

TFT-DISPLAY DATASHEET

Sharp Model: LQ123B5LWxx

BRIEF SPEC.:

Main Feature

Wide Screen High resolution

Active Screen Area	291.6 x 109.35 (mm)
Diagonal Format	10.4" 8:3
Resolution	1440 X 540
Colors	8 Bit
Backlight	LED, Black
Brightness	800 cd/ m²
LED Life Time	15,000h (Typ.)
Interface	LVDS
Viewing Angle	80/80 L/R 80/80
Touchscreen	No
Power Supply	3,3V (Typ.)
Module Outline	311.4 x 130.2 x 19.2 (mm)
Operation Temperature	-30 +85 °C
Storage Temperature	-40 +90 °C
Surface Treatment	Anti Glare

HY-LINE Computer Components Vertriebs GmbH Inselkammerstr. 10, 82008 Unterhaching bei München Tel.: +49 89 614 503 40 | Fax: +49 89 614 503 50 computer@hy-line.de | www.hy-line.de/computer

No.	LCY-W-15156A
DATE	Feb.,26 th ,2015

TECHNICAL LITERATURE

FOR

TFT - LCD module

MODEL No. LQ123B5LWxx

The technical literature is subject to change with notice. Please contact Sharp or its representative before designing your product based on this literature.

DISPLAY DEVICE BUSINESS GROUP

SHARP CORPORATION

Copyright © 2015 SHARP All Right Reserved.

RECORDS OF REVISION

Model No. : LQ123B5LWxx

SPEC No.	Date	NO.	PAGE	SUMMARY	NOTE
LCY-W-15156A	2015.02.26	-	-	-	1 st Issue
			••••••		

NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs , such as:

Audio visual equipment
 Car navigation system for aftermarket

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment(i.e., aircraft, trains, automobiles, etc.)
- Traffic signals Gas leakage sensor breakers

• Alarm equipment • Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

Military and space applications
 Nuclear power control equipment

• Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

$\begin{array}{c} \text{TFT-LCD MODULE} \\ LQ123B5LWxx \\ \text{SPECIFICATION} \end{array}$

CONTENTS

1. Applicable TFT-LCD module	p3
2. Summary and Features	p3
3. Construction and Outline	p 3
4. Mechanical specifications	p 3
5. Input terminal	p4
6. Absolute maximum ratings	p7
7. Electrical characteristics	p9
7-1 TFT-LCD panel driving section	p9
7-2 Backlight driving section	p12
8. Timing characteristics	p13
9. Current consumption	p15
10. Input Data Signals and Display Position on the screen	p15
11. Input Signals, Basic Display Color and Gray Scale of Each Color	p16
12. Optical characteristics	p17
13. Display quality	p20
14. Mechanic characteristics	p20
14-1 External appearance	p20
14-2 Panel: Surface Compression Strength	p20
14-3 Input connector performance	p20
15. Handing instructions	p20
15-1 Handing of LED-FPC	p20
15-2 Mounting of module	p20
15-3 Precautions in mounting	p21
15-4 Caution of product design	p22
15-5 Others	p22
16. Packing form	p23
17. Indication of lot number	p23
18. Fab locations	p23
19. About RoHS	p23
20. Disposal of module	p23
21. Reliability test condition	p24
22. Outline Dimensions	p25
23. Packing Form	p26

1. Application

The SHARP Color TFT-LCD module is an active matrix LCD (Liquid Crystal Display) produced by making the most of Sharp's expertise in liquid-crystal and semiconductor technologies. The active device is amorphous silicon TFT (Thin Film Transistor).

2. Summary and Features

- 8bit LVDS interface is adopted in this module.
- Utilizes a panel with a 8:3 aspect ratio, which makes the module suitable for use in wide-screen systems.
- The 12.3 screen produces a high resolution image that is composed of 777,600 pixels elements in a stripe arrangement.
- Graphics and texts can be displayed on a 1440×RGB×540 dots panel with 16,777,216 colors by supplying 24 bit data signals(8 bit/color).
- By adopting an active matrix drive, a picture with high contrast is realized.
- Reduced reflection as a result of low reflection black matrix and an antiglare (AG) polarizer being adopted.
- By COG method, realized a slim, lightweight, and compact module.
- Through the MVA –normally black mode, an image with highly natural color reproduction is realized.
- The LED backlight has excellent performance even at low temperatures.

