMS32020," Digital Signal Processing Applications with the TMS320 
Family, Texas Instruments (1986). 

14. T.W. Parks and C.S. Burrus, Digital Filter Desi$n, John Wiley and Sons (1987). 

15. 'TMS32010 User's Guide, Texas Instruments (1983). 

16. A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill (1962). 

17. D. Garcia, "Precision Digital Sine-Wave Generation with the TMS3201O," Digital 
Signal Processing Applications with the TMS320 Family, Texas Instruments (1986). 

18. H. Stark and F.B. Tuteur, Modern Electrical Communications, Prentice-Hall (1979). 

Theory and Implementation of a Splitband Modem Using the TMS3201Q 277 



Appendix A 

Derivation of Demodulator Structure Equations 

The equations that describe the demodulator structlire (see Figure 6) of the modem 
receiver are derived in this Appendix. The background material required for this derivation 
is presented first. The following discussion requires a basic ktiowledge of complex variables. 

The baseband signal, at the output Of the transmitter digital lowpass filters (see 
Figure 3), can be expressed as a complex value 

c(nT s) = I(nT s) - j Q(nT s) (A-I) 

For transmission through the telephone network, this signal is modulated to the 
voice frequencies. Modulation involves multiplication by a complex exponential. 18 The 
modulated signal is then given by 

m(nT s) = c(nT s) ejwenT s (A-2) 

where We is the carrier frequency. Substitution of (A-I) into (A-2), and the use of the identity 

ejwenTs = cos(wenTs) + j sin(wenTs) 

give 

m(nTs) {I(nTs) cos(wenTs) + Q(nTs) sin(wenTs)} 

+ j {I(nTs) sin(wenTs) - Q(nTs) cos(wenTs)} (A-3) 

The real and imaginary parts of (A-3) are later shown to be a Hilbert transform 
pair. Two signals are referred to as a Hilbert transform pair if they are related with a 
Hilbert transform. A Hilbert transform is implemented with a filter called a Hilbert 
transformer. The Hilbert transform pair property that relates the real and imaginary parts 
of (A-3) allows the transmission of the real part of (A-3) only. The imaginary part is 
recovered at the receiver by Hilbert transforming the incoming signal. Figure A-I shows 
the spectrum of the complex baseband information c(nTs). Figure A-2 shows the spectrum 
after modulation by the complex exponential (see equation (A-2». This is the spectrum 
of m(nTs). Figure A-3 shows the spectrum of the transmitted signal, i.e., the spectrum 
of the real part of m(nTs). 

278 Theory and Implementation of a Splitband Modem Using the TMS32010 



c(w) 

w 

Figure A-I. Spectrum of Complex Baseband Information 

M(w) 

1 

Figure A-2. Spectrum after Modulation 

s(w) 

Figure A-3. Transmitted Spectrum 

A Hilbert transformer is defined to be a filter with the transfer function 18 
11' 

Ht(w) = -ej2 sgn(w) = -j sgn(w) (A-4) (A-4) 

where sgn is the sign function defined by equation (29). The transfer function characteristics 
of the Hilbert transformer are shown in Figure A-4, where it is seen that the Hilbert 
transformer introduces a -90 degree phase shift for positive frequencies (w > 0), and 
a +90 degree phase shift for negative frequencies (w < 0). 

Theory and Implementation of a Splitband Modem Using the TMS32010 279 



w 

-jl------

Figure A-4. Hilbert Transformer Transfer Function 

The Hilbert transform pair relationship between the real and imaginary parts of 
(A-3) is discussed next. It is shown tha.t the imaginary part of m(nT s) is the output of 
a Hilbert transformer with the input being the real part ofm(nTs). The analysis is performed 
in the frequency domain where multiplication is replaced by convolution. Let S(w) and 
S(w) be the Fourier transforms of the real and imaginary parts of m(nTs), respectively. 
Then (see equation (A-3» 

1 j 
S(w) = '2{I(w-wc) + I(w+wd} + '2 {Q(w+wC> - Q(w-wc)} (A-5) 

A j 1 
S(w) = '2 {I(w+wc) - I(w-wc)} - '2 {Q(w-wc) + Q(w+wd} (A-6) 

where I(w) and Q(w) are the Fourier transforms of I(nTs) and Q(nTs), respectively. 

With S(w) as the input to the Hilbert transformer (transfer function Ht(w», the 
output in the frequency domain is given by 

O(w) = S(w) Ht(w) = -j S(w) sgn(w) 

Substitution of (A-5) into (A-7) gives 
1 ' 

O(w) = ,- j { '2 [I(w - wc) + I(w + wc)] 

J + 2 [Q(w+wd - Q(w-wd]} sgn(w) 

Since for positive frequencies (w > 0), 

o 
o 

(A-7) 

(A-8) 

(A-9) 

280 , Theory and Implementation of a Splitband Modem Using the TMS32010 



and for negative frequencies (w < 0), 

o 
o 

equation (A-8) simplifies to 

(A-lO) 

{ 
- ~ I(w - wc) - ~ Q(w - wc) where w > 0 

O(w) = . (A-ll) 
J 1 2 I(w +Wc) - 2 Q(w +wc) where w < 0 

Substitution of (A-9) and (A-lO) into (A-6) and comparison of the result with 
(A-II) shows that Sew) = O(w). 

Therefore, the real and imaginary parts of m(nTs) (see equation (A-3» represent a Hilbert 
tranform pair . .with s(nTs) and s(nTs) denoting the real and imaginary parts of m(nTs), 
respectively, ,(A-3) can be written as 

m(nT s) = senT s) + j senT s) (A-I2) 

At the receiver end, recovery of the imaginary part senT s) involves Hilbert transforming 
the real part s(nTs) (incoming signal), as shown in Figure A-5. 

s(nTsl 

II: 
I'(nT 

0 ~ .... 
sl 

s(nTsl 
<C 
...J 
:::l 
0 
0 
2 Q'(n w r--s(nTsl s(nTsl 0 

HILBERT 
TRANSFORMER 

Figure A-S. Recovery of Complex Information by Hilbert 
Transforming the Incoming Signal 

Consider the Fourier transform of (A-I2) 

M(w) Sew) + j Sew) 

Sew) + j {- j Sew) sgn(w)} 

Sew) + Sew) sgn(w) 

Theory and Implementation of a Splitband Modem Using the TMS32010 281 



Therefore, 

M(w) = (A-13) { 
2 S(w) where W > 0 

o where w < 0 

i.e., the spectrum of m(nT s) is zero for negative frequencies (see Figure A-2). If this 
property does not hold due to the use of a nonideal Hilbert transformer, harmonics appear 
at the output of the receiver demodulator (see Appendix B). 

The equations that describe the receiver demodulator are derived next. The 
demodulator translates the recovered complex modulated information back to the baseband. 
This is accomplished by multiplying the passband information with a complex exponential. 

c'(nTs) = m(nTs) e-jwenTs (A-I4) 

where c'(nTs) is the recovered baseband signal, m(nTs) is the passband signal given by 
(A-12), and We is the carrier frequency recovered at the receiver by the carrier recovery 
algorithm. 

Substitution of (A-12) into (A-I4) gives 

c'(nTs) = {s(nTs) cos(wenTs) + s (nTs) sin(wenTs)} 

+ j {s(nTs) cos(wenTs) - s(nTs) sin(wenTs)} (A-I5) 

The complex baseband information c'(nTs) is also given: by (see equation (A-I) and 
Figure 5) 

c'(nTs) = I'(nTs) - j Q'(nTs) 

Equating the real and imaginary parts of (A-I5) to those of (A-I6) results in 

I'(nTs) = s(nTs) cos(wcnTs) + s(nTs) sin(wcnTs) 

Q'(nTs) = s(nTs) sin(wcnTs) - s(nTs) cos(wcnTs) 

(A-I6) 

(A-l7) 

(A-I8) 

Equations (A-I7) and (A-I8) describe the receiver demodulator of Figure 6. 

282 Theory and Implementation of a Splitband Modem Using the TMS3201~ 



Appendix B 

Effects of Nonideal Hilbert Transformers 

The effect of nonideal Hilbert Transformers in modem design is studied in this 
Appendix. The following discussion requires a basic knowledge of complex variables. 

The nonideal Hilbert transformer characteristics differ from the ideal ones shown 
in Figure 28 and described by equation (A-4) in Appendix A. The phase shift introduced 
by the non ideal filter is not exactly 90 degrees. The transfer function characteristics of 
such a filter are given by 

11" 
H'(w) = - e j (2" + c.) sgn(w) = - j eja sgn(w) (B-1) 

where 'c{' is a nonzero constant indicating the deviation from the ideal filter. 

Consider the effect of a nonideal Hilbert transformer described by equation (B-1). 
The incoming signal s(nTs) is the real part of m(nTs). This signal is filtered by the non ideal 
Hilbert transformer to generate at the output a signal s' (nT s) different from s(nTs) (see 
Appendix A). With S'(w) as the Fourier transform of s'(nTs), the output of the nonideal 
Hilbert transformer can be described in the frequency domain by 

S'(w) = H'(w) Sew) = -j eja sgn(w) Sew) (B-2) 

The complex signal at the input of the receiver demodulator is described by 

m'(nTs) = s(nTs) + j s'(nTs) 

The frequency-domain equivalent of (B-3) is 

M'(w) = Sew) + j S'(w) 

Substitution of (B-2) into (B-4) gives 

M'(w) = Sew) + eja sgn(w) Sew) 

Equation (B-5) can be written as 

M'(w) = 
Sew) { 

Sew) { I 

where w > 0 

where w < 0 

(B-3) 

(B-4) 

(B-5) 

(B-6) 

For a non ideal Hilbert transformer, the parameter 'c{' is nonzero. This results 
in M'(w) having nonzero components at negative frequencies as indicated by (B-6). The 
spectrum of the sig,nal at the input of the receiver demodulator is shown in Figure B-1. 
Comparison of Figures A-2 and B-1 indicates that the effect of the nonideal Hilbert 
transformer is the generation of nonzero spectral components at negative frequencies. 

Theory and Implementation of a Splitband Modem Using the TMS32010 283 



M'(wl 

0.5--)2+2 cosO! 

w 

Figure B-1. Effect of Nonideal Hilbert Transformer on the Spectrum of the 
Complex Signal at the Input of the Demodulator 

The effect of the receiver demodulator on the spectrum of Figure B-1 is shown 
in Figure B-2. 

C'(wl 

w 

Figure B-2. Effect of .Nonideal Hilbert Transformer on the 
Spectrum of the Baseband Complex Signal 

Figure B-2 indicates that harmonics appear at the output of the demodulator. The 
frequency of these harmonics is twice the carrier frequency. Their elimination involves 
the use of lowpass filters at the output of the demodulator. These filters, however, introduce 
group delay and possibly phase delay effects that affect the carrier recovery and decision 
algorithms. Compensation for the lowpass filter side-effects results in a more complicated 
modem receiver design. Such nonideal Hilbert transformers are encountered. in analog 
modems. This appendix has demonstrated one more advantage of a digital implementation 
of a modem using the TMS32010 digital signal processor. 

284 Theory and Implementation of a Splitband Modem Using the TMS32010 



Appendix C 

Automatic Gain Control Table Generator Code 

Theory and Implementation of a Splitband Modem Using the TMS32010 285 



10 ' 
20 ' 
30 
40 
50 
60 
70 
80 ' 
90 
100 ' 
110 ' 
120 
130 
140 ' 
150 
160 
170 
180 ' 
190 ' 
200 ' 
210 
220 ' 
230 
240 
250 ' 
260 ' 
270 
280 
290 
300 
310 
320 
330 ' 
340 
350 ' 
360 
370 ' 

THIS PROGRAM GENERAlES THE GAIN TABLE FOR THE AUTOMAT"iC 
GAIN CONTROL ALGORITHM IN THE MODEM CODE 

THE PROGRAM PROMPTS THE USER IN THE FOLLOWING MANNER: 

AGC TABLE ADJUST FACTOR 1 
ThIs reature allows the AGC to gaIn to a level lower 
than unIty. The entry ror unIty gaIn Is 256, to set 
the gaIn lower than unIty enter the approprIate per-

centage or 256. 

ENTER NAME OF OUTPUT FilE = 
ThIs prompt request the name or a MSDOS rormat rIle 
name to store the generated table. 

TABLE LENGTH = 
ThIs reature allows the user to generate dlrrerent 
length AGC tables. ThIs allows the accuracy or the 
table to vary by the number Or entries. The number 
or entrIes Is tIed to the number or bIts used In the 
table lookup. In the modem algorIthm sIx bIts were 
used In the lookup, thererore the table length wIll be 
64 words. 

THE TABLE GENERATED WILL INCLUDE DESCRIPTIVE COMMENTS AND WILL 
BE IN A FORM READY TO BE ADDED DIRECTLY INTO THE ASSEMBLY CODE 
FOR AN ALGORITHM. SINCE THE AGC SOFTWARE SHIFTS THE LOOKUP 
VALUE TO THE MOST SIGNIFICANT BIT THE fiRST HALF OF THE AGC TABLE 
(THE LESS ACCURATE HALF) WILL NOT BE USED. THEREFORE THE USER 
CAN DELETE THE FIRST HALF AND SAVE A CONSIDERABLE AMOUNT OF PROGRAM 
MEMORY SPACE. 

THIS PROGRAM WAS WRITTEN BY PETER EHllG FOR USE ON A 
TEXAS INSTRUMENTS PROFESSIONAL COMPUTER 

THE CODE TO MY KNOWLEDGE IS WRITTEN IN STANDARD MS-BASIC AND 
SHOULD OPERATE ON ANY MSDOS SYSTEM. 

380 PRINT 'PROGRAM STARTED" 
390 DIM TBlD(500),HTB$(500) 
400 OPEN "lPTI:" FOR OUTPUT AS #1 
410 INPUT "AGC TABLE ADJUSTMENT FACTOR? ",GAINADJ 
420 INPUT'''ENTER NAME OF OUTPUT FilE ",OUTFIlE$ 
430 OPEN OUTFIlE$ FOR OUTPUT AS #3 
440 PI = 3.1415927# 
450 PI2 = PI • 2 
460 INPUT "TABLE lENGTH = ",TBlEN 
470 GOSUB 820 • GENERATE TABLE HEADER 
480 DELTA = 3276BI / TBlEN 
490 FOR I = I TO TBlEN 
500 TBl = INT(32767 / (I • DELTA) • GAINADJ) 
510 TBlD(I) = TBL 
S20 HTBl$ = HEX$(TBL) 
530 HTB$(I) = HTBl$ 
540 GOSUB 690 'DISPLAY RANGE ACCURACY (OPTIONAL) 
550 NEXT 
560 GOTO 650 
570 ' SAVE AGC TABLE TO DISK 
580 PRINT#3, " DATA "; 
590 PRINT#3, USING ">, ,";HTB$(I); 
600 PRINT#3, " "; 
610 TBlD. rBLD(I) / 256 
620 PRINT#3, USING "###.#######";TBLDI 
630 RETURN 
640 • END OF AGC TABLE SAVE ROUTINE 
650 GOSUB 940 • DISPLAY SECOND LEVEL LOOKUP 
660 GOSUB 880 • GENERATE TABLE TERMINATION COMMENTS 
670 PRINT "PROGRAM FINISHED" 
680 END 

286 Theory and Implementation ofa SplitbandModem Using the TMS32010 



690 ' THIS ROUTINE DISPLAYS INFORMATION ABOUT THE RANGE 
700 ' ACCURACY OF EACH STEP OF THE TABLE 
710 TBLRL = (I - I) • DELTA - 256 
720 IF TBLRL < 0 THEN TBLRL s 0 
730 SHI$ = HEX$(TBLRL) 
740 SHIA$ = HEX$(TBLRL • TBL I 256) 
750 TBLRH .. (I - I) • DELTA + 255 
760 SH2$ .. HEX$(TBLRH) 
770 SH2A$ = HEX$(TBLRH • TBL I 256) 
780 PRINT I;TBL;HTBL$;" ";SHI$;" ";5HIA$;" ";SH2$;" ";SH2A$ 
790 ' PRINT#I,I;TBL;HTBL$;" ";SHI$;" ";SHIA$;" ";SH2$;" ";SH2A$ 
800 RETURN 
810 ' END OF RANGE INFORMATION 
820 ' THE ROUTINE GENERATES THE HEADER COMMENTS FOR THE TABLE 
830 PRINT#3."············································· ......•.•.•.... , 
840 PRINT#3,"AGCTBL EQU $ AGC TABLE LENGTH = "; 
850 PRINT#3, USING "###";TBLEN 
860 RETURN 
870 ' END OF HEADER ROUTINE 
880 ' THIS ROUTINE GENERATES THE TABLE TERMINATION COMMENTS 890 PRINT#3."············································· .....•.•.••.•• " 
900 PRINT#3, " PAGE" 
910 CLOSE 
920 RETURN 
930 ' END OF TERMINATOR ROUTINE 
940 ' TRY SECOND LEVEL LOOKUP 
950 DELTAI .. DELTA· 8 
960 FOR I = I TO 64 
970 GOSUB 570 SAVE AGC TABLE TO DISK 
980 TBLRL .. (I - I) • DELTA - 256 
990 IF TBLRL < 0 THEN TBLRL .. 0 
1000 TBLRH .. (I - I) • DELTA + 255 
1010 SHI$ = HEX$(TBLRL) 
1020 SH2$ = HEX$(TBLRH) 
1030 GOSUB 1100 ' CALCULATE ACCURACY STEPS 
1040 SHIA$ • HEX$(TBLRL • TBLD(TBLRI) I SHFI) 
1050 SH2A$ = HEX$(TBLRH • TBLD(TBLR2) I SHFI) 
1060 PRINT I;TBL;HTBL$;" ";SHI$;" ";SHIA$;" ";SH2$;" ";SH2A$;TBLRI;TBLR2;SHFI 
1070 ' PRINT#I,I;TBL;HTBL$;" ";SHI$;" ";SHIA$;" ";SH2$;" ";SH2A$;TBLRI;TBLR2;SHF 
I 
1080 NEXT 
1090 RETURN 
1100 'TABLE LOOKUP SHIFTER 
1110 TBLEV = TBLRH - 4096 
1120 IF TBLEV > 0 GOTO 1180 
1130 TBLEV = TBLEV + 2048 
1140 IF TBLEV > 0 GOTO 1220 
1150 TBLEV = TBLEV + 1024 
1160 IF TBLEV > 0 GOTO 1260 
1170 GOTO 1300 
1180 TBLRI .. I 
I 190 TBLR2 .. I 
1200 SHFI = 256 
1210 RETURN 
1220 TBLR2 .. FIX(TBLRH I 64) + 
1230 T8LRI = FIX(TBLRL I 64) + 
1240 SHFI = 32 
1250 RETURN 
1260 TBLR2 .. FIX(TBLRH I 32) + 
1270 TBLRI = FIX(TBLRL I 32) + 
1280 SHFI = 16 
1290 RETURN 
1300 TBLR2 = FIX(TBLRH I 16) + 
1310 TBLRI = FIX(TBLRL I 16) + 
1320 SHFI .. 8 
1330 RETURN 

Theory and Implementation of a Splitband Modem Using the TMS3201o. 287 



The following 64-polnt table was generated using the 124 for 
the AGC table adjust factor. 

••...•...•..••.•.........•..•.••.....•.•••••••.•.••.•.••••. 
AGCTBL EQU $ AGe TABLE LENGTH = 64 

DATA >IEFF 30.9961000 
DATA >F7F· 15.4960900 
DATA >A55 10.3320300 
DATA >7BF 7.7460940 
DATA >633 6.1992190 
DATA >52A 5.1640630 
DATA >460 4.4257820 
DATA >3DF 3.8710940 
DATA >371 3.4414060 
DATA >319 3.0976560 
DATA >201 2.8164060 
DATA >295 2.5820310 
DATA >262 2.3828130 
DATA >236 2.2109380 
DATA >211 2.0664060 
DATA >IEF 1.9335940 
DATA >102 1.8203130 
DATA >IB8 1.7187500 
DATA >IAI 1.6289060 
DATA > 18C 1.5468750 
DATA >179 1.4726560 
DATA >168 1.4062500 
DATA >159 1.3476560 
DATA >14A 1.2890630 
DATA >130 1.2382810 
DATA >131 1.1914060 
DATA >125 1.1445310 
DATA > liB 1.1054690 
DATA > III 1.0664060 
DATA >108 1.0312500 
DATA >FF 0.9960938 
DATA >F7 0.9648438 
DATA >FO 0.9375000 
DATA >E9 0.9101562 
DATA >E2 0.8828125 
DATA >DC 0.8593750 
DATA >06 0.8359375 
DATA >00 0.8125000 
DATA >CB 0.7929688 
DATA >C6 0.7734375 
DATA >C1 0.7539063 
DATA >BC 0.7343750 
DATA >68 0.7187500 
DATA >64 0.7031250 
DATA >60 0.6875000 
DATA >AC 0.6718750 
DATA >A8 0.6562500 
DATA >A5 0.6445313 
DATA >Al 0.6289063 
DATA >9E 0.6171875 
DATA >96 0.6054688 
DATA >98 0.5937500 
DATA >95 0.5820313 
DATA >92 0.5703125 
DATA >90 0.5625000 
DATA >80 0.5507813 
DATA >86 0.5429688 
DATA >88 0.5312500 
DATA >86 0.5234375 
DATA >84 0.5156250 
DATA >82 0.5078125 
DATA >7F 0.4960938 

288 Theory and Implementation of a Splitband Modem Using the TMS32010 



DATA >70 
DATA >7B 

0.4B82813 
0.4804688 ...............................•........................... 

10 
20 
30 ' 
40 
50 
60 
70 
80 

PAGE 

This program generates sine table In a Format compatible 
to the 3Z0 assembler. This allows the user to generate 
any length sine table and this program will calculate the 
table entries, conFigure them In a Format compatible to 
the assembler, and document the code. 

The program prompts the user In the Following manner: 

ENTER NAME OF OUTPUT FILE = 
90 
100 
110 
120 
130 
140 
150 ' 
160 
170 
180 
190 ' 
200 
210 
220 ' 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 

This prompt request the name of a MSOOS Format File 
name to store the generated table. 

TABLE LENGTH = 
Th I s Feature allows the user to se 1 e.ct the length 
the sine table to be generated and thereFore the 
accuracy of the table steps. 

This program was written by Peter Ehllg For use on a 
Texas Instruments ProFessional Computer 

of 

The code to my knowledge Is written In standard MS-BASIC and 
should operate on any MSOOS system. 

PRINT 'PROGRAM STARTED" 
INPUT "ENTER NAME OF OUTPUT 
OPEN OUTFILE$ FOR OUTPUT AS 
PI = 3.1415927# 
PI2 = PI * 2 

FILE = ",OUTFILE$ 
#3 

INPUT "TABLE LENGTH 
DELTA = PIZ I TBLEN 
INDXI = -DELTA 

",TBLEN 

NETOEG = 360 I TBLEN 340 PRINT#3,"············································· .............. " 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 

PRINT#3,"SINE EQU $ 
PRINT#3, USING "###";TBLEN 
FOR I = 1 TO TBLEN 
INDXI = INOXI + DELTA 
TBL = SIN( INOXI) 
HTBL$ = HEX$(TBL*16384) 
RAOS = INOXI I PI 
DEGR = NETOEG * (I - I) 
PRINT#3, .. DATA "; 
PRINT#3, USING ">\ ,";HTBL$; 
PRINT#3, " ANGLE = "; 
PRINT#3, USING "###.####";DEGR; 
PRINT#3, .. SINE = ."; 
PRINT#3, USING "#.######";TBL 
NEXT 

SINE TABLE LENGTH = "; 

PRINT#3."············································· .............. " 
PRINT#3, " PAGE" 
CLOSE 
PRINT "PROGRAM FINISHEO" 
END 

Theory and Implementation of a Splitband Modem Using the TMS32010 289 



..•..•.•••••...••.•.•..••.....•.......••.....•...•••••....• 
S[NE EQU $ S[NE TA6LE LENGTH 32 

DATA >0 ANGLE 0.0000 S[NE 0.000000 
DATA >C7C ANGLE 11.2500 S[NE 0.195090 
DATA > 187E ANGLE 22.5000 SINE 0.382683 
DATA >236E ANGLE 33.7500 SINE 0.555570 
DATA >2041 ANGLE 45.0000 S[NE 0.707107 
DATA >3537 ANGLE 56.2500 SINE 0.831470 
DATA >3621 ANGLE 67.5000 SINE 0.923880 
DATA >3EC5 ANGLE 78.7500 SINE 0.980765 
DATA >4000 ANGLE 90.0000 S[NE 1.000000 
DATA >3EC5 ANGLE 101.2500 S[NE 0.980765 
DATA >3621 ANGLE 112.5000 SINE 0.923880 
DATA >3537 ANGLE 123.7500 S[NE 0.831470 
DATA >2041 ANGLE [35.0000 S[NE 0.707107 
DATA >238E ANGLE 146.2500 SINE 0.555570 
DATA >187E ANGLE 157.5000 SINE 0.382683 
DATA >C7C ANGLE 168.7500 SINE 0.195090 
DATA >0 ANGLE 180.0000 SINE -.000000 
DATA >F384 ANGLE 191.2500 SINE -.195091 
DATA >E782 ANGLE 202.5000 SINE -.382684 
DATA >DC72 ANGLE 213.7500 SINE -.'555571 
DATA >D26F ANGLE 225.0000 SINE -.707107 
DATA >CAC9 ANGLE 236.2500 SINE = -.831470 
DATA >C4DF ANGLE 247.5000 SINE -.923880 
DATA >CI3B ANGLE 258.7500 SINE -.980786 
DATA >COOO ANGLE 270.0000 SINE ~-I.OOOOOO 
DATA >CI3B ANGLE 281.2500 SINE -.980785 
DATA >C4DF ANGLE 292.5000 SINE = -.923879 
DATA >CAC9 ANGLE 303.7500 SINE -.831469 
DATA >D2BF ANGLE 315.0000 SINE -.707106 
DATA >DC72 ANGLE 326.2500 SINE -.555569 
DATA >082 ANGLE 337.5000 SINE -.382682 
DATA >F384 ANGLE 348.7500 SINE -.195089 •..•....•.•.......•.•..•........••••...........•••••••••... 
PAGE 

290 Theory and Implementation of a Splitband Modem Using the TMS32010 



Appendix D 

TMS32010 Source Code 

Theory and Implementation of a Splitband Modem Using the TMS32010 291 



.*** ••••••••••• *.* •••••••••••••••••••••••••••••••••••••• *. 
DSP MODEM PROGRAM 

THIS CODE IMPLEMENTS A BELL 2I2A I V.22 MODEM 
ON THE TMS320IO. 

SCRAMBLING AND DESCRAMBLING ARE IMPLEMENTED 
ON THE TMS7742 . 

•••••••••••••••••••••••••••••••••••••••• * ••••••••••••••••• 
lOT 
OPTION 
AORG 
B 

'TASK6212' 
XREF . 
o 
START 

••••••• *-----------------------------------------_ ••••••• * 
DATA MEMORY USED . 

•••••••• ------------------------------------------~ ••• * ••• 
XDELTA EQU 0 
XALPHA EQU I 
SINA EQU 2 
COSA EQU 3 
ONE EQU 4 
MASK. I EQU 5 
MASK2 EQU 6 
MASK3 EQU 7 
OFSETO EQU 8 
OFSETI EQU 9 
XPTR EQU 10 
CXO EQU 11 
CXI EQU 12 
CX2 EQU 13 
XIBUFO EQU 14 
XIBUFI EQU 15 
XIBUF2 EQU 16· 
XQBUFO EQU 17 
XQBUFI EQU 18 
XQBUF2 EQU 19 
XIOUT EQU 20 
XQOUT EQU 21 
XMTOUT EQU 22 
XOLDPH EQU 23 
XNEWPH EQU 24 
RDIBIT EQU 25 
INDXPH EQU 26 
XDIBIT EQU 27 
PLUSI EQU 28 
XMTD EQU 29 
RBUFO EQU 30 
RBUFI EQU 31 
RBUF2 EQU 32 
RBUF3 EQU 33 
RBUF4 EQU 34 
RBUF5 EQU 35 
RBUF6 EQU 36 
RBUF7 EQU 37 
RBUF8 EQU 38 
RBUF9 EQU 39 
RBUFIO EQU 40 
RBUF II EQU 41 
RBUFI2 EQU 42 
RBUFI3 EQU 43 
RBUFI4 EQU 44 
RBUFI5 EQU 45 
RBUFI6 EQU 46 
RBUFI7 EQU 47 
RBUFI8 EQU 48 
RBUFI9 EQU 49 
RBUF20 EQU 50 
RBUF21 EQU 51 

292 

• SWAVE MACRO CARRIER RATE 
* SWAVE MACRO CARRIER ANGLE 
• XMIT SIN CARRIER MAGNETUDE 
• XMIT COS CARRIER MAGNETUDE 
• VALUE I HELD FOR MASKING 
• SWAVE MACRO TBL RANGE ADJ >7F 
• SWAVE MACRO TBL RANGE ADJ >7FFF 
• XMIT PHASE ENCODE MASK >0006 
• SWAVE MACRO POINT TO COS TABLE 
• XMIT POINT TO DIBIT ENCODE TABLE 
• XMIT POINT TO RAISED COS TABLE 
• XMIT COEF FOR RAISED COS 
• XMIT COEF FOR RAISED COS 
• XMIT COEF FOR RAISED COS 
• XMIT STORE DATA FOR RAISED COS 
• XMIT STORE DATA FOR RAISED COS 
* XMIT STORE DATA FOR RAISED COS 
• XMIT STORE DATA FOR RAISED COS 
• XMIT STORE DATA FOR RAISED COS 
• XMIT STORE DATA FOR RAISED COS 
• XMIT HOLD FILTERED I VALUE 
• XMIT HOLD FILTERED 0 VALUE 
• XMIT HOLD FOR TRANSMIT OUTPUT 
• XMIT HOLD LAST PHASE 
• XMIT HOLD NEW PHASE 
• DECODED DIBIT 
• XMIT POINT TO PHASE ENCODE TABLE 
• XMIT DIBIT ISOLATION MASK 
• +1 012 >FFF &. MASK VALUE 
• XMIT HOLD DTE INPUT 
• HOLD LOWPASS FILTERED SAMPLE 
OZ RECEIVE BPF COEFFIC·IENT 
OZ RECEIVE BPF COEFFICIENT 
OZ 
OZ 
OZ 
"I. 
OZ 
OZ 
OZ 
OZ 
OZ 
OZ 
OZ 
OZ 
OZ 
OZ 
OZ 
OZ 
"I. 
1. 
OZ 

RFCEIVE 
RECEIVE 
RECE I VE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 
RECEIVE 

BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 
BPF COEFFICIENT 

Theory and Implementation of a Splitband Modem Using the TMS32010 



RBUF22 EQU 52 
RBUF23 EQU 53 
RBUF24 EQU 54 
RBUF25 EQU 55 
RBUF26 EQU 56 
RBUF27 EQU 57 
RBUF28 EQU 58 
RBUF29 EQU 59 
RBUF30 EQU 60 
RBUF31 EQU 61 
RBUF32 EQU 62 
RBUF33 EQU 63 
RBUF34 EQU 64 
RBUF35 EQU 65 
RBUF36 EQU 66 
RBUF37 EQU 67 
AGC EQU 68 
AGCRA EQU 69 
RECST EQU 70 
AGCOFF EQU 71 
BSMAX EQU 72 
AGCNT EQU 73 
AGCLEV EQU 74 
SAMPLE EQU 75 
SAMXMT EQU 76 
B !TOUT EQU 77 
RPHSE EQU 78 
TRSHDI EQU 79 
RALPHA EQU 80 
RDELTA EQU 81 
ISUM EQU 82 
QSUM EQU 83 
REC I EQU 84 
ROLDPH EQU 85 
RNEWPH EQU 86 
ERRSIG EQU 87 
MINUSI EQU 88 
PLL I EQU 89 
PLL2 EQU 90 
FOUR EQU 91 
SIGNI EQU 92 
SIGNQ EQU 93 
ERROR EQU 94 
TEMP EQU 95 
RECQ EQU 96 
*-----DEFINE REGISTERS 
ENRGY EQU 97 
PENRGY EQU 98 
BERROR EQU 99 
BEROUT EQU 100 
BPLL I EQU 101 
BPLL2 EQU 102 
TRSHD2 EQU 103 
*---------------

~ RECEIVE BPF COEFFICIENT 
~ RECEIVE BPF COEFFICIENT 
~ RECEIVE BPF COEFFICIENT 
~ RECEIVE BPF COEFFICIENT 
~ RECEIVE BPF COEFFICIENT 
7. RECEIVE BPF COEFFICIENT 
7. RECEIVE BPF COEFFICIENT 
~ RECEIVE BPF COEFFICIENT 
7. RECEIVE BPF COEFFICIENT 
7. RECEIVE BPF COEFFICIENT 
7. RECEIVE BPF COEFFICIENT 
~ RECEIVE BPF COEFFICIENT 
7. RECEIVE BPF COEFFICIENT 
~ RECEIVE BPF COEFFICIENT 
~ RECEIVE BPF COEFFICIENT 
7. RECEIVE BPF COEFFICIENT 
* AUTOMATIC GAIN FACTOR 
* SIGNAL MAX RUNNING AVERAGE FOR AGC 
* RECEIVER STATUS 
* AGC CALCULATION LOOKUP TABLE 
* BAUD SIGNAL MAX 
* BAUD SAMPLE COUNT 
* TEMPORARY AGC LEVEL (AGCUPT) 
* BAUD LIMIT SAMPLE COUNT 
• TRANSMITTER SAMPLE COUNT 
• DIBIT POSITIONED TO XMIT TO 7041 
• OFFSET FOR RECEIVE PHASE DECODE 
• THRESHOLD FOR CARRIER RECOVERY 
• RECEIVE CARRIER POINTER 
• DELTA TO GENERATE RECEIVE CARRIER 
• FILTERED/PHASE SHIFTED SAMPLE 
• FILTERED/PHASE SHIFTED SAMPLE 
• BASEBAND I CHANNEL 
• PREVIOUS ABSOLUTE PHASE (QUADRANT) 
• CURRENT ABSOLUTE PHASE (QUADRANT) 
• FILTERED CARRIER ERROR SIGNAL 
• MINUS I IN THE QI2 FORMAT 
• CARRIER RECOVERY PLL FILTER COEFFICIENT I 
• CARRIER RECOVERY PLL FILTER COEFFICIENT 2 
• )4 ( MASK VALUE FOR PHASE CODE/DECODE) 
• SIGN OF I CHANNEL (TO COMPUTE CARRIER ERROR) 
• SIGN OF Q CHANNEL (TO COMPUTE CARRIER ERROR) 
• CARRIER PHASE ERROR 
• MISC. TEMPERORY REGISTER 
• BASEBAND Q CHANNEL 

FOR BAUD CLOCK 
• CURRENT ENERGY 
• PREVIOUS ENERGY 
• BAUD CLOCK ERROR 
• OUTPUT OF BAUD PLL LOOP FILTER 
• CLOCK RECOVERY PLL FILTER COEFFICIENT I 
• CLOCK RECOVERY PLL FILTER COEFFICIENT 2 
• CLOCK RECOVERY TRESHOLD 

TRANSMITTER DIBIT ENCODER TABLE. 
********------------------------------------------******** 

ENCODE DATA )0002 · DIBIT '0 I' 90 deg. 
DATA )0000 · DIBIT ' 00' = 0 deg. 
DATA )0004 · DIBIT ' 10' = IBO deg 
DATA )0006 · DIBIT 'I I' = 270 deg. 

XPHASE DATA )7FFF · 0 deg. I CHANNEL I 
DATA )0000 Q CHANNEL 0 
DATA )0000 · 90 deg. I CHANNEL 0 
DATA )8000 Q CHANNEL -I 
DATA )SOOO · ISO deg. I CHANNEL -I 
DATA )0000 Q CHANNEL 0 
DATA )0000 · 270 deg. I CHANNEL 0 
DATA )7FFF Q CHANNEL I 

*.**.*.*------------------------------------------*.****** 

Theory and Implementation of a Splitband Modem Using the TMS32010 293 



RECEIVER DIBIT ENCODER TABLE. 
DIBITS are Tormed as 'MSB.LSB' • 

••• * •••• ---------------------~-------------------- •• * • •••• 
RPHASE DATA >0001 · 0 deg .• DIBIT '01' 

DATA >0000 · 90 deg .• DIBIT '00' 
DATA >0002 · IBO deg .• DIBIT ' 10' 
DATA >0003 · 270 deg .• DIBIT '11-' 

MI DATA >7FFF · MASK 1 
M2 DATA >007F '. MASK 2 
M3 DATA >0006 · MASK 3 
CK DATA >0208 · CLOCK FOR AlB 
MD DATA >OOOA · MODE FOR AlB 
ST DATA > 1800 

DATA >0000 
DT DATA >1000 · TRANSMIT DELTA. 

DATA >2000 · RECEIVE DELTA. 
THI DATA >0007 0.01 Q12 TRSHD FOR CARRIER 
TH2 DATA >0008 0.01 QI2 TRSHD FOR 8AUD CLOCK 
MINI DATA >FOOO · -I QI2 
PLSI DATA >OFFF 1 Q12 

•••••• **-----------------------------------------_ •• ** •••• 
PLL LOOP FILTER COFFECIENTS . ........ _----------------------------------------_ ..... _.-

PLLCI DATA >4500 • Q15 CARRIER PLL INITIAL COEF. I 
PLLC2 DATA >80 * Q15 CARRIER PLL COEFFICIENT 2 
BPLLCI DATA >4000 • () IS 8AUD CLOCK PLL INITIAL COEF. 
BPLLC2 DATA >50 * Q15 BAUD CLOCK PLL COEFFICIENT 2 
PLLC DATA >7AOO • QI5 CARRIER PLL STEADY STATE COEF. 1 
BPLLC DATA >7S00 • Q15 BAUD CLOCK PLL STEADY STATE COEF. 

** ••••••• *----------------------------------------*** •••• -
TASK MASTER SEQUENCE TABLE (RECEIVE) 
TASKS ARE EXECUTED FROM BOTTOM TO TOP 

...•...•.. _--------------------------------------_ .... _._. 
TSKSEQ EQU $ 

DATA DUMMY UNUSED CYCLE 15 
DATA DUMMY UNUSED CYCLE 14 

- DATA DUMMY UNUSED CYCLE 13 
DATA DUMMY UNUSED CYCLE 12 
DATA BDCLK2 COMPUTE ENERGY E( 11) 11 
DATA DUMMY UNUSED CYCLE 10 
DATA OUT COMMUNICATE WITH TMS7742 9 
DATA DECODE DECODE/GET SCRAMBLED 'DIBIT 8 
DATA DEMODB DEMODULATE IN THE MIDDLE OF BAUD 7 
DATA DUMMY UNUSED CYCLE 6 
DATA AGCUPT UPDATE THE AGC (IF NECESSARY) 5 
DATA DUMMY UNUSED CYCLE 4 
DATA 8DCLKI COMPUTE ENERGY E(3) 3 
DATA DUMMY UNUSED CYCLE 2 
DATA DUMMY UNUSED CYCLE 1 
DATA DUMMY UNUSED CYCLE 0 

***.*.* ••• _---------------------------------------* ••• _.-. 
TASK MASTER SEQUENCE TABLE (TRANSMIT) 
TASKS ARE EXECUTED FROM BOTTOM TO TOP 

.* •••••••• _--------------------------------------_ •••••••• 

TSKXMT EQU $ 
DATA GETDBT 
DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 

294 

GET THE NEXT DIBIT 
NO CYCLE 
NO CYCLE 
NO CYCLE 
NO CYCLE 
NO CYCLE 
NO CYCLE 

16 
15 
14 
13 
12 
11 
10 

Theory and Implementation of a Splitband Modem Using the TMS3201Q 



DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 
DATA DUMXMT 
PAGE 

NO CYCLE 
NO CYCLE 
NO CYCLE 
NO CYCLE 
NO CYCLE 
NO CYCLE 
NO CYCLE 
NO CYCLE 
NO CYCLE 

9 
8 
7 
6 
5 
4 
3 
Z 
I 

........ _-----------------------------------------_ ....... . 
RAISED COSINE COEFFICIENT TABLE • ........ _----------------------------------------_ ....... . 

COEF DATA ) I 
DATA )49A 
DATA )394 
DATA )FFD9 
DATA )5AZ 
DATA )Z9A 
DATA )FFAB 
DATA )6AO 
DATA ) IB5 
DATA )FF7A 
DATA )789 
DATA )ED 
DATA )FF4C 
DATA )853 
DATA )45 
DATA )FFZ7 
DATA )8F4 
DATA )FFC3 
DATA )FF II 
DATA )963 
DATA )FF65 
DATA )FF I 0 
DATA )99C 
DATA )FFZA 
DATA )FFZA 
DATA )99C 
DATA )FFIO 
DATA )FF65 
DATA )963 
DATA )FFII 
DATA )FFC3 
DATA )BF4 
DATA )FFZ7 
DATA )45 
DATA )853 
DATA )FF4C 
DATA )ED 
DATA )789 
DATA >FF7A 
DATA )IB5 
DATA )6AO 
DATA >FFAB 
DATA >Z9A 
DATA >5AZ 
DATA >FFD9 
DATA >394 
DATA )49A 
DATA > I 

......•...•.•..........•..........•..••....•..•.......••.•• 
AGC DIVIDE LOOKUP TABLE 

STANDARD GAIN RANGE -- >3CC3 - >3F79 
WITH 5~ SIGNAL VARIATION -- >3966 - )4106 ..... 

•••••••••••• * ••••••••• *.* ••••• *.~ •..••.•••••••••••••• * ••••• 

Theory and Implementation of a Splitband Modem Using the TMS32010 295 



AGCTBL EQU $-32 AGC TABLE LENGTH = 32 
DATA >FB 0.9687500 
DATA >FO 0.9375000 
DATA >EA 0.9140625 
DATA >E3 0.8867188 35 -
DATA >00 0.8632812 
DATA >07 0.8398438 
DATA >02 0.8203125 
DATA >CC 0.7968750 39 -
DATA >C7 0.7773438 
DATA >C3 0.7617188 
DATA >BE 0.7421875 
DATA >BA 0.7265625 43 -
DATA >B6 0.7109375 
DATA >B2 0.6953125 
DATA >AE 0.6796875 
DATA >AA 0.6640625 47 -
DATA >A7 0.6523438 
DATA >A3 0.6367188 
DATA >AO 0.6250000 
DATA >90 0.6132813 51 -
DATA >9A 0.6015625 
DATA >97 0.5898438 
DATA >94 0.5781250 
DATA >92 0.5703125 55 -
DATA >8F 0.5585938 
DATA >80 0.5507813 
DATA >8A 0.5390625 
DATA >88 0.531250.0 59 -
DATA >86 0.5234375 
DATA >84 0.5156250 
DATA >82 0.5078125 
DATA >7F 0.4960938 63 -
PAGE 

••••••• *-----------------------------------------_ •••••••• 
SINE(COSINE) TABLE 

•••••••• _----------------------------------------_ ••••••• * 
SINE 

296 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

>0 
>648 
>C8C 
>12C8 
> 18F9 
)IFIA 
>2528 
)2BIF 
>30FC 
)36BA 
)3C57 
>41CE 
>4710 
>4C40 
>5134 
>55F6 
>5A82 
)5ED7 
>62F2 
>6600 
>6A6E 
>6DCA 
>70E3 
>73B6 
>7642 
>7885 
>7A7D 
>7C2A 
>7D8A 
>7E9D 
>7F62 

Theory and Implementation of a Splitband Modem Using the TMS32010 



DATA >7FD9 
COSINE DATA >7FFF 

DATA >7FD9 
DATA >7F62 
DATA >7E9D 
DATA >7D8A 
DATA >7C2A 
DATA >7A7D 
DATA >7885 
DATA >7642 
DATA >73B6 
DATA >70E3 
DATA >6DCA 
DATA >6A6E 
DATA >66DO 
DATA >62F2 
DATA >5ED7 
DATA >5A82 
DATA >55F6 
DATA >5134 
DATA )4C40 
DATA )471D 
DATA )4ICE 
DATA )3C57 
DATA >36BA 
DATA )30FC 
DATA >2BIF 
DATA )2528 
DATA )IFIA 
DATA )18F9 
DATA >12C8 
DATA )C8C 
DATA >648 
DATA )0 
DATA )F9B8 
DATA )F374 
DATA )ED38 
DATA >E707 
DATA >EOE6 
DATA )DAD8 
DATA >D4El 
DATA )CF04 
DATA )C946 
DATA )C3A9 
DATA >BE32 
DATA )B8E3 
DATA )B3CO 
DATA )AECC 
DATA >AAOA 
DATA )A57E 
DATA )A129 
DATA )9DOE 
DATA >9930 
DATA )9592 
DATA >9236 
DATA )8FID 
DATA )8C4A 
DATA )89BE 
DATA )8778 
DATA >8583 
DATA )83D6 
DATA )8276 
DATA )8163 
DATA >809E 
DATA >8027 
DATA )8000 
DATA )8027 
DATA >809E 
DATA )8163 

Theory and Implementation of a Splitband Modem Using the TMS32010 297 



DATA )8276 
DATA )8306 
DATA )8583 
DATA )8778 
DATA )898E 
DATA )8C4A 
DATA )8FID 
DATA )9236 
DATA )9592 
DATA )9930 
DATA )9DOE 
DATA )A129 
DATA )A57E 
DATA )AAOA 
DATA )AECC 
DATA )B3CO 
DATA )B8E3 
DATA )BE32 
DATA )C3A9 
DATA )C946 
DATA )CF04 
DATA )D4E I 
DATA )DAD8 
DATA )EOE6 
DATA )E707 
DATA )ED38 
DATA )F374 
DATA )F9B8 

••• * •••• _----------------------------------------_ •••••••• 
RECEIVER I CHANNEL BPASS FILTER COEFFICIENTS ........ _----------------------------------------_ .... *.*. 

ICFO EQU 58 • 3A 0.014064 
*ICFI EQU o • 0 0.000000 
ICF2 EQU -58 • FFC6 -0.014067 
*ICF3 EQU o • 0 0.000000 
ICF4 EQU 28 * IC 0.006883 
*ICF5 EQU o • 0 0.000000 
ICF6 EQU 37 * 25 0.009069 
*ICF7 EQU o • 0 0.000000 
ICF8 EQU -137 • FF77 -0.033477 
*iCF9 EQU o • 0 0.000000 
ICFIO EQU 262 • 106 0.063862 
*ICFII EQU o • 0 0.000000 
ICFI2 EQU -393 • FE77 -0.095882 
*ICFI3 EQU o • 0 0.000000 
ICFI4 EQU 509 • IFD 0.124198 
*ICFI5 EQU o • 0 0.000000 
lCFI6 EQU -588 * FDB4 -0.143676 
*ICFI7 EQU o • 0 0.000000 
lCFI8 EQU 617 • 269 0.150616 
*ICFI9 EQU o • 0 0.000000 
lCF20 EQU -588 • FDB4 -0.143676 
*ICF21 EQU o • 0 0.000000 
ICF22 EQU 509 • IFD 0.124198 
*ICF23 EQU o • 0 0.000000 
lCF24 EQU -393 • FE77 -0.095882 
*ICF25 EQU o • 0 O~OOOOOO 
ICF26 EQU 262 • 106 0.063862 
*ICF27 EQU o • 0 0.000000 
ICF28 EQU -137 * FF77 -0.033477 
*ICF29 EQU o • 0 0.000000 
ICF30 EQU 37 " 25 0.009069 
"ICF31 EQU o • 0 0.000000 
ICF32 EQU 28 • IC 0.006883 
"ICF33 EQU o • 0 0.000000 
ICF34 EQU -58 • FFC6 -0.014067 
"ICF35 EQU o • 0 0.000000 
ICf36 EQU 58 • 3A 0.014064 

298 Theory and Implementation of a Splitband Modem Using the TMS32010 



........ _----------------------------------------_ ....... . 
RECEIVER Q CHANNEL BPASS FILTER COEFFICIENTS ........ _----------------------------------------_ ........ 

"QCFO EQU 0 " 0 0.000000 
QCFI EQU 61 " 3D 0.014B09 
"QCF2 EQU 0 . 0 0.000000 
QCF3 EQU -47 . FFDI -0.011510 
"QCF4 EQU 0 * 0 0.000000 
QCF5 EQU 0 " 0 0.000034 
"QCF6 EQU 0 " 0 0.000000 
QCF7 EQU 83 " 53 0.020321 
"QCF8 EQU 0 " 0 0.000000 
QCF9 EQU -197 " FF3B -0.048158 
"QCFIO EQU 0 * 0 0.000000 
QCFII EQU 328 " 148 0.079991 
"QCFI2 EQU 0 " 0 0.000000 
QCFI3 EQU -454 " FE3A -0.110844 
"QCFI4 EQU 0 " 0 0.000000 
QCFI5 EQU 554 * 22A 0.135320 
"QCFI6 EQU 0 " 0 0.000000 
QCFI7 EQU -610 * FD9E -0.148859 
*QCFI8 EQU 0 * 0 0.000000 
QCFI9 EQU 610 * 262 0.148859 
*QCF20 EQU 0 " 0 0.000000 
QCF21 EQU -554 * FDD6 -0.135320 
*QCF22 EQU 0 * 0 0.000000 
QCF23 EQU 454 * IC6 O. 110844 
"QCF24 EQU 0 " 0 0.000000 
QCF25 EQU -328 * FEB8 -0.079991 
"QCF26 EQU 0 * 0 0.000000 
QCF27 EQU 197 " C5 0.048158 
*QCF28 EQU 0 * 0 0.000000 
QCF29 EQU -83 * FFAD -0.020321 
*QCF30 EQU 0 " 0 0.000000 
QCF31 EQU 0 " 0 -0.000034 
"QCF32 EQU 0 " 0 0.000000 
QCF33 EQU 47 * 2F 0.011510 
*QCF34 EQU 0 * 0 0.000000 
QCF35 EQU -61 " FFC3 -0.014809 
"QCF36 EQU a " 0 0.000000 

PAGE .......•...........•....•...........................•..... 
Inftializtion routine 

START DINT 
LDPK a 
ROVM 
LACK I 
SACL ONE 
LACK MI " IN ITI AL IZE MASK 
TBLR MASKI 
LACK M2 " IN ITI AL I ZE MASK 2 
TBLR MASK2 
LACK M3 " I NI TI AL IZE MASK 3 
TBLR MASK3 

LACK MD * AlB BOARD I NIT I A L I ZA T ION . 
TBLR TEMP " MD IS MODE CNTRL FOR A18. 
OUT TEMP.PAO 
LACK CK " CK IS SAMPLE RATE FOR AlB. 
TBLR TEMP 
OUT TEMP.PAI * SENT CLOCK VALUE TO PORT I(NEW AlB) 

LACK SINE " TABLE OFFSET INITIALIZATION. 
SACL OFSETO " SINE TABLE OFFSET 
LACK ENCODE 

Theory and Implementation of a Splitband Modem Using the TMS3201Q 299 



SACL 
LACK 
SACL 
LACK 
SACL 
LACK 
SACL 
LACK 
SACL 
ZAC 
SACL 

SACL 
SACL 
LACK 
TBLR 
ADD 
TBLR 

LACK 
TBLR 
ADD 
TBLR 
LACK 
TBLR 
LACK 
TBLR 

OFSETI 
COEF 
XPTR 
XPHASE 
INDXPH 
RPHASE 
RPHSE 
4 
FOUR 

ROLDPH 

RALPHA 
XALPHA 
DT 
XDELTA 
ONE 
RDELTA 

THI 
TRSHDI 
ONE 
TRSHD2 
MINI 
MINUSI 
PLSI 
PLUSI 

* <DIBIT TO PHASE> TABLE 

* RAISED COS COEF. TABLE. 

* OFSET FOR XMIT PHASE TABLE 

* OFSET FOR RCVR PHASE TABLE 

* MISC. INITIALIZATIONS. 
* INITIALIZE PREVIOUS TOTAL PHASE 

* SWAVE INITIALIZATIONS. 

* READ SWAVEDELTAs 

• CARRIER PLL THRESHOLD 

* BAUD CLOCK PLL THRESHOLD 

• -I IN 012 

* +1 IN 012 
*-------------------------------

LACK PLLCI * CARRIER PLL INITIAL COEF. I 
TBLR PLLl 
ADD ONE 
TBLR PLL2 * CARRIER PLL COEF. 2 
ADD ONE 
TBLR BPLLI * BAUD CLOCK PLL INITIAL COEF. I 
ADD ONE 
TBLR BPLL2 • BAUD CLOCK COEF. 2 

*--------------------------------
LACK 
SACL 
LAC 
SACL 
LACK 
SACL 
ZAC 
SACL 
LACK 
SACL 
LACK 
SACL 

LACK 
SACL 
ZAC 
SACL 

PAGE 

AGCTBL 
AGCOFF 
ONE,I3 
AGCRA 
>FF 
AGC 

BSMAX 
3 
AGCNT 
>20 
RECST 

15 
SAMPLE 

SAMXMT 

• SET THE AGC TABLE LOOKUP 
* OFF SET VALUE 
• INITIALIZE RUNNING AVERAGE 
* TO >2000 
* INITIALIZE THE AGC FACTOR 
* TO ONE 
* INITIALIZE THE 
* BAUD SIGNAL MAX TO ZERO 
* RUNNING AVERAGE COUNT 
• TO THREE 
• SET THE ENERGY DETECT 
• BIT IN THE STATUS FLAG WORD 

• SET THE REC SAMPLE COUNT 
• TO 16 
* SET THE XMT SAMPLE COUNT 
• TO ZERO 

.-------------------~-------------------------------------------* 
THE FOLLOWING CODE HANDLES COMMANDS FROM THE 7042 

*---------------------------------------------------------------* 
LAC 
SACL 

COMD BIOZ 
B 

LOOK NOP 
IN 

LOOK I IN 
LACK 
AND 

300 

ONE,4 
TEMP 
LOOK 
COMD 

RBUFO,PA2 
XMTD.PA6 
>30 
XMTD 

SET COUNTER VALUE TO RUN 
DLB AT 600 BAUD 

WAIT FOR 9600HZ SAMPLE PULSE 

*--- DUMMY READ TO GET COUNTER GOING 
LOOK FOR COMMAND 
MASK OFF ALL BUT COMMAND BITS 
CHECK COMMAND BITS FOR NEW COMMAND 

Theory and Implementation of a Splitband Modem Using the TMS32010 



BZ 
SUB 
BZ 
SUB 
BZ 
LACK 
AND 

THIS IS 
BZ 
SUB 
BZ 
SUB 
BZ 
SUB 
BZ 
B 

COMD IF ZERO THEN NO COMMAND YET 
ONE,4 CHECK FOR DIGITAL LOOP BACK TEST 
LDLB IF SO THEN EXECUTE TEST 
ONE,4 CHECK FOR MODEM RUN COMMAND 
WAIT IF SO THEN RUN MODEM 
)F MASK OFF COMMAND BITS 
XMTD TO GET SPECIFIC CONFIGURATION 
FOR CONFIGURATION CODES 
COMD ZERO I S NOT VAL I D COMMAND 
ONE CHECK FOR COMMAND ONE 
SETALB SETUP ,THE MODEM TO RUN ALB 
ONE CHECK FOR COMMAND TWO 
SETORG SETUP THE MODEM TO RUN ORIGINATE 
ONE CHECK FOR COMMAND THREE 
SQTREC SHUT DOWN RECEIVER TO RUN XMIT ONLY 
COMD CHECK FOR NEXT COMMAND 
ONE,I3 LOAD ACC WITH 2000 TO PUT 
XDELTA XMIT IN SAME BAND AS RECEIVE 
COMD CHECK FOR NEXT COMMAND 

SETALB LAC 
SACL 
B 

SETORG LAC 
SACL 
B 

ONE,I2 LOAD ACC WITH 1000 TO PUT 

SQTREC LAC 
OR 
SACL 
B 

LDLB BIOZ 
B 

DLBOUT IN 
LAC 
SUB 
SACL 
BNZ 
LAC 
SACL 
LAC 
OR 
SACL 
OUT 
B 

XDELTA XMIT IN ORIGINATE MODE 
COMD CHECK FOR NEXT COMMAND 
ONE.8 SET RECEIVER SQUELCH BIT 
RECST IN THE RECEIVE STATUS REG 
RECST TO DISABLE RECEIVER CODE 
COMD CHECK FOR NEXT COMMAND 

DLBOUT 
LDLB 
RBUFO,PA2 
TEMP 
ONE 
TEMP 
LDLB 
ONE,4 
TEMP 
XMTD, 10 
MINUSI 
XMTD 
XMTD,PA6 
LOOK I 

WAIT FOR NEXT SAMPLE PERIOD 
LOOP ON TIMER 
*--- DUMMY READ TO GET COUNTER GOING 
GET 16 SAMPLE BAUD COUNTER 
DECREMENT IT 
SAVE COUNT 
COUNT ANOTHER SAMPLE PERIOD 
RESET COUNTER VALUE TO RUN 
DLB AT 600 BAUD 
ADJUST FOR OUTPUT RANGE 

* MASK COMMAND BITS(15-12)TO I'S 
STORE IT FOR OUTPUT 
ECHO INPUT 
REPEAT LOOP BACK TEST 

*---------------------------------------------------------------* 
••••••• w ________________________________________________ •••••••• 

THE FOLLOWING SECTION IMPLEMENTS MODEM FUNCTIONS 
•••••••• ________________________________________________ w ••••••• 

*---------------------------------------------------------------* 
WAIT 

GO 

BIOZ 
B 
NOP 
OUT 
IN 

GO * WAIT FOR 9600HZ SAMPLE PULSE 
WAlT 

XMTOUT,PA2 * OUTPUT TO D/A 
RBUFO,PA2 * INPUT FROM AID ........ _----------------------------------------_ .... _ ... 

TRANSMITER SECTION STARTS HERE . ........ _----------------------------------------_ ....... . 
XMITER EQU $ 

........ _----------------------------------------_ ....... . 
SINE(COSINE) WAVE GENERATION 

* ••••••• --------------~---------------------------•••• •••• 
SWAVE EQU 

LAC 
SACH 
LAC 
ADD 
TBLR 
LACK 
ADD 
AND 
ADD 

$ 
XALPHA.8 
TEMP 
TEMP 
OFSETO 
SINA 
)20 
TEMP 
MASK2 
OFSETO 

* DELTA IS THE INCREMENT. 
* ISOLATE INTEGER PORTION. 

* ADD INDEX TO SINE TABLE. 
* SINE VALUE, (QI5). 
* OFFSET TO COSINE VALUE (Q15). 

• ADD INDEX TO COSINE TABLE. 

Theory and Implementation of a Splitband Modem Using the TMS32010 301 



TBLR 
LAC 
ADD 
AND 
SACL 

COSA 
XALPHA 
XDELTA 
MASKI 
XALPHA 

• COSINE VALUE. (015). 
• COMPUTE ADDRESS OF NEXT 
• POINT FOR TABLE. 
• KEEP MODI28. MASK=>7FFF. 
• SAVE NEXT ADDRESS 

•••••••• _-----------------------------------------** •• *.** 
••••• TRANSMITTER 48 TAP RAISED COSINE FILTER. 

INPUTS UPDATED AT 600HZ RATE. 
OUTPUT UPDATED AT 9600HZ RATE . 

•• ** •••• _----------------------------------------_ •••••• *. 
RACS EOU $ 

LAC XPTR 
TBLR CXO · RETRIEVE COEFFICIENTS 
ADD ONE 
TBLR CXI 
ADD ONE 
TBLR CX2 
ADD ONE 
SACl XPTR 

ZAC 
LT XIBUF2 • COMPUTE FILTER TAPS ICHAN. 
MPY CX2 
LTA XIBUFI 
MPY CXI 
LTA XIBUFO 
MPY CXO 
APAC 
SACH XIOUT .1 

ZAC 
LT XOBUF2 · COMPUTE FILTER TAPS OCHAN. 
MPY CX2 
LTA XOBUFI 
MPY CXI 
LTA XOBUFO 
MPY CXO 
APAC 
SACH XQOUT .1 

XMIT ZAC 
LT XIOUT · ICHAN·cos(wt)+ QCHAN*sin(wt) 
MPY COSA 
LTA XQOUT 
MPY SINA 
APAC 
SACH XMTOUT .1 

PAGE 
* •• * •••• _----------------------------------------_ ••• * •••• 

RECEIVER I CHANNEL BANDPASS FILTER. 
SAMPLING RATE IS 9600HZ . 

••• ** •• *------------------------------------------** ••• *.* 
CONT6 ZAC 

LT RBUF36 
MPYK ICF36 
LTA RBUF34 
MPYK ICF34 
LTA RBUF32 
MPYK ICF32 
LTA RBUF30 
MPYK ICF30 
LTA RBUF2B 
MPYK ICF2B 
LTA RBUF26 
MPYK ICF26 
LTA RBUF24 

302 Theory and Implementation of a Splitband Modem Using the TMS3201Q 



MPYK 
LTA 
MPYK 
LTA 
MPYK 
LTA 
MPYK 
LTA 
MPYK 
LTA 
MPYK 
LTA 
MPYK 
LTA 
MPYK 
LTA 
MPYK 
LTA 
MPYK 
LTA 
MPYK 
LTA 
MPYK 
LTA 
MPYK 
APAC 
SACH 

ICF24 
RBUF22 
ICF22 
RBUF20 
ICF20 
RBUFIB 
ICFIB 
RBUFl6 
ICFl6 
RBUFl4 
ICFl4 
RBUFl2 
ICFl2 
RBUFIO 
ICFIO 
RBUFB 
ICFB 
RBUF6 
ICF6 
RBUF4 
ICF4 
RBUF2 
ICF2 
RBUFO 
ICFO 

ISUM,4 • OUTPUT OF I CHAN . 

........ _----------------------------------------_ ....... . 
RECEIVER Q CHANNEL BANDPASS FILTER. 
SAMPLING RATE IS 9600HZ . ........ _----------------------------------------_ ....... . 
LTD RBUF35 
ZAC 
MPYK QCF35 
DMOV RBUF34 
LTD RBUF33 
MPYK QCF33 
DMOV RBUF32 
LTD RBUF31 
MPYK QCF31 
DMOV RBUF30 
LTD RBUF29 
MPYK QCF29 
DMOV RBUF2B 
LTD RBUF27 
MPYK QCF27 
OMOV RBUF26 
LTD RBUF25 
MPYK QCF25 
DMOV RBUF24 
LTD RBUF23 
MPYK QCF23 
DMOV RBUF22 
LTD RBUF21 
MPYK QCF21 
DMOV RBUF20 
L TO RBUF19 
MPYK OCF 19 
DMOV RBUF1B 
LTD RBUF 17 
MPYK QCF17 
DMOV RBUF 16 
LTD RBUF15 
MPYK QCF15 
DMOV RBUF 14 
LTD RBUF 13 
MPYK QCFl3 
DMOV RBUFI2 

Theory and Implementation of a Splitband Modem Using the TMS32010 

! 
I' 

303 



LTD 
MPYK 
DMOV 
LTD 
MPYK 
DMOV 
LTD 
MPYK 
DMOV 
LTD 
MPYK 
DMOV 
LTD 
MPYK 
DMOV 
LTD 
MPYK 
DMOV 
APAC 
SACH 

PAGE 

RBUFII 
QCFII 
RBUFIO 
RBUF9 
QCF9 
RBUF8 
RBUF7 
QCF7 
RBUF6 
RBUF5 
QCF5 
RBUF4 
R8UF3 
QCF3 
RBUF2 
RBUFI 
QCFI 
RBUFO 

QSUM.4 • OUTPUT OF Q CHAN. 

DETECT MAXIMUM SIGNAL STRENGTH OF RECI PER BAUD 
AGCAL EQU $ 

LAC ISUM * AGC VALUE CALCULATED USING ISUM 
ABS GET MAGNETUDE OF SIGNAL 
SUB BSMAX COMPARE TO PREVIOUS MAX VALUE 
BLZ OVRMAX IF LESS THAN THEN JUMP OVER UPDATE 
ADD BSMAX RESTORE VALUE AND 
SACL BSMAX STORE AS NEW MAX 
MULTIPLY IN AGC FACTOR TO FILTERED SIGNAL 

OVRMAX LT AGC MULTIPLY THE AGC FACTOR 
MPYI MPY ISUM BY THE FILTERED DATA ELEMENT 

PAC MOVE THE PRODUCT TO THE ACC 
SACH TEMP.4 SAVE TOP HALF OF ACC 
AND PLUSI MASK OFF UNUSABLE BITS 
SACL ISUM SAVE BOTTOM HALF OF ACC 
ZALH TEMP RE~OAD HIGH ACC VALUE 
ADD ISUM.4 SHIFT LOW HALF INTO POSITION 
SACH ISUM.4 STORE QI5 GAINED FILTERED DATA 

MPYQ LT AGC MULTIPLY THE AGC FACTOR 
MPY QSUM BY THE FILTERED DATA ELEMENT 
PAC MOVE THE PRODUCT TO THE ACC 
SACH TEMP.4 SAVE TOP HALF OF ACC 
AN'D PLUS I MASK OFF UNUSABLE BITS 
SACL QSUM SAVE BOTTOM HALF OF ACC 
ZALH TEMP RELOAD HIGH ACC VALUE 
ADD QSUM.4 SHIFT LOW HALF INTO POSITION 
SACH QSUM.4 STORE QI5 GAINED FILTERED DATA 

PAGE ----* .......................................................... . 
The rollowing code is the time sliced code task master. 
The routine monitors the status Or the modem operations 
and sequences the code appropriately . .•...•............•...•••••...•.••...... _ •..•..••.•...•••..•... 

MASTER EQU $ 
LAC ONE.5 
AND RECST 
BZ HANGUP 
LAC ONE.4 
AND RECST 
BNZ CARLCK 
B NORMAL 

CARLCK LACK PLLC 
TBLR PLLl 
LACK BPLLC 

304 

CHECK OPERATING STATUS FOR 
ENERGY DETECT 
IF NO ENERGY DETECT THEN HANG UP 
CHECK IF LOCAL CARRIER 
is LOCKED. IF SO SWITCH 
PLL' FILTERS BANDWIDTH 
EXECUTE NORMAL SEQUENCE 

* CHANGE CARRIER PLL COEF. 

• CHANGE BAUD CLOCK PLL COEF. 

Theory and Implementation of a Splitband Modem Using the TMS32010 



NORMAL 

OVRSAM 

TBlR 
EQU 
lAC 
SUB 
BGEZ 
lACK 
SACl 
LACK 
ADD 
TBlR 
lAC 
CALA 

BPLLI 
$ 
SAMPLE 
ONE 
OVRSAM 
15 
SAMPLE 
TSKSEQ 
SAMPLE 
TEMP 
TEMP 

• DECREMENT THE SAMPLE COUNT 
• TO CHECK FOR END OF BAUD 
• IF NOT THEN SKIP COUNT RESET 
• RESTART THE SAMPLE COUNTER AT 15 
* SAVE NEW COUNT VALUE 
* GET ADDRESS OF TOP OF TABLE 
• ADD IN OFFSET 
* GET THE PROGRAM ADDRESS 
* FOR THE TASK CALL 
* EXECUTE THE APPROPRIATE TASK 

UPDATE CARRIER ANGLE AT SAMPLE RATE 

lAC RAlPHA • COMPUTE ADDRESS OF NEXT 
ADD RDElTA • POINT FOR TABLE. 
AND MASK I * KEEP MODI28, MASK=>1FFF. 
SACl RALPHA • SAVE NEXT ADDRESS 

MASXMT EQU $ * EXECUTE TRANSMIT TASK SEQUENCE 
lAC SAMXMT * DECREMENT THE SAMPLE COUNT 
SU8 ONE • TO CHECK FOR END OF BAUD 
BGEZ OVRSMI * IF NOT THEN SKIP COUNT RESET 
LACK 15 • RESTART THE SAMPLE COUNTER AT 15 

OVRSMI SACl SAMXMT • SAVE NEW COUNT VALUE 
lACK TSKXMT • GET ADDRESS OF TOP OF TABLE 
ADD SAMXMT * ADD IN OFFSET 
TBLR TEMP • GET THE PROGRAM ADDRESS 
LAC TEMP • FOR THE TASK CALL 
CALA • EXECUTE THE APPROPRIATE TASK 
8 WAIT • WAIT FOR NEXT SAMPLE TIMEOUT 
PAGE 

•• * •••••••••••••••• * ••••• ** •••••••••••••••••••••••••••••••••••• 
This is the soFtware automatic gain control Factor update .• 
The routine keeps a running average plus three baud max's 
t.o generate each new AGC update. Once the value is gained' 
the routine uses a table lookup devide to Force the Fi Iter· 
data max's into a tight range . 

•••• * •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

AGCUPT ZALH 
ADD 
SACH 
lAC 
SUB 
SACL 
SACH 
BZ 
RET 

OVROUT lACK 
SACL 
LAC 
SACL 
lAC 
SACH 
LAC 
SUB 
BLZ 
LAC 
SACH 
lAC 
ADD 
TBLR 
LAC 
SACH 
RET 

ASHFI ADD 
BlZ 

AGCRA 
BSMAX, 14 
AGCRA 
AGCNT 
ONE 
AGCNT 
BSMAX 
OVROUT 

3 
AGCNT 
AGCRA 
AGCLEV 
AGCRA,I4 
AGCRA 
AGCLEV 
ONE. 14 
ASHFI 
AGClEV,1 
TEMP 
TEMP 
AGCOFF 
AGC 
AGC,IS 
AGC 

ONE,I3 
ASHF2 

ADD THE NEW BSMAX VALUE 
TO THE RUNNING AVERAGE 
AND SAVE IT 
DECREMENT RUNNING AVERAGE COUNT 
SAVE IT AND 
CHECK FOR ZERO 
ZERO OUT RUNNING SIGNAL MAX 
IF ZERO THEN UPDATE AGC 
ELSE RETURN TO CALLING SEQUENCE 
RESET RUNNING AVERAGE COUNT 
TO THREE 
MOVE AGCRA 
TO THE CALCULATION LEVEL 
DIVIDE RUNNING AVERAGE SUM 
BY 4 TO GET NEW RUNNING AVERAGE 
GET AVERAGE MAX SIGNAL lEVEL 
COMPARE TO 16384 
IF lESS THAN SHIFT TABLE LOOKUP 
GET lOOKUP VALUE 
MOVE LOOKUP VALUE TO 
THE LOW HALF OF THE ACC 
ADD IN TABLE OFFSET 
AND GET AGC VALUE 
DIVIDE THE AGC VALUE 
BY 2 TO FORCE TO QI4 MODE 
RETURN TO CALLING SEQUENCE 
COMPARE TO 8192 
IF lESS THAN SHIFT TABLE LOOKUP 

Theory and Implementation of a Splitband Modem Using the TMS32010 305 



LAC AGCLEV.B 
SACH TEMP 
LAC TEMP 
ADD AGCOFF 
TBLR AGC 
RET 

ASHF2 ADD ONE. i2 
BLZ ASHF3 
LAC AGCLEV.9 
SACH TEMP 
LAC TEMP 
ADD AGCOFF 
TBLR AGC 
LAC AGC.I 
SACL AGC 
RET 

ASHF3 ADD ONE. II 
BLZ ASHF4 
LAC AGCLEV.IO 
SACH TEMP 
LAC TEMP 
ADD AGCOFF 
TBLR AGC 
LAC AGC.2 
SACL AGC 
RET 

ASHF4 ADD ONE.IO 
BLZ ASHF5 
LAC AGCLEV. II 
SACH TEMP 
LAC TEMP 
ADD AGCOFF 
TBLR AGC 
LAC AGC.3 
5ACL AGC 
RET 

ASHF5 ADD ONE.9 
BLZ ASHFS 
LAC AGCLEV.12 
SACH TEMP 
LAC TEMP 
ADD AGCOFF 
TBLR AGC 
LAC AGC.4 
SACL AGC 
RET 

ASHF6 ADD ONE.S 
BLZ NOEDT 
LAC AGCLEV.13 
SACH TEMP 
LAC TEMP 
ADD AGCOFF 
TBLR AGC 
LAC AGC.5 
SACL AGC 
RET 

NOEDT LACK >DF 
AND RECST 
SACL RECST 
RET 

PAGE 
HANGUP B WAIT 
DUMXMT EQU $ 

RET 
SMARK EQU $ 

RET 

GET LOOKUP VALUE 
MOVE LOOKUP VALUE TO 
THE LOW HALF OF THE ACC 
ADD IN TABLE OFFSET 
AND GET AGC VALUE 
RETURN TO CALL I NG SEQUENCE· 
COMPARE TO 4096 
IF LESS THAN SHIFT TABLE LOOKUP 
GET LOOKUP VALUE 
MOVE LOOKUP VALUE TO 
THE LOW HALF OF THE ACC 
ADD IN TABLE OFFSET 
AND GET AGC VALUE 
AGC VALUE • 2 TO ADJUST 
FOR LOWER SIGNAL STRENGTH 
RETURN TO CALLING SEQUENCE 
COMPARE TO 204B 
IF LESS THAN SHIFT TABLE LOOKUP 
GET LOOKUP VALUE 
MOVE LOOKUP VALUE TO 
THE LOW HALF OF THE ACC 
ADD IN TABLE OFFSET 
AND GET AGC VALUE 
AGC VALUE • 4 TO ADJUST 
FOR LOWER SIGNAL STRENGTH 
RETURN TO CALLING SEQUENCE 
COMPARE TO 1024 
IF LESS THAN SHIFT TABLE LOOKUP 
GET LOOKUP VALUE 
MOVE LOOKUP VALUE TO 
THE LOW HALF OF THE ACC 
ADD IN TABLE OFFSET 
AND GET AGC VALUE 
AGC VALUE • B TO ADJUST 
FOR LOWER SIGNAL STRENGTH 
RETURN TO CALLING SEQUENCE 
COMPARE TO 512 
IF LESS THAN SHIFT TABLE LOOKUP 
GET LOOKUP VALUE 
MOVE LOOKUP VALUE TO 
THE LOW HALF OF THE ACC 
ADD IN TABLE OFFSET 
AND GET AGC VALUE 
AGC VALUE • 16 TO AD.JUST 
FOR LOWER SIGNAL STRENGTH 
RETURN TO CALLING SEQUENCE 
COMPARE TO 32 
LOST MINIMUM ENERGY LEVEL 
GET LOOKUP VALUE 
MOVE LOOKUP VALUE TO 
THE LOW HALF OF THE ACC 
ADD IN TABLE OFFSET 
AND GET AGC VALUE 
AGC VALUE • 32 TO AD.JUST 
FOR LOWER SIGNAL STRENGTH 
RETURN TO CALLING SEQUENCE 
PASSBAND SIGNAL TOOL LOW 
DISABLE SIGNAL ENERGY DETECT 
AND 'CARRIER DETECT SIGNAL 
RETURN TO CALLING SEQUENCE 

306 Theory and Implementation of a Splitband Modem Using the TMS32010 



....•.•....•..•.........••...••...•..•..••.•.•.•.•...... 
GETDBT EQU $ 

IN 
LACK 
AND 
BZ 

LACK 
SACL 
DMOV 
DMOV 
DMOV 
DMOV 

LACK 
AND 
ADD 
TBLR 
LAC 
ADD 
AND 
SACL 
ADD 
TBLR 
ADD 
TBLR 
RET 

XMTD,PA6 
>30 
XMTD 
COMO 

COEF 
XPTR 
XIBUFI 
XIBUFO 
XQBUFI 
XQBUFO 

3 
XMTD 
OFSETI 
XNEWPH 
XOLDPH 
XNEWPH 
MASK3 
XOLDPH 
INDXPH 
XIBUFO 
ONE 
XQBUFO 

DUMMY CALL DEMOD 
RET 

DEMODB EQU 
LACK 
AND 
SACL 

$ 
>FE 
RECST 
RECST 

• GET NEW DIBIT 

• CHECK COMMAND BITS 
• IF ZERO SQT MODEM, IDLE 

• RECYCLE IF FINISHED 

• SHIFT UP THE FILTER 
• TO MAKE ROOM FOR 
• FOR THE NEW DATA VALUE 
• JUST INPUT 

• NEW DIBIT FROM 7000 
• LOOKUP NEWPHASE 

• GET OLDPHASE. 
• ADD NEW PHASE. 
• MASK WITH >0006. 
• STORE BACK 'NEW' OLDPHASE. 
• LOOKUP I & Q INPUTS. 

ATTEMPT DEMODULATION 
RETURN TO TASK MASTER 

MIDDLE OF THE BAUD 
RESET THE CURRENT BAUD 
CORRECTION FLAG IN THE 
REGISTER AND SAVE IT 

CLOCK 
STATUS 

DEMODUATE THE PASSBAND SIGNAL . ........ _----------------------------------------_ .... _ ... 
RCVR. CARRIER SINE(COSINE) WAVE GENERATOR •..................•..............•....................... 

DEMOD EQU $ 
LAC RALPHA,8 • DELTA IS THE INCREMENT. 
SACH TEMP · ISOLATE INTEGER PORTION. 
LAC TEMP 
ADD OFSETO • ADD INDEX TO SINE TABLE. 
TBLR SINA • SINE VALUE, (Q15) . 
LACK >20 
ADD TEMP 
AND MASK2 
ADD OFSETO • ADD I NDEX TO COS-I NE TABLE. 
TBLR COSA • COSINE VALUE, (Q15) . 

CONTI LT ISUM · DEMOD. I CHANNEL 
MPY COSA · A=(Y\ . cosA)/2 
PAC 
LT QSUM 
MPY SINA 
APAC • A=(Yf . cosA)/2 + (Yq . sin A)/2 
SACH RECI,I · RECI= (Yi . cosA) + (Yq . sinAl 

LT ISUM · DEMOD. o CHANNEL 
MPY SINA 
PAC · A = (Yi . sinA)/2 
LT QSUM 
MPY COS A 

Theory and Implementation of a Splitband Modem Using the TMS3201 Q 307 



SPAC 
SACH RECO.I 

• A =[ (Yi " • 
" RECO = (Yi 

"---MUST DETERMINE ENERGY FOR BAUD CLOC 

LT RECI 
MPY RECI " FIND 1··2 
PAC 
LT RECO 
MPY RECO " FIND O'"Z 
APAC 
SACH ENRGY • ENERGY (I •• 

'---MUST DETERMINE SIGN OF I AND 0 FOR 

DMI 
DMZ 

DM3 
DM4 

LAC 
BGZ 
LAC 
B 
LAC 
SACL 

LAC 
BGZ 
LAC 
B 
LAC 
SACL 
RET 

RECI • DETERM I NE ~ 

DMI 
MINUSI 
DMZ 
PLUSI 
SIGNI * SAVE SIGN ( 

RECO " DETERMINE 
DM3 
MINUSI 
DM4 
PLUSI 
SIGNQ 

RETURN TO CA ---•......... _ ...•.•... _._. __ .... -.... 
* INOUT GET DIBIT FROM 7000 AND XMIT N 
" TO THE 7000 

OUT EOU 
LAC 
OR 
SACL 
OUT 
RET 

$ 
RDIBlT ,10 
MINUSI 
BITOUT 
BITOUT,PA6 

• MASK D15-DI 
"AND SAVE THE 
'XMIT TO 7000 
" BACK TO CAL 

•• ** ••• *------------------------------
PHASE DECODING - BINARY TO GR 

* THIS ROUTINE CALCULATES PHASE SHIFT 
• CURRENT ABSOLUTE PHASE, GREY CODE RE 
••••••• *------------------------------
DECODE LAC RECI · DETERMINE ABS 

BGZ ABSI 
LAC RECO 
BGZ ABSZ 
LACK Z · PHASE IS Z (0 
B DIFFER 

ABSZ LACK 3 " PHASE IS 3 (;; 

B DIFFER 
ABSI LAC RECQ 

BGZ ABS3 
LACK 1 · PHASE IS (I 
B DIFFER 

ABS3 LACK 0 · PHASE IS 0 (C 

DIFFER SACL TEMP 
SUB ROLDPH * SUBTRACT PRE\ 
BGEZ DFI · LUTE PHASE (E 
ADD FOUR 

DFI ADD RPHSE · MAP PHASE CHI 
TBLR RDIBIT 
LAC TEMP 
SACL ROLDPH 

***** •• *------------------------------
COMPUTE CARRIER ERROR SIGNAL. 
e(t) = RECI*SIGNO - RECO"SIGNI 

•••• ****------------------------------

308 Theory and Implementation of a Splitband Modem Using the TMS32010 



COMERR ZAC 
LT 
MPY 
LTA 
MPY 
SPAC 
SACH 

RECI 
SIGNO 
RECO 
SIGNI 

ERROR, I • ERROR IS IN 012 
•••••••• _-----------------------------------------* ••••••• 

LOOP FILTER ........ _----------------------------------------_ ....... . 
ZAC 
LT 
MPY 
LTA 
MPY 
APAC 
SACH 

PLL2 
ERROR 
PLLI 
ERRSIG 

ERRSIG,I • ERRSIG IS IN 012 .•............................•..•.....•.....•.............. 
• CORRECT PHASE ERROR ONLY AT MIDDLE OF BAUD .........•.......................•......•................... 

Adjust carrier phase 
one table entry iF 

+/-

two table entries iF 
RALPHA is current local 

CKEROR LAC ERRSIG 
BGZ ERRI 
ADD TRSHDI 
BGZ ERRETN 
ADD TRSHDI 
BGZ SUBIA 
LAC RALPHA 
SUB ONE,9 
B ERR2 

SUBIA LAC RALPHA 
SUB ONE,8 
B ERR2 

ERRI SUB TRSHDI 
BLZ ERRETN 
SUB TRSHDI 
8LZ· ADDIA 
LAC RALPHA 
ADD ONE,9 
B ERR2 

ADDIA LAC RALPHA 
ADD ONE,B 

ERR2 AND MASKI 
SACL RALPHA 
RET 

ERRETN LAC ONE,4 
OR RECST 
SACL RECST 

RETA RET 

- (2"trshld) > error> trshld 
- (2"trshld) < error » trshld 
carrier table index.(in MSB ) 

· IF error is -ve add threshold 

" Sti I I -ve? .. add again 

" st i I I -ve? .. · Error » trshld; add 2 to index 

· Error > trshld; add I to index 

· Error fa +ve; subtract threshold · Error > trshld · see IF error » trshld · No •.• add one to index · Yes .•. add 2 to Index · SUB 2 same as ADD >7E in modulo 

• Keep RALPHA modulo 12B · save new index · Return with corrected RALPHA 

" IF :error\ less than threshold · set Flag in status register 

...............•..............••.......................••.. 
BAUD CLOCK ALLIGNMENT .............•....•..•• -................... -•.............. 

BDCLKI CALL DEMOD 
LAC ENRGY " ENRGY = E(3) 
SACL PENRGY • STORE IT IN PENRGY 
RET 

BDCLK2 CALL DE MOD 
LAC RECST • TEST IF CORRECTION OF THE 
AND ONE • BAUD CLOCK IS MADE 
BNZ RETB " IF SO THEN RETURN 
LAC ENRGY • ENRGY = E(II), PENRGY E(3) 
SUB PENRGY " FORM ERROR SIGNAL 
SACL BERROR " BERROR = E(II)-E(3) 

•••••••• _------------------------------------------** •••••••• 
LOOP FILTER 

Theory and Implementation of a Splitband Modem Using the TMS32010 

128 

309 



•••••••• _-----------------------------------------_ ••••• *.* •• 
ZAC 
LT 
MPY 
LTA 
MPY 
APAC 
SACH 

BPLL2 
BERROR 
BPLLl 
BEROUT 

BEROUT.l 

"---APPLY CORRECT[ON 

SUBIa 

POS 

ADDIB 

RETB 

LAC 
BGEZ 
ADD 
BGEZ 
ADD 
BGEZ 
LAC 
SUB 
SACL 
a 
LAC 
SUB 
SACL 
B 
SUB 
BLZ 
SUB 
BLZ 
LAC 
ADD 
SACL 
B 
LAC 
ADO 
SACL 
LAC 
OR 
SACL 
RET 

BE ROUT 
POS 
TRSHD2 
RETB 
TRSHD2 
SUB[B 
SAMPLE 
ONE.1 
SAMPLE 
RETB 
SAMPLE 
ONE 
SAMPLE 
RETB 
TRSHD2 
RETB 
TRSHD2 
ADD1B 
SAMPLE 
ONE. [ 
SAMPLE 
RETB 
SAMPLE 
ONE 
SAMPLE 
RECST 
ONE 
RECST 

" BE ROUT [N Q[4 

" TEST BERROUT S[GN. 

" [F :BERROUT:<TRSHD RETURN. 
" BERROUT IS NEGAT[VE. THEREFORE 
" ADJUST CLOCK BY DELAY[NG SAMPLE COUNT. 
* [F :BERROUT:>2*TRSHD 
" MAKE TWO SAMPLE ADJUSTMENT 
* OF THE SAMPLE (BAUD CLOCK) 
* COUNT. 
" [F TRSHD<:BERROUT:<2"TRSHD 
* MAKE ONE SAMPLE ADJUSTMENT 
* OF THE SAMPLE (BAUD CLOCK) 
" COUNT. 
* BERROUR [S POS[TIVE. THEREFORE 
" ADJUST CLOCK BY ADVANC[NG SAMPLE 
* COUNT. 
" [F :BERROUT:>2*TRSHD 
" MAKE TWO SAMPLE ADJUSTMENT 
* OF THE SAMPLE (BAUD CLOCK) 
* COUNT. 

" [F TRSHD<:SERROUT:<2"TRSHD 
* MAKE ONE SAMPLE ADJUSTMENT 
" OF THE SAMPLE (BAUD CLOCK) COUNT. 
" SET FLAG TO [ND[CATE THAT THE BAUD 
" CLOCK ADJUSTMENT [5 MADE. 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * •••••• 
END 

310 Theory and.lmpiementation of a Splitband Modem Using the TMS32010 



Appendix E 

TMS7742 Source Code 

Theory and Implementation of a Splitband Modem Using the TMS32010 

! 

311 



TITL TMS 7742 MODEM INTERFACE PROGRAM' 
OPTION XREF,TUNLST 

7042 PORT ASSIGNMENTS 

• APORT 

• BPORT 

• CPORT 

* OPORT 

A7 A6 AS A4 A3 A2 Al AO 
OHR_ N.C. RCVO ATE_ A_IO SQT OTR OCO 
(0) (X) (I) (0) (0) (0) (I) (1) 

B7 B6 B5 B4 
NB8 NB4 NB2 NBI 
(0) (0) (0) (0) 

B3 B2 
TXO OP 
(0) (0) 

BI 80 
OSR CTS 
(0) (0) 

C7 C6 C5 C4 C3 C2 C I CO 
ACKW ACKR CM02 CMOI TOB3 TOB2 TOBI TOBO 
(0) (0) (0) (0) (0) (0) (0) (0) 

07 06 05 
NEWO NEWI COT 
(1) (I) (I) 

04 03 02 0 I DO 
ENB ROB3 ROB2 ROBI ROBO 
(1) (I) (I) (I) (1) 

-----------------------------------------------------
+-------------------------------+ 

• SWSTAT 17:6:5:4:312: lID: 
+-------------------------------+ 

* BIT7: modem type 0= BI03 mode 
1= B212 mode 

• BIT6: timer flag 0= carrier wait timer enabled 
1= 1200 Hz timer enabled 

• BITS: 1st dibit flag 0= flag reset 
* I = flag set 

· 7041 

10CNTO 
TIOATA 
TICNTL 
APORT 
AD DR 
BPORT 
CPORT 
CDOR 
OPORT 
DOOR 
IOCNTl 
SMOOE 
SCTLO 
SSTAT 
T20ATA 
T2CNTL 
T30ATA 
SCTLI 
RXBUF 
TXBUF 
MPRTC 
MPRTD 

• Bit 

312 

lOT 'OSPMOOM' 
OPTION XREF 
AORG >F006 

Peripheral Memory 

EQU PO 
EQU P2 
EQU P3 
EQU P4 
EQU P5 
EQU P6 
EQU P8 
EQU P9 
EQU PIO 
EQU PII 
EQU PI6 
EQU PI7 
EQU PI7 
EQU PI7 
EQU Pl8 
EQU PI9 
EQU P20 
EQU P21 
EQU P22 
EQU P23 
EQU >108 
EQU >lOA 

Masks. 

Symbols 

Theory and Implementation of a Splitband Modem Using the TMS32010 



BITO EQU >01 
BITI EQU >02 
BIT2 EQU >04 
BIT3 EQU >OB 
BIT4 EQU >10 
BITS EQU >20 
BIT6 EQU >40 
BIT7 EQU >80 

NOTa EQU >FE 
NOT! EQU >FD 
NOT2 EQU >FB 
NOT3 EQU >F7 
NOT4 EQU >EF 
NOTS EQU >DF 
NOT6 EQU >BF 
NOT7 EQU >7F 

• Asc Ii constants 

TAB EQU >09 
BLANK EQU >20 
COMMA EQU >2C 
LF EQU 10 
CR EQU J 3 
BS EQU 8 
POUND EQU >23 
STAR EQU >2A 

ISA EQU >41 
ISZ EQU >SA 

• 7041 RAM map 

RDIBIT EQU R2 
DIBIT2 EQU RDIBIT+I 
DIBITI EQU DIBIT2+1 
TEMPI EQU DIBITI+I 
TEMP2 EQU TEMPI+I 
RBIT14 EQU TEMP2+1 
RBIT17 EQU RB1T14+1 
DESREG EQU RB1T17+1 
FLAG EQU DESREG+I 
COUNTE EQU FLAG+ 1 
BITCNT EQU COUNTE+I 
CHRCNT EQU BITCNT+I 
TRNMIT EQU CHRCNT+I 
STPFLG EQU TRNMIT+I 
MCOUNT EQU STPFLG+I 
XDBIT2 EQU MCOUNT+I 
XDBITJ EQU XDBIT2+1 
XBIT!7 EQU XDBIT!+I 
XBITJ4 EQU XBIT!7+J 
SCMREG EQU XBIT!4+1 
XDIBIT EQU SCMREG+I 
CONTER EQU XDIBIT+I 
RBTCNT EQU CONTER+J 
XMTCHR EQU RBTCNT+I 
ADDRES EQU XMTCHR+2 
PNTR EQU ADDRES+I 
SWSTAT EQU PNTR+I 
LOCHI EQU SWSTAT+I 
LOCLO EQU LOCHI+I 
ADDRI EQU LOCLO 
INDEXI EQU ADDRI+I 
INDEX2 EQU INDEXI+l 
COUNT! EQU INDEX2+1 
COUNT EQU COUNT! + I 

tab character 
space character 

BACKSPACE CHARACTER 
'#' 

'A' 
'Z' 

receiver input sequence 
From the 32010 
temporary register (receiver) 
temporary register (xmltter) 

character to be transmitted 
stop bit deleted Flag 
mark counter 

xmitter input dibit 
counter register 
character bit counter (xmt) 
input character buFFer 
command buFFer address pointer 
counter register 
soFtware status Flag 

general purpose register 
general purpose register 

general use double register counter 

Theory and Implementation of a Splitband Modem Using the TMS32010 313 



COMBUF EQU COUNT+I 
50 EQU COMBUF+40 
51 EQU 50+1 
52 EQU 51+1 
53 EQU 52+1 
54 EQU 53+1 
55 EQU 54+1 
INT5TM EQU 55+1 
VALUE EQU INT5TM+I 
"'5GM EQU VALUE+I 
M5GL EQU MSGM+I 
CWTI EQU M5GL+I 
CWT2 EQU CWTI+I 
MSTIME EQU CWT2+2 
DELYRI EQU MSTIME+I 
STACK EQU RIOO 

ALL EQU >FF 
ZERO EQU >00 
ONE EQU >01 
TWO EQU >02 
THREE EQU >03 
EIGHT EQU >08 
NINE EQU >09 
TEN EQU >OA 
CNTVAL EQU >DC 
ADDTOP EQU 50-1 
ADDBOT EQU COMBUF 

beginning of the command buFFer 
carriage return register 
line Feed register 
backspace register 
# of rings to answer on 
# of rings detected 
escape code character 
Interrupt 5 timer register 
contains numerical value of parameters 

masseage address register 

carrier wait abort timer 
mil llsec timing register 

••••••• _---------------------------------------* •••••• 
Initialization ....... _--------------------------------------_ ...... . 

INIT MOVP 
MOVP 
MOVP 
MOVP 
MOVP 
MOVP 
MOVP 
MOVP 
MOVP 
MOVP 
HOVP 
ORP 
ANDP 
HOV 
LD5P 
HOV 
HOV 
HOV 
HOV 
MOV 
MOV 
MOV 
MOV 

MOV 
MOV 
MOV 
MOV 
CLR 
MOV 
MOV 

• main routine 

AI\IDP 
EINT 

314 

?;>OF.IOCNTO 
~>OO.IOCNtl 
~>OC.APORT 
?;>9C.ADDR 
~>FB.8PORT 
?;>CF.CPORT 
?;>FF.CDDR 
?;>CF.DPORT 
?;>OO.DDDR 
'1.155.T2DATA 
?;>81. T2CNTL 
?;B 1T2. BPORT 
~NOT2.BPORT 
?;5TACK.B 

~ALL.DIBITI 
~ALL.DIBJT2 
?;ONE.RBJTI7 
?;ONE • RB I TI 4 
~ALL • XDB JT 1 
~ALL. XDS ITZ 
?;ONE. XB IT 17 
?;ONE.XBJTI4 

?;CR •. SO 
~LF.51 
~B5.S2 
'1.0NE.S3 
54 
'7.'+'.,55 
,,>CO.SWSTAT 

"NOTO.BPORT 

s.c. mode. enable IntZ and Inti 
disable Int4 and intS 

set direction of APORT 

set direction of CPORT 

set direction of DPORT 

reset the 99531 dialer 

load stack pointer 

carriage return character 
line feed character 
backspace character 
# of rings to answer on 
# of· r f ngs detected 
escape code character 
soFtware Flag default conditions 

set CTS_ 

Theory and Implementation of a Splitband Modem Using the TMS320W 



TOP 
CALL 
MOVO 
CALL 

@AUTOBO 
'7oHELLO,MSGL 
@PRINT 

Autobaud to terminal speed 
Send hello message 

* look Tor input commands. 

LOOK CALL 
MOVO 
CLR 

LK4COM BTJZP 
MOVP 
MOVP 

WAIT4 BTJZP 
CMP 
JEQ 

CMP 
JEQ 
CMP 
JEQ 
CMP 
JEQ 
CMP 
JEQ 
CMP 
JEQ 
CMP 
JNE 
DEC 
CLR 
STA 
INC 
JMP 

NXTSTG INC 
STA 
DECO 
CMP 
JEQ 
JMP 

ERR CALL 
MOVD 
CALL 
MOV 
lDSP 
BR 

EXEC MOVD 
LOA 
CMP 
Jl 
CMP 
JHS 
CLR 
DECO 
SUB 
MOV 
RL 
LOA 
MOV 
INC 
LOA 
MOV 
BR 

PAGE 

@CLEAR c I ear the corrvnand bUTTer 
'7oADDTOP,ADDRES point to top oT the bUTfer 
PNTR c I ear buffer command po inter 
'7oBITl,SSTAT,LK4COM ; command received? 
RXBUF,A 
A, TXBUF echo 
'7oBlT2,SSTAT,WAlT4 
'7oCR,A last character? 
EXEC yes, go execute command 

'70' C' ,A 
LK4COM 
'70')' ,A 
LK4COM 
'70'-' ,A 
LK4COM 
'70' ,A 
LK4COM 
'70'/' ,A 
LK4COM 
'7oBS,A 
NXTSTG 
PNTR 
A 
*ADDRES 
ADORES 
LK4COM 

PNTR 
*ADDRES 
ADORES 
'7040,PNTR 
ERR 
LK4COM 

@ClEAR 
'7oERROR,MSGL 
@PRlNT 
'7oSTACK,B 

@lOOK 

'7oADDTOP,ADDRES 
*ADDRES 
'7o'A',A 
ERR 
'7o'Z'+l,A 
ERR 
B 
ADORES 
'7o'A',A 
A,B 
B 
@COMLlSCB) 
A,lOCHl 
B 
@COMLlSCB) 
A.LOClO 
*ADDRI 

Ignore 

Ignore 

ignore 

ignore 

ignore 

backspace? 
yes, go get new command 
decrement pointer 
CLEAR OUT THE BUFFER 
AT THE CURRENT lOCATION 
point to the previous location 

command bUTTer pointer 
location Tor command 
location Tor next command 
al low 40 chars maximum 
more than 40 .. clear bUTTer 
keep goIng till <CR> 

clear command bUTTer 
send error message 

reset the stack pointer 

initial ize address point 
get command 

Check for A thru Z 

Parameter 'bufTer pointer 

B*2 

MSB address 

lSB address 
execute command 

Theory and Implementation of a Splitband Modem Using the TMS32010 315 



· ...... _--------------------------------------_ ...... . 
Local Digital Loopback Test 

••••••• _---------------------------------------* •••••• 

LDLB EQU 
MOVD 
CALL 
MOV 
BR 

PAGE 

$ 
"LDLBM,MSGL 
@PRINT 
">IO,R23 
@G0320 

RESPOND TO COMMAND TO DTE 
BY PRINTING TEST COOE 
SET COMMAND TO LDLB MODE 
AND RUN THE 320 

....... _--------------------------------------_ ...... . 
Dial Blind ....... _--------------------------------------_ ...... . 

DB OR "BIT6,SWSTAT 
MOVP ">2A,IOCNTO disable RI interrupt 
ORP "B ITO, BPORT turn orr CTS -
ORP ">SC,APORT originate mode, squelch 

and go orr hook 
CALL @DIAL dial 
MOV "IS,CWTl initialize carrier abort 
CLR CWT2 

532, 

timer. 

ORP "B 1T2, IOCNTO enable carrier abort interrupt 
CHKDCD BTJOP ~BITO,APORT,CHKDCD walt ror DCD -

AND ~NOT6.SWSTAT 
BTJZ ~BIT7,SWSTAT,BI03 check ror modem type 
ORP ~BIT3.CPORT 32010 In B212 originate 
ORP ~BIT2.CPORT 
BR @B212 ....... ----------------------------------------.~ ..... 

Bel I 103 Call Initiation • ....... _--------------------------------------_ ...... . 
BI03 

* 'Send 

* Wait 

BTJOP "BITO,APORT,BI03 

originate tone. 

ORP ~B IT 4, APORT 
ANDP ~NOT2,APORT 

MOVP ~>4A,IOCNTO 

SOOms 

MOVD ~SOO,MSTIME 

CALL @MSDLY 
ANDP ~NOTO,BPORT 
MOVD ~CONN3.MSGL 
CALL @PRINT 

; Wait ror DCD -

ATE = I 
unsquelch 532. 

got DCD -' disable abort 

activate CTS_ 
send connect 300 message 

BR @DATI03 ; enter data mode 
•• * ••• *------------------------~---------------••••••• 

DIAL - Dial number stored In ADORES • 
• * ••••• ----------------------------------------•• ~* ••• 

mode 

interrupt 

DIAL ANDP ~NOT4,APORT ; ATE_ = 0, enable EXI mode 

* Execute dialing. 

MOVD 
CALL 

NXTDIG LOA 
CMP 
JNE 

~4000,MSTIME 
@MSDLY 
*ADDRES 
~ZERO,A 
NOTEND 

• End or dtallng. 

RETS 

Initial dial tone wait or 2 second 

Load subcommand 
Is it the last command? 

316 Theory and Implementation of a Splitband Modem Using the TMS32010 



• Case statement to'determine subcommand. 

NOTEND DECO ADORES update address 
CMP 1.' 0' .A check less than '0' 
JL NOTNUM 
CMP 1.'9'+I.A check greater than '9' 
JHS NOTSPC 
BR @ISANUM 

NOTNUM CMP "',',A , - dial tone wait 
JEQ DPAUSE 
CMP 1.STAR,A - tone dial . 
JEQ ISSTAR 
CMP 1.POUND.A '#' - tone dial # 
JEQ APOUND 

NOTSPC BR @NXTDIG 

• Wait for a dial tone. 

DPAUSE MOV 1.TWO.VALUE Bl ind delay 
CALL @SECDLY 
BR @NXTDIG 

· Dial a digit. 

ISSTAR MOV 1.TEN,A dial . if tone dial 
JMP OUTDIG 

APOUND MOV 1.11.A dial # if tone dial 
JMP OUTDIG 

ISANUM SUB 1.'0' ,A dial a number 
OUTDIG ANDP 1.>OF.BPORT clear old digit 

RL A get the correct value 
RL ·A 
RL A 
RL A 
ORP A.BPORT send new digit 

PNDWTO BTJZP 1.BITI.APORT.PNDWTO wait for acceptance 
ORP 1.BIT2.BPORT set DP 

PNDWTI BTJOP 1.BITI.APORT.PNDWTI wait for PND low 
ANDP 1.NOT2,BPORT clear DP 

PNDWT2 BTJZP 1.BITI.APORT.PNDWT2 wait for PND high 
BR @NXTDIG 

PAGE ....... _--------------------------------------_ ...... . 
BELL 1200 BPS MODEM ALGORITHM ....... _--------------------------------------_ ...... . 

