
.TEXAS
INSTRUMENTS

TI486 Microprocessor

1993 PC Systems Logic
===========================

~p_ro_d_u_c_t_O_v_e_rv_ie_w _____________________ 1IDI
~P_ro_g_r_a_m_m_i_n_g_ln_t_e_rf_ac_e _________________ 1IDI
I~ _T_�4_86_S_L_C_'_E_B_U_s_�n_t_e_rfa_c_e ____________ ~1EI

I~ _T_14_86_D_L_C_'_E_B_U_s_ln_t_e_rf_ac_e ______________ 1EI
Electrical Specifications •
'----------

~M_e_c_ha_n_i_ca_I_S_p_e_c_if_ic_a_ti_o_ns _______________ 1ImI
~ln_s_tr_u_c_ti_on __ S_e_t ______________________ 1IiI

TI486
Microprocessor

Reference Guide

• TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders, that the
information being relied on is current.

TI warrants performance of its semiconductor products and related software to current
specifications in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices,
or systems. Use of TI product in such applications requires the written approval of the
appropriate TI officer. Certain applications using semiconductor devices may involve potential
risks of personal injury, property damage, or loss of life. In order to minimize these risks,
adequate design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards. Inclusion of TI products in such applications is understood to be
fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1993, Cyrix Corporation

About This Manual

Chapter 1

Chapter 2

Chapter 3

Preface

Read This First

This manual describes both the TI486SLC/E and TI486DLC/E product family.
Each chapter except for chapters 3 and 4 cover both the TI486SLC/E and
TI486DLC/E. Chapter 3 explicitly covers the TI486SLC/E and chapter 4
explicitly covers the TI486DLC/E. This document contains the following
chapters:

Product Overview

Chapter 1 introduces the features and itemizes the differences between the
TI486SLC/E and TI486DLC/E, both of which are offered in 3-volt versions
(TI486xLC/E-V) for battery-powered applications. A functional block diagram,
logic symbol, and 1/0 signal pins are provided for each of the two
microprocessors. Additional material describes selected system architectures
such as the execution pipeline, the on-chip cache memory, and the power
management techniques. The System Management Mode (SMM) permits the
TI486 microprocessors to respond to and service interrupts having a higher
priority than standard 486 processors.

Programming Interface

Chapter 2 describes the internal operations of the T1486, for both the
TI486SLC/E and TI486DLC/E, mainly from an application programmer's point
of view. Included in this chapter are descriptions of processor initialization, the
register set, memory addressing, various types of interrupts, and the
shutdown and halt process. Also included is an overview of real, virtual 8086,
and protected operating modes.

TI486SLC/E Bus Interface

Chapter 3 provides an overview of the TI486SLC/E processor signals,
functional description of all pins, functional timing and bus operations
(including non-pipelined and pipelined addressing), interfaces, and power
management.

v

About This Manual

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Appendix A

Appendix B

Appendix C

vi

TI486DLC/E Bus Interface

Chapter 4 provides an overview of the TI486DLC/E processor signals,
functional description of all pins, functional timing and bus operations
(including non-pipelined and pipelined addressing), interfaces, and power
management.

Electrical Specifications

Chapter 5 provides electrical specifications for both the TI486SLC/E and
TI486DLC/E, including specifications for the 3-volt versions. The
specifications include electrical connection requirements for all package types
and pins, maximum ratings, recommended operating conditions, dc electrical,
and ac characteristics.

Mechanical Specifications

Chapter 6 provides mechanical specifications for both the TI486SLC/E and
TI486DLC/E that include pin assignments, package physical dimensions, and
package thermal characteristics.

Instruction Set

Chapter 7 summarizes the TI486 instruction set and provides detailed
information of the instruction encodings. The instruction set is the same for all
TI486 processors. Instructions are listed in an instruction set summary table,
that also provides information on the flags affected and the instruction clock
counts for each instruction.

TI486 SMM Programmer's Guide

Appendix A provides detailed information, including examples pertinent to
programming the TI486 system management mode (SMM). Included are SMI
examples, testing/debugging SMM code, power management features,
loading SMM programs, detection of CPU type and presence of SMM-capable
devices, creating macros, and altering SMM code limits.

TI486 Cache Flush

Appendix B provides general cache invalidation techniques and discusses
invalidation in systems with and without secondary cache.

TI486 BIOS Modification Guide

Appendix C discusses some BIOS changes that may need to be considered
by the PC designer. The areas considered are power-on and hard reset,
protected-mode to real-mode switching, and soft reset. Examples of
assembler code for turning the cache on and off are provided.

Read This First

Appendix D

About This Manual

Ordering Information

Appendix D provides detailed ordering information showing what the
components of the part number mean, and a description of each
microprocessor offered. Versions offered include 5-volt and 3-volt versions,
each of which are rated to operate at different speeds. The TI486SLC/E
versions are packaged in the quad flat pack, and the TI486DLC/E versions are
packaged in the ceramic pin grid array package.

Style and Symbol Conventions

This document uses the following conventions.

o Program code listings and program code examples are shown in a
special typeface similar to a typewriter's.

Here is a sample assembler code program listing:

CLI
MOV
OR

EAX, CRO
EAX, 40000000h

set bit 30, turn off cache
for external cache coherency

o In the instruction syntax descriptions, the instruction is in a BOLD
TYPEFACE font and a description of the instruction is in Italic Typeface.
Here is an example of an instruction syntax and description:

RSM Resume from SMM Mode

o Square brackets ([and]) identify the location and sequence for specifying
register and/or memory options in the instruction opcodes. Here's an
example of an opcode that requires register and memory parameters:

Reference: Instruction ADD Integer Add (Register to Memory)

Opcode = 0 [OOOw] [mod reg rim]

vii

Trademarks

Information About Cautions and Warnings

Trademarks

viii

This book may contain cautions and warnings.

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

EPIC is a trademark of Texas Instruments Incorporated.

Read This First

Contents

1 Product Overview ... 1-3
1.1 Introduction. .. 1-4
1.2 Differences Between the TI486SLC/E and TI486DLC/E .. 1-5
1.3 TI486SLC/E Overview .. 1-6
1.4 TI486DLC/E Overview .. 1-9
1.5 Execution Pipeline .. , 1-12
1.6 On-Chip Cache ... , 1-12
1 .7 Power Management ... 1-13

1.7.1 Suspend Mode and Static Operation 1-13
1.7.2 3-V Operation .. , , 1-13

1.8 System Management Mode (SMM) .. 1-13

2 Programming Interface .. 2-3
2.1 Processor Initialization .. 2-4
2.2 Instruction Set Overview ... 2-7

2.2.1 Lock Prefix ... 2-8
2.3 Register Set ... 2-9

2.3.1 Application Register Set .. 2-9
2.3.2 System Register Set ... , 2-17

2.4 Address Spaces , , ... , " .. '" ., 2-37
2.4.1 1/0 Address Space ... 2-38
2.4.2 Memory Address Space .. 2-39

2.5 Interrupts and Exceptions .. , 2-45
2.5.1 Interrupts ... , 2-45
2.5.2 Exceptions ... , 2-46
2.5.3 Interrupt Vectors ... , 2-47
2.5.4 Interrupt and Exception Priorities 2-48
2.5.5 Exceptions in Real Mode .. 2-49
2.5.6 Error Codes ... 2-49

2.6 System Management Mode , ... , " , 2-51
2.6.1 Introduction .. 2-51
2.6.2 SMM Operations ... 2-52
2.6.3 SMM Memory Space Header .. 2-53
2.6.4 SMM Instructions .. 2-54
2.6.5 SMM Memory Space. .. 2-55
2.6.6 SMI Service Routine Execution '" '" 2-56

2.7 Shutdown and Halt .. 2-58
2.8 Protection ... , 2-58

2.8.2 1/0 Privilege Levels .. , 2-59
2.8.3 Privilege Level Transfers .. 2-59
2.8.4 Initialization and Transition to Protected Mode .. 2-60

ix

Contents

2.9 Virtual 8086 Mode ... 2-61
2.9.1 Memory Addressing .. 2-61
2.9.2 Protection. .. 2-61
2.9.3 Interrupt Handling .. 2-62
2.9.4 Entering and Leaving V86 Mode. .. 2-62

3 TI486SLC/E Bus Interface .. 3-3
3.1 Overview '. .. 3-4

3.1.1 Bus Cycle Definition .. 3-13
3.1 .2 Power Management .. 3-14

3.2 Functional Timing .. 3-16
3.2.1 Reset Timing and Internal Clock Synchronization 3-16
3.2.2 Bus Operation ... 3-17
3.2.3 Locked Bus Cycles ... 3-30
3.2.4 Interrupt Acknowledge (INTA) Cycles 3-30
3.2.5 Halt and Shutdown Cycles , " 3-32
3.2.6 Internal Cache Interface ... 3-34
3.2.7 Address Bit 20 Masking ... 3-36
3.2.8 Hold Acknowledge State .. 3-38
3.2.9 Coprocessor Interface ... 3-42
3.2.10 SMM Interface ... 3-42
3.2.11 Power Management .. 3-44
3.2.12 Float .. 3-47

4 TI486DLC/E Bus Interface .. 4-3
4.1 Overview. .. 4-4

4.1.1 Bus Cycle Definition .. 4-14
4.1.2 Power Management .. 4-15

4.2 Functional Timing .. 4-17
4.2.1 Reset Timing and Internal Clock Synchronization 4-17
4.2.2 Bus Operation ... 4-18
4.2.3 Bus Cycles Using BS16 ... 4-31
4.2.4 Locked Bus Cycles ... 4-34
4.2.5 Interrupt Acknowledge (INTA) Cycles 4-35
4.2.6 Halt and Shutdown Cycles , , " .. " 4-37
4.2.7 Internal Cache Interface .. , 4-40
4.2.8 Address Bit 20 Masking ... 4-43
4.2.9 Hold Acknowledge State .. 4-45
4.2.10 Coprocessor Interface. .. 4-49
4.2.11 SMM Interface ... 4-49
4.2.12 Power Management .. 4-51

5 Electrical Specifications .. 5-3
5.1 Electrical Connections .. 5-4

5.1.1 Power and Ground Connections and Decoupling 5-4
5.1 .2 Pullup/Pulldown Resistors .. 5-4
5.1.3 Unused Input Pins .. 5-5
5.1.4 NC Designated Pins ... 5-5

5.2 Absolute Maximum Ratings .. 5-6
5.3 Recommended Operating Conditions ... 5-7
5.4 DC Electrical Characteristics ... 5-8

x

Contents

5.5 AC Characteristics .. 5-10
5.5.1 Measurement Points for Switching Characteristics 5-10
5.5.2 CLK2 Timing Measurement Points , 5-12
5.5.3 RESET Setup and Hold Timing .. 5-17
5.504 TI486SLC/E and TI486SLC/E-V Switching Waveforms 5-17
5.5.5 TI486DLC/E Switching Waveforms 5-20

6 Mechanical Specifications ... 6-3
6.1 Pin Assignments. .. 6-4
6.2 Package Dimensions .. 6-9
6.3 Thermal Characteristics .. 6-11

7 Instruction Set .. 7-3
7.1 General Instruction Format ... 7-4
7.2 Instruction Fields ... 7-5

7.2.1 Prefixes ... ~ 7-5
7.2.2 Opcode Field ... 7-6
7.2.3 w Field , , 7-6
7.2.4 d Field ... 7-6
7.2.5 reg Field ... 7-7
7.2.6 mod and rIm Field ... 7-8
7.2.7 mod and base Fields .. 7-9
7.2.8 ss Field ... 7-10
7.2.9 index Field ... 7-10
7.2.10 sreg2 Field .. 7-10
7.2.11 sreg3 Field .. 7-11
7.2.12 eee Field ... , 7-11

7.3 Flags ... 7-12
704 Clock Count Summary ... 7-13

7.4.1 Assumptions ... 7-13
704.2 Abbreviations .. 7-13

A TI486 SMM Programmer's Guide .. A-1
A.1 SMM Overview .. A-2

A.1.1 Introduction 0 ••• A-2
A.1.2 SMM Implementation .. A-2

A.2 SMM Implementation ... A-3
A.2.1 Hardware Background ... A-3
A.2.2 SMM Software Considerations .. A-4

A.3 Enabling SMM ... A-8
Ao4 Instruction Summary .. A-9

Ao4.1 Restore Register and Descriptor . A-10
Ao4.2 Restore LDTR and Descriptor .. A-10
Ao4.3 Resume Normal Mode .. A-11
Ao404 Restore TSR and Descriptor ... A-12
Ao4.5 Save Register and Descriptor .. A-12
Ao4.6 Save LDTR and Descriptor .. A-13
Ao4.7 Save TS and Descriptor .. A-14

A.5 SMI Handler Example .. A-15

xi

Contents

A.6 Testing/Debugging SMM Code .. A-22
A.6.1 Software Only Debugging ... A-22

A.7 TI486 Power Management Features ... A-29
A.7.1 Reducing the Clock Frequency A-29
A. 7.2 Suspend Mode . A-29

A.8 Loading SMM Memory With an SMM Program from Main Memory A-30
A.9 Detection of TI486 CPU .. A-31
A.10 Detection of SMM Capable Version .. A-33
A.11 SMM Feature Comparison .. A-37
A.12 SMM Instruction Macros - SMIMAC.INC A-38
A.13 TI486DLC/E and SMM ... A-42
A.14 Format of Data Used by SVDC/RSDC Instructions A-43
A.15 Altering SMM Code Limits .. A-45
A.16 SMM Errata ... A-47

B TI486 Cache Flush ... B-1
B.1 General Cache Invalidation .. B-1

B.1.1 Cache Invalidation for Systems With No Secondary Cache or a
Parallel Secondary Cache .. 8-1

8.1 .2 Cache Invalidation for Systems With A Serial Secondary Cache 8-2

C TI486 BIOS Modification Guide ... C-1
C.1 Introduction " C-1

C.1.1 Power-On and Hard Reset .. C-1
C.1.2 Protected-Mode to Real-Mode Switching C-2
C.1.3 Soft ResetlCTRL-ALT-DEL ... C-2
C.1.4 Turning On and Off the Internal Cache C-2

o Ordering Information .. 0-1
D.1 Ordering Information .. D-1

D.1.1 Part Number Components .. D-1
D.1.2 Part Numbers for TI486 Processors Offered D-2

xii

1-1 TI486SLC/E Functional Block Diagram .. , 1-6
1-2 TI486SLC/E Logic Symbol ... 1-7
1-3 TI486SLC/E Input and Output Signals ... 1-8
1-4 TI486DLC/E Functional Block Diagram .. 1-9
1-5 TI486DLC/E Logic Symbol .. 1-10
1-6 TI486DLC/E Input and Output Signals .. 1-11
2-1 Application Register Set .. 2-10
2-2 General Purpose Registers. .. 2-12
2-3 Segment Selector .. 2-14
2-4 EFLAGS Register '" ... , , 2-15
2-5 System Register Set. .. 2-18
2-6 Control Registers .. 2-19
2-7 Descriptor Table Registers .. 2-21
2-8 Application and System Segment Descriptors .. 2-22
2-9 Gate Descriptor .. 2-24
2-10 Task Register .. 2-24
2-11 32-Bit Task State Segment (TSS) Table 2-25
2-12 16-Bit Task State Segment (TSS) Table ... 2-26
2-13 TI486SLC/E Address Region Registers (ARR1-ARR4) 2-28
2-14 TI486DLC/E Address Region Registers (ARR1-ARR4) 2-29
2-15 TI486SLC/E Debug Registers ... 2-31
2-16 TI486DLC/E Debug Registers ... 2-32
2-17 Test Registers ... 2-34
2-18 TI486SLC/E Memory and 1/0 Address Spaces .. 2-37
2-19 TI486DLC/E Memory and 1/0 Address Spaces .. 2-38
2-20 Offset Address Calculation .. 2-40
2-21 Real Mode Address Calculation .. 2-41
2-22 Protected Mode Address Calculation ... 2-41
2-23 Selector Mechanism .. 2-42
2-24 Paging Mechanism .. 2-43
2-25 Directory and Page Table Entry (DTE and PTE) Format 2-43
2-26 Error Code Format ... 2-50
2-27 TI486SLC/E Memory and 1/0 Address Spaces , , , 2-51
2-28 TI486DLC/E Memory and 1/0 Address Spaces .. 2-52
2-29 SMM Execution Flow Diagram ... 2-53
2-30 SMM Memory Space Header .. 2-54
2-31 SMM and Suspended Mode Flow Diagram 2-57
3-1 TI486SLC/E Functional Signal Groupings .. 3-4
3-2 Internal Processor Clock Synchronization 3-16
3-3 Bus Activity from RESET until First Code Fetch 3-17

xiii

Figures

3-4 Fastest Non-Pipelined Read Cycles .. 3-19
3-5 Various Non-Pipelined Bus Cycles (No Wait States) 3-20
3-6 Various Non-Pipelined Bus Cycles with Different Numbers of Wait States. 3-21
3-7 Non-Pipelined Bus States ... 3-22
3-8 Fastest Pipelined Read Cycles. .. 3-24
3-9 Various Pipelined Cycles (One Wait State) 3-26
3-10 Fastest Transition to Pipelined Address Following Idle Bus State 3-27
3-11 Transitioning to Pipelined Address During Burst of Bus Cycles 3-28
3-12 Complete Bus States ... 3-29
3-13 Interrupt Acknowledge Cycles ... 3-31
3-14 Non-Pipelined Halt Cycle .. 3-32
3-15 Pipelined Shutdown Cycle. .. 3-33
3-16 Non-Pipelined Cache Fills Using KEN (With Different Numbers of Wait States) 3-34
3-17 Pipelined Cache Fills Using KEN (With Different Numbers of Wait States) 3-35
3-18 Masking A20 Using A20M During Burst of Bus Cycles 3-37
3-19 Requesting Hold from Idle Bus State ... 3-39
3-20 Requesting Hold from Active Non-Pipelined Bus 3-40
3-21 Requesting Hold f,rom Active Pipelined Bus 3-41
3-22 SMI Timing .. 3-43
3-23 liD Trap Timing .. 3-43
3-24 SUSP Initiated Suspend Mode .. 3-44
3-25 Halt Initiated Suspend Mode , , 3-45
3-26 Stopping CLK2 During Suspend Mode .. 3-46
3-27 Entering and Exiting Float ... 3-47
4-1 TI486DLC/E Functional Signal Groupings ... " , .. " ., , 4-4
4-2 Internal Processor Clock Synchronization 4-17
4-3 Bus Activity from RESET until First Code Fetch 4-18
4-4 Fastest Non-Pipelined Read Cycles .. 4-20
4-5 Various Non-Pipelined Bus Cycles (No Wait States) 4-21
4-6 Various Non-Pipelined Bus Cycles with Different Numbers of Wait States. 4-22
4-7 Non-Pipelined Bus States " " , " ... '" ... , " 4-23
4-8 Fastest Pipelined Read Cycles. .. 4-25
4-9 Various Pipelined Cycles (One Wait State) 4-27
4-10 Fastest Transition to Pipelined Address Following Idle Bus State 4-28
4-11 Transitioning to Pipelined Address During Burst of Bus Cycles 4-29
4-12 Complete Bus States ... 4-30
4-13 Non-Pipelined Bus Cycles Using BS 16 .. 4-32
4-14 Pipelining and BS 16 .. 4-34
4-15 Interrupt Acknowledge Cycles ... 4-35
4-16 Non-Pipelined Halt Cycle. .. 4-37
4-17 Pipelined Shutdown Cycle .. 4-39
4-18 Non-Pipelined Cache Fills Using KEN .. 4-40
4-19 Non-Pipelined Cache Fills Using KEN and BS16 4-41
4-20 Pipelined Cache Fills Using KEN .. , 4-42
4-21 Masking A20 Using A20M During Burst of Bus Cycles 4-44
4-22 Requesting Hold from Idle Bus State ... 4-46
4-23 Requesting Hold from Active Non-Pipelined Bus 4-47
4-24 Requesting Hold from Active Pipelined Bus .. 4-48
4-25 SMI Timing .. 4-50
4-26 liD Trap Timing .. 4-50

xiv

Figures

4-27 SUSP Initiated Suspend Mode ... 4-51
4-28 Halt Initiated Suspend Mode ... 4-52
4-29 Stopping CLK2 During Suspend Mode 4-53
5-1 Internal Pullup/Pulidown-IV Characteristic .. 5-4
5-2 TI486SLC/E and TI486SLC/E-V Drive Level and Measurement Points for

Switching Characteristics ... 5-11
5-3 TI486DLC/E Drive Level and Measurement Points for Switching Characteristics 5-12
5-4 CLK2 Timing Measurement Points ... 5-12
5-5 RESET Setup and Hold Timing .. 5-17
5-6 TI486SLC/E and TI486SLC/E-V Input Signal Setup and Hold Timing 5-17
5-7 TI486SLC/E and TI486SLC/E-V Output Signal Valid Delay Timing 5-18
5-8 TI486SLC/E and TI486SLC/E-V Data Write Cycle Valid Delay Timing 5-18
5-9 TI486SLC/E and TI486SLC/E-V Data Write Cycle Hold Timing 5-18
5-10 TI486SLC/E and TI486SLC/E-V Output Signal Float Delay and

HLDA Valid Delay Timing ... 5-19
5-11 TI486DLC/E and TI486DLC/E-V Input Signal Setup and Hold Timing , 5-20
5-12 TI486DLC/E and TI486DLC/E-V Output Signal Valid Delay Timing 5-21
5-13 TI486DLC/E and TI486DLC/E-V Data Write Cycle Valid Delay Timing 5-21
5-14 TI486DLC/E and TI486DLC/E-V Data Write Cycle Hold Timing 5-21
5-15 TI486DLC/E Output Signal Float Delay and HLDA Valid Delay Timing. 5-22
6-1 TI486SLC/E and TI486SLC/E-V Pin Assignments , 6-4
6-2 TI486DLC/E and TI486DLC/E-V Package Pins (Bottom View) 6-6
6-3 TI486DLC/E and TI486DLC/E-V Package Pins (Top View) 6-7
6-4 100-Pin Plastic Bumpered QFP Package Dimensions

(TI486SLC/E and TI486SLC/E-V) ... 6-9
6-5 132-Pin PGA Package Dimensions (TI486DLC/E and TI486DLC/E-V) 6-10
7-1 General Instruction Format ... 7-4
A-1 SMM Memory Space Header .. A-5
B-1 FLUSH Logic B-1
B-2 FLUSH Logic .. B-2

xv

Tables

2-1 TI486SLC/E Initialized Register Contents .. 2-5
2-2 TI486DLC/E Initialized Register Contents .. 2-6
2-3 Segment Register Selection Rules ... 2-14
2-4 EFLAGS Definitions " " .. 2-16
2-5 CRO Bit Definitions ... 2-20
2-6 Segment Descriptor Bit Definitions ... 2-23
2-7 Gate Descriptor Bit Definitions ... 2-24
2-8 TI486SLC/E Configuration Control Registers 2-28
2-9 TI486DLC/E Configuration Control Registers 2-29
2-10 CCRO Bit Definitions , .. " " " '" .. 2-30
2-11 CCR1 Bit Definitions .. 2-30
2-12 ARR1-ARR4 Block Size Field ... 2-31
2-13 DR6 and DR7 Field Definitions. .. 2-32
2-14 TR6 and TR7 Bit Definitions ... 2-35
2-15 TR6 Attribute Bit Pairs .. 2-35
2-16 TR3-TR5 Bit Definitions .. 2-36
2-17 Memory Addressing Modes ... 2-40
2-18 Directory and Page Table Entry (DTE and PTE) Bit Definitions 2-44
2-19 Interrupt Vector Assignments '" '" 2-47
2-20 Interrupt and Exception Priorities ... '.' .. 2-49
2-21 Exception Changes in Real Mode '" 2-49
2-22 Error Code Bit Definitions ... 2-50
2-23 SMM Memory Space Header ... 2-54
2-24 SMM Instruction Set .. 2-55
2-25 Descriptor Types Used for Control Transfer. .. 2-60
3-1 TI486SLC/E Signal Summary .. 3-5
3-2 Terminal Functions .. 3-6
3-3 Signal States During RESET and Hold Acknowledge 3-12
3-4 Bus Cycle Types 3-13
3-5 Signal States During Suspend Mode. .. 3-15
4-1 TI486DLC/E Signal Summary. .. 4-5
4-2 Terminal Functions ... 4-6
4-3 Byte Enable Line Definitions .. 4-12
4-4 Write Duplication as a Function of BE3-BEO '" 4-12
4-5 Generating A 1-AO Using BE3-BEO .. 4-12
4-6 Signal States During RESET and Hold Acknowledge 4-13
4-7 Bus Cycle Types , .. 4-14
4-8 Signal States During Suspend Mode. .. 4-16
5-1 Pins Connected to Internal Pullup and Pulldown Resistors. .. 5-4
5-2 Pins Requiring External Pullup Resistors 5-5

xvi

Tables

5-3 Absolute Maximum Ratings Over Operating Free-Air Temperature Range
(Unless Otherwise Noted) .. 5-6

5-4 TI486 SLC/E Recommended Operating Conditions .. 5-7
5-5 TI486DLC/E Recommended Operating Conditions 5-7
5-6 TI486SLC/E DC Electrical Characteristics at Recommended Operating Conditions

(Typical values are at nominal Vee (5 V or 3.3 V) and TA = 25°C) 5-8
5-7 TI486DLC/E DC Electrical Characteristics at Recommended Operating Conditions

(Typical values are at nominal Vee (5 V or 3.3 V) and T A = 25°C) 5-9
5-8 Measurement Points for Switching Characteristics 5-10
5-9 AC Characteristics for TI486SLC/E-25 and TI486SLC/E-33,

Vee = 4.75 V to 5.25 V, Te = O°C to 100°C 5-13
5-10 AC Characteristics forTI486SLC/E-V25, Vee = 3 Vto 3.6 V, Te = O°C to 85°C 5-14
5-11 ACCharacteristics for TI486DLC/E-33 and TI486DLC/E-40

Vee = 4.75 V to 5.25 V, Te = O°C to 85°C ... , 5-15
5-12 AC Characteristics for TI486DLC/E-V25 and TI486DLC/E-V33

Vee = 3 V to 3.6 V, Te = O°C to 85°C 5-16
6-1 TI486SLC/E and TI486SLC/E-V Signal Names Sorted by Pin Number 6-5
6-2 TI486SLC/E and TI486SLC/E-V Pin Numbers Sorted by Signal Name 6-5
6-3 TI486DLC/Eand TI486DLC/E-V Signal Names Sorted by Pin Number 6-8
6-4 TI486DLC/E and TI486DLC/E-V Pin Numbers Sorted by Signal Name 6-8
6-5 Package Thermal Resistance and Airflow 6-11
7-1 Instruction Fields .. 7-5
7-2 Instruction Prefix Summary ... 7-6
7-3 w Field Encoding .. 7-6
7-4 d Field Encoding .. , 7-6
7-5 reg Field Encoding .. 7-7
7-6 mod rim Field Encoding .. 7-8
7-7 mod rim Field Encoding Dependent on w Field ... , " 7-9
7-8 mod base Field Encoding .. 7-9
7-9 ss Field Encoding " 7-10
7-10 index Field Encoding ... 7-10
7-11 sreg2 Field encoding ... 7-10
7-12 sreg3 Field Encoding ... 7-11
7-13 eee Field Encoding .. , 7-11
7-14 Flag Abbreviations ... 7 -12
7-15 Action of Instruction on Flag ... 7-12
7-16 Clock Count Abbreviations .. 7-13
7-17 Instructions, Opcodes, Flags, and Clock Summary 7-14
A-1 SMM Memory Space Header ... A-5

xvii

xviii

Product Overview

1-1

." ...
o
c.
c
n ...
o
<
CD ...
<
Cir
~

1-2

Features

Chapter 1

Product Overview

o Provides an immediate upgrade to 486-class performance for 386 footprints

• TI486SLC/E is up to 2.4 times faster than a 386SU386SX at same clock
frequency (Landmark 2.0 = 107 MHz, Norton SI 6.0 = 52 at 33 MHz)

• TI486DLC/E is up to 2 times faster than a 386DX at same clock frequency
(Landmark 2.0 = 130 MHz, Norton SI 6.0 =66, PM MIPS = 14 at 40 MHz)

o Advanced power management features for notebook, battery-powered, and
reduced-power desktop PC systems

• System Management Mode (SMM)

• High priority System Management Interrupt (SMI) with separate memory
address space

• Suspend mode (initiated by either hardware or software)

D 3 V versions available: TI486SLC/E-V and TI486DLC/E-V provide approximately
60 percent power savings

D 486 compatible instruction set

D 386SX pin-compatible (TI486SLC/E) and 386DX pin-compatible (TI486DLC/E)
versions)

D High-performance

• TI486SLC/E clock speeds of 25 MHz and 33 MHz at 5 V

• TI486SLC/E-V clock speed of 25 MHz at 3 V

• TI486DLC/E clock speeds of 33 MHz and 40 MHz at 5 V

• TI486DLC/E-V clock speeds of 25 MHz and 33 MHz at 3 V

DOn-chip 1 KByte instruction/data cache can be configured as either direct-mapped
or two-way set associative

D Fully static device permits clock stop state.

D Highly optimized variable length pipeline and on-chip 16-bit hardware multiplier

D Texas Instruments EPICTM submicron CMOS technology

D Available in two packages: a 100 pin plastic bumpered quad flat pack for
TI486SLC/E and TI486SLC/E-V and a 132 pin ceramic PGA for TI486DLC/E and
TI486DLC/E-V

EPIC is a trademark of Texas Instruments Incorporated.

1-3

Introduction

1.1 Introduction

1-4

The Texas Instruments TI486 microprocessor is an advanced x86-compatible
processor offering high performance and integrated power management on
a single chip.

The 486SLC/E is 486 instruction set compatible and is backward compatible
with the 386SX pinout. The TI486SLC/E provides up to 2.4 times the
performance of both the 386SL and 386SX at equal clock frequencies. The
TI486SLC/E is an ideal solution for battery-powered applications in that it
typically draws 0.4 mA supply current while the input clock is stopped in
suspend mode. The TI486SLC/E-V version of the TI486SLC/E offers
additional power savings because it operates on a 3-V as well as 5-V power
supply.

The Texas Instruments TI486DLC/E microprocessor is an advanced 32-bit
x86-compatible processor offering high performance and integrated power
management on a single chip. The CPU is 486 instruction set compatible and
is also compatible with the 386DX pinout. This CPU provides up to twice the
performance of the 386DX at equal clock frequencies. The TI486DLC/E is an
ideal solution for battery-powered applications in that it typically draws 0.4 mA
while the input clock is stopped in suspend mode. The TI486DLC/E-V version
of the TI486DLC/E offers additional power savings because it operates on a
3-V as well as 5-V power supply.

The TI486 supports 8-, 16-, and 32-bit data types and operates in real, virtual
8086, and protected modes. The TI486 microprocessor achieves high
performance through use of a highly optimized, variable-length pipeline
combined with a RISC-like single-cycle execution unit, an on-chip hardware
multiplier, and an integrated instruction and data cache.

Product Overview

Differences Between the TI486SLCIE and Tl486DLCIE

1.2 Differences Between the TI486SLC/E and TI486DLC/E

The TI486SLC/E and TI486DLC/E are the same except for the pin signals
routed and utilized on the processors. Thus, the bus interfaces are different
but the CPU core and cache/memory management are the same. The
TI486SLC/E has a physical address range of 16 MBytes and the TI486DLC/E
has a physical address range of 4 GBytes. Table 1-1 describes the signal
differences between the TI486SLC/E and TI486DLC/E.

Table 1-1. TI486SLCIEIDLCIE Signal Differences

DESCRIPTION TI486SLC/E TI486DLC/E

Oata bus
16-bits wide 32-bits wide
(015-00) (031-00)

Address bus A23-A1 A31-A2

Byte enables
2-byte enables used 4-byte enables used

(BHE, BLE) (BE3-BEO)

Float bus signal (FL T) supported not supported

Bus size 16 signal
not supported supported

(B816)

1-5

TI486SLCIE Overview

1.3 TI486SLC/E Overview

The TI486SLC/E microprocessor is implemented using Texas Instruments
EPIC submicron CMOS technology and is available in 25-MHz and 33-MHz
versions. Both the 5-V TI486SLC/E and 3-V TI486SLC/E-V versions are
packaged in a 100-pin bumpered quad flat pack (OFP).

Figure 1-1 is a functional block diagram of the TI486SLC/E. The TI4868LC/E
architecture results in up to 2.4 times the performance of conventional 386SX
notebook CPUs as listed below.

o Up to 2.4 times faster than 3868X at same frequency

o Landmark 2.0 = 107 MHz, Norton 81 6.0 = 52 at 33 MHz

Figure 1-1. TI486SLCIE Functional Block Diagram
,..----------------------, ._----------------,

I I

L

I
I
I
I
I
I
I
I
I
I

16-byte ... I Decoder ~ Instruction
Queue - I

I
I

Control Immediate I ,
" "

I 32

ROM I Internal
Address I Data Bus

Sequence - .. Microcode ROM I -
I
I

~~
Control Immediate I Memory

tl°ataBus
"

,
Execution Unit I Byte

Branch Control . I~ Muxes --Li~it Multj~lier 3-I~ut Shi!t Register I & 1/0 -
Unit Unit Ad er Unit File Regs

Un~ I
Execution Pipeline I --------- -------------~ ..

+
~

, ,.
Memory Prefetch 1 KByte

Management f--+ f---+ InstrlData ...
Unit - -Unit Cache

t ~~
Instruction

Address Bus
Cache and Memory

Management Data Address Bus

I I _I Core
CI~ SUSP 1

I Suspend - SUSPA L ...
Bus Mode

CLK2 ! Clock Control
~ !+- ... - I

I SMI! I SMM
..

I Control SMADS I-
I-I

I 1

I I
1 I Enhanced 386SX

Compatible 1
I Bus Interface 1
I 1
I D15-DO I

... I .. Data .. / ..
- I ~ Buffers - /16 1 I

I 1

I 1

I
I
1

I Control!
I Bus

Control - I-I
I I
I I

I I I I A23-A1 1
I .. .- Address BHE, BLEI ...

I .. Buffers !
I- 1 L ______________________________ L ________ J

TI486SLC/E Microprocessor

1-6 Product Overview

Tl486SLCIE Overview

Figure 1-2. TI486SLCIE Logic Symbol

CLK2

RESET

I

I

NM

INTR

SM

PEREQ

BUS

ERRO

Y

R

P

A

M

DO
•
•
•

o 15

......

cI>
MICROPROCESSOR

TI486SLC/E

2x Clock Input I Hold Request
~

Bus
Arbitration Hold Ack.

Reset

Non-Maskable Req. 1..--1 ... Bus Ready -.....-
Maskable Req. Interrupt

1..--1 Control Bus Next Address Req.-
~ ~ System Mgmt Int. Cycle

Address Strobe \1 " Control

~ ~ Float
SMM Address Strobe \1 t--..

~
Q Cache Enable Iiniernal

Cache
h ~ Cache Flush Interface

Data/Control \1
~ Extension Req.

Memory I/O \1 Bus
h ~ Extension Busy Coprocessor

Cycle Interface
Definition Write/Read \1

b ~ Extension Error
Bus Lock t--..

.b. Q Suspend Req., Power
t--.. I Byte High En. 'V

L Suspend Ack. Management Byte
Enables Byte Low En. \1 '"

'" ~ Address Bit 20 Mask

~ I

0 1

AddreS~\1 • •
\1< Data) I • • • •

15 23

tThis symbol is in accordance with ANSI/IEEE Std 91-1984.

H

H

OLD

LOA

R

N

A

EADY

A

OS

S MADS

Die

M/IO

wif:t
LOCK

A1
•
•
•

A23

1-7

TI486SLCIE Overview

The TI486SLC/E includes two power management signals (SUSP and
SUSPA), two cache interface signals (FLUSH and KEN), an A20 mask input
(A20M), and two SMM signals (SMADS and SMI) that are additions to the
386SX signal set. The complete list of TI486SLC/E signals is shown in
Figure 1-3.

Figure 1-3. TI486SLCIE Input and Output Signals

1-8

A20M ----. •

BUSY ----.

CLK2 ----.

ERROR ----.

FLT ----.

FLUSH ----. •

INTR ----.

HOLD ----.

KEN ----. •

NA ----.

NMI----'

PEREQ ----.

SDSP ----. •

READY ----.

RESET ----.

TI486SLC/E
Microprocessor

• Internal Cache Interface

• Power Management

• A20 Mask
• System Management Mode

•
•
•

A23-A1

ADS

BHE

BLE

D15-DO

Die
HLDA

LOCK

MilO

SOSPA

SMADS

8MI

W/R

Product Overview

Tl486DLCIE Overview

1.4 TI486DLC/E Overview

The TI486DLC/E microprocessor is implemented using Texas Instruments
EPIC submicron CMOS technology and is available in 33-MHz and 40-MHz
versions. Both the TI486DLC/E and the 3-V TI486DLC/E-V are offered in a
132-pin ceramic PGA package.

Figure 1-4 is a functional block diagram of the TI486DLC/E. The TI486DLC/E
typically benchmarks 1.5 to 2 times faster than a 386DX at the same clock
frequency as listed below.

o Landmark 2.0 = 130 MHz at 40 MHz
o Norton SI 6.0 = 66 at 40 MHz
o PM MIPS = 14 at 40 MHz

Figure 1-4. TI486DLCIE Functional Block Diagram

~----------------------1·----------------1
1 1

L

1
1
1
1
1
I

16-byte .. 1 Decoder ~ Instruction
Queue - I

1
1

Control Immediate 1

" "
, 1 32/

ROM 1 Internal
Address 1 Data Bus

Sequence .. Microcode ROM 1 - -
1

• 1
Control Immediate 1 Memory

(:DataSus , ,
Execution Unit

1 Byte
Branch Control . I~ Muxes ..

Lim,it Multi~lier 3-ln~ut Shi!t Register 1 and 1/0
Unit Unit Ad er Unit File Registers

Un~ 1
1 Execution Pipeline --------- ------------_

+
..

, ,
Memory 1 KByte Prefetch Management --. Unit --. InstrlData

Unit Cache

I t ~~
Instruction

Address Bus
Cache and Memory

Management Data Address Bus

1 I
Core

sUSP 1 CI?~ .-

1 Suspend - SUSPA I ..
Bus Mode

CLK2 I'" Clock Control
!.- ..
1

I

1 SMM - SMI I ..
I Control - SMADS I'" , ...
1
1 I
1 I
1 386DX Compatible I
1 Bus Interface
1 I
1 D31-DO I

... I Data .. / I ..
- I .. Buffers - /32 i 1

1 I
1 I
1 I
1 Control I
I Bus -- ..

Control - I'"
1 I
1
1 I

I 1
1 A31-A2 I
I ... BE3-BEO I Address
1--.. Buffers , ...
I- I

·1
1
1
1
I L ______________________________ L ________ J

TI486DLC/E Microprocessor

1-9

TI486DLCIE Overview

Figure 1-5. TI486DLCIE Logic Symbol

CLK2

RESET

NM I

INTR

SMI . ""

KEN ""
FLUSH ~

PEREQ

BUSY --""'-

ERROR '"

SUSP '"
SUSPA /"

A20M t>-

2x Clock Input

Reset

<I>
32-BIT MICROPROCESSOR

TI486DLC/E

B I Hold Request us
Arbitration Hold Ack.

....

Bus Size 16-1
Non-Maskable Req.

Interrupt Bus Ready-1
Maskable Req. Control Bus
~ System Mgmt Int . Cycle Next Address Req. 1/1

Control
Address Strobe v b..

~ Cache Enable I Internal SMM Address Strobe v r--,

Cache
~ Cache Flush Interface

Data/Control v

~ Extension Req. Bus Memory 1/0 v

~ Extension Busy Coprocessor Cycle
WritelRead v Interface Definition

~ Extension Error Bus Lock "'-

~ Suspend Req·1 Power
Byte Enable 3 v "-

Suspend Ack. Management Byte Byte Enable 2 v '"

Enables Byte Enable 1 v "'-

~ Address Bit 20 Mask Byte Enable 0 v "'-

HOLD

HLDA

BS16

READY

NA

ADS

SMADS

Die

MIlO

WiR

LOCK

BE3

BE2

BE1

BEO

~ I

DO-----I
•
•
•

D31---I

o
•
•
•

31

tThis symbol is in accordance with ANSI/IEEE Std 91-1984.

1-10

I Addres~v
2
•
•
•

31

1----A2

•
•
•

1---- A31

Product Overview

TI486DLCIE Overview

The TI486DLC/E includes two power management signals (SUSP and
SUSPA), two cache interface signals (FLUSH and KEN), an A20 mask input
(A20M), and two SMM signals (SMADS and SMI) that are additions to the
386DX signal set. The complete list of TI486DLC/E signals is shown in
Figure 1-6.

Figure 1-6. TI486DLCIE Input and Output Signals

A20M ---. •

BS16 ---.

BUSY ---.

CLK2 ---.

ERROR ---.

FLUSH ---. •

INTR ---.

HOLD ---.

KEN ---. •

NA ---.

NMI---'

PEREQ ---.

SIT§l5 ---. •

READY ---.

RESET---'

TI486DLC/E
Microprocessor

• Internal Cache Interface

• Power Management

A A20 Mask

• System Management Mode

•
•
•

A31-A2

ADS

BE3-BEO

031-00

DIG

HLDA

LOCK

MIlO

SDSPA

SMADS

SMI

WiR

1-11

Execution Pipeline / On-Chip Cache

1.5 Execution Pipeline

The TI486 execution path consists of five pipelined stages optimized for
minimal instruction cycle times. These five stages are:

o Code Fetch
o Instruction Decode
o Microcode ROM Access
o Execution
o Memory/Register File Write-Back

These stages have been designed with hardware interlocks that permit
successive instruction execution overlap.

the 16-byte instruction prefetch queue fetches code in advance and prepares
it for decode, helping to minimize overall execution time. The instruction
decoder then decodes four bytes of instructions per clock eliminating the need
for a queue of decoded instructions. Sequential instructions are decoded
quickly and provided to the microcode. Non-sequential operations do not have
to wait for a queue of decoded instructions to be flushed and refilled before
execution continues. As a result, both sequential and non-sequential
instruction execution times are minimized.

The execution stage takes advantage of a RISC-like single-cycle execution
unit and a 16-bit hardware multiplier. The write-back stage provides
single-cycle 32-bit access to the on-chip cache and posts all writes to the
cache and system bus using a two-deep write buffer. Posted writes allow the
execution unit to proceed with program execution while the bus interface unit
completes the write cycle.

1.6 On-Chip Cache

1-12

The TI486 on-chip cache maximizes overall performance by quickly supplying
instructions and data to the internal execution pipeline. An external memory
access takes a minimum of two clock cycles (zero wait states). For cache hits,
the TI486 eliminates these two clock cycles by overlapping cache accesses
with normal execution pipeline activity. Additional bus bandwidth is gained by
presenting instructions and data to the execution pipeline up to 32 bits at a time
compared to 16 bits per cycle for an external memory access.

The TI486 cache is a 1-KByte write-through unified instruction and data cache
and lines are allocated only during memory read cycles. The cache can be
configured as direct-mapped or as two-way set associative. The
direct-mapped organization is a single set of 256 four-byte lines. When
configured as two-way set associative, the cache organization consists of two
sets of 128 four-byte lines and uses a Least Recently Used (LRU) replacement
algorithm.

Product Overview

Power Management / System Management Mode (SMM)

1.7 Power Management

1.7.1 Suspend Mode and Static Operation

The TI486 power management features allow a dramatic reduction in current
consumption when the TI486 microprocessor is in suspend mode (typically
less than 3 percent of the operating current). Suspend mode is entered either
by a hardware or software initiated action. Using the hardware to initiate
suspend mode involves a two-pin handshake using the SUSP and SUSPA
signals.

The software initiates suspend mode through execution of the HALT
instruction. Once in suspend mode, the TI486 power consumption is further
reduced by stopping the external clock input. Since the TI486 is a static device,
no internal CPU data is lost when the clock input is stopped.

1.7.2 3-V Operation

The TI486SLC/E-V version of the TI486SLC/E operates from either a 3-V or
a 5-V supply. While operating with a 3-V supply, the power consumed by the
TI486SLC/E-V is typically only 30 percent of the power consumed while
operating at 5 V. The TI486SLC/E-V is available in 25-MHz speed.

The TI486DLC/E-V version of the TI486DLC/E operates from either a 3-V or
a 5-V supply. While operating with a 3-V supply, the power consumed by the
TI486DLC/E-V is typically only 30 percent of the power consumed while
operating at 5 V. The TI486DLC/E-V is available in both 25-MHz and 33-MHz
speeds.

1.8 System Management Mode (SMM)

System Management Mode (SMM) provides an additional interrupt and a
separate address space which can be used for system power management
or software transparent emulation of 1/0 peripherals. SMM is entered using the
System Management Interrupt (SMI) which has a higher priority than any other
interrupt. While running in protected SMM address space, the SMI interrupt
routine can execute without interfering with the operating system or
application programs.

After reception of an SMI, portions of the CPU state are automatically saved,
SMM is entered and program execution begins at the base of SMM address
space. The location and size of the SMM memory is programmable within the
T1486. Seven SMM instructions have been added to the 486 instruction set
that permit saving and restoring the total CPU state when in SMM mode.

1-13

1-14 Product Overview

Programming Interface

2-1

-a ... o
(Q ...
m
3
3 --

-:::s
CD
::1..
m
n
CD

2-2

Chapter 2

In this chapter, the internal operations of the TI486 are described mainly from
an application programmer's point of view. Included in this chapter are
descriptions of processor initialization, the register set, memory addressing,
various types of interrupts, and the shutdown and halt process. Also included
is an overview of real, virtual 8086, and protected operating modes.

Topic Page

2-3

Processor Initialization

2.1 Processor Initialization

2-4

The TI486 is initialized when the RESET signal is asserted. The processor is
placed in real mode and the registers listed in Table 2-1 and Table 2-2 are set
to their initialized values. RESET invalidates and disables the TI486 cache,
and turns off paging. When RESET is asserted, the TI486 terminates all local
bus activity and all internal execution. During the entire time that RESET is
asserted, the internal pipeline is flushed and no instruction execution or bus
activity occurs.

Approximately 350 to 450 CLK2 clock cycles (additional 220 + 60 if self-test is
requested) after de-assertion of RESET, the processor begins executing
instructions at the top of physical memory (address location FF FFFOh for the
SLC and FFFF FFFOh for the DLC). When the first intersegment JUMP or
CALL is executed, address lines A23-A20 for the SLC or A31-A20 for the
DLC are driven low for code segment-relative memory access cycles. While
these address lines are low, the TI486 executes instructions only in the lowest
1 MByte of physical address space until system-specific initialization occurs
via program execution.

Programming Interface

Processor Initialization

Table 2-1. TI486SLCIE Initialized Register Contents

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xx xxxxh 00 OOOOh indicates self-test
passed.

EBX Base xx xxxxh

ECX Count xx xxxxh

EDX Data xx 0400 + Revision ID Revision ID = 10h.

EBP Base pointer xx xxxxh

ESI Source index xx xxxxh

EDt Destination index xx xxxxh

ESP Stack pointer xx xxxxh

EFLAGS Flag word 000002h

EIP Instruction pointer 00 FFFOh

ES Extra segment OOOOh Base address set to 00 OOOOh.
Limit set to FFFFh.

CS Code segment FOOOh Base address set to 00 OOOOh.
Limit set to FFFFh.

SS Stack segment OOOOh

DS Data segment OOOOh Base address set to 00 OOOOh.
Limit set to FFFFh.

FS Extra segment OOOOh

GS Extra segment OOOOh

IDTR Interrupt Descriptor Table Register Base=O, Limit=3FFh

CRO Machine status word 600010h

CCRO Configuration Control 0 OOh

CCR1 Configuration Control 1 xx xxxO (binary)

ARR1 Address Region 1 OOOFh 4 GByte non-cacheable region.

ARR2 Address Region 2 OOOOh

ARR3 Address Region 3 OOOOh

ARR4 Address Region 4 OOOOh

DR? Debug register DR? OOOOOOh

Note: x = Undefined value

2-5

Processor Initialization

Table 2-2. TI486DLCIE Initialized Register Contents

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xxxx xxxxh 0000 OOOOh indicates self-test
passed.

EBX Base xxxx xxxxh

ECX Count xxxx xxxxh

EDX Data xxxx 0400 + Revision ID Revision ID = 10h.

EBP Base pointer xxxx xxxxh

ESI Source index xxxx xxxxh

EDI Destination index xxxx xxxxh

ESP Stack pointer xxxx xxxxh

EFLAGS Flag word 00000002h

EIP Instruction pOinter 0000 FFFOh

ES Extra segment OOOOh Base address set to 0000 OOOOh.
Limit set to FFFFh.

CS Code segment FOOOh Base address set to 0000 OOOOh.
Limit set to FFFFh.

SS Stack segment OOOOh

DS Data segment OOOOh Base address set to 0000 OOOOh.
Limit set to FFFFh.

FS Extra segment OOOOh

GS Extra segment OOOOh

IDTR Interrupt Descriptor Table Register Base=O, Limit=3FFh

CRO Machine status word 60000010h

CCRO Configuration Control 0 OOh

CCR1 Configuration Control 1 xxxx xxxO (binary)

ARR1 Address Region 1 OOOFh 4 GByte non-cacheable region.

ARR2 Address Region 2 OOOOh

ARR3 Address Region 3 OOOOh

ARR4 Address Region 4 OOOOh

DR7 Debug register DR7 OOOOOOOOh

Note: x = Undefined value

2-6 Programming Interface

Instruction Set Overview

2.2 Instruction Set Overview

The TI486 instruction set can be divided into eight types of operations:

• Arithmetic
• Bit manipulation
• Control transfer
• Data transfer
• High-level language support
• Operating system support
• Shift/rotate
• String manipulation

All TI486 instructions operate on as few as 0 operands and as many as
3 operands. A NOP instruction (no operation) is an example of a 0 operand
instruction. Two operand instructions allow the specification of an explicit
source and destination pair as part of the instruction. These two operand
instructions can be divided into eight groups according to operand types:

• Register to register
• Register to memory
• Memory to register
• Memory to memory
• Register to 1/0
• I/O to register
• Immediate data to register
• Immediate data to memory

An operand can be held in the instruction itself (as in the case of an immediate
operand), in a register, in an 1/0 port, or in memory. An immediate operand is
prefetched as part of the opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are supported. Operand lengths of 8 or
32 bits are generally used when executing code written for 386- or 486-class
(32-bit code) processors. Operand lengths of 8 or 16 bits are generally used
when executing existing 8086 or 80286 code (16-bit code). The default length
of an operand can be overridden by placing one or more instruction prefixes
in front of the opcode. For example, by using prefixes, a 32-bit operand can
be used with 16-bit code or a 16-bit operand can be used with 32-bit code.

Chapter 7 of this manual lists each instruction in the TI486 instruction set along
with the associated opcodes, execution clock counts, and effects on the
FLAGS register.

2-7

Instruction Set Overview

2.2.1 Lock Prefix

2-8

The LOCK prefix may be placed before certain instructions that read, modify,
then write back to memory. The prefix asserts the LOCK signal to indicate to
the external hardware that the CPU is in the process of running multiple
indivisible memory accesses. The LOCK prefix can be used with the following
instructions:

Bit Test Instructions (BTS, BTR, BTC)
Exchange Instructions (XADD, XCHG, CMPXCHG)
One-operand Arithmetic and Logical Instructions

(DEC, INC, NEG, NOT)
Two-operand Arithmetic and Logical Instructions

(ADC, ADD, AND, OR, SBB, SUB, XOR).

An invalid opcode exception is generated if the LOCK prefix is used with any
other instruction, or with the above instructions when no write operation to
memory occurs (Le., the destination is a register).

Programming Interface

2.3 Register Set

Register Set

There are 43 accessible registers in the TI486 and these registers are grouped
into two sets. The application register set contains the registers frequently
used by applications programmers, and the system register set contains the
registers typically reserved for use by operating systems programmers.

The application register set is made up of:

• Eight 32-bit general purpose registers
• Six 16-bit segment registers
• One 32-bit flag register
• One 32-bit instruction pointer register.

The system register set is made up of the remaining registers which include:

• Three 32-bit control registers
• Two 48-bit and two 16-bit system address registers
• Two 8-bit and four 16-bit configuration registers
• Six 32-bit debug registers
• Five 32-bit test registers.

Each of the registers is discussed in detail in the following sections.

2.3.1 Application Register Set

The application register set (Figure 2-1) consists of the registers most often
used by the applications programmer. These registers are generally
accessible and are not protected from read or write access.

The General Purpose Registers contents are frequently modified by assembly
language instructions and typically contain arithmetic and logical instruction
operands.

The Segment Registers contain segment selectors, which index into tables
located in memory. These tables hold the base address for each segment, as
well as other information related to memory addressing.

The Flag Register contains control bits used to reflect the status of previously
executed instructions. This register also contains control bits that affect the
operation of some instructions.

The Instruction Pointer is a 32-bit register that points to the next instruction that
the processor will execute. This register is automatically incremented by the
processor as execution progresses.

2-9

Register Set

Figure 2-1. Application Register Set

31 16 15 8 7 o

--AH ---4x----AL-- EAX

--SH ---1fX---- BL-- EBX

--CH----9-
X----a:-- ECX

- -OH - - - JtX- - - - OL --

SI

EOX General

ESI
Purpose
Registers

01 EOI

BP EBP

SP ESP

15 0

CS

SS

OS
Segment

ES Registers

FS

GS

31 16 15 0

IP I EIP } Instruction

FLAGS EFLAGS
Pointer and
Registers

2.3.1.1 General Purpose Registers

2-10

The general purpose registers are divided into four data, two pointer registers,
and two index registers as shown in Figure 2-2.

Data Registers

The data registers are used by the applications programmer to manipulate
data structures and to hold the results of logical and arithmetic operations.
Different portions of the general data registers can be addressed by using
different names. An "E" prefix identifies the complete 32-bit register. An "X"
suffix without the "E" prefix identifies the lower 16 bits of the register. The lower
two bytes of the register can be addressed with an "H" suffix to identify the
upper byte or an "L" suffix to identify the lower byte. When a source operand
value specified by an instruction is smaller than the specified destination
register, the upper bytes of the destination register are not affected when the
operand is written to the register.

Programming Interface

Pointer and Index Registers

The pointer and index registers are listed below:

SI or ESI
01 or EDI
BP or EBP
SP or ESP

Source index
Destination Index
Base pointer
Stack Pointer

Register Set

These registers can be addressed as 16- or 32-bit registers, with the "E" prefix
indicating 32 bits. These registers can be used as general purpose registers,
however, some instructions use a fixed assignment of these registers. For
example, the string operations always use ESI as the source pointer, EDI as
the destination pointer, and ECX as a counter. The instructions using fixed
registers include double-precision multiply and divide, I/O access, string
operations, translate, loop, variable shift and rotate, and stack operations.

The TI486 processor implements a stack using the ESP register. This stack
is accessed during the PUSH and POP instructions, procedure calls,
procedure returns, interrupts, exceptions, and interrupt/exception returns.
The microprocessor automatically adjusts the value of the ESP during
operation of these instructions. The EBP register may be used to reference
data passed on the stack during procedure calls. Local data may also be
placed on the stack and referenced relative to BP. This register provides a
mechanism to access stack data in high-level languages.

2-11

Register Set

Figure 2-2. General Purpose Registers

DATA REGISTERS

31 16 15 8 7 0

I I I A (Accumulator)

B (Base)

C (Count)

D (Data)

H L - -
\ (

V
_X

\~--------------~ V
(

E_X

POINTER and INDEX REGISTERS

BP (Base Pointer)

SI (Source-Index)

DI (Destination-Index)

SP (Stack-Pointer)

\~------~v~------~(

\~--------------~v~--------------~(

2-12 Programming Interface

Register Set

2.3.1.2 Segment Registers and Selectors

Segmentation provides a means of defining data structures inside the memory
space of the microprocessor. There are three basic types of segments: code,
data, and stack. Segments are used automatically by the processor to
determine the locations in memory of code, data, and stack references.

There are six 16-bit segment registers:

CS
OS
ES
SS
FS
GS

Code segment
Data segment
Extra segment
Stack segment
Additional data segment
Additional data segment

In real and virtual 8086 operating modes, a segment register holds a 16-bit
segment base. The 16-bit segment base is multiplied by 16 and a 16-bit or
32-bit offset is then added to it to create a linear address. The offset size is
dependent on the current address size. In real mode and in virtual 8086 mode
with paging disabled, the linear address is also the physical address. In virtual
8086 mode, with paging enabled, the linear address is translated to the
physical address using the current page tables.

In protected mode, a segment register holds a segment selector containing a
13-bit index, a table indicator (TI) bit, and a two-bit requested privilege level
(RPL) field as shown in Figure 2-3.

The Index points into a descriptor table in memory and selects one of 8192
(213) segment descriptors contained in the descriptor table. A segment
descriptor is an eight-byte value used to describe a memory segment by
defining the segment base, the segment limit, and access control information.
To address data within a segment, a 16-bit or 32-bit offset is added to the
segment's base address. Once a segment selector has been loaded into a
segment register, an instruction needs to specify the offset only.

The Table Indicator (TI) bit of the selector defines which descriptor table the
index points into. If TI=O, the index references the Global Descriptor Table
(GOT). If TI=1, the index references the Local Descriptor Table (LOT). The
GOT and LOT are described in more detail later in this chapter.

The Requested Privilege Level (RPL) field contains a 2-bit segment privilege
level (OO=most privileged, 11 =Ieast privileged). The RPL bits are used when
the segment register is loaded to determine the effective privilege level (EPL).
If the RPL bits indicate less privilege than the program, the RPL overrides the
current privilege level and the EPL is the lower privilege level. If the RPL bits
indicate more privilege than the program, the current privilege level overrides
the RPL and again the EPL is the lower privilege level.

2-13

Register Set

When a segment register is loaded with a segment selector, the segment
base, segment limit, and access rights are also loaded from the descriptor
table into a user-invisible or hidden portion ofthe segment register, i.e., cached
on-chip. The CPU does not access the descriptor table again until another
segment register load occurs. If the descriptor tables are modified in memory,
the segment registers must be reloaded with the new selector values.

The processor automatically selects a default segment register for memory
references. Table 2-3 describes the selection rules. In general, data
references use the selector contained in the OS register, stack references use
the SS register, and instruction fetches use the CS register. While some of
these selections may be overridden, instruction fetches, stack operations, and
the destination write of string operations cannot be overridden. Special
segment override prefixes allow the use of alternate segment registers
including the use of the ES, FS, and GS segment registers.

Figure 2-3. Segment Selector

15 3 2 o

INDEX RPL

TI = Table Indicator

RPL = Requested Privilege Level

Table 2-3. Segment Register Selection Rules

TYPE OF MEMORY REFERENCE
IMPLIED (DEFAULT) SEGMENT OVERRIDE

SEGMENT PREFIX

Code fetch CS None

Destination of PUSH, PUSHF, INT, CALL, PUSHA instructions SS None

Source of POP, POPA, POPF, IRET, RET instructions SS None

Destination of STOS, MOVS, REP STOS, REP MOVS instructions ES None

Other data references with effective address using base registers of:
EAX, EBX, ECX, EDX, ESI, EDI DS CS, ES, FS, GS, SS
EBP, ESP SS CS, OS, ES, FS, GS

2-14 Programming Interface

Register Set

2.3.1.3 Instruction Pointer Register

The Instruction Pointer (EIP) register contains the offset into the current code
segment of the next instruction to be executed. The register is normally
incremented with each instruction execution unless implicitly modified through
an interrupt, exception, or an instruction that changes the sequential execution
flow (e.g., jump, call).

2.3.1.4 Flags Register

The Flags Register, EFLAGS, contains status information and controls certain
operations on the TI486 microprocessor. The lower 16 bits of this register are
referred to as the FLAGS register that is used when executing 8086 or 80286
code. The flag bits are shown in Figure 2-4 and defined in Table 2-4.

Figure 2-4. EFLAGS Register

FLAGS
I~ ______________ ~A~ ______________ ~\

1 3
1

2 2
4 3

1111111
8765432 o 9 8 7 654 3 2 1 0

I I
0 000 0 0 0 o 0 o 0 0 0

A V R 0 N 10 0 D I
C M F T PL F F F

I

ALIGNMENT CHECK -- S ~
VIRTUAL 8086 MODE -- S

RESUME FLAG -- D
NESTED TASK FLAG -- S

I/O PRIVILEGE LEVEL -- S
OVERFLOW -- A

DIRECTION FLAG -- C
INTERRUPT ENABLE -- S

TRAP FLAG -- D
SIGN FLAG -- A

ZERO FLAG -- A
AUXILIARY CARRY -- S

PARITY FLAG -- A
CARRY FLAG -- A

A = Arithmetic Flag, D = Debug Flag, S = System Flag, C = Control Flag
o or 1 Indicates Reserved

T S Z
0

A
0

P
1

C
F F F F F F

2-15

Register Set

Table 2-4. EFLAGS Definitions

BIT
NAME FUNCTION

POSITION

0 CF Carry Flag. Set when a carry out of (addition) or borrow into (subtraction) the most significant
bit of the result occurs; cleared otherwise.

2 PF Parity Flag. Set when the low-order 8 bits of the result contain an even number of ones; cleared
otherwise.

4 AF Auxiliary Carry Flag. Set when a carry out of (addition) or borrow into (subtraction) bit position
3 of the result occurs; cleared otherwise.

6 ZF Zero Flag. Set if result is zero; cleared otherwise.

7 SF Sign Flag. Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

8 TF Trap Enable Flag. Once set, a single-step interrupt occurs after the next instruction completes
execution. TF is cleared by the single-step interrupt.

9 IF Interrupt Enable Flag. When set, maskable interrupts (lNTR input pin) are acknowledged and
serviced by the CPU.

10 DF Direction Flag. When cleared, DF causes string instructions to auto-increment (default) the
appropriate index registers (ESI and/or EDI). Setting DF causes auto-decrement of the index
registers to occur.

11 OF Overflow Flag. Set if the operation resulted in a carry or borrow into the sign bit of the result
but did not result in a carry or borrow out of the high-order bit. Also set if the operation resulted
in a carry or borrow out of the high-order bit but did not result in a carry or borrow into the sign
bit of the result.

12, 13 10PL I/O Privilege Level. While executing in protected mode, 10PL indicates the maximum current
privilege level (CPL) permitted to execute I/O instructions without generating an exception 13
fault or consulting the I/O permission bit map. 10PL also indicates the maximum CPL allowing
alteration of the IF bit when new values are popped into the EFLAGS register.

14 NT Nested Task. While executing in protected mode, NT indicates that the execution ofthe current
task is nested within another task.

16 RF Resume Flag. Used in conjunction with debug register breakpoints. RF is checked at
instruction boundaries before breakpoint exception processing. If set, any debug fault is
ignored on the next instruction.

17 VM Virtual 8086 Mode. If set while in protected mode, the microprocessor switches to virtual 8086
operation handling segment loads as the 8086 does, but generating exception 13 faults on
privileged opcodes. The VM bit can be set by the I RET instruction (if current privilege level=O)
or by task switches at any privilege level.

18 AC Alignment Check Enable. In conjunction with the AM flag in CRO, the AC flag determines
whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults are
enabled.

2-16 Programming Interface

Register Set

2.3.2 System Register Set

The system register set (Figure 2-5) consists of registers not generally used
by application programmers. These registers are typically used by system
level programmers who generate operating systems and memory
management programs.

The Control Registers control certain aspects of the TI486 microprocessor
such as paging, coprocessor functions, and segment protection. When a
paging exception occurs while paging is enabled, the control registers retain
the linear address of the access that caused the exception.

The Descriptor Table Registers and the Task Register can also be referred to
as system address or memory management registers. These registers consist
of two 48-bit and two 16-bit registers. These registers specify the location of
the data structures that control the segmentation used by the TI486
microprocessor. Segmentation is one available method of memory
management.