3. Construction and Outline

The module consists of a TFT-LCD panel, drivers, FPC, PWB, backlight unit, shielding cases.

4. Mechanical specifications

Table 4-1			
Parameter	Specifications	Units	Remarks
Screen size (Diagonal)	31.24[12.3"]	cm	
Active area	$291.6 \text{ (W)} \times 109.35 \text{ (H)}$	mm	
Display format	777,600	pixels	
	$1440 \times \text{RGB} \times 540$	dots	
Dot pitch	0.0675(H) ×0.2025 (V)	mm	
Pixel configuration	R,G,B stripe configuration		
Display mode	MVA Normally black		
Outline dimension	$311.4 \text{ (W)} \times 130.2 \text{(H)} \times 19.2 \text{(D)}$	mm	[Note4-1]
Mass	(720)(MAX)	g	

[Note4-1] Please refer to Fig.4 "Outline Dimensions"

5. Input terminal

Pin arrangement, name and description of the module are shown in Table 5-1, Table 5-2. Table 5-1 : Pin arrangement / Name / Description.

זא ית	0 1 1	Input connector : 04 6288 050 00	
Pin No.	Symbol	Description	Remarks
1	Continuity1	Continuity Test pin	[Note5-1]
2	NC	OPEN	
3	GND		
4	GND		
5	VDD	Power supply [+3.3V]	
6	GND		[n]
7	CLKN	LVDS Clock [Negative polarity]	[Note5-3]
8	CLKP	LVDS Clock [Positive polarity]	[Note5-3]
9	GND		
10	DATA3N	LVDS data [Negative polarity]	[Note5-3]
11	DATA3P	LVDS data [Positive polarity]	[Note5-3]
12	GND		
13	DATA2N	LVDS data [Negative polarity]	[Note5-3]
14	DATA2P	LVDS data [Positive polarity]	[Note5-3]
15	GND		
16	DATA1N	LVDS data [Negative polarity]	[Note5-3]
17	DATA1P	LVDS data [Positive polarity]	[Note5-3]
18	GND		
19	DATAON	LVDS data [Negative polarity]	[Note5-3]
20	DATA0P	LVDS data [Positive polarity]	[Note5-3]
21	GND		
22	UD	Up /Down inversion setting for Gate driver	[Note5-2]/Fig.5-1
23	LR	Left/Right inversion setting for Source driver	[Note5-2]/Fig.5-1
24	VDD	Power supply [+3.3V]	[1:0000 _];::g.0 :
25	VDD	Power supply [+3.3V]	
26	GND		
$\frac{20}{27}$	AVDDM	Power supply for source driver [-6.37 V]	
$\frac{21}{28}$	V13	Power supply voltage of gray image [L0]	
$\frac{28}{29}$	V13 V12	Power supply voltage of gray image [L0]	
$\frac{23}{30}$	V12 V11	Power supply voltage of gray image [L82]	
31	V10	Power supply voltage of gray image [L100] Power supply voltage of gray image [L128]	
$\frac{31}{32}$	V10 V9	Power supply voltage of gray image [L123] Power supply voltage of gray image [L176]	
$\frac{32}{33}$	V9 V8		
		Power supply voltage of gray image [L252]	
34	V7	Power supply voltage of gray image[L255]	
35	V6 V5	Power supply voltage of gray image[L255]	
$\frac{36}{27}$		Power supply voltage of gray image[L252]	
37	V4	Power supply voltage of gray image [L176]	
38	V3	Power supply voltage of gray image [L128]	
39	V2	Power supply voltage of gray image [L80]	
40	V1	Power supply voltage of gray image [L32]	
41	V0	Power supply voltage of gray image [L0]	
42	AVDDP	Power supply for source driver [+6.37V]	
43	GND		
44	VCOM	VCOM voltage input	
45	VCOM	VCOM voltage input	
46	NC	OPEN	
47	VGL	Power supply voltage of Gate driver	
48	NC	OPEN	
49	VGH	Power supply voltage of Gate driver	
50	Continuity2	Continuity Test pin	[Note5-1]

Input connector : 04 6288 050 000 846+ (KYOCERA)

*To obtain the proper relation between LVDS signals and actual digital data signals,

The digital signals should be inputted into the transmitter as described in the next table 5-2.