B2I2 EQU $ 
MOV '1.>20.R23 SET COMMAND TO MODEM RUN 

G0320 CLR R2 CLEAR COM STATUS REG 
CLR RII I N IT I All ZE 'SCRAMBLER HISTORY 
CLR RI2 AS ALL ZEROS 
CLR RIB INITIALIZE.DESCRAMBLER HISTORY 
CLR RI9 AS ALL ZEROS 
CLR RI3 INITIALIZE DESCRAMBLER HISTORY 
CLR R20 AS ALL ZEROS 
ANDP 1.NOTO,BPORT ACTIVATE CTS TO DTE 
CLR A CYCLE THE CLEAR LINES 
STA @MPRTC OF THE I/O CONTROL 
ORP 1.>CO,CPORT RESET 320 ACK LINES 

START UP MODEM OR DLB TEST 

STOPB2 MOV '1.3.RIO SET DIBIT TO MARKS 
CALL @SCRAM AND SCRAMBLE IT 
MOV RIO.A HOLD IT FOR TRANSMIT 
OR R23.A OR IN COMMAND BITS 

Theory and Implementation of a Splitband Modem Using the TMS32010 317 



ANDP ~>CO,CPORT 

ORP A,CPORT 
TRANSMIT UNSCRAMBLED MARKS AND 

MRCI BTJZP %BIT7,DPORT,MRC2 
CHKTCH BT JOP 1,B I T6, DPORT , RECDTE 

BR @MRC3 
RECDTE BTJOP ~BITI,SSTAT,DTEGET 
XMTDTE BTJOP ~BITO,SSTAT,DTEPUT 

JMP MRCI 

CODE INTERFACE TO DrE 

DTEGET EQU 
MOVP 
CMP 
JMP 
CLR 
STA 
BR 

OVRSQT INC 
BTJO 
BTJO 
OR 
MOV 
MOV 
OR 
JMP 

DTEGI MOV 
OR 
JMP 

DTEGER CLR 
STA 
MOVD 
CALL 
BR 

DTEPUT EQU 
BTJZ 
MOV 
MOVP 
AND 
JMP 

PAGE 

$ 
RXBUF,A 
%>IB,A 
OVRSQT 
A 
@MPRTC 
@TOP 
R24 
~BIT5,R2,DTEGER 

1.BIT3,R2.DTEG! 
~BIT7.R2 
A.R7 
1.>A,R2! 
~B!T3.R2 
XMTDTE 
A,R28 
1.BIT5.R2 
XMTDTE 

A 
@MPRTC 
1.BUFERR .MSGL 
@PRINT 
@TOP 

$ 
1.BIT4.R2.MRCI 
R29.A 
A,TX8UF 
1.NOT4.R2 
MRCI 

RECEIVE DIBITS FROM THE 320 

MRC2 ANDP 
ORP 
MOVP 
MOV 
BTJZ 
AND 
CALL 
BTJO 
RRC 
JC 
RRC 
RRC 
MOV 
JMP 

RNB RRC 
JC 
MOV 

RCHARO OR 
BR 

'1.> 7F , CPORT 
1,>BO.CPORT 
DPORT.A 
A.RIO 
'1.B I T5. A. CHKTCH 
1.3 .R! 0 
@DSCRAM 
7.BIT2.R2.RCHARI 
RIO 
RNB 
RIO 
R5 
1.7.R22 
RCHARO 

RIO 
CHKTCH 
'/.8.R22 
%BIT2.R2 
@RECOTE 

CLEAR OFF CURRENT BITS 
SEND OUT SCRAM MARKS 
RECEIVE 
WAIT FOR WRITE FROM 320 
WAIT FOR READ FROM 320 
PROCESS READ FROM 320 
IS DTE REC BUF FULL 
IS DTE TRANS BUF EMPTY 
LOOK AGAIN 

YES. GET THE CHARACTER? 
I F A <> ESCAPE 
THEN CONTINUE 
ELSE SQUELCH THE 
THE 320 MODEM AND 
AND RETURN TO MONITOR 
INCREMENT BYTE COUNT 
CHECK FOR BUFZ FULL 
CHECK IF 1ST CHAR 
FLAG FOR START BIT 
IF SO THEN RESTART 
RESET XMT COUNT 
SET TRANS ACTIVE 
CHECK OUTPUT 
SAVE IT IN THE BUF2 
SET BUF2 FULL FLAG 
CHECK OUTPUT 

SQUELCH THE 
320 MODEM 
SEND ERROR MESSAGE 
TO USER TERMINAL 
EXIT ROUTINE 

CHECK FOR CHARACTER READY 
GET BUFFERED CHARACTER 
SEND IT TO THE DTE 
RESET BUFFER FULL FLAG 
RETURN TO FLAG LOOP 

RESET WRITE ACKNOWLEDGE 
BY TOGGLING LINES 
GET THE RETURNED DATA 
AND HOLD IT IN RIO 
IF NO CARRIER THEN DONE 
AND OFF STATUS 
DE SCRAMBLE IT 
CHECK FOR REC CHAR ACTIVE 
CHECK DIBITO 
IF HIGH THEN CHECK NEXT 
SAVE LSB OF RECEIVE CHAR 
IN CHAR HOLD REG 
SET REC BIT COUNT REG 
SKIP OVER NEXT CHECK 

CHECK DIBITI 
IF HIGH THEN CHECK XMTCHAR 
SET REC BIT COUNT REG 
SET REC CHAR ACTIVE 
CHECK DTE 

318 Theory and Implementation of a Splitband Modem Using the TMS32010 



RCHARI SUB 
JP 
JZ 
RRC 
RRC 
MOV 
OR 
CLR 
AND 
JMP 

RCHAR2 RRC 
RRC 
RRC 
RRC 
MOV 
OR 
CLR 
AND 
BR 

RCHAR3 RRC 
RRC 
RRC 
RRC 
BR 

PAGE 

~2.R22 
RCHAR3 
RCHAR2 
RIO 
R5 
R5.R29 
~BlT4.R2 
R5 
?;NOT2.R2 
RNB 

RIO 
R5 
RIO 
R5 
R5.R29 
~BlT4.R2 
R5 
1.NOT2.R2 
@RECDTE 

RIO 
R5 
RIO 
R5 
@RECDTE 

SEND DIBITS TO THE 320 

MRC3 ANDP 
ORP 
BTJO 
BR 

TCHARO CLR 
SUB 
JP 
JNZ 
RRC 
JNC 
OR 

TCHOO BTJO 
AND 
OR 
JMP 

TCHARI CMP 
JL 
CLR 
AND 
MOV 
MOV 
AND 
JMP 

TCHAR2 OR 
MOV 
OR 
MOV 
AND 
JMP 

TCHAR3 BTJO 
AND 
BR 

TCHAR4 CMP 
JL 
CLR 

~>BF.CPORT 

1.>40.CPORT 
~BIT3.R2.TCHARO 
@STOPB2 
RIO 
1.2.R21 
TCHAR6 
TCHAR3 
R7 
TCHOO 
1.SlTO.RIO 
?;SIT5. R2. TCHAR I 
~N0T3.R2 
~BlTl .Rl 0 
TCHSND 
1.9.R24 
TCHAR2 
R24 
?;NOTl.RlO 
R2S.R7 
~9.R2l 
?;NOT5.R2 
TCHSND 
'7.B IT I. RIO 
R2S.R7 
'I.BIT7.R2 
?;>A.R21 
?;NOT5.R2 
TCHSND 
?;BIT5.R2.TCHAR4 
~NOT3.R2 
@STOPB2 
~9.R24 
TCHAR5 
R24 

CHECK BIT P051TION 
IF > 0 GET 2 BITS 
IF = 0 GET I BIT 
PUT BIT7 INTO 
REC CHAR HOLD REG 
PUT CHAR IN OUT BUFFER 
SET BUFFER FULL FLAG 
CLEAR BUFFER FOR NEXT CHAR 
RE5ET REC CHAR ACTIVE 
CHECK DIBITI FOR START BIT 

SAVE MSB OF RECEIVE CHAR 
INTO REC CHAR HOLD REG 
PUT BIT7 INTO 
REC CHAR HOLD REG 
PUT CHAR IN OUT BUFFER 
SET BUFFER FULL FLAG 
CLEAR BUFFER FOR NEXT CHAR 
RESET REC CHAR ACTIVE 
CHECK DTE 

MOVE DIBlTO TO 
REC CHAR HOLD REG 
MOVE 0 I B I Tl TO 
REC CHAR HOLD REG 
CHECK DTE 

RESET ACKNOWLEDGE 
BY TOGGLING LINES 
CHECK FOR TRANS CHAR ACTIVE 
IF NOT SEND STOPBITS 
CLEAR OUT DIBIT REG 
CHECK POS IT ION 
> 2 MEANS TRANSMIT BITS 
IF PATTERN ONE THEN ODD 
GET BIT 7 FROM CHAR 
IF NO CARRY DIBITO=O 
ELSE DIBITO=I 
IF BUF2 EMPTY 
RESET TRAN ACTIVE SIT 
SET DIBITI TO STOP 
AND SEND DIBlT 
CHECK CHAR COUNT 
IF < DON'T DELETE STOPBIT 
CLEAR BYTE COUNT 
SEND DIBITI TO START 
LOAD IN NEW CHAR 
SET SIT COUNT 
RESET BUF2 FULL FLAG 
SEND THE DIBlT 
SEND DIBITI TO STOP 
LOAD IN NEW CHAR 
FLAG IN START BIT 
SET BIT COUNT 
RESET BUF2 FULL FLAG 
SEND THE DIBlT 
IF BUF2 EMPTY 
RESET TRAN ACTIVE BIT 
AND SEND MARKS 
CHECK CHAR COUNT 
IF < DON'T DELETE STOPBIT 
CLEAR BYTE COUNT 

Theory and Implementation of a Splitband Modem Using the TMS32010 319 



· MOV R28.R7 LOAD IN NEW CHAR 
OR "BIT7.R2 FLAG' IN START BIT 
MOV "8.R21 SET BIT COUNT 
AND "NOTS.R2 RESET BUF2 FULL FLAG 
JMP TCHAR6 SEND THE DIBIT 

TCHARS MOV ';I.RIO SEND STOP THEN START 
MOV R28.R7 LOAD IN NEW CHAR 
MOV "9.R21 SET BIT COUNT 
AND "NOT5.R2 RESET BUF2 FULL FLAG 
JMP TCHSND SEND THE .DIBIT 

TCHAR6 BTJZ "BIT7.R2.TCHAR7 START BIT NEEDED 
AND ';NOT7 .R2 RESET START BIT FLAG 
JMP TCHOI SKIP OIBITI . 

TCHAR7 RRC R7 GET NEXT BIT OF CHAR 
JNC TCHOI IF LOW SKIP BIT SET 
OR ?I.RIO ELSE SET OIBITO TO ONE r 

TCHOI RRC R7 GET NEXT BIT OF CHAR 
JNC Tq-iSlljO IF LOW SKIP BIT SET 
OR "'2.RIO ELSE SET DIBIT! TO ONE 

TCHSND EQU $ 
CALL @SCRAM AND SCRAMBLE IT 
MOV Rio.A HOLD IT FOR TRANSMIT 
ANDP ,,>FO.CPORT CLEAR OUT DIBIT VALUE 
ORP A.CPORT SEND TO PORT 
BR @RECDTE WAIT FOR RETURN LOOP 

PAGE 
*.*.*.*---------------------------------------_ ••• * ••• 

Receiver descrambler .,. .... 
X(N) = Y(N-17) XOR Y(N-14) XOR YeN) 

••••••• ----~-----------------------------------••••• *. 
DSCRAM EQU $ 
~ 

MOV RIO.B 
CLR RI6 
CLR RI7 
MOV RII.A 
RL A 
RLC A 
RLC RI7 
RLC A 
RLC RI7 
RLC A 
RLC A 
RLC RIG 
RLC A 
RLC RIG 
XOR RIG.RIO 
XOR RI7.RIO 
CLRC 
RRC RIO 
JNC OVRSWI 
OR ';2.RIO 

OVRSWI EQU $ 

RLC RI3 
RLC RI2 
RLC Rll 
CLRC 
RLC RI3 
RLC RI2 
RLC Rll 
ijRC B 
RRC RI3 
RRC B 
RRC RI.3 

RETS 

3iO 

SAVE SCRAMBLED DIBIT 
CLEAR THE Y(N-I4) RlFERENCE 
CLEAR THE Y(N-I7) REFERENCE 
GET THE DESCRAMBLER HISTORY 
SHIFT OUT Y(N-IS) 
GET HISTORY Y(N-17) 
AND PUT INTO REFERENCE 
SHIFT OFF TWO MORE BITS 
SAVE Y(N-IGi REFERENCE 
TO GET TO THE Y(N-I4) 
AND GET HISTORY 
AND PUT INTO REFERENCE 
GET HISTORY Y(N-I3) 
AND PUT INTO REFERENCE 
RIO=X(N) XOR Y(N-14) 
RIO=X(N) XOR Y(N-14) XOR Y(N-17) 
CLEAR OUT THE CARRY BIT 
REVERSE THE DIBITS FOR 
ALLIGNMENT WITH SCRAMBLER 
IF CARRY THEN BIT HIGH 

SHIFT UP THE LSB HISTORY BITS 
AND CARRY TO CSB HISTORY BITS 
AND CARRY TO MSB HISTORY BITS 
CLEAR THE CARRY BIT 
SHIFT UP THE LSB HISTORY BITS 
AND CARRY TO CSB HISTORY BITS 
AND CARRY TO MSB HISTORY BITS 
GET DIBITO AND 
AND SHIFT IT INTO RI3 
GET DIBITO AND 
AND SHIFT IT INTO RI3 

Theory and Implementation of a Splitband Modem Using the TM$32010 



PAGE ....... _--------------------------------------_ ...... . 
Transmitter Scrambler 

YeN) = Y(N-17) XOR Y(N-14) XOR X(N) ..... -....... _--------------------------------------_ ...... . 
SCRAM EQU 

CLRC 
RRC 
JNC 
OR 

OVRSW2 EQU 
CLR 
CLR 
MOV 
RL 
RLC 
RLC 
RLC 
RLC 
RLC 
RLC 
RLC 
RLC 
RLC 
XOR 
XOR 

MOV 
RLC 
RLC 
RLC 
CLRC 
RLC 
RLC 
RLC 
RRC 
RRC 
RRC 
RRC 

RETS 

PAGE 

$ 

RIO 
OVRSW2 
';2,RIO 
$ 
RI6 
RI7 
RI8,A 
A 
A 
RI7 
A 
RI7 
A 
A 
Ri6 
A 
RIG 
RIG,RIO 
RI7,RIO 

RIO,B 
R20 
RI9 
RI8 

R20 
RI9 
RI8 
B 
R20 
B 
R20 

CLEAR OUT THE CARRY BIT 
REVERSE THE DIBITS FOR 
ALLIGNMENT WITH SCRAMBLER 
IF CARRY THEN BIT HIGH 

CLEAR THE Y(N-14) REFERENCE 
CLEAR THE Y(N-17) REFERENCE 
GET THE SCRAMBLER HISTORY 
SHIFT OUT Y(N-18) 
GET HISTORY Y(N-17) 
AND PUT INTO REFERENCE 
SHIFT OFF TWO MORE BITS 

; SAVE Y(N-16) REFERENCE 
TO GET TO THE Y(N-14) 
AND GET HISTORY 
AND PUT INTO REFERENCE 
GET HISTORY Y(N-13) 
AND PUT INTO REFERENCE 
RIO=X(N) XOR Y(N-14) 
RIO=X(N) XOR Y(N-14) XOR Y(N-17) 

HOLD SCRAMBLED DIBIT FOR HISTORY 
BITS 
BITS 
BITS 

SHIFT UP THE LSB 
AND CARRY TO CSB 
AND CARRY TO MSB 
CLEAR CARRY BIT 
SHIFT UP THE LSB 
AND CARRY TO CSB 
AND CARRY TO MSB 
GET DIBITO AND 
AND SHIFT IT INTO 
GET DIBITO AND 
AND SHIFT IT INTO 

HISTORY 
HISTORY 
HISTORY 

HISTORY BITS 
H I STORY BITS 
H I STORY BITS 

R20 

R20 

....... _--------------------------------------_ ...... . 
••••• MSDLY - Wait MSTIME number or milliseconds ••••• ....... _--------------------------------------_ ...... . 
MSDLY EQU 

MOV 
HERE2 DJNZ 

DECO 
JC 
RETS 

$ 
';CNTVAL,DELYRI 
DELYRI,HERE2 
MSTIME 
MSDLY 

load the inner counter (9) 
(9+2) 
(II) 
(7) 

....... _--------------------------------------_ ...... . 
SECDLY - Wait VALUE number of seconds ....... _--------------------------------------_ ...... . 

SECDLY CMP ';O,VALUE 
JEQ NODLY 

NXTSEC MOVD ';IOOI,MSTIME 
CALL @MSDLY 
DJNZ VALUE,NXTSEC 

NODLY RETS ... ~ ... ----------------------------------------...... . 
PRINT subroutine ....... _--------------------------------------_ ...... . 

• MSGM and MSGL contain the address of text to print 
• For messages to the screen 

Theory and Implementation of a Splitband Modem Using the TMS32010 321 



PRINT CALL 
PRINT! LOA 

JZ 
HOVP 

WAITS BTJZP 
INC 
ADC 
JHP 

WAIT6 CALL 
RETS 

@CRLF 
"HSGL 
WAIT6 
A,TXBUF 
~BITO,SSTAT,WAITS 
HSGL 
~O,HSGH 
PRINT! 
@CRLF 

print each character in text statement 
walt for txbuf ready 

" send carriage return/line r.eed 

CRLF HOV SO,A 
HOVP A, TXBUF ; send carriage return 

CRWAIT BTJZP ~BITO,SSTAT,CRWAIT 
HOV SI,A 
HOVP A,TXBUF send line feed 

LFWAIT BTJZP ~BIT2,SSTAT,LFWAIT 
RETS 

PAGE ....... _--------------------------------------_ ...... . 
PRINT subroutine ....... _--------------------------------------_ ...... . 

AUTOBD EQU 
HOV 
HOVP 

SET HOD HOVP 
HOVP 

" HOVP 
HOVP 
HOVP 

HOVP 
HOVP 
HOVP 
HOVP 
RETS 

$ 
~>20,A 
A,T3DATA 
'IoO,PI7 
'Io>60,SCTLO 

B,SHODE 
~>15,SCTLO 

~>40.SCTL1 

'IoBIT6.SCTLO 
~>6E.SHODE 
'Io>15.SCTLO 
~>40.SCTL1 

SET BAUD CLOCK FOR 
FOR OVERSPEED DTE 
Write to PI7 to guarantee 
we are talking to SCTLO. then reset 
serial port 

Parity error. parity is disabled in DTE. 
Disable parity of port 

....... _--------------------------------------_ ...... . ..... screen messages - text statements ....... _--------------------------------------_ ...... . 
ERROR TEXT 'ERROR' 

BYTE 0 

BuhRR TEXT 'DTE BUFFER OVERFLOW ERROR' 
BYTE 0 

" CONNI2 TEXT 'CONNECT 1200' 
BYTE 0 

CONN3 TEXT 'CONNECT 300' 
BYTE 0 

NOCAR TEXT 'NO CARRIER' 
BYTE 0 

. RCALL TEXT 'RING' 
BYTE 0 

RESET TEXT 'OK' 
BYTE 0 

LDLBH TEXT 'EXECUTE LDLB, ENTER CHARACTERS' 
BYTE 0 

322 Theory and Implementation of a Splitband Modem Using the TMS32010 



IALBM TEXT 
BYTE 

10RGM TEXT 
BYTE 

IENBM TEXT 
BYTE 

ISQTM TEXT 
BYTE 

ANSM TEXT 
BYTE 

HONM TEXT 
BYTE 

HOFFM TEXT 
BYTE 

HELPM TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
TEXT 
BYTE 
BYTE 

HELLO TEXT 
BYTE 

'INITIALIZE 320 FOR ALB TEST' 
o 

'INITIALIZE 320 FOR ORIGINATE MODE' 
o 

'INITIALIZE 320 TO REENABLE RECEIVER' 
o 

'INITIALIZE 320 TO SQUELCH RECEIVER' 
o 
'INITIALIZE 320 TO ANSWER MODE' 
o 

'PUT LINE ON HOOK' 
o 

'TAKE LINE OFF HOOK' 
o 

'TABLE OF COMMANDS' 
>OD.>OA 
'A ==> PUT MODEM IN ANSWER MODE' 
>OD.>OA 
'0 ==> BLIND DIAL FOLLOWING DIGITS' 
>OD.>OA 
'E ==> ENABLE 320 RECEIVER' 
>OD.>OA 
'H ==> DISPLAY HELP LIST' 
>OD.>OA 
'J ==> PUT LINE ON HOOK' 
>OD.>OA 
'K ==> TAKE LINE OFF HOOK' 
>OD.>OA 
'L ==> RUN DIGITAL LOOP BACK TEST' 
>OD.>OA 
'M ==> RUN ANALOG LOOP BACK TEST' 
>OD.>OA 
'0 ==> PUT MODEM IN ANSWER MODE' 
>OD.>OA 
'R ==> RUN THE 320 MODEM' 
>OD.>OA 
'S ==> SQUELCH THE 320 RECEIVER' 
>OD.>OA 
'Z ==> RESTART THE 7000' 
>OD.>OA 
o 

'DSP MODEM. VERSION 1.0' 
o 

** ••• **---------------------------------------_ •• * •• *. 
command address table 

* *. * •• *-¥---------------------------------------* •••••• 
COMLIS DATA ANSMDM INITIALIZE TO ANSWER 

DATA ERR 
DATA ERR 
DATA DB dial command 
DATA ENBREC REENABLE RECEIVER ON 320 
DATA ERR 
DATA ERR 
DATA HELP HELP LIST 
DATA ERR 
DATA HOOKON TAKE LINE ON HOOK 
DATA HOOKOF TAKE LINE OFF HOOK 
DATA LDLB LOCAL DIGITAL LOOP BACK 
DATA IALB INITIALIZE TO ALB MODE 

Theory and Implementation of a Splitband Modem Using the TMS32010. 323 



DATA ERR 
DATA 10RIG 
DATA ERR 
DATA ERR 
DATA B212 
DATA SQTREC 
DATA ERR 
DATA ERR 
DATA ERR 
DATA ERR 
DATA ERR 
DATA ERR 
DATA -INIT 

INITIALIZE TO ORIGINATE 

RUN MODEM ROUTINE 
SQUELCH THE RECEIVER 

; reset command 
••••••• _--------------------------------------_ ••• **** 

INITIALIZE TO ALB MODE ....... _--------------------------------------_ ...... . 
IALB 

IALBI 

EQU 
CLR 
STA 
ORP 
ORP 
BTJOP 
MOVD 
CALL 
CLR 
STA 
BR 

$ 
A CYCLE THE CLEAR LINES 
@MPRTC OF THE I/O CONTROL 
~BITO.CPORT SET ALB INIT COMMAND 
~>FO.CPORT PUT 320 IN INIT COMMAND MODE 
~BIT6.DPORT.IALBI CHECK 320 RESPONSE 
~IALBM.MSGL GET CONFIRMATION MESG 
@PRI NT AND SEND IT 
A CLEAR OUT THE COMMAND 
@MPRTC FROM I/O LINES 
@TOP EX I T ROUT I NE 

•••••• *---------------------------------------_ ••••••• 
INITIALIZE TO ORIGINATE MODE 

.** •••• _--------------------------------------_ ••••••• 
10RIG EQU $ 

CLR A CYCLE THE CLEAR LINES 
STA @MPRTC OF THE I/O CONTROL 
ORP ~BITI.CPORT SET ORIG INIT COMMAND 
ORP ~>FO.CPORT ; PUT 320 IN INIT COMMAND MODE 

'IORG I BT JOP ~BIT6. DPORT. 10RGI ; CHECK 320 RESPONSE 
MOVD ~IORGM.MSGL GET CONFIRMATION MESG 
CALL @PRI NT AND SEND IT 
CLR A CLEAR OUT THE COMMAND 
STA @MPRTC FROM I/O LINES 
BR @TOP ; EXIT ROUTINE 

••••••• _---------------------------------------* •••••• 
INITIALIZE TO RECEIVER SQUELCHED ....... _--------------------------------------_ ...... . 

SOTREC EQU $ 
CLR A CYCLE THE CLEAR LINES 
STA @MPRTC OF THE I/O CONTROL ' 
ORP ~3.CPORT SET SOT INIT COMMAND 
ORP ~>FO.CPORT ; PUT 320 IN INIT COMMAND MODE 

ISQTI BTJOP ~BIT6.DPORT.ISQTI ; CHECK 320 RESPONSE 
MOVD ~ISQTM.MSGL GET CONFIRMATION MESG 
CALL @PRI NT AND SEND IT 
CLR A CLEAR OUT THE COMMAND 
STA @MPRTC FROM I/O LI NES 
BR @TOP • EXIT ROUTINE ....... _--------------------------------------_ ...... . ..... INITIALIZE TO REENABLE RECEIVER ....... _--------------------------------------_ ...... . 

ENBREC 

IENBI 

324 

EQU 
CLR 
STA 
ORP 
ORP 
BTJOP 
MOVD 
CALL 
CLR 

$ 
A CYCLE THE CLEAR LINES 
@MPRTC OF THE I/O CONTROL 
~4.CPORT SET ENB INIT COMMAND 
~>FO.CPORT PUT 320 IN INIT COMMAND MODE 
~BIT6.DPORT.IENBI CHECK 320 RESPONSE 
~IENBM.MSGL GET CONFIRMATION MESG 
@PRI NT AND SEND IT 
A CLEAR OUT THE COMMAND 

Theory and Implementation of a Splitband Modem Using the TMS32010 



STA 
BR 

@MPRTC 
@TOP 

; FROM I/O LINES 
; EXIT ROUTINE ....... _--------------------------------------_ ...... . 

INITIALIZE TO ANSWER MODE ....... _--------------------------------------_ ...... . 
ANSMDM EQU $ 

CLR A CYCLE THE CLEAR LINES 
STA @MPRTC OF THE I/O CONTROL 
ORP ~S.CPORT SET ANS INIT COMMAND 
ORP ~>FO.CPORT PUT 320 IN INIT COMMAND MODE 

IANSI BTJOP ~BIT6.DPORT.IANSI CHECK 320 RESPONSE 
MOVD ~ANSM.MSGL GET CONFIRMATION MESG 
CALL @PRINT AND SEND IT 
CLR A CLEAR OUT THE COMMAND 
STA @MPRTC FROM 1/0 LI NES 
BR @TOP • EX I TROUT! NE ....... _--------------------------------------_ ...... . 

PUT LINE ON HOOK ....... _--------------------------------------_ ...... . 
HooKON EQU 

ANDP 
MOVD 
CALL 
BR 

$ 
~NOT7.APORT 
~HONM.MSGL 
@PRINT 
@TOP 

PUT MODEM BACK ON HOOK 
GET CONFIRMATION MESG 
AND SEND IT 
EX I TROUT! NE ....... _--------------------------------------_ ...... . 

TAKE LINE OFF HOOK ....... _--------------------------------------_ ...... . 
HOOKOF EQU 

ORP 
MOVD 
CALL 
BR 

$ 
~B 1T7 • APORT 
~HOFFM.MSGL 
@PRINT 
@TOP 

TAKE OFF HOOK 
GET CONFIRMATION MESG 
AND SEND IT 
EX I TROUT! NE ....... _--------------------------------------_ ...... . 

DISPLAY HELP LIST 
••••••• _---------------------------------------* •••••• 
HELP EQU 

MOVD 
CALL 
BR 

$ 
~HELPM.MSGL 
@PRINT 
@TOP 

GET CONFIRMATION MESG 
AND SEND IT 
EXIT ROUTINE 

•••••• *---------------------------------------_ ••••••• .•... Clear command buffer ....... _--------------------------------------_ ...... . 
CLEAR CLR 

CLR 
MORE STA 

INC 
CMP 
JNE 
RETS 

A 
B 
@ADDBOT(B) 
B 
~40.B 
MORE 

zero command register 

are we done yet? 

....... _--------------------------------------_ ...... . 
Auto-answer routine ....... _--------------------------------------_ ...... . 

INTI BTJZP ~BITl.APORT.ANSMOD; DTR_ must be active. else return 
RETI 

ANSHOD CLR S4 
ORP ~BITO.BPORT Turn off CTS 
MOVP ~>2A.IOCNTO activate timer Interrupt 
EINT 

RIHIGH ORP ~BIT!.IOCNTO 
BTJOP ~BITl.IOCNTO.RIHIGH Wait RI to fall 
ORP ~BIT!.IOCNTO 
MOVD ~50.COUNTl 

STALOW MOVD "O.MSTIME 
CALL @MSDLY 
BTJOP ~BITl.IOCNTO.RlHIGH separate rings 
DJNZ COUNT! • STALOW 

Theory and Implementation of a Splitband Modem Using the TMS32010 325 



MOVO '&RCALL.M5GL send ring message 
CALL @PRINT 
ORP '&BITI.IOCNTO 

LABELO INC 54- Increment ring counter 
CMP 53.54 
JZ PICKUP 

NXTRNG MOVO '&IOO.COUNTI 
RILOW MOVD '&100.M5TlME 

CALL @M50LY 
BTJOP ,&BITI.IOCNTO.RIHIGH check RI every 100 msecs 
DJNZ COUNT I .RILOW 

* no rings. abort answer 

ANOP ,&NOTO.BPORT 
RET I 

* Pickup the phone and go through answer procedures. 

PICKUP ORP '&BIT7.APORT Go off hook 
ORP '&B I Tl • BPORT D5R Is active 

wait at least 2 seconds for bil ling delay 

MOV 
BOELAY CALL 

MOV 
CLR 
ORP 

'7.2. VALUE 
@5ECDLY 
'&1 B.CWTI 
CWT2 
'&BIT2. IOCNTO 

* determine if B212A or BI03J mode 

ANDP 
ORP 
ANDP 

MOVD 

ORGWTO BTJZP 
BTJZP 
JMP 

BE212 MOVP 
JMP 

BEI03 MOVP 

'&B IT 4. CPORT 
'&BIT4.APORT 
'&NOT2.APORT 

'&600.INT5TM 

'&BIT5.DPORT.BE212 
'7.BITO.APORT.BEI03 
ORGWTO 
'7.>OC.IOCNTl 
GOTEDT 
'&>OC. IOCNTI 

* Bel I 103J selected 

MOV 
DCDWTO BTJOP 

MOVD 
CALL 
DJNZ 

MOVP 
MOVP 

MOVD 
CALL 

MOVD 
CALL 
BR 

,&150.COUNT 
'&BITO.APORT.ORGWTO 
'&1.M5T1ME 
@M5DLY 
COUNT. DCDWTO 

'&>OO.IOCNTO 
'&>OO.IOCNTl 

'&CONN3.M5GL 
@PRINT 

'& 765. MST'I ME 
@MSDLY 
@DATI03 

must wait at least 2 secds 
Wait 2 seconds 
Initialize carrier abort timer. 

Enable carrier abort interrupt 

answer mode (to 32010) 
ATE=1 
Unsquelch 532. send 2225hz tone 

load timer 

check for EDT 
check for DCDe-
keep looping til I carrier timer aborts 
enable INT5 
BELL 212 selected 
enable INT5 

check for DCD_ 

Got DCD_. disable abort interrupt 

GOTEDT MOV '&ISO.COUNT EDT_ active 'for at least ISO ms 
EDTWT2 BTJOP '&BIT5.DPORT.ORGWTO 

326 Theory and Implementation of a Splitoand Modem Using the TMS32010 



110VD 
CALL 
DJNZ 

110VP 
110VP 
ORP 
ANDP 
110VD 
CALL 
ANDP 

MOVD 
CALL 
BR 

'1.I1STII1E 
@I1SDLY 
COUNT.EDTWT2 

'>OO.IOCNTO 
'1.>OO.IOCNTI 
'1.B IT2. APORT 
'NOT4.APORT 
'CONNI2.I1SGL 
@PRINT 
,NOTO.BPORT 

'76S.MSTIME 
@I1SDLY 
@B212 

Call Initiation Routines. 

Got EDT_. disable abort interrupt 

Squelch 532 
ATE=O (EXI 110DE) 

CONNECT 1200 
CPORT is active (CTS_=O) 

Walt 76S ms 

212A mode. act as 32010 to DTE Interface 

• We are now in data mode. Walt for a disconnect. 

DATl03 ANDP 'NOTO.BPORT ; Activate CTS_ 

• look for escape character 

LPI03A 
LPI03B 

LPI03E 

110V 
EQU 

BTJOP 
BTJOP 
BTJZP 
MOVP 
CMP 
JNE 
DJNZ 

'1.3.TEI1PI 
$ 

'1.BITI.APORT.NODTRO 
'1.BITO.APORT.DISI03 
'1.BITI.SCTLO.LPI03E 
RXBUF.A 
S5.A 
LPI03A 
TEI1P I • LP I 03B 

; no DTR_ 
no DCD 
received char? 

escape character? 

• we now have three escape characters. start escape code timer 

110V 
LPI03C 110VD 
LP103D 110VD 

CALL 
BTJOP 
BTJOP 
BTJOP 
DJNZ 
DJNZ 

'SO.COUNTI 
'20.COUNT 
'1.1.I1STlME 
@I1SDLY 
'1.BIT1.APORT.NODTRO 
'BITO.APORT.DIS103 
'BIT1.SCTLO.LP103A 
COUNT.LP103D 
COUNTl.LP103C 

• everything checked out O.K. 

JMP CMI03 

NODTRO MOV 
NODTRI MOVD 

CALL 
BTJZP 
DJNZ 

• Disconnect 

DISI03 ORP 
ANDP 
MOVP 
MOVD 
CALL 

TCODE2 BTJZP 
EINT 
BR 

'S.COUNT 
'1.I1STlME 
@MSDLY 
'1.BITI.APORT.LP103B 
COUNT. NODTRI 

from 103 data mode 

'1.BIT2.APORT 
'NOT7.APORT 
'>03.IOCNTO 
'NOCAR.MSGL 
@PRINT 
'BITO.SSTAT.TCODE2 

@INIT 

S m/s check of DTR_ 

Squelch 532 
Go on hook 
Enable interrupt 
Send disconnect message 

Theory and Implementation of a Splitband Modem Using the TMS3201.0 327 



* 103 COMMAND MOD.E 

CMID3 ANDP 
MOVD 
CALL 
BR 

~NOTD,BPORT 
'1.RESET,MSGL 
@PRINT 
@LooK 

Ac't f vate CTS_ 

; look for new command 

••••• * •• ~ ••••••• * •••• ~* ••• * •• **.*.**.***.* ••• *.* ••• * •• •••••• .• *. TIMOUT INTERRUPT OF CARRIER DETECT .-.-
••• * •• * ••••• * ••••• * •••••• ~ ••••••••••• * ••••••• * •••••••• •••••• 
INT2 EQU $ 

DECO CWT2 OECREMENT SECO~DARY COUNTER 
,JNC CABORT IF COUNTED OUT THEN APORT 
RETI ,. TIMOUT NOT COMPLETE CONTINUE 

CABORT ANDP '1.NOT7,APORT GO ON HOOK 
ORR '1.B IT 2, APORT SQUELCH 532 
ANDP '1.NOTO , BPORT ACTIVATE CTS 
ORP '1.B 1T3. 10CNTO 01 SBLE TI MER 
EINT 
MOVD ~NbcAR.MSGL SEND NO CARRIER 
CALL @PRINT MESSAGE TO DTE 
BR @LOOK LOOK FOR NEXT COMMAND 

INT3 RET 1 
INT4 RETI 
INT5 RET 1 

AORG >FFF4 
VECT5 DATA INT5 
VECT4 DATA INT4 
VECT3 DATA INT3 
VECT2 DATA INT2' 
VECTl DATA INTI 
VECTO DATA INIT 

328 Theory and Implementation of a Splitband Modem Using the TMS320LO 



Theory and Implementation of a Splitband Modem Using the TMS32010. 329 



330 Theory and Implementation of a Splitband Modem Using the TMS32010 



Implementation 
of an 

FSKModem 
Using the 

TMS320C17 

Phil Evans 

Regional Technology Center - Ottawa, Canada 
Texas Instruments 

AI Lovrich 

Digital Signal Processor Products - Semiconductor Group 
Texas Instruments 

331 



332 Implementation of an FSK Modem Using the TMS320C17 



Introduction 

This application report presents an implementation of a 300-bit-per-second (BPS) 
modem conforming to the V.21 and Bell 103 standards, using a TMS320C 17 Digital Signal 
Processor (DSP). 

The purpose of this application report is, with references [1], [2], [3], to provide 
a complete hardware design for a splitband modem and the software to implement a 
V.211Bell103 300-bps modem. The designer can then concentrate on developing value
added functions, such as V.22bis or V.22 standard modems, encryption algorithms, etc. 
These value-added functions are implemented in software and can be easily incorporated 
into the TMS320C17 software provided in Appendix B. 

The structure of this report is as follows: 

• The first section reviews basic modem concepts and definitions and introduces 
the reader to frequency shift keying (FSK) data modulation. 

• The second section describes the major functional blocks of the FSK modem 
system presented in this report: 

- Host interface, 
- Modem controller, 
- Digital signal processor, and 
- Analog front end. 

• References to documents describing the actual hardware implementation are 
provided. 

• The third section discusses the DSP software implementation of the V.211Bell 
103 modulator/demodulator using the TMS320C17 DSP. 

• The fourth section reviews some of the issues involved with incorporating 
additional code into DSP software provided in Appendix B. 

• The fifth section concludes this report. 

• Appendix A is a derivation of the filter coefficient value required for the sam
ple fraction time delay. 

• Appendix B is the source code listing for the TMS320C 17 modulator and 
demodulator implementation. 

Implementation of an FSK Modem Using the TMS320C17 333 



Background 

Over the past decade there has been a proliferation in the number and the use of 
computer systems. Accompanying this growth, there has been an increased demand for 
data communications between the various computer systems and terminals. 

One of the most convenient and frequently used methods of data communications 
between geographically separated computer equipment is via the Public Switched Telephone 
Network (PTSN). The essential element for this method of data communication is the 
modem. 

The modem converts the digital data it receives from the computer system or ter
minal into a modulated analog,signal that is transmitted via the telephone network to the 
destination computer system or terminal. At the destination, the receive modem demodulates 
the received signal and transfers the digital data to the receiving terminal or computer 
system. 

Table 1 shows a number of popular modem standards as specified by either the In
ternational Telegraph and Telephone Consultive Committee (CCITT) or the Bell System. 

Table 1. Bell and CCITT Modem Standards 

Modem Standard Type* Modulation 
Data 

Rate (BPS) 
Duplex 

Bell 103 SIB FSK 300 Full 

202 SIB FSK 1200 Half 

212A SIB DPSK 1200 Full 

201 SIB DPSK 2400 Half 

CCITT V.21 SIB FSK 300 Full 

V.22 SIB DPSK 1200 Full 

V.22bis SIB QAM 2400 Full 

V.32 E/C QAM 9600 Full 

* SIB = Split band E/C = Echo Cancelling 

Modems can be either half-duplex or full-duplex. In a half-duplex system, the 
transmission can be in either direction; however, only one direction is possible at a time. 
A half-duplex modem cannot simultaneously transmit and receive information. At the end 
of its transmission sequence, the modem must advise the receiving modem that the se
quence is complete. The receiving modem may then begin transmitting data. 

334 Implementation of an fSK Modem Using the TMS320C17 



In a full-duplex system, the data transmission is bidirectional. Both modems may 
simultaneously transmit and receive data. Bidirectional (simultaneous data transmission) 
is achieved by either splitband or echo cancellation techniques. 

Figure 1 shows the spectral response of a typical telephone channel. A splitband 
modem uses a fIltering scheme to separate the telephone channel into two distinct fre
quency bands. One band is dedicated to the transmissions of the originate modem, the 
other band is dedicated to transmissions of the answer modem. To separate the received 
signal from the received and transmitted signal that is detected on the two-wire telephone 
line, the modem removes the transmitted signal frequency band using a splitband fIlter 
[1], [4], or by other means (such as software implemented on the DSP). Dividing the 
telephone channel into two separate non-overlapping frequency bands limits the maximum 
baud rate. 

GAIN (db) 

o 

-10 

-20 

-30 

o 600 

ORIGINATE BAUD ANSWER BAUD 
ooC=1080 
000=1180 
00,=980 

ooC=1080 
000=1180 
00,=980 

1200 1800 

FREQUENCY (Hz) 

2400 3000 

Figure 1. Spectral Response of a Typical Telephone and a V.21 Splitband Modem 

The actual bit rate of the channel is determined by the baud rate and the data modula
tion scheme that is employed. Splitband type modems are typically used in low- to moderate
speed applications. As shown in Table 1, each modem standard uses a particular modula
tion scheme. For example, CCITT V.21, V.22, and V.22bis standards specify the fre
quency shift keyed (FSK), phase shift keyed (PSK) and quadrature amplitude modulation 
(QAM) schemes respectively. 

Implementation of an FSK Modem Using the TMS320C17 335 



Echo cancellation type mOdems, such as V.32, transmit both the originate and answer 
signals on the same channel. This allows both the originate and answer modems to utilize 
the complete bandwidth of the channel and to maximize the data baud rate. It is still 
necessary to separate the receive signal from the receive and transmit signal detected on 
the two-wire telephone line. However, the originate and answer signals are superimposed 
on the same channel band, and separating techniques that are more sophisticated than those 
found in splitband-type modems are required. The fact that transmit signal is typically 
20 dB stronger than the receive signal, as measured on the transmit Tip and Ring, further 
complicates the extraction of the receive signal. 

Echo cancellation type modems use algorithms that subtract an estimate of the transmit 
signal from the signal sampled from the two-wire telephone line, to determine the receive 
signal. Refer to [5] and [6] for further information on Echo cancellation type modems. 

Table 2 shows the transmission frequencies for answet and originate modes for both 
the binary FSK modulated 300-bps V.21 and Bell 103 standards. It also shows details 
of the V.23 and Bell 202 1200-bps half-duplex standards. 

Table 2. BinaryFSK Transmission Frequencies 

Modem Standard Carrier 1Hz) 1lMark) IHzi OISpace) 1Hz) 

V.21 Originate 1080 980 1180 
Answer 1750 1650 1850 

BELL 103 Originate 1170 1270 1070 
Answer 2125 2225 2025 

V.23 1700 1300 2100 

BELL 202 1700 1200 2200 

Since this report is primarily concerned with the 300-bps V.21 and Bell 103 stan
dard modems, it is worthwhile to review FSK data communication. 

336 

These are the primary advantages of an FSK system: 

1. There is no requirement for carrier phase recovery; this reducing system com
plexity. 

2. Increased immunity to amplitude nonlinearities. FSK is a constant envelope 
signal, with the information transmitted in the zero crossings. It is less affected 
by amplitude nonlinearities than amplitude modulated schemes, and 

3. The modulator and demodulator architectures are easily implemented in 
software. 

Implementation of an FSK Modem Using the TMS320C17 



The primary disadvantage of FSK modulation is its low spectral efficiency. Because 
the telephone network is bandlimited to 4KHz, only moderate data transmission rates over 
the telephone network are supported by an FSK modulation scheme. As a consequence, 
FSK is often the favored modulation scheme for very low cost, low-to-moderate speed 
data communication systems. 

Subsequent sections of this report discuss FSK modulation and demodulation in some 
detail. It is important that you understand the mathematical representations of FSK signals. 
FSK modulation is represented in the following manner: 

S(t) = cos«we±ow)*t + cp) 

where S(t) = Transmitted signal 
We = Carrier frequency 
ow = Frequency shift 

t = Time 
cp = Phase shift 

(1) 

For a given baud period T, S(t) is at a frequency fl =(fe+ ot) or fo=(fe- ot), cor
responding to the transmission of a 1 or 0, respectively, for the duration of the baud period. 
In some cases, it is convenient to represent 

Wo = We - OW 
WI = we - Ow 

Thus the following identities are true: 

We = (WI + wo)12 
ow = (WI - wo)/2 

(2) 

(3) 

Some binary FSK modulation schemes, such as V.21, have wo greater than WI; so by (3), 
ow would be negative. Figure 2 shows an FSK signal transmission. 

Note that the telephone channel provides limited spectral bandwidth. To achieve 
progressively higher data rates, more spectrally efficient modulation schemes, such as 
PSK and QAM, must be used. As spectral efficiency increases, typically, the complexity 
of the signal modulation and demodulation schemes increase. Additional information on 
modulation schemes can be found in references [4], [5], [6] and [7]. 

Implementation of an FSK Modem Using the TMS320C17 337 



~-------ro--------~~----- ----~~~------ ro------~~ 

Figure 2. FSK Signal Transmission 

System Description 
As discussed in .the introduction, this application report presents the implementation 

of a V.211Belll03 300-bps FSK modem using a TMS320C17 Digital Signal Processor. 
The system hardware is identical to that of the Texas Instruments DSP2400 modem [1]. 

There are significant functional differences between the modem design provided here 
and the DSP2400 modem. These result from the differences between the TMS320 code 
provided in Appendix B and the DSP2400 code. The software found in Appendix B im
plements a V.211Be1l103 FSK modem. The DSP2400 also implements V.22, Bell 212A, 
and V.22bis standard modems that implement PSK and QAM modulation/demodulation 
and the associated carrier recovery, clock recovery, and adaptive equalization functions. 

The software in Appendix B provides all the necessary hooks so that the designer 
can easily incorporate his own custom value-added features (such as V.22 and V.22bis 
standard modems). Nevertheless, the reader should be aware of the difference between 
the DSP2400 software implementation and the software in Appendix B, particularly when 
referring to any DSP2400 related literature [1], [2], [3]. 

338 Implementation of an FSK Modem Using the TMS320C17 



Figure 3 is a block diagram showing the components of the modem system. The 
modem consists of the following subsystems: 

1. Host interface 
2. Modem controller 
3. Digital signal processor 
4. Analog front end 

PC 
BUS 

HOST IIF 
8250 UART 

+ 
SN74AlS245 AND 
SN74Al.S30 

SERIAL 
1.0 

I 
I 
I 
I 

I I 
~32r-______ -.J 

I 
(OPTIONAL) 

CONTROL 

r-----' 
I ANALOG 

··<:····::::~::"·:·····m' ~1~6"!!:!u~~·-iI.rF-:;::RO::(::;::E~:ND~ 
SIGNAL :} 

PROCESSOR mftp;"f~NMH-L';:'~~ 

Figure 3. Block Diagram of Modem System Components 

I TELCO 

The designer must provide an interface between the host data terminal equipment 
and the modem controller. The DSP2400 uses an 8250 UART (plus a 74LS245 buffer 
and a 74ALS30 NAND Gate) to interface between a standard PC-AT and the modem con
troller. A standard RS-232C interface is used between the UART and the modem con
troller. The circuit diagram and additional information on the host interface used for the 
DSP2400 Modem can be found in [1]. 

The modem controller (80C51, TMS70C42, etc.) handles the overall modem con
trol [3], directs the handshaking sequences, etc. It specifically performs the following 
functions: 

1. AT command set interpretation 
2. Scrambling/descrambling 
3. Pulse dialing 
4. Synchronous/asynchronous conversion 
5. Modem configuration control 
6. Protocol initialization 

The modem controller sends a command to the DSP once per baud. Table 3 is a 
complete list of the commands, showing the structure and functions that are implemented. 

Implementation of an FSK Modem Using the TMS320C17 339 



Table 3. Modem ControUer Commands for the DSP 

Command Code Description 

Protocol Select Fxh Select protocol 

Bits 1, 0 - Speed select 

00 = 300 BPS 

o 1 = Reserved 

1 0 = Reserved 

1 1 = Reserved 

Bit 2 - CCITT /Bell 

o = CCITT 

1 = Bell 

Bit 3 - Answer/originate 

0 = Answer 

1 = Originate 

Reserved Exh Reserved command 

Operation Select Dxh Select operating mode " 

(bits 3, 2 reserved) 

o 0 = Line mode 

o 1 = Analog loopback 

1 0 = Reserved 

1 1 = Reserved 

Reserved Cxh Reserved command 

Reserved Bxh Reserved command 

Reserved Axh Reserved command 

Transmit DTMF Tones 9xh Dial DTMF and return to configuration mode 

xxxx = 03-00; numbers 0-9, A, B, C, 0, 

* , and # 

340 Implementation of an FSK Modem Using the TMS320C17 



Table 3. Modem Controller Commands for the DSP (Concluded) 

Command Code Description 

Transmit Mode Select 8xh Enable answer tone/data select 

Bits 1, 0 = Transmit select 

o 0 = Transmit idle 

o 1 = Transmit answer tone 

1 0 = Transmit data mode enable 

1 1 = Reserved 

Bits 3, 2 = Select answer tone frequency 

o 0 = 2100 Hz answer tone (V.21) 

o 1 = 2225 Hz answer mark (Bell 103) 

1 0 = 2025 Hz answer space (Bell 

103) 

1 1 = Reserved 

Receive Mode Select 7xh Select receive configuration 

(bits 3,2 reserved) 

o 0 = Receive idle mode 

o 1 = Reserved 

1 0 = Receive data mode 

1 1 = Reserved 

Reserved 6xh Reserved command 

FSK Mode 5xh Select 300 BPS mod (I 

(bits 3,2,1 reserved) 

o = 300 BPS mode deselect 

1 = 300 BPS mode select 

Reserved 4xh Reserved command 

Reserved 3xh Reserved command 

Reserved 2xh Reserved command 

Reserved 1xh Reserved command 

Reserved Oxh Reserved command 

Implementation of an FSK Modem Using the TMS320C17 341 



As an example, the DSP2400 uses a masked ROM version of the TMS70C42 
microcontroller (denoted as a TMS70C2400A) as the modem controller. The 
TMS70C2400A source code is available from Texas Instruments and includes provisions 
for the V.22bis and V.22 standard modems. 

One noteworthy advantage of the TMS70C42/TMS320C17 interface is that it re
quires no external glue logic [7]. For complete information on the TMS70C2400 Modem 
Controller, including the call originate and answer sequences, refer to [2]. 

The TMS320Digital Signal Processor performs the computationally intensive tasks 
such as modulation, demodulation, and tone generation and detection. It does not perform 
any control functions. Specifically, the TMS320 DSP performs the following functiQns: 

1. Modulation/demodulation (V.211Bell 103) 
2. Data encoding/decoding 
3. Filtering 
4. Automatic gain control' 
S. Tone dialing 
6. Call progress monitoring 

The DSP is discussed in further detail in the next section of this application report. 
The DSP source code in Appendix B was originally part of the code developed for the 
TMS320A2400 Modem Digital Signal Processor (a ROM coded TMS320C 17 DSP). The 
TMS320A2400 source code also includes V.22bis, V.22, and Bell 212A standard modems, 
with the software implementing the QAM and PSK modulation and demodulation schemes, 
carrier recovery, clock recovery, automatic gain control, and adaptive equalization func
tions. The TMS320A2400 and the source code is available from Texas Instruments. 

Despite the differences between the code provided in Appendix B and the 
TMS320A2400 code, [1] and [3] are useful references, providing technical information 
about TMS320C17 modem applications. 

The analog front end is composed of a TCM29C19 combo codec [9], a SCllOOS 
bandpass filter [10] and a data access arrangement (DAA) telephone line interface com
posed of discrete components. The codec converts an 8-bit wlaw companded bit stream 
to an analog waveform and vice versa, at a 9.6-KHz sampling frequency. The SCllOOS 
is a splitband filter that separates the transmit and receive carriers and performs the re
quired signal shaping to the analog waveform. The DAA section is composed of a number 
of discrete components and is required to interface the modem to the public telephone 
network as dictated by FCC Rules Part 68. The analog front end circuit diagram is found 
in [1]. Further technical details are found in [2]. 

342 Implementation of an FSK Modem Using the TMS320C17 



The DSP Software Implementation 

The code provided in Appendix B is written specifically for a Texas Instruments 
TMS320C 17 Digital Signal Processor. The key architectural features of the TMS320C 17 
are these: 

1. 4 Kwords (8 Kbytes) of on-chip maskable ROM 
2. 256 words of on-chip data RAM 
3. Two full-duplex serial ports 
4. On-chip companding hardware (p.- or A-Law) 
5. On-chip sign magnitude/two's complement conversion hardware 
6. A coprocessor port 
7. 6.25-MIPS maximum execution speed 

TMS320E17, with 4 Kwords of on-chip EPROM substituted for the 4 Kwords of 
maskable ROM, is also available for development and prototyping purposes. Refer to [8] 
and [11] for additional information on the TMS32OCl7 and TMS320E17. 

The TMS320C 17 source code listing fIle is found in Appendix B. The code requires 
approximately 50 words of data RAM and occupies 1100 words of program ROM. Of 
the 1100 words of program memory, 390 are coefficients, and the remaining 710 words 
are the program instructions. The software consists of a main program that references 
various subroutines. These are the main subroutines found in the program: 

I. Command control interpreter (CCI) 
2. FSK transmitter (FSKTX) 
3. Dual-tone multifrequency transmitter (Part of FSKTX) 
4. Automatic gain control (AGC) 
5. FSK receiver (RSTSK) 

The next section of text describes the main program. The subroutines are discussed 
in subsequent sections. 

Figure 4 is a block diagram of the main program (code starting at beginning of main 
program label and ending at start of subroutines label) in Appendix B. Once the initializa
tion of the data RAM and control registers (code beginning at start of additional tables 
label and ending at start of main program sequencer label) is complete, the main program 
loop is executed. The device remains in the WAIT loop (first four lines of code of main 
program sequencer routine) until the FR flag in the control register is raised. Control register 
bits 27-24 and 23-16 are set so the main program and data samples are transmitted/re
ceived to/from the TCM2919 codec at a rate of 9.6 KHz. 

Implementation of an FSK Modem Using the TMS320C17 343 



NO 

TRANSMIT/RECEIVE 
MODULATED DATA 

NO 
CALLCCI 
CALL ENCODE 

XOUT=O 

CALLFSKTX 

XSCNTRIS 
'--_...,.-_-.-__ ~ TRANSMIT SAMPLE 

. COUNTER 

RSCNTRIS 
,-_-1--:;;."--__ ., RECEIVE 

SAMPLE 
'----r-----' COUNTER 

Figure 4. Flowchart of Main Program (Appendix B) 

344 Implementation of an FSK Modem Using the TMS320C17 



As the V.211Bell103 standard modems transmit data at 300 bps, a 9.6-KHz sampl
ing rate results in 32 samples/baud. The 9.6-KHz sampling rate is very practical for several 
reasons: 

• It is higher than the Nyquist sampling frequency of approximately 8 KHz 
for a telephone channel, and 

• It is a convenient multiple of the popular modem transmission frequencies 
(300, 1200, and 2400 bps). 

The TMS320C17 is clocked by a 18.432-MHz oscillator. To satisfy the 9.6-KHz 
sampling frequency, the number of instructions executed per sample must be less than 
480. To implement the various functions required by the FSK modulator/demodulator, 
it is necessary to distribute the tasks among the various samples within the baud. The com
mand control interpreter (CCI) is executed during the first sample of the baud, and the 
AGC routine is implemented during the final sample baud. 

When the raised FR flag is detected, the processor exits the WAIT loop and ex
ecutes the main program. Refer to [8], Sections 3.8 and 3.9 for additional details on the 
FR flag, interrupts, and serial port. Table 4 describes the variables that are referenced 
in the main program. 

Table 4. Variables Referenced in Main Program Variable 

Variable 

Name 
Description 

XSCNTR The transmit counter; equals the number of samples that 
have been transmitted in the current baud. 

SCNT Number of samples in a baud, i.e., 9.6 KHZ/300 HZ = 
32 samples/baud. 

XOUT Output sample sent via the TX serial port to the combo 
codec. 

RIN Input sample sent via RX serial port from the combo 
codec. 

STATUS An a-bit number used internally by the DSP. Indicates 
present operating mode of the modem. 

STWRD a-bit status word sent to the modem controller by the 
DSP. See Table 5. 

OAFLAG Indicates if modem is in originate or answer mode. 
OAFLAG = 0 - originate mode. 

DTFLAG Indicates if the modem is transmitting DTMF tones. 
DTFLAG = 1 - transmitting DTMF data. 

Implementation of an FSK Modem Using the TMS320C17 345 



Table 5 shows the organization of STWRD (the DSP status word that is written to 
the microcontroller). 

Table 5 STWRD - DSP Status Word Written to the Modem Controller 

Bit No. Description 

7 Enable/disable automatic gain control. 

o = Enable 

1 = Disable 

6 EDT (in band energy) 

o = Not detected 

1 = Detected 

5 Reserved 

4 Reserved 

3 Received data bit (0,1) 

2 Reserved, set to 1 

1 Reserved, set to 1 

0 Reserved, set to 1 

When the program exits the wait loop, it disables all interrupts and reads a data 
sample RIN from the receive buffer or writes a data sample XOUT to the transmit buffer 
of serial port #1. 

At the first sample of a baud, when XSCNTR = SCNT (=31), the program im
plements the command control interpreter (CCI) subroutine as shown in the following code. 
Note that SCNT = 31, and XSCNTR is initially set at 31 and decremented by 1 every 
sample. When XSCNTR equals 0, it is reset to 31, for a total of 32 samples. 

SEQU: 

lAC 
SUB 
8lZ 
CAll 
LACK 

XSCNTR 
SCNT 
SEQU 
CCI 
030h 

; ACCUM = XSCNTR-SCNT 
; BRANCH TO SEQU IF ACCUM < 0 

The CCI subroutine reads the next 8-bit command from the modem controller 
(TMS70C42400A or equivalent), performs the required program control functions, and 
returns to the main program. 

If the DSP is in transmit idle mode, the data sample XOUT is set to 0 and sent to 
serial port #1 transmit buffer. 

346 Implementation of an FSK Modem Using the TMS320C17 



If the DSP is not in transmit idle, the FSK transmit subroutine FSKTX is called. 
Depending on the present value of STATUS as determined by the modem controller and 
the CCI subroutine, the FSKTX subroutine will transmit FSK encoded data, DTMF tones, 
or an answer tone. Upon completing the FSKTX subroutine, the program decrements the 
transmit sample counter XSCNTR by 1 and checks to see if it is less than O. If so, XSCNTR 
is reset to 31. Otherwise, the program proceeds without any further modifications to 
XSCNTR. 

At this point, the main program checks to see if the receiver is in idle mode. If the 
receiver is in idle mode, the receive sample counter RSCNTR is decremented. If RSCNTR 
is not less than 0, the program returns to the WAIT loop. If RSCNTR is now less than 
0, it is reset to 31, and the program then returns to the WAIT loop. 

If the receiver is not in idle mode, the receiver decode/demodulation subroutine 
RSTSK (receiver per sample task) is called. This subroutine demodulates the receiver signal 
and estimates the value of the received data. When the subroutine is complete, the main 
program decrements RSCNTR and resets it to 31, if required. 

After the RSTSK subroutine is complete, the program decrements RSCNTR. If 
RSCNTR is greater or equal to 0, the program returns to the wait loop. For the sample, 
when RSCNTR is less than 0, the automatic gain control subroutine (AGC) is called once 
per baud. The AGC subroutine monitors and compensates for any significant variation 
of the received signal level caused by telephone line fluctuations and other dynamic ef
fects. RSCNTR is then RESET to 31, and the program returns to the WAIT loop. 

The main program calls the following subroutines: 

• CCI-Command control interpreter 

• DTMF-DTMF setup 

• FSKSET -Set up FSK transmit frequency 

• FSKTX-Transmitter mode select 

• OPER-Set operating mode 

• PROTO-Protocol select 

• RESET -Reset and equalizer enable 

• RMODE-Receiver mode select 

• RSTSK-FSK demodulation 

• XMODE-Transmitter mode select 

Implementation of an FSK Modem Using the TMS320C17 347 



Figure 5 shows a block diagram of the eel subroutine. The eel reads the setup 
command from the modem controller (through the co-processor port PA5) and stores it 
in data RAM location XDATA (The structure ofXDATA is shown in Table 3). The eel 
then calls the appropriate subroutine to modify the system control bits (OAFLAG and 
DTFLAG) and status register (STATUS). The eel, depending whether the modem con
figuring the DSP is in answer, originate, or transmit DTMF, loads the required nominal 
frequency values into TXFRQ and RXFRQ. Table 6 shows the organization of the STATUS 
register. 

READ COMMAND FROM MODEM 
CONTROLLER VIA 

CO-PROCESSOR PORT PA5, AND 
STORE AS XDATA 

• 
XDATA • FOh - TMP2 

MASK OFF LOWER 4 BITS OF XDATA 
STORE IN TMP2 

t 

ADDRESS 
CMDTBL + Oh 

1h 
2h 
3h 
4h 
5h 
6h 
7h 

I TMP2 = 90h? I CHECK FOR DTMF 8h 

I 

I 

NO • YES 

I SET DTFLAG = 1 

_t 
SHIFT TMP2 RIGHT 4 BITS I ISO 

HE 
LATE UPPER 

X DIGIT 

• XDATA BITS 7,6 '= 1, 1? IRE 
DAt 

CEIVER IN 
'A MODE 

NO • YES 

I TMP2 > 2? 

NO I , YES 

I RETURN 

ACCUMULATOR = CMDTBL + TMP2 

• 
CALL SUBROUTINE @ ADDRESS @ 

ACCUMULATOR 

t 
I RETURN I 

9h 
Ah 
Bh 
Ch 
Dh 

Eh 
Fh 

SUBROUTINE 
RESERVED 
RESERVED 
RESERVED 
RESET 
RESERVED 
FSKSET 
RESERVED 
RMODE 

XMODE 

DTMF 
RESERVED 
RESERVED 
RESERVED 
OPER 

RESERVED 

DESCRIPTION 

FSKMODE 

RECEIVED 
MODE SELECT 
TRANSMIT 
MODE SELECT 
DTMFTONES 

OPERATION 
SELECT 

PROTO PROTOCOL 
SELECT 

Figure·5. Flowchart of the CCI Subroutine 

348 Implementation of an FSK Modem Using the TMS320C17 



Table 6. The Status Register Organization 

Bits Description 

7,6 Indicate Receiver Mode: 

00 = Receiver in Idle Mode 

01 = Call Progress Monitoring Mode 

10 = Data Mode 

11 = Reserved 

5,4 Indicate Transmitter Mode: 

00 = Transmitter in Idle Mode 

01 = Transmit Answer Tone 

10 = Data Mode 

11 = Reserved 

3 Answer/Originate Mode: 

o = Originate Mode 

1 = Answer mode 

2 CCITT /Bell Mode: 

o = CCITT (V.21) 

1 = Bell (103) 

1,0 Speed status: 

00 = 300 BPS 

01 = Reserved 

10 = Reserved 

11 = Reserved 

The setup commands from the modem controller and subroutines called by the CCl 
subroutine are shown in Table 3. 

The RESET subroutine loads 81h into the STWRD word that is sent to the modem 
controller via the co-processor port PA5. This advises the modem controller that the DSP 
has been reset. The DSP program then branches to ST A~T, and the DSP is reinitialized. 

The FSKSET subroutine reads the XDAT A word to determine if the next bit to be 
trans~itted is 0 or 1 and then loads the appropriate 0 or 1 frequency FOADD or FIADD 
into the TXFRQ register. 

Implementation of an FSK Modem Using the TMS320C17 349 



When setup in answer mode, XDATA bits 3 and 2 are loaded into the STATUS 
register bits 7 and 6, respectively, by the RMODE subroutine. These 1?its determine what 
tasks the FSK receiver subroutine RSTSK will perform, as shown in Table 3 and Figure 5. 

The XMODE subroutine reads XDATA bits 0 and 1. These bits determine what 
tasks the FSK transmitter subroutine FSKTX will perform as shown in Figure 4. If the 
transmit answer tone function is selected, bits 2 and 3 of XDAT A indicate what the answer 
tone frequency will be: 

XDATA Bits 3,2 = 0,0 2100 Hz 
0,1 2225 Hz 
1,0 Reserved 
1 , 1 Reserved 

The program loads the appropriate answer tone value into register TXFRQ. XMODE 
then loads XDATA bits 1 and 0 into STATUS bits 5 and 4, respectively. STATUS bits 
5 and 4 determine what tasks the transmitter subroutine FSKTX will perform. 

The DTMF subroutine determines what number or symbol needs to be transmitted 
by reading XDATA bits 3 through O. DTMF then loads the appropriate high-frequency 
phase step, low-frequency phase step, high-frequency gain, and low-frequency gain into 
the RXFRQ, TXFRQ, DTMFH, and DTMFL registers, respectively, from the Table 
TONTBL. 

The OPER subroutine checks bits 1 and 0 of XDATA. If bits 1 and 0 equal 0 and 
1 bit 3 of STATUS is set to 1, indicating that the modem is in analog loopback mode. 
If bits 1 and 0 are not equal to 0 and 1, 0 PER returns without performing any operations. 

The PROTO subroutine selects the mode and protocol of the DSP based on XDAT A 
bits 3 through O. PROTO first sets bits 1 and 0 of STATUS (indicating the modem data 
rate), based on the value of bits 1 and 0 of XDATA (see Figure 7). 

While the software provided in Appendix B supports only a 300-bps data rate, it 
does provide the necessary hooks so that different standard modems (ie V.22, V.22bis) 
can easily be incorporated into the code. 

Next, PROTO checks XDATA bits 3 and 2 to determine if the modem should be 
in originate/answer mode and Bell/CCITT mode. 

Bit 3: 0 = Originate 
1 = Answer 

Bit 2: 0 = Bell 
1 = CCITT 

As shown in Table 2, the transmission frequencies of the Bell 103 and V.21 originate 
and answer modes are unique. PROTO loads registers used by the FSK transmitter 

350 Implementation of an FSK Modem Using theTMS320C17 



subroutine (FSKTX) and the FSK receiver subroutine (RSTSK) with values stored in table 
TONTBL in data ROM and corresponding to transmit and receive frequencies. 

PROTO then uses the XDA T A bits 3 and 2 to determine which constants are 
transfered from table FSKTBL into addresses FIADD (transmit 1 phase step), FOADD 
(transmit 0 phase step), BIFSK (FSK delay filter coefficient), and GAIN (FSK mode gain). 
PROTO also loads addresses SeNT (baud counter = 32), TRANS (FSK data transmition 
N = 15), AIFSK (AI demodulator filter coefficient), A2FSK (A2 demodulator filter coef
ficient), and DZONE (dead zone of window comparator) with the appropriate values. 

If bit 3 of the STATUS word equals 1, the modem is set to analog loopback mode, 
and the modem should receive the information that it transmits. PROTO checks to see 
if bit 3 of STATUS equals 1; if so, the receiver parameters are modified to be the same 
band as the transmitter. 

The FSK modulator is implemented in the FSKTX subroutine. Figure 6 is a block 
diagram of the FSKTX subroutine. The primary function of the FSK modulator is the 
following: Given a stream of binary data ao, alo a2, ... , ak-1, ak for each data element 
ak = [O,IJ, generate a corresponding signal of frequency fo or f1 for the duration of ak's 
baud period. 

Implementation of an FSK Modem Using the TMS320C17 351 



LOAD TX PHASE INTO 
ACCUMULATOR 

CALL SING EN 

STORE RESULT IN TXTONE 

TXPHS = TXPHS + TXFRQ 

DTMFMODE? 

XOUT=TXTON USE RXPHS FOR HIGH FREQ TONE 

Figure 6. Flowchart of Subroutine FSKTX 

Figure 7 shows a functional model of the FSK modulator. The TMS320 software 
implementation of the FSK modulator generates tones by stepping through a cosine table. 
The size of the phase step determines the output signal frequency. You should pay par
ticular attention how phase angles, phase steps, cosines, and sines are represented as 16-
and 32-bit integer numbers. 

352 Implementation of an FSK Modem Using the TMS320C17 



Wo 8--+' ___ -, 
s(t) = sin (( roc:l: ~ro) t + 0) 

Figure 7. Functional Model of an FSK Modulator 

Table 7 describes the significant variables used in the FSKTX subroutine. 

Table 7. Variables Referenced in the FSK Transmitter Subroutine FSKTX 

Variable 

Name 
Description 

TXPHS Present value of the transmit signal phase. Also used as 
present phase of the low frequency DTMF tones. 

TXFRQ Phase step between consecutive TXPHS samples. 
RXPHS Normally used in the FSK demodulator subroutine 

RXTSK. Used as present phase for the high frequency 
DTMF tone. 

RXFRQ Normally used in RXTSK subroutine. Also used as phase 
step for high-frequency tone when transmitting DTMF 
tones. 

DTMFL Scaling factor for low-frequency DTMF tones. 

DTMFH Scaling factor for high-frequency DTMF tones. 

SING EN A subroutine called by FSKTX. Given a 16-bit number 
representing an angle from 0 to Pi, the SINGEN routine 
determines the sine of the angle and stores the result at 
address TMP3. 

The software FSK Modulation routine receives data at a rate of 300 bps and generates 
12-bit, two's complement data samples at a rate of 9.6 KHz. The TMS320Cl7's on-chip 
hardware compander reduces the sample to 8 bits before it is sent to the Codec via the 
serial port. 

Implementation of an FSK Modem Using the TMS320C17 353 



The most recent phase of the output signal is stored in data memory location TXPHS, 
and the amplitude is read from the COSOFF table by the SINGEN subroutine. The fre
quency of the transmitted signal is determined by the size of the phase step TXFRQ bet
ween successive output samples: 

TXPHS[(N + l)T] = TXPHS[NT] + TXFRQ[NT] 

The value of TXFRQ is determined by the FSKSET subroutine referenced by the 
CCI subroutine. Recall that, depending on the instruction received from the modem con
troller at the beginning of the baud, the CCI subroutine loaded data memory location TXPHS 
with either FOADD or F1ADD. Table 8 shows the FSK frequencies and phase steps 
(TXFRQ) for the V.21 and Bell 103 modem standards. 

Table 8. Frequencies and Phase steps for V.21 and Bell 103 Modems 

Modem Standard 
Frequency Phase Step Phase Step 

(Hz) @}9.6 KHz TXFRQ. Q 15 hex 

V.21 Originate 1 980 0.2042*Pi 1A22h 

Originate 0 1180 0.2458*Pi 1F77h 

Answer 1 1650 0.3428*Pi 2COOh 

Answer 0 1850 0.3854*Pi 3155h 

Bell 103 Originate 1 1270 0.2646*Pi 21DDh 

Originate 0 1070 0.2229*Pi 

Answer 1 2225 0.4635*Pi 

Answer 0 2025 0.4219*Pi 

The magnitude of the . phase step is determined by 

[(Desired Frequency)/(Sampling Frequency)] * 2'11" 

1C89h 

3B55h 

3600h 

In the case of the originate 1 of the V.21 modem, the phase step equals 

(1270/9600) * 2'11" = .2646 'II" Radians 

Both TXPHS and TXFRQ data memory locations are 16-bit binary numbers in Q15 
two's complement notation equal to 

(Output Signal Phase)/'II". 

354 Implementation of an FSK Modem Using the TMS320C17 



Thus TXPHS hex values 

2000h = 71"/4 
4000h = 71"/2 
6000h = 371"/4 
8000h = - 71" 

AOOOh = -371"/4 

An advantage of this approach is that the phase of the output signal is continuous. 
This provides a higher spectral efficiency than that of a discontinuous phase FSK implemen
tation. 

The sine generation subroutine SINGEN subtracts 71"/2 (4000h) from TXPHS and uses 
this phase to read the amplitude from the COSOFF table. The symmetry of the cosine 
function has been used to reduce the table size from 513 to 257 elements, with data memory 
addresses COSOFF, COSOFF + 128, and COSOFF + 256 corresponding to 0, 71"/2, and 
71" radians, repectively. To determine the cosine of an angle outside the 0-to-7I" range, the 
program utilizes the two's complement format of the data and the absolute value function 
ABS. As an example, assume that the present phase TXPHS is 

TXPHS(N) = (- 170/256) * 71" = -.6640625 * 71" = A600h 

If we are transmitting a 1 in V.21 Originate mode, the phase step is 

TXFRQ = .26448 * 71" = 21DDh 

The next value of: 

TXPHS(N + 1) = TXPHS(N) + TXFRQ 
= - .6640625 71" + .26448 71" 
= - .3995825 71" 
= A600h + 2IDDh = C7DDh 

The subroutine then subtracts 71"/2 (4000h) from TXPHS, so the sine of angle TXPHS 
can be determined from the Cosine table: 

ANGLE = TXPHS(N + 1) - 71"/2 
= - .3995825 71" -.5 71" 
= -.8995825 71" 
= C7DDh - 4000h = 87DDh 

Note that TXRFQ is added to TXPHS(N), and 71"12 is subtracted from TXPHS(N + 1) 
with the sign extension suppressed, so TXPHS(N + 1) = 87DDh. This represents 1.06143 
71" as an unsigned number or - .93857 71" as a signed number. If we now consider 
TXPHS(N + 1) a signed and take the absolute value: 

ABS[TXPHS] = ABS[87DDh] = 7823h representing .93857 71" 

Implementation of an FSK Modem Using the TMS320C17 355 



Note that: 

Cos(1.06143·1I-) = Cos(.938571r) = -.98144 

The cosine table address. is generated: 

COSSOFF + (7823h/80h) = COSOFF + FOh 

The value at Data Memory address COSOFF + FOh is 

Cos«240/256)1l") = - .980786 = 8276h, Q15 2's complement notation 

Within the limits of the cosine table precision, the calculated output value equals 
the value read from the table. 

The structure of the FSK Demodulator is shown in Figure 8. 

( cos(( ooc • AooC) t + 0) 

AGC LPF SLICER DECISION 

it ~ • sin (Aon) 

Figure 8. FSK Demodulator 

The received FSK signal is sent to the DSP from the Codec via the serial port. The 
on-chip companding hardware expands the signal from an 8- to 13-bit value. The automatic 
gain control routine compensates for transient signal level variations and sends the amplitude 
adjusted received signal R(t) to the software demodulator. 

R(t) = cos[(wc±ow)* t + <1>] (4) 

As this is a binary FSK system, the frequency of this signal is either We - ow or 
We + ow, depending on whether a 0 or 1 was sent. (Recall from the V.21 signal that ow 
is less than 0.) 

The received signal R(t) is multiplied by a delayed version of itself: 

R(t - r) = cos[(we±ow) * (t -r) + <1>] (5) 

356 Implementatlon of an FSK Modem Using the TMS320C17 



Where 7 is the signal delay. 

The product of the received signal (4) and delayed received signal (5) is 

2 * cos[(we±ow) * t + cJ>] * cos[(we±ow) * (t - 7)] (6) 

= cos[2(we±ow) * t - (we±ow) * 7 + 2 * cJ>] + cos[(we±ow) * 7] (7) 

If We 7 is set to equal 'K12, and (7) is lowpass filtered to remove the double frequen
cy component, the resulting signal is 

cos('K12±ow * 7) = sin(±ow7) = ± sin(ow) (8) 

If ow is greater than 0, then the sign of the lowpass filter output will be positive 
or negative, depending on whether We + ow or We - ow is originally transmitted. If ow 
is less than 0, obviously the opposite relationship is true. The sign of the lowpass filter 
output indicates the value of the received data. 

The TMS320 software implementation of the 300-bps FSK Demodulator is found 
in Subroutine RSTSK, Subroutine CCITT, and Subroutine FDEM20 in Appendix B. 

The AGC subroutine provides the RSTSK subroutine with a Qll two's complement 
format received signal sample at a rate of 9.6 K samples per second. 

As previously discussed, the data is extracted from the received signal by multiply
ing the received signal by a 'K12 delayed version of itself, cos[(wc±ow) * t + cJ> - 'K12±ow 
* 7]. The product is then passed through a lowpass filter to remove the high frequency 
components. 

If the desired phase delay is 

We * 7 = 'K12, (9) 
then 

(10) 

The sample rate is 9.6 KHz, or a period T = 104.167 p,s. Table 9 shows the carrier 
frequencies, for both the V.21 and Bell 103 standards, the time delays corresponding to 
a 'K12 phase delay and the equivalent number of 9.6-Khz samples. Note that none of the 
delays are exact multiples of the 9.6-KHz sampling period; each delay has an integer and 
fractional part. 

Implementation of an FSK Modem Using the TMS320C17 357 



Table 9. Carrier Frequency and Time Delays 

Frequency # of 9.S-KHz 
Modem Standard 

1Hz) 
1'1"s) 

Samples 

V.21 Originate 1080 231.481 2.2222 

Answer 1750 142.857 1.3714 

Bell 103 Originate 1170 213.675 2.0513 

Answer 2125 117.647 1.1294 

To minimize the probability of error, it is necessary that the phase delay be as close 
to 7r/2 as possible. An accurate estimate of the fractional part of the delay must be total 
phase delay. This is achieved by using a single zero FIR filter. 

R«n - a)T) = GAIN * [R(nT) + BIFSK * R«n -l)T)]) 

where R(nT) is the nth sample of the received signal R(t) 
R«n - a)T) is the estimate of the fractionally delayed signal 
n is an integer 
a is the desired fractional delay, 0< a < 1 

(11) 

The filter coefficient BIFSK and GAIN for the fractional delay filter of each V.21 
and Bell 103 carrier are shown in Table 10. The derivation of the gain and filter coeffi
cients are shown in Appendix A. 

Table 10. Time Delay and FIR Filter Coefficients 

Modem Standard Frequency 
Fractional Delay 

9.S-KHz SampleL) 
Gain B1FSK 

V.21 Originate 1080 .2222 .69753 .32796 

Answer 1750 .3714 1.00000 .68889 

Bell 103 Originate 1170 .0518 .57731 .07175 

Answer 2125 .1294 1.00000 .31678 

Bl and GAIN are stored in data memory locations BIFSK and GAIN, resepective
ly. The actual implementation is 

PDELl = AGCOUT + BIFSK * PDELO 

where AGCOUT is the received signal after the signal level has been compensated 
by the automatic gain control routine. 

358 Implementation of an FSK Modem Using the TMS320C17 



AGCOUT = cos[(wc±ow) * nT + c/> ] 
PDELO = cos[(wc±ow) * (n-l)T + cp ] 
PDELl = cos[(wc±ow) * (n-l-a)T + cp], 0< a <1 
PDEL2 = cos[(wc±ow) * (n-2-a)T + cp ] 

Since AGCOUT, PDELO, PDELl, and PDEL2 are consecutive data memory loca
tions, the integer multiples of the 9.6-KHz sample delays are easily achieved by using 
the data move (DMOV) instruction. PDELl is calculated after the demodulator product 
operation and is not used until the next sample period, a delay of one sample period. 

For the low-frequency carriers of the V.21 and Bell 103 standards, a second delay 
is required and is implemented as DMOV PDELl, moving the contents of PDELI into 
data memory PDEL2. 

When the sample delayed signal (PDELl or PDEL2 for the high- or low-frequency 
carriers, respectively) is generated, it is multiplied by the most recent sample AGCOUT. 
The product of the multiply is stored in data memory location PROD. PROD is multiplied 
by GAIN and then filtered by a second-order direct-form, lowpass IIR filter, and the result 
is stored in location LPFOUT. Further information on digital filters can be found in [12], 
[13]. 

Given the lowpass filter output LPFOUT, the FSK demodulator must now estimate 
the value of the received signal. 

In the Data Estimation routine, the following memory location addresses are called: 

BDATA 
FSKDAT 
BAUDCK 

COUNTR 

- The data estimation for the previous baud. 
- Data estimation of the current sample. 
- A record of the number of samples presently taken in the current 

baud. Recall that the sample rate is 9.6 KHz and the baud rate is 
300 Hz; so there are 32 samples/baud. 

- The data estimations of each sample in the current baud are com
pared to the decision of the previous baud. If these are different, 
then COUNTR is incremented. If COUNTR reaches 32 before 
BAUDCK reaches 32, it is assumed that a data transition has occur
red, and BDATA is set to the opposite value: 

BDATA(N+I) = ABS[BDATA(N) - 1] 

Figure 9 is a flowchart of the data decision source code implementation. 

Implementation of an FSK Modem Using the TMS320C17 359 



AGCOUT - RECEIVED SAMPLE t = nT 
PDELO - AGCOUT @ t = (n-1)T 
PDEL 1 - AGCOUT + BI + PDELO 
PDEL2 - PDEL1 @f= (n-1)T 

HIGH-FREQUENCY CARRIER 

YES NO 
PROD = 

AGCOUT* 
PDEL1 

2nd-DRDER LOW PASS FILTER 

BAUDCK = BAUDCK + 1 

SETSTWRDTO 
INDICATE 

CURRENT 
BDATA 

OUTPUT STWRD 
TO MODEM 

CONTROLLER 

Figure 9. Data Decision Algorithm Flowchart 

The function of the automatic gain control subroutine AGC is to compensate for 
amplitude distortions introduced by the telephone system, etc. References [5], [14] pro
vide additional information on AGC. 

360 Implementation of an FSK Modem Using the TMS320C17 



Incorporating Additional Functions into the DSP 

One of the important tasks the designer faces is incorporating value-added software 
functions into the DSP source code found in Appendix B. 

The software presented here uses only 1.1 K words of the 4 K words of maskable 
ROM available on the TMS320C 17. This provides you with a significant amount of code 
space to implement value-added functions. 

This software offers a number of hooks that facilitate the easy inclusion of addi
tional software. Note in Table 3 (Modem Controller Commands for the DSP), that the 
following commands are presently reserved: E, C, B, A, 6,4,2, I, and O. Each of these 
commands have bits 0 through 3 undefined. All of these commands can be used by the 
designer to call additional functions. 

You must ensure that the correct modifications are made to the modem controller 
and modem DSP software. The DSP control command interpreter (CCI) must be modified 
to recognize and respond to the new commands. The additional functions should be im
plemented in either a new or the appropriate existing subroutine. The option indicating 
to the main program that the new subroutine should be called, needs to be provided. This 
can be done using the STATUS register, or you can define a new register. 

You must also ensure that the XD A T A word will indicate the present status of the 
DSP to the modem controller. There are presently a number of unused bits in the XDAT A 
word, so incorporating the modifications in the DSP is straightforward. 

Finally, you must ensure that the additional software functions do not exceed the 
timing requirements imposed by the 9600-KHz sampling frequency. 

Conclusions 

This application report presented you with the information required to implement 
a 300-bps V.211Bell103 FSK modem based on a TMS320CI7 Digital Signal Processor. 
Both hardware and software issues were discussed. A summary of the FSK modulation 
and demodulation algorithms and a basic review of modems were also provided.A discus
sion about incorporation of additional functions and software into the code provided con
cluded this report. 

Appendix A is a derivation of the FSK demodulator fractional delay filter coeffi
cients. Appendix B is the TMS320CI7 source code listing. 

Acknowledgements 

The author wishes to acknowledge the contribution of Dr. Amin Haoni of 
Technekron, Inc., and George Troullinos, and Raj Chirayil of Texas Instruments. This 
report is based on their work. 

Implementation of an FSK Modem Using the TMS320C17 361 



Glossary of Symbols and Abbreviations 

bps - Bits per second 
FSK - Frequency shift keying 

We - Carrier signal angular velocity 
ow - Modulation shift of angular velocity 

t - Time 
cP - Phase shift 

wo - Angular velocity transmitted to indicate a 0 
WI - Angular velocity transmitted to indicate a 1 

T - The amount of time the received signal is delayed in the FSK demodulator 
fo - Frequency transmitted to indicate a 0 
fl - Fequency transmitted to indicate a 1 
fe - Carrier frequency 
ex - Sample fractional delay created by the single FIR filter 

References 

[1] DSP2400 Modem User's Guide, Texas Instruments Inc. (1988). 
[2] "TMS320A2400A Modem Digital Signal Processor Data Sheet", Texas Instruments 

Inc., (1988). 
[3] "TMS70A2400A Modem Controller Data Sheet", Texas Instruments Inc., (1988). 
[4] Lee, E.A., and Messerschmitt, D.G., "Digital Communications", Kluwer 

Academic Publishers (1988). 
[5] Bingham, J.A.C., "The Theory and Practice of Modem Design", John Wiley and 

Sons, (1988). 
[6] Proakis, J.G., "Digital Communications", McGraw-Hill (1983). 
[7] Troullinos, G., et al., "Theory and Implementation of a Splitband Modem Using 

the TMS32010" (document number SPRA013), Texas Instruments Inc. (1986). 
[8] "TCM29C18,'CI9 PCM Codec Data Sheet" (document number SCTS021), Texas 

Instruments Inc., (1987). 
[9] "SCHOOS Splitband Filter Data Sheet", Sierra Semiconductors (1986). 
[10] First-Generation TMS320 User's Guide (document number SPRA013A), Texas In

struments Inc., (1988). 
[11] "First-Generation Digital Signal Processors Data Sheet" (document number 

SPRS009), Texas Instruments Inc., (1987). 
[12] "Digital Signal Processing Applications with the TMS320 Family" (document 

number SPRA012A), pp 27-69, Texas Instruments Inc., (1986). 
[13] Parks,T.W., and Burrus, C.S., "Digital Filter Design", John Wiley and Sons Inc. 

(1987). 
[14] Lovrich, A., Troullinos, G., Chirayil, R. "An All Digital Automatic Gain Con

trol", Texas Instruments Inc., ICASSP Conference Proceedings, (1988). 

362 Implementation of an FSK Modem Using the TMS320C17 



Appendix A 

Calculation of Phase Delay Filter Coefficients 

A key element of the FSK demodulator implementation is the 7r/2 phase delay of 
the carrier signal. The effectiveness of the demodulator is highly dependent on the ac
curacy of the 7r/2 phase delay. 

In a digital system, it is highly unlikely that the time delay required for the 7r/2 phase 
delay is an exact multiple of the signal sampling period. It will be necessary to introduce 
phase delays that are a fraction of the sampling period. 

To accurately generate the fractional delay, the digital signal processor uses a single 
zero FIR filter. This appendix derives the coefficients for the single zero FIR. 

Given the one zero FIR filter shown in Figure A-I: 

Figure A-I. One .Zero FIR Filter. 

Y(n) = X(n) + t3X(n-l) 

therefore 

Y(z) = X(z) + t3 * z-l X(z) 
= X(z) * (1 + t3z- 1) 

The transform of the filter is F(z) 

F(z) = Y(z)/X(z) = (1 + t3z- 1) 

(AI) 

(A2) 

(A3) 

The purpose ofthis filter is to introduce a precise group delay 7 (delay of the signal 
envelope) to the received signal 7. is defined as 

-dO(w) ~ 
7 = = group delay (A4) 

dw 

Implementation of an FSK Modem Using the TMS320C17 363 



and 

Evaluate F(z) at z = eiw to obtain the frequency response. 

F'(w) = F(eiw) = 1 + (3 e-jw 

F'(w) = R(w) + jl(w) = A(w)ei<f>(w) 

Where R(w), I(w), A(w), and cf> (w) are real functions of w. 

A(w) = IF'(w)1 = [R(w)2 + l(w)2] 112 

cf> (w) = arctan (I(w)/R(w» 

Given 

e-jw = cosw - jsinw 

Substituting (A9) into (A5) 

F'(w) = 1 + (3 cosw - j(3sinw 

From (A6), (AS), and (A10) 

cf>(w) = (arctan 
-(3sinw 

) 1 + (3 cosw 

Substituting (All) into (A5) 

now 

-d cf>(w) -d 
7= 

d dw 

-(3sinw 

(arctan ( 1 + (3cosw )) 

d 1 du 
- (arctan (u» = --- * -
dx 1 + u2 dx 

therefore 

-1 * d -(3sinw 
7 = -1-+-( ---(3-s-in-W--)-2- d:- ( 1 + (3cosw ) 

1 +(3cosw 

= ( -(1 +(3cosw)2 ) * ( 
1 + (32 + 2(3cosw 

+ (3 «(3 + cosw) 

1 + (32 + 2 (3cosw 

- (3cosw - (3 ) 

(1 + (3cosw)2 

(AS) 

(A6) 

(A7) 

(AS) 

(A9) 

(AlO) 

(All) 

(AI2) 

(A 13) 

(AI4) 

(AI5) 

364 Implementation of an FSK Modem Using the TMS320C17 



Assuming T is expressed in terms of sample delays D 

+ {3 ({3 + cosw) 
D = --------------

(1 + (32 + 2 (3cosw) 

Rearranging (AI?) and using the quadratic equation to solve for 

(1-2D)cosw ± «(l-2D)2cos2w + 4D(l-D»1I2 
(3 = - 2(1-D) 

(AI?) 

(AI8) 

Given the desired group delay D, and the frequency f = w/27r, the filter coefficient 
{3 can be determined using equation (AI8). 

Implementation of an FSK Mod~m Using the TMS320C17 365 



w 
~ 

~ 
'ti 

~ 
~ 
E; 

g' 
.s?, ., 
~ 

~ 
~ 

~ 
~ 
3 

~ 
S· 

()Q 

So 
~ 

~ 
~ 
::5 
Q 
'-.l 

HfHffHfHHHtHHftHffHHfHH"**fffH*ffHHfHHHHfHff**ffff***ffl 

APPENDIX B 

fHfffUffHHflHfHH***tfftHfIHff*H********,****UHfHI**tfHf********" 

• 
V21/BELL 103 I1OlJEI1 

ASSEIIBlY LANGUAGE SOFTWAAE FOR TMS32OC17 IMPLEMENTATION. 

~L RIGHTS RESERVED BY TEXAS INSTRUMENTS (C) 
HHfffHfHffflHHHHHffHHf*H+HfffHffHfHtffH**Hf-f-II-HH***f**Hf-' 

VERSION 1.0 01/SEP/89 

HIf-HIHIHH*******fHtfH***fH****ffH**UHHHI***HH*******tfHH,****f 

.option x 

HHUHfffHt*****fH****************H*************HH****H,*************** 

CONSTANT DEFINITIONS 

HtHfl*H*,****f**f**,***********************fflHHi***fIfHH***************** 

Rll'lSK: .set OCOh 
ANMSK: .set OSh 
LMSK: .set OF3h 
LDMSK: .set 04h 
NTXI1SK: .set OCFh 
NRCI1SK: .set 03F. 
NSP"SK: .set OFC. 
TXSH: .set O4h 
RCSH: .set 06. 

HffHfltH**fHHft**************t**tH*****f**********ffftHnHf",**HH**f 

AGe EQUATES 

fHf****fH****H***HfHHHHfHtH***Hffffflftfff*****fftffffffHfHHHH 

AGCREF: • ,et 05116. 

ffHHf*HHHHH4HHffHfHffH"tf**fffffHffHHHfffftHf*********f****f 

HIGH PASS FILTER CONSTANT 

TAU: .,tt 14 , <16 - 14 

HfHfffHHIHHfflHHHlfHHHUHHtHffffHfHfllllllllllllllfHHfHfH 

DATA MEl10RY (RAIl) ASSIGN'IENTS 

H**tHfH*********fHH*******tfHfHff**fHHH*H*11111111111 ~ IlfHffHHH 

• 
STATUS: .set 
XIlATA: .set 
DTFLAG: • set DTtIf FLAG 
ONE: . set CONSTANT 1 
SleNT: ,set 16 51 DETECTION COONTER 
STWRD: .set ONE+l 
XSCNTR: ,set STWRD+l 
RSCNTR: .set XSCNTR+l : REC. BAUD COUNTER 
SCNT: .set RSCNTR+! : NOMINAL BAUD COONTER 
XBITS: .set SCNT+l 
XOUT: .set lBITS+l : OUTPUT SAMPLE 
RIM: • set XOUT+l : INPUT SAMPLE 
TXFRQ: .set RIN+! 
TXPHS: .set T1FRfl+l 
RXFRQ: .set T1PHS+l 
RXPHS: .set RXFRQ+l , RECEIVE DEI1OOULATION ANG.E (KH) 

TMP4: .set RXPH5+1 
HIPS: .set TMP4+1 

TMP2: .set TMPS+! , PARTIAL FILTERED SIGNAL wen) 
TMPO: .set TMP2+! 

nlP3: ,set TMPO+! 
Tl1Pl: .Stot T~P3+1 

• 
IReNT: .set TMPl+! 
TInIND: .set IRCNT+l 

• 
IRQ: ,set TI"IND+l 

i-**fffU*****HHHffl****fH*,"*fHHfffftfHtU****HtHHHftHifHffHHH* 

IN THE FSK i'IlDE, THE TX/RX PARAPlETERS SHARE THE SANE I1ElIORY AS THE 
EWALIZER DELAY LItE 

tHHHlttHff****fHHfHHflffHtffff*****ftffftff****"*fHffffffffftftftH 

OD: .set IRO ; OUTPUT IF PRODUCT DEIIOOULA Tlll 
AGCOUT: .set PROD+l 
PDELO: .set AGeOUT+l , PROOOCT DEIIlOOLATOR DELAY LINE 
PDELt: .set PDELO+l 
PDEL2: .set POELl+! 
LPDELO: • set PDEL2+1 , FSK LOIIPASS DEMOD DELAY LIIE 
LPDELt: .set LPDELO+l 
LPOEL2: .set LPDEL1+1 
GAIN: .set LPDEL2+1 GAIN OF FSK DEMOD FILTER (0.5 OR 1.0) 
FSKDAT: • set GAIH+l OUTPUT IF FSK SlICER (X111) 
BAUIJC)(: .set FSKIlAT+l BAUD CLOO< FOR FSK TIMIMl RECO'IERY 

~ 
"CI 
nl 

= Q. .... 
~ 

== 



~ 
'ti 

1f 
g 
s g, 
;:: 

.Q, .,. 
;:: 

~ 
~ 

~ 
~ 
~ s· 

OQ 

So 
~ 

~ 
~ 
tv 
<::> 
Q 
'-I 

IN 

~ 

BlI/\TA' .set BAUOCt<+1 , CUlRfNT BAUD FSI< DATA (XlIII 
TRANS' .set BlI/\TA+l , = 20 USED IN Tl"ING llfCISIC»I 
COUNTR' .set TRAliS+I , TRANSlTlC»l COI.MER F<ll RX Tl"ING 
BIFSK' .set COUNTR+I , COEF BI OF P\lASE ADJUST FIR 
AIFSI<' .set BIFSI<+I , COEF Al OF FSI< DEIIOD FILTER 
A2FSK' .set AIFSK+I , COEF A2 OF FSK DEIIOD FILTER 
FOADD' .set A2FSK+I , ADDlESS OF 0 FREQI.O;Y 
FlADD' .set FOADD+I , ADDRESS OF I FREQUENCY 
FSI<FI.G' .set FIADD+I , FlAG TO INDICATE FSK IPERATl(Jl 
OAFLAG' • set FSKFlG+1 , <llIGINATE../ANSWER tIlDE FlAG 
DZONE' • set 0AFlAG+1 , DEAD ZONE OF SlICER 
LPFOUn .Sft DZONE+I 
CClm .set LPFOUT+I 

HfffHUHHffffHffffHHHffftfftfttffHftHHHfHfl+IlHfHffHllfHlHH 

AGe RAn 

fHHHHIH",*ffHffHHHHH****HHffHtHtHffHfHfffflffHffHfffHflH 

ALPHA: .set 
AYESQR, .stt 
GN: .set 
HYSn .s.t 

CClTT+l 
Al.l'HA+I 
AYESQR+l 
ON+I 

fHffHHHffHfHffHHHffHfU*.lHffHfJ'III".I.llllllffHH***ffHH,*** 

BAUD COUNTER 

fHHfHf4Hf*II,IIII.II.'.IHtHfffHff**flllllllllll •• 111****IIIIIIIIHI"*1 

BDCNTR' • set HYST+I 

ffHlHfffff**fffHftHfHHHfltHfHfffHHHifHff"*fHffHf****fHHHHH 

PAGE 1 RAn ASSIIillllENTS 

ffHfHffHf*.*HHIfHHfHfHHHUHIIIIIIIIIIIIIIIHffHfffHHffHfHffffff 

• 
XI< • set 
X2' .set 
Sf: .set 
STlSB' .s.t 
p~: .5et 
I'EGSn' .s.t 

X1+1 
X2+1 
ST+l 
STlSB+1 
POSSII+l 

fHtHKHItIHHflffH*tHHfHHfffffHfHlHHHftHH**HHHHfHfHHfH 

DlAGNJSTlCS ! 

tHftHHtHHtHHftHff******tttHMHHtfHfHHfIHHlHffHHtHHHHt*f 

DT~U • Sft IRCNT 
DTrIFH' • s.t Tl"IND 

. text 
B START 

ff********UfHHHfHHHHffUUffffH:lffft-fffHUffUfHfffHHHHUfHU1t 

COEFFICIENTS STORED IN PROGRM ROn 

HfHHffHHtnfHfHfflt'UHffHHfHfHflfHfHlllHHfffHtfHHHtnHHf 

PHASE ANGlE L()(l(-l!' TABlE 

CC»ITAINS THE 'INCREI£NT USED AS xm. TA IN THE CARRIER GEllEAATlON. THE 
TABlE GIYES THE AN<l..ES FOR 300 BPS, (V21, !Ell. (03) <llIG/ANSW IIlDES. 

NGTE' INCREIENTS ARE IN UNITS OF PI/I28 TlI'B 256 IUPPER 8 BITS OF DATA 
MNTUAllY REPRESENT TABlE INDEX) 

HffffHfHHHHHflHHHHHHf**HfHNHHtfHfIflHfffftl**tlffflfffff*f 

• 
FSKTIl.' .set $ 

.word 021ddh FSK, 103, <llIGINATE, I 1270 HZ 

... ord Olc89h FSK, 103, <llIGINATE, 0 1070 HZ 
• ..ord 01852h CIlEFF 81 F<ll 2125 HZ FREQ. <0.4293) 
• 1liiOI'd 07fffh GAIN Fill FSI( lEIIlD lPF III 

.1II0rd OI.22h FSK, V.21, OOIGINATE, 1 1180 HZ 

.lIIord OHm FSK, Y.21, <llIGINATE, 0 980 HZ 
• 1liiOI'd 22574h CDEFF BI F<ll 1750 HZ FREQ.10.b3) 
.\JIord 07fffh GAIN Fill FSI< IEltOD lPF 10.5) 

.lIIord 03b5~ FSK, 103, ANSWER, I 2225 HZ 

.1II0rd 03600h FSI<, 103, ANSIER, 0 2025 HZ 

.lIIOl'd 06bbh CIlEFF 81 FOR 1170 HZ FREQ.(O.38911 

.word 049.~ OAIN F<ll FSI( IEIIlD LPF 10.8323) 

• 1liiOI'd 02cOOh FSK, Y.21, ANSWER, I 1850 HZ 
.lIIor4 03155h FSK, V.21, ANSIER, 0 IbSO HZ 
."ord 10747 CIlEFF Bl F<ll 1080 HZ FREQ. (0.3) 
.word 22857 GAIN F<ll FSK IEIIlD LPF 10.5) 

F2U ."ord 03800i> 2100 HZ ANSIER TIlE 
F22' .1II0rd 03bSSh 2225 HZ ANSIER TOlE 
ZII£' .lIIord 50 DEAD ZIl'£ OF FSI< DEIIlD SlICER 
FSKAU .word 

04_ 
COEF Al OF FSK DEIIlD FILTER 

FSKA2' • 1liiOI'd OUdbh CIlEF A2 OF FSK DEIIlD FILTER 



&i 

~ 

1 
~ s 
g' 

.Q., .. 
;:s 

~ 
~. 

~ 
~ 
~ 
~. 

s-
CI> 

~ 
~ 

B 
""l 

COIIIIIiGJ IIlDE SUBROlITII£ Loo<-ll' TABLE 

IN CatIAND mlE, EACH COOtAND BYTE ctllRESPONDS TO AN ENTRY ffRE WHICH 
~TAINS TI£ NAIIE (F TI£ _lATE SUBROOTII£ TO CALL ·TO EXECUTE TI£ 
ClJIII1ANII. THE riIIIIER (F lNlEfll£D SUIIROUTINES (AT ADDRESSES 00, 01, 02, 
04, 06, 00, OB, OC, AND OEhl rEANS INCAEASED SV5m EXPANSION IS EASILY 
ACCOIIlIIATED. 

HffHflffffHffHfIIIIIIIIIIIIIIIlHHHHft+lfffH*fHfHffIHfHfHHffHfH 

• 
CIIIlTB1.I .set 

.wor-d 

.word 
,lItOrd 
,\dOrd 
lIllO-I'd 
.wGI'd 
.1III0rd 
,word 
.word 
,lIIOrd 
,word 
,lIIord 
.lIIOl'd 

• word 
.word 
,lIIOrd 

$ 

NONE 
Nl£ 
NlNE 
RESET 
NlNE 
FSKSET 
NONE 
Rtm;: 

XIIlDE 
DTIF 
NONE 
NONE 
NONE 
IJ'ER 
NONE 
PROTO 

; OOh MlT DEFII£D 
; lXh NOT DEFII£D 
; 2Xh NOT DEFINED 
; 3Xh RESET TI£ DSI' 
; 4X' NOT DEFINED 
; 5Xh FSK MTA MODE 
; bXh MlT DEFINED 
; 7Xh RECVR. MODE seTlJ> 
; SIlX TRANS. IIlDE seTUP 
; 9X. TRANSII/T DTtF CHARACTER 
; AXh NOT DEFII£D 
; BX. NOT DEFII£D 
; CX. NOT DEFII£D 
; DXh seT IJ'ERATING MODE 
; EX. NOT DEFII£D 
; FXh PROTOCOL SELECT 

HffHHI******flHf**IHHHHHiHtfHHlffHtfIHlfHllHfftfffHH*HI***I" 

• 
RECEIVER SUBROUTINE TABLE 

USED TO S£LECT DISTRIBUTED RECEIVER TASKS. THIS IS IIIPORTANT IN HIGI£R 
FtN;TIONII!.ITY SYSTEI'IS THAT CANNOT IIRENEIIT TASKS IN A SItG.E SANPLE 
PERIOD. 

IH"ltHHIHHHHHtfff***HHHfffHfff*****"tfHfHHffff******ftHfHffH 

RSEQTB' • set $ 
.word NONE 
,lIIo.l'd NONE 
.blOl'd NOI£ 
.~I'd NONE 
.1II001'd NONE 
,lIIo.ra NONE 
.lIIord NOr£ 
,lIIo.rd NONE 
.lIIOrd NONE 
,Mrd NONE 
.word RTSKIO 
.lIIord NONE 
.word NONE 

,word 
.word 
.word 

Nl£ 
NONE 
Nl£ 

fl*fHHfHHHHfHfHHHHHltHftHHHH+HfH*****HHfI***HfHffHffH 

SERlII!. PORT CONTRa. REGISTER MTA 

HffHfffHHitHlfffHfHHH********HHHHffflHlHfHflflHfHflffHfHlff 

MI: 
00: 
1lA3: 

,lIIord 
lilloI'd 
.~rd 

O39OFh 
02CBEh 
0380Fh 

; MODIFIED TO USE H/W ClN'IPANDING 

IfHHlUHHHItHHHIHHHHfHffff*f'**HfHffHIHHHfH*ffffl**'****" 

I'olC MTA 

THE FOlLOWING VALUES ARE TI£ Cll!.CULATED VALUES WITH NO WINDOW 
IIREI1EHTATION ARIXJNIl TI£ THmUICII!. ENERGY BAND OF QAII SIGNALS. 
IllWEVER, /ltE' TO 151 EFFECTS, WINDOWS ARE REQUIRED. FOR PROPER (fERATION, 
THESE VALUES I1UST BE ADJUSTED FOR APPROXltlATEL Y 3 DB DIFFERENCE IN SIONAL 
ENERGY LEVELS TO ClJIIPENSATE FOR TI£ WINDOWS. 