The Configuration Registers are used to control the TI486 on-chip cache
operation, power management features, and System Management Mode. The
cache, power management, and SMM features can be enabled or disabled by
writing to these registers. Non-cacheable areas of physical memory are also
defined through the use of these registers.

The Debug Registers provide debugging facilities for the TI486
microprocessor and enable the use of data access breakpoints and code
execution breakpoints.

The Test Registers provide a mechanism to test the contents of both the
on-chip 1-KByte cache and the translation lookaside buffer (TLB). The TLB is
used as a cache for translating linear addresses to physical addresses when
paging is enabled. In the following sections, the system register set is
described in greater detail.

2-17

Register Set

Figure 2-5. System Register Set

31 16 15

I
Page Fault Linear Address Register

47

Base

Base

31

31

CCRO = Configuration Control 0
CCR1 = Configuration Control 1

2-18

Page Directory Base Register

16 15

Limit

Limit

Selector

Selector

7

CCRO

15 CCR1

Address Region 1

Address Region 2

Address Region 3

Address Region 4

Linear Breakpoint Address 0

Linear Breakpoint Address 1

Linear Breakpoint Address 2

Linear Breakpoint Address 3

Breakpoint Status

Breakpoint Control

Cache Test

Cache Test

Cache Test

TLB Test Control

TLB Test Status

0

0

o

o

0

CRO

CR2

CR3

GDTR

IDTR

LDTR

TR

CCRO

CCR1

ARR1

ARR2

ARR3

ARR4

ORO

DR1

DR2

DR3

DR6

DR7

TR3

TR4

TR5

TR6

TR7

}

Control
Registers

} Descriptor Table
Registers

Task Register

Configuration
Registers

Debug
Registers

Test
Registers

Programming Interface

Register Set

2.3.2.1 Control Registers

The control registers (CRO, CR2, and CR3) are shown in Figure 2-6. The CRO
register contains system control flags which control operating modes and
indicate the general state of the CPU. The lower 16 bits of CRO are referred
to as the Machine Status Word (MSW). The CRO bit definitions are described
in Table 2-5. The reserved bits in the CRO should not be modified.

When paging is enabled and a page fault is generated, the CR2 register retains
the 32-bit linear address of the address that caused the fault. CR3 contains the
20-bit base address of the page directory. The page directory must always be
aligned to a 4-KByte page boundary, therefore, the lower 12 bits of CR3 are
reserved.

When operating in protected mode, any program can read the control
registers. However, only privilege level 0 (most privileged) programs can
modify the contents of these registers.

Figure 2-6. Control Registers

31 12 11 0

PAGE DIRECTORY BASE REGISTER (PDBR) CR3

PAGE FAULT LINEAR ADDRESS CR2

P C 0 0 T E M P CRO
G D S M P E

3 3 2 1 1 5 4 3 2 0
1 0 9 8 6

\ /
V

= RESERVED
MSW

2-19

Register Set

Table 2-5. eRO Bit Definitions

BIT
NAME FUNCTION POSITION

0 PE Protected Mode Enable. Enables the segment based protection mechanism. If PE=1,
protected mode is enabled. If PE=O, the CPU operates in real mode, with segment based
protection disabled, and addresses are formed as in an 8086-class CPU.

1 MP Monitor Processor Extension. If MP=1 and TS=1, a WAIT instruction causes fault 7. The TS
bit is set to 1 on task switches by the CPU. Floating-point instructions are not affected by the
state of the MP bit. The MP bit should be set to one during normal operations.

2 EM Emulate Processor Extension. If EM=1, all floating-point instructions cause a fault 7.

3 TS Task Switched. Set whenever a task switch operation is performed. Execution of a
floating-point instruction with TS=1 causes a device not available (DNA) fault. If MP=1 and
TS=1, a WAIT instruction also causes a DNA fault.

4 1 Reserved. Do not attempt to modify.

5 0 Reserved. Do not attempt to modify.

16 WP Write Protect. Protects read-only pages from supervisor write access. The 386-type CPU
allows a read-only page to be written from privilege level 0-2. The TI486 CPU is compatible
with the 386-type CPU when WP=O. WP=1 forces a fault on a write to a read-only page from
any privilege level.

18 AM Alignment Check Mask. If AMc:1 , the AC bit in the EFLAGS register is unmasked and allowed
to enable alignment check faults. Setting AM=O prevents AC faults from occurring.

29 0 Reserved. Do not attempt to mOdify.

30 CD Cache Disable. If CD=1, no further cache fills occur. However, data already present in the
cache continues to be used if the requested address hits in the cache. The cache must also
be invalidated to completely disable any cache activity.

31 PG Paging Enable Bit. If PG=1 and protected mode is enabled (PE=1), paging is enabled.

2-20 Programming Interface

2.3.2.2 Descriptor Table Registers and Descriptors

Descriptor Table Registers

Register Set

The Global, Interrupt, and Local Descriptor Table Registers (GDTR, IDTR and
LDTR), shown in Figure 2-7, are used to specify the location of the data
structures that control segmented memory management. The GDTR, IDTR,
and LDTR are loaded using the LGDT, LlDT, and LLDT instructions,
respectively. The values of these registers are stored using the corresponding
store instructions. The GDTR and IDTR load instructions are privileged
instructions when operating in protected mode. The LDTR can only be
accessed in protected mode.

The Global Descriptor Table Register (GDTR) holds a 32-bit base address and
16-bit limit for the Global Descriptor Table (GDT). The GDT is an array of up
to 8192 8-byte descriptors. When a segment register is loaded from memory,
the TI bit in the segment selector chooses either the G DT or the local descriptor
table (LDT) to locate a descriptor. If TI = 0, the index portion of the selector is
used to locate a given descriptor within the GDT table. The contents of the
GDTR are completely visible to the programmer. The first descriptor in the
GDT (location 0) is not used by the CPU and is referred to as the "null
descriptor". If the GDTR is loaded while operating in 16-bit operand mode, the
TI486 accesses a 32-bit base value but the upper 8 bits are ignored, resulting
in a 24-bit base address.

The Interrupt Descriptor Table Register (IDTR) holds a 32-bit base address
and 16-bit limit for the Interrupt Descriptor Table (IDT). The IDT is an array of
256 8-byte interrupt descriptors, each of which is used to pOint to an interrupt
service routine. Every interrupt that may occur in the system must have an
associated entry in the IDT. The contents of the IDTR are completely visible
to the programmer.

Figure 2-7. Descriptor Table Registers

48

BASE ADDRESS

BASE ADDRESS

16 15

LIMIT

LIMIT

SELECTOR

o

GDTR

IDTR

LDTR

The Local Descriptor Table Register (LDTR) holds a 16-bit selector for the
Local Descriptor Table (LDT). The LDT is an array of up to 8192 8-byte
descriptors. When the LDTR is loaded, the LDTR selector indexes an LDT
descriptor that must reside in the global descriptor table (GDT). The contents
of the selected descriptor are cached on-chip in the hidden portion of the
LDTR. The CPU does not access the GDT again until the LDTR is reloaded.
If the LDT description is modified in memory in the GDT, the LDTR must be
reloaded to update the hidden portion of the LDTR.

2-21

Register Set

When a segment register is loaded from memory, the TI bit in the segment
selector chooses either the GOT or the LOT to locate a segment descriptor.
If TI=1, the index portion of the selector is used to locate a given descriptor
within the LOT. Each task in the system may be given its own LOT, managed
by the operating system. The LOTs provide a method of isolating a given task's
segments from other tasks in the system.

Descriptors

There are three types of descriptors.

• Application Segment Descriptors that define code, data, and stack
segments

• System Segment Descriptors that define an LOT segment or a TSS
• Gate Descriptors that define task gates, interrupt gates, trap gates,

and call gates.

Application Segment Descriptors can be located in either the LOT or GOT.
System Segment Descriptors can only be located in the GOT. Dependent on
the gate type, gate descriptors may be located in either the GOT, LOT or lOT.
Figure 2-8 illustrates the descriptor format for both Application Segment
Descriptors and System Segment Descriptors and Table 2-6 lists the
corresponding bit definitions.

Figure 2-8. Application and System Segment Descriptors

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 o
A

BASE 31-24 G 0 0 V LIMIT 19-16 P DPL 0 TYPE BASE 23-16
L T

+4

BASE 15-0 LIMIT 15-0 +0

2-22 Programming Interface

Register Set

Table 2-6. Segment Descriptor Bit Definitions

BIT MEMORY
POSITION OFFSET

31-24 +4
7-0 +4

31-16 +0

19-16 +4
15-0 +0

23 +4

22 +4

20 +4

15 +4

14-13 +4

12 +4

11-8 +4

11

10

9

8

NAME DESCRIPTION

BASE Segment base address.
32-bit linear address that points to the beginning of the segment.

LIMIT Segment limit. In real mode, segment limit is always 64 KBytes
(OFFFFh)

G Limit granularity bit:
O=byte granularity, 1=4 KBytes (page) granularity.

D Default length for operands and effective addresses.
Valid for code and stack segments only: 0=16 bit, 1=32-bit.

AVL Segment available.

P Segment present.

DPL Descriptor privilege level.

DT Descriptor type:
O=system, 1 =application

TYPE Segment type.
System descriptor (DT =0):

001 O=LDT descriptor
1001 = TSS descriptor, task not busy
1011 = TSS descriptor, task busy

E Application descriptor (DT =1):
O=data, 1 =executable

C/D IfE=O:
O=expand up, limit is upper bound of segment.
1 =expand down, limit is lower bound of segment

If E=1:
O=non-conforming
1=conforming (runs at privilege level of calling procedure)

R/W IfE=O:
O=non-readable
1=readable

If E=1:
O=non-writable
1=writable

A 0=notaccessed,1=accessed

Gate Descriptors provide protection for executable segments operating at
different privilege levels. Figure 2-9 illustrates the format for Gate Descriptors
and Table 2-7 lists the corresponding bit definitions.

Task Gate descriptors are used to switch the CPU's context during a task
switch. The selector portion of the Task Gate descriptor locates a Task State
Segment. Task Gate descriptors can be located in the GDT, LDT or IDT.

Interrupt Gate descriptors are used to enter a hardware interrupt service
routine. Trap Gate descriptors are used to enter exceptions or software
interrupt service routines. Trap Gate and Interrupt Gate descriptors can be
located only in the IDT.

2-23

Register Set

Call Gate descriptors are used to enter a procedure (subroutine) that executes
at the same or a more privileged level. A Call Gate descriptor primarily defines
the procedure entry point and the procedure's privilege level.

Figure 2-9. Gate Descriptor

31 16 15 14 13 12 11 8 7 o

OFFSET 31-16 P DPL 0 TYPE 0 0 0 PARAMETERS +4

SELECTOR 15-0 OFFSET 15-0 +0

Table 2-7. Gate Descriptor Bit Definitions

BIT MEMORY
NAME DESCRIPTION POSITION OFFSET

31-16 +4 OFFSET Offset used during a call gate to calculate the branch target.
15-0 +0

31-16 +0 SELECTOR Segment selector used during a call gate to calculate the branch target.

15 +4 P Segment present

14-13 +4 DPL Descriptor privilege level

11-8 +4 TYPE Segment type:
0100=16-bit call gate
0101 =tack gate
0110=16-bit interrupt gate
0111 =16-bit trap gate
11 00=32-bit call gate
1110=32-bit interrupt gate
1111 =32-bit trap gate

4-0 +4 Parameters Number of 32-bit parameters to copy from the caller's stack to the called
procedure's stack.

2.3.2.3 Task Register

The Task Register (TR) holds a 16-bit selector for the current Task State
Segment (TSS) table as shown in Figure 2-10. The TR is loaded and stored
via the L TR and STR instructions, respectively. The TR can be accessed only
during protected mode and can be loaded only when the privilege level is 0
(most privileged).

Figure 2-10. Task Register

2-24

15 o

SELECTOR

When the TR is loaded, the TR selector field indexes a TSS descriptor that
must reside in the global descriptor table (GDT). The contents of the selected
descriptor are cached on-chip in the hidden portion of the TR.

Programming Interface

Register Set

During task switching, the processor saves the current CPU state in the TSS
before starting a new task. The TR points to the current TSS. The TSS can be
either a 286-type 16-bit TSS or a 386/486-type 32-bit TSS as shown in
Figure 2-11 and Figure 2-12. An I/O permission bit map is referenced in the
32-bit TSS by the I/O Map Base Address.

Figure 2-11. 32-8it Task State Segment (TSS) Table

31

I/O MAP BASE ADDRESS

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0= RESERVED

16 15

o 0 000000000000

0 0 0 SELECTOR FOR TASK'S LDT

0 0 0 GS

0 0 0 FS

0 0 0 DS

0 0 0 SS

0 0 0 CS

0 0 0 ES

EDI

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

EIP

CR3

o 0 0 SS for CPL = 2

ESP for CPL = 2

000 SS for CPL = 1

ESP for CPL = 1

000 SS for CPL = 0

ESP for CPL = 0

000 BACK LINK (OLD TSS SELECTOR)

o
OIT +64h

+60h

+5Ch

+58h

+54h

+50h

+4Ch

+48h

+44h

+40h

+3Ch

+38h

+34h

+30h

+2Ch

+28h

+24h

+20h

+1Ch

+18h

+14h

+10h

+Ch

+8h

+4h

+Oh

2-25

Register Set

Figure 2-12. 16-Bit Task State Segment (TSS) Table

SELECTOR FOR TASK'S LOT +2Ah

OS +28h

SS +26h

CS +24h

ES +22h

01 +20h

SI +1Eh

BP +1Ch

SP +1Ah

BX +18h

OX +16h

CX +14h

AX +12h

FLAGS +10h

IP +Eh

SP FOR PRIVILEGE LEVEL 2 +Ch

SS FOR PRIVILEGE LEVEL 2 +Ah

SP FOR PRIVILEGE LEVEL 1 +8h

SS FOR PRIVILEGE LEVEL 1 +6h

SP FOR PRIVILEGE LEVEL 0 +4h

SS FOR PRIVILEGE LEVEL 0 +2h

BACK LINK (OLO TSS SELECTOR) +Oh

2.3.2.4 Configuration Registers

2-26

The TI486 contains six registers that do not exist on other 80x86
microprocessors. These registers include two Configuration Control Registers
(CCRO and CCR1) and four Address Region Registers (ARR1 through ARR4)
as listed in Table 2-8 and Table 2-9. The CCR and ARR registers exist in I/O
memory space and are selected by a "register index" number via I/O port 22h.
I/O port 23h is used for data transfer.

Each I/O port 23h data transfer must be preceded by an I/O port 22h register
selection, otherwise the second and later I/O port 23h operations are directed
off-chip and produce external I/O cycles. If the register index number is outside
the COh-CFh range, external I/O cycles will also occur.

Programming Interface

Register Set

The CCRO register (Table 2-10) defines the type of cache and determines if
the 64-KByte memory area on 1-MByte boundaries and the 640-KByte to
1-MByte area are cacheable. This register also enables certain pins
associated with cache control and suspend mode.

The CCR 1 register (Table 2-11) is used to set up internal cache operation and
System Management Mode (SMM). The ARR registers (Figure 2-13,
Figure 2-14, and Table 2-8, Table 2-9) are used to define the location and
size of the memory regions associated with the internal cache. ARR1-ARR3
define three write-protected or non-cacheable memory regions as designated
by CCR1 bits WP1-WP3. ARR4 defines an SMM memory space or
non-cacheable memory region as defined by CCR1 bit SM4. Other CCR1 bits
enable RPL and SMM pins and control SMM memory access. The SMAC bit
allows access to defined SMM space while not in an SMI service routine. The
MMA bit allows access to main memory that overlaps with SMM memory while
in an SMI service routine for data access only.

The ARR registers define address regions using a starting address and a block
size. The non-cacheable region block sizes range from 4 KBytes to 4 GBytes
(Table 2-12). A block size of zero disables the address region. The starting
address of the address region must be on a block size boundary. For example,
a 128 KByte block is allowed to have a starting address of 0 KBytes,
128 KBytes, 256 KBytes, etc. The SMM memory region size is restricted to a
maximum of 16 MBytes. The block size must be defined for SMI to be
recognized.

2-27

Register Set

Table 2-8. TI486SLCIE Configuration Control Registers

REGISTER NAME REGISTER INDEX WIDTH

Configuration Control 0 COh 8
CCRO

Configuration Control 1 C1h 8
CCR1

Address Region 1 C5h-C6h 16
ARR1

Address Region 2 C8h-C9h 16
ARR2

Address Region 3 CBh-CCh 16
ARR3

Address Region 4 CEh-CFh 16
ARR4

Note: The following register index numbers are reserved: C2h, C3h, C4h, C7h, CAh,
CDh, and DOh through FFh.

Figure 2-13. TI486SLCIE Address Region Registers (ARR1-ARR4)

2-28

REG. INDEX = C5h

(
A

')(
7 o 7

REG. INDEX = C6h
A
4 3

')
o

1A23

STARTING ADDRES~
A121

SIZE

A16 A15 ~ ________________________ ~ ______________ ~ __________ ~IARR1
ADDRESS REGION 1

REG. INDEX = C8h

(
A

')(
7 o 7

REG. INDEX = C9h
A

4 3
')
o

1A23

STARTING ADDRES~
A121

SIZE

A16 A15 ~ ________________________ ~ ____________ ~~ __________ ~IARR2
ADDRESS REGION 2

REG. INDEX = CBh

(
A

')(
7 o 7

REG. INDEX = CCh
A

4 3
')
o

1A23

STARTING ADDRES~
A121

SIZE

A16 A15 ~ ________________________ ~ ______________ ~ __________ ~IARR3
ADDRESS REGION 3

REG. INDEX = CEh REG. INDEX = CFh

__ ----------~A~----------__ __-----------A~----------__ (')(')
7 0 7 4 3 0

I
______________ S_TA_R_T_IN_G __ A_D_D_RE_S~~I..._ __________ ~I _____ S_I_ZE_t ____ ~IARR4

A23 A16! A15 A12 .

ADDRESS REGION 4

tARR4 (SIZE) must be 4Kbytes to 16 Mbytes if ARR4 is defined as SMM memory space.

Programming Interface

Register Set

Table 2-9. TI486DLCIE Configuration Control Registers

REGISTER NAME REGISTER INDEX WIDTH

Configuration Control 0 COh 8
CCRO

Configuration Control 1 C1h 8
CCR1

Address Region 1 C4h-C6h 24
ARR1

Address Region 2 C7h-C9h 24
ARR2

Address Region 3 CAh-CCh 24
ARRR3

Address Region 4 CDh-CFh 24
ARR4

Note: The following register index numbers are reserved: C2h, C3h, and DOh through FFh.

Figure 2-14. TI486DLCIE Address Region Registers (ARR1-ARR4)

REG. INDEX = C4h REG. INDEX = C5h REG. INDEX = C6h , A

"
A '(A ,

7 o 7 o 7 43 0
I I

ARR1 STARTING ADDRESS SIZE

A31 A24
1
A23 A16

1
A15 A12

ADDRESS REGION 1

REG. INDEX = C7h REG. INDEX = C8h REG. INDEX = C9h
A A A ,)()()

7 o 7 o 7 43 0
I I

ARR2 STARTING ADDRESS SIZE

A31 A24. A23 A16.A15 A12

ADDRESS REGION 2

REG. INDEX = CAh REG. INDEX = CBh REG. INDEX = CCh
A A A ,)()()

7 o 7 o 7 43 0
• I

ARR3 STARTING ADDRESS SIZE

A31 A24.A23 A16.A15 A12

ADDRESS REGION 3

REG. INDEX = CDh REG. INDEX = CEh REG. INDEX = CFh
A A A

('()(,
7 o 7 o 7 43 0

I I

STARTING ADDRESS SIZE ARR4

A31 A24
1
A23 A16

1
A15 A12

ADDRESS REGION 4

tARR4 (SIZE) must be 4Kbytes to 16 Mbytes if ARR4 is defined as SMM memory space.

2-29

Register Set

Table 2-10. CCRO Bit Definitions

BIT POSITION
REGISTER

DESCRIPTION
INDEX

0 NCO Non-cacheable 1-MByte Boundaries
If=1: Sets the first 64 KBytes at each 1-MByte boundary as non-cacheable.

1 NC1 Non-cacheable Upper Memory Area
If=1: Sets 640-KByte to 1-MByte memory region non-cacheable.

2 A20M Enable A20M pin
If=1: Enables A20M input pin; otherwise pin is ignored.

3 KEN Enable KEN pin
If = 1: Enables KEN input pin; otherwise pin is ignored.

4 FLUSH Enable FLUSH pin
If = 1: Enables FLUSH input pin; otherwise pin is ignored.

5 BARB Enable Cache Flush during Hold
If = 1: Enables flushing of the internal cache when hold state is entered.

6 CO Cache Type Select
If = 1: Selects direct-mapped cache.
If = 0: Selects 2-wayset-associative cache.

7 SUS Enable Suspend Pins
If =1: Enables SUSP input pin and SUSPA output pin.
If = 0: SUSPA output pin floats; SUSP input pin is ignored.

Table 2-11. CCR 1 Bit Definitions

BIT POSITION
REGISTER

DESCRIPTION INDEX

0 - Reserved

1 SMI Enable SMM Pins.
If=1 : SMI input/output pin and SMADS output pin are enabled.
If= 0: SMI input pin ignored and SMADS output pin floats.

2 SMAC System Management Memory Access.
If=1: Any access to addresses within the SMM memory space cause external bus
cycles to be issued with SMADS output active. SMI input is ignored.
If = 0: No effect on access.

3 NMAC Main Memory Access.
If = 1 : All data accesses which occur within an SMI service routine
(or when SMAC = 1) will access main memory instead of SMM memory space.
If = 0: No effect on access.

4 WP1 Access Region 1 Control
If = 1: Region 1 is write protected and cacheable.
If = 0: Region 1 is non-cacheable.

5 WP2 Access Region 2 Control
If = 1: Region 2 is write protected and cacheable.
If = 0: Region 2 is non-cacheable.

6 WP3 Access Region 3 Control
If = 1: Region 3 is write protected and cacheable.
If = 0: Region 3 is non-cacheable.

7 SM4 Access Region 4 Control
If = 1: Region 4 is non-cacheable SMM memory space.
If = 0: Region 4 is non-cacheable. SMI input ignored.

2-30 Programming Interface

Register Set

Table 2-12. ARR 1-ARR4 Block Size Field

BITS 3-0 BLOCK SIZE BITS 3-0 BLOCK SIZE

Oh Disabled 8h 512 KBytes

1h 4 KBytes 9h 1 MBytes

2h 8 KBytes Ah 2 MBytes

3h 16 KBytes Bh 4 MBytes

4h 32 KBytes Ch 8 MBytes

5h 64 KBytes Dh 16 MBytes

6h 128 KBytes Eh 32 MBytes

7h 256 KBytes Fh 4 GBytes

2.3.2.5 Debug Registers

Six debug registers (DRO-DR3, DR6 and DR7), shown in Figure 2-15 and
Figure 2-16, support debugging on the T1486. Memory addresses loaded in
the debug registers, referred to as "breakpoints", generate a debug exception
when a memory access of the specified type occurs to the specified address.
A breakpoint can be specified for a particular kind of memory access such as
a read or a write. Code and data breakpoints can also be set allowing debug
exceptions to occur whenever a given data access (read or write) or code
access (execute) occurs. The size of the debug target can be set to 1, 2, or
4 bytes. The debug registers are accessed via MOV instructions which can be
executed only at privilege level O.

Figure 2-15. TI486SLCIE Debug Registers

332222222222111111111
1098765432109876543209876543210

LEN I R!W I LEN I R!W I L~N RJW LEN RJW 0 0
G

001
G L G L G L G L G L

3 3 2 2 1 0 0 0 E E 3 3 2 2 1 1 0 0

o 0 0 0 0 0 0 o 0 0 o 0 0 0 o 0 B B 0 01 1 1 1 1 1 1 1 B B B B
T S 3 2 1 0

RESERVED

RESERVED

BREAKPOINT 3 LINEAR ADDRESS

BREAKPOINT 2 LINEAR ADDRESS

BREAKPOINT 1 LINEAR ADDRESS

BREAKPOINT 0 LINEAR ADDRESS

All bits marked as 0 or 1 are reserved and should not be modified.

DR7

DR6

DR5

DR4

DR3

DR2

DR1

ORO

2-31

Register Set

Figure 2-16. TI486DLCIE Debug Registers

332222222222111111111
1098765432109876543209876543210

LEN RIW LEN RIW LEN RIW LEN I R/W o 0
G

000
G L G L G L G L G L

3 3 2 2 1 1 o 0 D E E 3 3 2 2 1 1 0 0 DR7

o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0 B B 1 01 1 1 1 1 1 1 1 B B B B
T S 3 2 1 0

DR6

BREAKPOINT 3 LINEAR ADDRESS DR3

BREAKPOINT 2 LINEAR ADDRESS DR2

BREAKPOINT 1 LINEAR ADDRESS DR1

BREAKPOINT 0 LINEAR ADDRESS DRO

All bits marked as 0 or 1 are reserved and should not be modified.

Table 2-13. DR6 and DR7 Field Definitions

REGISTER FIELD

DR6 Bi

BT

BS

DR7 RlWi

LENi

Gi

Li

GD

2-32

NUMBER
DESCRIPTION

OF BITS

1 Bi is set by the processor if the conditions described by DRi, RlWi, and LENi
occurred when the debug exception occurred, even if the breakpoint is not enabled
via the Gi or Li bits.

1 BT is set by the processor before entering the debug handler if a task switch has
occurred to a task with the T bit in the TSS set.

1 BS is set by the processor if the debug exception was triggered by the Single-step
execution mode (TF flag in EFLAG$ set).

2 Applies to the DRi breakpoint address register:
00 - Break on instruction execution only
01 - Break on data writes only
10 - Not used
11 - Break on data reads or writes

2 Applies to the DRi breakpoint address register:
00 - One byte length
01 - Two byte length
10 - Not used
11 - Four byte length

1 If set to a 1, breakpoint in DRi is globally enabled for all tasks and is not cleared by
the processor as the result of a task switch.

1 If set to a 1, breakpoint in DRi is locally enabled for the current task and is cleared
by the processor as the result of a task switch.

1 Global disable of debug register access. GD bit is cleared whenever a debug
exception occurs.

The debug address registers DRO-DR3 each contain the linear address for
one of four possible breakpoints. Each breakpoint is further specified by bits
in the debug control register (DR7). For each breakpoint address in DRO-DR3,
there are corresponding fields L, RIW, and LEN in DR7 that specify the type
of memory access associated with the breakpoint.

Programming Interface

Register Set

The R/W field can be used to specify execution as well as data access
breakpoints. Instruction execution and data access breakpoints are always
taken before execution of the instruction that matches the breakpoint.

The debug status register (DR6) reflects conditions that were in effect at the
time the debug exception occurred. The contents of the DR6 register are not
automatically cleared by the processor after a debug exception occurs and,
therefore, should be cleared by software at the appropriate time. Table 2-13
lists the field definitions for the DR6 and DR7 registers.

Code execution breakpoints may also be generated by placing the breakpoint
instruction (INT 3) at the location where control is to be regained. The
single-step feature may be enabled by setting the TF flag in the EFLAGS
register. This causes the processor to perform a debug exception after the
execution of every instruction.

2.3.2.6 Test Registers

The five test registers, shown in Figure 2-17, are used in testing the CPU's
translation look-aside buffer (TLB) and on-chip cache. TR6 and TR7 are used
for TLB testing, and TR3-TR5 are used for cache testing. Table 2-14 and
Table 2-15 list the bit definitions for the TR6 and TR7 registers.

TLB Test Registers

The TI486 TLB is a four-way set associative memory with eight entries per set.
Each TLB entry consists of a 24-bit tag and 20-bit data. The 24-bit tag
represents the high-order 20 bits of the linear address, a valid bit, and three
attribute bits. The 20-bit data portion represents the upper 20 bits of the
physical address that corresponds to the linear address.

The TLB Test Control Register (TR6) contains a command bit, the upper
20 bits of a linear address, a valid bit and the attribute bits used in the test
operation. The contents of TR6 are used to create the 24-bit TLB tag during
both write and read (TLB lookup) test operations. The command bit defines
whether the test operation is a read or a write.

The TLB Test Data Register (TR7) contains the upper 20 bits of the physical
address (TLB data field), two LRU bits and a control bit. During TLB write
operations, the physical address in TR7 is written into the TLB entry selected
by the contents of TR6. During TLB lookup operations, the TLB data selected
by the contents of TR6 is loaded into TR7.

2-33

Register Set

Figure 2-17. Test Registers

TLB PHYSICAL ADDRESS TR7

31 12 11 10 9 8 7 6 5 4 3 2 1 0

TLB LINEAR ADDRESS V
1

D lolul u
1 wlw 1 0 0 0 01 C 1 TR6

31 12 11 10 9 8 7 6 5 4 3 2 1 0

LINE SELECTION TR5

31 11 10 9 8 7 6 5 4 3 2 0

CACHE TAG ADDRESS TR4

31 9 8 7 6 5 4 3 2 0

CACHE DATA 1 TR3

31 0

~=RESERVED

2-34 Programming Interface

Register Set

Table 2-14. TR6 and TR7 Bit Definitions

REGISTER BIT
DESCRIPTION

NAME POSITION

TR6 31-12 Linear address.
TLB lookup: The TLB is interrogated per this address. If one and only one match occurs in the
TLB, the rest of the fields in TR6 and TR7 are updated per the matching TLB entry.
TLB write: A TLB entry is allocated to this linear address.

11 Valid bit (V).
TLB lookup: Always set to 1.
TLB write: If set, indicates that the TLB entry contains valid data. If clear, target entry is
invalidated.

10-9 Dirty attribute bit and its complement (D, D). (Refer to Table 2-15).

8-7 User/supervisor attribute bit and its complement (U, U). (Refer to Table 2-15).

6-5 Read/write attribute bit and its complement (R, R). (Refer to Table 2-15).

0 Command bit (C).
If=O: TLB write.
If=1: TLB lookup.

TR7 31-12 Physical address.
TLB lookup: data field from the TLB.
TLB write: data field written into the TLB.

11 Page-level cache disable bit (PCD). Corresponds to the PCD bit of a page table entry.

10 Page-level cache write-through bit (PWT). Corresponds to the PWT bit of a page table entry.

9-7 LRU bits.
TLB lookup: LRU bits associated with the TLB entry prior to the TLB lookup.
TLB write: ignored.

4 PL bit.
TLB lookup: If=1, read hit occurred. If=O, read miss occurred.
TLB write: If=1, REP field is used to select the set. If=O, the pseudo-LRU replacement
algorithm is used to select the set.

3-2 Set selection (REP).
TLB lookup: If PL=1, set in which the tag was found. If PL=O, undefined data.
TLB write: If PL=1 , selects one of the four sets for replacement. If PL=O, ignored.

Table 2-15. TR6 Attribute Bit Pairs

BIT (B) BIT COMPLEMENT EFFECT ON EFFECT ON
(8) TLB LOOKUP TLBWRITE

0 0 Do not match Undefined
0 1 Match if the bit is 0 Clear the bit
1 0 Match if the bit is 1 Set the bit
1 1 Match is the bit is 1 or 0 Undefined

2-35

Register Set

Cache Test Registers

The TI486 on-chip cache can be configured either as a direct-mapped (256
entries) or as a two-way set associative memory (128 entries per set). Each
entry consists of a 23-bit tag, 32-bit data field, four valid bits, and an LRU bit.
The 23-bit tag represents the high-order 23 bits of the physical address. The
32-bit data represents the four bytes of data currently in memory at the
physical address represented by the tag. The four valid bits indicate which of
the four data bytes contain valid data. The LRU bit is accessed only when the
cache is configured as two-way set associative and indicates which of the two
sets was most recently accessed.

The TI486 contains three test registers that allow testing of its internal cache.
Using these registers, cache test writes and reads may be performed. Cache
test writes cause the data in TR3 to be written to the selected set and entry in
the cache. Cache test reads allow inspection of the data, valid bits and the LRU
bit for the cache entry. For data to be written to the allocated entry, the valid
bits for the entry must be set prior to the write of the data. Bit definitions for the
cache test registers are shown in Table 2-16.

Table 2-16. TR3-TR5 Bit Definitions

REGISTER BIT
DESCRIPTION

NAME POSITION

TR3 31-10 Cache data.
Cache read: data accessed from the cache.
Cache write: to be written into the cache.

TR4 31-9 Tag address.
Cache read: tag address from which data is read.
Cache write: data written into the tag address of the selected line.

7 LRU
Cache read: the LRU bit associated with the cache line.
Cache write: ignored.

6-3 Valid bits
Cache reads: four valid bits for the accessed line, (one bit per byte).
Cache writes: valid bits written into the line.

TR5 10-4 Line selection. Selects one of 128 lines.

2 Set selection
If=O: set 0 is selected
If=1: set 1 is selected

1-0 Control bits. These bits control reading or writing the cache.
If=OO: Ignored
If=01: Cache write
If=10: Cache read
If=11: Cache flush (marks all entries as invalid).

2-36 Programming Interface

Address Spaces

2.4 Address Spaces

The TI486 can directly address either memory or 1/0 space. Figure 2-18 and
Figure 2-19 illustrate the range of addresses available for memory address
space and 1/0 address space. For the TI486SLC/E, the addresses for physical
memory range between 00 OOOOh and FF FFFFh (16 MBytes). For the
TI486DLC/E, the addresses for physical memory range between 0000 OOOOh
and FFFF FFFFh (4 GBytes). The accessible 1/0 addresses space for both the
TI486SLC/E and TI486DLC/E ranges between 00 OOOOh and 00 FFFFh (64
KBytes). The coprocessor communication space for the TI486SLC/E exists in
upper 1/0 space between 80 00F8h and 80 OOFFh. The coprocessor
communication space for the TI486DLC/E exists in the upper 1/0 space
between 8000 00F8h and 8000 OOFFh. These coprocessor 1/0 ports are
automatically accessed by the CPU whenever an ESC opcode is executed.
The 1/0 locations 22h and 23h are used for TI486SLC/E and TI486DLC/E
configuration register access.

Figure 2-18. TI486SLCIE Memory and 110 Address Spaces

Accessible

FF FFFFh

Physical
Memory Space

Physical
Memory

16 MBytes

00 OOOOh 1..-_____

FF FFFFh

8000FFh

8000F8h

00 FFFFh

Programmed
1/0 Space

..-- Coprocessor
Space

_----111..--
TI486
Configuration
Register 1/0
Space
000023h
000022h

00 OOOOh 1..-_____

2-37

Address Space

Figure 2-19. TI486DLCIE Memory and 110 Address Spaces

FFFF FFFFh

Physical
Memory Space

Physical
Memory

4 GBytes

FFFF FFFFh

8000 OOFFh

8000 00F8h

0000 FFFFh

Accessible
Programmed

lID Space

.-- Coprocessor
Space

-----. .--0000 OOOOh _____ 0000 OOOOh ______ _

TI486
Configuration
Register lID
Space
0000 0023h
0000 0022h

2.4.1 1/0 Address Space

2-38

The TI486 1/0 address space is accessed using IN and OUT instructions to
addresses referred to as "ports". The accessible 1/0 address space is 64
KBytes and can be accessed as 8-bit, 16-bit or 32-bit ports. The execution of
any IN or OUT instruction causes the MilO pin to be driven low, thereby
selecting the 1/0 space instead of memory space for loading or storing data.
The upper 8 address bits are always driven low during IN and OUT instruction
port accesses.

The TI486 configuration registers reside within the 1/0 address space at port
addresses 22h and 23h and are accessed using the standard IN and OUT
instructions. The configuration registers are modified by writing the index of
the configuration register to port 22h and then transferring the data through
port 23h. Accesses to the on-chip configuration registers do not generate
external 1/0 cycles. However, each port 23h operation must be preceded by
a port 22h write with a valid index value, otherwise the second and later port
23h operations are directed off-chip and generate external 1/0 cycles without
modifying the on-chip configuration registers. Also, writes to port 22h outside
of the TI486 index range (COh to CFh) result in external 1/0 cycles and do not
affect the on-chip configuration registers. Reads of port 22h are always
directed off-chip.

Programming Interface

Address Spaces

2.4.2 Memory Address Space

The TI486SLC/E directly addresses up to 16 MBytes of physical memory and
the TI486DLC/E directly addresses up to 4 GBytes of physical memory.
Memory address space is accessed as bytes, words (16 bits) or doublewords
(32 bits). Words and doublewords are stored in consecutive memory bytes
with the low-order byte located in the lowest address. The. physical address
of a word or doubleword is the byte address of the low-order byte.

With the T1486, memory can be addressed using nine different addressing
modes. These addressing modes are used to calculate an offset address often
referred to as an effective address. Depending on the operating mode of the
CPU, the offset is then combined using memory management mechanisms to
create and address a physical memory location.

Memory management mechanisms on the TI486 consist of segmentation and
paging. Segmentation allows each program to use several independent,
protected address spaces. Paging supports a memory subsystem that
simulates a large address space using a small amount of RAM and disk
storage for physical memory. Either or both of these mechanisms can be used
for management of the TI486 memory address space.

2.4.2.1 Offset Mechanism

The offset mechanism computes an offset (effective) address by adding
together up to three values: a base, an index, and a displacement. The base,
if present, is the value in one of eight 32-bit general registers at the time of the
execution of the instruction. The index, like the base, is a value that is
determined from one of the 32-bit general registers (except the ESP register)
when the instruction is executed. The index differs from the base in that the
index is first multiplied by a scale factor of 1, 2, 4 or 8 before the summation
is made. The third component added to the memory address calculation is the
displacement which is a value of up to 32 bits in length supplied as part of the
instruction. Figure 2-20 illustrates the calculation of the offset address.

Nine valid combinations of the base, index, scale factor, and displacement can
be used with the TI486 instruction set. These combinations are listed in
Table 2-17. The base and index both refer to contents of a register as
indicated by [Base] and [Index].

2-39

Address Spaces

Figure 2-20. Offset Address Calculation

Index

Base Displacement

Offset Address
(Effective Address)

Table 2-17. Memory Addressing Modes

ADDRESSING
BASE INDEX

SCALE DISPLACEMENT OFFSET ADDRESS (OA)
MODE FACTOR (SF) (DP) CALCULATION

Direct X OA=DP

Register indirect X OA=[BASE]

Based X X OA = [BASE] + DP

Index X X OA = [INDEX] + DP

Scaled index X X X OA = ([INDEX] * SF) + DP

Based index X X OA = [BASE] + [INDEX]

Based scaled X X X OA = [BASE] + ([INDEX] * SF)
index

Based index with X X X OA = [BASE] + [INDEX] + DP
displacement

Based scaled X X X X OA = [BASE] + ([INDEX] * SF) + DP
index with
displacement

2.4.2.2 Real Mode Memory Addressing

2-40

In real mode operation, the TI486 addresses only the lowest 1 MByte (220) of
memory. To calculate a physical memory address, the 16-bit segment base
address located in the selected segment register is shifted left by four bits and
then the 16-bit offset address is added. For the TI486SLC/E, the resulting
20-bit address is then extended with four zeros in the upper address bits to
create the 24-bit physical address. For the TI486DLC/E, the resulting 20-bit
address is then extended with 12 zeros in the upper address bits to create the
32-bit physical address. Figure 2-21 illustrates the real mode address
calculation. Physical addresses beyond 1 MByte cause a segment limit
overrun exception.

The addition of the base address and the offset address may result in a carry.
Therefore, the resulting address may actually contain up to 21 significant
address bits that address memory in the first 64 KBytes above 1 MByte.

Programming Interface

Address Spaces

Figure 2-21. Real Mode Address Calculation

Offset Address
Offset Mechanism t----------,

Linear Address = Physical Address

Selected Segment 1--_---1

Register
x16

2.4.2.3 Protected Mode Memory Addressing

In protected mode, three mechanisms calculate a physical memory address
(Figure 2-22).
o Offset Mechanism that produces the offset or effective address as in real

mode
o Selector Mechanism that produces the base address
o Optional Paging Mechanism that translates a linear address to the

physical memory address

The offset and base address are added together to produce the linear address.
If paging is not used, the linear address is used as the physical memory
address. If paging is enabled, the paging mechanism is used to translate the
linear address into the physical address. The offset mechanism is described
earlier in this section and applies to both the real and protected mode. The
selector and paging mechanisms are described in the following paragraphs.

Figure 2-22. Protected Mode Address Calculation

Offset Mechanism
Offset Address

Base Address

Linear Address Optional
Paging Mechanism

Physical
Memory
Address

Selector Mechanism 1-------------'

Selector Mechanism

Memory is divided into an arbitrary number of segments, each containing
usually much less than the 232-byte (4-G8yte) maximum.

The six segment registers (CS, OS, SS, ES, FS and GS) each contain a 16-bit
selector that is used when the register is loaded to locate a segment descriptor
in either the global descriptor table (GOT) or the local descriptor table (LOT).
The segment descriptor defines the base address, limit, and attributes of the
selected segment and is cached on the TI486 as a result of loading the
selector. The cached descriptor contents are not visible to the programmer.
When a memory reference occurs in protected mode, the linear address is

2-41

Address Spaces

generated by adding the segment base address in the hidden portion of the
segment register to the offset address. If paging is not enabled, this linear
address is used as the physical memory address. Figure 2-23 illustrates the
operation of the selector mechanism.

Figure 2-23. Selector Mechanism

15
o } Selector

Load

.. ... Segment
Descriptor

I Index I TI I RPL I Selector
�....---,--1 -~--"'

TI = 0 TI = 1
r-------;---~8~\ 00-----+-------,

Segment
Descriptor

(Accessed
Segment
Register)

...

Global Descriptor Table Local Descriptor Table

2-42

Memory
Reference

..

Paging Mechanism

Descriptor
Cache 1----.. ~ Base Address

The paging mechanism supports a memory subsystem that simulates a large
address spac~ with a small amount of RAM and disk storage. The paging
mechanism either translates a linear address to its corresponding physical
address or generates an exception if the required page is not currently present
in RAM. When the operating system services the exception, the required page
is loaded into memory and the instruction is then restarted. Pages are always
4 KBytes in size and are aligned to 4-KByte boundaries.

A page is addressed by using two levels of tables as illustrated in Figure 2-24.
The upper 10 bits of the 32-bit linear address are used to locate an entry in the
page directory table. The page directory table acts as.a 32-bit master index to
up to 1 K individual second-level page tables. The selected entry in the page
directory table, referred to as the directory table entry, identifies the starting
address of the second-level page table. The page directory table itself is a
page and is, therefore, aligned to a 4-KByte boundary. The physical address
of the current page directory is stored in the CR3 control register, also referred
to as the Page Directory Base Register (PDSR).

Programming Interface

Address Spaces

Bits 12-21 of the 32-bit linear address, referred to as the Page Table Index,
locate a 32-bit entry in the second-level page table. This Page Table Entry
(PTE) contains the base address of the desired page frame. The second-level
page table addresses up to 1 K individual page frames. A second-level page
table is 4 KBytes in size and is itself a page. The lower 12 bits of the 32-bit linear
address, referred to as the Page Frame Offset, locate the desired data within
the page frame.

Since the page directory table can point to 1 K page tables, and each page
table can point to 1 K of page frames, a total of 1 M of page frames can be
implemented. Since each page contains 4 KBytes, up to 4 GBytes of virtual
memory can be addressed by the TI486 with a single page directory table.

Figure 2-24. Paging Mechanism

Linear Address

31 1 22 21 1 12 11 1 o
Directory Table Index Page Table Index Page Frame Offset

~

(DTI) (PTI) (PFO)

Directory Table Page Table Page Frame
4KB 4KB 4KB

---. Physical Data

--. PTE !----

DTE t----

..
o ... o ... o

Control Register

In addition to the base address of the page table or the page frame, each
Directory Table Entry or Page Table Entry contains attribute bits and a present
bit as illustrated in Figure 2-25 and listed in Table 2-18.

Figure 2-25. Directory and Page Table Entry (DTE and PTE) Format

31 12 11 10 9 8 7 6 5 4 3 2 o

BASE ADDRESS AVAILABLE D A PCD U/S W/R P

= RESERVED

2-43

Address Spaces

Table 2-18. Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT FIELD
POSITION NAME

31-12 Base
Address

11-9 -
8-7 -

6 D

5 A

4 peD

3 -
2 UlS

1 W/R

0 P

2-44

DESCRIPTION

Specifies the base address of the page or page table.

Undefined and available to the programmer.

Reserved and not available to the programmer.

Dirty bit. If set, indicates that a write access has occurred to the page (PTE only, undefined
in DTE).

Accessed flag. If set, indicates that a read access or write access has occurred to the page.

Page caching disable flag. If set, indicates that the page is not cacheable in the on-chip cache.

Reserved and not available to the programmer.

User/supervisor attribute. If set (user), page is accessible at all privilege levels. If clear
(supervisor), page is accessible only when ePL ~ 2.

Write/read attribute. If set (write), page is writable. If clear (read), page is read only.

Present flag. If set, indicates that the page is present in RAM memory, and validates the
remaining DTEIPTE bits. If clear, indicates that the page is not present in memory and the
remaining DTE/PTE bits can be used by the programmer.

If the present bit (P) is set in the OTE, the page table is present and the
appropriate page table entry is read. If P=1 in the corresponding PTE
(indicating that the page is in memory), the accessed and dirty bits are updated
and the operand is fetched. Both accessed bits are set (OTE and PTE), if
necessary, to indicate that the table and the page have been used to translate
a linear address. The dirty bit (0) is set before the first write is made to a page.

The present bits must be set to validate the remaining bits in the OTE and PTE.
If either of the present bits are not set, a page fault is generated when the OTE
or PTE is accessed. If P=O, the remaining OTE/PTE bits are available for use
by the operating system. For example, the operating system can use these bits
to record where on the hard disk the pages are located. A page fault is also
generated if the memory reference violates the page protection attributes.

Translation Look-Aside Buffer

The translation look-aside buffer (TLB) is a cache for the paging mechanism
and replaces the two-level page table lookup procedure for cache hits. The
TLB is a four-way set associative 32-entry page table cache that automatically
keeps the most commonly used page table entries in the processor. The
32-entry TLB, coupled with a 4K page size, results in coverage of 128 KBytes
of memory addresses.

The TLB must be flushed when entries in the page tables are changed. The
TLB is flushed whenever the CR3 register is loaded. An individual entry in the
TLB can be flushed using the INVLPG instruction.

Programming Interface

Interrupts and Exceptions

2.5 Interrupts and Exceptions

2.5.1 Interrupts

The processing of either an interrupt or an exception changes the normal
sequential flow of a program by transferring program control to a selected
service routine. Except for SMM interrupts, the location of the selected service
routine is determined by one of the interrupt vectors stored in the interrupt
descriptor table.

All true interrupts are hardware interrupts and are generated by signal sources
external to the CPU. All exceptions, including so-called software interrupts,
are produced internally by the CPU.

External events can interrupt normal program execution by using one of the
three interrupt pins on the T1486.

• Non-maskable Interrupt (NMI pin)
• Maskable Interrupt (INTR pin)
• 8MM Interrupt (8MI pin)

For most interrupts, program transfer to the interrupt routine occurs after the
current instruction has been completed. When the execution returns to the
original program, it begins immediately following the interrupted instruction.

The NMI interrupt cannot be masked by software and always uses interrupt
vector 2 to locate its service routine. Since the interrupt vector is fixed and is
supplied internally, no interrupt acknowledge bus cycles are performed. This
interrupt is usually reserved for unusual situations such as parity errors and
has priority over INTR interrupts.

Once NMI processing has started, no additional NMls are processed until an
IRET instruction is executed, typically at the end of the NMI service routine.
If NMI is re-asserted priortothe execution ofthe IRETinstruction, one and only
one NMI rising edge is stored and then processed after execution of the next
IRET.

During the NMI service routine, maskable interrupts are still enabled. If an
unmasked INTR occurs during the NMI service routine, the INTR is serviced
and execution returns to the NMI service routine following the next IRET. If a
HALT instruction is executed within the NMI service routine, the TI486 restarts
execution only in response to RESET, an unmasked INTR, or an 8MM
interrupt. NMI does not restart CPU execution under this condition.

The INTR interrupt is unmasked when the Interrupt Enable Flag (IF) in the
EFLAGS register is set to 1. With the exception of string operations, INTR
interrupts are acknowledged between instructions. Long string operations
have interrupt windows between memory moves that allow INTR interrupts to
be acknowledged.

2-45

Interrupts and Exceptions

2.5.2 Exceptions

2-46

When an INTR interrupt occurs, the CPU performs two locked interrupt
acknowledge bus cycles. During the second cycle, the CPU reads an 8-bit
vector which is supplied by an external interrupt controller. This vector selects
which of the 256 possible interrupt handlers will be executed in response to
the interrupt.

The SMM interrupt has higher priority than either the INTR or NMI. After SMI
is asserted, program execution is passed to an SMI service routine which runs
in SMM address space reserved for this purpose. The remainder of this
section does not apply to the SMM interrupts. SMM interrupts are described
in greater detail later in this chapter.

Exceptions are generated by an interrupt instruction or a program error.
Exceptions are classified as traps, faults, or aborts depending on the
mechanism used to report them and the restartability of the instruction which
first caused the exception.

A trap exception is reported immediately following the instruction that
generated the trap exception. Trap exceptions are generated by execution of
a software interrupt instruction during single stepping, at a breakpoint, or by
software interrupt instruction (lNT 0, INT 3, INT n, BOUND) by a single-step
operation, or by a data breakpoint.

Software interrupts can be used to simulate hardware interrupts. For example,
an INT n instruction causes the processor to execute the interrupt service
routine pointed to by the nth vector in the interrupt table. Execution of the
interrupt service routine occurs regardless of the state of the IF flag in the
EFLAGS register.

The one-byte INT 3, or breakpoint-interrupt (vector 3), is a particular case of
the INT n instruction. By inserting this one-byte instruction in a program, the
user can set breakpoints in code that can be used during debug.

Single-step operation is enabled by setting the TF bit in the EFLAGS register.
When TF is set, the CPU generates a debug exception (vector 1) after the
execution of every instruction. Data breakpoints also generate a debug
exception and are specified by loading the debug registers (DRO-DR7) with
the appropriate values.

A fault exception is caused by a program error and is reported prior to
completion of the instruction that generated the exception. By reporting the
fault prior to instruction completion, the CPU is left in a state which allows the
instruction to be restarted and the effects of the faulting instruction to be
nullified. Fault exceptions include divide-by-zero errors, invalid opcodes, page
faults, and coprocessor errors. Debug exceptions (vector 1) are also handled
as faults (except for data breakpoints and Single-step operations). After
execution of the fault service routine, the instruction pointer points to the
instruction that caused the fault.

An abort exception is a type of fault exception that is severe enough that the
CPU cannot restart the program at the faulting instruction. Abort exceptions
include the double fault (vector 8) and coprocessor segment overrun
(vector 9).

Programming Interface

Interrupts and Exceptions

2.5.3 Interrupt Vectors

When the CPU services an interrupt or exception, the current program's
instruction pointer and flags are pushed onto the stack to allow resumption of
execution of the interrupted program. In protected mode, the processor also
saves an error code for some exceptions. Program control is then transferred
to the interrupt handler (also called the interrupt service routine). Upon
execution of an IRET at the end of the service routine, program execution
resumes at the instruction pointer address saved on the stack when the
interrupt was serviced.

Interrupt Vector Assignments

Each interrupt (except 8MI) and exception is assigned one of 256 interrupt
vector numbers (Table 2-19). The first 32 interrupt vector assignments are
defined or reserved. INT instructions acting as software interrupts may use
any of the interrupt vectors, 0 through 255. The non-maskable hardware
interrupt (NMI) is assigned vector 2.

In response to a maskable hardware interrupt (INTR), the TI486 issues
interrupt acknowledge bus cycles used to read the vector number from
external hardware. These vectors should be in the range 32-255 because
vectors 0-31 are predefined.

Table 2-19. Interrupt Vector Assignments

INTERRUPT
FUNCTION EXCEPTION TYPE

VECTOR

0 Divide error FAULT

1 Debug exception TRAP (see Note)

2 NMI interrupt -
3 Breakpoint TRAP

4 Interrupt on overflow TRAP

5 BOUND range exceeded FAULT

6 Invalid opcode FAULT

7 Device not available FAULT

8 Double fault ABORT

9 Coprocessor segment overrun ABORT

10 InvalidTSS FAULT

11 Segment not present FAULT

12 Stack fault FAULT

13 General protection fault FAULT

14 Page fault FAULTffRAP

15 Reserved -

16 Coprocessor error FAULT

17 Alignment check exception FAULT

18-31 Reserved -
32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP

Note: Some debug exceptions may report both traps on the previous
instruction and faults on the next instruction.

2-47

Interrupts and Exceptions

Interrupt Descriptor Table

The interrupt vector number is used by the TI486 to locate an entry in the
interrupt descriptor table (IDT). In real mode, each IDT entry consists of a
four-byte far pointer to the beginning of the corresponding interrupt service
routine. In protected mode, each IDT entry is an eight-byte descriptor. The
Interrupt Descriptor Table Register (IDTR) specifies the beginning address
and limit of the IDT. Following reset, the IDTR contains a base address of Oh
with a limit of 3FFh.

The IDT can be located anywhere in physical memory as determined by the
IDTR register. The IDT may contain different types of descriptors: interrupt
gates, trap gates, and task gates. Interrupt gates are used mainly to enter a
hardware interrupt handler. Trap gates are generally used to enter an
exception handler or software interrupt handler. If an interrupt gate is used, the
Interrupt Enable Flag (IF) in the EFLAGS register is cleared before the
interrupt handler is entered. Task gates are used to make the transition to a
new task.

2.5.4 Interrupt and Exception Priorities

2-48

As the TI486 executes instructions, it follows a consistent policy for prioritizing
exceptions and hardware interrupts as listed in Table 2-20. SMM interrupts
always take precedence. Debug traps for the previous instruction and next
instruction are handled in the next priority. When NMI and maskable INTR
interrupts are both detected at the same instruction boundary, the TI486
microprocessor services the NMI interrupt first.

The TI486 checks for exceptions in parallel with instruction decoding and
execution. Several exceptions can result in a single instruction. However, only
one exception is generated upon each attempt to execute the instruction. Each
exception service routine should make the appropriate corrections to the
instruction and then restart the instruction. In that way, exceptions can be
serviced until the instruction executes properly.

The TI486 supports instruction restart after all faults, except when an
instruction causes a task switch to a task whose task state segment (TSS) is
partially not present. A TSS can be partially not present if the TSS is not page
aligned and one of the pages (where the TSS resides) is not currently in
memory.

Programming Interface

Interrupts and Exceptions

Table 2-20. Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES

1 Debug traps and faults from previous instruction.
Includes single-step trap and data breakpoints
specified in the debug registers.

2 Debug traps for next instruction.
Includes instruction execution breakpoints specified in
the debug registers.

3 Non-maskable hardware interrupt. Caused by NMI asserted.

4 Maskable hardware interrupt. Caused by INTR asserted and IF=1.

5 Faults resulting from fetching the next instruction.
Includes segment not present, general protection fault
and page fault.

6 Faults resulting from instruction decoding.
Includes illegal opcode, instruction too long, or privilege
violation.

7 WAIT instruction and TS=1 and MP=1. Device not available exception generated.

8 ESC instruction and EM=1 or TS=1. Device not available exception generated.

9 Coprocessor error exception. Caused by ERROR asserted.

Segmentation faults (for each memory reference Includes segment not present, stack fault, and general
10 required by the instruction) that prevent transferring the protection fault.

entire memory operand.

11
Page faults that prevent transferring the entire memory
operand.

12 Alignment check fault.

2.5.5 Exceptions in Real Mode

Many of the exceptions described in Table 2-19 are not applicable in real
mode. Exceptions 10, 11 , and 14 do not occur in real mode. Other exceptions
have slightly different meanings in real mode as listed in Table 2-21.

Table 2-21. Exception Changes in Real Mode

2.5.6 Error Codes

VECTOR PROTECTED
READ MODE FUNCTION

NUMBER MODE FUNCTION

8 Double fault Interrupt table limit overrun

10 InvalidTSS -
11 Segment not present -
12 Stack fault SS segment limit overrun

13 General protection fault CS, DS, ES, FS, GS segment limit overrun

14 Page fault -

When operating in protected mode, the following exceptions generate a 16-bit
error code:

• Double fault
• Alignment check
• Invalid TSS
• Segment not present
• Stack fault
• General protection fault

• Page fault

2-49

Interrupts and Exceptions

The error code format is shown in Figure 2-26 and the error code bit
definitions are listed in Table 2-22. Bits 15-3 (selector index) are not
meaningful if the error code was generated as the result of a page fault. The
error code is always zero for double faults and alignment check exceptions.

Figure 2-26. Error Code Format

15 3 2 o

Selector Index S2 S1 SO

Table 2-22. Error Code Bit Definitions

FAULT
SELECTOR

S2 S1 SO
TYPE

INDEX
(BIT 2) (BIT 1) (BIT 0)

(BITS 15-3)

Page fault Reserved Fault caused by: Fault occurred during: Fault occurred during:
O=not present page O=read access O=supervisor access
1 =page-Ievel protection 1 =write access 1 =user access

violation

IDTfault Index of faulty Reserved 1 If set exception occurred
IDT selector while trying to invoke

exception or hardware
interrupt handler.

Segment Index of faulty TI bit of faulty selector 0 If set exception occurred
fault selector while trying to invoke

exception or hardware
interrupt handler.

2-50 Programming Interface

System Management Mode

2.6 System Management Mode

2.6.1 Introduction

System Management Mode (SMM) provides an additional interrupt which can
be used for system power management or software transparent emulation of
I/O peripherals. SMM is entered using the Software Management Interrupt
(SMI) which has a higher priority than any other interrupt, including NMI. After
receiving an SMI, portions of the CPU state are automatically saved, SMM is
entered and program execution begins at the base of SMM space
(Figure 2-27 and Figure 2-28). Running in protected SMM address space,
the interrupt routine does not interfere with the operating system or any
application program.

Seven SMM instructions have been added to the TI486 instruction set that
permit saving and restoring of the total CPU state when in SMM mode. Two
new pins, SMI and SMADS, support SMM functions.

Figure 2-27. TI486SLCIE Memory and 110 Address Spaces

Physical
Memory Space

FFFFFFh~----~----~

Physical
Memory

16 MBytes

00 OOOOh --...~ ___ ~_
Non-SMM Mode

ADS Active

FF FFFFh

4 KBytes to
16 MBytes

Potential
SMM Addres Space

Defined
SMM

Address
Space

00 OOOOh 1....-_____

SMM Mode

SMADS ADS
active active

2-51

System Management Mode

Figure 2-28. TI486DLCIE Memory and I/O Address Spaces

Physical
Memory Space

FFFFFFFFh~----------~

Physical
Memory

4 GBytes

0000 OOOOh __ ~ ______ ---'
Non-SMM Mode

ADS Active

FFFF FFFFh

4 KBytes to
16 MBytes

Potential
SMM Address Space

Defined
SMM

Address
Space

0000 OOOOh __________ ---'
SMM Mode

SMADS ADS
active active

2.6.2 SMM Operations

2-52

8MM operation is summarized in Figure 2-29. Entering 8MM requires the
assertion of the 8MI pin for at least four CLK2 periods. For the SMI input to be
recognized, the following configuration register bits must be set as shown
below:

SMI
8MAC
SM4
ARR4

CCR1(1) =1
CCR1(2) = 0
CCR1 (7) = 1
8IZE(3-0) > 0

The configuration registers are discussed in detail earlier in this chapter. After
recognizing 8MI and prior to executing the 8MI service routine, some of the
CPU state information is changed. Prior to modification, this information is
automatically saved in the 8MM memory space header located at the top of
the 8MM memory space. After the header is saved, the CPU enters real mode
and begins executing the 8MI service routine starting at the SMM memory
base address.

The SMI service routine is user definable and may contain system or power
management software. If the power management software forces the CPU to
power down, or if the SMI service routine modifies more than what is
automatically saved, the complete CPU state information must be saved.

Programming Interface

Figure 2-29. SMM Execution Flow Diagram

SMI Sampled Active

CPU State Stored in SMM
Address Space Header

Program Flow Transfers
to SMM Address Space

CPU Enters Real Mode

Execution Begins at SMM
Address Space Base Address

RSM Instruction Restores CPU
State Using Header Informatiomn

Normal Execution Resumes

System Management Mode

A complete CPU state save is performed by using MOV instructions to save
normally accessible information, and by using the SMM instructions to save
CPU information that is not normally accessible to the programmer. As will be
explained, SMM instructions (SVDC, SVLDT, and SVTS) are used to store the
LDTR, TSR and segment registers and their associated descriptor cache
entries in aO-bit memory locations. After power up or at the end of the SMI
service routine, the MOV and additional SMM instructions (RSDC, RSLDT,
and RSTS) are used to restore the CPU state. The SMM RSM instruction
returns the CPU to normal execution.

2.6.3 SMM Memory Space Header

With every SMI interrupt, certain CPU state information is automatically saved
in the SMM memory space header located at the top of SMM address space
(Figure 2-30 and Table 2-23). The header contains CPU state information
that is modified when servicing an SMI interrupt. Included in this information
are two pointers. The Current IP points to the instruction executing when the
SMI was detected. The Next IP pOints to the instruction that will be executed
after exiting SMM. Also saved are the contents of debug register? (DR?), the
extended flags register (EFLAGS), and control register 0 (CRO). If SMM has
been entered due to an 1/0 trap for a REP INSx or REP OUTSx instruction, the
Current IP and Next IP fields (Table 2-23) contain the same addresses and
the I and P fields contain valid information.

2-53

System Management Mode

Figure 2-30. SMM Memory Space Header
31 o

Top of SMM -----.
Address Space DR7

-4h
EFLAGS

-8h
CRO

-Ch
Current IP

Next IP
-10h

31 16 15 0

Reserved I CS Selector
-14h

-18h
CS Descriptor (Bits 63-32)

-1Ch
31 CS Descriptor (Bits 31-0) 2 1 0

Reserved Ipl'l
-20h

-24h
Reserved

-28h
Reserved

-2Ch
ESI or EDI

-30h

Table 2-23. SMM Memory Space Header

NAME DESCRIPTION SIZE

DR7 The contents of the debug register 7. 4 Bytes

EFLAGS The contents of the extended flag register. 4 Bytes

CRO The contents of the control register O. 4 Bytes

Current IP The address of the instruction executed prior to servicing the SMI interrupt. 4 Bytes

Next IP The address of the next instruction that will be executed after exiting the SMM mode. 4 Bytes

CS Selector Code segment register selector for the current code segment. 2 Bytes

CS Descriptor Code register descriptor for the current code segment. 8 Bytes

P REP INSX/OUTSx Indicator 1 Bit
P = 1 if current instruction has a REP prefix
P = 0 if current instruction does not have REP prefix

I IN, INSx, OUT, or OUTSx Indicator 1 Bit
1=1 if current instruction performed is an I/O WRITE
I = 0 if current instruction performed is an I/O READ

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat an REP OUTSx or 4 Bytes
REP INSx instruction when one of the I/O cycles caused an SMI trap

Note: INSx = INS, INSB, INSW, or INSD instruction.

Note: OUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction.

2.6.4 SMM Instructions

2-54

The TI486 automatically saves the minimal amount of CPU state information
when entering SMM which allows fast SMI service routine entry and exit. After
entering the SMI service routine, the MOV, SVDC, SVLDT, and SVTS
instructions can be used to save the complete CPU state information. If the
SMI service routine either modifies more than what is automatically saved or
forces the CPU to power down, the complete CPU state information must be
saved. Since the TI486 is a static device, its internal state is retained when the
input clock is stopped. Therefore, an entire CPU state save is not necessary
prior to stopping the input clock.