*The shielding case is connected with GND

[Note 5-1] (Continuity test pin): Pin No.1 and Pin No.50 are connected on our PCB.

[Note 5-2] LR: Selects the output direction of source driver. UD: Selects the output direction of gate driver.

[Note 5-3] : Termination resistor is mounted in LCD module.(100 ohm)

Table 5-2 LVDS Interface block diagram

[Note 5-4] Known compatible transmitter : DS90CR285 (National Semiconductor)

Table 5-3 Data mapping

For 24bit mode

No.	Symbol	function	Remarks
1	GND	GND reference for Pin No.3	
2	N.C.	This is open terminal	
3	RTh	Thermistor	Note) NSS4103F39F(10kΩ)
4	VLC4	LED Power supply input $1(-)$	Cathode side 1
5	VLC3	LED Power supply input $2(-)$	Cathode side 2
6	VLC2	LED Power supply input $3(-)$	Cathode side 3
7	VLC1	LED Power supply input $4(-)$	Cathode side 4
8	N.C.	This is open terminal	
9	VLA	LED Power supply input $(+)$	Anode side
10	VLA	LED Power supply input $(+)$	Anode side

Table 5-4 : Pin arrangement of backlight.

The figure below shows the circuit chart of each string.

6. Absolute maximum ratings

Absolute maximum ratings of the module are shown in Table 6. Table 6

Table 6					GND=0V
Item	Symbol	MIN	MAX	Unit	Remarks
Denseration	VDD	-0.3	+4.6	V	
Power supply of source part	AVDDP	-0.3	+7.3	V	
	AVDDM	-0.3	-7.3	V	
Input Signal Voltage	VID	-0.3	VDD+0.3		[Note 6-1]
	VGH	-0.3	VGL+42.0	V	
Power supply of gate part	VGL	-25.0	+0.3	V	
Common electrode driving signal	VCOM	-3.0	+1.0	V	

LCY-W-15156A-8

Power supply of LED Back Light	If	-	100	mA	Ta=25°C/ 【Note 6-8】
Storage temperature	Tstg	-40	+90	°C	[Note 6-2,3]
Operating temperature (LCD panel surface)	Topr1	-30	+85	°C	[Note6-4,6,7]

[Note 6-1] UD, LR

[Note 6-2] This rating applies to all parts of the module and should not be exceeded.

- [Note 6-3] Maximum wet-bulb temperature is 57°C. Condensation of dew must be avoided as electrical current leaks will occur, causing a degradation of performance specifications.
- [Note 6-4] The operating temperature is a temperature at which the module is assured to operate. Display quality criteria such as contrast and response speed are evaluated when Ta = +25°C.
- [Note 6-5] Ambient temperature when the backlight is lit (reference value).
- [Note 6-6] Panel temperature is defined as the peak temperature on both the front and rear surfaces of the panel.
- [Note 6-7] The operating temperature guarantees only operation of the circuit. For contrast, response time and other factors related to display quality are determined in the ambient temperature of Ta=+25°C.

[Note 6-8] LED current must be used in the condition that is lower than a line of Fig 6-1.

Dimming shall operate at Ta \geq (60 °C).

Countermeasures for heat generation from LCD module are required at customer's system.