***fHfffH**************HfHHf****"****HHHfffffHHHHffHHffffHfHf 

• 
THRESI .word 
THRES2 .lIIord 
TI-fiES3 .lIIord 
T~ .lIIord 
THRES5 .~ord 

THRESo .lIIOl'd 

• 
I1AXALP: .lIIord 
PSIII lIllOI'd 
NSIII .1I0rd 
THRESH .1II0rd 
THRES2' • lieI'd 
THRES3: .1II001'd 
OOES4: ,lIIord 
THRES5: .blord 
TII1ES6' .1II00rd 
HYSINC • • 1II00rd 

23BB' 
15481> 
240h 
aFRh 
1417h 
OODh 

-48.0 DB/( REC. LEV. (1\=35.731 
-43.5 DBn REC. LEV. (A=21.281 
-24 DB/( REC. LEV. (AFE=ON,A=2.251 
-24 DB/( REC. LEV. (AFE~F,A-S.981 

-31 DB/( REC. LEV. (AFE=OFF,A=20.091 
-31 DB/( REC. LEV. (AFE=ON,A=5.051 

038Alh ; -52.0 DBM RECEIVE LEVEL 
01EA6h ; BAUD ENERGY ERROR LEVEL 10628 
0113. ; BAUD ENERGY ERROR LEVEL 1 
0194C. ; -48.0 DB/( REC. LEV. (1\=25.301 
0fF5. ; -43.5 DB/( REC. LEV. (A=15.9bl 
0199. ; -24 DBII REC. LEV. (AFE=ON,A=I.6<l1 
06B0. ; -24 DB/( REC. LEV. (AFE=OFF,A=6.691 
OEOO. ; -31 DBn REC. LEV. (AFE=OFF,A=14.00) 
0490h ; -31 DBK REC. LEV. (AFE=ON,A=4.561 
OFOFh ; 1117 (F 65536 



~ 
,***fffUHfiH****HffHifHHffHtHfHHHHttHfHffHffffffHHtHHff"* 

.lIIord 02762h 

I DTMF TIlE TABLE: .-.ord ()3.4Oh ; LOll FRElI GAIN 
• word 03A0h ; HI FRElI GAIN 

l'\\ FIRST ENTRY RfPRESENTS LOW FREIlI£NCY 
;:, SECOOD ENTRY REPRESENTS HIIlIi FREIlI£NCV .4IIord 016118h ; 7 

iii • word O203Eh 

S' IIfLTA = (F IF) • N ,lfOrd 02AOh ; LOW FREQ GAIN 

;:, S .lIIIord 0370h ; HI FREQ GAIN 

.Q, WITH N = 256 TABLE SIZE • lIIord 016118 • ; 8 
~ F = 9600 HZ .lIIord 023AOh ;:, 

~ 
S ,tlord 02A1lh ; LOW FREQ GAIN 

F = FREIlUENCY (J' INTEREST .lIU)rd 03DOh ; HI FRElI GAIN 
:;.;: 

~ 
*H*H**H*********fH*********HHttftH**"*****"fHffHHfff**********HH .lIIord 016i8h ; 9 

.word 027620 

~ OATA FORMAT IS S7.8 TO BE AS STEP SIZE. THE TABLE ENTRIES ARE HOI£\IfR. ,lIIord 0290h ; LOW FREQ GAIN 

::! TREATED AS 16 BIT tJIISIGIEll INTEGERS. A IlULTlPLICATlON OF DELTA BY 256 .lIIord 0300h ; HI FREQ GAIN 
roES THE NECESSAAY CONVERSION IN FORMATS. 

~ • lIIord 01296 • ; A 

S· HfffHffffflft*******fnt*fHiiHHfUlfHHfHHf"*fUHHtffHtffffHHfUt .word 02B8Ch 

Ci<l • .word Q493h ; LOW FRElI GAIN 

So TONTBL: .IIIord 0191Bh ; 0 LOW FRElI .lIIord 049311 ; HI FREQ GAIN 

l'\\ .lIIord 023Allh 

~ 
,lIIord 02AOh ; LOW FREQ GAIN • illord OI4BSt • ; B 
.1II0rd 03AOh ; HI FREQ GAIN • lillOI'd 02118Ch 

tl .lIIord Q493h ; LOW FREQ GAIN 

tv .lIIord OI296h ; 1 .word 0493h , HI FRElI GAIN 

<::> .lIIord 020JEh 
("') .1II0rd OBOOh ; LOW FREQ GAIN ,1II0rd 016B8h , C 
...... 

.1II01'd Q493h ; HI FRElI GAIN .lIIord 02B8Ch 
'-J .word 0493h ; LOW FRElI GAIN 

.lIIord 01296h , 2 .illord 0493h , HI FRElI GAIN 

.ldord 023ilOh 

.word OBOOh , LOW FRElI GAIN .lIIord Ol91Bh ; D 

.lIIord 0493h ; HI FREQ GAIN ,Il101'0 02B8Ch 
.lIIord 0493h ; LOW FRElI GAIN 

.\IIort! Ol296h ; 3 .illord O493h ; HI FREQ GAIN 

.lIIOrd 02762h 
,lIIord OBAOh ; LOW FREQ GAIN .lIIord 0191Bh ; E (t) 
.lIIord Q493h ,HI FRElI GAIN ,lIIord 0203Eh 

... ord OJOOh ; LOW FRElI GAIN 
,lIIord 01488h ; 4 ,\dOtd OJOOh ! HI FREQ GAIN 
.lIIord 0203Eh 
.word OZEOh , LOW FRElI GAIN ,lIIord 01918h ; F (I) 

.word 03AOh , HI FRElI GAIN .word 02762h 
.lIIord OJOOh ; LOW FRElI CAIN 

.lford 014B8h ; 5 .lIIOrd 0300h ; HI FRElI GAIN 

.ltIOrd 023AOh 

.lIIord 0340h ; LOW FRElI CAIN 

.1II0rd 0420h , HI FRElI GAIN 

I..:> 
.lI&rd 014B8h $ , 6 



W HHHttHftHHIfl"********HHIlIIIIIIII ••• IIIIIIIHIHfHHffHHHIHHfH 
-...J .lIIOl'd 07505h ;. ANGLE = 23.9063 COSUE' 0.914210 
0 .lIIord 074601> ; ANGLE = 24.6094 COSIIlE·. 0.909168 

ADDITIIlIiIL TABlES 
.W!". 07386h ; ANGLE = 25.3125 COSIIE = 0.903989 

IHltHH4H+HHHHHHHHHHHHtHf •• 11 II II III I IIHHflHHfffHHfHH* 
.word 07308h ; ANGLE' 26.0151> COSIIIE = 0.898675 
.word 07255h ; AIIIlLE = 26.7188 COSIIE = 0.893224 

.copy "COSTBL.M)()' ; . COSIIIE F\l!CTlON TABLE .word 0719Eh ; ANGLE = 27.4219 COSIIE = 0.887640 
.word 070E3h ; AIIIlLE = 1Il.1250 COSIIE. 0.881921 

fHIHfHHHHHHfH*****"*I***********ffHfHHfffffHfflffffIHfHH***** ,lIIord 07023h , ANGLE = 28.8281 COSIIE. 0.876070 
.word 06f5Fh ; AIIGLE = 29.5313 COSIIE = 0.870087 

COSIIE LOOKUP TABLE' .IIIord 06E97h ; AIIGLE = 30.2344 COSINE. 0.863973 
.lItord 06DCAh ; AIG.E' 30.9375 COSIIE' 0.f1m29 

257 ENTRIES OYER THE RAMlE [O,Pll. THE RESOLUT!OO OF THE TABLE IS _IIIord 06CF9I1 ; AIG.E = 31.6406 COSINE. 0.851355 

THEREFlIRE • .word il6C24h ; AIG.E' 32.3438 cOSIIE = 0.844854 
.1II0rd 06B4Bh ; AIiGLE = 33.0469 COSINE. 0.838225 

U80 I 256 ) = 0.703125 DEGREES .word O6II6Eh ; ANGLE' 33,7500 COSIIE' 0.831470 
.1II0rd 0698Ch ; AIG.E = 34.4531 COSINE. 0.824589 

HHHf*,****,f"*HtfHff***HIHHHffHffHftH*"****",**ftHfHHHfHH .word 068A7h ; AIG.E' 35.1563 COSIIE: 0.817585 
.word 0678Dt1 ; MIlLE. 35.8594 COSIIE: 0.810457 

COSOFF: .set $ ; COSINE TABLE LENGTH • 512 .ldord O66OOh ; AIG.E: 36.5625 COSHE = 0.803208 

• ~rd 07FFFh ; AIIGLE • 0.0000 COSIIE = 1.000000 •• ord 065DEh ; AIIGLE' 37.2656 COSINE: 0.795837 

.tlord 07FFEh ;AIIGLE. 0.7031 COSUE: 0.999925 .lIIOl'd 064E9h ; AIG.E: 37.9688 COSINE' 0.788347 

~ ,lOOl'd 07FF6h ;AIG.E. 1.4063 COSIIE' 0.999699 _tlord 063EFh ; ANGLE· 38.6719 COSINE: 0.780737 

"t:j . .,ord 07FEAh ; MIlLE· 2.1094 COSINE. 0.999322 ,lIIOrd 062F2h ; AIG.E: 39.3750 COSINE'· O.mOl1 

~ ,blord 07FD9h ; ANGLE' 2.8125 COSINE' 0.998795 ,lIIord 061Flh ; MIlLE' 40.0781 COSIIE: 0.765168 

;1! .lII6rd 07FC2h ; MIlLE = 3.5151> COSIIIE: 0.998118 • word 060ECh ; MIlLE' 40.7813 COSINE' 0.757209 

(t> .lIIord 07FA7h ; ANGLE' 4.2188 COSIIE. 0.997291 ,lIIord 05FE4h ; ANGLE' 41.4844 COSINE: 0.749137 
;:! .lIIl'Ird 07F87h ; ANGLE' 4.9219 COSINE: 0.996313 ,Irord 05ED7h ; ANGlE' 42.1875 COSIIE' 0.740951 
S .~rd 07F62h ;AIG.E' 5.6250 COSUE: 0.995185 .IIIord 05DC8h ; ANGLE: 42.8906 COSINE' 0.732655 

g' .\IIord 07F38h ,ANGLE' 6.3281 COSINE. 0.993907 .lIIord 05CB4h ; ANGlE = 43.5938 COSIIE' 0.724247 

.word Q7FOAh ;MIlLE' 7.0313 COSINE: 0.992480 .lIIore 0589Dh ; AIG.E = 44.2969 COSIIIE: 0.715731 

~ .lIIord 07EDbh ; ANGlE· 7.7344 COSINE' 0.990903 • word 05A82h ; ANGlE' 45.0000 COSIIE' 0.707107 

I::> .lIIord 07E9Dh ; MIlLE: 8.4375 COSHE. 0.989177 .lIIord 05964h ; MIlLE' 45.7031 COSINE: 0.6983n 

;:! .1II0rd 07E60h ;AIG.E' 9.1406 COSINE: 0.987301 .lIIord 05843h ; AIIGLE· 46.4063 COSIIE: 0.689541 

~ .word 07EIEh ; ANGLE: 9.8438 COSINE' 0.985278 .1II0rd 057IEh ; ANGLE: 47.1094 COSINE' 0.680601 

.lIIord 07dDDh , AIIIlLE. 10.5469 COSINE' 0.983106 .lItOrd 055F6h ; At«iI..E: 47.8125 COSINE: 0.671559 

~ .~rd 07llSAh , ANGLE' 11.2500 COSIIE' 0.980785 ,lIIord 054CAh ; ANGLE = 48.5151> COSINE. 0.662416 

~ .\IIord 07D3Ah ; MIlLE' 11.9531 COSINE: 0.978317 ,!IIord 0539Bh ; ANGlE: 49.2188 COSINE' 0.653173 

.\fOrd 07CE4h ; ANGLE' 12.6563 COSllE· 0.975702 .IIIOcrd 0526911 ; ANGLE = 49.9219 COSINE' Q.643832 

1} .Ulord 07C89h ; ANGLE' 13.3594 COSINE. 0.972940 .blord 05134h ; ANGLE: 50.6250 COSINE. 0.634394 

;1! .word 07C2Ah ; MIlLE' 14.0625 COSINE· 0.970031 .lIIord O4FFBh ; ANGLE = 51.3281 COSINE' 0.624860 

s: .\IIord 07BCbh ; ANGLE = 14.7651> COSINE· 0.966976 .~rd 04ECOh ; ANGI.E' 52.0313 COSINE. 0.015232 

.word 07850h ; ANGI.E: 15.4688 COSINE· 0.963776 .1II0N! O4OOlh ; ANGLE' 52.7344 COSINE. 0.605512 

S· .1II0rC 07AEFh ; AIIGLE. 16.1719 COSINE: 0.960431 .~rd O4C4Oh ; ANGlE: 53.4375 COSIIE: 0.595700 

Oq .word 07A7Dh ; ANGLE. 16.8750 COSINE: 0.956940 .1II0rd 04AFBh ; ANGLE' 54.1406 COSINE: 0.585799 

S- .word 07A06h ; ANGLE' 17.5781 COSINE. 0.953306 .word O49B4h ; AIG.E' 54,8438 COSIIE: 0.575809 

(t> .w.ord 0798Ah ; AIG.E: 18.1Il13 COSIIE' 0.9495l!l .1II0ra 0486Ah ; MIlLE· 55.5469 COSIIIE' 0.51>5733 

~ 
.1II0ra 0790Ah ; MIlLE. 18.9844 COSINE: 0.9451>07 .lIMIrd 0471Dh ; AIIGLE: 51>,2500 COSIIE: 0.555571 

.word 07885h ; AIG.E = 19.6875 COSIIE' 0.941544 .1II0rd 045ClJl ; ANGLE' 51>.9531 COSIIIE. 0.545326 

tJ .1II0ra OnFBh ; ANGLE' 20.3906 COSINE: 0.937339 .lIIord 0447Bh ; ANGI.E' 57.6563 COSIIE: 0.534998 

N .lIWrd 0776Ch ; AIG.E' 21.0938 COSIIE' 0.932993 .lIIOrd 04326h ; ANGLE· 58.3594 COSINE' 0.524590 

~ .1II0rd 076D9h ; AIG.E' 21.7969 COSINE' 0.928506 .lIIord 04ICEh ; AIG.E' 59.0625 COSIIE: 0.514103 

a .lIIOrd 07642h ; AIIIlLE' 22.5000 COSINE' 0.923880 •• ra 04074h ; MIlLE· 59.7651> COSIIIE: 0.503539 

'l .tlOcrd 075A6h ; AIIGLE' 23.2031 COSINE' 0.919114 .!IIord WI7h ; AIG.E' 60.4688 COSINE: 0.492899 
.lIOrd 03088h ; ANGLE' 61.1719 COSINE. 0.482184 



3' ,lIIOl'd 03CS7h , ANGLE = 61.87SO COSllE = 0.411397 offord OEBAAh ; AI«lLE = 99.1406 COSllE = -.150059 
'ti .word 03AF3h ; ANGLE = 62.5781 COOlNE = 0.460539 ,lIIord OEAIEh ; AI«lLE = 99.8438 COOlNE = -.170963 

~ .lIIord OmDh ; AI«3LE = 63.2813 coonE = 0.449612 .lIIord OEB92h , AI«lLE = 100.5469 COSINE = -.1B3041 
.IIIOl'd 03825h ; ANGLE = 63.9844 COSINE = 0.438617 ,lIIord 0E707O ; ANGLE = 101.2500 COSINE = -.195092 

~ 
.1II01'd 036BAh ; ANlI..E = 64.6875 COOlNE = 0.427556 .lforlj 0E57Dh ; ANllE = 101.9531 COSINE = -.207113 ;:s 

is' ,lIIord 0354E, , ANGLE = 65.3906 COSINE = 0.416430 ,word 0E3F4h , ANGLE = 102.6563 eoSINE = -.219103 

§. ,lIIord 033I1Fh , AI«3LE = 66.0938 COSINE = 0.405242 ,IIIGi'd OE26!)h ; AI«3LE = 103.3594 COSINE = -.231060 
,IIl0l'd 0326£h , ANGLE = 66.7969 COSINE = 0.393992 ,1IIC1rd OEOE6h , ANGLE = 104.0625 eoSINE = -.242982 
.lIIord O3OFe, , ANlI..E = 67.5000 COSINE = 0.382684 .1II01'd OIIF61h , ANll.E = 104.7656 COSllE = -.254867 .sa, .1II01'd 02F87h , ANGLE = 68.2031 COSilE = 0.371318 ,lIIord ODDDCh , ANGLE = 105.4688 COSINE = -.266714 

\:l ,lIIord 02Ellb , ANll.E = 68.9063 COSINE = 0.359S95 ,lIIord 0DC59, , ANll.E = 106.1719 COSIl'E = -.278521 ;:s 
.word 02C99h , ANGLE = 69.6094 COSINE = 0.348419 ,lIIord ODAOSh , ANGLE = 106.87SO COSINE = -.290286 

~ ,blord 0281Fh , AtG.E = 70.3125 COSINE = 0.336890 .lIIord 00958, , ANll.E = 107.5781 COSINE = -.302008 

~ .!IIol'd 029A4h , ANGLE = 71.0156 COSINE = 0.325310 ,lIIord OD7D9h , ANGLE = 108.2813 COSINE = -.313683 

~ 
.lIIord 028270 , AtG.E = 71.7188 COSINE = 0.313682 ,lIIOrd 0065Ch , AtG.E = 100.9844 COSllE = -.325312 
,lIIord 026A8h , ANGLE = 72.4219 COSINE = 0.302006 . .,ord OD4Elh , ANGLE = 109.6875 COSINE = -.336892 

t} .word 02528h , ANGLE = 73.1250 COSINE = 0.290285 ,lIIord 003670 , ANGLE = 110.3906 COSINE = -.348420 
,iliaI'd OnA7h , ANGLE = 73.8281 COSINE = 0.278520 ,lIIOl'd ODIEFh , ANGLE. 111.0938 COSINE = -.359897 ~ .lIIord 02224, , ANGLE = 74.5313 COSINE = 0.266713 .lIIord OD079, , ANll.E = 111.7969 COSllE = -.371319 s: .word 0209Fh , ANGLE = 75.2344 COSINE' 0.254866 ,!IIord OCF04h , ANGLE' 112.S000 COSINE' -.382685 
.word 01FIA, ; ANGLE = 75.9375 COSINE = 0.242980 .filord OCD92, , ANGLE = 113.2031 COSINE' -.393994 S· .lIIord 01D93h , ANGlE = 76.6406 COSINE. 0.231058 .!lilord OCC21h , ANGLE = 113.9063 COSINE = -.405243 Oq 
.lIIerd 01eoC, ; ANGLE = n.343B COSINE = 0.219101 .lIIord OCA82h , ANGLE = 114.6094 COSll'E' -.410431 So ./llord 01AS3h , ANGLE = 78.0469 COSINE = 0.207111 .1II0rd OC946h , ANGLE = 115.3125 COSINE = -.427557 ~ 
.1II0rd 018F9, , ANGLE = 78.7500 COSINE = 0.195090 .blord OC7D8, , AtG.E = 116.0156 COSINE = -.438618 

~ .lIIord 0176£h , ANGlE = 79.4531 COSINE = 0.1B3040 ,lIJor·d OC673l> , ANGLE = 116.718\1 COSINE = -.449613 
.4IIord 015£2h , AtG.E = 80.1563 COSINE' 0.170962 ,blord OCSOOh , ANGLE = 117.4219 COSINE = -.460541 ~ .tlord 014550 , ANGLE = 80.8594 COSINE' 0.1S8B5B ,/llord OC3A9h , ANGLE = 118.1250 COSINE = -.471399 tv .word OI2C8h , At«lLE = 81.5625 COSINE = 0.146730 .II/O'rd OC248, ; At«lLE • 118.8281 COSINE = -.482186 <;:;, 

<"'.! .IiIQl'd 011JAh , ANGLE = 82.2656 COSINE = 0.134580 .liIord OC0E9h , ANGLE = 119.5313 COSll'E = -.492900 ..... .lIIord OFABh , ANGLE = 82.9688 COSINE = o.muo .liIord OBFBCh , AtG.E = 120.2344 COSllE = -.S0354O 
'I .IIO'rd OElCh ; ANGlE = 83.6719 COSINE = 0.110222 ,lIIard OBE32h , ANGLE = 120.9375 COSINE = -.514105 

,!IIord OCBC, , ANGLE = 84.37SO COSll'E = 0.098017 .II/Grd OBCOA, , ANOLE = 121.6406 COSINE = -.524592 
.lIord OAFBh , ANGLE' 85.0781 COSINE = 0.085797 .!IIord OB885h , ANGLE = 122.3438 COSINE' -.535000 
.IIIO'rd On.B' , AtG.E = 85.7813 COSINE = 0.073504 .lIIord OBA33h , ANll.E = 123.0469 COSINE = -.545327 
.lIord 0709, , ANGLE = 86.4844 COSINE' 0.061320 ,word OBBE3h , ANGLE = 123.7500 COSll'E = -.555572 
,lIIord 0648h , ANGLE = 87.1875 COSINE = 0.049067 .1II0rd OB796, , ANGLE = 124.4531 COSINE = -.565734 
,word 0486, , ANGLE = 87.8906 COSINE' 0.036807 ,lIIord 0864Ch , ANGLE = 125.1563 COSINE. -.575810 
.lIIord 032411 , ANGlE = 88.5938 COSINE' 0.024541 ,lIIO'rd OB505h , AtG.E = 125.8594 COSINE = -.585800 
,lIIOrd 0192, , ANGLE = 89.2969 COSINE' 0.012271 .wO'rd OB3COh , ANGLE • 126.5625 COSINE' -.595701 

SINEO: ,set $ ,ldord OB27F, , ANGLE = 127.2656 COSINE = -.605513 
,lIIord OOh , ANGLE = 90.0000 COSINE = -.000001 ,word OBl40h , ANGLE = 127.9688 COSINE. -.615234 
,lIIord OIE6£h , ANGLE = 90.7031 COSll'E = -.012272 .IIIO'rd OB005h , ANGLE = 128.6719 COSllE = -.624862 
,lIIord OiCDCh ; ANGLE = 91.4063 COSINE = -.024542 .!IIord MECC, , ANGLE = 129.3750 COSINE = -.634395 
,lIIord OIB4A, ; ANOLE' 92.1094 COSINE = -.036808 .lIOrd OAD97h ; ANGLE = 130.0781 COSINE = -.643834 
,1liiOI'd OF9B8h , ANGlE = 92.8125 COSINE = -.049069 .IIIGrd 0AC65h , ANGLE • 130.7813 COOlNE = -.653175 
,llIOrd OF827b , ANll.E = 93.5156 COSIIE = -.061322 .ord OAB36h , ANOLE = 131.4844 COSINE = -.662418 
,lIIord OF695O , ANGLE = 94.2188 COSINE = -.073566 ,lIIord OAAOAh ; ANGLE = 132.1875 COSINE = -.671561 
.lIIord OF50Sh , AOOLE = 94.9219 COSIlE = -.085798 .word OABE2h , ANGLE = 132.8906 COSII'E = -.680603 
,1liiOI'd OF374h , ANGlE' 95.62S0 COSINE = -.098018 .IIIO'l"d OA78Dh , ANGLE = 133.5938 COOlNE = -.689543 
.lIIQrd OFIE4h , AN3l.E = 96.3281 COSINE = -.110223 .lIIord OA69Ch , ANllE = 134.29.9 COSINE = -.698378 
.lIIord OF055h , ANGlE = 97.0313 COSINE = -.122412 ."ord OA57Dh , ANGLE = 135.0000 COSllE = -.707109 

W .1IIord OEECbh , AN3l.E. 97.7344 eoSlJE = -.134582 .word OA463h , ANOLE • 135.7031 COOlNE = -.715733 -...j 
,lIord OED38h , ANGLE. 98.4375 COSINE = -.146732 .IIIord 0A34Ch , ANGLE = 136.4063 COSINE = -.724249 ..... 



.... ,lIIOl'd CA238b , INll = 137.1094 COSlt£ = -.mb56 .\IIord 08079b , ANGLE = 175.0781 COSIt£ = -.9%313 -I .lIIord CA1281t , II'lGI..E = 137.8125 COSIIE = -.740953 .1III0['d 08059b , ANGLE = 175.7813 COSIIE = -.99ml N 
,lIIord M01Cb , INll = 138.5156 COSIr£ = -.749138 ,lIIord O803Eb , INll = 170.4844 COSINE = -.998118 
,lIIord O9FI4b ; ANGLE = 139.2188 COSINE = -.757211 .word 08027b ; ANGLE = 177.1875 COSINE = -.998796 
,lIIOrd 09EOfb ; ANGlE = 139.9219 COSIr£ = -.765169 .!IIord 08016b ; ANGlE = 177.8906 COSINE = -.999323 
,lIIord O9DOEb ; ANGLE = 140.6250 COSINE = -.773012 .word oaooAb ; ANGLE = 178.5938 COSIr£ = -.999699 
,word O9Cllb ; ANGlE = 141.3281 COSIr£ = -.780739 ,lItord 08002b ; INll = 179.2969 COSINE = -.999925 
,liard O9B17b ; ANGLE = 142.0313 COSINE = -.788348 .lIIord O8OOOb ; ANGlE = 180.0000 COSINE = -1.000000 
,lIIord 09A22b ; INll = 142.7344 COSIr£ = -.795839 
.lIIord 09930b ; ANGLE = 143.4375 COSIr£ = -.803210 HffffffHHHHffH*******ffHfHHfHHfHfHIHHfHf**HHffHttHffHHf* 
.lIIord 09843b ; ANGLE = 144.1406 COSINE = -.810459 
.lIIord 09759h ; ANGLE = 144.8438 COSIr£ = -.817587 MIN_All 
,llI&rd 09674b ; ANGLE = 145.5469 COSINE = -.824591 
.~ord 09592b ; ANGLE = 146.2500 COSINE = -.831472 ftffHHfH+HfHfHitfl***ft**,tHfHffHflHHHHf*****HHHfHfH+ffHHf 
.~rd 09485b ; ANGLE = 146.9531 COSINE = -.838227 
.lIIord 093DCh ; ANGLE = 147.0563 COSINE = -.844B56 INlTIALIZATlOO CQIE 
.lIIord 09307b ; ANGLE = 148.3594 COSINE = -.851357 
.1II0rd 09236h ; ANGLE = 149.0625 COSINE = -.857730 tH**fUfH+HfnfffHlfnff**fH"HfH-tHfn*****Hu*******HtHfffffHf***** 
.lIIard 09169h ; ANGLE = 149.7656 COSINE = -.863975 • .klord O9OAlb ; ANGLE = 150.4688 COSINE = -.870089 START DINT 
.~ord OafDDb ; ANGLE = 151.1719 COSINE = -.876072 
.\IIord 08F1Dh ; ANGLE = 151.8750 COSINE = -.881923 ffHfHf***Hff*tHHHHHfHf****H***HHH+Hffff**HUffHfHHfH*fHi'** 

~ 
.lIIora 08E62b ; ANGLE = 152.5781 COSIr£ = -.887641 
.yord oaDABb ; II'lGI..E = 153.2813 COSINE = -.893226 CLEAR ALL RAIl 'ti .!JIord 08CF8b ; ANGlE = 153.9844 COSIr£ = -.898676 

<b ,11101'0' 08C4Ab ; ANGLE = 154.6875 COSINE = -.903991 
fHffHft******************HHHfff.tHftffHHfHfH******f**f****f********** ;;! .1II0rd oaBAOb ; ANGLE = 155.3906 COSIr£ = -.909170 

'" .lIIord oaAFBh ; ANGLE = 156.0938 COSH£ = -.914211 LDPK 0 ;:, 
~ .lIIord 08A5Ab ; ANGLE = 156.7969 COSIr£ = -.919115 LARP ARI 

S' .word 089BEh , ANGLE = 157.5000 COSllE = -.923881 LARK ARl.143 
;:, • lIIord 08927 • ; ANGLE = 158.2031 COSINE = -.928508 lAC 

~ 
• .,ord 08S94h ; ANGLE = 158.9063 COSINE = -.932994 CRAM SACL 
.word 08S05b ; ANGLE = 159.6094 COSIl£ = -.937341 lIIWl CRAI1 1:1 .lIIord 08n8lt ; ANGLE = 160.3125 COSINE = -.941546 SACL 0 ; CLEAR RAM 0 ;:, 
.1II0rd 086F6b ; ANGLE = 161.0156 COSINE = -.945609 

~ 
. 

.word 08676h ; ANGLE = 161.7188 COSINE = -.949530 ***fHtffHHffHfHfHff**f*ffltfHHHff****f*"f**fHHftHf*************" 

>:: .lIIord 085FAh ; ANGLE = 162.4219 COSINE = -.953307 

~ 
.\IIord 08583b ; ANGLE = 163.1250 COSINE = -.956942 START INITIALIZATION CODE - FIRST INITIALIZE PAGE 1 DATA 
,lIIOrd 08511h ; ANGLE = 163.8281 COSINE = -.960432 

;:". ,lIIord 084A3h ; ANGLE = 164.5313 COSIIE = -.9!J177 "*ffHUHffHf***tHttHHIHHfHft*fllllll.I •• III.,I******ffffHttHfHfff 

'" .irIOrd 0843Ab , ANGLE = 165.2344 COSIIE = -.966978 ;;! .wrd 083D6h , ANGLE = 165.9375 COSINE = -.970032 Llf'I( 1 ; WINDOW FOR SLEW KODE IN s: .word 08377b ; ANGLE = 166.6406 COSINE = -.972941 LACK PSM 
."ord 0831Cb ; ANGLE = 167.3438 COSIIE = -.975703 TBLR POSS" ; POSITIVE DlRECTIOO S· .1II0rd 082C6b ; ANGLE = 168.0469 COSIr£ = -.978318 LACK NSII OIl 

S-
.1II0rd 08276h ; ANGLE = 168.7500 COSINE = -.980786 TBLR lEGS" ; WINDOW FOR SLEW KODE IN 
.lIIord 0822Ah , ANGLE = 169.4531 COSINE = -.983106 

'" .word 081E2h , ANGLE = 170.1563 COSINE = -.985278 

~ • !fOrd 081AOh ; ANGLE = 170.8594 COSIr£ = -.987302 
.• ord 08163h ; ANGLE = 171.5625 COSINE = -.989177 

~ • .,ord 0812Ab ; ANGLE = 172.2b56 COSINE = -.990903 
N .lIIord oaoFbh ; ANGLE = 172.9688 COSINE = -.m480 C:> 
~ .lIIord 08DC8b , INll = 173.6719 COSIIE = -.993907 
..... .word 0809Eh ; ANGLE = 174.3750 COSINE. -.995185 
'-I 



~ 

I 
~ 
~ 
§' 
.Q, 
§ 

~ 
~ 

~ 
~ 
~ 

~ 
~. 

li" 
~ 
~ 
tv 

Q 
'-I 

~ 
W 

HfIflH-lH+HHf*****HHHlI**HHf***fH+fHHH-fHHHf+ffHHHHHfttHf 

" 

INlTlALlZE PAGE 0 DATA 

SYSTE" IS ORIGINALLY INlTlALIZEO AT A PSEUDO 1200 BPS, TX, RX IIlE LINE 
MOllE, 16 SAI1PLES/BAUD TO ACCCiMDATE THE START-tP CDNDlTlilli IF THE 
TMS70A2400 ~M COIITROLLER. 

*,IHH****ff,**HH****,***H*fHHHlfHH**Htf********UHHHfflHftfHH* 

LDf'I( 

lACK 
SACL lReNT 
lACK 
SACL STATUS 
LAC< 15 
SACL SCNT 
SACL XSCNTR 
SACL RSCNTR 
lACK 1 
SACL ilIIE 

*H*fHffH**"**HfHfH**fH*"*HfHfHHHHHfHffHffHftHfHHHHHU 

INlTlALIZE SERIAl. POOT CONTROl REGISTERS 

ffHHHfHHltHfHHHfHHHftlHHUfH****fHttHtlHtfHUtttttt*UUHH 

LACK DAl 
TBlR TMPO 
OOT TIIPO,PAO 
lAC< DA2 
TBlR TIIPO 
OUT TMPO, PAl 
lAC< DA3 
TBlR TMPO 
OOT TMPO,PAO 

fHfHf****fHHtfUHf.tHtHI'HfHHfHtffHft-tHfflHf+HHtfHI-Hl-tfH**Hf 

INITIALIZE AOC IlAI~ AND lOCI: INDICATOR. (MOD. 5/29) 

**UHfffffffftfHfHffffffffffHU'fUfHfHffHffHffHffHffHffHfHHHff 

lACK 
TBlR 

MAXAlP 
AlP~ , SET ~ TO ITS MAX POSSIBlE VAUE 

HfHHfHHUH**HHtffHfHHfffHHHfffffftHfnUtHfDffHI-HflfHfffH 

INIT1AllZE STATUS WORD TO SET AFE GAIN STAGE ON 

fHlfHtHftt'****ffHt***Hf**flHHHffHfflfHHfHttHtftHtfHHfffltHH 

lACK OIlOh 

SACL SrllRD 

***fflf~fU*********tf*HffHf***4HfH**IHHfHHHH*Hf+tIHH**ft****** 

INlTlAllZE HYSTERESIS COUNTER TO SOOOh 

.'H*HHHHHfHflHHHHHfHHHfHHHHffHfffHfHflf*fHfftHHt+H-H 

LAC 01£,15 
SACL HYST 

IHUHIH.fH*Ht.*H*********U*f*fHHHftlfIHffHHfHHfHIHffHtHH*H 

IlAIN PROGRAM SEQUENCER 

THE IlAIN PROGRAM SEQUENCER PROVIDES THE TlMI~ FOR THE IlAIN PROORAIILIltl' 
AND CAllS THE VARIOOS SUIlROOTlt£S AT THE APl'RtJ'RIATE 111£5. THE MAIN LOOP 
IS Cll1PLETED ONCE EVERY BAUD INTERVAl OR EIlUIVALENTLY 300 TlI£S/SEC FOR 
FSK. 

THE PCM CODEC HAS A FIXEO SAMPLI~ RATE IF 9.6 !(HZ, WHICH MEANS T~T IN 
THE FSK I'IODE THE OSP BAUD PERIOD rolRESPilIIDS TO 32 PCM SAltPLES. 

***HfHHH****HHHfHfHIHfHf*"****fftHftfffHHHfHfffHftfHffHfH 

WAIT IN TIIPO,PAO WAlT FOR FR INTERRUPT FlAG 
lACK 8 IF NOT LOOP HERE 
AND TMPO IF YES TRANSIIIT AND RECEIVE FRt11 PORT I 
8Z WAlT AND RESET THE INTERRUPT FlAG 

SEQU OUT IOOT,PAI 
IN RIN.PAI 
lACK DA3 
TBlR TIIPO 
OUT TMPO,PAO 

HtHHHffff*****ff*****HfH+Hf*****4HfHftHnfffHHtHtttffHf****fffff 

EXECUTE TRANSIIlTTER TASK FOR TlME SlOT AND lI'DATE SAMPLE COONTER, 

tHftHHflfHUfHfHHHtHlfflHffHflHtHfHffftfHH+HHfHffHI'fHfH* 

LAC 
SUB 
BlZ 

&QUOI CALl 

XSCNTR 
SCNT 
SEQU2 

CCI 

, IF ZERO CALl CCI 

, CAll CM1AND INTERPRETER 

fHftHHHtHffHtfHffHfHfHfHHffHfHfHHHUHffHfHftHfHffffffHf 

EXECUTE THE SAI'I'(£ TAS1(S 

fHHHfHtffHfl+ftttHtHt*******iHfHftHffffHffHHtfHtfHfHHfH"fHf' 



f.» 

~ 

~ 

I g 
is" 
§o 

.Q, 
§ 

~ ;:.;: 

~ 
~ 
s: 
~. 

So 
<II 

~ 
~ 
N a 
'I 

SfQU2 LACK 
I¥ID 

030. 
STATUS 

, CI£CI( FOR ANSWER TM 

**ffHfffHfff*f********HlHf***HffHf***"HHHtHtfHIfHtHttHitHHHH 

CHECK IF IDLE' IF BITS 4 ~ 5 OF STATUS ARE 0 THEN TX IN IDLE MOOE =) 

TRANSIIIT lN1OlU.ATED 

HffHUHHHIU******lfHf*HUHHIIIIIII'I.lllltHffHfffHlf****HHHHf 

B1 SEQU20 

SUB 00f,4 , IF 0 =) ANSWER TM 
9Z SEIlU3 , ANSWER TONE =) CALL Ffl( 

LACK 
AND STATUS , CHECK BITS 1 AND 0 
B1 SEIlU3 

LAC OTFLAG , CHECK FOR DTI1F DIAL I!JIlE DUAl. TOOf 
, TRANSI1ISSICN 

8HZ SfQU3 
B SEQU4 

SElIU3 CALL FSK!X , FSK OR ANSWER TOOf III DTtIF 

SEQU4 

***f*H*HftH******ffflfHfffHfHffHHHf*****HfHffH*fHfHHHfHfHtH 

IN IDLE tIlDE TRANSIIIT A 0 

HfffHfHfiHHtHfHH********HHIHHHHHHHIHtf***fHf**ff********** 

SEQU20 ZAC 
SACL XOUT 

SEQU4 LAC XSCNTR 
SUB ONE 
BGEZ SElIU5 
LAC SCNT 

SEQUS SACL XSCNTR 

HHHfIHHHHHfHffHflHHfH*lHf***fHfffHHitHH*ftHffHfHHHtHH 

• 
EXECUTE RECEIYER TASK FOR TIrE SlOT I¥ID UPDATE RECEIVER SAll'LE C(WjER. 
IF RECEIVER IN III ~ RETURN TO WAIT STATE 

HHHfffH*flf****************"**"**,*****",HHHIIIIItIIIIIIIII14********* 

• 
LACK 
I¥ID 
BNI 
LAC 
SUB 
BGE1 
LAC 
em 

SEQU22 SACL 
B 

R/I'ISI( 

STATUS 
SEQU9 
RSCNTR 
00f 
SEQU22 
SCNT 
STWRO,PAS 
RSCNTR 
WAIT 

fHofHfIHHHHHHfHf***HHfMH**fHfflf**fHHf*HHff"*IHllfHf*HfH 

USE ROUTINE 'RSTSK' TO PERFMI! FSK ffMOWLATlON 

fHfHfH**fH*********HHfIHffH*****fHfHffHffff*******HHHt*****ff*** 

SfQU9 

• 
lECRS 

SElIU6b 
SEQUb 

CALL 
LACK 
AND 
B1 

LACK 
ADD 
TBLR 
LAC 
CALA 

LAC 
SUB 
BGEZ 
CALL 

LAC 
SACL 

RSTSK 
3 
STATLS , CI£CI( FSK Dl'ERATICN 
DECRS , IF SO, JUST DECREl1EHT RX SIII1PLE CWlTER 

RSEQTB , IN HANDSHAKING IIlDE CALL RTASK 
RSCNTR , SUBROUTINE ONCE PER SAII'LE. ONLY 00f 
T""I , NGIHRIVIAL FUNCTION, RTSKIO, IS 
TN'I , ACTUALLY CALLED. 

RSCNTR 
00f 
SEQUO , IF I«IT TI£ END IF BAUD, JUST CONTINUE 
AGC , ELSE 00 AGC ONCE PER BAUD. 

SCNT , RESET BAUD COUNTER 
RSCNTR 

WAIT 

tlHHlIHHHHtf-fffHHIHfHffffHfffHfHfHHffHHtfffHUH***fH****** 

• 
SUBROJTlNES 

HffftftfHlHHH*HfHHHlffHlf**f*ffHHHH*f*********ffHH*HffHf**** 

• 
FSKW .set 

ZALS 
CALL 

$ 

TXPHS 
SINWi 

, BRING IN 11 ANGLE 
, IlENERATE TOOf AT _lATE FREQ 



~ 
; RESll T RETI.IlNED IN TI1P3 CCI IN XDATA,PAS ; READ COItIAND 

LAC DTFUIG 

~ IINZ ISDTIF LACK OFOn 
AND XDATA ; t!ASK OFF 4 LSBS OF CMIAND 2! LAC TI1P3,13 ; 4512 FORIIAT SACL Tt1P2 ~ 

;" SACH XOUT LACK O9On ; CHECK fOO DTI'IF 
is' LT XOUT SUB W2 
~. IIPYK 0700n Bl DTCONT 
;" PAC 

~ 
SACH XOUT,4 lAC ; IF ~T, 

~TIF SACL DTFUIG ; CLEAR DTI'IF DI~ FLAG ." • • ;" 

~ 
ISDTI'IF: .set $ CONT LAC W2,12 : COI1KAND BITS TO ACeH LSBS 

LAC W3,15 ; 2S3O FIlRI1A T - LOWER FREQI.ENc"'Y SACH Tt1P2 
;>:: SACH TIi'5 ; 2S14 FORIIAT - LOWER FRElllENCY 

~ **fHtfIfHff**HfHHH**"f""HHHHHfH*,**H******flfI****HUI******* 
lALS RXPHS ; IN DTI'IF /tODE, HIGH FREQ IS IWIDLED BY 

1} ; BY RXPHS OOW THE ACClt'IJLATOR VALUE CORRESPONDS TO TI£ FOLLOWING COIWINIIS AND 
2! CALL SINGEN ; GENERATE HIGH FREQUENCY TONE CORRESPONDING SERVICE SUBROUTINES 

IALS RXPHS ; INCREllENT HIGH FREQUENCY PHASE AtG.£ · ~ ADDS RXFRQ ; BY SECOND TII£ FREIllIENCY Hf**f'HffHHfHf*fffff*******H4fffHff***UHfffffHfH:tHfflffU*****f**f 

S· SACL RXPHS ; STORE AWAY 
Oq ACe CO_D SUBROUTINE 
:;. LAC T1'I'3,15 
~ SACH TIIP3 Fn PROTOCOL SELECT PROTO 

~ 
LT WS Dn SET OPERATING /tODE OPER 
MPV DTI'IFL 

~ PAC 9n DIAL DTtIF DTtIF 
tv LT TIIP3 8n XMIT /tODE X/tODE 
<::. I'I'Y DTMFH 7n RECV IIJDE RHODE 
(J APAC ..... SACH XOUT,4 5n FSK DATA /lODE FSKSET '1 

4h RESET RESET 
NODTtIF: .set $ 

IALS TXPHS ; INCREIIENT TX AIIlLE BY APPROPRIATE 0 OR 1 HU*"****fHffHfltff**ffHHffHf*fHfHfffHlHflHfHUfffHfffH+Hfffff 
ADDS TXFRG ; FREQUENCY AND STORE IN TXPHS 
SACL TXPHS CHECK FIRST IF RECEIVER IS IN DATA /lODE. IN \ltiCH CASE IGNORE ALL 

NONE RET 
cat1ANllS EXCEPT 2Xh, m AND OOh. 

fHfHfHHfUfHf"'****ffHHfHffffHfffHttHfHflfHffffffffHHfHfflfun 
.copy ·CCIDTM.AOO" ; INCLUDES CODE FOR DTI'IF • 

LACK fII1I1SI( ; REC, IIJDE t!ASK 
fHHfffHffHff**HHHfHHHfHfffHfHfHfffHHfHtfHHHHfffHflffHff AND STATUS 

SUB 11£,7 ; CHECK IF BITS 7 AND b ARE ONES 
CONTROLLER COMMAND INTERPRETER (CCll SUB lI£,b 

IINI CCll 
THE FOLUllI~ CODE READS A COIIIAHD FROM THE TMS70A2400 ON PORT 5 AND 
INTERPRETS IT ACCORDING TO TI£ RUl£S SPECIFIED IN THE CONTROLLER-DSP ff*,tHffffffffftH'HHffHfffftHHHft*fHHlHftHfHHHfHftffHftHHH 
INTEIifACE DOCUIENT. THE 320 READS 11£ C!III1AND EVERY lIAUD P£RIOD. THE BAUD 
RATE IS INlTlAU. Y SET TO bOO, AND THE BAUD CLOCK IS DERIVED FROII TI£ REC. IN OOTA /lODE =) IGNORE C!III!ANDS )2 
SERI~ PORT FR SIIlIW.. 

IN tHltHffHlffHHtlfHftHlffHHfHfflfffHHfHffHllfHttHlHtHfftffHH 
--.l fHffHfHfHHHfHHHffHffHHtfffHHfHfHfHHHffHfffffHtHHfHtfH 
VI 

LAC TI'I'2 



w 
~ 

~ 
'ti 
[ 
<II 
;:s 
S 
§" 

.Q, 
:::. 
;:s 

~ 
~ 

~ 
!} 
;= 
s: 
~. 

S-
CI> 

~ 
~ 
t\J 
.;::, 
Q 
'I 

SUB 
BLEZ 
RET 

00E,2 
CCI! ; IF ~ lARGER T1W/ >2 EXIT _ 

; INTERPRETER. 

fHHHIIIIIIIIIIIIIIIH*fff:fHHHHHHHHffffHltHtHHHHf*****"**** 

• 
CALL TI£ APPROPRIATE SERVICE SUIlROOTINE (REFER TO ClWTBL TABLE!. 

"**fHffHfflfHHtHHt*,-IHHHfHHHHHHHHffHfItfHlf*HHHHHHff 

• 
CCIl LACK 

ADD 
TBLR 
LAC 
CIII.A 

RET 

CI1DTBL 
T11P2 
1l1P2 
1l1P2 

BASE OF _ TABLE 

ADD ~ IFCOIE 
READ ADDRESSS fROI( TABLE 
LOAD SUB. ADm. INTO Ace. 
CALL SERVICE SUIlROUTlNE 

; EXIT _ INTERPRETER. 

IHtHHIIIIIIIIIIII.lfffHffHfHHllfHfHHfHHHfHHffffUHtHHfHHH 

_ INTERPRETER SU1IROOTlt£S 

PROTOCOL SELECT CO/I'IAND 

HHfHl-ffflffHHfHfIHHHHHtfHHHffff****"*"*"HHtHHf*fHiHtHf** 

PROTO' .set 

HHHf*HffHfffHHHIHfHIiIIIIIIIIJIIIIIIIIIIIIIIIIIHffffHffflfHHfH*** 

• 
EXTRACT TWO LSD'S OF CO/I'IAND 

*ff'f**ffHllHfHffHitffitHIHfHfHHHHfHfHHHHfHflH****ff********** 

LACK 
AND 

03. 
IllATA 

; I1ASK OFF BITS 2 AND 3 OF _ 

fHffHHfHHHHffHfffHfHHHHfHffHffHHHf**ffHHHffHfHfHffHH 

* SET SPEED BITS STATUS REGISTER. 

BITS 1 AND 0 = 00 FOO 300 BPS (FSK! 
= 01 RESERVED 
= 10 RESERVED 
= 11 RESERVED 

HHHlIHlfItlIlHHHHHff**HIHHHIHHIfflIIIIIIIIIIIIIIII.fHHHIHH 

SACL 
LACK 
AND 
SACL 

1l1Pl 
OFCh 
STATUS 
STATUS 

; ZERO BITS 0 AND 1 

fHlHffHfHH'HHfIHfHfHtHHHHHI"'*"*"'*tfHfHHHfHHHIHHfH 

IETERIIINE FSK FRElIUENCIES AND SET IIAUD COUNTER. ALSO SET 011£R fSI( 

SlIM.. PROCESSING PARAl£TERS 

PROT02 LACK 31 
SACL seNT ; !lAUD COUNTER IS 32 

LAC 01£,2 
AND IllATA 
SACL CCITT 

LAC 0NE.3 
SACL FSKFLG 

IHtfHUfffHff*******HH****I+HHHfI*********************lfHIIf+ffHHH 

ACCUIIJLATOR NOW COOTAINS THE _ S LOOlCAL AND I£NCE IDENTIFIES 
ORIGINAL/ANSWER IIJDES 

fHMHffH*********tH*****,*"fHffl*****HfiI**H"HH***Htff**IHHHHH 

AND XllATA ISOLATE ORIGINATE.JANSWER BIT 
SACL OAFLA6 SET 0AfLA6 0 0 IN ANSWER ItOGE = 0 IN 

ORIGINATE IIJDE 
LACK OC. I1ASI( TWO LSBS OF oo.PIANlI 
AND XDATA 
SACL TI1I'I 
LACK fSKTBL ; ADD BASE OF fSI( TABLE 
AOD 1l1Pl 
SACL FIADD ; 1 FREQUENCY 
ADD ONE 
SACL FOADD ; 0 FREQUENCY ADDRESS 
ADD ONE 
TBLR BlfS1( ; fSI( l.DWPASS FILTER COEFFICIENT 
ADD ONE 
TBLR GAIN ; fSI( IID!JE GAIN 
SUB ONE 
SACL 1l1Pl ; TrI'l NOW POINTS TO BIFSK 

fHfHffHfflitffHlfffff***"**"****"****H**,*HHHHitftHHHfHff******* 

SET FSK T1nlN6 RECOVERY PARAl£TERS. 

HlfHHtHffHf**ffHHHHl*fHfHHHff*fHflfHIHlflHfHHHflllllfIIIH 

LACK 
SACL 

0Ch 
TRANS 

; Ace = 12 
; TRANS = 12 

SET fSI( RECEIVE FILTER COEFFICIENTS AND SliCER lEAD ZDIE 



~ 
'6 
~ 
~ 
~ 
~ 

g' 
~ 
:::, 
;" 

~ 
>:: 
~ 
~ 
s;: 
~. 

s. 
'" ~. 
~ 
~ 
<::> 
(") ..... 
'1 

.... 
::j 

HHfHtfHfUHH*HH*HHHHfHffH4HfHH+H+HffHflf+HHffHfffl*HH . 

lACK 
TBI.R 
ADD 
TBlR 
lACK 
TBLR 

FSKAI 
AIFSK 
ONE 
A2fSK 
ZONE 
DZONE 

, LOAD ADDRESS Of Al COUFICIENT 

A2FSK WlTAINS A2 C(£FFICIENT 
ACe = ADDRESS (f DEAD ZONE 
lElJ) ZONE (f WINOOW COMPARATOR FOR FSK 
DECISIOO 

fHUHtHfffHIHfffH*HHI'HHHHtflHfffHHHfHHHUHIH**HHHHfiHt 

• 
NOW CHECK FOR ANAlOG LOOPBACK. IF IT IS IN ANAlOG LOOPBACK ~DE, THEN WE 
N£ED TO MODIFY THE RECEIVER PARAMETERS TO CONFIGURE RECEIVER IN THE SA/1E 
BAND AS THE TRANSMInER. 

ffffHffHHHHfiHtHHHHfH**fHfHHIIHHHHHfHHf4fH**HHIHIfI"HH 

lACK 
AND 
BZ 

IW'ISK 
STATUS 
PROT05 

; STATUS BIT IS 1 FOR ANALOG 
; AND ZERO OTHERWISE 

HHfHHfHHHHH*HHHfHIi-f-flHHfHH************HHfHffHIHfHIHfit 

CHECK IF ANSWER OR ORIGINATE. IF IN ORIGINATE MOlI£ Tf£ THE RECEIVER MUST 
ALSO BE COOFlGURED FOR LOW BAND. IN WHICH CASE THE PARAMETERS REQUIRED 
ME AT ADDRESS TMPl+B IF IN ANSWER ~DE, THE RECEIVER MUST BE PUT IN HIGH 
BAND AND THE PARAMETERS ME AT ADDRESS TMPl-S.IPLEASE REFER TD THE 
FSKTBL) 

*******HfHHHfffffHH********H**fflfHf******ffff-HH-fHHHHHHHHH 

LACK CSt 
AND XDATA 
BZ PROTOb 

LACK 0 
SACL OAFlAG 
lAC TlfPl 
SUB ONE,3 
B PROT07 

• 
PROTOb LACK 

SACL OAFlAG 
lAC TI(f>l 
ADD 0NE,3 

PROT07 TBLR BIFSK 
ADD ONE 
TBLR GAIN 

PROT05 RET 

; CHECK ORIG/It<S BIT 3 Of XDATA 

IN ANSWER ~DE SUBTRACT 8 FROM TlfPl 

WE'RE IN ORIGIN ~DE, 
SET OIi'LAG 0 0 FOR LOWBAllll 
IN ORIGINATE ~DE ADD 8 
TO TMPI (THIS ONLY HAPPENS IN __ OOP) 
READ Bl COUF 

; READ GAIN 

*******IHHfI*****HH**H**HHf"HIHHHHHfHf**********,*HffHfHfHHH 

SELECT Gli\RD TONE 

GUARD RET 

****fHHHfHfIHU*****HHIHHUfHHH**HHHIHfHHfHHfHfHfH***H 

SET CffRATlNG MODE 

HfffHHHUH*fH.HtH*n,*ffH*******IHHHHHHflfHtH ... t-.HHHflt***H 

• 
OPER LACK lMMSK , ZERO ANAlOG LOOPBACK 

AND STATUS ; LOC. DIG. LOOPBACK BITS 

IHHHfHHfHHf**HHIHUH4HH*"fHHH***fHHfHHHttHHHHHHJ.HH 

CHECK OPERATING MODE 

HffIHIHf**fHHHfHHHffHlfHHH-fHHHafHHH*+HHHH-HHH*HHH 

LACK 03h ; MASK OfF BITS 2 ANO 3 OF COMMAND 
AND XDATA 
BZ OPERI ; IF ZERO =) LINE ~DE (RETl 
SUB ONE 
BZ II"lB ; IF ONE =) ANALOG LOOPBACK 

(fERI RET 

ANlB LACK IW'ISK ; SET ANAlOG LOOPBACK 
OR STATUS ; STATUS BIT 
SACL STATUS 
RET 

***HHlffffH****HH************fHHffHHffHHf*****fff****HHfH**Hff-f 

DIAL DTMF 

DTMF SET-UP ROOTlNE : LOOKUP Tf£ LOW AND HIGH FREQUENCIES WRRESPONDING 
TO EVERY DIGIT AND PLACE IN TXFRQ AND RXFRIl RESPECTIVELY. 

H-f*H*f*fU**fffHf*******ff****U**ffHff*f-f*fHHHHfHHfffffffffffHfflf 

• 
DTMF LACK 

AND 
SACL 
lACK 
ADD 

TBLR 
ADD 
TBLR 
ADD 
TBLR 
ADD 
TBLR 

15 
XDATA 
TI1PO 
TONTBL 
TtlPO,2 

TXFRO 
M 
RXFRQ 
ONE 
DTMFL 
ONE 
DTIFH 

; MASK FOR ISOLATING THE DIGIT 

; STORE ilIAY TEMPORARILY 
; BRING IN BASE ADDRESS Of TONE TABLE 
; LEFT SHIFT IS REQUIRED AS THERE ARE FOUR 
; ENTRIES PER DIGIT 
; READ LOW FREG INTO TXFRQ 
; ItCREItENT POINTER TOIWIDS HIGi FREO 
; READ HIGH FREQ INTO RXFRQ 
; READ IN LO FRil GAIN 

; READ IN HI FRil GAIN 



W 
-..l 
00 

~ 
"b 

~ 
~ 
E' 
g' 
~ 
"" ;:, 

~ 
>: 
~ 
~ 
~ 
s· 

O"Q 

:i-
'" 
~ 
~ 
<::> 
Q 
'-l 

LAC 
SACl 

RET 

~E 

DTFLAG 
, SET DTM!' DIAL IIlDE FLAG 

******HfdH****************"******"************H**HHHfl****fffHfIHfHf 

TRANSI1ITTER IIlDE SELECT 

*******HfHHHHH*,*fH********************HHH**************HHHH*IHf 

llllDE LACK 03h , MSK OFF BITS 2 AND 3 
AND lDATA 
SACL TlWl , SAVE MODE BITS TO SET STA M 
SUB ONE , CHECK IF TRANSMIT ANSWER TONE 
BNI llilDEl 

HHflf*ff'HHH*************'!hH***************************fH+*************** 

FOR ANSWER TONE, LOAD TONE FREQ IN TXFRQ LOCATION AND 000lh IN XBlTS 
LOCATION IN RAI1, AND CALI. FSK SUEIRQIJTINE WHICH WIll TRANSMIT TXFRO (I.E. 
ITHE ANSWER TONE). 

*******************HH'***********HHH******,*******UHHH*************** 

LACK 01h 
SACL XBlTS 
LACK F21 , ADDRESS Of 2100 ANS. TONE 
TBLR TXFRO 
LACK DCh ; DETERMINE ANS. TONE FREQ. 
AND lDATA 
BI llllDE2 , IF 0 =) 2100 IS RIGHT 

LACK F22 , OTHERWISE LOAD TlFREQ REG WITH 2225 
TBLR TXFRO , ANSWER TONE PHASE INC. 
B XIllDE2 

,,*f"*f*********************fH*******************************HHHH*****H* 

CHECK FOR REIIlTE DIGlTAI. LooPBACK 

H*****fHU*Hfl********H********Hfff***H******fHH*********HH********!I-

!lIODEl SUB 
BNZ 

ONE,I 
XMODE2 

, SUBTRACT 2 IIlRE FROM TMPI 
, IF ZERO =) REM. DIG. LOOPBACK 

*HH******H*******H**************H*********UHfHfl*******HHHH******* 

~OLE RDL: (ASSUME THAT THE RECEIVER IS ENABLEDI 

PLACE RECEIVED OOADBlTS IN XBITS. CHECK FOR 1200 BPS OPERATION. IF SO 
FORCE A ! INTO LSB OF XBlTS. SET BITS 5 & 4 IN STATUS = 10. PLACE 
RECEIVED OOAOBITS IN XB1rs 

ff**+HH**********"********Hf*****f*********"H*************************** 

LACK 
AND 
SACl 

OFh 
SHIRl) 
lBITS 

, MSK OfF QUADBITS 

, STORE AWAY 

IHf*H***************H*****Hf**************************H**HHI*********** 

CHECK FOR 1200 III'S (FEAATION 

H***HH**********************I***********I********************************** 

LACK Of"Ch MASK FOR SPEED BITS 
AND STATUS SPEED BITS 
SUB ONE,l CHECK FOR 10 
BNZ llllDE2 IF NON-ZERO, JUST CONTINUE 

LAC lBITS : ADD A 1 TO LSI! FOR 1200 BPS OPERATION 
ADD ONE 

H****fH*****************H*******Hf**U***************:I!'HHIHfH**f*H**** 

SET THE TRANSMITTER MODE BITS IN STATUS REGISTER. 

+HHHf******lfff-H**UHHfit*****-H*******HH**H**H***************HfH*** 

lMODE2 LACK 
AND 
ROD 
SACL 
RET 

NTIMSK 
STATUS 
TMP!, TXSH 
STATUS 

NEGATION OF TRANSMISSION BITS MASK 
ZERO THE TX STATUS BITS 
ADD IX STATUS BITS IN RIGHT POS. 

*******fHHH****HHH*************Hf***,***I***************-IHifH********** 

RECEIVER IIlDE SELECT 

SET THE RECEWER STRTUS BlTS mTS 6 AND ]) OF STATUS REGISTER TO: 

00 IF RECEIVER IS IDLE 
01 FOR CALL PROORESS MONlTORING 
10 FOR DATR MODE 

fHffHffH******fHH*****HHHHHH***HHf***********ff******H********** 
• 
RI10DE LACK 

AND 
SACl 
LACK 
AND 
ADD 
SACl 

RI10DEl RET 

03h 
XDATA 
TMPI 
NRCMSK 
STATUS 
TIW! ,RCSIt 
STRTUS 

, MASK OFF BITS 2 AND 3 

NEG. OF REC. BITS MASK 
ZERO REC. STATUS BITS 
ADD REG STATUS IN RIGHT PO$, 



..... 
~ 
~ 
g 
s 
§" 
~ 
§ 

~ 
~ 

~ 
~ 
~ 
~. 

:i-
II> 

~ 
~ 

~ 
'-I 

w 
~ 

... •• HH.uf ..... fHfHfHHffHHHHHt*HHfHfHH-HfH4HHHfHlffH*"*I*1 

FSI( DATA !lODE 

SfT lI' FSK TRANSIIIT FREQ IICCllIDING TO THE TX DATA 

ffH-Hff*****f***********"ffHf.****UH+fHIHHfHUfHfHfflffUH..,****H. 

FSKSfT 

DATM 

• 
NOFSK 

LAC!( 
AND 
BZ 
LAC 
TBLR 
RET 

LAC 
TBLR 

RET 

8 , CHECK THE TRANSIIlTTED 8IT 
XDATA 
DATAO , IF ZERO, DATA tlJST BE 0 
FIADD , POINT ACe TO I FREQ 

TXFRQ , SET TX FREQ TO APPRa'RIATE I FREQ 

FOADD , POINT ACe TO 0 FREQ 
TXFRQ , SfT TX FREQ TO API'ROPRIATE 0 fREQ 

HftlflflHfHIU*****",Hf***********H"****HHH**fHffHfHHtfHHHlfH 

RESET AND EQUALIZER ENABLE ROUTINES 

H************************f****fffffHfftftf**ffHHfffffffff*********"**HH 

• 
RESET LACK 

SACL 
OUT 

OSlh 
STWRO 
STWRO,PAS 

STAAT 

fffUlfffH***HI**"*********U*******fH****H-tHIHtHHf**fHffHfffUffff 

END CONTROLLER CO!1IIANII INTERPRETER SUBROOTINES 

*H**IfHt-**HitfIHHHfHnHUffffHHHHI"**HHHHffHU**UHiH+Hff" 

• copy ·SING£N.AOO" 

HffHfftHf**f************UHt***,"**********ffffffftIHHH***H****lff**** 

SUBROOTINE : SINGEN 

PURPOSE : SINE 006ATlON 

TASK: GIVEN ~ COSIM: TAllI.E WITH 257 VALUES ANn STAAT ADDRESS COSOFF, AND 
GIVEN AN ANGLE INDEX IN THE ACCUlUAHIl, DETERltIM: THE 81M: OF THE ANGLE. 

ENTRY CONDITION: THE ANGLE INDEX /lJST DE IN THE LOWER ACCUI1ULATOO. 

EIIT CONDITION: THE SINE OF THE ANGLE IS RETlJRIIED IN TEllPOOARY LOCATION 
T1f'3. 

DESCRIPTION: THE COSIM: LOOKll' TABLE CONTAINS 257 VALUES WITH, 

COSCO] = 1.0 AND COS/256] = -1.0 

HENCE ANGLE INDEX 0 ~PS TO ANGLE 0 ANG ANGLE INDEX 256 ~S TO PI. THE 
SINE VALUE IS G£NERATED BY SUBTRACTING FRett THE ANGLE INDEX THE INDEX 
COORESPONDING TO PI/2, TAKING THE ABSOLUTE VALUE, ANG HENCE FORIUNG AN 
ADDRESS INTO THE LOOKlI' TABLE. 

NO OF CYCLES: 17 

NO OF STACK LEVELS USED: I 

THE MIlLE INDEX IS THE LOWER ACCUMULATOR 

ANGLE INDEX HAS S15.0 FORMT. MUST SUBTRACT PII2 VALUE WHICH LAYS AT THE 
MIDDLE OF THE TABLE AND HAS 8S14.0 FORMT AS VIENED IN 515.0 F(Ill'oAT 

H****HttlHtHHt**H***ttt****HHfH*H ... HtH4f*UHfHHUHltfllffHtH't 

SINGEN SUB 
SACL 
lALH 
ASS 
SACH 

ONE,14 
TI\'3 
TI\'3 

TIIP3 

SUBTRIlCT INDEX (F PII2 
PUT AllAY TEItPORARILY 
PREPARE FOR ABSruITE VALUE 
TAKE ABSOLUTE VALUE 
PUT AWAY BEFOOE RIGHT SHIFT 

tH**lHIHH*HHHHfHffHHfHittH*HHfHffHtfHt-HHfHUUftftffftHH 

THE VALUE STORED IN TI'I'3 HAS S15.0 FORI1AT -- ALBEIT A POSITIVE IUl8ER 

A LEFT SHIFT OF 9 BITS COORESPONDS TO 8524.0 FllRItAT AND SAVING THE HIGH 
ACCUIUATOO HAS A 8S8.0 FllRItAT 

tff*Hf*ffffHUHHllfHfftfflftHf**fHflff**HU**ff4HffHfH4HlffUH**t 

LAC 
SACH 

TIV'3,9 
TIV'3 

, ISOLATE 8 IISB'S IN HIGH ACe 
, P\.IT AWAY THE 8 IISB'S T8IPOIlAAILY 



w 
~ 

.... .g 
~ 
~ s 
g" 
.Q, 
§ 

~ 
~ 

~ 
~ 
S! 
~. 

~ 
~ 

~ 
~ 
IV 
C 

a 
'I 

THE I£XT THREE INSTRUCTIONS ELI"INATE IWf SIGH EXTENSION BITS THAT "IGHT 
HAlE PROPAGATEO 

fIHfH*tHlfHHfHffffH*Hf***HHllflHffffHHHHHHfHHHffHtftH"* 

lAC 
ASS 
SIn. 

TllP3 

TllP3 

IflHHI-flHHHfftHHfHHHtftffffHHffff***'tfHfHHHHft'HHHffHfff 

F~ THE FINIi.. LO(Jj(-\.i' ADDRESS 

BRING IN THE ADDRESS OFFSET. 

THE BASE ADIiRE». IS IN BSa.O FORMT, WHILE THE INDEX IS ALSO IN BSa.O 
FORMT. 

Hf*HffHfHHfffHfHfHHHfHH-lHHffHffffHfHfHHHfHfflflfffHfHH 

lACK 
ADD 
TBLR 

RET 

C1lSOFF 
TIf3 
mP3 

, ~ FINAL LOOK-lf ADDRESS 
, READ SINE I'ALlE INTO TllP3 

ffHHffHHfHfffHHfHHf***""****HfflfffIfHHffHH+fffHl+HfHffH.f" 

FSK lEI1OOOl.ATION FILES 

fffHHfHfHIHHfHHHftffH+HtHitHf*fffHHHfHffHHHilHfHf+HHHH 

.copy ·RSTSKF.AOO" 

fHHfffHHfff-fHHHfff*fffHf.HfofHfHfHffof'*HHfHHtHfffft-l'ffHHfH 

I1ATE: 5-29-86 

SliBR!I'JTII£: RSTSK 

INCLUIJES FSK RECEII'ERITiMING RECOIERV 

PtIRfOSE. RECEIVER PER SMPLE TASK 

TASK: THIS SUBRWTI!£ CONBII£S ~ IIlDUlES TO PERF~ THE SIGIW. 
PROCESSING FLrlCTIONS THAT ARE REQUIRED ON A PER SMPLE BASIS 
(%00 Hz). 

ENTRY CONDITION' THE RECEIVED SIM SAllPLE IS IN RM LOCATION RIN. 

fHfHfHHffitffHHHHHfHHftHHffHHII •• IIIIIIIIIIIIIIIIIIIIHHHHfH 

RSTSK: .5et $ 

RIN 
TllPI 

lAC 
SIn. 

, INPUT 14-BIT sm SAllPLE 
, ARt. INTO TllPI • 

HffHflflHHHHfHffHHHHtfHHHHHHHHHHHftHtHHHHHfHHHf 

USE HIGH PASS FILTER. I!AI<E SlIlE INCOMING SAI1PI.E HAS NO SHIFT. 

HlHH',HHHHfHHHfltff.ffHHH'HffHfHHHHHHfHHfHHHHHIHf* 

f 

lAC TII'I,O , ARL 

HfffHfffffHHffHtfff**fHHHHfHHHfHHffHfHHfHfHHf**ffHHHHf 

• 
HIGH PASS FILTER Tl£ INPUT 

HUffHHHfHfffH.IJIIIf'IIMIIIJ:llfffHHHIIIIIIIIIIII •• JIII'***HHfHfHf 

• 
1UlI': • set 

LlPK I 
SACL XI 
ZALS STLSB 
ADlJH SI 
SUB 51, TAU - XI 
SUB XI, TAU-I 
SUBH X2 
ADD X2, TAlI-I 
SACL STLSB 
SACH 5T 
!KJV 'XI 
LlPK 0 
SACH TllPI 

fHfHf*HffHfHHHffHHHHffHfHfHHHfIHHHHfHHfffHHHflfHffH 

ILHP LEAVES TIE SAI1PI.£ IN Tlfl. ItULTIPLV IT BY ~ GAIN ALPHA. Tl£ OUTPUT 
FORMT IS 54.11 REQUIRING sorE 1'IAIIlPULATIONS 

fHfHHHf***HHfHffHIHHHHHf"HHfHtfHHfHfHHffffHHtfHtf-HH 

LT 
If V 
PAC 

TllPI 
•. ALPHA 

, ILIlTlPLV BY ~ IQlD 

ftHfHffffffHHHffHffHHffffHHHfffffHHHffffHHfffffHHHHfHHH 

f 

SHIFT ACQJIU.ATOR EIOHT 4 TI~ BEFORE STORING 

HHHHflfffHHHfHHHHfHfHfHHffHHHHHHfHfffHHfHftHfffffHf 

SACL TIIPO 
SACH Tlfl 



~ 
'ti 

[ 
~ s 
§' 
.Q, 
§ 

~ 
~ 

~ 
~ 
s:: s· 

Oq 

;;. 
~ 

~ 
~ 
tv 
C 

~ 
'-l 

to.> 
00 ...... 

LAC 
SIlCH 
LAC 
SUB 
lIND 
SAC!. 
LAC 
ADD 
SAC!. 

Tll'O,8 
TI1PO 
1lE,8 
!IE 
TIII'O 
TI1PO 
TtlPI,8 
TI1PO 
TIII'I 

; IIASI( (FF ANY SIGN EXTENSION 
; OOFF -) ACe 

fHfHHfH4HHHHfHffUU**HHffHHHHHflHtHHfHlfffffHHfHfffHf 

IN BOTH Tll'1 AND TIIP2 UPDATE THE SIGIW. POWER ESTIIlATE A'IESQR 

AVESIlR = AVESIIR + TIII'I·2 

AVESIIR IS ZERDED BY THE AGe ROUTINE ONCE PER BAUD. 

HfffHHHfHHHfHHHfHfHf*HtHHfHf***Hff**ffffHfHffHfHfffHfHf 

LAC TtlPI,I5 
SACH TI1PO ;TI1POINSS.IO 
LT TrlPO 
IIPV TIIPI 
PAC 
AODH AVESQR ; AVESIIR IN SIO,5 
SACH AVESIIR 

****lHfHffHHHHftf***HHfUfHH*ftHHHftHHfffHfHHtffHffIfHHH 

INCREASE SIGIW. ENERGY BY A FACTOR OF 4 FOR ClIIf'ATlBILlTY WITH THE REST 
if THE RECEIVER 

fHfftUfHfHffHfffHffH*HfftHfHttHtffHHHHHttHfHHHtHtffHffH 

LAC 
SACL 
SAC!. 

TtlPI,I 
Til'l 
TIII'2 

; tIJlTIPLY TIlES 2 

HtfIHHHUHHHflHfU****HHtHHHHfHfHf"*ffftHHfUtHHffHHfH 

CHECK FOR FSK OPERATION 

LACK 3 
AND STATUS 

LAC Tll'I,O 
SAC!. AIlCOUT ; PLACE RECEIVE SIGNAl IN AGCOUT 
CALL RXFSK ; CALL FSK RECEIVERlTIlllt«l RECOVERY 
RET 
,copy CCITT.AOO 

HfftH.ff*********ltHHHHHHHffH,***HI*"HfHHfftIHHfHfHHHHH 

CHECK FOR FSI( IJ'ERATION 

HtfHHHtfHifHtfHffHltHfHHfiffHfftHHHfHHHfHHtfHHHHflHH 

LACK 3 
AND STATUS 
LT TtlPl ; ASSUI'E V.21 
tIPYI( 013h ; IILUIPLY BY 2,5 
LAC CCITT 
INZ V210RG 
tlPYK 018. ; tlULTIPLY BY 3.0 

V210RG PAC 

SAC!. TllPO 
SIlCH TIII'I 
LAC TtlPO,I3 
SIlCH TtIPO 
LAC ONE,I3 
SUB ONE 
lIND TtlPO 
SAC!. TI1PO 
LAC TtlPI,I3 
ADD TI1PO 
SAC!. rocour 
CALL RXFSK 
RET 

... copy 'FDEII20.AOO' 

ffHHffHffff*UfffHfHHHHffHUfffffHfH****nff'HHfHfU**tffHffHf 

DEIIOIIll..ATOR SECTIIlM 

THIS DESIGN III'LEIEIITS A DELAY OF 51PII/2 

AGe 

FSI( IEIIODlI.ATOR 

IEl10RY CONFIGtilATION' ICONSECUTIVE ADDRESSES I 
AIlCOUT 
PDELO 
PDELI 
PDEL2 
LPDI:lO 
LPDELI 
lPDEL2 

HtftHfHffffHff**tHftHfHH"*"*fHHfHHfHHHffHHtffHffHffHffff 

RXFSK 50VII ; SET OVERFLOW ItJIE 

fHftHfHffHfHtHHf-ttHoitHHIflfHHfffff+HfHfHHHfffHHHfHtHHt* 

TAKE PROOOCT FlNl pROJlltT IIEI«lII SCHEIIE. ASSUIIE ANSWER ItJIE 12 SAllPLESI 



~ 

~ 

.... ,g 
[ 
g 
is' 
~. 

.Q, 
;::, 
;:: 

~ 
;;>::: 

~ 
~ 
~ 
~. 

So 
~ 

~ 
t2 
~ c a 
'I 

ff**IHHHff .. IHH*HUf-HHHHHHfH*H******HIHUHfHfHtfffff*tfHHH 

d 
MPY 

AGCIJUT 
PDELl 

; LOAD T WITH AGC STAGE DUTPliT 
; TA!(E PRODUCT WITH DELAY LINE OUTPUT 

H******fHHHHI-********U******H**********HHfHIH**fHfHH*H****"***** 

ORIGINATE/ANSWER FLAG = 0 WHEN ]X ORIGINATES THE CALL HENCE RX RECEIVES 
IN THE HIGH BAND 

H*****HHf*****H*************************i**********H**H*HHfHH***+HI 

LAC 
BNZ 
r~Y 

ANSWER PAC 
SACH 

ilAFLAG 
ANSWER 
PDElI 

PROD,] 

CHECK FOR HIGH BAND/LOW BAND 
L~ BAND, DONE. 
HIGH BAND, USE OOE LESS SAMPLE [RAY 
ACCUMULATE THE PRODliCT OUTPUT 
STORE IN PROD 11,15) 

H***HfH*************************HHH*H*HH*********H******HHH****** 

PROIJUCT DEMOD DELAY LINE : --------------) FOR HWH BAND 

AOCQuT---)l 1 ZERO FIR FILTER l--): Z.f*-1 l--): Z**-l l---) FOR LOW bind 

PRO[ocT = AwI"T , OUTPUT OF DELAY LINE 
PRODliCT IS LOWf'ASS FILTERED AND IT'S SIGN INDICATES 0 OR 1 DATA ••• 

*********H"U**I***HIH**IHHI*******HH***,*******HH14***HHH******H 

ONE ZERO FILTER TO MCI'-l~ PHASE SHIFT OF FLAT DELAY LINE TO BE PII2 IN 
PRODUCT FSi! DEf1ODUlATDR: 

COEFFICIENTS FOR ZERO: IB11 

BELL 103: GAIN 103' 

1170 HZ 0.07175 0.57731 
2125 HZ 0.31678 1.0 

,.21 : GAIN V2n 

1080 HZ 0.32796 0.6'1753 
1750 HZ 0.68B89 1.0 

START UPDATING THE DELAY LINE 

H****** .. ******************H***4**H ..... H***n****14H",,,H******* .. H* .... * 

DIIOV POEll , START SHIFTING DATA IN [RAY LINE 

*****HHltHH**HH*****H*HfHH********HHHH**HHHH******.H*HHU* 

GENERATE THE EXACT [£lAY REQUIRED FOR RECEIVER. 

H***HIHfHf*,*******************HifHHHit*******************fHHi********* 

LAC AI'=T,15 PREPARE FOR FIR ACCUMULATION 
Ll PDELD STATE OF ONE ZERO FIR FILTER 
If'y BIFSK MUll BY COEFFICIENT 
APAC OUTPUT OF ONE ZERO FIR FILTER 
BY RSFLAG RESET OVERFL~ FLAG 

RSFLAG • set 
SACH PDElI,1 ; STORE AT NEXT STAGE OF DELAY FILTER 
DI!OV AGCDlIT , SHIFT SAIIPLE IN FIlTER 

tf****H***f,*******Hff********HUHH*********Hfl***********************ff 

PREPARE TO LOW PASS FIllER THE PRODUCT. 

************Hfl****HH*******H***Hf****fUH*'****Hfi*"********14HH**HH, 

lAC 2ND ORDER DIRECT FORM LP FILTER 
LT PROD 500 HZ. 0.25 DB RIPf'lE 
MPY GAIN COEFFICIENTS: 
ADD LPDEl1,I5 At = 1.392 = 1.0 + 0.392 
LTA lPDEl1 A2 = -.562 
MPY A1FSi! BO = 1 
lTA lPDEL2 81 = 2 
MPY A2FSK B2 = I 
Al'AC GAIN = 1 HIGH BAND 
SACH LPDELO,I GAIN = 0.5 LOW BANn 

LAC lPDELO,14 
AGD LPDELl,15 : Bl • LPDEl1 
ADD LPDEl2,14 ; B2 it LPr£L2 
BY OVRFlW 
B NOVRFL , CHECK FOR OVERFL~ 

OVRFLW .SE't 

ZAC , CLEAR DELAY 1I NE 
SACL lPDEl1 
SACl LPDEL2 

NCVRFL ,set $ 

SACH ll'FOUT,1 ; STORE FILTERED 
OUT LPFOIJT,PA6 

IIf10V ll'DELl 
OMDV lPDELO 



...... 
.§ 
~ 
~ 
~ 
~. 

.Q, 
§ 

~ 
>:: 
~ 
~ 
~ s· 

O<l 

So 
'" 
~ 
f2 
~ 
a 
'I 

~ 
oc 
l..:a 

fHt"HffliHHHfHHtIHfHltfHHt-IHHHHIIHHHHHtHlHHttHHHHf 

DEC[S[ON: SLICER WITH DEAD ZONE [N "!DIU: (W[NDOW COKPARATOR) 

*HfftfftHfHHHH*,*,***HHHHHflHHHffHHfHHffHlflHtiIHHHfHfH 

ASS 
SUB OZONE 
BlZ OONE 

LAC ceITT I CHECK FOR lIELL I'S ce[TT 
aNZ ITSV21 
LAC LPFOUT 
BLEZ H[GH 
LACK 0 I SET BAUD DATA = 0 (Oxxx) 

SAC!. FSKDAT 
B DIllE 

H[GH LACK 8 , SET lIAUD DATA = I ([xxx) 

SAC!. FSKDAT 
B OONE 

HI+lHIfHftHHHHHfHffHUffffffffHtHHHffHfHffHfffHfffHfHHt** 

FOR V.21, NEGATIVE S[GNAl l1fANS THAT WE HAVE RECE[VED A 0 lIND A POSlTlVE 
S[GNAl KEANS THAT WE HAVE A I. 

HHHHlMlftHHHHfHlffHHfHflfffltffHfHHHfHHftfffHHfffHHfHf 

• 
ITSV21 .set $ 

LAC i.PFClJT 
BLEZ lOW 
LACK 8 I SET BAUDJlATA TO I 
SAC!. FSKDAT 
B OONE 

LOW LACK 0 , SET BAUDJlATA TO 0 
SAC!. FSKDAT 

tfHfHfHfHfHHHfHf**.HHffHffHffHHlHfHf***ftHfHfHffHHHfft** 

THE FOLlOW[NG [Pl'LEHENTS FSK TlHIMl RECOVERY 
ADDED BY K.H 10-3-86 

IHllf11-1HIIHlfHIIHHHHlfffHlIHHHtHI4H4fHHKHHHHfHHHfHtf 

DIllE LAC lIAUDCK , [NCREl'IENT BAUD a.OCK 
ADD !lIE 
SACL lIAUOCK 
LAC FSKDAT CHECK FOR TRANSlTIOOS 
SUB BlIATA Cllf'ARE TO PREVIOUS DATA 
8HZ TRAN IF NOT THE SAKE, HANDlE TRANSlTllII 
LAC lIAUDCK ELSE CHECK FOR ENG OF BAUD 
SUB !IIE,5 PERIOD = 32 lIND END OF BAUD 
BLEZ ERFSK [F NOT ENO OF BAUD, JUST RETURN 

CLEAR I ELSE OUTPUT PRfV[OUS DATA lIND CLEAR 
I COO'jTERS 

TRAM LAC CllUNTR I LOAD TRANSlTllII COONTER 
ADD OOE I [t«:REItENT 
SAC!. CllUNTR 
SUB TRANS I CHECK FOO 15 TRANSlTlllHS 
BHZ ERFSK I [F NOT ENOUGH TRANSlTlOOS, RETURN 
LAC BlIATA I ELSE [NVERT PREV[OUS DATA 
SUB !IIE,3 
ABS 
SAC!. BlIATA I STOOE BAUDJlATA 
LACK OFOh 
lIND STWRD I GET R!D OF IIlAREVER lIAS [N LSD. 
ADD BlIATA I FalCE BAUD_DATE [NTO BIT 3 
SAC!. STWRD 

a.EAR OUT STWRD,PA5 I OUTPUT TO H[CROCONTROLLER 
ZAC 
SAC!. lIAUDCK a.EAR BAUD Q.OCK 
SAC!. COUNTR CLEAR TRANSlTlOO COONTER 

ERFSK RET ENG OF FSK DEHOD 

• copy "RTASKC.AOO' 

flHHffffffHHHftffffHHf-HHHHtfHffHfHftfHHf**f-IHHfHHf:lHHHf 

RTASKS.AOO 

RTASK'. ALLOW LARGE TlKE [NTENS[VE TASKS TO BE SPlIT BETWEEN THE Slli'l'lIMl 
PER[ODS OF A BAUD. TH[S [S A PRACTICAl MEANS OF [ltPLEMENTlNG COltPlEX 
FUNCTlIlHS ON THE DSP, W[TH THE TlHE RESTR[CTIOO PLACED BY THE 9.6 KHZ 
SAIf'I.[NG TRACE 

ffHHffHfffff'HffHfHIHHHHHf**"**HHfHftHHfHHHHHHHHfffff 

RTSKIO 

fHf,***Hfff**ffHIiHHHtHffHHfHtHfIlHHHfftHHIfHflHftHfHHHf 

• 
RTSKIO LACK OFOh 

HfftH4f41IHHHIIHH4HIIIfHHHflfHHHHHfIHlIIIIIIIIHlIllfIHflHf 

OOTPUT THE STATUS WORD TO THE Cc:lTROlLER BIT 6 UN-BAND ENERGY DETECT! 
[ND[CATES DIAl. TONE, BUSY S[GIIAI.., ETC. 

fHIHlfHHftUHlHffHfHHlnIHIIIIIIIIIIIIIIIIIHHlHH+HnHHHnlH 

LACK 
lIND 
ADD 
SAC!. 
OUT 

OFOh 
SMD 
ONE 
STWRD 
STlIRD,PA5 



w 
~ 

~ 
'ti 

W 
~ 
i:l 
~. 

~ ., 
;:, 

?l 
>.; 

~ 
~ 
~ s· 

OQ 

So 
'" 
~ 
~ 
tv 
<::> 
() 
>-.. 
'-l 

RET 

*HfHfffHfHfHHfHfHHffHffHffffHfHHfffffffH*****"***ffflfHfHfH 

AIlC FILES . 
HffHfffHffH.HHfHffffffHHHHHffH***HIHffHfffHffHfHHffHHHH 

• copy "AIlC.AOO" 

UfUHfffffHfHffH*H+HfitHlIHfH*****HH+**UiHUfHHUH"HI******lff 

AGC.ASM 

FRONT END AGe FUNCTION. 

THIS AGe WAS REDESIGNED TO INCORPORATE THE FREEZE OF EIlIJALIZATI{)( 5/2'1187 

THE AVERAGE SIGNAL SIlUAREII IS COMPUTED BY TI£ MAIN PRIlGRAI1 AND STORED IN 
AVESQR, WHICH IS CLEARED BY THIS ROJTINE AFTER AVESlIR IS llSED. TI£ 
ROUTINE USES A WINDOW WHOSE WIDTH DEPENDS ON THE I1OIIW\TI{)( moo, 24001 
AND AN ERROR WEIGHTING WHICH ALSO DEPENDS {)( THAT RATE. WE FIRST SET 
THOSE VALUES: 

*******H**f"*H*****f**fHHHfHf*******HI******f**fHHHfHHHHfHUH 

• 
AIlC SOVM 

LAC ON 
8HZ SWlTCH 

, CHECK FOR AFE SWITCHING 

*****H.fH.**************ffHHfflHHf*******ffHfHf+HflHffHf.ffHH***** 

CHECK IF 2400 AND CHANDE THOSE VALUES 

HHHffHffffHHf**ff********Hff**ffHHf*********HH·lf4fHfffIHHf******* 

LACK 
AND 
SUB 
BlEZ 

3 
STATllS 
ONE, I 
AGeO 

, IF STATllS BITS 0 AND I ) 2 =) 2400 

, IF (= 2 , DO NGT tIlDIFY TI1PO AND trIP! 

.... UIHffH*HHHHfH+IH+**"Hf****+Hfl*HHHfffHHIf***********"***** 

FOR 2400 , 2 -) TI1PO AND !320 -) TMP! 

HlfHHfH********fHH***HfHHU .... UHf*fH-H*fff+HffHHHHftIfHf-HfU 

LACK 2 , IT IS 2400 
SACL ll1PO 
LT CI£ 
MPYK 1320 
PAC 
SACL TMPI 

AIlC! 

• 
AIlCO LACK , IT IS !200 

SACL TI1PO , WEIGHTINl FACTm -) TI1PO 
LT CI£ 
MPYK 950 
PAC . 

SACL TMP! , WINDOW -) IMP! 

fHfHHfHfHfHHf*********HHfHf**********fHfHHfffHHffH*HfHHff** 

t{)W SUBTRACT REFERENCE FROM BAUD ENERGY TO GET ERROR. TIE BAUD ENERGY IS 
IN S!O.S FoortAT. TIE AGe MAINTAINS THAT LEVEL AT 2.86>16 = 46.7 IH'SBb 
IN S!0.51. TIE AIlCREF IS THEREFORE H'SBb 

ftHHfHHfHH*************H************"********HHHfffH************" 
• 
AIlC! LAC AVESlIR 

BGEZ CONTI , FOR I£GATIVE ENEROY SET TO I'il! POSITIVE 
LAC ONE,!S , ENERGY LEVEL - FORCED SLEW NODE 
SUB {)(E 

CONTI LT ONE 
MPYK AIlCREF , AGCREF = H'SBb 
SPAC : AVESQR - AIlCREF -) ACe 

HHH+fHfHtH***fH*************ffHIH******fff************************fH 

COMPARE THE ERROR TO WINDOW ITMPli. 

IF ERROR ) WINDOW =) ERROR - WINDOW -) ERROR 
IF -WINDOW ( ERROR < WINDOW =) 0 -) ERROR 
IF ERROR < -WINDOW =) TI1PO • IERROR + WINDOWI -) ERROR 

IF TI£ AVERAGE BAUD ENEROY IS A, 11£ PEAK Bl\lJD ENERGY FOR ilAII SiGNAlS IS 
1.8 A AND THE MINIMUN IS 0.2 A. TI£ WINDOW IS THEREFORE CHOSEN TO BE 0.8 
A IN E!TI£R DIRECTION. W!TH AIlCREF = WSBb, TI£ WINDOW IS H'492. FOR DPSK 
SIGNALS, TI£ VARIATIONS IN BAUD ENEROY ARE ENTIRELY DUE TO lSI AND 
DlSTmTlON AND THEREFORE TI£ WINOOII IS ruH SMLLER IwAI. FIRST CI£CK IF 
ERROR ) WINDOW 

.... HfH .... HffHUHffHfHHHff**f .... **Hf**.**HfHfHHH*******U********** 

SUB 
SACL 
BOEI 

TMP! 
TMP3 
AGC2 

, ERROR - WINDOW -) TMP3 



~ 
"ti 
[ 
~ s 
§" 

.Q, 
§ 

~ >:: 
~ 
~ 
~ 
~. 

So 
'" 
~ 
t.i 

B 
'.J 

t.) e: 

IHtfHHHffHHHfHftlHfHtHfHHflfHHlllllllllllllllHHtHHfHlKHf 

ERROR ( WINDOW =) ClEeK IF ERROR ) -WINmI. IN IfliCH CASE, ZERO THE 
ERROR. FIRST, ZERO THE ERROR (I.E. ASSI.I£ ERROR ) -WINmI) ANDlIlDIFY IF 
WRONG 1\SSUIIPTIDN. · HHHtffHfHffHHHHfHft,ffffHfffHtffHofftHHHffHHfHff*tHffHHH 

• 
LARK 
SIIR 

ARI.O 
ARI. TII'3 , ASSUI£ ERROR ) -WINDOW 

IlfHHflHffffHHHHfIHIHHfHHHHHfIHIHHHHHfl-HHHfHHffHH4 

CHECK ASSLI1PTlON 

HfffffffHff**"HHt**"*fHHHHHHffHttHfHHf-HfHfHHHHHffHflfH 

ADD 
BOEZ 

TltPI.1 
AGC2 

, ERROR + WINDOW -) ACe 
, ASSltIPTION IS RIGHT 

HHIH*IHHtHHfHffffff***********HHlffHHHtlff***fHH*HfHHIIHtH 

• 
ERROR ( -WINDOW =) TltPOf(ERROR+wINmI) -) TltP3 

fHltH*HHfHHfHHHfHHHHHHHHfHfittoHHfHHfffHHHHHffffffHf 

SACL TltP3 
IT TII'3 
If'Y TlV'O 
PAC 
SACL TlV'3 

HfHftHHHfHH*"*"****HHMHHHff*'***"Ht*HfHffHHHflfHfHHH 

AT THIS POINT, TI£ WEIGHTEO WINDOWEO ERROR IS COhTAINEO IN TltP3. WE 
CONSIDER IT AN 5.15 NiJ'IBER lIND USE IT TO Ll'DATE TI£ AOC GAIN AlP~. 
FIRST, WE DETERI1INE WHETHER TO SLEW OR lilT. IF THE ERROR IS LARGER ~ 
lEAbh OR SItAll.ER ~ F5E7h, GO INTO SLEWING t«lDE BY SETTING ERROR TO 
7FFFh or 8000h RESPECTIVElY. OTHERWISE, lEAVE IT lWCHANGEO. 

AlSO SET STAT2l71 APPROPRIATElY TO FREEZE TI£ UPDATE OF TI£ &/AlIZER 

STAT2l71=1 UPDATE EllUALIZER 

STAT2l7l=O FREEZE EQUAlIZER 

f"IIHffHI*"lffIIHHIHffHHHfHHHHHllHfHlHff-HHffHlfHff'HffH 

tAGC2 LAC M,7 
OR STAT2 , ASSI.I£ EQUAlIZER Ll'DATE 
SACl. STAT2 

AGC2 LAC TltP3 
lOPK I 

SUB POSSII 
BLEZ AGC3 , DO IflT SLEW 

lIPI< 0 , ENTER SlEW t«lDE 
LAC M,15 
SUB M 
SI1CI.. TII'3 , TIf'3 (- 7FFF 

LACI( 7Fh 
AND STAT2 
SACL STAT2 , FREEZE EllUALIlER UPDATE 
B AGC4 

AGC3 ADD POSSII , ACe (- TIf'3 
ADD NEGSIt 
LDPK 0 
BGEZ AGC4 , DO lilT SLEW 

LAC M,15 , ENTER SlEW II'lDE 
ADD ONE 
SACL TltP3 , TMP3 (- 8000 

LACI( m 
AND STAT2 
SI1CI.. STAT2 , FREEZE EllUALlZER 

HHfHHtffHfHfffl**ffH"*"f***tffHHHiHtHHHHHHHftfHffHttHHH 

THE FOllIJIING LINES Ll'DATE TI£ GAIN AlFHA USING AN EXPOIENTlAl INTEGRATOR 

AlFHA = AlP~(I-KfERROR) (ERROR = TItP3I 

WHERE AlFHA IS IF FORMT 57.8, ERROR IS SO. 15, AND K' 0.5. 

AlP~ I ERROR: S7.S' S.15 = 57.24. 

BY KEEPING ACeH WITHOUT lEFT SHIFT TI£ IIl.T1PlICATION BY K IS 
ACCOIf'lISI£D. 

AlP~ IS Ll'1'ERBOlIIIDED TO 35.73 IN S7.S 

tfHHHfHlHffHffHfffHtIHH11111111l111111ftffHf111111111111111111111H 

AOC4 LACK ItAXAlP 
TIIl.R TItPO 
ZAlH AlFHA 
IT TlV'3 , ERROR -) T 
If'V rt.PHA 
$PAC , AlPHA (l - O. 5<ERROR) -) ACe 
SACH AlPHA 

HHHloffllllllllllllllllllfltfflllllllllllllllllllllllllHlfHfHfHf.fofHHH 

CHECK IF AlFHA > ItAX AlPHA 



I.H 

~ 

~ 

I 
~ s 
§" 

..Q., 
s::. 
;:s 

~ 
~ 

t 
~ 
~. 

So 
<1> 

~ 
~ 
Q 
'-l 

HHHHHHHfHHHHIII.IIIIIIllllllfHHHHfHftHHHfHHHHHfHHHf 

SUIH TlI'O 
BLEl AGC5 

LAC TlI'O 
SACI. AlPHA 

HlHHHHHfHHHHHHHf**lfHfHfffHffHHfHHHfIHHHHffHlfHHH 

AGC5' 
IIIIl. 

ZERO BAUD ENERGY REGISTER 

.set 
OOT 
ZAC 
SACI. 

$ 

~,PA2 

~ 

, ARt. DIAGNOSTIC 

HlHHIIHfIIIIIIIIII.'.IItHHfHHHffHfHHHlHfffHHHHHHfHlfIIHH 

ElERGY OCIECT LOOP 

START BY READINl IN HVATERESIS COONTER INCREmlT COOSTANT 

LACK HVSINC 
TBLR TItP5 

fHIIHIIIIIIIIIIIIIIIIII.IHHHfHfHHffHHfHffHffHfHHfHfHfHfHHf 

• 

• 
EDT 

CHECK IF AFE GAIN IS 00 III OFF 

LACK 
AND 
8Z 

OBOh 
STIIRD 
EDT! 

HHffHHHHffHflllllllllllllllUIHfHHfHllllllllllllIIHfHHHHffHHf 

AFE GAIN IS 00, CIECK IF ENERGY OCIECT IS 00 (STIIRIII61 = 11 

LAC 
AND 
8Z 

LACK 
TBLR 
LAC 
SUB 
ILl 

(1£,6 
STIIRD 
EDTO! 

TIm! 
TlI'O 
TII'O 
~ 
EDT2 

IF ZERO =) ENERGY IS MIT ocrECTED =) 

CIECK IF LE'<B. IS LARGER THAN -43.5 DB!! 
If STlIRDI61 IS (1£, CHECI< IF LEVEL LESS 
THAN -48 DB!! 

, IF < 0 T1£N NJ ENERGY DETECT 

HHHffIHHHHHHHHHHHffHfIHHHHfHffHfHf+HHHfflHfHHHf** 

CHECK IF AFE GAIN STAGE SI«lllD BE BYPASSED 

HHHftfHHHIHf"HHlffHHIHflHflHffHHHHHtfftHMtHf*******HH 

* LACK THRES3 
TBLR TlI'O 
LAC TltPO 
SUB ALPWl 
BLZ EDT3 

fIHIHHHHHfltHHfHHHHHHfffffHIHHHHHH4H********HHfHffHf 

IS AFE GAIN 00 ? 

HfftHHHtfHfHfHHffHl+HfHHHfHIllIllllIllIllllHHHfHHHfHffHf 

• 
LACK 
AND 
B1 

OBOh 
STWRD 
EDT3 , IF GAIN IS OFF, EXIT 

fHffHHHHfHfHHHHHtHHHlHHHffHHtHfHfffHflfHlHfHfffHHH 

BYPASS AFE GAIN 

HHHHHHHHHHfiHttHitHHHHHfHHffHffIHHHHffHfIII.IIIIIII.1111 

• 
LACK 07Fh 
AND STWRD 
SACI. STNRO 
LACK 04h 
SACI. 00 
RET 



..... 
.§ 
f 
~ s 
g' 
.Q, 
l:> 
;:s 

~ 
>;; 

~ 
~ 
~ 
~. 

So 
~ 

~ 
~ 

B 
'I 

~ 

~ 

H**************fH*"U**ltfHHfff**H**fHHHIHlffHHfHH-fHHffttffHf 

ilECREI1£NT HYSTERESIS CIJJNTER 

IHffffl**IHU**H**H****fflfHfHfHHfffHHH4HffHHHHtHfHHHfHH 

• 
EDT2 BY EDT21 CLEAR OV£RFLOW BIT 
EDi21 ZALH HYST HYSTERESIS COltITER 

SUBH TI1PS TI1P5 = 1927 = 32708/15 
SACH HYST 

H**********ft*****IHf*HfHHf+fH**HH4HitfHffHfffHHHfHHHltHfflH 

IN CASE OF OV£RFLOW, DECUIRE LOSS OF ENERGY DETECT 

Hf*****HHH4HUU****H4H....,**n*fUHHHH4H4HHHfHfHH*fHHHIHf 

BY EDT02 
REi 

EnT02 LACK OBFn 
~ STNRD 
SACL STNRD 
RET 

HHH***HftHHHftHHHHfftfUHtHfHHfffff*****HHtffIlHHHHHIUt 

FOLLOWING LINES ME EXECUTED IF ArE GAIN IS HIGH, BUT t() ENERGY DETECT. 
Cl£CK IF ALPHA < 21.28 (I.E., RECEIVE LEVEL )-43.5 DBMl AND INCREMENT 
HYSTERESIS COOIITER IF IT IS. OTHERWISE, EXIT, 

******** .... ffHH.fHHU**HH*ff*nHfHf**+Hff**fffHfHHHfHff.Hf*"f 

• 
EDTOI LAf..K THRES2 , 21.28 IN S7.8 

TBLR TIIPO 
LAC TI1PO 
SUB ALPHA 
BlZ EDT3 

f*ffHfHffHtnffH***f*HHHfHUHfffHffffHHf**ff**fHHHfHfHfHf**f 

ALPHA ( 21.28 =) INCREI'fNT HYSTERESIS ClJJNTER 

HHH*ffHfHflfff+fffUfHf*f**HHHfHffH4ffHfHHfH*****fffHffHffHf 

BY 
EDTOll ZALH 

ADDH 
SACH 

EDTOII 
HYST 
TMP5 
HYST 

, CLEAR OVERfLOW BIT 

, TI1I'5 CONTAINS INC. )fOF 

HfftHfflffHff***f**H**************ffHHHI**Hlf****f.lHlftffH********** 

DETECT BIT STNRD[bl = 1. 

HIHlHlfHflfffHIHftHHHH***HHflfftffUHHffftHfHfHHllffHfftfU 

EDT04 

BY 
RET 
LAC 
OR 
SACL 
RET 

EDT04 

0NE,6 
SHIRD 
STWRD 

, IN CASE OF OV£RFLOW, SET ENERGY 

fHH*Hf**********HHHH*,fffHHf***HfHHfHH*HHHfflHf*iHfHtfHff 

IF ArE GAIN STAGE IS BYPASSED, CHECK LEVEL IlF ALPHA 

fHHHHffHH********HHHHiHIH**HfHHHfHHfHHHIHHHflHIHHff 

• 
EDT! LACK THRESS 

TBLR TMPO 
LAC TI1PO 
SOB ALPHA 
BGZ EDT3 

*,*f******HHHHfHHHHf**H****HHHfHHH**HHHHHHffflHft4ffffH 

IF ALPHA) THRESS (20.09 IN S7.Sl TIEN TURN ArE GAIN STATUS I«IRD BIT ON. 

fHfHHHffotHffot****,****fHHffff*f***fHf******H******fHHff**HfH***ff 

UICK OOOh 
OR STNRD 
SACL STNRD 
UICK 014n 
SACL GN 

EDn RET 

HHf**ff*f+fHnlfff**********fffff****f**ffHfH+ffHffUffffHHHH**Hff* 

ROUTINE FOR SIIITCHINl THE AFE ilII/OFF 

f******H****H*tffHfftffff**ff*****fffffHfffHHfHf**fftffHH**fHfHfHf 



w 
00 
00 

:? 
'ti 

W 
~ s 
gO 

.Q, 
§ 

~ 
;:r;:: 

~ 
l} 
~ 

s: s· 
()Q 

~ 
~ 

~ 
~ 
<:;:) 

Q 
'-I 

1111111.llllllllllllllfffffHlHHHHHHffflHffHHHfHHHlHHHHfHHf 

ZERO BAIJD ENERGY REGISTER 

HHfHHHflHfHfHHHHHHIHHfHfHHHHffHHfHfHHHHHH'IHHHf 

• 
SWITCH Zf(; 

SACL AVESQR 

LACK 
AND 
BZ 

010h 
ON 
AFEOFF 

, HASK OFF _ED BITS 

HHHffHH-HffHHHHtHHHtHHHH***fflfH**tHHf*"*********iHfoHIH 

CHECK IF TI£ GAIN 5IO.JU) BE ON 

HHHfHHf**HfffHHfHHHfHfHHHffHHffHHHHHfffHfHfHHfHHff 

LACK OFh 
AND ON 
SIll IlE 
BZ Sl/TCH1 

SACL ON 
LACK 010h 

~ GN 
SACL GN 
RET 

SWTCH1 SACL GN 
LACK 1'IflESlo 
T1II..R ALPHA 
RET 

AFEOFF Lr(; GN 
SUB IlE 
BZ SliTCH2 

SACL GN 
RET 

SliTOO SACL GN 
LACK TIflES4 
TaR ALPHA 
RET 

, HASK OFF TIE AFE ON BIT 

, IECREI1EIIT TI£ COUNTER 

, SAVE GN VALLE 
, LOAD TIE AFE ON BIT 

, RESTCIIE AFE ON BIT 

RESET TI£ GN VALUE TO ZERO 
LOAD TI£ NEW ALPHA VALLE 
RESET ALPHA TO 5.05 

, IECREII£NT TIE COONTER 

, LOAD NEW ALPHA VALLE 
, RESET ALPHA TO 8.98 IN 57.8 



An All-Digital 
Automatic Gain Control 

AI Lovrich 
Raj Chirayil 

Digital Signal Processor Products - Semiconductor Group 
Texas Instruments 

389 



390 AnAl/-Digital Automatic Gain Control 



One of the basic structural blocks of a modem receiver is the Automatic Gain Control (AGC). 
The AGC is an adaptive system that operates over a wide dynamic range while maintaining the out
put signal at a constant level. This is necessary for the proper operation of the carrier recovery and 
clock recovery algorithms of the modem receiver. 