Programming Interface

System Management Mode

The new SMM instructions, listed in Table 2-24, can be executed only if: (a)
the Current Privilege Level (CPL) = 0 and the SMAC bit (CCR1, bit 2) is set;
or (b) CPL =0 and the CPU is in an 8MI service routine (SMI = 0). If both these
conditions are not met and an attempt is made to execute an SVDC, RSDC,
SVLDT, RSLDT, SVTS, RST8, or R8M instruction, an invalid opcode
exception is generated. These instructions can be· executed outside of defined
SMM space provided the above conditions are met. All of the SMM instructions
(except RSM) save or restore 80 bits of data, allowing the saved values to
include the hidden portion of the register contents.

Table 2-24. SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION

SVDC OF 78 [mod sreg3 rim] SVDC mem80, sreg3 Save Segment Register and Descriptor
Saves reg DS, ES, FS, GS, or SS to mem80.

RSDC OF 79 [mod sreg3 rim] RSDC sreg3, mem80 Restore Segment Register and Descriptor
Restores reg DS, ES, FS, GS, or SS from mem80.
(eS is automatically restored with RSM)

SVLDT OF 7A [mod 000 rim] SVLDTmem80 Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

RSLDT OF 78 [mod 000 rim] RSLDTmem80 Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from
mem80.

SVTS OF 7C [mod 000 rim] SVTS mem80 Save TSR and Descriptor
Save Task State Register (TSR) to mem80.

RSTS OF 7D [mod 000 rim] RSTS mem80 Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

RSM OFAA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored using
the SMM memory space header and execution
resumes at interrupted point.

Note: mem80 = 80-bit memory location.

2.6.5 SMM Memory Space

SMM memory space is defined by assigning Address Region 4 to SMM
memory space. This assignment is made by setting bit 7 (SM4) in the on-chip
CCR1 register. ARR4, also an on-chip configuration register, specifies the
base address and size of the SMM memory space. The base address must
be a multiple of the SMM memory space size. For example, a 32 KByte SMM
memory space must be located at a 32 KByte address boundary. The memory
space size can range from 4 KBytes to 16 MBytes.

SMM memory space accesses can use address pipelining, and are always
non-cacheable. SMM accesses ignore the state of the A20M input pin and
drive the A20 address bit to the unmasked value.

Access to the SMM memory space can be made while not in SMM mode by
setting the System Management Access (SMAC) bit in the CCR 1 register. This
feature may be used to initialize the 8MM memory space.

2-55

System Management Mode

While in SMM mode, SMADS address strobes are generated instead of ADS
for SMM memory accesses. Any memory accesses outside the defined SMM
space result in normal memory accesses and ADS strobes. Data (non-code)
accesses to main memory that overlap with defined SMM memory space are
allowed if bit 3 in CCR1 (MMAC) is set. In this case, ADS strobes are generated
for data accesses only and SMADS strobes continue to be generated for code
accesses.

2.6.6 SMI Service Routine Execution

2-56

Upon entry into SMM after the SMM header has been saved, the CRO,
EFLAGS, and DR? registers are set to their reset values. The Code Segment
(CS) register is loaded with the base and limits defined by the ARR4 register
and the SMI service routine begins execution at the SMM base address in real
mode.

The programmer must then save the value of any registers that may be
changed by the SMI service routine. For data accesses immediately after
entering the SMI service routine, the programmer must use CS as a segment
override. I/O port access is possible during the routine but care must be taken
to save registers modified by the I/O instructions. Before using a segment
register, the register's descriptor cache contents should be saved using the
SVDC instruction. While executing in the SMM space, execution flow can
transfer to normal memory locations.

Hardware interrupts (INTRs and NMls) may be serviced during an SMI service
routine. If interrupts are to be serviced while operating in the SMM memory
space, the SMM memory space must be within the 0 to 1 MByte address range
to guarantee proper return to the SMI service routine after handling the
interrupt. INTRs are automatically disabled when entering SMM since the IF
flag is set to its reset value. However, NMls remain enabled. If it is desired to
disable NMI, it should be done immediately after entering the SMI service
routine by the system hardware logic.

Within the SMI service routine, protected mode may be entered and exited as
required, and real or protected mode device drivers can be called.

To exit the SMI service routine, a Resume (RSM) instruction, rather than an
IRET, is executed. The RSM instruction causes the TI486 to restore the CPU
state using the SMM header information and resume execution at the
interrupted point. If the full CPU state was saved by the programmer, the stored
values should be reloaded prior to executing the RSM instruction using the
MOV and the RSDC, RSLDT, and RSTS instructions.

CPU States Related to SMM and Suspend Mode

The state diagram shown in Figure 2-31 illustrates the various CPU states
associated with SMM and suspend mode. While in the SMI service routine, the
TI486 can enter suspend mode either by (1) executing a HALT instruction or
(2) by asserting the SUSP input.

Programming Interface

System Management Mode

During SMM operation and while in SU8P initiated suspend mode, an
occurrence of either NMI or INTR is latched. In order for INTR to be latched,
the IF flag must have been set. The INTR or NMI is serviced after exiting
suspend mode.

If suspend mode is entered via a HALT instruction from the operating system
or application software, the reception of an 8MI interrupt causes the CPU to
exit suspend mode and enter SMM. If suspend mode is entered via the
hardware (8USP = 0) while the operating system or application software is
active, the CPU latches one occurrence of INTR, NMI, and 8MI.

Figure 2-31. SMM and Suspended Mode Flow Diagram

RE8ET------~~--~

Non-SMM Oerations

SMM Operations

* Instructions

NMI or INTR

as/Application
Software

(INTR and NMI
Latched)

(INTR, NMI, and 8MI Latched)

INTR and NMI

2-57

Shutdown and Halt / Protection

2.7 Shutdown and Halt

2.8 Protection

The halt instruction (HLT) stops program execution and prevents the
processor from using the local bus until restarted. The TI486 then enters a
low-power suspend mode. INTR with interrupts enabled (IF bit in EFLAGS =
1), SMI, NMI, or RESET forces the CPU out of the halt state. If interrupted, the
saved code segment and instruction pOinter specify the instruction following
the HLT.

Shutdown occurs when a severe error is detected that prevents further
processing. An NMI input can bring the processor out of shutdown if the IDT
limit is large enough to contain the NMI interrupt vector (at least OOOFh) and
the stack has enough room to contain the vector and flag information (Le.,
stack pointer is greater than OOOSh). Otherwise, shutdown can be exited only
by a processor reset.

Segment protection and page protection are safeguards built into the TI486
protected mode architecture which deny unauthorized or incorrect access to
selected memory addresses. These safeguards allow multitasking programs
to be isolated from each other and from the operating system. Page protection
is discussed earlier in this chapter in Section 2.4. This section concentrates
on segment protection.

Selectors and descriptors are the key elements in the segment protection
mechanism. The segment base address, size, and privilege level are
established by a segment descriptor. Privilege levels control the use of
privilege instructions, 1/0 instructions, and access to segments and segment
descriptors. Selectors are used to locate segment descriptors.

Segment accesses are divided into two basic types, those involving code
segments (e.g., control transfers) and those involving data accesses. The
ability of a task to access a segment depends on:

• the segment type
• the instruction requesting access
• the type of descriptor used to define the segment
• the associated privilege levels

Data stored in a segment can be accessed only by code executing at the same
or a more privileged level. A code segment or procedure can be called only by
a task executing at the same or a less privileged level.

2.8.1 Privilege Levels

2-58

The values for privilege levels range between 0 and 3. Level 0 is the highest
privilege level (most privileged), and level 3 is the lowest privilege level (least
privileged). The privilege level in real mode is effectively O.

The Descriptor Privilege Level (DPL) is the privilege level defined for a
segment in the segment descriptor. The DPL field specifies the minimum
privilege level needed to access the memory segment pointed to by the
descriptor.

Programming Interface

Protection

The Current Privilege Level (CPL) is defined as the current task's privilege
level. The CPL of an executing task is stored in the hidden portion of the code
segment register and essentially is the DPL for the current code segment.

The Requested Privilege Level (RPL) specifies a selector's privilege level and
is used to distinguish between the privilege level of a routine actually
accessing memory (the CPL), and the privilege level of the original requestor
(the RPL) of the memory access. The lesser of the RPL and CPL is called the
effective privilege level (EPL). Therefore, if RPL = 0 in a segment selector, the
effective privilege level is always determined by the CPL. If RPL = 3, the
effective privilege level is always 3 regardless of the CPL.

For a memory access to succeed, the effective privilege level (EPL) must be
at least as privileged as the descriptor privilege level (EPL ~ DPL). If the EPL
is less privileged than the DPL (EPL < DPL), a general protection fault is
generated. For example, if a segment has a DPL = 2, an instruction accessing
the segment succeeds only if executed with an EPL ~ 2.

2.8.2 1/0 Privilege Levels

The 1/0 Privilege Level (IOPL) allows the operating system executing at
CPL = 0 to define the least privileged level at which 10PL-sensitive instructions
can unconditionally be used. The 10PL-sensitive instructions include CLI, IN,
OUT, INS, OUTS, REP INS, REP OUTS, and STI. Modification of the IF bit in
the EFLAGS register is also sensitive to the 1/0 privilege level.

The 10PL is stored in the EFLAGS register. An 1/0 permission bit map is
available as defined by the 32-bit Task State Segment (TSS). Since each task
can have its own TSS, access to individual 1/0 ports can be granted through
separate 1/0 permission bit maps.

If CPL ~ 10PL, 10PL-sensitive operations can be performed. If CPL > 10PL,
a general protection fault is generated if the current task is associated with a
16-bit TSS. If the current task is associated with a 32-bit TSS and CPL > 10PL,
the CPU consults the 1/0 permission bitmap in the TSS to determine on a
port-by-port basis whether or not 1/0 instructions (IN, OUT, INS, OUTS, REP
INS, REP OUTS) are permitted, and the remaining 10PL-sensitive operations
generate a general protection fault.

2.8.3 Privilege Level Transfers

A task's CPL can be changed only through intersegment control transfers
using gates or task switches to a code segment with a different privilege level.
Control transfers result from exception and interrupt servicing and from
execution of the CALL, JMP, INT, IRET, and RET instructions.

The five types of control transfers are summarized in Table 2-25. Control
transfers can be made only when the operation causing the control transfer
references the correct descriptor type. Any violation of these descriptor usage
rules causes a general protection fault.

2-59

Protection

Any control transfer that changes the CPL within a task results in a change of
stack. The initial values for the stack segment (88) and stack pOinter (ESP)
for privilege levels 0, 1, and 2 are stored in the T8S. During a JMP or CALL
control transfer, the SS and ESP are loaded with the new stack pointer and the
previous stack pointer is saved on the new stack. When returning to the
original privilege level, the RET or IRET instruction restores the less-privileged
stack.

Table 2-25. Descriptor Types Used for Control Transfer

TYPE OF CONTROL TRANSFER
OPERATION DESCRIPTOR DESCRIPTOR

TYPES REFERENCED TABLE

Intersegment within the same privilege level JMP, CALL, RET, IRET Code segment GOT or LOT

Intersegment to the same or a more CALL Call gate GOT or LOT
privileged level. Interrupt within task (could Interrupt instruction, Exception, Trap or interrupt gate lOT
change CPL level). External interrupt

Intersegment to a less privileged level RET,IRET Code segment GOT or LOT
(changes task CPL).

Task switch via TSS

Task switch via task gate

2.8.3.1 Gates

CALL, JMP Task state segment GOT

CALL, JMP Task gate GOT or LOT

IRET, Interrupt instruction, Task gate lOT
Exception, External interrupt

Gate descriptors provide protection for privilege transfers among executable
segments. Gates are used to transition to routines of the same or a more
privileged level. Call gates, interrupt gates, and trap gates are used for
privilege transfers within a task. Task gates are used to transfer between tasks.

Gates conform to the standard rules of privilege. In other words, gates can be
accessed by a task if the effective privilege level (EPL) is the same or more
privileged than the gate descriptor's privilege level (DPL).

2.8.4 Initialization and Transition to Protected Mode

2-60

The TI486 microprocessor switches to Real Mode immediately after RE8ET.
While operating in real mode, the system tables and registers should be
initialized. The GDTR and IDTR must point to a valid GOT and lOT,
respectively. The size of the lOT should be at least 256 bytes, and the GOT
must contain descriptors which describe the initial code and data segments.

The processor can be placed in protected mode by setting the PE bit in the
CRO register. After enabling protected mode, the CS register should be loaded
and the instruction decode queue should be flushed by executing an
intersegment JMP. Finally, all data segment registers should be initialized with
appropriate selector values.

Programming Interface

Virtual 8086 Mode

2.9 Virtual 8086 Mode

Both Real Mode and Virtual 8086 (V86) Mode are supported by the TI486 CPU
allowing execution of 8086 application programs and 8086 operating systems.
V86 Mode allows the execution of 8086-type applications, yet still permits use
of the TI486 protection mechanism. V86 tasks run at privilege level 3. Upon
entry, all segment limits are set to FFFFh (64K) as in real mode.

2.9.1 Memory Addressing

2.9.2 Protection

While in V86 mode, segment registers are used in an identical fashion to Real
Mode. The contents of the segment register are shifted left four bits and added
to the offset to form the segment base linear address. The TI486 CPU permits
the operating system to select which programs use the V86 address
mechanism and which programs use protected mode addressing for each
task.

The TI486 also permits the use of paging when operating in V86 mode. Using
paging, the 1-MByte address space of the V86 task can be mapped to
anywhere in the 4-GByte linear address space of the TI486 CPU. As in real
mode, linear addresses that exceed 1 MByte cause a segment limit overrun
exception.

The paging hardware allows multiple V86 tasks to run concurrently, and
provides protection and operating system isolation. The paging hardware
must be enabled to run multiple V86 tasks or to relocate the address space of
a V86 task to physical address space greater than 1 MByte.

All V86 tasks operate with the least amount of privilege (level 3) and are
subject to all of the TI486 protected mode protection checks. As a result, any
attempt to execute a privileged instruction within a V86 task results in a general
protection fault.

In V86 mode, a slightly different set of instructions is sensitive to the I/O
privilege level (IOPL) than in protected mode. These instructions are: CLI,
INT n, IRET, POPF, PUSHF, and STI. The INT3, INTO and BOUND variations
of the INT instruction are not 10PL sensitive.

2-61

Virtual 8086 Mode

2.9.3 Interrupt Handling

To fully support the emulation of an 8086-type machine, interrupts in V86 mode
are handled as follows. When an interrupt or exception is serviced in V86
mode, program execution transfers to the interrupt service routine at privilege
level 0 (i.e., transition from V86 to protected mode occurs) and the VM bit in
the EFLAGS register is cleared. The protected mode interrupt service routine
then determines if the interrupt came from a protected mode or V86 application
by examining the VM bit in the EFLAGS image stored on the stack. The
interrupt service routine may then choose to allow the 8086 operating system
to handle the interrupt or may emulate the function of the interrupt handler.
Following completion of the interrupt service routine, an IRET instruction
restores the EFLAGS register (restores VM = 1) and segment selectors and
control returns to the interrupted V86 task.

2.9.4 Entering and Leaving V86 Mode

2-62

V86 mode is entered from protected mode either by executing an IRET
instruction at CPL = 0 or by task switching. If an IRET is used, the stack must
contain an EFLAGS image with VM = 1 . If a task switch is used, the TSS must
contain an EFLAGS image containing a 1 in the VM bit position. the POPF
instruction cannot be used to enter V86 mode since the state of the VM bit is
not affected. V86 mode can be exited only as the result of an interrupt or
exception. The transition out must use a 32-bit trap or interrupt gate which
must point to a non-conforming privilege level 0 segment (DPL = 0), or a 32-bit
TSS. These restrictions are required to permit the trap handler to IRET back
to the V86 program.

Programming Interface

TI486SLC/E Bus Interface

3-1

-I -~ co
en en
r
Q
m
OJ
c
tn

3-2

Chapter 3

TI486SLC/E Bus Interface

In this chapter, an overview of the TI486 provides a summary of the processor
signals, functional description of all pins, functional timing and bus operations
(including non-pipelined and pipelined addressing), various interfaces, and
power management.

Topic Page

3.1 ,Overview" ~ .••••..• ' •.•• 0.':' •• ~' ;, •••••• ~ • ~ •. ··~· ... 3"4·
3~1.1 . BusCycle'Definition .•.......•••••...•••.•.••. ~~.'''.'~' .3 .. 13

3~1.2 Power Management . •.•..•..•.. .•• ..•.. ..~:~ ...•.•. ~~3 .. 14

3~2iFurictionaltiming;,.:.;. •..•.•......... ;. ~ •.•.•.. ~.. .. 3-16

3~2.1

3~2.2

3.2.2~1

3.2.2.2

3~2.3

3.2.4
3.2.5

3.2~6

3.2.7

·3.2.S'

3.2.9

3.2.10

'3.2.11
3.2~12

R~set"inii~9and '~te"nal· ClockSyrichrOriizatiori; .•. ~~.~.;3"16'
.. ~.~~3 .. l7

•.••• ~'··3·49
'" : :.. : .. : : .. ::

·~.~S.CYCleS •..• USin~ ~;Pelined·AddreSSin9 •.. : .. ~ •.•...••••• · .• · ••••• ~.~-23
Lockedi3usCy:cJes ~ ••••••• "' ••••• , ~~~o.

Interrupt Ackn()wle~ge(INTA)cycle$.3 .. 30

Haltan~ ShutdbwnCYqles•.•. ii •••••

Intel"nafCache Interface· ... , .. : .•..•..

Acldress Bit 20 Masking. "•.••••.•••.••. ~ •••••••• ,,' ~ ••• ti~6

IiOldAckrioWletigeState ..•. < •• ~ •• ' .. " • ..~. ~;.}i.~> •• ,; .~. 3';38

Ci)pr()ceS~()r.lnterface •.•.•••.• '"~. :~':.'.~ •..••••••• : .•• ~ ••• ~ .••• ,. 3"4~

SlVlMlntel1aCe.~•• ~ ..•• ;,: ~ •...• ~ .• ~ ..• ~ .• ~~:.3=42
~:.: ".". > ~ ,.", . , .. ,. , . :: .. ". ". : .. " .. " .. ,:,.,.;,

P6w~~·M~nagemerit... .•. ..~ ~ •.••.•..• ~ •... :·~.~~.~ '.j.3 .. 44'
Flhaf ••.•....• ~ ••. · ..•..•.•.. ' .•..............•.•...•.••.• . i •••• ··.~ .. ••••••.•••••• : •• \~, .\ •. i:~~·.~r.ii3-4j;·

3-3

Overview

3.1 Overview

The following sections describe the TI486SLC/E input and output signals. The
discussion of these signals is arranged by functional groups as shown in
Figure 3-1. Table 3-1 gives a brief description of each of the TI486SLC/E
signals.

Figure 3-1. TI486SLCIE Functional Signal Groupings

2x Clock ----. CLK2 TI486SLC/E INTR

Reset ----. RESET NMI } Interrupt

{
Control

A23-A1 SMI
Address

BLE Bus
KEN } Internal

BHE Cache

Data 0
FLUSH Interface

Bus
015-00

{
wif5. A20M Address Bit

20 Mask
Bus DIG PEREQ

Cycle
BUSY } Coprocessor Definition MilO

Interface
LOCK ERROR

{= NA HOLD
} Bus

Bus READY HLDA Arbitration
Cycle

Control ADS SUSP } Power

SMADS SUSPA Management

FLT Float
Control

3-4 TI486SLCIE Bus Interface

Overview

Table 3-1. TI486SLCIE Signal Summary

SIGNAL SIGNAL NAME SIGNAL GROUP

A20M Address bit 20 mask

A23-A1 Address bus lines Address bus

ADS Address strobe Bus cycle control

BHE Byte high enable Address bus

BLE Byte low enable Address bus

BUSY Processor extension busy Coprocessor interface

CLK2 2X clock input

D15-DO Data bus lines

D/C Data/control Bus cycle definition

ERROR Processor extension error Coprocessor interface

FLT Float

FLUSH Cache flush Internal cache interface

HLDA Hold acknowledge Bus arbitration

HOLD Hold request Bus arbitration

INTR Maskable interrupt request Interrupt control

KEN Cache enable Internal cache interface

LOCK Bus lock Bus cycle definition

M/IO Memory/input-output Bus cycle definition

NA Next address request Bus cycle control

NMI Non-maskable interrupt request Interrupt control

PEREQ Processor extension request Coprocessor interface

READY Bus ready Bus cycle control

RESET Reset

SMADS SMM address strobe Bus cycle control

SMI System management interrupt Interrupt control

SUSP Suspend request Power management

SUSPA Suspend acknowledge Power management

W/R Write/read Bus cycle definition

The following sections describe the signals and their functional timing
characteristics. Additional signal information may be found in Chapter 5,
Electrical Specifications. Chapter 5 documents the dc and ac characteristics
for the signals including voltage levels, propagation delays, setup times, and
hold times. Specified setup and hold times must be met for proper operation
of the T1486.

3-5

Overview

Table 3-2. Terminal Functions

PIN
I/O DESCRIPTION

NAME NO.

A1 18
A2 51
A3 52
A4 53
A5 54
A6 55
A7 56 Address Bus (active high). The address bus (A23-A 1) signals are 3-state outputs that
A8 58 provide addresses for physical memory and I/O ports. All address lines can be used for
A9 59 addressing physical memory allowing a 16 MByte address space (00 OOOOh to FF

A10 60 FFFFh). During I/O port accesses, A23-A16 are driven low (except for coprocessor
A11 61 accesses). This permits a 64 KByte I/O address space (00 OOOOh to 00 FFFFh).
A12 62 O/Z
A13 64 During all coprocessor I/O access address lines A22-A 16 are driven low and A23 is
A14 65 driven high. This allows A23 to be used by external logic to generate a coprocessor select
A15 66 signal. Coprocessor command transfers occur with address 80 00F8h and coprocessor
A16 70 data transfers occur with addresses 80 OOFCh and 90 OOFEh. A23-A 1 float while the
A17 72 CPU is in a hold acknowledge or float state.
A18 73
A19 74
A20 75
A21 76
A22 79
A23 80

ADS 16 O/Z Address Strobe (active low). This is a 3-state output that indicates the TI486 has driven
a valid address (A23-A 1, BHE, BLE) and bus cycle definition (M/IO), DIG, W/R) on the
appropriate TI486SLC/E output pins. During non-pipelined bus cycles, ADS is active for
the first clock of the bus cycle. During address pipelining, ADS is asserted during the
previous bus cycle and remains asserted until READY is returned for that cycle. ADS
floats while the TI486SLC/E is in a hold acknowledge or float state.

A20M 31 I Address Bit 20 Mask (active low). This input causes the TI486SLC/E to mask (force
low) physical address bit 20 when driving the external address bus or performing an
internal cache access. When the processor is in real mode, asserting A20M emUlates
the 1 MByte address wrap around that occurs on the 8086. The A20 signal is never
masked when paging is enabled regardless of the state of the A20M input. The A20M
input is ignored following reset and can be enabled using the A20M bit in the CCRO
configuration register.

A20M is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

BHE 19 O/Z Byte Enables (active low). Byte Low Enable (BLE) and Syte High Enable (SHE) are
SLE 17 3-state outputs that indicate which byte(s) of the 16-bit data bus will be selected for data

transfer during the current bus cycle. BLE selects the low byte (D7-DO) and SHE selects
the high byte (D15-D8).

When BHE and SLE are asserted, both bytes (all 16 bits) of the data bus are selected.
SLE and SHE float while the CPU is in a hold acknowledge or float state.

BHE = SLE = 1 never occurs during a bus cycle.

3-6 TI486SLCIE Bus Interface

Overview

Table 3-2. Terminal Functions (Continued)

PIN
1/0 DESCRIPTION

NAME NO.

BUSY 34 I Coprocessor Busy (active low). This is an input from the coprocessor that indicates to
the TI486SLC/E that the coprocessor is currently executing an instruction and is not yet
able to accept another opcode. When the TI486SLC/E processor encounters a WAIT
instruction or any coprocessor instruction that operates on the coprocessor stack (Le.,
load, pop, arithmetic operation), BUSY is sampled. BUSY is continually sampled and
must be recognized as inactive before the CPU will supply the coprocessor with another
instruction. However, the following coprocessor instructions are allowed to execute even
if BUSY is active since these instructions are used for coprocessor initialization and
exception clearing: FNINIT, FNCLEX.

BUSY is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

CLK2 15 I 2X Clock Input (active high). This signal is the basic timing reference for the
TI486SLC/E microprocessor. The CLK2 input is internally divided by two to generate the
internal processor clock. The external CLK2 is synchronized to a known phase of the
internal processor clock by the falling edge of the RESET signal. External timing
parameters are defined with respect to the rising edge of CLK2.

00 1
01 100
02 99
03 96
04 95

Data Bus (active high). The Oata Bus (015-00) signals are 3-state bidirectional signals
05 94
06 93

that provide the data path between the TI486SLC/E and external memory and 1/0

07 92
devices. The data bus inputs data during memory read, 1/0 read and interrupt

08 90
I/OIZ acknowledge cycles and outputs data during memory and 1/0 write cycles. Oata read

09 89
operations require that specified data setup and hold times be met for correct operation.

010 88
The data bus signals are high active and float while the CPU is in a hold acknowledge

011 87
or float state.

012 86
013 83
014 82
015 81

O/C 24 OIZ Data/Control. This signal is low during control cycles and is high during data cycles.
Control cycles are issued during functions such as a halt instruction, interrupt servicing
and code fetching. Oata bus cycles include data access from either memory or 1/0.

ERROR 36 I Coprocessor Error (active low). This is an input used to indicate that the coprocessor
generated an error during execution of a coprocessor instruction. ERROR is sampled by
the TI486SLC/E processor whenever a coprocessor instruction is executed. If ERROR
is sampled active, the processor generates exception 16 which is then serviced by the
exception handling software.

Certain coprocessor instructions do not generate an exception 16 even if ERROR is
active. These instructions, which involve clearing coprocessor error flags and saving the
coprocessor state, are listed as follows: FNINIT, FNCLEX, FNSTSW, FNSTCW,
FNSTENV, FNSAVE. ERROR is internally connected to a pullup resistor to prevent it
from floating active when left unconnected.

ERROR is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

FLT 28 I Float (active low). This input forces all bidirectional and output signals to a 3-state
condition. Floating the signals allows the TI486SLC/E signals to be externally driven
without physically removing the device from the circuit. The TI486SLC/E CPU must be
reset following assertion or deassertion of FL T. It is recommended that FL T be used only
for test purposes.

FLT is internally connected to a pullup resistor to prevent it from floating active when left
unconnected.

3-7

Overview

Table 3-2. Terminal Functions (Continued)

PIN
I/O DESCRIPTION

NAME NO.

FLUSH 30 I Cache Flush (active low). This is an input that invalidates (flushes) the entire cache.
Use of FLUSH to maintain cache coherency is optional. The cache may also be
invalidated during each hold acknowledge cycle by setting the BARB bit in the CCRO
configuration register. The FLUSH input is ignored following reset and can be enabled
using the FLUSH bit in the CCRO configuration register.

FLUSH is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

HOLD 4 I Hold Request (active high). This input is used to indicate that another bus master
requests control of the local bus. The bus arbitration (HOLD, HLDA) signals allow the
TI486SLC/E to relinquish control of its local bus when requested by another bus master
device. Once the processor has relinquished its bus (3-stated), the bus master device
can then drive the local bus signals.

After recognizing the HOLD request and completing the current bus cycle or sequence
of locked bus cycles, the TI486SLC/E responds by floating the local bus and asserting
the hold acknowledge (HLDA) output.

Once HLDA is asserted, the bus remains granted to the requesting bus master until
HOLD becomes inactive. When the TI486SLC/E recognizes HOLD is inactive, it
simultaneously drives the local bus and drives HLDA inactive. External pullup resistors
may be required on some of the TI486SLC/E 3-state outputs to guarantee that they
remain inactive while in a hold acknowledge state.

The HOLD input is not recognized while RESET is active. If HOLD is asserted while
RESET is active, RESET has priority and the TI486SLC/E places the bus into an idle
state instead of a hold acknowledge state. The HOLD input is also recognized during
suspend mode provided that the CLK2 input has not been stopped. HOLD is
level-sensitive and must meet specified setup and hold times for correct operation.

HLDA 3 0 Hold Acknowledge (active high). This output indicates that the TI486SLC/E is in a hold
acknowledge state and has relinquished control of its local bus. While in the hold
acknowledge state, the TI486SLC/E drives HLDA active and continues to drive SUSPA,
if enabled. The other TI486SLC/E outputs are in a high-impedance state allowing the
requesting bus master to drive these Signals. If the on-chip cache can satiSfy bus
requests, the TI486SLC/E continues to operate during hold acknowledge states. A20M
is internally recognized during this time.

The processor deactivates HLDA when the HOLD request is driven inactive. The
TI486SLC/E stores an NMI rising edge during a hold acknowledge state for processing
after HOLD is inactive. The FLUSH input is also recognized during a hold acknowledge
state. If SUSP is asserted during a hold acknowledge state, the TI486SLC/E mayor may
not enter suspend mode depending on the state of the internal execution pipeline.
Table 3-3 summarizes the state of the TI486SLC/E signals during hold acknowledge.

INTR 40 I Maskable Interrupt Request. This is a level-sensitive input that causes the processor
to suspend execution of the current instruction stream and begin execution of an interrupt
service routine. The INTR input can be masked (ignored) through the Flags Register IF
bit. When unmasked, the TI486SLC/E responds to the INTR input by issuing two locked
interrupt acknowledge cycles. To assure recognition of the INTR request, INTR must
remain active until the start of the first interrupt acknowledge cycle.

3-8 T1486SLCIE Bus Interface

Overview

Table 3-2. Terminal Functions (Continued)

PIN
I/O DESCRIPTION

NAME NO.

KEN 29 I Cache Enable (active low). This is an input which indicates that the data being returned
during the current cycle is cacheable. When KEN is active and the TI486SLC/E is
performing a cacheable code fetch or memory data read cycle, the cycle is transformed
into a cache fill. Use of the KEN input to control cacheability is optional. The
non-cacheable region registers can also be used to control cacheablity. Memory
addresses specified by the non-cacheable region registers are not cacheable regardless
of the state of KEN. 1/0 accesses, locked reads, SMM address space accesses, and
interrupt acknowledge cycles are never cached.

During cached code fetches, two contiguous read cycles are performed to completely
fill the 4-byte cache line. KEN must be asserted during both read cycles in order to cause
a cache line fill. During cached data reads, the TI486SLC/E performs only those bus
cycles necessary to supply the required data to complete the current operation. Valid bits
are maintained for each byte in the cache line, thus allowing data operands of less than
4 bytes to reside in the cache.

During any cache fill cycle with KEN asserted, the TI486SLC/E ignores the state of the
byte enables (BHE and BLE) and always writes two bytes of data into the cache. The
KEN input is ignored following reset and can be enabled using the KEN bit in the CCRD
configuration register.

KEN is internally connected to a pullup resistor to prevent it from floating active when left
unconnected.

LOCK 26 I LOCK (active low). LOCK is asserted to deny control of the CPU bus to other bus
masters. The LOCK signal may be explicitly activated during bus operations by including
the LOCK prefix on certain instructions. LOCK is always asserted during descriptor and
page table updates, interrupt acknowledge sequences and when executing the XCHG
instruction. The TI486SLC/E does not enter the hold acknowledge state in response to
HOLD while the LOCK input is active.

MilO 23 OIZ MemoryllO. This signal is low during 1/0 read and write cycles and is high during
memory cycles.

NA 6 I Next Address Request (active low). This is an input used to request address pipelining
by the system hardware. When asserted, the system indicates that it is prepared to
accept new bus cycle definition and address signals (MilO, DIG, W/R, A23-A 1, BHE, and
BLE) from the microprocessor even if the current bus cycle has not been terminated by
assertion of READY. If the TI486SLC/E has an internal bus request pending and the NA
input is sampled active, the next bus cycle definition and address signals are driven onto
the bus.

NC 27,45,46 - No connection. Should be left disconnected.

NMI 38 I Non-maskable Interrupt Request. This is a rising-edge-sensitive input that causes the
processor to suspend execution of the current instruction stream and begin execution
of an NMI interrupt service routine. The NMI interrupt service request cannot be masked
by software. Asserting NMI causes an interrupt which internally supplies interrupt vector
2h to the CPU core. External interrupt acknowledge cycles are not necessary since the
NMI interrupt vector is supplied internally.

The TI486SLC/E samples NMI at the beginning of each phase 2. To assure recognition,
NMI must be inactive for at least eight CLK2 periods and then be active for at least eight
CLK2 periods. Additionally, specified setup and hold times must be met to guarantee
recognition at a particular clock edge.

3-9

Overview

Table 3-2. Terminal Functions (Continued)

PIN
I/O DESCRIPTION

NAME NO.

PEREa 37 I Coprocessor Request (active high). This is an input that indicates the coprocessor is
ready to transfer data to or from the CPU. The coprocessor may assert PEREQ in the
process of executing a coprocessor instruction. The TI486SLC/E internally stores the
current coprocessor opcode and performs the correct data transfers to support
coprocessor operations using PEREQ to synchronize the transfer of required operands.

PEREa is internally connected to a pulldown resistor to prevent this signal from floating
active when left unconnected.

READY 7 I Ready. This is an input generated by the system hardware that indicates the current bus
cycle can be terminated. During a read cycle, assertion of READY indicates that the
system hardware has presented valid data to the CPU. When READY is sampled active,
the TI486SLC/E latches the input data and terminates the cycle. During a write cycle,
READY assertion indicates that the system hardware has accepted the TI486SLC/E
output data. READY must be asserted to terminate every bus cycle, including halt and
shutdown indication cycles.

RESET 33 I Reset (active high). When asserted, RESET suspends all operations in progress and
places the TI486SLC/E into a reset state. RESET is a level-sensitive synchronous input
and must meet specified setup and hold times to be properly recognized by the
TI486SLC/E. The TI486SLC/E begins executing instructions at physical address
location FF FFFOh approximately 400 CLK2s after RESET is driven inactive (low).

While RESET is active all other input pins, except FLT, are ignored. The remaining
signals are initialized to their reset state during the internal processor reset sequence.
The reset signal states for the TI486SLC/E are shown in Table 3-3.

SMADS 20 O/Z SMM Address Strobe (active low). SMADS is asserted instead of the ADS during SMM
bus cycles and indicates that SMM memory is being accessed. SMADS floats while the
CPU is in a hold acknowledge or float state. The SMADS output is disabled (floated)
following reset and can be enabled using the SMI bit in the CCR1 configuration register.

SMI 47 I/O System Management Interrupt (active low). This is a bidirectional signal and level
sensitive interrupt with higher priority than the NMI interrupt. SMI must be active for at
least four CLK2 clock periods to be recognized by the TI486SLC/E. After the SMI
interrupt is acknowledged, the SMI pin is driven low by the TI486SLC/E for the duration
of the SMI service routine. The SMI input is ignored following reset and can be enabled
using the SMI bit in the CCR1 configuration register.

SMI is internally connected to a pullup resistor to prevent it from floating active when left
unconnected.

SUSP 43 I Suspend Request (active low). This is an input that requests the TI486SLC/E enter
suspend mode. After recognizing SUSP active, the processor completes execution of
the current instruction, any pending decoded instructions and associated bus cycles. In
addition, the TI486SLC/E waits for the coprocessor to indicate a not busy status
(BUSY = 1) before entering suspend mode and asserting suspend acknowledge
(SUSPA).

SUSP is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

SUSPA 44 0 Suspend Acknowledge (active low). This output indicates that the TI486SLC/E has
entered the suspend mode as a result of SUSP assertion or execution of a HALT
instruction.

3-10 T1486SLCIE Bus Interface

Overview

Table 3-2. Terminal Functions (Continued)

PIN
I/O DESCRIPTION

NAME NO.

Vee 8 I 5-V Power Supply. All pins must be connected and used.
9
10
21
32
39
42
48
57
69
71
84
91
97

VSS 2 I Ground Pins. All pins must be connected and used.
5
11
12
13
14
22
35
41
49
50
63
67
68
77
78
85
98

W/R 25 O/Z Write/Read. W/R is low during read cycles (data is read from memory or I/O) and is high
during write bus cycles (data is written to memory or I/O).

3-11

OveNiew

Table 3-3. Signal States During RESET and Hold Acknowledge

SIGNAL SIGNAL STATE SIGNAL STATE DURING
NAME DURING RESET HOLD ACKNOWLEDGE

A20M Ignored Input recognized

A23-A1 1 Float

ADS 1 Float

BHE,BLE 0 Float

BUSY Initiates self test Ignored

015-00 Float Float

DIG 1 Float

ERROR Ignored Ignored

FLT Input recognized Input recognized

FLUSH Ignored Input recognized

HLDA 0 1

HOLD Ignored Input recognized

INTR Ignored Input recognized

KEN Ignored Ignored

LOCK 1 Float

MIlO 0 Float

NA Ignored Ignored

NMI Ignored Input recognized

PEREa Ignored Ignored

READY Ignored Ignored

RESET Input recognized Input recognized

SMADS Float Float

SMI Ignored Input recognized

SUSP Ignored Input recognized

SUSPA Float Driven

W/R 0 Float

3-12 TI486SLCIE Bus Interface

Overview

3.1.1 Bus Cycle Definition

The bus cycle definition (MilO, DIG, WiR, LOCK) signals consist of four 3-state
outputs that define the type of bus cycle operation being performed. Table 3-4
defines the bus cycles for the possible states of these signals. MilO, DIG and
WiR are the primary bus cycle definition signals and are driven valid as ADS
(Address Strobe) becomes active. During non-pipelined cycles, the LOCK
output is driven valid along with MilO, DIG and WiR. During pipelined
addressing, LOCK is driven at the beginning of the bus cycle, which is after
ADS becomes active for that cycle. The bus cycle definition signals are active
low and float while the TI486SLC/E is in a hold acknowledge or float state.

Table 3-4. Bus Cycle Types

MilO DIC W/R LOCK BUS CYCLE TYPE

0 0 0 0 Interrupt acknowledge

0 0 0 1 -
0 0 1 X -
0 1 X 0 -

0 1 0 1 I/O data read

0 1 1 1 I/O data write

1 0 X 0 -
1 0 0 1 Memory code read

1 0 1 1 Halt: A23-A1=2h, BHE=1 and BLE=O
Shutdown: A23-A 1 =Oh, BHE=1 and BLE=O

1 1 0 0 Locked memory data read

1 1 0 1 Memory data read

1 1 1 0 Locked memory data write

1 1 1 1 Memory data write

X = don't care
- = does not occur

3-13

Overview

3.1.2 Power Management

The power management signals allow the TI486SLC/E to enter suspend
mode. Suspend mode circuitry allows the TI486SLC/E to consume minimal
power while maintaining the entire internal CPU state.

3.1.2.1 Suspend Request (SUSP)

Suspend Request (SUSP) is an active-low input that requests the TI486SLC/E
to enter suspend mode. After recognizing SUSP is active, the processor
completes execution of the current instruction, any pending decoded
instructions and associated bus cycles. In addition, the TI486SLC/E waits for
the coprocessor to indicate a not busy condition (BUSY=1) before entering
suspend mode and asserting suspend acknowledge (SUSPA). During
suspend mode, internal clocks are stopped and only the logic associated with
monitoring RESET, HOLD and FLUSH remains active. With SUSPA asserted,
the CLK2 input to the TI486SLC/E can be stopped in either phase. Stopping
the CLK2 input further reduces current consumption of the TI486SLC/E.

To resume operation, the CLK2 input is restarted (if stopped), followed by
deassertion of the SUSP input. The processor then resumes instruction
fetching and begins execution in the instruction stream at the point it had
stopped. The SUSP input is level sensitive and must meet specified setup and
hold times to be recognized at a particular clock edge. The SUSP input is
ignored following reset and can be enabled using the SUSP bit in the CCRO
configuration register.

3.1.2.2 Suspend Acknowledge (SUSPA)

3-14

The Suspend Acknowledge (SUSPA) output indicates that the TI486SLC/E
has entered the suspend mode as a result of SUSP assertion or execution of
a HALT instruction. If SUSPA is asserted and the CLK2 input is switching, the
TI486SLC/E continues to recognize FLT, RESET, HOLD, and FLUSH. If
suspend mode was entered as the result of a HALT instruction, the
TI486SLC/E also continues to monitor the NMI input and an unmasked INTR
input. Detection of INTR or NMI forces the TI486SLC/E to exit suspend mode
and begin execution of the appropriate interrupt service routine. The CLK2
input to the processor may be stopped after SUSPA has been asserted to
further reduce the power consumption of the TI486SLC/E. The SUSPA output
is disabled (floated) following reset and can be enabled using the SUSP bit in
the CCRO configuration register.

TI486SLCIE Bus Interface

Overview

Table 3-5 shows the state of the TI486SLC/E signals when the device is in
suspend mode.

Table 3-5. Signal States During Suspend Mode

SIGNAL SIGNAL STATE DURING SIGNAL STATE DURING HALT
NAME HOLD ACKNOWLEDGE INITIATED SUSPEND MODE

A20M Ignored Ignored

A23-A1 1 1

ADS 1 1

BHE, BLE 0 0

BUSY Ignored Ignored

015-00 Float Float

DIC 1 1

ERROR Ignored Ignored

FLT Input recognized Input recognized

FLUSH Input recognized Input recognized

HLDA 0 0

HOLD Input recognized Input recognized

INTR Latched Input recognized

KEN Ignored Ignored

LOCK 1 1

MilO 0 0

NA Ignored Ignored

NMI Latched Input recognized

PEREQ Ignored Ignored

READY Ignored Ignored

RESET Input recognized Input recognized

SMADS 1 1

SMI Latched Input recognized

SUSP Input recognized Ignored

SUSPA 0 0

W/R 0 0

3.1.2.3 Coprocessor Interface

The data bus, address bus, and bus cycle definition signals, as well as the
coprocessor interface signals (PREQ, BUSY, ERROR), are used to control
communication between the TI486SLC/E and a coprocessor. Coprocessor or
ESC opcodes are decoded by the TI486SLC/E and the opcode and operands
are then transferred to the coprocessor via liD port accesses to addresses
80 00F8h, 80 OOFCh, or 80 OOFEh. Address 80 00F8h functions as the control
port address and 80 00 FCh and 80 OOFEh are used for operand transfers.

3-15

Functional Timing

3.2 Functional Timing

3.2.1 Reset Timing and Internal Clock Synchronization

RESET is the highest priority input signal and is capable of interrupting any
processor activity when it is asserted. When RESET is asserted, the
TI486SLC/E aborts any bus cycle. Idle, hold acknowledge, and suspend
states are also discontinued and the reset state is established. RESET is used
when the TI486SLC/E microprocessor is powered up to initialize the CPU to
a known valid state and to synchronize the internal CPU clock with external
clocks.

RESET must be asserted for at least 15 CLK2 periods to ensure recognition
by the TI486SLC/E microprocessor. If the self-test feature is to be invoked,
RESET must be asserted for at least 80 CLK2 periods. RESET pulses less
than 15 CLK2 periods may not have sufficient time to propagate throughout
the TI486SLC/E and may not be recognized. RESET pulses less than 80 CLK2
periods followed by a self-test request may incorrectly report a self-test failure
when no true failure exists.

Provided the RESET falling edge meets specified setup and hold times, the
internal processor clock phase is synchronized as illustrated in Figure 3-2.
The internal processor clock is half the frequency of the CLK2 input and each
CLK2 cycle corresponds to an internal CPU clock phase. Phase 2 of the
internal clock is defined to be the second rising edge of CLK2 following the
falling edge of RESET.

Following the falling edge of REST (and after self-test if it was requested), the
TI486SLC/E microprocessor performs an internal initialization sequence for
approximately 400 CLK2 periods. The TI486SLC/E self-test feature is invoked
if the BUSY input is in an active-low state when RESET falls inactive. The
self-test sequence requires approximately (220 + 60) CLK2 periods to
complete. Even if the self-test indicates a problem, the TI486SLC/E
microprocessor attempts to proceed with the reset sequence. Figure 3-3
illustrates the bus activity and timing during the TI486SLC/E reset sequence.

Upon completion of self-test, the EAX register contains 0000 OOOOh if the
TI486SLC/E microprocessor passed its internal self-test with no problems
detected. Any non-zero value in the EAX register indicates that the
microprocessor is faulty.

Figure 3-2. Internal Processor Clock Synchronization

<I> 2 or <1>1 <1>2 <1>1

CLK2

I I I
I I I

RESET :1 ~~~ __ -+ __________ ~ ________ ~: __________ ~: __ __
- I I

I I I

INTERNAL ~ I~I ______ ~IVI
PROCESSOR, I : \

CLOCK '
I I

3-16 TI486SLCIE Bus Interface

Functional Timing

Figure 3-3. Bus Activity from RESET until First Code Fetch

ClK2

RESET

r.---- Reset -----II.~I~..---- Internal .1 Cycle 1
Initialization Non-Plpehned

;:=: 15ClK2 duration if not
going to request self-test.
;:=: 80 ClK2 duration before
requsting self-test.

I
I
I

(If self-test is performed, add II (Read)
~ 2020 + 60* to these numbers T1 T2 1 2 3m~'

* Approximately

\~----------------~I----~I -
ClK --v-V-v-v-v-1.

(lnternal)~

1<1>21 <1>11 <1>21 <1>11<1>2 <1>1 <1>2 1<1>11<1>21

~i1J1\...
I I

BUSY ~\ High for no Se~-Test (see Note) \~~
~ low to Begin Self Test ~

Note: BUSY should be held stable for 80 ClK2 periods before and after the ClK2 period in which RESET falling edge occurs.

3.2.2 Bus Operation

The TI486SLC/E microprocessor communicates with the external system
through separate, parallel buses for data and address. This is commonly
called a demultiplexed address/data bus. This demultiplexed bus eliminates
the need for address latches required in multiplexed address/data bus
configurations where the address and data are presented on the same pins
at different times.

TI486SLC/E instructions can act on memory data operands consisting of 8-bit
bytes, 16-bit words or 32-bit double words. The TI486SLC/E bus architecture
allows for bus transfers of these operands without restrictions on physical
address alignment. Any byte boundary may require more than one bus cycle
to transfer the operand. This feature is transparent to the programmer.

3-17

Functional Timing

3-18

The TI486SLC/E data bus (015-00) is a 16-bit-wide bidirectional bus. The
TI486SLC/E drives the data bus during write bus cycles, and the external
system hardware drives the data bus during read bus cycles. The address bus
provides a 24-bit value using 23 signals for the 23 upper-order address bits
(A23-A 1), defining which 16-bit word is being accessed, and two byte enable
signals (SHE and SLE) to directly indicate which of the two bytes within the
word are active.

Every bus cycle begins with the assertion of the address strobe (ADS). ADS
indicates that the TI486SLC/E has issued a new address and new bus cycle
definition signals. A bus cycle is defined by four signals: MilO, WiR, o/c and
LOCK. MilO defines if a memory or 1/0 operation is occurring, wif5.. defines the
cycle to be read or write, and o/c indicates whether a data or control cycle is
in effect. LOCK indicates that the current cycle is a locked bus cycle. Every bus
cycle completes when the system hardware returns READY asserted.

The TI486SLC/E performs the following bus cycle types:

• Memory read
• Locked memory read
• Memory write
• Locked memory write
• 1/0 read (or coprocessor read)
• 1/0 write (or coprocessor write)
• Interrupt acknowledge (always locked)

• Halt/shutdown

When the TI486SLC/E microprocessor has no pending bus requests, the bus
enters the idle state. There is no encoding of the idle state on the bus cycle
definition signals; however, the idle state can be identified by the absence of
further assertions of ADS following a completed bus cycle.

TI486SLCIE Bus Interface

Functional Timing

3.2.2.1 Bus Cycles Using Non-Pipelined Addressing

Non-Pipelined Bus States

The shortest time unit of bus activity is a bus state, commonly called a T state.
A bus state is one internal processor clock period (two CLK2 periods) in
duration. A complete data transfer occurs during a bus cycle, composed oftwo
or more bus states.

The first state of a non-pipelined bus cycle is called T1. During phase one (first
CLK2) of T1 , the address bus and bus cycle definition signals are driven valid
and, to signal their availability, address strobe (ADS) is simultaneously
asserted.

The second bus state of a non-pipelined cycle is called T2. T2 terminates a bus
cycle with the assertion of the READY input and valid data is either input or
output depending on the bus cycle type. The fastest TI486SLC/E
microprocessor bus cycle requires only these two bus states. READY is
ignored at the end of the T1 state.

Three consecutive bus read cycles, each consisting of two bus states, are
shown in Figure 3-4.

Figure 3-4. Fastest Non-Pipelined Read Cycles

1 Cycle 1 1 Cycle 2 1 Cycle 3 1 r Non-Pipelined ----'r Non-Pipelined .14 Non-Pipelined ~
1 (Read) 1 (Read) 1 (Read) 1

1 T1 1 T2 1 T1 1 T2 1 T1 T2 1
<1>11 <1>21 <1>11 <1>2 <1>11 <1>21 <1>11 <1>2 <1>11 <1>11 <1>2 <1>1

CLK2

1 1 1 1 1 1 1

A23-~~6~~/~, ~M ---I~I-""""'--V""~I-id-1 ---Ico~-'---V--~-lid-2---:I-X""""'--v"":al-id-3--"'~~-

1 1 1 1 1 1 1

l\ V,------il.~ V,------i\:\ II :'--
1 ~-~I 1 ~-~I 1 ~-~I 1

NA --~I--------I--------I--------I--------I------~I--------I----
1 1 1 1 1 1 1

READY

015-00
(Input During Read)

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1

X Valid 1 ~ ~alid 2 X Valid 3 «
i i
1 1 1 1 1 1 1

~--r--~--r--~--r--~
1 : 1 : 1 : 1

Note: Fastest non-pipelined bus cycles consist of T1 and T2.

3-19

Functional Timing

Non-Pipelined Read and Write Cycles

Any bus cycle may be performed with non-pipelined address timing.
Figure 3-5 shows a mixture of read and write cycles with non-pipelined
address timing. When a read cycle is performed, the TI486SLC/E
microprocessor floats its data bus and the externally addressed device then
drives the data. The TI486SLC/E microprocessor requires that all data bus
pins be driven to a valid logic state (high or low) at the end of each read cycle,
when READY is asserted. When a read cycle is acknowledged by READY
asserted in the T2 bus state, the TI486SLC/E CPU latches the information
present at its data pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the TI486SLC/E
CPU beginning in phase two of T1. When a write cycle is acknowledged, the
TI486SLC/E write data remains valid throughout phase one of the next bus
state to provide write data hold time.

Figure 3-5. Various Non-Pipelined Bus Cycles (No Wait States)

I I Cycle 1 I Cycle 2 I Cycle 3 I
I Idle I Non-Pipelined I Non-Pipelined I Non-Pipelined I Idle
I I (Write) I (Read) I (Write) I
I I I I I
I Ti I T1 T2 I T1 I T1 I Ti

CLK2

Cycle 4
Non-Pipelined

(Read)

T1

I
I Idle

I
I
I Ti

B~*£~ ~ V~lid 1 ~ +d 2 ~ V~lid 3 ;xw$ V~lid4 ~
WiR~ i ~ i r i ~ i ~
ADS I I I I I I I I ---t------II

I I I I I I I I

NA

REAoY~l.l.l-'l~
I I I End Cycle 1 I End Cycle 2 I End Cycle 3 I I End Cy~

LOCK ~ V~lid 1 « Vflid 2 « V~lid 3 ~ V~lid 4 ~

015-00 -t---t-< : OUI1: >-i--<$><: O~~ }+--~--<$>--1
Note: Idle states are shown here for diagram variety only.

3-20 Tl486SLCIE Bus Interface

Functional Timing

Non-Pipelined Wait States

Once a bus cycle begins, it continues until acknowledged by the external
system hardware using the TI486SLC/E READY input. Acknowledging the
bus cycle at the end of the first T2 results in the shortest possible bus cycle,
requiring only T1 and T2. If READY is not immediately asserted however, T2
states are repeated indefinitely until the READY input is sampled active. These
intermediate T2 states are referred to as wait states. If the external system
hardware is not able to receive or deliver data in two bus states, it withholds
the READY signal and at least one wait state is added to the bus cycle. Thus,
on an address-by-address basis the system is able to define how fast a bus
cycle completes.

Figure 3-6 illustrates non-pipelined bus cycles with one wait state added to
cycles 2 and 3. READY is sampled inactive at the end of the first T2 state in
cycles 2 and 3. Therefore, the T2 state is repeated until READY is sampled
active at the end of the second T2 and the cycle is then terminated. The
TI486SLC/E ignores the READY input at the end of the T1 state.

Figure 3-6. Various Non-Pipelined Bus Cycles with Different Numbers of Wait States

I I Cycle 1 I Cycle 2 I I Cycle 3 I
I Idle I Non-Pipelined I Non-Pipelined I Idle I Non-Pipelined I Idle
I I (Read) I (Write) I I (Read) I
I I I I I I
I Ti I T1 I T1 T2 T2 I Ti I T1 T2 T2 I Ti

CLK2

A23-A1, ~/--...I.-----" ----'--....I:~-~(8<1 i~ I
BHE, BLs XSQ/lIl<l<lIX5I Valid 2 , Valid 3 [I ~
MlIO,DIC ~

i ~I i 1

ADS I I I I I I I I I I I

NA~~~
R~~~i~i~:~!~:~
~+~I +~I +

__ 1 1 1 End Cycle 1 1 1 End Cycle 2 1 1 End Cy~
LOCK ~ V~lid 1 « ; Valid 21 ~ ; Valid ~ (,\,wu~

015-00 +--+--l--<$>~: O~2 : >-+--+--l--<$>-1
Note: Idle states are shown here for diagram variety only.

3-21

Functional Timing

Initiating and Maintaining Non-Pipelined Cycles

The bus states and transitions for non-pipelined addressing are illustrated in
Figure 3-7. The bus transitions between four possible states: T1, T2, Ti, and
Th. Active bus cycles consist of T1 and T2 states, with T2 being repeated for
wait states. Bus cycles always begin with a single T1 state. T1 is always
followed by a T2 state. If a bus cycle is not acknowledged during a given T2
and NA is inactive, T2 is repeated resulting in a wait state. When a cycle is
acknowledged during T2, the following state is T1 of the next bus cycle if a bus
request is pending internally. If no internal bus request is pending, the Ti state
is entered. If the HOLD input is asserted and the TI486SLC/E is ready to enter
the hold acknowledge state, the Th state is entered.

Figure 3-7. Non-Pipelined Bus States

Bus States:

HOLD Negated
No Request

HOLD Asserted

HOLD Asserted

HOLD Negated
Request Pending

READY Asserted
HOLD Negated

No Request

READY Asserted
HOLD Asserted

Request Pending
HOLD Negated

READY Asserted
HOLD Negated

Request Pending

T1 - First clock of a non-pipelined bus cycle (QEU drives new address and asserts ADS)
T2 - Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.
Ti - Idle State
Th - Hold Acknowledge (CPU asserts HLDA)

The fastest bus cycle consists of two states: T1 and T2.

3-22 Tl486SLCIE Bus Interface

Functional Timing

Because of the demultiplexed nature of the bus, the address pipelining option
provides a mechanism for the external hardware to have an additional T state
of access time without inserting a wait state. After the reset sequence and
following any idle bus state, the processor always uses non-pipelined address
timing. Pipelined or non-pipelined address timing is then determined on a
cycle-by-cycle basis using the NA input. When address pipelining is not used,
the address and bus cycle definition remain valid during all wait states. When
wait states are added and it is desirable to maintain non-pipelined address
timing, it is necessary to negate NA during each T2 state of the bus cycle
except the last one.

3.2.2.2 Bus Cycles Using Pipelined Addressing

The address pipelining option allows the system to request the address and
bus cycle definition of the next internally pending bus cycle before the current
bus cycle is acknowledged with READY asserted. If address pipelining is
used, the external system hardware has an extra T state of access time to
transfer data. The address pipelining option is controlled on a cycle-by-cycle
basis by the state of the NA input.

Pipelined Bus States

Pipelined addressing is always initiated by asserting NA during a
non-pipelined bus cycle. Within the non-pipelined bus cycle, NA is sampled at
the beginning of phase 2 of each T2 state and is only acknowledged by the
TI486SLC/E during wait states. When address pipelining is acknowledged,
the address (BHE, BLE, and A23-A 1) and bus cycle definition (WiR, DIG, and
MilO) of the next bus cycle are driven before the end of the non-pipelined
cycle. The address status output (ADS) is asserted simultaneously to indicate
validity of the above signals. Once in effect, address pipelining is maintained
in successive bus cycles by continuing to assert NA during the pipelined bus
cycles.

As in non-pipelined bus cycles, the fastest bus cycles using pipelined address
require only two bus states. Figure 3-8 illustrates the fastest read cycles using
pipelined address timing. The two bus states for pipelined addressing are T1 P
and T2P or T1 P and T21. The T1 P state is entered following completion of the
bus cycle in which the pipelined address and bus cycle definition information
was made available and is the first bus state of every pipelined bus cycle. In
other words, the T1 P state follows a T2 state if the previous cycle was
non-pipelined, and follows a T2P state if the previous cycle was pipelined.

3-23

Functional Timing

Figure 3-8. Fastest Pipelined Read Cycles
I Cycle 1 I
I Pipelined I

(Read)
I T1P T2P I
I <\>2: <\> 1 I<\>2 I

Cycle 2 I
Pipelined I
(Read)

T1P I T2P I
<\> 2 I<\>1 I <\>2 I

Cycle 3 I
Pipelined I
(Read)

T1P T2P
I

I I
<\> 2 I<\>1 I <\>2

CLK2

A23-A1, BHE, BLE,
M/IO,D~,wffi __ ~ ____ ~~~ ____ ~ ____ ~~ ______ ~ ____ ~~~ ____ ~ ___

NA

READY

015-00
(Input During Read)

I I I I

X Valid 1 ~ Valid 2 X Valid 3 «
i i
I I I I I I I

~--r--~--r--~--r--~
I : I : I : I

Note: Fastest pipelined bus cycles consist of T1 P and T2P.

3-24

Within the pipelined bus cycle, NA is sampled at the beginning of phase 2 of
the T1 P state. If the TI486SLC/E has an internally pending bus request and
NA is asserted, the T1 P state is followed by a T2P state and the address and
bus cycle definition for the next pending bus request is made available. If no
pending bus request exists, the T1 P state is followed by a T21 state regardless
of the state of NA and no new address or bus cycle information is driven.

The pipelined bus cycle is terminated in either the T2P or T21 states with the
assertion of the READY input and valid data is either input or output depending
on the bus cycle type. READY is ignored at the end of the T1 P state.

Pipelined Read and Write Cycles

Any bus cycle may be performed with pipelined address timing. When a read
cycle is performed, the TI486SLC/E microprocessor floats its data bus and the
externally addressed device then drives the data. When a read cycle is
acknowledged by READY asserted in either the T2P or T21 bus state, the
TI486SLC/E CPU latches the information present at its data pins and
terminates the cycle.

When a write cycle is performed, the data bus is driven by the TI486SLC/E
CPU beginning in phase 2 of T1 P. When a write cycle is acknowledged, the
TI486SLC/E write data remains valid throughout phase 1 of the next bus state
to provide write data hold time.

TI486SLCIE Bus Interface

Functional Timing

Pipelined Wait States

Once a pipelined bus cycle begins, it continues until acknowledged by the
external system hardware using the TI486SLC/E READY input.
Acknowledging the bus cycle at the end of the first T2P or T21 state results in
the shortest possible pipelined bus cycle. If READY is not immediately
asserted, however, T2P or T21 states are repeated indefinitely until the READY
input is sampled active. Additional T2P or T21 states are referred to as wait
states.

Figure 3-9 illustrates pipelined bus cycles with one wait state added to cycles
1 through 3. Cycle 1 is a pipelined cycle with NA asserted during T1 P and a
pending bus request. READY is sampled inactive at the end of the first T2P
state in cycle 1. Therefore, the T2P state is repeated until READY is sampled
active at the end of the second T2P and the cycle is then terminated. The
TI486SLC/E ignores the READY input at the end of the T1 P state. Note that
ADS, the address and the bus cycle definition signals for the pending bus cycle
are all valid during each of the T2P states. Also, asserting NA more than once
during the cycle has no additional effects. Pipelined addressing can only
output information for the very next bus cycle.

Cycle 2 in Figure 3-9 illustrates a pipelined cycle, with one wait state, where
NA is not asserted until the second bus state in the cycle. In this case, the CPU
enters the T2 state following T1 P because NA is not asserted. During the T2
state, the TI486SLC/E samples NA asserted. Because a bus request is
pending internally and READY is not active, the CPU enters the T2P state and
asserts ADS, valid address and bus cycle definition information for the
pending bus cycle. The cycle is then terminated by an active READY at the end
of the T2P state.

Cycle 3 of Figure 3-9 illustrates the case where no internal bus request exists
until the last state of a pipelined cycle with wait states. In cycle 3, NA is asserted
in T1 P requesting the next address. Because the CPU does not have an
internal bus request pending, The T21 state is entered. However, by the end
of the T21 state, a bus request exists. Because READY is not asserted, a wait
state is added. The CPU then enters the T2P and asserts ADS and valid
address and bus cycle definition information for the pending bus cycle. As long
as the CPU enters the T2P state at some point during the bus cycle, pipelined
addressing is maintained. NA needs to be asserted only once during the bus
cycle to request pipelined addressing.

3-25

Functional Timing

Figure 3-9. Various Pipelined Cycles (One Wait State)

CLK2

A23-A1,
SHE, BLE,
MilO, DIG

WiR

READY

015-00

3-26

I ...
I
I
I
I

T1P

Cycle 1
• 1 ...

Cycle 2
~ ... Pipelined Pipelined

(Write) I (Read) I
I I

T2P T2P I T1P T2 T2P I
I I

T1P

Cycle 3 Cycle 4
~ ... Pipelined Pipelined
I (Write)

T21

(Read)
I

T2P I T1P
I

I
~ I I
ADS is asserted as soon
as the CPU has another
bus cycle to perform,
which is not alwa}ls
immediately after NA is
asserted.

r---+---~~~~

I I

I I
I 1 I I

As long as the CPU enters the T2P
state during Cycle 3, address pipelining
is maintained in Cycle 4.

1- I I -I I I I
Asserting NA more than NA could have been asserted in I
once during any cycle has I T1 P if desired. Assertion now is
no additional effects. I the latest time possible to allow I

I I I the CPU to enter T2P state to I
I I I maintain pipelining in Cycle 3. I

I I I I iii I I

~: ~:~:~:~~~~~~~~~~

~ : Valid 1: ~ : Valid 2: ~ : valid~ ~ validt

tut X; Out'1 ') I I ~,....a.; ---~-u-t 3-..... ; ----,.+
I I I I

Tl486SLCIE Bus Interface

Functional Timing

Initiating and Maintaining Pipelined Cycles

Pipelined addressing is always initiated by asserting NA during a
non-pipelined bus cycle with at least one wait state. For the first bus cycle
following RESET, an idle bus, or a hold acknowledge state is always
non-pipelined. Therefore, the TI486SLC/E always issues at least one
non-pipelined bus cycle following RESET, idle, or hold acknowledge before
pipelined addressing takes effect.

Once a bus cycle is in progress and the current address has been valid for one
entire bus state, the NA input is sampled at the end of every phase one until
the bus cycle is acknowledged. Once NA is sampled active, the TI486SLC/E
microprocessor is free to drive a new address and bus cycle definition on the
bus as early as the next bus state and as late as the last bus state in the cycle.

Figure 3-10 illustrates the fastest transition possible to pipelined addressing
following an idle bus state. In Cycle 1, NA is driven during state T2. Thus, Cycle
1 makes the transition to pipelined address timing, since it begins with T1 but
ends with T2P. Because the address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle, and it begins with a T1 P state.
Cycle 2 begins as soon as READY asserted terminates Cycle 1.

Figure 3-10. Fastest Transition to Pipelined Address Following Idle Bus State

Idle , ,
.~

,
, T1

CLK2

Cycle 1
Non-Pipelined

(Write)

Cycle 2
Pipelined ,
(Read) , . ,.. ., ..