Fig. 6-1 : Ambient temperature -LED current

Fig.6-2 : Ambient temperature – Panel surface temperature

Note) Fig.6-2 is a result when it drives by Fig6-1

7. Electrical characteristics

7-1) TFT-LCD panel driving section

Table7-1 Recor	Cable 7-1Recommended conditionsGND=0V , Ta=25 °C							
Para	ameter		Symbol	MIN	TYP	MAX	Unit	Remarks
D			AVDDM	-6.50	-6.37	-6.24	V	
Power supply	Analog		AVDDP	+6.24	+6.37	+6.50	V	
of source part	Digital	Digital		+3.0	+3.3	+3.6	V	
1	TET	Hi	VGH	+17.0	+17.5	+18.0	V	
Power supply	TFT driving	Lo	VGL	-15.0	-14.5	-14.0	V	
of gate driver			VGH-VGL	-	-	+40.0	V	
	Logic	Hi	VDD	+3.0	+3.3	+3.6	V	
Power supply of gray image		V0~V13				V	[Note 7-1]	
VCOM voltage			VCOM	-1.5	-0.85	0	V	

[Note 7-1] AVDDP-0.1 > V0 > V1 > V2 > V3 > V4 > V5 > V6 > 0.1

-0.1 > V7 > V8 > V9 > V10 > V11 > V12 > V13 > AVDDM+0.1

Parameter	Symbol	MIN	TYP	MAX	Unit	Remarks
Gray scale voltage	V0	-	+6.27	AVDDP-0.1	V	
for gamma 2.2	V1	-	(+4.70)	-	V	
	V2	-	(+3.88)	-	V	
	V3	-	(+3.44)	-	V	
*TBD	V4	-	(+3.10)	-	V	
	V5	-	(+2.27)	-	V	
	V6	0.1	(+1.79)	-	V	
	V7	-	(-1.69)	-0.1	V	
	V8	-	(-2.17)	-	V	
	V9	-	(-3.11)	-	V	,
	V10	-	(-3.44)	-	V	
	V11	-	(-3.89)	-	V	
	V12	-	(-4.74)		V	
	V13	AVDDM+0.1	-6.27		V	

Table 7-2 Reference of gray scale voltage for Gamma2.2

Table 7-3 Electric characteristic

GND=0V , Ta=25 °C

Parameter		Symbol	MIN	TYP	MAX	Unit	Remarks
	High level	VIHS	0.7×VDD	_	VDD	V	[Note7-2]
	Low level	VILS	GND	-	0.3×VDD	V	[Note 7-2]
	LVDS	VID	250	350	450	mV	
	differential	VTH	-	-	50	mV	
input voltage of source part	voltage	VTL	-50	-	-	mV	[Note7-3]
of source part	LVDS center level	VCM	1.1	1.2	1.3	V	
	Voltage drop	Vth	2.5	-	-	v	
	Voltage drop time	Tvth	-	-	10	ms	
2	Voltage rise time	Trise			10	ms	
	Re-supply voltage	Voff	0	-	0.1VDD	V	
	Time of re-power supply	Tpon	700	-	-	ms	
innut ourrout	High	IIH			(150)	uA	[Note7-2]
input current	Low	IIL	(-10)			uA	[INOte / 2]

[Note 7-2] UD, LR

[Note 7-3] DATA0P /DATA0N, DATA1P / DATA1N, DATA2P / DATA2N , DATA3P / DATA3N , CKP/CKN

[Caution] Power ON/OFF sequence must be done by the following sequence.

[Note]:AVDDP-0.1>V0>V1>V2>V3>V4>V5>V6>GND GND>V7>V8>V9>V10>V11>V12>V13>AVDDM+0.1

Please refer to the following for VID, VTH, VTL and VCM.

(DATA0P /DATA0N, DATA1P / DATA1N, DATA2P / DATA2N, DATA3P / DATA3N, CKP/CKN)

*VCM: LVDS Receiver common voltage of LVDS signal.

* VID: Difference of LVDS Receiver input differential signal.

Fig. 7-3: VDD waveforms

7-2)Backlight driving section

Table 7-4Recommended condition

 $Ta = +25^{\circ}C$

	14 1200					
Parameter	Symbol	MIN	TYP	MAX	Unit	Remarks
	Vf	(33.6)	(36.6)	(39.6)	V	Ta =+25℃ [Note7-4]
Input voltage	Vf-30	_	_	(42.12)	V	Ta =-30°C [Note7-5]
	Vf+85	(31.8)	_	_	—	Ta =+85°C [Note7-5]
Current consumption	If	_	80	90	mA	one line [Note7-6]
Power consumption	Wf	_	(11.7)		W	[Note7-7]

[Note7-4] In this case heat is balanced If=80mA by one line (twelve series). (Reference value based on LED specifications)

[Note7-5] In this case If=80mA power supply ON by one line (twelve series). (Reference value based on LED specifications)

- [Note7-6] Please use the LED current within Fig 6-1.
- [Note7-7] Reference, Wf = Vf x If x parallel qty.