This application report describes an all-digital implementation of an AGC on a TMS320C17 
Digital Signal Processor (DSP). The AGC is designed specifically for modem applications. The 
structure of this application report is as follows: 

• The first section provides an overview of modem receiver structure and implementation. 

• Section two discusses the AGC block diagram and the motivation for using an AGC in 
a modem receiver. 

• The last section covers the AGC hardware and software implementation aspects on a 
TMS320C17 DSP. 

Introduction 

A modem (MOdulator/DEModulator) is a device that modulates baseband signals at the 
transmitter and demodulates the received data at the receiver. To achieve full-duplex operation, fre
quency division multiplexing is employed, in which both modems simultaneously transmit and re
ceive information over a single channel by dividing the telephone bandwidth into separate frequen
cy bands: one for transmit with a carrier frequency of 1200 Hz and one for receive with a carrier 
frequency of 2400 Hz. A modem receiver consists of several functional blocks, which include ans
wer/originate bandpass filters, AGC, demodulator, adaptive equalizer, clock recovery, carrier re
covery, decision block, decoder, and descrambler. 

In this report, we are concerned with the implementation of a DSP-based AGC for a V.22 bis 
modem product[1]. One of the basic structural blocks ofa modem receiver is the AGC. The AGC 
is an adaptive system that operates over a wide dynamic range while maintaining the output signal 
at a constant level. The AGC is needed because several modules within the receiver use amplitude 
thresholds to make their decisions. These threshold levels must remain constant over the entire dy
namic range of input signals, typically from -9 dbm to -43 dBm[2]. This is achieved through use 
of a software AGC, which multiplies the input signal with a gain factor, depending on the actual 
received signal level. 

Modem Transmitter 

The CCITT V.22 bis standard is a 2400-bps modem that uses Quadrature Amplitude Modula
tion (QAM) technique to transmit and receive data through the communications channel. This sec
tion presents an overview of QAM systems and the equations governing their operations. 

In Quadrature Amplitude Modulation, the information is encoded as phase changes of the 

transmitted carrier and amplitude variations. With R denoting the amplitude and 4> the phase 
change, the transmitted signal s(n) is mathematically represented as 

s (n) = R cos (we + ifJ ) (1) 

An All-Digital Automatic Gain Control 391 



where we is the carrier frequency. Simplifying (1) and substituting In = R cos( <1» and On = 
-R sine <I> ) into it results in (2); this is used to describe OAM modulation systems. 

s (n) = In cos (wn) + Qn sin (wn) (2) 

Transmission of a baseband sequence {In,On} is called quadrature transmission, with two 
carriers in phase quadrature to one another (cos wet and sin wet) transmitted simultaneously over 
the same communications channel. Figure 1 shows a two-dimensional diagram of the signals of 
form (2) with the horizontal axis corresponding to the in-phase signal (In) and the vertical axis rep
resenting the quadrature signal (On)' These signal points are referred to as a 16-symbol OAM-sig
nal constellation. 

Each value of the {In' On} corresponds to one signaling element transmitted. The number of 
signaling elements per second is referred to as the baud rate. The baud rate is set by the CCITT V.22 
bis recommendation to 600. By encoding four incoming bits (quadbits) in a single baud, transmis
sion of 2400 bps is accomplished. 

The encoding of the incoming data stream dsCn) into values of the sequence {In,On} is ac
complished by the encoder. The encoder maps the first two bits of a quadbit as a phase quadrant 
change relative to the quadrant occupied by the preceding signal element. The last two bits of the 
quad bit define one of four signaling elements associated with the new quadrant[3]. 

392 An All-Digital Automatic Gain Control 



Figure 1. V.22 bis Signal Constellation 

PHASE QUADRANT 2 

• 
11 

0 
10 

-3 

• 
01 

• 
11 

• 
01 

• 
00 

-1 

• 
00 

o 
10 

PHASE QUADRANT 3 

Q 

PHASE QUADRANT 1 

30 
10 

• 
00 

-1 • 
00 

-3 • 

01 

• 
11 

• 
01 

3 

0 
10 

• 
11 

PHASE QUADRANT 4 

The AGe Algorithm 

The AGe circuit is a closed-loop regulating system that maintains the output level of an am
plifier at a constant level, even though the input signal may vary substantially. The AGe modeling 
and design techniques based on linear system design have been studied in detail[ 4]. The global sta
bility of AGe loops assures the designer that the overall loop will stay stable under considerable 
weaker conditions if the proper design rules are followed[5]. 

Figure 2 is a block diagram of the modem automatic gain control. The AGe algorithm is par
titioned into tasks performed once per sampling interval, and tasks performed once per baud inter
val. The sampling rate for the overall system is the designer's choice as long as it satisfies the Ny
quist's criterion. A widely used sampling rate for the communications channel is 8 kHz. In the sys
tem in Figure 2, the sampling rate is chosen to be an integer multiple of the baud rate. Therefore, 
a sampling rate of 9.6 kHz is selected. This value is divisible by the master crystal frequency of 
18.432 MHz. 

An All-Digital Automatic Gain Control 393 



FROMCODEC 

9600 Hz 

CARRIER 
STAGE 

DETECT LOGIC 

CARRIER AFE GAIN 
PRESENT SELECT 

Baud Energy Detector 

Figure 2. Modem AGe Block Diagram 

CONSTANT (RMS) SIGNAL FOR 
FURTHER SIGNAL PROCESSING 

BAUD ENERGY 
DETECTOR 

EXPONENTIAL .. 
INTEGRATOR 

600Hz 

-AGC 

REFERENCE 

ERROR 
WINDOWING 

AND 
WEIGHTING 

TRACKING MODE r--_ ....... --:----, 

SLEW MODE 
AGCSTATE 
DETECTOR 

EQUALIZATION 

FREEZE 

In Figure 2, every incoming linearized PCM sample is multiplied by the AGC gain factor. 
The result is available to the modem reciever for further signal processing. It is also used to update 
the baud energy detector. The energy of a baud interval is computed according to 

E = L Xn 2 
(3) 

where xn represents the incoming samples. The accumulated baud energy is then compared against 
a reference level, which depends on the modulation scheme. This comparison is necessary to com
pute the AGC loop error signal. It is this error that the AGC is trying to minimize. 

The QAM transmitted signal shown in (2) can be rewritten, taking waveform shaping into 
account as follows 

s (t) = L In g(t-n1) cos We t + L Qn g(t-n1) sin We t (4) 

394 An All-Digital Automatic Gain Control 



where we = 2Jt fe> where fc = carrier frequency 
get) = shaping waveform 

T = sampling interval 
In,Qn = data symbols 

AGe Reference Energy 

The signal energy for a particular constellation point (In,Qn) is given by (see Appendix A) 

(5) 

The energy reference level is chosen to be 

Ere! = E ( En) (6) 

where E{ } denotes the expectation operation. The Y.22 bis modem standard requires the transmit
ter to scramble the incoming digital sequence from the DTE and descramble the decoded data in 
the receiver[2,3]. The use of scrambler in the modem transmitter effectively randomizes the data 
and avoids data-dependent patterns in the transmitted sequence. This allows the constellation point 
sequences to be modeled as a random sequence, with each point having an equal probability of oc
currence of E{(In,Qn)} = lIN. Therefore, (6) can be written as 

N 

Ere! = I l/N ( En ) 
n~l 

Figure 3 shows a portion of the signal constellation diagram of a V.22 bis modem. 

Applying (7) to all 16 constellation points results in 

Ere! = 1/16[4 [ ( 12 + 32 ) + 1/2 ( 12 + 12 ) + 1/2 W + 32 ) ]) 
= 1/16 4 [ ( 10 ) + ( 1 ) + ( 9 ) ] ) 
= 5 

An All-Digital Automatic Gain Control 

(7) 

(8) 

395 



AGe REF 

Figure 3. Signal Energy Constellation Diagram 

Q 

--... ......... , 

" " __ .. ~,3) ". (3,3) 

" \ " \ '\ \ 
\ \ 

\ (3,1) \ 
~ \ 
\ \ 

5 9 (ENERGY) 

In Figure 3, constellation points (3,3) and (1,1) with respective energy contents of 9 and 1 
~"lie outside the reference level of 5. A window function is then necessary so that the AGC does not 

treat these energy variations around the nominal energy as distortions induced by the communica
tion channel. 

Therefore, the AGC should apply corrections when the incoming signal level is outside the 
interval (1,9)(see Figure 3). Such implementation, however, neglects the effects of inter symbol in
terference (lSI). lSI arises in systems whenever pulses are transmitted in a band-limited channel. 
In such channels, pulses tend not to die out immediately, and the tail from one pulse interferes with 
the next pulse. lSI-related effects are more easily shown when constant amplitude modulation tech
niques, such as DPSK, are considered. In a DPSK modem receiver, the received signal exhibits gain 
variations, that are entirely due to lSI. Since the modem equalizer compensates for lSI, the AGe 
should not act upon lSI-related signal-level variations, because this would introduce noise into the 
modem receiver and degrade the overall performance. 

The received signal ret) at the input of the receiver is the convolution of the channel impulse 
response h(t) with the transmitted symbols Xj in 

r ( t ) = I Xj h ( t - jT ) + !-let) (9) 

where !let) is the additive white Gaussian noise. For the effects oflSI to be seen, the received signal 
must be sampled at the instant to+kT with to incorporating the sampler phase and delay effects. 

r ( to + kT) = Xkh ( to ) + I xjh ( to + kT - jT ) +!-l ( to + kt ) (10) 

396 An All-Digital A utomatic Gain Control 



The first term of the right-hand side of (10) is the desired signal and is used to determine the 
transmitted symbol, while the middle term is lSI, which arises from the neighboring symbols [6]. 
With xk, a constant amplitude sequence, the middle term in (10) results in received signal amplitude 
variations. Thus, the AGC design must incorporate an energy window around the energy reference 
level as defined by xk's. 

DSP Implementation 

Hardware 

This section describes the hardware requirements of the modem. The modem hardware con-
sists of the following functional blocks: 

1) Host Interface 
2) DSP 
3) Controller 
4) Controller-DSP Interface 
5) Analog Front-End 
6) Telephone Line Interface 

For the purpose of understanding the operation of the Automatic Gain Control (AGC), the 
discussion is limited to only the analog front end. 

Modem Analog Front End 

The function of the analog front end (AFE) in the modem is to convert the analog signals re
ceived on the telephone line to digital data that can be processed by a digital signal processing de
vice, in this case the TMS320C17. Depending on the modem standard that is implemented, the mo
dem AFE could further assist the DSP by preventing as many of the unwanted signals as possible 
from being received by the DSP. This reduces the signal conditioning and preprocessing required 
by the DSP, which, in turn, reduces the computational requirement. 

In the implementation described here, the modem AFE performs the bandpass filtering, a 
single-step gain stage, and the ND-D/ A conversions. Although the modem hardware also includes 
the two-to-four wire conversion and the proper telephone line interface and impedance matching, 
it will not be considered in this discussion. 

Split-band Filtering 

In Frequency Division Multiplexing (FDM) modems, the originating and answering stations 
use different carrier frequencies to transmit data[2]. For Y.22 bis modems, the originating modem 
transmits data using a 1200-Hz carrier and receives signals from the remote modem at 2400 Hz. 
Since these signals are carried over the two-wire Public Switched Telephone Network (PSTN) for 
a full duplex communication, both signals are present in the telephone line simultaneously. For a 
modem to prevent its transmitted signal from interfering with its received signal, it must eliminate 
its own transmit signal at its receiver. Since the two modems use separate carrier frequencies to 

An All-Digital Automatic Gain Control 397 



transmit, this task becomes relatively easy. It is done by bandpass filtering the received signal with 
the passband filter being centered at the transmit carrier frequency of the remote,modem. 

This implementation uses a commercially available modem filter that has special modes to 
allow call-progress signal monitoring. This filter must provide adequate adjacent channel rejection 
while maintaining linear phase. The filter must operate over the entire dynamic range required by 
the modem, typically from 0 dBm to -43 dBm. For better Signal-to-Noise Ratio (SNR) and linear 
phase, it is desirable not to operate the filter and the Analog-to-Digital converter at very low signal 
levels. If signals are weak, an external gain stage (turned on/off under software control) in the re
ceive signal path easily accomplishes this goal. 

Hardware Gain Control 

The hardware gain switch is implemented by changing the gain in the analog input buffer to 
the filter. When the average signal energy falls below -28 dBm, the DSP sets a status line to the 
modem controller. The controller, in turn, switches on a different resistor in the feedback circuit 
of the op-amp, increasing the gain by 12 dB. This switching is normally done only once during call 
initialization. However, if the connection starts with low-level signals and later the signals become 
stronger due to change in line impedance, the DSP resets this status line to the controller. The mo
dem controller then turns off the external gain stage. 

When the modem received signal is actually at the threshold level, it is possible that the exter
nal gain could frequently be turned on and off by slight changes in signal level. To prevent this, a 
4-dB hysteresis has been established between external gain On and Off. This means the external 
gain will be turned On when the average signal level is less than -24 dBm and will be turned Off 
when the level is more than -28 dBm. Figure 4 shows the AFE schematic of the modem. 

LINE (dBm) AFE GAIN (dB) CO DEC (dBin) 

Rx level -12 0 -9 
-24 0 -21 
-25 12 -10 
-43 12 -28 

. 398 An All-Digital Automatic Gain Control 



Figure 4. Modem AFE Schematic 

B i -- -----;----- ~l- -;6 dBGAiN: 
c 

1 

1 

1 1 1 1 L ___ L ____ ~ 
L-~ ~ ~~N ______ ~ 

~----------~ TOUT 

:- - -",.-")----+...L.U'--__ ...J- - - ~3~~5dB GA~ :k~-l 

1 U~ 1 

1 R '::" 1 
1 U~ 1 

1 • 1 L ______________________ 1 

SPLIT BAND 
FILTER 

Codec Interface 

The TMS320A2400A features hardware companding logic to interface directly to a IJ.-Iaw 
codec[ 1]. The SCLK output provides the master clock frequency for the codec, and the FR provides 
the transmit and receive framing signal to the codec. Since the modem algorithm uses a 9.6-kHz 
sampling frequency, the codec must complete one ND,D/A conversion at this rate. 

The DSP serial port control register was programmed to provide an SCLK which is generated 
by dividing the DSP's input clock by ten. Thus, using an 18.432-MHz crystal as the DSP's clock 
input, a 1.8432-MHz SCLK was generated. The TCM29C19 uses an internal divide ratio of 192 
to generate the 9.6-kHz sampling rate. 

Software 

The previous section provided a brief overview of the hardware design issues associated with 
the AGC for a V.22 bis modem. DSP implementation issues are the focus throughout the rest of 
this report. All values are represented in decimal format unless otherwise noted. Data values in a 
digital system are not integers, but they must be manipulated as such on an integer processor. Ap
pendix B provides an overview of fractional number representation on a two's-complement 
fixed-point device. 

An All-Digital Automatic Gain Control 399 



We choose to represent the signal within the AGe loop in S4.11 format. Recall that the 

{In,On} sequence can assume any value from the sequence {±1, ±3}. This means thatthe sequence 
is bound in the ±3 range. We use three bits to represent the values in the given range, while the rest 
of the 12 bits can be treated as the fractional part that accommodates noise. Allocating an extra bit 
to the {In,Qn} sequence fully represents the RMS signal and allows for some gain hit. 

For QAM signals, experimentation has shown that the ratio of peak signal to RMS signal is 
approximately 3 to 1. The maximum peak signal that can be represented using S4.11 notation is 
16 (see Appendix B); therefore, 16 represents the peak value a QAM signal can attain using this 
notation. The RMS max is hence 5.33, which corresponds to approximately 14.5 dB (20 log 5.33). 
We design the system to work with a la-dB gain hit. It follows that the AGe should maintain the 
signal level at approximately 4.5 dB or 1.69 RMS level. The constant level of 1.69 RMS represented 
in S4.11 format is 3461.12. The AGe loop maintains an average squared level of2.86, or (1.69)2, 
per sample. Therefore, to determine the average baud energy, the sample energy must be multiplied 
by 16. The resultant value (45.8) is represented in SlO.5 format (corresponding to 1466 (05BAh) 
in S 15.0 format), the actual value used in the implementation (see Appendix E for the code listing). 

As shown in the previous section, the reference energy for a V.22 bis modem is 5. This corre
sponds to the energy level of the constellation points (1,3) and (3,1), shown in Figure 3. Hence it 
is possible to map the average baud energy of 5 into 45.8. Extending the mapping to the other energy 
levels results in the following: 

Average Baud Energy S10.5 Format S15.0 Format 

1 maps into 9.16 292 
5 maps into 45.8 1466 
9 maps into 82.4 2632 

Error Windowing and Weighting 

In the previous section, the need was established for an energy window around the nominal 
baud energy level to compensate for the effects of intersymbol interference. The AGe is not de
signed to, and should not be expected to, compensate for lSI. The equalizer in the modem receiver 
is designed for this purpose [6]. Experimental window values of 1320 and 950 were chosen for 
QAM and DPSK modes of operation, respectively. 

The windowed error signal must be weighted appropriately to provide an approximate 
one-to-one relationship between the positive and negative energy errors. In Figure 3, the disparity 
between the positive and negative errors can be observed. Assume that the received points are (6,6) 
and (0.5,0.5). The QAM signal energy can be calculated as 

(11) 

Therefore, the energy values of the received points are 36 and 0.25, respectively. When these 
energy values are represented in SlO.5 (10552 and 73, respectively) and the deviation from the 
nominal energy level of 1466 is calculated, full scale error values of 9086 and -1393, respectively, 
are obtained. This indicates a nonlinear relationship between the received constellation points sig
nal energy with respect to the nominal baud energy level. It is important to determine the weighting 

400 An All-Digital Automatic Gain Control 



factor to provide a parity between positive and negative errors while the AGC operates in the steady 
state or tracking mode. Appendix D provides a Fortran program to determine the best value for the 
expansion ratio of negative and positive energy values. 

AGe State Detector 

The AGC always operates in one of two modes: 

• Slew - (fast tracking mode) AGC uses a large step size to track the signal. 

• Tracking - AGC adjusts the signal level by adjusting the gain factor via an exponential 
integrator loop. 

It is important to design the AGC to ignore relatively small gain changes on the telephone 
line. Otherwise, the AGC loop responds to the smallest variation in the signal level by switching 
to the slew mode. In this application, the AGC is designed to simply track the incoming signal when 
the received signal level varies by not more than ± 6 dB from the window values. These levels are 
calculated as follows: 

1010g(x/2632) = + 6 dB - x = 10478 

10 log(x/292) = - 6 dB - x = 73 

(12) 

(13) 

As long as the incoming signal stays within these boundaries, the AGC simply adjusts the 
gain factor; otherwise, it will switch to the slew mode. Once the AGC determines that the error sig
nal is within the tracking mode boundary, it switches back to the slow tracking mode as shown in 
5. 

Figure 5. AGe Operating Modes 

REF , , , 
, , , 
, , , , 

TRACKING 
, 

NO 
, , 

SLEW 

SLEW 
, 

MODE 
, 

NO ' CORRECTION' TRACKING I MODE 

MODE 
,. 

-, CORRECTION" 
., 

MODE 
, 

, I. .1 WINDOW I. .1 
I I WINDOW I (1320) I I 
I I (1320) , 

, , 
I , , , , 
I , 

I 
, 

I 
, , 

'73 146 292 '1466 263~ 2786 10478 ENERGY , , , , , 
, , , I , , , ,. +6dB ., 
'. I .' , , 

-3.5 dB , 
I 

, I , 
, , , , , 
I , , , , , , I , I 

Appendix C provides a FORTRAN program that determines the best weighting factor for a 
given QAM signal range. A weighting factor of 2 provided the approximate one-to-one relation-

An All-Digital Automatic Gain Control 401 



ship. Since DPSK signals do not have amplitude variations, a value of 1 was chosen for the weight
ing factor when the modem operates in the Y.221Bell 212A mode. 

An upper and lower boundary for the AGC gain value must be determined. The V.22bis stan
dard[3] requires the modem to operate at a signal level of -43 dBm. Therefore, the AGC is designed 
to work from the O-dBm signal level to -50 dBm. 

The DSP2400 contains a DSP-activated 12-dB gain switch. Therefore, our design should 
really have to cover only the range of 0 dBm to -38 dBm levels. The maximum codec output value 
is 1FFEh (8190 decimal) because the codec output is converted from 8-bit log value to 13-bit 
two's-complement value. When this value is saved in a data memory location of the TMS320C17 
DSP, the number is sign-extended and is represented in 3S0.13 format. The RMSmax is therefore 
2730, which corresponds to a signal level of 0 dBm in our system. The minimum acceptable signal 
level from the codec corresponding to the -38-dBm level is computed as follows: 

- 38 = 20 log (RMSmin /2730 ) 
RMSmin = 34.4 

(14) 

Given the maximum and minimum codec output values and the constant RMS output, it fol

lows that umin = 1.26 and u max = 101 as shown in Figure 6. 

Figure 6. AGC Gain Value Computation 

FROM CODEC 

(3S0.13) 

1.69 RMS (S4.11) 

AGC 
GAIN 
VALUE 
(S7.8) ~ 

1.26 (HIGH INPUT) 

101 (LOW INPUT) 

The gain value requires 7 bits to represent; therefore, the S7.8 format is used to represent the 
U values. 

Exponential Integrator Loop 

When the total baud energy stays within the window limits, the AGC is in the tracking mode 
and simply compensates for the changes in the signal levels by adjusting the gain factor appropri
ately. The gain factor is computed and updated via an exponential integrator loop. The exponential 
integrator loop implements the following function: 

an+l = an X ( 1 - Ke ) (15) 

where the constant K determines the speed of convergence of the AGC closed loop. In our imple

mentation, K is set to 1/2. This value corresponds to step sizes of ± 6 dB when the AGC is in the 

402 An All-Digital Automatic Gain Control 



slew mode. The error signal is in SO.15 format while an is in S7.8 format with the multiplication 
result in 2S7.23 format. When the upper half of the accumulator (ACCH) is saved with a left shift, 
the result is in S7.8 format. A further multiplication by 0.5 is necessary before carrying out the sub
traction operation. Note that a divide by 2 is equivalent to a right shift, which cancels out the effect 
of the previous left shift. Therefore, saving ACCH with no shift accomplishes multiplication by 
K as shown in Appendix E. 

The AGC is designed to declare carrier present when signal levels greater than -43 dBm ap
pear at the input of the receiver. The response time for tone detection depends on the AGC design. 
The AGC uses a constant that is subtracted from a hysteresis counter, and presence of energy is de
clared when the counter underflows. It takes 9 bauds for the energy to be detected, corresponding 
to a response time of 15 ms. 

Conclusion 

This application report has presented design and implementation techniques for an all-digital 
automatic gain control. The AGC has been implemented on a TMS320C17 digital signal processor 
as part of a commercial modem product (DSP2400). The approach of using a programmable pro
cessor resulted in minimal hardware configuration with excellent performance. The DSP imple
mentation allows you to fine tune the AGC for your particular modem design, regardless of the 
modulation technique used. 

Acknowledgements 

The author wishes to acknowledge the contribution of Technekron Communications Sys
tems and George Troullinos of Texas Instruments. This report is based on their work. 

References 

1) DSP2400 Modem User's Guide, Texas Instruments, 1987. 
2) Troullinos, G., et ai, Theory and Implementation of a Splitband Modem Using the 

TMS32010 (literature number SPRA013), Texas Instruments, 1986. 
3) Recommendation Y.22 bis, "2400 bits per second duplex modem using the frequency 

division technique standardized for use on the general switched telephone network and 
on point-to-point 2-wire leased telephone-type circuits," CCITT Redbook, Volume III, 
1984. 

4) Mercy, D. Y., "A Review of Automatic Gain Control Theory," The Radio and Electronic 
Engineer, Volume 51, Number 11/12, November/December 1981. 

5) Green, D.N., "Global Stability Analysis of Automatic Gain Control Circuits," IEEE 
Transactions on Systems and Circuits, Volume CAS-30, Number 2, February 1983. 

6) Falconer, D.D., "Jointly Adaptive Equalization and Carrier Recovery in Two-Dimen
sional Digital Communication Systems," Bell System Technical Journal, Volume 55, 
Number 3, March 1976. 

7) Antoniou, A, Digital Filters: Analysis and Design, John Wiley & Sons, 1986. 
8) Lovrich, A, et ai, "An All Digital Automatic Gain Control," Proceedings of ICASSP 

88, Pages 1734-1737. 

An All-Digital Automatic Gain Control 403 



Appendix A 

QAM Signal Energy 

The general form of a QAM signal is written as 

s ( t ) = R ( t ) cos [wet + rp ( t )] 

= In cos We t + Qnsinwe t 

The energy in a signal set) is defined as 

EQAM = f 00 S2 ( t ) dt 
_00 

Substituting (16) into (17) results in 

T 

EQAM = f S2 ( t ) dt 

2n 

(16) 

(17) 

= ~ f (In 2 COS2 We t + Qn 2 We t + 2In Qn sin We t cos We t) dt 

o 
2n 2n (18) 

= ~ f 1/2 [ In 2 ( 1 + cos 2we t ) ] dt + ~ f 1/2 [Qn 22 ( 1- cos 2we t) ] 

2n 

+ ~ f In Qn sin 2we t dt 

o 

o 

When the three terms in (18) are integrated, the sine and cosine terms drop out since the aver
age energy of sinusoidal signals is zero. Therefore, (18) simplifies to 

EQAM = 1/2 ( In 2 + Qn 2 ) (19) 

404 An All-Digital Automatic Gain Control 



Appendix B 

Fractional Number Representation Overview 

A typical digital communication system is shown in Figure 7. Two blocks (marked as 
waveform coder and waveform decoder) are of interest. These blocks are collectively referred to 
as a co dec, especially when both coder and decoder are implemented on a single device. An exam
ple is the TCM29C13 PCM codec, which consists of an amplitude quantizer and binary codeword 
generator. 

Figure 7. A Typical Communication Channel 

ANALOG 
SOURCE 

ANALOG 
OUTPUT 

SAMPLER 

1-+----1 RECONSTRUCT 1+-----1 

The quantized data represent instantaneous values of a continuous-time signal in digital 
form. On the TMS320C17, these data values are represented in two's-complement arithmetic[7]. 
The binary representation of a two's-complement value is as follows: 

15 

A = ao + I a; 2-; (20) 

i=1 

Consider that the incoming samples are coming from a 16-bit linear ADC. The data coming 
out of the ADC consist of a sign bit at the most significant location, followed by the binary point. 
This information can be represented in 015 format or, alternately, SO. 15 format. This translates into 
the following upperbound and lowerbound limits with increments of 2-15 (0.00003051): 

( 215 -1 ) / 215 = 0.99996948 

_ 215 / 215 = -1 
(21) 

If two 015 (SO. 15) numbers are multiplied, the result is a number in 030 (SSO.30) format. 
When the 030 number resides in the 32-bit accumulator ofthe TMS320C17, the binary point fol-

An AIl-DigitalAutomatic Gain Control 405 



lows the second most-significant bit. Assuming that the output of the encoder section is also Q15 
format, the Q30 number must be adjusted by left-shifting by one while maintaining the most-signif
icant 16 bits of the result. This is accomplished with a sach y,!. This instruction shifts the Q30 
(SSO.30) number to the left by one and, following the shift, stores the upper 16 bits of the accumula
tor. The y value is in Q15 (SO. 15) format. 

The S notation is used consistently throughout this application report. The following table 
should assist you with the conversion between Q notations, S notations, and equivalent decimal re
presentations. 

Thble 1. S Notation, Q Notation, and Decimal Conversion Information 

Q Notation S Notation Decimal Equivalent 

015 SO.15 -1 Ns 0.9999695 
014 S1.14 -2 Ns 1.9999390 
013 S2.13 -4 Ns 3.9998779 
012 S3.12 -8 Ns 7.9997559 
011 S4.11 -16 Ns 15.9995117 
010 S5.1O -32 Ns 31.9990234 
09 S6.9 -64 Ns 63.9980469 
08 S7.8 -128 Ns 127.9960938 
07 S8.7 -256 Ns 255.9921875 
06 S9.6 -512 Ns 511.9804375 
05 S1O.5 -1024 Ns 1023.96875 
04 S11.4 -2048 Ns 2047.9375 
03 S12.3 -4096 Ns 4096.875 
02 S13.2 -8192 Ns 8191.75 
01 S14.1 -16384 Ns 16383.5 
00 S15.0 -32768 Ns 32767 

406 An All-Digital Automatic Gain Control 



Appendix C 

The following is a Fortran program listing that creates a table of AGe gain values and its rela
tion to the input signal strength. The table also includes the corresponding peak input signal level 
and its RMS equivalent. 

An All-Digital Automatic Gain Control 407 



'J£>~" +.:,r 
dBa Peak R!IS Alpha 

~ 
~,:~:,,:r;~:~~s~:~e~:t~:~~ R~;~ ~~~~:~ ~~D~~m sign~; ih~i= l~ a OAr, 5j5te~; -V. 0 290.5922 96.8641 35.73 00 

-26.9 m.9571 97.'I8!si 35.32 
-26.8 m.3b09 99.1203 34.92 

- ?eiK 15 ~he [lei.;': slyftal ln~;,J'i: to 'tM rec~lyer SlG-e:. -26.7 300.8042 100.2681 34.52 
-26.6 804.2873 101.4291 34.12 

- RM'3 is tne 11,"1'3 slima1 Inout to tl'te receiver, \lihue lit a OA;"! system IS -26.5 307.8108 102.6036 33.73 
eQual to on tttlrc of the peak va,ue. -26.4 311.3751 103.7917 33.35 

-26.3 314.9807 104.9936 32.97 
- AlMa 15 t~e gur, value. -26.2 318.6280 106.2093 32.59 

-26.1 322.3175 107.4392 32.21 
c In tillS AGe C£!Slql!, the IfrilX cMec iflD!.lt 15 actual ~y +2.~ dBm {equivalent to -26.0 326.0498 108.6833 31.85 
c 8190 t>eak. -25.9 329.8252 109.9417 31.48 

-25.8 333.6444 111.2148 31.12 
olDen (l,ti;e = 'iiblrl.dat~.stit\!S': ""nek,r') -25.7 337.5079 112.5026 30.76 

-25.6 341.4160 113.S053 30.41 
IiIrlte U.S} -25.5 345.3694 115.1231 30.06 
for-mat (5:>:, ," tjblll~, 15.x. "<teal<:~ ,lox. 'rms~, 17x, ;alpila~) -25.4 349.3686· 116.4562 29.72 
writE" (1.9) -25.3 353.4141 117.8047 29.38 
format (5;.";,' ==~ • 15x. '===', lbX.'=;, 17x, '===') -25.2 357.5065 119.1688 29.04 

dbm=-27.1 -25.1 361.6462 120.5487 28.71 
• .ax = 2. -25.0 365.8338 121.9446 28.38 

999 if (dbm .gt. max) go to 1000 -24.9 370.0700 123.3567 28.06 
dom = Otllfl + 0.1 -24.8 374;3552 124;7851 V.74 
Deai{ = 8190. * (to *if IIGom - max) 120.») -24.7 378.6900 126.2300 V.42 
I'ms = peak 1 3. -24.6 383.0751 lV.6917 V.11 
alpha = 3461.121 rills -24.5 387.5109 129.1703 26.80 

IIIrlh <1,10) dblll,l)eaK,l'ms,alpha -24.4 391.9980 130.6660 26.49 
:0 -for-rtat (flO. I, lOx, flO. 4. lOx. HO.4.10x, flO.2) -24.3 396.5372 132.1791 26.19 

got.;. 999 -24.2 401.1288 133.7096 25.89 , 
-24.1 405.7737 135.2579 25.59 

1000 stQO -24.0 410.4723 136.8241 25.30 
;J:.- en' -23.9 415.2254 138.4085 25.01 
;:s -23.8 420.0335 140.0112 24.72 
;J:.- -23:7 424.8972 141.6324 24.44 

b -23.6 429.8173 143.V24 24.16 
-23.5 434.7943 144.9314 23.88 

aQ. -23.4 439.8290 146.6097 23.61 
-23.3 444.9220 148.3073 23.34 [ -23.2 450.0740 150.0247 23.07 

;J:.- -23.1 455.2856 151.7619 22.81 
;:: -23.0 460.5575 153.5192 22.55 
0 -22.9 465.8905 155.2968 22.29 
~ -22.8 471.2853 157.0951 22.03 
~ -22.7 476.7425 158.9142 21.78 o· -22.6 4S2.2b29 160.7543 21.53 

Cl -22.5 487.8473 162.6158 21.28 .. -22.4 493.4963 164.4988 21.04 
S· -22.3 499.2107 166.4036 20.80 

-22.2 504.9913 168.3304 20.56 i'l 
-22.1 510._ 170.m6 20.33 C ;:s -22.0 516.7540 172.2513 20.09 

[ -21.9 522.7378 174.2459 19.86 



). -21.8 528. mEl 176.2636 19.64 -16.4 984.6545 328.2182 10.55 
;: -21.7 534.9139 178.3041> 19.41 -16.3 996.0563 332.0188 lQ.42 
). -21.6 541.1079 180.3693 19.19 -16.2 1007.5901 335._ 10.31 ::::: -21.5 547.3736 182.4579 18.97 -16.1 1019.2574 339.7525 10.19 6 ~21.4 553.7119 184.5706 18.75 -16.0 1031.0599 343.6866 10.07 

~: -21.3 560.1236 186.7079 18.54 -15.9 1042._ 347.6663 9.96 

S -21.2 566.6095 188.8698 18.33 -15.8 1055.0764 351.6921 9.84 - -21.1 573.1706 191.0569 18.12 -15.7 1067.2936 355.7645 9.73 
). -21.0 579.8076 193.2692 17.91 -15.6 1079.6522 359.8841 9.62 
I::: -20.9 586.5214 195.5071 17.70 -15.5 1092.1540 364.0513 9.51 

~ -20.8 593.3130 197.ntO 17.50 -15.4 1104.8006 368.2669 9.40 
-20.7 bOO. 1833 200.0611 17.30 -15.3 1117.5936 372.5312 9.29 

~ -20.6 607.1331 202.3777 17.10 -15.2 1130.5347 376.8449 9.18 ... 
N. 

-20.5 614.1633 204.7211 16.91 -15.1 1143.6257 381.2G& 9.08 '" C) -20.4 621.2750 207.0917 16.71 -15.0 1156.8682 385.6227 8.98 
~ -20.3 628.4690 209.4897 16.52 -14.9 1170.2641 390.0880 8.87 
S· -20.2 635.7464 211.9155 16.33 -14.8 1183.8151 394.6050 8.77 
(J -20.1 643.1080 214.3693 16.15 -14.7 1197.5231 399.1744 8.67 
C> -20.0 650.5548 216.8516 15.96 -14.6 1211.3897 403.7966 8.57 ;: -19.9 658.0879 219.3626 15.78 -14.5 1225.4170 408.4723 8.47 

~ -19.8 665.7082 221.9027 15.60 -14.4 1239.6066 413.2022 8.38 
-19.7 673.4167 224.4722 15.42 -14.3 1253.9606 417.9869 8.28 
-19.6 681.2145 227.0715 15.24 -14.2 1268.4808 422.8269 8.19 
-19.5 689.1026 229.7009 15.07 -14.1 1283.1691 427.7230 8.09 
-19.4 697.0820 232.3607 14.90 -14.0 1298.0275 432.6758 8.00 
-19.3 705.1539 235.0513 14.72 -13.9 1313.0579 437.6860 7.91 
-19.2 713.3192 m.ml 14.56 -13.8 1328.2624 442.7541 7.82 
-19.1 721.5790 240.5263 14.39 -13.7 1343.6430 447.8810 7.73 
-19.0 729.9345 243.3115 14.23 -13.6 1359.2016 453.0672 7.64 
-18.9 738.3867 246.1289 14.06 -13.5 1374.9405 458.3135 7.55 
-18.8 746.9369 248.9790 13.90 -13.4 1390.8615 463.6205 7.47 
-18.7 755.5860 251.8620 13.74 -13.3 1406.9669 468.9890 7.38 
-18.6 764.3352 254.7784 13.58 -13.2 1423.2589 474.4196 7.30 
-18.5 m.l858 257.7286 13.43 -13.1 1439.7394 479.9131 7.21 
-18.4 782.1389 260.7130 13.28 -13.0 1456.4108 485.4703 7.13 
-18.3 791.1956 263.7319 13.12 -12.9 1473.2753 491.0918 7.05 
-18.2 800.3573 266.7858 12.97 -12.8 1490.3350 496.7783 6.97 
-18.1 809.6250 269.8750 12.82 -12.7 1507.5922 502.5307 6.89 
-18.0 819.0000 273.0000 12.68 -12.6 1525.0493 508.3498 6.81 
-17.9 828.4835 276.1612 12.53 -12.5 1542.7086 514.2362 6.73 
-17.8 838.0769 279.3590 12.39 -12.4 1560.5723 520.1908 6.65 
-17.7 847.7814 282.5938 12.25 -12.3 1578.6429 526.2143 6.58 
-17.6 857.5983 285.8661 12.11 -12.2 1596.9227 532.3076 6.50 
-17.5 867.5288 289.1763 11.97 -12.1 1615.4142 538.4714 6.43 
-17.4 877.5743 292.5248 11.83 -12.0 1634.1198 544.7066 6.35 
-17.3 887.7361 295.9120 11.70 -11.9 1653.0420 551.0140 6.28 
-17.2 898.0156 299.3385 11.56 -11.8 1672.1833 557.3944 6.21 
-17.1 908.4141 302.8047 11.43 -11.7 1691.5463 563.8488 6.14 
-17.0 918.9331 306.3110 11.30 -11.6 1711.1335 570.3778 6.07 
-16.9 929.5738 309.8579 11.17 -11.5 1730.9475 576.9825 6.00 
-16.8 940.3378 313.4459 11.04 -11.4 1750.9909 583.6636 5.93 

~ 
-16.7 951.2264 317.0755 10.92 -11.3 Int. 2664 590.4221 5.86 
-16.6 962.2411 320.7470 10.79 -11.2 1791.7767 597.2589 5.80 
-16.5 973.3833 324.4611 10.67 -11.1 1812.5245 604.1748 5.73 



.j::o. -11.0 1833.5126 611.1709 5.66 -5.5 ~.6943 1151.2314 3.01 .... -1G.9 1854.7437 618.2479 5.60 -5.4 3493.6862 1164.5621 2.'1"1 
0 -10.8 1876.2206 _ 625.4069 5.53 -5.3 3534.1412 1178.0471 2.94 

-10.7 1897.9462 632.6487 5.47 -5.2 3575.0646 1191.6882 2.90 
-10.6 1919.9234 639.9745 5.41 -5.1 3616.4619 12<15.4873 2.87 
-10.5 1942.1550 647.3850 5.35 -5.0 _.3386 1219.4462 2.84 
-10.4 1964.6441 654.8814 5.29 -4.9 3700.7002 1233.5667 2.81 
-10.3 1987.3936 662.4645 5.22 -4.8 3743.5523 1247.8508 2.n 
-10.2 2010._ 670.1355 5.16 -4.7 3786.9005 1262.3002 2.74 
-10.1 2033.6860 m.8953 5.11 -4.6 3830.7508 1276.9169 2.71 
-10.0 2fIfj/.2350 685.7450 5.05 -4.5 3875.1088 1291.7029·· 2.68 
-9.9 2081.0566 693.6855 4.99 -4.4 3919.9804 1306.6601 2.65 
-9.8 2105.1541 701.7180 4.93 -4.3 3965.3717 1321.7906 2.62 
-9.7 2129.5307 709._ 4.88 -4.2 4011.2885 1337.0962 2.59 
-9.6 2154.1895 718.0632 4.82 . -4.1 4057.7370 1~.5790 2.56 
-9.5 2179.1338 726.3779 4.76 -4.0 4104.7234 1368.2411 2.53 
-9.4 2204.3670 734.7890 4.71 -3.9 4152.2539 1384.0846 2.50 
-9.3 2229.8923 743.2974 4.66 -3.8 4200.3347 1400.1116 2.47 
-9.2 2255.7133 751.9044 4.60 -3.7 4248.9723 1416.3241 2.44 
-9.1 2281.8332 760.6111 4.55 -3.6 4298.1731 1432.7244 2.42 
-9.0 2308.2556 769.4185 4.50 -3.5 4347.9436 1449.3145 2.39 

-8.9 2334.9839 m.3280 4.45 -3.4 4398.2904 1466.0968 2.36 
-8.8 2362.0218 787.3406 4.40 -3.3 4449.2202 1483.0734 2.33 
-8.7 2389.3727 796.4576 4.35 -3.2 .4500.7397 1500.2466 2.31 

-8.6 2417.0403 805.6801 4.30 -3.1 4552.8559 1517.6186 2.28 

-8.5 2445.0283 815.0094 4.25 -3.<) 4605.5754 1535.1918 2.25 

:-8.4 2473.3404 824.4468 4.20 -2.9 4658.9055 1552._ 2.23 

-8.3 2501.9804 833.9935 4.15 -2.8 4712.8531 1570.9510 2.20 

-8.2 2530.9519 843.6506 4.10 -2.7 4767.4253 1589.1418 2.18 

-8.1 2560.2590 853.4197 4.06 -2.6 4822.6295 1607.5432 2.15 

-8.0 2589.9054 863.3018 4.01 -2.5 4878.4729 1626.1576 2.13 
-7.9 2619.8951 873.2984 3.96 -2.4 4934.9630 1644.98n 2.10 

~ 
-7.8 2650.2320 883.4107 3.92 -2.3 4992.1072 1664.0357 2.08 

;:s -7.7 2680.9203 893.6401 3.87 -2.2 5049.9131 1683.3044 2.06 

~ -7.6 2711.9639 903.9880 3.83 -2.1 5108.3883 1702.7961 2.03 

6 
-7.5 2743.3669 914.4556 3.78 -2.0 5167.5406 1722.5135 2.01 
-7.4 2n5.1336 925.0445 3.74 -1.9 5227.3779 1742.4593 1.99 
-7.3 2807.2681 935.7560 3.70 -1.8 5287.9081 1762.6360 1.96 

0Ii· -7.2 2839.n48 946.5916 3.66 -1.7 5349.1392 1783.0464 1.94 
~. -7.1 2872.6578 957.5526 3.61 -1.6 5411.0793 1803.6931 1.92 

5: -7.0 2905.9216 968.6405 3.57 -1.5 5473.7367 1824.5789 1.90 

!:: 
-6.9 2939.5706 979.8569 3.53 -1.4 5537.1196 1845.7065 1.88 

C -6.8 2973.6092 991.2031 3.49 -1.3 5601.2364 1867.0788 1.85 

~ -6.7 3008.0420 1002.6807 3.45 -1.2 5666.0957 1888.6986 1.83 

I:> -6.6 3042.8735 1014.2912 3.41 -1.1 5731.7060 1910.5687 1.81 .... -6.5 3078.1083 1026.0361 3.37 -1.0 5798.0760 1932.6920 1.79 o· -6.4 3113.~11 1037.9170 3.33 -0.9 5865.2145 1955.0715 l.n 

~ -6.3 3149.8067 1049.9356 3.30 -0.8 5933.1305 1977.7102 1.~ 

S· -6.2 3186.2797 1062.0932 3.26 -0.7 6001.8329 2000.6110 1.73 
-6.1 3260.4977 1086.8326 3.18 -0.6 6071.3309 2023.n70 1.71 

~ -5.9 3298.2525 1099.4175 3.15 -0.5 6141.6336 2047.2112 1.69 
-5.8 3336._ 1112.1482 3.11 -0.4 6212.7504 2070.9168 1.67 

~ 
-5.7 3375.0787 1125.0262 3.08 -0.3 6284.6906 2094.8969 1.65 
-5.6 3414.1602 1138.0534 3.04 -0.2 6357.41039 2119.1546 1.63 



~ -0.1 b431.0799 2143.6933 1.61 
;:, 0.0 6505.5483 2168.5161 1.60 
~ 0.1 b580.8790 2193.6263 1.58 
::::: 0.2 6657.0819 2219.0273 1.56 
6 0.3 6734.1673 2244.7224 1.54 

. tiQ. 0.4 6812.1453 2270.7151 1.52 

[ 0.5 bB91.0262 2297.008"1 1.51 
0.6 6970.B2Ob 2323.6069 1.49 

~ 0.7 7051.5389 2350.5130 1.47 
;:: 0.8 7133.1918 2377.73Ob 1.46 

~ 0.9 7215.79Q3 2405.2634 1.44 
1.0 7299.3452 2433.1150 1.42 ;:, 
1.1 7383.Bb76 2461.2892 1.41 .... 

r;' 1.2 7469.3b8S 2489.7B9b 1.39 

G:l 1.3 7555.BbOO 2518.6200 1.37 
;:, 1.4 7b43.352e 2547.7843 1.36 
S· 1.5 7731.85Bb 2577.2Bb2 1.34 
() 1.6 7821.3893 2607.1298 1.33 
C 1.7 7911.9567 2637.3189 1.31 
;:, 1.8 8003.5729 2667.8576 1.30 

[ 1.9 8096.2499 2698.7500 1.28 
2.0 8190.0000 2730.0000 1.27 

~ -



Appendix D 

Appendix D provides a Fortran program that calculates an optimal value for the expansion 
ratio of negative and positive energy values, subject to some constraints (maximum signal levels). 
The program searches expansion ratios with their corresponding error values up to a maximum val
ue defined by the user. The value that produces the least error is chosen as the optimal value. In this 
implementation, the tracking mode window is 6 dB for positive errors and at least 3.5 dBs wide 
for negative errors. The program, however, calculates the expansion window in 6-dB range. Error 
values are calculated using no-worse windows data. The index value for positive and negative er
rors correspond to the actual signal level in tenths of dBs. 

412 An All-Digital Automatic Gain Control 



~ 
;:, 
~ 

b 
QQ' 
[ 
~ 
;:: 

~ a 
1';' 

~ 
s· 

~ 
[ 

.... ..... 
~ 

Program to determine the best value for the expansion ratio of negative 
energy values ind that of positive ones. 

double precision oe9lbOl. posnrlbOl, negerrlbO) 
double precision SigKlbC», MXtrr. linert, bingo 
double precision totaH4Q01 
open U,file = 'nl.dat',status = 'ntlil') 

clear all the total values 

do 100 n = 1,400 
100 t.t.1 (nl = O. 

IIIrite(f.1) 

forMtUx, ~ent.r positive dbl level') 
read ('.') db.pos 
IIIIritel f .21 
for_tUx. 'enter neg,ltive do level~J 
rea.d (I •• ) dblheg 
lIII"iteC.,8} 
foraatctx, lenter RXilUI value for N/) 

rea.d ( ••• ) nn 

dete,..ine positive errol's 

Since the AGe o[lerates in the tracking IIIOdt close to the boundary. 1I0re 
lIIfight lust be given to these regions. 

0.0 to 1.0 dB 
1.1 to 2.0 dB 
2.1 t. 3.0 dB 
3.1 t. 4.0 dB 
4.1 t. 5.0 dB 
5.1 t. 6.0 dB 

10 pis 
10 pis 

5 pIs 
1 pto 
1 pts 
1 pts 

d. 200 i = 1,20 
200 poser, hi = 2632. + ( 10. H I fl.ot hi 1 100. II - 1. 

c 200 IIIrite U,S) i,poserrU) 

201 
c 201 

202 
c 202 

do 201 i = 22,30,2 
poserr (il = 2632 ... Ie 10. H ( floatcil 1100.» - 1. 
IiIrite U.5) i.postrrH) 

do 201 i = 22,30,2 
postrr (il I: 2632. oJ « 10. H ( float(i) 1100.» - 1. 
IlIrittU.S) i.poserrfil 

deterlint negative errors 

Nt do the SiM thing lIIith the negative errors . 

do 300 k = 1,20 

300 negtrr (ki = 292.<(1. - (10. H (f1 •• tHI 1100.111 
c 300 .. rittH,9) k,negerrlk) 

9 forlN.t (lx. ~negihve errorl',i2,'1 = ',lx,f20.41 

d. 301 k = 22,30,2 
301 neg'" (kl = 292.+(1. - (10 ... (fl,.tHI 1100.111 

c 301 IIIrite<1,91 k,negerrlkl 

d.302 k = 40.60,10 
302 neg'" Ikl = 292.+(1. - (10. H (fl.ilHI 1100.111 

c 302 IIIrite(1,9J k,negerrlkl . 

Assuling that the .apping is actually linear, then tht follolllling criteria 
is used to deterline the optiltlll value for N. 

totaHn) = SigH. (e - e t n ] 
k tk-k 

do 400 n = l,on 
d. 400 k = 1,60 
sigr.a.lkJ = [loser-rlkl - float(nl * negerrlkl 

400 totallnl = toti.Hnl + sigM(kl 

Nolil it is tiat to deterline the lIinilul w.lue of the error. 

SOl 

S02 
sao 
S03 

504 

do 500 n ;; l.nn 
if ( bing •• It. 0.1 got. 504 
if ( totaHnl .Ie. totalln+1)) goto 501 
bingo = totaHn+U 
itt = 0+1 
g.1o 502 
bingo. = total (n) 
itr = n 
if ( n+l .gt. nnJ goto 503 
continue 
itl' = n 
bingo = total (n) 
g.t.510 
it' = n-l 
bing. = t.to1(0-1I 

calculate aaxiMl and liniAUII energy levels 

600 
5 

601 
6 

d. 600 i = 1,60 
IIIIrite 11.5) i. postrrH) 
for.tUx. "positive errorC I ,i2,'1 = 1,1x.f20.4) 

do 601 k = 1.60 
neg(kl = it. + ntgt .. lk) 
IIIritt (1.61 k. negtrrek). ntgCk) 
for.tUx. lnegative errorC',i2.') ;; , • ix. f20. 4, 
+~ equivalent to". f20.4J 
.."" ... 2632. + « 10. H ( dbllpos 1 10. II - 1.1 



"; 

414 An All-Digital Automatic Gain Control 



Appendix E 

An All-Digital Automatic Gain Control 415 



~ -CI\ 

~ 
;s 
~ 

b 
00· 
SO 
5: 
l:: 
0-

~ 
~" 

~ s· 
~ 
a" -

Av[!~Mn: E 

~ H****tHf**UHHH .. **-HU*********fUffHHHI**UIHHfHHH*****fft****** 

aGe. ism 

; Hf***fHfff***HHH**HffHfHHfHHf**HHH*fffHH*****fHHHH+HHH 

front end ige furll:hO;r.. 

: fHffHfHHfHt******tfHff***HHffffffUfffnHf**'***fHHfHfHfff****** 

apc: 

tile aver;,qe .sigDal sQuueci is computed by tne lrIiin progtifll_ind stoted in 
aVisor. IIIIIicl'l is clea.red by this routine after using it. the routir!e uses 
a lIIindo~ whose width (jeOfMs on the modulation (1200,2400) lnd it error 
WtlgbhT!9. lllhich aiso depenos on that rate. we first set those valuisl 

"""' lac gn 
Mz slllltch 

; CheCK for aft slIIitcbing 

cMck if 2~OO and c.~ange hose v.1 J yes 

. Jack 
aM stnus if status bits 0 and 1 

2 = 2400 

i9cQ: 

sub 
blez 

one,1 
ageO ; if 2 • GO not II'IOGify t!lpO and taD! 

f., 2400 • 2 - topO aM 1320 - top! 

laCK 2 ; it is 2400 
sacl tooO 
It •• e 
lOY' !320 
.ac 
uc1 tlol 
b agel 

lack • it i, !2OO 
sacl t_pO ; lIItighting fader - tll~O 

It .ne 
ooyk 950 
oac 
sacl tool ; klindOlf - tap! 

agel: 

ootH 

no" suottict rtflirenCli' f!'om bau!! ~nf!rgy til get error. the baud entrgy 15 
iO 510.5 format. ·the AGe milnh.ins tl'lit level at 2.8bX16 = 46.7 (1'I'5bo 
In 510.5). tile aqer-ef is tnerefore tr'5llb 

1" .a,ViSQr 

8gez contI for nega.tive energy 
1iC 00£0,15 set to IliX positive 
sub ,ne energy level - forcel1 
51&111 lDoCle 

It on. 
mOYi< agcref ; agcref = Ir'5bb 
SDi.C _ ;iveSQr - agcrtf - acc 

Clllioare tilt erN!' to IiIlndOIll (tIllOlJ. 
If errQr lIIinoolll = error - IlIlndolll - error 
If -wiiHl'OIf err:Qr windoll! = 0 - error 
if error -lIIinaolll = tmDO x (error + lIIindolll) - errol' 
if tile a.verage Di.ud energy is a. tne pn.k DaUI1 energy fer QAM signals is 
1.8 a and the RliniRlUII is 0.2 a. 
the IIIIMOIII is therefore chOsen to be {l.S a in either direction. with 
agcref = h'Sob the IIIlndow is 1l'492 
for (los/{ sigr,als toe variaUons in baud fntrgy are entirely due to isi 
anl1 distortion and tiler fore the lIIindOIll is Iyet. slaller (h~a). 
first eliee" if error lIIiMOiIJ 

suo 
sac1 

°9tZ 

t.pl 
tlD3 
agc2 

; error - "indo,. - tmp3 

trror uindolll = check if error 4IIi04Ob!. in which case zero tbe forror. 
flrst zero the i!rror H.t. iSSUU error -window) and aodify if IIIrong 
assullfitiM. 

lark arl,O 

'ir ari,t,pe3 ; asSUIN error -tlindou 

check aSUilotion 

.. d tap!,! ; error + windolll - ace 
tlgez agc2 ; assuiption is rigbt 

uror -windOW = tllpOx(error11findolll) - tap3 

,acl tap3 
lt top3 
!ROY taoO 
pac 
uel bo3 



~ 
;,. 
~ 

b 
o'Q' 
s· 
:;: 
I:: 

i ... ;::;. 

~ 
s· 

~ 
::; 
g, 

~ ... 
-.I 

; 
.ge2: 

; 
age3: 

; 
agc41 

i.t this point, the lIItigMed windowed error is cont_ined in tap3. we 
consider it an 5.15 nulber Ind use it to update the age "in alpha. first 
11ft deter.ine wheth.r to sl.111 or not. if error is larger than lEA6h or 
iK11er than F5E7h, go into sl.lfing lodt by setting error to 1FFFn or 
8000h respectively. other.be Invt it unc.huged. 

lie t.,3 
Idpk 1 
sub POSSI 

bin age3 1 do not 51.111 

Idpk ; enter 50 10 Mde 
lie one, 15 
sub ... 
sad t1j13 ; tljl3 7FFFh 
b Ige4 

.dd possa I acc tiPS 
Idd .. g .. 
Idpk 0 
bgtz i9C4 ; do not slew 

lie ont.15 ; enter 510 aode 
add one 
sacl t.,3 ; t.,3 8000II 

the follOt1ing JintS update the gain alpha using -an exponential iottgrator 
alpha = alphiU-kxerror) (erroT' = tap3) .eT'e alpha is of foraat 57.8 
and'error is 50.15 and k = 0.5. alpha ... error: 57.8'" 5.15 = 57.24. by 
kttping acch without left shift the aultiplica.tion ~y k is a.ccolPlished. 
alpha is upperboundtd to 35.73 in s7.S 

lack 
tbl. 
za.lh 
It 
opy 
spoe 

.... Ip 
t.,O 
,I ph. 
top3 
alpha 

suh alpha 

e/leek if alpha IIlX alpha 

subh topO 
b1u age5 

lot 
sad 

topO 
alpha 

; error - t 

; alpha (1 - O.5Ierrorl - acc 

Zfro baud energy register 

age51 

,.e 
Hcl ives4r 

;HHHffHfHHHlffHIfHHHliHlHHff •• HtHHHHfHtltIHtHtHHHHH , 
energy detect 'GOp 

;fHfHHflHHHHHHIHfHtflHtftHtHffHfHHHftfHHHfHHHHIHIHf 

; 
edt: 

stut by reading in hysterisis counter incrHtnt toasti-At 

luk hysine 
tbl. topS 

check if aft gain is on or off 

Tack O8Ot. 
and shlrd 
bz edt! 

aft gain is on. chick if energy detect is on Csttlrd[61 = 1) 

lie 
Ind 
bz 

one,6 
sttlrd 
edtOl ; if zero = energy is not 

detectt'd = ehtck if level is larger than -43.5 dba. if stwrd[6J is one, 
ebeck if level less than -48 db.- . 

h.ck 
tbl. 
lot 
sub 
bIz 

thresl 
t.,O 
topO 
alphi 
.d12 ; if 0 then 11:0 energy detect 

cneck if afe gain stage snould be bypassed 

lack 
Ibl. 
1« 
sub 
biz 

thres3 
topO 
t.,O 
alphi 
edt3 

is de gain on? 

lack 
and 
bz 

IJIlOb 
stlllrd 
.613 ; if gain is off exit 



• -OIl 

).. 
:s 
).. 
::::: 
b 
~. 
N. 

~ 
): 
I::: 
S' 
~ 
R· 
~ 
S· 

~ :s 
~ -

~YPi.SS i.h gilA 

'ack om 
aM stllll'd 
sa.cl SaN! 

iaCK. 04. 
saci g. 
ret 

\1tcrtlH!ot nysterlsis counter 

.11:2= 
Ov ,d'21 ; cliar oVirfloili bit 

Idt211 
nIh hyst ; hystt'resis counter 
subn tllP5 , too5 = 1927 = 32708/15 
Hen nyst 

10 cUt of overflola! Geclare loss of energy detect 

bY odt02 
reI 

odlO2' 
lack {);Jf" 
.. d stlllrd 
sacl stllllrd 
ret 

following lines are executed if afe gain 15 high but no ertergy detect. 
CheCK if ilofta 21.28 (i.t. rective level -43.5 dOliI and InCrellent 
nystertsis counter if it "is. otherwise. exit. , 

odlOl' 
liCk 
tbl, 
lac 
,.b 
bIz 

thru2 , 21.28 i. 57.8 
t..o 
to.O 
alpha 
edt3 

aJpna 21.28 = iocrereent byst. counter 

'dIOU: 
bv 

"Ih 
add. 

edl011 

"yst 
too5 

Sid hyst 

detect bit stlllrdCbJ =1. 

bv eodt04 
reI 

; cJei.f overflollll bit 

; tap5 contains inc. fOf 

; in CiSe of overflolll set energy 

14t04l 

; 
tdtll 

ut3' 

; 

lac ont,6 
or 5tt0r4 
socl 51tord 
... t 

if ,Fe gli. 51.,. is bypamd, check 1 ... 1 of alplla· 

lack 
tblr 
Il< 
sub 
biZ 

tbr .. 5 
topO 
topO 
Ilplla 

"t3 

if alpha Ihros5 (~.09 iR 57.8) theR turR .f. gliR .,.tus "",d bit ,R. 

lICk 080iI 
or st,rd 
sacl 51tord 
lICk GI411 
suI •• 
r.t 

routiftt for _itehi •• tht afe .n/off 

.-litchl 
ZiC 
sacl Ivesqr 

lack OIGh ; _ oil ..... t.d bits 

.. d g. 
b. afeoll 

check if the gliR sho.ld be on 

lack Ofh ; MS. off tilt aft. on bit 
and g. 
•• b 0" ; dtCI'BIRt the counter 
bz ",lchl 

Hcl go ; Sl.Ye g .. value 
lack OIOb ; I Gad the ,Fe Oft bit 
or !III 
sacl g. ; rtitO'" de .R bit 
ret 



~ 
;:, 
~ 

~ 
ciQ. 

[ 
~ 
I:: 

~ .,. 
R· 
~ 
s· 

~ 
[ 

of>, -10 

; 
slI/tent: 

SiCI gn r-ts.t the 9n value to zel'o 
litk thres6 load the 8M alpht. value 
tblr alpha. N5et alpha to 5.05 
ret 

afeoff : 
loe gn 
sub one ; deereaent the counter 
bz sIIItch2 

sac! gn 
r.t 

sllltch2: 
sac! gn 
lack thres4 ; load ntIII alpha value 
tblr alpha. ; reset alpha to 8.98 in 57.8 
ret 

; fffHUHffffHffffHHHHffffHHHfHfflftfHfffffffffffHHHfHHfffHff 

• 
RECEIVER PER SllN'LE PROCEDURE 

; 
rstskH 

loe rin ; input 2'5 co.plileRt supTe 

high pass filter- tIM! incoming signal to rtlove the dc coaponent. 

Idpk 
sacl xl 
nls stlsb 
addh sl 
sub st, hu 
add' xl 
sub xl,hu-l 
subh xl 
add x2,tau-l 
sac1 stlsb 
sach st 
dlllov xl 
ldpk 0 
sach topl 

IItIltiply input supJe by ag' gain ilphi.. the output forMt is 54.11 
requiring sOle IN.nipulatiohs 

1t 
opy 
pit 

topl 
alpl>o. 

; multiply by at' word 

shift accUiulator eight four tiaes before storing 

sicl tlPO 
nch topl 
loe topO,8 
sadl topO 
loe one,8 ; llisk off uy sign extension 
sub one ; GOff - ace 
and t""O 
Sicl topO 
lit t""l,8 
add t.pO 
sac1 topl 

update the signal POlitI' estilMte aves-qr. insqr := avesqr + (tap1>2 
avesqr is zeroed by the age routine once per baud. 

lit 
5leh 
1t 
IPY 
piC 

lopl,15 
10pO 
topO 
t.pl 

addh aVfsqr 
nch avesqr 

; tapO in 55.10 

; avesqr in s10.5 

end of receiver- per sup1e task 



420 An All-Digital Automatic Gain Control 



Part IV. Telecommunications 
12. General-Purpose Tone Decoding and DTMF Detection 

(Craig Marven) 

421 " 



'422 



General-Purpose 
Tone D"ecoding 

and 
DTMF Detection 

Craig Marven 

Regional Technology Center - Bedford, England 
Texas Instruments 

General-Purpose Tone Decoding and DTMF Detection 423 



424 General-Purpose Tone Decoding and DTMF Detection 



Introduction 

The use of the Dual-Tone Multi-Frequency (DTMF) signaling scheme within telecom
munications systems has become widespread over the past few years. It is replacing the 
older type of pulse oriented dialing methods in telephones worldwide, and also finds ap
plication in a number of other equipment types, such as personal computer (PC) telephone 
peripherals, remote signaling schemes etc. 

In parallel with the universal DTMF standard, the various telecommunications com
panies or public authorities (PTTs) around the world use a number of different tones to 
signal call progress parameters. Examples include busy tones, number unobtainable, tim
ing tones, etc. Although DTMF operates to an internationally recognized standard, these 
additional tones do not. Therefore, there is often a need for a programmable tone detec
tion capability operating concurrently with standard format DTMF decoding. Alternatively, 
there are also many possible areas of application for an expanded programmable tone 
decoding facility without DTMF capability. 

This document describes a single-chip solution to fulfill the requirement for concur
rent DTMF and general-tone decoding or expanded, general-tone decoding only. These 
facilities are provided by a special program on the TMS320C 17 or TMS320E 17 first
generation digital signal processor (DSP). The term TMS320C 17 should be taken to app
ly to both the TMS320C 17 and TMS320E17 for the remainder of this report. See Reference 
[6] for full information on these devices. 

The TMS320C17 is particularly suited to tone detection as it possesses on-chip serial 
ports, a hardware multiplier and a 200 nanosecond (ns) instruction cycle time. These last 
two features allow high-speed calculation of the digital filter equations which implement 
the core of the tone decoding function. 

The main functions of the tone detector described in this report are as follows: 

1. DTMF tone decoding to international standards 

2. Power measurement at six selectable frequencies in the band 300-3400 Hz 

3. Power measurement at three selectable frequencies simultaneously with DTMF 
tone decoding 

4. Selectable bandwidth and resolution of frequency selection 

5. Timestamping of tone arrival and departure 

6. Selectable thresholds to define tone arrival and departure 

7. Interrupt generation on tone arrival, departure or change 

8. Interrupt generation on unidentified tone 

9. Interrupt generation on validation of DTMF digits 

General-Purpose Tone Decoding and DTMF Detection 425 



10. Variable gain setting on input to receivers 

11. Self test 

In addition to a detailed description of the operation of the software within the 
TMS320C 17, a complete solution to a tone detection peripheral for an IBM XT or AT 
compatible PC is presented. Remember that this is just one possible application for the 
tone detection TMS320C 17, it could equally be paired with any other host CPU. 

This report is divided into seven sections and three appendices. A brief outline of 
the contents of each section serves as a useful guide. Although some sections refer to general 
principles of DTMF and tone decoding, keep in mind that the primary objective is to discuss 
a particular implementation of a tone detector. 

Theory of Operation 

Describes the basic theory of operation of the tone detector, describing total system 
scope and functionality, and giving a brief introductory description of each functional block. 
For this purpose the tone detector is considered as a set of software functions with support
ing hardware. The high suitability of the TMS320C17 DSP for tone detection is also 
discussed. 

Implementation 

Deals in detail with the implementation of both the software within the TMS320C 17, 
and its supporting hardware. Each is split into its main functional blocks and then further 
subdivided into individual tasks. The description of software implementation is accom
panied by a series of flow charts, allowing the reader to follow the description from the 
top functional level right down to the detail of individual tone detector features. This sec
tion also covers in detail how the tone detector program controls, and benefits from, some 
of the resources provided by the TMS320C 17. 

Host Interface 

Describes the host interface of the tone detector. This has been designed for easy 
connectability to a variety of host CPUs, and is essentially a single physical8-bit read/write 
register. The host interface software is implemented by an interrupt routine in the 
TMS320C 17, allowing host access at any time as required. 

Applications and Customization 

Briefly outlines some possible applications for the tone detector including traditional 
telephony applications along with some innovative approaches. These include a method 
for secure off-site remote control of equipment via telephone lines, a tester for telephone 
equipment, etc. For many applications it may be necessary to customize the program to 
some extent. A number of examples of this are discussed. 

426 General-Purpose Tone Decoding and DTMF Detection 



Conclusion 

Within the appendices are a full listing of the source code for the tone detector in 
COFF (common object file format) source format, and a demonstration program for IBM 
or compatible PCs. This program is written in Turbo Pascal and is for use with the design 
example included in this report. 

History of DTMF 

There are two standard dialing conventions used in telephone systems throughout 
the world. The most common, and by far the oldest is known as pulse or loop-disconnect 
dialing. DTMF is a relatively newall-electronic method which is rapidly replacing the 
older electro-mechanical system. Figure 1 represents a highly simplified pulse dialing 
telephone terminal. There are other circuits required to make a practical telephone, but 
this diagram serves to illustrate several key points. 

Earphone 

Microphone 

Telephone Terminal 

Speech 
Circuit 

"-' 
- Switch-Hook 

Figure 1. Pulse Dialing Telephone 

Local Line 

When the receiver of a pulse dialing telephone is lifted, the hook-switch closes and 
a DC loop current of a few milliamperes flows from the central office or local exchange. 
The dial is arranged so that the switch within it opens and closes as it returns to its rest 
position. When the switch opens it causes the loop current to be interrupted, hence the 
alternative name of loop-disconnect dialing. The dial is arranged so that one disconnect 
period or pulse is created for the digit 1, two for the digit 2, up to ten pulses for the digit O. 

Dial pulses originally operated electromechanical switching systems, and still do 
in many countries. These systems have an upper limit of about ten operations per second 
and pulse dialing systems therefore produce pulses of a 100 millisecond (ms) duration. 
Nominal operation in the U.S. gives a break period of 61 ms and a make period of 39 
ms. This is different from other countries which use a 2: 1 ratio (67 ms break, 33 ms make). 
An inter-digit pause is indicated by an absence of pulses of nominally 700 ms for U.S. 
systems, or as short as 200 ms in other countries. 

General-Purpose Tone Decoding and DTMF Detection 427 



The time required to send the dial pulses needed for one digit can be up to 1.7 seconds 
(ten pulses for the digit 0 and a 700 ms inter-digit pause) which can make the dialing of 
a long international number very time consuming. For example, the international number 
(from the U.S.) for Texas Instruments in Bedford, England is: 

01144234270111 

This would take 15.1 seconds to dial with a U.S. pulse dialing system. It is not dif
ficult to see why the method is now regarded as out-dated. 

In order to reduce costs, increase reliability, and improve service, the elec
tromechanical switching systems used at central offices or local exchanges are being re
placed with fully electronic systems. In most advanced countries this upgrading process 
is virtually complete. With the new equipment it is no longer necessary to have a slow 

. dialing mechanism to accommodate the response time of the old switching mechanisms. 
A new dialing scheme thus becomes possible using purely electronic means. The DTMF 
system has been adopted as the universal standard through the CCITT (Comite Consultatif 
International de Telephonie et de Telegraphie) which is a committee of the International 
Telecommunication Union (ITU), now part of the United Nations. 

The Use and Characteristics of DTMF 

The full name for DTMF is Dual-Tone Multi-Frequency which describes its operating 
characteristics very well. Consider that a telephone is equipped with a keypad as shown 
in Figure 2, instead of a dial. The A,B,C and D keys are usually not present, but are 
part of the full CCITT specification and can be decoded by the programmed TMS320C 17 
used here. 

428 General-Purpose Tone Decoding and DTMF Detection 



Nornal--......... 
Keypad ~ 

697-

770-

852-

941 -

High Group Frequencies (Hz) 

1209 1336 1477 1633 
, , , 

'

Extended 
__ -rKeypad 

, , , " 

-[J-0-[J-r-~- -(R1) 

I I I I: 
-~-0-~--0- -(R2) 

I I I I: 
-[J-~-0--~- -(R3) 

I I I I: 
-c:J-~-0--0- -(R4) 

, , , -'- ~ , , , , 
(C1) (C2) (C3) (C4) 

Figure 2. DTMF Keypad 

R=Row 
C=Column 

Pressing any key causes an electronic circuit to generate a tone which is a summa
tion of the two individual frequencies related to the row and column of that key. 

The frequencies used in DTMF dialing have been carefully selected so that any DTMF 
decoding circuit will not confuse them with other tones that may occur on the line. As 
the tone generation does not involve a disconnect of the telephone circuit, DTMF tones 
may be sent down the line during a call just by pressing any key on the keypad. When 
this method is used as a form of low speed data transmission, it is important that speech 
is not accidentally interpreted as a DTMF tone. In order to reduce the risk of this happen
ing, tones must be present continuously for a minimum period of about 50 ms, with an 
interdigit pause of similar length. 

With a minimum, dialing time of 100 ms per digit, irrespective of its value, our 
previous example !lumber would take 1.4 seconds to dial. This represents a saving of 13.7 
seconds or 91 % of the time taken by a pulse dialer. Additional advantages ofDTMF dial
ing include the use of solid-state electronic circuits and compatibility with electronically 
controlled exchanges. 

,General-Purpose Tone Decoding and DTMF Detection 429 



Theory of Operation 

This section briefly describes the operation of the tone detection system presented 
in this report. A functional block diagram for the complete system is shown in Figure 3. 

Figure 3. Tone Detector Functional Block Diagram 

As is clear from examination of Figure 3, the tone detector may be viewed as com
prising a set of software routines within the TMS320C 17, plus associated external hard
ware to provide interfaces between the TMS320C17 and both the incoming analog signal 
and a host CPU. 

The following paragraphs briefly describe the major software and hardware features 
of the tone detection system, and some of the features of the TMS320C 17 which are of 
special benefit to this application. 

Software 

The tone detection system described in this report comprises six groups of functions 
within the TMS320C 17. These provide a powerful tone detection capability for either 
DTMF decoding, general tone identification or a combination of both. These six func
tional groups are as follows: 

1. Input signal processing 
2. DTMF receiver 
3. Power (envelope) detector 
4. Tone receiver - comprising five sub-sections 
5. 1/0 routines (Interrupt Handler) 
6. Self test 

Figure 4 shows how the first four of these functions interrelate during normal opera
tion of the the tone detector. Each block within Figure 4 is explained in detail in the Im
plementation section and each also has a detailed flowchart associated with it. The number 
of the figure for the associated detailed flow chart is shown inside each block in Figure 4. 

430 General-Purpose Tone Decoding and DTMF Detection 



+ 
I Signal Input I Processing 

+ 
I DTMF Figure 8 I 

+ Yes No 
End of Filter Block? ./ Queue Empty? Figure 12 ....... 

... N() t Yes 

Update Tone ./ Power Detector ....... 

~ 
....... ./ 

~ 
Receives 

t t Parameters 

Tone Receiver: Tone Receiver: Tone Receiver: Tone Receiver: 
Tone Depart 

Steady No Tone Steady Tone Tone Onset 
Figure 3-5 Figure 3-3 

r r r r 
Figure 4. Tone Detector Flow Chart - Top Level 

Program execution remains within the flow shown in Figure 4 unless interrupted 
by either an liD request or a self-test command, which are independent functions. Self
test is merely a special case of a host CPU liD request. Both serial liD and host CPU 
liD cause an interrupt to the TMS320C17 and therefore function outside the normal pro
gram flow. Self-test additionally destroys all temporary data storage, leaving the tone detec
tor in the same state as after a hardware reset (see the Register Read Functions section). 
The following sections briefly describe the relationship betwen the above six functional 
groups. A more detailed description of the operation of each is contained in the Implemen
tation section. 

Input Signal Processing 

This ensures tha~ the incoming data samples are within the optimum working range 
of the tone detector. Software limiting of the incoming signal is applied if it exceeds the 
maximum signal input level (see the Signal Input Processing section). Program control 
passes to the DTMF receiver if it is enabled, otherwise control passes to the power detector. 

General-Purpose Tone Decoding and DTMF Detection 431 



DTMF ReCeiver 

Using the signaling plan outlined in CEPT (Conference Europeenne des Administra
tions des Postes et des Telecommunications) recommendations TICS 46-02, the DTMF 
receiver validates and decodes DTMF tone pairs against a template of acceptable frequen
cy deviation. The DTMF receiver may be enabled or disabled under software control by 
the host CPU. Once the operation of the DTMF receiver is complete, program flow passes 
to the power detector. 

Power (Envelope) Detector 

The power detector performs a simple smoothing operation on the incoming signal 
and, using thresholds programmed by the user, directs program flow among one of the four 
possible tone receiver flow paths shown in Figure 4: 

1. Tone onset 
2. Tone depart 
3. Steady no tone 
4. Steady tone 

Separate threshold levels may be programmed for detection of the onset and depar
ture of the input signal. 

Tone. Receiver Power Level Determination 

The ioIie receiver determines the overall power level of the incoming signal and 
the individual power level at up to six selectable frequencies. In addition, it validates the 
signal onset or signal departure indication from the envelope detector to change the tone 
arrival or tone departure status bits (see Status section). The tone receiver operates in
dependently of the DTMF receiver and provides programmable center frequency, band
width, resolution and thresholds for the recognition of general tones in the band 300 Hz 
to 3400 Hz (e.g., call progress tones). 

When the DTMF receiver is disabled the tone receiver monitors six programmable 
frequencies in the range 300-3400 Hz and reports the power levels received at each of 
those frequencies. When the DTMF receiver is enabled the tone receiver monitors only 
three frequencies. The power level of the three unused frequencies is registered as zero. 
The tone receiver also has an additional power measurement which reports the received 
power across the telephony band of 300-3400 Hz allowing the system to detect the presence 
of frequencies outside those programmed individually. 

432 General·Purpose Tone Decoding and DTMF Detection 



When tl;te tone receiver is enabled, filtering begins upon the recognition of a tone 
by the envelope detector. The host may be interrupted at the end of the first block of filtering 
as a result of the tone arrival bit in the status register being set. At this time level informa
tion for the new tone is available at each of the search frequencies. The host may also 
be interrupted by tone departure. The tone receiver is also able to detect any change in 
signal content and may optionally generate an interrupt as a result. Host interrupt is describ
ed in detail in Host Interrupt section. 

The flow of program execution around the tone receiver is dependent upon the results 
of tests at a number of points. The most important of these is at the output of the power 
detector. As mentioned above there are four possible conditions the power detector can 
indicate: 

1. Tone onset 
2. Tone depart 
3. Steady no tone 
4. Steady tone 

The operations performed within these blocks are described in detail in Software 
Implementation section. 

The second most important decision point in the tone receiver program flow is 
represented by the end of filter block test. When the tone receiver is enabled, incoming 
samples are filtered in blocks. The block size is dependent upon the value written to the 
filter length register (see Filter Length section). If a filtering block has been completed, 
housekeeping functions must be performed. 

I/O Handler (Serial and Parallel) 

Any external 110 access will cause an interrupt to the TMS320C 17. External I/O 
can come from one of three possible sources: 

• A new data sample being input from the serial port 
• A host CPU write access 
• A host CPU read access 

The source of the interrupt is checked by the program and control passed to the 
appropriate portion of the interrupt handler code. A comprehensive discussion on the use 
of interrupts within the tone detector is given in Hardware Implementation section, in
cluding a detailed examination of some parts of the interrupt handler code. 

General-Purpose Tone Decoding and DTMF Detection 433 



Self-Test 

One special case of a host CPU write access is a self-test request. The TMS320C17 
responds to this by immediately performing a ROM checksum test, a RAM data test and 
a codec interrupt check. After these have been performed the host CPU may release the 
TMS320C17 from self-test mode. The TMS320C17 is then left in a state similar to that 
after a hardware reset (see Register Read Functions section). 

TMS320C17 Features 

The TMS320 family utilizes a modified Harvard architecture for speed and flex
ibility. In a strict Harvard architecture, program and data memory lie in two separate spaces, 
permitting a full overlap of instruction fetch and execution. The TMS320 family's modifica
tion allows transfers between program and data spaces. This permits coefficients stored 
in program ROM to be read into RAM, eliminating the need for a separate coefficient 
ROM. It also makes available immediate operand instructions and subroutine calls to com-
puted addresses. . 

The TMS32OC17 provides all the basic features of the industry-standard TMS32OClO. 
Two serial ports, expanded data memory to 256 words, expanded program memory to 
4K words on-chip, and a coprocessor mode are added to provide a powerful processor 
for a variety of communications-oriented applications. The TMS320C17 is a microcom
puter device only, with no external program memory facility. The TMS320E17, a 4K
word EPROM version of the TMS320C 17 is available for prototyping or low volume pro
duction. 

The Tone Detection application takes advantage of the full set of processor resources 
shown in Figure 5. A few examples from the code, and a description of each, are given 
in Utilization of TMS320C17 Resources section to illustrate this. 

434 General-Purpose Tone Decoding and DTMF Detection 



lAgend: 

CLKOUT lCZ'CLKIN 
1 

ACC.. Accumullllor 
ARP.. Auxmary Regl ..... PoInter 
ARO .. AuxIliary Regl .. a, 0 
ARl .. Auxmary Regl"a, 1 
DP .. [)alii Pege PoInter 

trMs32OC171E17 only 

PC .. Program Count ... 
P .. PReg ...... 
T .. T Regis'" 
TR Transmit Regls'er 
RR .. Receive Regl.te, 

Figure 5. TMS320Cl71E17 Block Diagram 

General-Purpose Tone Decoding and DTMF Detection 435 



The Tone Detector program uses less than 50% of the available 4K-words of pro
gram memory and less than 70 % of the available 256 words of data memory within the 
TMS320C17. Of the 174 words of data memory used, 75 are in page 0, and 99 in page 
1. A detailed list' of program and data memory utilization is shown in Table 1. 

Table 1. Program and Data Memory- Utilization 

Code Program Data 

Routine Listing Description Memory Memory 

Page locations Locations 

489 Reset and interrupt vectors 4 

490 DTMF Constants and filter coefficients 28 

490 Tone detector constants 62 

491 Tone detector filter coefficients 129 

MAIN 492 Read sample from input queue and up- 55 14 

date current time, scale the input sample 

and call DTMF if it is switched on. 

ENVDET 494 Detect changes in signal envelope 41 4 
relative to user-programmed upper and 

low,er thresholds 

TON SET 495 Handle occurrence of tone onset 11 2 

TDEPT 495 Handle tone departure 41 1 

FILTER. 496 Routine for filtering and accumulating the 172 52 

input samples 

LEVCAL 499 Calculates the levels at the end of each 109 1 

block of filtering 

CHNGS 501 Check for level changes during a 31 0 

tone burst 

LVLS 501 Write levels into registers 13 3 

COMPLT 502 Complete operations ready for next filter- 39 1 

ing operation 

RSTFIL 502 Clear down filter accumulators and reset 61 

pointers ready for another filter operation 

SQRT 504 Generates the square root of an integer 32 

DTMF 504 Detect DTMF digits 508 83 

INTHDL 510 Interrupt handler 194 8 

CRESET 514 Cold reset handler 14 1 

WRESET 514 Warm reset handler 33 3 

ATTEN 515 Write out status to draw attention to 4 

change in one or more of the status bits 

XFUPD 515 Update the XF flag 17 

SLFTST 516 Self test of processor 111 4 

Total 1709 177 

436 .General-Purpose Tone Decoding and DTMF Detection 



Hardware 

In order for the TMS320C 17 to receive its input signal and communicate with a 
host CPU it requires a small amount of support circuitry. This comprises just three devices, 
as shown in Figure 6. This example is specifically for interfacing the tone detection system 
to an IBM XT or AT compatible PC bus. A detailed description of this circuit is given 
in Hardware Implementation section. 

IBM 
PC 
Bus 

TMS32OC17 

Figure 6. PC Tone Detector Circuit Diagram-Block Level 

Analog to Digital Conversion 

Analog 
Input 

The analog signal is converted to a serial pulse code modulated (PCM) serial data 
stream by an industry standard combined codec and line filter (COMBO), the TCM2917. 
This interfaces directly to the TMS320C 17 with no support circuitry. 

Host Interface 

A programmable logic array (PAL) provides read and write decoding for both the 
host CPU and the TMS320C17, including full address decoding of the host CPU bus. 
A 74ALS652 provides a two way latched data buffer between the host CPU and the 
TMS320C17. The TMS320C17 has a special coprocessor mode which can also perform 
the latched data buffer function in a wide variety of applications. The coprocessor mode 
is described in greater detail in Use of Coprocessor Port for Parallel 1/0 section. 

Implementation 

This section describes in greater detail how the tone detector functions described 
in the Theory of Operation section are implemented. It is intended for non-mathematical 
readers, and equations have only been included where they can aid understanding for readers 
familiar with general DSP techniques. It is not necessary to understand the derivation or 
purpose of these equations in order to gain a basic understanding of system operation. 

General-Purpose Tone Decoding and DTMF Detection 437 



Software Implementation 

As described in Software section the software within the tone detector may be con-
veniently split into the following six groups: 

1. Signal input processing 
2. DTMF receiver 
3. Power detector 
4. Tone receiver comprising five sub-sections 
5. 110 routines (Interrupt Handler) 
6. Self test 

A detailed description of the performance and implementation of these functions 
follows. 

In all of the detailed explanations in this section ofthe report, references are provid
ed to a page of the program listing included as Appendix A. 

Signal Input Processing 

This block contains only two straightforward tasks: 

1. Read queue, increment time (program listing page 492)-Codec samples sent 
to the TMS320C17 are received via its serial port and then queued. The max
imum queue length is eight samples. Under normal circumstances the queue 
will not contain more than one sample. However, at #1e end of each block of 
filtering or DTMF detection, there is a series of computations which must be 
completed before the handling ofthe ~ext codec sample. Operation of both the 
DTMF code and the tone filtering code are suspended during this period and 
new codec samples accumulate on the queue. At all times, information arriv
ing at the TMS320C 17 via its serial port is handled with first priority, so that 
no samples or requests are missed. 

2. Scale and limit (program listing page 492)-ln this report the TMS320C 17 is 
programmed to accept A-law input samples. The TMS320C17 can also be pro
grammed to accept the u-Iaw samples in North American applications. The out
put from the on-board compander is scaled to· a number range which affords 
the maximum precision for the range of signal magnitudes allowed. The tone 
receiver is specified to provide linear detection of tones in three ranges. The 
dynamic range of the tone receiver is between 35 and 40 decibels (dB). Provi
sion of three software selectable scale factors allows this dynamic range to be 
shifted so that the top of the range is at either +2, -;-10 or -22 dBmO. Where 
dBmO is defined as the zero reference point of the channel. The overall detec
tion range is thus + 2 to - 60 dB approximately (see Figure 7). 

438 General-Purpose Tone Decoding and DTMF Detection 



10 

0 

0 ·10 
.I 
"D 

• ·20 
~ 
II! 

-30 J! 
E 
I! ·40 ~ 

-50 

-60 

·70 Gain Factor 
1 4 16 

Figure 7. Tone Detector Active Dynamic Range vs Gain Factor 

The output from this block is the next sample to be dealt with by the DTMF code 
and the power detector. 

DTMF Receiver 

A brief specification is given in Table 2. For full details, refer to CEPT recommen
dation TICS 46-02. The operation of the TMS320C17 algorithm to this specification has 
been verified by use of the standard Mitel DTMF test tape. 

General-Purpose Tone Decoding and DTMF Detection 439 



Table 2. DTMF Decoder Specification 

Measurement Breakdown Value 

Signal frequencies Low Group 697,770,852, 941 Hz 

High Group 1209,1336,1477,1633 Hz 

Frequency deviation for correct S;1.9% 

operation 

Power levels per frequency Operation (-6 dBmO - G dB) to 

(-36 dBmO - G dB)* 

Non-operation -45 dBmO - G dB* 

Power level difference between OdBto 10dB 

frequencies for operation 

Tone dur~tion Recognition ~40 mS 

Non-Recognition S;20 mS 

Silence duration Recognition ~40 mS 

Non-Recognition S;20 mS 

Signal to noise ratio required for 12 dB 

correct operation 
, 

Talk-off performance 1 5 hits in 30 minutes of con-

densed speech 

"*See Mode subsection in Host Interface section for an explanation of the gain control factor GdB. 

The DTMF receiver may be used to receive and recognize tones from a remote hand
set, e.g. in a PABX, or from a telephone set at a remote point on the public telephone 
network. The distortion of tones over the public network is often severe; for example, 
the attenuation of the signal from the remote transmitter could vary from 0 dB to 30 dB 
or more. The specification shown in Table 2 provides correct operation across the normal 
range of signals received over the public network. 

The range of received signal levels at which the DTMF receiver will correctly decode 
" signals can be varied by altering the gain of the tone detector module under software con
trol (see Mode section). 

Validation of a DTMF digit while the DTMF receiver is enabled (see Mode sec
tion) causes a DTMF interrupt to be generated and suppresses the generation of any short 
tone interrupt which might otherwise have been generated by the tone receiver code. The 
arrival time of the tone is stored for the host to read if required. 

The following description of the operation of the DTMF block relates directly to 
the detailed flow chart shown in Fi~re 8. 

440 General-Purpose Tone Decoding and DTMF Detection 



No 

SetOn •• t 
Tim. Valid Flag 

Figure 8. DTMF Receiver Flow Chart 

DTMF (program listing page 508)-This revolves around a set of eighth order nar
row bandpass filters at each of the individual tone frequencies which may be combined 
to produce a DTMF digit. 

The simple eighth order filtering process is executed on the incoming sample 
automatically when the DTMF receiver is enabled. If a valid DTMF digit is found, its 
value is stored in the DTMF digit register and execution passes along the 'validated' path. 
If the DTMF receiver is not enabled, program execution passes onto the tone receiver. 

Save Held Onset Time-The onset time of all detected signals is saved in a holding 
register. This is transferred to the tone arrival register only if the tone receiver is not already 
indicating the presence of a tone, in which case the tone arrival register will already have 
been loaded. 

Set Onset Time Valid Flag, Set DTMF Interrupt-The DTMF tone onset time is 
saved in a register for the host to read. The host is informed by interrupt (if implemented) 
that a tone onset has occurred and that timer registers containing information about the 
tone are available to be read. 

General-Purpose Tone Decoding and DTMF Detection 441 



Power (Envelope) Detector (see program listing page 494) 

As described above the power detector performs an envelope detection operation 
on the incoming signal, and directs flow to one of four tone receiver paths. 

The smoothing filter applied to the incoming signal has the form: 

ENVEL= «215 x ENVEL) + ABS(32 x EDF x SAMPLE) - (32 x EDF x ENVEL» 

215 

Where EDF is the user programmed envelope decay factor (see Envelope Decay 
Factor section). This is equivalent to: 

ENVEL = «1-k) x ENVEL) + (k x ABS(SAMPLE» where EDF is k X 210 

where EDF is k x 210 k positive'. 

The envelope decay factor may be programmed to provide a range of time constants 
for the envelope detector. There is generally a trade-off between the rejection of a glitch 
if a long time constant is used and iricreased accuracy of time-stamping with a short time 
constant. 

When the power detector identifies the departure of the input signal, a status register 
bit (see Status section) may be set, and the time of departure written into a register. This 
depends upon the signal having been recognized as a DTMF digit or a valid tone within 
the tone receiver search bands. 

Due to the method of implementation of the envelope detector, it should be kept 
in mind that there are two areas of operation when using the tone receiver: the arrival 
and departure time skew and the sampling frequency. These are explained in detail in 
Appendix C. 

Tone Receiver Band Pass Filter Generation 

The tone receiver generates a band pass filter for each of the chosen frequencies 
and uses these filters to select the desired frequencies from the incoming signal. The 
steepness of cut-off of each bandpass filter is defined by the length of time over which 
the received signal is filtered. This is programmed via a register and applies to all the 
filters in operation. The passband width of each filter is specified via a separate register, 
and the maximum value for passband width for any single filter is 492 Hz. Each of the 
filters in use may be selected to adopt either the passband width specified in the register 
(wide filter) or a passband width of zero (narrow filter). 

As described in the Tone Receiver Power Level Determination section, the power 
detector directs .the flow of the tone receiver along one of four paths: 

1. Tone onset 
2. Tone departure 
3. Steady tone 
4. Steady no tone 

442 General-Purpose Tone Decoding and DTMF Detection 



A detailed description of the operation of each of these follows. 

Tone Onset 

Figure 9 shows the flow chart associated with a tone onset indication from the power 
detector. 

Set Tone 
Present Flag 

No 

Clear First 
Block Flag 

Figure 9. Power Detector Flow Cbart-Tone Onset 

Set Tone Present Flag-This flag is used to indicate the presence or absence of a 
tone on the line. 

Hold Onset Time-The onset time of all detected signals is saved in a holding register. 

Filter (program listing page 496)-This routine is the heart of the tone receiver 
algorithm. The FIR filters are of the lowpass type and there is one for each of the six 
search frequencies. A range of filter lengths may be specified, from 61 to 1025 samples, 
allowing filters of extremely steep cut-off to be implemented. With the maximum filter 
length of 1025 samples, the shortest quantifiable tone is one of at least 128 ms duration. 
The input signal is demodulated using a sine and cosine wave at each of the six search 
frequencies. The result of the demodulation is that any signal present at one of the search 
frequencies is transposed into the passband of the lowpass filter. Figure 10 shows the filter 
structure. 

General-Purpose Tone Decoding and DTMF Detection 443 



Window Sample --.... -------41~-------- Accumulate 

J--e---+---------- Accumulate 

Sin (X) I X Sample 

Codec Sample -.----1 

Accumulate 

r--------------- ------------~----, I tp------nww-4II_-- Filter Select I 
I I 
I N I I Sine Sample -------ji----+-----i 1--+-- Accumulate I 
I I 
I Coalne Sample ------!-----ji-------I Accumulate I 
I I L_______________ _ ________________ ~ 
Per Detector 

Figure 10. FIR Filter Structure 

The coefficients of the filter are samples taken from a window function stored in 
ROM. The function is a Kaiser window, chosen to give the narrowest lowpass response 
with the given stopband rejection. Where a wide filter response is specified, each filter 
coefficient is multiplied by a sample of a sin( X )/ x function to provide a second wide 
filter coefficient. This has the effect of widening the filter passband in a definable and 
convenient manner. The input sample is multiplied by the normal (narrow) and wide filter 
coefficients to produce both a narrow and wide intermediate sample. Each of the six filters 
is specified to be either narrow or wide according to the value in the filter select register. 
Depending on this value, the appropriate intermediate sample is multiplied by a sine sam
ple and cosine sample at the required search frequency. The sine and cosine samples are 
generated as required by a special routine. The twelve products are separately accumulated 
to 32-bit accuracy. 

In addition to this, accumulations are kept of the wide and narrow filter coefficients 
so that the filter accumulations can later be normalized. An accumulation is also kept of 
the square of the input sample, so that the total signal level in the telephony band can 
be calculated. 

444 General-Purpose Tone Decoding and DTMF Detection 



Reset Filtering-Clears down all the accumulators and registers used by the filters. 

Clear First Block Flag-Clears a flag set to indicate that the first block of data was 
being filtered. 

Tone Depart 

Figure 11 shows the flow chart associated with a tone departure indication from 
the power detector. 

No 

CIearOneet 
Time Valid Flag 

No 

Figure 11. Power Detector Flow Chart-Tone Departure 

Clear Tone Present Flag-This flag is used to indicate the presence or absence of 
a tone on the line. 

General-Purpose Tone Decoding and DTMF Detection 445 



Reset Filtering-Clears down all the accumulators and registers used by the filters. 

Onset Time Valid Flag Set? -The program tests to see if a flag has been set at this 
point to indicate that the stored onset time is valid. This will be the case only if a complete 
block of filtering has been performed on the tone, or the tone has been recognized as a 
DTMF digit. If the flag is not set the program further checks to see if the tone detector 
is enabled. If not this section terminates. Timer registers are not updated and contain onset 
and departure times for the pn!vious valid tone or digit. However, the current time register 
is available for the host to read if it wishes to timestamp the short tone. If the tone detector 
is on, the short tone bit in the status register is set which can optionally generate an inter
rupt (see Status section). 

Clear Onset Time Valid Flag-Clears the above flag. 

Save Depart Time-Provided that a valid tone or digit has been recognized, the cur
rent time is saved directly into the tone departure register. 

Set Depart Interrupt-If the tone detector is enabled, the tone depart bit in the status 
register is set. This may optionally generate an interrupt. 

Steady No Tone 

In this case, the only operation performed is Reset Filtering which clears down all 
the accumulators and registers used by the filters. 

Steady Tone 

This condition causes execution from just above the "Tone Detector On" decision 
point in the tone onset flow chart (Figure 9). 

End of Filter Block? 

When the tone receiver is enabled, incoming samples are filtered in blocks. The 
number of samples in a block is set by the filter length selected, and may be between 
61 and 1025 samples. After each complete block of filtering, much housekeeping must 
be done. Figure 12 shows the flow chart for· this process. 

446 Genera/-Purpose Tone Deco4ing and DTMF Detection 



No 

Figure 12. Tone Receiver Flow Chart-End of Filter Block 

General-Purpose Tone Decoding and DTMF Detection 447 



Calculate Levels-For each ftlter, the root of the sum of the squares of the correspon
ding sine and cosine. accumulations is calculated and normalized using the appropri~te filter
coefficient accumulation. The result represents the signal level falling within the pass
band of the ftlter. The square root of the signal-squared accumulator represents the total 
signal level present within the telephony band. Provided that the ftlters have been correct
ly placed, the root of the sum of the squares .of the ftlter outputs should equal the total 
signal level. This allows a check to be made for tones present but not registered by the 
filters in use. 

Check Changes, Write Levels-The output level of each of the six filters is checked 
to see whether any of them has crossed the change threshold programmed by the user. 
The signal levels in the six bands are then written to registers for the host to read. The 
second three filters will be zero if DTMF is switched on. 

Save Held Onset Time, Set Onset Time Valid Flag, Set Onset Interrupt-If the block 
of filtering that has just been completed was the first one performed on the current tone 
there are a few other tasks to perform. The tone onset time is saved in a register for the 
host to read and then the host is informed by interrupt that a tone onset has occurred and 
that timer registers containing information about the tone are available to be read. 

Changes?, Set Change Interrupt-If the completed filter block was not the first block 
after tone arrival, it is necessary to check for any changes to the tone. If any signal levels 
have crossed the change threshold in a filtering block other than the first block, then a 
change interrupt is asserted. Registers containing information about the tone may contain 
misleading information due to the likelihood of the change having occurred in the middle 
of a filtering operation. 

Reset Filtering-Clears down all the accumulators and registers used by the filters. 

Clear First Block Flag-Clears a flag set to indicate that the first block of data was 
being filtered. 

110 Routines (Interrupt Handler) 

Both host and signal (serial) I/O are dealt with hy the interrupt handler. Host read 
or write accesses cause an external hardware interrupt to the TMS320C 17. The availabili
ty of a new codec sample within the serial port receive register causes an internal hard
ware interrupt. A flow chart of the interrupt handler is shown in Figure 13. A detailed 
description of some parts of the code within the interrupt handler are contained in Inter
rupts section. 

448 General-Purpose Tone Decoding and DTMF Detection 



Interrupt 

t 
Check Interrupt E~ernal 

Source .. 
. + Internal ~, 

Clear State Bit Ye. .. 
Codec Sst? .. 

Interrupt 
.. No + 

Read Check For 
Queue ResdlWrlte t • 
Samlpe + Perform 

Load Second 

Save Mapping Half of Write 

Command Word 

J, 
" Output 

, 
v Data 

.... .... ... ... 
, 

Output 
,r 

Stetu. 

" ... ... ... .. 
" 

Clear A" 
N~codec 
Interrupt. 

+ 
Return 

Figure 13. 110 (Interrupt Handler) Flow Chart 

General-Purpose Tone Decoding and DTMF Detection 449 



Self Test 

The tone detector system can be instructed to carry out a self-test operation at any 
time by writing to a bit in the mode register. The flow chart for the' self test routine is 
shown in Figure 14. The duration of the test is 6 ms. No access should be made to the 
tone detector until the end of this period when the result of"the self test is available in 
the mode register. 

450 ,General-Purpose Tone Decoding and DTMF Detection, 



Self Test Command 

ROM Checksum Test 

RAM Test 

Codec Interrupt Test 

Warm Reset 

Save Test Resuhs 

Result Flherlng 

Inhlallze DTMF Code 

Output Status 

Clear All Pending Interrupts 

Restart Main Program 

Figure 14. Tone Receiver Flow Chart - Self Test 

General-Purpose Tone Decoding and DTMF Detection 451 



Once the self-test is complete the tone detector enters a state where normal func
tions are inoperative, but the host data path may be tested. In this mode a write to any 
register other than mode or control will access a holding register inside the tone detector, 
rather than the register specified. This holding register may then be read by accessing 
any register other than mode or status, thus checking the integrity of the host data path. 

Self-test is terminated by a further write to the mode register. When this has been 
done, the tone detector is left in the default state as though it had received a hardware reset. 

Program Overview 

An integrated flowchart for the tone detector program is shown in Figure 15. 110 
routines and self test are not included as they do 'not form part of the normal tone detector 
program flow. 

452 General-Purpose Tone Decoding and DTMF Detection 



CJ 
~ 
'" ;:; 
~ 
'" ~ 
~ 
'" Ql 
::: 

'" b 
'" C\ 
<:0 
~ 
~. 

I::> 
::: 
~ 

b 

~ 
~ 
b 
'" '" C\ §. 

~ 

No 
Yes 

Queue Empty? 

No 
Tone Detector On? 

Yes 
Tone Detector On? 

No 

Figure 15. Tone Detector Flow Chart (Detailed) 



Utilization of TMS320C17 Resources 

Central Arithmetic Logic Unit (CALU) 

The throughput capability of the CALU is one of the keys to the success of the 
TMS320 family. At the center of the CALU is a two's-complement 16 by 16 hardware 
multiplier with a 32-bit product register, which provides a result in a single cycle. Other 
features interfacing directly to the multiplier are the 32-bit ALU, 32-bit accumulator (ACC), 
two shifters and the data bus as shown in Figure 16. One input of the multiplier is provid
ed directly from data memory via the data bus, the other is from the previously loaded 
temporary (T) register. 

454 General-Purpose Tone Decoding and DTMF Detection 



Shifter 
(0-16) 

32 

16 
Multiplier 

P(32) 

32 

Figure 16. Central Arithmetic Logic Unit (CALU) 

General-Purpose Tone Decoding and DTMF Detection 455 



The hardware intensive approach of the CALU allows mathematically intensive 
algorithms to be performed very efficiently. To show its performance, the following ex
ample is taken from the ENVDET (envelope detector) routine in the source listing. Its 
function is to implement a smoothing ftlter of the form: 

ENVEL= «215 X ENVEL) + ABS(32 X EDF X SAMPLE) - (32 X EDF X ENVEL» 

215 

Initial conditions are that EDF is stored in data memory location TEMP and the current 
envelope detector output is stored in ENVEL. 

456 

LAC 

SACL 

LT 

MPY 

PAC 

ABS 

MPY 

SPAC 

TEMP,S Puts EDF X (25) into the accumulator, using the barrel 
shifter to shift EDF from data RAM location TEMP left 
by 5 bits. 

TEMP Stores 32 X EDF back into TEMP. 

TEMP Loads 32 X EDF from TEMP into T register. 

SAMPLE Multiplies the data value from SAMPLE by 32 X EDF and 

ENVEL 

puts result into the P register. 

Copies P register result into accumulator. Note that an in
struction which transfers the P register into the accumulator 
must always follow a multiply in order to ensure the con
tents of the P register are not lost if an interrupt occurs dur
ing the mUltiply instruction. 
ACC = 32 X EDF X SAMPLE 

The absolute value (magnitude) of the result is left in the 
accumulator. 

Multiplies the data value from ENVEL by 32 X EDF and 
puts result into P register. Note that it is not necessary to 
reload the T register. 

Subtracts P register contents from accumulator. ACC = 
ABS(32 X EDF X SAMPLE) - (32 X EDF X ENVEL) 

ADD ENVEL,15 Adds current value from ENVEL to accumulator with a left 
shift of 15 (i.e. multiplied by 215). 

ACC = ABS(32 X EDF X SAMPLE) - (32 X EDF X 

ENVEL) + (EDF X 215) 

ADD ONE, 14 Adds the value 214 to the accumulator to round up the 
result. 

General-Purpose Tone Decoding and DTMF Detection 



SACH ENVEL,1 Stores the upper 16 bits of the accumulator in ENVEL with 
a left shift of one to remove the extra sign bit (caused by 
mUltiplying two two's-complement numbers). As it is stor
ing the high-order accumulator, the result is effectively 
divided by 215. 

Thus we now have the result: 

ENVEL = «215 x ENVEL) + ABS(32 x EDF x SAMPLE) -(32 x EDF xENVEL)) 

215 

This calculation takes 11 instructions and executes in 11 cycles or approximately 
2 .15 flS with a 20.48 MHz operating frequency. 

Interrupts 

The TMS320C 17 has an extended interrupt capability to handle a number of possi
ble sources. These are external interrupt and serial port interrupts for any of FSR (exter
nal receive framing input), FSX (external transmit framing input) and FR (internal framing 
output). 

Two steps are required to enable an active interrupt to the device. First, the individual 
interrupt must be enabled by writing to the appropriate bits in the system control register. 
Secondly the master interrupt circuitry should be enabled by the EINT instruction. 