T1P , T2P :

Cycle 3
Pipelined ,
(Write) , ., ..

, ,
, T2P , T1P

Cycle 4
Pipelined
(Read)

, Idle
,

.r-

A23-A1 _
BHE, BLs
MIlO, OIC ~~~~~--~-"""'~-...,....--~----r--~i'---.,......-"""'~~~~~~~~

iA@
,

LOCK ~~~~_~_va_l_id~I __ ~~_va~il_id_2_~~_~~~~lid_3_-+ __ ~_~~_-+~~~
, , ,

Out 1 015-00 -L--.L.-< , ,-.~--~--~-

Note: Following any idle bus state (Ti) the address is always non-pipelined and NA is sampled only during wait states. To start
address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The
pipelined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

3-27

Functional Timing

Figure 3-11 illustrates transitioning to pipelined addressing during a burst of
bus cycles. Cycle 2 makes the transition to pipelined addressing. Comparing
Cycle 2 to Cycle 1 of Figure 3-10 illustrates that a transition cycle is the same
whenever it occurs consisting of at least T1, T2 (NA is asserted at that time),
and T2P (provided the TI486SLC/E microprocessor has an internal bus
request already pending). T2P states are repeated if wait states are added to
the cycle. Cycles 2, 3, and 4 in Figure 3-11 show that once address pipe lining
is achieved it can be maintained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined timing is maintained for
the next cycle by asserting NA and detecting that the TI486SLC/E
microprocessor enters T2P during the current bus cycle. The current bus cycle
must end in state T2P for pipelining to be maintained in the next cycle. T2P is
identified by the assertion of ADS. Figure 3-10 and Figure 3-11 each show
pipelining ending after Cycle 4. This occurred because the TI486SLC/E CPU
did not have an internal bus request prior to the acknowledgment of Cycle 4.

Figure 3~ 11. Transitioning to Pipelined Address During Burst of Bus Cycles

I Cycle 1
Idle 1 Non-Pipelined

+
Ti 1

CLK2

A23-A1,~1 I
BHE, BLs
M/IO,D/C

(Write)

T1

I
1

.1 ..
1
I

Cycle 2 I
Non-Pipelined I

(Read)
.~

T1 T2P I

Cycle 3 1

Pipelined I
(Write) .1 ..

Cycle 4
Pipelined
(Read)

1 1
T1P I T2P I T1P

wlR i~~&"--r-l------I-'

1.1 , • I

~i ~ I I 1
1 1 1 « : Valid 2; « V~lid3 ~ V~lid4 ~

:
1 1-$: I 1 -<$> 1 Out 1 }-I- In4--1 }-T--I- In 2 < Out 3

1 I I I 1
I I I I I I I I

Note: Following any idle bus state (Ti) , addresses are non-pipelined bus cycles, NA is sampled only during wait states.

3-28

Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at
least one wait state (Cycle 2 above).

The complete bus state transition diagram, including operation with pipelined
address is given in Figure 3-12. This is a superset of the diagram for
non-pipelined address. The three additional bus states for pipelined address
are shaded.

TI486SLCIE Bus Interface

Functional Timing

Figure 3-12. Complete Bus States

HOLD Asserted

READY Asserted·
HOLD Asserted

READY Asserted·
HOLD Asserted

NA Asserted·
(HOLD Asserted +

HOLD Asserted

Request Pending·
HOLD Negated

READY Asserted·
HOLD Negated·

No Request

HOLD Negated·
Request Pending

~---r-- READY Asserted·
HOLD Negated·

No Request

READY Asserted·
HOLD Negated·
Request Pending

(No Request +
HOLD Asserted) .

NA Asserted·
READY Negated

No Request)

I
I
I
I
I
I

I I
I I
I NA Negated I

READY Negated·
NA Asserted·

HOLD Negated
Request Pending

READY Negated·

(No Request + /
HOLD Asserted)

READY Negated
Request Pending
HOLD Asserted

NA Asserted·
HOLD Negated·
Request Pending

READY Asserted

READY Negated
Bus States:
T1 - First clock of a non-pipelined bus cycle (QEU drives new address and asserts ADS).
T2 - Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.
T21 - Subsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle but there

is not yet an internal bus request pendio.9.JCPU drives new address and asserts ADS).
T2P - Subsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle and there

is an internal bus request pending (CPU drives new address and asserts ADS).
T1 P - First clock of a pipelined bus cycle.
Ti - Idle state.
Th - Hold Acknowledge state (CPU asserts HLDA).

3-29

Functional Timing

3.2.3 Locked Bus Cycles

When the LOCK signal is asserted the TI486SLC/E microprocessor does not
allow other bus master devices to gain control of the system bus. LOCK is
driven active in response to executing certain instructions with the LOCK
prefix. The LOCK prefix allows indivisible read/modify/write operations on
memory operands. LOCK is also active during interrupt acknowledge cycles.

LOCK is activated on the CLK2 edge that begins the first locked bus cycle and
is deactivated when READY is returned at the end of the last locked bus cycle.
When using non-pipelined addressing, LOCK is asserted during phase 1 of
T1. When using pipelined addressing, LOCK is driven valid during phase 1 of
T1P.

Figure 3-4 through Figure 3-6 illustrate LOCK timing during non-pipelined
cycles and Figure 3-8 through Figure 3-11 cover the pipelined address case.

3.2.4 Interrupt Acknowledge (INTA) Cycles

3-30

The TI486SLC/E microprocessor is interrupted by an external source via an
input request on the INTR input (when interrupts are enabled). The
TI486SLC/E microprocessor responds with two locked interrupt acknowledge
cycles. These bus cycles are similar to read cycles. Each cycle is terminated
by READY sampled active as shown in Figure 3-13.

TI486SLCIE Bus Interface

Functional Timing

Figure 3-13. Interrupt Acknowledge Cycles

CLK2

ADS

Idle I
I

.1-1

Interrupt
Acknowledge

Cycle 1

I T2 I T2 :

Idle
(4 Bus States)

Interrupt
Acknowledge

Cycle 2

I T2 I T2 :

READY ~~~~~~~'-T,~~~~~~~~~~~~~~~~~-r,~~.-~
I I I : Ign6red I I I I I : Ve~tor

07-00 t--t--i---+--<:$:>-t--t--i--i---i---1--$--
I I I : Ignored I I I I I : Ignored

015-08 t--i--i--j--CP--t--t--i--i---i--i--q>--
Note: Interrupt Vector (0-255) is read on 07-00 at end of second interrupt acknowledge bus cycle. Because each Interrupt

Acknowledge bus cycle is followed by idle bus states, asserting NA has no practical effect.

The state of A2 distinguishes the first and second interrupt acknowledge
cycles. The address driven during the first interrupt acknowledge cycle is 4h
(A23-A3, A 1, BLE=O; A2, BHE=1). the address driven during the second
interrupt acknowledge cycle is Oh (A23-A 1, BLE=O; BHE=1).

To assure that the interrupt acknowledge cycles are executed indivisibly, the
LOCK output is asserted from the beginning of the first interrupt acknowledge
cycle until the end of the second interrupt acknowledge cycle. Four idle bus
states (Ti) are always inserted by the TI486SLC/E microprocessor between
the two interrupt acknowledge cycles.

The interrupt vector is read at the end of the second interrupt cycle. The vector
is read by the TI486SLC/E microprocessor from 07-00 of the data bus. The
vector indicates the specific interrupt number (from 0-255) requiring service.
Throughout the balance of the two interrupt cycles, 015-00 float. At the end
of the first interrupt acknowledge cycle, any data presented to the TI486SLC/E
is ignored.

3-31

Functional Timing

3.2.5 Halt and Shutdown Cycles

Figure 3-14.

CLK2

Halt Indication Cycle

Executing the HLT instruction causes the TI486SLC/E execution unit to cease
operation. Signaling its entrance into the halt state, a halt indication cycle is
performed. The halt indication cycle is identified by the state of the bus cycle
definition signals (M/IO=1, D/c=o, W/R=1, LOCK=1) and an address of 2h
(A23-A2=0, A1=1, B'RE=1, BLE=O). The halt indication cycle must be
acknowledged by READY asserted. A halted TI486SLC/E microprocessor
resumes execution when INTR (if interrupts are enabled), NMI, or RESET is
asserted. Figure 3-14 illustrates a non-pipelined halt cycle.

Non-Pipelined Halt Cycle

I Cycle 1 I Cycle 2 I
I Non-Pipelined I Non-Pipelined I
I (Write) I (Halt) I

Idle

I~ .I~ ~
I I I
I T1 T2 I T1 T2 I Ti
I I I

Ti Ti Ti

~B~~~-----~~--~--~~~~~~~~C~re~~~~ I
MIlO, WIR untillNTR, NMI, or I

~~~~~~~ RESET is asserted. I 

B~~~~ ~ +d1 ~ 
--l I l : I I I. I I 

ADS!\ IV !'\ ~/ I : : : I 
I I r I I I I I 

NA 

READY i~!~!'" 
I I I I Il I I I I 
I I I I ! I I I I 
I I I Note: Halt cycle must be acknowledged I I I 
I I I by READY asserted. Wait states may be I I I 
I I I added to the cycle if desired. I I I 

I . I 

I~II~ 
LOCK ~ vali~1 7 i ~ 

I I I I I I I 

015-00 

3-32 

I 

I 
I 

Out X Out 1 X: Undefined >-~. (Floating)+----f----1 
I I I I I 

I I I I I I 
I I 

Tl486SLCIE Bus Interface 



Functional Timing 

Shutdown Indication Cycle 

Shutdown occurs when a severe error is detected that prevents further 
processing. The TI486SLC/E microprocessor shuts down as a result of a 
protection fault while attempting to process a double fault as well as the 
conditions referenced in Chapter 2. Signaling its entrance into the shutdown 
state, a shutdown indication cycle is performed. The shutdown indication cycle 
is identified by the state of the bus cycle definition signals (M/IO=1, D/C=O, 
W/R=1, LOCK=1) and an address of Oh (A23-A 1 =0, BHE=1, BLE=O). The 
shutdown indication cycle must be acknowledged by READY asserted. A 
shutdown TI486SLC/E microprocessor resumes execution only when NMI or 
RESET is asserted. Figure 3-15 illustrates a shutdown cycle using pipelined 
addressing. 

Figure 3-15. Pipelined Shutdown Cycle 

1 Cycle 1 1 

1 Pipelined 1 

1 (Read) 1 

1II1II .1II1II 
1 1 

1 T1P T2P 1 

1 1 

ClK2 

Cycle 2 1 

Pipelined 1 
(Shutdown) 1 

~ 
1 

T1P T2P 1 

1 

Idle 

Ti Ti Ti 

I 

I 
I 

~ 
I 

Ti I 
I 
I 

II~I.II 
BHE / 

: 

1 
CPU remains shut- II 

MIlO, W/R Valid 1 I down until NMI, or 
---'---""'1 BlE is low for 1 RESET is ?Sserted. : 

: : 

ShutdovynCycle ~II 
A23-A 1, Valid 1 \ 1 

BlE, DIG 
---,-----~------~I------~~~~~~~~~~~~~~~~~~~ 

1 I I : I I I I I 
ADS --.1...1 ---Ir.il~ Villi 1 : 

1 1 1 1 1 1 I 

I I 

NA~~~ 

READY i~i~i---
1 I I 
1 Note: Shutdown cycle must be acknowledged by READY 
1 asserted. Wait staes may be added to the cycle if desired. 

I I i I I 1 1 

LOCK; vali~1 7 i ~ 
1 1 1 1 1 1 1 1 

D1~DO <;::>--+--~- <"-';-u-nd-ef-in-ed-"""")--+ (Floating)t---f----i 

1 : 1 1 :::: 

3-33 



Functional Timing 

3.2.6 Internal Cache Interface 

3.2.6.1 Cache Fills 

Any unlocked memory read cycle can be cached by the TI486SLC/E. The 
TI486SLC/E automatically does not cache accesses to memory addresses 
specified by the non-cacheable region registers. Additionally, the KEN input 
can be used to enable caching of memory accesses on a cycle-by-cycle basis. 
The TI486SLC/E acknowledges the KEN input only if the KEN enable bit is set 
in the CCRD configuration register .. 

As shown in Figure 3-16 and Figure 3-17, the TI486SLC/E samples the KEN 
input one CLK2 before READY is sampled active. If KEN is asserted and the 
current address is not set as non-cacheable per the non-cacheable region 
registers, then the TI486SLC/E fills two bytes of a line in the cache with the 
data present on the data bus pins. The states of BHE and BLE are ignored if 
KEN is asserted for the cycle. 

Figure 3-16. Non-Pipelined Cache Fills Using KEN 
(With Different Numbers of Wait States) 

CLK2 

A23-A 1, SHE, SLE, 
DIG, MIlO, wiFi. 

NA 

KEN 

015-00 
(Input During Read) 

3-34 

Cycle 1 
Non-Pipelined 

(Read - Cache Fill) I 
T1 I T2 I T1 

$1 I $2 I <1>1 I <1>2 $1 I 

Cycle 2 
Non-Pipelined 

(Read - Cache Fill) 

T2 
<I> 1 I 

I 
I 

T2 I 
<I> 1 I <1>2 I 

I I I I 

+d1 ~ valid2: • 
I I I I I I I i\ V"-------;'i\ V,...--i-: ---;-: -----;: 
I--~I I I I I I 
I I I I I I I 
I I I I I I I 
I I I I I I I 
I I I I I I I 

~ ... 
I I I 
I I I 
I I I 

~ +d1 X : valid2: • 
I I I I I I I 

~--t--~--t----r--~--j 
I I I I I I I 

TI486SLCIE Bus Interface 



Functional Timing 

Figure 3-17. Pipelined Cache Fills Using KEN (With Different Numbers of Wait States) 

Cycle 1 I Cycle 2 
Pipelined I Pipelined 

(Read - Cache Fill) (Read - Cache Fill) I 
T1P I T2P I T2P : T1P I T2P I T1P 

cp11 cp21 cp11 cp21 cp11 cp2 cp11 cp21 cp11 cp2 cp11 cp21 

CLK2 

A2SO~~, ~7Ia, ~M _,......v._a_lid_1_~ ........ __ ...,..... __ Va_li_d _2 ..,..-___ "!!f-~ __ -t""-v._a_lid_3_.....,...--

015-00 
(Input During Read) 

I 

--.L/ 
I 
I x 
i 

\ 
Valid 1 

I 
I I 

-I I 
: ;,..--.i-: __ \ 
I I 

~ ~alid2 

I 
I 

I I 

~ 
I I 
: ;,.-.;-: -
I I 

~ vali~3 
I I I I I I I 

~--r----r--~--r--~--r--
I I I I I , I I 

3.2.6.2 Flushing the Cache 

To maintain cache coherency with external memory, the TI486SLC/E cache 
contents should be invalidated when previously cached data is modified in 
external memory by another bus master. The TI486SLC/E invalidates the 
internal cache contents during execution of the INVD and WBINVD 
instructions, following assertion of HLDA if the BARB bit is set in the CGRD 
configuration register, or following assertion of FLUSH if the FLUSH bit is set 
in CCRD. 

3-35 



Functional Timing 

The TI486SLC/E samples the FLUSH input on the rising edge of CLK2 
corresponding to the beginning of phase 2 of the internal processor clock. If 
FLUSH is asserted, the TI486SLC/E invalidates the entire contents of the 
internal cache. The actual point in time where the cache is invalidated depends 
upon the internal state of the execution pipeline. FLUSH must be asserted for 
at least two CLK2 periods and must meet specified setup and hold times to be 
recognized on a specific CLK2 edge. 

3.2.7 Address Bit 20 Masking 

3-36 

The TI486SLC/E can be forced to provide 8086 1-MByte address wraparound 
compatibility by setting the A20 bit in the CCRO configuration register and 
asserting the A20M input. When the A20M is asserted, the 20th bit in the 
address to both the internal cache and the external bus pin is masked (zeroed). 

TI486SLCIE Bus Interface 



Functional Timing 

As shown in Figure 3-18, the TI486SLC/E samples the A20M input on the 
rising edge of CLK2 corresponding to the beginning of phase 2 of the internal 
processor clock. If A20M is asserted and paging is not enabled, the 
TI486SLC/E masks the A20 signal internally starting with the next cache 
access and externally starting with the next bus cycle. If paging is enabled, the 
A20 signal is not masked regardless of the state of A20M. A20 remains 
masked until the access following detection of an inactive state on the A20M 
pin. A20M must be asserted for a minimum of two CLK2 periods and must 
meet specified setup and hold times to be recognized on a specific CLK2 edge. 

An alternative to using the A20M pin is provided by the NCO bit in the CCRO 
configuration register. The TI486SLC/E automatically does not cache 
accesses, to the first 64 KBytes and to 1 MByte + 64 KBytes, if the NCO bit is 
set. This prevents data within the wraparound memory area from residing in 
the internal cache and thus eliminates the need for masking A20 to the internal 
cache. 

Figure 3-18. Masking A20 Using A20M During Burst of Bus Cycles 

1 Cycle 1 1 Cycle 2 1 Cycle 3 1 Cycle 4 1 

Idle 1 Non-Pipelined 1 Non-Pipelined 1 Pipelined 1 Pipelined 1 Idle + (Write) .:. (Read) .~ (Write) .:. (Write) .1. 
1 

Ti 1 T1 1 T2 1 T1 1 T2 1 T2P 1 T1 P 1 T2P 1 T1 P 1 T21 1 Ti 

CLK2 

A19-A1, 1 

B~t:C~ ~ vailid 1 \tialid 2 
M/IO,D/C~ 

W/R !riri,"""'-r-l,--_ ... ' __ -' 

1 

« 

« I Valid 2; « Vjlid 3 « 
015-00 ~---~-< : Out 1 

I I 
: >-t--i--<$> ~: Out 3 : 

3-37 



Functional Timing 

3.2.8 Hold Acknowledge State 

3-38 

The hold acknowledge state provides the mechanism for an external device 
in a TI486SLC/E system to acquire the TI486SLC/E system bus while the 
TI486SLC/E is held in an inactive bus state. This allows external bus masters 
to take control of the TI486SLC/E bus and directly access system hardware 
in a shared manner with the TI486SLC/E. The TI486SLC/E continues to 
execute instructions out of the cache (if enabled) until a system bus cycle is 
required. 

The hold acknowledge state (Th) is entered in response to assertion of the 
HOLD input. in the hold acknowledge state, the TI486SLC/E microprocessor 
floats all output and bidirectional signals, except for HLDA and SUSPA. HLDA 
is asserted as long as the TI486SLC/E CPU remains in the hold acknowledge 
state and all inputs except HOLD, FLUSH, FLT, SUSP and RESET are 
ignored. 

State Th may be entered directly from a bus idle state, as in Figure 3-19, or 
after the completion of the current physical bus cycle if the LOCK signal is not 
asserted, as in Figure 3-20 and Figure 3-21. The CPU samples the HOLD 
input on the rising edge of CLK2 corresponding to the beginning of phase 1 
of internal processor clock. HOLD must meet specified setup and hold times 
to be recognized at a given CLK2 edge. 

The hold acknowledge state is exited in response to the HOLD input being 
negated. The next bus start is an idle state (Ti) if no bus request is pending, 
as in Figure 3-19. If a bus request is internally pending, as in Figure 3-20 and 
Figure 3-21, the next bus state is T1. State Th is also exited in response to 
RESET being asserted. If HOLD remains asserted when RESET goes 
inactive, the TI486SLC/E enters the hold acknowledge state before 
performing any bus cycles provided HOLD is still asserted when the CPU is 
ready to perform its first bus cycle. 

If a rising edge occurs on the edge-triggered NMI input while in state Th, the 
event is remembered as a non-maskable interrupt 2 and is serviced when the 
state is exited. 

TI486SLCIE Bus Interface 



Functional Timing 

Figure 3-19. Requesting Hold from Idle Bus State 

CLK2 

HOLD 

HLOA 

A23-A 1, BHE, BLE, 
DIG, MilO, wif5. 

NA 

READY 

: Idle :... Hold Acknowledge Idle 

I I I I 
I TI I Th I Th I Th Ti 

III I 
I 
I 

l~ I ~~-I---------

I I I 

Io....-___ V I 1\ ___ _ 
I I 

I I I I I I 

~----t-Floating-+-----~ 
I I I I I I 
I , I I I I I 
I I '-____ .1.._ Floating _.L _____ .LJ I 
I I I I I I 

I I I I I I 

I I I I I I 

LOCK ~----t-Floating-t-----_. 
I I I I I I 

015-00 --+-----~-----i-· Floating -~------j------I 
I I I I I I 

Note: For maximum design flexibility the CPU has no internal pullup resistors on its outputs. External pullups may be required 
on ADS and other output to keep them negated during hold acknowledge period. 

3-39 



Functional Timing 

Figure 3-20. Requesting Hold from Active Non-Pipelined Bus 

CLK2 

HOLD 

HLDA 

--

Cycle 1 
Non-pipelined 

(Read) 

Hold Acknowledge 

1 1 

I HOLD assert~d no later 
than READY asserted 

1 I 

1 I 

Cycle 2 
Non-pipelined 

(Write) 

I 

1 I 
I I I 

A23-A1, BHE, BLE, -~------------+---". __ (FI~i~~_j,"-----':'---.....I 
-X Valid 2 

1 I~----~.------~ 
I I I 

1'-__ (FI~ing~ __ lv I 
1 1 I \._--...,. 
1 1 I 

BLE, DIG 
MIlO, wiFi. -,.c....a....--......... ---__ --+---f 

NA 

1 (Negated, or Last Locke Cycle) 1 1 I 

: : Valid 1: ~---t---i---.....;.....Va-lid-2-...; 

1 1 (Floating) 1 ~I 1 (Floating) : 
015-00 -t----~---i--- In 1 --i~---r--< ____ O_ut_2 __ 

1 1 1 (Floating) II 
I I I I I 

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met. 
This waveform is useful for determining hold acknowledge latency. 

3-40 T1486SLCIE Bus Interface 



Functional Timing 

Figure 3-21. Requesting Hold from Active Pipelined Bus 

CLK2 

HOLD 

HLDA 

A23-A 1, BHE, BLE, 

Cycle 1 
Pipelined 

(Write) 

Hold Acknowledge 

I 
I 

Cycle 2 
Non-Pipelined 

(Read) 

I 
I 

1 I I 
1 I I 

DC, MIlO, wif5. _,....._+-_~~~~~~~~~ 
__ (FI~i~)-_-k:"---v,""~a-lid-2---

1 1-· --.....,.,---..., 
I . I I 

I" (Floating) I IV '-----J-----r I 
1 1 1 1 I' I 

NA~ • 

~I'I~~I 
READY 1 1 ~ 1 I 

1 ~I I 
1 (Negated, or Last Locked Cycle) 1 I I I I 
\t ; ; '- (Floating) I : p. .valid 1, ( ---t-----K Valid 2 I 

1 I I I 

~
I I 1 (Flo~ting) I ~ 

015-00 Out _.......1 ____ O..,.u_t 1 ____ -......,,}-j----r----i-- ~ 
I 1 I I I 

I ',I I , 

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met. 
This waveform is useful for determining hold acknowledge latency. 

3-41 



Functional Timing 

3.2.9 Coprocessor Interface 

The coprocessor interface consists of the data bus, address bus, bus cycle 
definition signals, and the coprocessor interface signals (BUSY, ERROR and 
PEREQ). The TI486SLC/E automatically accesses dedicated coprocessor I/O 
addresses 80 00F8h, 80 OOFCh, and 80 OOFEh to transfer opcodes and 
operands to/from the coprocessor whenever a coprocessor instruction is 
decoded. Coprocessor cycles can be either read or write and can be either 
non-pipelined or pipelined. Coprocessor cycles must be terminated by 
READY and, as with any other bus cycle, can be terminated as early as the 
second bus state of the cycle. 

BUSY, ERROR and PEREQ are asynchronous level-sensitive inputs used to 
synchronize CPU and coprocessor operation. All three signals are sampled 
at the beginning of phase 1 and must meet specified setup and hold times to 
be recognized at a given CLK2 edge. 

3.2.10 SMM Interface 

System Management Mode (SMM) uses two TI486SLC/E pins, SMI and 
SMADS. the bidirectional SMI pin is a non-maskable interrupt that is higher 
priority than the NMI input. SMI must be active for at least four CLK2 periods 
to be recognized by the TI486SLC/E. Once the TI486SLC/E recognizes the 
active SMI input, the CPU drives the SMI pin low for the duration of the SMI 
service routine. 

The SMADS pin outputs the SMM Address Strobe that indicates a SMM 
memory bus cycle is in progress and a valid SMM address is on the address 
bus. The SMADS functional timing, output delay times and float delay times 
are identical to the main memory address strobe (ADS) timing. 

3.2.10.1 SMI Handshake 

3-42 

The functional timing for SMI interrupt is shown in Figure 3-22. Five significant 
events take place during a TI486SLC/E SMI handshake: 

1) The SMI input pin is driven active (low) by the system logic. 

2) The CPU samples SM I active on the rising edge of CLK2 phase 1 . 

3) Four CLK2s after sampling the SMI active, the CPU switches the SMI pin 
to an output and drives SMllow. 

4) Following execution of the RSM instruction, the CPU drives the SMI pin 
high for two CLK2s indicating completion of the SMI service routine. 

5) The CPU stops driving the SMI pin high and switches the SMI pin to an 
input in preparation for the next SMI interrupt. The system logic is 
responsible for maintaining the SMI pin at an inactive (high) level after the 
pin has been changed to an input. 

Tl486SLCIE Bus Interface 



Functional Timing 

Figure 3-22. 8MI Timing 

CLK2 

V '+---+----1--....... ~~-"'*"I> 

c 

1 

1 

d e 

Indicates that the TI4868LC/E drives the 8MI pin. 

3.2.10.2 VO Trapping 

The TI4868LC/E provides liD trapping that can be used to facilitate power 
management of I/O peripherals. When an I/O bus cycle is issued, the liD 
address is driven onto the address bus and can be decoded by external logic. 
If a trap to the 8MI handler is required, the SMI input should be activated at 
least three CLK2 edges prior to returning the READY input for the liD cycle. 
The timing for creating an liD trap via the 8MI input is shown in Figure 3-23. 
The TI4868LC/E immediately traps to the 8MI interrupt handler following 
execution of the liD instruction, and no other instructions are executed 
between completion of the liD instruction and entering the 8MI service routine. 
The liD trap mechanism is not active during coprocessor accesses. 

Figure 3-23. liD Trap Timing 

1 
1/0 CYCLE 

(Read or Write) 

CLK2 

Address, 
Byte Enables 

I ... 

T1 
I 

1 1 -----;.:\ II 
1 1 

1 1 

T2 T2 
I I 

T2 
I 

I I 
1 1 

1 1 

1 1 

i I \_--~:~~~~~~~ 
1 I 1 

1 I I 

------~--~----~:\~:--~--~I / 
1 I 1 

3 CLK2s ---.! ...... I-------1~~~ 

3-43 



Functional Timing 

3.2.11 Power Management 

SUSP Initiated Suspend Mode 

The TI486SLC/E enters suspend mode when the SUSP input is asserted and 
execution of the current instruction, any pending decoded instructions and 
associated bus cycles are completed. The TI486SLC/E also waits for the 
coprocessor to indicate a not busy status (BUSY=1) prior to entering suspend 
mode. The SUSPA output is then asserted. The TI486SLC/E responds to 
SUSP and asserts SUSPA only if the SUSP bit is set in the CCRD configuration 
register. 

Figure 3-24 illustrates the TI486SLC/E functional timing for SUSP initiated 
suspend mode. SUSP is sampled on the phase 2 CLK2 rising edge and must 
meet specified setup and hold times to be recognized at a particular CLK2 
edge. The time from assertion of SUSP to activation of SUSPA varies 
depending on which instructions were decoded prior to assertion of SUSP. The 
minimum time from SUSP sampled active to SUSPA asserted is 2 CLK2s. As 
a maximum, the TI486SLC/E may execute up to two instructions and 
associated bus cycles prior to asserting SUSPA. The time required for the 
TI486SLC/E to deactivate SUSPA once SUSP has been sampled inactive is 
4CLK2s. 

If the TI486SLC/E is in a hold acknowledge state and SUSP is asserted, the 
processor mayor may not enter suspend mode depending on the state of the 
TI486SLC/E internal execution pipeline. If the TI486SLC/E is in a SUSP 
initiated suspend state and the CLK2 input is not stopped, the processor 
recognizes and acknowledges the HOLD input and stores the occurrence of 
FLUSH, NMI and INTR (if enabled) for execution once suspend mode is 
exited. 

Figure 3-24. SUSP Initiated Suspend Mode 

1 1 
<1>1 1 <1>2 1 <1>1 1 <1>2 1 <1>1 1 <1>2 

CLK2 

3-44 

<I> 1 1 <I> 2 <I> 1 1 <I> 2 <I> 1 1 <I> 2 

1 

~--- 4 CLK2s --•• 1 

1 

1 

TI486SLCIE Bus Interface 



Functional Timing 

HALT Initiated Suspend Mode 

The TI486SLC/E also enters suspend mode as a result of executing a HALT 
instruction. The SUSPA output is asserted no more than 17 CLK2s following 
a READY sampled active for the HALT bus cycle as shown in Figure 3-25. 
Suspend mode is then exited upon recognition of an NMI or an unmasked 
INTR. SUSPA is deactivated 12 CLK2s after sampling of an active NMI or 
unmasked INTR. If the TI486SLC/E is in a HALT initiated suspend mode and 
the CLK2 input is not stopped, the processor recognizes and acknowledges 
the HOLD input and stores the occurrence of FLUSH for execution once 
suspend mode is exited. 

Figure 3-25. Halt Initiated Suspend Mode 

Non-Pipelined HALT 

hh-T1 T2 Ti Ti Ti 

CLK2 

ADS~ ________ /~-------+I------~~~---+I----~I --~I--~)): 1 
1 1 1 1 1 1 1 1 

M/IO,wif5., YYI Rxxxxxxx(_~ 

A1, BHE "I i~~~ 

D/C.A2~~:} ~~~ 
1 ( 1 1 1 1 (( 1 1 

j 1 1 1 1 )j 1'2 1 
1 1 1 1"- CLK2s -+1 -----tl-- 1 (j 1 1 1 

1 NMI -+ __________________ ~I------~ 
1 

1 17 CLK2s Max -1114-.. ----+---. 
I 
1 

3-45 



Functional Timing 

Stopping the Input Clock 

Because the TI486SLC/E is a static device, the input clock (CLK2) can be 
stopped and restarted without loss of any internal CPU data. CLK2 can be 
stopped in either phase 1 or phase 2 of the clock and in either a logic high or 
logic low state. However, entering suspend mode prior to stopping CLK2 
dramatically reduces the CPU current requirements. Therefore, the 
recommended sequence for stopping CLK2 is to initiate TI486SLC/E suspend 
mode, wait for assertion of SUSPA by the processor and then stop the input 
clock. 

The TI486SLC/E remains suspended until CLK2 is restarted and suspend 
mode is exited as described above. While CLK2 is stopped, the TI486SLC/E 
can no longer sample and respond to any input stimulus including the HOLD, 
FLUSH, NMI, INTR and RESET inputs. Figure 3-26 illustrates the 
recommended sequence for stopping CLK2 using SUSP to initiate suspend 
mode. CLK2 should be stable for a minimum of 10 clock periods before SUSP 
is deasserted. 

Figure 3-26. Stopping CLK2 During Suspend Mode 

CL~ J-u-i:~r-KAAJ-u-U-
~ I I J '/, 

suSP \ ') (, ') " I ') 'j-' _
________ ~((~----------------~(( I }}- J) I )(.,..,--------~)(.,..J-------------

10 CLK2s Min ----1IIe~-------------.,.1 

I 

--------~)'~'-----\~ ________ ~)'~,----~)~)--------~)(~j ____ J!I 

3-46 TI486SLCIE Bus Interface 



3.2.12 Float 

Functional Timing 

Activating the FL T input floats all TI486SLC/E microprocessor bidirectional 
and output signals. Asserting FLT electrically isolates the TI486SLC/E 
microprocessor from the surrounding circuitry. This feature is useful in 
board-level test environments. As the TI486SLC/E microprocessor is 
packaged in a surface mount PQFP, it is not usually socketed and cannot be 
removed from the motherboard when In-Circuit Emulation (ICE) is needed. 
Float capability allows connection of an emulator by clamping the emulator 
probe onto the TI486SLC/E microprocessor PQFP without removing it from 
the circuit board. 

FLT is an asynchronous, active-low input. It is recognized on the rising edge 
of CLK2. When recognized, it aborts the current bus state and floats the 
outputs of the TI486SLC/E microprocessor as shown in Figure 3-27. FLT 
must be asserted for a minimum of 16 CLK2 cycles. To exit the float condition, 
RESET should be asserted and held asserted until after FLT is deasserted. 

Asserting the FLT input unconditionally aborts the current bus cycle and forces 
the TI486SLC/E microprocessor into the float mode. As a result, the 
TI486SLC/E microprocessor is not guaranteed to enter float in a valid state. 
After deactivating FLT, the TI486SLC/E CPU is not guaranteed to exit float in 
a valid state. The TI486SLC/E microprocessor RESET input must be asserted 
prior to exiting float to guarantee that the TI486SLC/E is reset and that it 
returns in a valid state. 

Figure 3-27. Entering and Exiting Float 

CLK2 

FLT \ , 

CONTROL ~ Valid }-------------------{'--____ ...IX'-__ _ 

DATA -{}--{ Valid }------------------('-____ ......IC 
ADDRESS ~ Valid }------------------{'-__ ...IX'-__ _ 

RESET 

------------------, 

3-47 



3-48 Tl486SLCIE Bus Interface 



TI486DLC/E Bus Interface 

4-1 



-t -~ co 
C» 
C 
r 
~ m 
tD 
r: 
tn -::::s ... 
CD 
-t .... 
S» 
n 
CD 

4-2 



Chapter 4 

TI486DLC/E Bus Interface 

In this chapter, an overview of the TI486DLC/E provides a summary of the 
processor signals, functional description of all pins, functional timing and bus 
operations (including non-pipelined and pipelined addressing), various 
interfaces, and power management. 

Topic Page 

..... : ..... :"::". "." ............... , ........ " " .. " .'." ."' .•.. " ...... ;" ............................ , 

4~~ .• 2 ...•............ : · .... ~~.)~~r.I'A.f1~Q~n,e~t··.· ..•. ~ ..•.••. ~ ...•.••• : ..•. ) •••.. : •••..•........• ~: ...• ~ .•. : •..•. ~.:.~ .. ~ ...... ~ .•..••• ~ ••.• ~ .•• ~t1~:; 
'. ···4.a .••••.. •• · ••.. · ••.. F~ ri~ti~~.~ll1.rii.,!l:.··· •. i .•.... ~ ...• ~ •..•.••....•.••...••..... •.• : .• ~ •.•.•••....••. ~ ...•. : ••.•. !.: .••.. ~ •• ··~·· ..• ••.· •... · •. ··~· •. · •. · .•. t.i:r:· •. ~:~ •• ~ .•••.• ;r.~jl.·.:4.Hi.· 
4~2~f 

·:412'.2: 

.4.2~2~1 

4.2 .• 2.2 

4i~2:3 

4.2.6 

4.2.7 

4~2~8 

4.2.9 

4.2.10 

4~2.t1 

4.2 .. 12 

Besettjmit)g .•. anCl' •. IIlJe,"al.Clo~kSy"bh~.d~it(1ti~Jl:.~.\'1 ... ~ .. ~v~:~4~1~:: 
~.~~.··.·O~eia~i~n· ••. ·,·· ...•• ••· .•••• • •••..•••.• • .· •••.•. ••· .••••.•. ·• •.•••• ·· .... • •. l· •••••• ·• ••••.• ·.: •...•. ~ •••.••.••.•...•• •• • •••••..•• • •••• :; .••••••••. i.···· .• · •. ·.·.··.4~1Qi~ 

···.······EJ~$·CyQI~sQ$t"gNon.~ipelln~Addt~s~ing·· ....• ;.j ••. ~ ..• j •• ~.·.·~· •.. ·~ ••• ~4~~O· 

E;lU!l~ycles~SlnQPiP'!lined.AdQt~iri9 ••• • ·C;; ... : .••.. ~;:;.+~ 
·Bu,:Cy~les Using 13.$16 . 4 .. 31 

' .. :.::: .............. ' 

·.l()ck~d.BlJ.$<:ycles ... :.> ••• ~ ••• ~ .... : ••••. "" ~.~.~~.,;"~ ••• 4~34· 

It)t~trlJPtA~k"QwJedge (IN,.A) Cycles' .• ~\ •..• '~ •• '" .·1.~.~> .. ;. •. : ••• ~ ' .. 4~3$ 

l1ijlt··am::tShutdoW"Cyeles~ ••. ~··.·.~ •• · ••• " • ·.~··~···.·~.· •••• ·.~··.~ •.. ·~·.· •• ~.··~.· •. ~.· •• ;. •• :4,:,37' 
, ...... -.: .. :": ." .. ' ..................... , ...................... , 

lrit&~rl~i Cache Iriterf~ce .•. ~ •..••••..•....• . . :.i ... ~ .. I ... ~~.4~O 
A ,,'", ~ ","" ~ 

~ddr:~$,~i~gOIVl.~~l(ing •. ~ ..• ••.... ~ •.••••••.••• ~ ... •••• ·~~L.~~ .·.4...tl3· 

. . ...~ .. ;. ~ ... t~ .. ;.~d:A5. 'H9'dA¢knoViI~~g~St~te 
c:?P~~~jss() .. lntel"face··... ••...•. ! 0' .••.• ~ ••••••••.••..•...•••.. ~ ••••••••.••.• ~ •.••..•••••.••••••••• L ..•.. ~~~:·. 
SM.f:lrit~rlace .•.. : .•. .. : .. :? ' •..•. ~ ..••• ~ .•. ~ .• ':" ..••.•. •• L:.· ... : .. ~ ....... ~.; ~··.·~.~.·1~.·.;~449. 

'" ...... " ".:" .. " ... :: : .. ;: .":' .: .... : .. " ...... " .. '"::':'" :":'. >"< .. :::.: .... : -....... : .... :.:: . 

... PO\1l{~r.M~n.ag.rtl~nt· •. ~ ...•.•• ~ •.••. ..•.. ~ .•.. ~ .• ~ ••••.•. ..... ~ •. ·.~.~i.i .... )li,~.~.·~4~~. 

4-3 



Overview 

4.1 Overview 

The following sections describe the TI486DLC/E input and output signals. The 
discussion of these signals is arranged by functional groups as shown in 
Figure 4-1. Table 4-1 gives a brief description of each of the TI486DLC/E 
signals. 

Figure 4-1. TI486DLCIE Functional Signal Groupings 

2x Clock ----. CLK2 TI486DLC/E INTR 

Reset ----. RESET NMI } Interrupt 
Control 

Address { A31-A2 SMI 
Bus 

BE3-BEO 
KEN } Internal 

Data <=> 
Cache 

Bus 
D31-DO FLUSH Interface 

{ 
WiR A20M Address Bit 

20 Mask 
Bus DIG 

Cycle 
PEREQ Definition MilO 

LOCK BUSY } Coprocessor 
Interface 

----. BS16 ERROR 

----. NA HOLD 
} Bus Bus 

Arbitration Cycle READY HLDA 
Control 

SUSP } ADS Power 

SMADS SUSPA Management 

4-4 T1486DLCIE Bus Interface 



Overview 

Table 4-1. TI486DLCIE SIgnal Summary 

SIGNAL SIGNAL NAME SIGNAL GROUP 

A20M Address Bit 20 Mask 

A31-A2 Address Bus Lines Address bus 

ADS Address Strobe Bus cycle control 

BE3-BEO Byte enables Address bus 

BS16 Bus size 16 Bus cycle control 

BUSY Processor extension busy Coprocessor interface 

CLK2 2X clock input 

D31-DO Data bus 

DIC Data/control Bus cycle definition 

ERROR Processor extension error Coprocessor interface 

FLUSH Cache flush Internal cache interface 

HLDA Hold acknowledge Bus arbitration 

HOLD Hold request Bus arbitration 

INTR Maskable interrupt request Interrupt control 

KEN Cache enable Internal Cache interface 

LOCK Bus lock Bus cycle definition 

MilO Memory/input-output Bus cycle definition 

NA Next address request Bus cycle control 

NMI Non-maskable interrupt request Interrupt control 

PEREQ Processor extension request Coprocessor interface 

READY Bus ready Bus cycle control 

RESET Reset 

SMADS SMM address strobe Bus cycle control 

SMI System management interrupt Interrupt control 

SUSP Suspend request Power management 

SUSPA Suspend acknowledge Power management 

WIR Writelread Bus cycle definition 

The following sections describe the signals and their functional timing 
characteristics. Additional signal information may be found in Chapter 5, 
Electrical Specifications. Chapter 5 documents the dc and ac characteristics 
for the signals including voltage levels, propagation delays, setup times, and 
hold times. Specified setup and hold times must be met for proper operation 
of the TI486DLC/E. 

4-5 



Overview 

Table 4-2. Terminal Functions 

PIN 
I/O DESCRIPTION 

NAME NO. 

A2 C4 
A3 A3 
A4 B3 
AS B2 
A6 C3 
A7 C2 
A8 C1 
A9 D3 

A10 D2 
A11 D1 

Address Bus (active high). The address bus (A31-A2) signals are 3-state outputs that 
A12 E3 
A13 E2 

provide addresses for physical memory and lID ports. All address lines can be used for 

A14 E1 
addressing physical memory allowing a 16 MByte address space (0000 OOOOh to FFFF 

A15 F1 
FFFFh). During I/O port accesses, A31-A16 are driven low (except for coprocessor 

A16 G1 
accesses). This permits a 64 KByte lID address space (0000 OOOOh to 0000 FFFFh). 

A17 H1 
O/Z 

A18 H2 
During all coprocessor lID access address lines A30-A 16 are driven low and A31 is 

A19 H3 
driven high. This allows A31 to be used by external logic to generate a coprocessor select 

A20 J1 
signal. Coprocessor command transfers occur with address 8000 00F8h and 

A21 K1 
coprocessor data transfers occur with address 8000 OOFCh. A31-A2 float while the CPU 

A22 K2 
is in a hold acknowledge state. 

A23 L1 
A24 L2 
A25 K3 
A26 M1 
A27 N1 
A28 L3 
A29 M2 
A30 P1 
A31 N2 

ADS E14 O/Z Address Strobe (active low). This is a 3-state outputthat indicates the TI486DLC/E has 
driven a valid address (A31-A2, BE3-BEO) and bus cycle definition (MIlO), Die, w/R) 
on the appropriate TI486DLC/E output pins. During non-pipe lined bus cycles, ADS is 
active for the first clock of the bus cycle. During address pipelining, ADS is asserted 
during the previous bus cycle and remains asserted until READY is returned for that 
cycle. ADS floats while the TI486DLC/E is in a hold acknowledge state. 

A20M F13 I Address Bit 20 Mask (active low). This input causes the TI486DLC/E to mask (force 
low) physical address bit 20 when driving the external address bus or performing an 
internal cache access. When the processor is in real mode, asserting A20M emulates 
the 1 MByte address wrap around that occurs on the 8086. The A20 signal is never 
masked when paging is enabled regardless of the state of the A20M input. The A20M 
input is ignored following reset and can be enabled using the A20M bit in the CCRO 
configuration register. 

A20M is internally connected to a pullup resistor to prevent it from floating active when 
left unconnected. 

BE3 A13 O/Z Byte Enables BE3-BEO (active low). These are 3-state outputs that determine which 
BE2 B13 bytes within the 32-bit data bus will be transferred during a memory or lID access 
BE1 C13 (Table 4-3). During a memory write, one or both of the upper bytes (D and C) of the data 
BEO E12 bus may be duplicated in the lower bytes (B and A) of the bus. This duplication is 

dependent on BE3-BEO as listed in Table 4-4. 

Generating A1-AO using BE3-BEO can be achieved by using the following equations: 
AO = (BEO • BE2) + (BEO • BE1) 
A1 = BEO • BE1 

The relationship between A1-AO and BE3-BEO is shown in Table 4-5. 

4-6 TI486DLCIE Bus Interface 



Overview 

Table 4-2. Terminal Functions (Continued) 

PIN 
110 DESCRIPTION 

NAME NO. 

BS16 C14 I Bus Size 16 (active low). This is an input that allows connection of the 32-bit TI4860LC/E 
data bus to an external 16-bit data bus. When this input is activated, the microprocessor 
performs multiple bus cycles to couple read and write accesses from devices that cannot 
provide (accept) 32 bits of data in a single cycle. Ouring bus cycles with BS16 active, data 
is transferred using data bus signals 015-00 only. 

BUSY B9 I Coprocessor Busy (active low). This is an input from the coprocessor that indicates to 
the TI4860LC/E that the coprocessor is currently executing an instruction and is not yet 
able to accept another opcode. When the TI4860LC/E processor encounters a WAIT 
instruction or any coprocessor instruction that operates on the coprocessor stack (Le., 
load, pop, arithmetic operation), BUSY is sampled. BUSY is continually sampled and 
must be recognized as inactive before the CPU will supply the coprocessor with another 
instruction. However, the following coprocessor instructions are allowed to execute even 
if BUSY is active since these instructions are used for coprocessor initialization and 
exception clearing: FNINIT, FNCLEX. 

BUSY is internally connected to a pullup resistor to prevent it from floating active when 
left unconnected. 

CLK2 F12 I 2X Clock Input (active high). This signal is the basic timing reference for the 
TI486DLC/E microprocessor. The CLK2 input is internally divided by two to generate the 
internal processor clock. The external CLK2 is synchronized to a known phase of the 
internal processor clock by the falling edge of the RESET signal. External timing 
parameters are defined with respect to the rising edge of CLK2. 

00 H12 
01 H13 
02 H14 
03 J14 
04 K14 
05 K13 
D6 L14 
07 K12 
08 L13 
09 N14 
010 M12 
011 N13 
012 N12 Data Bus (active high). The Data Bus (031-00) signals are 3-state bidirectional signals 
013 P13 
014 P12 

that provide the data path between the TI4860LC/E and external memory and 1/0 

015 M11 
devices. The data bus inputs data during memory read, 1/0 read and interrupt 

016 N11 
I/O/Z acknowledge cycles and outputs data during memory and 1/0 write cycles. Oata read 

017 N10 
operations require that specified data setup and hold times be met for correct operation. 

018 P11 
The data bus signals are high active and float while the CPU is in a hold acknowledge 

019 P10 
or float state. 

020 M9 
021 N9 
022 P9 
023 N8 
024 P7 
025 N6 
026 P5 
027 N5 
028 M6 
029 P4 
030 P3 
031 M5 

4-7 



OveNiew 

Table 4-2. Terminal Functions (Continued) 

PIN 
1/0 DESCRIPTION 

NAME NO. 

D/C A11 O/Z Data/Control. This signal is low during control cycles and is high during data cycles. 
Control cycles are issued during functions such as a halt instruction, interrupt servicing 
and code fetching. Data bus cycles include data access from either memory or 1/0. 

ERROR A8 I Coprocessor Error (active low). This is an input used to indicate that the coprocessor 
generated an error during execution of a coprocessor instruction. ERROR is sampled by 
the TI486DLC/E processor whenever a coprocessor instruction is executed. If ERROR 
is sampled active, the processor generates exception 16 which is then serviced by the 
exception handling software. 

Certain coprocessor instructions do not generate an exception 16 even if ERROR is 
active. These instructions, which involve clearing coprocessor error flags and saving the 
coprocessor state, are listed as follows: FNINIT, FNCLEX, FNSTSW, FNSTCW, 
FNSTENV, FNSAVE. ERROR is internally connected to a pullup resistor to prevent it 
from floating active when left unconnected. 

ERROR is internally connected to a pullup resistor to prevent it from floating active when 
left unconnected. 

FLUSH E13 I Cache Flush (active low). This is an input that invalidates (flushes) the entire cache. 
Use of FLUSH to maintain cache coherency is optional. The cache may also be 
invalidated during each hold acknowledge cycle by setting the BARB bit in the CCRO 
configuration register. The FLUSH input is ignored following reset and can be enabled 
using the FLUSH bit in the CCRO configuration register. 

FLUSH is internally connected to a pullup resistor to prevent it from floating active when 
left unconnected. 

HLDA M14 0 Hold Acknowledge (active high). This output indicates thatthe Tl486DLC/E is in a hold 
acknowledge state and has relinquished control of its local bus. While in the hold 
acknowledge state, the TI486DLC/E drives HLDA active and continues to drive SUSPA, 
if enabled. The other TI486DLC/E outputs are in a high-impedance state allowing the 
requesting bus master to drive these signals. If the on-chip cache can satisfy bus 
requests, the Tl486DLC/E continues to operate during hold acknowledge states. A20M 
is internally recognized during this time. 

The processor deactivates HLDA when the HOLD request is driven inactive. The 
Tl486DLC/E stores on NMI rising edge during a hold acknowledge state for processing 
after HOLD is inactive. The FLUSH input is also recognized during a hold acknowledge 
state. If SUSP is asserted during a hold acknowledge state, the TI486DLC/E mayor may 
not enter suspend mode depending on the state of the internal execution pipeline. 
Table 3-3 summarizes the state of the TI486DLC/E signals during hold acknowledge. 

4-8 TI486DLCIE Bus Interface 



Overview 

Table 4-2. Terminal Functions (Continued) 

PIN 
DESCRIPTION 1/0 

NAME NO. 

HOLD D14 I Hold Request (active high). This input is used to indicate that another bus master 
requests control of the local bus. The bus arbitration (HOLD, HLDA) signals allow the 
TI486DLC/E to relinquish control of its local bus when requested by another bus master 
device. Once the processor has relinquished its bus (3-stated), the bus master device 
can then drive the local bus signals. 

After recognizing the HOLD request and completing the current bus cycle or sequence 
of locked bus cycles, the TI486DLC/E responds by floating the local bus and asserting 
the hold acknowledge (HLDA) output. 

Once HLDA is asserted, the bus remains granted to the requesting bus master until 
HOLD becomes inactive. When the TI486DLC/E recognizes HOLD is inactive, it 
simultaneously drives the local bus and drives HLDA inactive. External pullup resistors 
may be required on some of the TI486DLC/E 3-state outputs to guarantee that they 
remain inactive while in a hold acknowledge state. 

The HOLD input is not recognized while RESET is active. If HOLD is asserted while 
RESET is active, RESET has priority and the TI486DLC/E places the bus into an idle 
state instead of a hold acknowledge state. The HOLD input is also recognized during 
suspend mode provided that the CLK2 input has not been stopped. HOLD is 
level-sensitive and must meet specified setup and hold times for correct operation. 

INTR B7 I Maskable Interrupt Request. This is a level-sensitive input that causes the processor 
to suspend execution ofthe current instruction stream and begin execution of an interrupt 
service routine. The INTR input can be masked (ignored) through the Flags Register IF 
bit. When unmasked, the TI486DLC/E responds to the INTR input by issuing two locked 
interrupt acknowledge cycles. To assure recognition of the INTR request, INTR must 
remain active until the start of the first interrupt acknowledge cycle. 

KEN B12 I Cache Enable (active low). This is an input which indicates that the data being returned 
during the current cycle is cacheable. When KEN is active and the TI486DLC/E is 
performing a cacheable code fetch or memory data read cycle, the cycle is transformed 
into a cache fill. Use of the KEN input to control cacheability is optional. The 
non-cacheable region registers can also be used to control cacheablity. Memory 
addresses specified by the non-cacheable region registers are not cacheable regardless 
of the state of KEN. I/O accesses, locked reads, SMM address space accesses, and 
interrupt acknowledge cycles are never cached. 

During cached code fetches, two contiguous read cycles are performed to completely 
fill the 4-byte cache line. KEN must be asserted during both read cycles in order to cause 
a cache line fill. During cached data reads, the TI486DLC/E performs only those bus 
cycles necessary to supply the required data to complete the current operation. Valid bits 
are maintained for each byte in the cache line, thus allowing data operands of less than 
4 bytes to reside in the cache. 

During any cache fill cycle with KEN asserted, the TI486DLC/E ignores the state of the 
byte enables (BE3 - BEO) and always writes two bytes of data into the cache. The KEN 
input is ignored following reset and can be enabled using the KEN bit in the CCRO 
configuration register. 

KEN is internally connected to a pullup resistor to prevent it from floating active when left 
unconnected. 

LOCK C10 I LOCK (active low). LOCK is asserted to deny control of the CPU bus to other bus 
masters. The LOCK signal may be explicitly activated during bus operations by including 
the LOCK prefix on certain instructions. LOCK is always asserted during descriptor and 
page table updates, interrupt acknowledge sequences and when executing the XCHG 
instruction. The TI486DLC/E does not enter the hold acknowledge state in response to 
HOLD while the LOCK input is active. 

MilO A12 01Z Memory/lO. This signal is low during I/O read and write cycles and is high during 
memory cycles. 

4-9 



Overview 

Table 4-2. Terminal Functions (Continued) 

PIN 
110 DESCRIPTION 

NAME NO. 

NA 013 I Next Address Request (active low). This is an input used to request address pipelining 
by the system hardware. When asserted, the system indicates that it is prepared to 
accept new bus cycle definition and address signals (MilO, DIG, W/R, A31-A2, BS16, 
and BE3-BEO) from the microprocessor even if the current bus cycle has not been 
terminated by assertion of READY. If the TI486DLC/E has an internal bus request 
pending and the NA input is sampled active, the next bus cycle definition and address 
signals are driven onto the bus. 

N/C B6 - No connection. Should be left disconnected. 

NMI B8 I Non-maskable Interrupt Request. This is a rising-edge-sensitive input that causes the 
processor to suspend execution of the current instruction stream and begin execution 
of an NMI interrupt service routine. The NMI interrupt service request cannot be masked 
by software. Asserting NMI causes an interrupt which internally supplies interrupt vector 
2h to the CPU core. External interrupt acknowledge cycles are not necessary since the 
NMI interrupt vector is supplied internally. 

The TI486DLC/E samples NMI at the beginning of each phase 2. To assure recognition, 
NMI must be inactive for at least eight CLK2 periods and then be active for at least eight 
CLK2 periods. Additionally, specified setup and hold times must be met to guarantee 
recognition at a particular clock edge. 

PEREa C8 I Coprocessor Request (active high). This is an input that indicates the coprocessor is 
ready to transfer data to or from the CPU. The coprocessor may assert PEREa in the 
process of executing a coprocessor instruction. The TI486DLC/E internally stores the 
current coprocessor opcode and performs the correct data transfers to support 
coprocessor operations using PEREa to synchronize the transfer of required operands. 

PEREa is internally connected to a pulldown resistor to prevent this signal from floating 
active when left unconnected. 

READY G13 I Ready. This is an input generated by the system hardware that indicates the current bus 
cycle can be terminated. During a read cycle, assertion of READY indicates that the 
system hardware has presented valid data to the CPU. When READY is sampled active, 
the TI486DLC/E latches the input data and terminates the cycle. During a write cycle, 
READY assertion indicates that the system hardware has accepted the TI486DLC/E 
output data. READY must be asserted to terminate every bus cycle, including halt and 
shutdown indication cycles. 

RESET C9 I Reset (active high). When asserted, RESET suspends all operations in progress and 
places the TI486DLC/E into a reset state. RESET is a level-sensitive synchronous input 
and must meet specified setup and hold times to be properly recognized by the 
TI486DLC/E. The TI486DLC/E begins executing instructions at physical address 
location FF FFFOh approximately 400 CLK2s after RESET is driven inactive (low). 

While RESET is active all other input pins are ignored. The remaining signals are 
initialized to their reset state during the internal processor reset sequence. The reset 
signal states for the TI486DLC/E are shown in Table 4-6. 

SMADS C6 O/Z SMM Address Strobe (active low). SMADS is asserted instead ofthe ADS during SMM 
bus cycles and indicates that SMM memory is being accessed. SMADS floats while the 
CPU is in a hold acknowledge or float state. The SMADS output is disabled (floated) 
following reset and can be enabled using the SMI bit in the CCR1 configuration register. 

SMI C7 I/O System Management Interrupt (active low). This is a bidirectional signal and level 
sensitive interrupt with higher priority than the NMI interrupt. SMI must be active for at 
least four CLK2 clock periods to be recognized by the TI486DLC/E. After the SMI 
interrupt is acknowledged, the SMI pin is driven low by the TI486DLC/E for the duration 
of the SMI service routine. The SMI input is ignored following reset and can be enabled 
using the SMI bit in the CCR1 configuration register. 

--
SMI is internally connected to a pullup resistor to prevent it from floating active when left 
unconnected. 

4-10 Tl486DLCIE Bus Interface 



Overview 

Table 4-2. Terminal Functions (Continued) 

PIN 
1/0 DESCRIPTION 

NAME NO. 

SUSP A4 I Suspend Request (active low). This is an input that requests the TI4860LC/E enter 
suspend mode. After recognizing SUSP active, the processor completes execution of 
the current instruction, any pending decoded instructions and associated bus cycles. In 
addition, the TI4860LC/E waits for the coprocessor to indicate a not busy status 
(BUSY = 1) before entering suspend mode and asserting suspend acknowledge 
(SUSPA). 

SUSP is internally connected to a pullup resistor to prevent it from floating active when 
left unconnected. 

SUSPA B4 0 Suspend Acknowledge (active low). This output indicates that the TI4860LC/E has 
entered the suspend mode as a result of SUSP assertion or execution of a HALT 
instruction. 

VCC A1 I 5-V Power Supply. All pins must be connected and used. 
A5 
A7 

A10 
A14 
C5 

C12 
012 
G2 
G3 
G12 
G14 
L12 
M3 
M7 
M13 
N4 
N7 
P2 
P8 

VSS A2 I Ground Pins. All pins must be connected and used. 
A6 
A9 
B1 
B5 
B11 
B14 
C11 
F2 
F3 

F14 
J2 
J3 

J12 
J13 
M4 
M8 
M10 
N3 
P6 

P14 

W/R B10 O/Z Write/Read. W/R is low during read cycles (data is read from memory or I/O) and is high 
during write bus cycles (data is written to memory or I/O). 

4-11 



Overview 

Table 4-3. Byte Enable Line Definitions 

BYTE ENABLE BYTE 
LINE TRANSFERRED 

BEO 07-00 

BE1 015-08 

BE2 023-016 

BE3 D31-024 

Table 4-4. Write Duplication. as a Function of BE3-BEO 

BE3-BEO 031-024 023-016 015-08 07-00 DUPLICATED 
DATA 

0000 0 C B A no 

0001 0 C B x no 

0011 D C 0 C yes 

0111 0 x D x yes 

1000 x C B A no 

1001 x C B x no 

1011 x C x C yes 

1100 x x B A no 

1101 x x B x no 

1110 x x x A no 

NOTE: BE3 - BED combinations not listed, do not occur during TI4860LC/E bus cycles. 
A = logical write data 07 - DO. 
B = logical write data D15 - 08. 
C = logical write data 023 - D16. 
0= logical write data D31 - 024. 
x = not defined. 

Table 4-5. Generating A 1-AO Using BE3-BEO 

A31-A2 A1 AO BE3 

-- 0 0 x 

-- 0 1 x 

-- 1 0 x 

-- 1 1 0 

4-12 

BE2 BE1 BEO 

x x 0 

x 0 1 

0 1 1 

1 1 1 

Tl486DLCIE Bus Interface 



Overview 

Table 4-6. Signal States During RESET and Hold Acknowledge 

SIGNAL SIGNAL STATE SIGNAL STATE DURING 
NAME DURING RESET HOLD ACKNOWLEDGE 

A20M Ignored Input recognized 

A31-A2 1 Float 

ADS 1 Float 

BE3-BEO 0 Float 

BS16 Ignored Ignored 

BUSY Initiates self test Ignored 

031-00 Float Float 

OIC 1 Float 

ERROR Ignored Ignored 

FLUSH Ignored Input recognized 

HLOA 0 1 

HOLD Ignored Input recognized 

INTR Ignored Input recognized 
--
KEN Ignored Ignored 

LOCK 1 Float 

MilO 0 Float 

NA Ignored Ignored 

NMI Ignored Input recognized 

PEREQ Ignored Ignored 

READY Ignored Ignored 

RESET Input recognized Input recognized 

SMADS Float Float 

SMI Ignored Input recognized 

SUSP Ignored Input recognized 

SUSPA Float Driven 

W/R 0 Float 

4-13 



Overview 

4.1.1 Bus Cycle Definition 

The bus cycle definition (MilO, D/C, W IR, LOCK) signals consist of four 3-state 
outputs that define the type of bus cycle operation being performed. Table 4-7 
defines the bus cycles for the possible states of these signals. MilO, DIG and 
w/f5. are the primary bus cycle definition signals and are driven valid as ADS 
(Address Strobe) becomes active. During non-pipelined cycles, the LOCK 
output is driven valid along with MilO, D/C and W/R. During pipelined 
addressing, LOCK is driven at the beginning of the bus cycle, which is after 
ADS becomes active for that cycle. The bus cycle definition signals are active 
low and float while the TI486DLC/E is in a hold acknowledge or float state. 

Table 4-7. Bus Cycle Types 

MilO DIC W/R LOCK BUS CYCLE TYPE 

0 0 0 0 Interrupt acknowledge 

0 0 0 1 -
0 0 1 X -
0 1 X 0 -
0 1 0 1 I/O data read 

0 1 1 1 I/O data write 

1 0 X 0 -
1 0 0 1 Memory code read 

1 0 1 1 Halt: A31-A2=Oh, BE3-BEO=1011 
Shutdown: A31-A2=Oh, BE3-BEO=1110 

1 1 0 0 Locked memory data read 

1 1 0 1 Memory data read 

1 1 1 0 Locked memory data write 

1 1 1 1 Memory data write 

X = don't care 
- = does not occur 

4-14 T1486DLCIE Bus Interface 



Overview 

4.1.2 Power Management 

The power management signals allow the TI486DLC/E to enter suspend 
mode. Suspend mode circuitry allows the TI486DLC/E to consume minimal 
power while maintaining the entire internal CPU state. 

4.1.2.1 Suspend Request (SUSP) 

Suspend Request (SUSP) is an active-low input that requests the TI486DLC/E 
to enter suspend mode. After recognizing SUSP is active, the processor 
completes execution of the current instruction, any pending decoded 
instructions and associated bus cycles. In addition, the TI486DLC/E waits for 
the coprocessor to indicate a not busy condition (BUSY=1) before entering 
suspend mode and asserting suspend acknowledge (SUSPA). During 
suspend mode, internal clocks are stopped and only the logic associated with 
monitoring RESET, HOLD and FLUSH remains active. With SUSPA asserted, 
the CLK2 input to the TI486DLC/E can be stopped in either phase. Stopping 
the CLK2 input further reduces current consumption of the TI486DLC/E. 

To resume operation, the CLK2 input is restarted (if stopped), followed by 
deassertion of the SUSP input. The processor then resumes instruction 
fetching and begins execution in the instruction stream at the point it had 
stopped. The SUSP input is level sensitive and must meet specified setup and 
hold times to be recognized at a particular clock edge. The SUSP input is 
ignored following reset and can be enabled using the SUSP bit in the CCRD 
configuration register. 

4.1.2.2 Suspend Acknowledge (SUSPA) 

The Suspend Acknowledge (SUSPA) output indicates that the TI486DLC/E 
has entered the suspend mode as a result of SUSP assertion or execution of 
a HALT instruction. If SUSPA is asserted and the CLK2 input is switching, the 
TI486DLC/E continues to recognize RESET, HOLD, and FLUSH. If suspend 
mode was entered as the result of a HALT instruction, the TI486DLC/E also 
continues to monitor the NMI input and an unmasked INTR input. Detection 
of INTR or NMI forces the TI486DLC/E to exit suspend mode and begin 
execution of the appropriate interrupt service routine. The CLK2 input to the 
processor may be stopped after SUSPA has been asserted to further reduce 
the power consumption of the TI486DLC/E. The SUSPA output is disabled 
(floated) following reset and can be enabled using the SUSP bit in the CCRD 
configuration register. 

4-15 



Overview 

Table 4-8 shows the state of the TI486DLC/E signals when the device is in 
suspend mode. 

Table 4-8. Signal States During Suspend Mode 

SIGNAL SIGNAL STATE DURING SIGNAL STATE DURING HALT 
NAME HOLD ACKNOWLEDGE INITIATED SUSPEND MODE 

A20M Ignored Ignored 

A31-A2 1 1 

ADS 1 1 

BE3-BEO 0 0 

BS16 Ignored Ignored 

BUSY Ignored Ignored 

031-00 Float Float 

DIC 1 1 

ERROR Ignored Ignored 

FLUSH Input recognized Input recognized 

HLDA 0 0 

HOLD Input recognized Input recognized 

INTR Latched Input recognized 

KEN Ignored Ignored 

LOCK 1 1 

MilO 0 0 

NA Ignored Ignored 

NMI Latched Input recognized 

PEREQ Ignored Ignored 

READY Ignored Ignored 

RESET Input recognized Input recognized 

SMADS 1 1 

SMI Latched Input recognized 

SUSP Input recognized Ignored 

SUSPA 0 0 

W/R 0 0 

4.1.2.3 Coprocessor Interface 

4-16 

The data bus, address bus, and bus cycle definition signals, as well as the 
coprocessor interface signals (PEREQ, BUSY, ERROR), are used to control 
communication between the TI486DLC/E and a coprocessor. Coprocessor or 
ESC opcodes are decoded by the TI486DLC/E and the opcode and operands 
are then transferred to the coprocessor via 1/0 port accesses to addresses 
8000 00F8h and 8000 OOFCh. Address 8000 00F8h functions as the control 
port address and 8000 OOFCh is used for operand transfers. 

TI486DLCIE Bus Interface 



Functional Timing 

4.2 Functional Timing 

4.2.1 Reset Timing and Internal Clock Synchronization 

RESET is the highest priority input signal and is capable of interrupting any 
processor activity when it is asserted. When RESET is asserted, the 
TI486DLC/E aborts any bus cycle. Idle, hold acknowledge, and suspend 
states are also discontinued and the reset state is established. RESET is used 
when the TI486DLC/E microprocessor is powered up to initialize the CPU to 
a known valid state and to synchronize the internal CPU clock with external 
clocks. 

RESET must be asserted for at least 15 CLK2 periods to ensure recognition 
by the TI486DLC/E microprocessor. If the self-test feature is to be invoked, 
RESET must be asserted for at least 80 CLK2 periods. RESET pulses less 
than 15 CLK2 periods may not have sufficient time to propagate throughout 
the TI486DLC/E and may not be recognized. RESET pulses less than 80 
CLK2 periods followed by a self-test request may incorrectly report a self-test 
failure when no true failure exists. 

Provided the RESET falling edge meets specified setup and hold times, the 
internal processor clock phase is synchronized as illustrated in Figure 4-2. 
The internal processor clock is half the frequency of the CLK2 input and each 
CLK2 cycle corresponds to an internal CPU clock phase. Phase 2 of the 
internal clock is defined to be the second rising edge of CLK2 following the 
falling edge of RESET. 

Following the falling edge of REST (and after self-test if it was requested), the 
TI486DLC/E microprocessor performs an internal initialization sequence for 
approximately 400 CLK2 periods. The TI486DLC/E self-test feature is invoked 
if the BUSY input is in an active-low state when RESET falls inactive. The 
self-test sequence requires approximately (220 + 60) CLK2 periods to 
complete. Even if the self-test indicates a problem, the TI486DLC/E 
microprocessor attempts to proceed with the reset sequence. Figure 4-3 
illustrates the bus activity and timing during the TI486DLC/E reset sequence. 

Upon completion of self-test, the EAX register contains 0000 OOOOh if the 
TI486DLC/E microprocessor passed its internal self-test with no problems 
detected. Any non-zero value in the EAX register indicates that the 
microprocessor is faulty. 

Figure 4-2. Internal Processor Clock Synchronization 

<I> 2 or <1>1 <I> 2 or <1>1 <1>2 

CLK2 

I I I 
I I I 

RESET :1 '\~~~ __ -+ __________ ~ ________ ~: __________ ~: __ __ 
- I I 

I I I 

INTERNAL ~ ~II ..... ___ .....,Vll 
PROCESSOR, I : \ 

CLOCK ' 
I I 

4-17 



Functional Timing 

Figure 4-3. Bus Activity from RESET until First Code Fetch 

~ Reset .,. 

, ;::: 15 CLK2 duration if not , 
I going to request self-test. I 
I ;::: 80 CLK2 duration before I 
I requesting self-test. 

CLK2~ 

Internal ~ Cycle 1 
Initialization Non-Plpehned 

(

If self-test is performed, add I, (Read) 
2020 + 60* to these numbers T1 T2 1 2 3nnru~' 

i~' RESET ~ ; 
* Approximately 

\ ________________ ~I----~I -
1 <I> 21 <I> 1 1 <I> 21 <I> 1 1 <I> 2 <I> 1 <I> 2 I <I> 11 <I> 2 I 

CLK --v-V--v-v-v-i. 
(Internal) ~ ~rtV1\.-

, I 

BUSY ~. L--------.J. \ High for no Self-Test (see Note) \~~ 
~ Low to Begin Self Test ~ 

ERROR~ ~~ 
~ ~ 

BE3-BEO, WlR, ~ Low IV ; 
MilO, HLDA ~ SS '/; '/; 1- Valid 

Up to 30 CLK2 ~ 
A31-A2 ~YI '/; '/; '/; Ie ; 

DIG, LOCK ~ I High i \ Valid 

Up to 30 CLK2 ~ '/; '/; ') I I 
ADS~Hi9h ~ 

I I I 
A20M, BS16, RXXXXXXXXXXI~ 

FLUSH,KEN,NA, ~ ~ 
READY, SUSP 

I I 
D31-DO ~--~s------ (Floating) ·----S~-----S~-I----r-

I I 

SUSPA ~--~s------ (Floating) .---_s~----_s~-:---+--
Note: BUSY should be held stable for 80 CLK2 periods before and after the CLK2 period in which RESET falling edge occurs. 

4.2.2 Bus Operation 

4-18 

The TI486DLC/E microprocessor communicates with the external system 
through separate, parallel buses for data and address. This is commonly 
called a demultiplexed address/data bus. This demultiplexed bus eliminates 
the need for address latches required in multiplexed address/data bus 
configurations where the address and data are presented on the same pins 
at different times. 

TI486DLC/E instructions can act on memory data operands consisting of 8-bit 
bytes, 16-bit words or 32-bit double words. The TI486DLC/E bus architecture 
allows for bus transfers of these operands without restrictions on physical 
address alignment. Any byte boundary may require more than one bus cycle 
to transfer the operand. This feature is transparent to the programmer. 

TI486DLCIE Bus Interface 



Functional Timing 

The TI486DLC/E data bus (D31-DO) is a bidirectional bus that can be 
configured as either a 16-bit or 32-bit wide bus as determined by 8816. The 
bus is 16 bits wide when 8816 is asserted. When 32 bits wide, memory and 
liD spaces are physically addressed as arrays of 32-bit double words. The 
TI486DLC/E drives the data bus during write bus cycles, and the external 
system hardware drives the data bus during read bus cycles. 

Every bus cycle begins with the assertion of the address strobe (ADS). ADS 
indicates that the TI486DLC/E has issued a new address and new bus cycle 
definition signals. A bus cycle is defined by four signals: MilO, WiR, Die and 
LOCK. MilO defines if a memory or I/O operation is occurring, wlFi.. defines the 
cycle to be read or write, and Die indicates whether a data or control cycle is 
in effect. LOCK indicates that the current cycle is a locked bus cycle. Every bus 
cycle completes when the system hardware returns READY asserted. 

The TI486DLC/E performs the following bus cycle types: 

• Memory read 
• Locked memory read 
• Memory write 
• Locked memory write 
• liD read (or coprocessor read) 
• liD write (or coprocessor write) 
• Interrupt acknowledge (always locked) 
• Halt/shutdown 

When the TI486DLC/E microprocessor has no pending bus requests, the bus 
enters the idle state. There is no encoding of the idle state on the bus cycle 
definition signals; however, the idle state can be identified by the absence of 
further assertions of ADS following a completed bus cycle. 

4-19 



Functional Timing 

4.2.2.1 Bus Cycles Using Non-Pipelined Addressing 

Non-Pipelined Bus States 

The shortest time unit of bus activity is a bus state, commonly called a T state. 
A bus state is one internal processor clock period (two CLK2 periods) in 
duration. A complete data transfer occurs during a bus cycle, composed of two 
or more bus states. 

The first state of a non-pipelined bus cycle is called T1. During phase one (first 
CLK2) of T1 , the address bus and bus cycle definition signals are driven valid 
and, to signal their availability, address strobe (ADS) is simultaneously 
asserted. 

The second bus state of a non-pipelined cycle is called T2. T2 terminates a bus 
cycle with the assertion of the READY input and valid data is either input or 
output depending on the bus cycle type. The fastest TI486DLC/E 
microprocessor bus cycle requires only these two bus states. READY is 
ignored at the end of the T1 state. 

Three consecutive bus read cycles, each consisting of two bus states, are 
shown in Figure 4--4. 

Figure 4-4. Fastest Non-Pipelined Read Cycles 

CLK2 
(Input) 

1 Cycle 1 1 Cycle 2 .14 r Non-Pipelined ---'re-- Non-Pipelined I 
1 (Read) 1 (Read) 1 

1 T1 1 T2 1 T1 1 T2 1 
<1>11 <1>21 <1>11 <1>2 <1>11 <1>21 <1>11 <1>2 

Cycle 3 1 

Non-Pipelined -----, 
(Read) 1 

T1 1 T2 1 
<1>11 <1>21 <1>11 <1>2 <1>1 

A31M~~,-~7-~~-~-/~ _of-~ ...... ___ V,"'T"~_lid_1 __ ---1~-.... ___ V,,....~I_id_2 __ --f'~ ____ v,'"'T:a_li_d _3 ___ :~X ...... _ 

031-00 
(Input During Read) 

~ V~---..~ :/~----1\:\ :/~-----!\:'--
1 ~--~i 1 ~--~r 1 ~--~I 1 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
I 1 1 1 1 I I 
1 1 1 1 1 1 I 
1 1 1 1 1 I 1 
1 1 1 1 

I I I I 

I I I 

~--~--~--~--~--~--~ 
I 1 1 I 1 . 

Note: Fastest non-pipelined bus cycles consist of T1 and T2. 

4-20 Tl486DLCIE Bus Interface 



Functional Timing 

Non-Pipelined Read and Write Cycles 

Any bus cycle may be performed with non-pipelined address timing. 
Figure 4--5 shows a mixture of read and write cycles with non-pipelined 
address timing. When a read cycle is performed, the TI486DLC/E 
microprocessor floats its data bus and the externally addressed device then 
drives the data. The TI486DLC/E microprocessor requires that all data bus 
pins be driven to a valid logic state (high or low) at the end of each read cycle, 
when READY is asserted. When a read cycle is acknowledged by READY 
asserted in the T2 bus state, the TI486DLC/E CPU latches the information 
present at its data pins and terminates the cycle. 

When a write cycle is performed, the data bus is driven by the TI486DLC/E 
CPU beginning in phase two of T1. When a write cycle is acknowledged, the 
TI486DLC/E write data remains valid throughout phase one of the next bus 
state to provide write data hold time. 

Figure 4-5. Various Non-Pipelined Bus Cycles (No Wait States) 

I I Cycle 1 I Cycle 2 I Cycle 3 I 
I Idle I Non-Pipelined I Non-Pipelined I Non-Pipelined I Idle 
I I (Write) I (Read) I (Write) I 
I I I I I 
I Ti I T1 T2 I T1 I T1 I Ti 

CLK2 

Cycle 4 
Non-Pipelined 

(Read) 

T1 

B~;~B~: ~ Valid 1 IX vllid 2 ;x Valid 3 :~ Valid 4 
M/IO,D/C~ iii I~ i 

I 
I Idle 

I 
I 
I Ti 

W/R~ i ~ i r i ~-~~-..... i-----I~~ 
ADS I I I I I I I I I 

I I I I I I I I 

NA 

I I I Bus Sizel I Bus Sizel I Bus Size! I I Bus Sizel I 
+ + + + 

Note: Idle states are shown here for diagram variety only. 

4-21 



Functional Timing 

Non-Pipelined Wait States 

Once a bus cycle begins, it continues until acknowledged by the external 
system hardware using the TI486DLC/E READY input. Acknowledging the 
bus cycle at the end of the first T2 results in the shortest possible bus cycle, 
requiring only T1 and T2. If READY is not immediately asserted however, T2 
states are repeated indefinitely until the READY input is sampled active. These 
intermediate T2 states are referred to as wait states. If the external system 
hardware is not able to receive or deliver data in two bus states, it withholds 
the READY signal and at least one wait state is added to the bus cycle. Thus, 
on an address-by-address basis the system is able to define how fast a bus 
cycle completes. 

Figure 4-6 illustrates non-pipelined bus cycles with one wait state added to 
cycles 2 and 3. READY is sampled inactive at the end of the first T2 state in 
cycles 2 and 3. Therefore, the T2 state is repeated until READY is sampled 
active at the end of the second T2 and the cycle is then terminated. The 
TI486DLC/E ignores the READY input at the end of the T1 state. 

Figure 4-6. Various Non-Pipelined Bus Cycles with Different Numbers of Wait States 

I I Cycle 1 I Cycle 2 I I Cycle 3 I 
I Idle I Non-Pipelined I Non-Pipelined I Idle I Non-Pipelined I Idle 
I I (Read) I (Write) I I (Read) I 
I I I I I I 
I Ti I T1 I T1 T2 T2 I Ti I T1 T2 T2 I Ti 

CLK2 

A31-A2, I I 
BE3-BEO, ~ 
MIlO, DtC 

W/R~ I I I I 
I I I I 
I I I I I 

ADS I I I I I I I I I I I I 
I I I I I 

NA~~~ 
I I I Bus sizel I I Bus Size I I I I Bus sizel I 
I I I t I I I t I I I I t~ 

BS16~~~ I I 

READY~i. "'i~i~i~ 
• • I· I 

I I I End Cycle 1 I End Cycle 2 I ! End C~ 

LOCK ~ V~id 1 « ; Valid I I~ ; Valid 3 ~ 

D31-DO+--+--~-~<: OU1 2 : >-}---+--~-~--
I 1 1 "-?' I 1 1 --~ 

Note: Idle states are shown here for diagram variety only. 

4-22 Tl486DLCIE Bus Interface 



Functional Timing 

Initiating and Maintaining Non-Pipelined Cycles 

The bus states and transitions for non-pipelined addressing are illustrated in 
Figure 4-7. The bus transitions between four possible states: T1, T2, Ti, and 
Th. Active bus cycles consist of T1 and T2 states, with T2 being repeated for 
wait states. Bus cycles always begin with a single T1 state. T1 is always 
followed by a T2 state. If a bus cycle is not acknowledged during a given T2 
and NA is inactive, T2 is repeated resulting in a wait state. When a cycle is 
acknowledged during T2, the following state is T1 of the next bus cycle if a bus 
request is pending internally. If no internal bus request is pending, the Ti state 
is entered. If the HOLD input is asserted and the TI486DLC/E is ready to enter 
the hold acknowledge state, the Th state is entered. 

Figure 4-7. Non-Pipelined Bus States 

Bus States: 

HOLD Asserted 

HOLD Negated 
No Request 

HOLD Asserted 

READY Asserted 
HOLD Negated 

No Request 

Request Pending 
HOLD Negated 

READY Asserted 
HOLD Asserted 

READY Asserted 
HOLD Negated 

Request Pending 

T1 - First clock of a non-pipelined bus cycle <.QEU drives new address and asserts ADS) 
T2 - Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle. 
Ti - Idle State 
Th - Hold Acknowledge (CPU asserts HLDA) 

The fastest bus cycle consists of two states: T1 and T2. 

4-23 



Functional Timing 

Because of the demultiplexed nature of the bus, the address pipelining option 
provides a mechanism for the external hardware to have an additional T state 
of access time without inserting a wait state. After the reset sequence and 
following any idle bus state, the processor always uses non-pipelined address 
timing. Pipe lined or non-pipelined address timing is then determined on a 
cycle-by-cycle basis using the NA input. When address pipelining is not used, 
the address and bus cycle definition remain valid during all wait states. When 
wait states are added and it is desirable to maintain non-pipe lined address 
timing, it is necessary to negate NA during each T2 state of the bus cycle 
except the last one. 

4.2.2.2 Bus Cycles Using Pipelined Addressing 

4-24 

The address pipelining option allows the system to request the address and 
bus cycle definition of the next internally pending bus cycle before the current 
bus cycle is acknowledged with READY asserted. If address pipelining is 
used, the external system hardware has an extra T state of access time to 
transfer data. The address pipelining option is controlled on a cycle-by-cycle 
basis by the state of the NA input. 

Pipelined Bus States 

Pipelined addressing is always initiated by asserting NA during a 
non-pipelined bus cycle. Within the non-pipelined bus cycle, NA is sampled at 
the beginning of phase 2 of each T2 state and is only acknowledged by the 
TI486DLC/E during wait states. When address pipelining is acknowledged, 
the address (BE3-BEO, and A31-A2) and bus cycle definition (WiR, Ole, and 
MilO) of the next bus cycle are driven before the end of the non-pipelined 
cycle. The address status output (ADS) is asserted simultaneously to indicate 
validity of the above signals. Once in effect, address pipelining is maintained 
in successive bus cycles by continuing to assert NA during the pipelined bus 
cycles. 

As in non-pipelined bus cycles, the fastest bus cycles using pipelined address 
require only two bus states. Figure 4-8 illustrates the fastest read cycles using 
pipelined address timing. The two bus states for pipelined addressing are T1 P 
and T2P or T1 P and T21. The T1 P state is entered following completion of the 
bus cycle in which the pipe lined address and bus cycle definition information 
was made available and is the first bus state of every pipelined bus cycle. In 
other words, the T1 P state follows a T2 state if the previous cycle was 
non-pipelined, and follows a T2P state if the previous cycle was pipelined. 

T1486DLCIE Bus Interface 



Functional Timing 

Figure 4-8. Fastest Pipelined Read Cycles 

CLK2 

A31-A2, BE3-BEO, 
MIlO, Die, wiR 

NA 

031-00 
(Input During Read) 

I Cycle 1 I 
I Pipelined I 

(Read) 
I T1P T2P I 
I <1>2: <I> 1 I <1>2 I 

Cycle 2 I 
Pipelined I 
(Read) 

T1P I T2P I 
<1>2 I <I> 1 I <I> 2 I 

Cycle 3 I 
Pipelined I 
(Read) 

T1P I T2P I 
<1>2 I <I> 1 I <1>2 I 

--~----~~~----~----~~~----~----~~~----~---

I I I 

Valid 1 P. Valid 2 p. Valid 3 ~ 
I I I 

I I I I I I I 

~--~--~--~--~--~--~ 
I : I : I : I 

Note: Fastest pipelined bus cycles consist of T1 P and T2P. 

Within the pipelined bus cycle, NA is sampled at the beginning of phase 2 of 
the T1 P state. If the TI486DLC/E has an internally pending bus request and 
NA is asserted, the T1 P state is followed by a T2P state and the address and 
bus cycle definition for the next pending bus request is made available. If no 
pending bus request exists, the T1 P state is followed by a T21 state regardless 
of the state of NA and no new address or bus cycle information is driven. 

The pipelined bus cycle is terminated in either the T2P or T21 states with the 
assertion of the READY input and valid data is either input or output depending 
on the bus cycle type. READY is ignored at the end of the T1 P state. 

Pipelined Read and Write Cycles 

Any bus cycle may be performed with pipelined address timing. When a read 
cycle is performed, the TI486DLC/E microprocessor floats its data bus and the 
externally addressed device then drives the data. When a read cycle is 
acknowledged by READY asserted in either the T2P or T21 bus state, the 
TI486DLC/E CPU latches the information present at its data pins and 
terminates the cycle. 

4-25 



Functional Timing 

4-26 

When a write cycle is performed, the data bus is driven by the TI486DLC/E 
CPU beginning in phase 2 of T1 P. When a write cycle is acknowledged, the 
TI486DLC/E write data remains valid throughout phase 1 of the next bus state 
to provide write data hold time. 

Pipelined Wait States 

Once a pipelined bus cycle begins, it continues until acknowledged by t~e 
external system hardware using the TI486DLC/E READY input. 
Acknowledging the bus cycle at the end of the first T2P or T21 state results in 
the shortest possible pipelined bus cycle. If READY is not immediately 
asserted, however, T2P orT21 states are repeated indefinitely until the READY 
input is sampled active. Additional T2P or T21 states are referred to as wait 
states. 

Figure 4-9 illustrates pipelined bus cycles with one wait state added to cycles 
1 through 3. Cycle 1 is a pipelined cycle with NA asserted during T1 P and a 
pending bus request. READY is sampled inactive at the end of the first T2P 
state in cycle 1. Therefore, the T2P state is repeated until READY is sampled 
active at the end of the second T2P and the cycle is then terminated. The 
TI486DLC/E ignores the READY input at the end of the T1 P state. Note that 
ADS, the address and the bus cycle definition signals for the pending bus cycle 
are all valid during each of the T2P states. Also, asserting NA more than once 
during the cycle has no additional effects. Pipelined addressing can only 
output information for the very next bus cycle. 

Cycle 2 in Figure 4-9 illustrates a pipelined cycle, with one wait state, where 
NA is not asserted until the second bus state in the cycle. In this case, the CPU 
enters the T2 state following T1 P because NA is not asserted. During the T2 
state, the TI486DLC/E samples NA asserted. Because a bus request is 
pending internally and READY is not active, the CPU enters the T2P state and 
asserts ADS, valid address and bus cycle definition information for the 
pending bus cycle. The cycle is then terminated by an active READY atthe end 
of the T2P state. 

Cycle 3 of Figure 4-9 illustrates the case where no internal bus request exists 
until the last state of a pipelined cycle with wait states. In cycle 3, NA is asserted 
in T1 P requesting the next address. Because the CPU does not have an 
internal bus request pending, The T21 state is entered. However, by the end 
of the T21 state, a bus request exists. Because READY is not asserted, a wait 
state is added. The CPU then enters the T2P and asserts ADS and valid 
address and bus cycle definition information for the pending bus cycle. As long 
as the CPU enters the T2P state at some pOint during the bus cycle, pipelined 
addressing is maintained. NA needs to be asserted only once during the bus 
cycle to request pipelined addressing. 

Tl486DLCIE Bus Interface 



Functional Timing 

Figure 4-9. Various Pipelined Cycles (One Wait State) 

CLK2 

A31-A2, 
BE, BE, 

MilO, ole 

W/R 

ADS 

031-00 

I ... 
I 
I 

Cycle 1 
Pipelined --.14 

(Write) I 
I 

Cycle 2 
~4 Pipelined 

(Read) I 
I 

Cycle 3 
.-14 

Cycle 4 
Pipelined Pipelined 

(Write) I (Read) 
I 

I T1P 
I 

T2P T2P I 
I 

T1P T2 T2P I T1P T21 T2P I T1P 
I I 

I I I 

ADS is asserted as soon 
as the CPU has another 
bus cycle to perform, 
which is not always 
immediately after NA is 
asserted. 

r---+---~~~~ 

I 

I 
I I I I 

As long as the CPU enters the T2P 
state during Cycle 3, address pipelining 
is maintained in Cycle 4. 

I I J I I J J 

Asserting NA more than NA could have been asserted in 
I once during any cycle has I T1 P if desired. Assertion now is 
I no additional effects. I the latest time possible to allow 
I I I I the CPU to enter T2P state to 
I I I I maintain pipelining in Cycle 3. 

I I I I I I I WI I ~I I 

I : : iMtf : : 
I I 

Out 1 >+-......,.---..--......... -...,j I 
I 

Initiating and Maintaining Pipelined Cycles 

Pipelined addressing is always initiated by asserting NA during a 
non-pipelined bus cycle with at least one wait state. The first bus cycle 
following RESET, an idle bus, or a hold acknowledge state is always 
non-pipelined. Therefore, the TI486DLC/E always issues at least one 
non-pipelined bus cycle following RESET, idle, or hold acknowledge before 
pipelined addressing takes effect. 

4-27 



Functional Timing 

Once a bus cycle is in progress and the current address has been valid for one 
entire bus state, the NA input is sampled at the end of every phase one until 
the bus cycle is acknowledged. Once NA is sampled active, the TI486DLC/E 
microprocessor is free to drive a new address and bus cycle definition on the 
bus as early as the next bus state and as late as the last bus state in the cycle. 

Figure 4-10 illustrates the fastest transition possible to pipelined addressing 
following an idle bus state. In Cycle 1, NA is driven during state T2. Thus, Cycle 
1 makes the transition to pipelined address timing, since it begins with T1 but 
ends with T2P. Because the address for Cycle 2 is available before Cycle 2 
begins, Cycle 2 is called a pipelined bus cycle, and it begins with a T1 P state. 
Cycle 2 begins as soon as READY asserted terminates Cycle 1. 

Figure 4-10. Fastest Transition to Pipelined Address Following Idle Bus State 

CLK2 

Idle 1 

1 

.~ 

1 

1 T1 

A31-A2 _ 
BE3-BEO, 
MIlO, Die 

Cycle 1 
Non-Pipelined 

(Write) 

Cycle 2 
Pipelined 1 

(Read) 1 

--1 l1li --I~ 

T1P 1 T2P : 

Cycle 3 
Pipelined 1 

(Write) 1 

·I~ 
1 1 
1 T2P 1 T1P 

Cycle 4 
Pipelined 
(Read) 

1 Idle 

1 

.II1II 

LOCK " : Valid 1, « Vflid 2 « V+ 3 « : Valid t ~ 
1 1 1 1 1 1 1 1 1 1 1 1 

031-00 -L--.L-{,..---O-ut-1---}-....l-~ < Out 3 )-....l--....l-~-_ 
I I i I ~ i I I I ~ 

Note: Following any idle bus state (Ti) the address is always non-pipe lined and NA is sampled only during wait states. To start 
address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The 
pipelined cycles (2,3, and 4 above) are shown with various numbers of wait states. 

4-28 

Figure 4-11 illustrates transitioning to pipelined addressing during a burst of 
bus cycles. Cycle 2 makes the transition to pipelined addressing. Comparing 
Cycle 2 to Cycle 1 of Figure 3-10 illustrates that a transition cycle is the same 
whenever it occurs consisting of at least T1, T2 (NA is asserted at that time), 
and T2P (provided the TI486DLC/E microprocessor has an internal bus 
request already pending). T2P states are repeated if wait states are added to 
the cycle. Cycles 2, 3, and 4 in Figure 4-11 show that once address pipelining 
is achieved it can be maintained with two-state bus cycles consisting only of 
T1P and T2P. 

Tl486DLCIE Bus Interface 



Functional Timing 

Once a pipelined bus cycle is in progress, pipelined timing is maintained for 
the next cycle by asserting NA and detecting that the TI486DLC/E 
microprocessor enters T2P during the current bus cycle. The current bus cycle 
must end in state T2P for pipelining to be maintained in the next cycle. T2P is 
identified by the assertion of ADS. Figure 4-10 and Figure 4-11 each show 
pipelining ending after Cycle 4. This occurred because the TI486DLC/E CPU 
did not have an internal bus request prior to the acknowledgment of Cycle 4. 

Figure 4-11. Transitioning to Pipelined Address During Burst of Bus Cycles 

I I Cycle 1 I Cycle 2 I Cycle 3 I Cycle 4 I 
I Idle I Non-Pipelined I Non-Pipelined I Pipelined I Pipelined I Idle 

� ____ ~.~~r--(-W-rit-e)----.1~4------(R-e-ad-)------•• ~---(-W-rit-e)--~.~~.---(-Re-a-d)--4.~14.---~ 
I I I 1- I I 
I Ti I T1 T2 I T1 T2P I T1 P : T2P I T1 P I Ti 

CLK2 

A31-A2, I I 
BE3-BEO, ~ 
M/IO,O/C~ 

WiR !~~'''''--i-l '--____ +_' 

READY~ 

LOCK~ V~lid1 
~I 

I I ~~I----~~ 
031-00 ~---r-< Out 1 

I I I 
Note: Following any idle bus state (Ti), addresses are non-pipelined bus cycles, NA is sampled only during wait states. 

Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at 
least one wait state (Cycle 2 above). 

The complete bus state transition diagram, including operation with pipelined 
address is given in Figure 3-12. This is a superset of the diagram for 
non-pipelined address. The three additional bus states for pipelined address 
are shaded. 

4-29 



Functional Timing 

Figure 4-12. Complete Bus States 

Bus States: 

HOLD Negated· 
No Request 

Request Pending' 
HOLD Negated 

READY Asserted' 
HOLD Negated' 

No Request 

HOLD Asserted 

READY Asserted' 
HOLD Asserted 

READY Asserted' 
HOLD Asserted 

HOLD Negated' 
Request Pending 

_--r-- READY Asserted· 
HOLD Negated· 

No Request 

ALWAYS 

READY Asserted· 
HOLD Negated' 
Request Pending 

Asserted· 
HOLD Negated' 
Request Pending 

NA Asserted· 
(HOLD Asserted + 

(No Request + 
HOLD Asserted) . 

NA Asserted' 
READY Negated 

No Request) 

I 
I 
I 
I 
I 
I , I 

I I 
I NA Negated I 

READY Ne(]atf:~rI 
NA Asserted· 

HOLD Negated 
Request Pending 

READY Negated' 

(No Request + / 
HOLD Asserted) 

READY Negated 
Request Pending 
HOLD Asserted 

READY Negated 

NA Asserted' 
HOLD Negated· 
Request Pending 

READY Ass,en:e~a 

T1 - First clock of a non-pipelined bus cycle (QEU drives new address and asserts ADS). 
T2 - Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle. 
T21 - Subsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle but there 

is not yet an internal bus request pendln.9. (CPU drives new address and asserts ADS). 
T2P - Subsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle and there 

is an internal bus request pending (CPU drives new address and asserts ADS). 
T1 P - First clock of a pipelined bus cycle. 
Ti - Idle state. 
Th - Hold Acknowledge state (CPU asserts HLDA). 

4-30 Tl486DLCIE Bus Interface 



Functional Timing 

4.2.3 Bus Cycles Using BS16 

Assertion of B816 during a bus cycle effectively changes the T14860LC/E 
32-bit bus into a 16-bit data bus. Although slower, the 16-bit data bus usually 
requires less hardware interface circuitry and generally offers greater 
compatibility with 16-bit devices. 

Non-Pipelined Cycles 

With B816 asserted, all operand transfers physically occur on data bus lines 
015-00. With B816 asserted during a 32-bit non-pipelined read or write, 
additional bus cycles are issued by the CPU to transfer the data. 

For data reads with only the two upper bytes selected (BE3 and/or BE2 
asserted), data is read from 015-00. 

For data writes with only the two upper bytes selected (BE3 and/or BE2 
asserted), data is duplicated on 015-00 and no further action is required. 

For data reads with all four bytes selected (at least BE1, BE2 asserted and 
possibly BEO and/or BE3 also asserted), the CPU performs two 16-bit read 
cycles using data lines 015-00. Lines 031-0'16 are ignored. 

Oata writes with all four bytes selected (at least BE1, BE2 asserted and 
possibly BEO and/or BE3 also asserted), the CPU performs two 16-bit write 
cycles using data lines 015-00. Bytes 0 and 1 (corresponding to BEO, BE1) 
are sent on the first bus cycle and bytes 2 and 3 (corresponding to BE2, BE3) 
are sent on the second bus cycle. BEO and BE1 are always negated during 
the second 16-bit bus cycle. Figure 4-13 illustrates two non-pipelined bus 
cycles using B816. 

4-31 



Functional Timing 

Figure 4-13. Non-Pipelined Bus Cycles Using BS 16 

A Transfer Requiring Two Cycles A Transfer Requiring Two Cycles 
on 16-Bit Data Bus on 16-Bit Data Bus 

---------~~--------- ---------~~---------( ,( ) 
1 Cycle 1 1 Cycle 1 A 1 Cycle 2 1 Cycle 2A 1 

Idle 1 Non-Pipelined 1 Non-Pipelined 1 Pipelined 1 Pipelined 1 Idle 
1 Write, Part One 1 Write, Part Two '= Read, Part One.! Read, Part Two I 
~ ·1· ·r ~. ·1 
1 T1 I T2 1 T1 1 T2 1 T1 1 T2 1 T1 1 T1 1 Ti Ti 

CLK2 

-BE-1 ,-BE-O 'i~ij[~;~=7~A~IW~a~y~S~ln~ac~t~ive~::~;~=7AA~IW~a~ys~l~na~c~tiv~e~~~~~~ "~~~~~---r--'-' During Part 2 1 Duri~g Part 2 

I lx~--+----t---+---tI. ~~~~' 
~~~~ ~_~ __ ~ __ ~: ____ J