 $Ta = +25^{\circ}C$

8 Timing characteristics

Timing diagrams of input signal are shown in Table 8.

Table 8 : Input signal timing	
-------------------------------	--

Param	eter	Symbol	MIN	TYP	MAX	Unit	
DCLK	Frequency	fCLK	(44.58)	54.15	(59.37)	MHz	
Horizontal	Period (time)	tH(t)	(27.39)	30.03	(36.47)	us	
synchronous signal	Period (clock)	tH(clk)	-	1626	-	clk	
(HSY)	Pulse width	tHPW	-	5		clk	
Vertical synchronous signal	Period	tV	-	555	-	line	
(VSY)	Pulse width	tVPW	-	2	-	line	
DE signal	Pulse width	tEPWB	-	tHA	-	clk	
Horizontal display per	iod	tHA	-	1440	-	clk	
Horizontal Front Porc	h	tHFP	-	86	-	clk	
Horizontal display stat (Horizontal Back Porc	-	tHBP	-	100	-	clk	
HSY-VSY phase diffier	rence	tHV	-10	-	10	clk	
Vertical Front Porch		tVFP	-	7	-	line	
Vertical display start p (Vertical Back Porch)	position	tVBP	-	8		line	
Vertical display period		tVA	-	540	-	line	

Remark: DCLK must be constant and continuous during operating.

Fig.8-1

LCY-W-15156A-14 Ta=+25°C

Table8-2 Below table shows LVDS timing

Tables-2 Below table shows LVDS timing										
Parameter	Symbol	min	typ	max	unit					
Clock Period	tPWCK	16.84	18.47	22.43	ns					
High level Clock Width	tPWCK_H	-	4/7	-	tPWCK					
Low level Clock Width	tPWCK_L	-	3/7	-	tPWCK					
Clock rise & fall time	tCR & tCF	-	-	0.2×tPWCK	ns					
Data Width time	tDW	-	1/7	-	tPWCK					
Data rise & fall time	tDR & tDF	-		0.2×tPWCK	ns					

Table.8-3 Data input signal timing chart

Fig.8-3

9. Current consumption

A rule about the Current consumption is shown in Table9

Table9						Ta = 25°C
Parameter	symbol	Voltage conditions	Min	Тур	Max	Unit
	IDD	VDD= +3.3V	(15)	(34)	(50)	mA
Current for	IDDP	AVDDP= +6.37V	-	(34)	(50)	mA
source driver	IDDM	AVDDM= -6.37V	-	(36)	(50)	mA
Current for	IGH	VGH= +17.5V	-	(0.7)	(1.0)	mA
gate driver	IGL	VGL= -14.5V	-	(0.7)	(1.0)	mA
Panel	ICOM	COM= -0.85V	-	(0.02)	(0.1)	mA

Max current condition :

[Note 9-1] Display pattern : White screen

[Note 9-2] reference value

Timing:DCLK=54.15MHz, fH=33.3kHz, fV=60Hz,

In addition, It is defined by follows.

- fH : Frequency of Horizontal synchronous signal (Frequency of HSY) fH=1/tH(t)
- fV: Frequency of Vertical synchronous signal (Frequency of VSY) fV=1/(tH(t)*tV)

10. Input Data Signals and Display Position on the screen

D1,DH1	D2,DH1	D3,DH1		D1440,DH1
D1,DH2	D2,DH2			
D1,DH3	\leq			
5		В	G R	
D1,DH540				D1440,DH540

Display position of input data (H,V)