When an interrupt occurs, its source can be determined by reading the interrupt flag 
bits in the system control register. Program control can then branch to the appropriate 
interrupt handler. 

For a full explanation of TMS320C 17 interrupts refer to sections 3 and 5 of the 
First-Generation TMS320 User's Guide (Reference [6]). 

Interrupt Initialization 

In our example interrupts are initialized by the WRESET (warm reset handler) routine 
as follows. CTLPRT and CTLUPR are equated to 0 and 1 respectively to point to the 
1/0 locations of the lower and upper 16 bits of the 32-bit system control register. Some 
data RAM locations are also previously set up as shown. 

CTL320 contains 
MSOOFF contains 
ONE contains 

FD9Fh 
OOFFh 
0001h 

The interrupt initialization code also includes the serial port initialization. The use 
of the serial ports within this application is covered briefly in DTMF Telephone Tester 
section. The following listing should also be referred to when reading that section. 

General-Purpose Tone Decoding and DTMF Detection 457 



OUT CTL320,CTLPRT Sets lower 16 control bits to FD9Fh. This resets all inter-
rupt flags, enables external and FR interrupts only, con
nects 110 port 1 to the upper control register, sets the XF 
output low, enables the serial port, selects and enables A
law encooing/decoding and selects SCLK (serial clock) as 
an input. 

OUT CTL32U,CTLUPR Sets upper control bits to OCFEh. This sets SCLK to 

LAC CTL322 

SACL CTL320 

2.048MHz, sets FR to 8KHz, selects sign magnitude com
panding and selects FR for fixed data rate operation. 

ACC = 7C90h. 

Stores 7C90h back into CTL320, for future use. 

OUT CTL320,CTLPRT Sets lower control bits to 7C90h. This sets SCLK to be an 
output, connects 110 port 1 to the serial port companding 
hardware, selects internal framing and leaves other options 
unchanged. Note it does not clear interrupt flags. 

Interrupt Handler - Entry 

When a valid enabled interrupt is received, program execution jumps to program 
memory location 2. In our code, this contains a branch to labelINTHDL which is at the 
start of the Interrupt Handler routine. 

This routine contains the detailed steps for handling a serial port interrupt or an ex
ternal (host interface) interrupt. All that is explained here is the code concerned with in
terrupt management. 

SST SRSAVE 

LDPK 1 

SACH ACCUHI 

SACL ACCULO 

LDPK 0 

SAR ARO,ARSAVE 

LARP '0 

IN ITEMP ,CTLPRT 

458 

Saves the current contents of the status register in data 
memory location SRSA VE. This is automatically in 
page 10f data RAM, regardless of the value' of the 
data page pointer. 

Sets the data page pointer to page 1. 

Saves the current contents of the accumulator in data 
memory location ACCUHI (data page 1). 

As above. 

Resets the data page pointer to page O. 

Saves the contents of ARO in ARSA VE (data page 0). 

Ensures auxillary register pointer is 0 for future in
direct memory accesses. 

Stores lower order system control register in data 
memory location ITEMP (data page 1). 

General-Purpose Tone Decoding and DTMF Detection 



LAC 

AND 

BZ 

ONE,3 

ITEMP 

NOTCDC 

Interrupt Handler - Exit 

Loads 23 into accumulator, ACC = 0004h. 

ANDs data in ITEMP with 0004h in order to test 
whether bit 2 in system control register is 1, (i.e. is 
it a serial port interrupt?). 

If bit 2 not set, it is not a serial port (codec) interrupt 
and execution branches to the routine for external 
(host interface) interrupts. 

All external interrupts return through the following path 

LACK 
ADDS 

SACL 

OUT 

7 
CTL320 

ITEMP 

ITEMP ,CTLPRT 

Loads 7 into accumulator. 
Adds CTL320 (7C90h) to accumulator with sign ex
tension suppressed as we are not dealing with two' s
complement numbers. 
ACC = 7C97h 

Store accumulator into ITEMP. 

Clears all interrupts except internal framing, leaves 
all other bits in system control register unchanged. 

Note only non-codec interrupts are cleared here. Codec (serial port) interrupts are 
cleared at the start of the codec interrupt routine. This is because the two interrupt sources 
are asynchronous. Thus it is quite possible for a serial port interrupt to occur during the 
external interrupt routine and vice-versa. It is essential that these "pending" interrupts 
are not lost during the handling of the previous interrupt. 

The codec interrupts join the external interrupt exit path here 

LAR 

LDPK 

ZALH 

ADDS 

LST 

EINT 

ARO,ARSAVE 

ACCUHI 

ACCULO 

SRSAVE 

Restores ARO value to that prior to entering inter
rupt routine. 

Sets data page pointer to page 1. 

Loads high accumulator with exact copy of 
ACCUHI. 

Loads low accumulator with exact copy of ACCULO 
with sign extension suppressed to leave high ac
cumulator unaffected. 

Restores status register value with that prior to enter
ing interrupt routine. 

Enables interrupts. This instruction always waits until 
the following instruction has completed execution so 
that interrupts are not nested. 

General-Purpose Tone Decoding and DTMF Detection 459 



RET 

SeriaJ Ports 

Returns program control to the point at which the in
terrupt occurred. 

Serial port initialization occurs at the same time as interrupt initialization as both 
involve the use of the TMS320C17 Control Registers. This is covered in detail in the in
terrupt section above. 

This application uses a single serial input only. A TCM2917 codec chip operated 
in the fixed data rate mode is used to provide analog to digital conversion. A 2.048 MHz 
clock (SCLK) is provided by the TMS320C17 along with a framing signal (FR) giving 
a sampling rate of 8 KHz. With CDCPRT having been equated to one, data transfer is 
simply by the use of the following instruction 

IN 

Hardware Implementation 

Inputs data from liD port 1 which has been switched 
to accept serial input from the companding hardware 
by a previous write of a one to control register bit 8. 

The example outlined below is a possible design for a tone detection system as a 
peripheral to an IBM XT or AT compatible PC bus. Figure 17 shows the complete circuit 
schematic for this design. The circuit uses only four Integrated circuits to implement a 
full-functionality tone detector. The signals required from the PC bus are SAO - SA9 
(latched address bus), DO - D7 (8-bit data bus), lOW (I/O Write), lOR (I/O Read), RESET 
DRV (System Reset), and AEN (Address enable forOMA). Figure 18 shows the PC bus 
activity for these signals during an liD operation. For more detailed information on the 
function and behaviour of these signals see References [3] and [4]. 

460 General-Purpose Tone Decoding and DTMF Detection 



"" 

Cl 
I'll 
;,. 
I'll 

~ 
::;; 
.: 
.;:; 
~ 
I'll 

C;3 
;,. 
I'll 

tl 

8 
~ 
'" ;,. 
~ 

tl 

~ 
"li 
tl 
I'll 

~ 
§. 

~ -

le3 1-30 -- VFC 

V IC4 116 Rl 

"" .. ,1,,80'015 CC ORO 29 11 PCMO Vee GSX ~ Input 

~~AA_.l17~ 014 DXO 35 6 PCMI 

Vee Vee Vee 

,,--~,,_-,,16"D13 ORl 33 BII 

~~AA_.l15~D12 OX1 ~ Ne R2 St< 

14 011 SCLK 34 9 elK AIN 14 10K --c 
1M PC Edge Connection '" 'N'''~ "!" 010 FSR 3:9 7 13 1 

09 FSX ~ FSR AGND r'-----~ 
le2 ~ 08 FR 37 10 FSX 

C 
T 

~>-~SQDL7 ______ ~4~A"''--BB,~2~O __ ~~1~9 07 VFC
A 

~ S06 5 A2 82 19 20 06 ~ PDN DCLKR f 
D 

7. 50S 6 A3 B3 18 21 05 810 9 Ne..2 PWRO+ 

~ 504 7 A4 84 17 22 04 Me 3 Ne ...l. PWRO-

~ SDa 8 AS 85 16 23 03 Me/PM 27 Ne ~Irsx DGNO ( 

~ SD2 9 AS 86 15 24 02 XF~ Ne Vee 

~ SOl 10 A7 87 14 25 01 r I 
~ SOO 11 13 26 TCM2917 1 
~ M ~ 00 

PAO~NC -5V 

~5 -5V ~ CAB CBA~ ~ PA2 PAl ~ Ne 

83 Vee Vee ~ GSA GAB ~ CLKOUT~ NC 
B29 22 SBA SAB ~ ,----2< 'NT X2 8 

~' GND T 74ALS652 I ~ RST 

:~~ I~ ~ DEN Xl 

~~ 22 WRITE of lel ~ 31 WE Xl rB7 20oj48 MHz 

~ 12 02 -21 RESET Vss Cl C2 

~r3 03 20 320WR TMS320C17110 ~J 10pF 

~ 14 04 19 32DRD (D2saoO)G~D GND 

~15 05~ 
~16 06~'~7~ ______________ ~ 
~17 07~'~6-H------__________ --J 

~18 08Y"-

~'9 
~"0 
~Ill 
~"2 
~113 
~ ~114 

1L-_~----,2:::0.::LB=-_----l 
Reset Drv 

All pull-up resistors are 10 K ohms 

Figure 17. Tone Detector PC Application Circuit Diagram 



AEN~ 
SAO-SAg Acldr ... Valid 

IOwrow ________ \~==~b========~=/ "Inl • IS • 

DO-D7(Read)_ 

DO-D7(WrH.)~~ Valid ~ 

Figure 18. PC Bus Activity I/O Read or Write 

The XF (external flag) pin of the TMS320C 17 may also be used to signal an inter
rupt on one of the PC bus lines IRQ3 - IRQ7 (Interrupt requests), if it is desired to have 
an interrupt driven and not a polled interface. The example shown is based on a polled 
interface and does not utilize host interrupt. 

Host Read/Write Decode 

The PAL (programmable logic array) can give a host read or write function at any 
address in the range 0 to 03FFh (hexadecimal). Only one I/O address is used by the tone 
detection system in this example. For use in a PC, any free address in the I/O space could 

. be chosen. The AEN signal is also passed to the PAL to ensure that the system is not 
mistakenly accessed during a direct memory access (DMA) cycle. 

Assume that the I/O address of the tone detector is 0300h. The equations for the 
host read and write strobes would be as follows: 

READ = A9 # A8 # A7 # A6 # AS # A4 # A3 # A2 # Al # AO # lOR # AEN 

WRITE = A9 # A8 # A7 # A6 # AS # A4 # A3 # A2 # Al # AO # lOW # AEN 

where # represents the logical OR function. 

TMS32OC17 I/O Read/Write Decode 

The PAL also provides the decode function for TMS320C17 IN and OUT (read 
and write) operations. A TMS320C17 read and a data write always use I/O port 4. A 
status write is made to port 6. Ports 0 and 1 are reserved for internal functions of the 
TMS320C 17. Other ports are not implemented in this system. 

462 

The equations for a TMS320C17 read and write are as follows: 

320RD = DEN & P A2 

320WR = WE # PA2 

General-Purpose Tone Decoding and DTMF Detection 



Host Data Write 

Upon r~ceipt of the correct I/O address and the I/O Write strobe, the data present 
on the PC bus is latched into the 74ALS652 on the rising edge of liD Write. Simultaneously, 
an interrupt is given to the TMS320C17. As previously described, the TMS320C17 
responds to this interrupt by performing a read operation from its input port 4. 

The TMS320C 17 read is implemented by PA2 being set high and DEN (data enable) 
acting as a read strobe. While data enable is low, the high-impedance outputs of the 
74ALS652 are enabled and the TMS320C17 reads an 8-bit value. This contains the ad
dress of the register to be accessed and the readlwrite bit which is set to indicate a host 
write in this case. 

The read of port 4 is then followed by a write of the current contents of the status 
register from the TMS320C17 to output port 6. This is implemented by PA2 and PAl 
being set high and WE (write enable) being used as a write strobe. When write enable 
goes high to signify the end of the write, the data on the low order data bus (D7 to DO) 
of the TMS320C17 is latched into the 74ALS652. 

The second part of the host data write operation is an exact duplication of the above 
sequence of events. It would then be normal to read the status information returned at 
the end of the cycle. This is done by a simple liD read from the address of the board 
which enables the contents of the 74ALS652 onto the PC data bus. 

Host Data Read 

This operation is based on the same sequence of events as above, as indicated in 
Host Read Cycle section. 

Host Reset 

The active high RESET DRV signal is taken from the PC bus, inverted and applied 
to the TMS320C17 RS input (pin 4). 

Host Interrupt 

As mentioned briefly above, the TMS320C17 uses the external flag (XF) pin (pin 
28) to signal an interrupt to the host. This interrupt may come from a number of sources 
as described in Control section. This signal is active low and is set to a high level after 
a reset to the TMS320C 17. There is a period of 2 ms after the release of reset for which 
the state of the interrupt should be ignored, as it is set inactive only by execution of the 
appropriate instruction. The state of XF is therefore undefined for the period between 
the application of reset and the execution of the instruction which initializes it to the inac
tive state. 

The easiest method to overcome this would be only to enable the appropriate host 
interrupt line at least 2 ms after the release of reset. 

General-Purpose Tone Decoding and DTMF Detection 463 



Host Handshake 

There is no host handshake implemented on the example application described here. 
The maximum length of time which a single read or write can occupy is 20 p,s. The host 
should ensure that consecutive accesses do not occur more closely than this. 

Analog Interface 

This function is performed by an industry-standard combined PCM codec and line 
filter (COMBO), the TCM2917 (see Reference [5] which provides AID and DIA conver
sion as well as transmit and receive filtering. In this application the codec is set to a gain 
of 1. The TCM2917 performs A-law companding and operates in this circuit in the fixed 
data rate mode of 2.048 MHz. As this application was developed in Europe, the A-law 
companding TCM2917 was used. For applications in North America this may be replac
ed with the TCM2916 which provides p,-law companding and is pin-for-pin compatible 
with the TcM2917. There is a small change to be made to the area of program which 
initializes the control registers in the TMS320C17. This is covered in detail in Substitu
tion of TCM2916 for TCM2917 subsection. 

The TCM2917 interfaces directly to one of the two serial ports on the TMS320C17 
which were designed to facilitate the use of this type of device (see References [1] and 
[6] for further information). 

Host Interface 

The tone detector function described in this application note appears to the host CPU 
bus as a single 8-bit parallel port. This port is used as shown below to give access to the 
sixteen read and write registers within the TMS320C17. ' 

In the particular example presented here the interface is of the polled access type. 
An interrupt driven interface can be implemented by setting the appropriate bits of the 
tone detector control register and connecting the XF pin of the TMS320C 17 (pin 28) to 
a host interrupt input. 

Host Write Cycle 

The host CPU writes to one of the 16 avai1~ble registers by a four step process as 
shown in Figure 19. . 

464 General-Purpose Tone Decoding and DTMF Detection 



cpu action 110 port latch· TMS32OC17 action 

Output _He addre .. ... zero In RIW bit 

... Read addr ... + RIW bH 

(32OC17 I/O port 4) 

Write current contents of 

4 status register 

(32OC17 I/O port 6) 

Input current 
conten .. of statue .. ____ 

regis" (optional) 

Output data ... 

... Read data 
(32OC17 I/O port 4) 

Write current contenta of 

4 statue register 

Input current (32OC17 I/O port 6) 

contents of status 4 
register 

Figure 19. Host Write Cycle 

The write cycle is initiated by an output from the host CPU to the 110 port or memory 
location occupied by the tone detector. The first byte of data transferred is a command 
byte which contains the address of the register to be written to and the read/write bit set 
to a zero to indicate a write operati?n. The bit assignment is as shown below. 

D7 D6 D5 D4 D3 D2 Dl DO 

1 1 1 0 A3 A2 Al AO 

R/W Register address 

A3 is the most significant bit of the tone detector register number and AO is the least signifi
cant bit. 

General-Purpose Tone Decoding and DTMF Detection 465 



Following this host CPU command the TMS320C17 will make the current contents 
of its status register available for input by the CPU. It is not usual for the host CPU to 
read the status information at this point. 

This is followed by a host CPU write of the data to be transferred into the tone detector 
register. The operation is completed by the TMS320C17, which again makes the current 
contents of its status register available. It would be normal for the host CPU to read this 
status byte from the 110 port at this time. 

Host Read Cycle 

The read cycle is initiated by the host CPU in a similar way to the write cycle above, 
and is shown in Figure 20. 

CPUactJon vo port latch TMS32OC17 action 

Output addr ... and .. one In RIW bit 

Input data .. 
Output address zero .. 

and one In RIW bit 

Input current 
content. of etatue .... --

regleter 

Read addre .. and RIW .. bit 
(32OC17 110 port 4) 

.. Writ. data 
(32OC17 110 port 4) 

Write current contents of 

.. etatue register 
(32OC17 110 port 6) 

Figure 20. Host Read Cycle 

In this case, the read/write bit is set to a one to indicate a read. Following the initial 
host CPU write of the address, the TMS320C 17 makes the contents of the addressed register 
available for the host CPU to read. The cycle is completed when the host CPU issues 
a second register read request with an address of zero (status register) and the TMS320C 17 
makes available the current contents of its status register for the host CPU to read. 

466 General-Purpose Tone Decoding and DTMF Detection 



Host Access Considerations 

The host CPU may not attempt to perform any new access of a tone detector register 
before the previous access is complete. A read operation must be fully completed before 
a write is initiated and vice versa. Additionally, neither read nor write operations should 
be nested. Both the host read and host write should be regarded as discrete tasks to be 
executed in isolation from any other host access. 

A delay should be allowed between the host CPU writing the register address to 
the tone detector and reading the subsequent response (data for a read cycle, status for 
a write cycle). This delay should be a minimum of 20 J.ts. No delay is necessary between 
reading the response and performing a subsequent write operation, but a further minimum 
20 J.ts delay should be allowed prior to the next read. This delay allows the TMS320C 17 
to retrieve the correct data from its data memory, perform any necessary calculations and 
output it to the interface latch. 

Host Interface Registers 

Although the tone detector only occupies one physical 8-bit read/write host loca
tion, the full interface is implemented by sixteen read and write registers within the 
TMS320C17. Their allocation is shown below: 

Address Read Register Write Register 

0 Status Control 

1 Mode Mode 

2 DTMF digit Envelope decay factor 

3 Tone arrival (MS byte) Upper threshold 

4 Tone arrival (LS byte) Lower threshold 

5 Tone departure (MS byte) Filter length 

6 Tone departure (LS byte) Passband width 

7 Current time (MS byte) Change threshold 

8 Current time (LS byte) Frequency (MS byte) 

9 Band 1 signal level Band 1 frequency (LS byte) 

A Band 2 signal level Band 1 frequency (LS byte) 

B Band 3 signal level Band 1 frequency (LS byte) 

C Band 4 signal level Band 4 frequency (LS byte) 

0 Band 5 signal level Band 5 frequency (LS byte) 
E Band 6 signal level Band 5 frequency (LS byte) 

F Total signal level Filter select 

Where MS byte refers to the most significant (upper) byte of a 16-bit word, land LS refers 
to the least significant (lower) byte of a 16-bit word. 

General-Purpose Tone Decoding and DTMF Detection 467 



Register Read Functions 

Except where specified all of the 'following read registers are set to zero by a hard
ware reset, 

Status 

D7 D6 D5 D4 D3 D2 DI DO 

ST DT TC TA TD 

ST - This bit is set to zero when the departure of a tone is detected by the envelope 
detector before it has been validated as a DTMF tone or a filtering operation 
has been completed on the tone. 

DT - This bit is set to zero when the occurence of a valid DTMF tone pair is detected. 

TC- This bit is set to zero when a change in tone is detected. 

TA- This bit is set to zero when the arrival of a tone is detected by the envelope 
detector, and the tone has been validated as a DTMF digit or a filtering opera
tion has been completed on the tone, 

TD- This bit is set to zero when the departure of a tone is detected by the envelope 
detector. 

Each of the bits in the register are set to one by writing the appropriate value to 
the lACK bits (bits 2-4) of the MODE register (see Mode section). 

A reset will cause all of the bits of the status register to be set to one. 

Mode 

D7 D6 D5 D4 D3 D2 DI DO 

TEST DTMF TONE IACK2 IACKI IACKO RCI RCO 

Each of the bits in this register, except RCI and RCO, simply reflect the last value 
written to the corresponding bit in the mode register. 

468 

RCI These two bits together form the result code generated by a self 
RCO test operation by the tone detector. 

The meanings of the result codes are as follows: 

RCI 

o 
o 
1 
I 

RCO 

o 
1 
o 
1 

Meaning 

Clock failure 
Test successfully completed 
RAM failure detected 
ROM failure detected 

General-Purpose Tone Decoding and DTMF Detection 



DTMF Digit 

D7 D6 D5 D4 D3 D2 Dl DO 

OVRUN DD3 DD2 DDl DDO 

OVRUN-

DD3 to
DDO 

This bit is set to one when there has been an overrun of received DTMF 
digits, ie. a new digit has been received when the DT bit in the status register 
was set to zero (before the host has acknowledged the receipt of a previous 
digit). OVRUN remains set to one until a DTMF digit is received while 
the DT bit in the status register has a value of one. The digit indicated 
by DD3-DDO is the last received digit regardless of the state ofOVRUN. 

These four bits together identify the last valid received DTMF digit. 

The digits are identified as follows: 

DD3 DD2 DDl DDO Received Digit 

0 0 0 0 1 
0 0 0 1 2 
0 0 1 0 3 
0 0 1 1 A 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 B 
1 0 0 0 7 
1 0 0 1 8 
1 0 1 0 9 
1 0 1 1 C 
1 1 0 0 * 
1 1 0 1 0 
1 1 1 0 # 
1 1 1 1 D 

Tone Arrival (MS Byte and LS Byte) 

The two tone arrival registers are read by the host CPU in conjunction. They report 
the time at which the arrival of a tone was detected. The l6-bit value formed by (256 
X MS) + LS is treated as an unsigned integer giving the time at which tone arrival was 
detected in milliseconds. This time is taken from the contents of the current time register 
(see Current Time section) at the moment of the tone arrival being recognised by the power 
detector. 

General-Purpose Tone Decoding and DTMF Detection 469 



The tone arrival registers are updated when either a DTMF digit is detected, or a 
filtering operation is completed. 

Tone Departure (MS Byte and LS Byte) 

The two tone departure registers are read by the host CPU in conjunction. They 
report the time at which the departure of a tone was detected. The 16-bit value formed 
by (256 X MS) + LS is treated as an unsigned integer giving the time at which tone depar
ture was detected in milliseconds, as taken from the current time register. 

Neither the tone arrival or tone departure registers are updated by the arrival or 
departure of a short tone, i.e. one which had departed before being recognised as a DTMF 
digit, and before a tone receiver filtering operation had been completed on it. 

Current Time (MS Byte and LS Byte) 

The two current time registers are read by the host CPU in conjunction. They report 
the current time indicated by the tone detector module. The 16-bit value formed by (256 
X MS) + LS is treated as an unsigned integer giving the current time in milliseconds. 
Reading the current time (MS byte) register causes the value of the current time (LS byte) 
register to be copied into a holding register. In order to get a correct reading of the full 
16-bit value of the current time the MS byte should therefore be read first. 

When current time reaches the maximum value of 65535, the next increment takes 
it to zero. The current time increments every millisecond upon release of hardware reset. 

Band 1-6 Signal Level 

The signal levels received in each of the frequency bands specified are reported in 
these six frequency band signal level registers. The values read from these registers are 
to be interpreted as 8-bit unsigned integers, SL. If a value of SL is read from a register, 
then the signal level represented is: 

(5.30 X SL) mV rms (root mean square) 

GAIN 

See Mode subsection in Host Interface section for a description of the gain factor (GAIN). 

Typical values which may be read are as follows: 

SL Signal Level Codec Level 

40 212.0/GAIN mV rms -14.1 dBmO - G dB 
254 1346.0/GAIN mV rms + 2.0 dBmO - G dB 

An input signal level of greater than 1346/GAIN mV rms will result in a value of 
SL = 255. 

470 General~Purpose Tone Decoding and DTMF Detection 



When the DTMF bit in the mode register is set to one, the values read from Band 
Signal Level Registers 4 to 6 are all zero as only three frequency bands can be monitored 
while the DTMF receiver is active. The DTMF bit must be set to a zero if bands 4 to 
6 are to be monitored. 

Total Signal Level 

The signal level received over the frequency range 300 Hz to 3400 Hz is reported 
in the total signal level register. The number format is identical to that described for the 
band 1-6 signal level registers. 

Register Write Functions 

Except where explicitly stated, a hardware reset will set each register to zero and, 
when the contents of any register are changed, the tone detector uses the new value im
mediately. 

Control 

D7 Dl DO 

Writing a one to any of the bits in the control register enables an interrupt to be 
signalled on the XF pin of the TMS320C 17 when the corresponding bit in the status register 
is set to zero. 

Mode 

D7 D6 D5 D4 D3 D2 Dl DO 

TEST DTMF TONE IACK2 lACK 1 IACKO GFl GFO 

The functions of the bits in the mode register are as follows: 

TEST- Writing a one to this bit starts a self test operation. The result of the 
test is reported in the lower bits of the mode register. As long as TEST 
is a one the tone detector remains in the TEST mode and no register 
accesses may take place. The self-test is terminated by writing a zero 
to TEST after which the tone detector is left in the default state assum
ed after a reset. A self test operation takes approximately 6 ms. 

DTMF- Writing a one to this bit enables the detection of DTMF digits. On enter
ing the active state, the DTMF receiver begins looking for DTMF digits 
as though it had been monitoring a silent line in the recent past. 

TONE- Writing a one to this bit enables the detection of tones. When the tone 
detector is turned on, it will wait for the envelope detector to indicate 
that a tone is present before starting filtering operations. 

General-Purpose Tone Decoding and DTMF Detection 471 



IAtKO
to 

IACK2 

The pattern written to these bits selects which of the five possible 
interrupt conditions from the tone detector module is being acknowledg
ed. The acknowledgement of an interrupt causes the corresponding 
status bit to be set to the one state. 

The selection patterns are as follows: 

IACK2 IACKI IACKO Interrupt to be acknowledged 

0 1 0 Tone Departure (TD) 
0 1 1 Tone Arrival (TA) 
1 0 0 Tone Change (TC) 
1 0 1 DTMF Digit Arrival (DT) 
1 1 0 Short Tone (ST) 

Other patterns have no effect 

GFI-GFO- The two bit pattern written to these bits selects which of three gain 
factors is applied to the input signal before it is passed to the DTMF 
and tone receivers and the envelope detector. By writing a suitable value 
to these bits, it is possible to adjust the tone detector module to accom
modate very loud or very quiet signals. The selection patterns are as 
follows: 

GFI GFO Gain Factor Relative Gain 
(GAIN) (G dB) 

0 X 4 12 
1 0 1 0 
1 1 16 24 

Envelope Decay Factor 

The time constant of the envelope detector is the time taken for the output of the 
detector to reach 63 % of its final value. The value written to the envelope decay factor 
register is treated as an 8-bit unsigned integer, EDF. If the time constant required for 
the envelope detector is t, then EDF should be specified as 

EDF = 1024 X [1 - exp( -11(800Ot»]. 

For example for a time constant of 1.0 ms, EDF should be set to 120. 

A reset will cause this register to be set to a value of 120. 

472 General-Purpose Tone Decoding and DTMF Detection 



Upper Threshold 

The upper threshold is the signal level at the output of the envelope detector at which 
the arrival of a tone is recognized. The number written to the upper threshold register 
is treated as an 8-bit unsigned integer, UT. If the signal level required for this threshold 
is V ut Volts rms, then UT should be specified as 

UT = 254 x (0.743 x GAIN x Vut) 

For example for an upper threshold of 425/GAIN m V, UT should be set to a value of 
80. This represents a codec input of -8.0. dBmO - G dB. 

A reset will cause this register to be set to a value of 255. 

Lower Threshold 

The lower threshold is the signal level at the output of the envelope detector at which 
the departure of a tone is recognized. The lower threshold is specified in exactly the same 
way as the upper threshold described above. 

If the value programmed into the lower threshold register is larger than the value pro
grammed to the upper threshold register, the value in the lower threshold register is taken 
as the threshold for both tone arrival and tone departure. 

A reset will cause this register to be set to a value of 255. 

Filter Length 

The filter length register defines the number of samples of the input signal which 
are required to produce one result from the tone detector. The rate at which the codec 
feeds samples to the tone detector is 8000 samples per second, or one sample every 125/Ls. 
The value which is written to this register is treated as an 8-bit unsigned integer, FL. 
The length of filter specified by the value FL is 

16384 + 1 = N samples 
FL + 16 

For example, for a filter length of 410 samples, FL should be set to 24, giving a fllter 
duration of 51.3 ms. 

The filter length defines the steepness of cutoff at the filter band edge. Figures 21 
and 22 give an indication of the filter band edge shape for both wide filters and narrow 
filters of different lengths. They should be treated as indicative of the performance of the 
tone detector. 

General-Purpose Tone Decoding and DTMF Detection 473 



m 20 
'tI 

o r.:a.. r::: ~ 
~ I-... 

'\ 
......... 

" " ~ , , 
10 

C 
0 :;:: 

"' ::J 
C 30 CD 

~ 

40 

~ \ 
\ \ 

I3--EI Length 200 
~Length400 
~Length800 

50 

-50 -40 -30 -20 -10 o 10 20 30 40 50 

Frequency Deviation Hz 

Figure 21. Filter Band Edge Shape - Wide Filter 

0 

10 

m 
'tI 20 c 
0 

i 
::J 
C 
ell 30 
~ 

40 

... .... IlL. G--EI Length 200 

~ ~ 
-... 
~ t\. 

*-4( Length 400 

1\ I'.... v---'V Length 800 

\ \ 
........ 

'" "-1 

~ "" ~ 
l \ " '-

50 

o 10 20. 30 40 50 60 70 $0 90 100 

Frequency Deviation Hz 

Figure 22. Filter Band Edge Shape ~ Narrow Filter 

474 General-Purpose Tone Decoding and DTMF Detection 



When contents of this register are changed, the tone detector waits until the start 
of the next ftltering operation before using a new ftlter-length value. 

A reset, will cause this register to be set to a value of 50 (250 samples). 

Passband Width 

The bandwidth of the bandpass ftlters used by the tone detector is specified by the 
passband width register. The value which is written to this register is treated as a 6-bit 
unsigned integer, PW. If a bandwidth ofY Hz is required, then PW should be specified as: 

PW = Y X 0.128 

The maximum permitted value for PW is 63, giving a passband width of 492 Hz. 

The bandpass ftlters used by the tone detector are symmetrical about the center fre
quency, i.e. a bandwidth of X Hz defines that frequencies which deviate by up to X/2 
Hz from the center frequency fall within the passband. 

Change Threshold 

At the end of each filtering operation (except the first after tone onset) the signal 
received at each of the monitored frequencies is compared against the signal received dur
ing the previous ftltering operation. If the signal level at anyone of the monitored fre
quencies has crossed the signal level threshold defined in the change threshold register, 
then the Tone Change status bit is set in the status register. The change threshold is de
fined in an identical manner to the upper threshold described above. 

When the contents of this register are changed, the tone detector uses the new value 
of change threshold on the next signal level comparison. 

Frequency (MS Byte) 

The 8-bit value, FMS, written to the frequency register (MS byte) forms the most 
significant byte of the 16-bit specifier of a ftlter center frequency. When a value is written 
to one of the frequency (LS) registers, the current contents of frequency (MS) is con
catenated with the 8-bit LS value defined below to form the 16-bit frequency specifier. 
The frequency (MS byte) register must therefore contain the desired value when the LS 
byte is written. 

Genera/-Purpose Tone Decoding and DTMF Detection 475 



Band 1-6 Frequency (LS Byte) 

The 8-bit value, FLS, written to one of the band 1-6 frequency (LS byte) registers 
is concatenated with the 8-bit value most recently written to the frequency (MS byte) register 
to form the 16-bit specification for the filter center frequency. If a center frequency of 
G Hz is required, then FMS and FLS should be specified as follows: 

(FMS x 256) + FLS = 8.192 x G 

or FMS = (8.192 X G) div 256 
and FLS = (8.192 X G) mod 256 

Filter Select 

1

07 
I 

D6 D5 D4 

Fl F2 

D3 D2 Dl DO 

F3 F4 F5 F6 

Writing a one to any of the bits in the filter select register causes the corresponding 
filter to adopt the passband width specified by the passband width register (wide filter). 
Writing a zero causes the filter to adopt a zero passband width (narrow filter). 

A reset will cause each of the bits in this register to be set to one. 

Applications and Customization 

The combination of a programmable tone receiver and a CEPT DTMF decoder in 
a single chip opens up a wide range of potential applications. The operation of the device 
across the 300-3400 Hz band targets its use towards telephony, but this is by no means 
the only area to which it can be applied. 

The examples shown here are chosen from the more obvious potential applications. 
Some examples do not utilize the full power of the system, but they will hopefully serve 
to illustrate the capabilities of the tone detector and act as a stimulus for the development 
of innovative designs. 

Secure Off-Site Control 

The tone detection system described may be used within a secure off-site control 
system. An increasing amount of such equipment is now available, designed to respond 
to commands given remotely via a telephone line, as shown in Figure 23. These com
mands are typically a single or a sequence of DTMF tone(s), and may be supplemented 
by special tones. 

476 General-Purpose Tone Decoding and DTMF Detection 



Figure 23. Secure Remote Controller 

System 
under 

Control 

---, 
Tone I 

Detector I 

e.g. 
Bank computer 
Flood barrier 
etc. 

The level of security required varies with each type of equipment depending upon 
its function. For example, a home answering machine does not require a high level of 
security to protect its stored messages from being replayed to a remote telephone. At the 
other end of the scale, it is clearly important that financial information or transactions 
be heavily protected in the new remote banking systems now becoming available. 

Sequences of DTMF tones of varying lengths with various intervals provide one 
level of security which would be more than adequate for remote activation in the case 
of the home answering machine. However, DTMF tones are limited by definition to a 
set of sixteen tones making computer coiltrolled attack (hacking) of any equipment rely
ing on them for protection relatively easy. The method of protection used for cash-cards, 
etc., where three unsuccessful attempts at breaking a code (the personal identification 
number, or PIN) result in a machine refusing to return the card is not feasible in that any 
remotely accessed system must be ready to respond to its authorized user at all times. The 
system cannot just shut down if it suspects it is under attack from an unauthorized source. 

One way of providing the protection needed would be to make the number of possi
ble combinations of activating tones impractically large for any systematic hacking. This 
could easily be achieved by extending the number of tones capable of detection beyond 
the sixteen provided by. DTMF. 

The tone detector presented here makes just such a scheme possible by providing 
capability for the accurate detection of a single frequency or any combination of up to 
six simultaneous frequencies within the telephony band. With the added variety of variable 
lengths of tone presence and absence, and sequential combinations of different tones, it 
is clear that a very high level of security can be offered. The tone detector offers time 
stamping of tone arrival, tone change, and tone departure and would thus make it easy 
for any equipment to which it is attached to decide whether or not to allow access. 

General-Purpose Tone Decoding and DTMF Detection 477 



Call Monitoring 

Call monitoring functions may be implemented using the tone detection system 
described here. Across the various telephone companies in the world, there is a large variety 
of call progress tones used. It may also be useful to decode other tones received down 
a telephone line. An example might be for an answering machine to detect the fact that 
it is accidentally being called by a modem, or for auto dialing equipment to detect that 
it has accidentally called a modem. The ability to decode national call progress tones and 
other random tones received is of particular use in, for example, a PC with an integral 
telephony function. Here a range of actions may be expected of the PC depending upon 
the exact nature of the received tone. This application relates directly to the design exam
ple presented in the Host Interface section where a four-chip solution is shown for a PC 
tone detection peripheral. 

DTMF Telephone Tester 

Using the general purpose tone detection function, a low-cost DTMF telephone tester 
could be built to check the conformance of a telephone, or any other fixed tone generator, 
to a particular standard. 

With programmable center frequency (to a resolution of 0.12 Hz), programmable 
passband width and filter cut-off, a precise measure of an incoming tone for conformity 
is easily made. In a laboratory environment this could again be implemented as a peripheral 
to a PC. If required, the TMS320C17 could also easily be controlled by any general-purpose 
8-bit microcomputer to provide a low cost portable programmable tone tester. 

Customization for User Applications 

The source code for the TMS320C17 program described here is presented as Ap
pendix A. The code takes up less than half of theon-chip ROM and allows space for user 
application code to be included on-chip for low chip-count solutions to a number of com
plex tone decoding tasks. 

The TMS320E17 EPROM digital signal processor can be used for the development 
phase and low-volume manufacturing. For high-volume production, code can be masked 
onto the TMS320C17 to provide a custom DSP. 

To aid integration of additional application code, certain functions of the device are 
not utilized by the existing source code. Of most importance is the BIO pin (pin 9) which 
is effectively a software interrupt. By simple insertion of a BIOZ instruction, code execu
tion could branch to special application routines. The XF (external flag) pin of the device 
is used to signal an interrupt to the host. If (as is the case in the design example in· this 
report) this function is not used, it is simple to reprogram the function of this pin for any 
desired purpose. 

478 General-Purpose Tone Decoding and DTMF Detection 



The following notes apply to any customization of the tone detector source code: 

1. The correct execution of both the DTMF receiver and tone receiver functions 
is dependent upon certain time critical functions. Care should be taken to en
sure that any change made to the code does not affect the clean handling of 
the continuous stream of samples from the codec. 

2. Any change to the ROM code will require a corresponding change to the 
checksum word at program memory location 0004h (label CHECKS at bottom 
of page 489 of the source listing in Appendix A). The checksum test routine 
(see page 516 of Appendix A) sums all the program memory locations in the 
code and tests the lower 16 bits of the final sum for zero. It is important to 
maintain this zero result by adjusting the checksum word. 

Alterations that may be made to the tone detector include: 

• Substitution of TCM2916 for TCM2917 in North American applications 

• Use of the coprocessor port for parallel I/O 

• Use of either DTMF or tone receIver code in isolation 

Substitution of TCM2916 for TCM2917 

To change the TCM2917 codec for a TCM2916 requires only a small alteration in 
the program code. The only difference between the TCM2917 and the TCM2916 is that 
the TCM2917 performs A-law compression of its serial PCM data prior to output, and 
the TCM2916 performs /L-Iaw compression. The TMS320C17 can decode either Wlaw 
or A-law encoded data. The choice between /L-Iaw and A-law is made by the value written 
to bit 14 in the TMS320C17 control register. 

The lower 16 bits of the control register are set by writing data memory location 
CTL320 to output port zero. CTL320 is initialised with a value of FD9Fh in the existing 
code, with bit 14 set to a one (A-law conversion). Changing this initial value to BD9Fh 
will ensure bit 14 is set to a zero (Wlaw conversion). 

The change to a value of BD9Fh should be made by altering the statement 

. word FD9Fh ; CTL320 

(second statement below label CONST! at the bottom of page 490 in Appendix A) to 

. word BD9Fh ; CTL320 

within the source file. 

General-Purpose Tone Decoding and DTMF Detection 479 



Use (Jf C(Jprocess(Jr P(Jrt f(Jr Parallel 110 

The TMS320C 17 features a coprocessor port which provides a direct interface to 
most 4/8-bit microcomputers and 16/32-bit microprocessors. It is possible for the tone 
detection system to make use of this port for connection to a variety of possible host CPUs. 
Figure 24 shows a simplified logic diagram for the coprocessor port. Note that RBLE, 
TBLF and BIO are not necessary to the tone detector interface as it uses single byte transfers 
only. 

I-In ./ 
11 =-
~ ~ PRE 

0 n 
~ I PRE 

I 0 O~ I 
In from PAS 

Out to PAS 

PRE 

* 
0 01-

PRE 

F O 
,., 

I 
V OE 

L01S-LOO 16- 0 0---
I Hi 
I OE' 
I ... 16- 16.-
I 0 0 .... 

~ r 015-00 
I 
I 

Figure 24. TMS320Cl71E17 Simplified C(Jprocessor Port Logic Diagram 

For full details of the coprocessor' port refer to the First Generation TMS320 User's 
Guide (Reference [1 D. 

As an example this section considers an 8-bit interface, as may be required by a 
TMS7000 8-bit microcomputer. 

480 General-Purpose Tone Decoding and DTMF Detection 



· Coprocessor mode is selected by setting both the MC/PM input (pin 27) and the 
MC input (pin 3) to low. Bit 30 in the TMS320C17 control register selects either a 16-bit 
or an 8-bit interface. This should be set to zero for an 8-bit interface. Connections to the 
TMS320C 17 coprocessor port should be as shown in Figure 25. 

TMS320C17 TMS7000 

MC 3 

MC/PM 27 

HI/LO 2 
-:.= 

CLKOUT 6 17 XTAL2 
WR 

31 7 A1 
RO 

32 9 A3 

L07 19 19 07 
L06 20 20 06 
L05 21 21 05 
L04 22 22 04 
L03 23 23 03 
L02 24 24 02 
L01 25 26 01 
LOO 26 27 00 

Figure 25. TMS320C17 to 8-Bit Microcomputer (TMS7000) Interface 

The coprocessor port is accessed through 110 port 5 in the TMS320C17, and all 
parallel 1/0 IN and OUT instructions should be changed to access this port. In the listing 
file in Appendix A, IN instructions are from port 4 and OUT instructions are to either 
port 4 or port 6. All of these operations are within the interrupt handler section, INTHDL 
(see page 510 of the listing). 

Data transfers in coprocessor mode operate on the same basis as presented in Host 
Write Cycle and Host Read Cycle sections, but the host CPU write and read sub-cycles 
operate differently. Transfers to the TMS320C17 operate as follows: 

1. The WR signal is driven low by the microcomputer using a single 110 bit. 

2. Data present on the LD7-LDO bus is written to the receive buffer latch (D7-DO) 
when the WR signal is driven high by the microcomputer. 

3. An internal EXINT signal is generated, causing the interrupt flag to be set in 
the TMS320C17. 

General-Purpose Tone Decoding and DTMF Detection 481 



4. The TMS320C17 responds to this interrupt condition in exactly the same way 
as the present code does, by executing the interrupt handler and exeeuting an 
IN instruction (from port 5 in this case). 

Transfers from the TMS320C 17 use the following sequence: 

1. The TMS32OC17 writes 8 bits of data to the transmit buffer latch (D7-DO) with 
an OUT instruction to port 5. 

2. At some point after this, the RD signal is driven low by the micro-computer 
using a single 1/0 bit. 

3. Data is driven from the transmit buffer latch (D7-DO) to the LD7-LDO bus un
til the RD signal is driven high by the microcomputer. 

This interface may be further enhanced by implementing hardware handshaking be
tween the TMS320Cl7 and the microcomputer, using the RBLE and TBLF signals from 
the TMS320C17. 

Use of DTMF Receiver or Tone Receiver in Isolation 

This application report describes an integrated DTMF and tone detection system. 
Both the DTMF receiver and tone receiver may separately be enabled or disabled (see 
Mode section), but the code for both is resident at all times. For any application requiring 
only the DTMF receiver function or only the general-tone function, ROM space can be 
saved by removing the unwanted code. Due to the complexity of functions such as time
stamping which are shared by both the DTMF receiver and the tone receiver, it is not 
feasible to describe a complete solution, but some of the major considerations are outlined 
below. 

Note all subsequent page references are to the page number of the listing file given 
in Appendix A. 

The DTMF code section cali be removed from the program without significant 
modification. The DTMF code is very self-contained and is executed as a single block, 
with few external calls to subroutines within it. The test for the DTMF bit in the mode 
register should be removed from the end of the routine MAIN (see page 492). Calls to 
the DTMF reset routine RSDTMF should be removed from the cold reset routine (CRESET 
on page 514) and the self-test routine (SLFTST on page 516). The DTMF routine may 
then be removed completely (pages 504 to 510). DTMF constants may be removed, and 
the data memory locations they were loaded into used for other purposes. Care should 
be taken to ensure that the correct initialization of locations required by the tone receiver 
is not disturbed. The section in the warm reset routine (WRESET on page 514) which 
initializes DTMF data memory locations in page 1 should also be removed. 

482 General-Purpose Tone Decoding and DTMF Detection 



The tone receiver section is far more complex and cannot be removed as easily. 
Because the DTMF receiver relies upon certain of the ancillary functions of the tone 
receiver, these must be left intact. The routines which can be removed are: 

FILTER 
CHNGS 
LVLS 
COMPLT 
RSTFIL 
SQRT 

(pages 496 to 499) 
(page 501) 
(pages 501 and 502) 
(page 502) 
(pages 502 and 503) 
(pages 503 and 504) 

Associated data memory locations and initialisation values may also be removed. 
Care should be taken to check all remaining sections of the code for references to code 
or memory locations which have been removed. This applies particularly to the following 
routines: 

CRESET 
WRESET 
SLFTST 
INTHDL 
ENVDET 

(pages 514) 
(pages 514 and 515) 
(pages 516 and 517) 
(pages 510 to 513) 
(pages 494 and 495) 

It is recommended that these changes are not attempted without an in-circuit emulator 
for the TMS320C 17. This can be used to trace program execution and, with its powerful 
hardware breakpoint facilities can readily debug the modified source code. 

For anyone who wishes to investigate the possibility of customizing the code presented 
here and does not feel capable of taking on the development work, there is a U.K. com
pany who may be willing to help on a consultancy basis: 

Ensigma Ltd. 
Archway House 
Welsh Street 
Chepstow 
Gwent 
NP65LL 
Wales 

Telephone: (44) 291 625422 
0291 625422 

Flexibility Through Programmability 

Contacts: 
Dr. Mike Carey 
Adrian Anderson 

(International) 
(Within U.K.) 

Due to the programmability of the tone detector, this solution is not bound by the 
constraints of a custom hardware solution. Although the DTMF decoder performance is 
targeted to the CEPT recommendations, the tone receiver is dynamically re-programmable 
to suit a wide variety of incoming tones across a range of applications. 

General-Purpose Tone Decoding and DTMF Detection 483 



A simple tone detection system comprising no more than four chips may thus be 
controlled by a PC or a single chip 8-bit microcpntroller to perform any of the tasks describ
ed by merely re-programming the on-chip registers of the TMS320C17. 

. Conclusion 

This report has presented a high-functionality DTMF and general tone decoder. The 
application as described has been fully tested and incorporated into a commercially available 
telephony peripheral. 

Information has been presented which allows a designer to incorporate the tone detec
tor function into a product. A full source listing is included in this report for customiza
tion. Performance characteristics for any customized version may vary from those given 
here. 

The objective has been to describe both a particular implementation of the tone detec
tor and provide a level of insight for further development. In order to keep this last part 
as simple as possible the mathematical detail has been kept to a minimum. If a detailed 
explanation of this aspect is required Ensigma Ltd. should be approached (see Use ofDTMF 
Receiver or Tone Receiver in Isolation section). 

References 

[1] TMS320 First Generation Digital Signal Processors Data Sheet, Texas Instruments 
Incorporated. Literature # SPRSOO9A, January 1987. 

[2] Understanding Telephone Electronics, W.Sams Inc. 

[3] Technical Reference - Personal Computer AT, International Business Machines Cor
poration, September 1985. 

[4] Technical Reference - Personal Computer XI, revised edition, International Business 
Machines Corporation, March 1986. 

[5] Telecom Circuits Data Book, Literature # SCTDOOIA, Texas Instruments Incor
porated, 1987. 

[6] First Generation TMS320 User's Guide, Literature # SPRT013A, Texas Instruments 
Incorporated, 1987. 

484 General-Purpose Tone Decoding and DTMF Detection 



c;) HHHfttHtHHHllHfttHHHHHfttHtHHlfHHHHtHfltHHHHHHHHt CSCBIT • set 15 ; SERIAl. ClOCK C(ffTR(L BIT 

~ TIIS32OC17 srulCE COlE FOR T!l£ DETECTOR I'IIOOI.E rIlDE REGISTER BITS 

'" ~ COPYRIilItT (el TEXAS INSTRUl£NTS June 1m, lIoy 1987 RCO .,et , SELF TEST RESULT 
';'- Rei • 'et , SELF TEST RESULT ;p IlumN BY ENSIt1I1A LTD. • .et , RESERVED 
... • .et , RESERVED "g RE~ISION 2.00 NOV 1988 •• et , RESER'iED 
'" TONEST ... t , TIJE DETECTOR 1lN/1FF BIT 
~ H**HtlfHIHHtHHfIHlHfI4HfHtHHl****HHftHHHHfIHHHffHfHH Dnu=BT • set ; DTPF IETECT~ OOOFF BIT 
~ TESTBT .,et , SEl.FTEST IN.Y 1lN/1FF BIT 
:: ASSEllBLER EQUATES FOR T!l£ IETECTOR 
'" ~REG~_ 
t:::t HHHffHffIHfH*fHffHHHHHHH+HHfHfHH4HflH'IHfIHtHHftHtHI * 
~ RmDY .set I NA (iAterfaCt CJoly) &. PORT DEFINITIONS WRRDY .,et 9 , NA !interfote onlyl .....::I 
S' * DPINBT .set 10 ; Tone Depart interrupt ~ 

OQ CTLPRT ••• t , CQNTROL PORT OSINBT •• et 11 , To .. On .. t interrupt C 
:::. CTLll'R • set , IJ'I'ER CONTROL PORT CHINBT •• et 12 , T.n. Chang. int."upt ; 
:: COCPRT • set ; CODEC PORT DTINBT .,.t 13 , DTIF Digit interrupt 
:::: ATTPRT .s.t ; STATUS ATTENTIIlN PORT STINBT .s.t 14 ; Short Tone interrupt t=' 
;:::i PRI1PRT • s.t ; SIIIl..ATtIl INPUT PORT • ,.t IS ; Re,.rved ~ 
~ DATPRT • set ; DATA PORT _ > 
~ STAPRT • .,t ; STATUS READ PORT EQUATES FOR SELF TESTS ~ 'C 
..... SIII"RT • set ; SIIUATOR FLAG PORT _ "C5 
'oJ ROIIFAI • .,t C ~ 
~ FLAG POSITIONS IN FLAGS REGISTER RA/tFAI .s.t ..... = 
'" PASS .s.t 00 a.. 
::::-. TPRFLG .s.t IS ; TONE PRESENT COCFAI ... t ~. g IlNSFLG .set 14 , ONSET TII£ ~AL1D ACCHLD .,.t g 

FSTFLG .,.t 13 ; FIRST 8LOCK OF FILTERING TOTIII. .,.t .... > 
STIIFLG ... t 12 ; INTERRUPT IWIDlER STATE BIT RO/WAL • ,.t f") 
DTllFLG • 'et 11 ; DTI1F ON FLAG ~ 

INTFLG .,et 10 ; INTERRUPT I'J\S 0CClIRfruI ~::~~~~=~.~~~S=I: :r~~~ ~~~=N~~CATE n 
RESI • .,t ; RESER~D ACCESSES REQUIRING SPECIIII. PROCESSING. THE FUNCTION OF EACH BIT IS C 
RES2 • s.t ; RESER'iED IESCRIBED lIEL~. Q., 
FILTI .,.t ; LE~EL I ABO~ CHANGE THR ~ 
FILT2 • s.t ; ~ 2 ~ CHANGE TIll • set 512 
FILT3 .,.t ; LEm 3 ABO~E CHANGE THR .s.t 1024 
FILT4 .set ; ~ 4 ABWE CHANGE TIll • .,t 2048 
FIllS • set ; LEm S ABWE CHANGE THR • set 4096 
FILT6 .s.t ; ~ 6 ABWE CHANGE TIll • set 8192 

.Sft 16384 
PAGE! .set OSOh ; ADORESS OFFSET FOR DATA PAGE I 

SHIFTS FOR TESTI~ 11£ REGISTER I1APPI~ BITS 
CPCBIT • set PORT I COOTROL BIT 
CEFBIT .s.t EX~ FRAIIING BIT RWBIT .s.t 4 READ ACCESS OF REGISTER 
CXFBIT ... t 10 IF OUTPUT LATCH BIT LBIT • s.t 9 ACCESS OF ADDRESS 0 DR 1 
CSPBIT .s.t 11 SERIAL PORT ENABLE BIT UBIT .stt 10 ACCESS OF AN UPPER BYTE 

"'" CEEBIT • set 12 COIIPANIER OCODE ENABLE !BIT • s.t 11 READ OF ClRlENT TIlE 
00 COEBIT • s.t 13 rot'ANDER DECODE ENABLE FBIT ... t 12 WRITE OF FREIII£Ii:Y ~ BYTE 
VI CtIAIIIT .set 14 F-UlW, HAW SELECT BIT S8IT .s.t 13 READ IF STATUS REGISTER 



oj:>. 
00 
0\ 

C) 

~ 
~ 
~ 
'ti 
<:> 
.~ 

C' ::s no 

W ;:.. ::sO 
OIl 

~ 
t:;, 

~ 
"li 
t:;, 

~ 
g' 

ISIT .set 14 ; WRITE TO I9JlE REGISTER 

IU.OW BETl4EEN 515 AND 715 IILE CYClES ElEEN CllIIEC INTERRUPTS 

INTftAX ••• t om 
056h 

rlAXlM AND MINIItIIt _ OF YALID 
TRANSITS OF 1.OIl'lI IF CllIIEC IS INTER
RUPTING PROPERLY 

INllIIN •• et 

LOOP LENGTH IS b CYCLES 

INTLFT •• et UNTrlAX-INTMIN) ; MINIM NIIIBER OF RElfAINING TRANSITS 

HfHHlffHHHfltffHHHfflHtHffHHHHHftlHHlllllllllllllfHHfHHH 

* ASSEIIBLER EIlIJATES FOR DTMF PROGRAM 

HffHUfHHHff*ItHfHH4HHfllllllllllllllllllfHffHffffHfHtHHHfH 

so .set 
Z • set 
SCNT . itt 
HINTH • set 
TlISTLO .set 
TIISTHI .set 
TIIlHLI .set 
THRHl.2 ,set 
TWilHL3 .set 
TWRHL4 .set 
THRHHI .set 
TIfMl2 • set 
TWRHH3 .set - .set 
LOLIM .set 
HILIM .set 
MIN ~ .set 

O6AOh 
O38Oh 
120 
ODAh 
640 
2048 
034h 
02Dh 
02Bh 
02Dh 
029b 
027h 
024h 
022h 
14 
7 
7 

SCALING FACTOR FOR INPUT 
SCALINl FACTOR FOR T~ 
MINII1\JI SAIf'1.E COUNT (3QMS1 
MINli'!LIt SIGNAL lEVEL 
2.5.2H8 
a * 2*18 
TWRESHDLO COUNT FOR 2ND ORDER 

rlAX OYERSPILL LO BAND 
rlAX IJIIERSPILL HI BAND 
IDLE LINE DETECT 

UHHHHHHHffHHHHHf**HfHWIIIIIIIIIIIIIHfHHHfHHHtHHHHfI 

PAGE Q DATA IlEFINlTIONS FOR TIllE DETECTaI 

fHfHHfHff**IHHffffHIIHHIIHHffHfIHHIHHHlIHHHHHffHHHH 

UNINlTIALIZED YARIAIIlfS FOR TONE lETECTOR 

HHHflHllHHHflllllllJJllllUHHfllJlllllllllllHHHfHHHffHHfHH 

• bss OOII,033h ; IILI1IIY RM LOCATIONS 
· bss (1£,1 ; (MITY 
• bss TEIf> ,I , SCRATCH LOCATlIlI 
.bss TEMPl,l , SCRATCH LOCATION 
• bss TEII'2,I ; SCRATCH LOCATION 
• bss SAMPLE,I ; ClRREIIT LI/£ARIZED INPUT SAIf'l.E SHARED 

; WITH DTMF 

THE FDLLIlWIMl LOCATIOO MY lIE AT All AIIIIlESS ENDINl IN a 

.bss QUEUE,a ; CIRCtLAR Iltm FOR LII£ARIZ£D INPUT 
; SAIf'1.ES 

.bss TE/lP3,1 ; SCRATCH LOCATION 

.bss ITEIf>,I ; INTERRUPT HANIX.ER SCRATCH LOCATIIlI 
,bss CI!SIWE,I ; INTERRUPT HANIl.ER COIV1ANlI BYTE SAVE 
.bss ARSAVE,I ; INTERRUPT HANIl.ER AUXILIARY REGISTER 0 

; SAVE 
.bss WINDOW,I ; WINDOW SAIf'1.E REAl) FRtlI RtlI TAlilf. 2<>15 

; FORI! 
.bss SNCWIN,I ; SIN(X)/X • WINDOW PRODOCT. 2<>15 FORI! 
.bss FILPOS,I ; ClRREIIT ILOCl( FILTERING POSITION [COUNTS 

; UP FRtlI -16384 TO +16384 IN STEPS OF 
; 12FL + 3211 

.bss ACIINil,1 ; HIIl1 WORD OF 328IT WINDOW ACCUtlATIlRS 

.bss ACIINLO,I ; LOW WORD OF 328IT WINDOW ACClIU.ATIlRS 

.bss ACSIIlI,I ; HIIl1 WORD OF 328IT SINIXI/X. WINDOW 
; PRDDOCT ACCUIUATORS 

.bss ACSI«.O,1 ; LOW WORD OF 32BIT SIN<XI/X. WINDOW 
; PROrucT ACCUIUATIlRS 

.bss ACSIijI,I HIIl1 WORD OF 32BIT SIGNAL S1lUARElI 
ACCUMIiATORS 

.biS ACSIILO,I LOW WORD OF 328IT SIGNAL S1lUARElI 
ACCU~TORS 

tHUHHffHfHHHHfHtfHI*,"*'I.11 ~. IIIIIIIIIHflftHffHHfH*********f 

INITIALIZED YARIAlilES FOR TOOE lETECTOR 

HfHflffHfHfflllllllllllllllHffHfHHHfffHflfHHfftfHfffffHfHHUf 

.bis IYARl,O 

.bss CTL320,1 

.bss CTL322,1 

.bss CTL32U,1 

.bss QIN,I 

.bss Q()(JT,I 

.bss CORREC,I 

.bss Kl,l 

.bss SCALEF,I 

; INITIAL VALUE FOR TI!S32O CONTROL REGISTER 
; (LOWER) 
; SECOND VALUE FOR THS320 CONTROl. REGISTER 
; (LOWERI 
; VALUE FOR Lf'PER CONTROL parr 
, POINTS TO NEXT FREE QlEIJE INPUT LOCATlOli 
; POINTS TO NEXT AYAILAlilE LII£ARIZ£D 
, SAIf'1.E III QUEUE 
; CORRECTION FACTOR FOR SINE AND cos = 
; 1/0.9050' 2**12 
; CONSTANT USED IN THE SINE COSINE RruTINE. 
; SCALE FACTOR FOR SCALINl A-lJIII LINEARIZED 
; INPUT SAIf'1.E INTO AN OPTIMAL tUIlIER 
; RANGE. THE INTERNAl. SAIf'l.E HAS THE YALUE 
; ISCALEF' 2.25 • L1NEARIZED(ALAWI 141. 
; THE STARTUP VALUE FOR SCALEF IS 4, BUT 
; TWO OF THE BITS IN THE MODE REGISTER rlAY 
; BE USED TO SElECT SCALEF = 1,4, OR 16. 
; SCALEF = 4 GIVES TO/£ lETECTOR DYNAltIC 
, RANGE SUCH THAT 001flJT OF 254 == -10dBoO. 
; THE OTHER SCALEF YALUES MOVE THE Il'INAIIIC 



C) 
; _ BV 12dlloO IN EACH DlRECTlC»l, LEI'El. (LCAiERI 

~ .bss FlAGS,I ItLTlPLE FLAG REGISTER, III..L FlAGS HlGi 
;:, .bss rtSOOFf,1 ; BIT I'IISI( VALUE )Q(IfF ASSERTED, 
~ ... SEE ASSEftlIl.£R EQUATES HI! FLAG 
." HfffHffHfHHHffHIHfHH-HfHfHffHHff-H4HHHH-HHHHHHHHHH DEFINlTlC»lS, tJIIJS€lI BITS READ AS ZERO, ::; 
I:: REGISTERS F(II C!l'II1IMlCATlON WITH INTERFACE .bss SINCffi,I ; PHASE F(II SIN(XIIX FOCTlC»l 

~ 
~ ffffffffHUHHfHfffffHffHfHffflHfHHH+HHHfffHf-lHfHfHHftHfff HffHtfHftfHftHHtt+fHHHHHfHHHfHHt+HffHfHffHfHH-HHHitHf 

~ • 
Cl .bss STItODE,I ; STATUS REGISTER (UPPERI AND ItIlE REGISTER VARIABLES USED IN FILTER ROUTlIE, CONTI~ INTO PAGE 1 

;:, ; (LOWERI DO I«)T INSERT (II DELETE rm WiUABLES lifTER THIS POINT 
~ .bss FLSTOO,I ; LJI(A.E OF FL SAVEO TO PREVENT UPDATE 

t:::l ; MING FILTERING HfHHffHfHHHHH4+fHlfH.HfHfffHfHHHHHHfl-fHH"fHfHtffH-tH 

~ .bss UPRTIfl,I ; lPPER ENVEUfE DETECTOR THRESKIlD IN • (') 
0 ; LCAiER BVTE .bss FREQl,1 ; FREIlN = (FILTER N CENTER FREQUENCVI I 
."" .bss LIllTIfl,I ; Lilloel ENVELIl'E DETECTOR THRESKIlD IN , 0,12207 
;:;' ; LOoIER BYTE ,.bss PHASEl,l , PHASE OF FREIlN GENERATOR 

()Q .bss EOFCT,I , ENI'ELOPE DECAV FACTOO (lI'PERI CHAI«i: .bss COSIHI,I , HIGH wmo OF 32BIT COSINE FILTER 
." , THRESHOLD (UIlERI , ACClIlJlATOO ;:, 
."" .bss FIISFL,I ; UPPER BYTE OF DETECTOR CENTER FREQUENCV .bss COSlLO,1 , L~ ~ OF 32BIT COSINE FILTER 

t:::l ; IN lIPPER, ~D FL IN LOoIER BVTE. FILTER : ACClIlJlATOO 

~ 
: LENGTH IS (4' FL + 11 .bss SINIHI,I : HIGH wmo OF 32BIT SINE FILTER 

: ACClIlJlATOO 

">:! ,bss FSPW,I , FILTER SELECT (lI'PERI AND PASSBAMI WIDTH .bss SINILO,I : LOW wmo OF 32BIT SINE FILTER 

t:::l :(L~I : ACCLIU.ATOR 

~ 

~ , IENDI-IVARI IS THE LENGTH OF THE PAGE 0 .bss. fREQ2,1 , FREIlN = (FILTER N CENTER FREIlLENCVI I 
(') 

, INITIALIZEO VARIABLES SECTION : 0,12207 g, .bss PHASE2,1 : PHASE OF fREIJl GENERATOR 
;:, fHffHHH:lfH*HHHutHHHfHUtHffHHHffHfHHHtffHfHHtH-HHH .bss COSIH2,I : HIGH wmo OF 32BIT COSINE FILTER 

, ACCLItIlATOR 

~INITIALIZEO VARIABLES FOR TONE DETECTOR .bss COS2LO, I , LOW wmo OF 32BIT COSINE FILTER 
: ACCLIU.ATOR 

ttHfHfHtfHHtHfHfffHIHHHHH++HfHHHHtHffH.fffffHfHHffH+' .bss SIN2HI,1 , HIGH wmo OF 32BIT SINE FILTER 
, ACCLIU.ATOR 

.bss IENDI,O .bss SIN2LO, 1 , L~ wmo OF 32BIT SINE FILTER 

.bss OSTHE,I , ACCLIU.ATOR 

I!JllI.lO 65530 AND RELATIVE TO END Of LAST RESET .bss fREQ3,1 , FREQN = (FILTER N CENTER FREIlIJENCYI I 
: 0,12207 

.bss IPTltE,1 : TONE DEPART TIllE IN I1S .bss PHASE3,1 : PHASE OF fREIlN GENERATOO 

.bss CRTIIE,I , CLIlRENT TIlE IN I1S .bss COS3HI,I , HIGH wmo OF 32BIT COSINE FILTER 

.bss OSHOLD,I , C»ISET TlI1E LATCH REGISTER , ACCLIU.ATOR 

.bss CRIIl.D,I , ClIlRENT TIlE LATCH REGISTER .bss COS3LO,I , L~ wmo OF 32BIT COSINE FILTER 
, ACCLIU.ATOR 

DETECTED SIGNAL LEVELS .bss SIN:lHI,1 : HIGH wmo OF 32BIT SINE FILTER 
, ACCLIU.ATOR 

.bss LVL12,l , FILTERI (LPPERI FILTER2 (Lilloell .bss SltaO, 1 , L~ wmo OF 32BIT SINE FILTER 

.bss LVL34,1 , FlLTER3 (lI'PER) FILTER4 (LOWER) , ACCLIU.ATOR 

.bss LVLS6,1 ; fiLTER5 ILPPER) FlLTER6 (LOoIER) 
.j>. ,bss FREQ4,1 fREIlN = IFILTER N CENTER FREIlIJENCVI I 
00 .b5S ENVR,I , SIOOTI£D SIGNAL ENl'ELIl'E 0,12207 
-...J 

.b5S CTLTSL,I ; CC»ITR!L REGISTER (UPPERI AND TOTAL SIGNAL .bss PHASE4,1 PHASE OF FREIJl GENERATOO 



it 
00 

~ 
~ 
~ 
I:: 

~ 

~ 
S! ::. 
11> 

[ 
~. 

§ 
;:... 
t:::J 

~ 
~ 
t:::J 
11> 
~ 
(") g. 
::. 

.oss 

.bss. 

.bss 

COS4HI,1 

COS4LO,1 

SIN4HI,1 

Hltil IIOUl IF 32B1T COSINE FILlER 
ACWILATOR 
WI wom IF 32B1T COSINE fiLlER 
ACWILATIll 
HIIII IIOUl IF 32BIT SINE FILlER 
ACWILATIll 

HHHHIIIlIIIIIIIIIIIIIIIllllIIIIIIIIIllllIIIllllIIIIIlIIIIIIIIIIIIIHHlH 

P/\G£ I mTA IEFINlTIlM Fill l1I£ 1EECTlI!, 

HtHHttH1f1111111J1111111111111111111111l111111111111111ffH111111111.,.1. 

IIIINITIALIZED VARIABLES FIll l1I£ IEECTlI! UXIITItlEDl 

TlIIS LOCATI(JI I'llST REPRESEftT TI£ _ BETWEEN 1'& 0 AND 1'& I 
I.E., mTA ItEIOftLOCATI(JI OO8Oh 

HHHHIIIIIIIIIIII.IIII.I.IIIII •• llllllllllllllllllllllllffH11111111111111 

C€IITltIED WlRIABLES USED IN FILTER 
RWTlNE 

.bss SIN4LD,1 WI IIOUl IF 32B1T SINE FILTER 
ACCUILlATOR 

.bss FR£lI5; I ; FRElIN = I FILTER N CENTER FREQUENCY I I 
; 0.12207 

.Oss. PHASf5,1 ; PHASE IF FRElIN GENERATOR 

.bss COS5HI,1 ; HIIII IIOUl IF 32B1T COSINE FILTER 
; ACWILATIll 

.b5S =.0,1 ; WI wom IF 32B1T COSINE FILTER 
;ACClIUJITOR 

.bss SIN5HI,1 ; HIIllIIOUl IF 32B1T SINE FILTER 
;ACWILATOR 

.bss SIN5I.O,1 ; WI wom IF 32B1T SINE FILTER 
;ACCUIIlATOR 

.bss FREQ6,1 ; FRElIN = IFIL TER N CENTER FREQUENCY I I 
; 0.12207 

.b5S PHASE6,1 ; PHASE IF FRElIN GENERATOR. 

.bss COS6HI,1 ; HlIJI IIOUl IF 32B1T COSINE FILTER 
;ACClIUJITOR 

.bss COS6LO.I ; WI wom·IF 32B\1 COSINE FILTER 
;ACClIUJITOR 

.bss SIN6HI,1 ; HIIllIIOUl IF 32B1T SINE FILTER 
; ACWILATIll 

.DS5 SIN6LO,1 ; WI wom IF 32B1T SINE FILTER 
;ACWILATOR 

.bu _,I ; INTERRUPT IWGLER STA1lIS REGISIER SAVE 

.bss ACCIIII, I ; HIIII IIOUl IF INTERRlPT HANDLER 
ACWILATIll SAVE 

.OJ!. ACCWl,1 ; WI IIOUl IF INTERRlPT HANIl.ER ACWILATOR 
; SAVE 

IIIINITIALllfD WlRIABLES IF 11£ DTIF _ 11'& II 

HHHHIIIIIIIIIIIIIIIUIlIIIlIlIlIlIIIIIUIIIU.IIIIIHtlIIIIIIIIIIIIIIIIII 

*. 

.~5 

.~s 

.~s 

.b5S 
,bss 
.~s 

.~s 

.~s 

.bss 

.~5 

.bs5 

.ks 

1II1lY,1 
DECI",I 
POOSE,I 
XI,I 
GIll, I 
00,1 
1'5,1 
GAP, I 
SIGCNT,r 
SlIP, I 
setA, I 
X,I 

FILTER IflAY SAII'I.ES 

.bss UNI,I 

.Dss LIN2,l 

.bss L2N1,1 

.bss L2N2,1 

LDII-lIAND 8TH MDER IIANIFASS 

.b55 l3Nl,l 

.bss L3N2,l 
,bss L4NI,1 
.bss L4N2,l 

DECIMTI(JI FLAG 
WE-ME-IN-1I£-GAPFLAG 
IEWEST LItEM mTA SIIIfL£ 
HIGII'ASS/NlTCIH'ILTER 
SAIfLE IflAYS 
HIGII'ASS/NOTCIH'IL TER OOTPUT 
GAHlJST-flUlW· FLAG 
SAIfLE IlU!TER 
FLAG FIll AGCIRWIST/TM IIECDDE, 
FLAG SfMPII1RE FIll 11£ DECIMTI(JI 
IEWEST COIEt SAItPl.E 

I.OII-l!ANII 8TH MDER FILTER OUTPUT 

.bss LV,I 

lDN-1IANIl 2ND MDER stJ8-FILTER OUTPUTS 

.ltss LVI,I 

.bss LY2,1 

.ltss LY3,1 

.bss LY4,1 

.bss FI,I 697 HZ 

.bss F2,1 770 HZ 

.bss F3,1 652HZ 

.bss F4,I 941HZ 

FILTER DELAY SAII'I.ES HI_8TH MDER_ASS 



~ 
~ 
~ 
I:: 

~ 
~ 
C;i 
::0 

"' [ 
~. 

~ 
t:1 
~ 
~ 
t:1 
"' ~ 
§" 

~ 

.b55 HINI,I 

.blS HIN2,1 
,b55 H2NI,1 
.b55 H2N2,1 
.bss H3II1,1 
.b55 H3II2,1 
,bSl INNI,I 
.b55 1MN2,1 

HIGH-BAND 8TH IlRIER FILTER OOTPIJT 

.b5s HY,l 

HIGIHiAItl 2ND ORIER SLII-FILTER ooTPUTS 

.Ds5 HYI,I 

.bS5 HY2,1 
,bs5 HY3,1 
.bss HY4,1 

,bss F5,1 1209 HZ 
.bss F6,1 1336 HZ 
,bS5 F7,1 1477 HZ 
.bs, Fa, I 1633 HZ 
.bss TElIPD,1 SCRATCII-PAII REGISTER 
.b55 AD..l,1 HIGH-BAND TIftSIIUI AD.AJST VALlE 
,bss AD.It,1 LOII-BAND TIftSIIUI AlUJST VALUE 
.bss CNTAI,1 SCRATCH COONTER 
.bss CNTR2, I SCRATCH COONTER 
,b55 CNTR,I SAI'il.E COONTER Fill GAP SEARCH 
,bss TESTG,! OOOD DIGITS JEST COONT 
.bss JESTS, ! BAD DIGITS TEST COONT 
.b55 TIf',1 TEIf' REGISTER FIll CODEC SfTTING 

INITIALIZED VAlUABLES CF TI£· DmF PROORAII (P/IGE 11 

HlGII'ASSIl«lTCH-FILTER CW'FICIENTS 

.bss 

.bss 
,bn 
.bss 
.hss 
.bss 

IVARO,O 
AI,I 
A2,1 
80,1 
81,1 
82,1 

FILTER CW'FICIElUS LOII-BAND 8TH IlRIER -

.bls 

.blS 

.bss 

LIC,I 
LID,I 
L2C,1 

.bss L2D,1 
,bss L3C,1 
.bss L3D,1 
,bS5 L~,I 

,bS5 L4D,1 

FILTER CW'FICIENTS HIGH-_ 8TH IlRIER I!AIIII'ASS 

.bs5 HIC,I 
,bss HID,I 
.bss taC,1 
.bss H2O, I 
.bss 1IlC,1 
.bss HaD, I 
,bss ~,I 

.bss_ H4D,1 

.bss _,I 8TH IlRIER TlftSIIUI VALlE 

.bss TIRII,I 2ND OROOI TIftSIIUI· HIGH BAND 
,bss TIRO, I 2ND IlRIER TIftSIIUI UlI/ _ 

.bss JM.(Ij, I STROIIE LtM IIASK 

.bss DIGIT, I DIGIT OOTPIJT RfGISTER 

.bss "INTIIi,1 ALTERNATIIE "INTH Fill L!* SIGNAl. I:£VEl.S 
,bss "INTIL, I 

HHHfHHfHHHfHfHlHfHfHHUUIIIIIIIIIIIIIIIII •• IIIIIIHHHfHHH 

INITIALIZED VARIABLE Fill 0ECKSlII RoomE 

IHHHHlfHHHfffffflHHHfHHHtHlllllllllllllllHHffHHHlHHHfH 

,bss mRKfR,1 , REGISTER TO IO.D PROORAII END AIII1lESS 

.b" IENDO,O 

fHtHHHtHfHHffHlflllllllllllllllHfHlffHHffHHfHfHfHfHHHHtf 

IECTIJlS AND C(lj5TANTS Fill TM IETECTOR 

HlHHlfHH •• IIIIIIIIIIIIIHfIIIIIIIIIIIIIIIIHHHHHHHHfHfIHHHIH 

• text 

CRESfT , COLD RESfT IECTIll 
INTHDL , INTERRIJ'T \ECTIJl 

HfHHlfHfflfHHHfHfHHftHHHHfHfIIIIII.I.U ••• IIIIIIIIIIIHfHUH 

THIS IS TIE TABLE CF C(lj5TANTS IIIIICH ARE MGT Clf'IED INTO 1M 

fHlHfHtHtHHHtHflHHHfHlllllllIlllllllllIllllllllllIlllllIllllllll1 

CIECKS ... rd 
sxcau ... rd 

02CACh 
23291 

, lUI 0ECKSlII LDCATJ(II. 
I CENTRAl. MXIIUI.CF SINUl/X R.N:TION 



8 TAIIlE IF 1'& 1 DTIF CUlSTIIIIIS FOR ClJ'YIIIl 1U DATA 1M BY IIESET -.ER 

-
aIIISTO ... t 

.word -27801 ; -30307 

.word -13617 ; -1m2 

... rd +71)767 ; +18463 
• ..,d -28968 ; -25764 
..... d +71)767 ; +18427 
.lIIOrd 03880II ; C8fiEl107OS 11118 
.lIOrd 0832Dh 
.lfOrd +11402 
.word -31755 ; COEfFICIENTS FllI UII I!AIG'ASS 
.ltOrd +7432 
.word -31755 
.lOri +2985 
.word -31755 
.MOrd 0D5II6II 

c;) 
.MOrd 085E411 ; 1219/15 

~ 
.tfOrd OC234h 
.1101"'41 087tCh I 1332171) 

III .Iord OM:Eb ; COEfFICIENTS RIR HIGH I!AIG'ASS 
~ .ord 087tCh ; 148217!l 

~ .~ord 09853h 
;: .word 087CCb ; 163(/71) 

~ .Il101"'4 07FFFh ; TIfIESI«LD RIR 8TH IJUER OUTPUT 

~ .ltOrd 07FFFh ; TIfIESI«LD RIR 2IID IJUER HIGH 

III .word 07FFFh ; TIfIESI«LD RIR 2ND IJUER UII 

~ 
.ltOrd IFF7Fh ; _ FllI DATA VM.ID STROIIE 

::s .lItOrd 070h ; OUTPUT DIGIT IINIT. INVM.IDI 

III .1Ord "INTH I INITIIil VIIlIE FOR ·nINTHH 

tl •• r4 0 ; INITIIil VAllE RIR "INTIt. 

III ,"1"'41 PRGE1II 

:5 • 
~ 

CIIBIIl , .. t 

OQ 
1:1 ::s TAIIlE IF 1'& 0 TM JlETECT(lI CUlSTIIIIIS RIR ClJ'YIIIl TO DATA 1M BY IIESET 
~ 

tl IIAIIILfR 

~ • ":j 

tl CUlSTI ,set 

III 
~ ..... 4 IFD9Fh ; CTI.32O 

!l .MOrd 07C90II ; CTl322 

C' ,lOrd OCFEh I CTL321l 
::s .tllrd IIlE\£ ; QIN 

,lOrd IIlE\£ ; QOUT 

..... 4 OIlAEh I CORI£C 0,9050 • 2H12 
.ltOrd 059A8It ; K1 1,4008687 • 2H14 
,_d 0411 ; SC4II..EF 4 UEFAtLTS 1U 254=>-10<1Il001 
.1101"'4 IFFh ; IISOOFF 

REGISTERS FllI COtIUtICATION WIIH INTERF~ 

HlHHHHtllllllllUlllllillllllllllllHfllllllllllllllllllllllll1III1IIIIII 

• lIIOr4 OFFOOh . ; STIllE 
.word 032h ; flST(lI 

.lOrd OFFh ;.lI'ftTIII 

.lIJOrd IFFh ; UImR 

.1II0rd 07800h ; EIFCT 

.lIIOrd 032h ; FIISFl 

.lItOrd O3F00h I FSi'N 

CONEIII .set 

HHHHHHHHIIIIIIII .. IIII.IIIIIIIIIII •••• IIIIIII.III.IIIIIIHH .......... 

IHIS IS TI£ TAIIlE IF IIIIPPIIIlS BETWEEN TI£ 16 LOGIClil II£AD IIIIl illiTE BYTE 
AIlIIlESSES IN TI£ INTERF~ IIIIl TI£ PHYSIClil _ LOCATIONS IN TI£ 
Tn537!lC17 

... t 

HHffHIHIIIIIIIIIIIIIIIIIIIIIHfI •• 11111111111I11111111111HHHlfHHHIH 

illITE REGISTERS 

fHfHH11I111I11I1111111I1111111H1fHfffffff111111111l11111111111111l1l1III 

• 
Physial hcdioAS: Legial locations: 

.wrd (L +U+CTI. TSll ; CONTRa. 

. .ord (L+II+STIIlIIEl ;1IlIIE 

.word (U+EDFCTl I ENVElOPE DECAY FACTllI 

.word (lI'ftTIIIl ; lFPEI! TIfIESI«LD 

.Iord (UImR) ; lOWER TIfIESI«LD 
,1O.d (FIISFll ; FILTER lEIIlTH SPECIFIER 
.Iord (FSi'N) ; _ WIDIH SPECIFIER 
• .ord (ElFCTI ; QIIINGE TIfIESI«LD 

,.lOrd (1J+FIISF1I ; FR£IIENCY ns BYTE 
.word (F+FREIl1l I FILTER1 CENTER FR£IIENCY LS BYTE 
.Iord (F+FREQ21 ; FIL TER2 CENTER FR£IIENCY LS BYTE 
.word (F+FREIl3) ; FILTER3 CENTER FRBlJEII:Y LS BYTE 
.Iord (F+FREII4) ; FILTER4 CENTER FR£IIENCY LS BYTE 



c;) 

~ 
~ 
~ 
'ti 
~ 
~ ;:s 
~ 

tl 

! 
~ 
tl 

~ 
"r:i 
tl 

~ §. 

~ -

.Mord 
,lI1ord 
,lIIord 

(F+FREQ51 
(F+FRfIl61 
(U+FSPWI 

FILTERS CENTER FREQUEta LS BIlE 
FILTERb CENTER FIIElII£NCY LS BYTE 
FILTER WIDTH SELECT 

HHfHHHffffHffffHfHtfHHHHfHfHffHffffHfHfHffHHHHffflHHtfH 

READ REGISTERS 

HHIHIHfHHfIHHHftHtHflHflfHHHHHffIHHHHfHHHH+fHfffHf . , Physical locations: Logical locations: 

.1II0rd (L+S+STIIOIEI , STATUS 

.lIMItd (L+STIIOIlEI , IIOIE 

.word (DIGITl , DTi'f DIGIT 

.lIIord (U+OSTI~1 , TONE ARRIYAL (~l 

.word (OSmEI , TOt.( ARRIYAL (LSI 
,lIIord 1U+Il'TI~1 , TOt.( IE'ARTlilE (~l 
.werd IIl'TII£I , TOt.E DEPARTlIIE ILSI 
.lIIoro IT+C!lTII£I , CIRlEIIT TII£ (~l 
,lIIord ICRHOLGI , CURRENT TI~ ILSI 
.lIIord (U+LYLI21 , FILTERI SIGNAL LEYEL 
,lIIord ILYL121 , FILTER2 SIGNAL LEYEL 
,lIIord 1U+LYL341 , FILTER3 SIGNAL LEYEL 
.word ILYL341 , FILTER4 SIGNAL lEVEL 
.lIIord 1U+LYL501 , FILTERS SIGNAL LEVEL 
.1II0rd (LYLSOI , FILTER. SIGNAL LEVEL 
,lIIord (CTLTSl.l , TOTAL SIGNAL LEYEL 

fHHHfHffffHfffHHfHHHffHfHIM.III.lllllllfHHffftHfHfffHfttf*** 

l.OOIQP TABLE FOR CONVERTING 2 SC IIOIE BITS INTO A SCALE FACT!II 

iHffHfHffHHfHfHffHffHfffHfHfHff_HfHHtHHfHHHHH_HfHfHff 

• 
SCATAB ,set 

.!IIord 

.lIIIord 

.lfOrd 

.lIIIord 1. 

SCALEF=4 IDEFAI.I.Tl 
SCALEF=4 -IOdBoO RAOOE 
SCALEF=1 +2dBoO RAOOE 
SCALEF=16 -22dBoO RAOOE 

HfIIIIIIIIIIIIIIIIIIIIIIIIIIIHHHHffHHHffHffHftHflffH+HffHftffH 

UlIlK\P TABLE FOO CONVERTING 3 lACK It1IlE BITS INTO THE EQUIYAIENT STATUS 
BIT TO BE SET BY IW ACI<IDUIlIE. 

ACKTAB .Itt 

.word 0 lACK = 0 
.lIIIord 0 lACK = 1 
.lIIIord 1024 lACK = 2 

.l&Iord 2048 lACK = 3 
,lIIoro 409. lACK. 4 
.1III0rd 8192 lACK = 5 
.word 10384 lACK = 6 
.IIIord 0 lACK = 7 

fffffH"'HHHHHfHfffHfHHlHfHfHHfH*HfffffffHlHfHHHHHHHff 

THIS IS THE TABLE OF WlNOOII COEFFICIEHTS. ONLY tW.F OF THE WlNOOII IS 
STORED, STARTIOO IN THE "1DIl.E. 

*H*fHHHfHffHfff***HfHH+HffHflHH-fffHHfHHHfffHtHffHHHHf 

WINTAB .1II01'd m.7 , CEHTRAL COEFFICIEHT. 
.lIIord 32763 
.lIIord 32749 , LEOOTH OF tW.F-WlNOOll = 129 
,1III0rd 32727 
.lIIord 32.9. 
,lIIord 32055 
.word 32007 
,lIIord 32549 
,lIIoro 32482 
,werd 32407 
•• ord 32323 
,liIord 32230 
.lIIord 32129 
,lIIord 32019 
.word 31901 
.word 31774 
,lIIord 31.39 
• lIIOrd 3149 • 
.lIIord 31345 
.lIIord 31180 
.lIIord 31019 
,lIIord 30844 
."orO 30002 
,lIIord 304n 
.lIOrd 30274 
.1II0rd 30009 
• lOrd 29857 
.word 29638 
.lIIord 29412 
.word 29180 
.!IIord 28940 
.word 28094 
.!fOrd 28442 
_word 28184 
.!IIord 27920 
.lIIOrd 27050 
.!IIord 27374 
.word 27093 
.!IIord 20807 
.lIIOrd 26515 
.lIIOrd 20218 



.111,,,4 25917 • .ord 7834 

~ .• t4 25611 ... rd 7554 
.1II0rd 25301 .word TZT9 

... r4 24987 ... rd 7008 

.MOrd 24668 ,lIIIor4 6741 

•• td ~ .word 6480 

.MOrd 24020 ,-.ord 6223 

.word 23691 .1II0rd 5971 

.1II0rd 23358 ,1II0rd 5723 

.word 23022 .word 5481 

.1II0rd 221084 ,lIIOrd 5244 

.lIIOrd 22343 ,lIIotd SOl2 

.1III0rd 21999 .1II0rd 4784 

.word 21654 ,word 4562 

.1II0rd 21301> .word 4345 

,lfOrd 20951> ,fllord 4134 

.lII6rd 20605 .word 3927 

... rd 211252 ,lItOrd 3725 

.word 19898 .1III0rd 3529 

.!fOrd 19543 .word 3338 

• word 19187 .lIIOrd 3152 

• .ord 18830 .1II0rd 2972 

.lIJOtd 18473 .1II0rd 2796 

c;) • .ord 18115 .word 2626 

~ ,1III0rd 17758 ..... d 2461 

·no ,lIIOrd 17400 
,1II0rd 2301 

a ... rd 1700 
.WOl'd 2146 

:;; .lIfOrd 1-
... rd 1996 

.lIfOrd 16330 .1II0rd 1851 

I:: .1II0rd 15975 
..... d 1712 

~ • word 15621 .word 1577 

~ •• r4 15268 .Iord 1448 

no .1II0rd 14916 .1III0rd 1323 

(;l ... rd 1-
• .ord 1203 

;: • .ord 14218 
no ,ltOrd 13871 ENDWIN .set ; EIID fJ' TABl£ fJ' WINroI ClEFFICIENTS 

t::! .word 13526 

"' 
HHHtHHHMtIIIIIIIIIIII,llIlllfHttHfIIIIIIIIIIIIIlIIlIIIIlUHHHHH ... ... td 13184 

C ,1III0rd 12844 
I:>... .lIIOr4 12506 ' 

ROUTINE. MIN 
S· .word 121n OIl ,word 11839 IlEFERENCE IN FLOIICHART' READ QIE\£ 
~ 
;: .word 11510 INCREIOT TINE 

I:>... .• r4 11184 SCAlE 

t::! .liIord 10861 D1lF 

~ 
.word 10541 
.1II0rd 10225 

FUN:TII)I: R£AD SAiV'I..E FRO! INPUT 1llRIE, AlII I.l'IlATE CLIIAENT TINE. SCAlE 

~ • .ord 9913 
Tl£ SAItPI..E AlII au.. D1lF IF IT IS SWITCIED III • 

t::! ,lIIIor4 9604 
no ,!fOrd 9299 

HHHHltHHfHfHlU111111111111111111111I111I111I11111111111111111111IIII 

ii:" .MOrd 8998 ... 
::to • .ord 8701 MIN . set ; READ tEXT Sllll'L£ FRO! lIRE INTO SIIIFLE • 

0 • .or. 84(]8 
; IN:AEIENT CLIIAENT TINE E'JERV lIS. 

;:s 
... rd 8119 



READQ LAC QIN WAIT FOR SOI1ETHING IJI QUEUE. THE QlJEUE IS 

~ SUB IlOUT ElIf'TY lIEN THE QUEIIE INPUT POINTER EIlLiIlS 
ttl BZ ::: READQ THE Ql.EUE (lJTPUT POINTER. 

ttl ... Il£MPT LAR ARO,IlOIJT , LOAD ARO WITH WEUE OUTPUT POINTER 
l:l :;; LAC 
::: 

*,0 , READ SMPLE FROI1 WEUE 

'ti 
C 

BGEZ POS~ 

'" ttl 

~ ADD 1JIE,I5 , CONVERT FROI1 SIIJIED-IIAGNITUDE NEGATIVE 
::: SACL SMFLE , TO TWOS-{OI1PLEI1ENT NEGATIVE 
ttl SUB SAAPLE, I 
t:l POS~ SACL SAI1PLE , STORE IN SMPLE 
ttl 
() 
C LAC IlOIJT 
"'- SUB IJIE , DECREMENT OUTPUT POINTER MODULO 8 S· 

OQ SACL TEMP 

l:l 
::: LAC 1JIE,3 
"'- OR TEMP , POINTER COUNTS oo2Fh TI'ROUGH oo28h WHERE 
t:l SACL /lOUT , THE QlJEUE STARTS AT 0028, 

~ LACK OOEUE 
~ SUB /lOUT , EVERY TII1E THE QUEUE OUTPUT POINTER DETS 
t:l BNZ SCALE , TO oo28h, IJIE tIS HAS ELAPSEO. 
ttl • ~ INCR ZALS CRTIME , INCREMENT CURRENT TIME BY ONE, 
~ 
C· , MOrula _5S3b 

::: ADD IJIE 
SACL CRTII'IE 

+UIHIIU***HU***UH*HfHH****HfHH**-I******H****4UHHHHUU***+ 

• 
SCALE SAMPLE INTO WOOKING RANGE. THE WORKING RANDE IS SET so THAT MlNE OF 
THE ACClJIIlLATORS IN THE TIJIE !£TEeTOR WILL OVERFLOW UNOCR ANY SIGNAL 
CONDITIONS. THE PEAK-TO-PEAK SINUSOIDAL SWITCH OIjiCH CAUSES A FULL SCALE 
(2541 READING IN THE TOTAL SIGNAL OUTPUT REGISTER, HAS AN INTERNAL 
MPLITUDE OF 2030. HN THE DEFAULT FACTOR OF 4 IS SELECTED, 2030 
CORRESPOIIDS TO AN INPUT SIGNAL LEVEL OF -10 dBoO. THE OTHER POSSIBLE 
SCALE FACTORS SHIFT THIS VALUE BY 12dB EITHER WAY. SOFTWARE LIMITING OF 
THE INTERNAL SIGNAL LEVEL OCCORS AT q 8191, WHICH, FOR THE DEFAULT SCALE 
FACTOR, CORRESPONDS TO A SIGNAL LEVEL OF +2.1 dBoO. THIS LEVEL IS ALSO 
SHIFTED BY 12 dB EITHER WAY BY SELECTING THE OTHER SCALE FACTORS, HilIEVER 
THE CDDEC WILL CLIP ANY SIGNALS LARDER THAN +3 dBoO. 

ffffHHfffIHfffffHfffHffHfHHffHH'H**H**fHUHfHHHffHf**ffHH** 

* 
SCALE .set 

ZALH SAMPLE , LOAD SMPLE INTO HIGH ACCUMULATOR 
.". ADD SAIRE,I3 \0 
W SACH SAMPLE,I , 2.25 * SAMPLE IN SAlFLE 

LT SAMPLE 
II'Y SCALEF , IIJLTIPLY SAlFLE BY SCALE FACTOR 

, 11,4 OR 1_) 
PAC 
SAC~ TEMP2 ; SAVE SIGN 
SACL TEIf'I 

ABS ; CHECK FOR OVERFLOW OF THE (4 * 8192 
SUB OIIE,I5 ; LIMIT BY SUBTllACTING 32768 
81.Z SlZOK 

OI'RLOD LAC TEMP2 
SACH TEllP2 ; EXTllACT PURE SIll'I OF SAlV'LE 

LAC 1JIE,I5 ; LOAD UP 32768 
SUB OIIE ; 32767 
XOR TEMP2 ; 32707 * SIGN(SAif'LE1 
SACL TEIf'I 

SlZOK LAC TEMPI,I4 
SACH SAMPLE ; DIVIDE BY 4, MAX VALUE IS 8191 OR -B192 

UUHfffHUHlfHffffffHff'*ffHffHHfff*Hfff-fffHHH'***H**HflffHH 

CHECK WHETHER DTMF IS ~ITCHED 011. OM IS SWITCHED ON HN THE 
APf'ROPRIATE 8lT IN THE FLAGS REGISTER IS SET. THIS BIT IS COPIED FROI1 THE 
MODE REGISTER EVERY TIME THE RESEHILTERING ROUTINE IS CALLED, IIUCH MY 
BE DETERMINED FROM THE FLOCHART. THIS ENSUlES THAT THE ON/OFF STATUS OF 
DTMF CANNOT CHANDE IN THE MIDDLE OF A FILTERING BLOCK. !DTMF AFFECTS THE 
NUMBER OF Fl L TERS USED 1 

fHfff*******ffH*****n*ffff*****ffffff***fHffHfHHHHffHffHfH"H+4fl 

LAC OIIE,DTMFLG 
lIND FLAOS 
BI FlLCHK ; IF DTMF IS OFF, BRANCH AROlJIF THE CALL 

; TO IT 

CALL DTMF ; CALL THE OM ROUTINE. 

FILCHK .set 

LAC FILPDS 
SUB 1JIE,I4 ; CHECK FOR END OF FILTERING, FILTER 
OOZ LE'ICAL ; POSlTIlJI GREATER THAN 1b3B4. 

ffnHu ... H+HffffffffHf .. H ... HHfft ...... HHHfI-ffHff .. HH .......... HHHHHf 

IF FILTER POSITION ti\S INCREl1ENTED PAST 16384, Ti£N A BLOCK OF FILTERING 
HAS BEEN COMPLETED AND PROORA/I FUll liRANCI£S TO LEVEL CALCULATION, OTHER
WISE IT CONTINUES WITH THE ENVELOPE l£TECTOR • 

f ...... Hf .... ftfftffHtfffftHHHHtfHHtHffHfHfHffH.HfHtfHH .. HHfHft 



~ 

~ 
~ 
~ 
-ti 
~ 
<I> 

C;l 
:. 
<I> 

~ 
8 
S: 

OQ 

~ 

5.. 
i::l 

~ 
'li 
i::l 
<I> 

~ §. 

HfHHfHHfHflHffHHHHHH"**HfHffHfHHfHfHfffHHHHHtHHH 

ROUTINE' EN'IOET 

REFERENCE IN FL~TI POWER DETECTOR 

FU~TION' DETECT CtWaS IN SIGNAL ENVELOPE RELATIVE TO THE USER
PROGRIIIt£D UPPER AND LOWER THRESHOI.DS. ENVELOPE DETECTOR AlWAYS 
RtIlS, REGARlIL£SS IF IoI£THER T!WE DETECTION IS ENABLED. THE 
ENVELOPE DETECTOR IS USED FOR TIIESTAI1PING. 

HHHffHfftHffHHfHffltHHtHfHffHH***","*HffHfftH-HffHfH+HH 

ENVOET .set 

LAC EDfCT,S 
SACH TEMP 
LAc TEMP 
AND tISOOFF , EXTRACT EDf FR(l'I EDfCT 

SACL TEMP 
LAC TEMP,S 
SACL TEMP ,32*EDfINTEIIP 

THIS OPERATIoo III'LElENTS A SIIOOTHING FILTER OF THE FORM' 

EN'IEL = (21115 • EN'IELl + ABS(32EDf * SAMPLE) - (32EOF * ENVEL) 

2ff15 

WHICH IS THE SM AS 

EN'IEL = ((I - K) • ENVEL) + (K • ABS(SAI'I'LE)) 

IoI£RE EDf IS K • 2,*10, K POSITIVE 

HfHHHHfHffffHHfHHHHHfHHffHfHHHHH-tHHfHHHHffHHHff 

LT TEMP 
IIPY SAIf'lE 
PAC 
ASS 
IIPY EN'IEL 
SPAC 
ADD ENVEL,IS 
ADD !WE, 14 
SACH EN'IEL,I 

THE NEXT PIECE IF COlE CHECKS THE ENVELOPE LEVEL AGAINST THE UPPER OR 
LOWER THRESHLD, ACCORDING TO THE STATE IF THE SIGNAL PRESENT FJA;. 

HfffHfffHHfHHfHfHHfHHfHHflHfHfHHffHHHHHfHHffHHfHH 

LAC !WE,1PRFLG , LOAD A 1 IN TONE PRESENT FIA; POSITION 
AND FLAGS ; AND WITH Tl£ FJA; REGISTER 
001 TPRSIIT , IIRI\IOl TO T!WE PRESENT IF IT IS SET 

~TONE LAC lI'RTIfl,2 , lIE WANT TO ClIf'ARE WITH 
, (8' 21, • UPRTHR) 

ADD lI'RTIfl , WHICH IS VERY NEARlY FIVE. UPRTHR 

SUB ENVEL ; SRAM:H TO NOSIG IF EH\I£l. IS Tl£ UPPER 
BGEI NOSIG , THRESHLD. 

LAC LIIRTIfl,2 ; WE AlSO aJrIPARE WITH (8 • 2/C • LIIRTHR) 
, BECAUSE Tl£ HIllIER IF THE TWO THRESHOlDS 
, IS TAKEN AS THE UPPER !WE. 

AOO LIIRTHR 

SUB EN'lEL , ffiOP TIflOlIlH TO NOSIG IF EN'IEL IS THE 
BLI TONSET , LOWER THRESHOLD • 

• 
NlSIG .set 

CALL RSTFIL , RESET FILTERING TO I~ORPORATE ANY 
, CI'IINGED PARAI£TERS 

rAIN , RETlIlN TO START. 

HfUHfHHH-HHHfH+HHHfHfHHHHHHff+HHHHH+HfHHHfHH+H 

TONE PRESENT FlJIG WAS SET. 

IfffIHHHHHfHffHf"**"******"HHH-HHHHHHHHHHflflH***HHf 

TPRSNT .set 

LAC 

AOO 

SUB 
001 

LIIRTIfl,2 

LIIRTIfl 

EN'IEL 
TOEPT 

TONCHK 

lIE WANT TO ClIf'ARE WITH 
(8 * 21c * LWRTHR) 
WHICH IS VERY NEARlY FIVE' LIIRTHR 

; IIRI\IOl TO TDEPT IF EN'IEL LOWER THAN THE 
, THRESHLD. 

OTHERWISE BRA/£H TO T_, AND IF THE 
T!WE DETECTOR IS 00, THEN BRA/£H TO Tl£ 
FILTER ROUTINE. 

fHffH*IHffH*HHtHHHHHfHHHHHff-HHHfHH+HHHHfHfHH+HH 

ROUTINE' TONS£T 

REFERENCE IN F~TI SET TONE PRESENT FIA; 



IIJ.ll OOET TlI£ 
C'l TDEPT LAC (lIE, TPRFLG ; PUT A I IN TI£ T(lIE PRESENT FLAG POSITIOO 
'" FUNCTION; HIIN1ILE octuRANC£ OF TONE OOET ;:, lOR FLAGS 

'" SACL FLAGS ; THIS HAS CLEARED TI£ TM PRESENT FLAG • ... 
;:, HH***HHHH·fH*HHfHHHHH**H**H***I-H"f**H**Hf4HfHH4Hf***** 

~ CALL RSTFIL ; CALL RESET FILTERING ROOTiNE TO ClEAR 
::: TOOET LAC (lIE, TPRFLG ; LOAO A I IN TONE PRESENT FLAG POSITION ; D!Wl ALL ACruI.LATORS AND SET tP FILTER 

~ 
OR FLAGS ; READV FOR THE NEXT flOCK. 

~ 
SACL FLAGS ; THIS HAS SET THE TONE PRESENT FLAG 

'" 
LAC (lIE,OOFLG ; LOAD A I IN THE OOET TIlE \W.ID FLAG 

~ 
LAC CRTlI£ ; POSITIOO 
SACL OSHOLD ; SAVE OOET TIME OF DETECTED SI~ IN AND FLAGS ;:, ; OOSET TIlE LATCH REGISTER 001 OSVAL ; IF THE FLAG IS SET, IiIlIW:H TO OSVAL '" tJ fHffffffflHHHHffU*HfffHfffHHHHHffffffff.H**HHHff**tH****f** LAC ONE, TOOEBT ; ELSE IF THE TONE DETECTOR IS ON, SET A '" 1"\ AND STlIJDE ; SHJlT TONE INTERRlPT. 

C) CHECK THAT THE TONE DETECTOR IS SWITCHED ON. IF IT IS NOT, THEN RESET THE Bl /lAIN ; IF TONE DETECTOR IS OFF, GO HOME. I'>.. 
S· FILTER AND RETlJlN TO THE BEGINNING. IF IT IS, THEN BRANCH TO THE F1LTER-

()Q ING ROOTINE. STINT LAC (lIE,STlNBT 
;:, lOR STlilDE 
;:, tHHHffHHHH+ffHfHH-HffHHHHH*H**fHHHtfffHHI"************* AND WilDE ; ASSERT SHORT TONE INTERRtPT I'>.. 
tJ SACL STIIODE 

T£tICHI( .set 

~ CALL AllEN ; WRITE OUT STATUS 

'"r:i LAC ONE, TOOEBT 

tJ AND STI()DE CALL IFUPD ; Ll'IIATE IF FLAG 

'" 
001 FILTER ; IF TONE DETECTOR IS 00, !!RANCH TO FlL TER 

~ ; RClJTlNE /lAIN 
1"\ • 
§" HHtHHffHHfHHHffHffl-HHHHHHfHHHffHfHHHH4UHffHHHHf OSVAL lOR FLAGS ; CLEAR ONSET TIlE VALID FLAG 

SACL FLAGS 
IF AT THE END OF THE ROOTiNE A BLOCK OF FILTERING HAS BEEN COIIPLETED, 
PROGRAI1 FLilI IlRANCHES TO LEVELS, OTHERWISE IT BRANCHES TO /lAIN LAC CRTlIE 

SACL DPTlI£ ; TONE DEPARTlIlE TIlE = CIJlRENT TIME. 
tHHfHffffHf,"**fHHH-HHfHf.lHHHffH:HtHHHHfffHHHHH*"***** 

• LAC (lIE, TONEBT ; IF TONE DETECTOR IS 00, THEN SET A DEPART 
TONOFF CONT3 ; RESET THE FILTERS READY FOR WI£N IT IS AND STMODE ; INTERRtPT. 

; SWITCHED 00 AGAIN. Bl /lAIN ; ELSE GO HOME. 