1

~--~--~----~----~ ~~~~~~

~-~--+-~--~~~~
1

ADS

I I 16-Bit I I 16-Bit I I 16-Bit I 16-Bit I
I I I Bus Size I I Bus Size I I Bus Size I I Bus Size I

REAOY~i.i.:.i~

LOCK ~ : d15jid 1 : d31~1? ; ~~to ; d31~
015-00 -1---r-{ : out: X : Out - }-t--G>--t--$--+---1

1 1 . d31-d16 1 Ignored 1 Ignored 1 1

031-016-i---r~: : out: : >i--Q-i--<p--t---i
Note: Dn = physical data pin n.

dn = logical data bit n.

4-32 TI486DLCIE Bus Interface

Functional Timing

Pipelined Cycles

The input signal NA is a request to the CPU to drive the address, byte enables,
and bus status signals for the next bus cycle as soon as they become internally
available. "Pipelining" this address allows the system logic to anticipate the
next bus cycle operation.

The CPU cannot acknowledge both address pipelining and 8S16 for the same
bus cycle. If NA is already sampled when 8S16 is asserted, the data bus
remains 32-bits wide. If NA and 8816 are asserted in the same window, NA
is ignored and 8S16 remains effective (the data bus becomes 16-bits wide).
Figure 4-14 illustrates the interaction between NA and 8S16.

4-33

Functional Timing

Figure 4-14. Pipelining and as 16

CLK2

A Transfer Requiring Two Cycles
on 16-Bit Bus

__ -------------)l,------------__ (" previous:
Cycle 1A 1 Cycle 1B

Cycle Pipelined 1 Non-Pipelined

~ Write, Part One
.1.

Write, Part Two

1 1
1 T2P 1 T1P 1 T2 T2 1 T1 T2 1

1
1

~ ..
T2 1

Always Inactive

Cycle 2 1
Non-Pipelined 1 Idle

Read
.1

1
T1 T2 1 T2P 1 Ti

During Part 2 1

B~~~B~i ~ V~lid 1 II I :x V~lid 2 Valid 3
MilO, DIC -," iii

W/R J/ : : :\: :
1 1 1 1 1 1 1 1

AD8~~~--~--~~~--~~~ :\~~: __ ~
1 1 NA must be negated in these T's to allow
I 1 recognilion of as~erted B81,6 in final T2S.

B816~~~~~~~~~~~~~~~~~~~~~~~~_;I--~~~~8
1 1 1 16-Bit 1 1 1 16-Bit 1 1 1 1
~ 1 I Bus Size 1 1 1 Bus Size 1 1 1 1 1

REAOY~ ~~~~,......: ~'I~I 'I~i 'I ~

LOCK "0 :: dJ5-dO vr: lid 1 :: d31~16 I:X ; Valid r d1~
015-00 -1--G--< ~ut . X O~t >-+----t--$--1

031-016 -~-tf>-< : : ~31~6 : ; : }--}--{--~tF>-~
1 I I I 1 1 1

On = physical data pin n.
dn = logical data bit n.
Cycle 1 A is pipelined. Cycle 1 B cannot be pipelined, but its address can be inferred from cycle 1 to externally simulate
address pipelining during cycle 1 B.

4.2.4 Locked Bus Cycles

4-34

When the LOCK signal is asserted, the TI486DLC/E microprocessor does not
allow other bus master devices to gain control of the system bus. LOCK is
driven active in response to executing certain instructions with the LOCK
prefix. The LOCK prefix allows indivisible read/modify/write operations on
memory operands. LOCK is also active during interrupt acknowledge cycles.

Tl486DLCIE Bus Interface

Functional Timing

LOCK is activated on the CLK2 edge that begins the first locked bus cycle and
is deactivated when READY is returned at the end of the last locked bus cycle.
When using non-pipelined addressing, LOCK is asserted during phase 1 of
T1. When using pipelined addressing, LOCK is driven valid during phase 1 of
T1P.

Figure 4-4 through Figure 4-6 and Figure 4-13 illustrate LOCK timing during
non-pipelined cycles and Figure 4-8 through Figure 4-11 and Figure 4-14
cover the pipelined address case.

4.2.5 Interrupt Acknowledge (INTA) Cycles

The TI486DLC/E microprocessor is interrupted by an external source via an
input request on the INTR input (when interrupts are enabled). The
TI486DLC/E microprocessor responds with two locked interrupt acknowledge
cycles. These bus cycles are similar to read cycles. Each cycle is terminated
by READY sampled active as shown in Figure 4-15.

Figure 4-15. Interrupt Acknowledge Cycles

CLK2

Idle I
I

.~

Interrupt
Acknowledge

Cycle 1

I T2 I T2 :

Idle
(4 Bus States)

Interrupt
Acknowledge

Cycle 2
I Idle
I
.~

I T2 I T2 :

BS16~~~~~~~~~~~~~~~~~~~~~~I--~~~
I

REAOY ~~~~~~~'---~~~~~~~~~~~~~~~~r-T'~ __ ~~
I

I I I Ignored I I I I I I Vector

07-00 t--t--i-----<P--t--t--t--i--~--l-__$-·
I I I Ignored I I I I I I Ignored

031-08 t--t--t-----<p--t--t--t---t--~----_cp-·

Note: Interrupt Vector (0-255) is read on 07-00 at end of second interrupt acknowledge bus cycle. Because each Interrupt
Acknowledge bus cycle is followed by idle bus states, asserting NA has no practical effect.

4-35

Functional Timing

4-36

The state of A2 distinguishes the first and second interrupt acknowledge
cycles. The address driven during the first interrupt acknowledge cycle is 4h
(A31-A3=0, A2=1, BE3-BE1=1, and BEO=O). The address driven during the
second interrupt acknowledge cycle is Oh (A31-A2=0, BE3-BE1=1, and
BEO=O).

To assure that the interrupt acknowledge cycles are executed indivisibly, the
LOCK output is asserted from the beginning of the first interrupt acknowledge
cycle until the end of the second interrupt acknowledge cycle. Four idle bus
states (Ti) are always inserted by the TI4860LC/E microprocessor between
the two interrupt acknowledge cycles.

The interrupt vector is read at the end of the second interrupt cycle. The vector
is read by the TI4860LC/E microprocessor from 07-00 of the data bus. The
vector indicates the specific interrupt number (from 0-255) requiring service.
Throughout the balance of the two interrupt cycles, 031-00 float. At the end
of the first interrupt acknowledge cycle, any data presented to the TI4860LC/E
is ignored.

Tl486DLCIE Bus Interface

Functional Timing

4.2.6 Halt and Shutdown Cycles

Halt Indication Cycle

Executing the HLT instruction causes the TI486DLC/E execution unit to cease
operation. Signaling its entrance into the halt state, a halt indication cycle is
performed. The halt indication cycle is identified by the state of the bus cycle
definition signals (M/IO=1, D/C=O, W/R=1, LOCK=1) and an address of 2h
(A31-A2=O, BE3=1, BE2=O, BE1-BEO=1). The halt indication cycle must be
acknowledged by READY asserted. A halted TI486DLC/E microprocessor
resumes execution when INTR (if interrupts are enabled), NMI, or RESET is
asserted. Figure 4-16 illustrates a non-pipelined halt cycle.

Figure 4-16. Non-Pipelined Halt Cycle

I Cycle 1 I Cycle 2 I
I Non-Pipelined I Non-Pipelined I
I (Write) I (Halt) I
I~ .I~ ~
I I I
I T1 T2 I T1 T2 I
I I I

Ti Ti

CLK2

Idle

Ti Ti

I
I
I
~

BEO,BE1, ~ 7: ~I I cPuremailnShalted
BE3, MIlO, Valid 1 I untillNTR, NMI, or

wifi. I I RESET is asserted,

:~,-~ ~ +dl ~ !
ADS ~ V ~ [I I I I I I

NA

I I I I I I I I I

BS16~ ~2i1£~

READY !~!~!~
I I I I I~ I I I I
II I II Note: Halt cycle ~ust be aknowledged I I I

I by READY asserted, Wait states may be I I I
I I I added to the cycle if desired, I I I
IIII~

LOCK « vali~l (: ~
I I I I I I I I

O t X 0 t 1 X :
U d f' d >-~ (Float'lng) rl ---TI ---~ u u n e me , I I

~I--~~------~~~~----~I-- I I I I
I I I I I I I

031-00

4-37

Functional Timing

4-38

Shutdown Indication Cycle

Shutdown occurs when a severe error is detected that prevents further
processing. The TI486DLC/E microprocessor shuts down as a result of a
protection fault while attempting to process a double fault as well as the
conditions referenced in Chapter 2. Signaling its entrance into the shutdown
state, a shutdown indication cycle is performed. The shutdown indication cycle
is identified by the state of the bus cycle definition signals (M/IO=1, D/C=O,
W/R=1, LOCK=1) and an address of Oh (A31-A2=O, BE3-BE1=1, and
BEO=O). The shutdown indication cycle must be acknowledged by READY
asserted. A shutdown TI486DLC/E microprocessor resumes execution only
when NMI or RESET is asserted. Figure 4-17 illustrates a shutdown cycle
using pipelined addressing.

TI486DLCIE Bus Interface

Functional Timing

Figure 4-17. Pipelined Shutdown Cycle

I Cycle 1 I Cycle 2 I
I Pipelined I Pipelined I
I (Read) I (Shutdown) I Idle

1II1II .1II1II ~11111
I I I
I T1P T2P I T1P T2P I Ti
I I I

Ti Ti Ti

CLK2

BE3-BE1, :
MilO, wif5. Valid 1

I

7
i

I~II I CPU remains shut-
I down until NMI, or
I RESET is ~sserted. I

A31-A2 : BEO, Die Valid 1

I ~
........ I __ ~I I

ADS: ~---fV
: I I I I I
I I I I I I

I I I

NA~ ~
8816 $' !~ 11-~I~ READY

I l I I I I
I ' I I I I

Note: Shutdown cycle must be acknowledged by READY I I
asserted. Wait states may be added to the cycle if desired. I I

I

i~ LOCK Valid 1 (
~~

I I I I I I I I

031-00 ~-t--~-< Undefined }--I (Floating) t---t----I
T-' I T-" I I I I I

4-39

Functional Timing

4.2.7 Internal Cache Interface

4.2.7.1 Cache Fills

Any unlocked memory read cycle can be cached by the TI486DLC/E. The
TI486DLC/E automatically does not cache accesses to memory addresses
specified by the non-cacheable region registers. Additionally, the KEN input
can be used to enable caching of memory accesses on a cycle-by-cycle basis.
The TI486DLC/E acknowledges the KEN input only if the KEN enable bit is set
in the CCRO configuration register.

As shown in Figure 4-19 and Figure 4-20, the TI486DLC/E samples the KEN
input one CLK2 before READY is sampled active. If KEN is asserted and the
current address is not set as non-cacheable per the non-cacheable region
registers, then the TI486DLC/E fills two bytes of a line in the cache with the
data present on the data bus pins. The states of BE3-BEO are ignored if KEN
is asserted for the cycle.

Figure 4-18. Non-Pipelined Cache Fills Using KEN

CLK2

A31-A2, BE3-BEO,
Ole, MilO, wiR

ADS

BS16

NA

KEN

READY

LOCK

031-00

4-40

Cycle 1
Non-Pipelined

(Read - Cache Fill) I
T1 I T2 I T1

Cycle 2
Non-Pipelined

(Read - Cache Fill)

T2
$1 I $2 I <1>1 I <1>2 <1>1 I <I> 1 I

I I I I

X +lid1 X Valid2 :

I I I I I

l\ V 1\ V I
I

I I I I I

~ ~
I I I I
I I
I I
I I

~
I I I

--I I I I
I I I I
I I I I

I I I I I

~ +d1 ~ :
Valid2 :

I I I I I

~
I I
I I
I I
I I

- I
I
I

I I

~
I I
I I

I
I

• I I

~--r--~--r----r--~--l
, I I I I , I

Tl486DLCIE Bus Interface

Functional Timing

Figure 4-19. Non-Pipelined Cache Fills Using KEN and as 16

Cycle 1 I Cycle 2 I
Non-Pipelined I Non-Pipelined I (Read - Cache Fill)

I
(Read - Cache Fill)

I
T1 I T2

<1>2 I
T1 I T2 I T2

<1>2 I <1> 1 I <1>2 I <1> 1 I <1> 1 I <1>2 I <1> 1 I <1>2 I <1> 1 I
CLK2

I I I I

~ A31-A2, BE3-BEO, X +d1 X Valid2 : Ole, MIlO, WiR

I I I I I I I
ADS 1\ V ~ V I I I

I I I
I I I I I I I

BS16 ~ ~ -I I I I I
I I I NA
I I I I I
I 8816 must be asserted during both 8816 I I

~ tCI~OCCt • KEN

I I I I I I
READY I : I I I I

I I I I
I I I I I I

LOCK ~ +id1 ~ :
Valid2 : • I I d15~0 I I d15~0 I

031-00 ~--f--~--r----r--~--~ (Input During Read)

I I I I I I I

4-41

Functional Timing

Figure 4-20. Pipelined Cache Fills Using KEN

CLK2

A31-A2, BE3-BEO,
DIG, MilO, W/R

031-00
(Input During Read)

Cycle 1 I Cycle 2
Pipelined I Pipelined

(Read - Cache Fill) (Read - Cache Fill) I
T1P I T2P I T2P : T1P I T2P I T1P

<j)11 <j)21 <j)11 <j)21 <j)11 <j)2 <j)11 <j)21 <j)11 <j)2 <j)11 <j)21

Valid 1 Valid 2 Valid 3

--~----~~~----~------~----~~~----~------~---

I I I I I

.-U \ i /~:~\ i ;,....;:-
I I I I I

~ ______ ~ __ Va_li_d_1~ ______ ~~ _______ v~:a_lid_2 ____ -+~ _____ v_a_lid~13 __ __

I I I I I I I

~--t----t--~--t--~--t--
I I I I I I I

4.2.7.2 Flushing the Cache

4-42

To maintain cache coherency with external memory, the TI486DLC/E cache
contents should be invalidated when previously cached data is modified in
external memory by another bus master. The TI486DLC/E invalidates the
internal cache contents during execution of the INVD and WBINVD
instructions, following assertion of HLDA if the BARB bit is set in the CCRD
configuration register, or following assertion of FLUSH if the FLUSH bit is set
in CCRD.

TI486DLCIE Bus Interface

Functional Timing

The TI486DLC/E samples the FLUSH input on the rising edge of CLK2
corresponding to the beginning of phase 2 of the.internal processor clock. If
FLUSH is asserted, the TI486DLC/E invalidates the entire contents of the
internal cache. The actual point in time where the cache is invalidated depends
upon the internal state of the execution pipeline. FLUSH must be asserted for
at least two CLK2 periods and must meet specified setup and hold times to be
recognized on a specific CLK2 edge.

4.2.8 Address Bit 20 Masking

The TI486DLC/E can be forced to provide 8086 1-MByte address wraparound
compatibility by setting the A20 bit in the CCRO configuration register and
asserting the A20M input. When the A20M is asserted, the 20th bit in the
address to both the internal cache and the external bus pin is masked (zeroed).

4-43

Functional Timing

Figure 4-21.

CLK2

As shown in Figure 4-21, the TI486DLC/E samples the A20M input on the
rising edge of CLK2 corresponding to the beginning of phase 2 of the internal
processor clock. If A20M is asserted and paging is not enabled, the
TI486DLC/E masks the A20 signal internally starting with the next cache
access and externally starting with the next bus cycle. If paging is enabled, the
A20 signal is not masked regardless of the state of A20M. A20 remains
masked until the access following detection of an inactive state on the A20M
pin. A20M must be asserted for a minimum of two CLK2 periods and must
meet specified setup and hold times to be recognized on a specific CLK2 edge.

An alternative to using the A20M pin is provided by the NCO bit in the CCRO
configuration register. The TI486DLC/E automatically does not cache
accesses, to the first 64 KBytes and to 1 MByte + 64 KBytes, if the NCO bit is
set. This prevents data within the wraparound memory area from residing in
the internal cache and thus eliminates the need for masking A20 to the internal
cache.

Masking A20 Using A20M During Burst of Bus Cycles

1 Cycle 1 1 Cycle 2 1 Cycle 3 1

Idle 1 Non-Pipelined 1 Non-Pipelined 1 Pipelined 1

1 (Write) 1 (Read) I. (Write) 1

~4 .14 .r .14

Cycle 4
Pipelined
(Write)

Ti 1 T1 1 T2 1 T1 1 T2 1 T2P 1 T1 P 1 T2P 1 T1 P 1 T21
1

1 Ti

A19-A2, 1 1

:~~~6:~~~~~ ____ ~_a~ilid_1 __ ~;)(____ ~Va_li_d_2 __ ~ __ ~ ____ ~ ____ ~ __ ~~~~~~
M/IO,D/C~ I

W/R~~rur 1

4-44 TI486DLCIE Bus Interface

Functional Timing

4.2.9 Hold Acknowledge State

The hold acknowledge state provides the mechanism for an external device
in a TI486DLC/E system to acquire the TI486DLC/E system bus while the
TI486DLC/E is held in an inactive bus state. This allows external bus masters
to take control of the TI486DLC/E bus and directly access system hardware
in a shared manner with the TI486DLC/E. The TI486DLC/E continues to
execute instructions out of the cache (if enabled) until a system bus cycle is
required.

The hold acknowledge state (Th) is entered in response to assertion of the
HOLD input. in the hold acknowledge state, the TI486DLC/E microprocessor
floats all output and bidirectional signals, except for HLDA and SUSPA. HLDA
is asserted as long as the TI486DLC/E CPU remains in the hold acknowledge
state and all inputs except HOLD, FLUSH, SUSP and RESET are ignored.

Th may be entered directly from a bus idle state, as in Figure 4-22, or after the
completion of the current physical bus cycle if the LOCK signal is not asserted,
as in Figure 4-23 and Figure 4-24. The CPU samples the HOLD input on the
rising edge of CLK2 corresponding to the beginning of phase 1 of internal
processor clock. HOLD must meet specified setup and hold times to be
recognized at a given CLK2edge.

The hold acknowledge state is exited in response to the HOLD input being
negated. The next bus start is an idle state (Ti) if no bus request is pending,
as in Figure 4-22. If a bus request is internally pending, as in Figure 4-23 and
Figure 4-24, the next bus state is T1. Th is also exited in response to RESET
being asserted. If HOLD remains asserted when RESET goes inactive, the
TI486DLC/E enters the hold acknowledge state before performing any bus
cycles provided HOLD is still asserted when the CPU is ready to perform its
first bus cycle.

If a rising edge occurs on the edge-triggered NMI input while in Th state, the
event is remembered as a non-maskable interrupt 2 and is serviced when the
state is exited.

4-45

Functional Timing

Figure 4-22. Requesting Hold from Idle Bus State

CLK2

HOLD

HLDA

A31-A2, BE3-BEO,
DIG, MIlO, wifSt

B816, NA,
READY

031-00

: Idle ~ Hold Acknowledge Idle

I I I I
I Ti I Th I Th I Th Ti

III I
I
I

l~ I ~--~I--------~

I I I ______ V
: :\,,-__1

I I
I I I I I I

~----t-Floating-+-----~
I I I I I I
I ~ I I I I I
I I '--____ 1._ Floating _.L _____ ..LJ I
I I I I I I

I I I I I I

~----t-Floating-+-------
I I I I I I

-~-----,-----i-, Floating -1-----~------I
I I I I I I

Note: For maximum design flexibility, the CPU has no internal pullup resistors on its outputs. External pullups may be required
on ADS and other output to keep them negated during hold acknowledge period.

4-46 TI486DLCIE Bus Interface

Functional Timing

Figure 4-23. Requesting Hold from Active Non-Pipelined Bus

CLK2

HOLD

HLDA

A31-A2, BE3-BEO,
DIG, MIlO, WiR

NA

Cycle 1
Non-pipelined

(Read)

Hold Acknowledge

HOLD asserted no later
than READY asserted

I I
I I

Cycle 2
Non-pipelined

(Write)

I

! : I

--~~--~------~-~

__ (FI~ing) __ j,"---;---......I
--:\ Valid 2

I 1---..,..---.....,
I I I I ---!---...... ~\...-- (FI~ing~ __ l VI

I I I ,"-----:r.
I I I

:

(Negated, or Last Locked Cycle) ~ I I

. Valid 1 . ---~----K
I I I 1'---------

Valid 2

: : (Floating) : ~I I (Floating) :
031-00 -r----r---i--- In 1 --1----1 -(

I I I (Floating) II '----..-----
Out2

I I I I I

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met.
This waveform is useful for determining hold acknowledge latency.

4-47

Functional Timing

Figure 4-24. Requesting Hold from Active Pipelined Bus

CLK2

HOLD

HLDA

A31-A2, BE3-BEO,

T1P

Cycle 1
Pipelined
(Write)

T21 T21

Hold Acknowledge

Th Th

I
I

Cycle 2
Non-Pipelined

(Read)

T1 : T2

I I
I

I I I

DIG, MilO, W/R - -o/--..,...~~~~~~~~

__
(Flo_ating) __ ~~--....I:------'

--X Valid 2

1 :~----~.-------
I I I

1 1 1\- (Floating) I Vi ---------r I I
1 1 1 1 I' I

NA~ •

1 1 1 1 1 I I I

BSI6~ i i~
1 1 1 1 1 1 1 1

~i~i~i
1~(Negated' or Last Locked Cycle) I~ I . I I I:
-; • (Floating) I : .

Valid 1 ---i----K Valid 2

I 1 I
I I I _ I (Ao.:ting) : ~

031-00 Out X Out 1 >-t----r---i -- ~
I 1 I I I
I . I I ,

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met.
This waveform is useful for determining hold acknowledge latency.

4-48 TI486DLCIE Bus Interface

Functional Timing

4.2.10 Coprocessor Interface

The coprocessor interface consists of the data bus, address bus, bus cycle
definition signals, and the coprocessor interface signals (BUSY, ERROR and
PEREQ). The TI486DLC/E automatically accesses dedicated coprocessor
1/0 address 8000 00F8h and 80 OOFCh to transfer opcodes and operands to
or from the coprocessor whenever a coprocessor instruction is decoded.
Coprocessor cycles can be either read or write and can be either non-pipelined
or pipelined. Coprocessor cycles must be terminated by READY and, as with
any other bus cycle, can be terminated as early as the second bus state of the
cycle.

BUSY, ERROR, and PEREQ are asynchronous level-sensitive inputs used to
synchronize CPU and coprocessor operation. All three signals are sampled
at the beginning of phase 1 and must meet specified setup and hold times to
be recognized at a given CLK2 edge.

4.2.11 SMM Interface

8ystem Management Mode (SMM) uses two TI486DLC/E pins, SMI and
SMADS. the bidirectional SMI pin is a non-maskable interrupt that is higher
priority than the NMI input. 8MI must be active for at least four CLK2 periods
to be recognized by the TI486DLC/E. Once the TI486DLC/E recognizes the
active SMI input, the CPU drives the SMI pin low for the duration of the SMI
service routine.

The SMADS pin outputs the SMM Address Strobe that indicates a SMM
memory bus cycle is in progress and a valid SMM address is on the address
bus. The SMADS functional timing, output delay times and float delay times
are identical to the main memory address strobe (ADS) timing.

4.2.11.1 SMI Handshake

The functional timing for SMI interrupt is shown in Figure 4-25. Five significant
events take place during a TI486DLC/E SMI handshake:

1) The 8MI input pin is driven active (low) by the system logic.

2) The CPU samples SMI active on the rising edge of CLK2 phase 1.

3) Four CLK2s after sampling the 8MI active, the CPU switches the SMI pin
to an output and drives SMllow.

4) Following execution of the R8M instruction, the CPU drives the 8MI pin
high for two CLK2s indicating completion of the 8MI service routine.

5) The CPU stops driving the 8MI pin high and switches the SMI pin to an
input in preparation for the next SMI interrupt. The system logic is
responsible for maintaining the 8MI pin at an inactive (high) level after the
pin has been changed to an input.

4-49

Functional Timing

Figure 4-25. 8MI Timing

CLK2
(Input)

:;
'+---+----t--~~ 't!--.......... "*'I,

1

1

c d e

Indicates that the TI486DLC/E drives the 8MI pin.

4.2.11.2 I/O Trapping

The TI486DLC/E provides lID trapping that can be used to facilitate power
management of lID peripherals. When an lID bus cycle is issued, the lID
address is driven onto the address bus and can be decoded by external logic.
If a trap to the 8MI handler is required, the SMI input should be activated at
least three CLK2 edges prior to returning the READY input for the lID cycle.
The timing for creating an lID trap via the 8MI input is shown in Figure 4-26.
The TI486DLC/E immediately traps to the 8MI interrupt handler following
execution of the lID instruction, and no other instructions are executed
between completion of the lID instruction and entering the 8M I service routine.
The lID trap mechanism is not active during coprocessor accesses.

Figure 4-26. liD Trap Timing

1
1/0 CYCLE

(Read or Write)

CLK2
(Input)

Address,
Byte Enables

4-50

ADS
(Output)

14
T1
I

1 1 ------...ft.:\ II
1 1

1 1

T2 T2
I I

1

1 I

1 I

T2
I

1 I

----~--~----~l\~: __ ----~II
1 I 1

3CLK2S!4 ~

TI486DLCIE Bus Interface

Functional Timing

4.2.12 Power Management

SUSP Initiated Suspend Mode

The TI486DLC/E enters suspend mode when the SUSP input is asserted and
execution of the current instruction, any pending decoded instructions and
associated bus cycles are completed. The TI486DLC/E also waits for the
coprocessor to indicate a not busy status (BUSY =1) prior to entering suspend
mode. The SUSPA output is then asserted. The TI486DLC/E responds to
SUSP and asserts SUSPA only if the SUSP bit is set in the CCRD configuration
register.

Figure 4-27 illustrates the, TI486DLC/E functional timing for SUSP initiated
suspend mode. SUSP is sampled on the phase 2 CLK2 rising edge and must
meet specified setup and hold times to be recognized at a particular CLK2
edge. The time from assertion of SUSP to activation of SUSPA varies
depending on which instructions were decoded priorto assertion of SUSP. The
minimum time from SUSP sampled active to SUSPA asserted is 2 CLK2s. As
a maximum, the TI486DLC/E may execute up to two instructions and
associated bus cycles prior to asserting SUSPA. The time required for the
TI486DLC/E to deactivate SUSPA once SUSP has been sampled inactive is
4 CLK2s.

If the TI486DLC/E is in a hold acknowledge state and SUSP is asserted, the
processor mayor may not enter suspend mode depending on the state of the
TI486DLC/E internal execution pipeline. If the TI486DLC/E is in a SUSP
initiated suspend state and the CLK2 input is not stopped, the processor
recognizes and acknowledges the HOLD input and stores the occurrence of
FLUSH, NMI and INTR (if enabled) for execution once suspend mode is
exited.

Figure 4-27. SUSP Initiated Suspend Mode

I I
<1>1 I <1>2 I <1>1 I <1>2 I <1>1 I <1>2

CLK2

<1> 1 I <1> 2 <1>1 I <1>2 <1> 1 I <1> 2

I
�e_--- 4 CLK2s -----1.~1

I
I

4-51

Functional Timing

HALT Initiated Suspend Mode

The TI486DLC/E also enters suspend mode as a result of executing a HALT
instruction. The SUSPA output is asserted no more than 17 CLK2s following
READY sampled active for the HALT bus cycle as shown in Figure 4-28.
Suspend mode is then exited upon recognition of an NMI or an unmasked
INTR. SUSPA is deactivated 12 CLK2s after sampling of an active NMI or
unmasked INTR. If the TI486DLC/E is in a HALT initiated suspend mode and
the CLK2 input is not stopped, the processor recognizes and acknowledges
the HOLD input and stores the occurrence of FLUSH for execution once
suspend mode is exited.

Figure 4-28. Halt Initiated Suspend Mode

Non-Pipelined HALT

hh-T1 T2 Ti Ti Ti

CLK2

ADS ~ _____ I 1 1 1 1 f)', : 1

-- 1 1 1 1 1 1 1 1
BE3, BE1, YJ(~--------....... ttxxxx:xxi~~~e/~~

BED, M/IQ, i~
W/R, I~

A31-A2, --\. ~ ~
BE2, DIG -T...,...a.--------....jIo~Q,Q,Q,Q,Q",Q,~~~

4-52

1 f 1 1 1 1 ((1 1
J 1 1 1 1) '1'2 1

1

1

1 1 1 I~CLK2S~1
----:-1-- 1 f, 1 1

NMI -+ _________________ ~I------~~----~~~
17 CLK2s Max """""1-4-----+---.

1

1

T1486DLCIE Bus Interface

Functional Timing

Stopping the Input Clock

Because the TI486DLC/E is a static device, the input clock (CLK2) can be
stopped and restarted without loss of any internal CPU data. CLK2 can be
stopped in either phase 1 or phase 2 of the clock and in either a logic high or
logic low state. However, entering suspend mode prior to stopping CLK2
dramatically reduces the CPU current requirements. Therefore, the
recommended sequence for stopping CLK2 is to initiate TI486DLC/E suspend
mode, wait for assertion of SUSPA by the processor and then stop the input
clock.

The TI486DLC/E remains suspended until CLK2 is restarted and suspend
mode is exited as described above. While CLK2 is stopped, the TI486DLC/E
can no longer sample and respond to any input stimulus including the HOLD,
FLUSH, NMI, INTR and RESET inputs. Figure 3-26 illustrates the
recommended sequence for stopping CLK2 using SUSP to initiate suspend
mode. CLK2 should be stable for a minimum of 10 clock periods before SUSP
is deasserted.

Figure 4-29. Stopping CLK2 During Suspend Mode

CL~ J-u-i:~r-KAAru-u-
~ I I / (/J

sUSP () {J () (J I () 'j-'

----------~)(~)----------------~)(~J--~:--~)(~J--------~)(~J-------------
10 CLK2s Min -......,1~4-----------.~1

I

)(~}------\~--------~)(~J----~)(~J--------~)(~J------i/

4-53

4-54 T1486DLCIE Bus Interface

Electrical Specifications

5-1

m -CD
n ...
~ -. n
m -en
-c
CD
n
~ _.
n
m ... -. o
~
In

5-2

Chapter 5

Electrical Specifications

Electrical specifications for the TI486 are provided in this chapter. The
specifications include electrical connection requirements for all package pins,
maximum ratings, recommended operating conditions, dc electrical, and ac
characteristics.

Electrical connection requirements provides the designer with specific
requirements for power and ground connections decoupling, termination of
inputs having internal pullup/pulldown resistors, termination of system
functional inputs requiring external pullup resistors, termination of unused
inputs, and termination of inputs designated NC.

The absolute maximum ratings provide the designer with specific limits
regarding power supply and input voltages, input and output current limits, and
operating and storage temperatures.

Recommended operating conditions provide the designer with specific values
for power supply and input voltages, required input threshold ranges, output
drive currents available for system interfacing, and operating levels for clamp
currents and case temperature.