11. Input Signals, Basic Display Color and Gray Scale of Each Color

	- Table11	0			-	•																				
ĺ	Colors &											Da	ta s	igna	al											
		Grey Scale	R0	R1	R2	R3	R4	R5	R6	R7	G0			-		G5	G6	G7	B0	B1	B2	B3	B4	B5	B6	B7
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
B	Green	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic color	Cyan	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
; co	Red	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lor	Magenta	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	—	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	—	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gr	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grey Scale of red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{S}\mathbf{c}\mathbf{a}$	仓	\checkmark				1	/																V			
ıle	Û	\checkmark				1	/																1			
of 1	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ed	Û	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ģ	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grey Scale of green	仓	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
y S	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cal	仓	\checkmark				1	/																$\boldsymbol{\nu}$			
e of	Û	\checkmark				1																				
[gr	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
eer	Û	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gre	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Ŭ V	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Grey Scale of blue	仓	\checkmark				1																	V			ľ
le o	Û	\rightarrow				1																	\boldsymbol{k}			
fb	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
lu	Û	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Ð	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	1	1	1	1	1	1	1	1

0 : Low level voltage 1 : High level voltage

Each basic color can be displayed in 255 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16,777,216-color display can be achieved on the screen.

Table 12	14140001100		(arao)					Ta=25℃
Parameter		Symbol	Condition	MIN	TYP	MAX	Unit	Notes
		θ21,θ22	10 < CD	70	80	-	°(degree)	
Viewing angle	e range	θ11, θ12	$10 \leq CR$	70	80	-	°(degree)	[Note 12-1,2]
Contrast ratio)	CR	Perpendicular	700	1800	-		[Note 12-2]
Response time	Ta=+25℃	τ r+ τ d	$\theta = 0^{\circ}$	-	15	40	ms	[Nte 12-3]
Luminance ui (White)	Luminance uniformity		θ = 0° 9point	75	-	-	%	[Note 12-6]
White Lumina	ance	Y		650	800	-	cd/m ²	[Note 12-4]
		x		0.263	0.293	0.323		
	White	У		0.287	0.317	0.350		[Note 12-4]
	D 1	x	If=80mA	-	(0.640)			
C1	Red	У	(per one line)	-	(0.330)	-		
Chromaticity	~	x		-	(0.300)			
	Green	У	$\theta = 0^{\circ}$	-	(0.606)	-		[Note 12-4]
		х			(0.151)	-		
	Blue	У		-	(0.054)	-		
NTSC ratio		-		J.	(72)	-	%	[Note 12-4]
LED Life Tim	e	-	contimuation	15,000	-	-	hour	[Note 12-5]

12. Optical characteristics [initial value] Table 12

*Measuring after 30minutes operation. The measurement of the optical character is measured by using the method of fig.12-1 and fig.12-2 under the condition which is equal to the darkroom or the darkroom.

Photo detector output with LCD being "black"(GS0)

- [Note 12-4] Measured on the center area of the panel at a viewing cone 1° by TOPCON luminance meter SR-UL1/SR-UL2.(After 30 minutes operation)
- [Note 12-5] LED life time is defined as the time when the brightness of the panel not to become less than 70% of the original value in the continuous operation under the following condition.

Time

LED current If=80mA and PWM dimming 100%~5%.

[Note 12-6] Luminance uniformity is defined as follows

0%

The measurement of Luminance measures nine points of the above figure.

The maximum and minimum luminance is chosen as a result.

Luminance uniformity = Minimum Luminance / Maximum Luminance (%)

13. Display quality

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standard.

14. Mechanical characteristics

14-1) External appearance

The appearance security domain becomes the active area. (See Fig.4)

- 14-2) Panel: Surface Compression Strength
 - Panel Fracture: The panel must not break at 19N pressure on the center applied by a smooth surface of 15mm diameter.
 - (Note) No matter how little its weight is, it may interfere with the function if any pressure is applied for a long time on the viewing area.
 - Surface treatment of Polarizer is Anti-glare(AG). And the surface hardness of polarizer is 3H.
- 14-3)Input connector performance:
 - A) FPC for TFT panel driving parts
 - (1) Applied Connector: 04_6288_050_000_846+ (KYOCERA).
 - (2) Applied FPC(Recommended)

15. Handling instructions

15-1) Handling of LED-FPC

 Please do not hang the LCD module by the LED-FPC or apply excessive force on the LED-FPC.
 Please do not fold the LED-FPC. Please follow Sharp's FPC handling recommendations for bending the LED-FPC and under all circumstances ensure the minimum bend radius guideline of 0.5mm is observed.