HHHffHHHfUHHHfHftHffHfftHfHHHHHH****ffff**fHf**f**H*fH ; SET A TONE DEPARTURE INTERR\PT 
DPINT LAC ONE,DPINBT 

ROUTINE; TDEPT XIII1 STMODE 
AND STIIODE ; ASSERT DEPART INTERRtPT 

REFERENCE IN FLOII::HARn CLEAR TONE PRESENT FLAG SACL STIIODE 
RESET FILTERING 
6fT OOET TIlE \W.IO FLAG CALL AllEN ; WRITE OUT STATUS 
CLEAR OOET FLAG 
SAVE DEPART TIlE CALL IFI»'D ; tPIIA TE XF FLAG 
SET DEPART INTERRI»'T 
SET Slf:JRT T(lI( INTERRUPT /lAIN 

.j>.. 
FUNCTIOO; HANDlE TM DEPARTlIlE fHHHUHfHUHHIHUHfHHffffHftHHHHHfffHffHHHfHHIHtHfff 

10 . 
VI tHftHfffHHffHffttHHfHHfHHlffHHffl-HHffHHfHfHfHflHHfHfH* ROOTINE; FILTER 



• ~ I 

IIFEIIEIICE IN Fl.llNCHllRTI FILTER 

C'l 
~ 
~ 
~ 
~ 

~ 
C;l 
:3 

"' t:::l 

§. 
~. 

l 
t:::l 

~ 
"t] 

~ 
i'ti 
~ 
g' 

FIKT_ ROUTINE FIR FILTERING AND IUUUATlNG 11£ III'UT _ .. 

tHlll ••• IIIIIIIIIIIIIIIIIIII' •• IIIIIII.1I11I111111I1111111111IIIIIIUUllfH 
I 

FILTER • fit 

11I1I.lllllllIlllIlllllllIllIlfllllllllllllllllllllll.I.IIIHH1111111.1111111 

I 

11£ FIRST SECTION CILCtlATES A SAIt'lE (F SINIlIII. 11£ PHASE X IS sroRED 
IN ~ FlRII'IO AWID POSSIBLE 0'.DfUII, lIND TiE REStlTlNG SAIt'lE IS IN 
2M14 FfM, IlAIlIUI \NIllE el2 f 2M14. 11£ DIVISION ASSttIES N.ltERATIll IN· 
2M14 FIRII, IIIIEVER 11£ SINE. SECTION PRlIIIXES A 2M13 RESULT, AND 11£ 
IEIMIIINllTill IS ACTUItiY IN ~ FIRII, TIIJS 11£ IU£RATIll IS SHIFTED LEFT 
BY 10 PLACES INSTEIIIl (F 14. (14-5+1 = 101 

111 ••• 11111111111111111111111 ... 11111111111111111111111111111fHHHHfHHfH 

UIQ( SXC£NT 
TIlR TElf'I 
LAC SI1I:I'II,5 
BZ PHASEO 

; I.IW) IJ' CSITRAI. VtLI£ (F slNm II 
; AH:TION INTO TElf'I 
; SIN(l)/1 IIERE 11£ PHASE X = ZERO IS A 
I Sl'ECIIL C41SE. 

1fI1.111 ••• 11111111111111I1111I111111H111111111111111111IIIIIIIIIIIIIIIIHH 

I 

ACCUIILATill 101 CONTAINS All 2HO ~TATION (F SINCPHASE. THIS IS 
_TED TO 11£ IIIML ~ c .REPR£!!ENTATION. 

ADO 
SACL 
LAC 
ASS 

·SIIl 
SACL 

LT 
LAC 
II'Y 
SPAC 
So1CH 

II'Y 
IW: 
So1CH 

LT 
II'Y 
IW: 
So1CH 

(1£,14 
TEIf' 
TEIf' 

(1£,14 
TEIf' 

TEItP 
KI,15 
TEIf' 

TEIf',1 

TEIf' 

TElf'I,1 

TElf'I 
SlID'll 

TEII'3 

; GElEAATE SINE (F SlID'll 

; SINE!XI IN TEll'I IN 21113 FIRII 

I.IW) T WITH SIN(l) 
IUIIY IILTIPLY IN ORDEA TO 08TAIN 
SIGN (F SIN(XIIX IWTIENT IN TEltP3 

LAC 
ASS 
SACL 

LAC 
f .. 

ASS 

I 

DIVO SIIIC 
N(p 

SIIIC 
N(p 

SIIIC 
N(p 

SUIIC 
N(p 

SUIIC 
N(p 

SUIIC 
N(p 

SIIIC 
N(p 

SUIIC 
N(p 

AND 
SACL 
LAC 
ADD 
SACL 

LAC 
aEZ 

ZAC 
SlII 
SACL 

f 

PHASEO 85et 
'f 

SlID'll 

TEIf' 

TEltPI,IO 

TEItP 

TEIf' 

TEIf' 

TEIf' 

TEIf' 

TEItP 

TEll' 

TEItP 

IISOOFF 
TElf'I 
TElf'I,8 
(1£,7 
TElf'I 

TEII'3 
PHASEO 

TElf'I 
TElf'I 

; 08TAIN POSITIVE DIVISill (PHASE XI IN TEIf' 
; DIYlSill Ar«U STILL IN ~ FIRII 

SINE(l) IN 21113 FIRII • 21110 IN 
IUUUATill 
READY FIR DIYISION. INITIIL REStlT IN 
2116, 

; 8 CYCLE DIVIDE LOOP 

; 8 BIT R£SULT IN 2116 FIRII 

I ROIJII BY ADDING 128 
; FilIAl REStlT IN 21114 FIRII 

; JOE IF REQUIRED SION IS POSITIVE 

; OTI£RI(ISE INVERT SIGN (F REStlT 

; SINIlIII So1II'LE IN TEll'I 

101 CALCIlATE WINOOW POsITION AND READ WI_ So1II'LE ~ RIWI TAII.E 

LAC 
ASS 
So1CH 

UIQ( 

ADD 

FILPOS,9 

TEll' 

MINIM 
TEIf' 

DIVIDE ASS (FILTERPOSITIONI BY 128 
11£ REStlT IS 11£ CFFSET INTO 11£ HALF
LEMlTII WINIIOII TABLE. 

; ADD IN WINIIOII TAII.E CFFSET 



~ 
~ 
~ 
~ 
~ 
~ ::s 
(\> 

b g 
~ 

OQ 

§ 
I:>... 
b 
.~ 

~ 
b 
(\> 

~ 
~ §. 

§ 

FLIIOP 

LAC 
AND 
BNZ 

LARK 

.set 

LARP 

ot£,DTIIfLG 
FLAGS 
FUlOP 

MO,5 

; IF DTIF IS ~, au 00 TIIlfE FILTERS, 

; EI.S£ 00 ALl. SIX 

; FILTERIII> LOOP 

HfffHf.IIIIIlIIIII.IIII.,HtHfHfHHHfHffHHI.I"IIII'11111111111I11II 

THIS IS TI£ FIL TERIII> LOOP. FOR EACH OF TI£ FILTERS,. A SIrE AND A COSI!( 
·SMPLE IS GENERATED, AND EACH IS IILTiPLIED BY TIE PROIltf OF TI£ INPUT 
SAPlPLE AND TI£ _lATE FILTER COEFFICIENT, WIDE OR _. TIE_ 
FILTER COEFFICIENT IS .AJST TIE WINIOI SAIf'LE II£REAS TIE WIDE FILTER 
COEFFICIENT IS TI£ WINIOI SAIf'LE l'ILTiPLIED 9Y A SINIXl/XSAIf'LE. 

HffffffHttHfffHHHHHfffHfHfHHHfHHfHHtfHllllllllIllIllIlllll1 

GENERATE SINE AND COSINE SAIf'LE AT THE SPECIFIED SEARCH FREOOEN:Y OF THIS 
FILTER 

LAC 

ADD 
SACL 

Of , LOAD UP FREQN IIiICH IS THE REllUIRED PIIISE 
; INCIlEIEHT 
, ADD ClIlRENT PIIISE. 
, CIUllATE NEW PIIISE OF SEARCH FI£lII£HCY 

SINE AND COSINE ROOTINE. REQUIRES ARGIJ£NT IN TElf'I IN REPRESENTATION 
WIERE q 20015 REPRESENTS q c. RESULT IS -COSlTElf'Il SCALED IN LOCATION 
TEII'2 AND SINElTEllPIl SCALED IN LOCATION TElf'I USES TEll' AS A SCRATCH 
LOCATION. 

Kl IS A CONSTANT EllUl¥. TO 1.4008687·' 2814. TI£ 0CCtJlAANC£S OF 1IE,I4 
REPRESENTCI2. TI£ RESULT IS A SINE AND A -COSINE SCALED 9Y 0,,050 • 
20013. TI£ ALGORITHII ACCEPTS AlnES IN TI£ RIIIlGE q 2 • 20014, REPRESENT
INO q c, ·ANO CUMRTS THEIl INTO 2 EQUIIIAUNT AIIlLES IN TIE RANGE q 1 • 
20014, ot£ SIIIFTED 9Y el2. IT THEN PERFORItSA SINE ALGORITHM ON EACH OF 
T1£SE·.TWO WIllIES TO YIELD TIE DESIRED RESULTS. 

SINCOS .set 

LAC , !lIKE ANILE IIIIlJU) 65536 

TJLR WINIOI ; RfAD WINIOI SAIf'LE 

LT WINIOI 
~ TEllPI ; TAKE WINIOI • SINIXl/X PRODl£T 
PAC 

SACH Sl«:WIN,1 ; STIllE PRODUCT 

ACCIJIlLATE WINOOI AND SNCIIIN INTO THEIR RESPECTIVE ACrollATORS; TI£S£ 
Will LATER lIE USED TO _12£ TI£ FILTER OUTP\JlS TO OOf'EHSATE FOR TI£ 
EFFECT OF TI£ WINOOIINO AND TI£ IILTlPLICATI~ 9Y A SINIXliX FtH:TlON. 

IIHHfftHfHHH •• IIII.III •• IJHHHIII.IIIIIII.II •••••• lfHHHHHIHHH 

ZIl.H ACSWHI 
ADOS ACSWLO ; LOAD UP SHeWIN ACrollATOR 

ADO SHeWIN 
SACL ACSILO 
SACH ACSIIfI ; STORE ACCUIIILATiON BAC1<. 

ZIl.H AClNtI 
ADOS ACWNLO ; LOAD UP WINIOI ACCUIIILATOR 

ADO WINIOI 
SACL AClN.O 
SACH AClNtI ; STORE ACruI.LATI~ BACK. 

LAC SAIf'LE,2 
SACL TEIf' ; I!Ul.TlPLY SCALED LINEARIZED SNf'LE 9Y FOI.Il 

LT TEIf' 
II'Y SNCIIIN , GENERATE WIDE FILTER S4IIIPl.E 
PAC 

SACH SHeWIN,I ; SHeWIN NlI/ CONTAINS WIDE FILTER SAIf'LE 

~ WINIOI ; IlENERATE NARROW FILTER SAIf'LE 
PAC 

SACH WINDOW,I ; WINIOI NlI/ CONTAINS NARROW FILTER SAIf'LE 

LAC 1tSOOfF,8 
AND FSPW ; MSK IN FILTERSELECT 9YTE 

SACL TE11'3 
LAC TEIIP3,2 , TI£ SIX FILTERSELECT BITS ARE NlI/ IN TIE 
SACL TEII'3 ; TIP SIX BITS OF TEII'3 

LARK ARI,FREQI 
LARK MO,2 ; .SET UP LIIOP COUIITER FOR TIE FIRST THlEE 



~ 
00 

C) 

~ 
~ 
~ 
'ti 
~ 
03 ;:, 

'" tJ 
8 
:::... 
~. 
;:, 
;:, 
:::... 
tJ 

~ 
">i 
tJ 
'" ~ 
§" 

ASS 
SUB !l£,14 
SACI. TEIf' 
LT TEIIP 
LAC Kl,lS 
If'Y TE1tP 
SPAC 
SACH TEIIP,I 
II'Y TEIf' 
PAC 
SACH TEllPZ,I 
LAC .. 
ADD !l£,14 
SACI. TEif' 
LAC TEI1P 
ASS 
SUB !l£,14 
SACL TEif' 
LT TEI1P 
LAC Kl,!S 
MPY .TEI1P 
SPAC 
SACH TEMP,! 
If'Y TEIf> 
PAC 
SACH TEI1P!,! 

fHfHHHHtfH******HfHHHffHHHffH**fHHf************HH-HfHfffH 

END IF SINE COSINE ROUTINE 

IffHHfHfHflfffHfHHHHfffHfH******HHfHHHfHHf****HfH+HitHfH 

HHHffHf**********fHHHlHfHfff**fHfHHHHH****HftHI-HffHf:HHfH 

THIS SECTION GETS ElTtER WIDE OR NARROW SAllPLE INTO THE T REGISTER. 

fHftH+fH*HfHffHHfHffH+HHHfffHtHHfHfHH+HHfHfHfHHHfHft 

I 

SELECT ••• t 

LT SN::WIN I SNCWIN CONTAINS THE WIDE SAllPLE 

LAC TEI1P3,I I PICK OFF THE FILTERSELECT BIT FOR THIS 
; FILTER 

SACI. TEllP3 
BLZ WIDEF ; IF THE FILTERSELECT BIT WAS SET, THEN 

I THIS FILTER IS WIDE, 

NARRIF .set ; THIS FILTER IS NARROW 

LT WINDQI I WINDQI CONTAINS Tl£ NARROW SAI1PLE 

flffHfffHHfHHfffHHHt-HfH+fHHflHHHH-HffHtHHHf**fffHHH*** 

END IF SELECTION SECTION 

Hfffff*fHfHfffHHHHHHHfHHfHHHHHtHHHfHHHHfHfHHHHH 

• 
WIDEF .set I THIS FILTER IS WIDE 

If>Y TEI1PZ 
PAC 
ADD ONE,!4 
SACH TEI1P,! I SAllPLEtCOSlNE I Z"IS 

LAC TEI1P,2 I LOAD SAllPLEICOSINE PROIllCT, N(Ij 

I ACCUIItl.ATE 

ADDH .. I COSNiI ADDED 
ADDS I- I COSNLO ADDEO 
SACH .. I STORE BACK ACCltU.ATOR, 
SACI. 
If>Y TEI1P! 
PAC 
ADD ONE,!4 
SACH TEIIP,! I SAif>LEISINE I Z"IS 
LAC TEI1P,2 I LOAD SA/lPLEISINE PRODUCT, NOW ACCUI'iJLATE 

ADDH SINlliI AODED 
ADDS 1- SI~O ADDEO 
SACH .. STORE BACK ACCIJItJI.ATOR • 
SACI. ",O,ARO ARO NOW POINTIOO AT FREIlN FOR NEXT FILTER 

IlANZ FLOOP 

fHffHffHfH*****ffH****H**HHfHHfHfHHfHHHfHfHHffffHHfHf** 

THE NEXT SECTION ACCltIJLATES (SAif>LE/4ll SO THAT A MEASlIlE IF Tl£ TOTAL 
SIGNAL ENERGY IN THE llANO CAN BE CALCLlATED, 

**HHfffHfHfHH****HHHHHHHffHfffHflfHf***H+fHHHfftHfHHfH 

LAC SAllPLE,I4 I SAif>LE/4 IN HIGH ACrutULATOR 
SACH TEI1P 
LT TEI1P 
I1PY TEI1P 
PAC I (SAllPLE/4ll IN ACCltU.ATOR 
ADDH ACSIIfI I ACCUI1!l.ATOR 
ADDS ACSQlO 
SACH ACSQHI I STORE ACCUl!ULATOO BACK, 
SACI. ACS(LO 

fHf4H+HfffH****ff**"***flHHHHffHHHfIHffHff**********"HfHH** 

INCREI1ENT FILTER POSITION 

ff**HfftHf**HH*",*f************ffffHfftHfHffHfHfHfHffHfHHHffH 



<:) 

s 
~ 
~ 
~ 
~ 
(:;l 
:: 
!II 

~ 
~. 

§ 
s::.. 
t::l 
~ 
~ 
t::l 
!II 
~ 
t"\ go 

~ 

LAC 
AlII 

FlSTlll,1 
01£,5 

ADD FILPOS 
S4ICI.. FILPOS 

, CAlCILATE FILTERPOSITI~ INCREIENT AS 
, (lFL +32) 

HHHHIIIII'III'IIIIIII"II'III'III'II+HftHHHHffHHtHHff'HHfI~ 

IIICREI£IIT SIN(X)!X PHASE 

HfHfHHfHHlHfHHHHffHHHfHtfHHHHfHffHHHfI.IIIIIIIIIIIHU 

LAC 
lIND 

IISOOFF 
FSPW 

ADD SINCPH 
S4ICI.. SINCPH 

ItASI( IN PW Tl£ PASSIIANDIIIDTH, WHICH 
E!lIAS PHASE INCREftENT REQUIRED Fill THE 
Sin(X)!X PHASE. 

PlAIN , RETlJRI( TO BEGINNING IF PlAIN LOOP. 

HHHHHflHtllllllllllllllllHHflllllllllllllllHHHHtHtlHffHHHtHt 

• 
RIlUTltE. LEVCAI. 

REFERENCE IN FlIKHARTI CAlCILATE LE\IEl.S 

FlJlCTI(II. CAIClLATES THE LEVELS AT Tl£ END IF EACH Il.OCK IF FILTERING 

HffHfffHHffHHHffHIIIIII',I'I'I.HHfHfHffHHIHfIIHHIHHHHHH 

lEVCAI. .5.t 

HfHHttHIHHHHHHHHIHHHfHlHHfHHHHHHHfHHHHfHH+ftHf 

• 
FIRST CI£CI( THAT THE QIElE IS EMPTY. IF IT IS lilT, .All' IIACI: TO THE 
BEGINNING IF Tl£ PROGRAII. IXJj'T 00 ANY IF THIS PROCESSING tllTIL THE QUEUE 

IS EftPTV, THIS WILL RESTIIlE Tl£ INTEI1RLI'T TIlE Il\£RI£AD PIIDIIIDED BY 
HAYING AN EMPTY QIElE. 

HIHHfHtHHfHffHfHHftHftHHHlHHHfHffffHHfHHt.HH.H.ttHHH 

LAC 
SUI 
BNZ 

QIN 
QOUT 
PlAIN 

, Tl£ QIElE IS EftPTY WHEN THE QIElE INPUT 
, POINTER EIlIAS Tl£ OUTPUT POlrlTER. 

CAlClLATE Tl£ TOTAL 51 __ LEVEl. IN TI£ WHOLE BIWD. IE HAVE All ACCUIIJ

LATI(II IF (SAII'lE!411 IN ACSQRD. THIS IS DIVIDED BY (44FILTERLENGTH), 
WHERE FILTER LENGTH IS U6384I1Fl + 16)) + I, AND THEN IU.TlPLIED BY 2 
lIND SQUARE-fiOOTED. 

LAC FlSTtll 
ADD 0NE,4 ,GII'ESFl+16 
S4ICI.. TEIf' , AS DIVI50l IN TEIf'. 

UIRI( 1IRO,15 I SET Ll'4IIRO AS 16 CYCLE COONTER 
ZALH OlE 

• 
1K.00f SUBC TEIf' 

BANZ 1K.00f 

ADD M,2 
SACL TEPII' , 4 • FILTERLfNGTH IN TEIf' 

ZAl.H ACSQHI 
ADDS ACSQlO 

SUB TEIf',15 , LIMIT DIVIDEND TO LESS TIWI (2H15 • 
, DIVI5Ol) 50 THAT RESlLT IF DIVISI~ WILL 
, WILL lIE LESS TIIIN 2H15 

BLZ SlZEOK 

TooBIG ZN: 
SUB ONE 

SIZE(l( .set 

ADD TEMP,15 , DIVIDEND L1"ITED. 

UIRI( 1IRO,15 , SET LI' IIRO FOl 16 SUBC'S 

AI.OOP SUBC TEftP 
BANZ ALOOf 

S4ICI.. TEIf' 
LAC TEIf',3 , RESlLT MIl IN 2H2 FOl" AS REQUIRED BY 

, THE SIlUARE ROOT RWTltE. 
SACH TEMPI 
S4ICI.. TEftP2 
CAlL SQRT , SIlUARE ROOT. RESlLT IN TEMPS 

LAC ItSOOFF,8 
IWD CTLTSl. , ItASI( IN taiTR!l. REGISTER BITS ~ Y. 
ADD TEMPS 
S4ICI.. CTLTSl. , STIllE RESlLT IN UIER HALF IF CTLTSl. 

HHffHHftHf •• I.IIIIIIIIUI.IIIIIIIII'IIIIIIIIII.I.llllfD 

DIVllE Tl£ (WINDOW-SINmlll WIlE IICCIJU.ATI~ IN' Tl£ WINDOW _()I 
ACClIU.ATI~ BY 2H15. 

HHfHHHHHfHtHtHHHtHtlllllllllllllllllHflllllllllllllllHHftHfH 



VI 
ZAlH ACSWHI 8 ADDS ACSILO NARR~ .set , THIS FILTER IS NARRQI 
SACH ACSILO,I , RESUlT IN ACSILO 

LAC ACWNLO , ACWN..O COOTAINS TI£ NARRQI NlRIIALIZATICll 
ZALH ACWIIHI SACL TEIf 
ADDS ACWNLO • 
SACH ACWNLO, I , RESUlT IN ACWNLO WIDER .set , FIRST _IZE TI£ COSINE ACClIII.lATOR 

LAC f+ 

fHffHffHHHHffffHHHHHHHfH"*HHHHfHffHHfffff*****f**HfHiHf LAC .. , TWO rut!\' READS TO IM:R£/ENT POINTER TO 
, COSNHI 

161 NlRIIALIZE THE SINE AND COSINE FILTER ACClJllIJLATORS BY DIVIDING T1£" BY 
EITHER THE (WINDOW' SIN(X)/X} ACCtIIULATICllOR TI£ WINDOW ACCttlULATION ZIILH f+ 

DEPENDIND ON WHETHER THE FILTER IS WIDE OR NARR~. ADDS , LOAD UP CDSINE FILTERII ACCUllJLATOR 
ADS 

fHfHHHff .... HHHfHHHfff*************H*fHffHf.Hfff**"*HH+HHH 

• SAR ARI,mPl , SAI'EARI IN TEI1PI 
LAC MSOOFF,8 LARK ARI,15 , USE ARI .TO COOTROL A 16 CYCLE DIVIDE. 
AND FSPW , I1ASK IN FILTER SELECT BVTE 

CDIV suee TEMP , DIVIDE BV THE SELECTED ACCI.I1WlTOR 
SACL F1LPDS BANZ CDIV 
LAC FILPDS,2 , THE SIX FILTER SELECT BITS ARE OOT IN THE 
SACL 

~ 
FILPOS : TOP SIX BITS IF FILPDS LAR ARI, TEMPI , RESTORE ARI 

~ LARK ARl,FREQI SACL TEMP2 
<I> LARK ARO,2 , SET UP LOOP COUNTER FOR THE FIRST THREE LT TEMP2 , MULTIPLY RESUlT IF DIVlSION BY SINE 
~ , FILTERS ONLY MPY CIlRREC , CORRECTION FACTOR. 

::; LAC CllE,DTMFLG PAC 

AND FLAGS SACH H,l,AR1 ; STORE 2*RESUlT IN CDSNLD ::: 
'ti 8HZ NLOOP ; IF DTMF IS ON, ONLY DO THREE FILTERS, ffHfHffHfHHHH***HHffHHHffHHHfHfHHHHHHHHtHfHHf**HH 
<:> 
'" <I> 

LARK ARO,S ; ELSE DO IILL SIX OOW REPEAT FOR THE SINE ACCttlULATOR 

~ :::. NLOOP .Sft fH'HH**HIH*****HHHHHHfIHHH+HH**"**HHHHfHHHf*******HH* 
<I> • tl LARP ZALH It 

~ ADDS ; LOAD UP SINE FILTERII ACClIIJLATOR 
<::> f**HHHHf ....... fHHHHHfHHfHHHHHH**fHfHt+****HtfH**Hf***"* ADS 
!:>.. 
S· 

SAR ARI, TEMPI ; SAYE ARI IN TEMPI ()q THIS IS TI£ NlRIIALIZATlON LOOP. 
l:> LARK ARl,IS , USE ARI TO COOTROL A 16 CYCLE DIVIDE. 
:::. THIS SECTION GETS EITHER THE WIDE OR NARR~ ACWI.JLATION INTO TEMP • !:>.. SDIY suee TEMP 
tl f'f+HHHHfHHHttHHHHf*tHH+ftfffHHHHfflfHfHH*******HlffH*H BANZ SDIY 

~ LAC ACSWLO , ACSWLO COOTAINS THE WIDE _IZATION LAR ARI, TEMPI ; RESTORE ARI 
"t:! SACL TEIf 
tl SAeL TEMP2 
<I> LAC FlLPOS,l ; PICK OFF THE FIL TERSELECT BIT FOR THIS LT TEMP2 ; Kl..TlPLY RESUlT IF DIVISION BY SINE 
~ 
() ; FILTER MPY CORREC ; CORRECTION FACTOR 

5' SACL FILPOS PAC 

:::. BLZ WIDEFL ; IF TI£ FIL TERSELECT BIT WAS SET, THEN SACH ',I,ARI , STORE 2*RESLlT IN SINnHI 
; THIS FILTER IS WIDE. 

LTC 
MPY 



c;) 

s 
"' i:: 

~ 
~ 
~ 
Cl ;:s 

"' t, 

! 
I:> 
;:s 
I:>.. 
t::l 
~ 
~ 
t::l 

~ 
§' 

~ -

Me , SQUARE SINE RESllT 

LT 
If'Y .. , SQUARE COS RESULT 
~ , AND AIl) IT IN -) 41 SU1 OF SQUARES 

SACH TElPI 
SACL TEII'2 
au. SII!T , NOTE THAT SIlRT ALWAVS RETURNS WITH ARP--() 

LMP 

lAC .. IXmI READ 111 ltaflENT POINTER TO END OF 
IILOCI(. 

lAC TEItP3 LOAD lIP RESlLT OF SQUARE ROOT 
SACL *.O,MO ST!I1E RESllT (FILTERN OIJTPIJT LE'iEL) IN 

SINIt.O 

HHHfflHHHflHHHfltHtHHlHfHIHfffHfftHHHffHffffffHfHHfHHf 

END OF tGlI1A1.lZATION SECTION. REPEAT FIR EACH FILTER. 

IHltHHHIIIIIIIIIIIIIIUIHtHHHHHIII".IIIIII •• llllfIHflfttHHlHfIf 

BANZ tI.O(p 

HHHHlHlfHHHHHIfHHHHHHfHHHfHfHffHfHffffHtHHHHHHH 

RruTINf' CINlS 

1e"ERENC£ IN FLOIoOiART: CIfCI( CIW«S 

FLlNCTION' CIfCI( FIR LEI'EL CHANGES DlI!IMl A TlINEBl!!ST 

tHHffIHlHlHHHHffflllllllllllllllllfffffHHffHHHfHffHfUHH+HH 

. I 

to. O£CK FIR CHAMlES IN 1lIIY OF THE FILTER LE\'ELS hlilCH CROSS THE CHANlE 
l1tlESI(U). COPY TIE FLAGS REGISTER INTO TEIP. NF USE THAT 111 CIfCI( FIR 
CHAMlES WHILE TIE REAl. FLAGS REGISTER IS ItlDIFIED 111 Ie"LECT THE FILTER 
OUTPUTS hlilCH ARE ClJRREllTLV ABO'IE THE CHANIE l1tlESI(U). 

.set 

lAC 
SACL 

lAC 
AND 
SACL 

FLAGS 
TEIP 

1ISOOFF,8 
FLAGS 
FLAGS 

; Cll'V FLAGS INTO TEIIP 

, CLEAR WI THE SIX FILTER LE'iEL BITS. 

lAC 
AND 
SACL 

LARK 

lAC 
SACL 

EIFeT 
IISOOFF 
TElPI 

ARO,FREQI 

ONE,FILTl 
TEll"2 

, LOAD lJI> CHANlE l1tlESI(U) 

, ST!I1E CT IN TElPI 

• START POINTIMl AT FREQI 

; INITIAL BIT 111 I0Il( WITH IN FLAGS 

ClOOP IIIIR It 

I 

COO 

IIIIR 
IIIIR 
IIIIR 
IIIIR 

lAC 
SUB 

BGEl 

lAC 
XIR 
SACL 

lAC 
IR 
SACL 

lAC 
SACH 

lAC 
BIll 

.. .. 
It 

It 

TEll"I 
It 

COO 

TEllP2 
TEIt' 
TEll" 

TEll"2 
FLAGS 
FLAGS 

TElP2,I5 
TEll"2 

TEII'2 
CLOOP 

; to. POINTIMl AT SltRO 

, LOAD lJI> CHANlE l1tlESI(U) 

, ARI NOW POINTIMl AT _I 

(I!(J> TO END OF LOll' IF LE'iEL IN THIS BAND 
IS BELOW THE CHANIE l1tlESI(U). 

LOAD lIP _lATE FLAG BIT IIASK 

; FLIP THE BIT IN TEIP 

; SET TIE BIT IN FLAGS 

; SHIFT BIT OF INTEREST ALIJ«l TO TIE RIGIIr 

; REPEAT CLOOP FM EACH FILTER 

tff*IHfHHHHHHtHtfHHtHtHtfHHtHHtHHHHtHHHtIIIIIIIIIIIIIII 

ROUTINE' LI'LS 

REFERENCE IN FLOWCHART. WRITE WI LEVELS 

FUNCTION: WRITE LE\'ELS INTO REGISTERS 

HHHffHHHHfHffHHHHHHHfll •••••••••••••• HHHHHf ............ _ .. 

IHHfHHlHlfIlHHIIIIIIIIIIIIIIIIIIIIIIIIIJIIIIIIIIIIIIIIIIIII .. 1111111111 

QJ>V FILTER WlPUT LE\'ELS INTO THEIR RESPECTIVE REGISTERS IN caFRESSED 
FORItAT. 2 LE\'ELS TO A lDID. 

HffHHfHfHHHHHII ....... IIIIII.lfHHHHffffllll.IIIIIII •• lttHfHHH 

LI'LS • set 

lAC SINlLO,8 



s 
ADD 51Il21..0 
SMl. LYLI2 

LAC SIN3LO,8 
LD'K I 
ADD SIN4LO 
LD'K 0 
SMl. LYL34 

LD'K I 
LAC SIN5LO,8 
ADD SIN6LO 
LD'K 0 
SMl. LYL56 

fHfHHHHffIIIIIIIIIIIIIIIIIIII ••• ,'IIIIIIIIIIIUIIIIIIIIUIIHHIHHH+H 

RIlUTII£'. COI'I'LT 

REFERENCE IN FUIDtART. FIRST BLOCk FLAG SfT? 
CIWlGES? 
SET CIWIlE !llTERRUPT 
CLEAR FIRST BLOCk FLAG 
SAVE I£LD ONSET TIlE 

C) SET ONSET TIlE YALID FUIG 
~ SET ONSET INTERRlI'T 
<I> 
i:l FUNCTION. ClIfLETE IJ'ERATIOIIS READY FOR I£XT FILTERINl IJ'ERATION 

~ 
.$:: 

"ti 
~ 
03 
~ 
t1 
~ 
R 
~. 

~ 
:3 
1:1.. 
t1 
~ 
'll 

~ 
~ 
§" 

CO/IPLT 

• • 
OIINT 

.set 

LAC 
AND 
IWZ 

LAC 
AND 
BZ 

LAC 
XOR 
AND 
SIn 

au 

au 

OIE,FSTfLG 
FLAGS 
FSTTI" , IF IT IS TIE FIRST BLOCk, SKIP OYER TIE 

, NEXT SECTION 
mP 
IISOOFF 
CONT3 , IF /u TIE b FUIG BITS lIRE ZERO, TtERE 

, WAS I«l CHANGE IN Lf'IEl. ACROSS THE CIWIlE 
, THRESHOLD 

1lNE,001NBT , ELSf TIERE WAS A CIWIlE 
STIfJIE 
ST!!OIE , ASSfRT OWIGE INTERRlI'T 
STIfJIE 

ATIEN , IIUTEOUT STATUSs 

XFUPD , II'DATE XF FLAG 

CONT3 

FSTTI" ... t 

LAC 
SAC!. 

LAC 
OR 
SIn 

OSIWI 
OSTIIE 

OIE,ONSFLG 
FLAGS 
FLAGS 

SET AN IJISfT INTERRlPT 

, COPY ONSET TIlE FROIIIO..DIIil RESISTER 
, INTO ONSET TIlE RESISTER 

, SfT TIE ONSET TIlE VALID FLAG 

fHfllllll.II.I.llftHfHitHHffHHHffHHHffHfIIIIIIIIIIIIIIH'**'fH*HH 

OSINT 

• cam 

LAC 
XOR 
AND 
SIn 

au 
au 

.Stt 

au 

LAC 
lOR 
AND 
SIn 

OIE,OSINBT 
STIIODE 
STn:lIE , ASSfRT ONSET INTERRlI'T 
STIIODE 

ATIEN , illiTE OUT STATUS 
XFlPD , UPDATE XF FLAG 

RSTFIL , RESET TIE FILTER 

OIE,FSTFLG 
FLAGS 
FLAGS 
FLAGS , CLEAR THE FIRST BLOCk FLAG 

MIN , RETIJlN TO BEGINNIIIl 

HffHHHffHff+HfHtfiHtH*HffHfHffHHfHfHffHHHfHflHHfHHHHH 

RIlUTINE. RSTFIL 

REFERENCE IN FUKHART' RESET FILTERING 

FUNCTION' CLEAR DOWN FILTER ACruUJITORS AND RESET POINTERS 
READY FOR AI«lTtER FILTERING IJ'ERATION. 

HHHtfHffHffHHHfHHHHfttHfHlllllllllllllllllllllllllllllllllllftt* 

* 
RSTFIL • Stt , RESET FILTERING ROUTINE • 

LAC /ISOOFF LDAD II' UJiER BYTE MSK 
AND FIISFl. MSK IN FL 
SAC!. FLSTOR FL IN FLSTOR 

ZAC 
SUB 0IE,14 

'"5~ 



SIICL FILPUS ; RESET FILTER POSITION TO -16384 

~ 
S 
~ CIILCtlATE INiTllII. SINUl/X PHASE 

:i;; EXPRfSSION FrM THIS IS' 
I:: IINITIIil. F1LTERPOSITION f SINClI/1 INCRE/lEllTI/HIILF-fILTERLENGTH 
~ WHICH IS 11£ SI¥£ AS' 

~ 1-16384 f PII) / 12fL +32) 
!l> 

~ 'HfflHffHffHtHtfHHHftlHIIIIIIIIIIIIIIIIIHffHfffHfHfHHtHHHHH 

;: f 

!l> lAC FSPII ; LOAD UP FILTER SELECT AlII) PASS_IDTH 
tl AlII) IISOOFF ; lIASI( iIj _10TH SPECIFIER PII 
!l> SIICL TEIP 
~ 
<:) 

~ lAC CIE,14 , 16384 

Oq SIICL TElPI 

I:> 
lAC FLSTIll,1 ::s 

I:>.. ADD .CIE,5 ; HALF FIUERLENGTH • I2FL +32) 
tl SIICL TEIF2 , DIVlSOl 

~ LT TElPI 
'":i II'Y TEIf' ; 16384 f PII 
tl PAC , DIVIDEND IN ACClIUATIII 

'" ~ lJIRI( 0,15 
~ 

g' f 

SLOOP 5lAIC TEIIP2 
lIMI SLOOP 

SIICL SINCI'H 
SUB SINCI'H,I 
SIICL SINCI'H ; INITIIII.SIMl'HASE 

HfHHHHHHHfHHfffH 

I«lW ZERO III.L TI£ ACCUIlATtIlS 

*HUHIIII.IIIII.IIIIIII 

LJIRI( ARI,FlEQI 
lJIRI( MO,2 ; SET If l.DII' cruITER Fill TI£ FIRST 1lR£E 

, FILTERS ONLY, 
lAC CIE,DlftFLG 
AlII) FLAGS 
1111 ll.DII' , IF DIftF IS ON, ONLY DO 1lR£E FILTERS, 

lJIRI( MO,S ; B.SE DO III.L ·SII 

@ Zl.DII' UIRP ARI , Fill £lICIt FILTER, DO JUII'I III:REIENTS If 
lAC It , ARI OVER 11£ FREIIN AlII) PIIISEII LOC/lTiONS, 

lAC It 

Zf£ , TI£N ZERO 11£ ACClIUATIII AlII) PUT ZERO 
SIICL It , INTO 11£ !£XT FOIl LOC/lTiONS, 
SACI. It 

SACI. It 

SACI. I+.O,ARO 

IIMI ZLOOP ; TI£N ZERO 11£ REltAININl ACCUIlATORS 

SIn. ACSQHI I HIGH WORD If 32B1T SIIJI1l SIIUARED 
,ACCUIlATIII 

SIn. ACSGLO ; LOll WORD If 32B1T SIONIII. SIIUARED 
, ACCUIlATIII 

SIn. I¥:INtI , HIGH WORD If 32B1T WINlOi ACCUIlATIII 
SIn. ACWIU , LOll WORD If 32B1T WINIOi ACClIUATIII 

SIn. ~I HIGH WORD If 32B1T SINIXl/X. WINIOi 
PROOUCT ACCUIlATIII 

SIn. ACSIILO LOll WORD If 32B1T SINIXl/I. WINIOi 
PROOOCT ACCUIlATIII 

HHHfHHflfHHHHHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'1111111111111111 

QEC!( INTO BIT IN IIOIE REGISTER AlII) SET 11£ DTIF ON/iff FLAG IN 11£ FLAGS 
REGISTER ACCORDINGI. Y 

lAC CIE,DTI1F\.G 
AND FLAGS 
SIn. TEIf' ; !lET aJlAEIIf DIftF FLAG INTO TEIf' 

lAC CIE,DlftFBT 
AND STIIOIE 
SIn. TEltPI ; !lET STATE If DlIf' BIT INTO TElPI 

lAC TEI1PI,IDTIFLG-DlIf'BT) 
1M TEIP ; RESU.T IS A CIE IF FLAGS ARE DIFFERENT 

1M FLAGS 
SIn. FLAGS ; DlIf'LG I«lW EIIlIII.S DTlFBT 

lAC CIE,FSTFLG ; LOAD A 1 IN TI£ FlAST BLOC!( FLAG POSITI(JI 
M FLAGS 
SACI. FLAGS ; THIS HAS S£l TI£ FlAST JILOCI( FLAG 

RET 

................ 'HHHHH ............ II •••••• III.II ••• II •••• 111.1.".flllll' 

ROUTINE' SQRT 

f<£FERfNC[ IN FLOIICIIAAT' IDlE 



fUNCTJON' USED IN TIE LEVEL CAlCUJlTlON RWfINE. OEIIERATES TI£ SIJlIARE ADD TEI1P ; ADD CI.RRENT 1000000000T TO ROOT 

U. ROOT Of 'AN INTEGER, WITH 1\\1 OUTPUT WHICH cSATiJlATES AT 255. SACL IDI'3 

i BANZ LOOPO 

fHffHHftHl'IIIJII"II~III'HHHffH:fHHf-HHHH-IHHtHHHHHUH*fH 

£lID ;set 
SQRT .Stt 

LAC TEI1P3.15 

ff".tHftHHHHfftHHH+IfHfHHfHHHttHfltHffHtff********tHffHfffH SACH TEIIf'3 ; PUT ROOT INTO 2*<0 FCIlI1 

• 
THIS IS TIE SIJlIARE ROOT RfJI.ITlNE. TI£ RESULT RAt« IS ZERO TO 255 I\\ID IS LAR ARO,SAllPLE ; RETRIEVE ARO .FROII ITS TElll'ORARY· STORE. 

TIE NEAREST INTEGER TO THE SIlUARE ROOT Of THE INPUT Nli1DER. ANY iNPUT RET 

NJIIBER IIHICH HAS A SQUARE ROOT r 254.5 WILL GIVE A RESULT IF 25S. THE 
INPUT MR1IIER ItUST lIE STORED IN TI£ PAIR OF LOCATIONS TEI1PlIHIGH) I\\ID 

HffHfftHfHHfHff****HHHfHHffHHfHHDHffHfHffHfHHHHtHtfH 

TEI1P2ILOW) IN 2H2 FCIlI1, I\\ID ItUST lIE POSITIVE. t£GATlVE NlJtlBERS WILL GIVE 
TI£ RESULT ZERO. TEI1P IS USED AS A TEII"ORARY LOCATION, I\\ID TIE RESULT IS 

ROUTIt£. DTMF 

RETURNED IN TEIf>3. TIE ROUTIt£ TAKES 111 CYCLES. SQRT ALWAYS RETURNS WITH 
ARF = 0 

REFERENCE IN FLOWCHART: DTIIF 

fHffHIHHHHHHHHHHlffffHffHHHfHfftHffHHHHHHffH******H* 
FUNCTION' DETECT DTIIF DIGITS 

• 
LAt M,B ; LGAD UP 128 • 2"1 

fHHHHHHHffHHHUHHH*******HH-H-tHfHHff-HHtfHffH*HHfHfH* 

; WORI< IN 2"1 FORI! THROOlHOUT. RSDTIIF 
SACL TEI1P ; INITIAL INtRfIIENIIS 128 • 2"1 

.set 

-C') SlIB ONE 

~ SACL TEI1P3 ; INlTlAL ROOT GUESS IS 127.5' 2**1 
LDPK 
ZAC 

~ ... LARP ARO 
SACLC SIGCNT , ZERO YARIABLES 

!:> 

~ 
SAR ARO, SAIIPLE , SAVE ARO IN AN I.INUSED LOCATION 

SACL CHTH 
SACL OORI 

;:: UIRI( ARO,7 ; SET UP ARO FOR S ITERATIONS 
SACL CHTR2 

~ * 
SACL STOP 

0 LOOPO LAC TEItP,IS 
SACL GAP 

"" ~ SACH TEI1P , HALVE TI£ IOCREI£NT SACL PAUSE 

C;l 
SACL F1 , ZERO FREQUENCY ARRAY 

;: LT TEI1P3 ., SQUARE TIE ROOT SACL F2 

~ ItPY TEIf'3 
SACL F3 

tl PAC 
SACL F4 

~ SACL FS 
(') 
0 SUBH TEI1Pl 

SACL F6 

~ SI.IBS TEItP2 
SACL F7 
SACL FS 

QQ 

!:> BLEZ RTOOSII , ROOT TOO SItALL 
SACL ADJL 
SACL ADJH 

;: 
~ RTIJOIlG .set ; ROOT TOO BIG 

SACL SElIA ; INITIALIZE SEIIAPHORE 

tl SACL TESTG 

~ ZALS TEI1P3 
SACL TESTB 

SlIB TEI1P ; SlIBTRACT et.mEIIT IOCREi'lENT FROi'I ROOT 
LACK3 

"li SACL TEI1P3 
SACLTItP 

tl SAN! LOOPO 
AGAIN LDPK ; RETURN TO PAGE 0 

~ END 
RET ; END OF DTIIF PROCESSING 

~ 
(') DTMf .set .... RTOOSII .set 
~. 

§ 
ZAlS TEI1P3 

LDPK , DTIIF PROCESSING ON PAGE 1 



LAC IIIITY ; fECillATE 11£ SAII'l.ES, DTIF USES 

C) XlIl fECI" ; /I. TERllATE DIES, 

'" AND IIIITY 
;: SACL fEClft 

~ aliNP 

~ LlI'K ; RETLIlN TO PAGE 0 
:::: RET 
~ 
Sl INP .set 

'" Ol ;: 
IHfHHHftHfHHHHfHHfHfflHtHHHHHHfHtHHfffHfHfHf**fHffH 

'" THIS SECTION ADDED TD ·III'RO'IE 11£ DVNA!lIC RIWlE BV PROVlDIMl A DYNAI1IC 

\::l TIflESIIIl.D ftlNTHi IliICH ~ INTO PLAV DURING LOUD SIOOAlS, 

'" <"I 
C ffffHHfIIIIIIIIIIIIIIIIIIIIIHHlfHfHHHfHHHfHfl+ffHff:lf*fHHfffHf 

S: 
;: LAC ftiNTIIi,2 

Oq 
SUBAD..l 

1:1 BIll ftElSE ;: 
l:l.. 
\::l ItTHEII LAC ADJL, !4 

~ 
SACH ftlNTHi 
lAC 

~ SACL "INTIL 

\::l BftEND 

'" iii' ftElSE IAlH ftlNTlli 
<"I ADDS ftlNTIL ... 
C· SmI ftiNTIIi,6 ; DECAY HAlF LIFE OF 700 SAII'l.ES ;: SACH "INTItl 

SACl "INTIL 

MEND .set 

LACK "INTH 
SmI "INTHi 
IlEI -LACK "INTH 
SACl "INTHi 

ftNTlD( 15ft 

LlI'KO 
LAC SoW'LE,2 ; SCAlE INTO COORECT _ 

UI'K! 
SACUl 

HHfHlfHfHHIIIIIIIIIIIIIIIIHHfHHHH •• llllllllllllf*VHtHfHHHtH 

I 

VI DTftF DEtmER PROCfSSIMl 
0 
VI 

fHfHHHfIHfHfftHHfHftHttfHHUlIlllllllllllllllllllllllllHfHfffHf 

LT XI ; GET LlNEM llfUT SAII'l.E 

fHfHffHffHffHfHHfHfHHHHHHHlHHfIIIIII.lllllllltHftHfHftfHf 

SCAlE INPUT SAII'l.E SO THAT 11£ 2ND (lti)ER SUB-FILTERS DO NOT IMRfI.Qj 

NPYK 
PAC 
SACH 

so ; SCAlE IT lIIIoW 

; AND STORE IT AS 8TH (lti)ER llfUT 

ffHHfHfHHfffHfHHfHtfftHHfHfHHHfHHHHHHfHffHHHHHfffH 

8TH !IlDER DETECTlDN WlNOClI Fill DTftF LOW BAND 

HHfHHHffUttHHHfHHfIIIIIIIIIIIIIIIIIIIIHtfllllllllllll •••••••• fHH 

LAC X,15 ;NO 
LT L1N2 
NPY LID N2tD 
LTD L1Nl Nl-)N2 
NPY lie NltC 
APAC 
SACH LVI,! NO+NI tC +N21D--)Y 
LTA l2N2 NO+NltC+N2tD+NltC-)IACCI 
SACH L1Nl,l IACCI-)N1 

LAC X,15 
NPV l2D 
LTD UNl 
i'I'Y L2C 
APAC 
SACH LV2,1 
LTA l3N2 
SACH UNl,l 

LAC X,15 
NPV l3D 
LTD L3Hl 
IIPY LX 
APAC 
SACH LY3,1 
LTA L4N2 
SACH L3Hl,l 

LAC X,15 
i'I'Y L4D 
LTD L4Nl 
II'Y L4C 
IV'AC 
SACH LY4,1 



II'/¥: II'/¥: 

VI S40I L4NI,1 S40I HY4,1 

~ II'/¥: 
S40I H4N1,1 

11£ WTPUT IF 11£ 8TH ORDER FILlER (SIJIIF lND ORDER SUB-FILlERS) HIlS ZAlH HYI ; PROCESS RE5llTS 
MY + 11£ _ITUIE (BY TI£tllV), SO 1I£RE IS IW !J'SCIU BY 00 SlIIH HY2 

ADD! HV3 
SlIIH HY4 
S40I HV,I ; LI'SCAl.E BY 00 II!D STORE RE5llT 

lAlH LVI ; PROCESS -RESIUS 
SlIIH LV2 ZAlS PAUSE ; LOO(JNG AT G/IP ? - LV3 IINZ_ G/lPI 

SlIIH LY4 
S40I LY,I ; !J'SCIU BY 00 II!D STORE RESlLTS ZAlS G/IP ; AGe IXES NOT Rtti lUliNG 

IINl T8 I 11£ G/IP 

1I111I111f.11111111I'1111111I111.111111.IIIIIIIIIIIIIIIIHI11111.1"11111 
1IIIIIIIIIIIIIIJlHHlIIIIIIIIIIII.1 

8TH ORDERIETECTION WII/II(I/ FON DTlF HIGH _ • 
IUtlW\TE PEAKS 

HfHHIIHHfHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.1. 

lAC X,15 
LT HIN2 lAC LY ; SAVE PEAK lIFO FON MlI 

C) II'\' HID ASS 
no LTD HINI SACl TEll'D 
;3 
no II'\' Hie SUB AM. 

i:l II'/¥: I1lEZ PIC 

~ S40I HYI,I 

I: LTA I12N2 lAC TEIIPIl 

'ti S40I HINI,I SACl A1IJ.. 

~ 
PIC lAC HV ; SAVE PEAK- lIFO FON HIGH 

lAC X,15 ASS 

C5l 
II'Y H2O 

SACl TEll'D 

LTD H2II1 SUB AD..It 
;3 II'Y H2C I1lEZ PlCI 
no 
\:J II'/¥: 

no S40I HV2,1 lAC TEII'D 

R. 
LTA It3II2 SACl AD..It 

S40I N2W1,1 PlCI ZAlS CNTRI 

S· ADD .... ITV 

~ lAC X,15 SACl CNTRI 

;:, . II'\' H3II 
IQ' 

;3 LTD H3II1 
1JIC1( PIIN 

;:,. 
II'\' H3C SUB CNTRI ; SAVE PEAKS MIl "IN SAII'lES 

\:J II'/¥: IIGl T8 

~ S40I HV3,1 
LTA IMN2 ZAC 

"li S40I H3II1,1 SACl CNTRI 

\:J 
no 

lAC 1,15 
ZAlS CNTR2 ; SET AGe FU\G AF1ER CNTR2 tl'llATES 

~ ... II'\' H4D ADD .... ITV ... 
LTD H4N1 SACl CNTR2 

g' II'\' H4C I UICX7 



C} LACK 6 , 6 • 7 • 0.25 \'IS tfHHffffHfHfHIHHHHHHfHHfHffHHHfHffHfHfffHHHfHHIHtHf 
<I> SUB CNTR2 ;:s 
<I> BIll TSTW T8 lAC LY , GET LOW RESU. T ... 
;;:, ASS , PlAKE POSlTlYE 

~ IN: SUB TIIlSHS , APPlY TIIlESIIlLD 

;: SAC!. CNTR2 BLEI Till 

~ lACK 1 lAC 
~ SAC!. STOP , ST!P WAITING FlI! FILTER TRANSIENT SACL CNTR , IERO TEI1P CNTR 
<I> . 
~ flffHtfHfHHHfHHHffffIHffHt***HHfHHHHfHffHHf*******"******* SECND 
.;:, • <I> TEST FlI! TWIST - SET LEVElS WITH TWSTHI (Lo)HIl AHD TWSTLO (HDLO) THR IA!..S CNTR , IF Itf'llT SIGNAL IS 
tl 
<I> ADD UNITY , GO/£ FlI! MIN CONSEaJTlYE ,.., tHftHfffHHflHfffHffHHHfftHHffHI-HHHfffHHfHffffnftHHHtttf* SACL CNTR , ~S. RESET SVSTEIt 
<:) • LN:K ~IN 

~ !STW lAC ADJL SUB CNTR , OR LOll< FOR GAP 
()q SAC!. TEIIPD BGI TeNT 
;;:, lAC ADJl.8 , TEST FOR TWIST BEFIJlE 
;:, LTA D.Il IAlS GAP , IS GAP REQUIRED ? 
I:>... rfYK TWSTHI BI RSD~ 
tl SPAC 

~ BIlEI RSDTtF lAC 
SACl !ill 'l"i lAC ADJH,B SACL GH2 

tl LTA DJl SACl YS 

'" ~YK TWSTLO ~ ,.., SPAC GAPe lAC ... 
BIlEI RSDTtF SAC!. SIGCNT , USE THIS FOR GAP COUNT (S. 

;:, SACL CNTR 
ADJST lAC MINTHH , TEST FOR MINI"~ SIGNAl lAC THRSH8,13 , GAP THRfSIIlLD = PREVS-

SUB AM SACH TEItFD , 8TH THRESIO..D I 8 IDB) 
BIlEI TCNT lACKl 

SACL PAUSE , Sf! FlAG FlI! GAP TRAP 
lAC MINTIfl , IN HI AHD LO BAHD • 
SUB ADJl GAPl lAC Xl,12 THRESIIlLD Itf'UT SAItPlE 
BGEZ TCNT LT GNl HIGI'ASS CHIIItlEl NOIAHD 

I'I'V Al NOTCH OUT CP TONES 
LT TEI1PD , CAlCUlATE NEW THRfSHlllDS LTA GN2 
l!PYK I ~Y A2 
PAC APN: 
SACH TIIlSHS,4 SACH VS,l 
LT AM lAC 
rfYK I ~Y B2 
PAC LTD llli 
SACH TlIUU,4 ItPY Bl 
LT AM LTD VS 
rfYK I ItPY eo 
PAC APAC 
SACH THRLO,4 SACH VS,l 

• lAC YS 
VI HlHHffHIHHIHIHHIHfHHfH+MHHHlffHHHHHfHflflHHHffHffH ASS 

S • SUB TEIIPD 
THRESIO..D 8TH ORDER RESIl. T 



VI !lEZ I1/IP2 0 
SUB TIRIl 

00 Il.EZ nm 
ZALS CllYR ,000000000TESllltPLES 
ADD UNITY , AIIIMi GN' TIIIESI«llI ZALS F2 

SACl CIITR ADD UNITY 
I1/IP2 ZALS SIGCIIY , IN:REIIENT GN' COUNT SACl F2 

ADD lJUTY THR2 UI:: LY3 

SACl SIGCNT AIlS 
SlJ8 TliRl.O 

IHHHHHIIlllllllllllllffHHHHfHHHffHHHHHffHHHHfHHHHHH !lEZ TIIl3 

INTER-DIGIT PAUSE IS IlETERIIIt£D BY FIII.lDIING INSTRltTlOO ZALS F3 
ADD UNITY 

Hffllllllli ••• IIIHfHHHHHfIHfHHHIffHHHlfHfHHfftfHUHHffHH SACl F3 

I 
THR3 UI:: LY4 

CAlC LACK OICh , LOAD GAP TIlER 107 ItS + ) ·ABS 
SUB TIRIl 

SUB SIGCNT , IS GAP TIllE lI' ? a.EZ 004 

IIGZ OOAIN 
ZALS F4 

LACK O3Oh , SItOOTH rur GLITtlES ADD UNITY 

SUB CNTR , IF THERE AA; TOO lIMY SIIItPLES SACl F4 

c;) Il.EZ GN'C , ABIl'IE TIIlESIIILD, 00 GAP OOAIN THR4 UI:: HYI 

~ 
AIlS 

"' 
UFK 

SUB THRHI 

i:l 
!lEZ l1fi5 

~ 
ZAC 
SACl GNI 

ZALS F5 
I: SACl IJI2 

ADD UNITY 

'ti SACl Y5 
SACl F5 

~ B RSDTIF ,RESETSYSTEII 
l1fi5 UI:: HY2 

"' 
AIlS 

[ fHffHHffHHfIIIlIIIIIIIIIIIIIIIIIHHHHflllll ••• 111111111111111111111111 SUB THRHI 

I 
Il.EZ OOb 

"' TlIlESHOI.D 2ND DRIER RESlLTS 
t::I ZALS Fb 

"' fHffHHHffHHHfHHHHHfHHfflfHflllllllllllllllllHlfHfHHffHHH 
ADD lIIIlTY 

~ 
. SACl Fb 

SECND ZALS GAP 
TIIlb UI:: HY3 

~ BNZ OOAIN 
AIlS 
SUB THRHI 

1:0 

5. ZALS STOP 
Il.EZ 1HR7 

BZ TCIIY 
t::I ZALS F7 

~ UI:: LVI 
ADD lIIIlTY 

AIlS 
SACl F7 

"l'j SUB THRLO 
THR7 UI:: HY4 

t::I !lEZ THRI 
AIlS 

no SUB THRHI 

~ ZALS FI 
!lEZ TCIIY 

Il. All) UNITY g' SACl F1 
ZALS FB 

001 UI:: LY2 
ADD UNITY 

AIlS 
SACl FB 



FINDI SIIR 0, TEIf'D 
c;') TOO ZIILS GAP LACK Ul.I" 

~ 
IINZ AGo\IN SUB F1 

<b BLZ IO'IIIl 

~ 
ZIILS SIGOO ; INCREIIEIIT DMTIlE COll\IT 
ADD UNITY lACK LOLl" 

~ SAC!. SIGOO SUB F2 
,$:: BLZ NlFIND 
~ lACK SCNT ; TEST Fa! TillE If 
C SUB SIGCNT LACK LOLl" 
'" OOZ AGo\IN SUB F3 <b 

5' BLZ IO'IND 
::s HfffffHHHHHtIIIIII,.IIIIIIHHHtHllHfHH-HHHHfHffHHHlttlHIH 

<b lACK Ul.I" 
tl IETERltII£ TIlE DIGIT FROI1 S<C(fi) ORDER COONTERS SUB F4 
<b 1II.Z NlFIND g THE FREQLENCY IN EACH BAND WITH ENERGY ABOVE THE BIN THRESIIlLD IS RfCOG-

~ 
NISED AND THEN ZER(El), IN ORDER TO BE A VALID DTrF ~INATION, ALL OTHER LMK 0,0 
BINS HAVE TO BE BELOW THRESHOLD, lACK THRIIlI 

SUB F5 
1:1 .,HtHfHfHHHHH*f"f*ffHHffHHffHflHfffffHffH*HHtHI-HHffHfH DOEZ F15 ::s 
~ 

tl LARP ° SIIR I,F5 

~ 
LMK 0,0 B FIND2 
LMK 1,0 

"lj lACK THRHLI FI5 !tAR .. 
tl SUB F1 LACK THRIfi2 
<b sm:Z FI1 SUB F6 
~ sm:Z FI6 
C'\ SIIR I,Fl gO B FINDI SIIR I,F6 

B FIND2 
FI1 !tAR .. • 

LACK THRHL2 FI6 !tAR .. 
SUB F2 LACK THRIfi3 
sm:Z FI2 SUB F7 

sm:Z F17 
SIIR 1,F2 
B FINDI SIIR I,F7 

B FIND2 
FI2 !tAR .. FI7 ItAR .. 

LACK THRIL3 LACK T_ 
SUB F3 SUB FB 
sm:Z FI3 sm:Z IO'IND 

SIIR I,F3 SIIR I,FB 
B FINDI FIND2 .slt S 

LACK HILI" 
FI3 !tAR .. SUB F5 

lACK THRHL4 aLZ IO'IND 
SUB F4 
sm:Z IO'IND LACK HIll" 

~ SUB F6 

10 SIIR I,F4 aLZ IO'IIIJ 



VI uIcI< HILI" .... SUB F7 0 
IILZ IIFIIII 

LACK HILI" 
SUB F8 
ILZ IIFINl 

LAC TEJt>D,2 ; + LOW-BAND ffFSET * 4 
SIll 0, TEJt>D 
ADD TElV'D ,t HIGH-BAND IFFSET 

HfIlIII •• II •• IIIIIIIIIIIIIHff 

OUTPUT ROOTlNE 

1111111111111 •• IIIHHHfHHHofoIHHHHf-IHHftHHfHiHtfHtHHfHf-HHH** 

• 
DINT , INTERRlPT PROTECTED BW\USE TI£ 0YEIlRUII 

SAC!. DIGIT , BIT HAS NIIT lIfEN UPDATED YET 
LACK 070h 
ADD DIGIT 

C) 
SAC!. DIGIT 

~ Lll'K 0 
:3 LAC (JE,DIINBT 
~ 

~ 
AND STIIlIE 

~ 
86Z IIMltIi 

Ul'K I 

~ LACK 080h 

&l ADD DIGIT 

~ SAC!. DIGIT 

(:;l Lll'K 0 

• :3 
IIlI/RUI EINT ~ 

t::J LAC OSIWI 
~ SAC!. OSTlIE 
g 

(JE, TPRFLG !:>.. LAC 
S· AND FLAIlS 

OQ 

~ 8Z BTINT ::. 
!:>.. 
t::J LAC 1JIE,1JISfLG 

~ 
III FLAIlS 
SAC!. FLAIlS 

~ • 
t::J DTINT LAC' (JE,DTINBT 

~ xtI! STIIIIE 

1i> AND STIIIIE 
C'\ SAC!. STIIlIE g. • 
:3 !WITTEN au ATTEN 

CAlL XFU'D 

AGAIN 

IIFINl .set S 
ZALS TESTS 
ADD LNlTY , IN:REIENT BAD DIGITS 
SAC!. TESTS 

LACK 1 , TII'£ lilT VALID 
SAC!. GAP , r«IW LOOK FIll GAP 
8 AGAIN 

HfHHfHHHfHHHftl+HHfHlMHHHHffIHfHIHHHfHfHitfHHHHHH 

ROOTlIE: INTHDL 

REFERENCE IN FLOWCHART: NII'£ 

FUN:TIOO: INTERRUPT HANlLER 

*HflH+fHHfHffIfHfHHHlllllllllllllltHHHfIHHHHHHHffflfflHlH 

INTHDl .set 

SST SRSA\£ , SAlt: STATUS REGISTER 
Lll'K 1 
SACH OCCUHI 
SAC!. ACCULO , SAlt: ctWTENTS llF ACCIJIILATal 
Lll'K 0 
SIIR ARO,MSAVE SAlt: ClIlRENT AUXILLIARY 

REGISTER IN MSAVE 
UIRP POINT TO ARO 

IHffHHHHHffHff**UHHHfHlllllllllllllllllllllfHflHfHHffHHHIH 

om SWlCE llF INTERRlf'T, EnIER COlEe 00 PARALLEL INTERFACE. 

IN 
LIIC 
AND 

lTEIIP,CTLPRT 
11'£,3 
ITEIV' 

BZ IIlTCOC 

, READ ctWTROL REGISTER 

, om FIll COlEe INTERRlf'T BIT 
, SET 

fHtHHHHHMHHHHfHllllllllllllllllllllllllllllHHHHHHffHHHfH 

CODEC INTERRlPT HANlLER 

fIHHHHHfHHHHHI .... III ••• UIIIIIIIIIIIIIIII •• IIII'I.IIIIIIIIIIIIIII •• 



C) 
COIIEC .set , COlEe INTERRU'T HANIlER TIE STATE BIT WAS MIT SET, SO IE AIlE AT TIE BEGIIIIIIIl OF A TRI1HSFER 

IfERATlCII, EITIER READ (JIIilITE, READ IfERATlII6 REQUIRE TIll TRANSFERS 
S ADDS CTL320 IJ£ EACH IlAY, illiTE TRANSFERS REQUIRE TIll TRANSFERS IN EACH DIRECTlCII AlII 
~ SACL ITEIP TIll INTERRU'TS, WHICH IS IIIf A STATE BIT IS REQUIRED TO FLAG TIE SECCIID 
~ (lIT ITEIP, CTLPRT , ClEAR CODEC INTERRUPT HIilF OF A WRITE IfERATlCII. 

~ LAC IJ£,INTFLG tHtHffHHHfHfHHHHHfHHHHHflllllllllllllllllllllllllllllllllllll1 

'ti (JI FLAGS 

~ SACL FLAGS , SET COlEe INTERRII'T INDICATOR FlAG IN ITEIP ,DATPRT , READ CONIIIl FlIOII INTERFACE. 

~ 

Ol 
IIiEAII LAR ARO,GIN , LOAD lJ' TIE GIN POINTER LAC IJ£,5 , ItASK INTERFACE CINWi) TO 5 BITS 

SUB (lIE 
:3 IN f,CDCPRT , READ NEXT LINEARIZED SAI1Pl£ INTO AND ITEIIP ~ 

i::l ' Ql£IJE IN SIGNED 1tAIlN1~ FIlRII. SACL ITEIP 

~ LAC GIN LAC IJ£,RllBIT 
C e., SUB IJ£ , DECREIlEHT THE GIN POINTER. AND ITEIIP , CI£CI( RW BIT, IF IT IS SET, THIS IS A 

:3 SACL ITEIP , READ. 
OQ 

I:l LAC IJ£,3 OOZ READIl' 
:3 
!:>.. (JI ITEI1P , POINTER COONTS 003Fb TlRJ 0038b 

i::l SACL GIN , lI'DATE GIN *"UfH+lffHUfftfHfHHHfHfHHffIlIlIlIIUIIIIIIIIIIIIIIIIIIIIIUII .. 1I 

~ 
B CINEND 

INTEND .set • , C£MlN EXIT PATH FRIll INTERRlJ'T HANIlER THIS IS THE FIRST PART OF A "'UTE TRANSFER 

~ 
LACK i::l 7 11'111111~lllllfHHHHHfffHfHfHHfHflHHfH+HlHHHffHHfHflf*HH 

~ ADDS CTL320 f 

~ SACL ITEIP illITE! .set 

~ OOT ITEIIP,CTLPRT , ClEAR ALL LATCHED tOI-COIIEC INTERRlJ'TS 

g' LAC IJ£,STAFLG 
CINEND LAR ARO,ARSAYE , RESTORE ARO OR FlAGS , SET TIE STATE BIT TO FlAG THAT TIE FIRST 

LIJ'I( I SACL FLAGS , PART OF A illITE IfERATlCII HAS BEEN DIJ£. 
lALH ACtUHI 
ADDS ACCtJl.0 , RESTORE ACCUIUTOR LAC ITEIIP 
LST SRSAIJE , REST(JlE STATUS RESISTER SACL CltsAVE , SAVE TIE CINWi) BYTE FOR TIE SECOND PART 
EINT f , OF TIE WRITE TRI1HSFER. 
RET ACkNll .Sft 

HHHffHHHfHHIIIIIIIIIIIUIIIIIIIIIIIIIIIIIIIIIIIII ••• IIIIIHHHHnlH LAC STItOOE,8 , ACKIQIlfDGE illiTE BY WRITING OUT STATUS 
f SACH ITEIP , TO STATUS PORT 

PARALLEL INTERFACE INTERRUPT HANIlER LAC ITEIP 
AND IISOOFF 
SACL ITEI1P 
(lIT ITEIIP,STAPRT , ALSO CLEARS _ INTERRUPT SOORCE. 

MlTCDC .s.t , PARALLEL INTERFACE INTERRtJPT HANIlER 
INTEND 

LAC IJ£,STAFLG 
AND FLAGS , CI£CI( STATE BIT, IF IT IS SET IE ARE HIilF 

, IlAY TIRIOOH A illITE IfERATlCII AND I'IJST 
THIS IS TIE FIRST PART OF A READ TRI1HSFER , DO TIE SECOND PAIR OF TRANSFERS. 

001 IIlITE2 
VI - 1IIIIIIIIIIIIIIIIHHffHHfHHfIIIIlIIIIIIIIIIIIIIIII.IIIIIIIIIUHUtHlHf - f READIJ' .s.t 



VI - LACK [NTTAB ; LOAD UP THE START ADDRESS (I' [NTTAB 
N ADDS ITElI' • ADD ON THE INTERFACE COItIM), WHICH [S AN 

(l'FSET INTO TliE INTTAB TABlE OF REGISTER 
IIAPP[NGS. 

TlIlR lTEtIP ; READ THE REG[STER tIAPP[NG. 

UIR MO,lTEtIP ; tIAPP[NG ImD [N MO. THE IW' ImD 
; [ND[CATES WHICH PHVS[CI'L IUOCATION [S TO 
; BE ACCESSED [N ITS LOWER 9 BITS, AND ALSO 
; COOTA[NS COOTROL fLAGS IlH THE UPPER BYTE. 
, THESE CONTRlL fLAGS ARE USED BY TliE 
, [NTERRUPT HANDLER TO [ND[CATE WHAT TYPE 
, OF TRANSfER [S fIIlPPEN[NG. 

LAC 1lHE, TESTBT ; CHECK fOR TEST BIT SET [N MODE REG[STER 
AND STIllDE , WH[CH lEANS THAT TEST MODE [S Clm£NTLY 

,ON 
BZ NOTEST 

LAC IlHE,LBlT , CHECK FOR L BIT SET [N ti\P IOlRD 
AND ITElI' , WH[CH lEANS AN ACCESS (I' ADOR 0 OR 1 

C') OOZ NOTEST 
~ 
r> OUT CI1SAI'E, DATPRT ; ALL OTHER REG[STERS [N TEST IllDE ARE 
~ , IW'PED ONTO THE SAlE REG[STER (CI1SAI'EI. 

:!;; [NTEND 

l:: 

'ti NOTEST LAC IlHE,TBIT , CHECK FOR T BIT SET [N ti\P ImD WH[CH 
<:) AND IIDf> , lEANS A READ (I' CLIlREIIT TIlE 

'" r> 

~ 
OOZ TBTSET 

::s LAC IlHE,SBIT , CHECK FOR S BIT SET [N IW' ImD WHICH r> 

t:I AND IIDf> , lEANS A READ (I' THE STATUS REGISTER 

r> 
n OOZ SBTSET 
<:) 

£:: LAC IlHE,UBIT ; CHECK FOR U BIT SET [N ti\P ImD WH[CH ::s 
()Q AND ITElI' , lEANS A READ (I' AN UPPER BYTE 
s::. ::s BGZ liIITRD 

b +HH+H+fMIIIIIIIIIIIIIIIUIIJ IllIIlHtHHHllIllIllIl1 1111 Jill UllI UHUH 

~ TH[S IS A READ (I' THE LOWER BYTE OF THE LOCATIOH SPECIFIED IN THE LOWER 9 
~ 
t:I 

BITS (I' THE IW' ImD AND ALSO IN MO. 

r> 
~ fHHHUHflllllllllllJIllHfHfHffHtHftHHfHfHHHUHHfiHHflHHH 

n 

5" IlIT .,DATPRT 
::s 

INTEND 

HfffHfHffHHH+HHH-Hfl-H+HHf+fHHfHftHHHHHfHHHfHflHHHH 

THIS IS A READ OF THE CURRENT TIlE lIS REGISTER. 

fflHHfHffHffHHfHIII,IIIIIIIIIIIIHHHHftHHHfHHHHfHHHHfHf* 

TBTSET ... t 

LAC 
SACL 

CRTIIE 
CROOLD 

UBITRO 

, SAI'EWCURRENT TIlE 

l*fHHfHfHfHIHHHfHffHff"*HHHfHI+HHflHHHHHfHfHtHff***** 

THIS IS A READ OF THE STATUS REGISTER. 

IHHHftHHHHHfHfffHfHfH+ltHfHfHfH**HHHfHH"**HHfflffHfH 

SBTSEr .set 

LAC SOODE,8 
SACH lTElI' 
(lJT ITEPIP,STIIPRT; WRITE OUT lIS BYTE (I' SooDE 

INTEND 

HfHHffHH4HH-HfHHHfHfffHfHflll.'I.U.JIII'llfHfHftHHHHitHtH 

TH[S IS A READ OF THE UPPER BYTE (I' THE LOCATION SPECIF[ED IN THE LOWER 9 
BITS (I' THE IW' WORD 

HHfHfHflHHH-lffHfHftHHHHHtHHfHfHfHfflAHHlfffHfHffH**** 

• 
UBITRD ••• t 

LAC ',8 
SACH ITElI' 
OUT ITEPIP,DATPRT 

[HTEND 

.HHffHHIIIIIIJJIIJII.llffHfHHHHHfHl.IJJJIIIIIIIIIIIIIIIJfHfHfffH 

THIS IS THE SECIlHD PART (I' A WRITE TRANSFER 

.set 

XOR 
SACL 

FLADS 
FLADS 

,a.EAR STATE BIT IN FLAGS REGISTER 



CJ LACI( INTTAB 
no ADDS Cl!SAI'E ADD ~ TIE SAVED INTERFACE rovtAND, WHICH ;::: 

IS AN IFFSET INTO TIE INTTAB TABLE OF no 
i:l REGISTER IWI'IIKlS. - TII.R ITElI' READ TIE REGISTER I!APPING, 

~ LAR MO,ITErIP , HAPPING WOOD IN MO. 
~ 
C IN Cl!SAI'E,DATPRT ,READ TIE DATA IN WHICH IS TO BE IIlITTEN 
'" no , TO A REGISTER, USE Cl!SAI'E FOR THIS. 

C;l LAC Cl!SAI'E 
;::: lIND PISOOFF 
no SACL 
tl 

Cl!SAI'E , MASK OUT UNDEFINED BITS 

no LAC (I£,I1IIIT , CHECK FOR " BIT SET IN I1AP WOOD 1'\ 
C lIND ITEIt' , WHICH lEANS A illITE TO TIE NGIE REGISTER 
E:: 
;::: OOZ MBTSET ()q 

1::. 
LAC (1£, TESTBT , CHECK FOR TEST BIT SET IN IIlDE REGISTER ;::: 

!:I. lIND STMCOE , WHICH MEANS A TEST IIOIE IS ClmENTLY ~ 
tl 

~ BZ CHECKF , TEST MOlE NOT SET 

"lj LAC (I£,LBIT , CHECK FOR L BIT SET IN I1AP WOOD WHICH 
tl lIND ITElI' , MEANS A illITE TO AOORESS 0 OR I 
no 
~ Bl ACKNGI , TEST MOOE. LEAVE DATA IN Cl!SAVE 1'\ 

5" CHECKF LAC (I£,FBIT , CHECK FOR F BIT SET IN I1AP WOOD WHICH ;::: 
lIND ITEIt' , MEANS A illITE TO A FREQUENCY REGISTER 

001 FBTSET 

LAC M,LllIT , CHECK FOR U BIT SET IN I1AP WOOD WHICH 
lIND ITEIt' , MEANS A WRITE TO AN If'PER BYTE 

OOZ liIITWR 

HfHfffHUHHHfIfHfHflfHHHHfHHfllllllllll'I,I'.'HfHf-HHftHHH 

THIS IS TIE SECOOI PART OF A WRITE TO TIE LMR I'IILF OF A REGISTER 

HtHHHfIHHfHHHHHflHffHfHHfHHf-HHHHHHHfHHffftHUHHH 

LIlWWRT LAC PISOOFF,S 
lIND , ADD TIE ClmENT COO"ENTS OF TIE LI'PER 

UIIIWR2 ADDS CMSAYE , REGISTER TO TIE NEW LCloIER HAlF 
SACL 

(.II ACKNGI -W 

THIS IS A WRITE TO TIE tIlDE REGISTER 

f'lSTSET .set 

(J'ERATIIH> TO BE PERFORMED IERE ARE: 

1. CIlFY TIE BYTE IIlITTEN, INTO TIE MCOE REGISTER. PRESERVING TIE STATE 
OF TIE RC BITS WHICH ARE ALREADY IN TIE NGIE REGISTER IN POSITIONS 0 
AND 1. 

2. SET TIE SArIPLE SCALE FACTOR ACCORDING TO THE SC BITS. 
3. IF TIE TEST BIT HAS BEEN SET, lIEN CLEAR THE DTIf' lIND TOlE BITS. 
4. IF ANY INTERRlI'TS HAVE BEEN ACKIOILEIXiEII IIACK BITS SETI lIEN SET TIE 

APPR!PRIATE STATUS BIT BACK TO A 1 AND !PDATE TIE STATUS OF THE XF 
FLAG. 

S. If THE TEST BIT IS SET, THEN IX) A SELF TEST, ACKIIlWl.EIIGE THE WRITE, 
THEN RESTART, ELSE ACKtOILEIJGE TIE illiTE AND RETIRl FROM INTERRlPT. 

HffHHl-tHHffHtHHHtHfHHHHHfHHfHHHHftffHHHHfHH"**"H 

LAC IISOOff,8 
ADD M,1 
ADD M , I1ASK IN STATUS BYTE AND RC BITS IN MODE 

, BYTE. 

AND STNGIE , ZERO MOOE BYTE, EXCEPT FOR TIE BOTTOM TlIO 
SACL STIIOIE , BITS, AND STORE BACK IN STMOIE 

LACI( 3 
AND Cl!SAVE , EXTRACT THE SC BITS FROM THE BYTE BEIMl 
SACL ITEIt' , WOOKED 

LACK SCATAB , ADD IN TABLE OFFSET 
ADD ITEIf' 
TBLR SCALEF , READ TIE OESIREG SCALE FACTOR INTO SCALEF 

LAC (1£,8 
SUB M,2 I1ASK IN LCloIER BYTE, EXCEPT FOR TIE BOTTOM 

00 (SCI BITS, OF TIE BYTE BEING IIlITTEN 
TO MCOE 

AND Cl!SAVE 
ADDS STNGIE ADD TP STNGIE. PIlIIE IS NGI !PDAlED, BUT 
SACL STMODE TIE BGTTOM 00 (RCI BITS lOWE BEEN LEFT 

INTACT IN TIE READABLE VERSION IlF MODE. 

LAC (1£, TESTBT CHECK FOR TEST BIT SET IN MODE REGISTER 
AND STMODE WHICH MENAS THAT TEST NGDE IS CURRENTLY 

~ 

Bl CLAACK 



u. -~ 

C) 

~ 
~ 
~ 
'ti 
~ 
'" til ;:, 

'" tl 
~ 
&. 
~. 

l:> 
;:s 
l:>.. 
tl 

~ 
~ 
tl 
'" ~ 
() 

g" 

TESTY SlFTST , IIRAN:H TO TI£ SELF TEST RlJJTIt£ 

• 
ct.RACK LAC CItSA\£,14 

SACH CItSA\£ 
LACK 7 
lIND CItSA\£ , I1ASI( IN TI£ ~ IACKBITS 
SAC!. ITEIf' 

LACK ACKTAB , ADD IN TABLE OFFSET 
ADO ITEIf' 

TIIlR ITEIf' 
LAC ITEIf' , STATUS BIT TO BE SET TO I, IF ANY 

00 STItJIIE 
SAC!. STItJIIE 

ENIlSLF .set , SELF TEST IIRANC1£S BACK TO I£RE 

CALL XFUPD , I.I'OA TE XF FlAG 

ACKIOI 

HlfllfHfHffHHHfIfHHffHffHfHHHfffHfHfHlHHfHHfHlfHftHHH 

THIS IS TI£ SECOOD PART IF A WRITE TO A FILTER WlTER FREIllENCY 

fHHHftH+H++HfHtHfHHHfHHHfHffftHHHHHHHffH-IHHffftffH*' 

FBTSET .set 

LAC 
lIND 

_,8 
FllSFL 

L0WWR2 

, ADD TI£ rulRENT CONTENTS IF FREI!£NCY MS 
, BYTE 

11111111111111 •••• lltHH-fH4HfHHHHHfHHfHHfHfHfHH+HHHHHHff 

THIS IS TI£ SECOOD PART IF A WRITE TO TI£ UPPER HALF IF A REGISTER 

HfHHftHHtHHHt+HHHH+lHHHHfffHHHHHHHfHHHHHHfHHfH 

UBIM • set 

LAC 
lIND 
ADO 
SAC!. 

CALL 

_ 
• 
CItSA\£,8 

XFlI'D 

ACKNOW 

, ADO TI£ ClIlRENT CONTENTS IF TI£ LOWER 
, REGISTER TO TI£ NEW UPPER HALF 

, UPOATE TI£ XF FlAG (ONLY AFFECTED BY 
, WRITES TO TI£ CONTR(L TEGISTER.) 

ROOTINE' CRESET 

REFEIIENCE IN FLtN:fIMT. to£ 

AlHCTlON' CG.D RESET HANIl.ER 

HHHUI+tHHffHHHfHfHfffHHHHfl III. I ••• 11 •• II ••• HHfH4HHHHtH 

CRESET .Stt 

lIIPI< 

, INITIALISE f'ROC£SSlll 

, COLD RESET, IIRAN:H I£RE FRa! RESET 
, \£CTIll. 

, INITIALIZE OATA PAGE POINTER 

BY 

CLROI'F SOVI1 

CLROI'F , CLEM OVERFLOW FlAG 

, SET OVERFLOW rillE 

UIRP 

CALL 

CALL 

CALL 

EINT 
B 

~SET 

. RSTFIL 

RSDTIF 

MIN 

CALL RESET FILTERING RlJJTINE TO CLEM 
DOII'I ALL ACClI«LATORS lIND SET UP FILTER 
READY Fill TI£ FIRST BLOCK. 

, REINITIALIZE TI£ DM COlE 

, ENABLE INTERRUPTS 
, Jlif> TO MIN (MINSTREAI1 COllE) 

HfHffHf,.IHH+HHHfHHffHIJIIIIIIIIIII.lfHfH+HfHHHfHHHfHfHH 

ROUTINE' ~SET 

REFERENCE IN FLtN:fIMT. NONE 

FUNCTION' WARII RESET HANll.ER 

IffffHffHffHfHfIHffHHHHfHfHffHHHHfHHfHHfHHHHHHflHHf 

, RE-INITIALIZE f'ROC£SSOR 

fHfHffHHH,"**"**.fHfHHfHHHfHffHHHffHHfHHHfHHHHHftH 

~SET .set , WARII RESET. CALLED BY SELF-TEST RWTIt£ 
, lIND BY CG.D RESET HANIl.ER. 

fHHHffHfHfffffHHI'IIIIIIIIIII •• lffHH+ffHffHHHffHIIIIIIIIIIIIII •• 

ZERO ALL RAIl LOCATIONS IN PliES 0 ~ 1 



C) 

~ 
~ 
~ 
'ti 
~ ... 
t:;l 
::. ... 
tJ 

i 
\:I 
::. 
1:1.. 
tJ 

~ 
"tj 

tJ ... 
~ 
<"I 

g' 

VI -VI 

1IIIIIIIIIIIIIIIIIIIIII, •• IIIIIIlIIIIII.IIIIIHHHHHHHHllllllllIlJIIIII. 

LARK ARO,OFFh , SET IJ' ARO TO CONTRIl. ClPYIMl LOOP 
lAC 

• 
IEROO LAR PAllO 

SAC!.. • 
/!ANI IEROO 

LACKI 
SAC!.. (J£ 

UIPK I 
SAC!.. UNITY 
UIPK 0 

ffHflllllllllllllll.IIHHHfHHHHffHflHHHHHHHHHHHtfHHHHH 

INITIIUIE DTIF PEtIllY LOCATiOO IN PAGE I 

*HfHHfHIHfI.IIIIIIIIIIIIIHfHHf+HHHfHHHHHHfHHH**"lHtflfH 

ClPYO 

LARK ARO,IIENOO-IVllRo-ll , SET UP ARO TO CONTROL ClPVlMl LOOP 
LARK ARI,IIENOO-II, SET IJ' ARI TO POINT TO DATA SltI 

LACK 

SUB 
LAR 
TIl.R 
BANI 

CIJ£NO 

(J£ 

PARI 
"',ARO 
ClPYO 

, LOAD ACClIIIllATOR WITH II + END OF TABlEI 

ffHlfffHH ••••• IIII •• IIIIIIIIHHfMfHffHfHHf-HHHHHHfIH.HUHfHf 

INITIALIZE ~ IETECTOR LOCATI~ IN PAGE (I 

tfMllfHHHfHfHHHHHfH"IIIIIIIIIIIIHHfHffHHHHHfIHHlfHffHf 

LARK ARO,(IENDHVllRHI , SET UP ARO TO CONTROl ClPYING LOOP 
LARK ARI,IENDI-I , SET IJ' ARI TO POINT TO DATA IWI. 

LACK CONENI , LOAD ACCIJItU.J\TIlR WITH (I + END IF TABlEI 

ClPYI SUB (J£ 

LAR PARI 
TIl.R "',ARO 
BANI ClPYI 

OUT CTL32O,CTLPAT ,SET UP LIllER CONTROl REGISTER BITS TO 
, FD9Fh 

ruT CTL32U,CTLtJI'R ,WRITE VAlUE ocm TO IJ'PER CaNTRIl. PORT 

LAC CTL322 , RfSET TIE PORT (I CONTROL SIT TO POINT AT 
, TIE L~ CONTROL PORT, AND SET SCLK TO 

BE AN OUTPUT. ClEAR TIE IWTERRUPT ACKNIII-

1.£1&: BITS FRIll CTL32O. 
SAC!.. CTL320 KEEP THIS AS TIE !£FIlLT !/AlL( IF CTL320 

IN IWI 
OUT CTL320,CTLPRT SET IJ' UMOR CONTROl REGISTER BITS TO 

7C9Oh 

IlET 

fHfHtHllfHHHfHffHHHflHllllllllllllllllllllHHHHHHHflHHfHH 

• 

ROUTINE' ATTEH 

REFERENC£ IN FL.OOIMT' N(J£ 

FUNCTII*' WRITE ruT STATUS TO DRAW ATTEHTIIlII TO A CHANGE IN (J£ OR tOlE 
OF TIE STATUS BITS. 

ATTEN ••• t 

LAC STI1OIE,8 
SACII ITEII' 
ruT ITEtIP,ATTPRT, WRITE OUT lIS Bm: OF SlIKlDE 

IlET 

HfHHHlfftHHHHHfIHfHffHfHHffH-fHfIII.,IIIIIIIIIIIIIIIIIIIIIII. I • 

ROOTiNE' XFUPD 

REFERENCE IN FI.OI.OiART' NINE 

FUNCTION' _TE TIlE XfFlA1. CALLED EVERY T11£ A STATUS REGISTER 
INTERRIPT FIA1 IS _TED, AND EVERY TlI£ TIE CONTROL REGISTER 
IS WRITTEN TO. 

HffHtlfHHHfHfHHtHHHHfHHlfHfHHHHHHHHHffftHHHHHHH 

• 
XFlI'D .set 

LAC _.8 
XOR STIIlIE 
AND CTLTSL 

SAC!.. 1TEIt' 
LAC 1tSOOFF,8 
AND ITEtIP , ANY BITS MIN SET I£AN PENGIMl ENABLED 

, INTERRlPTS? 
BI SETXF 

ClRXF LACIJ£,CIFSIT , INTERRIPHSI ASSERTED 
XOR CTL320 
AND CTL320 , CLEAR XF BIT 



Ut .... 
0'1 

Cl 
~ 
~ 
~ 
~ 
~ 
§l 
~ 

t:J 

§. 
~. 

§ 
I:>.. 
t:J 
~ 
'"l"l 
t:J 
~ 

~ 

~. 

I 

serXF 

SACI. Cll320 

RET 

LAC 
III 
SACI. 

RET 

IJ£,CXFBIT 
Cll320 
Cll320 

, NJ IN1ERRIJPT 
, ser XF BIT 

, CTL320 WILL GET liRlTT£N TO lIE ar.rrROI. 
, REGISTER OORINJ lIE NEXT COIIEC INTERRI.I'T, 

flHHflHHHlffHHtllllJllllllllllllllllllllllllllllllHtHfHHHHlfHfH 

I 

ROUTINE' Sl.FlST 

IlEFEREII:E ,IN FLOOMT' tIl£ 

FUNCTION' SElF liST IF PROCESSIR. PERFIIII1 INTERNIL RAIl TEST AND ROIl 
CHECKSllt TEST. SElF TEST USES lIE STIO: AS A HWIINJ REGISTER. 
AT T/£ END IF lIE SElF TEST, lIE I'ROCESSOO IS REINIlIILIZED AND 
lIRAID£S INTO lIE MIN STREAIt COlE. lIE CUNTENTS OF 11£ STIO: 
ARE D15CARIEl. EACH TIlE A VALL( IS PUSHED, lIE STIO: IS FlAST 
POPPED, TO FfiEYENT STIO: IlIIEIlFUII IESSAIa FROII DCruIRINJ DN 
SIIILlATIIlS. TIESE ~ f'(f IIISTROCTIDNS MY BE ~, 
1I£Y ARE IlARl<ED (+, IN lIE COlE. 

IfHHffHfIUlllllllllllllllllIf,*"*******HfflHfHHHfHHIIIIIIIIIIIIIII 

Sl.FlST • set 

LACK 
PUSH 

ROIITST .set 

ROIFAI 

ROIl CIIECKSlIII TEST 

-
lAC 
SACI. TOTAL 

LACK I 
SACI. IJ£ 
UI'K I 
SACI. UNITY 

LAC I1ARI(tR 

UI'K 0 
ROII.P SIll IJ£ 

TBLR ROIIVAL 

, ,PUT ROIl FAIL IIESIA. T ONTO STACK 

, SET C/£CKSlI'I TO ZERO 

, RESTORE T/£ UNITY LOCATlDN 

, _ END ADDRESS IN ACCUIIA.ATIIl 

SACI. ACCHLD 

ZALS ROML 
UIIIEI..2 ADDS TOTIL 

SACI. TOTIL 

LAC ACCHLD 
BNZ ROII.P 

LAC TOTIL , CHECK AI! ZERO 0ECKStJI 
BNZ IlESlA.T 

RAIl TEST 

HfHHHHlfHHHHHIfHHHHHffffflllllllllllllllllllllll.IIIHHHHfH 

f'(f , (+, seE NJTE IN ROUTINE I£AIER 
LACK _AI 
PUSH , PUT RAIl FAIL IlESlA.T INTO STACK 
l.MK ARO,OFFh , ARO CWlTS 0100II ITERATIONS IF OOTBI 

, LOOP 
l.MK ARI,IS , ARI COONTS 16 ITERATIONS IF 1tt£R l.OIP 
LACK I , START WITH IJ£ 

INLP UIRf' ARO 
SACI. , STORE IN RAIl LOCATlDN 
SUBS , READ IT BIO: AND CHECK IT BY SUBllW::T1DN 
BNZ REStLT 

LAC I,I,ARI , SHIFT OPERAND LEFT BY IJ£ BIT, REPEATINJ 
BANl IItlP , Fill EACH BIT POSIlIDN. 

BGEl RESULT FINALLY CHECK THAT BIT IllS SHIFTED OOT IF 
l.IJIER ~TIIl (FFFFOOOOh IN ACe' 

I1AR 1,0 FLIP BIO: TO MO, REPEAT IHl.E AI! EACH 
SACI. I LEAVE TESTED LOCATlDN AT ZERO RAIl 
BANZ ilITLP LOCATlDN 

CDCTST .set 

COIIEC IIITERRU'T CHECK 

1HIIIIIIIIIIIIIIIIIII,IIIII •• IIIIIHHHHfHHlHIIIIIII ... 11111111111111111 

f'(f 

CALL WRESfT 

ZAUt IJ£ 

, 1+' seE NJTE IN ROUTINE I£AIER. 

, DO A _ RESET TO RE-INITIILIl£ ALL 
, YMIABLES 



SUB 1l£,7 , CREATE IiISK TO ENAEl.E MY CODEC HHfHfHfHfHf+f+HHHHfHHHHI.IIIIIIIIIIIIIIIIIII.lllffHHtHHHfH 

C'l , [NTERRlPTS 
<1> AND CTl320 [F PATH IlfACl£S !£RE, ALL TI£ TESTS HAVE BfEN SlIXESSFlL ;: S4ICL CTl320 <1> ... 

IfHtHUHIHHfHHfffHffHHfHHfHHHHHffHH+HfHffHII.11111111111 I:> 

~ 
OOT CTL320,CTLPRT ,ENAEl.E CODEC [NTERRUPTS (H.Y, [N 1iISK. 

, (H.Y TAKES EFFECT IIFTEI1 TI£ NEXT E[NT l.ACI< PASS :::: UIRP MO PUSH , PUT TEST PASS RESlL T ONTO STACK 'ti LJIRI( MO, [NTIIAX , LOAD MO WlTH TI£ PI'IWU1 tu1IIER OF LOO'S 
C) , EXPECTED IlETWEEN [NTERRUPTS. LOOPA [S 6 fHlfHIHHfHIH*+HHHHffHffH+HHHH-H+H*HHHHfHf ........... fHfHf '" <1> , CYCLES LIHl. 

Cl E[NT , COOEC [NTERRLI'T5 NOW ENABLED. END (F CODEC [NTERRUPT CHECK 
;: 
<1> LAC Il£, [NTFLG IHHfHHHHHfffH+HHHHHHfflfffHHH-IHHtHHHHHUIIIIIIIII.II.I 

t::l AND FLAGS 
<1> xm FLAGS RESULT .set '" C) SACL FLAGS , CLEAR [NTERRUPT [ND[CAToo FLAG. AWAlT 
I:>.. , NEXT [NTERRLI'T, COONHNG LOO'S WlTH ARQ D[NT ; O[SABLE [NTERRUPTS. 
~. LOOPA LAC Il£, [NTFLG CALL WRESET ; 00 A WIIRI1 RESET TO RE[N[T[AUZE TI£ 

I:> AND FLAGS ; PROCESSOO 
;: IINZ FSHNT ; BRANCH II£N NEXT COOEC [NTERRLI'T ARR[VES 
I:>.. POP ; RETR[EVE TEST RESlLT FRO/1 STACK 
t::l BANZ LOOPA , LOOP UNHL MO = 0 m UNT[L AN [NTERRUPT ADOS SOODE 

~ ADO 1l£,7 ; RESTmE TEST I100E BH. 
COCERR ; [F MO REACI£S 0 THEN CODEC ERRoo. SACL SOOOE 

~ • 
t::l FSHNT xm FLAGS CALL RSTF[L ; CALL RESET F[LTER[NG ROUHNE TO CLEAR 
<1> SACL FLAGS ; CLEAR [NTERRUPT [ND[CATm FLAG ; ~ ALL ACClII.LATooS AND SET UP FILTER 
~ ; READY Foo THE NEXT BLOCK. 

'" g. LJIRI( MO,INTIIIIX ; LOAD ARO WHH THE PI'IIl/'iJl1 tIJI1BER OF LOOPS 
; EXPECTED IlETWEEN [NTERRUPTS. LOOPB IS 6 CALL RSDTI'F ; REIN[T[ALllE THE OTMF CODE ;: 
; CYCLES LIHl. AWAH NEXT INTERRI.I'T, 
; COONHNG LOO'S WHH MO LAC 5T1100E,8 ; ACKIDUOOE THE illITE IIUCH CAlro TI£ 

• SACH HEIJ' ; SELFTEST BY IIl[T[NG OOT STATUS 
LOOPB LAC Il£, [NTFLG 
LABEL3 AND FLAGS LAC ITErif' 

IINZ GDHNT ; NEXT INTERRUPT HAS OCCURRED AND I1SOOFF 
SACL ITErif' 

BANZ LOOPB ; AUX REGISTER NOT ZERO YET. LOOP OUT lTEIJ',STAPRT 
, AUX REGISTER ZERG. INTERRUPTS TOO 
, INFREQUENT LAC Cti',3 ; CLEAR ALL NON-CODEC [NTERRUPTS SO THAT 

SUB Cti' , IV('( SNU OUS FSX 00 FSR [NTERRI.I'TS 
COCERR .set ADDS CTL320 ; GENERATED BY SUB-STAIIDARD HARDWARE WN'T 

SACL HEIJ' ; HAN) UP TIij SYSTEH. 
l.ACI< COCFAI OOT lTErIf',CTLPRT ; CLEAR ALL LATCHED NON-CODEC INTERRUPTS 
PUSH ; PUT CODEC INTERRUPT FAILLIlE RESlLT 00 

; STACK EINT 
RESlLT PI'IIN ; [GNORE THE STACK AND RESTART. 

PRGEND ,lIIord ;ENDOFI'ROOAA'II1ARKERFooCHECl<S'.-" 
GOTINT SAl! MO,ITa1P ; CHECK Fill INTERRUPTS TOO FRED\ENT , ROUTINE 

l.ACI< INTlFT 
SUB ITErif' .end 

Vl BLZ COCERR --...l 



U\ -00 

C) 

~ 
~ 
~ 
!:: 

~ 
1;; 

,<1> 

~ 
::t 
<1> 

o 
[ 
~' 
;::, 
::t 
I:>.. 
o 
~ 
'li 
o 
~ 
§' 

Progl'u Tont..Dtttctor...De1lO UNPUT ,OUTPUT); 

{ Tone Dtttction De_nstration ProgtU } 

( This progrDI is written in Turbo Pucal i.Rd blS been tuted using an 
lilt PC-AT(X) lIIith PC-OOS version 3.30 and Turbo Piscal version 3.02A 

The progru iapleaents the interface describtd in section 4 of this 
appl iCition report. -

Tite progru is terminated by typing 'Q' at the PC keyboard. 

The progru is included for illustrative purposes only. It NY be used 
as a IIBole or in part for tht evaluation of the tone dttector. Certain 
changes .y be necessary in order to enSUN! correct operation with i. 

particular PC, operating systell or Pascal eo.piler. 

{ Turbo Pascal is I registered tra.deauk of Borland International, Inc. 
111ft is a registered tradeKrk ~f International Business Machints Corp} 

{ Written by Craig ftarven !'lay 1988 

{SC-,U-} {ColRpiler directive for corl'tct operation of Keyprused function} 

Const 
ERRORX = 1; {X cllordinde for error MS5age } 
ERRmV = 24; {Y coordinate for error lIuSige } 
OFFSET = $300; {Change this if board address is not O3OOh} 
I'UTEBLOCK = 23; {Co I WIn address for lfJ'ite data } 
READIlOCK :: 66; {Co I Uln address for read data } 
DISP' Arrly[I •• 501 of Inte,,. = 10.0.0,0,1,1,1,1,1,1,1,1,1,1,1,1,1, 

2,0,0,0,0,0,0,0, 
0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,0,0,0,0,0,01, 

{Cursor Y disph.cnent for any given rOlf position} 
FIRSTCQ. : Ar'ly[S •• 191 of Integer = 0,1,5,5,5,5,6,5,5,5,5,5,5,5,31, 

<Initial coluln for each .rite data rOllll } 

Type 

IIIr 

Eightstring = Ar-r'ayC1 •• S1 of Char; 
Errorstring = Array[1 •• 24] of Char; 
Tlble = Array[5 .. 191 of Eight.trin" 

SAVEX.SAVEY : Integer; {Teaporary cursor loca.tion storage} 
I : Integer; {Teaporary variable } 
BlOO(,aJL 'Intege" 
D,COIE' : Integer; 
GAIN..FACTOR I Rell, 
CIt) : Cbar; 
ERRFLM : Boolean; 
TEIP..cat. : Eightstring, 
IllITE..TABlE : Tlble, 

{Current gain setting of tone detector}, 
{Last character input fr .. keyboard} 

(Error flag) 
(Temporary keyboard input string) 
(Array containing data values for update or 

to .. 
detector registers} 

Procedure SofLcursor (cortlAND : Integer); 
{ This procedure places, or N!IIoves i sofhM.re cursor at tht (atrent location 
.f the screen cursor. This cursor l'eMins in plice ¥hile screen updd.s go 
on elsewhere} . 

Val' 
CIWlACTER : CW, 

Be,in 
Case COf'IfAND of 

1 , Begin 
CIWlACTER := TEll' ..cat.[COL1, 
Textcolorlblack); 
Textbi.ckgroundlMhi te}; 
Wr i te (CIWlACTERI , 
Textcolorf14J; 
T extbackground (0); 
GotoxylWhtrex-l ,Wherty); 

En., 
0: Begin 

CIWlACTER := TElIP ..cElUCOLJ, 
Textcol,,(14I, 
TextbickgroundIO); 
Write (CHARACTER I , 
Gotoxy(WMrex-l.Wnerey); 

End; 
End, {Ca.el 

End; {Soft-cursor} 

ProceduN! Error ..fItsSlge (MESSAGE: Errorstring); 
{ This prceoure places a Mssage in red (blinking) at tnt norNI error Mssage 

location and produces a .... bleep'} -
Begin 

Gotoxy(ERR!IlX,ERRalYI, 
Textcolor02+BlINO, 
Write(IESSAGEI, 
Sound(uOOI, 
DellylSOOl, 
1I10sound; 
Textcolllr(7); 

End; {Error -'Hssage} 

Procedure Ctll_check (CELL : Eightstring ; LROW I Integer; Var un. I Integer 

IIIr ERRFLAG : Bool .. nl, 
{ This procedure checks the contents or I Dew input frOlli the keyboard before 

before allollling it to be piSsed on to tlte relainder or tlte progru. It tests 
ror invalid digits, lultiple deciN} points. and trailing blanks. none of 
which are allowed} 

Vir 
I 
DIGIT..FOONll 
POINT..FOUNIl 

Integer; 
Boolti.n; 
Boolean; 

~ 
> 
~ > 
1:~ 
~1 
8 ~ 
=P= 

1 



~ 
~ 
~ 
'ti 
~ 
Cl ;,. 
no 
tJ 
B 
~ 

OIl 
§ 
1:1.. 
tJ 

~ 
'l:i 
tJ 

~ g. 
::s 

VI -\C 

It,in 
ERAflAG 1& False; 
DIGIT..FWiII " Fils., 
POINT..fOtNl " Fll .. , 
LCOl. 1= 0, 
Rtptlt 

LCOl. " LCOl. + I, 
CU. LJIOIj of 

5,6,19 I CUt CElI.[LCOLl of 

7,.18 

'0','1' I DI6IT..fOtNl 1= TRtE, 
EI .. 
IItgin 

ERRFLAG := True; 
Error-uIHI.,llnvllid binary digit 

End, IElsel 
End, (Co"l 

I CUt CElI.(LCOLl of 
'0' •• '9': DIGIT...FCUI) 1& Trut; 

I If POINT..FWiII then 
Itgin 

') 

EtrOr..MIH9t(~Plu1tiplt ded.' ptints I)f 

ERRFLAG := True; 

Else 
Segin 

End 1If} 
El" POINTJOINl 1= T,ue, 

I If DIGIT..FIUID tlltn 
IItg;, 

Error .... sH'e("TraiJing blanks invalid 'I; 
EAfRAG := True; 

End, (lfl 

ERAFLAG : = True; 

End, Ito .. } 

ErrOr.M5Hgt('Inv&1id ded.1 digit '); 
End, lE"el 

End, !Cutl 

IMti I IERRFLAG' Truel " ILCOl. = 81, 
If not DIGIT..fOtNl the. 
Begin 

&ror-lll551.ge('A nUlbtr Mst be input I); 

EJIFUlj :- True; 
fad, IIf) 
If ERRFLAG = Fl"e then 
8egi. 

GetoxylERlORX,ERRORYI, 
Writ.(1 '); 

fad, (If I 
End, (Coll..check) 

Functio. Binll'Y_t .. int 1\Ior CEll. , Eightst'ing) : Integtr, 
( Tbis functi .. claverts i.ft 8 dilU U .... ry noUtr toe a ded.1 integer) 
\lor 

I, TEII',_ , Ilteg", 
It,in 

POII:R " 1, TEll' ,. 0, 
For I ,= 8 d ... to 1 do 
Btgin 

If CEl.LU] = 11' then TeP 1= TEttP + fi(JER; 

FQER 1= POWER + P(IER; 

End, (Fo,) 
Binv-y_to_int : = 1BF; 

End; <Binlry_to_int> 

Procedure Outbin UHf,MJmlG = Integer); 
( ibis rtcursiw procedure outputs an intt,.r IS .. binary nUllbtr of any 

I.ngth) 
Begin 

If _16) 1 tlltn outbintiNT div 2,1UID16-II, 
Textcolor(4); 
Nl'ite(ch,t1NT ood 2 + 48)), 
T.xtcolorCO); 

End, (Outbin) 

Proctdurt ZerO-ii II (VII" CELL : Eightstrin,); 
{ This procedure repllets I"ding blinks on I ktybeard input with zeroes) 
VII" X: integer; 
Begin 

Fo, X " 1 to 8 do If CElI.Ul = ' , then CElI.[Xl 1= '0', 
End; CIero-fill} 

Function Getreg UNRI I Byte) : Byte; 
( This Function reld5 the current VIIUi of any tone d.tector regi5ter) 
Yo, 

STATUS: Integer; 
Segin 

p"tlOFFSETI 1= Rill! + 16, 
DellyllI, 
Got ... g 1= portlOFFSETl, 
po,tlOFFSETl 1= 16, 
DeilY!!), 
STATUS 1= portlOFFSETl, 

E.d, IGot"g} 

Procedure Putrel nlUI I Byte ; WLlE : Byte ); 
( This procecture puts a AtII v.hle into uy tone detector register) 
V .. 