The dc electrical characteristics provides specific data regarding the
capabilities of the TI486 devices to interface directly with either CMOS or TTL
type system functions.

The ac characteristics provide detailed information regarding measurement
points, specific timing requirements for setup and hold times, and propagation
delay times of the TI486 processors.

Topic Page

5-3

Electrical Connections

5.1 Electrical Connections

5.1.1 Power and Ground Connections and Decoupling

Due to the high frequency operation of the T1486, it is necessary to install and
test this device using standard high-frequency techniques. The high clock
frequencies used in the TI486 and its output buffer circuits can cause transient
power surges when several output buffers switch output levels simultaneously.
These effects can be minimized by filtering the dc power leads with
low-inductance decoupling capacitors, using low-impedance wiring, and by
connecting all of the Vee and GND (V SS) pins. There are 14 Vee and 18 Vss
pins on the 100-pin quad flat package, and 20 Vee and 21 VSS pins on the
132-pin pin grid array package.

5.1.2 Pullup/Pulidown Resistors

Table 5-1 lists the input pins that are internally connected to pullup and
pulldown resistors (See Figure 5-1). The pullup resistors are connected to
Vee and the pulldown resistors are connected to V ss. When unused, these
inputs do not require connection to external pullup or pulldown resistors.

Table 5-1. Pins Connected to Internal Pullup and Pulldown Resistors

SIGNAL TI486SLC/E TI486DLC/E RESISTOR PIN PIN

A20M 31 F13 pullup

BUSY 34 B9 pullup

ERROR 36 A8 pullup
FLT 28 - pullup

FLUSH 30 E13 pullup
KEN 29 B12 pullup

PEREa 37 C8 pulldown
SMI 47 C7 pullup

SUSP 43 A4 pullup

Figure 5-1. Internal PulluplPulldown-IV Characteristic
60

50

<C 40
::t
I -c 30 ! ...

::::I
(,)

20

10

0
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Voltage- v

5-4 Electrical Specifications

ElectricalConnecnons

It is recommended that the ADS and LOCK output pins be connected to pullup
resistors, as indicated in Table 5-2. The external pullups guarantee that the
signals will remain negated during hold acknowledge states.

Table 5-2. Pins Requiring External Pullup Resistors

SIGNAL
TI486SLC/E TI486DLC/E EXTERNAL

PIN PIN RESISTOR

ADS 16 E14 20-kQ pullup

LOCK 26 C10 20-kn pullup

5.1.3 Unused Input Pins

All inputs not used by the system designer and not listed in Table 5-1 should
be connected either to ground or to V ce. Connect active-high inputs to ground
through a 20-kQ (± 100/0) pulldown resistor and active-low inputs to Vee
through a 20-kQ (± 100/0) pullup resistor to prevent possible spurious
operation.

5.1.4 NC Designated Pins

Pins designated NC should be left disconnected. Connecting an NC pin to a
pullup resistor, pulldown resistor, or an active signal could cause unexpected
results and possible circuit malfunctions.

5-5

Absolute Maximum Ratings

5.2 Absolute Maximum Ratings

Table 5-3 specifies the absolute maximum ratings for the TI486SLC/E,
TI486SLC/E-V, TI486DLC/E, and TI486DLC/E-V microprocessors.

Table 5-3. Absolute Maximum Ratings Over Operating Free-Air Temperature Range
(Unless Otherwise Noted)t

PARAMETER MIN MAX

Supply voltage, V CC With respect to vss -0.5 6.5

Voltage on any pin With respect to V SS -0.5 VCC+0.5

Input clamp current, 11K Power applied 10

Output clamp current, 10K Power applied 25

Case temperature Power applied -65 110

Storage temperature No bias -65 150

UNIT

V

V

mA

mA

°C

°C

t Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress
ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended
operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.

5-6 Electrical Specifications

Recommended Operating Conditions

5.3 Recommended Operating Conditions

Table 5-4 and Table 5-5 presents the recommended operating conditions
for the TI486SLC/E, TI486SLC/E-V, TI486DLC/E, and TI486DLC/E-V
processors.

Table 5-4. TI486 SLCIE Recommended Operating Conditions

TI486SLC/E TI486SLC/E-V
PARAMETER UNIT

MIN MAX MIN MAX

Vcc Supply voltage With respect to V SS 4.75 5.25 3 3.6 V

VIH High-level input voltage 2 VCC+0.3 2 VCC+0.3 V

VIL Low-level input voltage -0.3 0.8 -0.3 0.6 V

VILC CLK2 low-level input voltage -0.3 0.8 -0.3 0.5 V

VIHC CLK2 high-level input voltage 3.7 VCC+0.3 VCC-O·5 VCC+0.3 V

IOH High-level output current VOH=VOH(min) -1 "-1 rnA

IOL Low-level output current VOL =VOL(max) 5 3 rnA

11K Input clamp current VIN<VSS or VIN>VCC 10 10 rnA

10K Output clamp current VOUT<VSS or VOUT>VCC 25 25 rnA

tc Case temperature Power applied 0 100 0 85 °C

Table 5-5. TI486DLCIE Recommended Operating Conditions

TI486DLC/E TI486DLC/E-V
PARAMETER UNIT

MIN MAX MIN MAX

VCC Supply voltage With respect to V SS 4.75 5.25 3 3.6 V

VIH High-level input voltage 2 VCC+0.3 2 VCC+0.3 V

VIL Low-level input voltage -0.3 0.8 -0.3 0.6 V

VILC CLK2 low-level input voltage -0.3 0.8 -0.3 0.5 V

VIHC CLK2 high-level input voltage 3.7 VCC+0.3 VCC-o·5 VCC+0.3 V

IOH High-level output current VOH=VOH(min) -1 -1 rnA

IOL Low-level output current VOL =VOL(max) 5 3 rnA

11K Input clamp current VIN<VSS or VIN>VCC 10 10 rnA

10K Output clamp current VOUT<VSsorVOUT>VCC 25 25 rnA

tc Case temperature Power applied 0 85 0 85 °C

5-7

DC Electrical Characteristics

5.4 DC Electrical Characteristics

Table 5-6 and Table 5-7 presents the dc electrical characteristics for the
TI486SLC/E, TI486SLC/E-V, TI486DLC/E, and TI486DLC/E-V processors.

Table 5-6. TI486SLCIE DC Electrical Characteristics at Recommended Operating
Conditions (Typical values are at nominal Vee (5 Vor 3.3 V) and TA = 2SOC)

TI486SLC/E TI486SLC/E-V TEST
PARAMETER CONDITIONS UNIT

MIN TYP MAX MIN TYP MAX

Low-level IOL=3 rnA 0.35
VOL output voltage V

IOL=5 mA 0.45

High-level 10H =-1 mA 2.4 VCC-O.4
VOH V

output voltage 10H =-0.2 rnA VCC-o·5 VCC-o.4

II
Input current O<VIN <VCC, ±15 ±15 ~ (leakage) See Note 1

High-level
VIN =2.4,

IIH input current See Note 2 200 200 ~
at PEREQ

IlL
Low-level VIL = 0.45 V, -400 -400 ~ input current See Note 3

25 MHz
395 495 225 285

ICC
Supply current (CLK2 = 50 MHz)

mA (Active mode) 33 MHz
(CLK2 = 66 MHz) 495 615 - -

25 MHz
9 15 6 10 Supply current (CLK2 = 50 MHz)

ICCSM (Suspend rnA
mode) 33 MHz

10 18 (CLK2 = 66 MHz) - -

Standby
o MHz, Suspended/

ICCSS supply current CLK2 stopped, 0.4 2 0.3 2 rnA
See Note 3

CIN
Input fc = 1 MHz, 10 10 pF capacitance See Note 5

COUT
Output or I/O fc = 1 MHz, 12 12 pF
capacitance See Note 5

CCLK
Input capaci- fc = 1 MHz,

20 20 pF tance CLK2 See Note 5

Notes: 1) Applicable for all input pins except those listed in Note 3.

5-8

2) PEREQ input has an internal pulldown resistor.

3) Applicable for A20M, BUSY, ERROR, FLT, FLUSH, KEN, SMI, and SUSP inputs that have an internal pullup resistor.

4) All inputs at 0.4 orVCC-o.4 (CMOS levels). All inputs held static, (except CLK2 as indicated). All outputs unloaded
(static lOUT = 0 mA).

5) Not 100% tested.

Electrical Specifications

DC Electrical Characteristics

Table 5-7. TI486DLCIE DC Electrical Characteristics at Recommended Operating
Conditions (Typical values are at nominal Vee (5 Vor 3.3 V) and 1A = 2SOC)

TI486DLC/E TI486DLC/E-V TEST
PARAMETER CONDITIONS UNIT

MIN TYP MAX MIN TYP MAX

Low-level IOL=3rnA 0.35
VOL output voltage V

10L= 5 mA 0.45

High-level 10H =-1 rnA 2.4 VCC-o.4
VOH output voltage V

10H =-0.2 rnA VCC-0.5 VCC-o.4

II
Input current o <VIN < VCC, ±15 ±15 JlA (leakage) See Note 1

High-level
VIN = 2.4,

IIH input current See Note 2 200 200 JlA
at PEREQ

IlL
Low-level VIL = 0.45 V, -400 -400 JlA input current See Note 3

25 MHz
240 305 (CLK2 = 50 MHz) - -

ICC
Supply current 33 MHz

520 650 300 375 rnA (Active rnode) (CLK2 = 66 MHz)

40 MHz
560 700 (CLK2 = 80 MHz) - -

25 MHz
6 10 (CLK2 = 50 MHz) - -

Supply current 33 MHz
ICCSM (Suspend

(CLK2 = 66 MHz) 7.5 15 7 12 rnA
mode)

40 MHz
10 20 (CLK2 = 80 MHz) - -

Standby o MHz, Suspended/
ICCSS supply current CLK2 stopped, 0.4 2 0.3 2 rnA

See Note 3

CIN
Input fc = 1 MHz,

10 10 pF capacitance See Note 5

COUT
Output or I/O fc = 1 MHz,

12 12 pF capacitance See Note 5

CCLK
Input capaci- fc = 1 MHz,

20 20 pF tance CLK2 See Note 5

Notes: 1) Applicable for all input pins except those listed in Note 3.

2) PEREQ input has an internal pulldown resistor.

3) Applicable for A20M, BUSY, ERROR, FLUSH, KEN, SMI, and SUSP inputs that have an internal pull up resistor.

4) All inputs at 0.4 or VCC-O.4 (CMOS levels). All inputs held static, (except CLK2 as indicated). All outputs unloaded
(static lOUT = 0 rnA).

5) Not 100% tested.

5-9

AC Characteristics

5.5 AC Characteristics

5.5.1 Measurement Points for Switching Characteristics

The rising clock edge reference level VREFC, and other reference levels are
specified in Table 5-8 for the TI486SLC/E, TI486SLC/E-V, TI486DLC/E, and
TI486DLC/E-V. Input or output signals must cross these levels during testing.
Table 5-9, Table 5-10, Table 5-11, and, Table 5-12 list the ac characteristics
including output delays, input setup requirements, input hold requirements,
and output float delays. These measurements are based on the measurement
pOints identified in Figure 5-2, Figure 5-3, and Figure 5-4.

Figure 5-2 and Figure 5-3 show delays (A and B) and input setup and hold
times (C and D). Input setup and hold times (C and D) are specified minimums,
defining the smallest acceptable sampling window a synchronous input signal
must be stable for correct operation.

The TI486SLC/E and TI486SLC/E-V outputs A23-A 1, ADS, BHE, BLE, DIG,
HLDA, LOCK, MilO, SMADS, SMI, and WiR change only at the beginning of
phase one (Figure 5-2, <1>1). Outputs D15-DO (write cycles) and SUSPA
change at the beginning of phase two, <1>2.

The TI486SLC/E and TI486SLC/E-V inputs BUSY, D15-DO (read cycles),
ERROR, FLT, HOLD, PEREQ, and READY are sampled at the beginning of
phase one (Figure 5-2, <1>1). Inputs A20M, FLUSH, INTR, KEN, NA, NMI, SMI
and SUSP are sampled at the beginning of phase two, <1>2.

The TI486DLC/E and T1486DLC/E-Voutputs A31-A2, ADS, BE3- BEO, DIG,
HLDA, LOCK, MIlO, SMADS, SMI, and w/"R change only at the beginning of
phase one (Figure 5-3, <1>1). Outputs D31-DO (write cycles) and SUSPA
change at the beginning of phase two, <1>2.

The TI486DLC/E and TI486DLC/E-V inputs BUSY, D31-DO (read cycles),
ERROR, HOLD, PEREQ, and READY are sampled at the beginning of phase
one (Figure 5-3, <1>1). Inputs A20M, BS16, FLUSH, INTR, KEN, NA, NMI, SMI
and SUSP are sampled at the beginning of phase two, <1>2.

Table 5-8. Measurement Points for Switching Characteristics

SYMBOL TI486SLC/E TI486SLC/E-V TI486DLC/E TI486DLC/E-V UNIT

VREFC 2 1.5 2 1.5 V

VREF 1.5 1.2 1.5 1.2 V

VIHC VCC-Q·8 VCC-0.5 VCC-Q·8 VCC-Q·5 V

VILC 0.8 0.6 0.8 0.6 V

VIHD 3 2.3 3 2.3 V

VILD 0 0 0 0 v

5-10 Electrical Specifications

AC Characteristics

Figure 5-2. TI486SLCIE and TI486SLCIE-V Drive Level and Measurement Points for
Switching Characteristics

CLK2:

OUTPUTS:
A23-A1, ADS

BHE, BLE, Die,
HLDA, LOCK,

Tx

I I I
I <1>1 I <1>2 I

v~----~-----l-----~----~
~ 0 ~Max I I
~Min I I :

Valid
Output n MIIO,SMADS, __________ ~~~.w.wA_ ______ ~ __ __

I
I
I
I
I
I

SMI, W/R

OUTPUTS:
D15-DO, SUSPA

INPUTS:
A20M, FLUSH,

INTR, KEN, NA,
NMI, SMI, SUSP

INPUTS:
BUSY, D15-DO,

ERROR, FLT,
HOLD, PEREa,

READY

Valid
Output n

LEGEND: A - Maximum Output Delay Specification
B - Maximum Output Delay Specification
C - Minimum Input Setup Specification
D - Minimum Input Hold Specificaton

}----~- Max
I

5-11

AC Characteristics

Figure 5-3. TI486DLCIE Drive Level and Measurement Points for
Switching Characteristics

<1>1

CLK2:

OUTPUTS:
A31-A2, ADS
BE~BEO,D/C-'V-a-lid----~-'~~~~~------------

HLDA, LOCK, Output n
MilO, SMADS,..__--------""""'""""""'''''''''''''''''''''''''''''''''''"-'I --------r----

SMI,wiR

<1>2

t---.. ~- Max

OUTPUTS:
D31-DO, SUSPA

INPUTS:
A20M, BS16,

FLUSH, INTR, KEN,
NA, NMI, SMI, SUSP

INPUTS:
BUSY, D31-DO,
ERROR, HOLD,
PEREQ,READY

Valid
Output n

LEGEND: A - Maximum Output Delay Specification
B - Maximum Output Delay Specification
C - Minimum Input Setup Specification
D - Minimum Input Hold Specificaton

I

I
I
I
I
I
~

5.5.2 CLK2 Timing Measurement Points

The CLK2 timing measurement points are illustrated in Figure 5-4 for the
TI486SLC/E, TI486SLC/E-V, TI486DLC/E, and TI486DLC/E-V.

Figure 5-4. CLK2 Timing Measurement Points

~ T1 ~

~T2a~ :

II+-T2b~1 I

VIHC~ ~:\¥----~----~\.\.~ VREFC---- ---- ---- ~ \. \. \.
CLK2 VILC -- ----- ~ ---- -,-----,

~ 14- T5 I j4-- T3b -+1 I ~ j4-- T4
I I
~T3a~

5-12 Electrical Specifications

Table 5-9. AC Characteristics for TI486SLCIE-25 and TI486SLCIE-33,
Vee = 4.75 Vto 5.25 V, Te = O°C to 100°C

T1486SLC/E-25 T1486SLC/E-33
SYMBOL PARAMETER FIGURE

MIN (ns) MAX (ns) MIN (ns) MAX (ns)

T1 CLK2 period 20 15 5-4
T2a CLK2 high time 7 6.25 5-4
T2b CLK2 high time 4 4.5 5-4
T3a CLK2 low time 7 6.25 5-4
T3b CLK2 low time 5 4.5 5-4
T4 CLK2 fall time 7 4 5-4
T5 CLK2 rise time 7 4 5-4

T6 A23-A 1 valid delay 4 21 4 15 5-7,5-10
T6a SMI valid delay 4 21 4 15 5-7,5-10
T7 A23-A 1 float delay 4 30 4 20 5-10

T8 BHE, BLE, LOCK valid delay 4 21 4 15 5-7,5-10
T9 BHE, BLE, LOCK float delay 4 30 4 20 5-10

T10
ADS, D/C, MilO, W/R

4 21 4 15 5-7,5-10 valid delay

T10a SMADS valid delay 4 21 4 15 5-7,5-10

T11
ADS, D/C, MilO, W/R

4 30 4 20 5-10 float delay

T11a SMADS float delay 4 30 4 20 5-10

T12 D15-DO write data, SUSPA 7 27 7 24 5-7,5-8
valid delay 5-10

T12a D15-DO write data hold time 2 2 5-9
T13 D15-DO write data, SUSPA 4 22 4 17 5-10

float delay

T14 HDLA valid delay 4 22 4 20 5-10

T15 NA, SUSP, FLUSH, KEN, 5 5 5-6
A20M setuf) time _

T16 NA, SUSP, FLUSH, KEN, 3 3 5-6
A20M hold time

T19 READY setup time 9 7 5-6
T20 READY hold time 4 4 5-6

T21 D15-DO read data setup time 7 5 5-6
T22 D15-DO read data hold time 5 3 5-6

T23 HOLD setup time 9 11 5-6
T24 HOLD hold time 3 2 5-6

T25 RESET setup time 8 5 5-5
T26 RESET hold time 3 2 5-5

T27 NMI, INTR setup time 6 5 5-6
T27a SMI setup time 6 5 5-6
T28 NMI, INTR hold time 6 5 5-6
T28a SMI hold time 6 5 5-6

T29 PEREQ,ERROR,BUSY 6 5 5-6
setuptim_e ____

T30 PEREQ,ERROR,BUSY 5 4 5-6
hold time

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.

AC Characteristics

NOTES

Note 1
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2

CL = 50 pF
CL =50 pF
Note 3

CL = 50 pF
Note 3

CL = 50 pF

CL = 50 pF

Note 3

Note 3

CL= 50 pF,
NoteS

Note 3, Note 6

CL = 50 pF

Note 4
Note 4
Note 4
Note 4

Note 4

Note 4

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing

purposes, to assure recognition within a specific CLK2 period.
5) T12 minimum time is not 100% tested.
6) SUSPA floats only in response to activation of FLT. SUSPA does not float during a hold acknowledge state.

5-13

AC Characteristics

Table 5-10.AC Characteristics for TI486SLCIE-V25,
Vee = 3 V to 3.6 V, Te = O°C to 85°C

TI486SLC/E-V25
SYMBOL PARAMETER

MIN (ns) MAX (ns)

T1 CLK2 period 20
T2a CLK2 high time 7
T2b CLK2 high time 4
T3a CLK2 low time 7
T3b CLK2 low time 5
T4 CLK2 fall time 7
T5 CLK2 rise time 7

T6 A23-A 1 valid delay 3 21
T6a SMI valid delay 3 21
T7 A23-A 1 float delay 4 30

T8 BHE, BLE, LOCK valid delay 2.5 18
T9 BHE, BLE, LOCK float delay 4 30

T10 AOS, O/C, MilO, W/R valid delay 4 19
T10a SMAOS valid delay 4 :t4f~~
T11 AOS, O/C, MilO, W/R float delay 1f'-30 T11a SMAOS float delay 30

T12 015-00 write data, SUSPA valid delay 27
T12a 015-00 write data hold time
T13 015-00 write data, SUSPAfloat delay 4 22

T14 HOLA valid delay 2 22

T15 NA, SUSP, FLUSH, KEN, A20M setup time 5
T16 NA, SUSP, FLUSH, KEN, A20M hold time 3.5

T19 REAOY setup time 9
T20 REAOY hold time 4

T21 015-00 read data setup time 7
T22 015-00 read data hold time 5

T23 HOLO setup time 9
T24 HOLO hold time 3.5

T25 RESET setup time 8
T26 RESET hold time 3

T27 NMI, INTR setup time 6
T27a SMI setup time 6
T28 NMI, INTR hold time 6
T28a SMI hold time 6

T29 PEREa, ERROR, BUSY setup time 6
T30 PEREa, ERROR, BUSY hold time 5

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.

FIGURE NOTES

5-4 Note 1
5-4 Note 2
5-4 Note 2
5-4 Note 2
5-4 Note 2
5-4 Note 2
5-4 Note 2

5-7,5-10 CL= 50 pF
5-7,5-10 CL= 50 pF

5-10 Note 3

5-7,5-10 CL= 50 pF
5-10 Note 3

5-7,5-10 CL = 50 pF
5-7,5-10 CL= 50 pF

5-10 Note 3
5-10 Note 3

5-7,5-8 CL = 50 pF, Note 5
5-9

5-10 Note 3, Note 6

5-10 CL= 50 pF

5-6
5-6

5-6
5-6

5-6
5-6

5-6
5-6

5-5
5-5

5-6 Note 4
5-6 Note 4
5-6 Note 4
5-6 Note 4

5-6 Note 4
5-6 Note 4

2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing

purposes, to assure recognition within a specific CLK2 period.
5) T12 minimum time is not 100% tested.
6) SUSPA floats only in response to activation of FLT. SUSPA does not float during a hold acknowledge state.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

5-14 Electrical Specifications

Table 5-11. AC Characteristics for T14860LCIE-33 and T14860LCIE-40
Vee = 4.75 V to 5.25 V, Te = O°C to 85°C

T1486DLC/E-33 T1486DLC/E-40
SYMBOL PARAMETER FIGURE

MIN(ns) MAX (ns) MIN (ns) MAX (ns)

T1 CLK2 period 15 12.5 5-4
T2a CLK2 high time 6.25 5 5-4
T2b CLK2 high time 4.5 3.25 5-4
T3a CLK2 low time 6.25 5 5-4
T3b CLK2 low time 4.5 3.25 5-4
T4 CLK2 fall time 4 4 5-4
T5 CLK2 rise time 4 4 5-4

T6 A31-A2 valid delay 4 15 3 12.5 5-12,5-15
T6a SMI valid delay 4 15 3 12.5 5-12,5-15
T7 A31-A2 float delay 4 20 3 17 5-15

T8 BE3 - BEO, LOCK valid delay 4 15 3 12.5 5-15,5-15
T9 BE3 - BEO, LOCK float delay 4 20 3 17 5-15

T10 ADS, D/C, MIlO, W/R valid 4 15 3 12.5 5-12,5-15
~

T10a SMADS valid delay 4 15 3 12.5 5-12,5-15

T11 ADS, D/C, MIlO, W/R float 4 20 3 17 5-15
~

T11a SMADS float delay 4 20 3 17 5-15

T12 D31-DO write data, SUSPA 7 24 5 20 5-12,5-13
valid delay

T12a D31-DO write data hold time 2 2 5-14
T13 D31-DO write data, SUSPA 4 17 3 14.5 5-15

float delay

T14 HDLA valid delay 4 20 3 17 5-15

T15 A20M, FLUSH, KEN, NA, 5 5 5-11
SUSP setup tim~ _

T16 A20M, FLUSH, KEN, NA, 2 2 5-11
SUSP hold time

T17 BS16 setup time 5 5 5-11
T18 BS16 hold time 2 2 5-11

T19 READY setup time 7 5 5-11
T20 READY hold time 4 3 5-11

T21 D31-DO read data setup time 5 5 5-11
T22 D31-DO read data hold time 3 3 5-11

T23 HOLD setup time 7 4 5-11
T24 HOLD hold time 2 2 5-11

T25 RESET setup time 5 4.5 5-5
T26 RESET hold time 2 2 5-5

T27 NMI, INTR setup time 5 5 5-11
T27a SMI setup time 5 5 5-11
T28 NMI, INTR hold time 5 5 5-11
T28a SMI hold time 5 5 5-11

T29 PEREO,ERROR,BUSY 5 5 5-11
setuptim_e ____

T30 PEREO,ERROR,BUSY 4 3 5-11
hold time

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.

AC Characteristics

NOTES

Note 1
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2

CL= 50 pF
CL = 50 pF
Note 3

CL = 50 pF
Note 3

CL = 50 pF

CL = 50 pF

Note 3

Note 3

CL = 50 pF, Note 5

Note 3

CL = 50 pF

Note 4
Note 4
Note 4
Note 4

Note 4

Note 4

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.
5) T12 minimum time is not 100% tested.

5-15

AC Characteristics

Table 5-12.AC Characteristics for TI486DLCIE-V25 and TI486DLCIE-V33
Vee = 3 Vto 3.6 V, Te = O°C to 85°C

TI486DLC/E-V25 TI486DLC/E-V33
SYMBOL PARAMETER FIGURE

MIN (ns) MAX (ns) MIN (ns) MAX (ns)

T1 CLK2 period 20 15 5-4
T2a CLK2 high time 7 6.25 5-4
T2b CLK2 high time 4 4.5 5-4
T3a CLK2 low time 7 6.25 5-4
T3b CLK2 low time 5 4.5 5-4
T4 CLK2 fall time 7 4 5-4
T5 CLK2 rise time 7 4 5-4

T6 A31-A2 valid delay 3 21 3 15 5-12,5-15
T6a SMI valid delay 3 21 3 15 5-12,5-15
T7 A31-A2 float delay 4 30 4 20 5-15

T8 BE3 - BEO, LOCK valid delay 2.5 18 2.5 18 5-12,5-15
T9 BE3 - BEO, LOCK float delay 4 30 4 20 5-15

T10 AOS, O/C, MilO, W/R valid 4 19 4 19 5-12,5-15

~
T10a SMAOS valid delay 4 19 4 19 5-12,5-15

T11 AOS, O/C, MilO, W/R float 4 30 4 20 5-15
~

T11a SMAOS float delay 4 4 5-15

T12 031-00 write data, SUSPA 3.5 27 3.5 24 5-12,5-13
valid delay

T12a 031-00 write data hold time 5-14
T13 031-00 write data, SUSPA 22 'V 17 5-15

float delay

T14 HOLA valid delay 2 22 2 20 5-15

T15 A20M, FLUSH, KEN, NA, 5 5 5-11
SUSP setup tim~ _

T16 A20M, FLUSH, KEN, NA, 3.5 3.5 5-11
SUSP hold time

T17 BS16 setup time 7 5 5-11
T18 BS16 hold time 2 2 5-11

T19 REAOY setup time 9 7 5-11
T20 REAOY hold time 4 4 5-11

T21 031-00 read data setup time 7 7 5-11
T22 031-00 read data hold time 5 4 5-11

T23 . HaLO setup time 15 12 5-11
T24 HaLO hold time 4 4 5-11

T25 RESET setup time 8 5 5-4
T26 RESET hold time 3 2 5-4

T27 NMI, INTR setup time 6 5 5-10
T27a SMI setup time 6 5 5-10
T28 NMI, INTR hold time 6 5 5-10
T28a SMI hold time 6 5 5-10

T29 PEREQ,ERROR,BUSY 6 5 5-10
setuptim_e ____

T30 PEREQ,ERROR,BUSY 5 4 5-10
hold time

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.

NOTES

Note 1
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2

CL= 50 pF
CL=50 pF
Note 3

CL= 50 pF
Note 3

CL = 50 pF

CL= 50 pF

Note 3

Note 3

CL = 50 pF, Note 5

Note 3

CL=50pF

Note 4
Note 4
Note 4
Note 4

Note 4

Note 4

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.
5) T12 minimum time is not 100% tested.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

5-16 Electrical Specifications

AC Characteristics

5.5.3 RESET Setup and Hold Timing

RESET and Hold timing forthe TI486SLC/E, TI486SLC/E-V, and TI486DLC/E
are illustrated in Figure 5-5.

Figure 5-5. RESET Setup and Hold Timing

~ Reset .I~ Initialization Sequence •
I

cj>1 or cj>2 I cj>1orcj>2 cj>2 cj>1

CLK2
I

I I T26r I

~ I
I
I

I I
14 ·1 T25

RESET

5.5.4 TI486SLC/E and TI486SLC/E-V Switching Waveforms

Switching waveforms for the TI486SLC/E and TI486SLC/E-Vare illustrated in
Figure 5-6 through Figure 5-10.

Figure 5-6. TI486SLCIE and TI486SLCIE-V Input Signal Setup and Hold Timing

cj>2 <1>1

CLK2
'---- I ------' I

i4-- T19 - ~ie~- T20 ----.I I

D15-DO~ ~ e:: T29 + T30 4~ftLtLLLLL
PEREQ,ERROR,. ~

BUSY_ ~~~~~ ______ ~ ____ -J I

~ T15 ~ T16 ----.I _: -
~ T27,T27a ~ T28,T28a -.I

NMI, INTR, SMI

5-17

AC Characteristics

Figure 5-7. TI486SLCIE and TI486SLCIE- V Output Signal Valid Delay Timing

Aos,o/c, MilO,
SMAOS, W/R

A23-A1, SMI

<1>2 <1>1

T8~------------r-·

Valid n+1

T10,T10a I

Valid n

T6,T6a _~_I ___ 1-------------.-__.

Validn Valid n+1

I I
T12 ~ ~M' .M In ax

Validn ~ Validn+1

I I

Figure 5-8. TI486SLCIE and TI486SLCIE-V Data Write Cycle Valid Delay Timing

<1>1 <1>2 <1>1

CLK2
'----'I

I

W/R ~ !
T12 ~ ~ Min .: Max

015-00 ----------I-~_~"""""""""""'~---Va-lid---
I I

Figure 5-9. TI486SLCIE and TI486SLCIE-V Data Write Cycle Hold Timing

<1>1 <1>2 <1>1

CLK2

I I
I I
I

: Valid n+1 K
I T12a~M'

Valid n - Valid n+1

I I
I

W/R

015-00

5-18 Electrical Specifications

AC Characteristics

Figure 5-10. TI486SLCIE and TI486SLCIE-V Output Signal Float Delay and HLDA Valid
Delay Timing

CLK2

ADS,D/C,
MIlO, SMADS,

WiR

A23-A1

D 15-DO (Write
Data), SUSPA

HLDA

<1>2

T11,T11a

T14

Th Ti orT1
<1>1 I <1>2 <1>1 I <1>2

5-19

AC Characteristics

5.5.5 TI486DLC/E Switching Waveforms

Switching waveforms for the TI486DLC/E and TI486DLC/E-V are illustrated
in Figure 5-11 through Figure 5-15.