15-2) Mounting of module

①The TFT-LCD module is designed to be mounted on equipment using the mounting tabs at the rear side.

On mounting the module, as the M3 screw is recommended, be sure to fix the module on the same plane, taking care not to wrap or twist the module.

(fastening torque is Max 1.5 N·m as design target.)

Don't allow the pressure from the touch switched besides the display module (if any) to impact the module directly. Such external stress can cause image distortion.

- ② Be sure to turn off the power supply when inserting or disconnecting the cable.
- ③ Please ensure that the LCD metal case is grounded in the system design.

15-3) Precautions in mounting

Polarizer which is made of soft material and susceptible to flaw must be handled carefully. Protective sheet is applied on the surface to protect it against scratches and dirties. It is recommended to peel off the protective sheet immediately before the use, taking care of static electricity Precautions in peeling off protective sheet.

A) Working environment

When the protective sheet is peeled off, static electricity may cause dust to stick to the polarizer surface.

To avoid this, the following working environment is desirable.

- a) Floor: Conductive treatment of $1M\Omega$ or more on the tile.
 - (conductive mat or conductive paint on the tile)
- b) Clean room free form dust and with an adhesive mat on the doorway.
- c) Advisable humidity: $50\% \sim 70\%$ Advisable temperature: $15\% \sim 27\%$
- d) Workers shall wear conductive shoes, conductive work clothes, conductive gloves and an earth band.

B) Working procedures

a) Direct the wind of discharging blower somewhat downward to ensure that module is blown sufficiently.

Please set the distance between module and discharging blower the most suitable distance of blower.

- b) Peel off protective sheet, pulling tab of protection sheet slowly to your side.
- c) On peeling off the protective sheet, pass the module to the next work process to prevent the module to get dust.
- d) Method of removing dust from polarizer
 - Blow off dust with ionized air blower for which static electricity preventive measure has been taken.
 - · Since polarizer is vulnerable, wiping should be avoided.

But when the panel has stain or grease, we recommend to use soft cloth like SAVINA MX or equivalent any cloth can be used.

When metal part of the TFT-LCD module (shielding case and rear case) is soiled, wipe it with soft dry cloth. For stubborn dirties, wipe the part, breathing on it.

Wipe off water drop or finger grease immediately. Long contact with water may cause discoloration or spots.

TFT-LCD module and Touch panel uses glass which breaks or cracks easily if dropped or bumped on hard surface.

Handle with care. Since CMOS LSI is used in this module, take care of static electricity and earth your body when handling.

XC

15-4) Caution of product design

Please following items strictly when the product is designed by using this module.

- The LCD module shall be protected against water salt-water by the waterproof cover..
- Please take measures to ensure electromagnetic radiation from module does not cause interfere to operation of surrounding appliances.
- About the FPC/FFC design of the LCD panel drive input part, please refer to recommended FPC/FFC dimensions of input connector which 04 6288 050 000 846+ (KYOCERA). In addition, we recommend the terminals of FFC/FPC be of gold or gold plated, because the contact points of the connector are gold plated.
- Customer mechanics should be designed to avoid possible reflection from the cutting surface of front case.
- $\cdot \quad In \ order \ to \ prevent \ light \ leakage \ , \quad please \ consider \ the \ design \ of \ your \ company \ set.$
- The LCD module is used in landscape. If you used this LCD module in portrait, it darkens when the liquid crystal display is seen wearing a polarizing sunglasses.