STATUS : Intlger; 
Segin 

portUFFSETl := AfOI; 
Dellyl1l, 
STATUS ,. po,tllfFSETl, 
p"tlOFFSETl " IIAU£, 
Dellyl1l, 
STATUS := portllfFSETl, 

End, If'ut''gJ 

Procedure u,d.ltt ..... gi.tt.(LRIII : Integ .. I \lor ENFUIG , ... IHI), 
{ Updi.tt register is calltd lIy tbe UHf pttlsing return afttr tRterin. 'OM 



~ 

~ 
II> 
i:l 
~ ;::: 

~ 
~ 
Ol ::s 
II> 

t::l 
§ 
e: 
~ 

~ 
t::l 

~ 
~ 

f 
g' 

ata into the pl'og,..u~ u 10n9 as tht input v,lue is valid. Depending upon 
cursOf' position upote Hgbter alls ont of its otm procedures to conyert 
tht uur input bh I for.t understood by tbt tone· detector, and witts the 
HtII value to the tOot detector} 

VII' 
WLlE I Integer; 

Procedure Chute_control (CB.l. = Eightstring); 
{ Writu the nftI velue for the control register into tM tone detector} 
Begin 

Putrtg(OfBiftlry_tG_inttCEUJ) ; 
End; (Change_control} 

Procedure Chuge..aode(CELl : EigbtstringJ; 
( Writu tbe Dill value- for the lode register into the tone detector, and up

dltfS progl'Ul varilbl. GAIN..FACTOR uud in other cilculations) 
Begin 

Putr.gU ,Biury_h_intCCEU»; 
CU. 'CELl[7J 'f 

'0' , OONJACllR ,= 4, 
'I' I If CELl[Sl = '0' then GAIN.FAC11J1 ,= 1 

Eln GAIN..FACTtR 1= 16; 
End (Ca.e) 

End, 1Ch.1If ..... de> 

.Procedure Changt_tnV_tiH_constint (CEll : Eightstring ; Vv ERRFlAG = 
Boo}fl.n); 
( ChKks for valid N.ngt of new envelope tiR ctnstiRt·- if wHd .rites no 

vt.lue to tOnt Htector, if not giv.s-error .usa.ge) 
\'or 

TBI' , RHI, 
Begin 

Ze.o_fiIHCELll, 
IItHCELl, YEIP,COI£I, 
If YElP • 0 then 
Begin 

Error-Mssage(fVilue out oE ruge "I; 
EARFlAG 1= TrUl; 

End !Ill 
Else 
Begin 

\W.L( I. Roundll0240II-expH/(80YElPII 1 I, 
If (\W.L( ) 2551 or (\W.L( < II then 
Begin 

Error;..aessage('Vilu. out of range "I; 
EARFLAG 1-= Tru.; 

E,d !Ill 
Else Putreg(2,\W.L(I, 

End, lEis.) 
End; {Cbantt_eftY_tiae-coDstant} 

Procedu'e Chlngt_thre.hold. (CELl , Eightst.ing , TH<ESIO.JLlVPE I Chlr , lit. 
ERRFlJ6 I Boolean); 

( Checks for valid ruge of nw threshold - if yaHd 1IIrites nt" w.lue to tone 

detector I if Rot gifts err.ol' aesSlgt} 
IItr 

RMJPI, TEPIP : Integer, 
Begin 

Zero.-fi 1 J (CEll); 
VII (CELl, YEIP,COI£I, 
IW.L( " Ro.nd(25401O.74311lAINJACl1IItYElPI/IOOOI, 
If \W.L( ) 255 then 
Begin 

Error-NsHgt('Vt,lue out of ringe 'J, 
ERRFLAG f= True; 

End {If} 

Eis. CU. lIfIESlIIL11-TVPE of 
'U' I RIUI 1= 3, 
'L' I RIU1 1= 4, 
'C' , RlUI I. 7, 

End, {Co •• } 

Put.tglRNUl!, \W.L(I, 
End, lChongt_tb.eshold.) 

Proc.dur.e Cbtn,t_filter .. length (CELL I Eightstring ; Vv ERRFlAG = BooleUl)~ 
{ CMcks for vilid range of nN filttr 1.n9th - if valid lIItites ON w.hte to 

tone detector, if not tives errDr eess.} 
Vir 

TaP : Integer; 
Begin 

Ze .. _fiIHCELlI, 
VaHCELl, YEIP,OOIIEI, 
\W.L( ,: RoundHl6384I(YEIP-1I 1-161, 
If (\W.L( ) 2551 or (\W.L( < 01 then 
Begin 

Error-lltsnge('Vahae out of ra~ge '); 
EARFLAG ~= True; 

End !If) 
Ehe Putreg(S,WILlE); 

End, lChange_1i a •• _I •• gth) 

Procedure Cilange_plS.band..ooidtb (CELl' Eight.tting , I'It ER1IFLAG , Boolean), 
{ Checks for vi,litl range of new pushan4 "idth - if yalid .".ites netI valut to 

tone detect.r. if not giv.s error aUSlge} 

lit. 
TaP J Intt9f'r; 

Begin 
Zero_FillU:El..l); 
IItHCELl,l8f>,COI£I; 
\W.L( ,. Ro •• dIO,I280TBlPI, 
If IW.L( ) 63 then 
Begin 

Error..Nssage('Value out'of rln~ '); 
ER1IFLAG 1= T.ue, 

End {If} 

Else Put • .,(6, \W.L(I, 
End, lChonge_passband..ooidth) 



~ 
~ 
~ 
~ 
~ 
~ ;os 
(11 

t:J 
g 
~ 
~ 
t:J 
~ 
"l'j 

t:J 
(11 

l1t 
<"'l g. 

~ -

Proudur. Cbang._fl'fquency (CEll : Eightstring ; BAND I Integer; Vir ERRFLAG 

Boolean); 
{ Checks for valid range of nelll freqency - if valid converts. to. tM vahlts to. 

be progf'Ulled into the frequncy liS byte and LS byte registers and writes nelll 
Vilvts to. tO'n' detector. if not gives err-or Huage} 

ViI' 
TEII" R .. I, 

Begin 
Ze,._fill(CELlI, 
VoHeaL, TEII',COOEI, 
If TEll' ) 3400 then 
Begin 

ErrOr..H5sage(~vallJt out of range ~J; 

ERRFLAG 1= True; 
End (lfl 
Else 
Be"gin 

'iAl.lE' .= R.und(S,I924TEI'IP1 div 256, 
Putreg(S. Wl.UEJ; 
VAl..t£ := Round(8.192fT9IP) mod 256; 
Put,eg(8+BAND, VALLEI, 

End; eEl se} 
End; {Change-frequency} 

Procedure Change_filter_select (CELL: Eightstrirlgl; 
{ Writes the nM value for the fliter select register into the tone detector} 
Begih 

VALI£ 1= Bi .. ,y_t._int(CELLI, 
Put'.gU5, VALI£I, 

End; (Change_filtf'r_selecU 

Begin {Update_register} 
Case l.1CW of 

S • Chlnge_cont,.I(WRlTLTABLE[SII, 
• Ch.ng ..... d.UIUTLTABLE[611, 
: Change_env_tiH_constant(~ITE..TABlE[71,ERRfLAGI; 

8 : Change_thresholdsIWRlTLTABl.E[Sl,'U',ERRFLAG); 
9 1 Chong._thmh.ldsUIUTLTABLE[91, 'L' , ERRFLAG) , 
10 • ChiOg._filt.,_I.ngthUIUTLTABLEU01,ERRFlAGI, 
11 • Chlnge_pmbond ... idthlWRlTLTABLEUI1,ERRFLAGI, 
12 • Chlnge_thmh.1 ds (WRITLTABLE[121,'C' , ERRFLAGI , 
13, ,18 , Chlnge-frequencyIWRITE..TABLE[LROW1,LRDll-I2,ERflfLAGI, 
19 • Chongt-filt.,_ •• lectlWRITE..TABLE[1911, 

End, {C"el' 
End; <Update_register) 

Procedure Up~ate-"tad.:.value; 
( Update rud value is ca.ned continuously a5 long as no keybOird input 

processing is p.nding. Update rtld value caUs its 0I0l internal procedures 
in turn to cODvert valuts "rea.d fro. the toDe detector into tM display 
1 ..... tJ 

ViI' 
I : Integer; 

Procedure Rtio_sh,tus.; 
{ Places cursor at start o.f status register display and outputs wIve rod 

fro. tO'Ae detector} 
Begin 

Got.xy(BlOCK,51, 
Outbin(Got'.g (01, 81, 

End, (Rnd_st.tusl 

Procedure Rnd .... ode; 
{ Plac.s cursor at stirt o.f Mde register display and outputs value read Froll 

tone detfchr} 
Begin 

Gotoxy(BlOCK, 61, 
Outbin IGetreg( 1) ,81; 

End; {Ree.d-liodd 

Procedure Read..DTI'f'; 
{ Places cursor at start of DTrtF digit display. cnverts and outputs value read 

fro. tone detector} 
V .. 

DTI'IF: Inhger; 
Begin 

Got.xy(BlOCI(,SI, 
DTi'f 1= 601''g(21, 
If DTIF ) 127 then 
Begin 

DTi'f .= DTIF - 240, 
Textcoll)l'(14); 
lII'ite('OVRtw 'I, 
Textcoltf'(OI; 

End (Ifl 
Else 
Begin 

DTIF .= DTItF - 112, 
TextcolorW); 
Writel~ ~); 

End, {Eisel 
TextcolorU41; 
Cis. DTIF .1 

0 .. 2 • lil'iteIDTIIF+II, 
3 • lil'ite('A'I, 
4 .. 6 • W'iteIDTItF), 
7 : Writel'B'); 
8 .. 10' WriteIDTIF-II, 
11 J Writel'C'); 
12 : Writel'.'); 
13 • Write('O'), 
14 : Writef'I'); 
15 : Wrihl'D'); 

End, (Cisel 
TextcolorIO); 

End; {Read..DTPF} 



~ 

~ 
"' ~ 
~ 
'ti 
~ 
(;'l 

.;os 

"' tl 
l 
~. 

§ 
~ 

tl 

~ 
'"ri 
tl 

~ g. 

P •• c,j ... RNd..TiIl \TIlE , Chv), 
( Pllces curSOf' at st.,.t of tiM display, rods and outputs present 'RIve of 

curN.t tillf, departure tiM and .arrival tiM frg tOM detector) 
Vv. 

RESIl.T I Real, 
It,in 

Cue TIlE of 
'A' : Btgin 

GotoxyUI.OCK+3,9J, 
Result ,. Getreg(31 • 256 + g.t •• gI41, 

End, 
'D' : Begin 

GotoxyUI.OCK+3, 10), 
Result ,. Get"g(5) • 256 + Get .. gI61, 

End, 
'e' : Begin 

G.toxylllLOCl(+3, Ill, 
.Re.ult " Get •• g(7) • 256 + Get •• ,ISI, 

Ead, 
End; (CUt) 

If RESIl.T < 0 th.n RESllT ,. RESllT + 65536.0, 
Textcolor(4); 
lIrit.lRESllTl5'OI, 
TextcolortO); 

f.dl <Rt&d..ti .. J 

Procedure ReaLlevel CBMD: Integer); 
{ Places cursor at start of ii,nal Itvt-l display for tb9 required freqency 

bifid and outputs Vllue rHd frot tOnt detector. This procedure is cal1ed six 
tiMS in suce.ssion _itb BAND increltnting frot 1 to 6} 

Vv 
RESllT , Rell, 

. TEll' 'Real, 
Itgin 

Gotoxy(BlOCK+4, I2+IIANDI, 
RESllT ,. Get.,gl8+_I, 
TEll' ,. lRESllT05.3I1GAIN..fACTOR, 
If (TEll' ( 4.51 th •• TEll' ,. 0, 
Tmcolor(4); 
Writ.lTEII'I4'0I, 
Textcolor(O); 

ERi; (Reid_level) 

Itgin Wpdlt ........ _VlI .. J 
IILOCI( " REAIIII.OCK, 
lexteolor(O); 
Read-st.tu., 
RMd..oode, 
Rwt.Jl1lF, 
Read-tiM('A'J1 
Read..tilltl'D'11 
Read..hlll'C'J, 
For I ,e I to 7 do Read..I.vt)(J), 
IlJIl( ,. !oIUtalOCI(, 

Textcolor(14); 
ElId, (Updot ...... d_ •• I .. J 

Procedure Initialise_tone_detector; 
{ Sets up 5CI'ftl'l display. iDitil.l valu.s for .11 tone detector registers .ad 

loa4s those registers} 
Be,in 

GAIN..fACTal ,. 4, 
ROW ,. 5, 
CIL ,. FIRSTCIL[ROWl, 
TextcolorUl); 
Gotoxy(6,3); Write('Writ. Registers'); 
TextcolorHOl1 
Gotoxyll,5), Writ.I'I3ITRIl. Registe. 
Gotoxyll ,6), Write I 'noJE Regist •• 
GotoxyU,7); Write('Envelope tiae constant 
Gotoxytl.8); Write('Upper threshold 
Gotoxyll,9), Writ.I'l.oIIe. th •• shold 
GotoxyU,10); Writet'Filter length 
GGtoxy(1,11); Writt('Passband lIIidth 
GotoxyU.12); Write("Chuge threshold 
GotoxyU.131; Write('Band 1 frequency 
GotoxyU.14); Write('Band 2 freque-ncy 
Gotoxy<1.15J; Writet'Bilnd 3 frequency 
GotoxyU.16); "rltel'Band 4 frequency 
GotoxyU,l]); WriteC"Band 5 frequency 
Gotoxy( 1,18); Nfi tf ('Band 6 frequency 
GotoxyU,19); Write('Filter select 
lexteotorUl>, 
Gotoxyt50.3); Write(~Read Re9isters~); 

TextcolorUO); 
Gotoxyl45,SJ, W.i t.1 'STAnJS R.,ist •• 
Gotoxyl45,6I, W.itel'llllE Regist •• 
Gotoxy{45.8); Write(~D1lIF Digit is 
Gotoxy(45,9); Writet'Tone .arriVi.l·tiH· 
Gotoxyt45,10); Write(~Tone dtparture tiM 
Gotoxy{45,lU; Write{~Current tiM is 
GotoxyI4S,13), W.it.I's.nd I si, .. 1 1 ••• 1 
Gotoxyl45,14J, W.it.I'Band 2 sign.1 1 ••• 1 
Gotoxy(45,15); Write(,Band 3 signal level 
Gotoxy(45,16); WriteC'Blnd 4 Signal 1ev.1 
Gotoxy(45.17); "rite('Band 5 signal level 
Gotoxyl45,181, Writ. I 'Band 6 si, .. 1 1, .. 1 
Gotoxyl45,19I, Writel'Tot.1 .igllll 1 •• ,1 
Textcolor(4); 
Update..rtad-viJUt; 
IIUTLTAIl.E[51 ,. '00000000', 
IRITLTAIl.E[61 ,. '00100000', 
IR!TLTAIl.E[7J ,. ' 1.00', 
IRITLTAIl.El81 ,. ' 100', 
IRITLTAIl.E[91 ,. ' 50', 
IRITLTAIl.E[lOI ,. ' 250', 
IRITLTAIl.EIIIl ,.' ·400', 
IRITLTAIl.EII21 ,. ' 100', 

')1 Wr-it.(' 
'); WriteC' 
~); Wtite(~ 

'); Writt(~ 
'); ""itt(' 
'); Write(' 
I); Write(f 
'); Writ,(' 
'); Write" 
I); Write(' 
~J; Writtt~ 

'); Nrite(~ 
I); Writt{~ 

~); Write(~ 

'); Writ.(' 

'); Write(' 
'll Writel' 
,I); Write(~ '); 
'); Write(' 
I); Write(' 
.'); Write(' 
'I; Write(~ 
'); Write(' 
'I; WriteC' 
'); Writet' 
I); Writt(~ 

'l; .Writetf 
I); Write(' 

b'l, 
b'I, 
oS'), 
IV'); 
111'1, 
suples'); 
Hz'); 
111'1, 
Hz'11 
Hz'l; 
Hz'), 
Hl.~); 

Hz'I, 
Hz'l, 
b'J, 

b'J, 
b')1 

oS'l, 
IS'}; 
oS'I, 
111'1, 
111'1, 
111'1, 
111'11 
111'1, 
111'1, 
III'J, 



~ 
~ 
~ 
'ti 
~ 
~ ;,. 
~ 

t:l g 
!:-;,." 

Oq 
;::, 
;,. 
;::,.. 
t:l 
~ 
'"t-i 

i 
§o 

~ 
IN 

IIUTE..TABLE[131 := ' 500', 
IIRITE..TABLE[141 := ' 1000', 
IIRITE..TABLE[151 := ' 1500', 
IIRITE..TABLE[161 :=' 2000', 
IIRITE..TABLEI171 :=' 2500', 
IIUTE..TABLE[181 := ' 3000', 
IIRITE..TABLE[!91 :. '00111111', 
For I := 5 to 19 do begin 

GotoxyllllOCK+1,I), 
W,iteIIollITLTABLE£lJ), 
Updl te_l'eg i 5 tel' ( I 1 ERRFL.AG) ; 

End; {For} 
RllII :. 5, 
Got.xyIBLOCK+I,RllII) , 
TEII'..I:El.L := IoIIITE_TABLEIRllII1, 
SofLcursor (1); 

End; {Inith,l is.e_tone_detector} 

Procedure Cursol' _up; 
{ Moves current cursor location and soft cursor up on screen. Vertical 

displactHnt depends upon current location, and· is given by array DISP} 
Begin 

If not ERRFLAIJ then 
Begin 

Got.xyllllOCK+I,RllII) , 
Wri teIWRITE..TABLE[ROW1), 
RIll := ROW - DISPIRIlI+241, 
TEII'_CELL := IIRITE..TABLEIROW1, 
COL := FIRSTCOLIRllII1, 
GotoxyllllOCK+COL, RIll), 
Soft-cursorll); 

End Uf} 
End; {Cursor_up} 

Procedure Cursor_down; 
{ As for cursor uP. but IROVes doun} 
Begin 

If not ERRfLAIJ then 
Begin 

GotoxylBLOCK+1,RllII), 
Wri telWRllE_ TABLE[ROW1), 
RIll := ROW + DISP[ROW+261, 
COL := FIRSTCOLlROW1, 
TEI1P"CELL := W[TE..TABlE[ROW1, 
GotoxyllllOCK+COl.,RIlI) , 
Soft_cursorf 1); 

End, Uf} 
End; (Cursor_down) 

Procedure Cursor_left; 
{ "oves current cursor location and soft cursor to left on screen. Cursor 

rolins witbin value windOlll for eacb parueter, giwn by FIRSTC(L lrrlY} 
Begin 

If COL ) FIRSTCOLIRIlIl tben 

Begin 
Gotoxy(BLOCK+COL,RCl" ; 
Soft_cursor (O); 
COL := COL - I, 
GotoxylBlOCK+COl.,RllII), 
Soft_cursorll); 

End; {If} 

End; {Cursor_left> 

Procedure Cursor_right; 
{ Moves current cursor loeation and soft cursor to right on screen. Cursor 

relNins IIIthin value window «(oluM S)} 
Begin 

If COL < 8 then 
Begin 

GotoxyIBlOCK+COL, RIll), 
SofLcursorWJ; 
COL := COL + I, 
GotoxylBLOCK+COL,ROWI; 
Soft_cursor (1); 

End, Uf) 
End; {Cursor_right} 

Procedure Dati_entry; 
{ Tbis procedure takes a keyboard DUMrie entry into the teMporary string. and 

Iloves tne soft cursor to tne right if neceSSlty} 
Begin 

GotoxyIBLOCK+COL, R()Ij), 
StfLcursorIO); 
WriteICl!ll), 
TEIW ..I:El.L[COLl : = CI!ll, 
If COL < 8 then COL := COL +1, 
GotoxyllllOCK+COl.,RllII), 
Soft-cursor (1); 

End; {Dati_entry} 

Procedure NewJ ine; 
( This procedure terlinates da.ti. entry for a particular value, inputs the 

value to the cell check procedure, loves the soft cursor dOIllfl. and loads the 
hlDporary string lIIitn the present dita of the nell! parutter) 

Begin 
Gotoxy(BLOCK+COl.,ROW), 
SofLcursorIO); 
Ce 11_checklTEII' _CELL, R()Ij,COL, ERRFLAIJ) , 
If not ERRFLAIJ then 
Begin 

IIRnE-YABLEIROWl : = TEll' _CELL, 
Updi.h~_register (RIll, ERRFLAGJ; 
If ERRFLAIJ then COL := FIRSTCOLIROWl 
Else 
Stgin 

RlW := R()Ij + DISP[ROW+26J, 
COL := F1RSTCOLIR()IjJ, 
TEII'-CElL := WRlTE..TABLEtRlllll, 



~ 

~ 
~ 
~ 
~ 
~ 
(;i 
:. 
'" t:J 

l 
~. 

§ 
~ 

t:J 

~ 
~ 
t:J 

~ §o 

Endj (EIsel 
Endj Ufl 
GotoxylBUJCl(+<Xl,RBU; 
SoH_cursor{!); 

End; (h1 ine} 

8<gi. 
Re ... it.lOUTPUTlj 
Re.etlltf'\JT1, 
&11'5("'; 
Textcoior(15); 
CIID .= ' '; 
Gotoxyl20,Il; 
Writelnl'11»( lETECTlfll _RATION PROORAII'I; 
Initial iSi_tone_detector; 
Repeat 

If KeyPre .. ed then 
Begin 

RHdlkbd,ClID1; 
If tOO = 127) and KeyPressed then 
Begin 

R.adtkbd,etmJ, 
ease CIID of 

In : Cursor_up.; 
175 • Cu"or _l.ft; 
177 ; Cursor _rigbt; 
180 : Cursor _dollln; 

End; (Casel 
End; 1If! 
Case CI1D of 

'O ...... '9'."A' •• 'F'." ..... 'f'.' , ; DatI-entry; 
"".' ; If ~ = 7 then DltLentry; 
.13 : Nellllliftt; 

End; (Cast) 
End Ufl 

Else Updde-Nid_vllUf; 
Until (am = 'Q/) or tCPtD = "q/); 
tll'scr; 

End. 



Appendix C 

Power Detector Operational Considerations 

C. 1 Arrival and Departure Time Skew 

The use of a large time constant 7 for the envelope decay factor results in a greater 
time delay between the appearance or departure of a tone and the envelope detector output 
crossing a threshold. See the section "Envelope Decay Factor" for details of the envelope 
decay detector. 

If the signal level on the line changes to S at time t = 0 when the output of the envelope 
detector is EI, we may determine the time t taken for the envelope detector output to reach 
a pre-defined threshold level L as follows: 

t = - 7 X In[(S-L) I (S-EI)] 

For example, at time t = 0, the output of the envelope detector EI = 0 and the 
upper (arrival) threshold level is set to -20 dBm, a signal appears on the line at a level 
of -10 dBm. 

Therefore, when t = 0, EI = 0 

S = 10(-10/20) = 0.3162 

L = 1O( -20 1 20) = 0.1 

This gives a value of t = 0.387 for the envelope detector output to cross the arrival 
threshold. 

In the case for tone departure at time t = 0, the output of the envelope detector 
is stable at -10 dBm, and the lower (departure) threshold is set to -20 clEm, the signal 
on the line departs. 

Therefore, when t = 0, S = 0, L = 0.1 as before 

EI = 10(-10/20) = 0.3162 

This gives a value of t = 1.157 for the envelope detector output to cross the depar
ture threshold. 

The skew between the delays for the envelope detector to cross the arrival and depar
ture thresholds is thus 0.777 in this instance. This skew obviously increases as the envelope 
factor 7 is increased. 

General-Purpose Tone Decoding and DTMF Detection 525 



C.2 Sampling Frequency Considerations 

Due to the envelope detector assessing the level of the signal on the line by rec
tification and smoothing, anomalies arise in its behavior when the signal being rec
tified is a pure tone at a frequency which is an integer sub-multiple of the sampling 
frequency of 8 kHz. This effect is most significant at 2 kHz, where the signal level 
assessed by the envelope detector may vary over the range of + 0.91 dB to - 2.1 dB 
relative to the true signal level. If the output signal differs from 2 kHz by a very 
small amount, the envelope detector output will vary over the above range as the 
phase of the signal slides past the sampling instants. Ensuring a hysteresis band bet
ween the upper and lower thresholds of at least 3 dB will avoid the possibility of 
a series of apparent tone arrivals and departures in the presence of a steady pure tone. 

526 General-Purpose Tone Decoding and DTMF Detection 



Part V. Control 
13. Implementation of PID and Deadbeat Controllers with the TMS320 Family 

(lrfan Ahmed) 

527 



528 



Implementation of PID 
and 

Deadbeat Controllers 
with the 

TMS320 Family 

IrfanAhmed 

Digital Signal Processor Products - Semiconductor Group 
Texas Instruments 

529 



530 Implementation o/PID and Deadbeat Controllers with the TMS320 Family 



Introduction 

Control systems are a necessary part of modem manufacturing, industrial processes, and our 
daily lives. They range from simple controls like those on our air conditioning to more intricate 
controls like those for a missile guidance system. Control mechanisms have evolved from mechani
cal, pneumatic, and electromechanical systems to electronic control systems. Electronic controls 
have been implemented with analog components like resistors, capacitors and op-amps (operation
al amplifiers). However, with the availability of microprocessors, control systems are being im
plemented in digital form. The use of microprocessors in digital control systems has created not 
only some new opportunities due to the powerful processing capabilities of microprocessors, but 
also a need for a new body of knowledge that utilizes some of these processing capabilities. 

This report discusses implementation ofPID (proportional integral derivative) and deadbeat 
digital controllers with the TMS320 family of digital signal processors. These digital signal proces
sors are application-specific processors designed to process signals, including control signals, very 
efficiently. In numerically intensive applications, digital signal processors are at least an order of 
magnitude higher in performance than conventional processors and minimize the numerical prob
lems of processing signals digitally. 

This report is arranged in the following order: 
• Control Systems - Provides an introduction to digital controllers and discusses selection 

of processors for a digital controller. 
• Design of Digital Control Systems - Discusses the design of digital controllers. 
• Implementing Digital Controllers - Discusses implementation of digital controllers. 
• Applications - Describes applications of digital controllers using the TMS320 digital sig

nal processors. 
• Appendices A through C - Lists the mathematical procedures needed to design the control ~ 

lers. 
• Appendix D - Lists the PC-Matlab programs used for simulation of these controllers. 
• Appendix E - Lists the TMS320Cl5 assembly code required to implement the controller 

algorithms. 

Implementation of PID and Deadbeat Controllers with the TMS320 Family 531 



Control Systems 
A control system is a system that commands or regulates a process in order to achieve a desired 
output from the process. A control system consists ofthree main components: 

• Sensors 

• Actuators 

• A controller 

Sensors measure the behavior of the system or the process and provide feedback information. 
Typical sensors used in control systems are resolvers, shaft encoders, and potentiometers that pro
vide position information; tachometers that provide speed information, and current sensors that 
provide current information. Actuators supply the drivi:ng and corrective forces to achieve a desired 
output. Typical actuators are DC and AC motors in electromechnical systems, and valves in hy
draulic or pneumatic systems. 

The controller generates actuator commands in response to the commands received from the 
system controller and in response to feedback information provided by the sensors. The controller 
consists of some computation elements that process the command and feedback signals to achieve 
a desired response from the entire system. The function of the controller is to ensure that the actua
tor responds to the commands as quickly as possible and, at the same time, that the system remains 
stable under all operating conditions. Typically, a controller will modify the frequency response 
of the system. The computational elements of the controller can be implemented with analog or 
digital components. 

Analog Controllers 

Control systems have traditionally been implemented using analog components like opera
tional amplifiers, resistors, and capacitors. The combination of these elements implements fil
ter-like structures that modify the frequency response of the system. Although more powerful ana
log processing elements like multipliers are available, they are generally not used because of their 
high cost. In spite of their simpler processing elements, analog controllers can be used to implement 
high-performance systems. 

Digital Control Systems 

With the performance and reliability inherent to microprocessors and microcontrollers, digi
tal controllers are taking over many applications from analog controllers. In a digital control sys
tem, the controller is implemented with a microprocessor or a microcontroller, which is responsible 
for processing the signal. However, the actuator commands from the controller are digital and may 
have to be converted into analog signals by a D/ A (digital-to-analog) converter. Similarly, the mea
surements from the sensor may be analog and will have to be converted into a digital signal by an 
AID (analog-to-digital) converter. 

Figure 1 shows the block diagram of a digital control system. The D/A converter converts 
the digital output of the microcomputer, u(n), into an ,analog signal, u(t). The output, u(t), ofthe 
D/A needs power amplification and drives the motor to the desired or reference state, r(n). The out-

532 Implementation oj PID and Deadbeat Controllers with the TMS320 Family ojDSP 



put of the motor, yet), is measured by a sensor and converted into a digital signal, yen), by the AID. 
The feedback signal is subtracted from the reference signal r(n) to create an error signal e(n). The 
error signal, e(n), is used by the controller to issue the corresponding control action u(n). 

Figure 1. Digital Control System 

r(n) +~ DIGITAL u(n) u(t) PLANT y(t) 

REFERENCE + 
CONTROLLER D/A (DC SERVO 

INPUT - Gdz) MOTOR) 

y(n) 
AID SENSOR 

Analog Versus Digital Controllers 

Tradeoffs have to be made in the selection of controllers for a system. Analog controllers pro
vide continous processing of the signal and can be used for very high bandwidth systems. They also 
give almost infinite resolution of the signal they are measuring, thus providing precise control. 
Analog controllers have been around for a long time; their behavior is well understood, and this 
makes them easy to design. They can be implemented with relatively inexpensive components and 
therefore are sometimes cheaper. 

On the negative side, analog controllers suffer from component aging and temperature drifts. 
Thus, a perfectly designed controller will start to exhibit undesired characteristics after a while. 
Analog controllers are hardwired solutions; this makes modifications or upgrades in the design dif
ficult. Analog controllers are also limited to simpler algorithms from classical control theory like 
PID and compensation techniques. 

Digital controllers sample the signal at discrete time intervals. This limits the bandwidth 
(bandwidth is 1/6 to 1/10 sampling rate) that can be handled by the controller. The processing of 
the signal takes a finite amount of time, adding to phase delay in the system. In addition, the resolu
tion of the signal is limited by the resolutiQn or wordlength of the processor. Digital controllers also 
require additional components like AID and D/ A; although newer processors include these compo
nents on the same chip. Digital controllers are relatively new, and their behavior is not very well 
understood, thus making design of digital controllers relatively difficult in comparison to analog 
controllers. 

However, digital controllers have some advantages also. They are not affected by component 
aging and temperature drift, and they provide stable performance. When the design is done in the 
z-domain, the behavior of digital controllers can be more precisely controlled. They can also be 
used to implement more sophisticated techniques from modern control theory, such as state con
trollers, optimal control, and adaptive control. Digital controllers are programmable, thus making 
them easy to upgrade and maintaining design investment. They can also be time shared to imple
ment different functions in the system, like notch filters and system control, thus reducing system 

Implementation of PlD and Deadbeat Controllers with the TMS320 F amity of DSP ,533 



cost. If digital controllers are designed properly, their advantages outweigh their disadvantages. 
Table 1 compares analog and digital controllers. 

Table 1. Comparison of Analog versus Digital Controllers 

Controller Advantages Disadvantages 

Analog High bandwidth Component aging 
High resolution Temperature drift 
Ease of design Hardwired design 

Good only for simpler designs 

Digital Programmable solution Creates numerical problems 
Insensitive to environment Must use high-performance processor 
Shows precise behavior Difficult to design 
Implements advanced algorithms 
Capable of additional functions 

Processor Selection Issues 

The choice of processor is critical in determing the performance and behavior of the digital 
controller. The usual choices are microcontrollers, general purpose microprocessors, and digital 
signal processors (DSP). RISC processors and bit-slice processors can also be used; however it is 
not practical to use them in most cases because of their cost. 

Digital controllers monitor signals at discrete time intervals or finite sampling rates. If the 
signal is not sampled fast enough, some of the information may be lost. The processing of the signal 
takes a finite amount of time. The processing has to be completed before the arrival of the next sam
ple, or preferably as soon as possible. Too much delay in the output can cause loss of information 
or excessive phase delay in the system, leading to instability. These conditions impose certain mini
mum performance requirements on the processor. Most of the processors currently used to imple
ment controllers are usually not fast enough to process signals in real time; they rely upon lookup 
tables with precomputed results. 

Digital controllers use discrete steps to represent a signal, which is limited to the wordlength 
of the processor. Coefficients or gain constants also have to be represented in the limited word
length. This discretization or loss of resolution is referred to as quantization error. In addition, re
sults of mathematical operations have to fit in a limited wordlength and may lose part of the result 
due to this limitation. This is referred to as truncation error. Both of these errors cause oscillations 
or limit cycles and can lead to instability. 

Another problem that occurs in digital controllers is overflow of registers. Successive mathe
matical operations can cause registers to overflow. Registers in most processors wrap around, caus
ing the result of a calculation to go from most positive to least negative, in tum causing the output 
to reverse directions. Most of these problems occur in microcontrollers and microprocessors be
cause their architectures are not designed for signal processing. 

Early microprocessors (J.lP) and microcontrollers (J.lC) were designed to replace hardwired 
logic, TTL gates, etc. Newer microprocessors and microcontrollers have retained most of the old 

534 Implementation of PID alJd Deadbeat Controllers with the TMS320 Family of DSP 



architectures. These processors are adequate for simple applications that require little or no signal 
processing. In a control system, the controller is responsible for processing the command and feed
back signal. Thus, applications such as control systems, speech, and telecommunications require 
intensive numeric processing of analog signals. IJPs and ~Cs are usually unable to do the process
ing correctly, so using them can cause significant numerical problems. 

Most of these problems occur in processors that have 8/16-bit ALUs and registers. This 
8/16-bit architecture limits the accuracy of intennediate and final results and generates truncation/ 
quantization errors. Lack of scaling shifters to maintain the required significant bits can cause addi
tional quantization/truncation errors. Most processors also lack the perfonnance to perfonn real 
time processing, so they rely upon lookup tables, thus limiting precision to low-perfonnance or 
low-bandwidth systems. Lack of processing capability also limits these processors to simpler con
trol techniques. They are unable to take advantage of sophisticated techniques from modem control 
theory. If used in higher-perfonnance systems, they can cause excessive loop delays, leading to in
stability. Most of the problems discussed can be eliminated with the use of digital signal processors 
as controllers. 

DSP Architectures 

DSP architectures like those in the TMS320 family have been designed for signal processing 
systems. The TMS320 family not only has an architecture that minimizes numerical problems in 
signal processing, but also has the perfonnance to meet the bandwidth requirements of high per
fonnance systems using sophisticated techniques. 

DSP architectures are optimized to give the highest possible perfonnance. To achieve high 
processing speed, the TMS320DSPs perfonn all functions in internally hardwired logic. Thus, it 
takes a single clock cycle to execute most functions. Other processors perfonn the same functions 
in software or microcode, thus taking a large number of cycles for execution. To enhance the per
fonnance even further, the TMS320 architecture employs a multiple-bus internal architecture. This 
allows simultaneous fetch of instructions and data operands. Most instructions on the TMS320, in
cluding arithmetic operations, are executed in a single clock cycle. 

In digital signal processing, most algorithms, including control algorithms, can be repre
sented as difference equations consisting of multiply accumulates. The TMS320 DSPs contain a 
hardware multiplier that perfonns a 16 x 16 multiply in a single instruction cycle. This high speed 
allows the TMS320to execute most control algorithms in real time. The fast processing speed mini
mizes the computation delay time for generating the output from the controller and also allows very 
fast sampling rates to be implemented for high bandwidth systems. Additional features in the 
TMS320 architecture include an instruction set that is optimized for data sampled systems. The 
DMOV instruction implements the z-l operator. The MACD instruction implements four opefl~
tions simultaneously: 

• A multiply 
• Datamove 
• Accumulate previous result 

• Load T register 

Implementation of PID and Deadbeat Controllers with the TMS320 Family Of DSP 535 



For greater precision, the TMS320 hilS 32-bit registers for storing intennediate results. In ad
dition, the TMS320 has multiple hardware parallel shifters to allow scaling and prevent overflows. 
These shifters enable shifting to take pl~ce simultaneously with other operations without additional 
overhead or execution time. The 32-bit registers and shifters minimize quantization and truncation 
errors because a very high precision can be maintained both for intennediate and final results. The 
TMS320 also contains an overflow mode, which, in case of overflow, allows the accumulator to 
saturate at most positive or least negative values (similar to analog circuits), instead of rolling over 
and varying between positive and, negative values. For fast context saves, the TMS320 contains an 
on-chip hardware stack, reducing interrupt response time and minimizing stack pointer manipula
tioos. Since the TMS320 is a family of microcontrollers, it also minimizes system costs with fea
tures such as on-chip RAM, on-chip ROM/EPROM, and on-chip peripherals like serial ports, tim
ers, and parallel I/O. The high degree of on-chip functionality, flexible instruction set, pipelined 
architecture, and high perfonnance make the TMS320 the preferred choice ih most control and sig
nal processing applications. Table 2 lists a comparison between theTMS320C14, TMS320C25, 
and several ~Cs and J,tPs. 

Table 2. Features Comparison 

Feature '320C14 '320C25 80C196 68000 68020 

Instruction cycle time-ns 160 100 333 400 120 
Frequency - Mhz 25 40 12 10 24 
Multiply 16xl6 -+ 32 (J.ls) 0.16 0.1 2.2 7.0 1.0 
PIDloop (J.lS) 2.2 1.3 27.0 25.0 4.8 
Matrix multiply (3x3. 1x3 - J.ls) 4.3 2.7 24.3 65.2 9.7 

.TMS320 Digital Signal Processors 

The TMS320 digital signals processors can be divided into two families: a fixed-point arith
metic family and a floating-point arithmetic family. Eaqh family is further divided into different 
generations and offers different perfonnance ranges between generations. Within each generation, 
members are object code and, in some cases, pin compatible. 

TMS320 Family of Fixed-Point Arithmetic DSPs 

The fixed.:.point arithmetic family is made up of three generations, TMS320Clx, 
TMS320C2x, and TMS320C5x. All members of the fixed-point arithmetic family have a 16-bit 
architecture with 32-bit ALU and accumulator. They are based on a Harvard architecture with sepa-

. rate buses for program and data, allowing both instructions and operands to be fetched simulta
neously. They also feature a 16 x 16=32 hardware multiplier for a single-cycle multiply, and a hard
ware stack for fast context saves. An overflow saturation mode is included to prevent wraparound. 
All instructions (except branches) are executed in a single clock cycle. Perfonnance ranges from 
5 MIPS (million of instructions per second) to 28.5 MIPS among the three generations. 

TMS320Clx 

The TMS320Clx generation is based on the TMS32010, the first DSP, introduced in 1982. 
It comes with 144 words of on-chip RAM and 4K-words of address space. Instruction cycle time 
goes down to 160 ns. Other members of the first generation include the TMS320C15 and its 

536 Implementation oj PID and Deadbeat Controllers with the TMS320 Family of DSP 



EPROM version (TMS320E15), TMS320C17/E17, and TMS320C14/E14. All ofthese devices 
have an expanded memory of 256 words of on-chip RAM and 4K-words of on-chip ROM! 
EPROM. The TMS320C14/E14 is optimized for digital control applications and has 16 pins of bit 
I/O, four t\mers (including a watchdog timer), a USART, 6/4 channels of pulse width modulation 
(PWM), and 2/4 capture inputs for optical encoder interface and PWM[l ,2]. 

TMS320C2x 

The TMS320C2x generation is based on the TMS320C25. It comes with 544 words of 
on-chip RAM and 4K-words of on-chip ROM. Total address space is expanded to 64K words for 
both data and program. The instruction set is considerably enhanced from the C1x generation. In
struction cycle time is reduced to 80 ns. Other members include the TMS320E25, TMS32020, and 
TMS320C26[3]. 

TMS320C5x 

The TMS320C5x generation is based on the TMS320C50. It features 8K-words of on-chip 
RAM and 2K-words of on-chip ROM. The instruction set is considerably enhanced from the 
TMS320C2x generation. Some of the new features include a separate PLU, shadow registers for 
fast context save, JTAG serial scan emulation, and software wait states. Instruction cycle time is 
35 ns. 

TMS320 Family of Floating-Point Arithmetic DSPs 

The floating-point arithmetic DSPs consist of two generations: the TMS320C3x and the 
TMS320C4x. All members of the floating-point arithmetic family have a 32-bit architecture with 
4O-bit extended precision registers. The floating-point arithmetic family is based on Von Neuman 
architecture. However, multiple buses are included to give even faster throughput than traditional 
Harvard architectures. Features include hardware floating-point multiplier and a floating-point 
ALU. 

TMS320C3x 

The TMS320C3x family is based on the TMS320C30. It features 2K x 32 words of on-chip 
RAM, 4K x 32 of on-chip ROM, and 64 words instruction cache. Other features include a separate 
DMA, two serial ports and two timers. The TMS320C30 features two external 32-bit data buses 
and a 16M-word address space. Instruction cycle time is 60 ns, and performance is up to 33 
MFLOPS (million floating-point operations/second)[4]. 

Design of Digital Control Systems 

Design of a control system involves two major steps: 
1) The process or plant has to be put into mathematical form so that its behavior can be ana

lyzed and evaluated (i.e., a plant model has to be derived). 
2) An appropriate controller must be designed so that the plant gives the desired response 

under influence of the control system. 

Designing a digital control system requires additional steps that convert the system into a dis
crete form. This conversion can be done in two different ways. 

Implementation of PID and Deadbeat Controllers with the TMS320 F amity of DSP 537 



1) The design of the controller can be carried out entirely in the analog form in s~domain, 
and then converted into discrete form ~t the final stage for implementation. 

2) The design of the controller may also be carried out entirely in discrete form. In this case, 
the plant model has to converted into discrete form or z-domain. 

This section describes how to 
• Discretize analog systems 
• Reduce a plant into a mathematical form 
• Design the controller. 

Discretization of Analog Systems 

There are several ways to convert existing continuous or analog control systems into discrete 
or digital systems. However, the conversion from the s-domain to the z-domain causes some distor
tion in the location of the poles in the z-domain, and must therefore be taken into account. 

Zero-Order Hold (ZOH) 

This technique assumes that the controller is preceded by a ZOH (D/A converter) and fol
lowed by a sampler (AID converter), so that both input and output of the resulting system are digital. 
Both the ZOH and sampler are included in the conversion scheme. The conversion is given by the 
following equation: 

H(z) = (1-z-1 )Z [L-1(H(s)/s)] (1) 

It is assumed that the Laplace transform will be split up using partial fractions and z-trans
form tables will be used. 

Matched Pole-Zero 

In this technique, the poles of the s-domain are directly mapped into the z-domain according 
to the relationship z = e 18, where T is the sampling period. To equal the number of poles and zeros, 
additional zeros are added at z = -1. The gain of the two systems is matched at a critical frequency 
by choosing an arbitrary gain constant. This method does not take into consideration any aliasing 
effects. 

Bilinear Transformation 

This technique, also called the Tustin or trapezoidal approximation, uses the relationship 

2 
s = -(z-I)/(z+ 1) 

T 
(2) 

to transform an s-domain function into the z-domain. The left half of the s-plane is mapped into the 
unit circle in the z-plane. However, this method warps the frequency response at the critical fre
quencies of the system. To overcome this problem, the critical frequencies of the original s-domain 
are prewarped so that the critical frequencies of the z-domain system end up where they belong. The 
critical frequency W 0 is prewarped to another frequency by the transformation . 

538 Implementation of PlD and Deadbeat Controllers with the TMS320 Family of DSP 



(3) 

where T is the sampling period. 

Before these techniques can be used, an appropriate plant transfer function must be derived, 
or a controller may have to be designed. The next section describes derivation of a plant transfer 
function and the controller design. 

Plant Modeling 

The first part of designing any control system is to describe the plant in a mathematical form 
or identify the plant's parameters. This section describes the derivation of a mathematical model 
for a plant. 

A DC servo motor is used in the example, and a model is developed for the motor. The motor 
is an analog device, and the given electrical and mechanical characteristics describe its behavior 
in the continuous time form. This model must be transferred into a discrete form or the z-domain 
for use with a digital controller. The ZOH method is used to transform the model into a discrete 
form. 

In general, the electrical characteristics of a DC motor are given by 

where 

L di + Ri = V -emf 
dt 

L = inductance of motor 
R = resistance 
V = applied voltage 

= current 
emf =backemf=Ke x () 

The mechanical characteristics are given by 

where 

JM = motor inertia 
() = angular displacement 
K = stiffness constant 
B = damping constant 
JL = load inertia 
TL = load torque = Kr x i 
Kt = torque constant 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 

(4) 

(5) 

539 



Figure 2 shows a representation of the equivalent electrical and mechanical model of a DC 
servo motor. 

Figure 2. Model of DC Motor 

+ 

v 

The motor selected for this report is a Pittman model 9412G316. It has the follo,:,"ing parame-
ters: 

R =6.4Q 
J = 1.54 x 10-6 kg x m2 

Kr = 0.0207 (N x m)/A 
Ke = 0.0206 volt/(rad!s) 

The electrical and mechanical characteristics of the motor given by (4) and (5) can be com
bined. After the values of the motor parameters are substituted, the complete transfer function for 
the mathematical model of the motor as derived in Appendix A can be stated as 

Gm(s) = 53.906 
s (s+ 1.116) 

(6) 

This transfer function is then transformed into the z-domain using the zero-hold approxima
tion as shown in Appendix A. The transfer function or the model in the discrete form is stated as 

G (z) = .2694z-1 + .2693z-2 X Km 
m 1 _ 1.999z-1 + .999z-2 

(7) 

where 

Km = the numerator gain constant. 

Digital Controller Design 

The next step in designing a digital control system is to design the controller. The controller 
may be designed in the continuous domain and then converted into discrete form. Alternatively, 

540 Implementation of PlD and Deadbeat Controllers with the TMS320 Family of DSP 



the entire design may be carried out in the discrete domain. It is assumed that the design is carried 
out in the discrete domain. The next few sections give an overview of different types of control al
gorithms and discuss design of a PID controller and a deadbeat controller. However. before design 
of a digital controller is done, some discussion of behavior of poles in the z-domain is essential. 
The next section discusses behavior of poles in the z-domain. 

Behavior of Poles in Z-domain 

Use of the conversion techniques allows the conversion of an existing analog design into a 
digital design. However, to insure successful implementation of the control system design, some 
knowledge of the behavior of the poles in the z-domain is essential. Any poles (real or imaginary) 
located outside the unit circle are unstable and have an unbounded response. Poles located inside 
the unit circle give a stable response. Poles that lie on the unit circle manifest oscillatory behavior. 
As poles move towards the origin, their response decays at a faster rate. Figure 3 shows the different 
pole locations and their corresponding responses. 

Figure 3. Behavior of Poles in Z-Domain 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 541 



Control Algorithms 

The next step in designing the controller is to select an appropriate algorithm or controller 
structure. The processing burden imposed upon the controller is directly dependent upon the com
plexity and type of controller structure. 

Compensation Techniques 

Compensation techniques are one of the most commonly used control techniques. In this 
technique, the controller adds poles and zeros to get a desired system response. For a continuous 
control system, the controller is designed in the s-domain by using some of the well known methods 
such as root locus, Bode plots, and Nyquist plots. The analog or s-domain design is then transferred 
into a discrete form (z- domain) by using a transformation technique. Alternatively, the compensa
tor can be designed directly in the z-domain by using z-domain frequency response, methods or the 
z-domain root locus method. Compensation techniques allow a precise modification to system be
havior. Implementation of compensation techniques is described in an application report, Control 
System Compensation and Implementation with the TMS32010[5]. 

PID 

The PID is a commonly used analog control technique . .In a PID controller, terms proportion
al to the error term, its integral, and its derivative are summed to achieve the controller output. A 
PID controller may be designed in the s-domain, and then transferred into the z-domain by using 
one of the transformation methods. Alternatively, the PID algorithm is converted into a discrete 
form, and the design is carried out entirely in the z-domain. PID is probably the most commonly 
used algorithm. PIDcontrollers are very robust; although the design of coefficients is somewhat 
arbitrary[6,7]. 

Deadbeat 

A deadbeat algorithm is used when a quick settling time is required. Deadbeat design is car
ried out entirely in the z-domain. A deadbeat controller replaces the poles of the system with poles 
at the origin of z-domain[8]. 

State Models 

In a state model, a complete representation of the system is made in matrix form. This is ac
complished by identifying and developing the relationship between the different states or variables 
of the plant. An appropriate feedback gain can be chosen to place the poles of the system at any 
desired location in the z-domain. State controllers are used where mUltiple variables or states need 
to be controlled. State controllers are sometimes impractical to implement because it may not be 
possible to measure all states. They are usually used in conjunction with observers. State controllers 
allow very precise control of system behavior[ 6, 9, 10]. 

Observer Models 

Often, in control systems, some of the states of the system are not available for measurement. 
The measurement of known states in an observer model can be used to estimate unknown states 
in the control system. The estimated states, along with an appropriate feedback gain, can be used 

542 Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 



to complete the control loop and place the poles at any desired location. Observers are typically 
used in conjunction with state controllers, where access to all state variables may not be available[6, 
9,10,11]. 

Optimal Control 

Optimal control synthesis is used when a specific performance or cost criteria (e.g., time or 
energy) must be minimized. The given criteria or cost function is used to derive an appropriate con
trollaw, which is then implemented with a controller or compensator[7, 12]. 

Kalman Filter 

An observer model can be used in a system where an exact measurement of some states is 
available. However, in stochastic systems, the presence of noise or uncertainty makes it impossible 
to make an exact measurement. A Kalman filter is an observer model in a noisy or stochastic sys
tem[7, 13, 14]. 

Adaptive Control 

Adaptive control is used in systems in which there is insufficient information about the plant 
parameters, making it impossible to derive a plant model. It is also used in systems where plant pa
rameters or plant models change overtime, making the controller unstable. An adaptive controller 
tracks changes in the plant by redesigning the controller to give an optimum control system[6, 8, 
16]. 

Design and Implementation of PID Controllers 

This section describes design and implementation of a PIO controller. PIO is a commonly 
used technique in classical control. In designing controllers, it is often found that just minimizing 
a term proportional to the error is not sufficient. Including the integral of the error term reduces the 
steady-state error to zero because it represents the accumulated error. To further improve stability 
and plant dynamics, a differential of the error term is introduced. This term represents the error rate. 
A PIO controller that includes all three terms can give very good results. This technique is also be
ing used in. discrete form with digital control systems. 

Two different approaches are used for conversion ofPIO into discrete form: rectangular and 
trapezoidal approximations. For the rectangular approximation, the design is done in the analog 
domain and then converted into z-domain. For the trapezoidal approximation, the design is done 
directly in the z-domain, using pole placement techniques. 

The analog PID algorithm is given by 

where 

Kp , Kio and Ktt 
u(t) 
e(t) 

u(t) = Kpe(t) + K j f dt + Kd de 
dt 

= PID constants 
= output of controller 
= error signal 

Implementation of PlD and Deadbeat Controllers with the TMS320 Family of DSP 

(8) 

543 



Rectangular Approximation 

To discretize, assume that the sampling interval forthe system is T. The rectangular approxi
mation is the easiest to use and gives satisfactory results. For the rectangular approximation, as
sume the integralJ edt is an accumulation of small rectangles given by T x}: e(i) for i = 1 to n (see 
Figure 4). The differential de/dt (if T is sufficiently small) can be approximated by 

where e(n) = the nth sample. 

e(n) - e(n -1) 

T 

Figure 4. Rectangular Approximation 

(9) 

After conversion into its discrete form and transferring into tim.e domain, the final form is 
shown in (7). The complete derivation is described in Appendix B. 

where 

K1 = Kp + KJIT + K;.T 
K2 = K;.T - 2KJIT 
K3 =KJIT-Kp 
urn) = control signal at time interval n 
u(n-2) = (n-2)th sample 
e(n). = error signal at time n 
e(n-l) = error signal at time n-l 
T = sampling interval 

(10) 

Appendix E shows the code to implement (7) on the PIO controller with rectangular approxi

mation. The code takes 11 instructions on the TMS320C15 and executes in 2.6 !-los at 20 MHz. The 

544 Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 



MPY instruction perfonns a multiply in a single cycle. The LTD instruction loads the T register, 
implements a data shift or z·t operation, and adds the result of the multiply to the previous value 
in the accumulator, all in a single cycle. 

K] , K2' and K3 are obtained by designing Kp. Ki. and KtJ and using conventional techniques 
from classical control[6, 7] (see Appendix B). Figure 7 through Figure 6 show the step response 
of the PIO controller with different values of Kp. Kj, and KtJ. 

Figure 5. Step Response of the PID Controller with First Set of Kp, Ki, and KtJ Values 

1.8 .--__ --_._--..--...:p-=o~S~IT:.:.:IO:::.:N::..:.ST.:.:E;:.P...:R~E==S~P..:;O;.:.:N::S:.E------_._-__, 

1.6 

1.4 

~ 
~1.2 
Q 

~ 
ii!S 1 
z 
~0.8 

I I _ ... ... ... ... ... ... ... ... 04 ... ... ... ... ...... _ ... ... ... ... ... ... ... ....t ... ... ... ... ... ... ... ... ... ... ... ... ... ... _I... ... ... -_ 
, I I 

I I I I I I 
- ... ... ... + - ...... - ............ - ... ... ...... - - ... ... .. .. ... ... ... ... - ... - ... ... ... ... - - ... ... -I .. .. ... ... ... ... ... ... -. 

I I I I I I 

I I ----1-----1-----1---------------.----
I I 

I I 1-----1-----1---------------.----I I 

~ a. 0.6 .. ......... 1- ... ... 
I I I I I ------------------------r----t'---------
I I I I I 

0.4 I ' I I 
............ - ...... -1- _ ...... -~ ......... -1- ........................... 1- ................................. .. 

I I I 

0.2 
I I I I I 

......... -1- ....................................................................................... to ............ to ... ... 
I I I I I 

Kp = 4181 
Kj = 1 
I<cl = 9.57 
Km= 1 

°O~-~10~--2~O~-~3~O--~4~O--5~O~--~60~--~~--~~--~9~O--~100 

TIME IN # SAMPLES 

Implementation oj P/D and Deadbeat Controllers with the TMS320 Family oj DSP 545 



Figure 6. Step Response of the PID Controller with Second Set of Kp ' K;, and KtJ Values 

1.6 

1.4 

en z 1.2 c:[ 
Q 
c:[ 
a: 1 
~ 

----"1----,-, 
z 
0 0.8 
~ 
0 a. 0.6 

___ ..1 ____ ... _ 

, 
0.4 - r - -

0.2 1 -

0 
0 10 20 30 

I I I _ .! __ 
-.--------- I 

, ------, _ J 

-. _ L _ _ L _ 

- - , -

- - - - !.. ----1- _ L 

J _ J _ 

- r 

- - 1 - -

40 50 60 
TIME IN # SAMPLES 

- - - r - -. 
- 1 

70 80 

Kp =400 
Kj =2 
Kd =4 
Km= 1 

90 100 

Figure 7. Step Response of the PID Controller with Third Set of Kp ' Ki, and KtJ Values 

en z 
c:[ 

1.2 

1 

~0.8 
a: 
~ 
z 
00.6 
j:: 

~ a. 
0.4 

0.2 

o 

546 

o 

- -. - 1 -0 - -, -

, 
--r---- 4 , - - -, - -,-

----,- _ oJ _ 

"1----..J-----1 - -'-

- - - -I _____ I _____ 1 _____ 1_ - - 1- _ 

10 20 30 40 50 60 
TIME IN # SAMPLES 

-,- - - - - 1- -

- -.- -

_1- _ 

, 
- _1- _ 

- !. -

70 80 

- - .-

-1----

Kp = 500 
Kj =0.5 
Kd = 15 
Km= 1 

90 100 

. Implementation oj PID and Deadbeat Controllers with the TMS320 Family oj DSP 



TrapezoidaL Approximation 

If a more accurate conversion is required, the trapezoidal approximation or Tustin transfor
mation is used. The area of the integral f edt is given by the summation of small trapezoids (see 
Figure 8). 

Figure 8. Trapezoidal Approximation 

The integraIf edt can also be solved by taking the Laplace transform of (8) and substituting 

s = 2/T X (z-l/z+ 1) 

After substitution and solving, 

u(n) = u(n - 2) + Kle(n) + K2e(n -1) + K3e(n - 2) 

where 

K1 =Kp + ~/T+~T/2 
K2 = ~T - 4/V./T 
K3 = ~/T -Kp + ~T/2 
urn) = nth sample of output of controller 
u(n-2) = (n-2)nd sample of output 

(11) 

(12) 

The complete derivation of this equation is described in Appendix B. The code to implement 
(12) on the PID controller is shown in Appendix E; it takes 12 instructions and executes in 2.8 ""s. 

The gain constants K1 ,K2, and K3 are designed by selecting the poles for the system transfer 
function [15] (see Appendix B). The dominant poles are selected by choosing a desired characteris
tic equation. The rest of the poles can be selected by placing them near the origin. These polar loca
tions are chosen to ensure system stability and a desired system response. However, some fine tun
ing may be necessary to achieve an optimum response from the system. As the poles move toward 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 547 



the unit circle, the system response speed decreases while the overshoot decreases; the system may 
become unstable if the poles are selected too near or outside the unit circle. Figure 9 through 
Figure 11 show the step response of the PID controller for various pole locations for the system. 

1.4 

1.2 

i :5 1 
Q 

~ 
3:0.8 

~ 
E 
~0.6 
Q. 

0.4 

0.2 

548 

Figure 9. PIn Controller Step Response for System's First Pole Locations 

POSITION STEP RESPONSE 

I I 
- - - -I - - - - - - - - - - .. - - - - - - - - - -1- - - -

I I 

I 

I I I I 

- - - -.- - - - - t. - - - - i - - - - _1- - - - -,- - - - _.I. - - -:'O;-..;-.. ·.:.-..;-;.:.-;.:'-:..:.-.:-;..-:;.:-~i~-..;-:..:-.:::j 
I I 

I I I I 
- - - - r - - - - .J - - '- - -, - - - - - '- - - - - T - - - - _I _____ • _____ L - - _ 

I I , I 

I I I I 
- - - ., - - - - - - - - - - r- - - - - - - - - - -, - - - - - - - - - - ~ - - - - - - - - - -1- - - -

I I I I 
I 

I I I I 
- - - - - - ... - - - - - - - - - -I - - - - - - - - - - of. - - - - - - - - - - I I I I I 

I I I I 
- - _1- - - - - r - - - - ..I - - - - -,- - - - - ,- - - - - T - - - - _I - - - - -, 

TIME IN # SAMPLES 

Pole Locations 
Z1 =0.90 
Z2 = 0.91 
z3 = 0.95 
z4 = 0.95 
Km= 104 

100 

Implementation of PlD and Deadbeat Controllers with the TMS320 Family of DSP 



Figure 10. PID Controller Step Response for System's Second Pole Locations 

2.5 
POSITION STEP RESPONSE , 

, I I I 
- ... r ......... -,- ......... , ............ T ............ .- ......... -,- ......... , ............ r ......... -.- .... - --

I I 

I I 
'j ............. - ............ I'" ... ... ... -.'" ------I ... -,'" ....... - ... 
I 

If: 
I 

0.5 _I ............ .J ........................ _1_ ......... _, ............ ~ ............ ,_ ... 

10 20 30 40 50 60 70 
TIME IN # SAMPLES 

-,- ...... --:----

I 

I 

'Pole Locations 
Zl =0.20 
z2 = 0.24 
Zg = 0.30 
Z4 = 0.22 
Km = 104 

80 90 100 

Figure 11. PID Controller Step Response for System's Third Pole Locations 

1.2 .----.---~---.......:..;:;.;.:.:.r;=.:.:..::..;..:;::...:..:=:..,;:;.;=::....,.--_._-........,.__-.., 

1 ... -,- ......... J ............ '- ......... , ............ ,-

~ :s 
~0.8 
a: 
~ 
z 

I 

---'-----'----1-I I 
... !.. ... 

~0.6 
__ J _ 

... ,_ ... ... ... _. ... ... ...... 1- ......... _, ... ... ... ... r ......... _I ...... 

~ a. 
0.4 

0.2 

I I 
... 1- ... , ......... -, ...... 

I I I 
_ L 

...... , ............ '- ......... .J ............ ,. ...... _._,_ 

I I 

I I 

10. 20 30 40 50 60 
TIME IN # SAMPLES 

I 

I 

... -,-

70 

Implementation of PID and Deadbeat Controllers with the'TMS320 Family of DSP 

!. _1_ ...... 

I I 

-p-ore locatlons 
Zl = 0.96 
Z2 = 0.95 
Zg = 0.20 
Z4 = 0.15 
Km= 104 

80 90 100 

549 



Our final algorithm comes out to 

u(n) = u(n-2) + O.162e(n)-0.43ge(n-l) +0.3185e(n-2) (13) 

Figure 12 shows the the block diagram of a system using a PID controller. The zero-order 
hold represents the function of a D/A, and the sampler represents the function of an AID. 

Figure 12. PID Controller System Block Diagram 

r(n) e(n) PID u(n) ZERO DC SERVO y(n) 
+ CONTROLLER ORDER - MOTOR 

- GpIO(z) HOLD Gp(z) SAMPLER 

Deadbeat 

One of the desired characteristics in a control system design is a quick settling time. In an 
analog controller, it takes the system output an infinite time to settle exactly to the reference input 
signal. A deadbeat controller is used when a quick or finite settling time is required. A deadbeat 
controller reaches a steady state in n+ 1 samples, where n is the order of the controller. Essentially, 
a deadbeat controller cancels all the poles of the system and replaces them with poles at the origin. 
Another advantage of deadbeat controllers is that they require few calculations. Therefore, they can 
be used in systems where synthesis must be repeated frequently (e.g., in adaptive control systems). 

Deadbeat controllers compensate for the poles of the system; therefore, they should not be 
applied to systems with poles outside or in the vicinity of the unit circle in the z-plane. Thus, dead
beat controllers should be used only with stable plants or processes; otherwise they may cause insta
bility. Deadbeat controllers may also require a large amount of gain, thus leading to actuator satura
tion. 

Deadbeat controllers also give a large overshoot. The only design parameter in deadbeat con
trollers is the sampling period that influences the magnitude of the control signal. When deadbeat 
control is used, the magnitude of the control signal increases as the sampling period decreases, 
otherwise, a larger overshoot occurs. Thus, it is important to choose the sampling period carefully 
when using deadbeat control. Besides increasing the sampling period, there are two other ways to 
reduce the overshoot. 

550 

1) One is to design an extended-order deadbeat controller[8], which allows u(O) or the ini
tial control action to be specified. Since u(O) has the largest magnitude, this allows the 
overshoot to be controlled. 

2) An alternate method is divide the ret) (the desired final state) into two or three sublevels 
and reach final steady state in 2(n+1) or 3(n+1) sample times instead of n+1 sample 
times. This has the same effect as increasing the sample time. However, the final over
shoot can be more precisely controlled, depending on how ret) is subdivided. 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 



The transfer function of a deadbeat controller is given by 

(14) 

The order n of the controller transfer function is the same as the order of the plant transfer 
function, or n=2. The deadbeat controller will reach final state in n+ I or three sample time intervals. 
The coefficients Po, PI ' P2, f{(), qI, and lf2 are found from the plant parameters. Appendix C de
scribes the complete equations to find these parameters. Solving for the parameters of the control
ler, the final transfer function for the controller is 

G _ 0.1566 - 0.3129z-' + 0.1564z-2 

db - 1 _ 0.4218z-' - 0.4216z-2 
(15) 

Figure 13 shows the block diagram of a deadbeat controller and Figure 16 through Figure 15 
show the step response of the deadbeat controller. The code to implement the deadbeat controller 
is given in Appendix E. 

Figure 13. Deadbeat Controller Block Diagram 

r(n) e(n) DEADBEAT u(n) ZERO DC SERVO yen) 
~ 

'+""-
CONTROLLER ORDER r--- MOTOR 

Gdb(Z) HOLD Gp(z) SAMPLER 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP ·551 



552 

Figure 14. Step Response of the Deadbeat Controller 

1 
POSITION STEP RESPONSE 

0.9 ~ - - - - - - ,_ - - - - - ~ - - - - - - I _ _ _ _ _ _ ,_ _ _ _ _ _ ~ _ _ _ _ __ 

, " , , 

(1)0.8 
z 

I I I I I ' r-- - - - - -, - - - - - - ,- - - - - - T - - - - - -. - - - - - - ,- - - - - - "1 - - - - --

I I I . , " 0< 
00.7 
0< 

~ - - - - _: - - - - - - ,_ - - - - - ~ - - - - - - I _ _ _ _ _ _ ,_ _ _ _ _ _ ~ _ _ _ _ __ 

, " 
a: " , , " 
2!;0.6 

I I I I I I 
~ - - - - r - - - - - -, - - - - - - ,- - - - - - 7 - - - - - -, - - - - - - ,- - - - - -

z 
gO.5 
en 
~0.4 f---

0.3 1--

0.2 ~ 

0.1 r-
I o 

o 

0.35 

" , 
- - -: - - - - - - '- - - - - - ~ - - - - - -' - - - - - - '-:- - - - - - ~ - - - - --, " , " ___ ' ______ , ______ ~ ______ , ______ L _ ... ___ ~ _____ _ 

I I I I t I 

I I I I I ' 

" , 
- - - i - - - - - ~ - - - - - -.- - - - - - ~ - - - - - -: - - - "- - - - - - - - -

, , , " 
- - - _' - - - - - - 1- _____ ! ______ I ______ ... __ , , 

, " 

T =5 msec 
Km= 104 , -

- - - - !.. - - - - - -I ______ 1 ______ ... ______ I ______ 1 _____ _ 

I I I 1 I I 

iii I I i 
5 10 15 20 25 30 

TIME IN # SAMPLES 

Figure 15. Step Response of the Deadbeat Controller 

POSITION STEP RESPONSE , ! , ! , ! , , , 
, 
, 

I I I I I I I I 

35 

0.3 .... - - - -, - - - - • - - - - ,- - - - -0 - - - - r - - - - ,- - - - -, - - - - ~ - - - -,- - - -

~ <C I I I I I I I 

0 0.25 - - - -,- - - - ~ - - - - r - - - -,- - - - , - - - - 0- - - - -,- - - - + - - - - ,- - - --

0< 
a: 
~ - - _: - - - - ... - - - _:_ - - - -I ____ ~ ____ : ____ ~ ____ ~ ____ : ___ _ z 0.2 r-
o 
E I I I I 

~0.15 roo - - - ,- - - - ~ - - - - ~ - - - -, - - - - .. - - - - ~ - - - -, - - - - ~ - - - - ,- - - --
Q. 

0.1 

0.0 
5 

o 
o 

_ _ _I _ _ __ ,1 _ _ __ 1_ - - - -' - - - - .. - - - - 1- _ _ _ -I - - - - • -
T =3 msec 

, ' , ' , ' , Km= 104 
_ _ _1_ _ __ J _ _ __ ~ _ _ __ I _ _ _ _ "" _ _ __ 1_ _ ___ I _ _ __ .! _ _ _ _ 1_ _ __ _ 

1 1 1 1 

, 
I I I I I 

10 20 30 40 50 60 70 80 90 100 
TIME IN # SAMPLES 

Implementation of PlD and Deadbeat Controllers with the TMS320 F amity of DSP 



Figure 16. Step Response of the Deadbeat Controller 

- - - - - ,. .. - ........ r .... - .... -,- ............................... r ............... -,- ......... ... 
1 

I 

............ -,- ............... ""t ................ r ............... -1- ............... , .................. ~ ............ ... 

1 1 
...... .., .................. I- ............... -, .................. of .................. ,.. ............... -1- ......... ... 

1 I I I I I 
...... -1- .................................... r ............... -1- ............... .., .................. ~ ............ ... 

... ... ... ... ... "t .................. &- ............... -1- ............... ~ .................................... -1- ........ ... 

1 

1 

...... -1- ................................... to ............... -1- ............... -f ................................. ... 

... ... ... of .................. &.,. ............... _1_ .............. ~ ....................................... 1 ........... ... 

I I I I I 
____ 1 ______ ..J ______ • ______ 1 ______ .. __ • T = 5 msec 

Km= 105 
1 1 

.............. ~ .................. L .............. _1_ ............... .J. ................. "* .................. ' ........... ... 

5 10 15 20 25 30 35 
TIME IN # SAMPLES 

Implementation of PID and Deadbeat Controllers with the TMS320 F amity of DSP 553 



Implementing Digital Controllers 

This section will discuss some of the issues in implementing digital controllers[5, 17] with
out going into mathematical details. For mathematical models refer to references [6 through 11]. 
Perhaps the most critical issue in implementation is the effects of finite wordlength. 

Finite Wordlength Effects 

Most digital controllers use fixed-point arithmetic processors. In a fixed-point arithmetic 
processor, only a finite amount of storage length (Le., 4,8, or 16 bits) is available to represent the 
magnitude of a signal or a gain constant. Signals and coefficients have to be scaled to fit in the dy
namic range and wordlength of the processor. This limited storage capacity is referred to as the fi
nite wordlength issue. The effects of finite wordlength show up as noise or limit cycles in the sys
tem, and may even cause instability. These effects are also referred to as quantization noise. 

Another effect of finite wordlength shows up in the processing of signals. As intennediate 
calculations are carried out, higher precision is needed. For example, a 16x16 multiply needs a 
32-bit register to store the result. If only 16 bits are available, the lower 16 bits are thrown away. 
This results in a loss of precision in the result, referred to as roundoff error. As successive calcula
tions are carried out, these errors will accumulate. Another effect of finite wordlength is overflow 
management. Too often, registers will overflow during calculations. This usually causes registers 
to wrap around from most positive to most negative. 

To minimize finite wordlength effects, a minimum of 16-bit wordlength is required, with 
32-bit registers for internal precision. In addition, extensive simulations should be carried out to 
detennine the dynamic range of the signals. Once system dynamics are known, proper scaling fac
tors along with structure optimization techniques can reduce most of the effects of finite word
length. 

Selection of a proper scaling factor is critical in minimizing the effects of finite wordlength. 
The scale factor should support the fuli dynamic range of signals and coefficients. A large scale 
factor may cause overflows. Although overflow protection is built into the TMS320 architecture, 
it is advisable to minimize overflows. To minimize overflow, sometimes it may be necessary to 
choose a smaller (12-13 bits) scale factor. A small scale factor, on the other hand, may cause quanti
zation noise or even underflow. 

Usually, there is little choice in handling the dynamic range of signals. If the dynamic range 
is too big, it may dictate selection of a floating-point instead of a fixed-point arithmetic processor. 
Simulations are required to detennine the dynamic range. However, in some cases, it may be possi
ble to switch modes and change scale factors. 

If gain coefficients have a large dynamic range, direct structures should be avoided and bro
ken into smaller cascaded structures. Different scale factors can be chosen for different sections. 
Another approach is to use structure transfonnation techniques like Schur transfonnation or Modal 
transfonnation to optimize structures. These transfonnation techniques not only reduce the dynam
ic range of coefficients, but also reduce the number of nonzero elements in the structure. This mini
mizes processor calculations. 

554 Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 



Fixed-Point Versus Floating-Point Arithmetic Processors 

One of the ways to avoid finite wordlength effects is to use a floating-point arithmetic proces
sor. Floating-point arithmetic processors have a very large dynamic range. A 32-bit floating-point 
arithmetic processor has a dynamic range large enough for most control system applications. Float
ing-point arithmetic processors are usually expensive; their cost can be justified in only a few appli
cations. Floating-point arithmetic processors may be needed in applications where either signals 
or gain coefficients are time varying and have a large dynamic range. Another case that justifies 
floating-point arithmetic processors is one in which cost of development cost is more significant 
than component cost and very low volumes are required. 

If gain coefficients have a large dynamic range but are constant, their dynamic range can usu
ally be reduced by structure optimization techniques. Floating-point arithmetic processors usually 
allow code to be developed in high-level languages and reduce the need to fully identify system 
dynamic range. 

Sampling Rate Selection 

An important consideration is the selection of sampling rate. In signal processing, the sam
pling rate is chosen to be at least twice the bandwidth, or the highest frequency component in the 
systems. In control systems, the sampling rate chosen is six to ten times the system bandwidth. If 
lower sampling rates are selected, noise from higher frequency components may be introduced into 
the system and can be indistinguishable from the signal. Anti-aliasing filters are used before the 
controller to filter out high frequency components. A first -order filter should be used to minimize 
the phase shift. 

Controller Design Tools 

A major consideration in using digital controllers is the design of hardware and software. One 
advantage of using digital controllers is that a large number of CASE (computer aided software en
gineering) tools are becoming available. These tools tremendously increase the productivity of the 
control designer. 

Code Development 

Software or code development cost is a major concem in implementing digital controllers. 
The programmable approach to controllers allows easy upgrade and maintenance. It also protects 
development investment, but at the same time it requires more initial development effort. Six dif
ferent approaches can be taken for software development: 

• High-Level Languages (HLL) - Use of an HLL like C, Pascal, or FORTRAN can substan
tially cut development effort. Such languages are familiar and easy to program. However, 
they are not optimized with respect to signal processing or to a particular processor's ar
chitecture. Code compiled on a processor may be two to four times the size of assembly 
code. This is a high penalty in time-critical signal processing applications. 

• Assembly Language-The most efficient coding occurs in assembly language. Even when 
an HLL language is used, it may be necessary to use assembly language for the more 

Implementation of PID and Deadbeat Controllers with the TMS320 F amity of DSP 555 



time-critical sections. Assembly language programming requires an intimate knowledge 
of the processor architecture. However, the nature of performance requirements in signal 
processing requires maximum code efficiency, leaving very little choice in some caSes. 

• Signal Processing Languages - This may provide a mid-ground between the two ap
proaches discussed above. Special languages designed for signal processing may give the 
ease of development of standard HLL languages. At the same time, they can give some 
of the efficiency of assembly language since they are designed for specific signal process
ing applications. One example of these special languages is DSPL from dSPACE[l8]. 
However, there are no standards for these languages, and none of the languages are widely 
known. 

• Code Generation Software- Code generation packages are becoming available that auto
matically generate assembly code for particular processors. For example, the Impex soft
ware package[19] from dSPACE will generate TMS320 assembly code from a mathemat
ical description of the controller. The DFDP (Digital Filter Design Package)[20] from 
ASP! will generate assembly code for TMS320 processors from a description of a filter. 
These packages are becoming increasingly popular because they allow the control design
er to focus on design issues instead of processor architecture in developing software. 

• Controller Design and Simulation Software - Controller design and simulation packages 
are also becoming popular. Packages like Matrix-X[2l] and PC-Madab[22] can be used 
for simulation and design of controllers. These packages allow use of pole placement and 
other techniques. Packages like Simnon[23] are extremely good for simulation of contin
uous and discrete controllers. These packages greatly increase the productivity of the con
trol engineer. 

• Device Simulators - Another very useful tool in designing software is the device simula
tor. Simulators for the TMS320 family run on common platforms like PC or VAX and 
provide full simulation of the instruction set, along with instruction timing. These allow 
simulation of the controller software to fully check the effects of math on internal registers 
and memory without the necessity of building hardware. 

Hardware Design 

A large variety of tools is available for designing the hardware for a controller. These include 
target systems and EVMs that plug into a PC or stand alone, and in-circuit emulators that can be 
used for complete system debugging. Also available are device behavioral models. These models 
can be used to simulate the timing and behavior of a complete target system without building any 
actual hardware. Logic Automation provides behavioral models for most members of the TMS320 
family that run on popular workstations. Also available are logic analyzers from manufacturers like 
HP and Tektronix that can be used for extensive tracing. These logic analyzers can disassemble cap
tured data to allow debugging of code[24]. 

556 Implementation oJ PID and Deadbeat Controllers with the TMS320 Family oj DSP 



Applications 

An increasing number of designers for control system applications are turning to DSPs to 
solve their problems. The capabilities ofDSPs are also making applications practical that were pre
viously impossible to implement or not cost effective. As costs of DSPs come down, they will re
place microcontrollers and analog components in most control applications. Some of the control 
system applications in which DSPs are already cost effective are servo control in computer periph
erals, vector control in AC motors, motion control in robotics and NC machines, and power control 
in power supplies and uninterruptible power supplies. 

Computer Peripherals 

A large number of applications in computer peripherals are starting to use DSPs. These appli
cations include read/write head control in winchester disk drives, tape control in tape drives, pen 
control in plotters, beam positioning and focusing in optical disks and in paper feed and print head 
control in printers. 

Disk Drives 

Disk drive designers were early adopters of DSPs. DSPs are used for servo control of the ac
tuator driving the read/write head. Disk drives employ a voice-coil motor with high bandwidth. In 
addition, data is read from the disk at a very high rate. Sampling rates of up to 50 kHz are sometimes 
used. Besides implementing the compensator, DSPs implement notch filters to cancel mechanical 
resonances or vibrations[25]. Figure 17 shows the block diagram of a disk drive. 

SCSI 

Tape Drives 

Figure 17. Disk Drive Block Diagram 

SCSI 
CONTROL· 

LER 

DIGITAL SERVO 
ANDSVSTEM 
CONTROLLER 

TMS320C25 

READIWRITE . 
ELECTRONICS 

AID 
AND 
D/A 

SPINDLE 
MOTOR 

In tape drives, DSPs are used for control of the tape mechanism. A tape drive has two servo 
loops that control tape speed and tension on the tape. Position feedback is obtained from an optical 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 557 



encoder, and tension infonnation is fed from a tension sensor. In addition, DSPs are also used to 
cancel mechanical resonances. Figure 18 shows the block diagram of a tape drive. 

Figure 18. Block Diagram of a Tape Drive Controller 

TAPE PATH 

TMS320C14 

SERVO CONTROLLER 

Power Electronics 

DSPs can be used for multiple applications in power electronics. These applications include 
AC servo drives, converter control, robotics, and Ipotion control. 

AC Servo Drives 

In AC servo drives, DSPs are used for vector control of AC motors. AC drives are less expen
sive and easier to maintain thail DC drives. However, AC drives have complex control structures 
resulting from the cross-coupling of three-phase currents. Vector rotation techniques are used to 
transfonn three-phase to rotating two~phase d-q axes. This simplifies the analysis to a field-wound 
DC motor[26, 27, 28], Figure 19 shows the block diagram of AC servo control. 

558 Implementation of PlD and Deadbeat Controllers with the TMS320 Family of DSP 



COMMAN CURRENTI 
VELOCITY 
CONTROL-

LER 

Figure 19. AC Servo Control 

VECTOR 
ROTATION 

CURRENT 
SENSORS 

• PWM 
INVERTOR 

TMS320C14 

UPS/Power Converters 

ENCODER 

In uninterruptible power supplies and power converters, DSPs are used for PWM generation 
along with power factor correction and hannonic elimination. Advanced mathematical techniques 
can be used to control the firing angles of the inverter to create low hannonic PWM with unity pow
er factors[29, 30]. 

Robotics/Motion Control 

DSPs are being used in large applications in robotics and other axis-control applications. 
DSPs allow high-precision control along with implementation of advanced techniques like state 
estimators and adaptive control. A single controller can handle speed/position control along with 
current control. Time-varying loads can be handled by using adaptive control techniques. Adaptive 
control techniques can also be used to create universal controllers that can be used with different 
motors. In addition to implementing controllers, DSPs can be used to implement notch filters to 
cancel resonances or vibrations [31]. 

Automotive 

DSPs can be used for many applications in automotive design. These applications include 
active suspension, anti-skid braking, engine and transmission control, and noise cancellation [32, 
33]. 

Implementation of PID and Deadbeat Controllers with the TMS320 F amity of DSP 559 



Active Suspension 

Active suspension systems use four hydraulic actuators, one at each comer of the vehicle. 
DSPs can take into consideration body dynamics, such as pitch, heave, and roll. This information 
is used to control the four actuators independently, and to dynamically counter the external forces 
and car attitude changes[34]. Figure 20 shows block diagram of ail active suspension system. 

Figure 20. An Active Suspension System 

VEHICLE 
DYNAMICS 

FUNCTIONAL BLOCK DIAGRAM 

HUB DISPLACE
MENTWHEEL 
FORWARD 
VELOCITY CAR 

,...-____ .., FORWARD 

ANALOG 
FRONTEND 

SPEED 

....... ~..,..,.'T"I'"~-' LATERAL 
ACC.BODY 
ATTITUDE 

TRANSDUCER 
INPUTS 

FROM EACH 
WHEEL 

HEAVE 

TMS320DSP 

. HOST 
COMPUTER 

ACTUATOR 

IRESERVOI~ 

SERVOVAlV/ 

560 Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 



Anti-Skid Braking 

In anti-skid braking systems, DSPs can be used to read the wheel speed from sensors, calcu
late the skid, and control the pressure in the wheel brake cylinder. Traction control can be added 
to control the vehicle in extreme condition (wheel lock and spinning) and to further increase vehicle 
stability, steerability, and drivability. Figure 21 shows a block diagram of an ABS system. 

Figure 21. Anti-Lock Braking System (ABS) Block Diagram 

I WHEEL SPEE;-' 
SENSOR TMS320DSP 

~ SIGNAL SOLENOID 

---;;; PROC.& '--t VALVES ---
IWHEEL SPEED~ LOGIC CONTROL 

AMPLIFIER OPERATIONS OUTPUT: 
SENSOR FILTER CONTROL 

AND AID THE PRESSURE 
IN THE 

IWHEEL SPEED~ WHEEL BRAKE 
SENSOR TMS320DSP SOLENOID 

CYLINDERS 
~ 

(REDUN- r--- VALVES ------;;; DANT) CONTROL 
IWHEEL SPEED~ 

SENSOR 

Engine Control 

In engine control applications, DSPs can be used with in-cylinder pressure sensors to perform 
engine pressure waveform analysis. This information can be used to determine the best spark tim
ing, firing angles, and the optimal air/fuel ratios. The closed-loop engine control scheme can toler
ate external turbulences, aging, wearing, etc., and maintains optimum engine performance and fuel 
efficiency. 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 561 



Summary 

This report has discussed implementation of digital control systems with the TMS320 family 
of processors, using various control algorithms. The report has focused on showing design proce
dures and implementation of generic digital control systems without going into specific applica
tions or choosing a particular approach or algorithm. Obviously, selection of a specific approach 
depends on the requirements of a particular application. However, the procedures outlined in this 
report can be applied with minor modifications to a wide range of applications. This report has also 
attempted to provide a bridge for control system designers who have been trained in analog control 
design and want to convert their analog designs into digital designs for stability, higher perform
ance, or other reasons. 

TMS320-based digital control systems have numerous advantages over analog-based de
signs. The high processing speed of the TMS320 family allows sophisticated control techniques 
to be used to build a high-precision control system. Digital systems are insensitive to component 
aging and temperature drift, thus minimizing variation in controller gain coefficients. With the 
TMS320 an adaptive control system can also be designed, thus creating a truly robust system that 
is insensitive to plant parameter variation. A digital control system using the TMS320 can also be 
employed to control multiple devices or time shared between different processes. An observer sys
tem may also be designed with a TMS320-based system to eliminate expensive sensors. 

In addition to the advantages outlined above for TMS320-based control systems, the trade
offs and disadvantages in implementing digital control are no longer applicable. The 16-bit word 
length, and 32-bit ALU and 32-bit accumulator of the TMS320 make quantization errors negligi
ble. The hardware scaling shifters of the TMS320 family further minimize errors due to quantiza
tion and truncation. The fast processing speed of the TMS320 allows high sampling rates to be used, 
thus giving analog-like performance and minimizing delay time. 

562 Implementation of PID and Deadbeat Controllers with the TMS320 F~mily of DSP 



References 
1) TMS320Clx User's Guide, literature number SPRUOI3B, Texas Instruments, 1989. 
2) TMS320C14/E14 Users Guide, literature number SPRU032, Texas Instruments, 1988. 
3) TMS320C2x User's Guide, literature number SPRU014A, Texas Instruments, 1989. 
4) TMS320C3x User's Guide, literature number SPRU031, Texas Instruments, 1988. 
5) Digital Signal Processing Applications with the TMS320 Family, literature number 

SPRA012, Texas Instruments, 1986. 
6) Astrom, K., and Wittenmark, B., Computer Controlled Systems, Prentice-Hall Inc., 

1984. 
7) Phillips, C., and Nagel, H., Digital Control System and Analysis and Design, Prentice

Hall Inc., 1984. 
8) Iserman, R., Digital Control Systems, Springer-Verlag, 1981. 
9) Franklin, G., and Powell, D., Digital Control of Dynamic Systems, Addison-Wesley, 

1980. 
10) Jacquot, R., Digital Control Systems, Marcel Dekker, 1981. 
11) Katz, P., Digital Control Using Microprocessors, Prentice-Hall Inc., 1981. 
12) Lewis, E, Optimal Control, John Wiley and Sons, 1986. 
13) Lewis, E, Optimal Estimation, John Wiley and Sons, 1986 
14) Kyriakopoulos, N. and Tan, J., "Implementation of a Tracking Kalman Filter on a Digital 

Signal Processor," IEEE Transactions on Ind,ustrial Electronics, pp. 126-134, Volume 
35, Number 1, February 1988. 

15) Astrom, K. and Hagglund, T., "Automatic Tuning ofPID Controllers," Instrument Soci
ety of America, 1988. 

16) Astrom, K., and Wittenmark, B., "Adaptive Control," Addison-Wesley, 1988. 
17) Hanselmann, H., "Implementation of Digital Controllers - A Survey," Automatica, Vol

ume 23, Number 1, pp. 7-32, (1987). 
18) Hanselmann, H., and Schwarte, A. "Generation of Fast Target Processor Code from 

High Level Controller Descriptions," Proceedings of 10th IFAC World Congress, Mu
nich, July 1987. 

19) Impex is a trademark of dSPACE, Paderbom, Germany. 
20) DFDP is a trademark of Atlanta Signal Processors, Atlanta, GA. 
21) Matrix-X is a trademark oflntegrated Controls, Santa Clara, CA. 
22) Matlab is a trademark of Mathworks, Inc, South Natick, Ma. 
23) Simnon is a trademark of Lund Institute of Technology, Lund, Sweden. 
24) TMS320 Family Devdopment Support Reference Guide, literature number SPRAOI1A, 

Texas Instruments, 1989. 
25) Hanselmann, H., and Engelke, A., "LQG - Control of a Highly Resonant Disc Drive 

Head Positioning Actuator," IEEE Transactions on Industrial Electronics, Volume 35, 
Number 1, pp. 100-104, February 1988. 

26) Bose, B. K., and Szczesny, P., "A Microcomputer-Based Control and Simulation of an 
Advanced IPM Synchronous Machine Drive System for Electric Vehicle Propulsion," 
Proceedings of IECON' 87, pp. 454-463, October 1987. 

27) Matsui, N., and Ohasi, H., "DSP-Based Adaptive Control of a Brushless Motor," Pro
ceedings of IECON' 88, pp. 375-380, October 1988. 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 563 



564 

28) Leonhard, W., Lessmeier, R, and Schumacher, W., "Microprocessor-Controlled 
AC-Servo Drives With Synchronous or Induction Motors: Which is Preferable?," IEEE 
Transactions on Industry ApplicationS, September/ October 1986. 

29) Chance, R, and Taufiq, T., "A TMS32010 Based Near.Optimized Pulse Width Modu
lated Waveform Generator," Third International Conference on Power Electronics & 
Variable Speed Drives, Conference Publication Number 291, July 1988. 

30) Garate, I., Carrasco, R, and Bowden, A., "An Integrated Digital Controller for Brush
less AC Motors Using aDSPMicroprocessor," ThirdInternational Conference on Pow
er Electronics & Variable Speed Drives, Conference Publication Number 291, pp. 
249-252, July 1988 

31) Tomizuka, M., Horowitz, R, and Anwar, G., "Implementation of a MRAC for a Two 
Axis Direct Drive Robot Manipulator Using a Digital Signal Processor," Proceedings 
of American Control Conference, pp. 658-660,1988. 

32) Costin, M. and Elzinga, D., "Active Reduction of Low-Frequency Tire Impact Noise 
Using Digital Feedback Control," IEEE Control Systems Magazine, pp. 3-6, August 
1989. 

33) Lin, K.," Trends of Digital Signal Processing In Automotive,"Proceedings of CON
VERGENCE '88, October 1988. 

34) Williams, D. and Oxley, S., "Application of the Digital Signal Processor to an Automo
tive Control System," Proceedings of the Sixth International Conference on Automotive 
Electronics, Great Britain, Octpber 1987. 

Implementation of PID and Deadbeat Controllers with the TMS320 F amity of DSP 



Appendix A 

Plant Modeling 

The discrete time model for a DC motor can be derived from the electrical and mechanical 
characteristics of the motor. The mechanical characteristics are: 

where 

1m = motor inertia 
B = viscous damping 
K = stiffness 
1L = load inertia 
9 = position or angular displacement 

(j = d91dt = angular velocity 

(j = d291dt2 = angular acceleration 

TL = load torque = Kr x i 
Kr = torque constant 

= current 

The electrical ~haracteristics are given by 

where 

L = inductance 
R = resistance 
V = applied voltage 

L di + Ri = V -EMF 
dt 

EMF = Ke x (j = back emf 
Ke = emf constant 

(j = angular velocity 

(16) 

(17) 

The electrical time constant is given by L/R, and the mechanical time constant is given by 
BtJ. 

In practice, L/R« Bfl; i.e., electrical steady-state conditions are reached quickly. Assuming 
steady-state current is reached, (17) is reduced to 

Ri = V - EMF = V - KjJ (18) 

~ombining (16) and (18) gives 

(19) 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 565 



Assuming Jm + JL = J = system inertia, and K= 0 = stiffness constant, the system equation 
becomes 

o + l/J(B + K/<./R) () = 1/J(KJR)V (20) 

where' 

a = I1J (B + KrKe/R) 
b = 1/J (Kt/R) 

The Laplace transform of (20) is 

(S2 + as)O(s) = bV(s) 
(21) or 

8(s)/V(s) = b/ s(s + a) 

(21) is the final form of the transfer function of the motor in continuous form. This must be 
converted into a discrete form. The ZOH transformation is used. 

ZOH states that 

G(z) = (1 -z-I)Z(L-IG(s)/s) 

Then, 

G (s) = b 
s s(s + a)(s) 

Expanding as partial fractions, (23) is expressed as 

G(s) = Al + A2 + ~ 
S S S2 s+a 

Solving for Al, A2, and A3 gives 

G(s) (-b/a2) (b/a) (b/a2) 
--= +--+--

s s ~ s+a 

When multiplying by (1- z-l) and using tables to derive the z-transform, 

b/a2 (e-oT _ 1 + a1)z-1 + b/a2(1 _ e-oT - aTe-aT ) Z-2 
G(z) - --'---'------'---=--'---:--'------::-----'---

- 1 - (1 + e-a~ Z-I + e-aTz-2 

where T = sampling period. 

Substituting values for a, b, and T of 

a 
b 
T 

:: 1.116 
:: 53.906 
:: 0.001 

(22) 

(23) 

(24) 

(25) 

(26) 

566 Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 



the transfer function of the motor becomes 

G (z) = 8(z) = O.269zo-' + O.269zo-2 x K 10-4 
m V(z) 1 - 1.999z-' + O.999z-2 g 

(27) 

where Kg is a gain constant. 

By introducing a numerator gain factor, (27) can be rewritten as 

G (z) = 8(z) = O.269z-' +. O.269z-2 X Km 
m V(z) 1 - 1.999z-' + O.999zo-2 

(28) 

where Km is a numerator gain factor. 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 567 



AppendixB 

PID Controller 

The PID algorithm is given by 

I de 
u(t) = Kpe(t) + Kj edt + Kd -. dt 

(29) 

where 

Kp, Kj, Kci = PID gain constants 
u(t) = control signal 
e(t) = error signal 

Rectangular Approximation 

To convert to discrete form, the integral term edt is approximated by the summation of rectan

gles L ei x T, where T is the sampling interval and ei is the value of the error signal at sample 

time i, written as 

by 

I etit = L eiT (30) 

If the sampling interval T is small enough, the differential term de1dr can be approximated 

de 

dt 

e (n) - e (n-l) = -'--'-----'---'-
T 

(31) 

where e(n) and e(n-l) are values of the error signal e at time intervals n and n-l. 

568 

The PID algorithm can now be approximated in discrete form by 

To reduce (32) into a difference equation, (32) for time interval n-2 is written as 

n-2 

u(n-2) = Kpe(n-2) + K/ Le/T + Kd[e(n-l) - e(n-2)]/T 
i=1 

Subtracting (33) from (32) gives 

u(n) - u(n-2) = Kpe(n)-e(n-2) + Ki{e(n) + e(n-l)jT 

+ (Kin{ e(n) - 2e(n - 1) + e(n - 2) ) 

Combining similar terms gives 

(32) 

(33) 

(34) 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 



u{n) = u{n-2) + (Kp + KiT + K/1)e{n) 

- (K/T - 2Ki1)e(n-l) + (KiT - Kp)e{n-2) (35) 

or 

where 

K] =Kp +~/T+KjT 
K2 =K; T-2~/T 
K3 =~/T-Kp 

K] , K2' and K3 are obtained from the design ofKp' Kio and Kd' which are designed by using 
conventional techniques. One way of designing is to use the Ziegler and Nichols ultimative-sensi
tivity method [6]. With this approach, a proportional controller is first used to CC)ntrol the system. 
The gain of the controller, Kmax, and the period time, T p' when the closed loop is on the stability 
boundary, are measured. The parameters Kp ' K;, and ~ can then obtained as follows: 

. Kp = 0.6 Kmax 
K; =Tp12 
Kt:J = Tpl8 

Another tuning method is to use the phase margin and critical frequencies [7]. Using this 
technique, Kp ' Kit and ~ can be computed as follows. 

6 = 180 + fJm - G m (j{J) ) I (J) = (J)c 

Kp = ~os(6) 
IGm ( ]OJ ) leu = (J)c (36) 

K K/ _ sin(6) 
Pc - i {J)c - I G (j ) I _ 

m (J) (J) - {J)c 

By substituting an arbitrary value of Ki in the above equation, we can obtain ~. Using this 
technique and designing with the following parameters 

fJ m = 550 (phase margin) 

(J) c = 628.315 radians (critical frequency = 100 hz) 

we obtain 

I G m{ j{J) I (J) = (J)c = 0.0001365 
(37) 

The PID constants are then found to be 

Kp =4181 
~ = 9.569 
K; = 1 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 569 



K] , K2, and K3 are then obtained as 

K] = 13751 
K2 =-19138 
K3 = 5387 

Both these methods give approximate answers. Further fine tuning of the parameters may 
be necessary to get the desired response from the system. 

The controller is obtained as 

(38) 

Trapezoidal Approximation 

Another method for converting the analog form of the PID algorithm into a discrete form is 
to use a trapezoidal approximation, sometimes referred to as the Tustin approximation. 

The PID is again given as 

where 

de 
e(t) =

dt 

The Laplace transform of that is expressed as 

U(s) = KpE(s) + K$(s)/s + K~E(s) 

Combining gives 

U(s) = (Kp + KrJ8 + Kb)E(s) 

(39) 

(40) 

(41) 

(42) 

Conversion into discrete fonn requires a transfer from s-domain to z-domain by using the 
Tustin approximation, 

where T = sampling period. 

Substituting (43) in (42) gives 

U ( z ) 
E ( z ) = 

2 l-z-I 
s=---

T 1 +Z-I 

, 
( 2KpT + 4Kd + 'PKj ) + ( 2'PK/ - 8Kd )Z-I + ( 4Kd - 2TKp + 'P K/ )Z-2 

2T(1-z-2) 

(43) 

(44) 

570 Implementation of PlD and Deadbeat Controllers with the TMS320 Family of DSP 



Further computation yields 

(4S) 

where 

Kl = Kp + 2Kdff + KjT/2 
K2 =KjT-4Kdff 
K3 = KjT/2 + 2Kdff - Kp 

In (4S), z-l represents a delay of one sample time. Taking an inversez-transform of( 4S) gives 

or (46) 

This is the final form of the PID controller. However, before implementing the controller, 
the constants Kp, K;., and KtJ must be located. Alternatively, constants K1, K2, and K3 have to be 
determined. These constants can be found by locating the poles of the equivalent system transfer 
function (i.e., controller + plant). 

The transfer function for the controller can be stated as 

Gc(z) = KI + Kzz-1 _: K'jZ-z 
1-z 

The transfer function of the plant is given by 

G (z) = 0.2694z-1 + 0.2693z-2 X Km 
p 1 - 1.999z-1 + 0.999z2 

The overall system transfer function is expressed as 

(47) 

(48) 

(49) 

The denominator of the system transfer function provides the poles of the overall system. The 
stability and robustness of the system depends upon the location of these poles in the z-domain. 
Assuming pole locations of 0.96, 0.9S, 0.20 and O.IS, a desired characteristic equation for the de
nominator is obtained. Program 4 for PC-Matlab, in Appendix D, lists the steps to obtain the charac
teristics equation from pole locations and obtain values of Kl, K2 and K3. To solve for values of 
Kl, K2, K3, the coefficients of powers ofz for the denominator of the system transfer function are 
compared with the desired polynomial. 

Solving for K1 , K2, and K3 gives 
Kl = 1.479S, 
K2 =-2.84S, 
K3 = 1.3636 

The controller is 

u(n) = u(n - 2) + 1.479Se(n) - 2.840Se(n -1) + 1.3636e(n - 2) (SO) 

Implementation of PlD and Deadbeat Controllers with the TMS320 Family of DSP 571 



Appendix C 

Deadbeat Controller 

A deadbeat controller has the property of settling to a final state in a finite time. It has the 
form, 

(51) 

To design the deadbeat controller, its coefficients Po, PI, ... qo, ql, .. have to be found from 
the parameters of the motor. 

The general form of a plant (i.e., motor) is given by 

b b -I b -2 b -n 
G (z) = 0 + IZ + 2Z •• ••• "z 

dp -I -2 -II ao + a1z + a2z ..... a"z 

If R(z) is the reference input, the coefficients Pn and qn are 

PO = r / }: bi = r / (bO + bl + b2) 

PI = al PO 
P2 = a2PO 

Pn = anPO 

and 

qo = r- Po bO 

ql = -bl Po 
q2 = -b2 Po 

qo = -bn Po 

The transfer function of the dc servo motor is 

Gm(Z) = 0.269z + 0.269 X Km 
r - 1.999z + 0.999 

(Km = 4000) 

(52) 

(53) 

Since the plant transfer function is a second-order system, the deadbeat controller is also a 
second-order system (n = 2). 

572 

From the plant transfer function, 

ao = 1, a1 = -1.999, a2 = 0.999 
bo = 0, b1 = 0.269 ~ = 0.269 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 



The numerator and denominatorofGdb (z) are divided by r. Thus, rdisappears from the calcu-
lations of coefficients. 

Solving for the coefficients yields 

Po = l/(ho+bI +~)=0.1566 
PI =aI Po =-0.3129 
P2 =".2 RJ =0.1564 
f/() = 1 -Po holr = 1 
qI =-bI Po =-0.4218 
tl2 =-b.? Po =-0.4216 

The controller becomes 

G (z) = 0.1566 - 0.3129z-1 + 0.1564z-2 

db I _ 0.4218z-1 - 0.4216z-l 
(54) 

or, in time domain, it can be represented as 

u(n) = 0.4218u(n-l) + 0.4216u(n-2) 
(55) 

+ 0.1566e(n) - 0.312ge(n-l) + 0.1564e(n-2) 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 573 



AppendixD 

PC-Matlab is an interactive program developed by Mathworks for scientific and engineering 
numerical calculations. Included are many rouqnes for design and simulations for signal process
ing and control sys~ms. The programs in this appendix design the PID and deadbeat ~ontrol1ers 
and display step responses for the system, The programs are interactive and allow the user to change 
certain parameters. The programs use PC~Matlab and the Control Tool Box. Control Tool Box is 
a set ofPC-Matlab utilities for control system design and simulation. PC-Matlab runs on MS-DOS 
computers. More infonnation on PC-Matlab can be obtained from Mathworks. [22] 

574 Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 



~ 
'i5 

if 
~ 
is 
g" 
~ 
~ 
I;j 

~ 
~ 
[ 
~ ... 
(3 

[ 
~ s: 
S-
Ib 

~ 
~ 
~ 
~ 
:: 
~ 

~ 

PC-illtlu Pr.,..... 
Pro ..... I 

1 
1 

This p ....... i.,ltllftts silUlation of & de Htvt ..tor. 1M .. tor 
..... in tilt _Ie i. a Pitt_ .. tor, _I 9412. 

1 _.02071 

_t, 1 Torqua CORllot 

jaO.OQOO61 X _ture i ... li. + UI_ load Inertia 
1to6.41 X Resistance 
i.,utl·l"",t _lilll period ia IOi11lsecO&d,'1 
T-.lIOOOI X 1ft ...,Ii", periof 
.. IKt"2I1IRtjl XI, and b p .. t .... ft. fmctio. i.l ...... i. 
IICtf(jtRl 
~I."211 
~I __ Tl, 

dl ... 1T1 
.. Ic-I+dlll 
.. U-c-ICldIllI 

1 calculat ... I ... to t_ into .-.I_i. 

I.,.WI.,ut -..t .... in '1 
Kg-..ul 1 ,.t .... tor gai. 
bl~1 l_t .. t_ 
~, 
0I-1I+c1, 
0201:, 
..tO~1 b2] 
_101 &2] 

ad 

l_i.&I .. t_ 

X _t .. of tranlfer ,-"cti •• i. ~i. 
1 1II_ .. t .. of tralfer f ... tli. In N_I. 