Figure 5-11. TI486DLCIE and TI486DLCIE-V Input Signal Setup and Hold Timing

<1>2 <1>1

CLK2

'-----' I I
~ T19 ~ T20 ~ I

PEREO, ERROR,.
BUSY

~~~~--------~-------+~~~~ 

:.- T15 ~ T16 ~ 

NMI, INTR, SMI 

5-20 

~T17 ~ T18~" - .. j4- T27,T27a. T28,T28a +! 

Electrical Specifications 



AC Characteristics 

Figure 5-12. TI486DLCIE and TI486DLCIE- V Output Signal Valid Delay Timing 

AOS,O/G, 
MilO, SMAOS, WiR 

A31-A2, SMI 

<1>2 <1>1 

T8~~---------+-' 

Valid n+1 

Validn 

T6,T6a 

Validn Valid n+1 

T12 ~~:~ 
Validn ~~ Validn+1 

1 I 

Figure 5-13. TI486DLCIE and TI486DLCIE-V Data Write Cycle Valid Delay Timing 

<1>1 <1>2 <1>1 

CLK2 

'-----I 
1 

WiR J II I 
1 

T12 r ~ Min ~ Max 

031-00 ----------l-~""'~ ..... """"""'~---\t-al-id---
I I 

Figure 5-14. TI486DLCIE and TI486DLCIE-V Data Write Cycle Hold Timing 

<1>1 <1>2 <1>1 

CLK2 

1 1 

1 1 

K : Valid n+1 

I 
T12ar,M' 

Valid n .. Valid n+1 

I 1 
I 

WiR 

031-00 

5-21 



AC Characteristics 

Figure 5-15. TI486DLCIE Output Signal Float Delay and HLDA Valid Delay Timing 

CLK2 

ADS, ole, 
MIlO, SMADS, 

W/R 

A31-A2 

031-00 
(Write Data), 

SUSPA 

HLDA 

5-22 

I I 
I Th I Ti orT1 

<1>2 I <1>1 I <1>2 I <1>1 I <1>2 

T11,T11a 

T14 ~Min ~Max 

~ 

Electrical Specifications 



Mechanical Specifications 

6-1 



s: 
CD n 
::r 
S» 
:l _. 
n 
S» -en 
-c 
CD n _. 
-h _. 
n a _. 
o 
:l 
tJ) 

6-2 



Chapter 6 

Mechanical Specifications 

Topic 

6~1Pii1A$slgnmerit$ ...••. ~o' •• oi •• < ••••.• 

5.2·· pa~l<ag~[)imensions •• ~ •.....•...• 

5.3 

Page 

6-3 



Pin Assignments 

6.1 Pin Assignments 

The pin assignments for the TI486SLC/E and TI486SLC/E-V are shown in 
Figure 6-1. The signal names are shown in Table 6-1 sorted by pin numbers 
and in Table 6-2 sorted by signal names. 

Figure 6-1. TI486SLCIE and TI486SLCIE-V Pin Assignments 

DO 
Vss 

HLDA 
HOLD 

Vss 
NA 

READY 
Vee 
Vee 
Vee 
Vss 
Vss 
Vss 
Vss 

eLK2 
ADS 
BLE 

A1 
BHE 

SMADS 
Vee 
Vss 
MilO 
DIG 
wiR 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Ne - No internal connection 

6-4 

8~OO~W~VM~~omoo~w~~~~~omoo~w 
~mmmmmm~mmmoooooooooooooooooooo~~~~ 

0 

(TOP VIEW) 

~~oomo~~~~~w~oomo~~~~~w~oomo 
NN~~~~~~~~~~~~v~~~~~~vv~~ 

75 
74 
73 
72 
71 
70 
69 
68 
67 
66 
65 
64 
63 
62 
61 
60 
59 
58 
57 
56 
55 
54 
53 
52 
51 

A20 
A19 
A18 
A17 
Vee 
A16 
Vee 
Vss 
Vss 
A15 
A14 
A13 
Vss 
A12 
A11 
A10 
A9 
A8 
Vee 
A7 
A6 
AS 
A4 
A3 
A2 

Mechanical Specifications 



Pin Assignments 

Table 6-1. TI486SLCIE and TI486SLCIE- V Signal Names Sorted by Pin Number 

PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL 
NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME 

1 DO 21 Vee 41 Vss 61 A11 81 D15 
2 Vss 22 Vss 42 ~ 62 A12 82 D14 
3 HLDA 23 MilO 43 susP 63 Vss 83 D13 
4 HOLD 24 DIG 44 SUSPA 64 A13 84 Vee 
5 Yss 25 W/R 45 Ne 65 A14 85 Vss 
6 NA 26 LOCK 46 Ne 66 A15 86 D12 
7 READY 27 Ne 47 SMI 67 Vss 87 D11 
8 Vee 28 FLT 48 Vee 68 Vss 88 D10 
9 Vee 29 KEN 49 Vss 69 Vee 89 D9 

10 Vee 30 FLUSH 50 VSS 70 A16 90 D8 
11 Vss 31 A20M 51 A2 71 Vee 91 Vee 
12 Vss 32 Vee 52 A3 72 A17 92 D7 
13 Vss 33 RESET 53 A4 73 A18 93 D6 
14 Vss 34 BUSY 54 A5 74 A19 94 D5 
15 eLK2 35 ~ 55 A6 75 A20 95 D4 
16 ADS 36 ERROR 56 A7 76 A21 96 D3 
17 BLE 37 PEREQ 57 Vee 77 Vss 97 Vee 
18 A1 38 NMI 58 A8 78 Vss 98 Vss 
19 BHE 39 Vee 59 A9 79 A22 99 D2 
20 SMADS 40 INTR 60 A10 80 A23 100 D1 

Table 6-2. TI486SLCIE and TI486SLCIE-V Pin Numbers Sorted by Signal Name 

SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN 
NAME NO. NAME NO. NAME NO. NAME NO. NAME NO. 

A1 18 A21 76 D11 87 PEREQ 37 Vee 97 
A2 51 A22 79 D12 86 READY 7 Vss 2 
A3 52 A23 80 D13 83 RESET 33 Vss 5 
A4 53 ADS 16 D14 82 SMADS 20 Vss 11 
A5 54 A20M 31 D15 81 SMI 47 Vss 12 
A6 55 BHE 19 DIG 24 susP 43 Vss 13 
A7 56 BLE 17 ERROR 36 SUSPA 44 Vss 14 
A8 58 BUSY 34 FLT 28 Vee 8 Vss 22 
A9 59 eLK2 15 FLUSH 30 Vee 9 Vss 35 
A10 60 DO 1 HOLD 4 Vee 10 Vss 41 
A11 61 D1 100 HLDA 3 Vee 21 Vss 49 
A12 62 D2 99 INTR 40 Vee 32 Vss 50 
A13 64 D3 96 KEN 29 Vee 39 Vss 63 
A14 65 D4 95 LOCK 26 Vee 42 Vss 67 
A15 66 D5 94 MilO 23 Vee 48 Vss 68 
A16 70 D6 93 NA 6 Vee 57 Vss 77 
A17 72 D7 92 Ne 27 Vee 69 Vss 78 
A18 73 D8 90 Ne 45 Vee 71 Vss 85 
A19 74 D9 89 Ne 46 Vee 84 Vss 98 
A20 75 D10 88 NMI 38 Vee 91 W/R 25 

6-5 



Pin Assignments 

The pin assignments for the TI486DLC/E and TI486DLC/E-V are shown as 
viewed from the pin side in Figure 6-2 and as viewed from the top side 
(component side when mounted on a PC board) in Figure 6-3. The signal 
names are listed in Table 6-3 and Table 6-4, sorted by pin number and signal 
name respectively. 

Figure 6-2. TI486DLCIE and TI486DLCIE-V Package Pins (Bottom View) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

B 

Pin # 1 Index Mark 
(On Top Side) 

c D E F G H J K L M N p 

(G8888GGGG88GGG 
888GG88888GGG8 
G8GGG88G88GG8G 
88G 8GG 
888 888 
888 8GG 
G8® 88G 

TI486DLC/E 

888 (BOTTOM VIEW) 8GG 
8S8 888 
888 888 
088 888 
B8888888888888 
8880S§S88GGG88 
8GS8@GGGGGG8GG 

NC - No internal connection 

6-6 Mechanical Specifications 



Figure 6-3. TI486DLCIE and TI486DLCIE-V Package Pins (Top View) 

p N M L K J H G F 

Pin # 1 Index Mark 
(On Top Side) 

E o c 

Pin Assignments 

B 

GGGGGGG8GGG8G~) 1 

8GGGGGG8GG88GG2 
888GG8G88G8888 3 

888 888 4 

888 888 5 

888 888 6 

888 TI486DLC/E G 88 7 888 (TOP VIEW) 888 8 

888 8SGg 
888 SG8 10 

888 8GG 11 

888888GG8G88§B 12 

88888888§S08BG 13 

GG888GGGGG88GG 14 

NC - No internal connection 

6-7 



Pin Assignments 

Table 6-3. TI486DLCIEand TI486DLCIE-V Signal Names Sorted by Pin Number 

PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL 
NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME 

A1 Vee B9 BUSY 03 A9 H1 A17 L13 08 N7 Vee 
A2 Vss B10 W/R 012 Vce H2 A18 L14 06 N8 023 
A3 A3 B11 Vss 013 NA H3 A19 M1 A26 N9 021 
A4 SUSP B12 KEN 014 HOLO H12 00 M2 A29 N10 017 
A5 Vce B13 BE2 E1 A14 H13 01 M3 Vcc N11 016 
A6 Vss B14 Vss E2 A13 H14 02 M4 Vss N12 012 
A7 Vee e1 A8 E3 A12 J1 A20 M5 031 N13 011 
A8 ERROR C2 A7 E12 BEO J2 Vss M6 028 N14 09 
A9 Vss C3 A6 E13 FLUSH J3 Vss M7 Vcc P1 A30 

A10 Vee e4 A2 E14 AOS J12 Vss M8 Vss P2 Vec 
A11 O/G C5 Vce F1 A15 J13 Vss M9 020 P3 030 
A12 MIlO C6 SMAOS F2 Vss J14 03 M10 Vss P4 029 
A13 BE3 e7 SMi F3 Vss K1 A21 M11 015 P5 026 
A14 Vce C8 PEREQ F12 eLK2 K2 A22 M12 010 P6 Vss 
B1 Vss C9 RESET F13 A20M K3 A25 M13 Vcc P7 024 
B2 A5 C10 LOCK F14 Vss K12 07 M14 HLOA P8 Vcc 
B3 A4 C11 Vss G1 A16 K13 05 N1 A27 P9 022 
B4 SUSPA e12 Vcc G2 Vcc K14 04 N2 A31 P10 019 
B5 Vss C13 BE1 G3 Vec L1 A23 N3 Vss P11 018 
B6 NC C14 BS16 G12 Vcc L2 A24 N4 Vce P12 014 
B7 INTR 01 A11 G13 REAOY L3 A28 N5 027 P13 013 
B8 NMI 02 A10 G14 Vec L12 Vec N6 025 P14 Vss 

Table 6-4. TI486DLCIE and TI486DLCIE-V Pin Numbers Sorted by Signal Name 

SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN 
NAME NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME NO. 

A2 C4 A23 L1 04 K14 026 P5 susP A4 Vss A2 
A3 A3 A24 L2 05 K13 027 N5 SUSPA B4 Vss A6 
A4 B3 A25 K3 06 L14 028 M6 Vcc A1 Vss A9 
A5 B2 A26 M1 07 K12 029 P4 Vcc A5 Vss B1 
A6 C3 A27 N1 08 L13 030 P3 Vee A7 Vss B5 
A7 C2 A28 L3 09 N14 031 M5 Vcc A10 Vss B11 
A8 C1 A29 M2 010 M12 ERROR A8 Vcc A14 Vss B14 
A9 03 A30 P1 011 N13 FLUSH E13 Vee e5 Vss e11 

A10 02 A31 N2 012 N12 HLOA M14 Vcc C12 Vss F2 
A11 01 AOS E14 013 P13 HOLO 014 Vcc 012 Vss F3 
A12 E3 BEO E12 014 P12 INTR B7 Vee G2 Vss F14 
A13 E2 BE1 C13 015 M11 KEN B12 Vcc G3 Vss J2 
A14 E1 BE2 B13 016 N11 LOCK C10 Vcc G12 Vss J3 
A15 F1 BE3 A13 017 N10 MIlO A12 Vce G14 Vss J12 
A16 G1 BS16 C14 018 P11 NA 013 Vcc L12 Vss J13 
A17 H1 BUSY B9 019 P10 NC B6 Vce M3 Vss M4 
A18 H2 CLK2 F12 020 M9 NMI B8 Vce M7 Vss M8 
A19 H3 O/G A11 021 N9 PEREO C8 Vcc M13 Vss M10 
A20 J1 00 H12 022 P9 REAOY G13 Vcc N4 Vss N3 

A20M F13 01 H13 023 N8 RESET C9 Vce N7 Vss P6 
A21 K1 02 H14 024 P7 SMI C7 Vcc P2 Vss P14 
A22 K2 03 J14 025 N6 SMAOS C6 Vcc P8 W/R B10 

6-8 Mechanical Specifications 



Package Dimensions 

6.2 Package Dimensions 

The package dimensions for the TI486SLC/E and TI486SLC/E-V are shown 
in Figure 6-4 and the package dimensions for the TI486DLC/E and 
TI486DLC/E-V are shown in Figure 6-5. 

Figure 6-4. 1 DO-Pin Plastic Bumpered QFP Package Dimensions 
(TI486SLCIE and TI486SLCIE- V) 

100MAB 

~ 
Pin #11.0. 

15,24 
(0.600) 

REF 

3,56 (0.140) NOM 
._-- 19,13(0.753)* __ __ 

18,97 (0.747)* 

22,48 (0.885) 
22,23 (0.875) 

22,93 (0.903) 
22,78 (0.897) 

--I~W-- 0,025 (0.010) 
TYP 

* Note: For metal BQFP package only, this dimension is: 18,75 (0.738) 
18,59(0.732) 

OETAILA 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

6-9 



Package Dimensions 

Figure 6-5. 132-Pin PGA Package Dimensions (TI486DLCIE and TI486DLCIE-V) 

Pin # 1 Index Mark 
(On Top Side) 

o I I I I I I I 1_ 18,4(0.725) 

1 'O@@@@@@@@@@@@~ - 16,5(0.650) 

2 @@@@@@@I@@@@@@@ - 14,0(0.550) 

3 @@@@@@@@@@@@@@ - 11,4(0.450) 

4 @@@~ @@@ - 8,89(0.350) 

5 @@@ @@@ - 6,35(0.250) 

6 @@@ I @@@ - 3,81 (0.150) 

7 @@@ ~ @@@ - 1,27(8.050) 
8 @-@@ - - @@@ 0 

9 000 TI48 DLC/E 000 

1,27 (0.50) 
MAXTYP 

1r-

'.::::.J '.::::.J '.::::.J (BOTTOM VIEW) '.::::.J '.::::.J '.::::.J 
10 @@@ @@@ 0,025 (0.001)R 

MINTYP 

11 @@@ @@@ 
12 @@@@@@@@@@@@@@ 
13 @@@@@@@I@@@@@@@ 
14 ~ 0 @@@@@@@@@@@ a 

o E F G 

1,65 (0.065) 
SwedgePin 

Standoff (4) Places 

�e__----- 36,83 (1.450) ------..., 

'-a c:=:=====-

0,47 (0.0180) L C:=:====:tI 

I 
4,57 (0.180) ---. 

3,05 (0.120) 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

6-10 Mechanical Specifications 



Thermal Characteristics 

6.3 Thermal Characteristics 

The TI486SLC/E is designed to operate when the case temperature is 
between aoc and 1 aaoc. The TI486SLC/E-V, TI486DLC/E and TI486DLC/E-V 
are designed to operate when the case temperature is between aoc and 85°C. 
The case temperatures are measured on the top center of the package. The 
maximum die temperature (Tjmax) and the maximum ambient temperature 
(Tamax) can be calculated using the following equations. 

Tjmax = Tc + (Pmax x ejd 
Tamax = Tj - (Pmax x eja) 

where: 

Tjmax = Maximum average junction temperature (OC) 
Tc = Case temperature at top center of package (OC) 
Pmax = Maximum device power dissipation (W) 
ejc = Junction-to-case thermal resistance (OC/W) 
Tamax = Maximum ambient temperature (OC) 
Tj = Average junction temperature (OC) 
eja = Junction-to-ambient thermal resistance (OC/W) 

Values for eja and ejc are given in Table 6-5 for various airflows. 

Table 6-5. Package Thermal Resistance and Airflow 

THERMAL RESISTANCE (OCIW) 

AIRFLOW 100-LEAD 132-PIN CERAMIC 
(FT/SEC) PLASTIC BQFP PGAPACKAGE 

Sja Sjc Sja Sjc 

0 21 2 20 3 

100 19 2 18 3 

250 16 2 14 3 

500 13 2 10 3 

6-11 



6-12 Mechanical Specifications 



Instruction Set 

7-1 



-~ 
tn ... .., 
c 
n ... --o 
~ 

en 
(I) ... 

7-2 



Chapter 7 

Instruction Set 

This section summarizes the TI486SLC/DLC instruction set and provides 
detailed information on the instruction encodings. All instructions are listed in 
the Instruction Set Summary Table (Table 7-17), which provides information 
on the instruction encoding, which flags are affected, and the instruction clock 
counts for each instruction. The clock count values are based on the 
assumptions described in subsection 7.4.1 . 

Topic Page 

7-3 



General Instruction Format 

7.1 General Instruction Format 

All of the TI486SLC/DLC machine instructions follow the general instruction 
format shown in Figure 7-1. These instructions vary in length and can start at 
any byte address. An instruction consists of one or more bytes that can 
include: prefix byte(s), at least one opcode by te(s) , mod rIm byte, s-i-b byte, 
address displacement byte(s) and immediate data byte(s). An instruction can 
be as short as one byte and as long as 15 bytes. If there are more than 15 bytes 
in the instruction, a general protection fault (error code of 0) is generated. 

Figure 7-1. General Instruction Format 

I p p p p p p p PiT T T T T T TTl mod R R R rim I ss index base I d321161al none id321161al none 

7-4 

7 07 0765320765320 

optional prefix opcode 
byte(s) (one or two bytes) 

mod rim 
byte 

s-i-b 
byte 

address 
displacement 

/ (4, 2, 1 bytes, 
\1...-___ ----. ,---___ ---'. ) 

V or none 

P - prefix bit 
T - opcode bit 
R - opcode bit or reg bit 

register and address 
mode specifier 

immediate 
data 

(4,2, 1 bytes, 
or none) 

Instruction Set 



Instruction Fields 

7.2 Instruction Fields 

The general instruction format shows the larger fields that make up an 
instruction. Certain instructions have smaller encoding fields that vary 
according to the class of operation. These fields define information such as the 
direction of the operation, the size of the displacements, register encoding and 
sign extension. All the fields are described in Table 7-1 and the subsequent 
paragraphs provide greater detail. 

Table 7-1. Instruction Fields 

FIELD NAME 

Prefix 

Opcode 

w 

d 

s 

reg 

mod rim 

ss 

index 

base 

sreg2 

sreg3 

eee 

Address displacement 

Immediate data 

7.2.1 Prefixes 

DESCRIPTION NUMBER OF BITS 

Specifies segment register override, address and operand size, repeat 
8 per byte elements in string instruction, LOCK assertion. 

Identifies instruction operation. 1 or 2 bytes 

Specifies if data is byte or full size (full size is either 16 or 32 bits). 1 

Specifies direction of data operation. 1 

Specifies if an immediate data field must be sign-extended. 1 

General register specifier. 3 

Address mode specifier. 2 for mod; 3 for rim 

Scale factor for scaled index address mode. 2 

General register to be used as index register. 3 

General register to be used as base register. 2 

Segment register for CS, SS, DS, and ES. 2 

Segment register for CS, SS, DS, ES, FS, and GS. 3 

Control, debug and test register specifier. 3 

Address displacement operand. 1 , 2 or 4 bytes 

Immediate data operand. 1 , 2 or 4 bytes 

Prefix bytes can be placed in front of any instruction. The prefix modifies the 
operation of the immediately following instruction only. When more than one 
prefix is used, the order is not important. There are five types of prefixes as 
follows: 

1) Segment override explicitly specifies which segment register an 
instruction will use. 

2) Address size switches between 16- and 32-bit addressing. Selects the 
inverse of the default. 

3) Operand size switches between 16- and 32-bit addressing. Selects the 
inverse of the default. 

4) Repeat is used with a string instruction which causes the instruction to be 
repeated for each element of the string. 

5) Lock is used to assert the hardware LOCK signal during execution of the 
instruction. 

7-5 



Instruction Fields 

Table 7-2 lists the encodings for each of the available prefix bytes. The 
operand size and address size prefixes allow the individual overriding of the 
default value for operand size and effective address size. The presence of 
these prefixes select the opposite (non-default) operand size and/or effective 
address size as the case may be. 

Table 7-2. Instruction Prefix Summary 

PREFIX ENCODING DESCRIPTION 

ES: 26h Override segment default, use ES for memory operand. 

CS: 2Eh Override segment default, use CS for memory operand. 

SS: 36h Override segment default, use SS for memory operand. 

DS: 3Eh Override segment default, use DS for memory operand. 

FS: 64h Override segment default, use FS for memory operand. 

GS: 65h Override segment default, use GS for memory operand. 

Operand size 66h Make operand size attribute the inverse of the default. 

Address size 67h Make address size attribute the inverse of the default. 

LOCK FOh Assert LOCK hardware signal. 

REPNE F2h Repeat the following string instruction. 

REP/REPE F3h Repeat the following string instruction. 

7.2.2 Opcode Field 

7.2.3 vv Field 

The opcode field is either one or two bytes in length and specifies the operation 
to be performed by the instruction. Some operations have more than one 
opcode, each specifying a different form of the operation. Some opcodes 
name instruction groups. For example, opcode Ox80 names a group of 
operations that have an immediate operand, and a register or memory 
operand. The group opcodes use an opcode extension field of 3 bits in the 
following byte, called the MOD RIM byte, to resolve the operation type. 
Opcodes for the entire TI486SLC/DLC instruction set are listed in the 
Instruction Set Summary Table. The opcodes are given in hex values unless 
shown within brackets ([ ]). Values shown in brackets are binary values. 

The 1-bit field indicates the operand size during 16- and 32-bit data operations. 

Table 7-3. w Field Encoding 

7.2.4 d Field 

wFIELD 
OPERAND SIZE OPERAND SIZE 

16-BIT DATA OPERATIONS 32-BIT DATA OPERATIONS 

0 

1 

8 bits 8 bits 

16 bits 32 bits 

The d field determines which operand is taken as the source operand and 
which operand is taken as the destination. 

Table 7-4. d Field Encoding 

d FIELD DIRECTION OF OPERATION SOURCE OPERAND DESIGNATION OPERAND 

0 Register ---7 Register/Memory reg mod rim or mod ss-index-base 

1 Register/Memory ---7 Register mod rim or mod ss-index-base reg 

7-6 Instruction Set 



Instruction Fields 

7.2.5 reg Field 

The reg field determines which general registers are to be used. The selected 
register is dependent on whether 16- or 32-bit operation is current and the 
status of the "wI' bit. 

Table 7-5. reg Field Encoding 

16-BIT 32-BIT 16-BIT 16-BIT 32-BIT 32-BIT 
reg OPERATION OPERATION OPERATION OPERATION OPERATION OPERATION 

wFIELD NOT wFIELDNOT 
PRESENT PRESENT w=O w=1 w=O w=1 

000 AX EAX AL AX AL EAX 
001 CX ECX CL CX CL ECX 
010 DX EDX DL DX DL EDX 
011 BX EBX BL BX BL EBX 
100 SP ESP AH SP AH ESP 
101 BP EBP CH BP CH EBP 
110 SI ESI DH SI DH ESI 
111 DI EDI BH DI BH EDI 

7-7 



Instruction Fields 

7.2.6 mod and rim Field 

The mod and rIm sub-fields, within the mod rIm byte, select the type of memory 
addressing to be used. Some instructions use a fixed addressing mode (e.g., 
PUSH or POP) and therefore, these fields are not present. Table 7-6 lists the 
addressing method when 16-bit addressing is used and a mod rIm byte is 
present. Some mod rIm field encodings are dependent on the w field and are 
shown in Table 7-7. 

Table 7-6. mod ,1m Field Encoding 

16-BIT ADDRESS MODE 32-BIT ADDRESS MODE 
mod rIm WITH mod rIm BYTE 

WITH mod rIm BYTE AND 
NO s-i-b BYTE PRESENT 

00000 DS:[BX+SI] DS:[EAX] 

00001 DS:[BX+DI] DS:[ECX] 

00010 SSS:[BP+SI] DS:[EDX] 

00011 SS:[BP+DI] DS:[EBX] 

00100 DS:[SI] s-i-b is present (see subsection 6.2.7) 

00101 DS:[DI] DS:[d32] 

00110 DS:[d16] DS:[ESI] 

00111 DS:[BX] DS:[EDI] 

01000 DS:[BX+SI+d8] DS:[EAX+d8] 

01001 DS:[BXI+DI+d8] DS:[EAX+d8] 

01 010 SS:[BP+SI+d8] DS:[EDX+d8] 

01 011 SS:[BP+DI+d8] DS:[EBX+d8] 

01100 DS:[SI+d8] s-i-b is present (see subsection 6.2.7) 

01 101 DS:[DI+d8] SS:[EBP+d8] 

01 110 SS:[BP+d8] DS:[ESI+d8] 

01 111 DS:[BX+d8] DS:[EDI+d8] 

10000 DS:[BX+SI+d16] DS:[EAX+d32] 

10001 DS:[BX+DI+d16] DS:[ECX+d32] 

10010 SS:[BP+SI+d16] DS:[EDX+d32] 

10011 SS:[BP+DI+d16] DS:[EBX+d32] 

10100 DS:[SI+d16] s-i-b is present (see subsection 6.2.7) 

10101 DS:[DI+d16] SS:[EBP+d32] 

10110 SS:[BP+d16] DS:[ESI+d32] 

10111 DS:[BX+d16] DS:[EDI+d32] 

11 000-11 111 See Table 7-7 See Table 7-7 

7-8 Instruction Set 



Instruction Fields 

Table 7-7. mod rim Field Encoding Dependent on w Field 

16-BIT 16-BIT 32-BIT 32-BIT 
mod rIm OPERATION OPERATION OPERATION OPERATION 

w=o w=1 w=o w=1 

11 000 AL AX AL EAX 

11 001 CL CX CL ECX 

11 010 DL DX OL EDX 

11 011 BL BX BL EBX 

11100 AH SP AH ESP 

11 101 CH BP CH EBP 

11 110 DH SI OH ESI 

11 111 BH 01 BH EDI 

7.2.7 mod and base Fields 

In Table 7-7, the note "s-i-b present" for certain entries forces the use of the 
mod and base field as listed in Table 7-8. 

Table 7-8. mod base Field Encoding 

32-BIT ADDRESS MODE 
mod rIm WITH mod rIm BYTE AND 

NO s-i-b BYTE PRESENT 

00000 OS:[EAX+(scaled index)] 

00001 DS:[ECX+(scaled index)] 

00010 DS:[EDX+(scaled index)] 

00011 OS:[EBX+(scaled index)] 

00100 SS:[ESP+(scaled index)] 

00101 DS:[d32+(scaled index)] 

00110 OS:[ESI+(scaled index)] 

00111 OS:[EOI+(scaled index)] 

01000 DS:[EAX+(scaled index)+d8] 

01 001 DS:[ECX+(scaled index)+d8] 

01 010 OS:[EOX+(scaled index)+d8] 

01 011 DS:[EBX+(scaled index)+d8] 

01100 SS:[ESP+(scaled index)+d8] 

01 101 SS:[EBP+(scaled index)+d8] 

01 110 OS:[ESI+(scaled index)+d8] 

01 111 OS:[EOI+(scaled index)+d8] 

10000 DS:[EAX+(scaled index)+d32] 

10001 DS:[ECX+(scaled index)+d32] 

10010 DS:[EDX+(scaled index)+d32] 

10011 DS:[EBX+(scaled index)+d32] 

10100 SS:[ESP+(scaled index)+d32] 

10101 SS:[EBP+(scaled index)+d32] 

10110 DS:[ESI+(scaled index)+d32] 

10111 DS:[EDI+(scaled index)+d32] 

7-9 



Instruction Fields 

7.2.8 ss Field 

The ss field (Table 7-9) specifies the scale factor used in the offset mechanism 
for address calculation. The scale factor multiplies the index value to provide 
one of the components used to calculate the offset address. 

Table 7-9. ss Field Encoding 

7.2.9 index Field 

ss FIELD SCALE FACTOR 

00 x1 

01 x2 

10 x4 

11 x8 

The index field (Table 7-10) specifies the index register used by the offset 
mechanism for offset address calculation. When no index register is used 
(index field=100), the ss value must be 00 or the effective address is 
undefined. 

Table 7-10. index Field Encoding 

7.2.10 sreg2 Field 

index FIELD INDEX REGISTER 

000 EAX 
001 ECX 
010 EOX 
011 EBX 
100 none 

101 EBP 
110 ESI 
111 EDI 

The sreg2 field (Table 7-11) is a 2-bit field that allows one of the four 286-type 
segment registers to be specified. 

Table 7-11. sreg2 Field encoding 

sreg2 FIELD 
SEGMENT REGISTER 

SELECTED 

00 ES 
01 CS 
10 SS 
11 OS 

7-10 Instruction Set 



7.2.11 sreg3 Field 

Instruction Fields 

The sreg3 field (Table 7-12) is 3-bit field that is similar to the sreg2 field, but 
allows use of the FS and GS segment registers. 

Table 7-12. sreg3 Field Encoding 

7.2.12 eee Field 

sreg3 FIELD 
SEGMENT REGISTER 

SELECTED 

000 ES 

001 CS 

010 SS 

011 OS 

100 FS 

101 GS 

110 undefined 

111 undefined 

The eee field is used to select the control, debug, and test registers as 
indicated in Table 7-13. The values shown are the onlyvalid encodings forthe 
eee bits. 

Table 7-13.eee Field Encoding 

eee FIELD REGISTER TYPE BASE REGISTER 

000 Control register CRO 

010 Control register CR2 

011 Control register CR3 

000 Debug register ORO 

001 Debug register DR1 

010 Debug register DR2 

011 Debug register DR3 

110 Debug register DR6 

111 Debug register DR7 

011 Test register TR3 

100 Test register TR4 

101 Test register TR5 

110 Test register TR6 

111 Test register TR7 

7-11 



Flags 

7.3 Flags 

The Instruction Set Summary Table lists nine flags that are affected by the 
execution of instructions. The conventions shown in Table 7-14 are used to 
identify the different flags. Table 7-15 lists the conventions used to indicate 
what action the instruction has on the particular flag. 

Table 7-14. Flag Abbreviations 

ABBREVIATION NAME OF FLAG 

OF Overflow flag 

DF Direction flag 

IF Interrupt enable flag 

TF Trap flag 

SF Sign flag 

ZF Zero flag 

AF Auxiliary flag 

PF Parity flag 

CF Carry flag 

Table 7-15.Action of Instruction on Flag 

INSTRUCTION TABLE 
ACTION SYMBOL 

m Flag is modified by the instruction 

u Flag is not changed by the instruction 

0 Flag is reset to "0" 

1 Flag is set to "1" 

7-12 Instruction Set 



Clock Count Summary 

7.4 Clock Count Summary 

7.4.1 Assumptions 

The following assumptions have been made in presenting the clock count 
values for the individual instructions. 

1) The instruction has been prefetched, decoded and is ready for execution. 

2) Bus cycles do not require wait states. 

3) There are no local bus HOLD requests delaying processor access to the 
bus. 

4) No exceptions are detected during instruction execution. 

5) If an effective address is calculated, it does not use two general register 
components. One register, scaling and displacement can be used within 
the clock count shown. However, if the effective address calculation uses 
two general register components, add 1 clock to the clock count shown. 

6) All clock counts assume aligned 16-bit memory/IO operands for cache 
miss counts. 

7) If instructions access a misaligned 16-bit operand or a 32-bit operand on 
even addresses, add 2 clocks for read or write, and add 4 clock counts for 
read and write. 

8) If instructions access a 32-bit operand on odd addresses, add 4 clocks for 
read or write, and add 8 clocks for read and write. 

7.4.2 Abbreviations 

The clock counts listed in the Instruction Set Summary Table are grouped by 
operating mode and whether there is a register/cache hit or a cache miss. In 
some cases, more than one clock count is shown in a column for a given 
instruction, or a variable is used in the clock count. The abbreviations used for 
these conditions are listed in Table 7-16. 

Table 7-16. Clock Count Abbreviations 

CLOCK COUNT 
EXPLANATION SYMBOL 

/ Register operand/memory operand 

n Number of times operation is repeated 

L Level of the stack frame 

I Condition jump taken I conditional jump not taken 

\ CPL ::;; IOPL \ CPL > IOPL 

7-13 



~ Table 7-17. Instructions, Opcodes, Flags, and Clock Summary 
~ 

FLAGS 

INSTRUCTION OPCODE 
0 D I T S Z A 
F F F F F F F 

AAA ASCII Adjust AL after Add 37 u u u u u u m 

AAD ASCII Adjust AX before Divide D50A u u u u m m u 

AAM ASCII Adjust AX after Multiply D40A u u u u m m u 

AAS ASCII Adjust AL after Subtract 3F u u u u u u m 

ADC Add with Carry m u u u m m m 
Register to Register 1 [OOdw] [11 reg rIm] 
Register to Memory 1 [OOOw] [mod reg rIm] 
Memory to Register 1 [001 w] [mod reg rIm] 
Immediate to Register/Memory 8 [OOsw] [mod 010 r/m]t 
Immediate to Accumulator 1 [010w]t 

ADD Integer Add m u u u m m m 
Register to Register o [OOdw] [11 reg rIm] 
Register to Memory o [OOOw] [mod reg rIm] 
Memory to Register o [001w] [mod reg rIm] 
Immediate to Register/Memory 8 [OOsw] [mod 000 r/m]t 
Immediate to Accumulator o [010w]t 

AND Boolean AND 0 u u u m m u 
Register to Register 2 [OOdw] [11 reg rIm] 
Register to Memory 2 [OOOw] [mod reg rIm] 
Memory to Register 2 [001w] [mod reg rIm] 
Immediate to Register/Memory 8 [OOsw] [mod 100 r/m]t 
Immediate to Accumulator 2 [010w]t 

ARPL Adjust Requested Privilege Level u u u u u m u 
From Register/Memory 63 [mod reg rIm] 

BOUND Check Array Boundaries 62 [mod reg rIm] u u u u u u u 
If Out of range (lnt 5) 
If In Range 

BSF Scan Bit Forward u u u u u m u 
Register/Memory, Register OF 8C[mod reg rIm] 

s-
f/) 

~ 
§ 
g 
~ 

REAL MODE 
CLOCKS 

REGI P C 
CACHE 

CACHE 
F F 

HIT 
MISS 

u m 4 

m u 4 

m u 16 

u m 4 

m m 
1 
3 5 
3 5 

1/3 5 
1 

m m 
1 
3 5 
3 5 

1/3 5 
1 

m 0 
1 
3 5 
3 5 

1/3 5 
1 

u u 

u u 
11+int 

11 

u u 
517+n 9+n 

PROTECTED 
MODE CLOCKS 

REGI 
CACHE 

CACHE 

HIT 
MISS 

4 

4 

16 

4 

1 
3 5 
3 5 

1/3 5 
1 

1 
3 5 
3 5 

1/3 5 
1 

1 
3 5 
3 5 

1/3 5 
1 

6/10 10 

11 +int 
11 

5/7+n 9+n 

READ 
MODE 

1 

1 

1 

3 

1,4 

1 

NOTES 

PROTECTED 
MODE 

2 

2 

2 

2 

2,5,6,7,8 

2 

, 

I 

! 

I 
, 

I 

I 

I 

I 

I 

I 

I 

C) 
0-
~ 
~ 
~ 

I 
-< 



--;.J 
-L 

01 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS REAL MODE PROTECTED 
NOTES 

CLOCKS MODE CLOCKS 

INSTRUCTION OPCODE REGI REG! 0 D I T S Z A P C 
CACHE 

CACHE 
CACHE 

CACHE READ PROTECTED 
F F F F F F F F F 

HIT 
MISS 

HIT 
MISS MODE MODE 

BSR Scan Bit Reverse u u u u u m u u u 1 2 
Register/Memory, Register OF BC[mod reg rIm] 517+n 9+n 5/7+n 9+n 

BSWAP Byte Swap OF C[1 reg] u u u u u u u u u 4 4 

BT Test Bit u u u u u u u u m 1 2 
Register/Memory, Immediate OF BA[mod 100 r/m]t 3/4 5 3/4 5 
Register/Memory, Register OF A3[mod reg rIm] 3/6 7 3/6 7 

BTC Test Bit and Complement u u u u u u u u m 1 2 
Register/Memory, Immediate OF BA[mod 111 r/m]t 4/5 6 4/5 6 
Register/Memory, Register OF BB[mod reg rIm] 5/8 9 5/8 9 

BTR Test Bit and Reset u u u u u u u u m 1 2 
Register/Memory, Immediate OF BA[mod 110 r/m]t 4/5 6 4/5 6 
Register/Memory, Register OF B3[mod reg rIm] 5/8 9 5/8 9 

BTS Test Bit and Set u u u u u u u u m 1 2 
Register/Memory OF BA[mod 101 rIm] 3/5 6 3/5 6 
Register (short form) OF ~~[mod reg rIm] 4/7 8 417 8 

-------- ~-- --- -

t = immediate data + = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged 
Notes: 1) Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment 

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum SS limit. 

2) Exception 13 fault will occur if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit 
is violated, an exception 12 occurs. 

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
4) An exception may occur, depending on the value of the operand. 
5) LOCK is asserted during descriptor table accesses. 
6) All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems. 
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur. 

Q 
o 
~ 
~ 
~ 

I 
~ 



~ 
....L 

0) 

~ 
~ 

~ 
5' 
:::J 

~ ..... 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS 

INSTRUCTION OPCODE 
0 D I T S Z 
F F F F F F 

CALL Subroutine Call u u u u u u 
Direct within Segment E8~ 
RegisterlMemory Indirect within Segment FF [mod 010 rIm] 

Direct Intersegment 9A [unsigned full offset, 
Call Gate to Same Privilege selector] 
Call Gate to Different Privilege No P 
Call Gate to Different Privilege Ps 
16-Bit Task to 16-bit TSS 
16-Bit Task to 32-bit TSS 
16-Bit Task to V86 Task 
32-Bit Task to 16-bit TSS 
32-Bit Task to 32-bit TSS 
32-Bit Task to V86 Task 

Indirect Intersegment 
Call Gate to Same Privilege 

FF [mod 011 rIm] 

Call Gate to Different Privilege No P 
Call Gate to Different Privilege Ps 
16-Bit Task to 16-bit TSS 
16-Bit Task to 32-bit TSS 
16-Bit Task to V86 Task 
32-Bit Task to 16-bit TSS 
32-Bit Task to 32-bit TSS 
32-Bit Task to V86 Task 

P = Parameters 

CBW Convert Byte to Word 98 u u u u u u 

CDa Convert Doubleword to Quadword 99 u u u u u u 

CLC Clear Carry Flag F8 u u u u u u 

CLD Clear Direction Flag FC u 0 u u u u 

CLI Clear Interrupt Flag FA u u 0 u u u 

CLTS Clear Task Switched Flag OF06 u u u u u u 

CMC Complement the Carry Flag F5 u u u u u u 

CMP Compare Integers m u u u m m 
Register to Register 3 [10dw] [11 reg rIm] 
Register to Memory 3 [101 w] [mod reg rIm] 
Memory to Register 3 [100w] [mod reg rIm] 
Immediate to RegisterlMemory 8 [OOsw] [mod 111 r/m]t 
Immediate to Accumulator 3 [110w]t 

A 
F 

u 

u 

u 

u 

u 

u 

u 

u 

m 

REAL MODE 
CLOCKS 

REGI P C CACHE CACHE 
F F HIT MISS 

u u 
7 

8/9 10 

12 

14 17 

u u 3 

u u 1 

u 0 1 

u u 1 

u u 7 

u u 5 

u m 1 

m m 
1 
3 5 
3 5 

1/3 5 
1 

PROTECTED 
MODE CLOCKS 

REGI 
CACHE CACHE 

HIT MISS 

7 
8/9 10 

30 
41 49 
83 97 

81+4x 95+4x 
262 263 
293 317 
179 206 
238 258 
296 340 
182 229 

14 34 
43 51 
85 99 

86+4x 100+4x 
267 268 
298 322 
181 211 
243 263 
301 345 
184 230 

3 

1 

1 

1 

7 

5 

1 

1 
3 5 
3 5 

1/3 5 
1 

READ 
MODE 

1 

10 

1 

NOTES 

PROTECTED 
MODE 

2,6,7,8 

9 

11 

2 

() 
0-
~ 
~ 
~ 
C/) 

§ 
:3 
III 
~ 



~ 
-.....J 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS REAL MODE PROTECTED NOTES 
CLOCKS MODE CLOCKS 

INSTRUCTION OPCODE REG! REG! 0 D I T S Z A P C CACHE CACHE CACHE CACHE READ PROTECTED 
F F F F F F F F F HIT MISS HIT MISS MODE MODE 

CMPS Compare String A [011w] m u u u m m m m m 7 8 7 8 1 2 

CMPXCHG Compare and Exchange m u u u m m m m m 
Register1, Register2 OF B[OOOw] [11 reg2 reg 1 ] 5 5 
Memory, Register OF B[OOOw] [mod reg rim] 7 8 7 8 

CWD Convert Word to Doubleword 99 u u u u u u u u u 1 1 
I 

CWDE Convert Word to Doubleword Extended 98 u u u u u u u u u 3 3 

DAA Decimal Adjust AL after Add 27 u u u u m m m m m 4 4 
I 

DAS Decimal Adjust AL after Subtract 2F u u u u m m m m m 4 4 

DEC Decrement by 1 m u u u m m m m u 1 2 
Register/Memory F [111w] [mod 001 rim] 1/3 5 1/3 5 
Register (short form) 4 [1 reg] 1 1 

. 

DIV Unsigned Divide F [011w] [mod 110 rim] u u u u u u u u u 1,4 2,4 
Accumulator by Register/Memory 

14/15 14/15 Divisor: Byte 17 17 
Word 22/23 24 22/23 24 
Ooubleword 38/39 40 38/39 40 

ENTER Enter New Stack Frame C8 [8-bit level]§ u u u u u u u u u 1 2 
Level = 0 7 7 
Level = 1 10 10 10 10 
Level (L) > 1 6+4*L 6+4*L 6+4*L 6+4*L 

HLT Halt F4 u u u u u u u u u 3 3 11 
-- -- ---

t = immediate data :j: = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged 
Notes: 1) Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment 

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum SS limit. 

2) Exception 13 fault will occur if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit 
is violated, an exception 12 occurs. 

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
4) An exception may occur, depending on the value of the operand. 
5) LOCK is asserted during descriptor table accesses. 
6) All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems. 
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur. 
9) An exception 13 fault occurs if CPL is greater than IOPL. 
10) This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode. 
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 

Q 
~ 
~ 
~ 

I 
~ 



~ 
(X) 

s-
CI) 

~ 
~ g. 
:J 

~ 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS 

INSTRUCTION OPCODE 
0 D I T S Z 
F F F F F F 

IDIV Integer (Signed) Divide u u u u u u 
Accumulator by Register/Memory F [011w] [mod 111 rIm] 
Divisor: Byte 

Word 
Doubleword 

IMUL Integer (Signed) Multiply m u u u u u 
Accumulator by Register/Memory F [011w] [mod 101 rIm] 
Multiplier: Byte 

Word 
Doubleword 

Register with Register/Memory OF AF[mod reg rIm] 
Multiplier: Byte 

Word 
Doubleword 

Register/Memory with Immediate to Register2 6 [1 Os1] [mod reg r/m]t 
Multiplier: Byte 

Word 
Doubleword 

IN Input from liD Port u u u u u u 
Fixed Port E [01 Ow] [port number] 
Variable Port E [11 Ow] 

INC Increment by 1 m u u u m m 
Register/Memory F [111w] [mod 000 rIm] 
Register (short from) 4 [0 reg] 

INS Input String from liD Port 6 [110w] u u u u u u 

INT Software Interrupt u m 0 u u u 
INTi CD[i] 
Protected Mode: 

Interrupt or Trap to Same Privilege 
Interrupt or Trap to Different Privilege 
16-Bit Task to 16-bit TSS by Task Gate 
16-Bit Task to 32-bit TSS by Task Gate 
16-Bit Task to V86 Task by Task Gate 
32-Bit Task to 16-bit TSS by Task Gate 
32-Bit Task to 32-bit TSS by Task Gate 
32-Bit Task to V86 Task by Task Gate 
V86 to 16-bit TSS by Task Gate 
V86 to 32-bit TSS by Task Gate 
V86 to Privilege 0 by Trap Gatellnt Gate 

C0r'ltinued on n~xt pagE!--"--"--"----

A 
F 

u 

u 

u 

m 

u 

u 

REAL MODE 
CLOCKS 

REG! P C CACHE CACHE 
F F HIT MISS 

u u 

19/20 22 
27/28 29 
43/44 47 

u m 

3/5 7 
3/5 7 
7/9 13 

3/5 7 
3/5 7 
7/9 13 

3/5 7 
3/5 7 
7/9 13 

u u 
16 16 
16 16 

m u 
1/3 5 
1 

u u 20 20 

u u 
14 16 

PROTECTED 
MODE CLOCKS 

REGI 
CACHE CACHE 

HIT MISS 

19/20 22 
27/28 29 
43/44 47 

3/5 7 
3/5 7 
7/9 13 

3/5 7 
3/5 7 
7/9 13 

3/5 7 
3/5 7 
7/9 13 

6/19 6/20 
6/19 6/20 

1/3 5 
1 

6/19 6/20 

57 58 
91 92 

265 266 
296 320 
177 205 
241 261 
299 343 
180 232 
241 261 
299 343 
106 114 

READ 
MODE 

1,4 

1 

1 

1 

1,4 

NOTES 

PROTECTED 
MODE 

2,4 

2 

9 

2 

2,9 

5,6,7,8 

~ 
~ 
~ 
~ 
C/) 

§ 
~ 
-< 



~ 
-.L 

<.0 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS REAL MODE PROTECTED 
NOTES 

CLOCKS MODE CLOCKS 
INSTRUCTION OPCODE REG/ REG/ 0 D I T S Z A P C CACHE CACHE CACHE CACHE READ PROTECTED 

F F F F F F F F F HIT MISS HIT MISS MODE MODE 

INT Software Interrupt (Continued) u m 0 u u u u u u 1,4 5,6,7,8 
INT3 CC 14 16 
Protected Mode: 

Interrupt or Trap to Same Privilege 57 58 
Interrupt or Trap to Different Privilege 91 92 
16-Bit Task to 16-bit TSS by Task Gate 265 266 
16-Bit Task to 32-bit TSS by Task Gate 296 320 
16-Bit Task to V86 by Task Gate 177 205 
32-Bit Task to 16-bit TSS by Task Gate 241 261 
32-Bit Task to 32-bit TSS by Task Gate 299 343 
32-Bit Task to V86 by Task Gate 180 232 
V86 to 16-bit TSS by Task Gate 241 261 
V86 to 32-bit TSS by Task Gate 299 343 
V86 to Privilege 0 by Trap Gate/lnt Gate 106 114 

INTO CE u u m 0 u u u u u 
If OF == 0 1 1 1 1 
If OF == 1 (INT4) 15 17 
Protected Mode: 

Interrupt or Trap to Same Privilege 57 58 
Interrupt or Trap to Different Privilege 91 92 
16-Bit Task to 16-bit TSS by Task Gate 265 266 
16-Bit Task to 32-bit TSS by Task Gate 296 320 
16-Bit Task to V86 by Task Gate 177 205 
32-Bit Task to 16-bit TSS by Task Gate 241 261 
32-Bit Task to 32-bit TSS by Task Gate 299 343 
32-Bit Task to V86 by Task Gate 180 232 
V86 to 16-bit TSS by Task Gate 241 261 
V86 to 32-bit TSS by Task Gate 299 343 
V86 to Privilege 0 by Trap Gate/lnt Gate 106 114 

t = immediate data + = 8-bit displacement § = 16-bit displacement ~ = 32-bit displacement m = Flag modified u = Flag unchanged 
Notes: 1) Exception 13 fault (general protection) will occur in Read Mode if an operand reference is made that partially orfully extends beyond the maximum CS, DS, ES, FS, or GS segment 

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum SS limit. 

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit 
is violated, an exception 12 occurs. 

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
4) An exception may occur, depending on the value of the operand. 
5) LOCK is asserted during descriptor table accesses. 
6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems. 
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur. 
9) An exception 13 fault occurs if CPL is greater than IOPL. 

Q 
~ 
~ 
~ 

~ 
~ 
-< 



-.....J 
N Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 
o 

FLAGS 

INSTRUCTION OPCODE 
0 D I T S Z 
F F F F F F 

INVD Invalidate Cache OF 08 u u u u u u 

INVLPG Invalidate TLB Entry OF 01 [mod 111 rIm] u u u u u u 

IRET Interrupt Return CF m m m m m m 
Read Mode 
Protected Mode 

Within Task to Same Privilege 
Within Task to Different Privilege 

16-Bit Task to 16-bit TSS 
16-Bit Task to 32-bit TSS 
16-Bit Task to V86 Task 
32-Bit Task to 16-bit TSS 
32-Bit Task to 32-bit TSS 
32-Bit Task to V86 Task 

JB/JNAElJC Jump on Below/Not u u u u u u 
Above or Equal/Carry 
8-Bit displacement 72+ 
Full displacement OF 8211 

JBElJNA Jump on Below or Equal/Not Above u u u u u u 
8-Bit displacement 76+ 
Full displacement OF 8611 

JCXZ Jump on CX Zero E3+ u u u u u u 

JElJZ Jump on Equal/Zero u u u u u u 
8-Bit displacement 74+ 
Full displacement OF 8411 

JECXZ Jump on ECX Zero E3+ u u u u u u 

JUJNGE Jump on Less/Not Greater or Equal u u u u u u 
8-Bit displacement 7C+ 
Full displacement OF 8Cl1 

------ - -- "----- '----- - -

~ 
~ 
§ 
5-
:J 

~ 

REAL MODE 
CLOCKS 

REGI A P C CACHE 
CACHE 

F F F HIT MISS 

u u u 4 

u u u 4 

m m m 
14 14 

u u u 

411 
411 

u u u 
411 
411 

u u u 713 

u u u 
411 
411 

u u u 713 

u u u 
411 

'----- - -
~1 __ 

--------

PROTECTED 
MODE CLOCKS 

REG! 
CACHE 

CACHE 

HIT MISS 

4 

4 

35 37 
74 78 
259 260 
290 314 
173 203 
235 255 
295 339 
176 226 

611 
611 

611 
611 

713 

611 
611 

713 

611 
~1 __ 

--

NOTES 

READ PROTECTED 
MODE MODE 

2,5,6,7,8 

8 

8 

8 I 

8 

8 
: 

8 ! 

- L- _._ -- J 

Q 

~ 
g> 
~ 
C/) 

~ 
Q) 

~ 



-....J 
N ...... 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS REAL MODE PROTECTED 
NOTES 

CLOCKS MODE CLOCKS 
I 

INSTRUCTION OPCODE REGI REG! 0 D I T S Z A P C CACHE CACHE CACHE CACHE READ PROTECTED 
F F F F F F F F F HIT MISS HIT MISS MODE MODE 

JLElJNG Jump on Less or EquallNot Greater u u u u u u u u u 8 
8-Bit displacement 7E:t: 411 611 
Full displacement OF 8El1 411 611 

JMP Unconditional Jump u u u u u u u u u 1 2,6,7,8 
Short EB:t: 4 6 
Direct within Segment E911 4 6 
Register/Memory Indirect within Segment FF [mod 100 rIm] 6/8 10 6/8 10 
Direct Intersegment EA [full offset, selector] 9 26 
Call Gate Same Privilege Level 45 45 
16-Bit Task to 16-bit TSS 265 266 
16-Bit Task to 32-bit TSS 296 320 
16-Bit Task to V86 Task 182 209 
32-Bit Task to 16-bit TSS 241 261 
32-Bit Task to 32-bit TSS 299 343 
32-Bit Task to V86 Task 185 232 

Indirect Intersegment FF [mod 101 rIm] 11 14 30 30 
Call Gate Same Privilege Level 47 47 
16-Bit Task to 16-bit TSS 270 271 
16-Bit Task to 32-bit TSS 301 325 
16-Bit Task to V86 Task 184 214 
32-Bit Task to 16-bit TSS 246 268 
32-Bit Task to 32-bit TSS 304 348 
32-Bit Task to V86 Task 187 237 

JNB/JAElJNC Jump on Not Belowl u u u u u u u u u 8 
Above or EquaVNot Carry 
8-Bit displacement 73:t: 411 611 
Full displacement OF 8311 411 611 

t = immediate data :t: = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged 
Notes: 1) Exception 13 fault (general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment 

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum SS limit. 

2) Exception 13 fault will occur if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit 
is violated, an exception 12 occurs. 

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
4) An exception may occur, depending on the value of the operand. 
5) LOCK is asserted during descriptor table accesses. 
6) All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems. 
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur. 

Q 

~ 
~ 
~ 

I 
~ 



-....I 
N Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 
I\) 

FLAGS 

INSTRUCTION OPCODE 
0 D I T S Z 
F F F F F F 

JNBElJA Jump on Not Below or Equal/Above u u u u u u 
8-Bit displacement 77:j: 
Full displacement OF87~ 

JNElJNZ Jump on Not Equal/Not Zero u u u u u u 
8-Bit Displacement 75:j: 
Full Displacement OF 85~ 

JNUJGE Jump on Not Less/Greater or Equal u u u u u u 
8-Bit displacement 7D:j: 
Full displacement OF8D~ 

JNLElJG Jump on Not Less or Equal/Greater u u u u u u 
8-Bit displacement 7F:j: 
Full displacement OF8F~ 

JNO Jump on Not Overflow u u u u u u 
8-Bit displacement 71:j: 
Full displacement OF 81~ 

JNP/JPO Jump on Not Parity/Parity Odd u u u u u u 
8-Bit displacement 7B:j: 
Full displacement OF8B~ 

JNS Jump on Not Sign u u u u u u 
8-Bit displacement 79:j: 
Full displacement OF89~ 

JO Jump on Overflow u u u u u u 
8-Bit displacement 70:j: 
Full displacement OF 80~ 

JP/JPE Jump on Parity/Parity Even u u u u u u 
8-Bit displacement 7A:j: 
Full displacement OF8A~ 

JS Jump on Sign u u u u u u 
8-Bit displacement 78:j: 

s-
Full displacement OF 88~ 

CI) 

=t 
5 
~ 
~ 

REAL MODE 
CLOCKS 

REG! A P C CACHE 
CACHE 

F F F HIT MISS 

u u u 
411 
411 

u u u 
411 
411 

u u u 
411 
411 

u u u 
411 
411 

u u u 
411 
411 

u u u 
411 
411 

u u u 
411 
411 

u u u 
411 
411 

u u u 
411 
411 

u u u 
411 
411 

PROTECTED 
MODE CLOCKS 

REGI 
CACHE 

CACHE 

HIT MISS 

611 
611 

611 
611 

611 
611 

611 
611 

611 
611 

611 
611 

611 
611 

611 
611 

611 
611 

611 
611 

NOTES 

READ PROTECTED 
MODE MODE 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

Q 

~ 
~ 
~ 
en 

i 
-< 



-....J 
N 
(J.) 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS REAL MODE PROTECTED NOTES 
CLOCKS MODE CLOCKS 

INSTRUCTION OPCODE REGI REG! 0 D I T S Z A P C CACHE CACHE CACHE CACHE READ PROTECTED 
F F F F F F F F F HIT MISS HIT MISS MODE MODE 

LAHF Load AH with Flags 9F u u u u u u u u u 2 2 

LAR Load Access Rights u u u u u m u u u 3 2,S,6,12 
From RegisterlMemory OF 02[mod reg rIm] 11/12 14 

LDS Load Pointer to OS CS [mod reg rIm] u u u u u u u u u 6 7 23 24 1 2,6,13 

LEA Load Effective Address 80 [mod reg rIm] u u u u u u u u u 
No Index Register 2 2 
With Index Register 3 3 

LEAVE Leave Current Stack Frame C9 u u u u u u u u u 3 4 3 4 1 2 

LES Load Pointer to ES C4 [mod reg rIm] u u u u u u u u u 6 7 23 24 1 2,6,13 

LFS Load Pointer to FS OF 84[mod reg rIm] u u u u u u u u u 6 7 23 24 1 2,6,13 

LGDT Load GOT Register OF 01 [mod 010 rIm] u u u u u u u u u 9 9 9 9 1,10 2,11 

LGS Load Pointer to GS OF 8S[mod reg rIm] u u u u u u u u u 6 7 23 24 1 2,6,13 

LlDT Load lOT Register OF 01 [mod 011 rIm] u u u u u u u u u 9 9 9 9 1,10 2,11 

LLDT Load LOT Register u u u u u u u u u 3 2,S,6,11 
From RegisterlMemory OF OO[mod 010 rIm] 16/17 18 

LMSW Load Machine Status Word u u u u u u u u u 1,10 2,11 
From RegisterlMemory OF 01 [mod 110 rIm] S 8 S 8 

LODS Load String A [110w] u u u u u u u u u 4 4 4 4 1 2 

LOOP Offset Loop/No Loop E2:J: u u u u u u u u u 714 913 8 

t = immediate data + = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged 
Notes: 1) Exception 13 fault (general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment 

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum SS limit. 

2) Exception 13 fault will occur if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit 
is violated, an exception 12 occurs. 

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
4) An exception may occur, depending on the value of the operand. 
S) LOCK is asserted during descriptor table accesses. __ 
6) All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems. 
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur. 
9) An exception 13 fault occurs if CPL is greater than IOPL. 
1 O)This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode. 
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared. 
13)For segment load operations, the CPL, RPL, and OPL must agree witht he privolege rules to avoid an exception 13 fault. The segment's descriptor must indicate "presenf' or 

exception 11 (OS, OS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, and exception 12 occurs. 

(") 
0' 
~ 
~ 
~ 

~ 
~ 
-< 



""-J 
N 
..j::::.. 

~ 
~ 
§ 
g. 
::J 

~ 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS 

INSTRUCTION OPCODE 
0 D I T S Z 
F F F F F F 

LOOPNZlLOOPNE Offset EO:j: u u u u u u 

LOOPZlLOOPE Offset E1:j: u u u u u u 

LSL Load Segment Limit u u u u u m 
From RegisterlMemory OF 03[mod reg rim] 

LSS Load Pointer to SS OF B2[mod reg rim] u u u u u u 

LTR Load Task Register OF OO[mod reg rim] u u u u u u 
From RegisterlMemory 

MOV Move Data u u u u u u 
Register to Register/Memory 8 [11 Ow] [mod reg rim] 
RegisterlMemory to Register 8 [101w] [mod reg rim] 
Immediate to Register/Memory C [011 w] [mod 000 r/m]t 
Immediate to Register (short form) B [w reg]t 
Memory to Accumulator (short form) A [OOOw]~ 
Accumulator to Memory (short form) A [001w]~ 
Register/Memory to Segment Register 8E [mod sreg3 rim] 
Segment Register to RegisterlMemory 8C [mod reg rim] 

MOV Move to/from Contro//DebuglTest Registers u u u u u u 
Register to CRO/CR2/CR3 OF 22[11 eee reg] 
CRO/CR2/CR3 to Register OF 20[11 eee reg] 
Register to DRO-DR3 OF 23[11 eee reg] 
DRo-DR3 to Register OF 21 [11 eee reg] 
Register to DR6-DR7 OF 23[11 eee reg] 
DR6-DR7 to Register OF 21[11 eee reg] 
Register to TR3-5 OF 26[11 eee reg] 
TR3-5 to Register OF 24[11 eee reg] 
Register to TR6-TR7 OF 26[11 eee reg] 
TR6-TR7 to Register OF 24[11 eee reg] 

MOVS Move String A [01 Ow] u u u u u u 

MOVSX Move with Sign Extension u u u u u u 
Register from Register/Memory OF B[111 w] [mod reg rim] 

MOVZX Move with Zero Extension u u u u u u 
Register from Register/Memory OF B[011 w] [mod reg rim] 

A P 
F F 

u u 

u u 

u u 

u u 

u u 

u u 

u u 

u u 

u u 

u u 

REAL MODE 
CLOCKS 

REGI C 
CACHE 

CACHE 
F 

HIT 
MISS 

u 714 

u 714 

u 

u 6 7 

u 

u 
1/2 2 
1/2 4 
1/2 2 
1 
2 4 

1/2 2 
2/3 5 
1/2 2 

u 
11/3/3 
1/3/3 

1 
3 
1 
3 
5 
5 
1 
3 

u 5 5 

u 
1/3 5 

u 
213 5 

PROTECTED 
MODE CLOCKS 

REGI 
CACHE 

CACHE 

HIT 
MISS 

913 

913 

22/23 25 

23 24 

16/17 18 

1/2 2 
1/2 4 
1/2 2 
1 
2 4 

1/2 2 
15/16 18 

1/2 2 

11/3/3 
1/3/3 

1 
3 
1 
3 
5 
5 
1 
3 

5 5 

1/3 5 

213 5 

READ 
MODE 

3 

3 

3 

1 

1 

1 

1 

NOTES 

PROTECTED 
MODE 

8 

8 

2,5,6,12 

2,6,13 

2,5,6,11 

2,6,13 

11 

2 

2 

2 

, 

I 

, 

Q 
o 
~ 
~ 
~ 
C/) 

§ 
:3 
!.b 

-< 



-....,J 

'" 01 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS 
REAL MODE PROTECTED 

NOTES I 

CLOCKS MODE CLOCKS 

INSTRUCTION OPCODE REGI REG! PROTECTED I 0 D I T S Z A P C 
CACHE 

CACHE 
CACHE 

CACHE READ 
F F F F F F F F F MISS MISS MODE MODE 

HIT HIT 
I 

MUL Unsigned Multiply F [011w] [mod 100 rim] m u u u u u u u m 1 2 
Accumulator with RegisterlMemory 

i Multiplier: Byte 3/5 7 3/5 7 
Word 3/5 7 3/5 7 
Ooubleword 7/9 13 7/9 13 

I 

NEG Negate Integer F [011 w] [mod 011 rim] m u u u m m m m m 1/3 5 1/3 5 1 2 

NOP No Operation 90 u u u u u u u u u 3 3 I 

NOT Boolean Complement F [011w] [mod 010 rim] u u u u u u u u u 1/3 5 1/3 5 1 2 

OR Boolean OR 0 u u u m m m m 0 1 2 i 

Register to Register o [10dw] [11 reg rim] 1 1 
Register to Memory o [100w] [mod reg rim] 3 5 3 5 
Memory to Register o [101 w] [mod reg rim] 3 5 3 5 
Immediate to RegisterlMemory 8 [OOOw] [mod 001 r/m]t 1/3 5 1/3 5 
Immediate to Accumulator 0[110w]t 1 1 

OUT Output to Port u u u u u u u u u 9 
Fixed Port E [011 w] [port number] 18 18 4\17 4\18 
Variable Port E [111w] 18 18 4\17 4\18 

OUTS Output String 6 [111w] u u u u u u u u u 20 20 6\19 6\19 1 2,9 

t = immediate data =1= = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged 
Notes: 1) Exception 13 fault (general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment 

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum SS limit. 

2) Exception 13 fault will occur if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit 
is violated, an exception 12 occurs. 

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
4) An exception may occur, depending on the value of the operand. 
5) LOCK is asserted during descriptor table accesses. __ 
6) All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems. 
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur. 
9) An exception 13 fault occurs if CPL is greater than IOPL. 
10)This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode. 
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared. 
13) For segment load operations, the CPL, RPL, and OPL must agree witht he privolege rules to avoid an exception 13 fault. The segment's descriptor must indicate "presenf' or 

exception 11 (OS, OS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, and exception 12 occurs. 

(') 
0-
~ 
~ 
~ 

~ 
~ 
~ 



-....I 
r\:> 
C» 

~ 
~ 
?i 
5-
::J 

~ 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS 

INSTRUCTION OPCODE 
0 D I T S Z 
F F F F F F 

POP Pop Value off Stack u u u u u u 
Register/Memory 8F [mod 000 rim] 
Register (short form) 5 [1 reg] 
Segment Register (ES, CS, SS, DS) [000 sreg2 110] 
Segment Register (ES, CS, SS, DS, FS, GS) OF [10 sreg3 001] 

POPA Pop All General Registers 61 u u u u u u 

POPF Pop Stack into FLAGS 9D m m m m m m 

PREFIX BYTES u u u u u u 
Assert Hardware LOCK Prefix FO 
Address Size Prefix 67 
Operand Size Prefix 66 
Segment Override Prefix: 

CS 2E 
DS 3E 
ES 26 
FS 64 
GS 65 
SS 36 

PUSH Push Value onto Stack u u u u u u 
Register/Memory FF [mod 110 rim] 
Register (short form) 5 [0 reg] 
Segment Register (ES, CS, SS, DS) [000 sreg2 110] 
Segment Register (ES, CS, SS, DS, FS, GS) OF [10 sreg3 000] 
Immediate 6 [10s0]t 

PUSHA Push All General Registers 60 u u u u u u 

PUSHF Push FLAGS Register 9C u u u u u u 

RCL Rotate Through Carry Left m u u u u u 
Register/Memory by 1 D [OOOw] [mod 010 rim] 
Register/Memory by CL D [001 w] [mod 010 rim] 
Register/Memory by Immediate C [OOOw] [mod 010 r/m]t 

REAL MODE 
CLOCKS 

REGI A P C 
CACHE 

CACHE 
F F F 

HIT 
MISS 

u u u 
3/5 4/5 
3 4 
4 5 
4 5 

u u u 18 18 

m m m 4 5 

u u u 

u u u 
2/4 4 
2 2 
2 2 
2 2 
2 2 

u u u 17 17 

u u u 2 2 

u u m 
9/9 10 
9/9 10 
9/9 10 

PROTECTED 
MODE CLOCKS 

REGI 
CACHE 

CACHE 

HIT 
MISS 

3/5 4/5 
3 4 
18 19 
18 19 

18 18 

4 5 

214 4 
2 2 
2 2 
2 2 
2 2 

17 17 

2 2 

9/9 10 
9/9 10 
9/9 10 

READ 
MODE 

1 

1 

1 

1 

1 

1 

1 

NOTES ! 

PROTECTED I 

MODE 
I 

, 

2,6,13 

I 

2 

2,14 

9 

2 

2 

2 

2 

C) 
0-
~ 
~ 
~ 
en 
§ 
~ 
-< 



...... 

'" ...... 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS REAL MODE PROTECTED NOTES 
CLOCKS MODE CLOCKS 

INSTRUCTION OPCODE REGI REGI 0 D I T S Z A P C CACHE CACHE CACHE CACHE READ PROTECTED 
F F F F F F F F F HIT MISS HIT MISS MODE MODE 

RCR Rotate Through Carry Right m u u u u u u u m 1 2 
Register/Memory by 1 D [OOOw] [mod 011 rim] 9/9 10 9/9 10 
Register/Memory by CL D [001 w] [mod 011 rim] 9/9 10 9/9 10 
Register/Memory by Immediate C [OOOw] [mod 011 r/m]t 9/9 10 9/9 10 

REP INS Input String F26[110w] u u u u u u u u u 20+9n 20+9n 5+9n\ 5+9n\ 1 2,9 
18+9n 19+9n 

REP LODS Load String F2 A[11 Ow] u u u u u u u u u 4+5n 4+5n 4+5n 4+5n 1 2 

REP MOVS Move String F2 A[010w] u u u u u u u u u 5+4n 5+4n 5+4n 5+4n 1 2 

REP OUTS Output String F26[111w] u u u u u u u u u 20+4n 20+4n 5+4n\ 5+4n\ 1 2,9 
18+4n 19+4n 

REP STOS Store String F2 A[101w] u u u u u u u u u 3+4n 3+4n 3+4n 3+4n 1 2 

REPE CMPS Compare String F3 A[011w] m u u u m m m m m 5+8n 5+8n 5+8n 5+8n 1 2 
(Find non-match) 

REPE SCAS Scan String F3 A[111w] m u u u m m m m m 4+5n 4+6n 4+5n 4+6n 1 2 
(Find non-AUAXlEAX) 

REPNE CMPS Compare String F2 A[011w] m u u u m m m m m 5+8n 5+8n 5+8n 5+8n 1 2 
(Find match) 

REPNE SCAS Scan String F2 A[111w] m u u u m m m m m 4+5n 4+6n 4+5n 4+6n 1 2 
(Find AUAXlEAX) 

--- -- - - - L- _ ---- - ---- - --- -- - - - -- ---- -- - - - -- - - -- - - --- -- - - -

t = immediate data + = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged 
Notes: 1) Exception 13 fault (general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment 

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum SS limit. 

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit 
is violated, an exception 12 occurs. 

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
4) An exception may occur, depending on the value of the operand. 
5) LOCK is asserted during descriptor table accesses. __ 
6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems. 
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur. 
9) An exception 13 fault occurs if CPL is greater than IOPL. 
10)This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode. 
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared. 
13) For segment load operations, the CPL, RPL, and DPL must agree witht he privolege rules to avoid an exception 13 fault. The segment's descriptor must indicate "present" or 

exception 11 (DS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, and exception 12 occurs. 
14)The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL = O . 

() 
0-
~ 
~ 
~ 

I 
'< 



-....J 
N 
ex> 

s-
CI) 

~ 

5 
g. 
::J 

~ 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS 

INSTRUCTION OPCODE 
0 D I T S Z A 
F F F F F F F 

RET Return from Subroutine u u u u u u u 
Within Segment C3 
Within Segment Add Immediate to SP C2§ 
Intersegment CB 
Intersegment Add Immediate to SP CA§ 
Protected Mode: Different Privilege Level 

Intersegment 
Intersegment Add Immediate to SP 

ROL Rotate Left m u u u u u u 
Register/Memory by 1 o [OOOw] [mod 000 rim] 
Register/Memory by CL o [001 w] [mod 000 rim] 
Register/Memory by Immediate C [OOOw] [mod 000 r/m]t 

ROR Rotate Right m u u u u u u 
Register/Memory by 1 o [OOOW] [mod 001 rim] 
Register/Memory by CL o [001 w] [mod 001 rim] 
Register/Memory by Immediate C [OOOw] [mod 001 r/m]t 

RSDC Restore Segment Register and OF 79 [mod sreg3 rim] u u u u u u u 
Descriptor 

RSLDT Restore LDTR and Descriptor OF 78 [mod 000 rim] u u u u u u u 

RSM Resume from SMM Mode oFAA u u u u u u u 

RSTS Restore TSR and Descriptor OF 70 [mod 000 rim] u u u u u u u 

SAHF Store AH in FLAGS 9E u u u u m m u 

SAL Shift Left Arithmetic m u u u m m u 
Register/Memory by 1 o [OOOw] [mod 100 rim] 
Register/Memory by CL o [001 w] [mod 100 rim] 
Register/Memory by Immediate C [OOOw] [mod 100 r/m]t 

SAR Shift Right Arithmetic m u u u m m m 
Register/Memory by 1 o [OOOw] [mod 111 rim] 
Register/Memory by CL o [001 w] [mod 111 rim] 
Register/Memory by Immediate C [OOOw] [mod 111 r/m]t 

REAL MODE 
CLOCKS 

REG! P C CACHE CACHE 
F F HIT MISS 

u u 
10 
10 
13 13 
13 13 

u m 
2/4 6 
3/5 7 
214 6 

u m 
2/4 6 
3/5 7 
2/4 6 

u u 14 

u u 14 

u u 58 

u u 14 

m m 2 

m m 
2/4 6 
3/5 7 
2/4 6 

m m 
214 6 
3/5 7 
214 5 

PROTECTED 
MODE CLOCKS 

REGI 
CACHE CACHE 

HIT MISS 

10 
10 
26 26 
26 27 

69 72 
69 72 

2/4 6 
3/5 7 
2/4 6 

2/4 6 
3/5 7 
2/4 6 

14 

14 

58 

14 

2 

2/4 6 
3/5 7 
2/4 6 

2/4 6 
3/5 7 
2/4 8 

READ 
MODE 

1 

1 

1 

16 

16 

16 

16 

NOTES 

PROTECTED 
MODE 

2,5,6,7,8 

2 

2 

16 

16 

16 

16 

Q 

~ 
g> 
~ 
CJ) 

§ 
~ 
-< 



-....J 
N 
co 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS REAL MODE PROTECTED 
NOTES 

CLOCKS MODE CLOCKS 

INSTRUCTION OPCODE REG! REGI 0 D I T S Z A P C 
CACHE 

CACHE 
CACHE 

CACHE READ PROTECTED 
F F F F F F F F F 

HIT 
MISS 

HIT 
MISS MODE MODE 

SBB Integer Subtract with Borrow m u u u m m m m m 1 2 
Register to Register 1 [10dw] [11 reg rIm] 1 1 
Register to Memory 1 [100w] [mod reg rIm] 3 5 3 5 
Memory to Register 1 [101 w] [mod reg rIm] 3 5 3 5 
Immediate to Register/Memory 8 [OOsw] [mod 011 r/m]t 1/3 5 1/3 5 
Immediate to Accumulator (short form) 1 [110w]t 1 1 

SCAS Scan String A[111w] m u u u m m m m m 5 5 5 5 1 2 

SETB/SETNAEISETC Set Byte on Below/ u u u u u u u u u 2 
Not Above or EquaVCarry 
To Register/Memory OF 92[mod 000 rIm] 2/2 2 2/2 2 

SETBEISETNA Set Byte on Below or Equal/ u u u u u u u u u 2 
Not Above 
To Register/Memory OF 96 [mod 000 rIm] 2/2 2 2/2 2 

SETEISETZ Set Byte on Equal/Zero Register/ u u u u u u u u u 2 
Memory OF 94 [mod 000 rIm] 212 2 2/2 2 

SETUSETNGE Set Byte on Less/ u u u u u u u u u 2 
Not Greater or Equal 
To Register/Memory OF 9C[mod 000 rIm] 212 2 2/2 2 

SETLEISETNG Set Byte on Less or Equal/ u u u u u u u u u 2 
Not Greater 
To Register/Memory _OF ~E[m_od O~O r~l'Jl] __ _ 2/2 2 2/2 2 

- - - - -- - - - - - - - -_. - - - - - - - -- - - -

t = immediate data + = 8-bit displacement § = 16-bit displacement ~ = 32-bit displacement m = Flag modified u = Flag unchanged 
Notes: 1) Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment 

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum SS limit. 

2) Exception 13 fault will occur if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit 
is violated, an exception 12 occurs. 

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
4) An exception may occur, depending on the value of the operand. 
5) LOCK is asserted during descriptor table accesses. 
6) All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems. 
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur. 
16)AII memory accesses using this instruction are non-cacheable as this instruction uses SMM address space. 

Q 

~ 
~ 
~ 

r 
~ 



--.J 
W o 

s-
(I) 

:::t 
~ 
5-
:J 

~ 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS 

INSTRUCTION OPCODE 
0 D I T S Z 
F F F F F F 

SETNB/SETAEISETNC Set Byte on Not Below/ u u u u u u 
Above or Equal/Not Carry 
To Register/Memory OF 93[mod 000 rim] 

SETNBEISETA Set Byte on Not Below or u u u u u u 
Equal/ Above 
To Register Memory OF 97[mod 000 rim] 

SETNEISETNZ Set Byte on Not Equal/ u u u u u u 
Not Zero 
To Register/Memory OF 95[mod 000 rim] 

SETNUSETGE Set Byte on Not Less/ u u u u u u 
Greater or Equal 
To Register/Memory OF 9D [mod 000 rim] 

SETNLElSETG Set Byte on Not Less or u u u u u u 
Equal/Greater 
To Register/Memory OF 9F[mod 000 rim] 

SETNO Set Byte on Not Overflow u u u u u u 
To Register/Memory OF 91 [mod 000 rim] 

SETNP/SETPO Set Byte on Not Parity/ u u u u u u 
Parity Odd 
To Register/Memory OF 9S[mod 000 rim] 

SETNS Set Byte on Not Sign u u u u u u 
To Register/Memory OF 99[mod 000 rim] 

SETO Set Byte on Overflow u u u u u u 
To Register/Memory OF 90[mod 000 rim] 

SETP/SETPE Set Byte on Parity/Parity Even u u u u u u 
To Register/Memory OF 9A[mod 000 rim] 

SETS Set Byte on Sign u u u u u u 
To Register/Memory OF 98[mod 000 rim] 

SGDT Store GOT Register u u u u u u 
To Register/Memory OF 01 [mod 00 rim] 

SHL Shift Left Logical m u u u m m 
Register/Memory by 1 D [OOOw] [mod 100 rim] 
Register/Memory by CL D [001w] [mod 100 rim] 
Register/memory by Immediate ~[OOOw] [m~d190 r/mlt _ 

'--- '---- - -- - ----

REAL MODE 
CLOCKS 

REG! A P C CACHE 
CACHE 

F F F 
HIT 

MISS 

u u u 

212 2 

u u u 

2/2 2 

u u u 

2/2 2 

u u u 

2/2 2 

u u u 

2/2 2 

u u u 
2/2 2 

u u u 

2/2 2 

u u u 
2/2 2 

u u u 
2/2 2 

u u u 
2/2 2 

u u u 
212 2 

u u u 
6 6 

u m m 
214 6 
3/5 7 
214 6 

- -- - .- - --

PROTECTED 
MODE CLOCKS 

REGI 
CACHE 

CACHE 

HIT MISS 

2/2 2 

2/2 2 

212 2 

2/2 2 

2/2 2 

2/2 2 

2/2 2 

2/2 2 

212 2 

2/2 2 

212 2 

6 6 

214 6 
3/5 7 
2/4 6 

READ 
MODE 

1,10 

1 

NOTES 

PROTECTED 
MODE 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 I 

~ 
~ 
~ 

r 
~ 



"-.I 

~ 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS REAL MODE PROTECTED 
NOTES 

CLOCKS MODE CLOCKS 

INSTRUCTION OPCODE REG! REGI 0 0 I T S Z A P C 
CACHE 

CACHE 
CACHE 

CACHE READ PROTECTED 
F F F F F F F F F 

HIT 
MISS 

HIT 
MISS MODE MODE 

SHLD Shift Left Double u u u u m m u m m 
Register/memory by Immediate OF A4[mod reg r/m]t 1/3 5 1/3 5 
Register/Memory by CL OF A5[mod reg rim] 3/5 7 3/5 7 

SHR Shift Right Logical m u u u m m u m m 1 2 
Register/Memory by 1 D [OOOw] [mod 101 rim] 214 6 2/4 6 
Register/Memory by CL D [001w] [mod 101 rim] 3/5 7 3/5 7 

I Register/Memory by Immediate C [OOOw] [mod 101 r/m]t 214 5 2/4 6 

SHRD Shift Right Double u u u u m m u m m 
i 

Register/Memory by Immediate OF AC[mod reg r/m]t 1/3 5 1/3 5 
Register/Memory by CL OF AD [mod reg rim] 3/5 7 3/5 7 I 

SlOT Store JOT Register u u u u u u u u u 1,10 2 
To Register/Memory OF 01 [mod 001 rim] 6 6 6 6 

SLOT Store LOT Register u u u u u u u u u 3 2 
To Register/Memory OF OO[mod 000 rim] 1/2 2 

SMSW Store Machine Status Word OF 01 [mod 100 rim] u u u u u u u u u 1/2 2 1/2 2 1,10 2,11 

STC Set Carry Flag F9 u u u u u u u u 1 1 1 

STD Set Direction Flag FD u 1 u u u u u u u 1 1 

STI Set Interrupt Flag FB u u 1 u u u u u u 7 7 9 

t = immediate data :f: = 8-bit displacement § = 16-bit displacement ~ = 32-bit displacement m = Flag modified u = Flag unchanged 
Notes: 1) Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment 

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum SS limit. 

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit 
is violated, an exception 12 occurs. 

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
4) An exception may occur, depending on the value of the operand. 
5) LOCK is asserted during descriptor table accesses. 
6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems. 
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur. 
9) An exception 13 fault occurs if CPL is greater than IOPL. 
10)This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode. 
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
16)AII memory accesses using this instruction are non-cacheable as this instruction uses SMM address space. 

Q o 
~ 
~ 
~ 

I 
-< 



~ w 
I\) 

s-
CI) 

~ 
§ 

~ 
W ..... 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS 

INSTRUCTION OPCODE 
0 D I T S Z 
F F F F F F 

STOS Store String A [101w] u u u u u u 

STR Store Task Register u u u u u u 
To Register/Memory OF OO[mod 001 rIm] 

SUB Integer Subtract m u u u m m 
Register to Register 2 [10dw] [11 reg rIm] 
Register to memory 2 [100w] [mod reg rIm] 
Memory to Register 2 [101w] [mod reg rIm] 
Immediate to Register/Memory 8 [OOsw] [mod 101 r/m]t 
Immediate to Accumulator (short form) 2 [110w]t 

SVDC Save Segment Register and Descriptor OF 78 [mod sreg3 rIm] u u u u u u 

SVLDT Save LDTR and Descriptor OF 7 A [mod 000 rIm] u u u u u u 

SVTS Save TSR and Descriptor OF 7C [mod 000 rIm] u u u u u u 

TEST Test Bits 0 u u u m m 
Register/Memory and Register 8 [01 Ow] [mod reg rIm] 
Immediate Data and Register/Memory F [011w] [mod 000 r/m]t 
Immediate Data and Accumulator A [100w]t 

VERR Verify Read Access u u u u u m 
To Register/Memory OF OO[mod 100 rIm] 

VERW Verify Write Access u u u u u m 
To Register/Memory OF OO[mod 101 rIm] 

WAIT Wait Until FPU Not Busy 98 u u u u u u 

WBINVD Write-Back and Invalidate Cache OF 09 u u u u u u 

XADD Exchange and Add m u u u m m 
Register1, Register2 OFC[OOOw] [11 reg2 reg 1 ] 
Memory, Register OFC[OOOw] [mod reg rIm] 

XCHG Exchange u u u u u u 
Register/Memory with Register 8 [011w] [mod reg rIm] 
Register with Accumulator 9 [0 reg] 

A 
F 

u 

u 

m 

u 

u 

u 

u 

u 

u 

u 

u 

m 

u 

REAL MODE 
CLOCKS 

REG! P C CACHE CACHE 
F F HIT MISS 

u u 3 3 

u u 

m m 
1 
3 5 
3 5 

1/3 5 
1 

u u 22 

u u 22 

u u 22 

m 0 
1/3 5 
1/3 5 
1 

u u 

u u 

u u 5 5 

u u 4 

m m 
3 
6 6 

u u 
3/4 4 
3 

PROTECTED 
MODE CLOCKS 

REG! 
CACHE CACHE 

HIT MISS 

3 3 

1/2 2 

1 
3 5 
3 5 

1/3 5 
1 

22 

22 

22 

1/3 5 
1/3 5 
1 

9/10 12 

9/10 12 

5 5 

4 

3 
6 6 

3/4 4 
3 

READ 
MODE 

1 

3 

1 

16 

16 

16 

1 

3 

3 

1,15 

NOTES 

PROTECTED 
MODE 

2 

2 

2 

16 

16 

16 

2 

2,5,6,12 

2,5,6,12 

2,15 

() 
0-
~ 
~ 
§ ..... 
C/) 

§ 
~ 
-< 



'-.I 
W w 

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued) 

FLAGS REAL MODE PROTECTED 
NOTES 

CLOCKS MODE CLOCKS 

INSTRUCTION OPCODE REG! REG! 0 D I T S Z A P C 
CACHE 

CACHE 
CACHE 

CACHE READ PROTECTED 
F F F F F F F F F 

HIT 
MISS 

HIT 
MISS MODE MODE 

XLAT Translate Byte 07 u u u u u u u u u 3 5 3 5 2 

XOR Boolean Exclusive OR 0 u u u m m u m 0 1 2 
Register to Register 3 [OOdw] [11 reg rim] 1 1 
Register to Memory 3 [OOOw] [mod reg rim] 3 5 3 5 
Memory to Register 3 [001 w] [mod reg rim] 3 5 3 5 
Immediate to RegisterlMemory 8 [OOsw] [mod 110 r/m]t 1/3 5 1/3 5 
Immediate to Accumulator (short form) 3 [010w]t 1 1 

t = immediate data + = 8-bit displacement § = 16-bit displacement ~ = 32-bit displacement m = Flag modified u = Flag unchanged 
Notes: 1) Exception 13 fault (general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment 

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum SS limit. ' 

2) Exception 13 fault will occur if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit 
is violated, an exception 12 occurs. 

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
4) An exception may occur, depending on the value of the operand. 
5) LOCK is asserted during descriptor table accesses. __ 
6) All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems. 
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur. 
9) An exception 13 fault occurs if CPL is greater than IOPL. 
10)This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode. 
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared. 
13)For segment load operations, the CPL, RPL, and OPL must agree witht he privolege rules to avoid an exception 13 fault. The segment's descriptor must indicate "presenf' or 

exception 11 (OS, OS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, and exception 12 occurs. 
14)The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL = o. 
15)LOCK is automatically asserted, regardless of the presence or absence of the LOCK prefix. 
16)AII memory accesses using this instruction are non-cacheable as this instruction uses SMM address space. 

Q 
c 
~ 
~ 
§ -
I 
-< 



Clock Count Summary 

7-34 Instruction Set 



Appendix A 

TI486 SMM Pro rammer's Guide 

This programmers guide provides detailed information, including example 