15-5) Others

- ① Do not expose the module to direct sunlight or intensive ultraviolet rays for several hours; liquid crystal is deteriorated by ultraviolet rays.
- 2 Store the module at a temperature near the room temperature. At lower than the rated storage temperature, liquid crystal solidifies, causing the panel to be damaged. At higher than the rated storage temperature, liquid crystal turns into isotropic liquid and may not recover.
- ③ If LCD panel breaks, there may be a possibility that the liquid crystal escapes from the panel. Since the liquid crystal is injurious, do not put it into the eyes or mouth. When liquid crystal sticks to hands, feet or clothes, wash it out immediately with soap.
- ④ Observe all other precautionary requirements in handling general electronic components.
- ⁽⁵⁾ When handling LCD modules and assembling them into cabinets, please avoid that longterms storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the modules. Do not use the LCD module under such environment.
- ⁽⁶⁾ Be sure to adjust DC bias voltage of common electrode driving signal(VCOM) in the state of the last product. When not adjusted, it becomes the cause of a deterioration of display quality.
- Please design the system ensuring that no load is applies directly to the display module.
 External load when applied directly on the display module can cause display distortion like pooling.
- (8) When carrying out PWM Dimming, a display noise may occur depending on Dimming frequency. Please fully inquire in the case of a products design. Recommendation Dimming frequency : frequency multiplying of Frame rate or highfrequency(over 1k Hz)

16 Packing form

- Please refer to Fig.16 "Packing form"
- a) Piling number of cartons : TBD
- b) Package quantity in one carton TBD
- c) Carton size: TBD
- d) Total mass of one carton filled with full modules: TBD
- e) Recommended warehouse storage conditions
- Environment

①Temperature : $0 \sim 40^{\circ}$ C

②Humidity : 60%RH or less (at 40°C)

No dew condensation at low temperature and high humidity.

- ③Atmosphere :Harmful gas, such as acid or alkali which corrodes electronic
 - components and/or wires, must not be detected.

④Period :about 3 months

⑤Opening of the package : In order to prevent the LCD module from breakdown by

electrostatic charges, please control the room humidity over 50%RH and open the package taking sufficient countermeasures against electrostatic charges, such as earth, etc.

17.Indication of lot number

①Attached location of the label ②Indicated contents of the label

TBD

 $QR \ code$

TBD

Contents of Lot number

TBD

18.Fab locations

Panel production : SHARP CORPORATION(Japan Mie Factory) LCD Modue assembly : WSEC(China)

19.About RoHS

This TFT-LCD module is RoHS complaint.

20.Disposal of module

Please take care to observe appropriate laws and regulations when disposing of this TFT-LCD product for any reason.

21. Reliability test condition

Table 21-1 Reliability test

No.	Test items	Test condition	Notes
1	High temperature storage test	$Ta = +90^{\circ}C \qquad 240h$	
2	Low temperature storage test	$Ta = -40^{\circ}C \qquad 240h$	
3	High temperature and high humidity operation test	$T_a = +60^{\circ}C, 90^{\circ}RH$ 240h	
4	Hi temperature operating test	$Tp = +85^{\circ}C \qquad 240h$	
5	Low temperature operating test	$Ta = -30^{\circ}C \qquad 240h$	
6	Electro static discharge test	$\pm 200V \cdot 200 pF(0Ω)$ 1 time for each terminals	
7	Shock test	$980 \text{m/s}^2 \cdot 6 \text{ms},$ $\pm \text{X} ; \pm \text{Y} ; \pm \text{Z}$ 10times for each direction	[Note 21-1]
8	Vibration test	$\begin{array}{rl} Frequency: 8 \sim 33.3 Hz \ , \ Stroke: 1.3 mm \\ Frequency: 33.3 Hz \sim 400 Hz, \\ Acceleration: 29.4 m/s^2 \\ Cycle & : 15 \ minutes \\ X,Y,Z & 8 \ hours \ for \ each \ directions. \end{array}$	[Note 21-1]
9	Heat shock test	$\begin{array}{c} -30^{\circ}\!\mathrm{C} \ \sim \ +85^{\circ}\!\mathrm{C} \ , \ 200 \ \mathrm{cycles} \\ (0.5\mathrm{h}) \ (0.5\mathrm{h}) \end{array}$	

Ta = Ambient temperature, Tp = Panel temperature

[Check items]

In the standard condition, there shall be no practical problems that may affect the display function.

[Note 21-1]

Definition of X, Y, Z direction is shown as follows

LCY-W-15156A-25

Fig4. Outline Dimension

Copyright © 2015 SHARP All Right Reserved.

TBD

contident to

Fig16. Packing Form