Pr.g ... 2 

This progru i.,l_to ... silll of • PID c.ntroll .. usl"9 clusicol 
techaiq .. ', The deli." is t .... _. co .... t ... into discrtt. _ This 
deugo colc.llt., vol .... f KjI, Ki, .... Kd or Iits you tot .. t .... · 
•• I ......... lly 

• Eot .. 0 if you ... t to ent •• PID c ••• t .. t, ..... lIy· 
, Ent .. 1 if you out pro, ... to c.1 c.l.te the .. for you' 
iaputC'itput 0 or 1 ') 
x .... 
if 1-=1. 

N1=[0 0 _I 1 _ .. to. of transfer '-Ii .. i. 1_. 
DI=l1 • 01 X o_l .. t .. of tranlfer f"""tion i •• _ • 
i"",tl'I.,.t critical ""- il Hz '1 
iii .... , 1 got critical froq ... cy 
If'Wil2lpi 1 AsI .. I.g c.1 tical "-"cy 1Ic&10GHz 
[.."plN.Hlob.I"I,DI,.1 1· c.lcll.te pbue .... _ihdt of .. t .. 
input{' ilput .5t lII1in in degretl- '1 
-.,' 1 got pbue ""Iin 
0=180 + I'll - p ..... - 360 1 calcul.te tHl. 
DraOr.17 X ct ..... t ioto r&di .. 

1 
KjI""o.IDrIlIl, 
Ki=1 
Kd =IKi/ ... inIDrIIMgII. .... .. 

tlseif 1-0, 
input('input p '} 
KjI=lnI, 
Inp.tI'in,.t I '1 
Ki-.ns; 
inputl'i.,.t d 'I -I 

1 ctlcol.t. Kp. 
1 ...... Ki -I 
I calcullt. Kd 

elst 'No ulilftlCl valuu ftl" UftStuts. 0 or 1 .. Ht ilput' ...... 
tad 
Q • KjI + KdIT + KilT I con .... t IIIllgn into discrtt. ,.,. 
K2 • KilT - ·2IKdIT 
I13'Kd/T-KjI 
•• d 



~ 

~ 

I s 
E-§. 
~ 
~ 
t:::i 

~ 
~ 
[ 
~ 
~ 
~ 
~ 

~. 
So 
So 
no 

~ 
~ 
~ 
~ 
:! 
~ 

..... 3 

I 
I 
'I 
I 

lIIil ....... 11.lot .. 0 eIOH' I • ., .,.ta Ulilll a PlD controller. lilt 
PID uottoll ...... Nt .... 1 ...... ing e1uslcol tedmi ..... and tNt 
~ ... ilto diKrttt ftrtI ull., I'tCtIRlUI ...... oxI_ti .. . 

.t .... 
,I.r.ct 
"-WIC2Ul, 
doIlO(I 0 -II, 
I -capdtoadool 

~ ..-
1 
IIIII!ocowl_I,.") __ ldoIl,doI) 

pu .. 

I coli ,....... to liMl.t • .t .. 
X coli p._ t .... ig. PID Con_tORts 
I ...... t .. of co.troll •• 
X _ .. t ... f c .. tr.l .. 

I ...... t .. of .ot .. 
I. .... i ... t.r .f .. tI .. 

X.ItI,I, Nth ___ t ... 
1 .. 1ti,ly _ ..... iKto .. 

1.,ltl'spotify the tl_ il ste_ .... IIbic.,.. _ttl SIt tho .t.,. ') -, 
..tIT, 
lopotl'lopat • I • ., ,.1.' 'I ..... , 
_1.,11, 
c1 •• ......,...s 
c1udt. 1 • ..., ... 05 ,.... 

I colc.lot • .-•• f ...,1 •• f .... ;.aloti .. 

1 ...... t ••• f c1 .... 100p _,.t .. 
1 ..... i .. t ... f e1 .... I • ., .,.too 

y-41Ii1!tc1 •• n.,c1 ..... u), I do lillUlltion 
plotlyl 
titl.I'Politi .. Stop Re.,....') 
xl .... WTl. i •• ...,Its') 
yl .... WPo.iti .. 10 radiu') 
Vi. 
,..10 
tod 
tAd 

Pr.g ... 4 

This p •• _ .. _i,._ 0 PID c .. t •• n .... 1o. pol. pl_t hdlalqHl. 
Dosi ... p.l. locoti •• _ ..... -t. lie i.,.t. Tho PlD il c_ ilto 
di.cret. foro •• iRg t..,...ldal _I.tloo. Eat ..... i ... ,.Ie 
locoti .. _ i. tilt next .tep. 

'Enter t ... 141C1.tion of yOII" poltl' 
input('IAput location of polt 11 ') 
pi .... , 
ilPut('I.put loCltiln .f p.lt 21 ') 
p2=u'; 
iIP.tt'lnput loct.tion .f pelt :II ') 
p3=u-; 
input(,Jftput l.cation of pol, 41 '1 ,--, 
,.[,1 J2-p3 ,.1, 
X 
X lilt .... 1 ... _tori_tic pol-,ol " found II 
X 
QU'S).,.I,lp) 
X 
X The _ffici •• ts of differt.t ,... ..... ,i'" by 
X 
42"1111.21; 
~1I,3)1 
q4>IlII,4); 
q5=QII,S); 
1 
1 The syst .. p.I_lol is gl ... by 
% 
1 
1 
1 
1 
1 
X 

IKlzH2 + IC2Iz + K3l1bllZ + b2) • Iz - IlIz - .IIZH2 - allZ +02) 

EqUltln, coefficionts .f 'Ifferont _ .. , It get foo. lioeor _ti .... 
t ... ·_ feI_t.p. 0111 .01 .. for KI, 1C2, K3 OR' " ""'rt. is. I.i:&ti .. 
of _ .f the p.I ••• f the controller. 

D - [bl o 
bl 
b2 
o 

o 
o 
~I 

~2 

-I 

1 

b2 
o 
o 

DI- [ q2+1 ... 1 0 
q3t01-02 _I 
q4+o2 b2 
q5 0 

% 
D2= [ bl q2+111 

b2 q3+al-02 
0 q4+o2 
0 q5 

0 
0 
~I 

b2 

0 
0 
bl 
b2 

1 ... 1 
01-02 
02 I; 

-I 
1 ... 1 
01-02 
02 I; 

-I 
1-01 
01-02 
02 I; 



~ D3= [ bl q2+1-o1 

'"ti b2 bl q3+i1-.2 
~ 0 b2 q4+t2 
i:! 0 0 q5 

~ I 

~ D4= [ bl 0 0 

5" b2 bl 0 
0 b2 bl ;:s 
0 b2 

~ I 

~ "'cIotlDI, 

tj dl=d.IIDIl, 

I:> 
d2=cIoIID2I, 

;:s d3=cIotlD3 I, 
1:1.. d4=cIoIID4), 

t:l KI=dlld 
~ K2=d2/d 
I:l K3=d3/d 
~ ,=d4/d 
~ e.d I:l .... 
("') 
(;) 
;:s 

~ 
~ 
~ 
~ 
§: 
So 
~ 

~ 
t.i 
N 
C) 

~ 
i:! 
~ 

UI 
::j 

-I 
1-01 
d-.2 
02 l, 

q2+l-d 
q3+i1-.2 
q4+t2 
q5 l, 

Progra 5 

I 
X 
X 
X 
I 

Tbis file silulates il cloud loop citidbelt controller. If tilt 
plint tn.nsftl' function is 

Gil) = AlB 

% and control1tr function is given by 
X 
X 
I 

HIl) = C/D 

%. then ttt. clo5fd loop rupons. is given by 
I 
I 
I 

GlllHlll rc 

I 
I 

I • GlllHlll rc'BD 

ggg=1 
lII1ile ggFI 
utraRS 
dbnld .. 
• .. I=[pO pI p2l, 
cIo.I=[qO ql q2l, 
co.pnUFflull; 
cOIIpdtn=denl; 
procnUFflUII; 
procden=den; 

lCttp doing 
Cil1 !lObI' transfer fUnction 
!All _I po .... I ... 
NuMrator of the controller 
denolini.tor of controller 

nu.s=coov(lu.l,ftUII); % aultiply both nllM ... torJ 
den5=convtdenl ,den), X .ultiply both ftAOIIiM.torJ 
input("specify tile tiM in secs over _ich you _t to 5H tM sttpl 'J 
t=us; 
o-t/T, 
input('input I loop gainl '} 
g=t.ns; 
u=ontstn,1); 
c1osrtUPg*nua5; 
C] oIHn=g+R.s+den5; 
y=dl si.felo""., closden, uJ; 
pI oily) 

1 Calculate nuMer of supl.5 t. aH si..,llti .. 

I Enl.r oddilio .. l cl0.ed loop "in 
I Colc.I.I. dt ... inato. of clo .. d 10.,. .y.l .. 
t Do clo .. d loop .i .. l.li .. 

title('Position Step Response') 
xlmU"TiM in • of supJ.s') 
yllbtH'Position it radiln') 
grid 
pi.USt 

e.d 



1.11 
-..J 
00 

~ 

I 
~ s 
gO 

.Q.. 
~ 
ti 
I:> 
;:s 
I:>.. 
tl 
"" I:> 
§: 
~ 

~ 
~ 

3 
s. 
So 
So 
"" 
~ 
~ 
o 

~ 
~ 
~ 

"'., .... 6 

1 
1 
1 
1 
1 
1 
1 
1 
1 

This file io,l.o15 de,ign of a _t c •• t •• ll ••• The f ... of tilt 
contr.ll •• is gi".. by tilt f.ll .. iog eqUlti •• 

-I -2 -3 -n 

G 1,)
db 

pO + pltz + p2tz + p3tz •••••••• pnt, 

-I 
qO + qltz 

-2 -3 
+ qlo, + q3tz •••••••• qntz 

1 If tilt plant lran,f .. f •• cti •• is Ii ... by 

-I -2 -3 -. 
DO + bltz + b2f, + b3tz •••••••• b •• ' 

G 1,)= -------------

P -1 -2 -3 -n 
.0 + al*! + IJIZ + I3tz ........ anlz 

-. 

1 
1 
1 
1 
1 
1 
1 
1 
1 

then tt.. fol1011111ing procedure CIII be used to design i. deadbeat controller 

pO = II(I + bl + b2) 
pi = IlIpO 
p2=a2OpO 
qO. I 
ql = -'lopO 
q2 = -b2ipO 
end 

Progro 7 

I 
X 
1 
1 
X 
X 
X 
% 
1 
% 
I 

Tbis progra fiauldes I. PIO controller using t.-.pezoidll approxi.Uen 
Ind .. polt pl~ ... nt techniq ... 

If tht plant transf.r fUnction is 

GI,) = AlB 

lOci controller fUnction is given by 

HI,) = c/D 

% th.A the c10std loop N5POltSf is giYfA by 
X 
1 
X 

ggg=1 

Glz)Hlz) 

1 + GI,)Hlz) 

.hile 99FI 
lotru! 
pi did •• 
... I=[KI K2 K3l; 
RI-n •• l; 
de.I,..lyIRII; 
coapnuFnull; 
cOlpden=denl.; 
prOCAUFRlJI; 

procden=den; 

N: 

N:+BD 

2. Cill progru to cl.lcallte IOtor trtnsff'r funetio. 
X Cill progr .. to calculi.tf' controlltr 91in5 
X nUMratol' of PIO controner 
% polts of the PID controller 
X ca.lculate clen.inahr 

nUll5=coftv(nu.l,RUI); '% ttultiply nuaerators 
den5=conv(dent,den); X ftultiply deftotlinators 
input('specify the tiH in stes over lIfltitb you WlDt to 5H tbt stepl "} 
t:sans; . 
n=tlT; I Calcula.te RUliber of suples to ... si.ulation 
inputC'input I loop glin:') X Ent.r lOY additioni,1 loop ga.in 
g=ans; 
lA)Jlts(Jl2 U, % Nullbf'r of sup1f's to 5H silUlatioR 
clOslIUFg*nu.5 X naerator of closed loop 5yStfll transfer function 
closden=gtnu.s+den5 X denolindor of c1osf'd loop l)'Stu t .... nsfer function 
y=dlsil(c1osDuI2 closden2 u); 1 do discrete sillUldion 
pl.tty) 
titJe('Position Step Response") 
xlibel('Tiae in I of suples / ) 
ylibeJ(~Position in Nldh,n') 
grid 
pause 
e.d 



" RV ... 
EO 
E1 
E2 
1<:1 
K2 
K3 
JJN 
U1 
u2 

AppendixE 

PIO Rect~n~ular Controller 

• t .I.t 1 eo 
.def 

'PIO Contr'o11er'" 
PID 

"fhlS r'outl.ne lmplernents a. PID controller 

• !!Jet " reference value 
.set 1 inplJt from AID 
.$et 2 , Latest errOr- samp 1 Eo 

.S~t 3 Prevlous error samp 1 e 

• set 4 01 dest error sampl e 

• !!oet 5 goi110 constant 
~ set " ga,ln c:onstant 

• set 7 gaul constant 
• $et 8 out put to l~ontr-ol1er 

.set 9 preV10IJS O~JtplJt 

• set 10 0) 1 dest output 

* Processor lOltlallzatlon 

* 

* 
Hut 

1000 

* 

lsr 

* 

B 
B 

.word 
.word 
.wor'O 

LDPK 
SOVM 
LARK 

ZAC 
L.ARP 
SACL 
BANZ 
LACK 
T8LR 
LACK 
TBLR 
... ACK 
TBLR 
EINT 
II 

Pr'o(:ess 

eUd 

IN 
IN 
LAC 
SACH 
'-AC 
SUB 
SACL 

1n1 t 
l!;.r' 

5632 
-7839 

2206 

0 

0,255 

0 .. 
1 GOp 
4 
K1 
:; 
K2 

'" K3 

sel f 

lnput sampl e 

0 - x(rd 

RV,PA2 
XN, PAO 
XN,13 
XN 
RV 
XN 
EO 

* PIC routJ,ne 

* .. .. 
PID 

self 

u(n) 

LAC 
LT 
MPY 
'-TD 
MPY 
LTD 
i"'Ipy 
APAC 
SACH 
OU'" 
DMOV 
DMOV 
EINT 
NOP 
B 

U2 
E2 
K3 
E1 
KZ 
EO 
K1 

UN,4 
UN, PAl 
U1 
UN 

Si'lf 

RS- processing begins here 

c.oefflClent Kl 
cOoS!ffic ient K2 
coefficient K3 

set DP po 1 nter 

lnltiallze memory 

set program memory pOinter to 4h 
load coeffcients into dat.a. memor-y 

; walt for lnter-rupts 

rea.d r-efer-ence command lnput 
rea.d input position signa.l on upper- 13 bit$ 

subtract from refer-ence to give error 

; Transfer lJ(n-2) to accun'Jl.(lator 
load T reglster with oldest sOlmple e(n-2) 

; Preg = K3*e (0-2') 
ACC = u(n-2) + K3*e(n-2), Treg = .(n-1) 
Pr-eg = K2'»f! (n-1) 
ACe = u(n-2) + K3*e(o-2) + K2*e(n-l) 

~ P .... g = K1*e(n) 
ACC=u(n-2) + K3*e(n-2) + K2*e(n-1) + Kl*e(n) 
shIft out 4 sign bbits 
\IIf"lte to D/A - two"'s complement for-m 
tra.nsfer u(n-l) ---> u(n-2) 
tr-a.nsf<ir- u(n) ---) y(n-1) 

Implementation of PID and Deadbeat Controllers with the TMS320 Family of DSP 579 



580 

.. 
* PIO Tf'a.:.ot\>zzold.el Controller 

" 
* RV 
XN 
EO 
El 
E2 
kl 
;(2 
K3 
UN 
Ul 
U2 

* 

r-eset 
lnt' 

* 
* .LInt 

loop 

* 
* 
* 
* 
150 

* 

• t J.t l.eo 
.dE!f 

.set 
• :set 
• !:tee 

• set 
• set 
.set 
.:!I&t 

.set 
• s,et 
• set 
• set 

a 
a 

.worQ 

0 

:2 
3 
4 
:; 
6 
7 
S 
'» 

10 

init 

60;,0 

"'PIO Control 1 .... '" 
PH) 

refer-'.nce va.lue 

• input from AID 
f La.test er;f'or sample 

Pr<l!viOU5 1!'rror sa.mple 
01 deBt .,..,..or $ample 

f goaln constant 
galn consta.nt 
g8.in consta.nt 
output to controller 
p,..evious output 
01 dest out put 

.word -11.653 
c:oet'ficlflOt Kl 1.4'795 
coefflcient K2 = -2.8450 

~ ~oefficlent K3 = 1.3636 .lUorl.1 5585 

r..DPK 0 , set OP pOinter-
SOVM 
i...ARK 0,255 , c 1 ea.r memol"'Y 

ZAC 
LA-riP 0 
SACL. * ; lnltlal1ze memory 
BANZ loop 
LACK 4 ~. set program memory pointer to 4h 
TBLR 1<1 loa.d (.oeffC:lent!l. into d.ta. memory 
LACK 5 !:oet program memory pointer to 5h 
TBl.R K2 
LACK 6 set program memory pOinter to 6h 
TBL.R K3 
EINT 
B self 

F'rOCElliS l.nput sample 

e(rd = r - x(rd 

IN RV,PA2. r"e.d reference command input 
IN XN,PAO read input po.ttlon signal on upper 13 bits 
L.AC XN,13 
SACH XN 
L.AC RV 
SUB XN 
SAeL. EO 

S.Ubtl'~"ct from rE-fer.nce to give .r",Qr 

* PIO rout .ne 

* 

" PIO 

self 

L.AC u2 Transfer u(n-?) to. accumulator 
LT E2 loe,d T register with 0. 1 dest sample e;(n"-2) 
MPY K3 Preg = K3*e(n-2) 
LTD El Ace. u(n-2) + K3*e(n-2)~ Treg == e(n-1) 
MPY K2 Preg = K2*e (n-1) 

L.-rD EO ACC = u(n-2) + K.3*e(n-2) + K2*e(n-l) 
MPY K1 , ?reg = Kl-Ihll (rd 
APAC ACC=u(n-2) + K3*e(n-2> + K2*e(n-1) + Kl*e(n) 
SACH UN,4 =-to.l~4!' to memory .and shift out 4 sign bit!> 
OUT UN, PAl write to D/A - in two"s c(lmpl ement form 
DMOV Ul , transfer uCn-l ) ---;> uCn-2) 
DMOV UN transfer yen) ---> uen-i) 
EINT 
NOP 
B 5 ... 1 f wait for next interrupt 

Implementation of PID and Deadbeat Controllers with the TMS320 Family 



.t.l.t:'IO.' 'Deaubeat Controller· ... 
• d~f OBEAT 

';'"t"ll~ ,·o ... tJ.n~ llfl.:olemeots a O-eadbeat controller 

'lV 

'r< EO 
E1 
E::2 
PO 
P1 
P2 
tOll 
Q2 
UN 
U1 
,J2 

* 

.. :>et 

... ",,,,t 

.. $wt 
.. set 
.. set 
.. set 
.. set 
.. set 
.l'Oet 
.. Sli!>t 

• $et 
.. s,1I\'t 

.. !:iiet 

0 , 
1 
2 
3 , 
4 
.5 , 
.; 
7 , 
8 
9 

10 
II , 
12 , 

r·efer-ance value 
lnput from AID 
Latest erro"Jr sam~d e 
Prevlous error sa.mple 
oldest \tr-ror sample 
9 ... 10 con$tant 
galn constant 
gain constant 
galo constant 
gain consta.nt 
out put to controller 
prevlous output 
oldest output 

~ Processor .l.n~tJallzatlon 

reset B 
:lot B 

.word 
• word 
.word 
.OJor-4 
.word 

* 
In.l.t LDPK 

SOVI"'I 
LARK 

ZAC 
L.ARP 

loop SA(:L 
BANZ 
LACK 
TBLR 
LACK 
TeLR 
LACK 
TeLR 
L.ACK 
TBLR 
LACK 
TeLR 
EIIliT 
B 

* 
* Process 

* 
* e(n) = 

lrnt 

5181 
-10253 

5125 . ~ 

-13215 , 
-13815 

0 , 
0,255 

0 

* loop 
4 
PO 
5 
P1 
6 
P2 
7 
Gil 
8 
Q2 

$el f 

lnput sa.mple 

r - x(n) 

RS- pr-ocesslng bl!gins her-a 

coeff 1e lE-ot PO = .1566 
coefficiE-nt P1 = -.3129 
coeftll:lent P2 = .1564 
coeftlc lent Q1 = -.4218 
Loefflcient Q2 = -.4216 

set DP pOlnter 

lnit la' ize memory 

set program memory pointer 
loa.d coetfcients into data. 
set progra.m memory pointer 

set progra.m memory pointer 

set program memor-y pointer 

set progra.m memor-y pointer 

enable 1 nt.rr-upt S 
Wli.it for interrupt 

to 4h 
memory 
to 5h 

to i>h 

to 7h 

to 8h 

Implementation of PID and Deadbeat Controllers with the ,TMS320 Family 581 



582 

* 
LH IN F<V,PA2 

IN XN, PAQ 
; r-ead !"flfer'enc:e command lnput 
; read input position' 5190.;.1 on upper- 13 bits 

LAC XN,I3 
SACH XN 
LAC RV 
SuB XN ; $ubtract from r-eference to give el"ror 
SACL EO 

* Deadbeat Controller routHle 

• 
* u(n) "" Q2*u(n-2) + Q1*0(n-l) + PO*e(h) + Plh!(n-U + P2*e(n-Z) 

* DBEAT 

;self 

ZAC 
LT 
MPY 
LTD 
MPV 
LTD 
MPV 
LTA 
MPY 
LTD 
I'lPV 
APAC 
SACH 
OUT 
DMOV 
e:INT 
NOP 
B 

E2 
P2 
EI 
PI 
EO 
PO 
U2 
Q2 
UI 
O. 

UN,4 
UN,PAl 
UN 

self 

clear accumulator 
'load T register with oldest sample e(n-2) 
Preg = P2*e(n-2) 
ACe = P2*e(n-2)~ Treg = e(n-1) 
Pl"eg = Pl*. (n-l) 
Ace = P2*e(n-2) + Pl*e(n-l) 
Pr-eg = PO*e(n) 
Ace = P2*e(n-2)+Pl*e(n-l)+PO*e(n). Treg=u(n-2) 

; Preg = Q2*u (n-~.i::) 
Ace = P2*e(n-2),+Pl*e(n-l)+PO*e(n)+QZ*(n-l) 
Preg = 01*u(n-1) 
ACC=Q2*u (0-2)+Q1'.u (n-1 ) +PO*e ( n)+Pl*e (n-1 ) +PZ*e ( n-2 
write to memory ana shift out 4 sign bits 
write to O/A - In two~s complement form 
transfer- u(n) ...:._._) u(n-l) 

; wait for next interrupt 

Implementation of PID and Deadbeat Controllers with the TMS320 Family 



Part VI. Tools 
14. TMS320 Algorithm Debugging Techniques 

(Peter Robinson) 

583 



584 



TMS320 Algorithm 
Debugging Techniques 

Peter Robinson 

Regional Technology Center - Waltham, Massachusetts 
Texas Instruments 

TMS320 Algorithm Debugging Techniques 585 



586 TMS320 Algorithm Debugging Techniques 



Introduction 
Debugging a DSP algorithm is becoming more of an issue as our DSP tasks increase 

in complexity. It is easy enough to verify program flow for a filter or FFT, but it is an 
entirely different task to evaluate a discrete transfer function, H(n), over time and frequency. 

In this report, a technique for debugging a coded transfer function, h(n), in a purely 
software environment is presented. The technique shows how traditional analog trouble
shooting methods can be applied to analyze and debug DSP algorithms on an ffiM/PC
based TMS320C2x Software Development system and/or any of the TMS320 simulators. 

Data Logging 
Data Logging is the ability to simulate an 110 device by using DOS files. Many, 

if not all, ffiM/PC-based DSP software development tools and algorithm development 
packages, such as simulators, offer this ability or feature. In the case of the Texas In
struments TMS32OC2x SWDS, the IN and OUT instructions can be equated or tied to 
a DOS file. Using files to simulate I/O devices can be extremely useful in analyzing per
formance of a transfer function such as a filter. 

Assume that you have written an algorithm for the TMS32OC25 for a first-order 
fiR filter, comprising one second-order element. Figure 1 shows how the code can be 
divided into four sections: 

1. An initialization section where the coefficients are mQved from program to data 
memory, 

2. The aquisition of data, IN XO,PA1, 

3. The fiR section, and 

4. The output of y(n) via an OUT YN,PAO (with a branch back to the IN instruction). 

TMS320 Algorithm Debugging Techniques 587 



AID 
CONVERTER 

D/A 
CONVERTER 

Figure 1. DSP Code Division 

DSPCODE 

I I .. _--------------

If this is an analog system made up of an op-amp, you can verify performance or 
response by sweeping the fIlter over frequency and observing the output on a spectrum 
analyzer. Since the example has no target system (this is entirely a software simulation), 
a fIle is used for both input (the AID) and output (the D/A). To use the data logging feature 
as noted, you will need to create an input fIle. 

Creating the Input File with Lotus 

Before you start, determine the format of the INPUT DOS fIle structure. In the case 
of the TMS32OC2x SWDS, input fIles must be represented by four ASCn HEX characters 
(a 16-bit field), followed by a carriage return and line feed, < CR > < LF >. An example 
for a file containing an impulse, emulating a 12-bit, two's-complement AID, is shown 
in Figure 2 .. 

588 TMS320 Algorithm Debugging Techniques 



IMPULSE 

tlllllllllill 

7FFO 0016 
0000 FFEA 
0000 0024 
0000 ----. h (n) ----. FFDC 
0000 004A 
0000 FFB6 
0000 012E 
0000 FED5 

• • 
• • 
• • 
• • 

0000 FFEA 

Figure 2. Input Text Editor File 

Note: HEX values in this report are represented in Q15 format. In Q15 format, -1 
= 8000h for both a 12- and 16-bit field, + 1 = 7FFOh for a 12-bit field and 
7FFFh for a 16-bit field. For further information on Qn notation, see Section 
5.5.5 on page 5-33 of Reference [1]. 

The file shown in Figure 2 can easily be generated with a text editor and produces 
a near-ideal impulse response. This is seldom achieved with analog systems. However, 
what if you wanted to inject a more complex signal, such as several sine waves and/or 
random noise? Here, the generation of the input file can become a monumental tasI,c One 
method of file generation, presented here, uses Lotus 1-2-3, a software package found 
on most pes. Because Lotus 1-2-3 is a spreadsheet calculator, you can use a column to 
denote the input sequence, X(O), X(I), X(3) etc. Adjacent columns can be set up to calculate 
the desired x(N) values. An example of a spread sheet, which calculates three sine waves 
with a predetermined noise signal added in, is shown in Figure 3. 

TMS320 Algorithm Debugging Techniques 589 



(@IF«F6*32768» 1 ,(F6*32768),(2AI6+(F6*32768»» 

@SIN«2*@PI*B$3/$A$3)*$A6) 

@SUM(B6 ... H6)/$F$1 

(@RAND-0.5)*$E$3 

A B C D E G 

1 Sample 
2 Rate Fl F2 Noise 
3 8000 1200 1800 .25 
4 
5 0 0 0 0 0.035786 0.035786 778 
6 1 0.453990 0.809016 0.987688 -0.08909 0.978563 29313 
7 2 0.809016 0.951056 0.309016 0.203457 0.899604 27242 
8 3 0.987688 0.309016 -0.89100 0.111678 0.176390 6268 
9 

Figure 3. Spread Sheet Calculation of Three Sine Waves with Added Noise Signal 

This spreadsheet approach allows you to specify a wide range of input conditions. 
You can add columns by copying previous column data and can extend the length of the 
array by copying rows. If you are going to use Lotus's random number generator for add
ing noise to your signal, you should note the following: 

• Lotus's random number function generates uniform numbers or noise. 

• Lotus appends an existing ftle when the print-to-ftle option is used. 

• Each time you recalculate the spreadsheet with a random function, a new 
random seed is used, which will generate a new random array. 

You can use this last feature to your advantage by writing to a ftle, recalculating 
the spreadsheet, then writing again. This sequence permits large input ftles with uniquely 
different ftle segments. You must exercise caution, however, to insure that all frequen
cies end at a zero crossing; if they don't, unwanted discontinuities will be introduced. 

The end result of the above process is a column of decimal numbers scaled between 
-1 and + 1. Using the Lotus graph utility, you can plot one or several full cycles of the 
wave form. When you get the desired results, you must convert the column data to a Qn 
HEX value of the form in the note that follows Figure 2. You can use the command struc
ture noted in Figure 4. 

590 TMS320 Algorithm Debugging Techniques 



@CHOOSE«@INT(H6»,"0","I", "2", "3", "4", "5", "6", "7", "8", "9", "A", 
"B", "e", "0", "E", "P", "0") 

·r------(@IF«F6*32768)1,(F6*32768),(2 16+(F6*32768»» 

778 
29313 
27242 
6268 

«J6-(@INT(J6»*$1$4)--...., 

«(l6-(@INT(l6»)*$I$4)/$1$4 

....--«H6-(@INT(H6j»*$H$4/$I$4 
(G6/$H$4) 

I J 

16 

0.189951 3.039231 0.627702 
7.156503 2.504061 8.064987 
6.659761 10.41218 6.594986 
1.530270 8.484329 7.749269 

K 

10.04324 
1.039797 
9.519785 
11.98831 

Figure 4. Lotus Command Structure 

030A 
7281 
6A69 
187B 

Saving the Lotus 1-2-3 File as an ASCn Text File 

You can save a spreadsheet range as an ASCII file by using the Lotus PRINT utili
ty. If you select the FILE option under PRINT, with the left column margin set to zero, 
Lotus will write the columns to a ftle with the required < CR > < LF > ending. Once 
this is written out, you must edit out the blank lines between pages so that the ftle content 
is continuous. You must also ensure that the data in the ftle is fully left-justified and starts 
at the top of the ftle (no blank lines). You can do this by editing the file with a text editor. 

Running Your Program with Data Logging 

After completion of the preceding steps, you can execute your program with data 
logging enabled. Name the input file INPUT.DAT, and the output file OUTPUT.DAT. 
Make certain the created LOTUS file is in the correct directory and is referenced by the 
correct file name; the DOS file name is the same as the data log file name." 

Since each development tool has a unique procedure for enabling data logging, it 
is assumed that you know how to initialize file I/O. The data logging feature of the 
TMS320C25 SWDS is documented on page 3-29 of Reference [2], and the TMS32OC30 
Simulator on page 3-14 of Reference [3]. 

TMS320 Algorithm Debugging Techniques 591 



When your program is executed, the disk drive light will start to blink. With the 
TMS320C25 SWOS, each disk access is equal to 64 samples being written and/or read, 
while on the TMS320 simulators, there is one disk access for each sample. To control 
the number of samples written to and/or read from the flle, you can either 

1. Manually count the number of times the drive light flashes, 

2. In the case of the TMS32OC25 SWDS, use program control techniques, such as 
break points with count values (see page 4-108 of Reference [2], or 

3. In the case of the TMS32OC30 simulator, use the LOOP command (see page 5-103 
of Reference [3]. 

When the above process is finished, there will be a new fIle in the working direc
tory named OUTPUT.OAT (the name previously given to your flle). This flle contains 
a listing of N ASCn HEX character strings in which each line represents one output time 
sample, y(n). In the case of the first- and second-generation development tools, the flle 
st~cture is identical to the input flle structure: four HEX values represent a 16-bit field 
in which the sign bit is left-justified. However, the TMS32OC30 Simulator outputs, and 
also requires for i~P'1t, a form similar to the HEX syntax used in the C programming 
language. This is a 10-character HEX field with Ox as the first two characters. The im
pQlse value showfl in Figure 2 would be written as Ox7FFOOOOO for the TMS32OC30 
Simulator. YOQ cap. generate an input flle form, using Lotus 1-2-3, by simply adding two 
coluinns: a colm containing the Ox prefix placed just before the calculated four-digit 
HEX field, and a colw:p.n containing 0000 just after it. 

Plotting the Output Data 

Several software programs can easily read and plot the output flle as a continuous 
time sigru» or frequency domain; Mat Lab, OAPiSP, ILS, Math Cad, and Hypersignal. 
For further information on any of these products, contact the companies shown in Appen
dix A. This report shows how Hyperceptions' Hypersignal package is used to debug DSP 
algorithms. 

The Hypersignal program can acquire and display all types of TMS320 flles. This 
permits viewing numerical flle data (input and output) in both time and frequency represen
tation. HypeFs~gnal offers an extensive list of DSP utilities, such as 

• 

• 
• 

• 

Waveform display/edit 

FFT generation 

FIR and fiR fllter construction and code generation (assembly and C) 

~onvolution 

LPC autocorrelation 

ReCursive flltering for fiR fllter types 

TMS320 Algorithm Debugging Techniques 



• Generation of user-defined difference equations (which can generate files 
for use as input to any of the TMS320 development tools) 

• Digital Oscilloscope 

Hypersignal has several other functions for analyzing data files and filters in the 
frequency domain with utilities for creating or displaying 

• Filter/file magnitude display (both log or linear) 

• Filter phase display 

• 3-D and 2-D frequency vs time vs amplitude-spectrogram display 

• Inverse FFT function 

• Filter pole-zero plot (both in sand z domains) 

• Power spectrum generation 

Hypersignal's powerful functions permit the evaluation of DSP tasks. For a first 
time user, they can prove to be extremely helpful in establishing a base line knowledge 
of DSP. 

Algorithms of High Complexity 

Packages such as Hyperception's make DSP algorithm development manageable, 
even with N second-order cascaded sections. In Figure 3, there was one second-order 
section. If anything were to go wrong, it would do so within this section. How would 
data logging help if you have several cascade sections? 

This can be answered by drawing an analogy between debugging a fourth-order analog 
system, which uses op-amps, and the equivalent DSP system implemented with four cascad
ed second-order IIR sections. 

INPUT NODE 1 

r------------

x(t) : 

I 

I 

NODE 2 NODE 3 OUTPUT 

I >--L.._ I y(t) 
I 

I. ___________________________________ - - - - - - - - - - - , 

Figure 5. Four Op-Amp Block Diagram 

U sing traditional debugging techniques, i.e., an oscilloscope and function generator, 
you can examine the output versus the input on a stage-by-stage basis, correcting or ad
justing each stage one-at-a-time. This process starts at node 1 and continues through to 
the output. When the system yields a satisfactory response for a given input condition . 

TMS320 Algorithm Debugging Techniques 593 



(not clipping, and amplifying at expected levels), use a spectrum analyzer to verify total 
frequency response. If the frequency response was not as expected, you can then examine 
each stage individually and adjust pole-zero placement to obtain the desired response. 

INPUT NODE 1 NODE 2 NODE3 OUTPUT 

IIR IIR IIR IIR 
SECTION SECTION SECTION SECTION 

x(n) 
H(n)l H(nh H(nh H(n)4 1-'"'- y(n) 

t ! ! ! ! 
IN XN,PAO OUT NODE1 ,PA2 OUT NODE2,PA3 OUT NODE3,PA4 OUTYN,PA1 

t ! ! ! ~ 
INPUT.DAT NODE1.DAT NODE2.DAT NODE3.DAT OUTPUT.DAT 

t ! ! ~ ! 
HYPERSIGNAL HYPERSIGNAL HYPERSIGNAL HYPERSIGNAL HYPERSIGNAL 

A A A A A 

~E1~E3~e3~E1E£]e3 
TIME FREO. TIME FREO. TIME FREO. TIME FREO. TIME FREO. 

Figure 6. Four Second-Order IIR Structures 

Figure 6 shows the same system as Figure 5 but uses four secon9-order IIR struc
tures (a direct form II realization). When you use straight line code, it is a simple task 
to write a time sample to the DOS fIle by adding an OUT instruction. You can examine 
the feedback and/or feed forward signal within the IIR section as well. In addition to the 
obvious benefits of probing literally anywhere within the algorithm or system, there are 
some not-so-obvious benefits. 

594 

The Advantages of Data Logging: 

1. You can assume any sample frequency. Sample frequency in a hardwarebased 
DSP system is a function of the AID, the D/A, and the clock cycle of the DSP. 
With data logging, you can arbitrarily assign any frequency to the data samples 
within the fIles and can further assume any operating frequency for the DSP. 
It is therefore possible to specify devices with speeds in excess of any presently 
available speed if your algorithm so requires. 

TMS320 Algorithm Debugging Techniques 



2. You can specify any input condition. If you are doing a modem design, you can 
use a real-time data sampler to acquire a REAL signal to use as an input file. 
It is also possible to use a numerically generated input signal supplied by Lotus 
or any other software system/utility such as Hypersignal, HLL programs, math 
packages, etc. 

3. You can probe your system without having to observe any location restrictions. 
In hardware systems, you are restricted to available pins. With nsp code, an 
OUT instruction can be put anywhere. 

4. You must use use a scope probe with analog systems, thus adding resistance and 
capacitance to the signal being examined. Data logging is a perfect observation 
utility, since it places no load on the signal. 

5. You can examine the input and output signals with any level of desired granulari
ty. If you intend to use a 12-bit A/D, you can examine the signal at 16 bits, then 
truncate the data to 12 bits and compare results. If you can get by with 10 or 
even 8 bits of granularity, you will reduce system cost. 

6. You can print your results using plotting packages such as Hypersignal. Results 
can be printed for both frequency and time, thus providing a greater level of 
documentation. 

7. You can archive input and output files as part of your total documentation package. 

8. You can't get burned; there are no soldering irons involved. 

Conclusion 

DSP-based systems using data logging techniques demonstrate improved quality and 
shorter time to market. Using the TMS320 simulators and SWDS products in conjunction 
with graphic/data acquisition software packages, you can write and debug a large portion 
of an algorithm long before silicon or target platforms are available. 

References 

[1] First-Generation User's Guide (literature number SPRU013B), Texas Instruments, 
1989. 

[2] TMS320 Family Simulator User's Guide (literature number SPRU009B), Texas In
struments, 1988. 

[3] The TMS320C30 Simulator User's Guide (literature number SPRUOI7), Texas In
struments, 1988. 

TMS320 A 19orithm Debugging Techniques 595 



Appendix A 

Software Package Sources 

DADiSP 
DSP Development Corp 
One Kendall Square, Cambridge, MA 02139 
(617) 577-1133 

Hypersignal 
Hyperception 
9550 Skillman-LBl25 Dallas, TX 75243 
(214) 343-8525 

ILS 
STI Signal Technology Inc 
5951 Encina Road, Goleta, CA 93117 
(805) 683-3771 

Lotus 1-2-3 
Lotus Development Group 
55 Wheeler St. Cambridge, MA 02138 
(617) 492-7171 

Math CAD 
MathSoft 
One Kendall Sq., Cambridge, MA 021.39 
(617) 577-1017 

MATLAB 
The Math Works Inc 
South Natick, MA 01760 
(508) 653-1415 

596 TMS320 Algorithm Debugging Techniques 



TMS320 Bibliography 

Since the TMS32010 was disclosed in 1982, the TMS320 family has received an ever-in
creasing amount of recognition. The number of outside parties contributing to the extensive devel
opment support offered by Texas Instruments is rapidly growing. Many technical articles are being 
written about TMS320 applications in the field of digital signal processing. 

The following articles and papers have been published since 1982 regarding the Texas Instru
ments TMS320 Digital Signal Processors. Readers who are interested in gaining further informa
tion about these processors and their applications may obtain copies of these articles/papers from 
their local or university library. 

The articles are broken down into 12 different application categories. Articles in each catego
. ry are in reverse chronological order (most recent first). Articles having the same publication date 
are shown in alphabetical order by authors name. 

The application categories are: 
1) General Purpose DSP 
2) Graphics/Imaging 
3) Instrumentation 
4) Voice/Speech 
5) Control 
6) Military 
7) Telecommunications 
8) Automotive 
9) Consumer 
10) Industrial 
11) Medical 
12) Development Support 

General Purpose DSP 
1) R. Chassaing, "A Senior Project Course in Digital Signal Processing with the TMS320," 

IEEE Transactions on Education, USA, Volume 32, Number 2, pages 139-145, May 
1989. 

2) P.E. Papamichalis, C.S. Burrus, "Conversion of Digit-Reversed to Bit-Reversed Order 
in FFT Algorithms," Proceedings of ICASSP 89, USA, pages 984-987, May 1989. 

3) P.E. Papamichalis, "Application, Progress and Trends in Digital Signal Processing," 
Proceedings of Mikroelektronik Conference, Baden-Baden, March 1989. 

4) R. Chassaing, "Adaptive Filtering with the TMS320C25 Digital Signal Processor," Pro
ceedings of 1989 ASEE Conference, USA, pages 215-217, 1989. 

5) P.E. Papamichalis, R. Simar, Jr., "The TMS320C30 Floating-Point Digital Signal Pro
cessor," IEEE Micro Magazine, USA, pages 13-29, December 1988. 

6) K. Rogers, "The Real-Time Thing (Digital Signal Controller)," Electronic Engineering 
Times, USA, Number 506, page 85, October 1988. 

7) P.E. Papamichalis, "Impact of DSP Devices on Fast Algorithms," Procee.dings of the 
1988 IEEE DSP Workshop, USA, September 1989. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 597 



598 

8) G. Umamaheswari, C. Eswaran, A Jhunjhunwala, "Signal Processing with a Dual-Bank 
Memory," Microprocessor Microsystems, Great Britain, Volume 12, Number 4, pages 
206-210, May 1988. 

9) G. Castellini, P. Luigi, E. Liani, L. Pierucci, F. Pirri, S. Rocchi, "A Multiprocessor Struc
ture Based on Commercial DSP," Proceedings of ICASSP 88, USA, Volume V, page 
2096, April 1988. 

10) M.R. Civanlar, R.A Nobakht, "Optimal Pulse Shape Design Using Projections onto 
Convex Sets;" Proceedings of ICASSP 88, USA, Volume D, p. 1874, April 1988 .. 

11) LJ. Eriksson, M.C. Allie, C.D. Bremigan, R.A Greiner, "Active Noise Control Using 
Adaptive Digital Signal Processing," Proceedings ofICASSP 88, USA, Volume A, page 
2594, April 1988. 

12) G. Mirchandani, D.D. Ogden, "Experiments in Partitioning and Scheduling Signal Pro
cessing Algorithms for Parallel Processing," Proceedings of ICASSP 88, USA, Volume 
D, page 1690, April 1988. 

13) P. Papamichalis, "FFf Implementation on the TMS320C30," Proceedings of ICASSP 
88, USA, Volume D, page 1399, April 1988. 

14) AC. Rotger-Mora, "An N-Dimensional SIMD Ring Architecture for Implementing 
Very Large Order Adaptive Digital Filters," Proceedings of ICASSP 88, USA, Volume 
V, page 2140, April 1988. 

15) J. Santos, J. Parera, M. Veiga, "A Hypercube Multiprocessor for Digital Signal Process
ingAlgorithm Research," Proceedings ofICASSP 88, USA, Volume D, page 1698, April 
1988. 

16) R. Simar, A Davis, "The Application of High-Level Languages to Single-Chip Digital 
Signal Processors," ProceedingsofICASSP88, USA, VolumeD,page 1678,April1988. 

17) K. Bala, "Running on Embedded Power. (Dedicated 32-Bit Microprocessors Used in 
New Microcontrollers)(Technology Trends: Microprocessors and Peripherals)," Elec
tronic Engineering Times, USA, Number 478, page 34, March 1988. 

18) J. Cooper, "DSP Chip Speeds VME Transfer," ESD: Electronic Systems Design, USA, 
Volume 18, Number 3, pages 47,48,50,51, March 1988. 

19) L. Vieira de Sa, F. Perdigao, "A Microprocessing System for the TMS32020," Micropro
cessing Microprogramming, Netherlands, Volume 23, Number 1-5, pages 221-225, 
March 1988. 

20) G. Wade, "Offset FFT and Its Implementation on the TMS320C25 Processor," Micro
processing Microsystems, Great Britain, Volume 12, Number 2, pages 76-82, March 
1988. 

21) R. Chassaing, "Digital Broadband Noise Synthesis by Multirate Filtering Using the 
TMS320C25," Proceedings of 1988 ASEE Conference, USA, pages 394-397,1988. 

22) R. Chassaing, "A Senior Project Course on Applications in Digital Signal Processing 
with the TMS320," Proceedings of1988ASEE Conference, USA, pages 354-359,1988. 

23) L.N. Bohs, R.C. Barr, "Real-Time Adaptive Sampling with the Fan Method," Proceed
ings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology 
Society, USA, Volume 4, pages 1850-1851, November 1987. 

24) T. Kimura, Y. Inabe, T. Hayashi, K. Uchimura, K. Hamazato, "Dual-Chip SLIC Using 
VLSI Technology," Conference Record of GLOBE COM Tokyo '87, Volume 3, pages 
1766-1770, November 1987. ' 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



25) W.S. Gass, R.T. Tarr~nt, T. Richard, B.I. Pawate, M. Gammel, P.K. Rajasekaran, R.H. 
Wiggins, C.D. Covington, "Multiple Digital Signal Processor Environment for Intelli
gent Signal Processing," Proceedings of the IEEE, USA, Volume 75, Number 9, pages 
1246-1259, September 1987. 

26) L. Johnson, R. Simar, Jr., "A High Speed Floating Point DSP," Conference Record of 
MIDCON/87, USA, pages 396-399, September 1987. 

27) K.S. Lin, G.A. Frantz, R. Simar, Jr., "TheTMS320 Family of Digital Signal Processors," 
Proceedings of the IEEE, USA, Volume 75, Number 9, pages 1143-1159, September 
1987. 

28) S.L. Martin, "Wave of Advances Carry DSPs To New Horizons. (Digital Signal Process
ing)," Computer Design, USA, Volume 26, Number 17, pages 69-82, September 1987. 

29) C. Murphy, A. Coats, J. Conway, P. Colditz, P. Rolfe, "Doppler Ultrasound Signal Anal
ysis Based on the TMS320 Signal Processor," 27thAnnuai Scientific Meeting oftheBio- I 

logical Engineering Society, Great Britain, Volume 10, Number 2, pages 127-129, Sep
tember 1987. 

30) G.S. Kang, L.J. Fransen, "Experimentation With An Adaptive Noise-Cancellation Fil
ter," IEEE Transactions on Circuits and Systems, USA, Volume CAS-34, Number 7, 
pages 753-758, July 1987. 

31) R. Chassaing, "Applications in Digital Signal Processing with the TMS320 Digital Sig
nal Processor in an Undergraduate Laboratory," Proceedings of the 1987 ASEEAnnual 
Conference, USA, Volume 3, pages 1320-1324, June 1987. 

32) D. W. Horning, "An Undergraduate Digital Signal Processing Laboratory," Proceedings 
of the 1987 ASEE Annual Conference, USA, Volume 3, pages 1015-1020, June 1987. 

33) D. Locke, "Digitising In The Gigahertz Range," lEE Colloguium on Advanced AID 
Conversion Techniques, Great Britain, Digest Number 48,10/1-4, April 1987. 

34) S. Orui, M. Ara, Y. Orino, E. Sazuki, H. Makino, "Realization of IIR Filter using the 
TMS320," Resident Reports of Kogakuin University, Japan, Number 62, pages 
195-204, April 1987. 

35) R. Simar, T. Leigh, P. Koeppen, J. Leach, J. Potts, D. Blalock, "A 40 MFLOPS Digital 
Signal Processor: The First Supercomputer on a Chip," Proceedings of ICASSP 87, 
USA, Catalog Number 87CH2396-0, Volume 1, pages 535-538, April 1987. 

36) R. Simar, "TMS320: Texas Instruments Family of Digital Signal Processors," Proceed
ings of SPEECH TECH 87, USA, pages 42-47, April 1987. 

37) G.Y. Tang, B.K. Lien, "A Multiple Microprocessor System For General DSP Opera
tion," Proceedings of ICASSP 87, USA, Catalog Number 87CH2396-0, Volume 2, 
pages 1047-1050, April 1987. 

38) L. Vieira de Sa, "Second MicroProcessor Enhances TMS32020 System," EDN: Elec
tronic Design News, USA, Volume 32, Number 9, pages 230-232, April 1987. 

39) T.J. Moir, T.G. Vishwanath, D.R. Campbell, "Real-Time Self-Tuning Deconvolution 
Filter and Smoother," InternationaLJournal of Control, Great Britain, Volume 45, Num
ber 3, pages 969-985, March 1987 

40) R. Simar, M. Hames,"CMOS DSP Packs Punch of a Supercomputer," EDN: Electronic 
Design News, USA, Volume 35, Number 7, pages 103-106, March 1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 599 



600 

41) S. Sridharan, "On Improving the Performance of Digital Filters Designed Using the 
TMS32010 Signal Processor," Journal of Electrical and Electronic Engineers of Aus
tralia, Australia, Volume 7, Number 1, pages 80-82, March 1987. 

42) R. McCammon, "Software Routine Probes TMS32010 Code," EDN: ElectronicDesign 
News, USA, Volume 32, Number4, pages 200,202, February 1987. 

43) J. Prado, R. Alcantara, "A Fast Square-Rooting Algorithm Using ADigital Signal Pro
cessor," Proceedings of IEEE, USA, Volume 75, Number 2, pages 262-264, February 
1987. 

44) T.G. Vishwanath, D.R. CamppbeIl, TJ. Moir, "Real-Time Implementation Using a 
TMS32010 Microprocessor," IEEE Transactions on Industrial Electronics, USA, Vol
ume lE-34, Number 1, pages 115-118, February 1987. 

45) R Chassaing, "Applications in Digital Signal Processing with the TMS320 Digital Sig
nal Processor in an Undergraduate Laboratory," Proceedings of 1987 ASEE Conference, 
USA, pages 1320-1324, 1987. 

46) R.M. Sovacool, "EPROM Enhances TMS32020 Mu C's Memory," EDN: Electronic 
Design News, USA, Volume 32, Number 1, page 231,1987. 

47) F. Kocsis, F. Marx, "Fast DFT Modules For The TMS32010 Digital Signal Processor," 
Meres and Automation, Hungary, Volume 35, Number 1, pages 6-11,1987. 

48) Y.V.V.S. Murty, w.J. Smolinski, "Digital Filters for Power System Relaying," Interna
tional Journal of Energy Systems, USA, Volume 7, Number 3, pages 125-129, 1987. 

49) S. Wang, "The TMS32010 High Speed Processor and Its Applications," Mini-Micro 
Systems, China, Volume 8, Number 3, pages 24-32, 1987. 

50) G.A. Frantz, KS. Lin, J.B. Reimer, J. Bradley, "The Texas Instruments TMS320C25 
Digital Signal Microcomputer," IEEE Microelectronics, USA, Volume 6, Number 6, 
pages 10-28, December 1986. 

51) P. Renard, "ND Converters: The Advantage of a Mi~ture of Techniques," Mesures, 
France, Volume 51, Number 16, pages 80-81, December 1986. 

52) M. Ara, E. Suzuki, "Design of Real Time Filter Using DSP," Resident Reports of Koga
kuin University, Japan, Number 61, pages 115-127 October 1986. 

53) 1. Reidy, "Connection of a 12-Bit ND Converter to Fast DSPs," Electronik, Germany, 
Volume 35, Number 22, pages 132-134, October 1986. 

54) G.R. Steber, "Implementation of Adaptive Filters on the TMS32010 DSP Microcom
puter," Proceedings of IECON 86, Catalog Number 86CH2334-1, Volume 2, pages 
653-656, September/October 1986. 

55) D. Collins, M.A. Rahman, "Digital Filter Design Using The TMS320Digitai Signal 
Processor," Proceedings ofEUSIPCO-86, Volume 1pages 163-166, September 1986. 

56)R. Simar, Jr., J.B. Reimer, "The TMS320C25: A 100 ns CMOS VLSI Digital Signal Pro
cessor," 1986 Workshop on Applications of Signal Processing to A udio andAcoustics, 
September 1986. 

57) J. Dudas, A. Stipkovits, E. Simonyi, "On The recursive Momentary Discrete Fourier 
Transform," Proceedings ofEUSIPCO-86, Volume 1, pages 303-306, September 1986. 

58) E. Feder, "Digital Signal Processor - General Purpose or Dedicated? ," Electronics In
dustry, France, Number 111, pages 74-82, September 1986. 

59) K Herberger, "The Use of Signal Processors For Simulating Data Circuits," Proceed
ings of EUSIPCO-86, Volume 2, pages 1109-1112, September 1986. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



60) K. Kassapoglou, P. Hulliger, "Implementation of Recursive Least Squares Identification 
Algorithm on The TMS320," Proceedings of EUSIPCO-86, Volume 2, pages 
1263-1266, September 1986. 

61) G. Lucioni, "General Processor Application; CAD Tool For Filter Design," Proceedings 
of Ell.SIPCO-86, Volume 2, pages 1335-1338, September 1986. 

62) R. Schapery, "A lO-MIP Digital Signal Processor From Texas Instruments," Conference 
Record of Midcon 86, USA, 1/2/1-11, September 1986. 

63) "DSP Microprocessors," In! Elettronica, Italy, Volume 14, Number 7-8, pages 21-28, 
64) R.L. Barnes, S.H. Ardalan, "Multiprocessor Architecture For Implementing Adaptive 

Digital Filters," Conference Record ofICC-86, Catalog Number 86CH2314-3, Volume 
1, pages 180-185, June 1986. 

65) AD.E. Brown, "EPROMS Simplify TMS32010 Memory System," EDN: Electronic 
Design News, USA, Volume 31, Number 13, page 230, June 1986 . 

. 66) T. Kolehamainen, T. Saramaki, M. Renfors, Y. Neuvo, "Signal Processor Implementa
tion of Computationally Efficient FIR Filter Structures-Theory and Practice," 2ndNor
dic Symposium on VLSI in Computers and Communications, 10 pages, June 1986. 

67) T.G. Marshall Jr.,"Transform Methods For Developing Parallel Algorithms For Cy
clic-Block Signal Processing," Conference Record of ICC-86, Catalog Number 
86CH2314-3, Volume 1, pages 288-294, June 1986. 

68) S. Abiko, M. Hashizume, Y. Matsushita, K. Shinozaki, T. Takamizawa, C. Erskine, S. 
Magar, "Architecture and Applications of a 100-ns CMOS VLSI Digital Signal Proces
'sor," Proceedings ofICASSP 86, USA, Catalog Number 86CH2243-4, Volume 1, pages 
393-396., April 1986. 

69) T.P. Barnwell, "Algorithm Development and Multiprocessing Issues for DSP Chips," 
Proceedings of Speech Technology 86, April 1986. 

70) W. Gass, "TMS32020 - The Quick and Easy Solt,ltion to DSP Problems," Proceedings 
of Speech Technology 86, April 1986. 

71) M. Hashizume, S. Abiko, Y. Matsushita, K. Shinozaki,T. Takamizawa, S. Magar, J. 
Reimer, "A 100-ns CMOS VLSI Digital Signal Processor Using Double Level Metal 
Structure," Semiconductor Group 1986 Technical Meeting, April 1986. 

72) R.E. Morley, AM. Engebretson, and J.G. Trotta, "A Multiprocessor Digital Signal Pro
cessing System for Real-Time Audio Applications," IEEE Transactions on Acoustics, 
Speech and Signal Processing, USA, Volume ASSP-34, Number 2, April 1986. 

73) S.G. Smith, A Fitzgerald, P.B. Denyer, D. Renshaw, N.P. Wooten, R. Creasey, "A Com
parison of Micro-DSP And Silicon Compiler Implementations of a Polyphase-Network 
Filter Bank," Proceedings ofICASSP 86, USA, Catalog Number 86CH2243-4, Volume 
3, pages 2207-2210, April 1986. 

74) J. Reimer, M. Hames, "Next Generation CMOS Chip Stakes High-Performance Claim 
on 10-MIPS DSP Operations," Electronic Design, USA, Volume 34, Number 8, pages 
141-146, April 1986. 

75) w.w. Smith, "Playing to Win: Product Development with the TMS320 Chip," Speech 
Technology Magazine, March/April 1986. 

76) D. Essig, C. Erskine, E. Caudel, and S. Magar, "A Second-Generation Digital Signal 
Processor," IEEE Journal of Solid-State Circuits, USA, Volume SC-21, Number 1, 
pages 86-91, February 1986. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 601 



602 

77) W.K Anakwa, T.L. Stewart, "TMS320 Microprocessor-Based System For Signal Pro
cessing," Proceedings of the ISMM International Symposium, pages 64-65, February 
1986. 

78) M. Omenzetter, "Universal Signal Processors Offers High Data Throughput," Electro
nik, Germany, Volume 35, Number 4, pages 71-77, February 1986. 

79) P.P. Regamey, "Matched Filtering Using a Sigrral· Microprocessor TMS320," Mitt. 
AGEN,Switzeriand, Number 42, pages 31-35, February 1986. 

80) "TI Set To Show 2nd-Generation DSP," Electronics, USA, pages 23-24, February 3, 
1986. 

81) "TI Preps CMOS Versions of Signal-Processor Chips," Electronics Engineering Times, 
USA, page 6, February 3,1986: 

82) D. Wilson, "Digital Signal Processing Moves on Chip," Digital Design, USA, Volume 
16, Number 2, pages 33-34, February 1986. 

83) "TI Chip Heads for Fast Lane of Digital Signal Processing," Electronics, USA, page 9, 
January 27, 1986. 

84) R.D. Campbell and S.R. McGeoch, "The TMS32010 Digital Signal Processor-An Edu
cational Viewpoint," InternationalJournalfor ElectricalEngineering Education, Great 
Britain, Volume 23, Number 1, pages 21-31, January 1986. 

85) P. Eckelman, "The Cascadable Signal Processor For Digital Signal Processing," Elec
tronics Industry, Germany, Volume 17, Number 10, pages 26-27,1986. 

86) R. Cook, "Digital Signal Processors," High Technology, USA, Volume 5, ~umber 10, 
pages 25-30, October 1985. 

87) C.P. Howard, "A High-Level Approach to Digital Processing Design," Proceedings of 
MILCOMP/85, USA, October 1985. . . 

88) H.E. Lee, "Versatile Data-Acquisition System Based on the Commodore C-64/C-128 
Microcomputer," Proceedings of the Symposium of Northeastern Accelerator Person
nel, USA, Volume 57, Number 5, pages 983-985, October 1985. 

89) N.K Riedel, D.A. McAninch, C. Fisher, and N.B. Goldstein, "A Signal Processing Im
plementation for an IBM PC-Based Workstation," IEEE Micro, USA, Volume 5, Num
ber 5, pages 52-67, October 1985. 

90) KE. Marrin, ~'VLSI and Software Move DSP Into Mainstream," Computer Design, 
USA, Volume 24, Number 9, pages 69-72, September 1985. 

91) "Signal Processor ICs: Highly Integrated ICs Making DSP More Attractive," Electron
ics Engineering Times, USA, pages 37-38, September 2, 1985. 

92) KE. Marrin, "VLSI and Software Move DSP Techniques into Mainstream," Computer 
Design, USA, September 1985. 

93) "High-Speed Four-Channel Input Board," Electronics Weekly, USA, Number 1277, p. 
31, July 24, 1985. 

94) "4-ChanneIAnalog-Input Board Puts Signal-Processing on VMF Bus," EDN: Electron
ic Design News, USA, Volume 30, Number 17, page 74, July 1985. 

95) R.H. Cushman, "Third-Generation DSPs Put Advanced Functions On-Chip," EDN: 
Electronic Design News, USA, July 1985. 

96) W.w. Smith, Jr., "Agile Development System, Running on PCs, Builds TMS320-Based 
FIR Filter," Electronic Design, USA, Volume 33, Number 13, pages 129-138, June 6, 
1985. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



97) S. Magar, SJ. Robertson, and W. Gass, "Interface Arrangement Suits Digital Processor 
to Multiprocessing," Electronic Design, USA, Volume 33, Number 5, pages 189-198, 
March 7, 1985. 

98) G. Kropp, "Signal Processor Offers Multiprocessor Capability," Elektronik, Germany, 
Volume 34, Number 6, pages 53-58, March 1985. 

99) S. Magar, D. Essig, E. Caudel, S. Marshall and R. Peters, "An NMOS Digital Signal 
Processor with Multiprocessing Capability," Digest of IEEE International Solid-State 
Circuits Conference, USA, February 1985. 

100) "TI 'Shiva' Chip Outlined," Electronics Engineering Times, USA, page 15, February 
18, 1985. 

101) S. Magar, E. Caudel, D. Essig, and C. Erskine, "Digital Signal Processor Borrows from 
P to Step up Performance, Electronic Design, USA, Volume 33, Number 4, pages 
175-184, February 21,1985. 

102) C. Erskine, S. Magar, E. Caudel, D. Essig, and A. Levinspuhl, "A Second-Generation 
Digital Signal Processor TMS32020: Architecture and Applications," Traitement de 
Signal, France, Volume 2, Number 1, pages 79-83, January-March 19~5. 

103) S. Baker, "TI 'Shiva' Chip Outlined," Electronic Engineering Times, USA, Number 
317, page 15, February 1985. 

104) S. Baker, "Silicon Bits," Electronic Engineering Times, USA, Number 316, page 42, 
February 1985. 

105) H. Bryce, "Board Arrives For Digital Signal Processing on the VMEbus," Electronic 
Design, USA, Volume 33, Number 2, page 266,1985. 

106) K. Marrin, "VME-Compatible DSP System Incorporates TMS320 Chip," EDN: Elec
tronic Design News, USA, Volume 30, Number 2, page 122, January 1985. 

107) C. Erskine and S. Magar, "Architecture and Applications of A Second-Generation 
Digital Signal Processor," Proceedings of IEEE International Conference on Acous
tics, Speech, and Signal Processing, USA, 1985. 

108) D.P. Morgan and H.E Silverman, "An Investigation into the Efficiency of a Parallel 
TMS320 Architecture: DFf and Speech Filterbank Applications," Proceedings of 
IEEE International Conference on Acoustics, Speech, and Signal Processing, USA, 
Volume 4, pages 1601-1604, 1985. 

109) P. Harold, "VME Bus Meeting Sparks Change in Standard, New Products," EDN: 
Electronic Design News, USA, Volume 29, Number 26, page 18, December 1984. 

110) W. Loges, "A Code Generator Sets up the Automatic Controller Program for the 
TMS320," Elektronik, Germany, Volume 33, Number 22, pages 154-158, November 
1984. 

111) 

112) 

113) 

114) 

H. Volkers, "Fast Fourier Transforms with the TMS320 as Coprocessor," Elektronik, 
Germany, Volume 33, Number 23, pages 109-112, November 1984. 
Keun-Ho Ryoo, "On the Recent Digital Signal Processors," Journal of South Korean 
Institute of Electrical Engineering, South Korea, Volume 33, Number 9, pages 
540-549, September 1984. 
D. Wilson, "Editor's Comment," Digital Design, USA, Volume 14, Number 9, page 
14, September 1984. 
"Signal Processors Will Squeeze Into One Chip, Says TI's French," Electronics, USA, 
Volume 57, Number 9, pages 14,20, May 1984. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 603 



604 

115) S. Mehrgardt, "32-BitProcessor Produces Analog Signals," Elektronik, Germany, Vol
ume 33, Number 7, pages 77-82, April 1984. 

116) S. Magar, "Signal Processing Chips Invite Design Comparisons," Computer Design, 
USA, Volume 23, Number 4, pages 179-186, April 1984. 

117) S. Mehrgardt, "General-Purpose Processor System for Digital Signal Processing," 
Elektronik, Germany, Volume 33, Number 3, pages 49-53, February 1984. 

118) T. Durham, "Chips: Familiarity Breeds Approval," Computing, Great Britain, page 26, 
January 1984. 

119) J. Bradley and P. Ehlig, "Applications of the TMS32010 Digital Signal Porcessor and 
Their Tradeoffs," Midcon/84 Electronic Show and Convention, USA, 1984. 

120) J. Bradley and P. Ehlig, "Tradeoffs in the Use ofthe TMS32010 as a Digital Signal Pro
cessing Element," Wescon/84 Conference Record, USA, 1984. 

121) E. Fernandez, "Comparison and Evaluation of 32-Bit Microprocessors," Mini/Micro 
Southeast Computer Conference and Exhibition, USA, 1984. 

122) D. Garcia, "Multiprocessing with the TMS3201O," Wescon/84 Conference Record, 
USA,1984. 

123) S. Magar, "Architecture and Applications ofa Programmable Monolithic Digital Sig
nal Processor - A Tutorial Review," Proceedings of IEEE International Symposium 
on Circuits and Systems, USA, 1984. 

124) D. Quarmby (Editor), "Signal Processor Chips," Granada, England 1984. 
125) R. Steves, "A Signal Processor with Distributed Control and Multidimensional Scal

ability," Proceedings of IEEE N ationalAerospace and Electronics Conference, USA, 
1984. 

126) V. Vagarshakyan and L. Gustin, "On A Single Class of Continuous Systems - A Solu
tion to the Problem on the Diagnosis of Output Signal Characteristics Recognition Pro- . 
cedures," IZV. AKAD. NAUK ARM. SSR, SER. TEKH. NAUK, USSR, Volume 37, 
Number 3, pages 22-27, 1984. 

127) J. So, "TMS320 - A Step Forward in Digital Signal Processing," Microprocessors and 
Microsystems, Great Britain, Volume 7, Number 10, pages 451-460, December 1983. 

128) J. Elder and S. Magar, "Single-Chip Approach to Digital Signal Processing," Wes
con/83 Electronic Show and Convention, USA, November 1983. 

129) M. Malcangi, "VLSI Technology for Signal Processing. III," Elettronica Oggi, Italy, 
Number 11, pages 129-138, November 1983. 

130) P. Strzelcki, "Digital Filtering," Systems International, Great Britain, Volume 11, 
Number 11, pages 116-117, November 1983. 

131) W. Loges, "Digital Controls Using Signal Processors," Elektronik, Germany, Volume 
32, Number 19, pages 51-54, September 1983. ' 

132) "TI's Voice Chip Makes Debut," Computerworld, USA, Volume 17, Number 15, page 
91, April 1983. 

133) L. Adams, "TMS320 Family 16/32-Bit Digital Signal Processor, An Architecture for 
Breaking Performance Barriers," Mini/Micro West 1983 Computer Conference and 
Exhibition, USA, 1983. 

134) R. Blasco, "Floating-Point Digital Signal Processing Using a Fixed-Point Processor," 
Southcon/83 Electronics Show and Convention, USA, 1983. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



135) R. Dratch, "A Practical Approach to Digital Signal Processing Using an Innovative 
Digital Microcomputer in Advanced Applications," Electro '83 Electronics Show and 
Convention, USA, 1983. 

136) C. Erskine, "New VLSI Co-Processors Increase System Throughput," Mini/Micro 
Midwest Conference Record, USA, 1983. 

137) L. Kaplan, "Flexible Single Chip Solution Paves Way for Low Cost DSP," North
con/83 Electronics Show and Convention, USA, 1983. 

138) L. Kaplan, "The TMS32010: A New Approach to Digital Signal Processing," Electro 
'83 Electronics Show and Convention, USA, 1983. 

139) S.Mehrgardt, "Signal Processing with a Fast Microcomputer System," Proceedings 
of EUSIPCO-83 Second European Signal Processing Conference, Netherlands, 1983. 

140) L. Morris, "A Tale of Two Architectures: TI TMS 320 SPC VS. DEC Micro/J-11," 
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Pro
cessing, USA, 1983. 

141). L. Pagnucco and D. Garcia, "A 16/32 Bit Architecture for Signal Processing," Mini/ 
Micro West 1983 Computer Conference and Exhibition, USA, 1983. 

142) J. Potts, "A Versatile High Performance Digital Signal Processor," Ohmcon/83 Con
ference Record, USA, 1983. 

143) J. Potts, "New 16/32-Bit Microcomputer Offers 200-ns Performance," Northcon/83 
Electronics Show and Convention, USA, 1983. 

144) R. Simar, "Performance of Harvard Architecture in TMS320," Mini/Micro West 1983 
Computer Conference and Exhibition, USA, 1983. 

145) K. McDonough, E. Caudel, S. Magar, and A. Leigh, "Microcomputer with 32-Bit 
Arithmetic Does High-Precision Number Crunching," Electronics, USA, Volume 55, 
Number 4, pages 105-110, February 1982. 

146) K. McDonough and S. Magar, "A Single Chip Microcomputer Architecture Optimized 
for Signal Processing," Electro/82 Conference Record, USA, 1982. 

147) L. Kaplan, "Signal Processing with the TMS320 Family," Midcon/82 Conference Re
cord, USA, 1982. 

148) S. Magar, "Trends in Digital Signal Processing Architectures," Wescon/82 Conference 
Record, USA, 1982. 

Graphics/Imaging 
1) J.A. Lindberg, "Color Cell Compression Shrinks NTSC Images," ESD: Electronic Sys-

tems Design Magazine, USA, Volume 17, Number 10, pages 91-96, October 1987 
2) S. Ganesan, "A Digitial Signal Processing Microprocessor Based Workstation For My

oelectric Signals," Fifth International Conference on System Engineering, USA, Cata
log Number 87CH2480-2, pages 427-438, September 1987. 

3) JU. Pokovny, O. Skoloud, "Digitisation of a Video Signal From a Television For a Mi
crocomputer," Sdelovaci Tech., Czechoslovakia, Volume 35, Number 6, pages 207-211, 
June 1987. 

4) M.E. Bukaty, "A Vehicle Identification System For Surveillance Applications," Topical 
Meeting on Machine Vision. Technical Digest Series, USA, Volume 12, pages 106-109, 
March 1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 605 



5) KN. Ngan, AA Kassim, H.S. Singh,"Parallel Image-Processing System Based on 
THe TMS32010 Digital Signal Processor," lEE Proceedings in Electronics, Great Brit
ain, Volume 134, Number 2, pages 119-124, (March 1987. 

6) KN. Ngan, AA Kassim, H. Singh, "A TMS3201O-Based Fast Parallel Vison Proces
sor," Proceedings of the International Workshop on IndustrialApplications of Machine 
Vision and Machine Intelligence, Catalog Number 87TH0166-9, pages 156-161, Feb-
ruary 1987. . 

7) P. Bellamah, "Hardware-Software Increases Video Storage Capacity," PC Week, USA, 
Volume 4, Number 4, page 15, January 271987. 

8) J.M. Younse, "Motion Detection Using the Statistical Properties ofa Video Image," Pro
ceedings of SPIE International Society of Optical Engineering, USA, Volume 697, 
pages 233-243, August 1986. 

9) T. Gehrels, B.G. Marsden, RS. McMillan, J.V. Scotti, "Astrometry With a Scanning 
CCD," Astronomy Journal, USA, Volume 91, Number 5, pages 1242-1248, May 1986. 

10) S. Srinivasan, AK Jain, T.M. Chin, "Cosine Transform Block Codec For I~ages Using 
TMS32010," IEEE International Symposium on Circuits and Systems, USA, Catalog 
Number 86CH2255-8, Volume 1, pages 299-302, May 1986. 

11) D.M. Holburn and J.D. Sommerville, "A High-Speed Image Processing System Using 
the TMS32010," Software and Microsystems, Great Britain, Volume 4, Number 5-6, 
pages 102-108, October-December 1985. 

12) C. D. Crowell and R Simar, "Digital Signal Processor Boosts Speed of Graphics Dis
play Systems," Electronic Design, USA, Volume 33, Number 7, pages 205-209, March 
1985. 

13) J. Reimer and A Lovrich, "Graphics with the TMS32020," WESCON/85 Conference 
Record, USA, 1985. 

14) H. Megal and A Heiman, "Image Coding System - A Single Processor Implementa
tion," MILCOM/85 IEEE Military Communications Conference Record, USA, 1985. 

15) G. Gaillat, "The CAPITAN Parallel Processor: 600 MIPS for Use in Real Time Imag
ery," Traitement de Signal, France, Volume 1, Number 1, pages 19-30, October-Decem
ber 1984. 

Instrumentation 

606 

1) G.R. Halsall, D.R. Burton, M.J. Lalor, C.A Hobson, "A Novel Real-Time Opto-Elec
tronic Profilometer Using FFT Processing," Proceedings of ICASSP 89, USA, pages 
1634-1637, May 1989. 

2) A.J. Pratt, RE. Gander, B.R Brandell, "Real-Time Median Frequency Estimator," Pro
ceedings oftheNinthAnnual Conference of the IEEE Engineering in Medicine and Biol
ogy Society, USA, Volume 4, pages 1840-1841, November 1987. 

3) D.Y. Cheng, A Gersho, "A Fast Codebook Search Algorithm For Nearest-Neighbor 
Pattern Matching," Proceedings of ICASSP 86, USA, Catalog Number 86CH2243-4, 
Vol 1, pages 265-268, April 1986. 

4) Y. Chikada, M. Ishiguro, H. Hirabayashi, M. Morimoto, K Morita, T. Kanazawa, H. 
Iwashita, K Nakazima, S. Ishikawa, T. Takahashi, K Handa, T.Kazuga, S. Okumura, 
T. Miyazawa, K Miura, S. Nagasawa, "A Very Fast FFT Spectrum Analyzer For Radio 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



Astronomy," Proceedings ofICASSP 86, USA, Catalog Number 86CH2243-4, Volume 
4, pages 2907-2910, April 1986. 

5) R.C. Wittenberg, "Four Microprocessors Power Multifunction Analyzer," Electronic 
Engineering Times, USA, Number 306, page 30, November 1984. 

6) D. Lee, T. Moran, and R. Crane, "Practical Considerations for Estimating Flaw Sizes 
from Ultrasonic Data," MaterialsEvaluation, Volume 42, Number 9, pages 1150-1158, 
August 1984. 

7) S. Magar, R. Hester, and R. Simpson, "Signal-Processing c Builds FFT-Based Spectrum 
Analyzer," Electronic Design, USA, Volume 30, Number 17, pages 149-154, August 
1982. 

Voice/Speech 
1) A. Aktas, H. Hoge, "Multi-DSP and VQ-ASIC Based Acoustic Front-End for 

Real-Time Speech Processing Tasks," Proceedings of EUROSPEECH 89, pages 
586-589, September 1989. 

2) D. Bergmann, D. Boillon, F. Bonifacio, R. Breitschadel, "Experimental Speech Input/ 
Output System," Proceedings of ICASSP 89, USA, pages 1138-1141, May 1989. 

3) J. DellaMorte, P.E. Papamichalis, "Full-Duplex Real-Time Implementation of the 
FED-STD-1015 LPC-lOe Standard V.52 on the TMS320C25," Proceedings of 
SPEECH TECH 89, pages 218-221, May 1989. 

4) B.1. Pawate, G.R. Doddington, "Implementation of a Hidden Markov Model-Based 
Layered Grammar Recognizer," Proceedings ofICASSP 89, USA, pages 801-804, May 
1989. 

5) P.E. Papamichalis, "High Quality Speech Coding: Some Recent Algorithms," Proceed
ings of SPEECH TECH 89, pages 329-333, May 1989. 

6) J.e. Ventura, "Digital Audio Gain Control for Hearing Aids," Proceedings of ICASSP 
89, USA, pages 2049-2052, May 1989. 

7) N. Matsui, H. Ohasi, "DSP-Based Adaptive Control of a Brushless Motor," IEEE Indus
try Application Society Annual Meeting; USA, October 1988. 

8) A. Albarello, R. Breitschaedel, A. Ciaramella, E. Lenormand, "Implementation of an 
Acoustic Front-End For Speech Recognition," CSELT Technical Report, Italy, Volume 
16, Number 5, pages 455-459, August 1988. 

9) D. Curl, "Voice Over Data Means More For Your Money," Communications, Great Brit
ain, Volume 5, Number 8, pages 27-29, August 1988. 

10) H. Hanselman, H. Henrichfreise, H. Hostmann, A. Schwarte, "Hardware/Software En
vironment for DSP-Based Multivariable Control," 12th. IMACS World Congress, July 
1988. 

11) J.B. Attili, M. Savic, J.P. Campbell, Jr., "A TMS32020-Based Real Time Text-Indepen
dent, Automatic Speaker Verification System," Proceedings of ICASSP 88, USA, Vol
ume S, page 599,April1988. 

12) D. Chase, A. Gersho, "Real-Time VQ Codebook Generation Hardware For Speech Pro
. cessing," Proceedings of ICASSP 88, USA, April 1988. 

13) T. Kohonen, K. Torkkola, M. Shozaki, J. Kangas, O. Venta, "Phonetic Typewriter for 
Finnish and Japanese," Proceedings of ICASSP 88, USA, Volume S, page 607, April 
1988. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



608 

14) I. Lecomte, M. Lever, L. Lelievre, M. Delprat, A Tassy, "Medium Band Radio Commu
nications," Proceedings of ICASSP 88, USA, April 1988. 

15) J.B. Reimer, KS. Lin, "TMS320 Digital Signal Processors in Speech Applications," 
Proceedings of SPEECH TECH '88, April 1988. 

16) M. Smmendorfer, D. Kopp, H. Hackbarth, "A High-Performance Multiprocessor Sys
tem for Speech Processing Applications," Proceedings of ICASSP 88, USA, Volume V, 
page 2108, April 1988. 

17) P. Vary, K Hellwig, R. Hoffmann, RJ. Sluyter, C. Garland, M. Russo, "Speech Codec 
for the European Mobile Radio System," Proceedings of ICASSP 88, USA, Volume S, 
page 227, April 1988. . 

18) A Hunt, "A Speaker-Independent Telephone Speech Recognition System: The VCS 
TeleRec," Speech Technology, USA, Volume 4, Number 2, pages 80-82, March-April 
1988. 

19) R.A Sukkar, J.L. LoCicero, J. W. Picone, "Design and Implementation of a Robust Pitch 
Detector Based on a Parallel Processing Technique," IEEE Journal of Selected A reas 
of Communications, USA, Volume 6, Number 2, pages 441-451, February 1988. 

20) AZ. Baraniecki, "Digital Coding of Speech Algorithms and Architecture," Proceedings 
of IECON '87, November 1987. 

21) G.R. Steber, "Audio Frequency DSP Laboratory on a Chip-TMS32010," Proceedings 
of IE CON '87, Volume 2, pages 1047-1051, November 1987. 

22) S.H. Kim, KR. Hong, H.B. Han, W.H. Hong, "Implementation of Real Time Adaptive 
Lattice Predictor on Digital Signal Processor," Proceedings ofTENCON 87, South Ko
rea, Volume 3, pages 1131-1135, August 1987. 

23) J.B. Reimer, M.L. McMahan, W.W. Anderson, "Speech Recognition For a Low Cost 
System Using a DSP," Digest of Technical Papers for 1987 International Conference 
on Consumer Electronics, June 1987. 

24) A Ciaramella, G. Venuti, "Vector Quantization Firmware For an Acoustical Front-End 
Using the TMS32020," Proceedings of ICASSP 87, USA, Catalog Number 
87CH2396-0, Volume 4, pages 1895-1898, April 1987. 

25) G.A Frantz, KS. Lin, "A Low Cost Speech System Using the TMS320CI7," Proceed
ings of SPEECH TECH '87, pages 25-29, April 1987. 

26) Z. Gorzynski, "Realtime Multitasking Speech Application on the TMS320," Micropro
cessors andMicrosystems, Great Britain, Volume 11, Number 3, pages 149-156, April 
1987. 

27) P. Papamichalis, D. Lively, "Implementation of the DOD Standard LPC-1O/52E on the 
TMS320C25," Proceedings of SPEECH TECH '87, pages 201-204, April 1987. 

28) B.I.Pawate, M.L.McMahan, R.H. Wiggins, G.R. Doddington, P.K Rajasekaran, "Con
nected Word Processor on a Multiprocessor System," Proceedings ofICASSP 87, USA, 
Catalog Number 87CH2396-0, Volume 2, pages 1151-1154, April 1987. 

29) S. Roucos, A Wilgus, W. Russell, "A Segment Vocoder Algorithm For Real-Time Im
plementation," Proceedings of ICASSP 87, USA, Catalog Number 87CH2396-0, Vol
ume 4, pages 1949-1952, April 1987. 

30) H. Yeh, "Adaptive Noise Cancellation For Speech With a TMS32020," Proceedings of 
ICASSP 87, USA, Catalog Number 87CH2396-0, Volume 2, pages 1171-1174, April 
1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



31) R. Conover, D. Gustafson, "VLSI Architecture For Cepstrum Calculations," 1987 IEEE 
Region 5 Conference, USA, Catalog Number 87CH2383-8, pages 63-64, March 1987. 

32) K. Field, A Derr, L. Cosell, C. Henry, M. Kasner, {Tiao, "ASingle Board MultrateAPC 
Speech Coding Terminal," Proceedings of ICASSP 87, USA, Catalog Number 
87CH2396-0, Volume 2, pages 960-963, April 1987. 

33) H. Brehm, W. Stammler, "Description and Generation of Sperically Invariant 
Speech-Model Signals," Signal Processing, Netherlands, Volume 12, Number 2, pages 
119-141, March 1987. 

34) AZ. Baraniecki, "Digital Coding of Speech Algorithms and Architectures," Proceed
ings of IECON '87, Volume 2, pages 977-984, 1987. 

35) B. Flocon, P. Lockwood, J. Sap, L. Sauter, "MARIPA: Speaker Independent Recogni
tion of Speech on IBM-PC," Eighth International Conference on Pattern Recognition, 
Catalog Number 86CH2342-4, pages 893-895, October i986. 

36) M.T. Reilly, "A Hybridized Linear Prediction Code Speech Synthesizer," Conference 
Records for MILCOM 86, USA, Catalog Number 86CH2323-4, Volume 2, 32.511-5, 
October 1986. 

37) K. Torkkola, H. Riittinen, T. Kohonen, "Microprocessor-Based Word Recognizer For 
a Large Vocabulary," Eighth International Conference on Speech Recognition Proceed
ings, Catalog Number 86CH2342-4, pages 814-816, October 1986. 

38) C.H. Lee, D.Y. Cheng, D.A Russo et ai, "An Integrated Voice-Controlled Voice Mes
saging System," Proceedings of Speech Technology 86, April 1986. 

39) Kun-Shan Lin and G.A Frantz, "A Survey of Available Speech Hardware for Computer 
Systems," Proceedings of Speech Technology 86, April 1986. 

40) L.R. Morris, "Software Engineering for an IBM PCrrI-SPEECH Realtime Digital 
Speech Spectrogram Production System," Proceedings of Speech Technology 86, April 
1986. 

41) K. Torkkola, H. Riittinen, "A Microprocessor-Based Recognition System For Large Vo
cabularies," Proceedings of ICASSP 86, USA, Catalog Number 86CH2243-4, Volume 
1, pages 333-337, April 1986.1) 

42) Z. Gorzynski, "Real Time Software Engineering on the TMS320: Application in a Pitch 
Detector Implementation," International Conference on Speech Input/Output; Tech
niques and Applications, Conference Publication Number 258, pages 270-275, March 
1986. 

43) S. Ganesan, M.O. Ahmad, "A Real Time Speech Signal Processor," Proceedings of the 
ISMM Internal Symposium, pages 46-49, February 1986. 

44) L. Gutcho, "DECtalk-a Year Later," Speech Technology, Volume 3, Number 1, pages 
98-102, August-September 1985. 

45) B. Bryden, H.R. Hassanein, "Implementation of a Hybrid Pitch-Excited/Multipulse Vo
coder for Cost-Effective Mobile Communications," Proceedings of Speech Technology 
85, April 1985. 

46) M. McMahan, "A Complete Speech Application Development Environment," Proceed
ings of SPEECH TECH 85, pages 293-295, April 1985. 

47) H. Hassanein and B. Bryden, "Implementation of the Gold-Rabiner Pitch Detector in 
a Real Time Environment Using an Improved Voicing Detector," Proceedings of IEEE 
International Conference on Acoustics, Speech and Signal Processing, USA, 1985. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 609 



610 

48) K. Lin and G. Frantz, "Speech Applications with a General Purpose Digital Signal Pro
cessor," IEEE Region 5 Conference Record, usA, March 1985. 

49) K. Lin and G. Frantz, "Speech Applications Created by a Microcomputer," IEEE Poten
tials, USA, December 1985. 

50) M. Malcangi, "Programmable VLSI's for Vocal Signals," Electronica Oggi, Italy, Num
ber 10, pages 103-113, October 1984. 

51) V. Kroneck, "Conversing with the Computer," Elektrotechnik, Germany, Volume 66, 
Number 20, pages 16-18, October 1984. 

52) P.K. Rajasekaran and G.R. Doddington, "Real-Time Factoring of the Linear Prediction 
Polynomial of Speech Signals," Digital Signal Processing -1984: Proceedings of the 
International Conference, pages 405-410, September 1984. 

53) M. Hutchins and L. Dusek, "Advanced ICs Spawn Practical Speech Recognition," Com
puter Design, USA, Volume 23, Number 5, pages 133-139, May 1984. 

54) E. Catier, "Listening Cards or Speech Recognition," Electronique Industrielle, France, 
Number 67, pages 72-76, March 1984. 

55) O. Ericsson, "Special Processor Did Not Meet Requirements - Built Own Synthesizer," 
ElteknikAktuell Elektronik, Sweden, Number 3, pages 32-36, February 1984. 

56) H. Strube, "Synthesis Part of a 'Log Area Ratio' Vocoder Implemented on a Signal-Pro
cessingMicrocomputer," IEEE Transactions on Acoustics; Speech and Signal Process
ing, USA, Volume ASSP-32, Number 1, pages 183-185, February 1984. 

57) B. Bryden and H. Hassanein, "Implementation of Full Duplex 2.4 Kbps LPC Vocoder 
on a Single TMS320 Microprocessor Chip," Proceedings of IEEE International Confer
ence on Acoustics, Speech and Signal Processing, USA, 1984. 

58) M. Dankberg, R. lItis, D. Saxton, and P. Wilson, "Implementation of the RELP Vocoder 
Using the TMS320," Proceedings of IEEE International Conference on Acoustics, 
Speech and Signal Processing, USA, 1984. 

59) A. Holck and W. Anderson, "A Single-Processor LPC Vocoder," Proceedings of IEEE 
International Conference on AcoustiCs, Speech and Signal Processing, USA, 1984. 

60) N. Morgan, "Talking Chips," McGraw-Hill, 1984. 
61) A. Kumarkanchan, "Microprocessors Provide Speech to Instruments," Journal ofInsti

tute of Electronic and TelecommunicationEngineers, India, Volume 29, Number 12, De
cember 1983. 

62) L. Dusek, T. Schalk, and M. McMahan, "Voice Recognition Joins Speech on Program
mable Board," Electronics, USA, Volume 56, Number 8, pages 128-132, April 1983. 

63) J .R. Lineback, "Voice Recognition Listens For Its Cue," Electronics, USA, Volume 56, 
Number 1, page 110, January 1983. 

64) D. Daly and L. Bergeron, CiA Programmable Voice Digitizer Using the TI TMS320 Mi
crocomputer," Proceedings of IEEE International Conference onAcoustics, Speech and 
Signal Processing, USA, 1983. 

65) W. Gass, "The TMS32010 Provides Speech I/O for the Personal Computer," Mini/Micro 
Northeast Electronics Show and Convention, USA, 1983. 

66) A. Holck, "Low-Cost Speech Processing with TMS32010," Midcon/83 Conference Re
cord, USA, 1983. 

Digital Signal Processing Applicalions with the TMS320 Family, Vol. 2 



67) H. Strube, R. Wilhelms, and P. Meyer, "Towards Quasiarticulatory Speech Synthesis in 
Real Time," Proceedings ofEUSIPCO-83 Second European Signal Processing Confer
ence, Netherlands, 1983. 

68) T. Schalk and M. McMahan, "Firmware-Programmable lAc Aid Speech Recognition," 
Electronic Design, Volume 30, Number 15, pages 143-147, July 1982. 

Control 
1) I. Ahmed, "16-Bit DSP Microcontroller Fits Motion Control System Application," 

PCIM, October 1988; 
2) D. Bursky, "Merged Resources Solve Control Headaches," Electronic Design, USA, pp 

157-159, October 1988. 
3) 1. Ahmed, "Implementation of Self Tuning Regulators with TMS320 Family of Digital 

Signal Processors," MOTORCON '88, pages 248-262, September 1988. 
4) D. Dunnion, M. Stropoli, "Design a Hard-Disk Controller with DSP Techniques," Elec

tronic Design, USA, pages 117-121, September 1988. 
5) R. van der Kruk, J. Scannell, "Motion Controller Employs DSP Technology," PCIM, 

September 1988. 
6) S.w. Yates, R.D. Williams, "A Fault Tolerant Multiprocessor Controller For Magnetic 

Bearings," IEEE Micro, USA, Volume 8, Number 4, page 6, August 1988. 
7) I. Garate, R.A Carrasco, AL. Bowden, "An Integrated Digital Controller For Brushless 

AC Motors Using a DSP Microprocessor," Third International Conference on Power 
Electronics and Variable-Speed Drive, Conference Publication 
Number 291, Conference Publication Number 291, pages 249-252, July 1988. 

8) J.M. Corliss, R. Neubert, "DSP Keeps Keep Disk Drive on Track," Computer Design, 
USA, pages 60-65, June 1988. 

9) Y. V. V.S. Murty, W.J. Smolinski, S. Sivakumar, "Design of a Digital Protection Scheme 
For PoWer Transformers Using Optimal State Observers," lEE Proc. C, Generation 
Transmission, Distribution, Great Britain, Volume 135, Number 3, pages 224--230, May 
1988. 

10) R.D. Jackson, D.S. Wijesundera, "Direct Digital Control ofInduction Motor Currents," 
lEE Colloquim on 'Microcomputer Instrumentation and Control Systems in Power 
Electronics, Great Britain, Digest Number 61,1/1-3, April 1988. 

11) A Lovrich, G. Troullinos, R. Chirayil, "An All Digital Automatic Gain Control," Pro
ceedings of ICASSP 88, USA, Volume D, page 1734, April 1988. 

12) K. Bala, "Running on Imbedded Power," Electronics Engineering Times, USA, March 
1988. 

13) I. Ahmed, S. Meshkat, "Using DSPs in Control," Control Engineering, February 1988. 
14) M. Babb (Editor), "Solving Control Problems With Specialized Processors," Control 

Engineering, February 1988. 
15) S. Meshkat, "High-Level Motion Control Programming Using DSPs," Control Engi

neering, February 1988. 
16) S. Meshkat, I. Ahmed, "Using DSPs in AC Induction Motor Drives," ControlEngineer

ing, February 1988. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 611 



612 

17) J. Tan, N. Kyriakopoulos, "Implemmention of a Tracking Kalman Filter on a Digital 
Signal Processor," IEEE Transactions oJIndustrialElectronics, USA, Volume 35, Num
ber 1, pages 126-134, February 1988. 

18) H. Hanselman, "LQG-Control of a Highly Resonant Disc Drive Head Positioning ACe 
tuator," IEEE Transactions on Industrial Electronics, USA, Volume 35, Number 1, 
pages 100-104, February 1988. 

19) 1. Ahmed, "DSP Architectures for Digital Control Systems," SATECH 1988,1988. 
20) S. Meskat, "Advanced Motion Control Systems," Intertec Communications - Ventura, 

CA.,1988. 
21) I. Ahmed, S. Lundquist, "DSPs Tame Adaptive Control," Machine Design, USA, Vol

ume 59, Number 28, pages 125-129, November 1987. 
22) B.K. Bose, P.M. Szczesny, "A Microcomputer-Based Control and Simulation of an Ad

vanced IPM Synchronous Machine Drive System For Electric Vehicle Propulsion," 
Proceedings of IECON '87, Volume 1, pages 454-463, November 1987. 

23) Y. Dote, M. Shinojima, R.G. Hoft, "Digital Signal Processor (DSP)-Based Novel Vari
able Structure Control For Robotic Manipulator," Proceedings of IECON '87, Volume 
1, pages 175-179, November 1987. 

24) J.P. Pratt, S. Gruber, "A Real-Time Digital Simulation of Synchronous Machines: Sta
bility Consiferations and Implementation," IEEE Transactions on Industrial Electron
ics, USA, Volume 1E-34, Number 4, pages 483-493, November 1987. 

25) I. Ahmed, "Deadbeat Controllers and Observers with the TMS320," MOTORCON '87, 
pages 22-33, September 1987. 

26) I. Ahmed, S. Lindquist, "Digital Signal Processors: Simplifying High-Performance 
Control," Machine Design, September 1987. 

27) R.D. Ciskowski, C.H. Liu, H.H. Ottesen, S.U .. Rahman, "System Identification: An Ex
perimental Verification," IBM Journal of Research Developments, Volume 31, Number 
5, pages 571-584, September 1987. 

28) J.A. Taufiq, RJ. Chance, CJ. Goodman, "On-Line Implementation of Optimised PWM 
Schemes For Traction Inverter Drives," International Conference of 'Electric Railway 
Systems For a New Century, Conference Publication Number 279, September 1987. 

29) Y. Dote, M. Shinojima, H. Yoshimura, "Microprocessor-Based Novel Variable Struc
ture Control For Robot Manipulator," Proceedings of the 10th. IFAC World Congress, 
July 1987. 

30) H. Hanselmann, A. Schwarte, "Generation of Fast Target Processor Code From High 
Level Controller Descriptions," Presented at 10th. IFAC World Congress, July 1987. 

31) E. Debourse, "Emergence ofDSPs in Machine-Tool Axes Control Systems: Application 
of Distributed Interpolation Concepts," Proceedings of the International Workshop on 
IndustrialAutomation, February 1987. 

32) C. Chen, "The Mathematical Model and Computer Simulation of an LCI Drive," Elec
trical Machinery Power Systems, USA, Volume 13, Number 3, pages 195-206, 1987. 

33) R.D. Ciskowski, C.H. Liu, H.H. Ottesen, S.U. Rahman, "System Identification: An Ex
perimental Verification," IBM Journal Research Development, USA, September 1987. 

34) H. Hanselmann, "Implementation of Digital Controllers - A Survey," Automatica, Vol
ume 23, Number 1, pages 7-32, 1987. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



35) H. Henrichfreise, W. Moritz, H. Siemensmeyer, "Control of a Light, Elastic Manipula
tion Device," Conference on Applied Motion Control, 1987. 

36) M.e. Stich, "Digital Servo Algorithm For Disk Actuator Control," Conference on 
Applied Motion Control, pages 35-41, 1987. 

37) T. Takeshita, K. Kameda, H. Ohashi, N. Matsui, "Digital Signal Processor Based High 
Speed Current Control of Brushless Motor," Electronic Engineering, Japan, USA, Vol
ume 106, Number 6, pages 42-49, November-December 1986. 

38) R. Lessmeier, W. Schumacher, W. Leonard, "Microprocessor-Controlled AC-Servo 
Drives With Synchronous or Induction Motors: Which is Preferable?," IEEE Transac
tions On Industry Applications, USA, September/October 1986. 

39) R. Alcantara, J. Prado, C Guegen, "Fixed-Point Implementation of the Fast Kalman Al
gorithm: Using the TMS32010 Microprocessor," Proceedings of EUSIPCO-86, Vol
ume 2, pages 1335-1338, September 1986. 

40) B. Nowrouzian, M.H. Hamza, "DC Motor Control Using a Switched-Capacitor Cir
cuit," Proceedings of the lASTED International Symposium on High Technology in the 
Power Industry, pages 352-356, August 1986. 

41) N. Matsui, T. Takeshita, "Digital Signal Processor-Based Controllers For Motors," 
SICE, July 1986. 

42) H. Hanselmann, "Using Digital Signal Processors For Control," Proceedings ofEICON, 
1986. 

43) H. Hanselman, W. Moritz, "High Banwidth Control of the Head Positioning Mechanism 
in a Winchester Disc Drive," Proceedings of IECON, pages 864-869, 1986. 

44) R. Cushman, "Easy-to-Use DSP Converter ICs Simplify Industrial-Control Tasks," 
Electronic Design, USA, Volume 29, Number 17, pages 218-228, August 1984. 

45) W. Loges, "Signal Processor as High-Speed Digital Controller," Elektronik Industrie, 
Germany, Volume 15, Number 5, pages 30-32,1984. 

46) W. Loges, "Higher-Order Control Systems with Signal ProcessorTMS320," Elektronik, 
Germany, Volume 32, Number 25, pages 53-55, December 1983. 

Military 
1) V. Lazzari, Quacchia, M. Sereno, E. Turco, "Implementation of a 16 Kbit/s Split 

Band-Adaptive Predictive Codec For Digital Mobile Radio Systems," CSELTTechnical 
Reports, Italy, Volume 16, Number 5, pages 443-447, August 1988. 

2) P. Papamichalis, J. Reimer, "Implementation ofthe Data Encryption Standard Using the 
TMS3201O," Digital Signal Processing Applications, 1986. 

Telecommunications 
1) S. Casale, R. Russo, G.e. Bellina, "Optimai Architectural Solution Using DSP Proces-

sors for the Implementation of an ADPCM Transcoder," Proceedings of GLOBECOM 
'89, pages 1267-1273, November 1989. 

2) A. Lovrich and J.B. Reimer, "A Multi-Rate Transcoder," Transactions on Consumer 
Electronics, USA, November 1989. 

3) J.L. Dixon, V.K. Varma, N.R. Sollenberger, D.W. Lin, "Single DSP Implementation of 
a 16 Kbps Sub-Band Speech Coder for Portable Communications," Proceedings of 
ICASSP 89, USA, pages 184-187, May 1989. 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 613 



614 Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



A 
AID converter 96 

ADADC84 97 
ADDACI00 102 

address 
bus 36 
decoding 67 
space 55 

addressing modes 40 

AGC 233, 254, 285, 393 

architecture 15 
TMS320C17/E17 193 
TMS320C25 33 
TMS320Cx 55 
Harvard 15 

Index 

asynchronous devices 169 

asynchronous/synchronous conversion 269 

automatic gain control (see AGC) 

auxiliary register file 35 

B 
baud alignment 262 

baud energy detector 394 

Bell 212A/Y.22 223, 333, 354 

benchmarks 27, 47 
block diagram 

TMS320C17 194 
TMS320C25 33 

c 
CCITT standards 334 

CEPT 432 

codec 
AID, D/A conversions 275 
DTMF application 430 
interface 

TMS320C17/E17 197 
TMS320C2x 92 
TMS370COI0 205 

TCM2916 479 
TCM2917 342,437,464 

control applications 27 

coprocessor port (TMS320CI7) 480 

crystal oscillator 89 

cycle, instruction 16 

D 
D/A converter 102 

data bus 36 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 615 



demodulator structure equations 278 

differential phase shift keying (see DPSK) 

DMA 24, 36, 43 

DPSK 226 

DSP characteristics 13,31 

DTMF 425 
history 427 
specification 440 
TMS320C17 use with 430 

dual-tone multifrequency (see DTMF) 

E 
external interfaces 24 

external memory 61 

F 
family, TMS320 processors 4, 13 

first generation (TMS320C1x) 17, 434 
second generation (TMS320C2x) 19 
third generation (TMS320C3x) 22 

filter 
adaptive 232 
antialiasing 104 
bandpass (tone receiver) 442 
bandpass, SCl1005 342 
FIR 13, 46, 246, 250, 444 
loop 265 
lowpass 104 
phase delay filter coefficients 363 
smoothing 102 
split band 397 

filtering 13, 26, 45, 102 

FIR filter 13, 46, 246,250, 444 

fractional number representation 405 

frame sync m~de bit 36 

FSK transmission 336 

FSMbit 36 

G 
graphics processing 27,47 

H 
hardware gain control 398 

Harvard architecture 15 

Hilbert transformers 283 

hold mode 159 

I 
ICC (see Supply Current) 

initialization of processor 112, 116, 120 

instruction cycle 16 

instruction set 25, 37 

instrumentation applications 27 

interrupt 113, 448-460 
RINT 117 
TMS320C17 119 

K 
knowledge-based systems 191 

L 
loopback test (UART) 181 

low-pass filter 104-105,231 

616 Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



M 
memory 

CY7C169-25 SRAM 76 
external, interface 61 
global 43 
interface 80 

MT5C6408-20 SRAM 86 
read timing 62, 72, 75, 78 
TBP30L165 62 
TMS27C292 68 
TMS27C64-15 85 
TMS27C64-20 74 
TMS310C17 interface 192 
TMS320C25 34, 
TMS320C25-50 
TMS370C010 EEPROM 191 
wait states 

selection 56, 85 
two 59,74 
zero 57,83 

write timing 62, 78 
WS57C64F-12 70 

memory map 
modem receiver tasks 266 
TMS320C25 34 

modem 
300 bps example 333 
analog front end 397 
automatic gain control 391 
carrier 235 
carrier recovery 257 
CCITT Standards 334 
demodulator 233 
encoder 230 
errors 273, 400 
FSK modulator 353 
FSK transmission 336 
functional blocks 224 
hardware 242 

hardware gain control 398 
Hilbert transformers 283 
implement using DSP 223 
receiver 231 
spectral response 335 
splitband 335 
status register use 349 
transmission 229, 391 

multiplier 16, 35 

N 
numeric processing 27 

p 

PAL 
20LB 437 
P16LB 217 

parallel instructions 41 

performance 15 

period register 36 

peripherals 24 
NO converter 96, 102 
combo-codec 92 
interface 92 

pipelining 15, 24 

power (envelope) detector 432,442 

powerdown mode 159 

Q 
quadrature amplitude modulation (QAM) 

391 

Digital Signal Processing Applications with the TMS320 Family, Vol. 2 617 



R 
read/write memory timings 79; 87 

Ready timing 56 

real time processing 13,31 

receive (UART) 175 

reference documents 8 

repeat counter 36 

RESET 87 

s 
sample rates 14 

scrambler 230 

security 476 

serial port 36 
AIC interface 115 
codec interface 92, 195 
TMS320C17 119,195 
TMS320C2x 92 

smoothing filter 102 

software development tools 26, 44 

split-band filtering 397 

SRAM 76,86 

start bit 170 

supply current (ICc) 
considerations 155 

inverter 155 
frequency correspondence 158, 160 
variation w/loading 159 
variation w/temperature 163 

synchronous/asynchronous conversion 269 

T 
time registers 36, 470 

timer 
interrupt rate 171 
register 36 
TMS320C2x 101 

TLC32040 (analog interface) 107 

TMS320C17 overview 196 

TMS320C25 overview 33 

TMS370COlO controller 191, 199 

TMS1742 microcomputer 242, 268 

tone (phone) detector 430 

transmit (UART) 173 

u 
DART 169, 339 

w 
wait states (see memory) 

618 Digital Signal Processing Applications with the TMS320 Family, Vol. 2 



Printed in U.S.A., March 1990 

~ 
TEXAS 

INSTRUMENTS 

SPRA016 