code listings, macros, and instructions, pertinent to the TI486 system 
management modes (SMM). 

Topic Page 

A.1 ; SUM Overview A;"2 U 

'A2 ~!~i~~~~f'} 
A~3 ~na~'Jng:$f4M .. 

: "::. ::" :f::.~:·\t:·:: \ ~~ "::.:: Y;·':;;:· ~: ... {." 
"; ~ .. " "; , .... :; ". , - .. 

..;. .; ..... ~'.;,; :'··~~::A~3. 

·:~···A~~:; 

, .. - "' 

A;"15 

;···A .. 22 

A.4·. In~trUjti()n'~uT~a~ 

A~5~~fHarl~.I~;r.~~~TPI~ .. ; ... ; •.. ; .• ; .... ;.; ...... ;.; ..•... 
A.S,· . ;·"(esth'9I:[)el:)",ggi"g .. $MM··.Co~e> 

A~9 

A.i· .tI4~f5.j;J~~~rl\ll~t)a~.e~~~tF~f~~.; ." " ... ; ...... " ............. '. .... ..... ........ ;;............. ....... ...:~~9 
" , ".": "... :::: ';'. ; .. ". :. " .. ":.~:' '. ".':' ". " .... ". ':' .". -...... " :'. . . ' .... ' ::: .... : .. :'. . '. . :'. "': : ". :. '.', ". . ' .. " ," ;, ... ".".". . ~ .. ;" ••• :'.' :::: "." .. : ' .. " ": .. ' ".'" ..... : ," ":.". ',.: .'":". :. ": .. ': :. ". :".': ,".' .'.' : ." ":. : .. :. " .. "." .. :' ".:' : :: ': :. :. -: ': .. ". "'. : .:: ': ': ":.:. '.: :: :. ".:. : .::;. :::.::.: .: ... :.- .: ..... : : 

A.S LQat1ingSIVlMl\llemorv··.VVitha"SMqPI'Qg~rofrQm· .. Maifl.MeI1lQ.;y .A .. ~. 
A.9Detectioll.ofTI486CPU A.;;31··· 

. '.. , ... ..: .. : .":: ... : :::.: .".. -. ... -:-:.: ....... ~: ....... : '. ' 

A .• 10.·· ... t1et~bil~n.··~f·.~I\JI~ .•. ··¢ap~blev'.:s~6i1 

~;11SJ.tLJI=$!IJ~~Ol1Ipar~~~.·.···.·.·.\i··· ,. 
~.111· $MM~~U~IJ)It+S:SMIMAC.INe·· 
A.13· TJ486DlCIEahdSMM 

.A.14 •.... ~QrT~tofDat~ •• Qs'~BY .•• ~vDt!R~t1C .. lrI~tr~~tiotis 

.~.~1.5.· ... · .. Alt'ri~.g~ ... L1 ..... ~Qde •.. ~il1lit$ . 
A~16' SMft/I •. Addendum. 

~ .: :.: ......... : ....... , . 

·;Ai.33 

.A.i.S7 

A .. SQ 

·······.···A42 

, ... '.' 

···A"47 

A-1 



SMMOveNiew 

A.1 SMM Overview 

A.1.1 Introduction 

This programmer's guide has been written to aid programmers in the creation 
of software using the TI486 system management mode (SMM). SMM is 
currently implemented in both the TI486SLC/E and the TI486DLC/E, and the 
3-volt versions of each (TI486xLC/E-V) microprocessor. 

For an introduction to SMM and additional information, refer to the Tl48632-8it 
Microprocessor Reference Guide. Section A.13 describes the differences 
between the TI486SLC/E and the TI486DLC/E with SMM. Section A.16 
contains important information concerning SMM programming. 

A.1.2 SMM Implementation 

A-2 

SMM operation in the TI486 microprocessors is similar to related operations 
performed by the AMD and Intel microprocessors. Each of these three 
microprocessors switches into real mode upon entry into the SMM interrupt 
handler. Each manufacturer's CPU has unique SMM code locations. The TI 
CPU has a programmable location and size for the SMM memory region. Each 
of the manufacturer's processors saves the programmer-visible register 
contents upon entry and also saves the non-programmer visible register 
contents. The TI486 CPU automatically saves the minimal register 
information, reducing the entry and exit clock count to 140. This compares with 
Intel's clock overhead for entry and exit of 804 clocks and AMD's minimum of 
694 clocks. (See Section A.11 for a comparison of SMM overhead.) 

The TI486 SMM implementation provides unique instructions that save 
additional segment registers as required by the programmer, in addition to the 
x86 MOV instruction that saves the general purpose registers. 

Although all three manufacturer's CPUs provide liD trapping, the TI486 SMM 
simplifies identification of liD type and instruction restarting. The TI486 SMM 
process is unique in its ability to permit software relocation and sizing of the 
SMM address region. This flexibility facilitates run time changes to SMM 
support. This software flexibility allows an operating system or debugger to 
change, modify, or disable the SMM code. 

Tl486 SMM Programmer's Guide 



SMM Implementation 

A.2 SMM Implementation 

The following sections provide an overview of TI486 SMM coding and 
information helpful in developing SMM code. 

A.2.1 Hardware Background 

A.2.1.1 SMM Pins 

The SMI and SMADS pins are used to implement SMM. The bidirectional SMI 
pin is used by the chip set to signal the CPU that an SMI has occurred. While 
the CPU is in the process of servicing an SMM interrupt, the same pin is used 
to send a signal to the chip set to indicate that the SMM processing is 
occurring. The SMADS address strobe is generated instead of the ADS 
address strobe while executing or accessing data in SMM address space. 

A.2.1.2 SMI Pin Timing 

In order to enter TI486 SMM mode, the SMI pin must be asserted for at least 
4 CLK2 periods. Once the CPU recognizes the active SMI input, the CPU 
drives the SMI input low for the duration of the SMI routine. The SMI routine 
is terminated with an SMI specific resume RSM instruction. When the RSM 
instruction is executed, the CPU drives the SMI pin high for 2 CLK2 periods. 
The SMI pin bidirectional design: 

1) Prohibits more than one SMI interrupt from becoming active. 

2) Provides feedback to the chip-set/core logic that an SMI is in process. 

3) Provides compatibility with other SMM hardware interfaces. 

A.2.1.3 Address Strobes 

The TI486 CPU has two address strobes, ADS and SMADS. ADS is the 
address strobe used during normal operations. The SMADS address strobe 
replaces ADS during SMM operations when data is written, read, or fetched 
in the SMM defined region. Using a separate address strobe increases chip 
set compatibility and control. 

During an SMM interrupt routine, control can be transferred to main memory 
via a JMP, CALL, Jcc instruction or execution of a software interrupt (INT). 
Execution in main memory will cause ADS to be generated for code and data 
outside of the defined SMM address region. (It is assumed, but not required, 
that the chip set ultimately translates SMADS and a particular address to some 
other address.) To access code in main memory that overlaps the SMM 
address space, the MMAC bit (CCR1, bit 3) must be set. This allows ADS 
strobes to be generated for MOV instructions that overlap main memory while 
in SMM mode. It is not possible to execute code in main memory that overlaps 
SMM space while in the SMM mode. 

SMADS can also be generated for memory reads/writes and code fetches 
within the defined SMM region when the SMAC bit (CCR1 , bit 2) is set while 
in normal mode. The generation of SMADS would permit a program in normal 

A-3 



SMM Implementation 

space to jump into SMM code space. Care should be taken to be in real mode 
before the jump occurs into SMM space. A routine should be followed to 
initialize used registers to their real-mode state. The RSM instruction should 
not be used after jumping into SMM space unless return information is first 
written into the SMM context area before the RSM instruction is executed. 

A.2.1.4 Chip-Set READY 

The TI486 CPU has one READY input. Chip sets that implement the dual 
READY lines can OR the two ready lines together for the single READY. The 
AMD implementation of SMM provides for two READY lines from the chip set, 
one for SMM space (SREADY) and one for the normal READY. 

A.2.2 SMM Software Considerations 

A.2.2.1 SMM Handler Entry State 

A-4 

At the start of the SMM routine, before control is transferred to code executing 
at SMM base, some of the CPU state is saved at the end of SMM memory. This 
is one area where the TI486 CPU SMM state is unique. The CPU saves the 
minimum CPU state information necessary for an interrupt handler to execute 
and return to the interrupted context. The information is saved at the top of the 
defined SMM region (starting at SMM base + size - 30h). Of the typically used 
program registers only the CS, EFLAGS, CRO, and DR7 are saved upon entry. 
This requires that data accesses use a CS segment override to save other 
registers and access data. To use any other register the SMM programmer 
must first save the contents using the SVDC instruction for segment registers 
or MOV operations for general purpose registers (See SMM Instructions, 
Section A.12). It is possible to save all the CPU registers as needed. 

Unique to the TI486 CPU is the saving of the previous IP, before the SMI, and 
the next IP to be executed after exiting the SMI handler. Upon execution of an 
RSM instruction, control is returned to the "next IP". The value of the "next IP" 
may need to be modified for restarting OUTSxllNSx instructions; this 
modification is a simple move (MOV) of the "previous IP" value to the "next IP" 
location. Execution is then returned to the I/O instruction, rather than the 
instruction after the next I/O instruction. (The restarting of I/O instructions may 
also require modifications to the ESI, ECX, and EDI depending on the 
instruction. See Section A.S for an example.) 

Figure A-1 and Table A-1 describe the SMM memory space header. The P 
and I bits indicate whether a INSxlOUTSx and REP prefix were being 
executed. IN/OUT instructions will be restarted by changing "NEXT IP" and 
leaving the SMI handler. 

The only area in the SMM header that the programmer should consider 
altering is the "NEXT IP". Altering any other header values can have 
unpredictable results. 

The EFLAGS, CRO, and DR7 registers are set to the reset values upon entry 
to the SMI handler. This has implications for setting break points using the 
debug registers. Break points can not be set prior to the SMI using debug 

TI486 SMM Programmer's Guide 



SMM Implementation 

registers. The INT 3 debug code trap technique can be used, however, prior 
to the occurrence of the 8MI in 8MM space. Once the 8MI has occurred and 
the debugger has control in 8MM space, the debug registers can be used for 
the remaining 8MI execution. 

Figure A-1. SMM Memory Space Header 

31 o 
Top of SMM ---. 
Address Space 

31 

DR7 

EFLAGS 

CRO 

Current IP 

Next IP 
16 15 0 

Reserved I CS Selector 

CS Descriptor (Bits 63-32) 

31 CS qescriptor (Bits 31-0) 2 1 0 

Reserved Ipl'l 
Reserved 

Reserved 

ESI or EDI 

Table A-1. SMM Memory Space Header 

NAME DESCRIPTION 

DR? The contents of the debug register? 

EFLAGS The contents of the extended flag register. 

CRO The contents of the control register O. 

-4h 

-8h 

-Ch 

-10h 

-14h 

-18h 

-1Ch 

-20h 

-24h 

-28h 

-2Ch 

-30h 

Current IP The address of the instruction executed prior to servicing the SMI interrupt. 

Next IP The address of the next instruction that will be executed after exiting the SMM mode. 

CS Selector Code segment register selector for the current code segment. 

CS Descriptor Code register descriptor for the current code segment. 

P REP INSxlOUTSx Indicator 
P = 1 if current instruction has a REP prefix 
P = 0 if current instruction does not have REP prefix 

I IN, INSx, OUT, or OUTSx Indicator 
I = 1 if current instruction performed is an I/O WRITE 
I = 0 if current instruction performed is an I/O READ 

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat an REP OUTSx or 
REP INSx instruction when one of the I/O cycles caused an SMI trap 

Note: INSx = INS, INSB, INSW, or INSD instruction. 

Note: OUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction. 

A.2.2.2 Exiting the SMI Handler 

SIZE 

4 Bytes 

4 Bytes 

4 Bytes 

4 Bytes 

4 Bytes 

2 Bytes 

8 Bytes 

1 Bit 

1 Bit 

4 Bytes 

When the R8M instruction is executed at the end of the 8MI handler the IP is 
loaded from the top of the 8MM at the address (8MMbase +8MMsize - 14h) 
called 8M,-NEXTIP. This permits the instruction to be restarted. The values 

A-5 



SMM Implementation 

of ECX, ESI, and EDI, prior to the execution of the instruction that was 
interrupted by SMI, can be restored from information in the header that 
pertains to the INx and OUTx instructions. The only registers that are restored 
from the 8MM header are CS, N EXT_I P, EFLAGS, CRO, and DR7. 

A.2.2.3 Addressing SMM Code With the Same Address as Main Memory 

MMAC = shl 3 

mov aI, 

out 22h, 

in aI, 

mov ah, 

mov aI, 

out 22h, 

mov aI, 

or aI, 

out 23h, 

To access main memory overlapping the SMM space (Le., generate ADS from 
memory MOV instructions rather than SMADS) set the MMAC bit in CCR1. 
The following code will enable MMAC: 

Oclh iselect CCRl 

al 

23h iget CCRl current value 

al isave it 

Oclh 

al 

ah 

MMAC iset MMAC 

al 

iNow all data memory access will use ADS#, Code fetches will continue to 
be done i 

with SMADS# from SMM memory 

iDisable MMAC 

mov aI, Oclh iselect CCRl 

out 22h, al 

mov aI, ah iget old value of CCRl 

out 23h, al iand restore it 

A.2.2.4 Miscellaneous Execution Details 

A-6 

1) Execution of SMM code begins at the start of SMM space. This is the value 
entered onto the base portion of AAR4. The C8 base will be set to the 
ARR4 SMM base, and EIP will be equal to O. 

2) The A20 input to the CPU is ignored for all SMM space accesses. These 
are all accesses which use 8MADS. 

3) All SMM instructions can be executed outside the SMM defined space, 
provided that 8MAC bit is set in CCR1 or if execution of an SMI handler 
is in progress. (An 8MI handler is "in progress" during the time the CPU 
is driving the SMI pin low.) 

4) Setting the MMAC bit permits the reading and writing of main memory 
addresses that overlaps 8MM memory while an 8MI is in progress. 

5) It is not possible to execute code in main memory that overlaps SMM 
memory addresses. 

Tl486 SMM Programmer's Guide 



SMM Implementation 

6) NMI is the only enabled interrupt at the entry to the SMI handler. It is 
advised that system designers provide latches to disable NMI while the 
8MI is in progress. 

7) The SMI handler can execute calls, jumps, and other changes of flow and 
will generate software interrupts and faults using the current definition of 
the lOT. (Note that on entry to the 8MI handler the lOT is not set to the reset 
real mode value of 0:0.) 

8) The SMI handler can go from real mode to protected mode and vice-versa. 
Almost anything that can be done normally may be done during the SMI 
service routine. 

9) Data from 8MM memory is not cached. 

10) If the location of SMM space is beyond 1 MByte, the value in CS will 
truncate the segment above 16 bits. This would prohibit doing calls or 
INTS from real mode without restoring the 32-bit features of the 486 
because of the incorrect return address on the stack. 

11) An undefined opcode exception will typically be generated when 
conditions are not correct to permit the execution of SMM instructions. 

12) To execute outside the SMM region (BIOS, debugger, etc.) the C8 limit 
must be changed after entry to the SMI handler. The limit of the CS 
segment register is set to the size of the SMM region in AAR4. This means 
that EIP cannot become larger than the SMM region size. Since jumps in 
real mode do not change the C8 limit, this has implications for software 
interrupts and jumps out of 8MM space. (See Section A.15 for details and 
options. 

13) Segment registers other than the CS have the limits set in the 
non-programmer-visible portion that were present before the SM!. To 
avoid a protection error due to limit or other violation, the RSOC SMM 
instruction should be used to change the limit of the register in use. (See 
Section A.14.) 

A-7 



Enabling SMM 

A.3 Enabling SMM 

Register/Bit 

SMI 

SM4 

SM_loc 

SM_size 

The enabling and setup of SMM in the TI486 CPU is done by setting all 4 of 
the SMM registers/bits to: 

Locationt Value Description 

CCR1 bit 1 1 Enable SMI pin 

CCR1 bit 7 1 Make ARR4 as SMM space 

ARR4 bits 12-4 Start SMM region SMM base address 

ARR bits 3-0 ~ 4KB and ~ 16MB SMM size 

t See subsection 2.3.2.4 for further information on CCR1 and ARR4. 

Setup example 

SMM Location 

SMM Size 

mov ai, 

out 22h, 

in ah, 

or ah, 

mov ai, 

out 22h, 

out 23h, 

mov ai, 

out 22h, 

mov ai, 

out 23h, 

mov ai, 

out 22h, 

mov ai, 

out 23h, 

A-a 

OC8000H 

8KB 

Oc1h 

al 

23h 

082h 

Oc1h 

al 

ah 

Oceh 

al 

Och 

al 

Ocfh 

al 

082h 

al 

index to CCR1 

select CCR1 register 

read current CCR1 value 

enable SM! and SM4 region 

index to CCR1 

select CCR1 register 

write new value to CCR1 

index ARR4 SMM base address bits <23-16> 

select 

set ARR4 SMM base address upper bits 

write value 

index ARR4 SMM base address bits <15-12> 

and 4 bits for SMM size 

set SMM lower address bits and SMM size 

write value 

Tl486 SMM Programmer's Guide 



Instruction Summary 

A.4 Instruction Summary 

These instructions are valid only when CPL is 0 and either: 

1} The 8MAC bit is set and a valid SMM region is defined (the SMM size 
defined to be greater that O), and the 8MI bit of CCR1 is set and the 8M4 
bit of CCR1 is set. 

2} The 8MI pin is driven low by the CPU. (The CPU drives 8Mllow after it 
recognizes the SMI interrupt, and continues to drive it low until an R8M is 
executed.) 

The CPU will always generate an undefined opcode fault when the above 
conditions are not met and one of the 8MM instructions are executed. 

The MACROs used in the descriptions below are excerpted from the file 
smimac.inc, Section A.12. 

Instruction Opcode Parameters Clocks 

rsdc OF 79 [mod sreg3 rim] sreg3, mem80 14 

rsldt OF 7B [mod 000 rim] mem80 14 

rsm OFAA <none> 58 

rsts OF 7D [mod 000 rim] mem80 14 

svdc OF78 [mod sreg3 rim] mem80, sreg3 22 

svldt OF 7 A [mod 000 rim] mem80 22 

svts OF7C mem80 22 

A-9 



Instruction Summary 

A.4.1 Restore Register and Descriptor 

Instruction Opcode Parameters 

rsdc OF 79 [mod sreg3 rim] sreg3, mem80 

Description: 

Load the information at the mem80 into the sreg register and its associated descripton. 

Example: 

_ds equ 3 

$rsdc MACRO 

db Ofh, 79h 

ENDM 

MACRO 

db 02eh 

ENDM 

rsdc ds, cs: [590h] 

cs_over cs segment override 

Clocks 

14 

$rsdc opcode for restore register 

db (06 or (_ds SHL 3) build [mod sreg3 rim] 

dw 0590h displacement 

A.4.2 Restore LDTR and Descriptor 

Instruction Opcode Parameters Clocks 

rsldt OF 78 [mod 000 rim] mem80 

Description: 

Load the local descriptor table register with the selector and the associated descriptor at the 
mem80 parameter 

Example: 

$rsldt MACRO 

db Ofh, 7bh 

ENDM 

MACRO 

db 02eh 

ENDM 

rsldt cs: [590] 

$rsldt 

db 6 

dw 590h 

build [mod sreg3 rim] 

displacement 

14 

A-10 TI486 SMM Programmer's Guide 



Instruction Summary 

A.4.3 Resume Normal Mode 

Instruction Opcode Parameters Clocks 

rsm OFAA <none> 58 

Description: 

R8M restores the state of the CPU from the 8MM header at the top of the 8MM space and exit 8MM 
mode. This is the last instruction to be executed in 8MI handler. This instruction can be executed in 
either 8M memory or main memory. 

Example: 

$rsm MACRO 

db Ofh, Oaah 

ENDM 

mov ax, word ptr cs: [520 ] restore 

mov bx, word ptr cs: [522] some 

mov cx, word ptr cs: [524] registers 

rsm last instruction in 

8MI handler 

A-11 



Instruction Summary 

A.4.4 Restore TSR and Descriptor 

Instruction Opcode Parameters 

rsts OF 7D [mod 000 rim] mem80 

Description: 

This instruction restores the task state register in the CPU from the mem80 location. 

Example: 

$rsts MACRO 

db Ofh, 7dh 

ENDM 

db 02eh 

ENDM 

rsts cs: [600h] 

Clocks 

14 

$rsts 

db 6 

build [mod sreg3 rim], 6 

displacement 

DS: [d16] 

A.4.S Save Register and Descriptor 

Instruction Opcode Parameters Clocks 

svdc OF 78 [mod sreg3 rim] mem80, sreg3 22 

Description: 

This instruction saves the 80486 segment register into the 80-bit mem80 location. 

Example: 

$svdc MACRO 

db Ofh, 78h 

ENDM 

MACRO 

db 02eh 

ENDM 

EQU 3 

svdc cs: [680h] , DS 

$svdc 

db (06 or (_DS SHL 3)) 

dw 680h 

build [mod sreg3 rim] 

displacement 

Note: The non-program mer-visible information of the segment register is also saved. See Section A.14 
for a description of the storage format. 

A-12 TI486 SMM Programmer's Guide 



Instruction Summary 

A.4.6 Save LDTR and Descriptor 

Instruction Opcode Parameters 

svldt OF 7A [mod 000 rim] memBO 

Description: 

This instruction stores local descriptor table register to the BO-bit memBO location. 

Example: 

$svldt MACRO 

db Ofh, 7ah 

ENDM 

MACRO 

db 02eh 

ENDM 

svldt cs: [700h] 

$svldt 

db 6 

dw 700h 

build [mod sreg3 rim] 

displacement 

Note: The non-programmer-visible information about the register is also saved. 

Clocks 

22 

A-13 



Instruction Summary 

A.4.7 Save TS and Descriptor 

Instruction Opcode Parameters 

svts OF7C mem80 

Description: 

Save the task register and associated descriptor into the 80-bit mem80 location. 

Example: 

$svts MACRO 

db Ofh, 7ch 

ENDM 

cs_over MACRO 

db 02eh 

ENDM 

svts cs: [780h] 

$svts 

db 6 

dw 780h 

build [mod sreg3 rim] 

displacement 

Note: The non-programmer-visible information about the segment register is also saved. 

Clocks 

22 

A-14 TI486 SMM Programmer's Guide 



8MI Handler Example 

A.5 SMI Handler Example 

This section contains fragments of typical coding found within TI486 8MI 
handlers. 

5MBASE= OC8000H 
SMSIZE= 2 
SMEND = SMSIZE SHL (SMSIZE-l) 

INCLUDE smimac.inc 
.MODEL SMALL 
.386P 
. CODE 

; base address of SMM space 
; SMM space size is 8k bytes 
;works for most cases 

;see Section A.12 

COMMENT 1\ 

Execution begins here in real mode, with CS defined at the 5MBASE and EXP=O 
It. 

public smi_start 
smi_start: 

jmp $skipdata 

EAXsavedd ? 

? 

;skip data area, makes it easy for 
; assembler 

DSsavedt 
DStempb 
$skipdata: 

Offh, Offh, O,O,O,92h,8fh,O,O,O ;4gig present segment 

COMMENT It. 

mov dword ptr cs: [EAXsave],eax; save EAX 
svdc 
rsdc 

cs:, [DSsave], ds 
ds,cs:, [DStemp] 

mov ax, cs 
mov ds, ax 

save DS 
; setDS 

We need to extend the limits of DS so that we don't get a fault when we use 
it to access low memory. Xt may be not present with a limit of 0, and these 
values won't be changed when we set it using a real mode load. 

A-15 



8MI Handler Example 

;Determine Why Are We In The SMI Handler 

COMMENT A 

Chip set/Core logic unique instructions will follow. The chip set will be 
used to deter.mine what caused the SMM interrupt to occur. The B~OS could also 
"jump" to this point in the SMM region. 
A 

; 

; Decision Tree: 

;a) If timer, go to timer_expired 

;b) If port i/o occurred to a trapped location, go to port_io_caused 

;c) If the cpu was turned off, go to cpu_turned_off 

;timer_expired; 

COMMENT A 

A chip set timer has expired. Unique code would appear to deter.mine which 
timer. Depending on the purpose of the timer the handler could; 

1) Reduce the clock frequency 
2) Execute a halt instruction and enter suspend mode 
3) Turn current off to the CPU 
4) Turn off a peripheral device 
5) Reset the timer and increment a counter 

reduce_clock: 

COMMENT A 

To go to a lower CPU current requirement the CPU clock can be reduced. The 
CPU clock can be reduced from its current setting to a lower value. That 
value could be zero. Since the CPU is a static device and will maintain the 
state of all its registers in the absence of a clock input there is no state 
saving requirement. ~t is assumed that by writing to the chip set it will 
reduce or zero the clock. ~f the clock is stopped then the next instruction 
to be executed will be one in this SM~ handler immediately following the 
point where the chip set turned the clock off. 

jmp end_timer: 

A-16 Tl486 8MM Programmer's Guide 



8MI Handler Example 

execute_halt: 

COMMENT It. 

To go to a lower CPU current consumption the SML handler will now execute a 
HALT instruction. The HALT instruction will put the CPU into a low power 
sleep mode until a non-SMI interrupt occurs. Interrupt(s) will need to be 
enabled to per.mit the interrupt to wake-up the CPU. A common choice would be 
the keyboard interrupt. A flag would need to be set in main memory to 
indicate that the SMI handler should be jumped into or SMI created, to per.mit 
it to restore the state/context of the CPU, prior to the halt for servicing 
the interrupt. The interrupt in low memory must point to the BIOS handler for 
the return to be made to the SMI handler. An interrupt handler in SMM space 
could also service the interrupt rather than a BIOS routine. 
It. 

i [ Alternatively the chip set could pull the SUSP# CPU pin low to enter 

i [ suspend mode. The chip set would have to pull SUSP# high to exit ] 

i [ suspend mode. ] 

:To be sure that BIOS will get control on intr 
icheck for keyboard interrupt vector pointing to BIOS 
iif not BIOS, save existing and set to BIOS vector or jump to 

can_not_halt 
iSet a flag in main memory indicating SMI HALT executed 
ilf an SMM space interrupt handler is used then IDTR and/or the vector 
iwould need to be updated to the SMM space routine. 
mov ax, 0 
mov ds, ax 
mov [485], 1 

point to bottom segment 
i ds segment is now in main memory 
i set BIOS flag in main memory 
i<set cpu state for bios int> 

halt i last instruction executed here 
i<the chip set could remove the clock to go to suspend mode now> 
nop 

iCPU state will not be correct at interrupt 

A-17 



8MI Handler Example 

set bit in main memory to indicate to the BIOS that SMI handler 
turned power off to CPU and CPU state should be restored by 
the SMI handler 

mov ax, 0 
mov ds, ax 
mov [485], 1 

point to bottom segment 
ds segment is now in main memory 
set BIOS flag in memory 

(save entire CPU state. See Restore CPU state label) 
(Chip set specific instructions to be executed to remove power to 
cpu) 
jmp end_timer 

Chip set specific instructions to turn off peripheral and enable 
chip set I/O trapping of the devices io range or enable timer 
to allow polling of peripheral requirements. 

jmp end_timer 

reset_timer: 

A-18 

Chip set specific instructions to be executed to reset a timer and 
possibly increment a counter to maintain number to time out occurred 
for a particular device. 

j mp end_timer 

jmp done 

TI486 8MM Programmer's Guide 



8MI Handler Example 

COMMENT A 

The TX486 SMM support for X/O being interrupted provides information that 
per.mits the restarting of the X/O instruction without investigating the 
actual code where the instruction is located. 

Many things can be done at this point beyond turning on a powered down 
peripheral. The CPU clock could now be speeded up in anticipation of heavy 
CPU processing requirements, timers could be reset, etc. 

i** Restart the interrupted instruction 

mov 
mov 
mov 

itest for REP instruction 
bt 

adc 
test 

jnz 

COMMENT A 

eax,dword ptr [SMEND+SMI_PREVIOUSIP] 
dword ptr [SMEND+SMI_NEXTIP],eax 
al,byte ptr cs: [SMEND+SMI_BITS] 

al,2 

ecx,O 
al,l shl 1 

irep instruction? 
i (result to Carry) 
iif so, increment ecx 
itest bit 1 to see 
iif an OUTS or INS 

** A port read (INx) instruction caused the chip set to generate an 
SMI instruction. Restore EDI saved by SMI microcode. 

mov 
jmp 

out_instr: 

COMMENT A 

edi, dword ptr cs: [SMEND+SMI_EDIESI] 
commonl 

** A port write (OUTx) instruction caused the chip set to generate an 
SMI instruction. Restore ESI saved by SMI microcode. 

mov 
commonl: 

jmp done 

esi, dword ptr cs: [SMEND+SMI_EDIESI] 

A-19 



8MI Handler Example 

COMMENT A 

This handler turned off the current to the cpu. Before it did, the handler 
set a bit in main memory or battery backed-up CMOS indicating that this event 
happened. At reset, BIOS will deter.mine that this was the case and "jump" 
into the SMI handler. SMI handler will then restore the entire state/context 
of the cpu prior to current being removed. The bit in main memory would also 
be cleared indicating that the SMI handler had removed current. 

mov ax, a 
mov ds, ax 
mov [485], a 
mov ax, cs 
mov ds, ax 

{Restore Complete CPU State} 

eax 
ebx 
ecx 
edx 
edi 
esi 
ebp 
esp 
cs iuse 
ds iuse 
ss iuse 
es iuse 
fs iuse 
gs iuse 
ldtr 
gdtr 
idtr 
tr 
eflags 
cra 
cr2 
cr3 
dra 
drl 
dr2 
dr3 
dr6 
dr7 
ccra 
ccrl 
ccr2 

rsdc 
rsdc 
rsdc 
rsdc 
rsdc 
rsdc 

point to bottom segment 
ds segment is now in main memory 
clear BIOS flag in main memory 
restore ds to SMM area 

Save the configuration registers with index C3h through FFh 

A-20 TI486 8MM Programmer's Guide 



return 

for future TI486 product compatibility 

arrl 
arr2 
arr3 
arr4 

jmp done 

done: 
mov 
rsdc 
rsm 

eax, cs: [EAXsave] 
ds,cs:, [DSsave] 

8MI Handler Example 

A-21 



Testing/Debugging SMM Code 

A.6 Testing/Debugging SMM Code 

There are several ways to debug SMM code: 

1) Emulation Technology TI486SLC/E pod with an HP 16500/550 Logic 
Analyzer. 

• Supports selective trace capture 

• SMM instruction disassembly 

2) Periscope - Software only 

• Full screen debugging 

• TSR 

• Single stepping and break points 

3) DOS debug - Software only 

• Single stepping and break points 

4) Other selected logic analyzers 

A.6.1 Software Only Debugging 

A-22 

It is possible to write an SMI handler and debug it as a TSR. You will need to 
use a debugger that can set break points at any address in memory. Use the 
following code sequence as a model of how to build your SMI handler as a 
TSR. This code sequence also contains a section that loads the CS 
non-program mer-visible section to change the limit. This is required so that a 
protection error will not occur whenever code is executed outside of the SMM 
region. It is assumed that ADS and SMADS from the CPU are ORed together 
by the chip set or external logic. Also, the chip set should support 
programmable SMM locations. 

This code will mark the SMI handler address in the user interrupt INT 66 
location (O:198h). This is done so that the programmer can determine the 
location of the SMM region and set break pOints. 

The debugger will only be able to set a code break point using INT 3 outside 
of the SMI handler. This is because the debug control register DR7 is set to 
the reset value upon entry to the SMI handler. This causes break conditions 
in DRO-3 to be disabled. Debug registers can be used if set after entry to the 
8MI handler and DRO-3 are saved. 

Using a TSR to debug SMI has some limitations: 

• Other code could overwrite the region. 

• Jumps or calls must be to known offsets. 

Tl486 SMM Programmer's Guide 



Testing/Debugging SMM Code 

What follows is an example that can be used for the first step in debugging of 
8MI code: 

.MODEL SMALL 

. STACK 

.386P 
INCLUDE smimac.inc 

COMMENT A 

12h 
1Ah 

iread/write 
; execute/readable 

This is an example of SMI code which can exist below the 1 MByte boundary. It 
must be before the 1 MByte boundary because it uses the value in the cs 
register in order to form fixups based on its location as well as for the 
jump to return to real mode . 

. CODE 

smi_handler: 
jmp 
db 

$over 
100 dup (?) 

stacksmilabel 

iour smi handler gdt 

gdt dq a 

ADDR a 
LIMT 100000h 
g_big = $ - gdt 

(LIMT-l and Offffh) 
(ADDR and Offffh) 
((ADDR SHR 16) and Offh) 

ipass data area for assembler 

;null 

dw 
dw 
db 
db 
db 
db 

RD_WR OR (0 SHL 5) OR (1 SHL 7) 

g_code 

ADDR = a 

(((LIMT-1) SHR 16) AND Of h) OR (0 SHL 6) OR (1 SHL 7) 
((ADDR SHR 24) and Offh) 

$-gdt 

LIMT = 100000h 
dw (LIMT-1 and Offffh) 
dw (ADDR and Offffh) 
db ((ADDR SHR 16) and Offh) 
db EX_RD OR (0 SHL 5) OR (1 SHL 7) 
db (((LIMT-l) SHR 16) AND Of h) OR (0 SHL 6) OR (1 SHL 7) 
db ((ADDR SHR 24) and Offh) 

A-23 



Testing/Debugging SMM Code 

GDTSIZE = ($-gdt) 

csareadb 
dsareadb 
ssareadb 
esareadb 
fsareadb 
gsareadb 
tsareadb 

gdtsave df? 
gdtnewdw 

eaxsave dd? 
ebxsave dd? 
ecxsave dd? 
edxsave dd? 
espsave dd? 

$over: 
COMMENT It. 

10 
10 
10 
10 
10 
10 
10 

GDTSIZE - 1 
dd ? 

dup (?) 
dup ( ?) 
dup (?) 
dup ( ?) 
dup (?) 
dup (?) 
dup (?) 

; address 

The debugger may want to use ss,ds,es,fs,gs. The limits may be shortened if 
the program had been running in protected mode. We therefore extend the 
limits of these registers before we enable the debugger. 

svdc cs: , [ssarea] , ss ;save the stack pointer 
svdc cs: , [dsarea] , ds 
svdc cs:, [esarea],es 
svdc cs: , [fsarea] , fs 
svdc cs: , [gsarea] , gs 
mov cs: [eaxsave],eax 
mov cs: [ebxsave],ebx 
mov cs: [espsave],esp 

COMMENT It. 

Clear VM flag in Eflags (See Section A.16). 
It. 

rsdc ss, cs: , [gdt+g_big] 
mov esp, offset smistack 
mov ax, cs 
mov ss, ax 
mov eax, 0 

push eax 
mov eax, cs 
push eax, offset @F 

push eax 
iretd 

@@: 

A-24 TI486 SMM Programmer's Guide 



sgdt fword ptr cl: [gdtsave] 
COMMENT A 

fixup code for smi base 
A 

ipatch gdt 
mov 
shl 
mov 
add 
mov 

eax,cs 
eax,4 
ebx,offset gdt 
ebx,eax 
dword ptr [gdtnew+2],ebx 

ipatch far jump into protected mode 
mov ebx,offset $nextO 
add ebx, eax 
mov dword ptr cs: [patchi] , ebx 

ipatch far jump back to real mode 
mov word ptr cs: [patch2],cs 

start here 

COMMENT A 

Testing/Debugging SMM Code 

isegment of us here 

ioffset to here 

idefine gdt base 

extend the limits for the code segment 
A 

db 66h 
19dt fword ptr [gdtnew] 
mov eax,crO 
or al,i 
mov crO,eax 
db 66h 
db Oeah 

patchidd ? 

dw g_code 

$nextO: mov 
mov ss,bx 
mov ds,bx 
mov es,bx 
mov fs,bx 
mov gs,bx 
xor al,i 
mov crO,eax 
db Oeah 
dw offset $nexti 

patch2 dw ? 

$nexti: 

COMMENT A 

define a valid stack 
A 

mov ax, cs 
mov ss, ax 
mov esp, offset stacksmi 

iextend the limits of the data segments 

iback to real mode 

ifar jump to set cs and writable bit 

A-25 



Testing/Debugging SMM Code 

COMMENT A 

****** Insert user specific smi code here & set breakpoints. ****** 
A 

db 66h 
19dt fword ptr cs:[gdtsave] 
rsdc ss,cs:, [ssarea] 
rsdc ds, cs: , [dsarea] 
rsdc es,cs:, [esarea] 
rsdc fs,cs:,f[sarea] 
rsdc gs,cs:, [gsarea] 
mov eax,dword ptr cs:[eaxsave] 
mov ebx,dword ptr cs: [ebxsave] 
mov esp,dword ptr cs:[espsave] 
rsm 

smi_handlere: 
SMI_SIZE = offset smi_handlere - offset smi_handler 
Install PROC 

i***** Enable SMM Region ****** 
Don't enable SMI yet because we're 

mov al, Oclh 
not ready for it. 
iselect CCRl 

out 22h,al 
in al, 23h ireadCCRl 
or al, 80h ienable SMADS# and SMM region (not SMI) 
mov ah, al 
mov al, Oclh iselect CCRl 
out 22h, al 
mov al, ah 
out 23h, al iwrite new CCRl value 

mov eax, offset endresident 
mov ebx,cs 
shl ebx, 4 
add eax,ebx 
add eax,Offfh 
and eax,NOT Offfh ieax start of smi space 
mov edx,eax 
push edx 

A-26 TI486 SMM Programmer's Guide 



Testing/Debugging SMM Code 

i***************************************************** *********************** 

i * Load SMI address and size into ARR4 

i****** 
.****** , 
i****** Config Reg 
i****** Address 

mov aI, 
out 22h, 
mov eax, 
shr eax, 
out 23h, 

mov aI, 
out 22h, 
mov eax, 
shr eax, 
out 23h, 

mov aI, 
out 22h, 
mov eax, 
shr eax, 
and aI, 
or aI, 
out 23h, 

Ocdh 
al 
edx 
24 
al 

Oceh 
al 
edx 
16 
al 

Ocfh 
al 
edx 
8 

OfOh 
1 
al 

cd ce cf 

31-28 27-24, 23-20 19-16, 15-12 <size> 
31-28 27-24, 23-20 19-16, 15-12 11-8, 7-4 3-0 

iregion 41st word 

i get smi handler address 
;move address <31-24> to al 

[7-0]=>smbase[31-24] 

;region 4 2nd word 

get smi handler address 
move address <23-16> to al 
[7-0]=>smbase[23-16] 

;region 4 3rd word 

get smi handler address 
move address <15-12> to al 
clear bottom nibble 
select 4KB SMI size 
and [3-0]=>smsize 

i***************************************************** *********************** 
pop edx 
mov eax,edx 
add 
mov 
shl 
sub 
she 
push 
shr 
mov 
mov 
mov 
mov 
int 
pop 

edx,1000h 
ebx,es 
ebx,4 
edx,ebx 
edx,4 
dx 
eax,4 
es,ax 
ds,ax 
dx,O 
ax, 2566h 
21h 
dx 

istart of smi area 

;reserve 4k for smi handler 
;current psp 

;bytes to reserve 
;paragraphs to reserve in dx 

;paragraph of smi handler 
isave for later 

;always starts at 0 
;int 66h vector at 0:198h 

;tsr address 

A-27 



Testing/Debugging SMM Code 

imove the code to the smi_area 
mov al, Oc1h 
out 22h, al 
in al, 23h 
mov ah, al 
mov al, Oc1h 
out 22h, al 
mov al, ah 
or al, 04h 
out 23h,al 

RELOCATE = 0 
IF RELOCATE 

sub esi,esi 
sub edi,edi 
mov cx, cs 
mov ds,cx 
mov ecx, (SMI_SIZE+3)/4 

iselect CCR1 

;read CCR1 
;save old value 
iselect CCR1 

iget old value 
ienable SMAC 
ibe clean on ah for later 

rep movs dword ptr es: [edi],dword ptr ds: [esi] 
ELSE 
;put the far jump at the start of the smi_area to above code 

mov byte ptr es: [0] , Oeah 
mov word ptr ex: [1] ,offset smi_handler 
mov word ptr ex: [3] ,cs 

ENDIF 
irestore smi state and enable SMI 

mov al, Oc1h 
out 22h, al 
mov 
or 
out 

COMMENT A 

al, ah 
al, 02h 
23h,al 

SMJ:s may happen at any time now. 

;dx = offset in this segment to tsr 
mov ax, 3100h 
int 21h 

Install ENDP 
i----end of resident code----
endresident label byte 

db 2000h dup (?) 

END Install 

iselect CCRl 

iget old value 
iset SMI bit to enable SMI 
ibe clean on ah for later 

Request function 31h, error code=O 
Terminate-and-Stay-Resident 

i***************************************************** *********************** 

A-28 Tl486 SMM Programmer's Guide 



TI486 Power Management Features 

A.7 TI486 Power Management Features 

The TI486 CPU provides several methods and levels of power management. 
The fully static design, suspend mode, system management mode (SMM), 
and 3.3-volt operation can be used to achieve optimum CPU and system 
power management. The following table summarizes the various power 
management options for the T1486: 

Option Power Savings 

Reduced Clock Frequency ICC = (12 x fCLK2 (MHz)) + 150 rnA @ 5 V 

Lower Supply Voltage (V CC) ICC = (130 x VCC) - 256 rnA @ 25 MHz 

Suspend Mode 20/0 of typical ICC 

Remove Clock 250/0 of typical ICC 

Suspend Mode and Remove Clock 400~A 

Remove Power O~A 

A.7.1 Reducing the Clock Frequency 

The TI486 CPU is a fully static design meaning that the input clock frequency 
can be reduced or stopped without a loss of internal CPU data or state. The 
system designer can make decisions to reduce the clock by utilizing the SMM 
capabilities to support Advanced Power Management (APM) software API in 
concert with chip set capabilities. When the clock is removed then restarted, 
CPU execution will begin with the instruction where the clock was removed. 

A.7.2 Suspend Mode 

The TI486 CPU supports suspend mode operation that can be entered either 
through software or hardware initiation. 

Software initiates suspend mode through execution of a HALT instruction. 
After HALT is executed, the CPU enters suspend mode and asserts suspend 
acknowledge (SUSPA), if enabled. 

Hardware initiates suspend mode by using the SUSP and SUSPA pins of the 
T1486. When SUSP is asserted the CPU completes any pending instructions 
and bus cycles and then enters suspend mode. Once in suspend mode, the 
SUSPA pin is asserted by the CPU. 

A-29 



Loading SMM Memory 

A.8 Loading SMM Memory With an SMM Program from Main Memory 

SMI 1 

SMAC 1 

MMAC 1 

SM4 1 

mov 
out 
in 
mov 
mov 
out 
mov 
or 
out 
mov 
mov 
mov 
mov 
mov 
mov 
rep 
mov 
out 
in 
mov 
mov 
out 
mov 
and 
out 

A-30 

To load SMM memory with an 8MI interrupt handler it is important that the SMI 
interrupt does not occur before the handler is ready to accept it. This can be 
done by not having SMAC = 0 and SM I = 1 (in the CCR 1 register) before the 
8MI handler is installed. It is necessary to set SM4 = 1 and ARR4 with 
appropriate values before using the SMM memory. To load SMM memory with 
a program it is first necessary to enable SMM with the exception of the SMI pin 
by setting SMAC. (See Section A.3.) The SMM region is then mapped over 
main memory at the same location. This is done by the generation of SMADS 
for memory access for the SMI. A REP MOV instruction can then be used to 
transfer the program to the location. Then, turn off SMAC to activate potential 
8Mls. 

shl 1 

shl 2 
shl 3 
shl 7 

al, Oclh 
22h, al 
al, 23h 
ah,al 
al, Oclh 
22h, al 
al, ah 
al, SMI or SMACi 
23h, al 
ax, SMI_SEGMENT 
es, ax 

index to CCrl 
select CCRl register 
read current CCRl value 

index to CCRl 
select CCRl register 

write new value to CCRl 

edi, 0 istart of the SMM area 
esi, offset SMI_ROUTINE 
ds,seg SMI_ROUTINE 
ecx, (SMI_ROUTINE_LENGTH+3)/4 
movs dword ptr es: [edi],dword ptr ds: [esi] 
al,Oclh index to CCRl 
22h, al select CCRl register 
al, 23h 
ah,al 
al, Oclh 
22h, al 
al, ah 
al,NOT SMAC 
23h, al 

read current CCRl value 

index to CCRl 
select CCRl register 

idisable SMAC, enable SMI# 
i write new value to CCRl 

TI486 SMM Programmer's Guide 



Detection of Tl486 CPU 

A.9 Detection of TI486 CPU 

COMMENT A 

Name detect.ASM 

Purpose: * Detect the presence of a TI486 micprocessor. 
* The undefined flags on a TI486 remain unchanged 

* 

following a divide. The Intel part will modify some of the 
undefined flags. In this example the ZF flag should change. 

pseudocode 
save flags before 
load dividend and divisor 
do unsigned divide 
save flags after 
cmp flags before with flags after 
return a 1 if flags are unchanged 

( TI486 part detected ) 

Called by: Main(); 

Inputs: none 

Returns: ax = 0 if Intel is detected 
ax = 1 if TI486 is detected 

A 

DOSSEG 
. MODEL SMALL 
. DATA 

flags_before 
flags_after 
dividend 
divisor 
result 

. DATA? 

. CODE 

PUBLIC 

.286 

push bp 
mov bp,sp 

pusha 
pushf 

dw 08D5H 

DW 
DW 
DW 
DW 
DW 

PROC 

iselect Intel-convention segment ordering 
iselect small model (nearcode and data) 
iTC-compatible initialized data segment 

imask to isolate the undefined bits 
imasks all but OF,SF,ZF,AF,PF,CF flags 
? flags before div 
? flags after div 
OFFFFh dividend 
4h divisor 
0 results of flags compare 

O=different (not TI486) 
l=same (TI486) 

iTC-compatible uninitialized data segment 
iTC-compatible code segment 

ifunction (near-callable in small model) 

"C" calling convention 

save processor state 

A-31 



Detection of Tl486 CPU 

set flags to a known value 
mov 
cmp 

ax,O 
aX,ax 

pushf 
pop 
mov 

i load flags into ax 
ax 
ds: [word ptr flags_before] ,ax isave flags to mem 

do a div instruction so that the signature of the undefined flags 
can be observed 

mov ax, dividend 
mov dx, 0 
mov bx, divisor 
div bx 

pushf iload flags into ax 
pop ax 
mov flags_after, ax isave flags to mem 

recall flags_before and clear unwanted bits 
mov ax, flags_mask 
and ax, flags_before 

recall flags_after and clear unwanted bits 
mov bx, flags_mask 
and bx, flags_after 

compare the signature of the undefined bits before and after 
cmp aX,bx 
jnz Diff 
mov result, 1 

jmp Done 

set if flag bits are unchanged 
TI486 part found 

Diff: mov result, 0 clear if flag bits are changed 
TI486 part not found 

Done: 

A-32 

popf 
popa 

mov ax, result 

pop bp 
ret 

END 

irestore processor state 

return value in ax 

"e" calling convention 

ENDP 

iend detect.ASM module 

TI486 SMM Programmer's Guide 



Detection of SMM Capable Version 

A.10 Detection of SMM Capable Version 

At powerup/reset the EDX register will contain part type and stepping 
information. 

EDX Stepping SMM Available 

0410h A No 

0411h B Yes 

The following technique can be used to identify the stepping of a TI486 CPU 
after the reset information in EDX is lost. The method uses two functions: the 
mixed C and assembler function isb() and assembly language illegal opcode 
handler interrupt handler ilLop. The function isb() will return a 1 to indicate 
when a B step part is present, 0 otherwise. The function isbO installs an illegal 
opcode handler, ilLop. Then isbO sets up conditions to execute an SMM 
segment save instruction, SVDC. If an A step part is present the illegal opcode 
handler will be invoked. The ilLop process will then modify the return address 
on the stack to return to the instruction after the SVDC instruction. The storage 
location used by the SVDC instruction is then checked to see if it changed. If 
it has changed the part being tested is a B step part. This detection technique 
must be run at protection ring O. 

1/**************************************************** *********************** 
1/********************************* isb.c *********************************** 
1/**************************************************** *********************** 
#define TRUE 1 
#defube FALSE 0 

int old_offi 
int old_segi 
extern ill_op()i 
1/**************************************************** *********************** 
1/ 
1/ 
1/ 

Function: isb () 
Returns: 1 if TI486 B step 

o if TI486 A step 
1/**************************************************** *********************** 

isb () 
{ 

int if b_stepi 
char mem [ 10] i 

for (i=Oi i<10i mem[i++]=Oi 

asm { 

.386 
extrn _ill_op:near 

A-33 



Detection of SMM Capable Version 

A-34 

i********************************************* 
i****** get present illegal opcode handler 
i********************************************* 
push es 
push bx 
mov ax, 3506h 
int 21h 
mov old_seg, es 
mov old_off, bx 
pop bx 
pop es 

i********************************************* 
i****** install new illegal opcode handler 
i********************************************* 
push dx 
push bx 
push ds 
mov ax, 2506h 
mov dx, OFFSET - ill _op 
mov bx, cs 
mov ds, bx 
int 21h 
pop ds 
pop bx 
pop dx 

char save_ccrl, save_cf, save _ce, save_cdi 

i***************************************************** ******** 
i****** Set SM4 and SMAC and SMI bit to allow SMM instructions 
i***************************************************** ******** 
mov aI, Oclh 
out 22h, al 
in aI, 23h 
mov byte ptr [save_ccrl, al 
or aI, 86h 
mov ah, al 
mov aI, Oclh 
out 22h, al 
mov aI, ah 
out 23h, al 

i********************************************* 
i****** Setup non-zero SMM region 
i********************************************* 
mov aI, Ocfh 
out 22h, al 
in aI, 23h 
mov byte ptr [save_cf] , al 
mov aI, Ocfh 
out 22h, al 
mov aI, 1 
out 23h, al 

Tl486 SMM Programmer's Guide 



Detection of SMM Capable Version 

i********************************************* 
i****** Set SMM region to the top of memory to 
i****** avoid overlapping with this program 
i********************************************* 
mov aI, Ocdh 
out 22h, al 
in aI, 23h 
mov byte ptr [save_cd] , al 
mov aI, Oceh 
out 22h, al 
in aI, 23h 
mov byte ptr [save_ce] , al 
mov aI, Ocdh 
out 22h, al 
mov aI, Offh 
out 23h, al 
mov aI, Oceh 
out 22h, al 
mov aI, Oh 
out 23h, al 
mov aI, Ocfh 
out 22h, al 
in aI, 23h 
and aI, Ofh 
out 23h, al 

i****** flush prefetch after changing configuration 
jmp $+2 

i********************************************* 
i****** Execute SMM instruction svdc 
i********************************************* 
isvdc word ptr mem, ds 

Word ptr mem == ss: [bx] 
lea bx, mem 
db 36h Ofh 78h lfh 

i********************************************* 
i****** restore configuration registers 
i********************************************* 
mov aI, Ocdh 
out 22h, al 
mov aI, byte ptr save_cd 
out 23h, al 
mov aI, Oceh 
out 22h, al 
mov aI, byte ptr save_ce 
out 23h, al 
mov aI, Ocfh 
out 22h, al 
mov al byte ptr save_cf 
out 23h, al 
mov aI, Oclh 
out 22h, al 
mov al byte ptr save_ccrl 
out 23h, al 

A-3S 



Detection of SMM Capable Version 

.********************************************* , 
;****** restore old illegal opcode handler 
;********************************************* 
push dx 
push bx 
push ds 
mov ax, 2506h 
mov dx, OFFSET old_off 
mov bx, OFFSET old_seg 
mov ds, bx 
int 21h 
pop ds 
pop bx 
pop dx 

) II isb asm region 

for (i=O, b_step=FALSE; i<10; ++i) 
if (mem [i ] ! = 0) 

{ 

b_step = TRUE; 
break; 
} 

return (b_step); 
II isb () 

;********************** bad_op.asm *********************** 
public _ill_op 

assumecs:_TEXT 

- TEXT segment byte public 'CODE' 

- ill _op proc near 
pop ax 
add ax, 5 
push ax 
iret 

- ill _op endp 
TEXT ends -

end 

A-36 TI486 SMM Programmer's Guide 



SMM Feature Comparison 

A.11 SMM Feature Comparison 

Feature TI486 386SL AMD 
SMM Entry Point Base of SMM Space 38000h Reset Vector 

CPU State Save Area Top of SMM Space 3FFA8h-3FFFFh 60000h-600CAh 
and 60100h-60126h 

SMM Space Programmable 38000/30000h Entire Address Space 
(4Kto 32M (32 Kl64 K) 

Data Auto-Saved 8 32-bit registers 44 32-bit registers 53 32-bit registers 
1 16-bit register 9 16-bit registers 8 16-bit registers 
1 4-bit register 

SMM Memory Restric- None 8-bit on 8 MHz XD Bus Non-pipelined 
tions No dynamic bus-sizing 

Normal Mode SMM Yes Yes No 
Memory Access 

Hardware Pins 2 NA - Must use 82360 4 

Incremental CPU State Yes' No No 
Save Instructions 

I/O Trapping Yes Yes Yes 

SMI Input Maskin g Yes Yes No 

A-37 



SMM Instruction Macros 

A.12 SMM Instruction Macros - SMIMAC.lNC 

A 

COMMENT A 

COMMENT" 

SMM Macro Implementation, smimac.inc (by Dean C. Wills) 

This Section provides a complex set of macros that generate SMM opcodes 
containing the appropriate mod/rm bytes. For explicit SMM opcode definition, 
basic macros that define the opcode byte alone are provided with a '$' prefix 
to distinguish them from the other macros. 

The complex macros require that the labels they access correspond to the 
segment specified or the macros will be inoperative. Segment overrides must 
by passed to the macro as an argument. If an address size override is used, 
a final argument of'1' must be passed to the macro. Segment and address size 
overrides must be presented explicitly to prevent the assembler from 
generating them automatically and breaking the macros. Examples of these 
macros are provided in the file smitest.asm. 

Basic macros which allow you to create your own mod/r.m bytes 
A 

cs_over MACRO 
db 2eh 
ENDM 

$svdc MACRO 
db Ofh,78h 
ENDM 

$rsdc MACRO 
db Ofh,79h 
ENDM 

$svldt MACRO 
db Ofh,7Ah 
ENDM 

$rsldt MACRO 
db Ofh,7Bh 
ENDM 

$svts MACRO 
db Ofh,7Ch 
ENDM 

$rsts MACRO 
db Ofh,7Dh 
ENDM 

$rsm MACRO 
db Ofh,AAh 
ENDM 

A-38 TI486 SMM Programmer's Guide 



COMMENT A 

Complex macros which gererate mod/r.m automatically 
A 

svdc 

rsdc 

svldt 

rsldt 

svts 

rsts 

rsm 

MACRO 
domac 
ENDM 
MACRO 
domac 
ENDM 
MACRO 
domac 
ENDM 
MACRO 
domac 
ENDM 
MACRO 
domac 
ENDM 
MACRO 
domac 
ENDM 
MACRO 
db 
ENDM 

segover,addr,reg,adover 
segover,addr,reg,adover,78h 

segover,addr,adover 
segover,addr,reg,adover,79h 

segover,addr,adover 
segover,addr,es,adover,7ah 

segover,addr,adover 
segover,addr,es,adover,7bh 

segover,addr,adover 
segover,addr,es,adover,7ch 

segover,addr,adover 
segover,addr,es,adover,7dh 

ofh,Oaah 

COMMENT A 

Sub-Macro used by the above macro 
A 

domac MACRO 
local 

segover,addr,reg,adover,op 
placel,place2,count 
= 0 count 

ifnb <adover> 
count=count+l 

endif 
if (count eq 0) 

SMM Instruction Macros 

nop ;we're expanding the opcode one byte 
endif 
placel = $ 

;pull off the proper prefix byte count 
mov word ptr segover addr,reg 
org placel+count 
mov word ptr segover addr,reg 
place 2 = $ 

;patch the opcode 
org placel+(count*2)-1 
db OFh,op 
org place2 

ENDM 

A-39 



SMM Instruction Macros 

COMMENT A 

Offset Definition for access into SMY space 
A 

SMI_SAVE STRUC 
$EDIESI DD ? 

$RES3 DD ? 

$RES2 DD ? 

$BITS DD ? 

$CSDES DQ ? 

$CSSEL DW ? 

$RESl DW ? 

$NEXTIP DD ? 

$PREVIOUSIP DD ? 

$CRO DD ? 

$EFLAGS DD ? 

$DR7 DD ? 

SMI_SAVE ENDS 

SMI_EDIESI EQU ($EDIESI -
SMI_RES3 EQU ($RES3 -
SMI_RES2 EQU ($RES2 -
SMI_BITS EQU ($BITS -
SMI_CSDES EQU ($CSDES -
SMI_CSSEL EQU ($CSSEL -
SMI_RESl EQU ($RESl -
SMI_NEXTIP EQU ($NEXTIP -
SMI_PREVIOUSIP EQU ($PREVIOUSIP -
SMI_CRO EQU ($CRO -
SMI_EFLAGS EQU ($EFLAGS -
SMI_DR7 EQU ($DR7 -

A-40 

SIZE SMI_SAVE) 
SIZE SMI_SAVE) 
SIZE SMI_SAVE) 
SIZE SMI_SAVE) 
SIZE SMI_SAVE) 
SIZE SMI_SAVE) 
SIZE SMI_SAVE) 
SIZE SMI_SAVE) 
SIZE SMI_SAVE) 
SIZE SMI_SAVE) 
SIZE SMI_SAVE) 
SIZE SMI_SAVE) 

TI486 SMM Programmer's Guide 



SMM Instruction Macros 

SMM Instruction macro example: TEST.ASM 

. MODEL SMALL 

.386 
COM:M:ENT 1\ 

SM:M: Macro Examples 

by Dean C. Wills 

include smimac.inc 

. DATA 

public hello, there i so they'll be easy to find in map file. 

there 

. CODE 

db 

svdc 

rsdc 

rsdc 
svdc 

svdc 

svdc 

svldt 

rsldt 
rsts 

svts 

svldt 

10 dup (?) 

cs: ,hello,ds 
ds,cs:,hello 

gs, cs : , hello 

cs:, [eax+ebx*2+hello],ds,l 

iaddress size override here 
, [ebx] , fs,l 

iaddress size override 
,there,gs 
cs: ,hello 

cs: , hello 
cs: ,hello 

cs:, [eax+ebx*2+hello],liaddress size override here 
, [ebx],l 

iaddress size override 
,there 

db 10 dup (?) 
svts 

hello 

align 16 ialign so we'll create a more legible 

imap file 

end 

A-41 



TI486DLCIE and SMM 

A.13 TI486DLC/E and SMM 

A-42 

With respect to SMM programming, the TI486DLC/E with SMM differs from the 
TI486SLC/E in the following ways: 

1) The SMM memory region size ranges from 4 KBytes to 4 GBytes. 

2) The SMM memory base location can be from 0 Bytes to 4 GBytes less 4 
KBytes (FFFF EFFFh). 

3) Address region 4 is eight bits wider to support a 4 GByte physical address 
space by adding address lines 24 to 31. The additional lines are indexed 
by OCDh. 

Tl486 SMM Programmer's Guide 



Format of Data Used by SVDCIRSDC Instructions 

A.14 Format of Data Used by SVDC/RSDC Instructions 

The SVDC/REDC instructions should be used to change limits and r/w 
priveleges of segment registers before they are used by SMM code. The 
instructions use a 10 byte area that is comprised of two major portions of the 
segment register value/contents and the non-programmable visible internal 
descriptor that has the following format: 

ISegment Register Descripton <8 bytes> 1 Segment Register Selector <2 bytes> 1 

1) Segment Register Selector: This is the segment if the segment 
register was loaded in real mode or the selector if the segment register was 
loaded in protected mode. In real mode, this is also equal to the Segment 
base divided by 10h and clipped to 16 bits. 

dw ISelector or Segment 

2) Segment Register Descriptor, which is the actual descriptor if the 
segment was loaded in protected mode, or a psuedo-descriptor if the segment 
register was loaded in real mode. 

dw 
dw 
db 
db 
db 
db 

Limit 
Base 
A 

DscTy 

DPL 
P 
AVL 
D 
G 

Limi t [ 15 : a ] 1 

Base [15: 0] 1 

Base [23: 16] 1 

1 P 1 DPL 1 liE 1 DscTy[2:0] 1 A 
IG 1 D 1 r 1 AVL 1 Limit [19:16] 
1 Base [31:24] 1 

Max size 
Starting Address 
Segment Accessed Flag 

E == 1: Executable, 

CIR 
C 1: Conforming 
R -- 1: Readable 

Protection Level 

E == 0: Data, 
EDlw 
ED == 1: Expand Down 
W == 1: Writable 

1 Segment present, a not present 

a 16 bit address and operand size 
a byte, 1 page granular 

A-43 



Format of Data Used by SVDCIRSDC Instructions 

Example: 

iLoad SS descriptor (non-programmer-visible region) values appropriate to 
REAL mode. 

INCLUDE smimac.inc 

value 
real_mode:dw 

svdc 
rsdc 
mov 
mov 

A-44 

dt ? 

Offffh 
dw 0 
db 0 
db 10010011B 
db 0 
db 0 
dw 0 

cs: , [old_val] , ss 
ss, cs:, [real_mode] 
ax, cs 
ds, ax 

location to store old ss 

limit 
base 
base 
92h, data segment 
G=O, D=O, upper limit=O 
high portion of base 
selector/segment 

TI486 SMM Programmer's Guide 



Altering SMM Code Limits 

A.1S Altering SMM Code Limits 

SMMBASE 15000H 

.386P 
jmp 

gdt dq 
G_4gig= $-gdt 

dw 
dw 
db 
db 
db 
db 

dw 
dw 
db 
db 
db 
db 

$-gdt 

GDTSIZE = ($-gdt) 
gdtinit DW 

DD 
$skip: 

mov 
mov 
shr 
mov 
mov 
mov 
add 
mov 
db 
19dt 
mov 
mov 
or 
mov 
db 
dw 
dw 

pmode: 
mov 
db 
dw 
dw 

pmode2: 

Since it is not possible to use the rsdc instruction to modify the 
non-programmer-visible portion of the CS information, a switch into protected 
mode becomes necessary and is demonstrated here. 

$skip 
o 

Offffh 
o 
o 

;null 

;limit 
;linear low 
;linear high 

12h or (0 shl 5) or 
Ofh or 80h 

80h:read/write, pl0 present 
;G=I, high limit = OFh 

o 

Offffh 
o 
o 

;extra high (OcOh for EMC chip) 

; low limit 
;base 
;base 

lah or (0 shl 5) or 80h; 
8fh ;4gig limit 
o ;base 

GDTSIZE-l 
? ;base 

eax, SMMBASE 
word ptr cs: [gdt+g_code+2],axilow base 
eax,16 
byte ptr cl: [gdt+g_code+4],al 
byte ptr cs: [gdt+g_code+7],ahibase 
eax,offset gdt 
eeax,SMMBASE 
dword ptr cs: [gdtinit+2],eax; 
66h 
cs: fword ptr 
eax, crO 
ebx, eax 
eax, 1 
crO, eax 
Oeah 
offset pmode 
g_code 

crO,ebx 
Oeah 

[gdtinit];load gdt 
;get death register 
;save in ebx 
;turn on protected mode 

;go to protected mode 
;load new descriptor with far jump 

;back to real mode 

offset pmode2 
SMMBASE / 10h ;we could patch this run time if desired 

A-45 



Altering SMM Code Limits 

COMMENT A 

now we are back to real mode with the limits set as desired 
A 

«user srni code» 
rsrn 

db 
db 

Ofh 
Oaah 

Setting other registers to the value of the CS register during the SMI 

COMMENT A 

load DS register with the same value as CS register. If our base is beyond 1 
MByte, we can't rely on the CS selector to be accurate so we need to use svdc 
and rsdc. svdc may be used on the CS segment to determine the base and limit. 
We need to set the segment type ourselves. 

A-46 TI486 SMM Programmer's Guide 



A.16 SMM Errata 

rsdc 
mov 
mov 
mov 
mov 
push 
mov 
push 
mov 
push 
iretd 

@@: 

SMM Errata 

The following condition is known to exist: 

If the CPU is in V86 mode and is interrupted by an SMI, the VM bit in the 
EFLAG8 register is not cleared as it should be during real mode operation. Not 
clearing this bit can cause protection errors of valid instructions that are being 
executed in the 8MI handler. This can be resolved by adding the following code 
after saving all used registers: 

ss, 
esp, 
ax, 
ss, 
eax, 
eax 
eax, 
eax 
eax, 
eax 

cs: , [gdt+g_big] 
offset smistack 

cs 
ax 

0 

cs 

offset @F 

change ss limit to 4 GBytes 
create new stack pointer 

new stack segment 

flags after iretd 

segment after iretd 

offset after iretd 

Note: See Section A.6, debugging example, for usage of above code. 

A-47 



A-48 TI486 SMM Programmer's Guide 



Appendix B 

TI486 Cache Flush 

B.1 General Cache Invalidation 
When the FLUSH bit in CCRO is set, the FLUSH input invalidates the entire 
contents of the TI486 internal cache when asserted low. This may be used to 
assure that data stored in the TI486 internal cache does not differ from data 
stored in system memory. Additionally, the cache may be invalidated by 
execution of the 486-compatible invalidate instructions (lNVD,WBINVD) or in 
response to a Hold Acknowledge state if the BARB bit in CCRO is set. The 
method chosen for invalidating the TI486 internal cache may be different, 
depending on whether or not the system has a serial secondary cache. 
Invalidation methods are described for systems with and without a serial 
secondary cache. 

B.1.1 Cache Invalidation for Systems With No Secondary Cache or a Parallel 
Secondary Cache 

When the only cache memory in the system is the TI486 internal cache, or 
when the secondary cache has a parallel (or look-aside) architecture, there 
are two general methods of invalidating the cache and maintaining cache 
coherency. 

Method 1 Invalidate the TI486 every time the CPU enters a HOLD state. By setting the 
BARB bit in CCRO, automatic cache flush occurs when the TI486 is placed in 
a HOLD state. If the chip set does not support hidden refresh, this may lead 
to very frequent cache invalidation, since it will put the CPU in hold during 
DRAM refresh cycles, which occur approximately every 15 J..ls. If the chip set 
supports hidden refresh, this may be an acceptable solution, since the cache 
will only be invalidated during DMA or bus master reads from or writes to 
memory. 

Method 2 Invalidate the TI486 internal cache when a DMA or bus master writes to 
system memory. This requires external hardware to drive the TI486 FLUSH 
input when DMA or bus masters are detected writing to system memory. This 
can be done with the simple circuit shown in Figure B-1. The circuit will 
generate an active-low FLUSH to the CPU every time a HOLD state is entered 
(defined by HLDA = 1) and memory write occurs (defined by MEMW = 0). 

Figure 8-1. FLUSH Logic 

MEMW ~>----_----, 
(from ISA bus) -----v 
HLDA 
(from CPU) D-FLUSH 

_________ (to T1486) 

8-1 



General Cache Invalidation 

8.1.2 Cache Invalidation for Systems With A Serial Secondary Cache 

In a system with a serial (or look-through) secondary cache, flushing the cache 
cannot be accomplished by setting the BARB bit in CCRD because bus 
arbitration occurs between the serial cache controller and the system. This 
allows the CPU to continue executing out of cache. 

The secondary cache controller arbitrates the bus between itself and DMA 
controllers or bus masters and asserts HLDA to the chip set when the bus has 
been granted. Each time a DMA or bus master write is detected, the FLUSH 
pin on the TI486 must be asserted. The circuit shown in Figure B-2 may be 
used. Note that the HLDA signal is now generated by the secondary cache 
controller rather than the CPU. This is the preferred solution since in many 
cases with secondary serial caches, the CPU is not put in HOLD so that it can 
continue execution from cache while DMA or bus master activity is occurring 
on the system bus. 

Figure 8-2. FLUSH Logic 

8-2 

MEMW ~>-_---, 
(from ISA bus)-----V 

D-FLUSH 
HLDA_________ (to T1486) 

(from eC) 

TI486 Cache Flush 



C.1 Introduction 

Appendix C 

TI486 BIOS Modification Guide 

In order to reap full benefit from the TI486 microprocessors, the system BIOS 
should be modified to support the internal registers that control the on-chip 
cache and other extra features. This Appendix serves as a guide to some of 
the changes that need to be considered, and includes sample assembler code 
for controlling the cache. 

There are three main areas of consideration that will be discussed in relation 
to the internal cache registers: 

• Power-on and hard reset 

• Protected-mode to real-mode switching 

• Soft reseVCTRL-ALT-DEL 

In each case, the state of the CPU cache registers and when and how to 
change their values must be known. 

C.1.1 Power-On and Hard Reset 

In these two cases, the system will be booted into the operating system. Due 
to the reset line to the CPU going active, the internal cache will be disabled, 
making the CPU act much like a 386. At some point the cache must be turned 
on before the as is booted. A convenient time to turn on the cache may be 
during final chip set initialization, understanding that the cache should remain 
off during memory sizing. Many BlOSs provide the user an option to disable 
the system cache using the setup screen. As most user cache control options 
are stored in non-volatile RAM, the flag responses, and potentially other flags, 
should be checked before turning the cache on. 

C-1 



Introduction 

C.1.2 Protected-Mode to Real-Mode Switching 

Protected-mode to real-mode switching can be implemented to handle cases 
where the as has been booted, applications have been running, and the CPU 
needs to be reset to switch from protected mode to real mode. The objective 
is to switch CPU modes and jump back into the as or application at some 
saved return address. Because the CPU was reset, the internal cache wll have 
been disabled. Before returning control to the application the cache should be 
turned back on, but only if it was on before the reset occurred, This is 
accomplished by checking the cache enable flag in the non-volatile RAM, to 
see if the user enabled caching from the setup screen. However, if the BIOS 
allows the user to turn off the cache by a hot-key combination (perhaps as part 
of speed switching), other checks may need to be performed to see if the cache 
should be turned back on. 

C.1.3 Soft Reset/CTRL-ALT-DEL 

The objective of a soft reset is to reset the system and reboot the as, similar 
to power-on and hard-reset, but a hard reset of the CPU is not generated. 
Thus, the CPU's internal cache is not disabled (if it was on). This can have a 
negative impact on memory sizing code, such as generating memory size 
mismatch errors. In this situation, disable the internal cache and enable it prior 
to booting, if enabled by the user in setup. 

C.1.4 Turning On and Off the Internal Cache 

C-2 

When the TI486 internal cache is turned on or off, the following guidelines 
should be observed: 

1) Turn off interrupts - CLI 

2) Turn off cache using CRO bit 30 and flush using WBINVD 

3) Manipulate cache registers 

4) Turn on cache and flush using WBINVD 

5) Turn on interrupts - STI 

The above sequence ensures that the process is not interrupted until complete 
and that no cache coherency issues arise when the cach is turned back on. 
When manipulating the cache registers it is a good idea to explicitly set each 
register instead of relying on default values. 

TI486 BIOS Modification Guide 



Introduction 

Some example assembler code for turning the cache off follows: 

CacheOut MACRO index, value 

MOV AL, index 

OUT 22h, AL 

MOV AL, value 

OUT 23h, AL 

ENDM 

CLI 

MOV EAX, CRO 

OR EAX, 40000000h set bit 30, turn off cache 

MOV CRO, EAX 

WBINVD for external cache coherency 

CacheOut OCOh, OOh 

CacheOut OClh, OOh 

CacheOut OC4h, OOh 

CacheOut OC5h, OOh 

CacheOut OC6h, OFh 

CacheOut OC7h, OOh 

CacheOut OC8h, OOh 

CacheOut OC9h, OOh 

CacheOut OCAh, OOh 

CacheOut OCBh, OOh 

CacheOut OCCh, OOh 

CacheOut OCDh, OOh 

CacheOut OCEh, OOh 

CacheOut OCFh, OOh 

WBINVD 

MOV EAX, CRO 

AND EAX, OBFFFFFFFh 

MOV CRO, EAX 

STI 

C-3 



Introduction 

Turning on the TI486 cache can be done by modifying some of the register 
values as shown below. The CacheOut macro definition remains the same: 

CLI 

MOV EAX, CRO 

OR EAX, 40000000h set bit 30, turn off cache 

MOV CRO, EAX 

WBINVD for external cache coherency 

CacheOut OCOh, Olh set NCO bit 

CacheOut OClh, OOh 

CacheOut OC4h, OOh 

CacheOut OC5h, OAh non-cache region at AOOOO 

CacheOut OC6h, 06h that is 128K in size 

CacheOut OC7h, OOh 

CacheOut OC8h, OCh non-cache region at COOOO 

CacheOut OC9h, 07h that is 256K in size 

CacheOut DCAh, OOh 

CacheOut OCBh, OOh 

CacheOut OCCh, OOh 

CacheOut OCDh, OOh 

CacheOut OCEh, OOh 

CacheOut OCFh, OOh 

WBINVD 

MOV EAX, CRO 

AND EAX, OBFFFFFFFh 

MOV eRa, EAX 

STI 

C-4 TI486 BIOS Modification Guide 



Appendix D 

Ordering Information 

0.1 Ordering Information 

0.1.1 Part Number Components 

Components of the TI486 processor part number are diagrammed in the 
following example. 

EXAMPLE: ---.. ~ .. TI 

Texas Instruments Prefix 

Device Name: 
486SLC/E 
486DLC/E 

Supply Voltage: 

Blank = 5 volts 
V = 3 volts 

Speed: 
25=25 MHz 
33 = 33 MHz 
40=40 MHz 

Package Type: 

PAF = Quad Flat Package 
GA = Ceramic Pin Grid Array 

T 
486SLC/E - V 25 - PAF 

I 

D-1 



Ordering Information 

0.1.2 Part Numbers for TI486 Processors Offered 

0-2 

The following table lists the complete part number for each version of the TI486 
processor offered and provides a short description consisting of the supply 
voltage, performance capabilities, and the mechanical package offered for 
each. 

TI486SLC/ElDLC/E Part Numbers 

PART NUMBER DESCRIPTION 

TI486SLC/E-25-PAF 5 V, 25 MHZ, OFP Package 

TI486SLC/E-33-PAF 5 V, 33 MHZ, OFP Package 

TI486SLC/E-V25-PAF 3.3 V, 25 MHZ, OFP Package 

TI4860LC/E-33-GA 5 V, 33 MHz, PGA Package 

TI4860LC/E-40-GA 5 V, 40 MHz, PGA Package 

TI4860LC/E-V25-GA 3.3 V, 25 MHZ, PGA Package 

TI4860LC/E-V33-GA 3.3 V, 33 MHZ, PGA Package 

Ordering Information 



Printed in U.S.A. 

~TEXAS 
INSTRUMENTS 

SRZU005A 


